

Lecture Notes in Computer Science 4421
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Rocco De Nicola (Ed.)

Programming
Languages
and Systems

16th European Symposium on Programming, ESOP 2007
Held as Part of the Joint European Conferences
on Theory and Practics of Software, ETAPS 2007
Braga, Portugal, March 24 - April 1, 2007
Proceedings

13

Volume Editor

Rocco De Nicola
Dipartimento di Sistemi e Informatica
Università di Firenze
Viale Morgagni 65
50134 Firenze, Italy
E-mail: denicola@dsi.unifi.it

Library of Congress Control Number: 2007922404

CR Subject Classification (1998): D.3, D.1, D.2, F.3, F.4, E.1

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-71314-X Springer Berlin Heidelberg New York
ISBN-13 978-3-540-71314-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12032907 06/3142 5 4 3 2 1 0

Foreword

ETAPS 2007 is the tenth instance of the European Joint Conferences on Theory
and Practice of Software, and thus a cause for celebration.

The events that comprise ETAPS address various aspects of the system de-
velopment process, including specification, design, implementation, analysis and
improvement. The languages, methodologies and tools which support these ac-
tivities are all well within its scope. Different blends of theory and practice
are represented, with an inclination towards theory with a practical motivation
on the one hand and soundly based practice on the other. Many of the issues
involved in software design apply to systems in general, including hardware sys-
tems, and the emphasis on software is not intended to be exclusive.

History and Prehistory of ETAPS

ETAPS as we know it is an annual federated conference that was established
in 1998 by combining five conferences [Compiler Construction (CC), European
Symposium on Programming (ESOP), Fundamental Approaches to Software En-
gineering (FASE), Foundations of Software Science and Computation Structures
(FOSSACS), Tools and Algorithms for Construction and Analysis of Systems
(TACAS)] with satellite events.

All five conferences had previously existed in some form and in various colo-
cated combinations: accordingly, the prehistory of ETAPS is complex. FOSSACS
was earlier known as the Colloquium on Trees in Algebra and Programming
(CAAP), being renamed for inclusion in ETAPS as its historical name no longer
reflected its contents. Indeed CAAP’s history goes back a long way; prior to
1981, it was known as the Colleque de Lille sur les Arbres en Algebre et en
Programmation. FASE was the indirect successor of a 1985 event known as Col-
loquium on Software Engineering (CSE), which together with CAAP formed a
joint event called TAPSOFT in odd-numbered years. Instances of TAPSOFT, all
including CAAP plus at least one software engineering event, took place every
two years from 1985 to 1997 inclusive. In the alternate years, CAAP took place
separately from TAPSOFT.

Meanwhile, ESOP and CC were each taking place every two years from 1986.
From 1988, CAAP was colocated with ESOP in even years. In 1994, CC became
a “conference” rather than a “workshop” and CAAP, CC and ESOP were there-
after all colocated in even years.

TACAS, the youngest of the ETAPS conferences, was founded as an inter-
national workshop in 1995; in its first year, it was colocated with TAPSOFT. It
took place each year, and became a “conference” when it formed part of ETAPS
1998. It is a telling indication of the importance of tools in the modern field of
informatics that TACAS today is the largest of the ETAPS conferences.

VI Foreword

The coming together of these five conferences was due to the vision of a small
group of people who saw the potential of a combined event to be more than the
sum of its parts. Under the leadership of Don Sannella, who became the first
ETAPS steering committee chair, they included: Andre Arnold, Egidio Aste-
siano, Hartmut Ehrig, Peter Fritzson, Marie-Claude Gaudel, Tibor Gyimothy,
Paul Klint, Kim Guldstrand Larsen, Peter Mosses, Alan Mycroft, Hanne Riis
Nielson, Maurice Nivat, Fernando Orejas, Bernhard Steffen, Wolfgang Thomas
and (alphabetically last but in fact one of the ringleaders) Reinhard Wilhelm.

ETAPS today is a loose confederation in which each event retains its own
identity, with a separate programme committee and proceedings. Its format is
open-ended, allowing it to grow and evolve as time goes by. Contributed talks
and system demonstrations are in synchronized parallel sessions, with invited
lectures in plenary sessions. Two of the invited lectures are reserved for “uni-
fying” talks on topics of interest to the whole range of ETAPS attendees. The
aim of cramming all this activity into a single one-week meeting is to create a
strong magnet for academic and industrial researchers working on topics within
its scope, giving them the opportunity to learn about research in related areas,
and thereby to foster new and existing links between work in areas that were
formerly addressed in separate meetings.

ETAPS 1998–2006

The first ETAPS took place in Lisbon in 1998. Subsequently it visited Ams-
terdam, Berlin, Genova, Grenoble, Warsaw, Barcelona, Edinburgh and Vienna
before arriving in Braga this year. During that time it has become established
as the major conference in its field, attracting participants and authors from
all over the world. The number of submissions has more than doubled, and the
numbers of satellite events and attendees have also increased dramatically.

ETAPS 2007

ETAPS 2007 comprises five conferences (CC, ESOP, FASE, FOSSACS, TACAS),
18 satellite workshops (ACCAT, AVIS, Bytecode, COCV, FESCA, FinCo, GT-
VMT, HAV, HFL, LDTA, MBT, MOMPES, OpenCert, QAPL, SC, SLA++P,
TERMGRAPH and WITS), three tutorials, and seven invited lectures (not in-
cluding those that were specific to the satellite events). We received around 630
submissions to the five conferences this year, giving an overall acceptance rate of
25%. To accommodate the unprecedented quantity and quality of submissions,
we have four-way parallelism between the main conferences on Wednesday for
the first time. Congratulations to all the authors who made it to the final pro-
gramme! I hope that most of the other authors still found a way of participating
in this exciting event and I hope you will continue submitting.

ETAPS 2007 was organized by the Departamento de Informática of the Uni-
versidade do Minho, in cooperation with

Foreword VII

– European Association for Theoretical Computer Science (EATCS)
– European Association for Programming Languages and Systems (EAPLS)
– European Association of Software Science and Technology (EASST)
– The Computer Science and Technology Center (CCTC, Universidade do

Minho)
– Camara Municipal de Braga
– CeSIUM/GEMCC (Student Groups)

The organizing team comprised:

– João Saraiva (Chair)
– José Bacelar Almeida (Web site)
– José João Almeida (Publicity)
– Lúıs Soares Barbosa (Satellite Events, Finances)
– Victor Francisco Fonte (Web site)
– Pedro Henriques (Local Arrangements)
– José Nuno Oliveira (Industrial Liaison)
– Jorge Sousa Pinto (Publicity)
– António Nestor Ribeiro (Fundraising)
– Joost Visser (Satellite Events)

ETAPS 2007 received generous sponsorship from Fundação para a Ciência e a
Tecnologia (FCT), Enabler (a Wipro Company), Cisco and TAP Air Portugal.

Overall planning for ETAPS conferences is the responsibility of its Steering
Committee, whose current membership is:

Perdita Stevens (Edinburgh, Chair), Roberto Amadio (Paris), Luciano Baresi
(Milan), Sophia Drossopoulou (London), Matt Dwyer (Nebraska), Hartmut Ehrig
(Berlin), José Fiadeiro (Leicester), Chris Hankin (London), Laurie Hendren
(McGill), Mike Hinchey (NASA Goddard), Michael Huth (London), Anna Ingólfs-
dóttir (Aalborg), Paola Inverardi (L’Aquila), Joost-Pieter Katoen (Aachen),
Paul Klint (Amsterdam), Jens Knoop (Vienna), Shriram Krishnamurthi (Brown),
Kim Larsen (Aalborg), Tiziana Margaria (Göttingen), Ugo Montanari (Pisa),
Rocco de Nicola (Florence), Jakob Rehof (Dortmund), Don Sannella (Edin-
burgh), João Saraiva (Minho), Vladimiro Sassone (Southampton), Helmut Seidl
(Munich), Daniel Varro (Budapest), Andreas Zeller (Saarbrücken).

I would like to express my sincere gratitude to all of these people and or-
ganizations, the programme committee chairs and PC members of the ETAPS
conferences, the organizers of the satellite events, the speakers themselves, the
many reviewers, and Springer for agreeing to publish the ETAPS proceedings.
Finally, I would like to thank the organizing chair of ETAPS 2007, João Saraiva,
for arranging for us to have ETAPS in the ancient city of Braga.

Edinburgh, January 2007 Perdita Stevens
ETAPS Steering Committee Chair

Preface

This volume contains 34 papers presented at ESOP 2007, the annual European
Symposium on Programming, held in Braga, Portugual, in March 2007. The
goal of ESOP has always been to bridge the gap between theory and practice of
programming, and the conferences continue to be devoted to addressing funda-
mental issues in the specification, analysis, and implementation of programming
languages and systems.

The volume begins with a summary of the invited talk by Andy Pitts and
continues with the contributed ESOP papers. The papers deal with important
issues such as models and languages for services, logics, type theories and other
verification techniques, language-based security, static analysis and abstract in-
terpretation, semantic theories for object-oriented languages, process algebraic
techniques for proving systems properties, and term-rewriting theories.

The 34 papers contained in this volume were selected by the Program Com-
mittee out of 136 submissions, each reviewed by at least three researchers. The
reviews were made by the Program Committee and by 181 additional referees,
listed below. The accepted papers were selected during a two-week electronic
discussion by the Program Committee.

Thanks go to the authors, the members of the Program Committee, and the
external referees for their excellent work, to the ETAPS Steering Committee
Chair Perdita Stevens and the ETAPS 2007 Local Organization chaired by João
Saraiva for providing infrastructure and gentle reminders, and finally to Andrei
Voronkov and the maintainers of the Easychair Conference Management Systems
that was very useful in all the phases of paper handling.

January 2007 Rocco De Nicola

Organization

Program Chair

Rocco De Nicola
Dipartimento di Sistemi e Informatica
Università di Firenze, Italy

Program Committee

Steve Brookes CMU Pittsburgh, USA
Gerard Boudol INRIA Sophia Antipolis, France
Giuseppe Castagna ENS Paris, France
Patrick Cousot ENS Paris, France
Mads Dam KTH Stockolm, Sweden
Pierpaolo Degano Univ. Pisa, Italy
Sophia Drossopoulou Imperial College, UK
Cedric Fournet Microsoft Cambridge, UK
Stefania Gnesi ISTI CNR, Italy
Joshua Guttman MITRE, USA
Chris Hankin Imperial College, UK
Matthew Hennessy Univ. Sussex, UK
Alan Jeffrey Bell Labs, USA
John Mitchell Stanford Univ., USA
Fleming Nielson IMM Copenhagen, Denmark
Catuscia Palamidessi INRIA Paris, France
Benjamin Pierce U. Pennsylvania, USA
Andrei Sabelfeld Chalmers Univ., Sweden
Don Sannella Univ. Edinburgh, UK
Bernhard Steffen Univ. Dortmund, Germany
Walid Taha Rice Univ. , USA
Jan Vitek Purdue Univ., USA
Martin Wirsing LMU Munich, Germany
Xavier Leroy INRIA Paris, France
Gianluigi Zavattaro Univ. Bologna, Italy

Additional Referees

Andreas Abel
Pedro Adao
Irem Aktug

Tristan Allwood
Davide Ancona
Jesus Aranda

Zena Ariola
Aslan Askarov
Robert Atkey

XII Organization

Roberto Bagnara
Adam Barker
Massimo Bartoletti
Joerg Bauer
Hubert Baumeister
Maurice ter Beek
Lennart Beringer
Clara Bertolissi
Lorenzo Bettini
Hariolf Betz
Karthik Bhargavan
Nicole Bidoit
Gavin Bierman
Chiara Bodei
Viviana Bono
Marcello Bonsangue
Michele Boreale
Gilles Brassard
Mario Bravetti
Roberto Bruni
Cristiano Calcagno
Nick Cameron
Brian Campbell
Luca Cardelli
Magnus Carlsson
K. Chatzikokolakis
James Cheney
Antonio Cisternino
Ricardo Corin
Andrea Corradini
Antonio Cunei
David Cunningham
Mika Cohen
Ferruccio Damiani
Vincent Danos
Olivier Danvy
Pierre-Malo Deniélou
Moshe Deutsch
Alessandra Di Pierro
Dino Distefano
Kevin Donnelly
Stephan Ellner
Moreno Falaschi
Alessandro Fantechi
Jérôme Feret

Gianluigi Ferrari
Gian-Luigi Ferrari
Jean-Christ. Filliatre
Robby Findler
Andrea Flexeder
Nate Foster
Alain Frisch
Thom Frhwirth
Rachele Fuzzati
Fabio Gadducci
Han Gao
Stéphane Gaubert
Thomas Gawlitza
Stephen Gilmore
Sabine Glesner
Johan Glimming
Jens C. Godskesen
Ulla Goltz
Dilian Gurov
Rene Rydhof Hansen
Fritz Henglein
Rolf Hennicker
Stephan Herrmann
Mike Hicks
Thomas Hildebrandt
Tom Hirschowitz
Matthias Hölzl
Suresh Jagannathan
Johan Jeuring
Stefan Kahrs
Gerwin Klein
Alexander Knapp
Naoki Kobayashi
Ivan Lanese
Cosimo Laneve
Diego Latella
Christopher League
Jooyong Lee
James Leifer
Francesca Levi
Ruy Ley-Wild
Cedric Lhoussaine
Michele Loreti
Markus Müller-Olm
Kenneth MacKenzie

Patrick Maier
Luc Maranget
Luca Martini
Franco Mazzanti
Hernan Melgratti
Dale Miller
Antoine Miné
David Monniaux
Anders Møller
Ralf Nagel
Sebastian Nanz
Joachim Niehren
Christoffer R. Nielsen
Peter O’Hearn
Chris Okasaki
Carlos Olarte
Peter Olvecki
Karol Ostrovsky
Luca Padovani
Catuscia Palamidessi
Matthew Parkinson
Emir Pasalic
Marius Petria
Andrew Phillips
Henrik Pilegaard
Andrew Pitts
Randy Pollack
Christian W. Probst
Riccardo Pucella
Rosario Pugliese
Harald Raffelt
Julian Rathke
Axel Rauschmayer
Yann Regis-Gianas
Bernhard Reus
Tamara Rezk
M. Birna van Riemsdijk
Xavier Rival
Alessandro Romanel
Mads Rosendahl
Claudio Russo
Alejandro Russo
Didier Remy
Oliver Rüthing
Matthew Sackman

Organization XIII

Jens-Wolfhard Schicke
Andreas Schroeder
Peter Sewell
Vitaly Shmatikov
Jeremy Siek
Julien Signoles
Sam Staton
Martin Sulzmann
Hans Svensson
Deian Tabakov
Javier Thayer
Stephan Thesing
Alwen Tiu

Jacques Thomas
Simon Thompson
Alwen Tiu
Andrew Tolmach
Terkel K. Tolstrup
Angelo Troina
Frank D. Valencia
Wim Vanhoof
Daniele Varacca
Betti Venneri
Cristian Versari
Eelco Visser
Jan Vitek

David Walker
Herbert Wiklicky
Verena Wolf
Hongwei Xi
Zhe Yang
Steve Zdancewic
Noam Zeilberger
Gefei Zhang
Ye Zhang
Elena Zucca
Roberto Zunino

Table of Contents

Invited Talk

Techniques for Contextual Equivalence in Higher-Order, Typed
Languages . 1

Andrew Pitts

Models and Languages for Web Services

Structured Communication-Centred Programming for Web Services 2
Marco Carbone, Kohei Honda, and Nobuko Yoshida

CC-Pi: A Constraint-Based Language for Specifying Service Level
Agreements . 18

Maria Grazia Buscemi and Ugo Montanari

A Calculus for Orchestration of Web Services . 33
Alessandro Lapadula, Rosario Pugliese, and Francesco Tiezzi

A Concurrent Calculus with Atomic Transactions . 48
Lucia Acciai, Michele Boreale, and Silvano Dal Zilio

Verification

Modal I/O Automata for Interface and Product Line Theories 64
Kim G. Larsen, Ulrik Nyman, and Andrzej W ↪asowski

Using History Invariants to Verify Observers . 80
K. Rustan M. Leino and Wolfram Schulte

Term Rewriting

On the Implementation of Construction Functions for Non-free
Concrete Data Types . 95

Frédéric Blanqui, Thérèse Hardin, and Pierre Weis

Anti-pattern Matching . 110
Claude Kirchner, Radu Kopetz, and Pierre-Etienne Moreau

Language Based Security

A Certified Lightweight Non-interference Java Bytecode Verifier 125
Gilles Barthe, David Pichardie, and Tamara Rezk

XVI Table of Contents

Controlling the What and Where of Declassification in Language-Based
Security . 141

Heiko Mantel and Alexander Reinhard

Cost Analysis of Java Bytecode . 157
E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini

Logics and Correctness Proofs

On the Relationship Between Concurrent Separation Logic and
Assume-Guarantee Reasoning . 173

Xinyu Feng, Rodrigo Ferreira, and Zhong Shao

Abstract Predicates and Mutable ADTs in Hoare Type Theory 189
Aleksandar Nanevski, Amal Ahmed, Greg Morrisett, and
Lars Birkedal

Structure of a Proof-Producing Compiler for a Subset of Higher Order
Logic . 205

Guodong Li, Scott Owens, and Konrad Slind

Static Analysis and Abstract Interpretation I

Modular Shape Analysis for Dynamically Encapsulated Programs 220
N. Rinetzky, A. Poetzsch-Heffter, G. Ramalingam, M. Sagiv, and
E. Yahav

Static Analysis by Policy Iteration on Relational Domains 237
Stephane Gaubert, Eric Goubault, Ankur Taly, and Sarah Zennou

Computing Procedure Summaries for Interprocedural Analysis 253
Sumit Gulwani and Ashish Tiwari

Small Witnesses for Abstract Interpretation-Based Proofs 268
Frédéric Besson, Thomas Jensen, and Tiphaine Turpin

Static Analysis and Abstract Interpretation II

Interprocedurally Analysing Linear Inequality Relations 284
Helmut Seidl, Andrea Flexeder, and Michael Petter

Precise Fixpoint Computation Through Strategy Iteration 300
Thomas Gawlitza and Helmut Seidl

Semantic Theories for Object Oriented Languages

A Complete Guide to the Future . 316
Frank S. de Boer, Dave Clarke, and Einar Broch Johnsen

Table of Contents XVII

The Java Memory Model: Operationally, Denotationally,
Axiomatically . 331

Pietro Cenciarelli, Alexander Knapp, and Eleonora Sibilio

Immutable Objects for a Java-Like Language . 347
C. Haack, E. Poll, J. Schäfer, and A. Schubert

Process Algebraic Techniques

Scalar Outcomes Suffice for Finitary Probabilistic Testing 363
Yuxin Deng, Rob van Glabbeek, Carroll Morgan, and Chenyi Zhang

Probabilistic Anonymity Via Coalgebraic Simulations 379
Ichiro Hasuo and Yoshinobu Kawabe

A Fault Tolerance Bisimulation Proof for Consensus 395
Adrian Francalanza and Matthew Hennessy

A Core Calculus for a Comparative Analysis of Bio-inspired Calculi 411
Cristian Versari

Applicative Programming

A Rewriting Semantics for Type Inference . 426
George Kuan, David MacQueen, and Robert Bruce Findler

Principal Type Schemes for Modular Programs . 441
Derek Dreyer and Matthias Blume

A Consistent Semantics of Self-adjusting Computation 458
Umut A. Acar, Matthias Blume, and Jacob Donham

Multi-language Synchronization . 475
Robert Ennals and David Gay

Types for Systems Properties

Type-Based Analysis of Deadlock for a Concurrent Calculus with
Interrupts . 490

Kohei Suenaga and Naoki Kobayashi

Type Reconstruction for General Refinement Types 505
Kenneth Knowles and Cormac Flanagan

Dependent Types for Low-Level Programming . 520
Jeremy Condit, Matthew Harren, Zachary Anderson,
David Gay, and George C. Necula

Author Index . 537

Techniques for Contextual Equivalence in

Higher-Order, Typed Languages

Andrew Pitts

University of Cambridge

Abstract. Two phrases in a programming language are said to be con-
textually equivalent if, roughly speaking, they are interchangeable in any
complete program without affecting the observable behaviour of the pro-
gram. I will discuss precise formalisations of this fundamental notion
of semantic equivalence for the case of higher-order, typed (HOT) lan-
guages, such as ML and Haskell. How does the structure of a type affect
properties of contextual equivalence of expressions of that type? It can
be very difficult to answer this question when working directly from the
definition of contextual equivalence—mainly because HOT programs can
make use of their constituent sub-expressions in dynamically complicated
ways. This talk will survey some of the semantic techniques (both deno-
tational and operational) that have been devised for proving properties
of HOT contextual equivalence.

R. De Nicola (Ed.): ESOP 2007, LNCS 4421, p. 1, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Structured Communication-Centred

Programming for Web Services

Marco Carbone1, Kohei Honda2, and Nobuko Yoshida1

1 Department of Computing, Imperial College London
2 Department of Computer Science, Queen Mary University of London

Abstract. This paper relates two different paradigms of descriptions
of communication behaviour, one focussing on global message flows and
another on end-point behaviours, using formal calculi based on session
types. The global calculus, which originates from a web service descrip-
tion language (W3C WS-CDL), describes an interaction scenario from a
vantage viewpoint; the end-point calculus, an applied typed π-calculus,
precisely identifies a local behaviour of each participant. We explore a
theory of end-point projection, by which we can map a global descrip-
tion to its end-point counterpart preserving types and dynamics. Three
principles of well-structured description and the type structures play a
fundamental role in the theory.

1 Introduction

Communication-Centred Programming. The explosive growth of Internet
in the last decades has led to the de facto, global standards for naming scheme
(URI, Domain Names), communication protocols (SOAP, HTTP, TCP/IP) and
message format (XML). These elements offer a useful basis for building ap-
plications centring on communication among distributed agents through these
standards. Such communication-centred applications are sometimes called web
services. Web services are an active area of infrastructural development, involv-
ing the major standardisation bodies such as W3C and OASIS.

A concrete application area of communication-centred applications is busi-
ness protocol. A business protocol is a series of structured and automated in-
teractions among business entities. It is predominantly inter-domain, is often
regulation-bound, and demands clear shared understanding about its meaning.
Some protocols such as industry standards will remain unchanged for a long
time once specified; others may undergo frequent updates. Because of its inher-
ent inter-organisational nature, there is a strong demand for a common standard
for specifying business protocols on a sound technical basis.

Global Description of Interaction. One of the standardisation efforts for a
language to specify business protocols is the Web Services Choreography Descrip-
tion Language (WS-CDL) [26], developed by W3C WS-CDL Working Group
since 2004 in collaboration with π-calculus experts including the present authors.
WS-CDL offers a fully expressive global description language for channel-based

R. De Nicola (Ed.): ESOP 2007, LNCS 4421, pp. 2–17, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Structured Communication-Centred Programming for Web Services 3

communication equipped with general control constructs (e.g. sequencing, con-
ditionals and recursion), and is conceived with potential usage of type-based
formal validation from the outset. The intuition behind the term choreography
may be summarised thus:

“Dancers dance following a global scenario without a single point of control”

WS-CDL is conceived as a language for describing such a “global scenario”: once
specified, this scenario is to be executed by individual distributed processes with-
out a single point of control.1 Another significant feature is WS-CDL’s informal
use of sessions for communication: at the outset of each run of a protocol, a
session is established between communication parties so that involved communi-
cations can be distinguished from different runs of the same or other protocols.

End-Point Projection. The global description of a communication behaviour
is useful since, among others, it offers a clear view of dynamics of the whole
interactions. Real execution of the description, however, is always through com-
munication among distributed end-points which (as the notion of choreography
dictates) may as well involve no centralised control. Thus we ask:

How can we project a global description to end-point processes so that
their interactions precisely realise the original global description?

Such a projection may be called end-point projection (EPP), a terminology from
WS-CDL Working Group. Having a universally agreed and well-founded EPP
is fundamental for the engineering use of global descriptions, from design to
implementations to validations/verifications to run-time monitoring (see § 5).

This paper establishes a formal theory of EPP by introducing the two typed
calculi for interaction, a distilled version of WS-CDL (a global calculus) and
an applied π-calculus (an end-point calculus), and defining a mapping from the
former to the latter. This mapping is highly non-trivial due to the different
nature of descriptions: a global calculus directly describes interactions among
multiple participants involving sequencing, branching and recursion, which dif-
fers from the end-point-based description given in the π-calculus. A central con-
tribution of this work is the identification of three basic principles for global
descriptions under which we can define a sound and complete EPP, in the sense
that, through a given EPP, all and only globally described behaviour is realised
as communication among end-points. The three principles are: connectedness
(a basic local causality principle), well-threadedness (a stronger locality principle
based on session types [23,16,12,25,13,6]) and coherence (a consistency principle
for description of each participant in a global description). Schematically, the
EPP mapping has the following shape:

I �→ A[P] | B[Q] | C[R] | · · ·
1 A related idea is orchestration where one master component, “conductor”, directly

controls activity of one or more slave components, which is useful when communi-
cating parties can be placed under a common administrative domain, see [1].

4 M. Carbone, K. Honda, and N. Yoshida

where I is a global description, A, B and C are participants of the protocol and P ,
Q and R are projections of I onto A, B and C respectively. We shall show that,
when applied to well-typed interactions following the three principles, the EPP
mapping thus defined satisfies type preservation, soundness and completeness.

The EPP theory opens a conduit between global descriptions and accumu-
lated studies on process calculi, allowing the use of the latter’s rich theories for
engineering aims. The EPP theory will be published as an associated document
of WS-CDL 1.0 [11] (which contains many examples and full technical details),
and will form part of its open-source implementation [19].

Related Work. Global methods for describing communication have been prac-
ticed in many different forms, including MSCs, UML diagrams and Petri-Nets
[24]. In the context of security study, Strand Space [15] is a model for analysing
security protocols based on their global representation; while Briais and Nest-
mann [7] present a notation for representing protocol narrations and relate it
to the π-calculus (which is a form of end-point projection in our sense). These
notations and models offer a useful basis for design/specification/analysis, but
are not intended as full-fledged programming languages, so that they lack in e.g.
general control structures and constructs for value passing and state change.

DiCons is a global notation for programming Internet applications [2] whose
primitives include web server invocation, email, and web form filing. A formal
notion of end-point projection has not been studied in [2].

The present work shares with many recent works its use of types of the mobile
processes, including, but not limited to, Pict [20], Polyphonic C� [3] and the
preceding studies on session type disciplines [6,12,13,16,23,25]. In the context
of session types, our work extends their usage to global descriptions and intra-
session parallel communications. These preceding works are based on end-point
languages and calculi. The EPP theory offers a passage through which these and
other related studies can be reflected onto global descriptions.

Fournet, Gordon, Bhargavan and Corin studied security-related aspects of
web services. In [5], they have implemented part of WS-Security libraries, and
analyse them through a translation into the π-calculus. The benefits of such a
tool may be reflected onto global descriptions through the theory of EPP.

Laneve and Padovani [17] give a model of orchestrations using an extensions
of π-calculus to join patterns. Busi et al. [8] study a bisimulation-based corre-
spondence between choreography and orchestration. In [14], they further studied
a calculus for web services of end-point descriptions based on predicate-driven
communication. A formal theory of end-point projection is the main difference
of our work from these preceding works.

2 The Global Calculus

2.1 Buyer-Seller Protocol

We outline the key technical ideas using an example from [21], the “Buyer-Seller
Protocol”. The participants involved are a Buyer, a Seller and a Shipper. We
describe the protocol with both text and a sequence diagram.

Structured Communication-Centred Programming for Web Services 5

(1) Buyer asks Seller for quote;

(2) Seller replies with a quote;

(3) Buyer accepts or rejects;

(4) In case of acceptance,
(a) Seller orders from Shipper;
(b) Shipper sends back details;

(c) Seller forwards to Buyer.

(5) In case of rejection,

(a) terminate.

accept

quote

quoteCh

+
{

reject

Buyer Seller Shipper

deliveryCh

details

details

The diagram is ambiguous at the branching (+) actions in (4) and (5): the pur-
pose of such diagrams is to offer an informal overview: they naturally omit de-
tailed control structures (choices, loops, etc.) and manipulation of values/states.
The reason why such global descriptions are practised in engineering is because
they enable a clear grasp of the whole interaction structure, lessening synchro-
nisation and other errors at the design stage.

WS-CDL is intended to extend these virtues of global notations to a full
fledged description language. We find, through our involvement in its design
process, that it is based on two engineering principles: the Service Channel
Principle (SCP) where invocation channels (e.g. a channel at which Buyer
first communicates to Seller, or Seller to Shipper) can be shared and invoked
repeatedly; and the Session Principle (SP) where a sequence of conversations
belonging to a protocol should not be confused with other concurrent runs of
this or other protocols by the participants i.e. each such sequence should form a
logical unit of a conversation, or a session.

(SCP) corresponds to the repeated availability of replicated input channels
in the π-calculus (called uniformly receptive [22] and server channels in [4]), or,
in practice, of public URLs. (SP) is a basic principle in many communication-
centred programs, and can be given simple type abstraction with decidable type
checking [12,16,25].2 The global calculus is built from formalisation of these two
principles, as well as combinators for composing descriptions. Before introducing
the syntax formally, we first outline its basic ideas using an example.

Figure 1 (a) gives a description of the Buyer-Seller Protocol in the global
calculus. In (a), Line 1 describes Action (1) in the protocol. The quoteCh is a
service channel, which may be considered as a public URL for a specific service.
The invocation marks the start of a session between the buyer and the seller:
the ν-bound s is a session channel, a fresh name to be used for later commu-
nication in this session. Unlike standard process calculi, the syntax no longer
describes input and output actions separately: the information exchange between
two parties is directly described as one interaction.

2 In implementations of web services, sessions are implemented using so-called corre-
lation identities (which may be considered as nonces in cryptographic protocols).

6 M. Carbone, K. Honda, and N. Yoshida

1. Buyer → Seller : quoteCh(ν s).
2. Seller→Buyer : s〈quote, 300, x〉. {
3. {Buyer→Seller : s〈accept〉.
4. Seller → Shipper : delivCh(ν t).
5. Shipper→Seller : t〈details, v, x〉.
6. Seller→Buyer : s〈details, x, y〉. 0 }
7. +
8. {Buyer→Seller : s〈reject〉. 0} }

1. Buyer → Seller : quoteCh(ν s).
2. rec X. {
3. Seller→Buyer : s〈quote, q, x〉.
4. if reasonable(x)@Buyer then
5. {Buyer→Seller : s〈accept〉.
6. Seller → Shipper : delivCh(ν t).
7. Shipper→Seller : t〈details, v, x〉.
8. Seller→Buyer :s〈details, x, y〉. 0 }
9. else

10. {Buyer→Seller : s〈reject〉.
q@Seller :=q@Seller−1. X } }

(a) Protocol for Buyer-Seller Example (b) Protocol with Recursion

Fig. 1. Business Protocols in the Global Calculus

Line 2 describes Action (2), Seller’s reply to Buyer. The session has already
been started and now the two participants communicate using the session chan-
nel s. In addition, three factors involved: quote identifies the particular operation
used in this communication (i.e. request for quote), 300 is the quote sent by Seller;
x is a variable located at Buyer where the communicated value will be stored.

Lines 3/8 describe Action (3), where Buyer communicates its choice (accept
or reject) to Seller through s. Two series of actions which follow these choices
are combined by + in Line 7. If accept is chosen, Seller sends Shipper the Buyer’s
details via the service channel delivCh of Shipper, creating a fresh session channel
t (Line 4). Then in Line 5, Shipper sends back the shipping details through t.
Finally in Line 6, Seller forwards the details to Buyer by sending the value stored
in variable x: here the protocol terminates. In Line 8, Buyer communicates reject,
in which case the protocol immediately terminates.

In (a), we can observe the distinction between service channels and session
channels implements (SCP) and (SP); sessions offer logical grouping of threads
of interactions, where each thread starts with a procedure-call-like service invo-
cation at a service channel and carry out in-session communications at associated
session channels. This point can be seen more clearly in Fig. 1 (b), a refinement
of (a). In (b), if Buyer chooses reject, the protocol recurs to Line 3, after decre-
menting the quote. In Line 4, a unary predicate reasonable(x) is evaluated at
Seller’s site (“@” indicates a location, similarly in Line 10). The session notation
makes it clear that all quote-messages from Seller to Buyer in the recursion are
done within a single session. §4 shall show that such session information plays a
crucial role in tractable end-point projection.

2.2 Syntax and Dynamics

The syntax of the global calculus [9] is given by BNF. I, I ′, . . . denote terms
of the calculus, also called interactions. ch, ch′ . . . range over service channels;
s, t, . . . range over session channels; s̃ indicates a vector of session channels; A, B,
C, . . . range over participants; x, y, z, . . . over variables local to each participant;
X, X ′, . . . over term variables; and e, e′, . . . over arithmetic and other first-order
expressions.

Structured Communication-Centred Programming for Web Services 7

I ::= A → B : ch(ν s̃). I (init) | (νs) I (new)

| A→B : s〈op, e, y〉. I (comm) | X (recvar)

| x@A := e. I (assign) | I1 + I2 (sum)

| I1 | I2 (par) | μX. I (rec)

| if e@A then I1 else I2 (cond) | 0 (inaction)

(init) denotes a session initiation by A via B’s service channel ch, with fresh
session channels s̃ and continuation I. (comm) denotes an in-session communi-
cation over a session channel s, where op is an operator name. Note that y does
not bind in I. “|” and “+” denote respectively parallel and choice. (νs) I is
the π-calculus-like name restriction, binding s in I. Since such a hiding is only
generated by session initiation, we stipulate that a hiding never occurs inside
a prefix, sum or conditional. (cond) and (assign) are standard conditional and
assignment (e@A indicates e is located at A). μX. I is recursion, where the
variable X is bound in I. 0 denotes termination. The free and bound session
channels and term variables are defined in the usual way. We often omit 0 and
empty vectors.

The reduction of the global calculus is close to that of imperative languages. A
state σ assigns a value to the variables located at each participant. We shall write
σ@A to denote the portion of σ local to A, and σ[y@A �→ v] to denote a new
state σ′ which is identical to σ except that σ′@A(y) is equal to v. A reduction
“(σ, I) → (σ′, I ′)” says that I in the state σ performs one-step computation
and becomes I ′ with the new state σ′. Below we list some of the rules generating
the reduction (a complete set of rules can be found in [11]).

(G-Init) (σ, A → B : ch(ν s̃). I) → (σ, (ν s̃) I)

(G-Com)
σ′ = σ[x@B �→ v] σ � e@A ⇓ v

(σ, A→B : s〈op, e, x〉. I) → (σ′, I)

(G-Asgn)
σ � e@A ⇓ v σ′ = σ[x@A �→ v]

(σ, x@A := e. I) → (σ′, I)

(G-Init) is for session initiation: after A initiates a session with B on service
channel ch, A and B share s̃ locally (indicated by (νs̃)), and the next I is
unfolded. The initiation channel ch will play an important role for typing and the
end-point projection later. (G-Com) is a key rule: the expression e is evaluated
into v in the A-portion of the state σ and then assigned to the variable x located
at B resulting in the new state σ[x@B �→ v]. The same variable (say x) located
at different participants are distinct (hence σ@A(x) and σ@B(x) may differ).
Other rules for parallel, summation, recursion and restriction are omitted.

As an example of reduction, consider, for instance:

Buyer → Seller : quoteCh(ν s). Seller→Buyer : s〈quote, 300, x〉. I ′

with state σ. By (G-Init), we get (σ, (νs) Seller→Buyer : s〈quote, 300, x〉. I ′).
Now, by rule (G-Com), this evolves into (σ[x@Buyer �→ 300], (νs) I ′).

8 M. Carbone, K. Honda, and N. Yoshida

2.3 Session Types for Global Descriptions

We use a generalisation of session types [16]. The grammar of types follows.

α ::= s � Σiopi(θi). αi | s � Σiopi(θi). αi | α1 |α2 | end | μt. α | t

where θ, θ′, . . . range over value types. α, α′, . . . are session types. s � Σiopi(θi). αi

is a branching input type at session channel s, indicating a process is ready to
receive any of the (pairwise distinct) operators {opi}, each with a value of type θi;
s � Σiopi(θi). αi, a branching output type at s, is its exact dual. The type α1 |α2
is a parallel composition of α1 and α2, abstracting parallel composition of two
sessions. We take | to be commutative and associative, with end, the inaction type
indicating session termination, being the identity. We demand session channels
in α1 and α2 to be disjoint: this guarantees a linear use of session channels. t is
a type variable, while μt.α is a recursive type, where μt binds free occurrences
of t in α. In recursive types, we assume each recursion is guarded, i.e., in μt.α,
α is an n-ary parallel composition of input/output types. Recursive types are
regarded as regular trees in the standard way [13].

Note that session channels occur free in session types: this is necessary to
allow multiple session channels to be used in parallel in a single session; with
this, we can faithfully capture use cases of web services which exchange different
data simultaneously, leading to a generalisation of session types in the literature.
Let us show a simple example:

s � quote(int). end | s′ � extra(string). end

Here a participant is sending a quote (integer) at s and extra information about
the product at s′ in a single session: without using distinct session channels, two
communications can get confused and result in a type error.

A typing judgment has the form Γ � I : Δ where Γ is service typing and Δ
session typing. The grammar of typings follows where A �= B in s̃[A, B]:

Γ ::= ∅ | Γ, ch@A : (s̃)α | Γ, x@A :θ | Γ, X :Δ
Δ ::= ∅ | Δ, s̃[A, B] :α | Δ, s̃ :⊥

Each time a session is initiated, session channels need be freshly generated. Thus,
the type of a service channel indicates a vector of session channels to be initially
exchanged, in addition to how they are used. This is formulated by service type
(s̃)α where s̃ is a vector of pairwise distinct session channels covering all session
channels in α, and α does not contain free type variables. In a service typing,
ch@A : (s̃)α says that ch is located at A and offers a service interface (s̃)α;
x@A : θ says that a variable x located at A may store values of type θ; finally,
X :Δ says that when the interaction recurs to X , it should have the typing Δ.

The typing uses a primary type assignment s̃[A, B] : α, which says that a
vector of session channels s̃, all belonging to a same session between A and B,
has the session type α when seen from the viewpoint of A. We write Γ1, Γ2
(resp. Δ1, Δ2) if there is no overlap between the free variables/names in Γ1 and
Γ2 (resp. Δ1 and Δ2). The notation fsc(Δ) denotes the set of free service/session
channels in Δ. In the following, we present the main typing rules:

Structured Communication-Centred Programming for Web Services 9

(G-TCom)
Γ � I � Δ, s̃ [A, B] :αj Γ � e@A :θj Γ � x@B :θj s ∈ {s̃} j ∈ J

Γ � A→B : s〈opj, e, x〉. I � Δ, s̃ [A, B] :s � Σi∈Jopi(θi). αi

(G-TCom2)
Γ � I � Δ, s̃ [B, A] :αj Γ � e@A :θj Γ � x@B :θj s ∈ {s̃} j ∈ J

Γ � A→B : s〈opj, e, x〉. I � Δ, s̃ [B, A] :s � Σi∈Jopi(θi). αi

(G-TPar)
Γ � I1 � Δ1 Γ � I2 � Δ2

Γ � I1 | I2 � Δ1 • Δ2

(G-TInit)
Γ, ch@B : (s̃)α � I � Δ, s̃ [B, A] :α

Γ, ch@B : (s̃)α � A → B : ch(ν s̃). I � Δ

Rule (G-TCom) states that, for typing an in-session communication of e from
A to B at s with the choice opj , (1) the body I should assign αj to s̃ containing
s; (2) the value e should be typed in the source (A) with θj ; and (3) the variable
(parameter) x should be typed in the target (B) with the same type. Then, in
the conclusion, a branching type is formed whose j-th branch consists of opj , θj

and αi. In (G-TCom), the session type in focus is considered direction from the
viewpoint of A. We may also regard it from the receiver’s viewpoint (B), which is
its symmetric variant (G-TCom2). Rule (G-TPar) uses the linearity condition
found in [16]. The the operator • is well-defined whenever the linearity condition
is satisfied and is such that s̃[A, B] : α ∈ Δ1 • Δ2 iff either s̃[A, B] : α1 ∈ Δ1,
s̃[A, B] : α2 ∈ Δ2 and α = α1 | α2; or s̃[A, B] : α ∈ Δ1 and {s̃} ∩ fsc(Δ2) = ∅; or
its symmetric case. The other rules are standard [11].

As a simple example, we type the Buyer-Seller interaction I in Fig. 1 (a).
Service channel quoteCh is assigned with the following service type:

(s) s � quote(integer). s � (accept(null). s � details(string). end +
reject(null). end)

Service channel deliveryCh has type (t) t � details(string). end. Denoting two
types by (s)α1 and (t)α2, we have: quoteCh : (s)α1, deliveryCh : (t)α2 � I
 ∅.

Similarly, we can type the interaction in Figure 1 (b) where we have recursion.
The typing of the service channel quoteCh will differ in the ”rejection” branch,
given as: (s) μt. s � quote(integer). s � (. . . + reject(null). t).

The typing system also incorporates subtyping based on an inclusion ordering
on each type (formalised using simulation like in [13]).

Theorem 1 (Subject Reduction). Assume Γ � σ. Then Γ � I
 Δ and
(σ, I) → (σ′, I ′) imply Γ � σ′ and Γ � I ′
 Δ′ for some Δ′ s.t. fsc(Δ′) ⊂ fsc(Δ).

3 The End-Point Calculus

3.1 Syntax and Dynamics

The end-point calculus is the π-calculus [18] extended with sessions [16] as well
as locations and store [10]. P, Q, . . . denote processes, M, N, . . . networks.

P ::= ! ch(s̃). P | ch(ν s̃). P | s � Σiopi(yi). Pi | s � op〈e〉. P | x := e. P

| if e then P1 else P2 | P1 ⊕ P2 | P1 | P2 | (νs) P | X | μX. P | 0

N ::= A[P]σ | N1 | N2 | (νs) N | ε

10 M. Carbone, K. Honda, and N. Yoshida

The first two processes describe session initiations; the next two, in-session com-
munications (where yi in the first construct, branching input, is not bound in
Pi, and {opi} should be pairwise distinct). Next, x := e. P assigns a value v to
x in its store then continues as P . The rest is standard. Networks are parallel
composition of participants, where a participant is of the shape A[P]σ, with
A being the name of the participant, P its behaviour, and σ its local state. We
often omit σ when irrelevant.

The reduction semantics for the end-point calculus follows the π-calculus.
Below we list the three key rules (other rules are found in [11]).

(E-Init) A[! ch(s̃). P | P ′]σ | B[ch(ν s̃). Q | Q′]σ′

→ (ν s̃) (A[! ch(s̃). P | P | P ′]σ | B[Q | Q′]σ′)

(E-Com) A[s � Σiopi(xi). Pi | P ′]σ | B[s � opj〈e〉. Q | Q′]σ′

→ A[Pj | P ′]σ[xj �→v] | B[Q | Q′]σ′ (σ � e ⇓ v)

(E-Asgn) A[x := e. P | P ′]σ → A[P | P ′]σ[x �→v] (σ � e ⇓ v)

(E-Init) defines the session initiation: two participants A and B will synchro-
nise to start a session, ! ch(s̃). P denoting a service and ch(ν s̃). Q a request.
It will result in sharing fresh session names s̃ local to A and B. These session
names are then used in (E-Com) for communication. In (E-Com), communi-
cated values are assigned to local variables, rather than substituted, for having
the correspondence with the global calculus. (E-Asgn) updates a local store.

3.2 Session Typing of End-Point Calculus

In the end-point calculus, we use two typing judgements, Γ �A P
 Δ (where
P is typed as a behaviour for A) and Γ � M
 Δ. Γ (service typing) and Δ
(session typing) are given as before except (1) Γ adds ch@A : (s̃)α; and (2) we
replace s̃[A, B] :α by s̃@A : α. The selected typing rules are given below.

(E-TB)
j ∈ J K ⊆ J s ∈ s̃ Γ � xj : θj Γ �A Pj � Δ · s̃@A : αj

Γ � s � Σi∈Jopi(xi).Pi � Δ · s̃@A : s � Σi∈Kopi(θi). αi

(E-TS)
j ∈ J ⊆ K Γ � e : θj Γ �A P � Δ · s̃@A : αj

Γ �A s � opj〈e〉.P � Δ · s̃@A : s � Σi∈Kopi(θi). αi

(E-TServ)
Γ �A P � s̃@A :α

Γ, ch@A : (s̃)α �A ! ch(s̃). P � ∅

(E-TReq)

Γ, ch@B : (s̃)α �A P � Δ · s̃@A : α

Γ, ch@B : (s̃)α �A ch(ν s̃).P � Δ

(E-TB) is for branching input. The resulting typing can have less branches
than the real process, so that the process is prepared to receive any operator
specified in the type. (E-TS) is its dual: the typing can have more branches
than the real process, so that the process invokes at most those operators spec-
ified in the typing. Combining (E-TB) and (E-TS), an output never invokes a
non-existent option in the input. (E-TServ) is for the server side of initialisa-
tion. In the premise, the session typing should not have session channels other
than the target of initialisation: this prevents free session channels from occur-
ring under the replicated input, thus guaranteeing their linear usage. By our

Structured Communication-Centred Programming for Web Services 11

convention, neither ch nor ch occurs in Γ in the conclusion. The output side
of initialisation (E-TReq) is analogous, except it does not need the linearity
constraint. The remaining rules are standard [16]: for example, with parallel
composition, we ensure that an input of type α is composed with an output of
its dual.

We recall our running example, Figure 1 (a) in § 2.1. An end-point represen-
tation of this example for Buyer may be written:

Buyer[quoteCh(νs). s � quote(x). (s � accept. s � details(y). 0 ⊕ s � reject. 0)]

Above Buyer[P] indicates a participant (a named agent) whose behaviour is given
by the process P . The Seller’s code is given as:

Seller[! quoteCh(s). s � quote〈300〉. s �

(accept. deliveryCh(νt). t � delivery(x). s � delivery〈x〉. 0 + reject. 0)]

The end-point representation for Shipper is given similarly. These end-point
descriptions do not directly and explicitly describe how interaction proceeds
globally, which may often be the central concern of communication-centred ap-
plications designers/users. However, they precisely represent local communica-
tion behaviours which give rise to global interactions. The two service channels
quoteCh and deliveryCh are replicated and ready to be invoked, following (SCP).

We can type these processes using the service types (s)α1 and (t)α2 from
§ 3.3. The type of the seller becomes (writing P for its process):

quoteCh : (s)α1, deliveryCh : (t)α2 � Seller[P]σ
 ∅.

Note that the service channel deliveryCh is overlined, indicating the direction:
this is because the input channel is located at the shipper’s. In the global calculus,
a channel is always used for both input and output, so there is no such need.
Similarly we may type the end-point processes for Buyer and Seller with recursion
as in Figure 1 (b), as:

Buyer[μX. quoteCh(νs). s � quote(x).
if reasonable(x) then s � accept. s � details(y). 0 else s � reject. X] |

Seller[! quoteCh(s). μX. s � quote〈300〉. s �

(accept. deliveryCh(νt). t � delivery(x). s � delivery〈x〉. 0 + reject. X)]

We may also note, both in its term and in its typing, the end-point process
for Shipper in Figure 1 (b) does not involve recursion, since its session is self-
contained inside a recursion.

Theorem 2 (subject reduction). If Γ � N
Δ and N → N ′ then Γ � N ′
Δ.

A significant corollary of this result is the lack of communication error in the
sense that typed processes never invoke missing operations and never commu-
nicate ill-typed values. This is fundamental for end-point processes since they
describe inputs and outputs separately, unlike global descriptions.

12 M. Carbone, K. Honda, and N. Yoshida

4 The End-Point Projection

4.1 Three Principles for End-Point Projections

A theory of EPP assigns to global descriptions the precise and transparent oper-
ational content as communicating processes. This task becomes subtle because
a global calculus allows descriptions that do not make sense at end-points, i.e. as
distributed communicating processes. Below we discuss three issues in this regard
one by one, together with the corresponding disciplines which disallow them.

Connectedness. Consider the following code snippet for global description.

Buyer → Seller : ch1(ν s). Shipper → Depot : ch2(ν t)

Remembering “.” indicates sequencing, Shipper is described as contacting Depot
only after Buyer has performed a request to Seller in the description above. Imple-
menting this behaviour as distributed processes demands that Shipper be notified
once the first communication is performed by message passing, for instance in:

Buyer → Seller : ch1(ν s). Seller → Shipper : ch(ν s′). Shipper → Depot : ch2(ν t)

Observe the second description is directly realisable as end-point processes, while
the first one is not. Even if one may informally write down the first description,
it is the second one which can have a precise correspondence with end-point
behaviour. Thus we preclude descriptions like the first one, by demanding each
participant acts only as a result of its local event. We call this principle connect-
edness. Connectedness is simply defined by tracking active/passive participants
of each action, as formally given in [11]. Informally, for each A, A’s sending ac-
tion or its self-contained action (e.g. assignment and evaluation of a conditional
guard) should always be immediately preceded by A’s receiving action or its
another self-contained action. Connectedness is closed under reductions.

Well-threadedness. The next condition is also about causality, but a slightly
more subtle one. Consider the following connected interaction:

Buyer → Seller : ch1(ν s). Seller → Shipper : ch2(ν t).
Shipper → Buyer : ch3(ν u). Buyer→Seller : s〈op, v, x〉. I

We claim that this global code (regardless of I) is unrealisable at end-points. In
fact, the first action tells us that there is a thread in Buyer which invokes Seller.
This thread becomes inactive in the second line where a service at ch3 in Buyer
is invoked. In the final line, Buyer communicates to Seller via s opened in the
initial action. Written in the end-point calculus:

Buyer[ch1(νs). s � op〈v〉. P | ! ch3(t). Q]σ1
|

Seller[! ch1(s). ch2(νt). s � op(x). Q′]σ2
|

Shipper[! ch2(t). ch3(νu). R]σ2

Structured Communication-Centred Programming for Web Services 13

The first process of Buyer invokes ch1 and sends v with operation op in the
same session, while the second is a service at ch3 (by SCP this channel should
be ready to receive invocations). s � op〈v〉 cannot be located under ch3, as it
belongs to a session s. When the three processes interact, first, Buyer invokes ch1,
then Seller invokes ch2 of Shipper: up to here the interaction follows the original
global scenario. However, at this point, the action s � op(x) is free to react with
its dual action s � op〈v〉, before Shipper invokes Seller’s other component, the
service at ch3. Thus the sequencing in the global description gets violated.

The fundamental issue in the example above is that the given global code as-
sumes a false, or unrealisable, dependency among actions: the last action belongs
to a thread which started from the invocation of ch1, while the description says it
should take place as a direct result of the third action at a distinct thread which
has been opened by the invocation at ch3. If a global description is free from such
false dependency, we say it is well-threaded. For the formal definition, we first
annotate a global interaction with identifiers for threads. Annotated interactions,
denoted by A, A′, . . ., are given by the following grammar.

A ::= Aτ1 → Bτ2 : ch(ν s̃). A | x@Aτ := e. A | A1 |τ A2 | μτXA. A | XA
τ

| Aτ1 →Bτ2 : s〈op, e, y〉.A | A1 +τ A2 | if e@Aτ then A1 else A2 | 0

where τi ∈ N (called thread) and τ1 �= τ2 in the first two lines. Our task is to
find a notion of “consistent annotation” so that causality specified globally is
precisely realisable locally. We demand: if an input is annotated by τ then its
directly succeeding output is annotated by τ again, similarly for self-contained
actions; that two actions by A in the same session are annotated by the same
thread; and that the input of session initiation is always given a fresh thread. We
say I is well-threaded when it is connected and has a consistent annotation. If
I is well-threaded and has no free session channels, it has a primary annotation
from which all of its consistent annotations are derivable [11, §14, Prop. 11]. As
an example, consider the following annotated interaction.

Buyerτ1 → Sellerτ2 : ch1(ν s). Sellerτ3 → Shipperτ4 : ch2(ν t).

Shipperτ5 → Buyerτ6 : ch3(ν u). Buyerτ7 →Sellerτ8 : s〈op, v, x〉. I

By the first two conditions, we have τ1 = τ7 and τ6 = τ7, hence τ6 = τ1,
which violates the third condition. So this is not well-threaded. But the following
annotated interaction is well-threaded:

Buyer1 → Seller2 : ch1(ν s). Seller2 → Buyer3 : ch2(ν t).

Buyer3 →Seller2 : t〈op1, v1, x〉. Seller2 →Buyer1 : s〈op2, v2, y〉. 0

and in fact gives rise to the following correct end-points.

Buyer[ch1(νs). s � op2〈v2〉.0 | ! ch2(t). t � op1(x). 0] |
Seller[! ch1(s). ch2(νt). t � op1〈v1〉.s � op(y). 0]

There is a type discipline accepting all and only well-threaded interactions,
from which we can derive a sound and complete algorithm for checking well-
threadedness and for calculating, if any, (primary) consistent annotations [11].

14 M. Carbone, K. Honda, and N. Yoshida

Coherence. The final principle concerns consistency of descriptions of a be-
haviour belonging to the same service. We first note that it is often necessary
to merge threads to obtain the final end-point behaviour of a single service.
Consider the parallel composition:

Buyer → Seller : ch(ν s). Seller→Buyer : s〈op1, e, x1〉. I1 |
Buyer → Seller : ch(ν t). Seller→Buyer : t〈op2, e, x2〉. I2

where op1 �= op2. Above, Buyer invokes Seller’s service at ch twice in parallel.
Now consider constructing the code for this service at channel ch: we need to
merge these two threads into one end-point behaviour. But the global description
is contradictory, since in one invocation the service reacts with op1, while in the
other the service reacts with op2. As can be observed from this example, in a
global description, the description of the behaviour of a single end-point can be
scattered in different portions of the code. Hence we need to guarantee, in EPP,
that these scattered descriptions are mergeable. This mergeablity condition is
called coherence. Let A be consistently annotated. We list the key rules defining
the partial operation TP(A, τ) (see [11] for a full definition):

TP(Aτ1 → Bτ2 : b(ν s̃). A, τ)
def
=

⎧
⎨
⎩

b(ν s̃). TP(A, τ1) if τ = τ1

! b(s̃). TP(A, τ2) if τ = τ2

TP(A, τ) otherwise

TP(Aτ1 →Bτ2 : s〈opi, ei, xi〉. A, τ)
def
=

⎧⎨
⎩

s � op〈e〉. TP(A, τ) if τ = τ1

s � opi(xi). TP(A, τ) if τ = τ2

TP(A, τ) otherwise

TP(A1 +τ ′ A2, τ)
def
=

{
TP(A1, τ

′) ⊕ TP(A2, τ
′) if τ = τ ′

TP(A1, τ) � TP(A2, τ) otherwise

In the third rule, � is a partial commutative binary operator on processes such
that: (1) if P is a prefixed process with a service channel as its subject, then
P � 0 = 0 � P = P ; and (2) s � Σi∈Jopi(yi). Pi � s � Σi∈Kopi(yi). Qi

def=
Σi∈J∩Kopi(yi). (Pi � Qi) + Σi∈J\Kopi(yi). Pi + Σi∈K\Jopi(yi). Qi with Pi
�
Qi, where P
� Q says that the operation P � Q is defined (thus we demand
overlapping branches be mutually consistent); and (3) otherwise P �Q is defined
congruently up to ≡. The partial operation P � Q is called merging operation.

Given an annotated interaction A, we write τ1 ≡A τ2 whenever τ1 and τ2
in A belong to the same service channel. We say that A is coherent if it is
consistently annotated (hence well-threaded) and TP(A, τ) is well-defined for
each τ , and moreover satisfies: for each pair of threads τ1, τ2 in A such that
τ1 ≡A τ2, it holds that TP(A, τ1) � TP(A, τ2) is defined. Coherence of a well-
typed interaction is decidable [11, §15, Prop.13].

With coherence as the final principle, we can now project a well-structured
global description to end-point processes that precisely realise the original global
scenario (the projection is essentially invariant under different consistent anno-
tations [11, §16.1, Prop.14]). Formally, let I be a restriction-free and coherent
interaction with free session names s̃ and let A be one of its consistent annota-
tions. Then the end point projection of (ν s̃) A under σ is defined as:

EPP((νs̃) A, σ) def= (ν s̃) ΠA∈part(A) A[Π[τ] �τ ′∈[τ] TP(A, τ ′)]σ

Structured Communication-Centred Programming for Web Services 15

where ΠPi denotes the parallel composition, part(A) denotes the set of partici-
pants mentioned in A and [τ] denotes the equivalence class (≡A) of τ .

4.2 Pruning and Main Theorem

Consider an interaction which is composed from two branches whose first two
interactions are Buyer → Seller : ch(ν s). Seller→Buyer : s〈ack〉 and then in one
branch we have Buyer → Seller : s〈go〉 and in the other Buyer → Seller : s〈stop〉.
We then obtain its EPP:

Buyer[ch(νs).s�ack.s�go ⊕ ch(νs).s�ack.s�stop] | Seller[! ch(s).s�ack.s�(go+stop)]

Let us reduce the original global description, which, by dropping one branch,
leads to Seller→Buyer : s〈ack〉. Buyer→Seller : s〈go〉. This EPP is:

Buyer[ch(νs).s � ack.s � go] | Seller[! ch(s).s � ack.s � go)]

Now we compare this end-point process with the reductum of the original EPP
before, which is Buyer[ch(νs).s�ack.s�go] | Seller[! ch(s).s�ack.s�(go + stop)],
where Seller has a redundant, useless branch “stop”. This example shows that
reduction in a global description can lose information which is still kept in the
corresponding reduction in its EPP. This motivates the asymmetric relation of
pruning P ≺ Q, which indicates that if we cut off such unnecessary branches
and replication from Q then we obtain P (see [11] for a formal definition). If
P ≺ Q, then P and Q are strong bisimilar under the minimal typing of P .

The main result of the paper follows. Below, by abuse of notation, I de-
notes consistently annotated interaction. ≡μ is the extension of ≡ with the fold-
ing/unfolding of recursion. The proof is found in [11, §16.2–5]. (1) implies the
lack of communication errors for the result of EPP.

Theorem 3 (end-point projection). Let I be coherent, Γ � I
Δ and Γ � σ:

(1) (type preservation) If Γ � I
 ∅ and Γ � σ, then Γ � EPP(I, σ)
 ∅.
(2) (soundness) If EPP(I, σ) → N then there exists (I ′, σ′) such that (σ, I) →

(σ′, I ′) and EPP(I ′, σ′) ≺ ≡μ N .
(3) (completeness) If (σ, I) → (σ′, I ′) then EPP(I, σ) → N s.t. EPP(I ′, σ′) ≺ N .

5 Extensions and Future Work

Channel passing is a practically useful extension for business protocols, for exam-
ple in the scenarios where participants need to send links to other participants. A
typical example is when Buyer wants to buy from Seller, but Buyer does not know
Seller’s address (service channel) on the net. The only information Buyer has is
a service channel of DirectoryService, which will send back the address of Seller
to Buyer which in turn interacts with Seller through the obtained channel. Can
we have a consistent EPP theory with unknown participants and channels? This
has been an open problem left in WS-CDL’s current specification (which allows

16 M. Carbone, K. Honda, and N. Yoshida

channel passing only for fixed participants). A possible extension of the EPP the-
ory to channel passing, together with the treatment of other useful additional
constructs, is discussed in [11]. Another interesting future topic is relaxations of
the well-formedness principles while maintaining a sound EPP theory, on which
some ideas are also discussed in [11].

The EPP theory has been developed with practical use in mind. There are
several engineering scenes where the theory and its extensions may be useful.

– Code generation. We can create a complete distributed application by pro-
jecting a detailed global description to each of its end-points.

– Prototype generation. Projection can also be used for generating a skeleton
code for each end-point which only contains basic communication behaviour,
to be elaborated to full code. This is already used in [19].

– Use of conformance. A team of programmers initially agree on a shared
global specification for communications among end-points: during/after pro-
gramming, each programmer can check if her/his code conforms to the
specification by conformance checking against projection. The conformance
scheme is useful in other scenes, for example when we wish to check the
usability of an existing service/library in a given global description.

– Runtime monitoring, testing and debugging. At runtime, each end-point can
check if ongoing communications at his/her site conform to the global de-
scription by checking against its projection to that end-point. The monitor-
ing can also be used for debugging and testing existing code.

Further, many static analyses/logical validation methods would become available
for a global description from their well-developed end-point counterpart. The
present work is intended as an initial trial towards a well-founded framework
for communication-centred programming based on two distinct, and mutually
complementary, descriptive paradigms, underpinned by a theory of EPP.

Acknowledgements. We thank Robin Milner for instigating and setting up the
directions of our ongoing collaboration with W3C WS-CDL WG; the WG mem-
bers, in particular Gary Brown, Steve Ross-Talbot and Nickolas Kavantzas for
collaboration; and Joshua Guttman for his comments on an early version of the
paper. This work is supported by EPSRC GR/T04236, GR/S55545, GR/S55538,
GR/T04724, GR/T03208, GR/T03258 and IST2005-015905 MOBIUS.

References

1. Conversation with Steve Ross-Talbot. ACM Queue, 4(2), 2006.
2. Jos Baeten, Harm van Beek, and Sjouke Mauw. Specifying internet applications

with DiCons. In SAC’01, pages 576–584. ACM Press, 2001.
3. Nick Benton, Luca Cardelli, and Cedric Fournet. Modern concurrency abstractions

for C#. ACM Trans. Program. Lang. Syst., 26(5):769–804, 2004.
4. Martin Berger, Kohei Honda, and NobukoYoshida. Sequentiality and the π-calculus.

In TLCA’01, volume 2044 of LNCS, pages 29–45, 2001.

Structured Communication-Centred Programming for Web Services 17

5. K. Bhargavan, C. Fournet, and A. Gordon. Verified reference implementations of
WS-Security protocols. In WS-FN’06, LNCS, 2006.

6. Eduardo Bonelli, Adriana B. Compagnoni, and Elsa L. Gunter. Correspon-
dence assertions for process synchronization in concurrent communications. JFP,
15(2):219–247, 2005.

7. Sébastien Briais and Uwe Nestmann. A formal semantics for protocol narrations.
In TGC, volume 3705, pages 163–181, 2005.

8. Nadia Busi, Roberto Gorrieri, Claudio Guidi, Roberto Lucchi, and Gianluigi
Zavattaro. Choreography and orchestration conformance for system design. In
Coordination, volume 4038 of LNCS, pages 63–81, 2006.

9. M. Carbone, K. Honda, and N. Yoshida. A calculus of global interaction based on
session types. In DCM ’06, ENTCS, 2006.

10. M. Carbone, M. Nielsen, and V. Sassone. A calculus for trust management. In
FSTTCS ’04, volume 3328 of LNCS, pages 161–173. Springer, 2004.

11. Marco Carbone, Kohei Honda, Nobuko Yoshida, Robin Milner, Gary Brown,
and Steve Ross-Talbot. A theoretical basis of communication-centred concur-
rent programming. To be published by W3C. Available at www.dcs.qmul.ac.uk/
∼carbonem/cdlpaper, 2006.

12. Mariangiola Dezani-Ciancaglini, Dimitris Mostrous, Nobuko Yoshida, and Sophia
Drossopoulou. Session Types for Object-Oriented Languages. In ECOOP’06,
volume 4067 of LNCS, pages 328–352, 2006.

13. Simon Gay and Malco Hole. Subtyping for session types in the pi calculus. Acta
Informatica, 42(2-3):191–225, November 2005.

14. Claudio Guidi, Roberto Lucchi, Gianluigi Zavattaro, Nadia Busi, and Roberto
Gorrieri. SOCK: a calculus for service oriented computing. In ICSOC’06, volume
4294 of LNCS, 2006.

15. J. D. Guttman, F. J. Thayer, and L. D. Zuck. The faithfulness of abstract protocol
analysis: message authentication. In CCS ’01, pages 186–195. ACM Press, 2001.

16. Kohei Honda, Vasco Vasconcelos, and Makoto Kubo. Language primitives and
type disciplines for structured communication-based programming. In ESOP’98,
volume 1381 of LNCS, pages 22–138, 1998.

17. Cosimo Laneve and Luca Padovani. Smooth orchestrators. In FoSSaCS’06, volume
3921 of LNCS, pages 32–46, 2006.

18. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, I and II.
Information and Computation, 100(1):1–40,41–77, September 1992.

19. PI4SOA. http://www.pi4soa.org.
20. Benjamin C. Pierce and David N. Turner. Pict: A programming language based

on the pi-calculus. In Proof, Language and Interaction: Essays in Honour of Robin
Milner. MIT Press, 2000.

21. S. Ross-Talbot and T. Fletcher. WS-CDL Primer. To be published by W3C, 2006.
22. D. Sangiorgi. The name discipline of uniform receptiveness. In ICALP’97, volume

1256 of LNCS, pages 303–313. Springer, 1997.
23. Kaku Takeuchi, Kohei Honda, and Makoto Kubo. An interaction-based language

and its typing system. In PARLE’94, volume 817 of LNCS, pages 398–413, 1994.
24. W.M.P. van der Aalst. Inheritance of interorganizational workflows: How to agree

to disagree without loosing control? Info. Tech. and Management, 2(3):195–231,
2002.

25. Vasco Vasconcelos, António Ravara, and Simon J. Gay. Session types for functional
multithreading. In CONCUR’04, volume 3170 of LNCS, pages 497–511, 2004.

26. W3C WS-CDL Working Group. Web services choreography description language
version 1.0. http://www.w3.org/TR/2004/WD-ws-cdl-10-20040427/.

CC-Pi: A Constraint-Based Language for
Specifying Service Level Agreements�

Maria Grazia Buscemi1 and Ugo Montanari2

1 IMT Lucca Institute for Advanced Studies, Italy
marzia.buscemi@imtlucca.it

2 Dipartimento di Informatica, University of Pisa, Italy
ugo@di.unipi.it

Abstract. Service Level Agreements are a key issue in Service Oriented Com-
puting. SLA contracts specify client requirements and service guarantees, with
emphasis on Quality of Service (cost, performance, availability, etc.). In this work
we propose a simple model of contracts for QoS and SLAs that also allows to
study mechanisms for resource allocation and for joining different SLA require-
ments. Our language combines two basic programming paradigms: name-passing
calculi and concurrent constraint programming (cc programming). Specifically,
we extend cc programming by adding synchronous communication and by
providing a treatment of names in terms of restriction and structural axioms
closer to nominal calculi than to variables with existential quantification. In the
resulting framework, SLA requirements are constraints that can be generated ei-
ther by a single party or by the synchronisation of two agents. Moreover, re-
stricting the scope of names allows for local stores of constraints, which may
become global as a consequence of synchronisations. Our approach relies on a
system of named constraints that equip classical constraints with a suitable alge-
braic structure providing a richer mechanism of constraint combination. We give
reduction-preserving translations of both cc programming and the calculus of
explicit fusions.

1 Introduction

An important aspect of web services concerns client requirements and service guaran-
tees with emphasis on Quality of Service, such as cost, performance, availability. These
are commonly referred to as Service Level Agreements. SLAs between organisations
are used in several areas of IT services, like hosting and communication services. The
terms and conditions appearing in a SLA contract can be negotiated among the con-
tracting parties prior to service execution.

In this paper we present a simple calculus, called cc-pi calculus, for modeling pro-
cesses able to specify QoS requirements and to conclude SLA contracts. The proposed
language is also equipped with mechanisms for resource allocation and for joining dif-
ferent SLA requirements. Our approach combines basic features of name-passing cal-
culi and of concurrent constraint (cc) programming.

� Research supported by the EU IST-FP6 16004 Integrated Project SENSORIA.

R. De Nicola (Ed.): ESOP 2007, LNCS 4421, pp. 18–32, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

CC-Pi: A Constraint-Based Language for Specifying Service Level Agreements 19

Name-passing calculi, such as the pi-calculus [7], are a key paradigm of computation
whose interaction mechanism may dynamically change the communication topology.
Since the introduction of name-passing calculi, the notion of names has been recognised
as crucial in theories for concurrency and mobility.

The name-passing calculus we start with is the pi-F calculus [19]. The pi-F cal-
culus is a variant of the pi-calculus [7], whose synchronisation mechanism is global
and, instead of binding formal names to actual names, it yields explicit fusions, i.e.
simple constraints expressing name equalities. For example, consider two processes
u〈v〉.P and u〈x〉.Q, that are ready to make an output and an input on u, respectively.
The interaction between these processes results in the explicit fusion of v and x. This
fusion will also affect any further process R running in parallel: R |u〈v〉.P |u〈x〉.Q →
R |P |Q |x = v. The restriction operator (x) can be used to limit the scope of a fusion,
e.g.: R |(x)(u〈v〉.P |u〈x〉.Q) → R |(x)(P |Q |x = v).

The cc-pi calculus extends the pi-F calculus by generalising explicit fusions like x = v
to named constraints and by adding primitives for handling such constraints. While the
informal concept of constraint is widely used in a variety of different fields, a very
general, formal notion of constraint system has been introduced in the cc programming
paradigm [15]. Actually, cc programming is a simple and powerful computing model
based on a shared store of constraints that provides partial information about possible
values that variables can take. Concurrent agents can act on this store by performing
either a tell action (for adding a constraint, if the resulting store is consistent) or
an ask action (for checking if a constraint is entailed by the store). As computation
proceeds, more and more information are accumulated, thus the store is monotonically
refined.

Of the classical cc programming paradigm we keep the ask and tell constructs, but
we extend/modify several other aspects. Maybe the most radical change is to give up
the monotonicity requirement. While non-monotonicity was already present in the so-
called linear cc programming [14], the introduction in our calculus of a retract con-
struct, whose effect is to erase a previously told constraint, is strongly suggested by the
need of allocating a resource and of deallocating the same resource. Of course mono-
tonicity is the basis of several properties of cc programming, which thus do not hold
in our framework. However whenever retracts are forbidden, or their usage is limited,
some of the useful properties could be reinstated. We also introduce a check operation
for verifying if a constraint is consistent with the store of constraints.

Another important difference with respect to [15] is that we adopt a different concept
of general, abstract constraint system. While the classical notion is equipped with an
operation of entailment and a predicate of consistency, being based on Dana Scott’s
information systems, we employ constraints forming c-semirings [2]. Roughly, a c-
semiring consists of a set equipped with two binary operations, the sum + and the
product ×, such that + is associative, commutative and idempotent, × is associative
and commutative and × distributes over +. A c-semiring is automatically equipped
with a partial ordering a ≤ b, which means that a is more constrained than b, or, more
interestingly, that a entails b, a � b. The sum a + b chooses the worst constraint better
than a and b, while the product a×b combines two constraints. The simplest c-semiring
consists of the booleans with ∨ as + and ∧ as ×.

20 M.G. Buscemi and U. Montanari

Our c-semirings enjoy two kinds of nice properties. On the one hand they are very
stable, since cartesian products, functional spaces and powerdomains of c-semirings
are c-semirings. On the other hand c-semirings are quite adequate for modeling the so-
called soft constraints, i.e. constraints which do not return only true or false, but more
informative values instead. In fact it is easy to define c-semirings expressing fuzzy, hier-
archical, or probabilistic values. Also, optimization algorithms work on the c-semiring
consisting of the reals plus infinity with the operations of sum as × and min as +. Sev-
eral efficient algorithms defined for ordinary, crisp constraints, like local propagation or
dynamic programming, can be generalized to c-semirings.

The former kind of properties is used in the paper to model networks of constraints
for defining constraint satisfaction problems (CSPs) [8]. In fact, a single constraint, or
even a network of constraints, is a function which, given an assignment of the vari-
ables to some domain D, returns a boolean, or rather a value in a generic c-semiring
in the soft case. CSPs are a well-established formalism, especially studied in the ar-
tificial intelligence area, adequate to specify many kinds of real-life problems. In this
paper we do not fully explore the latter aspect of c-semirings. However we consider
it as extremely valuable and we plan to further exploit it in the future. In fact, we be-
lieve that a lot of non-functional requirements of QoS can be adequately modeled using
c-semirings.

The last, important difference with respect to [15] is that we handle variables, or
rather names, in a very different way. In ordinary cc programming, constraints involv-
ing variables are seen as relations, in the style of Tarski’s cylindrical algebras. This
interpretation is particularly visible in the axioms for hiding (written as ∃) and variable
equality. Instead, in our named constraints we regard variables as ordinary names in the
pi-calculus style. More precisely, names are introduced, as for pi-calculus agents [9], by
means of permutation algebras. Operations of permutation algebras are permutations of
names. A key concept of permutation algebras is the support of a value, that specifies
the set of names such that the permutations which do not affect them do not modify
the value. Thus, equipping a c-semiring with a permutation algebra structure allows
to characterise the set of relevant, i.e. free, names of a constraint c as the support of
c. Since the treatment of names is the same, we can handle constraints as processes,
making both syntax and semantics of our calculus simpler and more natural.

Besides ask, tell, retract and check there is another way in which agents can in-
teract with the constraints existing in the system. In fact, synchronization of processes
works like a global ask and tell construct. Two agents trying to perform an output
x〈y〉 and an input x′〈y′〉 action can synchronize only if the constraint x = x′ is entailed
by the store. The result of the synchronization is a new constraint y = y′ which is told
to the store. Fusion y = y′ can modify deeply the store, depending on the actual con-
straint system. For instance it can allow two local constraints to interact, establishing a
SLA between the two partners. However, if the resulting constraint is inconsistent, the
synchronization is forbidden. It can become possible at some later time if some other
agent performs a retract action which makes the store less constrained.

The special role of fusions in the control mechanisms of our calculus requires their
presence in all constraint systems. Thus, we propose named c-semirings with name
fusions, or equalities, as the underlying data model of cc-pi calculus.

CC-Pi: A Constraint-Based Language for Specifying Service Level Agreements 21

In the paper, we show the generality of our approach by proposing three examples of
named c-semirings, i.e. name equalities, Herbrand constraint systems, and soft CSPs,
and we prove that they are effectively named c-semirings. We also show how our model
can be applied in specifying and monitoring SLAs. Finally, we explore the expressive-
ness of our calculus by giving reduction-preserving translations of Pi-F and cc pro-
gramming into cc-pi.

A motivating example. Consider a service offering computing resources (e.g. units of
CPUs of a given power) and suppose the service provider and a client want to reach a
SLA. The provider PN, with N available resources and the client Cn requiring at least
n resources can be specified in our framework as follows, being max the maximum
number of resources that can be allocated to each client:

PN = (x0)(tell (x0 = N).Q(x0))
Q(x) = (v)(x′)(tell (x′ = x − v).tell (v ≤ max).c〈v〉.Q(x′)).

Cn = (y)(tell (y ≥ n).c〈y〉.τ.retract (y ≥ n).tell (y = 0)).

In words, PN first sets the initial number of resources to N and evolves to Q. Process
Q creates a name v representing the resources available to a client and a non-negative
name x′ counting the resources left after concluding a contract with the client; Q then
adds the constraints x′ = x − v for setting the value of x′ and v ≤ max for imposing the
bound max on v. Finally, Q signs the contract, i.e. it synchronises on a channel c with
a client and, if the synchronisation succeeds, Q becomes ready to accept a new request.
On the other side, Cn initially creates a local name y and places the constraint y ≥ n.
Next, Cn tries to synchronise on a public port c with a server. In case of success, Cn

makes some calculation involving the obtained resources, which is modelled as a silent
action τ. Then,Cn releases the allocated resources by removing the above constraint on y
(retract (y ≥ n)). Hence, a negotiation between PN and Cn begins with the two parties
placing their constraints. PN and Cn can then synchronise (thus yielding the fusion of
names v and y), if the resulting constraint system is consistent, i.e. if n ≤ min(N,max),
as shown by the graph representation below.

x0

x′ v y

x0 = N

x′ = x0 − v

v ≤ max

v = y
y ≥ n

provider PN

client Cn

Related work. Bacciu et al. [1] also propose a framework for specifying client re-
quirements and provider guarantees on the offered services, along with negotiation
mechanisms. Unlike our model, their approach relies on fuzzy sets rather than on c-
semirings. The process calculus introduced in [4] focuses on controlling and coordinat-
ing distributed process interactions respecting QoS parameters expressed as c-semiring
values, but the model does not cover negotiations. The ρ-calculus [11] is a concur-
rent calculus with first-order constraints and high-order procedural abstraction. Akin to
our approach, the ρ-calculus is parametric to a certain constraint system. In [18] the
ρ-calculus has been encoded into the Fusion Calculus [13]. Thus, we expect that ρ can

22 M.G. Buscemi and U. Montanari

also be encoded into cc-pi. The pi+-calculus [5] is an extension of the pi-calculus with
constraint agents that can perform tell and ask actions. In contrast to our model, the
constraint systems are first-order theories rather than algebraic structures and they do
not support local stores. However, to our knowledge, none of the above languages has
been applied for specifying SLA contracts. SLAng [17] and WSLA [6] are XML-based
languages for defining SLAs at a lower level of abstractions. The elements of SLAng
are also constraints on the behaviour of associated services and service clients, but their
are specified in OCL. WSLA provides the ability to create new SLAs as functions over
existing metrics. This is useful to formalise requirements that are expressed in terms of
multiple QoS parameters. The semantics for expressions over metrics is not formally
defined, though.

2 Background

2.1 C-Semirings

We give here the basic definitions and properties concerning c-semirings. We refer to
[2] for a more detailed treatment.

Definition 1 (c-semiring). A constraint semiring (c-semiring) is a tuple 〈A,+, ×,0,1〉
such that: (i) A is a set and 0,1 ∈ A; (ii) + is commutative, associative, idempotent, 0 is
its unit element and 1 is its absorbing element; (iii) × is associative, commutative and
distributes over +.

Let us consider the relation ≤ over A such that a ≤ b iff a + b = b. Then, it is possible
to prove that (see [2]): (i) ≤ is a partial order; (ii) + and × are monotone on ≤; (iii)
× is intensive on ≤: a × b ≤ a,b; (iv) 0 is its minimum and 1 its maximum; (v) 〈A,≤〉
is a complete lattice and, for all a,b ∈ A, + is the least upper bound operator, that is,
a+b = lub(a,b). Moreover, if × is idempotent, then: + distributes over ×; 〈A,≤〉 is a
distributive lattice and × is its greatest lower bound. Informally, the relation ≤ gives us
a way to compare semiring values and constraints.

Typical examples are the c-semiring for classical CSPs 〈{False,True},∨,∧, False,
True〉, the c-semiring for fuzzy CSPs 〈[0,1],max,min,0,1〉, and the c-semiring for prob-
abilistic CSPs 〈[0,1],max, ·,0,1〉. Since the Cartesian product of two c-semirings is still
a c-semiring, it is also possible to model multicriteria optimization in this framework.

2.2 Permutation Algebras

We denote by N the infinite, countable, totally ordered set of names and we use x,y,z . . .
to denote names. We write x̃ for the tuple of names 〈x1, . . . ,xn〉. A substitution is a
function σ : N → N . We denote by [y1/x1, · · · ,yn/xn] the substitution that maps xi into
yi for i = 1, . . . ,n and which is the identity on the other names. The identity substitution
is denoted by id. A permutation is a bijective name substitution. We let ρ range over
permutations. The kernel, K(ρ) of a permutation ρ is the set of the names that are
changed by the permutation. A permutation algebra is defined by a carrier set and
by a function defining how states are transformed by the finite-kernel permutations.

CC-Pi: A Constraint-Based Language for Specifying Service Level Agreements 23

An interesting example is given by the permutation algebra for the pi-calculus [9]. In
that case, the carrier contains all the processes, up to structural congruence, and the
interpretation of a permutation is the associated name substitution.

The carrier of a permutation algebra can be partitioned into orbits, where two ele-
ments are in the same orbit if one can be obtained from the other by applying some
permutation. To every element a a symmetry sym(a) can be associated, i.e. the group of
all permutations ρ such that a = ρ(a). The support supp(a) of an element a is the small-
est set of names such that all the permutations that do not modify them are in sym(a).
Intuitively, the names in supp(a) are the free names of a, the permutations which do
not modify them are obviously not influent on a. Indeed, the permutations exchanging
names in supp(a) with names not in supp(a) are renamings of the free names and do
not belong to sym(a), while the permutations in sym(a) which modify only names in
the support are genuine self-transformations of the element. A permutation algebra is
finite-support if each element of its carrier has finite support.

3 Named Constraints

In this section, we propose a definition of named constraints that relies on the notion
of named c-semirings. Essentially, a named c-semiring is a c-semiring enriched with a
notion of name fusions, a permutation algebra A and a hiding operator (νx.). In par-
ticular, A allows to characterise the finite set of relevant names of each element of the
c-semiring as the support supp(c) of c in A, and νx.c makes a name x local in c, in the
style of process calculi. A named constraint is an element of a named c-semiring with
an associated support.

Definition 2. We define (name) fusions as total equivalence relations on N with only
finitely many non-singular equivalence classes. By x=y we denote the fusion with a
unique non-singular equivalence class containing x and y.

Definition 3. A named c-semiring C = 〈C,+,×,νx. ,ρ,0,1〉 is a tuple where: (i) x=y ∈
C for all x and y in N ; (ii) 〈C,+,×,0,1〉 is a c-semiring; (iii) 〈C,ρ〉 is a finite-support
permutation algebra; (iv) νx. : C → C, for each name x, is a unary operation; (v) for
all c,d ∈ C and for all ρ the following axioms hold.

(FUSE) x=y×c = x=y× [y/x]c
(HIDE) νx. 1 = 1 νx.νy.c = νy.νx.c νx.(c×d) = c×νx.d if x �∈ supp(c)

νx.(c+d) = c+νx.d if x �∈ supp(c) νx. c = νy. [y/x]c if y �∈ supp(c)
(PERM) ρ0 = 0 ρ1 = 1 ρ(c×d) = ρc×ρd ρ(c+d) = ρc+ρd

ρ(νx.c) = νx.(ρc) if x /∈ K(ρ)

The (FUS) axiom accounts for combining fusions and generic elements of c-semirings:
x=y × c is equivalent to the product x=y × [y/x]c where y is replaced by x in c. The
(HIDE) and (PERM) axioms rule how the ν and ρ operations, respectively, interact with
the operations of the c-semiring. The axioms (HIDE) are inspired by the analogous struc-
tural congruence axioms for restriction in process calculi. Roughly, the c-semiring prod-
uct × corresponds to the parallel composition of processes and constraint hiding is the

24 M.G. Buscemi and U. Montanari

counterpart of restriction on processes. The notion of support supp(c) associated with
permutation algebras recalls the concept of free names in process calculi. According to
the (PERM) axioms, ρ distributes with respect to × and +, and ρ is inactive on 0 and 1.
Finally, the order of ρ and ν can be changed if x is not affected by ρ.

We propose below three examples of named c-semirings aimed at showing the gen-
erality of our approach. Specifically, we consider c-semirings for name equalities, for
Herbrand constraint systems and for soft CSPs. Note that these named c-semirings can
be suitably composed to model more complex constraint systems.

Example 1 (Name Equalitites). Let R be the set of all equivalence relation on N . We
define CE as the tuple CE = 〈C,+,×,νx. ,ρ,0,1〉 such that: (i) C = R ; (ii) R1 + R2 =
R1 ∩ R2; (iii) R1 × R2 = (R1 ∪ R2)�, i.e. R1 × R2 is the reflexive, transitive, and sym-
metric closure of R1 ∪ R2; (iv) νx.R = R + {(y,z) |y,z �= x or y = z = x}, i.e. νx.R
is obtained from R by replacing the equivalence class of x with the singleton {x}; (v)
ρR = {(ρ(x),ρ(y)) |(x,y) ∈ R}; (vi) 0 = (N × N) and 1 = {(x,x) |x ∈ N }.

Proposition 1. CE is a named c-semiring with idempotent product ×.

Example 2 (Herbrand Constraint System). Given a signature Σ, let =E be an equational
theory on TΣ(N), plus the additional axioms:

f (t1, . . . ,tn) =E f (t ′1, . . . ,t
′
n)

ti =E t ′i
i = 1, . . . ,n

x =E t t1 =E t2

[t/x]t1 =E [t/x]t2

and with the restrictions: x �=E t(x) and f (t1, . . . ,tn) �=E g(t1, . . . ,tm), where t(x) is any
term different than x which contains x and f �= g. We define CH as the tuple CH =
〈C,+,×,νx. ,ρ,0,1〉 where: (i) C is the set of the above-defined equational theories
plus a bottom element ⊥; (ii) E1 + E2 = E1 ∩ E2; (iii) E1 × E2 is the unification of E1

and E2, i.e. it is the smallest equational theory largest than or equal to E1 ∪ E2, if it
exists, otherwise ⊥; (iv) νx. E = E ∩ Ē , where t1 =Ē t2 iff t1 = t2 or x does not occur
in t1,t2; (v) ρ t1 =ρE ρ t2 iff t1 =E t2; (vi) 0 = ⊥ and 1 = {(t,t) | t ∈ TΣ(N)}.

Proposition 2. CH is a named c-semiring with idempotent product ×.

Example 3 (soft CSPs). Given a domain D of interpretation for N , and a c-semiring
S = 〈A,+,×,0,1〉, a soft constraint c can be represented as a function c = (N → D)→ A
associating to each variable assignment η = N → D a value of A. We define Csoft as the
tuple Csoft = 〈C,+′,×′,νx. ,ρ,0′,1′〉 such that: (i) C is the set of all soft constraints over
N , D and S; (ii) fusions x=y are defined as (x = y)η = 1 if η(x) = η(y), (x = y)η = 0
otherwise; (iii) (c1 +′ c2)η = c1η + c2η; (iv) (c1 ×′ c2)η = c1η × c2η; (v) (νx.c)η =
∑d∈D (cη[d/x]), where the assignment η[d/x] is defined, as usual, as η[d/x](y) = d if
x = y, η(y) otherwise; (vi) (ρc)η = cη with η(x) = η(ρ(x)); (vii) 0′ η = 0 and 1′η = 1
for all η.

Proposition 3. Csoft is a named c-semiring with idempotent product ×.

Note that the support supp(c) of an element of Csoft coincides with the support of a
functional constraint c as defined in [3].

CC-Pi: A Constraint-Based Language for Specifying Service Level Agreements 25

Definition 4 ((named) constraint). Given a named c-semiring with equalities 〈A,+,
×,ρ, νx. ,0,1〉, a (named) constraint c is an element of A.

We define here the notions of consistency and entailment of constraints. They are anal-
ogous to the corresponding definitions given by Saraswat and Rinard [15]. Below we
abbreviate by (×C) the product c1 × . . .× cn with C = {c1, . . . ,cn}.

Definition 5. Let 〈A,+,×,ρ,νx. ,0,1〉 be a named c-semiring and C ⊆ A be a set of
constraints. C is consistent if (×C) �= 0. Moreover, given a constraint c ∈ A, we say
that C entails c, written C � c, if (×C) ≤ c.

4 The cc-pi Calculus

4.1 Syntax

We assume the countable set of names N and a set of process identifiers, ranged over
by D. We let c range over constraints of an arbitrary named c-semiring C .

Definition 6. The sets of prefixes and cc-pi processes are defined as follows:

PREFIXES π ::= τ
∣∣ x〈ỹ〉

∣∣ x〈ỹ〉
∣∣ tell c

∣∣ ask c
∣∣ retract c

∣∣ check c

UNCONSTRAINED U ::= 0
∣∣ U |U

∣∣ ∑i πi.Ui
∣∣ (x)U

∣∣ D(ỹ)
PROCESSES

CONSTRAINED P ::= U
∣∣ c

∣∣ P|P
∣∣ (x)P

PROCESSES

The τ prefix stands for a silent action, the output prefix x〈ỹ〉 for emitting over the port x
the message ỹ and the input prefix x〈ỹ〉 for receiving over x a message and binding it to ỹ.
Prefix tell c generates a constraint c and puts it in parallel with the other constraints, if
the resulting parallel composition of constraints is consistent; tell c is not enabled oth-
erwise. Prefix ask c is enabled if c is entailed by the set of constraints in parallel. Prefix
retract c removes a constraint c, if c is present. Prefix check c is enabled if c is con-
sistent with the set of constraints in parallel. Unconstrained processes U are essentially
processes that can only contain constraints c in prefixes tell c, ask c, retract c, and
check c. As usual, 0 stands for the inert process and U |U for the parallel composition.
∑i πi.Ui denotes an external choice in which some guarded unconstrained process Ui is
chosen when the corresponding guard πi is enabled. Restriction (x)U makes the name

x local in U . A defining equation for a process identifier D is of the form D(x̃) def= U
with |x̃| = |ỹ|. Constrained processes P are defined like unconstrained processes U but
for the fact that P may have constraints c in parallel with processes. We simply write
processes to refer to constrained processes.

We extend the usual notion of free names of a process by stating that the set of free
names of a constraint c is the support supp(c) defined in the previous section. Formally,
the set fn(P) is inductively defined as follows:

26 M.G. Buscemi and U. Montanari

fn(0) = /0 fn(τ.U) = fn(U) fn(x〈ỹ〉.U) = {x,y}∪ fn(U) fn(x〈ỹ〉.U) = {x,y}∪ fn(U)

fn(π.U) = supp(c)∪ fn(U) if π = tell c, ask c, retract c, check c

fn(∑i πi.Ui) = ∪i fn(πi.Ui) fn(D(x̃)) = fn(U) if D(x̃) def= U

fn(c) = supp(c) fn(P |Q) = fn(P)∪ fn(Q) fn((x)P) = fn(P)\{x}

We write n(P) for the set of names of a process P and bn(P) = n(P)\ fn(P) for the set
of bound names; the usual notion of α-conversion on bound names holds. By σP we
denote the process obtained from P by simultaneously substituting each free occurrence
of z in P by σ(z), possibly α-converting bound names.

4.2 Operational Semantics

The reduction semantics, as usual, is given in two steps: the definition of a structural
congruence, which rearranges processes into adjacent positions, and a notion of reduc-
tion relation that captures computations.

Definition 7. We let structural congruence, ≡, be the least congruence over processes
closed with respect to α-conversion and satisfying the following rules.

(AX-PAR) P|0 ≡ P P|Q ≡ Q|P (P|Q)|R ≡ P|(Q|R)

(AX-RES) (x)0 ≡ 0 (x)(y)P ≡ (y)(x)P P|(x)Q ≡ (x)(P|Q) if x �∈ fn(P)

(AX-REC) D(ỹ) ≡ [ỹ/x̃]U if D(x̃) def= U

These axioms can be applied for reducing every process P into a normal form
(x1) . . . (xn)(C |U), where C is a parallel composition of constraints and U is an uncon-
strained process. Specifically, the axioms are applied from left to right in the following
order: (AX-RES) for moving forward restrictions, and (AX-PAR) for grouping constraints
together, and (AX-REC).

Definition 8. The reduction relation over processes → is the least relation satisfying
the following inference rules. We use the following notations: C stands for the parallel
composition of constraints c1 | . . . |cn; C consistent means (c1 × . . .× cn) �= 0; C � c if
(c1 × . . .× cn) ≤ c; C− c stands for c1 | . . . |ci−1 |ci+1 | . . . |cn if c = ci for some i, while
C− c = C otherwise.

(TAU) C |τ.U → C |U (TELL) C |tell c.U → C |c |U if C |c consistent

(ASK) C |ask c.U → C |U if C � c (RETRACT)C |retract c.U → (C− c) |U

(CHECK) C |tell c.U → C |U if C |c consistent

(COM) C |x〈ỹ〉.U +∑πi.Ui |z〈w̃〉.V +∑π′
j.Vj −→ C ∪ {ỹ = w̃}|U |V

if |ỹ| = |w̃|, C | ỹ = w̃ consistent and C � x = z

(SUM)
C |πi.Ui → P

C | ∑πi.Ui → P
(PAR)

P → P′

P |U → P′ |U

(RES)
P → P′

(x)P → (x)P′ (STRUCT)
P ≡ P′ P′ → Q′ Q′ ≡ Q

P → Q

CC-Pi: A Constraint-Based Language for Specifying Service Level Agreements 27

The idea behind this reduction relation is to proceed as follows. First, rearranging
processes into the normal form (x1) . . . (xn)(C |U) by means of rule (STRUCT). Next,
applying the rules (TELL), (ASK), (RETRACT), and (CHECK) for primitives on con-
straints and the rule (COM) for synchronising processes. Finally, closing with respect to
parallel composition and restriction ((PAR), (RES)). More in detail, rule (TELL) states
that if C |c is consistent then a process can place c in parallel with C, the process is stuck
otherwise. Rules (ASK) and (CHECK) specify that a process starting with an ask c or,
respectively, check c prefix evolves to its continuation if c is entailed by C or, respec-
tively, if c |C is consistent, and that the process is stuck otherwise. By rule (RETRACT)
a process can remove c if c is among the syntactic constraints in C; e.g., the process
x=y |y = z |retract x = z.U does not affect x=y |y = z. In rules (COM), we write
ỹ = w̃ to denote the parallel composition of fusions y1 = w1 | . . . , |yn = wn. Intuitively,
two processes x〈ỹ〉.P and z〈w̃〉.Q can synchronise if the equality of the names x and z is
entailed by C and if the parallel composition C | ỹ = w̃ is consistent. Note that it is legal
to treat fusions as constraints c over C , because we only consider named c-semiring
with fusions, as noted in § 3. Rule (PAR) allows for closure with respect to uncon-
strained processes in parallel. This rule imposes to take into account all constraints in
parallel when applying the rules for constraints and synchronisation.

The present semantics does not specify how to solve at each step the constraint sys-
tem given by the parallel composition of constraints C. However, in [10] it is shown
how to apply dynamic programming to solve a CSP by solving its subproblems and
then by combining solutions to obtain the solution of the whole problem. A visual rep-
resentation of the problem is given by considering a graph where names are represented
as nodes and constraints as arcs connecting the names involved in each constraint.

Example 4. Let P and Q be the following two processes (we write c(x1, . . . ,xn) for a
constraint c with support supp(c) = {x1, . . . ,xn}):

P ≡ (x)(z)tell c(x).y〈x〉.x〈z〉.0 Q ≡ (w)tell c′(w,v).y〈w〉.w〈v〉.0

First, P and Q make their respective tell actions, which necessarily succeed as the
constraint system is initially empty and the constraints c and c′ have different support.
The graph representation of the resulting store of constraints is depicted in Fig. (a) be-
low. Next, the two processes try to synchronise on port y and, according to rule (COM),
the synchronisation takes place if the constraint combination c × c′ × x = w has a so-
lution (Fig. (b)). Finally, the processes synchronise on port x, which is identified to w,
thus yielding the fusion z = v (Fig. (c)).

(a) (b) (c)

xxx

z vv v

ww w
ccc x = wx = w

c′c′ c′

z = v

Remark on retract. We have chosen to introduce the retract operation in the cal-
culus in order to model non-monotonic constraint systems. For instance, an agent can

28 M.G. Buscemi and U. Montanari

perform a retract action for removing from a store a constraint that it had previously
placed, thus enabling a tell operation which would be stuck otherwise or for releas-
ing some resources after using them. Nevertheless, we can consider a version of the
cc-pi calculus not including the retract primitive. For this fragment of the calculus
the following additional axioms for relating parallel composition with product and re-
striction with hiding hold: c1 |c2 ≡ c1 × c2 and (x)c ≡ νx.c. These axioms cannot be
included in the original cc-pi calculus. In fact, a constraint c can be removed only if c is
syntactically present in the store of constraints, while by applying product or hiding we
generate new syntactic constraints. Note that the axioms for structural congruence in
Def. 7 along with the above ones lead to processes into a normal form (x̃)(c |U), where
U does not contain restrictions.

5 Specifying Service Level Agreements

In this section we show how to model within our framework SLA contracts. The idea is
to specify each SLA parameter as a variable and each SLA requirement or guarantee as
a constraint that connects the involved variables. The parties are modelled as commu-
nicating processes. A constraint can be generated either by a single process or by the
synchronisation of two processes that induces the identification of the communicated
values. Note that our constraint-based approach allows to specify not only negotiations
to reach a SLA contract, but also run-time checks that the contracts is not violated by
the involved parties.

Here we consider two examples that show how to apply our approach in modelling
the SLA management system. The first example is centered around the basic mecha-
nism for reaching and validating a contract. The second example extends the example
given in the introduction with three clients. For simplicity, in both examples we take the
constraint system to be a CSP by instantiating cc-pi with the named c-semiring Csoft,
defined in Example 3, over the c-semiring S = 〈{False,True},∨,∧,False,True〉. This
choice leads to solutions consisting of the set of tuples of legal domain values. We could
generalise such constraint system with soft constraints by replacing S with an arbitrary
c-semiring.

5.1 A Web Hosting Service

Consider a service that offers different web hosting solutions, varying in cost and in
bandwidth. Let P be the service provider and C be a client. Suppose that P obtains its
bandwidth resources from a third party T . Before the execution of the service, P and
C want to sign a SLA contract. The success of such an agreement also depends on the
resources provided by T . This scenario is depicted below.

Client C Service provider P Third party T

cost ′ ≤ max cost
cost ≥ min cost

cost = bw × 25Euros
bw ′′ ≤ max bw

x
y

z

x
y

z

CC-Pi: A Constraint-Based Language for Specifying Service Level Agreements 29

The interaction protocol is as follows. Each party imposes its SLA requirements or
guarantees: P specifies the minimum cost min cost for the service and the cost per
unit of bandwidth cost = bw · 25 Euros, C imposes a maximum cost max cost it can
pay for the service, and T fixes the maximum bandwidth max bw that it can supply.
Next, P communicates with C and with T on ports x and y, respectively. If the above
constraints are consistent with each other, i.e. if c = ((min cost ≤ cost ≤ max cost) ×
(bw ≤ max bw) × (cost = bw ·25 Euros) × (cost = cost′) × (bw = bw′ = bw′′)) �= 0,
P and C can sign this contract c, by synchronising on z. Then, the service is executed
and, assuming P provides C with a certain bandwidth act bw and the corresponding
cost, the two parties validate the contract by performing check operations on their
respective parameters. Note that the semantics of check enables this validation while
not modifying the constraints of the contract. The specification of P, C, and T in cc-pi
is as below and the whole system is represented by the parallel composition of the three
parties.

Pmin cost ≡ (bw)(cost)(tell ((cost ≥ min cost)× (cost = bw ·25 Euros)).
x〈bw,cost〉.y〈bw〉.z〈〉.P′

act bw)
P′

act bw ≡ x〈act bw,act bw ·25 Euros〉.check((act bw ·25 Euros = cost)×
(act bw = bw)).z〈〉

Cmax cost ≡ (bw′)(cost′)(tell (cost′ ≤ max cost).x〈bw′,cost′〉.z〈〉.C′)
C′ ≡ (b′,c′)(x〈b′,c′〉.check((b′ = bw′)× (c′ = cost′)).z〈〉)

Tmax bw ≡ (bw′′)(tell (bw′′ ≤ max bw).y〈bw′′〉)

5.2 Resource Allocation

We consider a slightly more complex scenario of the example given in the introduction
with one provider PN and three clients Cn1 , Cn2 , and Cn3 . The graph representation
of the constraint system resulting from the negotiation among the parties is depicted
below. Each node represents a variable, and each constraint is modelled by a hyperedge
connecting the variables involved in the constraint.

x0

x1

x2

x3

v1

v2

v3

y1

y2

y3

x0 = N

x1 = x0 − v1

x2 = x1 − v2

x3 = x2 − v3

v1 = y1

v2 = y2

v3 = y3

v1 ≤ max

v2 ≤ max

v3 ≤ max

y1 ≥ n1

y2 ≥ n2

y3 ≥ n3

provider PN client Cn1

client Cn2

client Cn3

Suppose that PN has allocated the resources y1 and y2, with yi ≥ ni for i = 1,2, to Cn1 and
Cn2 , respectively. If Cn3 makes a request y3 ≥ n3 that PN is not able to satisfy because
n1 +n2 +n3 ≥ N, the synchronisation between PN and Cn3 cannot take place until some
resources yi, with yi ≥ n3, are released.

30 M.G. Buscemi and U. Montanari

6 Expressiveness Results

Encoding Pi-F calculus. We start by recalling the Pi-F calculus. For better relating the
calculus with cc-pi, we present the Pi-F in the standard pi-calculus fashion rather than
in the ‘commitment’ style [19].

Definition 9. The syntax of Pi-F processes is the same as the one given in Definition 6
minus summation, tell, ask, retract, and check and where constraints c are taken
over the named c-semiring of equalities CE defined in Example 1. The structural con-
gruence ≡F is as in Def. 7 plus the axioms below:

x=x ≡F 0 x=y ≡F y=x x=y |y=z ≡F x=z |y=z (x)(x=y) ≡F 0

x=y |x〈z〉.P ≡F x=y |y〈z〉.P x=y |x〈z〉.P ≡F x=y |y〈z〉.P
z=y |x〈z〉.P ≡F z=y |z〈y〉.P z=y |x〈z〉.P ≡F z=y |x〈y〉.P

The reduction relation →F between processes is the smallest relation closed with re-
spect to | , (x) and ≡F , which satisfies:

x〈z̃〉.P |x〈w̃〉.Q →F P |Q |{z̃ = w̃} if |z̃| = |w̃|

Note that this syntax rules out processes containing name fusions under prefixes. This
choice follows the analogous restriction applied in cc-pi, which avoids that two pro-
cesses synchronise and, simultaneously, add some constrains to the store, thus possibly
yielding an inconsistency.

Definition 10. The translation [[]]F of pi-F processes into cc-pi processes is trivial: it
maps pi-F constructs on their homonymous versions in cc-pi.

Theorem 1. 1. If P →F Q then [[P]]F → [[Q]]F. 2. If [[P]]F → Q′ then P →F Q and
Q′ ≡ [[Q]]F .

By exploiting Theorem 1 and similar results proved in [19], it is also possible to give
reduction-preserving translations of pi-calculus and Fusion [13] in cc-pi.

Encoding cc programming. First, we briefly recall cc programming [15]. For the pur-
pose of a more straightforward translation into cc-pi, we present a slightly modified
version of the language. The basic ingredients of the cc programming constraint system
are a set D of primitive constraints or tokens and a reflexive and transitive entailment
relation � . A constraint c in a constraint system 〈P (D), �〉 is an element of P (D)�, i.e.
the closure of the powerset P (D) under entailment. The notion of consistency is given
by identifying a set of inconsistent constraints I. The existential operator on constraints
∃xc is formalised in terms of cylindric algebras.

Definition 11. The syntax of cc programming is defined as follows:

PREFIXES π ::= tell c
∣∣ ask c

PROCESSES A ::= success
∣∣ π.A

∣∣ A |A
∣∣ ∑i πi.Ai

∣∣ ∃x,c A
∣∣ p(ỹ)

CC-Pi: A Constraint-Based Language for Specifying Service Level Agreements 31

Following standard lines [16,12], we replace the classical hiding operator ∃x A with
∃x,c A that represents the evolution of a process of the form ∃x A′, where c is the local
constraint produced during the evolution. Moreover, p(ỹ) is a procedure call, where p
is the name of the procedure and ỹ is the tuple of actual parameters. The meaning of a
process is given with respect to a set of procedure declarations of the form p(x̃) := A.
An instantiation of p(x̃) := A is an object of the form p(ỹ) := [ỹ/x̃]A. A configuration
is a pair 〈c,A〉 with a constraint c representing the store and a process A. The reduction
relation →C over configurations is the smallest relation given by the following rules.

(TELL) 〈c,tell c′.A〉 �→ 〈(c∪ c′)�,A〉 if (c∪ c′)� consistent

(ASK) 〈c,ask c′.A〉 �→ 〈c,A〉 if c � c′

(SUM)
〈c,πi.Ai〉 �→ 〈c′,A′〉

〈c,∑i πi.Ai〉 �→ 〈c′,A′〉
(PAR)

〈c,A〉 �→ 〈c′,A′〉

〈c,A |B〉 �→ 〈c′,A′ |B〉

(PAR′)
〈c,A〉 �→ 〈c′,A′〉

〈c,B |A〉 �→ 〈c′,B |A′〉
(HIDE)

〈c∪∃xd,A〉 �→ 〈c′ ∪∃xd,A′〉

〈d,∃x,cA〉 �→ 〈d,∃x,c′A′〉

(PROC)
〈c, [ỹ/x̃]A〉 �→ 〈c′,A′〉 and p(x̃) := A

〈c, p(ỹ)〉 �→ 〈c′,A′〉

Definition 12. The translation [[]]F of cc processes in cc-pi is trivial:

[[success]]C = 0 [[ask c.A]]C = ask c.[[A]]C [[tell c.A]]C = tell c.[[A]]C
[[A |B]]C = [[A]]C | [[B]]C [[∃x,cA]]C = (x)(c | [[A]]C) [[∑πi.Ai]]C = ∑[[πi.Ai]]C
[[p(ỹ)]]C = Dp(ỹ)

where for each cc procedure declaration p(x̃) := A we give a defining equation
Dp(x̃) = Q with [[A]]C = Q.

Lemma 1. A constraint system 〈P (D), �〉 can be represented as a named c-semiring
〈C,+,×,νx. ,ρ,0,1〉 with: (i) C = P (D) ∪ ⊥, where ⊥ corresponds to the set I; (ii)
c1 + c2 = (c1 ∩ c2); (iii) c1 × c2 = (c1 ∪ c2)�; (iv) νx.c = ∃xc and ρc = ρc; (v) 0 = ⊥
and 1 = C.

Theorem 2. 1. If 〈c,A〉 �→ 〈c′,A′〉 then c | [[A]]C → c′ | [[A′]]C. 2. If c | [[A]]C → P then
〈c,A〉 �→ 〈c′,A′〉 and P ≡ c′ | [[A′]]C.

Note that cc programming handles the evolution of local stores of constraints through
the rule (HIDE), while cc-pi (without retract) obtains the same effect by reducing
processes into a normal form in which names are conveniently α-converted. This fact
plays a crucial role in the proof of Theorem 2.

7 Concluding Remarks

This paper is mainly focused on presenting the cc-pi calculus and on showing its
flexibility as a constrained-based model for specifying SLA contracts and resource allo-
cation. We foresee several directions for future work. We plan to consider a distributed

32 M.G. Buscemi and U. Montanari

version of the calculus by equipping, e.g., processes with locations and by limiting the
synchronous behavior of processes and constraints to a single locality. It would also be
interesting to study suitable mechanisms for assuring transactional and security prop-
erties of process executions, e.g. by enforcing that only the process which has told a
constraint can retract it. We also intend to further study the ability of c-semirings to
model soft constraints to express nonfunctional properties of SLAs.

Acknowledgments. We thank the anonymous referees for helpful comments.

References

1. A. Bacciu, A. Botta, and H. Melgratti. A fuzzy approach for negotiating quality of services.
In Proc. TGC ’06. To appear.

2. S. Bistarelli, U. Montanari, and F. Rossi. Semiring-based constraint satisfaction and opti-
mization. Journal of the ACM, 44(2):201–236, 1997.

3. S. Bistarelli, U. Montanari, and F. Rossi. Soft concurrent constraint programming. ACM
Trans. Comput. Logic, 7(3):563–589, 2006.

4. R. De Nicola, G. Ferrari, U. Montanari, R. Pugliese, and E. Tuosto. A process calculus
for QoS-aware applications. In Proc. COORDINATION’05, volume 3454 of Lect. Notes in
Comput. Sci. Springer, 2005.

5. J. F. Diaz, C. Rueda, and F. Valencia. A calculus for concurrent processes with constraints.
CLEI Electronic Journal, 1(2), 1998.

6. A. Keller and H. Ludwig. The WSLA framework: Specifying and monitoring service level
agreements for web services. Jour. Net. and Sys. Manag., 11(1):57–81, 2003.

7. R. Milner, J. Parrow, and J. Walker. A calculus of mobile processes, I and II. Inform. and
Comput, 100(1):1–40,41–77, 1992.

8. U. Montanari. Networks of constraints: fundamental properties and application to picture
processing. Information Science, 7:95–132, 1974.

9. U. Montanari and Pistore M. Structured coalgebras and minimal hd-automata for the pi-
calculus. Theoret. Comput. Sci, 340(3):539–576, 2005.

10. U. Montanari and F. Rossi. Constraint relaxation may be perfect. Artif. Intell., 48(2):143–
170, 1991.

11. J. Niehren and M. Mueller. Constraints for free in concurrent computation. In Proc.
Asian ’95, volume 1023 of Lect. Notes in Comput. Sci. Springer, 1995.

12. M. Nielsen, C. Palamidessi, and F. Valencia. On the expressive power of temporal concurrent
constraint programming languages. In Proc. PPDP’02. ACM, 2002.

13. J. Parrow and B. Victor. The fusion calculus: Expressiveness and symmetry in mobile pro-
cesses. In Proc. LICS’98. IEEE, Computer Society Press, 1998.

14. V. Saraswat and P. Lincoln. Higher-order linear concurrent constraint programming, 1992.
Technical Report, Xerox Parc.

15. V. Saraswat and M. Rinard. Concurrent constraint programming. In Proc. POPL’90. ACM
Press, 1990.

16. V. Saraswat, M. Rinard, and P. Panangaden. Semantic foundations of concurrent constraint
programming. In Proc. POPL’91. ACM Press, 1991.

17. J. Skene, D. Lamanna, and W. Emmerich. Precise service level agreements. In Proc.
ICSE’04, 2004.

18. B. Victor and J. Parrow. Constraints as processes. In Proc. CONCUR’96, volume 1119 of
Lect. Notes in Comput. Sci. Springer, 1996.

19. L. Wischik and P. Gardner. Explicit fusions. Theoret. Comput. Sci, 340(3):606–630, 2005.

A Calculus for Orchestration of Web Services�

Alessandro Lapadula, Rosario Pugliese, and Francesco Tiezzi

Dipartimento di Sistemi e Informatica Università degli Studi di Firenze

Abstract. We introduce COWS (Calculus for Orchestration of Web Services),
a new foundational language for SOC whose design has been influenced by
WS-BPEL, the de facto standard language for orchestration of web services.
COWS combines in an original way a number of ingredients borrowed from well-
known process calculi, e.g. asynchronous communication, polyadic synchroniza-
tion, pattern matching, protection, delimited receiving and killing activities, while
resulting di�erent from any of them. Several examples illustrates COWS peculiar-
ities and show its expressiveness both for modelling imperative and orchestration
constructs, e.g. web services, flow graphs, fault and compensation handlers, and
for encoding other process and orchestration languages.

1 Introduction

Web services are a successful instantiation of service-oriented computing (SOC), an
emerging paradigm for developing loosely coupled, interoperable, evolvable systems
and applications which exploits the pervasiveness of the Internet and its related tech-
nologies. Web services are autonomous, stateless, platform-independent and compos-
able computational entities that can be published, located and invoked through the Web
via XML messages. These very features foster a programming style based on service
composition and reusability: new customized service-based applications can be devel-
oped on demand by appropriately assembling other existing, heterogeneous services.

Service definitions are used as templates for creating service instances that deliver
application functionality to either end-user applications or other instances. The loosely
coupled nature of SOC implies that the connection between communicating instances
cannot be assumed to persist for the duration of a whole business activity. Therefore,
there is no intrinsic mechanism for associating messages exchanged under a common
context or as part of a common activity. Even the execution of a simple request-response
message exchange pattern provides no built-in means of automatically associating the
response message with the original request. It is up to each single message to provide
a form of context thus enabling services to associate the message with others. This
is achieved by embedding values in the message which, once located, can be used to
correlate the message with others logically forming a same stateful interaction ‘session’.

To support the web service approach, many new languages, most of which based
on XML, have been designed, like e.g. business coordination languages (such as WS-
BPEL, WSFL, WSCI, WS-CDL and XLANG), contract languages (such as WSDL and
SWS), and query languages (such as XPath and XQuery). However, current software
engineering technologies for development and composition of web services remain at

� This work has been supported by the EU project SENSORIA, IST-2 005-016004.

R. De Nicola (Ed.): ESOP 2007, LNCS 4421, pp. 33–47, 2007.
c� Springer-Verlag Berlin Heidelberg 2007

34 A. Lapadula, R. Pugliese, and F. Tiezzi

the descriptive level and do not integrate such techniques as, e.g., those developed for
component-based software development. Formal reasoning mechanisms and analytical
tools are still lacking for checking that the web services resulting from a composition
meet desirable correctness properties and do not manifest unexpected behaviors. The
task of developing such verification methods is hindered also by the very nature of
the languages used to program the services, which usually provide many redundant
constructs and support quite liberal programming styles.

Recently, many researchers have exploited the studies on process calculi as a start-
ing point to define a clean semantic model and lay rigorous methodological foundations
for service-based applications and their composition. Process calculi, being defined al-
gebraically, are inherently compositional and, therefore, convey in a distilled form the
paradigm at the heart of SOC. This trend is witnessed by the many process calculi-like
formalisms for orchestration and choreography, the two more common forms of web
services composition. Most of these formalisms, however, do not suit for the analysis
of currently available SOC technologies in their completeness because they only con-
sider a few specific features separately, possibly by embedding ad hoc constructs within
some well-studied process calculus (see, e.g., the variants of �-calculus with transac-
tions [2,19,20] and of CSP with compensation [9]).

Here, we follow a di�erent approach and exploit WS-BPEL [1], the de facto stan-
dard language for orchestration of web services, to drive the design of a new process
calculus that we call COWS (Calculus for Orchestration of Web Services). Similarly to
WS-BPEL, COWS supports shared states among service instances, allows a same pro-
cess to play more than one partner role and permits programming stateful sessions by
correlating di�erent service interactions. However, COWS intends to be a foundational
model not specifically tight to web services’ current technology. Thus, some WS-BPEL
constructs, such as e.g. fault and compensation handlers and flow graphs, do not have
a precise counterpart in COWS, rather they are expressed in terms of more primitive
operators (see Section 3). Of course, COWS has taken advantage of previous work on
process calculi. Its design combines in an original way a number of constructs and fea-
tures borrowed from well-known process calculi, e.g. asynchronous communication,
polyadic synchronization, pattern matching, protection, delimited receiving and killing
activities, while however resulting di�erent from any of them.

The rest of the paper is organized as follows. Syntax and operational semantics
of COWS are defined in Section 2 where we also show many illustrative examples.
Section 3 presents the encodings of several imperative and orchestration constructs,
while Section 4 presents the encoding of the orchestration language Orc [28]. Finally,
Section 5 touches upon comparisons with related work and directions for future work.

2 COWS: Calculus for Orchestration of Web Services

The basic elements of COWS are partners and operations. Alike channels in [10], a
communication endpoint is not atomic but results from the composition of a partner
name p and of an operation name o, which can also be interpreted as a specific im-
plementation of o provided by p. This results in a very flexible naming mechanism
that allows a same service to be identified by means of di�erent logic names (i.e. to
play more than one partner role as in WS-BPEL). Additionally, it allows the names

A Calculus for Orchestration of Web Services 35

composing an endpoint to be dealt with separately, as in a request-response interaction,
where usually the service provider knows the name of the response operation, but not
the partner name of the service it has to reply to. This mechanisms is also suÆciently
expressive to support implementation of explicit locations: a located service can be rep-
resented by using a same partner for all its receiving endpoints. Partner and operation
names can be exchanged in communication, thus enabling many di�erent interaction
patterns among service instances. However, as in [25], dynamically received names
cannot form the communication endpoints used to receive further invocations.

COWS computational entities are called services. Typically, a service creates one
specific instance to serve each received request. An instance is composed of concurrent
threads that may o�er a choice among alternative receive activities. Services could be
able to receive multiple messages in a statically unpredictable order and in such a way
that the first incoming message triggers creation of a service instance which subsequent
messages are routed to. Pattern-matching is the mechanism for correlating messages
logically forming a same interaction ‘session’ by means of their same contents. It per-
mits locating those data that are important to identify service instances for the routing of
messages and is flexible enough for allowing a single message to participate in multiple
interaction sessions, each identified by separate correlation values.

To model and update the shared state of concurrent threads within each service in-
stance, receive activities in COWS bind neither names nor variables. This is di�erent
from most process calculi and somewhat similar to [29,30]. In COWS, however, inter-
service communication give rise to substitutions of variables with values (alike [29]),
rather than to fusions of names (as in [30]). The range of application of the substitution
generated by a communication is regulated by the delimitation operator, that is the only
binder of the calculus. Additionally, this operator permits to generate fresh names (as
the restriction operator of the �-calculus [27]) and to delimit the field of action of the
kill activity, that can be used to force termination of whole service instances. Sensitive
code can however be protected from the e�ect of a forced termination by using the
protection operator (inspired by [8]).

Syntax. The syntax of COWS, given in Table 1, is parameterized by three countable
and pairwise disjoint sets: the set of (killer) labels (ranged over by k� k�� � � �), the set of
values (ranged over by v, v�, . . .) and the set of ‘write once’ variables (ranged over by x,
y, . . .). The set of values is left unspecified; however, we assume that it includes the set
of names, ranged over by n, m, . . . , mainly used to represent partners and operations.
The language is also parameterized by a set of expressions, ranged over by e, whose
exact syntax is deliberately omitted; we just assume that expressions contain, at least,
values and variables. Notably, killer labels are not (communicable) values. Notationally,
we prefer letters p� p�� � � � when we want to stress the use of a name as a partner, o� o�� � � �

when we want to stress the use of a name as an operation. We will use w to range over
values and variables, u to range over names and variables, and d to range over killer
labels, names and variables.

Services are structured activities built from basic activities, i.e. the empty activity 0,
the kill activity kill() , the invoke activity � ! and the receive activity � ? , by means
of prefixing � , choice � , parallel composition � , protection �� �� , delimitation
[] and replication � . Notably, as in the L� [25], communication endpoints of receive

36 A. Lapadula, R. Pugliese, and F. Tiezzi

Table 1. COWS syntax

s ::� kill(k) � u � u�!ē � g � s � s � ��s�� � [d] s � � s (services)

g ::� 0 � p � o?w̄�s � g � g (input-guarded choice)

Table 2. COWS structural congruence (excerpt of laws)

� 0 � 0 � s � s � � s ��0�� � 0
�� ��s�� �� � ��s�� ��[d] s�� � [d] ��s�� [d] 0 � 0

[d1] [d2] s � [d2] [d1] s s1 � [d] s2 � [d] (s1 � s2) if d � fd(s1)�fk(s2)

activities are identified statically because their syntax only allows using names and
not variables. The decreasing order of precedence among the operators is as follows:
monadic operators, choice and parallel composition.

Notation �̄ stands for tuples of objects, e.g. x̄ is a compact notation for denoting the
tuple of variables �x1� � � � � xn� (with n � 0). We assume that variables in the same tuple
are pairwise distinct. All notations shall extend to tuples component-wise. In the sequel,
we shall omit trailing occurrences of 0, writing e.g. p � o?w̄ instead of p � o?w̄�0, and use
[d1� � � � � dn] s in place of [d1] � � � [dn] s.

The only binding construct is delimitation: [d] s binds d in the scope s. The occur-
rence of a name�variable�label is free if it is not under the scope of a binder. We denote
by fd(t) the set of names, variables and killer labels that occur free in a term t, and by
fk(t) the set of free killer labels in t. Two terms are alpha-equivalent if one can be ob-
tained from the other by consistently renaming bound names�variables�labels. As usual,
we identify terms up to alpha-equivalence.

Operational Semantics. COWS operational semantics is defined only for closed ser-
vices, i.e. services without free variables�labels (similarly to many real compilers, we
consider terms with free variables�labels as programming errors), but of course the rules
also involve non-closed services (see e.g. the premises of rules (del)). Formally, the se-
mantics is given in terms of a structural congruence and of a labelled transition relation.

The structural congruence 	 identifies syntactically di�erent services that intuitively
represent the same service. It is defined as the least congruence relation induced by a
given set of equational laws. We explicitly show in Table 2 the laws for replication,
protection and delimitation, while omit the (standard) laws for the other operators stat-
ing that parallel composition is commutative, associative and has 0 as identity element,
and that guarded choice enjoys the same properties and, additionally, is idempotent.
All the presented laws are straightforward. In particular, commutativity of consecutive
delimitations implies that the order among the di in [�d1� � � � � dn�] s is irrelevant, thus in
the sequel we may use the simpler notation [d1� � � � � dn] s. Notably, the last law can be
used to extend the scope of names (like a similar law in the �-calculus), thus enabling
communication of restricted names, except when the argument d of the delimitation is
a free killer label of s2 (this avoids involving s1 in the e�ect of a kill activity inside s2).

A Calculus for Orchestration of Web Services 37

Table 3. Matching rules

�(x� v) � �x 	
 v� �(v� v) � �
�(w1� v1) � �1 �(w̄2� v̄2) � �2

�((w1� w̄2)� (v1� v̄2)) � �1 � �2

To define the labelled transition relation, we need a few auxiliary functions. First,
we exploit a function [[]] for evaluating closed expressions (i.e. expressions without
variables): it takes a closed expression and returns a value. However, [[]] cannot be
explicitly defined because the exact syntax of expressions is deliberately not specified.

Then, through the rules in Table 3, we define the partial function
(�) that per-
mits performing pattern-matching on semi-structured data thus determining if a receive
and an invoke over the same endpoint can synchronize. The rules state that two tuples
match if they have the same number of fields and corresponding fields have matching
values�variables. Variables match any value, and two values match only if they are iden-
tical. When tuples w̄ and v̄ do match,
(w̄� v̄) returns a substitution for the variables in
w̄; otherwise, it is undefined. Substitutions (ranged over by �) are functions mapping
variables to values and are written as collections of pairs of the form x �� v. Application
of substitution � to s, written s � �, has the e�ect of replacing every free occurrence of
x in s with v, for each x �� v �, by possibly using alpha conversion for avoiding v to
be captured by name delimitations within s. We use �� � to denote the number of pairs
in � and �1 � �2 to denote the union of �1 and �2 when they have disjoint domains.

We also define a function, named halt(), that takes a service s as an argument and
returns the service obtained by only retaining the protected activities inside s. halt() is
defined inductively on the syntax of services. The most significant case is halt(��s��) �
��s��. In the other cases, halt() returns 0, except for parallel composition, delimitation
and replication operators, for which it acts as an homomorphism.

Finally, we define a predicate, noc(� � �), that takes a service s, an endpoint p � o, a
tuple of receive parameters w̄ and a matching tuple of values v̄ as arguments and holds
true if either there are no conflicting receives within s (namely, s cannot immediately
perform a receive activity matching v̄ over the endpoint p � o), or p � o?w̄ is the most
defined conflicting receive. The predicate exploits the notion of active context, namely
a service � with a ‘hole’ [[�]] such that, once the hole is filled with a service s, if the
resulting term �[[s]] is a COWS service then it is capable of immediately performing
an activity of s. Formally, active contexts are generated by the grammar:

� ::� [[�]] � � � g � g � � � � � s � s � � � ����� � [d]� � � �

Now, predicate noc(s� p � o� w̄� v̄) can be defined as follows:

(s � �[[p � o?w̄��s�]] �
(w̄�� v̄) � �) � �
(w̄� v̄) �� �� �

where s � �[[p � o?w̄��s�]] means that s can be written as p � o?w̄��s� filling the hole of
some active context�.

The labelled transition relation
�
��� is the least relation over services induced by the

rules in Table 4, where label � is generated by the following grammar:

� ::� �k � (p � o) � v̄ � (p � o) � w̄ � p � o ��� w̄ v̄ � �

38 A. Lapadula, R. Pugliese, and F. Tiezzi

Table 4. COWS operational semantics

kill(k)
�k

 0 (kill) p � o?w̄�s

(p�o)�w̄

 s (rec)

[[ē]] � v̄
(inv)

p � o!ē
(p�o)�v̄

 0

g1
�

 s

(choice)
g1 � g2

�

 s

s
p�o ����x��v� 	
 w̄ v̄

 s�

(delsub)

[x] s
p�o ��
 w̄ v̄

 s� ��x 	
 v��

s
�k

 s�

(delkill)
[k] s

�

 [k] s�

s
�

 s� d�d(�) s � �[[kill(d)]] � ���� �k

(delpass)
[d] s

�

 [d] s�

s
�

 s�

(prot)
��s��

�

 ��s���

s1
(p�o)�w̄

 s�1 s2

(p�o)�v̄

 s�2 �(w̄� v̄) � � noc(s1 � s2� p � o� w̄� v̄)

(com)
s1 � s2

p�o ��
 w̄ v̄

 s�1 � s�2

s1
p�o ��
 w̄ v̄

 s�1 noc(s2� p � o� w̄� v̄)

(parcon f)
s1 � s2

p�o ��
 w̄ v̄

 s�1 � s2

s1
�k

 s�1

(parkill)
s1 � s2

�k

 s�1 � halt(s2)

s1
�

 s�1 � � (p � o ��� w̄ v̄)� �k

(parpass)
s1 � s2

�

 s�1 � s2

s � s1 s1
�

 s2 s2 � s�

(cong)
s

�

 s�

In the sequel, we use d(�) to denote the set of names, variables and killer labels occur-
ring in �, except for � � p � o ��� w̄ v̄ for which we let d(p � o ��� w̄ v̄) � d(�), where
d(�x �� v�) � �x� v� and d(�1��2) � d(�1)�d(�2). The meaning of labels is as follows:
�k denotes execution of a request for terminating a term from within the delimitation
[k] , (p � o) � v̄ and (p � o) � w̄ denote execution of invoke and receive activities over the
endpoint p � o, respectively, p � o ��� w̄ v̄ (if � � �) denotes execution of a communica-
tion over p � o with receive parameters w̄ and matching values v̄ and with substitution
� to be still applied, � and p � o ��� w̄ v̄ denote computational steps corresponding to
taking place of forced termination and communication (without pending substitutions),
respectively. Hence, a computation from a closed service s0 is a sequence of connected
transitions of the form

s0
�1
��� s1

�2
��� s2

�3
��� s3 � � �

where, for each i, �i is either � or p � o ��� w̄ v̄ (for some p� o� w̄ and v̄); services si, for
each i, will be called reducts of s0.

We comment on salient points. Activity kill(k) forces termination of all unprotected
parallel activities (rules (kill) and (parkill)) inside an enclosing [k] , that stops the killing
e�ect by turning the transition label �k into � (rule (delkill)). Existence of such delimita-
tion is ensured by the assumption that the semantics is only defined for closed services.

A Calculus for Orchestration of Web Services 39

Sensitive code can be protected from killing by putting it into a protection �� ��; this way,
��s�� behaves like s (rule (prot)). Similarly, [d] s behaves like s, except when the transition
label � contains d or when a kill activity for d is active in s and � does not correspond
to a kill activity (rule (delpass)): in such cases the transition should be derived by using
rules (delkill) or (delsub). In other words, kill activities are executed eagerly. A service
invocation can proceed only if the expressions in the argument can be evaluated (rule
(inv)). Receive activities can always proceed (rule (rec)) and can resolve choices (rule
(choice)). Communication can take place when two parallel services perform matching
receive and invoke activities (rule (com)). Communication generates a substitution that
is recorded in the transition label (for subsequent application), rather than a silent tran-
sition as in most process calculi. If more than one matching receive activity is ready to
process a given invoke, then only the more defined one (i.e. the receive that generates
the ‘smaller’ substitution) progresses (rules (com) and (parcon f)). This mechanism per-
mits to correlate di�erent service communications thus implicitly creating interaction
sessions and can be exploited to model the precedence of a service instance over the
corresponding service specification when both can process the same request. When the
delimitation of a variable x argument of a receive is encountered, i.e. the whole scope
of the variable is determined, the delimitation is removed and the substitution for x is
applied to the term (rule (delsub)). Variable x disappears from the term and cannot be re-
assigned a value. Execution of parallel services is interleaved (rule (parpass)), but when a
kill activity or a communication is performed. Indeed, the former must trigger termina-
tion of all parallel services (according to rule (parkill)), while the latter must ensure that
the receive activity with greater priority progresses (rules (com) and (parcon f)). The last
rule states that structurally congruent services have the same transitions.

Examples. We end this section with a few observations and examples aimed at clarify-
ing the peculiarities of our formalism.

Communication of private names. Communication of private names is standard and
exploits scope extension as in �-calculus.1 Receive and invoke activities can interact
only if both are in the scopes of the delimitations that bind the variables argument of
the receive. Thus, to enable communication of private names, besides their scopes, we
must possibly extend the scopes of some variables, as in the following example:

[x] (p � o?�x��s � s�) � [n] p � o!�n� 	 (n fresh)

[n] [x] (p � o?�x��s � s� � p � o!�n�)
p�o ��� �x� �n�
�����������

[n] (s � s�) � �x �� n�

Notice that the substitution �x �� n� is applied to all terms delimited by [x] , not only
to the continuation s of the service performing the receive. This accounts for the global
scope of variables and permits to easily model the delayed input of fusion calculus [30].

Protected kill activity. The following simple example illustrates the e�ect of executing
a kill activity within a protection block:

[k] (��s1 � ��s2�� � kill(k)�� � s3) � s4
�
��� [k] �� ��s2�� �� � s4

1 The variant of �-calculus closest to COWS is localised �-calculus [25] and, indeed, in [21] we
define an encoding that enjoys operational correspondence.

40 A. Lapadula, R. Pugliese, and F. Tiezzi

where, for simplicity, we assume that halt(s1) � halt(s3) � 0. In essence, kill(k) termi-
nates all parallel services inside delimitation [k] (i.e. s1 and s3), except those that are
protected at the same nesting level of the kill activity (i.e. s2).

Conflicting receive activities. This example shows a persistent service (implemented by
mean of replication), that, once instantiated, enables two conflicting receives:

� [x] (p1 � o?�x��s1 � p2 � o?�x��s2) � p1 � o!�v� � p2 � o!�v�
p1 �o ��� �x� �v�
������������

� [x] (p1 � o?�x��s1 � p2 � o?�x��s2) � s1 � �x �� v� � p2 � o?�v��s2 � �x �� v� � p2 � o!�v�

Now, the persistent service and the created instance, being both able to receive the
same tuple �v� along the endpoint p2 �o, compete for the request p2 �o!�v�. However, our
(prioritized) semantics, in particular rule (com) in combination with rule (parcon f), allows
only the existing instance to evolve (and, thus, prevents creation of a new instance):

� [x] (p1 � o?�x��s1 � p2 � o?�x��s2) � s1 � �x �� v� � s2 � �x �� v�

Message correlation. Consider now uncorrelated receive activities executed by a same
instance, like in the following service:

� [x] p1 � o1?�x��[y] p2 � o2?�y��s

The fact that the messages for operations o1 and o2 are uncorrelated implies that, e.g., if
there are concurrent instances then successive invocations for a same instance can mix
up and be delivered to di�erent instances. If one thinks it right, this behaviour can be
avoided simply by correlating successive messages by means of some correlation data,
e.g. the first received value as in the following service:

� [x] p1 � o1?�x��[y] p2 � o2?�y� x��s

3 Modelling Imperative and Orchestration Constructs

In this section, we present the encoding of some higher level imperative and orchestra-
tion constructs (mainly inspired by WS-BPEL). The encodings illustrate flexibility of
COWS and somehow demonstrate expressiveness of the chosen set of primitives.

In the sequel, we will write Zv̄ � W to assign a symbolic name Zv̄ to the term W and
to indicate the values v̄ occurring within W. Thus, Zv̄ is a family of names, one for each
tuple of values v̄. We use n̂ to stand for the endpoint np � no. Sometimes, we write n̂ for
the tuple �np� no� and rely on the context to resolve any ambiguity.

Imperative constructs. Due to lack of space, we only present the encodings of those
constructs that will be further exploited in the rest of the section. We refer the interested
reader to [21] for deeper explanations and additional encodings.

We start adding matching with assignment [w̄ � ē] to COWS basic activities. If w̄
and ē do match, service [w̄ � ē]�s returns a substitution that will eventually assign to
the variables in w̄ the corresponding values of ē, and service s can proceed. In COWS,
this meaning can be rendered through the following encoding (for m̂ fresh)

��[w̄ � ē]�s�� � [m̂] (m̂!ē � m̂?w̄���s��)

A Calculus for Orchestration of Web Services 41

Notably, the new construct di�ers from standard assignment both because values can
occur on the left of �, in which case it behaves as a matching mechanism, and because,
like the receive activity, it does not bind the variables on the left of �, thus it cannot
reassign a value to them if a value has already been assigned (more details are in [21]).

Conditional choice is encoded similarly:

��if (e) then �s1� else �s2��� � [m̂] (m̂!�e� � (m̂?�true����s1�� � m̂?�false����s2��))

where true and false are the values that can result from evaluation of e.
Sequential composition can be encoded alike in CCS [26, Chapter 8] however, due

to the asynchrony of invoke and kill activities, the notion of well-termination must
be relaxed wrt CCS. Firstly, we settle that services may indicate their termination by
exploiting the invoke activity xdone � odone!��, where xdone is a distinguished variable and
odone is a distinguished name. Secondly, we say that a service s is well-terminating if,

for every reduct s� of s and partner p, s� � �xdone �� p�
(p�odone)���
���������� implies that

– either s�
�
��� s�� for some � � � or � � �k and s�� is well-terminating

– or s�
�
��� s�� implies � � (p � o) � v̄, for some s��, p, o and v̄.

Notably, well-termination does not demand a service to terminate, but only that when-
ever the service can perform activity p � odone!�� and cannot perform any kill activities,
then it terminates except for, possibly, some parallel pending invoke activities. As usual,
the encoding relies on the assumption that all calculus operators themselves (in partic-
ular, parallel composition) can be rendered as to preserve well-termination. Finally, if
we only consider well-terminating services, then, for a fresh p, we can let:

��s1; s2�� � [p] (��s1 � �xdone �� p��� � p � odone?�����s2��)

Fault and compensation handlers. Fault handling is strictly related to the notion of
compensation, namely the execution of specific activities (attempting) to reverse the
e�ects of previously executed activities. We consider here a minor variant of the WS-
BPEL compensation protocol. To begin with, we extend COWS syntax as shown in the
upper part of Table 5. The scope activity [s : catch(�1)�s1� : � � � : catch(�n)�sn� : sc]�
permits explicitly grouping activities together. The declaration of a scope activity con-
tains a unique scope identifier �, a service s representing the normal behaviour, an op-
tional list of fault handlers, and a compensation handler sc. The fault generator activity
throw(�) can be used by a service to rise a fault signal �. This signal will trigger ex-
ecution of activity s�, if a construct of the form catch(�)�s�� exists within the same
scope. The compensate activity undo(�) can be used to invoke a compensation handler
of an inner scope named � that has already completed normally (i.e. without faulting).
Compensation can only be invoked from within a fault or a compensation handler. As
in WS-BPEL, we fix two syntactic constraints: handlers do not contain scope activities
and for each undo(�) occurring in a service there exists at least an inner scope �.

In fact, it is not necessary to extend COWS syntax because fault and compensation
handling can be easily encoded. The most interesting cases of the encoding are shown
in the lower part of Table 5 (in the remaining cases, the encoding acts as an homo-
morphism), where the killer labels used to identify scopes and the introduced partner

42 A. Lapadula, R. Pugliese, and F. Tiezzi

Table 5. Syntax and encoding of fault and compensation handling

s ::� . . . (services)
� throw(�) (fault generator)
� undo(�) (compensate)
� [s : catch(�1)�s1� : � � � : catch(�n)�sn� : sc]� (scope)

��[s : catch(�1)�s1� : � � � : catch(�n)�sn� : sc]���k �

[p�1 � � � � � p�n] (��catch(�1)�s1���k � � � � � ��catch(�n)�sn���k �

[k�] (��s��k�
; (xdone � odone!�� � ��p� � ocomp?�����sc��k�

��)))

��catch(�)�s���k � p� � of ault?���[k�] ��s��k�

��undo(�)��k � p� � ocomp!�� � xdone � odone!��

��throw(�)��k � ��p� � of ault!�� � xdone � odone!���� � kill(k)

names are taken fresh for s, s1, . . . , sn and sc. The two distinguished names o f ault and
ocomp denote the operations for receiving fault and compensation signals, respectively.
We are assuming that for each scope identifier or fault signal named n, the partner used
to activate scope compensation or fault handling, respectively, is pn.

The encoding �����k is parameterized by the identifier k of the closest enclosing scope,
if any. The parameter is used when encoding a fault generator, to launch a kill activity
that forces termination of all the remaining activities of the enclosing scope, and when
encoding a scope, to delimit the field of action of inner kill activities. The compensation
handler sc of scope � is installed when the normal behaviour s successfully completes,
but it is activated only when signal p� � ocomp!�� occurs. Similarly, if during normal
execution a fault � occurs, a signal p� � o f ault!�� triggers execution of the corresponding
fault handler (if any). Installed compensation handlers are protected from killing by
means of �� ��. Notably, both the compensate activity and the fault generator activity can
immediately terminate (thus enabling possible sequential compositions); this, of course,
does not mean that the corresponding handler is terminated.

Flow graphs. Flow graphs provide a direct and intuitive way to structure workflow
processes, where activities executed in parallel can be synchronized by settling depen-
dencies, called (flow) links, among them. At the beginning of a parallel execution, all
involved links are inactive and only those activities with no synchronization dependen-
cies can execute. Once all incoming links of an activity are active (i.e., they have been
assigned either a positive or negative state), a guard, called join condition, is evaluated.
When an activity terminates, the status of the outgoing links, which can be positive, neg-
ative or undefined, is determined through evaluation of a transition condition. When an
activity in the flow graph cannot execute (i.e., the join condition fails), a join failure
fault is emitted to signal that some activities have not completed. An attribute called
‘suppress join failure’ can be set to yes to ensure that join condition failures do not
throw the join failure fault (this e�ect is called Dead-Path Elimination [1]).

To express the constructs above, we extend the syntax of COWS as illustrated in the
upper part of Table 6. A flow graph activity [f l] ls is a delimited linked service, where

A Calculus for Orchestration of Web Services 43

Table 6. Syntax and encoding of flow graphs

s ::� � � � � [f l] ls �
�

i�I pi � oi?w̄i�si (services)

ls ::� (jc)
s j f
� s � (f l� ē) � s � (f l� ē) � ls � ls (linked services)

jc ::� true � false � f l � � jc � jc � jc � jc � jc (join conditions)

s j f ::� yes � no (supp. join failure)

��[f l] ls�� � [f l] ��ls�� ��ls1 � ls2�� � ��ls1�� � ��ls2�� ��s � (f l� ē)�� � ��s��; [f l � ē]

��(jc)
yes
� s � (f l� ē)�� � if (jc) then ���s��; [f l � ē]� else �[outLinkO f (s) � false]�

��(jc)
no
� s � (f l� ē)�� � if (jc) then ���s��; [f l � ē]� else �throw(� join f)�

��
�

i��1��n	 pi � oi?w̄i�si�� � p1 � o1?w̄1�[
�

j��2��n	 outLinkO f (s j) � false]���s1��

� � � � � pn � on?w̄n�[
�

j��1��n�1	 outLinkO f (s j) � false]���sn��

the activities within ls can synchronize by means of the flow links in f l, rendered as
(boolean) variables. A linked service is a service equipped with a set of incoming flow
links that forms the join condition, and a set of outgoing flow links that represents the

transition condition. Incoming flow links and join condition are denoted by (jc)
s j f
�.

Outgoing links are represented by � (f li	I � ēi	I) where each pair (f li� ei) is composed
of a flow link f li and the corresponding transition (boolean) condition ei. Attribute s j f
permits suppressing possible join failures. Input-guarded summation replaces binary
choice, because we want all the branches of a multiple choice to be considered at once.

Again, we show that in fact it is not necessary to extend the syntax because flow
graphs can be easily encoded by relying on the capability of COWS of modelling a
state shared among a group of activities. The most interesting cases of the encoding
are shown in the lower part of Table 6. The encoding exploits the auxiliary function
outLinkO f (s), that returns the tuple of outgoing links in s. Flow graphs are rendered
as delimited services, while flow links are rendered as variables. A join condition is
encoded as a boolean condition within a conditional construct, where the transition
conditions are rendered as the assignment [f l � ē]. In case attribute ‘suppress join
failure’ is set to no, a join condition failure produces a fault signal that can be caught
by a proper fault handler. Choice among (linked) services is implemented in such a way
that, when a branch is selected, the links outgoing from the activities of the discarded
branches are set to f alse (the encoding of conditional choice can be modified similarly).

4 Encoding the Orchestration Language Orc

We present here the encoding of Orc [28], a recently proposed task orchestration
language with applications in workflow, business process management, and web
service orchestration. Orc expressions are generated by the following grammar:

f � g ::� 0 � S (w) � E(w) � f � x � g � f � g � g where x : f

44 A. Lapadula, R. Pugliese, and F. Tiezzi

where S ranges over site names, E over expression names, x over variables, and w over
parameters, i.e. variables or values (ranged over by v). Each expression name E has a
unique declaration of the form E(x) � f . Expressions f � x � g and g where x : f
bind variable x in g.

We now briefly describe the semantics of Orc expressions (and refer the interested
reader to [21] for a formal account). Evaluation of expressions may call a number of
sites and returns a (possibly empty) stream of values. In [28], this is formalized through
a labelled transition relation, where label 	 indicates an internal event while label !v
indicates publication of the value v resulting from evaluating an expression. A site call
can progress only when the actual parameter is a value; it elicits one response. While
site calls use a call-by-value mechanism, expression calls use a call-by-name mecha-
nism, namely the actual parameter replaces the formal one and then the corresponding
expression is evaluated. Symmetric parallel composition f � g consists of concurrent
evaluations of f and g. Sequential composition f � x � g activates a concurrent copy
of g with x replaced by v, for each value v returned by f . Asymmetric parallel com-
position g where x : f starts in parallel both f and the part of g that does not need
x. The first value returned by f is assigned to x and the continuation of f and all its
descendants are then terminated.

The encoding of Orc expressions in COWS exploits function �����r̂ shown in Table 7.
The function is defined by induction on the syntax of expressions and is parameterized
by the communication endpoint r̂ used to return the result of expressions evaluation.
Thus, a site call is rendered as an invoke activity that sends a pair made of the parame-
ter of the invocation and the endpoint for the reply along the endpoint Ŝ corresponding
to site name S . Expression call is rendered similarly, but we need two invoke activi-
ties: Ê!�r̂� r̂�� activates a new instance of the body of the declaration, while z!�w� sends
the value of the actual parameter (when this value will be available) to the created in-
stance, by means of a private endpoint stored in z received from the encoding of the
corresponding expression declaration along the private endpoint r̂� previously sent. Se-
quential composition is encoded as the parallel composition of the two components
sharing a delimited endpoint, where a new instance of the component on the right is
created every time that on the left returns a value along the shared endpoint. Symmet-
ric parallel composition is encoded as parallel composition, where the values produced
by the two components are sent along the same return endpoint. Finally, asymmetric
parallel composition is encoded in terms of parallel composition in such a way that,
whenever the encoding of f returns its first value, this is passed to the encoding of g
and a kill activity is enabled. Due to its eager semantics, the kill will terminate what
remains of the term corresponding to the encoding of f .

Moreover, for each site S , we define the service:

� [x� y] Ŝ ?�x� y��y!�eS
x � (1)

that receives along the endpoint Ŝ a value (stored in x) and an endpoint (stored in y)
to be used to send back the result, and returns the evaluation of eS

x , an unspecified
expression corresponding to S and depending on x.

Similarly, for each expression declaration E(x) � f we define the service:

� [y� z] Ê?�y� z��[r̂] (z!�r̂� � [x] (r̂?�x� � �� f ��y)) (2)

A Calculus for Orchestration of Web Services 45

Table 7. Orc encoding

��0��r̂ � 0 ��S (w)��r̂ � Ŝ !�w� r̂� ��E(w)��r̂ � [r̂�] (Ê!�r̂� r̂�� � [z] r̂�?�z��z!�w�)

�� f � x � g��r̂ � [r̂ f] (�� f ��r̂ f � � [x] r̂ f ?�x����g��r̂) �� f � g��r̂ � �� f ��r̂ � ��g��r̂

��g where x :� f ��r̂ � [r̂ f � x] (��g��r̂ � [k] (�� f ��r̂ f � r̂ f ?�x��kill(k)))

Here, the received value (stored in x) is processed by the encoding of the body of the
declaration, that is activated as soon as the expression is called.

Finally, the encoding of an Orc expression f , written [[f]]r̂, is the parallel composition
of �� f ��r̂ , of a service of the form (1) or (2) for each site or expression called in f , in any
of the expressions called in f , and so on recursively.

In [21], we prove that there is a formal correspondence, based on the operational
semantics, between Orc expressions and the COWS services resulting from their en-
coding. This is another sign of COWS expressiveness because it is known that Orc can

express the most common workflow patterns identified in [31]. By letting s
�
��� s� to

mean that there exist two services, s1 and s2, such that s1 is a reduct of s, s1
�
��� s2 and

s� is a reduct of s2, the above property can be stated as follows

Theorem 1. Given an Orc expression f and an endpoint r̂, f
l

� f � implies [[f]]r̂ 	

�� f ��r̂ � s
�
��� �� f ���r̂ � s, where � � r̂ � �v� if l � !v, and � � (p � o ��� w̄ v̄) if l � 	.

The proof (see [21]) proceeds by induction on the length of the inference of f
l

� f �.

5 Concluding Remarks

We have introduced COWS, a formalism for specifying and combining services, while
modelling their dynamic behaviour (i.e. it deals with service orchestration rather than
choreography). COWS borrows many constructs from well-known process calculi, e.g.
�-calculus, update calculus, StACi, and L�, but combines them in an original way, thus
being di�erent from all existing calculi. COWS permits modelling di�erent and typical
aspects of (web) services technologies, such as multiple start activities, receive con-
flicts, routing of correlated messages, service instances and interactions among them.

The correlation mechanism was first exploited in [32], that, however, only considers
interaction among di�erent instances of a single business process. Instead, to connect
the interaction protocols of clients and of the respective service instances, the calculus
introduced in [3], and called SCC, relies on explicit modelling of sessions and their dy-
namic creation (that exploits the mechanism of private names of �-calculus). Interaction
sessions are not explicitly modelled in COWS, instead they can be identified by tracing
all those exchanged messages that are correlated each other through their same con-
tents (as in [14]). We believe that the mechanism based on correlation sets (also used by
WS-BPEL), that exploits business data and communication protocol headers to corre-
late di�erent interactions, is more robust and fits the loosely coupled world of Web

46 A. Lapadula, R. Pugliese, and F. Tiezzi

Services better than that based on explicit session references. Another notable di�er-
ence with SCC is that in COWS services are not necessarily persistent.

Many works put forward enrichments of some well-known process calculus with
constructs inspired by those of WS-BPEL. The most of them deal with issues of web
transactions such as interruptible processes, failure handlers and time. This is, for ex-
ample, the case of [19,20,23,24] that present timed and untimed extensions of the �-
calculus, called ���� and ����
, tailored to study a simplified version of the scope
construct of WS-BPEL. Other proposals on the formalization of flow compensation are
[5,4] that give a more compact and closer description of the Sagas mechanism [13] for
dealing with long running transactions.

We have focused on service orchestration rather than on service choreography. In
[6,7] both aspects are studied. Other approaches are based on the use of schema lan-
guages [11] and Petri nets [15]. In [18] a sort of distributed input-guarded choice of
join patterns, called smooth orchestrators, gives a simple and e�ective representation
of synchronization constructs. The work closest to ours is [22], where ��-�������� is
introduced to formalize the semantics of WS-BPEL. COWS represents a more founda-
tional formalism than ��-�������� in that it does not rely on explicit notions of location
and state, it is more manageable (e.g. has a simpler operational semantics) and, at least,
equally expressive (as the encoding of ��-�������� in COWS shows, [21]).

This paper has focussed on showing the descriptive power of COWS. We leave as a
future work the task of developing a formal account of its expressiveness. We also plan
to develop analytical tools, such as e.g. behavioural equivalences and type systems,
supporting services verification. Behavioural equivalences could provide a means to es-
tablish formal correspondences between di�erent views (abstraction levels) of a service,
e.g. the contract it has to honour and its true implementation. Type systems, possibly
based on behavioural types (see e.g. [12,16,17]), could permit to express and enforce
policies of interest for (web) services for, e.g., disciplining resources usage, constrain-
ing the sequences of messages accepted by services, ensuring service interoperability
and compositionality, guaranteeing absence of deadlock in service composition, check-
ing that interaction obeys a given protocol.

Acknowledgements. We thank the anonymous referees for their useful comments.

References

1. A. Alves et al. Web Services Business Process Execution Language Version 2.0. Technical
report, WS-BPEL TC OASIS, August 2006. ������������	
�
���������.

2. L. Bocchi, C. Laneve, and G. Zavattaro. A calculus for long-running transactions. In
FMOODS, LNCS 2884, pp. 124–138, 2003.

3. M. Boreale, R. Bruni, L. Caires, R. De Nicola, I. Lanese, M. Loreti, F. Martins, U. Montanari,
A. Ravara, D. Sangiorgi, V. T. Vasconcelos, and G. Zavattaro. SCC: a Service Centered
Calculus. In WS-FM, LNCS 4184 , pp. 38–57, 2006.

4. R. Bruni, M. Butler, C. Ferreira, T. Hoare, H. Melgratti, and U. Montanari. Comparing two
approaches to compensable flow composition. In CONCUR, LNCS 3653, pp. 383–397, 2005.

5. R. Bruni, H.C. Melgratti, and U. Montanari. Theoretical foundations for compensations in
flow composition languages. In POPL, pp. 209–220. ACM, 2005.

A Calculus for Orchestration of Web Services 47

6. N. Busi, R. Gorrieri, C. Guidi, R. Lucchi, and G. Zavattaro. Choreography and orchestration:
A synergic approach for system design. In ICSOC, LNCS 3826, pp. 228–240, 2005.

7. N. Busi, R. Gorrieri, C. Guidi, R. Lucchi, and G. Zavattaro. Choreography and orchestration
conformance for system design. In COORDINATION, LNCS 4038, pp. 63–81, 2006.

8. M.J. Butler and C. Ferreira. An operational semantics for StAC, a language for modelling
long-running business transactions. In COORDINATION, LNCS 2949, pp. 87–104, 2004.

9. M.J. Butler, C.A.R. Hoare, and C. Ferreira. A trace semantics for long-running transactions.
In 25 Years Communicating Sequential Processes, LNCS 3525, pp. 133–150, 2005.

10. M. Carbone and S. Ma�eis. On the expressive power of polyadic synchronisation in
�- calculus. Nordic J. of Computing, 10(2):70–98, 2003.

11. S. Carpineti and C. Laneve. A basic contract language for web services. In ESOP, LNCS
3924, pp. 197–213, 2006.

12. S. Chaki, S. K. Rajamani, and J. Rehof. Types as models: model checking message-passing
programs. In POPL, pp. 45–57, 2002.

13. H. Garcia-Molina and K. Salem. Sagas. In SIGMOD, pp. 249–259. ACM Press, 1987.
14. C. Guidi, R. Lucchi, R. Gorrieri, N. Busi, and G. Zavattaro. SOCK: a calculus for service

oriented computing. In ICSOC, LNCS 4294, pp. 327–338, 2006.
15. S. Hinz, K. Schmidt, and C. Stahl. Transforming BPEL to petri nets. In Business Process

Management 3649, pp. 220–235, 2005.
16. A. Igarashi and N. Kobayashi. A generic type system for the pi-calculus. Theor. Comput.

Sci., 311(1-3):121–163, 2004.
17. N. Kobayashi, K. Suenaga, and L. Wischik. Resource usage analysis for the �-calculus. In

VMCAI, LNCS 3855, pp. 298–312, 2006.
18. C. Laneve and L. Padovani. Smooth orchestrators. In FoSSaCS, LNCS 3921, pp. 32–46,

2006.
19. C. Laneve and G. Zavattaro. Foundations of web transactions. In FoSSaCS, LNCS 3441, pp.

282–298, 2005.
20. C. Laneve and G. Zavattaro. web-pi at work. In TGC, LNCS 3705, pp. 182–194, 2005.
21. A. Lapadula, R. Pugliese, and F. Tiezzi. A calculus for orchestration of web services

(full version). Technical report, Dipartimento di Sistemi e Informatica, Univ. Firenze, 2006.
��������	���
��������������

22. A. Lapadula, R. Pugliese, and F. Tiezzi. A WSDL-based type system for WS-BPEL. In
COORDINATION, LNCS 4038, pp. 145–163, 2006.

23. M. Mazzara and I. Lanese. Towards a unifying theory for web services composition. In
WS-FM, LNCS 4184, pp. 257–272, 2006.

24. M. Mazzara and R. Lucchi. A pi-calculus based semantics for WS-BPEL. Journal of Logic
and Algebraic Programming, 70(1):96–118, 2006.

25. M. Merro and D. Sangiorgi. On asynchrony in name-passing calculi. Mathematical Struc-
tures in Computer Science, 14(5):715–767, 2004.

26. R. Milner. Communication and concurrency. Prentice-Hall, 1989.
27. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, I and II. Inf. Comput.,

100(1):1–40, 41–77, 1992.
28. J. Misra and W. R. Cook. Computation orchestration: A basis for wide-area computing.

Journal of Software and Systems Modeling. Springer, May 2006.
29. J. Parrow and B. Victor. The update calculus. In AMAST, LNCS 1349, pp. 409–423, 1997.
30. J. Parrow and B. Victor. The fusion calculus: Expressiveness and symmetry in mobile pro-

cesses. In Logic in Computer Science, pp. 176–185, 1998.
31. W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros. Workflow

patterns. Distributed and Parallel Databases, 14(1):5–51. Springer, 2003.
32. M. Viroli. Towards a formal foundational to orchestration languages. ENTCS, 105:51–71.

Elsevier, 2004.

A Concurrent Calculus with Atomic Transactions�

Lucia Acciai1, Michele Boreale2, and Silvano Dal Zilio1

1 LIF, CNRS and Université de Provence, France
2 Dipartimento di Sistemi e Informatica, Università di Firenze, Italy

Abstract. The Software Transactional Memory (STM) model is an original
approach for controlling concurrent accesses to resources without the need for
explicit lock-based synchronization mechanisms. A key feature of STM is to pro-
vide a way to group sequences of read and write actions inside atomic blocks,
similar to database transactions, whose whole effect should occur atomically.

In this paper, we investigate STM from a process algebra perspective and de-
fine an extension of asynchronous CCS with atomic blocks of actions. We show
that the addition of atomic transactions results in a very expressive calculus,
enough to easily encode other concurrent primitives such as guarded choice and
multiset-synchronization (à la join-calculus). The correctness of our encodings
is proved using a suitable notion of bisimulation equivalence. The equivalence
is then applied to prove interesting “laws of transactions” and to obtain a simple
normal form for transactions.

1 Introduction

The craft of programming concurrent applications is about mastering the strains be-
tween two key factors: getting hold of results as quickly as possible, while ensuring
that only correct results (and behaviors) are observed. To this end, it is vital to avoid un-
warranted access to shared resources. The Software Transactional Memory (STM) [18]
model is an original approach for controlling concurrent accesses to resources without
using explicit lock-based synchronization mechanisms. Similarly to database transac-
tions, the STM approach provides a way to group sequences of read and write actions
inside atomic blocks whose whole effect should occur atomically. The STM model has
several advantages. Most notably, it dispenses the programmer from the need to explic-
itly manipulate locks, a task widely recognized as difficult and error-prone. Moreover,
atomic transactions provide a clean conceptual basis for concurrency control, which
should ease the verification of concurrent programs. Finally, the model is effective:
there exist several STM implementations for designing software for multiprocessor sys-
tems; these applications exhibit good performances in practice (compared to equivalent,
hand-crafted, code using locks).

We investigate the STM model from a process algebra perspective and define an
extension of asynchronous CCS [20] with atomic blocks of actions. We call this calculus
ATCCS. The choice of a dialect of CCS is motivated by an attention to economy: to
focus on STM primitives, we study a calculus as simple as possible and dispense with

� This work was partially supported by the French ANR ARASSIA project COPS and the EU
FET-GC2 initiative, project SENSORIA.

R. De Nicola (Ed.): ESOP 2007, LNCS 4421, pp. 48–63, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Concurrent Calculus with Atomic Transactions 49

orthogonal issues such as values, mobility of names or processes, etc. We believe that
our work could be easily transferred to a richer setting. Our goal is not only to set a
formal ground for reasoning on STM implementations but also to understand how this
model fits with other concurrency control mechanisms. We also view this calculus as
a test bed for extending process calculi with atomic transactions. This is an interesting
direction for investigation since, for the most part, works that mix transactions with
process calculi consider compensating transactions, see e.g. [3,5,7,8,9,11,19].

The idea of providing hardware support for software transactions originated from
works by Herlihy and Moss [18] and was later extended by Shavit and Touitou [22]
to software-only transactional memory. Transactions are used to protect the execution
of an atomic block. Intuitively, each thread that enters a transaction takes a snapshot
of the shared memory (the global state). The evaluation is optimistic and all actions
are performed on a copy of the memory (the local state). When the transaction ends,
the snapshot is compared with the current state of the memory. There are two possible
outcomes: if the check indicates that concurrent writes have occurred, the transaction
aborts and is rescheduled; otherwise, the transaction is committed and its effects are
propagated instantaneously. Very recently, Harris et al. [17] have proposed a (combina-
tor style) language of transactions that enables arbitrary atomic operations to be com-
posed into larger atomic expressions. We base the syntax of ATCCS on the operators
defined in [17].

The main contributions of this work are: (1) the definition of a process calculus with
atomic transactions; and (2) the definition of an asynchronous bisimulation equivalence
≈a that allows compositional reasoning on transactions. We also have a number of more
specific technical results. We show that ATCCS is expressive enough to easily encode
interesting concurrent primitives, such as (preemptive versions of) guarded choice and
multiset-synchronization, and the leader election problem (Section 3). Next, we define
an equivalence between atomic expressions � and prove that ≈a and � are congruences
(Section 4). These equivalences are used to prove the correctness of our encodings, to
prove interesting “behavioral laws of transactions” and to define a simple normal form
for transactions. We also show that transactions (modulo �) have an algebraic structure
close to that of a bound semilattice, an observation that could help improve the design
of the transaction language. The proofs of the main theorems can be found in a long
version of this paper [1].

2 The Calculus

We define the syntax and operational semantics of ATCCS, which is essentially a cut
down version of asynchronous CCS, without choice and relabeling operators, equipped
with atomic blocks and constructs for composing (transactional) sequences of actions.

Syntax of Processes and Atomic Expressions. The syntax of ATCCS, given in
Table 1, is divided into syntactical categories that define a stratification of terms. The
definition of the calculus depends on a set of names, ranged over by a, b, As in
CCS, names model communication channels used in process synchronization, but they
also occur as objects of read and write actions in atomic transactions.

50 L. Acciai, M. Boreale, and S. Dal Zilio

Atomic expressions, ranged over by M, N, . . . , are used to define sequences of actions
whose effect should happen atomically. Actions rd a and wt a represent attempts to
input and output to the channel a. Instead of using snapshots of the state for managing
transaction, we use a log-based approach. During the evaluation of an atomic block,
actions are recorded in a private log δ (a sequence α1 . . .αn) and have no effects outside
the scope of the transaction until it is committed. The action retry aborts an atomic
expression unconditionally and starts its execution afresh, with an empty log ε. The
termination action end signals that an expression is finished and should be committed.
If the transaction can be committed, all actions in the log are performed at the same time
and the transaction is closed, otherwise the transaction aborts. Finally, transactions can
be composed using the operator orElse, which implements (preemptive) alternatives
between expressions. In M orElseN, the expression N is executed if M aborts and has
the behavior of M otherwise.

Processes, ranged over by P, Q, R, . . . , model concurrent systems of communicating
agents. We have the usual operators of CCS: the empty process, 0, the parallel compo-
sition P | Q, and the input prefix a.P. There are some differences though. The calculus
is asynchronous, meaning that a process cannot block on output actions. Also, we use
replicated input ∗ a .P instead of recursion (this does not change the expressiveness of
the calculus) and we lack the choice and relabeling operators of CCS. The hiding oper-
ator P \n a bounds the scope of name a to P (we consider processes up-to α-renaming
of bound names; we discuss the meaning of the annotation n in page 53). Finally, the
main addition is the presence of the operator atom(M), which models a transaction that
safeguards the expression M. The process {|A|}M represents the ongoing evaluation of
an atomic block M: the subscript is used to keep the initial code of the transaction, in
case it is aborted and executed afresh, while A holds the remaining actions that should
be performed.

An ongoing atomic block, A,B, . . . , is essentially an atomic expression enriched with
an evaluation state σ and a log δ of the currently recorded actions. A state σ is a multiset
of names that represents the output actions visible to the transaction when it was ini-
tiated. (This notion of state bears some resemblance with tuples space in coordination
calculi, such as Linda [10].) When a transaction ends, the state σ recorded in the block
(M)σ;δ (the state at the initiation of the transaction) can be compared with the current
state (the state when the transaction ends) to check if other processes have concurrently
made changes to the global state, in which case the transaction should be aborted.

Notation. In the following, we write σ�{a} for the multiset σ enriched with the name
a and σ \ σ′ for the multiset obtained from σ by removing elements found in σ′, that
is the smallest multiset σ′′ such that σ ⊆ σ′ � σ′′. The symbol /0 stands for the empty
multiset while {an} is the multiset composed of exactly n copies of a, where {a0} = /0.

Given a log δ, we use the notation WT (δ) for the multiset of names which appear
as objects of a write action in δ. Similarly, we use the notation RD(δ) for the multiset
of names that are objects of read actions. The functions WT and RD may be induc-
tively defined as follows: WT (wt a .δ) = WT (δ) � {a}; RD(rd a .δ) = RD(δ) � {a};
WT (rda .δ) = WT (δ); RD(wta .δ) = RD(δ) and WT (ε) = RD(ε) = ε.

A Concurrent Calculus with Atomic Transactions 51

Table 1. Syntax of ATCCS: Processes and Atomic Expressions

Actions α,β ::= rda (tentative) read access to a

wta (tentative) write access to a

(Atomic) Expressions M,N ::= end termination

retry abort and retry the current atomic block

α.M action prefix

M orElse N alternative

Ongoing expressions A,B ::= (M)σ;δ execution of M with state σ and log δ

A orElse B ongoing alternative

Processes P,Q ::= 0 nil

a (asynchronous) output

a.P input

∗a .P replicated input

P | Q parallel composition

P\n a hiding

atom(M) atomic block

{|A|}M ongoing atomic block

Example: Composing Synchronization. Before we describe the meaning of pro-
cesses, we try to convey the semantics of ATCCS (and the usefulness of the atomic
block operator) using a simple example. We take the example of a concurrent system
with two memory cells, M1 and M2, used to store integers. We consider here a straight-
forward extension of the calculus with “value-passing.” In this setting, we can model
a cell with value v by an output mi!v and model an update by a process of the form
mi?x.(mi!v′ | . . .). With this encoding, the channel name mi acts as a lock protecting the
shared resource Mi.

Assume now that the values of the cells should be synchronized to preserve a global
invariant on the system. For instance, we model a flying aircraft, each cell store the
pitch of an aileron and we need to ensure that the aileron stay aligned (that the values
of the cells are equal). A process testing the validity of the invariant is for example P1

below (we suppose that a message on the reserved channel err triggers an alarm). There
are multiple design choices for resetting the value of both cells to 0, e.g. P2 and P3.

P1
�= m1?x.m2?y.if x !=y thenerr!

P2
�= m2?x.m1?y.

(
m1!0 | m2!0

)
P3

�= m1?x.
(
m1!0 | m2?y.m2!0

)

52 L. Acciai, M. Boreale, and S. Dal Zilio

Table 2. Operational Semantics: Processes

(OUT) a ;σ → 0 ;σ�{a} (REP) ∗a .P ;σ�{a} → P | ∗a .P ;σ

(IN) a.P ;σ�{a} → P ;σ (COM)
P ;σ → P′ ;σ�{a} Q ;σ�{a} → Q′ ;σ

P |Q → P′ | Q′

(PARL) P ;σ → P′ ;σ′

P | Q ;σ → P′ | Q ;σ′ (HID)
P ;σ�{an} → P′ ;σ′ �{am} a /∈ σ,σ′

P\n a ;σ → P′ \m a ;σ′

(PARR) Q ;σ → Q′ ;σ′

P | Q ;σ → P | Q′ ;σ′ (ATST) atom(M) ;σ → {|(M)σ;ε|}M ;σ

(ATPASS) A → A′

{|A|}M ;σ → {|A′|}M ;σ (ATRE) {|(retry)σ′;δ|}M ;σ → atom(M) ;σ

(ATFAIL)
RD(δ) � σ

{|(end)σ′;δ|}M ;σ → atom(M) ;σ

(ATOK) RD(δ) ⊆ σ σ = σ′′ � RD(δ) WT (δ) = {a1, . . . ,an}
{|(end)σ′;δ|}M ;σ → a1 | · · · | an ;σ′′

Each choice exemplifies a problem with lock-based programming. The composition
of P1 with P2 leads to a race condition where P1 acquire the lock on M1, P2 on M2

and each process gets stuck. The composition of P1 and P3 may break the invariant
(the value of M1 is updated too quickly). A solution in the first case is to strengthen
the invariant and enforce an order for acquiring locks, but this solution is not viable in
general and opens the door to priority inversion problems. Another solution is to use an
additional (master) lock to protect both cells, but this approach obfuscate the code and
significantly decreases the concurrency of the system.

Overall, this simple example shows that synchronization constraints do not compose
well when using locks. This situation is consistently observed (and bears a resemblance
to the inheritance anomaly problem found in concurrent object-oriented languages).
The approach advocated in this paper is to use atomic transactions. In our example,
the problem is solved by simply wrapping the two operations in a transaction, like
in the process atom

(
rd (m2?y).wt (m2!0).rd (m1?x).wt (m1!0)

)
, which ensures that

all cell updates are effected atomically. More examples may be found on the paper
on composable memory transactions [17], which makes a compelling case that “even
correctly-implemented concurrency abstractions cannot be composed together to form
larger abstractions.”

Operational Semantics. Like for the syntax, the semantics of ATCCS is stratified
in two levels: there is one reduction relation for processes and a second for atomic
expressions. With a slight abuse of notation, we use the same symbol (→) for both
relations.

A Concurrent Calculus with Atomic Transactions 53

Table 3. Operational Semantics: Ongoing Atomic Expression

(ARDOK)
RD(δ)�{a} ⊆ σ

(rda .M)σ;δ → (M)σ;δ.rda
(ARDF)

RD(δ)�{a} � σ
(rda .M)σ;δ → (retry)σ;δ

(AWR) (wta .M)σ;δ → (M)σ;δ.wta

(AOI) (M1 orElse M2)σ;δ → (M1)σ;δ orElse (M2)σ;δ

(AOF) (retry)σ;δ orElse B → B (AOE) (end)σ;δ orElse B → (end)σ;δ

(AOL) A → A′

A orElse B → A′ orElse B
(AOR) B → B′

A orElse B → A orElse B′

Reduction for Processes. Table 2 gives the semantics of processes. A reduction is of
the form P ;σ → P′ ;σ′ where σ is the state of P. The state σ records the names of all
output actions visible to P when reduction happens. It grows when an output is reduced,
(OUT), and shrinks in the case of inputs, (IN) and (REP). A parallel composition evolves
if one of the component evolves or if both can synchronize, rules (PARL), (PARR) and
(COM). In a hiding P\n a, the annotation n is an integer denoting the number of outputs
on a that are visible to P. Intuitively, in a “configuration” P \n a ;σ, the outputs visible
to P are those in σ �{an}. This extra annotation is necessary because the scope of a
is restricted to P, hence it is not possible to have outputs on a in the global state. Rule
(HID) allows synchronization on the name a to happen inside a hiding. For instance, we
have (P | a)\n a ;σ → P\n+1 a ;σ.

The remaining reduction rules govern the evolution of atomic transactions. Like
in the case of (COM), all those rules, but (ATOK), leave the global state unchanged.
Rule (ATST) deals with the initiation of an atomic block atom(M): an ongoing block
{|(M)σ;ε|}M is created which holds the current evaluation state σ and an empty log ε.
An atomic block {|A|}M reduces when its expression A reduces, rule (ATPASS). (The
reduction relation for ongoing expressions is defined by the rules in Table 3.) Rules
(ATRE), (ATFAIL) and (ATOK) deal with the completion of a transaction. After a finite
number of transitions, the evaluation of an ongoing expression will necessarily result in
a fail state, (retry)σ;δ, or a success, (end)σ;δ. In the first case, rule (ATRE), the trans-
action is aborted and started again from scratch. In the second case, we need to check
if the log is consistent with the current evaluation state. A log is consistent if the read
actions of δ can be performed on the current state. If the check fails, rule (ATFAIL), the
transaction aborts. Otherwise, rule (ATOK), we commit the transaction: the names in
RD(δ) are taken from the current state and a bunch of outputs on the names in WT (δ)
are generated.

Reduction for Ongoing Expressions. Table 3 gives the semantics of ongoing atomic ex-
pressions. We recall that, in an expression (rda .M)σ;δ, the subscript σ is the initial state,

54 L. Acciai, M. Boreale, and S. Dal Zilio

that is a copy of the state at the time the block has been created and δ is the log of actions
performed since the initiation of the transaction.

Rule (ARDOK) states that a read action rda is recorded in the log δ if all the read
actions in δ.rda can be performed in the initial state. If it is not the case, the ongoing
expression fails, rule (ARDF). This test may be interpreted as a kind of optimization:
if a transaction cannot commit in the initial state then, should it commit at the end of
the atomic block, it would mean that the global state has been concurrently modified
during the execution of the transaction. Note that we consider the initial state σ and not
σ� WT (δ), which means that, in an atomic block, write actions are not directly visible
(they cannot be consumed by a read action). This is coherent with the fact that outputs
on WT (δ) only take place after commit of the block. Rule (AWR) states that a write
action always succeeds and is recorded in the current log.

The remaining rules govern the semantics of the retry, end and orElse constructs.
These constructs are borrowed from the STM combinators used in the implementa-
tion of an STM system in Concurrent Haskell [17]. We define these operators with an
equivalent semantics, with the difference that, in our case, a state is not a snapshot
of the (shared) memory but a multiset of visible outputs. A composition M orElse N
corresponds to the interleaving of the behaviors of M and N, which are independently
evaluated with respect to the same evaluation state (but have distinct logs). The orElse
operator is preemptive: the ongoing block M orElse N ends if and only M ends or M
aborts and N ends.

3 Encoding Concurrency Primitives

Our first example is a simple solution to the celebrated leader election problem that
does not yield to deadlock. Consider a system composed by n processes and a token,
named t, that is modeled by an output t. A process becomes a leader by getting (making
an input on) t. As usual, all participants run the same process (except for the value of
their identity). We suppose that there is only one copy of the token in the system and
that leadership of process i is communicated to the other processes by outputting on
a reserved name wini. A participant that is not a leader outputs on losei. The protocol
followed by the participants is defined by the following process:

Li
�=

(
atom

(
rd t .wt k .end orElse wt k′ .end

)
| k.wini | k′ .losei

)
\0 k \0 k′

In this encoding, the atomic block is used to protect the concurrent accesses to t. If
the process Li commits its transaction and grabs the token, it immediately release an
output on its private channel k. The transactions of the other participants may either
fail or commit while releasing an output on their private channel k′. Then, the elected
process Li may proceed with a synchronization on k that triggers the output wini. The
semantics of atom() ensures that only one transaction can acquire the lock and commit
the atomic block, then no other process have acquired the token in the same round and
we are guaranteed that there could be at most one leader.

This expressivity result is mixed blessing. Indeed, it means that any implementation
of the atomic operator should be able to solve the leader election problem, which is

A Concurrent Calculus with Atomic Transactions 55

known to be very expensive in the case of loosely-coupled systems or in presence of
failures (see e.g. [21] for a discussion on the expressivity of process calculi and electoral
systems). On the other hand, atomic transactions are optimistic and are compatible with
the use of probabilistic approaches. Therefore it is still reasonable to expect a practical
implementation of ATCCS.

In the following, we show how to encode two fundamental concurrency patterns,
namely (preemptive versions of) the choice and join-pattern operators.

Guarded choice. We consider an operator for choice, µ1.P1 + · · · + µn.Pn, such that
every process is prefixed by an action µi that is either an output ai or an input ai. The
semantics of choice is characterized by the following three reduction rules (we assume
that Q is also a choice):

(C-INP) a.P+ Q ;σ�{a} → P ;σ (C-OUT) a.P + Q ;σ → P ;σ�{a}

(C-PASS) a /∈ σ Q ;σ → Q′ ;σ′

a.P+ Q ;σ → Q′ ;σ′

A minor difference with the behavior of the choice operator found in CCS is that our
semantics gives precedence to the leftmost process (this is reminiscent of the preemptive
behavior of orElse). Another characteristic is related to the asynchronous nature of
the calculus, see rule (C-OUT): since an output action can always interact with the
environment, a choice a.P + Q may react at once and release the process a | P.

Like in the example of the leader election problem, we can encode a choice µ1.P1 +
· · · + µn.Pn using an atomic block that will mediate the interaction with the actions
µ1, . . . ,µn. We start by defining a straightforward encoding of input/output actions into
atomic actions: [[a]] = wta and [[a]] = rda . Then the encoding of choice is the process

[[µ1.P1 + · · ·+ µn.Pn]]
�=

(
atom

(
[[µ1]].[[k1]].end orElse · · · orElse [[µn]].[[kn]].end

)

| k1 .[[P1]] | · · · | kn.[[Pn]]
)
\0 k1 . . .\0 kn

The principle of the encoding is essentially the same that in our solution to the leader
election problem. Actually, using the encoding for choice, we can rewrite our solution
in the following form: Li

�= t.wini + losei .0 . Using the rules in Table 2, it is easy to see
that our encoding of choice is compatible with rule (C-INP), meaning that:

[[a.P+ Q]] ;σ�{a} →∗ (
{|(end)σ�{a};rda .wtk1

|}M | k1.[[P]] | . . .
)
\0 k1 \ . . . ;σ�{a}

→
(
k1 | k1.[[P]] | . . .

)
\0 k1 \ . . . ;σ

→
(
[[P]] | . . .

)
\0 k1 \ . . . ;σ

where the processes in parallel with [[P]] are harmless. In the next section, we define
a weak bisimulation equivalence ≈a that can be used to garbage collect harmless pro-
cesses in the sense that, e.g. (P | k.Q) \0 k ≈a P if P has no occurrences of k. Hence,
we could prove that [[a.P+ Q]] ;σ�{a} →∗≈a [[P]] ;σ, which is enough to show that our
encoding is correct with respect to rule (C-INP). The same is true for rules (C-OUT) and
(C-PASS).

56 L. Acciai, M. Boreale, and S. Dal Zilio

Join Patterns. A multi-synchronization (a1 × ·· · × an).P may be viewed as an ex-
tension of input prefix in which communication requires a synchronization with the n
outputs a1, . . . ,an at once. that is, we have the reduction:

(J-INP) (a1 ×·· ·× an).P ;σ�{a1, . . . ,an} → P ;σ

This synchronization primitive is fundamental to the definition of the Gamma calcu-
lus of Banâtre and Le Métayer and of the Join calculus of Fournet and Gonthier. It is
easy to see that the encoding of a multi-synchronization (input) is a simple transaction:

[[
(
a1 ×·· ·× an

)
.P]] �=

(
atom([[a1]]. · · · .[[an]].[[k]].end) | k.[[P]]

)
\0 k (where k is fresh)

and that we have [[
(
a1 ×·· ·× an

)
.P]] ;σ�{a1, . . . ,an} →∗ (

0 | [[P]]
)
\0 k ;σ, where the

process
(
0 | [[P]]

)
\0 k is behaviorally equivalent to [[P]], that is:

[[
(
a1 ×·· ·× an

)
.P]] ;σ�{a1, . . . ,an} →∗≈a [[P]] ;σ

Based on this encoding, we can define two interesting derived operators: a mixed
version of multi-synchronization, (µ1 ×·· ·×µn).P, that mixes input and output actions;
and a replicated version, that is analogous to replicated input.

[[
(
µ1 ×·· ·× µn

)
.P]] �=

(
atom([[µ1]]. · · · .[[µn]].[[k]].end) | k.[[P]]

)
\0 k

[[∗
(
µ1 ×·· ·× µn

)
.P]] �=

(
r | ∗ r .atom([[µ1]]. · · · .[[µn]].[[r]].[[k]].end) | ∗ k .[[P]]

)
\0 r \0 k

By looking at the possible reductions of these (derived) operators, we can define
derived reduction rules. Assume δ is the log [[µ1]]. · · · .[[µn]], we have a simulation result
comparable to the case for multi-synchronization, namely:

[[
(
µ1 ×·· ·× µn

)
.P]] ;σ� RD(δ) →∗≈a [[P]] ;σ� WT (δ)

[[∗
(
µ1 ×·· ·× µn

)
.P]] ;σ� RD(δ) →∗≈a [[∗

(
µ1 ×·· ·× µn

)
.P]] | [[P]] ;σ� WT (δ)

To obtain join-definitions, we only need to combine a sequence of replicated multi-
synchronizations using the choice composition defined precedently. (We also need
hiding to close the scope of the definition.) Actually, we can encode even more
flexible constructs mixing choice and join-patterns. For the sake of simplicity, we
only study examples of such operations. The first example is the (linear) join-pattern
(a × b).P∧ (a × c).Q, that may fire P if the outputs {a,b} are in the global state σ and
otherwise fire Q if {a,c} is in σ (actually, real implementations of join-calculus have a
preemptive semantics for pattern synchronization). The second example is the derived
operator (a×b)+(b× c×a).P, such that P is fired if outputs on {a,b} are available or
if outputs on {b,c} are available (in which case an output on a is also generated). These
examples can be easily interpreted using atomic transactions:

[[(a × b).P∧ (a × c).Q]] �=
(
atom

(
[[a]].[[b]].[[k1]].end orElse

[[a]].[[c]].[[k2]].end
)

| k1.P | k2.Q
)
\0 k1 \0 k2

[[
(
a × b + b × c ×a

)
.P]] �=

(
atom

(
[[a]].[[b]].[[k]].end orElse

[[b]].[[c]].[[a]].[[k]].end
)

| k.P
)
\0 k

A Concurrent Calculus with Atomic Transactions 57

In the next section we define the notion of bisimulation used for reasoning on the
soundness of our encodings. We also define an equivalence relation for atomic expres-
sions that is useful for reasoning on the behavior of atomic blocks.

4 Bisimulation Semantics

A first phase before obtaining a bisimulation equivalence is to define a Labeled Transi-
tion System (LTS) for ATCCS processes related to the reduction semantics.

Labeled Semantics of ATCCS. It is easy to derive labels from the reduction semantics
given in Table 2. For instance, a reduction of the form P ;σ → P′ ;σ�{a} is clearly an
output transition and we could denote it using the transition P

a−→P′, meaning that the
effect of the transition is to add a message on a to the global state σ. We formalize
the notion of label and transition. Besides output actions a, which corresponds to an
application of rule (OUT), we also need block actions, which are multisets of the form
{a1, . . . ,an} corresponding to the commit of an atomic block, that is to the deletion
of a bunch of names from the global state in rule (ATOK). Block actions include the
usual labels found in LTS for CCS and are used for labeling input and communication
transitions: an input action a, which intuitively corresponds to rules (IN) and (REP), is
a shorthand for the (singleton) block action {a}; the silent action τ, which corresponds
to rule (COM), is a shorthand for the empty block action /0. In the following, we use
the symbols θ,γ, . . . to range over block actions and µ,µ′, . . . to range over labels, µ ::=
a θ τ a .

The labeled semantics for ATCCS is the smallest relation P
µ−→P′ satisfying the two

following clauses:

1. we have P
a−→P′ if there is a state σ such that P ;σ → P′ ;σ�{a};

2. we have P
θ−→P′ if there is a state σ such that P ;σ�θ → P′ ;σ.

Note that, in the case of the (derived) action τ, we obtain from clause 2 that P
τ−→P′

if there is a state σ such that P ;σ → P′ ;σ. As usual, silent actions label transitions
that do not modify the environment (in our case the global state) and so are invisible
to an outside observer. Unlike CCS, the calculus has more examples of silent transi-
tion than mere internal synchronization, e.g. the initiation and evolution of an atomic
block, see e.g. rules (ATST) and (ATPASS). Consequently, a suitable (weak) equiva-
lence for ATCCS should not distinguish e.g. the processes atom(retry), atom(end),
(a.a) and 0. The same is true with input transitions. For instance, we expect to equate
the processes a.0 and atom(rda .end).

Our labeled semantics for ATCCS is not based on a set of transition rules, as it is usu-
ally the case. Nonetheless, we can recover an axiomatic presentation of the semantics
using the tight correspondence between labeled transitions and reductions characterized
by Proposition 1.

Proposition 1. Consider two processes P and Q. The following implications are true:

(COM) if P
a−→P′ and Q

a−→Q′ then P | Q
τ−→P′ | Q′;

(PAR) if P
µ−→P′ then P | Q

µ−→P′ | Q and Q | P
µ−→Q | P′;

58 L. Acciai, M. Boreale, and S. Dal Zilio

(HID) if P
µ−→P′ and the name a does not appear in µ then P\n a

µ−→P′ \n a;
(HIDOUT) if P

a−→P′ then P\n a
τ−→P′ \n+1 a;

(HIDAT) if P
µ−→P′ and µ = θ �{am}, where a is a name that does not appear in the

label θ, then P \n+m a
θ−→P′ \n a.

Proof. In each case, we have a transition of the form P
µ−→P′. By definition, there are

states σ and σ′ such that P ;σ → P′ ;σ′. The property is obtained by a simple induction
on this reduction (a case analysis on the last reduction rule is enough). ��

We define additional transition relations used in the remainder of the paper. As usual, we
denote by ⇒ the weak transition relation, that is the reflexive and transitive closure of

τ−→. We denote by
µ

=⇒ the relation ⇒ if µ = τ and ⇒ µ−→ ⇒ otherwise. If s is a sequence
of labels µ0 . . .µn, we denote

s−→ the relation such that P
s−→P′ if and only if there is a

process Q such that P
µ0−→Q and Q

µ1...µn−−−→P′ (and
s−→ is the identity relation when s is the

empty sequence ε). We also define a weak version
s=⇒ of this relation in the same way.

Lastly, we denote
an

−→ the relation
a−→ . . .

a−→, the composition of n copies of
a−→.

Asynchronous Bisimulation for Processes and Expressions. Equipped with a labeled
transition system, we can define a weak asynchronous bisimulation relation, denoted
≈a, in the style of [2].

Definition 1 (weak asynchronous bisimulation). A symmetric relation R is a weak
asynchronous bisimulation if whenever PR Q then the following holds:

1. if P
a−→P′ then there is Q′ such that Q

a=⇒Q′ and P′R Q′;
2. if P

θ−→P′ then there is a process Q′ and a block action γ such that Q
γ

=⇒Q′ and(
P′ | ∏a∈(γ\θ) a

)
R

(
Q′ | ∏a∈(θ\γ) a

)
.

We denote with ≈a the largest weak asynchronous bisimulation.

Assume P ≈a Q and P
τ−→P′, the (derived) case for silent action entails that there is

Q′ and θ such that Q
θ=⇒Q′ and P′ | ∏a∈θ a ≈a Q′. If θ is the silent action, θ = {}, we

recover the usual condition for bisimulation, that is Q=⇒Q′ and P′ ≈a Q′. If θ is an input
action, θ = {a}, we recover the definition of asynchronous bisimulation of [2]. Due to
the presence of block actions γ, the definition of ≈a is slightly more complicated than
in [2], but it is also more compact (we only have two cases) and more symmetric. Hence,
we expect to be able to reuse known methods and tools for proving the equivalence of
ATCCS processes. Another indication that ≈a is a good choice for reasoning about
processes is that it is a congruence.

Theorem 1. Weak asynchronous bisimulation ≈a is a congruence.

Proof. It suffices to prove that ≈a is preserved by every operator of the calculus [1]. ��

We need to define a specific equivalence relation to reason on transactions. Indeed, the
obvious choice that equates two expressions M and N if atom(M) ≈a atom(N) does
not lead to a congruence. For instance, we have (rd a .wt a .end) equivalent to end
while atom(rd a .wt a .end orElse wt b .end) �≈a atom(end orElse wt b .end) . The
first transaction may output a message on b while the second always end silently.

A Concurrent Calculus with Atomic Transactions 59

Table 4. Algebraic Laws of Transactions

Laws for atomic expressions:

(COMM) α.β.M � β.α.M

(DIST) α.(M orElse N) � (α.M) orElse (α.N)

(ASS) M1 orElse (M2 orElse M3) � (M1 orElse M2) orElse M3

(IDEM) M orElse M � M

(ABSRT1) α.retry � retry

(ABSRT2) retry orElse M � M � M orElse retry

(ABSEND) end orElse M � end

Laws for processes:

(ASY) a.a ≈a 0

(A-ASY) atom(rda .wta .end) ≈a 0

(A-1) atom(rda .end) ≈a a.0

We define an equivalence relation between atomic expressions �, and a weak atomic
preorder �, that relates two expressions if they end (or abort) for the same states. We
also ask that equivalent expressions should perform the same changes on the global
state when they end. We say that two logs δ,δ′ have same effects, denoted δ =σ δ′ if
σ\ RD(δ)�WT (δ) = σ\ RD(δ′)�WT (δ′). We say that M �σ N if and only if either (1)
(N)σ;ε ⇒ (retry)σ,δ; or (2) (N)σ;ε ⇒ (end)σ,δ and (M)σ;ε ⇒ (end)σ;δ′ . Similarly, we
have M �σ N if and only if either (1) (M)σ;ε ⇒ (retry)σ,δ and (N)σ;ε ⇒ (retry)σ,δ′ ;
or (2) (M)σ;ε ⇒ (end)σ;δ and (N)σ;ε ⇒ (end)σ,δ′ with δ =σ δ′.

Definition 2 (weak atomic equivalence). Two atomic expressions M,N are equivalent,
denoted M � N, if and only if M �σ N for every state σ. Similarly, we have M � N if
and only if M �σ N for every state σ.

While the definition of � and � depend on a universal quantification over states, testing
the equivalence of two expressions is not expensive. First, we can rely on a monotonicity
property of reduction: if σ ⊆ σ′ then for all M the effect of (M)σ,δ is included in those
of (M)σ′,δ. Moreover, we define a normal form for expressions later in this section (see
Proposition 2) that greatly simplifies the comparison of expressions. Another indication
that � is a good choice of equivalence for atomic expressions is that it is a congruence.

Theorem 2. Weak atomic equivalence � is a congruence.

On the Algebraic Structure of Transactions. The equivalence relations � and ≈a

can be used to prove interesting laws of atomic expressions and processes. We list some
of these laws in Table 4. Let M denotes the set of all atomic expressions. The be-
havioral rules for atomic expressions are particularly interesting since they exhibit a

60 L. Acciai, M. Boreale, and S. Dal Zilio

rich algebraic structure for M . For instance, rules (COMM) and (DIST) state that action
prefix α.M is a commutative operation that distribute over orElse. We also have that
(M ,orElse,retry) is an idempotent semigroup with left identity retry, rules (ASS),
(ABSRT2) and (IDEM), and that end annihilates M , rule (ABSEND). Most of these
laws appear in [17] but are not formally proved.

Actually, we can show that the structure of M is close to that of a bound join-
semilattice. We assume unary function symbols a() and a() for every name a (a term
a(M) is intended to represent a prefix wt a .M) and use the symbols �,1,0 instead of
orElse,end,retry. With this presentation, the behavioral laws for atomic expression
are almost those of a semilattice. By definition of �, we have that M � M′ � M if and
only if M � M′ and for all M,N we have 1 � M �N � M � 0.

µ(µ′(M)) � µ′(µ(M)) µ(M �N) � µ(M)�µ(N) µ(0) � 0

0�M � M � M �0 1�M � 1

It is possible to prove other behavioral laws to support our interpretation of orElse
as a join. However some important properties are missing, most notably, while � is as-
sociative, it is not commutative. For instance, a(b(1))�1 �� 1 while 1 � 1� a(b(1)),
rule (ABSEND). This observation could help improve the design of the transaction lan-
guage: it will be interesting to enrich the language so that we obtain a real lattice.

Normal Form for Transactions. Next, we show that it is possible to rearrange an
atomic expression (using behavioral laws) to put it into a simple normal form. This
procedure can be understood as a kind of compilation that transform an expression M
into a simpler form.

Informally, an atomic expression M is said to be in normal form if it does not contain
nested orElse (all occurrences are at top level) and if there are no redundant branches.
A redundant branch is a sequence of actions that will never be executed. For instance,
the read actions in rda .end are included in rda .rdb .end, then the second branch in the
composition

(
rda .end

)
orElse

(
rda .rdb .end

)
is redundant: obviously, if rda .end

fails then rd a .rd b .end cannot succeed. We overload the functions defined on logs
and write RD(M) for the (multiset of) names occurring in read actions in M. We define
WT (M) similarly. In what follows, we abbreviate (M1 orElse . . . orElse Mn) with
the expression

⊔
i∈1..n Mi. We say that an expression M is in normal form if it is of the

form
⊔

i∈1..n Ki where for all indexes i, j ∈ 1..n we have: (1) Ki is a sequence of action
prefixes α j1α jni

.end; and (2) RD(Ki) � RD(Kj) for all i < j. Condition (1) requires
the absence of nested orElse and condition (2) prohibits redundant branches (it also
means that all branches, but the last one, has a read action).

Proposition 2. For every expression M there is a normal form M′ such that M � M′.

Proof. Laws (COMM), (DIST) and (ASS) in Table 4 can be applied for eliminating
nested orElse. Next, we use the fact that if K is a redundant branch of M then
M � K. ��
Our choice of using bisimulation for reasoning about atomic transactions may appear
arbitrary. In the long version [1], we study a testing equivalence for ATCCS, more
particularly an asynchronous may testing semantics [15].

A Concurrent Calculus with Atomic Transactions 61

5 Future and Related Works

There is a long history of works that try to formalize the notions of transactions and
atomicity, and a variety of approaches to tackle this problem. We review some of these
works that are the most related to ours.

We can list several works that combine ACID transactions with process calculi.
Gorrieri et al [16] have modeled concurrent systems with atomic behaviors using an ex-
tension of CCS. They use a two-level transition systems (a high and a low level) where
high actions are decomposed into atomic sequences of low actions. To enforce isola-
tion, atomic sequences must go into a special invisible state during all their execution.
Contrary to our model, this work does not follow an optimistic approach: sequences are
executed sequentially, without interleaving with other actions, as though in a critical
section. Another related calculus is RCCS, a reversible version of CCS [13,14] based
on an earlier notion of process calculus with backtracking [4]. In RCCS, each process
has access to a log of its synchronization’s history and may always wind back to a pre-
vious state. This calculus guarantees the ACD properties of transactions (isolation is
meaningless since RCCS do not use a shared memory model). Finally, a framework
for specifying the semantics of transactions in an object calculus is given in [23]. The
framework is parametrized by the definition of a transactional mechanism and allows
the study of multiple models, such as the usual lock-based approach. In this work, STM
is close to a model called versioning semantics. Like in our approach, this model is
based on the use of logs and is characterized by an optimistic approach where log con-
sistency is checked at commit time. Fewer works consider behavioral equivalences for
transactions. A foundational work is [6], that gives a theory of transactions specifying
atomicity, isolation and durability in the form of an equivalence relation on processes,
but it provides no formal proof system.

Linked to the upsurge of works on Web Services (and on long running Web transac-
tions), a larger body of works is concerned with formalizing compensating transactions.
In this context, each transactive block of actions is associated with a compensation (code)
that has to be run if a failure is detected. The purpose of compensation is to undo most
of the visible actions that have been performed and, in this case, atomicity, isolation and
durability are obviously violated. We give a brief survey of works that formalize com-
pensable processes using process calculi. These works are of two types: (1) interaction
based compensation [7,8,19], which are extensions of process calculi (like π or join-
calculus) for describing transactional choreographies where composition take place dy-
namically and where each service describes its possible interactions and compensations;
(2) compensable flow composition [9,11], where ad hoc process algebras are designed
from scratch to describe the possible flow of control among services. These calculi are
oriented towards the orchestration of services and service failures. This second approach
is also followed in [3,5] where two frameworks for composing transactional services are
presented.

The study of ATCCS is motivated by our objective to better understand the semantics
of the STM model. Obtaining a suitable behavioral equivalence for atomic expression
is a progress for the verification of concurrent applications that use STM. However, we
can imagine using our calculus for other purposes. An interesting problem is to develop

62 L. Acciai, M. Boreale, and S. Dal Zilio

an approach merging atomic and compensating transactions. A first step in this direction
is to enrich our language and allow the parallel composition of atomic expressions and
the nesting of transactions. We are currently working on this problem. Another area
for research stems from our observation (see Section 4) that the algebraic structure
of atomic expressions is lacking interesting property. Indeed, it will be interesting to
enrich the language of expressions in order to obtain a real lattice. The addition of
a symmetric choice operator for atomic expressions may be a solution, but it could
introduce unwanted nondeterminism in the evaluation of transactions.

References

1. L. Acciai, M. Boreale and S. Dal Zilio. A Concurrent Calculus with Atomic Transactions
(long version). http://arxiv.org/abs/cs.LO/0610137.

2. R. Amadio, I. Castellani and D. Sangiorgi. On Bisimulations for the Asynchronous π-
Calculus. Th. Comp. Sci., 195(2):291–324, 1998.

3. D. Berardi, D. Calvanese, G. De Giacomo, R. Hull and M. Mecella. Automatic Composition
of Transition-Based Web Services with Messaging. In Proc. of VLDB, 2005.

4. J.A. Bergstra, A. Ponse and J.J. van Wamel. Process Algebra with Backtracking. In Proc. of
REX Workshop, LNCS 803, 1994.

5. S. Bhiri, O. Perrin and C. Godart. Ensuring Required Failure Atomicity of Composite Web
Services. In Proc. of WWW, ACM Press, 2005.

6. A.P. Black, V. Cremet, R. Guerraoui and M. Odersky. An Equational Theory for Transactions.
In Proc. of FSTTCS, LNCS 2914, 2003.

7. L. Bocchi, C. Laneve and G. Zavattaro. A Calculus for Long Running Transactions. In Proc.
of FMOODS, LNCS 2884, 2003.

8. R. Bruni, H.C. Melgratti and U. Montanari. Nested Commits for Mobile Calculi: extending
Join. In Proc. of IFIP TCS, 563–576, 2004.

9. R. Bruni, H.C. Melgratti and U. Montanari. Theoretical Foundations for Compensations in
Flow Composition Languages. In Proc. of POPL, ACM Press, 209–220, 2005.

10. N. Busi, R. Gorrieri, G. Zavattaro. A Process Algebraic View of Linda Coordination Primi-
tives. Th. Comp. Sci., 192(2):167–199, 1998.

11. M.J. Butler, C. Ferreira and M.Y. Ng. Precise Modeling of Compensating Business Transac-
tions and its Application to BPEL. In J. UCS, 11:712–743, 2005.

12. T. Chothia and D. Duggan. Abstractions for Fault-Tolerant Global Computing. Th. Comp.
Sci., 322(3):567–613, 2004.

13. V. Danos and J. Krivine. Reversible Communicating System. In Proc. of CONCUR, LNCS
3170, 2004.

14. V. Danos and J. Krivine. Transactions in RCCS. In Proc. of CONCUR, LNCS 3653, 2005.
15. R. De Nicola and M.C.B. Hennessy. Testing Equivalence for Processes. Th. Comp. Sci.,

34:83–133, 1984.
16. R. Gorrieri, S. Marchetti and U. Montanari. A2CCS: Atomic Actions for CCS. Th. Comp.

Sci., 72(2-3):203–223, 1990.
17. T. Harris, S. Marlow, S.P. Jones and M. Herlihy. Composable Memory Transactions. In Proc.

of PPOPP, ACM Press, 48–60, 2005.
18. M. Herlihy, J.E. Moss. Transactional Memory: Architectural Support for Lock-Free Data

Structures In Proc. of International Symposium on Computer Architecture, 1993.

http://arxiv.org/abs/cs.LO/0610137

A Concurrent Calculus with Atomic Transactions 63

19. C. Laneve and G. Zavattaro. Foundations of Web Transactions. In Proc. of FoSSaCS, LNCS
3441, 2005.

20. R. Milner. Calculi for Synchrony and Asynchrony. Th. Comp. Sci., 25:267–310, 1983.
21. C. Palamidessi. Comparing the Expressive Power of the Synchronous and the Asynchronous

pi-calculus. Math. Struct. in Comp. Sci., 13(5), 2003.
22. N. Shavit and D. Touitou. Software Transactional Memory. In Proc. of Principles of Dis-

tributed Computing, ACM Press, 1995.
23. J. Vitek, S. Jagannathan, A. Welc and A.L. Hosking. A semantic Framework for Designer

Transactions. In Proc. of ESOP, LNCS 2986, 2004.

Modal I/O Automata
for Interface and Product Line Theories

Kim G. Larsen1, Ulrik Nyman1, and Andrzej Wąsowski1,2

1 Department of Computer Science, Aalborg University
2 Computational Logic and Algorithms Group, IT University of Copenhagen

{kgl,ulrik,wasowski}@cs.aau.dk

Abstract. Alfaro and Henzinger use alternating simulation in a two
player game as a refinement for interface automata [1]. We show that
interface automata correspond to a subset of modal transition systems
of Larsen and Thomsen [2], on which alternating simulation coincides
with modal refinement. As a consequence a more expressive interface
theory may be built, by a simple generalization from interface automata
to modal automata. We define modal I/O automata, an extension of in-
terface automata with modality. Our interface theory that follows can
express liveness properties, disallowing trivial implementations of inter-
faces, a problem that exists for theories build around simulation
preorders. In order to further exemplify the usefulness of modal I/O
automata, we construct a behavioral variability theory for product line
development.

1 Introduction

An interface theory [1,3,4,5,6,7] is a type-system-like theory for component lan-
guages, where types (interfaces) describe components (implementations) with
composition being the only operator available. A type error proves that either a
component does not conform to its interface, or that two composed components
are incompatible. Since the overall structure of these type systems is so simple,
it is often accepted not to give typing rules explicitly when describing interface
theories (for example [1,3,4,5,6]), focusing instead on the essential ingredients of
conformance, compatibility and composition.

Regular, non-component types are only applied to existing objects in program
code. In contrast for interface theories it makes sense to discuss interfaces as spec-
ifications of application’s architecture in isolation from actual source code. An
interface abstracts the component in terms of the assumptions made by the com-
ponent and the guarantees that it provides. One reasons about possible connec-
tions between component implementations (compositions) by using properties of
composition of interfaces; most importantly independent implementability (that
any implementations conforming to compatible interfaces are compatible) and
generality properties (that the composition of interfaces produces an interface
with the weakest assumptions and strongest guarantees).

R. De Nicola (Ed.): ESOP 2007, LNCS 4421, pp. 64–79, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Modal I/O Automata for Interface and Product Line Theories 65

We consider behavioral interface theories suitable for specification of com-
munication protocols between components (web services or embedded systems).
Such theories typically require a contravariant treatment of inputs and outputs
to ensure deadlock-free implementations: inputs guaranteed by the specification
are always offered by the implementation and that the implementation never
produces more outputs than the specification. This observation led de Alfaro,
Henzinger and colleagues [1,3,4] to a conclusion that game theoretical models
of interaction are most suitable as building blocks for behavioral interface the-
ories. While we do appreciate the values of the game theoretical formulations,
we disagree with some claims in the above cited work and argue that game
formulations are insufficient in themselves: there is a genuine value in combin-
ing the game theoretical approach with more traditional formulations based on
transition systems, or more precisely on modal transition systems.

The two worlds of game models and modal transition systems convey largely
orthogonal information about the moves of a system. Game models specify who
has control over transitions, while modal transition systems focus on require-
ments, modality: which moves are allowed and which are required. In this paper
we try to relate the two worlds, explain their weaknesses and their qualities.
Eventually we combine them into a unified interface theory.

Game theoretical notions of conformance are often based on alternating sim-
ulation [8]. We show that alternating simulation in a two player setting, as used
in interface automata [1,9], is just a special case of modal transition systems re-
finement developed by Larsen and Thomsen [2] in the late eighties. This suggests
that the real value of the game theoretic approach to component theories does
not lie in the use of alternating simulation, but in the use of control information
in the composition synthesis algorithms.

Not surprisingly then, modal transition systems themselves cannot be used
to build an interface theory, without adding control information. We build a
new interface theory around modal I/O automata, which combine features of
both game theoretic models and modal transition systems. Thanks to this new
combination, our interfaces are now able to express liveness properties, which
was impossible in existing interface theories (after this work has been completed
we have learned about [10], which achieves a similar effect in a different setting).

In order to further demonstrate the usefulness of our modal I/O automata, we
construct a product line [11,12,13] theory. In simple words a product line is a set
of similar products built by combining assets from a common platform available
in the development process. The differences between the products are referred to
as variability. Our theory is a behavioral formalism for describing the variability
of components. The theory supports deciding whether given requirements can
be satisfied by choosing concrete instances from the set of available assets. This
theory, though very small, is to the best of our knowledge one of the very few
attempts at describing software product lines in a behavioral fashion, and unlike
the previous work [14], which takes a top-down approach to describing product
families, it facilitates a bottom up construction of products, which is how prod-
uct line development is more typically understood in the software engineering

66 K.G. Larsen, U. Nyman, and A. Wąsowski

community. This contribution is not meant to be comprehensive, highly devel-
oped and well set in the tradition of the product line development. It should be
understood as a simple example that emphasizes the semantic difference between
modeling components in component based development and modeling assets for
product family development. We do hope to extend this theory soon and report
about it separately in detail.

The paper proceeds as follows. In the next section we shall explain the main
results of the paper in nontechnical terms. Our main results concentrate in sec-
tions 3, 5 and 6. In Section 3 we draw a correspondence between the alter-
nating simulation and observational modal refinement. In Section 4 modal I/O
automata are defined, which are then used to construct an interface theory in
Section 5 and a product line theory in Section 6. Sections 5 and 6 are largely
independent, though they share a lot of intuitions. We conclude in Section 7.

2 Interface Automata vs Modal Automata: An Example

Consider an example interface automaton for a Client component (Fig. 1 (left),
originally presented in [1]). This simple model describes a component that occa-
sionally may want to send a package, and once it has made the request it is ready
to receive an acknowledgment. The signature of the interface also mentions a fail
input, but the component is never able to receive it. This means that Client is
only capable of interacting with network links that never fail.

In interface automata, due to a game theoretic semantics, all outputs are
controlled by the component itself (called the Output player), while all inputs
to such components are controlled by the environment player (called the Input
player). An implementation conforms to the interface iff whenever some input
is offered by the interface, then it is also offered by the implementation, and
whenever an implementation produces any output, this output is also present in
the interface (conformance formalized as alternating simulation [8]).

Such a notion of conformance implies that compatibility can be passed from
interfaces to components: if there is no winning strategy for the input player
that leads to a deadlock in the interface automaton, then there won’t be such
a strategy for the same player that interacts directly with any implementation.
Similarly if there is no strategy for the output player that leads to an output
that cannot be accepted by the environment, then there is also no such strategy
for any of the implementations.

2 3

�

�

send! ok? fail?

send!

ok?

4

send! ok? fail?

Fig. 1. The Client interface (left) and a trivial implementation of it (right)

Modal I/O Automata for Interface and Product Line Theories 67

Unfortunately this notion of conformance, though very much safety oriented,
does not enforce that the implementations take on any useful activities at all.
Consider for example the diagram on the right side of Fig. 1. It presents a model
of an implementation that does not perform any actions ever. In other words
this is a network application that does not use the network at all. Still this new
model conforms to its interface on the left, as in its initial state it does not add
any illegal outputs and it offers all the inputs that were offered by the interface.

If we turn this into the terminology used in modal transition systems it means
that all the inputs are required, which is indicated by the � (must) modality on
the corresponding transition, and the outputs are allowed, which is indicated by
the � (may) modality on the transitions. In a modal transition systems perspec-
tive, conformance is based on modal refinement [2]. This refinement requires that
whenever an implementation makes a step, then it must be possible to mimic it
by an allowed transition of the specification; whenever the specification makes a
required step it must be possible to match it with some required step of the cor-
responding state in the implementation. With the assignment of may to output
transitions and must to input transitions this sounds nearly like the alternating
simulation described above. In Section 3 we prove that indeed the two relations
coincide if we require that the may transition relation is input-enabled.

Consequently modality gives strictly more modeling power than alternating
refinement. Various modalities can be assigned to actions regardless of whom
controls them. Instead of allowing all possible extensions on inputs, as in inter-
face automata, the designer is able to control what extensions are allowed. For
example we can change the Client model of Fig. 1 to have a must modality (�)
on the send! transition, which will have the effect that now all the implementa-
tions must be able to proceed producing an output. This would rule out trivial
implementations as the one presented on the right side of Fig. 1.

The game theoretic formulation of conformance gives a certain interpretation
to inputs and outputs. Namely that inputs are incoming requests for service
(for example remote procedure calls), while outputs are outgoing requests for
service (also remote procedure calls, albeit in the other direction). With such
an interpretation it becomes clear that removing services from the promised list
should be illegal, while removing calls to external services is perfectly fine. This is
exactly what alternating simulation achieves. What it misses is a more complex
structure of communication.

In asynchronous systems some messages indeed convey calls for service, how-
ever many other return feedback from the services (return a value). When a given
output models returning a value from a component, then clearly it should never
be removed, as then the whole component becomes useless. Fig. 2 illustrates an-
other interface modeling a data link layer, which exploits the interplay between
control and modality. The must modality is placed on transmt! transitions, as
the data link layer would be useless if the implementation was permitted not to
forward packets down the stack. Similarly the transition sending back the error
message cannot legally be removed. At the same time the call for linkStatus! is a
may transition as some implementations are allowed not to consult the hardware

68 K.G. Larsen, U. Nyman, and A. Wąsowski

14 15 16 17 18

19

202122

� � � �

�
�

� �

�

�

�

��

trnsmt! log! up?

send? ok! fail!

send? trnsmt! nack? trnsmt!
ack?

ack?ok!

nack?fail!
log! down?

linkStatus!

up?

linkStatus! ack? nack? down?

14 15 16 17 18

19

202122

� � � �

�
�

�

�

�

�

��

trnsmt! log! up?

send; trnsmt! nack? trnsmt!
ack?

ack?ok;

nack?
log! down?

linkStatus!

up?

linkStatus! ack? nack? down?

Fig. 2. DataLink layer with nontrivial modalities (left). Composition DataLink ⊗
Client (right). State 22 is an error state, where DataLink can produce the fail action,
not accepted by Client .

14 15 16 17 18

19

20

� � � �

�
�

�

�

�

�

trnsmt! log! up?

send; trnsmt! nack? trnsmt!
ack?

ack?ok;

nack?
linkStatus!

up?

linkStatus! ack? nack? down?

14 15 16 17 18

19

2021

� � � �

�
�

�

�

�

�

�

trnsmt! log! up?

send; trnsmt! nack? trnsmt!
ack?

ack?ok;

nack?
down?

linkStatus!

up?

linkStatus! ack? nack? down?

Fig. 3. Composed interfaces LinkLayer |Client and variability models LinkLayer ·
Client

link explicitly to detect errors. Finally not all implementations are forced to be
able to work with links that fail twice in a row, which is modeled by the second
nack! transition being a may transition.

Now consider how the two interfaces of Fig. 1 (left) and Fig. 2 (left) should
be composed. The composition resembles a product computation (taken sepa-
rately for the may transition relation and the must transition relation). As a
result we obtain the interface presented on the right side of Fig. 2. Because the
client component was so weak, the ultimate interface shows a system that pos-
sibly may never do anything. However if Client will send some packets, these
packets will certainly be processed by the composition, unless the hardware link
is broken. In such a case it might be that the implementation will produce a
fail! message which will cause a deadlock with the current version of the Client
(this can happen when the composition is in state 22). Since we cannot modify
the composed system we instead synthesize a new interface which restricts the
use of the composition in order to guarantee error freeness. States of the com-
position that can experience deadlocks are called error states. We follow Alfaro
and Henzinger in removing error states, and transitively all states from which
error states can be reached by following internally controllable transitions of the
component (outputs and internal actions). This leads to the interface on Fig. 3

Modal I/O Automata for Interface and Product Line Theories 69

(left), expressing the fact that this component works well as long as the physical
link never goes down.

The pruning mechanism described above would not be possible without the in-
formation describing which transitions are internally controllable being explicitly
present in the model. It does not seem possible to compute the safe fragment of
the product automaton, by just investigating the modalities of transitions. While
we have said that modal refinement is strictly more expressive than alternating
simulation, the control information of interface automata has its unique qualities
too: it enables valuable synthesis algorithms not otherwise possible.

Let us now revisit the model of Fig. 2 (left) giving it a different interpretation
than previously. Instead of perceiving it as an abstraction of a component, we
should now see it as a description of a set of components. A modal automaton de-
scribes in fact a whole, often infinite, set of possible implementation automata1.
One can think of them as all possible configurations of the model. This feature of
modal automata suggests the possibility of using them as a behavioral formalism
in describing variability in product lines.

A product line is a collection of products that are similar in that they offer
overlapping functionality, and in that they are built from assets selected from
a common platform. In here we want to describe both assets and the whole
product line by modal I/O automata. If each of the assets is modeled as a modal
I/O automaton we can model the capabilities of the family by composing these
descriptions. However this time we would not be interested in a composition that
guarantees compatible behavior of any selection of assets. It is normally expected
that not all the assets in a product line platform are mutually compatible. Some
of them will deadlock (for example a failing link layer and our Client component).
The requirement for composing the variability descriptions is not to synthesize an
interface that guarantees correctness of composition of all possible combination
of assets, but to precisely describes what the correct combinations are: i.e. what
are the deadlock free behaviors respecting the modalities that can be constructed
with the available automata.

It turns out that a composition like that exists and it resembles the pruning
of the product automaton for interface automata. The only difference is that
now error states are the states where the error must be possible to realize (so
one party must be required to produce an output that the other party must not
be allowed to receive) and that we prune all the states from which reaching an
error state is unavoidable (in our interface theory we have pruned states from
which reaching errors might be possible).

The result of composing Client and LinkLayer using the variability model
semantics is presented on the right side of Figure 3. This result contains a slightly
bigger model than the interface automaton composition on the left. It states that
there exists a pair of assets (implementations of Client and LinkLayer) such that
it is able to accept a link down message without an error message. The transition

1 This is also true for interface automata, though to a much lesser extent. Due to
the lack of modality the set of implementations for an interface automaton is much
simpler than it can be for a modal automaton.

70 K.G. Larsen, U. Nyman, and A. Wąsowski

with the down message was removed in the interface compositions as, for some
pairs of implementations, it would lead to a deadlock.

Can a given specification be implemented by choosing components from avail-
able assets? Is the result of the composition the most general possible, containing
all possible legal products? Can we find what the configuration of these elements
should be? We address some of these questions in section 6, with an intention of
elaborating more in upcoming work.

3 Alternating Simulation vs Modal Refinement

Let us begin with defining modal automata, a version of modal transition sys-
tems [2] extended with signatures. A modal automaton has two transition rela-
tions indicating respectively allowed (may) and required (must) behavior.

Definition 1 (Modal Automaton). A modal automaton S is a six tuple:
S = (statesS , startS , extS , intS , −→�, −→�) where statesS is a finite set of states,
startS ∈ statesS is the initial state, extS and intS are disjoint sets of external
and internal actions and actS = extS ∪ intS , −→�S ⊆ statesS × actS × statesS is
the may transition relation describing allowed behavior, and −→�S ⊆ statesS ×
actS × statesS is the must transition relation describing required behavior.

Throughout the paper we sometimes use the symbols “!”, “?” and “;” after an
action. This is done in order to increase the readers intuition of whether the
action is respectively an output, input or internal action. No symbol is used
when the action can be of more than one type. These symbols could be left out
completely as it is the identity of the action that is significant.

In the following we write s τ−−→∗
�s′ meaning that there exists a sequence of in-

ternal must actions leading from s to s′. The same is defined for may transitions.
A modal automaton is syntactically consistent if everything that is required

is also allowed, such that −→� ⊆ −→�. In the following we only consider syntac-
tically consistent modal automata. A modal automaton is an implementation if
the two transition relations coincide.

A modal automaton describes a set of possible implementations. Simplistically
when refining a modal automaton specification into an implementation one can
remove a may transition, that does not have a corresponding must transitions or
strengthen it into a must transition. In general this refinement is not syntactic,
but behavioral, so it is not the syntactic transitions that are refined but the
actual steps taken by the transition system. The same transition can be refined
differently each time it is taken.

Definition 2 (Modal Refinement). For a pair of modal automata S and T
with the same signature, a binary relation R ⊆ statesS × statesT is a modal
refinement if whenever sRt and a ∈ actS it holds that

if t a−−→�t′ then ∃s′.s a−−→�s′ and (s′, t′) ∈ R.
if s a−−→�s′ then ∃t′.t a−−→�t′ and (s′, t′) ∈ R.

Modal I/O Automata for Interface and Product Line Theories 71

Modal refinement ≤mis defined as the largest such relation. We say that a modal
automaton S modally refines a modal automaton T , written S ≤m T , iff there
exists a modal refinement containing (startS , startT).

Observational modal refinement is a weaker refinement in which the two modal
automata can take internal transitions, that cannot be directly observed by the
other automaton. In absence of internal actions the observational refinement
coincides with the non-observational one.

Definition 3 (Observational Modal Refinement). For a pair of modal au-
tomata S and T with the same signature, a binary relation R ⊆ statesS ×statesT

is an observational modal refinement if whenever sRt and a ∈ actS it holds that

if t a−−→�t′ and a ∈ extT then ∃s′. s a−−→�s′ ∧ (s′, t′) ∈ R.
if s a−−→�s′ and a ∈ extS then ∃t′.t τ−−→∗

�t′.∃t′′. t′ a−−→�t′′ ∧ (s′, t′′) ∈ R.
if s a−−→�s′ and a ∈ intS then ∃t′.t τ−−→∗

�t′.(s′, t′) ∈ R

Observational modal refinement ≤∗
mis defined as the largest such relation. We

say that a modal automaton S observationally refines a modal automaton T if
there exists an observational modal refinement containing (startS , startT).

Interface Automata [1] can be considered a subset of modal automata in which
the external actions extS are partitioned into inputs inS and outputs outS .

Definition 4 (Interface Automaton). An interface automaton P is a tuple
P = (statesP , startP , inP , intP , outP , −→P) where statesP is a finite set of states,
startP ∈ statesP is the initial state, inP , outP and intP are three pairwise dis-
joint sets of input, output and hidden (internal) actions respectively, and −→P ⊆
statesP ×actP × statesP is the set of transitions where actP = inP ∪outP ∪ intP .

We require that the transition relation is input-deterministic such that for all
s, s′, s′′ ∈ statesP and all input actions a ∈ inP if s a?−−→s′ and s a?−−→s′′ then
s′ = s′′.

Similarly as for Modal Automata we define s τ−−→∗s′ for Interface Automata to
mean that there exists a sequence of internal transitions leading from s to s′.
We define alternating simulation for interface automata as commonly used in
software specification [9], which is slightly less general than the original [1]:

Definition 5 (Alternating Simulation). For a pair of interface automata S
and T with the same signature, a binary relation R ⊆ statesS × statesT is an
alternating simulation if whenever sRt and a ∈ actS it holds that:

if t a?−−→t′ and a ∈ inT then ∃s′.s a?−−→s′ and (s′, t′) ∈ R
if s a!−−→s′ and a ∈ outS then ∃t′.t τ−−→∗t′.∃t′′.t′ a−→t′′ and (s, t′′) ∈ R
if s a;−−→s′ and a ∈ intS then ∃t′.t τ−−→∗t′ and (s′, t′) ∈ R

Alternating simulation ≤ais defined as the largest such relation. We say that S
simulates T , written S ≤a T , if there exists an alternating simulation containing
(startS , startT).

72 K.G. Larsen, U. Nyman, and A. Wąsowski

In order to compare interface automata with modal automata, we construct
a translation function T mapping from the former to the latter. The result
of the translation always fulfills the conditions listed below. It is easy to see
that for modal automata that fulfill these conditions a reversed mapping can be
constructed, too.

1. The may transition relation is input enabled, meaning that for each state
s ∈ statesS and each input action a ∈ inS there exists a state s′ and a may
transition s a?−−−→�s′

2. The constructed modal automaton is syntactically consistent: −→� ⊆ −→�

3. Must transitions are only labeled by inputs: −→�S ⊆ statesS × inS × statesS

Let smayall be a fresh state that allows all behavior but does not require any
behavior. If U denotes the universe of all inputs, such that for all interface
automata P , inP ∈ U , then we define the translation function as follows:

T (statesP , startP , inP , outP , intP , −→P) = (statesS , startS , extS , intS , −→�, −→�)

where statesS = statesP ∪{smayall}, startS = startP , extS = U∪outP , intS = intP
and s1

a−−→�
S s2 if s1

a−→Ps2 and a ∈ outP ∪ intP
and s3

a−−→�
S s4 and s3

a−−→�
S s4 if s3

a−→Ps4 and a ∈ inP

and s3
a−−→�

S smayall if ∀s′ ∈ statesP (s3, a, s′) /∈ −→P and a ∈ U ,
and smayall is a fresh state such that ∀a ∈ actS .smayall

a−−→�
S smayall.

Theorem 6. Alternating simulation and observational modal refinement coin-
cide for interface automata in the following sense:

for any two interface automata S, T : S ≤a T iff T (S) ≤∗
m T (T) (1)

Theorem 6 suggests that the usefulness of game theoretical models for component
theories does not lie in its conformance relation. The crux is the use of control
information in synthesis algorithms, when paths to error states are pruned. If this
is the case we can construct an interface theory based on modal refinement and
modal automata augmented with control information. Since modal refinement
is richer and we can use a generalization of the synthesis algorithm used for
interface automata, we will obtain a more expressive interface theory.

The fact that alternating simulation coincides with the observational version
of modal refinement is expected, because Definition 5 embeds a closure on inter-
nal transitions. In fact in the absence of internal actions alternating simulation
coincides with the regular modal refinement, as described in Definition 2, which
is easy to prove. In order to simplify the developments we use the regular modal
refinement (≤m) from now on, even though most of our theorems can reasonably
be considered for the observational refinement (≤∗

m), too.

4 Modal I/O Automata

Let us now define modal I/O automata, an extension of modal automata with
control information, that will be the main ingredients of our interface theory and
the product line theory coming in the next sections.

Modal I/O Automata for Interface and Product Line Theories 73

Definition 7. A modal I/O automaton S is a tuple S = (statesS , startS , inS ,
outS , intS , −→�, −→�), where statesS is a set of states, startS ∈ statesS is an
initial state, inS, outS and intS are pairwise disjoint sets of inputs, outputs and
internal actions respectively (actS = inS ∪outS ∪ intS), −→�S ⊆ statesS ×actS ×
statesS is a may-transition relation, and −→�S ⊆ statesS × actS × statesS is a
must-transition relation. Like previously we only consider syntactically consistent
modal I/O automata here, so −→� ⊆ −→�.

The composition for modal I/O automata combines both the modal aspects and
the communications aspects. Two modal I/O automata S1,S2 are composeable
iff their actions only overlap on complementary types: (inS1 ∪ intS1) ∩ (inS2 ∪
intS2) = ∅ and (outS1 ∪ intS1) ∩ (outS2 ∪ intS2) = ∅. The composition S1 ⊗ S2
gives rise to a modal I/O automaton S such that statesS = statesS1 × statesS2 ,
startS = (startS1 , startS2), inS = (inS1 \ outS2) ∪ (inS2 \ outS1), outS = (outS1 \
inS2) ∪ (outS2 \ inS1), intS = intS1 ∪ intS2 ∪ (inS1 ∩ outS2) ∪ (outS1 ∩ inS2). The
transition relations are given by the following rules (see Fig. 2 for an example):

s1
a!−−→γs′

1 s2
a?−−→γs′

2

s1 ⊗ s2
a−−→γs′

1 ⊗ s′
2

γ ∈ {�, �}
s1

a?−−→γs′
1 s2

a!−−→γs′
2

s1 ⊗ s2
a−−→γs′

1 ⊗ s′
2

γ ∈ {�, �}

s1
a−−→γs′

1 a /∈ actS2

s1 ⊗ s2
a−−→γs′

1 ⊗ s2
γ ∈ {�, �}

s2
a−−→γs′

2 a /∈ actS1

s1 ⊗ s2
a−−→γs1 ⊗ s′

2
γ ∈ {�, �}

For technical reasons (efficiency and simplicity) we always assume that un-
reachable states are removed after computing a composition (both here and in
later sections). The following theorem is a simple corollary from the general fact
that the modal refinement is a precongruence [15,16]:

Theorem 8. Modal refinement is a precongruence with respect to the above com-
position operator: for any four modal I/O automata T1, T2, S1, S2 such that
T1 ≤m S1 and T2 ≤m S2 it holds that T1 ⊗ T2 ≤m S1 ⊗ S2.

The composition operator (⊗) defined above corresponds to a usual composi-
tion of software (hardware) components. Whenever we use it below we mean an
unrestricted connection of components, which does not preclude deadlocks or
other kinds of errors. We shall soon introduce two seemingly similar composi-
tion operators, (|) and (·) having a very different use. In fact they are algorithms
synthesizing specifications of how a result of simple composition (⊗) should be
used in order to guarantee the absence of certain errors.

5 A Modal Interface Theory

Interface theories support component based development. The aim is to specify
component interfaces and from these interfaces to derive the interfaces of com-
posite components. The novel aspect of the interface theory presented here is that
the components can specify both required and allowed behavior, consequently it
is suitable for expressing liveness properties.

74 K.G. Larsen, U. Nyman, and A. Wąsowski

In our specific interface theory an interface is given by a modal I/O automa-
ton. A given interface specifies a set of potential implementations (concrete im-
plementations have identical transition relations −→� = −→�). The goal of our
interface theory is to be able to use interface descriptions to describe legal imple-
mentations of components in a component based system. The implementation
relation, the relation that specifies which implementations conform to a given
interface description is modal refinement ≤m. From the interface descriptions
of two components it should be possible to derive the interface of the combined
component. This is done without knowing more about the implementations, than
the fact that they conform to their individual interface specification.

The result of composing two interfaces is a subset of the result of composing
two modal I/O automata, in which all possible internally controllable paths lead-
ing to error states are removed. An error state is a state in which one component
can output something that the other component might be unable to receive:

err i
S1,S2

= {(s1, s2) ∈ statesS1⊗S2 | there exists a ∈ intS1⊗S2 and states s′1, s′2
such that (s1

a!−−→�
S1 s′1 and s2 a?−−−→�

S2) or (s2
a!−−→�

S2 s′2 and s1 a?−−−→�
S1)} (2)

State 22 on Fig. 2 is an error state, witnessed by the fail action.

We are now ready to define the set of states of the composition:

statesS1|S2 =
∞⋂

n=0

prunen
i (statesS1⊗S2\err i

S1,S2
) , (3)

where prunei(S) = {s ∈ S | ∀s′ ∀a ∈ intS1⊗S2 . s
a−−→�s′ implies s′ ∈ S}, which

is a monotonic function that removes, from the set of states S, all those states
that in one internally controllable step may reach a state that is not in S.

See Figure 3 (left) for an example of how pruning works. State 22 has been
removed as an error state, then state 21 was pruned as an error state can be
reached from it by the internally controllable transition log!. Then all transitions
involving states 21 and 22 were removed. State 20 remains in the result as the
must transition labeled down is externally controllable.

Definition 9 (Composition). The composition of two interfaces S1 and S2
is defined if S1 and S2 are composable modal I/O automata and startS1⊗S2 ∈
statesS1|S2 (see above). The composition results in a modal I/O automaton S1|S2
such that S1|S2 =(statesS1|S2 , startS1⊗S2 , inS1⊗S2 , outS1⊗S2 , intS1⊗S2 , −→�

S1⊗S2 ∩
(statesS1|S2 × actS1⊗S2 × statesS1|S2), −→�

S1⊗S2 ∩ (statesS1|S2 × actS1⊗S2 ×
statesS1|S2)).

Two interfaces are compatible if the set of states resulting from composition,
statesS1|S2 , contains the initial state (startS1 , startS2).

A desirable property of an interface theory is that components can be im-
plemented independently of each other once the specifications are known. The
following theorem formally states that this theory satisfies the property.

Modal I/O Automata for Interface and Product Line Theories 75

Theorem 10 (Independent Implementability). For any two compatible in-
terfaces S1, S2 and for any two implementations I1, I2, I1 ≤m S1 and I2 ≤m S2,
it holds that I1 ⊗ I2 ≤m S1|S2.

This has three implications. First, I1 ⊗I2 would deliver all the required behavior
promised by S1|S2 as long as it interacts with an environment obeying S1|S2.
Second, I1 ⊗ I2 will not do anything that S1|S2 would not allow in such an
environment. Third, since S1|S2 does not contain error states then I1 ⊗ I2 will
not deadlock.

Theorem 11 (Deadlock Freeness Preservation). For any two compatible
interfaces S1, S2, any two implementations I1, I2, so I1 ≤m S1 and I2 ≤m S2,
and any interface T compatible with S1|S2, if T ⊗ (S1|S2) has no reachable error
states then T ⊗ (I1 ⊗ I2) has no reachable error states.

Finally the composition operator (|) is commutative and associative up to graph
isomorphism.

6 A Product Line Theory

In product line development one typically maintains a family of existing assets
that are composed in a bottom-up fashion in order to build a product. Here we
assume that existing assets are sufficient to build the product and no genuinely
new programming is required. Assets are organized in small subfamilies, that can
be thought of as configurable components. Choosing an asset from a subfamily is
a configuration process. We model subfamilies as modal I/O automata, and call
them variability models, to distinguish them from interfaces. The configuration
process amounts to finding a suitable modal refinement of a variability model.

There is a need for a mechanism for composing variability models, to enable
reasoning about the products that can be constructed using available assets.
As in the interface theory we are interested in computing the legal uses for the
composition of two models, without reaching error states. However we weaken
the requirement this time: we do not require that all possible pairs of imple-
mentations give an error free composition, but only that there exists a pair of
implementations that can avoid errors under a suitable use.

Two variability models are composable if their input, output and hidden ac-
tions do not overlap (the general rule for modal I/O automata). Two composable
families can be composed, resulting in a description of a higher level component
family. The signature of this variability model is found in the same way as for
modal I/O automata. The requirement for the description of this more abstract
family is that a specification that refines its description can be realized by choos-
ing some concrete implementations from both lower level families involved. So
that in effect one can configure the final product by configuring the abstract
composed variability model, being sure that the selected configuration can be
refined to configurations of each of the smaller components, available in the col-
lection of assets. We give a sufficient condition for a refinement of a variability
model to be decomposable.

76 K.G. Larsen, U. Nyman, and A. Wąsowski

The ultimate composition closely resembles the composition (|) for interface
automata: it uses the regular modal I/O automata composition (⊗) first and
then removes error states. However now only internally controllable required
transitions are pruned, while in the interface theory we had also removed states
reachable by allowed executions of the same kind. The very existence of allowed
internally controlled execution to an error state was considered dangerous in the
interface theory—it is not in the product line theory. This is because we are not
interested in eliminating errors by all means, but only in making sure that there
exist error-free realizations of the specification. For two syntactically composable
variability models we define the set of error states, err v

S1,S2
, to be:

err v
S1,S2

= {(s1, s2) ∈ statesS1⊗S2 | there exists a ∈ intS1⊗S2 and states s′1, s
′
2

such that (s1
a!−−→�s′1 and s2 a?−−−→�) or (s1 a?−−−→� and s2

a!−−→�s′2)} (4)

In Figure 2 (right) state 22 is still an error state, though for a different reason
than previously: in state 22 the LinkLayer must be able to produce fail, but
the Client is not allowed to receive it. If a product of two variability models
contains an error state it means that there exist configurations of composed
assets that cannot safely work together. However, in the same spirit as in the
interface theory, we can compute the set of legal uses that guarantee that there
exist pairs of compatible configurations to interact with them. We remove from
the product S1 ⊗ S2 all the states that according to the variability specification
must be able to reach an error state. If there is no states left then the two
variability models are incompatible. Otherwise we arrive at a specification of
states and transitions among the compatible states that constraint possible legal
implementations obtained from these two families. Formally:

statesS1·S2 =
∞⋂

n=0

prunen
v (statesS1⊗S2 \err v

S1,S2
) , (5)

where prunev(S) = {s ∈ S | ∀s′. ∀a ∈ intS1⊗S2 ∪outS1⊗S2 . s
a−−→�s′ and s′ ∈ S}.

We compute the two transition relations for the composition, by projecting the
transition relations of the parallel composition S1⊗S2 onto the new set of states:

−→�
S1·S2 = −→�

S1⊗S2 ∩ (statesS1·S2 × actS1⊗S2 × statesS1·S2) (6)

−→�
S1·S2 = −→�

S1⊗S2 ∩ (statesS1·S2 × actS1⊗S2 × statesS1·S2) . (7)

Finally we can state the complete result of the composition: a modal I/O automa-
ton S1 · S2 such that S1 · S2 = (statesS1·S2 , (startS1 , startS2), inS1⊗S2 , outS1⊗S2 ,
intS1⊗S2 , −→�

S1·S2 , −→�
S1·S2) and all the components are defined above.

Definition 12. Two variability models are compatible if they are composable
and their composition is nonempty.

It turns out that observationally consistent refinements of compositions of vari-
ability models are realizable with existing assets. We define observational con-
sistency for states of a single automaton. Let t A−−→�

∗t′ mean that t′ is reachable

Modal I/O Automata for Interface and Product Line Theories 77

from t via a possible empty sequence of required transitions labeled by possibly
different actions from a set A.

Definition 13. Let T be a modal automaton and let A ⊆ actT be a set of
actions. A relation C ⊆ statesT ×statesT is an observational consistency relation
with respect to A if for any pair of states (t1, t2) ∈ C the following two properties
hold:

1. ∀t′
1. if t1 A−−→�

∗t′
1 then ∀a /∈ A. ∀t′′

1 . t′
1

a−−→�t′′
1 implies ∃t′

2. t2
a−−→�t′

2 ∧ (t′′
1 , t′

2) ∈ C.
2. ∀t′

2. if t2 A−−→�
∗t′

2 then ∀a /∈ A. ∀t′′
2 . t′

2
a−−→�t′′

2 implies ∃t′
1. t1

a−−→�t′
1 ∧ (t′

1, t
′′
2) ∈ C.

Two states are observationally consistent if there exists an observational con-
sistency relation relating them. A set of states is said to be observationally consis-
tent with respect to A if all possible pairs of states from the set are observationally
consistent with respect to A. An automaton T is observationally consistent with
respect to A iff the set {startT } is an observationally consistent set.

The following theorem states the existence of decomposition formally:

Theorem 14 (Decomposability). Let T1, T2 be deterministic composable
variability models, and S be a configuration (a deterministic variability model
itself) such that S ≤m T1 · T2, and T1, S are observationally consistent with
respect to actT1 \ actT2 and T2, S are observationally consistent with respect to
actT2 \ actT1 . Then there exist S1 and S2 such that S1 ≤m T1 and S2 ≤m T2 and
S1 ⊗ S2 ≤m S.

A version of the theorem, not requiring observational consistency, does not hold,
which can be demonstrated with a counter-example, not included here.

An important corollary is that the decomposition can be carried over down to
precise configurations: if a concrete configuration of a product is required, then
there exist concrete configurations of assets to realize it. The question whether
a specification is realizable with given assets is reduced to establishing observa-
tional consistency and a modal refinement between the postulated requirement
and the variability model. Consequently the abstract variability model can be
communicated to configuration engineers and used to configure final products.

Let us close our discussion with a statement that the (·) operator is general
enough to describe all implementations safely realizable with existing assets.

Theorem 15 (Completeness). For any two compatible variability models T1,
T2 and any two compatible concrete implementation specifications I1, I2, where
I1 ≤m T1 and I2 ≤m T2 it holds that I1 · I2 ≤m T1 · T2.

7 Conclusion and Future Work

We have investigated the relation between alternating simulation as used in
interface automata and observational modal refinement, concluding that former
is a case of the latter. We have argued that the strength of the game theoretic

78 K.G. Larsen, U. Nyman, and A. Wąsowski

approach to interface theories does not lie in alternating refinement itself, but
in the labeling of transitions with control information; in partitioning the ac-
tions into internally and externally controllable. We have extended modal tran-
sition systems with this information and demonstrated that in this way interface
theories tracking liveness properties, can be built. Finally we have presented a
product line theory describing variability in behavior of component families.

In the future we would like to extend the product line theory of Section 6
to a full featured theory based on observational modal refinement and study
its properties in depth. Also it appears interesting to investigate the relation
between the general notion of alternating refinement [8] and (modal) transition
systems, lifting the restrictions accepted in Section 3 after the interface automata
model.

References

1. Alfaro, L., Henzinger, T.A.: Interface automata. In: Proceedings of the Ninth An-
nual Symposium on Foundations of Software Engineering (FSE), Vienna, Austria,
ACM Press (2001) 109–120

2. Larsen, K.G., Thomsen, B.: A modal process logic. In: LICS, IEEE Computer
Society (1988)

3. Chakabarti, A., de Alfaro, L., Henzinger, T.A., Stoelinga, M.I.A.: Resource inter-
faces. In Alur, R., Lee, I., eds.: EMSOFT 03: 3rd Intl. Workshop on Embedded
Software. LNCS, Springer (2003)

4. Alfaro, L., Henzinger, T., Stoelinga, M.I.A.: Timed interfaces. In Sangiovanni-
Vincentelli, A., Sifakis, J., eds.: EMSOFT 02: 2nd Intl. Workshop on Embedded
Software. LNCS, Springer (2002)

5. Larsen, K.G., Nyman, U., Wąsowski, A.: Interface input/output automata. In
Misra, J., Nipkow, T., Sekerinski, E., eds.: 14th International Symposium on Formal
Methods (FM) Hamilton, Canada, August 21–27, 2006 Proceedings. Volume 4085
of LNCS., Springer (2006) 82–97

6. Černá, I., Vařeková, P., Zimmerová, B.: Component substitutability via equiva-
lencies of component-interaction automata. In: FACS’06. (2006) 115–130 To be
published in ENTCS.

7. Hermanns, H., Rehof, J., Stoelinga, M.I.A., eds.: Workshop Procedings FIT 2005:
Foundations of Interface Technologies. ENTCS, Elsevier Science Publishers (2005)

8. Alur, R., Henzinger, T.A., Kupferman, O., Vardi, M.: Alternating refinement re-
lations. In Sangiorgi, D., de Simone, R., eds.: Proceedings of the Ninth Interna-
tional Conference on Concurrency Theory (CONCUR’98). Volume 1466 of LNCS.,
Springer (1998) 163–178

9. Alfaro, L., Henzinger, T.A.: Interface-based design. In: In Engineering Theories
of Software Intensive Systems, Marktoberdorf Summer School, Kluwer Academic
Publishers (2004)

10. Carrez, C., Fantechi, A., Najm, E.: Assembling components with behavioral con-
tracts. Annales del Télécommunications 60 (2005)

11. Parnas, D.L.: On the design and development of program families. IEEE Trans-
actions on Software Engineering Vol. SE-2 (1976) 1–9

12. Czarnecki, K., Eisenecker, U.W.: Generative Programming: Methods, Tools, and
Applications. Addison-Wesley (2000)

Modal I/O Automata for Interface and Product Line Theories 79

13. Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering—
Foundations, Principles, and Techniques. Springer (2005)

14. Larsen, K.G., Larsen, U., Wąsowski, A.: Color-blind specifications for transfor-
mations of reactive synchronous programs. In Cerioli, M., ed.: FASE, Edinburgh,
April 2005. LNCS, Springer (2005)

15. Boudol, G., Larsen, K.G.: Graphical versus logical specifications. In Arnold, A.,
ed.: CAAP. Volume 431 of Lecture Notes in Computer Science., Springer (1990)
57–71

16. Larsen, K.G.: Modal specifications. In Sifakis, J., ed.: Automatic Verification
Methods for Finite State Systems. Volume 407 of Lecture Notes in Computer
Science., Springer (1989) 232–246

Using History Invariants to Verify Observers

K. Rustan M. Leino and Wolfram Schulte

Microsoft Research, Redmond, WA, USA
{leino,schulte}@microsoft.com

Abstract. This paper contributes a technique that expands the set of object in-
variants that one can reason about in modular verification. The technique uses
history invariants, two-state invariants that describe the evolution of data values.
The technique enables a flexible new way to specify and verify variations of the
observer pattern, including iterators. The paper details history invariants and the
new kind of object invariants, and proves a soundness theorem.

1 Introduction

The observer pattern is an important and common programming idiom [13]. For
example, it is a foundation of the model-view-controller paradigm on which all modern
graphical user interfaces rely. The observer pattern consists of a subject object, which
contains some data that may change over time, and a number of observer objects. An
observer depends on the data of the subject in some way. For example, an observer may
display the current data values of the subject in a graphical user interface. For efficiency,
such an observer may keep a local copy of the data to be displayed, so that it can redraw
the display without needing to consult the subject. A variation of the observer pattern is
the iterator pattern [13], where the subject is a collection and the observers are iterators.
An observer may iterate through the items of the collection, providing clients with one
data item at a time. These two patterns are different mainly in that the collection does
not have references to its iterators. In this paper, we focus on the one-to-many depen-
dency between the subject and observers, which the two patterns have in common, so
we will simply refer to both of them as the observer pattern.

To verify the correctness of a program that uses the observer pattern, it is necessary
to be able to write specifications for both subject and observers. We are interested in
modular verification of programs, which allows a program’s modules (or classes) to
be verified separately. In order for the verification process to be sound, the separately
verified correctness of each module should imply the correctness of the whole program.
For the observer pattern, this means we want to be able to specify and verify the subject
separately from the observers.

Verifying the observer pattern is a challenge. The difficulty is that the data consis-
tency of an observer, which is expressed as an object invariant, depends on the data of
the subject. Updates of the subject and the maintenance of these invariants must there-
fore be coordinated. The situation is further complicated by the fact that the subject may
not be able to reach (through object references in the heap) all the observers, and the
observer invariants, let alone the observer classes, may not be available in the separate-
verification context of the subject. A partial solution, which works when the observers
are known by the subject, has been given by Barnett and Naumann [5].

R. De Nicola (Ed.): ESOP 2007, LNCS 4421, pp. 80–94, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Using History Invariants to Verify Observers 81

In this paper, we introduce a specification and verification methodology that is well-
suited for supporting the kinds of object invariants one wants to write in observer
classes. In a nutshell, the subject advertises how its data values evolve over time, and
this allows observers to declare object invariants that depend on the subject’s data, pro-
vided the object invariants are insensitive to the evolution of the subject. In more detail,
our solution consists of the following ingredients:

1. We use history invariants to specify how an object may evolve. A history invariant
is a reflexive and transitive two-state predicate that relates any earlier state to any
later state in a program’s execution. In our solution, subjects have history invariants.

2. We allow an object invariant of an observer to access the fields of the subject,
provided the dereference goes via a field annotated with a new field modifier,
subject . If an object invariant dereferences a subject field, we call it an
observer invariant.

3. We explicitly keep track of whether an object invariant is known to hold, in which
case we say that the object is consistent.

4. An observer invariant can be assumed if the observer and its subject are both in the
consistent state.

5. For the soundness of modular verification, each observer invariant gives rise to
an additional proof obligation, which is that it be maintained under the history
invariant of the subject.

Our main contributions in this paper are 2, 4, and 5, which together give a method-
ology to specify and verify observer patterns, including its iterator variation. Ingre-
dient 3 comes from the Boogie methodology, which we explain in Section 2. For
ingredient 1, history invariants were introduced by Liskov and Wing [22] under the
name of constraints, and are supported by the Java Modeling Language (JML) [18];
our paper contributes a formalization of history invariants in the presence of reentrancy
and representation objects.

Example. Figure 1 shows our solution to specifying a verifiable observer pattern. An
observer’s cache depends on the state of the subject. When a subject’s state is updated,
it notifies all of its observers, so that they can synchronize their caches.

We use a field vers (for “version”) in both the subject and observers, so that an
observer can detect whether it is currently synchronized with the subject. We have
found this specification idiom useful for all of our observer-pattern examples, though
our methodology does not depend on it. (The vers field is in fact used in the implemen-
tation of the iterator pattern in both .NET [1] and Java [14], where it is used to detect
modifications of the underlying collection when there is still an active iterator.)

Note that between the update of state and vers in method Update , the observer’s
invariant is broken. Our methodology handles this on account of ingredient 4. At the
end of the expose block, the observer’s invariant holds again, on account of the spec-
ification idiom used in the observer invariant.

The program is correct and satisfies the proof obligations of our methodology: the
history invariants are admissible, because they are reflexive and transitive; the updates
performed by the Subject methods are allowed, because they maintain the history in-
variants; and the observer invariants are admissible, because they are maintained under
the subject’s history invariants.

82 K.R.M. Leino and W. Schulte

interface IObserver {
void Notify();

}

class Subject {
rep Set〈peer IObserver〉 obs;
int state; int vers;

history invariant old(vers) � vers;
history invariant vers = old(vers) ⇒

state = old(state);

Subject()
{ initialize (this) {

state = 0; vers = 0;
obs = new Set〈peer IObserver〉();

}
}

void Register(IObserver o)
requires o �= null ∧ o.owner = owner ;

{ expose (this)
{ obs.Add(o); }

o.Notify();
}

void Update(int y)
{ expose (this)

{ state = y ; vers = vers + 1; }
foreach (IObserver o in obs)

{ o.Notify(); }
}

int Get()
ensures result = state;

{ return state; }
}

class MyObserver : IObserver {
readonly subject Subject subj ;
int cache; int vers;

invariant vers � subj .vers;
invariant

subj �= null ∧ subj .vers = vers ⇒
cache = subj .state;

MyObserver(Subject s)
requires s �= null;
ensures owner = s.owner ;

{ initialize (this) {
cache = s.Get(); vers = s.vers;
sub = s; owner = s.owner ;

}
}

void Notify()
{ expose (this) {

cache = s.Get();
vers = s.vers;

}
}

void DisplayData()
{ . . . }

}

class Program {
void Main() {

Subject s = new Subject();
MyObserver o =

new MyObserver(s);
s.Register(o);
s.Update(57);

}
}

Fig. 1. An example of the observer pattern, where class Subject uses objects of type IObserver
as its observers. Each of the two columns in this figure is a separately verifiable module. The
details of the constructs used in this example are explained in the paper. As details that make the
verification go through, we have assumed that each object has a reference valued owner and a
boolean inv field. Further, we assumed that the condition PeerConsistent(x) ∧ ¬x .owner .inv
is implicitly added as a postcondition to all constructors (with this for x), as a precondition to
all methods (with this for x), and as a precondition to all constructors and methods (for each
reference parameter x). On entry to a constructor body, we also assume that the new object starts
off with some arbitrary, unshared, and exposed owner. Finally, we assume that all methods are
implicitly allowed to modify the fields of this and of any parameter x , and also the fields of the
peers of this and x .

Using History Invariants to Verify Observers 83

Outline. In the next section, we describe the foundations of our work, as well as a body
of previous work that tackles the problem of specifying and verifying the observer pat-
tern. In Section 3, we define history invariants and their associated proof obligations.
In Section 4, we define the additional machinery needed to support observer invariants,
culminating in a soundness theorem about them. The paper wraps up with additional
examples (Section 5), more related work (Section 6), future work (Section 7), and con-
clusions (Section 8).

2 Methodologies for Object Invariants

In this section, we review how a modular-verification system deals with objects invari-
ants. We also look at how previous work has tackled the problem of specifying and
verifying the observer pattern. In this section and throughout most of the paper, we
ignore the issue of subclassing.

Visible-state semantics. The first question to address when designing a methodology
for object invariants is: when does the invariant of an object hold? A simple answer is:
whenever no constructor or method of the object is active. This simple methodology is
called visible-state semantics [25,18], because an object’s invariant holds in all states
visible to public clients of the object.

Because of the possibility of reentrancy in object-oriented programs, we need to be
concerned about the situation where an object a breaks its invariant, calls a method on
an object b , and then b calls back into some method of a that assumes the invariant
to hold. Visible-state semantics prevents this situation by using alias control, as with
the universe type system [25,26]: a can be used only as a read-only object while the
method on b is invoked, restricting b ’s use of a to read-only methods, and visible-state
semantics does not allow read-only methods to rely on the invariant.

Boogie methodology. A richer methodology is the Boogie methodology supported by
Spec# [4]. The basic Boogie methodology [2] adds a bit inv to every object. If
inv = true , the object is said to be consistent, its invariant holds, and its fields are
not allowed to be updated. If inv = false , the object is said to be mutable, its invariant
may be violated, and the fields are allowed to be updated. This guarantees the following
program invariant (a condition that holds in all reachable states of the program):

(∀ o • o.inv ⇒ Inv(o)) (1)

where, here and throughout, the quantification ranges over non-null, allocated objects
and Inv(o) denotes the declared object invariant of o . For the moment, we assume
Inv(o) to be an intra-object invariant, that is, that it depends only on the fields declared
in the class of o .

By mentioning inv explicitly in preconditions, methods can indicate whether or not
they expect the object invariant to hold on entry.

The Boogie methodology controls changes to the inv field by introducing two spe-
cial program statements. The statement unpack o changes o.inv from true to false ,
and the statement pack o changes o.inv from false to true , after first checking that
Inv(o) holds. (This check can be done either by static verification or by run-time check-
ing. In this paper, we focus on static verification.)

84 K.R.M. Leino and W. Schulte

Use of unpack and pack is typically stylized, so in this paper we instead use a
block statement initialize (o) {S} , which abbreviates:

S ; pack o

and a block statement expose (o) {S} , which abbreviates:

unpack o; S ; pack o

The former typically wraps the body of a constructor and the latter wraps the bodies of
other methods, as we have seen in Fig. 1.

Owners and representation objects. Going beyond intra-object invariants, we now con-
sider invariants that span several objects. To meet preconditions involving inv , it be-
comes necessary for an object o to know the state of its representation objects (or rep
objects), that is, the objects that o uses in its implementation. The Boogie methodology
lets a class declare a field with the rep modifier to say that the field references a rep
object (cf. [8,6,7,25,10]).

We introduce another field for every object, owner , which determines an ownership
hierarchy among objects [19]. The owner field points in the inverse direction of rep
fields; in fact, declaring a field f to be rep induces the object invariant:

this.f = null ∨ this.f .owner = this

The methodology guarantees the following program invariant [2,19]:

(∀ o • o.inv ⇒ (∀ r • r .owner = o ⇒ r .inv)) (2)

To achieve this guarantee, the methodology restricts assignments to owner . For our
purposes, it suffices to set owner upon creation of objects (see [19] for a treatment of
ownership transfer) and to add the following precondition to the unpack o statement:
¬o.owner .inv .

Using ownership, we can allow object invariants to dereference rep fields. That is,
if f is a rep field, then we can now allow Inv(o) to depend on o.f .x for any field
x . Nevertheless, this is not sufficient for the observer pattern: an observer can mention
fields of its subject (like this.subj .x) in its object invariant only if subj is a rep
field, which implies the observer is the unique owner of the subject. Not only does this
disallow the existence of more than one observer, but it also seems odd for an observer
to consider its subject to be part of its implementation.

Peers. As another possible field modifier, the Boogie methodology allows peer
[25,19,10]. Declaring a reference-valued field f to be peer induces the following ob-
ject invariant:

this.f = null ∨ this.owner = this.f .owner

Unlike rep fields, peer fields are not allowed to be freely dereferenced in object
invariants. However, peer modifiers lead us to the useful concept of an object o being
peer consistent, which says that o and all its peers are consistent:

PeerConsistent(o) = (∀ p • p.owner = o.owner ⇒ p.inv)

Using History Invariants to Verify Observers 85

A subject and its observers are better suited as peers rather than that one owns the
other, because if both use PeerConsistent(this) in their method preconditions, then
the subject methods can invoke methods on any observer, and vice versa.

Visibility-based invariants. To specify and verify the observer pattern, we need a method-
ology that allows us to mention this.subj .x in the invariant of observers, where subj
is a field that references the subject object and x is a field of the subject. This is allowed
under the two restrictions of scope visibility [19].

The first restriction of scope visibility says that an observer can mention this.subj .x
in its invariant if the invariant is visible to every verification context that can contain
an update of the x field. This works out fine for the iterator pattern, but forbids the
development of observer classes separate from the development of the subject class.

The second restriction is that updating a subject’s field s .x requires not only that
the subject s be in the mutable state (inv = false), but also that every observer o
for which o.subj = s be in the mutable state. This restriction is hard to live with if
the number of such observers o is unbounded. It is especially hard to live with if the
observers are not reachable from the subject, which is the case in the iterator pattern.

Update guards. Barnett and Naumann relax the second restriction for visibility-based
invariants [5]. Instead of requiring observers whose invariants mention this.subj .x to
be in the mutable state when x is updated, Barnett and Naumann propose checking that
the imminent update of x maintains the actual invariant of these observers. To provide
some way to abstract over an observer’s invariant, they also introduce the declaration of
an update guard in the observer classes. The update guard is a condition on the update
of the subject’s x field that is sufficient to maintain the observer’s invariant. The update
guard is declared as a two-state predicate. For example, an update guard

this.subj .x : old(this.subj .x) � this.subj .x

says that increasing the subject’s x field maintains the observer’s invariant.
Update guards can be used to specify the observer pattern, as long as the first restric-

tion for visibility-based invariants holds: observer classes must be visible to the subject
when it is verified.

Monotonicity. Another situation where we can allow an object invariant to mention
this.f .x is when x is a read-only field. This situation is almost like for intra-object in-
variants, because if x is immutable, then the only way to change the value of this.f .x
is to change this.f . Immutability is a special case of monotonicity. If the value of
a field x only changes monotonically, by some metric, then it is unproblematic to
allow an invariant Inv(o) to mention o.f .x , provided Inv(o) is maintained under such
monotonic changes (cf. [11]). Monotonicity conditions can be specified as reflexive and
transitive history invariants, which is in fact what we do.

Our solution. Let us briefly compare our solution to the previous work we have dis-
cussed in this section. Rather than declaring update guards in the observer classes,
which requires these observer classes to be known when the subject’s data are updated,
we propose declaring in the subject class how the subject’s data may evolve. This means
that the subject need not be aware of how many observers and observer classes there
are—such an observer is allowed to declare an invariant that depends on the subject’s

86 K.R.M. Leino and W. Schulte

data, provided the invariant has the property that it is automatically maintained when
the subject’s data evolve as advertised.

3 History Invariants

History invariants (or constraints, as Liskov and Wing called them [22]) are two-state
predicates. In this section, we first discuss intra-object history invariants in the context
of a visible-state semantics, and then look into inter-object history invariants in the
context of the Boogie methodology.

Visible-state semantics. In the visible-state semantics, an object invariant for object o
is a property that should hold of all visible states of o . A history invariant for o is
a property that should hold for any earlier-later pair of visible states of o . History
invariants can therefore be used to constrain the way that values change over time.

The history invariant in the following example says that the value of size will only
ever increase:

class Histogram〈K 〉 {
int size;
invariant 0 � size;
history invariant old(size) � size;
. . .

Histogram(int size)
requires 0 � size; {. . .}

void Resize(int size)
requires this .size � size;

. . .

Let’s see how the Histogram class maintains its history invariant. The object’s first
visible state is defined at the time the Histogram constructor finishes. Different, sub-
sequent visible states can be created only by mutating methods, like Resize . The pre-
and post-states of Resize are visible states. Consequently, a visible-state semantics for
Histogram has to guarantee that the history invariant for this also holds between pre-
and post-states of Resize .

For visible-state semantics, history invariants are thus added as proof obligations to
post-conditions of public methods. But note that their verification only guarantees that
each pair of method pre- and post-states obeys the history invariant. However, history
invariants for an object o have to hold between any two visible states that result from
a computation on o . By requiring history invariants to be reflexive and transitive, we
guarantee that the history invariant holds between any earlier and later visible states.

Boogie methodology. We now describe how to incorporate history invariants into the
Boogie methodology. Continuing our example, we could implement the Histogram
class using a rep field of type Hashtable , where we assume that the class Hashtable
has a size field:

class Histogram〈K 〉 {
rep Hashtable〈K , int〉 ht ;
invariant 0 � ht .size;
history invariant

old(ht .size) � ht .size;
. . .

Histogram(int size)
requires 0 � size; {. . .}

Resize(int size)
requires ht .size � size;

. . .

Using History Invariants to Verify Observers 87

In the visible-state semantics above, a history invariant of an object holds for pairs
of its visible states. In the Boogie methodology, a history invariant of an object holds
for pairs of its consistent states.

In the following formulas, we adorn state-dependent predicates with stores as in-
dices. One-state predicates have one state, two-state predicates have two states as in-
dices, i.e., qσ,τ denotes q evaluated in the two states σ, τ where old expressions in q
refer to state σ and the non-old expressions refer to state τ . We use Hist(o) to denote
the declared history invariant of o ; [Hist(o)]σ,τ is Hist(o) evaluated in the two states
σ, τ . We use σ � τ to denote that state σ occurs earlier than state τ in a program run.

For the rest of the paper, we only allow ownership-based invariants with rep fields.
These give rise to the program invariants (1) and (2). The methodology extended with
history invariants also needs to establish the following program invariant:

(∀ o, σ, τ • σ � τ ∧ [o.inv]σ ∧ [o.inv]τ ⇒ [Hist(o)]σ,τ) (3)

This important condition says that if σ and τ are two states that occur in that execution
order and o.inv holds in both of those states, then the history invariant for o relates
those two states.

We define a history invariant to be admissible if (a) it is reflexive, (b) it is transitive,
and (c) it depends only on the fields of this and the fields of transitive rep objects of
this . While property (c) is just a syntactical check, properties (a) and (b) give rise to
the proof obligations:

(∀ o, σ • [Hist(o)]σ,σ) (4)

(∀ o, σ, τ, υ • [Hist(o)]σ,τ ∧ [Hist(o)]τ,υ ⇒ [Hist(o)]σ,υ) (5)

which are checked by a theorem prover.
In addition to the proof obligations stemming from admissibility, a history invariant

also needs to be verified at various points in the program. Since the Boogie methodol-
ogy enforces that a field t .f can be changed only if t and all its transitive owners are
mutable, the only way to violate the condition (3) in a program is when an object o
changes (in τ) from mutable to consistent and there was a previous time (namely σ)
when o was consistent. Therefore, we check history invariants at the end of expose
blocks. That is, we redefine expose (o) {S} to stand for:

let ρ = σ in unpack o; S ; assert [Hist(o)]ρ,σ ; pack o

where we use σ to denote the current program state.
We can now prove that our methodology for history invariants is sound, that is, that

(3) follows from the admissibility checks and the added check in the expose statement.

Proof (3). Consider the (possibly infinite) sequence of states in any execution of the
program, and consider a particular object o . Consider any two states σ and τ in this
sequence, such that o.inv holds in both of those states. The proof now proceeds by
induction over the length of the sequence from σ to τ . We consider four cases.

– If σ and τ are the same state, then [Hist(o)]σ,τ follows directly from reflexivity (4).
– If σ and τ are different states and there is some intervening state ρ in which

o.inv also holds, then by the induction hypothesis on the two shorter sequences,
[Hist(o)]σ,ρ and [Hist(o)]ρ,τ hold, so [Hist(o)]σ,τ holds by transitivity (5).

88 K.R.M. Leino and W. Schulte

– If σ and τ are consecutive states, then σ and τ bracket some primitive statement.
We argue that this primitive statement does not affect any field x .f , where x is o
or a transitive rep object of o , because the methodology allows a field update of
x .f only if x and its transitive owners are mutable (see (1) and (2)).

– If σ and τ are different, non-consecutive states and they have no intervening state
in which o.inv holds, then σ and τ bracket the execution of an expose (o)
statement. The added check in the expose statement guarantees that [Hist(o)]σ,τ

holds. �

4 Observer Invariants
Object invariants of observers often depend on the stability of subjects. A prime exam-
ple for this dependency is given by the observer pattern, as implemented in Figure 1. Its
observer invariant says: if the version of the observer coincides with the version of the
collection, then the cache of the state of the observer coincides with the state held in the
subject. This property can now be used, for example, by the observer’s DisplayData
method: without reading the subject’s entire state, it can now guarantee that it displays
the current value of the subject, provided the versions of subject and observer still agree.

Observers make the dependency on their subject explicit by annotating a field with the
subject modifier. Declaring a field subj to be subject induces the object invariant:

this.subj = null ∨ this.subj .owner = this.owner
This is the same as the object invariant induced by peer fields, but subject fields will
be used differently in defining the admissibility condition for object invariants.

We define an object invariant to be admissible if (a) it depends only on fields of this ,
fields of transitive rep objects of this (that is, fields like this.f0.f1. · · · .x where the fi
are rep fields), and fields of subject objects of this (that is, fields like this.subj .x ,
where subj is a subject field), and (b) it is stable under the history invariant of any
subject object dereferenced in the invariant. While property (a) is just a syntactic check,
property (b) gives rise to the following proof obligation, for every subject field subj
that is dereferenced in the invariant:

(∀ o, σ, τ •
σ � τ ∧ [o.inv]σ ∧ (∀ f • [o.f]σ = [o.f]τ) ∧
[o.subj .inv]σ ∧ [o.subj .inv]τ ∧ [Hist(o.subj)]σ,τ

⇒ [Inv(o)]τ)

(6)

This condition is checked by the theorem prover.
In the presence of subject fields, the object invariant doesn’t necessarily hold when

the object is consistent (as we saw at the program point between the updates of state
and vers in method Update in Fig. 1). However, it does hold if the object’s subject
objects are consistent as well. So, in our methodology, the program invariant (1) is re-
placed by the following program invariant:

(∀ o • o.inv ∧
(∀ subject field f of o dereferenced in Inv(o) • o.f = null ∨ o.f .inv)

⇒ Inv(o))
(7)

(To receive the benefit of a stronger program invariant, one can think of Inv(o) as de-
noting just one conjunct of the object invariant, which reduces the number of f ’s that

Using History Invariants to Verify Observers 89

the antecedent says need to be consistent, and then repeat the program invariant for each
conjunct of the object invariant.)

In order for (7) to hold, we need to add an additional check as part of the pack state-
ment, namely: for every subject field f of o , pack (o) also imposes the precondition
o.f = null ∨ o.f .inv .

We can now prove that our revised methodology is sound, that is, that (7) follows
from the admissibility checks and the added preconditions of the pack statement. For
brevity, we will give the proof for an object invariant Inv(o) that mentions exactly one
subject field, subj .

Proof (7). The proof runs by induction over the sequence of states in any execution of
the program. The induction base is trivial: Program execution starts in a state where no
objects are allocated. In the induction step, we consider the different ways in which a
state change could violate (7):

case o is allocated: A newly allocated object o start with ¬o.inv .
case a heap location t .x that is referred to by a term o.f0.f1. · · · .x in Inv(o) is
changed: According to the methodology, a field t .x is allowed to be updated only if
t and its transitive owners are mutable, so ¬o.inv .
case o.inv is changed from false to true (which happens in pack (o)): The precon-
dition of the pack statement checks that Inv(o) holds.
case o.inv holds and s .inv is changed from false to true (which happens in pack
(s)), for an s such that o.subj = s : We distinguish two cases:

– If this pack (s) was part of an initialize (s) , then ¬s .inv always held be-
fore this time. But since o.inv holds, there must have been an earlier pack (o) ,
o.subj would have been unchanged since the most recent such pack (o) , and that
pack (o) would have checked that o.subj .inv held. So this case does not exist.

– If this pack (s) was part of an expose (s) , then let σ denote the state immedi-
ately before the expose (s) and let τ denote the state immediately after s .inv has
been set to true, i.e., after the pack (s) . Due to the block structure of expose state-
ments, we know that the condition ¬s .inv is stable throughout the execution after
state σ and before state τ . Moreover, o.inv is stable between these states, because
any change to o.inv would mean there was a pack (o) inside the expose (s) ,
and that pack (o) would have checked s .inv , which doesn’t hold. Because o.inv
is stable, then so is o.f for every field f of o . In summary, we now have:

σ � τ ∧ [o.inv]σ ∧ (∀ f • [o.f]σ = [o.f]τ) ∧
[o.subj .inv]σ ∧ [o.subj .inv]τ

By the last two conjuncts and (3), we also have [Hist(o.subj)]σ,τ . Altogether, we
then have the antecedent of (6), from which we conclude [Inv(o)]τ . �

5 Further Examples
We show two more examples of how to use history invariants to prove observer patterns.

Collection Iterator Pattern [13]. Figure 2 shows an application of our methodology
to the class of a Collection (the subject) and its associated class of Iterator objects

90 K.R.M. Leino and W. Schulte

class Collection〈T 〉 {
rep T [] elems;
int ct ; int vers;

invariant elems �= null ∧
0 � ct � elems.Length;

history invariant
old(vers) � vers;

history invariant
vers = old(vers) ⇒

ct = old(ct) ∧
elems[0 : ct] = old(elems[0 : ct]);

Collection(int capacity)
requires 0 � capacity ;

{ initialize (this) {
elems = new T [capacity];
ct = 0; vers = 0;

}
}

void Add(T t)
{ expose (this) {

if (ct = elems.Length) { . . . }
elems[ct] = t ;
ct++; vers++;

}
}

T Remove(int i)
requires 0 � i < ct ;

{ T t = elems[i];
expose (this) {

elems[i : ct − 1]= elems[i + 1: ct];
ct−−; vers++;

}
return t ;

}
}

class Iterator〈T 〉 {
readonly subject Collection〈T 〉 coll ;
readonly int vers;
int n; bool inRange;

invariant coll �= null ∧
−1 � n ∧ vers � coll .vers;

invariant
vers = coll .vers ⇒

inRange = (0 � n < coll .ct);

Iterator(Collection〈T 〉 c)
requires c �= null;
ensures owner = c.owner ;

{ initialize (this) {
coll = c; vers = c.vers;
n = − 1; inRange = false;
owner = c.owner ;

}
}

bool MoveNext()
requires vers = coll .vers

otherwise InvalidOperation;
ensures result = inRange;

{ expose (this) {
if (n < coll .ct) { n++; }
inRange = n < coll .ct ;

}
return inRange;

}

T Current()
requires vers = coll .vers

otherwise InvalidOperation;
requires inRange;

{ return coll .elems[n]; }
}

Fig. 2. Class Collection〈T 〉 represents a list of items of type T that can be retrieved by an
Iterator〈T 〉 . These classes exhibit a variation of the observer pattern and their specifications are
handled by our methodology.

(the observers). Each Collection object contains a vers field that is increased with
each update of the collection. The iterator’s methods require as a precondition that the
versions of the iterator and collection match up. If they don’t match up, the caller is in
error, a situation that is caught when trying to statically verify the caller.

Using History Invariants to Verify Observers 91

class Master {
int tm; int vers;

invariant 0 � tm;
history invariant old(vers) � vers;
history invariant vers = old(vers) ⇒

old(tm) � tm;

Master()
ensures tm = 0 ∧ vers = 0;

{ initialize (this)
{ tm = 0; vers = 0; }

}

void Tick(int n)
requires 0 � n;
ensures old(tm) � tm;

{ expose (this)
{ tm = tm + n; }

}

void Reset()
ensures tm = 0;

{ expose (this)
{ vers = vers + 1; tm = 0; }

}
}

class Clock {
readonly subject Master ms;
int tm; int vers;

invariant ms �= null ∧ 0 � tm;
invariant vers � ms.vers;
invariant vers = ms.vers ⇒

tm � ms.tm;

Clock(Master m)
requires m �= null;
ensures owner = m.owner ;

{ initialize (this) {
ms = m; Synch();
owner = m.owner ;

}
}

private void Synch()
{ tm = ms.tm; vers = ms.vers; }

int GetTime()
ensures 0 � result � ms.tm;

{ if (vers �= ms.vers)
{ expose (this) { Synch(); } }

return tm;
}

}

Fig. 3. Our rendition of Barnett and Naumann’s master and slave clock example [5]. For verifica-
tion, we assume the private method Synch to be inlined at its call sites.

For compatibility with existing non-verified clients, the iterator methods will throw
an InvalidOperation exception in case the Iterator client is in error.

Note that the observer invariant is necessary for verifying the definedness of the
method Current : The implicit precondition says that the iterator is peer consistent.
The collection is a peer of the iterator, since coll is declared with subject , so peer
consistency of the iterator implies peer consistency of the collection. Because the iter-
ator and collection are both consistent, the observer invariant can be assumed on entry
to Current . Together with the explicit preconditions of the method, we conclude that
the array index n in Current ’s implementation is in range.

Master and Slave Clocks [5]. A master clock has two timer functions, Tick , which
increases the time, and Reset , which resets the time to zero. A slave clock’s time never
exceeds its master’s time. Slaves have a GetTime method that returns the time at which
the slave clock most recently synchronized its time with the master. The number of
necessary synchronizations of a slave clock with a master clock should be minimal. This
means that as long as Tick is called on the master, a slave doesn’t have to synchronize.

92 K.R.M. Leino and W. Schulte

But as soon as the master’s clock is reset, a slave’s clock must be synchronized to fulfill
its contract. Figure 3 shows our solution.

6 Related Work

Automated program verification has a long history, cf. [23]. Only much more recently
did it become feasible to do large-scale automatic reasoning as automatic theorem
provers made great progress and are now optimized for proving software checking (e.g.,
[9]), verification-condition generation became optimized for those theorem provers
(e.g., [12]), and programming methodology progressed (e.g., [2,19,5,15]).

History invariants were introduced by Liskov and Wing [22] to constrain the behav-
ior of possible subtypes. Their paper did not explore the possibility of using them for
verifying object invariants. History invariants are also supported by the Java Modeling
Language (JML) [18], which uses visible-state semantics. To the best of our knowledge,
static verification tools for JML do not yet support history invariants.

Our use of history invariants is similar to Rely/Guarantee style reasoning as intro-
duced by Jones [16]. It enables a compositional reasoning about concurrent programs.
Rely/Guarantee conditions are also two-state predicates. In our setting, Rely/Guarantee
conditions would mean that a subject guarantees the stability of a property on which the
invariants of the observers rely.

Verifying observers is a form of verifying heap properties. This area has recently
gotten a lot of attention (e.g., [21]). In the sequel, we focus only on traditional program
verification work for modern languages.

Another approach to specifying the update-notify idiom of the observer pattern is pro-
posed by Middelkoop et al. [24]. They use a mix between the visible-state semantics and
the Boogie methodology where all objects are consistent on method boundaries unless
explicitly stated otherwise. The approach does not yet address representation objects.

Inspector methods [15] are pure methods that can depend on owned state. They el-
egantly address the existing data abstraction problem in ownership systems, but do not
help in verifying observers independent from subjects.

Kassios’s dynamic frames [17] abstractly specify the effect of mutator methods using
abstraction functions and dependency relations (and without needing a built-in owner-
ship system). The work is formulated in the context of an idealized logical framework;
it was not developed to address maintaining observer invariants, but rather to delineate
change. We look forward to seeing an implementation of the approach in an automatic
program verifier.

Like observers and subjects, the classes of a program can depend on each other in a
one-to-many way. For example, many classes depend on the String class. A different
approach exists for handling this situation [20].

An important recent strand in verifying heap structures is separation logic [27]. It is
an extension of Hoare logic for programs that use pointers or references into a heap.
However, its assertion language is not first order; instead, it uses a powerful spatial
conjunction that is integral for partitioning the heap. While proof system for separation
logic have been started, they are still somewhat primitive and tool support is not yet
there for a full object-oriented language.

Using History Invariants to Verify Observers 93

7 Future Work

We are currently investigating the best way to incorporate history invariants into Spec#
[4] and the Boogie program verifier [3]. We want to further develop the presented
methodology to support subtyping, which we believe to be an orthogonal issue, just
like in the basic Boogie methodology [2]. With subtyping, one might have a situation
where a subclass acts like an observer to a field declared in a superclass. Another area
of interest is to understand how the verification of history invariants fits in with other
methodologies, like monotonic type states [11] and visibility-based invariants. Last but
not least, we want to explore whether history invariants can be used to verify more
design patterns, like invariants over static fields.

8 Conclusion

This paper extends the limits of sound modular verification for inter-object invariants.
In most previous approaches for one-to-many dependencies, all classes had to be de-
veloped together. Our approach allows one object (the subject) to export a history in-
variant, which other objects (the observers) can depend on. A history invariant typically
describes some stability of the subject’s state space. Introducing those properties has
two benefits: it allows observers to make their validity dependent on the stability of the
subject, and subjects do not have to know anything about the existence of observers.
This fosters modular development and verification.

Acknowledgments. We are grateful to the anonymous referees for their thoughtful and
helpful suggestions.

References

1. Brad Abrams. .NET Framework Standard Library Annotated Reference, Volume 1. Addison
Wesley Longman Publishing, 2004.

2. Mike Barnett, Robert DeLine, Manuel Fähndrich, K. Rustan M. Leino, and Wolfram Schulte.
Verification of object-oriented programs with invariants. JOT, volume 3, number 6, pages
27–56, 2004.

3. Mike Barnett, Robert DeLine, Bart Jacobs, Bor-Yuh Evan Chang, and K. Rustan M. Leino.
Boogie: A modular reusable verifier for object-oriented programs. In FMCO 2005, volume
4111 of LNCS, pages 364–387. Springer, September 2006.

4. Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec# programming system:
An overview. In CASSIS 2004, volume 3362 of LNCS, pages 49–69. Springer, 2005.

5. Mike Barnett and David A. Naumann. Friends need a bit more: Maintaining invariants over
shared state. In MPC 2004, LNCS, pages 54–84. Springer, July 2004.

6. Chandrasekhar Boyapati, Robert Lee, and Martin C. Rinard. Ownership types for safe pro-
gramming: Preventing data races and deadlocks. In OOPSLA 2002, volume 37, number 11
in SIGPLAN Notices, pages 211–230. ACM, November 2002.

7. Dave G. Clarke and Sophia Drossopoulou. Ownership, encapsulation and the disjointness
of type and effect. In OOPSLA 2002, volume 37, number 11 in SIGPLAN Notices, pages
292–310. ACM, November 2002.

94 K.R.M. Leino and W. Schulte

8. Dave G. Clarke, John. M. Potter, and James Noble. Ownership types for flexible alias pro-
tection. In OOPSLA ’98, volume 33, number 10 in SIGPLAN Notices, pages 48–64. ACM,
October 1998.

9. David Detlefs, Greg Nelson, and James B. Saxe. Simplify: A theorem prover for program
checking. Technical Report HPL-2003-148, HP Labs, July 2003.

10. Werner Dietl, Sophia Drossopoulou, and Peter Müller. Generic universe types. In
FOOL/WOOD ’07. ACM SIGPLAN, January 2007. 13 pages.

11. Manuel Fähndrich and K. Rustan M. Leino. Heap monotonic typestates. In Proceedings
of International Workshop on Aliasing, Confinement and Ownership in object-oriented pro-
gramming (IWACO), July 2003.

12. Cormac Flanagan and James B. Saxe. Avoiding exponential explosion: Generating compact
verification conditions. In POPL 2001, pages 193–205. ACM, January 2001.

13. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns. Addison-
Wesley Professional, January 1995.

14. James Gosling, Bill Joy, and Guy Steele. The JavaTM Language Specification. Addison-
Wesley, 1996.

15. Bart Jacobs and Frank Piessens. Verification of programs with inspector methods. In FTfJP
2006, July 2006.

16. Cliff B. Jones. Development methods for computer programs including a notion of interfer-
ence. Technical report, Oxford University, PhD thesis, 1981.

17. Ioannis T. Kassios. Dynamic frames: Support for framing, dependencies and sharing without
restrictions. In FM 2006, volume 4085 of LNCS, pages 268–283. Springer, August 2006.

18. Gary T. Leavens, Albert L. Baker, and Clyde Ruby. JML: A notation for detailed design.
In Behavioral Specifications of Businesses and Systems, pages 175–188. Kluwer Academic
Publishers, 1999.

19. K. Rustan M. Leino and Peter Müller. Object invariants in dynamic contexts. In ECOOP
2004, volume 3086 of LNCS, pages 491–516. Springer, June 2004.

20. K. Rustan M. Leino and Peter Müller. Modular verification of static class invariants. In John
Fitzgerald, Ian J. Hayes, and Andrzej Tarlecki, editors, FM, volume 3582 of LNCS, pages
26–42. Springer, 2005.

21. Tal Lev-Ami and Shmuel Sagiv. TVLA: A system for implementing static analyses. In SAS
2000, pages 280–301, 2000.

22. Barbara H. Liskov and Jeannette M. Wing. A behavioral notion of subtyping. ACM Trans-
actions on Programming Languages and Systems, 16(6):1811–1841, November 1994.

23. D. C. Luckham, S. M. German, F. W. von Henke, R. A. Karp, P. W. Milne, D. C. Oppen,
W. Polak, and W. L. Scherlis. Stanford Pascal Verifier user manual. Technical Report STAN-
CS-79-731, Stanford University, 1979.

24. Ronald Middelkoop, Cornelis Huizing, Ruurd Kuiper, and Erik Luit. Invariants for non-
hierarchical object structures. In Brazilian Symposium on Formal Methods, SBMF 2006,
pages 233–248. SBC, September 2006.

25. Peter Müller. Modular Specification and Verification of Object-Oriented Programs, volume
2262 of LNCS. Springer, 2002. PhD thesis, FernUniversität Hagen.

26. Peter Müller, Arnd Poetzsch-Heffter, and Gary T. Leavens. Modular invariants for layered
object structures. Science of Computer Programming, 2006. To appear.

27. Matthew J. Parkinson and Gavin M. Bierman. Separation logic and abstraction. In POPL
2005, pages 247–258. ACM, January 2005.

On the Implementation of Construction Functions
for Non-free Concrete Data Types

Frédéric Blanqui1, Thérèse Hardin2, and Pierre Weis3

1 INRIA & LORIA, BP 239, 54506 Villers-lès-Nancy Cedex, France
2 UPMC, LIP6, 104, Av. du Pr. Kennedy, 75016 Paris, France

3 INRIA, Domaine de Voluceau, BP 105, 78153 Le Chesnay Cedex, France

Abstract. Many algorithms use concrete data types with some addi-
tional invariants. The set of values satisfying the invariants is often a set
of representatives for the equivalence classes of some equational theory.
For instance, a sorted list is a particular representative wrt commuta-
tivity. Theories like associativity, neutral element, idempotence, etc. are
also very common. Now, when one wants to combine various invariants,
it may be difficult to find the suitable representatives and to efficiently
implement the invariants. The preservation of invariants throughout the
whole program is even more difficult and error prone. Classically, the
programmer solves this problem using a combination of two techniques:
the definition of appropriate construction functions for the representa-
tives and the consistent usage of these functions ensured via compiler
verifications. The common way of ensuring consistency is to use an ab-
stract data type for the representatives; unfortunately, pattern matching
on representatives is lost. A more appealing alternative is to define a
concrete data type with private constructors so that both compiler ver-
ification and pattern matching on representatives are granted. In this
paper, we detail the notion of private data type and study the existence
of construction functions. We also describe a prototype, called Moca,
that addresses the entire problem of defining concrete data types with
invariants: it generates efficient construction functions for the combina-
tion of common invariants and builds representatives that belong to a
concrete data type with private constructors.

1 Introduction

Many algorithms use data types with some additional invariants. Every function
creating a new value from old ones must be defined so that the newly created
value satisfy the invariants whenever the old ones so do.

One way to easily maintain invariants is to use abstract data types (ADT): the
implementation of an ADT is hidden and construction and observation functions
are provided. A value of an ADT can only be obtained by recursively using the
construction functions. Hence, an invariant can be ensured by using appropri-
ate construction functions. Unfortunately, abstract data types preclude pattern
matching, a very useful feature of modern programming languages [10,11,16,15].
There have been various attempts to combine both features in some way.

R. De Nicola (Ed.): ESOP 2007, LNCS 4421, pp. 95–109, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

96 F. Blanqui, T. Hardin, and P. Weis

In [23], P. Wadler proposed the mechanisms of views. A view on an ADT
α is given by providing a concrete data type (CDT) γ and two functions in :
α → γ and out : γ → α such that in ◦ out = idγ and out ◦ in = idα. Then,
a function on α can be defined by matching on γ (by implicitly using in) and
the values of type γ obtained by matching can be injected back into α (by
implicitly using out). However, by leaving the applications of in and out implicit,
we can easily get inconsistencies whenever in and out are not inverses of each
other. Since it may be difficult to satisfy this condition (consider for instance the
translations between cartesian and polar coordinates), these views have never
been implemented. Following the suggestion of W. Burton and R. Cameron
to use the in function only [3], some propositions have been made for various
programming languages but none has been implemented yet [4,17].

In [3], W. Burton and R. Cameron proposed another very interesting idea
which seems to have attracted very little attention. An ADT must provide con-
struction and observation functions. When an ADT is implemented by a CDT,
they propose to also export the constructors of the CDT but only for using
them as patterns in pattern matching clauses. Hence, the constructors of the
underlying CDT can be used for pattern matching but not for building values:
only the construction functions can be used for that purpose. Therefore, one can
both ensure some invariants and offer pattern matching. These types have been
introduced in OCaml by the third author [24] under the name of concrete data
type with private constructors, or private data type (PDT) for short.

Now, many invariants on concrete data types can be related to some equa-
tional theory. Take for instance the type of list with the constructors [] and ::.
Given some elements v1..vn, the sorted list which elements are v1..vn is a partic-
ular representative of the equivalence class of v1::..::vn::[] modulo the equation
x::y::l=y::x::l. Requiring that, in addition, the list does not contain the same
element twice is a particular representative modulo the equation x::x::l=x::l.

Consider now the type of join lists with the constructors empty, singleton and
append, for which concatenation is of constant complexity. Sorting corresponds
to associativity and commutativity of append. Requiring that no argument of
append is empty corresponds to neutrality of empty wrt append. We have a
structure of commutative monoid.

More generally, given some equational theory on a concrete data type, one may
wonder whether there exists a representative for each equivalence class and, if
so, whether a representative of C(t1 . . . tn) can be efficiently computed knowing
that t1 . . . tn are themselves representatives.

In [21,22], S. Thompson describes a mechanism introduced in the Miranda
functional programming language for implementing such non-free concrete data
types without precluding pattern matching. The idea is to provide conditional
rewrite rules, called laws, that are implicitly applied as long as possible on every
newly created value. This can also be achieved by using a PDT which construc-
tion functions (primed constructors in [21]) apply as long as possible each of
the laws. Then, S. Thompson studies how to prove the correctness of functions
defined by pattern matching on such lawful types. However, few hints are given

On the Implementation of Construction Functions 97

on how to check whether the laws indeed implement the invariants one has in
mind. For this reason and because reasoning on lawful types is difficult, the law
mechanism was removed from Miranda.

In this paper, we propose to specify the invariants by unoriented equations
(instead of rules). We will call such a type a relational data type (RDT). Sections 2
and 3 introduce private and relational data types. Then, we study when an RDT
can be implemented by a PDT, that is, when there exist construction functions
computing some representative for each equivalence class. Section 4 provides some
general existence theorem based on rewriting theory. But rewriting may be ineffi-
cient. Section 5 provides, for some common equational theories, construction func-
tions more efficient than the ones based on rewriting. Section 6 presents Moca, an
extension of OCaml with relational data types whose construction functions are
automatically generated. Finally, Section 7 discusses some possible extensions.

2 Concrete Data Types with Private Constructors

We first recall the definition of a first-order term algebra. It will be useful for
defining the values of concrete and private data types.

Definition 1 (First-order term algebra). A sorted term algebra definition
is a triplet A = (S, C, Σ) where S is a non-empty set of sorts, C is a non-empty
set of constructor symbols and Σ : C → S+ is a signature mapping a non-empty
sequence of sorts to every constructor symbol. We write C : σ1 . . . σnσn+1 ∈ Σ
to denote the fact that Σ(C) = σ1 . . . σnσn+1. Let X = (Xσ)σ∈S be a family
of pairwise disjoint sets of variables. The sets Tσ(A, X) of terms of sort σ are
inductively defined as follows:

– If x ∈ Xσ, then x ∈ Tσ(A, X).
– If C : σ1 . . . σn+1 ∈ Σ and ti ∈ Tσi(A, X), then C(t1, . . . , tn) ∈ Tσn+1(A, X).

Let Tσ(A) be the set of terms of sort σ containing no variable.

In the following, we assume given a set S0 of primitive types like int, string,
. . . and a set C0 of primitive constants 0, 1, "foo", . . . Let Σ0 be the corresponding
signature (Σ0(0) = int, . . .).

In this paper, we call concrete data type (CDT) an inductive type à la ML
defined by a set of constructors. More formally:

Definition 2 (Concrete data type). A concrete data type definition is a
triplet Γ = (γ, C, Σ) where γ is a sort, C is a non-empty set of constructor
symbols and Σ : C → (S0 ∪ {γ})+ is a signature such that, for all C ∈ C,
Σ(C) = σ1..σnγ. The set V al(γ) of values of type γ is the set of terms Tγ(AΓ)
where AΓ = (S0 ∪ {γ}, C0 ∪ C, Σ0 ∪ Σ).

This definition of CDTs corresponds to a small but very useful subset of all the
possible types definable in ML-like programming languages. For the purpose of
this paper, it is not necessary to use a more complex definition.

98 F. Blanqui, T. Hardin, and P. Weis

Example 1. The following type1 cexp is a CDT definition with two constant
constructors of sort cexp and a binary operator of sort cexp cexp cexp.

type cexp = Zero | One | Opp of cexp | Plus of cexp * cexp

Now, a private data type definition is like a CDT definition together with con-
struction functions as in abstract data types. Constructors can be used as pat-
terns as in concrete data types but they cannot be used for value creation (except
in the definition of construction functions). For building values, one must use
construction functions as in abstract data types. Formally:

Definition 3 (Private data type). A private data type definition is a pair Π =
(Γ, F) where Γ = (π, C, Σ) is a CDT definition and F is a family of construction
functions (fC)C∈C such that, for all C : σ1..σnπ ∈ Σ, fC : Tσ1(AΓ) × . . . ×
Tσn(AΓ) → Tπ(AΓ). Let V al(π) be the set of the values of type π, that is, the set
of terms that one can build by using the construction functions only. The function
f : Tπ(AΓ) → Tπ(AΓ) such that, for all C : σ1..σnπ ∈ Σ and ti ∈ Tσi(AΓ),
f(C(t1..tn)) = fC(f(t1)..f(tn)), is called the normalization function associated
to F .

This is quite immediate to see that:

Lemma 1. V al(π) is the image of f .

PDTs have been implemented in OCaml by the third author [24]. Extending a
programming language with PDTs is not very difficult: one only needs to modify
the compiler to parse the PDT definitions and check that the conditions on the
use of constructors are fulfilled.

Note that construction functions have no constraint in general: the full power
of the underlying programming language is available to define them.

It should also be noted that, because the set of values of type π is a subset of
the set of values of the underlying CDT γ, a function on π defined by pattern
matching may be a total function even though it is not defined on all the possible
cases of γ. Defining a function with patterns that match no value of type π does
not harm since the corresponding code will never be run. It however reveals that
the developer is not aware of the distinction between the values of the PDT and
those of the underlying CDT, and thus can be considered as a programming
error. To avoid this kind of errors, it is important that a PDT comes with a
clear identification of its set of possible values. To go one step further, one could
provide a tool for checking the completeness and usefulness of patterns that takes
into account the invariants, when it is possible. We leave this for future work.

Example 2. Let us now start our running example with the type exp describing
operations on arithmetic expressions.

type exp = private Zero | One | Opp of exp | Plus of exp * exp

1 Examples are written with OCaml [10], they can be readily translated in any pro-
gramming language offering pattern-matching with textual priority, as Haskell, SML,
etc.

On the Implementation of Construction Functions 99

This type exp is indeed a PDT built upon the CDT cexp. Prompted by the
keyword private, the OCaml compiler forbids the use of exp constructors (out-
side the module my_exp.ml containing the definition of exp) except in patterns.
If Zero is supposed to be neutral by the writer of my_exp.ml, then he/she will
provide construction functions as follows:
let rec zero = Zero and one = One and opp x = Opp x
and plus = function
| (Zero,y) -> y
| (y,Zero) -> y
| (x,y) -> Plus(x,y)

3 Relational Data Types

We mentioned in the introduction that, often, the invariants upon concrete data
types are such that the set of values satisfying them is indeed a set of representa-
tives for the equivalence classes of some equational theory. We therefore propose
to specify invariants by a set of unoriented equations and study to which extent
such a specification can be realized with an abstract or private data type. In
case of a private data type however, it is important to be able to describe the
set of possible values.

Definition 4 (Relational data type). A relational data type (RDT) defini-
tion is a pair (Γ, E) where Γ = (π, C, Σ) is a CDT definition and E is a finite set of
equations on Tπ(AΓ , X). Let =E be the smallest congruence relation containing
E . Such an RDT is implementable by a PDT (Γ, F) if the family of construction
functions F = (fC)C∈C is valid wrt E :
(Correctness): For all C : σ1..σnπ and vi ∈ V al(σi), fC(v1..vn) =E C(v1..vn).
(Completeness): For all C : σ1..σnσ, vi ∈ V al(σi), D : τ1..τpσ ∈ Σ and

wi ∈ V al(τi), fC(v1..vn) = fD(w1..wp) whenever C(v1..vn) =E D(w1..wp).

We are going to see that the existence of a valid family of construction functions
is equivalent to the existence of a valid normalization function:

Definition 5 (Valid normalization function). A map f : Tπ(AΓ) → Tπ(AΓ)
is a valid normalization function for an RDT (Γ, E) with Γ = (π, C, Σ) if:
(Correctness): For all t ∈ Tπ(AΓ), f(t) =E t.
(Completeness): For all t, u ∈ Tπ(AΓ), f(t) = f(u) whenever t =E u.

Note that a valid normalization function is idempotent (f ◦ f = f) and provides
a decision procedure for =E (the boolean function λxy.f(x) = f(y)).

Theorem 6. The normalization function associated to a valid family is a valid
normalization function.

Proof
– Correctness. We proceed by induction on the size of t ∈ Tπ . We have C :

σ1..σnπ ∈ Σ and ti such that t = C(t1..tn). By definition, f(t) = fC(f(t1)..
f(tn)). By induction hypothesis, f(ti) =E ti. Since the family is valid and
f(t1)..f(tn) are values, fC(f(t1)..f(tn)) =E C(f(t1)..f(tn)). Thus, f(t) =E t.

100 F. Blanqui, T. Hardin, and P. Weis

– Completeness. Let t, u ∈ Tπ such that t =E u. We have t = C(t1..tn) and
u = D(u1..up). By definition, f(t) = fC(f(t1)..f(tn)) and f(u) = fD(f(u1)..
f(up)). By correctness, f(ti) =E ti and f(uj) =E uj . Hence, C(f(t1)..f(tn)) =
ED(f(u1)..f(up)). Since the family is valid and f(t1)..f(tn) are values, fC

(f(t1) ..f(tn)) = fD(f(t1)..f(tn)). Thus, f(t) = f(u). �

Conversely, given f : Tπ(AΓ) → Tπ(AΓ), one can easily define a family of con-
struction functions that is valid whenever f is a valid normalization function.

Definition 7 (Associated family of constr. functions). Given a CDT Γ =
(π, C, Σ) and a function f : Tπ(AΓ) → Tπ(AΓ), the family of construction func-
tions associated to f is the family (fC)C∈C such that, for all C : σ1..σnπ ∈ Σ
and ti ∈ Tσ1 (AΓ), fC(t1, . . . , tn) = f(C(t1, . . . , tn)).

Theorem 8. The family of construction functions associated to a valid normal-
ization function is valid.

Example 3. We can choose cexp as the underlying CDT and E = { Plus x
Zero = x} to define a RDT implementable by the PDT exp, with the valid
family of construction functions zero, one, opp, plus.

4 On the Existence of Construction Functions

In this section, we provide a general theorem for the existence of valid families
of construction functions based on rewriting theory. We recall the notions of
rewriting and completion. The interested reader may find more details in [8].

Standard rewriting. A rewrite rule is an ordered pair of terms (l, r) written
l → r. A rule is left-linear if no variable occurs twice in its left hand side l.

As usual, the set Pos(t) of positions in t is defined as a set of words on positive
integers. Given p ∈ Pos(t), let t|p be the subterm of t at position p and t[u]p be
the term t with t|p replaced by u.

Given a finite set R of rewrite rules, the rewriting relation is defined as follows:
t →R u iff there are p ∈ Pos(t), l → r ∈ R and a substitution θ such that t|p = lθ
and u = t[rθ]p. A term t is an R-normal form if there is no u such that t →R u.
Let =R be the symmetric, reflexive and transitive closure of →R.

A reduction ordering � is a well-founded ordering (there is no infinitely de-
creasing sequence t0 � t1 � . . .) stable by context (C(..t..) � C(..u..) whenever
t � u) and substitution (tθ � uθ whenever t � u). If R is included in a reduction
ordering, then →R is well-founded (terminating, strongly normalizing).

We say that →R is confluent if, for all terms t, u, v such that u ←∗
R t →∗

R v,
there exists a term w such that u →∗

R w ←∗
R v. This means that the relation

←∗
R→∗

R is included in the relation →∗
R←∗

R (composition of relations is written
by juxtaposition).

On the Implementation of Construction Functions 101

If →R is confluent, then every term has at most one normal form. If →R is
well-founded, then every term has at least one normal form. Therefore, if →R is
confluent and terminating, then every term has a unique normal form.

Standard completion. Given a finite set E of equations and a reduction or-
dering �, the standard Knuth-Bendix completion procedure [2] tries to find a
finite set R of rewrite rules such that:
• R is included in �,
• →R is confluent,
• R and E have same theory: =E = =R.

Note that completion may fail or not terminate but, in case of successful
termination, R-normalization provides a decision procedure for =E since t =E u
iff the R-normal forms of t and u are syntactically equal.

However, since permutation theories like commutativity or associativity and
commutativity together (written AC for short) are included in no reduction
ordering, dealing with them requires to consider rewriting with pattern matching
modulo these theories and completion modulo these theories. In this paper, we
restrict our attention to AC.

Definition 9 (Associative-commutative equations). Let Com be the set of
commutative constructors, i.e. the set of constructors C such that E contains an
equation of the form C(x, y) = C(y, x). Then, let EAC be the subset of E made of
the commutativity and associativity equations for the commutative constructors,
=AC be the smallest congruence relation containing EAC and E¬AC = E \ EAC .

Rewriting modulo AC. Given a set R of rewrite rules, rewriting with pattern
matching modulo AC is defined as follows: t →R,AC u iff there are p ∈ Pos(t),
l → r ∈ R and a substitution θ such that t|p =AC lθ and u = t[rθ]p. A reduction
ordering � is AC-compatible if, for all terms t, t′, u, u′ such that t =AC t′ and
u =AC u′, t′ � u′ iff t � u. The relation →R,AC is confluent modulo AC if
(←∗

R,AC=AC→∗
R,AC) ⊆ (→∗

R,AC=AC←∗
R,AC).

Completion modulo AC. Given a finite set E of equations and an AC-
compatible reduction ordering �, completion modulo AC [18] tries to find a
finite set R of rules such that:
• R is included in �,
• →R,AC is confluent modulo AC,
• E and R ∪ EAC have same theory: =E = =R∪EAC .

Definition 10. A theory E has a complete presentation if there is an AC-com-
patible reduction ordering for which the AC-completion of E¬AC successfully
terminates.

Many interesting systems have a complete presentation: (commutative) mono-
ids, (abelian) groups, rings, etc. See [13,5] for a catalog. Moreover, there are
automated tools implementing completion modulo AC. See for instance [6,12].

102 F. Blanqui, T. Hardin, and P. Weis

A term may have distinct R, AC-normal forms but, by confluence modulo
AC, all normal forms are AC-equivalent and one can easily define a notion of
normal form for AC-equivalent terms [13]:

Definition 11 (AC-normal form). Given an associative and commutative
constructor C, C-left-combs (resp. C-right-combs) and their leaves are induc-
tively defined as follows:
– If t is not headed by C, then t is both a C-left-comb and a C-right-comb. The

leaves of t is the one-element list leaves(t) = [t].
– If t is not headed by C and u is a C-right-comb, then C(t, u) is a C-right-comb.

The leaves of C(t, u) is the list t :: leaves(u).
– If t is not headed by C and u is a C-left-comb, then C(u, t) is a C-left-comb.

The leaves of C(u, t) is the list leaves(u)@[t], where @ is the concatenation.
Let orient be a function associating a kind of combs (left or right) to every AC-
constructor. Let ≤ be a total ordering on terms. Then, a term t is in AC-normal
form wrt orient and ≤ if:
– Every subterm of t headed by an AC-constructor C is an orient(C)-comb

whose leaves are in increasing order wrt ≤.
– For every subterm of t of the form C(u, v) with C commutative but non-

associative, we have u ≤ v.

As it is well-known, one can put any term in AC-normal form:

Theorem 12. Whatever the function orient and the ordering ≤ are, every term
t has an AC-normal form t↓AC wrt orient and ≤, and t =AC t↓AC .

Proof. Let A be the set of rules obtained by choosing an orientation for the
associativity equations of EAC according to orient :
– If orient(C) is “left”, then take C(x, C(y, z)) → C(C(x, y), z).
– If orient(C) is “right”, then take C(C(x, y), z) → C(x, C(y, z)).

→A is a confluent and terminating relation putting every subterm headed by
an AC-constructor into a comb form according to orient . Let comb be a function
computing the A-normal form of a term. Let now sort be a function permuting
the leaves of combs and the arguments of commutative but non-associative con-
structors to put them in increasing order wrt ≤. Then, the function sort ◦ comb
computes the AC-normal form of any term and sort(comb(t)) =AC t. �
This naturally provides a decision procedure for AC-equivalence: the function
λxy.sort(comb(x)) = sort(comb(y)). It follows that R, AC-normalization to-
gether with AC-normalization provides a valid normalization function, hence
the existence of a valid family of construction functions:

Theorem 13. If E has a complete presentation, then there exists a valid family
of construction functions.

Proof. Assume that E has a complete presentation R. We define the computa-
tion of normal forms as it is generally implemented in rewriting tools. Let step

On the Implementation of Construction Functions 103

be a function making an R, AC-rewrite step if there is one, or failing if the term
is in normal form. Let norm be the function applying step until a normal form
is reached. Since R is a complete presentation of E , by definition of the comple-
tion procedure, sort ◦ comb ◦ norm is a valid normalization function. Thus, by
Theorem 8, the associated family of construction functions is valid. �
The construction functions described in the proof are not very efficient since they
are based on rewriting with pattern matching modulo AC, which is NP-complete
[1], and do not take advantage of the fact that, by definition of PDTs, they are
only applied to terms already in normal form. We can therefore wonder whether
they can be defined in a more efficient way for some common equational theories
like the ones of Figure 1.

Name Abbrev Definition Example
associativity Assoc(C) C(C(x, y), z) = C(x, C(y, z)) (x + y) + z = x + (y + z)

commutativity Com(C) C(x, y) = C(y, x) x + y = y + x

neutrality Neu(C, E) C(x, E) = x x + 0 = x

inverse Inv(C, I,E) C(x, I(x)) = E x + (−x) = 0

idempotence Idem(C) C(x, x) = x x ∧ x = x

nilpotence Nil(C, A) C(x, x) = A x ⊕ x = ⊥ (exclusive or)

Fig. 1. Some common equations on binary constructors

Rewriting provides also a way to check the validity of construction functions:

Theorem 14. If E has a complete presentation R and F = (fC)C∈C is a family
such that, for all C : σ1..σnπ ∈ Σ and terms vi ∈ V al(σi), fC(v1..vn) is an
R, AC-normal form of C(v1..vn) in AC-normal form, then F is valid.

Proof
– Correctness. Let C : σ1..σnπ ∈ Σ and vi ∈ V al(σi). Since fC(v1..vn) is an

R, AC-normal form of C(v1..vn), we clearly have fC(v1..vn) =E C(v1..vn).
– Completeness. Let C : σ1..σnπ ∈ Σ, vi ∈ V alF(σi), D : τ1..τpπ ∈ Σ, and

wi ∈ V alF(τi) such that C(v1..vn) =E D(w1..wp). Since R is a complete pre-
sentation of E , norm(C(v1..vn)) =AC norm(D(w1..wp)). Thus, fC(v1..vn) =
fD(w1..wp). �

It follows that rewriting provides a natural way to explain what are the possible
values of an RDT: values are AC-normal forms matching no left hand side of a
rule of R.

5 Towards Efficient Construction Functions

When there is no commutative symbol, construction functions can be easily
implemented by simulating innermost rewriting as follows:

104 F. Blanqui, T. Hardin, and P. Weis

Definition 15 (Linearization). Let VPos(t) be the set of positions p ∈ Pos(t)
such that t|p is a variable x ∈ X . Let ρ : VPos(t) → X be an injective mapping
and lin(t) be the term obtained by replacing in t every subterm at position
p ∈ VPos(t) by ρ(p). Let now Eq(t) be the conjunction of true and of the
equations ρ(p) = ρ(q) such that t|p = t|q and p, q ∈ VPos(t).

Definition 16. Given a set R of rewrite rules, let F(R) be the family of con-
struction functions (fC)C∈C defined as follows:

• For every rule l → r ∈ R with l = C(l1, . . . , ln), add to the definition of
fC the clause lin(l1), . . . , lin(ln) when Eq(l) -> l̂in(r), where t̂ is the term
obtained by replacing in t every occurrence of a constructor C by a call to its
construction function fC .

• Terminate the definition of fC by the default clause x -> C(x).

Theorem 17. Assume that EAC = ∅ and E has a complete presentation R.
Then, F(R) is valid wrt E (whatever the order of the non-default clauses is).

We now consider the case of commutative symbols. We are going to describe
a modular way of defining the construction functions by pursuing our running
example, with the type exp. Assume that Plus is declared to be associative and
commutative only. The construction functions can then be defined as follows:

let zero = Zero and one = One and opp x = Opp x

and plus = function
| Plus(x,y), z -> plus (x, plus (y,z))
| x, y -> insert_plus x y

and insert_plus x = function
| Plus(y,_) as u when x <= y -> Plus(x,u)
| Plus(y,t) -> Plus (y, insert_plus x t)
| u when x > u -> Plus(u,x)
| u -> Plus(x,u)

One can easily see that plus does the same job as the function sort ◦ comb
used in Theorem 12 but in a slightly more efficient way since A-normalization
and sorting are interleaved.

Assume moreover that Zero is neutral. The AC-completion of { Plus(Zero, x)
= x} gives { Plus(Zero, x) → x}. Hence, if x and y are terms in normal form,
then Plus(x, y) can be rewritten modulo AC only if x = Zero or y = Zero.
Thus, the function plus needs to be extended with two new clauses only:

and plus = function
| Zero, y -> y
| x, Zero -> x
| Plus(x,y), z -> plus (x, plus (y,z))
| x, y -> insert_plus x y

On the Implementation of Construction Functions 105

Assume now that Plus is declared to have Opp as inverse. Then, the com-
pletion modulo AC of { Plus(Zero, x) = x, Plus(Opp(x), x) = Zero} gives
the following well known rules for abelian groups [13]: { Plus(Zero, x) → x,
Plus(Opp(x), x) → Zero, Plus(Plus(Opp(x), x), y) → y, Opp(Zero) →Zero,
Opp(Opp(x)) → x, Opp(Plus(x, y)) → Plus(Opp(y),Opp(x)) }.

The rules for Opp are easily translated as follows:

and opp = function
| Zero -> Zero
| Opp(x) -> x
| Plus(x,y) -> plus (opp y, opp x)
| _ -> Opp(x)

The third rule of abelian groups is called an extension of the second one
since it is obtained by first adding the context Plus([], y) on both sides of this
second rule,then normalizing the right hand side. Take now two terms x and y in
normal form and assume that (x, y) matches none of the three clauses previously
defining plus, that is, x and y are distinct from Zero, and x is not of the form
Plus(x1, x2). To get the normal form of Plus(x, y), we need to check that x and
the normal form of its opposite Opp(x) do not occur in y. The last clause defining
plus needs therefore to be modified as follows:

and plus = function
| Zero, y -> y
| x, Zero -> x
| Plus(x,y), z -> plus (x, plus (y,z))
| x, y -> insert_opp_plus (opp x) y

and insert_opp_plus x y =
try delete_plus x y
with Not_found -> insert_plus (opp x) y

and delete_plus x = function
| Plus(y,_) when x < y -> raise Not_found
| Plus(y,t) when x = y -> t
| Plus(y,t) -> Plus (y, delete_plus x t)
| y when y = x -> Zero
| _ -> raise Not_found

Forgetting about Zero and Opp, suppose now that Plus is declared associative,
commutative and idempotent. The function plus is kept but the insert function
is modified as follows:

and insert_plus x = function
| Plus(y,_) as u when x = y -> u
| Plus(y,_) as u when x < y -> Plus(x,u)
| Plus(y,t) -> Plus (y,insert_plus x t)
| u when x > u -> Plus(u,x)
| u when x = u -> u
| u -> Plus(x,u)

106 F. Blanqui, T. Hardin, and P. Weis

Nilpotence can be dealt with in a similar way.
In conclusion, for various combinations of the equations of Figure 1, we can

define in a nice modular way construction functions that are more efficient than
the ones based on rewriting modulo AC. We summarize this as follows:

Definition 18. A set of equations E is a theory of type:
(1) if EAC = ∅ and E has a complete presentation,
(2) if E is the union of {Assoc(C), Com(C)} with either {Neu(C, E), Inv(C, I,

E)}, {Idem(C)}, {Neu(C, E), Idem(C)} {Nil(C, A)} or {Neu(C, E), Nil
(C, A)}.

Two theories are disjoint if they share no symbol.

Let us give schemes for construction functions for theories of type 2. A clause is
generated only if the conditions Neu(C,E), Inv(C,I,E), etc. are satisfied. These
conditions are not part of the generated code.

let f_C = function
| E, x when Neu(C,E) -> x
| x, E when Neu(C,E) -> x
| C(x,y), z when Assoc(C) -> f_C(x,f_C(y,z))
| x, y when Inv(C,I,E) -> insert_inv_C (f_I x) y
| x, y -> insert_C x y

and f_I = function
| E -> E
| I(x) -> x
| C(x,y) -> f_C(f_I y, f_I x)
| x -> I x

and insert_inv_C x y =
try delete_C x y
with Not_found -> insert_C (f_I x) y

and delete_C x = function
| Plus(y,_) when x < y -> raise Not_found
| Plus(y,t) when x = y -> t
| Plus(y,t) -> C(y, delete_C x t)
| y when y = x -> E
| _ -> raise Not_found

and insert_C x = function
| C(y,_) as u when x = y & idem -> u
| C(y,t) when x = y & nil -> f_C(A,t)
| C(y,_) as u when x <= y & com -> C(x,u)
| C(y,t) when Com(C) -> C(y, insert_C x t)
| u when x > u & Com(C) -> C(u,x)
| u when x = u & Idem(C) -> u
| u when x = u & Nil(C,A) -> A
| u -> C(x,u)

On the Implementation of Construction Functions 107

Theorem 19. Let E be the union of pairwise disjoint theories of type 1 or 2.
Assume that, for all constructor C which theory is of type k, fC is defined as in
Definition 16 if k = 1, and as above if k = 2. Then, (fC)C∈C is valid wrt E .

Proof. Assume that E =
⋃n

i=1 Ei where E1, . . . , En are pairwise disjoint theories
of type 1 or 2. Whatever the type of Ei is, we saw that Ei has a complete
presentation Ri. Therefore, since E1, . . . , En share no symbol, by definition of
completion, the AC-completion of E successfully terminates with R =

⋃n
i=1 Ri.

Thus, →R,AC is terminating and AC-confluent. Since F = (fC)C∈C computes
R, AC-normal forms in AC-normal forms, by Theorem 14, F is valid. �
The construction functions of type 2 can be easily extended to deal with ring or
lattice structures (distributivity and absorbance equations).

More general results can be expected by using or extending results on the
modularity of completeness for the combination of rewrite systems. The com-
pleteness of hierarchical combinations of non-AC-rewrite systems is studied in
[19]. Note however that the modularity of confluence for AC-rewrite systems has
been formally established only recently in [14].

Note that the construction function definitions of type 1 or 2 provide the same
results with call-by-value, call-by-name or lazy evaluation strategy.

The detailed study of the complexity of theses definitions (compared to AC-
rewriting) is left for future work.

6 The Moca System

We now describe the Moca prototype, a program generator that implements an
extension of OCaml with RDTs. Moca parses a special “.mlm” file containing the
RDT definition and produces a regular OCaml module (interface and implemen-
tation) which provides the construction functions for the RDT. Moca provides
a set of keywords for specifying the equations described in Figure 1.

For instance, the RDT exp can be defined in Moca as follows:

type exp = private Zero | One | Opp of exp | Plus of exp * exp
begin associative commutative neutral(Zero) opposite(Opp) end

Moca also features user’s arbitrary rules with the construction: rule pattern ->
pattern. These rules add extra clauses in the definitions of construction functions
generated by Moca: the LHS pattern is copied verbatim as the pattern of a clause
which returns the RHS pattern considered as an expression where constructors
are replaced by calls to the corresponding construction functions. Of course,
in the presence of such arbitrary rules, we cannot guarantee the termination
or completeness of the generated code. This construction is thus provided for
expert users that can prove termination and completeness of the corresponding
set of rules. That way, the programmer can describe complex RDTs, even those
which cannot be described with the set of predefined equational invariants.

Moca also accepts polymorphic RDTs and RDTs mutually defined with record
types (but equations between record fields are not yet available).

108 F. Blanqui, T. Hardin, and P. Weis

The equations of Figure 1 also support n-ary constructor, implemented as
unary constructors of type t list -> t. In this case, Plus gets a single argu-
ment of type exp list. Normal forms are modified accordingly and use lists
instead of combs. For instance, associative normal forms get flat lists of argu-
ments: in a Plus(l) expression, no element of l is a Plus(l′) expression. The
corresponding data structure is widely used in rewriting.

Finally, Moca offers an important additional feature: it can generate construc-
tion functions that provide maximally shared representatives. To fire maximal
sharing, just add the –sharing option when compiling the “.mlm” file. In this
case, the generated type is slightly modified, since every functional constructor
gets an extra argument to keep the hash code of the term. Maximally shared rep-
resentatives have a lot of good properties: not only data size is minimal and user’s
memoized functions can be light speed, but comparison between representatives
is turned from a complex recursive term comparison to a pointer comparison –
a single machine instruction. Moca heavily uses this property for the generation
of construction functions: when dealing with non-linear equations, the maximal
sharing property allows Moca to replace term equality by pointer equality.

7 Future Work

We plan to integrate Moca to the development environment Focal [20]. Focal
units contain declarations and definitions of functions, statements and proofs
as first-class citizens. Their compilation produces both a file checkable by the
theorem prover Coq [7] and a OCaml source code. Proofs are done either within
Coq or via the automatic theorem prover Zenon [9], which issues a Coq file when
it successes. Every Focal unit has a special field, giving the type of the data ma-
nipulated in this unit. Thus, it would be very interesting to do a full integration
of private/relational data types in Focal, the proof of correctness of construction
functions being done with Zenon or Coq and then recorded as a theorem to be
used for further proofs. This should be completed by the integration of a tool
on rewriting and equational theories able to complete equational presentations,
to generate and prove the corresponding lemmas and to show some termination
properties. Some experiments already done within Focal on coupling CiME [6]
and Zenon give a serious hope of success.

Acknowledgments. The authors thank Claude Kirchner for his comments on
a previous version of the paper.

References

1. D. Benanav, D. Kapur, and P. Narendran. Complexity of matching problems. J.
of Symbolic Computation, 3(1-2):203–216, 1987.

2. P. Bendix and D. Knuth. Computational problems in abstract algebra, chapter
Simple word problems in universal algebra. Pergamon Press, 1970.

3. F. Burton and R. Cameron. Pattern matching with abstract data types. J. of
Functional Programming, 3(2):171–190, 1993.

On the Implementation of Construction Functions 109

4. W. Burton, E. Meijer, P. Sansom, S. Thompson, and P. Wadler. Views: An exten-
sion to Haskell pattern matching. http://www.haskell.org/extensions/views.
html, 1996.

5. P. Le Chenadec. Canonical forms in finitely presented algebras. Research notes in
theoretical computer science. Pitman, 1986.

6. E. Contejean, C. Marché, B. Monate, and X. Urbain. CiME version 2.02. LRI,
CNRS UMR 8623, Université Paris-Sud, France, 2004. http://cime.lri.fr/.

7. Coq Development Team. The Coq Proof Assistant Reference Manual, Version 8.0.
INRIA, France, 2006. http://coq.inria.fr/.

8. N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, volume B, chapter 6. North Holland,
1990.

9. D. Doligez. Zenon, version 0.4.1. http://focal.inria.fr/zenon/, 2006.
10. D. Doligez, J. Garrigue, X. Leroy, D. Rémy, and J. Vouillon. The Objective Caml

system release 3.09, Documentation and user’s manual. INRIA, France, 2005.
http://caml.inria.fr/.

11. S. P. Jones (editor). Haskell 98 Language and Libraries, The revised report. Cam-
bridge University Press, 2003.

12. J.-M. Gaillourdet, T. Hillenbrand, B. Löchner, and H. Spies. The new Waldmeister
loop at work. In Proc. of CADE’03, LNCS 2741. http://www.waldmeister.org/.

13. J.-M. Hullot. Compilation de formes canoniques dans les théories équationnelles.
PhD thesis, Université Paris 11, France, 1980.

14. J.-P. Jouannaud. Modular church-rosser modulo. In Proc. of RTA’06, LNCS 4098.
15. P.-E. Moreau, E. Balland, P. Brauner, R. Kopetz, and A. Reilles. Tom Manual

version 2.3. INRIA & LORIA, Nancy, France, 2006. http://tom.loria.fr/.
16. P.-E. Moreau, C. Ringeissen, and M. Vittek. A pattern matching compiler for

multiple target languages. In Proc. of CC’03, LNCS 2622.
17. C. Okasaki. Views for standard ML. In Proc. of ML’98.
18. G. Peterson and M. Stickel. Complete sets of reductions for some equational the-

ories. J. of the ACM, 28(2):233–264, 1981.
19. K. Rao. Completeness of hierarchical combinations of term rewriting systems. In

Proc. of FSTTCS’93, LNCS 761.
20. R. Rioboo, D. Doligez, T. Hardin, and all. FoCal Reference Manual, version 0.3.1.

Université Paris 6, CNAM & INRIA, 2005. http://focal.inria.fr/.
21. S. Thompson. Laws in Miranda. In Proc. of LFP’86.
22. S. Thompson. Lawful functions and program verification in Miranda. Science of

Computer Programming, 13(2-3):181–218, 1990.
23. P. Wadler. Views: a way for pattern matching to cohabit with data abstraction.

In Proc. of POPL’87.
24. P. Weis. Private constructors in OCaml. http://alan.petitepomme.net/cwn/

2003.07.01.html#5, 2003.

http://www.haskell.org/extensions/views.html
http://www.haskell.org/extensions/views.html
http://cime.lri.fr/
http://coq.inria.fr/
http://focal.inria.fr/zenon/
http://caml.inria.fr/
http://www.waldmeister.org/
http://tom.loria.fr/
http://focal.inria.fr/
http://alan.petitepomme.net/cwn/2003.07.01.html#5
http://alan.petitepomme.net/cwn/2003.07.01.html#5

Anti-pattern Matching�

Claude Kirchner, Radu Kopetz, and Pierre-Etienne Moreau

INRIA & LORIA, Nancy, France
{Claude.Kirchner,Radu.Kopetz,Pierre-Etienne.Moreau}@loria.fr

Abstract. It is quite appealing to base the description of pattern-based
searches on positive as well as negative conditions. We would like for
example to specify that we search for white cars that are not station
wagons.

To this end, we define the notion of anti-patterns and their semantics
along with some of their properties. We then extend the classical notion
of matching between patterns and ground terms to matching between
anti-patterns and ground terms. We provide a rule-based algorithm that
finds the solutions to such problems and prove its correctness and com-
pleteness. Anti-pattern matching is by nature different from disunifica-
tion and quite interestingly the anti-pattern matching problem is unitary.
Therefore the concept is appropriate to ground a powerful extension to
pattern-based programming languages and we show how this is used to
extend the expressiveness and usability of the Tom language.

1 Introduction

Pattern matching is a widely spread concept both in the computer science com-
munity and in everyday life. Whenever we search for something, we build a
structured object, a pattern, that specifies the features we are interested in. But
we are often in the case where we want to exclude certain characteristics: typi-
cally we would like to specify that we search for white cars that are not station
wagons.

We call anti-patterns the patterns that may contain complement symbols,
denoted by �. For example, the web search engine from Google has an option
where we can specify what specific words we do not want the result pages to
contain. But it is not possible to express a search that has nested negations.
What are the nested negations used for? Consider the following situation: using
a search engine for cars, we want to search for a car that is not white; but in the
case the car is ecological, we do not care about the color. This kind of search can
be expressed in the following manner: �car(white,) ∨ car(, ecological) which
could be equivalently expressed by the anti-pattern �car(white, �ecological).

Another of our motivations comes from the popular “Business rules” manage-
ment systems (BRMS for short) that provide a restricted anti-pattern capability.
For example, although it is possible to use nested negations in Ilog JRules, one

� UMR 7503 CNRS-INPL-INRIA-Nancy2-UHP.

R. De Nicola (Ed.): ESOP 2007, LNCS 4421, pp. 110–124, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Anti-pattern Matching 111

of the most representative business rule language on the market1, they are not
handled in full generality. A BRMS consists mainly of three components: a set of
facts representing the current state of the system called Working Memory (WM),
a set of IF-THEN rules that test and alter the WM, and a rule interpreter that
applies the rules on the WM. A BRMS uses pattern matching to find out if an
object is in the WM or not. If we put in the working memory the following fact:
car(white, ecological), and we insert the following rules:

1. if there is no car that has the color white and the type ecological then action1,
2. if there is no car that has the color white and the type not ecological then

action2,
3. if there is no car that has the color white and the type not diesel then action3.

none of the actions are fired. When we look at the three rules, we can see that
basically the rule engine ignores the second negation. We consider that for the
second rule, the action should have been fired.

A further issue that is not addressed in current pattern matching based lan-
guages, is the problem of non-linearity inside a negative context. We are not
aware of the existence of a language where we can express in a single pattern
the following search: look for a car that does not have both interior and exte-
rior color the same. This should give all the cars with different interior-exterior
colors.

In this rich context, our first contribution is to define in the next section the
concept of anti-pattern and its semantics. Indeed as a term t represents the set
of all its ground instances, the anti-pattern �t represents the complement of the
representation of t in the set of ground terms and this definition is extended
recursively. Of course, many frameworks and results have already contributed
to the use of negation in logic based languages. Having in particular in mind
negation by failure in Prolog [8], the explicit use of counter-examples [16], dis-
unification [11], feature constraints [3], inclusion constraints [20] and negation
in iRho [17], we will motivate and explain the usefulness of anti-patterns.

Our second contribution concerns the definition of the notion of matching
anti-patterns against terms in Section 3. In Section 4 we present a rule based
algorithm for transforming anti-pattern matching problems into classical equa-
tional ones. The latter ones can be further solved using a subset of the dis-
unification rules. In Section 5, such problems are shown to be unitary, which
is a nice property in particular when using anti-patterns for programming pur-
poses. We finally report in the Section 6 on the implementation of this algorithm
in Tom — a programming language that extends C and Java by offering al-
gebraic data-types and pattern matching facilities [19,15] — and discuss how
anti-patterns could be used to extend the expressiveness of this language.

Although we will make precise our main notations, we assume that the reader
is familiar with the standard notions of algebraic rewrite systems, for example
presented in [5,14].

1 http://www.ilog.com/products/jrules

http://www.ilog.com/products/jrules

112 C. Kirchner, R. Kopetz, and P.-E. Moreau

2 Terms and Anti-terms

We briefly recall or introduce the notations for a few concepts that will be used
along this paper.

A signature F is a set of function symbols, each one having a fixed arity.
T (F , X) is the set of terms built from a given finite set F of function symbols
and a denumerable set X of variables. A term t is said to be linear if no variable
occurs more than once in t. The set of variables occurring in a term t is denoted
by Var(t). If Var(t) is empty, t is called a ground term and T (F) is the set of
ground terms.

A substitution σ is an assignment from X to T (F , X), denoted σ = {x1 �→
t1, . . . , xk �→ tk} when its domain Dom(σ) is finite. Its application, written σ(t),
is defined by σ(xi) = ti, σ(f(t1, . . . , tn)) = f(σ(t1), . . . , σ(tn)) for f ∈ Fn, and
σ(y) = y if y �∈ Dom(σ). Given a term t, σ is called a grounding substitution
when σ(t) ∈ T (F). The set of substitutions is denoted Σ. The set of grounding
substitutions for a term t is denoted GS(t).

The ground semantics of a term t ∈ T (F , X) is the set of all its ground
instances: �t�g = {σ(t) | σ ∈ GS(t)}. In particular, when x ∈ X , we have
�x�g = T (F).

2.1 Anti-terms

Definition 2.1 (Syntax of anti-terms). Given F and X , the syntax of an
anti-term is defined as follows:

AT ::= x | �AT | f(AT , . . . , AT)

where x ∈ X , f ∈ F and the arity is respected. The set of anti-terms is denoted
AT (F , X) (resp. AT (F) for ground anti-terms). Any term is an anti-term, i.e.
T (F , X) ⊆ AT (F , X).

For example, if x, y, z denote variables, a, b, c constants, f, g two function symbols
of arity 2 and 1, the following expressions are anti-terms: �x, �a, �f(�a, g(�x)),
f(x, y), f(�a, b), f(x, �x).

Definition 2.2 (Free variables). The free variables of an anti-term q are de-
fined inductively by:

1. FVar(x) = {x},
2. FVar(�q) = ∅,
3. FVar(f(q1, . . . , qn)) = ∪i=1..nFVar(qi), with the arity of f equal to n.

Example 2.1. Assuming that a is a constant and f is binary, we have: FVar(a) =
∅, FVar(�x) = ∅, FVar(f(x, �x)) = {x}, FVar(�f(x, �x)) = ∅.

Definition 2.3 (Substitutions on anti-terms). A substitution σ uniquely
extends to an endomorphism σ′ of AT (F , X): if x is a free variable, σ′(x) = σ(x),
otherwise σ′(x) = x. For q, q1, . . . , qn ∈ AT (F , X), we have σ′(f(q1, . . . , qn)) =
f(σ′(q1), . . . , σ′(qn)), and σ′(�q) = �σ′(q).

Anti-pattern Matching 113

Example 2.2. Note that substitutions are active only on the free variables:
σ(f(x, �x)) = f(σ(x), �σ(x)), σ(f(x, �y)) = f(σ(x), �y).

The notion of grounding substitutions is also extended to anti-terms (e.g. t) as
substitutions (e.g. σ) such that FVar(σ(t)) = ∅.

Intuitively, the semantics of the complement of a term represents the com-
plement of its semantics in T (F). Therefore, the complement of a variable �x
denotes T (F)\�x�g = T (F)\T (F) = ∅. Similarly, �f(x) denotes T (F)\{f(t) |
t ∈ T (F)}. In the following we extend this intuition to complements of comple-
ments, as well as complements which occur in subterms, and we formally define
the semantics of an anti-term.

As usual, a position is a finite sequence of natural numbers. The subterm u of
a term t at position ω is denoted t|ω, where ω describes the path from the root
of t to the root of u. t(ω) denotes the root symbol of t|ω.

By t[s]ω we express that the term t contains s as subterm at position ω.
Positions are ordered in the classical way: ω1 < ω2 if ω1 is the prefix of ω2 [14].

The ground semantics extends to anti-terms:

Definition 2.4 (Ground semantics of anti-terms). The ground semantics
of any anti-term q ∈ AT (F , X) is defined recursively in the following way:

�q[�q′]ω�g = �q[z]ω�g\�q[q′]ω�g

where z is a fresh variable and for all ω′ < ω, q(ω′) �= �.

Example 2.3

1. ��a�g = �z�g\�a�g = T (F)\{a},
2. ��x�g = �z�g\�x�g = T (F)\T (F) = ∅, for any variable x,
3. ���x�g = �z�g\��x�g = �z�g\(�z′�g\�x�g) = T (F)\(T (F)\T (F)) = T (F),
4. ��g(x)�g = �z�g\�g(x)�g = T (F)\{g(σ(x)) | σ ∈ GS(g(x))},
5. �g(�x)�g = �g(z)�g\�g(x)�g = ∅,
6. ��g(�x)�g = �z�g\�g(�x)�g = T (F)\∅ = T (F),
7. we can also express that we are looking for something that is either not

rooted by g, or it is g(a):
��g(�a)�g = �z�g\�g(�a)�g = �z�g\(�g(z′)�g\�g(a)�g)

= T (F)\(�g(z′)�g\{g(a)})
= T (F)\({g(σ(z′)) | σ ∈ GS(g(z′))}\{g(a)})
= T (F)\{g(z) | z ∈ T (F , X)} ∪ {g(a)},

8. �f(a, �b)�g = �f(a, z)�g\�f(a, b)�g = {f(a, σ(z)) | σ ∈ GS(f(a, z))}\{f(a, b)} ,
9. ��f(x, x)�g = �z�g\�f(x, x)�g = T (F)\{f(σ(x), σ(x)) | σ ∈ GS(f(x, x))}

note the crucial use of non-linearity to denote any term except those rooted
by f with identical subterms,

10. �f(x,�x)�g = �f(x, z)�g\�f(x, x)�g

= {f(σ(x), σ(z)) | σ ∈ GS(f(x, z))}\{f(σ(x), σ(x)) | σ ∈ GS(f(x, x))}
= f(a, b), f(a, c), f(b, c), . . .

The second condition of Definition 2.4 is essential. It prevents from replacing
a subterm by a fresh variable inside a complemented context (i.e. below a �).
Otherwise, for �g(�a) we would have had ��g(�a)�g = ��g(z)�g\��g(a)�g = ∅.

114 C. Kirchner, R. Kopetz, and P.-E. Moreau

These simple examples show that anti-terms provide a compact and expressive
representation for the sets of terms. A nice property can be easily derived from
them:

Proposition 2.1. For any t ∈ AT (F , X), we have ���t�g = �t�g

Proof. Using the Definition 2.4, ���t�g= �z�g\��t�g= �z�g\(�z′�g\�t�g)
=�t�g.
�

3 Matching Anti-patterns

Before showing how anti-terms can be used for matching ground terms, we recall
the standard definitions and results for the classical terms, as they are presented
in [5,14] for example.

3.1 Pattern Matching

Definition 3.1 (Matching)

1. a pattern is a term,
2. a matching equation is a problem p ≺≺ t with p a pattern and t a term,
3. a substitution σ is a solution of the matching equation p ≺≺ t if σ(p) = t,
4. a matching system S is a conjunction of matching equations,
5. a substitution σ is a solution of a matching system S if it is solution of all

the matching equations in S. The set of solutions of S is denoted by Sol(S),
6. we denote by Fail a matching system without solution.

In this paper, without loss of generality, we only consider matching equations of
the form p ≺≺ t where t is a ground term. The solution of a matching system S,
when it exists, is unique and is computed by a simple recursive algorithm [13].
This algorithm can be expressed by the set of rewrite rules Match, given below.
The symbol ∧ is assumed to be associative, commutative and idempotent, S is
any conjunction of matching equations, pi are patterns, and ti are ground terms:

Decompose f(p1, . . . , pn) ≺≺ f(t1, . . . , tn) �→�→
∧

i=1,...,n pi ≺≺ ti
SymbolClash f(p1, . . . , pn) ≺≺ g(t1, . . . , tm) �→�→ Fail if f �= g
MergingClash x ≺≺ t1 ∧ x ≺≺ t2 �→�→ Fail if t1 �= t2
Delete p ≺≺ p �→�→ True
PropagateClash S ∧ Fail �→�→ Fail
PropagateSuccess S ∧ True �→�→ S

The soundness and the completeness of Match is expressed as follows:

Theorem 3.1 ([14]). The normal form by the rules in Match of any matching
problem p ≺≺ t such that t ∈ T (F), exists and is unique.

1. if it is of the form
∧

i∈I xi ≺≺ ti with I �= ∅, then the substitution σ = {xi �→
ti}i∈I is the unique match from p to t,

2. if it is True then p and t are identical, i.e. p = t,
3. if it is Fail , then there is no match from p to t.

Anti-pattern Matching 115

3.2 Anti-pattern Matching

We now extend the classical notion of matching equation by allowing anti-terms
on the left side. We will further call them anti-patterns.

When considering classical patterns, a matching equation p ≺≺ t has a solution
when there exists a substitution σ such that σ(p) = t, that is when t ∈ �p�g .
Indeed more precisely σ ∈ GS(p) is a solution if {t} = �σ(p)�g . This extends
naturally to the anti-patterns.

Definition 3.2 (Solutions of anti-pattern matching). For all q ∈
AT (F , X) and t ∈ T (F), the solutions of the anti-pattern matching problem
q ≺≺ t are:

Sol(q ≺≺ t) = {σ | t ∈ �σ(q)�g , with σ ∈ GS(q)}

Remember that by Definition 2.3, the substitutions apply only on free variables.
Also note that for p ∈ T (F , X), we have �σ(p)�g = {σ(p)}; this is not always
true for the anti-patterns. Take for example f(x, �b), and σ = {x �→ a}: the set
�σ(f(x, �b))�g = �f(a, �b))�g has more than one element, as we saw in Example
2.3. Here are some examples for the solutions of anti-pattern matching problems:

Example 3.1

1. Sol(f(a, �b) ≺≺ f(a, a)) = Σ,
2. Sol(�g(x) ≺≺ g(a)) = {σ | g(a) ∈ T (F)\{g(σ(x)) | σ ∈ GS(g(x))}} = ∅,
3. Sol(f(�a, x) ≺≺ f(b, c)) = {x �→ c},
4. Sol(f(x, �x) ≺≺ f(a, b)) = {x �→ a},
5. Sol(f(x, �g(x)) ≺≺ f(a, g(b))) = {x �→ a},
6. Sol(f(x, �g(x)) ≺≺ f(a, g(a))) = ∅.

4 Anti-pattern Matching and Equational Problems

The relation between anti-pattern matching and equational problems is not triv-
ial. For instance, the interpretation of �q ≺≺ t should not be q �= t. Although
this may be correct in the case of ground terms, like �a ≺≺ b, it is not true in the
general case. Take for example �g(x) ≺≺ g(a), which according to Definition 3.2
has no solution. But the solutions of g(x) �= g(a) are the solutions of x �= a. In
this section we provide a way of transforming any anti-pattern matching prob-
lem into a corresponding equational one that has the same set of solutions. We
extend the notion of an equation between terms [11] to the notion of an equation
containing anti-patterns:

Definition 4.1 (Solutions of equations with anti-patterns). For any
anti-pattern q and ground term t, σ is a solution of the equational problem
∃w1, . . . , wn, ∀y1, . . . , ym : q = t if:

1. the domain of σ is FVar(q)\{w1, . . . , wn, y1, . . . , ym},
2. there exists a substitution ρ whose domain is {w1, . . . , wn}\(FVar(q) ∪

{y1, . . . , ym}) such that for all substitutions θ whose domain is
{y1, . . . , ym}\(FVar(q) ∪ {w1, . . . , wn}) we have: t ∈ �θρσ(q)�g .

116 C. Kirchner, R. Kopetz, and P.-E. Moreau

We denote by Sol(∃w1, . . . , wn, ∀y1, . . . , ym : q = t) the set of all substitutions
that are solutions of ∃w1, . . . , wn, ∀y1, . . . , ym : q = t. We have the following
properties:

1. Sol(q = t) = Sol(q ≺≺ t), since t is a ground term,
2. Sol(∃w1, . . . , wn, ∀y1, . . . , ym : not(q = t)) = {σ | t �∈ �θρσ(q)�g}, with the

same conditions on θ, ρ, σ as in Definition 4.1, and not being the classical
logic negation. One may notice that the substitutions ρ and σ do not have the
variables {y1, . . . , ym} in their domains, and therefore we can safely eliminate
θ in Sol(∃w1, . . . , wn, ∀y1, . . . , ym : not(q = t)) = {σ | t �∈ �ρσ(q)�g}, because
the ground semantics will instantiate anyway {y1, . . . , ym} with all their
possible values.

Given an anti-pattern q and a ground term t, we consider the following rewrite
system AP-Elim. This transforms an anti-pattern matching problem into an equa-
tional one:

ElimMatch q ≺≺ t �→�→ q = t
ElimAnti q[�q′]ω = t �→�→ ∃z q[z]ω = t ∧ ∀x ∈ FVar(q′) not(q[q′]ω = t)

if ∀ ω′ < ω, q(ω′) �= � and z a fresh variable

Clearly, these rules are terminating and the normal form does not contain any-
more the � symbol. If we apply these rules on the example we provided ear-
lier, �g(x) ≺≺ g(a), we obtain ∃z z = g(a) ∧ ∀x not(g(x) = g(a)) which
is equivalent with ∀x g(x) �= g(a), that has no solution. Thus, for this exam-
ple these transformations are valid. As shown below they are also valid in the
general case:

Proposition 4.1. The rules are sound and preserving: they do not introduce
unexpected solutions, and no solution is lost in the application of the rules.

Proof. By Definition 4.1, this is clear for the rule ElimMatch. For ElimAnti, we
consider ω a position such that q[�q′]ω and ∀ ω′ < ω, q(ω′) �= �.

Considering as usual that Sol(A∧B) = Sol(A)∩Sol(B) we have the following
result for the right hand side of the rule:

Sol(∃z q[z]ω = t ∧ ∀x ∈ FVar(q′) not(q[q′]ω = t))
= Sol(∃z q[z]ω = t) ∩ Sol(∀x ∈ FVar(q′) not(q[q′]ω = t))

From Definition 4.1, Sol(∃z q[z]ω = t) = {σ | ∃ρ such that Dom(ρ) = {z}, t ∈
�ρσ(q[z]ω)�g , and Dom(σ) = FVar(q[z])\{z}}.

To have t ∈ �ρσ(q[z]ω)�g the only possible value for ρ(z) is t|ω. So we can
further rewrite the above solutions in:

{σ | t ∈ �σ(q[t|ω]
ω
)�g, with Dom(σ) = FVar(q[z])\{z}} (1)

Applying also the Definition 4.1, Sol(∀x ∈ FVar(q′) not(q[q′]ω = t)) is equal to:

{σ | t �∈ �σ(q[q′]ω)�g with Dom(σ) = FVar(q[q′]) \ FVar(q′)} (2)

Anti-pattern Matching 117

On the other hand, for the left part of the rule ElimAnti, by Definition 4.1 we
have:

Sol (q[�q′]ω = t) = {σ | t ∈ �σ(q[�q′]ω)�g, with Dom(σ) = FVar(q[�q′])}
= {σ | t ∈ (�σ(q[z]ω)�g\�σ(q[q′]ω)�g), with . . .}, since ∀ω′ < ω, q(ω′) �= �

= {σ | t ∈ �σ(q[z]ω)�g and t �∈ �σ(q[q′]ω)�g, with Dom(σ) = FVar(q[�q′])}
= {σ | t ∈ �σ(q[z]ω)�g, with . . .} ∩ {σ | t �∈ �σ(q[q′]ω)�g with . . .}

(3)
Now it remains to check the equivalence of (3) with the intersection of (1) and
(2). First of all, FVar(q[z])\{z} = FVar(q[q′]) \ FVar(q′) = FVar(q[�q′]) which
means that we have the same domain for σ in (3), (1), and (2). Therefore, we
have to prove: {σ | t ∈ �σ(q[z]ω)�g} = {σ | t ∈ �σ(q[t|ω]

ω
)�g}.

But σ does not instantiate z, and for the inclusion t ∈ �σ(q[z]ω)�g to be
true, the only possible value of z is t|ω. As we considered an arbitrary �, we
can conclude that the rule is sound and preserving, wherever it is applied on a
term.
�

Using the rewrite system AP-Elim, we can eliminate all � symbols from any
anti-pattern matching problem. The normal forms have the following structure:
∃z q = t ∧ ∀x not(∃z′ q′ = t ∧ ∀x′ not(. . .)).

We consider a set of boolean simplification rules, called DeMorgan, that is ap-
plied on these normal forms: not(∃z P) �→�→ ∀z not(P), not(∀z P) �→�→ ∃z not(P),
not(a ∧ b) �→�→ not(a) ∨ not(b), not(a ∨ b) �→�→ not(a) ∧ not(b), not(not(a)) �→�→ a,
not(a = b) �→�→ a �= b, not(a �= b) �→�→ a = b. The resulting expression no longer
contains any not, and thus is a classical equational problem. We call it an anti-
pattern disunification problem.

5 Solving Anti-pattern Matching Via Disunification

As presented previously, an anti-pattern matching problem can be translated into
an equivalent equational problem. A natural way to solve this type of problem
is to use a disunification algorithm such as described in [11]. Due to lack of
space, we cannot present disunification in detail. Instead we give in Figure 1 the
set of rules we consider. The interested reader can refer to [11] for a detailed
presentation of disunification.

5.1 Disunification Rules

[11] presents a set of disunification rules that is proved to be sound and
preserving. Moreover, irreducible problems for these rules are definitions with
constraints, i.e. either �, ⊥ or a conjunction of equalities and disequalities. In
Figure 1 we present this set of rules, but tailored for anti-pattern matching prob-
lems. It is still sound and preserving, but also ensures (thanks to Theorem 5.1)
that for each problem a normal form exists and is unique. We will further call
it AP-Match.

118 C. Kirchner, R. Kopetz, and P.-E. Moreau

Universality1 ∀z : z = t ∧ S �→�→ ⊥
Universality2 ∀z : z �= t ∧ S �→�→ ⊥
Universality3 ∀z : S �→�→ S if z �∈ Var(S)
Universality4 ∀z : S ∧ (z �= t ∨ S′) �→�→ ∀z : S ∧ S′(z ← t)
Universality5 ∀z : S ∧ (z = t ∨ S′) �→�→ ∀z : S ∧ S′ if z �∈ Var(S′)
Replacement z = t ∧ S �→�→ z = t ∧ S(z ← t)
Elimination1 a = a �→�→ �
Elimination2 a �= a �→�→ ⊥
PropagateClash1 S ∧ ⊥ �→�→ ⊥
PropagateClash2 S ∨ ⊥ �→�→ S
PropagateSuccess1 S ∧ � �→�→ S
PropagateSuccess2 S ∨ � �→�→ �
Clean1 a ∧ a �→�→ a
Clean2 a ∨ a �→�→ a
Clash1 f(p1 . . . pn) = g(t1 . . . tn) �→�→ ⊥ if f �≡ g
Clash2 f(p1 . . . pn) �= g(t1 . . . tn) �→�→ � if f �≡ g
Decompose1 f(p1 . . . pn) = f(t1 . . . tn) �→�→

∧
i=1,...,n pi = ti

Decompose2 f(P1 . . . Pn) �= f(t1 . . . tn) �→�→
∨

i=1,...,n pi �= ti

Merging1 z = t ∧ z = u �→�→ z = t ∧ t = u
Merging2 z �= t ∨ z �= u �→�→ z �= t ∨ t �= u
Merging3 z = t ∧ z �= u �→�→ z = t ∧ t �= u
Merging4 z = t ∨ z �= u �→�→ t = u ∨ z �= u

Removed rules: OccurCheck, Explosion, Elimination of disjunctions
New rules:
Exists1 ∃z : S �→�→ S if z �∈ Var(S)
Exists2 ∃z : S ∧ (z �= t ∨ S′) �→�→ S if z �∈ Var(S)
Exists3 ∃z : S ∧ (z = t ∨ S′) �→�→ S if z �∈ Var(S)

Fig. 1. Simplified presentation of the disunification rules: AP-Match

From the classical presentation of disunification rules, three rules have been re-
moved. They were no longer necessary in the restricted case of the anti-patterns,
as their application conditions are never fulfilled. Three new rules that are proved
to be sound and preserving [9] have been added. They ensure the elimination
of all variables that are existentially quantified. The justification is simple, and
consists in showing that any problem containing an occurrence of an existentially
quantified variable is reducible: if there is such a variable, one of the three intro-
duced rules is tried. The condition z �∈ Var(S) may prevent from applying a rule.
In that case, we have z ∈ Var(S) and therefore one of the following rules can be
applied: Replacement (or Merging), Decompose (or Clash) — if the variable z is
inside a term.

In [11] there is a clear separation between the elimination of parameters and
the rules that reach definitions with constraints. But, as affirmed both in [11]
and [9], such a strict control is only for presentation purposes. In our algorithm,
we use a single step approach.

Anti-pattern Matching 119

5.2 Solved Forms

In the following we show that an anti-pattern disunification problem (resulting
from the application of AP-Elim, followed by DeMorgan can be simplified by the
rewrite system AP-Match, given in Figure 1, such that it does not contain any
disjunction or disequality.

Example 5.1. If we consider f(x, �y) ≺≺ f(a, b), the corresponding anti-pattern
disunification problem is computed in the following way:

f(x, �y) ≺≺ f(a, b) �→�→ f(x, �y) = f(a, b)
�→�→ ∃z f(x, z) = f(a, b) ∧ ∀y not(f(x, y) = f(a, b))
�→�→ ∃z f(x, z) = f(a, b) ∧ ∀y f(x, y) �= f(a, b)

Proposition 5.1. Given an anti-pattern disunification problem, the normal
form wrt. the rewrite system AP-Match does not contain disjunctions or dis-
equalities.

Proof. We consider an anti-pattern q ∈ AT (F , X), and an arbitrary application
of ElimAnti:

q[�q′]ω = t �→�→ ∃z q[z]ω = t ∧ ∀x ∈ FVar(q′) not(q[q′]ω = t)

If a disequality or a disjunction is produced, it comes from the not(q[q′]ω = t). We
now consider the variables that occur in this expression. Each of them belongs
to one of the following classes:

1. the free variables of q′,
2. the free variables of q[q′]ω — excepting the free variables of q′,
3. the variables of q[q′]ω that are not free.

In the following we show that the normal form cannot contain such a variable.
Therefore, the normalization of ∀x ∈ FVar(q′), not(q[q′]ω = t) leads to either �
or ⊥:

1. these are universally quantified variables, and they will be eliminated by
Universality rules,

2. let us consider y ∈ FVar(q[q′]ω)\FVar(q′), and let us suppose that the
reduction of not(q[q′]ω = t) generates the disequality y �= t|ω1 , then the
reduction of the first part ∃z q[z]ω = t will generate y = t|ω2 , with ω2 = ω1
because t and the skeleton of q are the same in both parts. By applying
the Replacement rule, all the occurrences of y �= t|ω1 are transformed in
t|ω1 �= t|ω1 and later eliminated,

3. any variable that is not free (i.e. is under a �) will be universally quantified
by a further application of the rule ElimAnti, therefore later eliminated by
Universality1 or Universality2.
�

Theorem 5.1. Given an anti-pattern disunification problem, its normal form
wrt. the rewrite system AP-Match exists and is unique.

120 C. Kirchner, R. Kopetz, and P.-E. Moreau

1. when it is of the form
∧

i∈I xi = ti with I �= ∅ and xi �= xj for all i �= j, the
substitution σ = {xi �→ ti}i∈I is the solution of the matching problem,

2. when it is �, any substitution σ is a solution of the matching problem,
3. when it is ⊥, the matching problem has no solution.

Proof. By applying Proposition 5.1.
�

5.3 Simple Examples

Let us show on a few examples how the rules behave. First with one complement:

f(a, �b) ≺≺ f(a, a)
�→�→ f(a, �b) = f(a, a) �→�→ ∃zf(a, z) = f(a, a) ∧ not(f(a, b) = f(a, a))
�→�→ ∃zf(a, z) = f(a, a) ∧ f(a, b) �= f(a, a)
�→�→ ∃z(a = a ∧ z = a) ∧ (a �= a ∨ b �= a) �→�→ ∃z(z = a) ∧ (⊥ ∨ �)
�→�→ � ∧ � �→�→ �.

Of course complements can be nested as illustrated below:

�f(a, �b) ≺≺ f(a, b)
�→�→ �f(a, �b) = f(a, b) �→�→ ∃z z = f(a, b) ∧ not(f(a, �b) = f(a, b))
�→�→ ∃z z = f(a, b) ∧ not(∃z′f(a, z′) = f(a, b) ∧ not(f(a, b) = f(a, b)))
�→�→ ∃z z = f(a, b) ∧ (∀z′f(a, z′) = f(a, b) ∨ f(a, b) = f(a, b))
�→�→ � ∧ (∀z′(a = a ∧ z′ = b) ∨ (a = a ∧ b = b))
�→�→ ∀z′(z′ = b) ∨ � �→�→ �.

We can also consider anti-pattern problems with variables, such as f(�a, x) ≺≺
f(b, c), whose solution is {x �→ c}. The pattern can be non-linear: f(x, �x) ≺≺
f(a, b), leading to {x �→ a}. Nested negation and non-linearity can be combined:

�f(x, �g(x)) ≺≺ f(a, g(b))
�→�→ �f(x, �g(x)) = f(a, g(b))
�→�→ ∃z z = f(a, g(b)) ∧ ∀x not(f(x, �g(x)) = f(a, g(b)))
�→�→ ∃z z = f(a, g(b)) ∧ ∀x not(∃z′ f(x, z′) = f(a, g(b))

∧ ∀x not(f(x, g(x)) = f(a, g(b))))
�→�→ ∃z z = f(a, g(b)) ∧ ∀x(∀z′ f(x, z′)=f(a, g(b)) ∨ ∃x f(x, g(x))=f(a, g(b)))
�→�→ � ∧ ∀x (∀z′ (x = a ∧ z′ = g(b)) ∨ ∃x (x = a ∧ g(x) = g(b)))
�→�→ ∀x (x = a ∧ ∀z′ (z′ = g(b)) ∨ ∃x (x = a ∧ x = b))
�→�→ ∀x (x = a ∧ ⊥ ∨ ∃x (x = a ∧ a = b))
�→�→ ∀x (⊥ ∨ ∃x (x = a ∧ ⊥)) �→�→ ∀x (⊥ ∨ ⊥) �→�→ ⊥.

5.4 Summing Up the Relations with Disunification

When comparing anti-pattern problems with general disunification ones, there
are many similarities, but some important differences also. In the anti-pattern
case, a solved form does not contain any quantifier whereas disunification al-
lows existential ones. Another important difference is the unitary property
(Theorem 5.1) which is obviously not true for disunification: x �= a has many so-
lutions in general. Disunification contains rules (called globally preserving) that

Anti-pattern Matching 121

return an equational problem whose solutions are a subset of the given problem.
The Explosion and the Elimination of disjunctions rules are such examples. In our
case, the complexity is dramatically reduced since these rules are unnecessary.

6 Implementation

We do not have enough space to present the implementation in detail but the
reader should know that the presented anti-pattern matching algorithm has been
fully implemented and integrated in Tom.2 With the purpose of also supporting
anti-patterns, we enriched the syntax of the Tom patterns to allow the use the
operator ‘!’ (representing ‘�’). Therefore, constructs as the following one are now
valid in this language:

%match(s) {
f(a(),g(b())) -> { /* action 1: executed when f(a,g(b))<<s */ }
f(!a(),g(b())) -> { /* action 2: when f(x,g(b))<<s with x!=a */ }
!f(x,!g(x)) -> { /* action 3: when not f(x,y)<<s or ... */ }
!f(x,g(y)) -> { /* action 4 */ }

}

Similarly to switch/case, an action part is executed when its corresponding
pattern matches the subject s. Note that non-linear patterns are allowed.

Without the use of anti-patterns, one would be forced to verify additional
conditions in the action part. For example, the previous %match should have
been written:

%match(s) {
f(a(),g(b())) -> { /* action 1 */ }
f(x,g(b)) -> { if(x != a) { /* action 2 */ } }
y -> { if(symb(y) != f) { /* action 3 */ }

else { %match(y) { f(x,g(x)) -> { /* action 3 */ } } } }
z -> {
if(symb(z) != f) { /* action 4 */ }
else { %match(z) {

f(x,g(y)) -> { break; /* do not perform action 4 */ }
_ -> { /* action 4 */ } } } }

}

This example clearly shows that anti-pattern semantics cannot be easily obtained
in a standard setting. Note also that method extraction would be necessary to
avoid duplicating actions. This would make the code even more complex.

7 Related Work

There has been a huge amount of work that can be related in a way or another
with the content of this paper. In spite of this, the anti-patterns are quite a nov-
elty for pattern matching languages. It is important to stress that we introduced
2 http://tom.loria.fr

http://tom.loria.fr

122 C. Kirchner, R. Kopetz, and P.-E. Moreau

the anti-patterns with the purpose of having a compact and permissive repre-
sentation to match ground terms : the use of nested negations replaces the use
of conjunctions and/or disjunctions and there is no restriction to linear terms
for example. It is also a useful representation which is both intuitive and easy
to compile in an efficient way. In the context of Tom, general algorithms such as
disunification [10,11,9] could have been used. But since pattern-matching is the
main execution mechanism, we were interested in a specialized approach that is
both simpler and more efficient.

Lassez [16] presented a way of expressing exclusion by the means of counter-
examples: typically, the expression f(x, y)/{f(a, u) ∨ f(u, a)} represents all the
ground instances of f(x, y), different from f(a, u) and f(u, a). Even though this
is a useful and close approach, it is more restrictive than the anti-patterns.
Consider for example the anti-pattern �f(a, �b), that cannot be represented by
terms with counter-examples, unless we allow the counter-examples to also have
counter-examples, i.e. z/{f(a, y/{b})} — an issue not addressed in [16]. More-
over, the application domain of terms with counter-examples was rather machine
learning than efficient term rewriting. This may explain why they restricted to
linear terms and studied if these types of expressions have an equivalent rep-
resentation using disjunctions. Actually, complementing non-linear terms was
not very much addressed (except for disunification) and standard algorithms
that computes complements are incorrect for non-linear terms, as mentioned
in [18]. Complementing higher order patterns is also considered only in the
linear case.

Although the syntax of set constraints [2,20,1,7] allows the use of complement
without any restriction of linearity or level of complement, we are not aware of
any good semantics for the general case. Moreover, despite the fact that theoret-
ically it is possible to have a constraint of the form f(a, b) ⊆ ¬f(a, ¬b), existing
implementations do not allow the complement in its fully generality. For ex-
ample the CLP(Set) language in B-Prolog3 allows the use of the symbol ‘\’ as
a unary operator representing the complement. However, it is only defined for
variables, and not for constants. Another example is CLP(SC) [12], where we
are restricted to use only predicates of arity 0 and 1, which obviously cannot
have the same expressiveness as anti-patterns. Besides that, it does not provide
variable assignments. Constraints over features trees [4,3,6] include the exclusion
constraint which is a formula of the form ¬∃y(xfy), which says that the feature f
is undefined for x, i.e. there is no edge that starts from x labeled with f. A more
complex semantics of nested negations is not provided, for example to express
that there is no ‘a’ in relation with x, unless x is in relation with ‘b’.

CDuce4 allows for the use of complement when declaring types but it restricts
it to be used on types alone, and do not deal with variables complements.

The constrained terms, as defined in [9], can be used to obtain the semantics of
some anti-patterns. They may have constraints — conjunction of disequalities —
attached to their variables. Considering for example f(a, �b), this is semantically

3 http://www.probp.com/
4 http://www.cduce.org/

http://www.probp.com/
http://www.cduce.org/

Anti-pattern Matching 123

equivalent to f(a, z), constrained by z �= b. But for a more complex expression,
like f(a, �g(b, �c)), this approach is not expressive enough because the use of
disjunctions in the constraints is not allowed.

8 Conclusion and Future Work

In this paper we have defined the notion of anti-patterns along with their seman-
tics. We have shown how anti-pattern matching problems can be transformed
in specific disunification problems. Therefore, most of the properties (conflu-
ence, termination) that hold for the disunification rules are still true for the
anti-pattern matching ones. Moreover, we proved that anti-pattern matching is
unitary, that the rules are sound and fully preserving, and that the computed
solved forms do not contain any disequality — properties that are not true for
general disunification problems. Finally, the anti-pattern matching algorithm has
been implemented and is available in the Tom system.

We are currently working on two questions. The first one is about the precise
complexity of the anti-pattern matching problem. For instance, the satisfiability
in T (F) of equational problems is known to be NP-complete. However, solv-
ing anti-pattern matching being a more restricted disunification problem, we
conjecture that solving an anti-pattern matching problem is polynomial.

The second one concerns the study of anti-pattern matching in presence of
associative operators. This is quite appealing because of the nice expressive-
ness that such a feature will provide. For instance in Tom the pattern (∗, !a, ∗)
would denote a list which contains at least one element different from a, whereas
!(∗, a, ∗) would denote a list which does not contain any a. This will be more gen-
erally useful for theories like associativity and commutativity and anti-pattern
matching should therefore be investigated for appropriate equational theories.

Acknowledgments. We sincerely thank Luigi Liquori for stimulating discus-
sions and suggestions, Emilie Balland for her comments on the preliminary ver-
sion of this paper and the anonymous referees for their valuable remarks and
suggestions.

References

1. A. Aiken, D. Kozen, and E. Wimmers. Decidability of systems of set constraints
with negative constraints. Information and Computation, 122(1):30–44, 1995.

2. A. Aiken and E. L. Wimmers. Solving systems of set constraints (extended
abstract). In LICS, pages 329–340. IEEE Computer Society, 1992.

3. H. Ait-Kaci, A. Podelski, and G. Smolka. A feature constraint system for logic
programming with entailment. Theoretical Computer Science, 122(1–2):263–283,
1994.

4. F. Baader, H.-J. Bürckert, B. Nebel, W. Nutt, and G. Smolka. On the expressivity
of feature logics with negation, functional uncertainty, and sort equations. Journal
of Logic, Language and Information, 2:1–18, 1993.

124 C. Kirchner, R. Kopetz, and P.-E. Moreau

5. F. Baader and T. Nipkow. Term Rewriting and all That . Cambridge University
Press, 1998.

6. R. Backofen and G. Smolka. A complete and recursive feature theory. Theoretical
Computer Science, 146(1–2):243–268, July 1995.

7. W. Charatonik and L. Pacholski. Negative set constraints with equality. In LICS,
pages 128–136. IEEE Computer Society, 1994.

8. K. L. Clark. Logic and databases, chapter Negation as Failure, pages 293–322.
Plenum Press, New York, 1978.

9. H. Comon. Unification et disunification. Théories et applications. Thèse de Doc-
torat d’Université, Institut Polytechnique de Grenoble (France), 1988.

10. H. Comon. Disunification: a survey. In J.-L. Lassez and G. Plotkin, editors,
Computational Logic. Essays in honor of Alan Robinson, chapter 9, pages 322–
359. The MIT press, Cambridge (MA, USA), 1991.

11. H. Comon and P. Lescanne. Equational problems and disunification. In C. Kirch-
ner, editor, Unification, pages 297–352. Academic Press inc., London, 1990.

12. J. S. Foster. CLP(SC): Implementation and efficiency considerations. In Pro-
ceedings Workshop on Set Constraints, held in Conjunction with CP’96, Boston,
Massachusetts, 1996.

13. G. Huet. Résolution d’equations dans les langages d’ordre 1, 2, . . . , ω. Thèse de
Doctorat d’Etat, Université de Paris 7 (France), 1976.

14. C. Kirchner and H. Kirchner. Rewriting, solving, proving. A preliminary version
of a book available at http://www.loria.fr/∼ckirchne/rsp.ps.gz, 1999.

15. C. Kirchner, P.-E. Moreau, and A. Reilles. Formal validation of pattern matching
code. In P. Barahona and A. Felty, editors, Proceedings of the 7th ACM SIGPLAN
PPDP, pages 187–197. ACM, July 2005.

16. J.-L. Lassez and K. Marriott. Explicit representation of terms defined by counter
examples. Journal of Automated Reasoning, 3(3):301–317, 1987.

17. L. Liquori. iRho: the software [system description]. DCM: International Work-
shop on Development in Computational Models. Electr. Notes Theor. Comput. Sci.,
135(3):85–94, 2006.

18. A. Momigliano. Elimination of negation in a logical framework. In Proceedings
of the 14th Annual Conference of the EACSL on Computer Science Logic, volume
1862 of LNCS, pages 411–426, London, UK, 2000. Springer Verlag.

19. P.-E. Moreau, C. Ringeissen, and M. Vittek. A Pattern Matching Compiler for
Multiple Target Languages. In G. Hedin, editor, 12th Conference on Compiler
Construction, Warsaw (Poland), volume 2622 of LNCS, pages 61–76. Springer-
Verlag, May 2003.

20. M. Müller, J. Niehren, and A. Podelski. Inclusion constraints over non-empty sets
of trees. In M. Dauchet, editor, Theory and Practice of Software Development, In-
ternational Joint Conference CAAP/FASE/TOOLS, volume 1214 of LNCS, pages
217–231. Springer Verlag, Apr. 1997.

http://www.loria.fr/~ckirchne/rsp.ps.gz

A Certified Lightweight Non-interference Java

Bytecode Verifier�

Gilles Barthe1, David Pichardie2,��, and Tamara Rezk1

1 INRIA Sophia Antipolis, France
2 IRISA/INRIA Rennes, France

Abstract. Non-interference is a semantical condition on programs that
guarantees the absence of illicit information flow throughout their exe-
cution, and that can be enforced by appropriate information flow type
systems. Much of previous work on type systems for non-interference
has focused on calculi or high-level programming languages, and existing
type systems for low-level languages typically omit objects, exceptions,
and method calls, and/or do not prove formally the soundness of the
type system. We define an information flow type system for a sequen-
tial JVM-like language that includes classes, objects, arrays, exceptions
and method calls, and prove that it guarantees non-interference. For in-
creased confidence, we have formalized the proof in the proof assistant
Coq; an additional benefit of the formalization is that we have extracted
from our proof a certified lightweight bytecode verifier for information
flow. Our work provides, to our best knowledge, the first sound and im-
plemented information flow type system for such an expressive fragment
of the JVM.

1 Introduction

Starting from the work of Volpano and Smith [21], type systems have become
a popular means to enforce information flow policies in programming languages
[19]. It is striking to notice that, although mobile code security is one central
motivation behind those works, there has been very little effort to study infor-
mation flow in low-level languages such as Java bytecode. While focusing on
source languages is useful to provide developers with assurance that their code
does not leak information unduly, users need to be provided with enforcement
mechanisms that operate at bytecode level, because Java applets are downloaded
as JVM bytecode programs.

Contribution. We define and prove the soundness of an information flow type
system for a sequential fragment of the Java Virtual Machine (JVM) with ob-
jects, arrays, methods, and exceptions; the type system follows the principles
of bytecode verification and thus can be integrated in a standard Java security
architecture.
� Work partially supported by IST Project MOBIUS, by the RNTL Castles and by

the ACI Sécurité SPOPS.
�� Most of this work was performed while at INRIA Sophia Antipolis.

R. De Nicola (Ed.): ESOP 2007, LNCS 4421, pp. 125–140, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

126 G. Barthe, D. Pichardie, and T. Rezk

program

TCB

PA analyser

CDR analyser

IF analyser

PA checker

CDR checker

IF checker

diagnostic

annotations

annotations

annotations

Fig. 1. Information flow analyser and checker

In order to deal with the unstructured nature of bytecode programs, and in
particular jumps and exceptions, the analysis is performed in three successive
phases, described in the left part of Figure 1:

1. the PA (pre-analyse) analyser computes information that can be used to re-
duce the control flow graph and to detect branches that will never be taken.
The PA analyser performs analyses of null pointers (to predict unthrowable
null pointer exceptions), classes (to predict target of throws instructions), ar-
ray accesses (to predict unthrowable out-of-bounds exceptions), and excep-
tions (to over-approximate the set of throwable exceptions for each method).

2. the CDR analyser computes control dependence regions (cdr), using the re-
sults of the PA analyser to minimise the size of regions. The computations
are based on well-known techniques based on post-dominators (see the com-
panion report [5] for details).

3. the IF (Information Flow) analyser uses lightweight bytecode verification
techniques, which adapt Kildall’s algorithm to compute efficiently for each
program point its security environment (i.e. the upper bound of the guards
under which it executes) and a stack type that records the security levels of
elements of the stack at this program point.

Checking, described on the right part of Figure 1, assumes that programs are
annotated with (part of) the results of the PA, CDR, and IF analysers:

1. the PA checker verifies that annotations provided by the PA analyser are
correct. Correctness is expressed as as an equivalence between the JVM se-
mantics and an instrumented semantics that manipulate programs annotated
with the results of the PA analyser;

2. the CDR checker verifies that regions provided by the CDR analyser verify
the safe over-approximation properties (SOAP) of Section 4. Its correctness
relies on the correctness of the PA checker;

3. the IF checker verifies type correctness in the style of lightweight bytecode
verification. Correctness is proved by showing that typable programs are
non-interfering. Its correctness relies on the correctness of the CDR checker
and by transitivity on the correctness of the PA checker.

A Certified Lightweight Non-interference Java Bytecode Verifier 127

We have formally defined the CDR and IF checkers, and proved their correctness
in the Coq proof assistant. The correctness proof assumes that the PA checker is
correct; defining and proving the correctness of (parts of) the PA checker in Coq
has been done elsewhere [7], and integrating this development in our framework
is left for future work.

Related Work. We refer to the survey article of Sabelfeld and Myers [19] for a
more complete account of recent developments in language-based security, and
only focus on most relevant work.

Java. Jif [15] is an information-flow typed extension of Java that builds upon
the decentralised label model to support flexible and expressive information flow
policies. Jif offers developers a practical tool for ensuring that applications meet
their information flow policies, but lacks a soundness proof. However, Banerjee
and Naumann [3,16] have shown the soundness of a simpler information flow
type system for a fragment of Java with objects and methods.

Hedin and Sands [12] have observed that most implementations of the Java
API invalidate the assumption, common to our work and to [3,15], that references
are opaque, i.e. the only observations that an attacker can make about a reference
are those about the object to which it points, and exhibited a typable Jif program
that unintentionally leaks information through invoking API methods. There are
several ways to address this issue, but we leave it for future work.

JVM. The paper improves substantially on our earlier work [6]: the language
of this paper is more realistic (it includes methods and arrays and provides
an accurate treatment of exceptions), the security policies are more expressive
(we adopt arbitrary lattices of security levels instead of two-element lattices), the
enforcement mechanism is more accurate (thanks to the PA checker) and simpler
(some redundant typing constraints have been removed), and the soundness
proof has been machine checked using the proof assistant Coq.

Lanet et al. [8] report on a successful use of model-checking techniques to
detect illicit information flows in a case study involving Java smart cards. Genaim
and Spoto [10] propose another automatic method to check information flow
policies for Java bytecode using boolean functions and binary decision diagrams.

Type-preserving compilation. Generalising the results of earlier work with Nau-
mann [4], we have shown that programs typable into an fragment of Jif are
compiled into bytecode programs that are accepted by our information flow
checker [17]. These results show that (a fragment of) Jif can be used to develop
information-flow aware applications that are accepted by our type system. Con-
versely, they show that applications written in (a fragment of) Jif can be verified
automatically at the consumer side by an enhanced bytecode verifier. Zanardini
[23] has shown for a fragment of Java including objects and method calls that the
compiled counterpart of a source Java program that is accepted by an analyser
for abstract non-interference (ANY) [11], also satisfies ANY. This issue has also
been studied in the context of typed assembly languages [9,22].

128 G. Barthe, D. Pichardie, and T. Rezk

2 Language: Syntax and Semantics

Our information flow type checker is checked correct against Bicolano1, which
formalises the semantics of the JVM in Coq. Bicolano consists of a small step
semantics, which captures one-step execution of the JVM and a big step seman-
tics, a small step semantics where method calls are big step (which dispenses
from dealing with stack frames and is useful for reasoning); all semantics are
proved equivalent in the usual sense. For the purpose of this paper, we have also
defined a non-standard semantics on annotated programs, using annotations to
eliminate some impossible transitions.

Programs. A program in the JVM is composed of a set of classes. Each class
includes a set of fields and a set of methods, including a distinguished method
main that is the first one to be executed. Each method description includes
a method identifier, its code (set of labelled bytecode instructions), a table of
exception handlers, and a signature that gives the type of its arguments and
of its result.2 We note Handler(i, C) = t when there is a handler at program
point t for exception of class C thrown at program point i, and Handler(i, C) ↑
otherwise. A method identifier may correspond to several methods in the class
hierarchy according to overriding of methods. We assume there is a function
lookup attached to each program that takes a method identifier and a class
name and returns the method to be executed.

Memory Model. The memory model is summarised in Figure 2. During the
execution of a method values manipulated by the JVM are either numerical
values (taken in a set N), locations (taken in an infinite set L), or simply the
null constant. Method computation is done on states of the form 〈h, pc, ρ, s〉
where h is the heap of objects and arrays, pc is the current program point, ρ
is the set of local variables and s the operand stack. Heaps are modelled as a
partial function h : L ⇀ (O + A) from location to objects or arrays. The set O
of objects is modelled as C × (F ⇀ V), i.e. a class name and a partial function
from fields to values. The set A of arrays is modelled as N × S × (N ⇀ V), i.e.
each array a handles a length number (noted a.length), a security level (noted
at(a)) and a partial function from index to values (whose accesses are noted
a[i]). The array security level is a proof artifact useful to keep track of the level
attached to every element of an array during allocation. It is straightforward to
prove equivalence between executions which manipulate this extra information
and those who do not. A set of local variables is a mapping ρ ∈ X → V from
local variables to values. Operand stacks are lists of values. A method execution
terminates on final states. A final state is either a pair (v, h) ∈ V ×Heap (normal
termination), or a pair (〈l〉, h) ∈ L × Heap (the method execution terminates
because of an exception thrown on an object pointed by a location l, but not
caught in this method).
1 http://mobius.inria.fr/bicolano
2 In this abstract, we assume that all methods return a value upon normal termination;

however our formalisation also considers void methods.

http://mobius.inria.fr/bicolano

A Certified Lightweight Non-interference Java Bytecode Verifier 129

N : numerical values L: locations X : variable names
C: class names F : field names P : program points

V = N + L + {null} values
LocalVar = X → V local variables
OpStack = V∗ operand stacks

O = C × (F ⇀ V) objects
A = N × S × (N ⇀ V) arrays

Heap = L ⇀ (O + A) heap
State = Heap × P × LocalVar × OpStack states

FinalState = (V + L) × Heap final states

Fig. 2. Memory model of the JVM

Operational Semantics. Semantic transitions between consecutive states are
modelled by a relation �τ

m, parameterised by a tag τ ∈ {∅} + C (set noted Tag
in the sequel) to describe the nature of the transition (c ∈ C for a transition
which throws an exception of class c and ∅ for any other transition). We note
ρ, h ⇓m r, h the transitive closure 〈1, ρ, ε, h〉(�m)�r, h between an initial state
and a final result.

We give in Figure 3 the semantics3 of some instructions. There are four rules
for the virtual call instruction. The first models the case where execution of
the callee terminates normally. The location l is used to resolve the virtual call.
Thanks to the class of l and the identifier mID, a method m′ is found in the class
hierarchy (through the lookup operator). The transitive closure of �m is then
used to obtain the result of the execution of m′. Execution of m′ is initialised
with location l for the reserved variable this and the elements of the operand
stack os1 for the other variables. The second and the third rules model the cases
where execution of the called method terminates by an uncaught exception.
In the former rule the thrown exception is caught in method m while in the
latter rule it is uncaught and m then terminates abnormally. In both cases,
we impose that thrown exception has been statically predicted by the result
excAnalysis(mID) of the exception analysis. The fourth rule corresponds to a null
pointer exception thrown because the virtual call was made on a null reference.
We note np the Java class associated to the null pointer exception. When a
native exception np is thrown the catching mechanism is model by the function
RuntimeExceptionHandling. Each instruction which performs accesses references
(like getfield f , putfield f and throw) has similar semantics rules. The fifth rule
corresponds to the array store instruction (xastore) where the value v is stored
in the array pointed by the location l, at the index number i. The last two
rules concern the instruction throw which throws the exception pointed by the
reference on top of the stack.

3 For every function f ∈ A → B, x ∈ A and v ∈ B, we let f [x �→ v] denote the unique
function f ′ s.t. f ′(y) = f(y) if y �= x and f ′(x) = v. Further, we let A� denote
the set of A-stacks for every set A. We use:: to denote the cons and concatenation
operations on stacks.

130 G. Barthe, D. Pichardie, and T. Rezk

Pm[i] = invokevirtual mID m′ = lookupP (mID, class(h(l)))
{this �→ l, x �→ os1}, h ⇓m′ v, h′

〈i, ρ, os1 :: l :: os2, h〉�∅
m〈i + 1, ρ, v :: os2, h′〉

Pm[i] = invokevirtual mID m′ = lookupP (mID, class(h(l))) e = class(h′(l′))

{this �→ l, x �→ os1}, h ⇓m′ 〈l′〉, h′ Handlerm(i, e) = t e ∈ excAnalysis(mID)

〈i, ρ, os1 :: l :: os2, h〉�e
m〈t, ρ, l′ :: ε, h′〉

Pm[i] = invokevirtual mID m′ = lookupP (mID, class(h(l))) e = class(h′(l′))

{this �→ l, x �→ os1}, h ⇓m′ 〈l′〉, h′ Handlerm(i, e) ↑ e ∈ excAnalysis(mID)

〈i, ρ, os1 :: l :: os2, h〉�e
m〈l′〉, h′

Pm[i] = invokevirtual mID l′ = fresh(h) nullAnalysis(m, i) �= safe

〈i, ρ, os1 :: null :: os2, h〉�np
m RuntimeExceptionHandling(h, l′, np, i, ρ)

Pm[i] = xastore 0 ≤ i < h(l).length

〈i, ρ, v :: i :: l :: os, h〉�∅
m〈i + 1, ρ, os, h[l �→ h(l)[i �→ v]]〉

Pm[i] = throw e = class(h(l)) Handlerm(i, e) = t e ∈ classAnalysis(m, i)

〈i, ρ, l :: os, h〉�e
m〈t, ρ, l :: ε, h〉

Pm[i] = throw e = class(h(l)) Handlerm(i, e) ↑ e ∈ classAnalysis(m, i)

〈i, ρ, l :: os, h〉�e
m〈l〉, h

with RuntimeExceptionHandling : Heap × L × C × PP × (X ⇀ V) → State + (L × Heap) defined by

RuntimeExceptionHandling(h, l′, C, i, ρ) =
{ 〈t, ρ, l′ :: ε, h[l′ �→ default(C)]〉 if Handlerm(i, C) = t

〈l′〉, h[l′ �→ default(C)] if Handlerm(i, C) ↑

Fig. 3. Selected semantics rules

In several rules boxed premises represent extra-hypotheses added to the stan-
dard JVM semantics thanks to the PA analyser, in the same way that only
well-typed states are considered when assuming a program is byte-code veri-
fied. It is possible to show that our instrumented semantics coincides with the
standard semantics if the PA analysis is safe.

3 Policies

The security policy is expressed at the level of methods and based on the as-
sumption that the attacker can only draw observations on the input/output
behaviour of methods. We do not consider the case of executions that hang,
nor of “wrong” executions that get stuck—such executions are eliminated by
bytecode verification.

The policy is given by a lattice (S, ≤,
, �) of security levels, and:

– a security level kobs that determines the observational capabilities of the
attacker. More precisely, the attacker can observe fields, local variables, and
return values whose level is at or below kobs;

– a global policy ft : F → S that attaches security levels to fields. The global
policy is used to determine a notion of equivalence ∼ between heaps. In-
tuitively, two heaps h1 and h2 are equivalent if h1(l).f = h2(l).f for all
locations l and fields f s.t. ft(f) ≤ kobs;

A Certified Lightweight Non-interference Java Bytecode Verifier 131

– a table of method signatures, that associates to each method identifier4 and
security level (corresponding to the object called) a security signature of the
form kv

kh−→ kr, where kv provides the security level of the method local
variables, including its arguments5, kh is the heap effect of the method, i.e.
the lower bound for security levels of fields that are affected during execution
of the method, and kr is a record of security levels of the form {n : kn, e1 :
ke1 , . . . en : ken}, where kn is the security level of the return value (normal
termination) and each ei is an exception class that might be propagated
by the method, associated with a security level ki.6 It indicates the level of
information than can be learnt by observing if the method terminates by an
uncaught exception ei or by a normal return.

A method is safe w.r.t. a signature kv
kh−→ kr if:

1. two terminating runs of the method with ∼kv -equivalent inputs and equiv-
alent heaps, yield ∼kr -equivalent results and equivalent heaps;

2. the heap effect of the method is greater than kh, i.e. the method does not
perform field updates on fields whose security level is below kh.

Note that the heap effect does not appear in the statement of non-interference
proper but is needed to make a modular analysis. We use the heap effect for
virtual calls that occur in a high context in order to enforce that no modification
is done on low information during the execution of the called method.

Formally, the observational power of the attacker is defined by various indis-
tinguishability relations ∼D on each different semantic sub-domains D of the
JVM memory, see Figure 4; these relations are parameterised by a bijection
β ∈ L ⇀ L on (a partial set of) locations in order to model the difference between
the allocation history between two states (following Banerjee and Naumann’s ap-
proach [3]): after a high branching where allocations may occur, objects might be
indistinguishable, even if their locations are different during execution. Figure 5
presents the notion of output indistinguishability. In all cases, heaps must be
indistinguishable. This definition implies that if indistinguishability outputs are
of different nature (like normal value/exception or two exceptions from different
classes) the security level of the corresponding exception must be high in the
output signature kr. When outputs are of similar nature (two normal values
or two exceptions of the same class) they are indistinguishable as soon as the
corresponding security level in kr is low.

Definition 1 (Safe method and program). A method m is safe w.r.t. a
policy kv

kh−→ kr, if for every partial function β ∈ L ⇀ L and every ρ1, ρ2 ∈
4 Associating signatures with method identifier instead of method allows to enforce

that overriding of a method preserves its declared security signatures.
5 I.e. local variables have a fixed security level. Leroy [14] defines a transformation that

ensures this property, and shows it enables on-device bytecode verification. Hunt and
Sands [13] propose an alternative approach.

6 In the rest of the paper, we will write kr [n] instead of kn and kr [ei] instead of kei .

132 G. Barthe, D. Pichardie, and T. Rezk

relation definition

v1 ∼V
β v2

where v1, v2 ∈ V null ∼V
β null v ∈ N

v ∼V
β v

v1, v2 ∈ L β(v1) = v2

v1 ∼V
β v2

ρ1 ∼LocalVar
β,kv

ρ2

where ρ1, ρ2 ∈ LocalVar
∀x ∈ X , kv (x) ≤ kobs ⇒ ρ1(x) ∼V

β ρ2(x)

o1 ∼O
β o2

where o1, o2 ∈ O
– class(o1) = class(o2)
– ∀f ∈ dom(o1), ft(f) ≤ kobs ⇒ o1(f) ∼V

β o2(f)

a1 ∼A
β a2

where a1, a2 ∈ A
– a1.length = a2.length and at(a1) = at(a2)
– ∀i ∈ [0, a1.length [, at(a1) ≤ kobs ⇒ a1[i] ∼V

β a2[i]

h1 ∼Heap
β h2

where h1, h2 ∈ Heap

– β is a bijection between dom(β) and rng(β)
– dom(β) ⊆ dom(h1) and rng(β) ⊆ dom(h2)
– ∀l ∈ dom(β), h1(l) ∼O

β h2(β(l)) or h1(l) ∼A
β h2(β(l))

Fig. 4. Indistinguishability relations

h1 ∼β h2 kr [n] ≤ kobs ⇒ v1 ∼β v2

(v1, h1) ∼β,kr (v2, h2)

h1 ∼β h2 kr [class(h1(l1))] ≤ kobs l1 ∼β l2

(〈l1〉, h1) ∼β,kr (〈l2〉, h2)

h1 ∼β h2 kr [class(h1(l1))] �≤ kobs

(〈l1〉, h1) ∼β,kr (v2, h2)

h1 ∼β h2 kr [class(h2(l2))] �≤ kobs

(v1, h1) ∼β,kr (〈l2〉, h2)

h1 ∼β h2 kr [class(h1(l1))] �≤ kobs kr [class(h1(l1))] �≤ kobs

(〈l1〉, h1) ∼β,kr (〈l2〉, h2)

Fig. 5. Output indistinguishability

X ⇀ V, h1, h2, h
′
1, h

′
2 ∈ Heap, r1, r2 ∈ V+L such that ρ1, h1 ⇓m r1, h

′
1, ρ2, h2 ⇓m

r2, h
′
2 and h1 ∼β h2, ρ1 ∼kv,β ρ2:

– non-interference there exists a partial function β′ ∈ L ⇀ L such that β ⊆ β′

and (r1, h1) ∼β′,kr (r2, h2);
– heap effect safety for each location l ∈ dom(h1) and each fields f ∈ F such

that kh �≤ ft(f), h1(l).f = h′
1(l).f .

A program is safe with respect to a table of method signature Γ if for all its
method m, m is safe with respect to all policies in { Γm[k] | k ∈ S }.

4 Verification of Control Dependence Regions

The CDR checker begins by computing the static flow graph of all methods. In
order to treat methods accurately, the flow graph of method m is represented
by an indexed successor relation (�→τ

m)τ∈Tag ⊆ (PP × PP) + PP , where Tag is
either an exception class (exceptional flow) or ∅ (normal flow). We write i �→τ

m j
(resp. i �→τ

m) if (i, j) ∈�→τ
m (resp. i ∈�→τ

m). Furthermore, we say that i is a return
point if i �→τ for some τ and note i �→m j for ∃τ, i �→τ

m j.

A Certified Lightweight Non-interference Java Bytecode Verifier 133

The CDR checker retrieves the functions provided by the CDR analyser:

regionm : PP × Tag → ℘(PP) junm : PP × Tag ⇀ PP

and checks the SOAP7 properties below in order to guarantee the correctness of
the information that they provide:

SOAP1: for all program points i, j, k and tag τ such that i �→m j, i �→τ
m k and

j �= k (i is hence a branching point), k ∈ regionm(i, τ) or k = junm(i, τ);
SOAP2: for all program points i, j, k and tag τ , if j ∈ regionm(i, τ) and j �→m k,

then either k ∈ regionm(i, τ) or k = junm(i, τ);
SOAP3: for all program points i, j and tag τ , if j ∈ region(i, τ) (or i = j) and

j is a return point then junm(i, τ) is undefined;
SOAP4: for all program points i and tags τ1, τ2, if junm(i, τ1) and junm(i, τ2)

are defined and junm(i, τ1) �= junm(i, τ2) then junm(i, τ1) ∈ regionm(i, τ2)
or junm(i, τ2) ∈ regionm(i, τ1);

SOAP5: for all program points i, j and tag τ , if j ∈ region(i, τ) (or i = j)
and j is a return point then for all tag τ ′ such that junm(i, τ ′) is defined,
junm(i, τ ′) ∈ regionm(i, τ).

Junction points uniquely delimit ends of regions. SOAP1 expresses that suc-
cessors of branching points belongs (or ends) the region associated with the same
kind as their successor relation. SOAP2 says that a successor of a point in a re-
gion is either still in the same region or at this end. SOAP3 forbids junction
points for a region which contains (or start with) a return point. SOAP4 and
SOAP5 express properties between regions of a same program point but with
different tags. SOAP4 says that if two differently tagged regions end in distinct
points, the junction point of one must belong to the region of the other. SOAP5
imposes that the junction point of a region must be within every region which
contains (or starts with) a return point and is decorated with a different tag.

5 Type System

The information flow type system is defined as a modular (i.e. method-wise) data
flow analysis of an abstract transition relation. Typing is defined relative to the
table Γ of method signatures (used to handle method calls) and to the global
policy ft , to the CDR annotations, to a security environment se that assigns
security levels to program points (used to avoid implicit flows) and to a current
method signature sgn .

Typing Rules. The typing rules are designed to prevent information leakage
through imposing appropriate constraints; Figure 6 presents some selected typing
rules which are commented below. Typing rules are of one of the two forms below,

7 Safe Over Approximation Property.

134 G. Barthe, D. Pichardie, and T. Rezk

Pm[i] = invokevirtual mID ΓmID [k] = k′
a

k′
h−→ k′

r

k kh se(i) ≤ k′
h k ≤ k′

a[0] ∀i ∈ [0, length(st1) − 1], st1[i] ≤ k′
a[i + 1]

ke =
⊔

e∈excAnalysis(mID) k′
r[e] ∀j ∈ region(i, ∅), k ke ≤ se(j)

Γ, region, se, ka
kh−→ kr, i �∅ st1 :: k :: st2 ⇒ liftk�ke

(
(k′

r[n] se(i)) :: st2
)

Pm[i] = invokevirtual mID ΓmID [k] = k′
a

k′
h−→ k′

r

k kh se(i) ≤ k′
h k ≤ k′

a[0] ∀i ∈ [0, length(st1) − 1], st1[i] ≤ k′
a[i + 1]

e ∈ excAnalysis(mID) ∀j ∈ region(i, e), k k′
r[e] ≤ se(j) Handler(i, e) = t

Γ, region, se, ka
kh−→ kr, i �e st1 :: k :: st2 ⇒ (k k′

r[e]) :: ε

Pm[i] = invokevirtual mID ΓmID [k] = k′
a

k′
h−→ k′

r

k kh se(i) ≤ k′
h k ≤ k′

a[0] ∀i ∈ [0, length(st1) − 1], st1[i] ≤ k′
a[i + 1]

e ∈ excAnalysis(mID) k k′
r[e] ≤ kr[e] ∀j ∈ region(i, e), k k′

r[e] ≤ se(j) Handler(i, e) ↑

Γ, region, se, ka
kh−→ kr, i �e st1 :: k :: st2 ⇒

P [i] = xastore k1 k2 k3 ≤ ke ∀j ∈ region(i, ∅), ke ≤ se(j)

Γ, region, se, ka
kh−→ kr, i �∅ k1 :: k2 :: k3[ke] :: st ⇒ liftke (st)

Fig. 6. Selected typing rules

where the rule on the left is used for normal intra-method execution, and the
rule on the right is used for return instructions:

P [i] = ins constraints
Γ, ft , region , se, sgn, i �τ st ⇒ st′

P [i] = ins constraints
Γ, ft , region, se, sgn, i �τ st ⇒

where st, st′ ∈ S�
are stacks of extended security levels, ins is an instruction

found at point i in program P , and τ is a tag. An extended security level is
either a standard level k ∈ S or a pair of level (k, ke) (noted k[ke]) to type array
references. Here k represents the level of the reference while ke is the level of
the elements in the array. Such a distinction is mandatory to be able to have
low arrays of high elements. Tags are useful when several rules deal with a same
instruction. Depending on the nature of the rule (st ⇒ st′ or st ⇒) and the
tag (τ = ∅ or τ = e ∈ C) we make a non-ambiguous correspondence between
semantic and typing rules.

Virtual call. There are several constraints common to all rules for virtual calls.
The constraint k ≤ k′

h avoids invocation of methods with low heap effect on
high target objects, as invoking two different target objects (in two executions)
may lead to different method bodies to be executed (due to method lookup) and
thus if the method identifier has a low heap effect (kh ≤ kobs), then the low
memory may be modified differently in both executions. The constraint se(i) ≤
k′

h prevents implicit flows (low assignment in high regions) during execution of
the called method. The constraint kh ≤ k′

h prevents the called method to update
fields with a level lower that kh. It allows to avoid invocation of methods with low
effect on the heap by a method with high effect. Finally, constraints k ≤ k′

a[0]

A Certified Lightweight Non-interference Java Bytecode Verifier 135

and ∀i ∈ [0, length(st1) − 1], st1[i] ≤ k′
a[i + 1] link argument levels with formal

parameter levels.
In the first typing rule, the next stack type is lifted8 with level k
 ke to avoid

indirect flows because of null a pointer exception on the current object. The level
ke is greater than all levels of the exceptions that may escape from the called
method. If abnormal termination of the called method reveals secret information
then ke is high and the next stack type must be high too. The security level of
the return value is (k′

r[n]
 se(i)). The level k′
r[n] corresponds to the level of the

return value in the context of the called method. se(i) prevents implicit flow on
the result after the virtual call.

The second and the third typing rule are parameterised by an exception e
that may be caught by the called method. In the second rule, this exception is
caught in the current method while in the third it is not. In both rules k
 k′

r[e]
gives an upper bound on the information that can be gained by observing if
the called method reached the point i + 1. This level is hence used to constrain
region(i, e), the top of the stack when e is caught and the security level kr[e]
when it is not.

Arrays. We only give the rule concerning normal execution of the array store
instruction. We require the stored value to have a lower level than those of the
array content (k1 ≤ ke). The level k2 of the index should be lower than ke

to prevent attacker to learn information by observing which part of the array
has been modified. In a similar way, the level k3 of the reference should be
lower than ke to avoid modifying two distinct arrays with observable contents.
Several exceptions can occur when performing an array store (due to null pointer
reference, out-of-bound access or wrong type assignment) so we lift the stack type
with the level ke and impose a similar constraint on the current region.

Typing Method and Program. The definition of typable method is stated to
ensure that runs of typable programs (i.e. programs whose methods are typable
against their signatures) verify at each step the constraints imposed by the typing
rules, provided they are called with parameters that respect the signature of their
main method.

Definition 2 (Typable method and program). A method m is typable w.r.t.
a method signature table Γ , a global field policy ft , a signature sgn and a cdr
regionm if there exists a security environment se : PP → S and a function
S : PP → S�

such that S1 = ε and for all i, j ∈ PP, τ ∈ Tag:

1. i �→τ j implies there exists st ∈ S�
such that Γ, ft , region , se, sgn, i �τ Si ⇒

st and st � Sj;
2. i �→τ implies Γ, ft , region , se, sgn, i �τ Si ⇒

where � denotes the point-wise extension of ≤ on stack types.

8 Lifting a stack type with a level k correspond to a map of λx.k x on the whole
stack. This technique was initially proposed in [6].

136 G. Barthe, D. Pichardie, and T. Rezk

int m(boolean x,C y) throws C
{
if (x) {throw new C();}
else {y.f = 3;};
return 1;

}

0 : load x
1 : ifeq 4
2 : new C
3 : throw
4 : load y
5 : push 3
6 : putfield f
7 : const 1
8 : return

0

1

2

3

4

5

6

7

8

∅

∅

∅

C

∅

∅

∅ np

∅

∅ ∅

i S(i) se(i)

0 ε L
1 L :: ε L
2 ε L
3 L :: ε L
4 ε L
5 H :: ε L
6 L :: H :: ε L
7 ε H
8 H :: ε H

region(1, ∅) = {2, 3, 4, 5, 6, 7, 8} jun(1, ∅) undef.

region(6, ∅) = ∅ jun(6, ∅) = 7 region(6,np) = {7, 8} jun(6,np) undef.

Fig. 7. Typable methods at source and bytecode level

0 : load oL

1 : load yH

2 : load xL

3 : invokevirtual m
4 : store zH

5 : push 1
6 : store tL

handler : [0, 3], NullPointer → 4

0 1 2

3

4

5

6

np

∅ ∅

∅ C

∅

∅

∅

i S(i) se(i)

0 ε L
1 L :: ε L
2 L :: L :: ε L
3 L :: H :: L :: ε L
4 H :: ε L
5 ε L
6 L :: ε L

region(3, ∅) = region(3, np) = ∅ jun(3, ∅) = jun(3,np) = 4
region(3, C) = {4, 5, 6, . . .} jun(3, C) undef.

Fig. 8. Typable fragment with virtual call

A program is typable with respect to a table of method signature Γ , a global
field policy ft and a family of cdr (regionm)m if for all its method m, m is typable
with respect to Γ , ft , regionm and all signature in { Γm[k] | k ∈ S }.
In contrast to [6], types are monovariant, i.e. there is a single stack type per
program point. Monovariant analyses are less precise, but remain sufficiently
precise for showing type-preserving compilation. Monovariant analyses are more
efficient, but harder to prove correct, as several monotonicity results are needed.

Typable Examples. We now give two examples of typable methods. For sim-
plicity, we take as lattice of security levels S = {L, H} with L ≤ H , where H is
the high level for confidential data, and L is the low level for observable data.
We note xk a local variable x whose security level is k.

Figure 7 presents an example of a typable method m, giving the corresponding
source code and the tagged flow graph. m may throw two kinds of exceptions:
an exception of class C depending on the value of x, and an exception of class
np depending on the values of x and y. Normal return depends on y because
execution terminates normally only if it is not null . The method m is typable

A Certified Lightweight Non-interference Java Bytecode Verifier 137

with the signature m : (this : L, x : L, y : H) H−→ {n : H, C : L, np : H}
with the cdr (given only for branching points), the type stacks and the security
environment given in Figure 7.

Figure 8 gives another example9 where fine grain exception handling is nec-
essary for the code to be typable. Here the update tL = 1 at point 6 is accepted
if and only if se(6) is low. This fragment is accepted by our type system since,
thanks to the fine grain regions, typing rule for virtual call only propagates ex-
ception levels kr[np] = H in the region region(3,np) (instead of region(3, C)).

6 Main Result

We have formalised in Coq several predicates: i) the security condition as SAFE10;
ii) the correctness of program annotations as PA; iii) the SOAP properties as
CDR (given in Section 4); iv) the information flow type checker as IF based on
the notion of typable program (Definition 2).

We have machine-checked the following theorem.

Theorem 1. CDR and IF are decidable predicates. Furthermore for every anno-
tated program P ,

PA(P) ∧ CDR(P) ∧ IF(P) =⇒ SAFE(P)

The first item is proved by formalising boolean-valued functions checkCDR and
checkIF that characterise the predicates CDR and IF respectively. The function
checkCDR performs a direct verification of the SOAP properties for each method,
and the function checkIF uses lightweight bytecode verification techniques : ty-
pability of each method of a program is achieved by traversing the static flow
graph and checking for all edges the corresponding typing condition. What is
left for future work is to define a decidable predicate checkPA that entails PA.

The second item is proved in two steps: first, we prove unwinding lemmas and
lemmas about security environments. The unwinding lemmas show that one-
step execution of typable programs does not reveal secret information. This is
formalised using state indistinguishability; indistinguishability between operand
stacks is defined relative to stack types S and T , and hence we had to define
state indistinguishability relative to stack types. In the sequel, we write s ∼S,T t
whenever s and t are equivalent w.r.t. S and T . The unwinding lemmas are of
the form (we omit partial bijections and transition tags):

– locally respects: if s ∼S,T t, and pc(s) = pc(t) = i, and s � s′, t � t′,
i � S ⇒ S′, and i � T ⇒ T ′, then s′ ∼S′,T ′ t′.

– step consistent: if s ∼S,T t and s � s′ and pc(s) � S ⇒ S′, and security
environment at program point pc(s) is high, and S is high, then s′ ∼S′,T t.

9 To keep the example short here we give compressed version of a compiled code.
10 Note that SAFE is based on the small-step semantics which acts as reference in

Bicolano (without any instrumentation) as defined in Definition 1.

138 G. Barthe, D. Pichardie, and T. Rezk

In addition to the unwinding lemmas, we need two lemmas about security envi-
ronments:

– high branching: if s ∼S,T t with pc(s) = pc(t) = i and pc(s′) �= pc(t′), if
s �τ s′, t �τ ′

t′, i �τ S ⇒ S′ and i �τ ′
T ⇒ T ′, then S′ and T ′ are high

and se is high in both region region(i, τ) and region(i, τ ′).
– high step: if s � s′, and pc(s) � S ⇒ S′, and security environment at

program point pc(s) is high, and S is high, then S′ is high.

We then provide a high-level reasoning establishing that a typable program
is safe. This part of the proof is not dedicated to a specific fragment of the JVM
but applies instead for cdr-based non-interference proofs on low level languages.

7 Remarks on Formal Proofs

The whole Coq development11 is about 20,000 lines of definitions and proofs;
the most important details of the proofs are given in a companion report [5].

The IF checker, and to a lesser extent the CDR checker are complex pro-
grams that form the cornerstone of the security architectures that we propose.
It is therefore fundamental that their implementation is correct, and therefore
their soundness proof should be machine checked. The need for machine-checked
proofs is accentuated by the fact that non-interference proofs are particularly
involved (w.r.t. say standard type safety proofs discussed in [2]), and that some
lemmas as locally respects involve two parallel executions leading to an explosion
of cases. For example, the JVM virtual call has 5 different transitions (call on
a null reference which generates a null pointer exception caught or not, normal
termination of the callee, termination by an exception caught or not in the caller
context) which required 15 distinct proofs to be exhaustively confronted.

Another motivation for formal proofs is foundational proof carrying code or
FPCC [1] since the Trusted Computed Base is here relegated to the Coq type
checker and the formal definition of non-interference. However, we depart from
FPCC in our strategy to prove programs: whereas FPCC uses deductive reason-
ing to encode proof rules or typing rules, we provide a computational encoding
that enables the use of reflective tactics and yields compact certificates. Once we
have defined a boolean-valued function checkPA that entails PA, one can rewrite
the main theorem as

checkPA(P) = True ∧ checkCDR(P) = True ∧ checkIF(P) = True =⇒ SAFE(P)

Thus the certificate for an annotated program shall be of the form

〈refleq True, refleq True, refleq True〉

where refleq True is a proof of True = True.

11 Available on-line at http://www.irisa.fr/lande/pichardie/iflow

http://www.irisa.fr/lande/pichardie/iflow

A Certified Lightweight Non-interference Java Bytecode Verifier 139

Agreeingly, much of the certificate is already in the annotations (that are in
P), but in comparison with FPCC, we do not have a part of the certificate that
encodes deductively the type derivation for P .

Following the approach of proof carrying proof checkers [7], it is also possible
to extract certified checkers from Coq proofs, which opens up the possibility of
safely downloading proof checkers, adding flexibility to the PCC infrastructure.

8 Conclusion

We have developed an information flow type system for a fragment of the JVM
that includes objects, methods, exceptions, and arrays, and machine checked its
soundness in Coq.

An important goal for future work is to experiment with our type system, by
running our verifier on Jif case studies. Unfortunately, most case studies make
an intensive use of declassification, which is not provisioned by our type system.
Therefore, it seems important to design and machine check type systems that
support information release [20]. Another important goal is to extend our results
to multi-threaded Java, in order to broaden the scope of applications of our type
system; the proposal of Russo and Sabelfeld [18] to control the interactions
between threads and the schedulers seems a suitable starting point.

References

1. A.W. Appel and A.P. Felty. A semantic model of types and machine instuctions
for proof-carrying code. In Proceedings of POPL’00, pages 243–253. ACM Press,
2000.

2. B.E. Aydemir, A. Bohannon, M. Fairbairn, J.N. Foster, B.C. Pierce, P. Sewell,
D. Vytiniotis, G. Washburn, S. Weirich, and S. Zdancewic. Mechanized Metatheory
for the Masses: The PoplMark Challenge. In Proceedings of TPHOLs’05, volume
3603 of Lecture Notes in Computer Science, pages 50–65. Springer-Verlag, 2005.

3. A. Banerjee and D. Naumann. Stack-based access control for secure information
flow. Journal of Functional Programming, 15:131–177, March 2005.

4. G. Barthe, D. Naumann, and T. Rezk. Deriving an Information Flow Checker and
Certifying Compiler for Java. In Symposium on Security and Privacy, 2006. IEEE
Press, 2006.

5. G. Barthe, D. Pichardie, and T. Rezk. Non-interference for low level languages.
Technical report, INRIA, 2006. http://hal.inria.fr/inria-00106182.

6. G. Barthe and T. Rezk. Non-interference for a JVM-like language. In M. Fähndrich,
editor, Proceedings of TLDI’05, pages 103–112. ACM Press, 2005.

7. F. Besson, T. Jensen, and D Pichardie. Proof-Carrying Code from Certified Ab-
stract Interpretation and Fixpoint Compression. Theoretical Computer Science,
364(3):273-291, 2006.

8. P. Bieber, J. Cazin, V. Wiels, G. Zanon, P. Girard, and J.-L. Lanet. Checking
Secure Interactions of Smart Card Applets: Extended version. Journal of Computer
Security, 10:369–398, 2002.

9. E. Bonelli, A.B. Compagnoni, and R. Medel. Information flow analysis for a typed
assembly language with polymorphic stacks. In Proceedings of CASSIS’05, volume
3956 of Lecture Notes in Computer Science, pages 37–56. Springer-Verlag, 2005.

http://hal.inria.fr/inria-00106182

140 G. Barthe, D. Pichardie, and T. Rezk

10. S. Genaim and F. Spoto. Information Flow Analysis for Java Bytecode. In Pro-
ceedings of VMCAI’05, volume 3385 of Lecture Notes in Computer Science, pages
346–362. Springer-Verlag, 2005.

11. R. Giacobazzi and I. Mastroeni. Abstract non-interference: Parameterizing non-
interference by abstract interpretation. In Proceedings of POPL’04, pages 186–197.
ACM Press, 2004.

12. D. Hedin and D. Sands. Noninterference in the presence of non-opaque pointers.
In Proceedings of CSFW’06, pages 255–269. IEEE Computer Society Press, 2006.

13. S. Hunt and D. Sands. On Flow-Sensitive Security Types. In Proceedings of
POPL’06, pages 79–90. ACM Press, 2006.

14. X. Leroy. Bytecode verification on Java smart cards. Software–practice and expe-
rience, 32(4):319–340, April 2002.

15. A.C. Myers. Jflow: Practical mostly-static information flow control. In Proceedings
of POPL’99, pages 228–241. ACM Press, 1999.

16. D. Naumann. Verifying a secure information flow analyzer. In Proceedings of
TPHOLs’05, volume 3603 of Lecture Notes in Computer Science, pages 211–226.
Springer-Verlag, 2005.

17. T. Rezk. Verification of confidentiality policies for mobile code. PhD thesis, Uni-
versité de Nice Sophia-Antipolis, 2006.

18. A. Russo and A. Sabelfeld. Securing interaction between threads and the scheduler.
In Proceedings of CSFW’06, 2006.

19. A. Sabelfeld and A. Myers. Language-Based Information-Flow Security. IEEE
Journal on Selected Areas in Comunications, 21:5–19, January 2003.

20. A. Sabelfeld and D. Sands. Dimensions and principles of declassification. In Pro-
ceedings of CSFW’05. IEEE Press, 2005.

21. D. Volpano and G. Smith. A Type-Based Approach to Program Security. In
M. Bidoit and M. Dauchet, editors, Proceedings of TAPSOFT’97, volume 1214 of
Lecture Notes in Computer Science, pages 607–621. Springer-Verlag, 1997.

22. D. Yu and N. Islam. A typed assembly language for confidentiality. In P. Sestoft,
editor, Proceedings of ESOP’06, volume 3924 of Lecture Notes in Computer Science,
pages 162–179. Springer-Verlag, 2006.

23. D. Zanardini. Certified Abstract Non-Interference: Object-Oriented Code Validation
for Information Flow Security. PhD thesis, Università di Verona, April 2006.

Controlling the What and Where of
Declassification in Language-Based Security

Heiko Mantel and Alexander Reinhard

Security Engineering Group, RWTH Aachen University, Germany
mantel@cs.rwth-aachen.de, reinhard@i4.informatik.rwth-aachen.de

Abstract. While a rigorous information flow analysis is a key step in ob-
taining meaningful end-to-end confidentiality guarantees, one must also
permit possibilities for declassification. Sabelfeld and Sands categorized
the existing approaches to controlling declassification in their overview
along four dimensions and according to four prudent principles [16].

In this article, we propose three novel security conditions for control-
ling the dimensions where and what, and we explain why these conditions
constitute improvements over prior approaches. Moreover, we present a
type-based security analysis and, as another novelty, prove a soundness
result that considers more than one dimension of declassification.

1 Introduction

Research on information flow security aims at finding better ways to character-
izing and analyzing security requirements concerning aspects of confidentiality
and integrity. Regarding confidentiality, the aim of an information flow analysis
is to answer: “Can a given program be trusted to operate in an environment
where it has read access to secret data and write access to untrusted informa-
tion sinks?” There is a variety of approaches to information flow security on
the level of concrete programs (see [12] for an overview). In the simplest case,
one has a two-level policy demanding that information cannot flow from high to
low. Secure information flow can then be characterized using the idea underlying
noninterference [6]: If low outputs of the program do not depend on high inputs
then there is no danger that secret data is leaked to untrusted sinks.

Noninterference provides an intuitively convincing, declarative characteriza-
tion of information flow security. However, there are security mechanisms and
application scenarios that need some information to flow from high to low. For
instance, a password-based authentication mechanism necessarily reveals some
information about the secret password, decryption relies on a dependence be-
tween a cipher-text and the secret plain-text that it encodes, and electronic com-
merce requires secret data to be released after it has been paid for. For making
information flow security compatible with such requirements, one must permit
exceptions in the security policy. But, this raises the question how to control
that one does not introduce possibilities for unintended information leakage.

R. De Nicola (Ed.): ESOP 2007, LNCS 4421, pp. 141–156, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

142 H. Mantel and A. Reinhard

For clarifying the intentions underlying the various approaches to controlling
information release, three dimensions were introduced in [9]: what information
is declassified, who can control whether declassification occurs, and where can
declassification happen. In [16], Sabelfeld and Sands develop a taxonomy that
categorizes the existing approaches along these dimensions1 and propose four
prudent principles of controlling declassification. The taxonomy clarified the re-
lationship between the various approaches, and it revealed some anomalies and
misconceptions that had previously gone unnoticed. Another interesting outcome
is that each approach mainly aims at a single dimension and does not provide
adequate control for any of the respective other dimensions.

In this article, our scope is controlling the what and where of declassification
in a type-based security analysis. In summary, our research contributions are:

– A novel security characterization for controlling where declassification oc-
curs. Our property WHERE is similar to intransitive noninterference [9],
but WHERE satisfies the prudent principles of declassification from [16], in-
cluding monotonicity, which is not satisfied by intransitive noninterference.

– Two novel security characterizations for controlling what is declassified. Our
properties WHAT1 and WHAT2 are similar to selective dependency [3] and
its descendants (e.g., [13]), but, unlike these properties, WHAT1 and WHAT2
are applicable to concurrent programs. Lifting a security characterization
from a sequential to a concurrent setting is often not straightforward, in
particular, one must address the danger of internal timing leaks [15].

– A security type system for analyzing the information flow in concurrent
programs under policies that permit controlled exceptions. Our type system
localizes where declassification occurs and controls what is declassified. We
prove soundness results with respect to each of our properties WHERE,
WHAT1, and WHAT2. To our knowledge, the only other formal soundness
result for an information flow type system that considers where and what is
the one by Li and Zdancewic [7]. However, they aim at sequential programs
and mainly at controlling the what dimension [16].

In our project, we gained some further insights on controlling declassification.
For instance, our property WHAT1 is compositional but does not satisfy the
monotonicity principle, while our property WHAT2 is not compositional but
satisfies monotonicity. We found that, when controlling the what dimension of
declassification, one faces a fundamental difficulty when attempting to satisfy
compositionality as well as monotonicity (see Sect. 3.2). While using the prudent
principles of declassification as a sanity check for our security characterizations,
we found that formalizing the informal descriptions of the principles from [16]
is not always completely straightforward, and in some cases more than one for-
malization is sensible. As an example, we provide two alternative formalizations
of the conservativity principle for WHERE (see Theorem 2).

1 The taxonomy distinguishes localization of declassification with respect to aspects
of time during program execution (when) from other aspects of localization (where)
and categorizes according to the four dimensions: what, who, where, and when.

Controlling the What and Where of Declassification 143

2 Controlling Declassification in Dimension where

We propose a novel characterization of information flow security that controls
where declassification can occur. It is ensured that declassification is localized to
specific parts of the security policy as well as to specific parts of the computation.

Definition 1. A multi-level security policy (brief: MLS policy) is a pair (D, ≤),
where D is a set of security domains and ≤ ⊆ D×D is a partial order. The triple
(D, ≤, �) is an MLS policy with exceptions where � ⊆ D×D. The minimal and
the maximal domain in (D, ≤) are called low and high, respectively, if they exist.

Computation steps are modeled by labeled transitions between configurations of
the form 〈|〈C1 . . . Cn〉, s|〉. Here, the state s is a mapping from program variables
to values, and the vector models a pool of n threads that concurrently execute the
commands C1, . . . , Cn ∈ Com , respectively. For simplicity, we do not distinguish
between commands and command vectors of length one in the notation and use
the term program for referring to commands as well as to command vectors.

We distinguish ordinary computation steps, which are modeled by a transi-
tion relation �o, from declassification steps, which are modeled by a family of
relations (�D1→D2

d)D1,{D2}⊆D. Given a policy (D, ≤, �), the intuition is that
an ordinary transition must strictly obey the ordering ≤ (which means that in-
formation may only flow upwards according to ≤), while declassification steps
may violate this ordering by downgrading information from the domains in D1
to the domain D2. However, such violations must comply with the relation �.

2.1 Preliminaries

Given a set Var of program variables, a domain assignment is a function dom :
Var → D. By assigning a security domain dom(Id) to each variable, it creates a
connection between the configurations in a computation and the security policy.
Taking the perspective of an observer in a security domain D, two states s, t are
indistinguishable if all variables at or below this domain have the same value.

Definition 2. For a given domain D ∈ D, two states s and t are D-equal
(denoted by s =D t) if ∀Id ∈ Var : dom(Id) ≤ D =⇒ s(Id) = t(Id).

In the following, let (D, ≤, �) be a policy and dom be a domain assignment. We
adopt the naming conventions used above: D denotes a security domain, s and
t denote states, C denotes a command, and V and W denote command vectors.

The PER approach [14] characterizes information flow security based on in-
distinguishability relations on programs. Two programs are indistinguishable for
a security domain D if running them in two D-equal states reveals no secrets to
an observer in D, unless this is explicitly permitted by the given security policy.
The D-indistinguishability relation is not reflexive. It only relates programs to
themselves if they have secure information flow.

Definition 3 ([15]). A strong D-bisimulation is a symmetric relation R on
command vectors of equal size that satisfies the formula in Fig. 1 where the part
with dark-gray background is deleted. The relation �D is the union of all strong
D-bisimulations. A program V is strongly secure if V �D V holds for all D ∈ D.

144 H. Mantel and A. Reinhard

∀s, s′, t : ∀i ∈ {1 . . . n} : ∀W :
(V R V ′ ∧ 〈|Ci, s|〉 � 〈|W, t|〉 ∧ s =D s′)
⇒ ∃W ′, t′ :W R W ′ ∧ 〈|C′

i, s
′|〉 � 〈|W ′, t′|〉

∧

⎡
⎢⎢⎢⎣t =D t′ ∨

⎡
⎢⎢⎣

∃D1, {D2} ⊆ D :⎡
⎣

〈|Ci, s|〉 �D1→D2
d 〈|W, t|〉

∧ ∀D′ ∈ D1 : (D′ � D2 ∨ D′ ≤ D2)
∧ D2 ≤ D ∧ ∃D′ ∈ D1 : s �=D′ s′

⎤
⎦

⎤
⎥⎥⎦

⎤
⎥⎥⎥⎦

Fig. 1. Characterization of Strong (D, �)-Bisimulation Relations (see Definition 4)
where V = 〈C1, . . . , Cn〉, V ′ = 〈C′

1, . . . , C
′
n〉, and � = �o ∪ (

⋃
D1,{D2}⊆D �D1→D2

d)

For two commands C, C′ ∈ Com , being strongly D-bisimilar (C �D C′) means
that each computation step that is possible for C in a state s can be simulated in
each D-equal state s′ by a computation step of C′, where the resulting programs
W and W ′ are strongly D-bisimilar and the resulting states t and t′ are D-equal.
As a consequence, strong security enforces the flow of information to comply with
the ordering ≤ without permitting any exceptions. The strong security condition
is the weakest security definition that is scheduler independent and is preserved
under parallel and sequential composition [11]. Technically, the former is a con-
sequence of requiring strongly D-bisimilar programs to execute in lock-step.

2.2 A Novel Characterization of Flow Security

In this article, we propose several characterizations of information flow security
that permit declassification while controlling it in a particular dimension. Our
security conditions are derived using the PER approach, and each of them is
presented as a variant of the strong security condition. We use the terms what-
security and where-security to indicate in which dimension declassification is
controlled and distinguish different variants for the same dimension with indices.

Definition 4 (WHERE). A strong (D, �)-bisimulation is a symmetric re-
lation R on command vectors of equal size that satisfies the entire formula in
Fig. 1. The relation �

�
D is the union of all strong (D, �)-bisimulations. A pro-

gram V has secure information flow while complying with the restrictions where
declassification can occur if V �

�
D V holds for all D ∈ D (brief: V is where-

secure or V ∈ WHERE).

Declassification is possible as t and t′ in Fig. 1 need not be D-equal. However,
such exceptions are constrained by the formula with dark-gray background:

– steps causing declassification must be declassification transitions �D1→D2
d ;

– information flow must be permitted from each D′ ∈ D1 to D2 (by � or ≤);
– declassification may only affect D if D2 is observable, and it may only reveal

differences between s and s′ that can be observed from domains in D1.

That is, where-security localizes exceptions, within a computation, to the de-
classification steps and, within an MLS policy, to where � permits it. In this

Controlling the What and Where of Declassification 145

respect, our condition is similar to intransitive noninterference [9], but the two
security conditions are not identical. Most importantly, where-security satisfies
all prudent principles of declassification (see Sect. 2.3), unlike intransitive non-
interference [16]. Technically, the differences become apparent in the definition
of the respectively underlying notion of a strong D-bisimulation. In [9], firstly,
declassification steps downgrade information from a single domain D1 (rather
than from a set of domains D1), secondly, declassification steps may only make
information flow according to the relation � (rather than according to � ∪ ≤),
and thirdly, each transition must be simulated by a transition with the identi-
cal annotation (while Fig. 1 requires nothing about the labels of the transition
〈|C′

i, s
′|〉 � 〈|W ′, t′|〉). The first two relaxations are helpful for a flexible combi-

nation with a control of what is downgraded. The third relaxation is crucial for
satisfying the principle monotonicity of release (see Sect. 2.3).

2.3 Prudent Principles and Compositionality

To investigate our security definition more concretely, we augment the multi-
threaded while language MWL from [15] with a declassifying assignment:

C ::= skip | Id :=Exp | C1; C2 | if B then C1 else C2 fi | while B do C od
| fork(CV) | [Id :=Exp]

We use B and Exp for denoting Boolean-valued and integer-valued expressions,
respectively. The language E for expressions shall not be specified here. We only
assume that the evaluation of expressions is atomic and deterministic. That
expression Exp evaluates to value n in state s is denoted by 〈|Exp, s|〉 ↓ n. We
assume a function sources that returns for an expression the set of security
domains on which the value of the expression possibly depends or, more formally,
∀s, t : (((∀D ∈ sources(Exp) : s =D t)∧〈|Exp, s|〉 ↓ n∧〈|Exp, t|〉 ↓ m) =⇒ n = m).

The semantics of MWL instantiate the transition relations �o and �D1→D2
d .

A command [Id :=Exp] causes a �D1→D2
d transition where D1 = sources(Exp)

and D2 = dom(Id). Assignments, skip, conditionals, loops, and fork cause ordi-
nary transitions. The statement fork(CV) spawns the threads 〈C〉V where C is
the designated main thread. If threads are created within the sub-command C1
of a sequential composition C1; C2 then C2 is executed after the main thread has
terminated. A formal definition of the semantics is provided in Appendix A.

Sabelfeld and Sands propose the following principles of declassification [16]:

Semantic consistency: The (in)security of a program is invariant under se-
mantics-preserving transformations of declassification-free subprograms.

Conservativity: The security of a program with no declassifications is equiv-
alent to noninterference.

Monotonicity of release: Adding further declassifications to a secure pro-
gram cannot render it insecure.

Non-occlusion: The presence of a declassification operation cannot mask other
covert information leaks.

We now validate our security characterization against these prudent principles.

146 H. Mantel and A. Reinhard

As suggested in [16], we define semantic equivalence between programs by
� = �high , where �high is the strong high-bisimulation for the single-domain
policy ({high}, {(high, high)}). A context C is a program where the hole • may
occur as an atomic sub-command. We use C[C] to denote the program that one
obtains by replacing each occurrence of • with C. The proof of the following and
all other theorems in this article will be provided in an extended version.

Theorem 1 (Semantic consistency). Let C, C′ be programs without declassi-
fication commands. Then C′

� C and C[C] ∈ WHERE imply C[C′] ∈ WHERE.2

Strong security follows from where-security not only if there are no declassifica-
tion operations in a program, but also if the policy does not permit any excep-
tions. In the other direction, where-security is a weakening of strong security.

Theorem 2 (Conservativity)
1. If � = ∅ and V ∈WHERE then V is strongly secure.
2. If no declassification occurs in V and V ∈WHERE then V is strongly secure.
3. If V is strongly secure then V ∈WHERE.

Monotonicity holds with respect to the exceptions permitted by the policy and
also with respect to the declassification operations in the program.
Theorem 3 (Monotonicity). Let � ⊆ �′.
1. If V ∈WHERE for (D, ≤, �) then V ∈WHERE for (D, ≤, �′).
2. If C[Id :=Exp]∈WHERE then C[[Id :=Exp]]∈WHERE.

Theorems 1–3 demonstrate that our novel security characterization satisfies the
first three principles of declassification from [16]. A formal proof of the fourth
prudent principle is impossible. Such a proof would require a formal characteriza-
tion of secure information flow as a reference point, which we do not have a priori
as Definition 4 defines a characterization based on an intuitive understanding.

The following compositionality results hold for WHERE. We define expres-
sions Exp,Exp′ to be D-indistinguishable (denoted by Exp ≡D Exp′) if ∀s, t :
((s =D t ∧ 〈|Exp, s|〉 ↓ n ∧ 〈|Exp′, t|〉 ↓ m) ⇒ n = m).

Theorem 4. If C1 �
�
D C′

1, C2 �
�
D C′

2 and V �
�
D V ′ then

1. C1; C2 �
�
D C′

1; C′
2;

2. fork(C1V) �
�
D fork(C′

1V
′);

3. B ≡D B′ ⇒ (while B do C1 od �
�
D while B′ do C′

1 od);
4. (B≡D B′ ∨ C1 �

�
D C2) ⇒ (if B then C1 else C2 fi �

�
D if B′ then C′

1 else C′
2 fi).

3 Controlling Declassification in the Dimension what

We propose two characterizations of information flow security that control what
is declassified. Each of them is a natural adaptation of the idea underlying Co-
hen’s selective dependency [3] (and its descendants like, e.g., delimited release
[13] or abstract noninterference [5]) to a multi-threaded language.
2 As usual, the proposition does not hold if one replaces sub-commands with declassi-

fication commands. For instance, consider C = •, C = [l:=h], and C′ = l:=h for the
two-domain policy where dom(h) = high , dom(l) = low , and high � low .

Controlling the What and Where of Declassification 147

Definition 5. An MLS policy with escape hatches is a triple (D, ≤, H), where
(D, ≤) is an MLS policy, and H ⊆ D×E is a set of escape hatches.

From now, we assume that (D, ≤, H) denotes an MLS policy with escape hatches.
Given a policy (D, ≤, H) the intuition is that, for any D, the visible behavior
of secure programs may depend on the initial value of identifiers visible to D
and also on the initial values of expressions Exp if (D′,Exp) ∈ H and D′ ≤ D.
Formally, an observer in a domain D may be able to determine which equivalence
class of the relation =H

D contains the initial state, but no further information.
Definition 6. Two states s and t are (D, H)-equal (s =H

D t) if
1. s =D t and
2. ∀(D′,Exp) ∈ H : (D′ ≤ D =⇒ ((〈|Exp, s|〉 ↓ n ∧ 〈|Exp, t|〉 ↓ m) ⇒ n = m))

That is, an escape hatch (D′,Exp) ∈ H indicates that observers in domain D ≥
D′ may learn the initial value of expression Exp during a program’s execution.
The following lemma shows that (D, H)-equality is a subset of D-equality.
Lemma 1. ∀D : ∀s, t : [(∀H : (s =H

D t =⇒ s =D t)) ∧ (s =D t =⇒ s =∅
D t)]

3.1 Two Novel Characterizations of Flow Security

Our conditions WHAT1 and WHAT2 constitute adaptations of strong security
(Definition 3) that permit declassification while controlling what is declassified.

Definition 7 (WHAT1). A strong (D, H)-bisimulation is a symmetric rela-
tion R on command vectors of equal size that satisfies the formula in Fig. 2.
The relation �

H
D is the union of all strong (D, H)-bisimulations. A program V

has secure information flow while complying with the restrictions what can be
declassified if ∀D : V �

H
D V (brief: V is what1-secure or V ∈ WHAT1).

The difference between Definition 7 and the definition of strong D-bisimulations
(see Definition 3) is that =H

D occurs instead of =D on both sides of the implica-
tion. In the premise, s =H

D s′ occurs instead of s =D s′. This modification leads
to a relaxation of the security condition (see Lemma 1): differences in the values
of an expression Exp that occurs in an escape hatch (D′,Exp) may be revealed
to an observer in domain D if D′ ≤ D. In the consequence, using t =H

D t′ instead
of t =D t′ leads to a strengthening of the security condition: the states t and t′

must not differ in the values of expressions Exp that occur in an escape hatch
(D′,Exp) ∈ H with D′ ≤ D. The intention is to prevent unintended information
leakage via subsequent declassifications that involve escape hatches.
Example 1. In this and the following examples we assume the two-level policy.

For illustrating the first modification, let H = {(low, h1+h2)}, C1 = l:=h1+h2,
and C2 = [l:=h1+h2]. Neither C1 nor C2 is strongly secure (take low -equal states
that differ in the value of h1+h2), but both are what1-secure. Recall that what1-
security does not aim at localizing where declassification occurs and, hence, de-
classifying assignments are treated like usual assignments (unlike in Sect. 2).

For illustrating the second modification, let C3 = h1:=0; [l:=h1+h2]. This pro-
gram leaks the initial value of h2 and, hence, does not comply with the security
policy. In fact, this program is not what1-secure due to the requirement t =H

D t′.

148 H. Mantel and A. Reinhard

∀s, s′, t : ∀i ∈ {1 . . . n} : ∀W :
(V R V ′ ∧ 〈|Ci, s|〉 � 〈|W, t|〉 ∧ s =H

D s′)
⇒ ∃W ′, t′ : 〈|C′

i, s
′|〉 � 〈|W ′, t′|〉 ∧ t =H

D t′ ∧ W R W ′

Fig. 2. Characterization of Strong (D, H)-Bisimulation Relations (see Definition 7)
where V = 〈C1, . . . , Cn〉, V ′ = 〈C′

1, . . . , C
′
n〉, and � = �o ∪ (

⋃
D1,{D2}⊆D �D1→D2

d)

Unfortunately, what1-security does not satisfy the monotonicity principle (see
Sect. 3.2). As a solution, we propose another security characterization.

Definition 8 (WHAT2). A program V has secure information flow while com-
plying with the restrictions what can be declassified if ∀D : ∃H′ ⊆ H : V �

H′

D V
(brief: V is what2-secure or V ∈ WHAT2).

Note that Definition 8 is also based on the notion of a strong (D, H)-bisimulation.
The difference from Definition 7 is the existential quantification over H′. This
relaxation could be exploited in a security analysis by treating expressions in
escape hatches like usual expressions if they are not used for declassification.
Another effect of the relaxation is that the monotonicity principle is satisfied.

3.2 Prudent Principles and Compositionality

We now validate the security characterizations of this section against the prudent
principles (see Sect. 2.3) and use the results to compare the characterizations.

Interestingly, WHAT1 and WHAT2 are preserved even if one replaces arbi-
trary sub-programs with semantically equivalent ones.

Theorem 5 (Strong semantic consistency). Let C, C′ be programs (possi-
bly containing declassification commands).
1. If C′

� C and C[C] ∈ WHAT1 then C[C′] ∈ WHAT1.
2. If C′

� C and C[C] ∈ WHAT2 then C[C′] ∈ WHAT2.

Both security conditions satisfy the conservativity principle. Additionally, what2-
security is a relaxation of strong security. Due to the strict handling of variables
in escape hatches, what1-security is not a relaxation of strong security if H �= ∅.

Theorem 6 (Conservativity)
1. (a) If H = ∅ and V ∈ WHAT1 then V is strongly secure.

(b) If H = ∅ and V ∈ WHAT2 then V is strongly secure.
2. (a) If H = ∅ and V is strongly secure then V ∈ WHAT1.

(b) If V is strongly secure, then V ∈ WHAT2.

Theorem 7 (Monotonicity of Release)
Let H ⊆ H′. If V ∈WHAT2 for (D, ≤, H) then V ∈WHAT2 for (D, ≤, H′).

Example 2. Consider C4 = h1:=0. Intuitively, this program has secure infor-
mation flow for the two-domain policy (where dom(h1) = high), and it also
satisfies the strong security condition. For any set H, we obtain C4 ∈ WHAT2
from C4 �

∅
low C4 (take H′ = ∅). However, C4 is not what1-secure for H =

{(low, h1+h2)} as it updates the variable h1, which occurs in the escape hatch.

Controlling the What and Where of Declassification 149

Example 2 demonstrates that WHAT1 does not satisfy monotonicity. The prob-
lem is that the condition V �

H
D V does not permit the updating of variables

that occur in some escape hatch in H. While such updates might lead to an
information leak in subsequent assignments, they are harmless given that the
variable only occurs in escape hatches that are never used for declassification.
This problem does not arise with WHAT2 as one can choose H′ such that it only
contains escape hatches that are used.

While we are confident that our characterizations WHAT1 and WHAT2 are
adequate, a formal proof of the non-occlusion principle is not possible as we are
defining what security means (as already explained for WHERE in Sect. 2.3).

However, we can analyze the compositionality of our security characteriza-
tions. We define expressions Exp,Exp′ to be (D, H)-indistinguishable (denoted
by Exp ≡H

D Exp′) if ∀s, t : ((s =H
D t ∧ 〈|Exp, s|〉 ↓ n ∧ 〈|Exp′, t|〉 ↓ m) ⇒ n = m).

Theorem 8. If C1 �
H
D C′

1, C2 �
H
D C′

2, and V �
H
D V ′ then

1. C1; C2 �
H
D C′

1; C′
2;

2. fork(C1V) �
H
D fork(C′

1V
′);

3. B ≡H
D B′ ⇒ (while B do C1 od �

H
D while B′ do C′

1 od);
4. (B≡H

D B′ ∨ C1 �
H
D C2) ⇒ (if B then C1 else C2 fi �

H
D if B′ then C′

1 else C′
2 fi).

Corollary 1. If C1, C2, V ∈ WHAT1 then
1. C1; C2 ∈ WHAT1;
2. fork(C1V) ∈ WHAT1;
3. if the policy has a domain low and B≡H

low B then while B do C1 od ∈ WHAT1;
4. [∀D∈D : (B �≡H

D B =⇒ C1 �
H
D C2)] =⇒ if B then C1 else C2 fi ∈ WHAT1.

Due to the existential quantification of H′ in Definition 8, WHAT2 is not com-
positional. This is illustrated by the following example.

Example 3. The programs C2 = [l:=h1+h2] and C4 = h1:=0 (from Examples 1
and 2) are both what2-secure for the set H = {(low , h1+h2)}. However, neither
C3 = C4; C2 nor C5 = fork(C4〈C2〉) is what2-secure.

In summary, none of our two characterizations WHAT1 and WHAT2 is superior
to the respective other characterization. While WHAT1 is compositional (see
Corollary 1) but does not satisfy the monotonicity principle (see Example 2),
WHAT2 satisfies monotonicity (see Theorem 7) but is not compositional (see Ex-
ample 3). It would be desirable to obtain a security characterization that is com-
positional and that satisfies the monotonicity principle. Unfortunately, one faces
a fundamental difficulty when one also wants to control the what dimension of
declassification. As discussed in Example 3, C3 = C4; C2 and C5 = fork(C4〈C2〉)
both violate the two-level policy for the set H = {(low , h1+h2)} and, hence, these
programs should not be considered as what-secure. However, being able to de-
classify the expression h1+h2 is the very purpose of the escape hatch (low , h1+h2)
and, hence, the program C2 = [l:=h1+h2] should be considered as what-secure.
The inherent trade-off becomes apparent when considering C4 = h1:=0. If one
classifies this program as what-secure then one arrives at a security condition

150 H. Mantel and A. Reinhard

that is not compositional (as, e.g., C3 and C5 are not what-secure). However, if
one classifies C4 as not what-secure then one arrives at a security condition that
does not satisfy monotonicity because C4 is what-secure for H = ∅.3

4 A Sound Type System for Information Flow Security

We present a security type system that can be used as a basis for automating
the information flow analysis. The type system provides an integrated control of
the where dimension and of the what dimension of declassification.

Definition 9. If (D, ≤, �) is an MLS policy with exceptions and (D, ≤, H) is
an MLS policy with escape hatches then the tuple (D, ≤, �, H) is an MLS policy
controlling the where and what of declassification.

In the following, let (D, ≤, �, H) be a policy and dom be a domain assignment.
The core of the type system is the rule for declassification commands as this

is where declassification actually occurs. Our security characterizations in Sec-
tions 2 and 3 provide some guidance for developing such a rule, but there are
still some pitfalls that one must avoid. As an example, consider the rule below,
where Var(Exp) denotes the set of identifiers occurring in the expression Exp:

dom(Id) = D ∀D′ ∈ sources(Exp) : D′ (≤ ∪ �) D Exp ≡H
D Exp

∀(D′,Exp′) ∈ H : ((D′ ≤ D ∧ Id ∈ Var(Exp′)) =⇒ Exp ≡H
D′ Exp)

[Id :=Exp]
(1)

In the above rule, the second premise ensures that declassification complies with
� or, in other words, that the where of declassification is localized according to
the policy. The third premise ensures that executing the declassification com-
mand in (D, H)-equal states leads to D-equal states. Finally, the fourth premise
controls the information flow into variables that occur in escape hatches.

Nevertheless, the above typing rule is not sound in a compositional security
analysis. For instance, Rule (1) allows one to derive [h1:=0] as well as [l:=h1+h2],
but the sequential composition of these commands leaks the initial value of h2
and, hence, does not comply with the two-level policy for H = {(low , h1+h2)}.
In order to avoid such problems, the rule also needs to ensure that a declassi-
fication does not enable information leakage in assignments that are executed
subsequently.4 A solution would be to forbid assignments to variables that occur
in escape hatches that contain complex expressions (i.e., expressions that are not
identifiers). This solution can be implemented by adding the following condition
as another premise to Rule (1):

∀(D′,Exp′) ∈ H : (Id ∈ Var(Exp′) =⇒ Exp′ = Id)
3 It is not an option to classify C4 as not what-secure for H = ∅ because then one

would essentially have to classify all assignments as not what-secure.
4 Note that, in a concurrent program, such assignment may occur after the given de-

classification (sequential composition), before the declassification (backwards jumps
due to loops), and also in a program executed by a concurrent thread.

Controlling the What and Where of Declassification 151

� Const : ∅
dom(Id) = D

� Id : {D}
� Exp1 : D1 . . . � Expm : Dm

� Op(Exp1, . . . , Expm) :
⋃

i∈{1,...,m} Di

Fig. 3. Type rules for expressions

� skip
� Exp : D′ ∀D ∈ D′ : D ≤ dom(Id) Id ← Exp

� Id :=Exp

� C � V
� fork(CV)

� Exp : D′ ∀D ∈ D′ : D(� ∪ ≤)dom(Id) Id ← Exp

� [Id :=Exp]

� C0 . . . � Cn−1

� 〈C0, . . . Cn−1〉
� C1 � C2

� C1 ; C2

� B : {low} � C

� while B do C od

� C1 � C2 ∀D : B ≡D B ⇒ C1 �
�
D C2 ∀D : B ≡H

D B ⇒ C1 �
H
D C2

� if B then C1 else C2 fi

Fig. 4. Rules of the Integrated Security Type System

In the type system, we use the judgment � Exp : D′ instead of the function
sources. Intuitively, � Exp : D′ means that if Id ∈ Var(Exp) then dom(Id) ∈ D′

and that if D ∈ D′ then there is a variable Id ∈ Var(Exp) with dom(Id) =
D. The judgment is defined formally by the rules in Fig. 3, and it fulfills the
requirements for the function sources as the following theorem shows.

Theorem 9. If � Exp : D′ and ∀D′ ∈ D′ : D′ ≤ D then Exp ≡D Exp.

To improve the readability of the typing rules, we introduce a judgment Id ←
Exp. Intuitively, this judgment captures that Exp may be assigned to Id in a de-
classifying assignment. The following formal definition is based on the conditions
that we have motivated earlier in this section.

Definition 10. We define the judgment Id ← Exp by

Id ← Exp ≡ ∀D ∈ D : ((D = dom(Id) ∨ (D, Id) ∈ H) ⇒ Exp ≡H
D Exp)

∧ ∀(D′,Exp′) ∈ H : (Id ∈ Var(Exp′) =⇒ Exp′ = Id).

The integrated security type system for commands is presented in Fig. 4. Recall
that we implicitly assume (D, ≤, �, H) to be an MLS policy controlling the where
and what of declassification. To make the policy explicit, we use the notation
�D,≤,�,H V for denoting that � V is derivable with the typing rules.

Note that the rule for conditionals has two semantic side conditions. In this
respect our presentation of the typing rules is similar to the one of the typing
rules for intransitive noninterference in [9]. In that article, it is demonstrated
how such semantic side conditions can be syntactically approximated by safe
approximation relations in a sound way, and similar constructions are possible
for our side conditions. Moreover, the premises of the typing rules for assignments
and declassification involve the judgment Id ← Exp. Due to space limitations,
we also omit the fairly straightforward syntactic approximation of Definition 10.

152 H. Mantel and A. Reinhard

(a) (b) (c)

public

network

filter

reader

dom(mail) = network
dom(rmail) = reader

dom(pcheck) = public
dom(fmail) = filter

dom(fcheck) = filter

H =
{(reader, mail),

(public, noMalware(mail)),

(reader, fmail),

(public, fcheck)}

Fig. 5. (a) MLS policy with exceptions, (b) domain assignment, (c) escape hatches

fcheck:=noMalware(mail); % check that the mail contains no malware
[pcheck:=fcheck]; % make check result public
if check then fmail:=mail % copy the mail into an auxiliary variable

else fmail:=0 fi; % set the auxiliary variable to a dummy value
[rmail:=fmail] % forward mail to reader

Fig. 6. An example for a filter program

Theorem 10 (Soundness of Security Type System)

1. If �D,≤,�,H V then V is where-secure.
2. If �D,≤,�,H V then V is what1-secure.
3. If �D,≤,�,H V then V is what2-secure for all (D, ≤, �, H′) with H ⊆ H′.

That is, the type system is sound with respect to the security characterizations
introduced in Sect. 2 and 3. In particular, the what and where of declassification
in type-correct programs complies with the respectively given policy.

5 An Exemplary Security Analysis

In our application scenario, an e-mail arrives via a network and is forwarded
to a user. Before the user reads an e-mail in the mail reader, the e-mail must
pass a filter. The filter shall check whether the e-mail is infected by malware
and shall also make the result of the check publicly available, e.g., to permit the
computation of statistics about the infection rate of incoming e-mail. For this
scenario, we can distinguish four security domains, a domain for the network,
a domain for the filter, a domain for the mail reader, and a domain for public
information. The main security requirements are that all e-mail from the network
passes the filter before reaching the reader and that no e-mails are made public.

The resulting security policy is depicted in Fig. 5. The first security require-
ment is captured by this policy as the only path from domain network to domain
reader is via domain filter. The second requirement is captured by the set of es-
cape hatches as the only escape hatch with variable mail as expression has reader
as target domain. The first requirement concerns the where dimension while the
second requirement concerns the what dimension of declassification. A simple

Controlling the What and Where of Declassification 153

example for a filter program is depicted in Fig. 6. Note that declassifying assign-
ments are used to declassify the result of the malware check (which depends on
the variable mail) to domain public and to declassify an incoming mail to domain
reader. The filter program forwards mail only if the malware check was negative.
While this what aspect of declassification is not captured in our security policy,
it would also be possible to define an MLS policy that captures this aspect. We
refrain from pursuing such possibilities here.

An analysis of the filter program with the typing rules from Fig. 4 yields that
the program is type correct (three applications of the rule for sequential compo-
sition, one application of the rule for conditionals, three applications of the rule
for assignments, and two applications of the rule for declassifying assignments).
Theorem 10 allows us to conclude that the program in Fig. 6 is where-secure,
what1-secure, and what2-secure for the MLS policy in Fig. 5.

6 Related Work

Declassification is a current topic in language-based information flow security
and there already is a variety of approaches to controlling declassification [16]. In
the what dimension this survey lists, for instance, [8,13], and in the where/when
dimension, for instance, [4,10,9]. Non-disclosure is a recent approach in the where
dimension that aims at multi-threaded programs [2,1]. The idea is to expand
the flow relation ≤ according to annotations at the executing sub-programs. A
given expansion of ≤ localizes where declassification can occur in the program.
The construction of expansions implicitly assumes that the exceptions that are
permitted correspond to a transitive relation, an assumption that we do not need
to make for WHERE.

Very few approaches limit declassification in more than one dimension.
According to [16], relaxed noninterference [7] mainly addresses the what di-

mensions, but it also addresses some aspects of the where dimension. Relaxed
noninterference has a syntactic flavor as declassification may only involve syn-
tactically equivalent λ-terms.5 While this approach appears quite restrictive, the
benefit is that one obtains some localization in the program as declassification
can only happen where a particular syntactic expression occurs. Since relaxed
noninterference only considers a two-level policy, there is no notion of limiting
where declassification can occur in the flow policy.

According to [16], abstract noninterference [5] mainly addresses the what -
dimension. In fact, it is a generalization of selective dependency like delimited
release [13], WHAT1, and WHAT2. However, abstract noninterference also has
similarities to robust declassification [17], which is a prominent representative
for controlling the who dimension.

Another aspect, in which our work differs from many other approaches, is that
we address concurrent programs. Lifting a security analysis from a sequential to a
concurrent setting is often nontrivial as one must consider the possibility of races
5 In [7] Li and Zdancewic use a β − η-equivalence. But they already point out, that it

is not clear if this is an useful choice or what would be more useful.

154 H. Mantel and A. Reinhard

and address the danger of internal timing leaks. For an overview on approaches
addressing concurrency, we can only refer to [12] due to space restrictions.

7 Conclusion

While a number of approaches to controlling declassification in a language-based
security analysis has been proposed in recent years, little work has addressed
controlling multiple dimensions of declassification in an integrated fashion.

The aim of our investigation was to more adequately control the where and
what of declassification. For controlling the where dimension, we proposed the
condition WHERE, and we proved that it is compositional and satisfies the
prudent principles of declassification (unlike, e.g., intransitive noninterference).
For controlling what, we proposed the conditions WHAT1 and WHAT2, and we
identified an inherent trade-off between the monotonicity principle and composi-
tionality. To our knowledge, the soundness result for our type system is the first
such result that clearly identifies which aspects of where and what are controlled.

The starting point for deriving our novel security characterizations was the
strong security condition. The advantages of this condition include that it is
compositional and robust with respect to choices of the scheduler (see [15] for
a more detailed analysis). The strong security condition also rules out dangers
of internal leaks in concurrent programming without making any assumptions
about the possibilities of race conditions in a program. As a consequence, this
condition is somewhat restrictive, which is technically due to the use of a strong
bisimulation relation that requires a lock-step execution of related programs.
While a less restrictive baseline characterization would be desirable, we do not
know of any convincing solutions for controlling the where dimension in multi-
threaded programs based on a less restrictive security condition.

Acknowledgments. We thank Henning Sudbrock for helpful comments. We
also thank the anonymous reviewers for their suggestions.

This work was funded by the DFG in the Computer Science Action Program
and by the Information Society Technologies program of the European Commis-
sion, Future and Emerging Technologies under the IST-2005-015905 MOBIUS
project. This article reflects only the authors’ views, and the Commission, the
DFG, and the authors are not liable for any use that may be made of the infor-
mation contained therein.

References

1. A. Almeida Matos. Typing secure information flow: declassification and mobility.
PhD thesis, École Nationale Supérieure des Mines de Paris, 2006.

2. A. Almeida Matos and G. Boudol. On declassification and the non-disclosure
policy. In In Proc. IEEE Computer Security Foundations Workshop, 2005.

3. E. Cohen. Information transmission in sequential programs. In Foundations of
Secure Computation, pages 297–335. Academic Press, 1978.

Controlling the What and Where of Declassification 155

4. M. Dam and P. Giambiagi. Information flow control for cryptographic applets,
2003. Presentation at Dagstuhl Seminar on Language-Based Security, http://
kathrin.dagstuhl.de/03411/Materials2/.

5. R. Giacobazzi and I. Mastroeni. Abstract non-interference: Parameterizing non-
interference by abstract interpretation. In Proc. of the 31st Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages
186–197, 2004.

6. J. A. Goguen and J. Meseguer. Security Policies and Security Models. In Proceed-
ings of the IEEE Symposium on Security and Privacy, pages 11–20, Oakland, CA,
USA, 1982.

7. P. Li and S. Zdancewic. Downgrading policies and relaxed noninterference. In Proc.
of the 32nd ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 158–170, New York, NY, USA, 2005.

8. G. Lowe. Quantifying information flow. In Proc. of the 15th IEEE Computer
Security Foundations Workshop, page 18, Washington, DC, USA, 2002.

9. H. Mantel and D. Sands. Controlled Declassification based on Intransitive Non-
interference. In Proceedings of the 2nd ASIAN Symposium on Programming Lan-
guages and Systems, APLAS 2004, LNCS 3303, pages 129–145, Taipei, Taiwan,
2004.

10. A. Di Pierro, C. Hankin, and H. Wiklicky. Approximate Non-Interference. Journal
of Computer Security, 12(1):37–81, 2004.

11. A. Sabelfeld. Confidentiality for Multithreaded Programs via Bisimulation. In Pro-
ceedings of Andrei Ershov 5th International Conference on Perspectives of System
Informatics, number 2890 in LNCS, pages 260–274, 2003.

12. A. Sabelfeld and A. C. Myers. Language-based Information-Flow Security. IEEE
Journal on Selected Areas in Communication, 21(1):5–19, 2003.

13. A. Sabelfeld and A. C. Myers. A model for delimited information release. In
Proceedings of the International Symposium on Software Security, 2004.

14. A. Sabelfeld and D. Sands. A Per Model of Secure Information Flow in Sequential
Programs. In Proceedings of the 8th European Symposium on Programming, LNCS,
pages 50–59, 1999.

15. A. Sabelfeld and D. Sands. Probabilistic Noninterference for Multi-threaded Pro-
grams. In Proceedings of the 13th IEEE Computer Security Foundations Workshop,
pages 200–215, Cambridge, UK, 2000.

16. A. Sabelfeld and D. Sands. Dimensions and Principles of Declassification. In
Proceedings of the 18th IEEE Computer Security Foundations Workshop, pages
255–269. IEEE Computer Society, 2005.

17. S. Zdancewic and A. Myers. Robust declassification. In 14th IEEE Computer
Security Foundations Workshop (CSFW ’01), pages 15–26, Washington - Brussels
- Tokyo, 2001.

A Operational Semantics of MWL

The intuition of a deterministic judgment of the form 〈|C, s|〉 � 〈|W, t|〉 is that
command C performs a computation step in state s, yielding a state t and a
vector of commands W , which has length zero if C terminated, length one if
it has neither terminated nor spawned any threads, and length greater than
one if new threads were spawned. The transition arrow is labeled to distinguish

http://kathrin.dagstuhl.de/03411/Materials2/
http://kathrin.dagstuhl.de/03411/Materials2/

156 H. Mantel and A. Reinhard

〈|skip, s|〉 �o 〈|〈〉, s|〉
〈|Exp, s|〉 ↓ n

〈|Id :=Exp, s|〉 �o 〈|〈〉, [Id = n]s|〉 〈|fork(CV), s|〉 �o 〈|〈C〉V, s|〉

〈|B, s|〉 ↓ True
〈|if B then C1 else C2 fi, s|〉 �o 〈|C1, s|〉

〈|B, s|〉 ↓ False
〈|if B then C1 else C2 fi, s|〉 �o 〈|C2, s|〉

〈|B, s|〉 ↓ True
〈|while B do C od, s|〉 �o 〈|C; while B do C od, s|〉

〈|B, s|〉 ↓ False
〈|while B do C od, s|〉 �o 〈|〈〉, s|〉

〈|C1, s|〉 �o 〈|〈〉, s′|〉
〈|C1; C2, s|〉 �o 〈|C2, s

′|〉
〈|C1, s|〉 �o 〈|C′

1V, s′|〉
〈|C1; C2, s|〉 �o 〈|〈C′

1; C2〉V, s′|〉

〈|Exp, s|〉 ↓ n sources(Exp) = D1 dom(Id) = D2

〈|[Id :=Exp], s|〉 �D1→D2
d 〈|〈〉, [Id = n]s|〉

〈|C1, s|〉 �D1→D2
d 〈|〈〉, s′|〉

〈|C1; C2, s|〉 �D1→D2
d 〈|C2, s

′|〉

Fig. 7. Deterministic operational semantics of MWL

ordinary computation steps (labeling: �o) from declassification steps (labeling:
�D1→D2

d). An inductive definition of the semantics is given by the rules in Fig. 7.
To model concurrent computations, the deterministic judgment is lifted to a

nondeterministic judgment of the form 〈|V, s|〉 → 〈|V ′, t|〉. The intuitive meaning
is that some thread Ci in V performs a step in state s resulting in the state t
and some thread pool W ′. The global thread pool V ′ results then by replacing
Ci with W ′. This is formalized by the rules in Fig. 8.

〈|Ci, s|〉 �o 〈|W ′, s′|〉
〈|〈C0 . . . Cn−1〉, s|〉 → 〈|〈C0 . . . Ci−1〉W ′〈Ci+1 . . . Cn−1〉, s′|〉

〈|Ci, s|〉 � 〈|W ′, s′|〉
〈|〈C0 . . . Cn−1〉, s|〉 → 〈|〈C0 . . . Ci−1〉W ′〈Ci+1 . . . Cn−1〉, s′|〉

Fig. 8. Non-deterministic operational semantics of MWL

Cost Analysis of Java Bytecode

E. Albert1, P. Arenas1, S. Genaim2, G. Puebla2, and D. Zanardini2

1 DSIC, Complutense University of Madrid, E-28040 Madrid, Spain
2 CLIP, Technical University of Madrid, E-28660 Boadilla del Monte, Madrid, Spain

Abstract. Cost analysis of Java bytecode is complicated by its unstruc-
tured control flow, the use of an operand stack and its object-oriented
programming features (like dynamic dispatching). This paper addresses
these problems and develops a generic framework for the automatic cost
analysis of sequential Java bytecode. Our method generates cost relations
which define at compile-time the cost of programs as a function of their
input data size. To the best of our knowledge, this is the first approach
to the automatic cost analysis of Java bytecode.

1 Introduction

Cost analysis has been intensively studied in the context of declarative (see, e.g.,
[17,16,18,12,5] for functional programming and [10,11] for logic programming)
and high-level imperative programming languages (mainly focused on the esti-
mation of worst case execution times and the design of cost models [23]). Tradi-
tionally, cost analysis has been formulated at the source level. However, there are
situations where we do not have access to the source code, but only to compiled
code. An example of this is mobile code, where the code consumer receives code
to be executed. In this context, Java bytecode [13] is widely used, mainly due to
its security features and the fact that it is platform-independent. Automatic cost
analysis has interesting applications in this context. For instance, the receiver of
the code may want to infer cost information in order to decide whether to reject
code which has too large cost requirements in terms of computing resources (in
time and/or space), and to accept code which meets the established requirements
[8,2,3]. In fact, this is the main motivation for the Mobile Resource Guaran-
tees (MRG) research project [3], which establishes a Proof-Carrying Code [15]
framework for guaranteeing resource consumption. Furthermore, the Mobility,
Ubiquity and Security (MOBIUS) research project [4], also considers resource
consumption as one of the central properties of interest for proof-carrying code.
Also, in parallel systems, knowledge about the cost of different procedures can
be used in order to guide the partitioning, allocation and scheduling of parallel
processes.

The aim of this work is to develop an automatic approach to the cost anal-
ysis of Java bytecode which statically generates cost relations. These relations
define the cost of a program as a function of its input data size. This approach
was proposed by Debray and Lin [10] for logic programs, and by Rabhi and
Manson [16] for functional programs. In these approaches, cost functions are ex-
pressed by means of recurrence equations generated by abstracting the recursive

R. De Nicola (Ed.): ESOP 2007, LNCS 4421, pp. 157–172, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

158 E. Albert et al.

structure of the program and by inferring size relations between arguments. A
low-level object-oriented language such as Java bytecode introduces novel chal-
lenges, mainly due to: 1) its unstructured control flow, e.g., the use of goto
statements rather than recursive structures; 2) its object-oriented features, like
virtual method invocation, which may influence the cost; and 3) its stack-based
model, in which stack cells store intermediate values. This paper addresses these
difficulties and develops a generic framework for the automatic cost analysis of
Java bytecode programs. The process takes as input the bytecode corresponding
to a method and yields a cost relation after performing these steps:

1. The input bytecode is first transformed into a control flow graph (CFG).
This allows making the unstructured control flow of the bytecode explicit
(challenge 1 above). Advanced features like virtual invocation and exceptions
are simply dealt as additional nodes in the graph (challenge 2).

2. The CFG is then represented as a set of rules by using an intermediate
recursive representation in which we flatten the local stack by converting its
contents into a series of additional local variables (challenge 3).1

3. In the third step, we infer size relations among the input variables for all calls
in the rules by means of static analysis. These size relations are constraints
on the possible values of variables (for integers) and constraints on the length
of the longest reachable path (for references).

4. The fourth phase provides, for each rule of the recursive representation, a
safe approximation of the set of input arguments which are “relevant” to the
cost. This is performed using a simple static analysis.

5. From the recursive representation, its relevant arguments, and the size re-
lations, the fifth step automatically yields as output the cost relation which
expresses the cost of the method as a function of its input arguments.

We point out that computed cost relations, in many cases, can be simplified to
the point of deriving statically an upper and lower threshold cost for the input
size arguments and/or obtaining a closed form solution. Such simplifications
have been well-studied in the field of algorithmic complexity (see e.g. [22]).

2 The Java Bytecode Language

Java bytecode [13] is a low-level object-oriented programming language with
unstructured control and an operand stack to hold intermediate computational
results. Moreover, objects are stored in dynamic memory (the heap). A Java
bytecode program consists of a set of class files, one for each class or inter-
face. A class file contains information about its name c ∈ Class Name, the
class it extends, the interfaces it implements, and the fields and methods it
defines. In particular, for each method, the class file contains: a method signa-
ture m ∈ Meth Sig which consists of its name name(m) ∈ Meth Name and its

1 Note that this is possible since in every valid bytecode program the height of the
local stack at each program point is fixed and therefore can be computed statically.

Cost Analysis of Java Bytecode 159

type type(m) = τ1, . . . , τn → τ ∈ Meth Type where τ, τi ∈ Type; its bytecode
bcm = 〈pc0:b0, . . . , pcnm

:bnm〉, where each bi is a bytecode instruction and pci is
its address; and the method’s exceptions table. When it is clear from the context,
we omit bytecode addresses and refer to a method signature as method.

In this work we consider a subset of the JVM [13] language which is able to
handle operations on integers, object creation and manipulation (by accessing
fields and calling methods) and exceptions (either generated by abnormal ex-
ecution or explicitly thrown by the program). We omit interfaces, static fields
and methods and primitive types different from integers. Methods are assumed
to return an integer value. Thus, our bytecode instruction set (bcInst) is:
bcInst ::= push x | istore v | astore v | iload v | aload v | iconst a | iadd | isub | imul

| idiv | if� pc | goto pc | new Class Name | invokevirtual Class Name.Meth Sig
| invokespecial Class Name.Meth Sig | athrow | ireturn
| getfield Class Name.Field Sig | putfield Class Name.Field Sig

where � is a comparison operator (ne,le, icmpgt, etc.), v a local variable, a an
integer, pc an instruction address, and x an integer or the special value NULL.

3 From Bytecode to Control Flow Graphs

This section describes the generation of a control flow graph (CFG) from the
bytecode of a method. This will allow transforming the unstructured control
flow of bytecode into recursion. The technique we use follows well-established
ideas in compilers [1], already applied in Java bytecode analysis [19].

Given a method m, we denote by Gm its CFG, which is a directed graph
whose nodes are referred to as blocks. Each block Blockid is a tuple of the form
〈id , G, B, D〉 where: id is the block’s unique identifier; G is the guard of the
block which indicates under which conditions the block is executed; B is a se-
quence of contiguous bytecode instructions which are guaranteed to be executed
unconditionally (i.e., if G succeeds then all instructions in B are executed before
control moves to another block); and D is the adjacency list for Blockid , i.e.,
D contains the identifiers of all blocks which are possible successors of Blockid ,
i.e., id ′ ∈ D iff there is an arc from Blockid to Blockid ′ . Guards originate
from bytecodes where the execution might take different paths depending on
the runtime values. This is the case of bytecodes for conditional jumps, method
invocation, and exceptions manipulation. In the CFG this will be expressed by
branching from the corresponding block. The successive blocks will have mutu-
ally exclusive guards since only one of them will be executed. Guards take the
form guard(cond), where cond is a Boolean condition on the local variables and
stack elements of the method. It is important to point out that guards in the
successive blocks will not be taken into account when computing the cost of a
program.

A large part of the bytecode instruction set has only one successor. However,
there are three types of branching statements:

Conditional jumps: of the form “pci : if� pcj”. Depending on the truth value of
the condition, the execution can jump to pcj or continue, as usual, with pci+1.

160 E. Albert et al.

The graph describes this behavior by means of two arcs from the block containing
the instruction of pci to those starting respectively with instructions of pcj and
pci+1. Each one of these new blocks begins by a guard expressing the condition
under which such block is to be executed.

Dynamic dispatch: of the form “pci : invokevirtual c.m”. The type of the object o
whose method is being invoked is not known statically (it could be c or any sub-
class of c); therefore, we cannot determine statically which method is going to be
invoked. Hence, we need to make all possible choices explicit in the graph. We
deal with dynamic dispatching by using the function resolve virtual(c, m),
which returns the set ResolvedMethods of pairs 〈d, {c1, . . . , ck}〉, where d is a
class that defines a method with signature m and each ci is either c or a sub-
class of c which inherits that specific method from d. For each 〈d, {c1, . . . , ck}〉 ∈
ResolvedMethods , a new block Blockpci

d is generated with a unique instruction
invoke(d:m) which stands for the non-virtual invocation of the method m
that is defined in the class d. In addition, the block has a guard of the form
instanceof(o, {c1, . . . , ck}) (o is a stack element) to indicate that the block is
applicable only when o is an instance of one of the classes c1, . . . , ck. An arc from
the block containing pci to Blockpci

d is added, together with an arc from Blockpci

d

to the block containing the next instruction at pci+1 (which describes the rest
of the execution after invoking m). Note that the invokevirtual is no longer
needed in the CFG since it was split into several invoke instructions which cover
all the possible runtime scenarios. Yet, in order to take into account the cost of
dynamic dispatching, we replace the invokevirtual by a corresponding call to
resolve virtual. Fields are treated in a similar way.

Exceptions: As regards the structure of the CFG, exceptions are not dealt with in
a special way. Instead, the possibility of an exception being raised while executing
a bytecode statement b is simply treated as an additional branching after b. Let
Blockb be the block ending with b; arcs exiting from Blockb are those originated
by its normal behavior control flow, together with those reaching the sub-graphs
which correspond to exception handlers.

Describing dynamic dispatching and exceptions as additional blocks simplifies
program analysis. After building the CFG, we do not need to distinguish how
and why blocks were generated. Instead, all blocks can be dealt with uniformly.

Example 1 (running example). The execution of the method add(n, o) shown in
Fig. 1 computes: Σn

i=0i if o is an instance of A; Σ
�n/2�
i=0 2i if o is an instance of

B; and Σ
�n/3�
i=0 3i if o is an instance of C. The CFG of the method add is de-

picted at the bottom of the figure. The fact that the successor of 6: if icmpgt 16
can be either the instruction at address 7 or 16 is expressed by means of two
arcs from Block1, one to Block2 and another one to Block3, and by adding the
guards icmpgt and icmple to Block2 and Block3, respectively. The invocation
13: invokevirtual A.incr : (I)I is split into 3 possible runtime scenarios de-
scribed in blocks Block4, Block5 and Block6. Depending on the type of the ob-
ject o (the second stack element from top, denoted s(top(1)) in the guards),

Cost Analysis of Java Bytecode 161

class A{
int incr(int i){
return i+1;}};

class B extends A{
int incr(int i){
return i+2; }};

class C extends B{
int incr(int i){
return i+3; }};

class Main {
int add(int n,A o){
int res=0;
int i=0;
while (i<=n){
res=res+i;
i=o.incr(i);}

return res;}};

bcAincr =

⎧⎨
⎩
0: iload 1
1: iconst 1
2: iadd
3: ireturn

bcBincr =

⎧⎨
⎩
0: iload 1
1: iconst 2
2: iadd
3: ireturn

bcCincr =

⎧⎨
⎩
0: iload 1
1: iconst 3
2: iadd
3: ireturn

bcadd =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0: iconst 0
1: istore 3
2: iconst 0
3: istore 4
4: iload 4
5: iload 1
6: if_icmpgt 16
7: iload 3
8: iload 4
9: iadd
10: istore 3
11: aload 2
12: iload 4
13: invokevirtual

A.incr:(I)I
14: istore 4
15: goto 4
16: iload 3
17: ireturn

ret

0: iconst 0
1: istore 3
2: iconst 0
3: istore 4

Block 0

int i=0;
int res=0;

Block 3

8: iload 4
9: iadd
10: istore 3

12: iload 4
11: aload 2

14: istore 4

7: iload 3

o.incr(i);

o.incr(i);

o.incr(i);

i=o.incr(i);

Block 4 Block 6

Block 7

Block 8

EXCEPTION

guard(icmple)

res=res+i;

resolve_virtual(A,incr)

guard(instanceof(s(top(1)),NULL))

throw NullPointerException

13: invoke(B:incr) 13: invoke(C:incr) 13: invoke(A:incr)

guard(icmpgt)

RETURN

17: ireturn
16: iload 3 5: iload 1

4: iload 4

Block 2 Block 1

i > n

return res;

guard(instanceof(s(top(1)),{B})) guard(instanceof(s(top(1)),{C})) guard(instanceof(s(top(1)),{A}))

Block exc

Block 5

6: if_icmpgt 16

i <= n

Fig. 1. The running example in source code, bytecode, and control flow graph

only one of these blocks will be executed and hence one of the definitions for
incr will be invoked. Note that the invokevirtual bytecode is replaced by
resolve virtual. The exception behavior when o is a NULL object is described
in blocks Block7 and Blockexc. �

4 Recursive Representation with Flattened Stack

In this section, we present a method for obtaining a representation of the code
of a method where 1) iteration is transformed into recursion and 2) the operand

162 E. Albert et al.

stack is flattened in the sense that its contents are represented as a series of local
variables. The latter is possible because in valid bytecode the maximum stack
height t can always be statically decided. For the sake of simplicity, exceptions
possibly occurring in a method will be ignored. Handling them introduces more
branching in the CFG and also requires additional arguments in the recursive
representation. This could influence the performance of the cost analysis.

Let m be a method defined in class c, with local variables lk = l0, . . . , lk;
of them, l0 contains a reference to the this object, l1, . . . , ln are the n in-
put arguments to the method, and ln+1, . . . , lk correspond to the k − n local
variables declared in m. In addition to these arguments, we add the variables
st = s0, . . . , st−1, which correspond to the stack elements, with s0 and st−1 being
the bottom-most and top-most positions respectively. Moreover, let hid be the
height of the stack at the entry of Blockid, and st|hid

be the restriction of st to
the corresponding stack variables. The recursive representation of m is defined
as a set of rules head ← body obtained from its control flow graph Gm as follows:

(1) the method entry rule is c:m(ln, ret) ← c:m0(lk, ret), where ret is a variable
for storing the return value,

(2) for each Blockid = 〈id, G, Bp, {id1, . . . , idj}〉 ∈ Gm, there is a rule:

c:mid (lk, st|hid , ret) ← G′, B′p(callid1 ; . . . ; callidj)

where {G′} ∪ B
′
p is obtained from {G} ∪ Bp, and callid1 ; . . . ; callidj are

possible calls to blocks (“;” means disjunction), as explained below.

Each bi ∈ {G} ∪ Bp is translated into b′i by explicitly adding the variables
(local variables or stack variables) used by bi as arguments. For example, iadd is
translated to iadd(sj−1, sj , s

′
j−1), where j is the index of the top of the stack just

before executing iadd. Here, we refer to the j−1th stack variable twice by differ-
ent names: sj−1 refers to the input value and s′j−1 refers to the output value. The
use of new names for output variables, in the spirit of Static Single Assignment
(SSA) (see [9] and its references), is crucial in order to obtain simple, yet effi-
cient, denotational program analyses. In Fig. 2 we give the translation function
for selected bytecodes; among them, the one for iadd works as follows. Func-
tion translate takes as input the name of the current method m, the program
counter pc of the bytecode, the bytecode (in this case iadd), the current local
variable names lk, and the current stack variable names st. In line 1, we retrieve
the index of the top stack element before executing the current bytecode. In line
2, we generate new stack variable names s′t by renaming the output variable
of iadd in st. As notation, given a sequence an of elements, an[i 	→ b] denotes
the replacement in an of the element ai by b. In line 3, we return (ret〈 〉) the
translated bytecode together with the new stack variable names. Assume that
G=pc0:b0 and Bp=〈pc1:b1, . . . , pcp:bp〉. The translation of all bytecodes is done
iteratively as follows:

for i = 0 to p {〈b′
i, l

i+1
k , si+1

t 〉 = translate(m, pci, bi, l
i
k, s

i
t)}

We start from an initial set of local and stack variables, l0k=lk and s0t=st; in
each step, translate takes as input the local and stack variable names which

Cost Analysis of Java Bytecode 163

translate(m, pc, iadd, lk, st) :=
let j = top stack index(pc, m) in
s′

t = st[j−1 �→ s′
j−1]

ret〈iadd(sj−1 , sj, s
′
j−1), lk, s′

t〉

translate(m, pc, iload(v), lk, st) :=
let j = top stack index(pc, m) in
s′

t = st[j+1 �→ s′
j+1]

ret 〈iload(lv, s′
j+1), lk, s′

t〉
translate(m, pc, guard(icmpgt), lk, st) :=
let j = top stack index(pc, m) in
ret 〈guard(icmpgt(sj−1 , sj)), lk, st〉

translate(m, pc, ireturn(v), lk, st) :=
ret〈ireturn(s0 , ret), lk, st〉

translate(m, pc, invoke(b:m′), lk, st) :=
let j = top stack index(pc, m),

n = number of arguments(b, m′) in
s′

t = st[j−n �→ s′
j−n]

ret 〈b : m′(sj−n, . . . , sj, s
′
j−n), lk, s′

t〉

Fig. 2. Translation of selected bytecode instructions

were generated by translating the previous bytecode. At the end of this loop, we
can define each callidi , 1 ≤ i ≤ j, as c:midi(lp+1

k , sp+1
t |hidi , ret), meaning that

we call the next block with the last local and (restricted) stack variable names.

Example 2. Consider the CFG in Fig. 1. The translation of Block3 and Block4
works as shown below. For clarity, in the block identifiers we have not included
the class name for the add method. Also, we ignore the exception branch from
Block3 to Block7.

add3(l4, s0, s1, ret) ←
guard(icmple(s0, s1)),
iload(l3, s

′
0), iload(l4, s

′
1), iadd(s

′
0, s

′
1, s

′′
0),

istore(s′′
0 , l′

3), aload(l2, s
′′′
0), iload(l4, s

′′
1),

resolve virtual(A, incr),
(add4(l0, l1, l2, l

′
3, l4, s

′′′
0 , s′′

1 , ret) ;
add5(l0, l1, l2, l

′
3, l4, s

′′′
0 , s′′

1 , ret) ;
add6(l0, l1, l2, l

′
3, l4, s

′′′
0 , s′′

1 , ret))

add4(l4, s0, s1, ret) ←
guard(instanceof(s0, {B})),
B:incr(s0, s1, s

′
0),

add8(l4, s
′
0, ret).

In the add3 rule, dynamic dispatch is represented as a disjunction of calls to
add4, add5 or add6. Thus, in the rule for add4, we find a call to (the translation
of) incr from class B which corresponds to the translation of invoke(B:incr);
arguments passed to incr are the two top-most stack elements; the return value
(the last argument) goes also to the stack. Note the change in the superscript
when a variable is updated. �

Several optimizations are applied to the above translation. An important one
is to replace (redundant) stack variables corresponding to intermediate states
by local variables whenever possible. This can be done by tracking dependencies
between variables, which stem from instructions like iload and istore. The fact
that the program is in SSA form makes this transformation relatively straight-
forward. However, note that, in order to eliminate stack variables from the head
of a block, we need to consider all calling patterns to the block.

164 E. Albert et al.

Example 3. After eliminating redundant variables, the optimized version of rules
3 and 4 from Ex. 2 is as follows:

add3(l4, ret) ←
guard(icmple(l4, l1)),
iload(l3, s

′
0), iload(l4, s

′
1), iadd(l3, l4, l

′
3),

istore(s′′
0 , l′

3), aload(l2, s
′′′
0), iload(l4, s

′′
1),

resolve virtual(A, incr),
(add4(l0, l1, l2, l

′
3, l4, ret) ;

add5(l0, l1, l2, l
′
3, l4, ret) ;

add6(l0, l1, l2, l
′
3, l4, ret))

add4(l4, ret) ←
guard(instanceof(l2, {B})),
B:incr(l2, l4, s

′
0),

add8(l4, s
′
0, ret).

The underlined instructions have been used to discover equivalences among stack
elements and local variables. For example, all the arguments of iadd have been
replaced by local variables. However, eliminating stack variables is not always
possible. This is the case of s′0 in the rule add4, as it corresponds to the return
value of B:incr. After these optimizations, the underlined instructions become
redundant and could be removed. However, we do not remove them in order to
take their cost into account in the next sections. �

5 Size Relations for Cost Analysis

Obtaining size-relations between the states at different program points is in-
dispensable for setting up cost relations. In particular, they are essential for
defining the cost of one block in terms of the cost of its successors. In general,
various measures can be used to determine the size of an input. For instance, in
symbolic languages (see, e.g., [10]), term-depth, list-length, etc. are used as term
sizes. In Java bytecode, we consider two cases: for integer variables, size-relations
are constraints on the possible values of variables; for reference variables, they
are constraints on the length of the longest reachable paths.

Example 4. Consider the two loops below, written in Java for simplicity:
while(i>0) { i--; } while(l != null) { l = l.next; }

A useful size-relation for cost analysis is that the value of i is always greater
than 0 and decreases by 1 in each iteration, and that the longest path reachable
from l is decreasing by 1 in each iteration. �

Inferring size-relations is not straightforward: such relations might be the result
of executing several statements, calling methods or loops. For instance, in our
running example, the size relation for variable i is the result of executing the
method incr and is propagated through the loop in the procedure add. Fixpoint
computation is often required. Fortunately, there are several abstract interpre-
tation based approaches for inferring size-relations between integer variables [7],
as well as between reference variables (in terms of longest path length) [20].

Cost Analysis of Java Bytecode 165

5.1 The Notion of Size Relation

In order to set up cost relations, we need, for each rule in the recursive represen-
tation, the calls-to size-relations between the variables in the head of the rule
and the variables used in the calls (to rules) which occur in the body. Note that,
given a rule p(x̄) ← G, Bk, (q1; . . . ; qn), each bi ∈ Bk is either a bytecode or a call
to another rule (which stems from the translation of a method invocation). We
denote by calls(Bk) the set of all bi corresponding to a method call, and by
bytecode(Bk) the set of all bi corresponding to other bytecodes.

Definition 1 (calls-to size-relations). Let Rm be the recursive representation
of a method m, where each rule takes the form p(x̄) ← G, Bk, (q1(ȳ); · · · ; qn(ȳ)).
The calls-to size-relations of Rm are triples of the form

〈p(x̄), p′(z̄), ϕ〉 where p′(z̄) ∈ calls(Bk) ∪ {p cont(ȳ)}
describing, for all rules, the size-relation between x̄ and z̄ when p′(z̄) is called,
where p cont(ȳ) refers to the program point immediately after Bk. The size-
relation ϕ is given as a conjunction of linear constraints a0+a1v1+· · ·+anvn op 0,
where op ∈ {=, ≤, <}, each ai is a constant and vk ∈ x̄ ∪ z̄ for each k.

Note that in the definition above there is no need to have separate relations for
each qi(ȳ) as, in the absence of exceptions, size relations are exactly the same
for all of them, since they correspond to the same program point.

5.2 Inferring Size Relations

A simple, yet quite precise and efficient, size-relation analysis for the recursive
representation of methods can be done in two steps: 1) compiling the bytecodes
into the linear constraints they impose on variables; and 2) computing a bottom-
up fixpoint on the compiled rules using standard bottom-up fixpoint algorithms.
Compilation into linear constraints is done by an abstraction function αsize

which basically replaces guards and bytecodes by the constraints they impose
on the corresponding variables. In general, each bytecode performing (linear)
arithmetic operations is replaced by a corresponding linear constraint, and each
bytecode which manipulates objects is compiled to linear constraints on the
length of the longest reachable path from the corresponding variable [20]. Here
are some examples of abstracting guards and bytecodes into linear constraints:

αsize(iload(l1, s0)):=(l1=s0)
αsize(iadd(s1, s0, s

′
0)):=(s′

0=s0 + s1)
αsize(guard(icmpgt(s1 , s0))):=(s1>s0)
αsize(getfield(s1, f, s

′
1)):=(s′

1<s1)

It is important to note that αsize uses the same name for the original variables
in order to refer to their sizes. Compiling the rules of Ex. 3 results in:

add3(l4, ret) ←l4 ≤ l1, l
′
3 = l3 + l4,

resolve virtual(A, incr),
(add4(l2, l

′
3, l4, ret); add

5(l2, l
′
3, l4, ret); add

6(l2, l
′
3, l4, ret))

add4(l4, ret) ←
B:incr(l2, l4, s

′
0),

add8(l4, s
′
0, ret).

166 E. Albert et al.

Example 5. Compiling all the rules corresponding to the program in Fig. 1 and
computing a bottom-up fixpoint over an appropriate abstract domain [7] would
result in the following calls-to size-relations for rules from Ex. 2:

〈add3(l0, l1, l2, l3, l4, ret), add3 cont(l0, l1, l2, l
′
3, l4, ret), {l4≤l1, l

′
3=l3+l4}〉

〈add4(l0, l1, l2, l3, l4, ret), B:incr(l2, l4, ret), {}〉
〈add4(l0, l1, l2, l3, l4, ret), add4 cont(l0, l1, l2, l3, l4, s

′
0, ret), {s′

0=l4+2}〉
�

6 Cost Relations for Java Bytecode

We now present our approach to the automatic generation of cost relations which
define the computational cost of the execution of a bytecode method. They are
generated from the recursive representation of the method (Sec. 4) and by using
the information inferred by the size analysis (Sec. 5). An important issue in
order to obtain optimal cost relations is to find out the arguments which can be
safely ignored in cost relations.

6.1 Restricting Cost Relations to (Subsets of) Input Arguments

Let us consider Blockid in a CFG, represented by the rule c:mid (lk, ret) ← G, Bh,
(callid1 ; . . . ; callidj) in which local and stack variables are no longer distin-
guishable. The cost function for Blockid takes the form Cid : (Z)n → N∞, with
n ≤ k argument positions, and where Z is the set of integers and N∞ is the set
of natural numbers augmented with a special symbol ∞, denoting unbounded.

Our aim here is to minimize the number n of arguments which need to be
taken into account in cost functions. As usual in cost analysis, we consider that
the output argument ret cannot influence the cost of any block, so that it can
be ignored in cost functions. Furthermore, it is sometimes possible to disregard
some input arguments. For instance, in our running example, l3 is an accumu-
lating parameter whose value does not affect the control flow nor the cost of the
program: it merely keeps the value of the temporary result.

Given a rule, the arguments which can have an impact on the cost of the
program are those which may affect directly or indirectly the program guards
(i.e., they can affect the control flow of the program), or are used as input
arguments to external methods whose cost, in turn, may depend on the input
size. Computing a safe approximation of the set of variables affecting a series of
statements is a well studied problem in static analysis. To do this, we need to
follow data dependencies against the control flow, and this involves computing
a fixpoint. Our problem is slightly simpler than program slicing [21], since we
do not need to delete redundant program statements; instead, we only need to
detect relevant arguments. Given a rule p(x) ← body (p for short), l̂p ⊆ x is the
sub-sequence of relevant variables for p. The sequence l̂P , obtained by union of
sequences {l̂p}p∈P for a set P of rules, keeps the ordering on variables.

Example 6. Given pi, corresponding to Blocki in the graph of the running exam-
ple, we are interested in computing which variables in this rule are relevant to
program guards or external methods. For example, 1) when the execution flow

Cost Analysis of Java Bytecode 167

reaches p2, we execute the unconditional bytecode instructions in p2 and move
to the final block. As a result, there are no relevant variables for p2, since none
can have any impact on its cost, and p2 does not reach any guards nor methods.
2) On the other hand, p3 can reach the guards in p4, p5 and p6, which take the
form instanceof() and involve l2. Also, the guard in p3 itself, involving l1 and
l4, can be recursively reached via the loop. Moreover, the call to the external
method incr involves l2 and l4. After computing a fixpoint, we conclude that
l̂p3 = {l1, l2, l4}. 3) We have l̂p8 = {l1, l2, s0}; here, s0 is also relevant since it
affects l4 (which in turn is involved in the guard of p3, reachable from p8). �

6.2 The Cost Relation

Herein, we define the cost function Cid : (Z)n → N∞ for a Blockid by means of a
cost relation which consists of a set of cost equations. It will allow us to reason
about the computational cost of the execution of the block id. The intuitive idea
is that, given the rule p(x̄) ← G, B, (q1; . . . ; qn) associated to Blockid, we generate:

– one cost equation which defines the cost of p as the cost of the statements
in B, plus the cost of its continuation, denoted p cont;

– another cost equation which defines the cost of p cont as either the cost of
q1 (if its guard is satisfied), . . . , or the cost of qn (if its guard is satisfied).

We specify the cost of the continuation in a separate equation because the con-
ditions for determining the alternative path qi that the execution will take (with
i = 1, . . . , n) are only known at the end of the execution of B; thus, they cannot
be evaluated before B is executed. In the definition below, we use the function
αguard to replace those guards which indicate the type of an object by the ap-
propriate test (e.g., αguard(guard(instanceof(s0, {B}))) := s0 ∈ B). For guards
on size relations, it is equivalent to αsize.

Definition 2 (cost relation). Let Rm be the recursive representation of a
method m where each block takes the form p(x̄) ← Gp, B, (q1(ȳ); · · · ; qn(ȳ)) and
l̂p be its sequence of relevant variables. Let ϕ be the calls-to size relation for Rm

where each size relation is of the form 〈p(x̄), p′(z̄), ϕp(x)
p′(z)〉 for all p′(z̄) ∈ calls(B)

∪{q(ȳ)} such that q(ȳ) refers to the program point immediately after B. Then,
we generate the cost equations for each block of the above form in Rm as follows:

Cp(l̂p) =
∑

b∈bytecode(B)

Tb +
∑

r(z̄)∈calls(B)

Cr(l̂r) + Cp cont(∪n
i=1l̂qi)

∧
r(z̄)∈calls(B)

(ϕp(x)
r(z̄)) ∧ ϕ

p(x)
q(ȳ)

Cp cont(∪n
i=1l̂qi) =

⎧
⎨
⎩

Cq1(l̂q1) αguard(Gq1)
. . .

Cqn(l̂qn) αguard(Gqn)

where Tb is the cost unit associated to the bytecode b. The cost relation associated
to Rm and ϕ is defined as the set of cost equations of its blocks.

Let us notice four points about the above definition. 1) The size relationships
between the input variables provided by the size analysis are attached to the

168 E. Albert et al.

cost equation for p (in Sect. 7 we discuss how to apply them). 2) Guards do not
affect the cost: they are simply used to define the applicability conditions of the
equations. 3) Arguments of the cost equations are only the relevant arguments
to the block. In the equation for the continuation, we need to include the union
of all relevant arguments to each of the subsequent blocks qi.

The cost Tb of an instruction b depends on the chosen cost model. If our
interest is merely on finding out the complexity or on approximating the number
of bytecode statements which will be executed, then Tb can be the same for all
instructions. On the other hand, we may use more refined cost models in order to
estimate the execution time of methods. Such models may assign different costs
to different instructions. One approach might be based on the use of a profiling
tool which estimates the value of each Tb on a particular platform. (see, e.g., an
application [14] for Prolog). It should be noted that, since we are not dealing
with the problem of choosing a realistic cost model, a direct comparison between
the result of our analysis and the actual measured run time (e.g., in milliseconds)
cannot be done; instead, in this paper we focus only on the number of instructions
to be executed.

Example 7. Consider the recursive representation in Ex. 2 (without irrelevant
variables, as explained in Ex. 6). Consider the size relations derived in Ex. 5; by
applying Def. 2, we obtain the following cost relations:

Cadd(l1, l2) = Cadd0 (l1, l2)
Cadd0 (l1, l2) = T0 + Cadd1(l1, l2, l

′
4) l′

4 = 0
Cadd1 (l1, l2, l4) = T1 + Cadd1 cont(l1, l2, l4)

Cadd1 cont(l1, l2, l4) =

{
Cadd2 ()
Cadd3 (l1, l2, l4)

l4 > l1
l4 ≤ l1

Cadd2 () = T2
Cadd3 (l1, l2, l4) = T3 + Cadd3 cont(l1, l2, l4)

Cadd3 cont(l1, l2, l4) =

⎧⎨
⎩

Cadd4(l1, l2, l4)
Cadd5(l1, l2, l4)
Cadd6(l1, l2, l4)

l2 ∈ B
l2 ∈ C
l2 ∈ A

Cadd4 (l1, l2, l4) = T4 + CB:incr(l2, l4) + Cadd8(l1, l2, s0) s0 = l4 + 2
Cadd5 (l1, l2, l4) = T5 + CC:incr(l2, l4) + Cadd8(l1, l2, s0) s0 = l4 + 3
Cadd6 (l1, l2, l4) = T6 + CA:incr(l2, l4) + Cadd8(l1, l2, s0) s0 = l4 + 1
Cadd8 (l1, l2, s0) = T8 + Cadd1(l1, l2, s0)

TBi denotes the sum of the costs of all bytecode instructions contained in Blocki .
For brevity, as the blocks 0, 2, 4, 5, 6, and 8 have a single-branched continuation,
we merge their two equations. Note that the cost relation for the external method
incr does not include the third argument since it is an output argument. �

Demonstrating the correctness of our approach to cost analysis requires: (1)
Defining the meaning of cost in terms of the Java bytecode operational seman-
tics; (2) Inheriting that definition to a corresponding (equivalent) operational a
semantics of the recursive representation. (3) Demonstrating that the cost rela-
tions describe the cost as defined in step 2. The first two steps are straightforward
as the CFG and the recursive representation describe the behavior of the original
program, in particular at each branching point we have several possibilities from

Cost Analysis of Java Bytecode 169

which only one will be executed. The correctness of the third step stems from
the facts that the cost relations are obtained from the recursive representation
by replacing each bytecode by its cost, and that the size analysis provides us
with information that can be used to compute (or approximate) the number of
times we visit in each program point during the execution.

7 Solving and Approximating Cost Functions

The cost relations we presented in Sect. 6 allow reasoning about the computa-
tional cost of methods, provided that size analysis was effective. However, such
cost relations generally depend on the cost of other calls (i.e., they are often
recursive). It is thus convenient to obtain a closed form solution for the function
which corresponds to the cost of the method. This can be done in two steps. The
first one involves eliminating existential variables, i.e., those which do not occur
in the left hand side, thus obtaining recurrence equations. The second step
involves using existing tools for solving recurrence equations and/or computing
upper or lower bounds for them.

7.1 Obtaining Recurrence Equations

First, we consider size relations which only contain equalities. Given an existen-
tial variable y, a size relation ϕ and a sequence of (input) variables x, we denote
by solve(y, ϕ, x) the operation which returns an expression e, with Vars(e) ⊆ x,
such that ϕ |= (y = e). The result can be possibly y itself if no other e is found.
For instance, for ϕ2 in Ex. 5, the operation solve(s′0, ϕ2, 〈l1, l2, l4〉) returns l4 +2.
This allows replacing equation (1) by equation (2):

Cadd4(l1, l2, l4) = T4 + CB:incr(l2, l4) + Cadd8(l1, l2, s0) (1)
Cadd4(l1, l2, l4) = T4 + CB:incr(l2, l4) + Cadd8(l1, l2, l4 + 2) (2)

where s0 is replaced by its solved form l4 + 2. Similarly, we can obtain recurrence
equations for the cost of blocks add5, add6, and add0. This way, all cost equations
in Ex. 7 are converted into recurrence equations.

There exist more complicated situations, in which size analysis needs to ap-
proximate information and it is only able to provide intervals in which the values
of a variable may range, rather than equalities. Given a variable y, a size relation
ϕ and a sequence of variables x, the operation interval(ϕ, y, x) returns:

– An interval [e1, e2] with (Vars(e1) ∪ Vars(e2)) ⊆ x, s.t. ϕ |= (e1 ≤ y ≤ e2).
– Otherwise, the same variable y.

For instance, consider the cost relation Cp(x) =
∑

Tb+Cq(y) ϕ, where [e1, e2] =
interval(ϕ, y, x). As y can vary within an interval, we can only now estimate upper
and lower bounds for Cp(x). To do so, we have to cover all possible variations of
y (i.e., the situation in which the value of y moves faster and the one in which
it moves slower). For this purpose, we can generate the following relation:

Cp(x) =
{∑

Tb + Cq(e1)∑
Tb + Cq(e2)

170 E. Albert et al.

and then maximize or minimize the cost relation, depending on whether we want
to approximate the upper or lower bound, respectively, as we explain below. In
a more complicated case, the cost of q might depend on a sequence of variables
y rather than a single y, and the size analysis might provide intervals (not only
equalities) for several of them. This leads to a more complex formalization not
included due to lack of space.

7.2 Approximating Recurrence Equations

Algorithms for approximating recurrence equations have been studied by a num-
ber of researchers (see, e.g., [22]) and there are several systems available (e.g.,
Mathematica, Maxima, Maple, Matlab, CASLog). As already mentioned, it is
not always possible to find closed form solutions for a set of recurrence equations.
However, it turns out that it is quite often possible to find a closed form which
is not a solution to the set of equations, but is guaranteed to be an upper (or
lower) bound of the cost function. In many cases, finding an upper (or lower)
bound can be sufficient. In particular, in the cost relations presented in Sect. 6,
it is interesting to compute upper or lower bounds in two situations:

– when we have alternative branches corresponding to the second cost equation
in Def. 2 (which represent a dynamic dispatch or a conditional branching),

– when we have intervals (rather than equalities) for the size relations of some
variables, as explained in Sect. 7.1.

For the estimation of upper and lower bounds in such cases, we provide a mod-
ified version of the second equation in Def. 2 (the first one remains identical):

Cp(x) =

⎧
⎨
⎩

Cq1(x) Gq1

. . .
Cqn(x) Gqn

(a) Cost recurrence equation Cp

Cup
p (x) = max

⎧
⎨
⎩

Cup
q1 (x) Gq1

. . .
Cup

qn (x) Gqn

(b) Upper bound of recurrence equation

Similarly, the lower bound C low
p (x) of Cp(x) is defined as Cup

p (x) but computing
mins rather than maxs.

Example 8. Consider the upper bound Cup
add(l1, l2), obtained from the cost rela-

tion Cadd(l1, l2) in Ex. 7. We only show the cost equations for Cadd3 :

Cup
add3(l1, l2, l4) = T3 + Cup

add3 cont(l1, l2, l4)

Cup
add3 cont(l1, l2, l4) = max

⎧
⎨
⎩

Cup
add4(l1, l2, l4) l2 ∈ B

Cup
add5(l1, l2, l4) l2 ∈ C

Cup
add6(l1, l2, l4) l2 ∈ A

In this case, we can easily find the following closed form solution by isolating
each of the different branches in Cup

add3 cont.

(a) if l2 ∈ A Cup
add(l1, l2) = (l1 + 1)(T1 + T3 + T4 + TA:incr + T8) + T0 + T1 + T2

(b) if l2 ∈ B Cup
add(l1, l2) = (l1/2 + 1)(T1 + T3 + T4 + TB:incr + T8) + T0 + T1 + T2

(c) if l2 ∈ C Cup
add(l1, l2) = (l1/3 + 1)(T1 + T3 + T4 + TC:incr + T8) + T0 + T1 + T2

Cost Analysis of Java Bytecode 171

We use TA:incr to denote the constant cost A:incr. The upper bound is max(a, b, c) and
the lower bound is min(a, b, c). In any case, the cost is linear with the size of l1. If
TA:incr=TB:incr=TC:incr then a is the upper bound and c the lower bound. �

Unfortunately, it is rather difficult to syntactically characterize the class of pro-
grams whose cost relations can be expressed in a closed form.

8 Conclusion

We have presented an automatic approach to the cost analysis of Java bytecode,
based on generating at compile-time cost relations for an input bytecode pro-
gram. Such relations are functions of input data which are informative by them-
selves about the computational cost, provided an accurate size analysis is used
to establish relationships between the input arguments. Essentially, the sources
of inaccuracy in size analysis are: 1) guards depending (directly of indirectly) on
values which are not handled in the abstraction, e.g., non-integer values, numeric
fields or multidimensional arrays, cyclic data-structures; 2) loss of precision due
to the abstraction of (non-linear) arithmetic instructions and domain operations
like widening. In such cases, we can still set up cost relations; however, they
might not be useful if the size relationships are not precise enough.

To the best of our knowledge, our work presents the first approach to the
automatic cost analysis of Java bytecode. Related work in the context of Java
bytecode includes the work in the MRG project [3], which can be considered
complementary to ours. MRG focuses on building a proof-carrying code [15] ar-
chitecture for ensuring that bytecode programs are free from run-time violations
of resource bounds. Also, the resource which has been studied in more depth is
heap consumption, since applications to be deployed on devices with a limited
amount of memory, such as smartcards, must be rejected if they require more
memory than that available. Another related work is [6], where a resource usage
analysis is presented. Again, this work focuses on memory consumption and it
aims at verifying that the program executes in bounded memory by making sure
that the program does not create new objects inside loops. The analysis has been
certified by proving its correctness using the Coq proof assistant.

Acknowledgments. This work was funded in part by the Information Society
Technologies program of the European Commission, Future and Emerging Tech-
nologies under the IST-15905MOBIUS project, by the Spanish Ministry of Educa-
tion (MEC) under the TIN-2005-09207MERIT project, and the Madrid Regional
Government under the S-0505/TIC/0407 PROMESAS project. S. Genaim was
supported by a Juan de la Cierva Fellowship awarded by MEC.

References

1. A. V. Aho, R. Sethi, and J. D. Ullman. Compilers - Principles, Techniques and
Tools. Addison-Wesley, 1986.

2. E. Albert, G. Puebla, and M. Hermenegildo. Abstraction-Carrying Code. In Proc.
of LPAR’04, number 3452 in LNAI, pages 380–397. Springer-Verlag, 2005.

172 E. Albert et al.

3. D. Aspinall, S. Gilmore, M. Hofmann, D. Sannella, and I. Stark. Mobile Resource
Guarantees for Smart Devices. In CASSIS’04, number 3362 in LNCS. Springer,
2005.

4. G. Barthe, L. Beringer, P. Crégut, B. Grégoire, M. Hofmann, P. Müller, E. Poll,
G. Puebla, I. Stark, and E. Vétillard. Mobius: Mobility, ubiquity, security: Objec-
tives and progress report. In Trustworthy Global Computing’06, LNCS, 2007.

5. R. Benzinger. Automated higher-order complexity analysis. Theor. Comput. Sci.,
318(1-2), 2004.

6. D. Cachera, D. Pichardie T. Jensen, and G. Schneider. Certified memory usage
analysis. In FM’05, number 3582 in LNCS. Springer, 2005.

7. P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. In Proc. POPL. ACM, 1978.

8. K. Crary and S. Weirich. Resource bound certification. In POPL. ACM, 2000.
9. R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Effi-

ciently computing static single assignment form and the control dependence graph.
TOPLAS, 13(4), 1991.

10. S. K. Debray and N. W. Lin. Cost analysis of logic programs. TOPLAS, 15(5),
1993.

11. S. K. Debray, P. López-Garćıa, M. Hermenegildo, and N.-W. Lin. Lower Bound
Cost Estimation for Logic Programs. In Proc. ILPS’97. MIT Press, 1997.

12. G. Gomez and Y. A. Liu. Automatic time-bound analysis for a higher-order lan-
guage. In Proc. of PEPM. ACM Press, 2002.

13. T. Lindholm and F. Yellin. The Java Virtual Machine Specification. Addison-
Wesley, 1996.

14. E. Mera, P. López-Garćıa, G. Puebla, M. Carro, and M. Hermenegildo. Combining
Static Analysis and Profiling for Estimating Execution Times. In PADL’07, LNCS.
Springer-Verlag, 2007. To appear.

15. G. Necula. Proof-Carrying Code. In POPL’97. ACM Press, 1997.
16. F. A. Rabhi and G. A. Manson. Using Complexity Functions to Control Parallelism

in Functional Programs. TR. CS-90-1, Dept. of C.S., Univ. of Sheffield, UK, 1990.
17. M. Rosendhal. Automatic Complexity Analysis. In Proc. FPCA. ACM, 1989.
18. D. Sands. A näıve time analysis and its theory of cost equivalence. J. Log. Comput.,

5(4), 1995.
19. F. Spoto. Julia: A Generic Static Analyser for the Java Bytecode. In Proc. of the

7th Workshop on Formal Techniques for Java-like Programs, FTfJP’2005, Glasgow,
Scotland, July 2005. Available at www.sci.univr.it/∼spoto/papers.html.

20. F. Spoto, P. M. Hill, and E. Payet. Path-length analysis for object-oriented pro-
grams. In Proc. EAAI, 2006.

21. F. Tip. A Survey of Program Slicing Techniques. J. of Prog. Lang., 3, 1995.
22. H. S. Wilf. Algorithms and Complexity. A.K. Peters Ltd, 2002.
23. R. Wilhelm. Timing analysis and timing predictability. In Proc. FMCO, LNCS.

Springer-Verlag, 2004.

On the Relationship Between Concurrent Separation
Logic and Assume-Guarantee Reasoning�

Xinyu Feng, Rodrigo Ferreira, and Zhong Shao

Department of Computer Science, Yale University
New Haven, CT 06520-8285, U.S.A.

{feng,rodrigo,shao}@cs.yale.edu

Abstract. We study the relationship between Concurrent Separation Logic
(CSL) and the assume-guarantee (A-G) method (a.k.a. rely-guarantee method).
We show in three steps that CSL can be treated as a specialization of the A-G
method for well-synchronized concurrent programs. First, we present an A-G
based program logic for a low-level language with built-in locking primitives.
Then we extend the program logic with explicit separation of “private data” and
“shared data”, which provides better memory modularity. Finally, we show that
CSL (adapted for the low-level language) can be viewed as a specialization of the
extended A-G logic by enforcing the invariant that “shared resources are well-
formed outside of critical regions”. This work can also be viewed as a different
approach (from Brookes’) to proving the soundness of CSL: our CSL inference
rules are proved as lemmas in the A-G based logic, whose soundness is estab-
lished following the syntactic approach to proving soundness of type systems.

1 Introduction

It is hard to prove non-interference and correctness of shared-state concurrent programs
because of the exponential state space. Memory aliasing makes concurrency verification
even harder. Therefore a program logic supporting both thread modularity and memory
modularity is the key to practical concurrency verification.

Peter O’Hearn [11, 10] proposed concurrent separation logic (CSL), which applies
the local-reasoning idea from separation logic [7, 14] to verify shared-state concurrent
programs with memory pointers. Separation logic assertions are used to capture owner-
ships of resources. Separating conjunction enforces the partition of resources. Verifica-
tion of sequential threads in CSL is no different from verification of sequential programs.
Memory modularity is supported by using separating conjunction and frame rules. How-
ever, following Owicki and Gries [12], CSL works only for well-synchronized programs
in the sense that transfer of resource ownerships can only occur at entry and exit points of
critical regions. It is unclear how to apply CSL to support general concurrent programs
with ad-hoc synchronizations.

� This research is based on work supported in part by gifts from Intel and Microsoft, and NSF
grants CCR-0524545. Any opinions, findings, and conclusions contained in this document are
those of the authors and do not reflect the views of these agencies.

R. De Nicola (Ed.): ESOP 2007, LNCS 4421, pp. 173–188, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

174 X. Feng, R. Ferreira, and Z. Shao

Another approach to modular verification of shared-state concurrent programs is the
assume-guarantee method (a.k.a. rely-guarantee method) [8]. In this approach, invari-
ants of state transitions are specified using assumptions and guarantees. Each thread
ensures that its atomic transitions satisfy its guarantee to the environment (i.e., the col-
lection of all other threads) as long as its assumption is satisfied by the environment.
Non-interference is guaranteed as long as threads have compatible specifications, i.e.,
the guarantee of each thread satisfies the assumptions of all other threads. The A-G
method supports thread modular verification in the sense that each thread is verified
with regard to its own specifications, and without looking into code of other threads. It
is very general and does not require language constructs for synchronizations. However,
in each individual step of the verification, we need to prove that the state transition satis-
fies the guarantee. This makes proofs more complicated in A-G reasoning than in CSL.
Also, assumptions and guarantees are usually complicated and hard to define, because
they specify global invariants for all shared resources during the program execution.

In this paper we study the relationship between CSL and A-G reasoning. We pro-
pose the Separated A-G Logic (SAGL), which extends A-G reasoning with the local-
reasoning idea in separation logic. Instead of treating all resources as shared, SAGL
partitions resources into shared and private. Like in CSL, each thread has full access
to its private resources, which are invisible to its environments. Shared resources can
be accessed in two ways in SAGL: they can be accessed directly, or be converted into
private first and then accessed. Conversions between shared and private can occur at
any program point, instead of being coupled with critical regions. Both direct accesses
and conversions are governed by guarantees, so that non-interference is ensured follow-
ing A-G reasoning. Private resources are not specified in assumptions and guarantees,
therefore specifications in SAGL are simpler and more modular than A-G reasoning.

We then show that CSL can be viewed as a specialization of SAGL with the invariant
that shared resources are well-formed outside of critical regions. The specialization is
pinned down by formalizing the CSL invariant as a specific assumption and guarantee
in SAGL. Our formulation can also be viewed as a novel approach to proving the sound-
ness of CSL. Different from Brookes’ proof based on an action-trace semantics [2], we
prove that CSL inference rules are lemmas in SAGL with the specific assumption and
guarantee. The soundness of SAGL is then proved following the syntactic approach to
type soundness [18]. The proofs are formalized in the Coq proof assistant [16].

Our study is based on an assembly language with RISC-style instructions and built-
in lock/unlock and memory allocation/free primitives. Instead of using the high-level
parallel language proposed by Hoare [6], we use the assembly language because it has
cleaner semantics, which makes our formulation much simpler. For instance, we do not
use variables, instead we only use register files and memory. Therefore we can have a
quick formulation [4] in Coq without worrying about variable renaming issues. Also
we do not have to formalize the complicated syntactic constraints enforced in CSL over
shared variables. Another important reason is that our work at low level can be easily
applied to generate proof-carrying code [9]. CSL and the A-G method studied in this
paper are all adapted to this low-level language. The relationship between the low-level
CSL and the original logic by O’Hearn [11, 10] is discussed in Sect. 7.

On the Relationship Between CSL and Assume-Guarantee Reasoning 175

In the rest of this paper, we first present our low-level language in Sect. 2. We then
present an A-G based logic (AGL) for this language in Sect. 3. We extend AGL with
local reasoning and propose SAGL in Sect. 4. In Sect. 5, we adapt the original CSL to
the low-level language and formalize the relationship between CSL and SAGL. We use
two examples to illustrate the use of SAGL in Sect. 6. Finally, we discuss related work
and conclude in Sect. 7.

2 The Language

Figure 1 defines the model of an abstract machine and the syntax of the assembly lan-
guage. The whole program state P contains a shared memory M, a lock mapping L

which maps a lock to the id of its owner thread, and n threads [T1, . . . ,Tn]. The memory
is modeled as a finite partial mapping from memory locations l (natural numbers) to
word values (natural numbers). Each thread Ti contains its own code heap C, register
file R, the instruction sequence I that is currently being executed, and its thread id i.

The code heap C maps code labels to instruction sequences, which is a list of assem-
bly instructions ending with a jump instruction. The set of instructions we present here
are the commonly used subsets in RISC machines. We also use lock/unlock primitives
to do synchronization, and use alloc/free to do dynamic memory allocation and free.

The step relation (�−→) of program states (P) is defined in Fig. 2. We use the aux-

iliary relation (M,T,L) t�−→ (M′,T′,L′) to define the effects of the execution of the
thread T. Here we follow the preemptive thread model where execution of threads can
be preempted at any program point, but execution of individual instructions is atomic.
In Fig. 2 we show operational semantics of representative instructions, which are mostly
standard. Note that we do not support reentrant-locks. If the lock l has been acquired,
execution of the “lock l” instruction will be blocked even if the lock is owned by the
current thread. The relation Nextι defines the effects of the sequential instruction ι over
memory and register files.

(Program) P ::= (M, [T1, . . . ,Tn],L)
(Thread) Ti ::= (C,R,I, i)

(CodeHeap) C ∈ Labels ⇀ InstrSeq

(Memory) M ∈ Labels ⇀ Word

(RegFile) R ∈ Register → Word

(LockMap) L ::= Locks ⇀ {1, . . . ,n}
(Register) r ::= r0 | . . . |r31

(Labels) f,l ::= i (nat nums)
(Locks) l ::= i (nat nums)
(Word) w ::= i (nat nums)

(InstrSeq) I ::= j f | jr rs | ι;I
(Instr) ι ::= add rd ,rs,rt | addi rd ,rs, i | alloc rd ,rs | beq rs,rt ,f | bgt rs,rt ,f

| free rs | lock l | ld rt , i(rs) | sub rd ,rs,rt | st rt , i(rs) | unlock l

Fig. 1. The Abstract Machine

176 X. Feng, R. Ferreira, and Z. Shao

(M, [T1, . . . ,Tn],L) �−→ (M′, [T1, . . . ,Tk−1,T
′
k,Tk+1, . . . ,Tn],L′)

if (M,Tk,L) t�−→ (M′,T′
k,L

′) for any k;

where

(M,(C,R,I,k),L) t�−→ (M′,T′,L′)
if I = then (M′,T′,L′) =

j f (M,(C,R,I′,k),L) where I
′ = C(f)

jr rs (M,(C,R,I′,k),L) where I
′ = C(R(rs))

beq rs,rt ,f;I′
(M,(C,R,I′,k),L)
(M,(C,R,I′′,k),L)

if R(rs) �= R(rt)
if R(rs) = R(rt) and I

′′ = C(f)

lock l;I′
(M,(C,R,I′,k),L{l �k})
(M,(C,R,I,k),L)

if l �∈ dom(L)
if l ∈ dom(L)

unlock l;I′ (M,(C,R,I′,k),L\{l}) if L(l) = k

ι;I′ for other ι (M′,(C,R′,I′,k),L) where (M′,R′) = Nextι (M,R)

and

if ι = then Nextι (M,R) =
addi rd ,rs, i (M,R{rd �R(rs)+i})
ld rt , i(rs) (M,R{rt �M(R(rs)+i)}) when R(rs)+i ∈ dom(M)
st rt , i(rs) (M{R(rs)+i�R(rt)},R) when R(rs)+i ∈ dom(M)
alloc rd ,rs (M{l, . . . ,l+R(rs)−1� },R{rd �l})

where l, . . . ,l+R(rs)−1 �∈ dom(M)
free rs (M\{R(rs)},R) when R(rs) ∈ dom(M)

Fig. 2. Operational Semantics of the Machine

Note the way we distinguish “blocking” states from “stuck” states caused by unsafe
operations, e.g., freeing dangling pointers. If an unsafe operation is made, there is no

resulting state satisfying the step relation (t�−→) for the current thread. If a thread tries
to acquire a lock which has been taken, it stutters: the resulting state will be the same
as the current one (therefore the lock instruction will be executed again).

3 AGL: An A-G Based Program Logic

In this section we present an A-G based program logic (AGL) for our assembly lan-
guage. AGL is a variation of the CCAP logic [19] which applies the A-G method for
assembly code verification. Different from CCAP, AGL works for the preemptive thread
model instead of the non-preemptive model.

Figure 3 shows the specification constructs for AGL. For each thread in the program,
its specification contains three parts: the specification Ψ for the code heap, the assump-
tion A and the guarantee G. The specification Φ of the whole program just groups spec-
ifications for each thread. We use CiC, our meta-logic mechanized by Coq [16], as the
assertion language for assertions and program specifications. CiC corresponds to the
higher-order predicate logic with inductive definitions via Curry-Howard isomorphism.

On the Relationship Between CSL and Assume-Guarantee Reasoning 177

(XState) X ::= (M,(R, i),L)
(ProgSpec) Φ ::= ([Ψ1, . . . ,Ψn], [(A1,G1), . . . ,(An,Gn)])

(CdHpSpec) Ψ ::= {f � a}∗

(Assertion) a ∈ XState → Prop

(Assume) A ∈ XState → XState → Prop

(Guarantee) G ∈ XState → XState → Prop

Fig. 3. Specification Constructs for AGL

Φ, [a1, . . . ,an] � P (Well-formed program)

Φ = ([Ψ1, . . . ,Ψn], [(A1,G1), . . . ,(An,Gn)])
NI([(A1,G1), . . . ,(An,Gn)]) Ψk,Ak,Gk �{ak}(M,Tk,L) for all k

Φ, [a1, . . . ,an] � (M, [T1, . . . ,Tn],L)
(PROG)

Ψ,A,G �{a}(M,T,L) (Well-formed thread)

a (M,(R,k),L) Ψ,A,G � C :Ψ Ψ,A,G �{a}I

Ψ,A,G �{a}(M,(C,R,I,k),L)
(THRD)

Ψ,A,G � C :Ψ′ (Well-formed code heap)

∀f ∈ dom(Ψ′) : Ψ,A,G �{Ψ′(f)}C(f)

Ψ,A,G � C :Ψ′ (CDHP)

Fig. 4. AGL Inference Rules

Assumptions and guarantees are meta-logic predicates over a pair of extended thread
states X, which contains the shared memory M, the thread’s register file R and id k,
and the global lock mapping L. The assumption A for a thread specifies the expected
invariant of state transitions made by the environment. The arguments it takes are states
before and after a transition, respectively. The guarantee G of a thread specifies the
invariant of state transitions made by the thread.

The code heap specification Ψ assigns a precondition a to each instruction sequence
in the code heap C.The assertion a is a meta-logic predicate over the extended thread
state X. It ensures the safe execution of the corresponding instruction sequence. We do
not assign postconditions to instruction sequences. Since each instruction sequence ends
with a jump instruction, we use the assertion at the target address as the postcondition.

Inference rules. Inference rules of AGL are presented in Figs. 4 and 5. The PROG rule
defines the well-formedness of the program P with respect to the program specifica-
tion Φ and the set of preconditions ([a1, . . . ,an]) for the instruction sequences that are
currently executed by all the threads. Checking the well-formedness of P involves two
steps. First we check the compatibility of assumptions and guarantees for all the threads.
The predicate NI is defined as follows:

NI([(A1,G1), . . . ,(An,Gn)])
def= ∀i, j,M,M′,Ri,R

′
i,R j,L,L′.

i �= j → Gi (M,(Ri, i),L) (M′,(R′
i, i),L

′) → A j (M,(R j, j),L) (M′,(R j, j),L′) ,
(1)

178 X. Feng, R. Ferreira, and Z. Shao

Ψ,A,G �{a}I (Well-formed instr. sequences)

Ψ,A,G �{a} ι{a′} Ψ,A,G �{a′}I (a◦A)⇒a

Ψ,A,G �{a} ι;I
(SEQ)

∀X@(M,(R,k),L). a X → Ψ(R(rs)) X (a◦A)⇒a

Ψ,A,G �{a} jr rs
(JR)

Ψ,A,G �{a} ι{a′} (Well-formed instructions)

∀X@(M,(R,k),L). a X∧ l 	∈ dom(L) → a′ X′ ∧G X X′
where X′ = (M,(R,k),L{l �k}).

Ψ,A,G �{a} lock l {a′} (LOCK)

∀X@(M,(R,k),L). a X → L(l) = k∧a′ X′∧G X X′
where X′ = (M,(R,k),L\{l}).

Ψ,A,G �{a}unlock l {a′} (UNLOCK)

∀X@(M,(R,k),L).∀l. a X∧{l, . . . ,l+R(rs)−1} 	∈ dom(M) →
R(rs) > 0∧a′ X′ ∧G X X′

where X′ = (M{l, . . . ,l+R(rs)−1� },(R{rd �l},k),L)

Ψ,A,G �{a}alloc rd ,rs {a′}
(ALLOC)

Fig. 5. AGL Inference Rules (cont’d)

which simply says that the guarantee of each thread should satisfy assumptions of all
other threads. Then we apply the THRD rule to check that implementation of each thread
actually satisfies the specification. Each thread Ti is verified separately. therefore thread
modularity is supported.

In the THRD rule, we require that the precondition a be satisfied by the current ex-
tended thread state (M,(R,k),L); that the thread code heap satisfy its specification Ψ,
A and G; and that it be safe to execute the current instruction sequence I under the
precondition a and the thread specification.

The CDHP rule checks the well-formedness of thread code heaps. It requires that
each instruction sequence specified in Ψ′ be well-formed with respect to the imported
interfaces specified in Ψ, the assumption A and the guarantee G.

The SEQ rule and the JR rule ensure that it is safe to execute the instruction sequence
if the precondition is satisfied. If the instruction sequence starts with a normal sequen-
tial instruction ι, we need to come up with an assertion a′ which serves both as the
postcondition of ι and as the precondition of the remaining instruction sequence. Also
we need to ensure that, if the current thread is preempted at a state satisfying a, a must
be preserved by any state transitions (by other threads) satisfying the assumption A.
This is enforced by (a◦A)⇒a:

(a◦A)⇒a
def= ∀X,X′. a X∧A X X

′ → a X
′ .

If we reach the last jump instruction of the instruction sequence, the JR rule requires
that the assertion assigned to the target address in Ψ be satisfied after the jump. It also

On the Relationship Between CSL and Assume-Guarantee Reasoning 179

requires that a be preserved by state transitions satisfying A. Here we use the syntactic
sugar ∀X@(x1, . . . ,xn). P(X ,x1, . . . ,xn) to mean that, for all tuple X containing elements
x1, . . . ,xn, the predicate P holds. It is formally defined as:

∀X ,x1, . . . ,xn.(X = (x1, . . . ,xn)) → P(X ,x1, . . . ,xn) .

The notation λX@(x1, . . . ,xn). f (X ,x1, . . . ,xn) that we use later is defined similarly. The
rule for direct jumps (j f) is similar to the JR rule and is not presented here.

Instruction rules require that the precondition ensure the safe execution of the in-
struction; and that the resulting state satisfy the postcondition. Also, if shared states (M
and L) are updated by the instruction, we need to ensure that the update satisfies the
guarantee G. For the lock instruction, if the control falls through, we know that the lock
is not held by any thread. This extra knowledge can be used together with the precondi-
tion a to show the postcondition is satisfied by the resulting state. The rest of instruction
rules are straightforward and will not be explained here. Interested readers can refer to
the companion technical report [4] for a complete presentation of instruction rules.

The soundness of AGL is also formalized in the technical report [4], which is similar
to the soundness theorem of SAGL presented in Sect. 4.

4 SAGL: Separated A-G Logic

AGL is a general program logic supporting thread modular verification of concurrent
code. However, because it treats all memory as shared resources, it does not have good
memory modularity, and assumptions and guarantees are hard to define and use. During
program verification, we have to prove for each individual instruction that the guarantee
is not broken, even if there is no memory sharing. Moreover, if each thread dynamically
allocates memory and uses allocated memory as private resources (see the example in
Sect. 6), the domain of memory becomes dynamic and nondeterministic, which makes
it very hard to specify the assumption and guarantee.

In this section, we extend AGL with explicit partition of private resources and shared
resources. The extended logic, which we call Separated A-G Logic (SAGL), has much
better support of memory modularity than AGL without sacrificing any expressiveness.
Borrowing the local-reasoning idea in separation logic, private resources of one thread
are not visible to other threads, therefore will not be touched by others. Assumptions
and guarantees in SAGL only specify shared resources. The dynamic domain of private
memory caused by memory allocation is no longer a challenge to define assumptions
and guarantees because private memory does not have to be specified.

Figure 6 shows our extensions of AGL specifications for SAGL. In the specification
Ψ of each thread code heap, the precondition assigned to each code label now becomes
a pair of assertions (a,ν). The assertion a plays the same role as in AGL. It specifies the
shared resources (all memory are treated as shared in AGL). The assertion ν specifies
the private resources of the thread. Other threads’ private resources are not specified.

(CdHpSpec) Ψ ::= {f � (a,ν)}∗

(Assertion) a,ν ∈ XState → Prop

Fig. 6. Extension of AGL Specification Constructs in SAGL

180 X. Feng, R. Ferreira, and Z. Shao

Φ, [(a1,ν1), . . . ,(an,νn)] � P (Well-formed program)

Φ = ([Ψ1, . . . ,Ψn], [(A1,G1), . . . ,(An,Gn)]) NI([(A1,G1), . . . ,(An,Gn)])
Ms
M1
·· ·
Mn = M Ψk,Ak,Gk �{(ak,νk)}(Ms,Mk,Tk,L) for all k

Φ, [(a1,ν1), . . . ,(an,νn)] � (M, [T1, . . . ,Tn],L)
(PROG)

Ψ,A,G �{(a,ν)}(Ms,Mv,T,L) (Well-formed thread)

a (Ms,(R,k),L) ν (Mv,(R,k),L|k) Ψ,A,G � C :Ψ Ψ,A,G �{(a,ν)}I

Ψ,A,G �{(a,ν)}(Ms,Mv,(C,R,I,k),L)
(THRD)

Ψ,A,G � C :Ψ′ (Well-formed code heap)

∀f ∈ dom(Ψ′) : Ψ,A,G �{Ψ′(f)}C(f)

Ψ,A,G � C :Ψ′ (CDHP)

Fig. 7. SAGL Inference Rules

Inference rules. The inference rules of SAGL are shown in Figs. 7 and 8. They look
very similar to AGL rules. In the PROG rule, as in AGL, we check the compatibility of
assumptions and guarantees, and check the well-formedness of each thread. However,
here we require that there be a partition of memory into n+1 parts: one part Ms is shared
and other parts M1, . . . ,Mn are privately owned by the threads T1, . . . ,Tn, respectively.
When we check the well-formedness of thread Tk, the memory in the extended thread
state is not the global memory. It just contains Ms and Mk.

The THRD rule in SAGL is similar to the one in AGL, except that the memory visible
by each thread is separated into two parts: the shared Ms and the private Mv. We require
that assertions a and ν hold over Ms and Mv respectively. Since ν only specifies the
private resource, we use the “filter” operator L|k to prevent ν from having access to the
ownership information of locks not owned by the current thread:

(L|k)(l)
def=

{
k L(l) = k
undefined otherwise

(2)

i.e., L|k is a subset of L which maps locks to k.
Instruction rules are shown in Fig. 8. In the SEQ rule, we use (a,ν) as the precon-

dition. However, to ensure that the precondition is preserved by state transitions satis-
fying A, we only check a (i.e., we check (a◦A)⇒a) because A only specifies shared
resources. We know that the private resources will not be touched by the environment.
We require a to be precise to enforce the unique boundary between shared and private
resources. Following the definition in CSL [11], an assertion a is precise if and only if
for any memory M, there is at most one subset M

′ that satisfies a, i.e.,

Precise(a) def= ∀M,R,k,L,M1,M2. (M1 ⊆ M)∧ (M2 ⊆ M)∧
a (M1,(R,k),L)∧a (M2,(R,k),L) → M1 = M2 .

(3)

The JR rule requires a be precise and it be preserved by state transitions satisfying the
assumption. Also, the specification assigned to the target address needs to be satisfied

On the Relationship Between CSL and Assume-Guarantee Reasoning 181

Ψ,A,G �{(a,ν)}I (Well-formed instr. sequences)

Ψ,A,G �{(a,ν)} ι{(a′,ν′)} Ψ,A,G �{(a′,ν′)}I (a◦A)⇒a Precise(a)
Ψ,A,G �{(a,ν)} ι;I

(SEQ)

Precise(a) (a◦A)⇒a ∀X@(M,(R,k),L). (a∗ν) X → (a′ ∗ν′) X∧ (�G(a,a′) X X)
where (a′,ν′) = Ψ(R(rs))

Ψ,A,G �{(a,ν)} jr rs
(JR)

Ψ,A,G �{(a,ν)} ι{(a′,ν′)} (Well-formed instructions)

∀X@(M,(R,k),L). (a∗ν) X∧ l 	∈ dom(L) → (a′ ∗ν′) X′ ∧ (�G(a,a′) X X′)
where X′ = (M,(R,k),L{l �k})

Ψ,A,G �{(a,ν)} lock l {(a′,ν′)} (LOCK)

∀X@(M,(R,k),L). (a∗ν) X → L(l) = k∧ (a′ ∗ν′) X′∧ (�G(a,a′) X X′)
where X′ = (M,(R,k),L\{l})

Ψ,A,G �{(a,ν)}unlock l {(a′,ν′)} (UNLOCK)

Fig. 8. SAGL Inference Rules (cont’d)

by the resulting state of the jump, and the identity state transition made by the jump
satisfies the guarantee G. We use the separating conjunction of the shared and private
predicates as the pre- and post-condition. We define a∗ ν as:

a∗ν def= λ(M,(R,k),L).
∃M1,M2.(M1 �M2 = M)∧a (M1,(R,k),L)∧ν (M2,(R,k),L|k) .

(4)

Again, the use of L|k prevents ν from having access to the ownership information of
locks not owned by the current thread. We use f1 � f2 to represent the union of finite
partial mappings with disjoint domains.

To ensure G is satisfied over shared resources, we lift G to �G�(a,a′):

�G�(a,a′)
def= λX@(M,(R,k),L),X′@(M′,(R′,k′),L′).

∃M1,M2,M
′
1,M

′
2. (M1 �M2 = M)∧ (M′

1 �M
′
2 = M

′)
∧ a (M1,(R,k),L)∧a′ (M′

1,(R
′,k′),L′)

∧ G (M1,(R,k),L) (M′
1,(R

′,k′),L′) ,

(5)

Here we use precise predicates a and a′ to enforce the unique boundary between shared
and private resources.

As expected, the SAGL rule for each individual instruction is almost the same as its
counterpart in AGL, except that we always use the separating conjunction of predicates
for shared and private resources. Each instruction rule requires that memory in states
before and after the transition can be partitioned to private and shared; private parts
satisfy private predicates and shared parts satisfy shared predicates and G.

It is important that we always combine shared predicates with private predicates
instead of checking separately the relationship between a and a′ and between ν and

182 X. Feng, R. Ferreira, and Z. Shao

ν′. This gives us the ability to support dynamic redistribution of private and shared
memory. Instead of enforcing static partition, we allow that part of private memory
becomes shared under certain conditions and vice versa. As we will show in the next
section, this ability makes our SAGL very expressive and is the enabling feature that
makes the embedding of CSL into SAGL possible.

AGL can be viewed as a specialized version of SAGL where all the ν’s are set to
emp (emp is an assertion which can only be satisfied by memory with empty domain).

Soundness. The soundness of SAGL is formulated in Theorem 1. In addition to the
safety of well-formed programs, it also characterizes partial correctness: assertions as-
signed to labels in Ψ will hold whenever the labels are reached. Theorem 1 is proved
following the syntactic approach to type soundness [18]. Here we only present the main
theorem. The proof is given in our technical report and is formalized in Coq [4].

Theorem 1 (SAGL-Soundness). For any program P with specification
Φ = ([Ψ1, . . . ,Ψn], [(A1,G1), . . . ,(An,Gn)]), if Φ, [(a1,ν1) . . . ,(an,νn)] � P, then,

– for any natural number m, there exists P
′ such that (P �−→m

P
′);

– for any m and P
′ = (M′, [T′

1, . . . ,T
′
n],L

′), if (P �−→m
P

′), then,
• Φ, [(a′

1,ν′
1), . . . ,(a

′
n,ν′

n)] � P
′ for some a′

1, . . . ,a
′
n and ν′

1, . . . ,ν′
n;

• for any k, there exist M
′′, T

′′
k and L

′′ such that (M′,T′
k,L

′) t�−→ (M′′,T′′
k ,L′′);

• for any k, if T
′
k = (Ck,R

′
k, jr rs,k), then (a′′

k ∗ν′′
k) (M′,(R′

k,k),L
′) holds, where

(a′′
k ,ν

′′
k) = Ψk(R′

k(rs));
• for any k, if T

′
k = (Ck,R

′
k,bgt rs,rt ,f;I,k) and R

′
k(rs) > R

′
k(rt), then

(a′′
k ∗ ν′′

k) (M′,(R′
k,k),L

′) holds, where (a′′
k ,ν

′′
k) = Ψk(f);

5 Concurrent Separation Logic (CSL)

Both AGL and SAGL treat lock/unlock primitives as normal instructions. They do not
require that shared memory be protected by locks. This shows the generality of the A-G
method, which makes no assumption about language constructs for synchronizations.
Any ad-hoc synchronizations can be verified using the A-G method.

If we focus on a special class of programs following Hoare [6] where accesses of
shared resources are protected by critical regions (implemented by locks in our lan-
guage), we can further simplify our SAGL logic and derive a variation of CSL (CSL
adapted to our assembly language).

5.1 CSL Specifications and Rules

In CSL, shared memory is partitioned and each part is protected by a unique lock.
For each part of the partition, an invariant is assigned to specify its well-formedness.

(ProgSpec) φ ::= ([ψ1, . . . ,ψn],Γ)
(CdHpSpec) ψ ::= {f � ν}∗

(ResourceINV) Γ ∈ Locks ⇀ MemPred

(MemPred) m ∈ Memory → Prop

Fig. 9. Specification Constructs for CSL

On the Relationship Between CSL and Assume-Guarantee Reasoning 183

m∗m′ def= λM.∃M1,M2. (M1 �M2 = M)∧m M1 ∧m′
M2

ν∗m def= λX@(M,(R,k),L).∃M1,M2. (M1 �M2 = M)∧ν (M1,(R,k),L)∧m M2

∀∗x∈S. P(x) def=
{

emp if S = /0
P(xi)∗∀∗x∈S′. P(x) if S = S′ �{xi}

acq l ν def= λ(M,(R,k),L). ν (M,(R,k),L{l �k})

rel l ν def= λ(M,(R,k),L). L(l) = k ∧ν (M,(R,k),L\{l})

Fig. 10. Definitions of Notations in CSL

A thread cannot access shared memory unless it has acquired the corresponding lock.
After the lock is acquired, the thread takes advantage of mutual-exclusion provided by
locks and treats the part of memory as private. When the thread releases the lock, it
must ensure that the part of memory is well-formed with regard to the corresponding
invariant. In this way the following global invariant is enforced:

Shared resources are well-formed outside critical regions.

Figure 9 shows the specification constructs for CSL. The program specification φ
contains a collection of code heap specifications for each thread and the specification
Γ for lock-protected memory. Code heap specification ψ maps a code label to an as-
sertion ν as the precondition of the corresponding instruction sequence. Here ν plays
similar role of the private predicate in SAGL. Since each thread privately owns the lock
protected memory if it owns the lock, all memory accessible by a thread is viewed as
private memory. Therefore we do not need an assertion a to specify the shared memory
as we did in SAGL. This also explains why we do not need assumptions and guarantees
in CSL. The specification Γ of lock-protected memory maps a lock to an invariant m,
which specifies the corresponding part of memory. The invariant m is simply a predicate
over memory because the register file is private to each thread.

Inference rules. The inference rules for CSL are presented in Fig. 11. The PROG rule
requires that there be a partition of the global memory into n + 1 parts. Each Mk is
privately owned by thread Tk. The well-formedness of Tk is checked by applying the
THRD rule. Ms is the part of memory protected by free locks (locks not owned by any
threads). It must satisfy the invariants specified in Γ. Here aΓ is the separating conjunc-
tion of invariants assigned to free locks in Γ, which is defined as:

aΓ
def= λ(M,(R,k),L). (∀∗l ∈(dom(Γ)− dom(L)). Γ(l)) M , (6)

that is, shared resources are well-formed outside of critical regions. Here ∀∗ is an in-
dexed, finitely iterated separating conjunction, which is formalized in Fig. 10. Separat-
ing conjunctions with memory predicates (ν ∗ m and m∗ m′) are also defined in Fig. 10.
As in O’Hearn’s original work on CSL [11], we also require all invariants specified in
Γ to be precise, i.e., Precise(Γ).

The THRD rule checks the well-formedness of threads. It requires that the current
extended thread state satisfies the precondition ν. Since ν only cares about the resource
privately owned by the thread, it takes L|k instead of complete L as argument. Recall
that L|k is defined in (2) in Section 4 to represent the subset of L which maps locks to

184 X. Feng, R. Ferreira, and Z. Shao

φ, [ν1, . . . ,νn] � P (Well-formed program)

φ = ([ψ1, . . . ,ψn],Γ) Ms �M1 �·· ·�Mn = M

aΓ (Ms, ,L) Precise(Γ) ψk,Γ �{νk}(Mk,Tk,L) for all k

φ, [ν1, . . . ,νn] � (M, [T1, . . . ,Tn],L)
(PROG)

ψ,Γ �{ν}(M,T,L) (Well-formed thread)

ν (M,(R,k),L|k) ψ,Γ � C :ψ ψ,Γ �{ν}I

ψ,Γ �{ν}(M,(C,R,I,k),L)
(THRD)

ψ,Γ � C :ψ′ (Well-formed code heap)

∀f ∈ dom(ψ′) : ψ,Γ �{ψ′(f)}C(f)

ψ,Γ � C :ψ′ (CDHP)

ψ,Γ �{ν}I (Well-formed instr. sequences)

ψ,Γ �{ν} ι{ν′} ψ,Γ �{ν′}I

ψ,Γ �{ν} ι;I
(SEQ)

∀X@(M,(R,k),L). ν X → ψ(R(rs)) X

ψ,Γ �{ν} jr rs
(JR)

ψ,Γ �{ν} ι{ν′} (Well-formed instructions)

ν∗m ⇒ acq l ν′

ψ,Γ{l �m} �{ν} lock l {ν′}
(LOCK)

ν ⇒ (rel l ν′)∗m
ψ,Γ{l �m} �{ν}unlock l {ν′}

(UNLOCK)

Fig. 11. CSL Inference Rules

k. The CDHP rule and rules for instruction sequences are similar to their counterparts in
AGL and SAGL and require no more explanation.

In the LOCK rule, we use “acq l ν′” to represent the weakest precondition of ν′;
and “ν ⇒ ν′” for logical implication lifted for state predicates. They are formalized
in Fig. 10. If the lock l instruction successfully acquires the lock l, we know by our
global invariant that the part of memory protected by l satisfies the invariant Γ(l) (i.e.,
m), because l is a free lock before lock l is executed. Therefore, we can carry the knowl-
edge m in the postcondition ν′. Also, carrying m in ν′ allows subsequent instructions
to access that part of memory, since separation logic predicates capture ownerships of
memory.

In the UNLOCK rule, “rel l ν′” is the weakest precondition for ν′ (see Fig. 10). At the
time the lock l is released, the memory protected by l must be well formed with respect
to m = Γ(l). The separating conjunction here ensures that ν′ does not specify this part
of memory. Therefore the following instructions cannot use the part of memory unless
the lock is acquired again.

The complete set of rules are presented in the technical report [4]. The frame rule,
conjunction rule and consequence rule are admissible in our CSL. These rules and the
proof of their admissibility can be found in the report [4] too.

On the Relationship Between CSL and Assume-Guarantee Reasoning 185

5.2 Interpretation of CSL in SAGL

We prove the soundness of CSL by giving it an interpretation in SAGL, and proving
CSL rules as derivable lemmas. This interpretation also formalizes the specialization
made for CSL to achieve the simplicity.

From SAGL’s point of view, each thread has two parts of memory: the private and
the shared. In CSL, the private memory of a thread includes the memory protected by
locks held by the thread and the memory that will never be shared. The shared memory
are the parts protected by free locks. Therefore, we can use the following interpretation
to translate a CSL specification to a SAGL specification:

[[ν]]Γ
def= (aΓ,ν) (7)

[[ψ]]Γ
def= λf.[[ψ(f)]]Γ if f ∈ dom(ψ) , (8)

where aΓ formalizes the CSL invariant and is defined by (6). We just reuse CSL speci-
fication ν as the specification of private memory, and use the separating conjunction aΓ
of invariants assigned to free locks as the specification for shared memory.

Since the assumption and guarantee in SAGL only specifies shared memory, we can
define AΓ and GΓ for CSL threads:

AΓ
def= λX@(M,(R,k),L),X′@(M′,(R′,k′),L′).R = R

′ ∧ k = k′ ∧ (aΓ X → aΓ X
′) (9)

GΓ
def= λX@(M,(R,k),L),X′@(M′,(R′,k′),L′). k = k′ ∧aΓ X∧aΓ X

′ (10)

which enforces the invariant aΓ of shared memory.
With above interpretations, we can prove the following soundness theorem.

Theorem 2 (CSL-Soundness)

1. If ψ,Γ �{ν} ι{ν′} in CSL, then [[ψ]]Γ,AΓ,GΓ �{[[ν]]Γ} ι{[[ν′]]Γ} in SAGL;
2. If ψ,Γ �{ν}I in CSL and Precise(Γ), then [[ψ]]Γ,AΓ,GΓ �{[[ν]]Γ}I in SAGL;
3. If ψ,Γ � C :ψ′ in CSL and Precise(Γ), then [[ψ]]Γ,AΓ,GΓ � C : [[ψ′]]Γ in SAGL;
4. If ψ,Γ �{ν}(Mk,Tk,L) in CSL, Precise(Γ), and aΓ (Ms, ,L), then

[[ψ]]Γ,AΓ,GΓ �{[[ν]]Γ}(Ms,Mk,Tk,L) in SAGL;
5. If ([ψ1, . . . ,ψn],Γ), [ν1, . . . ,νn] � P in CSL, then Φ, [[[ν1]]Γ, . . . , [[νn]]Γ] � P in SAGL,

where Φ = ([[[ψ1]]Γ, . . . , [[ψn]]Γ], [(AΓ,GΓ), . . . ,(AΓ,GΓ)]).

6 SAGL Examples

We use two complementary examples to demonstrate how SAGL combines merits of
AGL and CSL. Figure 12 shows a simple program, which allocates a fresh memory
cell and then writes into and reads from it. Following the MIPS convention, we assume
the register r0 always contains 0. The corresponding high-level pseudo code is given as
comments (followed by “;;”). It is obvious that two threads executing the same code
(but may use different m) will never interfere with each other, therefore the test in line
(7) is always True and the program never reaches the unsafe branch.

It is trivial to certify the code in CSL since there is no memory-sharing at all. How-
ever, due to the nondeterministic operation of the alloc instruction, it is challenging to

186 X. Feng, R. Ferreira, and Z. Shao

(1) start: -{(emp, emp)}
(2) addi r1, r0, 1 ;; local int x, y;
(3) alloc r2, r1 ;; x := alloc(1);

-{(emp, r2 �→)}
(4) addi r1, r0, m
(5) st r1, 0(r2) ;; [x] := m;

-{(emp, (r2 �→ m)∧r1 = m)}
(6) ld r3, 0(r2) ;; y := [x];

-{(emp, (r2 �→ m)∧r1 = m∧r3 = m)}
(7) beq r1, r3, safe ;; while(y == m){}
(8) unsafe: -{(emp, False)}
(9) free r0 ;; free(0); (* unsafe! *)
(10) safe: -{(emp, r2 �→)}
(11) j safe

Fig. 12. Example 1: Memory Allocation

a1
def= ∃p,q. (m �→ p)∗ (n �→ q)∧gcd(p,q) = gcd(α,β)

a2
def= ∃p,q. (m �→ p)∗ (n �→ q)∧gcd(p,q) = gcd(α,β)∧x = p∧y ≥ q∧ (p ≥ q → y = q)

a3
def= ∃p,q. (m �→ p)∗ (n �→ q)∧gcd(p,q) = gcd(α,β)∧x = p∧y = q∧ p > q

a4
def= ∃p. (m �→ p)∗ (n �→ p)∧ p = gcd(α,β)

A1
def= ([m] = [m]′)∧ ([n] ≥ [n]′)∧ ([m] ≥ [n] → [n] = [n]′)∧ (gcd([m], [n]) = gcd([m]′, [n]′))

G1
def= ([n] = [n]′)∧ ([m] ≥ [m]′)∧ ([n] ≥ [m] → [m] = [m]′)∧ (gcd([m], [n]) = gcd([m]′, [n]′))

local int x, y; local int x, y;
while(true){ while(true){

-{(a1, emp)}
x := [m]; x := [n];
y := [n]; y := [m];
-{(a2, emp)}
if(x > y) || if(x > y)

-{(a3, emp)}
[m] := x-y; [n] := x-y;

if(x == y) { break;} if(x == y) { break;}
} }
-{(a4, emp)}

Fig. 13. Example 2: Parallel GCD

certify the code in AGL because the specification of A and G requires global knowl-
edge of memory. We certify the code in SAGL. Assertions are shown as annotations
enclosed in “-{}”. Recall that in SAGL the first assertion in the pair specifies shared
resources and the second one specifies private resources. We treat all the resources as
private, therefore the shared predicate is simply emp. The corresponding A and G are
trivial. The whole verification is as simple as in CSL.

Our second example is adapted from Yu and Shao [19], which computes the greatest
common divisor (GCD) of α and β, stored at locations m and n initially. The high-level

On the Relationship Between CSL and Assume-Guarantee Reasoning 187

pseudo code is shown in Fig. 13. Each thread’s local variables are allocated in its private
registers in the assembly code, which is similar to the high-level code and is shown in
the technical report [4].

In this example, synchronization is achieved without using locks. To certify the code
in CSL, we have to rewrite it by wrapping each memory-access command using lock
and unlock commands and by introducing auxiliary variables. This time we use the
“AGL part” of SAGL to certify the code: private predicates are simply emp. Assertions
for the first thread are shown as annotations. In A1 and G1, we use primed values (e.g.,
[m]′ and [n]′) to represent memory values in the resulting state of each action.

We give more examples in the technical report [4], which illustrate the support of
dynamic redistribution of shared and private memory in SAGL.

7 Related Work and Conclusion

O’Hearn [11] proposed CSL for a high-level parallel language following Hoare [6].
Synchronization in the language is achieved by the conditional critical region (CCR)
in the form of “with r when b do c”. Semantics of CCRs is as follows: the statement c
can be executed only if the resource r has not been acquired by others and the Boolean
expression b is true; otherwise the thread will be blocked. We adapt CSL to an assembly
language. The CCR can be implemented using our lock/unlock primitives. Each lock in
our language corresponds to a resource name at the high-level. Atomic instructions in
our assembly language are very similar to actions in Brookes Semantics [2], where se-
mantic functions are defined for statements and expressions. These semantic functions
can be viewed as a translation from the high-level language to a low-level language sim-
ilar to ours. Recently, Reynolds [15] and Brookes [3] have studied grainless semantics
for concurrency. Brookes also gives a grainless semantics to CSL [3].

The PROG rule of our CSL corresponds to O’Hearn’s parallel composition rule [11].
The number of threads in our machine is fixed, therefore the nested parallel composi-
tion statement supported by Brookes [2] is not supported in our language. We studied
verification of assembly code with dynamic thread creation in an earlier paper [5].

CSL is still evolving. Bornat et al. [1] proposed a refinement of CSL with fine-
grained resource accounting. Parkinson et al. [13] applied CSL to verify a non-blocking
implementation of stacks. As in the original CSL, these works also assume language
constructs for synchronizations. We suspect that there exist reductions from these vari-
ations to SAGL-like logics. We leave this as our future work.

Concurrently with our work on SAGL, Vafeiadis and Parkinson [17] proposed an-
other approach to combining rely/guarantee and separation logic, which we refer to
here as RGSep. Both RGSep and SAGL partition memory into shared and private
parts. However, shared memory cannot be accessed directly in RGSep. It has to be
converted into private first to be accessed. Conversions can only occur at boundaries of
critical regions, which is a built-in language construct required by RGSep to achieve
atomicity. RGSep, in principle, does not assume smallest granularity of transitions. In
SAGL, shared memory can be accessed directly, or be converted into private first and
then accessed. Conversions can be made dynamically at any program point, instead
of being coupled with critical regions. However, like A-G reasoning, SAGL assumes

188 X. Feng, R. Ferreira, and Z. Shao

smallest granularity. We suspect that RGSep can be compiled into a specialized version
of SAGL, following the way we translate CSL. On the other hand, if our instructions
are wrapped using critical regions, SAGL might be derived from RGSep too.

We also use SAGL as the basis to formalize the relationship between CSL and A-
G reasoning. We encode the CSL invariant as an assumption and guarantee in SAGL,
and prove that CSL rules are derivable from corresponding SAGL rules with the spe-
cific assumption and guarantee. Soundness of SAGL is proved following the syntactic
approach to type soundness. Our work has been formalized in Coq [4].

References

[1] R. Bornat, C. Calcagno, P. O’Hearn, and M. Parkinson. Permission accounting in separation
logic. In Proc. 32nd ACM Symp. on Principles of Prog. Lang., pages 259–270, 2005.

[2] S. Brookes. A semantics for concurrent separation logic. In Proc. 15th International Con-
ference on Concurrency Theory (CONCUR’04), volume 3170 of LNCS, pages 16–34, 2004.

[3] S. Brookes. A grainless semantics for parallel programs with shared mutable data. In Proc.
MFPS XXI, volume 155 of Electr. Notes Theor. Comput. Sci., pages 277–307, 2006.

[4] X. Feng, R. Ferreira, and Z. Shao. On the relationship between concurrent separation logic
and assume-guarantee reasoning. Technical Report YALEU/DCS/TR-1374 and Formula-
tion in Coq, Dept. of Computer Science, Yale University, New Haven, CT, January 2007.

[5] X. Feng and Z. Shao. Modular verification of concurrent assembly code with dynamic
thread creation and termination. In Proc. ICFP’05, pages 254–267, 2005.

[6] C. A. R. Hoare. Towards a theory of parallel programming. In C. A. R. Hoare and
R. H. Perrott, editors, Operating Systems Techniques, pages 61–71. Academic Press, 1972.

[7] S. S. Ishtiaq and P. W. O’Hearn. BI as an assertion language for mutable data structures. In
Proc. 28th ACM Symp. on Principles of Prog. Lang., pages 14–26, 2001.

[8] C. B. Jones. Tentative steps toward a development method for interfering programs. ACM
Trans. on Programming Languages and Systems, 5(4):596–619, 1983.

[9] G. Necula. Proof-carrying code. In Proc. 24th ACM Symp. on Principles of Prog. Lang.,
pages 106–119. ACM Press, Jan. 1997.

[10] P. W. O’Hearn. Resources, concurrency and local reasoning. Theoretical Computer Science
(to appear). Journal version of [11].

[11] P. W. O’Hearn. Resources, concurrency and local reasoning. In Proc. 15th Int’l Conf. on
Concurrency Theory (CONCUR’04), volume 3170 of LNCS, pages 49–67, 2004.

[12] S. Owicki and D. Gries. Verifying properties of parallel programs: an axiomatic approach.
Commun. ACM, 19(5):279–285, 1976.

[13] M. Parkinson, R. Bornat, and P. O’Hearn. Modular verification of a non-blocking stack. In
Proc. 34th ACM Symp. on Principles of Prog. Lang., page to appear. ACM Press, Jan. 2007.

[14] J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In Proc.
LICS’02, pages 55–74, July 2002.

[15] J. C. Reynolds. Toward a grainless semantics for shared-variable concurrency. In Proc.
FSTTCS’04, volume 3328 of LNCS, pages 35–48, 2004.

[16] The Coq Development Team. The Coq proof assistant reference manual. The Coq release
v8.0, Oct. 2004.

[17] V. Vafeiadis and M. Parkinson. A marriage of rely/guarantee and separation logic. Available
at http://www.cl.cam.ac.uk/~mjp41/RGSep.pdf, 2007.

[18] A. K. Wright and M. Felleisen. A syntactic approach to type soundness. Information and
Computation, 115(1):38–94, 1994.

[19] D. Yu and Z. Shao. Verification of safety properties for concurrent assembly code. In Proc.
2004 ACM SIGPLAN Int’l Conf. on Functional Prog., pages 175–188, September 2004.

Abstract Predicates and Mutable ADTs in

Hoare Type Theory

Aleksandar Nanevski1, Amal Ahmed2, Greg Morrisett1, and Lars Birkedal3

1 Harvard University
{aleks,greg}@eecs.harvard.edu

2 Toyota Technological Institute at Chicago
amal@tti-c.org

3 IT University of Copenhagen
birkedal@itu.dk

Abstract. Hoare Type Theory (HTT) combines a dependently typed,
higher-order language with monadically-encapsulated, stateful computa-
tions. The type system incorporates pre- and post-conditions, in a fashion
similar to Hoare and Separation Logic, so that programmers can modu-
larly specify the requirements and effects of computations within types.

This paper extends HTT with quantification over abstract predicates
(i.e., higher-order logic), thus embedding into HTT the Extended Calcu-
lus of Constructions. When combined with the Hoare-like specifications,
abstract predicates provide a powerful way to define and encapsulate the
invariants of private state that may be shared by several functions, but
is not accessible to their clients. We demonstrate this power by sketch-
ing a number of abstract data types that demand ownership of mutable
memory, including an idealized custom memory manager.

1 Background

Dependent types provide a powerful form of specification for higher-order, func-
tional languages. For example, using dependency, we can specify the signature
of an array subscript operation as sub : ∀α.Πx:arrayα.Πy:{i:nat | i < x.size}.α,
where the type of the second argument, y, refines the underlying type nat using
a predicate that ensures that y is a valid index for the array x.

Dependent types have long been used in the development of formal mathemat-
ics, but their use in practical programming languages has proven challenging. One
of the main reasons is that the presence of any computational effects, including
non-termination, exceptions, access to store, or I/O – all of which are indispensable
in practical programming – can quickly render a dependent type system unsound.

The problem can be addressed by severely restricting dependencies to only
effect-free terms (as in for instance DML [30]). But the goal of our work is
to try to realize the full power of dependent types for specification of effectful
programs. To that end, we have been developing the foundations of a language
that we call Hoare Type Theory or HTT [22], which we intend to be an expressive
and explicitly annotated internal language, providing a semantic framework for
elaborating more practical external languages.

R. De Nicola (Ed.): ESOP 2007, LNCS 4421, pp. 189–204, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

190 A. Nanevski et al.

HTT starts with a pure, dependently typed core language and augments it
with an indexed monadic type of the form {P}x:A{Q}. This type encapsulates
and describes effectful computations that may diverge or access a mutable store.
The type can be read as a Hoare-like partial correctness specification, asserting
that if the computation is run in a world satisfying the pre-condition P , then if
it terminates, it will return a value x of type A and be in a world described by
Q. Through Hoare types, the system can enforce soundness in the presence of
effects. The Hoare type admits small footprints as in Separation Logic [26,24],
where the pre- and postconditions only describe the part of the store that the
program actually uses; the unspecified part is automatically assumed invariant.

Recently, several variants of Hoare Logic for higher-order, effectful languages
have appeared. Yoshida, Honda and Berger [31,4] define a logic for PCF with
references, Krishnaswami [13] defines a Separation Logic for core ML extended
with a monad, and Birkedal et al. [5] define a Higher-Order Separation Logic
for reasoning about ADTs in first-order programs. However, we believe that
HTT has several key advantages over these and other proposed logics. First,
HTT supports strong (i.e., type-varying) updates of mutable locations, while
the above program logics require that the types of memory locations are invari-
ant. This restriction makes it difficult to model stateful protocols as in the Vault
language [7], or low-level languages such as TAL [20] and Cyclone [12] where
memory management is intended to be coded within the language. Second, none
of these logics considers pointer arithmetic, nor source language features like
type abstraction, modules, or dependent types, which we consider here. Third,
and most significant, Hoare logics cannot really interact with the type systems
of the underlying language, unlike HTT where specifications are integrated with
types. In Hoare Logic, it is not possible to abstract over specifications in the
source programs, aggregate the logical invariants of the data structures with the
data itself, compute with such invariants, or nest the specifications into larger
specifications or types. These features are essential ingredients for data abstrac-
tion and information hiding, and, in fact, a number of works have been proposed
towards integrating Hoare-like reasoning with type checking. Examples include
tools and languages like Spec# [1], SPLint [9], ESC/Java [8], and JML [6].

There are several important outstanding problems in the design of such lan-
guages for integrated programming and verification. As discussed in [6], for ex-
ample: (1) It is desirable to use effectful code in the specifications, but most
languages insist that specifications must be pure, in order to preserve sound-
ness. Such a restriction frequently leads to implementing the same functionality
twice – once purely for specification, and once impurely for execution. (2) Spec-
ifications should be able to describe and control pointer aliasing. (3) It is tricky
to define a useful notion of object or module invariant, primarily because of lo-
cal state owned by the object. Most definitions end up beeing too restrictive to
support some important programming patterns [2].

Our prior work on HTT [22] addresses the first two problems: (1) we allow
effectful code in specifications by granting such code first-class status, via the
monad for Hoare triples, and (2) we control pointer aliasing, by employing the

Abstract Predicates and Mutable ADTs in Hoare Type Theory 191

small footprint approach of Separation Logic. Both of these properties were
discussed at the beginning of this section. The focus of this paper are extensions
to HTT that enable us to also address problem (3), among others.

In a language like HTT that integrates programming and verification, truly
reusable program components (e.g., libraries of data types and first-class ob-
jects) require that their internal invariants are appropriately abstracted. The
component interfaces need to include not only abstract types, but also abstract
specifications. Thus it is natural to extend HTT with support for abstraction
over predicates (i.e., higher-order logic). More specifically, we describe a vari-
ant of HTT that includes the Extended Calculus of Constructions (ECC) [14],
modulo minor differences described in Section 5. This allows terms, types, and
predicates to all be abstracted within terms, types, and predicates respectively.

There are several benefits of this extension. First, higher-order logic can formu-
late almost any predicate that may be encountered during program verification,
including predicates defined by induction and coinduction. Second, we can reason
within the system, about the equality of terms, types and predicates, including
abstract types and abstract predicates. In the previous version of HTT [22], we
could only reason about the equality of terms, whereas equality on types and
predicates was a judgment (accessible to the typechecker), but not a proposition
(accessible to the programmer). Internalized reasoning on types endows HTT
with a form of first-class modules that can contain types, terms, and axioms. It
is also important in order to fully support strong updates of locations. Third,
higher-order logic can define many constructs that, in the previous version, had
to be primitive. For instance, the definition of heaps can now be encoded within
the language, thus simplifying some aspects of the meta theory.

Most importantly, however, abstraction over predicates suffices to represent
the private state of functions or ADTs within the type system. Private state can
be hidden from the clients by existentially abstracting over the state invariant.
Thus, libraries for mutable state can provide precise specifications, yet have
sufficient abstraction mechanisms that different implementations can share a
common interface. Moreover, specifications may choose to reveal certain aspects
of private state to the client, thus granting the client partial or complete access
to, or even ownership of portions of the private state.

We demonstrate these ideas with a few idealized examples including a module
for memory allocation and deallocation.

2 Overview

Similar to the modern monadic functional languages [19], HTT syntax splits
into the pure and the impure fragment. The pure fragment contains higher-order
functions and pairs, and the impure fragment contains the effectful commands
for memory lookup and strong update (memory allocation and deallocation can
be defined), as well as conditionals and recursion. The expressions from the
effectful fragment can be coerced into the pure one by monadic encapsulation.

The type constructors include the primitive types of booleans, natural num-
bers and the unit type, the standard constructors Π and Σ for dependent

192 A. Nanevski et al.

products and sums, as well as Hoare types {P}x:A{Q}, and subset types
{x:A. P}. The Hoare type {P}x:A{Q} is the monadic type which classifies effect-
ful computations that may execute in any initial heap satisfying the assertion P ,
and either diverge, or terminate returning a value x:A and a final heap satisfying
the assertion Q. The subset type {x:A. P} classifies all the elements of A that
satisfy the predicate P . We adopt the standard convention and write A→B and
A×B instead of Πx:A. B and Σx:A. B when B does not depend on x.

The syntax of our extended HTT is presented in the following table.

Types A,B, C ::= K | nat | bool | 1 | prop | mono | Πx:A. B |
Σx:A. B | {P}x:A{Q} | {x:A. P}

Elim terms K, L ::= x | K N | fst K | snd K | out K | M : A
Intro terms M, N, O ::= K | () | λx. M | (M, N) | do E | in M |

true | false | z | s M | M + N | M × N | eqnat(M, N) |
(Assertions) P, Q, R � | ⊥ | xidA,B(M, N) | ¬P | P ∧ Q |

P ∨ Q | P ⊃ Q | ∀x:A. P | ∃x:A. P |
(Small types) τ, σ nat |bool |1 | prop | Πx:τ. σ | Σx:τ. σ | {P}x:τ{Q} | {x:τ. P}
Commands c ::= !τ M | M :=τ N | ifA M then E1 else E2 |

caseA M of z ⇒ E1 or s x ⇒ E2 |
fix f(y:A):B = doE in eval f M

Computations E, F ::= return M | x ← K; E | x ⇐ c; E | x =A M ; E
Context Δ ::= · | Δ, x:A | Δ, P

HTT supports predicative type polymorphism [18], by differentiating small
types, which do not admit type quantification, from large types (or just types for
short), which can quantify over small types only. For example, the polymorphic
identity function can be written as λα.λy.y : Πα:mono.Πy:α.α, but α ranges over
only small types. The restriction to predicative polymorphism is crucial for en-
suring that during type-checking, normalization of terms, types, and predicates
terminates [22]. Note that “small” Hoare triples {P}x:τ{Q} and subset types
{x:τ. P}, where P and Q (but not τ) may contain type quantification are consid-
ered small. This is because P and Q are refinements, i.e. they do not influence
the underlying semantics and the equational reasoning about terms: If two terms
of some Hoare or subset types are semantically equal, then they remain equal
even if P and Q are replaced by some other assertions.

To support abstraction over types and predicates, HTT introduces types mono
and prop which classify small types and assertions respectively. With the type
mono, HTT can compute with small types as if they were data. For example, if
x:mono×(nat→nat), then the variable x may be seen as a module declaring a
small type and a function on nats. The expression fst x extracts the small type.

Terms. The terms are classified as introduction or elimination terms, according
to their standard logical properties. The split facilitates equational reasoning
and bidirectional typechecking [25]. The terms are not annotated with types, as
the typechecker can infer most of them. When this is not the case, the construct
M : A may supply the type explicitly. This construct also switches the direction
in the bidirectional typechecking.

Abstract Predicates and Mutable ADTs in Hoare Type Theory 193

HTT features the usual terms for lambda abstraction and applications, pairs
and the projections, as well as natural numbers, booleans and the unit element.
The introduction form for the Hoare types is do E, which encapsulates the ef-
fectful computation E, and suspends its evaluation. The notation is intended to
closely resemble the familiar Haskell-style do-notation for writing effectful com-
putations. The constructor in is a coercion from A into a subset type {x:A. P},
and out is the opposite coercion.

Terms also include small types τ and assertions P , which are the elements of
mono and prop respectively. HTT does not currently have any constructors to
inspect the structure of such elements. They are used solely during typechecking,
and can be safely erased before program execution.

We illustrate the HTT syntax using the following example. Consider an ML-
like function f = λy:unit. x :=!x + 1; if (!x = 1) then 0 else 1, where we assume
a free variable x:nat ref. A computation in HTT that defines this function and
then immediately applies it, may be written as follows.

f = λy. do (u ⇐ !nat x; v ⇐ (x :=nat u + s z); t ⇐ !nat x;
s ⇐ ifnat (eqnat(t, s z)) then z else s z; return s);

x ← f (); return (x)

We point out some characteristic properties. This program, and all its stateful
subcomponents belong to the syntactic domain of computations. Each compu-
tation can intuitively be described as a semi-colon-separated list of commands,
which usually perform some imperative operation, and then bind to a variable.
For example x ⇐ c executes the primitive command c, and binds the return re-
sult to x. x ← K executes the computation encapsulated in K, thus performing
all the side effects that may have been suspended in K. x =A M does not per-
form any side-effects, but is simply the syntactic sugar for the usual let-binding
of M :A to x. In all these cases, the variable x is immutable, as is customary
in functional programming, and its scope extends to the right, until the end of
the block enclosed by the nearest do. Associated with these commands, is the
construct return M . It creates the trivial computation that immediately returns
the value M . return M and x ← K; E correspond to the standard monadic unit
and bind, respectively.

The commands !τ M and M :=τN are used to read and write memory respec-
tively. The index τ is the type of the value being read or written. Note that
unlike ML and most statically-typed languages, HTT supports strong updates.
That is, if x is a location holding a nat, then we can update the contents of x
with a value of an arbitrary (small) type, not just another nat. (Here, we make
the simplifying assumption that locations can hold a value of any type (e.g.,
values are boxed).) Type-safety is ensured by the pre-condition for memory reads
which captures the requirement that to read a τ value out of location M , we
must be able to prove that M currently holds such a value.

In the if and case commands, the index type A is the type of the branches.
The fixpoint command fix f(y:A):B = doE in eval f M , first obtains the function
f :Πy:A. B such that f(y)= do(E), then evaluates the computation f(M), and
returns the result.

194 A. Nanevski et al.

In the subsequent text we adopt a number of syntactic conventions for terms.
First, we will represent natural numbers in their usual decimal form. Second,
we omit the variable x in x ⇐ (M :=τ N); E, as x is of unit type. Third, we
abbreviate the computation of the form x ⇐ c; return x simply as c, in order
to avoid introducing a spurious variable x. For the same reason, we abbreviate
x ← K; return x as eval K.

Returning to the example above, the type of f in the translated HTT program
is 1→{P}s:nat{Q} where, intuitively, the precondition P requires that the location
x points to some value v:nat, and the postcondition Q states that if v was zero,
then the result s is 0, otherwise the result is 1, and regardless x now points to v+1.
Furthermore, in HTT, the specifications capture the small footprint of f , reflect-
ing that x is the only location accessed when the computation is run. Technically,
realizing such a specification using the predicates we provide requires a number
of auxiliary definitions and conventions which are explained below. For instance,
we must define the relation x �→ v stating that x points to v, the equalities, and
how v can be scoped across both the pre- and post-condition.

Assertions. The assertion logic is classical and includes the standard proposi-
tional connectives and quantifiers over all types of HTT. Since prop is a type, we
can quantify over propositions, and more generally over propositional functions,
giving us the power of higher-order logic. The primitive proposition xidA,B(M, N)
implements heterogeneous equality (aka. John Major equality [17]), and is true
only if the types A and B, as well as the terms M :A and N :B are propositionally
equal. We will use this proposition to express that if two heap locations x1 (point-
ing to value M1:τ1) and x2 (pointing to value M2:τ2) are equal, then τ1 = τ2
and M1 = M2. When the index types are equal in the heterogeneous equality
xidA,A(M, N), we abbreviate that as idA(M, N), and often also write M =A N or
just M = N . We denote by lfpA(Q) the least fixed point of the monotone predi-
cate Q:(A→prop)→A→prop (Q is monotone if it uses the argument only in pos-
itive positions). It is well-known that this construct is definable in higher-order
logic [11]. Heaps in which HTT computations are evaluated can be defined as
a simple subset type heap = {h:(nat×Σα:mono.α)→prop. Finite(h) ∧ Functional(h)} .

The underlying type nat×Σα:mono. α implies that a heap is a ternary relation
which takes M :nat, α:mono and N :α and decides if the location M points to
N :α. The predicates Finite and Functional are easily definable to state that a
heap assigns to at most finitely many locations, and at most one value to every
location. In HTT, heap locations are natural numbers, rather than elements of an
abstract type. This simplifies the semantics somewhat, and also enables pointer
arithmetic. Note that heaps in HTT can store only values of small types. This is
sufficient for modeling languages with predicative polymorphism like SML, but
is too weak for modeling Java, or the impredicative polymorphism of Haskell.

We also adopt the usual predicates from Separation Logic [26,24]: emp,
(n �→τ x) and (n ↪→τ x) all have type heap→prop. emp h holds iff h is the
empty relation; (n �→τ x)(h) holds if h contains only one location n pointing
to a value x:τ . Similarly, (n ↪→τ x)(h) states that h contains at least the loca-
tion n pointing to x:τ . Finally, given P, Q:heap→prop, the spatial conjunction

Abstract Predicates and Mutable ADTs in Hoare Type Theory 195

P ∗Q:heap→prop is defined so that (P ∗Q)(h) holds iff P and Q hold on disjoint
subheaps of h. All of these predicates are easily definable using higher-order
assertion logic.

3 Examples

Small footprints. HTT supports small-footprint specifications, as in Separa-
tion Logic [22]. If doE has type {P}x:A{Q} — note that here P : heap→prop
and Q : heap→heap→prop — then P and Q need only describe the properties
of the heap fragment that E actually requires in order to run. The actual heap
in which E will run may be much larger, but the unspecified portion will auto-
matically be assumed invariant. To illustrate this idea, let us consider a simple
program that reads from the location x and increases its contents.

incx : {λi. ∃n:nat. (x →nat n)(i)} r:1
{λi. λm.∀n:nat. (x →nat n)(i) ⊃ (x →nat n+1)(m)}

= do(u ⇐ !nat x; x :=nat u + 1; return ())

Notice that the precondition states that the initial heap i contains exactly one
location x, while the postcondition relates i with the heap m obtained after
the evaluation (and states that m contains exactly one location too). This does
not mean that incx can evaluate only in singleton heaps. Rather, incx requires
a heap from which it can carve out a fragment that satisfies the precondition,
i.e. a fragment containing a location x pointing to a nat. For example, we may
execute incx against a larger heap, which contains the location y as well, and the
contents of y is guaranteed to remain unchanged.

incxy : {λi. ∃n. ∃k:nat. (x →nat n ∗ y →nat k)(i)} r:1
{λi. λm.∀n. ∀k:nat. (x →nat n ∗ y →nat k)(i) ⊃ (x →nat n+1 ∗ y →nat k)(m)}

= do(eval incx)

To avoid clutter in specifications, we introduce a convention: if P, Q:heap→prop
are predicates that may depend on the free variable x:A, we write x:A. {P}y:B{Q}
instead of {λi. ∃x:A. P (i)}y:B{λi. λm. ∀x:A. P (i) ⊃ Q(m)}. This notation lets x
seem to scope over both the pre- and post-condition. For example the type
of incx can now be written n:nat. {x →nat n}r:1{x →nat n+1}. The convention is
easily generalized to a finite context of variables, so that we can also abbreviate
the type of incxy as n:nat, k:nat. {x →nat n∗y →nat k}r:1{x →nat n+1 ∗ y →nat k}. Fol-
lowing the terminology of Hoare Logic, we call the variables abstracted outside
of the Hoare triple, like n and k above, logic variables or ghost variables.

Nontermination. The following is a computation of an arbitrary monadic type
that diverges upon forcing.

diverge : {P}x:A{Q}
= do (fix f(y : 1) : {P}x:A{Q} = do (eval (f y))

in eval f ())

diverge sets up a recursive function f(y : 1) = do (eval (f y)); then applies it to
() to obtain another suspended computation do (eval f ()), which is immediately
forced by eval to trigger another application to (), and so on.

196 A. Nanevski et al.

Allocation and Deallocation. The reader may be surprised that we provide
no primitives for allocating (or deallocating) locations within the heap. This is
because we can encode such primitives within the language in a style similar to
Benton’s recent semantic framework for specification of machine code [3]. We
can encode a number of memory management implementations and give them a
uniform interface, so that clients can choose from among different allocators.

We assume that upon start up, the memory module already “owns” all of the
free memory of the program. It exports two functions, alloc and dealloc, which
can transfer the ownership of locations between the allocator module and its
clients. The functions share the memory owned by the module, but this memory
will not be accessible to the clients (except via direct calls to alloc and dealloc).

The definitions of the allocator module will use two essential features of HTT.
First, there is a mechanism in HTT to abstract the local state of the module
and thus protect it from access from other parts of the program. Second, HTT
supports strong updates, and thus it is possible for the memory module to recycle
locations to hold values of different type at different times throughout the course
of the program execution.

The interface for the allocator can be captured with the type:

Alloc = [I : heap→prop,
alloc : Πα:mono. Πx:α. {I}r:nat{λi. (I ∗ r →α x)},
dealloc : Πn:nat. {I ∗ n → −}r:1{λi. I}]

where the notation [x1:A1, . . . , xn:An] abbreviates a sum Σx1:A1 · · · Σxn:An.1. In
English, the interface says that there is some abstract invariant I, reflecting
the internal invariant of the module, paired with two functions. Both functions
require that the invariant I holds before and after calls to the functions. In
addition, a call alloc τ x will yield a location r and a guarantee that r points
to x. Furthermore, we know from the use of the spatial conjunction that r is
disjoint from the internal invariant I. Thus, updates by the client to r will
not break the invariant I. On the other hand, accessing locations hidden by
I becomes impossible. As will be apparent from the typing rules in Section 4,
each location access requires proving that the location exists. But, when I is
abstracted, the knowledge needed to construct this proof, is hidden as well.
Dually, dealloc requires that we are given a location n, pointing to some value
and disjoint from the memory covered by the invariant I. Upon return, the
invariant is restored and the location consumed.

If M is a module with this signature, then a program fragment that wishes
to use this module will have to start with a pre-condition fst M . That is, clients
will generally have the type ΠM :Alloc.{(fst M) ∗ P}r:A{λi. (fst M) ∗ Q(i)} where
Alloc is the signature given above.
Allocator Module 1. Our first implementation of the allocator module assumes
that there is a location r such that all the locations n ≥ r are free. The value
of r is recorded in the location 0. All the free locations are initialized with
the unit value (). Upon a call to alloc, the module returns the location r and
sets 0 �→nat r+1, thus removing r from the set of free locations. Upon a call
deallocn, the value of r is decreased by one if r = n and otherwise, nothing

Abstract Predicates and Mutable ADTs in Hoare Type Theory 197

happens. Obviously, this kind of implementation is very naive. For instance, it
assumes unbounded memory and will leak memory if a deallocated cell was not
the most recently allocated. However, the example is still interesting to illustrate
the features of HTT. First, we define a predicate that describes the free memory
as a list of consecutive locations initialized with () : 1.

free : (nat × heap) → prop
= lfp (λF. λ(r, h). (r →1 () ∗ λh′. F (r+1, h′))(h))

Then we can implement the allocator module as follows:

[I = λh. ∃r:nat. (0 →nat r ∗ λh′. free(r, h′) ∗ λh′′. �)(h),
alloc = λα. λx.do (u ⇐ !nat 0; u :=α x; 0 :=nat u+1; returnu),
dealloc = λn. do (u ⇐ !nat 0;

if eqnat(u, n+1) then n :=1 (); 0 :=nat n; return () else return ())]

Allocator Module 2. In this example we present a (slightly) more sophisticated
allocator module. The module will have the same Alloc signature as in the previ-
ous example, but the implementation does not leak memory upon deallocation.
We take some liberties and assume as primitive a standard set of definitions and
operations for the inductive type of lists.

list : mono→mono
nil : Πα:mono. list α
cons : Πα:mono. α→list α→list α
snoc : Πα:mono. Πx:{y:list α. y �=list α nil α}. {z:α × list α. x= in (cons(fst z)(snd z))}
nil? : Πα:mono. Πx:list α. {y:bool.(y =bool true) ⊂⊃ (x =list α nil α)}

The operation snoc maps non-empty lists back to pairs so that the head and
tail can be extracted (without losing equality information regarding the compo-
nents.) The operation nil? tests a list, and returns a bool which is true iff the
list is nil.

As before, we define the predicate free that describes the free memory, but
this time, we collect the (finitely many) addresses of the free locations into a list.

free : ((list nat)×heap)→prop
= lfp (λF. λ(l, h). (l = nil nat) ∨ ∃x′:nat. ∃l′:list nat.

l = cons nat x′ l′ ∧ (x′ →1 () ∗ λh′. F (l′, h′))(h))

The intended invariant now is that the list of free locations is stored at address
0, so that the module is implemented as follows:

[I = λh. ∃l:list nat. (0 →list nat l ∗ λh′. free(l, h′))(h),
alloc = λα. λx.do (l ⇐ !list nat 0; if (out (nil? nat l)) then eval (diverge)

else p ⇐ out (snoc nat (in l)); 0 :=list nat snd p;
fst p :=α x; return (fst p)),

dealloc = λx. do (l ⇐ !list nat 0; x :=1 (); 0 :=list nat cons nat x l; return ())]

This version of alloc reads the free list out of location 0. If it is empty, then the
function diverges. Otherwise, it extracts the first free location z, writes the rest
of the free list back into 0, and returns z. The dealloc simply adds its argument
back to the free list.

198 A. Nanevski et al.

Functions with local state. Now, we consider examples that illustrate various
modes of use of the invariants on local state. We assume the allocator from the
previous example, and admit the free variables I and alloc, with types as in Alloc.
These can be instantiated with either of the two implementations above.

Let us consider an HTT computation that allocates a location x with integer
content, and then returns a computation for incrementing x. The first attempt
at writing this computation may be as:

E = do (x ← alloc nat 0; do (z ⇐ !nat x; x :=nat z+1; return (z+1))).

E can be given several different types that describe its behavior with various
levels of precision. But, here, we are interested in a type for E that describes
it “fully”. In other words, we would like to specify that the return value of
E is a computation whose successive executions return an increasing sequence
of natural numbers. The computation remembers the last computed natural
number in its local store (here, the location x) which persists between successive
calls. But the details of this store should be hidden from the clients of E, precisely
to preserve its locality.

In HTT we can use the ability to combine terms, propositions and Hoare
triples, and abstract x away, while exposing only the invariant that the compu-
tation increases the content of x.

E1 = do (x ← alloc nat 0 in (λv. x →nat v, do (z ⇐ !nat x;x :=nat z+1; return (z+1))))
: {I}

t:Σinv:nat→heap→prop. v:nat. {inv v}r:nat{λh. (inv (v+1) h) ∧ r = v+1}
{λi. I ∗ (fst t 0)}

E1 differs from E in that it also defines the invariant inv = λv. x →nat v. When
used in the specifications, inv brings out the important aspects of the local store,
which are the last computed natural number v, and the fact that initially v = 0
(as the separating conjunct (fst t 0) in the postcondition formally states because
fst t = inv). However, the type of E1 hides the existence of the local reference
x which stores v. In fact, from the outside, there is no reason to believe that
the local store of E1 consists of only one location. We could imagine a similar
program E2 that maintains two different locations x and y, increases them at
every call, and returns their mean. Such a program will have a different invariant
inv = λv. x →nat v∗y →nat v for its local store. However, because the type abstracts
over the invariant, E1 and E2 would have the same type. The equal types hint
that the two programs would be observationally equivalent, i.e. they could freely
be interchanged in any context. We do not prove this property here, but it
is intriguing future work, related to the recent result of Yoshida, Honda and
Berger [31,4] on observational completeness of Hoare Logic.

In the next example, we consider an HTT equivalent of the following SML
program λf :(unit→unit)→unit. let val x = ref 0 val g = λy. x :=!x + 1; () in f g. The
HTT specification should bring out the property that the argument function
f can only access the local reference x by invoking g. Part of the problem is
similar to that with E; the local state of g must be abstracted in order to make
the dependence on x invisible to f . However, this is not sufficient. Because we
evaluate f g at the end, we need to know how f uses g, in order to describe the

Abstract Predicates and Mutable ADTs in Hoare Type Theory 199

postcondition for the whole program. In other words, we also need to provide
an invariant for f , which is a higher-order predicate, because it depends on the
invariant of g.

One possible HTT implementation is as follows.

F = λf. do (x ← alloc nat 0;
g = (λv. x →nat v, do (z ⇐ !nat x;x :=nat z+1; return ()));
eval ((snd f) g))

: Πf :Σp:nat→(nat→heap→prop)→heap→prop.
Πg:Σinv :nat→heap→prop. v:nat. {inv v}r:1{inv (v + 1)}.
w:nat. {fst g w}s:1{p w (fst g)}.

{I}t:1{λi. I ∗ λh. ∃x:nat. (fst f) 0 (λv. x →nat v) h}

In this program, f and g carry the invariants of their local states (e.g., p = fst f

is the invariant of snd f and inv = fst g = λv. x →nat v is the invariant of snd g).
The predicate p takes a natural number n and an argument inv , and returns a
description of the state obtained after applying f to g in a state where inv(n)

holds. The postcondition for F describes the ending heap as p 0 inv thus revealing
that initially the local reference x stores the value 0. The last two examples show
that HTT can hide, but also reveal information about local state when needed.

4 Type System

The type system presented in this paper extends our previous work [22] with
several features associated with the ECC [14]. The extensions include dependent
sums and subset types, as well as the type prop of assertions, the type mono of
small types, and the ability to compute with elements of both of these types. The
additions introduce non-trivial changes in the equational reasoning of HTT. This
involves the algorithms for computing canonical forms (a canonical form of an
expression is its beta-reduced and eta-long version), as well as the corresponding
proof of soundness. The type system of HTT consists of the following judgments:
(1) Δ � K �⇒ A [N ′] infers that K is an elim term of type A, and N ′ is its canonical
form. A and N ′ are synthesized as outputs of the judgment. (2) Δ � M ⇐ � A [M ′]

checks that M is an intro term of type A, and computes the canonical form
M ′. (3) Δ; P � E �⇒ x:A.Q [E′] infers that E is a computation with result x:A,
precondition P , strongest postcondition Q, and canonical form E′. Q and E′ are
synthesized as outputs. (4) Δ; P � E ⇐ � x:A. Q [E′] checks that E is a computation
with result x:A, precondition P and postcondition (not necessarily strongest) Q.
The canonical form E′ is the output. (5) Δ =⇒P defines when the assertion P
is true. It implements classical higher-order logic. (6) � Δ ctx [Δ′] states that Δ
is a well-formed variable context, with canonical form Δ′. (7) Δ � A ⇐ � type [A′]

states that A is a well-formed type, with canonical form A′. As can be noticed,
the computation of canonical forms is hard-wired into the judgments, so that
it becomes part of type checking. However, space precludes us from presenting
the full details about canonical forms here. In the following text, we illustrate
the typing rules of HTT, but we ignore the canonical forms and other aspects of

200 A. Nanevski et al.

equational reasoning (i.e., we omit from the judgments the information enclosed
in [brackets]). The complete details can be found in the technical report [21].

The type system implements bidirectional typechecking [25,28], to automati-
cally compute a significant portion of omitted types. A fragment of the rules is
given in the figure below.

Δ, x:A, Δ1 � x �⇒ A
var

Δ, x:A � M ⇐ � B

Δ � λx. M ⇐ � Πx:A. B
Π I

Δ � K �⇒ Πx:A. B Δ � M ⇐ � A

Δ � K M �⇒ [M/x]B
ΠE

Δ � M ⇐ � A Δ � N ⇐ � [M/x]B

Δ � (M, N) ⇐ � Σx:A. B
ΣI

Δ � K �⇒ Σx:A. B

Δ � fst K �⇒ A
ΣE1

Δ � K �⇒ Σx:A. B

Δ � snd K �⇒ [fst K/x]B
ΣE2

Δ � M ⇐ � A Δ =⇒[M/x]P

Δ � in M ⇐ � {x:A. P}
{}I

Δ � K �⇒ {x:A. P}
Δ � out K �⇒ A

{}E1

Δ � K �⇒ {x:A.P}
Δ =⇒[out K/x]P

{}E2
Δ � K �⇒ A A = B

Δ � K ⇐ � B
�⇒⇐ �

Δ � A ⇐ � type Δ � M ⇐ � A

Δ � M : A �⇒ A
⇐ ��⇒

In general, the typing rules for elim terms break down the type when read from
premise to the conclusion. In the base case, the type of a variable can always be
read off from the context, and therefore, elim terms can always synthesize their
types. Dually, the typing rules for intro terms break down a type when read from
the conclusion to the premise. If the conclusion type is given, the types for the
premises can be computed and need not be provided.

When considering an elim term that happens to be intro (i.e. has the form
M :A), the rule ⇐��⇒ synthesizes the type A, assuming that M checks against it.
Conversely, when checking an intro term that happens to be be elim (i.e. has form
K) against a type B, the rule �⇒⇐� synthesizes the type A for K and explicitly
compares if A = B. This comparison invokes the equational reasoning, which we
do not explain here. It suffices to say that the equations used in this reasoning
are derived from the usual alpha, beta and eta laws for pure functions and pairs,
and the generic monadic laws [19] for the Hoare types (i.e., the unit laws and
associativity).

We next describe the typing judgments for the impure fragment. The main
intuition here is that a computation E may be seen as a heap transformer, be-
cause its execution turns the input heap into the output heap. The judgment
Δ; P � E �⇒ x:A. Q [E′] essentially converts E into the equivalent binary relation
on heaps, so that the assertion logic can reason about E using standard mathe-
matical machinery for relations. The predicates P, Q:heap→heap→prop represent
binary heap relations. P is the starting relation onto which the typing rules build
as they convert E one command at a time. The generated strongest postcondition

Abstract Predicates and Mutable ADTs in Hoare Type Theory 201

Q is the relation that most precisely captures the semantics of E. The judgment
Δ; P � E ⇐ � x:A. Q [E′] checks if Q is a postcondition for E, by generating the
strongest postcondition S and then trying to prove the implication S =⇒Q in
the assertion logic.

Given P, Q,S:heap→heap→prop, and R, R1, R2:heap→prop we define the follow-
ing predicates of type heap→heap→prop.

P ◦ Q = λi. λm.∃h:heap. (P i h) ∧ (Q h m)
R1 � R2 = λi. λm.∀h:heap. (R1 ∗ λh′. h′ = h) (i) ⊃ (R2 ∗ λh′. h′ = h) (m)
R � Q = λi. λm.∀h:heap. (λh′. R(h′) ∧ h = h′) � Q(h)

P ◦ Q is standard relational composition. R1 � R2 is the relation that selects
a fragment R1 from the input heap, and replaces it with some fragment R2 in
the output heap. We will use this relation to describe the action of memory
update, where the old value stored into the memory must be replaced with the
new value. The relation R � Q selects a fragment R of the input heap, and then
behaves like Q on that fragment. This captures precisely the semantics of the
“most general” computation of Hoare type {R}x:A{Q}, in the small footprint
semantics, leading to the following typing rules.

Δ; λi. λm. i = m ∧ (R ∗ λh′. �)(m) � E ⇐ � x:A. (R � Q)

Δ � do E ⇐ � {R}x:A{Q}

Δ � K �⇒ {R}x:A{S} Δ, i:heap, m:heap, (P i m)=⇒(R ∗ λh′. �)(m)
Δ, x:A;P ◦ (R � S) � E �⇒ y:B. Q

Δ; P � x ← K; E �⇒ y:B. (λi. λm. ∃x:A. (Q i m))

To check if do E has type {R}x:A{Q}, we verify that E has a postcondition
R � Q. The checking is initialized with a relation stating that the initial heap
i = m contains a sub-fragment satisfying R (c.f., the conjunct (R ∗ λh′. �)(m)).

To check x ← K; E, where K has type {R}x:A{S}, we must first prove that the
beginning heap contains a sub-fragment satisfying R so that K can be executed
at all (c.f. (P i m)=⇒(R ∗ λh′.)(m)). The strongest postcondition for K, is
P ◦ (R � S), which is taken as the precondition for checking E.

Δ � M ⇐ � A

Δ; P � return M �⇒ x:A. (λi. λm. (P i m) ∧ x =A M)

Δ � τ ⇐ � mono Δ � M ⇐ � nat Δ, i:heap, m:heap, (P i m) =⇒(M ↪→τ −)(m)
Δ, x:τ ; λi. λm. (P i m) ∧ (M ↪→τ x)(m) � E �⇒ y:B. Q

Δ; P � x ⇐ !τ M ; E �⇒ y:B. (λi. λm. ∃x:τ. (Q i m))

Δ � τ ⇐ � mono Δ � M ⇐ � nat Δ � N ⇐ � τ
Δ, i:heap, m:heap, (P i m)=⇒(M ↪→ −)(m)

Δ; P ◦ ((M → −) � (M →τ N)) � E �⇒ y:B. Q

Δ; P � M :=τ N ; E �⇒ y:B.Q

The postcondition for the trivial, pure, computation return M includes the pre-
condition (as M does not change the heap) but must also state that M is the
return value. Before the lookup x = !τ M , we must prove that M points to a value

202 A. Nanevski et al.

of type τ at the beginning (c.f., (P i m)=⇒(M ↪→τ −)(m)). After the lookup, the
heap looks exactly as before (P i m) but we also know that x equals the con-
tent of M , that is, (M ↪→τ x)(m). Before the update M :=τ N , we must prove
that M is allocated and initialized with some value with an arbitrary type (i.e.,
(M ↪→ −)(m)). After the lookup, the old value is removed from the heap, and
replaced with N , that is (P ◦ ((M → −) � (M →τ N))).

Finally, we briefly illustrate the judgment Δ =⇒P , which defines the assertion
logic of HTT in the style of natural deduction. The assertion logic contains the
rules for introduction and elimination of implication and the universal quantifier,
and the rest of the propositional constructs are formalized using axiom schemas
that encode the standard introduction and elimination rules. We present here
the axioms for conjunction and heterogeneous equality.

andi : ∀p, q:prop. p ⊃ q ⊃ p ∧ q
xidiA : ∀x:A. xidA,A(x, x)

ande : ∀p, q, r:prop. p ∧ q ⊃ (p ⊃ q ⊃ r) ⊃ r
xideA : ∀p:A→prop. ∀x, y:A. xidA,A(x, y) ⊃ p x ⊃ p y

For each index type A, the axiom xidiA asserts the reflexivity of the equality
relation, and the axiom xideA asserts that equal values are not distinguishable by
any arbitrary propositional contexts. The logic includes axioms for extensionality
of functions and pairs, Peano arithmetic, booleans and excluded middle.

We conclude this section with an informal description of the main theoretical
result of the paper, which relates typechecking with evaluation.

Theorem 1 (Soundness). The type system of HTT is sound, in the following
sense: if Δ; P
 E ⇐� x:A. Q [E′], and E terminates when evaluated in a heap i
satisfying P i i, then the resulting heap m satisfies Q i m.

Obviously, to establish this theorem, we must first define formally the opera-
tional semantics for HTT. Then the theorem follows from the Preservation and
Progress lemmas, which take the customary form, but are much harder to prove
than in the usual simply-typed setting. For example, Preservation must estab-
lish not only that evaluation preserves types, but also postconditions of effectful
computations, as well as the canonical forms of pure terms. On the other hand,
the Progress lemma first requires showing that the assertion logic of HTT is
sound. This assertion logic is a higher-order logic over heaps, and its soundness
basically implies that our axiomatization indeed correctly captures the proper-
ties of the real heaps encountered during evaluation. In particular, if we have
proved that a certain location exists at a given program point, then when that
program point is reached, we can safely take an operational step and dereference
the location. We establish the soundness of the assertion logic, by developing
a crude set-theoretic model based on the standard approach to modeling ECC.
The interested reader is referred to the accompanying technical report [21] for
full details of the proofs.

5 Conclusions and Related Work

In this paper we present an extension of our Hoare Type Theory (HTT) [22], with
higher-order predicates, and allow quantification over abstract predicates at the

Abstract Predicates and Mutable ADTs in Hoare Type Theory 203

level of terms, types and assertions. This significantly increases the power of the
system to encompass definition of inductive predicates, abstraction of program
invariants, and even first-class modules that can contain not only types and
terms, but also axioms over types and terms. The novel application of this type
system is to express sharing of local state between functions and/or datatypes,
and transfer of state ownership between datatypes and the memory manager.

We have already discussed related work on program logics for higher-order, ef-
fectful programs in Section 1, as well as work on verification tools and languages
(e.g., Spec#, ESC/Java, JML, and so on) aimed at integrating Hoare-like rea-
soning with type checking. The work on dependently typed systems with state-
ful features, has mostly focused on how to appropriately restrict the language
so that effects do not pollute the types. Such systems have mostly employed
singleton types to enforce purity. Examples include Dependent ML by Xi and
Pfenning [30], Applied Type Systems by Xi et al. [29,32], a type system for cer-
tified binaries by Shao et al. [27], and the theory of refinements by Mandelbaum
et al. [15]. HTT differs from all these approaches, because types are allowed to
depend on monadically encapsulated effectful computations.

We mention that HTT may be obtained by adding effects and the Hoare
type to the Extended Calculus of Constructions (ECC) [14]. There are some
differences between ECC and the pure fragment of HTT, but they are largely
inessential. For example, HTT uses classical assertion logic, whereas ECC is in-
tuitionistic, but consistent with classical extensions. The latter has been demon-
strated in Coq [16] which implements and subsumes ECC. Also, HTT contains
only two type universes (small and large types), while ECC is more general, and
contains the whole infinite tower. However, we expect that it should be simple
to extend HTT to the full tower of universes.

Finally, we mention here the representative work of Ni and Shao [23] and
Filliâtre [10] who implement Hoare-style reasoning in Coq. Ni and Shao use Coq
to verify properties of assembly code, while Filliâtre exploits Coq tactics and de-
cision procedures to partially automate the verification of imperative programs.
We note that these two approaches are fundamentally different from ours, as
they impose an additional level of indirection. Where they use type theory to
axiomatize Hoare-style reasoning, we integrate Hoare logic within the type sys-
tem of the underlying language, so that specifications become an integral part
of programming.

References

1. M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# programming system:
An overview. In CASSIS 2004. LNCS. Springer, 2004.

2. M. Barnett and D. Naumann. Friends need a bit more: Maintaining invariants over
shared state. In Mathematics of Program Construction, LNCS 3125, 2004.

3. N. Benton. Abstracting Allocation: The New new Thing. In CSL’06.
4. M. Berger, K. Honda, and N. Yoshida. A logical analysis of aliasing in imperative

higher-order functions. In ICFP’05, pages 280–293.
5. B. Biering, L. Birkedal, and N. Torp-Smith. BI hyperdoctrines, Higher-Order

Separation Logic, and Abstraction. ITU-TR-2005-69, IT University, Copenhagen.

204 A. Nanevski et al.

6. L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry, G. T. Leavens, K. R. M. Leino,
and E. Poll. An overview of JML tools and applications. International Journal on
Software Tools for Technology Transfer, 7(3):212–232, June 2005.

7. R. DeLine and M. Fahndrich. Enforcing high-level protocols in low-level software.
In PLDI’01, pages 59–69, 2001.

8. D. L. Detlefs, K. R. M. Leino, G. Nelson, and J. B. Saxe. Extended static checking.
Compaq Systems Research Center, Research Report 159, December 1998.

9. D. Evans and D. Larochelle. Improving security using extensible lightweight static
analysis. IEEE Software, 19(1):42–51, 2002.

10. J.-C. Filliâtre. Verification of non-functional programs using interpretations in
type theory. Journal of Functional Programming, 13(4):709–745, July 2003.

11. J. Harrison. Inductive definitions: automation and application. In Higher Order
Logic Theorem Proving and Its Applications, LNCS 971, Springer, 1995.

12. T. Jim, G. Morrisett, D. Grossman, M. Hicks, J. Cheney, and Y. Wang. Cyclone:
A safe dialect of C. USENIX Annual Technical Conference, 2002.

13. N. Krishnaswami. Separation logic for a higher-order typed language. SPACE’06.
14. Z. Luo. An Extended Calculus of Constructions. PhD thesis, U of Edinburgh, 1990.
15. Y. Mandelbaum, D. Walker, and R. Harper. An effective theory of type refinements.

In ICFP’03, pages 213–226.
16. The Coq development team. The Coq proof assistant reference manual. LogiCal

Project, 2004. Version 8.0.
17. C. McBride. Dependently Typed Functional Programs and their Proofs. PhD thesis,

University of Edinburgh, 1999.
18. J. C. Mitchell. Foundations for Programming Languages. MIT Press, 1996.
19. E. Moggi. Notions of computation and monads. Information and Computation,

93(1):55–92, 1991.
20. G. Morrisett, D. Walker, K. Crary, and N. Glew. From System F to typed assembly

language. TOPLAS, 21(3):527–568, 1999.
21. A. Nanevski, A. Ahmed, G. Morrisett, and L. Birkedal. Abstract predicates and

mutable ADTs in Hoare Type Theory. TR-14-06, Harvard University. Available
at http://www.eecs.harvard.edu/~aleks/papers/hoarelogic/htthol.pdf.

22. A. Nanevski, G. Morrisett, and L. Birkedal. Polymorphism and separation in Hoare
Type Theory. In ICFP’06, pages 62–73.

23. Z. Ni and Z. Shao. Certified assembly programming with embedded code pointers.
In POPL’06, pages 320–333.

24. P. W. O’Hearn, H. Yang, and J. C. Reynolds. Separation and information hiding.
In POPL’04, pages 268–280.

25. B. C. Pierce and D. N. Turner. Local type inference. TOPLAS, 22(1):1–44, 2000.
26. J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In

LICS’02, pages 55–74.
27. Z. Shao, V. Trifonov, B. Saha, and N. Papaspyrou. A type system for certified

binaries. TOPLAS, 27(1):1–45, January 2005.
28. K. Watkins, I. Cervesato, F. Pfenning, and D. Walker. A concurrent logical frame-

work: The propositional fragment. LNCS 3085, Springer 2004.
29. H. Xi. Applied Type System (extended abstract). LNCS 3085, 2004.
30. H. Xi and F. Pfenning. Dependent types in practical programming. POPL’99.
31. N. Yoshida, K. Honda, and M. Berger. Logical reasoning for higher-order functions

with local state. Personal communication, August 2006.
32. D. Zhu and H. Xi. Safe programming with pointers through stateful views. In

PADL’05, pages 83–97.

Structure of a Proof-Producing Compiler

for a Subset of Higher Order Logic

Guodong Li, Scott Owens, and Konrad Slind

School of Computing, University of Utah

Abstract. We give an overview of a proof-producing compiler which
translates recursion equations, defined in higher order logic, to assem-
bly language. The compiler is implemented and validated with a mix
of translation validation and compiler verification techniques. Both the
design of the compiler and its mechanical verification are implemented
in the same logic framework.

1 Introduction

Most compilers are used to compile programs. However, it also makes sense to ex-
ecute logic [1], and thus to compile logic. This is the basis for logic programming,
where search for solutions to problems phrased as logic formulas is the domi-
nant paradigm [12]. In this paper we address another—hitherto unexploited—
opportunity for logic compilation; namely, the term language that dwells within
higher order logic [16,17]. This language comprises, roughly speaking, ML-style
pure terminating functional programs, i.e., those (computable) functions that
can be expressed by well-founded recursion in higher order logic [21]. Features
like type inference, polymorphism, and pattern matching make this subset a com-
fortable setting in which to program. Although this language does not contain
all computable functions, it does express a very wide range of algorithms and,
of course, the logic provides a setting for correctness proofs of such programs.

Compilation techniques developed for functional programming may be applied
to translate these programs to machine code. However, since we are in a formal
setting, it is natural to ask for more, namely the formal correctness of compila-
tion. There are two main approaches to achieving this high level of assurance:
compiler verification and translation validation. Compiler verification proceeds
by formally specifying, in the object logic, the source and target languages, along
with the compilation algorithm. Then the correctness of the compiler is proven
once and forall: a single object logic theorem establishes that all successful runs
of the compiler generate correct code. In contrast, translation validation [18]
does a per-run correctness proof. Its main advantage is that only the results of
compilation steps need to be verified, which can at times be far simpler than
verifying the algorithms performing the compilation.

We have built a proof-producing compiler for a simple subset of higher order
logic terms in the HOL-4 proof system [17]. The compiler is mainly based on
translation validation, but compiler verification techniques such as those found in

R. De Nicola (Ed.): ESOP 2007, LNCS 4421, pp. 205–219, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

206 G. Li, S. Owens, and K. Slind

[9,11,14] are also used. A run of the compiler returns an (automatically proved)
theorem expressing the correctness of the compilation run; from this theorem
the generated code, for an ARM-like machine, can be directly read-off.

The task of compiling the term language of a logic using the logic itself poses
a couple of novel challenges: first, the source language is not visible in the logic;
second, there is no notion of evaluation for the logic. Source functions have a set-
theoretic semantics which has to be reconciled with the operational semantics of
the target machine.

In the remainder of the paper, we give an overview of the structure of the
compiler, and summarize our experiences to date.1

2 Overview

One immediate advantage of taking logic terms as the source language is that
many front end tasks are already provided by the HOL-4 system: lexical analysis,
parsing, type inference, overloading resolution, function definition, and termina-
tion proof (needed to admit recursive functions, since HOL is a logic of total
functions). The result of all this activity is a valid HOL function definition, em-
bodied in a possibly recursive equation. From this starting point, a sequence
of proof-based transformations pass through intermediate languages, ending in
assembly. We will describe four intermediate languages: HOL- (HOL Minor),
ANF/ACF (Administrative Normal Form / A Combinator Form), HSL (Heap
and Stack Level), and CFL (Control Flow Level). HOL-, ANF and ACF pro-
grams are simply HOL functions, with no attached operational semantics. It is
this feature that enables us to use standard mathematics to prove properties of
HOL- and ANF programs directly in HOL. HSL and CFL, on the other hand, are
imperative languages represented with syntax trees and operational semantics.

The translation from a source function to HOL- is performed and validated in
the front-end in an ad hoc manner; in fact there may be multiple source languages
that target HOL-. The translation from HOL- to ANF/ACF is mainly expressed
as a collection of verified rewrite rules. Currently, the translation from HOL- to
ANF/ACF includes performing closure conversion, CPS conversion, and register
allocation in that order. ANF is used for the compilation to HSL, while ACF
is for the validation of such compilation. ACF is obtained from ANF through
verified rewriting. The result is a theorem equating the original function with
the ACF translation of its body.

An ANF-format program is converted (not by proof) to a corresponding HSL
program, which is in turn converted to its CFL by laying out the heap and the
stacks. Finally, the CFL is translated to ARM-like object code by linearizing the
control-flow structures. Roughly speaking, the path from HOL- to HSL proceeds
by translation validation, while the other steps rely on compiler verification
techniques.

1 Source code along with examples is included in the ‘examples/dev/sw’ directory in
the HOL-4 distribution (http://hol.sourceforge.net).

Structure of a Proof-Producing Compiler for a Subset of Higher Order Logic 207

Since we do not have an evaluation semantics for HOL- or ACF, widely-used
techniques for proving semantics preservation for the translation, e.g., simulation
arguments based on rule-induction over the evaluation relation, are not applied
to validate the translation from ACF to HSL. Instead, we derive a collection of
Hoare rules from the operational semantics of HSL and show that this semantics
agrees with the ACF level function by bottom-up reasoning. Thus, for an ACF
function g with inputs i and outputs o, and the HSL program Shsl obtained
from g, the following statement must be proved (where σ[[v]] reads the value of
variable v from state σ):

�thm ∀σhsl. (runhsl Shsl σhsl) [[o]] = g (σhsl [[i]])

HSL states are defined over virtual registers, heap variables and stack variables,
while CFL states range over machine registers and machine memory locations.
The correctness of the translation from HSL to CFL is phrased by relating the
states of these two languages by a relation �. The correctness statement asserts
that the execution of a HSL statement Shsl has the same effect on a HSL state
as the execution of its corresponding CFL statement Scfl:

�def (σhsl � σcfl)
.
= (∀v ∈ σhsl.σhsl[[v]] = σcfl[[v

′]]) where v′ is v’s injection into σcfl

�thm σhsl � σcfl ⇒ (runhsl Shsl σhsl � runcfl Scfl σcfl)

The runtime state σarm for the machine is a tuple of a program counter (pc),
a process status register (cpsr), physical registers and physical memory (ω).
If a CFL program Scfl is correctly translated to an ARM program Sarm, then
the execution of Scfl and Sarm should result in the same status of registers and
memory, thus any property proved at the CFL level can be pushed down to the
ARM level:

�thm runcfl Scfl σcfl = (runarm Sarm (pc, pcsr, σcfl)).ω

Collecting all correctness statements together gives the validation proof for the
translation from HOL- to ARM: for a HOL- function g with inputs i and outputs
o, and the final flat code Sarm obtained from g, in the state after the execution
of Sarm, the values left in outputs o are equal to applying the function g to the
initial values of inputs i in σarm

�thm ∀σarm.(runarm Sarm σarm)[[o]] = g (σarm[[i]])

3 Language Syntax and Semantics

In Figures 1-3 we give the syntax of the intermediate languages. HOL- is a sim-
ple polymorphically-typed functional language handling tail-recursive equations
where variables range over tuples of elements from types that can be directly
represented in machine words for the ARM, e.g., booleans and 32-bit words.
‘Let’-binding, λ expression and function call are also supported.

ANF is obtained from HOL- by performing closure conversion to eliminate
higher order functions, and a CPS (continuation-passing style) transformation
so that all expressions are flattened and the control flow is pinned down into a
sequence of elementary steps. Register allocation is performed on a data structure
obtained by analyzing the ANF program. This ANF program is also rewritten
to its ACF form that is a ‘constructor’-like semantic function.

208 G. Li, S. Owens, and K. Slind

opb ::= + | − | ∗ | ≫ | � | � | � | & | � | # arithmetic / bitwise operator
opr ::= = | 	= | < | > | ≤ | ≥ relational operator
opl ::= ∧ | ∨ | ¬ logic operator
e ::= w | v word and variable identifier

| −→e tuple, i.e.(. . . , e, . . .)
| e opb e | e opr e | e opl e binary operation
| λ v. e anonymous function
| if e then e else e conditional
| let −→v = e in e let definition
| e e application
| f named function

f ::= fid
−→v = e function definition

x ::= w | v word and variable identifier
e ::= −→x tuple

| (op opb) x x | (op opr) x x binary operation
| if v then e else e conditional on single variable
| let v = e in e let assignment to single variable
| let −→v = f e in e function call

f ::= fid
−→v = e function definition

x, f ::= similar to x, f in ANF
y ::= −→x | y opb y data processing operation
z ::= λ−→v . y | λ−→v .f −→x data processing function
c ::= λ−→v . (x, opr, x) conditional function
e ::= z | sc e e | cj c e e | tr c e e compositional function

Fig. 1. Syntax of HOL- (top), ANF (middle) and ACF (bottom)

As mentioned, HOL-, ANF, and ACF programs are mathematical functions
with no associated evaluation semantics. They can be understood as λ expres-
sions, and the order of reductions is not specified on them.

HSL is a simple imperative language that supports various structured control
statements including blocks (BLK), sequential composition (SC), conditionals
(CJ) and tail recursion (TR), plus an important structure for function call—
FC. Variables are divided into register variables, heap (global) variables, and
stack (local) variables. A BLK structure is just a list of atomic instructions. An
FC structure consists of an argument passing pair (the first component is for
the caller, the second component for is the callee), a body statement, and a
result passing pair. Heap variables are not allowed in parameters or results since
their values are not transferred through the stack. A HSL program will never
contain any comparison or jump instructions. Variables are divided into register
variables, heap variables and stack variables. Variables in ANF format have been
mapped to either register, heap or stack variables by register allocation and inter-
procedural analysis. In our current implementation, heap (global) variables are
replaced with stack variables during closure conversion, thus actually no heap
variable appears in the HSL.

Structure of a Proof-Producing Compiler for a Subset of Higher Order Logic 209

CFL explicitly lays outs the heap and stacks for function calls. It specifies
machine registers and memory locations for the variables in HSL. A function
call in HSL is implemented by dividing the processing into three phases: pre-call
processing, function body execution and post-call processing. Pointer registers
hp (heap pointer), fp (frame pointer), ip (intra-procedure register pointer), sp
(stack pointer) and lr (link register) are used to control the layout of the heap
and stack frames for functions. CFL works over machine registers and memory,
thus a (one-to-one) mapping from HSL variables to them is required.

The translation from CFL to the object code simply performs the linearization
of control-flow structures. The format of an ARM instruction is: op{cond} d1 d2.
The cond field controls conditional execution of the instruction, it is omitted
for unconditional execution; d1 and d2 are the destination operand and source
operands respectively.

opb ::= add | sub | mul | ror | lsr | asr |
| lsl | and | orr | eor | rsb | mla , . . . arithmetic and bitwise operators

r ::= r0 | r1 | . . . | r8 register variable
v ::= r | sk[.] register and stack variable
y ::= w | r word constant and register
x ::= w | v constant and variable
inst ::= opb r y y arithmetic and bitwise operation

| ldr r (hp[i] | sk[.]) | str (hp[i] | sk[.]) r access to heap and stack

s ::= BLK ĩnst basic block containing an instr. list
| CJ (x, opr, x) s s conditional jump
| TR (x, opr, x) s tail recursion (loop)
| FC (x̃, ṽ) s (ṽ, x̃) function call

p ::= (−→v , s, −→x) programs

rd ::= HSL.r data register
rb ::= hp | fp | ip | sp | lr base (pointer) register
r ::= rd | rb register
m ::= m[rb, +i] | m[rb, −i] memory location
v, y, x, p ::= similar to v, y, x, p in HSL
inst ::= opb r y y | ldr r m | str m r | push r̃ | pop r̃ single instruction

s ::= BLK ĩnst | CJ (x, opr, x) s s | TR (x, opr, x) s control flow structures

BLK [] � σ � σ
eval inst inst σ = σ1 BLK instL � σ1 � σ2

BLK (inst::instL) � σ � σ2
S1 � σ � σ1 S2 � σ1 � σ2

SC S1 S2 � σ � σ2

S1 � σ � σ1 is true (eval cond cond σ)
CJ cond S1 S2 � σ � σ1

S2 � σ � σ1 is false (eval cond cond σ)
CJ cond S1 S2 � σ � σ1

is true (eval cond cond σ)
TR cond S � σ � σ

S � σ � σ1 is false(eval cond cond σ) TR cond S � σ1 � σ2
TR cond S � σ � σ2

copy (σε,σ) (callee.i,caller.i) = σ1 S � σ1 � σ2 copy (σ,σ2) (caller.o,callee.i) = σ3
FC (caller.i,callee.i) S (caller.o,callee.o) � σ � σ3

Fig. 2. Syntax for HSL (top) and CFL (middle), and evaluation rules (bottom) (Note:
FC structures only appear in HSL)

210 G. Li, S. Owens, and K. Slind

In our machine model, the data memory is separated from instruction memory
(also known as the instruction buffer, which is modeled as a function mapping
an address to an instruction). At each step the instruction pointed to by the pc
is executed. A program is executed until the first position beyond the code area
is reached.

r ::= CFL.r | pc machine register
m, v, y, x ::= similar to m,v, y, x in CFL
inst ::= b{opr} + k | b{opr} − k branch instruction

| cmp y y | tst y y comparison instruction
| CFL.inst operation instruction

p ::= (−→v , ĩnst, −→x) programs

eval op (op y x) ω = ω1
op y x � (pc,cpsr,ω) � (pc+1,cpsr,ω1)

update cpsr cpsr d1 d2 = cpsr1
cmp d1 d2 � (pc,cpsr,ω) � (pc+1,cpsr1,ω)

is true (eval cpsr cpsr rop)
b{rop} (+/−) k � (pc, cpsr, ω) � (pc (+/−) k, cpsr, ω)

is false (eval cpsr cpsr rop)
b{rop} (+/−) k � (pc, cpsr,ω) � (pc + 1, cpsr, ω)

Fig. 3. Syntax and evaluation rules of the machine language

Since expressions in HOL-, ANF and ACF are simply HOL functions, no
explicit definitions for either the syntax or the semantics of them are required.
In contrast, the abstract syntax for HSL and CFL is presented as inductive data
types, and the operational semantics of them are defined over these data types
(note that in our definition the body of a TR structure keeps running when the
condition does not hold).

4 Translation and Verification

In this section we discuss the stages of compilation, focusing on how the proofs
are organized.

4.1 From HOL- to ANF/ACF

Various well-known source-to-source translations are employed at this level: the
input is first transformed to a first order function, then to ANF by performing
a CPS transformation. And then a standard graph-colouring register allocation
phase is invoked to produce a data structure for generating HSL programs.
Finally, ANF is rewritten to ACF, an equivalent combinatory format.

Closure Conversion. Higher order and local functions in HOL- are eliminated
by closure conversion, where the free variables for local functions are captured
in an environment as passed to the function as an extra argument.

Structure of a Proof-Producing Compiler for a Subset of Higher Order Logic 211

Combinator format. Although we do not have syntax trees for functions at
this level, we can define and use ‘constructor’-like semantic functions, and use
them to implement translation steps. The recursion equation is translated to an
equivalent combinatory format based on combinators for sequential composition
(Seq), parallel composition (Par), conditionals (Ite), and tail-recursion (Rec).
Note that the Seq and Par combinators are sufficient to express let-expressions.

�def Seq f1 f2
.
= λx.f2(f1 x) �def Par f1 f2

.
= λx.(f1 x, f2 x)

�def Ite f1 f2 f3
.
= λx.if f1 x then f2 x else f3 x

�def Rec f1 f2 f3
.
= λx.if f1 x then f2 x else Rec (f3 x)

�thm (λx.let v = f1(x) in f2(x, v))
.
= Seq (Par(λx.x) f1) f2

CPS Conversion. Once the program is in combinator format, a CPS translation
is applied. CPS is defined semantically: CPS f

.= λk x. k (f x) specifies the
CPS interface to a function. From this definition, it is easy to prove the theorem
relating ordinary function application to CPS function application: � ∀f x. f x =
(CPS f) (λx.x) x. The CPS transformation phase repeatedly rewrites with the
following theorems to push the CPS function down through the combinators:

�thm CPS (Seq f1 f2) = CPS SEQ (CPS f1) (CPS f2)
�thm CPS (Par f1 f2) = CPS PAR (CPS f1) (CPS f2)
�thm CPS (Ite e f1 f2) = CPS ITE (CPS e) (CPS f1) (CPS f2)
�thm CPS (Rec e f1 f2) = CPS REC (CPS e) (CPS f1) (CPS f2)

where

�def CPS SEQ f1 f2
.
= λk x.f1 (λr.f2 k r) x

�def CPS PAR f1 f2
.
= λk x.f1 (λr2.f2 (λr1.k (r2, r1)) x) x

�def CPS ITE e f1 f2
.
= λk x.e (λr.let k1 = k in if r then f1 k1 x else f2 k1 x) x

�def CPS REC e f1 f2
.
= λk x.k (Rec (e (λx.x)) (f1 (λx.x)) (f2 (λx.x)) x)

Then the CPS interface from the expression is removed by rewriting with the
theorem � CPS f k = λx. let z = f x in k z to obtain a readable, let-based
A-normal form. There is also a pass to remove all the β-redexes introduced in the
CPS translation. The quality of the ANF expression is improved by removing
as many tuples as possible, and by removing redundant let expressions that
simply rename variables. All phases of transformations are term rewriting with
theorems that establish equality for the input and result of each rewriting step.

Register Allocation. This phase converts the ANF form to a data structure suit-
able for performing register allocation. Interestingly, the graph colouring register
allocation algorithm does not have to be verified; instead, the computed colour-
ing can be taken and used to build a term incorporating the required spilling.
To formally prove that this new term is equivalent to the original is very sim-
ple, amounting to not much more than checking that the two expressions are
α-equivalent. In our implementation this task is fulfilled implicitly when we
verify the translation from ACF to HSL by comparing the ACF with the syn-
thesized function. This nice trick was first noticed by Hickey and Nogin [8] and
is also used by Leroy [11]. It allows the results of standard register allocation
algorithms to be used, without having to verify their correctness. The following

212 G. Li, S. Owens, and K. Slind

example shows the HOL- (left) and an ANF (right) of the TEA block cipher [23]
(names of variables spilled begin with m and those in registers begin with r):

DELTA = 0x9e3779b9w
ShiftXor(x, s, k0, k1) =

((x � 4) + k0) # (x + s) #
((x � 5) + k1)

Round ((y, z), (k0, k1, k2, k3), s) =
let s′ = s + DELTA in
let y′ = y + ShiftXor (z, s′, k0, k1)
in ((y′, z + ShiftXor (y′, s′,

k2, k3)), (k0, k1, k2, k3), s
′)

Rounds (n, s : state) =
if n = 0w then s
else Rounds (n − 1w, Round s)

Rounds(r0, (r8, r5), (r4, r3, r2, r6), r7) =
let v9 = (op =) (r0, 0w)in
if v9 then ((r8, r5), (r4, r3, r2, r6), r7)
else let m2 = (op −) (r0, 1w) in

let m4 = (op +) (r7, 2654435769w) in
let r1 = ShiftXor (r5, m4, r4, r3) in
let r9 = (op +) (r8, r1) in
let r1 = ShiftXor (r9, m4, r2, r6) in
let r1 = (op +) (r5, r1) in
let ((m5, m3), (m1, m0, m6, r1), r0) =

Rounds (m2, (r9, r1), (r4, r3, r2, r6), m4)
in ((m5, m3), (m1, m0, m6, r1), r0)

ACF. The ANF is again converted to an equivalent ‘constructor’-like semantic
function (i.e., ACF) based on combinators for sequential composition (sc), con-
ditionals (cj) and tail-recursion (tr). By definition sc = Seq and cj = Ite; however,
tr is a little different from Rec.

�def tr f1 f2
.
= λx.if f1 x then x else tr (f2 x)

�thm (f x = if f1 x then f2 x else f (f3 x)) ⇔ (f = sc (tr f1 f3) f2)

4.2 From ACF to HSL

To support reasoning about HSL programs, we use the following Hoare triples:

{P} S {Q} .
= ∀σhsl.P σhsl ⇒ Q(runhsl S σhsl)

We first derive standard Hoare rules. Then, to bridge the semantic gap between
an ACF function g with inputs i and outputs o, and the HSL structure S built
from g’s ANF, we specialize the axiomatic semantics to obtain a refined set of
Hoare rules—dubbed the projective Hoare rules. A projective Hoare rule says:
provided that inputs i have initial values v, and any variable x in the live variable
set ξ has value k, then in the state σ′ after the execution of S, the values left in
outputs o are equal to applying the function f to the initial values v, and x’s
value is still k:

S � ξ ↑ (i, f, o)
.
=

∀x ∈ ξ ∀v∀k∀σhsl.(if σhsl = v) ∧ (σhsl[[x]] = k) ⇒
let σ′

hsl = runhsl S σhsl in ∧ (of σ′
hsl = f v) ∧ (σ′

hsl[[x]] = k)

where functions if and of project from a data state the values of vector i and
o. If the judgement embodied by a projective Hoare rule holds on the S derived
from g, then the synthesized function f should be equivalent to g and, indeed
this is easy to prove automatically since they are quite similar.

The projective Hoare rules utilize the following definitions. Operator mk cnd

turns a condition into a condition function. Suppose
−→
ξ turns a set ξ into a

vector, and ←−v turns a vector v into a set, then the product of a vector and a set

Structure of a Proof-Producing Compiler for a Subset of Higher Order Logic 213

makes a new vector that comprises v1 and all elements in ξ, v1 × ξ
.= (v1,

−→
ξ).

The dot product of a function and a set gives a new function: (λx.f x) � ξ
.=

λ(x,
−→
ξ).(f x,

−→
ξ). A vector and a projective function are interchangeable.

s1 � ξ1 ↑ (i1,f1,o1) s2 � ξ2 ↑ (o1,f2,o2)
SC s1 s2 � ξ1 ∩ ξ2 ↑ (i1,sc f1 f2,o2) sc rule

s1 � ξ1 ↑ (i,f1,o) s2 � ξ2 ↑ (i,f2,o)
CJ cnd s1 s2 � ξ1 ∩ ξ2 ↑ (i,(cj (mk cnd cnd) f1 f2),o) cj rule

s � ξ ↑ (i,f,i)
TR cnd s � ξ ↑ (i,(tr (mk cnd cnd) f),i) tr rule

s � ξ ↑ (i,f,o) g i′=f i
s � ξ ↑ (i′,g,o) shuffle rule

s � ξ ↑ (i,f,o) ξ′ ⊆ ξ
s � ξ ↑ (i×ξ′,f � ξ′,o×ξ′) pick rule

s � ξ ↑ (i,f,o) ξ′ ⊆ ξ
s � ξ′ ↑ (i,f,o) shrink rule

s � ξ ↑ (callee.i,f,callee.o)
←−−−−−
caller.o ∩ ξ′ = φ

FC (caller.i,f,callee.i) s (caller.o,f,callee.o) � ξ′ ↑ (caller.i,f,caller.o) fc rule

These rules are used to keep track of how the relation between specific inputs and
outputs change during the execution. Rules sc rule, cj rule and tr rule are control
flow rules and their meaning is self-explanatory. The live variable set ξ stores the
variables that are still live but not modified by the current statement. In other
words, when the value of a live variable is not altered by the current statement,
it is stored in ξ for future use. A live variable is either in ξ, or in the outputs o.
When it becomes not live any more, it should be removed from ξ. Maintaining
a ξ helps to reduce the number of variables in the inputs and outputs. Rule
pick rule is for extracting variables from the live variable set, while shrink rule is
used to discard variables not live any more from the set. Rule shuffle rule is to
restructure the input vector. Restructuring the ouput vector is accomplished by
appending an empty block and applying the shuffle rule to it. A basic block is
simulated as a whole as it is a macro instruction, thus there exists no rule for it.

Application of projective rules is controlled by an annotated structure with
inputs, outputs and context information, which guides the symbolic simulation
and the application of rules. Control flow rules sc rule, cj rule and tr rule
are applied on structures SC, CJ and TR respectively. For instance, when rea-
soning about a (CJ cond S1 S2) structure, we first reason about S1 and S2 sepa-
rately, then apply the cj rule rule. The application of data flow rules pick rule,
shrink rule and shuffle rule are guided by the “use” and “def” information
of a structure maintained by the compiler.

4.3 From HSL to CFL

The main task for this translation is to implement function calls and map heap
variables and stack variables to memory (for wider application we handle heap
variables here although they are replaced with stack variables during closure
conversion). Obviously the mapping function, �, shall be a one-to-one function.

The storage for local (stack) variables is allocated on function entry and re-
leased on function exit. In particular, local variables are held in a stack frame
that will be “destroyed” on function exit, and the storage for its stack can be

214 G. Li, S. Owens, and K. Slind

“collected” and reused for other function calls. The memory is modelled as a
finite map with addresses ranging from 0 to 232 − 1.

We introduce an injection relation �� to relate the states occurring during
the execution of HSL code and that of the translated CFL code, where � con-
sists of three injective functions �rg, �hp and �sk that map logical registers,
heap variables and stack variables to machine registers and memory locations
respectively. Of course all procedures use the same �hp as they share the global
heap. The correctness statement amounts to showing that the execution of a
HSL statement Shsl has the same effect on a HSL state as the execution of its
corresponding CFL statement Scfl (notation Dσ and DS return the domains of
the finite maps in σ and the variables accessed by the instruction in S).

�def one one inj σhsl � σcfl
.
= ∀v1, v2 ∈ Dσhsl . addr σcfl v�

1 	= addr σcfl v�
2

�def σhsl �� σcfl
.
= ∀v ∈ Dσhsl . σhsl[[v]] = σcfl[[v

�]]

�def (Shsl ≡� Scfl)
.
=

∀σhsl∀σcfl. (DShsl = Dσhsl ∧ σhsl �� σcfl) ⇒ (runhsl Shsl σhsl �� runcfl Scfl σcfl)

The function addr returns the address of a mapped variable. An address is pa-
rameterized by a state containing the values of base registers (e.g. fp and sp).
Given an injection �, the translation from HSL to CFL for most structures is
simple and we just need to replace HSL variables with their mapped machine reg-
isters and memory locations. A FC structure will be converted to the sequential
composition of pre-call processing, callee’s body and post-call processing:

r�

i

.
=�rg ri hp[i]�

.
= m[�hp i] sk[i]�

.
= m[�sk i] S� .

= ∀v ∈ DS . S[v ← v�]
Γhsl S

.
= S� when S is a BLK,SC,CJ or TR structure

Γhsl (FC (caller.i, callee.i) S (caller.o, callee.o))
.
=

SC (SC pre (Γhsl S)) post for valid pre, post and �′ described below

When �sk maps different stack variables to different memory locations, the trans-
lation for BLK, SC, CJ and TR structures guarantees semantics preservation. The
translation for FC is more complicated: we require that the pre-call processing
and post-call processing fulfill the parameter passing and result returning task;
and the execution of the pre-call processing, function body and post-call pro-
cessing should not modify the values of the caller’s register and stack variables
except for those set to receive results (we name this the value recovering prop-
erty). Assuming that � is an one-to-one injection, we have:

(BLK S) ≡� (BLK S�)
Shsl 1 ≡� Scfl 1 Shsl 2 ≡� Scfl 2
SC Shsl 1 Shsl 2 ≡� SC Scfl 1 Scfl 2

Shsl 1 ≡� Scfl 1 Shsl 2 ≡� Scfl 2
CJ cond Shsl 1 Shsl 2 ≡� CJ cond� Scfl 1 Scfl 2

Shsl ≡� Scfl

TR cond Shsl ≡� TR cond� Scfl

∀σ.σ[[caller.i�]] = (runcfl pre σ)[[callee.i�′
]] Shsl ≡�′

Scfl

∀σ.σ[[callee.o�′
]] = (runcfl post σ)[[caller.o�]]

∀σ.∀v ∈ (Drg,sk
Scaller

\ ←−−−−−
caller.o). σ[[v�]] = (runcfl (SC (SC pre Scfl) post) σ)[[v�]]

FC (caller.i,callee.i) Shsl (caller.o,callee.o) ≡� SC (SC pre Scfl) post

There are many ways to guarantee that the value recovering property holds. One
of them is to layout the frames of the caller and callee in such a way that their
domains do not intersect with each other; and the values of register variables

Structure of a Proof-Producing Compiler for a Subset of Higher Order Logic 215

modified by the callee’s execution are recovered on the function entry. This leads
to a valid implementation of a frame layout and a function call procedure. The
areas in the memory devoted to stack frames (i.e. the activation record) are
marked by the ip, fp and sp. When the callee is called, space for results are
reserved by growing the stack, then the caller pushes all parameters into the
stack; and then the frame for the callee is created. Specifically, when a callee is
called, its stack frames shall not be overlapped with the callee’s frame.

As indicated by the following rule, an implementation is valid if it ensures
that: (1) the parameter/result passing and the body execution do not change
the values of stack variables in the caller’s frame except those for receiving re-
sults (i.e., caller.o); (2) all register variables are pushed into memory before
parameter passing on function entry and then popped from memory before re-
sult passing on function exit. In the following rule, σ〈v〉 represents reading the
value at concrete address v from state σ, and Dr is the abbreviation of DScaller

.
σ1 = runcfl pre σ σ2 = runcfl Scfl σ1 σ3 = runcfl post σ2

∀v ∈ (Dsk
r)�.σ〈v〉 = σ1〈v〉 ∃xi. σ1〈xi〉 = σ[[ri]] for i ∈ Drg

Scallee

∀v ∈ (Dsk
r)� ∪ {xi | i ∈ Drg

Scallee
}.σ2〈v〉 = σ1〈v〉

∀v ∈ (Dsk
r \ ←−−−−−

caller.o)�. σ3〈v〉 = σ2〈v〉 ∀ri ∈ (Drg
r \ ←−−−−−

caller.o). σ3[[ri]] = σ2〈xi〉
∀σ.∀v∈(Drg,sk

r \←−−−−−
caller.o). σ[[v�]]=(runcfl (SC (SC pre Scfl) post) σ)[[v�]]

Complying with these requirements, our implementation compiles function calls
into a callee-save style calling convention. Specifically, �sk=�′

sk= λi.(fp, −(i +
12)), �rg=�′

rg= λr.r and �hp=�′
hp= λi.(hp, −i). By carefully moving the point-

ers fp, ip and sp we keep the caller’s frame and callee’s frame located in separate
areas in the memory. All parameters and results are passed through the stack,
and the callee saves all data registers (i.e., r0 − r8) in all cases. This solution
is suboptimal but easier to verify. In particular, it allows us, while perform-
ing colouring register allocation, not to add interferences between caller-save
registers and temporaries that are live across a call.

higher address (32-bit word based address) lower address
← . . . global heap previous frame current frame next frame . . . →

Memory Addr Memory Addr
caller’s ip reserved for pc i
caller’s fp saved lr i-1 stack variable n j

save ip i-2 caller’s sp parameter/result k j-1
save fp i-3

stored reg 8 i-4 parameter/result 0 k
. . . . callee’s ip reserved for pc k-1

stored reg 0 i-12 callee’s fp saved lr k-2
stack variable 0 i-13

pre = BLK [sub sp sp (max(#caller.i, #caller.o) − #caller.i); push caller.i;
mov ip sp; sub fp ip 1; sub sp sp 1; push {r0, . . . , r8, fp, ip, lr};
add sp sp 12; pop callee.i; sub sp fp (12 + #stack variables)]

post = BLK [add sp ip #callee.o; push callee.o; sub sp fp 12;
pop {r0, . . . , r8, fp, ip, lr}; mov sp ip; pop caller.o;
sub sp fp (12 + #stack variables)]

216 G. Li, S. Owens, and K. Slind

One subtlety appearing in proofs is that the initial values of hp, sp, ip and fp
must be greater than specific values so that the memory can accomodate all
stack frames and the areas consumed by pre/post processing.

Both the heap and the stacks are simply finite maps, thus we do not formalize
and rely on any heap management and stack property. In [3] a block-base memory
model between a machine memory and a high-level view is introduced to manage
frame stacks. As in our method, separation is enforced between stack blocks
belonging to different function activation records.

4.4 From CFL to ARM

The translation from CFL to ARM proceeds by linearizing the SC, CJ and TR
structures. The instructions in basic blocks are already in the right format. Our
translation always generates flat code satisfying good properties including: (1)
any execution of the translated code will not access beyond its own area in the
instruction buffer; (2) the data state after an execution is independent of the
initial values of pc and cpsr; (3) all executions terminate.

The translation verification for CJ proceeds by case analysis on the condition;
while that for TR by the induction on the number of rounds the body is executed.
This linearization scheme turns out to be most succinct in terms of the length of
generated code. One optimization is performed at the flat code level for function
calls: all occurrences of a callee are moved to the same area in the code so
that only one copy is left. Unconditional jumps are inserted appropriately. The
correctness proof for this relocation is straight forward because the adjusted code
runs in the same way as its old version.

Γcfl (BLK (inst :: instL))
.
= inst :: Γcfl(BLK instL)

Γcfl (BLK [])
.
= []

Γcfl (SC s1 s2)
.
= (Γcfl s1) � (Γcfl s2)

Γcfl (CJ (v1, rop, v2) st sf)
.
= let (ρt ρf) = (Γcfl st, Γcfl sf) in

(cmp v1 v2) :: (b{rop} + ‖ρf‖ + 2) ::
ρf � [bal + ‖ρt‖ + 1] � ρt

Γcfl (TR (v1, rop, v2) s)
.
= let ρ = Γcfl s in

(cmp v1 v2) :: (b{rop} + ‖ρ‖ + 2) :: ρ � [bal − (|ρ| + 2)]

Note that ‖ρ‖ returns the number of instructions in ρ, and ρ1
 ρ2 appends ρ2
to ρ1.

Example. With the following abbreviations,

body
.
= BLK [msub r3 r0 1w; mmul r2 r0 r1; mmov r0 r3; mmov r1 r2]

blk1
.
= BLK [mmov r2 r1] snd

.
= λ(v0, v1).v1

f1
.
= λ(v0, v1).(v0 − 1w, v0 + v1) f2

.
= tr (λ(v0, v1).v0 = 0w)〉) f1

the intermediate forms of the factorial function and the derivation of the
specification connecting the facthsl and factacf (where Axiom1 = blk1 � {} ↑
((r0, r1), snd, r2)) are

Structure of a Proof-Producing Compiler for a Subset of Higher Order Logic 217

HOL-: fact (x, a)
.
= if x = 0w then a else fact (x − 1w, x × a)

ACF: factacf
.
= sc (tr (λ(v0, v1).v0 = 0w) f1) snd

HSL: facthsl
.
= SC (TR (r0, eq, 0w) body) blk1

CFL: factcfl
.
= Γhsl facthsl = facthsl

ARM: factarm
.
= Γcfl factcfl = [cmp r0 r1; beq + 6; sub r3 r0 1w; mul r2 r0 r1;

mov r0 r3; mov r1, r2; bal − 6; mov r2, r1]

body � {} ↑ ((r0, r1), f1, (r0, r1))
tr rule

TR (r0, ne, 0w) body � {} ↑ ((r0, r1), f2, (r0, r1)) Axiom1
sc rule

SC (TR (r0, ne, 0w) body) blk1 � {} ↑ ((r0, r1), factacf , r2)

5 Related Work

We have also developed a hardware compiler for a similar source language [7]: it
takes in HOL function definitions and emits FPGA-level netlists. Compilation
proceeds essentially by refinement steps: control structures in logic are refined
by formulas representing unclocked circuits implementing those structures, and
those circuit-formulas are further refined to be formulas for clocked circuits.

Hickey and Nogin [8] constructed a compiler from a higher order, untyped,
functional language to Intel x86 code, based entirely on higher-order rewrite
rules. The compiler is written in the MetaPRL logical framework. A set of
rewrite rules are used to convert a higher level program to a lower level pro-
gram. However, verification of the rules remains to be done. Since their source
languages and intermediate representations are similar to ours, we may apply
their rules during the translation from HOL to HOL- and then ANF, e.g., the clo-
sure conversion and CPS conversion rules; yet our existing verification techniques
for these translations are still valid. Similarly, Watson [22] proposes a refine-
ment calculus for the compilation from high-level language to .NET assembly;
Sampaio [20] uses term rewriting to convert source programs to their normal
forms representing object code. These latter works are not machine automated.

Leroy [2,11] has verified a compiler from a subset of C, Clight, to PowerPC
assembly code in the Coq system. The semantics of Clight is completely deter-
ministic and specified as big-step operational semantics. Several intermediate
languages are introduced and translations between them are verified. The proof
of semantics preservation for the translation proceeds by induction over the
Clight evaluation derivation and case analysis on the last evaluation rule used;
in contrast, our proofs proceed by verifying that the rewrite rules used are se-
mantics preserving and the execution of programs at different phases has the
same effect on the corresponding states. Leroy also uses translation validation
to sidestep the difficult correctness proof for register allocation. He relies on an
outside verifier to check a posteriori the graph colouring register allocator.

A purely operational semantics based development is that of Klein and Nipkow
[9] which gives a thorough formalization of a Java-like language. A compiler from
this language to a subset of Java Virtual Machine is verified using Isabelle/HOL.
However, that compiler targets high-level code than our assembly, for example it
assumes an unbounded number of registers. Compilation from a type-safe subset

218 G. Li, S. Owens, and K. Slind

of C to DLX assembly code has been verified using the Isabelle/HOL theorem
prover [10]. A big step semantics and a small step semantics for this language
are related by the proof.

There has recently been a large amount of work on verifying low-level lan-
guages, originally prompted by the ideas of proof carrying code and typed as-
sembly language [15]. We are currently investigating links with recent work on
Hoare Logics for assembly language, e.g., [5,13] and also extensions such as Sepa-
ration Logic [19]. Of course, compiler verification itself is a venerable topic, with
far too many publications to survey (see Dave’s bibliography [4]). Restricting to
assembler verification, one of the most relevant works for us is by Moore [14].

6 Conclusions and Future Work

We have presented the design of a compiler for a subset of higher order logic
which operates by running proofs. The fact that the source language is not associ-
ated with any evaluation semantics makes the translation validation somewhat
novel. Our end-to-end, fully automatic compiler successfully bridges the large
gap between programs in logic and low level assembly programs.

Currently, the validation of the translation from an ACF program to its HSL
program requires the HSL program to inherit ACF’s structure, thus restricting
the degree of optimizations at the HSL level. In spite of this restriction, many
optimizations can be performed in the other levels. For example, optimizations on
basic blocks are easy since their validation simply requires symbolic simulation.

Currently, we are strengthening the front end translation to support ML-style
datatypes and non-tail recursive functions. We are also augumenting the back
end to tackle dynamic memory allocation, as well as changing the current ARM-
like target language to the detailed ARM model developed by Fox [6].

Acknowledgements. We thank Thomas Tuerk for his help in refining the defi-
nition of the ARM model. We also appreciate the advice from the anonymous
reviewers.

References

1. Stefan Berghofer and Tobias Nipkow, Executing higher order logic, P. Callaghan, Z.
Luo, J. McKinna, R. Pollack, editors, Types for Proofs and Programs, International
Workshop (TYPES 2000), 2000.

2. Sandrine Blazy, Zaynah Dargaye, and Xavier Leroy, Formal verification of a C
compiler front-end, 14th International Symposium on Formal Methods (FM 2006),
Hamilton, Canada, 2006.

3. Sandrine Blazy and Xavier Leroy, Formal verification of a memory model for C-like
imperative languages, International Conference on Formal Engineering Methods
(ICFEM 2005), Manchester, UK, 2005.

4. Maulik A. Dave, Compiler verification: a bibliography, ACM SIGSOFT Software
Engineering Notes 28 (2003), no. 6, 2–2.

Structure of a Proof-Producing Compiler for a Subset of Higher Order Logic 219

5. Xinyu Feng, Zhong Shao, Alexander Vaynberg, Sen Xiang, and Zhaozhong Ni,
Modular verification of assembly code with stack-based control abstractions, ACM
SIGPLAN 2006 Conference on Programming Language Design and Implementation
(PLDI’06), 2006, pp. 401–414.

6. Anthony Fox, Formal verification of the ARM6 micro-architecture, Tech. Report
548, University of Cambridge Computer Laboratory, November 2002.

7. M. Gordon, J. Iyoda, S. Owens, and K. Slind, Automatic formal synthesis of hard-
ware from higher order logic, Proceedings of Fifth International Workshop on Au-
tomated Verification of Critical Systems (AVoCS 2005), ENTCS, vol. 145, 2005.

8. Jason Hickey and Aleksey Nogin, Formal compiler construction in a logical frame-
work, Journal of Higher-Order and Symbolic Computation 19 (2006), no. 2-3,
197–230.

9. Gerwin Klein and Tobias Nipkow, A machine-checked model for a Java-like lan-
guage, virtual machine and compiler, TOPLAS 28 (2006), no. 4, 619–695.

10. Dirk Leinenbach, Wolfgang Paul, and Elena Petrova, Towards the formal verifica-
tion of a C0 compiler: Code generation and implementation correctnes, 4th IEEE
International Conference on Software Engineering and Formal Methods (SEFM
2006), 2005.

11. Xavier Leroy, Formal certification of a compiler backend, or: programming a com-
piler with a proof assistant, Symposium on the Principles of Programming Lan-
guages (POPL 2006), ACM Press, 2006.

12. Kim Marriott and Peter J. Stuckey, Programming with constraints, an introduction,
MIT Press, 1998.

13. John Matthews, J Strother Moore, Sandip Ray, and Daron Vroon, Verification con-
dition generation via theorem proving, LPAR 2006 (LNCS 4246), Springer Verlag,
2006.

14. J Strother Moore, Piton: A mechanically verified assembly-level language, Auto-
mated Reasoning Series, Kluwer Academic Publishers, 1996.

15. Greg Morrisett, David Walker, Karl Crary, and Neal Glew, From System F to typed
assembly language, ACM Transactions on Programming Languages and Systems
21 (1999), no. 3, 527–568.

16. Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel, Isabelle/HOL — a proof
assistant for higher-order logic, LNCS, vol. 2283, Springer, 2002.

17. Michael Norrish and Konrad Slind, HOL-4 manuals, 1998-2006, Available at
http://hol.sourceforge.net/.

18. A. Pnueli, M. Siegel, and E. Singerman, Translation validation, 4th International
Conference on Tools and Algorithms for Construction and Analysis of Systems
(TACAS ’98), 1998.

19. John C. Reynolds, Separation logic: A logic for shared mutable data structures,
IEEE Symposium on Logic in Computer Science (LICS’02), 2002, pp. 55–74.

20. Augusto Sampaio, An algebraic approach to compiler design, volume 4 of AMAST
series in computing, World Scientific, 1997.

21. Konrad Slind, Reasoning about terminating functional programs, Ph.D. thesis, In-
stitut für Informatik, Technische Universität München, 1999.

22. Geoffrey Watson, Compilation by refinement for a practical assembly language,
International Conference on Formal Engineering Methods (ICFEM 2003), 2003.

23. David Wheeler and Roger Needham, TEA, a tiny encryption algorithm, Fast Soft-
ware Encryption: Second International Workshop, 1999.

Modular Shape Analysis
for Dynamically Encapsulated Programs

N. Rinetzky1,�, A. Poetzsch-Heffter2, G. Ramalingam3,��, M. Sagiv1, and E. Yahav4

1 Tel Aviv University
{maon,msagiv}@tau.ac.il

2 University of Kaiserlautern
poetzsch@informatik.uni-kl.de

3 Microsoft Research India
grama@microsoft.com

4 IBM T.J. Watson Research Center
eyahav@us.ibm.com

Abstract. We present a modular static analysis which identifies structural
(shape) invariants for a subset of heap-manipulating programs. The subset is de-
fined by means of a non-standard operational semantics which places certain re-
strictions on aliasing and sharing across modules. More specifically, we assume
that live references (i.e., used before set) between subheaps manipulated by dif-
ferent modules form a tree. We develop a conservative static analysis algorithm
by abstract interpretation of our non-standard semantics. Our modular algorithm
also ensures that the program obeys the above mentioned restrictions.

1 Introduction

Modern programs rely significantly on the use of heap-allocated linked data structures.
In this paper, we present a novel method for automatically verifying properties of such
programs in a modular fashion. We consider a program to be a collection of modules.
We develop a shape (heap) analysis which treats each module separately. Modular anal-
yses are attractive because they promise scalability and reuse.

Modular analysis [1], however, is particularly difficult in the presence of aliasing.
The behavior of a module can depend on the aliasing created by clients of the module
and vice versa. Analyzing a module making worst-case assumptions about the alias-
ing created by clients (or vice versa) can complicate the analysis and lead to impre-
cise results. Instead of analyzing arbitrary programs, we restrict our attention to certain
“well-behaved” programs. The main idea behind our approach is to assume a modularly-
checkable program-invariant concerning aliases of live intermodule references.

Motivating Example. Fig. 1 shows the code of a module, mRP , which serves as our
running example. The code is written in a Java-like language. Module mRP contains two
classes: Class R is a class of resources to be used by clients of the module. A resource
has a recursive field, n, which is used to link resources in an internal list. Class RPool
� Supported in part by the IBM Ph.D. Fellowship Program, and in part by a grant from the Israeli

Academy of Science.
�� Work done partly when the author was at IBM Research.

R. De Nicola (Ed.): ESOP 2007, LNCS 4421, pp. 220–236, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Modular Shape Analysis for Dynamically Encapsulated Programs 221

is a pool of resources which stores resources using their internal list. We assume that the
n-field is read or written only by RPool’s methods: acquire, which gets a resource
out of the pool, and release, which stores a resource in the pool.

public class RPool {
private R rs;
// transferred: { e }
public
void release(R e){

e.n=this.rs;
this.rs=e;

}
// transferred: { }
public R acquire(){

R r = this.rs;
if (r!=null) {

this.rs=r.n;
r.n = null; }

else
r = new R();

return r;
}}

public class R {
R n; ... }

Fig. 1. Module mRP

Typical properties we want to verify modularly are that
for any well behaved program that uses mRP , the methods
of RPool never leak resources and never issue an acquired
resource before it is released.1 Note that these properties do
not hold for arbitrary programs because of possible aliasing
in the module induced by the client behavior: Consider an
invocation of p.release(r) in a memory state in which
p points to a non-empty resource pool. If r points to the
head of a resource list containing more than one resource,
then the tail of the list might be leaked. If, after being re-
leased into the pool that p points to, r is released into other
pools, then these pools, along with the one pointed-to by p
share (parts) of their resource lists. Note that after a shared
resource is acquired from one pool, it can still be acquired
from the other pools. Finally, if the resource that r points
to is already in p’s pool, then p’s resource list becomes
cyclic. A resource which is acquired from a pool whose list
is cyclic, stays in the pool.

Given a module, and the user specification for the other modules it uses, our analysis
tries to verify that the given module is “well-behaved”. If this verification is unsuccess-
ful, the analysis gives up and reports that the module may not adhere to our constraints.
Otherwise, the analysis computes invariants of the given module that hold in any “well-
behaved” program containing the module. A program comprised only of successfully
verified modules is guaranteed to be “well-behaved”.

1.1 Overview

Non-standard semantics. The basis for our approach is a non-standard semantics that
captures the aliasing constraints mentioned above. In this paper, a module is a collec-
tion of type-definitions and procedures, and a component is a subheap. Our semantics
represents the heap as an (evolving and changing) collection of (heap) components. Ev-
ery component is comprised of objects whose types are defined in the same module.
(We say that a component belongs to that module.) Note that multiple components be-
longing to the same module may co-exist. References between components belonging
to different modules are allowed, however, the internal structure of a component can
be accessed or modified only by the (procedures in the) module to which it belongs.2

Components can be in two different states: sealed and unsealed. Sealed components
represent encapsulated data returned by a module to its callers (and, hence, are expected
to satisfy certain module invariants). In contrast, unsealed components are components
that are currently being modified and may be in an unstable state.

1 Similarly, in the analysis of a client of mRP , we would like to verify that the client does not use
a dangling reference to a released resource. Our analysis can establish this property.

2 A module m can manipulate a component of a module m′ by an intermodule procedure call.

222 N. Rinetzky et al.

At any point during program execution, the internal structure of only one compo-
nent is “visible” and can be accessed or mutated, i.e., only one unsealed component is
“visible”. We refer to this component as the current component. The only way a sealed
component can be unsealed (permitting its internal structure to be examined and mod-
ified) is to pass it as a parameter of an appropriate intermodule procedure call so that
the component becomes part of the current component for the called procedure. Our
semantics requires that all parameters and the return value(s) of intermodule procedure
calls must be sealed components. For brevity, we do not consider primitive values here.

Constraints. So far we have not really placed any constraints on the program. The
above are standard “good modularity principles” and most programs will fit this model
with minor adjustments. Before we describe the constraints we place on sharing across
modules, we describe the two key issues that motivate these constraints:

1. How can we analyze a module M without using any information about the clients
of M (i.e., without using information about the usage context of M)?

2. When analyzing a client module C that makes use of another module M , how
do we handle intermodule calls from C to M using only the analysis results for
module M (i.e., without analyzing module M again)?

We say that a component owns another component if it has a live reference (i.e.,
used before set) to the other component. The most important constraint we place is that
a component cannot be owned by two or more components. As a result, the heap (or
the program state) may be seen as, effectively, a tree of components. Informally, this
ensures that distinct components do not share (live) state. Furthermore, we require that
all references to a component from its owner have the same target object. We call this
object the component’s header.3 We refer to a program which satisfies these constraints
as a dynamically encapsulated program. Recall that our analysis also verifies that a
program is dynamically encapsulated.

In this paper, we require that the module dependency relation (see Sec. 2) be acyclic.
This constraint simplifies our semantics (and analysis) as module reentrancy does not
need to be considered: When a module is invoked all of its components are guaranteed
to be sealed. We note that our techniques can be generalized to handle cyclic dependen-
cies, provided that the ownership relation is required to be acyclic.

Benefits. The above constraints let us deal with the two issues mentioned above in a
tractable way. The restriction on sharing between components simplifies dealing with
intermodule calls as they cannot have unexpected side-effects: e.g., an intermodule call
on one component C1 cannot affect the state of another component C2 that is accessible
to the caller. As for the first issue, we conservatively identify all possible input states for
an intermodule call by iteratively identifying all possible sealed components that can
be generated by a module.

Specification. We now describe the extra specification a user must provide for the mod-
ular analysis. This specification consists of: (i) a module specification that partitions a

3 Note the slight difference in terminology: In ownership type systems, owners are objects and
do not belong to their ownership contexts. In our approach, components are the owners; the
component header belongs to the component that is dominated by the header.

Modular Shape Analysis for Dynamically Encapsulated Programs 223

program’s types and procedures into modules; (ii) an annotation for every (public) pro-
cedure that indicates for every parameter whether it is intended to be “transferred” to the
callee or not; these annotations are only considered in intermodule procedure calls. A
sealed component that is passed as a transferred parameter of an intermodule call can-
not be subsequently used by the calling module (e.g., to be passed as a parameter for a
subsequent intermodule call). This constraint serves to directly enforce the requirement
that the heap be a tree of components. For example, for release we specify that the
caller transfer ownership only of the resource parameter.

Given the above specification, our modular analysis can automatically detect the
boundaries of the heap-components and (conservatively) determine whether the pro-
gram satisfies the constraints described above

Abstraction. Our modular analysis is obtained as an abstract interpretation of our
non-standard semantics. We use a 2-step successive abstraction. We first apply a novel
trimming abstraction which abstracts away the contents of sealed components when
analyzing a module. (Loosely speaking, only the heap structure of the current compo-
nent, and the aliasing relationships between intermodule references leaving the current
component, are tracked.) We then apply a bounded conservative abstraction of trimmed
memory states. Rather than providing a new intraprocedural abstraction, we show how
to lift existing intraprocedural shape analyses, e.g., [2, 3, 4], to obtain a modular shape
abstraction (see Sec. 4). Our analysis is parametric in the abstraction of trimmed memory
states and can use different (bounded) abstractions when analyzing different modules.

Analysis. Our static analysis is conducted in an assume-guarantee manner allowing
each module to be analyzed separately. The analysis, computes a conservative repre-
sentation of every possible sealed components of the analyzed module in dynamically
encapsulated programs. This process, in effect, identifies structural invariants of the
sealed components of the analyzed module, i.e., it infers module invariants (for dynam-
ically encapsulated programs). Technically, the module is analyzed together with its
most-general-client using a framework for interprocedural shape analysis, e.g., [5, 6].

Extensions. In this paper, we use a very conservative abstraction of sealed components
and inter-component references (for simplicity). The abstraction, in effect, retains no in-
formation about the state of a sealed component (which typically belongs to other mod-
ules used by the analyzed module). This can lead to an undesirable loss in precision in
the analysis (in general). We can refine the abstraction by using component-digests [7],
which encode (hierarchical) properties of whole components in a typestate-like man-
ner [8]. This, e.g., can allow our analysis to distinguish between a reference to a pool of
closed socket components from a reference to a pool of connected socket components.

1.2 Main Contributions

(i) We introduce an interesting class of dynamically encapsulated programs; (ii) We
define a natural notion of module invariant for dynamically encapsulated programs;
(iii) We show how to utilize dynamic encapsulation to enable modular shape analysis;
and (iv) We present a modular shape analysis algorithm which (conservatively) verifies
that a program is dynamically encapsulated and identifies its module invariants.

224 N. Rinetzky et al.

Due to space restrictions, many formal details and the possible extensions of our
techniques are omitted and can be found in [9].

2 Program Model and Specification Language

Program model. We analyze imperative object-based (i.e., without subtyping) pro-
grams. A program consists of a collection of procedures and a distinguished main
procedure. The programmer can also define her own types (à la C structs).

Syntactic domains. We assume the syntactic domains x ∈ V of variable identifiers,
f ∈ F of field identifiers, T ∈ T of type identifiers, p ∈ PID of procedure identifiers,
and m ∈ M of module identifiers. We assume that types, procedures, and modules have
unique identifiers in every program.

Modules. We denote the module that a procedure p belongs to by m(p) and the module
that a type identifier T belongs to by m(T). A module m1 depends on module m2 if
m1 �= m2 and one of the following holds: (i) a procedure of m1 invokes a procedure
of m2; (ii) a procedure of m1 has a local variable whose type belongs to m2; or (iii) a
type of m1 has a field whose type belongs to m2.

Procedures. A procedure p has local variables (Vp) and formal parameters (Fp), which
are considered to be local variables, i.e., Fp ⊆ Vp. Only local variables are allowed.

Specification language. We expect to be given a partitioning of the program types and
procedures into modules. Every procedure should have an ownership transfer specifica-
tion given by a set F t

p ⊆ Fp of transferred (formal) parameters. (A formal parameter is
a transferred parameter if it points to a transferred component in an intermodule call.)
For example, e is release’s only transferred parameter, and acquire has none.

Simplifying assumptions. We assume that procedure invocations should be cutpoint-
free [5]. (We explain this assumption, and a possible relaxation, in Sec. 3.2.) In addi-
tion, to simplify the presentation, we make the following assumptions: (a) A program
manipulates only pointer-valued fields and variables; (b) Formal parameters cannot be
assigned to; (c) Objects of type T can be allocated and references to such objects can
be used as l-values by a procedure p only if m(p) = m(T); (d) Actual parameters to
an intermodule procedure call should not be aliased and should point to a component
owned by the caller. In particular, they should have a non-null value; and (e) The caller
always becomes the owner of the return value of an intermodule procedure call.

3 Concrete Dynamic-Ownership Semantics

In this section, we define DOS , a non-standard semantics which checks whether a
program executes in conformance with the constraints imposed by the dynamic encap-
sulation model. (DOS stands for dynamic-ownership semantics.) DOS provides the
execution traces that are the foundation of our analysis. For space reasons, we only
discuss key aspects of the operational semantics, formally defined in [9].

DOS is a store-based semantics (see, e.g., [10]). A traditional aspect of a store-
based semantics is that a memory state represents a heap comprised of all the allocated
objects. DOS , on the other hand, is a local heap semantics [11]: A memory state which

Modular Shape Analysis for Dynamically Encapsulated Programs 225

occurs during the execution of a procedure does not represent objects which, at the time
of the invocation, were not reachable from the actual parameters.

DOS is a small-step operational semantics [12]. Instead of encoding a stack of ac-
tivation records inside the memory state, as traditionally done, DOS maintains a stack
of program states [9, 13]: Every program state contains a program point and a memory
state. The program state of the current procedure is stored at the top of the stack, and it
is the only one which can be manipulated by intraprocedural statements. When a pro-
cedure is invoked, the entry memory state of the callee is computed by a Call operation
according to the caller’s current memory state, and pushed into the stack. When a proce-
dure returns, the stack is popped, and the caller’s return memory state is updated using
a Ret operation according to its memory state before the invocation (the call memory
state) and the callee’s (popped) exit memory state.

The use of a stack of program states allows us to represent in every memory state the
(values of) local variables and the local heap of just one procedure. An execution trace
of a program P always begins with P ’s main procedure starts executing on an initial
memory state in which all variables have a null value and the heap is empty. We say that
a memory state is reachable in a program P if it occurs as the current memory state in
an execution trace of P .

3.1 Memory States

Fig. 2 defines the concrete semantic domains and the meta-variables ranging over them.
We assume Loc to be an unbounded set of locations. A value v ∈ Val is either a
location, null, or �, the inaccessible value used to represent references which should
not be accessed.

l ∈ Loc
v ∈ Val = Loc ∪ {null} ∪ {�}
ρ ∈ E = V ↪→ Val
h ∈ H = Loc ↪→ F ↪→ Val
t ∈ T M = Loc ↪→ T
σ ∈ Σ = E×2Loc×H×T M×M

Fig. 2. Semantic domains

A memory state in the DOS semantics is a 5-
tuple σ = 〈ρ, L, h, t, m〉. The first four compo-
nents comprise, essentially, a 2-level store: ρ ∈ E
is an environment assigning values for the vari-
ables of the current procedure. L ⊂ Loc contains
the locations of allocated objects. (An object is
identified by its location. We interchangeably use
the terms object and location.) h ∈ H assigns val-
ues to fields of allocated objects. t ∈ T M maps
every allocated object to the type-identifier of its
(immutable) type. Implicitly, t associates every allocated location to a module: The
module that a location l ∈ L belongs to in memory state σ, denoted by m(t(l)), is
m(t(l)). The additional component, m ∈ M, is the module of the current procedure.
We refer to m as the current module of σ. (We denote the current module of a state σ
by m(σ).)

Note that in DOS , reachability, and thus domination,4 are defined with respect to
the accessible heap, i.e., �-valued references do not lead to any object.

4 An object l2 is reachable from (resp. connected to) an object l1 in a memory state σ if there is
a directed (resp. undirected) path in the heap of σ from l1 to l2. An object l is reachable in σ if
it is reachable from a location which is pointed-to by some variable. An object l is a dominator
if every access path pointing to an object reachable from l, must traverse through l.

226 N. Rinetzky et al.

e

2 3
n

4 5

this
�

rs

e

2 5
n

3 4

this
�

nrs

entry-state : (σe) exit-state : (σx)

�

y

2

1

3
n

4 5

cx

rs

pl

�

y1

2 5
rs n

3 4
n

Θ
cx

pl

call-state : (σc) return-state : (σr)

2

1

5

pl

�
y

2

1

5

c

pl
x
�

(c� = c�(σc)) (σ� = trim(σc))

2 3
rs n

4 5

(cP ∈ C(σc)) (cR ∈ C(σc))

Fig. 3. (σc, σe, σx, σr): DOS memory states occurring in an invocation of x.release(y)
on σc. (c�, cP , cR): The implicit components of σc. (σ�): The trimmed memory state induced
by σc.

Example 1. Fig. 3 (σc) depicts a possible DOS memory state that may arise in the
execution of a program using the module mRP . The state contains a client object (shown
as an hexagon) pointed-to by variable c and having a pl-field pointing to a resource
pool (shown as a rectangle). The resource pool, containing two resources (shown as
diamonds) is also pointed-to by a variable x. In addition, a local variable y points to
a resource outside the pool. (The numbers attached to nodes indicate the location of
objects. The value of a (non-null) pointer variable is shown as an edge from a label
consisting of the variable name to the object pointed-to by the variable. The value of a
(non-null) field f of an object is shown as an f -labeled edge emanating from the object.
Other graphical elements can be ignored for now.) The states σc and σe (also shown
in Fig. 3), depict, respectively, the call- and the entry-memory states of an invocation
of x.release(y) which we use as an example throughout this section. Note that
σe represents only the values of the local variables of release and does not represent
the (unreachable) client-object. In the return memory state of the invocation, depicted in
Fig. 3 (σr), the dangling reference y has the �-value, and the resource pool dominates
the resources in its list. (The return state does not represent the value of y before the
call, indicated by the dashed arrow.)

Components. Intuitively, a component provides a partial view of a DOS memory
state σ. A component of σ consists of a set of reachable objects in σ, which all be-
long to the same module, and records their types, their link structure, and their spatial
interface i.e., references to and from immediately connected objects and variables.

More formally, a component c ∈ C = 2Loc×2Loc×2Loc×H×T M×M is a 6-tuple.
A component c = 〈I, L, R, h, t, m〉 is a component of a DOS memory state σ if the
following holds: L, the set of c’s internal objects, contains only reachable objects in σ.
I ⊆ L and R ⊆ Loc \ L constitute c’s spatial interface: I records the entry locations
into c. An object inside c is an entry location if it is pointed-to by a variable or by a
field of a reachable object outside c. R is c’s rim. An object outside c is in c’s rim if it
is pointed-to by a field of an object inside c. h defines the values of fields for objects

Modular Shape Analysis for Dynamically Encapsulated Programs 227

inside c. We refer to a field pointing to an internal resp. rim object as an intra- resp. inter-
component reference. h should be the restriction of σ’s heap on L. t defines the types of
the objects inside c and in its rim. t should be the restriction of σ’s type map on L∪R.
m is c’s component module. We say that component c belongs to m. The type of every
object inside c must belong to m. (If L is empty then m must be the current module
of σ.) Note that a component c records (among other things) all the aliasing information
available in σ pertaining to fields of c’s internal objects. For reasons explained below,
we treat a variable pointing to a location outside the current component as an inter-
component reference leaving the current component, and add that location to its rim
(and relax the definition of a component accordingly).

Example 2. Memory state σc = 〈ρc, Lc, hc, tc, mc〉, depicted in Fig. 3, is comprised
of three components. A rectangular frame encompasses the internal objects of every
component. The current component, marked with a star, belongs to mc, the client’s
module. The sealed components, drawn shaded, belong to module mRP . Fig. 3 (c�)
depicts c� = 〈I�, L�, R�, h�, t�, mc〉, the current component of σc, separately from σc.
The client-object is the only object inside c�. It is also an entry location, i.e., I� =L� =
{1}. An entry location is drawn with a wide arrow pointing to it. The resource pool and
the resource are rim objects, i.e., R� ={2, 5}. Rim objects are drawn opaque. The pl-
labeled edge depicts the only (inter-component) reference in c�. Note that h� = hc|{1}
and t� = tc|{1,2,5}. Fig. 3 (cP) and (cR) depict σc’s sealed components.

The types of the reachable objects in a memory state σ induce a (unique) implicit com-
ponent decomposition of σ: (i) a single implicit current component, denoted by c�(σ),
containing all the reachable objects in σ that belong to σ’s current module and (ii) a set
of implicit sealed components, denoted by C(σ), containing (disjoint subsets of) all the
other reachable objects. Two objects reside within the same implicit sealed component
if they belong to the same module ms �= m(σ) and are connected in σ’s heap via an
undirected heap path which only goes through objects that belong to module ms.

The component decomposition of a memory state σ induces an implicit component
(directed) graph. The nodes of the graph are the implicit components of σ. The graph
has an edge from c1 to c2 if there is a rim object in c1 which is an entry location in c2,
i.e., if there is a reference from an object in c1 to an object in c2. For simplicity, we
assume that the graph is connected, and treat local variables in a way that ensures that.

Example 3. Component c�, cP , and cR are the implicit components of σc, i.e., c� =
c�(σc) and {cP , cR} = C(σc). Double-line arrows depict the edges of the component
graph. This graph is connected because c�’s rim contains the resource pointed-to by y.

From now on, whenever we refer to a component of a memory state σ, we mean an
implicit component of σ, and use the term implicit component only for emphasis. (For
formal definitions of components and of component graphs, see [9].)

Dynamically encapsulated memory state. We define the constraints imposed on mem-
ory states by the dynamic encapsulation model by placing certain restrictions on the
allowed implicit components and induced implicit component graphs.

Definition 1 (Dynamic encapsulation). A DOS memory state σ ∈ Σ is said to be
dynamically encapsulated, if (i) the implicit component graph of σ is a directed tree
and (ii) every (implicit) sealed component in σ has exactly one entry location.

228 N. Rinetzky et al.

We refer to the parent (resp. child) of a component c in the component tree as the
owner of c (resp. a subcomponent of c). We refer to the single entry location of a sealed
component c in a dynamically encapsulated memory state σ as c’s header, and denote
it by hdr (c). We denote the module of a component c by m(c).

Invariant 1. The following properties hold in every dynamically encapsulated DOS
memory state σ ∈ Σ and its implicit decomposition: (i) A local variable can only
point to a location inside c�(σ), the current component of σ, or to the header of one of
c�(σ)’s subcomponents. (ii) For every component, every rim object is the header of a
sealed component of σ. (iii) A field of an object in a component of σ can only point to
an object inside c, or to the header of one of c’s subcomponents. (iv) All the objects in a
sealed component are reachable from the component’s header. (v) A header dominates
its reachable heap.4 (vi) Every reachable object is inside exactly one component. (vii) If
c1 ∈ C(σ) owns c2 ∈ C(σ) then m(c1) depends on m(c2).

DOS preserves dynamic encapsulation. Thus, from now on, whenever we refer to a
DOS memory state, we mean a dynamically encapsulated DOS memory state. As a
consequence of our simplifying assumptions and the acyclicity of the module depen-
dency relation, the following holds for every DOS memory state σ: (i) The internal
objects of c�(σ) are exactly those that the current procedure can manipulate without
an (indirect) intermodule procedure call. (ii) The rim of c�(σ) contains all the objects
which the current procedure can pass as parameters to an intermodule procedure call.

3.2 Operational Semantics

Intraprocedural Statements. Intraprocedural statements are handled as usual in a two-
level store semantics for pointer programs (see, e.g., [10]). The only unique aspect of
DOS , formalized in [9], is that it aborts if an inaccessible-valued pointer is accessed.

Interprocedural Statements. DOS is a local-heap semantics [11]: when a procedure
is invoked, it starts executing on an input heap containing only the set of available
objects for the invocation. An object is available for an invocation if it is a parameter
object, i.e., pointed-to by an actual parameter, or if it is reachable from one. We refer to
a component whose header is a parameter object as a parameter component.

A local-heap semantics and its abstractions benefit from not having to represent un-
available objects. However, in general, the semantics needs to take special care of avail-
able objects that are pointed-to by an access path which bypasses the parameters (cut-
points [11]). In this paper, we do not wish to handle the problem of analyzing programs
with an unbounded number of cutpoints [11], which we consider a separate research
problem. Thus, for simplicity, we require that intramodule procedure calls should be
cutpoint-free [5], i.e., the parameter objects should dominate4 the available objects for
the invocation. (In general, we can handle a bounded number of cutpoints.5)

5 We can treat a bounded number of cutpoints as additional parameters: Every procedure is mod-
ified to have k additional (hidden) formal parameters (where k is the bound on the number of
allowed cutpoints). When a procedure is invoked, the (modified) semantics binds the additional
parameters with references to the cutpoints. This is the essence of [6]’s treatment of cutpoints.

Modular Shape Analysis for Dynamically Encapsulated Programs 229

〈Cally=p(x1,...,xk), σc〉
D� σe mc =m(p) ⇒ CPF Dρc,hc

(dom(ρc), Fp)
σe = 〈ρe, Lc, hc|Lrel

, tc|Lrel
, m(p)〉 mc �=m(p) ⇒ DIF ∀1≤ i<j ≤ k : ρc(xi) �= ρc(xj)

ρe = [zi �→ ρc(xi) | 1≤ i≤k] LOC ∀1≤i≤k : ρc(xi) ∈ Loc
where: Lrel = Rhc

({ρc(xi) ∈ Loc | 1≤ i≤k})

〈Rety=p(x1,...,xk), σc, σx〉
D� σr mc �=m(p) ⇒ OWN ∀z ∈ F nt

p : ρx(z) ∈ Loc
σr = 〈ρr, Lx, hr, tr, mc〉 DOM ∀z ∈ F nt

p : D
ρ

�
x ,hx

(F nt

p , {z})

ρr = (block ◦ ρc)[y �→ρx(ret)]
hr = (block ◦ hc|Lc\Lrel

) ∪ hx

tr = tc|Lc\Lrel
∪ tx

where: Lrel = Rhc
({ρc(xi) ∈ Loc | 1≤ i≤k})

ρ�

x = ρx[z �→ � | mc �=m(p), z ∈ F t
p]

block = λv ∈ Val .
{

ρ�

x (zi) v = ρc(xi), 1 ≤ i ≤ k

v otherwise

Fig. 4. Call an Ret operations for an arbitrary procedure call y = p(x1, . . . , xk) assuming
p’s formal variables are z1, . . . , zk. σc = 〈ρc, Lc, hc, tc, mc〉. σx = 〈ρx, Lx, hx, tx, mx〉.
F nt

p = {ret} ∪ (Fp \ F t
p). Variable ret is used to communicate the return value. We use the

following functions and relations, formally defined in [9]: Rh(L) computes the locations which
are reachable in heap h from the set of locations L. The auxiliary relation Dρ,h(VI , VD) holds if
the set of objects pointed-to by a variable in VD, according to environment ρ, dominates the part
of heap h reachable from them, with respect to the objects pointed-to by the variables in VI .

Fig. 4 defines the meaning of the Call and Ret operations pertaining to an arbitrary
procedure call y = p(x1, . . . , xk).

Procedure calls. The Call operation computes the callee’s entry memory state (σe).
First, it checks whether the call satisfies our simplifying assumptions. In case of an in-
tramodule procedure invocation, the caller’s memory state (σc) is required to satisfy
the domination condition (CPF) ensuring cutpoint-freedom. Intermodule procedure calls
are invoked under even stricter conditions which are fundamental to our approach: Ev-
ery parameter object must dominate the subheap reachable from it. This ensures that
distinct components are unshared. However, there is no need to check these conditions
as they are invariants in our semantics: Inv. 1(i,iv,v) ensures that every parameter ob-
ject to an intermodule procedure call is a header which dominates its reachable heap.
(Note that Inv. 1(iv) can be exploited to check whether an object is a dominator by only
inspecting access paths traversing through its component.) Thus, only our simplifying
assumptions pertaining to non-nullness (LOC) and non-aliasing of parameters (DIF) need
to be checked.

The entry memory state is computed by binding the values of the formal parameters
in the callee’s environment to the values of the corresponding actual parameters; pro-
jecting the caller’s heap and type map on the available objects for the invocation; and
setting the module of the entry memory state to be the module of the invoked procedure.

Note that in intermodule procedure calls, the change of the current module implicitly
changes the component tree: all the available objects for the invocation which belong to
the callee’s module constitute the callee’s current component. By Inv. 1 (vi,vii), these
objects must come from parameter components.

230 N. Rinetzky et al.

Example 4. Fig. 3 (σe) shows the entry memory state resulting from applying the Call
operation pertaining to the procedure callx.release(y) on the call memory state σc,
also shown in Fig.3.All theobjects inσe belong tomRP , and thus, to itscurrentcomponent.
Note that the latter is, essentially, a fusion of cP and cR, the sealed components in σc.

Note: The current component of a DOS memory state σ ∈ Σ is the root of the compo-
nent tree induced by the local heap represented in σ. In a global heap, this current com-
ponent might have been one or more non-root subcomponents of a larger component-tree
which is only partially visible to the current procedure. For example, the current com-
ponent of the client procedure is not visible during the execution of release.

Procedure returns. The caller’s return memory state (σr) is computed by a Ret oper-
ation. When an intermodule procedure invocation returns, Ret first checks that in the
exit memory state (σx) every non-transferred formal parameter points to an object (OWN)
which dominates its reachable subheap (DOM). This ensures that returned components
are disjoint and, in particular, that the procedure’s execution respected its ownership
transfer specification. (Here we exploit simplifying assumption (b) of Sec. 2.)

Ret updates the caller’s memory state (which reflects the program’s state at the time
of the call) by carving out the input heap passed to the callee from the caller’s heap
and replacing it instead with the callee’s (possibly) mutated heap. In DOS , an ob-
ject never changes its location and locations are never reallocated. Thus, any pointer
to an available object in the caller’s memory state (either by a field of an unavail-
able object or a variable) points after the replacement to an up-to-date version of the
object.

Most importantly, the semantics ensures that any future attempt by the caller to ac-
cess a transferred component is foiled: We say that a local variable of the caller is dan-
gling if, at the time of the invocation, it points to (the header of) a component transferred
to the callee. A pointer field of an object in the caller’s memory state which was un-
available for the invocation is considered to be dangling under the same condition. The
semantics enforces the transfer of ownership by blocking: assigning the special value �
to every dangling reference in the caller’s memory state. (Blocking also occurs when
an intramodule procedure invocation returns to propagate ownership transfers done by
the callee.) Note that cutpoint-freedom ensures that the only object that separate the
callee’s heap from the caller’s heap are parameter objects. Thus, in particular, the only
references that might be blocked point to parameter objects.

When an intermodule call returns, and the current module changes, the component
tree is changed too: The callee’s current component may be split into different compo-
nents whose headers are the parameter objects pointed-to by non-transferred parame-
ters. These components may be different from the (input) parameter components.

Example 5. Fig. 3 (σr) depicts the memory state resulting from applying the Ret oper-
ation pertaining to the procedure call x.release(y) on the memory state σc and σx,
also shown in Fig. 3. The insertion of the resource pointed-to by y at the call-site into
the pool has (implicitly) fused the two mRP-components. By the standard semantics,
y should point to the first resource in the list (as indicated by the dashed arrow). This
would violate dynamic encapsulation. DOS , however, utilizes the ownership specifica-
tion to block y thus preserving dynamic encapsulation.

Modular Shape Analysis for Dynamically Encapsulated Programs 231

3.3 Observational Soundness

We say that two values are comparable in DOS if neither one is �. We say that a
DOS memory state σ is observationally sound with respect to a standard semantics σG

if every pair of access paths that have comparable values in σ, has equal values in σ
iff they have equal values in σG. DOS simulates the standard 2-level store semantics:
Executing the same sequence of statements in the DOS semantics and in the standard
semantics either results in a DOS memory states which is observationally sound with
respect to the resulting standard memory state, or the DOS execution gets stuck due
to a constraint breach (detected by DOS). A program is dynamically encapsulated if it
does not have have an execution trace which gets stuck. (Note that the initial state of an
execution in DOS is observationally sound with respect to its standard counterpart).

Our goal is to detect structural invariants that are true according to the standard
semantics. DOS acts like the standard semantics as long as the program’s execution
satisfies certain constraints. DOS enforces these restrictions by blocking references
that a program should not access. Similarly, our analysis reports an invariant concerning
equality of access paths only when these access paths have comparable values.

An invariant concerning equality of access paths in DOS for a dynamically en-
capsulated program is also an invariant in the standard semantics. This makes abstract
interpretation algorithms of DOS suitable for verifying data structure invariants, for de-
tecting memory error violations, and for performing compile-time garbage collection.

4 Modular Analysis

This section presents a conservative static analysis which identifies conservative module
invariants. These invariants are true in any program according to the DOS semantics
and in any dynamically encapsulated programs according to the standard semantics.

The analysis is derived by two (successive) abstractions of the DOS semantics: The
trimming semantics provides the basis of our modular analysis by representing only
components of the analyzed module. The abstract trimming semantics allows for an ef-
fective analysis by providing a bounded abstraction of trimmed memory states (utilizing
existing intraprocedural abstractions).

Module Invariants. A module invariant of a module m is a property that holds for all
the components that belong to m when they are not being used (i.e., for sealed compo-
nents). Our analysis finds module invariants by computing a conservative description
of the set of all possible sealed components of the module. More formally, the module
invariant of module m for type T , denoted by [[Invm T]] ⊆ 2C, is a set of sealed com-
ponents of module m whose header is of type T : a sealed component c is in [[Invm T]]
iff there exists a reachable DOS memory state σ in some program such that c ∈ C(σ).

For example, the module invariant of module mRP for type RPoll in our running
example is the set containing all resource pools with a (possibly empty) acyclic finite
list of resources. The module invariant of module mRP for type R is the singleton set
containing a single resource with a nullified n-field: An acquired resource always has a
null-valued n-field and a released resource is inaccessible.

232 N. Rinetzky et al.

Trimming semantics. The trimming semantics represents only the parts of the heap
which belong to the current module. In particular, it abstracts away all information
contained in sealed components and the shape of the component tree.

More formally, the domain of trimmed states is Σ� = E × C. The trimmed state in-
duced by a DOS memory state σ ∈ Σ, denoted by trim(σ), is 〈ρ, c�(σ)〉. (For exam-
ple, Fig. 3 (σ�) depicts the trimmed memory state induced by the DOS memory state
shown in Fig. 3 (σc).) We say that two trimmed memory states are isomorphic, denoted
by σ�

1∼σ�
2 , if σ�

1 can be obtained from σ�
2 by a consistent location renaming. A trimmed

memory state σ� abstracts a DOS memory state σ if σ�∼ trim(σ).
A trimmed memory state contains enough information to determine the induced ef-

fect [14] under the trimming abstraction of intraprocedural statements and intramodule
Call and Ret operations by applying the statement to any memory state it represents.
Intuitively, the reason for this uniform behavior is that the aforementioned statements
are indifferent to the contents of sealed components: They only consider the values of
fields of objects inside the current component (inter-component references included).

Analyzing intermodule procedure calls. The main challenge lies in the handling of inter-
module procedure calls: Applying the induced effect of Call is challenging because the
most important information required to determine the input heap of an intermodule call
is the contents of parameter components. However, this is exactly the information lost
under the trimming abstraction of the call memory state. Applying the induced effect of
Ret operations pertaining to intermodule procedure calls is challenging as it considers
information about the contents of heap parts manipulated by different modules.

We overcome the challenge pertaining to Call operations by utilizing the fact that
DOS always changes components as a whole, i.e., there is no sharing between compo-
nents, thus changes to one component cannot affect a part of the internal structure of
another component. In particular, we are anticipating the possible entry memory states
of an intermodule procedure call: In the DOS semantics, the current component of
an entry memory state to an intermodule procedure call is comprised, essentially, as a
necessarily disjoint union of parameter components. Note that components are sealed
only when an intermodule procedure call returns. Furthermore, the only way a sealed
component can be mutated is to pass it back as a parameter to a procedure of its own
module. Thus, a partial view of the execution trace, which considers only the executions
of procedures that belong to the analyzed module, and collects the sealed components
generated when an intermodule procedure invocation returns, can (conservatively) an-
ticipate the possible input states for the next intermodule invocations. Specifically, only
a combination of already generated sealed components of the module can be the com-
ponent parameters in an intermodule procedure invocation.

We resolve Ret’s need to consider components belonging to different modules utiliz-
ing the ownership transfer specification and the limited effect of intermodule procedure
invocations on the caller’s current component: The only effect an intermodule proce-
dure call has on the current component of the caller is that (i) dangling references are
blocked and (ii) the return value is assigned to a local variable. (By our simplifying
assumptions, the return value must point either to a parameter object or to a component
not previously owned by the caller. The latter case amounts to a new object in the rim of
the caller’s current component). Given a sound ownership specification for the invoked

Modular Shape Analysis for Dynamically Encapsulated Programs 233

procedures we can apply this effect directly to the caller’s memory state. This approach
can be generalized (and made more precise) to handle richer specifications concerning,
e.g., nullness of parameters, aliasing of parameters (and return values), and digests.

Abstract trimming semantics. We provide an effective conservative abstract inter-
pretation [14] algorithm which determines module invariants by devising a bounded
abstraction of trimmed memory states. Rather than providing a new intraprocedural ab-
straction and analyses, we show how to lift existing intraprocedural shape analyses to
obtain a modular shape abstraction. An abstraction of a trimmed memory state, being
comprised of an environment of a single procedure and a subheap, is very similar to
an abstraction of a standard two-level store. The additional elements that the abstrac-
tion needs to track is a bounded number of entry-locations and a distinction between
internal objects and rim objects. In addition, the abstract domain, expected to support
operations pertaining to basic pointer manipulating statements, should be extended to
allow for: checking if a �-valued reference is accessed; the operations required for
cutpoint-free local-heap analysis: carving out subheaps reachable from variables and
combining disjoint subheaps; and the ability to answer queries regarding domination
by variables. The only additional operation required to implement our analysis is of
blocking, i.e., setting the values of all reference pointing to a given variable-pointed
object to �. The abstract domains of [2, 3, 4], which already support the operations re-
quired for performing standard local-heap cutpoint-free analysis, can be extended with
these operations.

Modular analysis. We conduct our modular static analysis by performing an interpro-
cedural analysis of a module together with its most-general-client. The most-general-
client simulates the behavior of an arbitrary dynamically encapsulated (well behaved)
client. Essentially, it is a collection of non-deterministic procedures that execute ar-
bitrary sequences of procedure calls to the analyzed module. The parameters passed
to these calls also result from an arbitrary (possibly recursive) sequence of procedure
calls. The most-general client exploits the fact that different components are effectively
disjoint to separately create the value of every parameter passed to an intermodule pro-
cedure call. Thus, any conservative interprocedural analysis of the most-general client
(which uses an extended abstract domain, as discussed above, and utilizes ownership
specification to determine the effect of intermodule procedure calls made by the ana-
lyzed module) can modularly detect module invariants. In particular, the analysis can be
performed by extending existing interprocedural frameworks for interprocedural shape
analysis, e.g., [5, 6]. Note that during the analysis process we also find conservative
module implementation invariants: Properties that hold for all possible current compo-
nents at different program points inside the component in every possible execution. [9]
provides a scheme for constructing the most-general-client of a module. ([9] also pro-
vides a characterization of the module invariants based on a fixpoint equation system).

5 Related Work

A distinguishing aspect of our work is that we integrate a shape analysis with encapsula-
tion constraints. Our work presents a nice interplay between encapsulation and modular
shape analysis: it uses dynamic encapsulation to enable modular shape analysis, and

234 N. Rinetzky et al.

uses shape analysis to determine that the program is dynamically encapsulated. In this
section, we review some closely related work to both aspects of our approach. More
discussion on related work can be found in [9].

Modular static analysis. [1] describes the fundamental techniques for modular static
program analysis. These techniques allow to compose separate analyses of different
program parts. We use their techniques, in particular, we use simple user provided
interfaces to communicate the (limited) effect of mutations done by different modules.

Modular heap analysis. [15] presents a modular analysis which infers class invariants
based on an abstraction of program traces. [16] is an extension which handles subtyping.
The determined invariants concern values of atomic fields of objects of the analyzed
class and of subobjects, provided that they are never leaked to the context, e.g., passed
as return values. [17] modularly determines invariants regarding the value of an integer
field and the length of an array field of the same object. Our analysis, computes shape
invariants of subheaps comprised of objects that may be passed as parameters.

Interprocedural shape analysis. [18,19] utilize user-specified pre- and post- conditions
to achieve modular shape analysis which can handle a bounded number of flat set-like
data structures. It allows objects to be placed in multiple sets. In our approach, an ob-
ject can be placed only in a single separately-analyzed but arbitrarily-nested set. Other
interprocedural shape analysis algorithms e.g., [5, 6, 11, 20, 21, 22], compute procedure
summaries, but are not modular. [22] tracks properties of single objects. The other al-
gorithms abstract whole local heaps. Our abstraction, on the other hand, represent only
a part of the local heap (i.e., only the current component). We note that the aforemen-
tioned approaches do not require a user specification, which we require.

Encapsulation. Deep ownership models structure the heap into a tree of so-called owner
contexts (see [23] for a survey). Our module-induced decomposition of a memory state
into a tree of components is similar to the package-induced partitioning of a mem-
ory state into a tree of memory-regions in [24]. Our constraints are similar to external
uniqueness [25], which requires that there be a unique reference pointing to an object
from outside its (transitively) owned context. Our ownership specification is also in
the spirit of [25]’s destructive reads and borrowing. [26] uses shape analysis to mod-
ularly verify (specified) uniqueness of a live reference to an object. Our use of sealed
and unsealed components is close to the use of packed and unpacked owner contexts
in Boogie [27, 28]. The latter, however, can handle reentrancy. The central difference
between the approaches is that our techniques infer module invariants whereas Boogie
verifies class invariants provided by the programmer.

Local reasoning. [29] and [30] allow to modularly conduct local reasoning [10] about
abstract data structures and abstract data types with inheritance, respectively. The rea-
soning requires user-specified resource invariants and loop invariants. Our analysis au-
tomatically infers these invariants based on an ownership transfer specification (and an
instance of the bounded parametric abstraction). [30], however, allows for more shar-
ing than in our model. Our use of rim-objects (resp. abstract sealed components) is
analogous to [30]’s use of abstract predicates’ names (resp. resource invariants).

Modular Shape Analysis for Dynamically Encapsulated Programs 235

6 Conclusion

Our long term research goal is to devise precise and efficient static shape analysis algo-
rithms which are applicable to realistic programs. We see this work as an important step
towards a modular shape analysis. While the ownership model is fairly restrictive with
respect to the coupling between separate components, it is very permissive about what
can happen inside a single component. This model is also sufficient to express several,
natural, usage constraints that arise in practice. (In particular, when accompanied with
digests.) We believe that our restrictions can be relaxed to help address a larger class of
programs. We plan to pursue this line of research in future work.

Acknowledgments. We are grateful for the helpful comments of T. Lev-Ami,
R. Manevich, S. Rajamani, J. Reineke, G. Yorsh, and the anonymous referees.

References

1. Cousot, P., Cousot, R.: Modular static program analysis, invited paper. In: CC. (2002)
2. Lev-Ami, T., Immerman, N., Sagiv, M.: Abstraction for shape analysis with fast and precise

transformers. In: CAV. (2006)
3. Manevich, R., Yahav, E., Ramalingam, G., Sagiv, M.: Predicate abstraction and canonical

abstraction for singly-linked lists. In: VMCAI. (2005)
4. Distefano, D., O’Hearn, P.W., Yang, H.: A local shape analysis based on separation logic.

In: TACAS. (2006)
5. Rinetzky, N., Sagiv, M., Yahav, E.: Interprocedural shape analysis for cutpoint-free programs.

In: SAS. (2005)
6. Gotsman, A., Berdine, J., Cook., B.: Interprocedural shape analysis with separated heap

abstractions. In: SAS. (2006)
7. Rinetzky, N., Ramalingam, G., Sagiv, M., Yahav, E.: Componentized heap abstractions.

Tech. Rep. 164, Tel Aviv University (2006)
8. Strom, R.E., Yemini, S.: Typestate: A programming language concept for enhancing software

reliability. IEEE Trans. Software Eng. 12(1) (1986) 157–171
9. Rinetzky, N., Poetzsch-Heffter, A., Ramalingam, G., Sagiv, M., Yahav, E.: Modular shape

analysis for dynamically encapsulated programs. Tech. Rep. 107, Tel Aviv University (2006)
10. Reynolds, J.: Separation logic: a logic for shared mutable data structures. In: LICS. (2002)
11. Rinetzky, N., Bauer, J., Reps, T., Sagiv, M., Wilhelm, R.: A semantics for procedure local

heaps and its abstractions. In: POPL. (2005)
12. Plotkin, G.D.: A Structural Approach to Operational Semantics. Technical Report DAIMI

FN-19, University of Aarhus (1981)
13. Knoop, J., Steffen, B.: The interprocedural coincidence theorem. In: CC. (1992)
14. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static analysis of

programs by construction of approximation of fixed points. In: POPL. (1977)
15. Logozzo, F.: Class-level modular analysis for object oriented languages. In: SAS. (2003)
16. Logozzo, F.: Automatic inference of class invariants. In: VMCAI. (2004)
17. Aggarwal, A., Randall, K.: Related field analysis. In: PLDI. (2001)
18. Lam, P., Kuncak, V., Rinard, M.: Hob: A tool for verifying data structure consistency. In:

CC (tool demo). (2005)
19. Wies, T., Kuncak, V., Lam, P., Podelski, A., Rinard, M.: Field constraint analysis. In: VM-

CAI. (2006)

236 N. Rinetzky et al.

20. Jeannet, B., Loginov, A., Reps, T., Sagiv, M.: A relational approach to interprocedural shape
analysis. In: SAS. (2004)

21. Chong, S., Rugina, R.: Static analysis of accessed regions in recursive data structures. In:
SAS. (2003)

22. Hackett, B., Rugina, R.: Region-based shape analysis with tracked locations. In: POPL.
(2005)

23. Noble, J., Biddle, R., Tempero, E., Potanin, A., Clarke, D.: Towards a model of encapsula-
tion. In: IWACO. (2003)

24. Zhao, T., Noble, J., Vitek, J.: Scoped types for real-time java. In: RTSS. (2004)
25. Clarke, D., Wrigstad, T.: External uniqueness is unique enough. In: ECOOP. (2003)
26. Boyland, J.: Alias burying: unique variables without destructive reads. Softw. Pract. Exper.

31(6) (2001) 533–553
27. Barnett, M., DeLine, R., Fähndrich, M., Leino, K.R.M., Schulte, W.: Verification of object-

oriented programs with invariants. Journal of Object Technology 3(6) (2004) 27–56
28. Leino, K.R.M., Müller, P.: A verification methodology for model fields. In: ESOP. (2006)
29. O’Hearn, P., Yang, H., Reynolds, J.: Separation and information hiding. In: POPL. (2004)
30. Bierman, G., Parkinson, M.: Separation logic and abstractions. In: POPL. (2005)

Static Analysis by Policy Iteration on Relational

Domains

Stephane Gaubert1, Eric Goubault2, Ankur Taly3, and Sarah Zennou2

1 INRIA Rocquencourt
stephane.gaubert@inria.fr

2 CEA-LIST, MeASI
{eric.goubault,sarah.zennou}@cea.fr

3 IIT Bombay
ankurtaly@iitb.ac.in

Abstract. We give a new practical algorithm to compute, in finite time,
a fixpoint (and often the least fixpoint) of a system of equations in the
abstract numerical domains of zones and templates used for static anal-
ysis of programs by abstract interpretation. This paper extends previous
work on the non-relational domain of intervals to relational domains. The
algorithm is based on policy iteration techniques– rather than Kleene it-
erations as used classically in static analysis– and generates from the
system of equations a finite set of simpler systems that we call policies.
This set of policies satisfies a selection property which ensures that the
minimal fixpoint of the original system of equations is the minimum of
the fixpoints of the policies. Computing a fixpoint of a policy is done by
linear programming. It is shown, through experiments made on a proto-
type analyzer, compared in particular to analyzers such as LPInv or the
Octagon Analyzer, to be in general more precise and faster than the usual
Kleene iteration combined with widening and narrowing techniques.

1 Introduction

One of the crucial steps of static analysis by abstract interpretation [CC76]
is the precise and efficient solving of the system of equations representing the
abstraction of the program properties we want to find out. This is generally done
by iteration solvers, based on Kleene’s theorem, improved using extrapolation
methods such as widening and narrowing operators [CC91]. These methods are
quite efficient in practice, but are not always very precise and are difficult to
tune as the quality and efficiency might depend a lot on the code under analysis.

In [CGG+05], some of the authors proposed a new method for solving these
abstract semantic equations, which is based on policy iteration. The idea of
policy iteration was introduced by Howard in the setting of Markov decision
processes (one player stochastic games), see [How60]. It reduces a fixpoint prob-
lem to a sequence of simpler fixpoints problems, which are obtained by fixing
policies (strategies of one player). This method was extended to a subclass of
(zero-sum) two player stochastic games by Hoffman and Karp [HK66]. However,

R. De Nicola (Ed.): ESOP 2007, LNCS 4421, pp. 237–252, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

238 S. Gaubert et al.

static analysis problems lead to more general fixed point equations, which may
be degenerate, as in the case of deterministic games [GG98]. The algorithm in-
troduced in [CGG+05] works in a general setting, it always terminates with a
fixpoint, the minimality of which can be guaranteed for the important subclass
of sup-norm nonexpansive maps, see theorem 3 and remark 5 of [CGG+05].
The experiments showed that in general, policy iteration on intervals was faster
and more precise than Kleene iteration plus (standard) widenings and narrow-
ings. In this paper, we extend the framework of [CGG+05] to deal with policy
iteration in relational domains, such as zones [Min01a], octagons [Min01b] and
TCMs (Template Constraint Matrices [SSM05b]). We describe a general finite
time algorithm that computes a fixpoint of functionals in such domains, and
often a least fixpoint. We did not treat polyhedral analyses [CH78], as general
polyhedra are in general not scalable.

There are two key novelties by comparison with [CGG+05]. The first one
is that the computation of closures (canonical representatives of a set of con-
straints), which was trivial in the case of intervals, must now be expressed in
terms of policies, in such a way that the selection property on which policy iter-
ation relies is satisfied. We solve this problem by means of linear programming
duality: we show in particular that every policy arising in a closure operation can
be identified to an extreme point of a polyhedron. Secondly, for each policy, we
have to solve a (simpler) set of equations, for which we use linear programming
[Chv83], and not Kleene iteration as in [CGG+05]. We have developped a proto-
type; first benchmarks show that we gain in efficiency and in general in precision
with respect to Kleene iteration solvers, in zones (comparison was made possi-
ble thanks to a prototype on the more refined domain of octagons of A. Miné
[Min05]), and in simple TCMs (using LPInv [SSM05a]). This is conjecturally
true for general TCMs too, a claim which is not yet substantiated by experi-
mental results as we have not yet implemented general TCMs in our analyzer.

The paper is organized as follows: In section 2, we recap some of the basics
of abstract interpretation and recall the main operations on the zone and TCMs
abstract domains. We then introduce our policy iteration technique for both do-
mains in section 3. Algorithmic and implementation issues are treated in section 4.
We end up in section 5 by showing that policy iteration exhibits very good results
in practice.

2 Basics

2.1 Abstract Interpretation by Static Analysis

Invariants, that can be obtained by abstract interpretation based static analy-
sis, provide sound overapproximations of the set of values that program variables
can take at each control point of the program. They are obtained by computing
the least fixpoint of a system of abstract equations derived from the program to
analyze. The correctness of the approximation is in general1 guaranteed by the
1 See [CC92] for more general frameworks.

Static Analysis by Policy Iteration on Relational Domains 239

theory of Galois Connections between the concrete domain (the set of variable
values of the program) and the abstract domain (more easily tractable represen-
tatives of possible sets of values that the program can take).

For a complete lattice (Le, �e), we write ⊥e for its lowest element, �e for
its greatest element, �e and �e for the meet and join operations, respectively.
We say that a self-map f of (Le, �e) is monotone if x �e y ⇒ f(x) �e f(y).
Existence of fixpoints is ensured by the Knaster-Tarski theorem which states
that every monotone self-map on a complete lattice has a fixpoint and indeed a
least fixpoint. The least fixpoint of a monotone self-map f on a complete lattice
will be denoted f−.

Let (Lc, �c) be the complete lattice representing the concrete domain and
(La, �a) the one representing the abstract domain. In most cases, the link be-
tween the two domains is expressed by a Galois connection [CC77], that is a pair
(α, γ) of maps with the following properties : α : Lc → La and γ : La → Lc are
both monotone, and α(vc) �a va iff vc �c γ(va). The map α is the abstraction
function, γ, the concretization function. These properties guarantee that α gives
the best upper approximation of a concrete property, in the abstract domain.

Figure 1 gives a C program (test2, left part) together with the semantic
equations (right part) for both zones and TCMs domain where Mi is the abstract
local invariant to be found at program line i. This would be our running example
throughout the paper.

The function context initialization creates an initial local invariant: typically
by initializing the known variables to the top element of the abstract lattice of
properties, or to some known value. The function Assignment(var ← val)(Mj)
is the (forward) abstract transformer which computes the new local invariant
after assignment of value val to variable var from local invariant Mi. Finally,
(·)∗ is the normalization, or closure, of an abstract value, see section 2.2.

0 i = 150;
1 j = 175;
2 while (j >= 100){
3 i++;
4 if (j<= i){
5 i = i - 1;
6 j = j - 2;
7 }
8 }
9

M0 = context initialization
M2 = (Assignment (i ← 150, j ← 175)(M0))

∗

M3 = ((M2 � M8) � (j ≥ 100))∗

M4 = (Assignment (i ← i + 1)(M3))
∗

M5 = (M4 � (j ≤ i))∗

M7 = (Assignment (i ← i − 1, j ← j − 2)(M5))
∗

M8 = ((M4 � (j > i))∗ � M7

M9 = ((M2 � M8) � (j < 100))∗

Fig. 1. A program (left part) and its representation by equations

Abstract versions fa of the concrete primitives fc such as assignment, con-
text initialization etc. are defined as fa(v) = α(fc(γ(v))), but in general we use
a computable approximation fa(v) such that α(fc(γ(v))) �a fa(v). In particular
invariants are preserved: if x is a (resp. the least) fixpoint of fa then γ(x) is a
(resp. the least) (post) fixpoint of fc.

240 S. Gaubert et al.

Kleene iteration. It is well-known since Kleene that the least fixpoint of a con-
tinuous function on a complete lattice is

⊔
n∈N

fn(⊥). This result gives an im-
mediate algorithm for computing the fixpoint : starting from the value x0 = ⊥,
the k-th iteration computes xk = xk−1 � f(xk−1). The algorithm finishes when
xk = xk−1. For (only) monotonic functions, one may need more general ordinal
iterations. In practice though, as these iterations might not stabilize in finite
time, it is customary to use acceleration techniques, such as widening and nar-
rowing operators [CC91] in place of the union in the equation above: for instance,
on intervals, we can use the following widening ∇ and narrowing Δ operators:

[a, b]∇[c, d] = [e, f] with e =
{

a if a ≤ c
−∞ otherwise and f =

{
b if d ≤ b
∞ otherwise,

[a, b]Δ[c, d] = [e, f] with e =
{

c if a = −∞
a otherwise and f =

{
d if b = ∞
b otherwise,

These ensure finite time convergence to a fixpoint, which is not necessarily
the least fixpoint: widening returns a post fixpoint while narrowing computes a
fixpoint from a post fixpoint. On intervals, and for our running example, figure 1,
if these widening and narrowing operators are applied after 10 iterations (as was
done in [CGG+05] for matter of comparisons), we get the following iteration
sequence, where we only indicate what happens at control points 3, 7, 8 and 9.
We write (ikl , jk

l) for the abstract values at line l and iteration k (describing the
concrete values of variables i and j). Widening takes place between iteration 9
and 10 and narrowing between 11 and 12.

(i13, j
1
3) = ([150, 150], [175, 175])

(i17, j
1
7) = ⊥

(i18, j
1
8) = ([151, 151], [175, 175])

(i19, j1
9) = ⊥

. . .
(i93, j

9
3) = ([150, 158], [175, 175])

(i97, j
9
7) = ⊥

(i98, j9
8) = ([151, 159], [175, 175])

(i99, j
9
9) = ⊥

(widening)
(i103 , j10

3) = ([150, +∞[, [175, 175])

(i107 , j10
7) = ([149, +∞[, [173, 173])

(i108 , j10
8) = ([151, +∞[, [173, 175])

(i109 , j10
9) = ⊥

(i113 , j11
3) = ([150, +∞[,] −∞, 175])

(i117 , j11
7) = ([150, +∞[,] −∞, 149])

(i118 , j11
8) = ([150, +∞[,] −∞, 175])

(i119 , j11
9) = ([150, +∞[,] −∞, 99])

(narrowing)
(i123 , j12

3) = ([150, +∞[, [100, 175])
(i127 , j12

7) = ([150, +∞[, [98, 149])
(i128 , j12

8) = ([150, +∞[, [98, 175])
(i129 , j12

9) = ([150, +∞[, [98, 99])

2.2 Two Existing Relational Abstract Domains

In this section we present some basics on the zone and TCM domains. In
particular the loss of precision due to widenings is discussed. For an exhau-
tive treatment see respectively the references [Min01a] and [SSM05b,SCSM06].
These domains enable one to express linear relations between variables, all sub-
polyhedral ([CH78]): in zones, linear relations involve only differences between

Static Analysis by Policy Iteration on Relational Domains 241

variables, whereas in TCM, they involve finitely many linear combinations of the
variables. Unlike in the case of polyhedral domains, these linear combinations
are given a priori.

In the sequel we consider a finite set V = {v1, . . . , vn} of real valued variables.
Let I = R∪{−∞, ∞} be the extension of the set R of real values with two special
values −∞ (will be used to model a linear relation without solution in R) and
∞ (linear relation will be satisfied by any value). The operators ≤, ≥, min, max
are extended as usual to deal with these values.

Zone Abstract Domain. To represent constraints like v ≤ c we extend V by
a virtual fresh variable v0 whose value is always zero so that v ≤ c becomes
equivalent to vi − v0 ≤ c. Let us denote V0 = V ∪ {v0}. A zone is then a vector
c = (c0,0, c0,1, c0,2, . . . cn,n) where ci,j ∈ I stands for the constraint vi − vj ≤ ci,j

for vi, vj ∈ V0. The concretization of c is the set of real values of variables in
V whose pairwise differences vi − vj are bounded by the coordinates ci,j of c.
Formally, γ(c) = {(x1, . . . , xn) ∈ R

n | xi − xj ≤ ci,j , −c0,i ≤ xi ≤ ci,0}.

TCM Abstract Domain. A Template Constraint Matrix T (TCM) is an ordered
set T = {e1, . . . , em} of linear relations ei(x) = ai,1x1 + . . . + ai,nxn where
(ai,1, . . . , ai,n) and x = (x1, . . . , xn) are real valued vectors of length n = |V |. In
practice this TCM T can be represented by a matrix M of dimension m×n and
such that its entry (i, j) is ai,j . Hence the ith line of this matrix is the vector
(ai,1, . . . , ai,n). For the sake of simplicy, we sometimes identify a TCM T with
its representation by matrix in the sequel where Ti will denote its ith row.

The TCM Abstract Domain consists of the set of all possible m-dimensional
vectors c = (c1, . . . , cm) with ci ∈ I. The concretization of an element c in the
domain is the set of real values x = (x1, . . . , xn) that satisfy ei(x) + ci ≥ 0 with
ci �= +∞ for all i. Thus, γ(c) = {(x1, . . . , xn) ∈ R

n | ei(x) + ci ≥ 0 ∧ ci �= +∞}.
In particular, γ(c) = ∅ if ci = −∞ for some i. Thus the TCM domain keeps track
of the bounds for a fixed set of pre-defined linear constraints. A linear assertion
(a conjunction of linear relations) of the form ei(x) + ci ≥ 0 will be denoted
e(x) + c ≥ 0 with e = (e1, . . . , em) and c = (c1, . . . , em).

A precise fixpoint detection in static analysis can be made by use of one TCM
per control point in the program to analyse. As it complicates the presentation
but does not change our theoretical results, we present operations in the case of
one TCM. In the case of several TCMs, operation results or operands have to
be expressed in the same TCM. This operation is called projection.

Linear Programming. The emptiness of the concretization can be checked using
Linear Programming (see [Chv83] for an systematic treatment).

Let e(x) + c ≥ 0 be a linear assertion. A linear programming (LP) problem
consists in minimizing a linear relation f(x), called the objective function, sub-
ject to the constraint of e(x) + c ≥ 0. The concretization emptiness problem
corresponds to the case where f(x) is the constant map 0. A LP problem may
have three answers: the problem is infeasible, or there is one optimal solution, or

242 S. Gaubert et al.

the problem is unbounded (f(x) can be decreased down to −∞). A linear pro-
gramming problem can be solved either by the simplex algorithm (whose theo-
retical complexity is exponential, but which is efficient in practice) or by modern
interior point methods, which are polynomial time and practically efficient.

Order and extrema. To get a lattice structure, the zone and TCM domains are
extended with a supremum � = (�, . . . , �) (whose concretization is I

n itself) and
an infimum ⊥ which is any vector with at least one coordinate whose value is −∞
(its concretization is empty). If γ(c) of a zone or TCM c is not empty, c is said to
be consistent otherwise it is inconsistent. The order � is the vector order: c1 � c2
iff c1(i) ≤ c2(i) for every i = 1, .., |c1| = |c2|. We have c1 � c2 =⇒ γ1(c1) ⊆ γ2(c2)
but the converse is not true. This problem is addressed by the closure operation.

Closure. Several zones or TCMs vectors may have the same concrete domain.
As a canonical representative, the closed one is chosen. The closure c∗ of a
consistent zone or TCM vector c is the �-minimal zone or TCM vector such
that γ(c∗) = γ(c).

Closure on zones. If c = (c0,1, . . . , cn,n) is a consistent zone then c∗ = (c∗0,0, . . .
c∗n,n) is such that c∗i,j = min1≤k≤n−1{cii1 +. . .+cik−1j |∀i1, . . . , ik−1 ∈{1, . . . , n}}.
A zone c is consistent iff every diagonal coordinate of c∗ is zero. It follows that the
consistency and closure problems reduce to an all pairs shortest path problem.

Closure on TCMs. Let c = (c1, . . . , cm) be a consistent vector on the TCM T
seen as a matrix of dimension m×n. Let us denote c|R the subvector of c in which
∞ coordinates are deleted. Let T|R be the corresponding submatrix of lines Ti

of T such that ci �= ∞. Closure c∗ of c is the vector (c∗1, . . . , c
∗
m) such that c∗i

is the solution of the LP problem “minimize c|Rλ subject to T|Rλ = Ti, λ ≥ 0”.
It has been shown in [SSM05b] that as c is consistent no LP problem may be
unbounded2. Hence as γ(c∗) = γ(c) �= ∅ we conclude all these m LP problems
have an optimal solution or an infeasible solution. An infeasible solution would
just mean that the bound c∗i for the constraint is ∞, in otherwords the constraint
is unbounded.

Meet and Join. The � operation is a pointwise maximum between the vector
coordinates: c1�c2 = (max{c1(1), c2(1)}, . . . , max{c1(k), c2(k)}). This operation
is the best approximation for the union in the TCM domain (lub) and preserves
closure. In the context of polyhedra this definition corresponds to the so called
weak join of polyhedra [SCSM06] as it does not involve addition of any new
constraints.

The � operation is a pointwise mimimum operation between the vector coor-
dinates: c1 � c2 = (min{c1(1), c2(1)}, . . . , min{c1(k)), c2(k)}). This operation is
exact but does not preserve closure.

2 If it were not the case, this would contradict γ(c) = γ(c∗) as we would have γ(c∗) = ∅
and γ(c) �= ∅ by hypothesis.

Static Analysis by Policy Iteration on Relational Domains 243

Widening on zones. c1�c2 = c with ci = c1(i) if c2(i) ≤ c1(i) otherwise ci = ∞.
An important remark about the widening is that its use forbids to close the
left operand otherwise termination is not guaranteed. The consequence when
computing a fixpoint with a Kleene iteration is as follows. After a widening,
closure is forbidden so that for a pair vi − vj whose bound becomes +∞, this
difference will remain unbounded until the end of the Kleene iteration. This
situation occurs on the left part of the computation table below, where the
triple (i39, j3

9 , i39 − j3
9) stands for the zone {150 ≤ x1 −x0 ≤ 158∧175 ≤ x2 −x0 ≤

175∧−25 ≤ x1 −x2 ≤ −17}∪{x−x ≤ 0}. At iteration [10] a widening iteration
is computed. It can be seen that the result on every constraint involving the
upper bound of i from control point [3] remains unbounded (this is a special
case where zones computing a widening gives a closed zone but it is not true in
general as shown in A. Mine’s thesis [Min04]). In the worst case, every pair is
concerned by the widening so that the constraint set becomes a set of intervals.
This drawback does not exist with the policy iteration as we do not use the
widening operator.

(i13, j
1
3 , i13 − j1

3) = ([150, 150], [175, 175],
[−25, 25])

(i17, j
1
7 , i17 − j1

7) = ⊥
(i18, j

1
8 , i18 − j1

8) = ([151, 151], [175, 175],
[−24, 24])

(i19, j
1
9 , i19 − j1

9) = ⊥
. . .

(i93, j
9
3 , i93 − j9

3) = ([150, 158], [175, 175],
[−25, −17])

(i97, j
9
7 , i97 − j9

7) = ⊥
(i98, j

9
8 , i98 − j9

8) = ([151, 159], [175, 175],
[−24, −16])

(i99, j
9
9 , i99 − j9

9) = ⊥
(widening)

(i103 , j10
3 , i103 − j10

3) = ([150, ∞], [175, 175],
[−∞, −25]

(i104 , j10
4 , i104 − j10

4) = ([149, ∞], [173, 173],
[−∞, −24]

. . .
c1
3 = (−150, 150, −175, 175,

−25, 25)
c1
7 = ⊥

c1
8 = (−151, 151, −175, 175,

−24, 24)
c1
9 = ⊥

. . .
c9
3 = (−150, 158, −175, 175,

−17, 25)
c9
7 = ⊥

c9
8 = (−151, 158, −175, 175,

−16, 24)
c9
9 = ⊥

(widening)
c10
3 = (−150, −175, 175, 25)

c10
4 = (−149, −173, 175, 24)

. . .

Widening on TCMs. It corresponds to the computation of a vector c′, |c′| ≤ |c1|
from c1’s coordinates such that γ(c′) ⊆ γ(c2). There are two cases to consider:
either c1 or c2 is inconsistent and c1�c2 is simply c1 �c2. Otherwise let us denote
bi to be the solution of the LP problem “minimize ei(x)+ c1(i) subject to e(x)+
c2 ≥ 0”. If bi is positive then c(i) = bi otherwise the linear expression ei is deleted
from T. Deleting a linear expression avoids the problem described on zones which
is that after a widening, closures are no more allowed in a Kleene iteration.
Nevertheless deleting a linear expression in a TCM impoverishes the expressiness
of the abstract domain. The major drawback of the widening operator when used
with Kleene iteration is not solved. For instance on the program of Figure 1,
Kleene iterations with TCM T = {x1, −x1, x2, −x2, x1 − x2, x2 − x1} (which

244 S. Gaubert et al.

models zones) are shown on the right part of the computation table above.
Results are identical to those in the case of zones, when widening occurs: from
iteration [10] on, the TCM reduces to T ′ = T \{−x1, x2 − x1} so that further
vectors have only four coordinates.

3 Policy Iteration for Relational Abstract Domains

The aim of policy iteration is to compute a fixpoint of some monotonic function
F which is a combination of “simpler” monotonic maps g, for which we can hope
for fast algorithms to compute their least fixpoints. For complete lattices such
as the interval domain [CGG+05], the maps g do not contain the intersection
operator. F is the intersection of a certain number of such g maps, and the goal
of policy iteration techniques is to ensure (and find) the simpler g which has
as least fixpoint, a fixpoint of F (not the least one in general). We will prove
that if we have a “selection property”, definition 1, then we can compute the
least fixpoint of F from the least fixpoints of the maps g, theorem 2. The policy
iteration algorithm will traverse in a clever manner the space of these g maps to
find efficiently a fixpoint of F .

To present policy iteration in a uniform manner for zone and TCM we use
notion of closed domains. A closed domain (L, ⊥, �, �, �, �) is such that L is
an abstract domain and L contains only closed elements of L. As closure is only
defined for consistent elements, we introduce the bottom element ⊥ representing
all inconsistent elements to equip L with a lattice structure. Top element is �.
The order � is ⊥�c�� for every c and for c1, c2 �= ⊥ c1�c2 iff c1 � c2. Opera-
tors are as follows:

x�y = z with z = ⊥ if x = ⊥ or y = ⊥ ; z = (x � y)∗ otherwise.
x�y = z with z = x if y = ⊥ ; z = y if x = ⊥ ; z = x � y otherwise.

Note that both zone and TCM closure closure satisfy that x∗ = x∗∗ � x and
they are monotonic.

3.1 Selection Property

Remember (see [CGG+05]), that in intervals, policies are of four types ll, rr, lr
and rl defined below. When I = [−a, b] and J = [−c, d], ll(I, J) = I (l is for
“left”), rr(I, J) = J (r for “right”), lr(I, J) = [−a, d] and rl(I, J) = [−c, b]. The
maps g are derived from F by replacing the operator ∩ (intersection) by any of
these four operators.

Thus, F ([a, b]) = ([1, 2] ∩ [a, b]) ∪ ([3, 4] ∩ [a, b]), where [a, b] is an interval of
real values, will have 16 policies as there are 4 options for each intersection; G
is composed of: llll([a, b]) = [1, 2] ∪ [3, 4], lrll([a, b]) = [1, b] ∪ [3, 4], rlll([a, b]) =
[2, b] ∪ [3, 4], rrll([a, b]) = [a, b] ∪ [3, 4], lllr([a, b]) = [1, 2] ∪ [3, b], lrlr([a, b]) =
[1, b] ∪ [3, b], rllr([a, b]) = [a, 2] ∪ [3, b], rrlr([a, b]) = [a, b] ∪ [3, b], llrl([a, b]) =
[1, 2] ∪ [a, 4], lrrl([a, b]) = [1, b] ∪ [a, 4], rlrl([a, b]) = [a, 2] ∪ [a, 4], rrrl([a, b]) =
[a, b] ∪ [a, 4] , llrr([a, b]) = [1, 2] ∪ [a, b], lrrr([a, b]) = [1, b] ∪ [a, b], rlrr([a, b]) =
[a, 2] ∪ [a, b], rrrr([a, b]) = [a, b] ∪ [a, b]

Static Analysis by Policy Iteration on Relational Domains 245

We then say that F satisfies the selection property since F is such that for all
intervals x F (x) = min{g(x) | g ∈ G}. We extend this definition to deal with
relational domains:

Definition 1. Let G denote a finite or infinite set of monotone self maps on
the complete lattice L, we say that a monotone self map F satisfies the selection
property if the two following properties are satisfied:

(1) F = F ∗ = (inf{g | g ∈ G})
(2) for all x ∈ L, there exists h ∈ G (a policy) such that F (x) = h(x).

In condition (1), F = F ∗ holds as g(x) are closed and we have property that
x∗ = x∗∗. Hence the least fixpoint of F is a least fixpoint of some policy:

Theorem 2. Let F be a monotone self map on a complete lattice L, satisfying
the selection property for a set of monotone self maps G. Then the least fixpoint
of F is reached by the least fixpoint of some policy:

F− = inf{(g−)∗ | g ∈ G}

Proof. To prove this theorem we need to show that

(1) F− � (g−)∗ for all g ∈ G
(2) F− is a fixed point of some policy

(1) Let g be a policy. By definition 1, we have F (x) � g∗(x) for all x. By
Tarski’s theorem, the least fixed point of a monotone self map h on L is given
by h− = inf{x ∈ L | h(x) � x}. Since F (x) � g∗(x), we can deduce that every
post fixed point of g∗(x) is also a post fixed point of F. Therefore by Tarski’s
theorem, we conclude that that

F− � (g∗)−

Since the * and g are monotonic, we have g∗((g−)∗) � g∗((g−)) = (g(g−))∗ =
(g−)∗. Therefore (g−)∗ is a post fixed point of g∗. So by Tarskis’s theorem we
have

(g∗)− � (g−)∗

From this relation and F− � (g∗)− we get F− � (g−)∗ Since this relation is
true for all g, we get the desired relation

F− � (inf{g− | g ∈ G})∗

(2) By the selection property there exists a policy h such that F− = F (F−) =
h(F−). So F− is a fixed point of h hence is greater than h− which implies
h− � F−. By definition of ∗, we have (h−)∗ � h− � F−. Therefore,

(inf{(g−) | g ∈ G})∗ � F−. ��

246 S. Gaubert et al.

This theorem proves that algorithm 1 computes a fixpoint of an application F
that satisfies the selection property. Starting from an initial policy provided by
a function initial policy this algorithm computes iteratively the least fixpoint x
of some policy gk (done at iteration k). If x is a fixpoint of F then algorithm
terminates otherwise a new policy gk+1 is selected for iteration k + 1 in such a
way that g∗k+1 = x (this is always possible as F has the selection property).

Algorithm 1. Policy iteration algorithm
k ← 1 ; g1 ← initial policy(G)
while true do

xk ← (g−
k)∗

if xk = F (xk) then
return xk

else
find g such that F (xk) = g∗(xk)
k ← k + 1 ; gk ← g

end if
end while

Algorithm 1 may not return the least fixpoint. However, for some classes
of monotone maps, including sup-norm non-expansive maps, an extension of
algorithm 1 does provide the least fixpoint, see theorem 3 and remark 5 in
[CGG+05]: when a fixpoint for F is detected at iteration n it is possible to scan
all the remaining policies g that belong to G\{g1, . . . , gn} and to compute their
least fixpoint and finally returning the least one between all of them.

The following theorem states that algorithm 1 is correct and computes a de-
creasing chain of post fixpoints of an application satisfying the selection porperty:

Theorem 3. Let F be a monotone self map on the complete lattice L satisfying
the selection property for a set of maps G. We have the two following properties:

(i) If algorithm 1 finishes then the returned value is a fixpoint of F
(ii) The sequence of least fixpoints of maps gk ∈ G generated by the algorithm 1

is a strictly decreasing chain, that is

(g−k+1)
∗ � (g−k)∗

Proof. Correctness of the algorithm (property (i)) is trivial as it terminates only
if the test xk = F (xk) is satisfied.

We prove the property (ii) by induction on the number n of iterations of the
algorithm that is the length of the sequence of successive gk. The basis case,
n = 0, is trivial. For the induction case, we suppose that the algorithm has been
iterated n times and that the sequence is such that (g−k+1)

∗ � (g−k)∗ for k < n.
If F ((g−n)∗) = (g−n)∗ then algorithm terminates and the property is true. Oth-

erwise the map gn+1 is such that

F ((g−n)∗) = gn+1((g−n)∗) (1)

Static Analysis by Policy Iteration on Relational Domains 247

Moreover, by condition (1) of F we get F ((g−n)∗) � gn((g−n)∗) so that
gn+1((g−n)∗) � gn((g−n)∗). Since ∗ is monotonic we have gn+1((g−n)∗) � gn((g−n)∗)
� gn((g−n)) = g−n . Therefore

gn+1((g−n)∗) � g−n (2)

Now as F = (infg∈G g)∗ we have F ∗ = (infg∈G g)∗∗ and since for all x
x∗ = x∗∗ we deduce F ∗ = F . So from (1) we get gn+1((g−n)∗) = (gn+1((g−n)∗))∗.

By monotonicity of ∗ and from (2) we have gn+1((g−n)∗) = (gn+1((g−n)∗))∗ �
(g−n)∗ that is (g−n)∗ is a post fixed point of gn+1. And as it not a fixed point of
gn+1, by Tarski’s theorem we conclude that

(g−n+1)
∗ � g−n+1 � (g−n)∗ ��

If G is finite and has n policies then algorithm 1 finishes within at most n
iterations:

Corollary 4. If the set G is finite then algorithm 1 returns a fixpoint of F and
the number of iterations of algorithm 1 is bounded by the height of {g−|g ∈ G}
which in turn is bounded by the cardinality of G.

3.2 Operations with Policy

We show that the meet and closure operations of any map can be expressed as
an infimum of simpler maps.

Meet policies. The meet c = c1 � c2 of two vectors (zones or TCM vectors) c1
and c2 of length k is obtained by taking the pointwise minimum between each
pair of coordinates. That is the ith coordinate of the result comes either from
the left or right operand coordinate.

We use this remark to build a family of meet policies in the following way:
Let L � {1, . . . , k} be a set of coordinates whose corresponding policy will be
denoted �L. The set L contains every index i for which we take the ith coordinate
of the left operand: if i ∈ L then c(i) = c1(i) otherwise c(i) = c2(i).

We have trivially c1 � c2 =
⋂

L⊆{1,..,k} c1 �L c2 that is � satisfies the selection
property for the set of �L policies.

Closure policies. Remember that the closure of a consistent zone or TCM c is
the minimal c∗ such that γ(c) � γ(c∗).

Closure policies for zones. For a consistent zone c let cp
ij = ci,i1 + ci2,i3 + . . . +

cik−1,ik
+ cik,j with cipip+1 a coordinate of c and p = i, i1, ..., ik, j and a sequence

of variable indices called a path from i to j.
By definition, c∗i,j is the minimal cp

ij amongst all pathes p from i to j. As
mentioned in Section 2.2 the minimal cp

ij can be obtained for a path length |p|
less than the number of variables. Hence c∗i,j =

⋂
p,|p|≤n cp

i,j which satisfies the
selection property.

248 S. Gaubert et al.

Example. Take the example of figure 1. Our policy analyzer finds (in one policy
iteration) the loop invariant at control point [9] left below, whereas a a typical
static analyzer using Kleene iteration finds a less precise invariant (right below,
using A. Mine’s octagon analyzer).

⎧
⎨
⎩

150 ≤ i ≤ 174
98 ≤ j ≤ 99

−76 ≤ j − i ≤ −51

⎧⎪⎪⎨
⎪⎪⎩

150 ≤ i
98 ≤ j ≤ 99
j − i ≤ −51
248 ≤ j + i

Consider now the program shown left below. The fixpoint found by our method
(after two unfoldings) is given right below. This is incomparable to the fixpoint
found in octogons (below), but its concretisation is smaller in width. This ex-
ample needs two policies to converge.

0 void main() {
1 i = 1; j = 10;
2 while (i <= j){
3 i = i + 2;
4 j = j - 1; }
5 }

Policy iteration:

5 ≤ i ≤ 10, 4 ≤ j ≤ 8, −3 ≤ j−i ≤ −1

Kleene on octagons:

6 ≤ i ≤ 12,
9
2

≤ j ≤ 10, −3 ≤ j−i ≤ −1

At [5] the initial policy chosen (see section 4.2) gives the invariant of the right
part below. The value of the functional on the invariant found using this initial
policy (and this is the only control point at which we have not reached the least
fixpoint) is on the left below:

{
5 ≤ i ≤ 11, 2 ≤ j ≤ 8

−3 ≤ j − i ≤ −1

{
5 ≤ i ≤ 10, 4 ≤ j ≤ 8

−3 ≤ j − i ≤ −1

It is easy to see that the entry describing the maximum of i has to be changed
to a length two closure, and the minimum of the entry describing the minimum
of j has to be changed to a length two closure, the rest of the equations being
unchanged.

Closure policies for TCM. Let c = (c1, . . . , cm) be a consistent TCM vector on T
seen as a matrix of dimension m×n. Closure c∗ of c is the vector (c∗1, . . . , c∗m) such
that c∗i is the solution of the LP problem “minimize c|Rλ subject to T|Rλ = Ti,
λ ≥ 0”. As we had mentioned before, this LP problem has an optimal solution
or an infeasible solution. An infeasible solution means that the constraint ei

is unbounded and so we set c∗i to ∞. Otherwise, it has been shown that the
optimal solution is reached at a vertex of the polyhedron T ∗

|R = Ti, λ ≥ 0 (no
of vertices or extreme points will be finite). Call this polyhedron Pi. Hence we
have c∗(i) = inf{x ∈ R | x is a vertex of Pi}. A policy map is then any map
that returns any vector whose ith coordinate is a vertex of polyhedron Pi so that
c∗ = inf{(λc | λ is a vertex of Pi}.

Static Analysis by Policy Iteration on Relational Domains 249

In this paper we only deal with two operations - meet and closure. However
in general we can deal with all transfer functions involved in Linear relation
analysis. The basic idea is to express the transfer function as a Linear mini-
mization problem and then take the policies corresponding to the vertices of the
polyhedron, as we did for the closure operation.

4 Algorithmic Issues

Algorithm 1 gives a general method to compute a fixpoint of some map F that
satifies the selection property (Definition 1). In this section we give a method
(based on linear programming rather than Kleene iteration as in [CGG+05])
to compute least fixpoints of the policies. We give also some heuristics for the
choice of intial policies on zone and TCM domain.

4.1 Least Fixpoint Computation, for a Given Policy

Each iteration k of algorithm 1 needs to compute the least fixpoint of a policy
gk, where every entry of gk is a finite supremum of affine maps. By Tarski’s
theorem, this least fixpoint is the minimal vector x such that gk(x) ≤ x. If this
least fixed point is finite, it can be found by solving a linear program: we minimize
the linear form

∑
1≤i≤p xi over the constraints gk(x) ≤ x, where x1, . . . , xp are

the variables composing the vector x. If the value of the latter linear program is
unbounded, some entries of the least fixpoint x of gk must be equal to −∞. Note
that the simplex method provides at least one of these entries, because, when
a linear program is unbounded, the simplex method returns a half-line included
in the feasible set, on which the objective function is still unbounded. Hence,
the least fixed point can be found by solving a sequence of linear programs.
The method we use takes into account the “block upper triangular form” of the
system gk(x) ≤ x to reduce the execution time. In fact, the size of “blocks” turns
out to be small, in practice, so the linear programs that we call only involve small
subsets of variables.

Each block Ci is solved in order. The result of the linear program correspond-
ing to any Ci would either be a finite solution, infeasible solution or an unbounded
solution. These are handled as follows:

(i) Finite solution: In this case we set the values of xj , for all j ∈ Ci to those at
the extreme point where the least solution was obtained. Next we propagate
these values in the other subblocks.

(ii) Infeasible solution: In this case we set each xj to +∞ for all j ∈ Ci. These
values are then propagated as the above.

(iii) Unbounded solution: This is a very rare case. Unboundedness means that
one or more variables xj(j ∈ Ci) are not bounded from below i.e. their
minimum value is -∞. In order to find a value for these variables, we solve
the linear program again with the same constraints but with the objective
function being just xj (this is done for all j ∈ Ci). If the corresponding
linear program returns unbounded, xj is set to -∞. As in the above cases
the value of each xj is then.

250 S. Gaubert et al.

4.2 Initial Policy for Zones and TCM

For meet policy, we do as for intervals in [CGG+05]: we choose the left coordinate
(respectively the right constraint) if the right coordinate (respectively the left
entry) does not bring any information on a constraint between variables, i.e. is
+∞. We also give priority to constant entries. In case of a tie, we choose first
the left coordinate. In the case of zone closure, we begin by paths of length one
that is the zone itself. Initial closure policy on TCM chooses any vertex. The
choice may sometimes depend on the LP programming method. For instance
with a simplex algorithm that enumerates vertices in an order that decreases
the objective function the first considered vertex may be taken as an initial
policy.

5 Experiments

A prototype has been developped for experiments. It takes C programs, con-
structs abstract semantic equations on the zone domain, solves them by the
policy iteration algorithm of this article, and outputs the local invariants in text
format. The front end is based on CIL [CIL], the equations are solve using the
GLPK library [GLP] through its OCAML binding [Mim].

In this section, we show some experiments on simple programs, which can
be found at http://www.di.ens.fr/~goubault/GOUBAULTpapers.html. These
programs are briefly described below. We write in the columns from left to
right, the number of lines, of variables, of while loops, the maximum depth
of nested loops. Then we give the number of “elementary operations”/policy
iteration that our analyzer used, the number of elementary operations/Kleene
iterations in the case of the octagon analyzer, and the number of elementary oper-
ations/Kleene iterations for LPInv. These elementary operations are estimated,
as follows: we indicate below columns “compl./#pols” (resp. compl./iter.oct.,
compl./iter. LPInv) the number of calls to the simplex solver: s/the average di-
mension: d (number of variables involved)/the average simplex iteration number:
k (resp. the number of closure operations: c/assignment operations: a, and the
same format as for our analyzer for the LPInv analyzer). These operations ac-
count for the main complexity in the three analyzers: the number of operations
is of the order sd2k for our analyzer and LPInv, and cn3 + an, where n is the
number of variables, for the octagon analyzer. We can see that the complexity is
far less for our analyzer. The octagon analyzer spends a lot of operations doing
closure operations, that we do not have to do. LPInv needs to solve the same
order or even more linear programming problems, but more complex (i.e. need-
ing more iterations to converge) and with a much higher dimensionality. Our
method needs very few policies to converge, hence has few linear programming
problems, which are very simple (very low dimensionality in particular) because
of the SCC algorithm of Section 4.1.

Static Analysis by Policy Iteration on Relational Domains 251

Program lines vars loops depth compl./#pols. compl./iters.oct. compl./iters.LPInv
test1 11 2 1 1 20/2 1132/7 14014/6

113/1.02/0.17 138/14 88/11.14/1.28
test1b 15 2 1 1 20/2 548/6 12952/6

113/1.02/0.17 130/14 78/11.6/1.23
test2 15 2 1 1 40/1 1268/12 31828/16

86/1.03/0.43 309/16 267/10.5/1.08
test3 14 2 1 1 34/1 1364/12 62348/16

96/1.03/0.33 333/16 282/14/1.12766
test4 13 2 2 2 68/3 906/4 50940/16

124/1.27/0.34 220/13 302/11.75/1.20
ex3 20 5 1 1 49/1 56250/8 22599614/16

212/1.56/0.09 225/13 1251/67.9/3.92
ex5 23 5 5 1 392/1 49370/23 33133177/20

659/1.49/0.27 394/24 3007/67.96/2.38

The results that our analyzer, A. Miné’s octagon analyzer and LPInv (which
uses octagons in our case) obtain are shown in the longer version of the paper
available at http://www.di.ens.fr/~goubault/GOUBAULTpapers.html. We
can see that although our analyzer is much faster, and computes in a less pre-
cise domain (zones) than octagons, it provides very similar invariants than both
analyzers. It is even far more precise for test2 and test3 as already explained
in section 2.2. It provides in general better results than LPInv. The Octagon an-
alyzer is better for programs of the style of test1 since in that case, constraints
on forms of the type i + j (in zones, but not in octagons) are useful for getting
invariants. Still, it suffices to unroll two times the main loop (test1b) to have
comparable or even better results, with our analyzer.

6 Conclusion

We have described in this paper a new algorithm to compute efficiently and
precisely, fixed points in relational abstract domains such as zones and TCMs,
thus applicable to a large variety of situations.

There are two directions in which we would like to go from here. The first
one is to extend this work to other domains, like the relational ones of [GP06],
or domains dealing with pointers and general aliasing properties. The second
direction of interest is the use of policy iteration algorithms to have better “in-
cremental” analyzes [CDEN06]. As a matter of fact, one can hope that given
a program P (identified with the abstract functionnal giving its semantics), a
policy π giving the least fixpoint of P , light perturbations P ′ of P will only
perturbate very little policy π. Hence π will be a very good initial policy guess
for the policy iteration algorithm run on P ′.

252 S. Gaubert et al.

References

[CC76] P. Cousot and R. Cousot, Static determination of dynamic properties of
programs, 2nd International Symposium on Programming, Paris, France,
1976.

[CC77] P. Cousot and R. Cousot, Abstract interpretation: A unified lattice model
for static analysis of programs by construction of approximations of fixed
points, Principles of Programming Languages 4 (1977), 238–252.

[CC91] P. Cousot and R. Cousot, Comparison of the Galois connection and widen-
ing/narrowing approaches to abstract interpretation. JTASPEFL ’91, Bor-
deaux, BIGRE 74 (1991), 107–110.

[CC92] P. Cousot and R. Cousot, Abstract interpretation frameworks, Journal of
Logic and Computation 2 (1992), no. 4, 511–547.

[CDEN06] C. Conway, D. Dams, S. A. Edwards, and K. Namjoshi, Incremental al-
gorithms for inter-procedural automaton-based program analysis, Computer
Aided Verification, Springer-Verlag, LNCS, 2006.

[CGG+05] A. Costan, S. Gaubert, E. Goubault, M. Martel, and S. Putot, A policy it-
eration algorithm for computing fixed points in static analysis of programs,
CAV, LNCS, vol. 3576, 2005, pp. 462–475.

[CH78] P. Cousot and N. Halbwachs, Automatic discovery of linear restraints
among variables of a program, Conference Record of the Fifth Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
1978, pp. 84–97.

[Chv83] V. Chvátal, Linear programming, Freeman and Co., 1983.

[CIL] CIL, Tech. report, Berkeley University, http://manju.cs.berkeley.edu/cil/.

[GG98] S. Gaubert and J. Gunawardena, The duality theorem for min-max func-
tions, C.R. Acad. Sci. 326 (1998), no. 1, 43–48.

[GLP] GLPK, Tech. report, Gnu, http://www.gnu.org/software/glpk/.

[GP06] E. Goubault and S. Putot, Static analysis of numerical algorithms, Static
Analysis Symposium, Springer-Verlag, LNCS, 2006.

[HK66] A. J. Hoffman and R. M. Karp, On nonterminating stochastic games, Man-
agement sciences 12 (1966), no. 5, 359–370.

[How60] R. Howard, Dynamic programming and markov processes, Wiley, 1960.

[Mim] S. Mimram, OcamlGLPK, Tech. report, Gnu, http://ocaml-glpk.
sourceforge.net/.

[Min01a] A. Miné, A new numerical abstract domain based on difference-bound ma-
trices, PADO II, LNCS, vol. 2053, 2001, pp. 155–172.

[Min01b] A. Miné, The octagon abstract domain, AST 2001 in WCRE 2001, IEEE,
2001, pp. 310–319.

[Min04] A. Miné, Weakly relational numerical abstract domains, Ph.D. thesis, Ecole
Nationale Supérieure, France, 2004.

[Min05] A. Miné, The octagon domain library, 2005.

[SCSM06] S. Sankaranarayanan, M. Colon, H. Sipma, and Z. Manna, Efficient strongly
relational polyhedral analysis, VMCAI, LNCS, 2006, to appear.

[SSM05a] H. Sipma S. Sankaranarayanan and Z. Manna, Lpinv: Linear programming
invariant generator, 2005.

[SSM05b] S. Sankaranarayanan, H. Sipma, and Z. Manna, Scalable analysis of linear
systems using mathematical programming, VMCAI, LNCS, vol. 3385, 2005.

http://ocaml-glpk.sourceforge.net/
http://ocaml-glpk.sourceforge.net/

Computing Procedure Summaries for

Interprocedural Analysis�

Sumit Gulwani1 and Ashish Tiwari2

1 Microsoft Research, Redmond, WA 98052
sumitg@microsoft.com

2 SRI International, Menlo Park, CA 94025
tiwari@csl.sri.com

Abstract. We describe a new technique for computing procedure sum-
maries for performing an interprocedural analysis on programs. Proce-
dure summaries are computed by performing a backward analysis of
procedures, but there are two key new features: (i) information is prop-
agated using “generic” assertions (rather than regular assertions that
are used in intraprocedural analysis); and (ii) unification is used to sim-
plify these generic assertions. We illustrate this general technique by
applying it to two abstractions: unary uninterpreted functions and lin-
ear arithmetic. In the first case, we get a PTIME algorithm for a special
case of the long-standing open problem of interprocedural global value
numbering (the special case being that we consider unary uninterpreted
functions instead of binary). This also requires developing efficient algo-
rithms for manipulating singleton context-free grammars, and builds on
an earlier work by Plandowski [13]. In linear arithmetic case, we get new
algorithms for precise interprocedural analysis of linear arithmetic pro-
grams with complexity matching that of the best known deterministic
algorithm [11].

1 Introduction

Precise interprocedural analysis (also referred to as full context-sensitive analysis)
is provably harder than intraprocedural analysis [14]. One way to do precise in-
terprocedural analysis is to do procedure-inlining followed by an intra-procedural
analysis. There are two potential problems with this approach. First, in presence
of recursive procedures, procedure-inlining may not be possible. Second, even if
there are no recursive procedures, procedure-inlining may result in an exponen-
tial blow-up of the program. For example, if procedure P1 calls procedure P2 two
times, which in turn calls procedure P3 two times, then procedure inlining will
result in 4 copies of procedure P3 inside procedure P1. In general, leaf procedures
can be replicated an exponential number of times.

A more standard way to do interprocedural analysis is by means of computing
procedure summaries [20]. Each procedure is analyzed once (or a few times in
� Second author supported in part by the National Science Foundation under grant

CCR-0326540.

R. De Nicola (Ed.): ESOP 2007, LNCS 4421, pp. 253–267, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

254 S. Gulwani and A. Tiwari

main(){
1 x := 0; y := 1; a := 2; b := 4;
2 P (); Assert(y = 2x + 1);
3 x := 0; y := 0; a := ?; b := 2a;
4 P (); Assert(y = 2x);
5 y := x + 3; a := ?; b := a;
6 P (); Assert(y = x + 3);
7 }

P (){
1 if (*) {
2 x := x + a;
3 y := y + b;
4 }
5 else P ()
6 }

Fig. 1. An example program

case of recursive procedures) to build its summary. A procedure summary can be
thought of as some succinct representation of the behavior of the procedure that
is also parametrized by any information about its input variables. However, there
is no automatic recipe to efficiently construct or even represent these procedure
summaries, and abstraction specific techniques are required.

The original formalism proposed by Sharir and Pnueli [20] for computing pro-
cedure summaries was limited to finite lattices of dataflow facts. Sagiv, Reps
and Horwitz generalized the Sharir-Pnueli framework to build procedure sum-
maries using context-free graph reachability [15], even for some kind of infinite
domains. They successfully applied their technique to detect linear constants
interprocedurally [17]. However, their generalized framework requires appropri-
ate distributive transfer functions as input - and such transfer functions are not
known for any natural abstract domain more powerful than linear constants.

In this paper (Section 3), we describe a general technique for constructing
precise procedure summaries. This technique can be effectively used for a useful
class of program abstractions (over infinite domains). We apply this technique
to obtain precise interprocedural analyses for two useful abstractions - unary
uninterpreted functions, and linear arithmetic (which is more powerful than
the domain of linear constants used by Sagiv, Reps and Horwitz). The former
(described in Section 4) gives a polynomial-time algorithm for a special case of
the long-standing open problem of interprocedural global value numbering, while
the latter (described in Section 5) yields a new algorithm for interprocedural
linear arithmetic analysis with the same complexity as that of the best known
deterministic algorithm [11].

Our procedure summaries are in the form of constraints (on the input vari-
ables of the procedure) that must be satisfied to guarantee that some appropriate
generic assertion (involving output variables of the procedure) holds at the end
of the procedure. A generic assertion is an assertion that involves some context
variables that can be instantiated by symbols (or more formally, by terms with
holes) of the underlying abstraction. For example, consider procedure P shown
in Figure 1 with input variables x, y, a, b and output variables x, y. αx+βy = γ is
a generic assertion in the theory of linear arithmetic involving variables x, y (and
context variables α, β, γ, which denote unknown constants). Using the technique
described in this paper, we compute the summary of procedure P as “αx+βy = γ

Computing Procedure Summaries for Interprocedural Analysis 255

(a) Assignment
Node

x := e

0

(d) Join Node

21

(c) Non-deterministic
Conditional Node

*True False

1 2

(b) Non-deterministic
Assignment Node

x := ?

0

(e) Procedure
Call Node

Call P0()

0

Fig. 2. Flowchart nodes in our abstracted program model

holds at the end of procedure P iff αa + βb = 0 ∧ αx + βy = γ holds at the
beginning of procedure P”. After computing such a procedure summary for P ,
we can use it to verify the assertions in the Main procedure. To verify the first
assertion y = 2x + 1, we first match it with the generic assertion αx + βy = γ
to obtain the substitution α �→ −2, β �→ 1 and γ �→ 1 for the context variables.
We then instantiate the procedure summary with this substitution to obtain the
precondition b − 2a = 0 ∧ y − 2x = 1. We then check that this precondition
is satisfied in procedure Main immediately before the first call to procedure P .
Similarly, we can verify the other two assertions.

The key idea in computing such procedure summaries is to compute weak-
est preconditions of generic assertions. However, a naive weakest precondition
computation may be exponential in the number of operations performed (each
conditional node can double the size of the precondition), and may not even ter-
minate (in presence of loops). Hence we use some techniques for strengthening
and simplifying the weakest preconditions (without any loss of precision). This
simplification is based on recent connections between unification and assertion
checking (described in Section 2.2). For example, consider computing the weakest
precondition of the generic assertion x = βy in the theory of unary uninterpreted
functions for the procedure Q in Figure 3. (Here β represents some unknown se-
quence of uninterpreted functions.) The naive weakest precondition computation
will not terminate and will yield x = βy∧fx = βfy∧ffx = βffy∧. . .. However,
our simplification procedure will simply (and strengthen) the first two conjuncts
to x = βy ∧ βf = fβ, denoting that the relationship x = βy holds at the end
of procedure only if (β is of the form such that) βf = fβ and x = βy holds at
the beginning of the procedure. It turns out that the constraints thus obtained
βf = fβ ∧ x = βy form a fixed-point, and hence our weakest precondition
computation terminates immediately.

2 Preliminaries

2.1 Program Model

We assume that each procedure in a program is abstracted using the flowchart
nodes shown in Figure 2. In the assignment node, x refers to a program variable
while e denotes some expression in the underlying abstraction. We refer to the
language of such expressions as expression language of the program. Following

256 S. Gulwani and A. Tiwari

are examples of the expression languages for the abstractions that we refer to in
this paper:

– Linear arithmetic. e ::= y | c | e1 ± e2 | c × e
Here y denotes some variable while c denotes some arithmetic constant.

– Unary Uninterpreted functions. e ::= y | f(e)
Here f denotes some unary uninterpreted function.

A non-deterministic assignment x :=? denotes that the variable x can be
assigned any value. Such non-deterministic assignments are used as a safe ab-
straction of statements (in the original source program) that our abstraction
cannot handle precisely.

A join node has two incoming edges. Note that a join node with more incoming
edges can be reduced to multiple join nodes with two incoming edges.

Non-deterministic conditionals, represented by ∗, denote that the control can
flow to either branch irrespective of the program state before the conditional.
They are used as a safe abstraction of guarded conditionals, which our abstrac-
tion cannot handle precisely. We abstract away the guards in conditionals be-
cause otherwise the problem of assertion checking can be easily shown to be
undecidable even when the program expressions involves operators from simple
theories like linear arithmetic [10] or uninterpreted functions [9]. This is a very
commonly used restriction for a program model while proving preciseness of a
program analysis for that model.

For simplicity, we assume that the inputs and outputs of a procedure are
passed as global variables. Hence, the procedure call node simply denotes the
name of the procedure to be called. Also, we assume that we are given the whole
program with a special entry procedure called Main.

2.2 Unification and Assertion Checking

A regular assertion is a conjunction of equalities e = e′ between two expressions.
A substitution σ is a mapping from variables to expressions. A substitution σ
is applied to an expression e (or assertion ψ), by replacing all variables x by
σ(x) in the expression (assertion). The result is denoted in postfix notation by
eσ (or ψ[σ]). A program state is a substitution on program variables. A regular
assertion ψ is said to hold at a program point π if ψ[σ] is valid (in the underlying
theory) for every program state σ reached at π (along any path).

A substitution σ is a unifier for ψ if ψ[σ] is valid. A substitution σ1 is more-
general than a substitution σ2 if there is a substitution σ3 s.t. xσ2 = xσ1σ3 for
all x. A theory is unitary if for all equalities e = e′ in that theory, there exists
a unifier that is more-general than any other unifier of e = e′. A substitution σ
can be treated as the formula

∧
x x = σ(x). For a unitary theory T, we denote

the conjunction representing the most-general unifier for ψ by UnifT(ψ).
The formula Unif(ψ) logically implies ψ, but it is, in general, not equivalent to

ψ. Since it is often “simpler” than ψ, we may wish to replace ψ by Unif(ψ). The
basic result formally stated in Property 1 is that, in many useful abstractions,
the formulas ψ and Unif(ψ) are “equivalent” as far as invariance of assertions
is concerned.

Computing Procedure Summaries for Interprocedural Analysis 257

Property 1 ([5]). Let π be any location in a program that is specified using the
flowchart nodes in Figure 2 and expressions from some unitary theory T. An
equality e = e′ holds at π iff UnifT(e = e′) holds at π.

The above property is stated and proved in [5]. The key insight is that runs of a
program are just substitutions and if every run validates an assertion, then every
run should also validate a more-general unifier of that assertion. Property 1 is
used at two places in our generic weakest-precondition computation based tech-
nique for interprocedural analysis: (a) for simplification of formulas for efficiency
purpose (Section 3.2), (b) for detecting fixed-point computation (Section 3.2).

Note that we present our results in the context of unitary theories for efficiency
reasons; otherwise both Property 1 and our general approach of Section 3 can
be generalized.

3 General Technique for Interprocedural Analysis

Our technique for interprocedural analysis uses the standard two phase summary-
based approach. The two phases are described in Section 3.2 and Section 3.3.

3.1 Generic Assertions

A generic assertion is an assertion that involves context-variables apart from
regular program variables. A context-variable represents some unknown term
with holes, with the constraint that this unknown term does not involve any
program variables (i.e., it only involves symbols from the underlying theory
or abstraction). An important consequence of this constraint is that generic
assertions are closed under weakest precondition computation across assignments
to program variables.

We say that a generic assertion A1 is more general than another generic
assertion A2 if there exists an instantiation σ of the context variables of A1 such
that A2 = A1[σ]. We define a set of generic assertions to be complete w.r.t. a
given set of program variables V if for any generic assertion A1 in the underlying
theory involving program variables V , there exists a generic assertion A2 in the
set such that A2 is more general than A1.

For the theory of linear arithmetic, the singleton set {
∑

i αixi = α} constitutes
a complete set of generic assertions with respect to the set of variables {xi}i.
Here α, αi denote unknown constants. For the theory of unary uninterpreted
functions, the set {αx1 = βx2 | x1, x2 ∈ V, x1 �≡ x2} is a complete set of
generic assertions with respect to the set of variables V . Here α, β represent
unknown strings (applications) of unary uninterpreted functions.

3.2 Phase 1: Computing Procedure Summaries

Let P be a procedure with V as the set of its output variables. Let G be some
complete set of generic assertions with respect to V for the underlying abstrac-
tion. The summary of procedure P is a collection of formulas ψi, one for each
generic assertion Ai in G. The formula ψi is the weakest precondition of the

258 S. Gulwani and A. Tiwari

generic assertion Ai denoting that the generic assertion Ai holds at the end of
procedure P only if the formula ψi holds at the beginning of procedure P . Each
formula ψi itself is a conjunction of generic assertions. (Observe that weakest
precondition computation involves substitution of regular variables by program
expressions and performing conjunctions of formulas. Hence, conjunctions of
generic assertions are closed under weakest precondition computation.)

Computing summary for procedure P requires computing the weakest pre-
condition of each generic assertion in G one by one. The weakest precondition
of a given generic assertion A across a procedure is computed by computing a
formula ψ at each procedure point using the following transfer functions across
flowchart nodes. The correctness of the following transfer functions is immediate.

Initialization: The formula at all procedure points except the procedure exit
point is initialized to true. The formula at the exit is initialized to the generic
assertion A.

Assignment Node: See Figure 2(a). The formula ψ′ before an assignment node
x := e is obtained from the formula ψ after the assignment node by substituting
x by e in ψ, i.e. ψ′ = ψ[x �→ e].

Non-deterministic Assignment Node: See Figure 2(b). The formula ψ′ before a
non-deterministic assignment node x :=? is obtained from the formula ψ after the
non-deterministic assignment node by universally quantifying out the variable
x. However, for the case when program expressions come from a unitary theory,
we can simplify ∀x(ψ) to ψ[x �→ c1]∧ψ[x �→ c2], where c1 and c2 are two distinct
constants (or provably unequal terms) in the underlying theory.

Non-deterministic Conditional Node: See Figure 2(c). The formula ψ before a
non-deterministic conditional node is obtained by taking the conjunction of the
formulas ψ1 and ψ2 on the two branches of the conditional, i.e., ψ = ψ1 ∧ ψ2.

Join Node: See Figure 2(d). The formulas ψ1 and ψ2 on the two predecessors of a
join node are same as the formula ψ after the join node, i.e., ψ1 = ψ and ψ2 = ψ.

Procedure Call Node: See Figure 2(e). Let ψ ≡
∧k

i=1 A′
i. Let Ai ∈ G be such that

Ai is more general than A′
i and let σi be the instantiation such that A′

i = Ai[σi].
Let ψ′

i be the formula in the summary of procedure P ′ that represents the
weakest precondition of Ai before procedure P ′. Then, ψ′ =

∧k
i=1 ψ′

i[σi].

Simplification
Property 1 says that we do not need to distinguish between two regular assertions
that have the same set of unifiers. We can generalize this to generic assertions.
We say two formulas (conjunctions of generic assertions) ψ and ψ′ are essentially
equivalent, denoted by ψ � ψ′, if ψσ and ψ′σ have the same set of unifiers for
every substitution σ that assigns every context variable in ψ, ψ′ to a term with a
hole (in the signature of the underlying theory). We denote by ψ ⇀ ψ′ the fact
that every unifier of ψσ is also a unifier of ψ′σ (for every σ).

Computing Procedure Summaries for Interprocedural Analysis 259

We can simplify ψ at any program point by replacing it by another essentially
equivalent formula ψ′. The soundness and completeness of this transformation
follows from Property 1. This simplification is needed to bound the size of the
formula ψ because otherwise a naive computation of weakest precondition may
lead to an exponential blowup in the number of operations performed. In case of
linear arithmetic, this simplification simply involves removing linearly dependent
equations. In case of unary uninterpreted functions, this simplification involves
strengthening the formula.

Observe that the number of conjuncts in the formula computed before any
node (in particular the procedure call node) is at most quadratic in the maxi-
mum number of conjuncts in any simplified formula. Hence, the time required
to simplify any such formula can be bounded by TT(k), which is as defined below.

Definition 1 (Simplification Cost TT(k)). For any theory T, let ST(k) denote
the maximum number of conjunctions (of generic assertions) in any simplified
formula over k program variables. Let TT(k) denote the time required to simplify
a formula over k program variables with at most (ST(k))2 generic assertions.

Fixed-Point Computation
In presence of loops (inside procedures as well as in call-graphs), we iterate
until fixed-point is reached. The standard way to perform such an iteration is to
maintain a worklist that stores all program points whose formulas have changed
with respect to the formulas in the previous iteration, but whose change has not
yet been propagated to its predecessors.

Let ψ be the formula computed at some program point π, and let ψ′ be the
formula at π in the previous iteration. If ψ and ψ′ are logically equivalent, then
it is intuitive that the formula at π has not changed from the previous itera-
tion (and hence does not require any further propagation to the predecessors of
π). However, it follows from Property 1 that we can strengthen this notion to
conclude that the formula at π has not changed even if ψ � ψ′. This observa-
tion is important because it allows to detect fixed-point faster. In case of unary
uninterpreted functions, this makes significant difference (E.g., for the loop in
procedure Q in Figure 3, fixed-point is not even reached with the former intuitive
notion of change, while it is reached in 2 steps with the latter stronger notion of
change, as explained on Page 255). The number of times the formula ψ at each
point inside a procedure gets updated is bounded by the maximum unifier chain
length of the underlying theory as defined below.

Definition 2 (Maximum Unifier Chain Length MT(k)). We define the
maximum unifier chain length of any theory T for k variables, denoted by MT(k),
to be the maximum length of any chain ψ1, ψ2, . . . (where each ψi is a conjunction
of generic assertions over k variables) such that ψi ⇀ ψi+1 but ψi+1 �⇀ ψi.

Computational Complexity
The number of updates performed during phase 1 is bounded above by n ×
MT(k), where n is the total number of program points and k is the maximum

260 S. Gulwani and A. Tiwari

number of program variables that are live at any program point (This follows
from Definition 2). The cost of each update is bounded above by TT(k). Hence,
the cost of Phase 1 is O(n × MT(k) × TT(k)).

3.3 Phase 2: Using Procedure Summaries

We now show how to use the procedure summaries computed in phase 1 to verify
and discover assertions at different program points. The correctness of this phase
is easy to observe, while its computational complexity is bounded above by that
of phase 1.

Verifying a given assertion at a given program point. For this purpose,
we can perform the weakest precondition computation of the given assertion as
in Phase 1. However, there are two main differences. The formula computed at
each program point is a regular assertion instead of a generic assertion. Secondly,
the preconditions computed at the beginning of the procedures are copied before
the call sites of those procedures. When the process reaches a fixed-point, we
declare the assertion to be true iff the precondition computed at the beginning
of Main procedure is true.

Computing all invariants at a given program point. Instead of com-
puting the weakest precondition of a given assertion at a program point π (as
described above), we can also compute the weakest preconditions of a complete
set of generic assertions. The preconditions obtained at the beginning of Main
procedure for each of these generic assertions will be in the form of constraints
on the context variables. These constraints exactly characterize the invariants
that hold at π.

Computing all invariants at all program points. We can repeat the above
process for all program points to compute all invariants at all program points.
However, when the expression language of the program comes from a unitary the-
ory (e.g., linear arithmetic and uninterpreted functions), we can perform a more
efficient analysis based on a forward intraprocedural analysis for that abstract
domain. For this purpose, we simply run a forward intraprocedural analysis on
each procedure. The invariant at the entry point of Main procedure is initialized
to true, while for all other procedures, it is obtained as the join of the invari-
ants before all call sites of that procedure. We only need to describe the transfer
function for the procedure call node. Let F be the invariants computed before
the procedure call node. Let σ = Unif(F) be the substitution representing the
most-general unifier of F . (Note that unitary theories have a single most-general
unifier). Let V be the set of variables that do not have a definition in σ, but are
the inputs to procedure P . Let the summary of procedure P be: “the assertion
ψi holds at the end of procedure iff the constraints ψ′

i hold at the beginning of
procedure” (for all generic assertions ψi from some complete set G). The trans-
fer function for the procedure call node then is: F ′

i =
∧
i

Normalize(∀V ψ′
i[σ], ψi).

The key idea here is to instantiate each of the constraints ψ′
i with σ and uni-

versally quantify out the remaining input variables V (by using the same tech-
nique described in weakest precondition computation across non-deterministic

Computing Procedure Summaries for Interprocedural Analysis 261

assignment nodes). There is no precision loss in quantifying out V since, by
assumption, there are no invariants on V . The resulting constraints on context
variables describe all relationships of the form ψi that hold among the output
variables of procedure P after the procedure call node. The function Normalize
translates these constraints into the desired invariants. Normalize(C, ψi) takes
as input some constraints C on the context variables corresponding to some
generic assertion ψi and returns the assertions obtained by eliminating the con-
text variables. (Eg., Normalize(a + b = 0 ∧ c − d = 0, ax + by + cz = d) returns
x = y ∧ z = 1, which is obtained by eliminating a, b, c, d from ∀a, b, c, d(a + b =
0 ∧ c − d = 0 ⇒ ax + by + cz = d)).

4 Unary Uninterpreted Functions

In this section, we instantiate the above general framework for performing inter-
procedural analysis over the abstraction of unary uninterpreted functions. As a
result, we obtain a PTIME algorithm for computing all equality invariants when
the program is specified using the flowchart nodes described in Figure 2, and the
expression language of the program involves unary uninterpreted functions.

Unary uninterpreted functions can be used to model fields of structures and
objects in programs, as well as deterministic function calls with one argument–
this is useful when the function body is unavailable or is too complicated to
analyze. Yet another motivation for studying the unary uninterpreted abstrac-
tion comes from the long-standing open problem of interprocedural global value
numbering. This problem seeks to analyze programs whose expression language
contains uninterpreted functions of any arity. A brief history of this problem is
given in Section 6. The results in this section, thus, make progress toward solving
this open problem.

Apart from the general ideas mentioned in Section 3, our results in this section
also rely on another key idea of representing large strings succinctly via singleton
context-free grammars [13].

Notation. Terms constructed using unary function symbols can be represented
as strings. For example, the term f(g(x)) can be treated as the string fgx. The
expressions f() and f(g()), (respectively strings f and fg) are terms with a
hole . Variables that take terms with a hole as values, or equivalently context
variables, will be denoted by α, β, etc. The concrete terms with holes are denoted
by C, D, E, F with suitable annotations.

4.1 Simplification

We compute procedure summaries by backward propagation of all the generic
assertions in the set {αx1 = βx2 | x1, x2 ∈ V, x1 �≡ x2}, where V is the set
of output variables of the corresponding procedure. The assertions generated in
the process are simplified to one of the following forms:

(1) αCxi = βC′xj (2) αCα−1 = βC′β−1 (3) α = βC

262 S. Gulwani and A. Tiwari

P (){
1 x := fgx;
2 y := gfy;
3 if (*) { Q(); }
4 else { P (); }
5 }

Q(){
1 while (*) {
2 x := fx;
3 y := fy;
4 }
5 }

main(){
1 y := a;
2 x := fa;
3 P ();
4 assert(x = fy);
5 }

Fig. 3. Program

Thus, every ψ is simply a conjunction of assertions of these forms. The inverse
operator, −1, satisfies the intuitive axioms: (αβ)−1 = β−1α−1, αα−1 = ε, and
(α−1)−1 = α.1 The strings C, C′ in Form 2 are allowed to contain the inverse
operator, whereas strings C, C′ in Form 1 and Form 3 do not contain the inverse
operator. Equations of Form 2 are an elegant way of encoding constraints on the
context-variables α and β that are generated by the backward analysis.

We show now that weakest precondition computation across the various pro-
gram nodes maintains assertions in one of these forms. We consider the case
of a Procedure Call node “Call P()” (the other cases are easy to verify). At
any stage of the fixpoint computation, the (partially computed) summary of a
procedure P will be given as: “α′xi = β′xj holds at the end of procedure P if
ψ′′

ij holds at the beginning” for each pair xi, xj ∈ V . Equations of Form 2 and
Form 3 are unchanged in the weakest precondition computation. The weakest
precondition of an equation αCxi = βC′xj is obtained by instantiating ψ′′

ij by
{α′ �→ αC, β′ �→ βC′}. Applying this replacement in equations of Form 1 or
Form 2 in ψ′′

ij gives back equations of the same form. When applied on equa-
tions of Form 3, we get equations of the form αC = βC′. We remove the largest
common suffix of C, C′ and if the equation does not reduce to Form 3, then the
weakest precondition is false .

Bounding the size of ψ. We will show that any conjunction of equations of
Form 1, Form 2, and Form 3 over k variables can be simplified to contain at
most k(k − 1)/2 + 1 equations. Specifically,

– for each pair xi, xj of variables, there is at most one equation of Form 1; and
– either there is at most one equation of Form 2, or there is at most one

equation of Form 3.2

The Simplification procedure uses unification to simplify the equations and keeps
the result essentially equivalent to the original set. It performs two main steps.
For a fixed pair x, y of variables, let ψxy denote the set containing all equations
of Form 1 in ψ. First, by repeated use of Lemma 1 ψxy is simplified to a set
containing at most one equation of Form 1 and either one equation of Form 3 or

1 Note that the inverse operator implicitly builds in simplification using unification.
For instance, while fx = fy does not logically imply x = y, using the inverse axioms
we have fx = fy ⇒ f−1fx = f−1fy ⇒ x = y.

2 Note that an equation of Form 3 essentially gives a concrete solution, since we can
assume, by Property 1, that one of α, β is ε.

Computing Procedure Summaries for Interprocedural Analysis 263

Ite Proc Current Summary for αx = βy Comment
0 P, Q true Init
1 Q Simp(αx = βy,αfx = βfy) = (αx = βy, αfα−1 = βfβ−1)
2 P αfgx = βgfy,αfα−1 = βfβ−1 Use Q’s summary
3 Q αx = βy, αfα−1 = βfβ−1 fixpoint for Q

4 P Simp(αfgfgx = βgfgfy,αfgx = βgfy, αfα−1 = βfβ−1) Use P ’s summary
5 P αf = β, αfgx = βgfy fixpoint for P

Fig. 4. This figure illustrates summary computation for interprocedural analysis over
the unary abstraction. In Column 3, the summary consists of the constraints that must
hold at the beginning of the procedure P/Q for αx = βy to be an invariant at the end
of the procedure.

finitely many equations of Form 2. For example, in iteration 2 of Figure 4, the set
of equations {αx = βy, αfx = βfy} is simplified to {αx = βy, αfα−1 = βfβ−1}.

Lemma 1. The equation set {αCix = βC′
iy : i = 1, 2} either has no solutions,

or it has the same solutions as a set containing either one of these two equations
and at most one equation of Form 2 or Form 3.

Next, if there is an equation of Form 3 then it can be used to simplify an equation
of Form 2 to either false or true. Otherwise, a set {αCiα

−1 = βC′
iβ

−1, i =
2, . . . , k} containing multiple equations of Form 2 is simplified by repeated use
of Lemma 2.

Lemma 2. The equation set {αCiα
−1 = βC′

iβ
−1, i = 1, 2} is either unsatisfi-

able, or has the same solutions as a set containing at most one equation of either
Form 2 or Form 3.

For example, in iteration 4-5 of Figure 4, {αfα−1 = βfβ−1, αfgα−1 = βgfβ−1}
is simplified to {αf = β}. In this way, any conjunction ψ of equations of Form 1,
Form 2, and Form 3 is simplified to a conjunction with at most k(k − 1)/2 + 1
equations.3

The algorithms used in the proof of Lemma 1 and Lemma 2 use a constant
number of string operations. Assuming the basic string operations take time
Tbase, the time taken to simplify Suu(k)2 = O(k4) assertions is O(k4Tbase).

Maximum Unifier Chain Length. It is easy to see that the maximum unifier
chain length for k variables is bounded by k(k − 1)/2 + 2. This is because the
number of equations in ψ can increase only k(k − 1)/2 + 1 times, and beyond
that the formula either becomes unsatisfiable, or it is forced to have a unique
solution for its variables. Note that it is not possible for the number of equations
to remain the same and the formula to get stronger. This is a consequence of
Lemma 1.
3 The observation that we need to keep only a small number of equations Cxi = αC′xj

intuitively means that we keep only a few runs. However, these runs in the simplified
formula may not correspond to any real runs, but some equivalent hypothetical runs.

264 S. Gulwani and A. Tiwari

Hence, for the case of unary uninterpreted (uu) abstraction, we have:

Suu(k) = k(k−1)
2 + 1 Tuu(k) = O(k4Tbase) Muu(k) = k(k−1)

2 + 2

4.2 Computational Complexity: Efficient Representations

We note that the time complexity of interprocedural analysis for the unary
uninterpreted abstraction is polynomial assuming that the string operations can
be performed efficiently. However, the length of strings can be exponential in the
size of the program, as the following example shows.

Example 1. Consider the n procedures P0, . . . , Pn−1 defined as

Pi(xi) { t := Pi−1(xi); yi := Pi−1(t); return(yi); }
P0(x0) { y0 := fx0; return(y0); }

The summary of procedure Pi is: yi = αxi iff α = f2i

.

Hence, if we use a naive (explicit) representation, the size of ψ can grow exponen-
tially (when we apply substitutions during transfer function computation across
procedure call nodes). Instead we appeal to shared representation of strings using
singleton context-free grammars (SCFG). An SCFG is a context-free grammar
where each nonterminal represents exactly one (terminal) string. An SCFG can
represent strings in an exponentially succinct way. The strings Ci’s that arise in
the equations can be represented succinctly using SCFGs in size that is linear
in the size of the program (because the program itself is an implicit succinct
representation of these strings using SCFGs).

Example 2. Following up on Example 1, we note that the string f2n

can be
represented by the SCFG with start symbol An and productions {Ai+1 → AiAi |
1 ≤ i ≤ n} ∪ {A0 → f}. In particular, the summaries of the procedures can be
represented as: yi = αxi iff α = Ai.

A classic result by Plandowski [13] shows that equality of two strings represented
as SCFGs can be checked in polynomial time. Apart from this, the simplification
procedure implicit in the proofs of Lemma 1 and Lemma 2 require largest com-
mon prefix/suffix computation and substring extraction. It is an easy exercise to
see that these string operations can also be performed on SCFG representations
in polynomial time. Hence, the computational procedure outlined above can be
implemented in polynomial time using the SCFG representation of strings. In
conclusion, this shows that summaries can be computed in PTIME on the ab-
straction of unary symbols. We remark here that Plandowski’s result has been
generalized to trees [19] suggesting that it may be possible to generalize our
result to the interprocedural global value numbering problem (over binary un-
interpreted functions).

Computing Procedure Summaries for Interprocedural Analysis 265

5 Linear Arithmetic

The technique described in Section 3.2 can also be used effectively to compute
procedure summaries for the abstraction of linear arithmetic. We compute the
weakest precondition of the generic assertion α1x1 + · · · + αkxk = α (which
constitutes a complete set by itself) where x1, . . . , xk are the output variables of
the corresponding procedure.

The conjunction ψ of equations thus obtained at any point in the procedure
during the weakest precondition computation can be seen as linear equations
over the k2 + k + 1 variables: k2 variables representing the products αixj and
the k + 1 variables αi and α. We can simplify the equations thus obtained by
maintaining only the linearly independent (non-redundant) equations. We know
that there can not be more than k2 + k + 1 linearly independent equations and
hence ψ can have at most k2 + k + 1 equations. This shows that for the linear
arithmetic (la) abstraction,

Sla(k) = k2 + k + 1 Tla(k) = O(Tbasek
8) Mla(k) = k2 + k + 1,

where Tbase denotes the time to perform an arithmetic operation. Since con-
stants can become large (programs can encode large numbers succinctly), we use
modulo arithmetic and randomization to get a true PTIME procedure, as in [11].

Müller-Olm and Seidl also gave a precise interprocedural algorithm for lin-
ear arithmetic of similar complexity [11]. However, their algorithm is different
and is based on the the observation that runs of a procedure correspond to lin-
ear transformations and there can be only quadratic many linearly-independent
transformations. In a certain sense, this is the dual of our approach.

6 Related Work and Discussion

Forward vs. Backward Analysis. The approach presented in this paper for
computing procedure summaries is based on backward propagation of generic
assertions. It is presently unclear how the dual approach, namely forward propa-
gation of a complete set of generic assertions, can be effectively used. A forward
propagation involves developing context-sensitive or distributive transfer func-
tions for assignment nodes (usually involves existential quantifier elimination)
and join nodes. Giving a general procedure for such operations appears to be
hard for regular assertions (intraprocedural case) and would be significantly more
difficult for generic assertions.

Nevertheless, these difficulties may be overcome for very specific abstractions,
such as linear arithmetic [11,8]. In this case, the authors essentially look at a pro-
cedure as a linear transformation and compute in the (k+1)2-dimensional vector
space of these linear transformations. This allows them to perform abstract inter-
pretation using either backward or forward analysis [11,8]. However, this general
approach of developing interprocedural analysis by describing program behav-
iors as transformations (in a finite dimensional vector space) is applicable only
on arithmetic abstractions. In contrast, our approach promises to be simpler,
and more generally applicable.

266 S. Gulwani and A. Tiwari

Weakest Precondition of Generic Assertions vs. Regular Assertions.
To ensure termination of weakest precondition computation over generic as-
sertions, we used some connections between unification and assertion checking.
Similar connections have been used earlier for weakest precondition computation
for regular assertions in the intraprocedural case [5,6]. However, in the intrapro-
cedural case, we just need to solve unification problems over regular assertions.
These problems are well-studied and efficient algorithms are known for several
theories. In the interprocedural case, we now have to solve unification problems
over generic assertions. In the theorem proving community, these are studied
under the name of “second-order unification” and “context unification”. These
problems are known to be more difficult than their first-order counterparts. Thus,
while our approach of backward analysis based on generic assertions provides a
uniform framework for developing interprocedural analyses, it also helps to as-
certain the difficulty of interprocedural analysis over intraprocedural analysis by
drawing connections with the complexity of second-order unification vs. stan-
dard unification in theorem proving. Templates, which are similar to generic
assertions, have been used to generate invariants, but only in the context of
intraprocedural analysis and without any completeness guarantees [18].

History of Global Value Numbering. Since checking equivalence of pro-
gram expressions is an undecidable problem, in general, program operators are
commonly abstracted as uninterpreted functions to detect expression equiva-
lences. This form of equivalence is also called Herbrand equivalence [16] and
the process of discovering it is often referred to as value numbering. Kildall [7]
gave the first intraprocedural algorithm for this problem based on performing
abstract interpretation [2] over the lattice of Herbrand equivalences in expo-
nential time. This was followed by several PTIME, but imprecise, intraproce-
dural algorithms [1,16,3]. The first PTIME intraprocedural algorithm was given
by Gulwani & Necula [4], and then by Müller-Olm, Rüthing, & Seidl [9]. How-
ever, PTIME interprocedural global value numbering algorithm has been elusive.
There are some new results, but only under severe restrictions that functions are
side-effect free and one side of the assertion is a constant [12]. Neither of these
assumptions is satisfied by the program in Figure 3. The technique described in
this paper yields a PTIME algorithm for the special case of unary uninterpreted
functions.

7 Conclusion

Proving non-trivial properties of programs requires analyzing programs over rich
abstractions. The scalability of such program analyses depends upon the pos-
sibility of constructing efficient and precise summaries of procedures over such
abstractions. In this paper, we have described a new technique for computing
procedure summaries for a class of program abstractions over infinite domains,
thereby adding to some limited piece of work known in this area.

In the description of our technique, we assume at some places that condition-
als are non-deterministic and expression language of the program comes from a

Computing Procedure Summaries for Interprocedural Analysis 267

unitary theory. These assumptions are needed to prove that our technique com-
putes the most precise procedure summary in an efficient manner. We believe
that the general ideas in our technique can be extended to reason about predi-
cates in conditionals and handle expressions that are not from a unitary theory
(e.g., as suggested in [6]), albeit with some (unavoidable) precision loss because
the problem is undecidable in general.

References

1. B. Alpern, M. N. Wegman, and F. K. Zadeck. Detecting equality of variables in
programs. In 15th Annual ACM Symposium on POPL, pages 1–11, 1988.

2. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In 4th Annual
ACM Symposium on POPL, pages 234–252, 1977.

3. K. Gargi. A sparse algorithm for predicated global value numbering. In PLDI,
volume 37, 5, pages 45–56. ACM Press, June 17–19 2002.

4. S. Gulwani and G. C. Necula. A polynomial-time algorithm for global value num-
bering. In Static Analysis Symposium, volume 3148 of LNCS, pages 212–227, 2004.

5. S. Gulwani and A. Tiwari. Assertion checking over combined abstraction of linear
arithmetic & uninterpreted functions. In ESOP, volume 3924 of LNCS, Mar. 2006.

6. S. Gulwani and A. Tiwari. Assertion checking unified. In Proc. VMCAI, LNCS
4349. Springer, 2007. See also Microsoft Research Tech. Report MSR-TR-2006-98.

7. G. A. Kildall. A unified approach to global program optimization. In 1st ACM
Symposium on POPL, pages 194–206, Oct. 1973.

8. M. Müller-Olm, M. Petter, and H. Seidl. Interprocedurally analyzing polynomial
identities. In STACS, volume 3884 of LNCS, pages 50–67. Springer, 2006.

9. M. Müller-Olm, O. Rüthing, and H. Seidl. Checking Herbrand equalities and
beyond. In VMCAI, volume 3385 of LNCS, pages 79–96. Springer, Jan. 2005.

10. M. Müller-Olm and H. Seidl. A note on Karr’s algorithm. In 31st International
Colloquium on Automata, Languages and Programming, pages 1016–1028, 2004.

11. M. Müller-Olm and H. Seidl. Precise interprocedural analysis through linear alge-
bra. In 31st ACM Symposium on POPL, pages 330–341, Jan. 2004.

12. M. Müller-Olm, H. Seidl, and B. Steffen. Interprocedural Herbrand equalities. In
ESOP, volume 3444 of LNCS, pages 31–45. Springer, 2005.

13. W. Plandowski. Testing equivalence of morphisms on context-free languages. In
Algorithms - ESA ’94, volume 855 of LNCS, pages 460–470. Springer, 1994.

14. T. Reps. On the sequential nature of interprocedural program-analysis problems.
Acta Informatica, 33(8):739–757, Nov. 1996.

15. T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow analysis via
graph reachability. In 22nd ACM Symposium on POPL, pages 49–61, 1995.

16. O. Rüthing, J. Knoop, and B. Steffen. Detecting equalities of variables: Combining
efficiency with precision. In SAS, volume 1694 of LNCS, pages 232–247, 1999.

17. M. Sagiv, T. Reps, and S. Horwitz. Precise interprocedural dataflow analysis with
applications to constant propagation. TCS, 167(1–2):131–170, 30 Oct. 1996.

18. S. Sankaranarayanan, H. Sipma, and Z. Manna. Non-linear loop invariant genera-
tion using grbner bases. In POPL, pages 318–329, 2004.

19. M. Schmidt-Schauß. Polynomial equality testing for terms with shared substruc-
tures. Technical Report 21, Institut für Informatik, November 2005.

20. M. Sharir and A. Pnueli. Two approaches to interprocedural data flow analysis.
In Program Flow Analysis: Theory and Applications. Prentice-Hall, 1981.

Small Witnesses for Abstract

Interpretation-Based Proofs

Frédéric Besson, Thomas Jensen, and Tiphaine Turpin

IRISA/{Inria, CNRS, Université de Rennes 1}
Campus de Beaulieu, F-35042 Rennes, France

Abstract. Abstract interpretation-based proof carrying code uses
post-fixpoints of abstract interpretations to witness that a program re-
spects a safety policy. Some witnesses carry more information than
needed and are therefore unnecessarily large. We introduce a notion of
size of a witness and propose techniques for reducing the size of such cer-
tificates. For distributive analyses, we show that a smallest witness exist
and we give an iterative algorithm for computing it. For non-distributive
analyes we propose a technique for pruning a witness and illustrate this
pruning on a relational, polyhedra-based analysis. Finally, only the ex-
istence of a witness is needed to assure the code consumer of the safety
of a given program. This makes possible a compression technique of wit-
nesses where only part of a witness is sent together with an encoding of
the iterative steps necessary to prove that it is part of a post-fixpoint.

1 Introduction

Proof-carrying code (PCC) is a software security infrastructure in which pro-
grams come equipped with certificates that allow a code consumer to check that
the program respects a given safety policy. There are several requirements to the
structure of such certificates which at the same time must be easy to produce
for the code producer, small relative to the code size, and simple to check by the
code consumer. Initial PCC works used as certificates a lambda-term encoding
of proofs [Nec97] to be type-checked by the Logical Framework (LF). To opti-
mise the size of these proofs, Necula and Lee proposed LFi a compressed proof
format for LF terms [NL98]. For a weaker logic, Necula and Rahul transmit as
certificate an oracle (a stream of bits) that guides a higher-order logic interpreter
in its proof search [NR01]. Wu, Appel, Stump [WAS03] show how to combine
these ideas with dedicated program logics in order to obtain foundational proof
checkers with small witnesses. Albert et al., [AAPH06] propose abstract interpre-
tation as a way to fully automate the generation of certificates. In this approach,
fixpoints (invariants) play the role of certificates and a checker will have to verify
a) that a proposed certificate is indeed a fixpoint of an abstract interpretation
of the program and b) that this fixpoint entails the safety policy.

An important issue is how to encode such certificates in a manner that keeps
the certificate small while still allowing efficient checking. This paper propose a
theory based on abstract interpretation for studying this issue. Given an abstract

R. De Nicola (Ed.): ESOP 2007, LNCS 4421, pp. 268–283, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Small Witnesses for Abstract Interpretation-Based Proofs 269

interpretation F of program p over an abstract domain D of program properties,
and a safety policy expressed as a property φ in D, we study the set of witnesses
of φ with respect to p, i.e., the elements w ∈ D satisfying F (w) � w�φ. Section 2
formalises the notion of witness and discuss how to optimise the size of a witness.

For certain kinds of abstract interpretations it is possible to guarantee the
existence of a smallest witness for any abstract property. This is the case e.g., for
distributive data flow analyses [MJ81, MR90] and disjunctive-complete abstract
interpretations. In Section 3 we provide a fixpoint characterisation of the smallest
witness of a given abstract property for any distributive analysis and illustrate
how to obtain an effective algorithm for a class of set-based analyses. In the
general case, it is impossible to compute a smallest witness without resorting to
an exhaustive search. Instead we propose in Section 4 a technique for pruning
a witness to obtain a witness that is smaller relative to the initial witness. We
illustrate this by showing how to prune the result of a relational, polyhedra-based
abstract interpretation.

For the PCC application of fixpoint compression it is important to note that
it is the existence of a witness that matters. This makes further optimisations
possible because a code certificate now only have to convey the code consumer
with sufficient information to convince him that he is able to build a witness. To
make this idea concrete, we define in Section 5 certificates as strategies that en-
code the steps that an iterative fixpoint solver will take in order to reconstruct a
complete fixpoint given the values at selected program points. This can be seen
as a generalisation of the Lighwteight Java Byte Code using stack maps defined
by Rose [Ros03] and used in the KVM Java virtual machine for embedded de-
vices. Section 6 discusses related work, notably the recent proposal by Albert et al.
[AAPH06] for reducing fixpoints produced by a generic fixpoint algorithm.

2 Obtaining Witness from Abstract Interpretation

Central to PCC is the ability to generate checkable proofs of programs. Previ-
ous works have shown how to obtain a proof from abstract interpretations. The
key insight is that abstract interpretation does not return a yes/no answer but
a property which over-approximates the program behaviour. In abstract inter-
pretation terms, the notion of approximation is formalised by a Galois insertion
between the semantic (concrete) domain of the program and the abstract domain
of properties. A correct over-approximation of the program behaviour is a post-
fixpoint of the abstraction of the program. As a result, proving that a program
verifies a property, say φ, amounts to proving that there exists a post-fixpoint of
the abstraction of the program semantics, say ψ, which entails φ. Under these
conditions, this is a basic result from the theory of abstract interpretation [CC77]
that the least fixpoint of the program semantics satisfies the property.

(∃ψ, �p��(ψ) � ψ ∧ ψ � φ) ⇒ lfp(�p�) � φ

In a static analysis context, the abstract semantics (�.��) and the ordering of
properties (�) are computable functions. Therefore, given the property ψ, check-
ing that a program verifies a property φ is a straightforward computation.

270 F. Besson, T. Jensen, and T. Turpin

2.1 Witnesses

This motivates the definition of a proof witness for abstract interpretation.

Definition 1 (Direct witness). A direct witness for a property φ ∈ D and a
(monotone) abstract operator F : D → D is an abstract property w ∈ D such
that w is a post-fixpoint of F (F (w) � w); and w entails φ (w � φ).

This definition of a witness is the naive instantiation of PCC in the context
of abstract interpretation. We propose to study a larger class of witnesses that
are compact to encode and as fast to check. The key observation here is that
verifying a witness involves some unavoidable computation of F , the results of
which need not appear explicitly in the witness. To this end, Definition 2 relaxes
the notion of direct witness while preserving its role (the existence of a witness
entails the satisfaction of φ) and keeping the same verification cost.

Definition 2 (Witness). An abstract interpretation witness proof for a prop-
erty φ ∈ D and a (monotone) abstract operator F : D → D is an abstract
property w ∈ D such that F (w) � w � φ.

The following Lemmas affirms that witnesses are as good as direct ones for
proving φ, and that there are more of them than direct witnesses.

Lemma 1

1. If w is a witness then F (w) is a direct witness.
2. If w is a direct witness then w is a witness.

Proof Sketch. Follows directly from the monotonicity of F , the definition of the
greatest lower bound operator (�) and the transitivity of the ordering �. �	

We focus on optimising the latter, more general version of witnesses.

2.2 On the Size of Witnesses

When choosing a witness, there are two criteria of interest: its size and its ver-
ification cost. In this paper we focus on the size of witnesses, but the results in
Sections 3 and 4 should be a good starting point for reducing the verification
cost, at least in terms of memory.

In the theory of abstract interpretation, the least fixpoint (lfp(F)) is the
strongest property that can be proved of a program and is therefore a poor choice
for a witness, because it contains information that is not needed for proving a
particular property. E.g., to prove a property at a specific program point (such
as absence of array accesses out of bounds or the absence division by zero) only a
few program variables and a few program points are relevant. For the others, no
information is needed. So, we will rather search for weaker witnesses which are
usually smaller because they encode the minimal amount of information needed
to prove the property. Notice that the program property to be proved is usually
not a witness because it is not a post-fixpoint of F .

Small Witnesses for Abstract Interpretation-Based Proofs 271

To make this argument more precise, consider standard data flow analyses that
compute a property for each program point. These analyses operate on a product
lattice Dn where n is the number of program points, or even (if we further refine
the decomposition) the number of pairs (pp, v) where pp is a program point and
v is a variable. Lattice elements are n-tuples for which the ith projection is, for
example, a formula characterizing the property of the ith program point. The
ordering is point-wise

(ψ1, . . . , ψn) � (ψ′
1, . . . , ψ

′
n) iff ψ1 � ψ′

1 ∧ . . . ∧ ψn � ψ′
n

and the size of the property of the whole program is the sum of the size of the
atomic formulae.

| (ψ1, . . . , ψn) |=| ψ1 | + . . .+ | ψn |
As argued above, for a number of program points these ψ’s can be set to
 (and
hence left out) because they are not needed for proving the particular property.
This suggests that as a general rule, smaller witnesses are those that are weaker
(higher up) in the lattice ordering �. While not universally true, this is valid for
all analyses based on lattices obtained as meet-completions of sets of unordered
atomic properties and, for the present paper, we will adopt the principle that
the smaller witnesses are those that are higher in the lattice ordering.

3 Optimal Witnesses for Distributive Analyses

In this section, we show that for distributive analyses it is possible to compute
the weakest witness which, as soon as our size assumptions are verified, is also
the smallest. We also provide an algorithm for computing such optimal witnesses
for a class of set-based distributive analyses which includes classical data flow
problems such as live variables and reaching definitions [MJ81, MR90].

3.1 Lattice of Witnesses

We show that for distributive analyses, witnesses form a lattice. As a conse-
quence, there exists a weakest witness (provided the set of witnesses is not
empty). In the following, we consider a lattice of abstract properties D and
a distributive function F (i.e., such that ∀X �= ∅, F

(⊔
x∈X x

)
=

⊔
x∈X F (x)).

Theorem 1. Let W be the set of witnesses for a distributive function F and a
property φ. If W is not empty then (W, lfp(F), 	, �) is a complete lattice.

Proof. Because lfp(F) is the least fixpoint of F it is also the least post-fixpoint.
As a result, as the set of witnesses is not empty, it is also the least witness.

It remains to show that the least upper bound operators is well-defined i.e.,
the least upper bounds of witnesses is also a witness: ∀S ⊆ W, 	S ∈ W . By
definition of a witness, we have that for all w ∈ S, F (w) � w � φ. Since F is
distributive, we have that F (

⊔
w∈S w) =

⊔
w∈S F (w) �

⊔
w∈S(w�φ) = 	S � φ.

It follows that 	S is a witness. �	
As a result, the weakest witness ww is the least upper bound of all witnesses
and is given by ww =

⊔
W .

272 F. Besson, T. Jensen, and T. Turpin

3.2 Weakest Witnesses as Greatest Fixpoints

In this section, we show that the weakest witness is the greatest fixpoint of the
function F̃ which given a x computes the weakest precondition wp such that
F (wp) � x � φ.

Definition 3. Let F be a distributive function and φ a property. F̃ : D → D is
the function defined by: F̃ (x) =

⊔
{y | F (y) � x � φ}.

Theorem 2 states that ww, if it exists, is the greatest fixpoint of F̃ .

Theorem 2. Let F be a distributive function and φ be an abstract property. If
the greatest fixpoint of F̃ is not undefined (gfp(F̃) �= ⊥) then it is the weakest
witness of φ (ww = gfp(F̃).

Proof. We show that the witnesses of φ are exactly the pre-fixpoints of F̃ i.e.,
W = {x | x � F̃ (x)}.

– ⊆: Assume that w ∈ W . By definition of a witness, we have F (w) � w�φ. It
follows that w ∈ {y | F (y) � w � φ}. By definition of the least upper-bound
operator, we obtain that w �

⊔
{y | F (y) � w � φ} = F̃ (w). Therefore,

w ∈ {x | x � F̃ (x)}.
– ⊇: Assume that w is a pre-fixpoint of F̃ : w �

⊔
{y | F (y) � w � φ}. By

monotony and distributivity of F , we get F (w) � F (
⊔

{y | F (y) � w � φ})=⊔
{F (y) | F (y) � w � φ}. By definition of 	, we also have

⊔
{F (y) | F (y) �

w � φ} � w � φ. By transitivity, we obtain that F (w) � w � φ i.e., w ∈ W .

We conclude, since ww is defined as the greatest witness, that it is the greatest
pre-fixpoint of F̃ and therefore its greatest fixpoint. �	

As a result, if the lattice of properties satisfies the finite descending chain condi-
tion, the weakest witness can be computed by fixpoint iteration: ww = F̃∞(
).

3.3 Weakest Witnesses for Set-Based Analyses

The specification of the function F̃ is not directly executable. However, for set-
based distributive analyses, F̃ can be derived symbolically without resorting
to a naive tabulation. Canonical set-based distributive analyses are data-flow
analyses such as available expressions, busy expressions and live variables anal-
yses [MJ81, MR90]. We illustrate the symbolic computation of F̃ for data flow
problems which solution is expressed as the solution of a distributive function
F defined component-wise F (x1, . . . , xn) = (F1(x1, . . . , xn), . . . , Fn(x1, . . . , xn))
such that each Fi is defined by a set expression se of the following form

se ::= y | c | se1 ∩ c | se1 ∪ se2

where y is a variable, c is a constant set, ∩ is set intersection and ∪ is set union.
To compute F̃ symbolically, the key insight is the definition of a weakest

precondition operator wp. Given a set expression e and a upper-bound b for this

Small Witnesses for Abstract Interpretation-Based Proofs 273

expression, it computes the greatest n-tuple (v1, . . . , vn) so that e(v1, . . . , vn) � b.
In other words, it computes the weakest precondition over the variables such that
the set expression is dominated by the upper-bound b.

Definition 4. The weakest precondition operator wp is inductively defined by

wp(xj)(b) =
n[j �→ b]
wp(c)(b) = if c ⊆ b then
n else ⊥n

wp(e ∩ c)(b) = wp(e)(b ∪ c̄)
wp(e ∪ e′)(b) = wp(e)(b) � wp(e′)(b)

where c̄ is the complement of c and � is point-wise intersection of n-tuples.

Lemma 2 states formally that wp is a weakest precondition operator.

Lemma 2. Given a set expression e and a set bound b, the following holds:

wp(e)(b) =
⊔

{(x1, . . . , xn) | e(x1, . . . , xn) ⊆ b}.

Proof Sketch. The proof is by induction over the set expression e. The cases
e = xj and e = c are proved by definition of wp and ⊆. The remaining cases
e = e1 ∩ c and e = e1 ∪ e2 are proved by induction hypothesis using the facts
that e1 ∩ c ⊆ b iff e1 ⊆ b ∪ c̄ and that e1 ∪ e2 ⊆ b iff e1 ⊆ b ∧ e2 ⊆ b. �	

Theorem 3 states that F̃ can be computed using wp.

Theorem 3. Let F be a function defined by F (x) = (F1(x), . . . , Fn(x)) and
φ = (φ1, . . . , φn) be a tuple of set properties. We have that the inverse of F with
respect to φ (F̃) is alternatively defined by:

F̃ (x) =
�

i∈[1,n]

wp(Fi)(xi ∩ φi).

Proof. By definition, we have F̃ (x) =
⊔

{y | F (y) � x � φ}. Because F and
φ are tuples, this can be rewritten as: F̃ (x1, . . . , xn) =

⊔
{y |

∧
i∈[1,n] Fi(y) ⊆

xi � φi} =
⊔⋂

i∈[1,n]{y | Fi(y) ⊆ xi ∩ φi} =
�

i∈[1,n]
⊔

{y | Fi(y) ⊆ xi ∩ φi} (the
last equality holds because the sets are downward closed and because the Fi are
monotone). By Lemma 2, we finally obtain F̃ (x) =

�
i∈[1,n] wp(Fi)(xi ∩ φi). �	

4 Fixpoint Pruning

In theory, for analyses that are not distributive, it would be possible to make
them distributive by disjunctive completion. However, this approach generally
leads to analyses of forbidding complexity. In this section, we develop a method
for pruning a computed (post-)fixpoint into a small witness of a given property,
by computing a sort of disjunctive completion relative to the initial post-fixpoint.
We will first develop the general pruning technique and then show how its work-
ings for a relational polyhedra analysis.

274 F. Besson, T. Jensen, and T. Turpin

4.1 General Algorithm

Let w ∈ D be a witness of the property φ. Our only assumption is that the
property is expressed as a set of constraints (e.g., {x + y ≥ 0, x ≤ 42} for a
polyhedral analysis). In that case, we have that the powerset P(w) of w is a sub-
lattice of D when ordered by set inclusion. The idea of pruning is now simply
to look for smaller witnesses in this powerset. For flow-sensitive analyses, the
number of constraints is at least proportional to the size of the program and can
increase quickly if there are many variables. Therefore, a global minimization
of the witness by a direct search in the power set is not feasible. It is however
possible to adapt the algorithm from the previous section to minimize a witness.

The disjunctive completion D∨ of P(w) is the lattice that contains every dis-
junction of elements of P(w). As a unique representation, we choose to represent
its elements as sets of maximal disjuncts (sometimes called “crowns” [DP90]).

Lemma 3. Let F be a function and φ a property on a domain D of constraints
sets. Let D∨ = {X ⊆ P(w) | ∀x, y ∈ X, x � y =⇒ x = y}, and define
X �∨ Y by ∀x ∈ X, ∃y ∈ Y x � y. The disjunctive completion (D∨, �∨)
of P(D) is a complete lattice whose least upper bound operator satisfies X 	∨

Y = {x ∈ X ∪ Y | ∀y ∈ X ∪ Y x � y =⇒ x = y}. Furthermore, letting
F∨(X) =

⊔∨
x∈X {

�
{y ∈ P(w) | y � F (x)}}, the existence of witnesses for F∨

with respect to the property {φ} ensures the safety of the program.

These are standard results. The second part follows from the existence of a
Galois connection between the concrete domain and D∨ that makes F∨ an over-
approximation of the semantics. �	

F∨ is distributive, so we can use F̃∨ (Definition 3) to compute an optimal
witness.

The problem is that this weakest witness is in D∨ and therefore its minimality
doesn’t implies that it is small. Intuitively, it contains all possible minimal proofs
of the security property and hence can be very large, if there are many disjuncts.
We thus take a slightly different way in order to keep witnesses in P(w). While
F̃∨ : D∨ → D∨ is defined by

F̃∨(X) =
⊔∨

{Y ∈ D∨ | F∨(Y) �∨ X �∨ {φ}}

we define on the same lattice D∨ a variant F̂ whose result is further constrained.

Definition 5. Let F be a function and φ a property on a domain D of con-
straints sets. The function F̂ : D∨ → D∨ for pruning w is defined by

F̂ (X) =
⊔∨

{{y} | y ∈ P(w) ∧ ∃x ∈ P(w) {x} �∨ X ∧ F (y) � x�φ ∧ y � x}.

We remark that F̂ is monotone and let Ŵ be its greatest (pre-)fixpoint.

In this definition, the quantification ∃x ∈ P(w) {x} �∨ X ∧ . . . can be replaced
equivalently by the more direct formula: ∃x ∈ X Since D∨ is of finite height,

Small Witnesses for Abstract Interpretation-Based Proofs 275

Ŵ can be computed as Ŵ = F̂∞(
∨). The following theorem establishes how
F̂ and Ŵ are used for pruning.

Theorem 4. Ŵ is the set of maximal witnesses in P(w).

Proof. We proceed in three steps.

– We first prove that every w′ ∈ Ŵ is a witness. As Ŵ = F̂ (Ŵ), by definition
of F̂ and the property of 	∨ (Lemma 3), there exists an x ∈ P(w) such that
{x} �∨ Ŵ ∧ F (w′) � x � φ ∧ w′ � x. Since w′ ∈ Ŵ we also know that
{w′} �∨ Ŵ and that w′ is maximal with respect to this property. Thus, from
{x} �∨ Ŵ and w′ � x, we deduce that x = w′. Therefore, F (w′) � x � φ, i.
e., w′ is a witness.

– ⊇: Let w′ be a maximal witness. We have that F (w′) � w′ �φ∧w′ � w′. So,
{w′} is a pre-fixpoint of F̂ . We conclude by definition of Ŵ that {w′} �∨ Ŵ ,
that is, w′ � w′′ for some w′′ ∈ Ŵ As shown before, w′′ is a witness, therefore
w′ = w′′ (because w′ is a maximal witness) and w′ ∈ Ŵ .

– ⊆: We can now finish the proof of the first inclusion. Let w′ ∈ Ŵ , w′ is
therefore a witness. Let w′′ be a maximal witness greater than w′. From the
second inclusion, w′′ ∈ Ŵ , which implies that w′ = w′′ by definition of D∨

as a set of crowns. Thus w′ is a maximal witness. �	

The actual computation of the greatest fixpoint of F̂ is feasible if the disjunctions
have a reasonable number of disjuncts, but this might not always be the case
(theoretically, this number can be exponential in the number of constraints). In
this case, we can further approximate the optimal solution. We start with the fol-
lowing remark: a disjunction can be under-approximated by any of its disjuncts.
Therefore, we can make the pruning feasible by just choosing one disjunct at
each step, rather than keeping them all. This leads to the the definition of F̂
that is an (non-deterministic) under-approximation of F̂ .

Definition 6. The partial (non-deterministic) function F̂ : P(D) → P(D) for
approximatively pruning w is defined by

F̂ (x) = choose a weakest y � x s.t. F (y) � x � φ.

It is easy to see that every pre-fixpoint of F̂ (formally, every x such that x � F̂ (x)
for some choice) is a witness. We get a small one by computing F̂∞(
). Also,
every optimal witness can be reached by applying the approximated pruning.

4.2 Polyhedra Analysis

We illustrate the pruning algorithm on a convex polyhedra analysis. This anal-
ysis infers linear invariants that can be used to prove among other properties
the absence of integer overflows and illegal array accesses. The domain of con-
vex polyhedra has been used in various contexts, notably to analyse imperative
programs [CH78] and synchronous programs [Hal93]. To focus the presentation,
we consider the case of linear transition systems.

276 F. Besson, T. Jensen, and T. Turpin

Definition 7. A linear transition system is defined by:

– a finite set S of locations
– a finite set V of integer variables
– a finite set E of edges of the form s

p−→ s′ where s, s′ ∈ S and p is a convex
polyhedron of R

V ∪V ′
(with V ′ = {v′ | v ∈ V } a primed copy of V)

– a function I that maps every location to a convex polyhedron of R
V .

The operational semantics is as follows: if there is an edge s
p−→ s′ then the

system performs a transition from the location s with a valuation σ ∈ R
V of

the variables to the location s′ with valuation τ ∈ R
V iff σ + τ ′ ⊆ p where

σ + τ ′(v) = σ(v) and σ + τ ′(v′) = τ(v). p can describe assignments and guards
with linear expressions. I(l) represents the possible valuations of the initial states
whose location is l, and is typically false for all but one location.

The abstract semantics of a linear system is defined over the product lattice
D = Pol(V)S (where Pol(V) is the lattice of convex polyhedra of R

V) as the
least fixpoint of the function F : D → D defined by:

F (x) =

⎡
⎣s′ �→ I(s′) 	Pol(V)

⊔

s
p→s′∈E

Pol(V)
�p�(x(s))

⎤
⎦

where the abstract semantics �p� : Pol(V) → Pol(V) of a particular transition
polyhedron p is defined by

�p�(x) = projV ′

(
x × R

V ′ �Pol(V ∪V ′) p
)

[∀v v/v′] .

Here, projV ′ : Pol(V ∪ V ′) → Pol(V ′) is the polyhedra projection on the R
V ′

subspace, and [∀v v/v′] is the substitution that “unprimes” every variable.
If we consider that the elements of Pol(V) are represented as sets of constraints

then the whole abstract domain can be defined as a sets of constraints by the
coding x �

⋃
s∈S {s} × x(s).

So, given an abstract property w ∈ Pol(V)S we can compute the weakest pre-
condition operator F̂ : P̃(w) → P̃(w) as described above. This can be formulated
in terms of basics operations on sets and polyhedra.

F̂ (X) =
⊔

x∈X
I	x

P̃(w) �

s∈S

P̃(w) �

s
p

→s′

P̃(w) ⊔
C⊆w(s)

�p�(C)	x(s′)

P̃(w)
{{s} × C}

The meaning of this formula is that, starting from a set of witness candidates, we
keep those that are satisfied by the initial condition, compute the set of weakest
preconditions in one step for each of them, merge the result and keep only the
weakest of the computed properties, i.e., those that do not imply any other such
precondition (outermost). For each candidate, the computation of maximal
preconditions can be done state by state (outer �), taking the cross-product:

Small Witnesses for Abstract Interpretation-Based Proofs 277

note that this � can be implemented as a kind of product (a cartesian product
where (a, b) is replaced by a∪b) because the terms are independent (they operate
on different states). Finally, for every state we take the set of maximal properties
that are preconditions of every successor (�).

The non-optimal version of pruning can also be applied to polyhedra analysis:
instead of keeping a set of maximal witness candidates, we only keep one. The
outer 	 thus disappears. For every transition, only one weakest precondition
of the constraints in its successor state is choosen, removing the innermost 	.
Therefore, no disjunctions are created anymore, and every gratest lower bound
{a} � {b} can be replaced by {a ∪ b}. We obtain the simplified partial operator
F̂ : D → D with the following inplementation:

F̂ (x) =

⎧
⎨
⎩

⋃
s∈S {s} ×

⋃
s

p

−→s′

choose a weakest C ⊆ w(s)
s.t. �p�(C) � x(s′) if I � x

undefined otherwise

We have tested this algorithm to reduce linear invariants produced by the linear
systems analyser StInG [SSM04]. For a given property, we iterate the witness
optimisation function F̂ until a fixpoint is reached. For the choice function, we
use a greedy heuristics which minimises (locally) the constraints to be added to
the witness.

As a first example we consider a simple version of bubble sort whose code is
shown in Figure 1. We want to prove that array accesses are safe. Therefore,

for i = 0 to |t| - 2
for j = 0 to |t| - 2

exchange t[j] and t[j+1] if needed

start
i = j = 0, |t| >= 0

loop
i <= |t| - 2

j = |t| - 1, i := i + 1, j := 0
swap

j <= |t| - 2
j := j + 1

Fig. 1. Linear transition system for a simple bubble sort

the property is that 0 ≤ j ≤ |t| − 1 must hold in the body of the inner loop:
φ = {(swap, 0 ≤ j), (swap, j ≤ |t| − 1)}. The program is represented by the
linear transition system of Figure 1. The effect of pruning is shown in Table 1.
Basically, we find that the upper bound of j is unnecessary to keep because it is
implied by the guards. On the other hand, the lower bound can only be proved
by induction.

Other examples have been processed in the same way. For instance, for a
variant of the classic “train beacon” [Hal98], our witness for proving that trains
cannot collide only keeps 7 of the 18 linear invariants generated by StInG. Not
all the programs we have tested show a dramatic reduction of the number of
constraints. However, these examples are very abstract and only model aspects
relevant to the property. For more realistic applications, we expect that more
pruning would be possible.

278 F. Besson, T. Jensen, and T. Turpin

Table 1. Pruning a witness for bubble sort

Location Initial polyhedron Remaining constraints

start j = 0, |t| ≥ 0 j = 0
loop j ≥ 0, |t| − j ≥ 0 j ≥ 0
swap j ≥ 0, |t| − j − 2 ≥ 0 j ≥ 0

5 Certificates

As stated in the introduction, it is the existence of a witness that matters, not
its actual content. Based on this observation, we propose to define a certificate
and an algorithm for checking such certificates such that if the algorithm ac-
cepts the certificate then the existence of a witness is guaranteed. We propose
a format of certificates, define the algorithm for decoding such certificates and
prove the correctness of the algorithm. Then we show how to generate those
certificates from a witness, whose reconstruction costs no more than aplying F
once, checking � once and checking φ on an abstract property.

Recall that static analyses which attach a property per program point operate
over a product lattice Dn where D is the domain of properties and n the number
of program points. Note that we could also have a product of diferent domains,
which is equivalent to taking a “sum” lattice for D. The abstract semantics
function F : Dn → Dn exhibits static dependencies between program points
and if we note x = (x1, . . . , xn) then F has the form:

F (x) = (F1(xi1,1 , . . . , xi1,k1
), . . . , Fn(xin,1 , . . . , xin,kn

)).

Intuitively, properties attached to a particular program point only depends
on a subset of the other program points. Typically, for intra-procedural analy-
ses, Fj is only defined with respect to the predecessors of j in the control flow
graph. In the following, we write Πj(x1, . . . , xn) = (xij,1 , . . . , xij,kj

) for the ar-
guments of Fj . In the next section, we propose an algorithm which exploits such
dependencies to rebuild a witness from sparse certificates.

5.1 Certificate Format and Checking Algorithm

Existing witness reconstruction algorithms [Ros03, BJP06, AAPH06] are using
as certificate a sparse direct witness (Definition 1). The current algorithm is
more flexible: it relies on a more relaxed definition of witness (see Definition 2)
and allows to iterate the Fjs more than once. Together, these properties can
be exploited to obtain smaller certificates. Definition 8 presents the format of
certificates for a product domain Dn.

Definition 8. A certificate is a pair (K, S) where K : [1, n] �→ D is a partial
mapping from program points to properties and S ∈ [1, n]∗ is a sequence of
program points.

Small Witnesses for Abstract Interpretation-Based Proofs 279

The meaning of a certificate (K, S) is that, starting from an abstract state defined
by K (with all undefined program points interpreted as
), and recomputing
the program points in S using the Fjs should result in a direct witness.

The algorithm for checking a certificate (K, S) is formally defined in Figure 2.
We first prove an invariant that entails the correctness and allows for an optimiza-
tion of the algorithm.

check(K, S) =
check that every j defined in K appears at least once in S (1)

let w ∈ Dn be defined as w =

[
j �→

{
K(j) if K(j) is defined
� otherwise

]

for each j in S in sequence do
compute w′

j = Fj(Πj(w))
check that w′

j � wj (2)
wj ← w′

j

done
check that w � φ (3)

Fig. 2. Checking algorithm

Lemma 4. Let (K, S) be a certificate. When computing check(K, S), at each
iteration of the loop, Fj(Πj(w)) � wj holds for every j that has already been
visited once.

Proof. We show that this property is an inductive invariant. Let wk ∈ Dn be
the content of the variable w after the k-th iteration of the loop.

– The property is obvious at the beginning, since no j has been visited.
– Assume the invariant just before the k-th iteration. We need to prove that it

holds just after. Let j ∈ [1, n] such that j has been visited during iterations
[1, k]. First we remark that wk � wk−1, because of the test w′

j � wj in
line (2). Thus, as Fj is monotone we have Fj(Πj(wk)) � Fj(Πj(wk−1)) and
to show Fj(Πj(wk)) � wk

j it is enough to prove Fj(Πj(wk−1)) � wk
j . We

consider two cases.
• If j was visited during the k-th iteration then the assignment in the loop

implies that wk
j = Fj(Πj(wk−1)) and we conclude.

• Otherwise j had been visited before. The invariant before iteration k thus
implies that Fj(Πj(wk−1)) � wk−1

j and we also know that wk
j = wk−1

j

because j was not visited at this iteration. �	

This suggests the following optimization: the test w′
j � wj in the loop only needs

to be done for the first occurence of j in S.
The following theorem establishes the correctness of the algorithm.

Theorem 5. Let (K, S) be a certificate. If check(K, S) succeeds then the pro-
gram satisfies the associated security property φ.

Proof. We prove that when exiting from the loop, Fj(Πj(w)) � wj holds for
every j ∈ [1, n].

280 F. Besson, T. Jensen, and T. Turpin

– If j appears in S, Lemma 4 applies.
– Otherwise, the line (1) of the algorithm ensures that j is not defined in

K. Therefore, the initial value of wj was
. As wj was never updated, the
constraint is trivially satisfied.

This proves that the tuple w obtained at the end of the reconstruction is a post-
fixpoint of F . Line (3) ensures that this is also a direct witness for φ. �	

This verification scheme has the following benefits, compared to the naive solu-
tion of sending/verifying the whole witness:

– Abstract states need to be sent only for a subset of the program points.
– Some program points may not need to be evaluated, if they are not necessary

to prove the property.
– Comparisons between abstract states are only needed for the program points

for which an abstract state is sent.

5.2 Certificate Generation

For a witness w, we are looking for a good certificate for the verification algorithm
described above. The simplest one is (w, S) where S can be any strategy that
evaluates every program point once (in any order). But, if for example F is a
forward analysis and S follows the control flow graph, then most of the wj will
be overwritten before being used and therefore can be omitted. Keeping only the
loop headers allows for much smaller certificates, with simple strategies. This is
the core idea of the compression technique proposed in [BJP06].

We slightly generalize this setting in two ways: First, the control flow graph
is more than we really need: what is required is the dependencies between the
wj which may form a sparser graph. We opt for an intermediate solution: the
“static” dependency that are induced by the projections Πj , restricted to the
program points for which w has a non-
 value. Second, rather than anottating
loop headers, what we really want to do is to break every cycle of this dependency
graph with at least one program point for which K is defined, which for some loop
nestings requires stricly less of them. While it does not exploit all the generality
of the checker, this strategy is optimal for generating certificates that evaluate
every wj at most once.

Definition 9. The dependency graph of w is the directed graph DPw = (Jw , →)
whose set of vertices is Jw = {j ∈ [1, n] | wj �=
} and such that i → j iff
“i ∈ Πj(w)”, formally Πj(x1, . . . , xn) = (xij,1 , . . . , xij,kj

) with ij,l = i for some
l. The following theorem (whose proof is omitted) formalizes the intuition that
it is sufficient to break the cycles in DPw to obtain a certificate.

Theorem 6. Let (K, S) be a certificate such that

– ∀j ∈ Dom(K) K(j) = wj and
– ∀i, j i, j ∈ S ∧ j → i =⇒ j first appears before i in S ∨ K(j) = wj and
– ∀j K(j) is defined =⇒ j ∈ S.

Then check(K, S) succeeds.

Small Witnesses for Abstract Interpretation-Based Proofs 281

Therefore, generating a smallest certificate for w amounts to finding a minimal
subset K of [1, n] that “breaks the cycles”. This is known as the feedback node
set problem. While it is NP-complete in the general case, some polynomial al-
gorithms [LL88, Koe05] exists for the particular case of reducible graphs, which
is the case of structured control flow graphs. They run in O(m log(n)) where m
is the number of edges and n the number of vertices. Note that this applies to
weighted graphs as well, so that it would be possible to take into account the
concrete coding size needed by each program point for a particular witness.

The graph obtained from DPw by removing the exiting arcs of every vertex
in some feedback node set K naturally forms a partial order, and it is easy to
see that every total order S on Jw satisfying this order meets the necessary
conditions for Theorem 6 to apply, thus implying the validity of the certificate
(K, S). We haven’t explored the possible representation of the order S. A possible
solution is to let the code consumer deduce such an order from the K part,
which is trivial as soon as the user has sufficient ressources to build the reverse
dependency graph.

Applying this principle to the bubble sort example of the previous section,
we take the loop state that split the whole graph, ending with the certificate
({loop → j ≥ 0}, [loop, swap]), compared to the initial polyhedron and pruned
witness that are shown in Table 1.

Finally we can justify the choice for the definition of witnesses that we tried
to optimize in the previous sections. As we are sending parts of this abstract
property, it is best if its size is already minimized, hence the weakened condition
F (w) � φ rather than w � φ in the (relaxed) definition of witnesses. But we
remark that the condition can be further generalized in, say F k(w) � φ, k ≥ 0,
the limit being given by our certificate generation and verification algorithms:
as the checker permits to iterate more than once, valid certificates could be
obtained with the condition F k(w) � φ, k ≥ 0 for witnesses. However, letting
k = 1 ensures a very simple certificate generation (Theorem 6). Note that the
other constraint that w must be a post-fixpoint is crucial for the verification to
succeed and cannot be weakened.

6 Related Work

Albert et al. [AAPH06] describe a technique for reducing fixpoints produced
by a generic fixpoint algorithm. The fixpoint algorithm is presented in the set-
ting of logic program analysis but the underlying algorithmics of queues and
dependence graph is common to workset-based analyses. The reduction tech-
nique monitors the fixpoint iteration to detect which program points improves
other program points. The reduced certificate then consists of the fixpoint value
at these program points plus data to start the fixpoint iteration. The checker
takes as argument a reduced abstract property and an iteration strategy for the
fixpoint algorithm and use the generic algorithm for generating the full fix-point.

282 F. Besson, T. Jensen, and T. Turpin

Thus, the certificates have the same structure as ours. The main difference is
that their certificates are obtained by observing the behavior of an iterative
fixpoint solving while our algorithm works by using the dependencies in the
post-fixpoint once it has been produced. This means that our algorithm also
allows us to compress a witness that is already much smaller than the least
fixpoint whereas their approach only allows to compress the least fixpoint.

Rose [Ros03] proposes a fixpoint reconstruction algorithm for lightweight data
flow graphs. The Java byte code verifier of the KVM is using this approach to
check sparse certificates. The lightweight bytecode verifier is an instance of our
algorithm for which the S part of the certificate specifies that the program points
have to be processed in increasing order. This specialisation has the disadvantage
that the number of program point in the K part of the certificate might be larger
than needed. Also, the least fixpoint (i.e., the stronger one) is rebuilt, while there
could be a much smaller witness that ensure the same property.

Besson, Jensen and Pichardie [BJP06] show how to certify checkers for ab-
stract interpretation-based analyses. They propose a fixpoint reconstruction al-
gorithm using the notion of direct witnesses i.e., post-fixpoints that verify the
property. Because our current algorithm is based on a more relaxed definition
of witnesses (Definition 2), our certificates can be sparser. Moreover, Besson et
al., do not investigate how to optimise witnesses.

7 Conclusion

We have developed a general theory showning how invariants, issued as post-
fixpoints of abstract interpretations, can be compressed to provide witnesses
of particular program properties, as required e.g., in proof-carrying code. In
the case of distributive analyses, we have shown how an optimal (smallest)
witness can be computed. For the non-distributive case (notably convex poly-
hedra analysis) we have shown how to compute a good approximation of
minimal witnesses.

It is important to note that we are essentialy changing (pruning) the proof
that we send to the code consumer, while the other compression mechanisms
proposed so far keep all the informations produced by the original analysis.

The witnesses can be further compressed by only sending enough information
to enable their reconstruction and hence verify their existence, as in [BJP06]. It
would be interesting to apply lower level compression techniques to this setting,
for example, sending only enough bits of information to resolve the “choices”
that a checker has to make when rebuilding a witness, in the spirit of [NR01].

The pruning technique has been tested on invariants issued by a convex poly-
hedra analysis for proving simple security properties, namely the safety of array
accesses in small programs and the absence of colisions in a system for controling
trains. Even for those simple case studies, there is an improvement in the size of
certificates.

Small Witnesses for Abstract Interpretation-Based Proofs 283

References

[AAPH06] E. Albert, P. Arenas, G. Puebla, and M. Hermenegildo. Reduced certifi-
cates for abstraction-carrying code. In Proc. of the 22nd Int. Conf. on
Logic Programming, pages 163–178. Springer LNCS vol. 4079, 2006.

[BJP06] F. Besson, T. Jensen, and D. Pichardie. Proof-Carrying Code from Certi-
fied Abstract Interpretation and Fixpoint Compression. Theoretical Com-
puter Science, 364:273–291, 2006.

[CC77] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model
for static analysis of programs by construction of approximations of fix-
points. In Proc. of the 4th ACM Symp. on Principles of Programming
Languages, pages 238–252. ACM Press, 1977.

[CH78] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints
among variables of a program. In Proc. of the 5th ACM Symp. on Prin-
ciples of programming languages, pages 84–96. ACM Press, 1978.

[DP90] B.A. Davey and H.A. Priestley. Introduction to Lattices and Order. Cam-
bridge University Press, 1990.

[Hal93] N. Halbwachs. Delay analysis in synchronous programs. In Proc. of 5th
Int. Conf. on Computer Aided Verification, volume 697 of LNCS, pages
333–346. Springer-Verlag, 1993.

[Hal98] N. Halbwachs. About synchronous programming and abstract interpreta-
tion. Science of Computer Programming, 31(1):75–89, May 1998.

[Koe05] H. Koehler. A contraction algorithm for finding minimal feedback sets. In
Proc. of the 28th Australasian Conf. on Computer Science, pages 165–173.
Australian Computer Society, Inc., 2005.

[LL88] H. Levy and D. W. Low. A contraction algorithm for finding small cycle
cutsets. J. Algorithms, 9(4):470–493, 1988.

[MJ81] S.S. Muchnick and N.D. Jones. Program Flow Analysis: Theory and Ap-
plication. Prentice Hall Professional Technical Reference, 1981.

[MR90] T. Marlowe and B. Ryder. Properties of data flow frameworks. Acta
Informatica, 28:121–163, 1990.

[Nec97] G. Necula. Proof-carrying code. In Proc. of the 24th ACM Symp. on
Principles of programming languages, pages 106–119. ACM Press, 1997.

[NL98] G. Necula and P. Lee. Efficient representation and validation of proofs.
In Proc. of the 13th IEEE Symp. on Logic in Computer Science, pages
93–104. IEEE Computer Society, 1998.

[NR01] G. C. Necula and S. P. Rahul. Oracle-based checking of untrusted software.
In Proc. of the 28th ACM Symp. on Principles of programming languages,
pages 142–154. ACM Press, 2001.

[Ros03] E. Rose. Lightweight bytecode verification. J. Automated Reasoning,
31(3-4):303–334, 2003.

[SSM04] S. Sankaranarayanan, H. Sipma, and Z. Manna. Constraint-based linear-
relations analysis. In Proc. of the 11th Static Analysis Symposium, volume
3148 of LNCS, pages 53 – 68. Springer-Verlag, 2004.

[WAS03] D. Wu, A. W. Appel, and A. Stump. Foundational proof checkers with
small witnesses. In Proc. of the 5th ACM Int. Conf. on Principles and
Practice of Declarative Programming, pages 264–274. ACM Press, 2003.

Interprocedurally Analysing Linear Inequality
Relations

Helmut Seidl, Andrea Flexeder, and Michael Petter

Technische Universität München, Boltzmannstrasse 3, 85748 Garching, Germany
{seidl,flexeder,petter}@cs.tum.edu

http://www2.cs.tum.edu/˜{seidl,flexeder,petter}

Abstract. In this paper we present an alternative approach to interprocedurally
inferring linear inequality relations. We propose an abstraction of the effects of
procedures through convex sets of transition matrices. In the absence of condi-
tional branching, this abstraction can be characterised precisely by means of the
least solution of a constraint system. In order to handle conditionals, we introduce
auxiliary variables and postpone checking them until after the procedure calls.
In order to obtain an effective analysis, we approximate convex sets by means
of polyhedra. Since our implementation of function composition uses the frame
representation of polyhedra, we rely on the subclass of simplices to obtain an ef-
ficient implementation. We show that for this abstraction the basic operations can
be implemented in polynomial time. First practical experiments indicate that the
resulting analysis is quite efficient and provides reasonably precise results.

1 Introduction

In [5], Cousot and Halbwachs present an intraprocedural analysis of linear inequalities
based on an abstraction of the collecting semantics [4] by means of convex polyhe-
dra. They draw upon both the frame and the constraint representation of polyhedra to
perform the subsumption test and widening [5] on polyhedra. More precise widening
strategies on convex polyhedra are provided in [1]. Based on this approach an interpro-
cedural analysis can be obtained by relating input and output states of a procedure call
by means of linear inequalities. This leads to convex transition invariants on program
variables before and after the procedure call.

sf

rf

x := 2*x

x := x - 2

f:

x := x
x := 2

f()
s1

rm

sm

main:

s2

Fig. 1. An example program for transition invariants

R. De Nicola (Ed.): ESOP 2007, LNCS 4421, pp. 284–299, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

http://www2.cs.tum.edu

Interprocedurally Analysing Linear Inequality Relations 285

In the example in figure 1 (from [8]), the procedure call f() at program state 2 can
be described by the transition invariant x = x′ ∨ x = 2 · x′ − 2. The approximation of
this invariant by polyhedra leads to a complete loss of information. Although transition
invariants work in several practical cases (e.g., the McCarthy91 function [6]), they
seem too restrictive for a precise interprocedural analysis.

Instead, we propose an interprocedural alternative to transition invariants. Our ap-
proach is based on convex sets of transition matrices to capture the effects of proce-
dures. For our intraprocedural reachability analysis, the program states are abstracted
by convex sets of vectors, describing the values of the program variables. The trans-
formation of program states is described by linear transition matrices, similar to [8].
Within our approach we compute a finite representation for the effect of procedures [9]
(i.e. convex sets of transition matrices) which can be embedded into the reachability
analysis. In the absence of conditionals, this abstraction can be characterised precisely
by means of the least solution of a suitable constraint system. Since conditional branch-
ing cannot be represented by linear transformations, conditionals can obviously not be
evaluated on convex sets of transition matrices. Therefore, we introduce auxiliary vari-
ables for each condition and postpone checking them until after the procedure call. In
order to obtain an effective analysis, we follow the standard approach of approximating
convex sets by means of convex polyhedra [5]. Our composition operation for polyhe-
dra relies on the frame representation of polyhedra, represented by sets of points, rays
and lines. In order to avoid the expensive continual conversion between the two poly-
hedral representation forms [5], we resort to the frame representation alone. Testing
for subsumption as well as computing the union of two convex polyhedra is reduced
to linear programming problems [5]. In order to infer the linear inequalities for a pro-
gram point, the conversion to the constraint representation is deferred to the end of the
computation of the procedure effects or the very end of the analysis. However, poly-
hedra tend to be complex. Consequently, operations on polyhedra are expensive [10].
This induces the demand for perhaps more efficient representations of convex sets. In
[7], octagons, an efficient subclass of polyhedra, are introduced. Within this approach
at most two program variables per inequality are allowed with restrictions on the coef-
ficients, permitting only inequalities of the form ±x ± y ≤ c. Simon et al. abandon all
restrictions on the coefficients for the considered pair of occurring program variables in
[13]. In contrast, Clarisó et al. propose in [3] to approximate polyhedra with octahedra.
In contrast to the former approaches, they allow any number of program variables but
the coefficients of the inequalities are restricted to ±1 or 0. A quite general approach
is introduced by Sankaranarayanan et al., who introduce generic inequality templates
and solve systems of inequalities on the coefficients of the templates [11]. All these
approaches consist in restricted classes of constraint systems, though their frame repre-
sentation can easily become exponential.

This does not hold for simplices. Simplices are convex polyhedra which are restricted
in the number of frame elements to at most n linearly independent elements and a base
point, if n is the dimension of the underlying vector space. Thus, simplices form a
subclass of polyhedra and their frame representation has approximately the same size
as the constraint representation. This is the reason why we started to experiment with
approximations of convex sets by means of simplices. Based on this approximation, we

286 H. Seidl, A. Flexeder, and M. Petter

achieve that subsumption testing reduces to solving n + 1 systems of at most n linear
equations. Thus, our subsumption test can be performed in polynomial time.

Our approach for interprocedurally identifying linear inequality relations among the
variables of a program is subsequently described in detail. In section 2 we introduce
control flow graphs, representing our inspected program class. Furthermore, the collect-
ing semantics of our program class is described. In section 3 we turn to the abstraction
of the concrete semantics based on convex sets. In addition, we present a method for
interprocedurally dealing with conditionals. Effective approximations of convex sets
are discussed in section 5, where we also present simplices and the basic operations on
simplices. Finally, first experimental results and comparisons of our various approaches
are reported in section 6.

2 The General Set-Up

This section introduces the programs to be analysed together with their collecting se-
mantics. We assume that a program is represented by a finite set of disjoint control flow
graphs G, as illustrated in figure 1.

Each graph Gf ∈ G corresponds to a procedure f from a finite set Proc of proce-
dures. Each control flow graph Gf ∈ G consists of:

• a finite set Nf of program points of the procedure f ,
• a finite set Ef ⊆ (Nf × Label × Nf) of labelled control-flow edges,
• the start point sf ∈ Nf for the procedure f , as well as the
• return point rf ∈ Nf of f .

Labels at control-flow edges either are linear assignments (e.g. x1:=x2+5), pro-
cedure calls (e.g. h()), non-deterministic assignments (x1:= ?) or linear conditions
(e.g. x1-x2-3 ≥ 0). For simplicity, we only consider conditionals of the form t ≥ 0.

We suppose that the program operates on the n global program variables x1, . . . ,xn.
We assume the variables to take values on an ordered field F. In the following we
consider the field Q. Then a program state can be modelled by a (n + 1)-dimensional
column vector x = (1, x1, . . . , xn)T ∈ {1} × Q

n. Each component xi, i > 0, of the
vector x represents the value assigned to the program variable xi. Note that we use an
extra 0-th component 1. This extra component allows modelling the semantic effects of
affine assignments through linear transformations, e.g. as considered in [8].

The set of all state vectors attained at a program point through program execution
forms the collecting semantics of the program at this program point. Every assignment
xi := t of a linear term t = t0 +

∑n
j=1 tj · xj causes a linear transformation [[xi :=

t]] : 2Q
n+1 → 2Q

n+1
on the underlying set of program states. Its effect onto a single

program state can be described by multiplication of x with the following matrix:

[[xi := t0 +
n∑

j=1

tj · xj]] =

⎛
⎝

Ii 0
t0 . . . tn
0 In−i

⎞
⎠

with Ii : (i× i)-dimensional identity matrix in Q
i×i. As we consider extended program

states, the matrix of this definition is from Q
(n+1)2 . We only consider matrices where

the entry at position (0, 0) is equal to 1 and the remaining entries in the 0th row are 0.

Interprocedurally Analysing Linear Inequality Relations 287

For the beginning, we assume that the program does not contain conditional branch-
ing, i.e. edges labelled with inequalities. Since linear transformations are closed under
composition, we realise that the effects of procedures can be represented by sets of lin-
ear transformations of the extended program state. These sets of transformations can be
characterised by the least solution of the following constraint system T:

[T0] T(sf) ⊇ {Id}
[T1] T(v) ⊇ {[[xi := t]]} ◦ T(u) for (u, xi := t , v) ∈ Ef

[T2] T(v) ⊇ {[[xi := c]] | c ∈ Q} ◦ T(u) for (u, xi :=? , v) ∈ Ef

[T3] T(v) ⊇ T(rh) ◦ T(u) for (u, h() , v) ∈ Ef

Here, the operator ◦ denotes the element-wise function composition of two sets of trans-
formations. Thus, the effect of a whole procedure is the effect accumulated at the return
point of the procedure.

Constraint [T0] expresses that no initialisation of the program variables is performed
at the start point sf of any procedure f ∈ Proc. This results in the identity mapping Id.
[T1] describes the accumulation of the effect of a linear assignment. It is obtained by
the composition of the linear transformation corresponding to the assignment with the
effect already accumulated for the start point u of the edge. If the edge is labelled with a
non-deterministic assignment, each value c ∈ Q can be assigned to the program variable
xi. This is described by the constraint [T2]. Constraint [T3] describes the handling of
edges, which are labelled with a procedure call. We simply compose all transformations
of the called procedure with the transformations accumulated before the procedure call.
Since all right-hand sides in the constraint system T represent monotonic functions, a
least solution for this system exists. We denote the components of this least solution by
T(u) (u a program point).

Given the effects of procedures, we can characterise the sets of program states reach-
ing program points by the least solution of the constraint system A:

[A0] A(smain) ⊇ {1} × Q
n

[A1] A(sh) ⊇ A(u) if (u, h() ,) calls h ∈ Proc

[A2] A(v) ⊇ [[xi := t]] A(u) for (u, xi := t , v) ∈ Ef

[A3] A(v) ⊇
⋃
c∈Q

[[xi := c]] A(u) for (u, xi :=? , v) ∈ Ef

[A4] A(v) ⊇ T(rh) A(u) for (u, h() , v) ∈ Ef

The first constraint [A0] expresses that program execution starts with a call to the spe-
cific procedure main. At this point, no assumptions on the set of program states can
be made. Constraint [A1] describes that the start point of a procedure h is dependent of
all the program points where h is called. Linear and non-deterministic assignments, as
defined in [A2] and [A3], result in applying the transformation functions corresponding
to the edges element-wise to the sets of vectors reaching the start point of the edge.
The same does also hold for procedure calls where the effect of a call to h is given by
the set of transformations T(rh), provided by the least solution of the constraint system
T. This is formalised in the constraint [A4], where the function application is performed

288 H. Seidl, A. Flexeder, and M. Petter

element-wise to the sets of vectors. Again, the least solution for this constraint system
exists according to the fixpoint theorem of Knaster-Tarski and we denote its components
by A(u) (u a program point).

3 Convex Abstraction

In order to interprocedurally infer linear inequality relations, we want to construct a
precise abstraction for our collecting semantics. The abstraction should provide for ev-
ery program point u (hopefully all) linear inequalities, which are valid for all program
states reaching u. Geometrically, a linear inequality specifies a half space. The conjunc-
tive combination of these half spaces results in a convex set of vectors. This may serve
as a justification of an abstraction of the concrete semantics by means of convex sets,
the convex abstraction.

Formally, let C(Qn+1) denote the set of all convex subsets of vectors over Q
n+1.

On convex sets, the greatest lower bound
 is given by the set theoretical intersection,
while the least upper bound � is given by the convex hull of the set theoretical union:
〈X1〉 � 〈X2〉 = 〈X1 ∪ X2〉 with Xi ⊆ {1} × Q

n, i = 1, 2. The set C(Qn+1) of all
convex subsets of vectors together with the subset relation ⊆ as partial ordering relation
(denoted by � here) forms a complete lattice.

Now, we define the abstraction α : 2Q
n+1 → C(Qn+1) by: α(X) = 〈X〉 where 〈X〉

denotes the least convex set containing X ⊆ {1} × Q
n. The convex set 〈X〉 can be

obtained from X by applying the convex hull operation to X :

〈X〉 =

{
n∑

i=1

λizi | n ∈ N ∧ 0 ≤ λi ∧
n∑

i=1

λi = 1 ∧ zi ∈ X

}

Clearly, α commutes with arbitrary unions and therefore is an abstraction.
Within our interprocedural approach the effect of assignments is modelled by a set

of linear transformations. Each of these transformations can be represented by a matrix,
similar to [8]. As a matrix corresponds to a (n+1)2-dimensional vector, the abstraction
α is also applicable to sets of matrices. Thus, the abstract effect [[xi := t]]� of a linear
assignment xi := t results in the convex hull of the single (n+1)2 vector obtained from
[[xi := t]]. In the case of a non-deterministic assignment, all possible constant values of
Q could be assigned to the program variable. This effect is described by the following
convex set of transition matrices:

[[xi :=?]]� =

〈⎧⎨
⎩

⎛
⎝

Ii 0
λ 0 . . . 0
0 In−i

⎞
⎠ | λ ∈ Q

⎫⎬
⎭

〉

In order to approximate the convex abstraction of the effect of procedure calls, we
apply the abstraction to the constraint system T. The resulting system T� is given by:

[T0�] T�(sf) � {I} I ∈ Q
(n+1)2

[T1�] T�(v) � [[xi := t]]� ◦� T�(u) for (u, xi := t , v) ∈ Ef

[T2�] T�(v) � [[xi :=?]]� ◦� T�(u) for (u, xi :=? , v) ∈ Ef

[T3�] T�(v) � T(rh)� ◦� T�(u) for (u, h() , v) ∈ Ef

Interprocedurally Analysing Linear Inequality Relations 289

In the abstraction, we have used the convex composition ◦� on convex sets of linear
transformations, which is defined by an element-wise matrix-multiplication composed
with the convex hull operation:

〈C1〉 ◦� 〈C2〉 = 〈C1C2 | Ci ∈ Ci〉 with Ci ⊆ Q
(n+1)2

The least solution of T� provides an abstract effect of a procedure represented as a
convex set of transformation matrices. We only consider those matrices where the entry
at position (0, 0) is equal to 1 and the remaining entries at the 0th row are all 0. We
denote the components of this least solution by T�(u) (u a program point).

Accordingly, we can describe the reachability analysis in the convex abstraction by
the constraint system A� obtained from the concrete constraint system A by applying
the abstraction α:

[A0�] A�(smain) � {1} × Q
n

[A1�] A�(sg) � A�(u) if (u, h() ,) calls h ∈ Proc

[A2�] A�(v) � [[xi := t]]� ·� A�(u) for (u, xi := t , v) ∈ Ef

[A3�] A�(v) � [[xi :=?]]� ·� A�(u) for (u, xi :=? , v) ∈ Ef

[A4�] A�(v) � T�(rh) ·� A�(u) for (u, h() , v) ∈ Ef

Analogously to the abstract composition operator ◦�, the abstract application operator·�
is defined by element-wise application composed with the convex hull operation. The
least solution of the system A� again exists and provides us with a convex set of vectors
for every program point u. For convenience, we denote the components of this least
solution by A�(u) (u a program point).

First we want to show the safety and precision of the convex abstraction. For this
purpose we verify that the abstraction commutes with function application and compo-
sition of the linear transformations.

Proposition 1. For every set of vectors X ⊆ {1} × Q
n and all sets of transformation

matrices C,C1,C2 ⊆ Q
(n+1)2 , the following equalities hold:

1. 〈{Cx | x ∈ X , C ∈ C }〉 = 〈{Cx | x ∈ 〈X〉 , C ∈ 〈C〉 }〉
2. 〈{C1C2 | Ci ∈ Ci }〉 = 〈{C1C2 | Ci ∈ 〈Ci〉 }〉

For the constraint systems A� and T� we therefore obtain from proposition 1 with the
fixpoint transfer lemma:

Theorem 1. For every program point u and every procedure f of the program with
return point rf , the following holds:

1. A�(u) = α(A(u)) = 〈A(u)〉
2. T�(rf) = α(T(rf)) = 〈T(rf)〉

This theorem means that the smallest fixpoints of the constraint systems T� and A�

precisely characterise the convex abstraction α applied to the smallest fixpoints of the
constraint systems T and A for the collecting semantics.

290 H. Seidl, A. Flexeder, and M. Petter

In general, the least solutions of the abstract constraint systems will not be reached
after finitely many fixpoint iterations. In order to arrive at practical algorithms for com-
puting safe (over-) approximations of the least solutions of these constraint systems, we
therefore must rely on effective representations of convex sets together with effective
abstract composition and application operations as well as effective implementations
of subsumption and union. In order to speed up fixpoint iteration, a widening operator
must be provided.

By now, we have specified the convex abstraction and verified its correctness and
precision. However, our abstraction of the effects of procedures only works for non-
deterministic branching, i.e. in the absence of inequality guards. Linear inequality anal-
ysis is not yet very significant without the handling of conditionals. The next section
therefore provides a technique to enhance the base framework to handle linear inequal-
ity guards.

4 Linear Inequality Guards

Clearly, the reachability analysis can be enhanced to deal with linear inequality guards
(b ≥ 0). As in [5], the effect of such a guard is interpreted as the intersection with the
corresponding half-space of state vectors, which satisfy the guard:

[[b ≥ 0]] X = {x ∈ X | bx ≥ 0}
where for b = b0 + b1x1 + . . . + bnxn and x = (1, x1, . . . , xn)T ,

bx = b0 + b1x1 + . . . + bnxn

When analysing programs with conditional branching, the effects of procedures can
no longer be described by sets of linear transformations. Since the constraint system T
only speaks about linear transformations, conditionals cannot be easily integrated into
our concrete semantics. The constraint system A for the reachability analysis, however,
can be extended to conditionals by introducing the following constraint:

[A5] A(v) ⊇ {x ∈ A(u) | bx ≥ 0} for (u, (b ≥ 0), v) ∈ Ef

Within the convex abstraction, the idea for interprocedurally handling conditionals
therefore is to postpone their evaluation during the computation of procedure effects
until the reachability analysis. Up to this time, we suggest to store the value of each
condition in an auxiliary variable, which then can be checked for non-negativity.

Thus, we extend the original semantics by introducing new “program variables “, one
for each guard. Assuming that the guards are numbered n + 1, . . . , n + g, the auxiliary
variables are denoted by xn+1 . . .xn+g . This leads to an extension of every program
state by g extra components. All the auxiliary variables are initially set to 0. During
the effect computation we replace the jth conditional (b ≥ 0) with the assignment
xn+j := b. As the value of each condition is just stored in an auxiliary variable, condi-
tionals now can be treated within our effect computation. Accordingly, we modify the
constraint system T� as follows:

[T4�] T�(v) � [[xn+j := b]]� ◦� T�(u) for (u, (b ≥ 0), v) ∈ Ef

where (b ≥ 0) denotes the jth conditional.

Interprocedurally Analysing Linear Inequality Relations 291

Clearly, every feasible program execution path of the original program will also be
a feasible execution path of the transformed program – but not necessarily vice versa.
Thus, our postponed evaluation of guards introduces a safe over-approximation of the
concrete semantics. Due to the extension of every program state the constraint [A0�]
must be adapted to handle conditionals:

[A0�] A�(smain) � 1 × Q
n × 0g

This constraint shows that at the start point of procedure main every program state
is possible, in which all auxiliary variables are 0.

There are two natural choices for scheduling the evaluation of the postponed guards
(xn+j ≥ 0) during the reachability analysis. The first alternative is to schedule their
evaluation directly after each procedure call. Then the constraint system A� is modified
as follows:

[A4�] A�(v) � T�(rh) ◦� A�(u) ∩ {(1, x1, . . . , xn+g) | xn+j ≥ 0 for all j}
for (u, h(), v) ∈ Ef

[A5�] A�(v) � {x ∈ A�(u) | bx ≥ 0} for (u, (b ≥ 0), v) ∈ Ef

The modified constraint [A4�] describes the postponed evaluation of guards after
each procedure call, whereas the additional constraint [A5�] illustrates the direct evalu-
ation when a conditional has been visited.

As a second alternative, we may postpone the evaluation of guards even during the
reachability analysis – in order to perform a single check for every program point u just
before the valid linear inequalities for u are inferred. To this end, we use the original
constraint [A4�]. Furthermore, we replace the constraint [A5�] with corresponding as-
signments to the auxiliary variables:

[A5�] A�(v) � [[xn+j := b]]�(A�(u)) for (u, (b ≥ 0), v) ∈ Ef

where (b ≥ 0) denotes the jth conditional. Finally, we introduce extra unknowns
A�(u)′ for each program point u which are meant to receive the final analysis results.
For these, we have the extra constraint:

[A′] A�(u)′ � A�(u) ∩ {(1, x1, . . . , xn+g) | xn+j ≥ 0 for all j} for u ∈ Nf

The latter alternative may lose more precision in comparision to an analysis based
on immediate evaluation of guards, because more execution paths are admitted. A first
comparison between the two alternatives is shown in section 6. In case of an analysis
over integer variables, however, all of the second analysis can be performed within the
field Q – up to the final condition evaluation. Thus, we obtain a tight integer solution
already if the final round of intersections is performed by an ILP solver.

5 Representing Convex Sets

So far, we have introduced a framework for an interprocedural analysis for inferring lin-
ear inequalities. In order to arrive at practical analysis algorithms, it remains to choose
suitable effective representations for convex sets, which support the necessary opera-
tions as well as a widening operation to enforce termination of the fixpoint iteration.

292 H. Seidl, A. Flexeder, and M. Petter

Convex Polyhedra
y

x

P0

P1

P2

P3

R0

R1

For this purpose we focus on the subset of C(Qn+1) of convex
polyhedra [5], denoted by P . For our approach, we find it con-
venient to use the frame representation of polyhedra. This means
that a polyhedron F is represented as a triple F = 〈P,R,L〉
where P denotes a finite set of points, R is a finite set of rays and
L is a finite set of lines. The figure on the left-hand side illustrates
a polyhedron in Q

2, which consists of a point set and a ray set,
forming the polyhedron 〈{P0, P1, P2, P3}, {R0, R1}, ∅〉.

Every element of R, respectively L, is a vector, which can be considered as the differ-
ence of two points in the considered vector space. As mentioned in 2, we use projective
space within our vectors. Thus, the extra 0-th component of a vector is always 1 for
points and 0 for rays or lines. The set of points, represented by 〈P,R,L〉, is given by:

[[〈P,R,L〉]] = {
q∑

i=0

λiPi+
r∑

i=0

μiRi+
s∑

i=0

ηiLi | q, r, s ≥ 0∧λi, μi ≥ 0∧
∑

i

λi = 1}

with P = {P0, . . . , Pq}, R = {R0, . . . , Rr}, L = {L0, . . . , Ls}. In order to use poly-
hedra as effective representation of convex sets of transition matrices in the constraint
system T�, we must provide algorithms for composition, union, widening as well as an
effective test for subsumption on polyhedra. We introduce the polyhedral composition
◦P as an abstraction of ◦#, in order to easily express the composition on the frame
representation of polyhedra.

Composition. Let Fi = 〈Pi,Ri,Li〉, i = 1, 2, denote the frame representation of two
polyhedra of transition matrices. The polyhedral composition F = F1 ◦P F2 results in
the frame F defined by the triple 〈P,R,L〉, where

P ={P1 ◦ P2}
R ={P1 ◦ R2 ∪ R1 ◦ R2 ∪ R1 ◦ P2}
L ={L1 ◦ P2 ∪ L1 ◦ R2 ∪ L1 ◦ L2 ∪ P1 ◦ L2 ∪ R1 ◦ L2}

Here, ◦ denotes the element-wise multiplication of two sets of matrices.
By construction we obtain:

Proposition 2. The result of the polyhedral composition is a superset of the convex
composition: [[F1 ◦P F2]] � [[F1]] ◦� [[F2]]

The other direction � is not necessarily valid in presence of rays and lines. If the frame
consists of points only, the polyhedral composition ◦P is equivalent to the convex com-
position ◦�.

Widening. In order to compute effectively some (hopefully non-trivial) solution of the
constraint system T� by means of convex polyhedra, we should avoid infinite ascending
chains during fixpoint iteration. This can be achieved by the use of widening for poly-
hedra, e.g. the standard widening introduced by Cousot and Halbwachs [5]. Here, we
rely on those more precise widening strategies of Bagnara et.al. [1], which are restricted
to the frame representation of a convex polyhedron.

Interprocedurally Analysing Linear Inequality Relations 293

Union and Subsumption. In every step of the fixpoint iteration we must check if the
next polyhedron F for a constraint variable is already subsumed by the old value F′,
i.e. whether [[F]] � [[F′]]. This subsumption test can be implemented by successively
testing for all frame elements of polyhedron F whether they can be represented by the
elements of the polyhedronF′ or not. Thus, subsumption testing reduces to checking the
feasibility of a linear program [12]. Union for two polyhedra (following referred to as
polyhedral union) on the other hand is implemented readily using set theoretical union
on each of the three components of the frame representation. Subsequent subsumption
testing may be used to remove redundant elements from the result.

Linear Guards. According to the extended constraint system for the reachability anal-
ysis, as presented in section 4, both alternatives for evaluating conditionals can be ap-
plied to convex polyhedra. For performing intersections on polyhedra we apply the
techniques from [5].

In practice, program analysis using polyhedra is quite expensive [10]. Thus, in recent
approaches special subclasses of polyhedra have been proposed, e.g. octagons [7] or
octahedra [3]. These subclasses rely on restricted forms of constraint systems to specify
polyhedra, which then can be handled efficiently. Since the frame representation of
these polyhedra can be easily exponential in the number of constraints, they cannot be
applied here.

This is the reason why we will turn our attention to simplices, a particular subclass
of polyhedra, whose frame representation has almost the same size as the constraint
representation.

Simplices

The idea is to restrict the number of frame elements in the frame representation〈P,R,L〉
of a non-empty polyhedron to n frame elements and a base point P0 ∈ P, whereas the
differences P − P0, P0 �= P ∈ P together with the rays and lines are all linearly in-
dependent. In the following this fact is referred to as the linear independence of frame
elements.
y

x

P0

P1

R0

The figure on the left-hand side illustrates the simplex 〈{P0, P1},
{R0}, ∅〉 ⊆ Q

2. Two-dimensional simplices may consist of at most
three frame elements. Obviously, in this example the difference
P1 − P0 is linearly independent from the ray R0. For simplices,
we need again an appropriate subsumption test, union as well as
an effective composition. Furthermore, widening on simplices must
be introduced to assure the linear independence of frame elements.

Union and composition for simplices can be readily implemented by using the corre-
sponding polyhedral operations and subsequently determining a preferably small sim-
plex (referred to as enclosing simplex) which encloses the polyhedron.

Enclosing Simplex. Given a polyhedron F, a simplex S is called enclosing simplex
for F iff [[F]] � [[S]]. This enclosing simplex is realised by successively building up the
simplex. Starting with an empty simplex, which is successively widened with all the
frame elements of the polyhedron F.

294 H. Seidl, A. Flexeder, and M. Petter

Subsumption. As for polyhedra the subsumption test for simplices [[S]] � [[S′]] is per-
formed by successively checking the points, rays and lines of S whether they can be
expressed through the points, rays and lines of S′ or not. However, for simplices each
such test can be performed through solving an appropriate system of linear equations.
Because of the linear independence of frame elements, this system has a unique solu-
tion. In order to determine whether a point P , a ray R or a line L is subsumed by the
simplex 〈P,R,L〉, the corresponding system of linear equations has to be solved:

P = P0 +
q∑

i=1

λi(Pi − P0) +
r∑

i=0

μiRi +
s∑

i=0

ηiLi (1)

R =
r∑

i=0

μiRi +
s∑

i=0

ηiLi (2)

L =
s∑

i=0

ηiLi (3)

where
∑q

i=1 λi ≤ 1 ∧ λi, μi ≥ 0 holds, Pi ∈ P, Ri ∈ R, Li ∈ L and P0 as base point.
The complexity of solving such a system of linear equations is cubic in the number of
frame elements. If the system of linear equations is feasible and the restrictions for the
coefficients λi, μi hold, the point P , the ray R or the line L is considered as subsumed.

Composition. The composition of two simplices (referred to as simplicial composi-
tion) is reduced to the polyhedral composition ◦P and subsequently determining the
enclosing simplex.

Union. Union for two simplices S1,S2 (simplicial union) is implemented using the
polyhedral union of the simplices and subsequently determining the enclosing simplex
for this polyhedron. This can be efficiently realised by successively widening of simplex
S1 with all the frame elements of S2.

Widening. Widening of a simplex S with a frame element E results in three distinct
cases: First, if the frame element E is linearly independent of all the frame elements
of S, E can be directly added to the corresponding element set of S. Secondly, if E
is already subsumed, S does not have to be widened. In the third case the linearly
dependent frame elements of S (i.e. their linear combination represents E) are widened
according to one of the algorithms presented in figure 2, 3, 4.

When widening the simplex with a point P , the system of equations (1) has to be
solved to determine the coefficients for the frame elements, who contribute to the linear
combination of P (v. line 4 of the algorithm in figure 2). The frame elements, more
precisely the points and rays of the simplex, whose restrictions on the coefficients do
not hold, have to be widened.

If the restriction of a ray Rj does not hold, i.e. μj < 0, the ray Rj is removed from
the ray set of the simplex and added to its line set, as line 5 of the algorithm in figure 2
demonstrates. Furthermore, if the restriction on the coefficient of a point Pi does not
hold there are two cases: if λi < 0 then Pi is removed from the point set and the
difference P0 − Pi is added to the line set, whereas if λi > 1 the difference Pi − P0 is

Interprocedurally Analysing Linear Inequality Relations 295

1 widen(〈P, R, L〉, P){
choose some base point P0 ∈ P;
determine λi, μj with 1 ≤ i ≤ q, 0 ≤ j ≤ r
P = P0 +

Pq
i=1 λi(Pi − P0) +

Pr
j=0 μjRj +

Ps
i=0 ηiLi

for all j s.t. μj < 0: L ← L ∪ Rj; R ← R \ Rj;
6 for all i s.t. λi 	= 0:

if (λi < 0) {L ← L ∪ (P0 − Pi); P ← P \ Pi;}
if (λi > 1) {R ← R ∪ (Pi − P0); P ← P \ Pi; }

while (
Pq

j=1 λj > 1) {R ← R ∪ (Pq − P0); P ← P \ Pq;q ← q − 1; }
return 〈P, R, L〉;

11 }

Fig. 2. Widening of a simplex with a point P

widen(〈P, R, L〉, R){
choose some base point P0 ∈ P;
determine λi, μj with 1 ≤ i ≤ q, 0 ≤ j ≤ r

4 R =
Pq

i=1 λi(Pi − P0) +
Pr

j=0 μjRj +
Ps

i=0 ηiLi

for all j s.t. μj < 0: L ← L ∪ Rj; R ← R \ Rj;
for all i s.t. λi 	= 0:

if (λi < 0) {L ← L ∪ (P0 − Pi); P ← P \ Pi;}
if (λi > 0) {R ← R ∪ (Pi − P0); P ← P \ Pi; }

9 return 〈P, R, L〉;
}

Fig. 3. Widening of a simplex with a ray R

added to the ray set. Additionally, the restriction on the sum of the points’ coefficients∑q
i=1 λi ≤ 1 must be preserved. As long as this restriction does not hold, the ray

set is augmented with the differences Pi − P0 (v. line 9 of the algorithm in figure 2).
The resulting simplex subsumes P and does only consist of linearly independent frame
elements. Note that the precision of the widening presented here strongly depends on
the choice of the base point P0, but can be implemented in such a way, the choice of P0
becomes irrelevant for the precision of the resulting simplex.

In the case of widening a simplex with a ray R, we determine the coefficients for the
differences Pi −P0, P0 �= Pi ∈ P and the rays R (v. line 4 of the algorithm in figure 3).
Analogously to the algorithm widening with a point (v. 2), all the points and rays, whose
coefficients do not hold, are widened i.e. they are added to the ray set, respectively line
set (v. line 5/6 of the algorithm in figure 3).

widen(〈P, R, L〉, L){
choose some base point P0 ∈ P;
determine λi, μj with 1 ≤ i ≤ q, 0 ≤ j ≤ r
L =

Pq
i=1 λi(Pi − P0) +

Pr
j=0 μjRj +

Ps
i=0 ηiLi

5 for all j s.t. μj 	= 0 do L ← L ∪ Rj; R ← R \ Rj; od
for all i s.t. λi 	= 0 do L ← L ∪ (P0 − Pi); P ← P \ Pi; od
return 〈P, R, L〉;

}

Fig. 4. Widening of a simplex with a line L

296 H. Seidl, A. Flexeder, and M. Petter

Considering widening a simplex with a line L, all the rays and point differences with
non-zero coefficient, i.e. contributing to represent L, are widened to new lines, as de-
scribed in detail in the algorithm in figure 4.

When using simplices, termination of the fixpoint algorithm over the constraint sys-
tem T� need not be ensured by introducing additional widening. Since in Q

k, k =
O(n2), a non-empty simplex can be enlarged at most 3k-times, no infinite ascending
chains may occur. However, note that due to the frequent computation of the enclosing
simplex, the fixpoint iteration over the constraint system T� based on simplices leads
to a less precise approximation of convex sets than convex polyhedra.

Linear Guards. Since the class of simplices has been introduced in order to effi-
ciently approximate convex polyhedra when computing the effects of procedures, it
is not required to evaluate linear guards on simplices within our approach. Our reach-
ability analysis relies on polyhedra, on which the conditions can be directly evaluated,
v. section 4. When using simplices for the reachablity analysis, the evaluation of con-
ditionals on simplices cannot be performed directly after each procedure call or when
a condition is passed, because the result of an intersection is not necessarily again a
simplex. Since the creation of an enclosing simplex after the condition evaluation will
cause too much imprecision, checking the condition must be postponed until the end of
the analysis. Thus, it is preferable to transform the simplex into a convex polyhedron
and additionally perform the condition evaluation.

Moreover, operations on simplices have a better runtime complexity than on polyhedra:

Theorem 2. All the simplicial operations (subsumption, union, widening and compo-
sition) can be performed in a time, polynomial in the number of variables n.

Proof. Assume that the simplices considered here describe subsets of Q
k, where k =

O(n2). The simplicial operations of inclusion testing and widening are reduced to solv-
ing a system of at most k + 1 linear equations, which can be performed in O(k3) for
a simplex with k + 1 frame elements. Union is reduced to (k + 1)-times successive
widening, subsumption to (k + 1)-times inclusion testing. Thus, each operation can
be performed in time O(k4). The simplicial composition is given by the element-wise
composition of the frame elements (i.e. O(k2) matrix multiplications) and subsequently
determining its enclosing simplex, leading to a total complexity of O(k5). �

6 Preliminary Experimental Results

So far, we have introduced two different representations for convex sets – convex poly-
hedra and simplices. Even more, we have presented two alternatives for evaluating con-
ditionals within the reachability analysis – directly after each procedure call or once
at the end of the analysis. To get a general idea of the performance of these different
options in practical application, we have examined the behaviour of our interprocedural
approach on a collection of example programs. Here, we concentrate on three charac-
teristic examples, recursive add, array bounds and nested loops.

The example program recursive add contains a procedure, that recursively calls it-
self, computing the addition of two numbers. Furthermore, in array bounds array bound

Interprocedurally Analysing Linear Inequality Relations 297

checking, as done by Java programs, is simulated. Finally, we consider the iteration vari-
ables in the program nested loops, containing four nested for-loops. This program also
covers the case that a loop is bounded by the iteration variable of an outer loop.

The analysis set-up consists of approximating convex sets either by convex poly-
hedra or simplices and trying either direct condition evaluation or a single evaluation
at the end of the analysis. Our prototypical implementation is more complex than the
theoretical analysis described in this paper, as it deals with local variables, passing of
parameters and return values in procedures.

The following chart compares the effect analysis by means of convex polyhedra and
with simplices for each example program:

Table 1. Simplex compared to polyhedra

Program LOC # Procedures Increase in efficiency Precision

recursive add 26 4 62 % 100 %
array bounds 25 2 97 % 100 %
nested loops 28 2 98 % 75 %

The runtime of the reachability analysis by means of convex polyhedra does not
differ significantly from the reachability analysis by means of simplices. However, the
effect analysis by means of simplices is dramatically faster than the effect analysis by
means of convex polyhedra, as the column Increase in efficiency of table 1 illustrates.
Effect analysis with simplices has terminated in few seconds for all benchmarks.

Concerning the precision of the inferred inequalities, we have discovered that both
the approach via simplices and that via convex polyhedra is able to infer the exact
result for the recursive function in the case of recursive add and the dependence of the
iteration variable from the variable upper bound for array bounds. Yet for the example
program nested loops both approaches have returned quite precise results. However, in
this case the analysis by means of simplices has missed some lower loop bounds and
thus has not reached the full precision of the analysis with polyhedra, cf. table 1.

Since the analysis using simplices is rather fast and the quality of the inferred in-
equalities is not too imprecise, we conclude that it might be a good compromise to rely
on simplices for the effect analysis and to resort to convex polyhedra or other approx-
imations of convex polyhedra (e.g. octahedra from [3]) for the reachability analysis.
Contrary to our theoretical expectations from section 4, no advantage could be observed
of immediate condition evaluation over single evaluation at the very end of the analysis
– but this may just be due to the perhaps not very representative selection of benchmark
programs.

7 Conclusion

We have introduced a general framework for interprocedurally identifying linear in-
equality relations between the variables of a program for each program point. This can
be achieved by representing the effects of procedures with convex sets of transition ma-
trices. Within our approach we accumulate the single edge effects in order to describe

298 H. Seidl, A. Flexeder, and M. Petter

the effect of a whole procedure. These procedure effects can be simply embedded into
a reachability analysis by means of arbitrary approximations of convex polyhedra.

In the absence of conditional branching the convex abstraction can be characterised
precisely by the least solution of a constraint system. In order to handle conditional
branching within our framework, we propose to store the value of each conditional in
an auxiliary variable during effect analysis and postpone the evaluation up to the reach-
ability analysis. This postponement is safe, merely leading to an over-approximation.

In order to finitely represent and compute with convex sets, we approximate them
by means of convex polyhedra. We resort to the frame representation of polyhedra,
thus avoiding the expensive continual conversion between the two representations. The
frame representation of convex polyhedra, on the other hand, can be exponentially
larger than their constraint representation. For this reason, we propose the subclass of
simplices as an abstract domain. Since for simplices the number of frame elements is
restricted, we obtain a small representation for convex sets. Moreover, the basic oper-
ations on simplices can be performed in polynomial time. Thus, our effect analysis by
means of simplices runs in polynomial time, more precisely, the analysis is linear in the
program size and polynomial in the number of program variables and guards.

First practical experiments indicate that this approach is quite efficient and provides
reasonably precise results. In contrast to convex transition invariants, our interprocedu-
ral analysis is able to yield the exact invariant x = 2 for program point rm in figure 1. It
remains for future work to examine the scalability of our approach for larger and more
realistic benchmark programs. However, if the complexity for larger programs prevents
a practical application of our approach, clustering, as introduced in Astrée [2], could be
included.

References

1. R. Bagnara, E. Zaffanella, P. M. Hill, and E. Ricci. Precise widening operators for convex
polyhedra. In 10th International Static Analysis Symposium (SAS), pages 337–354, 2003.

2. B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and
X. Rival. A static analyzer for large safety-critical software. In Proceedings of the ACM SIG-
PLAN Conference on Programming Language Design and Implementation (PLDI), pages
196–207, 2003.

3. R. Clarisó and J. Cortadella. The Octahedron abstract domain. In 11th International Static
Analysis Symposium (SAS), pages 312–327, 2004.

4. P. Cousot and R. Cousot. Abstract interpretation frameworks. Journal of Logic and Compu-
tation, 2(4):511–547, 1992.

5. P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among variables of a
program. In 5th Ann. ACM Symposium on Principles of Programming Languages (POPL),
pages 84–97, 1978.

6. Z. Manna and J. McCarthy. Properties of programs and partial function logic. 1970.
7. A. Miné. The Octagon abstract domain. In Analysis, Slicing, and Transformation (AST),

pages 310–319, 2001.
8. M. Müller-Olm and H. Seidl. Program analysis through linear algebra. In 31th Ann. ACM

Symposium on Principles of Programming Languages (POPL), 2004.

Interprocedurally Analysing Linear Inequality Relations 299

9. M. Müller-Olm and H. Seidl. A generic framework for interprocedural analysis of numerical
properties. In 12th Static Analysis Symposium (SAS), pages 235–250, 2005.

10. S. Sankaranarayanan, M. Colon, H. Sipma, and Z. Manna. Efficient strongly relational poly-
hedral analysis. In 7th International Conference, Verification, Model Checking and Abstract
Interpretation (VMCAI), 2006.

11. S. Sankaranarayanan, H. Sipma, and Z. Manna. Constraint based linear relations analysis.
In 11th International Static Analysis Symposium (SAS), pages 53–68, 2004.

12. A. Schrijver. Theory of linear and integer programming. 1986.
13. A. Simon, A. King, and J. M. Howe. Two Variables per Linear Inequality as an Abstract

Domain. In Logic Based Program Development and Transformation (LOPSTR), pages
71–89, 2002.

Precise Fixpoint Computation Through Strategy
Iteration

Thomas Gawlitza and Helmut Seidl

TU München, Institut für Informatik, I2
85748 München, Germany

{gawlitza,seidl}@in.tum.de

Abstract. We present a practical algorithm for computing least solutions of sys-
tems of equations over the integers with addition, multiplication with positive
constants, maximum and minimum. The algorithm is based on strategy iteration.
Its run-time (w.r.t. the uniform cost measure) is independent of the sizes of oc-
curring numbers. We apply our technique to solve systems of interval equations.
In particular, we show how arbitrary intersections as well as full interval multi-
plication in interval equations can be dealt with precisely.

1 Introduction

In this paper we are interested in computing the precise least solutions of systems of
interval equations using addition, multiplication, intersection and union [4,11,12]. In-
stead of doing so directly, we first consider the simpler problem of solving systems of
equations over the integers using the operations addition, multiplication with positive
constants, minimum and maximum. In fact, this computational problem can be consid-
ered as “one half” of precisely solving systems of equations over the interval domain:
we simply may represent the value a by the interval [−∞, a]. Thus, every method for
computing precise least solutions of interval equations can be used to determine least
solutions of integer equations. At least in absence of full multiplication, there is also a
reduction in the opposite direction: solving interval equations precisely can be reduced
to solving systems of integer equations as well.

Precise interval analysis has recently been considered by Su and Wagner [16] who
propose a polynomial-time algorithm in case that one argument of every multiplica-
tion and intersection is constant. A clarified and improved version of this algorithm
is presented in [6]. Since the linear ordering of integers has infinite ascending chains,
ordinary fixpoint iteration will not result in terminating algorithms. For the lucky case
where all numbers are non-negative, polynomial fixpoint algorithms are provided in
[15]. In presence of general minima as well as negative numbers, no practical precise
methods have been suggested so far. Clearly, we could apply general techniques such as
the widening and narrowing approach of Cousot and Cousot [5]. While often returning
amazingly good results, widening and narrowing is not guaranteed to compute the least
solution of an equation system. Recently, strategy iteration has been proposed as an al-
ternative method for approximative abstract interpretation in [3] where also conditions
are derived under which least solutions can be obtained. Strategy iteration has been in-
troduced by Howard for solving stochastic control problems [8,14] and is also applied to

R. De Nicola (Ed.): ESOP 2007, LNCS 4421, pp. 300–315, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Precise Fixpoint Computation Through Strategy Iteration 301

zero-sum two player games [7,13,17] or fixpoints of min-max-plus systems [2]. In gen-
eral, strategy iteration will find some fixpoint which in the context of program analysis
thus provides a safe over-approximation. For expanding systems the returned solution,
though, is not always guaranteed to be the least possible [3]. Given that strategy itera-
tion finds some fixpoint, we can be sure to have reached the least one if fixpoints are
unique. One instance of this principle are fixpoint equations over Banach spaces where
the transformation induced by right-hand sides is contracting. This is the reason why
strategy iteration is nicely applicable to discounted mean-payoff games. Discounting,
however, relies on exact arithmetic on potentially large numbers [18].

Here, we propose an approach based on an instrumentation of the underlying lat-
tice. We first consider the simpler case of equation systems over the complete lattice of
integers (extended with ±∞) where right-hand sides use addition, multiplication with
positive constants as well as minimum and maximum. The instrumentation is meant
to count the number of accesses to variables during fixpoint iteration. By itself, this
instrumentation is not sufficient to guarantee uniqueness of fixpoints. It is sufficient,
though, to guarantee for systems without maximum operators to admit at most one so-
lution which maps all variables to values exceeding −∞. This observation allows us to
apply the generalization of the Bellman-Ford algorithm from [6] to compute this unique
solution efficiently. Together with a suitable strategy iteration, we thus obtain an exact
method for solving integer equations. This method vastly generalizes the results from
[9,15] which are only applicable to systems of equations without negative numbers.
Along the lines of [6], our technique for systems of integer equations provides us with
a precise algorithm for interval equations. This basic approach, however, can only han-
dle equations where multiplication is always with constant intervals. Beyond that, we
also provide a technically non-trivial extension resulting in a precise method also for
systems of interval equations where arbitrary multiplication is allowed.

All our algorithms are uniform, i.e., their numbers of arithmetic operations do not
depend on the numbers occurring in the systems. Also, they return precise answers and
thus do not rely on widening or narrowing. Our implementation also indicates that the
algorithm is decently efficient even on rather large systems of interval equations. The
rest of the paper is organized as follows. In section 2, we introduce basic notions for
systems of equations over the integers. In section 3, we present our instrumentation
technique for integers and show how to construct a strategy iteration algorithm based
on max strategies to compute the precise least solution of a system of integer equations
containing multiplication with positive constants, addition, minimum and maximum. In
section 4, we apply and generalize these methods to obtain algorithms for computing
precise least solutions of interval equations. This section presents our novel techniques
for precisely dealing with full multiplication in interval equations.

2 Notation and Basic Concepts

In the beginning, we are interested in solving systems of equations over the complete
lattice of integers Z = Z ∪ {−∞, ∞} equipped with the natural ordering

−∞ < . . . < −2 < −1 < 0 < 1 < 2 < . . . < ∞.

302 T. Gawlitza and H. Seidl

On Z , we consider the operations addition, multiplication with positive constants, min-
imum “∧” and maximum “∨” extended to operands “−∞” and “∞”. As usual, addition
and multiplication are extended as follows:

x+(−∞) = (−∞)+x = −∞, 0·x = x·0 = 0 for all x
x·(−∞) = (−∞)·x = −∞, x·∞ = ∞·x = ∞ for all x > 0
x·(−∞) = (−∞)·x = ∞, x·∞ = ∞·x = −∞ for all x < 0
x+∞ = ∞+x = ∞ for all x �= −∞

A system of integer equations is a sequence of equations xi = ei for i = 1, . . . , n,
where the variables xi on the left-hand sides are pairwise distinct and and the right-
hand sides ei are expressions e built up from constants and variables by means of our
operations, i.e., adhere to the following grammar:

e ::= a | xi | e′1 + e′2 | b · e | e′1 ∨ e′2 | e′1 ∧ e′2

where a ∈ Z and b > 0. The set of variables of the system under consideration will
be denoted by X in the following. In [15] polynomial algorithms for computing least
solutions are presented for similar systems — but only when computing least solutions
over nonnegative integers. In [6], also negative integers are allowed. Minima, however,
are only considered when one argument is constant. Here, we lift the latter restriction.
For a variable assignment μ : X → Z an expression e is mapped to a value [[e]]μ ∈ Z:

[[a]]μ = a [[xj]]μ = μ(xj)
[[e′1 + e′2]]μ = [[e′1]]μ + [[e′2]]μ [[b · e′2]]μ = b · [[e′2]]μ
[[e′1 ∧ e′2]]μ = [[e′1]]μ ∧ [[e′2]]μ

where a ∈ Z and b > 0. As usual, a solution is a variable assignment μ which satisfies
all equations of a system E , i.e. μ(xi) = �ei�μ for all i. Since every right-hand side ei

induces a monotonic function [[ei]], every system E has a unique least solution.
This least solution can be computed by performing ordinary fixpoint iteration over

the finite lattice {−∞ < a < . . . < b < ∞} for suitable bounds a ≤ b. This results
in practical algorithms only if reasonably small bounds a, b to the values of variables
can be revealed. Here, our goal is to exhibit practical algorithms whose run-time1 is
independent of the sizes of involved numbers. We call such algorithms uniform. The
uniform run-time therefore only depends on structural properties of the equation sys-
tem. In particular, we define the size |E| of E as the number of variables plus the sum of
expression sizes of right-hand sides.

3 Computing Least Solutions

An interesting approach for constructing uniform fixpoint algorithms is strategy itera-
tion as proposed by Costan et al. [3]. Rephrased for a system E of integer equations,
they let a min strategy π select one of the ei in every occurring minimum expression

1 w.r.t. a uniform cost measure which counts every arithmetic operation as well as comparisons
on integers as O(1).

Precise Fixpoint Computation Through Strategy Iteration 303

e1 ∧ e2. The least solution μπ of the resulting system then is guaranteed to be an up-
per bound to the least solution of E . If μπ is not a solution of E , the strategy can be
improved. If on the other hand, μπ is a solution of E , the iteration terminates.

Example 1 (From [3]). Consider the system consisting of x = y∧ 1 and y = 2x∨−1.
A min strategy might select the expression 1 in the first equation resulting in:

x = 1 y = 2x ∨ −1

whose least solution maps x to 1 and y to 2, which is a solution of the original system.
Note, however, that the least solution of the original system maps x and y to −1.
�

As indicated by example 1, strategy iteration based on min strategies may not necessar-
ily result in least solutions. Our idea therefore is to rely on max strategies instead which
select one of the arguments of every maximum expression in the equation system. This
alone, however, is not a meaningful approach since least solutions of equation systems
with minimum alone will often have just trivial least solutions.

Example 2. Consider the system: x = 0∨x+1. A (max) strategy might either select
the expression 0 or the expression x + 1 in the right-hand side. In the first case, the
least solution of the resulting system maps x to 0, whereas in the second case, the least
solution maps x to −∞. The least solution of the original system, however, is given by
μ∗ = {x �→ ∞}.
�

Our extra idea here therefore is to instrument the underlying lattice in such a way that
we can rely on particular solutions of conjunctive systems for approximating the least
solution of the original system, namely those which do not map variables to −∞. Due
to our instrumentation, these solutions happen to be unique and thus are computable
by greatest fixpoint iteration. The idea of the instrumentation is to provide an extra
component which, besides the reached value in Z, additionally records the minimal
(nonnegative) depth of recursive descents into variables necessary to produce this value.
Accordingly, the instrumented domain is given by D = D∪{−∞, ∞} where D = Z×N

is the set of finite elements of D and −∞ and ∞ are the least and greatest elements,
respectively. The ordering on D is given by:

(a1, j1) ≤ (a2, j2) iff a1 < a2 ∨ (a1 = a2 ∧ j1 ≥ j2)

This ordering is again linear. The operators “+” and “b·” over D behave similar to the
corresponding operators over Z when applied to −∞ or ∞. For finite elements, we
define:

(a1, j1) + (a2, j2) = (a1 + a2, j1 ∨ j2)

b · (a, j) =

⎧
⎪⎪⎨
⎪⎪⎩

−∞ if b = ∞ and a < 0
(a, j) if b = ∞ and a = 0
∞ if b = ∞ and a > 0
(b · a, j) if ∞ > b > 0

Furthermore we introduce a function inc defined by inc(−∞) = −∞, inc(∞) = ∞
and inc((a, j)) = (a, j + 1). The function inc distributes over +, · ,∧ and ∨, i.e.:

inc(x + y) = inc(x) + inc(y) inc(b · x) = b · inc(y)
inc(x ∧ y) = inc(x) ∧ inc(y) inc(x ∨ y) = inc(x) ∨ inc(y)

304 T. Gawlitza and H. Seidl

Algorithm 1. Generalized Bellman-Ford algorithm

for i = 1 to n do μ(xi) ← ∞;
for j = 1 to n do

for i = 1 to n do μ(xi) ← [[ei]]
�μ;

for j = 1 to n do
for i = 1 to n do if [[ei]]

�μ < μ(xi) then μ(xi) ← −∞;
return μ;

The evaluation of an expression e (possibly containing applications of inc) over D will
be denoted by [[e]]�. In order to instrument the equation system E to additionally record
accesses to variables, we define a lifting operation as follows. For every expression e
over Z , the corresponding lifted expression [e]� is obtained from e by replacing every
constant a ∈ Z with (a, 0) and every variable xj with inc(xj). Let E� denote the corre-
sponding lifted system over D where every equation xi = ei is replaced with xi = [ei]�

for i = 1, . . . , n. Thus, in a lifted system, every occurrence of a variable in a right-hand
side is guarded by a call to the function inc. We verify:

Theorem 1. Assume that E is a system of integer equations with least solution μ∗.
Let μ� denote the least solution of the corresponding lifted system E�. Then for every
variable xi the following holds:

1. μ∗(xi) = μ�(xi) whenever μ∗(xi) ∈ {−∞, ∞};
2. μ�(xi) = (μ∗(xi), j) for some j ∈ N whenever μ∗(xi) ∈ Z.
�

Given the above theorem, our goal is to compute the least solution of the lifted equation
system E� over the instrumented lattice D. Thereby, we first consider the case, in which
no right-hand side of E� contains a maximum. We call such systems conjunctive. The
greatest solution of a conjunctive equation system turns out to be easily computable.

Theorem 2. Let E� denote a conjunctive lifted system of integer equations with n vari-
ables and greatest solution μ�. Then

1. μ� can be computed in time O(n · |E�|);
2. If μ�(xi) ∈ D, then μ�(xi) = (a, j) for some 0 ≤ j ≤ n.

Proof. Here, we rely on alg. 1, which is an adaption of the Bellman-Ford algorithm.
In particular, if the greatest solution μ� does not map variables to −∞, then just n
rounds of Round Robin iterations suffice to determine μ�. For a correctness proof, we
refer to [6] where a similar result is shown for least solutions of disjunctive systems, i.e.,
systems having no occurrences of minimum operators. The use of Gaussian elimination
to determine μ�, also reveals the second statement.
�

We call a variable assignment μ feasible iff μ(xi) > −∞ for all variables xi. Our key
result for conjunctive lifted systems is:

Theorem 3. Let E� denote a conjunctive lifted system of integer equations with greatest
solution μ�. If E� has a feasible solution μ, then μ = μ�.

Precise Fixpoint Computation Through Strategy Iteration 305

Proof. Obviously, if there exists a feasible solution μ, then the greatest solution μ� is
also feasible. To show, that μ� is the only feasible solution, we first consider a system
E� which consists of a single equation:

x1 = a0 ∧ b1 · inck1(x1) + a1 ∧ . . . ∧ br · inckr (x1) + ar

where bj > 0, kj > 0 and a0, aj ∈ Z . Note that a0 can also equal ∞. If b1 · inck1(a0)+
a1 ∧ . . . ∧ br · inckr (a0) + ar ≥ a0, then a0 is the greatest solution and the only
one exceeding −∞. For a contradiction, assume z > −∞ were another solution, i.e.,
−∞ < z < a0. Then b1 · inck1(z) + a1 ∧ . . . ∧ br · inckr (z) + ar < a0. Since the
second component of b1 · inck1(z) + a1 ∧ . . . ∧ br · inckr (z) + ar exceeds the second
component of z, z cannot be a solution. If on the other hand, b1 · inck1(a0) + a1 ∧ . . . ∧
br · inckr (a0) + ar < a0, the equation has −∞ as only solution.

Now consider an arbitrary conjunctive equation system E� with feasible solutions.
We proceed by induction on the number n of variables in right-hand sides. If n = 0,
the statement trivially holds. So let n > 0, and let xi be a variable that occurs in a
right-hand side of E�. Consider the equation xi = ei of E�. Our goal is to construct an
expression e′ without occurrences of xi which is equivalent to ei. Then we replace all
occurrences of xi in right-hand sides with e′. By using distributivity, we have:

ei = e′0 ∧ b1 · inck1(xi) + e′1 ∧ . . . ∧ br · inckr (xi) + e′r

for suitable constants bj > 0, kj > 0 and expressions e′0, e
′
j not containing xi. Then we

choose e′ as e′0. For an arbitrary feasible solution μ′ of E�, let ρ denote the substitution
ρ(xi) = xi and ρ(xj) = μ′(xj) for j �= i. According to the single equation case, the
single equation xi = ei ρ has a unique feasible solution which is given by xi = e′ ρ.
Thus, we can substitute every occurrence of xi in right-hand sides of E� with e′ to obtain
a system of equations which has a superset of feasible solutions of E� — but one variable
less in right-hand sides. Then the assertion follows with the induction hypothesis.
�

Since conjunctive lifted systems with a feasible solution have exactly one feasible so-
lution which thus is equal to the greatest solution2, we can apply alg. 1 to compute it.
Next, we show how conjunctive systems with feasible solutions can be used to deter-
mine the least solution of a lifted system E�. For that, let M(E�) denote the set of all
maximum expressions in E�. A (max) strategy π is a function mapping every expression
e1 ∨ e2 in M(E�) to one of the subexpressions e1, e2. Let E�(π) denote the conjunctive
system obtained from E� by recursively replacing every maximum expression with the
respective subexpression selected by π.

Now assume that we are given a strategy π such that the greatest solution μπ

of E�(π) is feasible and a lower bound to the least solution of E�, i.e., μπ ≤ μ�.
As a consequence μ� must also be feasible. If μπ is a solution of E�, then we have
already found the least solution of E� and are done. Otherwise, some expression e1 ∨ e2

in M(E�) exists where π does not select the expression ei with [[ei]]
�
μπ > [[e3−i]]

�
μπ. In

2 Their least solution still might not be feasible.

306 T. Gawlitza and H. Seidl

order to improve the strategy, we may, e.g., pursue the policy to modify π at all such
expressions simultaneously. Thus, we define the improved strategy P (μπ) by:

P (μπ)(e1 ∨ e2) =

{
e1 if [[e1]]

�
μπ ≥ [[e2]]

�
μπ

e2 if [[e1]]
�
μπ < [[e2]]

�
μπ

Proposition 1. Let μ� denote the least solution of the system E�, and assume that μ <
μ� is a feasible variable assignment. Let π be the strategy π = P (μ) and μ′ denote the
greatest solution of E�(π). Then μ < μ′ ≤ μ�.
�

Algorithm 2. Strategy Improvement Algorithm
μ ← μ0;
while (μ not solution of E�){

π ← P (μ); μ ← greatest solution of E�(π);
}
return μ;

Proof. Let μ1 denote the variable assignment defined by μ1(xi) = [[ei]]
�
μ for every

equation xi = ei of E�. By construction, μ < μ1 ≤ μ�. We claim that μ1 ≤ μ′.
By monotonicity, we have for every equation xi = e′i of E�(π), [[e′i]]

�
μ1 ≥ [[e′i]]

�
μ =

[[ei]]
�μ = μ1(xi). Thus, μ1 is a pre-fixpoint of E�(π). Since, by the fixpoint theorem of

Knaster-Tarski, the greatest solution of a system is an upper bound for all pre-fixpoints,
μ1 ≤ μ′ which is the claim above. Since E�(π) has just one feasible solution, μ′ is also
the least solution of E�(π) exceeding μ. Therefore, μ′ is bounded by the least solution
of E� exceeding μ. Since μ is bounded by μ�, the latter equals μ�. Thus μ′ ≤ μ�.
�

Assume that E� is an equation system for which we are given an initial feasible vari-
able assignment μ0 ≤ μ�. We propose strategy improvement algorithm 2, that, given
E� and μ0 returns the least solution of E�. By proposition 1, the sequence of variable
assignments μ constructed by alg. 2 forms a strictly increasing chain. Since every vari-
able assignment in this strictly increasing chain is the greatest solution of E�(π) for
some strategy π, every strategy occurs at most once. Since algorithm 2 terminates with
a solution of the system, proposition 1 also implies that it returns the least solution.

Our approach is remarkable in that it does not rely on discounting as, e.g., the related
algorithms in [13,2] for computing game values of mean-payoff games. Instead, we
use ordinary arithmetic on numbers of length O(n · log(B)) where B is the maximal
absolute value of a finite constant occurring in E .

So far we have assumed that the least solution of E� is feasible and that we have an
initial feasible variable assignment μ0 ≤ μ� at hand. We have not yet revealed how to
arrive at such a variable assignment. Note that we cannot ignore this problem and start
with any strategy instead.

Example 3. Consider the lifted system x = (inc(x) ∧ (0, 0)) ∨ (0, 0). The strategy π
which replaces the maximum-expression with inc(x) ∧ (0, 0) leads to the conjunctive
system x = inc(x) ∧ (0, 0) with a unique solution which maps x to −∞.
�

Precise Fixpoint Computation Through Strategy Iteration 307

Our problem therefore is to come up with a first lower approximation to the least solu-
tion which is feasible. For that, consider again a lifted system E� with n variables and
least solution μ�. Our solution is to initially perform n rounds of Round-Robin itera-
tion. A related idea seems also implicit in section 5 of [3] in order to speed up strategy
iteration in general. Let μ0 denote the variable assignment resulting from the initial it-
eration. By construction, μ0 ≤ μ�. A closer look also reveals that μ0(xi) = −∞ iff
μ�(xi) = −∞. Thus, we can use the variable assignment μ0 to remove all variables
from E� that are mapped to −∞ by the least solution. This means, that we replace ev-
ery expression e where [[e]]μ0 = −∞ with −∞ and remove every equation xi = ei

where μ0(xi) = −∞. For the resulting system we then can use μ0 as an initial feasi-
ble variable assignment. We remark that we also can use a work-list-based approach to
determine an initial variable assignment μ0 ≤ μ� s.t. μ0(xi) = −∞ iff μ�(xi) = −∞.

Example 4. Consider the lifted system

x = (inc(x) + inc(y)) ∨ (0, 0) y = (inc(x) + (1, 0)) ∧ (10, 0).

Two rounds of Round-Robin iteration results in the feasible variable assignment μ0 that
maps x to (2, 2) and y to (3, 3). Also, μ0 results in a strategy which selects the first
argument expression of the max expression. This results in the conjunctive system

x = inc(x) + inc(y) y = inc(x) + (1, 0) ∧ (10, 0)

with greatest solution μ1 that maps x to ∞ and y to (10, 0): which corresponds to the
least solution of the original system.
�

For a precise characterization of the run-time, let Π(m) denote the maximal number of
updates of strategies necessary for systems with m maximum expressions. We have:

Theorem 4. The least solution of a system E of integer equations with n variables and
m maximum expressions can be computed uniformally in time O(n · |E| · Π(m)).
�

The factor n · |E| accounts for computing greatest solutions of conjunctive systems
through n rounds of Round Robin iteration. Practical implementations, though, might
use variants of work-list-based fixpoint iteration instead which at least practically will
terminate much earlier. Finally, there is the factor Π(m). At every maximum which has
at least one constant argument, the strategy can be improved at most once. At general
maximum subexpressions, the situation is less clear. The preliminary experience with
our implementation as well as all practical experiments with strategy iteration we know
of seem to indicate that the number of strategy improvements Π(m) (at least practi-
cally) grows quite slowly in the number m of maxima. The systems up to 100.000 vari-
ables, e.g., which we tried used less than 20 iterations! Interestingly, though, it is still
open whether (or: under which circumstances) the trivial upper bound of 2m for Π(m)
can be significantly improved [17,1]. Concerning the complexity, strategy iteration al-
gorithms thus can be compared with the simplex method for linear programming: many
known variants of the latter method work very well in practice even for large scale ap-
plications with thousands of variables. We are better off, though, with strategy iteration:
while for many variants of the simplex algorithm, inputs are known on which the algo-
rithm needs exponentially many pivot operations (see, e.g., [10] for a nice overview),
no inputs are known for strategy iteration using more than a linear number of iterations.

308 T. Gawlitza and H. Seidl

4 Interval Analysis

In this section, we explain how the fixpoint methods from section 3 can be used to com-
pute precise least solutions of systems of interval equations. Let I denote the complete
lattice of intervals partially ordered by the subset relation (here denoted by “�”). Thus,

I = {∅} ∪ {[l, u] ∈ (Z ∪ {−∞}) × (Z ∪ {∞}) | l ≤ u}

where [l, u] represents the interval {z ∈ Z | l ≤ z ≤ u}. As usual, the empty inter-
val ∅ is the least element of I, the greatest lower bound “
” of intervals is given by
their intersection while the least upper bound “�” for non-empty intervals is defined by
[l1, u1] � [l1, u2] = [l1 ∧ l2, u1 ∨ u2]. Addition and multiplication are given by:

[l1, u1] + [l2, u2] = [l1 + l2, u1 + u2]
[l1, u1]·[l2, u2] = [u1·u2 ∧ l1·l2 ∧ l1·u2 ∧ u1·l2, u1·u2 ∨ l1·l2 ∨ l1·u2 ∨ u1·l2]

We consider systems of equations xi = ei for i = 1, . . . , n over intervals similar to the
ones we have considered over Z . Thus, we allow right-hand sides ei of the form

e :: = I | xj | e′1 � e′2 | e′1
 e′2 | e′1 + e′2 | e′1 · e′2

where I ∈ I denotes constant intervals. In [3], also postfix operators “↑” and “↓” are
provided which preserve empty intervals and, when applied to a non-empty interval
[l, u] return [l, u]↑ = [l, ∞] and [l, u]↓ = [−∞, u], respectively. We also could intro-
duce an operator “;” defined by I1 ; I2 = ∅ if I1 = ∅ and I1 ; I2 = I2 otherwise.
This operator is useful for expressing reachability assumptions. We have omitted all
three operators, since these can be defined by: I↑ = I + [0, ∞], I↓ = I + [−∞, 0]
and I1 ; I2 = [0, 0] · I1 + I2. Since all right-hand sides of equations are monotonic,
every system of interval equations has a unique least solution. Such systems can be
used for determining safe ranges for the values of integer variables. Instead of formally
introducing interval analysis, we illustrate this application by an example.

Example 5. Consider the following control-flow graph for which we want to infer the
information, that program point 5 is unreachable:

0 1

2

3

4

5

i := 0
i < 42

i ≥ 42

i ≤ 42

i > 42
i++

i++

Let ik denote the interval approximations for the sets of values of variable i at program
point k = 0, . . . , 5. This leads to the system :

i1 = [0, 0] � i5 + [1, 1] � i2 + [1, 1] i2 = i1
 [−∞, 41]
i3 = i1
 [42, ∞] i4 = i3
 [−∞, 42]
i5 = i3
 [43, ∞]

Precise Fixpoint Computation Through Strategy Iteration 309

It is not obvious how the usual widening and narrowing approach (with program point
1 as widening point) would identify program point 5 as unreachable. The least solution
of the equation system, however, identifies program point 5 as unreachable.
�

Assume that E is an equation system over I. Our goal is to compute the least solution
by decomposing E into a system of integer equations for the upper and negated lower
bounds. For every interval variable xi of E , we therefore introduce two integer variables
x+

i ,x−
i for the upper and negated lower bound of xi, respectively. Negating the lower

bounds of intervals allows us to determine the values of the variables x+
i as well as

the values of the variables x−
i by means of least fixpoint iteration within the same

system of equations. Note, however, that upper and lower bounds of intervals are not
independent. Interaction occurs at subexpressions which evaluate to the empty interval.
Therefore, our construction will depend on information about the potential emptiness
of the expressions in S where S is the set of all subexpressions of right-hand sides in E .
This information is specified by a valuation σ from S into the two-element lattice D2 =
{⊥, �} where ⊥ < �. σ(e) = ⊥ thereby indicates that the value of e is the empty
interval, and σ(e) = � that the value of e is non-empty. The set of valuations form
a complete lattice where the maximal length of a strictly ascending chain is bounded
by |S| ∈ O(|E|). Given a variable assignment μ, we can determine a valuation Σ(μ) :
S → D2 which is compatible with μ by:

Σ(μ)(e) =
{

⊥ if [[e]]μ = ∅
� if [[e]]μ �= ∅

Note that the valuation Σ(μ) monotonically depends on μ. We introduce the system
E±

σ which is obtained from E by replacing every interval equation xi = ei with the
equations x+

i = [ei]+σ and x−
i = [ei]−σ over Z . Thereby, [e]+σ = [e]−σ = −∞ whenever

σ(e) = ⊥. Otherwise:

[∅]+σ = −∞ [∅]−σ = −∞
[[l, u]]+σ = u [[l, u]]−σ = −l
[e1 + e2]+σ = [e1]+σ + [e2]+σ [e1 + e2]−σ = [e1]−σ + [e2]−σ
[e1 � e2]+σ = [e1]+σ ∨ [e2]+σ [e1 � e2]−σ = [e1]−σ ∨ [e2]−σ
[e1
 e2]+σ = [e1]+σ ∧ [e2]+σ [e1
 e2]−σ = [e1]−σ ∧ [e2]−σ

The rules of the transformation do not yet deal with multiplication. Multiplication will
be considered subsequently. In absence of multiplications, the least solution μ±

σ of E±
σ

can be computed with our methods from section 3. Once we are given a variable as-
signment μ for E±

σ , we obtain a variable assignment [μ] for the original system E by3:

[μ](xi) =
{

∅ if μ(x+
i) = μ(x−

i) = −∞
[−μ(x−

i), μ(x+
i)] if μ(x+

i), μ(x−
i) > −∞

For the correctness of our algorithm the following proposition is fundamental.

3 We do not need to define [μ](xi) for any of the remaining cases, since these will not occur in
the algorithms to be presented below.

310 T. Gawlitza and H. Seidl

Proposition 2. Assume that E is a system of interval equations without multiplication
whose least solution is μ∗. Let σ : S → D2 be a valuation. Assume E±

σ is the
corresponding system of integer equations for the upper and negated lower bounds
with least solution μ±

σ . Then:

1. [μ±
σ] � μ∗ whenever σ ≤ Σ(μ∗);

2. [μ±
σ] = μ∗ whenever σ = Σ(μ∗);

3. Σ([μ±
σ]) > σ whenever σ < Σ(μ∗).
�

Algorithm 3. Algorithm for interval equations
σ ← ⊥;
do {

μ±
σ ← least solution of E±

σ ; μ ← [μ±
σ]; σold ← σ; σ ← Σ(μ);

} while (σ �= σold)
return μ;

Assertion 1 of proposition 2 guarantees for a possibly too small valuation σ, that the
integer system will return a lower approximation to the least solution μ∗. Assertion 2
guarantees for precise σ that the integer system in deed recovers μ∗. Finally, assertion
3 assures that, as long as Σ(μ∗) has not been reached, the new valuation will be strictly
larger than the old one. In light of proposition 2, it is now clear how our algorithm
for computing the least solution μ∗ of a system E of interval equations should work.
It starts with a valuation σ = ⊥ from S → D2 that maps every subexpression e to
⊥. Given a current valuation σ ≤ Σ(μ∗), it computes the least solution of the integer
system E±

σ . According to proposition 2, this will either reveal the least solution of E , if
σ already equals Σ(μ∗), or some further expressions evaluating to non-empty intervals,
in the other case. In the latter case, σ is updated and the algorithm repeats. Thus, alg. 3
computes the least solution of a system of interval equations E after O(|E|) iterations.

Before we consider multiplication, we illustrate alg. 3 by an example.

Example 6. Consider the following system of interval equations:

x = (x + [1, 1]
 [0, 42]) � [10, 10]

In the first step the algorithm considers E±
⊥ given by:

x+ = −∞ ∨ 10 x− = −∞ ∨ −10

Using the obvious least solution the algorithm computes a valuation σ that returns �
for all expressions. Thus, we obtain E±

σ as:

x+ = (x+ + 1 ∧ 42) ∨ 10 x− = (x− + (−1) ∧ 0) ∨ −10

Solving E±
σ reveals the least solution which maps x+ to 42 and x− to −10. This corre-

sponds to the least solution of E which maps x to [10, 42].
�

We now extend the setting by multiplications where at least one argument is a constant
non-empty interval I ∈ I, i.e., every multiplication subexpression in right-hand sides

Precise Fixpoint Computation Through Strategy Iteration 311

is of the form I · e for I ∈ I \ {∅}. Therefore, we enrich the transformations [·]+σ and
[·]−σ by defining [I · e]+σ and [I · e]−σ for I = [l, u] and e an expression s.t. σ(e) �= ⊥ by:

[I · e]+σ =

⎧
⎨
⎩

l · [e]+σ ∨ u · [e]+σ if l ≥ 0
−l · [e]−σ ∨ u · [e]+σ if l < 0, u ≥ 0
−l · [e]−σ ∨ −u · [e]−σ if u < 0

[I · e]−σ =

⎧
⎨
⎩

l · [e]−σ ∨ u · [e]−σ if l ≥ 0
−l · [e]+σ ∨ u · [e]−σ if l < 0, u ≥ 0
−l · [e]+σ ∨ −u · [e]+σ if u < 0

If σ(e) = ⊥, then [I ·e]+σ and [I ·e]−σ are given as −∞. Thus, we obtain right-hand sides
in which multiplications with nonnegative constants occur. By simplifying expressions
0 · e to 0, we obtain a system of integer equations as considered in section 3.

Example 7. Let E be the system x = [−1, 0] · x� [2, 4]. Assume that σ is the valuation
which maps all expressions from E to �. Then the system E±

σ is given by:

x+ = 1 · x− ∨ 0 · x+ ∨ 4 x− = 1 · x+ ∨ 0 · x− ∨ −2

The least solution of this system maps x+ and x− to 4. This corresponds to the least
solution of E which maps x to [−4, 4].
�

The resulting systems of integer equations for the upper and negated lower interval
bounds still are of the form considered in section 3 and therefore can be solved by alg.
2. It turns out that proposition 2 still holds when multiplication with constant intervals
is allowed. Thus, alg. 3 can be applied and we get the following important result:

Theorem 5. Assume that E is a system of interval equations with n variables, m oc-
currences of “�” and k multiplications in which at least one argument is a constant
interval. The least solution of E can be computed in time O(n · |E|2 ·Π(2m+2k)).
�

According to theorem 5, the complexity for solving interval equations consists of the
complexity for iteratively solving integer systems until the number of variables receiv-
ing non-empty intervals remains stable. The result of theorem 5, though, is not yet
completely satisfactory since it is not able to deal with full multiplication of intervals
— meaning that an interval analysis based on theorem 5 is bound to treat general mul-
tiplication expressions conservatively. E.g. x·y have to be treated as [−∞, ∞]. Dealing
with full multiplication of intervals is non-trivial, though. Let (x)+ and (x)− denote the
upper and negated lower bound of an interval x. For non-empty intervals x, y the values
(xy)+ and (xy)− are given as:

(xy)+ = x+y+ ∨ x−y− ∨ −x+y− ∨ −x−y+

(xy)− = −x+y+ ∨ −x−y− ∨ x+y− ∨ x−y+

Note that, in presence of positive and negative numbers, none of the individual products
is monotonic. Fortunately, the necessary multiplications are piecewise distributive:

312 T. Gawlitza and H. Seidl

x+ ≥ 0 , x− ≥ 0 x+ > 0 , x− < 0 x+ < 0 , x− > 0
y+ ≥ 0 , y− ≥ 0 y+ ≥ 0 , y− ≥ 0 y+ ≥ 0 , y− ≥ 0

(xy)+ x+y+ ∨ x−y− x+y+ x−y−

(xy)− x+y− ∨ x−y+ x+y− x−y+

x+ ≥ 0 , x− ≥ 0 x+ > 0 , x− < 0 x+ < 0 , x− > 0
y+ > 0 , y− < 0 y+ > 0 , y− < 0 y+ > 0 , y− < 0

(xy)+ x+y+ x+y+ −x+y−

(xy)− x−y+ −x−y− x−y+

x+ > 0 , x− > 0 x+ > 0 , x− < 0 x+ < 0 , x− > 0
y+ < 0 , y− > 0 y+ < 0 , y− > 0 y+ < 0 , y− > 0

(xy)+ x−y− −x−y+ x−y−

(xy)− x+y− x+y− −x+y+

Fig. 1. Simplification of bounds

Proposition 3. Assume a1, a2, b ∈ Z . Then:

1. (a1 ∨ a2)b = a1b ∨ a2b as well as
(a1 ∧ a2)b = a1b ∧ a2b if b ≥ 0;

2. −(a1 ∨ a2)b = −a1b ∨ −a2b as well as
−(a1 ∧ a2)b = −a1b ∧ −a2b if b ≤ 0.
�

Our key idea is to introduce a case distinction on whether x and y consist of negative
numbers only, of positive numbers only or contain 0. Under these extra assumptions,
the computations of (xy)+ and (xy)− for non-empty intervals x and y can be
significantly simplified as shown in figure 1. We observe that for computing (xy)+ and
(xy)− only two kinds of integer products occur:

non-negative products : ab for a, b ≥ 0, or
negative products : −ab for a, b < 0.

Proposition 3 shows that in either case, the result does not only monotonically depend
on the arguments a, b but even distributively (both for “∨ and “∧”). Therefore, we now
consider systems of integer equations where we additionally allow in right-hand sides
subexpressions e of the form (e1∨0)·(e2∨0) and −((e1∧−1)·(e2∧−1)). We call such
equations extended. It turns out that the least solution of a system of extended integer
equations can be computed by means of max strategy iteration over the instrumented
lattice D along the same lines as in section 3. To handle the occurring multiplications in
the lifted systems we additionally define (a1, j1)·(a2, j2) = (a1·a2, j1∨j2) for a1, a2 �=
0 and (0, 0)·z = (0, 0) for z ∈ D. For a system E of extended integer equations, we
consider the corresponding lifted system E� whose least solution is approximated by
greatest feasible solutions of feasible max strategies π. For a conjunctive lifted system
of extended integer equations 4, a variable assignment μ is called feasible iff

1. μ(xi) > −∞ for every variable xi;
2. For every subexpression e1·e2 and i = 1, 2: [[ei]]

�
μ > (0, 0) whenever ei �≡ 0

4 In a conjunctive system, the multiplications are of the form e1·e2 and −((e1∧−1)·(e2∧−1)).

Precise Fixpoint Computation Through Strategy Iteration 313

Assume that E� denotes a lifted system of extended integer equations with least solution
μ� and that π denotes a strategy. As in section 3, we verify that there exists at most
one feasible solution of E�(π) and that this feasible solution can be computed by n
rounds of Round-Robin iteration on E�(π) whenever it exists. As for ordinary systems
of integer equations, E�(P (μ′)) has a feasible solution if −∞ < μ′(xi) ≤ μ�(xi)
for all variables xi. Let μ0 denote the variable assignment obtained by n rounds of
Round-Robin iteration on E�. By construction, μ0 ≤ μ� and w.l.o.g., μ0(xi) > −∞
for all variables xi. If μ0 does not yet equal μ�, then successive strategy improvement
will construct a strictly ascending chain of variable assignments approximating the least
solution of E� along the same lines as in section 3. We have:

Theorem 6. Let E be a extended integer system with n variables and m occurrences of
“∨”. The least solution of E can be computed uniformally in time O(n·|E|·Π(m)).
�

The exact method for extended integer systems allows us to fully deal with multiplica-
tion in systems of interval equations. Let E denote a system of interval equations pos-
sibly containing arbitrary multiplications. Now we consider valuations to be functions
which map the set of subexpressions S into the four-element lattice D4 = {⊥, −, +, �}
where ⊥ < −, + < �. Thus, σ(e) indicates whether the value e is currently only known
to be empty, contained in the negative or positive numbers, respectively, or contains 0.
Given a variable assignment μ, we now determine the valuation Σ(μ) : S → D4 by:

Σ(μ)(e) =

⎧
⎪⎪⎨
⎪⎪⎩

⊥ if [[e]]μ = ∅
− if [[e]]μ � [−∞, −1]
+ if [[e]]μ � [1, ∞]
� if [[e]]μ � 0

The valuation Σ(μ)(e) monotonically depends on μ. The maximal length of a strictly
ascending chain in the complete lattice of valuations over D4 is bounded by 2 · |S| ∈
O(|E|). Our goal is to construct a system E±

σ for upper and negated lower interval
bounds in presence of full multiplication, relative to a valuation σ. For that, we enrich
the transformations [·]+σ and [·]−σ . So far, these transformations are only defined for
valuations over D2 and expressions which are not multiplications. The corresponding
rules of the new transformation for these cases are syntactically identical. Therefore,
it remains to explain how subexpressions [e1·e2]+σ and [e1·e2]−σ should be handled. If
one argument ei of the multiplication is mapped to ⊥, i.e., currently evaluates to ∅, we
define [e1·e2]+σ and [e1·e2]−σ as −∞. If e.g. σ(e1) = σ(e2) = −, we define

[e1 · e2]+σ = ([e1]−σ ∨ 0)·([e2]−σ ∨ 0) [e1 · e2]−σ = −(([e1]+σ ∧ −1)·([e2]+σ ∧ −1))

which corresponds to the case in the lower right corner of the table in figure 1. The
rules for the remaining cases are constructed analogously corresponding to figure 1.
The resulting system E±

σ is extended integer. Thus, we can compute its least solution μ±
σ

through the strategy iteration algorithm from section 3. Also, we find that proposition 2
also holds for systems with full multiplication. We only need now to consider valuations
σ : S → D4. Proposition 2 implies, that algo. 3 also works for systems with full
multiplication — which proves our main result for interval analysis.

314 T. Gawlitza and H. Seidl

Theorem 7. Assume that E is a system of interval equations with arbitrary intersec-
tions, n variables, m occurrences of “�”and k arbitrary multiplications. The least
solution of E can be computed uniformally in time O(n · |E|2 · Π(2m + 6k))).
�

The complexity estimation is based on the corresponding estimation for extended inte-
ger equations. Additionally, we must take into account the number of updates to val-
uations. Note also that the number of occurrences of “∨”-operators in the generated
extended integer systems are now bounded only by 2m + 6k.

5 Conclusion

We considered systems of integer equations. These are necessary for precisely solv-
ing equations over the interval domain. We used an instrumentation of the lattice
Z with one extra component to guarantee for conjunctive systems to admit at most
one feasible solution. This uniqueness allowed us to construct a strategy iteration al-
gorithm for computing least solutions of systems of integer equations. We extended
this result to construct an algorithm for precisely solving systems of interval equa-
tions — even for systems using arbitrary multiplication. In the latter case we had to
take into account that multiplication of integers is not monotonic. The resulting algo-
rithms are amazingly simple and natural. Implementations can be down-loaded from
http://www2.in.tum.de/˜gawlitza/policy. First experiments show that
the efficiency is promising. It remains for future work to systematically evaluate the
solvers for systems of integer and interval equations on real-world examples.

References

1. H. Bjorklund, S. Sandberg, and S. Vorobyov. Complexity of Model Checking by Iterative
Improvement: the Pseudo-Boolean Framework . In Proc. 5th Int. Andrei Ershov Memorial
Conf. Perspectives of System Informatics, pages 381–394. LNCS 2890, Springer, 2003.

2. J. Cochet-Terrasson, S. Gaubert, and J. Gunawardena. A Constructive Fixed Point Theorem
for Min-Max Functions. Dynamics and Stability of Systems, 14(4):407–433, 1999.

3. A. Costan, S. Gaubert, E. Goubault, M. Martel, and S. Putot. A Policy Iteration Algorithm
for Computing Fixed Points in Static Analysis of Programs. In Computer Aided Verification,
17th Int. Conf. (CAV), pages 462–475. LNCS 3576, Springer Verlag, 2005.

4. P. Cousot and R. Cousot. Static Determination of Dynamic Properties of Programs. In
Second Int. Symp. on Programming, pages 106–130. Dunod, Paris, France, 1976.

5. P. Cousot and R. Cousot. Comparison of the Galois Connection and Widening/Narrowing
Approaches to Abstract Interpretation. JTASPEFL ’91, Bordeaux. BIGRE, 74:107–110, Oct.
1991.

6. T. Gawlitza, J. Reineke, H. Seidl, and R. Wilhelm. Polynomial Exact Interval Analysis
Revisited. Technical report, TU München, 2006.

7. A. Hoffman and R. Karp. On Nonterminating Stochastic Games. Management Sci., 12:359–
370, 1966.

8. R. Howard. Dynamic Programming and Markov Processes. Wiley, New York, 1960.
9. D. E. Knuth. A Generalization of Dijkstra’s algorithm. Information Processing Letters (IPL),

6(1):1–5, 1977.

Precise Fixpoint Computation Through Strategy Iteration 315

10. N. Megiddo. On the Complexity of Linear Programming. In T. Bewley, editor, Advances in
Economic Theory: 5th World Congress, pages 225–268. Cambridge University Press, 1987.

11. A. Miné. Relational Abstract Domains for the Detection of Floating-Point Run-Time Er-
rors. In European Symposium on Programming (ESOP), volume 2986 of LNCS, pages 3–17.
Springer, 2004.

12. A. Miné. Symbolic Methods to Enhance the Precision of Numerical Abstract Domains. In
Verification, Model Checking, and Abstract Interpretation, 7th Int. Conf. (VMCAI), pages
348–363. LNCS 3855, Springer Verlag, 2006.

13. A. Puri. Theory of Hybrid and Discrete Systems. PhD thesis, University of California,
Berkeley, 1995.

14. M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming.
Wiley, New York, 1994.

15. H. Seidl. Least and Greatest Solutions of Equations over N . Nordic Journal of Computing
(NJC), 3(1):41–62, 1996.

16. Z. Su and D. Wagner. A Class of Polynomially Solvable Range Constraints for Interval
Analysis Without Widenings. Theor. Comput. Sci. (TCS), 345(1):122–138, 2005.

17. J. Vöge and M. Jurdzinski. A Discrete Strategy Improvement Algorithm for Solving Parity
Games. In Computer Aided Verification, 12th Int. Conf. (CAV), pages 202–215. LNCS 1855,
Springer, 2000.

18. U. Zwick and M. Paterson. The Complexity of Mean Payoff Games on Graphs. Theoretical
Computer Science (TCS), 158(1&2):343–359, 1996.

A Complete Guide to the Future�

Frank S. de Boer1, Dave Clarke1, and Einar Broch Johnsen2

1 CWI, Amsterdam, Netherlands
{frb,dave}@cwi.nl

2 Dept. of Informatics, University of Oslo, Norway
einarj@ifi.uio.no

Abstract. We present the semantics and proof system for an object-
oriented language with active objects, asynchronous method calls, and
futures. The language, based on Creol, distinguishes itself in that unlike
active object models, it permits more than one thread of control within
an object, though, unlike Java, only one thread can be active within
an object at a given time and rescheduling occurs only at specific re-
lease points. Consequently, reestablishing an object’s monitor invariant
is possible at specific well-defined points in the code. The resulting proof
system shows that this approach to concurrency is simpler for reasoning
than, say, Java’s multithreaded concurrency model. From a methodologi-
cal perspective, we identify constructs which admit a simple proof system
and those which require, for example, interference freedom tests.

1 Introduction

The increasing importance of distributed systems demands flexible communica-
tion forms between distributed processes. While object-orientation is a natural
paradigm for distributed systems [17], the tight coupling between objects tradi-
tionally enforced by method calls may be criticized. Asynchronous method calls
have been proposed to better combine object-orientation with distributed pro-
gramming, with a looser coupling between a caller and a callee than in the tightly
synchronized (remote) method invocation model. Return values from asynchron-
ous calls are managed by so-called futures [4,10,13,20,26]. In this paper, we de-
velop a kernel language for distributed concurrent objects in which asynchronous
method calls is the basic communication construct. The model of asynchronously
communicating objects is inherently concurrent, and synchronized communica-
tion and sequential execution appear as special cases. The proposed kernel lan-
guage combines the concurrency model of Creol [18], an object-oriented language
for concurrent objects, with first-class futures, presented in a Java-like syntax.
Futures are not transparent but may be communicated between objects, so re-
turn values from asynchronous method calls may be shared. The paper presents
an operational semantics for this kernel language, and introduces a novel proof
system for concurrent objects with asynchronous method calls and futures.
� This research is in the context of the EU project IST-33826 CREDO: Modeling and

analysis of evolutionary structures for distributed services (http://credo.cwi.nl).

R. De Nicola (Ed.): ESOP 2007, LNCS 4421, pp. 316–330, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Complete Guide to the Future 317

The adopted concurrency model is based on concurrent objects, each with its
own processor. Inside an object, method activations are executed in an inter-
leaved way. Thus execution in an object is reminiscent of monitors, but explicit
signaling is avoided by introducing so-called release points at which control may
change between different method activations competing for execution. The inter-
leaved execution of method activations allows different activities to be pursued
within the object; in particular, active and reactive object behavior are easily
and dynamically combined. Whereas an active object usually relies on a pres-
elected method to define its active behavior, we exploit asynchronous method
calls as triggers of concurrent activity. Asynchronous method calls spawn activi-
ties in other objects while the caller proceeds with its execution. Futures extend
this technique to include the forwarding and sharing of replies to method calls.
Each object sharing a future may choose to either completely block or alterna-
tively to release control while waiting for the reply associated with the future.
Any method may be called both synchronously and asynchronously. In fact,
synchronous calls are treated as a special case of asynchronous calls, for which
execution immediately blocks while waiting for the reply. Thus, synchronous
calls restrict the natural concurrency of the model by sequentializing activity.

Proof theories for multithreaded object systems are complicated by the in-
terference problem for shared variables, which appears when threads operate
concurrently in the same object. Reasoning about programs in this setting is
highly complex [1]: Safety is by convention rather than by language design [3].
The simplicity of the proof system proposed in this paper, in contrast to that
of, for example, multithreaded Java, is a major advantage of concurrent object
models compared to multithread concurrency. The proposed proof system uses
a local assertion language to describe the local state of an object in the pre- and
postconditions of methods and in monitor invariants. On the other hand, a global
assertion language is used for describing invariant properties of inter-object syn-
chronization. In this paper, we present a novel view of an object as a maintainer
of multiple local monitor invariants and a global synchronization constraint. The
local invariants monitor the different release points of an object. These multiple
monitor invariants require a novel proof system for their mutual dependencies
to establish their invariance. This clear separation of concerns between intra-
and inter-object synchronization is also reflected in the completeness proof for
the proof theory. In fact, the completeness proof (only briefly discussed in this
paper due to lack of space) is based on a semantic characterization of the global
invariant in terms of futures and two local history variables. In addition to a lo-
cal communication history, recording the externally observable behavior of each
object as specified by its method calls, a local scheduling history records the
internal scheduling in an object, which is completely encapsulated by its local
invariants, recording snapshots of the corresponding release points.

Paper overview. Sect. 2 introduces the kernel language and its operational seman-
tics and Sect. 3 provides an example. Sect. 4 introduces the assertion language,
Sect. 5 a proof system for concurrent objects with asynchronous method calls
and futures, Sect. 6 discusses related work and Sect. 7 concludes the paper.

318 F.S. de Boer, D. Clarke, and E.B. Johnsen

2 The Language

A kernel language for distributed concurrent objects with asynchronous method
calls and futures is now introduced, extending the syntax of Featherweight
Java [16]. In contrast to Featherweight Java, each object encapsulates its state;
i.e., external manipulation of the state is via the object’s methods only. Further-
more different objects execute concurrently: each object has a thread dedicated
to executing its processes, which correspond to activations of its methods. To
preserve an object’s invariants for reasoning control, execution is restricted so
that only one process may be active in an object at a time; other processes in the
object are suspended. We distinguish between blocking a process and releasing
a process. Blocking suspends process execution, but does not relinquish control
to a suspended process. Release stops process execution and reschedules another
(suspended) process. Using release points within method bodies, an object may
interleave the execution of several (non-terminating) processes.

Method calls are asynchronous and the result of a call is stored in a future.
Rather than forcing the caller to wait for the call to return, which is unsatisfac-
tory in a distributed setting where communications may disappear and perma-
nently block the caller’s process, return values are first accessed when required.
Execution only blocks when attempting to read from a future without a return
value. Futures may also be polled, enabling fine grained control of scheduling. In
contrast to the read operation on a future, the polling operation never blocks.

The implicit control flow in an object can be influenced by means of release
points expressed as Boolean guards, which may include the polling of futures.
This way, processes may choose between blocking and releasing control while
waiting for the reply to a method call. Release points can be used to combine
active and reactive processes in an object; the object can behave both as client
and server without requiring an active loop to interleave these different roles.

2.1 Syntax

The language syntax is given in Fig. 1. We emphasize the differences with Java.
A program P is a list of class definitions followed by a method body. A class
inherits from a superclass, which may be Object, extending it with additional
fields f and methods M . Methods have read-only access to a variable destiny
which is a reference to the future that will hold the result of the current method.

P ::= L {T x; sr} L ::= class C extends C {T f ; M}
M ::= T m (T x){T x; sr} e ::= v | e.get | e!m(e) | new C() | null
v ::= f | x s ::= v := e | await g | s� s | s ||| s | skip | s; s

| if g then s else s fi | release | s /// s
sr ::= s; return e g ::= wait | b | v? | g ∧ g
b ::= true | false | v T ::= C | bool | !T

Fig. 1. The language syntax. Variables v are fields (f) or local variables (x), and C is
a class name.

A Complete Guide to the Future 319

config ::= ε | object | future | config config o ::= (oid, C)

object ::= (o, processQ, fds, active) fds ::= f v
future ::= (mid, mc,mode, v) mc ::= oid.m(v)

active ::= process | idle process ::= (T x v, sr : T)
processQ ::= ε | process | processQ processQ v ::= oid | mid | null | b

Fig. 2. The syntax for runtime configurations. Here, oid and mid denote identifiers
for objects, and futures. Processes include both the types of local variables and the
expected return type (which we often elide for simplicity of presentation).

Expressions e are standard apart from the asynchronous method call e!m(e)
and the (blocking) read operation v.get. Statements s are standard apart from
release points await g, non-deterministic choice s1 � s2, and merge s1|||s2 for
the interleaved execution of branches s1 and s2. Guards g are conjunctions of
wait, Boolean expressions b, and the polling operation v? on a future v. When
the guard in an await statement evaluates to false, the active process is re-
leased and another suspended process may be rescheduled. Otherwise, the pro-
cess proceeds. Non-deterministic choice allows either branch to be selected. The
branches of a merge are interleaved at release points, influencing the flow of con-
trol within a process without allowing other processes to execute. In addition,
the intermediate statements release and s1///s2 appear during reduction. The
release statement is introduced when the guard of an await statement reduces
to false, and the s1///s2 statement corresponds to the activation of statement
s1 in the merge of statements s1 and s2, where statement s2 is delayed.

Typing. The type system, omitted for space reasons, closely resembles that of
Featherweight Java [16]. Let !T denote the type of a future which will ultimately
contain a value of type T . An asynchronous call to a method with return type
T results in a future of type !T . If v has type !T , then v.get has type T and v?
has type bool. Type soundness is easily established for this type system and the
reduction semantics presented in Sect. 2.2 below.

2.2 Semantics

The semantics is a small-step reduction relation on configurations of objects and
futures (see Fig. 2). Objects have an identifier, a class, a queue of suspended pro-
cesses, fields, and an active process. The process idle indicates that no method is
running in the object. A future captures the state of a method call: initially sleep-
ing, the method call later becomes active, and finally, when completed, it stores
its result in the future. The value mode ∈ {s, a, c} represents these three future
states. Types are given default values by the default function (e.g., default(C) =
null, default(bool) = false, and default(!T) = null). The initial configuration
of a program L {T x; sr} has one object (o, ∅, ∅, (T x default(T), sr : T)).

Reduction takes the form of a relation config → config′. Rules apply to partial
configurations and may be applied in parallel. This differs from the semantics
of object-oriented languages with a global store [11], but is consistent with the

320 F.S. de Boer, D. Clarke, and E.B. Johnsen

Creol’s [18] executable semantics in Maude [5], and allows true concurrency in
the distributed setting. The main rules are given in Fig. 3. The context reduc-
tion semantics decomposes a statement into a reduction context and a redex,
and reduces the redex [9]. Reduction contexts are method bodies M , statements
S, expressions E, and guards G with a single hole denoted by •:

M ::= • | S; return e | return E

S ::= • | v := E | S; s | if G then s1 else s2 fi | S /// s

E ::= • | E.get | E!m(e) | v!m(v, E, e)

G ::= • | E? | G ∧ g | b ∧ G

Redexes reduce in their respective contexts; i.e., body-redexes in M , stat-redexes
in S, expr-redexes in E, and guard redexes in G. Redexes are defined as follows:

body-redexes ::= return v

stat-redexes ::= x := v | f := v | await g | s� s | skip; s | if b then s else s

| s|||s | skip///s | release; s///s′ | release
expr-redexes ::= x | f | v.get | v.m!(v) | new C()

guard-redexes ::= mid? | b ∧ g | wait

Filling the hole of a context M with an expression r is denoted M [r]. Before eval-
uating the expression e in the method body s; return e, the body will be reduced
to skip; return e. For simplicity, we elide the skip and write just return e.

Expressions and guards. In (Red-Call), an asynchronous call adds a sleeping fu-
ture to the configuration, returning its identifier to the caller. In (Red-Get), a
read operation on a future variable blocks the active process until the future is
in completed mode. Blocking does not reschedule a suspended process. Object
creation in (Red-New) introduces a new instance of a class into the configuration,
with default values for the new object’s fields. Guards determine if a process
should be released and another process rescheduled. In (Red-Poll), a future vari-
able is polled to see if a call has been executed. In contrast to (Red-Get), polling
a future at a release point (await) enables the release of the active process. In
particular, await wait will always release the active process.

Statements and rescheduling. In (Red-Await), a process at a release point proceeds
if its guard is true and otherwise releases. When a process is released, its guard
is reused to reschedule the process. A guard with clause wait causes a process
to release. When it becomes a candidate for rescheduling, wait is replaced by
true so that the process can proceed. When an active process is released or
terminates, it is replaced by the idle process, which allows a process from the
process queue to be scheduled for execution in (Red-Reschedule).

Method invocation and return. A method call results in an activation on the callee’s
process queue. As the call is asynchronous, there is a delay between the call and
its activation, represented by the sleeping mode of a future. Subsequent to the
call, (Red-Bind) creates a process to run the method. This process is added to the

A Complete Guide to the Future 321

(Red-Merge1)

(o, pq, fds, (l, M [s|||s′]))
→ (o, pq, fds, (l, M [s///s′]))

(Red-Merge2)

(o, pq, fds, (l, M [s|||s′]))
→ (o, pq, fds, (l, M [s′///s]))

(Red-Merge-Skip)

(o, pq, fds, (l, M [skip///s]))
→ (o, pq, fds, (l, M [s]))

(Red-Call)

mid is fresh
(o, pq, fds, l, (M [oid!m(v)]))

→ (o, pq, fds, (l, M [mid]))
(mid, oid.m(v), s, null)

(Red-New)

oid is fresh fds’ = defaults(C)

(o, pq, fds, (l, M [new C()]))
→ (o, pq, fds, (l, M [oid]))

((oid, C), ε, fds’, (ε, skip))

(Red-Merge-Release1)

enabled(s′, (fds, l), μ)

(o, pq, fds, (l, M [release; s///s′])) μ
→ (o, pq, fds, (l, M [s′///s])) μ

(Red-Merge-Release2)

¬enabled(s′, (fds, l), μ)

(o, pq, fds, (l, M [release; s///s′])) μ
→ (o, pq, fds, (l, M [release; (s|||s′)])) μ

(Red-Get)

(o, pq, fds, (l, M [mid.get])) (mid, mc, c, v)
→ (o, pq, fds, (l, M [v])) (mid, mc, c, v)

(Red-Release)

M [release] �= M ′[release; s///s′]

(o, pq, fds, (l, M [release]))
→ (o, pq :: (l, M [skip], fds, idle))

(Red-Poll)

b = (mode ≡ c)
(o,pq, fds, (l, M [mid?])) (mid, mc,mode, v)
→ (o, pq, fds, (l, M [b])) (mid, mc,mode, v)

(Red-Wait)

(o, pq, fds, (l, M [wait]))
→ (o, pq, fds, (l, M [false]))

(Red-Await)

g′ = g[true/wait]
(o, pq, fds, (l, M [await g]))

→ (o, pq, fds, (l, M [if g then skip
else release; await g′ fi]))

(Red-Reschedule)

(o, p :: pq, fds, idle)
→ (o, pq, fds, p)

(Red-Bind)

mbody(m, C) = (T x, U y, sr : T)

l = T x v, U y default(U), !T destiny mid q = (l, sr : T)

((oid, C), pq, fds, p) (mid, oid.m(v), s, null)
→ ((oid, C), pq :: q, fds, p) (mid, oid.m(v), a, null)

(Red-Return)

l(destiny) = mid
(o, pq, fds, (l, return v : T)) (mid, oid.m(v), a, null)

→ (o, pq, fds, idle) (mid, oid.m(v), c, v)

(Red-Context)

config → config′

config config′′

→ config′ config′′

(Red-Parallel)

config μ → config′ μ′ config′′ μ → config′′′ μ′′

dom(μ) = dom(μ′) = dom(μ′′) dom(config′) ∩ dom(config′′′) = ∅
config config′′ μ → config′ config′′′ μ′ � μ′′

Fig. 3. The context reduction semantics. μ denotes a configuration of futures.

322 F.S. de Boer, D. Clarke, and E.B. Johnsen

process queue, and the future changes its mode to active, thus preventing multiple
activations. When process execution is completed, the return value is stored by
(Red-Return) in the future identified by the destiny variable. This future changes
its mode to completed and the active process becomes idle.

Merge and release. Either branch of a merge may be selected for reduction,
captured by (Red-Merge1) and (Red-Merge2). When a branch of a merge statement
completes, (Red-Merge-Skip) schedules the other branch. If a release occurs inside
a merge, the other branch of the merge is the first candidate for rescheduling
— rescheduling is local to a process whenever possible. If both branches release,
then the process is released. Let σ map fields and local variables to their values.
Process release is based on the predicate enabled defined on guards, futures, and
states which determines whether a guard will not directly release:

enabled(wait, σ, μ) = false enabled(b, σ, μ) = b

enabled(v, σ, μ) = enabled(σ(v), σ, μ)
enabled(mid?, σ, μ) = mode ≡ c, where (mid, _,mode, _) ∈ μ

enabled(g ∧ g′, σ, μ) = enabled(g, σ, μ) ∧ enabled(g′, σ, μ)

The predicate is lifted to statements; enabled(await g, σ, μ) = enabled(g, σ, μ) is
the crucial case. In (Red-Merge-Release1), (Red-Merge-Release2) and (Red-Release),
the contexts and redexes do not factor expressions involving release uniquely:
these may be factored as both M [release] and M ′[release; s///s′]. A clause is
added to (Red-Release) to ensure that release; s///s′ is preferred.

Context and parallel reductions. A reduction applies to a subconfiguration by
rule (Red-Context). In (Red-Parallel) futures may be shared between concurrent
reductions, increasing the amount of concurrency expressible in the rules. As
the futures witnessed by one process may be changed by another, they need to
be recomposed in a consistent way. This is handled by a function μ � μ′ which
collects futures from μ and μ′ and resolves conflicting futures with the same mid.
New futures are located in config′ and config′′′.

Synchronization and self-calls. Reading (get) a future is blocking and can intro-
duce synchronization points in the code; for example, the statements
y = e!m(e); y.get model the usual notion of synchronous method call, as this
code blocks the active process after making a call to y until the call has com-
pleted. A minor problem arises when we wish to perform a synchronous call
to self, this.m(e): the statements y = this!m(e); y.get lead to deadlock. In
order to execute a local method, the process needs to be released, as in the se-
quence y = this!m(e); await y?; z = y.get. This sequence, however, does not
capture the direct transfer of control as it enables any other blocked process
in the object to be activated before the call to m. This ultimately means that
the language needs an extension to handle synchronous self calls. A solution is
proposed in [18].

A Complete Guide to the Future 323

3 An Example

We present a publisher-subscriber example wherein an event observed by a sen-
sor is published to objects subscribed to a service. To avoid bottlenecks when
publishing an event, the service delegates to a chain of proxy objects, where each
proxy object informs both the next proxy and up to limit subscribing clients.
We assume these classes exist: Sensor with method detectEvent, Client with
method signal, and List<T>, parametric in type T, with method add.

class Service {
Sensor sensor; Proxy proxy;
Service(int val) { // constructor

sensor = new Sensor; proxy = new Proxy(val);
}
void subscribe(Client cl) { proxy.add(cl) } // sync. call
void process() {

while (true) {
!Event fut = sensor!detectEvent();
proxy!publish(fut); // async. call
await fut?;

} } }

class Proxy {
List<Clients> myClients; Proxy nextProxy;
Event ev; int limit;
Proxy(int k) { // constructor

limit = k; myClients = new List(); nextProxy = null;
}
void add(Client cl) {

if (myClients.length < limit) { myClients.add(cl); }
else { if (nextProxy == null) nextProxy = new Proxy(limit);

nextProxy.add(cl); }
}
void publish(!Event fut) {

await fut?;
if (nextProxy != null) { nextProxy!publish(fut); }
ev = fut.get();
for (Client client : myClients) { client!signal(ev); }

} } // notify clients

4 The Assertion Language

Assertions are used to specify (invariant) properties of the configurations oc-
curring during computations generated by the operational semantics defined in
Sect. 2.2. Assertions are constructed from expressions e of the following form:

e ::= z | z.f | ops(ē)

324 F.S. de Boer, D. Clarke, and E.B. Johnsen

Here z can be this, a local variable, or a logical variable. Logical variables are
implicitly universally quantified. The expression z.f denotes the value of the
field f of the object denoted by the variable. By ops we mean an operation of
some given abstract data type. Assertions are Boolean combinations of Boolean
expressions.

In order to reason about the invocation and return of asynchronous method
calls, futures are explicitly modeled as objects. Thus reasoning relies on an en-
coding of method calls oid.m(e). Conceptually, a class representing futures is in-
troduced for every method in the program. For every possibly inherited method
m of a class C, we associate a class Future_C_m, with instance variables to store
the callee, the actual parameters, the mode, and the return value of a call to
the method. Given this class, the future (mid, oid.m(e),mode, v) corresponding
to a method call of a method m of an object oid of class C, is denoted by the
instance ((mid, Future_C_m), fds), where fds = callee �→ oid, arg �→ e, mode �→
mode, val �→ v. Note that we assume that some encoding of an enumerated type
with elements sleeping, active, and completed exists.

As a simple example, the assertion z.mode = c → z.v > 0, where z is an (im-
plicitly) universally quantified logical variable ranging over all existing instances
of Future_C_m, states that every completed instance of Future_C_m stores a pos-
itive integer, or, in other words, that every completed invocation of the method
m (executed by an object of type C) has returned a positive integer. In a similar
manner we can express invariant properties of the actual parameters (stored in
the future objects).

5 The Proof System

The proof system consists of rules for proving that a local pre/postcondition
specification {p}s{q} is correct with respect to a global invariant I and a set of
monitor invariants. Here p and q are local assertions which only use expressions
that refer to the local state of an object via this; i.e., its fields and the local vari-
ables of one of its methods. Such assertions describe local properties of an object;
i.e., properties which are invariant over the executions of the other objects. The
global invariant describes invariant properties of the future objects, which form
the shared data structure that models the (asynchronous) interaction between
objects. The global invariant only refers to the future objects and their fields,
and as such is only affected by operations on futures. Monitor invariants are
local assertions associated with await statements that describe local properties
of an object which hold whenever the (associated) await statement is scheduled.

In order to reason about statements involving futures, i.e., the basic state-
ments r := e!m(ē), v := r.get, and await r?, we encode their operational
semantics as described in detail below. This encoding allows the application of
a (standard) weakest precondition calculus (as described by the first author [6],
which takes into account aliasing and object creation).

A Complete Guide to the Future 325

The following proof rule derives the local specification of an asynchronous
method invocation: r := e!m(ē):

{p ∧ I}r := new Future_C_m(e, ē){q ∧ I}
{p}r := e!m(ē){q}

The premise of this rule is a specification which additionally establishes invari-
ance of the global invariant I over the statement r := new Future_C_m(e, ē). This
statement consists of a call to the constructor method of the class Future_C_m,
uniquely determined by the method m. This constructor method initializes the
newly created future object such that fds = callee �→ e, arg �→ e, mode �→
s, val �→ null, encoding the reduction rule (Red-Call). As a simple example, the
above assertion z.mode = c → z.v > 0 is invariant because the value of mode of
the newly created object is set to s.

The local specification of v := r.get is captured by the following proof rule,
corresponding to reduction rule (Red-Get):

{p ∧ r.mode = c ∧ I}v := r.val{q ∧ I}
{p}v := r.get{q}

The precondition of the premise additionally requires that the future r is in-
deed completed, and thus stores the return value. As an example, the assertion
r.mode = c → r.v > 0 can be used in conjunction with the additional information
r.mode = c to establish v > 0 as a postcondition to the get operation.

The following proof rule captures the specification of a statement await r?:

(i ∧ r.mode = c ∧ I) → q

{i}await r?{q}

Here i denotes the monitor invariant (implicitly) associated with the await state-
ment. The premise consists of an implication establishing the postcondition in
case the return value is stored in the future object r.

The proof rule for deriving a local specification of a method definition is:

{p ∧ this = d.callee∧ d.mode = s ∧ I}d.mode := a; x := d.arg{p′ ∧ I}
{p′}s{q′}

{q′ ∧ I}d.mode := c; d.val := e{q ∧ I}
{p}s; return e{q}

Here we denote by d the (distinguished) destiny variable of the method used to
denote its future object. The rule establishes the invariance of I over the state-
ments for retrieving the arguments to the call and for returning the value of e,
encoded as d.mode := a; x := d.arg and d.mode := c; d.val := e, encoding reduc-
tion rule (Red-Return). The additional information this = d.callee∧d.mode = s
ensures that this future object indeed records a sleeping (that is, not yet acti-
vated) method call to this callee. Note that in general the invariant I in the first
premise will be used to validate the assumptions about the formal parameters
expressed by the precondition p′ of the method body.

326 F.S. de Boer, D. Clarke, and E.B. Johnsen

The rules for the remaining statements are now briefly discussed. For example,
we have the following assignment axiom {p[e/v]}v := e{q}. Since p and q are
local assertions we do not have aliasing. Therefore the substitution [e/v] simply
replaces occurrences of v by e, provided e does not involve object creation.
Assuming that in local assertions a variable v of type C can only be compared
for equality, we can perform a simple contextual analysis of occurrences of v
in the case of an assignment v := new C(). For example, the assertion (v =
e)[new/v] is false for every expression e (other than v) because e will denote
an ‘old’ object (for details, see [6]). The rules for sequential composition, non-
deterministic choice, and the conditional are standard. The rule for the merge
statement involves an adaptation of the usual interference freedom test for shared
variable concurrency (with the significant simplification that in our setting this
test is local to the merge statement).

The proof system is used to prove that a class C maintains a set M of moni-
tor invariants which describe its release points. The verification of these (local)
monitor invariants involves a global invariant I and consists of proving that each
i ∈ M is invariant over each method body of C.1 Formally, for every method
body s; return e we have to prove that the specification

{i ∧ d′ 	= d}s; return e{i}

is correct with respect to the global invariant I and the following extended
monitor invariants of its await statements: i ∧ d′ 	= d ∧ j, where j ∈ M is the
monitor invariant of a given await statement in s. The additional information
d′ 	= d expresses that we are dealing with two different method invocations, each
with its own future represented by their local variables d′ and d.

5.1 Soundness and Completeness

For completeness we need to introduce the usual notion of auxiliary variables to
validate global synchronization constraints. Auxiliary variables extend the local
state of objects in order to record certain observations about internal scheduling,
sending a message, setting a return value, and about the method activations
themselves. A soundness proof then consists of a straightforward but tedious
induction on the length of the computation which atomically executes the state-
ments and their associated updates of the auxiliary variables. Conversely, com-
pleteness amounts to showing that assertions describing reachable configurations
‘follow the rules’ of the proof system. These assertions describe the external ob-
servable behavior of an object by means of a so-called communication history
variable, an auxiliary variable which denotes the sequence of generated messages
and which is updated by each method call, upon each method activation, and
by each return statement. Furthermore, in order to reason about the internal
process queue, we introduce a so-called scheduling history variable, an auxiliary
1 To avoid name clashes between the local variables of i and the method body, we

assume a variable convention wherein we rename the local variables x of i (and we
denote its renamed local variables by x′).

A Complete Guide to the Future 327

variable which records the local state (i.e., the current values of the local vari-
ables and the values of the fields) whenever the guard of an await statement is
evaluated. Together these auxiliary history variables fix the internal computa-
tion of an object. This semantic property of these auxiliary variables forms the
heart of the completeness proof (due to space limitations details are omitted).

6 Related Work

Futures were devised as a simple means for expressing concurrency in a manner
that reduced the dependency on latency by enabling synchronization at the latest
possible time. Futures were discovered by Baker and Hewitt in the 70s [14],
and later rediscovered by Liskov and Shrira as Promises [20] and by Halstead
in the context of MultiLisp [13]. Futures appear in languages like Alice [23],
Oz-Mozart [24], Concurrent ML [22], C++ [19] and Java [25], often as libraries.
Futures in these languages are essentially the same as in our language.

All implementations associate a future with the asynchronous execution of
an expression in a new thread. The future is a placeholder object which is im-
mediately returned to the calling site. From the perspective of the calling site,
this placeholder is a read-only structure [21]. In some systems, this placeholder
can be explicitly manipulated by the programmer in order to write the resulting
data. In many implementations of futures, the placeholder can be accessed in
both modes (CML, Alice, Java, C++, etc), though typically the design is such
that both interfaces are presented separately — one to the caller and one to the
callee. The calculus λ(fut) [21] formalizes this distinction. Programming with
promises explicitly is quite low-level, so our language ties writing the resulting
value with method call return.

Futures can either be transparent or non-transparent. Transparent futures
cannot be explicitly manipulated, the type of the future is the same as the
expected result, and accesses made to the future transparently access the result
stored in the future, possibly after waiting (e.g., in Multilisp). Non-transparent
futures have a separate type to denote the future (e.g., !T is a future of type T),
and future objects can be manipulated (e.g., in CML, Alice, Java, C++, and
our language). In addition, futures can also be dealt with lazily to give the effect
of call-by-need computation, by delaying the invocation of the asynchronous
computation until the moment when the future is accessed (e.g., in Alice).

Flanagan and Felleisen [10] present different semantic models of futures at
various levels of abstraction in terms of an abstract machine. Their goal was
to enable optimizations and program analyses. Their language was purely func-
tional in contrast to ours, which is an imperative, object-oriented language.

Caromel, Henrio, and Serpett [4] present an imperative, asynchronous object
calculus with transparent futures. Their active objects may have internal passive
objects which can be passed between active objects by first deep copying the
entire (passive) object graph. We do not provide this feature, which is orthogonal
to the issue discussed in this paper. To manage the complexity of reasoning
about distributed and concurrent systems, they restrict the language to ensure

328 F.S. de Boer, D. Clarke, and E.B. Johnsen

that reduction is confluent and deterministic, whereas our focus is on preserving
object invariants. No proof theory is presented for their calculus.

Actor systems [2] are concurrent processes which communicate exclusively
through asynchronous messages. An actor encapsulates its fields, procedures that
manipulate the state, and a single thread of control. Our objects are similar to
actors, except that our methods return values which are managed by futures, and
control can be released at specific points during a method execution. Messages
to actors return no result and run to completion before another message can be
handled. The lack of return makes programming with actors cumbersome.

Proof systems for actor languages exist [8], but these require explicit struc-
tures in the proof rules for reasoning about message queues, which our proof
theory avoids. Previous work by the third author [7] on the verification of asyn-
chronous method calls was performed in a language without first-class futures.
The paper took a transformational approach by encoding the language into a
sequential language with a non-deterministic assignment operator. However, the
Hoare rules described only the custom semantics. Various proof systems for mon-
itors exist [12, 15]. Our approach is distinct as we present a novel model of an
object that maintains multiple local invariants monitoring its release points and
a global invariant that describes its interaction with the other objects via futures.
The model is formalized and has a sound and complete proof theory.

7 Discussion and Future Work

We developed a formal model for a distributed, concurrent object-oriented lan-
guage with asynchronous method calls and futures. The model allows a novel
view of concurrent objects as maintainers of multiple local monitor invariants
and a global synchronization constraint. Having multiple monitor invariants al-
lows a proper treatment of local process variables. In contrast, monitor invariants
in existing models only refer to an object’s fields, complicating reasoning about
local variables in the context of the non-deterministic scheduling.

Although our language enables polling of futures (var? in an if statement),
which may be used to release the active process to allow flexible internal schedul-
ing in an object, to control interference of local proofs, our proof system restricts
polling to guards in await statements. We argue that this proof system is sig-
nificantly simpler than for the proof system for Java, based on previous work of
the first author [1]. Java’s proof system requires thread variables, and a general
interference freedom test due to the arbitrary interleaving of threads.

In fact, one can compare proof theories for various sublanguages of the lan-
guage presented here. Let us start with a base language without polling and
without release points await. Thus, get is the only operation on futures.

Adding await statements : The language without await does not require the
two history variables introduced in the completeness of our proof system; the
local scheduling history becomes superfluous. This language would have no inter-
nal rescheduling, rather it would resemble an actor-based language with futures
for managing the returns of asynchronous calls. The await statements in our

A Complete Guide to the Future 329

language allow a clear separation of concerns between an object as maintainer of
its monitor invariants and as maintainer of the global synchronization constraint.
This is clearly reflected in the completeness proof where the monitor invariance
only describes the internal scheduling of the await statements, whereas the
global synchronization constraint expresses the externally observable behavior.

Adding polling to conditionals significantly increases the complexity of the
proof system. Interference freedom tests are necessary [1], because the required
information about the absence of return values can be invalidated by other ob-
jects. In contrast, reasoning about await statement with polling only requires
information about the presence of reply values, which cannot be invalidated.

This suggests that either the concurrency features of programming languages
should be chosen to admit a simple proof system, or that the complexity of
programming with such features should be measured in terms of the complexity
of their proof system, and that this should be made known to programmers.

Futures are now a part of a programmer’s toolbox: Java’s util.concurrent
library supports futures, and futures handle asynchronous calls to web services.
To facilitate correct programming, it is important to guide the design of language
features using proof theoretical considerations. To properly support language
design, both the soundness and completeness of the proof system are paramount.

In the context of the EU IST project Credo we are currently extending the
existing Creol implementation [18] with additional rewrite rules for modeling
futures.

References

1. E. Ábrahám, F. S. de Boer, W. P. de Roever, and M. Steffen. An assertion-based
proof system for multithreaded Java. TCS, 331(2-3):251–290, 2005.

2. G. Agha and C. Hewitt. Actors: A conceptual foundation for concurrent
object-oriented programming. In Research Directions in Object-Oriented Program-
ming, pages 49–74. MIT Press, 1987.

3. P. Brinch Hansen. Java’s insecure parallelism. ACM SIGPLAN Notices, 34(4):
38–45, Apr. 1999.

4. D. Caromel, L. Henrio, and B. Serpette. Asynchronous and deterministic objects.
In Proceedings of the 31st ACM Symposium on Principles of Programming Lan-
guages (POPL’04), pages 123–134. ACM Press, 2004.

5. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer, and
J. F. Quesada. Maude: Specification and programming in rewriting logic. Theo-
retical Computer Science, 285:187–243, Aug. 2002.

6. F. S. de Boer. A WP-calculus for OO. In W. Thomas, editor, Proceedings of Foun-
dations of Software Science and Computation Structure, (FOSSACS’99), volume
1578 of Lecture Notes in Computer Science, pages 135–149. Springer, 1999.

7. J. Dovland, E. B. Johnsen, and O. Owe. Verification of concurrent objects with
asynchronous method calls. In Proceedings of the IEEE International Conference
on Software Science, Technology & Engineering (SwSTE’05), pages 141–150. IEEE
Computer Society Press, Feb. 2005.

8. C. H. C. Duarte. Proof-theoretic foundations for the design of actor systems.
Mathematical Structures in Computer Science, 9(3):227–252, 1999.

330 F.S. de Boer, D. Clarke, and E.B. Johnsen

9. M. Felleisen and R. Hieb. The revised report on the syntactic theories of sequential
control and state. Theoretical Computer Science, 103(2):235–271, 1992.

10. C. Flanagan and M. Felleisen. The semantics of future and an application.
J. Funct. Program., 9(1):1–31, 1999.

11. M. Flatt, S. Krishnamurthi, and M. Felleisen. A programmer’s reduction semantics
for classes and mixins. In Formal Syntax and Semantics of Java, volume 1523 of
Lecture Notes in Computer Science, pages 241–269. Springer, 1999.

12. R. Gerth and W. P. de Roever. A proof system for concurrent ada programs. Sci.
Comput. Program., 4(2):159–204, 1984.

13. R. H. Halstead Jr. Multilisp: A language for concurrent symbolic computation.
ACM Transactions on Programming Languages and Systems, 7(4):501–538, 1985.

14. B. Henry G., Jr. and C. Hewitt. The incremental garbage collection of processes.
In Proceeding of the Symposium on Artificial Intelligence Programming Languages,
number 12 in SIGPLAN Notices, page 11, August 1977.

15. C. A. R. Hoare. Monitors: An operating system structuring concept. Commun.
ACM, 17(10):549–557, 1974.

16. A. Igarashi, B. C. Pierce, and P. Wadler. Featherweight Java: a minimal core
calculus for Java and GJ. ACM Transactions on Programming Languages and
Systems, 23(3):396–450, 2001.

17. International Telecommunication Union. Open Distributed Processing — Refer-
ence Model parts 1–4. Technical report, ISO/IEC, Geneva, July 1995.

18. E. B. Johnsen, O. Owe, and I. C. Yu. Creol: A type-safe object-oriented model
for distributed concurrent systems. Theoretical Computer Science, 365(1–2):23–66,
Nov. 2006.

19. R. G. Lavender and D. C. Schmidt. Active object: an object behavioral pattern
for concurrent programming. Proc. Pattern Languages of Programs, 1995.

20. B. H. Liskov and L. Shrira. Promises: Linguistic support for efficient asynchronous
procedure calls in distributed systems. In D. S. Wise, editor, Proceedings of
the SIGPLAN Conference on Programming Lanugage Design and Implementation
(PLDI’88), pages 260–267, Atlanta, GE, USA, June 1988. ACM Press.

21. J. Niehren, J. Schwinghammer, and G. Smolka. A concurrent lambda calculus with
futures. Theoretical Computer Science, 364:338–356, 2006.

22. J. H. Reppy. Concurrent Programming in ML. Cambridge University Press, 1999.
23. A. Rossberg, D. L. Botlan, G. Tack, T. Brunklaus, and G. Smolka. Alice Through

the Looking Glass, volume 5 of Trends in Functional Programming, pages 79–96.
Intellect Books, Bristol, UK, ISBN 1-84150144-1, Munich, Germany, Feb. 2006.

24. P. Van Roy and S. Haridi. Concepts, Techniques, and Models of Computer Pro-
gramming. MIT Press, Mar. 2004.

25. A. Welc, S. Jagannathan, and A. Hosking. Safe futures for Java. In Proceedings
of the 20th annual ACM SIGPLAN conference on Object oriented programming,
systems, languages, and applications (OOPSLA’05), pages 439–453, New York,
NY, USA, 2005. ACM Press.

26. A. Yonezawa, J.-P. Briot, and E. Shibayama. Object-oriented concurrent pro-
gramming in ABCL/1. In Conference on Object-Oriented Programming Systems,
Languages and Applications (OOPSLA’86). Sigplan Notices, 21(11):258–268, Nov.
1986.

The Java Memory Model: Operationally,
Denotationally, Axiomatically

Pietro Cenciarelli1, Alexander Knapp2, and Eleonora Sibilio1

1 Dipartimento di Informatica, Università di Roma “La Sapienza”
{cenciarelli,sibilio}@di.uniroma1.it

2 Institut für Informatik, Ludwig-Maximilians-Universität München
knapp@pst.ifi.lmu.de

Abstract. A semantics to a small fragment of Java capturing the new memory
model (JMM) described in the Language Specification is given by combining op-
erational, denotational and axiomatic techniques in a novel semantic framework.
The operational steps (specified in the form of SOS) construct denotational mod-
els (configuration structures) and are constrained by the axioms of a configuration
theory. The semantics is proven correct with respect to the Language Specifica-
tion and shown to capture many common examples in the JMM literature.

1 Introduction

Two processes P and Q operating in parallel compete for a lock on shared data. The
structure A shown in Fig. 1 models the parallel composition P | Q, where P executes
lock; . . . unlock; and the same does Q. The identifiers lock and lock′ represent events
occurring in computation, namely the execution of a “lock” action respectively by P
and Q. Similarly for unlock and unlock′.

Sets of events, called configurations and depicted here as rounded squares surround-
ing their elements, represent consistent states of computation. The {unlock, lock} config-
uration, for example, represents the state reached by the system after having performed a
lock action first and then an unlock (while Q remains dormant). We know the lock came
first because we see a {lock} subconfiguration but not an {unlock}. Note that there is no
configuration {lock, lock′} and this represents the mutual exclusion of the two processes
from the shared resource.

Structures as those depicted in Fig. 1 are called configuration structures [1], a de-
notational model introduced by Winskel as an alternative presentation of (prime) event
structures [2]. Several closure conditions have been proposed over the years to make

�

�

�

�

b
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

a c�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

lock ′unlock unlock ′lock

(A) (B)

Fig. 1. Configuration structures

R. De Nicola (Ed.): ESOP 2007, LNCS 4421, pp. 331–346, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

332 P. Cenciarelli, A. Knapp, and E. Sibilio

configuration structures mathematically tractable. In [3] van Glabbeek and Goltz char-
acterise the class of configuration structures where the causal dependency between
events can be faithfully represented by means of partial orders. Such stable structures
are required to be closed under bounded unions and bounded intersections. Stable struc-
tures possess useful semantic properties; e.g., when a state C is part of the “history” of
a state D, then D is reachable from C by a sequence of atomic steps of computation.

Unfortunately, many structures naturally arising in the semantics of concurrent sys-
tems are not stable; A, for instance, is not. More general structures than the stable have
been studied in the literature [4,5,6,7]. The monotone configuration structures of [6],
e.g., (of which A is one) are those where causal dependency is preserved by inclusion
of configurations, indeed a minimal requirement for monotonic reasoning about states
of computation. However, consider an easy program where two threads both assign the
value 42 to x (call a and b these events) while a third thread reads this value from x
(event c). The corresponding structure, B in Fig. 1, is not monotone. So, a (provocative)
question arises: what are algebraically neat event-based models good for?

The present paper advocates the usefulness of event based models by proposing a
new semantic framework which combines denotational, operational and axiomatic tech-
niques to challenge the Java memory model. The current definition of the Java memory
model (JMM) [8] is still much driven by informal examples and, while the key ideas are
understood within the community, there is a lack of rigour for mechanised reasoning.
In our opinion, the reason of this is that, while the Java memory model and its run time
semantics are largely independent, no formal account has been given as yet of their
interplay. The notion of execution, introduced in the language specification as formal
basis to the former, is not clearly related with the latter, in that executions may specify
values being read or written which no single run of the program may be able to produce
collectively. Hence, executions must be validated by a complicated procedure involv-
ing tentative executions, each validating the commitment of certain actions, but each
relying on different assumptions as to the values being read or written by uncommitted
actions. The connection with run time semantics is informally given by the statement
that “executions should obey intra-thread consistency” [9, 4.4, clause 5].

In this paper we change perspective with respect to the language specification and
propose an axiomatisation of the JMM based on the notion of causality, deriving from
denotational semantics, rather than on the happens-before relation, upon which the ab-
stract executions of [8] rely. We propose a formal framework where structural opera-
tional semantics, describing program evaluation, interacts with a configuration theory,
describing the causal interplay of memory and threads.

Configuration theories were proposed in [6] as an axiomatic approach to the seman-
tics of concurrent systems and are further developed here to capture mutual exclusion.

,�
lock ′

unlock

lock

unlock ′

lock ′

lock

lock lock ′

Fig. 2. Poset sequent for mutual exclusion

The Java Memory Model: Operationally, Denotationally, Axiomatically 333

A configuration theory is a set of poset sequents which is closed under deduction. A
poset sequent is made of partially ordered sets (posets) of events, where the order is
interpreted as causal dependency. The sequent depicted in Fig. 2 (where order is repre-
sented by the vertical bars, with time pointing upward) spells roughly: “whenever two
lock actions occur in a computation, they must occur sequentially, and moreover there
must be an unlock action in between.” As one would expect, this sequent is satisfied by
structure A, but not by the structure obtained by adding the configuration {lock, lock′}
to it, which violates mutual exclusion (see discussion in Sect. 3).

After developing the mathematics of configuration theories (Sect. 2 and 3), we present
six poset sequents like the above axiomatising the JMM from the point of view of causal
dependency (Sect. 4). The resulting configuration theory constrains the rules of a struc-
tural operational semantics for the minimal fragment of Java which is relevant for under-
standing the memory model (Sect. 5). Our semantics is then proven correct with respect
to the Java language specification of [8, §17] (Sect. 6).

2 Stable Structures as Traces

A set system consists of a set E and a collection A of subsets of E [5]. If A ∈ A we
write sub(A) the set {B ∈ A | B ⊆ A}. If A, B ∈ sub(C) for some C ∈ A we say
that A and B are bound in A. The sets in a system A are called configurations when
used for modelling a concurrent system, while the elements of the set |A| =

⋃
A are

called events. If B ∈ A and A ∈ sub(B), then A is called a subconfiguration of B.
A labelled configuration structure [5] is a structure C endowed by a labelling function
λ : |C| → Act , where Act is a fixed set of labels called actions.

In [4] several closure conditions on the set of configurations of a structure A are
given in order to get a precise match with general event structures (generalising those
of [2]). They are: finiteness (if an event belongs to a configuration A, then it also belongs
to a finite subconfiguration of A), coincidence-freeness (if two distinct events belong to
a configuration A, then there exists a subconfiguration of A containing exactly one of
them), closure under bounded unions and non-emptiness of A. We call configuration
structures (or just structures), and write them C, D, . . . , the set systems satisfying all
of the above requirements, except closure under bounded unions (this is not standard in
literature). If C ⊆ D, we call C a sub-structure of D, and D an extension of C.

Coincidence-freeness endows each configuration C with a canonical partial order:
a ≤C b iff, for all D ∈ sub(C), b ∈ D implies a ∈ D. This relation is called causal
dependency. Two events a, b ∈ C are said to be concurrent in C, written a �C b, when
neither a ≤C b nor b ≤C a hold.

A structure C is called connected if, for all configurations C �= ∅, there exists a ∈ C
such that C \ {a} ∈ C. Clearly connectedness implies coincidence freeness and more-
over, having assumed C nonempty and finitary, it also implies that ∅ ∈ C (rootedness).
Following [3] we call stable a configuration structure which is connected, closed under
nonempty bounded unions and nonempty bounded intersections. Stability was intro-
duced for event structures in [4]. Stable structures are precisely those where the order on
a configuration determines its subconfigurations (see [3, Prop. 5.4 and Thm 5.2]). Below
we establish a precise correspondence between certain stable configuration structures

334 P. Cenciarelli, A. Knapp, and E. Sibilio

and Mazurkiewicz traces. The result motivates the use of stability as means for abstract-
ing computations over concurrent actions.

Given a string s over a set S, we write |s| the subset of elements of S occurring in s.
A path over a set S is a string s of elements of S, none of which is repeated. If C is a
configuration of a structure C, we call admissible a path s over C such that |u| ∈ C for
all prefixes u of s. We write
C the smallest equivalence relation on the paths of C such
that uabv
C ubav if a �C b. A trace in C is an equivalence class of
C in which all
paths are admissible. The set of all traces [s]�C such that |s| = C is denoted by Tr(C).
Note that the traces of all configurations in an event structure form a Mazurkiewicz
trace language (see [10] for detail), and the construction can be shown to be the object
map of an embedding (a co-reflection) of the category of event structures into that of
trace languages [10, Cor. 39].

Theorem 1. Let C be a configuration in a structure C. There exists a one-to-one cor-
respondence between the traces in Tr(C) and the stable substructures D of C such that
C ∈ D ⊆ sub(C), and moreover no other such substructure of C extends D properly.

Proof. Let [s]� be a trace in Tr(C). We show that the set D of configurations of the
form |r|, where r is a prefix of some path in [s]�, is stable. D is clearly rooted and
connected. It is also closed under bounded unions. In fact, let |u| and |v| be configura-
tions in D, and let r1 and r2 be paths in [s]�, with u a prefix of r1 and v of r2. If v is
empty the result holds trivially. Otherwise, let v = av′. Writing r1 as waw′, a must be
independent of each event in w. Hence, r1
 aww′, and moreover the latter has a prefix
u1 such that |u1| = |u| ∪ {a}. By iterating the argument, all events in v can be pushed
towards the front of r1 to obtain a path in [s]� with a prefix un such that |un| = |u|∪|v|.
Hence, D is stable, the argument for bounded intersections being similar to the above.
Conversely, let D satisfy the stated conditions. It is easy to show that the set of paths r
in C such that |r| = C and |u| ∈ D, for all prefixes u of r, is a trace in Tr(C). This
construction is inverse to the above. �

In view of the above result, we shall call traces of a configuration C in a structure C all
the stable substructures of C satisfying the conditions of Thm. 1. The following result
is used in Def. 2.

Proposition 1. Let D and E be traces, respectively of D and E, in a structure, and let
D ⊆ E . The inclusion map of D in E, written D ↪→ E, is monotone with respect to the
order induced by D and E .

Proof. Let a ≤D b and suppose a �≤E b. There exists A ∈ E such that b ∈ A �� a. Then
D �� D ∩ A ∈ E . Clearly, {C ∈ E | C ⊆ D} ⊆ sub(D) is a stable substructure of C
which includes D properly (as it contains D ∩ A), and hence D is not maximal, against
the assumptions. �

3 Sequents of Partial Maps

Notation. We write f : A ⇀ B to denote a partial function from A to B, and say that
the expression f(a) denotes (an element of B) when f is defined on a ∈ A. If e1 and

The Java Memory Model: Operationally, Denotationally, Axiomatically 335

e2 are expressions as above involving partial functions, we write e1 = e2 when e1 and
e2 denote the same element. When A and B are posets, we call f : A ⇀ B monotone
if, when f(a) and f(b) both denote, a ≤ b implies f(a) ≤ f(b). (A different notion
is usually adopted in domain theory, where the order represents approximation rather
than causal dependency.) For partial maps f and g we write f � g, if f(x) = g(x)
whenever f(x) is defined. We use Γ, Δ, . . . to denote sequences of posets, and write
Γi the i-th component of Γ . The concatenation of two sequences Γ and Δ is written
Γ, Δ. If Γ = A1, . . . , Am and Δ = B1, . . . , Bn are finite sequences of posets, we write
ρ : Γ ⇀ Δ to mean that ρ is an m × n-matrix of monotone injective partial functions
ρij : Ai ⇀ Bj . Given two matrices α and β of the form Γ ⇀ Δ, we write α � β when
αij � βij , for all i and j. Function composition is written in diagrammatical order.

Definition 1. A poset sequent Γ �ρ Δ (or just sequent) consists of two finite sequences
Γ and Δ of posets and a matrix ρ : Γ ⇀ Δ of monotone injective partial functions.

The posets in a sequent are meant to represent fragments of a configuration. The intu-
itive meaning of a sequent Γ �ρ Δ is that whenever a trace interprets all components
of Γ , the interpretation extends along ρ to at least one component of Δ. Of course the
Δi may include events that are not mentioned in Γ , thus specifying what is required to
happen after, or must have happened before, a certain combination (Γ) of events. We
write just ρ for a sequent Γ �ρ Δ when Γ and Δ are understood or not relevant. On the
other hand, we may omit ρ when obvious from the labelling conventions.

Sequents predicate over traces. Let C be a configuration of a structure C; by a slight
abuse, we speak of a trace C to mean a trace D of C in C. In such a case we intend
C as endowed with the partial order induced by the configurations in D. We call inter-
pretation of a sequence Γ of m posets in a trace C an m × 1-matrix Γ ⇀ C whose
components are total.

Definition 2. A structure C is said to satisfy a sequent Γ �ρ Δ when, for any trace C
in C and interpretation π : Γ → C, there exist a trace D extending C, a component
Δk ∈ Δ and a monotone injective total function q : Δk → D such that ρikq � πiu for
all i, where u : C ↪→ D is the inclusion.

A labelled sequent ρ is one in which the elements of posets are assigned labels from
Act and the maps in ρ preserve them. Definition 2 extends to labelled sequents and
structures by requiring that interpretation maps preserve labels.

A pathological kind of sequent is �, which features empty sequences as antecedent
and succedent, and is decorated by the empty matrix. Under the assumption that struc-
tures are not empty, this sequents denotes the absurd. A sequent of the form � A is
satisfied by structures in which every trace is bound to produce a configuration match-
ing A. Similarly the sequent A � is satisfied by structures in which no configuration
ever matches A.

The formal system of poset sequents introduced in [6] featured inference rules mim-
icking the structural rules of Gentzen’s sequent calculus. The differences with the present
work are in the kind of maps decorating the sequents (total in [6], partial here) and in the
notion of interpretation (quantifying over configurations vs. traces). Partial maps yield

336 P. Cenciarelli, A. Knapp, and E. Sibilio

a stronger system, in which the old rules are derivable. The sequent a � a b, for ex-

ample, is now derivable from
b

a � � ,
a

while it was previously not, although the former

holds in any structure satisfying the latter. The metatheory is also more compact, fea-
turing four rules against ten, and a general cut rule, which was previously split into
left and right rules. On the other hand, interpreting over traces allows us to axioma-
tise mutual exclusion, as with the lock/unlock example, which could not be captured
in the old system. In fact, consider the labelled structure A in Fig. 1, where we as-
sume λ(lock) = λ(lock ′) and λ(unlock) = λ(unlock ′), and let A′ be the structure
obtained from A by adding the configuration {lock , lock ′} (no mutual exclusion!). In
both structures the configuration C = {lock , unlock , lock ′, unlock ′} is endowed with
the ordering lock ≤ unlock , lock ′ ≤ unlock ′. Hence, had we defined satisfaction by
quantifying over configurations rather than on traces, the axiom in Fig. 2 would be sat-
isfied by neither structures. However, while A′ only has one trace on C (viz. A′ itself),
featuring the same order as above, A has two: {lock ≤ unlock ≤ lock ′ ≤ unlock ′} and
{lock ′ ≤ unlock ′ ≤ lock ≤ unlock}. Hence, in the current development, A satisfies
the axiom while A′ does not, as expected.

The following lemmas are used to prove the soundness of our inference system of
poset sequents (Fig. 3).

Let Γ = Γ1, . . . , Γn and Δ = Δ1, . . . , Δm be vectors of posets; a covariant map
from Γ to Δ consists of a function f : {1, . . . , n} → {1, . . . , m} on indices, and a
family of (total) monos ψi : Γi � Δf(i). We write (f, ψ) : Γ

>�−→ Δ such a map,
shortening (f, ψ) as f when no confusion arises. A contravariant map (f, ψ) : Γ

<�−→
Δ is defined just as above, except for f : {1, . . . , m} → {1, . . . , n} mapping the indices
of Δ to those of Γ , and the ψi being of the form Γf(i) � Δi. A matrix σ : Γ ⇀ Σ
is called right extension of a matrix ρ : Γ ⇀ Δ when there exists a contravariant
map (f, ψ) : Σ

<�−→ Δ such that σjf(i)ψi � ρji, for all i, j; in such a case we write
σ ∈ rex(ρ).

Lemma 1. Let σ ∈ rex (ρ); if a structure satisfies ρ, then it satisfies σ.

Proof. Let a structure C satisfy ρ : Γ ⇀ Δ, let σ : Γ ⇀ Σ be in rex(ρ) by (f, ψ) :
Σ

<�−→ Δ, and let π : Γ → C ∈ C be an interpretation of Γ in C. Since C satisfies ρ
there exists an inclusion u : C ↪→ D of C in a configuration D and, for some k, a map
q : Δk → D such that ρikq � πiu, for all i. Then, σif(k)ψkq � ρikq � πiu. �

The left composition of a matrix σ : Σ ⇀ Δ with a covariant map (f, ψ) : Γ
>�−→ Σ

is the matrix fσ : Γ ⇀ Δ where (fσ)ij(a) = σf(i)j(ψi(a)). A left Kan extension of
a matrix ρ : Γ ⇀ Δ along a covariant map (f, ψ) : Γ

>�−→ Σ is a matrix ρ̂ : Σ ⇀ Δ
such that ρ � f ρ̂, and moreover ρ̂ � σ holds for all σ : Σ ⇀ Δ such that ρ � fσ. It
is easy to check that, when the ψi are strong, such a ρ̂ exists iff, whenever f(i) = f(j),
ψi(a′) = ψj(a′′) iff ρik(a′) = ρjk(a′′). In such a case ρ̂hk(a) is ρjk(a′) when j and
a′ exist such that h = f(j) and a = ψj(a′); otherwise ρ̂hk(a) is undefined. Note that
the above definition of ρ̂ does correspond to the categorical notion of left Kan extension
[11, 10.3] in a precise sense. A matrix σ : Σ ⇀ Δ is called left extension of a matrix
ρ : Γ ⇀ Δ when ρ has a left Kan extension ρ̂ along some map Γ

>�−→ Σ and σ � ρ̂; in
such a case we write σ ∈ lex (ρ).

The Java Memory Model: Operationally, Denotationally, Axiomatically 337

[true]
� ∅

[incl]
A �φ−1 B

(φ : B � A is strong)

Γ �ρ Δ
[sub]

Σ �σ Π
σ ≤ ρ

Γ �τ,ρ A, Δ Σ, A �σ;π Π
[cut]

Γ, Σ �(ρ;∅),(τπ;σ) Δ, Π

Fig. 3. Inference rules

Lemma 2. Let σ ∈ lex (ρ); if a structure satisfies ρ, then it satisfies σ.

Proof. Let structure C satisfy ρ : Γ ⇀ Δ, let ρ̂ be a Kan extension of ρ along (f, ψ) :
Γ

>�−→ Σ, let σ � ρ̂ and let π : Σ → C ∈ C be an interpretation of Σ in C. The
interpretation fπ yields a configuration C ⊆ D ∈ C and a map q : Δk → D such that
ρikq � ψiπf(i)ku, where u : C → D is the inclusion. Then, σ � ρ̂ yields σq � πu. �

Figure 3 shows rule schemes for deriving poset sequents. Rule [sub] makes use of a
preorder ≤ over sequents defined to be the smallest transitive relation where σ ≤ ρ
when σ is either in lex (ρ) or in rex (ρ). In the [cut] rule two operations (comma and
semi-colon) are used to compose matrices. If ρ and σ are matrices of size m × n and
r × n respectively, we write (ρ; σ) for the (m + r) × n matrix obtained by “placing ρ
above σ”: the ij-component of (ρ; σ) is ρij for i ≤ m, while it is σ(i−m)j when i > m.
Similarly, if ρ and σ are of size m × n and m × r, we write (ρ, σ) for the m × (n + r)
matrix obtained by “placing ρ to the left of σ”: the ij-component of (ρ, σ) is ρij for
j ≤ n, while it is σi(j−n) when j > n. Finally, let τ and π be respectively a n × 1
column vector and a 1×m row vector. Then, τπ stands for the n×m matricial product

of the two, where (τπ)ij is the composite map Γi
τi−→ A

πj−→ Πj . By ∅ we mean a
matrix (of suitable size) whose components are the always undefined partial functions.

Definition 3. A configuration theory is a set of sequents which is closed under the rule
schemes of Fig. 3.

Theorem 2. The rules of Fig. 3 are sound.

The proof is almost immediate for all the rules except for [sub], where it follows from
Lemmas 1 and 2. Completeness can also be obtained by adjoining to the rules of Fig. 3
the [extend] rule of [6, 5]. This is however out of the scope of the present paper.

4 A Configuration Theory of Java

We present a configuration theory specifying the rules by which events of a Java com-
putation may depend on each other.

Let Var, Mon and Tid denote disjoint countable sets, respectively of program vari-
ables (ranged over by x, y, . . .), monitors (m, . . .) and thread identifiers (θ, ζ, ξ, . . .).
The actions of the theory of Java are either of the form (H, θ, x, v), where H ∈ {R, W}
and v is a value, or of the form (K, θ, m), with K ∈ {L, U}. Actions (H, θ, x, v), called
memory actions, represent the reading (R) of a value v from the variable x by a thread
θ, or the assignment (W for writing) of v to x by θ, while actions of the form (K, θ, m),

338 P. Cenciarelli, A. Knapp, and E. Sibilio

� ,
b

a a = (ζ, m), b = (θ, m)

a = (θ, x, v), b = (θ, m)

a = (θ, x, v), b = (θ, x, w)1a)

1b)

1c)
a b

a

b
1)

�2)
(W,ζ, x, v)

(R, θ, x, v)
(R, θ, x, v) � ,3) � ∗

(R, θ, x, v)

(W,ζ, x, v)

(R, θ, x, v)

(W,θ, x, v)

(W, θ, x,w)

(R, θ, x, v)

(W,θ, x,w)

andwhere

4) � ∗ Ai = Bi =�
(R, θ, x, v)

. . .
AnA1

(R, θ, x, v)

(W,ξ, x, v)
(U, ζi, mi)

(L, θ, mi)

(W,ζi, x, wi)

(R, θ, x, v)

(W,ζi, x, v)

(W,ζi, x,wi)

B1 , . . . , Bn ,

�5)
(U, θ, m)n

(L, θ, m)n
(U, θ, m)n �6) ∗

(L, θ, m)

(L, ζ, m)n

(L, θ, m)

(U, ζ, m)n

(�) v �= w, wi for all i
(∗) θ �= ζ, ζi for all i

Fig. 4. The configuration theory of Java

called synchronisations, represent the locking (L) or the unlocking (U) of a monitor m
by θ. When H and K are irrelevant, (H, θ, x, v) and (K, θ, m) are shortened respec-
tively as (θ, x, v) and (θ, m). Other action component may be similarly omitted when
not relevant. Events are labelled by actions. We write e : l to mean that event e has
label l. When no confusion arises, we use actions to denote the events of which they are
labels. We do so in Fig. 4.

Figure 4 shows the axiom schemes of our configuration theory of Java. The ρ in a
sequent Γ �ρ Δ is left implicit by convening that an event e : A in Γi is mapped by ρij

to one with the same label A in Δj , in lack of which ρij(e) is undefined.
Scheme 1 describes how the different kinds of actions are to be ordered in legal pro-

gram executions, according to the Java memory model [8, §17]. All memory actions of
one thread over a same variable must be totally ordered (1a), while all synchronisations
of a thread over a monitor must be ordered with the memory actions of that thread (1b)
and with the synchronisations of other threads over the same monitor (1c).

Schemes 2, 3 and 4 specify how threads are allowed to read values from the shared
memory. Any value being read by a thread θ from a variable x must have been previ-
ously assigned to x by a possibly different thread (2). If θ reads its own assignment,
then it must be the most recent one (3), while, if it is a value assigned by another thread
ζ, it must be the most recent only if θ and ζ synchronised over the same monitor (4).

Schemes 5 and 6 describe synchronisation. By an we mean a poset of n a-labelled

events a1, . . . , an, with the discrete ordering, while
bn

�
an

denotes the poset an∪bn where

ai ≤ bi, for all i. Then, scheme 5 says that any unlock action must be paired with

The Java Memory Model: Operationally, Denotationally, Axiomatically 339

a preceding lock by the same thread, while 6 guarantees, in combination with 5, that
locks are granted to one thread at a time.

5 An Event-Based Semantics of Java

The axioms are used to constrain the applicability of the operational rules: semantic
configurations of events, labelled as in Sect. 4, are included as part of the operational
configurations, and each time the semantics reduces a Java term an event is added to
(and causal dependencies recorded in) the current semantic configuration, provided this
complies with the specified theory. Thus, operational semantics builds a denotational
model of the program (see discussion in Sect. 7). However, events may also be added
to the semantic configurations presciently (by rule [pre] in Tab. 1), that is before the
corresponding reduction is performed, and only later fulfilled by the execution engine.
Hence, semantic configurations are also equipped with a fulfilment predicate ()! on
write events. Intuition is that (W)! holds in η precisely when (W) has been fulfilled
by program evaluation. More formally: configurations of events are called event spaces
(and ranged over by η, ζ, . . .) when viewed as part of operational configurations. Math-
ematically an event space is just a poset equipped with a fulfilment predicate and sat-
isfying the axioms of Fig. 4. By that we mean that it does when viewed as the (stable)
structure whose configurations are its downward closed subsets.

By using prescient actions, threads may read values from the shared memory which
have not yet been assigned to the corresponding variable. As predicated in the Java
specification [8], this allows the language implementation to apply compiler optimisa-
tion techniques (such as swapping statements, extracting assignments from the branches
of an if . . .) without violating the legal executions of a program.

Dependencies. A syntactic dependency set is a set of read events. Given syntactic de-
pendency sets δ1 and δ2, we write δ1δ2 for δ1∪ δ2, while δ e stands for δ ∪{e}. Syntactic
dependencies are attached to statements during evaluation. Intuitively, if x is assigned
the value 7 by a statement x = y + 2, the corresponding write action must depend on
some event labelled by (R, y, 5). When fulfilling the assignment, the operational se-
mantics checks that its syntactic dependencies do correspond to causal dependencies in
the current event space.

An event e is adjoined to an event space η by an operation ⊕. More precisely, let η
and η′ be event spaces; we write η′ ∈ η ⊕ e when:

– |η′| = |η| ∪ {e} and the order in η′ extends that of η conservatively;
– fulfilment in η′ extends that of η conservatively, with e unfulfilled if e : (W);
– if e is labelled by (R, θ, x), then d! holds for all d : (W, θ, x) < e;
– if e : (θ) < d : (θ), then d is an unfulfilled write.

We write η ⊕ e to denote any η′ ∈ η ⊕ e. If no such η′ exists, then η ⊕ e is undefined.
Given an event space η, a dependency set δ and a write action (W, θ, x, v), the expres-
sion η ↓δ (W, θ, x, v) is defined if there exists an unfulfilled event e : (W, θ, x, v) in η
such that d! holds for all d : (W, θ, x) < e, and moreover d′ < e in η for all d′ ∈ δ.
Noting that such an e is necessarily unique, we let η ↓δ (W, θ, x, v), when defined,
denote the event space η with the new fulfilment e!.

340 P. Cenciarelli, A. Knapp, and E. Sibilio

Syntax. We use the following simple fragment of Java.

D-Term ::= D-Stm | D-Expr
D-Stm ::= Stm Dep

D-Expr ::= Expr Dep

Stm ::= ; | Var = D-Expr; | D-Stm D-Stm
| if(D-Expr) D-Stm else D-Stm
| synchronized(Mon) D-Stm
| synchronized(Mon) D-Stm

Expr ::= Lit | Var | Expr Op Expr

Here, Lit is the syntactic domain of literals, which we identify with the domain of
values and where we assume suitable functions op : Lit × Lit → Lit corresponding
to the syntactic binary operators op ∈ Op. Dep stands for the domain of syntactic
dependency sets. A “conventional” Java term like x = 1; is turned into a D-Term
(dependent term) by filling in empty dependency sets, i.e., (x = (1)∅ ;)∅, and we omit
empty dependency sets in our examples.

Operational configurations. An operational configuration represents the state of ex-
ecution of a multi-threaded Java program; therefore, it may include several depen-
dent terms, one for each thread of execution. We call multiterm a partial map from
thread identifiers to dependent terms. We let the metavariable T range over multiterms:
T : Tid ⇀ D-Term. When we assume that θ is not in the domain of T we write T ‖(θ, t)
for the multiterm T ′ such that T ′(θ) = t and T ′(θ′)
 T (θ′) for θ′ �= θ; where h
 h′

means that if h is defined so is h′, and vice versa.
An operational configuration is a pair (T, η) consisting of a multiterm T and an event

space η. In writing operational configurations, we generally drop the parentheses and all
parts that are not immediately relevant in the context of discourse; for example, we may
write just “t, η” to mean some configuration (T ‖ (θ, t), η). Operational configurations
are ranged over by γ.

Rule conventions. In writing an axiom γ1 → γ2 we focus only on the relevant parts of
the configurations involved, and understand that whatever is omitted from γ1 remains
unchanged in γ2. For example, we understand that the axiom ; p → p stands for
T ‖ (θ,; p), η → T ‖ (θ, p), η. On the other hand, rules with a premise are read by
assuming that whatever changes occur in the omitted parts of the premise also occur in
the conclusion. For example, we understand that:

e1 → e2

e1 op e → e2 op e
means

T1 ‖ (θ, (e1)δ1), η1 → T2 ‖ (θ, (e2)δ2), η2

T1 ‖ (θ, (e1 op e)δ1), η1 → T2 ‖ (θ, (e2 op e)δ2), η2
.

Operational rules. The operational rules are given in Tab. 1. The metavariables used
(in variously decorated form) in the rule schemes range as follows: u, v ∈ Lit, x ∈ Var,
m ∈ Mon, d, e ∈ Expr, s ∈ Stm, p, q ∈ D-Stm, δ, ε ∈ Dep.

The JMM axioms (Fig. 4) constrain the operational rules. This is because the latter
rely on ⊕ producing a legal event space. For example, an attempt by a thread θ to use
[syn1] for acquiring a lock on m would fail if m is detained by a different thread in the
current state η, because the expression η ⊕ (L, θ, m) would then denote no event space
satisfying the axioms for locks. Similarly, the value v read by θ in x through rule [var]
is forced to comply with the model by the requirement that η ⊕ (R, θ, x, v) be defined.

The Java Memory Model: Operationally, Denotationally, Axiomatically 341

Table 1. Operational rules

[binop1]
d → e

d op e′ → e op e′ [binop2]
d → e

v op d → v op e

[binop3] u op v → op(u, v) [var] θ : x, η → θ : v(R,θ,x,v), η ⊕ (R, θ, x, v)

[assign1]
d → e

x = d; → x = e;
[assign2] θ : x = vε;δ, η → θ : ;δ , η ↓δε (W , θ, x, v)

[if1]
d → e

if (d) p else q → if (e) p else q

[if2] (if (trueε) p else q)δ → pδε

[if3] (if (falseε) p else q)δ → qδε

[if4]
pδ, η → p′

δ, η
′ qδ, η → q′

δ, η
′

(if (v) p else q)δ, η → (if (v) p′ else q′)δ, η
′

[syn1] θ : synchronized (m) p, η → θ : synchronized (m) p, η ⊕ (L, θ, m)

[syn2]
pδ → qδ

(synchronized (m) p)δ → (synchronized (m) q)δ

[syn3] θ : synchronized (m);, η → θ : ;, η ⊕ (U , θ, m)

[skip] ; p → p [seq]
pδ → p′

δ

(p q)δ → (p′ q)δ

[pre] T, η → T, η ⊕ (W)

Examples. We show that an execution of the sample program in Fig. 5, top-left, started
with all variables initialised to zero can result in r1 and r2 set to 1, as predicated in [9].
Using rule [pre], the operational semantics may first “guess” that x and ywill eventually
be set to 1 and that these settings do not causally depend on any previously read value.
In fact, this will be fulfilled by execution according to the operational semantics, and
thus the Java trace (writing a → b for a ≤ b) in Fig. 5, top-right, can be produced:

r1=x;y=1; ‖ r2=y;x=1;, ∅ [pre]−−→
r1=x;y=1; ‖ r2=y;x=1;, {c′} [assign1, var]−−−−−−−→
r1=1a;y=1; ‖ r2=y;x=1;, {c′ < a} [pre]−−→
r1=1a;y=1; ‖ r2=y;x=1;, {c′ < a < b} [assign2]−−−−→
;y=1; ‖ r2=y;x=1;, {c′ < a < b!} [skip]−−−→
y=1; ‖ r2=y;x=1;, {c′ < a < b!} [pre]−−→
y=1; ‖ r2=y;x=1;, {c′ < a < b!, c} [assign2]−−−−→
; ‖ r2=y;x=1;, {c′ < a < b!, c!} [assign1, var]−−−−−−−→
; ‖ r2= 1a′;x=1;, {c′ < a < b!, c! < a′} [pre]−−→
; ‖ r2= 1a′;x=1;, {c′ < a < b!, c! < a′ < b′} [assign2]−−−−→
; ‖ ;x=1;, {c′ < a < b!, c! < a′ < b′!} [skip]−−−→
; ‖ x=1;, {c′ < a < b!, c! < a′ < b′!} [assign2]−−−−→
; ‖ ;, {c′! < a < b!, c! < a′ < b′!}

where the terms for the threads θ1 and θ2 are shown left and right to ‖.

342 P. Cenciarelli, A. Knapp, and E. Sibilio

Thread θ1 Thread θ2

r1 = x; r2 = y;
y = 1; x = 1;

a : (R, θ1,x, 1)

�
b : (W , θ1,r1, 1)!

c : (W , θ1,y, 1)!

�
a′ : (R, θ2,y, 1)

�
b′ : (W , θ2,r2, 1)!

c′ : (W , θ2,x, 1)!

�

Thread θ1 Thread θ2

r1 = x; r2 = y;
if (r1 == 1) if (r2 == 1)

y = 1; x = 1;
else
x = 1;

(R, θ1, x, 1)

�
(W , θ1,r1, 1)!

�
(R, θ1,r1, 1)

�
(W , θ1,y, 1)!

�
(R, θ2,y, 1)

�
(W , θ2, r2, 1)!

�
(R, θ2,r2, 1)

(W , θ2, x, 1)

�

Fig. 5. Examples of Java programs and resulting Java configurations

In contrast, in the program

θ1 : r1=x; if(r1==1) y=1; ‖ θ2 : r2=y; if(r2==1) x=1;

the write action for y and x do depend on the values previously read from r1 and
r2, respectively. Consequently, a poset like the one depicted in Fig. 5, bottom-right,
in which (W , θ2,x, 1) does not extend to a fulfilled execution. But, in fact, this Java
configuration with this event being fulfilled is the possible outcome of the program in
Fig. 5, bottom-left, where a single write to x not depending on r2 suffices.

6 Correctness

The JMM [8, §17] is based on a notion of “happens-before”. This notion subsumes on
the one hand the program order po, a thread-wise total order of actions as dictated by
sequentially executing each thread according to the Java language specification; on the
other hand, it is based on the synchronisation order so, the total order of all lock and
unlock actions in a program run. Then the happens-before order hb, which must be a
partial order, is defined to include the transitive closure of po with the synchronises-with
order sw which restricts so to lock and unlock actions on the same monitor.

The action description of the JMM differs from our notion of Java actions with re-
spect to the values, which we included into the actions: In the JMM, two functions V
and W are used where V gives for a write action the value written of this write and W
references for a read action the write seen by this read. The write-seen function must
be compatible with the happens-before order in the sense that no write can be seen by a
read which actually happens after it, and no read can see a write that happened before it
but has been overwritten in the happens-before order. Finally, the JMM requires that all
variables of a program are properly initialised and that these initialisations can be seen
by all threads. For this purpose it strengthens the synchronises-with order to include the
initialising writes and the first action of each thread.

The Java Memory Model: Operationally, Denotationally, Axiomatically 343

A (well-formed) execution of a program P with an action set A now, according to
the JMM, is a tuple (P, A, po, so, W, V, sw, hb) fulfilling the description above. It has
to be stressed that the JMM description [8, §17] does not define the connection between
the program P and the actions A and the various orderings and functions. In fact, the
actions actually executed in a program run will, in general, depend on W and V , and
their precise connection would be mutually recursive.

The notion of happens-before alone does not suffice to capture causally legal ex-
ecutions, as it would allow “out-of-thin-air” results to be produced. Thus, the JMM
predicates that an execution X has to be validated by a sequence of other executions
(Xi)i of the same program committing subsequently all actions of X in an increas-
ing sequence (Ci)i. The process of commitments must be such that the happens-before
orders and the value-written functions of X and Xi coincide on already committed ac-
tions in Ci; the writes-seen of Xi, however, need not coincide on Ci, but only on Ci−1,
with the additional requirement that every new read action in Xi has to see a write that
happened-before in Xi and, if it is committed in Ci, then the write-seen must be in
Ci−1. Finally, synchronisation actions immediately following each other in Xi below a
committed action in Ci must persist in the validation process.

In order to prove that our semantics is correct with respect to the JMM, we have to
show that a run of the operational semantics on a multiterm T such that the final Java
trace is fulfilled indeed gives rise to an execution X for T that can be validated by a
sequence (Xi, Ci)i of executions and commitments. We assume in the following that
the operational semantics starts with an initial Java trace ηT that show initialisations for
all variables of P and that ηT will be extended during computation in such a way that
all subsequent events depend on the initialisations.

Let T be a multiterm and let �γ be a computation γ0 → · · · → γn, with γ0 = (T, ηT),
γi = (Ti, ηi), and ηn totally fulfilled. For the first task, producing an execution, we
observe that the computation �γ induces a total order on the events in ηn by assigning
to each e ∈ |ηn| the index of the computational step in which either it was added, if
e : (R), or e : (L), e : (U), or it was fulfilled, if e : (W). We construct an execution

exec(�γ) = (T, |ηn|, po(�γ), so(�γ), W (�γ), V (�γ), sw(�γ), hb(�γ))

as follows: Constraining the total order of events to each thread and to all synchro-
nisation actions, we obtain a program order po(�γ) and a synchronisation order so(�γ),
respectively; this also induces a happens-before order hb(�γ) and a synchronises-with
order sw(�γ). We define the value-written function V (�γ) by setting V (�γ)(e) = v if
e : (W , v) ∈ ηn, and a write-seen function W (�γ) by setting W (�γ)(e) to that e′ ∈ ηn

which satisfies e′ : (W , v) ≤ e : (R, v) in ηn and has the minimum distance of indices
assigned to e and e′.

Lemma 3. exec(�γ) is a well-formed execution of T .

Proof. By construction, hb(�γ) is a partial order. W (�γ) conforms to the requirements of
the JMM as, although there may be several writes of the desired value for a read that
can be seen by the read, there will be at least one valid for W (�γ) by axioms (2–4) on
Java configurations. �

344 P. Cenciarelli, A. Knapp, and E. Sibilio

For the second task, validating an execution exec(�γ), we construct a sequence of execu-
tions and commitments (X(�γ)i, C(�γ)i) inductively as follows: X(�γ)0 and C(�γ)0 are
empty. Assuming X(�γ)k and C(�γ)k to have been defined already for a 0 < k < n, we

let ek+1 be a minimal element of ηn \ Ck. Then there is a computation �γ(k) = γ
(k)
0 →

· · · → γ
(k)
l , with γ

(k)
0 = (T, ηT), η

(k)
l fulfilled, ηn�C(�γ)k = η

(k)
l , and ek+1 maximal

in η
(k)
l , which uses the [pre] rule only for events in Ck. Indeed, using exec(�γ) as the

guide for executing which statement and action, no rule execution can be prohibited, but
it may produce a different value for the read and write actions. In fact, having chosen
ek+1 to be minimal in ηn \ C(�γ)k all events in the η

(i)
l only depend on actions having

been committed in Ck and thus, in particular, for ek+1 the same value as in η will be
produced. As �γ(k) is a computation, it induces an execution X(�γ)k+1 = exec(�γ(k)) by
Lem. 3; we also set C(�γ)k+1 = C(�γ)k ∪ {ek+1}.

Lemma 4. exec(�γ) is validated by the sequence (X(�γ)i, C(�γ)i)i.

Proof. By construction, the happens-before order of exec(�γ) is preserved on each C(�γ)i

and all read actions either use a happens-before value in X(�γ)i, as the [pre] rule must
not be used for uncommitted actions, or see a happens-before write. �

It is worth noting that we have resolved the dilemma of the mutually dependent defini-
tions of program actions and the values seen and written by these actions in the JMM by
restricting the use of prescient write actions in our construction of a validation sequence.

7 Conclusions and Further Research

We presented a structural operational semantics of a small fragment of Java includ-
ing much of what is needed to understand the JMM. The semantics was proven correct
with respect to the language specification of [8]. The specification of the memory model
(Fig. 4) is separate from the run time semantics (Tab. 1) and yet connected in a single
formal framework which gives unambiguous account of their interplay. We believe this
has been missing in the literature as yet. Moreover, the theoretical foundations of the
proposed framework, combining denotational, operational and axiomatical semantics,
support formal reasoning about programs, specifically for proving correctness of opti-
misation techniques.

There are, e.g., obvious compiler optimisations that the current JMM does not sup-
port. An example is the following program where threads θ1 and θ2 run in parallel:

θ1 : r1=x; r2=y; if(r1==1&&r2==1) z=1;
θ2 : r3=z; if(r3==1) {x=1; y=1;} else {y=1; x=1;}

After reordering the independent statements in the else branch, a compiler may exe-
cute assignments x = 1; and y = 1; early, so that r1, r2, r3 can all be assigned 1.
However, such a behaviour is not legal according to the current JMM, as it violates the
condition that the happens-before orders during validation be consistent with the final
happens-before on the committed actions. In fact, the latter will have the write to x
before the write to y, but during validation the write to y happens before the write to x.

The Java Memory Model: Operationally, Denotationally, Axiomatically 345

This is indeed a counterexample to the claim by Manson, Pugh, and Adve [9, Thm. 1]
that in the JMM all independent program statements can be reordered; it seems that
the happens-before order would have to be relaxed, not requiring, e.g., the ordering
of independent program actions. In our framework, such a compiler optimisation can
be included by a simple editing of rule [if4]. The theory of reorderings developed by
Saraswat et al. [12] takes into account also more complicated code rearrangements, but,
like the JMM, is not connected to a language semantics.

On a more theoretical side, we notice that our axiomatisation of the JMM has only
been used to constrain the operational rules by local checks on fragments of a configu-
ration structure, the event spaces. What the whole structure is, which represents the full
program denotationally, can also be made explicit. (The following construction extends
easily to possibly infinite computations, e.g. when including while loops.)

Let η0, . . . , ηn be the sequence of event spaces of a computation �γ. We write η�γ to
denote the last event space ηn in �γ. A computation �γ is called accomplished if all write
actions in η�γ are fulfilled and moreover, if Tn is its last multiterm, then Tn(θ) is ;, when
defined, for all threads θ. We write x to denote a specific occurrence of a variable x in
a program T , and similarly for monitors. Let ET be the set whose elements are either
pairs (x, v), where x is a variable and v a value, or pairs (m, K), where m is a monitor
and K ∈ {L,U }. Viewing the elements of ET as events, we construct a denotational
model of T by assuming that operational semantics adjoins events to the current trace
according to the following protocol:

– [var] adds (x, v) : (R, x, v) if v is the value read at x;
– [pre] adds (x, v) : (W , x, v) if v is the value written in x;
– [syn1] adds (m,L) : (L, m) when evaluating synchronized (m) p;
– [syn3] adds (m,U) : (U , m) when evaluating synchronized (m);;

Given a program T , we let �T � be the structure whose configurations are sets C ⊆
ET such that there exists an accomplished computation �γ of T and C is a downward
closed subset of η�γ . Note that the causal dependency relation associated with such a C
in �T � is included in, but may not coincide with, the partial order of η�γ restricted to C.

Proposition 2. �T � satisfies the Java axioms.

Proof. Suppose �T � does not satisfy an axiom Γ �ρ Δ. There must exist a trace C in
�T � and an interpretation π : Γ → C violating the conditions of Def. 2. By definition,
|C| is a downward closed subset of some η�γ , and there exists an event space η in �γ
(hence satisfying the axioms) which contains all events in C. By an easy argument, η
satisfies ρ iff so does C, against the assumptions. �

By the arguments developed in Sect. 1, we know that �T � is neither stable nor monotone.
What the algebraic properties of such structures are is still under investigation, and we
believe that such a denotational understanding may provide valuable tools for formal
proofs of program properties.

Acknowledgements. We would like to thank Florian Lasinger for pointing us to some
problems in the JMM.

346 P. Cenciarelli, A. Knapp, and E. Sibilio

References

1. Winskel, G.: Event Structure Semantics of CCS and Related Languages. In Nielsen,
M., Schmidt, E.M., eds.: Proc. 9th Int. Coll. Automata, Languages and Programming
(ICALP’82). Volume 140 of Lect. Notes Comp. Sci., Springer, Berlin (1982) 561–576

2. Nielsen, M., Plotkin, G.D., Winskel, G.: Petri Nets, Event Structures and Domains: Part I.
Theo. Comp. Sci. 13 (1981) 85–108

3. van Glabbeek, R.J., Goltz, U.: Refinement of Actions and Equivalence Notions for Concur-
rent Systems. Acta Informatica 37 (2001) 229–327

4. Winskel, G.: Event Structures. In Brauer, W., Reisig, W., Rozenberg, G., eds.: Advances in
Petri Nets 1986, Part II. Number 255 in Lect. Notes Comp. Sci., Springer, Berlin (1987)

5. van Glabbeek, R.J., Plotkin, G.D.: Configuration Structures. In: Proc. 10th IEEE Symp.
Logics in Computer Science (LICS’95), San Diego, IEEE Press (1995) 199–209

6. Cenciarelli, P.: Configuration Theories. In Bradfield, J.C., ed.: Proc. 16th Int. Wsh. Computer
Science Logic (CSL’02). Volume 2471 of Lect. Notes Comp. Sci., Springer, Berlin (2002)
200–215

7. van Glabbeek, R.J., Plotkin, G.D.: Event Structures for Resolvable Conflicts. In Fiala, J.,
Koubek, V., Kratochvı́l, J., eds.: Proc. 29th Int. Symp. Mathematical Foundation of Computer
Science (MFCS’04). Volume 3153 of Lect. Notes Comp. Sci., Springer, Berlin (2004) 550–
561

8. Gosling, J., Joy, B., Steele, G., Bracha, G.: The Java Language Specification. 3rd edn.
Addison-Wesley Longman, Amsterdam (2005)

9. Manson, J., Pugh, W., Adve, S.V.: The Java Memory Model. In: Proc. 32nd ACM SIGPLAN-
SIGACT Symp. Principles of Programming Languages (POPL’05), ACM Press (2005) 378–
391

10. Winskel, G., Nielsen, M.: Models of Concurrency. In Abramsky, S., Gabbay, D.M.,
Maibaum, T.S.E., eds.: Handbook of Logic in Computer Science. Vol. 4: Semantic Mod-
elling. Oxford University Press, Oxford (1995) 1–148

11. MacLane, S.: Categories for the Working Mathematician. Springer, New York (1971)
12. Saraswat, V., Jagadeesan, R., Michael, M., von Praun, C.: A Theory of Memory Models

(2006) http://www.saraswat.org/raofull.pdf(06/12/28).

http://www.saraswat.org/raofull.pdf

Immutable Objects for a Java-Like Language

C. Haack1,�, E. Poll1, J. Schäfer2,��, and A. Schubert1,3,� � �

1 Radboud Universiteit Nijmegen, The Netherlands
2 Technische Universität Kaiserlautern, Germany

3 Warsaw University, Poland

Abstract. We extend a Java-like language with immutability specifications and a
static type system for verifying immutability. A class modifier immutable spec-
ifies that all class instances are immutable objects. Ownership types specify the
depth of object states and enforce encapsulation of representation objects. The
type system guarantees that the state of immutable objects does not visibly mu-
tate during a program run. Provided immutability-annotated classes and methods
are final, this is true even if immutable classes are composed with untrusted
classes that follow Java’s type system, but not our immutability type system.

1 Introduction

An object is immutable if it does not permit observable mutations of its object state. A
class is immutable if all its instances are immutable objects. In this article, we present
an extension of a Java-like language with immutability specifications and a static type
system for verifying them.

For many reasons, favoring immutability greatly simplifies object-oriented program-
ming [Blo01]. It is, for instance, impossible to break invariants of immutable objects,
as these are established once and for all by the object constructor. This is especially
pleasing in the presence of aliasing, because maintaining invariants of possibly aliased
objects is difficult and causes headaches for program verification and extended static
checking tools. Sharing immutable objects, on the other hand, causes no problems
whatsoever. Object immutability is particularly useful in multi-threaded programs, as
immutable objects are thread-safe. Race conditions on the state of immutable objects
are impossible, because immutable objects do not permit writes to their object state.
Even untrusted components cannot mutate immutable objects. This is why immutable
objects are important in scenarios where some components (e.g. applets downloaded
from the web) cannot be trusted. If a security-sensitive component checks data that it
has received from an untrusted component, it typically relies on the fact that the data
does not mutate after the check. A prominent example of an immutable class whose
immutability is crucial for many security-sensitive applications is Java’s immutable
String class.

Unfortunately, statically enforcing object immutability for Java is not easy. The main
reason for this is that an object’s local state often includes more than just the object’s
fields. If local object states never extended beyond the object’s fields, Java’s final

� Supported by the EU under the IST-2005-015905 MOBIUS project.
�� Supported by the Deutsche Forschungsgemeinschaft (German Research Foundation).

��� Supported by an EU Marie Curie Intra-European Fellowship.

R. De Nicola (Ed.): ESOP 2007, LNCS 4421, pp. 347–362, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

348 C. Haack et al.

field modifier would be enough to enforce object immutability. However, String ob-
jects, for instance, refer to an internal character array that is considered part of the
String’s local state. It is crucial that this character array is encapsulated and any alias-
ing from outside is prevented. Java does not provide any support for specifying deep
object states and enforcing encapsulation. Fortunately, ownership type systems come
to rescue. Ownership type systems have been proposed to better support encapsulation
in object-oriented languages, e.g., [CPN98, CD02, BLS03, MPH01, DM05]. In order
to permit immutable objects with deep states, we employ a variant of ownership types.
The core of our ownership type system is contained (in various disguises) in all of the
ownership type systems listed above. In addition, our type system distinguishes be-
tween read-only and read-write objects. The difference between read-only objects and
immutable objects is that the latter have no public mutator methods at all, whereas the
former have public mutator methods that are prohibited to be called. We need read-
only objects in order to support sharing mutable (but read-only) representation objects
among immutable objects. Unlike read-only references [MPH01, BE04, TE05], our
read restrictions for immutable and read-only objects are per object, not per reference.

Our type system guarantees immutability in an open world [PBKM00] where im-
mutable objects are immutable even when interacting with unchecked components that
do not follow the rules of our immutability type system. The immutability type sys-
tem guarantees that unchecked components cannot break from outside the immutability
of checked immutable objects. All we assume about unchecked components is that
they follow the standard Java typing rules. Unchecked components could, for instance,
represent legacy code or untrusted code. Our decision to support an open world has
several important impacts on the design of our type system. For instance, we have to
ensure that the types of public methods of immutable objects do not constrain callers
beyond the restrictions imposed by Java’s standard type system. Technically, this is
easily achieved by restricting the ownership types of methods. Furthermore, we cannot
assume that clients of immutable objects follow a read-only policy that is not already
enforced by Java’s standard type system. For this reason, we define read-only types in
context world to be equivalent to read-write types.

A difficulty in enforcing object immutability is that even immutable objects mutate
for some time, namely during their construction phase. This is problematic for several
reasons. Firstly, Java does not restrict constructor bodies in any way. In particular, Java
allows passing self-references from constructors to outside methods. This is undesirable
for immutable objects as it would allow observing immutable objects while they are still
mutating. Moreover, the rules that control aliasing for constructors should be different
from the rules that control aliasing for methods. Constructors should be allowed to pass
dynamic aliases to their internals to outside methods as long as these methods do not
store any static aliases to the internals. Methods, on the other hand, must be disallowed
to leak dynamic aliases to internals, if our goal is immutability in an open world.

2 A Java-Like Language with Immutability

In this section, we present Core Jimuva, a core language for an immutability exten-
sion of Java. We use the same syntax conventions as Featherweight Java (FJ) [IPW01].
In particular, we indicate sequences of X’s by an overbar: X̄ . We assume that field

Immutable Objects for a Java-Like Language 349

declarations F̄ , constructor declarations K̄, method declarations M̄ and parameter dec-
larations t̄y x̄ do not contain duplicate declarations. We also use some regular expression
syntax: X? for an optional X , X* for a possibly empty list of X’s, and X | Y for an X
or a Y . For any entity X (e.g., X an expression or a type), we write oids(X) for the set
of object identifiers occurring in X and vars(X) for the set of variables occurring in X
(including the special access variable myaccess). For a given class table c̄, we write
Cext c̄D whenever fmcaclassCextD{..} ∈ c̄. The subclassing relation <:c̄ is the re-
flexive, transitive closure of ext c̄. We omit the subscript c̄ if it is clear from the context.
Like in FJ, we assume the following sanity conditions on class tables c̄: (1) subclassing
<:c̄ is antisymmetric, (2) if C (except Object) occurs anywhere in c̄ then C is declared
in c̄ and (3) c̄ does not contain duplicate declarations or a declaration of Object.

Core Jimuva — a Java-like Core Language with Immutability Annotations:

C,D,E ∈ ClassId class identifiers (including Object)
f ,g ∈ FieldId field identifiers
m,n ∈ MethId method identifiers
k, l ∈ ConsId constructor identifiers
o, p,q,r ∈ ObjId object identifiers (including world)
x,y,z ∈ Var variables (including this, myowner)

ca ::= immutable? class attributes
ea ::= anon? rdonly? wrlocal? expression attributes
ar ::= rd | rdwr | myaccess access rights for objects
fm ::= final? final modifier

u,v,w ∈ Val ::= null | o | x values
ty ∈ ValTy ::= C<ar,v> | void value types
T ∈ ExpTy ::= ea ty expression types

c,d ::= fmcaclassCextD{F̄ K̄ M̄} class declaration (where C �= Object)
F ::= C<ar,v> f; field
K ::= eaC.k(t̄y x̄){e} constructor (scope of x̄ is e)
M ::= fm<ȳ>T m(t̄y x̄){e} method (scope of ȳ is (T, t̄y,e), of x̄ is e)

e ∈ Exp ::= expressions and statements
v | v. f | v. f=e | v.m<v̄>(ē) | newC<ar,v>.k(ē) | letx=eine | (C)e | C.k(ē)

Derived Forms:

If e �∈ Val,x �∈ vars(e,e′, v̄, ē): e. f
Δ= letx=einx. f e. f=e′ Δ= letx=einx. f=e′

e.m<v̄>(ē) Δ= letx=einx.m<v̄>(ē) If x �∈ vars(e′): e;e′ Δ= letx=eine′

skip
Δ= null e;

Δ= e;skip letx, x̄=e, ēine′ Δ= letx=einlet x̄= ēine′

e.m(ē) Δ= e.m<>(ē) fmT m(t̄y x̄){e} Δ= fm<>T m(t̄y x̄){e}
C<ar>

Δ= C<ar,world> C<v>
Δ= C<rdwr,v> C

Δ= C<world>

Core Jimuva extends a Java core language by immutability specifications: the class
attribute immutable specifies that all instances of a class are immutable objects, i.e.,
their object state does not visibly mutate.

The other Java extensions are auxiliary and specify constraints on objects and methods
that immutable objects depend on: Ownership types are used to ensure encapsulation

350 C. Haack et al.

of representation [CPN98, CD02, BLS03]. The rdonly-attribute (read-only) is used to
disallow methods of immutable objects to write to their own object state. The wrlocal-
attribute (write-local) is used to constrain constructors of immutable objects not to write
to the state of other immutable objects of the same class. Vitek and Bokowski’s anon
(anonymous) attribute [VB01] is used to constrain constructors of immutable objects not
to leak references to this. For a given class table with immutable-specifications, these
additional expression attributes can be automatically inferred, but we prefer to make them
syntactically explicit in this paper.

Object types are of the form C<ar,v>, where ar specifies the access rights for the ob-
ject and v specifies the object owner. Omitted access rights default to rdwr, omitted
owners default to world. The expression newC<ar,v>.k(ē) creates a new object of
type C<ar,v> and then executes the body of constructor C.k() to initialize the new ob-
ject. Access rights and ownership information have no effect on the dynamic behaviour
of programs.

Access rights specify access constraints for objects (in contrast to Java’s access modi-
fiers protected and private, which specify access constraints for classes). The ac-
cess rights are rdwr (read-write, i.e., no constraints) and rd (read-only). Read-only
access to o forbids writes to o’s state and calls to o’s non-rdonly methods. Objects are
implicitly parameterized by the access variable myaccess, which refers to the access
rights for this. Consider, for instance, the following class:

class C ext Object {
C<myaccess,myowner> x;
wrlocal C.k(C<myaccess,myowner> x){ this.set(x); }
rdonly C<myaccess,myowner> get(){ x }
wrlocal void set(C<myaccess,myowner> x){ this.x = x; } }

If, for instance, o is an object of type C<rd, p>, then access to o is read-restricted. Fur-
thermore, access to all objects in the transitive reach of o is read-restricted, too: o.get(),
o.get().get(), etc., all have type C<rd, p> and therefore permit only rd-access. The
following example shows how C can be used:

class D ext Object {
C<rd,this> x; C<myaccess,myowner> y; C<rdwr,this> z;
...
void m() {

x = new C<rd,this>(new C<rd,this>(null)); // legal
y = new C<myaccess,myowner>(new C<myaccess,myowner>(null)); // legal
z = new C<rdwr,this>(new C<rdwr,this>(null)); // legal
new C<rd,this>(new C<myaccess,myowner>(null)); // illegal
x.get(); y.get(); z.get(); y.set(null); z.set(null); // legal
x.set(null); // illegal call of non-rdonly method on rd-object }

rdonly void n() {
y.set(null); // illegal call of non-rdonly method } }

It may perhaps be slightly surprising that the call y.set(null) in m() is legal, although
the access variable myaccess may possibly get instantiated to rd. This call is safe,
because it is illegal to call the non-rdonly method m() on a rd-object and, hence, the
call y.set(null) inside m() is never executed when myaccess instantiates to rd.

Immutable Objects for a Java-Like Language 351

Ownership types. Objects of type C<ar,o> are considered representation objects owned
by o, that is, they are not visible to the outside and can only be accessed via o’s interface.
Objects without owners have types of the form C<ar,world>. The special variable
myowner refers to the owner of this. Our type system restricts myowner and world
to only occur inside angle brackets < ·>. The myowner variable corresponds to the first
class parameter in parametric ownership type systems [CD02, BLS03] and to the owner
ghost field in JML’s encoding of the Universe type system [DM05]. Furthermore, the
Universe type system’s rep and peer types [MPH01] relate to our types as follows:
repC corresponds to C<rdwr,this>, and peerC to C<rdwr,myowner>.

Owner-polymorphic methods. In a method declaration <ȳ>T m(t̄y x̄){e}, the scope of
owner parameters ȳ includes the types T, t̄y and the method body e. The type system re-
stricts occurrences of owner parameters to inside angle brackets < ·>. Owner parameters
get instantiated by the values v̄ in method call expressions u.m<v̄>(ē).

Owner-polymorphic methods permit dynamic aliasing of representation objects.
Consider, for instance, a method of the following type:

<x,y> void copy(C<x> from, C<y> to)

A client may invoke copy with one or both of x and y instantiated to this, for in-
stance, copy<world,this>(o,mine), where mine refers to an internal representation
object owned by the client. Dynamic aliasing of representation objects is often danger-
ous, but can sometimes be useful. For immutability, dynamic aliasing is useful during
the object construction phase, but dangerous thereafter. For instance, the constructor
String(char[] a) of Java’s immutable String class passes an alias to the string’s
internal character array to a global arraycopy()method, which does the job of defen-
sively copying a’s elements to the string’s representation array. Our type system uses
owner-polymorphic methods to permit dynamic aliasing during the construction phase
of immutable objects, but prohibit it thereafter. The latter is achieved by prohibiting
rdonly-expressions to instantiate a method’s owner parameters by anything but world.

For String to be immutable, it is important that the arraycopy()method does not
create a static alias to the representation array that is handed to it from the constructor
String(char[] a). Fortunately, owner-polymorphic methods prohibit the creation of
dangerous static aliases! This is enforced merely by the type signature. Consider again
the copy() method: From the owner-polymorphic type we can infer that an implemen-
tation of copy does not introduce an alias to the to-object from inside the transitive
reach of the from-object. This is so, because all fields in from’s reach have types of
the form D<ar,x> or D<ar,from> or D<ar,world> or D<ar,o> where o is in from’s
reach. None of these are supertypes of C<y>, even if D is a supertype of C. Therefore,
copy’s polymorphic type forbids assigning the to-object to fields inside from’s reach.

Let-bindings. Unlike FJ [IPW01] but like other languages that support ownership
through dependent types [CD02, BLS03], we restrict some syntactic slots to values
instead of expressions, for instance, v. f instead of e. f . This is needed for our typing
rules to meaningfully instantiate occurrences of this in types. We obtain an expression

352 C. Haack et al.

language similar to FJ through derived forms, see above. An automatic typechecker for
full Jimuva will work on an intermediate language with let-bindings.

Constructors. Our language models object constructors. This is important, as object
construction is a critical stage in the lifetime of immutable objects: during construc-
tion even immutable objects still mutate! For simplicity, Core Jimuva’s constructors
are named. Moreover, we have simplified explicit constructor calls: instead of calling
constructors using super() and this(), constructors are called by concatenating class
name C and constructor name k, i.e., C.k(). Constructors C.k() are only visible in C’s
subclasses. We allow direct constructor calls C.k() from constructors, and even from
methods, of arbitrary subclasses of C. That is more liberal than real Java, but unprob-
lematic for the properties we care about.

Protected fields. Jimuva’s type system ensures that fields are visible in subclasses only.
This is similar to Java’s protected fields.1 Our reason for using protected instead
of private fields is proof-technical: a language with private fields does not satisfy
the type preservation (aka subject reduction) property. On the other hand, soundness
of a type system with private fields obviously follows from soundness of our less
restrictive type system with protected fields.

3 Operational Semantics

Our operational semantics is small-step and similar to the semantics from Zhao et
al [ZPV06]. However, in contrast to [ZPV06], we also model a mutable heap. The op-
erational semantics is given by a state reduction relation h :: s →c̄ h′ :: s′, where h is
a heap, s a stack and c̄ the underlying set of classes. We omit the subscript c̄ if it is
clear from the context. Stack frames are of the form (e ino), where e is a (partially exe-
cuted) method body and o is the this-binding. Keeping track of the this-binding will
be needed for defining the semantics of immutability. The world identifier is used as
a dummy for the this-binding of the top-level main program. Evaluation contexts are
expressions with a single “hole” [], which acts as a placeholder for the expression that
is up for evaluation in left-to-right evaluation order. If E is an evaluation context and e
an expression, then E [e] denotes the expression that results from replacing E ’s hole by
e. Evaluation contexts are a standard data structure for operational semantics [WF94].

Runtime Structures:

state ::= h :: s ∈ State = Heap×Stack states
h ::= obj ∈ Heap = ObjId → (FieldId → Val) heaps
obj ::= o{ f̄ = v̄} ∈ Obj = ObjId× (FieldId → Val) objects
s ::= f̄r ∈ Stack = Frame* stacks
fr ::= e ino ∈ Frame = Exp×ObjId stack frames
E ::= [] | v. f=E | v.m<v̄>(v̄,E , ē) | newC<ar,v>.k(v̄,E , ē) |

letx=E ine | (C)E | C.k(v̄,E , ē)
evaluation contexts

1 Java’s protected fields are slightly more permissive and package-visible, too.

Immutable Objects for a Java-Like Language 353

We assume that every object identifier o �= world is associated with a unique type
ty(o) of the form C<ar, p> such that p = world implies ar = rdwr. We define rawty(o)
Δ= C, if ty(o) = C<ar, p>.

We use substitution to model parameter passing: Substitutions are finite functions
from variables, including myaccess, to values and access rights. We let meta-variable
σ range over substitutions and write (x̄←v̄) for the substitution that maps each xi in x̄ to
the corresponding vi in v̄. We write id for the identity. We write e[σ] for the expression
that results from e by substituting variables x by σ(x). Similarly for types, T [σ]. The
following abbreviations are convenient:

self(u,ar,v) Δ= (this,myaccess,myowner←u,ar,v)
σ , ȳ←v̄

Δ= (x̄, ȳ←ū, v̄), if σ = (x̄←ū) and x̄∩ ȳ = /0

We use several auxiliary functions that are essentially as in FJ [IPW01] (see also
[HPSS07] for details): The function mbodyc̄(C,m) looks up the method for m on C-
objects in class table c̄. Similarly, cbodyc̄(C.k) for constructors. The function fdc̄(C)
computes the field set for C-objects based on class table c̄. We omit the subscript c̄ if it
is clear from the context.

State Reductions, state →c̄ state′:

(Red Get) h = h′,o{.. f = v..}
h :: s,E [o. f] in p → h :: s,E [v] in p

(Red Set)
h,o{ f = u, ḡ = w̄} :: s,E [o. f=v] in p → h,o{ f = v, ḡ = w̄} :: s,E [v] in p

(Red Call) s = s′,E [o.m<ū>(v̄)] in p ty(o) = C<ar,w> mbody(C,m) = <ȳ>(x̄)(e)
h :: s → h :: s,e[self(o,ar,w), ȳ←ū, x̄←v̄] ino

(Red New) s = s′,E [newC<ar,w>.k(v̄)] in p o �∈ dom(h) ty(o) = C<ar,w> fd(C) = t̄y f̄
h :: s → h,o{ f̄ = null} :: s,C.k(v̄);o ino

(Red Cons) s = s′,E [C.k(v̄)] in p cbody(C.k) = (x̄)(e) ty(p) = D<ar,w>
h :: s → h :: s,e[self(p,ar,w), x̄←v̄] in p

(Red Rtr) e = q.m<ū>(v̄) or e = newC<ar,u>.k(v̄) or e = C.k(v̄)
h :: s,(E [e] ino),(v in p) → h :: s,E [v] ino

(Red Let)
h :: s,E [letx=vine] in p → h :: s,E [e[x←v]] in p

(Red Cast) v = null or rawty(v) <: C
h :: s,E [(C)v] in p → h :: s,E [v] in p

4 Semantic Immutability

Intuitively, an object o is immutable in a given program P, if during execution of P no
other object p can see two distinct states of o. A class is immutable if all its instances
are immutable in all programs.

In order to formalize this definition, we have to describe the meaning of the phrase
“p sees o’s state”. The object p can read o’s fields directly or it can call o’s methods
and observe possible state changes that way. Thus, if o’s object state is always the same

354 C. Haack et al.

on external field reads and in the prestate of external method calls on o, we can be sure
that no object p ever sees mutations of o’s state.

Definition 1 (Visible States). A visible state for o is a state of the form(h :: s,E [o. f] in p)
or (h :: s,E [o.m<ū>(v̄)] in p) where p �= o.

We also have to formalize what o’s object state is. Just including the fields of an object
is often not enough, because this only allows shallow object states. We interpret the
ownership type annotations on fields as specifications of the depth of object states: if
a field f ’s type annotation has the form C<ar,this> then the state of the object that f
refers to is included in this’s state; if f ’s type annotation has the form C<ar,myowner>
then the state of the object that f refers to is included in myowner’s state. This is for-
malized by the following inductive definition:

Definition 2 (Object State). For any heap h, the binary relation ∈ state(h)() over
Obj×ObjId is defined inductively by the following rules:

– If o{ f̄ = v̄} ∈ h, then o{ f̄ = v̄} ∈ state(h)(o).
– If o{.. f = q..} ∈ h and C<ar,this> f ∈ fd(rawty(o))

and obj ∈ state(h)(q), then obj ∈ state(h)(o).
– If p �= o and p{.. f = q..} ∈ state(h)(o) and C<ar,myowner> f ∈ fd(rawty(p))

and obj ∈ state(h)(q), then obj ∈ state(h)(o).

Let state(h)(o) Δ= {obj |obj ∈ state(h)(o)}.

Example 1 (Object State)

class C ext Object { D<..,this> x; D<..,world> y; constructors methods }
class D ext Object { E<..,myowner> x; E<..,this> y; constructors methods }
class E ext Object { Object<..,myowner> x; constructors methods }

Let c{x = d1,y = d2}, d1{x = e1,y = e2}, e1{x = o1}, e2{x = o2} be instances of
C, D, E in heap h. Then state(h)(e1) consists of (the object whose identifier is) e1;
state(h)(e2) consists of e2; state(h)(d1) consists of d1,e2,o2; and state(h)(c) consists
of c,d1,e1,o1,e2,o2. �

Definition 3 (Immutability in a Fixed Program). Suppose P = (c̄;e0) is a Jimuva-
program and C is declared in c̄. We say that C is immutable in P whenever the following
statement holds:

If /0 :: e0 inworld →∗
c̄ h1 :: s1 →∗

c̄ h2 :: s2,
and h1 :: s1 and h2 :: s2 are visible states for o,
and rawty(o) <: C, then state(h1)(o) = state(h2)(o).

This immutability definition disallows some immutable classes that intuitively could be
allowed, because the last line requires state(h1)(o) and state(h2)(o) to be exactly iden-
tical. A more liberal definition would allow object state mutations that are unobservable
to the outside. For instance, immutable objects with an invisible internal mutable cache
for storing results of expensive and commonly called methods could be allowed. How-
ever, standard type-based verification techniques would probably disallow unobservable
object mutations. Because our primary goal is the design of a sound static type system,

Immutable Objects for a Java-Like Language 355

we do not attempt to formalize a more permissive definition of immutability up to a
notion of observational equivalence of object states, but instead work with our strict
definition that is based on exact equality of object states.

We are interested in immutability in an open world, where object immutability can-
not be broken by unchecked components. To formally capture the open world model,
we define a type erasure mapping | · | from Jimuva to Core Java, see [HPSS07] for de-
tails. This mapping erases ownership information, access rights, expression attributes
and class attributes. The operational semantics, →java , and typing judgment, 	java, for
Core Java are defined in [HPSS07]. The Jimuva typing judgment, 	, will be defined in
Section 6. A Java-program is a pair (c̄;e) such that (java c̄ : ok) and (java,c̄ e : ty) for
some Java-type ty. The semantics of Jimuva and Core Java are related as follows:

– If (c̄ : ok), then (state →c̄ state′) iff (|state| →java,|c̄| |state′|).
– If (c̄ : ok), then (java |c̄| : ok).

There is also an embedding e that maps a Jimuva class table c̄ and a Java class table d̄
(which refers to |c̄|) to a Jimuva class table ec̄(d̄) such that |ec̄(d̄)| = d̄, see [HPSS07]
for details. This embedding inserts the annotations rdwr and world wherever access or
ownership parameters are required. One can think of a Java-class as a Jimuva-class
without any Jimuva-specific annotations. The embedding e inserts Jimuva-defaults
where Jimuva-annotations are syntactically required.

Our type system is sound in an open world with legal subclassing. That is, we assume
that unchecked classes do not extend Jimuva-annotated classes or override Jimuva-
annotated methods. We could easily modify our system to guarantee immutability in an
open world without this subclassing restriction, by requiring Jimuva-annotated classes
and methods to be final. We choose not to, because we find that a bit too restric-
tive. Note, in this context, that Java’s Extension Mechanism supports sealed optional
packages, which prohibit subclassing from outside the package.2

Jimuva-annotated classes and methods: A field declaration C<ar,v> f is Jimuva-
annotated if ar �= rdwr or v �= world. A method fm<ȳ>eaty′ m(t̄y x̄){e} is Jimuva-
annotated if ȳ, ea or vars(ty′, t̄y) is non-empty. A class fmcaclassCextD{..} is
Jimuva-annotated, if it contains Jimuva-annotated field declarations or ca is non-empty.

Legal subclassing: A Java class table d̄ legally subclasses a Jimuva class table c̄, if
no class declared in d̄ extends a Jimuva-annotated class and no method declared in d̄
overrides a Jimuva-annotated method.

Definition 4 (Immutability in an Open World). Suppose C is declared in Jimuva-
class-table c̄ and (c̄ : ok). We say that C is immutable in c̄ whenever C is immutable
in (c̄,ec̄(d̄);ec̄(e)) for all Java-programs (|c̄|, d̄;e) where d̄ legally subclasses c̄.

Let us say that a class table c̄ is correct for immutability whenever every class that is
declared immutable in c̄ is in fact immutable in c̄. Jimuva’s type system is sound in
the following sense:

Theorem 1 (Soundness). If (c̄ : ok), then c̄ is correct for immutability.

2 Out-of-package subclassing results in a SecurityException at runtime.

356 C. Haack et al.

5 The Immutability Type System – Informally

The simplest example of an immutable class is:3

immutable class ImmutableInt ext Object {
int value;
anon wrlocal ImmutableInt.k(int i) { this.value=i; }
rdonly int get() { this.value } }

Here the state of an ImmutableInt object just consists of its instance field value. For
more complicated immutable objects, ownership annotations are needed to specify if
objects referenced by instance fields are part of the (immutable) state:

class Mutable ext Object {
int value;
anon Mutable.k(int i) { this.value=i; }
rdonly int get() { this.value }
void set(int i) { this.value=i; } }

immutable class EncapsulatedMutable ext Object {
Mutable<this> m;
anon wrlocal EncapsulatedMutable.k(Mutable m) {

this.m = new Mutable<this>.k(m.get()); }
rdonly int get(){ this.m.get() } }

Here the annotation <this> on the type of field m declares that the state of the ob-
ject referenced by m is considered part of the state of an EncapsulatedMutable ob-
ject. The type system enforces that constructor EncapsulatedMutable.k(m) makes
a defensive copy of m to prevent representation exposure. Technically, this is achieved
because m’s type Mutable, which is short for Mutable<world>, is not a subtype of
Mutable<this> and, thus, a direct assignment to the field this.m is disallowed.

Restrictions on methods with rdonly. Obviously, methods of an immutable object
should not modify their object state. One could try to ensure this by requiring that
methods of immutable objects are side-effect free. However, ensuring side-effect free-
ness is not so simple, because even side-effect free methods must be allowed to call
constructors that write to the heap. Limiting constructor writes for side effect freeness
in a practical and safe way requires alias control [SR05]. Therefore, instead of requiring
side-effect freeness, Jimuva uses a weaker restriction that is simpler to enforce on top
of the ownership infrastructure.

rdonly: An expression is read-only, if it (1) contains no field assignments, (2)
all its method calls have the form v.m<ū>(ē) where either (a) m is rdonly or
(b) ū = world and v has a type C<ar,world>, and (3) all its new-calls have the
form newC<ar,world>.k(ē).

rdonly-methods are guaranteed to not write to the state of immutable receivers. The
rdonly-restriction allows important side-effecting methods. For instance, the method
getChars(int srcBegin,int srcEnd,char[] dst,int dstBegin)fromJava’s

3 For readability, keywords that could be left implicit are written in italics.

Immutable Objects for a Java-Like Language 357

immutable String class writes to the array dst (owned by world). It is an example of
a rdonly method that is not side-effect free.

Restrictions on constructors with wrlocal and anon. A constructor of an immutable
object typically will have side-effects to initialize the object state. We have to restrict
constructors of immutable objects for two reasons: (i) we have to prevent them from
modifying other objects of the same class, (ii) we have to prevent them from leaking
the partially constructed this [Goe02].

Issue (i) stems from the fact that visibility modifiers in Java constrain per-class, not
per-object, visibility. So it is possible for a constructor of an immutable object to see
and modify other immutable objects of the same class. For example:

immutable class Wrong {
Mutable<this> m;
rdonly int get(){ m.get() } }
anon wrlocal Wrong.k(Wrong o) {

this.m = new Mutable<this>.k(o.get());
o.m.set(23); /* unwanted side-effect on other object! */ } }

To prevent such immutability violations, we require constructors of immutable objects
to be write-local in the following sense:

wrlocal: An expression is write-local, if (1) all its field assignments have the
form v. f=e where either v = this or v has a type C<rdwr,this> and (2) all its
method calls have the form v.m<ū>(ē) where either (a) m is rdonly or (b) m is
wrlocal and v = this or (c) m is wrlocal and v has a type C<rdwr,this>
or (c) v is has a type C<ar,world>.

To prevent constructors of immutable objects from leaking this, we use Vitek et al’s
notion of anonymity of [VB01, ZPV06]:

anon: An expression is anonymous, if it (1) is not this, (2) does not pass this
to foreign methods, (3) does not assign this to fields, and (4) all its method
calls have the form v.m<ū>(ē) where either v or m is anon.

Owner-polymorphic methods. The example below uses an owner-polymorphic method
to permit dynamic aliasing of the representation object this.m during object construc-
tion. As explained in Section 2, the polymorphic type of copy() prevents this method
from creating a static alias to its parameter to. This example is a small model of Java’s
String constructor String(char[] a), which gives an alias to a representation ob-
ject to a global arraycopy() method.

class Utilities ext Object {
Utilities.k(){ skip }
<x,y> void copy(Mutable<x> from, Mutable<y> to){ to.set(from.get()); } }

immutable class EncapsulatedMutable2 ext Object {
Mutable<this> m;
anon wrlocal EncapsulatedMutable2.k(Mutable m) {

this.m = new Mutable<this>.k(null);
new Utilities.k().copy<world,this>(m,this.m); }

rdonly int get(){ m.get() } }

358 C. Haack et al.

Now is a good point to present the subtyping relation: Subtyping is defined against
a type environment Γ that assigns types to variables. The following function is used in
its definition:

atts(Object) Δ= /0 atts(C) Δ= ca, if fmcaclassCextD{..} atts(void) Δ= /0

atts(C<ar,v>) Δ= atts(C)∪{ar} atts(ea ty) Δ= ea∪atts(ty) atts(o) Δ= atts(ty(o))

We interpret expression attributes ea as subsets of {anon,rdonly,wrlocal} ordered
by set inclusion.

Subtyping, Γ 	 T � U:

(Sub Rep) Γ 	 ar,v,v′ : ok
C <: C′ ea′ ⊆ ea

Γ 	 eaC<ar,v> � ea′C′<ar,v>

(Sub World)
Γ 	 ar,ar′ : ok ea′ ⊆ ea C <: C′

Γ 	 eaC<ar,world> � ea′C′<ar′,world>

(Sub Void)
ea′ ⊆ ea

Γ 	 eavoid � ea′ void

(Sub Share) ea′ ⊆ ea C <: C′

Γ 	 v,v′ : D,D′ in world immutable ∈ atts(D)∩atts(D′)

Γ 	 eaC<rd,v> � ea′C′<rd,v′>

The interesting rules are (Sub Share) and (Sub World). The former allows flows of read-
restricted objects with immutable owners into locations for read-restricted objects of
other immutable owners. That is, our type system permits sharing representation objects
among immutable objects as long as those are read-restricted. The rule (Sub World)
expresses that ownerless objects do not have to follow access policies. It is needed to
ensure that our type system is sound in an open world that includes clients that do
not follow Jimuva-policies. Compared to type systems with read references, e.g., the
Universe type system [MPH01], it is noteworthy that we do not allow upcasting read-
write objects to read objects. Allowing this would lead to an unsoundness in our system.
This means that read-restricted objects have to be created as read-restricted objects. Of
course, we then must allow constructors of read-restricted objects to initialize their own
state. This is safe, as long as constructors of read-restricted objects are wrlocal.

Sharing mutable representation objects. This example illustrates sharing of mutable
representation objects. The subtyping rule (Sub Share) is used to upcast o.m’s type
from SharedRepObject<rd,o> to SharedRepObj<rd,this> so that the assignment
to this.m becomes possible.

immutable class SharedRepObject ext Object {
Mutable<rd,this> m;
rdonly int get(){ m.get() } }
anon wrlocal SharedRepObject.k1(int i) {

this.m = new Mutable<rd,this>.k(i); }
anon wrlocal SharedRepObject.k2(SharedRepObject o) {

this.m = o.m; } /* sharing of mutable representation object */ }

6 The Immutability Type System – Formally
A type environment Γ = (Γacc,Γown,Γval) is a triple of partial functions Γacc ∈
{myaccess} → {•}, Γown ∈ Var ∪ ObjId → {•} and Γval ∈ Var ∪ ObjId → ExpTy. If

Immutable Objects for a Java-Like Language 359

v �∈ dom(Γval)∪{null}, we define Γval,v : T
Δ= Γval ∪{(x,T)}. Similarly, for Γacc and

Γown. We define Γ ,v : T
Δ= (Γacc,Γown,(Γval,v : T)). Similarly, for Γacc and Γown. We of-

ten write Γ (v) = T as an abbreviation for Γval(v) = T . Similarly, for Γacc and Γown. We

define dom(Γ) Δ= dom(Γacc)∪dom(Γown)∪dom(Γval).

Substitution Application for Environments, Γ [σ]:

Γ [σ] Δ= (Γacc[σ],Γown[σ],Γval[σ]) Γval[σ] Δ= {(v,T [σ]) |(v,T) ∈ Γval}
Γacc[σ] Δ= {(ar[σ],•) |ar ∈ dom(Γacc)}∩{(myaccess,•)}
Γown[σ] Δ= {(v[σ],•) |v ∈ dom(Γown)}∩ (Var ∪ObjId)×{•}

In addition to subtyping, there are judgments of the following forms:

	 c : ok “c is a good class declaration”
Γ 	 e : T in v,ar “if this = v and v has access rights ar, then e has type T ”

In useful judgments (Γ 	 e : T in v,ar), the this-binding v is either this itself or an
object identifier. For type-checking class declarations, it is sufficient to consider judg-
ments where dom(Γ) ⊆ Var∪{world,myaccess} and v = this. We allow arbitrary
object identifiers in type environments and as this-binders, so that we can type runtime
states, which is needed for proving type soundness.

The typing judgments are defined with respect to an underlying class table. This
class table remains fixed in all typing rules and we leave it implicit. In contexts where
we want to explicitly mention it, we subscript the turnstyle: (Γ 	c̄ e : T in v,ar). We use
auxiliary functions ctype(C.k) and mtype(C,m) that compute the types of constructors
and methods based on the underlying class table. These are essentially as in FJ [IPW01].
Method subtyping treats methods invariantly in the parameter types and covariantly in
the result type. See [HPSS07] for more details.

Auxiliary Predicates and Judgments:

eaC<ar,v> legal Δ= (v = myowner ⇔ ar = myaccess) eavoid legal Δ= true
C<ar,v> generative Δ= (immutable ∈ atts(C) ⇒ v = world, v = world ⇒ ar = rdwr)
(ea,u,aru,vu) wrloc in v

Δ= (u = v,wrlocal ∈ ea) or (aru,vu) = (rdwr,v)
ar wrsafe in ar′ Δ= (ar = rdwr or ar′ = rd or ar = ar′)
(c̄ : ok) Δ= (∀c ∈ c̄)(c : ok) (Γ 	 e : T) Δ= (Γ 	 e : T in myaccess)
(Γ 	 e : T in ar) Δ= (Γ 	 e : T in this,ar) (Γ 	 e : T in v) Δ= (Γ 	 e : T in v,rdwr)
(Γ 	 ē,e : T̄ ,T in v,ar) Δ= (Γ 	 ē : T̄ in v,ar and Γ 	 e : T in v,ar)
(Γ 	 e : T � U in v,ar) Δ= (Γ 	 e : T in v,ar and Γ 	 T � U)
(Γ 	 �) Δ= (world ∈ dom(Γown) and (∀v ∈ dom(Γval))(v �= world and Γ 	 Γval(v) : ok))
(Γ 	 v : •) Δ= (Γ 	 � and Γ (v) = •) (Γ 	 v : ok) Δ= (Γ 	 � and v ∈ dom(Γ)∪{null})
(Γ 	 ar : ok) Δ= (Γ 	 � and ar ∈ dom(Γ)∪{rdwr,rd})
(Γ 	 eavoid : ok) Δ= (Γ 	 �) (Γ 	 eaC<ar,v> : ok) Δ= (Γ 	 ar : ok and Γ 	 v : ok)

360 C. Haack et al.

Good Class Declarations, 	 c : ok:

(Cls Dcl) D is not final Γ = (world,myowner,myaccess,this : •)
ca �= /0 ⇒ (atts(D) �= /0 or D = Object) atts(D) �= /0 ⇒ ca �= /0
Γ ,this : rdonly wrlocalC<myaccess,myowner> 	 F̄ , K̄,M̄ : ok in C

	 fmcaclassCextD{F̄ K̄ M̄} : ok

(Fld Dcl)
CextD ⇒ f �∈ fd(D) E<ar,v> legal Γ 	 ar : ok Γ 	 v : •

Γ 	 E<ar,v> f : ok in C

(Cons Dcl) t̄y legal this �∈ vars(t̄y)
atts(C) �= /0 ⇒ anon,wrlocal ∈ ea Γ , x̄ : anon rdonly wrlocal t̄y 	 e : eavoid

Γ 	 eaC.k(t̄y x̄){e} : ok in C

(Mth Dcl) CextD ⇒ Γ 	 mtype(m,C) � mtype(m,D) atts(C) �= /0 ⇒ rdonly ∈ atts(T)
ar = myaccess or ({rdonly,wrlocal}∩ ea = /0, ar = rdwr) σ = (myaccess←ar)
Γ [σ], ȳ : •, x̄ : anon rdonly wrlocal t̄y[σ] 	 e[σ] : T [σ] in ar t̄y,T legal this �∈ vars(t̄y,T)

Γ 	 fm<ȳ>T m(t̄y x̄){e} : ok in C

Well-typed Expressions, Γ 	 e : T in v,ar:

(Var) Γ (x) = T
Γ 	 arv,v : ok,•
Γ 	 x : T in v,arv

(Obj) Γ (o) = T
ea = {anon |o �= p} Γ 	 arp, p : ok,•

Γ 	 o : eaT in p,arp

(Sub)
Γ 	 e : T � U in v,arv

Γ 	 e : U in v,arv

(Null)
Γ 	 T,arv,v : ok,ok,•
Γ 	 null : T in v,arv

(Let) Γ 	 e : eae tye in v,arv x �∈ vars(tye′)
Γ , x : eae tye 	 e′ : eae′ tye′ in v,arv ea =

⋂
(eae,eae′)

Γ 	 letx=eine′ : ea tye′ in v,arv

(Cast) C declared
Γ 	 e : eaeCe<are,ve> in v,arv

Γ 	 (C)e : eaeC<are,ve> in v,arv

(Get) ty f ∈ fd(Cu) σ = self(u,aru,vu)
Γ 	 u,v : eau Cu<aru,vu>,Cu<arv,wv> in v,arv

Γ 	 u. f : anon rdonly wrlocal ty[σ] in v,arv

(Set) ty f ∈ fd(Cu) Γ 	 vu : •
ea =

⋂
({x as wrlocal |({x},u,aru,vu) wrloc in v}∪{anon},eae) aru wrsafe in arv

Γ 	 u,v,e : eauCu<aru,vu>,Cu<arv,wv>,eae ty[σ] in v,arv σ = self(u,aru,vu)

Γ 	 u. f=e : ea ty[σ] in v,arv

(Call) mtype(m,Cu) = fm<ȳ>t̄y→eam ty′

(rdonly ∈ eam) or (aru wrsafe in arv) σ = self(u,aru,vu), ȳ←w̄
ea =

⋂
ēaē ∩ ⋃

({anon}∩ (eam ∪ eau), {x as rdonly |x ∈ eam or vu, w̄ = world},
{wrlocal |(eam,u,aru,vu) wrloc in v or rdonly ∈ eam or vu = world})

Γ 	 u, ē : eau Cu<aru,vu>, ēaē t̄y[σ] in v,arv Γ 	 w̄ : • (aru = rd or Γ 	 vu : •)
Γ 	 u.m<w̄>(ē) : ea ty′[σ] in v,arv

(New) ctype(C.k) = t̄y→eak void (ar = rdwr) or (wrlocal,anon ∈ eak)
ea =

⋂
({rdonly |w = world}∪{wrlocal,anon}, ēaē) Γ 	 ar,w : ok,•

Γ 	 ē : ēaē t̄y[σ] in v,arv σ = self(null,ar,w) C<ar,w> generative

Γ 	 newC<ar,w>.k(ē) : eaC<ar,w> in v,arv

(Cons) ctype(C.k) = t̄y→eak void σ = self(v,arv,wv)
Γ 	 ē,v : ēaē t̄y[σ],C<arv,wv> in v,arv ea =

⋂
(eak, ēaē)

Γ 	 C.k(ē) : eavoid in v,arv

Immutable Objects for a Java-Like Language 361

7 Conclusion

More on related work. We have already referenced and compared to some related work
throughout the text and have no space to repeat all of that. Ernst et al’s Javari lan-
guage [BE04, TE05] statically checks reference immutability, i.e., read-only references.
They report an impressive implementation. They do not support object immutability in
an open world, like we do. In particular, their system does not fully prevent repre-
sentation exposure. Pechtchanski et al [PS05] and Porat et al [PBKM00] present im-
mutability analyses for Java. Their analyses are implementation driven and are not
designed against a formal semantics like ours. Parts of our formal type system are in-
spired by similar informal static rules from Jan Schäfer’s masters thesis [Sch04]. Clarke
and Drossopolous [CD02] and Lu and Potter [LP06b, LP06a] combine ownership type
systems with systems to control write- and/or read-effects. In spirit, this is similar to our
system which contains a write-effect analysis (for rdonly and wrlocal) on top of an
ownership type system. In contrast to the above mentioned systems, our system supports
an open world and treats object constructors. Our system does not control read-effects.
However, a read-effect analysis would be desirable, because for many applications of
immutability, e.g., thread safety, it is important that immutable objects do not read from
mutable state. We expect that we could combine our system with a variant of [CD02]’s
read effect analysis to achieve this.

Summary. We have presented a core Java language with statically checkable immutabil-
ity specifications in the form of a type system, which has been proved sound w.r.t.
a formal semantic definition of object immutability. The system is quite flexible and
employs, for instance, owner-polymorphic methods to permit dynamic aliasing during
object construction, and read-only objects to permit sharing of mutable representation
objects among immutable objects of the same class. We view this paper as the careful
design for a sound, type-based immutability analysis and plan to implement an im-
mutability checker for Java based on this system.

References

[BE04] A. Birka and M. D. Ernst. A practical type system and language for reference
immutability. In OOPSLA’04, pages 35–49, October 26–28, 2004.

[Blo01] J. Bloch. Effective Java. Addison-Wesley, 2001.
[BLS03] C. Boyapati, B. Liskov, and L. Shrira. Ownership types for object encapsulation.

In POPL’03, pages 213–223, 2003.
[CD02] D. Clarke and S. Drossopoulou. Ownership, encapsulation and the disjointness of

type and effect. In OOPSLA’02, pages 292–310, 2002.
[CPN98] D. Clarke, J. Potter, and J. Noble. Ownership types for flexible alias protection. In

OOPSLA’98, pages 48–64, 1998.
[DM05] W. Dietl and P. Müller. Universes: Lightweight ownership for JML. Journal of

Object Technology (JOT), 4(8):5–32, October 2005.
[Goe02] Brian Goetz. Java theory and practice: Safe construction techniques–don’t let the

”this” reference escape during construction. IBM DevelopersWork, 2002.
[HPSS07] C. Haack, E. Poll, J. Schäfer, and A. Schubert. Immutable objects for a Java-like

language. Technical report, Radboud University Nijmegen, 2007. Forthcoming.
[IPW01] A. Igarashi, B. Pierce, and P. Wadler. Featherweight Java: a minimal core calculus

for Java and GJ. ACM TOPLAS, 23(3):396–450, 2001.

362 C. Haack et al.

[LP06a] Y. Lu and J. Potter. On ownership and accessibility. In ECOOP’06, volume 4067
of LNCS, pages 99–123. Springer-Verlag, 2006.

[LP06b] Y. Lu and J. Potter. Protecting representation with effect encapsulation. In
POPL’06, pages 359–371. ACM Press, 2006.

[MPH01] P. Müller and A. Poetzsch-Heffter. Universes: A type system for alias and depen-
dency control. Technical Report 279, Fernuniversität Hagen, 2001.

[PBKM00] S. Porat, M. Biberstein, L. Koved, and B. Mendelson. Automatic detection of im-
mutable fields in Java. In CASCON’02. IBM Press, 2000.

[PS05] I. Pechtchanski and V. Sarkar. Immutability specification and applications. Con-
currency and Computation: Practice and Experience, 17:639–662, 2005.

[Sch04] J. Schäfer. Encapsulation and specification of object-oriented runtime components.
Master’s thesis, Technische Universität Kaiserslautern, 2004.

[SR05] A. Salcianu and M. C. Rinard. Purity and side effect analysis for Java programs. In
VMCAI’05, pages 199–215, 2005.

[TE05] M. S. Tschantz and M. D. Ernst. Javari: Adding reference immutability to Java. In
OOPSLA’05, pages 211–230, October 18–20, 2005.

[VB01] J. Vitek and B. Bokowski. Confined types in Java. Softw. Pract. Exper., 31(6):507–
532, 2001.

[WF94] A. K. Wright and M. Felleisen. A syntactic approach to type soundness. Informa-
tion and Computation, 115(1):38–94, 1994.

[ZPV06] T. Zhao, J. Palsberg, and J. Vitek. Type-based confinement. Journal of Functional
Programming, 16(1):83–128, January 2006.

Scalar Outcomes Suffice

for Finitary Probabilistic Testing

Yuxin Deng1,�, Rob van Glabbeek1,2, Carroll Morgan1,�, and Chenyi Zhang1,2

1 School of Comp. Sci. and Eng., University of New South Wales, Sydney, Australia
2 National ICT Australia, Locked Bag 6016, Sydney, NSW 1466, Australia

Abstract. The question of equivalence has long vexed research in con-
currency, leading to many different denotational- and bisimulation-based
approaches; a breakthrough occurred with the insight that tests ex-
pressed within the concurrent framework itself, based on a special “suc-
cess action”, yield equivalences that make only inarguable distinctions.

When probability was added, however, it seemed necessary to ex-
tend the testing framework beyond a direct probabilistic generalisation
in order to remain useful. An attractive possibility was the extension to
multiple success actions that yielded vectors of real-valued outcomes.

Here we prove that such vectors are unnecessary when processes are
finitary, that is finitely branching and finite-state: single scalar outcomes
are just as powerful. Thus for finitary processes we can retain the original,
simpler testing approach and its direct connections to other naturally
scalar-valued phenomena.

1 Introduction

The theory of testing of De Nicola & Hennessy [4] yields equivalences making
only inarguable distinctions: two processes are may-testing inequivalent iff there
is a context, built with parallel composition and hiding or restriction operators,
in which one of them might do a visible action but the other definitely can
not; they are must-testing inequivalent iff there is a context in which one must
do a visible action, but the other might never do any. This reduces a complex
phenomenon to a scalar- (in fact Boolean-) valued outcome.

Wang & Larsen [21] generalised this theory in a straightforward way to pro-
cesses with probabilistic and nondeterministic choice, again yielding only distinc-
tions that are hard to argue with: two processes are may-testing inequivalent iff
there is a context in which, in the best case (when resolving nondeterministic
choice), one of them might do a visible action with some probability p whereas
the other falls short of that. They are must-testing inequivalent iff there is a con-
text in which, in the worst case, one must do a visible action with probability p,
whereas the other might fall short of that.

Wang & Larsen ended with the question of finding denotational characteri-
sations of may- and must testing; for non-trivial examples this is necessary to
� We acknowledge the support of the Australian Research Council Grant DP034557.

R. De Nicola (Ed.): ESOP 2007, LNCS 4421, pp. 363–378, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

364 Y. Deng et al.

show the equivalence of two processes. The question is still open today, although
Jonsson & Wang [9] have found a denotational characterisation in the special
case of may-testing for processes without internal actions.

Meanwhile, progress has been made elsewhere for notions of testing that are
seemingly more powerful than Wang & Larsen’s. Most notably, Segala [17] found
denotational characterisations of variants of may- and must testing that employ
multiple success actions instead of a single one, and consequently yield vectors of
real-valued outcomes instead of scalars. Earlier, Jonsson, Ho-Stuart & Wang [8]
characterised variants that employ so-called “reward testing”, and that consider
non-probabilistic test processes only.

It follows immediately from the definitions that Segala’s vector-based testing is
at least as powerful as the scalar testing of Wang & Larsen, while reward testing
sits in between. Unfortunately, the possibility that these extended notions of
testing are strictly more powerful suggests that the argument above, that testing
equivalences make no unwarranted distinctions, might not apply to them.1

In this paper we show that in fact the argument does apply, at least for
finitary processes, where we prove all three notions to be equally powerful. This
is a fundamental prerequisite for a stable notion of program equivalence, a core
concept for rigorous software engineering.

2 Probabilistic Testing of Probabilistic Automata

2.1 Probabilistic Structures and Notational Conventions

We write f.s instead of f(s) for function application, with left association so
that f.g.x means (f(g))(x).

− A discrete probability distribution over a set X is a function μ ∈ X→[0, 1]
with μ.X = 1, where for subset X ′ of X we define μ.X ′ :=

∑
x∈X′ μ.x.

We write X for the set of all such distributions over X .
− The point- or Dirac distribution x assigns probability one to x∈X .
− The support �μ� of distribution μ is the set of elements x such that μ.x �= 0.
− Given p ∈ [0, 1] and distributions μ, ζ ∈X , the weighted average μ p⊕ ζ ∈X

is the distribution defined (μ p⊕ ζ).x := p×μ.x + (1−p)×ζ.x .
− Given some function f ∈ X→IR (a random variable), its expected value μ.f

over distribution μ is the weighted average
∑

x∈X(μ.x × f.x).2

− Given a function f ∈ X→Y , we write f.μ for the image distribution in Y
formed by applying f to a distribution μ ∈ X : for element y ∈ Y we define
f.μ.y := μ.{x ∈ X | f.x = y}.

− The product of two discrete probability distributions μ, μ′ over X, X ′ is the
distribution μ × μ′ over X × X ′ defined (μ × μ′).(x, x′) := μ.x × μ′.x′.

1 However, Stoelinga & Vaandrager [19] offer evidence that the distinctions of Segala’s
vector-based may-testing are observable by repeating experiments many times.

2 This extends to any linear vector space, in particular to functions in X→IRN.

Scalar Outcomes Suffice for Finitary Probabilistic Testing 365

2.2 Probabilistic Automata and Their Resolutions

In this paper we employ probabilistic automata [18] as representatives of a class
of models that treat both probabilistic and nondeterministic choice [20,5,21,6].

Definition 1. A probabilistic automaton is a tuple M = (M, m◦, E, I, T) where
− M is a set of states,
− m◦ ∈ M is a distribution of start states,
− E and I are disjoint sets of external- and internal actions respectively and
− T ∈ M→ P(Σ × M) is the transition relation, where Σ := E ∪ I.

Automaton M is fully probabilistic if from each state m ∈M there is at most
one outgoing transition, i.e. if the set T.m contains at most one element. If
T.m is finite for all m ∈ M , then M is said to be finitely branching. An execution
sequence of M is an alternating sequence of states and actions m0, α1, m1, α2, · · ·,
either infinite or ending in state mn, such that m0 ∈�m◦� and for all i > 0 (and
i ≤ n if finite) we have ∃(αi, μi)∈T.mi−1 with mi ∈�μi�. The execution sequence
is maximal if either it is infinite or T.mn = ∅. ¶

From here on we use “automaton” to mean “probabilistic automaton”.
Any automaton can be “resolved” into fully probabilistic automata as follows.

Definition 2. A resolution of an automaton M = (M, m◦, E, I, T) is a fully
probabilistic automaton R = (R, r◦, E, I, T ′) such that there is a resolving func-
tion f ∈ R→M with
− f.r◦ = m◦, equivalent initialisations
− if T ′.r = {(α, μ)} then (α, f.μ) ∈ T.(f.r) and compatible choice taken
− if T ′.r = ∅ then T.(f.r) = ∅ liveness preserved

for any r ∈ R.3 ¶

A resolution has as its main effect the choosing in any state of a single outgoing
transition from all available ones; but f can be non-injective, so that the choice
can vary between different departures from that state, depending e.g. on the
history of states and actions that led there. Further, since a single state of M
can be “split” into a distribution over several states of R, all mapped to it by f ,
probabilistic interpolation between distinct choices is obtained automatically.4

Fig. 1 illustrates the history-dependent choice with states r1,4 both mapped
to m1; it illustrates interpolation with states r2,4 both mapped to m1.

2.3 Probabilities of Action Occurrences in Resolutions

For a fully probabilistic automaton in which all execution sequences are finite,
like R from Fig. 1, the probability of an action’s occurrence is easily obtained:
we calculate probabilities for the maximal execution sequences, given for each by
3 We use this abstract definition because of its useful mathematical properties; it is

equivalent to Segala’s [17] in that it generates the same distributions over action
sequences, as the following discussion illustrates.

4 In this regard our resolutions strictly generalise the ones of Jonsson et al. [8].

366 Y. Deng et al.

We show that M is resolved by R in the following diagram. Enclosing circles and ovals
represent distributions, the enclosed shapes’ relative sizes within hinting at probabili-
ties; on the left the shapes are associated 1-1 with the distinct states, but the right-hand
states’ shapes indicate the left-hand states to which they are mapped. Thus the resolving
function f is given by f.r1,2,3,4 := m1, f.r5 := m2 and f.r6 := m3.

The left-hand automaton M has initial (Dirac) distribution m◦ = m1 and transitions

T.m1 := {(α, m1) , (β, m2 1
2
⊕ m3) , (β, m3)} , T.m2 = T.m3 := ∅ .

The right-hand (fully probabilistic) resolution R has initial distribution r◦ = r1 1
3
⊕ r2;

its non-∅ transitions are

T ′.r1 := {(α, r3 1
2
⊕ r4)}

T ′.r2 := {(β, r5 1
2
⊕ r6)}

T ′.r3 := {(α, r2 1
2
⊕ r4)}

T ′.r4 := {(β, r6)} .

Fig. 1. Example of a fully probabilistic resolution

multiplication of the probabilities of the choices occurring along it; the probabil-
ity of an action’s occurrence is then the sum of the so-calculated probabilities for
all maximal sequences containing it. For example, in R the maximal-execution-
sequence probabilities are

〈r1, α, r3, α, r2, β, r5〉 @(1/3×1/2×1/2×1/2) that is, probability 1/24
〈r1, α, r3, α, r2, β, r6〉 @(1/3×1/2×1/2×1/2) probability 1/24
〈r1, α, r3, α, r4, β, r6〉 @(1/3×1/2×1/2×1) probability 1/12
〈r1, α, r4, β, r6〉 @(1/3×1/2×1) probability 1/6
〈r2, β, r5〉 @2/3×1/2 probability 1/3
〈r2, β, r6〉 @2/3×1/2 probability 1/3,

with all other sequences being assigned probability zero. If we use f to map this
distribution back to M, and aggregate, we get

〈m1, α, m1, α, m1, β, m2〉 probability 1/24
〈m1, α, m1, α, m1, β, m3〉 probability 1/24 + 1/12
〈m1, α, m1, β, m3〉 probability 1/6
〈m1, β, m2〉 probability 1/3
〈m1, β, m3〉 probability 1/3,

Scalar Outcomes Suffice for Finitary Probabilistic Testing 367

where we can see both history-dependence and interpolation at work. Finally,
concentrating on just the actions gives us

〈α, α, β〉 probability 1/24 + 1/24 + 1/12
〈α, β〉 probability 1/6
〈β〉 probability 1/3 + 1/3.

No matter which of the three views above we use, the probability that a particu-
lar action occurs is the probability assigned to the set of all sequences containing
that action: thus the probability of α’s occurrence is 1/24+1/24+1/12+1/6 =
1/3; for β the probability is 1. (The sum exceeds one because both can occur.)

When our automata can generate infinite executions, however, there might
be uncountably many of them: consider a looping automaton, choosing forever
between bits 0 and 1, whose infinite sequences thus encode the whole unit inter-
val [0, 1] in binary. Simple summation within discrete distributions is then not
appropriate;5 in this case we apply the following more general definition.

Definition 3. Given a fully probabilistic automaton R = (R, r◦, E, I, T), the
probability that R starts with a sequence of actions σ ∈Σ∗, with Σ := E ∪ I, is
given by r◦.(Pr

R
.σ), where Pr

R
∈ Σ∗→R→[0, 1] is defined inductively:

Pr
R
.ε.r := 1 and Pr

R
.(ασ).r :=

{
μ.(Pr

R
.σ) if T.r = {(α, μ)} for some μ

0 otherwise

Here ε denotes the empty sequence of actions and ασ the sequence starting
with α ∈Σ and continuing with σ ∈ Σ∗. Recall from Sec. 2.1 that μ.(Pr

R
.σ) is

the expected value over μ of the random variable Pr
R
.σ ∈ R→[0, 1]. The value

Pr
R
.σ.r is the probability that R proceeds with sequence σ from state r.
Let Σ∗α be the set of finite sequences in Σ∗ that contain α just once, namely

at the end. Then the probability that a fully probabilistic automaton R ever
performs an action α is given by

∑
σ ∈Σ∗α r◦.(Pr

R
.σ).6 ¶

2.4 Probabilistic Testing

We now recall the testing framework of Segala [17] which, as we will see, differs
from the testing framework of Wang and Larsen [21] in that a test may have
countably many success actions rather than just one.7

5 Discrete distributions’ supports must be countable and so they cannot, for example,
describe a situation in which the uncountably many infinite sequences are equally
likely — unless they are all (equally) impossible.

6 An alternative, but equivalent definition appeals to more general probabilistic mea-
sures: the probability of R’s performing α is the measure of the set of sequences
containing α at any point [17]. We have specialised here for simplicity.

7 Another difference is that Segala’s success actions must actually occur, whereas for
Wang and Larsen (and earlier De Nicola and Hennessy [4]), it is sufficient that a
state be reached from which the action is possible. Here we treat only the former.

368 Y. Deng et al.

We begin by defining the parallel composition of two automata in the CSP
style [7], synchronising them on their common external actions.

Definition 4. Let M1 = (M1, m
◦
1, E1, I1, T1) and M2 = (M2, m

◦
2, E2, I2, T2) be

two automata, and let Σi := Ei ∪ Ii. They are compatible when the only actions
they share are external, that is when Σ1 ∩ Σ2 ⊆ E1 ∩ E2. In that case their
parallel composition M1‖M2 is (M1×M2, m

◦
1×m◦

2, E1 ∪ E2, I1 ∪ I2, T) where

T.(m1, m2) := {(α, μ1×μ2) | α ∈Σ1 ∪ Σ2 ∧
(α, μi)∈Ti.mi if α ∈Σi else μi = mi, for i = 1, 2}. ¶

Parallel composition is the basis of testing: it models the interaction of the
observer with the process being tested; and it models the observer himself — as
an automaton.

From here on, we fix some disjoint sets E and I of external and internal
actions, and the automata we subject to testing —the ones for which testing
preorders will be defined— are the ones whose components of external- and
internal actions are subsets of E and I. Now let Ω := {ω1, ω2, · · ·} be a countable
set of success actions, disjoint from E and I, and define a test to be an automaton
T = (T, t◦, E, I, T) with E ⊇ E ∪ Ω and I ∩ I = ∅. Thus every such test T is
automatically compatible with the automaton M that is to be tested, and in
the parallel composition M‖T all the external actions of M must synchronise
with actions of T. Let T be the class of all such tests, and write TN for the
subclass of T that uses only N success actions; we write T∗ for

⋃
N∈IN TN and,

for convenience, allow TIN as a synonym for T itself.
To apply test T to automaton M we first form the composition M‖T and then

consider all resolutions of that composition separately: in each one, any particular
success action ωi will have some probability of occurring; and those probabilities,
taken together, give us a single success tuple for the whole resolution, so that if
w is the tuple then wi is the recorded probability of ωi’s occurrence. The set of
all those tuples, i.e. over all resolutions of M‖T, is then the complete outcome
of applying test T to automaton M: as such, it will be a subset of W := [0, 1]IN

+
.

Definition 5. For a fully probabilistic automaton R, let its (single) success
tuple W.R ∈ [0, 1]IN

+
be such that (W.R)i is the probability that R performs the

action ωi, as given in Def. 3.
Then for a (not necessarily fully probabilistic) automaton M we define the set

of its success tuples to be those resulting as above from all its resolutions:

W.M := {W.R | R is a resolution of M}. ¶

We note that the success-tuple set W.M is convex in the following sense:

Lemma 1. For any two tuples w1, w2 ∈ W.M, their weighted average w1 p⊕ w2
is also in W.M for any p ∈ [0, 1].

Proof. Let R1, R2 be the resolutions of M that gave rise to w1, w2. Form R as
their disjoint union, except initially where we define r◦ := r◦1 p⊕ r◦2 . The new
resolution R generates the interpolated tuple w1 p⊕ w2 as required. ¶

Scalar Outcomes Suffice for Finitary Probabilistic Testing 369

2.5 May- and Must Preorders

We now define various preorders � on testable automata; in general M1 � M2
will mean that M2 scores at least as well as M1 does on certain tests.

For w, w′ ∈ W, we write w ≤ w′ if wi ≤ w′
i for all i ∈ IN+. Given that Ω com-

prises “success” actions it is natural to regard ≤ on W as a (non-strict) “better
than” order, i.e. that it is better to have higher probabilities for the occurrence
of success actions. Since nondeterminism generates however sets of success tuples
(Def. 5), rather than merely individuals, we are led to appeal to two complemen-
tary testing preorders on automata; they are based on the standard techniques
for promoting an underlying order to a preorder on powersets.

Definition 6. Given two automata M1, M2 and a testing automaton T compat-
ible with both, say that

M1 �T
may M2 iff W.(M1‖T) ≤H W.(M2‖T)

M1 �T
must M2 iff W.(M1‖T) ≤S W.(M2‖T),

where ≤H , ≤S are the Hoare, resp. Smyth preorders on P W generated from the
index-wise order ≤ on W itself.8 Abstracting over all tests in T then gives us

M1 �T
– M2 iff ∀ T ∈ T : M1 �T

– M2,

where within a single formula or phrase we use “–” for “may, must respectively”
in the obvious way, and we define the preorders �T∗– , and �TN– for N≥1, by
similar abstractions. Finally, scalar testing as employed by Wang & Larsen [21]
is defined by taking suprema and infima, as follows:

M1 �1
may M2 iff ∀ T ∈ T1 : �W.(M1‖T) ≤ �W.(M2‖T)

M1 �1
must M2 iff ∀ T ∈ T1 : �W.(M1‖T) ≤ �W.(M2‖T). ¶

Thus, in vector-based testing �T–, for each test one compares sets of tuples
of reals, whereas for �T1– one is merely comparing sets of (mono-tuple-, hence
scalar) reals. Then, by taking extrema, scalar testing abstracts even further to
a comparison of single scalars.

Clearly (�T
–) ⇒ (�T∗–) ⇒ (�T1–) ⇒ (�1

–). Our principal interest is in deter-
mining the situations in which the last is as powerful as all the others, that is
when the reverse implications also hold, giving equivalence: we ask

Under what conditions are scalar tests on their own sufficient to distin-
guish probabilistic automata?

In Sec. 5 we identify general criteria which suffice for scalar testing; then in
Secs. 6 and 7 we identify classes of automata on which we can achieve those
criteria. Sections 3 and 4 introduce “reward testing” for that purpose.

8 The Hoare order is defined by X ≤H Y iff ∀x ∈ X : ∃y ∈ Y : x ≤ y; similarly the
Smyth order is defined by X ≤S Y iff ∀y ∈ Y : ∃x ∈ X : x ≤ y [1].

370 Y. Deng et al.

3 Reward Testing of Finite-Dimensional Tuple Sets

Def. 5 gives tuple sets W.(M‖T), coming from a testee M and test T ∈ TIN; when
in fact T ∈ T∗ they can be considered to lie in some N -dimensional unit cube
[0, 1]N. We now abstract from automata, considering just those tuple sets; let
N be fixed. This section shows it sufficient, under suitable conditions, to record
only an “extremal expected reward” for each set of N -tuple outcomes, a single
scalar rather than the whole tuple-set.

Definition 7. A reward tuple is an N -tuple h ∈ [0, 1]N of real numbers; given
such an h we define two forms of extremal reward outcomes with respect to any
tuple set W ⊆ [0, 1]N :
− The Hoare outcome hH ·W is the supremum �w∈W (h · w), and
− The Smyth outcome hS ·W is the infimum �w∈W (h · w) ,

where within the extrema we write h ·w for the dot-product of the two tuples.
Given a reward-tuple h ∈ [0, 1]N, the two forms of outcome give us two corre-

sponding reward orders on tuple-sets W1, W2 ⊆ [0, 1]N :

W1 ≤h
may W2 iff hH ·W1 ≤ hH ·W2

W1 ≤h
must W2 iff hS·W1 ≤ hS ·W2,

where (note) the comparison ≤ on the right has now been reduced to simple
scalars. As in Def. 6, this generalises so that we can define

W1 ≤N
– W2 iff ∀h ∈ [0, 1]N : W1 ≤h

– W2. ¶

We will now show that these preorders coincide with ≤H and ≤S, respectively,
provided the tuple-sets have a certain form of closure, as follows:

Definition 8. We say that a subset W of the N -dimensional Euclidean space
is p-closed (for probabilistically closed) iff
− It is convex, that is if w1, w2 ∈W and p ∈ [0, 1] then the weighted average

w1 p⊕ w2 is also in W , and
− It is Cauchy closed, that is it contains all its limit points in the usual Eu-

clidean metric, and it is bounded.9 ¶

Our sets’ being p-closed will allow us to appeal to the Separating Hyperplane
Lemma from discrete geometry [11, Thm. 1.2.4 paraphrased]:10

Lemma 2. Let A and B be two convex- and Cauchy-closed subsets of Euclidean
N -space; assume that they are disjoint and that at least one of them is bounded.
Then there is a hyperplane that strictly separates them. ¶

Here a hyperplane is a set of the form {w ∈ IRN | h·w = c} for certain h ∈ IRN (the
normal of the hyperplane) and c ∈ IR, and such a hyperplane strictly separates
A and B if for all a ∈A and b ∈B we have h ·a < c < h · b or h · a > c > h · b.

Our main theorem is then a direct application of Lem. 2: the normal h of the
asserted hyperplane provides the rewards used in Def. 7.
9 Cauchy closure and boundedness together amounts to compactness.

10 The hyperplanes are motivated indirectly by a proof of McIver [14, Lem. 8.2].

Scalar Outcomes Suffice for Finitary Probabilistic Testing 371

Theorem 1. Let A, B be subsets of [0, 1]N ; then we have

A ≤H B iff A ≤N
may B if B is p-closed, and

A ≤S B iff A ≤N
must B if A is p-closed.

Proof. We consider first the only-if -direction for the Smyth/must case:

A ≤S B
⇔ ∀b ∈B : ∃a ∈A : a ≤ b defn. ≤S

⇒ ∀h ∈ [0, 1]N : ∀b ∈B : ∃a ∈A : h · a ≤ h · b h ≥ 0

⇒ ∀h ∈ [0, 1]N : ∀b ∈B : hS ·A ≤ h · b hS ·A ≤ h · a
⇔ ∀h ∈ [0, 1]N : hS ·A ≤ hS ·B defn. (hS ·); properties of

⇔ ∀h ∈ [0, 1]N : A ≤h

must B. defn. ≤h
must

⇔ A ≤N
must B. defn. ≤N

must

For the if -direction we use separating hyperplanes, proving the contrapositive:

A �≤S B
⇔ ∀a ∈A : ¬(a ≤ b) defn. ≤S; for some b ∈ B

⇔ A ∩ B′ = ∅ define B′ := {b′ ∈ IRN | b′ ≤ b}

⇔ ∃h ∈ IRN , c ∈ IR :
∀a ∈A, b′ ∈B′ :

h · b′ < c < h · a,

Lem. 2; A is p-closed ; B′ is convex and Cauchy-closed

where wlog the inequality can be in the
direction shown, else we simply multi-
ply h, c by −1.

We now argue that h is non-negative,
whence by scaling of h, c we obtain wlog
that h ∈ [0, 1]N. Assume for a contra-
diction that hn < 0. Choose scalar
d ≥ 0 large enough so that the point
b′ := (b1, · · · , bn−d, · · · , bN) falsifies
h · b′ < c; since b′ is still in B′, however,
that contradicts the separation. Thus
we continue

⇔ ∃h ∈ [0, 1]N , c ∈ IR :
∀a ∈A, b′ ∈B′ :

h · b′ < c < h · a,

above comments concerning d

⇔ ∃h ∈ [0, 1]N , c ∈ IR : ∀a ∈A : h · b < c < h ·a set b′ to b; note b ∈ B′

⇒ ∃h ∈ [0, 1]N , c ∈ IR : h · b < c ≤ hS ·A defn. (hS ·); properties of

⇒ ∃h ∈ [0, 1]N , c ∈ IR : hS ·B < c ≤ hS ·A b∈ B, hence hS ·B ≤ h · b
⇔ ∃h ∈ [0, 1]N : A �≤h

must B defn. ≤h
must

⇔ A �≤N
must B. defn. ≤N

must

The proof for the Hoare-case is analogous. ¶

372 Y. Deng et al.

4 Reward Testing of Automata

We now combine Secs. 2 and 3 by introducing preorders that use testing processes
and rewards together: we define

M1 �N
– M2 iff ∀ T ∈ TN : W.(M1‖T) ≤N

– W.(M2‖T).

We call the �N– relations —and �∗–, �IN– similarly— the reward-testing preorders
for automata. When N=1 this definition of �1

– is just scalar testing again (from
Sec. 2.5) as, in this case, the reward “vectors” are just scalars themselves: thus
the notations do not clash. The following is an immediate corollary of Thm. 1.

Corollary 1. If M1 and M2 are automata with the property that for any test
T ∈ T∗ the sets W.(M1‖T) and W.(M2‖T) are p-closed, then finite-dimensional
vector-based testing is equivalent to reward testing: from Thm. 1 we have

M1 �TN– M2 iff M1 �N
– M2 for all N,

which in turn implies that M1 �T∗– M2 iff M1 �∗– M2. ¶

5 Closure Suffices for Scalar Testing

We now show that scalar testing is equally powerful as finite-dimensional re-
ward testing which, with Cor. 1, implies that p-closure of the generated tuple-
sets W.(M‖T) is a sufficient condition for scalar testing to be as powerful as
finite-dimensional vector-based testing. In doing so, we assume that tests are
ω-terminal in the sense that they halt after execution of any success action.11

Theorem 2. For automata M1 and M2 we have that M1 �∗– M2 iff M1 �1– M2.

Proof. The only-if is trivial in both cases. For if we prove the must-case in the
contrapositive; the may-case is similar.

Suppose thus that M1 ��N
must M2, i.e. that M1, M2 are must-distinguished by

some test T ∈ TN and reward h ∈ [0, 1]N , so that

W.(M1‖T) �≤h
must W.(M2‖T). (1)

Assuming wlog that the success
actions are ω1, · · · , ωN we construct
an automaton U such that
− The state space is {u0, · · · , uN} and u,
− The actions are ω1, · · · ωN and ω, all external,
− The initial distribution u◦ is u0 and
− The transitions for 1 ≤ i ≤ N take u0 via action ωi to (ui hi⊕ u), thence

each ui via ω to deadlock at u.

11 This assumption is justified in App. A.

Scalar Outcomes Suffice for Finitary Probabilistic Testing 373

We now consider the test T‖U with ω as its only success action. In T‖U an
occurrence of ωi is with probability hi followed immediately by an occurrence
of ω (and with probability 1−hi by deadlock); and the overall probability of ω’s
occurrence, in any resolution of M1,2‖T‖U, is therefore the h-weighted reward
h ·w for the tuple w := (w1, · · · , wN) in the corresponding resolution of M1,2‖T.

Thus from (1) we have that M1, M2 can be distinguished using the scalar
test T‖U with its single success action ω; that is, we achieve M1 ��1

must M2 as
required. ¶

6 Very Finite Testing Is p-closed, Hence Scalar

Say that an automaton is very finite if it is finite-state, finitely branching and
loop-free (no execution sequence repeats a state), so that there is a finite upper
bound on the length of its execution sequences.

In Thm. 3 below we show that scalar outcomes suffice when dealing with very
finite automata and tests, because the sets of success tuples are p-closed and
thus Thm. 2 applies. We rely on the fact that when a test T is very finite, so are
the composite automata T‖U and T‖V constructed in Sec. 5 and App. A.

Lemma 3. Let W1,···,N ⊆ W be p-closed success-tuple sets, and let μ ∈{1,· · ·, N}
be a discrete distribution over their indices. Then we have12

1. The set {μ.f | f ∈ {1,· · · ,N}→W ∧ ∀i : f.i ∈Wi} is p-closed, and
2. The set

⋃
μ∈{1,···,N} {μ.f | f ∈ {1,· · ·, N}→W ∧ ∀i : f.i ∈Wi} is p-closed.

That is, a specific interpolation μ of p-closed sets is again p-closed (1), and the
union of all such interpolations is also p-closed (2).

Proof. Standard results on convex hulls of compact sets [2, Sec. 5.3]. ¶

Lemma 4. If M and T are very finite automata, then the set W.(M‖T) of success
tuples is p-closed.

Proof. (Sketch) Lem. 3 shows that p-closure is preserved in a fairly straightfor-
ward induction on the upper bound of the length of the execution sequences of
the very finite automata M‖T. The details are omitted here, because Thm. 4
subsumes Thm. 3 anyway. ¶

Theorem 3. For very finite tests and automata, scalar testing suffices: we have

M1 �TIN– M2 iff M1 �1
– M2.

Proof. Any very finite test has only finitely many success actions, and thus
belongs to T∗. Consequently, we have M1 �TIN– M2 iff M1 �T∗– M2. Using this,
the result follows from Lem. 4, Cor. 1 and Thm. 2. ¶

12 Here we are taking the expected value of vectors: recall Footnote 2.

374 Y. Deng et al.

7 Also Finitary Testing Is Scalar

We now remove the no-looping restriction of Sec. 6, retaining however that the
automata are finite-branching and have finitely many states:13 this allows their
execution sequences to become of infinite length. Such automata we call finitary.

The result depends on a connection with Markov Decision Processes (MDP ’s)
[16], abstracted here as a lemma implicitly using the more general probability
measures mentioned in Def. 3 (Footnote 6).

Lemma 5. Static resolutions suffice for finitary testing Say that a resolution
R of an automaton M is static if its associated resolving function f ∈ R→M is
injective, so that on every visit to a state m ∈M any nondeterminism is resolved
in the same way, and does not interpolate. Then, for all reward tuples h ∈ [0, 1]N,
− There is a static resolution Rh of M so that hS ·(W.M) = hS ·(W.Rh) and
− There is a static resolution R′

h of M so that hH ·(W.M) = hH ·(W.R′
h).

Thus in both cases the extremum over all resolutions is attained statically.14

Proof. An automaton M = (M, m◦, E, I, T) with a reward tuple h ∈ [0, 1]IN
+

constitutes isomorphically an MDP [16, Sec. 2.1]: in the tuple at the end of
Sec. 2.1.3 take T := IN+, S := M , As := T.s for s ∈S, pt(· | s, (α, μ)) := μ and
rt(s, (α, μ)) := hi if α = ωi, or 0 if α �∈Ω. The values of p and r are independent
of t and s. Our resolutions are the (history-dependent, randomised) policies
of Sec. 2.1.5, and our Smyth- and Hoare-outcomes (Def. 7) are the optimal
outcomes accruing from such policies [Secs. 2.1.6, 4.1 and 5.2]; the Smyth-case is
obtained by using negative rewards so that “optimal” is supremum either way.

Theorem 7.1.9 [Sec. 7.1.4] states (paraphrased) Suppose that the state space
and the set of actions available at each state are finite. Then there is a stationary
deterministic optimal policy. “Stationary deterministic” equates to “static” in
our setting, and “optimal” means “attains the extremum”. ¶

The crucial lever that Lem. 5 gives us in our treatment of testing is that a finitary
automaton has only finitely many static resolutions (up to isomorphism), since
neither variation-by-visit nor interpolation is allowed for them. With infinitely
many resolutions in general, even for the finitary case, needing only finitely many
is a significant advantage — as we now see in the following lemmas.

Lemma 6. Let Wf.M be the convex closure of the statically generated success
tuples of M; then Wf.M ⊆ W.M. If M is finitary, then Wf.M is p-closed.

Proof. The first statement is trivial, since static resolutions are still resolutions
and from Lem. 1 we know that W.M is convex. For the second we note that as
13 Having finitely many states and transitions is an equivalent restriction. Finitely many

states does not on its own imply finite branching, however: there are infinitely many
distributions possible over even a finite state space.

14 More general work on games [12] led us to this; a similar result is argued directly
by Philippou, Lee & Sokolsky [15] and Cattani and Segala [3], in both cases in the
context of decision procedures for bisimulation.

Scalar Outcomes Suffice for Finitary Probabilistic Testing 375

M has only finitely many static resolutions, the set Wf.M is the convex-closure
of a finite number of points, and is thus p-closed by Lem. 3(2). ¶

Lemma 7. For all finitary automata M with N success actions, and reward
tuples h ∈ [0, 1]N, we have

hS ·(W.M) = hS ·(Wf.M) and hH ·(W.M) = hH ·(Wf.M),

hence W.M and Wf.M are equivalent under ≤N–.

Proof. The ≤-case for Smyth is immediate from Lem. 6; from Lem. 5 there is
some static resolution Rh of M with hS ·(W.M) = hS ·(W.Rh) ≥ hS ·(Wf.M).

The Hoare-case is similar; the equivalence then follows from Def. 7. ¶

Lemmas 6 and 7 allow us to strengthen Cor. 1, effectively requiring p-closure
only of Wf.(M1,2‖T) rather than of W.(M1,2‖T).

Lemma 8. For finitary automata M1, M2 we have M1 �T∗– M2 iff M1 �∗– M2.

Proof. For “only-if” apply Thm. 1 — this direction does not require p-closure.
For if we prove the must-case in the contrapositive; the may-case is similar.

M1 ��TN
must M2 for some N

⇔ W.(M1‖T) �≤S W.(M2‖T) Def. 6, for some T ∈ TN

⇒ Wf.(M1‖T) �≤S W.(M2‖T) Lem. 6, Wf.(M1‖T) ⊆ W.(M1‖T)

⇔ Wf.(M1‖T) �≤N
must W.(M2‖T) Lem. 6, Wf.(M1‖T) is p-closed ; Thm. 1

⇔ W.(M1‖T) �≤N
must W.(M2‖T) Lem. 7

⇒ M1 ��N
must M2. Definition of reward testing.¶

We can now establish the extension of Thm. 3 to finitary automata.

Theorem 4. For finitary tests and automata, scalar testing suffices.

Proof. As in the proof of Thm. 3 we observe that M1 �TIN– M2 iff M1 �T∗– M2
for (this time) finitary tests; we then apply Lem. 8 and Thm. 2. ¶

8 Beyond Finitary Testing

The principal technical ingredient of our results is p-closure of the result sets
in W, since that is what enables the hyperplane separation. Separation itself is
not inherently finitary, since Lem. 2 extends to countably infinite dimensions
[13, Lem. B.5.3 adapted], delivering a hyperplane whose normal is non-zero in
only finitely many dimensions — just as required for our constructions above
(although automaton V in App. A needs a slightly different approach).

It is the p-closure which (currently) depends essentially on finite dimensions
(hence a finite state space). For countably infinite dimensions, its convexity com-
ponent must be extended to infinite interpolations; but that happens automat-
ically provided the sets are Cauchy closed. And it is again the closure that
(within our bounded space) implies the compactness that separation requires.
Thus Cauchy closure is the crucial property.

376 Y. Deng et al.

When the automata are finitely branching (up to interpolation), we believe
a direct fixed-point construction of W.M (i.e. not indirectly via resolutions)
gives, via intersection of a ⊇-chain, a set whose up-closure (wrt ≤ over W) is
compact. Since must- (i.e. Smyth) testing is insensitive to up-closure, that would
seem to extend our results to countably-infinite dimensional must-testing. For
the may-testing case the analogous technique would be down-closure; but here,
unfortunately, the limit is via union of a ⊆-chain, and closure/compactness is not
obviously preserved. As further evidence for this we note that the MDP -based
results allow countably infinite state spaces in the infimum case (still however
with finite branching) [16, Thm. 7.3.6], whereas the supremum case requires a
finite state space.

Thus the key question is What conditions are necessary to establish p-closure
for infinitely many states? At present, may- seems harder than must-.

9 Conclusion

Our reduction of vector- to scalar testing uses geometry (hyperplanes), elemen-
tary topology (compactness) and game theory (MDP ’s); and it highlights the
importance of p-closure and static resolutions. That those techniques contribute
to probabilistic semantics is of independent theoretical interest; but our result
ultimately is practical — any program calculus/algebra, a fundamental tool for
rigorous software engineering, relies crucially on a tractable definition of equality.

A key feature is our use of expected values of “rewards” as outcomes for prob-
abilistic tests; this approach subsumes the usual direct probabilities because an
event’s probability is just the expected value of its characteristic function.15 It
has been suggested before both for sequential [10] and concurrent [8] applica-
tions; and we believe it deserves greater attention, since it can lead to significant
simplifications (of which this report provides an example).

We have shown that scalar testing suffices when requiring the tests, as well
as their testees, to be finitary, and one may wonder whether the same holds if
arbitrarily complex tests are allowed. We think this is indeed the case, for we
conjecture that if two finitary automata can be distinguished by an arbitrary
test, then they can be distinguished by a finitary test.

As stated in Sec. 2.4, Segala’s testing framework [17] differs from others’
[4,21] not only in the number of success actions, but also in how to report
success. We claim that action- and state-based testing give rise to different must-
testing preorders when the tested processes display divergence, because a success
action ω may be delayed forever. Here we used action-based testing throughout,
although we could have obtained the same results for state-based testing.

Finally, we note that our reduction via Thms. 2–4 of vector-based testing to
extremal scalar testing has reduction to T1-testing as a corollary — thus showing
that, under our assumptions, single success actions suffice for Segala’s approach
even if it is otherwise unchanged.

15 For μ.X is the same whether X is taken as a set or as a characteristic function.

Scalar Outcomes Suffice for Finitary Probabilistic Testing 377

Acknowledgements

We thank Anna Philippou for corresponding with us about static resolutions,
and Kim Border for a hyperplane-related counterexample.

References

1. S. Abramsky & A. Jung (1994): Domain theory. In S. Abramsky, D.M. Gabbay
& T.S.E. Maibaum, editors: Handbook of Logic and Computer Science, volume 3,
Clarendon Press, pp. 1–168.

2. C.D. Aliprantis & K.C. Border (1999): Infinite Dimensional Analysis.
Springer, second edition.

3. S. Cattani & R. Segala (2002): Decision algorithms for probabilistic bisimula-
tion. In Proc. CONCUR 2002, LNCS 2421, Springer, pp. 371–85.

4. R. De Nicola & M. Hennessy (1984): Testing equivalences for processes. The-
oretical Computer Science 34, pp. 83–133.

5. H. Hansson & B. Jonsson (1990): A calculus for communicating systems with
time and probabilities. In Proc. of the Real-Time Systems Symposium (RTSS ’90),
IEEE Computer Society Press, pp. 278–87.

6. He Jifeng, K. Seidel & A.K. McIver (1997): Probabilistic models for the
guarded command language. Science of Computer Programming 28, pp. 171–92.

7. C.A.R. Hoare (1985): Communicating Sequential Processes. Prentice Hall.
8. B. Jonsson, C. Ho-Stuart & Wang Yi (1994): Testing and refinement for

nondeterministic and probabilistic processes. In Proc. Formal Techniques in
Real-Time and Fault-Tolerant Systems, LNCS 863, Springer, pp. 418–30.

9. B. Jonsson & Wang Yi (2002): Testing preorders for probabilistic processes can
be characterized by simulations. Theoretical Computer Science 282(1), pp. 33–51.

10. D. Kozen (1985): A probabilistic PDL. Jnl. Comp. Sys. Sciences 30(2), pp. 162–78.
11. J. Matoušek (2002): Lectures on Discrete Geometry. Springer.
12. A.K. McIver & C.C. Morgan (2002): Games, probability and the quantitative

μ-calculus qMu. In Proc. LPAR, LNAI 2514, Springer, pp. 292–310.
13. A.K. McIver & C.C. Morgan (2005): Abstraction, Refinement and Proof for

Probabilistic Systems. Tech. Mono. Comp. Sci., Springer.
14. C.C. Morgan, A.K. McIver & K. Seidel (1996): Probabilistic predicate trans-

formers. ACM Trans. on Programming Languages and Systems 18(3), pp. 325–53.
15. A. Philippou, I. Lee & O. Sokolsky (2000): Weak bisimulation for probabilistic

systems. In Proc. CONCUR 2000, Springer, pp. 334–49.
16. M.L. Puterman (1994): Markov Decision Processes. Wiley.
17. R. Segala (1996): Testing probabilistic automata. In Proc. CONCUR ’96, LNCS

1119, Springer, pp. 299–314.
18. R. Segala & N.A. Lynch (1994): Probabilistic simulations for probabilistic pro-

cesses. In Proc. CONCUR ’94, LNCS 836, Springer, pp. 481–96.
19. M.I.A. Stoelinga & F.W. Vaandrager (2003): A testing scenario for proba-

bilistic automata. In Proc. ICALP ’03, LNCS 2719, Springer, pp. 407–18.
20. M.Y. Vardi (1985): Automatic verification of probabilistic concurrent finite state

programs. In Proc. FOCS ’85, IEEE Computer Society Press, pp. 327–38.
21. Wang Yi & K.G. Larsen (1992): Testing probabilistic and nondeterministic pro-

cesses. In Proc. IFIP TC6/WG6.1 Twelfth Intern. Symp. on Protocol Specification,
Testing and Verification, IFIP Transactions C-8, North-Holland, pp. 47–61.

378 Y. Deng et al.

A One Success Never Leads to Another

Here we substantiate the claim made in Sec. 6 (Footnote 11) that wlog we can
assume that our testing automata halt after engaging in any success action.
The reward-testing construction requires this because the automaton U used in
Thm. 2 implementing a particular reward-tuple h effectively causes the compos-
ite automaton T‖U to halt after the reward is applied — hence for correctness
of the construction we required that the automaton T must have halted anyway.

Below we show that the may- and must testing preorders do not change upon
restricting the class of available tests to those that cannot perform multiple
success actions in a single run. A second reduction to tests that actually halt
after performing any success action is trivial: just change any transition of the
form (s, ωi, μ) into a transition (s, ωi, 0) leading to a deadlocked state 0.

Suppose our original testing automaton T has N success actions ω1, · · · , ωN .
By running it in parallel with another automaton V (below) we will convert it
to an automaton with the required property and corresponding success actions
ω′

1, · · · , ω′
N , and with success N -tuples that are exactly 1/N times the success

tuples of T; since testing is insensitive to scaling of the tuples, that will give us
our result. Note that the 1/N factor is natural given that we are making our
N success actions mutually exclusive: it ensures the tuple’s elements’ total does
not exceed one.

We construct the automaton V := (V, v◦, E, I, T) as follows:

− The state space is V := P{ω1, . . . , ωn} ∪ (0, . . . , N), where the powerset-
states record which success actions have already occurred, the scalar states
1, . . . , N are “about-to-terminate” states, and 0 is a deadlock state;

− The actions are ω1, . . . , ωN and ω′
1, . . . , ω

′
N , all external; and

− The initial distribution v◦ is the Dirac’d powerset-state ∅.

The transitions of V are of three kinds:

− “Terminating” transitions take state n with probability one via action ω′
n

to the deadlocked state 0;
− “Do-nothing” transitions, from state v ∈P{ω1, · · · , ωN}, lead with probabil-

ity one via action ωn ∈ v back to v, implementing that second and subsequent
occurrences of any success action in T can be ignored; and

− “Success” transitions, from
state v ∈P{ω1, · · · , ωN}
lead via action ωn �∈ v
with probability 1

N−#v
to state n, whence the
subsequent terminating
transition will emit ω′

n;
the remaining probability at v leads to state v ∪ {ωn}, recording silently
that ωn has now been taken care of.

When the original test T has finitely many states and transitions, so does the
composite test T‖V.

Probabilistic Anonymity Via Coalgebraic Simulations

Ichiro Hasuo1,� and Yoshinobu Kawabe2

1 Radboud University Nijmegen, the Netherlands
http://www.cs.ru.nl/˜ichiro

2 NTT Communication Science Laboratories, NTT Corporation, Japan
http://www.brl.ntt.co.jp/people/kawabe

Abstract. There is a growing concern on anonymity and privacy on the Internet,
resulting in lots of work on formalization and verification of anonymity. Espe-
cially, importance of probabilistic aspect of anonymity is claimed recently by
many authors. Among them are Bhargava and Palamidessi who present the defi-
nition of probabilistic anonymity for which, however, proof methods are not yet
elaborated. In this paper we introduce a simulation-based proof method for prob-
abilistic anonymity. It is a probabilistic adaptation of the method by Kawabe et
al. for non-deterministic anonymity: anonymity of a protocol is proved by finding
out a forward/backward simulation between certain automata. For the jump from
non-determinism to probability we fully exploit a generic, coalgebraic theory of
traces and simulations developed by Hasuo and others. In particular, an appro-
priate notion of probabilistic simulations is obtained by instantiating a generic
definition with suitable parameters.

1 Introduction

Nowadays most human activities rely on communication on the Internet, hence on com-
munication protocols. This has made verification of communication protocols a trend in
computer science. At the same time, the variety of purposes of communication proto-
cols has identified new verification goals—or security properties—such as anonymity,
in addition to rather traditional ones like secrecy or authentication.

Anonymity properties have attracted growing concern from the public. There are
emerging threats as well: for example, the European Parliament in December 2005
approved rules forcing ISPs to retain access records. Consequently more and more re-
search activities—especially from the formal methods community—are aiming at veri-
fication of anonymity properties (see [2]).

Formal verification of anonymity properties is at its relative youth compared to au-
thentication or secrecy. The topic still allows for definitional work (such as [4,7,8,11,16])
pointing out many different aspects of anonymity notions. Notably many authors
[4,8,20,21] claim the significant role of probability in anonymity notions. This is the
focus of this paper.

Bhargava and Palamidessi [4] define the notion of probabilistic anonymity which is
mathematically precise and which subsumes many competing notions of anonymity

� This work was done during the first author’s stay at NTT Communication Science Laboratories
in September–October 2006.

R. De Nicola (Ed.): ESOP 2007, LNCS 4421, pp. 379–394, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

380 I. Hasuo and Y. Kawabe

in probabilistic settings. However, it is not yet elaborated how we can verify if an
anonymizing protocol satisfies this notion of probabilistic anonymity.

In this paper we introduce a simulation-based proof method for probabilistic
anonymity as defined by Bhargava and Palamidessi. It is a probabilistic extension of
the method by Kawabe et al. [13,12] for a non-deterministic (as opposed to probabilis-
tic) setting. The basic scenario is common in both non-deterministic and probabilistic
cases:

1. First we model an anonymizing protocol to be verified as a certain kind of automa-
ton X .

2. Second we construct the anonymized version an(X) of X . The automaton an(X)
satisfies the appropriate notion of anonymity because of the way it is constructed.

3. We prove that

(trace semantics of X) = (trace semantics of an(X)).

Then, since the notion of anonymity is defined in terms of traces, anonymity of
an(X) yields anonymity of X . The equality is proved by showing that the (appro-
priate notion of) inclusion order � holds in both directions.

– � holds because of the construction of an(X).
– � is proved by finding a (forward or backward) simulation from an(X) to X .

Here we appeal to soundness theorem of simulations—existence of a simula-
tion yields trace inclusion.

Hence the anonymity proof of X is reduced to finding a suitable forward/backward
simulation.

There is an obvious difficulty in conducting this scenario in a probabilistic setting.
The theory of traces and simulations in a non-deterministic setting is well studied e.g.
by [14]; however appropriate definitions of probabilistic traces and simulations are far
from trivial.

For the jump from non-determinism to probability we exploit a generic, coalgebraic
theory of traces and simulations developed by Hasuo, Jacobs and Sokolova [9,10]. In the
generic theory, fundamental notions such as systems (or automata), trace semantics and
forward/backward simulations are identified as certain kinds of coalgebraic constructs.
On this level of abstraction the general soundness theorem—existence of a (coalgebraic)
simulation yields (coalgebraic) trace inclusion—is proved by categorical arguments.

The theory is generic in that, by fixing two parameters appearing therein, it instan-
tiates to a concrete theory for various kinds of systems. In particular, according to the
choice of one parameter, systems can be non-deterministic or probabilistic.1 In this
work a complex definition of probabilistic simulations is obtained as an instance of the
general, coalgebraic definition. Moreover, this definition is an appropriate one: sound-
ness theorem comes for free from the general soundness theorem.

1 Unfortunately the combination of both non-determinism and probability—which is e.g. in
probabilistic automata [19]—is not covered in this paper. In fact this combination is a no-
torious one [6,23]: many mathematical tools that are useful in a purely non-deterministic or
probabilistic setting cease to work in the presence of both.

Probabilistic Anonymity Via Coalgebraic Simulations 381

The paper is organized as follows. In Section 2 we illustrate the probabilistic as-
pect of anonymity properties using the well-known example of Dining Cryptographers.
We model anonymizing protocols as a special kind of automata called (probabilistic)
anonymity automata. This notion is introduced in Section 3; the definition of prob-
abilistic anonymity following [4] is also there. Finally in Section 4 we describe our
simulation-based proof method for anonymity and prove its correctness. In Section 5
we conclude.

Notations. In the sequel the disjoint union of sets X and Y is denoted by X + Y .
The set of lists over an alphabet X with length ≥ 1 is denoted by X∗X in a regular-

expression-like manner: obviously we have X∗ = X∗X + {〈〉}. This appears as a
domain of trace semantics for anonymity automata.

2 Motivating Example: Dining Cryptographers (DC)

In this section—following [4]—we shall illustrate the probabilistic aspect of anonymity,
using the well-known dining cryptographers (DC) protocol [5].

2.1 The DC Protocol

There are three cryptographers (or users) dining together. The payment will be made
either by one of the cryptographers, or NSA (U.S. National Security Agency) which
organizes the dinner. Who is paying is determined by NSA; if one of the cryptographers
is paying, she has been told so beforehand.

The goal of the DC protocol is as follows. The three cryptographersannounce whether
one of them is paying or not; but if it is the case, the information on which cryptographer
is paying should be disguised from the viewpoint of an observer (called the adversary in
the sequel) and also from that of the cryptographers who are not paying. This is where
anonymity is involved.

The protocol proceeds in the following way. Three cryptographers Crypti for
i = 0, 1, 2 sit in a circle, each with a coin Coini. The coins are held in such a way
that they can be seen by the owner and one of the other two: in the following figure →
denotes the “able-to-see-her-coin” relation.

Crypt0

Crypt1 Crypt2

Then the coins are flipped; each cryptographer, comparing the two coins she can see,
announces to the public whether they agree (showing the same side) or disagree. The
trick is that the one who is paying—if there is—lies on the announcement. For example,
given that Crypt0 is paying, then the configuration of coins

(h, t, h) that is h
t h

,

results in the announcement

(a, d, a) that is
a

d a .

382 I. Hasuo and Y. Kawabe

This announcement is the only thing the adversary can observe; occurrence of an odd
number of d’s reveals the presence of a liar, hence the presence of a payer among the
cryptographers.

Can the adversary say which cryptographer is paying? No. In fact, given an an-
nouncement with an odd number of d’s and any payer Crypti, we can construct a coin
configuration which yields the given announcement. For example, the announcement
(a, d, a) above can be yielded by any of the following configurations.

Crypt0 pays, and coins are (h, t, h) or (t, h, t)
Crypt1 pays, and coins are (h, h, h) or (t, t, t)
Crypt2 pays, and coins are (h, h, t) or (t, t, h)

2.2 Probabilistic Anonymity in DC

Up to now the arguments have been non-deterministic: now we shall explain how prob-
abilistic aspects in DC emerge. Assume that the coins are biased: each of three Coini’s
gives head with the probability 9/10. Provided that Crypt0 is paying, the announcement
(a, d, a) occurs with the probability (9 · 1 · 9 + 1 · 9 · 1)/103, because it results from
(h, t, h) or (t, h, t). Similar calculations lead to the following table of probabilities.

(d, a, a) (a, d, a) (a, a, d) (d, d, d)
Crypt0 pays 0.73 0.09 0.09 0.09
Crypt1 pays 0.09 0.73 0.09 0.09
Crypt2 pays 0.09 0.09 0.73 0.09

Are the cryptographers still “anonymous”? We would not say so. For example, if the
adversary observes an announcement (d, a, a), it is reasonable for her to suspect Crypt0
more than the other two.

Nevertheless, if the coins are not biased, we cannot find any symptom of broken
anonymity. Therefore we want to obtain the following two things.

The first is an appropriate notion of “probabilistic anonymity” which holds with
fair coins but is violated with biased coins—this is done in [4]. The intuition is quite
similar to the one behind the notion of conditional anonymity [8]. The adversary has a
priori knowledge on “who is likely to be blamed”; however, after observing a run of an
anonymizing protocol, the adversary should not gain any additional information—each
user looks as suspicious as it did before the actual execution.

The second is an effective proof method to verify this notion of anonymity: this is
what we aim at in the current work.

3 Probabilistic Anonymity

3.1 Anonymity Automata: Models of Anonymizing Protocols

In this work anonymizing protocols are formalized as a specific kind of probabilistic
systems which we shall call (probabilistic) anonymity automata. The notion is simi-
lar to probabilistic automata [19]: however, in anonymity automata branching is purely

Probabilistic Anonymity Via Coalgebraic Simulations 383

probabilistic without any non-determinism. This modification, together with other mi-
nor ones, is made so that the coalgebraic framework in [9] applies.

The features of an anonymity automaton are as follows.

– By making a transition it can either
• execute an action and successfully terminate (x

a→ �), or
• execute an action and move to another state (x

a→ y).
Internal, silent actions are not explicitly present.

– An action a can be either
• an observable action o which can be seen by the adversary, or
• an actor action blame(i) which denotes that a user i has performed the action

whose performer we want to disguise (such as payment in DC).
– Each state comes with a probability subdistribution over the set of possible transi-

tions. By “sub”distribution it is meant that the sum of all the probabilities is ≤ 1
rather than = 1: the missing probability is understood as the probability for dead-
lock.

Here is a formal definition.

Definition 3.1 (Anonymity automata). An anonymity automaton is a 5-tuple (X, U ,
O, c, s) where:

– X is a non-empty set called the state space.
– U is a non-empty set of users.2

– O is a non-empty set of observable actions.
– c : X → D

(
A × {�} + A × X

)
is a function which assigns to each state x ∈ X

a probability subdistribution c(x) over possible transitions. The set A is the set of
actions and defined by

A = O + { blame(i) | i ∈ U}.

The operation D gives the set of subdistributions: for a set Y ,

DY =
{
d : Y → [0, 1] |

∑
y∈Y

d(y) ≤ 1
}
. (1)

This operation D canonically extends to a monad3 which we shall call the subdis-
tribution monad.

For example, the value c(x)(a, �)4 in [0, 1] is the probability with which a state
x executes a and then successfully terminate (i.e. x

a→ �).
– s is a probability subdistribution over the state space X . This specifies which state

would be a starting (or initial) one.

2 A user is called an anonymous user in [4].
3 Monads are a categorical notion. Interested readers are referred to [3] for the details.
4 To be precise this should be written as c(x)

(
κ1(a, �)

)
, where κ1 : A × {�} → A × {�} +

A × X is the inclusion map.

384 I. Hasuo and Y. Kawabe

Example 3.2 (Anonymity automaton XDC for DC). To model the DC protocol, we
take

U = {0, 1, 2}, O = {a, d} × {a, d} × {a, d} =
{
(x, y, z) | x, y, z ∈ {a, d}

}
.

We need to fix the a priori probability distribution on who will make a payment, in view
of the conditional notion of probabilistic anonymity. Let us denote by pi the probability
with which a user i pays.

The DC protocol (with its a priori probability distribution given by pi’s) is naturally
described as follows. Probability for each transition is presented in square brackets;
otherwise the transition occurs with probability 1.

↓

blame(0) [p0]

h0[12]

h1[12]

h2[12]

�

(d
,a,a)

t2[12]

�

(d
,d

,d)

t1[12]

h2[12]

�

(a,d
,a)

t2[12]

�
(a,a,d)

t0[12]

h1[12]

h2[12]

�
(a,a,d)

t2[12]

�

(a,d
,a)

t1[12]

h2[12]

�

(d
,d

,d)

t2[12]

�

(d
,a,a)

...
blame(1) [p1] ...

blame(2) [p2]
τ [1 − p0 − p1 − p2]

h0[12]

h1[12]

h2[12]

�

(a,a,a)

t2[12]

�

(a,d
,d)

t1[12]

h2[12]

�

(d
,d

,a)

t2[12]

�

(d
,a,d)

t0[12]

h1[12]

h2[12]

�

(d
,a,d)

t2[12]

�

(d
,d

,a)

t1[12]

h2[12]

�

(a,d
,d)

t2[12]

�

(a,a,a)

Here τ denotes an internal action with the intention of “NSA pays”.
However, the actions hi and ti—with their obvious meanings—must not be present

because they are not observable by the adversary. These actions are replaced by τ ’s.
Moreover, for technical simplicity we do not allow τ ’s to appear in an anonymity au-
tomaton. Hence we take the “closure” of the above automaton in an obvious way, and
obtain the following.

x

↓ �
(a, a, a)[1−p0−p1−p2

4]

�
(a, d, d)[1−p0−p1−p2

4]

�
(d, a, d)[1−p0−p1−p2

4]

�
(d, d, a)[1−p0−p1−p2

4]
y0

blame(0) [p0]

�

(d
,a,a)[14]

�

(a,d
,a)[14]

�

(a,a,d)[14]

�

(d
,d

,d)[14]

y1

blame(1) [p1]

�

(d
,a,a)[14]

�

(a,d
,a)[14]

�

(a,a,d)[14]

�

(d
,d

,d)[14]

y2

blame(2) [p2]

�

(d
,a,a)[14]

�

(a,d
,a)[14]

�

(a,a,d)[14]

�

(d
,d

,d)[14]

The start state distribution s is: x
→ 1. This anonymity automaton we shall refer to as
XDC.

3.2 Anonymity Automata Reconciled as Coalgebras

The generic, coalgebraic theory of traces and simulations in [9] applies to anonymity
automata. The generic theory is developed with two parameters T and F :

Probabilistic Anonymity Via Coalgebraic Simulations 385

– a monad T on Sets specifies the branching-type, such as non-determinism or prob-
ability;

– a functor F on Sets specifies the transition-type, i.e., what a system can do by
making a transition.

Systems for which traces/simulations are defined are called (T, F)-systems in the
generic theory, making the parameters explicit. The theory is coalgebraic because a
(T, F)-system is essentially a coalgebra in a suitable category.

Anonymity automata fit in the generic theory. They are (T, F)-systems with the fol-
lowing choice of parameters T and F .

– T is the subdistribution monad D, modeling purely probabilistic branching.
– FX = A× {�} + A× X , modeling the transition-type of “(action and terminate)

or (action and next state)”.

It is immediately seen that for this choice of F , the set A∗A carries the following initial
algebra in Sets. We denote its structure map by α.

A × {�} + A × (A∗A)
∼=α

κ1(a, �) κ2(a, a)

A∗A 〈a〉 a · a ,

where 〈a〉 denotes a list of length 1, and a ·a is what would be written as (cons a a) in
LISP. Therefore [9, Corollary 5.2] suggests that the set A∗A is the appropriate domain
of (finite) trace semantics for anonymity automata: this is actually the case later in
Definition 3.3.

3.3 Trace Semantics for Anonymity Automata

The trace semantics for anonymity automata is used in defining probabilistic anonymity.
In a non-deterministic setting, trace semantics yields a set of lists of actions which can
possibly occur. In contrast, trace semantics of a probabilistic system is a probability
subdistribution over lists.

Definition 3.3 (Trace semantics for anonymity automata). Given an anonymity au-
tomaton X = (X, U , O, c, s), its trace

PX ∈ D(A∗A)

is defined as follows. For a list of actions 〈a0, a1, . . . , an〉 with a finite length n ≥ 1,

PX (〈a0, a1, . . . , an〉) =
∑

x0,x1,...,xn∈X

PX (x0
a0→ x1

a1→ · · · an−1→ xn
an→ �),

where the probability

PX (x0
a0→ x1

a1→ · · · an−1→ xn
an→ �)

= s(x0) · c(x0)(a0, x1) · · · · · c(xn−1)(an−1, xn) · c(xn)(an, �)

is for the event that X starts at x0, follows the path
a0→ x1

a1→ · · · an−1→ xn and finally
terminates with

an→ �.

386 I. Hasuo and Y. Kawabe

Intuitively the value PX (a) ∈ [0, 1] for a list a ∈ A∗A is the probability with which
the system X executes actions in a successively and then terminates. Our concern is on
actions (observable actions or actor actions) the system makes but not on the states it
exhibits.

The following alternative characterization allows us to apply the generic, coalgebraic
theory of traces in [9,10].

Lemma 3.4 (Trace semantics via the generic theory). Given an anonymity automa-
ton X , let (s, c) be a (T, F)-system identified with X as in Section 3.2.

The trace PX of X coincides with the coalgebraic trace tr(s,c) defined in the generic
theory [9, Definition 5.7] for (s, c). �

Example 3.5 (Dining cryptographers). For the anonymity automaton XDC in Exam-
ple 3.2, its trace PXDC is the following probability subdistribution.

〈 blame(i), (d, a, a) 〉 �→ pi/4
〈 blame(i), (a, d, a) 〉 �→ pi/4
〈 blame(i), (a, a, d) 〉 �→ pi/4
〈 blame(i), (d, d, d) 〉 �→ pi/4

〈 (a, a, a) 〉 �→ (1 − p0 − p1 − p2)/4
〈 (a, d, d) 〉 �→ (1 − p0 − p1 − p2)/4
〈 (d, a, d) 〉 �→ (1 − p0 − p1 − p2)/4
〈 (d, d, a) 〉 �→ (1 − p0 − p1 − p2)/4

(for i = 0, 1, 2)

The other lists in A∗A have probability 0.

In this work we assume that in each execution of an anonymizing protocol there appears
at most one actor action. This is the same assumption as [4, Assumption 1] and is true
in all the examples in this paper.

Assumption 3.6 (At most one actor action). Let X = (X, U , O, c, s) be an anonymity
automaton and a ∈ A∗A. If a contains more than one actor actions, then

PX (a) = 0.

3.4 Definition of Probabilistic Anonymity

In this section we formalize the notion of probabilistic anonymity following [4]. First,
for the sake of simplicity of presentation, we shall introduce the following notations for
predicates (i.e. subsets) on A∗A.

Definition 3.7 (Predicates [blame(i)] and [o])

– For each i ∈ U , a predicate [blame(i)] on A∗A is defined as follows.

[blame(i)] = {a ∈ A∗A | blame(i) appears in a}

By Assumption 3.6, it is the set of lists obtained by augmenting blame(i) with
observable actions: in a regular-expression-like notation,

[blame(i)] = O∗ blame(i)O∗.

Moreover, [blame(i)] ∩ [blame(j)] = ∅ if i �= j.

Probabilistic Anonymity Via Coalgebraic Simulations 387

– For each o ∈ O∗, a predicate [o] on A∗A is defined as follows.

[o] = {a ∈ A∗A | removeActor(a) = o},

where the function removeActor : A∗A → O∗—which is defined by a suitable
induction—removes actor actions appearing in a list. The set [o] ⊆ A∗A consists
of those lists which yield o as the adversary’s observation. It is emphasized that [o]
is not the set of lists which contain o as sublists: we remove only actor actions, but
not observable actions.

Note that we are overriding the notation []: no confusion would arise since the argu-
ments are of different types. Values such as PX ([blame(i)]) are defined in a straight-
forward manner:

PX ([blame(i)]) =
∑

a∈[blame(i)]

PX (a).

This is the probability with which X yields an execution in which a user i is to be
blamed.

We follow [4] and adopt the following definition of anonymity.

Definition 3.8 (Probabilistic anonymity [4]). We say an anonymity automaton X is
anonymous if for each i, j ∈ U and o ∈ O∗,

PX ([blame(i)]) > 0 ∧ PX ([blame(j)]) > 0
=⇒ PX ([o] | [blame(i)]) = PX ([o] | [blame(j)]).

Here PX ([o] | [blame(i)]) is a conditional probability: it is given by

PX ([o] | [blame(i)]) =
PX ([o] ∩ [blame(i)])

PX ([blame(i)])
.

The intuition behind this notion—sketched in Section 2.2—is similar to the one behind
conditional anonymity [8]. In fact, it is shown in [4] that under reasonable assumptions
the two notions of anonymity coincide. For completeness the definition of conditional
anonymity (adapted to the current setting) is also presented.

Definition 3.9 (Conditional anonimity [8]). An anonymity automaton X satisfies
conditional anonymity if for each i ∈ U and o, o′ ∈ O∗,

PX ([blame(i)] ∩ [o]) > 0

=⇒ PX ([blame(i)] | [o]) = PX ([blame(i)] |
⋃
j∈U

[blame(j)]).

The notion in Definition 3.8 is (one possibility of) probabilistic extension of trace
anonymity in [18]. It is emphasized that these anonymity notions are based on trace
semantics which is at the coarsest end in the linear time-branching time spectrum [22].
Hence our adversary has less observation power than one in [1] for example where secu-
rity notions are bisimulation-based. A justification for having such a weaker adversary
is found in [13].

388 I. Hasuo and Y. Kawabe

4 Anonymity Proof Via Probabilistic Simulations

In this section we extend the proof method [13,12] for anonymity to the probabilistic set-
ting. In the introduction we have presented the basic scenario. Now we shall describe its
details, with all the notions therein (traces, simulations, etc.) interpreted probabilistically.

4.1 Anonymized Automaton an(X)

We start with the definition of an(X), the anonymized version of an anonymity au-
tomaton X . Recall that our notion of anonymity is conditional: the adversary has a pri-
ori knowledge on who is more suspicious. In an anonymity automaton X , the a priori
probability with which a user i does wrong is given by PX ([blame(i)]). Its normalized,
conditional version

ri
def.= PX ([blame(i)] |

⋃
j∈U

[blame(j)]) =
PX ([blame(i)] ∩

⋃
j∈U [blame(j)])

PX (
⋃

j∈U [blame(j)])

=
PX ([blame(i)])∑

j∈U PX ([blame(j)])

(the equalities are due to Assumption 3.6) plays an important role in the following
definition of an(X). The value ri is the conditional probability with which a user i is to
be blamed, given that there is any user to be blamed; we have

∑
i∈U ri = 1. Of course,

for the values ri to be well-defined, the anonymity automaton X needs to satisfy the
following reasonable assumption.

Assumption 4.1 (There is someone to blame). For an anonymity automaton X ,
∑
j∈U

PX ([blame(j)]) �= 0.

Intuitively, an(X) is obtained from X by distributing an actor action blame(i) to each
user j, with the probability distributed in proportion to rj .

Definition 4.2 (Anonymized anonymity automaton an(X)). Given an anonymity au-
tomaton X = (X, U , O, c, s), its anonymized automaton an(X) is a 5-tuple (X, U , O,
can, s), where can is defined as follows. For each x ∈ X ,

can(x)(blame(i), u) =
∑

j∈U ri · c(x)(blame(j), u) for i ∈ U and u ∈ {�} + X ,
can(x)(o, u) = c(x)(o, u) for o ∈ O and u ∈ {�} + X .

On the first equation, the summand ri · c(x)(blame(j), u) results from distributing the

probability c(x)(blame(j), u) for a transition x
blame(j)−→ u, to a user i. This is illustrated

in the following figure: here U = {0, 1, . . . , n} and q = c(x)(blame(j), u).

•In X
blame(j) [q]

•In an(X)

blame(0) [r0 · q] · · · blame(n) [rn · q]
• •

(2)

The automaton an(X) is “anonymized” in the sense of the following lemmas.

Probabilistic Anonymity Via Coalgebraic Simulations 389

Lemma 4.3. Let X be an anonymity automaton. In its anonymized version an(X) =
(X, U , O, can, s) we have

rj · can(x)(blame(i), u) = ri · can(x)(blame(j), u)

for any i, j ∈ U , x ∈ X and u ∈ {�} + X .

Proof. Obvious from the definition of can. �

Lemma 4.4 (an(X) is anonymous). For an anonymity automaton X , an(X) is anony-
mous in the sense of Definition 3.8.

Proof. Let o = 〈o1, o2, . . . , on〉 ∈ O∗ and i, j ∈ U . Moreover, assume

Pan(X)([blame(i)]) �= 0 and Pan(X)([blame(j)]) �= 0,

hence ri �= 0 and rj �= 0. Then

Pan(X)([o] ∩ [blame(i)])
= Pan(X)(〈blame(i), o1, o2, . . . , on〉)

+ Pan(X)(〈o1, blame(i), o2, . . . , on〉)
+ · · · + Pan(X)(〈o1, o2, . . . , on, blame(i)〉)

=
∑

x0,x1,...,xn∈X

s(x0) · can(x0)(blame(i), x1) · can(x1)(o1, x2) · · · · · can(xn)(on, �)

+
∑

x0,x1,...,xn∈X

s(x0) · can(x0)(o1, x1) · can(x1)(blame(i), x2)· · · · · can(xn)(on, �)

+ · · ·

+
∑

x0,x1,...,xn∈X

s(x0) · can(x0)(o1, x1) · can(x1)(o2, x2)· · · · · can(xn)(blame(i), �).

We have the same equation for j instead of i. Hence by Lemma 4.3 we have

rj · Pan(X)([o] ∩ [blame(i)]) = ri · Pan(X)([o] ∩ [blame(j)]). (3)

This is used to show the equality of two conditional probabilities.

Pan(X)([o] | [blame(i)]) =
Pan(X)([o] ∩ [blame(i)])

Pan(X)([blame(i)])

=
ri

rj
·
Pan(X)([o] ∩ [blame(j)])

Pan(X)([blame(i)])
By (3)

=
Pan(X)([o] ∩ [blame(j)])

Pan(X)([blame(j)])
By definition of ri, rj

= Pan(X)([o] | [blame(j)]). �

390 I. Hasuo and Y. Kawabe

4.2 Forward/Backward Simulations for Anonymity Automata

We proceed to introduce appropriate notions of forward and backward simulations. The
(tedious) definition and soundness theorem—existence of a forward/backward simula-
tion implies trace inclusion—come for free from the generic theory in [9]. This forms a
crucial part of our simulation-based proof method.

Definition 4.5 (Forward/backward simulations for anonymity automata). Let X =
(X, U , O, c, s) and Y = (Y, U , O, d, t) be anonymity automata which have the same
sets of users and observable actions.

A forward simulation from X to Y—through which Y forward-simulates X—is a
function

f : Y −→ DX

which satisfies the following inequalities in [0, 1].

s(x) ≤
∑

y∈Y t(y) · f(y)(x) for any x ∈ X ,∑
x∈X f(y)(x) · c(x)(e, �) ≤ d(y)(e, �) for any y ∈ Y and e ∈ A,∑
x∈X f(y)(x) · c(x)(e, x′) ≤

∑
y′∈Y d(y)(e, y′) · f(y′)(x′)

for any y ∈ Y , e ∈ A and x′ ∈ X .

A backward simulation from X to Y—through which Y backward-simulates X—is
a function

b : X −→ DY

which satisfies the following inequalities in [0, 1].
∑

x∈X s(x) · b(x)(y) ≤ t(y) for any y ∈ Y ,

c(x)(e, �) ≤
∑

y∈Y b(x)(y) · d(y)(e, �) for any x∈X and e∈A,∑
x′∈X c(x)(e, x′) · b(x′)(y′) ≤

∑
y∈Y b(x)(y) · d(y)(e, y′)

for any x ∈ X , e ∈ A and y′∈Y .

The definition definitely looks puzzling. Why does a forward simulation have the type
Y → DX? Why is a backward simulation not of the same type? How come the complex
inequalities? How do we know that the inequalities are in the correct direction?

In fact, this definition is an instantiation of the general, coalgebraic notions of for-
ward/backward simulations [9, Definitions 4.1, 4.2]. More specifically, the two param-
eters T and F in the generic definition are instantiated as in Section 3.2.

Theorem 4.6 (Soundness of forward/backward simulations). Assume there is a for-
ward (or backward) simulation from one anonymity automaton X to another Y . Then
we have trace inclusion

PX � PY ,

where the order � is defined to be the pointwise order: for each a ∈ A∗A,

PX (a) ≤ PY(a).

Proof. We know (Lemma 3.4) that the notions of traces and simulations for anonymity
automata are instantiations of the general, coalgebraic notions in [9,10]. Therefore we
can appeal to the general soundness theorem [9, Theorem 6.1]. �

Probabilistic Anonymity Via Coalgebraic Simulations 391

4.3 Probabilistic Anonymity Via Simulations

We shall use the materials in Sections 4.1 and 4.2 to prove the validity of our simulation-
based proof method (Theorem 4.11).

The following lemma—which essentially says PX � Pan(X)—relies on the way
an(X) is constructed. The proof is a bit more complicated than in the non-deterministic
setting [13,12].

Lemma 4.7. Let X be an anonymity automaton. Assume there exists a forward or back-
ward simulation from an(X) to X—through which X simulates an(X). Then their trace
semantics are equal:

PX = Pan(X).

Proof. By the soundness theorem (Theorem 4.6) we have

PX � Pan(X), (4)

where � refers to the pointwise order between functions A∗A ⇒ [0, 1]. We shall show
that this inequality is in fact an equality.

First we introduce an operation obs which acts on anonymity automata. Intuitively,
obs(Y) is obtained from Y by replacing all the different actor actions blame(i) with sin-
gle blame(sb)—sb is for “somebody”. This conceals actor actions in Y; hence obs(Y)
only carries information on the observable actions of Y .

•In X
blame(0) [q0] · · · blame(n) [qn]

•In obs(X)

blame(sb) [q0 + · · · + qn]

• •

(5)

Formally,

Definition 4.8 (Anonymity automaton obs(Y)). Given an anonymity automaton Y =
(Y, U , O, d, t), we define an anonymity automaton obs(Y) as the 5-tuple (Y, {sb}, O,
dobs, t) where:

– sb is a fresh entity,
– dobs is a function

dobs : Y −→ D
(
Aobs × {�} + Aobs × Y

)

where Aobs = O + {blame(sb)}, defined by:

dobs(y)(blame(sb), u) =
∑

i∈U d(y)(blame(i), u) for y ∈ Y and u ∈ {�} + Y ,
dobs(y)(o, u) = d(y)(o, u) for y ∈ Y , o ∈ O and u ∈ {�} + Y .

The following fact is obvious.

Sublemma 4.9. For an anonymity automaton X , obs(X) and obs(an(X)) are
identical. �

392 I. Hasuo and Y. Kawabe

The following sublemma is crucial in the proof of Lemma 4.7. Two automata Y and
obs(Y), although their trace semantics distributes over different sets, have the same
sum of probabilities taken over all executions.

Sublemma 4.10. For an anonymity automaton Y ,

∑
a∈A∗A

PY(a) =
∑

a′∈(Aobs)∗Aobs

Pobs(Y)(a′).

Recall that A = O + {blame(i) | i ∈ U} and Aobs = O + {blame(sb)}.

Proof. From the definition of trace semantics (Definition 3.3), the sublemma is proved
by easy calculation. �

We turn back to the proof of Lemma 4.7. We argue by contradiction—assume that
the inequality in (4) is strict. That is, there exists a0 ∈ A∗A such that PX (a0) �

Pan(X)(a0). Then, by (4) we have
∑

a∈A∗A PX (a) �
∑

a∈A∗A Pan(X)(a). However,

∑
a∈A∗A PX (a) =

∑
a′∈(Aobs)∗Aobs Pobs(X)(a′) By Sublemma 4.10

=
∑

a′∈(Aobs)∗Aobs Pobs(an(X))(a′) By Sublemma 4.9

=
∑

a∈A∗A Pan(X)(a) . By Sublemma 4.10

This contradiction concludes the proof of Lemma 4.7. �

Now we are ready to state the main result.

Theorem 4.11 (Main theorem: probabilistic anonymity via simulations). If there
exists a forward or backward simulation from an(X) to X , then X is anonymous.

Proof. By Lemma 4.7 we have PX = Pan(X). Moreover, by Lemma 4.4, an(X) is
anonymous. This proves anonymity of X : recall that probabilistic anonymity is a prop-
erty defined in terms of traces (Definition 3.8). �

Example 4.12 (Dining cryptographers). We demonstrate our proof method via sim-
ulations by applying it to the DC protocol.

Let X = {x, y0, y1, y2} be the state space of XDC. Its anonymized version an(XDC)
has the same state space: for notational convenience the state space of an(XDC) is
denoted by X ′ = {x′, y0

′, y1
′, y2

′}. It is verified by easy calculation that the following
function f : X → D(X ′) is a forward simulation from an(XDC) to XDC.

f(x) = [x′
→ 1] f(y0) = f(y1) = f(y2) =

⎡
⎣

y0
′
→ p0

p0+p1+p2

y1
′
→ p1

p0+p1+p2

y2
′
→ p2

p0+p1+p2

⎤
⎦

By Theorem 4.11 this proves (probabilistic) anonymity of XDC, hence of the DC
protocol.

Probabilistic Anonymity Via Coalgebraic Simulations 393

5 Conclusion and Future Work

We have extended the simulation-based proof method [13,12] for non-deterministic
anonymity to apply to the notion of probabilistic anonymity defined in [4]. For the
move we have exploited a generic theory of traces and simulations [9,10] in which
the difference between non-determinism and probability is just a different choice of a
parameter.

The DC example in this paper fails to demonstrate the usefulness of our proof method:
for this small example direct calculation of trace distribution is not hard. A real benefit
would arise in theorem-proving anonymity of an unboundedly large system (which we
cannot model-check). In fact, the non-deterministic version of our proof method is used
to theorem-prove anonymity of a voting protocol with arbitrary many voters [12]. A
probabilistic case study of such kind is currently missing.

In [4] the probabilistic π-calculus is utilized as a specification language for automata.
We have not yet elaborated which subset of the calculus is suitable for describing our
notion of anonymity automata.

There is a well-established body of work on verification of probabilistic information-
hiding properties such as non-interference [24,17]. Our proof method could be
reconciled in this context by, for example, finding a translation of anonymity into a
non-interference property.

The significance of having both non-deterministic and probabilistic branching in
considering anonymity is claimed in [15]. However the current method cannot han-
dle this combination due to the lack of suitable coalgebraic framework. Elaboration
in this direction would also help better understanding of the nature of the (notorious)
combination of non-determinism and probability.

Acknowledgments. Thanks are due to Ken Mano, Peter van Rossum, Hideki Sakurada,
Ana Sokolova, Yasuaki Tsukada and the anonymous referees for helpful discussions
and comments. The first author is grateful to his supervisor Bart Jacobs for encourage-
ment.

References

1. M. Abadi and A. Gordon. A calculus for cryptographic protocols: The Spi calculus. In
Fourth ACM Conference on Computer and Communications Security, pages 36–47. ACM
Press, 1997.

2. Anonymity bibliography.
http://freehaven.net/anonbib/.

3. M. Barr and C. Wells. Toposes, Triples and Theories. Springer, Berlin, 1985.
4. M. Bhargava and C. Palamidessi. Probabilistic anonymity. In M. Abadi and L. de Alfaro,

editors, CONCUR 2005, volume 3653 of Lect. Notes Comp. Sci., pages 171–185. Springer,
2005.

5. D. Chaum. The dining cryptographers problem: Unconditional sender and recipient untrace-
ability. Journ. of Cryptology, 1(1):65–75, 1988.

6. L. Cheung. Reconciling Nondeterministic and Probabilistic Choices. PhD thesis, Radboud
Univ. Nijmegen, 2006.

394 I. Hasuo and Y. Kawabe

7. F.D. Garcia, I. Hasuo, W. Pieters, and P. van Rossum. Provable anonymity. In R. Küsters
and J. Mitchell, editors, 3rd ACM Workshop on Formal Methods in Security Engineering
(FMSE05), pages 63–72, Alexandria , VA, U.S.A., November 2005. ACM Press.

8. J.Y. Halpern and K.R. O’Neill. Anonymity and information hiding in multiagent systems.
Journal of Computer Security, to appear.

9. I. Hasuo. Generic forward and backward simulations. In C. Baier and H. Hermanns, editors,
International Conference on Concurrency Theory (CONCUR 2006), volume 4137 of Lect.
Notes Comp. Sci., pages 406–420. Springer, Berlin, 2006.

10. I. Hasuo, B. Jacobs, and A. Sokolova. Generic trace theory. In N. Ghani and J. Power, ed-
itors, International Workshop on Coalgebraic Methods in Computer Science (CMCS 2006),
volume 164 of Elect. Notes in Theor. Comp. Sci., pages 47–65. Elsevier, Amsterdam, 2006.

11. D. Hughes and V. Shmatikov. Information hiding, anonymity and privacy: A modular ap-
proach. Journal of Computer Security, 12(1):3–36, 2004.

12. Y. Kawabe, K. Mano, H. Sakurada, and Y. Tsukada. Backward simulations for anonymity.
In International Workshop on Issues in the Theory of Security (WITS ’06), 2006.

13. Y. Kawabe, K. Mano, H. Sakurada, and Y. Tsukada. Theorem-proving anonymity of infinite
state systems. Information Processing Letters, 101(1), 2007.

14. N. Lynch and F. Vaandrager. Forward and backward simulations. I. Untimed systems. Inf. &
Comp., 121(2):214–233, 1995.

15. C. Palamidessi. Probabilistic and nondeterministic aspects of anonymity. In MFPS ’05,
volume 155 of Elect. Notes in Theor. Comp. Sci., pages 33–42. Elsevier, 2006.

16. A. Pfitzmann and M. Köhntopp. Anonymity, unobservability, and pseudonymity: A proposal
for terminology. Draft, version 0.17, July 2000.

17. A. Sabelfeld and D. Sands. Probabilistic noninterference for multi-threaded programs. In
Proceedings of the 13th IEEE Computer Security Foundations Workshop (CSFW’00), pages
200–214, 2000.

18. S. Schneider and A. Sidiropoulos. CSP and anonymity. In ESORICS ’96: Proceedings of the
4th European Symposium on Research in Computer Security, pages 198–218, London, UK,
1996. Springer-Verlag.

19. R. Segala and N. Lynch. Probabilistic simulations for probabilistic processes. Nordic Journ.
Comput., 2(2):250–273, 1995.

20. A. Serjantov. On the Anonymity of Anonymity Systems. PhD thesis, University of Cambridge,
March 2004.

21. V. Shmatikov. Probabilistic model checking of an anonymity system. Journ. of Computer
Security, 12(3):355–377, 2004.

22. R. van Glabbeek. The linear time-branching time spectrum (extended abstract). In J. Baeten
and J. Klop, editors, Proceedings CONCUR ’90, Theories of Concurrency: Unification and
Extension, Amsterdam, August 1990, volume 458 of Lect. Notes Comp. Sci., pages 278–297.
Springer-Verlag, 1990.

23. D. Varacca and G. Winskel. Distributing probabililty over nondeterminism. Math. Struct. in
Comp. Sci., 16(1):87–113, 2006.

24. D.M. Volpano and G. Smith. Probabilistic noninterference in a concurrent language. Journ.
of Computer Security, 7(1), 1999.

A Fault Tolerance Bisimulation Proof for Consensus
(Extended Abstract)

Adrian Francalanza1 and Matthew Hennessy2

1 Imperial College, London SW7 2BZ, England
����������	
�	
�	
��

2 University of Sussex, Brighton BN1 9RH, England
��������������
�	
��

Abstract. The possibility of partial failure occuring at any stage of computa-
tion complicates rigorous formal treatment of distributed algorithms. We propose
a methodology for formalising and proving the correctness of distributed algo-
rithms which alleviates this complexity. The methodology uses fault-tolerance
bisimulation proof techniques to split the analysis into two phases, that is a failure-
free phase and a failure phase, permitting separation of concerns. We design a
minimal partial-failure calculus, develop a corresponding bisimulation theory for
it and express a consensus algorithm in the calculus. We then use the consensus
example and the calculus theory to demonstrate the benefits of our methodology.

1 Introduction

The areas of Distributed Systems and Process Calculi are two (major) areas in Com-
puter Science addressing the same problems but ”speak(ing) di�erent languages” [14].
In particular, seminal work in Distributed Systems, such as [2,11] present algorithms
in semi-formal pseudo-code and correctness proofs of an informal algorithmic nature.
The understandable reluctance to apply the rigorous theory of process calculi to formal
proofs for standard distributed algorithms stems from the complexity and sheer size of
the resulting formal descriptions and proofs. This problem is accentuated when failures
are considered, which typically occur at any point during computation and can poten-
tially a�ect execution. More specifically, in a process calculus with formal semantics
based on labelled transition systems (lts), and a related bisimulation equivalence �, cor-
rectness proofs compare the behaviour of the distributed algorithm, described in the
base calculus, to a correctness specification, also defined in the base calculus, using �;
see Table 1(a). The required witness bisimulation relations resulting from this general
approach turn out to be substantial, even for the simplest of algorithms and specifica-
tions. Even worse, partial failure tends to obfuscate the simplicity of the correctness
specification while enlarging the state space of the bisimulations.

To tame such complexity, attempts at formalising distributed algorithm proofs have
made use of mechanised theorem provers [8] or translations into tailor-made abstract
interpretations [14]. In spite of their e�ectiveness, such tools and techniques tend to
obscure the natural structure of the proofs of correctness, because they either still pro-
duce monolithic proofs, which are hard to digest, or else depart from the source formal
language in which the algorithm is expressed.

We propose a prescriptive methodology to formally prove correctness of distributed
algorithms which fine tunes well-studied bisimulation techniques to a partial failure

R. De Nicola (Ed.): ESOP 2007, LNCS 4421, pp. 395–410, 2007.
c� Springer-Verlag Berlin Heidelberg 2007

396 A. Francalanza and M. Hennessy

Table 1. Correctness proofs using fault-tolerant bisimulation techniques

~~

specification
simple

system wrapper

~~

specification
complex

observables

system

observables

(b)(a)

simple

~~ ~~

system wrapper system wrapper

system wrapper

(c)

specification

(d)

reliable faulty

setting. The methodology is based on a common assumption that some processes are
assumed to be reliable, thus immortal. Failure can a�ect behaviour in two ways: either
directly, when the process itself fails, or indirectly, when a process depends on inter-
nal interaction with a secondary process which in turn fails. The methodology limits
observations to reliable processes only, which are only indirectly a�ected by failure.
Using wrapper code around the algorithm being analysed, we reformulate the equiva-
lence described earlier into a comparison between the re-packaged algorithm and a sim-
pler specification that does not include unreliable processes (Table 1(b)). The wrappers
can be dedicated, testing for separate correctness criteria. We can therefore decompose
generic catch-all specifications into separate simpler specifications, which are easier to
formulate, understand and verify against the expected behaviour.

This reformulation carries more advantages than merely decomposing the specifi-
cation and shifting the complexity of the equivalence from the specification side to
the algorithm side in the form of wrappers. A specification that does not include un-
reliable processes permits separation of concerns through fault-tolerance bisimulation
techniques [7]. These techniques allow us to decompose our reformulated equivalence
statement into two sub-statements. In the first we temporarily ignore failures and test
for basic correctness: we use ”standard” bisimulations to compare the specification
with the behaviour of the repackaged algorithm in a failure-free setting (Table 1(c)).
In the second sub-statement we test for fault-tolerance and correctness preservation:
we compare the behaviour of the repackaged algorithm in the failure-free setting with
the repackaged algorithm itself in the failure setting (Table 1(d)). We argue that the
fault-tolerance reformulation is a natural way to tackle such a proof, dividing it into
two sub-proofs, which can be checked independently. The reformulation however car-
ries further advantages. For a start, the first equivalence is considerably easier to prove,
and can be treated as a vetting test before attempting the more involving second proof.
Moreover, when proving the second equivalence statement, which compares the same
code but under di�erent conditions, we can exploit the common structure on both sides
of the equivalence to construct the required witness bisimulation.

A Fault Tolerance Proof for Consensus 397

Our proposed methodology goes one step further and uses (permanent) failure to re-
duce the size of witness bisimulations in two ways. First, we note that while permanent
failure may induce abnormal behaviour in the live code, it also eliminates transitions
from dead code. Thus, by developing appropriate abstractions to represent dead code,
we can greatly reduce the size of witness bisimulations. Second, we note that distributed
algorithms tolerate failure (and preserve the expected behaviour) through the use of re-
dundancy which is usually introduced in the form of symmetrical replicated code. As
a result, correctness bisimulations for such algorithms are characterised by a consider-
able number of transitions that are similar in structure. This, in turn, gives us scope for
identifying a subset of these transitions which are confluent and developing up-to tech-
niques that abstract over these confluent moves. The number of replication patterns are
arguably bounded and are reused throughout a substantial number of fault-tolerant al-
gorithms, which means that we expect these up-to techniques to be applicable, at least
in part, to a range of fault-tolerant distributed algorithm. More importantly however,
they identify the (non-confluent) transitions that really matter, making the bisimulation
proofs easier to describe and understand.

The remaining text is structured as follows. In Section 2 we introduce our language, a
partial-failure calculus. In Section 3 we express a consensus algorithm in our calculus,
realising the long considered view of consensus as a fault-tolerance problem [4]; we
also show how to express the correctness of the algorithm in terms of basic correctness
and correctness preservation equivalences. In Section 4 we develop up-to techniques
for our algorithm and in Section 5 we give its proof of correctness.

2 Language

Our partial-failure calculus is inspired by [15] and consists of processes from a subset
of CCS[12], distributed across a number of failing locations. We assume a set A�� of
communicating actions equipped with a bijective function �̄; for every name a � A�� we
have a complement ā � A��; � ranges over strong actions, defined as A������, including
the distinguished silent action �. We also assume a distinct set L��� of locations l� k
which includes the immortal location �.

Processes, defined in Table 2, can be guarded by an action, composed using choice,
composed in parallel or scoped. As in [15], only actions can be scoped (not locations).
By contrast to [15], we here simplify the calculus and disallow process constants and
replication (thus no recursion and infinite computation) and migration of processes (thus
no change in failure dependencies). Another important departure from [15] is that in-
stead of ping we use a guarding construct susp l�P, already introduced in [5], which
tests for the status of l and releases P once it (correctly) suspects that l is dead; the con-
struct captures the intuition that failure detection is separate from the actual failure, and
can be delayed. Systems, also defined in Table 2, are located processes composed in
parallel with channel scoping. We view our calculus as a partial-failure calculus rather
than a distributed calculus as it permits action synchronisations across locations. This
implies a tighter synchronisation assumption between locations, which in our calculus
merely embody units of failure. Nevertheless, distributed choices are still disallowed
because their implementation is problematic in a dynamic partial-failure setting.

398 A. Francalanza and M. Hennessy

Table 2. Syntax

Processes
P� Q ::� ��P (guard) � 0 (inert) � P � Q (choice) � (�a)P (scoping)

� P�Q (fork) � susp k�P (failure detector)
Systems

M� N ::� l[[P]] (located) � N�M (parallel) � (� a)N (scoping)

Table 3. Reduction Rules

Assuming l � �� n � 0

(Act)

��� n� � l[[��P]]
�

�� l[[P]]

(Susp)

��� n� � l[[susp k�P]]
�

�� l[[P]]
k � �

(Halt)

��� n�1� � M
�

�� ���l� n� � M

(Fork)

��� n� � l[[P�Q]]
�

�� l[[P]]�l[[Q]]

(New)

��� n� � l[[(�a)P]]
�

�� (�a)l[[P]]

(Sum)

��� n� � l[[Pi]]
�
�� l[[P]]

��� n� � l[[
�

i�I Pi]]
�
�� l[[P]]

(Rest)

��� n� � M
�

�� ���� n�� � M�

��� n� � (�a)M
�

�� ���� n�� � (�a)M�

� � �a� ā�

(Par)

��� n� � M
�
�� ���� n�� � M�

��� n� � M�N
�
�� ���� n�� � M��N

��� n� � N�M
�
�� ���� n�� � N�M�

(Com)

��� n� � M
�

�� M� ��� n� � N
�̄

�� N�

��� n� � M�N
�

�� M��N�

��� n� � N�M
�

�� N��M�

Notation: We denote a series of parallel processes P1� � � � �Pn as
�

i�I Pi and a series of
choices P1 � � � ��Pn as

�
i�I Pi for I � �1� � � � � n�. We omit the final 0 term in processes,

writing a�0 as a. We also denote the located inactive process l[[0]] as simply 0 and omit
location information for processes located at the immortal location. Thus, at system
level, we write M � P � 0 to denote M � � [[P]] � l[[0]].

Operational Semantics: We define a liveset,�, as a set of locations, �l1� � � � � ln� denoting
the locations that are alive; we usually omit mention of the special location �, which is
assumed to be in every �. A system M subject to a liveset, �, and a bounded number of
dynamic failures, n, is called a configuration, and is denoted as 	�� n
 � M. Intuitively it
denotes a system M that is running on the network (state) � where at most n locations
from � may fail. Transitions are defined between tuples of configurations as

	�� n
 � M
�
�� 	��� n�
 � M� (1)

by the rules in Table 3. To improve readability, we abbreviate (1) to 	�� n
�M
�
�� M�

whenever the state of the network 	�� n
 does not change in the residual configuration.
The rules in Table 3 are standard located CCS rules, with the exception of (Susp) de-
scribing perfect failure detection [2], and (Halt) describing dynamic failure [7]. All rules
assume l � � and n 0.

A Fault Tolerance Proof for Consensus 399

Example 1. In (2) below, the system �[[a�P � susp l�P]] is in some sense fault tolerant
up to 1 failure occuring in �. Although a�P depends on the liveness of l to proceed as
P, the summand susp l�P also produces the same continuation P whenever l is dead.
In order to verify this we have three cases to consider: (a) if l � � then susp l�P will
trigger and produce �[[P]]; (b) if l � � and n � 0, then l can never die and a�P will
always synchronise with l[[ā]] and continue as �[[P]]; (c) if l � � and n � 0 then if l dies
before the synchronisation on a occurs, we have case (a), otherwise we have case (b).

	�� n
 � (�a) l[[ā]] � � [[a�P � susp l�P]] (2)

The equivalence relation chosen for our partial-failure calculus is (weak) bisimulation

equivalence, based on weak matching moves
�̂
�� denoting

�
��

� �
��

�
��

�

if � � �a� ā�

and
�
��

�

if � � �.

Definition 1 (Weak bisimulation equivalence). Denoted as �, is the largest relation
over configurations such that if 	�1� n1
 � M1 � 	�2� n2
 � M2 then

– 	�1� n1
 � M1
�
�� 	��

1� n
�
1
 � M�

1 implies 	�2� n2
 � M2
�̂
�� 	��

2� n
�
2
 � M�

2 such that
	��

1� n
�
1
 � M�

1 � 	��
2� n

�
2
 � M�

2

– 	�2� n2
 � M2
�
�� 	��

2� n
�
2
 � M�

2 implies 	�1� n1
 � M1
�̂
�� 	��

1� n
�
1
 � M�

1 such that
	��

1� n
�
1
 � M�

1 � 	��
2� n

�
2
 � N�

2

Assuming that loc(M) is a function returning the set of all location names used in M
(together with �), then system M is said to be executing in a failure-free setting if it is
subject to the network 	loc(M)� 0
. Based on this intuition and our notion of equivalence,
we can give a formal definition for fault-tolerant systems.

Definition 2 (Fault Tolerance). A system M is fault tolerant up to n faults whenever

	loc(M)� 0
 � M � 	loc(M)� n
 � M

Our chosen definitions are not arbitrary. Definition 1 is sound with respect to a standard
contextual equivalence called reduction barbed congruence [10]. Definition 2 is sound
with respect to dynamic fault-tolerance up-to n faults defined in [7], using fault induc-
ing contexts. The adaptation of these definitions to our calculus and the proof of the
corresponding soundness statements will appear in the full version of the paper.

Example 2. Using Definitions 1 and 2, we can now show that (2) above is fault tolerant
up to 1 fault by giving a witness bisimulation relation satisfying

	�l�� 0
 � (�a) l[[ā]] � � [[a�P � susp l�P]] � 	�l�� 1
 � (�a) l[[ā]] � � [[a�P � susp l�P]]

3 Consensus

Despite its limitations (no infinite computation), our calculus is expressive enough to
describe a number of (non-recursive) standard distributed algorithms in the presence

400 A. Francalanza and M. Hennessy

Table 4. The Rotating Co-ordinator Algorithm for Participant i

1 xi �� ������

2 ��� r �� 1 �� n �� 	 �� r � i ���� �����	��� xi�

3 �� ������pr� ���� xi �� ����� ��� �����	���
�

4 ������ xi�

of dynamic failure. As an example we describe the rotating co-ordinator algorithm
[16], solving a specific instance of consensus using strong failure detectors (� [2]); the
pseudo-code description is reproduced in Table 4. The algorithm consists of n parallel,
independently failing participants, ordered and named 1 to n, each inputting a value v
from a set of values V and then deciding by outputting a value v� � V . Each participant
executes the code in Table 4, going through n rounds (the loop on lines 2 and 3) and
changing the broadcasting co-ordinator to participant i for round r � i. The correctness
criteria for consensus is defined by the following three conditions [11, pg. 101]:
Termination: All non-failing participants must eventually decide.
Agreement: No two participants decide on di�erent values.
Validity: If all participants are given the same value v � V as input, then v is the only

possible decision value.1

To attain consensus with n�1 dynamic failures, the algorithm needs to be fault-tolerant
with respect to two error conditions, namely Decision Blocking (when a participant
may be waiting forever for a value to be broadcast from a crashed co-ordinator) and
Corrupted Broadcast (when co-ordinator may broadcast its values to a subset of the
participants before crashing). The code in Table 4 overcomes decision blocking by using
a failure detector to determine the state of the co-ordinator (������pr�) and overcomes
the possibility of (n � 1) corrupted broadcasts by repeating the broadcast for n rounds.

We give a precise description of the rotating co-ordinator algorithm as the system
C, given in Table 5. Without loss of generality, we assume that the decision set is sim-
ply V � �true� f alse� and have n participants located at independently failing locations
l1 � � � ln. The process Px

i�r, for x � �true� f alse�, denotes the ith participant, at round r,
with current estimate x. It is defined in terms of two parallel processes, Bx

i�r for broad-
casting the current value at round r, and Rx

i�r for receiving the new value at round r. As
in Table 4, broadcast is only allowed if i � r and otherwise it acts as the inert process.
On the other hand, the receiver at round r awaits synchronisation on truei�r or falsei�r and
updates the estimate for round (r�1) accordingly. At the same time, the receiver guards
this distributed synchronisation with susp lr �P

x
i�r�1 to prevent decision blocking in case

lr, the location of the participant currently broadcasting, fails. Estimates for round r can
only come from the participant at lr and thus all actions truei�r and falsei�r are scoped in
C. Every participant can be arbitrarily initialised as Ptrue

i�1 or Pfalse
i�1 through the free ac-

tions proptrue
i and propfalse

i respectively. Finally every participant decides at round (n�1)
to either report true, executing dectrue

i , or report false, executing decfalse
i .

We can also give a precise description of the consensus correctness requirements in
our calculus. As stated in the Introduction, we repackage our algorithm as a fault-tolerant

1 When �V � � 2 this implies a stronger notion of validity: any decision value for any participant
is the initial value of some process.

A Fault Tolerance Proof for Consensus 401

Table 5. Rotating Co-ordinator Algorithm in our Partial-Failure Calculus

(Consensus)

C
def
�

�
�

n
i�r�1truei�r� falsei�r

� n�

i�1

li[[proptrue
i �Ptrue

i�1 � propfalse
i �Pfalse

i�1]]

(Participant) (Broadcast)

Px
i�r

def
� Rx

i�r � Bx
i�r x � 	true� false
� r � n Bx

i�r
def
�

n�

j�1

xj�r x � 	true� false
� r � i

Px
i�n�1

def
� decx

i x � 	true� false
 Bx
i�r

def
� 0 x � 	true� false
� r � i

(Recieve)

Rx
i�r

def
� truei�r�P

true
i�r�1 � falsei�r�P

false
i�r�1 � susp lr�P

x
i�r�1

system where any interactions with observers occur through wrapper code residing at
the immortal location�; this allows us to decompose our proof into the basic correctness
and correctness preservation phases, as in Table 1(c) and (d).

Table 6 defines the wrapper code which, when put in parallel with C of Table 5, pro-
vides separate testing scenarios for the algorithm. We have two forms of initialization
code: Igen arbitrarily initialises every participant to either true or false after the action
start whereas Itrue and Ifalse initialise all participants to just true, or just false respectively.
We also have two processes for evaluating the values decided upon: Agen

1 checks that all
the participants 1 to n agreed on a value (either true or false) or else crashed, producing
the action ok if the test is successful; Atrue

1 and Afalse
1 check that all participants have

agreed on the specific value true, and false respectively, or crashed.

Definition 3 (Consensus). Let �n denote �l1� � � � � ln� ��, and (m̃) stand for the actions
proptrue

i � propfalse
i � dectrue

i � decfalse
i for 1 � i � n. Then C satisfies consensus whenever

Strong Basic Agreement: 	�n� 0
 � (�m̃)(C � Igen �Agen
1) � 	�� 0
 � start�ok

Basic Validity:
	�n� 0
 � (�m̃)(C � Itrue �Atrue

1) � 	�� 0
 � start�ok
	�n� 0
 � (�m̃)(C � Ifalse �Afalse

1) � 	�� 0
 � start�ok

and moreover

Strong ft-Agreement: 	�n� 0
� (�m̃)(C � Igen �Agen
1) � 	�n� n�1
� (�m̃)(C � Igen �Agen

1)

ft-Validity:
	�n� 0
 � (�m̃)(C � Itrue �Atrue

1) � 	�n� n � 1
 � (�m̃)(C � Itrue �Atrue
1)

	�n� 0
 � (�m̃)(C � Ifalse �Afalse
1) � 	�n� n � 1
 � (�m̃)(C � Ifalse �Afalse

1)

In Definition 3 strong agreement subsumes the agreement and termination conditions:
it composes C with Igen and Agen

1 . Validity uses more specific wrappers, and composes
C first with Itrue �Atrue

1 and then with Ifalse �Afalse
1 . Scoping the actions proptrue

i , propfalse
i ,

dectrue
i and decfalse

i in each test case limits external interaction to the non-failing actions
start and ok at �, the immortal location. This allows Definition 3 to divide consensus
conditions into basic correctness and correctness preservation conditions. For example

Strong Agreement: 	�n� (n � 1
) � (�m̃)(C � Igen �Agen
1) � 	�� 0
 � start�ok

follows from Strong Basic Agreement, Strong ft-Agreement and transitivity of �.

402 A. Francalanza and M. Hennessy

Table 6. Consensus Wrappers

(Initialisation)

Ix def
� start�

�n
i�1 propx

i Igen def
� start�

�n
i�1(proptrue

i � propfalse
i) x � 	true� false

(Agreement)

Ax
i

def
� decx

i �A
x
i�1 � susp li�A

x
i�1 Ax

n�1
def
� ok x � 	true� false
� i � n

Agen
i

def
� dectrue

i �Atrue
i�1 � decfalse

i �Afalse
i�1 � susp li�A

gen
i�1 i � n

4 Up-to Techniques in the Presence of Failure

Definition 3 expresses consensus in terms of six bisimulations. The main complication
in proving these bisimulations lies in the large amount of internal actions that need to be
considered. A large number of these internal actions are regular in structure (processes
executing symmetric transitions at di�erent locations and at di�erent rounds) and most
of these transitions are confluent; they do not a�ect the set of transitions that can be
taken, either now or in the future. In the fault-tolerance bisimulations, we also have an
extensive amount of dead code, that is code at dead locations or code that is forever
blocked because it can only be released by actions at dead locations. Here we develop
up-to bisimulation techniques that abstract over confluent moves and dead code.

We define a structural equivalence relation over configurations as the least relation
satisfying the rules in Table 7. Even though this equivalence is normally defined over
systems, we exploit the state of the network 	�� n
 to define a stronger relation. Apart
from the first six rules and the last two (contextual) rules, all of which are fairly stan-
dard, we also have new rules such as (s-Dead), adopted from [7], equating any code at
dead locations, irrespective of its form. The network information is also used to define
the new structural rule (gc-Susp), identifying suspicions that can never trigger because
the location tested for can never fail; it is alive and no more failures can be induced. Also
new is (gc-Act) which identifies action branches that can never trigger because there is
no corresponding co-action within the action scope.2 Our structural equivalence is a
strong bisimulation.

Lemma 1 (� is a strong bisimulation)

	�� n
 � N

�

��

� 	�� n
 � M

	���m�
 � N�

implies 	�� n
 � N

�

��

� 	�� n
 � M

�

��
	���m�
 � N� � 	���m�
 � M�

We now identify a number of �-actions, referred to as �-actions or �-moves, and show
that they are confluent. These silent �-actions are denoted as

	�� n
 � N
�
���� 	�� n
 � M

2 We purposefully use the naming convention (gc-) for certain structural rules that are generally
applied in one direction rather than the other to “garbage collect” redundant dead code.

A Fault Tolerance Proof for Consensus 403

Table 7. Structural Equivalence Rules

(s-Scomm) ��� n� � l[[P � Q]] � ��� n� � l[[Q � P]]
(s-Sassoc) ��� n� � l[[(P � Q) � R]] � ��� n� � l[[P � (Q � R)]]
(s-inert) ��� n� � l[[P � 0]] � ��� n� � l[[P]]
(s-Pcomm) ��� n� � N � M � ��� n� � M �N
(s-Passoc) ��� n� � (N � M) � M� � ��� n� � N � (M � M�)
(gc-Inert) ��� n� � M � l[[0]] � ��� n� � M
(s-Extr) ��� n� � (�a)(M �N) � ��� n� � M � (�a)N a � fn(M)
(gc-Scope) ��� n� � (�a)M � ��� n� � M a � fn(M)
(gc-Act) ��� n� � (�a)l[[��P �

�
i Pi]] � ��� n� � (�a)l[[

�
i Pi]] � � 	a� ā

(gc-Susp) ��� 0� � l[[susp k�P �
�

i Pi]] � ��� 0� � l[[
�

i Pi]] k � �

(s-Dead) ��� n� � l[[P]] � ��� n� � l[[Q]] l � �

(s-Rest)
��� n� � M � ��� n� � N

��� n� � (�a)M � ��� n� � (�a)N

(Par)
��� n� � M � ��� n� � M�

��� n� � M�N � ��� n� � M��N
��� n� � N�M � ��� n� � N�M�

and defined in Table 8. We then develop up-to bisimulation techniques that abstract
from matching configurations related by �-moves. The details di�er considerably from
[7] because we use di�erent constructs like choice and failure detection, and allow
distributed synchronisation across locations. Apart from the standard local rules (BNew)
and (BFork), and the context rules (BRest) and (BPar), Table 8 has three new rules dealing
with synchronisations. (BLin) states that distribution does not interfere with a scoped lin-
ear synchronisation, as long as we cannot induce more dynamic failures, that is n � 0.
(BLoc) states that a local scoped linear synchronisation is always a �-move. Finally,
(BFTol) states that a distributed scoped linear synchronisation is a �-move if it is asyn-
chronous from one end and the co-synchronisation at the other end is guarded by a
susp with the same continuation; these conditions make �-move in (BFTol), in a sense,
fault-tolerant as we have already seen in (2). We prove a special form of confluence for
our �-moves.

Lemma 2 (Confluence of �-moves).
�
���� observes the diamond property:

	�� n
 � N

�

��

� �

�
�� 	�� n
 � M

	��� n�
 � N�

implies 	�� n
 � N

�

��

� �

�
�� 	�� n
 � M

�

��
	��� n�
 � N�

� 	��� n�
 � M�

where � is
�
���� or �� or else ��� and 	�� n
�M � 	��� n�
�N�

Note the use of the non-standard� to close the diamond instead of
�
���� in this Lemma.

It allows for the special case when the code causing the �-move crashes. In this case,
we only require that resulting pair are structurally equivalent, using (s-Dead).

404 A. Francalanza and M. Hennessy

Table 8. Transition Rules for �-moves

Assuming l � �� n � 0

(BLin)

��� 0� � (�a)(l[[ā�P]] � k[[a�Q]])
�

��� ��� 0� � (�a)(l[[P]] � k[[Q]])
l� k � �

(BLoc)

��� n� � (�a)(l[[ā�P]] � l[[a�Q]])
�

��� ��� n� � (�a)(l[[P]] � l[[Q]])

(BFTol)

��� n� � (�a)(l[[ā]] � k[[a�P � susp l�P]])
�

��� ��� n� � (�a)k[[P]]
l� k � �

(BNew)

��� n� � l[[(�a)P]]
�

��� ��� n� � (�a)l[[P]]
l � �

(BRest)

��� n� � M
�

��� ��� n� � M�

��� n� � (�a)M
�

��� ��� n� � (�a)M�

(BFork)

��� n� � l[[P�Q]]
�

��� ��� n� � l[[P]]�l[[Q]]
l � �

(BPar)

��� n� � M
�

��� ��� n� � M�

��� n� � M�N
�

��� ��� n� � M� �N

��� n� � N�M
�

��� ��� n� � N�M�

We defined a modified bisimulation relation from Definition 1 where the conditions
for the matching residuals are relaxed; instead of demanding that they are again related

in � we allow approximate matching through � and
�

����
�
.

Definition 4 (�-transfer property). A relation � over configurations satisfies the �-
transfer property if

	�� n
 � N

�

��

� 	�� n
 � M

	��� n�
 � N�

implies 	�� n
 � N

�

��

� 	�� n
 � M

�

��
	��� n�
 � N� 	lÆ�Æ	r	��� n�
 � M�

where �l is � Æ
�

����
�

and �r is �

Definition 5 (Bisimulation up-to-�). A relation � over configurations is a bisimula-
tion up-to-� if it and its inverse �
1 satisfy the �-transfer property.

Before we can use bisimulations up-to-�, we need to show they are sound with respect
to Definition 1. This soundness proof uses the results of Lemma 3.

Lemma 3 (
�

����
�

implies �). 	�� n
 �N
�

����
�
	�� n
 � M implies 	�� n
 �N � 	�� n
 � M.

Theorem 1 (Soundness of bisimulations up-to-�). If 	�� n
 � N � 	���m
 �M� where
� is a bisimulation up-to-�� then 	�� n
 � N � 	���m
 � M�

A Fault Tolerance Proof for Consensus 405

Example 3. Suppose l� k � �. Then we can show that

	�� n
 � (�a� b) l[[ā]] � k[[a�P � b�Q � susp l�P]] � 	�� n
 � (�a� b)k[[P]] (3)

To see this first note that using (s-Extr), (s-Scomm), (s-Sassoc), (gc-Act) and (s-Extr) again
we can tighten the scope of �b, garbage collect the branch guarded by b and then scope
extrude �b again to obtain

	�� n
 � (�a� b) l[[ā]] � k[[a�P� b�Q � susp l�P]] � 	�� n
 � (�a� b) l[[ā]] � k[[a�P� susp l�P]]

An application of (BFTol) gives

	�� n
 � (�a� b) l[[ā]] � k[[a�P � susp l�P]]
�
���� 	�� n
 � (�a� b) k[[P]]

and now (3) follows from Lemma 1 and Lemma 3.

5 Consensus Satisfaction Proof

Using Theorem 1, we just need to give witness bisimulations up-to �-moves satisfying
the bisimulations set out in Definition 3. In the following witness bisimulations, we use
the letters t, f, p and d for the action names true, false, prop and dec, respectively. Our
presentation makes use of sets of integers Ii partitioning the set �1 � � �n�; the partition
predicate is:

partn1(I1� � � � � Ik)
def
� I1 � � � � � Ik � �1 � � �n� and �i� j � �1 � � � k� Ii � I j � �

We also denote the smallest number in a partition Ii as Iimin and the largest number in a
partition Ii that is smaller that any element in any other partition I j as Ii

�

min.
We first prove the basic (failure-free) equivalences. We here only give the witness

bisimulation for Strong Basic Agreement; the two witness bisimulations required for
Basic Validity are similar but simpler. We assume m̃ �

�n
i�r�1 ti�r� fi�r� pt

i� p
f
i � d

t
i� d

f
i and use

A� I� �n and � as shorthand for Agen
1 � Igen� 	�1 � � � n�� 0
 and 	�� 0
 respectively. We also

partition �1 � � � n� into three sets: I denotes the set of uninitialised participants, whereas
J and H denote initialised participants with current estimates t and f respectively; when
we do not use partition H, participants in J all have either estimate t or f. We also use

the process definition Ni
def
� li[[pt

i�P
t
i�1 � pf

i �P
f
i�1]] � pt

i � pf
i for non-initialised participant i.

���

1)
�
�n � (�m̃)

�
C � Igen �Agen

1

	
� � � start�ok

2)

�
�n � (�m̃)

��A �
�
i�I

Ni �
�
j�J

l j[[Rt
j�1]] �

�
h�H

lh[[Rf
h�1]]

�������� � � � ok
� ��������

partn1(I� J� H)
and Imin � 1

3)

�
�n � (�m̃)

��A �
�
i�I

��Ni �

Imin
1�
r�1

lr[[xi�r]]

�������� �
�
j�J

l j[[Rx
j�Imin

]]

�������� � � � ok

���������
partn1(I� J)
and Imin � 1
and x � �t� f�

4)
�
�n � ok� � � ok

���

406 A. Francalanza and M. Hennessy

In the above up-to � witness bisimulation case (2) represents the states where partic-
ipants have di�erent estimates at round r � 1 because the broadcaster at round 1 has
not been initialised yet. Case (3) represents participants in agreement for rounds r 2,
but blocked because the co-ordinator participant for round r has not been initialised.
We note that in case (3), uninitialised participants i � I include the broadcasted values
from previous rounds that are yet to be consumed by them once they are initialised.

We highlight the salient aspect of the above bisimulation relation: apart from the
initialisation �-moves, all the remaining �-transitions turn out to be �-moves; they are
instances of (BLin) (modulo �). We illustrate this through a walk-through of the main
transitions:

– If we are in (2) and the jth participant in the left configuration is initialised (through
a � action) with x � �t� f� then
� if j � 1 the participant proceeds to round 1 with estimate x and joins set J or H

accordingly. We match this action by the empty move and remain in case (2).
� if j � 1 the participant proceeds to round 1 and acts as the co-ordinator, broad-

casting x. For all participants j � J or h � H, broadcast synchronisation turns
out to be a �-move using (BLin), and (gc-Act) and (gc-Susp), among other rules,
to garbage collect inactive branches as in Example 3. At this point all initialised
participants agree on the broadcasted value x at round 2, and proceed through
the next rounds using �-moves, still agreeing on x, until they block again on
the next Imin. We match this action with the empty action and progress to case
(3).

– If we are in (3) and the ith participant is initialised then
� if i � Imin then the right configuration performs an empty move and we remain

in case (3), abstracting away from the �-moves of participant i consuming all
the broadcasts to reach round Imin with estimate x.

� if i � Imin then the matching move is similar but with two further sub-cases
� If I � �i� then all participant would have agreed on x, the first broadcasted

value and we progress to case (4) through a series of �-moves.
� If �I� 2 then all participants j � J progress to the round of the next

minimum uninitialised participant (I	�i�)min, and remain in case (3).

The witness bisimulation for Strong ft-Agreement up to (n � 1) faults is given be-
low; we leave similar but simpler witness bisimulations for ft-Validity to the interested
reader. We carry over all the shorthand notation used for the failure-free witness bisim-
ulation together with some more: the operation ẍ denotes value inverse for x � �t� f�,
and is defined as ẗ � f and f̈ � t; for K � �1 � � �n�, �K

n denotes the network state
	�n	�lk � k � K�� n � �K�
; B(i� x) j�n

j denotes the sequence of broadcasts of x for partici-

pant i from rounds j up to j � n, that is
� j�n

r� j lr[[x̄i�r]].
The salient aspect of our correctness preservation witness bisimulations is that they

automatically bring to the fore the mechanisms that enable the algorithm to overcome
decision blocking and corrupted broadcast. Through the use of the �-moves (BLoc), in
the case of participant initialisation in ft-Validity, and (BFTol), in the case of broadcast
communications where a participant receives the same estimate it currently holds, our
witness bisimulations abstract over superfluous transitions. This means that the only

A Fault Tolerance Proof for Consensus 407

non-confluent �-moves remaining are those for participant initialisation, in the case
of Strong ft-Agreement, those that crash participants and those where the broadcasted
value and the current participant estimate di�er. The latter two kinds are the core transi-
tions that embody corrupted broadcast, when the broadcaster crashes, and lead towards
the eventual agreement, when not interfered with by failure. The up-to-� level of ab-
straction also makes the overall structure of the bisimulation proof reflect move closely
the reasoning needed in a careful, informal proof of correctness.

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1) 〈Ln � (νm̃)A | I | C, LK
n � (νm̃)A | I | C〉 |K ⊆ {1 . . . n}

2)

〈
Ln � (νm̃)

(
A |
∏
i∈I

Ni |
∏
j∈J

l j[[Rt
j,1]] |
∏
h∈H

lh[[Rf
h,1]] |

∏
k∈K

lk[[Pk]]
)

, LK
n � (νm̃)

(
A |
∏
i∈I

Ni |
∏
j∈J

l j[[Rt
j,1]] |
∏
h∈H

lh[[Rf
h,1]]
)〉

∣∣∣∣∣∣∣∣∣∣∣
partn1(I, J,H,K)
and Imin = 1

3)

〈
Ln � (νm̃)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
A |
∏
i∈I

(
Ni | B(i, x)Imin−1

1

)
|
∏
j∈J

l j[[Rx
j,Imin

]]

|
∏
h∈H

lh[[Rx
h,Imin

]] |
∏
k∈K

lk[[Pk]]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, LK

n � (νm̃)
(

A |
∏
i∈I

Ni |
∏
j∈J

l j[[R
y
j,Imin

]] |
∏
h∈H

lh[[Rÿ
h,Imin

]]
)〉

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

partn1(I, J,H,K)
and 1� Imin< Jmin

and Imin<Hmin

and x, y ∈ {t, f}
and {1, . . . , (Imin−1)} ⊆ K

4)

〈
Ln � (νm̃)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
A |
∏
i∈I

(
Ni | B(i, x)Imin−1

1

)
|
∏
j∈J

l j[[Rx
j,Imin

]]

|
∏
h∈H

lh[[Rx
h,Imin

]] |
∏
k∈K

lk[[Pk]]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, LK
n � (νm̃)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
A |
∏
i∈I

(
Ni | B(i, y)

J+min
Jmin

)
|
∏
j∈J

l j[[R
y
j,Imin

]]

|
∏
h∈H

(
lh[[Rÿ

h,Jmin
]] | B(i, y)

J+min
Jmin

)
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
〉

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

partn1(I, J,H,K)
and Jmin < Imin < Hmin

and x, y ∈ {t, f}
and |J|, |I| ≥ 1

5)

〈
Ln � (νm̃)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
A |
∏
i∈I

(
Ni | B(i, x)Imin−1

1

)
|
∏
j∈J

l j[[Rx
j,Imin

]]

|
∏
h∈H

lh[[Rx
h,Imin

]] |
∏
k∈K

lk[[Pk]]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, LK
n � (νm̃)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
A |
∏
i∈I

(
Ni | B(i, y)

J+min
Jmin

)
|
∏
j∈J

l j[[R
y
j,Hmin

]]

|
∏
h∈H

(
lh[[Rÿ

h,Jmin
]] | B(i, y)

J+min
Jmin

)
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
〉

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

partn1(I, J,H,K)
and Jmin < Hmin < Imin

and x, y ∈ {t, f}
and |J|, |H|, |I| ≥ 1

6)

〈
Ln � (νm̃)

(
A |
∏
j∈J

l j[[Rx
j,Imin

]] |
∏
h∈H

lh[[Rx
h,Imin

]] |
∏
k∈K

lk[[Pk]]
)

, LK
n � (νm̃)

(
A |
∏
j∈J

l j[[R
y
j,Hmin

]] |
∏
h∈H

(
lh[[Rÿ

h,Jmin
]] | B(i, y)

J+min
Jmin

))〉
∣∣∣∣∣∣∣∣∣∣∣

partn1(J,H,K)
and Jmin < Hmin

and x, y ∈ {t, f}
and |J|, |H| ≥ 1

7) Ln � ok, LK
n � ok

⎫⎪⎪⎪⎬⎪⎪⎪⎭

408 A. Francalanza and M. Hennessy

Characterised by the non-confluent transitions (participant initialisation, participant
crashing and broadcasts where the value broadcasted and the current participant esti-
mate di�er), the witness bisimulation partitions the n participants into 4 mutually ex-
clusive sets: I denotes the participants that are yet uninitialised, K denotes the partic-
ipants that have crashed, J denotes the participants with estimate x, the value being
broadcasted at the current round and H denote the participants with current estimate ẍ
di�ering from broadcasted value x at the current round.

Based on these participant partitions, the witness bisimulation describes the follow-
ing cases for bisimilar pairs: in (2) no broadcast has yet occured because the first co-
ordinator is still uninitialised; (3) is a similar case where the live participant with the
lowest index i is uninitialised (all the participants
 i have crashed); (4) describes the
case when the live participant with the lowest index j is initialised with x, and all ini-
tialised participants with estimate x are blocked because Imin is yet to be initialised; (5)
is similar to case (4), only that participants with estimate x that is being broadcasted are
blocked on an initialised participant from partition H with estimate ÿ which still needs
to consume a broadcast (and change its estimate); (6) is a special case of (5) where there
are no uninitialised participants. Thus, in this last case, (6), we map live blocked partic-
ipants in a dynamic failure setting to unblocked participants in a failure free setting at
the final round n.

We note that witness bisimulation shows that even though agreement is reached in
both failure-free (left) and dynamic failure (right) sides, each side may agree on dif-
ferent values at round (n � 1). More specifically in the failure-free setting agreement is
reached on the value to which the first participant is initialised; this is not necessarily
the case in dynamic failure setting. We also note that the witness bisimulation is unclut-
tered from crashed code through the structural rule (s-Dead). Thus, in every bisimilar
pair, it maps the corresponding live code in a left (failure-free) configuration, irrespec-
tive of its state, to the inert process 0, on the right. We overview the main transitions of
the important (enumerated) stages in this relation, that is for stages (3)� (4)� (5) and (6):

Stage (3): If participant i � I is initialised, then we go to stage (4) or (5), depending on
the value y it is initialised to and whether (I	�i�)�min
 Jmin� Hmin. If participant i � I
crashes, then if (I	�i�)�min
 Jmin� Hmin we remain in (3) else go to stage (4) or (5).

Stage (4): If participant j � J crashes, then if Jmin � J�min we go to stage (3), otherwise
we remain in (4). If participant i � I is initialised we have a number of cases: if it
is initialised to y or it is initialised to ÿ and (i � Imin) then

– we remain in (4) if �I� � 1.
– we go to (6) if �I� � 1.
– we go to (7) if (�H� � 0 � �I� � 1).

Else, if the Imin is initialised to ÿ, then
– we go to (5) if �I� � 1, swapping J for H and vice-versa.
– we go to (6) if �I� � 1, again swapping J for H and vice-versa.
– we go to (7) if (�H� � 0 � �I� � 1)

Similarly, if participant Imin crashes, then depending on the next smallest participant
every j � J blocks on, we can either remain in (4) or transition to stage (5) if �I� � 1,
stage (6) if �I� � 1 or stage (7) if (�H� � 0 � �I� � 1). Finally, if participant h � H
consumes the broadcasts or crashes, we still remain in stage (4), potentially making
�H� � 0.

A Fault Tolerance Proof for Consensus 409

Stage (5): If participant j � J crashes, then if Jmin � J�min we remain in (5), otherwise
we transition to stage (4) where H is swapped for J (and vice-versa). If participant
h � H accepts the broadcast or crashes, we remain in (5) or transition back to (4),
depending on whether Hmin � H�

min. If participant i � I is initialised, we still remain
in (5) whereas if i � I crashes, we remain in (5) or transition to (6) if �I� � 1.

Stage (6): If participant j � J crashes, then if �J� � 1 we reach agreement and go
to stage (7), otherwise we remain in (6), possibly swapping participants h � H
for participants j � J. If participant h � H accepts the broadcast or crashes, we
transition to stage (7) if �H� � 1 or remain in (6).

All the above transitions are matched by the empty transition on the failure-free side,
except those transitions that involve initialising participants: In this case we match the
transition by initialising the corresponding participant in the failure-free setting.

6 Conclusion

We have designed a partial-failure process calculus in which distributed algorithms can
be formally described and analysed. We have also developed up-to techniques in this
calculus by identifying novel confluent moves involving the choice and perfect fail-
ure detection operator, together with a stronger structural equivalence abstracting over
dead code. Most importantly however, we have proposed a methodology for formally
proving the correctness of distributed algorithms in the presence of failure using fault-
tolerance bisimulation techniques. We have shown how this methodology can alleviate
the burned of exhibiting such formal proofs by giving, what to our knowledge is, the
first bisimulation-based proof of Consensus with perfect failure detectors. Moreover, the
decomposition of the proof into basic correctness and correctness preservation equiv-
alences permits separation of concerns and leads to a better understanding of the role
and weight of each action in the studied algorithm.

Future Work: There are various possible extension to our calculus. We can weaken our
failure detectors to ��, [2], by enhancing our network representation with two livesets,
suspectable and non-suspectable, similar to the techniques used in [14,13]. We can also
introduce recursive computation, which would allow us to study consensus solving al-
gorithms with no static bounds on the number of rounds. Such a study would require
more sophisticated reasoning about termination; work such as [3,17] should shed more
light on this complication. Independent of the calculus, we plan to validate our proposed
methodology by applying it to a range of fault-tolerant distributed algorithms expressed
in various calculi; examples of such algorithms include those in [11,16].

Related Work: The confluence of certain �-steps has long been known as a useful tech-
nique in the management of bisimulations, [9]. See [8] for particularly good examples
of where they have significantly decreased the size of witness bisimulations. We have
extended the concept, by considering confluence up to a particularly strong form of
structural equivalence which enables useful garbage collections to be carried out in
fault-tolerance proofs, by virtue of the presence of dead locations.

The closest to our work is [14], where the correctness of a consensus solving algo-
rithm for a more complex setting which uses �� failure detectors is formalised using

410 A. Francalanza and M. Hennessy

a process calculus. However, their proof methods di�er from ours: they give a transla-
tion from the calculus encoding of the algorithm into an abstract interpretation and then
perform correctness analysis on the abstract interpretation. Results similar to ours are
also presented in [1]; there the atomicity of the 2-phase commit protocol is encoded and
proved correct using a process calculus with persistence and transient failure; bisimula-
tions are used to obtain algebraic laws which are then used to prove atomicity.

Acknowledgments. We would like to thank the referees for their incisive comments on
a preliminary version of this paper.

References

1. Martin Berger and Kohei Honda. The two-phase commitment protocol in an extended pi-
calculus. Electr. Notes Theor. Comput. Sci., 39(1), 2000.

2. Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable distributed
systems. Journal of the ACM, 43(2):225–267, March 1996.

3. Yuxin Deng and Davide Sangiorgi. Ensuring termination by typability. In IFIP TCS, pages
619–632, 2004.

4. Michael J. Fischer. The consensus problem in unreliable distributed systems (a brief survey).
In Proceedings of the 1983 International FCT-Conference on Fundamentals of Computation
Theory, pages 127–140. Springer-Verlag, 1983.

5. Cedric Fournet, Georges Gonthier, Jean Jaques Levy, and Remy Didier. A calculus of mobile
agents. CONCUR 96, LNCS 1119:406–421, August 1996.

6. Adrian Francalanza and Matthew Hennessy. A theory of system behaviour in the presence
of node and link failures. In CONCUR, volume 3653 of Lecture Notes in Computer Science,
pages 368–382. Springer, 2005.

7. Adrian Francalanza and Matthew Hennessy. A theory of system fault tolerance. In L. Aceto
and A. Ingolfsdottir, editors, Proc. of 9th Intern. Conf. on Foundations of Software Science
and Computation Structures (FoSSaCS’06), volume 3921 of LNCS. Springer, 2006.

8. J. F. Groote and M. P. A. Sellink. Confluence for process verification. Theor. Comput. Sci.,
170(1-2):47–81, 1996.

9. Jan Friso Groote and Jaco van de Pol. State space reduction using partial tau-confluence. In
Mathematical Foundations of Computer Science, pages 383–393, 2000.

10. K. Honda and N. Yoshida. On reduction-based process semantics. Theoretical Computer
Science, 152(2):437–486, 1995.

11. Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.
12. R. Milner. Communication and Concurrency. Prentice-Hall, 1989.
13. Uwe Nestmann and Rachele Fuzzati. Unreliable failure detectors via operational semantics.

In ASIAN, pages 54–71, 2003.
14. Uwe Nestmann, Rachele Fuzzati, and Massimo Merro. Modeling consensus in a process

calculus. In CONCUR: 14th International Conference on Concurrency Theory. LNCS,
Springer-Verlag, 2003.

15. James Riely and Matthew Hennessy. Distributed processes and location failures. Theoretical
Computer Science, 226:693–735, 2001.

16. Gerard Tel. Introduction to distributed algorithms. Cambridge University Press, New York,
NY, USA, 1994.

17. Nobuko Yoshida, Martin Berger, and Kohei Honda. Strong normalisation in the pi-calculus.
Inf. Comput., 191(2):145–202, 2004.

A Core Calculus for a Comparative Analysis of

Bio-inspired Calculi

Cristian Versari

Università di Bologna, Dipartimento di Scienze dell’Informazione
Mura Anteo Zamboni 7, 40127 Bologna, Italy

versari@cs.unibo.it

Abstract. The application of process calculi theory to the modeling and
the analysis of biological phenomena has recently attracted the interests
of the scientific community. To this aim several specialized, bio-inspired
process calculi have been proposed, but a formal comparison of their
expressivity is still lacking. In this paper we present π@, an extension of
the π-Calculus with priorities and polyadic synchronisation that turns
out to be suitable to act as a core platform for the comparison of other
calculi. Here we show π@ at work by providing “reasonable” encodings
of the two most popular calculi for modeling membrane interactions,
namely, BioAmbients and Brane Calculi.

Keywords: pi-calculus, priority, polyadic synchronisation, BioAmbients,
Brane Calculi.

1 Introduction

After the first use of π-Calculus for the modeling of biological processes [22],
the applications of process calculi to Systems Biology attracted increasing re-
search efforts. The direct employment of π-Calculus allowed the formalisation of
several biological mechanism, its variants and extension [20,23,8] permitted the
representation or analysis in silico of cellular processes [13,7]. To obtain higher
abstraction level and biological faithfulness, more complex calculi have been pro-
posed [4,24,21,10,11,12] which are based on or get inspiration from π-Calculus.
Even if they present many common features, each calculus focuses its atten-
tion on particular biological entities or mechanisms. Their similarity induces the
interest for a parallel analysis, but their specialisation does not allow a direct
comparison.

The π@ language was designed to this aim: its simple but powerful extensions
to π-Calculus – polyadic synchronisation and prioritised communication – allow
to express the ideas shared by all these formalisms and flexibly adapt to represent
the peculiarities of each one. Moreover, its simple syntax and semantics, very
close to π-Calculus, allow a natural extension of many properties and results
already stated for standard π-Calculus, thus facilitating π@ theoretical analysis.

In this paper we show π@ at work by encoding two of these formalisms: Brane
Calculi and BioAmbients. Their straightforward embedding in the same language

R. De Nicola (Ed.): ESOP 2007, LNCS 4421, pp. 411–425, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

412 C. Versari

allows to understand clearly their structural/semantical common points and dif-
ferences and provides their ready-to-run implementation on top of a common
platform.

The paper is structured as follows. Next section presents π@ language, first
by introducing its extensions to π-Calculus, then by giving its syntax and se-
mantics. Section 3 is devoted to the explanation of the central ideas behind the
encodings, followed by their formalisation and analysis. For a detailed treatment
of BioAmbients and Brane Calculi see [24,4].

2 The π@ Language

The π@ calculus – pronounced like the french “paillette” – consists in π-Calculus
with the addition of two features: polyadic synchronisation and prioritised com-
munication. The first one is used to model localisation of communication typical
of the majority of bio-inspired calculi, which usually formalise it by the explicit
introduction of compartments (i.e. ambients and membranes in the case of the
two languages considered here). Priority is exploited as a powerful mechanism
for achieving atomicity, that is the completion, without overlapping, of complex
atomic operations by the execution of several simple steps.

Before presenting π@, we shortly recall π-Calculus syntax and semantics, on
which π@ is strongly based.

2.1 The π-Calculus

Here we recall the syntax and the reduction semantics of π-Calculus, chosen as
the basis for π@ because of the simplicity and closeness to the semantics used
for the majority of bio-inspired calculi. For a full threatment of π-Calculus we
refer to [14,15].

Definition 1. Let

N be a set of names on a finite alphabet, x, y, z, . . . ∈ N ;
N = {x | x ∈ N}

The syntax of π-Calculus is defined as

P ::= 0
∣∣∣

∑
i∈I

πi.Pi

∣∣∣ P
∣∣ Q

∣∣∣ ! P
∣∣∣ (νx)P

π ::= τ
∣∣∣ x(y)

∣∣∣ x〈y〉

Definition 2. The congruence relation ≡ is defined as the least congruence sat-
isfying alpha conversion, the commutative monoidal laws with respect to both
(

∣∣ ,0) and (+,0) and the following axioms:

(νx)P
∣∣ Q ≡ (νx)(P

∣∣ Q) if x /∈ fn(Q)

(νx)P ≡ P if x /∈ fn(P)

! P ≡ ! P
∣∣ P

where the function fn is defined as

A Core Calculus for a Comparative Analysis of Bio-inspired Calculi 413

fn(τ)
def
= ∅ fn(x(y))

def
= {x}

fn(x〈y〉) def
= {x, y} fn(0)

def
= ∅

fn(π.P)
def
= fn(π) ∪ fn(P) fn(

∑
i∈I πi.Pi)

def
=

⋃
i fn(πi.Pi)

fn(P
∣∣ Q)

def
= fn(P) ∪ fn(Q) fn(! P)

def
= fn(P)

fn((νx)P)
def
= fn(P) \ {x}

Definition 3. π-Calculus semantics is given in terms of the reduction system
described by the following rules:

τ.P → P (μ(y).P + M)
∣∣ (μ〈z〉.Q + N) → P{z/y}

∣∣ Q

P → P ′

P
∣∣ Q → P ′

∣∣ Q

P → P ′

(ν x)P → (ν x)P ′
P ≡ Q P → P ′ P ′ ≡ Q′

Q → Q′

2.2 Polyadic Synchronisation

In π-Calculus channels and names are usually synonyms. Polyadic synchroni-
sation (introduced in [3]) consists in giving structure to channels: each chan-
nel is composed of one or more names and identified by all of them in the
exact sequence they occur. For example, an email address is usually written
in the form username@domain, where username and domain are two strings
– two names – both necessary to identify the given email address. Moreover,
their order is crucial since domain@username specifies another, likely unex-
isting, address. Following this analogy, π@ channels are written in the form
name1@name2@ . . . @namen without limit in the number of names, even if just
two suffice for most of the applications. In other words, a channel is indicated
by a vector of names (name1, name2, . . . , namen), n ≥ 1, and communication
between two processes may happen only if they are pursuing a synchronisation
along channels composed of the same number of names, with the same multi-
plicity and appearing order.

Apart from this, communication in π@ happens in the same way as in π-
Calculus. For example, the transition

comm〈d〉.P
∣∣ comm(x).Q → P

∣∣ Q{d/x}

is still valid in π@. Output actions are overlined as usual, even in case of polyadic
synchronisations:

polyadic@comm〈d〉.P
∣∣ polyadic@comm(x).Q → P

∣∣ Q{d/x}

Communication produces the same renaming effect, but with one difference: in
π-Calculus the transmission of a name always stands for the transmission of
a channel, while in π@ the transmitted name may represent a channel or just
one of its components, or both. For example, in the following expression the
transmitted name d represents a channel in the first output action d〈y〉, while
in d@comm〈y〉 it is just the first part of the channel d@comm.

414 C. Versari

polyadic@comm〈d〉.P
∣∣ polyadic@comm(x).

(
x〈y〉

∣∣ x@comm〈y〉
)

→
P

∣∣ d〈y〉
∣∣ d@comm〈y〉

For concision and readability, polyadic synchronisation is often used also in con-
junction with polyadic communication:

polyadic@comm〈a, b, c〉.P
∣∣ polyadic@comm(x, y, z).Q →

P
∣∣ Q{a/x, b/y, c/z}

Finally, the following transitions are not allowed:

x@y〈〉.P
∣∣ y@x().Q � (x �= y)

x〈〉.P
∣∣ x@x().Q �

In the first expression, the output and input channels are composed of the same
names, but with different appearing order. In the second one, channels are rep-
resented by the same name but with different multiplicity. In both cases the
vectors of names do not match.

2.3 Priority

Priority behaves as expected: a high-priority process holds the central processing
unit and executes its job before any low priority process. In π@ high priority
synchronisations or communications are executed before any other low priority
action. Usually a high priority action is indicated by underlining the name of
the channel one or more times. For example, the expression

stand〈x〉.P
∣∣ walk〈y〉.Q

∣∣ run〈z〉

contains three processes with different, increasing priority. To express more than
three levels of priority another notation is used, where the priority of the process
is represented by a number following the channel names. The above expression
may be rewritten as

stand : 2〈x〉.P
∣∣ walk : 1〈y〉.Q

∣∣ run : 0〈z〉

where a lower priority action is labelled with a higher number (the highest pri-
ority is denoted by 0).

Interaction between processes may occur only if channels have the same pri-
ority. In this example

x〈y〉.P
∣∣ x(z).Q �

x〈y〉.P
∣∣ x(z).Q → P

∣∣ Q{y/z}

A Core Calculus for a Comparative Analysis of Bio-inspired Calculi 415

only the second interaction is allowed, because the expressions x and x denote
actually two different channels. Finally, as expected, low priority actions occur
only if no higher priority action may occur:

l〈w〉
∣∣ l(x).P

∣∣ h〈y〉
∣∣ h(z).Q � 0

∣∣ P{w/x}
∣∣ h〈y〉

∣∣ h(z).Q

l〈w〉
∣∣ l(x).P

∣∣ h〈y〉
∣∣ h(z).Q → l〈w〉

∣∣ l(x).P
∣∣ 0

∣∣ Q{y/z} →
0

∣∣ P{w/x}
∣∣ 0

∣∣ Q{y/z}

The first of the two transitions is not allowed because interactions on low-priority
channel l may happen only after the high-priority communication on channel h.
For a detailed survey of priority in process algebras, see [9].

2.4 The π@ Syntax and Semantics

The π@ language is very close to π-Calculus: from a syntactical point of view the
only difference is the structure of channels, composed of multiple names followed
by the priority of the action. We use μ to denote a vector of names x1, . . . , xn

and μ : k to denote a channel, that is a vector of names μ followed by a colon and
a natural number k specifying the priority. As usual, μ : k represents an output
operation along channel μ : k, while α : k stands for a generic input, output or
silent action τ of priority k.

Definition 4. Let

N be a set of names on finite alphabet, x, y, z, . . . ∈ N ;
N+ =

⋃
i>0 N i , μ ∈ N+;

N+
= {μ | μ ∈ N+};

α ∈
(

N+ ∪ N+ ∪ {τ}
)
;

The syntax of π@ defined as

P ::= 0
∣∣∣

∑
i∈I

πi.Pi

∣∣∣ P
∣∣ Q

∣∣∣ ! P
∣∣∣ (νx)P

π ::= τ :k
∣∣∣ μ :k(x)

∣∣∣ μ :k〈x〉

As previously introduced, some abbreviations are very often used in this paper:

μ(x) = μ :2(x) μ〈x〉 = μ :2〈x〉
μ(x) = μ :1(x) μ〈x〉 = μ :1〈x〉
μ(x) = μ :0(x) μ〈x〉 = μ :0〈x〉

The definition for structural congruence ≡ is exactly the same as given for π-
Calculus, where the function fn is naturally extended to the π@ syntax, that is

fn(μ : k(y))
def
= {μ1, . . . , μn}

fn(μ : k〈y〉) def
= {μ1, . . . , μn, y}

416 C. Versari

where μ = μ1@ · · ·@μn. The reduction semantics is very similar, but defined in
terms of an auxiliary function Ik(P), representing the set of actions of priority
k which the process P may immediately execute. For example, if

P = a.Q
∣∣ b

∣∣ c.R
∣∣ d + e.S

∣∣ a.T

then I0(P) = {c, e}, I1(P) = {b, d}, I2(P) = {a, a, τ}, where the availability of
τ action derives from the interaction of the first and last process.

Definition 5. Let Ik(P) be

Ik
(∑

i

αi : li.Pi

)
= {αi | li = k};

Ik(
(ν y) P

)
= Ik(P) \

{
α | y ∈ {x1, . . . , xn}∧

(α = x1@ . . . @xn ∨ α = x1@ . . . @xn)
}
;

Ik(
!P

)
= Ik(P

∣∣ P);

Ik
(
P

∣∣ Q
)

= Ik(P) ∪ Ik(Q) ∪ {τ | Ik(P) ∩ Ik(Q) �= ∅},

Ik(Q) =
{
α | α ∈ Ik(Q)

}

π@ semantics is given in terms of the following reduction system:

τ /∈
⋃

i<k Ii(M)

τ :k.P + M →k P

P →k P ′

(ν x)P →k (ν x)P ′

τ /∈
⋃

i<k Ii(M
∣∣ N)

(μ :k(y).P + M)
∣∣ (μ :k〈z〉.Q + N) →k P{z/y}

∣∣ Q

cP →k P ′ τ /∈
⋃

i<k Ii(P
∣∣ Q)

P
∣∣ Q →k P ′

∣∣ Q

P ≡ Q P →k P ′ P ′ ≡ Q′

Q →k Q′

π@ reduction rules are exactly the same of π-Calculus, except for the additional
condition τ /∈

⋃
i<k Ii(. . .) which avoids the execution of low priority actions

if higher priority communications (represented by τ actions) are immediately
available.

2.5 Notation

In addition to standard reduction relation →k, some derived relations are used
for the formulation of theorems. As usual, →∗

k is the reflective-transitive closure
of →k, while →(n)

k is used to evidence the length of the derivation, that is

P →(n) Q iff ∃ P1, . . . , Pn−1 : P → P1 → . . . → Pn−1 → Q

Similar notation are used for the derived relations.

A Core Calculus for a Comparative Analysis of Bio-inspired Calculi 417

Definition 6. Let P, Q, Q′ be π@ processes. The reduction relations →, �k,
�→, ⇒k, are defined as follows:

1. P → Q � P →k Q, k ∈ N;
2. P �k Q � P →h Q, h ≤ k;
3. P �→ Q � P →k P ′ ∧ P ′ �∗

k−1 Q, τ /∈
⋃

i<k Ii(Q).
4. P ⇒k Q � P �∗

k−1 Q, τ /∈
⋃

i<k Ii(Q) ∧(
P �∗

k−1 Q′, τ /∈
⋃

i<k Ii(Q′) implies Q ≡ Q′).
→ is the standard reduction relation, disregarding the priority of the reduction.
�k denotes the derivation through reduction with priority higher or equal to k.
�→ indicates that, after a reduction with a certain (low) priority and, in case, a
sequence of higher priority actions, the process comes back to a state where it
is ready to perform only low priority synchronisations. ⇒k states a confluence
property of the process, meaning that all the states from which it is not possible
to perform a reduction of priority higher than k and reachable only by reductions
of priority higher than k, are congruent.

3 Encodings

The key feature which differentiates recent bio-inspired calculi from π-Calculus
is the explicit formalisation of compartments. BioAmbients is a modified version
of Ambient calculus [5], where compartments are represented by ambients, a sort
of boxes containing processes or other nested boxes. In Brane compartments are
bounded by membranes, on the surface of which processes compute. Both am-
bients and membranes are organised in a tree structure, both can dinamically
modify this structure by performing for example merge, enter/exit or exo oper-
ations. The central issue is how they modify this structure: the most observable
difference is the bitonality preserved by brane semantics and totally absent in
BioAmbients. As remarked in [4], this peculiarity is enough to preclude an im-
mediate embedding of one language into the other, thus not allowing a direct
comparison of their expressivity. An alternative analysis can be performed by
encoding both in a third formalism and compare their encoding functions. These
functions must obviously satisfy some “reasonable” properties (as discussed in
section 3.1) and they must also be as simple as possible by hiding irrelevant
details. π@ features were chosen to meet these criteria: the lack of a predefined
semantics for compartments together with the possibility of expressing localisa-
tion (by means of polyadic synchronisation) and complex atomic operations (by
means of priority) place π@ one abstraction level lower, as a sort of assembly
language for compartmentalised formalisms.

3.1 Requirements

The fundamental criterion guiding any encoding is the preservation of some ad-
dressed semantics. According to [16], this often means that the encoding function[[

·
]]

must at least fulfill the notion of operational correspondence, characterised

418 C. Versari

by two complementary properties: completeness and soundness. The first means
that every possible execution of the source language may be simulated by its
translation, the second ensures that all the states reached by the translation
correspond to some state of the source. Since all the languages we consider are
Turing-complete (even Brane [2,6], despite of its simplicity), as usual for con-
current languages we require some additional criteria. As remarked in [17], a
reasonable encoding should also preserve the degree of distribution of the source
language (i.e. homomorphism w.r.t. parallel composition) and should not depend
on the channel (or compartment) names of the term to be encoded. This also
implies a very valuable property, that is modular compilation, as discussed in
[1]. In addition to the cited criteria, we also require the encoding to preserve the
termination or diverging behaviour of the translated term, in order to obtain a
totally faithful encoding function. The following definition formalises the notion
of reasonable encoding used in this paper.

Definition 7. An encoding
[[

·
]]

is reasonable if it enjoys the following proper-
ties:

1. homomorphism w.r.t. parallel composition:[[
P1

∣∣ P2
]]

=
[[

P1
]] ∣∣ [[

P2
]]
;

2. renaming preserving:
for any permutation of the source names θ,

[[
θ(P)

]]
= θ(

[[
P

]]
);

3. termination invariance: P ⇓ iff
[[

P
]]

⇓, P ⇑ iff
[[

P
]]

⇑;
4. operational correspondence:

(a) if P → P ′ then
[[

P
]]

→∗ [[
P ′]]

,
(b) if

[[
P

]]
→∗ Q then ∃P ′ : P →∗ P ′ ∧ Q →∗ [[

P ′]]
.

3.2 Basic Ideas

Compartment and their nesting are very intuitive abstractions: the simple state-
ment that an object is enclosed in a box suggests that it is someway isolated from
the external context; putting one box into another means that, after the opera-
tion, the inner box with all its content are located inside the outer one; merging
the content of two boxes implies putting in the same box all the enclosed objects.
To obtain this behaviour in π@ we must recognise the exact meaning of every
operation on compartments and reproduce step by step the same semantics.

The first concept to unfold is nesting: compartments compose a dynamical
tree structure which must be encoded in π@. As suggested in [15], these kind of
structures can be represented as a set of processes linked by the share of private
channels between parent and child nodes. Like in [22], the scoping of private
names represents the boundaries of compartments, but thanks to polyadic syn-
chronisation each private name may represent an unlimited number of private
communication channels, as shown in section 2.2. If each node is supplied with
one distinctive name, the simplest way to encode the tree is by ensuring that
each node knows the name identifying its parent compartment.

Therefore, trivial changes in the tree structure may affect an unlimited number
of processes: the simple disclosure of a compartment implies that all contained

A Core Calculus for a Comparative Analysis of Bio-inspired Calculi 419

processes must be notified of their new parent compartment name. The same
situation occurs when splitting or merging the content of two compartments, like
in merge+ /merge− and exo/exo⊥ operations. In π@ this turns out to be a sort
of multicast communication, where specifical groups of nodes – that is sibling
and child processes – must receive on the proper channel a new compartment
name. This result is achieved by a smart use of priority levels: a high priority
loop notifies in turn all the interested processes and ends when such processes do
not exist anymore. By a single line of code, we obtain in π@ the same mechanism
typical of broadcast communication:

BCAST ≡ ! bcast(x, y).(τ + x〈y〉.bcast〈x, y〉)

The above process can be triggered by an output operation bcast〈chn, newchn〉
and terminate when no high priority synchronisations are available, leaving no
residual terms. Obviously, a high priority complementary output loop
! bcast〈chn, newchn〉 would cause the system to hang, since it prevents any
other computation with normal priority. This is one of the reasons that do not
allow a trivial translation of Brane and Bioambients replication operators and
induce an explicit reproduction of their unfolding technique in both the encoding
functions.

3.3 Encoding BioAmbients

Ambients are containers organised in a tree structure: running processes and
nested sub-ambients are located inside them. If each node of the tree represents
an ambient, nodes are complex structures: each node may contain zero or more
parallel processes and may be linked zero or more nested sub-ambients. Conse-
quently, for the implementation of the tree structure each encoded BioAmbients
process must be aware of the name of its containing (immediate) ambient, but
also of the name indicating the parent of its immediate ambient. This explains
why the encoding function

[[]]α

K,a,pa
requires the (bound) names a and ap, which

represent the immediate ambient and the parent ambient, respectively. The free
names oa, opa are placeholders standing for the immediate ambient and parent
ambient of the outer processes, while bound names na and npa represent a new
ambient or new parent ambient name received by the process. The first param-
eter K is the set of names used for the explicit unfolding of replicated processes
when encoding the bang operator: the cardinality of K is the number of bangs
in front of the process to encode.

Definition 8. The function
[[

·
]]α from BioAmbients to π@ processes is defined

as follows:
[[

0
]]α � 0

[[
P

∣∣ Q
]]α �

[[
P

]]α ∣∣ [[
Q

]]α

[[
(new n)P

]]α �
[[

(new n)P
]]α

∅,oa,opa[[
[P]

]]α �
[[

[P]
]]α

∅,oa,opa

420 C. Versari

[[
! P

]]α �
[[

! P
]]α

∅,oa,opa[[
0

]]α

K,a,pa
� 0

[[
P

∣∣ Q
]]α

K,a,pa
�

[[
P

]]α

K,a,pa

∣∣ [[
Q

]]α

K,a,pa[[
(new n)P

]]α

K,a,pa
� νn

[[
P

]]α

K,a,pa[[
[P]

]]α

K,a,pa
� νc

[[
P

]]α

K,c,a[[
! P

]]α

K,a,pa
� νb(BANG(b, a, pa)

∣∣ [[
P

]]α

K∪{b},a,pa

∣∣
! new@b(na, npa).

[[
P

]]α

K∪{b},na,npa
)

[[∑
i∈I, I �=∅

ξi.Pi

]]α

K,a,pa
� BCAST

∣∣ νs(! s(na, npa).

(
[[

ξi.Pi

]]α

K,na,npa
+ TREE(s, na, npa))

∣∣
[[

ξi.Pi

]]α

K,a,pa
+ TREE(s, a, pa))

[[
enter n.P

]]α

K,a,pa
� enter@n@pa(x).bcast〈pa, a, x〉.(

[[
P

]]α

∅,a,x

∣∣ ΠK)
[[

accept n.P
]]α

K,a,pa
� enter@n@pa〈a〉.(

[[
P

]]α

∅,a,pa

∣∣ ΠK)
[[

exit n.P
]]α

K,a,pa
� expel@n@pa(x).bcast〈pa, a, x〉.(

[[
P

]]α

∅,a,x

∣∣ ΠK)
[[

expel n.P
]]α

K,a,pa
� expel@n@a〈pa〉.(

[[
P

]]α

∅,a,pa

∣∣ ΠK)
[[

merge− n.P
]]α

K,a,pa
� merge@n@pa(x).

bcast〈merge, a, x〉.(
[[

P
]]α

∅,x,pa

∣∣ ΠK)
[[

merge+ n.P
]]α

K,a,pa
� merge@n@pa〈a〉.(

[[
P

]]α

∅,a,pa

∣∣ ΠK)
[[

local n!{m}.P
]]α

K,a,pa
� local@n@a〈m〉.(

[[
P

]]α

∅,a,pa

∣∣ ΠK)
[[

local n?{m}.P
]]α

K,a,pa
� local@n@a(m).(

[[
P

]]α

∅,a,pa

∣∣ ΠK)
[[

s2s n!{m}.P
]]α

K,a,pa
� s2s@n@pa〈m〉.(

[[
P

]]α

∅,a,pa

∣∣ ΠK)
[[

s2s n?{m}.P
]]α

K,a,pa
� s2s@n@pa(m).(

[[
P

]]α

∅,a,pa

∣∣ ΠK)
[[

p2c n!{m}.P
]]α

K,a,pa
� p2c@n@a〈m〉.(

[[
P

]]α

∅,a,pa

∣∣ ΠK)
[[

c2p n?{m}.P
]]α

K,a,pa
� p2c@n@pa(m).(

[[
P

]]α

∅,a,pa

∣∣ ΠK)
[[

c2p n!{m}.P
]]α

K,a,pa
� c2p@n@pa〈m〉.(

[[
P

]]α

∅,a,pa

∣∣ ΠK)
[[

p2c n?{m}.P
]]α

K,a,pa
� c2p@n@a(m).(

[[
P

]]α

∅,a,pa

∣∣ ΠK)

BANG(b, a, pa) ≡ ! b(na, npa).

(unfold@b.new@b〈na, npa〉 + TREE(b, na, npa))
∣∣

unfold@b.new@b〈a, pa〉 + TREE(b, a, pa))

TREE(b,na, npa) ≡ npa@na(x).b〈na, x〉 + merge@npa(x).b〈na, x〉+
merge@na(x).b〈x, npa〉

ΠK ≡ unfold@k1
∣∣ · · ·

∣∣ unfold@kn,

K = {k1, . . . , kn}
BCAST ≡ ! bcast(x, y, z).(x@y〈z〉.bcast〈x, y, z〉 + τ)

A Core Calculus for a Comparative Analysis of Bio-inspired Calculi 421

The strict relationship between BioAmbients and π-Calculus simplifies the en-
coding of base operators: parallel composition and restriction are homomorphi-
cally translated. Like for restriction, each ambient produces a private name, but
in this case the new name is inserted in the tree structure by passing it to the
subsequent encoding. Remarkably, the translation of each communication or ca-
pability choice requires a loop: in fact, each process ready to execute an action
may be notified of an occurring change in the nesting tree structure, caused by
other processes. Consequently, it should receive and replace the proper names
representing its immediate and/or parent ambients before attempting to per-
form the desired actions: each TREE subprocess is ready to handle this kind
of events. Communications and capabilities are directly encoded by means of
polyadic synchronisation: the possibility of using an unlimited number of names
for each pi@ channel (up to three, in this case) simplifies extremely the simulta-
neous expression of localisation inside ambients and synchronisation on different
directions (p2p, s2s, . . .) equipped with names. After the execution of each ca-
pability, the reorganisation of the tree structure and the eventual unfolding of
replicated processes is obtained by a sequence of high priority actions consisting
in the triggering of one BCAST loop and a set of unfold@ki synchronisations.

Finally, the encoding function
[[

·
]]α enjoys the requirements discussed in

section 3.1, as stated by the following theorem.

Theorem 1.
[[

·
]]α is a reasonable encoding (modulo structural congruence),

that is: let P , P1, P2 be BioAmbients processes, let Q be a π@ process, then

1.
[[

P1 ◦ P2
]]α =

[[
P1

]]α ∣∣ [[
P2

]]α;

2. for any permutation of the source names θ,
[[

θ(P)
]]α = θ(

[[
P

]]α);

3. P ⇓ iff
[[

P
]]α ⇓, P ⇑ iff

[[
P

]]α ⇑;

4. (a) if P → P1 then ∃P2 : P2 ≡ P1 ∧
[[

P
]]α →∗ [[

P2
]]α;

(b) if
[[

P
]]α →∗ Q then ∃P1 : P →∗ P1 ∧ Q →∗ [[

P1
]]α.

3.4 Encoding Brane Calculi

Like ambients, membranes are organised in tree structures: each node of the tree
may contain membrane processes or nested membranes. Unlike BioAmbients,
Brane Calculi present two main entities: systems and branes. Their distinction
implies slightly different translations, because the encoding function of systems
needs only two parameters (K, the set corresponding to the bang operators in
front of the system and pc, the name representing the parent compartment)
while an additional parameter is needed for encoding branes (c, the name of
the compartment where the brane process resides). Similarly to BioAmbients
encoding, oc and opc are placeholders standing for the compartment and parent
compartment of outer processes, while nc and npc are bound names representing
the new compartment and new parent compartment received during the tree
structure reorganisation.

422 C. Versari

Definition 9. The function
[[

·
]]β from Brane to π@ processes is defined as

follows: [[

]]β � 0
[[

P ◦ Q
]]β �

[[
P

]]β ∣∣ [[
Q

]]β

[[
! P

]]β �
[[

! P
]]β

∅,oc[[
σ(|P |)

]]β �
[[

σ(|P |)
]]β

∅,oc[[

]]β

K,pc
� 0

[[
P ◦ Q

]]β

K,pc
�

[[
P

]]β

K,pc

∣∣ [[
Q

]]β

K,pc[[
! P

]]β

K,pc
� νb(

[[
P

]]β

K∪{b},pc

∣∣ ! new@b(npc).
[[

P
]]β

K∪{b},npc

∣∣
! b(npc).

(unfold@b.new@b〈npc〉 + exo@npc(x).b〈x〉)
∣∣

unfold@b.new@b〈pc〉 + exo@pc(x).b〈x〉)
[[

σ(|P |)
]]β

K,pc
� νc(

[[
σ

]]β

K,c,pc

∣∣ [[
P

]]β

K,c
)

[[
0

]]β

K,c,pc
� 0

[[
σ

∣∣ ρ
]]β

K,c,pc
�

[[
σ

]]β

K,c,pc

∣∣ [[
ρ

]]β

K,c,pc[[
! σ

]]β

K,c,pc
� νb(BANG(b, c, pc)

∣∣ [[
σ

]]β

K∪{b},c,pc

∣∣

! new@b(nc, npc).
[[

σ
]]β

K∪{b},nc,npc
)

[[
a.σ

]]β

K,c,pc
� BCAST

∣∣ νs(! s(nc, npc).

(
[[

a.σ
]]β

K,nc,npc
+ TREE(s, nc, npc))

∣∣
[[

a.σ
]]β

K,c,pc
+ TREE(s, c, pc))

[[
phagon.σ

]]β

K,c,pc
� phago@n@pc(x).bcast〈pc, c, x〉.(

[[
σ

]]β

∅,c,x

∣∣ ΠK)

[[
phago⊥

n (ρ).σ
]]β

K,c,pc
� νx

(
phago@n@pc〈x〉.(

[[
σ

]]β

∅,c,pc

∣∣ [[
ρ

]]β

∅,x,c

∣∣ ΠK)
)

[[
exon.σ

]]β

K,c,pc
� exo@n@pc(x).bcast〈exo, c, x〉.(

[[
σ

]]β

∅,pc,x

∣∣ ΠK)

[[
exo⊥

n .σ
]]β

K,c,pc
� exo@n@c〈pc〉.(

[[
σ

]]β

∅,c,pc

∣∣ ΠK)
[[

pino(ρ).σ
]]β

K,c,pc
� νx τ.(

[[
σ

]]β

∅,c,pc

∣∣ [[
ρ

]]β

∅,x,c

∣∣ ΠK)

BANG(b, c, pc) ≡ ! b(nc, npc).

(unfold@b.new@b〈nc, npc〉 + TREE(b, nc, npc))
∣∣

unfold@b.new@b〈c, pc〉 + TREE(b, c, pc))

TREE(b, nc, npc) ≡ npc@nc(x).b〈nc, x〉 + exo@npc(x).b〈nc, x〉+
exo@nc(x).b〈npc, x〉

ΠK ≡ unfold@k1
∣∣ · · ·

∣∣ unfold@kn,

K = {k1, . . . , kn}
BCAST ≡ ! bcast(x, y, z).(x@y〈z〉.bcast〈x, y, z〉 + τ)

A Core Calculus for a Comparative Analysis of Bio-inspired Calculi 423

Like for BioAmbients encoding, each operation of the original language is trans-
lated with a synchronisation followed by a sequence of high priority actions which
manage the reorganisation of the tree structure and the unfolding of replicated
processes involved in the computation. The presence of two distinct replication
operators leads to two slightly different encodings which reflect the fact that sys-
tems are only provided of parent compartment, while branes present also their
immediate compartment.

Also the encoding function
[[

·
]]β enjoys the requirements discussed in

section 3.1.

Theorem 2.
[[

·
]]β is a reasonable encoding (modulo structural congruence),

that is: let P , P1, P2 and ρ1, ρ2 be respectively Brane systems and processes, let
Q be a π@ process, then

1.
[[

P1 ◦ P2
]]β =

[[
P1

]]β ∣∣ [[
P2

]]β,[[
ρ1

∣∣ ρ2
]]β =

[[
ρ1

]]β ∣∣ [[
ρ2

]]β

2. for any permutation of the source names θ,
[[

θ(P)
]]β = θ(

[[
P

]]β);

3. P ⇓ iff
[[

P
]]β ⇓, P ⇑ iff

[[
P

]]β ⇑;

4. (a) if P → P1 then ∃P2 : P2 ≡ P1 ∧
[[

P
]]β →∗ [[

P2
]]β

;

(b) if
[[

P
]]β →∗ Q then ∃P1 : P →∗ P1 ∧ Q →∗ [[

P1
]]β.

3.5 Encodings Comparison

Brane and BioAmbients are different for several aspects. Brane has a very simple
syntax, provided with only three base operations, lacks any restriction and choice
operator, there is no explicit name communication mechanism. BioAmbients is
provided with elaborate, multi-level communication primitives in addition to
compartment operations. But in [4] all these operators are considered as possible
Brane extensions and their encoding in π@ would be exactly the same of the
original BioAmbients operators. Therefore, the crucial difference is not intended
to be in the syntax, but in the semantics: Brane compartment operations have
been designed to preserve bitonality, a concept totally absent in BioAmbients,
furthermore processes are thought to be on the surface of membranes, not inside
ambients.

By translating both languages in π@, we are able to discern at first sight where
processes are exactly placed and what are the differences in the dynamical rear-
rangement of the tree structure. The encoding of phago, exo, pino, enter/accept,
exit/expel, merge± operations clearly shows that both kind of processes own
the same information about their localisation in the tree, therefore the tree struc-
ture is very similar: the only difference is in the scoping of the names of their
parent ambients. In fact, unlike the encoding of ambients, the encoding function
of a Brane system P does not need the parameter c representing the immedi-
ate compartment of the process. This difference justifies the assumption that
Brane processes are located on membranes. Bitonality simply arises in the order
of the parameters given to the last term of the TREE subprocess and in the

424 C. Versari

choice of the names broadcasted and recursively passed to the encoding func-
tion (this is particulary evident in the exo⊥ operation, where the name of the
parent compartment pc, instead of the immediate compartment c, is the object
of communication).

In conclusion, the two analised languages present much more common points
than differences: concurrency, interleaving semantics, compartments with tree
nesting and very similar structure for nodes, implicit multicast communications
within compartment boundaries. If we consider all the extensions proposed in
[4], the two formalisms may be considered close variants of the same language.

4 Conclusions and Future Work

We presented a new calculus, π@, designed to be a core language for analysing
formalisms which model localisation and compartmentalisation. We showed π@
at work by a formal comparison of the reasonable encodings of BioAmbients
and Brane languages, which permitted to clarify their structural similarities and
semantical differences.

This is the first part of a wide analysis towards a disparate variety of bio-
logically inspired languages, like [21,11,12]. The generality of π@ features allow
to extend its application not only to process calculi, but also to formalisms not
pertaining to concurrency theory, like P systems [18,25].

Finally, thanks to the strong affinity with π-Calculus, we plan to implement a
stochastic version of π@ as a direct extension of the SPIM simulator [19], hence
providing a platform on top of which it is possible to immediately execute all
the embedded formalisms.

Acknowledgements. we would like to thank Nadia Busi for the precious sug-
gestions and support.

References

1. F. de Boer, C. Palamidessi. Embedding as a Tool for Language Comparison. In
Information and Computation 108(1), 1994.

2. N. Busi, R. Gorrieri. On the computational power of Brane Calculi. Third Work-
shop on Computational Methods in Systems Biology. Edinburgh, 2005.

3. M. Carbone, S. Maffeis. On the Expressive Power of Polyadic Synchronisation in
pi-calculus. In Nordic Journal of Computing 10(2): 70-98, 2003.

4. L. Cardelli. Brane Calculi - Interactions of Biological Membranes. In Computa-
tional Methods in Systems Biology, 2004.

5. L. Cardelli, A. D. Gordon. Mobile Ambients. In Foundations of Software Sci-
ence and Computation Structures: First International Conference, FOSSACS ’98.
Springer-Verlag, 1998.

6. L. Cardelli, G. Păun. An universality result for a (mem)brane calculus based
on mate/drip operations. In International Journal of Foundations of Computer
Science. World Scientific Publishing Company, 2005.

7. D. Chiarugi, M. Curti, P. Degano, R. Marangoni. VICE: A VIrtual CEll. Compu-
tational Methods in Systems Biology. 2004

A Core Calculus for a Comparative Analysis of Bio-inspired Calculi 425

8. M. Curti, P. Degano, C. T. Baldari. Causal π-Calculus for Biochemical Modelling
In Computational Methods in Systems Biology. 2003.

9. R. Cleaveland, G. Lüttgen, V. Natarajan. Priority in Process Algebra. In J.A.
Bergstra, A. Ponse, S. A. Smolka, editors, Handbook of Process Algebra, Elsevier,
2001.

10. V. Danos, C. Laneve. Formal Molecular Biology. In Theoretical Computer Science
325 (1), 2004.

11. V. Danos, S. Pradalier. Projective Brane-calculus. Computational Methods in
Systems Biology: Second International Workshop, CMSB?04, 3082:134?148. 2004.

12. C. Laneve, F. Tarissan. A simple calculus for proteins and cells In Proc. of
the Workshop on Membrane Computing and Biologically Inspired Process Calculi
(MeCBIC’06). 2006.

13. P. Lecca, C. Priami, C. Laudanna, G. Constantin. Predicting cell adhesion prob-
ability via the biochemical stochastic pi-calculus. In Symposium on Applied Com-
puting. 2004

14. R. Milner. The Polyadic π-Calculus: a Tutorial. In F. L. Hamer, W. Brauer and H.
Schwichtenberg, editors, Logic and Algebra of Specification. Springer-Verlag, 1993.

15. R. Milner. Communicating and Mobile Systems: The π-Calculus. Cambridge
University Press, 1999.

16. U. Nestmann, B.C. Pierce. Decoding Choice Encodings. In Proc. of the 7th Inter-
national Conference on Concurrency Theory (CONCUR ’96). 1996.

17. C. Palamidessi. Comparing the expressive power of the synchronous and the asyn-
chronous π-calculi. Mathematical Structures in Computer Science 13(5): 685-719.
2003.

18. G. Păun. Computing with membranes. Journal of Computer and System Sciences,
61(1):108–143, 2000.

19. A. Phillips, L. Cardelli. A correct abstract machine for the stochastic pi-calculus.
Transactions on Computational Systems Biology. 2005.

20. C. Priami. Stochastic π-calculus. The Computer Journal 38 (7). 1995.
21. C. Priami, P. Quaglia. Beta binders for biological interactions. In Computational

Methods in Systems Biology, 2004.
22. A. Regev, W. Silverman, E. Shapiro. Representation and simulation of biochemical

processes using the π-Calculus process algebra. In Proc. of the Pacific Symposium
on Biocomputing (PSB ’01). World Scientific Press, 2001.

23. C. Priami, A. Regev, W. Silverman, E. Shapiro. Application of a stochastic passing-
name calculus to representation and simulation of molecular processes. Information
Processing Letters 80. 2001.

24. A. Regev, E. Panina, W. Silverman, L. Cardelli, E. Shapiro. BioAmbients: an
abstraction for biological compartments. Theoretical Computer Science, 2004.

25. C. Versari. Encoding catalytic P systems in π@. In Proc. of the Workshop on Mem-
brane Computing and Biologically Inspired Process Calculi (MeCBIC’06). 2006.

A Rewriting Semantics for Type Inference

George Kuan, David MacQueen, and Robert Bruce Findler

University of Chicago
1100 East 58th Street, Chicago, IL 60637

{gkuan,dbm,robby}@cs.uchicago.edu

Abstract. When students first learn programming, they often rely on a simple
operational model of a program’s behavior to explain how particular features
work. Because such models build on their earlier training in algebra, students
find them intuitive, even obvious. Students learning type systems, however, have
to confront an entirely different notation with a different semantics that many find
difficult to understand.

In this work, we begin to build the theoretical underpinnings for treating type
checking in a manner like the operational semantics of execution. Intuitively,
each term is incrementally rewritten to its type. For example, each basic con-
stant rewrites directly to its type and each lambda expression rewrites to an arrow
type whose domain is the type of the lambda’s formal parameter and whose range
is the body of the lambda expression which, in turn, rewrites to the range type.

1 Introduction

This paper represents our first steps in exploring a completely different way to think
about the type checking process. Instead of visualizing type checking as the process
of constructing a proof-tree, we explore type checking as rewriting, in the spirit of
Felleisen-Hieb [11].

We demonstrate our technique in the context of three different type systems: the
simply typed lambda calculus (section 2), Curry/Hindley-style type inference (sec-
tion 3), and Hindley/Milner-style let polymorphism (section 4). Along the way, we
prove that our reformulations of the type systems have the same power as the exist-
ing ones. We also fill a gap in the literature, proving that the binding-depth numbering
scheme used in the SML/NJ compiler [1] (which is similar to the one used in the Caml
implementation [27]) is equivalent to Algorithm W .

In addition to using the proofs in this paper to validate these systems, all of the
rewriting systems have been implemented in PLT Redex [21] and have been carefully
tested (except the system in figure 7, because it is not feasibly executable). They are
available for download at http://www.cs.uchicago.edu/∼gkuan/rwsemtypes/.
To keep the systems in this paper as close to our PLT Redex implementations as possi-
ble, we use a Scheme-like syntax for expressions and types. In particular, arrow types
are written in prefix parenthesized form and the variables bound by l expressions are
surrounded by parenthesis, rather than suffixed with a dot.

R. De Nicola (Ed.): ESOP 2007, LNCS 4421, pp. 426–440, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

2 Simply Typed l -Calculus

Fig. 1 contains the grammar and the traditional presentation of the type system
for the simply typed l -calculus (STLC). Fig. 2 contains the rules that define our type
checking relation, 7→t , which rewrites expressions to their types. The typing context T
dictates that type checking proceeds from left to right. Numeric constants rewrite to the
type num. l -abstractions rewrite to an arrow type whose domain is the specified type of
the parameter and whose range is the body of the original l -abstraction, but with free
occurrences of the parameter variable replaced by its type. Application expressions are
rewritten when the function position of an application is an arrow type whose domain
matches the type in the argument position. In that case, they rewrite to the range of
the function type. We dub this rule tb because it is the type-level analogue of the
application of a function to an argument. Terms that fail to type check get stuck without
producing a final type. For example, (@ 2 3) rewrites to (@ num num), which does not
match any of the rewrite rules.

Because the 7→t relation incrementally rewrites a term to a type, intermediate states
are hybrid expressions (eh ∈ EXPh) that contain a mixture of STLC and type syntac-
tic forms, and encompass both STLC and type expressions (i.e., STLC ⊆ EXPh and
TYPE ⊆ EXPh). To see how such hybrid expressions come about, consider this reduc-
tion sequence (where the redexes have been underlined):

(l (y (→ num num)) (l (x num) (@ y x)))
7→t (→ (→ num num) (l (x num) (@ (→ num num) x))) by [tc-lam]
7→t (→ (→ num num) (→ num (@ (→ num num) num))) by [tc-lam]
7→t (→ (→ num num) (→ num num)) by [tc-tb]

We start with a l expression whose parameter, y, has type (→ num num) and whose
body is another l expression whose parameter, x, has type num. The inner l ’s body is
the application of y to x. The first reduction step rewrites the outer l -abstraction into an
arrow type whose domain is (→ num num) and whose range is the body of the original
l -abstraction but with all the occurrences of y replaced by (→ num num), producing a
hybrid term. The next step is to rewrite the remaining l expression, this time replacing
x with num. The final step is a tb step. It replaces the application expression with num,
because the function position’s domain matches the argument position.

Theorem 1 (Soundness and Completeness for 7→t)
For any e and t , /0 ` e : t ⇔ e 7→∗

t t .

Proof. [sketch1] From left to right, the proof is a straightforward induction on the
derivation of /0 ` e : t . From right to left, we must first construct the CEK machine
analogue of the reduction system [8, 10], making the context search and program vari-
able to type substitutions explicit. This transformation makes it possible to correlate the
structure of the typing derivation tree and the structure of the reduction sequence. ut

1 All of the proofs in this paper have been carried out in the accompanying tech report [16];
proof sketches that show only the essential ideas are presented here.

A Rewriting Semantics for Type Inference 427

e ::= x | (l (x t) e) | (@ e e) | number STLC
t ::= num | (→ t t) TYPE

G ` number : num
(x : t ∈ G)

[t-var]
G ` x : t

G ` e1 : (→ t1 t2) G ` e2 : t1
[t-app]

G ` (@ e1 e2) : t2

G [x : t1] ` e : t2
[t-lam]

G ` lx : t1.e : (→ t1 t2)

Fig. 1. Grammar and traditional type system for the simply typed l -calculus

eh ::= x | (l (x t) eh) | (@ eh eh) | number | (→ t eh)| num EXPh
T ::= (@ T eh) | (@ t T) | (→ t T) | 2

T[number] 7→t T[num] [tc-num]
T[(l (x t) eh)] 7→t T[(→ t {x 7→ t}eh)] [tc-lam]
T[(@ (→ t1 t2) t1)] 7→t T[t2] [tc-tb]

Fig. 2. Grammar and rewriting type system for simply typed l -calculus (TC)

E ::= (@ E e) | (@ v E) | 2 E[(@ (l (x t) e) v)] 7→e E[{x7→v}e] [ev-bv]
v ::= (l (x t) e) | number

Fig. 3. Evaluation Rewriting Semantics

Although Theorem 1 guarantees that the type checker is sensible, we might wish to
relate it directly to evaluation, bypassing the traditional type system. Fig. 3 gives the
standard evaluation contexts and rewrite rules for call-by-value STLC.

A first cut at a direct statement of type soundness for our rewriting type system is to
simply take the union of the the evaluation relation 7→e and the type checking relation
7→t , and then prove that it is confluent, i.e. each intermediate step in the evaluation
sequence reduces to the same type.

Definition 1 (Combined rewrite relation 7→). 7→ = 7→e ∪ 7→t .

For an example of 7→, see Fig. 4. The upper left contains the application of the
identity function to 42. It can rewrite two different ways. Along the top of the diagram,
type checking rules apply, eventually reducing to the type num. Moving down from the
original term, the rule for function application applies, producing 42, which also type
checks to num.

Unfortunately, the union of the relations is not confluent in general. Consider the
example in Fig. 5. It is an ill-typed term, but after a single application becomes well-
typed. Accordingly, the type checking rewrite rules detect the error in the original term,

428 G. Kuan, D. MacQueen, and R.B. Findler

tc-const

t
c
-tb

tc-const

tc-lam

e
v
-b

(@ (l (x num) x) 42)

42

(@ (-> num num) 42)

num

(@ (-> num num) num)

Fig. 4. Confluent examples for combined rewrite relation

t
c
-
c
o
n
s
t

tc
-c
on
st

t
c
-
l
a
m

tc
-c
on
st

tc-const

t
c
-
l
a
m

e
v
-b

(@
 (l (x num) 42)
 (l (y num) (@ 1 1)))

42

(@
 (-> num 42)
 (l (y num) (@ 1 1)))

num

(@
 (-> num num)
 (l (y num) (@ 1 1)))

(@
 (-> num num)
 (-> num (@ 1 1)))

(@
 (-> num num)
 (-> num (@ num 1)))

(@
 (-> num num)
 (-> num (@ num num)))

Fig. 5. Non-confluent counterexample for combined rewrite relation

but produce type num for the term after b -reduction eliminates the subexpression con-
taining the type error.

Theorem 2 (Non-confluence of 7→). There exists an expression e, such that e 7→ eh, e
7→ e′

h, eh 6= e′
h, and both eh and e′

h are either types or stuck under 7→.

Proof. The expression (@ (l (x num) 42) (l (y num) (@ 1 1))) rewrites to both num
and an expression that decomposes into a type checking context with the stuck state (@
num num) in the hole. ut

Nevertheless , we do know that 7→ is confluent for any term that is well-typed, thus
implying a preservation theorem.

Theorem 3 (Preservation). If e 7→∗
t t & e 7→e e′, then e′ 7→∗

t t

Proof (sketch). This follows from the observation that, once a term takes a type check-
ing step, it can never again take an evaluation step. That, plus Theorem 1 and a standard
type preservation argument for the traditional type system tells us that the relation is
confluent when the original term is well-typed, and thus the theorem holds. ut

A Rewriting Semantics for Type Inference 429

(
@

(

l
(
x
)

x
)

5
)

(@ (-> num
num)

5)

(@ (-> num
num)

num)

(@ (-> (-> num num)
(-> num num))

5)

(@ (-> (-> num num)
(-> num num))

num)

(@ (-> (-> (-> num num) num)
(-> (-> num num) num))

5)

(@ (-> (-> (-> num num) num)
(-> (-> num num) num))

num)

 num

Fig. 6. Rewriting nondeterministically

e ::= x | (l (x) e) | (@ e e) UTLC
en ::= x | (l (x) en) | (@ en en) | number | (→ t en) | num EXPn
Tn ::= (@ Tn en) | (@ t Tn) | (→ t Tn) | 2

t ::= num | (→ t t)

Tn[number] 7→n Tn[num]) [nd-num]
Tn[(l (x) en)] 7→n Tn[(→ t {x 7→ t} en]) [nd-lam]
Tn[(@ (→ t1 t2) t1)] 7→n Tn[t2] [nd-tb]

Fig. 7. Grammar and rewrite rules for nondeterministic (ND) inference calculus

3 Curry/Hindley Type Inference

A conceptually simple way to extend the rewrite system from section 2 to handle
type inference is to erase the type annotation on the bound parameter, yielding the
untyped l -calculus (UTLC), and re-interpret the [tc-lam] rule, allowing it to rewrite
the bound variable to any type. To see how this plays out, consider the example in
Fig. 6. It begins with the application of the identity function to 5, which decomposes
into a type checking context with (l (x) x) in the hole. Since there is no longer any
constraint on the bound variable, the l -expression rewrites to every arrow type whose
domain and range are the same. Although all but one of these choices are ultimately
doomed, they can still each rewrite at least one more step, replacing 5 with num. At this
point, the application rule only applies to the term where the type chosen for x was num
so the top-most sequence in the figure rewrites to num. All of the rest of the choices get
stuck.

Accordingly, we must also refine the notion that an expression has a type to say that
an expression has a type if there exists some reduction sequence from that expression
to that type. This intuition is turned into a formal system in Fig. 7. The [nd-lam] rule
has a t that only appears on the right-hand side of the rule, indicating that it can be

430 G. Kuan, D. MacQueen, and R.B. Findler

instantiated to any type. The n subscript on the 7→n relation indicates that the relation
models the nondeterministic choice of the type of the function parameter.

We can relate the nondeterministic system with the original one via the function E ,
that maps EXPh to EXPn by erasing the type annotations in l -expressions. In partic-
ular, the nondeterministic choice does not keep us from type checking terms that type
checked before:
Theorem 4 (Completeness of nondeterministic reduction). For any STLC expres-
sion e and type t ,

e 7→∗
t t ⇒ E (e) 7→∗

n t

Proof (sketch). Simply erasing all of the types on the parameters in the reduction
quence for 7→t produces a valid reduction sequence for 7→n with the desired

properties. ut

But the implication in the reverse direction does not hold. In particular, the erasure
of the term (@ (l (x (→ num num)) x) 1) has type num, even though the term itself
does not. Still, it is possible to restore types to any erased term that has a type, in order
to produce a typeable term, as the following theorem shows.

Theorem 5 (Soundness of nondeterministic reduction). For any UTLC expression e
and type t , if e 7→∗

n t then there exists a STLC expression e′ such that E (e′) = e and
e′ 7→∗

t t

Proof (sketch). This proof goes through by induction, once the inductive hypothesis is
strengthened to allow for an arbitrary variable to type substitution to be applied to e. ut

A direct implementation of this system is not feasible, for two reasons. First, it
would require searching an infinitely large space and second, it would not produce a
single best answer. For example, the expression (l (x) x) reduces to an infinite number
of types, namely all function types whose domain and range are the same. The standard
approach (due to Curry and Hindley [6, 14]) to coping with this problem is to use
unification, and so we add unification to our model, as shown in Fig. 8.

The language in Fig. 8 is the same as the one in Fig. 7, except that expressions
may be wrapped with unify and types may be type variables (x). This system uses type
variables and unify to enforce constraints between types whereas the nondeterministic
system guesses types. In particular, a l -expression now reduces to an arrow type whose
domain is fresh type variable. Similarly, an application of a type to another type reduces
to a new type variable after wrapping the entire expression with a unify expression
that ensures that the function type on the left hand side of the application matches the
argument type on the right hand side.

Since the context where type checking reductions occur does not contain unify, the
unifys must be reduced before any other reductions occur. The last four reductions in
Fig. 8 cover the reductions of the unify expressions2. The first removes the unification
of two identical types. The second distributes the unification of two different arrow

2 Martelli and Montanari introduced a rewriting method for performing unification[20]. Our
unification system is related to theirs. Instead of explicitly transforming equation sets, we
work on unify prefixes, each of which represents one equation.

A Rewriting Semantics for Type Inference 431

se

p ::= (unify tu tu p) | eu
eu ::= x | (l (x) eu) | (@ eu eu) | number | (→ tu eu) | num | x
Tu ::= (@ Tu eu) | (@ tu Tu) | (→ tu Tu) | 2

tu ::= num | (→ tu tu) | x TYPEu
x ::= type variables TVAR

Tu[number] 7→u Tu[num] [ch-num]
Tu[(l (x) eu)] 7→u Tu[(→ x {x 7→ x} eu)] [ch-lam]

x fresh
Tu[(@ tu1 tu2)] 7→u (unify tu1 (→ tu2 x) Tu[x]) [ch-tb]

x fresh
(unify tu1 tu1 p) 7→u p [ch-u-eq]
(unify (→ tu1 tu2) (→ tu3 tu4) p) 7→u (unify tu1 tu3 (unify tu2 tu4 p)) [ch-u-dist]

(→ tu1 tu2) 6= (→ tu3 tu4)
(unify tu x p) 7→u (unify x tu p) [ch-u-orient]

tu 6= x
(unify x tu p) 7→u {x 7→ tu}p [ch-u-inst]

x /∈ ftv(tu)
ftv(t) = set of type variables occurring in t .

Fig. 8. Grammar and rewrite rules for Curry/Hindley calculus

types to the unification of their domains and their ranges. The third reduction orients
the unify reduction; if the second argument to unify is a type variable and the first is
not, the reduction swaps the arguments. The final reduction performs a unification of a
type variable and another type not containing that type variable by substituting the type
for that type variable.

Unlike the 7→n relation, the 7→u relation is deterministic. For example, this is the
reduction sequence for the example from Fig. 6:

(@ (l (x) x) 5)
7→u (@ (→ x x) 5)
7→u (@ (→ x x) num)
7→u (unify (→ x x) (→ num x ′) x ′)
7→∗

u num

The first step generates a fresh type variable and replaces the l -expression with an
arrow type whose domain and range are that type variable. As in Fig. 6, the next step
replaces 5 with num. The next step generates the unification problem that ultimately
results in the type num as the final answer.

Where the first step in the 7→n relation generated an infinite number of next states,
the 7→u relation generates a schematic expression that represents all of those states.
Throughout the course of a complete ND reduction sequence, we may encounter a num-
ber of these reductions that generate multiple next states. For any particular combination
of choices of next states, we can construct a ground type substitution g : TVAR → TYPE
that instantiates the type variables in the CH reduction sequence to those types chosen in
the ND reduction sequence. We can exploit this correspondence to make the relation

432 G. Kuan, D. MacQueen, and R.B. Findler

ship

between the two type checking relations precise, via the ground type substitution g
for a complete ND reduction sequence e 7→∗

n t .

Theorem 6 (Nondeterministic & Curry/Hindley typing relationship)

.

Let e ∈ UTLC.

Completeness If e 7→∗
n t then there exists a tu and a type variable to type substitution

g such that e 7→∗
u tu and gtu = t .

Soundness If e 7→∗
u tu then for all ground types t that are instantiations of tu, e 7→∗

n t .

Proof (sketch). This proof hinges on the observation that the structure of the complete
reduction sequences in 7→n and 7→u are related by a ground type substitution g for the
complete ND reduction sequence, as shown in this diagram:

eu¢

en¢en

eu

gg
uu

n

(unify ... eu)

Most of the work in this proof is verifying the conditions of the above diagram. To
prove these conditions, we need to build the ground type substitution.

For the completeness part of the theorem, only [nd-lam] reductions in the ND re-
duction sequence produce terms that instantiate type variables in the corresponding CH
terms. Each [nd-lam] step in the complete ND reduction sequence replaces a bound
variable xi with a parameter type ti. For each [nd-lam] step, associate a fresh type vari-
able xi. The ground type substitution maps each xi to ti. The [ch-lam] steps should use
xi for the fresh type variable when reducing the l -binder for xi.

For the soundness part, the ground type substitution is the composition of two sub-
stitutions. First, we need the composition of all the unification substitutions that are
produced by performing the unifications introduced by the [ch-tb] reduction. The com-
position of all the unification substitutions is certainly a solution for any of the individ-
ual unification problems because solved type variables are eliminated and will never be
reintroduced in the CH reduction sequence. Furthermore, we need a substitution that
instantiates all the residual unconstrained type variables to arbitrary types. In a com-
plete ND reduction sequence, all [nd-lam] reductions must instantiate with a type that
is an instance of the final unification solution for the type variable x introduced by the
corresponding [ch-lam] reduction.

Three other essential facts must be established. First, we need to establish that
ground type substitutions distribute over a CH type checking context decomposition
to yield an ND context decomposition, i.e., g(Tu[eu]) = (gTu)[geu] and gTu is a Tn and
geu is an en. Second, that the composition of two most general unifiers is also a most
general unifier (due to Robinson [28]) and finally that the unify reductions perform uni-
fications consistent with a most general unifier. ut

.

A Rewriting Semantics for Type Inference 433

e ::= x | (l (x) e) | (@ e e) | number | (let (x e) e) UTLC`

ep ::= x | (l d (x) ep) | (@ ep ep) | number | (let d (x ep) ep) | t | s
Tp ::= (let d (x Tp) ep) | (@ Tp ep) | (@ t Tp) | (→ t Tp) | 2

p ::= (unify t t p) | ep
t ::= num | x d | (→ t t)
s ::= (∀ a ({x 7→ a}t))
d ::= 0 | 1 | . . . | ¥

Fig. 9. Grammar for Hindley/Milner calculus

4 Hindley/Milner inference

As a practical matter, it is important to add a let-form to our language so that pro-
grammers can bind a single value and use it with multiple types. A let expression has
the form (let (x e1) e2), where x is a program variable, e1 is the definiens, whose value is
bound to x in e2, the body. The meaning of let expressions is the same as an application
of an explicit l expression: ((l (x) e2) e1).

Type checking a let expression by replacing it with such an application, however,
yields a type checker that rejects too many programs. In particular, imagine that the
expression bound to the variable is the identity function and that the body of the let
expression uses the identity function on both booleans and integers. Rewriting the let
expression as above would produce a program that does not type check, even though
the original program certainly is safe.

A naive type checker could overcome this problem by rewriting let expressions
via substitution, replacing the each free occurrence of the let-bound variable by the
definiens (i.e. b -reducing the redex that the let expression abbreviates). Then each re-
sulting occurrence of the argument expression could be type checked separately in its
own context within the body, allowing the type checker to infer different types for dif-
ferent uses of the bound variable.

Unfortunately, such a scheme involves redundant work in the type checker and pos-
sibly duplicated type error messages. To avoid this redundancy, Milner developed a type
checking algorithm [4, 24] that achieves the same result as the substitution by splitting
the type checking of the definiens into two phases: first determining a generic type that
is independent of the context of use, and then for each use of the defined variable de-
termining an instance of the generic type that fits its context. It does this by first type
checking the definiens in the context of the whole let expression, and then partition-
ing the unconstrained type variables in the result into two sets: polymorphic variables
that can be safely instantiated to different types at each occurrence of the let-bound
vaiable, and those that cannot because they are constrained by the outer context. The
result is represented as a polymorphic type ∀a.t , where the type variables in a are the
polymorphic, or generalizable, variables.

If we try to modify the Curry/Hindley rewriting system to generalize types at let
bindings, the problem is that the context of outer bound variables will already have been
eliminated by the [ch-lam] rule, making it difficult to calculate generalizability of type
variables. An alternative approach to determining generalizability is based on an idea

434 G. Kuan, D. MacQueen, and R.B. Findler

E[(@ (l (x) ep) v)] 7→e E[{x 7→ v}ep] [ev-beta]
E[(let d (x ep1) ep2)] 7→e E[{x 7→ ep1}ep2] [ev-let]

Tp[number] 7→p Tp[num] [tcp-num]
Tp[(l d (x) ep)] 7→p Tp[(→ x d ({x 7→ x d}ep))] [tcp-lam]

x d fresh
Tp[(@ t1 t2)] 7→p (unify t1 (→ t2 x ¥) Tp[x ¥]) [tcp-tb]

x ¥ fresh
Tp[(let d (x t) ep)] 7→p Tp[{x 7→ (∀ a t1)} ep] [tcp-let]

a fresh and t1 = {G (t , d) 7→ a}t
Tp[(∀ a t)] 7→p Tp[{a 7→ x ¥ }t] [tcp-poly]

x ¥ fresh
(unify x d t p) 7→p (L (t , d))({x d 7→ t}p) [tcp-u-inst]

x d /∈ ftv(t)

The other Curry-Hindley rewrite rules, [ch-u-eq], [ch-u-dist], and [ch-u-orient]
carry over with the u subscripts replaced by p.

G : t ×depth → x list
G (t,d) = {x d′ ∈ ftv(t) | d < d′}
L : t ×depth → x depth substitution
L (t,d) = {x d′ 7→ x d | x d′ ∈ ftv(t) and d < d′}

Fig. 10. Rewrite rules for Hindley/Milner Type Inference

originally suggested by Damas [7] in the early 1980s and refined and used in compilers
like SML/NJ in the mid 1980s. The idea is to assign a binding depth or rank to type
variables that reflects the level of the outermost variable binding they are associated
with. Substitution for a ranked type variable must preserve a maximal rank property,
namely, that the ranks of type variables in the term substituted cannot exceed the rank
of the type variable being substituted for. The invariant is that if a type variable x d has
rank d, it occurs in the type of a lambda binding at nesting depth d, but in no shallower
binding. If a type t is substituted for x d , then its type variables now also appear in
the type of this d level binding, and they should also have rank d, or possibly lower
if they also appear in bindings at even lower depths. Thus substitution for a variable
of rank d entails globally resetting depths of type veriables found the substituted type
to have rank at most d to reflect their new binding depth. Now the test for whether
a type variable appears in the binding context of an expression being typed reduces
to comparing its rank with the current binding depth – if its rank is greater than the
current binding depth, then it does not appear in the context and thus can be considered
polymorphic.3 The fresh type variables used to generically instantiate the polymorphic
type of a let-bound variable occurrence start with rank ¥ , reflecting the fact that they
initially are not free in the type of any lambda-bound variables.

3 Some rank systems, like the one described here and the one used in the SML/NJ type checker,
are based on nesting levels of lambda bindings. Other closely related systems, such Rémy’s
[27] and McAllester’s [23], are based on nesting levels of let bindings.

A Rewriting Semantics for Type Inference 435

Our rewriting system for Hindley/Milner inference is presented in Figs. 9 and 10.
We first pre-label the binding constructs of the expression being typed with their lambda
binding depths. For instance, here is an example of a term e and its depth-labeled ver-
sion.

(l (x) (l (y) (let (z (l (u) y)) (@ (@ z x) (@ z 1)))))
(l 1 (x) (l 2 (y) (let 2 (z (l 3 (u) y)) (@ (@ z x) (@ z 1)))))

The rewriting system operates on such labeled expressions from the ep grammar. When
a type variable x d is generated by applying the [tcp-lam] rule to an expression (l d (x)
e), it is initially assigned the depth d of its l -binding to indicate that it is associated with
this depth d binder. The label d is a positional indicator that supports a short-cut method
of determining the binding scope of a type variable. In the above example, x, y, and u
will be assigned type variables x 1

x ,x 2
y , and x 3

u respectively. Fresh type variables used to
create a generic instance of a polytype in rule [tcp-poly] are given a depth of ¥ , since
they are (initially) not associated with any lambda-bound variable. For example, the
polymorphic type of the identity function is (∀a (→ a a)), but [tcp-poly] will reduce
the type to (→ x ¥ x ¥). The unification rule [tcp-u-inst] can instantiate a type variable
to a type t that may contain other type variables. This rule enforces the maximal rank
property discussed above by applying a depth-adjustment substitution L (t,d). The
substitution acts on the full expression p to ensure that the adjustment is performed
globally on all occurrences of the affected type variables.

As an example of how the system operates, consider the labeled expression

(l 1 (x) (let 1 (f (l 2 (y) (@ x y))) (@ f 5)))

The type rewriting of this expression proceeds as follows:

(l 1 (x) (let 1 (f (l 2 (y) (@ x y))) (@ f 5))) (1)

7→∗
p (→ x 1

x (let 1 (f (→ x 2
y (@ x 1

x x 2
y))) (@ f 5))) (2)

7→p (unify x 1
x (→ x 2

y x ¥
3) (→ x 1

x (let 1 (f (→ x 2
y x 2

3))) (@ f 5)))) (3)

7→p (→ (→ x 1
y x 1

3) (let 1 (f (→ x 1
y x 1

3))) (@ f 5)))) (4)

7→p (→ (→ x 1
y x 1

3) (@ (→ x 1
y x 1

3) 5)))) (5)

7→∗
p (→ (→ num x 1

4) x 1
4) (6)

The expression at line (2) is obtained by two applications of [tcp-lam] to rewrite the l x
and l y binders, introducing the rank 1 type variable x 1

x and the rank 2 type variable x 2
y .

At line (3), the application in the definiens of f is rewritten using [tcp-tb], introducing
the fresh type variable x ¥

3 to represent the type of the result of the application and
adding a unify prefix. Rewriting this with rule [tcp-u-inst] produces line (4), where the
substitution for x 1

y is accompanied by the reduction of the ranks of x 2
y and x ¥

3 to 1.
At line (5), the rule [tcp-let] has been used to rewrite the let-expression. Because the
let is at depth 1, and all the type variables in the rewritten definiens are rank 1, the set
of generalizable variables G ((→ x 1

y x 1
3),1) is /0, so in this case no polymorphism is

introduced and f is replaced by the nonpolymorphic type (→ x 1
y x 1

3). In this example
the lack of polymorphism is due to the occurrence of x, which is bound in an outer
scope, in the body of the definition of f . If on the other hand the definition of f had

436 G. Kuan, D. MacQueen, and R.B. Findler

been (l 2 (y) y), then the definiens would have rewritten to (→ x 2
y x 2

y) and [tcp-let]
would have generalized this to (∀a (→ a a)).

We prove the correctness of this typing rewrite system for let-polymorphism, which
we will call HM, by showing that it is equivalent to a slightly modernized variant [17] of
Milner’s Algorithm W [24]. We assume this Algorithm W defines a function W (G ,e),
where G is a type assignment mapping variables to types, returning a pair (q ,t), where
q is a type substitution mapping type variables to types (either monomorphic or poly-
morphic). W has the property that:

W (G ,e) = (q ,t) =⇒ q (G) ` e : t

Theorem 7 (HM Rewrite Soundness and Completeness relative to W)
For any closed UTLC` expression e, let el be the depth-labeled version of e.
Then el 7→∗

p t iff W (/0,e) = (q ,t).

Proof (sketch). To prove the theorem, as in Section 2, we use an abstract stack machine.
The machine serves to make the type substitutions and the typing environment explicit,
allowing us to prove that both Algorithm W and the rewriting system in Fig. 10 are
equivalent to the machine and thus equivalent to each other.

In this case the machine is an analogue of a CEK machine, augmented with a type
variable substitution register. Each machine state is of the form (ep,G ,S ,K) where ep
is the control (C), G is an environment mapping program variables to types (E), S (the
extra register) is a list of substitutions that map type variables to types, and K is the
type checking context. The S register is used to maintain a correspondance between the
machine’s states and the substitutions that recursive calls in Algorithm W produce. The
type checking context is similar to Tp, but rather than being a context, it is represented
as a list of context frames (in some cases augmented with a little extra information).

There are three kinds of rules. The first kind searches for the next reducible expres-
sion. For example, this rule

((@ e e′), G ,S ,K) 7→pm (e, G ,S , (@ 2 e′)::K)

pushes into the left-hand side of an application. The second kind of rules are analogues
of the rules in Fig. 10. For example, this rule:

((@ t p t ′
p), G ,S , K) 7→pm ((unify t p (→ t ′

p x) x), G ,S , K) x is fresh

is the analogue of the [tcp-tb] rule. Finally, the third kind of rule manipulates the
environment. For example, this rule:

(x, G ,S , K) 7→pm (G (x), G ,S ,K)

looks up a variable in the environment. The S register is maintained by the unification
rules, and the rules that pop contexts. The complete set of rules are given in the first
author’s master’s paper [16].

An important technical element for relating the rewrite system, the abstract ma-
chine, and Algorithm W is a demonstration that the depth label mechanism correctly
models the usual type variable generalization criterion based on type environments or
binding prefixes. The proof of this hinges on stating the correct invariant regarding the

A Rewriting Semantics for Type Inference 437

depth labeling of type variables occurring in the definiens of a let-expression and any
pending unification problems throughout the process of rewriting of the definiens into
its type. The invariant states that if x d is one of these type variables, and if the depth of
the let is d0, then d < d0 if and only if x d appears in the binding prefix derived from the
context of the let. ut

5 Related Work

Prior approaches to type checking and inference using rewriting derive type constra
ints from expressions and then use rewriting to solve these constraint sets. The
Stratego/XT program transformation language [3] offers an example of a term rewrit

-

ing system for type checking for a simple arithmetic language. Pašalić et al [26] give a
graph rewriting system for the original formulation of Hindley/Milner inference with-
out explicit generalization. In contrast, our term rewriting systems operate directly on
expressions to transform them into their types.

Type checking via rewriting has a similar feel to abstract interpretation. Each rewrite
step takes us a little bit closer to the knowledge of the type of the term, much in the
way that abstract interpretation gathers information about the program text. Cousot [5]
has formulated type checking as an abstract interpretation; our work has a concrete,
operational flavor where his is more denotational. Kahrs [15] has a different formulation
of type checking via abstract interpretations; while his is more operational, like ours,
it is based on a translation to a machine-like language; ours operates directly on the
program text.

There have been several alternative presentations of type inference algorithms.
Wand’s algorithm [31] performs a Curry/Hindley style type inference by performing a
syntactic traversal of an expression collecting equational constraints and then solving
these constraints by unification. Much of the prior work on explaining Algorithm W
type inference focuses on retaining information from intermediate steps of the process.
Soosaipillai [29] maintains a list of the types inferred for each subexpression. Duggan
and Bent [9] as well as Wand [30] retain a list of the instantiations of all type variables.
This method is similar to Rémy’s keeping around a constraint set corresponding to in-
stantiations and unification problems. Instead of retaining specific information during
inference, we present the entire process in terms of simple rewrite steps. We also apply
the substitutions from unification and do not retain them.

There has been significant work done to improve the quality of error messages gen-
erated by type systems, especially in languages that have type inference [2, 12, 13, 17,
18, 19, 22, 25, 32, 33]. Like that work, we too are motivated by the desire to make type
checking easier to understand. Generally speaking, that work augments existing type
checking algorithms with more information or improves existing type checking algo-
rithms in order to improve the error messages produced by the type checker. Our work,
in contrast, is an entirely different way to think about the behavior of a type checker.

6 Conclusion

Our vision is that this work forms the technical foundation for a more ambitious
program to make type checkers easier to understand. Our goal is to lay the groundwork

438 G. Kuan, D. MacQueen, and R.B. Findler

for two related efforts in bringing modern type systems to the ordinary programmer:
education and debugging. Because the rewrite-based type checkers are based directly
on the program text and the rewrite rules are relatively straightforward counterparts to
evaluation, we believe students can more easily gain an intuition for how a type checker
behaves by studying them. Similarly, we expect to be able to exploit the operational
flavor of the type checking rewrite rules to build debuggers to help more experienced
programmers understand why ill-typed programs fail to type check.

Although we believe this work succeeds in providing an accessible model for typing
the simply typed l -calculus and for the Curry-Hindley type inference system, the need
to resort to the depth-labeling scheme for the Hindley/Milner system leads to a rewrit-
ing system that is not as simple and elegant as we would like. Nevertheless, we have
managed to produce a correct version of Hindley-Milner polymorphism and to provide,
to the best of our knowledge, the first proof that an algorithm based on depth-numbering
is equivalent to Algorithm W .

Looking to the future, we expect to continue to work on Hindley-Milner and to
explore other features of modern type systems and static analyses looking for more op-
portunities to exploit the operational point of view based on rewriting.

References

[1] Andrew W. Appel and David B. MacQueen. Standard ML of New Jersey. In Martin
Wirsing, editor, 3rd International Symp. on Prog. Lang. Implementation and Logic Pro-
gramming, pages 1–13, New York, August 1991. Springer-Verlag.

[2] Mike Beaven and Ryan Stansifer. Explaining type errors in polymorphic languages. ACM
Letters on Programming Languages and Systems, 2(1-4):17–30, March–December 1993.

[3] Martin Bravenboer, Karl Trygve Kalleberg, Rob Vermaas, and Eelco Visser. Stratego/XT
Tutorial, Examples, and Reference Manual for Stratego/XT 0.16. Department of Informa-
tion and Computing Sciences, Universiteit Utrecht, Utrecht, The Netherlands, November
2005.

[4] Luca Cardelli. Basic polymorphic typechecking. Science of Computer Programming,
8(2):147–172, 1987.

[5] Patrick Cousot. Types as abstract interpretations. In POPL ’97: Proceedings of the 24th
ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pages 316–
331, New York, NY, USA, 1997. ACM Press.

[6] H.B. Curry. Modified basic functionality in combinatory logic. Dialectica, 23:83–92, 1969.
[7] Luı́s Damas. unpublished note, 1982.
[8] Olivier Danvy and Lasse R. Nielsen. Refocusing in reduction semantics. Technical Re-

port BRICS RS-04-26, Department of Computer Science, University of Aarhus, Aarhus,
Denmark, 2004. http://citeseer.ist.psu.edu/danvy04refocusing.html.

[9] Dominic Duggan and Frederick Bent. Explaining type inference. Science of Computer
Programming, 27:37–83, 1996.

[10] Matthias Felleisen and Matthew Flatt. Programming languages and lambda calculi. Revi-
sion of 1989 edition, 2003.

[11] Matthias Felleisen and Robert Hieb. A revised report on the syntactic theories of sequential
control and state. Theoretical Computer Science, 103(2):235–271, 1992.

[12] Christian Haack and Joseph B. Wells. Type error slicing in implicitly typed higher-order
languages. Sci. Comput. Program., 50(1-3):189–224, 2004.

A Rewriting Semantics for Type Inference 439

[13] Bastiaan Heeren, Jurriaan Hage, and S. Doaitse Swierstra. Scripting the type inference
process. In ICFP ’03: Proceedings of the eighth ACM SIGPLAN international conference
on Functional programming, pages 3–13, New York, NY, USA, 2003. ACM Press.

[14] J. Roger Hindley. The principal type scheme of an object in combinatory logic. Transac-
tions of the American Mathematical Society, 146:29–40, 1969.

[15] Stefan Kahrs. Polymorphic type checking by interpretation of code. Technical Report
ECS-LFCS-92-238, University of Edinburgh, 1992.

[16] George Kuan. A rewriting semantics for type inference. Technical Report TR-2007-01,
University of Chicago, 2007.

[17] Oukseh Lee and Kwangkeun Yi. Proofs about a folklore let-polymorphic type inference
algorithm. ACM Transanctions on Programming Languages and Systems, 20(4):707–723,
July 1998.

[18] Benjamin Lerner, Dan Grossman, and Craig Chambers. Seminal: searching for ML type-
error messages. In ML ’06: Proceedings of the 2006 Workshop on ML, pages 63–73, New
York, NY, USA, 2006. ACM Press.

[19] Xavier Leroy. Programmation du système Unix en Caml Light. Technical report 147,
INRIA, 1992.

[20] Alberto Martelli and Ugo Montanari. An efficient unification algorithm. ACM Trans.
Program. Lang. Syst., 4(2):258–282, 1982.

[21] Jacob Matthews, Robert Bruce Findler, Matthew Flatt, and Matthias Felleisen. A visual
environment for developing context-sensitive term rewriting systems. In Rewriting Tech-
niques and Applications, 2004.

[22] Bruce McAdam. How to repair type errors automatically. Trends in functional program-
ming, pages 87–98, 2002.

[23] David McAllester. A logical algorithm for ML type inference. In Rewriting Techniques
and Applications, 2003.

[24] Robin Milner. A theory of type polymorphism in programming. JCSS, 17:348–375, 1978.
[25] Matthias Neubauer and Peter Thiemann. Discriminative sum types locate the source of type

errors. In ICFP ’03: Proceedings of the eighth ACM SIGPLAN international conference on
Functional programming, pages 15–26, New York, NY, USA, 2003. ACM Press.

[26] Emir Pašalić, Jeremy G. Siek, and Walid Taha. Concoqtion: Mixing indexed types
and Hindley-Milner type inference. In POPL ’07: Conference record of the 34th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages, 2007.

[27] Didier Rémy. Extending ML type system with a sorted equational theory. Research Report
1766, Institut National de Recherche en Informatique et Automatisme, Rocquencourt, BP
105, 78 153 Le Chesnay Cedex, France, 1992.

[28] J. A. Robinson. A machine-oriented logic based on the resolution principle. J. ACM,
12(1):23–41, 1965.

[29] Helen Soosaipillai. An explanation based polymorphic type checker for Standard ML.
Master’s Thesis, 1990.

[30] Mitchell Wand. Finding the source of type errors. In POPL ’86: Proceedings of the 13th
ACM SIGACT-SIGPLAN symposium on Principles of programming languages, pages 38–
43, New York, NY, USA, 1986. ACM Press.

[31] Mitchell Wand. A simple algorithm and proof for type inference. Fundamenta Infomaticae,
10:115–122, 1987.

[32] Jun Yang. Explaining type errors by finding the source of a type conflict. In SFP ’99:
Selected papers from the 1st Scottish Functional Programming Workshop (SFP99), pages
59–67, Exeter, UK, UK, 2000. Intellect Books.

[33] Jun Yang. Improving Polymorphic Type Explanations. PhD thesis, Heriot-Watt University,
2001.

440 G. Kuan, D. MacQueen, and R.B. Findler

Principal Type Schemes for Modular Programs

Derek Dreyer and Matthias Blume

Toyota Technological Institute at Chicago
{dreyer,blume}@tti-c.org

Abstract. Two of the most prominent features of ML are its expres-
sive module system and its support for Damas-Milner type inference.
However, while the foundations of both these features have been studied
extensively, their interaction has never received a proper type-theoretic
treatment. One consequence is that both the official Definition and the
alternative Harper-Stone semantics of Standard ML are difficult to imple-
ment correctly. To bolster this claim, we offer a series of short example
programs on which no existing SML typechecker follows the behavior
prescribed by either formal definition. It is unclear how to amend the
implementations to match the definitions or vice versa. Instead, we pro-
pose a way of defining how type inference interacts with modules that
is more liberal than any existing definition or implementation of SML
and, moreover, admits a provably sound and complete typechecking algo-
rithm via a straightforward generalization of Algorithm W. In addition
to being conceptually simple, our solution exhibits a novel hybrid of the
Definition and Harper-Stone semantics of SML, and demonstrates the
broader relevance of some type-theoretic techniques developed recently
in the study of recursive modules.

1 Introduction

The standard way of defining the static semantics of languages with type in-
ference is to give a set of declarative Curry-style typing rules that assign types
to untyped terms. Since these rules are typically written in a nondeterministic
fashion, it is not prima facie decidable whether a term can be assigned a type.
The most canonical example of such a type system is that of Hindley and Milner
(HM) [15], which is at the core of higher-order, typed languages like ML and
Haskell. For HM, there exists a well-known type inference algorithm, Damas
and Milner’s Algorithm W [1], that is sound and complete with respect to it.
Soundness means that if type inference succeeds, it returns a valid typing. Com-
pleteness means that if a valid typing exists, then type inference will succeed. To
achieve completeness, Algorithm W relies on the fact that, in HM, all well-typed
terms e have a principal type scheme, i.e., a type τ that is in some sense more
general than any other type that e could be assigned.

The Definition of Standard ML [16] (SML for short) provides a declarative
semantics of the language, including both the core language and the module
system. It is often assumed that this combination can be typechecked effectively
via a straightforward extension of Algorithm W . In this paper we observe that

R. De Nicola (Ed.): ESOP 2007, LNCS 4421, pp. 441–457, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

442 D. Dreyer and M. Blume

functor F (X: sig type t end) = struct
val f = id id

end
structure A = F (struct type t = int end)
structure B = F (struct type t = bool end)

Fig. 1. Common preamble for examples (a) and (b)

val = A.f 10
val = B.f false

val = A.f 10
val = B.f "dude"

Fig. 2. Example (a) Fig. 3. Example (b)

this is not so. As we will explain, all existing implementations of SML differ from
the Definition—and from one another—in rather subtle ways when it comes to
the interaction of type inference and modules. In particular, this occurs when the
value restriction forces certain module-level val-bindings to be monomorphic.

The value restriction [11,22], which is important for ensuring type safety, limits
the set of val-bindings that may be assigned polymorphic types to those whose
right-hand sides are syntactic values, i.e., terms that are syntactically known to
be free of effects. For example, consider

val f = id id

where id is the identity function fn x => x. According to the declarative se-
mantics of SML, f can be assigned any (monomorphic) type τ → τ where τ is a
type that is well-formed at the point where f is defined. However, it cannot be
given the polymorphic type ∀α.α → α because id id is not a syntactic value.

Example (a). The situation changes if f is defined in the body of a functor.
Consider the code in Figures 1 and 2. The value restriction forces the type of f
in functor F to be monomorphic. Since A is an instantiation of F, and since A.f is
applied to an integer, one might expect that the type of f must be int → int,
in which case the application of B.f to false would be ill-typed. In fact, though,
there exists another solution: f can also be given the type X.t → X.t, in which
case the type of A.f is int → int, the type of B.f is bool → bool, and the
program typechecks. In essence, by appearing in the body of a functor with an
abstract type argument, f can turn into an (explicit) polymorphic function.

This example has profound implications for the use of Damas-Milner type
inference in typechecking modular programs. When f is typechecked by Algo-
rithm W , the algorithm returns a principal type scheme α → α, where α is a
unification variable (u-var) that may be instantiated to a particular type later
on. However, when the typechecker leaves the body of functor F, the u-var α

must become a Skolem function parameterized over the abstract type compo-
nents of F’s argument, in this case the type t. When A.f is applied to int, we
learn not that α = int, but rather that α(int) = int. Similarly, when B.f is

Principal Type Schemes for Modular Programs 443

applied to false, we learn that α(bool) = bool. Together, these two equations
determine that the only possible instantiation of α is the identity function λt.t.

In general, finding solutions to these kinds of constraints requires a form of
higher-order unification. While it is possible that the fragment of higher-order
unification required is decidable, no SML typechecker implements it. As a result,
no existing SML implementation accepts Example (a). . . that is, except MLton.

1.1 Generalized Functor Signatures

The MLton compiler for SML takes an unusual approach to the typechecking
of programs with functors. Although it is well-known that MLton is a whole-
program compiler that achieves great performance gains through defunctoriza-
tion, it is perhaps less well-known that MLton performs defunctorization during
typechecking. That is, after typechecking a functor such as F in Example (a),
MLton inlines the definition of F at every point where F is applied before pro-
ceeding to typecheck the rest of the program. This has the effect that the def-
inition of F is re-typechecked at every application, and each copy of F may be
assigned a different signature. In the case of Example (a), this means that in the
first copy of F, its binding for f may be assigned type int → int, and in the
second copy of F, its binding for f may be assigned type bool → bool.

Example (b). While MLton’s approach to typechecking functors results in the
acceptance of Example (a), it also results in the acceptance of similar programs
that are not well-typed according to the Definition. Consider Example (b) in
Figures 1 and 3. Since B.f is now applied to a string instead of a boolean, there
is no single type for f that would make the program typecheck. Put another
way, there is no solution to the unification problem α(int) = int ∧ α(bool) =
string. However, since MLton inlines F prior to typechecking the definition of
B, it is happy to assign f the type string → string in the second copy of F.

We prefer MLton’s behavior to that prescribed by the Definition for several
reasons. First, it does not require any higher-order unification and is therefore
simpler and easier to implement. Second, it is more liberal than the Definition
in a way that is perfectly type-safe. Third, it is arguably more intuitive. Given
that the type X.t and the definition of f are completely unrelated, we feel it is
very odd that Example (a) type-checks under the Definition but Example (b)
does not. That said, the MLton approach has the serious drawback that it needs
to know all uses of F, i.e., it needs access to the whole program.

To overcome this limitation of MLton’s approach, we observe that MLton’s in-
lining of functors is analogous to the well-known explanation of let-polymorphism
(e.g., see Pierce’s textbook [19]), in which let x = e1 in e2 is well-typed if and only
if e1 and e2[e1/x] are. Inlining the definition of x has the same effect as binding
x in the context with a generalized polymorphic type for e1. Similarly, to mimic
the inlining of a functor F, we need to bind F in the context with a generalized
functor signature, i.e., a signature that takes implicit type arguments in addition

444 D. Dreyer and M. Blume

functor G () = struct
datatype t = V
val f = id id

end
structure C = G()
val = C.f C.V

functor G () = struct
val f = id id
datatype t = V

end
structure C = G()
val = C.f C.V

Fig. 4. Example (c) Fig. 5. Example (d)

to the usual explicit module arguments. In the case of Examples (a) and (b), we
would like to assign F the signature

(X: sig type t end) → ∀α. sig val f : α → α end

At each application of F, the type argument α could then be implicitly instan-
tiated with a new type τ , thus enabling both Examples (a) and (b) to typecheck.
The reason that it is sound to permit this kind of implicit polymorphic gener-
alization at the definition of F—i.e., the reason it does not violate the value
restriction—is that functor bindings are bindings of syntactic values.

1.2 Abstract Data Types and Dependencies

The idea of generalized functor signatures sketched above is at the heart of the
type system we present in Sections 2 and 3. However, functors are not the only
complication that modular ML programs introduce into the HM type system.
Another such complication is ML’s facility for defining abstract data types.

Example (c). Consider the code in Figure 4. In this case, the body of functor G
defines an abstract data type t, as well as a value V of type t, prior to its binding
for f. Consequently, the application of C.f to C.V is well-typed according to the
Definition, since f could have been assigned the type t → t.

We run into an interesting problem, though, if we attempt to typecheck this
example using a generalized functor signature for G. In particular, the obvious
generalized signature that one would expect to assign to G is the following:

() → ∀α. sig datatype t = V val f : α → α end

In order to typecheck the definition of C in such a way that the subsequent
application (C.f C.V) will be well-typed, the application of G must instantiate
G’s implicit parameter α with the type C.t. But C.t is not in scope until after
G has been applied, so how can C.t be passed as an argument to G?!

One way to view this problem is as a variation on the original problem that we
observed with typechecking Example (a). In parameterizing G’s signature over α,
we failed to account for the possibility that α might refer to t. In other words, one
might argue, the parameter α should really be a Skolem function, and f’s type
should be α(t) → α(t). This observation is not very encouraging, though, since it
only seems to lead us back to the need for higher-order unification. Fortunately,

Principal Type Schemes for Modular Programs 445

Example Definition Reject All No-HOU/No-track MLton Our Approach

(a) ✓ ✕ ✕ ✓ ✓

(b) ✕ ✕ ✕ ✓ ✓

(c) ✓ ✕ ✓ ✓ ✓

(d) ✕ ✕ ✓ ✕ ✓

Fig. 6. Comparison of behaviors of different semantics and implementations on Ex-
amples (a)-(d). Definition: This reflects the behavior of both the Definition and the
Harper-Stone alternative semantics of SML [7]. Reject All: SML/NJ, the ML Kit, TILT,
SML.NET, and Hamlet reject all examples. No-HOU/No-track : Poly/ML, Alice, and
Moscow ML fail to accept Example (a) and fail to reject Example (d). (Actually,
Moscow ML rejects (d) in batch mode but accepts it in interactive mode.) MLton fails
to reject Example (b). Our Approach is more liberal than any of the existing definitions
or implementations, and it is easy to implement correctly.

as we will explain shortly in Section 2, we have an alternative solution to this
dilemma that does not require higher-order unification.

Example (d). Lastly, let us consider the code in Figure 5, which is the same as
that in Figure 4 save that the order of the bindings of t and f has been switched.
Because of this switch, Example (d) is not legal SML, for t is not in scope at
the point where f is defined.

The fact that the Definition treats Examples (c) and (d) differently means
that a faithful implementation of SML must track the potential dependencies
between unification variables (u-vars) and the abstract types that are in scope
when the u-vars are introduced. This tracking adds a layer of complexity to
the type inference algorithm that, when combined with the problems we have
observed concerning type inference and functors, seems to be tricky to get right.
As evidence of this, we note that, with the exception of MLton (and Moscow
ML when run in batch mode), no implementation of SML correctly handles both
Examples (c) and (d) according to the Definition (see Figure 6). Furthermore,
as the design we propose below will demonstrate, having a declarative semantics
that permits Example (d) to typecheck is not only perfectly type-safe—it makes
the typechecking algorithm much easier to specify.

1.3 The SML/NJ Approach

As we have seen, it is difficult to implement type inference for SML correctly. A
number of existing implementations reject all four examples presented above—
even though Examples (a) and (c) are legal SML—and for at least one compiler
(namely, SML/NJ), the rejection of these examples is the result of a deliberate
implementation decision [13]. Specifically, SML/NJ’s policy is that no unification
variables created during type inference are permitted to escape to the module
level, even if subsequent code determines how they must be instantiated. This
policy has the benefit of being consistent and predictable, and since program-
mers are not exactly clamoring for the rather contrived Examples (a)-(d) to be
accepted anyway, one may wonder why it has not been adopted more widely.

446 D. Dreyer and M. Blume

In fact, there are several reasons why we find SML/NJ’s reject-all approach
unsatisfactory. First and foremost, a consequence of this policy that is well-
known to be irritating to many programmers is that one cannot write a side-
effecting module binding val x = ref nil and have the SML/NJ typechecker
infer the specific type of x from later use within the module—one is forced to
write a type annotation on x.

Second, SML/NJ’s semantics is based on the algorithmic notion of unification
variables escaping to the module level. In order to give a declarative account of
SML/NJ’s semantics, the typing rule for a module-level val-binding would have
to demand that the expression being bound have a unique type in the case that
it is not a syntactic value. Since uniqueness is a higher-order statement about
the set of all possible typing derivations for a given term, formulating such a
rule requires care in order to ensure that the typing judgment is well-founded.

We believe it is straightforward to show that such a higher-order rule makes
sense, provided that the static semantics of the core language does not depend
on that of the module language (i.e., that module definitions cannot appear
within core terms). This assumption is valid for Standard ML. It is also true for
Extended ML [8], in whose formalization Kahrs et al. employ similar higher-order
rules with different motivation. However, from a language design standpoint, this
condition is unnecessarily limiting. Several implementations of Standard ML
(e.g., Moscow ML and Alice ML) extend the language with features such as
first-class modules [21] and the ability to write module bindings within let-
expressions, which introduce interdependencies between the core and module
languages. It is unclear whether the natural declarative account of SML/NJ’s
semantics is well-founded in the presence of such extensions.

2 Our Approach

Instead of attempting to prohibit any interaction between core type inference
and module type checking, we propose a way of understanding and defining the
semantics of type inference in the presence of modules that is more liberal than
any existing definition or implementation of SML. In fact, our formalization of
type inference (Section 3) embraces the interaction with modules in the sense
that polymorphic generalization and instantiation (typically viewed as strictly
core-language notions) are treated as coercions between the core and module
languages. Moreover, our approach admits a provably sound and complete type-
checking algorithm via a straightforward generalization of Algorithm W . This
is the first (positive) result that we are aware of concerning the interaction of
ML-style modules and Damas-Milner type inference.

One key element of our approach is the idea of classifying functors using
generalized functor signatures (GFS’s), which we sketched at the end of Section 1.
We will characterize their semantics precisely in Section 3.

The second key element of our approach concerns the treatment of abstract
data types. As explained in Section 1, the problem with Example (c) is that we
need access to the abstract type C.t, generated by the functor application G(),
ahead of time so that we can use it to instantiate G’s implicit type argument.

Principal Type Schemes for Modular Programs 447

To make this possible, we use ideas and formal techniques from a type system
developed recently by Dreyer [2] (in the study of recursive modules) that provides
precisely the feature we are looking for: forward references to abstract types.

Traditionally, abstract data types are modeled by values of existential type
(∃α.τ), which must be “unpacked” in order to obtain a fresh abstract type α
and a value x of type τ representing the (operations on) values of type α [17].
In Dreyer’s system, the type name α may be created ahead of time, before the
package defining α and the (operations on) values of type α is even available.
This is motivated by the goal of modeling recursive module programming, in
which the abstract type components of a module may be “forward-declared”.

To see how Dreyer’s approach is useful in typechecking Example (c), let us
first consider the declarative module typing judgment that we will formalize in
Section 3. This judgment has the form Δ ; Γ � mod : Σ with α ↓, and can be read:
“In type context Δ and term/module context Γ, module mod can be assigned
signature Σ and, when evaluated, will define the abstract types α.”1 (Note:
We use α as a semantic representation of the abstract types defined by mod—
the α are not permitted to appear syntactically in mod itself.) An invariant of
this judgment is that the variables α must be bound in the type context Δ—
i.e., they must already have been created prior to the evaluation of mod . In
order to ensure that abstract types are defined exactly once, we follow Dreyer
in employing techniques reminiscent of a linear type system. In particular, we
have several different binding forms for type variables that indicate whether or
not they have been defined. In the typing judgment given above, α are assumed
to be bound in Δ as undefined (written α ↑K), and the evaluation of mod has
the effect of changing the bindings of α to defined (written α ↓K).

As for Example (c): Under the approach to declarative module typing we have
sketched above, since the binding structure C = G() results in the definition
of an abstract type C.t, the typing of this binding must occur in a context where
C.t, represented semantically by some α, is already bound (as undefined). Since
α must appear in the context of the binding, it is no problem to instantiate G’s
implicit argument using α, and thus Example (c) will be deemed well-typed.

Concerning Example (d): As we argued in Section 1, we believe it is perfectly
legitimate for Example (d) to be accepted, and our declarative module typing
judgment affirms this stance. Specifically, since the body of functor G—let’s call
it mod—defines an abstract type t, it must be that the semantic type variable
α representing t is bound as undefined in the initial context under which mod
is typechecked. As a result, α is in scope throughout all of mod , including the
binding for f, regardless of the order in which t and f are bound. (Admittedly,
this has the somewhat odd effect that f is assigned a type with which the pro-
grammer could not have annotated f explicitly. However, due to the so-called
avoidance problem [12], this situation already arises in SML in other contexts.)

In summary, the main benefit of using this style of declarative typing judgment
is that we are freed from worrying about the relative order in which unification
variables and ADT’s are introduced into scope during type inference.

1 We adopt the notation E to mean a (possibly empty) ordered list E1, . . . , En.

448 D. Dreyer and M. Blume

Label Seq’s �s ::= ε | �.�s
Paths P ::= X.�s
Kinds K,L ::= T | Tn →T
Type Con’s con , typ ::= P | α | typ → typ | λ(α).typ | con(typ)
Terms exp ::= P | x | λx.exp | exp1(exp2) | exp : typ | let X= mod in exp
Values val ::= P | x | λx.exp | val : typ
Signatures sig ::= [[K]] | [[= con : K]] | [[∀(α).typ]] | [[� � X : sig]] | (X : sig1) → sig2

Modules mod ::= P | [con] | [exp] | [� � X =mod] | λ(X : sig).mod | P1(P2) |
let X= mod1 in mod2 | mod :> sig | mod : sig

Fig. 7. External language syntax

Finally, since our approach to module typing is based on a type system, which
has been proven type-safe by Dreyer using standard syntactic methods, it is quite
easy to show that our approach is type-safe. Following Harper and Stone [7], we
do not give a dynamic semantics directly for our ML-style module language, but
rather by elaboration (aka evidence translation) into an internal language type
system (IL). In the case of the Harper-Stone alternative formalization of SML,
that IL is a variant of Harper-Lillibridge/Leroy’s module type system [6,10].
The IL we employ here is a variant of Dreyer’s type system for recursive modules
(minus the recursion) [3]. The details of this translation are given in a companion
technical report [4]. We omit further discussion due to space limitations.

Our ability to prove type safety in a straightforward manner is a clear advan-
tage of our approach over the ad hoc formal approach adopted by the Defini-
tion [16], as well as improvements to the Definition style such as Russo’s [20]. As
we will see in the next section, however, there are several aspects of our declar-
ative typing judgment that are more reminiscent of the Definition than they are
of the Harper-Stone semantics. Our design thus exhibits a viable hybrid of two
approaches to defining SML that are often viewed as incompatible.

3 Declarative Semantics

Figure 7 presents the syntax of our external (i.e., source-level) SML-like lan-
guage. In order to provide a clean formal account of the essential issues, our
formalism pares away some of the syntactic complexities of real SML programs.

First, we model type and value bindings in modules as a special case of mod-
ule bindings, in which the module being bound is an atomic type or term mod-
ule, i.e., a module containing a single type or term component. The signature
[[K]] models an opaque specification of an atomic type module [con] whose type
(constructor) component con has kind K. The signature [[= con : K]] models a
transparent specification of an atomic type module whose type component is
manifestly equal to con of kind K. The signature [[∀(α).typ]] models a value spec-
ification, classifying atomic term modules [exp] whose term component exp has

Principal Type Schemes for Modular Programs 449

IL Type Con’s A, τ ::= α | τ1 → τ2 | λ(α).τ | A(τ)

IL Signatures Σ ::= [[= A :K]] | [[τ]] | [[� : Σ]] | Σ1 → Σ2 |
∀(α).Σ | ∀(α ↓K).Σ | ∃(α ↓K).Σ

Type Contexts Δ ::= ∅ | Δ, α ↑K | Δ, α ↓K | Δ, α
Term/Module Contexts Γ ::= ∅ | Γ, x : τ | Γ, X :Σ

Interpretation of type constructors: Δ ; Γ � con � A : K

Δ ; Γ � P : [[= A :K]]

Δ ; Γ � P � A : K
(1)

Other rules in technical report [4]. . .

Interpretation of signatures: Δ ; Γ � sig � ∃(α ↓K).Σ

Δ ; Γ � [[K]] � ∃(α ↓K).[[= α : K]]
(2)

Δ ; Γ � con � A : K

Δ ; Γ � [[= con : K]] � ∃().[[= A :K]]
(3)

Δ ; Γ � typ � τ : T
Δ ; Γ � [[∀().typ]] � ∃().[[τ]]

(4)
Δ, α ; Γ � typ � τ : T

Δ ; Γ � [[∀(α).typ]] � ∃().∀(α).[[τ]]
(5)

Δ ; Γ � [[]] � ∃().[[]]
(6)

Δ ; Γ � sig1 � ∃(α1 ↓ K1).Σ1

Δ, α1 ↓K1 ; Γ, X1 : Σ1 � [[� � X : sig]] � ∃(α ↓K).[[� : Σ]]

Δ ; Γ � [[�1 �X1 : sig1, � � X : sig]]

� ∃(α1 ↓K1, α ↓ K).[[�1 : Σ1, � : Σ]]

(7)

Δ ; Γ � sig1 � ∃(α1 ↓ K1).Σ1 Δ, α1 ↓K1 ; Γ, X :Σ1 � sig2 � ∃(α2 ↓ K2).Σ2

Δ ; Γ � (X : sig1)→ sig2 � ∃().∀(α1 ↓K1).Σ1 → ∀().∃(α2 ↓K2).Σ2
(8)

Fig. 8. Interpretation of signatures

type ∀(α).typ. (Note that if α = ∅, this degenerates from a polymorphic type to
a monomorphic type.)

Second, we follow Harper and Lillibridge [6] and model structures as records
[� �X=mod], each of whose components has both a distinct external name
(a label �) and a distinct internal name (a variable X). The label is used to
refer to the component from the outside of the module, whereas the variable
is used to refer to the component in subsequent bindings within the struc-
ture. Thus, each X is bound in the context of the subsequent bindings and
may be alpha-varied. For simplicity, we adopt the ML convention that projec-
tions are not permitted from arbitrary modules. The only projection form is the
path P, which consists of zero or more projections from a module variable X.
(Note: We will usually drop the trailing “.ε” from a path, e.g., writing X instead
of X.ε.)

Third, we model the classic distinction between “polytypes” and “monotypes”
as a special case of the distinction between signatures and types. In other words,
polymorphic generalization occurs when a core-level value val is encapsulated in

450 D. Dreyer and M. Blume

Declarative typing for terms: Δ ; Γ � exp : τ

Δ ; Γ � P : [[τ]]

Δ ; Γ � P : τ
(9)

Δ ; Γ � P : ∀(α).[[τ]] Δ � δ : α

Δ ; Γ � P : δτ
(10)

x : τ ∈ Γ
Δ ; Γ � x : τ

(11)

Δ � τ1 : T Δ ; Γ, x : τ1 � exp : τ2

Δ ; Γ � λx.exp : τ1 → τ2
(12)

Δ ; Γ � exp1 : τ2 → τ Δ ; Γ � exp2 : τ2

Δ ; Γ � exp1(exp2) : τ
(13)

Δ ; Γ � exp : τ
Δ ; Γ � typ � τ : T

Δ; Γ � exp : typ : τ
(14)

Δ, α ↑K ; Γ � mod : Σ with α ↓
Δ, α ↓K ;Γ, X :Σ � exp : τ α # FTV(τ)

Δ ; Γ � let X =mod in exp : τ
(15)

Declarative typing for modules: Δ ; Γ � mod : Σ with α ↓

We omit “with α ↓” if α = ∅ (i.e., if mod does not define any abstract types).

X : Σ ∈ Γ
Δ ; Γ � X : Σ

(16)
Δ ; Γ � P : [[. . . , � : Σ, . . .]]

Δ ; Γ � P.� : Σ
(17)

Δ ; Γ � con � A : K

Δ ; Γ � [con] : [[= A :K]]
(18)

Δ ; Γ � exp : τ

Δ;Γ � [exp] : [[τ]]
(19)

Δ, α ; Γ � val : τ

Δ ; Γ � [val] : ∀(α).[[τ]]
(20)

Δ ; Γ � [] : [[]]
(21)

Δ ; Γ � mod1 : Σ1 with α1 ↓
Δ @α1 ↓ ; Γ, X1 : Σ1 � [� � X =mod] : [[� : Σ]] with α ↓

Δ; Γ � [�1 �X1 =mod1, � � X=mod] : [[�1 : Σ1, � : Σ]] with α1, α ↓
(22)

Δ ; Γ � sig � ∃(α1 ↓ K1).Σ1

Δ, α1 ↓K1, β, α2 ↑K2 ; Γ, X :Σ1 � mod : Σ2 with α2 ↓
Δ ; Γ � λ(X : sig).mod : ∀(α1 ↓K1).Σ1 → ∀(β).∃(α2 ↓K2).Σ2

(23)

Δ ; Γ � P1 : ∀(α1 ↓ K1).Σ1 →∀(β).∃(α2 ↓ K2).Σ2 Δ ; Γ � P2 : Σ

Δ � Σ
 ∃(α1 ↓K1).Σ1 � δ1 Δ � δ : β Δ � δ2 : α2 ↑ K2

Δ;Γ � P1(P2) : δδ1δ2Σ2 with δ2α2 ↓
(24)

Δ ; Γ � mod1 : Σ1 with α1 ↓
Δ @ α1 ↓ ; Γ, X :Σ1 � mod2 : Σ2 with α2 ↓

Δ ; Γ � let X =mod1 in mod2 : Σ2 with α1, α2 ↓ (25)

Δ ; Γ � sig � ∃(α ↓K).Σ Δ, β ↑L ; Γ � mod : Σ′ with β ↓
Δ, β ↓L � Σ′
 ∃(α ↓ K).Σ � δ′ Δ � δ : α ↑ K

Δ ; Γ � mod :> sig : δΣ with δα ↓
(26)

Δ ; Γ � sig � ∃(α ↓ K).Σ Δ;Γ � mod : Σ′ with β ↓
Δ@ β ↓ � Σ′
 ∃(α ↓K).Σ � δ′

Δ ; Γ � mod : sig : δ′Σ with β ↓
(27)

Fig. 9. Declarative typing rules for terms and modules

an atomic term module [val], and polymorphic instantiation happens implicitly
when a module path P is used as a core-level expression. This approach decon-
structs so-called “let-polymorphism” into its orthogonal component parts. The

Principal Type Schemes for Modular Programs 451

classic let-polymorphic construct, let x= exp1 in exp2, is encodable in our lan-
guage as “let X= [exp1] in {x
→ X}exp2”.2

Concerning the remaining constructs: Functors are modeled as λ-abstractions.
Functor applications restrict the functor and its argument to be paths, but the
more general SML-style “P(mod)” can be encoded using module-level let as
“let X= mod in P(X)”. The two sealing constructs, mod :> sig and mod : sig ,
model SML’s opaque and transparent signature ascription, respectively.

Figure 8 defines the semantic interpretation of external-language (EL) signa-
tures in terms of internal-language (IL) signatures. The IL is a variant of Dreyer’s
type system for recursive modules [3], but it is not necessary to be familiar with
the whole IL in order to understand how IL signatures are used to interpret EL
signatures. The basic idea is that, in IL signatures, abstract type components
are modeled as type variables, and their scope is made explicit through the use
of universal and existential quantifiers. In fact, IL signatures are very close, both
conceptually and formally, to the semantic objects employed by the Definition.

As we explained in Section 2, type variables α that represent abstract type
components of modules may be bound in type contexts Δ as undefined (α ↑K)
or as defined (α ↓K). Type contexts provide an additional binding form (written
just α), which is used to represent the implicit type arguments to polymorphic
functions (and generalized functors). This third binding form is necessary be-
cause implicit type arguments may be instantiated with types that are either
defined or undefined (see Example (c)). All type variables of this third kind
are assumed to have base kind T. Term/module contexts, as one would expect,
bind term variables x to types τ , and module variables X to signatures Σ. We
adopt the convention that contexts are unordered and that commas join together
contexts whose domains are disjoint.

The signature interpretation judgment has the form Δ ; Γ � sig � ∃(α ↓ K).Σ,
which means that α (of kinds K) represent the opaque type components of
EL signature sig , and Σ is essentially sig with its opaque components defined
transparently in terms of α. For example, sig type t val v : t end would
be interpreted as ∃(α ↓T).[[t : [[= α :T]], v : [[α]]]].

Most of the rules for interpreting signatures are straightforward. One point of
note is in Rule 8 for functor signatures. While the ∀→∃ interpretation of SML’s
generative functors is entirely standard (see Russo’s thesis [20]), the “∀().” that
precedes the existential in the result signature is unusual. In fact, this is simply
a degenerate instance of a generalized functor signature (GFS), which may in
the general case use the universal quantifier preceding the existential to bind a
set of implicit type variables. (For example, see Rule 23, discussed below.)

Figure 9 shows the declarative typing rules for terms and modules. In Section 2
we explained the interpretation of the module typing judgment, and the inter-
pretation of the term typing judgment is the standard one. Before considering
the inference rules in detail, let us first define some notation:

We say that A is defined in Δ, written Δ � A ↓ K, if Δ � A : K and FTV(A) ⊆
{α | α ↓ K ∈ Δ}. We will write Δ @ α ↓ to mean Δ\{α ↑ K | α ∈ α}{α ↓K | α ∈

2 We use {x �→X} to denote the capture-avoiding substitution of X for x.

452 D. Dreyer and M. Blume

α}. We assume and maintain the invariant that all types are kept in β-normal
form. (Thus, type substitutions are assumed to implicitly β-normalize.)

Definition 3.1 (Well-Formed Type Substitution)
A type substitution δ mapping Δ to Δ′ is well-formed, written Δ′ � δ : Δ, if:

1. dom(δ) ⊆ dom(Δ)
2. ∀α ↑ K ∈ Δ. ∃β ↑K ∈ Δ′. β = δα

3. ∀α1 ↑ K1 ∈ Δ. ∀α2 ↑ K2 ∈ Δ. (δα1 = δα2) ⇒ (α1 = α2)
4. ∀α ↓ K ∈ Δ. Δ′ � δα ↓ K
5. ∀α ∈ Δ. Δ � δα : T

Conditions (2) and (4) ensure that substitutions preserve the (un-)definedness of
type variables, and condition (3) ensures that undefined variables do not become
aliased under substitution. Condition (5) ensures that no restrictions are placed
on the types that can be substituted for implicit variables.

Rule 10 performs polymorphic instantiation when coercing a module path P to
the term level. Given a path P of polytype signature ∀(α).[[τ]], the second premise
of the rule nondeterministically guesses a substitution δ for the implicit type
arguments α, which is then applied to the type τ . Rule 20 performs polymorphic
generalization when coercing a value val to the module level. It acts as a dual
to Rule 10 in that it nondeterministically guesses a set of implicit α to be added
to the context during the typing of val .

Rules 21 and 22 define typing for structures. Regarding the latter, there are
two points of note. First, all the abstract types defined by the structure (namely,
α1 and α) are assumed to be bound as undefined in the initial typing context Δ.
Thus, they are in scope throughout the whole structure. Second, note that once
the first module binding (mod1) is typechecked, the remainder of the structure
is typechecked in a context where α1 are considered defined (namely, Δ @ α1 ↓).
This ensures that the remainder of the structure will not attempt to redefine α1.
The typing of module-level let (Rule 25) is nearly identical.

Rule 23 defines typing for functors λ(X : sig).mod . The second premise adds
three sets of type variables to the context when typing the functor body. The
α1 represent the abstract type components of the functor argument, which are
assumed to be defined. The β represent the implicit type variables over which
the functor is polymorphically generalized (in much the same way as the α
in Rule 20). The α2 represent the undefined abstract type components that
the functor body mod will define itself. Although the choice of α2 to add to
the context appears to be nondeterministic, the completeness theorem for type
inference will show that there is only one way to choose them.

Rule 24 defines typing for functor applications P1(P2). After checking that P1
has a valid GFS and that P2 has some signature Σ, it uses the signature matching
judgment Δ � Σ � ∃(α1 ↓ K1).Σ1 � δ1 to determine whether Σ is coercible to
P1’s argument signature. The signature matching judgment, which is defined
formally in the technical report [4], returns a substitution δ1 representing the
manifest definitions that Σ provides for the abstract type components α1 of P1’s

Principal Type Schemes for Modular Programs 453

argument signature. This δ1 has the property that Δ � δ1 : α1 ↓K1. The details
of signature matching are largely similar to those in existing accounts of SML.

The fourth premise of Rule 24 nondeterministically guesses a substitution
for P1’s implicit type arguments β (in much the same way as the polymorphic
instantiation in Rule 10). Since the functor application will result in the definition
of a set of abstract types of the shape specified in P1’s result signature (i.e., in
the shape of α2 ↓ K2), the last premise of Rule 24 requires that such a set of
abstract types already exist, undefined, in the context Δ. These abstract types
are denoted by δ2α2.

Finally, Rules 26 and 27 define typing for opaque and transparent sealing, re-
spectively. In both rules, the signature Σ′ of the module mod is matched against
the interpretation ∃(α ↓K).Σ of the ascribed signature sig . This results in a sub-
stitution δ′, which conveys how mod implements the abstract type components
α of sig . In the case of opaque sealing, this information is irrelevant, since the
signature of the sealed module keeps the α abstract (albeit renamed by δ, whose
role is similar to that of δ2 in Rule 24). In the case of transparent sealing, the
substitution δ′ obtained from signature matching is applied to Σ in the signature
of the sealed module, thus allowing mod ’s definitions for the α to leak out.

In both sealing rules, mod is permitted to define a set of abstract types β.
However, Rule 26 adds β to the context Δ when typechecking mod , whereas
Rule 27 assumes β are already present in Δ. The reason for this is as follows. If
mod is opaquely sealed, then β cannot escape the scope of the sealed module—
i.e., β are local abstract types, which are thus introduced into scope locally by
Rule 26. If mod is transparently sealed, then β can leak out into the signature of
the sealed module, and must therefore be bound in the surrounding context Δ.

4 Type Inference Algorithm

The type inference algorithm for our language is based closely on Algorithm W .
We employ unification variables (u-vars), written α, in the usual way. In par-
ticular, we do not explicitly bind u-vars in the context Δ. The u-vars appearing
free in an expression E, which we write as UV(E), are all taken to have kind T.

The inference judgment for terms has the familiar form Δ ; Γ � exp ⇒ (τ ; θ).
Here, Δ, Γ, and exp are considered inputs. τ is the principal type scheme of exp,
meaning that any other type that one can assign to exp declaratively must be
a u-var substitution instance of τ . Lastly, θ is an idempotent u-var substitution
whose domain is a subset of UV(Γ). (In some rules, this is enforced by explicitly
writing θ|Γ, which denotes θ with its domain restricted to UV(Γ).) It represents
the minimal substitution that must be applied to Γ in order to make exp well-
typed. The rules for this judgment are standard (see the technical report [4]).

Figure 10 defines the inference judgment for modules, which has the form
Δ ; Γ � mod ⇒ ∃(α ↓K).(Σ; θ). Here, Δ, Γ, and mod are considered inputs.
The α ↓K represent the abstract types that mod wants to define. Unlike the
declarative judgment, inference does not make any assumption that α are bound
(as undefined) in the input context Δ.

454 D. Dreyer and M. Blume

Signature inference for modules: Δ ; Γ � mod ⇒ ∃(α ↓K).(Σ; θ)

We omit “∃(α ↓ K).” if α ↓K = ∅ (i.e., if mod does not define any abstract types).

Δ ; Γ � P : Σ

Δ ; Γ � P ⇒ (Σ; id)
(28)

Δ ; Γ � con � A : K

Δ ; Γ � [con] ⇒ ([[= A :K]]; id)
(29)

Δ ; Γ � [] ⇒ ([[]]; id)
(30)

Δ ; Γ � exp ⇒ (τ ; θ) exp not a val
Δ ; Γ � [exp] ⇒ ([[τ]]; θ)

(31)
Δ ; Γ � val ⇒ (τ ; θ) α = UV(τ)\UV(θΓ)

Δ ; Γ � [val] ⇒ (∀(α).[[τ]]; θ)
(32)

Δ ; Γ � mod1 ⇒ ∃(α1 ↓K1).(Σ1; θ1)

Δ, α1 ↓K1 ; θ1Γ, X1 : Σ1 � [� � X= mod] ⇒ ∃(α ↓K).([[� : Σ]]; θ2)

Δ ; Γ � [�1 �X1 =mod1, � � X= mod] ⇒ ∃(α1 ↓ K1, α ↓K).([[�1 : θ2Σ1, � : Σ]]; θ2θ1|Γ)
(33)

Δ ; Γ � sig � ∃(α1 ↓K1).Σ1 Δ, α1 ↓ K1 ; Γ, X : Σ1 � mod ⇒ ∃(α2 ↓K2).(Σ2; θ)
α = UV(Σ2)\UV(θΓ) α1, α2 # FTV(θ)

Δ ; Γ � λ(X : sig).mod ⇒ (∀(α1 ↓K1).Σ1 →∀(α).∃(α2 ↓K2).Σ2; θ)
(34)

Δ ; Γ � P1 : ∀(α1 ↓K1).Σ1 →∀(β).∃(α2 ↓ K2).Σ2 Δ ; Γ � P2 : Σ

Δ � Σ
 ∃(α1 ↓K1).Σ1 ⇒ (δ; θ) α fresh

Δ ; Γ � P1(P2) ⇒ ∃(α2 ↓ K2).({β �→ α}θδΣ2; θ)
(35)

Δ ; Γ � mod1 ⇒ ∃(α1 ↓K1).(Σ1; θ1)

Δ, α1 ↓K1 ; θ1Γ, X : Σ1 � mod2 ⇒ ∃(α2 ↓K2).(Σ2; θ2)

Δ ; Γ � let X=mod1 in mod2 ⇒ ∃(α1 ↓K1, α2 ↓K2).(Σ2; θ2θ1|Γ)
(36)

Δ ; Γ � sig � ∃(α ↓K).Σ Δ; Γ � mod ⇒ ∃(β ↓L).(Σ1; θ1)

Δ, β ↓L � Σ1
 ∃(α ↓ K).Σ ⇒ (δ; θ2) β #FTV(θ2θ1|Γ)

Δ ; Γ � mod :> sig ⇒ ∃(α ↓K).(Σ; θ2θ1|Γ)
(37)

Δ ; Γ � sig � ∃(α ↓K).Σ Δ; Γ � mod ⇒ ∃(β ↓L).(Σ1; θ1)

Δ, β ↓ L � Σ1
 ∃(α ↓ K).Σ ⇒ (δ; θ2)

Δ ; Γ � mod : sig ⇒ ∃(β ↓L).(δΣ; θ2θ1|Γ)
(38)

Fig. 10. Inference rules for modules

Σ is the principal signature scheme of mod , meaning that any other signature
that one can assign to mod declaratively must be “less general” than some u-var
substitution instance of Σ. In traditional presentations of HM, “less general” is
characterized by means of a subsumption relation on polytypes. Since polytypes
in our language are just a special case of signatures, we generalize subsumption
to be a relation on signatures. Defined in Figure 11, the judgment Δ � Σ1 � Σ2
says that Σ1 is more general than Σ2. Note that Rules 40 and 41 exploit the
polymorphic instantiation offered by the declarative Rules 9 and 10.

As in the inference judgment for terms, θ is the minimal substitution to be
applied to Γ in order to make mod well-typed. An important point is that the free
variables of θ may include the abstract types α defined by mod . This is critical
because it enables forward references to abstract types. For example, suppose

Principal Type Schemes for Modular Programs 455

Signature subsumption: Δ � Σ1 Σ2

Δ � [[= A :K]] [[= A :K]]
(39)

Δ ; X : Σ � X : τ

Δ � Σ [[τ]]
(40)

Δ, α ; X :Σ � X : τ

Δ � Σ ∀(α).[[τ]]
(41)

Δ � [[]] [[]]
(42)

Δ � Σ1 Σ′
1 Δ � [[� : Σ]] [[� : Σ′]]

Δ � [[�1 : Σ1, � : Σ]] [[�1 : Σ′
1, � : Σ′]]

(43)

Δ, α1 ↓K1, β′, α2 ↓K2 � δ : β Δ, α1 ↓K1, β′, α2 ↓K2 � δΣ2 Σ′
2

Δ � ∀(α1 ↓K1).Σ1 →∀(β).∃(α2 ↓ K2).Σ2 ∀(α1 ↓K1).Σ1 → ∀(β′).∃(α2 ↓K2).Σ
′
2

(44)

Fig. 11. Signature subsumption

that, as a result of inference for an earlier binding in the program, a variable X is
bound in Γ with [[β →β]]. If during inference for mod the u-var β is unified with
one of the α defined by mod , then that constitutes a forward reference from the
signature of X to an abstract type defined later in the program, and we want it
in general to be accepted (for the reasons explained in Section 2).

That said, there are instances in which forward references must be prohibited
in order to ensure soundness of type inference. One such instance is the inference
rule for functors (Rule 34), which includes a side condition stipulating that the
abstract type components of the argument and result (α1 and α2, respectively)
do not appear in the free variables of the output substitution θ. This restriction
is necessitated by the fact that α1 and α2 are local abstract types that are only
in scope within the body of the functor. Indeed, the declarative rule for functors
(Rule 23) imposes the same restriction—when typechecking the functor body it
adds α1 and α2 to Δ instead of assuming that they were already bound in it to
begin with. This has the effect that the typing of earlier bindings in the program
cannot make forward references to α1 and α2.

We have verified manually that the type inference algorithm is sound and
complete with respect to the declarative semantics. Here we state the soundness
and completeness theorems in abbreviated form (only giving the cases concern-
ing modules, and with some of the side conditions elided). The full theorem
statements, together with relevant auxiliary judgments, are given in [4].

Theorem 4.1 (Soundness)
Assuming certain side conditions on Γ and mod ,
if Δ ; Γ � mod ⇒ ∃(α ↓K).(Σ; θ), then Δ, α ↑K ; θΓ � mod : Σ with α ↓.

Theorem 4.2 (Completeness)
Assuming certain side conditions on Γ, Γ′, θ, and mod ,
if Δ′ ⊇ Δ, α ↑ K and Δ′ � θΓ � Γ′ and Δ′ ; Γ′ � mod : Σ with α ↓,
then Δ ; Γ � mod ⇒ ∃(α ↓K).(Σ′; θ′)
and there exists θ′′ such that θ′′θ′Γ = θΓ and Δ′ � θ′′Σ′ � Σ.

The premise Δ′ � θΓ � Γ′ in the completeness statement refers to the natu-
ral generalization of signature subsumption to context subsumption. We use it

456 D. Dreyer and M. Blume

here to build a weakening property of declarative derivations directly into the
induction hypothesis, so as to avoid having to prove it separately.

5 Related and Future Work

Russo describes a type inference algorithm for ML with higher-order and first-
class modules, in which he uses alternating ∃∀-quantification to track the scoping
restrictions on abstract types imposed by The Definition [20]. This technique
is also known as unification under a mixed prefix [14]. Although Russo states
soundness and completeness conjectures, he does not attempt to prove them,
and the implementation of his algorithm in Moscow ML rejects Example (a).

Many researchers have investigated the problem of type inference for a wide
spectrum of languages in the design space between Hindley-Milner and System F.
For example, Odersky and Läufer consider the problem of type inference in the
presence of abstract data types and higher-order polymorphism [18]. Their type
system relies on programmer-provided type annotations for handling polymor-
phic function arguments and existentials. It does not, however, include explicit
type abstractions, and thus cannot directly model ML functors. Due to the pres-
ence of programmer-declared existential types, their inference algorithm, like
Russo’s, has to perform unification under a mixed prefix.

For future work, we are interested in extending our type system and its in-
ference algorithm to more complete languages, in particular to full SML, as well
as to languages with applicative functors [9]. The most prominent example of
such a language is OCaml. Currently, the OCaml compiler rejects all four of our
examples with error messages similar to TILT’s. This comes as no surprise since,
applicative functors aside, the typecheckers of both compilers are based closely
on the Harper-Lillibridge/Leroy type system [6,10].

The problems concerning type inference and modules that we have explored
in this work were originally discovered during the development of a modular
account of Haskell-style type classes in ML [5]. Therefore, we hope to be able
to adapt the techniques developed in this paper in order to obtain a similar
soundness and completeness result for modular type classes.

References

1. Luis Damas and Robin Milner. Principal type schemes for functional programs. In
POPL ’82.

2. Derek Dreyer. Recursive type generativity. To appear in Journal of Functional
Programming. Original version appeared in ICFP ’05.

3. Derek Dreyer. Practical type theory for recursive modules. Technical Report TR-
2006-07, University of Chicago, Department of Computer Science, August 2006.

4. Derek Dreyer and Matthias Blume. Principal type schemes for modular programs.
Technical Report TR-2007-02, Univ. of Chicago Comp. Sci. Dept., January 2007.

5. Derek Dreyer, Robert Harper, and Manuel M. T. Chakravarty. Modular type
classes. In POPL ’07.

Principal Type Schemes for Modular Programs 457

6. Robert Harper and Mark Lillibridge. A type-theoretic approach to higher-order
modules with sharing. In POPL ’94.

7. Robert Harper and Chris Stone. A type-theoretic interpretation of Standard ML.
In G. Plotkin, C. Stirling, and M. Tofte, editors, Proof, Language, and Interaction:
Essays in Honor of Robin Milner. MIT Press, 2000.

8. Stefan Kahrs, Donald Sannella, and Andrzej Tarlecki. The definition of Extended
ML: A gentle introduction. Theoretical Computer Science, 173(2):445–484, 1997.

9. Xavier Leroy. Applicative functors and fully transparent higher-order modules. In
POPL 95.

10. Xavier Leroy. Manifest types, modules, and separate compilation. In POPL ’94.
11. Xavier Leroy. Polymorphic Typing of an Algorithmic Language. PhD thesis, Uni-

versité Paris 7, 1992.
12. Mark Lillibridge. Translucent Sums: A Foundation for Higher-Order Module Sys-

tems. PhD thesis, Carnegie Mellon University, May 1997.
13. David MacQueen, 2006. Private communication.
14. Dale Miller. Unification under a mixed prefix. Journal of Symbolic Computation,

14:321–358, 1992.
15. Robin Milner. A theory of type polymorphism in programming. Journal of Com-

puter and System Sciences, 17:348–75, 1978.
16. Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Definition

of Standard ML (Revised). MIT Press, 1997.
17. John C. Mitchell and Gordon D. Plotkin. Abstract types have existential type.

Transactions on Programming Languages and Systems, 10(3):470–502, 1988.
18. Martin Odersky and Konstantin Läufer. Putting type annotations to work. In

POPL ’96, pages 54–67.
19. Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002.
20. Claudio V. Russo. Types for Modules. PhD thesis, University of Edinburgh, 1998.
21. Claudio V. Russo. First-class structures for Standard ML. Nordic Journal of

Computing, 7(4):348–374, 2000.
22. Andrew K. Wright. Polymorphic references for mere mortals. In ESOP ’92.

A Consistent Semantics of Self-adjusting

Computation

Umut A. Acar1, Matthias Blume1, and Jacob Donham2

1 Toyota Technological Institute
2 Carnegie Mellon University

Abstract. This paper presents a semantics of self-adjusting computa-
tion and proves that the semantics is correct and consistent. The seman-
tics integrates change propagation with the classic idea of memoization to
enable reuse of computations under mutation to memory. During evalua-
tion, reuse of a computation via memoization triggers a change propaga-
tion that adjusts the reused computation to reflect the mutated memory.
Since the semantics combines memoization and change-propagation, it
involves both non-determinism and mutation. Our consistency theorem
states that the non-determinism is not harmful: any two evaluations of
the same program starting at the same state yield the same result. Our
correctness theorem states that mutation is not harmful: self-adjusting
programs are consistent with purely functional programming. We for-
malized the semantics and its meta-theory in the LF logical framework
and machine-checked the proofs in Twelf.

1 Introduction

Self-adjusting computation is a technique for enabling programs to respond to
changes to their data (e.g., inputs/arguments, external state, or outcome of
tests). By automating the process of adjusting to any data change, self-adjusting
computation generalizes incremental computation (e.g., [10,18,19,12,11,17]). Pre-
vious work shows that the technique can speed up response time by orders
of magnitude over recomputing from scratch [3,7], closely match best-known
(problem-specific) algorithms both in theory [2,6] and in practice [7,8].

The approach achieves its efficiency by combining two previously proposed
techniques: change propagation [4], and memoization [5,1,17,15]. Due to an in-
teresting duality between memoization and change propagation, combining them
is crucial for efficiency. Using each technique alone yields results that are far
from optimal [3,2]. The semantics of the combination, however, is complicated
because the techniques are not orthogonal: conventional memoization requires
purely functional programming, whereas change propagation crucially relies on
mutation for efficiency. For this reason, no semantics of the combination existed
previously, even though the semantics of change propagation [4] and memoiza-
tion (e.g., [5,17]) has been well understood separately.

This paper gives a general semantic framework that combines memoization
and change propagation. By modeling memoization as a non-deterministic oracle,

R. De Nicola (Ed.): ESOP 2007, LNCS 4421, pp. 458–474, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Consistent Semantics of Self-adjusting Computation 459

we ensure that the semantics applies to many different ways in which memoiza-
tion, and thus the combination, can be realized. We prove two main theorems
stating that the semantics is consistent and correct (Section 3). The consistency
theorem states that the non-determinism (due to memoization) is harmless by
showing that any two evaluations of the same program in the same store yield
the same result. The correctness theorem states that self-adjusting computation
is consistent with purely functional programming by showing that evaluation
returns the (observationally) same value as a purely functional evaluation. Our
proofs do not make any assumptions about typing. Our results therefore ap-
ply in both typed and untyped settings. (All previous work on self-adjusting
computation assumed strongly typed languages.)

To study the semantics we extend the adaptive functional language AFL [4]
with a memo construct for memoization. We call this language AML (Section 2).
The dynamic semantics of AML is store-based. Mutation to the store between
successive evaluations models incremental changes to the input. The evaluation
of an AML program also allocates store locations and updates existing loca-
tions. A memo expression is evaluated by first consulting the memo-oracle, which
non-deterministically returns either a miss or a hit. Unlike in conventional mem-
oization, hit returns a trace of the evaluation of the memoized expression, not
just its result. To adjust the computation to the mutated memory, the semantics
performs a change propagation on the returned trace. Change propagation and
ordinary evaluation are, therefore, intertwined in a mutually recursive fashion
to enable computation reuse under mutation.

The proofs for the correctness and consistency theorems (Section 3) are made
challenging because the semantics consists of a complex set of judgments (where
change propagation and ordinary evaluation are mutually recursive), and be-
cause the semantics involves mutation and two kinds of non-determinism: non-
determinism in memory allocation, and non-determinism due to memoization.
Due to mutation, we are required to prove that evaluation preserves certain
well-formedness properties (e.g., absence of cycles and dangling pointers). Due
to non-deterministic memory allocation, we cannot compare the results from dif-
ferent evaluations directly. Instead, we compare values structurally by comparing
the contents of locations. To address non-determinism due to memoization, we
allow evaluation to recycle existing memory locations. Based on these techniques,
we first prove that memoization is harmless: for any evaluation there exists a
memoization-free counterpart that yields the same result without reusing any
computations. Based on structural equality, we then show that memoization-
free evaluations and fully deterministic evaluations are equivalent. These proof
techniques may be of independent interest.

To increase confidence in our results, we encoded the syntax and semantics of
AML and its meta-theory in the LF logical framework [13] and machine-checked
the proofs using Twelf [16] (Section 4). The Twelf formalization consist of 7800
lines of code. The Twelf code is fully foundational: it encodes all background struc-
tures required by the proof and proves all lemmas from first principles. The Twelf
code is available at http://www.cs.cmu.edu/~jdonham/aml-proof/. We note that

460 U.A. Acar, M. Blume, and J. Donham

checking the proofs in Twelf was not a merely an encoding exercise. In fact, our
initial paper-and-pencil proof was not correct. In the process of making Twelf ac-
cept the proof, we simplified the rule systems, fixed the proof, and even generalized
it. In retrospect, we feel that the use of Twelf was critical in obtaining the result.

Since the semantics models memoization as a non-deterministic oracle, and
since it does not specify how the memory should be allocated while allowing
pre-existing locations to be recycled, the dynamic semantics of AML does not
translate to an algorithm directly. In Section 5, we describe some implementation
strategies for realizing the AML semantics. One of these strategies has been
implemented and discussed elsewhere [3]. We note that this implementation is
somewhat broader than the semantics described here because it allows re-use of
memoized computations even when they match partially, via the so called lift
construct. We expect that the techniques described here can be extended for the
lift construct.

2 The Language

We describe a language, called AML, that combines the features of an adaptive
functional language (AFL) [4] with memoization. The syntax of the language
extends that of AFL with memo constructs for memoizing expressions. The dy-
namic semantics integrates change propagation and evaluation to ensure correct
reuse of computations under mutations. As explained before, our results do not
rely on typing properties of AML. We therefore omit a type system but identify
a minimal set of conditions under which evaluation is consistent. In addition
to the memoizing and change-propagating dynamic semantics, we give a pure
interpretation of AML that provides no reuse of computations.

2.1 Abstract Syntax

The abstract syntax of AML is given in Figure 1. We use meta-variables x, y,
and z (and variants) to range over an unspecified set of variables, and meta-
variable l (and variants) to range over a separate, unspecified set of locations—
the locations are modifiable references. The syntax of AML is restricted to “2/3-
cps”, or “named form”, to streamline the presentation of the dynamic semantics.

Expressions are classified into three categories: values, stable expressions, and
changeable expressions. Values are constants, variables, locations, and the intro-
duction forms for sums, products, and functions. The value of a stable expression
is not sensitive to modifications to the inputs, whereas the value of a changeable
expression may directly or indirectly be affected by them.

The familiar mechanisms of functional programming are embedded in AML as
stable expressions. Stable expressions include the let construct, the elimination
forms for products and sums, stable-function applications, and the creation of
new modifiables. A stable function is a function whose body is a stable expression.
The application of a stable function is a stable expression. The expression mod ec

allocates a modifiable reference and initializes it by executing the changeable

A Consistent Semantics of Self-adjusting Computation 461

Values v : : = () | n | x | l | (v1, v2) | inl v | inr v |
funs f(x) is es | func f(x) is ec

Prim. Op. o : : = not | + | - | = | < | . . .

Exp. e : : = es | ec

St. Exp. es : : = v | o(v1, . . . , vn) | mod ec | memos es | applys(v1, v2) |
let x = es in e′

s | letx1×x2 = v in es |
case v of inl (x1) ⇒ es | inr (x2) ⇒ e′

s end

Ch. Exp. ec : : = write(v) | read v as x in ec | memoc ec | applyc(v1, v2) |
let x = es in ec | let x1×x2 = v in ec |
case v of inl (x1) ⇒ ec | inr (x2) ⇒ e′

c end

Program p : : = es

Fig. 1. The abstract syntax of AML

expression ec. Note that the modifiable itself is stable, even though its contents
is subject to change. A memoized stable expression is written memos es.

Changeable expressions always execute in the context of an enclosing mod-
expression that provides the implicit target location that every changeable ex-
pression writes to. The changeable expression write(v) writes the value v into
the target. The expression read v as x in ec binds the contents of the modifiable
v to the variable x, then continues evaluation of ec. A read is considered change-
able because the contents of the modifiable on which it depends is subject to
change. A changeable function is a function whose body is a changeable expres-
sion. A changeable function is stable as a value. The application of a changeable
function is a changeable expression. A memoized changeable expression is writ-
ten memoc ec. The changeable expressions include the let expression for ordering
evaluation and the elimination forms for sums and products. These differ from
their stable counterparts because their bodies consists of changeable expressions.

2.2 Stores, Well-Formed Expressions, and Lifting

Evaluation of an AML expression takes place in the context of a store, written
σ (and variants), defined as a finite map from locations l to values v. We write
dom(σ) for the domain of a store, and σ(l) for the value at location l, provided l ∈
dom(σ). We write σ[l ← v] to denote the extension of σ with a mapping of l to v. If
l is already in the domain of σ, then the extension replaces the previous mapping.

σ[l ← v](l′) =
{

v if l = l′

σ(l′) if l �= l′ and l′ ∈ dom(σ)
dom(σ[l ← v]) = dom(σ) ∪ {l}

We say that an expression e is well-formed in store σ if 1) all locations reach-
able from e in σ are in dom(σ) (“no dangling pointers”), and 2) the portion of σ
reachable from e is free of cycles. If e is well-formed in σ, then we can obtain a
“lifted” expression e′ by recursively replacing every reachable location l with its

462 U.A. Acar, M. Blume, and J. Donham

v ∈ {(), n, x}

v, σ
wf−→ v, ∅

l ∈ dom(σ) σ(l), σ
wf−→ v, L

l, σ
wf−→ v, {l} ∪ L

v1, σ
wf−→ v′

1, L1 v2, σ
wf−→ v′

2, L2

(v1, v2), σ
wf−→ (v′

1, v
′
2), L1 ∪ L2

ec, σ
wf−→ e′

c, L

mod ec, σ
wf−→ mod e′

c, L

v, σ
wf−→ v′, L

in{l,r} v, σ
wf−→ in{l,r} v′, L

v, σ
wf−→ v′, L

write(v), σ
wf−→ write(v′), L

e, σ
wf−→ e′, L

fun{s,c} f(x) is e, σ
wf−→ fun{s,c} f(x) is e′, L

v1, σ
wf−→ v′

1, L1 · · · vn, σ
wf−→ v′

n, Ln

o(v1, . . . , vn), σ
wf−→ o(v′

1, . . . , v
′
n), L1 ∪ · · · ∪ Ln

v1, σ
wf−→ v′

1, L1 v2, σ
wf−→ v′

2, L2

apply{s,c}(v1, v2), σ
wf−→ apply{s,c}(v

′
1, v

′
2), L1 ∪ L2

e1, σ
wf−→ e′

1, L e2, σ
wf−→ e′

2, L
′

let x = e1 in e2, σ
wf−→ let x = e′

1 in e′
2, L ∪ L′

v, σ
wf−→ v′, L e, σ

wf−→ e′, L′

letx1×x2 = v in e, σ
wf−→ letx1×x2 = v′ in e′, L ∪ L′

v, σ
wf−→ v′, L e1, σ

wf−→ e′
1, L1 e2, σ

wf−→ e′
2, L2

(case v of inl (x1) ⇒ e1 | inr (x2) ⇒ e2 end), σ
wf−→

(case v′ of inl (x1) ⇒ e′
1 | inr (x2) ⇒ e′

2 end), L ∪ L1 ∪ L2

e, σ
wf−→ e′, L

memo{s,c} e, σ
wf−→ memo{s,c} e′, L

v, σ
wf−→ v′, L ec, σ

wf−→ e′
c, L

′

read v as x in ec, σ
wf−→ read v′ as x in e′

c, L ∪ L′

Fig. 2. Well-formed expressions and lifts

stored value σ(l). The notion of lifting will be useful in the formal statement of
our main theorems (Section 3).

We use the judgment e, σ
wf−→ e′, L to say that e is well-formed in σ, that e′ is

e lifted in σ, and that L is the set of locations reachable from e in σ. The rules
for deriving such judgments are shown in Figure 2. Any finite derivation of such
a judgment implies well-formedness of e in σ.

We will use two notational shorthands for the rest of the paper: by writing e↑σ
or reach (e, σ)we implicitly assert that there exist a location-free expression e′ and

a set of locations L such that e, σ
wf−→ e′, L. The notation e↑σ itself stands for the

lifted expression e′, and reach (e, σ) stands for the set of reachable locations L. It
is easy to see that e and σ uniquely determine e↑σ and reach (e, σ) (if they exist).

A Consistent Semantics of Self-adjusting Computation 463

2.3 Dynamic Semantics

The evaluation judgments of AML (Figures 5 and 6) consist of separate judg-
ments for stable and changeable expressions. The judgment σ, e ⇓s v, σ′, Ts

states that evaluation of the stable expression e relative to the input store σ
yields the value v, the trace Ts, and the updated store σ′. Similarly, the judg-
ment σ, l ← e ⇓c σ′, Tc states that evaluation of the changeable expression e
relative to the input store σ writes its value to the target l, and yields the trace
Tc together with the updated store σ′.

A trace records the adaptive aspects of evaluation. Like the expressions whose
evaluations they describe, traces come in stable and changeable varieties. The
abstract syntax of traces is given by the following grammar:

Stable Ts : : = ε | mod l ← Tc | let Ts Ts

Changeable Tc : : = write v | let Ts Tc | readl→x=v.e Tc

A stable trace records the sequence of allocations of modifiables that arise during
the evaluation of a stable expression. The trace mod l ← Tc records the alloca-
tion of the modifiable l and the trace of the initialization code for l. The trace
let Ts T′s results from evaluating a let expression in stable mode, the first trace
resulting from the bound expression, the second from its body.

A changeable trace has one of three forms. A write, write v, records the
storage of the value v in the target. A sequence let Ts Tc records the evaluation of
a let expression in changeable mode, with Ts corresponding to the bound stable
expression, and Tc corresponding to its body. A read readl→x=v.e Tc specifies
the location read (l), the value read (v), the context of use of its value (x.e) and
the trace (Tc) of the remainder of the evaluation within the scope of that read.
This records the dependency of the target on the value of the location read.

The set of locations allocated (via mod) during the evaluation that pro-
duced a trace T is denoted alloc (T) (the full definition is given in the ac-
companying technical report [9]). For example, if Tsample = let (mod l1 ←
write 2) (readl1→x=2.e write 3), then alloc (Tsample) = {l1}.

Well-formedness, lifts, and primitive operations. We require that
primitive operations preserve well-formedness. In other words, when a primitive
operation is applied to some arguments, it does not create dangling pointers or
cycles in the store, nor does it extend the set of locations reachable from the
argument. Formally, this property can be states as follows.

If ∀i.vi, σ
wf−→ v′

i, Li and v = o(v1, . . . , vn),

then v, σ
wf−→ v′, L such that L ⊆

⋃n
i=1 Li.

Moreover, no AML operation is permitted to be sensitive to the identity of
locations. In the case of primitive operations we formalize this by postulating
that they commute with lifts:

If ∀i.vi, σ
wf−→ v′

i, Li and v = o(v1, . . . , vn),

then v, σ
wf−→ v′, L such that v′ = o(v′

1, . . . , v
′
n).

In short this can be stated as o(v1 ↑σ, . . . , vn ↑σ) = (o(v1, . . . , vn))↑σ.

464 U.A. Acar, M. Blume, and J. Donham

σ, es ⇓s v, σ′, T
alloc (T) ∩ reach (es, σ) = ∅

σ, es ⇓sok v, σ′, T
(valid/s)

σ, l ← ec ⇓c σ′, T
alloc (T) ∩ reach (ec, σ) = ∅
l �∈ reach (ec, σ) ∪ alloc (T)

σ, l ← ec ⇓cok σ′, T
(valid/c)

Fig. 3. Valid evaluations

For example, all primitive operations that operate only on non-location values
preserve well formedness and commute with lifts.

Valid evaluations. We consider only evaluations of well-formed expressions e
in stores σ, i.e., those e and σ where e ↑ σ and reach (e, σ) are defined. Well-
formedness is critical for proving correctness: the requirement that the reachable
portion of the store is acyclic ensures that the approach is consistent with purely
functional programming, the requirement that all reachable locations are in the
store ensures that evaluations do not cause disaster by allocating a “fresh” lo-
cation that happens to be reachable. We note that it is possible to omit the
well-formedness requirement by giving a type system and a type safety proof.
This approach limits the applicability of the theorem only to type-safe programs.
Because of the imperative nature of the dynamic semantics, a type safety proof
for AML is also complicated. We therefore choose to formalize well-formedness
separately.

Our approach requires showing that evaluation preserves well-formedness. To
establish well-formedness inductively, we define valid evaluations. We say that
an evaluation of an expression e in the context of a store σ is valid, if

1. e is well-formed in σ,
2. the locations allocated during evaluation are disjoint from locations that are

initially reachable from e (i.e., those that are in reach (e, σ)), and
3. the target location of a changeable evaluation is contained neither in

reach (e, σ) nor the locations allocated during evaluation.

We use ⇓sok instead of ⇓s and ⇓cok instead of ⇓c to indicate valid stable
and changeable evaluations, respectively. The rules for deriving valid evaluation
judgments are shown in Figure 3.

The Oracle. The dynamic semantics for AML uses an oracle to model mem-
oization. Figure 4 shows the evaluation rules for the oracle. For a stable or a
changeable expression e, we write an oracle miss as σ, e ↑s or σ, l ← ec ↑c,
respectively. The treatment of oracle hits depend on whether the expression is
stable or changeable. For a stable expression, it returns the value and the trace
of a valid evaluation of the expression in some store. For a changeable expression,
the oracle returns a trace of a valid evaluation of the expression in some store
with some destination.

The key difference between the oracle and conventional approaches to mem-
oization is that the oracle is free to return the trace (and the value, for stable

A Consistent Semantics of Self-adjusting Computation 465

σ, es ↑s
(miss/s)

σ0, es ⇓sok v, σ′
0, T

σ, es ↓s v, T
(hit/s)

σ, ec ↑c
(miss/c)

σ0, l ← ec ⇓cok σ′
0, T

σ, ec ↓c T
(hit/c)

Fig. 4. The oracle

σ, v ⇓s v, σ, ε
(value)

v = app(o, (v1, . . . , vn))

σ, o(v1, . . . , vn) ⇓s v, σ, ε
(prim.’s)

l �∈ alloc (T) σ, l ← e ⇓c σ′, T

σ, mod e ⇓s l, σ′, mod l ← T
(mod)

σ, e ↑s
σ, e ⇓s v, σ′, T

σ, memos e ⇓s v, σ′, T
(memo/miss)

σ, e ↓s v, T

σ, T
s
� σ′, T′

σ, memos e ⇓s v, σ′, T′ (memo/hit)

v1 = funs f(x) is e σ, [v1/f, v2/x] e ⇓s v, σ′, T

σ, applys(v1, v2) ⇓s v, σ′, T
(apply)

σ, e1 ⇓s v1, σ1, T1 σ1, [v1/x] e2 ⇓s v2, σ2, T2 alloc (T1) ∩ alloc (T2) = ∅
σ, let x = e1 in e2 ⇓s v2, σ2, let T1 T2

(let)

σ, [v1/x1, v2/x2] e ⇓s v, σ′, T

σ, letx1×x2 = (v1, v2) in e ⇓s v, σ′, T
(let×)

σ, [v/x1] e1 ⇓s v′, σ′, T

σ, case inl v of inl (x1) ⇒ e1 | inr (x2) ⇒ e2 end ⇓s v′, σ′, T
(case/inl)

σ, [v/x2] e2 ⇓s v′, σ′, T

σ, case inr v of inl (x1) ⇒ e1 | inr (x2) ⇒ e2 end ⇓s v′, σ′, T
(case/inr)

Fig. 5. Evaluation of stable expressions

expressions) of a computation that is consistent with any store—not necessarily
with the current store. Since the evaluation whose results are being returned by
the oracle can take place in a different store than the current store, the trace
and the value (if any) returned by the oracle cannot be incorporated into the
evaluation directly. Instead, the dynamic semantics performs a change propaga-
tion on the trace returned by the oracle before incorporating it into the current
evaluation (this is described below).

Stable Evaluation. Figure 5 shows the evaluation rules for stable expressions.
Most rules are standard for a store-passing semantics except that they also return
traces. The interesting rules are those for let, mod, and memo.

466 U.A. Acar, M. Blume, and J. Donham

σ, l ← write(v) ⇓c σ[l ← v], write v
(write)

σ, l ← [σ(l′)/x] e ⇓c σ′, T

σ, l ← read l′ as x in e ⇓c σ′, readl′→x=σ(l′).e T
(read)

σ, e ↑c
σ, e ⇓c σ′, T

σ, l ← memoc e ⇓c σ′, T
(memo/miss)

σ, e ↓c T

σ, l ← T
c
� σ′, T′

σ, l ← memoc e ⇓c σ′, T′ (memo/hit)

v1 = func f(x) is e σ, l ← [v1/f, v2/x] e ⇓c σ′, T

σ, l ← applyc(v1, v2) ⇓c σ′, T
(apply)

σ, e1 ⇓s v, σ1, T1 σ1, l ← [v/x] e2 ⇓c σ2, T2 alloc (T1) ∩ alloc (T2) = ∅
σ, l ← let x = e1 in e2 ⇓c σ2, let T1 T2

(let)

σ, l ← [v1/x1, v2/x2] e ⇓c σ′, T

σ, l ← letx1×x2 = (v1, v2) in e ⇓c σ′, T
(let×)

σ, l ← [v/x1] e1 ⇓c σ′, T

σ, l ← case inl v of inl (x1) ⇒ e1 | inr (x2) ⇒ e2 end ⇓c σ′, T
(case/inl)

σ, l ← [v/x2] e2 ⇓c σ′, T

σ, case inr v of inl (x1) ⇒ e1 | inr (x2) ⇒ e2 end ⇓c σ′, T
(case/inr)

Fig. 6. Evaluation of changeable expressions

The let rule sequences evaluation of its two expressions, performs binding by
substitution, and yields a trace consisting of the sequential composition of the
traces of its sub-expressions. For the traces to be well-formed, the rule requires
that they allocate disjoint sets of locations. The mod rule allocates a location
l, adds it to the store, and evaluates its body (a changeable expression) with l
as the target. To ensure that l is not allocated multiple times, the rule requires
that l is not allocated in the trace of the body. Note that the allocated location
does not need to be fresh—it can already be in the store, i.e., l ∈ dom(σ). Since
every changeable expression ends with a write, it is guaranteed that an allocated
location is written before it can be read.

The memo rule consults an oracle to determine if its body should be evaluated
or not. If the oracle returns a miss, then the body is evaluated as usual and
the value, the store, and the trace obtained via evaluation is returned. If the
oracle returns a hit, then it returns a value v and a trace T. To adapt the trace
to the current store σ, the evaluation performs a change propagation on T in
σ and returns the value v returned by the oracle, and the trace and the store
returned by change propagation. Note that since change propagation can change
the contents of the store, it can also indirectly change the (lifted) contents of v.

Changeable Evaluation. Figure 6 shows the evaluation rules for changeable
expressions. Evaluations in changeable mode perform destination passing. The

A Consistent Semantics of Self-adjusting Computation 467

σ, ε
s
� σ, ε

(empty)
l �∈ alloc (T′)

σ, l ← T
c
� σ′, T′

σ, mod l ← T
s
� σ′, mod l ← T′

(mod)
σ, l ← write v

c
� σ[l ← v], write v

(write)

σ, T1
s
� σ′, T′

1

σ′, T2
s
� σ′′, T′

2

alloc (T′
1) ∩ alloc (T′

2) = ∅

σ, let T1 T2
s
� σ′′, let T′

1 T′
2

(let/s)

σ, T1
c
� σ′, T′

1

σ′, l ← T2
c
� σ′′, T′

2

alloc (T′
1) ∩ alloc (T′

2) = ∅

σ, l ← (let T1 T2)
c
� σ′′, (let T′

1 T′
2)

(let/c)

σ(l′) = v σ, l ← T
c
� σ′, T′

σ, l ← readl′→v=x.e T
c
� σ′, readl′→v=x.e T′

(read/no ch.)

σ(l′) �= v σ, l ← [σ(l′)/x]e ⇓c σ′, T′

σ, l ← readl′→x=v.e T
c
� σ′, readl′→x=σ(l′).e T′

(read/ch.)

Fig. 7. Change propagation judgments

let, memo, apply rules are similar to the corresponding rules in stable mode
except that the body of each expression is evaluated in changeable mode. The
read expression substitutes the value stored in σ at the location being read l′

for the bound variable x in e and continues evaluation in changeable mode. A
read is recorded in the trace, along with the value read, the variable bound, and
the body of the read. A write simply assigns its argument to the target in the
store. The evaluation of memoized changeable expressions is similar to that of
stable expressions.

Change propagation. Figure 7 shows the rules for change propagation. As
with evaluation rules, change-propagation rules are partitioned into stable and
changeable, depending on the kind of the trace being processed. The stable
change-propagation judgment σ, Ts

s
� σ′, T′s states that change propagating

into the stable trace Ts in the context of the store σ yields the store σ′ and the
stable trace T′s. The changeable change-propagation judgment σ, l ← Tc

c
� σ′, T′c

states that change propagation into the changeable trace Tc with target l in the
context of the store σ yields the changeable trace T′c and the store σ′. The change
propagation rules mimic evaluation by either skipping over the parts of the trace
that remain the same in the given store or by re-evaluating the reads that read
locations whose values are different in the given store. The rules are labeled with
the expression forms they mimic.

If the trace is empty, change propagation returns an empty trace and the same
store. The mod rule recursively propagates into the trace T for the body to obtain
a new trace T′ and returns a trace where T is substituted by T′ under the condition
that the target l is not allocated in T′. This condition is necessary to ensure the
allocation integrity of the returned trace. The stable let rule propagates into its

468 U.A. Acar, M. Blume, and J. Donham

two parts T1 and T2 recursively and returns a trace by combining the resulting
traces T′1 and T′2 provided that the resulting trace ensures allocation integrity.
The write rule performs the recorded write in the given store by extending
the target with the value recorded in the trace. This is necessary to ensure
that the result of a re-used changeable computation is recorded in the new store.
The read rule depends on whether the contents of the location l′ being read
is the same in the store as the value v recorded in the trace. If the contents is
the same as in the trace, then change propagation proceeds into the body T of
the read and the resulting trace is substituted for T. Otherwise, the body of the
read is evaluated with the specified target. Note that this makes evaluation and
change-propagation mutually recursive—evaluation calls change-propagation in
the case of an oracle hit. The changeable let rule is similar to the stable let.

Most change-propagation judgments perform some consistency checks and
otherwise propagate forward. Only when a read finds that the location in ques-
tion has changed, it re-runs the changeable computation that is in its body and
replaces the corresponding trace.

Evaluation invariants. Valid evaluations of stable and changeable expressions
satisfy the following invariants:

1. All locations allocated in the trace are also allocated in the result store, i.e.,
if σ, e ⇓sok v, σ′, T or σ, l ← e ⇓cok σ′, T, then dom(σ′) = dom(σ) ∪ alloc (T).

2. For stable evaluations, any location whose content changes is allocated
during that evaluation, i.e., if σ, e ⇓sok v, σ′, T and σ′(l) �= σ(l), then
l ∈ alloc (T).

3. For changeable evaluations, a location whose content changes is either the
target or gets allocated during evaluation, i.e, if σ, l′ ← e ⇓cok σ′, T and
σ′(l) �= σ(l), then l ∈ alloc (T) ∪ {l′}.

Memo-free evaluations. The oracle rules introduce non-determinism into the
dynamic semantics. Lemmas 3 and 4 in Section 3 express the fact that this non-
determinism is harmless: change propagation will correctly update all answers
returned by the oracle and make everything look as if the oracle never produced
any answer at all (meaning that only memo/miss rules were used).

We write σ, e ⇓s∅ v, σ′, T or σ, l ← e ⇓c∅ σ′, T if there is a derivation for
σ, e ⇓s v, σ′, T or σ, l ← e ⇓c σ′, T, respectively, that does not use any
memo/hit rule. We call such an evaluation memo-free. We use ⇓s∅,ok in place
of ⇓sok and ⇓c∅,ok in place of ⇓cok to indicate that a valid evaluation is also
memo-free.

2.4 Deterministic, Purely Functional Semantics

By ignoring memoization and change-propagation, we can give an alternative,
purely functional, semantics for location-free AML programs [9]. This semantics
gives a store-free, pure, deterministic interpretation of AML that provides for
no computation reuse. Under this semantics, both stable and changeable expres-
sions evaluate to values, memo, mod and write are simply identities, and read

A Consistent Semantics of Self-adjusting Computation 469

acts as another binding construct. Our correctness result states that the pure
interpretation of AML yields results that are the same (up to lifting) as those
obtained by AML’s dynamic semantics (Section 3).

3 Consistency and Correctness

We now state consistency and correctness theorems for AML and outline their
proofs in terms of several main lemmas. As depicted in Figure 8, consistency
(Theorem 1) is a consequence of correctness (Theorem 2).

3.1 Main Theorems

Consistency uses structural equality based on the notion of lifts (see Section 2.2)
to compare the results of two potentially different evaluations of the same AML
program under its non-deterministic semantics. Correctness, on the other hand,
compares one such evaluation to a pure, functional evaluation. It justifies saying
that even with stores, memoization and change propagation, AML is essentially
a purely functional language.

Theorem 1 (Consistency). If σ, e ⇓sok v1, σ1, T1 and σ, e ⇓sok v2, σ2, T2, then
v1 ↑σ1 = v2 ↑σ2.

Theorem 2 (Correctness). If σ, e ⇓sok v, σ′, T, then (e ↑ σ) ⇓sdet (v ↑ σ′).

Recall that by our convention the use of the notation v ↑ σ implies well-
formedness of v in σ. Therefore, part of the statement of consistency is the
preservation of well-formedness during evaluation, and the inability of AML pro-
grams to create cyclic memory graphs.

If σ, e ⇓sok v1, σ1, T1

then σ, e ⇓s∅,ok v1, σ1, T1

Lemma 3

If s, e ⇓s∅,ok v1, σ1, T1

then (e↑σ) ⇓sdet (v1 ↑σ1)

Lemma 1

�

Theorem 2

If σ, e ⇓sok v2, σ2, T2

then σ, e ⇓s∅,ok v2, σ2, T2

Lemma 3

If σ, e ⇓s∅,ok v2, σ2, T2

then (e↑σ) ⇓sdet (v2 ↑σ2)

Lemma 1

�

Theorem 2

But since ⇓sdet is deterministic,
it follows that (v1 ↑σ1) = (v2 ↑σ2)

��� ���

Theorem 1

Fig. 8. The structure of the proofs

470 U.A. Acar, M. Blume, and J. Donham

3.2 Proof Outline

The consistency theorem is proved in two steps. First, Lemmas 1 and 2 state that
consistency is true in the restricted setting where all evaluations are memo-free.

Lemma 1 (purity/st.). If σ, e ⇓s∅,ok v, σ′, T, then (e ↑ σ) ⇓sdet (v ↑ σ′).

Lemma 2 (purity/ch.). If σ, l ← e ⇓c∅,ok σ′, T, then (e ↑ σ) ⇓cdet (l ↑ σ′).

Second, Lemmas 3 and 4 state that for any evaluation there is a memo-free coun-
terpart that yields an identical result and has identical effects on the store. Notice
that this is stronger than saying that the memo-free evaluation is “equivalent”
in some sense (e.g., under lifts). The statements of these lemmas are actually
even stronger since they include a “preservation of well-formedness” statement.
Preservation of well-formedness is required in the inductive proof.

Lemma 3 (memo-freedom/st.). If σ, e ⇓sok v, σ′, T, then σ, e ⇓s∅ v, σ′, T
where reach (v, σ′) ⊆ reach (e, σ) ∪ alloc (T).

Lemma 4 (memo-freedom/ch.). If σ, l ← e ⇓cok σ′, T, then σ, l ← e ⇓c∅ σ′, T
where reach (σ′(l), σ′) ⊆ reach (e, σ) ∪ alloc (T).

The proof for Lemmas 3 and 4 proceeds by simultaneous induction over the
expression e. It is outlined in far more detail in the accompanying technical
report [9]. Both lemmas state that if there is a well-formed evaluation leading
to a store, a trace, and a result (the value v in the stable lemma, or the target l
in the changeable lemma), the same result (which will be well-formed itself) is
obtainable by a memo-free run. Moreover, all locations reachable from the result
were either reachable from the initial expression or were allocated during the
evaluation. These conditions help to re-establish well-formedness in inductive
steps.

The lemmas are true thanks to a key property of the dynamic semantics:
allocated locations need not be completely “fresh” in the sense that they may
be in the current store as long as they are neither reachable from the initial
expression nor get allocated multiple times. This means that a location that is
already in the store can be chosen for reuse by the mod expression (Figure 5).
To see why this is important, consider as an example the evaluating of the
expression: memos (mod (write(3))) in σ. Suppose now that the oracle returns
the value l and the trace T0: σ0, mod (write(3)) ⇓s l, σ′

0, T0. Even if l ∈ dom(σ),
change propagation will simply update the store as σ[l ← 3] and return l. In a
memo-free evaluation of the same expression the oracle misses, and mod must
allocate a location. Thus, if the evaluation of mod were restricted to use fresh
locations only, it would allocate some l′ �∈ dom(σ), and return that. But since
l ∈ dom(σ), l �= l′.

4 Mechanization in Twelf

To increase our confidence in the proofs for the correctness and the consistency
theorems, we have encoded the AML language and the proofs in Twelf [16] and

A Consistent Semantics of Self-adjusting Computation 471

machine-checked the proofs. We follow the standard judgments as types method-
ology [13], and check our theorems using the Twelf metatheorem checker. For
full details on using Twelf in this way for proofs about programming languages,
see Harper and Licata’s manuscript [14].

The LF encoding of the syntax and semantics of AML corresponds very closely
to the paper judgments (in an informal sense; we have not proved formally that
the LF encoding is adequate, and take adequacy to be evident). However, in a
few cases we have altered the judgments, driven by the needs of the mechanized
proof. For example, on paper we write memo-free and general evaluations as
different judgments, and silently coerce memo-free to general evaluations in the
proof. We could represent the two judgments by separate LF type families, but
the proof would then require a lemma to convert one judgment to the other.
Instead, we define a type family to represent general evaluations, and a separate
type family, indexed by evaluation derivations, to represent the judgment that
an evaluation derivation is memo-free.

The proof of consistency (a metatheorem in Twelf) corresponds closely to
the paper proof (see [9] for details) in overall structure. The proof of memo-
freedom consists of four mutually-inductive lemmas: memo-freedom for stable
and changeable expressions (Lemma 3 and Lemma 4), and versions of these
with an additional change propagation following the evaluation (needed for the
hit cases). In the hit cases for these latter lemmas, we must eliminate two change
propagations: we call the lemma once to eliminate the first, then a second time
on the output of the first call to eliminate the second. Since the evaluation in
the second call is not a subderivation of the input, we must give a separate
termination metric. The metric is defined on evaluation derivations and simply
counts the number of evaluations in the derivations, including those inside of
change propagations. In an evaluation which contains change propagations, there
are “garbage” evaluations which are removed during hit-elimination. Therefore,
hit-elimination reduces this metric (or keeps it the same, if there were no change
propagations to remove). We add arguments to the lemmas to account for the
metric, and simultaneously prove that the metric is smaller in each inductive
call, in order for Twelf to check termination.

Aside from this structural difference due to termination checking, the main
difference from the paper proof is that the Twelf proof must of course spell out
all the details which the paper proof leaves to the reader to verify. In partic-
ular, we must encode “background” structures such as finite sets of locations,
and prove relevant properties of such structures. While we are not the first to
use these structures in Twelf, Twelf has poor support for reusable libraries at
present. Moreover, our needs are somewhat specialized: because we need to prove
properties about stores which differ only on a set of locations, it is convenient
to encode stores and location sets in a slightly unusual way: location sets are
represented as lists of bits, and stores are represented as lists of value options; in
both representations the nth list element corresponds to the nth location. This
makes it easy to prove the necessary lemmas by parallel induction over the lists.
The Twelf code can be found at http://www.cs.cmu.edu/~jdonham/aml-proof/

472 U.A. Acar, M. Blume, and J. Donham

5 Implementation Strategies

The dynamic semantics of AML (Section 2) does not translate directly to an
algorithm, not to mention an efficient one.1 In particular, an algorithm consistent
with the semantics must specify an oracle and a way to allocate locations to
ensure that all locations allocated in a trace are unique. We briefly describe a
conservative strategy for implementing the semantics. The strategy ensures that

1. each allocated location is fresh (i.e., is not contained in the memory)
2. the oracle returns only traces currently residing in the memory,
3. the oracle never returns a trace more than once, and
4. the oracle performs function comparisons by using tag equality.

The first two conditions together ensure that each allocated location is unique.
The third condition guarantees that no location can appear in the execution
trace more than once. This condition is conservative, because it is possible that
the parts of a trace returned by the oracle are thrown away (become unused)
during change propagation. This strategy can be relaxed by allowing the change-
propagation algorithm to return unused traces to the oracle. The last condition
enables implementing oracle queries by comparing functions and their arguments
by using tag equality. Since in the semantics, the oracle is non-deterministic, this
implementation strategy is consistent with the semantics.

The conservative strategy can be implemented in such a way that the total
space consumption is no more than that of a from-scratch run. Such an im-
plementation has been completed and shown to be effective for a reasonably
broad range applications [3,7]. The implementation, however, places further re-
strictions on the oracle that are not required by the proof (e.g., computations
must always be re-used in the same order).Our results shows that these restric-
tions are not necessary for correctness and can potentially be relaxed—such an
implementation can be more broadly applicable.

We note that the described conservative implementation does not guarantee
correctness, because it requires the programmer to supply all the free variables
of memoized expressions. When the programmer misspecifies the free variables,
the correctness guarantee fails. This problem can be addressed by a type system
or detecting the free variables of memoized expressions automatically with a
static analyzer.

6 Conclusion

Recent experimental results show that it is possible to adjust computations to
changes to their data (e.g., inputs, outcomes of comparisons) efficiently by using
a combination of change propagation and memoization. This paper formalizes
a general semantics for combining memoization and change propagation where

1 This does not constitute a problem for our results, since our theorems and lemmas
concern given derivations (not the problem finding them).

A Consistent Semantics of Self-adjusting Computation 473

memoization is modeled as a non-deterministic oracle, and computation re-use is
possible in the presence of mutation. Our main theorem shows that the semantics
is consistent with deterministic, purely functional programming.

By giving a general semantics for combining memoization and change propa-
gation, we cover a variety of possible techniques for implementing self-adjusting-
computation. By proving the semantics correct with minimal assumptions, we
identify the properties that correct implementations must satisfy. In particular,
the results show that some assumptions made by existing implementations are
not necessary for correctness and that they may be further improved.

References

1. M. Abadi, B. W. Lampson, and J.-J. Levy. Analysis and caching of dependencies.
In International Conference on Functional Programming, pages 83–91, 1996.

2. U. A. Acar. Self-Adjusting Computation. PhD thesis, Department of Computer
Science, Carnegie Mellon University, May 2005.

3. U. A. Acar, G. E. Blelloch, M. Blume, and K. Tangwongsan. An experimen-
tal analysis of self-adjusting computation. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation, 2006.

4. U. A. Acar, G. E. Blelloch, and R. Harper. Adaptive functional programming. In
Proc. of the 29th Ann. ACM Symp. on POPL, pages 247–259, 2002.

5. U. A. Acar, G. E. Blelloch, and R. Harper. Selective memoization. In Proc. of the
30th Annual ACM Symposium on Principles of Programming Languages, 2003.

6. U. A. Acar, G. E. Blelloch, R. Harper, J. L. Vittes, and M. Woo. Dynamizing
static algorithms with applications to dynamic trees and history independence. In
ACM-SIAM Symposium on Discrete Algorithms (SODA), 2004.

7. U. A. Acar, G. E. Blelloch, K. Tangwongsan, and J. L. Vittes. Kinetic algorithms
via self-adjusting computation. Technical Report CMU-CS-06-115, Department of
Computer Science, Carnegie Mellon University, March 2006.

8. U. A. Acar, G. E. Blelloch, and J. L. Vittes. An experimental analysis of change
propagation in dynamic trees. In Workshop on Algorithm Engineering and Exper-
imentation, 2005.

9. U. A. Acar, M. Blume, and J. Donham. A consistent semantics of self-adjusting
computation. Technical Report CMU-CS-06-168, Department of Computer Sci-
ence, Carnegie Mellon University, 2006.

10. M. Carlsson. Monads for incremental computing. In Proc. of the 7th ACM SIG-
PLAN Intl. Conf. on Funct. Prog., pages 26–35. ACM Press, 2002.

11. A. Demers, T. Reps, and T. Teitelbaum. Incremental evaluation of attribute gram-
mars with application to syntax directed editors. In Proceedings of the 8th Annual
ACM Symposium on Principles of Programming Languages, pages 105–116, 1981.

12. J. Field and T. Teitelbaum. Incremental reduction in the lambda calculus. In
Proceedings of the ACM ’90 Conference on LISP and Functional Programming,
pages 307–322, June 1990.

13. R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. Journal
of the Association for Computing Machinery, 40(1):143–184, January 1993.

14. R. Harper and D. Licata. Mechanizing language definitions. (Submitted for pub-
lication.), April 2006.

474 U.A. Acar, M. Blume, and J. Donham

15. D. Michie. ‘memo’ functions and machine learning. Nature, 218:19–22, 1968.
16. F. Pfenning and C. Schürmann. System description: Twelf — a meta-logical frame-

work for deductive systems. In H. Ganzinger, editor, Proceedings of the 16th Inter-
national Conference on Automated Deduction (CADE-16), pages 202–206, Trento,
Italy, July 1999. Springer-Verlag LNAI 1632.

17. W. Pugh and T. Teitelbaum. Incremental computation via function caching. In
Proceedings of the 16th Annual ACM Symposium on Principles of Programming
Languages, pages 315–328, 1989.

18. G. Ramalingam and T. Reps. A categorized bibliography on incremental computa-
tion. In Conference Record of the 20th Annual ACM Symposium on POPL, pages
502–510, Jan. 1993.

19. R. S. Sundaresh and P. Hudak. Incremental compilation via partial evaluation. In
Conf. Record of the 18th Ann. ACM Symp. on POPL, pages 1–13, Jan. 1991.

Multi-language Synchronization

Robert Ennals and David Gay

Intel Research Berkeley,
2150 Shattuck Avenue, Berkeley,

CA 94704, USA
robert.ennals@intel.com
david.e.gay@intel.com

Abstract. We propose multi-language synchronization, a novel approach
to the problem of migrating code from a legacy language (such as C) to a
new language. We maintain two parallel versions of every source file, one
in the legacy language, and one in the new language. Both of these files
are fully editable, and the two files are kept automatically in sync so that
they have the same semantic meaning and, where possible, have the same
comments and layout.

We propose non-deterministic language translation as a means to im-
plement multi-language synchronization. If a file is modified in language
A, we produce a new version in language B by translating the file into a
non-deterministic description of many ways that it could be encoded in
language B and then choosing the version that is closest to the old file
in language B.

To demonstrate the feasibility of this approach, we have implemented
a translator that can synchronize files written in a straw-man language,
Jekyll, with files written in C. Jekyll is a high level functional program-
ming language that has many of the features found in modern program-
ming languages.

1 Introduction

The programming language community has produced many programming lan-
guages that improve on legacy languages such as C in useful ways. They have
produced languages that are easier to use, easier to understand, safer, more
portable, more reusable, etc. But, despite all these advantages, a large propor-
tion of important software projects continue to use legacy languages.

Why is this? Prior work suggests that one of the principal reasons why pro-
grammers continue to use legacy languages is that they have built up such a
strong ecosystem around them that the switching costs associated with moving
to a new language are prohibitive [28,17]. In particular:

– Much software is already written in legacy languages.
– Many libraries are written in legacy languages.
– Many programmers only understand legacy languages.
– Many tools only understand legacy languages.

R. De Nicola (Ed.): ESOP 2007, LNCS 4421, pp. 475–489, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

476 R. Ennals and D. Gay

Fig. 1. JT keeps the Jekyll and C versions of a file synchronized

– Developers are wary of trusting a language that might not be maintained in
10 years time.

– For existing projects, developers are unwilling to port large code bases to
new languages, both because of the effort involved and the risk of introducing
new bugs.

Historically, one way that new languages have achieved success is by having
some degree of compatibility with an existing language, allowing them to exploit
its ecosystem (e.g. C++ [27] and Objective C [24], which are supersets of C). In
this paper, we propose a novel way for a new language to exploit the ecosystem of
legacy languages such as C. Our approach is to maintain two parallel versions of
each source file, one in the legacy language and one in the new language. Both of
these files are human readable, un-annotated, and fully editable. A synchronizer
program propagates updates between the two files, ensuring that they remain
semantically equivalent, and, as much as possible, have the same comments and
layout (Figure 1). We call this technique multi-language synchronization.

The hope is that, by providing an editable version of a file in the legacy lan-
guage, it becomes easier for a project to adopt a new language, since greater
use can be made of the ecosystem of the legacy language. In particular, pro-
grammers who do not know the new language can edit the legacy file, legacy
language tools can be applied to the legacy file, legacy programs can transition
to a new language without having to abandon the legacy language, and if the
new language ceases to be maintained development can fall back to the legacy
language. When legacy programmers and new-language programmers work on
the same program, edits made by one group can be seen as minimal edits by the
other group - preserving language-specific structure and layout.

While the task of translating between two languages without losing language-
specific information might seem daunting, we show that it can be done using
non-deterministic language translation. To translate a file from language A to
language B, we produce a description of many encodings of the file in language B,
and then select the version that is closest to the old file in language B (Section 3).

To demonstrate the feasibility of multi-language synchronization, we have im-
plemented a translator, JT, which can synchronize files written in C with files
written in a new language, called Jekyll. The design of Jekyll is not a goal in
itself; rather it is intended to show that multi-language translation is possible
between two fairly different languages: Jekyll is a modern functional program-
ming language which has many of the features present in languages such as

Multi-language Synchronization 477

Haskell [25], ML [21], and Cyclone [15], including generic types, lambda expres-
sions, pattern matching, algebraic datatypes, and type classes. Jekyll also has all
of the features of C, although potentially unsafe features such as pointer arith-
metic require use of a explicit unsafe keyword in order to avoid a warning (in
common with C# [5]). A more complete description of Jekyll can be found in a
companion tech report [8]; JT is available on SourceForge at:

http://sourceforge.net/projects/jekyllc

The main contributions of this paper are the concept of multi-language syn-
chronization, presented in more detail in Section 2, and the algorithms and
techniques that make multi-language synchronization possible (Section 3). In
Section 4 we present a preliminary evaluation of multi-language synchronization
based on our experiences with JT. This evaluation shows that multi-language
synchronization does work in practice. In the future, we hope to conduct a full
evaluation based on a realistic successor to C used on a large-scale software
project, as part of the Ivy project [2]. We discuss related work in Section 5 and
conclude in Section 6.

2 Multi-language Synchronization

We start by outlining the basic model for, and usability requirements on, multi-
language synchronization (Section 2.1), followed by a discussion of the require-
ments on the languages being translated (Section 2.2), For concreteness, in this
section and the rest of the paper, we discuss multi-language synchronization in
terms of C, Jekyll and JT. However, except when referring to language-specific
features, our comments apply to multi-language synchronization in general.

2.1 Model and Usability Requirements

Our basic model for multi-language synchronization, shown earlier in Figure 1, is
that at all times each source file S exists in C (SC) and Jekyll forms (SJ). After
a programmer edits the C file XC, the system regenerates (“synchronizes”) the
corresponding Jekyll file XJ, based on the new contents of the C file and the
old contents of the Jekyll file; edits to Jekyll files are handled in an analogous
fashion. This regeneration is expected to happen frequently (e.g., after every
successful build or before every commit to a source-code control system).

It is of course also possible to translate a C file to Jekyll without any previous
Jekyll version (e.g., when importing an existing project). However, the presence
of a previous version allows for a better translation preserving the use of Jekyll-
specific features not explicitly present in the C version of the source code, as
discussed in Section 3 and shown in the examples of Section 4.

Multi-language synchronization is an inexact science. A C file generated from
a Jekyll file is typically not as readable as a C file written by a C programmer,
and there are limits on the degree to which a C programmer can edit C code
that represents a higher-level Jekyll feature before JT is unable to produce a
good corresponding update to the Jekyll file.

http://sourceforge.net/projects/jekyllc

478 R. Ennals and D. Gay

The goal however is not to be perfect, but to be good enough to be useful. In
particular, the translation should be good enough that a C programmer unfamil-
iar with Jekyll would find it easier to edit the C file than to edit the Jekyll file,
and a developer would find it easier to use an existing C tool on the C file than
to work without that tool using the Jekyll file. More generally, the translation
has the following goals:

– Semantics are preserved: C code translated into Jekyll has unchanged
behavior, and vice-versa.

– Edits are translated naturally: The result of making a change to a C
file and then translating it to Jekyll is close to the result of translating the
original C file to Jekyll and logically making the same change, and vice-versa.

– C programmers can understand C code produced by JT: Gener-
ated C code is readable, fully commented, and does not contain additional
annotations.

– JT can understand code produced by C programmers: JT is suf-
ficiently tolerant of edits to C code encoding Jekyll features that it can
produce reasonable Jekyll updates for a large proportion of C updates.

– No special infrastructure needed: JT works from the text files contain-
ing the C and Jekyll source code. It does not require, for example, that all
code modifications be performed by a special editor. We do however use, as
outlined above, the previous version of the target of the translation.

Note that some of these goals may be in conflict: for instance, as we discuss
in more detail in Section 3.7, the desire to produce a translation from C which
preserves the use of some Jekyll feature — in support of the natural edit trans-
lation goal — may lead JT to change the semantics during translation. Such
behavior is acceptable in a translator as long as it always warns the programmer
in an appropriate way, and only does it in well-justified cases (e.g., JT believes
the code it was translating was buggy).

2.2 Language Requirements

We do not believe that multi-language synchronization between arbitrary pairs
of languages is practical. We do believe the following properties of Jekyll and C
(especially the first two) are what makes JT practical, and suggest that these
should serve as guidelines in the design of other multi-language translation sys-
tems:

– All C features can be translated reasonably easily into Jekyll. In
particular, Jekyll supports all unsafe features of C (although their use is
discouraged, and warnings are produced unless the unsafe keyword is used).

– All Jekyll features can be translated into reasonably readable C. In
particular, Jekyll does not support lazy evaluation or tail recursion elimina-
tion, and several features (e.g., the implementation of closures) are designed
with a C encoding in mind.

– Jekyll uses the same data-layout as C. This is particularly important
in a language such as C where low-level features expose the data layout.

Multi-language Synchronization 479

3 Non-deterministic Language Translation

One approach to maintaining two consistent versions of the same file in different
languages would be to apply the actions performed on one file (e.g., rename this
function, insert this code) to the other, in a fashion similar to database view up-
dates [14,6]. However, this approach is not practical as editors do not record such
information, and deducing what actions have been performed can be difficult.

Instead, our approach to implementing multi-language synchronization is non-
deterministic language translation. A modified C file can be encoded into Jekyll
in many different ways. Rather than picking one of these encodings, JT translates
a C file into a non-deterministic description of many of the ways that the file
might be encoded as Jekyll. JT then resolves this non-determinism by attempting
to choose the Jekyll file that is the closest textual match to the previous Jekyll
version of the file (Figure 2). Similarly, there are many different ways that a
Jekyll file might be translated to C. JT attempts to choose the decoding that
most closely resembles the previous C file.

This non-deterministic approach avoids the need for JT to enforce any canon-
ical encoding of Jekyll into C, and thus allows JT to be reasonably tolerant of
edits to C code while still ensuring that round-tripping through Jekyll is lossless.
The non-deterministic approach also allows the implementation to be simple and
elegant. The translator need merely describe the various ways in which C and
Jekyll can be encoded into each other, and the details of how to choose the
correct encoding are left to a generic matching algorithm. There is no need for
special-purpose code to recognize particular kinds of updates or preserve partic-
ular kinds of information, and new encodings and new language features can be
added easily.

Figure 2 illustrates the structure of the translation system used by JT. In the
following sections, we will discuss this translation process in more detail.

3.1 Non-deterministic Abstract Syntax Trees (ASTs)

When an AST is translated from one language into another, some of the nodes
in the target syntax tree may be special choice nodes that represent a non-
deterministic choice of encoding/decoding. A choice node takes three arguments:

Fig. 2. The structure of the JT translation system (other direction is the same)

480 R. Ennals and D. Gay

– The decision variable v (true or false).
– The options at and af are the different nodes that the choice node can

resolve to. If v is true then the node resolves to at, otherwise it resolves to
af . Although only two options are specified, an arbitrarily long list of options
can be encoded using several nested choice nodes.
Different alternatives will often have substantial similarities. To avoid blow-
up in the size of our AST, different choices can share sub-nodes.

Decision variables allow specification of dependencies between choices made
in different parts of the tree. This is useful since a single encoding/decoding
decision may have effects in a number of places throughout the file. For example
a C function that is never called directly and has its address taken once could be
decoded either as a Jekyll function or as a lambda expression. Since a decision
needs to be made, a decision variable is allocated. This variable will be true if
the function is a lambda expression and false if the C function is just a Jekyll
function. This decision variable is then used to parameterize each point in the
AST at which this decision would cause the Jekyll program to be different,
including the function definition and the function use.

The af option is the default option, and is the option that the select closest
stage (Figure 2) will choose if neither of the two options is a close match to the
previous file. The default option should always be the most conservative choice.
For example, when decoding C as Jekyll, the default is to produce Jekyll code
that is identical to the original C code. Amongst other things, the default option
will typically be used when new code is added to a file, or no current version
exists in the other language.

The transform phase (Figure 2) is written directly as ML code. A series of
functions use pattern matching to find AST features of interest and then trans-
late them into the equivalent features in the other language, using choice nodes
when there are several ways that the feature can be translated. Unlike some
other bi-directional translation systems [10,16], the two translation directions
are written separately, rather than being generated from a common description.
We leave a combined approach for future work.

3.2 Encoding Arbitrary Elements

Sometimes, when translating C to Jekyll, it is necessary to encode something
like “an arbitrary type” or “an arbitrary name”. For example, when translating
a C type to a Jekyll type, the Jekyll type may have arbitrary additional type
parameters that were not present in the C type.

Given the data type given in Section 3.1 it is not obvious how to encode
something like “an arbitrary type” or “an arbitrary expression”. If we were to
encode all possible types or expressions using choice nodes then we would have
to build an infinite tree, significantly complicating the design of the translation
system.

To avoid this problem, the core translation system mines the previous version
of the file for instances of particular syntax elements. If the translate stage wants

Multi-language Synchronization 481

to encode “an arbitrary type” then rather than describing all types possible in
the language, it lists all the types present in the previous version.1

At first it might seem that this technique would artificially restrict the choice
of types and prevent the select closest stage from selecting the encoding that most
closely matches the previous version. However, since the select closest stage aims
to minimize the textual distance from the previous version, it will always choose
types that appear in the previous version in preference to types that do not.
Thus there is no need to list types that do not appear in the previous version,
and no need for JT to support infinite ASTs. This approach would need to be
changed if non-determinism was resolved based on a smarter metric than textual
difference — for example if type correctness was taken into account (Section 3.4).

3.3 Non-deterministic Token Sequences

Rather than resolving non-determinism directly at the AST level, we instead
translate the AST into a non-deterministic token sequence and resolve the
non-determinism at the token level. Alternatively we could resolving the
non-determinism directly at the tree level, however, we leave such approaches
for future work.

This non-deterministic token sequence preserves all of the non-determinism
that was present in the non-deterministic AST, but reduces the abstraction level
down to a sequence of strings, described as follows:

t ← v ? tf : tt non-deterministic choice
| t0 • t1 | “s” | ∅ sequence, literal, empty

The pretty print stage produces a non-deterministic token sequence by ap-
plying a pretty printing function to each node in the non-deterministic AST. A
choice node in the AST is translated into a choice node in the token sequence
with the same decision var and with choices that are produced by pretty printing
the choices from the AST node. All other nodes in the AST are pretty printed by
sequencing literal tokens together with token sequences from subtrees. As with
ASTs, non-deterministic token sequences use sharing to avoid blow-up.

3.4 Distance Between Two Files

The select closest stage resolves a non-deterministic token sequence t into a
deterministic token sequence t′. In so doing it attempts to minimize the distance
between t′ and previous tokens from the previous version of the file (Figure 2).

The distance metric we have chosen is the number of distinct spans needed
to construct the target file from the previous file, where a span is defined to be
either a single token, or a consecutive sequence of tokens from the previous file.
For example, the distance from “int x = 3; int j” to “int j = 3; int z”
is 3, since the new string can be constructed from the following three spans:
1 The actual implementation is a little cleverer than this, leaving some of the list

expansion until match time.

482 R. Ennals and D. Gay

(i) “int j”, (ii) “= 3; int”, (iii) “z”. We believe this metric fits a programmers
intuitive model of what it means for files to be similar.

This metric is different from the edit distance. Edit distance only considers
insertion, deletion, and substitution of a single character; it does not consider
copyings and reorderings of large blocks of text. If the order of two functions
was swapped, then the edit distance would be twice the number of characters in
the smaller of the two functions, while the number of spans would be 2.

It is likely that better results could be achieved with a smarter metric. For
example a metric that favored Jekyll files that type checked (in the style of
Mycroft’s type-based decompilation [22]), or a metric that biased against using
the same span more than once. We leave such ideas for future work.

3.5 Optimal Translation Is NP-Hard

Ideally, we would like the select closest stage to guarantee that it resolves a non-
deterministic token sequence to the token sequence that is closest to the previous
token sequence — we refer to this problem as optimal matching. Unfortunately,
optimal matching turns out to be NP-hard. This result is not surprising, given
a similar result is known for synchronizing database views [3].

We can demonstrate that optimal matching is NP-hard by showing that it
takes only a polynomial number of steps to translate any problem in 3-SAT
(known to be NP-hard) into an optimal-matching problem. The encoding [[A]] of
a 3-SAT expression A as a non-deterministic token sequence is quite simple:

[[v]] = v ? “true” : “false” [[¬v]] = v ? “false” : “true”
[[A ∧ A′]] = [[A]] • [[A′]] [[A ∨ A′]] = x ? [[A]] : [[A′]] where x is fresh

The previous file is an infinite sequence of “true” tokens. Provided the 3-SAT
formula A has more than one disjunction2, the formula is satisfiable if and only
if the optimal matching of [[A]] has distance of 1 (a single span of “true” tokens).

Fortunately, like many NP-hard problems, we have found that it is possible
to produce an approximate algorithm that behaves well in practice. Our current
algorithm is a simple greedy search that walks sequentially through the token
sequence, choosing variable assignments such as to maximize the length of the
longest matching span3. While the worst case performance of this algorithm is
still exponential, we have found that this algorithm runs in reasonable time and
produces good results on reasonable-size source files (Section 4). This is partly
an artifact of the kind of non-deterministic ASTs produced by JT, in which the
options at a choice node tend to be quite different, and partly a result of the
structure of C and Jekyll programs, which tend to have fairly little textual self-
similarity. This algorithm is only a first stab — we believe it should be possible
to produce an algorithm with a non-exponential upper bound that works even
better.

2 Since a single “false” token would also have distance 1.
3 See our tech report [8] for details.

Multi-language Synchronization 483

3.6 Synchronizing Comments and Whitespace

It is important that any comments present in one view of a file be also present in
the other file. Similarly it is important that synchronization not make gratuitous
changes to the whitespace of a file. JT divides whitespace into common and
private whitespace. Common whitespace is considered to be part of the program
representation and is carried across during translation. The other whitespace is
considered private and is inferred non-deterministically to match the previous
version of the target file.

The rules for distinguishing common and private whitespace are language-
specific. The intention is that common whitespace be used in places where com-
ments are typically placed, and private whitespace be used in cases where there
is no obvious corresponding location in the other language, or where the correct
whitespace is likely to be language-specific. A warning is generated if comments
are found in private whitespace.

3.7 Checking Correctness

Sometimes a C programmer will edit C code implementing a Jekyll feature such
that it is no longer a valid implementation of that Jekyll feature. For example JT
requires that if a C function is implementing a Jekyll lambda expression then the
first argument of that function must be the lambda expression’s environment.
If a C programmer changes the argument order then the function will no longer
be a correctly encoded lambda expression. While we could just translate the C
code to equivalent low-level Jekyll code, ignoring the Jekyll feature, it is likely
that this result is not what the programmer intended.

To deal with such cases, Jekyll will attempt to decode any code as a Jekyll
feature if it looks like the code intended to encode a Jekyll feature, even if
the code does not encode that feature correctly. Once JT has translated a C
file to a Jekyll file, it checks that the Jekyll file can be translated back to the
original C file. If it cannot then the programmer is warned that the result of the
transformation may be incorrect, and is encouraged to look at the differences
between their file and the correctly encoded C file.

4 Evaluating JT

In this section, we present a preliminary evaluation of JT. We start by showing
JT’s behavior on simple snippets of code (Section 4.1), then evaluate its use on
edits of source files from the GNU C Compiler [26] (Section 4.2). We conclude
with a discussion of the limitations of our prototype (Section 4.3).

4.1 Feature Translation

We show here how JT handles the translation between two higher-level Jekyll
features not found in C: generic types and closures. The output code is a very

484 R. Ennals and D. Gay

slightly cleaned-up version of the results of the JT tool, and is similar to real
examples we encountered when modifying GCC (Section 4.2).

Jekyll has generic types similar to those found in ML [21], Haskell [25], and
Cyclone [15]. Type variables are written as %a, rather than the more conventional
’a, to allow Jekyll files to be easily processed using the standard C preprocessor.
When generic types are translated into C, all generic type information is thrown
away. When translating back to Jekyll this information is reconstructed from
the previous file (Section 3.2). For example:

Jekyll
struct<%a> Node{
%a *element;
List<%a> tail;

};
%a* get_element(Node<%a>* x){
return x->element;

}

C
struct Node{
void *element;
List tail;

};
void* get_element(Node* x){
return x->element;

}

When translating from C to Jekyll, type parameters are chosen based purely
on textual similarity to the previous version, without regard to the meaning
of the program. This can chose incorrect type parameters if C edits introduce
previously unmentioned types that should have parameters, or make complex
changes to functions that use the same type constructor with multiple types.
It is likely that better choices would be made if JT prioritized files that type
checked.

Jekyll supports closures and lambda expressions, as found in functional pro-
gramming languages such as ML. Closures are written with syntax similar to
Smalltalk [13], with arguments separated from their body by a colon. A lambda
expression is translated into a function with an environment argument.4

By default, Jekyll uses ff, fe and ft prefixes for lambda functions, closure
environment types, and closure values, however the programmer is free to change
these names to whatever they prefer, since JT allows arbitrary names to be used
(Section 3.2).

Jekyll
int dbl(int z){
return twice(3,
{x: ret x+z;});

}

C
struct fe_dbl{
int *z;

};
int ff_dbl(struct fe_dbl *_env, int x){
return x+*(_env->z);

}
int dbl(int z){
struct fe_dbl ft = {&z};
return twice(3,(void*)&ff_dbl,&ft);

}
4 Free variables are passed by reference since they may be modified. In this case JT

could have passed z by value since ff dbl does not modify it.

Multi-language Synchronization 485

4.2 Edit Translation

To demonstrate the behavior of edits, we took the hashtab.c, hashtab.h, and
ssa.c files from the SPEC2006 version of GCC (3,070 lines total), and performed
a sequence of edits on them. For each edit, we note the language the edit was
made in (L), what the edit was and the effect it had in the other language, and
the number of lines that changed in C and Jekyll, as measured by diff5 (DC and
DJ respectively). All file versions are available in the Jekyll source distribution.

L Description DC DJ
C Remove the use of macros that Jekyll does not understand. 55 new

C Convert to Jekyll – Jekyll is a near-superset of C, so only change is
#including ”hashtab.jkh” in place of "hashtab.h"

0 2

J Make the hashtable generic and make the visitor callback a closure —
leaves the C file largely unchanged. Most differences due to callback
arguments changing order, GCC source using PTR in place of void*,
Jekyll code replacing a typedef with a literal generic type

18 40

J Update ssa.c to use lambda expressions. Generated C file is correct. 376 358
C Rename generated lambda functions. Jekyll unchanged. 22 0
C Rename functions, reorder functions, and insert and delete code – all

mapping into correct Jekyll updates
42 43

C Reorder arguments to the closure type – No longer recognized as a
closure. Reverts back to being a basic function

2 2

4.3 Where It Works, and Where It Doesn’t Work

JT has two significant limitations. First, it does not support the C preprocessor
very well. Jekyll currently uses an ad-hoc series of annotations that tell JT how
to treat particular macros (e.g., treat like a function of this type, or ignore). We
believe that the results of the Macroscope project [18] could be used to design a
better approach.

Secondly, as we saw in the last edit in Section 4.2, JT does not cope well with
some kinds of edits. In particular:

– Breaking encoding rules: Some encodings of Jekyll features into C have rules
that must be followed. For example closures must take their environment as
their first argument and features that expand to several statements require
that those statements not be re-ordered. If C edits break these rules then the
translation will either revert to the raw C, or generate non-equivalent Jekyll
code (Section 3.7). In some cases these rules could be relaxed (e.g., reordering
non-side-effecting statements), but in other cases they are necessary in order
to allow meaningful translation.

– Moving Between files: JT only looks at the current file. If code is moved
between files then the translation will revert to the defaults.

5 Less accurate than our distance metric, but something people are familiar with.

486 R. Ennals and D. Gay

– Large updates: If an update has caused many separate changes to a file then
JT will find it harder to find the correct decoding, since the new version will
correlate less well with the old version. Synchronizing often is a good idea.

However our limited personal experience is that many kinds of update work
well. In particular, any C update that does not affect code implementing a Jekyll
feature is highly likely to work correctly, since the translate stage will find few
things that look like Jekyll features and the select-closest phase will be unlikely
to find close matches to Jekyll features. Similarly, we have found that simple
transformations such as renaming variables, reordering definitions, and adding
and deleting code work reliably. Ideally, a synchronizer would be used with an
interactive tool that allowed the user to pick the correct translation in cases
where the correct result is unclear.

5 Related Work

Much previous work has looked at connections between different languages: bidi-
rectional translation between different data formats, languages that are designed
to extend C, languages that are translatable to C, and tools that preserve pro-
gram formatting while editing. As far as we are aware, no previous work has
performed bi-directional synchronization between programming languages.

5.1 Bidirectional Translation

The Harmony project [9] uses a set of tree-based combinators [10] to transform
data structures between different data representations, with the aim of allowing
easy synchronization of data between different programs and devices. BiXJ [16]
uses a similar set of combinators for XML transformation. Like JT, Harmony
and BiXJ use information from the previous file during translation. Unlike JT,
they do all matching on local subtrees rather than doing a global analysis based
on textual comparisons. While this approach works well for the domain that
these tools are designed for, it is not clear whether this approach would perform
well in the domain of programming language translation, where transformations
are complex and edits can move expressions to arbitrary positions in a program.

XSugar [1] provides bi-directional translation between XML documents and
alternative syntaxes. Unlike JT, XSugar only preserves information that is present
in both representations and otherwise normalizes documents to a canonical form.

Meertens [20] applies the concept of bi-directional translation to the world
of user interfaces. The idea here is that a user interface provides a view onto
some underlying data, and constraints are established that ensure that the user
interface remains an accurate representation of the data, even when the data
or the user interface is manipulated. This approach is constraint based, and it
is not clear whether it could be applied to something as complex as translating
between programming languages.

In the database community, there has been a lot of work on “the view update
problem”, in which one tries to translate an update to a view into an appropriate

Multi-language Synchronization 487

update to the underlying database [14,6]. As with JT, a view update is able to
see the previous version of a database when applying an update to it, and will try
to minimize the extent of the change made. Unlike JT, a view update operation
has the privilege of being able to see the exact update commands used, rather
than simply being presented with a changed file and trying to work out what
was intended.

Martin Fowler proposes the idea of a Language Workbench [11], which is an
IDE in which users write programs using multiple user-defined DSLs. In some
cases it may be possible to represent the same AST using different DSLs (e.g.,
graphical and Java representations of a GUI). As with database view updates,
the IDE translates operations rather than programs.

5.2 Inter-language Translation

Many people have implemented language translators that translate one language
into another. For example FOR C [4] translates FORTRAN to C, and p2c [12]
translates Pascal to C. While the resulting program is human-readable, there is
no means to keep the files in sync if they are modified.

5.3 Languages That Extend Other Languages

Many languages have extended C with new features. Cyclone [15], Vault [7],
C++ [27], Objective C [24] and many others all add useful new features to the
core C language. While existing C code is often valid in these languages, any use
of new features will prevent the program being a valid C program. In principle
it should be possible for us to apply the transformation techniques used by JT
to translate one of these languages to and from C.

Several authors have designed systems that use macros, templates, and nam-
ing conventions to embed extra features into C programs. CCured [23] allows a
programmer to annotate their C programs with safety annotations, which are
used by the CCured compiler, but ignored by a C compiler. FC++ [19] is a
template library that makes it easy to express common functional programming
idioms. These languages benefit from the ability to retain full C/C++ compat-
ibility without translation, but are forced to use non-optimal syntax in order to
do so — as with our encoding of Jekyll into C.

6 Conclusions

While it would be necessary to perform detailed evaluations with real program-
ming teams to determine conclusively that multi-language synchronization works
in practice, our experience so far has been very positive. Those C programmers
that we have shown JT to have been impressed by its ability to cope with
changes to code updates and have claimed that they would be able to edit C
code generated from JT.

As part of the Ivy project [2], which aims to produce a system’s programming
language to replace C, we intend to apply multi-language synchronization to Ivy

488 R. Ennals and D. Gay

and C, and use it to make modifications to large legacy systems. Ultimately, we
aim to convince external developers to use this system.

JT, the Jekyll Translator, is available on SourceForge at: http://
sourceforge.net/projects/jekyllc

Acknowledgements

The design of Jekyll has been influenced by discussions with many people.
Particular thanks must go to Michael Dales, Minos Garofalakis, Simon Pey-
ton Jones, Bill McCloskey, Greg Morrisett, Alan Mycroft, Matthew Parkin-
son, Claus Reinke, Richard Sharp, Simon Thompson, and everyone in the Kent
Theory group, Cambridge Systems Research Group, and Berkeley Ivy group.

References

1. Brabrand, C., Møller, A., and Schwartzbach, M. I. Dual syntax for XML
languages. In Proc. 10th International Workshop on Database Programming Lan-
guages, DBPL ’05 (August 2005), vol. 3774 of LNCS, Springer-Verlag, pp. 27–41.

2. Brewer, E., Condit, J., McClosky, B., and Zhou, F. Thirty years is long
enough: Getting beyond C. In Proceedings of the USENIX workshop on Hot topics
in Operating Systems (2005).

3. Buneman, P., Khanna, S., and Tan, W. C. On propagation of deletions and
annotations through views. In PODS’02 (2002).

4. FOR C: Converts FORTRAN into readable, maintainable C code. http://www.
cobalt-blue.com.

5. C# Language Specification. ECMA, June 2005.
6. Dayal, U., and Bernstein, P. A. On the correct translation of update operations

on relational views. ACM Transactions on Database Systems 8 (Sept. 1982).
7. DeLine, R., and Fahndrich, M. Enforcing high-level protocols in low-level soft-

ware. In Proceedings of the ACM conference on Programming Language Design
and Implementation (2001).

8. Ennals, R. Dr Jekyll and Mr C. Tech. Rep. IR-TR-2005-104, Intel Research,
2005.

9. Foster, J. N., Greenwald, M. B., Kirkegaard, C., Pierce, B. C., and

Schmitt, A. Exploiting schemas in data synchronization. In Database Program-
ming Languages (DBLP) (2005).

10. Foster, J. N., Greenwald, M. B., Moore, J. T., Pierce, B. C., and Schmitt,

A. Combinators for bi-directional tree transformations: A linguistic approach to the
view update problem. In Proceedings of the ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL’05) (2005).

11. Fowler, M. Language workbenches: The killer-app for domain specific languages.
http://www.martinfowler.com/articles/languageWorkbench.html, June 2005.

12. Gillespie, D. p2c. http://www.synaptics.com/people/daveg/.
13. Goldberg, A., and Robson, D. Smalltalk-80: The Language. Addison-Welsey,

1989.
14. Gottlob, G., Paolini, P., and Zicari, R. Properties and update semantics of

consistent views. ACM Transactions on Database Systems 13 (Dec. 1988).

http://sourceforge.net/projects/jekyllc
http://sourceforge.net/projects/jekyllc
http://www.cobalt-blue.com
http://www.cobalt-blue.com
http://www.martinfowler.com/articles/languageWorkbench.html

Multi-language Synchronization 489

15. Jim, T., Morrisett, G., Grossman, D., Hicks, M., Cheney, J., and Wang,

Y. Cyclone: A safe dialect of C. In Proceedings of the USENIX annual technical
conference (2002).

16. Liu, D., Kakehi, K., Hu, Z., Takeichi, M., and Wang, H. A Java library for
bidirectional XML transformation. In JSSST annual conference (2005).

17. Mashey, J. R. Languages, levels, libraries, and longevity. ACM Queue 2, 9 (Dec.
2004).

18. McCloskey, B., and Brewer, E. ASTEC: A new approach to refactoring c. In
Proceedings of the 10th European Software Engineering Conference (Sept. 2005).

19. McNamara, B., and Smaragdakis, Y. Functional programming in C++. In
Proceedings of the ACM SIGPLAN International Conference on Functional Pro-
gramming (ICFP’00) (Sept. 2000).

20. Meertens, L. Designing constraint maintainers for user interaction. http://www.
kestrel.edu/home/people/meertens/, 1998.

21. Milner, R., Tofte, M., Harper, R., and MacQueen, D. The Definition of
Standard ML (Revised). The MIT Press, 1997.

22. Mycroft, A. Type-based decompilation. Lecture Notes in Computer Science
1576 (1999).

23. Necula, G. C., Condit, J., Harren, M., McPeak, S., and Weimer, W.

CCured: type-safe retrofitting of legacy software. ACM Transactions on Program-
ming Languages and Systems (2004).

24. The Objective C Programming Language. Apple, Oct. 2005.
25. Peyton Jones, S., Ed. Haskell 98 Language and Libraries. Cambridge University

Press, 2003.
26. Stallman, R. M. Using and Porting GNU CC (Version 2.0). Free Software

Foundation, Feb. 1992.
27. Stroustrup, B. The C++ Programming Language. Addison Wesley, 1997.
28. Wadler, P. Why no-one uses functional languages. SIGPLAN Notices 33 (Aug.

1998).

http://www.kestrel.edu/home/people/meertens/
http://www.kestrel.edu/home/people/meertens/

Type-Based Analysis of Deadlock for

a Concurrent Calculus with Interrupts

Kohei Suenaga1 and Naoki Kobayashi2

1 University of Tokyo
2 Tohoku University

Abstract. The goal of our research project is to establish a type-based
method for verification of certain critical properties (such as deadlock-
and race-freedom) of operating system kernels. As operating system ker-
nels make heavy use of threads and interrupts, it is important that the
method can properly deal with both of the two features. As a first step
towards the goal, we formalize a concurrent calculus equipped with prim-
itives for threads and interrupts handling. We also propose a type system
that guarantees deadlock-freedom in the presence of interrupts. To our
knowledge, ours is the first type system for deadlock-freedom that can
deal with both thread and interrupt primitives.

1 Introduction

The goal of our research project is to establish a type-based method for verifi-
cation of certain critical properties (such as deadlock- and race-freedom) of op-
erating system kernels. As operating system kernels make heavy use of threads
and interrupts, it is important that the method can properly deal with both of
the two features. Though several calculi that deal with either interrupts [3,14]
or concurrency [12,13] have been proposed, none of them deal with both.

Combination of those two features can actually cause errors which are very
difficult to find manually. For example, consider the program in Figure 1. The
example is taken from an implementation of a protocol stack used in an ongoing
research project on cluster computing [11]. Though the original source code
is written in C, the example is shown in an ML-style language. The function
flush buffer flushes the local buffer and sends pending packets to appropriate
destinations. The function receive data is called when a packet arrives. That
function works as an interrupt handler (as specified in the main expression) and
is asynchronously called whenever a packet arrives. Since receive data calls
flush buffer in order for the local buffer to be flushed as soon as the function
knows there is a room in the remote buffer (a similar mechanism called congestion
control is used in TCP), the following control flow causes deadlock:

Call to flush buffer → lock(devlock)
→ an interrupt (call to receive data)
→ call to flush buffer → lock(devlock)

R. De Nicola (Ed.): ESOP 2007, LNCS 4421, pp. 490–504, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Type-Based Analysis of Deadlock for a Concurrent Calculus with Interrupts 491

let flush_buffer devlock =
let data = dequeue () in
while !data != NULL do

(* Interrupts should be forbidden before this lock operation *)
lock(devlock);
... (* send data to the device *) ...
unlock(devlock);
data := dequeue ()

done

(* interrupt handler *)
let receive_data packettype data devlock =
...
(* If there is room in the remote buffer, flush the local buffer *)
if packettype = RoomInBuffer then

flush_buffer devlock
...

(* main *)
let _ =
(* set receive_data as an interrupt handler *)
request_irq(receive_data);
flush_buffer (get_devlock ())

Fig. 1. An example of program which cause deadlock

Note that an interrupt handler does not voluntarily yield. To prevent the dead-
lock, flush buffer has to forbid interrupts before it acquires the device lock as
shown in Figure 2.

In order to statically detect such a deadlock, we propose (1) a calculus which
is equipped with both interrupts and concurrency and (2) a type system for
verifying deadlock-freedom. To our knowledge, ours is the first type system for
deadlock-freedom that can deal with both thread and interrupt primitives.

Our type system associates a totally-ordered lock level to each lock and guar-
antees that locks are acquired in an increasing order of the levels even if inter-
rupts occur. To achieve this, the type system tracks (1) a lower bound of the
levels of locks acquired during evaluation and (2) an upper bound of the levels of
locks acquired while interrupts are enabled. With our type system, the example
in Figure 1 is rejected. On the other hand, if flush buffer forbids interrupts
before it acquires the device lock (as in Figure 2), our type system accepts the
program.

The outline of this paper is as follows. Section 2 introduces the syntax and
the semantics of our calculus. Section 3 shows our type system and states the
type soundness theorem. After discussing related work in Section 4, we conclude
in Section 5.

492 K. Suenaga and N. Kobayashi

let flush_buffer devlock =
let data = dequeue () in
while !data != NULL do

disable_interrupt(); lock(devlock);
... (* send data to the device *) ...
unlock(devlock); enable_interrupt(); data := dequeue ()

done

Fig. 2. A correct version of flush buffer

2 Target Language

2.1 Syntax

The syntax of our target language is defined in Figure 3. Our language is
an imperative language which is equipped with concurrency and interrupt
handling.

A program P consists of a sequence of function definitions D̃ and a main
expression M . A function definition is constructed from a function name x, a
sequence of formal arguments ỹ and a function body. Function definitions can be
mutually recursive. Note that a function name belongs to the class of variables,
so that one can use a function name as a first-class value.

Expressions are ranged over by a meta-variable M . � and � are left-associative.
For the sake of simplicity, we have only block-structured primitives (sync x in M
and disable int M) for acquiring/releasing locks and disabling/enabling inter-
rupts. We explain intuition of several non-standard primitives below.

x, y, z, f . . . ∈ Var
lck ::= acquired | released
P ::= D̃M
D ::= x(ỹ) = M
M ::= () | n | x | true | false

| x(ṽ) | let x = M1 in M2 | if v then M1 else M2

| let x = ref v in M | x := v |!v
| (M1 | M2) | let x = newlock () in M
| sync x in M | in sync x in M
| M1 � M2 | M1 �M M2 | disable int M | in disable int M

v ::= () | true | false | n | x
E ::= [] | let x = E in M

| (E | M) | (M | E)
| in sync x in E | in disable int E
| E � M | M1 �M E

I ::= enabled | disabled

Fig. 3. The Syntax of Our Language

Type-Based Analysis of Deadlock for a Concurrent Calculus with Interrupts 493

flush buffer iter(devlock , data) =
if !data = Null then () else
(sync devlock in ());flush buffer iter(devlock , dequeue())
flush buffer(devlock) = flush buffer iter(devlock , dequeue())
receive data(packettype , data , devlock) =
if packettype = Room then flush buffer (devlock) else ()
(* Main expression *)
let devlock = newlock() in
let data = ref Null in
flush buffer(devlock) � receive data(Room, data , devlock)

Fig. 4. An Encoding of the Program in Figure 1

– let x = ref v in M creates a fresh reference to v, binds x to the reference
and evaluates M .

– M1 | M2 is concurrent evaluation of M1 and M2. Both of M1 and M2 should
evaluate to ().

– let x = newlock () in M generates a new lock, binds x to the lock and
evaluates M .

– sync x in M attempts to acquire the lock x and evaluates M after the lock
is acquired. After M is evaluated to a value, the lock x is released.

– M1 � M2 installs an interrupt handler M2 and evaluates M1. Once an in-
terrupt occurs, M1 is suspended until M2 evaluates to a value. When M1
evaluates to a value v, M1 � M2 evaluates to v.

– disable int M disables interrupts during an evaluation of M .

The following three primitives only occur during evaluation and should not
be included in programs.

– in sync x in M represents the state in which M is being evaluated with the
lock x acquired. After M evaluates to a value, the lock x is released.

– M1 �M M2 represents the state in which the interrupt handler M2 is being
evaluated. After M2 evaluates to a value, the interrupted expression M1 and
the initial state of interrupt handler M are recovered.

– in disable int M represents the state in which M is being evaluated with
interrupts disabled. After M evaluates to a value, interrupts are enabled.

We write M1; M2 for let x = M1 in M2 where x is not free in M2.
Figure 4 shows how the example in Figure 1 is encoded in our language.

Though that encoding does not strictly conform to the syntax of our language
(e.g., flush buffer iter is applied to an expression dequeue(), not to a value), one
can easily translate the program into one that respects our syntax.

Our interrupt calculus is very expressive and can model various interrupt
mechanisms, as discussed in Examples 1–4 below.

Example 1. In various kinds of CPUs, there is a priority among interrupts. In
such a situation, if an interrupt with a higher priority occurs, interrupts with

494 K. Suenaga and N. Kobayashi

lower priorities do not occur. We can express such priorities by connecting several
expressions with � as follows.

do something(. . .) � interrupt low (. . .) � interrupt high(. . .)

If an interrupt occurs in do something(. . .) � interrupt low (. . .) (note that � is
left-associative), the example above is reduced to

(do something(. . .) �interrupt low(...) interrupt low (. . .)) � interrupt high(. . .).

That state represents that interrupt low interrupted do something . From that
state, interrupt high can still interrupt.

(do something(. . .) �interrupt low(...) interrupt low (. . .))
�interrupt high(...) interrupt high(. . .).

interrupt high can interrupt also from the initial state.

(do something(. . .) � interrupt low (. . .)) �interrupt high(...) interrupt high(. . .)

From the state above, interrupt low cannot interrupt until interrupt high(. . .)
evaluates to a value.

Example 2. In our calculus, we can locally install interrupt handlers. Thus, we
can express a multi-threaded program in which an interrupt handler is installed
on each thread.

(thread1 (. . .) � handler1 (. . .)) | (thread2 (. . .) � handler2 (. . .)) . . .

This feature is useful for modeling a multi-CPU system in which even if an
interrupt occurs in one CPU, the other CPUs continue to work in non-interrupt
mode.

Example 3. In the example in Figure 4, we assume that no interrupt occur in
the body of receive data. One can express that an interrupt may occur during
an execution of receive data by re-installing an interrupt handler as follows.

receive data(packettype, data , devlock) =
(if packettype = Room then flush buffer(devlock) else ())�

receive data(Room , data, devlock)

Example 4. Since many operating system kernels are written in C, we make
design decisions of our language based on that of C. For example, names of
functions are first-class values in our language because C allows one to use a
function name as a function pointer and because operating system kernels heavily
use function pointers. With this feature, we can express a runtime change of
interrupt handler as follows:

let x = ref f in ((. . . ; x := g; . . .) � (!x)())

Until g is assigned to the reference x, the installed interrupt handler is f . After
the assignment, the interrupt handler is g. This characteristic is useful for mod-
eling operating system kernels in which interrupt handlers are changed when,
for example, device drivers are installed.

Type-Based Analysis of Deadlock for a Concurrent Calculus with Interrupts 495

x(ey) = M ′ ∈ eD

(eD, H, L, I, E[x(ev)]) → (eD, H, L, I, E[[ev/ey]M ′])
(E-App)

(eD, H, L, I, E[let x = v in M]) → (eD, H, L, I, E[[v/x]M]) (E-Let)

(eD, H, L, I, E[if true then M1 else M2]) → (eD, H, L, I, E[M1])
(E-IfTrue)

(eD, H, L, I, E[if false then M1 else M2]) → (eD, H, L, I, E[M2])
(E-IfFalse)

x′ is fresh

(eD, H, L, I, E[let x = ref v in M]) → (eD, H[x′ �→ v], L, I, E[[x′/x]M])
(E-Ref)

(eD, H[x �→ v′], L, I, E[x := v]) → (eD, H[x �→ v], L, I, E[()]) (E-Assign)

(eD, H[x �→ v], L, I, E[!x]) → (eD, H[x �→ v], L, I, E[v]) (E-Deref)

x′ is fresh

(eD, H, L, I, E[let x = newlock () in M]) →
(eD, H, L[x′ �→ released], I, E[[x′/x]M])

(E-LetNewlock)

(eD, H, L, I, E[() | ()]) → (eD, H, L, I, E[()]) (E-ParEnd)

(eD, H, L[x �→ released], I, E[sync x in M]) →
(eD, H, L[x �→ acquired], I, E[in sync x in M])

(E-Lock)

(eD, H, L[x �→ acquired], I, E[in sync x in v]) → (eD, H, L[x �→ released], I, E[v])
(E-Unlock)

(eD, H, L, enabled, E[M1 � M2]) → (eD, H, L, enabled, E[M1 �M2 M2])
(E-Interrupt)

(eD, H, L, I, E[M1 �M2 v]) → (eD, H, L, I, E[M1 � M2])
(E-ExitInterrupt)

(eD, H, L, I, E[v � M]) → (eD, H, L, I, E[v])
(E-NoInterruptValue)

(eD, H, L, enabled, E[disable int M]) → (eD, H, L,disabled, E[in disable int M])
(E-DisableInterrupt1)

(eD, H, L,disabled, E[disable int M]) → (eD, H, L,disabled, E[M])
(E-DisableInterrupt2)

(eD, H, L, I, E[in disable int v]) → (eD, H, L, enabled, E[v])
(E-EnableInterrupt)

Fig. 5. The Operational Semantics of Our Language

2.2 Operational Semantics

The semantics is defined as rewriting of a configuration (D̃, H, L, I, M). H is a
heap, which is a map from variables to values. (Note that references are repre-
sented by variables.) L is a map from variables to {acquired, released}. I is
an interrupt flag, which is either enabled or disabled.1

1 We do not assign an interrupt flag to each interrupt handler in order to keep the
semantics simple. Even if we do so, the type system introduced in Section 3 can be
used with only small changes.

496 K. Suenaga and N. Kobayashi

Figure 5 shows the operational semantics of our language. We explain several
important rules.

– In (E-Ref) and (E-LetNewLock), newly generated references and locks
are represented by fresh variables.

– Reduction with the rule (E-Lock) succeeds only if the lock being acquired
is not held. (E-Unlock) is similar.

– disable int changes the interrupt flag only when the flag was enabled
(rule (E-DisableInterrupt1)). Otherwise, disable int does nothing (rule
(E-DisableInterrupt2)).

– If the interrupt flag is enabled, then a handler M2 can interrupt M1 any-
time with the rule (E-Interrupt). When the interrupt occurs, the initial
expression of interrupt handler M2 is saved. After the handler terminates,
the saved expression is recovered with (E-ExitInterrupt).

The following example shows how the program in Figure 4 leads to a
deadlocked state. We write Lu for {devlock ′ �→ released} and Ll for
{devlock ′ �→ acquired}. We omit D̃, H and I components of configurations.

(Lu,flush buffer(devlock ′) � receive data(Room, data, devlock ′))
→∗ (Lu, sync devlock ′ in () � receive data(Room, data, devlock))
→ (Ll, in sync devlock ′ in () � receive data(Room, data, devlock))
→ (Ll, in sync devlock ′ in () �receive data(...) receive data(Room, data, devlock))
→∗ (Ll, in sync devlock ′ in () �receive data(...) flush buffer(devlock ′))
→∗ (Ll, in sync devlock ′ in () �receive data(...) sync devlock ′ in ())

The last configuration is in a deadlock because the attempt to acquire devlock ′,
which is already acquired in Ll, never succeeds and because the interrupt handler
sync devlock ′ in () does not voluntarily yield.

3 Type System

3.1 Lock Levels

In our type system, every lock type is associated with a lock level, which is
represented by a meta-variable lev . The set of lock levels is {−∞, ∞}∪N, where
N is the set of natural numbers. We extend the standard partial order ≤ on N

to that on {−∞, ∞} ∪ N by ∀lev ∈ {−∞, ∞} ∪ N. − ∞ ≤ lev ≤ ∞. We write
lev1 < lev2 for lev1 ≤ lev2 ∧ lev1
= lev2.

3.2 Effects

Our type system guarantees that a program acquires locks in a strict increasing
order of lock levels. To achieve this, we introduce effects which describe how a
program acquires locks during evaluation.

An effect, represented by a meta-variable ϕ, is a pair of lock levels (lev1, lev2).
The meaning of each component is as follows.

Type-Based Analysis of Deadlock for a Concurrent Calculus with Interrupts 497

τ ::= unit | int | bool | eτ1
ϕ→ τ2 | τ ref | lock(lev)

lev ∈ {−∞, ∞} ∪ N

ϕ ::= (lev1, lev2)

Fig. 6. Syntax of types

– lev1 is a lower bound of the lock levels of locks that may be acquired.
– lev2 is an upper bound of the lock levels of locks that may be acquired or

have been acquired while interrupts are enabled.

For example, an effect (0, −∞) means that locks whose levels are more than or
equal to 0 may be acquired and that no locks are acquired while interrupts are
enabled. An effect (0, 1) means that locks whose levels are more than or equal
to 0 may be acquired and that a lock of level 1 may be acquired or has already
been acquired while interrupts are enabled. We write ∅ for (∞, −∞).

We define the subeffect relation and the join operator for effects as follows.

Definition 1 (Subeffect Relation). (lev1, lev2) ≤ (lev ′
1, lev

′
2) holds if and

only if lev ′
1 ≤ lev1 and lev2 ≤ lev ′

2.

(lev1, lev2) ≤ (lev ′
1, lev

′
2) means that an expression that acquires locks according

to the effect (lev1, lev2) can be seen as an expression with the effect (lev ′
1, lev

′
2).

For example, (1, 2) ≤ (0, 3) holds. ∅ is the bottom of ≤.

Definition 2 (Join). (lev1, lev2)�(lev ′
1, lev

′
2)=(min(lev1, lev ′

1),max(lev2, lev ′
2))

For example, (1, 2) � (0, 1) = (0, 2) and (0, −∞) � (1, 2) = (0, 2) hold. ∅ is an
identity of �.

3.3 Syntax of Types

Figure 6 shows the syntax of types and effects. A type, represented by a meta-
variable τ , is either unit, int, bool, τ̃1

ϕ→ τ2, τ ref or lock(lev). We write τ̃ for
a sequence of types. τ ref is the type of a reference to a value of type τ . τ̃1

ϕ→ τ2
is the type of functions which take a tuple of values of type τ̃1 and return a value
of type τ2. ϕ is the latent effect of the functions.

3.4 Type Judgment

The type judgment form of our type system is Γ M : τ & ϕ where Γ is a map
from variables to types. The judgment means that the resulting value of the eval-
uation of M has type τ if an evaluation of M under an environment described by
Γ terminates, and that locks are acquired in a strict increasing order of lock levels
during the evaluation. The minimum and maximum lock levels acquired are con-
strained by ϕ. For example, x : lock(0), y : lock(1) sync x in sync y in () :
unit & (0, 1) and x : lock(0), y : lock(1) sync x in (disable int sync y in ()) :
unit & (0, 0) hold.

498 K. Suenaga and N. Kobayashi

Definition 3. The relation Γ M : τ & ϕ is the smallest relation closed under
the rules in Figures 7 and 8. The predicate noIntermediate(M) in Figure 8 holds
if and only if M does not contain in sync x in M ′, in disable int M ′ or
M1 �M ′ M2 as subterms.

We explain several important rules.

– (T-Sync): If the level of x is lev , then M can acquire only locks whose levels
are more than lev . That is guaranteed by the condition lev < lev1 where lev1
is a lower bound of the levels of locks that may be acquired by M .

– (T-DisableInterrupt): The second component of the effect of
disable int M is changed to −∞ because no interrupt occurs in M , so
that no locks are acquired by interrupt handlers.

– (T-InstHandler): The second component of the effect of M1 should be less
than the first component of the effect of M2 because M2 can interrupt M1
at any time. This is why we need to include the maximum level in effects.

– (T-Fundef): The condition ϕ′ ≤ ϕi guarantees that the latent effect of the
type of the function being defined soundly approximates the runtime locking
behavior.

We show how the program in Figure 4 is rejected in our type system. From

the derivation tree in Figure 9, flush buffer iter has a type (lock(1), τd ref)
(1,1)→

unit, where τd is the type of the contents of the reference data. Thus, flush buffer

has a type lock(1)
(1,1)→ unit and receive data has a type (τp, τd, lock(1))

(1,1)→
unit, where τp is the type of packettype.

Consider the main expression of the example. Let Γ be devlock : lock(1), data :
τd ref . Then, we have

– Γ flush buffer(devlock) : unit & (1, 1) and
– Γ receive data(Room, data, devlock) : unit & (1, 1).

However, the condition lev2 < lev ′
1 of the rule (T-InstHandler) prevents the

main expression to be well-typed (1 < 1 does not hold).
Suppose that sync devlock in () in the body of flush buffer iter is

replaced by disable int sync devlock in (). Then, flush buffer iter has a

type (lock(1), τd ref)
(1,−∞)→ unit Thus, because Γ flush buffer(devlock) :

unit & (1, −∞) and −∞ < 1 hold, the program is well-typed.

3.5 Type Soundness

We prove the soundness of our type system. Here, type soundness means that a
well-typed program does not get deadlocked if one begins an evaluation of the
program under an initial configuration (i.e., under an empty heap, an empty
lock environment and enabled interrupt flag).

We first define deadlock. The predicate deadlocked (L, M) defined below means
that M is in a deadlocked state under L.

Type-Based Analysis of Deadlock for a Concurrent Calculus with Interrupts 499

Γ � () : unit & ∅ (T-Unit) Γ � n : int & ∅ (T-Int)

Γ � true : bool & ∅
(T-True)

Γ � false : bool & ∅
(T-False)

Γ (x) = τ

Γ � x : τ & ∅
(T-Var)

x : (τ1, . . . , τn)
ϕ′
→ τ ∈ Γ

Γ � vi : τi & ∅ (i = 1, . . . , n)

Γ � x(v1, . . . , vn) : τ & ϕ′

(T-App)

Γ � M1 : τ1 & ϕ1

Γ, x : τ1 � M2 : τ & ϕ2

Γ � let x = M1 in M2 : τ & ϕ1 	 ϕ2

(T-Let)

Γ � v : bool & ∅
Γ � M1 : τ & ϕ1

Γ � M2 : τ & ϕ2

Γ � if v then M1 else M2 : τ & ϕ1 	 ϕ2

(T-If)

Γ � v : τ & ∅
x : τ ref , Γ � M : τ ′ & ϕ

Γ � let x = ref v in M : τ ′ & ϕ
(T-Ref)

x : τ ref ∈ Γ
Γ � v : τ & ∅

Γ � x := v : unit & ∅
(T-Assign)

x : τ ref , Γ � !x : τ & ∅
(T-Deref)

Γ � M1 : unit & ϕ1

Γ � M2 : unit & ϕ2

Γ � M1 | M2 : unit & ϕ1 	 ϕ2

(T-Par)

x : lock(lev), Γ � M : τ & (lev1, lev2)

Γ � let x = newlock () in M : τ & (lev1, lev2)
(T-Newlock)

x : lock(lev) ∈ Γ
Γ � M : τ & (lev1, lev2)

lev < lev1 ϕ = (lev , lev) 	 (lev1, lev2)

Γ � sync x in M : τ & ϕ
(T-Sync)

x : lock(lev) ∈ Γ
Γ � M : τ & (lev1, lev2)

lev < lev1 ϕ = (∞, lev) 	 (lev1, lev2)

Γ � in sync x in M : τ & ϕ
(T-Insync)

Γ � M : τ & (lev1, lev2)

Γ � disable int M : τ & (lev1, −∞)
(T-DisableInterrupt)

Γ � M : τ & (lev1, lev2)

Γ � in disable int M : τ & (lev1, −∞)
(T-InDisableInterrupt)

Γ � M1 : τ & (lev1, lev2)
Γ � M2 : unit & (lev ′

1, lev ′
2)

lev2 < lev ′
1 ϕ = (lev1, lev2) 	 (lev ′

1, lev ′
2)

Γ � M1 � M2 : τ & ϕ
(T-InstHandler)

Γ � M1 : τ & (lev1, lev2)
Γ � M2 : unit & (lev ′

1, lev ′
2)

Γ � M : unit & (lev ′′
1 , lev ′′

2)
lev2 < lev ′

1 lev2 < lev ′′
1

ϕ′ = ϕ 	 (lev1, lev2) 	 (lev ′
1, lev ′

2)

Γ � M1 �M M2 : τ & ϕ′

(T-InInterrupt)

Fig. 7. Typing rules

Definition 4 (Deadlock). The predicate deadlocked (L, M) holds if and only
if for all E and i, M = E[i] implies that there exist x and M ′ such that i =
sync x in M ′ ∧ L(x) = acquired. Here, i is defined by the following syntax.

500 K. Suenaga and N. Kobayashi

Γ ⊇ f1 : (τ1,1, . . . , τ1,m1)
ϕ1→ τ1, . . . , fn : (τn,1, . . . , τn,mn)

ϕn→ τn

Γ, xi,1 : τi,1, . . . , xi,mi : τi,mi � Mi : τi & ϕ′

ϕ′ ≤ ϕi noIntermediate(Mi)

Γ �D fi(xi,1, . . . , xi,mi) = Mi : (τi,1, . . . , τi,mi)
ϕi→ τi

(T-Fundef)

{f1, . . . , fn} is the set of names of functions declared in eD

Γ ⊇ {f1 : (τ1,1, . . . , τ1,m1)
ϕ1→ τ1, . . . , fn : (τn,1, . . . , τn,mn)

ϕn→ τn}
Γ �D Di : (τi,1, . . . , τi,mi)

ϕi→ τi (1 ≤ i ≤ n)
Γ � M : unit & ϕ noIntermediate(M)

�P
eDM

(T-Prog)

eD = {f1(x1,1, . . . , x1,m1) = M1, . . . , fl(xl,1, . . . , xl,ml) = Ml}
H = {y1 �→ v1, . . . , yk �→ vk}
L = {z1 �→ lck1, . . . , zn �→ lckn}

Γ �D (fi(xi,1, . . . , xi,mi) = Mi) : (τi,1, . . . , τi,mi)
ϕi→ τi (1 ≤ i ≤ l)

Γ � vi : τ ′
i & ∅ (1 ≤ i ≤ k)

Γ = f1 : (τ1,1, . . . , τ1,m1)
ϕ1→ τ1, . . . , fl : (τl,1, . . . , τl,ml)

ϕl→ τl,
y1 : τ ′

1 ref , . . . , yk : τ ′
k ref ,

z1 : lock(lev1), . . . , zn : lock(levn)

�Env (eD, H, L) : Γ
(T-Env)

�Env (eD, H, L) : Γ Γ � M : τ & (lev1, lev2)

�C (eD, H, L, I, M) : τ
(T-Config)

Fig. 8. Typing Rules for Program and Configuration

i ::= x(ṽ) | let x = v in M
| if true then M1 else M2 | if false then M1 else M2
| let x = ref v in M | x := v |!x
| let x = newlock () in M | (()|()) | sync x in M | in sync x in v
| M1 �M2 v | v � M | disable int M | in disable int v

In the definition above, i is a term that can be reduced by the rules in Figure 5.
Thus, deadlocked (L, M) means that every reducible subterm in M is a blocked
lock-acquiring instruction. For example,

deadlocked (L, (in sync x in (sync y in 0)) | (in sync y in (sync x in 0)))

holds where L = {x �→ acquired, y �→ acquired}.
Note that M1 � M2 is not included in the definition of i because, in the real

world, whether M1 � M2 is reducible or not depends on the external environ-
ment which is not modeled in our calculus. For example, (sync x in ()) � () is
deadlocked under the environment in which x is acquired.

Theorem 1 (Type Soundness). If P D̃M and (D̃, ∅, ∅, enabled, M) →∗

(D̃′, H ′, L′, I ′, M ′), then ¬deadlocked (L′, M ′).

Type-Based Analysis of Deadlock for a Concurrent Calculus with Interrupts 501

... T1 T2

Γ � if . . . then () else (sync devlock in ());flush buffer iter(. . .) : unit & (1, 1)

...

where

T1 =
Γ � () : unit & ∅ 1 < ∞

Γ � sync devlock in () : unit & (1, 1)

T2 = Γ � flush buffer iter : (lock(1), τd)
(1,1)→ unit & ∅

...

Γ � flush buffer iter(devlock , dequeue()) : unit & (1, 1)

Fig. 9. Derivation Tree of the body of flush buffer iter . Γ = flush buffer iter :

(lock(1), τd ref)
(1,1)→ unit,flush buffer : lock(1)

(1,1)→ unit, receive data :

(τp, τd ref , lock(1))
(1,1)→ unit, devlock : lock(1), data : τd.

The theorem above follows from Lemmas 1–4 below. In those lemmas, we use
a predicate wellformed (L, I, M) which means that L, I and the shape of M are
consistent.

Definition 5. wellformed (L, I, M) holds if and only if

– L(x) = released or x /∈ Dom(L) implies that M does not contain in sync x,
– L(x) = acquired implies AckIn(x, M),
– I = enabled implies that M does not contain in disable int.
– I = disabled implies that there exist E and M ′ such that M =

E[in disable int M ′] and both E and M ′ do not contain in disable int.

Here, AckIn(x, M) is the least predicate that satisfies the following rules.

E and M ′ do not contain in sync x in
AckIn(x, E[in sync x in M ′])

(AckIn-Base)

AckIn(x, M1)
E, M ′ and M2 do not contain

in sync x in
AckIn(x, E[M1 �M ′ M2])

(AckIn-Interrupt)

Lemma 1. If P D̃M , then wellformed (∅, enabled, M) and C (D, ∅, ∅,
enabled, M).

Lemma 2. If wellformed (L, I, M) and (D̃, H, L, I, M) → (D̃′, H ′, L′, I ′, M ′),
then wellformed (L′, I ′, M ′).

Lemma 3 (Preservation). If C (D̃, H, L, I, M) : τ and (D̃, H, L, I, M) →
(D̃′, H ′, L′, I ′, M ′), then C (D̃′, H ′, L′, I ′, M ′) : τ .

Lemma 4 (Deadlock-Freedom). If C (D̃, H, L, I, M) : τ and wellformed
(L,I,M), then ¬deadlocked (L, M).

Proofs of those lemmas are in the full version of this paper.

502 K. Suenaga and N. Kobayashi

3.6 Type Inference

We can construct a standard constraint-based type inference algorithm as fol-
lows. The algorithm takes a program as an input, prepares variables for unknown
types and lock levels, and extracts constraints on them based on the typing rules.
By the standard unification algorithm and the definition of the subeffect rela-
tion, the extracted constraints can then be reduced to a set of constraints of the
form {ρ1 ≥ ξ1, . . . , ρn ≥ ξn} where the grammar for ξ1, . . . , ξn is given by

ξ ::= ρ (lock level variables)
| −∞ | ∞ | min(ξ1, ξ2) | max(ξ1, ξ2) | ξ + 1.

Note that lev < lev1 in (T-Sync) can be replaced by lev + 1 ≤ lev1. The
constraints above can be solved as in Kobayashi’s type-based deadlock analysis
for the π-calculus [7]. We will formalize the algorithm in the full version of the
current paper.

4 Related Work

Chatterjee et al. have proposed a calculus that is equipped with interrupts [3,14].
They also proposed a static analysis of stack boundedness (i.e., interrupt chains
cannot be infinite) of programs. The main differences between our calculus and
their calculus are as follows. (1) Their calculus is not equipped with concur-
rency primitives. (2) Each handler has its own interrupt flag in their calculus.
(3) Our calculus can express an install, a change and a detach of interrupt
handlers. Due to (1), we cannot use their calculus to discuss deadlock-freedom
analysis. As for (2), their calculus has an interrupt mask register (imr) to con-
trol which handlers are allowed to interrupt and which are not. This feature
is indispensable in the verification of operating system kernels. We can extend
our calculus to incorporate this feature by adding a tag to each interrupt han-
dler (M � {t1 : M1, . . . , tn : Mn}) and by specifying a tag on interrupt disabling
primitives (disable int t in M). A handler with tag t cannot interrupt inside
disable int t in. We also extend effects like (lev , taglevel), where taglevel is a
map from tags to lock levels. taglevel (t) is an upper bound of the lock levels of
locks that may be acquired or have been acquired while interrupts specified by
t is enabled. Typing rules need to be modified accordingly. Concerning (3), our
calculus can express a change of interrupt handlers as shown in Section 2.

Much work [2,7,8,9] on deadlock-freedom analysis of concurrent programs has
been done. However, none of them deal with interrupts. Kobayashi et al. [7,8,9]
have proposed type systems for deadlock-freedom of π-calculus processes. Their
idea is (1) to express how each channel is used as a usage expression and (2) to
add capability levels and obligation levels to the inferred usage expression in order
to detect circular dependency among input/output operations to channels. Their
capability/obligation levels correspond to our lock levels. Their usage expressions
are unnecessary in the present framework because our synchronization primitive
is block-structured. That notion would be useful if we allow non-block-structured

Type-Based Analysis of Deadlock for a Concurrent Calculus with Interrupts 503

lock primitives. Flanagan and Abadi [1,4] have proposed a type-based deadlock-
freedom and race-freedom analysis for a Java-like language. Though their type
system also uses lock levels, they need to track only a lower bound of acquired
level as an effect because they do not deal with interrupts. In our type system, we
need to track lower and upper bounds of levels as an effect in order to guarantee
deadlock-freedom in the presence of interrupts.

Asynchronous exceptions [5,10] in Java and Haskell are similar to interrupts
in that both cause an asynchronous jump to an exception/interrupt handler.
Asynchronous exceptions are the exceptions that may be unexpectedly thrown
during an execution of a program as a result of some events such as timeouts or
stack overflows. Marlow et al. [10] extended Concurrent Haskell [6] with support
for handling asynchronous exceptions. However, an asynchronous exception does
not require the context in which the exception is thrown to be resumed after an
exception handler returns, while an interrupt requires the context to be resumed.

5 Conclusion

We have proposed a calculus which is equipped with concurrency and interrupts.
We have also proposed a type system for verification of deadlock-freedom for the
calculus.

There remain much work to be done to make our framework applicable to
verification of real operating system kernels. Since many operating system kernels
are written in C, we need to include records, arrays and pointer arithmetics in
our calculus. For those extensions, we may also need to refine the type system.
In the current lock-level-based approach, a lock level is statically assigned to
each syntactic occurence of a lock, so that the same lock level may be assigned
to different locks. To prevent that problem, we may need to introduce lock-level
polymorphism and run-time ordering of lock levels as proposed in [2].

We also plan to develop type systems for verifying other crucial safety prop-
erties such as race-freedom and atomicity.

Acknowledgement

We are grateful to Eijiro Sumii, Hiroya Matsuba, Toshiyuki Maeda and Yutaka
Ishikawa for the comment on this research. We are also grateful to the anonymous
reviewers for their fruitful comments.

References

1. Mart́ın Abadi, Cormac Flanagan, and Stephen N. Freund. Types for safe locking:
Static race detection for java. ACM Transactions on Programming Languages and
Systems, 28(2):207–255, March 2006.

504 K. Suenaga and N. Kobayashi

2. Chandrasekhar Boyapati, Robert Lee, and Martin Rinard. Ownership types for
safe programming: Preventing data races and deadlocks. In Proceedings of the
2002 ACM SIGPLAN Conference on Object-Oriented Programming Systems, Lan-
guages and Applications, (OOPSLA 2002), volume 37 of SIGPLAN Notices, pages
211–230, November 2002.

3. Krishnendu Chatterjee, Di Ma, Rupak Majumdar, Tian Zhao, Thomas A. Hen-
zinger, and Jens Palsberg. Stack size analysis for interrupt-driven programs. In-
formation and Computation, 194(2):144–174, 2004.

4. Cormac Flanagan and Mart́ın Abadi. Types for safe locking. In Proceedings of 8the
European Symposium on Programming (ESOP’99), volume 1576 of Lecture Notes
in Computer Science, pages 91–108, March 1999.

5. James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language Spec-
ification, Third Edition. Addison-Wesley Professional, June 2005.

6. Simon Peyton Jones, Andrew Gordon, and Sigbjorn Finne. Concurrent haskell.
In Proceedings of the 23rd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL 1996), pages 295–308, January 1996.

7. Naoki Kobayashi. Type-based information flow analysis for the pi-calculus. Acta
Informatica, 42(4–5):291–347, 2005.

8. Naoki Kobayashi. A new type system for deadlock-free processes. In Proceedings of
the 17th International Conference on Concurrency Theory, volume 4137 of Lecture
Notes in Computer Science, pages 233–247, August 2006.

9. Naoki Kobayashi, Shin Saito, and Eijiro Sumii. An implicitly-typed deadlock-free
process calculus. In Proceedings of CONCUR 2000, volume 1877 of Lecture Notes
in Computer Science, pages 489–503, August 2000.

10. Simon Marlow, Simon Peyton Jones, and Andrew Moran. Asynchronous exceptions
in haskell. In Proceedings of ACM SIGPLAN 2001 Conference on Programming
Language Design and Implementation (PLDI 2001), June 2001.

11. Hiroya Matsuba and Yutaka Ishikawa. Single IP address cluster for internet servers.
In Proceedings of 21st IEEE International Parallel and Distributed Processing Sym-
posium (IPDPS2007), March 2007.

12. Robin Milner. Communication and Concurrency. Prentice Hall, September 1995.
13. Robin Milner. Communicating and Mobile Systems: the Pi-Calculus. Cambridge

University Press, 1999.
14. Jens Palsberg and Di Ma. A typed interrupt calculus. In Proceedings of 7th

International Symposium on Formal Techniques in Real-Time and Fault Toler-
ant Systems, volume 2469 of Lecture Notes in Computer Science, pages 291–310,
September 2002.

Type Reconstruction for

General Refinement Types

Kenneth Knowles and Cormac Flanagan

University of California, Santa Cruz

Abstract. General refinement types allow types to be refined by pred-
icates written in a general-purpose programming language, and can ex-
press function pre- and postconditions and data structure invariants.
In this setting, with expressive and possibly verbose types, type recon-
struction is particularly valuable, yet typeability is undecidable because
it subsumes type checking. Using a generalized notion of type recon-
struction, we present the first type reconstruction algorithm for a type
system with base types refined by abitrary program terms. Our algorithm
is a typeability-preserving transformation and defers type checking to a
subsequent phase. The algorithm generates and solves a collection of
implication constraints over refinement predicates, inferring maximally
precise refinement predicates in a largely syntactic manner that is remi-
niscent of strongest postcondition calculation. Perhaps surprisingly, our
notion of type reconstruction is decidable even though type checking
is not.

1 Introduction

A refinement type, such as {x :Int | x ≥ 0}, describes the set of terms of type Int
satisfying the refinement predicate x ≥ 0. Refinement types [13] significantly ex-
tend the expressive power of traditional type systems and, when combined with
dependent function types, can document expressive function pre- and postcon-
ditions, as well as data structure invariants.

In the language λH [10], refinement predicates are unrestricted boolean expres-
sions, and so, for example, any computable set of integers can be described by a
λH type. Type checking requires proving implications between refinement pred-
icates, such as that the postcondition of one function implies the precondition
of another. Since the language of refinement predicates is λH itself, implication
is undecidable, and hence so is type checking.

Hybrid type checking [10] circumvents this decidability limitation by passing
each implication to a theorem prover that tries to prove or refute the implica-
tion, but also may give up and return “maybe,” resulting in an inserted run-time
check. The Sage language implementation demonstrates that hybrid type check-
ing interacts comfortably with a variety of typing constructs, including first-class
types, polymorphism, recursive data structures, as well as the type Dynamic, and
that the number of inserted casts for some example programs is low or none [15].

R. De Nicola (Ed.): ESOP 2007, LNCS 4421, pp. 505–519, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

506 K. Knowles and C. Flanagan

But even for small examples, writing explicitly typed terms can be tedious,
and would become truly onerous for larger programs. To reduce the annotation
burden, many typed languages – such as ML, Haskell, and their variants – per-
form type reconstruction, often stated as: Given a program containing type vari-
ables, find a replacement for those variables such that the resulting program is well-
typed. If there exists such a replacement, the program is said to be typeable. Under
this definition, type reconstruction subsumes type checking. Hence, for expressive
and undecidable type systems, such as that of λH , type reconstruction is clearly
undecidable.

Instead of surrendering to undecidability, we separate type reconstruction
from type checking, and define the type reconstruction problem as: Given a pro-
gram containing type variables, find a replacement for those variables such that
typeability is preserved. In a decidable type system, this definition coincides with
the previous one, since the type checker can decide if the resulting explicitly-
typed program is well-typed. The generalized definition also extends to unde-
cidable type systems, since alternative techniques, such as hybrid type checking,
can be applied to the resulting program. In particular, type reconstruction for
λH is now decidable!

Our approach to inferring refinement predicates is inspired by techniques from
axiomatic semantics, most notably the strongest postcondition (SP) transforma-
tion [2]. This transformation supports arbitrary predicates in some specification
logic, and computes the most precise correctness predicate for each program
point. It is essentially syntactic in nature, deferring all semantic reasoning to
a subsequent theorem-proving phase. For example, looping constructs in the
program are expressed simply as fixpoint operations in the specification logic.

In the richer setting of λH , which includes higher-order functions with de-
pendent types, we must infer both the structural shape of types and also any
refinement predicates they contain. We solve the former using traditional type
reconstruction techniques, and the latter using a syntactic, SP-like, transforma-
tion. Like SP, our algorithm infers the most precise predicates possible.

The resulting, explicitly-typed program can then be checked by the λH compi-
lation algorithm [10], which reasons about local implications between refinement
predicates. If the compilation algorithm cannot prove or refute a particular impli-
cation, it dynamically enforces the desired property via a run-time check. These
dynamic checks are only ever necessary for user-specified predicates; inferred
predicates (which may include existential quantification and fixpoint operations)
are correct by construction.

The following section reviews the syntax, semantics, and type system of λH .
Section 3 formalizes and discusses the type reconstruction problem, which we
reduce to satisfiability of a set of subtyping constraints in Section 4. Sections 5
and 6 then explain how we solve these constraints via shape reconstruction
followed by predicate inference. Section 7 states and proves correctness of the
reconstruction algorithm. The remaining sections are dedicated to related work
and concluding remarks.

Type Reconstruction for General Refinement Types 507

2 A Review of λH

The language λH [10] is an extension of the lambda-calculus with dependent
function types and refined base types; see Figure 1 for the complete syntax and
operational semantics. In the dependent function type x :S → T , the argument
x is bound in the return type T . (This notation is preferred to the equivalent
Πx : S.T). In a refined base type {x :B | t}, B is a base type such as Int or Bool,
and t is a boolean predicate over x. Informally, {x :B | t} is the subset of B for
which the predicate t holds

Types have an operational interpretation via run-time casts: The term 〈S�T 〉 t
attempts to cast t from type S to type T . A cast to a refined base type is checked
by evaluating the refinement predicate, while a cast to a function type is split
into a delayed cast on the function’s input and another on the function’s output.

We assume some countable alphabet of constants c, each with an associated
semantic function [[c]] that is applied when c is in the function position of an
application. These constants include, for each type T , a fixpoint operator fixT

that computes the least fixed point of a function t : T → T , enabling unrestricted
recursion:

[[fixT]](t) = t (fixT t)

s, t ∈ Term ::= x
| c
| λx :S. t
| (t t)
| 〈S � T 〉 t

S, T ∈ Type ::= x :S → T | {x :B | t}

B ::= Bool | Int | · · ·

E ::= ∅ | E,x : T

Evaluation s −→ t

(λx :S. t) s −→ t[x := s] [E-β]

c t −→ [[c]](t) [E-Prim]

〈(x :S1 → S2) � (x :T1 → T2)〉 t −→ λx :T1. 〈S2 � T2〉 (t (〈T1 � S1〉 x)) [E-Cast-F]

〈{x :B | s} � {x :B | t}〉 c −→ c if t[x := c] −→∗ true [E-Cast-C]

E [s] −→ E [t] if s −→ t [E-Compat]

Contexts E

E ::= • | • t | t • | 〈S � T 〉 •

Fig. 1. Syntax and Semantics

508 K. Knowles and C. Flanagan

Type rules E � t : T

[T-Var]

(x : T) ∈ E

E � x : T

[T-Const]

E � c : ty(c)

[T-Fun]

E � S E, x : S � t : T

E � (λx :S. t) : (x :S → T)

[T-Cast]

E � t : S E � T

E � 〈S � T 〉 t : T

[T-App]

E � t1 : (x :S → T) E � t2 : S

E � t1 t2 : T [x := t2 : S]

[T-Sub]

E � t : S E � S <: T E � T

E � t : T

Well-formed types E � T

[WT-Arrow]

E � S E, x : S � T

E � x :S → T

[WT-Base]

E, x : B � t : Bool

E � {x :B | t}

Subtyping E � S <: T

[S-Arrow]

E � T1 <: S1 E, x : T1 � S2 <: T2

E � (x :S1 → S2) <: (x :T1 → T2)

[S-Base]

E, x : B � s ⇒ t

E � {x :B | s} <: {x :B | t}

Implication E � s ⇒ t

[Imp]

∀σ. (E |= σ and σ(s) →∗ true implies σ(t) →∗ true)
E � s ⇒ t

Consistent Substitutions E |= σ

[CS-Empty]

∅ |= ∅

[CS-Ext]

∅ � t : T (x := t)E |= σ

x : T, E |= (x := t, σ)

Fig. 2. Type Rules

The typing rules for λH are reproduced in Figure 2. Each constant c is assigned
a type ty(c) by rule [T-Const]; the axioms on constants, detailed in [10], ensure
that ty(c) and [[c]] uphold type soundness. The type of a variable is extracted
from the environment by rule [T-Var] and functions are assigned dependent
function types by rule [T-Fun]. For an application t1 t2, the rule [T-App] checks
that t1 has a dependent function type x : S → T and that t2 has type S.
The application is then assigned the type T [x := t2 : S], which is T with the
concrete argument t2 substituted for the argument variable x. The substitution
is annotated with the argument type S to aid type reconstruction.

Typing of λH is based on subtyping, which utilizes an implication judgement
between refinement predicates, rendering subtyping undecidable. The implication

Type Reconstruction for General Refinement Types 509

judgement E � s ⇒ t is defined by rule [Imp], which reads: term s implies term t in
environment E if, for any substitution σ on the variables bound in E that is con-
sistent with the types of those variables in E, σ(p) −→∗ true implies σ(q) −→∗

true. For example, x : Int � (x > 1) ⇒ (x > 0), because for any integer i chosen
to substitute for x, whenever (i > 1) evaluates to true, so does (i > 0).

3 Type Reconstruction

For the type reconstruction problem, we extend the type language with type
variables α ∈ TyV ar. Type reconstruction yields a function π : TyV ar →
Type, here called a type replacement. Application of a type replacement is lifted
compatibly to all syntactic sorts, and is not capture avoiding.

The three phases of type reconstruction proceed as follows:

1. The input program is processed to yield a set C of subtyping constraints of
the form E � S <: T (the same as the subtyping judgement).

2. The shape reconstruction phase then reduces C into a set P of implica-
tion constraints, each of the form E � p ⇒ q (the same as the implication
judgement).

3. The last phase of type reconstruction solves P .

3.1 Delayed Substitutions

To facilitate our development, we require that the language be closed under sub-
stitution. But a substitution cannot immediately be applied to a type variable,
so each type variable α has an associated delayed substitution θ (which may be
empty).

T ::= · · · | θ · α
θ ::= [] | [x := t : T], θ

The usual definition of capture-avoiding substitution is extended to type vari-
ables, which simply delay that substitution:

(θ · α)[x := s : T] = ([x := s : T], θ) · α

When a type replacement is applied to a type variable α with a delayed
substitution θ, the substitution π(θ) is immediately applied to π(α):

π(θ · α) = π(θ)(π(α))

4 Constraint Generation

The constraint generation judgement E � t : T & C is defined in Figure 3 and
reads: term t has type T in environment E, subject to the constraint set C. Each
rule is derived from the corresponding type rule, with subsumption distributed
throughout the derivation to make the rules syntax-directed.

510 K. Knowles and C. Flanagan

Constraint Generation rules E � t : T & C

[CG-Var]

(x : T) ∈ E

E � x : T & ∅

[CG-Const]

E � c : ty(c) & ∅

[CG-Fun]

E � S & C1 E, x : S � t : T & C2

E � (λx :S. t) : (x :S → T) & C1 ∪ C2

[CG-App]

E � t1 : T & C1 E � t2 : S & C2 α fresh

E � t1 t2 : [x := t2 : S] · α & C1 ∪ C2 ∪ {E � T <: (x :S → α)}

[CG-Cast]

E � t : S′ & C1 E � T & C2

E � 〈S � T 〉 t : T & C1 ∪ C2 ∪ {E � S′ <: S}

Well-formed Type Constraint Generation E � T & C

[WTC-Arrow]

E � S & C1 E,x : S � T & C2

E � x :S → T & C1 ∪ C2

[WTC-Base]

E, x : B � t : Bool & C

E � {x :B | t} & C

[WTC-Var]

E � θ · α & ∅

Fig. 3. Constraint Generation Rules

For a type replacement π, if π(C) contains only valid subtyping relationships,
then π satisfies C. When applied to a typeable λH program, the constraint
generation rules emit a satisfiable constraint set. Conversely, if the constraint
set derived from a program is satisfiable, then that program is typeable.

Lemma 1. For any environment E and term t:

∃π, T. π(E) � π(t) : π(T) ⇐⇒ ∃π′, S, C.

{
E � t : S & C
π′ satisfies C

Proof outline: Each direction proceeds by induction on the respective derivation.
(All complete proofs are included in the extended technical report [19].) �

Consider the following λH term t (the expression let x : T = s in t is syntactic
sugar for (λx :T. t) s).

let id : (x :α1 → α2) = λx :α3. x in
let w : {n :Int | n = 0} = 0 in
let y : {n :Int | n > w} = 3 in
id (id y)

Eliding some generated type variables for clarity, the corresponding constraint
generation judgement is

∅ � t : [x := (id y) : α1] · α2 & C

Type Reconstruction for General Refinement Types 511

where C contains the following constraints, in which Tid ≡ (x : α1 → α2) and
Ty ≡ {n :Int | n > w}:

∅ � x :α3 → α3 <: x :α1 → α2
id : Tid � {n :Int | n = 0} <: {n :Int | n = 0}

id : Tid, w : {n :Int | n = 0} � {n :Int | n = 3} <: {n :Int | n > w}
id : Tid, w : {n :Int | n = 0}, y : Ty � {n :Int | n > w} <: α1
id : Tid, w : {n :Int | n = 0}, y : Ty � [x := y : α1] · α2 <: α1

5 Shape Reconstruction

The second step of reconstruction is to infer a type’s basic shape, ignoring re-
finement predicates. To defer reconstruction of refinements, we introduce place-
holders γ ∈ Placeholder to represent unknown refinement predicates (in the
same way that type variables represent unknown types) Like type variables,
each placeholder has an associated delayed substitution.

t ::= · · · | θ · γ

A placeholder replacement is a function ρ : Placeholder → Term and is lifted
compatibly to all syntactic structures. As with type replacements, applying
placeholder replacement allows any delayed substitutions also to be applied.

[x := t : T](θ · γ) = ([x := t : T], θ) · γ
ρ(θ · γ) = ρ(θ)(ρ(γ))

The shape reconstruction algorithm, detailed in figure 4 takes as input a sub-
typing constraint set C and processes the constraints in C nondeterministically
according to the rules in Figure 4. When the conditions on the left-hand side of
a rule are satisfied, the updates described on the right-hand side are performed.
The set P of implication constraints, each of the form E � p ⇒ q, and the type
replacement π are outputs of the algorithm. For a placeholder replacement ρ, if
ρ(P) contains only valid implications, then ρ satisfies P .

Each rule in Figure 4 resembles a step of traditional type reconstruction.
When a type variable α must have the shape of a function type, it is replaced by
x :α1 → α2, where α1 and α2 are fresh type variables. The function occurs checks
that α has a finite solution, since λH does not have recursive types. Occurences of
α which appear in refinement predicates or in the range of a delayed substitution
are ignored – these occurences do not require a solution involving recursive types.

occurs(α, {x :B | t}) = false
occurs(α, θ · α′) = false (α �= α′)
occurs(α, θ · α) = true

occurs(α, x :S → T) = occurs(α, S) ∨ occurs(α, T)

When a type variable must be a refinement of a base type B, the type variable
is replaced by {x :B | γ} where γ is a fresh placeholder. A subtyping constraint

512 K. Knowles and C. Flanagan

Input: C
Output: π, P
Initially: P = ∅ and π = []
match some constraint in C until quiescent:

E � θ · α <: x :T1 → T2

or E � x :T1 → T2 <: θ · α
=⇒ if occurs(α, x :T1 → T2) then fail

otherwise for fresh α1, α2

π := [α := x :α1 → α2] ◦ π
C := π(C)
P := π(P)

E � θ · α <: {x :B | t}
or E � {x :B | t} <: θ · α

=⇒ for fresh γ
π := [α := {x :B | γ}] ◦ π
C := π(C)
P := π(P)

E � (x :S1 → S2) <: (x :T1 → T2) =⇒ C := C ∪
{

E � T1 <: S1,
E, x : T1 � S2 <: T2

}

E � {x :B | p} <: {x :B | q} =⇒ P := P ∪ {E � p ⇒ q}
E � {x :B | p} <: x :S → T

or E � x :S → T <: {x :B | p} =⇒ fail

Fig. 4. Shape Reconstruction Algorithm

between two function types induces additional constraints between the domains
and codomains of the function types. When two refined base types are con-
strained to be subtypes, a corresponding implication constraint between their
refinements is added to P .

The algorithm terminates once no more progress can be made. At this stage,
any type variables remaining in π(C) are not constrained to be subtypes of any
concrete type but may be subtypes of each other. We set these type variables
equal to an arbitrary concrete type to eliminate them (the resulting subtyping
judgements are trivial by reflexivity).

Lemma 2. For a set of subtyping constraints C, one of the following occurs:

1. Shape reconstruction fails, in which case C is unsatisfiable, or
2. Shape reconstruction succeeds, yielding π and P . Then P is satisfiable if and

only if C is satisfiable. Furthermore, if ρ satisfies P then ρ ◦ π satisfies C.

Proof outline: Each step maintains the invariant that C is satisfiable if and only
if ∃π′, ρ such that ρ satisfies P and ρ ◦ π′ ◦ π satisfies C. �

Returning to our example, shape reconstruction returns the type replacement

π = [α1 := {n :Int | γ1}, α2 := {n :Int | γ2}, α3 := {n :Int | γ3}]

Type Reconstruction for General Refinement Types 513

and the following implication constraint set P , in which Tid = x :{n :Int | γ2} →
{n :Int | γ3} and Ty = {n :Int | n > w}:

n : Int � γ1 ⇒ γ3
x : {n :Int | γ1}, n : Int � γ3 ⇒ γ2

id : Tid, n : Int � (n = 0) ⇒ (n = 0)
id : Tid, w : {n :Int | n = 0}, n : Int � (n = 3) ⇒ (n > w)

id : Tid, w : {n :Int | n = 0}, y : Ty, n : Int � (n > w) ⇒ γ1
id : Tid, w : {n :Int | n = 0}, y : Ty, n : Int � [x := y : {n :Int | γ1}] · γ2 ⇒ γ1

6 Satisfiability

The final phase of type reconstruction solves the residual implication constraint
set P by finding a placeholder replacement that preserves satisfiability.

Our approach is based on the intuition that implications are essentially data-
flow paths that carry the specifications of data sources (constants and function
post-conditions) to the requirements of data sinks (function pre-conditions), with
placeholders functioning as intermediate nodes in the data-flow graph. Thus, if
a placeholder γ appears on the right-hand side of two implication constraints
E � p ⇒ γ and E � q ⇒ γ, then our replacement for γ is simply the disjunction
p ∨ q (the strongest consequence) of these two lower bounds. Our algorithm
repeatedly applies this transformation until no placeholders remain, but several
difficulties arise:

1. p or q may contain variables that cannot appear in a solution for γ
2. γ may have a delayed substitution
3. γ may appear in p or q

To help resolve these issues, we extend the language with the following terms.

s, t ∈ Term ::= · · · | t ∨ t | t ∧ t | ∃x : T. t

The parallel disjunction t1 ∨ t2 (respectively conjunction t1 ∧ t2) evaluates
t1 and t2 nondeterministically, reducing to true (resp. false) if either of them
reduces to true (resp. false). The existential term ∃x : T. t binds x in t, and
evaluates by nondeterministically replacing x with a closed term of type T . The
evaluation rules are summarized in Figure 5.

6.1 Free Variable Elimination

In our example program, the type variable α1 appeared in the empty environment
and π(α1) = {n :Int | γ1}, so the solution for γ1 should be a well-formed boolean
expression in the environment n : Int. The only variable that can appear in a
solution for γ1 is therefore n. But consider the following constraint over γ1:

id : Tid, w : {n :Int | n = 0}, y : Ty, n : Int � (n > w) ⇒ γ1

Since id, w, and y cannot appear in a solution for γ1, we rewrite this constraint
as

n : Int � (∃id : Tid. ∃w : {n :Int | n = 0}. ∃y : Ty. n > w) ⇒ γ1

514 K. Knowles and C. Flanagan

true ∨ t −→ true [E-Or-L]
t ∨ true −→ true [E-Or-R]

false ∨ false −→ false [E-Or-F]

false ∧ t −→ false [E-And-L]
t ∧ false −→ false [E-And-R]

true ∧ true −→ true [E-And-T]

∃x : T. t −→ t[x := s : T] if ∅ � s : T [E-Exists]

E ::= · · · | t ∨ • | • ∨t | • ∧t | t ∧ •

Fig. 5. Additional Evaluation Rules

In general, each placeholder γ introduced by shape reconstruction has an
associated environment Eγ in which it must have type Bool. This gives us a
reasonable definition for the free variables of a placeholder (with its associated
delayed subtitution):

fv(θ · γ) = (dom(Eγ) \ dom(θ)) ∪ fv(rng(θ))

We then rewrite each implication constraint E, y : T � p ⇒ q where y �∈ fv(q)
into the constraint E � (∃y : T. p) ⇒ q. This transformation is semantics-
preserving:

Lemma 3. For y /∈ fv(q), E, y : T � p ⇒ q if and only if E � (∃y : T. p) ⇒ q

Proof outline: The single-step evaluations of the existential term are in one-to-
one correspondence with the possible values of y : T in a closing substitution. �

Repeatedly applying this transformation, we rewrite each implication constraint
until the domain of the environment (and hence the free variables of the left-hand
side) is a subset of the free variables of the right-hand side.

6.2 Delayed Substitution Elimination

The next issue is the presence of delayed substitutions in constraints of the form
E � p ⇒ θ · γ. To eliminate the delayed substitution θ we first split it into an
environment env(θ) and a term [[θ]]:

env([]) = ∅

env([x := t : T], θ) = x : T, env(θ)
[[[]]] = true

[[[x := t : T], θ]] = (x = t) ∧ [[θ]]

The environment env(θ) binds all the variables in dom(θ) while the term [[θ]]
represents the semantic content of θ.

We then transform the constraint E � p ⇒ θ · γ into E, env(θ) � [[θ]] ∧ p ⇒ γ.
But we can rewrite the constraint even more cleanly: E must be some prefix of
Eγ since by the previous transformation dom(E) ⊆ fv(θ · γ) ⊆ dom(Eγ). Any
x ∈ dom(θ) such that x �∈ dom(Eγ) can be dropped from θ and we see that
E, env(θ) is then exactly Eγ . So our constraint is

Eγ � [[θ]] ∧ p ⇒ γ

Type Reconstruction for General Refinement Types 515

To prove this transformation correct, we use the following well-formedness
judgement E �wf θ which distinguishes those delayed substitutions that may
actually occur in context E.

[WF-Empy]

E �wf []

[WF-Ext]

E � t : T E, x : T �wf θ′

E �wf [x := t : T], θ′

Lemma 4. Suppose ρ is a placeholder replacement such that ρ(E) �wf ρ(θ).
Then ρ satisfies E � p ⇒ θ · γ if and only if ρ satisfies E, env(θ) � [[θ]] ∧ p ⇒ γ

Proof outline: The evaluations of the antecedents of each judgement can be
mapped into the evaluations of the other. �

6.3 Placeholder Solution

After the previous transformations, all lower bounds of a placeholder γ appear
in constraints of the form

Eγ � pi ⇒ γ

for i ∈ {1..n}, assuming γ has n lower bounds. We want to set γ equal to the
parallel disjunction p1 ∨ p2 ∨ · · · ∨ pn of all its lower bounds (the disjunction
must be parallel because some subterms may be nonterminating). However, γ
may appear in some pi due to recursion or self-composition of a function. In this
case we use a least fixed point operator, conveniently already available in our
language, to find a solution to the equation γ = p1 ∨ · · · ∨ pn.

More formally, suppose Eγ = x1 : T1, · · · , xk : Tk. Then γ is a predicate over
x1 · · · xk and we can interpret it as a function Fγ : T1 → · · · → Tk → Bool. We
use the following notation for clarity:

T̄ → Bool ≡ T1 → T2 → · · · → Tk → Bool

λx̄ : T̄ . t ≡ λx1 :T1. λx2 :T2. · · ·λxk :Tk. t

f x̄ ≡ f x1 x2 · · · xk

The function Fγ can then be defined as the following least fixed point compu-
tation:

Fγ = fixT̄→Bool (λf : T̄ → Bool. λx̄ : T̄ . (p1 ∨ · · · ∨ pn)[γ := f x̄])

Our solution for γ is LB(γ) = Fγ x̄. This is the strongest consequence that
is implied by all lower bounds of γ and is in some sense canonical, analogously
to the strongest postcondition of a code block.

Lemma 5. If a placeholder replacement ρ satisfies P , then ρ satisfies Eγ �
LB(γ) ⇒ γ.

Proof outline: For any σ such that ρ(Eγ) |= σ, the lemma follows by induction
on the length of the reduction sequence of σ(ρ(LB(γ))) −→∗ true. �

The result of equisatisfiability follows from the fact that we have chosen the
strongest possible solution for γ.

516 K. Knowles and C. Flanagan

Lemma 6. P is satisfiable if and only if P [γ := LB(γ)] is satisfiable.

Proof outline: (⇒): Consider any ρ : PlaceHolders → Terms that satisfies
P . By Lemma 5 if ρ(γ) ⇒ p occurs in P , then LB(γ) ⇒ ρ(γ) ⇒ p; covariant
occurences of γ in environments are analogous. If p ⇒ ρ(γ) occurs in P , then
p ⇒ LB(γ) by construction of LB(γ); contravariant occurences of types in
environments do not affect satisfiability. �

In our example, the only lower bound of γ3 is γ1 and the only lower bound of γ2
is γ3, so let us set γ3 := γ1 and γ2 := γ3 in order to discuss the more interesting
solution for γ1. The resulting unsatisfied constraints (simplified for clarity) are:

n : Int � ∃w : {n :Int | n = 0}. (n > w) ⇒ γ1
n : Int � ∃w : {n :Int | n = 0}. ∃y : {n :Int | n > w}. [x := y] · γ1 ⇒ γ1

The exact text of LB(γ1) is too large to print here, but it is equivalent to
∃w : {n :Int | n = 0}. (n > w) and thus equivalent to (n > 0). The resulting
explicitly-typed program (simplified according to the previous sentence’s discus-
sion) is:

let id : (x :{n :Int | n > 0} → {n :Int | n > 0}) = λx :{n :Int | n > 0}. x in
let w : {n :Int | n = 0} = 0 in
let y : {n :Int | n > w} = 3 in
id (id y)

7 Correctness

The output of our algorithm is the composition of the type replacement returned
by shape reconstruction and the placeholder replacement returned by the sat-
isfiability routine. Application of this composed replacement is a typeability-
preserving transformation. Moreover, for any typeable program, the algorithm
succeeds in producing such a replacement.

Theorem 1. For any λH program t, one of the following occurs:

1. Type reconstruction fails, in which case t is untypeable, or
2. Type reconstruction returns a type replacement π such that t is typeable if

and only if π(t) is well-typed.

Proof

Case 1: Only shape reconstruction can fail. If it does, then by Lemma 2 the
subtyping constraints are unsatisfiable. Then by Lemma 1, t is not typeable.

Case 2: Type reconstruction solved constraints that were faithful, by
Lemma 1. Thus by Lemma 2 we have π and by Lemma 6 we have ρ such
that (ρ ◦ π)(t) is typeable (well-typed) if and only if t is typeable. �

Type Reconstruction for General Refinement Types 517

8 Related Work

Freeman and Pfenning introduced datasort refinements, which express restric-
tions on the recursive structure of algebraic datatypes [13]. Type reconstruction
for the finite set of programmer-specified datasort refinements is decided by
abstract interpretation. Hayashi [16] and Denney [6] explored various logics for
refinement predicates, while Davies and Pfenning [5], and Mandelbaum et al [22]
combined refinements with computational effects. All of these systems require
type annotations, though many perform some manner of local type inference [27].

Xi and Pfenning [29] developed Dependent ML, which uses dependent types
along with index types to express invariants for complex data structures such
as red-black trees. Dependent ML solves systems of linear inequalities to infer a
restricted class of type indices. Dunfield [8] combined index types and datasort
refinements in a system with decidable type checking, but the programmer is
required to provide sufficient type annotations to guide the type checking process.

Recently, Ou et al [26] developed a system with dependent types and refine-
ment types where a section of code may be dynamically typed in order to reduce
the annotation burden. For the static dependently-typed portion of a program,
they forbid recursive functions in refinement predicates to ensure decidability of
type checking, and perform no type reconstruction.

Constraint-based type reconstruction for systems with subtyping is a tremen-
dously broad topic, and we cannot fully review it here. The problem is studied in
some generality by Mitchell [23], Fuh and Mishra [14], Lincoln and Mitchell [21],
Aiken and Wimmers [1], and Hoang and Mitchell [18]. Type inference systems
parameterized by a subtyping constraint system are developed by Pottier [28]
and Odersky et al [25]. This paper is complimentary to generalized systems in
that it focuses on the solution of our particular instantiation of subtyping con-
straints; we also do not investigate parametric polymorphism, which is included
in the mentioned frameworks. Set-based analysis presents many similar ideas,
and we draw inspiration from the works of Heintze [17], Cousot and Cousot [4],
Fähndrich and Aiken [9], and Flanagan and Felleisen [11].

The precondition/postcondition discipline for imperative programs dates back
to the work of Floyd [12], Hoare [3], and Dijkstra [7]. General refinement types
apply similar ideas to functional, higher-order, programs. Our transformation of
predicates to infer refinements resembles and is inspired by Dijkstra’s weakest
precondition calculation but is most closely related to the related strongest post-
condition defined by Back [2]. Nanevski et al [24] have introduced another rela-
tionship between axiomatic semantics and type systems with their Hoare Type
Theory, which adds pre- and postconditions to the types of effectful monadic
computation.

9 Conclusions and Future Work

Refinement type systems are a promising method for expressing precise program
specifications, but many such specifications are not decidable at compile time.

518 K. Knowles and C. Flanagan

Hybrid type checking offers a practical strategy to enforce undecidable refine-
ment types. This work demonstrates that while typeability for such systems is
undecidable, a generalized notion of type reconstruction is decidable and resem-
bles a natural application of specification techniques for imperative programs in
a declarative context.

The connection with predicate transformations used in the analysis of imper-
ative programs deserves further attention, and one clear avenue of future work is
propagating information “backwards” as in a weakest precondition calculation,
and combining this information with the information we propagate “forwards”,
in order to infer the least type for any term. We infer the strongest possible re-
finement predicates, but in the most precise type for a function, the contravariant
domain has the weakest possible refinement.

Inferred refinement predicates may be large and unsuitable for use in error
messages, much like the verification conditions of axiomatic semantics. Instead
of simply presenting the user with a counterexample to the verification con-
dition, ESC/Java illustrates each warning message with a partial trace of the
program [20]; it may be possible to present similar traces for untypable programs.

References

1. A. Aiken and E. Wimmers. Type inclusion constraints and type inference. In Pro-
ceedings of the Conference on Functional Programming Languages and Computer
Architecture, pages 31–41, 1993.

2. R. J. R. Back. A calculus of refinements for program derivations. Acta Informatica,
25(6):593–624, 1988.

3. C. A. R. Hoare. An axiomatic basis for computer programming. Communications
of the ACM, 12:576–580, 1969.

4. P. Cousot and R. Cousot. Formal language, grammar, and set-constraint-based
program analysis by abstract interpretation. In Proceedings of the Interna-
tional Conference on Functional Programming and Computer Architecture, pages
170–181, 1995.

5. R. Davies and F. Pfenning. Intersection types and computational effects. In Pro-
ceedings of the ACM International Conference on Functional Programming, pages
198–208, 2000.

6. E. Denney. Refinement types for specification. In Proceedings of the IFIP Inter-
national Conference on Programming Concepts and Methods, volume 125, pages
148–166. Chapman & Hall, 1998.

7. E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

8. J. Dunfield. Combining two forms of type refinements. Technical Report CMU-
CS-02-182, CMU School of Computer Science, Pittsburgh, Penn., 2002.

9. M. Fähndrich and A. Aiken. Making set-constraint based program analyses scale.
Technical Report UCB/CSD-96-917, University of California at Berkeley, 1996.

10. C. Flanagan. Hybrid type checking. In Proceedings of the ACM Symposium on
Principles of Programming Languages, pages 245 – 256, 2006.

11. C. Flanagan and M. Felleisen. Componential set-based analysis. In Proceedings
of the ACM Conference on Programming Language Design and Implementation,
pages 235–248, 1997.

Type Reconstruction for General Refinement Types 519

12. R. W. Floyd. Assigning meaning to programs. In Proceedings of the Symposium
in Applied Mathematics: Mathematical Aspects of Computer Science, pages 19–32,
1967.

13. T. Freeman and F. Pfenning. Refinement types for ML. In Proceedings of the
ACM Conference on Programming Language Design and Implementation, pages
268–277, 1991.

14. Y. Fuh and P. Mishra. Type inference with subtypes. In Proceedings of the Euro-
pean Symposium on Programming, pages 155–175, 1988.

15. J. Gronski, K. Knowles, A. Tomb, S. N. Freund, and C. Flanagan. Sage: Practi-
cal hybrid checking for expressive types and specifications. In Proceedings of the
Workshop on Scheme and Functional Programming, pages 93–104, 2006.

16. S. Hayashi. Logic of refinement types. In Proceedings of the Workshop on Types
for Proofs and Programs, pages 157–172, 1993.

17. N. Heintze. Set Based Program Analysis. PhD thesis, Carnegie Mellon University,
1992.

18. M. Hoang and J. C. Mitchell. Lower bounds on type inference with subtypes.
In Proceedings of the ACM Symposium on Principles of Programming Languages,
pages 176 – 185, 1995.

19. K. Knowles and C. Flanagan. Type reconstruction for general refinement types.
http://www.soe.ucsc.edu/~cormac/papers/htr-full.pdf, 2007.

20. K. R. M. Leino, T. Millstein, and J. B. Saxe. Generating error traces from
verification-condition counterexamples. Science of Computer Programming, 55(1-3):
209–226, 2005.

21. P. Lincoln and J. C. Mitchell. Algorithmic aspects of type inference with subtypes.
In Proceedings of the ACM Symposium on Principles of Programming Languages,
pages 293 – 304, 1992.

22. Y. Mandelbaum, D. Walker, and R. Harper. An effective theory of type refinements.
In Proceedings of the ACM International Conference on Functional Programming,
pages 213–225, 2003.

23. J. C. Mitchell. Coercion and type inference. In Proceedings of the ACM Symposium
on Principles of Programming Languages, pages 175 – 185, 1983.

24. A. Nanevski, G. Morrisett, and L. Birkedal. Polymorphism and separation in
hoare type theory. In Proceedings of the International Conference on Functional
Programming, pages 62–73, 2006.

25. M. Odersky, M. Sulzmann, and M. Wehr. Type inference with constrained types.
Theory and Practice of Object Systems, 5(1):35–55, 1999.

26. X. Ou, G. Tan, Y. Mandelbaum, and D. Walker. Dynamic typing with depen-
dent types. In Proceedings of the IFIP International Conference on Theoretical
Computer Science, pages 437–450, 2004.

27. B. C. Pierce and D. N. Turner. Local type inference. In Proceedings of the ACM
Symposium on Principles of Programming Languages, pages 252–265, 1998.

28. F. Pottier. Simplifying subtyping constraints. In Proceedings of the ACM Interna-
tional Conference on Functional Programming, pages 122–133, 1996.

29. H. Xi and F. Pfenning. Dependent types in practical programming. In Proceedings
of the ACM Symposium on Principles of Programming Languages, pages 214–227,
1999.

Dependent Types for Low-Level Programming

Jeremy Condit1, Matthew Harren1, Zachary Anderson1,
David Gay2, and George C. Necula1

1 University of California, Berkeley
2 Intel Research, Berkeley

Abstract. In this paper, we describe the key principles of a dependent
type system for low-level imperative languages. The major contributions
of this work are (1) a sound type system that combines dependent types
and mutation for variables and for heap-allocated structures in a more
flexible way than before and (2) a technique for automatically inferring
dependent types for local variables. We have applied these general prin-
ciples to design Deputy, a dependent type system for C that allows the
user to describe bounded pointers and tagged unions. Deputy has been
used to annotate and check a number of real-world C programs.

1 Introduction

Types provide a convenient and accessible mechanism for specifying program
invariants. Dependent types extend simple types with the ability to express
invariants relating multiple state elements. While such dependencies likely exist
in all programs, they play a fundamental role in low-level programming. The
following widespread low-level programming practices all involve dependencies:
an array represented as a count of elements along with a pointer to the start of
the buffer; a pointer to an element inside an array along with the array bounds;
and a variant type (as in a Pascal variant, or a C union) along with a tag that
identifies the active variant. If we cannot describe such dependencies we cannot
prove even the memory safety of most low-level programs.

In this paper, we consider the main obstacles that limit the convenient use of
dependent types in low-level programs:

– Soundness: Mutation of variables or heap locations, used heavily in low-level
programs, might invalidate the types of some state elements. Previous depen-
dent type systems are of limited usefulness because they contain restrictions
that preclude the use of mutable variables in dependent types [2,19,20]. In-
stead, we show that it is possible to combine mutation and dependencies
in a more flexible manner by using a type rule inspired by Hoare’s rule for
assignment. This approach can be used for dependencies between variables
and between fields of heap-allocated structures.

– Decidability: Dependent type checking involves reasoning about the run-time
values of expressions. In most previous dependent type systems, dependen-
cies are restricted to the point where all checking can be done statically.

R. De Nicola (Ed.): ESOP 2007, LNCS 4421, pp. 520–535, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Dependent Types for Low-Level Programming 521

Instead, we propose the use of run-time checks where static checking is not
sufficient. This hybrid type-checking strategy, which has also been used re-
cently by Flanagan [7], is essential for handling real-world code.

– Usability: Writing complete dependent type declarations can be a consider-
able burden. We describe a technique for automatic dependency inference
for local variables, starting from existing declarations for global variables,
data structures, and functions.

We have applied these general principles for low-level dependent types to
create the Deputy type system for the C programming language. Deputy’s de-
pendent types allow programmers to specify common C programming idioms
involving pointer arithmetic and union types. Previous approaches to safe C in-
volved significant changes in the program’s data representation in order to add
metadata for checking purposes: certain pointers were given a “fat” represen-
tation that includes the pointer and its bounds, and tags were added to union
values [11,14]. Instead, Deputy allows programmers to specify relationships be-
tween existing data elements, which in turn allows the compiler to check the
safety of most pointer and union operations without changing program data
structures. This approach enables users to apply Deputy modularly and incre-
mentally to system components, which is especially important for very large
systems or in the presence of external libraries.

In Section 2, we present a high-level preview of the main stages in the Deputy
system for safe low-level programming, using a simple example. Section 3 con-
tains the technical core of the paper, describing our dependent types for a core
imperative language with references and structures, and Section 4 presents our
automatic dependency inference technique. Then, Section 5 shows how this de-
pendent type framework can be instantiated to provide safe handling of pointer
arithmetic and union types in C. Finally, we discuss related work in Section 6.

2 Overview

In order to provide an intuition for the general principles described in this paper,
we discuss here how these principles are instantiated for enforcing memory safety
with the Deputy type system. Consider the sample code shown in Figure 1
without any of the underlined or italicized statements. This program is standard
C, with one programmer-supplied annotation for the type of the buf formal
argument. The annotated type “int * count(end - buf)” describes a pointer
to an array of at least end - buf integers.

Deputy processes this program in three passes:

Pass 1: Inference of missing annotations. For each pointer type without bounds
annotations (e.g., tmp), Deputy introduces a fresh local variable to hold the
bounds, along with appropriate assignments for this variable whenever the
pointer is assigned. In Figure 1, this inference pass adds the underlined code;
specifically, it introduces the variable tmplen, which is updated to store the
length of the array pointed to by tmp. We describe this algorithm in Section 4.

522 J. Condit et al.

1 int sum (int * count(end - buf) buf, int * end) {
2 int sum = 0;
3 while (buf < end) {
4 assert(0 < end - buf);
5 sum += * buf;
6 int tmplen = (end - buf) - 1;

7 assert(0 <= 1 <= end - buf);
8 int * count(tmplen) tmp = buf + 1;

9 assert(0 <= end - tmp <= tmplen);
10 buf = tmp;
11 }
12 return sum;
13 }

Fig. 1. A Deputy program, along with the code added during automatic dependency
inference (underlined) and the assertions added during type checking (in italics). The
temporary variable is shown to better demonstrate Deputy features but is not required.

Pass 2: Flow-insensitive type checking and instrumentation. Next, Deputy type
checks the program using a flow-insensitive type system. Any checks that involve
reasoning about run-time values of expressions are emitted as run-time asser-
tions. In Figure 1, the italicized code shows the assertions that have been added
in this stage. For example, the assertion in line 4 ensures that the buf array is
nonempty and can therefore be safely dereferenced.

The check on line 9 is particularly interesting because it shows the power of
Deputy’s handling of mutation in presence of dependent types. Previous depen-
dent type systems would disallow any assignments to buf because there exist
types in the program that depend on it. Instead, Deputy inserts checks that
ensure that buf’s type invariant will still hold after the assignment. Here, we
ensure that tmp has at least end - tmp elements and thus will satisfy buf’s type
invariant when assigned to buf. Such self-dependencies are particularly useful
when designing flexible types for low-level code. The rules for type checking and
for inserting run-time checks are described in Section 3.

Pass 3: Flow-sensitive optimization of checks. Because our flow-insensitive type
checker has limited ability to recognize redundant checks, we follow type checking
with a flow-sensitive optimization phase. Using standard data-flow techniques,
we can eliminate a large number of the unnecessary checks in the program,
and we can also identify checks that are guaranteed to fail. In Figure 1, all
checks could reasonably be eliminated by the optimizer. By separating the flow-
insensitive type checker from the flow-sensitive optimizer, we simplify both the
implementation and the programmer’s view of the type system. Our current op-
timizer uses standard data-flow techniques and is discussed in detail in a separate
technical report [1]. However, it is worth pointing out that the amount of static
memory safety enforcement depends directly on the quality of the optimizer.

We can use this example to contrast our approach with safe C type systems
that use fat pointers [11,14]. With these systems, the pointer buf might be

Dependent Types for Low-Level Programming 523

Ctors C ::= int | ref | . . .
Types τ ::= C | τ1 τ2 | τ e
Kinds κ ::= type | type → κ | τ → κ
L-exprs � ::= x | ∗ e
Exprs e ::= n | � | e1 op e2

Cmds c ::= skip | c1; c2 |
� := e | assert(γ) |
let x : τ = e in c |
let x = new τ (e) in c

Preds γ ::= e1 comp e2 | true | γ1 ∧ γ2

x, y ∈ Variables n ∈ Integer constants
op ∈ Binary operators comp ∈ Comparison operators

Fig. 2. The grammar for a simple dependently-typed imperative language

stored as a two-word pointer, which means that all callers of this function must
be instrumented as well. In contrast, Deputy’s annotations require no changes
outside this function, which is a crucial advantage over existing tools. Also, since
Deputy’s checks refer to existing program data, our optimizer can take advantage
of existing checks such as the conditional in line 3. These benefits have allowed us
to apply Deputy incrementally to modular software such as Linux device drivers
and TinyOS components, as described in Section 5.3.

3 Dependent Type Framework

This section presents the key components of our dependent type framework. Our
full type system supports dependencies between, and mutation of, local variables,
formal parameters, global variables, and structure fields. In this section, we start
with a system that includes only local variables, and then we extend it with heap-
allocated structures. The remaining features are not discussed in this paper, but
further details are available in a companion technical report [5].

3.1 Language

Although our implementation uses the concrete syntax of C, as shown in the
previous section, for the purposes of our formalism we use the simpler language
shown in Figure 2. In this language, types are specified using type constructors,
which represent type families indexed by types or by expressions. The built-in
constructors are the nullary type constructor “int” (a prototypical base type)
and the unary type constructor “ref”. The “ref” constructor allows the creation
of types such as “ref int”, which is an ML-style reference to an integer; this
reference type is introduced here so that we can show how our type system works
in the presence of memory reads and writes. In later sections, we will introduce
additional type constructors, such as more expressive pointer types. The built-in
constructors do not yield dependent types, but the additional constructors will.

Types are classified into kinds. The kind “type” characterizes complete types,
whereas the functional kinds characterize type families that have to be applied
to other complete types, or to expressions of a certain type, to eventually form
complete types. For the two constructors we have seen so far, the kind of “int”
is “type”, and the kind of “ref” is “type → type”.

524 J. Condit et al.

To show how this system can be extended with additional type constructors,
consider the count annotation used in Figure 1. To represent this annotated
pointer type, we can introduce the constructor “array” with kind “type → int →
type”, such that “array τ elen” is the type of arrays of elements of type τ
and length at least elen . In the concrete syntax this type is written as “τ *
count(elen)”.

The remainder of this language is standard. Note that ∗ represents pointer
dereference, as in C. Also note that assertions are present only for compilation
purposes and do not appear in the input program. Finally, note that we omit
loops and conditionals, which are irrelevant to our flow-insensitive type system,
and we omit function calls, which can be added later as an extension [5].

3.2 Type Rules

In this section, we present the type rules for the core language. Figure 3 shows
these rules and summarizes the judgment forms involved.

Our strategy for handling mutation in the presence of dependent types relies
on two important components. First, we use a typing rule inspired by the Hoare
axiom for assignment to ensure that each mutation operation preserves well-
typedness of the state. Second, dependencies in types are restricted such that we
can always tell statically which types can be affected by each mutation operation.
For this purpose, we restrict types to contain only expressions formed using
constants, local variables, and arbitrary arithmetic operators. In other words, we
do not allow memory dereferences in types. We refer to these restricted notions
of expressions and types as local expressions and local types. Our type rules will
require that all types written by the programmer be local types. Note that when
we add structures to the language in the next section, we will extend this notion
to allow field types to refer to other fields of the same structure.1

We now consider the well-formedness rules for types, shown at the top of
Figure 3. If Γ is a mapping from variables to their types, we say that a type τ is
well-formed in Γ if τ depends only on the variables in Γ . Note that type argu-
ments must be well-formed in the empty environment, as shown in rule (type

type), whereas expression arguments must be well-typed in Γ , as shown in rule
(type exp). This conservative restriction is essential for the “ref” constructor.
If we allowed variables in Γ to appear in the base type of a reference, then we
would need perfect aliasing information to ensure that we can find all references
to a certain location when its type is invalidated through mutation.

We have two judgments for checking expressions: one for local expressions and
one for non-local expressions. The rules for local expressions are standard, but
the rules for non-local expressions produce a condition γ that must hold in order
for the judgment to be valid. This condition is generated during type checking
and will be emitted as a run-time check unless it is discharged statically by the
optimizer.

1 In the full version of Deputy for C, local expressions exclude function calls, references
to fields of other structures, and variables whose address is taken.

Dependent Types for Low-Level Programming 525

Γ �L τ :: κ In type environment Γ , τ is a local, well-formed type with kind κ.

(type ctor)

Γ �L C :: kind(C)

(type exp)

Γ �L τ :: (τ ′ → κ)
Γ �L e : τ ′

Γ �L τ e :: κ

(type type)

Γ �L τ1 :: (type → κ)
∅ �L τ2 :: type

Γ �L τ1 τ2 :: κ

Γ �L e : τ In type environment Γ , e is a local, well-typed expression with type τ .

(local name)

Γ (x) = τ

Γ �L x : τ

(local num)

Γ �L n : int

(local int arith)

Γ �L e1 : int
Γ �L e2 : int

Γ �L e1 op e2 : int

Γ � e : τ ⇒ γ
In type environment Γ , e is a well-typed expression with type τ , if γ is
satisfied.

(var)

Γ (x) = τ

Γ � x : τ ⇒ true

(num)

Γ � n : int ⇒ true

(int arith)

Γ � e1 : int ⇒ γ1

Γ � e2 : int ⇒ γ2

Γ � e1 op e2 : int ⇒ γ1 ∧ γ2

(deref)

Γ � e : ref τ ⇒ γ

Γ � ∗e : τ ⇒ γ

Γ � c ⇒ c′ In type environment Γ , command c compiles to c′, where c′ is identical
to c except for added assertions.

(skip)

Γ � skip ⇒ skip

(seq)

Γ � c1 ⇒ c′
1 Γ � c2 ⇒ c′

2

Γ � c1; c2 ⇒ c′
1; c

′
2

(var write)

x ∈ Dom(Γ)

for all (y : τy) ∈ Γ , Γ � y[e�x] : τy[e�x] ⇒ γy

Γ � x := e ⇒ assert(
V

y∈Dom(Γ)γy); x := e

(mem write)

Γ � e1 : ref τ ⇒ γ1 Γ � e2 : τ ⇒ γ2

Γ � ∗e1 := e2 ⇒ assert(γ1 ∧ γ2); ∗ e1 := e2

(let)

x /∈ Dom(Γ) Γ, x : τ �L τ :: type

Γ � e : τ [e�x] ⇒ γ Γ, x : τ � c ⇒ c′

Γ � let x : τ = e in c ⇒ assert(γ); let x : τ = e in c′

(alloc)

x /∈ Dom(Γ) ∅ �L τ :: type
Γ � e : τ ⇒ γ Γ, x : ref τ � c ⇒ c′

Γ � let x = new τ(e) in c ⇒ assert(γ); let x = new τ(e) in c′

Fig. 3. The four judgments used by our type system and the core type checking rules
for each. Additional rules (with nontrivial γ predicates) will be added later.

526 J. Condit et al.

The rules presented in Figure 3 do not generate any interesting guard condi-
tions themselves. Our intent is that an instantiation of this type system will pro-
vide additional type constructors whose typing rules include non-trivial guards.
For example, to access arrays using the array constructor introduced earlier, we
might add new typing rules for pointer arithmetic and dereference:

(array deref)

Γ � e : array τ elen ⇒ γe

Γ � ∗e : τ ⇒ γe ∧ (0 < elen)

(array arith)

Γ � e : array τ elen ⇒ γe Γ � e′ : int ⇒ γe′

Γ � e + e′ : array τ (elen − e′) ⇒ γe ∧ γe′ ∧ (0 ≤ e′ ≤ elen)

These rules are responsible for the assertions generated in line 4 and line 7 in
Figure 1. Note that we allow zero-length arrays to be constructed, but we check
for this case at dereference; this approach is useful in programs that construct
pointers to the end of an array, as allowed by ANSI C. We might also add a
coercion rule, allowing long arrays to be used where shorter arrays are expected:

(array coerce)

Γ � e : array τ elen ⇒ γe Γ � e′len : int ⇒ γe′
len

Γ � e : array τ e′len ⇒ γe ∧ γe′
len

∧ (0 ≤ e′len ≤ elen)

In our implementation, we ensure that type checking is syntax-directed by
invoking coercion rules only from the rules for commands.

The judgment for checking commands, written Γ � c ⇒ c′, says that in
environment Γ , command c is compiled to command c′ by adding assertions with
the necessary guard conditions. These two commands have identical semantics
if no assertion in c′ fails.

The (var write) rule is responsible for updates to variables in the presence
of dependent types and is a key contribution of our type system. This rule says
that when updating a variable x with the value of expression e, we check all
variables y in the current environment to see that their types still hold after
substituting e for x. This rule essentially verifies that the assignment does not
break any dependencies in the current scope.

The intuition for this rule is based on the Hoare axiom for assignment, which
says that an assignment x := e preserves an invariant φ if and only if one can
prove that φ =⇒ φ[e�x]. If we view the type environment Γ as an invariant
predicate on the state of the program, the (var write) rule states that assign-
ments maintain the invariant. Section 3.4 makes this intuition more precise.

To understand this rule in more detail, consider the following code:

let n : int = . . . in
let a : array int n = . . . in
n := n − 1

Dependent Types for Low-Level Programming 527

In this example, decrementing n should be safe as long as n ≥ 1, because if
a is an array of length n, it is also an array of length n − 1. When we apply
the (var write) rule to this assignment, the premises are Γ � n[n − 1

�n] :
int[n − 1

�n] ⇒ γn and Γ � a[n − 1
�n] : (array int n)[n − 1

�n] ⇒ γa. The first
premise is trivial, with γn = true. The second premise is more interesting. After
substitution, it becomes Γ � a : array int (n − 1) ⇒ γa. If we apply the (array

coerce) rule shown above, we can derive this judgment with γa = 0 ≤ n−1 ≤ n.
After static optimization, this check can be reduced to 0 ≤ n − 1, which is
precisely the check we expected.2

Generally speaking, the (var write) rule allows us to verify that dependen-
cies in the local environment have not been broken, and the local-type restriction
on base types of pointers ensures that there are no dependencies from the heap.
In short, a combination of the Hoare-inspired assignment rule and the local type
restriction have allowed us to verify mutation in the presence of dependent types.

The remainder of the rules for commands are largely straightforward. Note
that the (mem write) rule requires no reasoning about dependencies because
the well-formedness rule for reference types requires that the contents of a refer-
ence be independent of its environment. The (let) and (alloc) rules require a
substitution when checking e; however, since we are introducing a new variable,
we need not check the rest of the environment as in the (var write) rule.

3.3 Structures

We now extend our presentation to allow mutable C-like structures as a natural
extension of our dependent types for local variables. We allow field types to
depend on other fields of the same structure, which enables us to express common
idioms such as a structure containing a pointer to an array along with its length.

To add structures to our language, we add several new syntactic constructs.
We add the type “struct {f1 : τ1; . . . fn : τn}”, which defines a mutable
record type in which the ith field has label fi and type τi, and we add the l-
expression �.f , which accesses a field with name f . We also add the expression
{f1 = e1; . . . ; fn = en}, which is a structure literal that initializes field fi to
expression ei. For example, we could declare a structure with two fields such
that field f1 is an array whose length is one greater than the value in field f2:

y : struct {f1 : array int (f2 + 1); f2 : int}

Note that it is legal to apply the “ref” constructor to a structure type whose
fields depend on one another, because all of the structure type’s dependencies
are self-contained. Pointers to structures with internal dependencies are quite
common in C programs.

Figure 4 shows the rules for type checking structures. The (type struct)
rule ensures that field types depend only on other fields in the same structure.
The (struct read) rule substitutes these field names with the appropriate

2 We take care to account for possible overflow of machine arithmetic, which is simple
when reasoning about array indices that must be bound by the length of an array.

528 J. Condit et al.

(type struct)

for all 1 ≤ i ≤ n, (f1 : τ1, . . . fn : τn) �L τi :: type

Γ �L struct {f1 : τ1; . . . fn : τn} :: type

(struct literal)

for all 1 ≤ i ≤ n, Γ � ei : τi

[
ej

�fj

]
1≤j≤n

⇒ γi γ =
∧

1≤j≤nγi

Γ � {f1 = e1; . . . ; fn = en} : struct {f1 : τ1; . . . fn : τn} ⇒ γ

(struct read)

Γ � � : struct {f1 : τ1; . . . fn : τn} ⇒ γ�

Γ � �.fi : τi

[
�.fj

�fj

]
1≤j≤n

⇒ γ�

(struct write)

Γ � � : struct {f1 : τ1; . . . fn : τn} ⇒ γ�

for all 1 ≤ j ≤ n, Γ � ρ(fj) : ρ(τj) ⇒ γj

where ρ(e′) = e′
[
e
�fi

, �.fj
�fj

]
1≤j≤n,j �=i

Γ � �.fi := e ⇒ assert(γ� ∧
∧

1≤j≤nγj); �.fi := e

Fig. 4. Structure type checking rules

expressions; for example, using the declaration above, a read from y.f1 would
have type “array int (y.f2 + 1)”. The (struct write) rule is analogous to the
(var write) rule; when a field is changed, we check all of the other fields in the
current environment to make sure that any dependencies are satisfied.

In the technical report [5], we present a similar extension that allows us to
type check calls to functions whose arguments depend on one another.

3.4 Soundness

We have proved the soundness of the core type system of Section 3.2. We omit
the details of this proof for space reasons, but we present here the formal require-
ments on the framework for ensuring sound handling of mutation in presence of
dependent types. Full details can be found in the technical report [5].

We define the state of execution, ρ, to be a tuple containing, among other
things, a mapping ρA from addresses to types representing the allocation state.
We define [[e]]ρ to be the value v ∈ Val of expression e in state ρ.

An essential element of the formalization is that for each type τ we can define
the set of values of that type in state ρ as [[τ]]ρ, as follows:

[[int]]ρ = Val
[[ref]]ρ = λt.{a ∈ Dom(ρA)|t = [[ρA(a)]]ρ}

[[τ1 τ2]]ρ = ([[τ1]]ρ)([[τ2]]ρ)
[[τ e]]ρ = ([[τ]]ρ)([[e]]ρ)

In particular, each constructor C must have some meaning given by [[C]]ρ.
If additional constructors are added, the proof requires that their meanings be
given as well, and in some cases, these definitions may require an augmented
notion of state (e.g., a constructor characterizing lock state may require a history

Dependent Types for Low-Level Programming 529

of locking operations). The fact that types have state-based meanings allows us
to view the type environment as a predicate on the state of the program, which is
essential for the adequacy of using Hoare’s assignment axiom for type checking.

3.5 Limitations

One limitation of this type system is its flow-insensitivity. For example, incre-
menting an array before decrementing its length would result in an error even
though these two operations are safe when taken together. One way to overcome
this limitation is to use automatic dependencies to generate fresh dependencies
for local variables, as discussed in Section 4. Another alternative is to use an
extended (var write) rule that handles several statements at once.

A second limitation is the use of local expressions. Although many dependen-
cies can be annotated correctly using local expressions, there are a number of
dependencies that cannot be directly expressed in this way. In these cases, the
programmer must rewrite the code or mark it as trusted. We believe that such
rewrites are good practice even in the absence of a verifier such as Deputy.

4 Automatic Dependencies

Until now, we have presented our type checker under the assumption that all
dependent types were fully specified. To reduce the programmer burden, our type
system includes a feature called automatic dependencies, which automatically
adds missing dependencies of local variables. As described in Section 2, this
feature operates as a preprocessing step before type checking.

We allow local variables to omit expressions in their dependent types. For
example, a variable might be declared to have type “array int”, where the length
of the array is unspecified. For every missing expression in a dependent type of
a local variable, we introduce a new local variable that is updated along with
the original variable. For example, in Figure 1, we added tmplen to track the
length of tmp, updating it as appropriate.

Formally, we maintain a mapping Δ from variables to the list of new variables
that were added to track their dependencies. If a variable x had a complete type
in the original program, Δ(x) is the empty list. We describe the automatic
dependency inference as a judgment Γ ; Δ � c � c′, which says that in the
context Γ ; Δ, the command c can be transformed into command c′ such that all
types in c′ are complete and such that c′ computes the same result as c.

The interesting rules for deriving this judgment are given in Figure 5. In the
(auto let) rule, we add new variables to track any missing dependencies for
x. These variables are initialized using expressions from the type of e (by using
the type checking judgment). Note that γ is unused in this rule; however, it will
be checked appropriately during the type checking phase. In the (auto var

write) rule, we update all of the automatic variables associated with x using
a similar approach. For the purposes of this rule, we add syntax for parallel as-
signment, written x1, . . . , xn := e1, . . . , en, where all expressions ei are evaluated
before assignments take place. The type checking rule for parallel assignment is

530 J. Condit et al.

(auto let)

Γ �L τ :: τ1 → . . . → τn → type Γ � e : τ e1 . . . en ⇒ γ
τ ′ = τ x1 . . . xn x1, . . . , xn fresh

(Γ, x1 : τ1, . . . , xn : τn, x : τ); (Δ, x
→ (x1, . . . , xn)) � c � c′

Γ ; Δ � let x : τ = e in c �
let x1 : τ1 = e1 in . . . let xn : τn = en in let x : τ ′ = e in c′

(auto var write)

Γ (x) = τ x1 . . . xn Δ(x) = (x1, . . . , xn)
Γ � e : τ e1 . . . en ⇒ γ

Γ ; Δ � x := e � x, x1, . . . , xn := e, e1, . . . , en

Fig. 5. Rules for automatic dependencies

a straightforward extension of the (var write) rule. Note that this technique
is independent of the actual dependent types in use.

In the following example, the underlined code can be inferred using this tech-
nique:

let a1 : array int n1 = . . . in
let a2 : array int n2 = . . . in
let nx : int = n1 in
let x : array int nx = a1 in
if (. . .) then x, nx := a2, n2;
∗(x + 3) := 0;

By using automatic dependencies, we ensure that nx contains the number
of elements in x regardless of which branch of the conditional was taken.
Inferring a similar result with a purely static analysis would be much more
difficult. Note, however, that in cases where static analysis would suffice, our
optimizer can eliminate variables and assignments that were introduced by this
transformation.

This transformation recovers some of the flow-sensitivity that is absent in the
core type system. In many cases, it is difficult to annotate a variable with a single
dependent type that is valid throughout a function. By adding fresh variables
that are automatically updated with the appropriate values, we provide the
programmer with a form of flow-sensitive dependent type. As with the optimizer,
we have found that separating this feature from the core type system simplifies
both the implementation and the user’s view of the type system.

5 Dependent Types for C

We now show how our dependent type framework can be instantiated to support
pointer bounds and tagged unions in C programs. Further details can be found
in the SafeDrive paper [21] (see related work) and in the technical report [5].

Dependent Types for Low-Level Programming 531

5.1 Pointer Bounds

Our type constructor for bounded pointers is a generalization of the array con-
structor presented earlier. This new type, written “ptr τ lo hi”, represents a
possibly-null pointer to an array of elements of type τ , where lo and hi are ex-
pressions that indicate the bounds of this array. Specifically, lo is the address of
the first accessible element of the array, and hi is the address of the first inacces-
sible element after the end of the area. We also add to the language an operator
⊕ for C-style pointer arithmetic, which moves a pointer forwards or backwards
by a certain number of elements rather than bytes. The ⊕ operator may be used
in local expressions. Finally, we add typing rules for all relevant operations on
this type (e.g., dereference and arithmetic), the details of which can be found in
the technical report [5]. Examples of the ptr type are as follows:

x : ptr int b (b ⊕ 8) // 8 integer area starting at b
x : ptr int x (x ⊕ n) // n integer area starting at x
x : ptr int x e // from x to e

These declarations (with syntactic sugar for common cases) offer C program-
mers a tractable but expressive way to declare pointer bounds without modifying
existing data structures. Note that many of the uses of this type involve self-
dependencies, which are made tractable by our support for mutation.

5.2 Dependent Union Types

To ensure that C unions are used correctly, programmers often provide a “tag”
that indicates which union field is currently in use; however, the conventions for
how this tag is used vary from program to program. Our type system provides
dependent type annotations that allow the programmer to specify for each union
field the condition that must hold when that field is in use.

To introduce unions, we add a family of new type constructors called “unionn”,
where n indicates the number of fields in the union. This constructor takes n
type arguments indicating the types of each field of the union as well as n integer
arguments indicating whether the corresponding field of the union is currently
active. Thus, we write a union type as “unionn τ1 . . . τn e1 . . . en”, where τi

are the field types and ei are selector expressions. If selector ej is nonzero, then
the corresponding field with type τj is the active field of the union. As usual, the
selectors are local expressions, so they can depend on other values in the current
environment just as pointer bounds do. As with bounded pointers, we add type
rules for the relevant operations on this new type constructor. For example:

x : struct { tag : int; u : union2 int (ref int) (tag ≥ 2) (tag = 1) }

Here, we have a structure containing a union and its associated tag, which
is a common idiom found in C programs. The union x.u contains two fields: an
integer and a reference to an integer. The selector expressions indicate that the
union contains an integer when tag ≥ 2 and that it contains an integer reference
when tag = 1. Note that these selector expressions must be mutually exclusive.

532 J. Condit et al.

5.3 Experiments

We implemented Deputy using the CIL infrastructure [15].3 Our implementation
is 18,000 lines of OCaml code in addition to the CIL front-end itself. Given an
annotated C program, our implementation adds automatic bounds variables,
type checks the program (which inserts run-time checks), optimizes the inserted
checks, and then emits the program as C code for compilation with gcc. The
flow-sensitive optimizer tracks facts such as which pointers are null, and it uses
forward substitution of locals plus basic arithmetic facts to eliminate inserted
checks and to detect checks that will always fail [1]. To use Deputy, programmers
run deputy in place of gcc as their compiler, and then they modify code or type
annotations in order to eliminate the resulting compile-time and run-time errors.

Our implementation covers most of C’s features, many of which are not dis-
cussed in this paper. However, we do not check inline assembly, some variable-
argument functions, and code explicitly marked as trusted by the programmer.
In addition, Deputy does not check memory deallocation, which is an orthogonal
problem; for now, the user can choose to trust deallocations or to run a garbage
collector. Aside from these caveats, Deputy ensures that the program is free of
type and memory errors, including bounds violations and misuse of unions.

To test Deputy, we annotated a number of standard benchmarks, including
Olden [4], Ptrdist [3], and selected tests from the SPEC CPU [18] and Medi-
aBench [12] suites. We also used Deputy to enforce type safety in version 2 of
the TinyOS [10] sensor network operating system, including three simple demo
applications: periodic LED blinking (Blink), forwarding radio packets to and
from a PC (BaseStation), and simple periodic data acquisition (Oscilloscope).
Finally, we have applied Deputy to a number of Linux device drivers for use with
the SafeDrive driver recovery system [21].

Results for these experiments are shown in Table 1. In all experiments, we
changed less than 11% of the lines of code in the program; in most cases, we
changed about 2-4%. We added a total of 27 trusted annotations that tell Deputy
to ignore bad code. The slowdown exhibited by these benchmarks was within
25% in at least half of the tests, with 98% overhead in the worst case. With
the sole exception of yacr2 (on the Ptrdist benchmarks), Deputy’s performance
improves on the performance reported for CCured on the SPEC, Olden, and
Ptrdist benchmarks [14]. However, CCured is checking stack overflow and uses
a garbage collector, whereas Deputy is not. Nevertheless, these numbers show
that Deputy’s run-time checks have a relatively low performance penalty that is
competitive with other memory safety tools. Further details can be found in the
accompanying technical report [5] and in the SafeDrive paper [21].

During these tests Deputy found several bugs. A run-time failure in a Deputy-
inserted check exposed a bug in TinyOS’s radio stack (some packets with invalid
lengths were not being properly filtered). In epic we found an array bounds
violation and a call to close that should have been a call to fclose. We also
caught several bugs that we were previously aware of: ks has two type errors in
arguments to fprintf, and go has six array bounds violations.
3 This implementation is available at http://deputy.cs.berkeley.edu/

http://deputy.cs.berkeley.edu/

Dependent Types for Low-Level Programming 533

Table 1. Deputy benchmarks. For each test, we show the size of the benchmark includ-
ing comments, the number of lines we changed in order to use Deputy, and the ratio
of the execution time under Deputy to the original execution time. “OS components”
are the parts of TinyOS used by the three TinyOS programs.

Suite Benchmark Lines Lines Changed Exec. Time Ratio

SPEC go 29722 80 (0.3%) 1.11
gzip 8673 149 (1.7%) 1.23
li 9636 319 (3.3%) 1.50

Olden bh 1907 139 (7.3%) 1.21
bisort 684 24 (3.5%) 1.01
em3d 585 45 (7.7%) 1.56
health 717 15 (2.1%) 1.02
mst 606 66 (10.9%) 1.02
perimeter 395 3 (0.8%) 0.98
power 768 20 (2.6%) 1.00
treeadd 377 40 (10.6%) 0.94
tsp 565 4 (0.7%) 1.02

Ptrdist anagram 635 36 (5.7%) 1.40
bc 7395 191 (2.6%) 1.30
ft 1904 58 (3.0%) 1.03
ks 792 16 (2.0%) 1.10
yacr2 3976 181 (4.6%) 1.98

MediaBench I adpcm 387 15 (3.9%) 1.02
epic 3469 240 (6.9%) 1.79

TinyOS Blink 74 0 (0%) 1.04
BaseStation 282 0 (0%) 1.17
Oscilloscope 149 3 (2.0%) 1.13
OS components 11698 48 (0.4%) –

6 Related Work

SafeDrive. In a companion paper, we present SafeDrive [21], a system for safe
and recoverable Linux device drivers that uses Deputy to detect faults. The
SafeDrive paper contains a high-level description of Deputy from the C program-
mer’s perspective, whereas this paper presents in detail the principles behind
our type system, including our techniques for handling mutation and automatic
dependencies.

Dependent types. DML [20], Xanadu [19], and Cayenne [2] are previous lan-
guages that use dependent types. In DML and Xanadu, expressions appearing
in dependent types are different from program expressions and must be decid-
able at compile time. In Cayenne, arbitrary expressions from the same language
are allowed, and thus the type system may be undecidable. We attempt to find
a middle ground, allowing expressive annotations in the source language while
using run-time checks to keep the type checker simple and decidable. We also
allow mutation of expressions in dependent types, unlike these other systems.

534 J. Condit et al.

Hoare Type Theory [13] uses a monadic type constructor based on Hoare
triples to isolate and reason about mutation in dependently-typed imperative
programs. In contrast, we assign flow-insensitive types to each program variable,
using run-time checks for decidability and automatic dependencies for usability.

Harren and Necula [9] developed a dependent type system for verifying the
assembly-level output of CCured. Their system allows dependencies on mutable
data, but it requires programs to be statically verifiable.

Microsoft’s SAL annotation language [8] provides interface annotations similar
to those of Deputy. These annotations are viewed as preconditions and postcon-
ditions as opposed to Deputy’s simpler flow-insensitive types. Microsoft’s ESPX
checker attempts to check all code statically, whereas Deputy is designed to emit
run-time checks for additional flexibility.

Hybrid type checking. Our type system uses a form of hybrid type checking [7]
with a flow-insensitive type system and automatic dependency generation. We
demonstrate the effectiveness of this approach for low-level code.

Ou et al. [16] present a type system that splits a program into portions that are
either dependently or simply typed, using run-time checks at the boundaries. Our
type system uses run-time checks for safety everywhere and relies on an optimizer
to handle statically verifiable cases. Ou et al. allow coercions between simply-
and dependently-typed mutable references at the cost of a complex run-time
representation for such references. In contrast, we focus on handling mutation
of local variables and structure fields in the presence of dependencies.

Gradual typing [17] allows static and dynamic types to coexist using run-time
checks, but it does not use dependent types.

Safety for imperative programs. CCured [14] analyzes a whole program in order
to instrument pointers with checkable bounds information, and Cyclone [11] is a
type-safe variant of C that incorporates many modern language features. Both
use “fat” pointers, which make the resulting programs incompatible with existing
libraries; Deputy’s dependent types solve this crucial problem. Cyclone allows
some dependent type annotations; for example, the programmer can annotate a
pointer with the number of elements it points to. Deputy provides more general
pointer bound support as well as support for dependent union types.

Dhurjati and Adve [6] use run-time checks to ensure that C programs access
objects within their allocated bounds. Their system has low overhead on a set
of small to medium-size programs but does not ensure full type safety.

7 Conclusion

We have described a series of techniques that allow dependent types to be used in
existing low-level imperative programs. Inspired by the handling of assignment in
axiomatic semantics, we have designed a type rule for assignment that is simple
yet powerful, allowing us to handle mutation in the presence of dependent types.
We address decidability with run-time checks, and we address usability with a
technique for automatic dependency generation. The result is a practical type
system for annotating and checking low-level code.

Dependent Types for Low-Level Programming 535

Acknowledgments. Thanks to Feng Zhou, Ilya Bagrak, Bill McCloskey, Rob
Ennals, and Eric Brewer for their contributions. This material is based upon work
supported by the National Science Foundation under Grant Nos. CCR-0326577,
CCF-0524784, and CNS-0509544, as well as gifts from Intel Corporation.

References

1. Anderson, Z. R. Static analysis of C for hybrid type checking. Tech. Rep. EECS-
2007-1, UC Berkeley, 2007.

2. Augustsson, L. Cayenne—a language with dependent types. In ICFP’98.
3. Austin, T. M., Breach, S. E., and Sohi, G. S. Efficient detection of all pointer

and array access errors. In PLDI’94.
4. Carlisle, M. C. Olden: Parallelizing Programs with Dynamic Data Structures on

Distributed-Memory Machines. PhD thesis, Princeton University, June 1996.
5. Condit, J., Harren, M., Anderson, Z., Gay, D., and Necula, G. Dependent

types for low-level programming. Tech. Rep. EECS-2006-129, UC Berkeley, 2006.
6. Dhurjati, D., and Adve, V. Backwards-compatible array bounds checking for

C with very low overhead. In ICSE’06.
7. Flanagan, C. Hybrid type checking. In POPL’06.
8. Hackett, B., Das, M., Wang, D., and Yang, Z. Modular checking for buffer

overflows in the large. In ICSE’06.
9. Harren, M., and Necula, G. C. Using dependent types to certify the safety of

assembly code. In SAS’05.
10. Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D. E., and Pister,

K. S. J. System architecture directions for networked sensors. In ASPLOS’00.
11. Jim, T., Morrisett, G., Grossman, D., Hicks, M., Cheney, J., and Wang,

Y. Cyclone: A safe dialect of C. In USENIX Annual Technical Conference (2002).
12. Lee, C., Potkonjak, M., and Mangione-Smith, W. H. MediaBench: A tool

for evaluating and synthesizing multimedia and communicatons systems. In Inter-
national Symposium on Microarchitecture (1997).

13. Nanevski, A., and Morrisett, G. Dependent type theory of stateful higher-
order functions. Tech. Rep. TR-24-05, Harvard University.

14. Necula, G. C., Condit, J., Harren, M., McPeak, S., and Weimer, W.

CCured: Type-safe retrofitting of legacy software. TOPLAS 27, 3 (May 2005).
15. Necula, G. C., McPeak, S., and Weimer, W. CIL: Intermediate language and

tools for the analysis of C programs. In CC’02, Grenoble, France.
16. Ou, X., Tan, G., Mandelbaum, Y., and Walker, D. Dynamic typing with

dependent types. In IFIP Conference on Theoretical Computer Science (2004).
17. Siek, J. G., and Taha, W. Gradual typing for functional languages. In Scheme

and Functional Programming (2006).
18. SPEC. Standard Performance Evaluation Corporation Benchmarks. http://

www.spec.org/osg/cpu95/CINT95 (July 1995).
19. Xi, H. Imperative programming with dependent types. In LICS’00.
20. Xi, H., and Pfenning, F. Dependent types in practical programming. In

POPL’99.
21. Zhou, F., Condit, J., Anderson, Z., Bagrak, I., Ennals, R., Harren,

M., Necula, G., and Brewer, E. SafeDrive: Safe and recoverable extensions
using language-based techniques. In OSDI’06.

http://www.spec.org/osg/cpu95/CINT95/
http://www.spec.org/osg/cpu95/CINT95/

Author Index

Acar, Umut A. 458
Acciai, Lucia 48
Ahmed, Amal 189
Albert, E. 157
Anderson, Zachary 520
Arenas, P. 157

Barthe, Gilles 125
Besson, Frédéric 268
Birkedal, Lars 189
Blanqui, Frédéric 95
Blume, Matthias 441, 458
Boreale, Michele 48
Buscemi, Maria Grazia 18

Carbone, Marco 2
Cenciarelli, Pietro 331
Clarke, Dave 316
Condit, Jeremy 520

Dal Zilio, Silvano 48
de Boer, Frank S. 316
Deng, Yuxin 363
Donham, Jacob 458
Dreyer, Derek 441

Ennals, Robert 475

Feng, Xinyu 173
Ferreira, Rodrigo 173
Findler, Robert Bruce 426
Flanagan, Cormac 505
Flexeder, Andrea 284
Francalanza, Adrian 395

Gaubert, Stephane 237
Gawlitza, Thomas 300
Gay, David 475, 520
Genaim, S. 157
Goubault, Eric 237
Gulwani, Sumit 253

Haack, C. 347
Hardin, Thérèse 95
Harren, Matthew 520

Hasuo, Ichiro 379
Hennessy, Matthew 395
Honda, Kohei 2

Jensen, Thomas 268
Johnsen, Einar Broch 316

Kawabe, Yoshinobu 379
Kirchner, Claude 110
Knapp, Alexander 331
Knowles, Kenneth 505
Kobayashi, Naoki 490
Kopetz, Radu 110
Kuan, George 426

Lapadula, Alessandro 33
Larsen, Kim G. 64
Leino, K. Rustan M. 80
Li, Guodong 205

MacQueen, David 426
Mantel, Heiko 141
Montanari, Ugo 18
Moreau, Pierre-Etienne 110
Morgan, Carroll 363
Morrisett, Greg 189

Nanevski, Aleksandar 189
Necula, George C. 520
Nyman, Ulrik 64

Owens, Scott 205

Petter, Michael 284
Pichardie, David 125
Pitts, Andrew 1
Poetzsch-Heffter, A. 220
Poll, E. 347
Puebla, G. 157
Pugliese, Rosario 33

Ramalingam, G. 220
Reinhard, Alexander 141
Rezk, Tamara 125
Rinetzky, N. 220

538 Author Index

Sagiv, M. 220
Schäfer, J. 347
Schubert, A. 347
Schulte, Wolfram 80
Seidl, Helmut 284, 300
Shao, Zhong 173
Sibilio, Eleonora 331
Slind, Konrad 205
Suenaga, Kohei 490

Taly, Ankur 237
Tiezzi, Francesco 33
Tiwari, Ashish 253
Turpin, Tiphaine 268

van Glabbeek, Rob 363

Versari, Cristian 411

W ↪asowski, Andrzej 64

Weis, Pierre 95

Yahav, E. 220

Yoshida, Nobuko 2

Zanardini, D. 157

Zennou, Sarah 237

Zhang, Chenyi 363

	Title page
	Foreword
	Preface
	Organization
	Table of Contents
	Techniques for Contextual Equivalence in Higher-Order, Typed Languages
	Structured Communication-Centred Programming for Web Services
	Introduction
	The Global Calculus
	Buyer-Seller Protocol
	Syntax and Dynamics
	Session Types for Global Descriptions

	The End-Point Calculus
	Syntax and Dynamics
	Session Typing of End-Point Calculus

	The End-Point Projection
	Three Principles for End-Point Projections
	Pruning and Main Theorem

	Extensions and Future Work

	CC-Pi: A Constraint-Based Language for Specifying Service Level Agreements
	Introduction
	Background
	C-Semirings
	Permutation Algebras

	Named Constraints
	The cc-pi Calculus
	Syntax
	Operational Semantics

	Specifying Service Level Agreements
	A Web Hosting Service
	Resource Allocation

	Expressiveness Results
	Concluding Remarks

	A Calculus for Orchestration of Web Services
	Introduction
	COWS: Calculus for Orchestration of Web Services
	Modelling Imperative and Orchestration Constructs
	Encoding the Orchestration Language Orc
	Concluding Remarks

	A Concurrent Calculus with Atomic Transactions
	Introduction
	The Calculus
	Encoding Concurrency Primitives
	Bisimulation Semantics
	Future and Related Works

	Modal I/O Automata for Interface and Product Line Theories
	Introduction
	Interface Automata vs Modal Automata: An Example
	Alternating Simulation vs Modal Refinement
	Modal I/O Automata
	A Modal Interface Theory
	A Product Line Theory
	Conclusion and Future Work

	Using History Invariants to Verify Observers
	Introduction
	Methodologies for Object Invariants
	History Invariants
	Observer Invariants
	Further Examples
	Related Work
	Future Work
	Conclusion

	On the Implementation of Construction Functions for Non-free Concrete Data Types
	Introduction
	Concrete Data Types with Private Constructors
	Relational Data Types
	On the Existence of Construction Functions
	Towards Efficient Construction Functions
	The Moca System
	Future Work

	Anti-pattern Matching
	Introduction
	Terms and Anti-terms
	Anti-terms

	Matching Anti-patterns
	Pattern Matching
	Anti-pattern Matching

	Anti-pattern Matching and Equational Problems
	Solving Anti-pattern Matching Via Disunification
	Disunification Rules
	Solved Forms
	Simple Examples
	Summing Up the Relations with Disunification

	Implementation
	Related Work
	Conclusion and Future Work

	A Certified Lightweight Non-interference Java Bytecode Verifier
	Introduction
	Language: Syntax and Semantics
	Policies
	Verification of Control Dependence Regions
	Type System
	Main Result
	Remarks on Formal Proofs
	Conclusion

	Controlling the What and Where of Declassification in Language-Based Security
	Introduction
	Controlling Declassification in Dimension where
	Preliminaries
	A Novel Characterization of Flow Security
	Prudent Principles and Compositionality

	Controlling Declassification in the Dimension what
	Two Novel Characterizations of Flow Security
	Prudent Principles and Compositionality

	A Sound Type System for Information Flow Security
	An Exemplary Security Analysis
	Related Work
	Conclusion
	Operational Semantics of MWL

	Cost Analysis of Java Bytecode
	Introduction
	The Java Bytecode Language
	From Bytecode to Control Flow Graphs
	Recursive Representation with Flattened Stack
	Size Relations for Cost Analysis
	The Notion of Size Relation
	Inferring Size Relations

	Cost Relations for Java Bytecode
	Restricting Cost Relations to (Subsets of) Input Arguments
	The Cost Relation

	Solving and Approximating Cost Functions
	Obtaining Recurrence Equations
	Approximating Recurrence Equations

	Conclusion

	On the Relationship Between Concurrent Separation Logic and Assume-Guarantee Reasoning
	Introduction
	The Language
	AGL: An A-G Based Program Logic
	SAGL: Separated A-G Logic
	Concurrent Separation Logic (CSL)
	CSL Specifications and Rules
	Interpretation of CSL in SAGL

	SAGL Examples
	Related Work and Conclusion

	Abstract Predicates and Mutable ADTs in Hoare Type Theory
	Background
	Overview
	Examples
	Type System
	Conclusions and Related Work

	Structure of a Proof-Producing Compiler for a Subset of Higher Order Logic
	Introduction
	Overview
	Language Syntax and Semantics
	Translation and Verification
	From HOL- to ANF/ACF
	From ACF to HSL
	From HSL to CFL
	From CFL to ARM

	Related Work
	Conclusions and Future Work

	Modular Shape Analysis for Dynamically Encapsulated Programs
	Introduction
	Overview
	Main Contributions

	Program Model and Specification Language
	Concrete Dynamic-Ownership Semantics
	Memory States
	Operational Semantics
	Observational Soundness

	Modular Analysis
	Related Work
	Conclusion

	Static Analysis by Policy Iteration on Relational Domains
	Introduction
	Basics
	Abstract Interpretation by Static Analysis
	Two Existing Relational Abstract Domains

	Policy Iteration for Relational Abstract Domains
	Selection Property
	Operations with Policy

	Algorithmic Issues
	Least Fixpoint Computation, for a Given Policy
	Initial Policy for Zones and TCM

	Experiments
	Conclusion

	Computing Procedure Summaries for Interprocedural Analysis
	Introduction
	Preliminaries
	Program Model
	Unification and Assertion Checking

	General Technique for Interprocedural Analysis
	Generic Assertions
	Phase 1: Computing Procedure Summaries
	Phase 2: Using Procedure Summaries

	Unary Uninterpreted Functions
	Simplification
	Computational Complexity: Efficient Representations

	Linear Arithmetic
	Related Work and Discussion
	Conclusion

	Small Witnesses for Abstract Interpretation-Based Proofs
	Introduction
	Obtaining Witness from Abstract Interpretation
	Witnesses
	On the Size of Witnesses

	Optimal Witnesses for Distributive Analyses
	Lattice of Witnesses
	Weakest Witnesses as Greatest Fixpoints
	 Weakest Witnesses for Set-Based Analyses

	Fixpoint Pruning
	General Algorithm
	Polyhedra Analysis

	Certificates
	Certificate Format and Checking Algorithm
	Certificate Generation

	Related Work
	Conclusion

	Interprocedurally Analysing Linear Inequality Relations
	Introduction
	The General Set-Up
	Convex Abstraction
	Linear Inequality Guards
	Representing Convex Sets
	Preliminary Experimental Results
	Conclusion

	Precise Fixpoint Computation Through Strategy Iteration
	Introduction
	Notation and Basic Concepts
	Computing Least Solutions
	Interval Analysis
	Conclusion

	A Complete Guide to the Future
	Introduction
	The Language
	Syntax
	Semantics

	An Example
	The Assertion Language
	The Proof System
	Soundness and Completeness

	Related Work
	Discussion and Future Work

	The Java Memory Model: Operationally, Denotationally, Axiomatically
	Introduction
	Stable Structures as Traces
	Sequents of Partial Maps
	A Configuration Theory of Java
	An Event-Based Semantics of Java
	Correctness
	Conclusions and Further Research

	Immutable Objects for a Java-Like Language
	Introduction
	A Java-Like Language with Immutability
	Operational Semantics
	Semantic Immutability
	The Immutability Type System -- Informally
	The Immutability Type System -- Formally
	Conclusion

	Scalar Outcomes Suffice for Finitary Probabilistic Testing
	Introduction
	Probabilistic Testing of Probabilistic Automata
	Probabilistic Structures and Notational Conventions
	Probabilistic Automata and Their Resolutions
	Probabilities of Action Occurrences in Resolutions
	Probabilistic Testing
	May- and Must Preorders

	Reward Testing of Finite-Dimensional Tuple Sets
	Reward Testing of Automata
	Closure Suffices for Scalar Testing
	Very Finite Testing Is p-closed, Hence Scalar
	Also Finitary Testing Is Scalar
	Beyond Finitary Testing
	Conclusion
	One Success Never Leads to Another

	Probabilistic Anonymity Via Coalgebraic Simulations
	Introduction
	Motivating Example: Dining Cryptographers (DC)
	The DC Protocol
	Probabilistic Anonymity in DC

	Probabilistic Anonymity
	Anonymity Automata: Models of Anonymizing Protocols
	Anonymity Automata Reconciled as Coalgebras
	Trace Semantics for Anonymity Automata
	Definition of Probabilistic Anonymity

	Anonymity Proof Via Probabilistic Simulations
	Anonymized Automaton an(X)
	Forward/Backward Simulations for Anonymity Automata
	Probabilistic Anonymity Via Simulations

	Conclusion and Future Work

	A Fault Tolerance Bisimulation Proof for Consensus (Extended Abstract)
	Introduction
	Language
	Consensus
	Up-to Techniques in the Presence of Failure
	Consensus Satisfaction Proof
	Conclusion

	A Core Calculus for a Comparative Analysis of Bio-inspired Calculi
	Introduction
	The @ Language
	The -Calculus
	Polyadic Synchronisation
	Priority
	The @ Syntax and Semantics
	Notation

	Encodings
	Requirements
	Basic Ideas
	Encoding BioAmbients
	Encoding Brane Calculi
	Encodings Comparison

	Conclusions and Future Work

	A Rewriting Semantics for Type Inference
	Introduction
	Simply Typed λ -Calculus
	Curry/Hindley Type Inference
	Hindley/Milner inference
	Related Work
	Conclusion
	References

	Principal Type Schemes for Modular Programs
	Introduction
	Generalized Functor Signatures
	Abstract Data Types and Dependencies
	The SML/NJ Approach

	Our Approach
	Declarative Semantics
	Type Inference Algorithm
	Related and Future Work

	A Consistent Semantics of Self-adjusting Computation
	Introduction
	The Language
	Abstract Syntax
	Stores, Well-Formed Expressions, and Lifting
	Dynamic Semantics
	Deterministic, Purely Functional Semantics

	Consistency and Correctness
	Main Theorems
	Proof Outline

	Mechanization in Twelf
	Implementation Strategies
	Conclusion

	Multi-language Synchronization
	Introduction
	Multi-language Synchronization
	Model and Usability Requirements
	Language Requirements

	Non-deterministic Language Translation
	Non-deterministic Abstract Syntax Trees (ASTs)
	Encoding Arbitrary Elements
	Non-deterministic Token Sequences
	Distance Between Two Files
	Optimal Translation Is NP-Hard
	Synchronizing Comments and Whitespace
	Checking Correctness

	Evaluating JT
	Feature Translation
	Edit Translation
	Where It Works, and Where It Doesn't Work

	Related Work
	Bidirectional Translation
	Inter-language Translation
	Languages That Extend Other Languages

	Conclusions

	Type-Based Analysis of Deadlock for a Concurrent Calculus with Interrupts
	Introduction
	Target Language
	Syntax
	Operational Semantics

	Type System
	Lock Levels
	Effects
	Syntax of Types
	Type Judgment
	Type Soundness
	Type Inference

	Related Work
	Conclusion

	Type Reconstruction for General Refinement Types
	Introduction
	A Review of $lambda$^H
	Type Reconstruction
	Delayed Substitutions

	Constraint Generation
	Shape Reconstruction
	Satisfiability
	Free Variable Elimination
	Delayed Substitution Elimination
	Placeholder Solution

	Correctness
	Related Work
	Conclusions and Future Work

	Dependent Types for Low-Level Programming
	Introduction
	Overview
	Dependent Type Framework
	Language
	Type Rules
	Structures
	Soundness
	Limitations

	Automatic Dependencies
	Dependent Types for C
	Pointer Bounds
	Dependent Union Types
	Experiments

	Related Work
	Conclusion

	Author Index

