
V. Basili et al. (Eds.): Empirical Software Engineering Issues, LNCS 4336, pp. 25 – 32, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Empirical Paradigm – The Role of Experiments

Barbara Kitchenham

Abstract. This article discusses the role of formal experiments in empirical
software engineering. I take the view that the role of experiments has been
overemphasised. Laboratory experiments are not representative of industrial
software engineering tasks, so do not provide us with a reliable assessment of
the effect of our techniques and tools. I suggest we need to concentrate a larger
proportion of our research effort on industrial quasi-experiments and case
studies. Methodologies for these empirical methods are well-understood in the
social science and would appear to be appropriate mechanisms for investigating
many software engineering research questions. In addition, I believe we need to
make the results of empirical software engineering more visible and relevant to
practitioners. To influence practitioners I suggest that we need to produce
evidence-based text books and evidence-based software engineering standards.

1 Introduction

In this paper, I discuss the role of formal experiments in empirical software
engineering. I believe that we may have over-emphasised the role of formal
experiments in empirical software engineering and as a result we have both failed to
identify the limitations and risks inherent in software engineering experiments and
given insufficient consideration to other empirical methods.

My basic assumption is that the goal of empirical software engineering is to
influence the practice of software engineering. This implies that we need empirical
methods that provide us with insights into how software engineering works in practice
and how changes to the process can result in changes to the outcomes of the process.

In order to explain my concern about formal experiments, I will identify some
areas where the nature of software engineering practice is at odds with the
requirements of formal experiments and discuss some of the risks that arise because
of this. Then I will suggest that quasi-experimental design and case studies might be
better suited to some types of empirical study than formal experiments. Finally, I will
indicate how we might make the results of empirical studies more visible to
practitioners.

2 Software Engineering Practice and Experimental Methodology

Software engineering in practice involves coordinating and integrating many different
tasks (analysis, design, coding, testing, quality assurance, project management etc.)
that rely heavily on human expertise often in the context of developing innovative
products using new technologies. For large scale software engineering, this basic
complexity is compounded by the involvement of many different engineers and

26 B. Kitchenham

managers working in cooperating teams (sometimes distributed) within one or more
industrial cultures. In general it is difficult to identify one task or a single decision and
consider its impact in total isolation from its surrounding context.

In comparison, formal experiments abstract tasks away from industrial contexts in
order to study in detail specific isolated elements of a process, an event or an artefact.
In general the more isolated the object of study is from its environment the easier it is
to manipulate and study, but there is a risk that the results will not apply in more
complex industrial situations.

Software engineering researchers often debate the use of student subjects, but in
my opinion the choice of subjects is far less critical that the selection of materials,
tasks and contexts. If our materials are small scale documents with known solutions,
our tasks are restricted to those that take less than 2 hours, and the rich industrial
context in which software tasks are planned and performed is removed, what is the
value of the outcomes of our formal experiments? Clearly there are some cases when
we can rely on formal experiments but there are significant risks. We need to consider
more that just the scale-up problem, or the student subject problem, for example:

• We may fail to recognise the value of techniques that are not cost effective for
small scale tasks but would be valuable for large scale activities (techniques that
increase overheads such as documentation, project management or quality
assurance would fit this category).

• We may not be able to define realistic control situations leading to experimental
results that cannot be interpreted by practitioners (e.g. comparing task results based
on training people with a new technique with results obtained from people given
no training is poor experimental practice; new techniques are best compared with
current best practice).

• We may over estimate the impact of our techniques when they are used in
controlled situations without the variety inherent in industry practice. This may
lead to over-optimistic ROI estimates.

• We may find ourselves examining phenomena that are a result of abstracting the
technology away from its usage context not characteristics of the technology itself.

• We may blame practitioners for failure to use our methods when the real problem
is our failure to understand the complexity of the context in which our techniques
will be used.

If we look at what happens in other human intensive disciplines, we observe that
either they are able to perform realistic experiments such as randomised controlled
trials in medicine or they use quasi-experimental methods such as those developed by
social scientists and educationalists.

The critical property of a randomised controlled trial is that it is a real trial of a
treatment (e.g. a new drug or other health care intervention) in a real hospital (or
health centre) involving real patients and real doctors, with outcomes that directly
affect the health and well-being of the participants. It is extremely rare that we are
able to undertake trials of such direct relevance to practitioners in software
engineering. In fact I am aware of only one experiment (undertaken by Jørgensen and
Carelius [1]) that incorporated a genuine randomised experiment within actual
practice. Thus, I do not see software engineering being able to adopt randomised
controlled trials as a standard experimental protocol.

 Empirical Paradigm – The Role of Experiments 27

It might be argued that we are better served by considering our laboratory
experiments to be exploratory studies. However, formal experiments were designed
with hypothesis testing in mind. It is not clear that they are as well suited to exploratory
studies as other empirical methods such as industrial case studies.

Adding a qualitative element to formal experiments does not overcome the
objection that they were designed for hypothesis testing, certainly not in the context
of laboratory experiments with student subjects. Petticrew and Roberts [2] suggest
qualitative research is more appropriate that randomised controlled trials for purposes
of salience (whether the technology/service matters), process of service delivery,
acceptability (whether the technology/service will be taken up by potential users),
appropriateness (whether the technology/service is right for the proposed users,
satisfaction (whether users are satisfied with the technology or service). However, to
investigate these issues, researchers would need to obtain the opinion of potential
users in a realistic context not surrogate users such as students trying out a small scale
task in a laboratory.

I conclude that we should be more ready to perform industrial studies using quasi-
experimental designs to support hypothesis testing (or confirmation) and qualitative
studies (particularly case studies) to support hypothesis generation (or exploration). I
discuss these approaches in more detail in the next section.

3 Quasi-experiments and Case Studies

The social sciences have developed a large number of quasi-experimental designs for
large-scale field experiments, and have a clear understanding of the strengths and
weaknesses of these designs. Quasi-experimental designs are designs in which it is
impossible to allocate subjects/participants to treatment conditions at random. I
suggest that empirical researchers in software engineering need to become more
familiar with these types of designs and more open to the opportunities they offer to
improve the rigour of large-scale industrial studies.

Quasi-experimental designs began with simple before and after designs which
immediately confound treatment effects with the passage of time, but have evolved
into far more robust designs. Shadish et al. [3] provide a catalogue of basic quasi-
experimental designs incorporating multiple pre- and post-measures and control
groups. They also describe designs such as interrupted time-series analysis and
regression discontinuity that are almost as rigorous as formal experiments, but have
the ability to monitor the impact of large-scale social interventions.

The rigour of quasi-designs has improved as researchers have continued to criticize
and improve them. A major element of the criticism will be familiar to most empirical
software engineers since it is based on an assessment of study validity. Indeed the
validity terms that we use in software engineering have been obtained directly from
validity issues associated with quasi-experiments undertaken in education and social
policy (not formal experiments). For example, maturity validity is particularly
important in studies that deal with children since the impact of various social and
education programs will be confounded with the children’s basic skills increasing as
they grow older. Similar a history threat is a major problem if families living in
poverty that are eligible for one support program (e.g. housing support) may also be

28 B. Kitchenham

receiving another (e.g. food stamps). However, the studies of validity threats do not
end with generic threats applicable to any design but have been refined to identify
validity threats specific to particular types of quasi-design. For example, Shaddish et
al. [3] provide a detailed list of validity threats for case control studies, and discuss
validity issues for other quasi-designs.

3.1 Case Control and Cohort Studies

As examples of fairly common quasi-experimental design consider case control
studies and cohort studies. In case control studies, we identify experimental units
(e.g. humans, organizations, artifacts) that exhibit some undesirable characteristic
(e.g. a project that significantly overruns its budget and timescale). We then match
one or more controls with each case. The controls are units that do not exhibit the
undesirable property but in all other respects match one of the cases. Differences
between each case and its control(s) are investigated to look for possible reasons for
the undesirable characteristic.

Retrospective case control studies are the standard design used to identify risk
factors associated with medical conditions. They would seem an obvious candidate
for determining project risk factors. This design has many limitations (see Shaddish et
al. [3] Table 4.3 for a complete list). A major problem with such designs is to find the
correct characteristics to match the cases and the control. Another problem is that
case-control studies are usually backward looking (retrospective) studies. Other
problems associated with data collection include:

• Underlying cause bias: Project managers of failing projects may reflect about
possible causes and thus exhibit different recall than project managers of controls.

• Expectation bias: Observers may systematically err in measuring and recording
data so that they concur with prior expectations.

• Exposure suspicion bias: Knowledge of the status (i.e. case or control) may
influence the intensity and outcome of a search for exposure to a risk factor.

• Recall bias: Questions about specific exposures may be asked several times of
cases and only once of control.

One approach to reducing bias resulting from questioning people about past events
is to ensure that interviewers are kept “blind” to case status (i.e. the interviewers who
interrogate project staff should not know whether the project was a failure or a
success). Although this sounds strange, it is the standard practice for studies that
interrogate people about their exposure to medical risk factors.

An alternative design is a forward looking (prospective) study. Cohort studies are
often prospective. In this type of study we identify a sample of experimental units and
observe their progress over time. Medical cohort studies involve millions of subjects
over long periods of time (up to 20 years) so this type of design is suitable for large-
scale, long-term studies. They are often used to identify the incident rate of diseases
in the general population, so they would seem to be appropriate for issues such as the
rate of project failures. However, there have been no prospective studies of this type
performed in software engineering.

 Empirical Paradigm – The Role of Experiments 29

3.2 Evaluating Technology Impact

Two recent studies of the impact of ISO/IEC 15504 (SPICE) have been based on
correlation studies ([4], [5]). Correlation studies are observational studies which are
weaker methodologically than experiments or quasi-experiments. They always suffer
from the problem that they cannot confirm causality. Significant correlations may
occur by chance (particularly when a large number of variables are measured), or as a
result of a “latent” variable (i.e. an unmeasured variable that affects two measured
variables and gives rise to an apparent correlation between the measured variables).

A more reliable approach is to monitor the impact of technology adoption in
individual organizations by measuring project achievements before and after adoption
utilizing multiple measurement points before and after technology changes. This
approach has been adopted by several researchers for CMM evaluations. For example,
Dion [6] recorded cost of quality and productivity data for 18 projects, undertaken
during a five year process improvement activity. The first two projects were started
before the process changes were introduced; the subsequent projects were started as
the series of process changes were introduced. Simple plots of the results show an
ongoing improvement over time consistent with an ongoing process improvement
exercise. However, the provision of data on projects started prior to the process
changes gives additional confidence that the effect was due to the process change
rather than other factors. Steen [7] provides another endorsement of Dion’s
methodology. He reviewed 71 experience reports of CMM-based SPI and identified
Dion’s study as the only believable report of Return on Investment (ROI) of CMM-
based SPI.

In another study, McGarry et al. [8] plotted project outcomes before and after the
introduction of CMM level 2. The data spanned a 14-year period and included 89
projects. The graphs showed that improvements in productivity and defect rates were
not due to the introduction of CMM. The same improvement rate had been observed
prior to the introduction of CMM and could be attributed to the general process
improvement activities taking place before and during CMM adoption not specifically
the adoption of CMM (i.e. McGarry observed a history effect). In contrast,
improvements in estimating accuracy did appear to be a result of adopting CMM.

3.3 Industrial Case Studies

Quasi-experimental designs allow us to perform quantitative studies investigating
factors such as the effectiveness of techniques, or the relative importance of project
risk factors. Industrial case studies in contrast allow us to look in detail at the how and
why of software engineering phenomena [9].

It is important to identify what I mean by a case study. A case study should be a
genuine industrial software engineering project (or project activity), not a toy project,
nor a special project performed for the purpose of evaluating a technology or training
new staff. All too often researchers use the term case study when they mean example
(i.e. recreating a previously constructed software artefact using a new technology). In
principle, an industrial software project should act as a host for a case study. In fact,
as Yin points out the most convincing case studies are those that have a strong
rationale for case selection. This means that the host project should have

30 B. Kitchenham

characteristics that make it suitable to address the issues being investigated by the
case study. If we are concerned about investigating the way technology works in
practice and its impact on practitioners, industrial case studies are likely to be a more
reliable methodology than small-scale experiments with an added qualitative element.

4 Visibility of Empirical Software Engineering Results

Several recent publications have made the point that software engineering academics
and practitioners trust expert opinion more than objective evidence ([10], [11]). I
conclude that that empirical software engineering will not have much relevance to
practitioners, if empirical studies have no visibility. For this reason, we need to find a
suitable outlet for our results. There are two areas that empirical software engineering
should address to make empirical ideas visible to practitioners: text books, which can
influence software engineers during their training, and international standards, which
are likely to impact industrial practitioners.

We need software engineering text books that incorporate empirical studies to
support their discussion of technologies that identify the extent to which technologies
have been validated, or under what conditions one technology might be more
appropriate than another. Endres and Rombach [12] have made a start at this type of
text book, but we need more general software engineering text books that include
empirical evidence. Furthermore, text books require summarised evidence not simply
references to individual empirical studies, so I we need more systematic literature
reviews to provide rigorous summaries of empirical studies ([13], [2]).

We also need evidence-based standards. In my experience the quality of
international software engineering standards is woeful. I have no objection to
standards related to arbitrary decisions, such as the syntax of a programming
language, which are simply a matter of agreement. However, standards that purport to
specify best practice are another issue. Software standards of this type often make
unsupported claims. For example ISO/IEC 2500 [14] says:

“The purpose of the SQuaRE set of International Standards is to assist
developing and acquiring software products with the specification and
evaluation of their products. It establishes criteria for the specification
of software product quality requirements, their measurement and
evaluation.”

I imagine a large number of researchers and practitioners would be surprised to
find that the means of specifying, measuring, and evaluating software quality is so
well-understood that it can be published in International Standard.

Compare this “International Standard” with the more modestly named “Research-
based web design and usability guidelines” [15]. The web-guidelines not only
explicitly reference the scientific evidence that supports them; they also define the
process by which the guidelines were constructed. Each individual guideline is rated
with respect to its importance and the strength of evidence supporting it. The software
engineering industry deserves guidelines and standards of the same quality.

 Empirical Paradigm – The Role of Experiments 31

5 Conclusions

In this article, I have argued that we have overemphasised the role of formal
experiments in empirical software engineering. That is not to say that there is no place
for formal experiments in software engineering. Formal experiments can be used for
initial studies of technologies such as proof of concept studies. There are also
undoubtedly occasions when formal experiments are the most appropriate
methodology to study a software engineering phenomenon (for example, performance
studies of alternative coding algorithms). However, the nature of industrial software
engineering does not match well with the restrictions imposed by formal experiments.
We cannot usually perform randomised controlled trials in industrial situations and
without randomised controlled trials we cannot assess the actual impact of competing
technologies, nor can we assess the context factors that influence outcomes in
industrial situations.

To address the limitations of formal experiments, I suggest that empirical software
engineering needs to place more emphasis on industrial field studies including case
studies and quasi-experiments. In addition, we need to make empirical results more
visible to software engineers. I recommend that the empirical software engineering
community produce evidence-based text books and campaign for evidence-based
standards. Evidence-based text books would prepare future software engineers to
expect techniques to be supported by evidence. Evidence-based standards might help
practitioners address their day-to-day engineering activities and lead to a culture in
which evidence is seen to benefit engineering practice.

Acknowledgements

National ICT Australia is funded by the Australian Government’s Backing Australia’s
Ability initiative, in part through the Australian Research Council. At Keele
University, Barbara Kitchenham works on the UK EPSRC EBSE project
(EP/C51839X/1).

References

1. Jørgensen, M. and G. J. Carelius. An Empirical Study of Software Project Bidding, IEEE
Transactions of Software Engineering 30(12):953--969, 2004.

2. Petticrew, Mark and Roberts, Helen. Systematic Reviews in the Social Sciences. A
practical Guide. Blackwell Publishing, 2006.

3. Shaddish, W.R., Cook, T.D., and Campbell, D.T. Experimental and Quasi-Experimental
Designs for Generalized Causal Inference. Houghton Mifflin Company, 2002.

4. El Emam, K. and Birk, A. Validating ISO/IEC 15504 measures of software development
process capability. The Journal of Systems and Software, 51, 2000a, pp 119-149.

5. El Emam, K. and Birk, A. Validating ISO/IEC 15504 measures of software Requirements
Analysis Process Capability, IEEE Transactions on Software Engineering, 26(6), 2000b,
pp 541-566.

6. Dion, Raymond. Process Improvement and the Corporate Balance Sheet. IEEE Software,
10(4), 1993, pp 28-35.

32 B. Kitchenham

7. Steen, H.U. Reporting framework-based software process improvement. A quantitative
and qualitative review of 71 experience reports of CMM-based SPI. Master Thesis, Simula
Research Laboratory & Department of Informatics University of Oslo, 29th October 2004.

8. McGarry, F., Burke, S. and Decker, B. Measuring the Impacts Individual process Maturity
Attributes have on Software Products. Proceedings Fifth International Software Metrics
Symposium, IEEE Computer Society, 1998, pp 52-60.

9. Yin, Robert K. Case Design and Methods. Third edition, Sage Publications, 2004.
10. Barbara Kitchenham, David Budgen, Pearl Breton, Mark Turner, Stuart Charters and

Stephen Linkman, Large Scale Software Engineering Questions – Expert Opinion or
Empirical Evidence? Experience and Methods from Integrating Evidence-based Software
Engineering into Education, Proceedings 4th International Workshop WSESE2003,
Fraunhofer IESE-Report No., 068.06/E, 2006

11. Rainer, A., Jagielska, D. and Hall, T. Software Practice versus evidence-based software
engineering research. In Proceedings of the Workshop on Realising Evidence-based
Software Engineering, ICSE-2005, 2005, http:/cfm.portal.acm.org/dl.

12. Endres, Albert and H. Dieter Rombach. Empirical Software and Systems Engineering: A
Handbook of Observations, Laws and Theories, Addison Wesley, 2003.

13. Kitchenham B. (2004). Procedures for Undertaking Systematic Reviews, Joint Technical
Report, Computer Science Department, Keele University (TR/SE-0401) and National ICT
Australia Ltd (0400011T.1)

14. ISO/IEC 25000. International Standard. Software Engineering – Software product Quality
Requirements and Evaluation (SQuaRE) – Guide to SQuaRE. 2005-08-01.

15. Koyani, S.J., Bailey, R.W. and Nall, J.R. (2003) Research based web design and usability
guidelines. National Cancer Institute, Available for download at http://usability.gov/
pdfs/guidelines.html.

	Introduction
	Software Engineering Practice and Experimental Methodology
	Quasi-experiments and Case Studies
	Case Control and Cohort Studies
	Evaluating Technology Impact
	Industrial Case Studies

	Visibility of Empirical Software Engineering Results
	Conclusions
	References

