
V. Basili et al. (Eds.): Empirical Software Engineering Issues, LNCS 4336, p. 21, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Empirical Evaluation in Software Engineering: Role,
Strategy, and Limitations

Lionel C. Briand

Though there is a wide agreement that software technologies should be empirically
investigated and assessed, software engineering faces a number of specific challenges
and we have reached a point where it is time to step back and reflect on them.
Technologies evolve fast, there is a wide variety of conditions (including human
factors) under which they can possibly be used, and their assessment can be made
with respect to a large number of criteria. Furthermore, only limited resources can be
dedicated to the evaluation of software technologies as compared to their
development. If we take an example, the development and evaluation of the Unified
Modeling Language (UML) as an analysis and design representation, major revisions
of the standard are proposed every few years, many specialized “profiles” of UML are
being developed (e.g., for performance and real-time) and evolved, it can be used
within the context of a variety of development methodologies which use different
subsets of the standard in various ways, and it can be assessed with respect to its
impact on system comprehension, the design decision process, but also code
generation, test automation, and many other criteria. Given the above statement and
example, important questions logically follow: (1) What can be a realistic role for
empirical investigation in software engineering? (2) What strategies should be
adopted to get the most out of available resources for empirical research? (3) What
does constitute a useful body of empirical evidence?

It is evident that we cannot possibly assess and validate every single software
technology being used or adopted under every possible relevant set of conditions with
respect to every possible criterion. Empirical studies should therefore (a) target
specific technologies which are of economic importance, (b) for which there is
significant uncertainty in terms of cost-effectiveness, and (c) which must be
investigated under the most representative or plausible conditions. Nevertheless, such
assessments will always involve a significant amount of judgment and interpolation.
Instead of focusing on unquestionable scientific evidence, our objective is rather to
buy information to support decision making. Furthermore, because of the impact of
human factors on the cost-effectiveness of many technologies (e.g., education,
training, management structure), to be fully understood, the quantitative results of
studies must be complemented with qualitative analysis and an investigation of
subjective, human perceptions. There are many strategies to do so, ranging from
simple questionnaire surveys to think aloud protocols.

An empirical body of evidence in software engineering can therefore be described
as a set of studies, each performed under certain explicit conditions, for which both
quantitative and qualitative, subjective and objective data have been collected, and
based on which certain conclusions and interpretations have been provided. This may
be completed by some form of meta-analysis attempting to find an emerging pattern
across studies. However, how to make such information reusable in practice?

