
A Prioritization Approach for Software
Test Cases Based on Bayesian Networks

Siavash Mirarab and Ladan Tahvildari

Department of Electrical and Computer Engineering,
University of Waterloo, Ontario, Canada N2L 3G1

{smirarab,ltahvild}@uwaterloo.ca

Abstract. An important aspect of regression testing is to prioritize the
test cases which need to be ordered to execute based on specific criteria.
This research work presents a novel approach to prioritizing test cases
in order to enhance the rate of fault detection. Our approach is based
on probability theory and utilizes Bayesian Networks (BN) to incorpo-
rate source code changes, software fault-proneness, and test coverage
data into a unified model. As a proof of concept, the proposed approach
is applied to eight consecutive versions of a large-size software system.
The obtained results indicate a significant increase in the rate of fault
detection when a reasonable number of faults are available.

Keywords: Test case Prioritization, Regression Testing, Bayesian Net-
works.

1 Introduction

Prioritizing existing test cases from earlier versions of software is one of the
main techniques used to address the problem of regression testing. Regression
testing is considered as one of the most expensive tasks in software maintenance
activities [1]. Such a technique uses the test-suite developed for an earlier ver-
sion of a software system to conform the new added requirement in the current
version. Selecting all or a portion of the test-suite to execute which is referred
to as Regression Selection Techniques (RST) can be very costly [2,3,4]. Fur-
thermore using RST, testers do not have the option to adjust their test-effort
to their budget. To provide the missing flexibility, researchers have introduced
prioritization techniques [5,6] by means of which testers can order the test cases
based on certain criteria, and then run them in the specified order and as much
as they can afford. To further assist testers to adjust the cost and effort, models
of cost-benefit analysis are introduced [7]. During the past ten years, there has
been much research on techniques of prioritization [8,9,10,11,12,13].

Despite all the above-mentioned research activities, empirical studies indicate
that there is a significant gap between optimal solutions to prioritization problem
and proposed techniques [9]. Also, they show that the performance of different
techniques depend largely on the target software system. Furthermore, one can
imply that techniques using more than one factor typically perform better than

M.B. Dwyer and A. Lopes (Eds.): FASE 2007, LNCS 4422, pp. 276–290, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Prioritization Approach for Software Test Cases 277

those with one criterion. Therefore, to fill the mentioned gap, we need to build
techniques which can incorporate a diverse range of available data, from test
coverage to history of fault detection.

In this paper, we present a novel test-suite prioritization framework which
integrates various sources of information into one single model. Our technique
is based on a probabilistic specification of the problem. Similar to the definition
of Kim at el. [10], our prioritization approach is based on ordering test cases
according to their success probability. The proposed process uses conditional
probability and utilizes a Bayesian Network [14] model which takes advantage
of source code modification information, univariate measures of fault-proneness,
and test coverage data. We evaluate the performance of our technique using
APFD (Average Percentage Faults Detected) [5] measure on eight consecutive
versions of a large-size Java application augmented with hand-seeded faults; we
then compare our results to some of the common techniques from literature. The
results show that when there are reasonable number of faults in the source code,
our proposed novel technique is capable of achieving better values of APFD in
the comparison with other techniques.

The rest of the article is organized as follows: Section 2 deals with the prob-
lem statement. Then, our proposed approach to solve the problem is presented.
Section 4 gives a brief introduction to Bayesian Networks (BN) while elaborat-
ing on how we have designed our BN model. Section 5 discusses the obtained
results after applying our techniques on a large size case study. Finally we make
conclusion and point out some future directions for this research work.

2 Problem Statement

The classic definition of test case prioritization is based on finding a permutation
of test cases which can maximize an award function [5]. Kim et al. look at the
same problem from a probabilistic point of view. They describe prioritization as:
i) applying an RST technique, ii) assigning a selection probability to each of the
remaining tests, iii) drawing a test case using the assigned probabilities, and iv)
repeating until time is exhausted. Adopting the probabilistic nature of their de-
scription and with some modification, a prioritization can be considered as:

1. Gathering all “useful” evidences Ei from software system.
2. Using a “prioritization technique” to assign a probability of success to each

test case ti in test-suite T, given all the evidences P (Tj |E1, . . . , En).
3. Selecting and running a test case from T based on the defined probability

model.
4. Updating the P (Tj |E1, . . . , En) values when applicable.
5. Repeating step 4 until release criteria is met.

We do not think of the first step in Kim’s description as a part of prioriti-
zation; thus, it is taken out. Moreover, in this approach some sort of selection
is automatically done when low probabilities are assigned to test cases. However,

278 S. Mirarab and L. Tahvildari

in practice one may prefer to apply some less costly selection techniques be-
fore prioritization in order to reduce the size of test-suite. “Useful” evidence in
step 1 means all information the “prioritization technique” of step 2 is interested
in (e.g. test coverage information, code change). In step 2, the main part of this
process, we have a set of random variables ti, each of which reflect the outcome
of a test case ti from T. These variables have two possible values of “Success”
(meaning that a defect is detected) and “Failure”. The event of “Success” in ti

is denoted as Ti. A “prioritization techniques” is a systematic way to estimate
all P (Tj |E1, . . . , En)s. Step 3 is also slightly different than Kim’s. Although the
notion of drawing test cases using assigned probabilities is interesting in that it
gives all test cases some selection chance and helps discover the residual faults,
it is not the only option. One may simply order test cases according to their
probability, particularly when experimentation is involved deterministic nature
of the later approach is more appropriate. Step 4 is an important addition to
previous definitions which provides a feedback mechanism to add the learned
information from each test execution (e.g. its outcome) to the model defined
in step 2. Note that this mechanism includes, but is not limited to the tech-
niques of [5] where feedback is used while ordering test cases not after each run.
Finally, in step 5 we generalize the stopping condition to “met release criteria”
which can be anything from testing time exhaustion to reliability requirement
satisfaction [15].

The proposed view of prioritization can be applied to existing techniques. In
the following, two families of existing techniques are briefly described in accor-
dance with the aforementioned view of prioritization problem.

– Coverage-based Techniques. The most important aspect of any tech-
nique is the set of evidences it takes advantage of. In this family of prioriti-
zation techniques, the evidence variable is the number of code elements that
are covered by each test case. For example, at method level coverage-based
technique, the number of covered methods is used to estimate the probability
of success for each test case:

P (Tj |E) =
the number of methods covered by ti

total number of methods

– Change-coverage Techniques. In this family of techniques both informa-
tion of test coverage and source code change are used as the evidence. At
block level, for example, the estimation of success probability is:

P (Tj |E) =
the number of changed blocks covered by ti

total number of changed blocks

The main part of the described process is step 2 where one should estimate the
probability of success for each test case. The problem that this paper addresses
is to build such techniques. In the following section, our approach to solve this
problem is described.

A Prioritization Approach for Software Test Cases 279

3 Proposed Approach

Our approach addresses the prioritization problem by: i) extracting different
sets of evidence from the source code, ii) integrating all information to a sin-
gle Bayesian network model, and iii) using probabilistic inference to compute
P (Tj |E) values. Fig. 1 illustrates a high-level schema of this approach. The first

Measuring Fault-
proneness metric

Analyzing source
code changes

Tracing
Test case
coverage

Extracting Evidences

Test-Suite

Building
Bayesian
Network

Probabilistic
Inference

BN
Model P(Ti)

A Program
 (change

history, source-
code, etc.) Evidences

Data Flow

Process f

Fig. 1. Three Phases of Proposed Approach

step in performing prioritization is to gather all useful information that is to be
included in the model. Our current solution exploits three sources of informa-
tion: software quality metrics, test coverage measures, and change analysis data.
Extracting evidences is undertaken in order to provide the necessary data for
the next phase, Building Bayesian Network, in which an inclusive probabilistic
model to relate these data is built. The details and rational behind using these
evidences will be covered in the next section, where we give an in-depth descrip-
tion of the second phase. The last phase is to employ the probabilistic inference
algorithms to associate to each test case its probability of success given the col-
lected evidences. Note that the first and last phases are well-established research
works and here we just make use of the existing contributions to implement them.

4 Building Bayesian Network

In this section, first we introduce Bayesian Networks briefly and then elaborate
further on the second phase of our proposed process through which the other
phases are more clarified.

4.1 Background: Bayesian Network

Bayesian Network (BN) is a special type of “probabilistic graphical models” [14].
A BN is a directed acyclic graph consisting of three elements: nodes repre-
senting random variables, arcs representing probabilistic dependency among
those variables, and Conditional Probability Distribution Table (CPT) for each
variable, given its parents. The nodes can be either evidence or latent variables.

280 S. Mirarab and L. Tahvildari

An evidence variable is a variable of which we know its values (i.e. it is mea-
sured). Arcs specify the causal relation between variables. Each node has a table
which includes the probabilities of outcomes of its variable given the values of its
parents.

Bayesian networks reflect the belief of experts about the problem domain. They
can be used to answer probabilistic queries. For example, based on the evidence
(observed) variables, the posterior probability distributions of some other vari-
ables can be computed (probabilistic inference). However, designing a BN model
is not a trivial task. There are two facets to modeling a BN, designing the struc-
ture and computing the parameters. Regarding the first issue, the notions of con-
ditional independence and causal relation [16] can be of great help. Intuitively,
two events (variables) are conditionally independent if knowing the value of some
other variables makes the outcomes of those events independent. It is important
to make sure that conditionally independent variables are not connected to each
other. Designing based on causal relationships is one way to achieve that. For com-
puting the parameters, expert knowledge, statistical learning, and probabilistic
estimations can be used. One potential problem is that we may know how a vari-
able is dependent on each of its parents, but do not have its distribution condi-
tioned on all parents. In these situations, “noisy-OR” assumption can be helpful.
The noisy-OR assumption gives the interaction between the parents and the child
a causal interpretation and assumes that all causes (parents) are independent of
each other in terms of their influence on the child [14]. More formally, this as-
sumption asserts whatever prevents one parent to cause a child is independent
from what prevents the other parents to cause the child.

4.2 Proposed BN Model

Empirical studies conducted in the literature indicate that an important factor
in performance of a technique is the evidences it utilizes [9]. The rational behind
using Bayesian networks for prioritization is to unify various types of evidences
in one single model.

As mentioned in Section 4.1, modeling is the main focus in solving the prob-
lems using BN. A description of how three basic elements of a BN is designed
in our approach follows:

Nodes. There are three categories of nodes in these models:

• ce : These variables represent change in the elements of the program. Each
software element in the considered level of granularity (i.e. a class) has a node
of this type. These variables can take a value of “Changed” or “Unchanged”.

• fe : This category reflects our belief whether each element is faulty. Similar
to the previous family, each element of the program has one node and each node
can have the values of “Faulty”, or “Non-Faulty”.

• t : These variables represent the outcome of a test case which can be “Suc-
cess” or “Failure”. Each test case has one node of this type and the probability
distributions of these nodes are what we are looking for P (Ti|E).

A Prioritization Approach for Software Test Cases 281

Arcs. Each arc in a BN indicates a causal relation between variables of two
connected nodes. There are two set of arcs in our network:

• ce − fe : Each fe node is the child of the corresponding (i.e. of the same
code element) ce node. The existence of these arcs reflect the causal relation
that changes to elements of software can introduce faults in the same element.

• fe − t : Each t node is the child of some fe nodes. These arcs imply the
causal relation between presence of fault in a software element and success of
test cases that examine that element.

In Fig. 2 the overall structure of the designed model is illustrated. Each ce
node is connected to one fe node and the fe nodes are connected to an arbitrary
number of t nodes.

Fault-proneness
Test CoverageChange Data

Fig. 2. The Structure of the Bayesian Network

CPT. Each category of nodes has its own Conditional Probability Table:

• P (cei) : ce nodes are not the child of any other node, so their distribution
is not conditional. These nodes are the only “observed” variables of the model.
In a simple model, P (cei = Changed) can be set to either 0 or 1, meaning that
software is either “Changed” or “Unchanged”. However, they also can be used
to represent the amount of change an element has gone through. In this case
cei variables mean the effective change of the element and P (cei = Changed)
reflects our belief that the element has been effectively changed.

P (cei = Changed) = ChangeIntensity(ei)

In this formula, ChangeIntensity(ei) is a function which returns how
much semantic change the element ei has gone through. This function can be
implemented with algorithms as simple as Unix diff. In our study, we have used
an algorithm presented in [17] which uses byte code to estimate similarity be-
tween two versions of a program.

282 S. Mirarab and L. Tahvildari

• P (fei|cei) : Each fe nodes is a child of one and only one parent, which is
the corresponding ce variable. Considering that both fe and ce can take two
values, the CPT will contain 4 values, two of which are trivial, since P (fe =
Faulty|ce) = 1 − P (fe = Non-Faulty|ce). Therefore, we need to estimate two
values: P (fe = Faulty|ce = Changed) and P (fe = Faulty|ce = Unchanged). In
general, the probability of presence of fault in software is called fault-proneness
and is profoundly studied in literature [18,19]. It is empirically shown that one
can approximately predict the fault-proneness of code elements using software
metrics. To build these models of fault-prediction, there are two major options:
multivariate and univariate models. Univariate models estimate fault-proneness
using one single metric. Multivariate models, on the other hand, are a linear com-
bination of univariate models. To use multivariate models, one should “train”
the model on a second program and apply the potentially biased model to the
system in question. As empirically evaluated in [18], using this approach, multi-
variate models do not necessarily generate better results; thus, in this work we
use univariate models. The aforementioned studies (and also an empirical study
on the relation between APFD and software metrics [20]) indicate that measures
of complexity and coupling are better indicators of fault-proneness. One specific
study [19] has shown that coupling is a significantly better measure than other
metrics. Although our model can fit in any software metric, here we use measures
of coupling as an indicator fault-proneness:

P (fei = Present|cei = Changed) =
α CBO(ei)

max(CBO(ex))
+ δ1, (α + δ1 ≤ 1)

In this formula, ei is an element of the system, say a class, and CBO (Coupling
between Objects) is an object-oriented metric from Chidamber and Kemerer
suite [21] which counts the number of classes to which a given class is coupled
(i.e. uses its methods and/or fields). The choice of this metric is based on the
mentioned empirical studies. The dominator is a normalization factor and α and
δ1 bound the probability of fault introduction.

As for P (fei = Faulty|cei = Unchanged), estimating this value is tricky
because it represents the less probable situation that an element is faulty, even
though it is not changed. This can happen because of residual faults (from previ-
ous versions) or because of the impact of changes in other elements. Estimating
both causes is hard and calls for more thorough empirical studies. In current
modelling we use the following formula:

P (fei=Faulty|cei=Unchanged) =
β f -out(ei)

max(f -out(ex))
+ δ2 , (β + δ2 � α + δ1 ≤ 1)

Here, f -out (fan out), is a measure of the number of classes an specific class is
coupled to (i.e. uses them) [22]. Using this metric is mostly in order to capture
change impacts. As known, the more fan out a class has, the more it is endan-
gered by changes of other classes. The important invariant is that the probability
of fault presence in unchanged elements should be much less than in changed

A Prioritization Approach for Software Test Cases 283

elements. Let γ = α+δ1
β+δ2 . By adjusting γ (the change effect factor) we can control

the degree to which the presence of change in an element raises our belief in its
fault-proneness.

• P (ti|fe1 . . . fen) : Unlike the other node types, t nodes can have more than
one parent. That is due to the fact that a test case may be able to find faults
from different elements of the software. These values can be determined accord-
ing to the coverage information of a test case. Normally, the information of test
coverage is available only when test cases are executed and prioritization does
not have any justification. The solution is to use the coverage information from
previous versions for the current program. To further enhance the reliability of
this solution, one may use heuristics of [12] (however, we believe even with-
out these heuristics, the estimation is reasonable). Having test coverages, we
estimate:

P (ti = Success|fej = Faulty) = Cov(ti, ej)

Where Cov(ti, ej) is a function returning the percentage of the code element
j covered by test case i. This formula estimates the relation between a test
case and one single element. However, to build the CPT we need the proba-
bility of success for a test given all combinations of values of fe variables. In
this situation, the table would become enormous and its size would grow expo-
nentially with the number of covered elements by a test. In order to cope with
this problem, we make the noisy-OR assumption, explained in Section 4.1. The
assumption is that the relation of a test case to an element is independent from
its relation to any other element. It can be argued that the ability of a test
case to reveal a fault in one element is not related to its fault revealing ability
in other elements, hence the assumption. Having the noisy-OR assumption we
can say:

P (ti|fe1 . . . fen) = 1 − (1 − P0)
∏

j

(1 − P (Ti|fej = Faulty))
1 − P0

(1)

In this formula, P0 is P (Ti|fe1 = Non-Faulty, . . . , fen = Non-Faulty). This
value (also called “leak”) is the probability of a test case succeeding even though
all of its related elements are non-faulty. This value should be zero unless the
information of coverage is incomplete or there exists an integration fault. For
consideration of these causes, a very small constant can be assigned to leak pa-
rameter. Formula 1 is a straight-forward usage of noisy-or formula (justification
of this formula can be found in BN references such as [16]).

In this model ce nodes are observations and to estimate the distribution of t
nodes (the desired variables), we need to perform probabilistic inference. There
are many inference algorithms introduced for BNs which generally fall into two
categories of exact and sampling algorithms. Due to well-structured nature (three
layers of independent variables) of our network, we can use exact inference even
for large systems. Details of how inference algorithms work are out of the scope
of this paper but the general idea is first compiling the directed graph into a
tree, and then updating the probabilities in the tree.

284 S. Mirarab and L. Tahvildari

5 Experiment

To evaluate the proposed approach, we have built a semi-automated envi-
ronment for test case prioritization. As a proof of concept, eight consecutive
versions of Apache Ant [23] with a catalogue of 10 prioritization techniques are
examined.

5.1 Prioritization Environment

To assist future experiments of test case prioritization, a semi-automated frame-
work is implemented. Fig. 3 depicts a high-level schema of this system.

Software System

Report Repository

Test Execution Information

Report Generator

Metrics

Test Coverage

Change

Evaluation

APDF

M_A_Cov

Prioritization Techniques

Chg_Cov

Chg_A_Cov

C_Cov

Optimal

M_Cov

Random

BN

C_A_Cov

Original

Fig. 3. The High-Level Schema of the Framework

The first subsystem, “Report Generator”, is mostly implemented using exter-
nal tools. To collect software metrics, a tool called ckjm [24] is used; for gath-
ering coverage information Emma [25] is utilized and the change information is
obtained from Sandmark [17] which is a watermarking program but provides in-
teresting change track algorithms. In the second subsystem,“Prioritization Tech-
niques”, different techniques of prioritization are implemented. This subsystem
uses generated reports from the first subsystem. For implementing the BN tech-
nique we have used Smile Library [26]. Finally, the last subsystem, “Evaluation”,
is responsible for measuring evaluation metrics (merely APFD).

5.2 Experiment Setup

Subject Program. Performing experiments in test case prioritization calls for
many artifacts some of which are very expensive to gather. In particular, the
subject program needs to have many faulty versions. Do et al. [27] have built a
repository of C and Java open source programs with hand seeded faults called
“Software-artifact Infrastructure Repository (SIR)”. From their Java repository,

A Prioritization Approach for Software Test Cases 285

Table 1. Eight Consecutive Versions of Apache Ant

Metric Name v0 v1 v2 v3 v4 v5 v6 v7
Faults Count 0 1 1 2 4 4 1 6
Test Case Count 0 28 34 52 52 101 104 105
Number of Classes 143 229 343 343 533 537 537 650
Lines Of Code (K) 23 37 57 57 95 97 97 124

Apache Ant has the most number of seeded faults and has a reasonable size
(Table 1). We have used this program for all of our experimentation.

Evaluation Metric. To be able to compare our results to other empirical stud-
ies (esp. those of [8] as one of the rare studies focusing on Java programs), APFD
is used as the evaluation metric. This metric aims to calculate fault detection rate
by measuring the weighted average of the percentage of faults detected over the
test suite execution period. APFD values range from 0 to 100 and higher numbers
indicate faster fault detection rates. Its precise definition can be found in [5]. How-
ever, this metric has some drawbacks, for example, it neither takes into account
the cost of each individual test nor the severity of faults.

Prioritization Techniques. In this study, ten prioritization techniques are
examined. Table 2 lists these techniques. The first three are control techniques:
Optimal is the best possible order computed in a greedy manner; Random orders
randomly (the average of 50 runs); and Original is the original order of test cases.
The next six techniques are based on [8] and use coverage information. Their
difference is in evidences used, granularity level, and use of feedback mechanism.
Here, feedback means adjusting the coverage information after adding any test
case to the order such that elements that are already covered do not affect next
selections ([8]). Finally, BN represents our approach where the parameters are
set as: α = 0.8, δ1 = δ2 = 0.1, and γ = 8.

Table 2. Prioritization Techniques Used in the Experimentation

Name Evidences Level Feedback
Optimal Fault Matrix N/A Yes
Random Nothing N/A No
Original Nothing N/A No
C Cov (Class Coverage) Coverage Class No
M Cov (Method Coverage) Coverage Method No
C A Cov (Class Additional Coverage) Coverage Class Yes
M A Cov (Method Additional Coverage) Coverage Method Yes
Chg Cov (Change Coverage) Coverage+Change Class No
Chg A Cov (Change Additional Coverage) Coverage+Change Class Yes
BN All Class No

286 S. Mirarab and L. Tahvildari

5.3 Discussion on Obtained Results

The results of the case study are depicted in Fig. 4. Almost all techniques per-
form better than “random” and “original” (the two control techniques). As far as
the level of granularity for coverage information is concerned, there is no mean-
ingful difference between class level and method level techniques. This result is
in accordance with past empirical studies (although to our knowledge, class-level
coverage were not previously inspected), and suggests using class level coverage
information which is much easier to obtain. Also, it is evident that techniques
employing the feedback mechanism (or “additional techniques”) bring about
better results. Although using change data leads to a 2% increase in the aver-
age APFD value (Table 3), there is no strong evidence that they outperform
techniques with merely coverage information.

(a) All Versions (b) Versions with More Than One Fault

Fig. 4. Boxplot Diagram of the Experiment Results

As for BN technique, the median of its AFPD values among all versions is
better than all other techniques (however not significantly). When considering
average instead of median, although it is performing better than most of the
techniques, it is not the best when we consider all the versions of the subject
program (Table 3). More specifically, in average BN is performing better than all
techniques without feedback mechanism, but worse than additional techniques.
Note that BN as implemented in this experimentation does not take the advan-
tage of any feedback. Taking a closer look at the data, we noticed that in many
versions, BN technique is achieving the best performance. To inspect why the
average performance of BN is not the best, the fault information of the subject
program should be considered. There are three versions of the ant case study
which are seeded only with one fault. The results indicate that on these three
versions, BN achieves less fault detection rate than the other techniques. How-
ever, one can argue that one single fault does not provide a reliable basis for
comparison of techniques. Thus, we took out the versions with one fault (three
versions were such) and compared the results again.

A Prioritization Approach for Software Test Cases 287

Fig. 4 (b) illustrates that BN is performing better than all the other tech-
niques, in this scenario. There is strong evidence that BN median values are
better than all other techniques. Moreover, it results in better average APFD
values. In average, it produces 5% better APFD values than the second best
technique(Chg A Cov), 11% better than the average of all techniques except
optimal, and 17% better than the original order (Table 3).

Table 3. Average and Standard Error of Different Techniques

Technique All Versions More Than One Fault
Name Average SD Average SD
Optimal 100.47917 1.03495 99.90429 0.89719
Original 52.62632 24.43825 66.03252 24.57651
Random 62.61275 9.54245 69.28956 6.47141
C Cov 60.18787 30.75548 77.35928 8.79435
M COV 63.94816 27.70506 73.09323 14.88074
C A Cov 79.80473 10.55892 72.11833 13.09055
M A COV 81.44635 10.32284 75.01233 7.09485
Chg Cov 59.79584 29.16008 74.55728 11.42936
Chg A Cov 81.84868 11.73580 79.56256 11.04775
BN 67.66124 29.40874 83.19689 17.88581

To further inspect the effect of the number of faults, we depicted APFD of the
techniques versus the number of faults. Fig. 5 shows when the fault count of the
system grows, the APFD value of “additional” techniques decrease; whereas
the BN see an increase in the value of APFD. This suggests that feedback
employing techniques perform better when a very small number of faults are
available, but as the potential number of faults grows BN is the most promising
technique. This result sounds rational because BN is a model based on probabili-
ties and the more number of trials, the more reliable the results of a probabilistic
model.

Fig. 5 also shows another interesting phenomenon. While all “additional”
techniques have a negative slop, the techniques with no feedback mechanism
all see an increase in APFD with number of faults. This observation should
be empirically evaluated because when generalized, it has a very important
practical implication: when the software is believed to contain many faults,
the use of feedback is not useful but in more reliable systems, when tes-
ters struggle to find the last faults, feedback can improve the rate of fault
detection.

In conclusion, BN technique seems to perform better than any other tech-
nique inspected here, when there are more number of faults. In three out of four
versions with more than one fault, the BN produced the best results. Therefore,
authors believe that the BN technique will perform very well when applied in
practice to software systems that typically contain much more faults.

288 S. Mirarab and L. Tahvildari

30

40

50

60

70

80

90

100

0 2 4 6

Number of Faults

A
P

FD

Linear (BN)

Linear (Chg_A_Cov)

Linear (M_A_COV)

Linear (M_COV)

Linear (CH_Cov)

Linear (C_A_Cov)

Linear (C_Cov)

Fig. 5. APFD versus Fault Counts

6 Related Work

Many techniques for prioritization along with measures of assessing their per-
formance have been introduced in literature. In [5], authors introduce APFD
as a measure of fault detection rate and empirically evaluate their catalogue of
techniques. In [9], more techniques with more than one criterion, are evaluated
on larger case studies. In [8], the authors take a similar approach and evaluate
similar techniques on Java programs and JUnit test cases.

Kim et al. [10] formulate test case prioritization based on the probability
theory and focus on history-based prioritization to address the issue of contin-
ues software evolution and regression testing. They also introduce “total effort”
and “fault-age” to measure cost-benefit trade-offs. Srivastava et al. have built
Echelon [12] system to deal with prioritization in industrial environment. They
propose extracting coverage information from byte-code for better performance
and also provide some heuristics to address the high cost of gathering coverage
information. Saff et al. [11] take a completely different approach by introducing
continues testing. They developed a plug-in for Eclipse IDE and used devel-
oper behavior modelling to test software on the fly and during development.
PORT [28] is another attempt in which potential defect severity and also issues
related to testing of new code in regression testing are taken to account. More
recently, Walcott et al. utilize Genetic Algorithms to solve the prioritization
problem in a time-constrained situation [13].

On the other hand, employing Bayesian networks for testing has been ad-
dressed by some researchers. As early as 1997, in [29] authors described ways
of modelling uncertainty in software into BN models that can be later used by
testers and managers for either confirming, evaluating or predicting software un-
certainties. In [30], authors use graphical models to provide a prediction model
for the whole problem of software testing, and in [31] Bayesian networks is used
to asses the overall software quality.

7 Conclusion and The Future Work

In this paper we first described test case prioritization problem from a proba-
bilistic point of view, and then proposed a new approach to solve this problem

A Prioritization Approach for Software Test Cases 289

using Bayesian networks. We introduced our framework to implement the ap-
proach and presented the results of a case study. The results suggest that the
new approach can achieve high values of APFD, especially when the number of
available faults are reasonable.

In the pursual of future research, first the results should be further inspected
using empirical experiments and taking into account cost-benefit models. Also,
the software faults in this case study are all hand-seeded and their representatives
of real faults may be argued. Therefore, it is critical to evaluate this approach
on programs that contain a reasonable number of real faults.

Moreover, the feedback mechanism as described in the problem statement
section, can be added to this approach by simply making evidence nodes in BN
after each test run. This may result in longer inference time, so cost-effectiveness
should be carefully considered. The use of other metrics for fault-proneness and
change analysis is another way of extending this work. Finally, other metrics of
evaluation of prioritization techniques should be introduced and examined.

References

1. Leung, H.K.N., White, L.J.: Insights into regression testing. In: Proceedings on
IEEE International Conference of Software Maintenance (ICSM). (1989) 60–69

2. Agrawal, H., Horgan, J.R., Krauser, E.W., London, S.: Incremental regression
testing. In: Proceedings of the International Conference on Software Mainte-
nance(ICSM). (1993) 348–357

3. Chen, Y.F., Rosenblum, D.S., Vo, K.P.: Testtube: A system for selective regres-
sion testing. In: Proceedings of the ACM International Conference on Software
Engineering (ICSE). (1994) 211–220

4. Rothermel, G., Harrold, M.J.: A safe, efficient regression test selection technique.
ACM Transactions on Software Engineering and Methodology 6 (1997) 173–210

5. Rothermel, G., Untch, R.H., Chu, C., Harrold, M.J.: Prioritizing test cases for
regression testing. IEEE Transactions on Software Engineering 27 (2001) 929–948

6. Wong, W.E., Horgan, J.R., London, S., Bellcore, H.A.: A study of effective regres-
sion testing in practice. In: Proceedings of the IEEE International Symposium on
Software Reliability Engineering(ISSRE). (1997) 264–274

7. Malishevsky, A.G., Rothermel, G., Elbaum, S.: Modeling the cost-benefits tradeoffs
for regression testing techniques. In: Proceedings of the International Conference
on Software Maintenance (ICSM). (2002) 204–213

8. Do, H., Rothermel, G., Kinneer, A.: Prioritizing JUnit test cases: An empirical
assessment and cost-benefits analysis. Empirical Software Engineering: An Inter-
national Journal 11 (2006) 33–70

9. Elbaum, S., Malishevsky, A.G., Rothermel, G.: Test case prioritization: A family of
empirical studies. IEEE Transactions on Software Engineering 28 (2002) 159–182

10. Kim, J.M., Porter, A.: A history-based test prioritization technique for regres-
sion testing in resource constrained environments. In: Proceedings of the ACM
International Conference on Software Engineering(ICSE). (2002) 119–129

11. Saff, D., Ernst, M.D.: Reducing wasted development time via continuous test-
ing. In: Proceedings of the IEEE International Symposium on Software Reliability
Engineering(ISSRE). (2003) 281–292

290 S. Mirarab and L. Tahvildari

12. Srivastava, A., Thiagarajan, J.: Effectively prioritizing tests in development en-
vironment. In: Proceedings of the ACM SIGSOFT International Symposium on
Software Testing and Analysis(ISSTA). (2002) 97–106

13. Walcott, K.R., Soffa, M.L., Kapfhammer, G.M., Roos, R.S.: Timeaware test suite
prioritization. In: Proceedings of the IEEE International Symposium on Software
Testing and Analysis(ISSTA). (2006) 1–12

14. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (1988)

15. Okumoto, K., Goel, A.L.: Optimum release time for software systems based on
reliability and cost criteria. Journal of Systems and Software 1 (1980) 315–318

16. Jensen, F.V.: Bayesian Networks and Decision Graphs. (2001)
17. Christian Collberg, Ginger Myles, M.S.: An empirical study of java bytecode pro-

grams. Technical Report TR04-11, Department of Computer Science, Univeristy
of Arizona (2004)

18. Briand, L., Wüst, J.: Empirical studies of quality models in object-oriented sys-
tems. Advances in Computers 56 (2002) 98–167

19. Gyimothy, T., Ferenc, R., Siket, I.: Empirical validation of object-oriented met-
rics on open source software for fault prediction. IEEE Transactions on Software
Engineering 31 (2005) 897–910

20. Elbaum, S., Gable, D., Rothermel, G.: Understanding and measuring the sources
of variation in the prioritization of regression test suites. In: Proceedings of the
IEEE International Symposium on Software Metrics(METRICS). (2001) 169–179

21. Chidamber, S.R., Kemerer, C.F.: Towards a metrics suite for object oriented design.
In: Proceedings of the Annual ACM SIGPLAN Conference on Object-oriented
Programming Systems, Languages, and Applications (OOPSLA). (1991) 197–211

22. Fenton, N.E., Pfleeger, S.L.: Software Metrics: A Rigorous and Practical Approach.
PWS Publishing Co., Boston, MA, USA (1998)

23. : Apache Ant (2005) http://ant.apache.org.
24. : CKJM (2006) http://www.spinellis.gr/sw/ckjm/.
25. : Emma (2006) http://emma.sourceforge.net/.
26. : Genie/Smile (2005-2006) http://genie.sis.pitt.edu/.
27. Do, H., Elbaum, S., Rothermel, G.: Supporting controlled experimentation with

testing techniques: An infrastructure and its potential impact. Empirical Software
Engineering: An International Journal 10 (2005) 405–435

28. Hema Srikanth, Laurie Williams, J.O.: System test case prioritization of new and
regression test cases. In: Proceedings of the International Symposium on Empirical
Software Engineering. (2005) 64–73

29. Ziv, H., Richardson, D.J.: Constructing bayesian-network models of software test-
ing and maintenance uncertainties. In: Proceedings of the International Conference
on Software Maintenance(ICSM). (1997) 100–109

30. Wooff, D., Goldstein, M., Coolen, F.: Bayesian graphical models for software test-
ing. IEEE Transactions on Software Engineering 28 (2002) 510–525

31. Fenton, N.E., Krause, P., Neil, M.: Probability modelling for software quality
control. Journal of Applied Non-Classical Logics 12 (2002) 173–188

	Introduction
	Problem Statement
	Proposed Approach
	Building Bayesian Network
	Background: Bayesian Network
	Proposed BN Model
	Nodes.
	Arcs.
	CPT.

	Experiment
	Prioritization Environment
	Experiment Setup
	Subject Program.
	Evaluation Metric.
	Prioritization Techniques.

	Discussion on Obtained Results

	Related Work
	Conclusion and The Future Work

