

Lecture Notes in Computer Science 4422
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Matthew B. Dwyer Antónia Lopes (Eds.)

FundamentalApproaches
to Software Engineering

10th International Conference, FASE 2007
Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2007
Braga, Portugal, March 24 - April 1, 2007
Proceedings

13

Volume Editors

Matthew B. Dwyer
University of Nebraska
Lincoln, NE 68588, USA
E-mail: dwyer@cse.unl.edu

Antónia Lopes
University of Lisbon
1749–016 Lisboa, Portugal
E-mail: mal@di.fc.ul.pt

Library of Congress Control Number: 2007922338

CR Subject Classification (1998): D.2, F.3, D.3

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-71288-7 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-71288-6 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12032075 06/3142 5 4 3 2 1 0

Foreword

ETAPS 2007 is the tenth instance of the European Joint Conferences on Theory
and Practice of Software, and thus a cause for celebration.

The events that comprise ETAPS address various aspects of the system de-
velopment process, including specification, design, implementation, analysis and
improvement. The languages, methodologies and tools which support these ac-
tivities are all well within its scope. Different blends of theory and practice
are represented, with an inclination towards theory with a practical motivation
on the one hand and soundly based practice on the other. Many of the issues
involved in software design apply to systems in general, including hardware sys-
tems, and the emphasis on software is not intended to be exclusive.

History and Prehistory of ETAPS

ETAPS as we know it is an annual federated conference that was established
in 1998 by combining five conferences [Compiler Construction (CC), European
Symposium on Programming (ESOP), Fundamental Approaches to Software En-
gineering (FASE), Foundations of Software Science and Computation Structures
(FOSSACS), Tools and Algorithms for Construction and Analysis of Systems
(TACAS)] with satellite events.

All five conferences had previously existed in some form and in various colo-
cated combinations: accordingly, the prehistory of ETAPS is complex. FOSSACS
was earlier known as the Colloquium on Trees in Algebra and Programming
(CAAP), being renamed for inclusion in ETAPS as its historical name no longer
reflected its contents. Indeed CAAP’s history goes back a long way; prior to
1981, it was known as the Colleque de Lille sur les Arbres en Algebre et en
Programmation. FASE was the indirect successor of a 1985 event known as Col-
loquium on Software Engineering (CSE), which together with CAAP formed a
joint event called TAPSOFT in odd-numbered years. Instances of TAPSOFT, all
including CAAP plus at least one software engineering event, took place every
two years from 1985 to 1997 inclusive. In the alternate years, CAAP took place
separately from TAPSOFT.

Meanwhile, ESOP and CC were each taking place every two years from 1986.
From 1988, CAAP was colocated with ESOP in even years. In 1994, CC became
a “conference” rather than a “workshop” and CAAP, CC and ESOP were there-
after all colocated in even years.

TACAS, the youngest of the ETAPS conferences, was founded as an inter-
national workshop in 1995; in its first year, it was colocated with TAPSOFT. It
took place each year, and became a “conference” when it formed part of ETAPS
1998. It is a telling indication of the importance of tools in the modern field of
informatics that TACAS today is the largest of the ETAPS conferences.

VI Foreword

The coming together of these five conferences was due to the vision of a small
group of people who saw the potential of a combined event to be more than the
sum of its parts. Under the leadership of Don Sannella, who became the first
ETAPS steering committee chair, they included: Andre Arnold, Egidio Aste-
siano, Hartmut Ehrig, Peter Fritzson, Marie-Claude Gaudel, Tibor Gyimothy,
Paul Klint, Kim Guldstrand Larsen, Peter Mosses, Alan Mycroft, Hanne Riis
Nielson, Maurice Nivat, Fernando Orejas, Bernhard Steffen, Wolfgang Thomas
and (alphabetically last but in fact one of the ringleaders) Reinhard Wilhelm.

ETAPS today is a loose confederation in which each event retains its own
identity, with a separate programme committee and proceedings. Its format is
open-ended, allowing it to grow and evolve as time goes by. Contributed talks
and system demonstrations are in synchronized parallel sessions, with invited
lectures in plenary sessions. Two of the invited lectures are reserved for “uni-
fying” talks on topics of interest to the whole range of ETAPS attendees. The
aim of cramming all this activity into a single one-week meeting is to create a
strong magnet for academic and industrial researchers working on topics within
its scope, giving them the opportunity to learn about research in related areas,
and thereby to foster new and existing links between work in areas that were
formerly addressed in separate meetings.

ETAPS 1998–2006

The first ETAPS took place in Lisbon in 1998. Subsequently it visited Ams-
terdam, Berlin, Genova, Grenoble, Warsaw, Barcelona, Edinburgh and Vienna
before arriving in Braga this year. During that time it has become established
as the major conference in its field, attracting participants and authors from
all over the world. The number of submissions has more than doubled, and the
numbers of satellite events and attendees have also increased dramatically.

ETAPS 2007

ETAPS 2007 comprises five conferences (CC, ESOP, FASE, FOSSACS, TACAS),
18 satellite workshops (ACCAT, AVIS, Bytecode, COCV, FESCA, FinCo, GT-
VMT, HAV, HFL, LDTA, MBT, MOMPES, OpenCert, QAPL, SC, SLA++P,
TERMGRAPH and WITS), three tutorials, and seven invited lectures (not in-
cluding those that were specific to the satellite events). We received around 630
submissions to the five conferences this year, giving an overall acceptance rate of
25%. To accommodate the unprecedented quantity and quality of submissions,
we have four-way parallelism between the main conferences on Wednesday for
the first time. Congratulations to all the authors who made it to the final pro-
gramme! I hope that most of the other authors still found a way of participating
in this exciting event and I hope you will continue submitting.

ETAPS 2007 was organized by the Departamento de Informática of the Uni-
versidade do Minho, in cooperation with

Foreword VII

– European Association for Theoretical Computer Science (EATCS)
– European Association for Programming Languages and Systems (EAPLS)
– European Association of Software Science and Technology (EASST)
– The Computer Science and Technology Center (CCTC, Universidade do

Minho)
– Camara Municipal de Braga
– CeSIUM/GEMCC (Student Groups)

The organizing team comprised:

– João Saraiva (Chair)
– José Bacelar Almeida (Web site)
– José João Almeida (Publicity)
– Lúıs Soares Barbosa (Satellite Events, Finances)
– Victor Francisco Fonte (Web site)
– Pedro Henriques (Local Arrangements)
– José Nuno Oliveira (Industrial Liaison)
– Jorge Sousa Pinto (Publicity)
– António Nestor Ribeiro (Fundraising)
– Joost Visser (Satellite Events)

ETAPS 2007 received generous sponsorship from Fundação para a Ciência e a
Tecnologia (FCT), Enabler (a Wipro Company), Cisco and TAP Air Portugal.

Overall planning for ETAPS conferences is the responsibility of its Steering
Committee, whose current membership is:

Perdita Stevens (Edinburgh, Chair), Roberto Amadio (Paris), Luciano Baresi
(Milan), Sophia Drossopoulou (London), Matt Dwyer (Nebraska), Hartmut Ehrig
(Berlin), José Fiadeiro (Leicester), Chris Hankin (London), Laurie Hendren
(McGill), Mike Hinchey (NASA Goddard), Michael Huth (London), Anna Ingólfs-
dóttir (Aalborg), Paola Inverardi (L’Aquila), Joost-Pieter Katoen (Aachen),
Paul Klint (Amsterdam), Jens Knoop (Vienna), Shriram Krishnamurthi (Brown),
Kim Larsen (Aalborg), Tiziana Margaria (Göttingen), Ugo Montanari (Pisa),
Rocco de Nicola (Florence), Jakob Rehof (Dortmund), Don Sannella (Edin-
burgh), João Saraiva (Minho), Vladimiro Sassone (Southampton), Helmut Seidl
(Munich), Daniel Varro (Budapest), Andreas Zeller (Saarbrücken).

I would like to express my sincere gratitude to all of these people and or-
ganizations, the programme committee chairs and PC members of the ETAPS
conferences, the organizers of the satellite events, the speakers themselves, the
many reviewers, and Springer for agreeing to publish the ETAPS proceedings.
Finally, I would like to thank the organizing chair of ETAPS 2007, João Saraiva,
for arranging for us to have ETAPS in the ancient city of Braga.

Edinburgh, January 2007 Perdita Stevens
ETAPS Steering Committee Chair

Preface

Software engineering is a complex enterprise spanning many sub-disciplines. At
its core are a set of technical and scientific challenges that must be addressed in
order to set the stage for the development, deployment, and application of tools
and methodologies in support of the construction of complex software systems.
The International Conference on Fundamental Approaches to Software Engineer-
ing (FASE) — as one of the European Joint Conferences on Theory and Practice
of Software (ETAPS) — focuses on those core challenges. FASE provides the soft-
ware engineering research community with a forum for presenting well-founded
theories, languages, methods, and tools arising from both fundamental research
in the academic community and applied work in practical development contexts.

In 2007, FASE continued in the strong tradition of FASE 2006 by drawing a
large and varied number of submissions from the community — 141 in total. Each
submission was reviewed by at least three technical experts from the Program
Committee with many papers receiving additional reviews from the broader
research community. Each paper was discussed during a 10-day “electronic”
meeting. In total, the 26 members of the Program Committee, along with 101
additional reviewers, produced more than 500 reviews. We sincerely thank each
them for the effort and care taken in reviewing and discussing the submissions.

The Program Committee selected a total of 30 papers — an acceptance rate of
21%. Accepted papers addressed topics including model-driven development, dis-
tributed systems, specification, service-oriented systems, testing, software analy-
sis, and design. The technical program was complemented by the invited lectures
of Jan Bosch on “Software Product Families: Towards Compositionality” and of
Bertrand Meyer on “Contract-Driven Development.”

FASE 2007 was held in Braga (Portugal) as part of the tenth meeting of
ETAPS — for some history read the Foreword in this volume. While FASE
is an integral part of ETAPS, it is important to note the debt FASE owes to
ETAPS and its organizers. FASE draws significant energy from its synergistic
relationships with the other ETAPS meetings, which gives it a special place in
the software engineering community. Perdita Stevens and the rest of the ETAPS
Steering Committee have provided extremely helpful guidance to us in organizing
FASE 2007 and we thank them. João Saraiva and his staff did a wonderful job
as local organizers and as PC chairs we appreciate how smoothly the meeting
ran due to their efforts.

In closing, we would like to thank the authors of all of the FASE submissions
and the attendees of FASE sessions for their participation and we look forward
to seeing you in Budapest for FASE 2008.

January 2007 Matthew B. Dwyer
Antónia Lopes

Organization

Program Committee

Luciano Baresi (Politecnico di Milano, Italy)
Yolanda Berbers (Katholieke Universiteit Leuven, Belgium)
Carlos Canal (University of Málaga, Spain)
Myra Cohen (University of Nebraska, USA)
Ivica Crnkovic (Mälardalen University, Sweden)
Arie van Deursen (Delft University of Technology, The Netherlands)
Juergen Dingel (Queen’s University, Canada)
Matt Dwyer (University of Nebraska, USA) Co-chair
Harald Gall (University of Zurich, Switzerland)
Holger Giese (University of Paderborn, Germany)
Martin Grosse-Rhode (Fraunhofer-ISST, Germany)
Anthony Hall (Independent Consultant, UK)
Reiko Heckel (University of Leicester, UK)
Patrick Heymans (University of Namur, Belgium)
Paola Inverardi (Universidad of L’Aquila, Italy)
Valérie Issarny (INRIA-Rocquencourt, France)
Natalia Juristo (Universidad Politecnica de Madrid, Spain)
Kai Koskimies (Tampere University of Technology, Finland)
Patricia Lago (Vrije Universiteit, The Netherlands)
Antónia Lopes (University of Lisbon, Portugal) Co-chair
Mieke Massink (CNR-ISTI, Italy)
Carlo Montangero (University of Pisa, Italy)
Barbara Paech (University of Heidelberg, Germany)
Leila Ribeiro (Federal University of Rio Grande do Sul, Brazil)
Robby (Kansas State University, USA)
Catalin Roman (Washington University, USA)
Sebastian Uchitel (Imperial College, UK and University of Buenos Aires,

Argentina)
Jianjun Zhao (Shanghai Jiao Tong University, China)

Referees

M. Aiguier
M. Akerholm
V. Ambriola
J. Andersson
P. Asirelli
M. Autili

A. Bazzan
D. Bisztray
T. Bolognesi
Y. Bontemps
J. Bradbury
A. Brogi

A. Bucchiarone
S. Bygde
D. Carrizo
G. Cignoni
V. Clerc
A. Corradini

XII Organization

M. Caporuscio
R. Coreeia
S. Costa
M. Crane
C. Cuesta
O. Dieste
D. Di Ruscio
G. De Angelis
A. de Antonio
R.C. de Boer
F. Dotti
F. Durán
K. Ehrig
M.V. Espada
A. Fantechi
R. Farenhorts
M.L. Fernandez
X. Ferre
L. Foss
M. Fischer
B. Fluri
M. Fredj
J. Fredriksson
S. Gnesi
Q. Gu
R. Hedayati
S. Henkler
M. Hirsch

M. Katara
J.P. Katoen
F. Klein
P. Knab
P. Kosiuczenko
S. Larsson
D. Latella
B. Lisper
M. Loreti
Y. Lu
F. Lüders
R. Machado
G. Mainetto
S. Mann
E. Marchetti
C. Matos
S. Meier
Á. Moreira
A.M. Moreno
H. Muccini
J.M. Murillo
J. Niere
J. Oberleitner
A.G. Padua
H. Pei-Breivold
P. Pelliccione
A. Pierantonio
E. Pimentel

M. Pinto
M. Pinzger
P. Poizat
S. Punnekkat
G. Reif
G. Salaün
A.M. Schettini
P.Y. Schobbens
M.I.S. Segura
P. Selonen
L. Semini
S. Sentilles
M. Solari
T. Systa
M. ter Beek
G. Thompson
M. Tichy
M. Tivoli
E. Tuosto
F. Turini
A. Vallecillo
S. Vegas
A. Vilgarakis
R. Wagner
H.Q. Yu
A. Zarras
A. Zuendorf

Table of Contents

Invited Contributions

Software Product Families: Towards Compositionality 1
Jan Bosch

Contract-Driven Development . 11
Bertrand Meyer

Evolution and Agents

EQ-Mine: Predicting Short-Term Defects for Software Evolution 12
Jacek Ratzinger, Martin Pinzger, and Harald Gall

An Approach to Software Evolution Based on Semantic Change 27
Romain Robbes, Michele Lanza, and Mircea Lungu

A Simulation-Oriented Formalization for a Psychological Theory 42
Paulo Salem da Silva and Ana C. Vieira de Melo

Model Driven Development

Integrating Performance and Reliability Analysis in a Non-Functional
MDA Framework . 57

Vittorio Cortellessa, Antinisca Di Marco, and Paola Inverardi

Information Preserving Bidirectional Model Transformations 72
Hartmut Ehrig, Karsten Ehrig, Claudia Ermel,
Frank Hermann, and Gabriele Taentzer

Activity-Driven Synthesis of State Machines . 87
Rolf Hennicker and Alexander Knapp

Flexible and Extensible Notations for Modeling Languages 102
Jimin Gao, Mats Heimdahl, and Eric Van Wyk

Tool Demonstrations

Declared Type Generalization Checker: An Eclipse Plug-In for
Systematic Programming with More General Types 117

Markus Bach, Florian Forster, and Friedrich Steimann

S2A: A Compiler for Multi-modal UML Sequence Diagrams 121
David Harel, Asaf Kleinbort, and Shahar Maoz

XIV Table of Contents

Distributed Systems

Scenario-Driven Dynamic Analysis of Distributed Architectures 125
George Edwards, Sam Malek, and Nenad Medvidovic

Enforcing Architecture and Deployment Constraints of Distributed
Component-Based Software . 140

Chouki Tibermacine, Didier Hoareau, and Reda Kadri

A Family of Distributed Deadlock Avoidance Protocols and Their
Reachable State Spaces . 155

César Sánchez, Henny B. Sipma, and Zohar Manna

Specification

Precise Specification of Use Case Scenarios . 170
Jon Whittle

Joint Structural and Temporal Property Specification Using Timed
Story Scenario Diagrams . 185

Florian Klein and Holger Giese

SDL Profiles – Formal Semantics and Tool Support 200
R. Grammes and R. Gotzhein

Preliminary Design of BML: A Behavioral Interface Specification
Language for Java Bytecode . 215

Lilian Burdy, Marieke Huisman, and Mariela Pavlova

Services

A Service Composition Construct to Support Iterative Development 230
Roy Grønmo, Michael C. Jaeger, and Andreas Wombacher

Correlation Patterns in Service-Oriented Architectures 245
Alistair Barros, Gero Decker, Marlon Dumas, and Franz Weber

Dynamic Characterization of Web Application Interfaces 260
Marc Fisher II, Sebastian Elbaum, and Gregg Rothermel

Testing

A Prioritization Approach for Software Test Cases Based on Bayesian
Networks . 276

Siavash Mirarab and Ladan Tahvildari

Redundancy Based Test-Suite Reduction . 291
Gordon Fraser and Franz Wotawa

Table of Contents XV

Testing Scenario-Based Models . 306
Hillel Kugler, Michael J. Stern, and E. Jane Albert Hubbard

Integration Testing in Software Product Line Engineering:
A Model-Based Technique . 321

Sacha Reis, Andreas Metzger, and Klaus Pohl

Analysis

Practical Reasoning About Invocations and Implementations of Pure
Methods . 336

Ádám Darvas and K. Rustan M. Leino

Finding Environment Guarantees . 352
Marsha Chechik, Mihaela Gheorghiu, and Arie Gurfinkel

Ensuring Consistency Within Distributed Graph Transformation
Systems . 368

Ulrike Ranger and Thorsten Hermes

Maintaining Consistency in Layered Architectures of Mobile Ad-Hoc
Networks . 383

Julia Padberg, Kathrin Hoffmann, Hartmut Ehrig, Tony Modica,
Enrico Biermann, and Claudia Ermel

Design

Towards Normal Design for Safety-Critical Systems 398
Derek Mannering, Jon G. Hall, and Lucia Rapanotti

A Clustering-Based Approach for Tracing Object-Oriented Design to
Requirement . 412

Xin Zhou and Hui Yu

Measuring and Characterizing Crosscutting in Aspect-Based Programs:
Basic Metrics and Case Studies . 423

Roberto E. Lopez-Herrejon and Sven Apel

Author Index . 439

M.B. Dwyer and A. Lopes (Eds.): FASE 2007, LNCS 4422, pp. 1 – 10, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Software Product Families: Towards Compositionality

Jan Bosch

Nokia, Technology Platforms/Software Platforms,
P.O. Box 407, FI-00045 NOKIA GROUP, Finland

Jan.Bosch@nokia.com
http://www.janbosch.com

Abstract. Software product families have become the most successful approach
to intra-organizational reuse. Especially in the embedded systems industry, but
also elsewhere, companies are building rich and diverse product portfolios
based on software platforms that capture the commonality between products
while allowing for their differences. Software product families, however, easily
become victims of their own success in that, once successful, there is a
tendency to increase the scope of the product family by incorporating a broader
and more diverse product portfolio. This requires organizations to change their
approach to product families from relying on a pre-integrated platform for
product derivation to a compositional approach where platform components are
composed in a product-specific configuration.

Keywords: Software product families, compositionality.

1 Introduction

Over the last decades, embedded systems have emerged as one of the key areas of
innovation in software engineering. The increasing complexity, connectedness,
feature density and enriched user interaction, when combined, have driven an
enormous demand for software. In fact, the size of software in embedded systems
seems to follow Moore’s law, i.e. with the increased capabilities of the hardware, the
software has followed suit in terms of size and complexity. This has lead to a constant
struggle to build the software of embedded systems in a cost-effective, rapid and
high-quality fashion in the face of a constantly expanding set of requirements. Two of
the key approaches evolved to handle this complexity have been software architecture
and software product families. Together, these technologies have allowed companies
to master, at least in part, the complexity of large scale software systems.

One can identify three main trends that are driving the embedded systems industry,
i.e. convergence, end-to-end functionality and software engineering capability. The
convergence of the consumer electronics, telecom and IT industries has been
discussed for over a decade. Although many may wonder whether and when it will
happen, the fact is that the convergence is taking place constantly. Different from
what the name may suggest, though, convergence in fact leads to a portfolio of
increasingly diverging devices. For instance, in the mobile telecom industry, mobile
phones have diverged into still picture camera models, video camera models, music

2 J. Bosch

player models, mobile TV models, mobile email models, etc. This trend results in a
significant pressure on software product families as the amount of variation to be
supported by the platform in terms of price points, form factors and feature sets is
significantly beyond the requirements just a few years ago. The second trend is that
many innovations that have proven their success in the market place require the
creation of an end-to-end solution and possibly even the creation or adaptation of a
business eco-system. Examples from the mobile domain include, for instance, ring
tones, but the ecosystem initiated by Apple around digital music is exemplary in this
context. The consequence for most companies is that where earlier, they were able to
drive innovations independently to the market, the current mode requires significant
partnering and orchestration for innovations to be successful. The third main trend is
that a company’s ability to engineer software is rapidly becoming a key competitive
differentiator. The two main developments underlying this trend are efficiency and
responsiveness. With the constant increase in software demands, the cost of software
R&D is becoming unacceptable from a business perspective. Thus, some factor
difference in productivity is easily turning into being able or not being able to deliver
certain feature sets. Responsiveness is growing in importance because innovation
cycles are moving increasingly fast and customers are expecting constant
improvements in the available functionality. Web 2.0 [7] presents a strong example of
this trend. A further consequence for embedded systems is that, in the foreseeable
future, the hardware and software innovation cycles will, at least in part, be
decoupled, significantly increasing demands for post-deployment distribution of
software.

Due to the convergence trend, the number of different embedded products that a
manufacturer aims to bring to market is increasing. Consequently, reuse of software
(as well as of mechanical and hardware solutions) is a standing ambition for the
industry. The typical approach employed in the embedded systems industry is to build
a platform that implements the functionality common to all devices. The platform is
subsequently used as a basis when creating new product and functionality specific to
the product is built on top of the platform. Several embedded system companies have
successfully employed product families or platforms and are now reaching the stage
where the scope of the product family is expanding considerably. This requires
a transition from a traditional, integration-oriented approach to a compositional
approach.

The contribution of this paper is that it analyses the problems of traditional
approaches to software product families that several companies are now confronted
with. In addition, it presents compositional platforms as the key solution approach to
addressing these problems and discusses the technical and organizational
consequences.

The remainder of this article is organized as follows. The next section defines the
challenges faced by traditional product families when expanding their scope.
Subsequently, section 3 presents the notion of compositional product families. The
component model underlying composability is discussed in more detail in section 4.
Finally, the paper is concluded in section 5.

 Software Product Families: Towards Compositionality 3

2 Problem Statement

This paper discusses and presents the challenges of the traditional, integration-
oriented approach to software product families [1] when the scope of the family is
extended. However, before we can discuss this, we need to first define integration-
oriented platform approach more precisely. In most cases, the platform approach is
organized using a strict separation between the platform organization and the product
organizations. The platform organization has typically a periodic release cycle where
the complete platform is released in a fully integrated and tested fashion. The product
organizations use the platform as a basis for creating and evolving theirs product by
extending the platform with product-specific features.

The platform organization is divided in a number of teams, in the best case
mirroring the architecture of the platform. Each team develops and evolves the
component (or set of related components) that it is responsible for and delivers the
result for integration in the platform. Although many organizations have moved to
applying a continuous integration process where components are constantly integrated
during development, in practice significant verification and validation work is
performed in the period before the release of the platform and many critical errors are
only found in that stage.

The platform organization delivers the platform as a large, integrated and tested
software system with an API that can be used by the product teams to derive their
products from. As platforms bring together a large collection of features and qualities,
the release frequency of the platform is often relatively low compared to the
frequency of product programs. Consequently, the platform organization often is
under significant pressure to deliver as many new features and qualities during the
release. Hence, there is a tendency to short-cut processes, especially quality assurance
processes. Especially during the period leading up to a major platform release, all
validation and verification is often transferred to the integration team. As the
components lose quality and integration team is confronted with both integration
problems and component-level problems, in the worst case an interesting cycle
appears where errors are identified by testing staff that has no understanding of the
system architecture and can consequently only identify symptoms, component teams
receive error reports that turn out to originate from other parts in the system and the
integration team has to manage highly conflicting messages from the testing and
development staff, leading to new error reports, new versions of components that do
not solve problems, etc.

In figure 1, the approach is presented graphically. The platform consists of a set of
components that are integrated, tested and released for product derivation. A product
derivation project receives the pre-integrated platform, may change something to the
platform architecture but mostly develops product-specific functionality on top of the
platform.

Although several software engineering challenges associated with software
platforms have been outlined, the approach often proves highly successful in terms of
maximizing R&D efficiency and cost-effectively offering a rich product portfolio.
Thus, in its initial scope, the integration-oriented platform approach has often proven
itself as a success. However, the success can easily turn into a failure when the
organization decides to build on the success of the initial software platform and
significantly broadens the scope of the product family. The broadening of the scope

4 J. Bosch

can be the result of the company deciding to bring more existing product categories
under the platform umbrella or because it decides to diversify its product portfolio as
the cost of creating new products has decreased considerably. At this stage, we have
identified in a number of companies that broadening the scope of the software product
family without adjusting the mode of operation quite fundamentally leads to a number
of key concerns and problems that are logical and unavoidable. However, because of
the earlier success that the organization has experienced, the problems are
insufficiently identified as fundamental, but rather as execution challenges, and
fundamental changes to the mode of operation are not made until the company
experiences significant financial consequences.

platform product

Fig. 1. Integration-oriented approach

The problems and their underlying causes that one may observe when the scope of
a product family is broadened considerably over time include, among others, those
described below:

1. Decreasing complete commonality: Before broadening the scope of the
product family, the platform formed the common core of product
functionality. However, with the increasing scope, the products are
increasingly diverse in their requirements and amount of functionality that is
required for all products is decreasing, in either absolute or relative terms.
Consequently, the (relative) number of components that is shared by all
products is decreasing, reducing the relevance of the common platform.

2. Increasing partial commonality: Functionality that is shared by some or
many products, though not by all, is increasingly significantly with the
increasing scope. Consequently, the (relative) number of components that is
shared by some or most products is increasing. The typical approach to this
model is the adoption of hierarchical product families. In this case, business
groups or teams responsible for certain product categories build a platform
on top of the company wide platform. Although this alleviates part of the
problem, it does not provide an effective mechanism to share components
between business groups or teams developing products in different product
categories.

3. Over-engineered architecture: With the increasing scope of the product
family, the set of business and technical qualities that needs to be supported
by the common platform is broadening as well. Although no product needs
support for all qualities, the architecture of the platform is required to do so
and, consequently, needs to be over-engineered to satisfy the needs of all
products and product categories.

 Software Product Families: Towards Compositionality 5

4. Cross–cutting features: Especially in embedded systems, new features
frequently fail to respect the boundaries of the platform. Whereas the typical
approach is that differentiating features are implemented in the product
(category) specific code, often these features require changes in the common
components as well. Depending on the domain in which the organization
develops products, the notion of a platform capturing the common
functionality between all products may easily turn into an illusion as the
scope of the product family increases.

5. Maturity of product categories: Different product categories developed by
one organization frequently are in different phases of the lifecycle. The
challenge is that, depending on the maturity of a product category, the
requirements on the common platform are quite different. For instance, for
mature product categories cost and reliability are typically the most
important whereas for product categories early in the maturity phase feature
richness and time-to-market are the most important drivers. A common
platform has to satisfy the requirements of all product categories, which
easily leads to tensions between the platform organization and the product
categories.

6. Unresponsiveness of platform: Especially for product categories early in
the maturation cycle, the slow release cycle of software platforms is
particularly frustrating. Often, a new feature is required rapidly in a new
product. However, the feature requires changes in some platform
components. As the platform has a slow release cycle, the platform is
typically unable to respond to the request of the product team. The product
team is willing to implement this functionality itself, but the platform team is
often not allowing this because of the potential consequences for the quality
of the product team.

3 Towards Compositionality

Although software product families have proven their worth, as discussed above,
there are several challenges to be faced when the product family approach is applied
to an increasingly broad and diverse product portfolio. The most promising direction,
as outlined in this paper, is towards a more compositional approach to product
creation. One of the reasons for this is that in the integration-oriented approach all
additions and changes to the platform components typically are released as part of an
integrated platform release. This requires, first, all additions and changes for all
components to be synchronized for a specific, typically large and complex, release
and, second, easily causes cross-component errors as small glitches in alignment
between evolving components cause integration errors.

The compositional approach aims to address these issues through the basic
principle of independent deployment [6]. This principle is almost as old as the field of
software engineering itself, but is violated in many software engineering efforts.
Independent deployment states that a component, during evolution, always has to
maintain “replaceability” with older versions. This principle is relatively easy to
implement for the provided interfaces of a component, as it basically requires the

6 J. Bosch

component to just continue to offer backward compatibility. The principle however
also applies to the required interfaces of a component. This is more complicated as
this requires components to intelligently degrade their functionality when the required
interfaces are bound to components that do not provide functionality required for new
features. Thus, although the principle is easy to understand in abstract terms, the
implementation often is more complicated, leading to situations where an R&D
organization may easily abandon the principle.

If the principle of independent deployment is, however, adhered to, then a very
powerful compositional model in the context of software product families is created:
rather than requiring the evolution of each component or subsystem to be perfectly
aligned, in this approach each component or subsystem can evolve separately.
Because each component guarantees backward compatibility and supports intelligent
degrading of provided functionality based on the composition in which the component
is used, it facilitates a “continuous releasing” model, allowing new functionality to be
available immediately to product derivation projects. In addition, quality issues can,
to a much larger extent, be dealt with locally in individual components, rather than as
part of the integration.

Although the approach described in this section has significant advantages for
traditional product families, the broadening product scope of many families creates an
increasing need for creating creative configurations [3]. Some typical reasons for
creative configurations include:

• Structural divergence: As discussed earlier, the convergence trend is
actually causing a divergence in product requirements. Components and
subsystems need to be composed in alternative configurations because of
product requirements that are deviating significantly from the standard
product.

• Functional divergence: A second cause for requiring a creative
configuration is where platform components need to be replaced with
product specific components to allow for diverging product functionality.

• Temporal divergence: In some cases, the divergence between product
requirements may be temporal, i.e. certain products require functionality
significantly earlier than the main, high volume product segment for which
the platform is targeted. Although every product family has leading, typically
high-end, products feeding the rest of the product portfolio with new
functionality, in this case the temporal divergence is much more significant
than in those cases. This may, among others, be due to the need to create
niche products or because of the need to respond more rapidly to changing
market forces to an extent unable to be accounted for by typically slow
platform development.

• Quality divergence: Finally, a fourth source of divergence is where specific
quality attributes, e.g. security or reliability, require the insertion of
behaviour between platform components in order to achieve certain quality
requirements. Although the structure of the original platform architecture
may be largely maintained, the connections between the components are
replaced with behavioural modules that insert and coordinate functionality.

 Software Product Families: Towards Compositionality 7

Fig. 2. Compositional approach to software product families

In figure 2, the compositional approach is presented graphically. The main items to
highlight include the creative product configurations shown on the right side and the
fact that there are two evolutionary flows, i.e. from the platform components towards
the products and visa versa.

In the paper so far, we have provided a general overview of the compositional
approach to software platforms. However, this approach has bearing on many topics
related to software product families. Below, we discuss a few of these.

Software variability management: In the research area of software product
families, software variability management (SVM) is an important field of study. One
may easily argue that the topics addressed in this paper can be addressed by
employing appropriate variability mechanisms. In our experience, SVM is
complementary to employing a compositional approach as the components still need
to offer variation points and associated variants. In [5] we argue that SVM focuses
primarily on varying behaviour in the context of stable architecture, whereas
compositionality is primarily concerned with viewing the elements stable and the
configurations in which the elements are combined to be the part that varies. In
practice, however, both mechanisms are necessary when the scope of a product family
extends beyond certain limits.

Software architecture: In most definitions of software architecture, the
predominant focus is on the structure of the architecture, i.e. the boxes and lines. In
some definitions, there is mention of the architectural principles guiding development
and evolution [5], but few expand on this notion. In the context of compositional
product families, the structural aspect of software architecture is become increasingly
uninteresting from a design perspective, as the structure of the architecture will be
different for each derived product and may even change during operation.
Consequently, with the overall increase of dynamism in software systems, software
architecture is more and more about the architectural principles. In [2], we argue that
architectural principles can be categorized into architecture rules, architecture
constraints and the associated rationale.

Software configuration management (SCM): At each stage of evolving an
existing component, there is a decision to version or to branch. Versioning requires
that the resulting component either contains a superset of the original and additional
functionality or introduce a variation point that allows the functionality provided by
the component to be configured at some point during the product derivation lifecycle.
Branching creates an additional parallel version of the component that requires a

Architectural guidelines guarantee composability
Components/subsystems guarantee quality

8 J. Bosch

selection during the product derivation. Although branching has its place in
engineering complex software product families, it has disadvantages with respect to
managing continued updates and bug fixes. It easily happens that, once branched, a
component branch starts to diverge to the point that the product originally requiring
the branching lacks too many features in the component and abandons it.

4 Component Model for Compositional Platforms

The Holy Grail in the software reuse research community has, for the last four
decades, been that components not developed for integration with each other can be
composed and result in the best possible composed functionality. In practice, this has
proven to be surprisingly difficult, among others because components often have
expectations on their context of use. In the context of the integration-oriented
approach, we see that components typically have more expectations on components
both providing and requiring functionality and that these expectations, paradoxically,
that are less precisely and explicitly defined. In contrast, composition-oriented
components use only explicitly defined dependencies and contain intelligence to
handle partially met binding of interfaces.

For the software assets making up a product family, at least the components and
subsystems need to satisfy a number of requirements in order facilitate composability.
Different aspects of these requirements as well as additional requirements have been
identified by other researchers as well.

• Interface completeness: The composition of components and subsystems
should only require the information specified in the provided, required and
configuration interfaces. Depending on the type of product family, compile-
time, link-time, installation-time and/or run-time composition of provided
interfaces and required interfaces should be facilitated and the composition
should lead to systems providing the best possible functionality given the
composition.

• Intelligent degradation: Components should be constructed such that
partial binding of the required interfaces results in automatic, intelligent
degradation of the functionality offered through the provided interfaces of
the component. In reality, this can not be achieved for all required interfaces,
so for most components the required interfaces can be classified as core
(must be bound) and non-core (can be bound). This is mirrored in the
provided interfaces that degrade their functionality accordingly. In practice,
most non-core interfaces represent steps in the evolution of the component or
subsystem.

• Variability management: Non-core interfaces and configurable internal
behaviour are part of the overall variability offered by a component or
subsystem and needs to be accessible to the users of the component through
a specific configuration or variability interface.

One of the general trends in software engineering is later binding or, in general,
delaying decisions to the latest point in the software lifecycle that is still acceptable
from an economic perspective. Also for embedded systems, an increasing amount of

 Software Product Families: Towards Compositionality 9

configuration and functionality extension can take place after the initial deployment.
However, for post-deployment composability to be feasible, again the software assets
that are part of the product family need to satisfy some additional requirements.

• Two descriptions: A component requires an operational description of its
behaviour (code) as well as an inspectable model of its intended behaviour.

• Monitoring required interfaces: For each required interface, a component
has an inspectable model of the behaviour required from a component bound
to the interface. This allows a component to monitor its providing
components.

• Self-monitoring: In addition to monitoring its providing components, a
component observes its own behaviour and identifies mismatches between
specified and actual behaviour.

• Reactive adjustment: A component can initiate corrective actions for a
subset of mismatches between required and actual behaviour of itself or of its
providing components and is able to report other mismatches to the
encompassing component/subsystem.

Concluding, although some of the techniques described in this section require more
advanced solutions provided by the development environment, by and large the
compositional approach can be implemented using normal software development
tools and environments. The main transformation for most organizations is mostly
concerned with organizational and cultural changes.

5 Conclusions

This paper discusses and presents the challenges of the traditional, integration-
oriented approach to software product families when the scope of the family is
extended. These problems include the decreasing complete commonality, increasing
partial commonality, the need to over-engineer the platform architecture, cross–
cutting features, different maturity of product categories and, consequently, increasing
unresponsiveness of the platform.

As a solution to addressing these concerns we present the compositional platform
approach. This approach becomes necessary when the traditional integration-oriented
approach needs to be stretched beyond its original boundaries. We have identified at
least four types of divergence, i.e. structural divergence, functional divergence,
temporal divergence and quality divergence. The compositional platform approach is
based on the principle of independent deployment [6]. This principle defines rules that
components need to satisfy in order to provide backward compatibility and flexibly in
addressing partial binding of required interfaces. In particular, three aspects are
necessary but not sufficient requirements: interface completeness, intelligent
degradation and variability management.

Although many product families implement or support a small slice of the principles
and mechanisms, few examples exist that support a fully compositional platform
approach. In that sense this paper should be considered as visionary rather than actual.
However, the problems and challenges of the integration-oriented approach are real and
as a community, we need to develop solutions that can be adopted by the software
engineering industry.

10 J. Bosch

References

1. J. Bosch, Design and Use of Software Architectures: Adopting and Evolving a Product Line
Approach, Pearson Education (Addison-Wesley & ACM Press), ISBN 0-201-67494-7, May
2000.

2. Jan Bosch, Software Architecture: The Next Step, Proceedings of the First European
Workshop on Software Architecture (EWSA 2004), Springer LNCS, May 2004.

3. Sybren Deelstra, Marco Sinnema and Jan Bosch, Product Derivation in Software Product
Families: A Case Study, Journal of Systems and Software, Volume 74, Issue 2, pp. 173-194,
15 January 2005.

4. www.softwarearchitectureportal.org
5. R. van Ommering, J. Bosch, Widening the Scope of Software Product Lines - From

Variation to Composition, Proceedings of the Second Software Product Line Conference
(SPLC2), pp. 328-347, August 2002.

6. R. van Ommering, Building product populations with software components, Proceedings of
the 24th International Conference on Software Engineering, pp. 255 – 265, 2002.

7. http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html

Contract-Driven Development

Bertrand Meyer
(Joint work with Andreas Leitner)

E.T.H. Zurich, Switzerland
Bertrand.Meyer@inf.ethz.ch

Abstract. In spite of cultural difference between the corresponding sci-
entific communities, recognition is growing that test-based and specifica-
tion-based approaches to software development actually complement
each other. The revival of interest in testing tools and techniques fol-
lows in particular from the popularity of ”Test-Driven Development”;
rigorous specification and proofs have, for their part, also made consid-
erable progress. There remains, however, a fundamental superiority of
specifications over test: you can derive tests from a specification, but not
the other way around.

Contract-Driven Development is a new approach to systematic soft-
ware construction combining ideas from Design by Contract, from Test-
Driven Development, from work on formal methods, and from advances
in automatic testing as illustrated for example in our AutoTest tool. Like
TDD it gives tests a central role in the development process, but these
tests are deduced from possibly partial specifications (contracts) and di-
rectly supported by the development environment. This talk will explain
the concepts and demonstrate their application.

M.B. Dwyer and A. Lopes (Eds.): FASE 2007, LNCS 4422, p. 11, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

EQ-Mine: Predicting Short-Term Defects for

Software Evolution

Jacek Ratzinger1, Martin Pinzger2, and Harald Gall2

1 Distributed Systems Group
Vienna University of Technology, Austria

ratzinger@infosys.tuwien.ac.at
2 s.e.a.l. – software evolution and architecture lab

University of Zurich, Switzerland
{pinzger,gall}@ifi.unizh.ch

Abstract. We use 63 features extracted from sources such as versioning
and issue tracking systems to predict defects in short time frames of two
months. Our multivariate approach covers aspects of software projects
such as size, team structure, process orientation, complexity of existing
solution, difficulty of problem, coupling aspects, time constrains, and
testing data. We investigate the predictability of several severities of
defects in software projects. Are defects with high severity difficult to
predict? Are prediction models for defects that are discovered by internal
staff similar to models for defects reported from the field?

We present both an exact numerical prediction of future defect num-
bers based on regression models as well as a classification of software
components as defect-prone based on the C4.5 decision tree. We create
models to accurately predict short-term defects in a study of 5 applica-
tions composed of more than 8.000 classes and 700.000 lines of code. The
model quality is assessed based on 10-fold cross validation.

Keywords: Software Evolution, Defect Density, Quality Prediction, Ma-
chine Learning, Regression, Classification.

1 Introduction

We want to improve the evolvability of software by providing prediction models
to assess quality as soon as possible in the product life cycle. When software
systems evolve we need to measure the outcome of the systems before shipping
them to customers. Software management systems such as the concurrent ver-
sioning system (CVS) and issue tracking systems (Jira) capture data about the
evolution of the software during development. Our approach, EQ-Mine uses this
data to compute a number of features, which are computed for source file revi-
sions in the pre- and post-release phases. Based on these evolution measures we
then set up a prediction model.

To evaluate the defect density prediction capabilities of our evolution measures
we apply three data mining algorithms and test 5 specified hypotheses. Results

M.B. Dwyer and A. Lopes (Eds.): FASE 2007, LNCS 4422, pp. 12–26, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

EQ-Mine: Predicting Short-Term Defects for Software Evolution 13

clearly underline that defect prediction models have to take into account differ-
ent aspects and measures of the software development and maintenance [1]. In
extension to our previous work on predicting defect density of source files [2] we
use detailed evolution data from an industrial software project and include team
structure and process measures.

The remaining paper is structured as follows. It starts with the formulation
of our research hypotheses (section 2). Related work is discussed in section 3. In
section 4 we describe the evolution measures used to build our defect prediction
model. Our approach is evaluated on a case study in section 5. We finalize this
paper with our conclusions and intent for future work in section 6.

2 Hypotheses

To guide the metrics selection for defect prediction and our evaluation with a case
study, we set up several hypotheses. In contrast to previous research approaches
(e.g. [3]) EQ-Mine aims at a fine-grained level. Our hypothesis are used to focus
on different aspects of our fine grained analysis such as the severity of defects, the
timing of predictions around releases, and the type of defect discovered (internal
vs. external):

– H1: Defect density can be predicted based on a short time-frame. Previous
research focused on the prediction of longer time-frames such as releases [4,
5]. In our research we focus on months as time scale and use two months of
development time to predict defect densities for the following two months.

– H2: Critical defects with high severity have a low regularity. Prediction mod-
els build on the regularity of the underlying data and can predict events
better that correspond to this regularity. We expect that defects that are
critical are more difficult to detect as they ”hide better” during the testing
and product delivery.

– H3: Quality predictions before a release are more accurate than after a re-
lease. Project quality can be estimated in different stages of the development
process. Some stages are more difficult to assess than others. Previous studies
already indicated that the accuracy of data mining in software engineering
varies over time (e.g. [5]). We expect that defects that are detected before a
release date are easier to predict than defects that are reported afterwards.

– H4: Defects discovered by internal staff have more regularity than defects
reported by the customer. For prediction model creation it is an important
input to know where the defect comes from. Was it recognized by the inter-
nal staff (e.g. during testing) or does the defect report come from customer
sites? We expect that internally and externally detected defects have differ-
ent characteristics. As a result one group can be easier predicted than the
other one.

– H5: Different aspects of software evolution have to be regarded for an accurate
defect prediction. We use a large amount of evolution indicators for defect
prediction. These indicators can be grouped into several categories such as

14 J. Ratzinger, M. Pinzger, and H. Gall

size and complexity measures, indicators for the complexity of the existing
solution and team related issues. For defect prediction we expect that data
mining features from many different categories are important.

3 Related Work

Many organizations want to predict software quality before their systems are
used. Fenton and Neil provide a critical review of literature that describes several
software metrics and a wide range of prediction models [1]. They found out that
most of the statistical models are based on size and complexity metrics with the
aim to predict the number of defects in a system. Others are based on testing
results, the testing process, the ”quality” of the development process, or take a
multivariate approach.

There are various techniques to identify critical code pieces. The most com-
mon one is to define typical bug patterns that are derived from experience and
published common pitfalls in a certain programming language. Wagner et al. [6]
analyzed several industrial and development projects with the help of bug de-
tection tools as well as with other types of defect-detection techniques.

Khoshgoftaar et al. [7] use software metrics as input to classification trees to
predict fault-prone modules. One release provides the training dataset and the
subsequent release is used for evaluation purpose. They claim that the resulting
model achieved useful accuracy in spite of the very small proportion of fault-
prone modules in the system. Classification trees generate partition trees based
on a training data set describing known experiences of interest (e.g. characteris-
tics of the software). The tree structure is intuitive and can be easily interpreted.
Briand et al. [8] try to improve the predictive capabilities by combining the ex-
pressiveness of classification trees with the rigor of a statistical basis. Their
approach called OSR generates a set of patterns relevant to the predicted object
estimated based on the entropy H.

There are different reasons for each fault: Some faults exist because of errors
in the specification of requirements. Others are directly attributable to errors
committed in the design process. Finally, there are errors that are introduced
directly into the source. Nikora and Munson developed a standard for the enu-
meration of faults based on the structural characteristics of the MDS software
system [9]. Changes to the system are visible at the module level (i.e. proce-
dures and functions) and therefore this level of granularity is measured. This
fault measurement process was then applied to a software system’s structural
evolution during its development. Every change to the software system was mea-
sured and every fault was identified and tracked to a specific line of code. The
rate of change in program modules should serve as a good index of the rate
of fault introduction. In a study the application of machine learning (induc-
tive) technique was tested for the software maintenance process. Shirabad et
al. [10] present an example of an artificial intelligence method that can be used
in future maintenance activities. An induction algorithm is applied to a set of
pre-classified training examples of the concept we want to learn. The large size

EQ-Mine: Predicting Short-Term Defects for Software Evolution 15

and complexity of systems, high staff turnover, poor documentation and the long
periods of time these systems must be maintained leads to a lack of knowledge
in how to proceed the maintenance of software systems.

Only a small number of empirical studies using industrial software systems
are performed and published. Ostrand and Weyuker, for example, evaluated
a large inventory tracking system at AT&T [4]. They analyzed how faults are
distributed over different releases. They discovered that faults are always heavily
concentrated in a relatively small number of releases during the entire life cycle.
Additionally the number of faults is getting higher as the product matures and
high-fault modules tend to remain high fault in later releases. So it would be
worthwhile to concentrate fault detection on a relatively small number of high
fault-prone releases, if they can be identified early.

4 Data Measures

To mine software development projects we use the data obtained from versioning
system (CVS) and issue tracking system (Jira). CVS enable the handling of
different versions of files in cooperating teams. This tool logs every change event,
which provides the necessary information about the history of a software system.
The log-information for our mining approach—pure textual, human readable
information—is retrieved via standard command line tools, parsed and stored in
the release history database [11].

Jira manages data about project issues such as bug reports or feature requests.
This system give a historical overview of the requirements and their implemen-
tations. We extract the data based on its backup facility, where the entire issue
data can be exported into XML files. These files are processed to import the
information into our database. In a post-processing step we link issues from Jira
to log information from CVS using the comments of developers in commit mes-
sages by searching for issue numbers. In addition we distinguish between issues
created by developers and issues created by customers by linking issue reporters
to CVS authors. Issues are counted as reported by internal staff when the is-
sue reporter can be linked to a CVS author otherwise the issue is defined to be
external (e.g. hotline).

4.1 Features

From the linked data in the release history database we compute 63 evolution
measures that are considered as features for data mining. These features are
gathered on file basis, where data from all revisions of a file within a predefined
time period is summarized. To build a balanced prediction model we create fea-
tures to represent several important aspects of software development such as the
complexity of the designed solution, process used for development, interrelation
of classes, etc. As previous studies [2, 3] discovered that relative features provide
better performance in prediction than absolute ones, we decided that all our 63
features have to be relative. For EQ-Mina we set up the following categories of
features for each file containing changes within the inspection period:

16 J. Ratzinger, M. Pinzger, and H. Gall

Size. This category groups ”classical” measures such as lines of code from an
evolution perspective: linesAdded, linesModified, or linesDeleted relative to the
total LOC of a file. For example a file had three revisions within the learning
period adding 3, 5, and 4 lines and this file had 184 lines before the learning
period, we feed into the data mining: (linesAdded = (3+5+4)/184) => (

∑

defects).
Other features of this category are linesType, which defines if there are more

linesAdded or linesModified. Additionally, we regard largeChanges as double of
the LOC of the average change size and smallChanges as half of the average
LOC. We expect that this number is an important feature in the data mining,
as other studies have found out that small modules are more defect-prone than
large ones. [12, 13]

Team. The number of authors of files influences the way software is developed.
We expect that the more authors are working on the changes the higher is the
possibility of rework and mistakes. We define a feature for the authorCount rela-
tive to the changeCount. Further, the interrelation in people work is interesting.
We investigate work rotation between the authors involved in the changes of
each file as the feature authorSwitches. The number of people assigned to an
issue and the authors contributing to the implementation of this issue is another
feature we use for our prediction models.

Process orientation. In this category we assemble features that define how dis-
ciplined people follow software development processes. For source code changes
developers have to include the issue number in their commit message to the
versioning system. We define a feature regarding issueCount relative to change-
Count. The developer is requested to also provide some rationale in the commit
message. Thus, we use withNoMessage measuring changes without any commit
comment as a feature for prediction.

In each project the distribution between different priorities of issues should
be balanced. Usually, the number of issues with highest priority is very low. A
high value may indicate problems in the project that have effects on quality
and re-work amount. Accordingly, we investigate highPriorityIssues and mid-
dlePriorityIssues relative to the total number of issues. Also the time to close
certain classes of issues provides interesting input for prediction and we use
avgDaysHighPriorityIssues and avgDaysMiddlePriorityIssues in relation to the
average number of days that are necessary to close an issue.

To get an estimation for the work habits of the developers we inspect the
number of addingChanges, modifyingChanges, and deletingChanges per file. This
information provides input to the defect prediction of files.

Complexity of existing solution. According to the laws of software evolution [14],
software continuously becomes more complex. Changes are more difficult to add
as the software is more difficult to understand and the contracts between existing
parts have to retain. As a result we investigate the changeCount in relation to the
number of changes during the entire history of each file. The changeActivityRate

EQ-Mine: Predicting Short-Term Defects for Software Evolution 17

is defined as the number of changes during the entire lifetime of the file relative
to the months of the lifetime. The linesActivityRate describes the number of
lines of code relative to the age of the file in months.

We approximate the quality of the existing solution by the bugfixCountBefore
before our prediction period relative to the general number of changes before the
prediction period. We expect that the higher the fix rate is before the inspection
period the more difficult it is to get a better quality later on. The bugfixCount is
used as well as bugfixLinesAdded, bugfixLinesModified, and bugfixLinesDeleted in
relation to the base measures such as the number of lines of code added, modified,
and deleted for this file. For bug fixes not much new code should be necessary, as
most code is added for new requirements. Therefore, linesAddPerBugfix, lines-
ModifiedPerBugfix, and linesDeletedPerBugfix are interesting indicators, which
measure the average lines of code for bug fixes.

Difficulty of problem. New classes are added to object-oriented systems when
new features and new requirements have to be satisfied. We use the information
whether a file was newly introduced during the prediction period as feature
for data mining. To measure how often a file was involved during development
with the introduction of other new files we use cochangeNewFiles as a second
indicator. Co-changed files are identified as described in [15].

The amount of information necessary to describe a requirement is also an
important source of information. The feature issueAttachments identifies the
number of attachments per issue.

Relational Aspects. In object-oriented systems the relationship between classes
is an important metrics. We use the co-change coupling between files to estimate
their relationship. We use the number of co-changed files relative to the change
count as feature cochangedFiles.

Additionally, we quantify co-changed couplings with features based on com-
mit transactions similar to the size measures for single files: TLinesAdded, TLi-
nesModified, and TLinesDeleted relative to lines of code added, modified, and
deleted. The TLinesType describes if the transactions contained more lines added
or lines modified. TChangeType is a coarser grained feature that describes if
this file was part of transactions with more adding revisions or more modifying
revisions.

For file relations we also use bug fix related features: TLinesAddedPerBug-
fix and TLinesChangedPerBugfix are two representatives. Additionally, we use
TBugfixLinesAdded, TBugfixLinesModified, and TBugfixLinesDeleted relative to
the linesAdded, linesModified, and linesDeleted.

Time constraints. As software processes stress the necessity of certain activities
and artifacts, we believe that the time constrains are important for software pre-
dictions. The avgDaysBetweenChanges feature is defined as the average number
of days between revisions. The number of days per line of code added or changed
captured as avgDaysPerLine.

18 J. Ratzinger, M. Pinzger, and H. Gall

Peaks and outliers have been shown to give interesting events in software
projects [15]. For the relativePeakMonth feature we measure the location of the
peak month, which contains most revisions, within the prediction period. The
peakChangeCount feature describes the number of changes happening during the
peak month normalized by the overall number of changes. The number of changes
is measured based on the months in the prediction period with feature change-
ActivityRate. For more fine grained data the lines of code added and changed
relative to the number of months is regarded for feature linesActivityRate.

Testing. We use testing metrics as an input to prediction models, because they
allow estimating the remaining bug number. The number of bug fixes initiated
by the developers itself provides insight into the quality attentiveness of the team
and are covered by feature bugfixesDiscoveredByDeveloper.

4.2 Data Mining

For model generation and evaluation we use the data mining tool called Weka
[16]. It provides algorithms for different data mining tasks such as classification,
clustering, and association analysis. For our prediction and classification mod-
els we selected linear regression, regression trees (M5), and classifier C4.5. The
regression algorithms are used to predict the number of defects for a class from
its evolution attributes.

The following metrics are used to assess the quality of our numeric prediction
models:

– Correlation Coefficient (C. Coef.) ranges from -1 to 1 and measures the
statistical correlation between the predicted values and the actual ones in
the test set. A value of 0 indicates no correlation, whereas 1 describes a
perfect correlation. Negative correlation indicates inverse correlation, but
should not occur for prediction models.

– Mean Absolute Error (Abs. Error) is the average of the magnitude of indi-
vidual absolute errors. This assessment metrics does not have a fixed range
like the correlation coefficient, but is geared to the values to be predicted. In
our case the number of defects per file is predicted, which ranges from 1 to
6 and 16 respectively (see Table 1 and Table 2). As a result, the closer the
mean absolute error is to 0 the better. A value of 1 denotes that on average
the predicted value differs from the actual number of defects by 1 (e.g. 3,5
instead of 4).

– Mean Squared Error (Sqr. Error) is the average of the squared magnitude of
individual errors and it tends to exaggerate the effect of outliers – instances
with larger prediction error – more than mean absolute error. The range of
the mean squared error is geared to the ranges of predicted values, similar
to the mean absolute error. But this time the error metrics is squared, which
overemphasize predictions that are far away of the actual number of defects.
The quality of the prediction model is good, when the mean squared error
is close to the mean absolute error.

EQ-Mine: Predicting Short-Term Defects for Software Evolution 19

The quality of our prediction models is assessed through 10-fold cross vali-
dation. For this method the set of instances is splitt randomly into 10 sub-sets
(folds) and the model is build 10 times and validated 10 times. For each turn the
classification model is trained on nine folds and the remaining one is used for
testing. The resulting 10 quality measures are averaged to yield an overall quality
estimation. Therefore, 10-fold cross validation is a strong validation technique.

5 Case Study

For our case study with EQ-Mine we analyzed a commercial software system from
the health care environment. The software system is composed of 5 applications
such as a clinical workstation or a patient administration system. This object-
oriented system is built in Java consisting of 8.600 classes with 735.000 lines
of code. For the clinical workstation a plug-in framework similar to the one of
Eclipse is used and currently 51 plug-ins are implemented. The development is
supported by CVS as the versioning system for source files and Jira as the issue
tracking system. We analyzed the last two releases of this software system: One
in the first half of 2006 and the other one in the middle of 2005.

Table 1. Pre-release: Number of files distinguishing between the ones with defects of
all severities and files where defects with high severity were found

Number of defects Number Number of defects Number
per file of files per file of files

(all severities) (high severity)

1 46 1 10
2 11 2 2
3 5 3 1
4 7 4 0
5 2 5 0
6 1 6 0

5.1 Experimental Setup

For our experiments we investigated 8 months of software evolution in our case
study. We use two months of development time to predict the defects of the
following two months, which builds up a 4 months time frame. We compare the
predictions before the release date with the predictions after it, which results in
a period of 8 months. Before the release we create prediction models for defects
in general and for defects with high severity. These models can be compared to
the ones after. After the release date we additionally distinguish defects discov-
ered by internal staff vs. defects reported from the field (customer). With this
experimental set up we test our hypotheses from Section 2.

20 J. Ratzinger, M. Pinzger, and H. Gall

Table 2. Post-release: Number of files distinguishing different types of defects

Number of defects No. of files No. of files No. of files No. of files
with severity severity=all severity=all severity=all severity=high
reported by int. & ext. internal staff external customer int. & ext.

1 46 30 32 21
2 21 12 7 1
3 8 6 1 0
4 6 4 1 0
5 5 4 0 0
7 1 1 0 0
12 1 1 0 0
16 1 1 0 0

5.2 Results

Short Time Frames. Our analysis focuses on short time frames. To evaluate H1
of Section 2 we use two months of development time to predict the following
two months. Table 3 shows several models predicting defects before the release
where the two months period for defect counting are laid directly before the
release date and the other two months before this two target months are taken
to collect feature variables for the prediction models. In the first Table 3(a) we
can see that we obtain a correlation coefficient larger than 0.5, which is a quite
good correlation. The mean absolute error is low with 0.46 for linear regression
and 0.36 for M5 and the mean squared error is also low with 0.79 for linear
regression and 0.67 for M5. In order to assess these prediction errors, Table 1
describes the defect distribution of the two target months. As mean squared
error emphasizes outliers, we can state that the overall error performance of the
prediction of all pre-release defects is very good.

Table 3. Prediction pre-release defects

C. Coef. Abs. Error Sqr. Error

Lin. Reg. 0.5031 0.4604 0.7881
M5 0.6137 0.3602 0.6674

(a) All defects

C. Coef. Abs. Error Sqr. Error

Lin. Reg. -0.0424 0.1352 0.3173
M5 0.0927 0.0792 0.2589

(b) High severity defects

To confirm our first hypothesis Table 4(a) lists the quality measures for the
prediction of post-release defects. There the values are not as good as for pre-
release defects, but the correlation coefficients are still close to 0.5. Therefore,
we confirm H1:

We can predict short time frames of two months based on feature data
of two months.

EQ-Mine: Predicting Short-Term Defects for Software Evolution 21

High Severity. Table 3(b) shows the results for the prediction models on pre-
release defects with high severity. We get the severity level of each defect from
the issue tracking system, where the defect reporter assigns severity levels. The
quality measures for high severity defects differ from the prediction of all de-
fects, because the number and distribution of high severity defects have other
characteristics (see Table 1). It is interesting that linear regression has only a
negative correlation coefficient. But also M5 can only reach a very low correla-
tion coefficient of 0.10. The overall error level is low because of the small defect
bandwidth of 0 up to 3.

Table 4. Prediction post-release defects

C. Coef. Abs. Error Sqr. Error

Lin. Reg. 0.5041 0.9443 1.5285
M5 0.4898 0.7743 1.4152

(a) All defects

C. Coef. Abs. Error Sqr. Error

Lin. Reg. 0.4464 0.9012 1.5151
M5 0.5285 0.688 1.3194

(b) Defects discovered internally
(through test + development)

C. Coef. Abs. Error Sqr. Error

Lin. Reg. 0.253 0.3663 0.5699
M5 0.4716 0.2606 0.4574

(c) Defects discovered externally
(through customer + partner companies)

C. Coef. Abs. Error Sqr. Error

Lin. Reg. 0.1579 0.1973 0.3175
M5 0.087 0.1492 0.3048

(d) High severity defects

For the post-release prediction of high severity defects in Table 4(d) the cor-
relation coefficient of 0.16 is slightly better. The prediction errors are slightly
worse, but this is due to the fact that there are more post-release defects with
high severity than pre-release. However, we can conclude:

Defects with high severity cannot be predicted with such a precision
as overall defects.

Before vs. After Release. Our hypothesis H3 states that pre-release defects can
be better predicted than the post-release ones. When we compare Table 3(a) with
Table 4(a) we see that our hypothesis seems to be confirmed. The correlation
coefficients of linear regression are very similar, but the prediction errors are
higher for pre-release defects. This situation is even more remarkable for M5,
as the pre-release correlation coefficient reaches 0.61 whereas the post-release
remains at 0.49. For these prediction models also the two error measures are
much higher for post-release. While comparing the defect distribution between
pre-release in Table 1 with post-release in Table 2, we could believe that the high
error rate is due to the fact that we discovered more files with many defects that
occur post-release than pre-release. But when we repeat the model creation of
post-release defects with a similar distribution to pre-release, we get still a mean
absolute error of 0.68 and a mean squared error of 1.06, which is still clearly
larger than for pre-release.

22 J. Ratzinger, M. Pinzger, and H. Gall

What about high severity defects? Are they still better predictable before a
release than after? When we look at Table 3(b) and Table 4(d) we see a similar
picture for this subgroup of defects. Only the correlation coefficient for linear
regression is higher for post-release defects than for pre-release, because there
are many more high severity defects after the release. This could be because the
defects reported from customers are ranked higher than when they are discovered
internally, in order to stress the fact that the defects from customers have to
be fixed fast. When we repeat the model creation with similar distributions of
pre-release and post-release we get similar correlation coefficients but higher
prediction errors for post-release. Therefore, we can conclude that:

Predictions of post-release defects have higher errors than for models
generated for pre-release.

Discovered Internally vs. Externally. We show the difference between prediction
of defects discovered by internal staff (testers, developers) vs. defects discovered
externally (e.g. customer, partner companies) in Table 4(b) and Table 4(c). For
internal defects the correlation coefficient is larger than 0.5, which is produced
by the M5 predictor. Although it seems that the prediction error is lower for
external defects than for internal ones, this result may be caused by the fact
that there are no files with many externally discovered defects (see post-release
defect distribution in Table 2). However, when we redo the prediction for internal
defects with a similar distribution as for external defects, we get a mean absolute
error of 0.48 and a mean squared error of 0.86 with a correlation coefficient of
0.47. As a result, we can partly reject H4 and conclude that:

Defects discovered externally by customers and partner companies
can be predicted with lower absolute and squared error than defects
discovered internally by testers and developers.

Aspects of Prediction Models. To analyze the aspects of prediction models in
more detail we created two cases using the C4.5 tree classifier: The first model
distinguishes between files that are defect-prone vs. files without defects. The
second tree model separates the files with just one defect from the ones with
several defects. At each node in the tree, a value for the given feature is used
to divide the entities into two groups: files with a feature value large/smaller
than the threshold. The leafs of the decision trees provide a label for the entities
(e.g. predicted number of defects). For each file such a tree has to be traversed
according to its features to obtain the predicted class. If a node has no or only
one successor than it is defined to be a leaf node for a part of the tree.

Tree 1 describes that the feature bearing the most information concerning
defect-proneness is the location of the peak month, where the peak month is
defined as the one containing the most change events for the analyzed file. Fea-
tures on the second level are change activity rate and author count. Relative

EQ-Mine: Predicting Short-Term Defects for Software Evolution 23

peak month and change activity rate represent the category of time constraints.
Nevertheless, the tree is composed of features from many different categories.
Author count and author switches belong to the team category. The number of
resolved issues in relation to all issues referenced by source code revisions is an
indicator for the process category, similar to the number of source adding changes
in relation to the overall change count. Also the ratio of revisions without a com-
mit message describes the process orientation of the development. The number
of lines added per bug fix provides insight into the development process itself.
We conclude that not size and complexity measures dominate defect-proneness,
but many people-related issues are important.

tree root
relativePeakMonth
— changeActivityRate
— — resolvedIssues
— — — bugfixLinesAdded
— — — — withNoMessage
relativePeakMonth
— authorCount
— — addingChanges
— — — authorSwitches

Tree 1. Pre-release with/without defects

Tree 2 describes the prediction model evaluating the defect-prone files (one
vs. several defects). This classification tree is much smaller than the previous
one for prediction of defect-prone files. Nevertheless, it contains data mining
features from many categories. The top level and the bottom level both regard
lines edited during bug fixing, but on the first level the lines added to the file
are of interest whereas at the bottom the relational aspect is central with lines
deleted in all files of common commit transactions. Additionally, the team aspect
plays an important role, as the number of author switches is the feature on the
second level. The model is completed by features indicating the ratio of adding
and changing modifications.

tree root
linesAddPerBugfix
— authorSwitches
— — addingChanges
— — — modifyingChanges
— — — — TBugfixLinesDel

Tree 2. Pre-release one vs. several defects

24 J. Ratzinger, M. Pinzger, and H. Gall

From these classifications we conclude that:

Multiple aspects such as time constraints, process orientation, team
related and bug-fix related features play an important role in defect
prediction models.

5.3 Limitations

Our mining approach is strongly related with the quality of our data for the case
study. As a result, validity of our findings is related with the data of the version-
ing and issue tracking system. Versioning systems register single events such as
commits of developers, where the event recording depends on the work habits
of the developers. However, we could show that an averaging effect supports
statistical analysis [17] in general.

Our data rely strongly on automated processing. On one hand this ensures
constancy, but on the other hand it is a source of blurring effects. In our case
we extracted issue numbers from commit messages to map the two information
systems. To improve the situation we could try to map from bug reports to code
changes based on commit dates and issue dates as described in [5]. In our case
this approach does not provide any valuable mappings, which we discovered on
a random sample of 100 discovered matches.

We can only identify locations of defects corrections based on change data
from versioning systems and derive from this information prediction models for
components. Bug fixes can take place at locations different to the source of
defects. Similar approaches are used by other researchers [5, 4, 3]. With predicting
defect corrections, we provide insight into improvement efforts, as defect fixes
could be places being in urgent need of code stabilization.

For our empirical study we selected software applications of different types
such as graphical workstations, administrative consoles, archiving and commu-
nication systems, etc. We still cannot claim generalization of our approach on
other kinds of software systems. Therefore, we need to evaluate the applicability
of EQ-Mine on each specific software project. Nevertheless, this research work
contributes to the existing empirical body of knowledge.

6 Conclusions and Future Work

In this work we have investigated several aspects of defect prediction based on
a large industrial case study. Our research contributes to the body of knowledge
in the field of software quality estimation in several ways. We conducted one
of the first studies dealing with fine grained predictions of defects. We estimate
the defect proneness based on a short time-frame. With this approach project
managers can decide on the best time-frame for release and take preventive ac-
tions to improve user satisfaction. Additionally, we compare defect prediction
before and after releases of our case study and discovered that in both cases
an accurate prediction model can be established. In contrast to other studies,

EQ-Mine: Predicting Short-Term Defects for Software Evolution 25

we investigated the predictability of defects of different severity. We could show
that prediction of defects with high severity has lower precision. We also an-
alyzed customer perceived quality, where defects reported by customers need
other prediction models than defects discovered by internal staff such as testing.

In order to create accurate prediction models we inspected different aspects
of software projects. Although size was already used in many other studies it is
still an important input for prediction. We extend size measures with relational
aspects, where we use the data about evolutionary co-change coupling of software
entities. We can show that, for example, the number of lines added to all classes
on common changes is as important for defect prediction of a class as the number
of lines added to this particular class. Other aspects of our approach are the
complexity of the existing solution and the difficulty of the problem in general,
as they are causes of software defects. We include people issues of different types
in our analysis to cover another important cause of defects. When a developer has
to work on software that somebody else has initially written mistakes can occur,
because she has to understand the design of her colleague. Factors such as author
switches are covered by our team group of data mining features. The discipline
of a developer does also influence defect probability. As a result we use indicators
for process related issues. Finally, we include time constrains and testing related
features into our defect prediction models. The models were created based on 63
data mining features from the 8 categories described.

In our future work we focus on the following topics:

– Software Structure. As we currently use evolution measures for quality es-
timations, we intend to enrich our models with information about software
structures. Object-oriented inheritance hierarchies as well as data and con-
trol flow information provide many insights into software systems, which we
will include in our quality considerations.

– Automation. Our analysis relies on automated data processing such as in-
formation retrieval, mapping of defect and version information, and feature
computation. The model creation relies on scripts using the Weka data min-
ing tool [16]. Integrated tools providing predictions and model details such
as the most important features can help different stakeholders. On the one
hand, developers could profit from this information best, when it is available
in the development environment. On the other hand, project managers need
a lightweight tool separated from development environments to base their
decisions on.

Acknowledgments

This work is partly funded by the Austrian Fonds zur Frderung der
Wissenschaftlichen Forschung (FWF) as part of project P19867-N13. We thank
Peter Vorburger for his valuable input and thoughts to this research work. Spe-
cial thanks go to André Neubauer and others for their comments on earlier
versions of this paper.

26 J. Ratzinger, M. Pinzger, and H. Gall

References

1. Fenton, N.E., Neil, M.: A critique of software defect prediction models. IEEE
Transactions on Software Engineering 25(5) (1999) 675–689

2. Knab, P., Pinzger, M., Bernstein, A.: Predicting defect densities in source code
files with decision tree learners. In: Proceedings of the International Workshop on
Mining Software Repositories, Shanghai, China, ACM Press (2006) 119–125

3. Nagappan, N., Ball, T.: Use of relative code churn measures to predict system
defect density. In: Proceedings of the International Conference on Software Engi-
neering, St. Louis, MO, USA (2005) 284–292

4. Ostrand, T.J., Weyuker, E.J.: The distribution of faults in a large industrial soft-
ware system. In: Proceedings of the International Symposium on Software Testing
and Analysis, Rome, Italy (2002) 55–64

5. Schröter, A., Zimmermann, T., Zeller, A.: Predicting component failures at de-
sign time. In: Proceedings of the International Symposium on Empirical Software
Engineering, Rio de Janeiro, Brazil (2006) 18–27

6. Wagner, S., Jürjens, J., Koller, C., Trischberger, P.: Comparing bug finding tools
with reviews and tests. In: Proceedings of the International Conference on Testing
of Communicating Systems, Montreal, Canada (2005) 40–55

7. Khoshgoftaar, T.M., Yuan, X., Allen, E.B., Jones, W.D., Hudepohl, J.P.: Uncertain
classification of fault-prone software modules. Empirical Software Engineering 7(4)
(2002) 297–318

8. Briand, L.C., Basili, V.R., Thomas, W.M.: A pattern recognition approach for
software engineering data analysis. IEEE Transactions on Software Engineering
18(11) (1992) 931–942

9. Nikora, A.P., Munson, J.C.: Developing fault predictors for evolving software sys-
tems. In: Proceedings of the Software Metrics Symposium, Sydney, Australia (2003)
338–350

10. Shirabad, J.S., Lethbridge, T.C., Matwin, S.: Mining the maintenance history
of a legacy software system. In: Proceedings of the International Conference on
Software Maintenance, Amsterdam, The Netherlands (2003) 95–104

11. Fischer, M., Pinzger, M., Gall, H.: Populating a release history database from
version control and bug tracking systems. In: Proceedings of the International
Conference on Software Maintenance, Amsterdam, Netherlands, IEEE Computer
Society Press (2003) 23–32

12. Moeller, K., Paulish, D.: An empirical investigation of software fault distribution.
In: Proceedings of the International Software Metrics Symposium. (1993) 82–90

13. Hatton, L.: Re-examining the fault density-component size connection. IEEE
Software 14(2) (1997) 89–98

14. Lehman, M.M., Belady, L.A.: Program Evolution - Process of Software Change.
Academic Press, London and New York (1985)

15. Gall, H., Jazayeri, M., Ratzinger (former Krajewski), J.: CVS release history data
for detecting logical couplings. In: Proceedings of the International Workshop on
Principles of Software Evolution, Lisbon, Portugal, IEEE Computer Society Press
(2003) 13–23

16. Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and tech-
niques. 2 edn. Morgan Kaufmann, San Francisco, USA (2005)

17. Ratzinger, J., Fischer, M., Gall, H.: Evolens: Lens-view visualizations of evolution
data. In: Proceedings of the International Workshop on Principles of Software
Evolution, Lisbon, Portugal (2005) 103–112

An Approach to Software Evolution
Based on Semantic Change

Romain Robbes, Michele Lanza, and Mircea Lungu

Faculty of Informatics
University of Lugano, Switzerland

Abstract. The analysis of the evolution of software systems is a useful source of
information for a variety of activities, such as reverse engineering, maintenance,
and predicting the future evolution of these systems.

Current software evolution research is mainly based on the information con-
tained in versioning systems such as CVS and SubVersion. But the evolutionary
information contained therein is incomplete and of low quality, hence limiting the
scope of evolution research. It is incomplete because the historical information is
only recorded at the explicit request of the developers (a commit in the classi-
cal checkin/checkout model). It is of low quality because the file-based nature of
versioning systems leads to a view of software as being a set of files.

In this paper we present a novel approach to software evolution analysis which
is based on the recording of all semantic changes performed on a system, such as
refactorings. We describe our approach in detail, and demonstrate how it can be
used to perform fine-grained software evolution analysis.

1 Introduction

The goal of software evolution research is to use the history of a software system to
analyse its present state and to predict its future development [1] [2]. It can also be
used to complement existing reverse engineering approaches to understand the current
state of a system [3] [4] [5] [6]. The key to perform software evolution research is
the quality and quantity of available historical information. Traditionally researchers
extract historical data from versioning systems (such as CVS and SubVersion), which
at explicit requests by the developers record a snapshot of the files that have changed
(this is widely known as the checkin/checkout model).

We argue that the information stored in current versioning systems is not accurate
enough to perform higher quality evolution research, because they are not explicitely
designed for this task: Most versioning systems have been developed in the context
of software configuration management (SCM), whose goal is to manage the evolution
of large and complex software systems [7]. But SCM serves different needs than soft-
ware evolution, it acts as a management support discipline concerned with controlling
changes to software products and as a development support discipline assisting devel-
opers in performing changes to software products [8] [9]. Software evolution on the
other hand is concerned with the phenomenon of the evolution of software itself. The
dichotomy between SCM and software evolution has led SCM researchers to consider
software evolution research as a mere “side effect” of their discipline [10].

M.B. Dwyer and A. Lopes (Eds.): FASE 2007, LNCS 4422, pp. 27–41, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

28 R. Robbes, M. Lanza, and M. Lungu

Because most versioning systems originated from SCM research, the focus has never
been on the quantity and quality of the recorded evolutionary information, which we
consider as being (1) insufficient and (2) of low quality. It is insufficient because in-
formation only gets recorded when developers commit their changes. In previous work
[11] we have analyzed how often developers of large open-source projects commit their
changes and found that the number of commits per day barely surpasses 1 (one commit
on average every 8 “working day” hours). The information is of low quality because
there is a loss of semantic information about the changes: only textual changes get
recorded. For example, to detect structural changes such as refactorings one is forced
to tediously reconstruct them from incomplete information with only moderate success
[12] [13]. Overall this has a negative impact on software evolution research whose limits
are set by the quality and quantity of the available information.

This paper presents our approach to facilitate software evolution research by the ac-
curate recording of all semantic changes that are being performed on a software system.
To gather this change information, we use the most reliable source available, namely the
Integrated Development Environment (IDE, such as Eclipse 1 or Squeak 2) used to de-
velop object-oriented software systems.

Modern development environments allow programmers to perform semantic actions
on the source code with ease, thanks to semi-automatic refactoring [14] support. They
also have an open architecture that tools can take advantage of: The event notification
system the IDE uses can be monitored to keep track of how the developers modify the
source code. From this information, we build a model of the evolution of a system in
which the notion of change takes on a primary role, since people develop a software
system by incrementally changing it [15]. The notion of incremental change is further
supported by IDEs featuring incremental compilation where only the newly modified
parts get compiled, i.e., an explicit system building phase where the whole system is
being built from scratch is losing importance.

In our model, the evolution of a system is the sequence of changes which were ap-
plied to develop it. These changes are operations on the program’s abstract syntax tree
at the simplest level. Through a composition mechanism, changes are grouped to rep-
resent larger changes associated with a semantic meaning, such as method additions,
refactorings, feature additions or bug fixes. Thus we can reason about a system’s evolu-
tion on several levels, from a high-level view suitable to a manager down to a concrete
view suitable to a developer wishing to perform a specific task.

We store the change information in a repository, to be exploited by tools integrated in
the IDE the programmer is using. After presenting our approach, we show preliminary
results, based on the change matrix, an interactive visualization of the changes applied
to the system under study.

Structure of the paper. Section 2 presents the principles and a detailed overview of
our approach. Section 3 presents a case study we performed to validate our approach, in
which we used the change matrix visualization to assess the evolution of projects done
by students. Section 4 and 5 compare our approach to more traditional approaches to

1 http://www.eclipse.org
2 http://www.squeak.org

An Approach to Software Evolution Based on Semantic Change 29

software evolution analysis. Section 6 briefly covers the implementation. In Section 7
we conclude and outline future work.

2 Change-Based Object-Oriented Software Evolution

Our approach to software evolution analysis is based on the following principles:

– Programming is more than just text editing, it is an incremental activity with se-
mantics. If cutting out a piece of a method body and wrapping it into its own
method body can be seen as cut&paste, it is in fact an extract method refactoring.
Hence, instead of representing a system’s evolution as a sequence of versions of text
files, we want to represent it as a sequence of explicit changes with object-oriented
semantics.

– Software is in permanent evolution. Modern Integrated Development Environments
(IDE), such as Eclipse, are a very rich and accurate source of information about a
system’s life-cycle. IDEs thus can be used to build a change-based model of evolv-
ing object-oriented software and to gather the change data, which we afterwards
process and analyze. Based on the analyzed data, we can also create tools which
feed back the analyzed data into the IDE to support the development process.

Taming Change. Traditional approaches to evolution analysis consider the history of
a system as being a sequence of program versions, and compute metrics or visualize
these versions to exploit the data contained in them [16][17]. Representing evolution as
a sequence of version fits the format of the data obtained from a source code repository.
There is a legitimate doubt that the nature of existing evolution approaches is a direct
consequence of the representation adopted by versioning systems, and is therefore lim-
ited by this.

The phenomenom of software evolution is one of continuous change. It is not a suc-
cession of program versions. Our approach fits this view because it models the evolution
of a software system as a sequence of changes which have inherent object-oriented se-
mantics, focusing on the phenomenon of change itself, rather than focusing on the way
to store the information. We define semantic changes as changes at the design level, not
at the behavioral level as in [18].

Modeling software evolution as meaningful change operations fits the inherently in-
cremental nature of software development, because this is the very way with which
developers are building systems. Programmers modify software by adding tiny bits of
functionality at a time, and by testing often to get feedback. At a higher level features
and bug fixes are added incrementally to the code base and at an even higher level the
program incrementally evolves from one milestone version to another.

A consequence of this approach is that by recording only the changes we do not
explicitly store versions, but we can reconstruct any version by applying the changes.
In SCM this concept is called change-based versioning [9], however the fundamen-
tal difference between our approach and the existing ones is that the changes in our
case feature fine-grained object-oriented semantics and are also first-level executable
entities.

30 R. Robbes, M. Lanza, and M. Lungu

Our goal is to build a model of evolution based on a scalable representation of
change. First we discuss how we represent programs, then we examine how we model
changes and how we extract them from IDEs.

Representing Programs. Our model defines the history of a program as the sequence
of changes the program went through. From these changes we can reconstruct each
successive state of the program source code. We represent one state of the entire pro-
gram as one abstract syntax tree (AST). Below the root are the packages or modules of
the program. Each package in turn has children which are the package’s classes. Class
nodes have children for their attributes and their methods. Methods also have children.
The children of a method form a subtree which is obtained by parsing the source code
contained in the method. Thus each entity of a program, from the package level down
to the program statement level, is represented as a node in the program’s AST, as show
in Figure 1.

System

Package A Package B Package C

... ...Class E Class F

public void foo(int y) ...private int x

return

+

y x

Fig. 1. We represent a state of a program as an abstract syntax tree (AST)

Each node contains additional information that is stored in properties associated with
the node. The set of properties (and their values) defined on a node can be seen as
its label or meta-information. Properties depend on the type of nodes they are
associated to.

For instance, class nodes have properties like name, superclass, and comment. An
instance variable has a name property. In a statically typed programming language it
would also have a type property, as well as a visibility modifier in the case of Java.
Methods have a name and could have properties encoding its type signature in a typed
language. The property system is open so that other properties can be added at will.

An Approach to Software Evolution Based on Semantic Change 31

Extracting the Changes. The type of semantic change information that we model is
not retrievable from existing versioning systems [19]. Such detailed information about
a software system can be retrieved from the IDEs developers are using to build software
systems. IDEs are a good source of information because:

– They feature a complete model of a program to provide advanced functionalities
such as code completion, code highlighting, navigation facilities and refactoring
tools. Such a model goes beyond the representation at the file level to reference
program-level entities such as methods and classes in an object-oriented system.

– They feature an event notification system allowing third-party tools to be notified
when the user issues a change to the program. Mechanisms such as incremental
compilation and smart completion of entity names take advantage of this.

– IDEs allow a user to automatically perform high-level transformations of programs
associated with a semantic meaning, namely refactorings. These operations are easy
to monitor in an IDE, but much harder to detect outside of it, since they are lost
when the changed files are committed to a software repository [12] [13].

Since some IDEs are extensible by third parties with plugin mechanisms, our tools
can use the full program model offered by the IDEs to locate and reason about every
statement in the program, and can be notified of changes without relying on explicit
action by the developers. This mechanisms alleviate the problems exhibited by the use
of versioning systems: It is easier to track changes applied to an entity in isolation rather
than attempting to follow it through several versions of the code base, each comprising
a myriad of changes. Furthermore, after each notification, the IDE can also be queried
for time and author information.

Representing the Changes. We model changes as first-class executable entities. It
is possible to take a sequence of changes and execute it to build the version of the
program represented by them. Changes can also be reversed (or undone) to achieve the
effect of going back in time. Changes feature precise time and authorship information,
allowing the order of the changes to be maintained. In contrast, most other approaches
reduce the time information to the time where the change was checked in, following
the checkin/checkout model supported by the versioning systems, such as CVS and
SubVersion.

There are two distinct kinds of changes, (1) low-level changes operating at the syn-
tactic level, and (2) higher-level changes with a semantic meaning, which are composed
of lower-level changes.

1. Syntactic Changes. They are simple operations on the program AST, defined as
follows:

– A creation creates a node n of type t, without inserting it into the AST.
– An addition adds a node n to the tree, as a child of another specified node m. If

order is important, an index can be provided to insert the node n in a particular
position in the children of m. Otherwise, n is appended as the last child of m.

– A deletion removes the specified node n from its parent m.
– A property change sets the property p of node n to a specific value v.

32 R. Robbes, M. Lanza, and M. Lungu

Using these low-level changes, we view a program as an evolving abstract syn-
tax tree. A program starts as an empty tree and an empty change history. As time
elapses, the program is built and the AST is populated. At the same time, all the
change operations which were performed to build the program up to this point are
stored in the change history.

2. Semantic Changes. To reason about a system, we need to raise the level of abstrac-
tion beyond mere syntactic changes. This is achieved by the composition mecha-
nism. A sequence of lower-level changes can be composed to form a single, higher
level change encapsulating a semantic meaning. Here are a few examples:

– A sequence of consecutive changes involving a single method m can be inter-
preted as a single method implementation, or modification if m already existed.

– Changes to the structure of a class c (attributes, superclass, name) are either a
class definition or a class redefinition, if c existed before the changes. These
kinds of changes form the intermediate changes.

– At a higher level, some sequences of intermediate changes are refactorings[14].
They can be composed further to represent these higher-level changes to the
program. For example, the “extract method” refactoring involves the modifi-
cation of a first method m1 (a sequence of statements in m1 is replaced by a
single call to method m2), and the implementation of m2 (its body comprises
the statements that were removed from m1). In the same way, a “rename class”
refactoring comprises the redefinition of the class (with a name change), and
the modification of all methods because of the changed referenced class name.

– We define a bug fix as the sequence of intermediate changes which were in-
volved in the correction of the faulty behavior.

– In the same way, a feature implementation is comprised of all the changes that
programmers performed to develop the feature. These changes can be interme-
diate changes as well as any refactorings and bug fixes which were necessary
to achieve the goal.

– At an even higher level, we can picture main program features as being an
aggregation of smaller features, and program milestones (major versions) as a
set of high-level features and important bug fixes.

The composition of changes works at all levels, to allow changes to represent higher-
level concepts. This property is a key point to the scalability of our approach. Without
it, we would have to consider only low-level, syntactic changes, and hence be limited
to trivial programs, because of the sheer quantity of changes to consider. In addition
to composition, it is also possible to analyse the evolution of a system by considering
subsets of changes. Thus a high-level analysis of a system would only take into account
the changes applied to classes and packages, in order to have a bird’s eye view of the
system’s evolution. The lower-level changes are still useful to analyse the evolution:
Once an anomaly has been identified in a high-level strata of the system, lower-level
changes can be looked at to infer the particular causes of a problem. For example, if
a package or a module of the system needs reengineering, then its history in terms of
classes and methods can be summoned. Once the main culprits of the problem have
been identified, these few classes can be viewed in even more detail by looking at the
changes in the implementation of their methods.

An Approach to Software Evolution Based on Semantic Change 33

To sum up, we consider the program under analysis as an evolving abstract syntax
tree. We store in our model all the change operations necessary to recreate the program
at any point in time. At the lowest level, these operations consist of creation, addi-
tion and removal of nodes in the tree, and of modifications of node properties. These
changes can be composed to represent higher-level changes corresponding to actions at
the semantic level, such as refactorings, bug fixes etc.

3 Case Studies

Since our approach relies on information which was previously discarded, we can not
use existing systems as case studies. We monitored new projects to collect all the infor-
mation. Our case studies are projects done by students over the course of a week. These
projects are small (15 to 40 classes), but are interesting case studies since the code
base is foreign to us. There were 3 possible subjects to choose from: A virtual store
in the vein of Amazon (Store), a simple geometry program (Geom), and a text-based
role-playing game (RPG). Table 1 shows a numerical overview of the projects we have
tracked (each project is named with a letter, from A to I). The frequency of the recorded
changes was very high compared to a that of a classical versioning system: While the
projects lasted one week, their actual coding time was in the range of hours. Consider-
ing this fact and that the students were novice programmers, our approach allows for an
unprecedented precision with respect to the recording of the evolution.

Table 1. A numerical overview of the semantic changes we recovered from the projects

Project A B C D E F G H I
Type Geom Store Store Store Store RPG Geom Store RPG

Class Added 22 14 14 9 12 15 21 12 41
Class Modified 65 17 34 13 6 24 57 15 27
Class Commented 0 12 0 0 1 0 0 0 0
Class Recategorized 0 0 5 0 0 0 0 0 11
Class Renamed 0 0 0 0 1 1 0 0 1
Class Removed 10 1 5 5 0 3 6 2 18

Attributes Added 82 19 29 19 20 61 30 29 137
Attributes Removed 50 7 13 5 2 19 15 5 54

Method Added 366 119 182 164 117 237 219 135 415
Method Modified 234 69 117 140 81 154 143 118 185
Method Removed 190 20 81 32 13 38 117 21 106

The changes considered here are intermediate-level changes, one per semantic action
the user did (in that case, mainly class and method modifications: the students were
familiar with refactoring). The table classifies the changes applied to each project. We
can already see some interesting trends: Some projects have a lot more “backtracking”
(removals of entities) than others; usage of actions related to refactoring (commenting,
renaming, repackaging entities) varies widely between projects.

In the remainder of the section, we concentrate on the analysis of one of the projects,
namely the role-playing game project I (the last column of the table). More details on
the other projects are available in the extended version of [11].

34 R. Robbes, M. Lanza, and M. Lungu

3.1 Detailing the Evolution of a Student Project

We chose project I for a detailed study, because it had the most classes in it, and was
the second largest in statements. Project I is a role-playing game in which a player has
to choose a character, explore a dungeon and fight the creatures he finds in it. In this
process, he can find items to improve his capabilities, as well as gaining experience.

We base our analysis on the change matrix Figure 2 inspired by [17]. It is a timeline
view of the changes applied to the entire system, described in terms of classes and
methods (a coarser-grained version, displaying packages and classes is also available,
but not shown in this paper).

The goal of the change evolution matrix is to provide the user with an overview of
the activity in the project at the method level granularity over time. Time is mapped
on the x-axis. Every method is allocated a horizontal band which is gray for the time
period in which the method existed and white otherwise. The method bands are grouped
by classes, and ordered by their creation time. Classes are delimited by black lines and
are also ordered by their creation time, with the oldest classes at the top of the figure.

Changes are designed by colors: green for the creation of a method, blue for its
removal and orange for a modification. Selecting a change shows the method’s source
code after the change is applied to the system. A restriction of the figure at this time of
writing is that it does not show when a class is deleted.

Figure 2 is rotated for increased readability. Events are mapped on intervals lasting
35 minutes. Note that to ease comprehension the system size is reported on the left
of the page, and sessions are delimited by rectangles with rounded corners in both the
matrix and the graph size view. Also, the class names are indicated below the figure.
Figure 3 represent the same matrix, but focused on the class Combat. Since its lifespan
is shorter, we can increase the resolution to five minutes per interval.

Considering the classes and their order of creation (Figure 2), we can see that the
first parcels of functionality were, in order: The characters; the weapons; the enemies;
the combat algorithm; the healing items and finally the dungeon itself, defined in terms
of rooms. We can qualify this as a bottom-up development methodology.

After seeing these high-level facts about the quality-wise and methodology-wise evo-
lution of the system, we can examine it session by session. Each session has been iden-
tified visually and numbered. Refer to Figure 2 to see the sessions.

Session 1, March 27, afternoon: The project starts by laying out the foundations
of the main class of the game, Hero. As we see on the change matrix, it evolves
continually throughout the life of the project, reflecting its central role. At the same
time, a very simple test is created, and the class Spell is defined.

Session 2, March 28, evening: This session sees the definition of the core of the
character functionality: Classes Hero and Spell are changed, and classes Items,
Mage, Race and Warrior are introduced, in this order. Since Spells are defined, the
students define the Mage class, and after that the Warrior class as another subclass
of Hero. This gives the player a choice of profession. The definitions are still very
shallow at this stage, and the design is unstable: Items and Race will never be
changed again after this session.

Session 3, March 28, night: This session supports the idea that the design is un-
stable, as it can be resumed as a failed experiment: A hierarchy of races has been

An Approach to Software Evolution Based on Semantic Change 35

Se
ss

io
n

128
/0

3
29

/0
3

30
/0

3
31

/0
3

01
/0

4
02

/0
4

03
/0

4

Se
ss

io
n

2
Se

ss
io

n
3

Se
ss

io
n

4

Se
ss

io
n

5
Se

ss
io

n
6

Se
ss

io
n

7
Se

ss
io

n
9

Se
ss

io
n

8
Se

ss
io

n
10

Se
ss

io
n

11
Se

ss
io

n
12

Fig. 2. Change matrix of project I

introduced, and several classes have been cloned and modified (Mage2, Hero3 etc.).
Most of these classes were quickly removed.

36 R. Robbes, M. Lanza, and M. Lungu

Session 4, March 29, afternoon: This session is also experimental in nature. Several
classes are modified or introduced, but were never touched again: Hero3, CEC,
RPGCharacter (except two modifications later on, outside real coding sessions).
Mage and Warrior are changed too, indicating that some of the knowledge gained
in that experiment starts to go back to the main branch.

Session 5, March 29, evening and night: This session achieves the knowledge trans-
fer started in session 4. Hero is heavily modified in a short period of time, while
Mage and Warrior are consolidated.

Session 6, March 30, late afternoon: This session sees a resurgence of interest for the
offensive capabilities of the characters. A real Spell hierarchy is defined (Lightning,
Fire, Ice), while the Weapons class is slightly modified as well.

Session 7, March 31, noon: The first full prototype of the game. The main class, RPG
(standing for Role Playing Game) is defined, as well as an utility class called Menu.
Mage, Warrior and their superclass Hero are modified.

Session 8, March 31, evening: This session consolidates the previous one, by adding
some tests and reworking the classes changed in session 7.

Session 9, March 31, night: This session focuses on weapon diversification with
classes Melee and Ranged; these classes have a very close evolution for the rest
of their life, suggesting some data classes. At the same time, a real hierarchy of
hostile creatures appears: Enemies, Lacche, and Soldier. The system is a bit unsta-
ble at that time, since Enemies experiences a lot of method which were added then
removed immediately, suggesting renames.

10
11

12
Algorithms

Fig. 3. Change matrix zoomed on the class Combat

Session 10, April 1st, noon to night: This intensive session sees the first iteration of
the combat engine. The weapons, spells and characters are first refined. Then a new
enemy, Master, is defined. The implementation of the Combat class shows a lot of
modifications of the Weapon and Hero classes. An Attack class soon appears. Judg-
ing from its (non-)evolution, it seems to be a data class with no logic. After theses
definitions, the implementation of the real algorithm begins. We see on Figure 3
–the detailed view of combat– that one method is heavily modified continuing in
the next session.

Session 11, April 2, noon to night: Development is still heavily focused on the Com-
bat algorithm. Classes of Potion and Healing are also defined, allowing the heroes
to play the game for a longer time. This session also modifies the main combat
algorithm, and at the same time, two methods in the Hero class, showing a slight
degree of coupling. A second method featuring a lot of logic is implemented, as
shown in Figure 3: several methods are often modified.

An Approach to Software Evolution Based on Semantic Change 37

Session 12: April 3, afternoon to night: This last session finishes the implementation
of Combat –changing the enemy hierarchy in the process–, and resumes the work
on the entry point of the game, the RPG class. Only now is a Room class introduced,
providing locality. These classes are tied to Combat to conclude the main game
logic. To finish, several types of potions –simple data classes– are defined, and a
final monster, a Dragon, is added at the very last minute.

4 Discussion

Compared to traditional approaches, extracting information from source control repos-
itories, our change-based approach has a number of advantages (accurate information,
scalable representation, and version generation), but also some limitations (portability,
availability of case studies, and performance).

– Accurate information. The information we gather is more accurate in several
ways. It consists of program-level entities, not mere text files which incurs ex-
tra treatment to raise the level of abstraction. Since we are notified of changes in
an automatic, rather than explicit way, we can extract finer change information:
Each change can be processed in context. The time information we gather is accu-
rate up to the second, whereas a versioning system reduces it to the checkin time.
Processing changes in context and in a timely manner allows us to track entities
through their life time while being less affected by system-wide changes such as
refactorings.

– Scalable representation. We represent every statement of a system as separate
entities, and every operation on those statements as a first-class change operation.
Such a precise representation enables us to reflect on very focused changes, during
defined time period and on a distinct set of low-level entities. At the other end
of the spectrum, changes can be composed into semantic level changes such as
method modifications, class additions, or even entire sessions, while the entities we
reflect on can be no longer statements, but methods, classes or packages. Thus our
approach can both give a “big picture” view to a manager, as well as a detailled
summary of the changes submitted by a developer during his or her last coding
session.

– Version generation. Since changes are executable, we can also reproduce versions
of the program. We can thus revert to version analysis and more traditional ap-
proaches when we need to.

– Portability. Our approach is currently both language-specific and environment-
specific. This allows us to leverage to the maximum the properties of the target lan-
guage and the possibilities offered by the IDE (in our case, Smalltalk and Squeak).
However, it implies a substantial porting effort to use our approach in another con-
text. Consequently, one of our goal is to extract the language and environment-
independent concepts to ease this effort. Thus we will port our prototype to the
Java/Eclipse platform. The differences in behavior between the two versions will
help us isolate the common concepts.

38 R. Robbes, M. Lanza, and M. Lungu

– Availability of case studies. As mentioned above, we can not use pre-existing
projects as case studies since we require information which was discarded previ-
ously. Solving this problem is one of our priorities. Beyond using student projects
as case studies, we are monitoring our prototype itself for later study. This would
be a medium-sized case study: At the time of writing, it comprised 203 classes and
2249 methods over 11681 intermediate changes. We also plan to release and pro-
mote our tools to the Smalltalk community (the language our tools are implemented
in) soon. In the longer term, porting our tools to the Eclipse platform will enable us
to reach a much wider audience of developers.

– Performance. Our approach stores operations rather than states of programs. The
large number of changes and entities could raise performance concerns. It takes
around one minute to generate all the possible versions of our prototype itself from
the stored changes. The machine used was a 1.5 GHz portable computer, our pro-
totype having around 11’000 intermediate changes.

5 Related Work

Several researchers have analysed the evolution of large software systems, basing their
work on system versions typically extracted from software repositories such as CVS
and SubVersion [20] [21] [22] [23] [24]. In most cases these approaches have spe-
cific analysis goals, such as detecting logical couplings [25] or extracting evolutionary
patterns [4].

Several researchers raised the abstraction level beyond files to consider design evolu-
tion. In [22], Xing and Stroulia focus on detecting evolutionary phases of classes, such
as rapidly developing, intense evolution, slowly developing, steady-state, and restruc-
turing. They had to sample their data for their case study and used only the 31 minor
versions of the project. Parsing and analysing the 31 versions took around 370 minutes
on a standard computer, which rules out an immediate use by a developer. [26] presents
a methodology to connect high-level models to source code, but has only been applied to
a single version of a system so far. [23] describes how hierarchies of classes evolve, but
still depends on sampling and the checkin/checkout model. [20] applies origin analysis
to determine if files moved between versions. In [18], Jackson and Ladd present an ap-
proach to differencing C programs at the semantic level. They define semantic changes
as dependency changes between inputs and outputs, while we are primarily interested
in design-level changes.

All these and other known approaches cannot perform a fine-grained analysis be-
cause the underlying data is restricted by the data that can be extracted from versioning
system, tying them to the checkin/checkout model. In [11], we outlined the limitations
of this model to retrieve accurate evolutionary information. Versioning systems restrain
their interactions with developers to explicit retrieval of the source (check out), and
submission of the modified sources once the developer finishes his task (check in or
commit). All the changes to the code base are merged together at commit time, and be-
come hard to distinguish from each other. The time stamp of each modification is lost,
and changes such as refactorings become very hard, if not impossible to detect. Even
keeping track of the identity of a program element can be troublesome if it has been
renamed.

An Approach to Software Evolution Based on Semantic Change 39

Moreover, most versioning systems version text files. This guarantees language-
independence but limits the quality of the information stored to the lowest common
denominator: An analysis of the system’s evolution going deeper than the file level re-
quires the parsing of (selected) versions of the system and the linking of the successive
versions. Such a procedure is costly [19]. Thus it is a common practice to first sample
the data, by only retaining a fraction of the available versions. The differences between
two versions retained for analysis becomes even larger, so the quality of the data de-
grades further.

Mens [27] presents a thorough survey of merging algorithms in versioning systems,
of which [28] is the closest to our approach: operations performed on the data are used
as the basis of the merging algorithm, not the data itself. However, the operations are
not precised in the paper and are used only in the merge process. The change mecha-
nism used by Smalltalk systems uses the same idea, but the changes are not abstracted.
Smalltalkers usually don’t rely on them and use more classic, state-based versioning
systems. In addition, most of the versioning systems covered by Mens are not used
widely in practice: most evolution analysis tools are based on the two most used ver-
sioning systems, CVS and SubVersion.

6 Tool Implementation

Our ideas are implemented for the Smalltalk language and the Squeak IDE in SpyWare,
shown in Figure 4. From top to bottom, we see: the main window; a code browser on
a version of project I; the change matrix of project I; and a graph showing the growth
rate of the system.

Fig. 4. Screen capture of SpyWare, our prototype

7 Conclusion and Future Work

We presented a fine grained, change-based approach to software evolution analysis and
applied it to nine student projects, one of which was analyzed in detail. Our approach

40 R. Robbes, M. Lanza, and M. Lungu

considers a system to be the sequence of changes that built it, and extract this infor-
mation from the IDE used during development. We implemented this scheme and per-
formed an evolution analysis case study based on a software visualization tool –the
change matrix– we built on top of this platform.

Although our results are still in their infancy, they are encouraging as they allow us
to focus on particular entities in a precise period of time once a general knowledge of
the system has been gained. In our larger vision, we want a more thorough interaction of
forward and reverse engineering to support rapidly changing systems. In this scenario,
developers need this detailed analysis of part of the system as much as they need a
global view of the systems’ evolution.

We have only scratched the surface of the information available in these systems.
We plan to use more advanced tools, visualizations, and methods (such as complexity
metrics) to meaningfully display and interact with this new type of information, and
envision other uses beyond evolution analysis.

References

1. Lehman, M., Belady, L.: Program Evolution: Processes of Software Change. London Acad-
emic Press, London (1985)

2. Gall, H., Jazayeri, M., Klösch, R., Trausmuth, G.: Software evolution observations based on
product release history. In: Proceedings International Conference on Software Maintenance
(ICSM’97), Los Alamitos CA, IEEE Computer Society Press (1997) 160–166

3. Mens, T., Demeyer, S.: Future trends in software evolution metrics. In: Proceedings IW-
PSE2001 (4th International Workshop on Principles of Software Evolution). (2001) 83–86

4. Van Rysselberghe, F., Demeyer, S.: Studying software evolution information by visualiz-
ing the change history. In: Proceedings 20th IEEE International Conference on Software
Maintenance (ICSM ’04), Los Alamitos CA, IEEE Computer Society Press (2004) 328–337

5. Gı̂rba, T., Ducasse, S., Lanza, M.: Yesterday’s Weather: Guiding early reverse engineering
efforts by summarizing the evolution of changes. In: Proceedings 20th IEEE International
Conference on Software Maintenance (ICSM 2004), Los Alamitos CA, IEEE Computer So-
ciety Press (2004) 40–49

6. D’Ambros, M., Lanza, M.: Software bugs and evolution: A visual approach to uncover their
relationship. In: Proceedings of CSMR 2006 (10th IEEE European Conference on Software
Maintenance and Reengineering), IEEE Computer Society Press (2006) 227 – 236

7. Tichy, W.: Tools for software configuration management. In: Proceedings of the International
Workshop on Software Version and Configuration Control. (1988) 1–20

8. Feiler, P.H.: Configuration management models in commercial environments. Technical
report cmu/sei-91-tr-7, Carnegie-Mellon University (1991)

9. Conradi, R., Westfechtel, B.: Version models for software configuration management. ACM
Computing Surveys 30(2) (1998) 232–282

10. Estublier, J., Leblang, D., van der Hoek, A., Conradi, R., Clemm, G., Tichy, W., Wiborg-
Weber, D.: Impact of software engineering research on the practice of software configuration
management. ACM Transactions on Software Engineering and Methodology 14(4) (2005)
383–430

11. Robbes, R., Lanza, M.: A change-based approach to software evolution. In: ENTCS volume
166. (2007) to appear

12. Görg, C., Weissgerber, P.: Detecting and visualizing refactorings from software archives. In:
Proceedings of IWPC (13th International Workshop on Program Comprehension, IEEE CS
Press (2005) 205–214

An Approach to Software Evolution Based on Semantic Change 41

13. Filip Van Rysselberghe, M.R., Demeyer, S.: Detecting move operations in versioning infor-
mation. In: Proceedings of the 10th Conference on Software Maintenance and Reengineering
(CSMR’06), IEEE Computer Society (2006) 271–278

14. Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D.: Refactoring: Improving the Design
of Existing Code. Addison Wesley (1999)

15. Beck, K.: Extreme Programming Explained: Embrace Change. Addison Wesley (2000)
16. Gı̂rba, T., Lanza, M., Ducasse, S.: Characterizing the evolution of class hierarchies. In: Pro-

ceedings IEEE European Conference on Software Maintenance and Reengineering (CSMR
2005), Los Alamitos CA, IEEE Computer Society (2005) 2–11

17. Lanza, M.: The evolution matrix: Recovering software evolution using software visualiza-
tion techniques. In: Proceedings of IWPSE 2001 (International Workshop on Principles of
Software Evolution). (2001) 37–42

18. Jackson, D., Ladd, D.A.: Semantic diff: A tool for summarizing the effects of modifications.
In Müller, H.A., Georges, M., eds.: ICSM, IEEE Computer Society (1994) 243–252

19. Robbes, R., Lanza, M.: Versioning systems for evolution research. In: Proceedings of IWPSE
2005 (8th International Workshop on Principles of Software Evolution), IEEE Computer
Society (2005) 155–164

20. Tu, Q., Godfrey, M.W.: An integrated approach for studying architectural evolution. In: 10th
International Workshop on Program Comprehension (IWPC’02), IEEE Computer Society
Press (2002) 127–136

21. Jazayeri, M., Gall, H., Riva, C.: Visualizing Software Release Histories: The Use of Color
and Third Dimension. In: Proceedings of ICSM ’99 (International Conference on Software
Maintenance), IEEE Computer Society Press (1999) 99–108

22. Xing, Z., Stroulia, E.: Analyzing the evolutionary history of the logical design of object-
oriented software. IEEE Trans. Software Eng. 31(10) (2005) 850–868

23. Gı̂rba, T., Lanza, M.: Visualizing and characterizing the evolution of class hierarchies (2004)
24. Eick, S., Graves, T., Karr, A., Marron, J., Mockus, A.: Does code decay? assessing the

evidence from change management data. IEEE Transactions on Software Engineering 27(1)
(2001) 1–12

25. Gall, H., Hajek, K., Jazayeri, M.: Detection of logical coupling based on product release
history. In: Proceedings International Conference on Software Maintenance (ICSM ’98),
Los Alamitos CA, IEEE Computer Society Press (1998) 190–198

26. Murphy, G.C., Notkin, D., Sullivan, K.J.: Software reflexion models: Bridging the gap be-
tween design and implementation. IEEE Trans. Software Eng. 27(4) (2001) 364–380

27. Mens, T.: A state-of-the-art survey on software merging. IEEE Transactions on Software
Engineering 28(5) (2002) 449–462

28. Lippe, E., van Oosterom, N.: Operation-based merging. In: SDE 5: Proceedings of the fifth
ACM SIGSOFT symposium on Software development environments, New York, NY, USA,
ACM Press (1992) 78–87

A Simulation-Oriented Formalization for a
Psychological Theory

Paulo Salem da Silva and Ana C. Vieira de Melo

University of São Paulo
Department of Computer Science

São Paulo – Brazil
salem@ime.usp.br, acvm@ime.usp.br

Abstract. In this paper we present a formal specification of a tradition-
ally informal domain of knowledge: the Behavior Analysis psychological
theory. Our main objective is to highlight some motivations, issues, con-
structions and insights that, we believe, are particular to the task of
formalizing a preexisting informal theory. In order to achieve this, we
give a short introduction to Behavior Analysis and then explore in detail
some fragments of the full specification, which is written using the Z for-
mal method. With such a specification, we argue, one is in better position
to implement a software system that relates to an actual psychological
theory. Such relation could be useful, for instance, in the implementation
of multi-agent simulators.

1 Introduction

Mathematical approaches have been successful in representing the universe of
natural sciences and engineering. Modern Physics is, perhaps, the greatest ex-
ample of this success. Yet, many important fields of study remain distant from
formal structures and reasoning. Among these, we regard Psychology as partic-
ularly interesting.

Roughly speaking, Psychology is divided into several schools of thought, and
each one adopts its own definitions, methods and goals. As examples, we may
cite Psychoanalysis, Cognitivism and Behaviorism. The later is further divided
into several approaches, out of which Behavior Analysis [1], created by Burrhus
Frederic Skinner, stands out. While not strictly built on formal terms, it does
bear some resemblance to them through detailed and precise definitions. As a
consequence, it suggests the possibility of a complete formalization.

With this in mind, we have designed a formal specification for agent behavior
based on the Behavior Analysis theory. Its purpose is twofold. First, it should
allow the construction of agent simulators following the principles of this psy-
chological school. Second, it aims at demonstrating the possibility and the value,
from a Software Engineering perspective, of formally specifying traditionally in-
formal domains in order to build tools related to these domains.

The specification of the Behavior Analysis theory has been written with the
Z formal method [2], and this paper presents its fundamental structure, but

M.B. Dwyer and A. Lopes (Eds.): FASE 2007, LNCS 4422, pp. 42–56, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Simulation-Oriented Formalization for a Psychological Theory 43

does not go deep into all details. Our aim, here, is to highlight some issues,
constructions and insights that, we believe, are particular to the task of formal-
izing a preexisting informal domain of knowledge. Moreover, we hope that our
presentation argue in favor of this kind of formalization.

We are aware of some other works similar to ours either on their purposes
or on their methods. A multi-agent specification framework written in Z, called
SMART, can be found in [3]. One of the authors of this book is also involved
in the formal modelling and simulation of stem cells [4]. Neuron models and
simulations are common practice in the field of Computational Neuroscience
[5,6]. We do not know, however, of attempts to formalize whole theories about
organism behavior.

Sect. 2 details the process through which our specification was conceived.
Naturally, we assume that the reader is not familiar with Psychology. Therefore,
Sect. 3 presents a brief introduction to the fundamental elements of Behavior
Analysis. Sect. 4 explores some fragments of the specification in detail, using
them to illustrate relevant points. We expect the reader to know the basics of
the Z formal method, which can be learned in works such as [2] and [7]. Sect. 5
summarizes our main results and further elaborates on them. Finally, Sect. 5
acknowledges the help we received.

2 Formalization Process

Although the formalization process we employed is not precise, it does follow a
number of principles and practices which are worth registering. In this section
we present this knowledge, as structured as possible.

Let us begin by tracing the two major steps that we went through, namely:

1. Definition of the main entities and relationships in the theory;
2. Addition of restrictions and further structure upon the entities and

relationships.

The first step allow us to identify the elements upon which we should focus.
This, we believe, is specially important if the domain being formalized is not en-
tirely understood. In our case, we initially built an ontology [8,9] for the concepts
of Behavior Analysis as described by Skinner in the book Science and Human
Behavior [1]. Among the techniques we employed to accomplish this stage, the
most relevant ones are the following:

– Map chapters or sections to subsystems. By doing this, we reused the general
structure of the original theory;

– Build the ontology as the book is read. We adopted the discipline of editing
the ontology at the end of sections or chapters;

– Register concepts in the ontology without structure and later organize them.
This is important because sometimes it is not clear what a concept actually
means or where it should be positioned in the ontology. As one gains more
knowledge about the domain, it becomes simpler to organize the available
concepts.

44 P. Salem da Silva and A.C. Vieira de Melo

In the second step, then, we can focus our attention on the details of each en-
tity and relationship identified in the previous step. More expressive formalisms
might be needed at this point. In our work, we employed the Z formal method
to this end. Z was chosen in part because of our prior experience with it, but
also owing to the method’s emphasis on axiomatic descriptions, refinement and
modularization. Moreover, we used the Z/EVES tool [10] to help us write the
specification.

To gain a deeper understanding of the identified entities, we also began to
study other references, specially the book Learning [11], written by Charles
Catania, a well known contemporary psychologist. The formal specification, thus,
is mostly structured according to the views of Skinner himself, though we have
used a modern reference to improve our understanding of specific topics. At this
point, we found the following practices to be useful:

– Design subsystems to be as isolated as possible;
– Try to express new things in terms of what is available. We found that once

some base concepts are set, much can be expressed using them;
– When defining an operation, try to account for all possible input cases. This

helps spot conditions that have not being considered, either by the original
theory, or by the formalization. We shall see an example of this in Sect. 4.2;

– When a concept is not clear, leave it as abstract as necessary. By not trying
to formalize what is not well understood, one avoids having to change the
formalization later on;

– When a concept may have multiple interpretations, provide an abstract de-
finition followed by refinements that specialize it. We shall encounter an
example of this in Sect. 4.2;

– Do not attempt to formalize all details of the theory at once. In our expe-
rience, such ambition is doomed to failure, for the more details are added,
the harder it gets to connect each part of the specification to the others.

Such are the main practices we employed. In Sect. 4 we shall encounter some
of them applied to an actual example.

3 A Brief Introduction to Behavior Analysis

We now present some fundamental ideas and elements of Behavior Analysis,
upon which we have built our formal specification.

Behaviorism is a branch of Psychology created in the beginning of the 20th
century. It was born mainly as an opposition to the dominating idea that the
objective of Psychology was the study of the mind. Behaviorists rejected this
position, claiming that it was too vague and unsuitable for scientific investiga-
tion. They asserted that the true purpose of Psychology should be the study
of the behavior of organisms, which, they thought, was a precise concept and,
therefore, within the realm of natural science.1

1 See [12] for a classical exposition of these principles.

A Simulation-Oriented Formalization for a Psychological Theory 45

The Behaviorist tradition produced several important thinkers, from which
Burrhus Frederic Skinner was, perhaps, the most notorious one. Between the
decades of 1930 and 1950 he developed his own kind of Behaviorism, called
Behavior Analysis.

In Behavior Analysis, the fundamental object of study is the organism. Or-
ganisms perceive their environments through stimuli and act upon such environ-
ments through behavior. Further, a relation is assumed to exist between stimuli
and behavior, in such a way that behavior is, ultimately, determined by the
stimulation received by the organism. Thus, the purpose of this science is the
prediction and control of behavior.

This objective is pursued mainly through the classification of several phe-
nomena concerning stimuli and behavior. The hope is that regularities can be
discovered, leading to the formulation of behavioral laws. Let us first examine
the ideas concerning stimulation, and then proceed to the points about behavior.

Each stimulus has an utility value. That is, it is either pleasant or painful,
desired or feared. Some stimuli, called primary, possess utility values a priori,
independently of prior experience. All others, called conditioned, have their util-
ities determined by primary stimuli during the organism’s life.

The relations between primary and conditioned stimuli are modified through
the process named stimulus conditioning. Essentially, it is a learning process that
tries to relate the occurrence of certain stimuli to the occurrence of others. In
other words, it allows organisms to formulate causal laws about their environ-
ments. As an example, consider a dog that is always fed after a whistle. Initially,
only the presentation of food can make the dog salivate. With time, however, the
dog learns that the whistle is related to the food, causing him to salivate with
the whistle, prior to any food delivery. In this case, food is the primary stimulus,
since it is naturally pleasant to the dog. The whistle, on the other hand, is a
conditioned stimulus, which becomes related to food.

Stimulus conditioning also works the other way around. If the relation between
two conditioned stimuli is not maintained, it tends to disappear. In the previous
example, if the whistle is no longer followed by food, it is likely that, after some
time, it won’t elicit salivation.

Now let us proceed to the study of behavior. Behavior Analysis defines two
main classes of behavior, namely, the class of reflexes and the class of operants.
A reflex is characterized by an antecedent stimulus, which causes the organism
to behave in some way. For instance, salivation is a reflex, since it is caused
by the the presentation of food. Reflexes are innate to the organism. That is,
they are not learning structures, they cannot be created nor modified in great
extent. Operants, on the other hand, are far more flexible behavioral structures.
An operant is defined by a consequent stimulus. The operant stands for the
behavior that leads to this stimulus. That is, the behavior that operates in the
environment in order to generate the stimulus. Notice that if a behavior no
longer takes to a stimulus, or if the behavior required to reach that stimulus
changes, the operant changes as well. They are, therefore, learning structures.
As an example, suppose that a dog learns that the push of a button brings

46 P. Salem da Silva and A.C. Vieira de Melo

food to him. Then this button pushing behavior becomes an operant, for it is
associated with a specific consequent stimulus.

It is through operant behavior that the most interesting issues arise in Be-
havior Analysis. Organisms can have their behavior changed by operations of
reinforcement and punishment. Reinforcement is the presentation of pleasant
stimuli as a reward for particular behaviors. Punishment, in turn, accounts for
the presentation of unpleasant stimuli, in order to inhibit specific behaviors.
There are many ways to perform these operations, called schedules of reinforce-
ment. Each schedule modifies behavior in a distinct way.

There are other interesting concepts, but we shall limit ourselves to these, for
they are sufficient to understand the examples that come in the next section.
Moreover, most of the concepts discussed above are present explicitly in our
specification. And how a simulator based on it could be useful? Once we define
an organism, we can perform simulations to determine properties like:

– How frequent should reinforcement be in order to preserve behaviors of in-
terest;

– How much time it takes to teach the organism a new behavior.

In general, simulations could replace some experiments usually done with real
animals.

4 Results

As stated above, the specification is too large to be completely described in this
paper. Therefore, in this section we do not present the whole specification, but
some of its most significant parts, from which useful discussion can be drawn.
Some schemata used might not be defined for this reason. Sect. 4.1 gives an
overview of the specification’s general structure, while Sect. 4.2 explores some of
its most instructive parts in detail.

4.1 Specification Overview

The formalization’s main goal is to allow the construction of a system that simu-
lates the behavior of organisms according to the principles of Behavior Analysis.
It is natural, therefore, to build a specification centered around the concept of
“organism”. The main object of our specification is an isolated organism, which
receives stimuli from an environment and produces behavioral responses. It is
modelled as a state machine according to the following principles:

– Time is discrete;
– At every instant, the state of the organism may change;
– At every instant, the organism may receive one stimulus;
– At every instant, the organism may produce a new behavioral response.

A Simulation-Oriented Formalization for a Psychological Theory 47

Changes in the state of the organism are given either spontaneously or as
consequences of stimulation. These changes are controlled by several mecha-
nisms, which we have divided into subsystems. Each subsystem is responsible
for a particular aspect of behavior and is closely related to major concepts in
the psychological theory. Thus, formally, an organism is a composition of several
subsystems, as the following schema shows.

Organism
stimulationSubsystem : StimulationSubsystem

respondingSubsystem : RespondingSubsystem

driveSubsystem : DriveSubsystem

emotionSubsystem : EmotionSubsystem

At every instant, the organism may receive a new stimulus, which is processed
by all subsystems in no particular order. How these stimuli are generated or how
the organism’s behavior changes the environment is out of the specification’s
scope. Nevertheless, we do provide a simple definition of the simulation process
with the following schema.

Simulator
organism : Organism

currentInstant : Instant

4.2 Specification: Main Elements

Let us now proceed to the detailed examination of some parts of the specification.
In what follows, we first explores some of the stimulation subsystem, and then
give some details of operant behavior, defined in the responding subsystem.

Stimulation. The specification of stimulus processing is particularly suitable for
the discussion of how traditional mathematical structures, such as graphs, can be
used in formalization processes. The fact that these phenomena can be translated
to well studied formal structures sheds new light on them. It allows us to consider
possibilities that could have remained hidden prior to the formalization.

We begin by giving the main stimulation subsystem definition.

StimulationSubsystem
StimulationParameters

StimulusImplication

StimulusEquivalence

currentStimuli : PStimulus

stimulus status : Stimulus → StimulusStatus

48 P. Salem da Silva and A.C. Vieira de Melo

Consider the several schema imports above. The first, StimulationParameters,
merely defines the parameters that are given as input to the simulation. They
define what is particular, a priori, to the organism being simulated. We shall not
pursuit it in detail here. Our interest is in the other two, StimulusImplication
and StimulusEquivalence. They carry the fundamental definitions that allow the
formalization of stimulus conditioning operation. As we pointed out earlier, such
operation allows organisms to learn about how their environment works. Let us
first examine it informally and then, upon that, build a formal definition.

The behavior of organisms depends greatly on their power to learn how envi-
ronmental stimuli are related. Sometimes, it is useful to consider two stimuli that
are, in reality, different, to be equivalent. For example, if, through experimental
procedures, we arrange that both the presence of a red light and of a green light
are always followed by the same consequences (e.g., food), why should a hungry
organism bother to distinguish between the colors? As far as the organism is
concerned, the two lights are equivalent.

On the other hand, sometimes the appropriate relation is one that defines
causality, not equivalence. In the previous example, we may arrange the proce-
dure so that the red light is always followed by food. In this case, the learning
takes the order of stimulation into account: though red light is followed by food,
food is not necessarily followed by a red light. That is, the organism may estab-
lish an implication between red light and food.

We now proceed to the formalization of these ideas. Notice that causal laws are
certainly reflexive, since a stimulus trivially causes itself. They are also transitive,
in the sense that causality can be chained (e.g., stimulus s1 causes s2 which, in
turn, causes s3). Finally, in principle no symmetry is needed (e.g., if s1 causes
s2, there is no need, at first, for s2 to cause s1). We are now in position to
specify causality in the StimulusImplication schema. It also defines a function
called sCorrelation, which accounts for the fact that some implications may be
stronger than others.

StimulusImplication
sCauses : P(Stimulus × Stimulus)

sCorrelation : Stimulus × Stimulus → Correlation

∀ s1, s2, s3 : Stimulus •

(s1 sCauses s1) ∧

(((s1 sCauses s2) ∧ (s2 sCauses s3)) ⇒ (s1 sCauses s3))

∀ s1, s2 : Stimulus | s1 sCauses s2 •

∃ c : Correlation • ((s1, s2) �→ c) ∈ sCorrelation

Stimulus equivalence relations, in turn, can be defined in terms of stimulus
implication. We merely add the symmetry axiom and require the sCorrelation
function to have the same value in both directions.

A Simulation-Oriented Formalization for a Psychological Theory 49

StimulusEquivalence
StimulusImplication

equals : P(Stimulus × Stimulus)

∀ s1, s2 : Stimulus •

(s1 equals s2) ⇔ (s1 sCauses s2) ∧ (s2 sCauses s1)

∀ s1, s2 : Stimulus | s1 equals s2 •

sCorrelation(s1 , s2) = sCorrelation(s2, s1)

With this, we have achieved a formal specification for the relations among
stimuli. But we may continue our analysis, casting this specification in other
terms. Notice that stimulus implication may be regarded as a directed graph
(Fig. 1(a)), in which vertices represent stimuli and edges are the conditioning
between stimuli. Similarly, stimulus equivalence can also be seen as a graph
(Fig. 1(b)), but undirected. Furthermore, edges in both graphs might have
weight, if the correlation of the conditioning is to be taken into account.

Fig. 1. (a) An example of stimulus implication represented as a directed graph; (b) An
example of stimulus equivalence represented as an undirected graph

Regarding this stimuli graph, new psychological questions arise. In fact, we
can use all our knowledge of Graph Theory and search algorithms to formulate
questions, bringing new light to the psychological theory itself. For instance,
consider the following:

– When looking for causal relations, which search strategy do organisms em-
ploy? Do they execute a depth- or breadth-first search?

– How deep can a search go? Is there some sort of memory limitation that
prevents it from being exaustive?

Answers to these questions, of course, are left to psychologists. We must, how-
ever, model this lack of knowledge somehow. Fortunately, the Z formal method
allows us to do this easily, as follows. For all operations that deal with stimulus

50 P. Salem da Silva and A.C. Vieira de Melo

implication and equivalence, we first define a more abstract version, containing
only axioms that we are sure to hold. Then we provide one or more refinements
that add assumptions to it. This allows experimentation with several possibil-
ities and makes it easier to update the specification as we learn more about
psychological phenomena.2

As an example, let us consider the schemata that specify how the utility of
a stimulus is calculated. Recall from Sect. 3 that stimuli are divided into two
classes, namely, primary and conditioned. Primary stimuli have utility values a
priori, while conditioned stimuli have their utilities calculated in terms of the
primary ones. Moreover, drives and emotions can influence this calculation. The
more general version of stimulus utility, StimulusUtility, states that there exists
a function that calculates the utility in terms of the stimulus, a set of emotions
and a set of drives.

StimulusUtility
StimulationSubsystem

EmotionSubsystem

DriveSubsystem

sUtility : Stimulus → Utility

∃ f : Stimulus × PEmotion × PDrive → Utility •
∀ s : Stimulus •

sUtility(s) = f (s , activeEmotions , activeDrives)

Clearly, this abstract definition does not relate conditioned to primary stim-
uli. The reason is that, as far as we can see, any such relation must contain
assumptions that we are not sure to hold. Thus, the actual relation is given
in refinements. A simple one is given by StimulusUtility Ref 1 schema, which
depends on another schema, StimulusUtilityBase. In this refinement, the calcu-
lation is performed by locating the best primary stimulus that can be reached
through stimulus implication, and then applying emotional and driving filters.

StimulusUtility Ref 1
StimulusUtilityBase

StimulusEmotionalRegulator

StimulusDriveRegulator

∀ s : Stimulus •
sUtility(s) = driveRegulator(s , emotionalRegulator(s , base(s)))

2 Notice that if the specification is implemented in an object-oriented language, this
approach can be seen in terms of class inheritance.

A Simulation-Oriented Formalization for a Psychological Theory 51

StimulusUtilityBase
StimulusUtility

StimulusImplication

base : Stimulus → Utility

∀ s : Stimulus •
(∃ p : primaryStimuli •

base(s) = primary utility(p) ∧
(∀ q : primaryStimuli | s sCauses q •

primary utility(p) ≥1 primary utility(q) ∧
(s sCauses p))) ∨

(∀ p : primaryStimuli •
¬ (s sCauses p) ∧
sUtility(s) = neutral)

In the next section we shall make references to some of the entities presented
here in order to show how different subsystems are related.

Operant Behavior. Operant behavior, as we have seen in Sect. 3, is the most
important behavioral class within Behavior Analysis. We shall study it here
from two perspectives. First, its formalization is not straightforward, and we
shall examine some of the difficulties. Second, operant processing is not simple,
but can be elegantly modeled to some extent.

Let us begin by defining an operant.

Operant
StimulusUtility

antecedents : P(P Stimulus)

action : Action

consequence : Stimulus

consequenceContingency : (P Stimulus) �→ Correlation

sUtility(consequence) �= neutral

∅ ∈ antecedents

dom consequenceContingency = antecedents

The above schema states that an operant has an action which leads to a
consequence. There are two important considerations to be made here. First,
notice that we introduced the concept of action. From the study of Behavior
Analysis, we realized that there are some terminological imprecisions; a behavior
(i.e., what is actually performed by the organism) and a behavior class (i.e., a
set containing behaviors that have some properties) are distinct concepts, but

52 P. Salem da Silva and A.C. Vieira de Melo

it is easy to confuse them. Thus, we adopted the notion of action to refer to
what would traditionally be called a behavior or even a mechanical property of
behavior.

The second consideration regards the fact that Behavior Analysis defines oper-
ants solely by a stimulus consequence. Thus, in principle, either no action should
be defined within an operant, or all possible actions that lead to the consequence
should be present. This approach, however, would neglect the fact that each ac-
tion takes to the consequent stimulus in a different way. For instance, pushing
either a red button or a green one might lead an animal to food. But, perhaps,
the red button is more efficient and, hence, will be more strongly correlated with
the consequence than the other.

The schema also defines a set of sets of stimuli, antecedents . This accounts for
the fact that the stimuli currently present in the environment might change the
chances of reaching the desired consequence. This is formalized by the function
consequenceContingency, which takes antecedent stimuli to the probability of
success.

Such details show that a formalization process is not just a matter of transla-
tion. Sometimes it is necessary to add notions and to infer, from unclear prose,
what was actually meant.

We now move on to study some operations. In Z, we say that an operation
is total if, and only if, its preconditions cover all possibilities. This concept will
guide our analysis from here on.

Operants might be either created or modified. Here, we shall focus on operant
modification, which can be achieved in four ways.

First, a new environmental condition might be learned. This is called a dis-
crimination operation, for it allows the organism to discriminate among several
environmental possibilities. Each possibility is defined by a set of discriminative
stimuli.

DiscriminationOp
OperantOp

discriminativeStimuli? /∈ dom consequenceContingency

consequence? sCauses consequence

discriminativeStimuli? ∈ dom consequenceContingency ′

consequenceContingency ′(discriminativeStimuli?) >1 min correlation

In the above schema we import OperantOp, which defines a general operation
over an operant but is not necessary for the present discussion and, thus, is
omitted.

Second, an already known environmental condition might lead to the operant
consequent stimulus, which strengthens their relation.

A Simulation-Oriented Formalization for a Psychological Theory 53

OperantConditioningOp
OperantOp

discriminativeStimuli? ∈ dom consequenceContingency

consequence? sCauses consequence

consequenceContingency ′(discriminativeStimuli?)
≥1 consequenceContingency(discriminativeStimuli?)

Third, a known environmental state might not lead to the desired consequence,
which reduces their relation.

ExtinctionOp
OperantOp

discriminativeStimuli? ∈ dom consequenceContingency

¬ (consequence? sCauses consequence)

consequenceContingency ′(discriminativeStimuli?)
≤1 consequenceContingency(discriminativeStimuli?)

Finally, if neither the environmental condition is known, nor the consequence
desired, the operant simply remains unchanged.

NeutralOp
OperantOp

discriminativeStimuli? /∈ dom consequenceContingency

¬ (consequence? sCauses consequence)

consequenceContingency ′(discriminativeStimuli?)
= consequenceContingency(discriminativeStimuli?)

Notice that these four definitions form a total operation: they cover all possi-
bilities for the input variables discriminativeStimuli? and consequence?:

1. DiscriminationOp accounts for the case in which discriminativeStimuli? �∈
dom consequenceContingency.

2. OperantConditioningOp handles the case in which discriminativeStimuli? ∈
dom consequenceContingency and consequence? sCauses consequence.

3. ExtinctionOp occurs when discriminativeStimuli? ∈ dom consequence
Contingency and ¬ (consequence? sCauses consequence).

4. NeutralOp accounts for the remaining case.

This model can be further refined by adding the notions of reinforcement and
punishment. Each of these, in turn, can be either positive or negative. A positive
reinforcement accounts for the provision of a pleasant stimulus (e.g., provision

54 P. Salem da Silva and A.C. Vieira de Melo

of food), while a negative reinforcement stands for the removal of an unpleasant
stimulus (e.g., relief from pain through analgesics). Punishment is analogous.
At last, there is the case in which the stimulus is neither pleasant nor painful.
Hence, there are five possibilities.

PositiveReinforcement
StimulusUtility

consequence? : Stimulus

sUtility(consequence?) >1 neutral

stimulus status(consequence?) = Beginning

NegativeReinforcement
StimulusUtility

consequence? : Stimulus

sUtility(consequence?) <1 neutral

stimulus status(consequence?) = Ending

PositivePunishment
StimulusUtility

consequence? : Stimulus

sUtility(consequence?) <1 neutral

stimulus status(consequence?) = Beginning

NegativePunishment
StimulusUtility

consequence? : Stimulus

sUtility(consequence?) >1 neutral

stimulus status(consequence?) = Ending

NeutralReinforcementOp 1
OperantOp

sUtility(consequence?) = neutral

Again, these possibilities account for all cases. We can integrate them with
the previous schemata using the following formulae.

A Simulation-Oriented Formalization for a Psychological Theory 55

T FundamentalOperantOp =̂ DiscriminationOp ∨ OperantConditioningOp ∨
ExtinctionOp ∨ NeutralOp

PositiveReinforcementOp 1 =̂ T FundamentalOperantOp ∧
PositiveReinforcement

PositiveReinforcementOp 2 =̂ OperantFormationOp ∧ PositiveReinforcement

PositivePunishmentOp 1 =̂ T FundamentalOperantOp ∧
PositivePunishment

PositivePunishmentOp 2 =̂ OperantFormationOp ∧ PositivePunishment

T OperantOp =̂ PositiveReinforcementOp 1 ∨ NegativeReinforcementOp 1 ∨
PositivePunishmentOp 1 ∨ NegativePunishmentOp 1 ∨
NeutralReinforcementOp 1

5 Discussion

In this paper, we discussed the formalization of the Behavior Analysis psycho-
logical theory, a traditionally informal domain of knowledge. We argued that,
though informal, such theory is sufficiently precise in order to allow a complete
formal specification. Moreover, we tried to show that there is much to gain with
such a formalization and that particular issues arise when dealing with it.

The formal specification brings new questions to the knowledge it formalizes.
As such, it can be a theoretical tool for Psychology. For instance, we saw that
graphs can be used to model certain stimuli properties. Furthermore, once im-
plemented, experiments can be performed to validate the theory. Experiments
that yield unexpected results might demonstrate that the underlying theory is
not correct. And because a formal specification is responsible for the implemen-
tation, the faulty assumptions could be more easily located.

The construction of the ontology described in Sect. 2 was easy and fast. More-
over, its structure was simple enough in order to allow a person not familiar with
formal specifications to read it. Therefore, it constituted an useful prototype,
which could be used both to determine the value of further formalization and to
allow an expert in the theory to validate the model.

The Z formal method allowed useful techniques, such as the definition of total
operations and of refinement levels. Looking for total operations forces us to
examine all possibilities of transformations. Hence, it helps spotting faults both
in the specification and in the original theory. Different levels of refinements
allow us to cope with incomplete information. Thus, when we are not sure about
the details of a particular concept, we can nevertheless achieve a formalization,
by breaking it into several levels of abstraction.

Z also encourages modularization through schemata and integration through
schema calculus. We employed this facilities to divide as much as possible the

56 P. Salem da Silva and A.C. Vieira de Melo

concepts being formalized. We also found useful to group together into subsys-
tems all concepts that relate to some major division of the theory. One of the
advantages of this approach is that modifications in the specification tend to be
localized.

The next step regarding this work will be the formal verification of properties
of the specification (e.g., consistency). An implementation, then, will follow and
conclude the project.

Acknowledgments

This work has been supported by CNPq (Conselho Nacional de Desenvolvimento
Científico e Tecnológico) and FAPESP (Fundação de Amparo à Pesquisa do Es-
tado de São Paulo). We also thank Walkiria Helena Grant, from the Institute of
Psychology of the University of São Paulo, for proofreading our initial ontology.

References

1. Skinner, B.F.: Science and Human Behavior. The Free Press (1953)
2. Jacky, J.: The way of Z: practical programming with formal methods. Cambridge

University Press, New York, NY, USA (1996)
3. d’Inverno, M., Luck, M.: Understanding Agent Systems. Springer (2003)
4. d’Inverno, M.: Modelling and simulating the behaviour of adult stem cells using

agent-based systems (2006) http://www2.wmin.ac.uk/ dinverm/cell/index.htm.
5. Bush, P.C., Sejnowski, T.J.: Simulations of a reconstructed cerebellar purkinje cell

based on simplified channel kinetics. Neural Computation 3(3) (1991) 321–332
6. Lytton, W.W., Sejnowski, T.J.: Simulations of cortical pyramidal neurons syn-

chronized by inhibitory interneurons. Journal of Neurophysiology 66(3) (1991)
1059–1079

7. Woodcock, J., Davies, J.: Using Z: Specification, Refinement, and Proof. Prentice
Hall (1996)

8. W3C: Web ontology language (2004) http://www.w3.org/2004/OWL/.
9. Informatics, S.M.: The protégé ontology editor and knowledge acquisition system

(2006) http://protege.stanford.edu/.
10. Saaltink, M.: The Z/EVES 2.0 User’s Guide. ORA Canada (1999)
11. Catania, C.A.: Learning. Prentice Hall (1998)
12. Watson, J.B.: Psychology as the behaviorist views it. Psychological Review (20)

(1913) 158–177

Integrating Performance and Reliability Analysis

in a Non-Functional MDA Framework�

Vittorio Cortellessa, Antinisca Di Marco, and Paola Inverardi

Università degli Studi di L’Aquila, Dipartimento di Informatica
{cortelle, adimarco, inverard}@di.univaq.it

Abstract. Integration of non-functional validation in Model-Driven Ar-
chitecture is still far from being achieved, although it is ever more nec-
essary in the development of modern software systems. In this paper
we make a step ahead towards the adoption of such activity as a daily
practice for software engineers all along the MDA process. We consider
the Non-Functional MDA framework (NFMDA) that, beside the typical
MDA model transformations for code generation, embeds new types of
model transformations that allow the generation of quantitative models
for non-functional analysis. We plug into the framework two methodolo-
gies, one for performance analysis and one for reliability assessment, and
we illustrate the relationships between non-functional models and soft-
ware models. For this aim, Computation Independent, Platform Indepen-
dent and Platform Specific Models are also defined in the non-functional
domains taken into consideration, that are performance and reliability.

1 Introduction

The recent evolution of software development activities based on models is
rapidly moving the viewpoint of software engineers from a code-centric per-
spective to a model-centric one. Model-Driven Architecture [11] has substan-
tially contributed to this change of perspective by providing techniques and
tools for model creation and management along the software lifecycle. For exam-
ple, numerous model transformation approaches finalized at the code generation
through model refinements have been recently devised [9].

Software modeling is also a well-assessed practice in the non-functional do-
main. Since decades performance and reliability experts are use to build mod-
els for validating software/hardware systems vs non-functional requirements.
However, these activities are not stably embedded in the software development
process, thus non-functional models creation and management do not follow the
same regular refinements applied to the software model.

In order to fill the gap between software development and non-functional
validation, in the last few years the research has faced the challenge of automated
� This work has been partially supported by the IST EU project ”PLASTIC”

(www.ist-plastic.org), and partially supported by the MIUR project ”FIRB-PERF”
(Performance Evaluation of Complex Systems: Techniques, Methodologies and
Tools).

M.B. Dwyer and A. Lopes (Eds.): FASE 2007, LNCS 4422, pp. 57–71, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

58 V. Cortellessa, A. Di Marco, and P. Inverardi

generation of quantitative models for non-functional validation from software
artifacts1. Several methodologies have been introduced that all share the idea
of annotating software models with data related to non functional aspects and
then translating the annotated model into a model ready to be validated.

None of these methodologies explicitly defines the roles of its models within
an MDA context even if the approaches are often presented as MDA-compliant.
In fact few approaches can be found in literature that aim at embedding non-
functional validation activities and models within MDA.

In the reliability domain, UML profiles have been introduced in [13] and [12]
to allow software reliability prediction at different levels of the MDA framework.
In [13] the authors translate a set of annotated UML 2.0 Sequence Diagrams
into an annotated LTS (Label Transition System) that is then interpreted as
a Markov model. The solution of the Markov model provides estimations of
the software system reliability. In [12], reliability aspects are introduced in a
Platform Independent Model through an Abstract Reliability Profile. Then, at
the Platform Specific level a new profile is defined that extends the UML Profile
for EJB and allows the specification of the reliability support provided by the
J2EE platform. Finally transformation rules have been defined to map the source
model (PIM) onto the target model (PSM).

In [15] an approach have been defined in MDA that, starting from UML
diagrams, derives an analysis model based on the Klaper language. The novelty
of this approach is that the transformations are based on two techniques typically
used in functional transformations, that are relational and graph grammar-based
techniques.

In [17], MDA is viewed as a suitable framework to incorporate various analysis
techniques into the development process of distributed systems. In particular,
the work focuses on response time prediction of EJB applications by defining a
domain model and a mapping of the domain onto a Queueing Network meta-
model.

In [14], the authors aim at helping designers to reason on non-functional prop-
erties at different levels of abstraction, likewise MDA does for functional aspects.
They introduce a development process where designers can define, use and refine
the measurement necessary to take into account QoS attributes. Their ultimate
goal is either to generate code for runtime monitoring of QoS parameters, or
to provide a basis for QoS contract negotiation and resource reservation in the
running system.

However, none of such approaches defines a global framework that embeds
non-functional aspects within the whole MDA (i.e. at CIM, PIM and PSM levels)
in an integrated manner. To fill this lack, in [5] we have introduced a framework
that extends MDA to consider non-functional aspects. Such framework, called
Non-Functional MDA (NFMDA), embeds, beside the typical MDA models and
transformations, new models and transformations related to non-functional val-
idation activities.

1 The major references for this type of approaches in the field of software performance
can be found in [1].

Integrating Performance and Reliability Analysis in a NFMDA Framework 59

In this paper we provide two instances of the NFMDA framework, one re-
lated to performance (namely PRIMA) and another one to reliability (namely
COBRA), both working at platform independent and platform specific level.
Since automation is a key factor in MDA, we also discuss the tool support that
should be provided to instantiate the NFMDA framework on new approaches.

Goal of this paper is to emphasize, through the instantiation of NFMDA
on existing approaches in different non-functional domains, that platform in-
dependent/specific aspects actually occur also in non-functional domains, and
to demonstrate that our framework nicely supports their manipulation through
appropriate types of models and model transformations.

The paper is organized as follows: Section 2 briefly introduces the NFMDA
framework, Section 3 discusses the issue of tool support in NFMDA; in Section 4
we instantiate the framework on two approaches for performance and reliability
validation, and finally in Section 5 we give the conclusive remarks.

2 Non-Functional MDA Framework

In this section we summarize our extended view of MDA, already presented in
[5] and illustrated in Figure 1. Beyond the canonical MDA models and trans-
formations the NFMDA framework contains three additional types of models
and three additional types of transformations/relationships (see the right side of
Figure 1) that we have introduced to keep Non-Functional (NF) aspects under
control. The new types of models are: CINFM, PINFM, PSNFM2.

CIM

PIM

PSM

CINFM

PINFM

PSNFM

MDA

MDA transformation

NF-MDA transformation

NF analysis feedback

Software modeling rework

Fig. 1. The NFMDA framework

Figure 2 provides a graphical flavor of NFMDA. All NFMDA instances share
the typical MDA models that are placed in the central cylinder of the figure.
Each instance is represented as a wing departing from the cylinder, because each

2 For sake of space we cannot provide details of the NFMDA framework, but they can
be found in [5].

60 V. Cortellessa, A. Di Marco, and P. Inverardi

CIM

PIM

PSM

CIPM

PIPM

PSPM

CIRM

PIRM

PSRM

reliability
performance

safetyse
cu

rit
y

. . .

availability

Fig. 2. Views of the NFMDA framework

NF property of a software/hardware system represents only a different view of
the system, but it may need different models, languages and tools to be modeled
and analyzed.

CINFM - A Computation Independent Non-Functional Model represents the
requirements and constraints related to an NF aspect (such as performance,
reliability, security, cost, etc) that can be formulated at different levels of
detail (e.g. component level, functionality level, system level).

PINFM - A Platform Independent Non-Functional Model is a representation
of the business logics of the system along with estimates of NF characteris-
tics, such as the amount of resources that the logics needs to be executed.

PSNFM - A Platform Specific Non-Functional Model contains variables and
parameters that represent the software structure and dynamics, as well as the
platform where the software will be deployed. In an NF context a platform
must include characteristics of the underlying hardware architecture such as
the CPU speed and the failure probability of a hardware connection.

The new transformations and relationships we introduced among the models
in Figure 1 are:

NFMDA horizontal transformation - It transforms a software model into
the corresponding model suitable to evaluate an NF aspect of the system at
any level in the MDA hierarchy. In Figure 1, CIM→CINFM, PIM→PINFM
and PSM→PSNFM are horizontal transformations. The model transforma-
tions belonging to this class share a two-steps structure: the software model
is first annotated with additional data, thereafter the annotated model is
transformed into a model from which we estimate the NF aspect of interest.

NFMDA vertical transformation - Even though it seems to play in an NF
domain a similar role to the one of MDA transformations, such transforma-
tion is instead intended to provide an input contribution to the horizontal
transformation. In other words, often the horizontal transformations needs
some input from the one-step-higher NF model in the hierarchy.

Integrating Performance and Reliability Analysis in a NFMDA Framework 61

Two types of arrows with double empty peak also appear in Figure 1 to give
completeness to the software NF analysis process, and they represent the reverse
paths after the analysis takes place.

Dashed arrows with double empty peak represent the feedback that originates
from the evaluation of an NF model. Continuous arrows with double empty peak
are direct consequences of NF feedback. They represent the rework necessary on
the software models to embed the changes suggested from the analysis.

3 Tool Support for the NFMDA Framework

Automation is undeniably a key factor in MDA approaches. To be embedded into
the NFMDA framework, an NF validation approach should be supported by a
tool that provides automation to all the validation steps, identified in Figure 1,
that span from model generation, to model analysis and results interpretation.

However, any NF validation approach cannot be completely automated, as
the annotation of software models with non-functional parameters is necessarily
a manual step that has to be performed by experts of the non-functional domain
of the approach3.

In general, automated support for model analysis is available and download-
able from the net. As opposite, due to the young age of the model generation
field, few existing approaches generating quantitative models are supported by
stable and reliable tools. Even the existing tools, quite often, do not deal with
all the transformation rules defined in the approaches, due to the complexity of
the transformations and/or the difficulty of the model representation.

However, several researchers are recently spending a lot of effort to implement
their methodologies for NF validation of software artifacts in a more systematic
way. Two alternative implementation techniques have been considered: (i) ad-
hoc algorithms and (ii) model-transformation techniques.

Ad-hoc algorithms make use of programming languages like C and Java. All
the logics of the model generation has to be carefully implemented, includ-
ing the order in which the generation rules must be applied, the management
of the internal representation of the source and target models and the traceability
among source and target entities.

Model transformation techniques, instead, are based on languages and tools
created to provide (general) means for transformations among models specified
through meta-models [15]. In this case, the implementation must only cope with
the model generation rules without taking care of the way such transformation
is actually executed. Moreover, if a transformation language embeds traceability
between models, then the approach can also provide a mechanism that traces
back, on the source model, the analysis results.

Finally, results interpretation and consequent feedback generation are still
open points in this domain. At the moment, few and primitive guidelines [18,19,4]

3 The collection of values for the annotation parameters may be a non trivial activity,
but it is out of scope of this paper.

62 V. Cortellessa, A. Di Marco, and P. Inverardi

or simple annotations of analysis results on the source models [2] have been
proposed in the performance domain, but much work must still be done.

4 Two NFMDA Framework Instances

In this section we embed within the NFMDA framework two existing approaches
to transform software models into NF models. The first approach is related
to performance modeling and validation [7], the second one to reliability [8].
Both these approaches have been implemented with ad-hoc techniques for the
generation and analysis of the quantitative model(s) they are based on.

It is worth noting that several NF validation approaches do not work at both
the PIM and the PSM level, but they are suitable for just one of these levels
[2,13]. Both approaches presented here work at all MDA levels, and they have
been selected to show the complete instantiation of the NFMDA framework on
two different NF domains.

4.1 Performance Analysis in MDA

The PRIMA methodology has been introduced in [7] and has evolved, on one
side, towards validation of mobility-based software systems [10] and, on the other
side, towards Component-Based Software Performance Engineering [3]. It was
originally conceived as a model-based approach to estimate the performance of
software systems ready to be deployed. Due to the type of performance mod-
els produced, PRIMA has the intrinsic capability of analyzing also software
systems at a platform independent level. The prerequisites to apply the ap-
proach consist of: modeling the system requirements through an UML Use Case
Diagram, modeling the software dynamics through UML Sequence Diagrams,
and modeling the software-to-hardware mapping through an UML Deployment
Diagram.

Figure 3 represents PRIMA as plugged into the NFMDA framework. CIM,
PIM and PSM are shown in the left-hand side of the figure. In the right-hand
side of the figure the additional models introduced in our framework are shown,
which have been renamed in this specific instance as Computation Indepen-
dent Performance Model (CIPM), Platform Independent Performance Model
(PIPM), Platform Specific Performance Model (PSPM). Names of tools able to
perform transformation steps have been reported on the edges corresponding to
the transformations between models.

The system requirements are expressed by an Use Case Diagram that repre-
sents the Computation Independent Model of the system. The Use Case Diagram
has been also reported as part of the Platform Independent Model because its
annotated version is part of the transformation to the PIPM. The PIM is com-
pleted by the Sequence Diagrams that model the application dynamics through
a set of system scenarios. Finally, the Platform Specific Model contains different
types of information: the name of the platform (e.g. CORBA, J2EE, etc.) de-
termining the type of code that must be generated, and a Deployment Diagram
determining the software-to-hardware mapping of the application.

Integrating Performance and Reliability Analysis in a NFMDA Framework 63

MDA

Host1

Object1

Object2

Host2

Object3

Deployment Diagram

PIM

PSM PSPM

terminals

. . .

Multi-chain QN model

PIPM

Sequence Diagram

CIPMCIM

User

Service1

Service2

service1
op1

op3

Object3

SD service1 Sequence

op4

par

Object2Object1

[cond1]alt

[cond2]

op2

user

EmptyCart

Platform:
J2EE

CODE

{if $Users<=100)
ResponceTime(Service2)<=2 sec.}

Service1

Service2

User

Service1
1K,user,comp1,t1

Op1
2k,comp1,comp3,t2

alternative1

alternative2

return
1K,comp3,comp1,t3

Op3
2k,comp1,comp3,t4

op2
2K,comp1,comp2,t5

Op3
1K,comp1,comp3,t5

return
5k,comp1,user,t6

EmptyCart
1k,comp1,user,t4

return
1K,comp3,comp1,t3

CPU2

8

CPU1

8

LAN LAN

LAN

Execution Graph (EG)

Main EG
Alternative1 EG

Alternative2 EG

Customer

Service1

Service2

Use Case Diagram Use Case Diagram

Use Case Diagram

Disk1

8

Disk2

8

XPRIT

XPRIT

UML Case Tool

SPE ED

{if $Users<=200)
ResponseTime(Service1)<=1 sec.}

Fig. 3. The PRIMA approach

The topmost performance model, namely the CIPM, is obtained by the CIM
(i.e. the Use Case Diagram) with annotations on use cases that express the per-
formance requirements of the system. As an example, in Figure 3 a requirement
on Service1 entails that the average response time of such use case must not be
larger than 1 second when the customers in the system are less than 200. A sim-
ilar requirement is associated to Service2. The transformation CIM→CIPM can
be easily achieved by annotating an Use Case Diagram within an UML CASE
tool (e.g. Poseidon [21]).

The PIPM is represented by an Execution Graph (EG) [19]. An EG is basically
a flow graph that models the software dynamics, and its building blocks are:
basic nodes that model sequential operations, fork and join nodes that model
concurrency, loop nodes that model iterative constructs, branching nodes that
model alternative paths, and composite nodes that model separately specified
macro-steps. In addition to the software dynamics, in an EG a demand vector
is attached to each basic node to model the resources needed to execute the

64 V. Cortellessa, A. Di Marco, and P. Inverardi

corresponding operation. It is worth to note that the amount of resource needed
cannot be specified, at this level in the hierarchy, by classical measures like CPU
time and disk accesses. Each element of the demand vector represents a high-
level metric, such as screen operation, message sending, etc. [19]. An estimated
amount of each metric can be attached to any basic block in the EG. Hence an
EG is a Platform Independent Performance Model as high-level metrics, although
representing performance data, are not bound to any platform.

In order to generate the PIPM, the PIM is annotated with the following data:
(i) Use Case Diagram - probability that an actor enters the system and proba-
bility that the actor requires a certain use case (i.e. the operational profile); (ii)
Sequence Diagram - size of messages exchanged over the interactions, probabil-
ities over the branching points, average number of loop iterations.

The annotated PIM (i.e. Use Case Diagram and Sequence Diagrams) is then
transformed into an EG as follows. Probabilities on the Use Case Diagram are
combined to carry out the probability of each use case to occur. The latter repre-
sents also the probability that the corresponding Sequence Diagram is executed.
Thereafter, an EG is built for each Sequence Diagram by visiting the diagram
and piecewise translating each fragment encountered in an EG specific pattern.
EG patterns are then combined following the structure of the Sequence Dia-
gram. During the visit, the performance annotations are used to build demand
vectors attached to EG basic blocks. Finally, all EGs are lumped into a single
one that starts with a branching node, where each EG represents an alternative
path. The probabilities over the outgoing paths correspond to the ones carried
out from the Use Case Diagram4. The tool supporting the modeling of EGs (i.e.
SPE·ED [22]) allows stand-alone and worst-case analysis of an EG. Obviously,
the validity of the analysis undergoes the trustability of the estimates of model
parameters.

In this step, the CIPM brings the target performance results that have to be
compared with the one obtained from the PIPM solution. In Figure 3 the XPRIT
label on the edges connecting (in both directions) PIM and PIPM represents the
name of the tool that automates such transformation [6].

Going down in the hierarchy of Figure 3, the adopted PSPM is a multi-chain
QN model. The semantics of the QN is as follows: each service center represents
a hardware device, and the jobs traversing the network represent the software
load of the devices.

In this approach the PSM→PSPM transformation makes a large use of the
PIPM. First, the Deployment Diagram is annotated with information on the
internal configuration of each host (i.e. number and speed of CPUs, number and
access time of hard disks, etc.). This information is used in the transformation
process to build the topology of the QN that represents the hardware platform.
The EG structure determines the number of job classes (i.e. chains) that tra-
verse the QN. The combination of values of demand vectors and performance
information about the platform (e.g. CORBA) allow to determine the amount of

4 For sake of space, we cannot provide more technical details of the transformation
process; however, readers interested may refer to [7].

Integrating Performance and Reliability Analysis in a NFMDA Framework 65

resources that each class of jobs requires to each hardware device [19]. In Figure 3
the XPRIT label on the edges connecting (in both directions) PSM and PSPM
again indicates the tool that automates such transformation. The SPE·ED la-
bel on the edge connecting PIPM and PSPM indicated that the EG modeling
tool also allows to elaborate the EG demand vectors in order to parameterize
the QN.

It is obvious that at this level in the MDA hierarchy a different type of per-
formance analysis is pursuable. The QN embeds all the software and hardware
parameters that are needed for a canonical performance analysis. They have been
collected and/or monitored on the actual deployed system. End-to-end response
time, utilization and throughput of any platform device can be computed by solv-
ing the QN model, and the results can be compared to the measures of the actual
system. Once validated, such model can be used for performance prediction. Sys-
tem configurations and workload domains that are unfeasible to experiment in
the actual system can be represented in the model in order to study the behavior
of the system under different (possibly stressing) performance scenarios.

The outputs of the PSPM evaluation represent the feedback on the PSM,
which needs to be modified if performance do not satisfy the requirements. As
illustrated in section 2, the model rework on the software side could propagate
up to the higher level models in case no feasible change can be made on the PSM
to overcome the emerging performance problems.

Behind PIPM/PSPM duality there is the intuitive concept that the perfor-
mance analysis results can be expressed with actual time-based metrics only
after a PIM is bounded to its platform and becomes a PSM. Obviously the re-
sults coming out a PIPM evaluation are not useful to validate the model against
the system requirements, because they may take very different time values on
different platforms. However, the following three types of actions can originate
from this analysis.

(i) Lower and upper bounds on the system performance can be evaluated
if some estimates of the performance of the possible target platforms are avail-
able. For example, if the lower bound on a system response time is larger than
the corresponding performance requirement, then it is useless to progress in the
development process as performance problems are intrinsic in the software archi-
tecture. It is necessary to rework on the software models. However, even when
the results are not so pessimistic it is possible to take decisions that improve the
software architecture.

(ii) In order to identify the most overloaded components, the utilization
and/or queue length of each service center in our PIPM must be computed vs the
system population. An overloaded component has a very long waiting queue and
represents a bottleneck in the software architecture. Some rework is necessary
in the PIM to remove the bottleneck.

(iii) Either as a consequence of the above decisions or as a planned perfor-
mance test, different (functionally equivalent) alternative software designs
can be modeled as PIMs, and then their performance can be compared through
their PIPMs in order to select the optimal one.

66 V. Cortellessa, A. Di Marco, and P. Inverardi

4.2 Reliability Analysis in MDA

The methodology for reliability modeling and validation that we consider here
has been first presented in [16] to estimate the reliability of a component-based
software system as a function of the failure probabilities of components and the
operational profile. Failures of hardware connections have then been embedded
into the model [8]. In order to embed this approach into our NFMDA framework,
we have further enhanced the reliability model by embedding failures of hardware
sites. We have chosen this approach to the reliability validation for two main
reasons: (i) it well suits to be interpreted in platform independent and platform
specific views (as we show in this section), and (ii) well-founded transformations
from UML models have been proposed to generate the reliability model [8]. For
sake of readability, in the remainder of the paper, we will refer to this approach
as COBRA (COmponent-Based Reliability Assessment).

In Figure 4 we show the COBRA approach as embedded into NFMDA.
Software models are shown in the left-hand side of the figure and reliability
models in the right-hand one. Following the naming that we have adopted in
NFMDA, the reliability models are labeled as: Computation Independent Re-
liability Model (CIRM), Platform Independent Reliability Model (PIRM), and
Platform Specific Reliability Model (PSRM). Again, names of tools able to per-
form transformation steps have been reported on the edges corresponding to the
transformations between models.

The software models of COBRA (i.e. the ones on the left-hand side of the
figure) are represented with the same UML diagrams as in PRIMA. Use Case
Diagram represents system requirements and, together with Sequence Diagrams,
represent the system dynamics at the platform independent level. The Deploy-
ment Diagram, together with Sequence Diagrams, represent the mapping of soft-
ware to hardware in the PSM. In this case, the PSM does not include the software
code and the name of the platform.

The topmost reliability model, namely the CIRM, can be obtained by the CIM
with two different types of annotations: an annotation attached to an use case
expresses a minimum reliability threshold that is required for the functionality
corresponding to the use case; an annotation attached to the whole diagram
represents a minimum reliability threshold required for the whole system. As
an example, in Figure 4, we have annotated a 0.99 reliability threshold for the
Service1 use case, whereas a 0.982 threshold has been annotated for the whole
system. We will consider here only reliability thresholds on the whole system.
However, the same type of modeling and analysis can be applied at use case level
by restricting the ranges of the reliability equations.

PIRM and PSRM are represented in COBRA by mathematical equations
that link the reliability of the whole system to the failure probabilities of its com-
ponents. The difference between the models is that in the PIRM the reliability of
the system only depends on the failures of software components (independently
of the platform they will be deployed), whereas in the PSRM the failures of the

Integrating Performance and Reliability Analysis in a NFMDA Framework 67

MDA

Host1

Object1

Object2

Host2

Object3

Deployment Diagram

PIM

PSM PSRM

PIRM

Sequence Diagram

CIRMCIM

User

Service1

Service2

service1
op1

op3

Object3

SD service1 Sequence

op4

par

Object2Object1

[cond1]alt

[cond2]

op2

user

EmptyCart

{Reliability(System)>=0.982}

{Reliability(Service1)>=0.99}Service1

Service2

User

Customer

Service1

Service2

Use Case Diagram Use Case Diagram

Use Case Diagram

Sequence Diagram

service1
op1

op3

Object3

SD service1 Sequence

op4

par

Object2Object1

[cond1]alt

[cond2]

op2

user

EmptyCart

UML Case Tool

COBRA Tool

COBRA Tool

COBRA Tool

Fig. 4. The COBRA approach

platform sites and hardware connections are also taken into account. In both
cases, the values assigned to the model variables are extracted from annotations
on the UML diagrams of PIM and PSM.

In COBRA the PIRM is represented by the following equation [16]:

RelPI =
K∑

j=1

pj ·
N∏

i=1

(1 − θi)INVij (1)

where:

– N is the number of software components;
– K is the number of scenarios modeling the system dynamics;
– RelPI represents the system reliability at the platform independent level,

that is the probability of no software failures during the system operation;
– θi represents the probability of failure on demand of the component i [20];

68 V. Cortellessa, A. Di Marco, and P. Inverardi

– INVij represents the number of invocations of component i within the dy-
namics of Sequence Diagram j;

– pj is the probability of execution of Sequence Diagram j;

In practice, the system reliability in (1) is the probability that none of the
components fails during the execution of the scenarios represented by the Se-
quence Diagrams. This type of reliability model is also known as fail-and-stop, in
that any single failure of a component represents a failure of the whole system.

In order to generate the PIRM, the PIM is annotated with the following data:
(i) Use Case Diagram - operational profile as in PRIMA; (ii) Sequence Diagram
- number of invocations per component. The PIM→PIRM transformation in
this case is trivial, in that values of annotations are extracted from the PIM and
properly assigned to the variables of equation (1). In this domain, the CIRM has
the same role as the CIPM, in that it brings the required reliability threshold
that has to be compared with the one obtained from the PIRM solution.

Going down in the hierarchy of Figure 4, the PSRM is represented by an
equation that takes into account also hardware failures, as follows:

RelPS =
K∑

j=1

pj · (
N∏

i=1

(1 − θi)INVij ·
C∏

l=1

(1 − ψl)MSGSlj ·
S∏

m=1

e−φm·τj) (2)

where the following additional variables have been introduced:

– S is the number of platform sites;
– C is the number of hardware connections among platform sites;
– RelPS represents the system reliability at the platform specific level, that is

the probability of no software/hardware failures during the system operation;
– ψl represents the probability of failure on demand of the hardware

connection l;
– MSGSlj represents the number of messages exchanged over the connection

l during the execution of Sequence Diagram j;
– φm represents the failure rate of the platform site m, that is the inverse of

its Mean Time To Failure [20];
– τj is the execution time of scenario j over the targeted platform;

In practice, the system reliability in (2) is the probability that none of the
components, the hardware connections and the platform sites fail during the
execution of the scenarios represented by the Sequence Diagrams. Even in this
case there is an underlying assumption of fail-and-stop, in that each type of
failure induces a failure on the whole system.

Note that the failures of platform sites have been modeled by a continuous
(exponential) failure rate, as opposite to all the other ones that have been mod-
eled by probabilities of failures on demand (i.e. as originated from discrete time
events). The rationale of this assumption is that hardware sites in practice are
never idle (i.e. there are system processes always running), thus their failures
may originate in any instant of time.

Integrating Performance and Reliability Analysis in a NFMDA Framework 69

Obviously equations (1) and (2) represent only an example of reliability model
that nicely fits into the NFMDA framework. Other assumptions can be made
that bring to more sophisticated reliability models, such as considering error
propagation among components or dependencies among hardware and software
failures. However, it is out of scope of this paper to discuss limitations of non-
functional models, as we have remarked in Section 1.

In order to generate the PSRM, the PSM is annotated with the following data:
(i) Sequence Diagram - number of messages exchanged between pairs of com-
ponents, execution time of the scenario; (ii) Deployment Diagram - probability
of failure on demand of hardware connections, failure rates of platform sites.
Similarly to the PIM→PIRM transformation, the values of annotations can
be then extracted from the PSM and properly assigned to the variables of
equation (2).

It is evident, by simply comparing equations (1) and (2), that the PIRM
originates an optimistic evaluation of the system reliability, because the value of
(1) will be always as large as the one in (2). However, an overestimation of system
reliability can be accepted when failure data related to the hardware platform
are not yet available, i.e. at platform independent level. In fact, a PIRM solution
and sensitivity analysis may support early decisions in the software lifecycle, such
as: (i) distributing the development and testing efforts over critical components,
(ii) selecting COTS components to be plugged in an existing architecture, (iii)
allocating computation complexity in software components and structuring the
software architecture.

As soon as platform data are available, a PSRM can be generated and solved.
The PSRM solution will support late decisions in the software lifecycle, such as
the mapping of software components on platform sites, and the influence of a
certain type of hardware connection on the whole system reliability.

The outputs of PIRM and PSRM represent, respectively, feedback on PIM
and PSM. The latter ones can be modified if system reliability does not satisfy
the requirements. The model rework on the software side could propagate up to
the higher level models in case no feasible change can be made on the lower level
models to overcome the emerging reliability problems.

5 Conclusions

NFMDA provides an unifying view on the NF validation in MDA, and it can be
instantiated in several NF domains like performance, security, availability, etc.
Platform Independent and Platform Specific concepts belong to many software
validation processes, and bringing them to the evidence of an MDA structure is
very advantageous to make these activities acceptable from the software engi-
neering community.

In this paper we have shown how two existing approaches to the performance
and reliability validation can be plugged into NFMDA framework. However,
modern software systems claim for integrated validation of non-functional as-
pects, since the validation of a non-functional attribute in isolation (such as

70 V. Cortellessa, A. Di Marco, and P. Inverardi

reliability) may not be meaningful due to intrinsic tradeoffs between attributes.
For example, authentication mechanisms are usually introduced to improve the
security of a system that, at the same time, may seriously degrade the system
performance.

The NFMDA framework has been conceived to be compliant with the in-
tegrated validation of non-functional aspects, as there is no limitation on the
types of non-functional models that can be generated. Obviously, the horizontal
transformations may become very complex with a growing complexity of the
non-functional models. However an integrated NF analysis, while increasing the
complexity of the transformations, may save effort in model annotations (hence
in parameter collection) because several parameters can be shared across non-
functional attributes. A typical example of parameter sharing is represented by
the operational profile. All non-functional aspects are heavily affected from the
operational profile hence, once annotated on a software model, it can be used
as input to several transformations towards different types of non-functional
models.

Several directions may be taken in the future within this context.
First, basing on our experience, several other approaches match this frame-

work in all its structure or in part of it, therefore they shall be easily plugged
into NFMDA. We guess that this shall be one of the priorities for the future
research in this field.

The suitability of the NFMDA framework for less established and more cross
cutting NF aspects (such as security) shall be investigated. Likewise the practi-
cal applicability of the framework should be experimented on real case studies;
however, experimentation should span over different application domains where
different non-functional aspects can be critical.

Large investigation shall be devised to the feedback paths in the NFMDA
framework, because the translation of validation results in actual design alter-
natives is still an open issue in all the NF domains. For example, the use of
model transformation techniques that guarantee traceability would be helpful to
straightforwardly report the analysis feedback on the software models.

Finally, the NFMDA framework represents the basis to enhance NF validation
through: (i) the definition of languages and ontologies for representing CINFM,
PINFM and PSNFM, and (ii) model transformation languages, techniques and
tools targeting NF models.

References

1. S. Balsamo, A. Di Marco, P. Inverardi, M. Simeoni, Model-based Performance Pre-
diction in Software Development: A Survey, IEEE Trans. on Software Engineering,
30(5):295-310, 2004.

2. S. Balsamo, M. Marzolla, A Simulation-Based Approach to Software Performance
Modeling, Proc. Joint 9th European Software Engineering Conference (ESEC) &
11th SIGSOFT Symposium on the Foundations of Software Engineering (FSE),
pp. 363–366, Helsinki, FI, 2003.

Integrating Performance and Reliability Analysis in a NFMDA Framework 71

3. A. Bertolino, R. Mirandola, CB-SPE Tool: Putting Component-Based Performance
Engineering into Practice, Proc. of CBSE 2004, pp.233-248, 2004.

4. V. Cortellessa, A. Di Marco, P. Inverardi, Three Performance Models at Work:
A Software Designer Perspective, Electr. Notes Theor. Comput. Sci.,vol. 97, pp.
219-239, 2004.

5. V. Cortellessa, A. Di Marco, P. Inverardi, Non-functional Modeling and Validation
in Model-Driven Architecture, Proc. of Sixth Working IEEE/IFIP Conference on
Software Architecture (WICSA 2007), Mumbay, India, 2007 (To Appear).

6. V. Cortellessa V., M. Gentile, M. Pizzuti, XPRIT: an XML-based tool to translate
UML diagrams into Execution Graphs and Queueing Networks, Proc. of QEST
2004 (short papers), 2004.

7. V. Cortellessa, R. Mirandola, PRIMA-UML: a Performance Validation Incremen-
tal Methodology on Early UML Diagrams, Science of Computer Programming,
Elsevier Science, 44(1):101-129, 2002.

8. V. Cortellessa, H. Singh, B. Cukic, E. Gunel, V. Bharadwaj, Early reliability as-
sessment of UML based software models, Proc. of 3rd ACM Workshop on Software
and Performance, 2002.

9. K. Czarnecki, S. Helsen, Classification of Model Transformation Approaches, Proc.
of OOPSLA03 Workshop on Generative Techniques in the Context of MDA, 2003.

10. V. Grassi, R. Mirandola, PRIMAmob-UML: a methodology for performance analy-
sis of mobile software architectures, Proc. of WOSP 2002, pp. 262-274, 2002.

11. J. Miller (editor), Model-Driven Architecture Guide, omg/2003-06-01 (2003).
12. G.N. Rodrigues, G. Robets, W. Emmerich, J. Skene, Reliability Support for Model

Driven Architecture, Proc. of WADS 2003, LNCS 3069, pp.79-98, 2003.
13. G.N. Rodrigues, D. S. Rosenblum, S. Uchitel, Reliability Prediction in Model-

Driven Development, Proc. of Models Conference, LNCS 3713, pp.339-354, 2005.
14. S. Rottger, S. Zschaler, Model-driven development for non-functional properties:

refinement through model transformation, Proc. of UML 2004, LNCS 3273, pp.275-
289, 2004.

15. A. Sabetta, D.C. Petriu, V. Grassi, R. Mirandola, Abstraction-raising Transforma-
tion for Generating Analysis Models, Proc. of Models 2005 Satellite Events, LNCS
3844, pp. 217-226, 2005.

16. H. Singh, V. Cortellessa, B. Cukic, E. Gunel, V. Bharadwaj, A Bayesian Approach
to Reliability Prediction and Assessment of Component Based Systems, Proc. of
12th IEEE International Symposium on Software Reliability Engineering, 2001.

17. J. Skene, W. Emmerick, Model-driven performance analysis of Enterprise Informa-
tion Systems, ENTCS 82(6), 2003.

18. C.U. Smith, L.G. Williams, Software performance antipatterns. Proceedings of the
2nd international workshop on Software and performance (WOSP00), pp. 127–136,
Ottawa, Ontario, Canada, 2000.

19. C.U. Smith, L.G. Williams, Performance Solutions: A Practical Guide to Creating
Responsive, Scalable Software, Addison-Wesley, 2002.

20. K. Trivedi, Probability and Statistics with Reliability, Queuing, and Computer
Science Applications, John Wiley and Sons, New York, 2001.

21. www.gentleware.com
22. www.perfeng.com

Information Preserving Bidirectional

Model Transformations�

Hartmut Ehrig1, Karsten Ehrig2, Claudia Ermel1, Frank Hermann1, and
Gabriele Taentzer3

1 Department of Computer Science, Technical University Berlin, Germany
{ehrig,lieske,frank}@cs.tu-berlin.de

2 Department of Computer Science, University of Leicester, United Kingdom
karsten@mcs.le.ac.uk

3 Department of Mathematics and Computer Science, Phillips-University Marburg,
Germany

taentzer@mathematik.uni-marburg.de

Abstract. Within model-driven software development, model transfor-
mation has become a key activity. It refers to a variety of operations
modifying a model for various purposes such as analysis, optimization,
and code generation. Most of these transformations need to be bidirec-
tional to e.g. report analysis results, or keep coherence between models.
In several application-oriented papers it has been shown that triple graph
grammars are a promising approach to bidirectional model transforma-
tions. But up to now, there is no formal result showing under which
condition corresponding forward and backward transformations are in-
verse to each other in the sense of information preservation. This problem
is solved in this paper based on general results for the theory of algebraic
graph transformations. The results are illustrated by a transformation of
class models to relational data base models which has become a quasi-
standard example for model transformation.

1 Introduction

Model transformation is a central activity in model-driven software development
as it is used thoroughly for model optimization and other forms of model evolu-
tion. Moreover, model transformation is used to map models between different
domains for analyzing them or for automatically generating code from them. Of-
ten a model transformation is required to be reversible to translate information
back to source models. For example, a transformation of a domain-specific model
to some formal model for the purpose of validation should be reversible to trans-
form back analysis results stemming from the formal model. Reversible model
transformations also play an important role in the presence of system evolution.
Having usually a variety of different models around in the engineering process,
the evolution of one model depends on the evolution of other models. To keep
models coherent to each other, model transformations have to be reversible.
� This work has been partially sponsored by the project SENSORIA, IST-2005-016004.

M.B. Dwyer and A. Lopes (Eds.): FASE 2007, LNCS 4422, pp. 72–86, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Information Preserving Bidirectional Model Transformations 73

Model transformations have been classified by Czarnecki, Mens et.al. [CH03,
MG06]. Mens et.al. distinguish two main classes: endogenous and exogenous
model transformations. While the former run within one modeling language,
e.g. are used to model refactorings or other kinds of optimizations, the latter
are used to translate models between different languages. In the context of this
paper we concentrate on exogenous model transformations. A promising ap-
proach to reversible transformation is bi-directional model transformation, since
only one transformation description is needed to deduce forward and backward
transformations automatically.

A bi-directional model transformation can be well described by triple graph
transformations as introduced by Schürr et.al. [KS06, Sch94]. The main idea is
to relate a source and a target graph by some correspondence graph in between
which is mapped to both graphs. In this way, source and target graphs are cou-
pled and a basic structure for consistent co-evolution of the model graphs is es-
tablished. Triple rules are used to formulate conditions for consistent co-evolution
describing the simultaneous transformation of source and target graphs. It is of-
ten the case though that these graphs do not develop simultaneously: i.e. one
graph evolves and the other one has to be updated accordingly. To capture this
situation, Königs and Schürr showed that each triple rule can be split into a
so-called source rule which changes the source graph only and a forward rule
which updates the target accordingly. Furthermore, they lifted this result to
transformation sequences in [KS06]. This means that we obtain for each triple
transformation sequence a corresponding forward transformation and dually also
a corresponding backward transformation sequence.

But up to now, there is no formal result showing under which conditions
a given forward transformation sequence has an inverse backward sequence in
the sense that both together are information preserving concerning the source
graphs. The main result of this paper solves this problem under the condition
that a given forward transformation sequence G1 =

tr∗
F==⇒ G2 is source consistent.

Roughly speaking, that means G1 can be generated by source rules only. This
result is based on an extension of the result in [KS06] cited above, which allows
to state a bijective correspondence between triple transformation sequences and
combined match consistent source and forward transformation sequences. The
proof of this extended result is based on the well-known Local Church–Rosser
and Concurrency Theorem for graph transformations (see [EEPT06]) which are
shown to be valid also for triple graph grammars.

All main concepts and results are illustrated at a running example, which
is a model transformation from class models to relational data base models.
This quasi-standard model transformation has been originally defined in the
specification for QVT [OMG05] by the Object Management Group. Due to space
limitations, we present a triple graph grammar for a restricted form of this model
transformation.

In Section 2 we start with a review of triple graph grammar for graphs and
introduce the running example in Section 3. Section 4 presents the main results
concerning information preserving forward and backward transformations. In

74 H. Ehrig et al.

Section 5 we discuss how to obtain a general theory for triple graph transforma-
tions which can be based also on typed and attributed graphs.

2 Review of Triple Rules and Triple Graph Grammars

Triple graph grammars [Sch94] have been shown to be a promising approach to
consistently co-develop two related structures. They provide bidirectional trans-
formation between a pair of graphs representing these structures which are con-
nected using a third so-called correspondence graph together with its embeddings
into the source and target graph. In [KS06], Königs and Schürr formalize the
basic concepts of triple graph grammars in a set-theoretical way. In this section,
we take up this formalization and present further steps of a theory of triple
graph grammars in the following sections. We first base this formalization on
simple graphs and will discuss the extension to typed, attributed graphs based
on concepts from category theory in Section 5.

Definition 1 (Graph and Graph Morphism). A graph G = (V, E, s, t)
consists of a set V of nodes (also called vertices), E of edges and two func-
tions src, tar : E → V , the source and target functions. Given graphs G1, G2
with Gi = (Vi, Ei, srci, tari) for i = 1, 2, a graph morphisms f : G1 → G2,
f = (fV , fE), consists of two functions fV : V1 → V2 and fE : E1 → E2
that preserve the source and target functions, i.e. fV ◦ src1 = src2 ◦ fE and
fV ◦ tar1 = tar2 ◦ fE.

Definition 2 (Triple Graph and Triple Graph Morphism). Three graphs
SG, CG, and TG, called source, connection, and target graphs, together with
two graph morphisms sG : CG → SG and tG : CG → TG form a triple graph
G = (SG

sG← CG
tG→ TG). G is called empty, if SG, CG, and TG are empty

graphs.
A triple graph morphism m = (s, c, t) : G → H between two triple graphs

G = (SG
sG← CG

tG→ TG) and H = (SH
sH← CH

tH→ TH) consists of three
graph morphisms s : SG → SH, c : CG → CH and t : TG → TH such that
s ◦ sG = sH ◦ c and t ◦ tG = tH ◦ c. It is injective, if morphisms s, c and t are
injective.

A triple rule is used to build up source and target graphs as well as their connec-
tion graph, i.e. to build up triple graphs. Structure filtering which deletes parts
of triple graphs, are performed by projection operations only, i.e. structure dele-
tion is not done by rule applications. Thus, we can concentrate our investigations
on non-deleting triple rules without any restriction.

Definition 3 (Triple Rule tr and Triple Transformation Step).
A triple rule tr consists of triple graphs
L and R, called left-hand and right-hand
sides, and an injective triple graph mor-
phism tr = (s, c, t) : L → R.

L = (SL

tr
��

s
��

CL
sL��

c
��

tL �� TL)

t
��

R = (SR CRsR

��
tR

�� TR)

Information Preserving Bidirectional Model Transformations 75

Given a triple rule tr = (s, c, t) :
L → R, a triple graph G and
a triple graph morphism m =
(sm, cm, tm) : L → G, called
triple match m, a triple graph
transformation step (TGT-step)
G =

tr,m
==⇒ H from G to a triple

SL

��

sm������ CL�� ��

��

cm�����
TL

��

tm �����

G = (SG

tr

�� s′
��

CG�� ��

c′
��

TG)

t′
��

SR
sn��

CR�� ��
cn��

TR
tn�����

H = (SH CHsH

��
tH

�� TH)

graph H is given by three pushouts (SH, s′, sn), (CH, c′, cn) and (TH, t′, tn) in
category Graph with induced morphisms sH : CH → SH and tH : CH → TH.

Moreover, we obtain a triple graph morphism d : G → H with d = (s′, c′, t′)
called transformation morphism. A sequence of triple graph transformation steps
is called triple (graph) transformation sequence, short: TGT-sequence. Further-
more, a triple graph grammar TGG = (S, TR) consists of a triple start graph S
and a set TR of triple rules.

Remark 1 (gluing construction). Each of the pushout objects SH, CH, TH in
Def. 3 can be constructed as a gluing construction, e.g. SH = SG +SL SR,
where the S-components SG of G and SR of R are glued together via SL
(see [EEPT06] Chapter 2 for more details).

3 Case Study: CD2RDBM Model Transformation

This case study presents a model transformation problem (see [BRST05,OMG05])
which occurs in several variants. It contains the transformation of class models
to relational database models. We will use it in this paper to illustrate the
triple graph grammar approach and especially, the conditions for information
preserving bidirectional transformations. In contrast to [BRST05], we present a
slightly restricted variant where the different treatment of persistent and non-
persistent classes is omitted, due to space limitations.

The source language consists of class diagrams, while the target language
consists of schemes for database tables. A reference structure is established as
helper structure for the model transformation which relates classes with tables
and subclasses or attributes with columns. Associations are translated to foreign
keys. The relationship between the elements of the source and the target language
is documented in the TGG type graph in Fig. 1 where dashed edges represent
the morphisms s and t connecting the the source and the target graph via a
connection graph.

Please note that this case study is given in the framework of triple graphs over
typed attributed graphs which is briefly discussed in Section 5. In that section,
we also show how to extend the basic theory presented in Sections 2 and 4, to
typed attributed graphs.

Fig. 2 shows four of the triple rules for the CD2RDBM model transformation.
Triple rule Class2Table simultaneously creates a class and a table which are
related to each other. Since all triple rules are non-deleting, they are depicted in
a compact notation not separating the left from the right-hand side. All graph

76 H. Ehrig et al.

Fig. 1. TGG type graph for CD2RDBM model transformation

items which are newly created, are annotated by ”{ new}”. Those items occur in
the right-hand side of a rule only. Triple rule PrimaryAttribute2Column creates
columns and attributes. Given that a class is already related to some table, an
attribute of this class is related to a column of the related table. By triple rule
SetKey, the corresponding column for each primary attribute is set as primary
key . A newly created subclass is related to the same table as its given superclass
by triple rule Subclass2Table.

:Class {new}
name = n

:Table {new}
name = n

:ClassTableRel
{new}

:Class :Table

:attrs {new} :ClassTableRel

:Attribute {new}
name = an

primary = true

:PrimitiveDataType {new}
name = t

:Column {new}
type = t

name = an:AttrColRel
{new}

:cols {new}

:type {new}

:Class :Table

:attrs

:ClassTableRel

:Attribute
is_primary = true

:Column:AttrColRel

:cols:pkey {new}

:Class :Table

:parent {new}

:ClassTableRel

:ClassTableRel {new}
:Class {new}

Class2Table

SetKey

PrimaryAttribute2Column

Subclass2Table

Fig. 2. TGG rules for CD2RDBM model transformation

Fig. 3 shows triple rule Association2FKey which creates associations re-
lated to foreign keys (FKey) pointing to columns of other tables. A similar
triple rule Attribute2FKey (not depicted) creates class-typed attributes which
are also related to foreign keys. Instead of the :Association{new} node in rule

Information Preserving Bidirectional Model Transformations 77

Association2FKey, rule Attribute2FKey has an :Attribute{new} node, con-
nected by an :attrs{new} edge to the upper class and a :type{new} edge to the
lower class.

Fig. 3. TGG rule Association2FKey

4 Information Preserving Forward and Backward
Transformations

The power of bi-directional model transformations is its potential to invert
a forward transformation without specifying a new transformation. Deriving
rules for forward and backward transformations automatically, we investigate
the requirements for such a reversal to be fulfilled by triple graph transfor-
mations. A sufficient requirement for reversal is based on the notion of source
transformation which is the projection of a triple graph transformation to its
source component. It is sufficient to show that a source structure can be con-
structed by source transformations only. In this case, the forward transformation
is called source consistent and we can show that it can be inverted, i.e. there
is a backward transformation leading back to the same source structure as the
original one.

For updating the changes of the source to the target graph and vice versa
forward as well as backward rules are needed and they can be derived from a
triple rule. In addition we can deduce a source rule trS and a target rule trT

with empty connection and target or source component from a triple rule tr.

Definition 4 (Derived Triple Rules). Given a triple rule tr as in Def. 3, a
source rule trS , a target rule trT , a forward rule trF and a backward rule trB

can be constructed as shown below:

LS = (SL

trS �� s ��

∅��

��

�� ∅)

��
RS = (SR ∅�� �� ∅)

source rule trS

LF = (SR

trF �� id ��

CL
s◦sL��

c
��

tL �� TL)
t��

RF = (SR CR
sR�� tR �� TR)

forward rule trF

78 H. Ehrig et al.

LT = (∅
trT �� ��

∅��

��

�� TL)
t ��

RT = (∅ ∅�� �� TR)
target rule trT

LB = (SL

trF �� s ��

CL
t◦tL

��

c
��

sL

�� TR)
id��

RB = (SR CR
sR�� tR �� TR)

backward rule trB

Example 1 (derived forward and backward rules for triple rule Class2Table)
Fig. 4 shows the forward and backward rules derived from triple rule Class2Table
in Fig. 2 (a). In the forward rule a new table is created for an existing class. Vice
versa, in the backward rule a table exists already and the corresponding class is
created.

:Class {new}
name = n

:Table
name = n:ClassTableRel {new}

:Class
name = n

:Table {new}
name = n

:ClassTableRel {new}

derived
forward rule trF

derived
backward rule trB

Fig. 4. derived forward and backward rules for triple rule Class2Table

Note that the source rule trS and the target rule trT can be obtained by projec-
tion of tr to source and target, respectively.

Definition 5 (Projection). Given a triple graph G = (SG
sG← CG

tG→ TG), the

projection projT (G) to the target is triple graph GT = (∅ ∅← ∅ ∅→ TG) and the

projection projS(G) to the source is triple graph GS = (SG
∅← ∅ ∅→ ∅).

A first important result shows that each TGT-sequence can be decomposed in
transformation sequences by corresponding source and forward rules and vice
versa, provided that their matches are consistent. Roughly spoken, match con-
sistency means that the co-matches of source rule applications determine the
matches of corresponding forward rule applications.

The following Theorem 1 is partly given as Theorem 4.7 in [KS06] where
especially the bijective correspondence between decomposition and composition
is missing which however, is most important in this paper. Essential for this
bijective correspondence is the notion of match consistency for specific TGT-
sequences applying source and forward rules triS and triF of the same triple
rule tri for i = 1, . . . , n.

Definition 6 (Match Consistency). A TGT-sequence G00
tr1S=⇒ G10 ⇒ . . .

trnS=⇒
Gn0

tr1F=⇒ Gn1 ⇒ · · · trnF=⇒ Gnn is called match consistent, if the S-component of
the match m1F of Gn0

tr1F=⇒ Gn1 is completely determined by the co-match n1S of
G00

tr1S=⇒ G10 and the transformation morphism d1 : G10 → Gn0, i.e. (m1F)S =
d1S ◦ (n1S)S and similar for all matches of the forward transformations triF
(i > 1). For n = 1 this means (m1F)S = (n1S)S.

Information Preserving Bidirectional Model Transformations 79

Theorem 1 (Decomposition and Composition of TGT-Sequences)

1. Decomposition: For each TGT-sequence
(1) G0 =tr1=⇒ G1 =⇒ . . . =trn==⇒ Gn

there is a corresponding match consistent TGT-sequence

(2) G0 = G00
tr1S=⇒ G10 ⇒ · · · trnS=⇒ Gn0

tr1F=⇒ Gn1 ⇒ · · · trnF=⇒ Gnn = Gn.

2. Composition: For each match consistent transformation sequence (2) there
is a canonical transformation sequence (1).

3. Bijective Correspondence: Composition and Decomposition are inverse
to each other.

The proof is given in Section 5.2.

Remark 2. Moreover, we have projT (G00) =
projT (Gn0) and projS(Gn0) = projS(Gnn)
in (2), due to the special form of triple rules
tr1S , .., trnS and tr1F , .., trnF , respectively.
Dual results hold for target rules trT and
backward rules trB (see the lower triangle in
the figure on the right).

G00
tr1S��

tr1T

��
tr1

������

		������

G10 . . .
trnS �� Gn0

tr1F

��. . .

trnT ��

. . .
trn

		�������

������� . . .

trnF��
G0n

tr1B �� . . . trnB �� Gnn

Theorem 1 and its dual version lead to the following equivalence of forward and
backward TGT-sequences which can be derived from the same general TGT-
sequence.

Theorem 2 (Equivalence of Forward and Backward TGT-sequences).
Each of the following TGT-sequences implies the other ones assumed that the
matches are uniquely determined by each other.

1. G0
tr1=⇒ G1

tr2=⇒ G2 =⇒ ...
trn=⇒ Gn

2. G0 = G00
tr1S=⇒ G10 =⇒ ...

trnS=⇒ Gn0
tr1F=⇒ Gn1 =⇒ ...

trnF=⇒ Gnn = Gn,
which is match consistent. In this case we have: projT (G00) = projT (Gn0),
projS(Gn0) = projS(Gnn)

3. G0 = G00
tr1T=⇒ G01 =⇒ ...

trnT=⇒ G0n
tr1B=⇒ G1n =⇒ ...

trnB=⇒ Gnn = Gn,
which is match consistent. In this case we have: projS(G00) = projS(G0n),
projT (G0n) = projT (Gnn)

Proof. Theorem 2 is a direct consequence of Theorem 1 concerning decomposi-
tion and composition of forward TGT-sequences and its dual version for target
rules triT and backward rules triB where match consistency in Part 3 is defined
by the T-components of the matches. The projection properties follow from
Remark 2.2.

In the following we use the short notations for TGT-sequences introduced in
Theorem 2:

1. F =tr∗
=⇒ H , with F = G0, H = Gn for sequence (1),

80 H. Ehrig et al.

2. F =
tr∗

S==⇒ G =
tr∗

F==⇒ H , with F = G0, G = Gn0, H = Gn for sequence (2), and

3. F =
tr∗

T==⇒ K =
tr∗

B==⇒ H , with F = G0, K = G0n, H = Gn for sequence (3).

Now we are able to address the main topic of this paper. We want to analyse
under which conditions a forward TGT-sequence G =

tr∗
F==⇒ H is information pre-

serving in the sense that there is a backward TGT-sequence starting from HT =
projT (H) and leading to H ′ such that the source graphs of G and H ′ are equal,

i.e. projS(G) = projS(H ′). That means sequence G =
tr∗

F==⇒ H −projT−−−→ HT =
tr∗

B==⇒ H ′

is information preserving concerning the source component. In this case we say
that G =

tr∗
F==⇒ H is backward information preserving.

The condition under which we obtain backward information preservation is
source consistency of G =

tr∗
F==⇒ H , i.e. G is generated by corresponding source

rules tr∗S such that ∅ =
tr∗

S==⇒ G =
tr∗

F==⇒ H is match consistent.

Definition 7 (Information Preserving Forward Transformation)

A forward TGT -sequence G =
tr∗

F==⇒ H is

(1) backward information preserving, if for HT = projT (H) there is a

backward TGT-sequence HT =
tr∗

B==⇒ H ′ with GS = projS(G) = projS(H ′).

G
tr∗

F ��

projS

������������ H
projT �� HT

tr∗
B �� H ′

projS���������������

GS

(2) source consistent, if there is a source TGT-sequence ∅ =
tr∗

S==⇒ G such that

∅ =
tr∗

S==⇒ G =
tr∗

F==⇒ H is match consistent.

Remark 3. For backward transformations the terms forward information pre-
serving and target consistency are defined dually.

Theorem 3 (Information Preserving Forward Transformation)

A forward TGT-sequence G =
tr∗

F==⇒ H is backward information preserving, if it is
source consistent.

Proof. G =
tr∗

F==⇒ H is source consistent which implies the existence of (2) ∅ =
tr∗

S==⇒
G =

tr∗
F==⇒ H with projS(G) = projS(H) being match consistent. By Theorem

2 with G0 = ∅, Gn0 = G, G0n = K and Gn = H we obtain (3) ∅ =
tr∗

T==⇒
K =

tr∗
B==⇒ H ′ = H with projT (K) = projT (H) being match consistent. Moreover,

projS(K) = projS(∅) = ∅ and the C-component of K is ∅ which implies K =

projT (H) = HT leading to the diagram in Def. 7(1). Hence, G =
tr∗

F==⇒ H is
backward information preserving.

Remark 4. If G =
tr∗

F==⇒ H is source consistent, then there is already a canoni-

cal backward transformation HT =
tr∗

B==⇒ H ′ with H ′ = H and HT = projT (H)

Information Preserving Bidirectional Model Transformations 81

which is target consistent, i.e. ∅ =
tr∗

T==⇒ HT =
tr∗

B==⇒ H ′ is match consistent. Vice
versa, given a target consistent backward transformation there is a source con-
sistent forward transformation according to Theorem 2. Similar results hold for
backward TGT -sequences K =

tr∗
B==⇒ H .

Example 2 (backward information preserving CD2RDBM model transformation
sequence). We consider a concrete forward transformation G =⇒ H from a given
class model G to its extension H by the corresponding data base model (Fig. 5).
The small class model in G (left part of Fig. 5) consists of two classes Company
and Person with an association in between, and a third class Customer in-
heriting from class Person. Class Customer is equipped with an attribute.
The transformation is performed by applying first the forward rules of rule
Class2Table twice (1, 2), and afterwards the forward rules of SubClass2Table
(3), PrimaryAttribute2Column (4), SetKey (5), and Association2FKey (6)
each once. In Fig. 5, the corresponding matches (1..6) of this sequence are indi-
cated by contours.

Fig. 5. Result graph of C2RDBM forward transformation

This forward transformation is source consistent, since there is a transforma-
tion sequence ∅ =⇒ G. The co-matches of this source transformation sequence
correspond to the matches of the forward transformation in Fig. 5, restricted
to the source elements. It is easy to check that both transformation sequences
are match consistent, i.e. the co-match of each source transformation step is
not altered by forthcoming steps and is used again in its corresponding for-
ward transformation step. Thus we can conclude from Theorem 3 that transfor-
mation G =⇒ H is backward information preserving, i.e. there is a backward

82 H. Ehrig et al.

transformation from projT (H) =⇒ H ′ and the source graph of H ′ is equal to G.
The backward transformation with the matches of the corresponding backward
rules is shown in Fig. 6 where projT (H) is given in the right part of Fig. 6, and
H ′ is the complete result graph in Fig. 6.

Fig. 6. Result graph of C2RDBM backward transformation

5 General Theory of Triple Graph Transformations

In Section 2 we have introduced triple graphs and triple graph transformations
based on simple graphs and graph morphisms (see Definition 1 - 3). In this
section, we extend the concept to triple graphs based on typed, attributed and
typed attributed graphs in the sense of [EEPT06]. WE can show that he cor-
responding categories are adhesive HLR categories. Thus, the general theory of
adhesive HLR-systems in [EEPT06] can be instantiated by all these variants
of triple graph transformations. That fact allows to obtain the well-known Lo-
cal Church–Rosser and Concurrency Theorem for triple graph transformations
which are used in a special case in the proof of Theorem 1. Further concepts
and results which are presented in [EEPT06] and can be instantiated by triple
graph transformation, include negative application conditions and critical pair
analysis.

5.1 Triple Graph Transformations as Instantiation of Adhesive
HLR Categories

Adhesive HLR categories and systems which are based on adhesive categories
presented in [LS05], are a general categorical framework for several variants
of graphs and graph transformation systems. One important instantiation of
this framework are graph transformations based on simple graphs and graph

Information Preserving Bidirectional Model Transformations 83

morphisms (as in Section 2) leading to the category Graphs. Another impor-
tant instantiation are attributed graphs and attributed graph morphisms (as
in [EPT04]) leading to the category AGraphs. Roughly speaking, attributed
graphs AG = (G, D) are pairs of graphs G and data type algebras D where
some of the domains of D are carrying the attributes of graphs G. Rule graphs
are attributed by a common term algebra such that left and right hand side
graph items may have arbitrary terms as attributes. Category TripleGraphs
consisting of triple graphs and triple graph morphisms (as in Section 2), can be
constructed as a diagram category over Graphs and also becomes an adhesive
HLR category (see Fact 4.18 in [EEPT06]).

Analogously, category TripleAGraphs of attributed triple graphs is a
diagram category over AGraphs. Moreover, given type graphs TG in
TripleGraphs (resp. ATG in TripleAGraphs) we obtain category
TripleGraphsTG consisting of typed triple graphs (resp. TripleAGraphsATG
consisting of typed attributed triple graphs) as slice categories over
TripleGraphs (resp. TripleAGraphs) leading again to adhesive
HLR-categories.

Theorem 4 (Adhesive HLR Categories for Triple Graph Transforma-
tions). Categories TripleGraphs, TripleGraphsTG, TripleAGraphs, and
TripleAGraphsATG together with suitable classes M of monomorphisms are
adhesive HLR categories.

Proof. According to Theorem 4.15 in [EEPT06], diagram and slice categories
over adhesive HLR categories Graphs and AGraphs are again adhesive HLR
categories.

This result implies that the general theory of adhesive HLR systems can be
applied to triple graph transformations based on categories TripleGraphs,
TripleGraphsTG, TripleAGraphs, and TripleAGraphsATG. In the follow-
ing, we use the abbreviation Triple, if we mean one of these categories.

5.2 Proof of Theorem 1

Before proving Parts 1-3 of Theorem 1, we draw some conclusions from Theo-
rem 4 above. From Theorem 5.12 in [EEPT06] for adhesive HRL-categories and
Theorem 4 above we can conclude that the Local Church-Rosser Theorem is
valid for each category Triple. We will use this result to show that “sequen-
tially independent” steps G1 =

tr1,m1====⇒ G2 =
tr2,m2====⇒ G3 can be commuted leading

to G1 =
tr2,m′

2====⇒ G′
2 =

tr1,m′
1====⇒ G3. Sequential independence means that there is a

triple morphism d : L2 → G1 with g1 ◦ d = m2.

L1

m1

��

tr1 �� R1

���
��

��
��

L2

m2
		

		
		

	

tr2 ��
d

��

 R2

��
G1 g1

�� G2 g2
�� G3

Sequential independence

L1

l1

��

tr1 ��

(1)

R1

e1
���

��
��

��
L2

e2
����

��
��

�

tr2 ��

(2)

R2

r2

��
L

l
�� E r

�� R

E − concurrent rule

84 H. Ehrig et al.

From Theorem 5.23 in [EEPT06] and Theorem 4 above we can conclude that
the Concurrency Theorem is valid. This result is used for the construction of
E-concurrent rule tr = tr1 ∗E tr2 for triple rules tr1 and tr2 given. Triple graph
E with triple graph morphisms e1 and e2 is constructed by pushouts (1) and (2)
above and tr = r ◦ l.

We will use the following construction: Given triple rule tr : L → R with
source rule trS : L1 → R1, forward rule trF : L2 → R2, E = L2, e1 = (id, ∅, ∅)
and e2 = id, we obtain trS ∗E trF = tr, because diagrams (3) and (4) below are
pushouts in Triple and trF ◦ trS = tr. Hence, tr is equal to the E-concurrent
rule trS ∗E trF .

(SL ← ∅ → ∅)

(id,∅,∅)
��

trS ��

(3)

(SR ← ∅ → ∅)

(id,∅,∅)

(SR ← CL → TL)

id�����������������

trF ��

(4)

(SR ← CR → TR)

id

��
(SL ← CL → TL)

trS=(s,id,id)
�� (SR ← CL → TL)

trF =(id,c,t)
�� (SR ← CR → TR)

Proof of Theorem 1

1. Decomposition: Given TGT-sequence (1) G0 =tr1=⇒ G1 =⇒ . . . =trn==⇒ Gn we
first consider case n = 1. TGT-step G0 =tr1=⇒ G1 can be decomposed uniquely
into a match consistent TGT-sequence G0 = G00 =tr1S==⇒ G10 =tr1F==⇒ G11 = G1.
In fact we have shown above that tr1 can be represented as E-concurrent rule
tr1 = tr1S ∗E tr1F . Using the Concurrency Theorem the TGT-step G0 =tr1=⇒ G1
can be decomposed uniquely into an E-related sequence as given above. In this
special case an E-relation is equivalent to the fact that the S-components of the
co-match of G00 =tr1S==⇒ G10 and the match of G10 =tr1F==⇒ G11 coincide which
corresponds exactly to match consistency.

Using this construction for i = 1, . . . , n the transformation sequence (1) can be
decomposed canonically to an intermediate version between (1) and (2) called
(1.5): G0 = G00 =tr1S==⇒ G10 =tr1F==⇒ G11 =tr2S==⇒ G21 =tr2F==⇒ G22 ⇒ . . . =trnS==⇒
Gn(n−1) =trnF===⇒ Gnn where each subsequence G(i−1)(i−1) =triS==⇒ Gi(i−1) =triF==⇒ Gii

G00
tr1S ��

tr1
����

������

G10
tr2S��

tr1F��

G20 . . .
trnS ��

tr1F��

Gn0

tr1F��
G11

tr2S��

tr2
���������

������� G21 . . .
trnS �� Gn1

tr2F

��. . .
trn

		�������

������� . . .

trnF��
Gnn

is match consistent. Moreover,
G10 =tr1F==⇒ G11 =tr2S==⇒ G21 is sequen-
tially independent, because we have
a morphism d : L2 → G10, with
L2 = (SL2 ← ∅ → ∅) and d =
(m2S , ∅, ∅). Morphism m2 : L2 → G11

is the match of G11 =tr2S==⇒ G21, be-
cause the S-components of G10 and
G11 are equal according to forward rule tr1F .

Now, the Local Church–Rosser Theorem mentioned above leads to an equiv-
alent sequentially independent sequence G10 =tr2S==⇒ G20 =tr1F==⇒ G21 such that
G00 =tr1S==⇒ G10 =tr2S==⇒ G20 =tr1F==⇒ G21 =tr2F==⇒ G22 is match consistent. The itera-
tion of this shift between triF and trjS leads to a shift-equivalent transformation
sequence (2) G0 = G00

tr1S=⇒ G10 ⇒ · · · trnS=⇒ Gn0
tr1F=⇒ Gn1 ⇒ · · · trnF=⇒ Gnn = Gn,

which is still match consistent.

Information Preserving Bidirectional Model Transformations 85

2. Composition: Vice versa, each match consistent transformation sequence (2)
leads to a canonical sequence (1.5) by inverse shift equivalence where each sub-
sequence as above is match consistent. In fact, match consistency of (2) implies
that the corresponding subsequences are sequentially independent in order to
allow inverse shifts in an order opposite to that in Part 1 using again the Local
Church-Rosser Theorem. Match consistent subsequences of (1.5) are E-related
as discussed in Part 1 which allows to apply the Concurrency Theorem to obtain
the TGT-sequence (1).
3. Bijective Correspondence: The bijective correspondence of composition and
decomposition is a direct consequence of the bijective correspondence in the
Local Church–Rosser and the Concurrency Theorem where the bijective corre-
spondence for the Local Church–Rosser Theorem is not explicitly formulated in
Theorem 5.12 of [EEPT06], but is a direct consequence of the proof in analogy
to Theorem 5.18. �	

6 Related Work and Conclusion

In this paper we dealt with bi-directional model transformations, a promising
technique in model-driven software development to keep related models consis-
tent or to evolve them into other models or executable code. Bi-directional trans-
formations can be defined using triple graph grammars which were introduced
by Schürr [Sch94]. In [KS06], Königs and Schürr considered a set-theoretical for-
malization of triple graph transformations. We took up this formalization and
extended it on the basis of category theory. To cope with the situation that
tools do not necessarily keep object identifiers while changing models, we con-
sider projections to source and target graphs in between. This makes the reversal
of transformations more complex, but also more flexible due to less requirements
on tools. We have shown that forward transformations are backward information
preserving, if their source graph can be created by corresponding source rules.

In [KS06], a comprehensive comparison with related model transformation
approaches, especially with bi-directional ones, is given. For example, BOTL
[MB03] and QVT [OMG05] are discussed and compared to triple graph gram-
mars. Although offering the concept of bi-directional transformation, sufficient
conditions for the existence of information preserving transformations have not
been given for these approaches.

In Section 5, we considered the extension of triple graph grammars to types
and attributes. While these extensions are straightforward, the addition of appli-
cation conditions to triple rules requires future investigations. From the practical
point of view, there is also a request for multiple source and target models, con-
sidering activities like multi-model requirement engineering and the creation of
a platform independent design model. The idea of triple graphs can be extended
in a straightforward way by replacing the span by some arbitrary network of
graphs. This approach has already been followed for defining viewpoint-oriented
specifications on the basis of distributed graph transformation in [GEMT00].

86 H. Ehrig et al.

References

[BRST05] Jean Bézivin, Bernhard Rumpe, Andy Schürr, and Laurence Tratt. Model
transformations in practice workshop. In Jean-Michel Bruel, editor, MoD-
ELS Satellite Events, volume 3844 of Lecture Notes in Computer Science,
pages 120–127. Springer, 2005.

[CH03] K. Czarnecki and S. Helsen. Classification of model transformation ap-
proaches. In On-line Proc. of the 2nd Workshop on Generative Techniques
in the context of Model-Driven Architecture, Anaheim, 2003.

[EEPT06] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of Alge-
braic Graph Transformation. EATCS Monographs in Theoretical Com-
puter Science. Springer, 2006.

[EPT04] H. Ehrig, U. Prange, and G. Taentzer. Fundamental theory for typed
attributed graph transformation. In F. Parisi-Presicce, P. Bottoni, and
G. Engels, editors, Proc. 2nd Int. Conference on Graph Transformation
(ICGT’04), Rome, Italy, volume 3256 of Lecture Notes in Computer Sci-
ence. Springer, 2004.

[GEMT00] M. Goedicke, B. Enders, T. Meyer, and G. Taentzer. Tool Support for
ViewPoint-Oriented Software Development: Towards Integration of Multi-
ple Perspectives by Distributed Graph Transformation. In Int. Workshop
on Applications of Graph Transformations with Industrial Relevance (AG-
TIVE’99), LNCS 1779, pages 369 – 378. Springer, 2000.

[KS06] A. König and A. Schürr. Tool Integration with Triple Graph Grammars -
A Survey. In Heckel, R. (eds.): Elsevier Science Publ. (pub.), Proceedings
of the SegraVis School on Foundations of Visual Modelling Techniques,
Vol. 148, Electronic Notes in Theoretical Computer Science pp. 113-150,
Amsterdam, 2006.

[LS05] Stephen Lack and Pawel Sobociński. Adhesive and quasiadhesive cate-
gories. Theoretical Informatics and Applications, 39(2):511–546, 2005.

[MB03] Frank Marschall and Peter Braun. Model transformations for the mda
with botl. In Proc. of the Workshop on Model Driven Architecture: Foun-
dations and Applications (MDAFA 2003), Enschede, The Netherlands,
pages 25–36, 2003.

[MG06] T. Mens and P. Van Gorp. A taxonomy of model transformation.
In Proc. International Workshop on Graph and Model Transformation
(GraMoT05), number 152 in Electronic Notes in Theoretical Computer
Science, Tallinn, Estonia, Elsevier Science, 2006.

[OMG05] OMG. MOF QVT Final Adopted Specification (05-11-01).
http://www.omg.org/docs/ptc/05-11-01.pdf, 2005.

[Sch94] A. Schürr. Specification of Graph Translators with Triple Graph Gram-
mars. In G. Tinhofer, editor, WG94 20th Int. Workshop on Graph-
Theoretic Concepts in Computer Science, volume 903 of Lecture Notes
in Computer Science, pages 151–163, Springer Verlag, Heidelberg, 1994.

Activity-Driven Synthesis of State Machines�

Rolf Hennicker and Alexander Knapp

Ludwig-Maximilians-Universität München
{hennicker,knapp}@ifi.lmu.de

Abstract. The synthesis of object behaviour from scenarios is a well-known
and important issue in the transition from system analysis to system design.
We describe a model transformation procedure from UML 2.0 interactions into
UML 2.0 state machines that focuses, in contrast to existing approaches, on stan-
dard synchronous operation calls where the sender of a message waits until the
receiver object has executed the requested operation possibly returning a result.
The key aspect of our approach is to distinguish between active and inactive
phases of an object participating in an interaction. This allows us to generate well-
structured state machines separating “stable” states, where an object is ready to
react to an incoming message, and “activity” states which model the computa-
tional behaviour of an object upon receipt of an operation call. The translation
procedure is formalised, in accordance with the UML 2.0 meta-model, by means
of an abstract syntax for scenarios which are first translated into I/O-automata as
an appropriate intermediate format. Apparent non-determinism in the automata
gives rise to feedback on scenario deficiencies and to suggestions on scenario re-
finements. Finally, for each object of interest the corresponding I/O-automaton
is translated into a UML 2.0 state machine representing stable states by simple
states and activity states by submachine states which provide algorithmic descrip-
tions of operations. Thus the resulting state machines can be easily transformed
into code by applying well-known implementation techniques.

1 Introduction

Scenario-based approaches describe system behaviour in terms of typical interactions
between several objects participating, for instance, in a single use case. Scenarios are
particularly useful in the analysis phase since they focus on the overall collaboration
of objects to perform a particular task. However, scenarios do not show the complete
behaviour of a single object which is left to the design phase where the objects’ life-
cycles can be described by state machines.

We propose a rigorous method to transform a set of scenarios, represented by
UML 2.0 sequence diagrams, into state machines. Our general assumption is that each
scenario is simple in the sense that it focuses only on one interaction sequence at a
time. Hence, we will deliberately not consider more expressive notations for sequence
diagrams (like, e.g., alternatives) which add computational complexity at the cost of
clarity; cf. the discussion on the specification of conditional behaviour by Fowler [1].

� This research has been partially supported by the GLOWA-Danube project (01LW0303A)
sponsored by the German Federal Ministry of Education and Research.

M.B. Dwyer and A. Lopes (Eds.): FASE 2007, LNCS 4422, pp. 87–101, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

88 R. Hennicker and A. Knapp

Additional behaviour can be shown in separate sequence diagrams for (secondary) sce-
narios. The task then is to transform the set of sequence diagrams into a set of state
machines, each showing the complete behaviour of a single object across the scenarios.

There are many approaches in the literature suggesting various strategies and so-
lutions for state machine synthesis and analysis, like, e.g., [2,3,4,5]; see [6] for an
overview. These approaches deal with asynchronous communication in the sense that
the sender of a message is immediately ready for further activation and, in contrast to
synchronous communication, does not wait until the receiver has executed its reaction
to the incoming operation call. We claim that, as a consequence, the resulting state ma-
chines do not provide an adequate design model if we consider standard applications
with synchronous operation calls and returns. The goal of this paper is to provide a
synthesis algorithm that takes into account synchronous calls and their corresponding
execution traces such that the resulting state machines can be easily transformed into a
standard implementation with a single thread of control.

Our method is centred around the treatment of object activations that occur (in a
sequence diagram) when an object has received an incoming message. During an acti-
vation an object may send messages to other objects, wait for corresponding results and
finally provide a return value. We hence focus on reactive system objects where inactive
phases, in which an object is waiting for an incoming message, and active phases, in
which an object reacts to an incoming message, alternate. Inactive phases are considered
as “stable” states. They may be given a name which will be used for matching different
scenarios when generating state machines. During the translation different activations
represented in different scenarios but caused by the same incoming message (after the
same stable state) will be integrated into a single activity of an object. Activities can
be considered as procedures in the sense of “Executable UML” [7]. They are modelled
by UML 2.0 submachines with one entry point and, in general, several exit points rep-
resenting different possible results (inferred from the different scenarios).1 The overall
state machine representing the life-cycle of an object is then obtained by integrating
stable states and “activity” states (represented by submachine states). The generated
state machines exhibit a general pattern with alternating stable and activity states. Any
outgoing transition from a stable state leads to the entry point of an activity state and
is labelled by an incoming message; upon completion of an activity a transition is fired
which connects an exit point of the activity state with the next stable state.

Technically, our transformation sets out from a set of UML 2.0 interactions which
are formalised, in accordance with the UML 2.0 meta-model, in terms of an appropriate
abstract syntax for scenarios (see Sect. 2). Taking these scenarios as input, our synthesis
procedure consists of the following four steps which are iteratively performed for each
(system) object o.

1. Projection of scenarios: For each scenario the communications in which the ob-
ject o under consideration participates are extracted. Such projections are usually
computed in state machine synthesis approaches.

2. Generation of behaviours from projected scenarios: Each projected scenario is
transformed into an equivalent but differently structured representation, called

1 We do not use UML 2.0 activity diagrams to model activities because, in contrast to UML 1.x,
the activity diagrams of UML 2.0 are not specialisations of state machine diagrams.

Activity-Driven Synthesis of State Machines 89

behaviour. A behaviour groups, for each incoming message, all subsequent out-
going messages sent by o into one activation capturing “the reaction” of object o
for each synchronous operation call according to a particular scenario (see Sect. 3).

3. Integration of behaviours into I/O-automata: After the first two steps there is still
one behaviour of system object o for each scenario. The different behaviours across
all scenarios are now integrated on the basis of common (stable) states. The result
is represented by an I/O-automaton with the incoming messages as input and the
corresponding object activations (together with a return) as output (see Sect. 4.1).
The non-deterministic transitions of the I/O-automaton serve as a basis for gener-
ating suggestions for scenario changes which are, in particular, directed towards
behavioural completion (see Sect. 4.2).

4. Translation of I/O-automata into UML 2.0 state machines: Finally, the generated
I/O-automaton is transformed into a UML 2.0 state machine with stable states and
activity states. The activity states integrate possible different reactions to the same
incoming message in a particular stable state (which may still have been present
in an I/O-automaton) into one single activity (see Sect. 5). It is worth to note that,
according to the abstract nature of the I/O-automata, translations into different con-
crete target representations are possible (e.g., generating instead of activity states
procedural expressions of some action language [7]).

For ease of comparison of our synthesis procedure with the approaches from the liter-
ature (see Sect. 6) we base our description on a widely used automatic teller machine
(ATM) example [2,5,8].

2 Scenarios

We introduce the sequence diagram language for describing scenarios by the well-
known ATM example [2,5,8]. In the following we consider the case where an atm object
reacts to a user who has inserted a card by validating the card with the help of the ob-
jects consortium and bank. The UML 2.0 sequence diagrams in Fig. 1(a) and Fig. 1(b)
detail two possible scenarios which have been formulated in [2,5] with the difference,
as pointed out in Sect. 1, that we consider here messages as synchronous operation calls
which may provide return values.2

A scenario describes a sequence of communications between scenario participants.
For scenario participants we distinguish between user actors (headed by stick figures)
and system objects (depicted by boxes). A communication consists of a synchronous
operation call (shown above a solid line with filled arrow head) and a return message
with a value (shown above a dashed arrow with open arrow head). An operation call
on a system object causes an activation (grey vertical rectangle) of the system object.
Before and after an activation a system object is in a certain state which can be left
implicit or be named explicitly (shown in a rounded rectangle).

2 Note that both scenarios can be considered as “secondary” scenarios since they describe vari-
ations of the normal behaviour described by a primary scenario which is not considered here
but could easily be included.

90 R. Hennicker and A. Knapp

atm consortium bank

insertCard

requestPassword

enterPassword verifyAccount verifyCardWithBank

: badAccount : badBankAccount

ejectCard

requestTakeCard

badAccountMessage

printReceipt

WaitPassword

displayMainScreen

takeCard
WaitTakeCard

WaitCard

WaitCard WaitBankVerify

WaitBankVerify

WaitVerify

sd

user

WaitVerify

Bad account

(a) Scenario: Bad account

atm consortium bank

enterPassword verifyAccount

: badPassword

verifyCardWithBank

: badBankPassword
requestPassword

WaitPassword

cancel

canceledMessage

ejectCard

requestTakeCard

WaitPassword

WaitTakeCard WaitVerify

Bad passwordsd

user

WaitVerify

WaitBankVerify

WaitBankVerify

(b) Scenario: Bad password

Fig. 1. ATM example

The abstract syntax of our scenario language, which conforms to a subset of UML 2.0
interactions [9], is rendered in the following BNF grammar where we assume the do-
mains SystemObject of system objects, User of user actors, State of states, Operation
of operations, and Value of typed values.

Scenario ::= Communication∗

Communication ::= UserCommunication | SystemCommunication

Activity-Driven Synthesis of State Machines 91

UserCommunication ::= UserMessage Return
UserMessage ::= Object Operation User

SystemCommunication ::= State SystemMessage Return State
SystemMessage ::= Object Operation SystemObject

Return ::= Value | void

Object ::= SystemObject | User

In a sequence of communications, a user communication represents a message from a
sending object to a receiving user actor together with its return; and a system commu-
nication a message from a sending object to a receiving system object again with its
return. The first (pre-)state in a system communication represents the state of the re-
ceiving system object before actually receiving the message, the second (post-)state the
state after having sent the return to the incoming message. We require that the post-state
of a system communication equals the pre-state of the next system communication with
the same receiving system object, which disallows spontaneous state changes on reac-
tive system objects. The reaction of a system object o to an incoming message, i.e., its
subsequent activation, is given implicitly by the sequence of all communications with
o as sender before the next incoming message to o arrives. Hence, we do not consider
nested activations caused by call-backs. Finally, we require that all returns are type cor-
rect in the sense that for a given operation either all return messages have no return
value (represented by void) or all return messages have a return value of the same type.

Table 1. Tabular representation of the scenarios

(a) Scenario: Bad account

Pre state (rcv.) Sender Operation Receiver Return Post state (rcv.)

WaitCard user insertCard atm void WaitPassword
− atm requestPassword user void −
WaitPassword user enterPassword atm void WaitTakeCard
WaitVerify atm verifyAccount consortium badAccount WaitVerify
WaitBankVerify consortium verifyCardWithBank bank badBankAccount WaitBankVerify
− atm badAccountMessage user void −
− atm printReceipt user void −
− atm ejectCard user void −
− atm requestTakeCard user void −
WaitTakeCard user takeCard atm void WaitCard
− atm displayMainScreen user void −

(b) Scenario: Bad password

Pre state (rcv.) Sender Operation Receiver Return Post state (rcv.)

WaitPassword user enterPassword atm void WaitPassword
WaitVerify atm verifyAccount consortium badPassword WaitVerify
WaitBankVerify consortium verifyCardWithBank bank badBankPassword WaitBankVerify
− atm requestPassword user void −
WaitPassword user cancel atm void WaitTakeCard
− atm canceledMessage user void −
− atm ejectCard user void −
− atm requestTakeCard user void −

92 R. Hennicker and A. Knapp

Using a tabular notation, similar to the one suggested in the UML 2.0 superstructure
specification [9, App. E], the sequence diagrams for the scenarios of the ATM example
are represented by the two sequences of communications shown in Tab. 1. For missing
returns void has been filled in. In our example, all states have user-defined names, but
in general this is not necessary and states which were left implicit in the graphical
representation of the sequence diagrams would be considered to be pairwise different
and would be equipped with different artificial names. The symbol “−” is used in user
communications where no states are needed for the user actor.

For deriving the behaviour of a given system object across many scenarios, we as-
sume an ordering on the given set of scenarios such that the pre-state of the first com-
munication of the system object in a successive scenario is already present as a state in
one of its predecessor scenarios. For instance, the pre-state WaitPassword of atm in the
second scenario Bad password occurs in the first scenario Bad account.

The scenario language differs from the MSC-based languages used in [5], [3], or [2]
by three main concepts: the distinction between user actors and system objects, the use
of activations and the use of return values. On the other hand, as discussed in Sect. 1,
we deliberately do not include more complex constructs for interaction composition.

3 Generating Behaviours from Scenarios

For the synthesis of state machines from scenarios we focus (iteratively) on a single
system object for which the different scenarios have to be integrated. In a first step,
similarly to all other synthesis algorithms, a projection operation discards communi-
cations in a scenario that are not relevant for the system object o under consideration.
More formally, given a system object o and a scenario S, the projection of S to o is de-
fined as the scenario proj (S, o) which consists of all those communications of S where
o is either the sending or the receiving object. In our running example, the projection
proj (Bad account, atm) to the system object atm yields the sequence of communications
in Tab. 1(a) with the fifth line removed, and the projection proj (Bad password, atm) to
atm yields the sequence of communications in Tab. 1(b) with the third line removed. If
we focus on the system object consortium the projections proj (Bad account, consortium)
and proj (Bad password, consortium) yield the communications shown in Tab. 2.

In the second step we transform for each system object each single projected scenario
into an equivalent but differently structured representation, called behaviour, where for

Table 2. Projection of the scenarios to consortium

(a) Scenario: Bad account

Pre state (rcv.) Sender Operation Receiver Return Post state (rcv.)

WaitVerify atm verifyAccount consortium badAccount WaitVerify
WaitBankVerify consortium verifyCardWithBank bank badBankAccount WaitBankVerify

(b) Scenario: Bad password

Pre state (rcv.) Sender Operation Receiver Return Post state (rcv.)

WaitVerify atm verifyAccount consortium badPassword WaitVerify
WaitBankVerify consortium verifyCardWithBank bank badBankPassword WaitBankVerify

Activity-Driven Synthesis of State Machines 93

each incoming message (received in some state) the subsequent outgoing messages and
the final return are grouped into one activation. After an activation has finished the ob-
ject (possibly) changes its state. Thus, each (projected) scenario can be transformed into
a block structure where each block consists of a pre-state, an incoming message, the cor-
responding activation and a post-state. The following grammar captures this intuition:

Behaviour ::= Block∗

Block ::= State InMessage Activation State
Activation ::= OutMessage∗ Return
InMessage ::= Operation

OutMessage ::= Operation Object Return

From a scenario S ∈ Scenario and a system object o ∈ SystemObject, the operation
beh(S, o) computes the behaviour of o in S, by first projecting S to o and then collecting
all messages sent by o between two subsequent messages received by o:

beh : Scenario × SystemObject → Behaviour
beh(S, o) = act(proj (S, o), o)

act : Scenario × SystemObject → Behaviour
act(ε, o) = ε

act(〈pre, 〈snd, op, o〉, ret, post〉 cs, o) = 〈pre, op, 〈outs, ret〉, post〉 act(rest, o)
where (outs, rest) = collect(cs, o)

collect : Communication∗ × SystemObject → OutMessage∗ × Communication∗

collect(ε, o) = (ε, ε)
collect(〈pre, 〈snd, op, rcv〉, ret, post〉 cs, o) =

⎧
⎨

⎩

(ε, 〈pre, 〈snd, op, rcv〉, ret, post〉 cs) if rcv = o
(〈op, rcv, ret〉 outs, rest) if snd = o

where (outs, rest) = collect(cs, o)

where 〈pre, 〈snd, op, rcv〉, ret, post〉 ∈ Communication and cs ∈ Communication∗; ε
denotes the empty sequence; sequence composition is denoted by juxtaposition; and
angle brackets compound syntax fragments. The behaviours of atm and consortium for
our running example scenarios Bad account and Bad password are given in Tab. 3.

Note that the construction of activations, based upon the function collect , marks
a significant methodological and technical difference to the approaches in [5], [2],
and [3], which has a crucial impact on the construction of UML 2.0 state machines
described below.

4 Integrating Behaviours into I/O-Automata

The behaviours constructed in the last section are still split according to the origi-
nal set of scenarios. The goal of the next step is to integrate for each system ob-
ject its computed set of behaviours on the basis of shared states; these shared states
must have been determined already by the modeller of the scenarios by giving them
the same names. For the integration of behaviours we use as an intermediate format

94 R. Hennicker and A. Knapp

Table 3. Behaviours for atm and consortium in each scenario

(a) Behaviour of atm in scenario Bad account

Pre state Message in Messages out Return Post state

WaitCard insertCard 〈requestPassword, user, void〉 void WaitPassword
WaitPassword enterPassword 〈verifyAccount, consortium, badAccount〉

〈badAccountMessage, user, void〉
〈printReceipt, user, void〉
〈ejectCard, user, void〉
〈requestTakeCard, user, void〉 void WaitTakeCard

WaitTakeCard takeCard 〈displayMainScreen, user, void〉 void WaitCard

(b) Behaviour of atm in scenario Bad password

Pre state Message in Messages out Return Post state

WaitPassword enterPassword 〈verifyAccount, consortium, badPassword〉
〈requestPassword, user, void〉 void WaitPassword

WaitPassword cancel 〈canceledMessage, user, void〉
〈ejectCard, user, void〉
〈requestTakeCard, user, void〉 void WaitTakeCard

(c) Behaviour of consortium in scenario Bad account

Pre state Message in Messages out Return Post state

WaitVerify verifyAccount 〈verifyCardWithBank, bank, badBankAccount〉 badAccount WaitVerify

(d) Behaviour of consortium in scenario Bad password

Pre state Message in Messages out Return Post state

WaitVerify verifyAccount 〈verifyCardWithBank, bank, badBankPassword〉 badPassword WaitVerify

I/O-(input-/output-)automata before we finally construct concrete state machines. To
use I/O-automata has several advantages: First, the integration process can be defined
in terms of standard techniques for joining I/O-automata. Moreover, I/O-automata pro-
vide an abstract representation which is appropriate for feedback on problems in the
integration process which can either be resolved by human manipulation of the scenar-
ios or by choosing a default integration strategy. Finally, the intermediate representation
paves the way for transforming scenario models into different concrete notations, like,
in our case, UML 2.0 state machines or the “Executable UML” [7] or LTSA [5].

4.1 I/O-Automata

Formally, an I/O-automaton is a quadruple (Z, In, Out, δ) with Z its states, In the input
alphabet, Out the output alphabet, and δ ⊆ Z × In×Out×Z the transition relation. An
I/O-automaton with initial state is a quintuple (Z, In, Out, δ, z0) where (Z, In, Out, δ)
is an I/O-automaton and z0 ∈ Z is the initial state.

Each single behaviour of a system object constructed in Sect. 3 can be seen as an I/O-
automaton where the states in a behaviour are directly taken as the states of the automa-
ton, the input messages as the input to the automaton, the activations, i.e., the sequences
of output messages with final returns, as the output of the automaton, and each block as
a transition. Given a scenario S and a system object o, the function io(S, o) constructs

Activity-Driven Synthesis of State Machines 95

cancel /
canceledMessage, user, void
ejectCard, user, void
requestTakeCard, user, void void

takeCard /
displayMainScreen, user, void void

insertCard /
requestPassword, user, void void

enterPassword /
verifyAccount, consortium, badPassword
requestPassword, user, void void

enterPassword /
verifyAccount, consortium, badAccount
badAccountMessage, user, void
printReceipt, user, void
ejectCard, user, void
requestTakeCard, user, void void

WaitCard

WaitTakeCard

WaitPassword

(a) Integrated I/O-automaton of atm

WaitVerify

verifyAccount /
verifyCardWithBank, bank, badBankPassword

badPassword
verifyCardWithBank, bank, badBankAccount

verifyAccount /

badAccount

(b) Integrated I/O-automaton of consortium

Fig. 2. Integrated I/O-automata for atm and consortium

an I/O-automaton (Z, In, Out, δ) for the behaviour of o in S as follows: Z is given by the
set of states in beh(S, o); In is given by the set of in-messages in beh(S, o); Out is given
by the activations in beh(S, o), i.e., the pairs of sequences of out-messages and returns;
and δ is defined by requiring (pre, in, (outs, ret), post) ∈ δ iff 〈pre, in, 〈outs, ret〉, post〉
is a block in beh(S, o).

The integration intio(S0, {S1, . . . , Sn}, o) of a given scenario S0 with further sce-
narios S1, . . . , Sn with respect to a system object o is now simply the (joined) I/O-
automaton with initial state (Z0 ∪ · · · ∪ Zn, In0 ∪ · · · ∪ Inn, Out0 ∪ · · · ∪ Outn, δ0 ∪
· · · ∪ δn, z0) with io(Si, o) = (Zi, Ini, Outi, δi) and z0 the pre-state of the first block in
beh(S0, o).

Figure 2(a) shows the integrated I/O-automaton of the atm object (with initial state)
for the scenarios of our running example. Similarly, Figure 2(b) shows the integrated
I/O-automaton of the consortium object.

4.2 Feedback

The integration of scenarios into a single I/O-automaton with initial state will, in gen-
eral, result in a non-deterministic automaton. On the one hand, non-determinism reflects
under-specification and thus is intentional. On the other hand, non-determinism can also
be a symptom for incompleteness or errors in the original scenarios. Indeed, we would

96 R. Hennicker and A. Knapp

atm consortium

WaitPassword

WaitPassword

user

requestPassword

enterPassword verifyAccount

: badAccount

Fig. 3. Non-deterministic scenario Bad password (fragment)

expect different reaction sequences to an incoming message to be justified by different
source states or by different returns in the sequence of outgoing messages of the reac-
tion, and the user of the synthesis procedure will be warned about the possible error.

Suppose that for some source state and an input in the integrated I/O-automaton two
sequences of outgoing messages of the following form appear:

m1 . . . mk−1 〈opk, rcvk, retk〉 〈opk+1, rcvk+1, retk+1〉 mk+2 . . . cl

m1 . . . mk−1 〈opk, rcvk, ret′k〉 〈op′k+1, rcv′k+1, ret′k+1〉 m′
k+2 . . . c′n

If retk = ret′k, but opk+1 �= op′k+1 or rcv′k+1 �= rcv′k+1 the user will be informed
that retk and ret′k should be different, in order to ensure deterministic behaviour. As a
simple example, consider the scenario fragment in Fig. 3, which modifies the scenario
Bad password of Fig. 1(b) by using as a return for verifyAccount the same value badAc-
count that has been used in the scenario Bad account. Then, the different continuations
between the first and the (changed) second scenario indicate non-determinism which
should be resolved by the user.

Similarly, suppose that some source state pre and an input in is followed by two se-
quences of outgoing messages, subsequent returns, and successor states of the following
form:

〈pre, in, 〈m1 . . .mn, ret〉, post〉
〈pre, in, 〈m1 . . .mn, ret′〉, post′〉

If ret �= ret′, the user will be warned that either ret should be the same as ret′ or the ac-
tivation sequences before should be different, because after exactly the same activation
(for the same in-message and the same pre-state) there is no obvious reason to provide
different return values. Analogously, if ret = ret′ but post �= post′ a warning is issued.

5 Translating I/O-Automata into UML 2.0 State Machines

The generated I/O-automaton for the integrated behaviour of a system object in scenar-
ios can be seen as a UML 2.0 state machine keeping the state-transition structure and
only turning in-messages into triggers and sequences of out-messages with a return into
effects. The drawback of this mere adaptation of the notation to UML is that it shows
different activations following the same incoming message on different transitions re-
taining unnecessary non-determinism.

Activity-Driven Synthesis of State Machines 97

[r = retn]

[r = ret1]

...rcv.op()do / r :=

Fig. 4. Actions as state machine fragment

Thus, in order to obtain a comprehensive representation of the activity that follows
an incoming message we transfer activations to state machines by discerning two kinds
of states: stable states, in which a system object waits for a message; and activity states,
in which the reaction to an incoming message is processed. The different sequences of
outgoing messages and the subsequent returns mark different exits to such an activity
state, in general leading to different (stable) successor states. In UML 2.0, submachine
states provide the necessary structure for the activity states, with entry and exit points
(shown as circles and crossed circles) encapsulating the internal behaviour of the con-
tained state machine; simple states represent stable states. In fact, activity states capture
procedures in the sense of “Executable UML” [7], but make case distinctions in proce-
dure executions graphically explicit.

For integrating the reaction to an incoming message in ∈ In in a state z ∈ Z
of an I/O-automaton with initial state (Z, In, Out, δ, z0) = intio(S0, {S1, . . . , Sn}, o)
into a submachine, we first turn the outgoing operation calls in the activation set
R(z, in) = {out ∈ Out | ∃z′ ∈ Z . (z, in, out, z′) ∈ δ} into state machine fragments:
If (op, rcv) is a pair of an operation and a receiving object such that 〈op, rcv, ret〉 oc-
curs in an out ∈ R(z, in) with some return ret and if (m1 . . . mk 〈op, rcv, ret1〉) . . .
(m1 . . . mk 〈op, rcv, retn〉) are all occurrences of (op, rcv) in R(z, in) after a com-
mon prefix m1 . . .mk with n > 0 different returns ret1, . . . , retn, we construct a state
machine fragment M(z, in, m1 . . . mk, op, rcv) of the form in Fig. 4 with r an auxil-
iary variable. In a next step, the different state machine fragments for out-messages
in the activation set R(z, in) are assembled into a single submachine: The transition
for [r = reti] of M(z, in, m1 . . . mk, op, rcv) is merged to the incoming transition of
M(z, in, m1 . . . mk 〈op, rcv, reti〉, op′, rcv′). Finally, we define an entry point for each
M(z, in, ε, op, rcv) and exit points for each M(z, in, m1 . . . mk, op, rcv) with m1 . . .mk

a maximal sequence of out-messages in R(z, in). The result of applying this procedure
to enterPassword in the state WaitPassword in Fig. 2(a) is depicted in Fig. 5(a).

Having defined submachines for the activation sets R(z, in) an integrated state ma-
chine can now be synthesised by introducing stable states from the I/O-automaton as
simple states and connecting these by transitions to activity states as submachine states
referencing the submachines from R(z, in). For the two ATM scenarios the result of the
translation of the I/O-automaton of atm in Fig. 2(a) is shown in Fig. 5(b). The states
WaitCard, WaitPassword, and WaitTakeCard are the stable states, the states : insertCard,
: enterPassword, : cancel, and : takeCard are the activity states of the state machine.

It is worth noting that for each system object the separation of stable and activ-
ity states leads to a sequential behavioural design model which can be directly im-
plemented using the state pattern [10] or a straightforward implementation by means
of state variables. The latter approach represents the incoming messages of a system
object by methods which show a case distinction according to the stable states and

98 R. Hennicker and A. Knapp

do /
user.requestPassword

2

enterPassword

check := consortium.verifyAccount
do /

[check = badPassword]

[check = badAccount]

1
do /
user.badAccountMessage;

user.ejectCard;
user.requestTakeCard

user.printReceipt;

(a) UML 2.0 submachine for reaction of atm to enterPassword.

WaitCard : insertCard

: cancel

WaitPassword

: enterPassword
1

WaitTakeCard

2

: takeCard

enterPassword /

insertCard / / return void

cancel /

/ return void

/ return void

takeCard / / return void

/ return void

(b) UML 2.0 state machine of atm with stable and activity states.

Fig. 5. Synthesised state machines for atm

implement the behaviour of the activity states. Using Java as implementation language
and recording the current state in an enumeration-typed variable currentState, the
implementation of enterPassword takes the following form:

void enterPassword() {
switch (currentState) {

case WAIT_PASSWORD:
VerificationResult check = consortium.verifyAccount();
if (check == VerificationResult.BAD_ACCOUNT) {
user.badAccountMessage(); . . .
currentState = State.WAIT_TAKECARD;
return;

}
if (check == VerificationResult.BAD_PASSWORD) {
user.requestPassword();
currentState = State.WAIT_PASSWORD;
return;

}
break;

default:
}

}

Activity-Driven Synthesis of State Machines 99

6 Related Work

To our knowledge, in contrast to all other approaches to state machine synthesis our
method sets out from scenarios with a clear distinction between inactive (stable) states
and activation phases that follow as a reaction to a synchronous operation call. Our ap-
proach is activity-driven in the sense that during the transformation process different
activations occurring in different scenarios but following the same incoming message
(in the same stable state) are integrated into one single activity which models the be-
haviour of an operation across many scenarios. Such a model can be easily translated
into a sequential program.

In order to compare our results with the literature we can use the same ATM case
study which, in an asynchronous environment, is modelled by the same scenarios
as shown in Fig. 1, but deleting all states and replacing all synchronous and return
messages by asynchronous messages [2,5] (we have omitted the initial outgoing dis-
playMainScreen message). This example is also the basis for the detailed comparison
in [5]. The crucial difference to the synchronous case is that instead of the return
values badAccount and badBankAccount of the operations verifyAccount and verifyCard-
WithBank, respectively, now (call-back) messages are used to indicate the result of a
verification.3

For the integration of the asynchronous scenarios different strategies have been pro-
posed in the literature. According to [6], these approaches can mainly be categorised
into synthesis algorithms which are based on matching conditions and algorithms which
are based on matching events or actions.

As an instance of the first group, the integration procedure of Whittle and
Schumann [2] is based on matching of pre-/post-conditions that the user has to pro-
vide (for incoming and outgoing messages) as an input to the transformation process.
As a result, Whittle and Schumann obtain for the atm the state machine in Fig. 6(a)
which has a completely different structure than the activity-based state machine for syn-
chronous communication shown in Fig. 5. Also the hierarchical state machine
developed in a last step in Whittle and Schumann’s algorithm does not follow an
activity-based integration strategy but groups states according to values of state vari-
ables in pre-/post-conditions. The approaches by Krüger et al. [3] and Uchitel et al. [5]
are based on a similar strategy; here, explicit states, like in our scenarios, have to be pro-
vided, and Uchitel et al. also take into account combinations of basic scenario
blocks.

The Fujaba approach to integrate scenarios into a state machine, proposed by Maier
and Zündorf [4], is based on matching of send actions. In this way one would obtain
for the above scenarios the state machine in Fig. 6(b) which in turn is not aimed at
exhibiting the computational behaviour of operations. The SCED/MAS algorithm by
Mäkinen and Systä [11] falls in the same category of event matching procedures, but
also uses a learning procedure for synthesis.

3 In the asynchronous approach, [2,5] distinguish also a further scenario where the user can-
cels the transaction before the consortium has called back the atm, which is not possible
in the synchronous approach.

100 R. Hennicker and A. Knapp

cancel / user.canceledMessage; user.ejectCard

/ user.requestPassword enterPassword /insertCard /

consortium.verifyAccount

/ user.requestTakeCard

badPassword /

takeCard /

user.displayMainScreen

badAccount /

user.badAccountMessage; user.printReceipt; user.ejectCard

(a) According to Whittle and Schumann [2]

do / user.
requestPassword

do / user.
ejectCard

do / user.
requestTakeCard

do / user.
cancelMessage

do / consortium.
verifyAccount

do / user.
badAccountMessage

do / user.
printReceipt

do / user.
displayMainScreen

insertCard /

takeCard /

cancel /

enterPassword /

badPassword /

badAccount /

(b) According to Maier and Zündorf [4]

Fig. 6. Integrated atm state machine in asynchronous approaches

7 Conclusions and Future Work

We have described a model transformation procedure for synthesising an integrated
UML 2.0 state machine from scenarios given as UML 2.0 interactions. The approach
focuses on reactive objects, where activities are triggered by incoming synchronous
messages. The transformation procedure constructs an intermediate I/O-automaton for
the behaviour of a single object integrating the scenarios. The non-deterministic tran-
sitions of the I/O-automaton provide the basis for systematic feedback to the user of
the transformation about integration problems, which will iteratively lead to more com-
plete and refined scenarios. Finally, the integrated I/O-automaton is translated into a
UML 2.0 state machine which describes the overall behaviour of an object distinguish-
ing between stable and activity states. The activity states are represented by UML 2.0
submachines (with entry- and exit-points) modelling the reaction of an object to an
operation call (occurring in a stable state).

A related distinction has been suggested by Tenzer and Stevens [12] who use pro-
tocol state machines to specify the permissible sequences of operation calls occurring
in stable states and method state machines to model the execution of the actions of
an operation. However, Tenzer and Stevens do not model state dependent reactions on

Activity-Driven Synthesis of State Machines 101

operation calls and do not focus on a synthesis procedure but rather on the modelling
of recursive calls and call-backs which we have not considered yet. Further steps to
make our synthesis algorithm more complete concern message parameters, which can
be easily added, and an extension to scenarios with both synchronous and asynchronous
messages, which should work along the same lines as the current approach.

Finally, let us remark that our approach can be adjusted to a component-based frame-
work where scenarios are used to identify provided and required interfaces of com-
ponents and the synthesis procedure generates UML 2.0 protocol state machines for
the ports of a component. In particular, the encapsulation of activities allows for inde-
pendent refinement, of operation behaviour, on the one hand, and of the protocol on
the other.

References

1. Fowler, M.: UML Distilled: Applying the Standard Object Modeling Language. Addison-
Wesley, Boston–&c. (1997)

2. Whittle, J., Schumann, J.: Generating Statechart Designs from Scenarios. In: Proc. 22nd Int.
Conf. Software Engineering (ICSE’00), IEEE Press (2000) 314–323

3. Krüger, I., Grosu, R., Scholz, P., Broy, M.: From MSCs to Statecharts. In Rammig, F.J., ed.:
Distributed and Parallel Embedded Systems, Kluwer Academic, Boston–Dordrecht (1999)
61–71

4. Maier, T., Zündorf, A.: The Fujaba Statechart Synthesis Approach. In: Proc. 2nd Int. Wsh.
Scenarios and State Machines: Models, Algorithms, and Tools (SCESM’03), Portland, Ore-
gon (2003)

5. Uchitel, S., Kramer, J., Magee, J.: Synthesis of Behavioral Models from Scenarios. IEEE
Trans. Softw. Eng. 29 (2003) 99–115

6. Liang, H., Dingel, J., Diskin, Z.: A Comparative Survey of Scenario-based To State-based
Model Synthesis Approaches. In: Proc. 5th Int. Wsh. Scenarios and State Machines: Models,
Algorithms and Tools (SCESM’06), Shanghai (2006) 5–12

7. Mellor, S.J., Balcer, M.J.: Executable UML — A Foundation for Model-Driven Architecture.
Addison-Wesley, Boston–&c. (2002)

8. Blaha, M., Rumbaugh, J.: Object-Oriented Modeling and Design with UML. 2nd edn. Pear-
son Education, Upper Saddle River, N. J. (2005)

9. Object Management Group: Unified Modeling Language: Superstructure, version 2.0. (2005)
http://www.omg.org/cgi-bin/doc?formal/05-07-04(06/12/28).

10. Gamma, E., Helm, R., Johnson, R.E., Vlissides, J.: Design Patterns. Addison-Wesley,
Boston–&c. (1995)

11. Mäkinen, E., Systä, T.: MAS: An Interactive Synthesizer to Support Behavioral Modelling
in UML. In: Proc. 23rd IEEE Int. Conf. Software Engineering (ICSE’01), IEEE Computer
Society (2001) 15–24

12. Tenzer, J., Stevens, P.: Modelling Recursive Calls with UML State Diagrams. In Pezzè,
M., ed.: Proc. 6th Int. Conf. Fundamental Approaches to Software Engineering (FASE’03).
Volume 2621 of Lect. Notes Comp. Sci., Springer, Berlin (2003) 135–149

Flexible and Extensible Notations for Modeling

Languages�

Jimin Gao, Mats Heimdahl, and Eric Van Wyk

Department of Computer Science and Engineering
University of Minnesota

Abstract. In model-based development, a formal description of the soft-
ware (the model) is the central artifact that drives other development
activities. The availability of a modeling language well-suited for the
system under development and appropriate tool support are of utmost
importance to practitioners. Considering the diverse needs of different
application domains, flexibility in the choice of modeling languages and
tools may advance the industrial acceptance of formal methods.

We describe a flexible modeling language framework by which lan-
guage and tool developers may better meet the special needs of various
users groups without incurring prohibitive costs. The framework is based
on a modular and extensible implementation of languages features using
attribute grammars and forwarding. We show a prototype implementa-
tion of such a framework by extending the host language Mini-Lustre,
an example synchronous data-flow language, with a collection of features
such as state transitions, condition tables, and events. We also show how
new languages can be created in this framework by feature composition.

1 Introduction

Model-based development is gaining interest from the software industry, espe-
cially in the domain of safety critical systems. The aims are cost reduction and
quality improvement through early defect removal through model testing and
formal analysis, and automated code generation. There are currently many com-
mercial and research tools that attempt to provide these capabilities [1,2,3,4,5].

In previous work [6] we discussed several factors that hinder the widespread
adoption of formal methods and model-based development in practice. We also
formulated several conjectures related to this topic, one of which is related to the
work presented in this report: “no modeling language will be universally accepted,
nor universally applicable.” If a notation is not liked by the intended users it
will simply not be used; a multitude of (domain-specific) languages is needed.
Current languages and tools infrastructures are inflexible and make language
customization and tool integration difficult and costly. As illustration, consider
the following two scenarios.
� Different aspects of this work are partially funded by NSF CAREER Award

#0347860, NSF CCF Award #0429640, and the McKnight Foundation.

M.B. Dwyer and A. Lopes (Eds.): FASE 2007, LNCS 4422, pp. 102–116, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Flexible and Extensible Notations for Modeling Languages 103

First, a development team for an air-transport flight guidance system needs a
modeling language. These systems are typically periodical and take actions when
certain (generally rather complex) conditions hold. Due to the complexity of the
conditions, condition tables, such as those found in RSML−e [5] and SCR [4]
would be useful when reviewing the models with domain experts and regulators.
The developer’s engineers prefer to use a data-flow language specifically designed
for control systems, for example, Lustre. Thus, a language that is basically Lustre
extended with RSML−e-style tables would be desirable.

Second, a development team for pre-launch checkout software for a launch ve-
hicle seeks a modeling language appropriate for capturing the complex sequences
of events that must occur before it is safe to launch the vehicle. The team finds
a pure data-flow language like Lustre unsuitable for the task (they would pre-
fer an explicit notion of states and events), but they like the analysis support
available for Lustre (numerous model checkers and theorem provers). The team
finds the RSML−e syntax more suitable for the task at hand, but does not find a
commercial tool supporting the creation nor analysis of RSML−e models. They
wonder if the Lustre toolset could be extended with RSML−e features to easily
leverage existing analysis and code generation capabilities.

Because customizing commercial toolsets and building tools from the ground
up to provide expanded language and analysis support is generally infeasible or
too costly we believe a different view of modeling languages and tools is needed.
Instead of treating each modeling language as a fixed, monolithic entity, and
implementing its tool support based on that view, we adopt the notion of exten-
sible languages—language implementations that are intended and optimized for
future (front-end and back-end) additions (and possibly modifications). In this
view, the artifacts include a host language and a set of language extensions that
define desired language features not found in the host language.

The flexible modeling language framework described in this paper is based
on the general idea that language extensions may introduce new constructs to
the host language, new semantic analyses that, for example, ensure that the
constructs defined in an extension are used correctly, and new translations to
different target languages. In this framework, a domain-specific language can be
easily created through inclusion of language extensions in the host language. In
our domain, synchronous languages, (e.g., Safe State Machines [2], SCADE [2],
and SCR [4], to name just a few) are prevalent and all share the same seman-
tic foundations. We believe that most (if not all) features of these languages
can be implemented as extensions to a host language in our flexible language
framework. Based on our experiences in model-based development, we believe
that Lustre [7] is a suitable host language. First, Lustre is expressive enough to
capture a large class of interesting behaviors and it has a simple and well-defined
semantics suitable for analysis [8]. Second, there are commercial tools for Lustre
that interest industrial users [2]. Here we use a reduced version (Mini-Lustre)
that espouses the key features of full Lustre, but omits some rather involved
and, for the purpose of this paper, less important ones.

104 J. Gao, M. Heimdahl, and E. Van Wyk

In this framework, language features such as RSML−e-style tables, Statecharts
like events, and designated state variables do not need to be implemented in the
host language but can instead be implemented as a language extension allowing
us to address the needs of the developers in our first scenario.

The host-language is designed to have specific tool support; here, Mini-Lustre
comes with support for semantic analysis such as type checking as well as a
translation to a general purpose programming language and a number of trans-
lations from Mini-Lustre to the input languages of a number of analysis tools.
Thus, to address the second scenario we create language extensions that (1) add
the syntax and semantic analysis of the desired new language, (2) specify the
translation of the new language constructs to the host language Mini-Lustre,
and (3) hide the undesirable (concrete) syntax of Mini-Lustre so that the new
language primarily uses the host language as an intermediate representation to
take advantage of the translations to various analysis tools. Note that new trans-
lations from the host language to new analysis engines will automatically work
to languages created by extending the host language.

To be useful, extensible language frameworks need two crucial characteristics.
First, language constructs implemented as language extensions must have the
same “look and feel” as constructs in the host language. That is, at a minimum,
they should perform some semantic analysis to report error messages at the
extension level and not rely on their translation to the host language for error
checking. Thus, traditional macros are not an acceptable means for implementing
language constructs as error checking is done on the constructs to which the
macros expand. Second, language extensions must be composable so that various
language extensions, implemented independently, can be imported into a host
language in a cost-effective way. For some language extensions, the composition
can be entirely automatic. The language user may just select language extensions
from a list and the framework automatically builds the specification for the
new extended language. This composition is possible for the first scenario above
in which the host language Lustre is extended with RSML−e-style tables. In
other cases, composition may require more involvement from someone skilled
in language development; this is the case in our second scenario where Lustre
is extended with state variables and the underlying Lustre constructs such as
nodes and data-flow equations need to be hidden (at last syntactically). Both
forms of composition are demonstrated in Section 3.5.

Our extensible view of modeling languages may be realized using attribute
grammars with forwarding [9]. The host language is implemented by writing an
attribute grammar specification of the language. We have developed an attribute
grammar specification language, called Silver for this purpose. The Silver tools
automatically generate an attribute grammar evaluator for languages specified
in Silver. Language extensions, such as the addition of tables suggested above,
are implemented as attribute grammar fragments. The combination of the host
language attribute grammar and the selected attribute grammar fragments that
implement language extensions provide a specification for the new languages as
required in our sample scenarios. Again, the Silver tools provide an automatic

Flexible and Extensible Notations for Modeling Languages 105

implementation for these new languages. We illustrate the feasibility of this
approach by implementing solutions to the problems posed in each scenario.

Section 2 presents an implementation of Mini-Lustre as a Silver attribute
grammar specification. Section 3 shows how extensions to Lustre can be imple-
mented as attribute grammar fragments and composed to create new (extended)
languages. These exercises provide a view of the power of this approach. Section 4
discusses related and future work and concludes.

2 Mini-Lustre: The Host Language

Lustre is a synchronous data flow language designed for programming reactive
systems as well as for describing hardware. Lustre is synchronous in that it
provides temporal determinism by partitioning physical time into discrete time
points, at which computations react instantaneously to external events. This
high-level paradigm is specially designed for abstracting the actual computation
away from the complex timing constraints involved with control systems. In ad-
dition, Lustre specifies its computations using a data flow model, which enables
natural parallelism and tractable analysis.

Consider the example in Fig. 1. It specifies partial functionality of an Altitude
Switch (ASW), an avionics system that turns the power on for another system
when the aircraft descends below a threshold altitude and turns it off when the
aircraft ascends above the threshold plus a hysteresis factor. Here we focus on
the AltStatus variable used to keep track whether the aircraft should be consid-
ered above or below the threshold. The initial value of AltStatus is undefined
(Unknown ->) and thereafter assigned by the nested if-expression. We assign
AltStatus the value Above if the altitude readings are reliable (AltQuality
= Good) and we are either (1) classifying AltStatus for the first time (pre
(AltStatus) = Unknown) and we are above the threshold or (2) AltStatus has
been established and we are above the threshold plus the hysteresis. AltStatus
is Below if altitude readings are reliable and the altitude is less than or equal to
the threshold. If the altitude readings are not reliable AltStatus is Unknown.

type Status = enum { Unknown, Above, Below } ;

node ASW (AltQuality:Quality, AltThres:int, Hyst:int, Altitude:int)
returns (AltStatus:Status) ;

let AltStatus = Unknown ->
if AltQuality = Good and Altitude > AltThres and

(pre(AltStatus) = Unknown or Altitude > AltThres + Hyst) then Above
else if AltQuality = Good and (not Altitude > AltThres) then Below
else if not AltQuality = Good then Unknown
else pre(AltStatus) ; tel;

Fig. 1. ASW in Mini-Lustre

106 J. Gao, M. Heimdahl, and E. Van Wyk

grammar lustre ;
nt Root, NodeList, Node, VarDeclList, VarDecl, Locals, EqList, Eq, Expr ;
syn attr pp :: String occurs on Root, Node, Expr, VarDecl, ... ;
syn attr errors :: String occurs on Root, Node, Expr, ... ;
syn attr ctrans :: String occurs on Root, Node, Expr, ... ;

prod root r::Root ::= nl::NodeList
{ r.errors = nl.errors; r.pp = nl.pp; r.ctrans = ... nl.ctrans ...; }

prod nodeListCons nl::NodeList ::= n::Node nltail::NodeList { ... }
prod nodeListOne nl::NodeList ::= n::Node { ... }
prod node n::Node ::= name::Id inputs::VarDeclList outputs::VarDeclList

locals::VarDeclList eql::EqList
{ n.pp = "node " ++ name.lexeme ++ " (" ++ inputs.pp ++ ") " ++ ... ;

n.errors = inputs.errors ++ outputs.errors ++ locals.errors ++ eql.errors ;
n.ctrans = ... ; }

prod varDecl vd::VarDecl ::= var::Id type::Type
{ vd.pp = var.lexeme ++ " : " ++ type.lexeme ; }

prod equation eq::Eq ::= id::Id expr::Expr
{ eq.pp = id.lexeme ++ " = " ++ expr.pp ++ ";\n" ;

eq.errors = ... ; /* ensure id and expr have same type */ }

Fig. 2. A portion of the Silver specification of Mini-Lustre

We provide the attribute grammar (AG) specification for Mini-Lustre, which
contains the characteristic features of full Lustre, such as node declarations and
synchronous computation. The specification is written in Silver and shown in
Fig. 2 and Fig. 3. In general, a Silver specification for a language consists of
a series of declarations that define its concrete and abstract syntax as well as
rules which assign values to attributes associated with nonterminals. To define
the syntax, there are declarations for terminals, nonterminals (keyword nt), and
productions (prod). Productions marked as concrete are used to construct the
parser. They are as expected and thus not shown in Fig. 2 or Fig. 3. The AG
portion of the specification consists of declarations for attributes (attr), and
production-associated equations that define the values of attributes that label
nonterminal nodes in a program’s abstract syntax tree (AST). An attribute is
synthesized (syn) if it propagates information up the abstract syntax tree; it is
inherited (inh) if it propagates information down the AST. Note that the order
of Silver declarations does not matter; values can be used before their definition.

The first line of the specification in Fig. 2 provides the name of this gram-
mar. Grammar names are used in following sections in which the Silver import
statement is used to combine attribute grammar specifications to create the
specification for an extended language. Next, the nonterminals in the grammar
are declared. Synthesized attributes pp, errors, and ctrans of type String
are declared; these attributes, respectively, define a node’s pretty-print or “un-
parsed” representation, the errors occurring on the node and its children, and its
translation to C. The occurs on attribution clause specifies which nonterminals
an attribute decorates. We will elide other nonterminal and attribution (occurs
on) declarations as they can be inferred from the specification.

Flexible and Extensible Notations for Modeling Languages 107

prod idref expr::Expr ::= id::Id { ... }
prod and expr::Expr ::= lft::Expr rht::Expr
{ expr.pp = ... ; expr.errors = ... ; expr.ctrans = ... ; }

prod not expr::Expr ::= n::Expr { ... }
prod or expr::Expr ::= lft::Expr rht::Expr
{ expr.pp = "(" ++ lft.pp ++ " || " ++ rht.pp ++ ")" ;

expr.errors = ... ; /* check both lft and rht are bool */
forwards to not(and(not(lft), not(rht))); }

Fig. 3. Silver specifications of Mini-Lustre expressions (Expr)

A Mini-Lustre program (represented by a nonterminal Root) is a series of node
definitions (represented by NodeList). The nonterminal Root on the left hand
side of the production root is named r; the right hand side has a single NodeList
nonterminal named nl. Equations defining the synthesized attributes of r are
listed in curly brackets. For example, the last equation uses ellipses (...) to
indicate that the value of the ctrans attribute on r is computed from the value
of ctrans on nl. A node, defined by production node, is composed of a name
(name), a list of input parameter declarations (inputs of type VarDeclList), a
list of output parameters (outputs), a list of local variable declarations (locals),
and a list of equations (eql of type EqList). Its attributes are defined as ex-
pected. There are several list constructs in Mini-Lustre and we will not show the
productions for many of these as they are what one would expect and can be in-
ferred. They will follow the pattern of using a “cons” and “one” production like
those defined for NodeList in Fig. 2. The production varDecl binds identifier
names to types. These bindings are stored in a symbol table that is passed to the
equations in eql as expected. These are not shown since this is a straight-forward
and common task in attribute grammars. The production equation will check
that the identifier id and expression expr have the same type and generate an
error message if they do not. It also defines its pp attribute as expected. Further
definitions of pp are also what one would expect and are thus elided, though
each production does have an explicit definition for it.

Of special interest is the production or which defines the disjunction of two
expressions. It uses an extension to attribute grammars called forwarding [9] that
is used extensively in defining the extensions to Mini-Lustre in Section 3. To use
forwarding a production defines a construct that it is semantically equivalent to.
It will forward queries for attributes that it does not explicitly define with an
attribute definition to this “forwards-to” construct. The forwards-to construct
will return its value for the queried attribute. In this case of or, the produc-
tion states the semantic equivalent of or(lft,rht) is not(and(not(lft),
not(rht))). When a construct created by the or production is queried for its
errors or pp attributes, it returns the values specified by the explicit defin-
itions. When queried for its ctrans attribute, it returns the value of ctrans
on its semantically equivalent forwards-to construct. This is somewhat similar
to macro expansion, where the forwards-to construct corresponds to the body
of the macro. Unlike a macro definition of or the production with forwarding
reports error messages on programmer-written specifications.

108 J. Gao, M. Heimdahl, and E. Van Wyk

3 Mini-Lustre Extensions

In this section we define four language features that can be added to Mini-Lustre
as modular language extensions. These features, RSML−e-style tables, equals
clauses, and state variables, and Statechart-like events, are all features that some
but not all users of synchronous languages find useful. We also show how a simple
“module” extension can hide host language syntax to in essence create a new
language that is not an extension of the host. The goal of this section is to
show in some detail how feature-rich modeling languages, tailored to specific
domains or to user preferences, can be easily created by simply composing the
host-language with the desired set of language features. Thus, the extensions,
just like Mini-Lustre, capture the important characteristics of the features and
not a full realization of them. This high-degree of modularity is achieved through
the forwarding extension to attribute grammars.

3.1 Tables

Tables are used for specifying complicated boolean b = table
(c1 && c2) : T F ;
! (c2) : T * ;
(c3 || c2) : F T ;
end;

Fig. 4. RSML−e table

expressions, available in both RSML−e and SCR.
They have been shown to be useful when presenting
specifications to domain experts, such as pilots and
air traffic controllers [10,11,12]. An example of such
a table is shown in Fig. 4 in which b, c1, c2, and
c3 are boolean variables. In each row of the table
there are “truth value” entries T (true), F (false),
or * (don’t-care) indicating the desired truthfulness of the preceding Boolean
expression, e.g. c1 && c2 in the first row. A table is an alternative form of
the Boolean expression that can be obtained by taking the conjunction of the
expressions generated for each entry in a column and then taking the disjunction
of these expressions generated for the columns. Therefore, the equation in Fig. 4
is semantically equivalent to the pure-Mini-Lustre code shown below:

b = ((c1&&c2) && !c2 && !(c3||c2)) || (!(c1&&c2) && true && (c3||c2));

The table extension is implemented as a Silver attribute grammar fragment,
portions of which are shown in Fig. 5. This specification shows the abstract
syntax productions and attribute definitions for error-checking and computing
the pure-Mini-Lustre code to which the table construct translates (forwards to).
A table is an alternative form of expression (nonterminal Expr) as defined by
the production table. It consists of a number of rows (ExprRowList); each row
(ExprRow) in turn consists of a (Boolean) expression and a list of truth-values
(TruthValueList). Truth values (TruthValue) consist of the terminal TrueTV
(marker T), FalseTV (marker F), or Star (marker *).

Several attributes are used to compute the pure-Mini-Lustre expression shown
above that the table construct will forward to. The inherited attribute rowexpr
is used to pass the Boolean expression in each row down to the truth values
where a boolean expression in the host language is constructed (according to
the truth value) and is passed up the AST in the attribute texpr. For example,

Flexible and Extensible Notations for Modeling Languages 109

grammar lustre_tables ;
import lustre ;

prod table t::Expr ::= erows::ExprRowList
{ t.errors = erows.errors ;

forwards to disjunction(mapConjunction(transpose(erows.texprss))) ; }

nt ExprRowList, ExprRow, TruthValueList, TruthValue ;

syn attr texprss :: [[Expr]] occurs on ExprRowList ;
syn attr texprs :: [Expr] occurs on ExprRow, TruthValueList ;
syn attr rlen :: Integer occurs on ExprRowList, ExprRow, TruthValueList ;
inh attr rowexpr :: Expr occurs on TruthValueList, TruthValue;
syn attr texpr :: Expr occurs on TruthValue ;

prod exprRowCons erows::ExprRowList ::=
erow::ExprRow erowstail::ExprRowList

{ erows.rlen = erow.rlen ;
erows.errors = erow.errors ++ erowstail.errors ++

if erow.rlen == erowstail.rlen then "" else
"Error: rows need same num of cols";

erows.texprss = cons(erow.texprs, erowstail.texprss) ; }

prod exprRowOne erows::ExprRowList ::= erow::ExprRow
{ erows.errors = erow.errors ; erows.rlen = erow.rlen ;

erows.texprss = [erow.texprs] ; }

prod exprRow erow::ExprRow ::= e::Expr tvl::TruthValueList
{ erow.rlen = tvl.rlen ; erow.texprs = tvl.texprs ; tvl.rowexpr = e ; }

func disjunction Expr ::= es::[Expr]
{ return if leng(es) == 1 then head(es)

else or(head(es), disjunction(tail(es))) ; }

prod tvlistCons tvl::TruthValueList ::=
tv::TruthValue tvltail::TruthValueList

{ tvl.rlen = 1 + tvltail.rlen ;
tvl.texprs = cons (tv.texpr, tvltail.texprs);
tv.rowexpr = tvl.rowexpr ; tvltail.rowexpr = tvl.rowexpr ; }

prod tvlistOne tvl::TruthValueList ::= tv::TruthValue
{ tvl.rlen = 1; tvl.texprs = [tv.texpr]; tv.rowexpr = tvl.rowexpr ; }

prod tvTrue tv::TruthValue ::= t::TrueTV { tv.texpr = tv.rowexpr ; }
prod tvFalse tv::TruthValue ::= f::FalseTV { tv.texpr = not(tv.rowexpr) ; }
prod tvStar tv::TruthValue ::= s::Star { tv.texpr = true() ; }

Fig. 5. Silver table extension specification

110 J. Gao, M. Heimdahl, and E. Van Wyk

for the first row of table in Fig. 4, the texpr attributes for the T and F markers
have values of (c1 && c2) and ! (c1 && c2), respectively. A true constant
is always created for a * entry. The synthesized attributes texpr, texprs, and
texprss collect these Boolean expressions into a list of lists of Exprs that is
passed up to the top ExprRowList node of the complete table. Both list types and
list expressions are denoted using square brackets ([]). After a transposition
of the list, the pure-Mini-Lustre translated table is formed. This construct is
the forwards-to construct of the production table. Several utility functions,
transpose, disjunction, conjunction, and mapConjunction, are defined for
building the translated table. Only disjunction is shown, but the others are
similar.

The other critical function computed by the attributes is to perform error
checking. We need to check that all rows in the table have the same number of
columns. This is a semantic analysis that must be performed on the extension
constructs, as an incorrect number of columns in a row will not be detected on
the translation to pure-Mini-Lustre. To accomplish this, that table production
explicitly defines its errors attribute to be the errors reported on its child erows.
To detect such errors, a row length attribute, rlen, is computed on truth value
lists and expression row lists and compared on the exprRowCons production to
detect any rows whose length differs from other rows. This analysis highlights
the critical role played by forwarding. It allows us to define some attributes, such
as ctrans implicitly via the translation to the host language and to define other
attributes, such as errors, explicitly on the extension constructs. This ensures
that semantic analyses can be carried out at the right level of abstraction.

The lustre tables grammar specification provides a definition of Lustre ex-
tended with the table construct since it imports the grammar lustre. The Silver
tools can take this specification and build an attribute evaluator that performs
error checking and translations to C of the extended Mini-Lustre + tables lan-
guage. In Section 3.5, we will see how several independently developed extensions
such as those described in the following sections can be combined in creating an
extended language.

grammar lustre_equals ; import lustre ;
nt Cases ; syn attr ifexpr :: Expr occurs on Cases;
prod equals e::Expr ::= cs::Cases

{ e.errors = cs.errors ++ ...; /* ensure e and vals in cs have same type */
forwards to cs.ifexpr ; }

prod casesCons cs::Cases ::= val::Expr cond::Expr cs1::Cases
{ cs.errors = ... ; /* ensure cond is boolean type */

cs.ifexpr = ifthenelse(cond, val, cs1.ifexpr) ; }
prod casesOtherwise cs::Cases ::= val::Expr

{ cs.errors = ... ; cs.ifexpr = val ; }

Fig. 6. The Silver specification of the equals clause extension

Flexible and Extensible Notations for Modeling Languages 111

3.2 Equals Clauses

Specification in the state machine transition b = equals e1 if (c1 && c2)
equals e2 if ! c1
equals e3 if ! c2
otherwise pre(b);

Fig. 7. Equals clauses

style is a popular approach in many domains and
is the basic paradigm of languages such as Stat-
echart, SCR, and RSML−e. The equals clause
construct implemented here as a language exten-
sion is one way to describe the transition choices
of a state machine. An example of the equals
clause is shown in Fig. 7, where c1, c2, and c3 are Boolean variables, and e1,
e2, and e3 are expressions of the same type as variable b. This equals clause is
evaluated as follows: if the condition (c1 && c2) evaluates to true, the value
of variable b is taken to be that of e1; otherwise if c1 is false, the value of b
is e2; otherwise if c2 is false, the value of b is e3; and if none of the condition
holds, b retains its original value (pre(b)). This equals clause can be translated
to the pure-Mini-Lustre nested if-then-else expression shown below.

b = if (c1 && c2) then e1 else if (!c1) then e2
else if (!c2) then e3 else pre(b);

Part of the AG specification of the equals clause extension is shown in Fig. 6.
The complete equals clause (Cases) is defined as an expression (Expr) in produc-
tion equals. The ifexpr attribute on nonterminal Cases holds the equivalent
if-then-else expression, which is constructed in production caseCons. It is used
as the forwards-to construct in the equals production. The errors attribute is
defined explicitly, as in the table extension.

3.3 State Variables

Like the equals clause extension, state variables, representing communicating
state machines, are an important element in the state transition style of soft-
ware specifications. Here we show how the RSML−e state variable construct
that captures this notion can be implemented as a language extension built not
only on the host language Mini-Lustre but also on the two previous extensions
lustre tables and lustre equals.

Fig. 8 shows the same ASW specification from Fig. 1 rewritten with extended
Mini-Lustre, complete with tables, equals clauses, and state variables extensions.
The meaning of the state variable declaration is easy to infer from this example.
What is different from the original equals clauses is that the otherwise clause is
implied here. Although the mixture of Lustre node and state variable declara-
tions may seem strange—for example, the variable AltStatus with its type is
declared twice—an additional extension that defines modules, which forwards to
the node declaration, can fix the syntax and then provide a complete package of
features for the descriptions of state machine models.

Part of the attribute grammar specification of the state variable extension
is shown in Fig. 9. The state variable production stateVar forwards to the
semantically equivalent Mini-Lustre equation that uses the same ifexpr at-
tribute defined on Cases used in the previous example. The inherited attribute

112 J. Gao, M. Heimdahl, and E. Van Wyk

node ASW (AltQuality:Quality, AltThres:int, Hyst:int, Altitude:int)
returns (AltStatus:Status) ;

let state variable AltStatus : Status
initial value : Unknown
equals Above if table pre(AltStatus) = Unknown : T * ;

AltQuality = Good : T T ;
Altitude > AltThres : T T ;
Altitude > AltThres + Hyst : * T ;

end table
equals Below if table AltQuality = Good : T ;

Altitude > AltThres : F ;
end table

equals Unknown if AltQuality = Good
end state variable tel;

Fig. 8. ASW in Mini-Lustre extended with state variables, equals clauses and tables

defaultExpr passes the expression to be used in the equation if none of the
conditions in the equals clauses are true. An aspect production is used to add
new attribute rules for attributes inStateVar and defaultExpr to productions
casesCons and equals imported from the grammar lustre equals. The in-
herited attribute inStateVar is true on the Cases enclosed in a stateVar and
false otherwise. This is used on the casesOne production to raise an error if it,
instead of the casesOtherwise production, is used in the original equals clause
which requires an otherwise.

3.4 Events

Events are an extension to Mini-Lustre quite different from the previous ones.
Below is a fragment of an enhanced definition of AltStatus from Fig 1 writ-
ten using Mini-Lustre extended with events. The complex conditions from the
original definition are abbreviated as C1, C2, and C3 here.

event AltClassEvt, AltLostEvt;
AltStatus = Unknown ->

if catch(AltRcvEvt,C1) then throw(AltClassEvt,Above)
else if catch(AltRcvEvt,C2) then throw(AltClassEvt,Below)
else if catch(AltRcvEvt,C3) then throw(AltLostEvt,Unknown) ...

A new declaration construct event is added to the language and used in
the declaration of two events. Here, an altitude classified event is thrown if
AltStatus is defined to be either Above or Below. If not, the AltLostEvt event
is thrown. In the assignment equation for AltStatus, two new constructs, throw
and catch, are used for the generation and consumption of events. The evalua-
tion of throw(evt,e) produces the value e, and causes event evt to be gener-
ated in the next time step. An event remains active for only a single step and
catch(evt,e) returns true if the event evt is active at the current step and
e evaluates to true. Therefore throw is an expression with side-effects, clearly
a conceptual departure from the data flow model of Lustre. The event/action

Flexible and Extensible Notations for Modeling Languages 113

grammar lustre_statevar ;
import lustre, lustre_tables, lustre_equals ;
inh attr inStateVar :: Boolean occurs on Cases ;
inh attr defaultExpr :: Expr occurs on Cases ;

prod stateVar eq::Equation ::= id::Id type::Type init::Expr cs::Cases
{ cs.defaultExpr = pre(idref(id)) ; cs.inStateVar = true ;

cs.errors = cs.errors ++ ... ; /* ensure init has correct type */
forwards to equation(id, follow(init, cs.ifexpr)); }

prod casesOne cs::Cases ::= val::Expr cond::Expr
{ cs.errors = if cs.inStateVar then "" else "Error: Missing OTHERWISE clause";

cs.ifexpr = ifthenelse(cond, val, cs.defaultExpr) ; }
aspect prod equals e::Expr ::= cs::Cases { cs.inStateVar = false; }
aspect prod casesCons cs::Cases ::= val::Expr cond::Expr cs1::Cases
{ cs1.defaultExpr = cs.defaultExpr ; cs1.inStateVar = cs.inStateVar ; }

Fig. 9. The Silver specification of the state variable extension

specification style can simplify some specifications and is an important feature
in languages like Statechart.

The specification using events above can be translated to pure-Mini-Lustre in
which events are translated into Boolean variables. A throw forwards to its sec-
ond argument and a catch forwards to the conjunction of the Boolean variable
of the named event and its second argument. An equation for each new Boolean
variable is also generated by combining the conditions of the if-then-else con-
structs that enclose all throw constructs of the corresponding event. Below is
the equation generated for AltClassEvt.

AltClassEvt = false -> (pre(AltRcvEvt) && pre(C1)) ||
(!(pre(AltRcvEvt) && pre(C1)) && (pre(AltRcvEvt) && pre(C2)) ;

The attribute grammar specification to create the above equation is not trivial
but is more verbose than it is complex. Essentially an inherited attribute of type
Expr is used to pass down the conditions of enclosing if-then-else constructs to
each throw construct. A synthesized attribute is used to compute the disjunction
of these expressions. Thus, the two throw constructs in the example correspond
to the disjunction of two expressions in its translation. The generation of these
equations requires a global transformation beyond the capabilities of macro-
based approaches. Due to space constraints the Silver implementation of events
is not shown.

3.5 Scenario Implementations

Silver has a flexible module system based on the grammar declarations seen in
the specifications above. Silver import statements can be used to easily compose
new and extended languages from these named grammars.

For Scenario 1, the desired language is created by composing the host lan-
guage module lustre and language extension modules lustre tables and
lustre equals by the Silver specification in Fig. 10. The Silver tools read this

114 J. Gao, M. Heimdahl, and E. Van Wyk

to build the attribute grammar for the specified language from the imported
host and extensions. The import ... including syntax statement performs
two functions. First it imports all the definitions of the attribute grammar con-
structs (productions, attributes, etc.) from the named module. These are used
in the attribute grammar evaluation phase to perform error checking and trans-
lations as specified by the attributes. Second, the including syntax clause also
add the concrete syntax specifications defined in the imported module. The spec-
ifications of the concrete syntax are given to a parser and scanner generator to
build the parser and scanner for the extended language. In the specifications
above we have not shown these as they are done in a traditional manner.

Many language extensions, including the tables,
grammar scenario1 ;
import lustre
including syntax ;

import lustre tables
including syntax ;

import lustre equals
including syntax ;

Fig. 10. Scenario 1

equals, state variable, and event extensions presented
here are such that they can be automatically com-
posed with other extensions to create, for example,
the scenario1 language above. This means that no
attribute grammar “glue” code needs to be written to
compose the host language and the language exten-
sions. In this case, the Silver specification above can
be automatically generated from the list of extensions
selected by the user.

For the second scenario, we create a new language that does not use the
node construct of Mini-Lustre but replaces it with a simple module system for
collecting state variables. This is similar to RSML−e but is a smaller language
meant to only demonstrate how new languages can be created in the frame-
work. This is easily accomplished by a Silver specification that imports the
lustre, lustre statevar, lustre tables, and lustre equals modules, but
uses a syntax hiding clause to block the importation of the concrete produc-
tions for nodes and equations from the host specification lustre. This speci-
fication also defines concrete syntax for a module construct that consists of a
sequence of state variables. The abstract production for this module construct
forwards to the expected translation in the host language Mini-Lustre. Space
limitations prevent showing this specification, but the key point is that a new
language is defined by hiding aspects of the host language and replacing them
with the desired new ones.

4 Discussion

4.1 Related Work

Tools and techniques for language extensibility and modularity have been studied
extensively in the area of programming languages and thus the description here is
necessarily cursory. In the framework we have described, language extensions can
define new language constructs, new semantic analyses on the extension-defined
and host language-defined constructs, and translations to new target languages.
There are existing tools and techniques that support each of these types of
language extension, but no single approach supports them all. Closely related

Flexible and Extensible Notations for Modeling Languages 115

are various macro approaches, such as syntactic, hygienic, and programmable [13]
macro systems. These allow new constructs to be defined but do not support
semantic analysis of the new constructs.

There has also been a considerable amount of work on language modularity,
e.g., [14,15], from the perspective of attribute grammars. Higher-order functions
as attributes provide the inspiration for some in seeking modular specifications,
e.g., [16], while object-oriented concepts of inheritance and objects motivate oth-
ers, e.g., [17]. Silver builds on much of this work and incorporates, for example,
higher-order attributes [18]. Also of interest are Hedin’s re-writable reference
attribute grammars [19] in which a mechanism for rewriting the abstract syntax
tree based on rewrite-rules is used. There, attributes are only retrieved from
the rewritten tree; this differs from forwarding, which allows attributes to be
retrieved from the original tree and the forwarded-to tree. This is critical for
extensions like tables where we must do error checking on the original tree but
want to get attributes for translations to target languages from the forwarded-to
tree. Microsoft’s Intentional Programming system (IP) [20] is the most closely
related system to the extensible language framework used in this paper.

5 Conclusion

Silver was developed for building extensible languages based on attribute gram-
mars with forwarding. It is a full-featured attribute grammar specification lan-
guage with higher-order attributes [18], forwarding [9], a module system, poly-
morphic lists, and pattern-matching; it is freely available on the internet at
www.melt.cs.umn.edu. We have used it to build an extensible versions of Java
1.4 called the Java Language Extender [21] and several modular extensions. One
embeds the domain-specific language SQL into Java for static syntax and type
checking of SQL queries; another adds general-purpose features such as algebraic
data-types and pattern matching.

For users of synchronous languages, we can provide a flexible modeling lan-
guage framework that allows a rich variety of modeling language features to be
used. In the work presented here, we have showed how constructs such as con-
dition tables, state variables, and events can be easily added to a host modeling
language in a modular way. Note that these are not just lightweight syntactic ex-
tensions that do some error checking. Both the tables and the events extensions
do a considerable amount of code transformation and manipulation to generate
the host language constructs that they translate to via forwarding. The analysis
and manipulation rely heavily on the expressive nature of attribute grammars.

We are currently building a much more complete implementation of Lustre
and RSML−e in this framework and exploring the feasibility of building higher-
level abstractions as language extensions. It is our belief that a well-developed
extensible language framework can be built that allows researchers and practi-
tioners to more freely explore the wide range of possible language features that
will help to more effectively specify software systems and ultimately make formal
methods more appealing to a wider audience.

116 J. Gao, M. Heimdahl, and E. Van Wyk

References

1. Berry, G., Gonthier, G.: The Esterel synchronous programming language: Design,
semantics, implementation. Science of Comp. Prog. 19(2) (1992) 87–152

2. Esterel-Technologies: Corporate web page. www.esterel-technologies.com (2004)
3. Harel, D., Lachover, H., Naamad, A., Pnueli, A., Politi, M., Sherman, R., Shtull-

Trauring, A., Trakhtenbrot, M.: Statemate: A working environment for the devel-
opment of complex reactive systems. IEEE Trans. on Soft. Engin. 16(4) (1990)

4. Heitmeyer, C., Bull, A., Gasarch, C., Labaw, B.: SCR∗: A toolset for specifying
and analyzing requirements. In: Proceedings of the Tenth Annual Conference on
Computer Assurance, COMPASS 95. (1995)

5. Thompson, J.M., Heimdahl, M.P., Miller, S.P.: Specification based prototyping for
embedded systems. In: Seventh ACM SIGSOFT Symposium on the Foundations
on Software Engineering. Volume 1687 of LNCS. (1999)

6. Van Wyk, E., Heimdahl, M.: Flexibility in modeling languages and tools: A call to
arms. In: Proc. of IEEE ISoLA Workshop on Leveraging Applications of Formal
Methods, Verification, and Validation. (2005)

7. Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous dataflow
programming language Lustre. Proc. of the IEEE 79(9) (1991) 1305–1320

8. Halbwachs, N., Lagnier, F., Ratel, C.: Programming and verifying real-time sys-
tems by means of the synchronous data-flow language lustre. IEEE Transactions
on Software Engineering (1992) 785–793

9. Van Wyk, E., de Moor, O., Backhouse, K., Kwiatkowski, P.: Forwarding in at-
tribute grammars for modular language design. In: Proc. 11th Intl. Conf. on Com-
piler Construction. Volume 2304 of LNCS. (2002) 128–142

10. Heninger, K.: Specifying software requirements for complex systems: New tech-
niques and their application. IEEE Trans. on Software Engin. 6(1) (1980) 2–13

11. Leveson, N., Heimdahl, M., Hildreth, H., Reese, J.: Requirements Specification for
Process-Control Systems. IEEE Trans. on Software Engin. 20(9) (1994) 684–706

12. Zimmerman, M.K., Lundqvist, K., Leveson, N.: Investigating the readability of
state-based formal requirements specification languages. In: Proc. 24th Intl. Conf.
on Software Engineering, ACM Press (2002) 33 – 43

13. Weise, D., Crew, R.: Programmable syntax macros. ACM SIGPLAN Notices 28(6)
(1993)

14. Ganzinger, H.: Increasing modularity and language-independency in automatically
generated compilers. Science of Computer Programing 3(3) (1983) 223–278

15. Kastens, U., Waite, W.M.: Modularity and reusability in attribute grammars. Acta
Informatica 31 (1994) 601–627

16. Le Bellec, C., Jourdan, M., Parigot, D., Roussel, G.: Specification and implemen-
tation of grammar coupling using attribute grammars. In: Prog. Lang. Impl. and
Logic Prog. (PLILP ’93). Volume 714 of LNCS. (1993) 123–136

17. Hedin, G.: An object-oriented notation for attribute grammars. In: Proc. of Euro-
pean Conf. on Object-Oriented Prog., ECOOP’89, Cambridge Univ. Press (1989)

18. Vogt, H., Swierstra, S.D., Kuiper, M.F.: Higher-order attribute grammars. In:
ACM PLDI Conf. (1990) 131–145

19. Ekman, T., Hedin, G.: Rewritable reference attributed grammars. In: Euro. Conf.
on Object-Oriented Prog., ECOOP’04. Volume 3086 of LNCS. (2004) 144–169

20. Simonyi, C.: The future is intentional. IEEE Computer 32(5) (1999) 56–57
21. Van Wyk, E., Krishnan, L., Bodin, D., Johnson, E.: Adding domain-specific and

general purpose language features to Java with the Java language extender. In:
Companion to the Proc. OOPSLA. (2006)

M.B. Dwyer and A. Lopes (Eds.): FASE 2007, LNCS 4422, pp. 117–120, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Declared Type Generalization Checker:
An Eclipse Plug-In for Systematic Programming with

More General Types

Markus Bach, Florian Forster, and Friedrich Steimann

Lehrgebiet Programmiersysteme
Fernuniversität in Hagen

D-58084 Hagen
bach.markus@gmx.net, florian.forster@fernuni-hagen.de,

steimann@acm.org

Abstract. The Declared Type Generalization Checker is a plug-in for Eclipse’s
Java Development Tools (JDT) that supports developers in systematically find-
ing and using better fitting types in their programs. A type A is considered to fit
better than a type B for a declaration element (variable) d if A is more general
than B, that is, if A provides fewer members unneeded for the use of d. Our
support comes in the form of warnings generated in the Problem View of
Eclipse, and associated Quick Fixes allowing elements to be re-declared auto-
matically. Due to the use of Eclipse extension points, the algorithm used to
compute more general types is easily exchangeable. Currently our tool can use
two publicly available algorithms, one considering only supertypes already
present in a project, and one computing new, perfectly fitting types.

1 The Problem: Too Strong Coupling Due to Overly Specific
Types

A class C is coupled to a type B if one or more declaration elements of C (i.e., fields,
formal parameters, local variables, or methods with non-void return types) are de-
clared with B as their type. Even though coupling between types cannot be eliminated
completely (because without any coupling a type would be isolated from the rest of
the system and therefore useless [1]), there is often a certain amount of unnecessary
coupling which can be reduced in many cases by using a more general type than B. In
fact, unnecessary coupling between C and B arises when a declaration element d in C
is declared with B as its type and B offers more members than actually needed by d.
In [2] we have shown that developers rarely use the best fitting type available in a
program for typing declaration elements, and that by introducing new, better fitting
types unnecessary coupling can be reduced to a minimum. However, we believe that
developers cannot be blamed for not using more general types in a project as long as
proactive tool support for indicating where which types can be used is lacking: pro-
grammers tend to think of their objects more in terms of the classes from which they

118 M. Bach, F. Forster, and F. Steimann

are instantiated, and less in terms of the generalizations they posses (which are often
unknown, or at least not known to be useable in a given context).

2 The Solution: The Declared Type Generalization Checker

To support developers in becoming aware of — and in using — more general types,
we implemented a tool, called the Declared Type Generalization Checker, as a plug-in
for the Eclipse Java Development Tools (JDT) [6, 7]1. This plug-in provides a new
type of warning for the Problem View, which informs developers of unnecessary cou-
pling arising from overly specific declaration elements (i.e., elements declared with
types providing more members than actually needed). At the same time, the plug-in
extends Eclipse’s Quick Fixes by one that lets programmers re-declare elements with
better fitting types. To compute these types and to perform the re-declaration, cur-
rently one out of two available algorithms for type generalization (and their associated
refactorings) can be selected in the project properties tab of the plug-in.

2.1 Generation of Warnings

The Declared Type Generalization Checker is implemented as a builder that, if acti-
vated in a project’s properties, is automatically started after each compilation of the
project. Since compilation in Eclipse is itself implemented as a builder, the Declared
Type Generalization Checker can take advantage of Eclipse’s incremental build proc-
ess — in particular, after a change only the compilation units affected by that change
are rebuilt. This helps shorten checking times considerably (cf. Section 3).

The builder visits each declaration element of a compilation unit and invokes the
algorithm selected for checking for possible generalizations (see Section 4). The re-
sults of each check are communicated to the IDE using its standard interface for
builders.

2.2 Provision of Quick Fixes

With each warning a Quick Fix can be associated that triggers a refactoring introduc-
ing a more general type (thus resolving the warning). Whether such a Quick Fix exists
depends on the algorithm chosen to generate the warning, which is selected in the
project property settings. Currently, two such algorithms are available.

2.3 Algorithms Computing More General Types

For every project, the programmer can choose the algorithm the checker uses to gen-
erate the warnings. Currently, the available algorithms are the standard algorithms
delivered with their corresponding refactorings, which also provide the Quick Fixes.

Generalize Declared Type. Generalize Declared Type is a standard refactoring of
Eclipse distributed with JDT. After invocation of the refactoring on a declaration
element d the developer is presented the type hierarchy for the declared type of d. In

1 http://www.eclipse.org

 Declared Type Generalization Checker 119

this hierarchy, every supertype that can be used in the declaration of d (because it
includes all members required from d) is highlighted and can be selected as the new
type of d. Note that this refactoring does not necessarily reduce coupling to a
theoretical minimum, as the new type may still contain excessive members, and the
perfect generalization may not (yet) have been introduced (and therefore is not among
the presented supertypes). Nevertheless, as [2] has shown, even if generalizations are
available in a project, they are often not used.

Our Declared Type Generalization Checker uses the type inference algorithm
employed by Generalize Declared Type to check whether a more general type is
available (the basis for a warning); also, it launches the refactoring itself as the corre-
sponding Quick Fix.

Infer Type. So-called type inference can compute type annotations for program
elements independently of whether or how they are actually typed [3–5]. We designed
our own type inference algorithm for Java [4] specifically to compute the most
general type that can be used for a declaration element, and this independently of the
types that already exist. Our algorithm is the basis of a new refactoring, called Infer
Type2, which can be characterized as an automatic version of the Extract Interface
refactoring distributed with Eclipse’s JDT and other Java IDEs. Since the types
computed by Infer Type are always maximally general (meaning that no member can
be removed without causing a static type error), types using only inferred types for
their declaration elements are always maximally decoupled.

The type inference algorithm underlying Infer Type is used by our Declared Type
Generalization Checker as an alternative to that of Generalize Declared Type in ex-
actly the same way as described above.

3 Performance Evaluation

Checking every declaration element of a program for the availability of a more gen-
eral type is a time-consuming task. To get an impression of how the systematic search
for type generalizations influences the development cycle, we performed the meas-
urements summarized in the following table.

PROJECT ALGORITHM
 Generalize Declared Type Infer Type

NUMBER OF

DECLARATION

ELEMENTS time warnings time warnings
JUnit 3.8.1 1501 ≈ 3.5 mins 205 ≈ 8 mins 315
JHotDraw 6.0b1 7788 ≈ 42 mins 1230 – –

These times (obtained on a ThinkPad run at 2 GHz) may appear unacceptable, espe-
cially for Infer Type, but since they refer to full builds, they rarely occur in practice.
What we found instead is that for average change/build cycles, the overhead incurred
by the Declared Type Generalization Checker is reasonable. As for Infer Type,
we hope to be able to present a more efficient implementation soon (see Section 5).

2 http://www.fernuni-hagen.de/ps/prjs/InferType/

120 M. Bach, F. Forster, and F. Steimann

4 Extending the Declared Type Generalization Checker

As mentioned above, the algorithm used to compute more general types for declara-
tion elements is variable. In fact, our tool accommodates further extensions, by
allowing one to add other algorithms and refactorings. The corresponding extension
point requires implementations of three methods, namely boolean check-

Type(...), boolean hasResolution(), and IMarkerResolution2 getRe-
solution(). The first, checkType, answers for a given declaration element and its
declared type whether a better matching type exists so that a corresponding warning
can be generated. If it does, hasResolution tells the plug-in whether the extension
can also offer a Quick Fix to resolve the issue (which is the case for both extensions
currently in offered). If so, the method getResolution delivers an object that,
through its run method, redeclares the declaration element in question (in the current
extensions by starting a refactoring).

5 Availability

The Declared Type Generalization Checker can be installed from the update site
http://www.fernuni-hagen.de/ps/prjs/DTGC/update/. It depends on the availability of
the Generalize Declared Type refactoring (which is part of the standard distribution)
and optionally also that of Infer Type (which is part of the Yoxos3 distribution, but
can also be installed separately from the link given in Footnote 2).

We are currently working on a new implementation of Infer Type that utilizes
Eclipse’s type constraint framework and that can handle Java generics. Once avail-
able, it will be offered as an alternative extension to our Declared Type Generaliza-
tion Checker.

References

1. E Berard Essays on Object-Oriented Software Engineering (Prentice-Hall 1993).
2. F Forster “Cost and benefit of rigorous decoupling with context-specific interfaces” in: Pro-

ceedings of the 4th International Conference on Principles and Practices of Programming in
Java (2006) 23–30.

3. J Palsberg, MI Schwartzbach “Object-oriented type inference” in: Proceedings of OOPSLA
(1991) 146–161.

4. F Steimann, P Mayer, A Meißner “Decoupling classes with inferred interfaces” in: Proceed-
ings of the 2006 ACM Symposium on Applied Computing (2006) 1404–1408.

5. T Wang,SF Smith “Precise constraint-based type inference for JAVA” in: Proceedings of
ECOOP (2001) 99–117.

6. D Bäumer, E Gamma, A Kiezun “Integrating refactoring support into a Java development
tool” in: OOPSLA’01 Companion (2001).

7. E Gamma, K Beck Contributing to Eclipse (Addison-Wesley Professional 2003).

3 www.yoxos.com

S2A: A Compiler for Multi-modal UML

Sequence Diagrams�

David Harel, Asaf Kleinbort, and Shahar Maoz

The Weizmann Institute of Science
{dharel,asaf.kleinbort,shahar.maoz}@weizmann.ac.il

Abstract. We report on S2A, a compiler that translates Modal UML
Sequence Diagrams (MSDs), a UML-compliant version of Live Sequence
Charts (LSCs), into AspectJ code. It thus provides full code generation of
reactive behavior from visual inter-object scenario-based specifications.
The S2A compiler is based on a compilation scheme presented by Maoz
and Harel in [13].

1 Introduction

An important challenge of the inter-object, scenario-based approach to software
specification is to find ways to construct executable systems based on it [3].
Many researchers have dealt with this challenge as a synthesis problem; see,
e.g., [4,10,15], where inter-object specifications, given in variants of Message Se-
quence Charts (MSC) [9], are translated into intra-object state-based executable
specifications for each of the participating objects. “Play-out” [8] is a recent ex-
ample of a different approach. Instead of synthesizing intra-object state-based
specifications for each of the objects, the play-out algorithm executes scenarios
directly, keeping track of all user and system events for all objects simultane-
ously, and causing other events and actions to occur as dictated by the specified
scenarios. No intra-object model for any of the participating components is built
in the process. Play-out was defined for Live Sequence Charts (LSCs) [2,7], a
rich extension of MSC that supports multi-modal scenario specifications.

In this paper we present S2A, a compiler that implements the play-out execu-
tion mechanism by translating inter-object scenario-based specifications, given
in a variant of LSC that is UML-compliant — Modal Sequence Diagrams (MSD)
— into AspectJ code. S2A is based on a compilation scheme presented by Maoz
and Harel in [13]. It exploits the inherent similarity between the scenario-based
approach and the aspect-oriented approach to software specification — in both,
part of the system’s behavior is specified in a way that explicitly crosses the
boundaries between objects — and takes advantage of the similar unification
semantics of play-out and AspectJ pointcuts. We consider S2A a significant step
towards realizing the promise of visual scenario-based programming within real
world software engineering.
� This research was supported by The John von Neumann Minerva Center for the

Development of Reactive Systems at the Weizmann Institute of Science.

M.B. Dwyer and A. Lopes (Eds.): FASE 2007, LNCS 4422, pp. 121–124, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

122 D. Harel, A. Kleinbort, and S. Maoz

Section 2 very briefly reviews the MSD language, the play-out execution mech-
anism, and the compilation scheme; Section 3 concludes with a short discussion
and future work directions.

2 Overview of S2A

MSD and LSC. The language of Modal Sequence Diagrams (MSD) is a visual
formalism for scenario-based inter-object specifications, defined as proper UML
profile that extends UML 2 Interactions [14] with a <<modal>> stereotype con-
sisting of two attributes: mode and execution mode. Each element in an MSD
interaction, e.g., a message, a constraint, has a mode attribute which can be
either hot (universal) or cold (existential), and an execution mode, which can be
either monitor or execute. MSD is a more standardized and slightly generalized
version of Live Sequence Charts (LSC) [2] (i.e., in MSD, monitoring and execu-
tion are not divided into pre-charts and main-charts, mode and execution mode
are orthogonal). The semantics of MSD is based on that of LSC, whose expressive
power is comparable to that of various temporal logics [11] (a trace-based seman-
tics for MSD was given in [6] using alternating Büchi automata). Thus, MSD
allows not only to specify traces that “may happen”, “must happen”, or “should
never happen”, but also to divide the responsibility for execution between the
environment, the participating objects, and the coordination mechanism. MSD
notation is adopted from LSC: hot (resp. cold) elements are colored in red (resp.
blue), execution (resp. monitoring) elements use solid (resp. dashed) line.

MSD Play-Out. MSD play-out is based on LSC play-out, presented by Harel
and Marelly in [8]1. Roughly, the execution mechanism reacts to events that
are referenced in one or more of the MSDs; for each active MSD, instantiated
following the occurrence of a minimal event in the partial-order induced by
the diagram, the mechanism checks whether the event is enabled with regard to
the current cut; if it is, it advances the cut accordingly; if it is violating and the
current cut is cold (a cut is cold if all its elements are cold and is hot otherwise),
it discards this active MSD copy; if it is violating and the current cut is hot, pro-
gram execution aborts; if the event does not appear in the MSD, it is ignored.
Conditions are evaluated as soon as they are enabled in a cut; if a condition
evaluates to true, the cut advances accordingly; if it evaluates to false and the
current cut is cold, the MSD copy is discarded; if it evaluates to false and the
current cut it hot, program execution aborts. If the cut of an active MSD copy
reaches maximal locations on all lifelines, the active MSD is discarded. Once all
MSD’s cuts have been updated, the execution mechanism chooses an event to
execute from among the execution-enabled methods that are not violating any
chart, if any.

Play-out requires careful event unification and dynamic binding mechanism.
Roughly, two methods are unifiable if their senders (receivers) are concrete

1 For a thorough definition of the LSC language and its operational semantics we refer
the reader to [7].

S2A: A Compiler for Multi-modal UML Sequence Diagrams 123

instance-level (or already bound) and equal, or symbolic class-level of the same
class and at least one is still unbound. When methods with arguments are consid-
ered, an additional condition requires that corresponding arguments have equal
concrete values, or that at least one of them is free2. To implement this, S2A
exploits the similarity between the unification semantics of play-out and that
of AOP.

The Compilation Scheme. We briefly review the compilation scheme (see [13]
for details). S2A translates each MSD into a Scenario Aspect, implemented in
AspectJ. The Scenario Aspect simulates an alternating Büchi automaton whose
states represent possible MSD cut states and whose transitions are triggered
by aspect pointcuts. Each Scenario Aspect is locally responsible for listening to
relevant events and advancing its cut accordingly. To construct the automaton,
S2A statically analyzes the MSD by simulating a ‘run’ that captures all possible
cuts; each cut is represented by a state; transitions correspond to enabled events.

In addition, and most importantly, S2A generates a single coordinator as-
pect, which collects cut state information (sets of enabled and violating events,
including dynamic context, i.e., bound objects, arguments values) from all ac-
tive scenario aspects, and, as necessary, uses a strategy (see below) to choose
a method for execution. It then executes it using inter-type declarations inside
generated wrapper methods.

The strategy is responsible for choosing the next method to execute, based on
the information collected by the coordinator. S2A installation includes a default
play-out strategy that implements basic (näıve) play-out (arbitrarily choosing a
non-violating method from among the currently enabled methods). The user can
implement a new strategy (by implementing the IPlayOutStrategy interface)
and point the compiler to it in the compiler’s configuration file.

3 Conclusions and Future Work

We presented S2A, a compiler for multi-modal UML Sequence Diagrams. S2A
currently supports the following MSD language features: hot/cold (universal/
existential) method calls and conditions, symbolic lifelines (class hierarchies and
interfaces), symbolic, exact, and opaque method arguments, dynamic creation of
objects, control structures (if-then-else, bounded and unbounded loops, switch-
case), and (one step) anti-scenarios.

While we concentrate on scenario-based program construction, S2A can also
be used for scenario-based testing of Java programs in general. This includes
test execution and monitoring, similar to that implemented by tools such as the
Rhapsody TestConductor [12]. No prior assumptions on the Java program under
test are necessary.

We are continuing to develop S2A in a number of directions. First, the compi-
lation scheme can be easily modified to generate code in aspect languages other
than AspectJ (e.g., AspectC++) or extensions of AspectJ (e.g., TraceMatch [1]),

2 The formal definitions of unification for LSCs can be found in [7].

124 D. Harel, A. Kleinbort, and S. Maoz

possibly taking advantage of specific AOP features we have not yet exploited
(e.g., aspect instantiation). This will create opportunities for code optimization
as well as for widening the applicability of our approach to other application
domains (e.g., embedded systems). Second, we are planning to implement better
play-out strategies, such as Smart Play-Out [5], which uses model-checking to
reduce nondeterminism in LSC execution. Third, we are enhancing the compiler
with scenario-aware debugging capabilities (e.g., supporting breakpoints at the
scenario’s cut-state level).

UML models, source and generated code, executables of case studies, instal-
lation guide, as well as other resources, are available online at the S2A website:
http://www.wisdom.weizmann.ac.il/~maozs/s2a/.

References

1. C. Allan, P. Avgustinov, A. S. Christensen, L. J. Hendren, S. Kuzins, O. Lhoták,
O. de Moor, D. Sereni, G. Sittampalam, and J. Tibble. Adding trace matching
with free variables to aspectj. In Proc. 20th Conf. on Object Oriented Programming,
Systems, Languages, and Applications (OOPSLA’05), pages 345–364, 2005.

2. W. Damm and D. Harel. LSCs: Breathing life into message sequence charts. Formal
Methods in System Design, 19(1):45–80, 2001.

3. D. Harel. From Play-In Scenarios To Code: An Achievable Dream. IEEE Computer,
34(1):53–60, 2001.

4. D. Harel and H. Kugler. Synthesizing state-based object systems from LSC speci-
fications. Int. J. of Foundations of Comp. Science (IJFCS), 13(1):5–51, Feb. 2002.

5. D. Harel, H. Kugler, R. Marelly, and A. Pnueli. Smart Play-Out of Behavioral
Requirements. In Proc. 4th Int. Conf. on Formal Methods in Comp.-Aided Design
(FMCAD’02), Portland, Or., volume 2517 of LNCS, pages 378–398, 2002.

6. D. Harel and S. Maoz. Assert and Negate Revisited: Modal Semantics for UML
Sequence Diagrams. In Proc. 5th Int. Workshop on Scenarios and State-Machines
(SCESM’06) at the 28th Int. Conf. on Soft. Eng. (ICSE’06), Shanghai, 2006.

7. D. Harel and R. Marelly. Come, Let’s Play: Scenario-Based Programming Using
LSCs and the Play-Engine. Springer-Verlag, 2003.

8. D. Harel and R. Marelly. Specifying and executing behavioral requirements: the
play-in/play-out approach. Software and System Modeling, 2(2):82–107, 2003.

9. ITU. International Telecommunication Union Recommendation Z.120: Message
Sequence Charts. Technical report, 1996.

10. I. Krüger, R. Grosu, P. Scholz, and M. Broy. From MSCs to Statecharts. In F. J.
Rammig, editor, DIPES, volume 155 of IFIP Proc., pages 61–72. Kluwer, 1998.

11. H. Kugler, D. Harel, A. Pnueli, Y. Lu, and Y. Bontemps. Temporal Logic for
Scenario-Based Specifications. In N. Halbwachs and L. D. Zuck, editors, TACAS,
volume 3440 of LNCS, pages 445–460. Springer, 2005.

12. M. Lettrari and J. Klose. Scenario-based monitoring and testing of real-time UML
models. In Proc. 4th Int. Conf. on The UML, Toronto, October 2001.

13. S. Maoz and D. Harel. From Multi-Modal Scenarios to Code: Compiling LSCs into
AspectJ. In Proc. 14th Int. Symp. Foundations of Software Engineering (FSE-14),
Portland, Oregon, November 2006.

14. UML. Unified Modeling Language Superstructure Spec., v2.0. OMG, August 2005.
15. J. Whittle, R. Kwan, and J. Saboo. From scenarios to code: An air traffic control

case study. Software and System Modeling, 4(1):71–93, 2005.

M.B. Dwyer and A. Lopes (Eds.): FASE 2007, LNCS 4422, pp. 125–139, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Scenario-Driven Dynamic Analysis
of Distributed Architectures

George Edwards, Sam Malek, and Nenad Medvidovic

Computer Science Department
University of Southern California

Los Angeles, CA 90089-0781
{gedwards, malek, neno}@usc.edu

Abstract. Software architecture constitutes a promising approach to the
development of large-scale distributed systems, but architecture description
languages (ADLs) and their associated architectural analysis techniques suffer
from several important shortcomings. This paper presents a novel approach that
reconceptualizes ADLs within the model-driven engineering (MDE) paradigm to
address their shortcomings. Our approach combines extensible modeling
languages based on architectural constructs with a model interpreter framework
that enables rapid implementation of customized dynamic analyses at the
architectural level. Our approach is demonstrated in XTEAM, a suite of ADL
extensions and model transformation engines targeted specifically for highly
distributed, resource-constrained, and mobile computing environments. XTEAM
model transformations generate system simulations that provide a dynamic,
scenario- and risk-driven view of the executing system. This information allows
an architect to compare architectural alternatives and weigh trade-offs between
multiple design goals, such as system performance, reliability, and resource
consumption. XTEAM provides the extensibility to easily accommodate both
new modeling language features and new architectural analyses.

1 Introduction

Many modern-day software systems are targeted for highly distributed, resource-
constrained, and mobile computing environments. In addition to the difficulties
inherent in traditional distributed system development, such as unpredictable network
latencies and security concerns, this new environment forces software developers to
cope with additional sources of complexity. For example, developers must assume an
inherently unstable and unpredictable network topology; they must elevate resource
utilization concerns to the forefront of design decisions; and they must take
application power consumption profiles into account.

As the complexity associated with software development has increased in this new
setting, software engineers have sought novel ways to represent, reason about, and
synthesize large-scale distributed systems. The field of software architecture has
advanced new principles and guidelines for composing the key properties of such
systems [1]. In many cases, the concepts and paradigms developed through research
in software architecture have drastically altered the way developers conceptualize

126 G. Edwards, S. Malek, and N. Medvidovic

Fig. 1. Software architecture in the model-driven engineering context

software systems. For example, in an effort to raise the level of abstraction used for
describing large-scale distributed systems above the object-oriented constructs
provided by previous software modeling technologies, such as UML 1.x, researchers
have attempted to create architecture description languages (ADLs) and associated
toolsets that provide the system modeler with higher-level architectural constructs.
ADLs endeavor to capture the crucial design decisions that determine the ultimate
capabilities, properties, and qualities of a software system [2]. ADL-based
representations can be leveraged throughout the software development process for
communication and documentation, examination and analysis, validation and testing,
and refinement and evolution.

However, the software architecture community has struggled to invent modeling
technologies that are semantically powerful as well as flexible and intuitive. ADLs have
generally either focused on structural elements (to the detriment of other important
system characteristics) or have relied on rigid formalisms that have a narrow vocabulary
and cumbersome syntax [3]. The result is that, for many domains (including the mobile
systems domain), crucial aspects of a system are not expressible in any of the existing
ADLs. As just one example, power usage characteristics, while integral to mobile and
embedded systems, are completely ignored by prominent ADLs.

In parallel with (and largely unaffected by) these developments, model-driven
engineering (MDE) has emerged as a promising approach to distributed software
system development that combines domain-specific modeling languages (DSMLs)
with model transformers, analyzers, and generators [4]. DSMLs codify the concepts
and relationships relevant in a particular domain as first-class modeling elements [6].
DSMLs also provide multiple model views and specify domain rules that define
model validity (i.e., well-formedness). Model transformers, analyzers, and generators
examine and manipulate models to create useful artifacts such as component
specifications and implementations, supplementary views of the system, or
descriptions of emergent behavior.

The work desc-
ribed in this paper
leverages the resp-
ective strengths of
ADLs (i.e., high-
level, architectural
description) and
MDE (i.e., domain-
specific extensib-
ility and model
transformation) in
support of a novel,
scenario-driven ap-
proach to the mod-
eling and analysis
of distributed soft-
ware architectures.

 Scenario-Driven Dynamic Analysis of Distributed Architectures 127

Our approach combines extensible modeling languages based on architectural constructs
with a model interpreter1 framework that enables rapid implementation of customized
dynamic analyses at the architectural level. The analyses provide statistical data
quantifying emergent behaviors and cross-cutting system properties (e.g., end-to-end
latencies and system-wide power consumption).

In this manner, an architect can compare architectural alternatives and weigh trade-
offs between multiple design goals. In particular, during the early design stages, a
software architect can target high-risk events by modeling scenarios that represent
unusual or dangerous conditions (e.g., extremely heavy loading). The artifacts
produced by our approach can be leveraged by an architect during other stages of the
development cycle, as well. For example, during system maintenance and evolution,
our approach can be used to assess the impact of modifications to the system (e.g.,
replacing components with newer versions). A high-level view of the overall
approach is shown in Figure 1.

Our initial study of the approach targets software development in distributed,
resource-constrained, and mobile computing environments, which is a setting that
presents significant challenges for software architects. To demonstrate the approach,
we have developed the eXtensible Tool-chain for Evaluation of Architectural Models
(XTEAM). XTEAM provides ADL extensions for mobile software systems and
implements a corresponding set of dynamic analyses on top of a reusable model
interpreter framework. Architectural models that conform to the XTEAM ADL are
constructed in an off-the-shelf meta-programmable modeling environment. XTEAM
model translators transform these architectural models into executable simulations
that furnish measurements and views of the executing system over time.

In order for our approach to be successful, it must fulfill two key requirements:

R1: the language should be extensible to accommodate new domain-specific con-
cepts and concerns as needed.

R2: the provided tool support should be flexible to allow rapid implementation of
new architectural analysis techniques that take advantage of domain-specific
language extensions.

This paper is organized as follows: Section 2 provides an overview of related work
in software architecture and MDE. Section 3 describes how our approach
reconceptualizes architectural description and analysis techniques in the MDE
paradigm. Section 4 describes our complete tool-chain in detail in order to
demonstrate the overall approach. In Section 5, we provide a discussion of the salient
aspects of our work. We conclude the paper by summarizing and discussing future
directions of this research effort.

2 Related Work

The approach described in this paper builds on previous projects and advancements in
software architecture and model-driven engineering. However, our approach and
associated tool-chain, XTEAM, exhibit several key differences from previous work.

1 We use the term “interpreter” to denote a custom-built component that utilizes and manip-

ulates models in order to perform functions such as transformation and analysis.

128 G. Edwards, S. Malek, and N. Medvidovic

So that we may better illustrate these differences, this section provides an overview of
related projects in software architecture and MDE. In Section 3, we examine more
closely how our approach addresses the shortcomings of and represents an
improvement over related techniques and technologies.

2.1 Model-Driven Engineering

The flexible nature of MDE has made it a suitable approach for representing different
and arbitrarily complex concerns across a wide spectrum of application domains.
Although a number
of previous works
have applied MDE
to the analysis and
synthesis of distri-
buted and embed-
ded software syst-
ems [5, 6, 9], they
have either done so
at a finer level of
granularity than the
system’s software
architectural constructs, or have been tied to a particular implementation platform or
analysis engine. While such approaches are very useful in specific contexts, they do
not leverage the concepts and paradigms developed by the software architecture
community in their modeling languages, and do not provide a framework that allows
rapid implementation of customized analyses. Below we provide a brief overview of
the most notable MDE projects related to our work.

Generic Modeling Environment. The MDE paradigm is realized via the appropriate
tool support. One of the most widely used MDE tools is the Generic Modeling
Environment (GME) [8]. GME is a meta-programmable, graphical modeling
environment that enables the creation of domain-specific modeling languages
(DSMLs) and models that conform to those DSMLs, as shown in Figure 2. GME also
provides interfaces for custom-built components (i.e., model interpreters) to access
the information captured in models in order to conduct analysis or synthesize useful
artifacts. To demonstrate the approach described in this paper, we have implemented
a significant portion of XTEAM in GME.

MILAN. MILAN [6] comprises a DSML for embedded systems based on a dataflow
representation, and a set of model translators that generate executable specifications for
simulation engines. The dataflow formalism consists of nodes connected by directed
edges. Functional, performance, and power simulations can all be generated from a
single system model. MILAN also enables automated synthesis of software
implementations from system models. While MILAN enables highly accurate
simulations, the modeling language requires the developer to build system models
using low-level constructs. As noted earlier, the MILAN language is based on a
hierarchical dataflow representation. This is an appropriate formalism for signal
processing systems, but is not sufficient for large-scale distributed architectures.

Fig. 2. High-level view of the model-driven engineering process as
implemented in GME

 Scenario-Driven Dynamic Analysis of Distributed Architectures 129

Attempting to build and maintain the model of such a system using dataflow can
quickly become unmanageable and overwhelming. In contrast, the high-level structural
and behavioral abstractions employed by ADLs allow the construction, review, and
maintenance of large, complex models with reduced effort and potential for error.

WML and CUTS. The Workload Modeling Language (WML) is another DSML that
enables dynamic analysis of component-based architectures [9]. WML allows the
modeler to create descriptions of the resource utilization patterns of components for
the purpose of evaluating system-wide quality-of-service (QoS) properties. WML
models can be automatically transformed into the XML-based inputs required by the
Component Workload Emulator Utilization Test Suite (CUTS). WML is tightly
coupled to CUTS and requires that models be specified in terms of emulator
constructs. The WML model interpreter performs a syntactic translation (from
graphical models to XML) rather than a semantic translation (from architectural
constructs to simulation constructs). Furthermore, the analysis provided by WML and
CUTS is implemented in the emulator engine, rather than in the model interpreter, so
the implementation of new analysis techniques would require changes to the
infrastructure, rather than utilization of the infrastructure. Finally, WML does not
capture component behavior in a generalized way that permits the representation of
complex control flow paths.

2.2 Software Architecture

In this section, we examine two works that are relevant to XTEAM: Finite State
Processes (FSP) [16], and xADL [7]. FSP is related to XTEAM because it is a modeling
notation used to capture the behavior of software architectures; xADL is related because
it is an extensible ADL. A number of other well-known ADLs provide some sort
of static analysis capability; their relationship to XTEAM is considered in Section 3.

xADL. The eXtensible Architecture Description Language (xADL) was developed as
a response to the proliferation of proposed ADLs, each of which had a different focus
and addressed different architectural concerns. It was (correctly) observed that no
single ADL could anticipate the needs of a wide variety of projects and domains.
Consequently, the xADL language is inherently extensible and can be enhanced to
support new domain-specific concepts. The language is defined by XML schemas; a
“core” schema specifies standard architectural constructs common to all ADLs, while
“extension” schemas — written by domain experts and tailored to the needs of
specific projects — specify new modeling elements as needed. While xADL
represents a promising step towards the flexibility and customizability required by
contemporary large-scale distributed systems development, xADL’s focus is primarily
architectural representation rather than analysis, simulation, or the generation of
implementation/configuration/deployment artifacts. xADL’s supporting toolset
consists of parsers and other syntactic tools that are semantically agnostic. Therefore,
the xADL toolset cannot be extended to enforce semantic consistency within
architectural models without modifying the toolset’s implementation. This is in
contrast to MDE, in which DSMLs ensure the construction of models that conform to
domain-specific constraints, while model interpreters provide semantically-aware
analysis. The result is that xADL, by itself, does not fully capitalize on the potential
of architectural modeling.

130 G. Edwards, S. Malek, and N. Medvidovic

FSP. FSP is a modeling notation for capturing the behavior of software architectural
constructs in terms of guarded choices, local and conditional processes, action
prefixes, and so on. FSP also allows for the construction of composite architectural
constructs, in which the behavior of a composed element is defined in terms of the
behavior of its constituents. While previous works have leveraged FSP models for
analysis and simulation of a system’s architecture [16], they have not focused on a
number of concerns that are important for distributed systems executing in
heterogeneous environments, including the structural aspects of an architecture, its
deployment onto physical hosts, or extensibility of the notation.

3 Reconceptualization of ADLs

By recasting the concepts and techniques developed by the software architecture
community in a model-driven engineering framework, the benefits of an architecture-
based approach to large-scale distributed system development are preserved, while the
shortcomings of the approach are diminished. The architecture-based approach to
software modeling, and the ADLs that support that approach, suffer from two key
drawbacks: inflexible notations with a narrow vocabulary, and supporting tools that
enable only a limited set of analyses.

Note that these two drawbacks are the corollary of the requirements stated in
Section 1. The hypothesis underlying this research is that these shortcomings can be
addressed by representing ADLs (and compositions thereof) via domain-specific
modeling languages (DSMLs), and performing architectural analysis via model
interpreters. However, to achieve this result, two key challenges must be overcome:

• Development of ADLs, even with the benefit of MDE environments, is inherently
challenging and requires both software architecture and metamodeling expertise.

• Implementation of custom-built model interpreters that access the information
contained in models to perform architectural analyses requires significant effort.

In this section, we provide an overview of our approach for overcoming the above
challenges in order to represent and analyze software architectures via MDE
techniques and facilities. In Section 4, the conceptual strategies outlined here are
made concrete through a detailed discussion of XTEAM and explanatory examples.

3.1 ADLs as Domain-Specific Modeling Languages

The first step in leveraging the MDE approach for software architecture is to codify
ADLs as DSMLs within a MDE framework, such as that provided by GME.
However, as mentioned above, the creation of semantically powerful, flexible, and
intuitive ADLs is non-trivial; in fact, it requires a great deal of expertise in both
software architecture and modeling languages. An ADL developer must command a
thorough understanding of the central and elemental concepts in software architecture
and must be adept in the mechanisms for codification of those concepts.

To overcome this challenge, we advocate an approach that avoids the creation of
ADLs from scratch. Instead, we rely on ADL composition (i.e., the combination of
constructs from multiple ADLs) and ADL enhancement (i.e., the definition of new,
customized ADL constructs). MDE technologies capture the concrete syntax of DSMLs

 Scenario-Driven Dynamic Analysis of Distributed Architectures 131

through metamodels. Once the metamodel for an ADL has been created, the ADL can
be manipulated as needed for a given application domain. Thus, the composition and
enhancement of ADLs is achieved through composition [10] and enhancement of their
corresponding metamodels. Existing notations and languages can be reused to the
greatest extent possible, and only incremental additions to the language are created as
needed to enable a specific architectural analysis technique. In addition to reducing the
burden of language development, this distinction is important for two reasons: (1)
existing ADLs are based on well-understood concepts and generally provide formal
semantics, which increases model understandability, and (2) utilization of common
languages maximizes the potential for reuse of the tool infrastructure (modeling
environments and model interpreters) across development projects and domains. Both
ADL composition and enhancement are utilized in XTEAM.

ADL composition allows the various concepts and design information expressible in
different ADLs to be captured in a single language, which then allows models that
conform to the language to be utilized in a variety of ways and at multiple stages of the
development cycle. Composition of ADL metamodels is simplified by the fact that most
ADLs share a small set of common elements (i.e., components, connectors, interfaces,
and so on) [Medvidovic N., et al.: A Classification and Comparison Framework for
Software Archite] that serve as the integration point. In Section 4, we describe in detail
how features from multiple ADLs are seamlessly integrated in XTEAM.

Some system properties that are not addressed by a general-purpose ADL may be
of significant concern for certain application domains. Furthermore, each type of
architectural analysis requires certain types of information to be modeled and
represented, which may not be supported by a general-purpose ADL. Therefore, ADL
enhancement—the ability to incorporate domain-specific concepts via new
extensions—is highly valuable in an architectural modeling tool. The metamodeling
mechanism provided by GME makes this process straightforward and intuitive: the
new information is added to the existing language by creating new elements or new
attributes of existing elements. This ADL metamodel enhancement mechanism
provides the means through which requirement R1 (stated in Section 1) is satisfied.
We will further illustrate the motivation and utility of ADL enhancement through a
detailed example in Section 4.

In this way, the mechanisms for language refinement, enhancement, and evolution
are built into MDE tool-chains. As a consequence, the notations used can always be
modified and the vocabulary expanded. As language extensions are developed, new
types of analysis will become possible. In Section 4, we describe how a model
transformation framework can be utilized to rapidly implement customized analyses.

3.2 Architectural Analyses as Model Interpreters

Typically, an ADL is accompanied by tool support that is geared specifically to the
notations provided by the language, thus only allowing for limited types of analysis.
On the other hand, the MDE paradigm advocates flexible tool support, where multiple
model interpreters with different analysis capabilities can be utilized. This
characteristic is absolutely necessary for reasoning about the varying and evolving
concerns of large-scale software systems.

MDE tools, such as GME, provide interfaces for custom-built model interpreters to
access and manipulate the information contained in models. However, building these

132 G. Edwards, S. Malek, and N. Medvidovic

tools from scratch requires significant effort. In many cases, a complex semantic
mapping between languages is required that is difficult to define and implement. Such
a mapping is required to transform architecture-based models, which are at a very
high level of abstraction, into simulation models, which are at a much lower level. For
this reason, our approach utilizes a model interpreter framework that allows the
software architect to rapidly implement custom analysis techniques without knowing
the details of complex semantic mappings (e.g., the architecture-to-simulation
mapping is achieved by the framework infrastructure “under-the-hood”). The
interpreter framework provides “hook” methods for which the architect provides
implementations that, taken as a whole, realize a specific analysis technique. The
objects available to the architect in the implementation of the analysis technique are
the architectural constructs defined in ADL extensions, not low-level simulation
constructs. The model interpreter framework, through its “hook” methods, greatly
simplifies the development of simulation generators, and thus provides the means
through which requirement R2 is satisfied. Section 4 demonstrates the use of the
XTEAM model interpreter framework in the implementation of a specific analysis
technique.

Analysis techniques may be static or dynamic. Static analysis techniques rely
on the formalisms underlying models to provide information about system properties
or expose subtle errors without executing the system [11]. Many static analyses attempt
to prove the “correctness” of a system, which may be useful in many scenarios, but
suffers from the difficulty that system implementation must precisely match the model
in order for the analysis to be relevant. Dynamic analysis, on the other hand, attempts to
execute model-based architectural representations in order to illuminate their
characteristics and behaviors at run-time. Dynamic analysis is more useful for compa-
ring high-level design possibilities early in the development cycle because it does not
require that a model be completely faithful to the eventual implementation to remain
relevant. Static analysis has an important place in the development of certain types of
software systems, but dynamic analysis is more relevant when an architect wishes to
understand the system’s behavior within the context of specific execution scenarios.

For these reasons, our approach has thus far focused on dynamic analysis through
system simulation. Model interpreters synthesize executable specifications that run on
a simulation engine. The simulation code is instrumented to record the occurrence of
events (e.g., message exchanges and component failures) and measurements of
system properties (e.g., observed latencies and memory usage). The results of a
simulation run depend heavily on the environmental context (e.g., the load put on the
system) and may contain elements of randomness and unpredictability (e.g., the
timing of client requests). Consequently, we consider our approach to be scenario-
driven, in that a given simulation run represents only one possible execution
sequence. The software architect should choose the set of scenarios to be simulated to
include high-risk situations and boundary conditions. While this simulation-based
approach does not provide a formal proof of system behavior, it does allow the
architect to rapidly investigate the consequences of fundamental design decisions
(e.g., choice of architectural style or deployment architecture) in terms of their impact
on non-functional properties (e.g., reliability, performance, or resource utilization).

 Scenario-Driven Dynamic Analysis of Distributed Architectures 133

4 The XTEAM Tool-Chain

In this section, we demonstrate the approach described in Section 3 in the eXtensible
Tool-chain for Evaluation of Architectural Models (XTEAM), a model-driven
architectural description and simulation environment for distributed, mobile, and
resource constrained software systems. XTEAM composes existing, general-purpose
ADLs, enhances those ADLs to capture important features of mobile software
systems, and implements simulation generators that take advantage of the ADL
extensions atop a reusable model interpreter framework.

Fig. 3. The eXtensible Toolchain for Evaluation of Architecture Models

A high-level view of XTEAM is shown in Figure 3. Using GME’s metamodeling
environment, we created an XTEAM ADL metamodel by composing a structural
ADL, the xADL Core [7], with a behavioral ADL, FSP [16]. GME uses the XTEAM
metamodel to configure a domain-specific modeling environment in which XTEAM
architectural models can be created. With this language basis, we were able to
implement the XTEAM model interpreter framework, which provides the ability to
generate simulations of application architectures that execute in the adevs [17]
discrete event simulation engine. However, these simulations alone do not implement
any architectural analysis techniques. To do so, we enhanced the XTEAM ADL
metamodel with language extensions that capture system characteristics relating to
energy consumption, reliability, latency, and memory usage, thereby demonstrating
the fulfillment of requirement R1. We then utilized the extension mechanisms built
into the model interpreter framework in such a way as to generate simulations that
measure, analyze, and record the properties of interest, thereby demonstrating the
fulfillment of requirement R2. We further elaborate on this process below.

4.1 Composing ADLs and Implementing a Model Interpreter Framework

Using the approach described in Section 3, XTEAM leverages previous work in
software architecture through the composition of existing ADLs. We created
metamodels for the xADL Core, which defines architectural structures and types
common to virtually all ADLs, and FSP, which allows the specification of component
behaviors. The integration of these metamodels was straightforward, as they capture
largely orthogonal concerns.

134 G. Edwards, S. Malek, and N. Medvidovic

For illustration, the metamodel for xADL Core is shown in Figure 4 (along with
additional extensions that are discussed in the next subsection). Components and
connectors represent the basic building blocks for architecture models. They contain
interfaces that can be connected via links. Interface mappings denote the realization of
an interface by the interface of a sub-component. The group element captures the
membership of multiple components and connectors in a set. Components and
connectors may contain substructures. Finally, several of the xADL Core elements
include typed attributes, such as a generic description.

Fig. 4. The metamodel of xADL Core (with the energy consumption extension) as implemented
in XTEAM

The combination of xADL and FSP allowed us to create executable architectural
representations. Models conformant to the composed ADL contain sufficient
information to implement a semantic mapping into low-level simulation constructs
that can be executed by an off-the-shelf discrete event simulation engine [18], such as
adevs. This semantic mapping is implemented by our model interpreter framework.
The framework infrastructure synthesizes the low-level structures (e.g., atomic and
static digraph models) and logic (e.g., state transition functions) needed by adevs.
“Hook” methods provided by the framework allow an architect to generate the code
needed to realize a wide variety of dynamic analyses. The following subsection
explains this process in more detail through the use of concrete examples.

4.2 Domain-Specific Extensions and Architectural Analyses

In order to take advantage of the extensibility and flexibility afforded by the MDE
approach, we implemented several domain-specific ADL extensions within the
XTEAM metamodel, and then relied on the interpreter framework to efficiently
implement analysis techniques that operate on the information captured in those
extensions. As XTEAM targets the development of architectures for distributed,
mobile, and resource constrained software systems, we chose to implement analyses
that are highly relevant for that domain. Below we elaborate on our implementation of
one such analysis in XTEAM and briefly describe three others.

 Scenario-Driven Dynamic Analysis of Distributed Architectures 135

4.2.1 Energy Consumption Extensions and Analysis
The energy consumption of executing software has traditionally been ignored by
software engineers as they could rely on an uninterrupted, abundant energy source. In
the mobile setting, this assumption no longer holds, and the energy consumption of
software components can have an important impact on system longevity. The energy
consumption estimation framework described in [13] provides a mechanism for
estimating software energy consumption at the level of software architecture.

Fig. 5. Model of the mobile application architecture in XTEAM

At a high level, the energy consumption estimation framework defines the overall
energy consumption of a software component as a combination of its computational
and communication energy costs. The computational energy cost (due to CPU
processing, memory access, I/O operations, etc.) is incurred whenever one of the
component’s interfaces is invoked, while the communication energy cost is incurred
whenever data is transmitted or received over the wireless network. The estimation
framework provides equations that enable the calculation of these energy costs based
on a number of a parameters, including data sizes and values, the rate of energy
consumption during data transmission, and network bandwidth. Enhancing the
XTEAM metamodel with these values was straightforward: they were added as
attributes to the appropriate elements (groups, which denote hosts in this context, and
interfaces), as shown in Figure 4. Then, in our interpreter framework (recall Figure 3),
we inserted the equations for energy consumption based on the parameters defined in

136 G. Edwards, S. Malek, and N. Medvidovic

the model. The communication energy cost equation was inserted into the “hook”
methods that correspond to the sending and receiving of data between components. If
the components are on different hosts, the communication energy cost is deducted
from the hosts’ total battery power. Similarly, the computational energy cost equation
was inserted into the “hook” method corresponding to the invocation of an
interface.Whenever one of these events occurs during the simulation run, the energy
consumption values are calculated and recorded.

To illustrate the use of the energy consumption ADL extension and analysis,
consider the example of a small mobile application in which we have three
distributed, mobile hosts: an iPAQ PDA and two IBM Thinkpad laptops. A top-level
view of the XTEAM model for the mobile application is shown in the screen capture
in Figure 5 (although most of the model detail cannot be seen in this view). A
database client and a FTP client are deployed to the PDA, while the corresponding
servers each run on one of the laptops. Components that perform encryption and
compression (respectively, IDEA and LZW open-source components) are also
deployed on the PDA and laptops. When the DB client wishes to query the database,
it encrypts the query using the local IDEA component and sends the query over the
wireless network to the DB server, where it is decrypted. The DB server then retrieves
the result of the query from the database, encrypts the results, and sends them back to
the DB client. An analogous path is used for the FTP client, except that compression
rather than encryption is performed.

By invoking our energy consu-
mption simulation generator (built
using the interpreter framework) on
the mobile application model, the
energy consumption on each host
can be determined dynamically.
Plotting these measurements as a
function of time results in the exa-
mple graph shown in Figure 6.

This type of energy consumption
estimation has a variety of uses in the
scenario-driven analysis approach.
First, the assignment of components
to hosts, or deployment architecture,
can have a significant effect on
system energy consumption, and, in turn, its longevity. Our environment allows the
architect to quickly model a set of potential deployment architectures, and then observe
the energy consumption on each host over time. Moreover, the architect can determine
whether a dynamic redeployment strategy is required in situations when the actual
energy consumption rate differs significantly from expected rates. Conversely, given a
requirement for the longevity of system services, the architect can begin to arrive at
target energy usages for each component.

4.2.2 Other Extensions
We have also leveraged XTEAM to implement dynamic analysis capabilities for end-to-
end latency, memory utilization, and component reliability. The implementation of
ADL extensions and model interpreters for these analyses follows the same pattern as

Host A (iPAQ) Battery Power

22000

22500

23000

23500

24000

24500

0 100000 200000 300000 400000 500000 600000

Time (ms)

R
em

ai
n

in
g

 E
n

er
g

y
(m

J)

 Fig. 6. Result of energy consumption analysis

 Scenario-Driven Dynamic Analysis of Distributed Architectures 137

that used for energy consumption, and demonstrates the fulfillment of our original
requirements. For example, we implemented the component reliability extension and
analysis based on the technique described in [12]. This reliability estimation approach
relies on the definition of component failure types, the probabilities of those failures at
different times during component execution, and the probability of and time required for
failure recovery. This type of analysis meets the primary criteria for implementation in
XTEAM: it estimates the reliability of components at the level of software architecture.
We extended the FSP-based behavior language in XTEAM to include failure and
recovery events and probabilities. We also developed an analysis that determines if and
when failures occur as the components in the system progress through different tasks
and states. In general, we believe that given an architectural analysis technique that is
applicable in a dynamic, simulated setting, our framework can be utilized to realize that
technique through implementation of the appropriate hook methods.

5 Discussion

This section discusses our approach in the context of wider architectural development
processes and activities. In particular, we see three cases where our approach is
particularly relevant and unique: (1) providing rationale for fundamental architectural
decisions, (2) weighing trade-offs among multiple conflicting design goals, and (3)
understanding the results of composing independent components developed in isolation.

5.1 Providing Design Rationale

Early in the architectural development process, software architects are, in many
situations, required to rely on their own intuition and past experience when weighing
fundamental design questions. For example, the choice of a particular architectural
style, the distribution of components across hosts, or the functionality allocated to
components can dramatically effect the ultimate behaviors and properties of a
system, but architects have very limited mechanisms for arriving at such decisions
beyond their own knowledge and expertise and the collective wisdom of the
architecture community. In other words, rationalizing such decisions using specific
processes and tools is relatively rare. Our approach to software architecture provides
a means of experimentation with fundamental design decisions and the
rationalization of those decisions through quantifiable means. By generating and
executing simulations of a distributed system, the consequences of crucial
architectural choices can be better understood.

5.2 Weighing Architectural Trade-Offs

Nearly all non-trivial architectural decisions come down to trade-offs between multiple
desirable properties. The relative importance of different system properties to the user
(e.g., availability or performance) can be determined prior to architectural
development, but the architect is still required to engineer the right balance between
conflicting goals. Emphasizing one attribute over others will eventually yield
diminishing returns, and usually this “tipping-point” between different qualities is
anything but obvious. For example, given a system with both fixed and mobile hosts,
deploying components to a mobile host will likely increase the availability and reduce

138 G. Edwards, S. Malek, and N. Medvidovic

the latency perceived by a client using that device, but will also drain the battery power
faster. The “right” deployment (i.e., that which maximizes the system’s utility given
users’ quality-of-service preferences [14]) depends heavily on the wireless network
characteristics, such as bandwidth and the frequency of disconnects, in addition to a
number of other factors. Rather than relying on intuition or past development projects
to achieve the right balance, our approach allows an architect to determine the
relationships between various design goals and increase system utility experimentally.

5.3 Understanding Compositions of Off-the-Shelf Components

In the present day, independent teams or organizations are often responsible for
producing components that are ultimately assembled to create a unified system. In
such settings, detailed information about individual components (e.g., resource
consumption, failure rates) may be available, but the properties of their composition
may not be well-understood. In such a case, our approach can produce accurate
measurements of the emergent properties of the composed system. This knowledge
ultimately enhances the architects’ understanding of the system and increases their
confidence in the ability of the composed system to meet end-user operational goals.
Both of these outcomes serve to reduce the risk associated with a large-scale
development and/or integration project.

6 Conclusions

This paper presented a software architecture-based approach to modeling and analysis
of distributed architectures that leverages the domain-specific extensibility provided
by model-driven engineering. Our approach addresses the significant shortcomings of
previous ADLs by relying on a tool-chain that enables both modeling language and
analysis extensibility. The dynamic analysis capabilities of the tool-chain allow an
architect to better understand the consequences of architectural decisions, focus on
aspects that have the greatest effect on a system’s critical properties, weigh trade-offs
between conflicting design goals, and better understand component compositions. We
demonstrated and evaluated the approach on XTEAM, a suite of ADL extensions and
model transformation engines targeted specifically for highly distributed, resource-
constrained, and mobile computing environments. We believe our approach
represents an improvement over traditional ADLs and exhibits significant differences
from other MDE tools that have been developed for distributed systems development.

There are several ways in which we intend to extend this work. First, we will
utilize the XTEAM tool-chain in the context of architectural development for a real-
world security application that operates in an embedded, wireless environment.
Second, we will integrate XTEAM with other complementary architecture-based
development tools, including DeSi [14] and Prism-MW [15]. Third, we will
determine more precisely the exact class of analysis techniques that can be
implemented with our model interpreter framework, and evaluate the feasibility of
supporting other classes of analysis techniques (e.g., static analyses) via additional
interpreter frameworks. Lastly, we will further define ways in which our approach can
be integrated with widely-used architectural development processes, such as the
Architecture Trade-off Analysis Method (ATAM).

 Scenario-Driven Dynamic Analysis of Distributed Architectures 139

Acknowledgments

The work described in this paper was sponsored by the National Science Foundation
under Grant number ITR-0312780. Any opinions, findings, and conclusions
expressed in this paper are those of the authors and do not necessarily reflect the
views of the NSF. This material was also sponsored by Bosch. The authors wish to
thank the anonymous reviewers for their detailed and helpful comments.

References

[1] Perry, D. E., Wolf, A.L.: Foundations for the Study of Software Architectures. ACM
SIGSOFT Software Engineering Notes, pp. 40-52, Oct 1992.

[2] Medvidovic N., et al.: A Classification and Comparison Framework for Software
Architecture Description Languages. IEEE Trans. on Software Engineering, 26(1), Jan
2000.

[3] Medvidovic, N., Dashofy, E. and Taylor, R.N.: Moving Architectural Description from
Under the Technology Lamppost. Journal of Systems and Software, 2006.

[4] Schmidt, D.C.: Model-Driven Engineering. IEEE Computer, 39(2), pp. 41-47, Feb 2006.
[5] Karsai, G., Sztipanovits, J., Ledeczi, A., and Bapty, T.: Model-integrated development of

embedded software. In Proceedings of the IEEE, 91(1), pp. 145-164, Jan 2003.
[6] Ledeczi, A., et al.: Modeling methodology for integrated simulation of embedded systems.

ACM Transactions on Modeling and Computer Simulation, 13(1), pp. 82-103, Jan 2003.
[7] Dashofy, E., van der Hoek, A. and Taylor, R.N.: An Infrastructure for the Rapid

Development of XML-based Architecture Description Languages. Proceedings of the
24th International Conference on Software Engineering, pp. 266 - 276, 2002.

[8] GME: The Generic Modeling Environment. http://www.isis.vanderbilt.edu/projects/gme/
[9] Paunov, S., et al.: Domain-Specific Modeling Languages for Configuring and Evaluating

Enterprise DRE System Quality-of-Service. Proceedings of the 12th IEEE International
Conference on Embedded and Real-Time Computing Systems and Applications, 2006.

[10] Ledeczi, A., et al.: On metamodel composition. Proceedings of the 2001 IEEE
International Conference on Control Applications, pp. 756-760, 2001.

[11] Jackson, D., Rinard, M.: Software Analysis: A Roadmap. In The Future of Software
Engineering, Anthony Finkelstein (Ed.), pp. 215-224, ACM Press 2000.

[12] Roshandel, R., et al.: Estimating Software Component Reliability by Leveraging
Architectural Models. 28th International Conference on Software Engineering, May 2006.

[13] Seo C., Malek S., N. Medvidovic: An Energy Consumption Framework for Distributed
Java-Based Software Systems. Tech. Report USC-CSE-2006-604, 2006.

[14] Malek, S.: A User-Centric Framework for Improving a Distributed Software System's
Deployment Architecture. To appear in proceedings of the doctoral symposium at the
14th Symposium on Foundation of Software Engineering, Portland, Oregon, Nov. 2006.

[15] Malek, S., et al.: Prism-MW: A Style-Aware Architectural Middleware for Resource
Constrained, Distributed Systems. IEEE Trans. on Software Engineering. 31(3), Mar.
2005.

[16] Magee, J., et al.: Behaviour Analysis of Software Architectures. Proceedings of the TC2
First Working IFIP Conference on Software Architecture (WICSA1), pp. 35 - 50, 1999.

[17] Adevs: A Discrete EVent System simulator. http://www.ece.arizona.edu/~nutaro/
[18] Schriber, T. J., Brunner, D.T.: Inside Discrete-Event Simulation Software: How it Works

and Why it Matters. Proceedings of the Winter Simulation Conference, 2005.

Enforcing Architecture and Deployment

Constraints of Distributed Component-Based
Software

Chouki Tibermacine1, Didier Hoareau1, and Reda Kadri1,2

1 VALORIA, University of South Brittany, Vannes, France
{Didier.Hoareau,Chouki.Tibermacine}@univ-ubs.fr

2 Alkante, Cesson Sévigné, France
r.kadri@alkante.com

Abstract. In the component-based software development process, the
formalisation of architectural choices makes possible to explicit quality
attributes. When dealing with the deployment of such component-based
software in dynamic networks, in which disconnections or machine fail-
ures can occur, preserving architectural choices becomes difficult to en-
sure, as current architecture-centric languages and their support mainly
focus on steps prior to the deployment one. We present in this paper
a family of languages that formalise not only architectural choices but
deployment aspects as well, both as constraints. Then, we show how all
of these constraints are reified in order to manage the deployment of a
component-based software in this context of a dynamic hosting platform.
The proposed solution defines an automatic deployment that ensures per-
manently, at run time, the preservation of architecture and deployment
choices, and thus their corresponding quality attributes.

1 Introduction

Architectural choices should be preserved throughout the software lifecycle so
that their associated quality attributes persist. For example, if we choose, at
design-time, a particular architectural style like the pipe and filter [15], we should
be able, at runtime, to enforce it so that maintainability and performance quality
requirements can be ensured permanently.

In an MDE (Model-Driven Engineering) approach, we can define at architec-
ture design-time an architecture description of a system with a given ADL, like
Acme [4]. We can then transform this description into a component implementa-
tion in CORBA components (CCM) [10], for example. For a smooth transition,
we can transit by a component diagram in UML 2 (or one of its profile, like CCM
one), at component design-time. We showed in [16], how to formalize architec-
tural choices at the different stages above using a family of constraint languages
called ACL profiles: Acme ACL profile at architecture design stage, UML 2 ACL
profile at component design stage and CCM ACL profile at component imple-
mentation stage. We also presented how these architectural choices (constraints)
are preserved from one stage to another.

M.B. Dwyer and A. Lopes (Eds.): FASE 2007, LNCS 4422, pp. 140–154, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Enforcing Architecture and Deployment Constraints 141

In this paper, we present how these choices can be preserved after the devel-
opment has finished. We show how this can be achieved after the deployment of
the component implementation in a distributed execution environment. Indeed,
one of the characteristics of emerging distributed platforms is their dynamism.
Such dynamic platforms are not only composed of powerful and fixed work-
stations but also of mobile and resource-constrained devices (laptops, PDAs,
smart-phones, sensors, etc.). Due to the mobility and the volatility of the hosts,
connectivity cannot be ensured between all hosts, e.g. a PDA with a wireless con-
nection may become inaccessible because of its range limit. As a consequence,
in a dynamic network, partitions may occur, resulting in the fragmentation of
the network into islands. Machines within the same island can communicate
whereas, no communication is possible between two machines that are in two
different islands. Moreover, as some devices are characterized by their mobility,
the topology of islands may evolve.

Dynamism in the kind of networks we target is not only due to the nature
of the devices but also to their heterogeneity making difficult to base a de-
ployment on resource’s availability. When deploying component-based software
in dynamic distributed infrastructures it is required that the deployed system
complies permanently with its corresponding architecture choices. By taking ad-
vantages of changes in the environment (e.g. availability of a required resource),
the initial deployment can evolve but any reconfiguration must respect initial
architectural choices. This makes the running system benefit from the targeted
quality attributes, and more particularly those which are dynamically observed,
like performance or reliability.

In addition, we introduce in this paper the enrichment of architectural choices,
during deployment-time, with constraints on resources and location. We show
how we can use the same language to formalize this kind of constraints, and how
we can check them at runtime. The proposed approach makes use of a transfor-
mation technique to evaluate ACL constraints. All architectural choices together
with resource and location constraints are transformed into reified runtime con-
straints to be evaluated.

In the next section we present briefly how we can formalize architecture choices
using a constraint language, and we illustrate this formalization by a short ex-
ample of a client/server architectural style. In addition we show how to use this
same language to describe resource and location requirements at component
deployment stage. We present in section 3, the deployment process and the res-
olution mechanisms of these constrained component-based software in dynamic
infrastructures. In section 4 implementation details and experiment results are
given. Before concluding and highlighting the perspectives, we present some re-
lated work in section 5.

2 Formalizing Architectural Choices During Development

In order to make explicit architectural choices, like the use of a particular archi-
tecture style or the enforcement of general architecture invariants, we proposed

142 C. Tibermacine, D. Hoareau, and R. Kadri

Fig. 1. Client/Server architecture of a Web mapping system

in [16] a constraint language named ACL (Architecture Constraint Language).
Architectural choices are thus formalized as architecture predicates which have
as a context an architectural element (component, connector, etc) that belongs
to an architecture metamodel.

ACL is a language with two levels of expression. The first level encapsulates
concepts used for basic predicate-level expression, like quantifiers, collection op-
erations, etc. It is represented by a slightly modified version of UML’s OCL [11],
called CCL (Core Constraint Language). The second level embeds architectural
abstractions that can be constrained by the first level. It is represented by a set
of MOF architecture metamodels. Architectural constraints are first-order pred-
icates that navigate in a given metamodel and which have as a scope a specific
element in the architecture description. Each couple composed of CCL and a
given metamodel is called an ACL profile. We defined many profiles, like the
ACL profile for xAcme1, for UML 2, for OMG’s CORBA Components (CCM)
or the profile for ObjectWeb’s Fractal [1].

To illustrate our work, we briefly describe the development process of a
component-based software we developed, from the architecture design stage to
the deployment stage. We chose xAcme to illustrate the architecture design stage
and the Fractal component model for the implementation stage.

2.1 Architectural Choices at Architecture Design Stage

As an answer to a request from a local community in Brittany (France), we
developed a component-based software, called AlkaGeo. This software gener-
ates geographic information flow which is used by a Web Mapping Application
(WMA). When using this application, our customer can access Web GIS data
and maps, like land maps, through their browsers. This WMA is deployed in
application servers of our provider (Internal Authority, in Figure 1).

1 xAcme is an XML extension of Acme ADL.

Enforcing Architecture and Deployment Constraints 143

The overall architecture of AlkaGeo is organized according to the client/server
style. In this system we have two instances of this style. The first occurrence of
this style can be seen in Figure 1 between the components (Input Flow) asking
for maps and data, in two different formats SVG and SWF, from server com-
ponents (Serv SVG and Serv SWF). The second instance of the style is defined
between clients (Input Flow) requesting maps and data in the GML format from
server components (Serv WMS and Serv WFS)2. AlkaGeo is deployed on differ-
ent server providers (External Authorities), which have different resources and
configuration, to which we do not have access. For the sake of brevity, we illus-
trate in this work just the GML flows service implemented by the Serv WMS
and Serv WFS components.

The client/server style is characterized by the following constraints:

– There is no direct communication between Input Flow components,
– Serv WFS and Serv WMS can accept requests from at most 40 different In-

put Flow components,
– Input Flow components can use at most one Serv WFS component or one

Serv WMS component.

These three constraints can be described using ACL profile for xAcme as
follows:

1. context C l i en tSe rve r : ComponentInstance inv :
C l i en tSe rv e r . subArch i tec ture . archInstance . l i nk In s t anc e−>s e l e c t (l |
l . endPoint−>f o rA l l (p1 , p2 | p1 . anchorOnInter face . componentInstance
. id = ’ Input Flow ’ and p2 . anchorOnInterface . componentInstance
. id <> ’ Input Flow ’))

This constraint states that for all link instances between architecture in-
stances, there should be no link which binds two components which are
identified by Input Flow.

2. context C l i en tSe rve r : ComponentInstance inv :
C l i e n tS e rve r . subArch i tec ture . archInstance . componentInstance
−>f o rA l l (c | ((c . id = ’Serv WFS ’) or (c . id = ’Serv WMS ’)) and
(c . l i nk In s t anc e−>s e l e c t (l | l . componentInstance
. id = ’ Input Flow ’))−> s i z e () <= 40)

The constraint above stipulates that component instances with the identi-
fier Serv WFS and Serv WMS should have at most 40 links with component
instances with the identifier Input Flow.

3. context C l i en tSe rve r : ComponentInstance inv :
C l i e n tS e rve r . subArch i tec ture . archInstance . l i n k I n s t an c e
−>f o rA l l (l | l . endPoint−>s e l e c t (l | l . endPoint−>f o rA l l (p1 , p2 |
(p1 . anchorOnInter face . componentInstance . id = ’ Input Flow ’)
and ((p2 . . anchorOnInter face . componentInstance . id = ’Serv WFS ’)
or (p2 . . anchorOnInter face . componentInstance . id = ’Serv WMS ’)))

The last constraint enforces the existence of at most one link between the
component instance with the identifier Input Flow and one of the two com-
ponent instances identified by Serv WFS and Serv WMS.

2 WMS and WFS are two standards of the Open Geospatial Consortium:
http://www.opengeospatial.org/

144 C. Tibermacine, D. Hoareau, and R. Kadri

ACL profile for xAcme is composed of CCL and a MOF metamodel of xArch.
An xArch architecture instance is composed of a set of component instances,
connector instances, link instances and logical groups of the previous archi-
tectural elements. Component or connector instances define a set of interface
instances and optionally a sub-architecture for a hierarchical description. The
sub-architecture defines a set of architecture instances and a list of mappings
between inner and outer interface instances. Link instances bind two end points,
each one references an interface instance. As we can see, the constraints above
navigate in this xArch metamodel.

2.2 Architectural Choices at Component Design Stage

Before implementing our software, we decided to establish an intermediate UML
model for a smooth transition. Indeed, recent experiments [13] showed also that
some ADLs and the UML can be used in a complementary fashion, in order
to make better analysis of software architectures. The constraints formalizing
the client/server style can be described, at this stage, using the ACL profile for
UML 2. The first constraint is expressed as follows:
context C l i en tSe rve r : Component inv :
C l i en tSe rv e r . connector . end . r o l e−>f o rA l l (r1 , r2 | (r1−>oclAsType (Port)
. e n c ap su l a t edC l a s s i f i e r −>oclAsType (Class)−>oclAsType (Component)
. name = ’ Input Flow ’) and (r2−>oclAsType (Port) . e n c ap s u l a t e dC l a s s i f i e r
−>oclAsType (Class)−>oclAsType (Component) . name <> ’ Input Flow ’))

This constraint navigates in the UML 2 component metamodel. At the differ-
ences of the previous constraint, it manipulates connectors, roles, components
and ports. The constraint above and the first constraint expressed in the previ-
ous subsection have the same semantics in the context where they are applied
(on an xAcme architecture description and on a UML 2 component model).

In order to evaluate constraints, we use an intermediate ACL profile to which
all architectural constraints specified in the different profiles are transformed.
At a given stage of the development process, architecture choice preservation is
achieved by the transformation of constraints specified in all upstream stages in
this intermediate ACL profile to be evaluated.

2.3 Architectural Choices at Component Implementation Stage

Suppose that the system modeled above has been implemented in a component
technology, like Fractal. The three constraints of the previous client/server style
can be described at this development stage using ACL profile for Fractal. In the
listing below, we illustrate the first constraint expressed in this profile:
context C l i en tSe rve r : CompositeComponent inv :
C l i e n tS e rve r . b inding−>f o rA l l (b | b . c l i e n t . component . name= ” Input Flow”
and b . s e rv e r . component . name <> ” Input Flow ”)

This constraint navigates in the MOF metamodel of Fractal component model
which is presented in Figure 2. This metamodel abstracts components, which
can be composite or primitive. Components can have interfaces of several types.

Enforcing Architecture and Deployment Constraints 145

Component

+name: String

Interface

+name: String

+isCollection: Boolean

+isMandatory: Boolean

+isInternal: Boolean

Primitive Composite
Client Server

Binding

+interface +component
1..

1

1..*

+componentAttachment

+composite

Attribute

Controller

+kind: ControllerKinds

ClassImplementation

*

+contract

1

*
1

Realization

+realization*

0..1

1

<<enumeration>>

ControllerKinds

+Attribute

+Lifecycle

+Content

+Binding

+ownedAttribute

*

1

* *

1 1

+extendedDefinition

0..1

1

+subComponent

* 1

Fig. 2. The MOF metamodel of Fractal component model

Server interfaces are interfaces that specify provided functionalities. Client in-
terfaces define required operations. Controller interfaces embed non-functional
specifications, such as predefined operations which manage the lifecycle or the
contents of a given component. A composite component specifies a set of bindings
which are simple method invocation connectors. These bindings are attachments
between client and server interfaces. Bindings can represent either hierarchi-
cal or assembly connectors (with analogy to UML’s delegation and assembly
connectors).

2.4 Resource and Location Requirements at Deployment Stage

In addition to these architecture constraints, the deployment of each component
is governed by some resource and location requirements. Indeed, before deploy-
ment, we are unlikely to know what are the machines that are involved in the
deployment and thus where to deploy each component. However, one can define
for each component what are its requirements in terms of resources, that is, the
characteristics of the machines that will host the component. For example, a
Serv SVG must be hosted by a machine that has at least 512MB of free memory,
a CPU scale greater than 1GHz and is connected to the network by an interface
with a bandwidth of at least 512 Kb/s. With regard to Input Flows, each instance
must be hosted by a machine that belongs to the Internal Authority provider.

Resource constraints can be defined using an ACL profile (i.e. a CCL and
a metamodel), called R-ACL (Resources-ACL). R-ACL integrates in its meta-
models concepts related to system resources and their properties. The resource
constraints introduced above are described in R-ACL as follows:

1. Free memory >= 512 MB:
context Serv SVG : Component inv :
Serv SVG . re source−>oclAsType (Memory) . f r e e >= 512

146 C. Tibermacine, D. Hoareau, and R. Kadri

2. CPU scale > 1 GHz (1000MHz):
context Serv SVG : Component inv :
Serv SVG . re source−>oclAsType (CPU) . p roc e s so r s
−>s e l e c t (cpu : CPU Model | cpu . speed>1000)−> s i z e ()>=1

3. Network interface bandwidth >= 512 Kb/s:
context Serv SVG : Component inv :
Serv SVG . re source−>oclAsType (NetworkInte r face) . tx >= 512

4. Each instance of the component Input Flow must be hosted by an internal
authority machine:
context Input Flow : Component inv :
Input Flow . l o c a t i on−>f o rA l l (h : Host | h
. group = ’ I n t e r n a l Authority ’)

As discussed above these constraints navigate in the resources metamodel, but
have as a scope only one specific architectural element, which is the component
Server SVG or Input Flow. This element is of type Component which is a sub-
meta-class of the meta-class ArchitecturalElement. This meta-class is the ancestor
of all meta-classes in the Fractal metamodel3.

Besides resource constraints, it is sometimes required to control the placement
of the components, especially when several machine can host the same compo-
nent. For example in the Client/Server system we designed, we would require
that for reliability reasons (redundancy at the server side), all Serv SVGs have
to be located on distinct hosts. The following listing illustrates this constraint
expressed in R-ACL.
context C l i en tSe rve r : CompositeComponent inv :
C l i e n tS e rve r . subComponent−>s e l e c t (c1 , c2 : Component | c1 . name=’Serv SVG ’
and c2 . name=’Serv SVG ’ and c1 . l o c a t i o n . id <> c2 . l o c a t i o n . id)

The different categories of constraints are saved in XML documents. There is a
style descriptor which contains the constraints formalizing an architecture style
(the first category of constraints) and a deployment descriptor which embeds
resource and location constraints (the second and the third category of con-
straints). These descriptors are used while deploying the system, as described in
the next section.

3 Preserving Architectural Choices at Runtime

When the choice of the placement of every component has to be made, the initial
configuration of the target platform may not fulfil all resources’ requirements of
the application and some needed machines may not be connected. We are thus
interested in a deployment that allows the instantiation of the components as
soon as resources become available or new machines become connected. We qual-
ify this deployment as propagative. We propose a general framework to guarantee
the designed architecture and its instances for each deployment evolution. We
present first the requirements of a deployment driven by architecture choices
3 This is omitted from Figure 2 for the purpose of clarity.

Enforcing Architecture and Deployment Constraints 147

and resource specifications. Then, for the purpose of clarity, we detail first the
deployment process in a non-partitioned network—this will allow us to focus on
the dynamic resolution of constraints—then we take into account fragmentation
within the environment.

3.1 From Architectural Constraints to Runtime Constraints

At design time, we are unlikely to know what are the machines that are involved
in the deployment and thus what are their characteristics. Hence, a valid config-
uration of the client/server style presented in section 2, can only be computed at
runtime. A valid configuration is a set of component instances, interconnected
and for which, a target host has been chosen for every instance. Every architec-
tural constraint (e.g. on bindings or number of instances) has to be verified and
the selected hosts must not contradict the resource and location constraints.

Our approach consists in manipulating all the architectural and resource con-
straints at runtime in order to reflect the state of the deployed system with
respect to these constraints. As it is detailed below, these runtime constraints
are suited when considering reaction mechanisms to changes that can occur in
the environment. The reified constraints are generated from the R-ACL con-
straints and correspond to a Constraint Satisfaction Problem (CSP). In a CSP,
one only states the properties of the solution to be found by defining variables
with finite domains and a set of constraints restricting the values that the vari-
ables can simultaneously take. The use of solvers such as Prolog IV [12] can
then be used to find one or several solutions. On the one hand the use of dy-
namic constraints makes it possible to preserve architectural choices at runtime,
on the other hand reified constraints allow detecting and reacting to changes
that can occur with the environment. By identifying these different changes we
will explicit the constraints that have to be reified and that will guarantee the
preservation of the architecture’s consistency all along its execution.

In the kind of network we qualify as dynamic, crashes (e.g. failure of machines,
components) may happen and partitions may exist. In both cases, some com-
ponents that were in use regarding other components can become unavailable.
When dealing with a crash, if some repair mechanisms have been defined, these
components can or must be redeployed. However because of the existence of is-
lands, it is crucial to control the instantiation mechanism (and thus the number
of instances). Indeed, the strategy consisting in redeploying a component each
time this latter fails is not suited as the number of instances will not be consis-
tent even if it is the case in each island. In order to overcome the instantiation
of components in a dynamic network, we introduce a first type of constraints,
named C1:

C1. These constraints specify the number of instances allowed for each com-
ponent. By fixing the minimum and the maximum of instances allowed of a
component it is possible to control its instantiation which can be initiated due
to the dynamism of the network. When a new resource, required by a com-
ponent, becomes available, its instantiation is conceivable. In the same way,
when a component becomes faulty or becomes out of reach, one may consider its

148 C. Tibermacine, D. Hoareau, and R. Kadri

substitution by a new instance. Due to partitions within the network, it is manda-
tory not only to have such a constraint but to maintain its consistency as well:
the information about the current number of instances is a global one, and thus
must be the same within each island.

In a dynamic network resources on machines may change in such a way that a
required resource that was unavailable when the deployment was triggered, may
become available later. Moreover, because of the mobility of the devices that
compose the network we target, some machines that were out of reach until now
may become accessible, inducing the availability of new (required) resources4.
In order to take into account changes of resources and hosts, we introduced
constraints C2 and C3:

C2. It is possible with R-ACL to define components’ needs in terms of soft-
ware and hardware resources. In order to react on resources’changes, resource
constraints are reified and form constraints C2;

C3. In the same way, location constraints have to be reified to take into ac-
count hosts mobility. When dealing with a constraint such specifying components
Serv SVG1 and Serv SVG2 must reside on two distinct hosts, a deployment may
initially not be possible due to the absence of one or several hosts. A solution
can however be found as soon as the number of connected (and reachable) hosts
is sufficient. Constraints C3 correspond to the reification of location constraints.

The constraints presented above allow to react on changes of the environ-
ment, that is, the fluctuation of resources and the mobility and volatility of
hosts, while controlling the number of instances of the components. When a
component instance is created or withdrawn, the architecture of the applica-
tion, i.e. the assembly of the components, has to be reconfigured : indeed, when
a component is created, some bindings have to be added towards this compo-
nent, and if the latter requires others, bindings to these components have also
to be made. When dealing with the removal of a component, bindings towards
and from this component have to be suppressed. The addition and suppression
of bindings on any architecture must be done regarding the architectural con-
straints defined at design-time. For example, the client / server style of AlkaGeo
specifies that at most 40 component Input Flow can be bound to component
Serv WFS. Thus, we introduce three more constraints that are reified and that
preserve the architectural constraints during bindings reconfiguration.

C4. When a component is instantiated in consequence of the availability of
new resources or when a remote component becomes accessible, it is mandatory
to add it into the architecture (i.e. to set up bindings) if the style descriptor spec-
ifies the interconnection of this component with others. Constraints of type C4
are the reification of information specifying a binding between two components
or two types of components.

The previous constraints make it possible to detect that a binding between two
components can be made once the style descriptor specifies such a binding and
that the two components are reachable from each other. Even if a binding can be
4 Besides, a resource used by a component may become unavailable (e.g. the amount

of free memory).

Enforcing Architecture and Deployment Constraints 149

made, some other aspects can prevent this creation. For example, the AlkaGeo
application defines a client / server style which limits component Input Flow
to use at most one component Serv WFS, and that every component Serv WFS
can only be used by at most 40 components Input Flow. It is thus necessary,
before creating a binding between a component Input Flow and a component
Serv WFS to check that the number of connections respects the architectural
choices. Constraints C5 and C6 reify these constraints:

C5. The number of “outgoing” bindings allowed on a client interface;
C6. The number of “incoming” bindings allowed on a server interface.

Each Ci corresponds to a set of constraints. These sets are sufficient to gen-
erate a valid configuration regarding to an architectural style. The deployment
process that is presented in the next section relies on these constraints in order
to build a mapping between the component instances and the hosts of the target
platform.

3.2 Deployment Process: A Centralized Evolution

We will consider first a network in which no fragmentation into islands is possible
(this assumption will not be considered in the next subsection). Further, we make
the following assumptions: there is a dedicated machine, called DeployManager
on which we can rely in order to maintain up-to-date the ids of the machines
that are connected. When the deployment is triggered, some machines may not
be connected. Besides, a machine that enters the network is detected by the
DeployManager.

When the deployment is launched, style and deployment descriptors are sent
to the DeployManager, which in turn broadcasts the descriptors to all the ma-
chines that are connected in the network. Each machine that receives these
descriptors, creates the constraints described in the listing above depending on
the deployment and style descriptors. Then a process is launched on each host.
Locally, each machine maintains its own set of constraints (C1 to C6) and tries
to make the deployment evolve until a (or multiple) solution(s) exist(s) for con-
straints C1, that is, some components can still be instantiated. The main steps
of this process for a component C that can be deployed in a machine mi are the
followings:

– For each resource constraint associated with C, a dedicated probe is launched
(e.g. a probe to get the amount of memory required by component C) in
order to check if locally, all the required resources are available (C2). The
observation of the resources is made periodically.

– If this is the case, that is, the component can be hosted locally, mi sends its
candidature to the DeployManager. This candidature indicates that mi can
host component C.

– The latter may receive several candidatures from other machines for the
instantiation of C. The DeployManager has to resolve a placement solution
regarding to constraints C3. Depending on location constraints, a placement
solution may require a sufficient number of candidatures.

150 C. Tibermacine, D. Hoareau, and R. Kadri

– Once a solution has been found, the DeployManager updates the deployment
descriptor with the new information of placement and broadcasts it to all
the nodes that are currently connected.

– When a new descriptor is received, mi updates the set C1 and C3 in order
to take into account the placement decision made by the DeployManager.

– mi can then resolve some bindings towards newly instantiated (remote) com-
ponents (C4) by sending a request to the machines hosting them. This is
possible only if constraints C5 are still verified.

– When mi receives a request of bindings, according to C6, it can accept or
refuse this request and inform the sender of its answer.

– Depending on the answer, the definition domain that corresponds to the
binding constraint (C4) is updated (removed from the constraint set if the
binding is not possible or set to the remote host otherwise).

This process defines a propagative deployment driven by architectural and
resources requirements. Since the observation of resources is made periodically,
when a resource becomes available on a specific machine, this may yield the
deployment to evolve. Similarly, when a machine enters the network, the De-
ployManager sends the current version of the style and deployment descriptors
to this machine, making possible this newly connected machine to participate in
the deployment evolution.

3.3 Deployment Evolution in a Partitioned Network

The deployment described above relies on a dedicated machine—the Deploy-
Manager—that orchestrates the evolution of the deployment regarding to the
resolution of the location constraints. In front of islands, that is, the fragmen-
tation of the network, the uniqueness of such a manager raises the problem of
the propagative deployment in islands where no manager exists. We have ad-
dressed this aspect by considering the management of several managers. The
main difficulties here are twofolds: first, how can we guarantee the architecture
consistency if several managers make decisions independently to each other (e.g.
we have to avoid the instantiation of the same component in two distinct is-
lands) ? Secondly, the management of multiple managers have to be faced with
when two islands merge.

We have decided to use the results obtained in [6] in which we have defined
a consensus algorithm to elect such a manager in networks where partitions can
occur. This algorithm is based on a common view of the different machines to
make a decision about the identity of an approved manager. Thus, the resolu-
tion of location constraints can be made in islands composed of a majority of
machines. The consensus algorithm ensures that no contradictory decisions can
be made in two different islands and that the latest version of the style and
deployment descriptor exists in every island.

Unlike the centralized version of the propagative deployment, the deployment
presented in partitioned network requires that the ids (thus the number) of the
machines that will be involved in the deployment, be known. Indeed the used
algorithm depends on a majority of connected machines, in order to terminate.

Enforcing Architecture and Deployment Constraints 151

4 Implementation Status and Results

In order to validate our proposals, we enhanced and reused some existing pro-
totype tools. The first tool is ACE (Architecture Constraint Evaluator). ACE is
composed of an editor for ACL constraints. This editor assists developers to write
their constraints by proposing the different navigation alternatives in the used
metamodel (resources and location metamodel or architecture metamodel). Af-
ter specifying these constraints, ACE makes some well-formedness checking and
compiles them in order to generate the corresponding runtime constraints. This
transformation process is performed starting from a Java implementation of the
abstract syntax tree of the different constraints.

The constraints that are solved dynamically have been implemented with
Cream5. Cream is a Java library for writing and solving constraint satisfaction
problems or optimisation problems on integers. Every constraint generated from
an R-ACL’s one defines a relation on a variable taking its value in a finite domain.
For the location constraints, the definition domain of each variable is not known
before the deployment but is increased each time a candidature is received.

The deployment that has been presented in this paper relies on the discovery
of the resources required by the components. For that, we used Draje (Distrib-
uted Resource-Aware Java Environment) [7], an extensible Java-based middle-
ware developed in our team. Thus, hardware resources (e.g. processor, memory,
network interface...) or software resources (e. g. process, socket, thread, direc-
tory...), can be modelled and observed in a homogeneous way. For every resource
constraint of the deployment descriptor, a resource in Draje is created and a
periodic observation is launched.

The performance of the deployment process depends on changes imposed by
the execution environment such as resources availability and host connectivity.
But, the propagative deployment requires the DeployManager to solve first a
solution placement before the instantiation can go along. Hence, we have mea-
sured the impact of this computation. The preliminary results of this experiment
showed that the time to obtain a placement solution (when all conditions are
met) remains acceptable (less than 10 milli-seconds to deploy 50 Serv SVG com-
ponents) and corresponds to the complexity of the AllDiff constraint (i.e. each
Serv SVG must be hosted on a distinct machine) which is O(n2).

5 Related Work

Many ADLs provide capabilities to describe architecture choices. Medvidovic
and Taylor in [8] make an overview of some existing ADLs offering capabilities
to describe architectural styles and constraints in general. The description of
architecture styles with these ADLs makes possible some reasoning about the
modeled system, analyzing its structure and evaluating its quality. The difference
between the work presented here and such ADLs is twofolds:

5 http://kurt.scitec.kobe-u.ac.jp/∼shuji/cream/

152 C. Tibermacine, D. Hoareau, and R. Kadri

– First, design-level and deployment-level constraints are described in a ho-
mogeneous way in our approach. Indeed, the same language (ACL) is used
throughout the software life-cycle to describe them. The majority of ADLs
deals only with one kind of these constraints. Some ADLs focus on architec-
tural style description, like Aesop [3]. Others, deal with deployment require-
ments specification, like in [6]. Even if an ADL deals with the two kinds of
constraints at the same time, there is no means to describe them at different
stages of the development process. In these ADLs, architecture design and
deployment requirements should be addressed together and language con-
structs that are used to specify them are mixed. The approach we propose
here targets the separation of concerns by providing a single constraint lan-
guage, with many profiles; each profile can be used to deal with a particular
concern (design choice formalization or deployment requirement description).

– Second, the approach proposed here is implementation technology-
independent. An easy migration can be performed from one implementa-
tion technology to another, as demonstrated in [17]. However in existing
works, constraint languages are tightly coupled with ADLs, and constraints
are parts of architecture or component descriptions. This makes difficult mi-
gration between technologies, because whole architecture descriptions should
be translated.

We share similarities with researches on self-healing and self-organizing sys-
tems. Indeed, in the approaches presented in [5,14], a system architecture to de-
ploy is not described in terms of component instances and their interconnections
but rather by a set of constraints that define how components can be assembled.
In both cases the running system is modelled by a graph. The main difference
with our work is that reconfigurations of the systems are explicitly defined in a
programmatic way while this is achieved automatically by the resolution of the
constraints (C1 to C6) in our approach.

In [9], the authors present an approach to deploy software components in
resource constrained environments. The deployment process is initiated by the
Continuous Analysis component which maintains up-to-date the current topol-
ogy of the running application. This component is responsible of initiating the
necessary operations to deploy a part of the architecture if there is a difference
between the current and desired configuration. The deployment of a given com-
ponent is performed starting from an architecture description specified with an
ADL called PitM ADL, which is interpreted by the Prism architecture middle-
ware. Besides this centralized version, the authors specified a distributed owner-
ship of the deployment process in which several Continuous Analysis components
are responsible of the deployment of a local subsystem. This distributed process
differs from ours as it relies on the division of the system into subsystems which
cannot be done a priori in a network with evolving topology; such dynamic
networks are not considered by the authors.

The work presented in [2] shares the same motivation to define high level
deployment description with regard to constraints on the application assembly
and on the resources the hosts of the target platform should meet. The authors

Enforcing Architecture and Deployment Constraints 153

present the Deladas language that allows the definition of a deployment goal in
terms of architectural and location constraints. A constraint solver is used to
generate a valid configuration of the placements of components and reconfigura-
tion of the placement is possible when a constraint becomes inconsistent. This
centralized approach requires, contrary to ours, a full knowledge of the identity
of the different hosts that may participate in the deployment. Moreover, the
current version of Deladas does not consider resource requirements.

6 Conclusion and Future Work

Preserving architectural choices throughout the development process of a soft-
ware is an important aspect. Indeed, in order to implement a software that
complies with the initial requirements, architectural choices should be formal-
ized at all stages. In addition, at a given stage, architectural choices defined in
upstream stages should be preserved. This makes possible a traceability of qual-
ity attributes implemented by these choices. After the implementation of this
system comes its deployment. Another aspect is important in the life-cycle of
the developed software. It is related to the preservation of architectural choices
after its deployment (during its execution). Indeed, this makes the system benefit
from the quality attributes, associated to these choices, which can be dynam-
ically observed, like performance or reliability. In the example introduced in
section 2, the client/server style is formalized and enforced dynamically, in order
to benefit from the dynamic quality attributes guaranteed by this style (like,
scalability and interoperability).

In this paper, we presented an approach to formalize, as constraints, archi-
tecture choices made throughout a component-based software life-cycle. We il-
lustrated how we can use the same formalization language (ACL) to describe
resource and location requirements that appear at deployment stage. We showed
how these constraints are checked while deploying the implemented system in
a dynamic infrastructure. Indeed, in this kind of platforms the availability of
resources and hosts cannot be predicted. Faced with the environment evolution
(disconnection and reconnection of nodes), we presented a deployment process
that checks permanently the constraints to enforce architecture choices with re-
spect to deployment requirements. The constraints that are checked dynamically
are obtained after transforming ACL static constraints into runtime (CSP) ones.

We are working now on defining architecture patterns as libraries which are
automatically transformed into their equivalents at runtime. This will, as we
think best, make easier architecture description, more specifically architectural
style formalization, and will simplify considerably the deployment of its imple-
mentation according to the proposed approach. Even if not considered in this
article, the management of network failures6 is one of our current work. The
main difficult aspect resides in the automation of the re-deployment regarding
the constraints resolution mechanism.
6 In the case of a partitioned network, one can notice that the distinction between the

failure of a machine and its inaccessibility is a hard problem.

154 C. Tibermacine, D. Hoareau, and R. Kadri

References

1. E. Bruneton, C. Thierry, M. Leclercq, V. Quéma, and S. Jean-Bernard. An open
component model and its support in java. In Proceedings of CBSE’04, Edinburgh,
Scotland, may 2004.

2. A. Dearle, G. N. C. Kirby, and A. J. McCarthy. A framework for constraint-based
deployment and autonomic management of distributed applications. In Proceedings
of ICAC’04, pages 300–301, 2004.

3. D. Garlan, R. Allen, and J. Ockerbloom. Exploiting style in architectural design
environments. In Proceedings of FSE’94, pages 175–188, New Orleans, Louisiana,
USA, 1994.

4. D. e. a. Garlan. Acme: Architectural description of component-based systems.
In G. T. Leavens and M. Sitaraman, editors, Foundations of Component-Based
Systems, pages 47–68. Cambridge University Press, 2000.

5. I. Georgiadis, J. Magee, and J. Kramer. Self-organising software architectures for
distributed systems. In Proceedings of WOSS’02, pages 33–38, Charleston, South
Carolina, USA, 2002.

6. D. Hoareau and Y. Mahéo. Constraint-Based Deployment of Distributed Compo-
nents in a Dynamic Network. In Proceedings of ARCS’06, volume 3864 of LNCS,
pages 450–464, Frankfurt/Main, Germany, March 2006. Springer Verlag.

7. Y. Mahéo, F. Guidec, and L. Courtrai. A Java Middleware Platform for Resource-
Aware Distributed Applications. In Proceedings of ISPDC’03, pages 96–103, Ljubl-
jana, Slovenia, October 2003. IEEE CS.

8. N. Medvidovic and N. R. Taylor. A classification and comparison framework for
software architecture description languages. IEEE TSE, 26(1):70–93, 2000.

9. M. Mikic-Rakic and N. Medvidovic. Architecture-level support for software com-
ponent deployment in resource constrained environment. In Proceedings of the 1st
International IFIP/ACM Conference on Component Deployment (CD’02), pages
31–46, Berlin, Germany, 2002.

10. OMG. Corba components, v3.0, adpoted specification, document formal/2002-
06-65. Object Management Group Web Site: http://www.omg.org/docs/formal/
02-06-65.pdf, June 2002.

11. OMG. Uml 2.0 ocl final adopted specification, document ptc/03-10-14. Object
Management Group Web Site: http://www.omg.org/docs/ptc/03-10-14.pdf, 2003.

12. I. Prolog. constraints inside, 1996. Prolog IV reference manual, 1996.
13. R. Roshandel, B. Schmerl, N. Medvidovic, D. Garlan, and D. Zhang. Understanding

tradeoffs among different architectural modeling approaches. In Proceedings of
WICSA’04, pages 47–56, June 2004.

14. B. Schmerl and D. Garlan. Exploiting architectural design knowledge to support
self-repairing systems. In Proceedings of SEKE’02, pages 241–248, Ischia, Italy,
2002.

15. M. Shaw and D. Garlan. Software Architecture: Perspectives on an Emerging Dis-
cipline. Prentice Hall, 1996.

16. C. Tibermacine, R. Fleurquin, and S. Sadou. Preserving architectural choices
throughout the component-based software development process. In Proceedings of
WICSA’05, Pittsburgh, Pennsylvania, USA, November 2005.

17. C. Tibermacine, R. Fleurquin, and S. Sadou. Simplifying transformations of archi-
tectural constraints. In Proceedings of SAC’06, Dijon, France, April 2006.

A Family of Distributed Deadlock Avoidance

Protocols and Their Reachable State Spaces�

César Sánchez, Henny B. Sipma, and Zohar Manna

Computer Science Department
Stanford University, Stanford, CA 94305-9025

{cesar,sipma,manna}@CS.Stanford.EDU

Abstract. We study resource management in distributed systems. In-
correct handling of resources may lead to deadlocks, missed deadlines,
priority inversions, and other forms of incorrect behavior or degraded
performance. While in centralized systems deadlock avoidance is com-
monly used to ensure correct and efficient resource allocation, distrib-
uted deadlock avoidance is harder, and general solutions are considered
impractical due to the high communication overhead. However, solutions
that use only operations on local data exist if some static information
about the possible sequences of remote invocations is known.

We present a family of efficient distributed deadlock avoidance algo-
rithms that subsumes previously known solutions as special instances.
Even though different protocols within the family allow different lev-
els of concurrency and consequently fewer or more executions, we prove
that they all have the same set of reachable states, expressed by a global
invariant. This result enables: (1) a design principle: the use of differ-
ent protocols at different sites does not compromise deadlock avoidance;
(2) a proof principle: any resource allocation protocol that preserves the
global invariant and whose allocation decisions are at least as liberal as
those of the least liberal in the family, guarantees absence of deadlock.

1 Introduction

Middleware services play a key role in the development of modern distributed
real-time and embedded (DRE) systems. DRE systems often consist of a variety
of hardware and software components, each with their own protocols, interfaces,
operating systems, and API’s. Middleware services hide this heterogeneity, allow-
ing the software engineer to focus on the application, by providing a high-level
uniform interface, and handling management of resources and communication
and coordination between components. However, this approach is effective only
if these services are well-defined, flexible and efficient.

In this paper we focus on resource allocation services for DRE systems. Com-
putations in distributed systems often involve a distribution of method calls over
� This research was supported in part by NSF grants CCR-01-21403, CCR-02-20134,

CCR-02-09237, CNS-0411363, and CCF-0430102, and by NAVY/ONR contract
N00014-03-1-0939.

M.B. Dwyer and A. Lopes (Eds.): FASE 2007, LNCS 4422, pp. 155–169, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

156 C. Sánchez, H.B. Sipma, and Z. Manna

multiple sites. At each site these computations need resources, for example in
the form of threads, to proceed. With multiple processes starting and running at
different sites, and a limited number of threads at each site, deadlock may arise.
Traditionally three methods are used to deal with deadlock: prevention, avoid-
ance and detection. In deadlock prevention a deadlock state is made unreachable
by, for example, imposing a total order in which resources are acquired, such
as in “monotone locking” [1,4]. This strategy can substantially reduce perfor-
mance, by artificially limiting concurrency. With deadlock detection, common in
databases, deadlock states may occur, but are upon detection resolved by, for
example, roll-back of transactions. In embedded systems, however, this is usually
not an option, especially in systems interacting with physical devices.

Deadlock avoidance methods take a middle route. At runtime a protocol is
used to decide whether a resource request is granted based on current resource
availability and possible future requests of processes in the system. A resource is
granted only if it is safe, that is, if there is a strategy to ensure that all processes
can complete. To make this test feasible, processes that enter the system must an-
nounce their possible resource usage. This idea was first proposed in centralized
systems by Dijkstra in his Banker’s algorithm [2,3,13,11], where processes report
the maximum number of resources that they can request. When resources are dis-
tributed across multiple sites, however, deadlock avoidance is harder because the
different sites may have to consult each other to determine whether a particular
allocation is safe. Consequently, a general solution to distributed deadlock avoid-
ance is considered impractical [12]; the communication costs involved simply
outweigh the benefits gained from deadlock avoidance over deadlock prevention.

We study distributed deadlock avoidance algorithms that do not require any
communication between sites. Our algorithms are applicable to distributed sys-
tems in which processes perform remote method invocations and lock local re-
sources (threads) until all remote calls have returned. In particular, if the chain
of remote calls arrives back to a site previously visited, then a new resource is
needed. This arises, for example, in DRE architectures that use the WaitOnCon-
nection policy for nested up-calls [9,10,14]. Our algorithms succeed in providing
deadlock avoidance without any communication overhead by using static process
information in the form of call graphs that represent all possible sequences of
remote invocations. In DRE systems, this information can usually be extracted
from the component specifications or from the source code directly by static
analysis.

In this paper we analyze the common properties of a family of deadlock avoid-
ance protocols that include the protocols we presented in earlier papers [8,7,6].
We show that the two protocols Basic-P introduced in [8] and Live-P presented
in [6] are the two extremes of a spectrum of protocols that allow, going from
Basic-P to Live-P, increasing levels of concurrency. Despite these different lev-
els of concurrency, and thus executions permitted, we prove that all protocols in
the family have the same set of reachable states. The significance of this result
is that it allows running different protocols from the family at different sites
without compromising deadlock. In addition, it considerably simplifies proving

A Family of Distributed Deadlock Avoidance Protocols 157

correct modifications and refinements of these protocols, as proofs reduce to
showing that the new protocol preserves the same invariant.

The rest of this paper is structured as follows. Section 2 describes the com-
putational model and Section 3 introduces the protocols. Section 4 characterizes
the different levels of concurrency by comparing allocation sequences for the
different protocols, and Section 5 presents the proof that all protocols have the
same set of reachable states. Section 6 concludes with some remarks about the
design principle enabled by our results and some open problems.

2 Computational Model

We model a distributed system as a set of sites that perform computations and
a call graph, which provides a static representation of all possible resource usage
patterns. Formally, a distributed system is a tuple S : 〈R, G〉 consisting of

– R : {r1, . . . , r|R|}, a set of sites, and
– G : 〈V, →, I〉 a call graph specification.

A call graph specification G : 〈V, →, I〉 consists of a directed acyclic graph
〈V, →〉, which captures all the possible sequences of remote calls that processes
can perform. The set of initial nodes I ⊆ V contains those methods that can be
invoked when a process is spawned. A call-graph node n:r represents a method
n that runs in site r. We also say that node n resides in site r. If two nodes
reside in the same site we write n ≡R m. An edge from n:r to m:s denotes that
method n, in the course of its execution may invoke method m in site s.

We assume that each site has a fixed number of pre-allocated resources. Al-
though in many modern operating systems threads can be spawned dynamically,
many DRE systems pre-allocate fixed sets of threads to avoid the relatively large
and variable cost of thread creation and initialization. Each site r maintains a set
of local variables Vr that includes the constant Tr ≥ 1 denoting the number of
resources present in r, and a variable tr that represents the number of available
resources. Initially, tr = Tr.

The execution of a system consists of processes, created dynamically, exe-
cuting computations that only perform remote calls according to the edges in
the call graph. When a new process is spawned it starts its execution with the
graph node whose outgoing paths describe the remote calls that the process can
perform. All invocations to a call graph node require a new resource in the corre-
sponding site, while call returns release a resource. We impose no restriction on
the topology of the call graph or on the number of process instances, and thus
deadlocks can be reached if all requests for resources are immediately granted.

Example 1. Consider a system with two sites R = {r, s}, a call graph with four
nodes V = {n1, n2, m1, m2}, where n1 and m1 are initial, and edges:

n1 r n2 s m1 s m2 r

This system has reachable deadlocks if no controller is used. Let sites s and r
handle exactly two threads each. If four processes are spawned, two instances of

158 C. Sánchez, H.B. Sipma, and Z. Manna

n1 and two of m1, all resources in the system will be locked after each process
starts executing its initial node. Consequently, the allocation attempts for n2
and m2 will be blocked indefinitely, so no process will terminate or return a
resource. This allocation sequence is depicted below, where a • represents an
existing process that tries to acquire a resource at a node (if • precedes the
node) or has just been granted the resource (if • appears after the node).

tr = 2
ts = 2

tr = 0
ts = 2

tr = 0
ts = 0

n1 r
••

n2 s

m1 s
••

m2 r

n1 r
••

n2 s

m1 s
••

m2 r

n1 r
••

n2 s

m1 s
••

m2 r

�	

Our deadlock avoidance solution consists of two parts: (1) the offline calcula-
tion of annotations, maps from call-graph nodes to natural numbers; and (2) a
run-time protocol that controls resource allocations based on these annotations.
Informally, an annotation measures the number of resources required for a com-
putation. The protocols grant a request based on the remaining local resources
(and possibly other local variables) and the annotation of the requesting node.

Protocol. A protocol for controlling the resource allocation in node n : r is
implemented by a program executed in r before and after method n is dispatched.
This code can be different for different call-graph nodes even if they reside in
the same site. The schematic structure of a protocol for a node n:r is:

n ::

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

when Enn(Vr) do
Inn(Vr , V

′
r)

}

entry section

f()
}

method invocation

Outn(Vr , V
′
r)

}
exit section

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

Upon invocation, the entry section checks resource availability by inspecting local
variables Vr of site r. If the predicate Enn(Vr), called the enabling condition,
is satisfied we say that the entry section is enabled. In this case, the request
can be granted and the local variables are updated according to the relation
Inn(Vr , V

′
r) (where V ′

r stands for the local variables after the action is taken).
We assume that the entry section is executed atomically, as a test-and-set. The
method invocation section executes the code of the method, here represented
as f(), which may perform remote calls according to the edges outgoing from
node n in the call graph. The method invocation can only terminate after all its
invoked calls (descendants in the call graph) have terminated and returned. The
exit section releases the resource and may update some local variables in site r,
according to the relation Outn(Vr, V

′
r). Inn is called the entry action and Outn

is called the exit action.

A Family of Distributed Deadlock Avoidance Protocols 159

Annotations. Given a system S and annotation α, the annotated call graph
(V, →, ���) is obtained from the call graph (V, →) by adding one edge n ��� m
between any two nodes that reside in the same site with annotation α(n) ≥ α(m).
A node n “depends” on a node m, which we represent n
 m, if there is a path
in the annotated graph from n to m that follows at least one → edge. The
annotated graph is acyclic if no node depends on itself, in which case we say
that the annotation is acyclic.

3 A Family of Local Protocols

Our goal is to construct protocols that (1) avoid deadlock in all scenarios, (2)
require no communication between sites, and (3) maximize resource utilization
(grant requests as much as possible without compromising deadlock freedom).

The first protocol we proposed was Basic-P [8], shown in Fig. 1 for a node n:r
with annotation α(n) = i. Upon a resource request, Basic-P checks whether the

n ::

⎡

⎢
⎢
⎢
⎣

[
when i ≤ tr do

tr--

]

f()

tr++

⎤

⎥
⎥
⎥
⎦

Fig. 1. The protocol Basic-P

number of available resources is large
enough, as indicated by the annotation i.
This check ensures that processes (local or
remote) that could potentially be blocked
if the resource is granted, have enough
resources to complete. The correctness of
Basic-P is based on the acyclicity of the
annotations:

Theorem 1 (Annotation Theorem for Basic-P [8]). Given a system S and
an acyclic annotation, if Basic-P is used to control resource allocations then all
executions of S are deadlock free.

Example 2. Reconsider the system from Example 1. The left diagram below
shows an annotated call graph with α(n1) = α(n2) = α(m2) = 1 and α(m1) = 2.
It is acyclic, and thus by Theorem 1, if Basic-P is used with these annotations,
the system is deadlock free.

n1 r
1

n2 s
1

m1 s
2

m2 r
1

n1 r
1

n2 s
1

m1 s
1

m2 r
1

Let us compare this with Example 1 where a resource is granted simply if it
is available. This corresponds to using Basic-P with the annotated call graph
above on the right, with α(n) = 1 for all nodes. In Example 1 we showed that a
deadlock is reachable, and indeed this annotated graph is not acyclic; it contains
dependency cycles, for example n1 → n2 ��� m1 → m2 ��� n1. Therefore
Theorem 1 does not apply. In the diagram on the left all dependency cycles are
broken by the annotation α(m1) = 2. Requiring the presence of at least two
resources for granting a resource at m1 ensures that the last resource available
in s can only be obtained at n2, which breaks all possible circular waits. �	

160 C. Sánchez, H.B. Sipma, and Z. Manna

n ::

�
���
�
when 1 ≤ tr do

tr--

�
f()
tr++

�
��� n ::

�
���
�
when i ≤ pr ∧ 1 ≤ tr do

〈pr--, tr--〉

�
f()
〈tr++, pr++〉

�
���

If i = 1 If i > 1

Fig. 2. The protocol Efficient-P

The protocol Basic-P can be improved using the observation that processes
requesting resources to execute nodes with annotation 1 can always terminate, in
spite of any other process in the system. This observation leads to Efficient-P

(shown in Fig. 2) , which uses two counters: tr, as before; and pr, to keep track
of the “potentially recoverable” resources, which include not only the available
resources but also the resources granted to processes in nodes with annotation 1.
A similar version of the Annotation Theorem for Efficient-P establishes that
in the absence of dependency cycles, Efficient-P can reach no deadlocks.

The proof of the Annotation Theorem for Basic-P and Efficient-P [8] relies
on showing that the following global invariant ϕ is maintained:

ϕ
def=

∧

r∈R

∧

k≤Tr

ϕr[k] with ϕr[k] def= Ar[k] ≤ Tr − (k − 1).

where ar[k] stands for the number of active processes running in site r executing
nodes with annotation k and Ar[k] stands for

∑
j≥k ar[j], that is, Ar[k] rep-

resents the number of active processes running in site r executing nodes with
annotation k or higher. In [6] we exploited this fact by constructing the protocol

n ::

⎡

⎢
⎢
⎢
⎣

[
when ϕ

(i)
r do

ar[i]++

]

f()
ar[i]--

⎤

⎥
⎥
⎥
⎦

Fig. 3. The protocol Live-P

Live-P, shown in Fig. 3, which grants ac-
cess to a resource precisely whenever ϕr is
preserved. This protocol not only guarantees
absence of deadlock, it also provides, in con-
trast with Basic-P, individual liveness for all
processes. Its enabling condition, ϕ

(i)
r , is ex-

actly the weakest precondition for ϕr of the
transition that grants the resource:

ϕ(i)
r

def=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

∧

k>i

Ar[k] ≤ Tr − (k − 1)

∧
∧

k≤i

Ar[k] + 1 ≤ Tr − (k − 1)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

We use ϕ
(i)
r [j] for the clause of ϕ

(i)
r that corresponds to annotation j. Observe

that ϕ
(i)
r [j] is syntactically identical to ϕr[j] for j > i. Moreover, for j ≤ i, ϕ

(i)
r [j]

implies ϕr[j].
To compare the protocols we restate Basic-P and Efficient-P in terms of the

notation introduced for Live-P. The enabling condition of Basic-P becomes:

A Family of Distributed Deadlock Avoidance Protocols 161

n ::

�
�����

	
when χ

(i)
r [1] do

ar[i]++

f()

ar[i]--

�
�����

(a) 1-Efficient-P

n ::

�
�����

	
when ϕ

(i)
r [1] ∧ χ

(i)
r [2] do

ar[i]++

f()

ar[i]--

�
�����

(b) 2-Efficient-P

Fig. 4. Basic-P and Efficient-P restated using strengthenings

Ar[1] ≤ Tr − (i − 1)

which is, as we will see, stronger than ϕ
(i)
r , that is, the enabling condition of

Basic-P implies that of Live-P. Given k ≤ i we define the k-th strengthening
formula for a request in node n:r with annotation i as:

χ(i)
r [k] def= Ar[k] ≤ Tr − (i − 1)

It is easy to see that the following holds for all k ≤ j ≤ i,

χ(i)
r [k] → ϕ(i)

r [j] and therefore χ(i)
r [k] →

∧

k≤j≤i

ϕ(i)
r [j].

Also, if ϕr holds before the resource is granted, then ϕ
(i)
r [j] also holds for all

i ≥ j, since the formulas for ϕ
(i)
r [j] and ϕr[j] are identical in this case. Hence:

χ(i)
r [k] →

∧

k≤j

ϕ(i)
r [j]. (1)

Finally, if ϕ
(i)
r [j] is satisfied for all values less than k, and χ

(i)
r [k] is ensured, ϕ

(i)
r

can be concluded:

(
∧

j<k

ϕ(i)
r [j]) ∧ χ(i)

r [k] → (
∧

j<k

ϕ(i)
r [j]) ∧ (

∧

j≥k

ϕ(i)
r [j])

↔
∧

ϕ(i)
r [j]

↔ ϕ
(i)
r .

Therefore, if a protocol ensures that for some k, both
∧

j<k ϕ
(i)
r [j] and the k-

strengthening χ
(i)
r [k] hold, then ϕr is an invariant.

In general, the lower the value of the strengthening point k, the less computa-
tion is needed to compute the predicate (the number of comparisons is reduced)
but the less liberal the enabling condition becomes. In the case of k = 1 the
strengthening is χ

(i)
r [1], and the protocol obtained (see Fig. 4(a)) is equivalent

162 C. Sánchez, H.B. Sipma, and Z. Manna

Fig. 5. A comparison of Basic-P, k-Efficient-P and Live-P

to Basic-P. Note that this protocol is logically equivalent to Basic-P: the result
of the enabling condition, and the effect of the input and output actions on future
tests are the same. The implementation of Basic-P introduced earlier uses a
single counter tr, while in this restated version, several counters are used: ar[i]
and Ar[1]. However, the effect on Ar[1] of the increments and decrements of ar[i]
are independent of i. Therefore, these actions can be implemented as Ar[1]++ and
Ar[1]-- respectively. Similarly, with a strengthening point of k = 2 we obtain a
protocol equivalent to Efficient-P, shown in Fig. 4(b).

The general form of our family of protocols can now be given as k-Efficient-

P, shown in Fig. 6. It covers the full spectrum of protocols with Basic-P, which
is equivalent to 1-Efficient-P, at one end and Live-P, which is equal to Tr-
Efficient-P at the other end of the spectrum. The protocols k-Efficient-

P can be implemented in several ways. The simplest implementation needs

n ::

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎡

⎣
when

(∧

j<k

ϕ(i)
r [j]

)
∧ χ(i)

r [k] do

ar[i]++

⎤

⎦

f()

ar[i]--

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

Fig. 6. The protocol k-Efficient-P

space O(k log Tr) to store
k counters and requires O(k)
operations per allocation deci-
sion. A more sophisticated im-
plementation using an active
tree data-structure still needs
O(k log Tr), but requires only
O(log k) operations per alloca-
tion decision [6]. Fig. 5 presents
some experimental results that
compare concurrency levels al-

lowed by the different protocols. The figures depict the maximum annotation
allowed by each protocol as a function of the load (total number of active
processes). The load is created by annotations picked uniformly at random.

4 Allocation Sequences

In this section we compare the set of runs allowed by each protocol. We capture
these sets by languages over an alphabet of allocations and deallocations.

Given a call graph (V, →) let the set V contain a symbol n for every n in
V . The allocation alphabet Σ is the disjoint union of V and V . Symbols in V

A Family of Distributed Deadlock Avoidance Protocols 163

are called allocation symbols, while symbols in V are referred to as deallocation
symbols. Given a string s in Σ∗ and a symbol v in Σ we use sv for the number
of occurrences of v in s, and |s|n to stand for sn − sn. A well-formed allocation
string s is one for which every deallocation occurs after a matching allocation,
that is, for every prefix p of s, |p|n ≥ 0. An admissible allocation sequence is one
that corresponds to a prefix run of the system, according to the call graph. This
requires (1) that the string be well-formed, (2) that every allocation of a non-
root node is preceded by a matching allocation of its parent node, and (3) that
every deallocation of a node is preceded by a corresponding deallocation of its
children nodes. Formally,

Definition 1 (Admissible Strings). A well-formed allocation string s is called
admissible if for every prefix p of s, and every remote call n → m: |p|n ≥ |p|m.

Admissible strings ensure that the number of child processes (callees) is not
higher than the number of parents (caller processes), so that there is a possible
match. For brevity, we simply use string to refer to admissible string.

We say that a protocol is completely local if all the enabling conditions are
determined by: (1) the annotation of the call-graph node requested, and (2) the
set of active processes in the local site and their annotations. It is easy to see
that the protocols k-Efficient-P are completely local. We use the values of ar[·]
and Ar[·] as the (abstract) global states of the system since these values capture
all effects of completely local protocols in the outcomes of future requests. The
initial state of the system, denoted by Θ, is ar[i] = Ar[i] = 0 for all sites r and
annotations i.

Given a state σ and a protocol P , if the enabling condition of P for a node n
is satisfied at σ we write EnP

n (σ). For convenience, we introduce a new state ⊥
to capture sequences that a protocol forbids, and require that EnP

n (⊥) does not
hold. We denote by P (s) the1 state reached by P after exercising the allocation
string s, defined inductively as P (ε) = Θ and:

P (s n)=

{
InP

n (P (s)) if EnP
n (P (s))

⊥ otherwise
P (s n) =

{
OutP

n (P (s)) if P (s) �= ⊥
⊥ otherwise

We say that a string s is accepted by a protocol P if P (s) �= ⊥. The set of
strings accepted by P is denoted by L(P), and we use P � Q for the partial
order defined by language inclusion L(P) ⊆ L(Q).

Example 3. Reconsider the system in Example 1. The allocation sequence that
leads to a deadlock is s : n1n1m1m1. Even though n1n1m1 is in L(Basic-P),
the enabling condition of m1 becomes disabled, so Basic-P(s) = ⊥ and s /∈
L(Basic-P). �	

1 All our protocols are deterministic but the results can be adapted for non-
deterministic protocols as well.

164 C. Sánchez, H.B. Sipma, and Z. Manna

Lemma 1. The following are equivalent:

(i) L(P) ⊆ L(Q).
(ii) For all strings s and allocation symbols n, if EnP

n (P (s)) then EnQ
n (Q(s)).

Proof. We prove both implications separately:

– Assume L(P) ⊆ L(Q), and let s and n be such that EnP
n (P (s)). Since

s ∈ L(P) then s ∈ L(Q). Moreover, s · n ∈ L(P) and then s · n ∈ L(Q).
Hence, EnQ

n (Q(s)).
– Assume now (ii). We reason by induction on strings:

• First, both ε ∈ L(P) and ε ∈ L(Q).
• Let s · n ∈ L(P). Then EnP

n (P (s)), so also EnQ
n (Q(s)). Hence, s · n ∈

L(Q).
• Let s · n ∈ L(P). This implies s ∈ L(P) and by inductive hypothesis

s ∈ L(Q). Then s · n ∈ L(Q), as desired.

Therefore (i) and (ii) are equivalent. �	

Let P, Q be any two of Basic-P, Efficient-P, k-Efficient-P and Live-P.
We showed in Section 3 that the entry and exit actions are identical for all
these protocols. Therefore, if s is in the language of both P and Q then the
states reached are the same, i.e., P (s) = Q(s). It follows that if for all states σ,
EnP

n (σ) implies EnQ
n (σ), then L(P) ⊆ L(Q).

Lemma 2. If j-Efficient-P allows an allocation then k-Efficient-P also
allows the allocation, provided j ≤ k.

Proof. Let j ≤ k. It follows from the definition that χ
(i)
r [j] implies χ

(i)
r [k]. More-

over, by (1), χ
(i)
r [j] implies

∧
j≤l≤k ϕ

(i)
r [l]. Consequently,

∧

l<j

ϕ(i)
r [l] ∧ χ(i)

r [j]

︸ ︷︷ ︸
Enj-Efficient-P

n

→
∧

l<k

ϕ(i)
r [l] ∧ χ(i)

r [k]

︸ ︷︷ ︸
Enk-Efficient-P

n

Therefore if j-Efficient-P allows a request so does k-Efficient-P. �	

Lemma 2 states that the enabling condition of k-Efficient-P becomes weaker
as k grows, that is, the enabling condition of Basic-P is stronger than that of
Efficient-P, which in turn is stronger than k-Efficient-P, which is stronger
than Live-P. An immediate consequence of Lemma 2 is:

Basic-P � Efficient-P � . . . � k-Efficient-P � . . . � Live-P

The following examples show that these language containments are strict:

Basic-P �� Efficient-P �� . . . �� k-Efficient-P �� . . . �� Live-P

which is depicted in Fig 7(a).

A Family of Distributed Deadlock Avoidance Protocols 165

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

L(Live-P)

L(k-Efficient-P)

L(Efficient-P)

L(Basic-P)

(a) Allocation sequences

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

ϕa-states =
= S(Live-P)
= S(Efficient-P)
= S(k-Efficient-P)
= S(Basic-P)

(b) Reachable state spaces

Fig. 7. Comparison of the family of protocols

Example 4. Consider the following call-graph, with initial resources Tr = 2.

n2 r
2

n1 r
1

m1 r
1

The string m1n2 is accepted by Efficient-P but not by Basic-P. This system
can be generalized to show that there is a string accepted by k-Efficient-P

but not by j-Efficient-P (for j < k). Consider the following annotated call
graph, with initial resources Tr = j + 1.

nj+1 r
j+1

nj r
j

nj−1 r
j−1

· · · n1 r
1

mj r
j

mj−1 r
j−1

· · · m1 r
1

The string mjnj+1 is accepted by k-Efficient-P, but is not accepted by
j-Efficient-P. �	

5 Reachable State Spaces

The reachable state space of a protocol P , denoted by S(P), is the set of global
states that P can reach following some admissible allocation sequence. Clearly,
for two protocols P and Q, if their actions are equivalent and P � Q then every
state reachable by P is also reachable by Q. Indeed any allocation string that
reaches a state for P also reaches that same state for Q.

Lemma 3. For every two protocols P and Q with the same entry and exit ac-
tions, if P � Q then S(P) ⊆ S(Q).

Consequently,

S(Basic-P) ⊆ S(Efficient-P) ⊆ . . . ⊆ S(k-Efficient-P) ⊆ . . . ⊆ S(Live-P)

166 C. Sánchez, H.B. Sipma, and Z. Manna

Let S(ϕa) describe the set of states that satisfy ϕ and that are reachable by
some admissible allocation string. In the rest of this section we show that the
above containment relation collapses into equalities by proving

S(Basic-P) = S(Live-P) = S(ϕa)

The proof relies on the existence of a preference order on the nodes of the
annotated call graph, such that, if allocations are made following this order,
then every allocation request that succeeds in Live-P also succeeds in Basic-P.

5.1 Preference Orders

A preference order of an annotated call graph is an order on the nodes such that,
if all allocations in a given admissible string are performed following that order,
then (1) the sequence obtained is also admissible, and (2) higher annotations for
each site are visited first. This will allow us to show that Basic-P can reach all
ϕa-states.

Given a call graph, a total order > on its nodes is called topological if it
respects the descendant relation, that is, if for every pair of nodes n and m, if
n → m then n > m. Analogously, we say that an order > respects an annotation
α if for every pair of nodes n and m residing in the same site, if α(n) > α(m)
then n > m. A total order that is topological and respects annotations is called
a preference order.

Lemma 4. Every acyclically annotated call graph has a preference order.

Proof. The proof proceeds by induction on the number of call-graph nodes. The
result trivially holds for the empty call graph. For the inductive step, assume the
result holds for all call graphs with at most k nodes and consider an arbitrary
call graph with k + 1 nodes.

First, there must be a root node whose annotation is the highest among all the
nodes residing in the same site. Otherwise a dependency cycle can be formed:
take the maximal nodes for all sites, which are internal by assumption, and their
root ancestors. For every maximal (internal) node there is →+ path reaching
it, starting from its corresponding root. Similarly, for every root there is an
incoming ��� edge from the maximal internal node that resides in its site. A
cycle exists since the (bipartite) subgraph of roots and maximal nodes is finite,
and every node has a successor (a →+ for root nodes, and a ��� for maximal
nodes). This contradicts that the annotation is acyclic.

Now, let n be a maximal root node, and let > be a preference order for
the graph that results by removing n, which exists by inductive hypothesis. We
extend > by adding n > m for every other node m. The order is topological since
n is a root. The order respects annotations since n is maximal in its site. �	

5.2 Reachable States

A global state of a distributed system is admissible if all existing processes (active
or waiting) in a node n are also existing, and active, in every node ancestor of

A Family of Distributed Deadlock Avoidance Protocols 167

n. That is, if the state corresponds to the outcome of some admissible allocation
sequence.

Theorem 2. The set of reachable states of a system using Live-P is precisely
the set of ϕa-states.

Proof. It follows directly from the specification of Live-P that all reachable
states satisfy ϕ. Therefore, we only need to show that all ϕa-states are reachable.

We proceed by induction on the number of active processes in the system. The
base case, with no active process, is the initial state of the system Θ, which is
trivially reachable by Live-P. For the inductive step, consider now an arbitrary
ϕa-state σ with some active process. Since the call graph is acyclic and finite,
there must be some active process P in σ with no active descendants. The state
σ′ obtained by removing P from σ is an admissible ϕa-state (all the conditions
of admissibility and the clauses of ϕ are either simplified or identical); by the
inductive hypothesis, σ′ is reachable by Live-P. Since σ is obtained from σ′ by
an allocation that preserves ϕ (otherwise σ would not be a ϕa-state), then σ is
reachable by Live-P. �	
Theorem 2 states that for every sequence s that leads to a ϕa-state there is a
sequence s′ arriving at the same state for which all prefixes also reach ϕa-states.
The sequence s′ is in the language of Live-P.

Perhaps somewhat surprisingly, the set of reachable states of Basic-P is also
the set of all ϕa-states. To prove this we first need an auxiliary lemma.

Lemma 5. In every ϕa-state, an allocation request in site r with annotation k
has the same outcome using Basic-P and Live-P, if there is no active process
in r with annotation strictly smaller than k.

Proof. First, in every ϕa-state, if Basic-P grants a resource so does Live-P, by
Lemma 2. We need to show that in every ϕa-state, if Live-P grants a request
of k and ar[j] = 0 for all j < k, then Basic-P also grants the request. In this
case,

Tr − tr = Ar[1] =
Tr∑

j=1

ar[j] =
Tr∑

j=k

ar[j] = Ar[k], (2)

and since Live-P grants the request, then Ar[k] + 1 ≤ Tr − (k − 1) and Ar[k] ≤
Tr − k. Using (2), Tr − tr ≤ Tr − k, and tr ≥ k, so Basic-P also grants the
resource. �	
Theorem 3. The set of reachable states of a system using Basic-P is precisely
the set of ϕa-states.

Proof. The proof is analogous to the characterization of the reachable states of
Live-P, except that the process P removed in the inductive step is chosen to
be a minimal active process in some preference order >. This guarantees that P
has no children (by the topological property of >), and that there is no active
process in the same site with lower annotation (by the annotation respecting
property of >). Consequently, Lemma 5 applies, and the resulting state is also
reachable by Basic-P. �	

168 C. Sánchez, H.B. Sipma, and Z. Manna

Theorem 3 can also be restated in terms of allocation sequences. For every admis-
sible allocation string that arrives at a ϕa-state there is an admissible allocation
string that arrives at the same state and (1) contains no deallocations, and (2) all
the nodes occur according to some preference order. It follows from Theorem 3
that S(Basic-P) = S(ϕa), and hence, as depicted in Fig 7(b):

S(Basic-P)= S(Efficient-P)= . . . = S(k-Efficient-P) = . . . = S(Live-P).

6 Applications and Conclusions

We have generalized our earlier distributed deadlock avoidance algorithms by in-
troducing a family of protocols defined by strengthenings of the global invariant
ϕ. The most liberal protocol, Live-P, also ensures liveness, at the cost of main-
taining more complicated data-structures (which require a non-constant number
of operations per allocation request). The simplest protocol, Basic-P, can be
implemented with one operation per request, but allows less concurrency.

We have shown that all the reachable state spaces of the protocols are the
same. This result allows a system designer more freedom in the implementation
of a deadlock avoidance protocol, because it follows that every local protocol P
that satisfies the following conditions for every request is guaranteed to avoid
deadlock:

(1) if Basic-P is enabled then P is enabled, and
(2) if P is enabled then Live-P is enabled

This holds because all P -reachable states satisfy ϕ, and from those states Basic-

P guarantees deadlock freedom. Informally, (2) guarantees that the system stays
in a safe region, while (1) ensures that enough progress is made. This result
implies, for example, that the combination of different protocols at different
sites is safe. If a site has a constraint in memory or CPU time, then the simpler
Basic-P is preferable, while Live-P is a better choice if a site needs to maximize
concurrency.

This result also facilitates the analysis of alternative protocols. Proving a
protocol correct (deadlock freedom) can be a hard task if the protocol must deal
with scheduling, external environment conditions, etc. With the results presented
in this paper, to show that an allocation manager has no reachable deadlocks,
it is enough to map its reachable state space to an abstract system for which
all states guarantee ϕ, and all allocation decisions are at least as liberal as in
Basic-P. This technique is used in [5] to create an efficient distributed priority
inheritance mechanism where priorities are encoded as annotations, and priority
inheritance is performed by an annotation decrease. Although this “annotation
decrease” transition is not allowed by the protocols presented here, since the
resulting state is still a ϕ-state, it is also reachable by Basic-P (maybe using a
different sequence). Therefore, deadlocks are avoided.

Topics for further research include (1) the question whether Live-P is optimal,
that is, does there exist a completely local protocol P that guarantees deadlock

A Family of Distributed Deadlock Avoidance Protocols 169

avoidance such that Live-P � P , and (2) the question whether k-Efficient-P

is optimal with O(k log Tr) storage space.

References

1. Andrew D. Birrell. An introduction to programming with threads. Research Re-
port 35, Digital Equipment Corporation Systems Research Center, 1989.

2. Edsger W. Dijkstra. Cooperating sequential processes. Technical Report EWD-
123, Technological University, Eindhoven, the Netherlands, 1965.

3. Arie N. Habermann. Prevention of system deadlocks. Communications of the
ACM, 12:373–377, 1969.

4. James W. Havender. Avoiding deadlock in multi-tasking systems. IBM Systems
Journal, 2:74–84, 1968.

5. César Sánchez, Henny B. Sipma, Christopher D. Gill, and Zohar Manna. Distrib-
uted priority inheritance for real-time and embedded systems. In Alex Shvartsman,
editor, Proceedings of the 10th International Conference On Principles Of Dis-
tributed Systems (OPODIS’06), volume 4305 of LNCS, Bordeaux, France, 2006.
Springer-Verlag.

6. César Sánchez, Henny B. Sipma, Zohar Manna, and Christopher Gill. Efficient
distributed deadlock avoidance with liveness guarantees. In Sang Lyul Min and
Wang Yi, editors, Proceedings of the 6th ACM & IEEE International Conference
on Embedded Software (EMSOFT’06), pages 12–20, Seoul, South Korea, October
2006. ACM & IEEE.

7. César Sánchez, Henny B. Sipma, Zohar Manna, Venkita Subramonian, and Christo-
pher Gill. On efficient distributed deadlock avoidance for distributed real-time
and embedded systems. In Proceedings of the 20th IEEE International Parallel
and Distributed Processing Symposium (IPDPS’06), Rhodas, Greece, 2006. IEEE
Computer Society Press.

8. César Sánchez, Henny B. Sipma, Venkita Subramonian, Christopher Gill, and Zo-
har Manna. Thread allocation protocols for distributed real-time and embedded
systems. In Farn Wang, editor, 25th IFIP WG 2.6 International Conference on
Formal Techniques for Networked and Distributed Systems (FORTE’05), volume
3731 of LNCS, pages 159–173, Taipei, Taiwan, October 2005. Springer-Verlag.

9. Douglas C. Schmidt. Evaluating Architectures for Multi-threaded CORBA Ob-
ject Request Brokers. Communications of the ACM Special Issue on CORBA,
41(10):54–60, October 1998.

10. Douglas C. Schmidt, Michael Stal, Hans Rohnert, and Frank Buschmann. Pattern-
Oriented Software Architecture: Patterns for Concurrent and Networked Objects,
Volume 2. Wiley & Sons, New York, 2000.

11. Abraham Silberschatz, Peter B. Galvin, and Greg Gagne. Operating System Con-
cepts. John Wiley & Sons, Inc., New York, NY, Sixth edition, 2003.

12. Mukesh Singhal and Niranjan G. Shivaratri. Advanced Concepts in Operating Sys-
tems: Distributed, Database, and Multiprocessor Operating Systems. McGraw-Hill,
Inc., New York, NY, 1994.

13. William Stallings. Operating Systems: Internals and Design Principles. Prentice
Hall, Inc., Upper Saddle River, NJ, Third edition, 1998.

14. Venkita Subramonian, Guoliang Xing, Christopher D. Gill, Chenyang Lu, and Ron
Cytron. Middleware specialization for memory-constrained networked embedded
systems. In Proc. of 10th IEEE Real-Time and Embedded Technology and Appli-
cations Symposium (RTAS’04). IEEE Computer Society Press, May 2004.

Precise Specification of Use Case Scenarios

Jon Whittle

Dept of Information & Software Engineering
George Mason University

4400 University Drive
Fairfax, VA 22030

jwhittle@ise.gmu.edu

Abstract. Despite attempts to formalize the semantics of use cases,
they remain an informal notation. The informality of use cases is both a
blessing and a curse. Whilst it admits an easy learning curve and enables
communication between software stakeholders, it is also a barrier to the
application of automated methods for test case generation, validation
or simulation. This paper presents a precise way of specifying use cases
based on a three-level modeling paradigm strongly influenced by UML.
The formal syntax and semantics of use case charts are given, along with
an example that illustrates how they can be used in practice.

1 Introduction

Since their introduction, use cases have become a method of choice for elabo-
rating software requirements. A use case—defined by Cockburn as a description
of “the system’s behavior under various conditions as the system responds to a
request from one of the stakeholders” ([Coc00])—is typically represented as a
combination of a UML use case diagram [BRJ05] and loosely structured text in
one of many suggested template formats. The templates show the main sequence
of steps that define a use case as well as some additional sequences that may
capture exceptions, alternatives or extensions. The templates are usually related
at a more abstract level using a UML use case diagram ([OMG05]) in which use
cases are given graphically by ellipses and the actors that trigger those use cases
are shown using standardized icons. Use cases are almost exclusively defined in
an informal way—use case diagrams have no commonly agreed semantics and the
semantics of the text templates is deliberately left unspecified in UML because
there are no restrictions on what kind of text can be given.

The informality of use cases makes them very easy to use but is a barrier to
the application of automated analysis methods such as test case generation, sim-
ulation, validation etc. Usually, little attention is paid to how different use cases
interact—whether, for example, they can execute sequentially or concurrently,
whether there are inconsistencies, or whether they are complete.

Many attempts have been made to introduce rigor into use case descriptions,
ranging from structural restrictions on the text that can be used in templates
(e.g., [Smi04, Wil04]) to the development of a formal semantics for aspects of use

M.B. Dwyer and A. Lopes (Eds.): FASE 2007, LNCS 4422, pp. 170–184, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Precise Specification of Use Case Scenarios 171

case diagrams (e.g., [Ste01, OP99]). Approaches based on formalizing the text in
templates usually define a restricted grammar for a subset of natural language
and may also enforce that words in the text come from a dictionary. Approaches
for defining a formal semantics for use cases focus on poorly specified constructs
in UML use case diagrams, such as the UML 〈〈include〉〉 and 〈〈extend〉〉 rela-
tionships [Ste01] or the generalization of use cases [Iso04]. This paper takes a
different approach. It gives an alternative, precisely defined, graphical language
for use cases. It does not attempt to formalize UML’s notion of a use case.

UML2.0 ([OMG05]) introduces interaction overview diagrams, a notation
based on activity diagrams, for specifying relationships between interaction di-
agrams (e.g., sequence diagrams). Interaction overview diagrams (IODs) can be
used to more precisely describe use cases as a set of interaction diagrams con-
nected by activity diagram relationships, e.g., concurrency. IODs are based on
high-level message sequence charts (hMSCs) [Uni04], a well-established notation
for specifying interactions originally developed for the telecommunications do-
main. Whilst IODs provide much needed expressiveness for relating interaction
scenarios, their semantics is still somewhat unclear since neither activity nor
interaction diagrams have a formal semantics. In addition, IODs model only a
single use case at a time and do not specify relationships between use cases.
Nevertheless, IODs are an important step in precise use case modeling and form
the basis for the use case charts presented in this paper.

In this paper, use case charts, a 3-level notation based on extended UML
activity diagrams, is proposed as a way of specifying use cases in detail. The
main application of use case charts to date has been to simulate use cases but use
case charts are also precise enough for test generation and automated validation.

The idea behind use case charts is illustrated in Figure 1. For the purposes of
this paper, a use case is considered to be a set of scenarios, where a scenario is
an expected or actual execution trace of a system. The functionality of a system
can be given as a set of use cases—that is, a set of sets of scenarios.

A use case chart specifies the scenarios for a system’s use cases as a 3-level
description: level-1 is the use case chart, an extended UML activity diagram in
which the nodes are use cases; level-2 is a set of scenario charts, or extended
activity diagrams where the nodes are scenarios; level-3 is a set of UML2.0
([OMG05]) interaction diagrams. Each level-1 use case node is defined by a
level-2 scenario chart (i.e., a set of connected scenario nodes). Each level-2 sce-
nario node is defined by a UML2.0 interaction diagram. In Figure 1, 7 use cases
are connected in a level-1 use case chart that starts with an initial use case and
then forks into 4 “threads”. Each of these 7 use cases is defined by a level-2
scenario chart. In Figure 1, the scenario chart for the use case at the source of
the dashed arrow is shown. In this scenario chart, there are three scenario nodes.
Each node is defined by a UML2.0 interaction diagram.

Semantically, control flow of the entire use case chart starts with the initial
node of the use case chart (level-1). Flow then passes between use case nodes
along the edges of the level-1 activity diagram. When flow reaches a use case
chart node at level-1, level-2 scenario chart defining this node is executed, with

172 J. Whittle

Fig. 1. Use Case Charts

flow starting from the scenario chart’s initial node. Flow exits a scenario node
when a final node is reached. Scenario charts may have two types of final nodes—
a final success node represents successful completion of the scenario chart and
a final failure node represents completion but with failure. Flow only continues
beyond the current use case node if a final success node is reached in the use
case’s defining scenario chart. The semantics of each scenario chart is similar
to that for high-level message sequence charts (hMSCs) [Uni04]. Each scenario
chart node is defined by a UML2.0 interaction diagram. Hence, when flow passes
into a scenario chart node, the defining interaction diagram is executed. When
the interaction diagram completes, flow returns to the level-2 scenario chart,
exits the scenario node at that level and continues with the next scenario node.

The intention is to reuse as much of the notation of UML2.0 as possible. This
makes it easy for practitioners to learn the language. The activity diagrams
used are a restriction of UML2.0 with some additional features. Although use
case charts rely on the notation of UML activity diagrams, the semantics is quite
different. UML2.0 activity diagrams are a general purpose modeling language for
workflow modeling and business process modeling. Their (informal) semantics is
petri-net based [OMG05]. In contrast, the formal semantics for use case charts
is a denotational, trace-based semantics.

2 Example of Use Case Charts

Figures 2, 3 and 4 give an example of how use case charts can be used to pre-
cisely describe use cases. The system under development is an automated train
shuttle service in which autonomous shuttles transport passengers between sta-
tions [Sof05]. When a passenger requires transport, a central broker asks all
active shuttles for bids on the transport order. The shuttle with the lowest bid

Precise Specification of Use Case Scenarios 173

wins. A complete set of requirements for this application is given in [Sof05].
Figure 2 shows a use case chart that includes use cases for initialization of
the system, maintenance and repair of shuttles, and transportation (split into
multiple use cases). Each use case node in Figure 2 is defined by a level-2 scenario
chart—Figure 3 is the scenario chart for Carry Out Order. Figure 4 is a level-3
interaction diagram for the scenario chart defining Make A Bid.

Fig. 2. Shuttle System Use Case Chart

Figure 2 shows that the shuttle system first goes through an Initialization use
case. After that, four use cases execute in parallel. If the Make A Bid use case
is successful, it can be followed by Carry Out Order or another bidding process
(executed in parallel). The Retirement use case represents the case when the
shuttles are shut down. It preempts any activity associated to Make A Bid. This
is represented by a stereotyped preemption relationship that applies to a region.
A region is a set of nodes enclosed in a dashed box.

Figure 3 is a description of what happens in the Carry Out Order use case.
Transportation of passengers takes place and the broker is informed of success.
The asterisk in the region represents the fact that the region may execute in
parallel with itself any numbers of times, i.e., there may be multiple concurrent
transports. The requirements of the problem state that during transport, shuttles
may not move to intermediate stations except to pick up or drop off passengers.
This is captured by introducing a negative scenario node with a stereotyped
negation arrow. Note that scenario charts must have at least one final success or
final failure node. A final success node represents the fact that execution of the
use case has successfully completed and is depicted graphically as in Figure 3.
A final failure node says that the use case completes but that execution should
not continue beyond the use case. This is given graphically using the final flow
node of activity diagram notation, i.e., a circle with a cross through it1. As an
example, suppose that the passenger transport cannot be completed for some
reason. This could be captured by introducing a scenario node capturing the

1 Note that this is not the standard UML2.0 interpretation for the final flow node.

174 J. Whittle

Fig. 3. Shuttle System Scenario
Chart for Carry Out Order

Fig. 4. Shuttle System Interaction Diagram for a
scenario in Make A Bid

failure and then an arrow to a final failure node. In this case, when the final
failure node is reached, the Make Payment use case in Figure 2 will not execute,
i.e., payment will not be paid for an unsuccessful transport.

Each scenario node in Figure 3 is described by a UML2.0 interaction dia-
gram. Figure 4 shows an interaction diagram that is part of the Make A Bid
use case. This particular example is shown to illustrate extensions that use case
charts introduce to UML2.0 interaction diagrams, namely, multiobjects and uni-
versal/existential messages. We introduce two new interaction operators, exist
and all. We also introduce a stereotype 〈〈multiobject〉〉 which denotes that an
interaction applies to multiple instances of a classifier. In the figure, Shuttle is
stereotyped as a multiobject which means that multiple shuttles may participate
in the interaction. There are two interaction fragments. In the first, the Broker
sends messages to all shuttles. In the second, there must be at least one makeBid
message to Controller followed by at least one makeBid message to Broker.

The activity diagrams used in use case and scenario charts are a restricted ver-
sion of UML2.0 activity diagrams but with some additional relationships between
nodes. They are restricted in that they do not include object flow, swimlanes,
signals etc. They do include additional notations, however. The abstract syntax
is defined in Section 3. The concrete syntax reuses as much of the activity di-
agram notation as possible. Informally, the allowed relationship types between
nodes (either in use case or scenario charts) are given as follows, where, for each
relationship, X and Y are either both scenario nodes or both use case nodes:

1. X continues from Y (i.e., the usual activity diagram arrow)
2. X and Y are alternatives (the usual alternative defined by a condition)
3. X and Y run in parallel (the usual activity diagram fork and join)
4. X preempts Y —i.e., X interrupts Y and control does not return to Y once

X is complete, shown by the stereotype 〈〈preempts〉〉 from X to Y .
5. X suspends Y —i.e., X interrupts Y and control returns to Y once X is

complete, shown by the stereotype 〈〈suspends〉〉 from X to Y .

Precise Specification of Use Case Scenarios 175

6. X is negative—i.e., the scenarios defined by X should never happen. This is
shown by an arrow stereotyped with 〈〈neg〉〉 to X and where the source of
the arrow is the region over which the scope of the negation applies.

7. X may have multiple copies—i.e., X can run in parallel with itself any
number of times. This is shown by an asterisk attached to node X .

In addition, use case charts and scenario charts may have regions (graphically
shown by dashed boxes) that scope nodes together. Relationships of type (4),
(5) may have a region as the target of the arrow. Relationships of type (6) may
have a region as the source of the arrow. All other arrows do not link regions.
(8) may also be applied to a region.

Arrow types (4), (5) and (6) are not part of UML2.0 activity diagrams (al-
though there is a similar notation to (4) and (5) for interruption). Activity
diagrams do have a notion of region for defining an interruptible set of nodes.
Regions in use case charts are a general-purpose scoping mechanism not re-
stricted to defining interrupts. In addition to the arrow and region extensions,
there are minor extensions to interaction diagrams.

3 Use Case Chart Syntax

The abstract syntax for interaction diagrams is not given as it is assumed to be
the same as in UML2.0 except for the multiobject, universal/existential message
extensions.

3.1 Abstract Syntax for Scenario Charts (Level-2)

The abstract syntax of a scenario chart is given first. The abstract syntax for
use case charts is almost the same since both are based on activity diagrams.

Definition 1. A scenario chart (S, RS, ES , s0, SF , SF ′ , LS, fS , mS , LE) is a graph
where S is a set of scenario nodes, RS ⊆ P(S) is a set of regions, ES ⊆
(P(S∪RS)×P(S∪RS)×LE) is a set of edges with labels from LE, s0 ∈ S is the
unique initial node, SF ⊂ S is a set of final success nodes, SF ′ ⊂ S is a set of
final failure nodes, LS is a set of scenario labels, fS : S → LS is a total, injective
function mapping each scenario node to a label and ms : S ∪ RS → {+, −} is a
total function marking whether or not each scenario or region can have multiple
concurrent executions. The labels in LS are references to an interaction diagram.
LE is defined to be the set {normal, neg, preempts, suspends}. LS is the set of
words from some alphabet Σ.

This definition describes a graph where edges may have multiple source nodes
and multiple target nodes. This subsumes the notion of fork and join from ac-
tivity diagrams which can be taken care of by allowing edges to have multiple
source nodes and/or multiple target nodes. Multiple source nodes lead in the
use case chart graphical notation to a join and multiple target nodes lead to a
fork. An edge with both multiple sources and multiple targets is equivalent to a

176 J. Whittle

join followed by a fork. Regions are a scoping mechanism used to group nodes.
As stated previously, the intuition behind final success and final failure nodes is
that a final success node denotes successful completion of the scenario chart; a
final failure node denotes that the scenario chart completes but unsuccessfully.
Definition 1 omits the notion of conditions on edges, for the sake of clarity, but
it is enough to say that guards could be placed on arrows leaving a node.

3.2 Abstract Syntax for Use Case Charts (Level-1)

The abstract syntax for a use case chart is almost identical except that a use
case chart has only one type of final node (for success) and each use case node
maps to a scenario chart not an interaction diagram. Only one type of final
node is required for use case charts because there is no notion of success or
failure—either a use case chart completes or it does not.

Definition 2. A use case chart (U, RU , EU , u0, UF , LU , fU , mU , LE) is a graph
where U is a set of nodes, RU ⊆ P(U) is a set of regions, EU ⊆ (P(U ∪ RU) ×
P(U ∪ RU) × LE) is a set of edges, u0 ∈ U is the unique initial node, UF ⊂ U
is a set of final nodes, LU is a set of scenario chart labels, fU : U → LU is a
total, injective function mapping each use case node to a scenario chart label and
mU : U ∪ RU → {+, −} is a total function marking whether each use case or
region can have multiple concurrent executions. The labels in LU are references
to a scenario chart. LE is as given in Definition 1.

4 Use Case Chart Semantics

A trace is a sequence of events where an event may be the sending of a message,
!x, or the receipt of a message, ?x.

Definition 3. The semantics of a 3-level use case chart, U , is a pair of trace
sets, (PU , NU), where PU is the set of positive traces for U and NU is the set of
negative traces for U .

Positive traces are traces that are possible in any implementation of the use case
chart. Negative traces may never occur in a valid implementation of the use case
chart. An implementation satisfies a use case chart if every positive trace is a
possible execution path and if no negative trace is a possible execution path.

4.1 Semantics of UML2.0 Interaction Diagrams (Level-3)

The semantics for UML2.0 interaction diagrams follows the one given by Haugen
& Stølen [HHRS05], extended to include all and exist fragments.

A message, x, in a UML2.0 interaction has two events—a send event, !x, and
a receive event, ?x. In any valid event trace, the send event must come before
the receive event. In UML2.0, as shown in Figure 5, messages can be composed
using interaction fragments, where a fragment has an interaction operator and a

Precise Specification of Use Case Scenarios 177

Fig. 5. UML2.0 Interaction Fragments

number of interaction operands. For example, Figure 5(b) shows an alternative
fragment with two operands; 5(c) shows a parallel fragment with two operands;
and 5(d) shows a negative fragment with a single operand. The default operator
in UML2.0 is the sequential operator, seq (Figure 5(a)), which represents weak
sequencing. Any messages not explicitly contained within a fragment are by
default assumed to be contained within a seq fragment.

A message is a triple (s, tr, re) of a signal s, a transmitter instance, tr, and
a receiver instance, re. Each transmitter instance has a type, tr : Tr. Similarly,
re : Re. Let M denote the set of all messages and L the set of all lifelines. An
event is a pair of kind and message: (k, m) ∈ {!, ?}× M . Let E denote the set of
all events. A trace is a sequence of events. Let tr(e) denote the transmitter for
event e and re(e) denote its receiver. Let H be the set of valid event traces, that
is, event traces such that for any message x, the send event, !x, comes before
the receive event, ?x. Define the following operators on traces. h1 � h2 is trace
concatenation. h1|B is the trace h1 restricted to events in the event set B — i.e.,
all events not in B are removed.

The semantics for the four fragments in Figure 5, as well as for univer-
sal/existential messages, is summarized in Figure 6. e is an event and di is an
interaction diagram, for all i. The semantics of a single event is a single positive
trace. Interaction operators are represented textually using the keywords neg,
alt, par and seq. For example, neg d represents an interaction diagram d that
is negated by a negative interaction fragment.

For alt, the set of positive traces is the union of the set of positive traces
from each operand. The set of negative traces is the union of the set of negative
traces from each operand. The neg operator simply negates all traces—its set
of negative traces is the union of the positive and negative traces of its operand.
This captures the fact that the negation of a negative trace remains negative.

par is defined by interleaving traces from each of its operands. In Figure 6, ‖
denotes interleaving and is formally defined below. par’s positive traces are the

178 J. Whittle

[[e]] = (e, ∅)

[[neg d]] = (∅, p ∪ n)

[[d1 alt d2]] = (p1 ∪ p2, n1 ∪ n2)

[[d1 par d2]] = (p1‖p2, (n1‖p2) ∪ (n1‖n2) ∪ (p1‖n2))

[[d1 seq d2]] = (p1 � p2, (n1 � p2) ∪ (n1 � n2) ∪ (p1 � n2))

[[all d]] = (all p,all n)

[[exist d]] = (exist p, exist n)

where (p, n) = [[d]], (p1, n1) = [[d1]] and (p2, n2) = [[d2]]

Fig. 6. UML2.0 Interaction Diagram Semantics

interleavings of positive traces from both operands. Its negative traces are the
interleavings of negative traces from both operands, or a positive trace from one
operand with the negative trace from the other operand. Interleaving is defined
as follows for trace sets s1, s2 (adapted from [HHRS05]):

s1‖s2 = {h ∈ H | ∃o ∈ {1, 2}∞ · π2((o, h)|{1}×E) ∈ s1 ∧ π2((o, h)|{2}×E) ∈ s2}

The infinite sequence o is an oracle to resolve non-determinism in the interleav-
ing. π2 is a projection operator returning the second element in a pair. Any trace
in the set s1‖s2 is an interleaving of events from a trace in s1 with events from
a trace in s2.

seq fragments are defined in UML2.0 to have a weak sequencing semantics
([OMG05]): the ordering of events within each operand is maintained; events on
different lifelines from different operands may come in any order; events on the
same lifeline from different operands are ordered such that an event from the first
operand comes before an event from the second operand. Any seq fragment joins
traces from each of its operands in a way that satisfies these three constraints.
Informally, the positive traces for seq are all possible ways of joining a positive
trace from the first operand and a positive trace from the second operand. The
negative traces for seq are those derived from joining a positive trace from the
first operand with a negative trace from the second, or a negative trace from the
first with either a positive or negative trace from the second.

The definition in Figure 6 relies on a definition of �, weak sequencing for trace
sets (adapted from [HHRS05]), which captures formally the three constraints
stated above. ev(l) is the set of events that take place on lifeline l.

s1 � s2 = {h ∈ s1‖s2 | ∃h1 ∈ s1, h2 ∈ s2 · ∀l ∈ L · h|ev(l) = h1|ev(l) � h2|ev(l)}

The semantics for the multiobject extensions are now given. Consider first the
interaction operator all applied to a single positive event trace, all e1, e2, The
resulting positive traces are all those that can be derived by replacing each ei

by its image under all. If ti is a receive event where the receiving instance is

Precise Specification of Use Case Scenarios 179

a multiobject, then the image under all is the trace ei1 , ei2 , . . . where each eij

is the same event as ei but with a different receiver, namely, instance j. The
corresponding send event is also replaced by a set of send events, one for each
instance j. The same logic applies if ei is a send event where the sending instance
is a multiobject. In this case, ei is replaced by a set of send events, one for each
instance of the multiobject, and the corresponding receive events for the new
send events are added.

For an event e, define e �(I,re), where I is a set of type instances, as a
concatenation of copies of e where each element of the concatenation has the
receiver of e replaced by an element of I. Similarly, e �(I,tr) is a concatenation of
copies of e where each element of the concatenation has the transmitter replaced
by an element of I. Furthermore, � ei ∈ h defines repeated concatenation
indexed over the events ei of an event trace h. If tr(e) : Tr and re(e) : Re,
then let insttr(e) denote the set of all instances of Tr (including tr(e) itself).
Similarly, instre(e) is the set of all instances of Re (including re(e)).

Now define all e as follows:

all e =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

e �(insttr(e),tr) if tr(e) is a multiobject
e �(instre(e),re) if re(e) is a multiobject

� ei ∈ e �(insttr(e),tr) ei �(instre(e),re) if both tr(e) and
re(e) are multiobjects

e otherwise

The intent of this definition is to effect the replacement of events by multiple
events, one for each instance, as described above. In the case that an event has
a multiobject receiver and a multiobject transmitter, the definition describes a
“nested” replacement, in which the replacement is first done for the transmitter
and then the result is processed with receiver replacement.

For a trace h, h[e′/e] is defined as the trace h with all occurrences of event
e replaced by e′. Multiple replacements are separated by commas and applied
sequentially. Now define all h for an event trace h = e1, e2, . . . as follows:

all h = h [(all e1)/e1, (all e2)/e2, . . .]

The definition extends naturally to a set of traces, s:

all s = {h ∈ H | h = (all h1) ∧ h1 ∈ s}

The definition of the semantics of all applied to an interaction diagram, as
given in Figure 6, is now clear. The case for exists is similar and is not presented
here, for lack of space.

This concludes the definition of the trace-based semantics for UML2.0 inter-
action diagrams. UML2.0 contains other constructs not considered here.

4.2 Semantics of Scenario Charts (Level-2)

The semantics is extended to scenario charts in the natural way—the semantics
is also given as a pair of a set of positive traces and a set of negative traces.

180 J. Whittle

Fig. 7. Flattening Scenario Charts

Edges of type normal in scenario charts can be given a semantics by “flatten-
ing” the edge—i.e., create a new interaction diagram that takes the interaction
diagrams represented by the source and target of the edge and connects them us-
ing an interaction fragment with a particular interaction operator. See Figure 7.
Normal edges with only one source and target scenario node can be flattened
using the seq interaction operator for sequential composition. This captures
the weak sequential semantics of one-to-one normal edges. Many-to-many nor-
mal edges are flattened using the par interaction operator. This is because the
semantics of a one-to-many edge is defined to be a forking and that of a many-
to-one edge is defined to be a joining of “threads”. Hence, a many-to-many edge
can be replaced by a fork and join in the usual activity diagram notation. Since
normal edges can be eliminated in this way, their semantics is not explicitly
given here but the semantics is assumed to be that of the equivalent “flattened”
interaction diagram. This leaves only edges of type neg, preempts and suspends.

In what follows, c1 preempts c2 informally means that scenario node c1
preempts scenario node c2. c1 suspends c2 means that c1 suspends c2 and
c1 negative during c2 means that c1 can never happen during the execution of
c2. c1 → c2 denotes a normal edge between scenario nodes. Edges can also be
between sets of scenario nodes. c1∗ denotes that multiple occurrences of c1 can
occur in parallel. The semantics for preemption, suspension and negation are
given only for one-to-one edges, but can be extended to many-to-many edges.
Figure 8 summarizes the semantics. In this figure, c1, c2 are scenario nodes
defined by interaction diagrams d1 and d2, respectively. C1 and C2 are sets of
scenario nodes defined by sets of interaction diagrams D1 and D2 where there
is a bijective mapping from Ci to Di. par X , for a set of interaction diagrams
X = {x1, x2, . . .}, is shorthand for x1 par x2 par size(X) returns the number
of elements in X . If size(X) = 1, X ′ refers to its only element. prefix(h) denotes
the set of prefixes of event trace h.

Precise Specification of Use Case Scenarios 181

[[C1 → C2]]

����
���

D′
1 seq D′

2 if size(D1) = 1 ∧ size(D2) = 1
(par D1) seq D′

2 if size(D1) > 1 ∧ size(D2) = 1
D′

1 seq (par D2) if size(D1) = 1 ∧ size(D2) > 1
(par D1) seq (par D2) if size(D1) > 1 ∧ size(D2) > 1

[[c1 preempts c2]] =
({h ∈ H | ∃h1 ∈ p1, h2 ∈ H,h′ ∈ p2 · h = h2 � h1 ∧ h2 ∈ prefix(h′)}

, n2)

[[c1 suspends c2]] =
({h ∈ H | ∃h1 ∈ p1, h2 ∈ p2, h2a, h2b ∈ H · h = h2a � h1 � h2b ∧ h2 = h2a � h2b}

, n2)

[[c1 negative during c2]] = (p2, n2 ∪ p1‖p2)

[[c1∗]] = d1 par d1 par . . .

where c1, c2 are defined by interaction diagrams d1, d2 respectively
and (p1, n1) = [[d1]], (p2, n2) = [[d2]]

Fig. 8. Semantics for Edges in Scenario Charts

For preemption, a positive trace for (c1 preempts c2) is any trace made
up of a prefix of a positive trace of c2 concatenated with a positive trace of
c1. Note that a preempting scenario cannot have negative traces. Furthermore,
(c1 preempts c2) does not introduce any new negative traces because preempt-
ing traces have no effect on the original negative traces. The case for suspension
is similar except that control returns to the suspended scenario once the sus-
pending scenario is complete.

In the case of negation, the positive traces of (c1 negative during c2) are
simply the positive traces of c2. Negative traces, however, can be any trace that
is an interleaving of a positive trace of c2 with a positive trace of c1. This, in
effect, defines a monitor for traces of c1—if a positive c1 trace occurs at any
point, even with events interleaved from c2, then this defines a negative trace.
Note that c1 cannot have negative traces.

The semantics for multiple concurrent executions (the asterisk notation) is
given by interleaving and hence can be described in terms of flattening using
par operators. The number of par operators is unbounded since there can be
any number of executions of the node.

Regions are sets of connected nodes and so, their semantics is a pair of trace
sets. Hence, their semantics is not given explicitly here but follows the same
rules as in Figure 8.

Figure 8 defines the semantics for single edges. This is extended to an entire
scenario chart as follows. A path through a scenario chart is a (possibly infinite)
sequence of scenario nodes s0, s1, s2 . . . where s0 is the unique initial node. If the
path is finite, it must be ended by either a final success or final failure node. A

182 J. Whittle

path is maximal if it is not a proper prefix of any other path. The set of positive
traces of a scenario chart is the set of traces that follow a maximal path through
the chart. Similarly, for the set of negative traces.

4.3 Semantics of Use Case Charts (Level-1)

The semantics for use case charts is essentially the same as for scenario charts
because both a scenario and a use case are given meaning as a pair of trace
sets. For use case charts, however, the meaning of a normal edge is given by
strong not weak sequential composition. Operationally, this means that before
execution can continue along an edge to the next use case, all participants in
the interaction must complete (where completion is defined below). In contrast,
in scenario charts, some participants may complete and continue to the next
node while others remain in the current node. Strong composition is chosen to
define use case charts because nodes represent use cases. Use cases are considered
modular functional units in which the entire unit must complete before control
goes elsewhere. Strong composition enforces the modularity. Semantically, strong
composition of traces is defined to be concatenation.

A use case chart node completes if and only if its defining scenario chart
reaches a final success or final failure node. If the scenario chart reaches a final
success node, control continues to the next use case node. If the scenario chart
reaches a final failure node, the use case “thread” terminates. Semantically, each
trace in a scenario chart is either infinite, ends with a final success node (a success
trace) or a final failure node (a failure trace). Suppose a use case chart has two
nodes, u1 and u2, connected by a single edge from u1 to u2. Then the positive
trace set of the use case chart is the union of three trace sets: the positive infinite
traces of u1, the set of traces formed by concatenating positive success traces
from u1 with positive traces from u2, and the set of positive failure traces from
u1. The first of these three trace sets captures the fact that infinite traces of u1
never reach u2. The second of the trace sets captures strong composition and
the final trace set corresponds to the case when traces in u1 end at a final failure
node. This is captured formally in Figure 9.

For any use case node, ui, let s(ui), f(ui) denote the set of positive traces of
ui that end in a final success and final failure node, respectively, and let inf(ui)
denote the infinite set of positive traces. Then the set of positive traces of ui

is the disjoint union of s(ui), f(ui) and inf(ui). In Figure 9, the definition of
concatenation is extended to sets of traces, in the natural way, as follows:

s1 � s2 = {h ∈ H | ∃h1 ∈ s1, h2 ∈ s2 · h = h1 � h2}

where s1, s2 are trace sets. For negative traces, the final success and final failure
nodes have no effect; negative traces are composed using strong composition.
Finally, only normal edges are affected by final success and final failure nodes,
i.e., preemption, suspension and negation edges retain the same semantics.

Precise Specification of Use Case Scenarios 183

[[c1 → c2]] = (inf(c1) ∪ f(c1) ∪ (s(c1) � p1), (n1 � p2) ∪ (n1 � n2) ∪ (p1 � n2))

Fig. 9. Semantics for Normal Edges in Use Case Charts

5 Related Work

At first glance, use case charts look quite similar to hMSCs [Uni04] and UML2.0
[OMG05] IODs. However, in IODs, there are only two levels of hierarchy —
activity diagrams connect references to interaction diagrams but use cases are
not handled. In hMSCs, nodes can be references to other hMSCs so there is an
unlimited number of levels. However, there is no semantic difference between
nodes at different levels—references to hMSCs are just syntactic sugar and can
be flattened to references to basic MSCs—so there are in effect only two levels,
interactions and references to interactions. Use cases again are not handled.

Use case charts contain relationships that do not exist in UML or hMSCs, as
noted in Section 2. Finally, there is a formal semantic model for use case charts.
There is no official formal semantics for UML2.0 IODs. Although one can infer
a semantics for UML2.0 activity diagrams (or at least part of them) because
the UML specification [OMG05] bases the semantics on petri-nets, the semantic
assumptions of generic UML activity diagrams do not carry over to IODs because
a number of restrictions and modifications are made to the activity diagrams
used in IODs. The semantics given here for use case charts is declarative. It is
also possible to define an operational semantics based on petri-nets but this is
outside the scope of this paper.

Activity diagrams and hMSCs can, of course, be used in a variety of ways to
support use-case based development. Some authors (e.g., [MB02]), for example,
suggest the use of activity diagrams to connect use cases. Others (e.g., [Man01])
suggest to define each use case by an hMSC. The former approach does not
consider how to use activity diagrams to define each use case. The latter only
connects use cases using a standard UML use case diagram. Use case charts
essentially combine these two approaches in that activity diagrams are used
both to relate use cases and to define those use cases. As such, the contribution
of this paper is more in the formal semantics than the syntax.

6 Conclusion

This paper presented a precise notation for specifying use cases. The notation is
based on UML and is defined on three levels: use cases, scenarios and interactions.
A formal syntax and semantics of the notation is presented. Use case charts are
precisely and unambiguously defined, and can therefore be executed. A project is
currently underway to implement a simulator for use case charts that is compliant
with the semantics defined in this paper. This will enable users to immediately
execute their use cases and validate the use case specification. Clearly, use case

184 J. Whittle

charts require a degree of rigor and effort above and beyond what is normal
for use case definition. The author feels, therefore, that the notation is most
beneficial when applied to the specification of systems with stringent functional
requirements. Use case charts have been applied on a number of industrial case
studies, most notably a transaction-based weather data system that is part of a
NASA air traffic control application.

References

[BRJ05] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Language
User Guide, 2nd Edition. Addison-Wesley Professional, 2005.

[Coc00] Alistair Cockburn. Writing Effective Use Cases. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2000.

[HHRS05] Øystein Haugen, Knut Eilif Husa, Ragnhild Kobro Runde, and Ketil
Stølen. Stairs: Towards formal design with sequence diagrams. Journal
of Software and System Modeling, 4(4):355–367, 2005.

[Iso04] Sadahiro Isoda. On UML2.0s abandonment of the actors-call-use-cases
conjecture. Journal of Object Technology, 4(6), 2004.

[Man01] Nikolai Mansurov. Automatic synthesis of SDL from MSC and its applica-
tions in forward and reverse engineering. Comput. Lang., 27(1/3):115–136,
2001.

[MB02] Stephen J. Mellor and Marc Balcer. Executable UML: A Foundation for
Model-Driven Architectures. Addison-Wesley, Boston, USA, 2002.

[OMG05] OMG. Unified Modeling Language 2.0 specification, 2005.
http://www.omg.org.

[OP99] Gunnar Overgaard and Karin Palmkvist. A formal approach to use cases
and their relationships. In First International Workshop on The Unified
Modeling Language UML’98, pages 406–418. Springer-Verlag, 1999.

[Smi04] Michal Smialek. Accommodating informality with necessary precision in
use case scenarios. Journal of Object Technology, 4(6), 2004.

[Sof05] Software Engineering Group, University of Paderborn. Shuttle sys-
tem case study, 2005. http://www.cs.uni-paderborn.de/cs/ag-schaefer/
CaseStudies/ShuttleSystem/.

[Ste01] Perdita Stevens. On use cases and their relationships in the unified mod-
elling language. In FASE ’01: Proceedings of the 4th International Confer-
ence on Fundamental Approaches to Software Engineering, pages 140–155,
London, UK, 2001. Springer-Verlag.

[Uni04] International Telecommunication Union. Recommendation Z.120: Message
sequence chart. Technical report, 2004.

[Wil04] Clay Williams. Towards engineered, useful use cases. Journal of Object
Technology, 4(6), 2004.

Joint Structural and Temporal Property Specification
Using Timed Story Scenario Diagrams�

Florian Klein and Holger Giese

Software Engineering Group, University of Paderborn,
Warburger Str. 100, D-33098 Paderborn, Germany

fklein@upb.de, hg@upb.de

Abstract. Complex software systems, and self-adaptive systems in particular,
are characterized by complex structures and behavior. For their design, appropri-
ate notations for the specification of properties that integrate structural and tem-
poral aspects are required. We present Timed Story Scenario Diagrams (TSSD), a
visual notation for scenario specifications that takes structural system properties
into account and provides an integrated way of discussing system state evolution.
We present the key features of the notation and demonstrate how the patterns of
the Specification Pattern System [1,2] can be encoded using TSSDs. We also dis-
cuss how TSSDs can be derived from textual specifications in a straight-forward
manner, using a case study.

Keywords: Property Specification, Temporal Logic, Visual Specification
Language.

1 Introduction

As part of the trend towards more intelligent, efficient, and flexible software-intensive
systems (cf. self-adaptive systems [3,4]), dynamic software architectures which per-
mit structural adaptation at run-time are beginning to displace static architectures and
models. While this allows building more flexible systems, designing and validating
adaptable systems poses new challenges to software engineers. In order to express re-
quirements and commitments concerning the evolution of the structure over time, ap-
propriate integrated notations for the specification of properties covering structural and
temporal aspects are required as these are closely intertwined.

The need for formal specifications expressed using logics or automata is a major
obstacle for the adoption of formal verification techniques by practitioners. We do not
only need techniques for the description of structural and temporal properties which are
sufficiently expressive and provide the essential theoretical concepts, but which are ap-
propriate for use by normal designers, requirements engineers, or even informed stake-
holders who can handle UML class diagrams (domain experts or engineers from outside
the software domain) rather than experts on logic.

� This work was developed in the course of the Special Research Initiative 614 - Self-optimizing
Concepts and Structures in Mechanical Engineering - University of Paderborn, and was pub-
lished on its behalf and funded by the Deutsche Forschungsgemeinschaft.

M.B. Dwyer and A. Lopes (Eds.): FASE 2007, LNCS 4422, pp. 185–199, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

186 F. Klein and H. Giese

For specifying structural properties, the UML only provides a textual specifica-
tion language, the OCL [5]. The writing of OCL properties requires that the developer
translates his/her concrete ideas about the required structural properties from the famil-
iar structural view in form of UML Class and Object Diagrams into an often intricate
textual syntax. When reading OCL, a complicated and error prone translation in the
opposite direction is required. This mental mapping problem is the reason why OCL
with its textual appearance is rarely used in practice, as the UML’s popularity is in large
part due to its visual nature and the accessibility of its structural modeling concepts (see
also [6]).

Several approaches try to overcome this problem. Constraint diagrams [7] visualize
constraints as restrictions on sets using Euler circles, spiders and arrows and constraint
trees [8]. VisualOCL [9] focuses on mapping OCL syntax to a visual format as closely
as possible, thus facilitating the parsing of structural constraints. However, the resulting
visually complex diagrams have only little relation with the original UML specification
so that a similar gap results. In contrast, Story Patterns (cf. [10]) extend UML Object
Diagrams and thus avoid this gap. However, they have deficits when it comes to quan-
tification and negation.

For temporal properties, temporal logics such as LTL or CTL [11] represent the
standard. However, as reported in [2], even experts have serious problems handling the
intricate nature of these logics. Even in projects with trained experts, employing them is
often impossible, as the resulting property specifications will usually be unintelligible
to domain experts from other disciplines that need to participate in the effort. Specifica-
tion patterns for temporal properties represent an attempt to alleviate this problem. As
outlined in [2], many useful temporal properties can be constructed using a small set of
elementary building blocks. This idea has been extended and applied to real-time sys-
tems in [12]. However, while applying the patterns is intuitive, the resulting formulas
themselves are no more transparent or readable than before.

Scenarios in form of UML sequence diagrams [13], Triggered Message Sequence
Charts (TMSCs) [14], or Live Sequence Charts (LSC) [15] have been proposed as a
more accessible means for the description of temporal properties. Visual Timed event
Scenarios (VTS) [16] are an alternative which focuses on scenarios for pure events,
rather than the interaction of predefined units. Therefore, they provide a more intuitive
notion of temporal ordering than Sequence Diagrams, which require specifying a se-
quence of interactions that ’enforces’ this ordering.

The existing approaches which combine structural and temporal properties are
mostly extensions of the OCL towards the description of dynamics. Through the in-
troduction of additional temporal logic operators in OCL (e.g., eventually, always, or
never), the specification of required behavior by means of temporal restrictions among
actions and events is enabled, e.g., [17]. Temporal extensions of the OCL that consider
real-time issues have been proposed for events in OCL/RT [18] and for states in RT-
OCL [19]. As temporal logic alone already causes an even more demanding mental
mapping problem (cf. [2]), integrating the OCL and some temporal logic concepts at
the textual level does not yield a sufficiently comprehensible solution.

In [20], an embedding of graph patterns into LTL formulas is proposed in order to be
able to capture structural properties. This approach tackles the theoretical aspects of the

Joint Structural and Temporal Property Specification 187

proposed integration rather than the design of a practical specification language, which
would suffer from the intricate nature of the underlying LTL.

The only notation that takes an approach similar to ours is a recent proposal [21] for
writing temporal graph queries. The approach extends Story Diagrams [22] – an exten-
sion of UML Activity Diagrams with Story Patterns – by annotating unary forward or
past operators from LTL with additional explicitly encoded time constraints. It requires
the explicit specification of an accepting automaton rather than employing the idea of
scenarios. In cases where only partial orders of events or time constraints between par-
tially ordered situations have to be specified, the encoding of the time constraints in the
automaton will therefore become rather complex.

We can conclude from our analysis of the state of the art that no existing approach
fully supports the joint specification of structural and temporal properties in the desired
scenario-based manner. The notations either lack support for one of the aspects or seem
unsuitable for the intended audience, as they require handling the combination of two
notations that already seem forbiddingly complex own their own.

In this paper, we demonstrate that the outlined requirements for jointly specifying
structural and temporal properties in a comprehensible manner can be met by a visual
language. First, we outline how Story Decision Diagrams (SDD) [23] can be used to
capture structural requirements. SDD are an extension of Story Patterns [10], combin-
ing the intuitive concept of matching structural patterns with decision diagrams, which
foster a consecutive if-then-else decomposition of complex properties into comprehen-
sible smaller ones. We then introduce Timed Story Scenario Diagrams (TSSD), a new
notation inspired by the Visual Timed Event Scenario approach [16], as a way of captur-
ing temporal properties. They provide conditional timed scenarios describing the partial
order of specific structural configurations.

The paper is structured as follows: After providing a short introduction to SDDs as
a means of capturing structural properties in Section 3, we introduce TSSDs, which
employ SDDs as basic building blocks for capturing joint structural and temporal prop-
erties, in Section 3. We then demonstrate the capabilities of TSSDs by showing that
the Property Specification Pattern System proposed in [1,2] can be easily described in
a compositional manner in Section 4 and outline how to systematically derive TSSDs
from given textual description by a systematic stepwise transformation process in Sec-
tion 5. Finally, the conclusions of the paper and outlook on future work is presented.

2 Specifying Structural Properties

The fundamental abstraction underlying our approach is the idea of interpreting in-
stance situations of an object-oriented system as graphs. We map each object/value to a
node and each attribute/association to an edge of a labeled graph. The theory of graph
transformation systems (cf. [24]) provides the formal semantics that are typically miss-
ing from UML-based notations, which allows reasoning about states and behavior of
object-oriented systems modeled using a visual notation.

The system structure is modeled using UML Class Diagrams characterizing all pos-
sible system states. Figure 1 provides the example that is used in the case study below,
a networked system of elevators.

188 F. Klein and H. Giese

contains

is at

for

has

0..1 0..n

1

n

0..1

0..1

next

n

n

manages

assigned
0..n

0..1

1

- number : integer

Floor

- doors : {open|closed}

Elevator

Building

n
Request

Dispatcher

Doors safe: e

0 1

 f

1

then

then

then else

else

e : Elevator

e : Elevator

f : Floor is at

- doors = open

e : Elevator

Fig. 1. Elevator class diagram — SDD illustrating basic syntax

Story Patterns are an extended type of UML Object Diagram (cf. [10]) that allow
expressing properties as specific object configurations (in accordance with a given Class
Diagram). They provide a notation for forbidding individual elements, but no negation
of subgraphs, disjunction, implication, or modularity, which limits their use for the
encoding of more complex properties.

Story Decision Diagrams (SDD) are an extension that remedies the shortcomings
of Story Patterns while retaining an accessible visual notation. An SDD is a directed
acyclic graph (DAG). Each node contains a Story Decision Diagram Pattern (SDDP)
specifying an elementary structural property, basically a Story Pattern without forbid-
den elements. Pattern elements bound by one node remain bound in subsequent nodes.

During evaluation, the nodes are processed starting from the root node with an empty
binding. Each node in the SDD can essentially be seen as a local if-then-else decision
based on the current binding. If a match is found, we extend the binding and follow the
solid then connector, if no match is found, we leave the binding unchanged and follow
the dashed else connector. When a binding reaches a (1) or (0) leaf node, it evaluates
to true or false, respectively. SDDs are thus similar to decision trees, but allow sharing
isomorphic subtrees and leaf nodes to reduce diagram size. Like in decision diagrams,
consecutive conditions correspond to logical conjunction or, equivalently, implication,
i.e. if a then b else c corresponds to (a ⇒ b) ∧ (¬a ⇒ c). SDDs allow multiple then
or else connectors per node as a way of expressing alternatives.

As all pattern elements are positive, negation is expressed by switching the then
and else connectors, i.e. a match leads to failure and no match leads to success. By
appropriately chaining the corresponding nodes, complex negative conditions can be
expressed. In absence of negation, the leaf nodes are implied and can be omitted.1

SDDs allow quantification over the free variables of each node. Accordingly, we
differentiate between existential nodes, which require that at least one of the bindings
they propagate reaches a (1) leaf node, and universal nodes, which require this of every
propagated binding. If an existential node binds explicitly named variables vari to ob-
jects or links, it is marked with [∃ var+

i]. If the node only binds anonymous variables

1 Note that color is used to make diagrams more readable, but redundant at the semantic level.

Joint Structural and Temporal Property Specification 189

to links, it is marked with [∃]. If the node contains no free variables at all, it becomes
a guard node – marked with [•] – that sends the original binding down the appropriate
connector depending on the specified constraints on attributes. A universal node con-
taining the free variables vari is marked with [∀ var+

i]. If no matching binding exists,
the expected semantics of ∀ quantification require that the expression evaluate to true,
i.e. an else connector to (1) is implied. Finally, it is possible to specify cardinalities for
a node’s then connector that constrain the number of extensions that may be generated
for the same original binding. If too few or many bindings are found, the original bind-
ing is propagated down the else connector. The SDD in Figure 1 illustrates the basic
concepts, requiring that every elevator is at a floor or else the doors are not open.

Most visual specification techniques lack the capability to compose complex proper-
ties by referencing other properties. SDDs support the composition of specifications by
means of Embedded Story Decision Diagrams (ESDD). ESDDs are defined as patterns
with free variables that are bound depending on the respective current context. The ESDD
definition begins with a λ node that defines the pattern’s name and rebinds variables of
the host node to the local roles. If a node contains a reference to an ESDD, represented
by the UML pattern symbol, a binding only matches the node if it also fulfills the em-
bedded pattern. ESDDs are evaluated like normal SDDs, but introduce a local scope. In
Figure 2, an ESDD is defined, expecting a floor and an elevator as its parameters.

requested: to, agent

 b, r

to : Floor agent : Elevator

agent : Elevatorr : Request

b : Buildingcontains

for has

then

assigned

to : Floor

move up e, f

then then

move up
e f

n : Floor

next

f : Floor e : Elevator

e : Elevator

f : Floor

e : Elevatorf : Floor

to agent
requested n

Fig. 2. Simple ESDD definition — Recursive ESDD definition

It is possible to define ESDDs recursively (see Figure 2), providing a way to encode
reachability and other transitive properties. The formal semantics of SDDs is defined
in [25], where we define the semantics of recursive ESDDs using least fixed points and
demonstrate that ESDD evaluation terminates on arbitrary finite graph structures.

3 Specifying Temporal Properties

The temporal behavior of a system can be described as a sequence of states. As we
model the system as a graph transformation system, each of these states corresponds
to a graph. Between states, the identity of nodes and edges is preserved. The idea be-
hind Timed Story Scenario Diagrams (TSSD) is to use the ordering of incidences of
structural properties in order to specify temporal properties as sets of valid orderings.
The diagrams are thus directed acyclic graphs consisting of nodes, each containing the
specification of a structural property, and edges, constraining the ordering of incidences.

190 F. Klein and H. Giese

[0..30]

 f e : Elevator

f : Floor is at

- doors = open

e : Elevator

then

0
then else

1

 f e : Elevator

f : Floor is at

 e e : Elevator

Fig. 3. Basic Example of the TSSD syntax

While TSSDs were designed with SDDs in mind, the structural properties could be en-
coded using any sufficiently expressive formalism.

Figure 3 is a basic example presenting the key elements of a TSSD. Whenever an
elevator is not at a floor, it has to reach a floor within 30 time units. Meanwhile, the
doors of the elevator must not be open, which is indicated by the (forbidden) guard
on the transition. Using the overview in Figure 4, we now systematically introduce the
elements of the TSSD syntax. The formal semantics of TSSDs is defined in [25].

Each node of a TSSD defines a situation. While a situation characterizes a set of
states, calling it a state would be misleading, as multiple situations of the same TSSD
can be incident, i.e. active, at the same time. A labeled situation can be referenced
in other places in order to reduce diagram size and avoid redundancies. Bindings are
shared between subsequent situations on the same path through the TSSD so that vari-
ables cannot be rebound in later situations. If bindings were not retained, it would be
difficult to specify properties such as ’If an elevator is assigned a request, it needs to
complete it.’ because any elevator completing any request would complete the scenario.

1

SDD

Label

Label

TSSDLabel

0

S NP

[Label:]

A B cs

ac iv

A

B

C

C

A

B

B1

B2 C2

C1

A B

[l..u]

A B
[l..u]

R
A

B

X

A B

A B A B A B

Situation
Definition

Situation
Reference

Termination
Node

Initial
Node

Scenario
Situation

Subscenario
Reference / Definition

Trivially
TRUE

Trivially
FALSE

Forbidden
Scenario

X A

EVENTUALLY
Connector

UNTIL
Connector

IMMEDIATELY
Connector

Strictly
previous

Strictly
next

Strict
Situation

G

Globally Strict
Situation

OR - Split AND - Join First Of Last Of

Trigger Block: sequence A, B triggers
antecedent, intervening and consequent triggered scenarios

Forbidden Guard
(Ordered)

Required Guard
(Partial order)

Time Contraint
(Ordered)

Time Contraint
(Partial order)

Parallel
Composition

Fig. 4. Overview of the TSSD Syntax

Joint Structural and Temporal Property Specification 191

e: Elevator f : Floor
requested

Ea – Fa

Eb – Fa

Eb – Fb

Ec – Fb

Ea Eb Ec Fa Fb

Ea Eb Ec

Fa Fb

++++

Ea Eb Ec

Fa Fb

++ ++

Ea Eb Ec

Fa Fb

~

Ea Eb Ec

Fa Fb

~

Ea Eb Ec

Fa Fb

++

1 2 3 4 5

Situation: Elevators: Floors:

Ea Eb Ec

Fa Fb

Fig. 5. The relationship between a situation and its observations

When matching a situation, its SDD generates a result set consisting of the alternative
candidates, i.e. the bindings that satisfied the SDD. As SDDs may contain ∀ quantifica-
tion and can then only be satisfied by sets of valid bindings, the result set actually contains
candidate sets, even though these typically only contain a single binding. Each valid can-
didate set in the result set is called an observation of the situation. However, as the SDD
encodes a structural property, whose incidence is typically not limited to a single point
in time but spans an interval, the situation could generate infinitely many observations
for the same candidate set. An observation is thus made only at the specific time when a
structural property is first present after being absent. Figure 5 illustrates this for a situa-
tion encoding that a specific elevator is requested at a specific floor. As the truth value
of this property changes over time for the different pairs, observations (marked by small
circles) are only generated where the truth value changes from false to true. For the
pair (Ea, Fa), two observations are generated, one a time 1 and one at time 5.

The observations for a scenario are then placed in relation to each other using
temporal connectors between situations specifying their temporal ordering. The even-
tually connector (A � B) denotes that an observation for situation B is eventu-
ally made after an observation for situation A (or simultaneously). The until connector
(A ��B) denotes that an observation for situation A is made and that the specific
observation remains valid until a compatible observation for situation B is made. Oth-
erwise, the connector ceases to be enabled. The immediately connector (A � B)
denotes that an observation for situation B is made at the same time as the correspond-
ing observation for situation A. The connector is thus only enabled in a single state.

As situations generate sets of observations and as bindings are retained across situ-
ations, the indicated temporal ordering only makes sense when applied to compatible
pairs of observations, i.e. if the candidate set of the more recent observation actually
evolved from the candidate set of the earlier observation. For example, Figure 3 con-
strains the movement of a single elevator, independently of any other elevator. This
same argument applies to multiple observations based on the same candidate set (such
as the pair (Ea, Fa) in Figure 5) as well – a subsequent observation should not be in-
validated just because the structure matched by the antecedent reappears. A � B
therefore does not imply that all compatible A need to occur before B, but rather that
a compatible A exists before B. Such a sequence of correctly ordered compatible ob-
servations is called a trace. As there may be multiple antecedent observations with

192 F. Klein and H. Giese

identical bindings, a single observation can extend multiple traces. As a binding may
later be extended in multiple ways, each trace may furthermore be extended by several
concurrent observations, resulting in a set of alternative traces.

Pseudostates control the scope of the scenario and encode logical operators. The
initial node • always matches exactly once, as soon as possible. The descriptive, se-
quential character of TSSDs implies the assumption that time is bounded in the past.
The termination node

⊙
• marks the end of a branch of a TSSD and always matches

as late as possible, i.e. the current state during runtime monitoring or the last state of
a finite system. In conjunction with an �� connector, a

⊙
• node can thus express

that a property, e.g. safety, should hold globally. A trace starts at an initial node and
is completed once it has reached a termination node. A system execution path π then
fulfills a TSSD if a completed trace to a

⊙
• node exists within a prefix of π.

While TSSDs need to be acyclic, each situation may have multiple successors and
predecessors. If the TSSD forks, both branches progress independently and in parallel.
Observations are only partially ordered. Disjunction can be expressed using multiple⊙
• nodes on independent branches, as one successfully completed trace is sufficient. If

a situation has multiple ingoing temporal ordering edges, observations for all situations
directly preceding it need to exist. Multiple incoming connectors thus correspond to
conjunction. Predecessor branches that do not begin in an initial node can be used to
make statements concerning the past. While the eventually connector then serves as
the past operator, until can be used to emulate since as time is assumed to be bounded
in the past. If there are multiple initial nodes in a single diagram, we require a satisfying
trace from every initial node, which can be used to create the parallel composition of
multiple TSSDs.

As a way of expressing logical ¬ and negate whole scenarios, it is possible to turn
branches of a TSSD or the entire diagram into forbidden scenarios. In the style of SDD
connectors, required situations and connectors are drawn with solid (dark) green lines,
while forbidden situations and connectors use dashed (dark) red lines. Forbidden sce-
narios are defined by means of inhibiting connectors. Normally, a connector is disabled
and becomes enabled when it is reached by an appropriate trace. Inhibiting connectors
are enabled and become disabled if a trace reaches them. Inhibiting connectors mark
the end of a forbidden scenario and thus are the connectors leading from forbidden to
required elements. In the presence of an inhibiting connector, the subsequent required
situation is thus only enabled if no trace completing the forbidden branch exists. The
semantics of all other situations and connectors in a forbidden scenario is unchanged.
Forbidden scenarios may branch and join in any situation of the diagram. If they join
in a

⊙
• node, they must never occur. As multiple

⊙
• nodes represent alternatives, a re-

quired and a forbidden scenario leading to different
⊙
• nodes still represent alternatives.

Additional guards and time constraints can appear directly on the temporal con-
nectors defining the ordering of situations or on dedicated constraint edges connect-
ing any two situations regardless of their relative position in the diagram. Constraint
edges have no direction. Guards are situations that are forbidden between two situa-
tions. They are drawn with a bolder dashed border and connected to the connector or
constraint edge in question. For convenience, the notation provides support for speci-
fying required guards as well. We also directly support some commonly used idioms

Joint Structural and Temporal Property Specification 193

in connection with guards: While the observation semantics ensure that the same ob-
servation could not have been made earlier, we may want to require that the situation
should not yet have matched at all. While this can be achieved using a dedicated guard,
we allow ’bending’ the forbidden guard onto the situation itself, which then becomes
strictly next. Likewise, a strictly previous situation needs to be the last possible obser-
vation. Finally, a strict situation without any connectors is forbidden between any two
situations unless explicitly required, or, if it is globally strict, also between situations
and pseudostates.

Time constraints allow setting a lower bound l and an upper bound u for the permitted
delay between two observations for two situations A and B within the same trace or
related traces. A time constraint can either be placed directly on a temporal connector
(A [l...u]� B) or on a dedicated constraint edge (A · · · [l . . . u] · · · B). In case of multiple
constraints, the more restrictive bounds dominate the less restrictive ones. The dedicated
pseudostates first of and last of allow specifying (time) constraints between the earliest
and the latest observation for two sets of situations.

TSSDs provide quantification on different levels. As observations are generated by
SDDs, a situation can be observed as structurally equivalent but distinct instances of the
same pattern. This is quite different from typical event- or message-based approaches
that do not consider structure and cannot differentiate between multiple (concurrent)
instances of the same event. E.g., if an elevator needs to complete any one accepted
request, it is not sufficient to only match the first accepted request. The TSSD keeps
matching freshly accepted requests, as it might otherwise miss the one that is actually
completed. This is the reason why a TSSD, which represents a set of (potential) sce-
narios, can ’be’ in many states at once. Candidate sets provide another level of quantifi-
cation, e.g. ’If all requests are approved (at the same time), then eventually all (these)
requests have to be completed (at the same time)’, which could be written by universally
quantifying over all approved requests in the first situation.

The characteristic response and precedence relationships in scenarios are encoded
by means of trigger blocks. Whenever the sequence within the trigger block has been
observed in its entirety, the corresponding trace becomes a root trace. The TSSD is
then only fulfilled if every root trace successfully completes the triggered scenario. On
the other hand, if the trigger is never completed, there is no root trace and the TSSD
places no constraints on the system behavior. Borrowing from Live Sequence Charts
[15], we distinguish between universal TSSDs, which possess a trigger and need to be
fulfilled every time it matches, and existential TSSDs, which are implicitly triggered
by their initial node and need to match once during the execution of the system. It
is possible to have multiple triggers in the same TSSD. An important feature is the
ability to trigger antecedent and intervening triggered scenarios. In order to support
this, only those previous situations that are directly connected to an initial node are
considered as preconditions when evaluating whether a trigger block is completed. A
trigger containing the trivially true situation matches in every state and allows encoding
properties such as fairness (’always occurs eventually again’).

Subscenarios provide a way to define and reference whole scenarios and thus pro-
vide a concept for modularity. A subscenario definition begins with a special λ situation
for rebinding roles and parameters. A subscenario invocation works in a similar fashion

194 F. Klein and H. Giese

to ESDD invocations, however, as we may need to reference bindings that have been
created by the subscenario, the invocation itself needs to take place inside a second
λ-node that allows exporting the generated bindings. Scenario situations are situations
that contain another TSSD and can be seen as in-place subscenario definitions. Most
notably, they can be used as ’parentheses’ for encoding ∨-joins. A subscenario is evalu-
ated in the given context of the surrounding scenario, i.e. its initial and

⊙
• node cannot

match earlier/later than the subscenario’s predecessor/successor situations.
The expressiveness of TSSDs is discussed in [25], where we show that any LTL and

TPTL (LTL with clocks) formula can be encoded using TSSDs.

4 Specification Pattern System

The Property Specification Pattern System (cf. [1],[2]) proposes to address the problem
of making formal specification techniques and verification accessible to practitioners.
The idea is to allow users to construct complex properties from basic, assuredly correct
building blocks by providing generic specification patterns encoding certain elementary
properties (existence, absence, universality, bounded existence, precedence (chains),
and response (chains)), each specialized for a set of different scopes (globally, before R,
after Q, between Q and R, after Q until R). We now demonstrate how the patterns of the
Specification Pattern System can be encoded using Timed Story Scenario Diagrams. A
convenient quality of TSSDs is that they allow us to define the scopes and the properties
separately as orthogonal concepts and then simply plug the appropriate property into the
desired scope.

�

(a) globally

R

�

(b) before R

Q �

(c) after Q

Q R

�

(d) between Q and R

Q

R

�

(e) after Q until R

Fig. 6. The scopes encoded as TSSDs (for a property ϕ)

In Figure 6, we define the scopes as TSSDs. The scopes before, after, between, and
until are encoded using trigger blocks where ϕ is the triggered scenario. As the table
shows, all definitions except the definition of until are very compact. The last case
requires an additional

⊙
• node because TSSDs provide no direct encoding of for the

operator Ũ (weak until) so that the property that R may occur or not needs to be encoded
explicitly. This omission is intentional as we believe that, in the context of a scenario
notation, it is more intuitive to explicitly specify that the scenario might be successfully
completed in an earlier situation using the standard syntax for completion (

⊙
•) instead

of introducing some additional, less obvious syntax for a Ũ connector.
In Figure 7, we define the ten different properties. Inbound connectors link to pos-

sible preconditions, outbound connectors encode success and lead to possible postcon-
ditions. Existence, absence, and universality are trivially encoded using the standard
syntax for required and forbidden scenarios. Bounded existence is encoded by enumer-
ating the acceptable sequences, i.e. 0, 1, or 2 occurences. As the number of occurences

Joint Structural and Temporal Property Specification 195

P

(a) exists P

P

(b) no P

P

(c) always P

P P

(d) at most 2 P

S

P

(e) S precedes P

P

S T

(f) P precedes S, T

T

P

S

(g) S, T precedes P

P S

(h) S responds to P

P S T

(i) S, T responds to P

S T P

(j) P responds to S, T

Fig. 7. The properties ϕ encoded as TSSDs)

is relevant, all situations are strict so that no additional occurences are permitted be-
tween the observations of a trace. Again, the weak progress (no occurence of P is also
acceptable) is encoded by additional outbound connectors. When it comes to encoding
response and precedence chains, the notation excels – quite unsurprisingly, as this is the
use case for which it was designed. Triggers are designed for expressing response (and
its dual, precedence), while sequences such as S, T are the basic concept in TSSDs.

Q P

(a) Trivial version

Q P

(b) Simplified version

Fig. 8. Always P after Q

R

S

P

(a) Trivial version

R

S

P

(b) Simplified version

Fig. 9. Always S precedes P before R

These property definitions can now simply be substituted for ϕ by completing them
with an intial node as their precondition and

⊙
• nodes as their postcondition(s). While

the trivial form of each combined pattern obtained using this mechanistic approach
already yields useable results, simplified versions can be derived using two simple
transformations that basically correspond to the elimination of redundant parentheses
in mathematical expressions: A scenario situation with a single

⊙
• node can be elim-

inated by connecting each situation inside the scope whose predecessor is the scope’s
intial node to each of the scope’s predecessor nodes, and by connecting each situation
inside the scope whose successor is the scope’s

⊙
• node to each of the scope’s succes-

sor nodes (see Figure 8). Secondly, if both the surrounding scenario and the scenario
situation contain trigger blocks, these blocks are merged (see Figure 9).

196 F. Klein and H. Giese

P S T

(a) globally

RP

S T

(b) before R

Q P S T

(c) after Q

Q RP

S T

(d) between Q and R

Q

R

P TS

(e) after Q until R

Fig. 10. Response (1,2), simplified versions

Figure 10 lists all simplified variants of the (1,2) response chain pattern. Note how
the simplified forms are quite natural expressions of the original requirements. Disre-
garding the Specification Pattern System’s distinction between scopes and properties,
e.g. S, T responds to P after Q actually translates to ’after the sequence Q, P , the se-
quence S, T needs to follow’, which is exactly what the TSSD expresses.

5 Deriving Specifications from Textual Requirements

We now discuss how structural and temporal property specifications can be derived
from informal textual requirements in a systematic manner. As our case study, we use
an elevator system. The application is in part inspired by an example property given
in [2], but extends the system from a single elevator to a large building with an arbi-
trary number of floors and elevators. The following requirements are provided for the
system: (1) Safety: Whenever an elevator is not at a floor, its doors may not be open.
(2) Responsive: Every request for an elevator is assigned to one elevator by the central
dispatcher. (3) Progress: An elevator may not stay between floors for more than 30 sec-
onds. (4) Progress: If requests have been assigned to an elevator, it may not be idle for
more than 22 seconds. (5) Purposeful: An elevator may only move towards some as-
signed request. (6) Fairness: Concurrent requests must be fulfilled within 300 seconds
of each other. (7) Fairness: When a request for a specific floor has been assigned to an
elevator, it may only arrive at this floor at most twice before opening its doors.

Using standard OOA techniques, we extract the class diagram in Figure 1 from the
requirements. As the safety property (1) is a structural requirement, we encode it as an
SDD. As suggested by the vertical lines, we decompose the textual requirement into the
semantically relevant blocks | every elevator | not at a floor | doors must not be open |,
which can be directly translated into SDD nodes | ∀ elevator | ∃ at a floor | • door =
open |. After switching the connectors where negation is required, this results in the
SDD in Figure 1.

Property (2) is not purely structural, unless requests are created with an assignment.
We therefore interpret it as | Every time | a request is (created) | it then | afterwards | is
assigned to one elevator | . We first encode the two structural terms ∃ request
(Figure 11(a)), and ∃ elevator assigned to request with a cardinality of [1..1]
(Figure 11(b)). | Every time | ... | then | becomes a trigger block around ∃ request, while

Joint Structural and Temporal Property Specification 197

 r r : Request

(a) Request created

 e r : Request

e : Elevator assigned

1 0
then
[1..1]

else

(b) Request assigned

Request created Request assigned

(c) Scenario

Fig. 11. Deriving a TSSD

| afterwards | becomes an eventually connector (Figure 11(c)), resulting in the TSSD in
Figure 12(a).

Property (3) is encoded using the same schema, but additionally introduces a time
constraint [0..30] between the two situations. Combined with a guard enforcing require-
ment (1), this yields Figure 3.

For property (4), we interpret idleness as | Every time | an elevator with assigned re-
quests | is at a floor | then | it needs to move within [0..22] |. The trigger block includes
the first two situations, while there are two alternative triggered scenarios, resulting in
the TSSD in Figure 12(b).

The difficulty in encoding property (5) is in detecting the direction of the movement
from a sequence of states in the trigger, which is achieved by the sequence elevator at
floor, eventually elevator at next floor for the up-direction. The triggered scenario is
then simply encoded by the recursive ESDD in Figure 2 that traverses floors, upwards,
until it finds a request or fails. The result is seen in Figure 12(c).

Property (6) becomes | Every time | two concurrent requests exist | then | each
| is eventually | completed | within 300 seconds of the other |. After the trigger block,
the | each | introduces two ∨-branches. The | within | time constraint results in a con-
straint edge across the two branches, yielding the TSSD in Figure 12(d).

Property (7) is the famous example that results in a rather unwieldy LTL formula
(cf. [2]). It can be expressed using the bounded-existence-between pattern above. How-
ever, we believe that a slightly stronger interpretation of the requirement better reflects
what is expected of an elevator, namely that it eventually opens its door when it is
requested (i.e. as a strong instead of a weak until). We therefore encode the require-
ment as | Every time | an elevator is requested for a floor | then | it eventually | is at
the floor | for the first time | and eventually opens its doors | or eventually | is at the
floor | for the second time | and eventually opens its doors |. It is the explicit

 e r : Request

e : Elevator assigned
 r r : Request

(a) Property (2)

Requested At floor
[0..22]

Left floor

(b) Property (4)

At floor

Floor down

Floor up

Move down

Move up

(c) Property (5)

Concurrent
Requests A, B

Request A
fulfilled

Request B
fulfilled

[0..300]

(d) Property (6)

Fig. 12. Requirements encoded as TSSDs

198 F. Klein and H. Giese

requirement | for the first/second time | that turns being at the floor into a strict situa-
tion. The case that | is at the floor | never matches is omitted here as it is a necessary
precondition for opening the doors at the floor. The first structural property is encoded
by the ESDD in Figure 2. Property (7) is then encoded by the TSSD in Figure 13.

- doors = open

e : Elevator

f : Floor

is at _ e : Elevator

f : Floor is at

 e, f

e : Elevatorf : Floor

requested
to agent

- doors = open

e : Elevator

f : Floor

is at _ e : Elevator

f : Floor is at

Fig. 13. The elevator may only arrive twice before opening the door

6 Conclusion and Future Work

The combination of TSSDs with SDDs allows the joint specification of structural and
temporal properties that is required in the context of complex software-intensive sys-
tems, in particular self-adaptive systems. We have shown that all Property Specification
Patterns proposed in [1,2] can be easily encoded and derived in a compositional manner
using TSSDs (see [25] for the full catalogue). We have demonstrated that the mapping
from textual property descriptions to SDD/TSSD specifications is fairly direct as the
notations support many common intuitions (implication, precedence etc.).

We are currently developing tool support for the specification, monitoring, and ver-
ification of TSSDs, which will allow us to further evaluate them in larger case studies
with requirements engineers and domain experts.

References

1. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Property Specification Patterns for Finite-state
Verification. In: 2nd Workshop on Formal Methods in Software Practice, ACM Press (1998)

2. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for finite-state
verification. In: ICSE ’99: Proceedings of the 21st international conference on Software
engineering, Los Alamitos, CA, USA, IEEE Computer Society Press (1999) 411–420

3. Musliner, D., Goldman, R., Pelican, M., Krebsbach, K.: Self-adaptive software for hard
real-time environments. IEEE Intelligent Systems 14 (1999)

4. Oreizy, P., Gorlick, M.M., Taylor, R.N., Heimbigner, D., Johnson, G., Medvidovic, N.,
Quilici, A., Rosenblum, D.S., Wolf, A.L.: An Architecture-Based Approach to Self-Adaptive
Software. IEEE Intelligent Systems 14 (1999) 54–62

5. Object Management Group: UML 2.0 Object Constraint Language (OCL) Specification
(2003) http://www.omg.org/docs/ptc/03-10-14.pdf.

6. Diskin, Z., Kadish, B., Piessens, F., Johnson, M.: Universal arrow foundations for visual
modeling. In: Diagrams ’00: Proceedings of the First International Conference on Theory
and Application of Diagrams, London, UK, Springer-Verlag (2000) 345–360

7. Kent, S., Howse, J.: Mixing visual and textual constraint languages. In France, R., Rumpe,
B., eds.: UML’99, Fort Collins, CO, USA, October 28-30. 1999, Proceedings. Volume 1723
of LNCS., Springer (1999) 384–398

Joint Structural and Temporal Property Specification 199

8. Kent, S., Howse, J.: Constraint trees. In Clark, T., Warmer, J., eds.: Object Modeling with
the OCL. Springer (2002) 228–249

9. Bottoni, P., Koch, M., Parisi-Presicce, F., Taentzer, G.: A visualization of OCL using collab-
orations. Lecture Notes in Computer Science 2185 (2001) 257–271

10. Köhler, H., Nickel, U., Niere, J., Zündorf, A.: Integrating UML Diagrams for Production
Control Systems. In: Proc. of the 22nd International Conference on Software Engineering
(ICSE), Limerick, Irland, ACM Press (2000) 241–251

11. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press (2000)
12. Konrad, S., Cheng, B.H.C.: Real-time specification patterns. In: ICSE ’05: Proceedings of

the 27th international conference on Software engineering, New York, NY, USA, ACM Press
(2005) 372–381

13. Object Management Group: UML 2.0 Superstructure Specification. (2003) Document
ptc/03-08-02.

14. Sengupta, B., Cleaveland, R.: Triggered Message Sequence Charts. In Griswold, W.G.,
ed.: Proceedings of the Tenth ACM SIGSOFT Symposium on the Foundations of Softare
Engineering (FSE-10), Charleston, South Carolina, USA, ACM Press (2002)

15. Harel, D., Marelly, R.: Playing with Time: On the Specification and Execution of Time-
Enriched LSCs. In: Proc. 10th IEEE/ACM Int. Symp. on Modeling, Analysis and Simulation
of Computer and Telecommunication Systems (MASCOTS 2002), Fort Worth, Texas, USA
(2002) (invited paper).

16. Alfonso, A., Braberman, V., Kicillof, N., Olivero, A.: Visual Timed Event Scenarios. In:
ICSE ’04: Proceedings of the 26th International Conference on Software Engineering, Wash-
ington, DC, USA, IEEE Computer Society (2004) 168–177

17. Bradfield, J., Kuester Filipe, J., Stevens, P.: Enriching OCL Using Observational mu-
Calculus. In Kutsche, R.D., Weber, H., eds.: Fundamental Approaches to Software Engi-
neering (FASE 2002), Grenoble, France. Volume 2306 of LNCS., Springer (2002)

18. Cengarle, M., Knapp, A.: Towards OCL/RT. In Eriksson, L.H., Lindsay, P., eds.: Formal
Methods – Getting IT Right, International Symposium of Formal Methods Europe, Copen-
hagen, Denmark. Volume 2391 of LNCS., Springer (2002) 389–408

19. Flake, S., Mueller, W.: An OCL Extension for Real-Time Constraints. In: Object Model-
ing with the OCL: The Rationale behind the Object Constraint Language. Volume 2263 of
LNCS. Springer (2002) 150–171

20. Gadducci, F., Heckel, R., Koch, M.: A fully abstract model for graph-interpreted temporal
logic. In: Proc. of the Theory and Application of Graph Transformations. Volume 1764 of
Lecture Notes in Computer Science. (2000) 310–322

21. Rötschke, T., Schürr, A.: Temporal Graph Queries to Support Software Evolution. In: Graph
Transformation: 5th International Conference, ICGT 2006, Rio Grande do Norte, Brazil,
September 17-23, 2006. (2006) 1–15

22. Fischer, T., Niere, J., Torunski, L., Zündorf, A.: Story diagrams: A new graph rewrite lan-
guage based on the unified modeling language. In Engels, G., Rozenberg, G., eds.: Proc.
of the 6th International Workshop on Theory and Application of Graph Transformation
(TAGT), Paderborn, Germany. LNCS 1764, Springer Verlag (1998) 296–309

23. Giese, H., Klein, F.: Beyond Story Patterns: Story Decision Diagrams. In Giese, H., West-
fechtel, B., eds.: Proc. of the 4th International Fujaba Days 2006, Bayreuth, Germany. Vol-
ume tr-ri-06-275 of Technical Report., University of Paderborn (2006)

24. Rozenberg, G., ed.: Handbook of Graph Grammars and Computing by Graph Transformation
: Foundations. World Scientific Pub Co (1997) Volume 1.

25. Klein, F., Giese, H.: Integrated Visual Specification of Structural and Temporal Proper-
ties. Technical Report tr-ri-06-277, Computer Science Department, University of Paderborn
(2006)

SDL Profiles – Formal Semantics and Tool

Support

R. Grammes and R. Gotzhein

Computer Science Department, University of Kaiserslautern

Abstract. Over a period of 30 years, ITU-T’s Specification and Descrip-
tion Language (SDL) has matured to a sophisticated formal modelling
language for distributed systems and communication protocols. The lan-
guage definition of SDL-2000, the latest version of SDL, is complex and
difficult to maintain. Full tool support for SDL is costly to implement.
Therefore, only subsets of SDL are currently supported by tools. These
SDL subsets - called SDL profiles - already cover a wide range of sys-
tems, and are often sufficient in practice. In this paper, we present a
formalised approach for extracting the formal semantics for SDL profiles
from the complete SDL semantics. Based on this formalisation, we then
define a notion of profile consistency. Finally, we present our SDL-profile
tool, and report on our experiences.

1 Introduction

Over a period of 30 years, ITU-T’s Specification and Description Language
(SDL) [1] has matured from a simple, informal graphical notation for describing
a set of communicating finite state machines to a sophisticated formal modelling
technique with graphical syntax, data types, structuring mechanisms, object-
oriented features, formal semantics, support for reuse, companion notations, and
commercial tool environments. This development has led to an expressive and
sophisticated language for a wide range of domains. On the other hand, the lan-
guage definition of SDL-2000, the latest version of SDL, is complex and difficult
to maintain. Full tool support for SDL is costly to implement. Therefore, all
commercial tool providers have decided to support subsets of SDL only. These
SDL subsets are targeted towards specific domains and companies, where, due to
their reduced complexity, they are preferred by engineers. Following the notion
of UML profiles [2], which enable the specialisation of UML for specific domains,
we call these subsets SDL profiles.

While the use of SDL profiles is today’s state-of-the-practice, their definition
is not reflected in the SDL standard. One could argue that this is of no par-
ticular importance, since the full language definition covers all possible subsets.
However, a drawback is that engineers working with a well-defined SDL profile
only are still confronted with the entire language definition. Also, the task of
tool builders to show conformance to the language definition is highly complex,
in particular if the optimisation potential of a particular SDL profile is to be
exploited.

M.B. Dwyer and A. Lopes (Eds.): FASE 2007, LNCS 4422, pp. 200–214, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

SDL Profiles – Formal Semantics and Tool Support 201

To solve these problems, one could think of defining a separate standard for
each SDL profile of interest. This, however, creates other problems arising from
the extra work to define and maintain these standards, and from keeping them
consistent. In this paper, we address these problems and present a formalised,
tool-based approach for extracting, for a given SDL profile, the formal semantics
from the standardised SDL semantics.

This paper is organised as follows: Section 2 gives a brief overview over the
language definition of SDL, in particular, the formal semantics. Section 3 outlines
our approach to the extraction of the formal semantics for SDL profiles. In
Section 4, it is shown how the approach has been formalised. Consistency of
SDL profiles is defined in Section 5. We present our tool chain for the extraction
approach in Section 6, survey related work in Section 7, and draw conclusions
in Section 8.

2 Language Definition of SDL

In this section, we survey the definition of SDL, and briefly present ASMs, the
formalism used to define the dynamic semantics of SDL.

2.1 Specification and Description Language (SDL)

The Specification and Description Language (SDL) [1] is a formal language stan-
dardised by the International Telecommunications Union (ITU). It is widely used
both in industry and academia. SDL is based on the concept of asynchronously
communicating finite state machines, running concurrently or in parallel. SDL
provides language constructs for the specification of nested system structure,
communication using channels, signals and signal queues, behaviour using ex-
tended finite state machines, and data.

In 1988, the semantics of SDL was formally defined, upgrading the language to
a formal description technique. In 1999, a new version of the language, referred
to as SDL-2000, was introduced. Since the formal definition of the semantics was
assessed as being too difficult to extend and maintain, a new formal semantics,
based on Abstract State Machines (see Section 2.2), was defined from scratch
[3]. In November 2000, the formal semantics of SDL-2000, the current version
of SDL, was officially approved to become part of the SDL language definition
[1]. It covers all static and dynamic language aspects, and consists of two major
parts (for a detailed survey, see [3]):

– The static semantics of SDL defines well-formedness conditions on the con-
crete syntax of SDL. Furthermore, transformations map extended features of
SDL to core features of the language, reducing the complexity of the dynamic
semantics. The static semantics contains over 5600 lines of specification.

– The dynamic semantics of SDL defines the dynamic behaviour of well-formed
SDL specifications, based on ASMs. At the core of the dynamic semantics
is the SDL Virtual Machine (SVM), providing a signal flow model and sev-
eral types of agents. Agents go through an initialisation phase, creating the

202 R. Grammes and R. Gotzhein

nested structure of an SDL system, and an execution phase, forwarding sig-
nals and executing extended state machines. Behaviour primitives form the
instruction set of the SVM, defining basic actions such as sending signals,
setting timers or calling procedures. A compilation function maps actions
from transitions in an SDL specification to instructions of the SVM. The
dynamic semantics contains over 3700 lines of ASM specification.

2.2 Abstract State Machines

Abstract State Machines (ASMs) [4,5] are a general model of computation in-
troduced by Yuri Gurevich. They combine declarative concepts of first-order
logic with the abstract operational view of distributed transition systems. ASMs
are based on many-sorted first-order structures, called states. A state consists
of a signature (or vocabulary) containing domain names, function names and
relation names, together with an interpretation of these names over a base set.
Intuitively, it can be viewed as a memory snapshot of the ASM, where locations
- identified by functions and parameter values - are mapped to result values.

The computation model of distributed ASMs is based on a set of autonomously
operating ASM agents. Starting from an initial state, the agents perform con-
current computations and interact through shared locations of the state. The
behaviour of ASM agents is determined by ASM programs, consisting of ASM
rules. Complex ASM rules are defined as compositions of guarded update in-
structions using a small set of rule constructors. From these rules, update sets,
i.e. sets of memory locations and new values, are computed. These update sets
define state transitions that result from applying all updates simultaneously.

3 Outline of the Extraction Approach for SDL Profiles

SDL profiles are self-contained subsets of SDL, targeted towards specific do-
mains and companies. In comparison to the full SDL language definition, SDL
profiles have reduced complexity, a result that is useful for both engineers and
tool builders. In [6], the SDL Task Force has identified an SDL profile called
SDL+, which focuses on the state machine aspect of SDL and adds functional-
ity for testing1. However, no formal semantics is provided for SDL+. In [7], we
have identified a hierarchy of SDL profiles, some of which are supported by our
configurable transpiler ConTraST [8].

An SDL profile, as a subset of the complete SDL specification, can be charac-
terised by its reduced concrete and abstract syntax, by defining a reduced lan-
guage grammar. For the reduced language grammar, well-formedness conditions
and transformations have to be taken into account. Some well-formedness condi-
tions and transformations become dispensable. A problem arises when, through
the reduction of the grammar, a well-formedness condition cannot be met, and
the resulting language is empty. This occurs when language constructs are re-
moved, while language constructs that depend on them remain in the subset.
1 For SDL profiles, we only regard the parts of SDL+ that are included in SDL.

SDL Profiles – Formal Semantics and Tool Support 203

Likewise, transformations are affected if a language construct in the subset is
transformed to a language construct that has been removed. These problems are
avoided by taking self-contained subsets of the language, like the SDL subsets
implicitly defined by tool providers.

We define SDL profiles by extracting the profile definition from the complete
SDL language definition. To obtain a particular SDL profile, we remove parts
correspondig to language features not included in the profile from the formal
syntax and semantics. While the syntax extraction for a given SDL profile is
straightforward, the extraction of the formal semantics has turned out to be
difficult. To solve this problem, we have considered two approaches:

– ASM rule coverage. With each SDL profile, an ASM rule coverage com-
prising all ASM rules of the SVM that may be evaluated in some execution
of some SDL specification written in that SDL profile can be associated.
While this approach is semantically sound, it is practically infeasible. For
a given SDL specification, the concurrent, non-deterministic nature of the
SVM may lead to a very large number of possible executions. Furthermore,
the number of SDL specifications that can be written in a given SDL profile
is extremely large. Therefore, the worst-case complexity of an algorithm for
ASM rule coverage is far too high to be of any use for practical purposes.

– Dead ASM rule recognition. Instead of computing the ASM rule coverage
of a set of SDL specifications, we can develop safe criteria to recognise ASM
rules that are never evaluated for a given SDL profile. For instance, if the
SDL language module timer is to be removed, we can safely remove all
ASM rules that are used for setting and resetting SDL timers, including the
corresponding ASM domains, functions, and relations. It is important here
that dead ASM rule recognition works in a conservative way, i.e. ASM rules
must only be removed if it can be formally proven that they are not evaluated
for a given SDL profile. The degree of reduction that can be achieved this way
thus depends on the completeness of the criteria that can be defined. Unlike
the ASM rule coverage approach, dead ASM rule recognition is practically
feasible. Therefore, we have followed this approach, and will present safe
criteria as well as some heuristics below.

4 Formalisation

We now formalise our approach for extracting the formal semantics of SDL
profiles from the complete SDL semantics. The formalisation gives a precise def-
inition of the removal process, which leads to deterministic results, and provides
the foundation for tool support for the removal process. Finally, a formal defin-
ition is necessary in order to make precise statements about the consistency of
SDL profiles. Since the formal syntax definition can be easily defined in a mod-
ular fashion, making its reduction straightforward, we focus on the reduction of
the formal semantics definition.

204 R. Grammes and R. Gotzhein

4.1 Reduction Profile

SDL profiles characterise subsets of the set of valid SDL specifications, by defin-
ing subsets of the concrete and abstract syntax of SDL. The abstract syntax of
SDL influences the dynamic semantics, which is the focus of our work, in two
ways:

– The abstract syntax yields part of the SDL Virtual Machine (SVM) data
structure (ASM signature, see Figure 1). For each element of the abstract
grammar, a domain of the same name is introduced in the ASM signature.
For example, the following non-terminals of the abstract grammar, which
are only relevant for SDL specifications with timers, are also domains in
the signature of the ASM: Timer-name, Timer-identifier, Timer-definition,
Timer-active-expression, Set-node, and Reset-node.

– In the case of SDL actions (assignments, setting timers, . . .), a compila-
tion function maps parts of the abstract syntax to domains of the formal
semantics definition that form the SVM. For example, the compilation of a
Set-node in the abstract syntax tree leads to the creation of an element of
the domain Set in the ASM signature.

SDL

Abstract Syntax

SVM data structure

(ASM Signature)
SVM Behaviour

(ASM Rules)

compilation

function

reduction

Syntax of
SDL profile

Syntax of SDL
language constructs
to be removed

corresponding
ASM domains

corresponding
compilation units

additional corresponding
parts of the signature

Fig. 1. Concept of the extraction process

Featuring the extraction approach, we remove SDL language modules from the
formal language definition. Language modules consist of sets of SDL language
constructs, and their corresponding grammar rules. These grammar rules are
removed from the formal syntax definition. Furthermore, they form the starting
point for the reduction of the formal semantics definition (see Figure 1). Starting
from the removed parts of the formal syntax definition, we can identify corre-
sponding domains in the ASM signature, as described above. These domains are
empty in the initial state of the SVM, and, since they are not modified by the
SVM, will be empty in all reachable states, too. This observation is fundamental
for recognising dead ASM rules of the SVM.

SDL Profiles – Formal Semantics and Tool Support 205

Apart from domains corresponding to elements of the abstract grammar of a
language module, other domains, functions and predicates in the SVM signature
correspond to specific language modules. For example, SignalSaved is a predicate
that corresponds to the save feature in SDL. If it holds, the signal being examined
is not discarded, if no valid transition is found. These elements of the SVM
signature are removed in addition to domains corresponding to elements of the
abstract grammar. However, we need to prove that these elements are not needed
for the given SDL profile.

In order to perform dead ASM rule recognition, we collect all parts of the
ASM signature that correspond to language modules not included in the SDL
profile in a reduction profile. The reduction profile is a list of domains, functions
and predicates from the SVM signature to be removed in the extraction process.
This list can be derived from the abstract syntax and the compilation function,
however, domain knowledge is still required. We specify a default value (true or
false) for predicates, and assume the special element undefined and the empty
set as default values for functions and domains. These elements are removed from
the formal semantics definition according to a set of extraction rules formally
defined in the following sections. The complete formalisation can be found in [9].

Save-signalset
SignalSaved = false

Fig. 2. Reduction profile for ’save’ feature

Figure 2 shows the smallest possible reduction profile corresponding to a lan-
guage feature. It specifies all grammar elements and predicates used to defer the
consumption of input signals.

4.2 Formalisation Signature

For the formal definition of the extraction process, we have decided to use a
functional approach, defining functions that recursively map the original for-
mal semantics to the reduced formal semantics. These functions are based on a
concrete grammar for Abstract State Machines [10]. The input of the reduction
is the SDL formal semantics definition from [11] and a reduction profile r, as
described in Section 4.1.

To formalise the extraction, we define a function remove, which maps a term
from the grammar G of ASMs and a set of variables V - an initially empty set
of locally undefined variables from the ASM formal semantics - to a reduced
term from the grammar G. Additionally, we introduce three mutually exclusive
binary predicates, namely undefinedr, truer and falser. These predicates hold for
expressions of the ASM that are determined as true, false or undefined/empty,
respectively, in any state, given the information in the reduction profile.

206 R. Grammes and R. Gotzhein

remove : G × V → G

undefinedr : G × V → Boolean

truer : G × V → Boolean

falser : G × V → Boolean

The remove function is defined on all elements of the grammar G. Predicates
truer and falser are defined on boolean and first-order logic expressions, and
predicate undefinedr on all expressions. In the following sections, we omit the
index r from the predicates.

The function remove is defined recursively - a given term is mapped to a
new term by applying the mapping defined by remove to the subterms. In case
none of the predicates undefined , true and false holds, the current term is not
reduced any further. This assures in particular that remove corresponds to the
identical mapping if the reduction profile r is empty. In other cases, subterms
can be replaced or omitted depending on which of the predicates hold.

4.3 Formal Definition of true and false

Identifying expressions as always true (false) is an important step in the reduc-
tion process. Predicates true and false hold for some first-order expressions that
are true (false) in every state of the ASM. Generally, this is undecidable for
first-order expressions.

Predicates of the ASM can be included in the reduction profile together with
a default value true or false. Boolean-valued functions true and false intro-
duced in Section 4.2 hold directly for these predicates. For general first-order
expressions, we define the functions true and false recursively.

Predicate undefined holds for expressions that evaluate to the empty set or
the special element undefined in every state, as defined by the reduction profile.
Therefore, we can derive that equating an expression e with the empty set or
the special ASM element undefined always yields true if undefined holds for
expression e. Likewise, such an expression is never unequal to the empty set or
undefined. With an expression e2 being an empty set, we can determine the
element-of operator to yield false in every state of the ASM. These considera-
tions are reflected in the following definitions:

true(e = undefined, V) iff undefined(e, V)
false(e �= undefined, V) iff undefined(e, V)

true(e = ∅, V) iff undefined(e, V)
false(e �= ∅, V) iff undefined(e, V)

false(e1 ∈ e2, V) iff undefined(e2, V)

In the SVM, a state s is a tuple with several elements. An element is selected
from the tuple using the s- operator together with the element type, for example

SDL Profiles – Formal Semantics and Tool Support 207

s.s-Save-signalset for the set of saved signals in this state. Given the reduction
profile in Figure 2, false holds for the expression sig ∈ s.s-Save-signalset for all
signals sig and all SDL states s.

The result of true and false for a boolean expression is derived from its subex-
pressions, and can be defined in a truth table. Table 1 defines if true (T), false
(F), undefined (U) or none of these predicates (-) hold for the disjunction.

Table 1. Truth table for disjunction

e2

e1 ∨ T F U -
T T T T T
F T F F -
U T F U -
- T - - -

Further boolean connectors and quantified expressions are defined in a similar
fashion in [9].

4.4 Formal Reduction of ASM Rules

Rules specify transitions between states of the ASM. The basic rule is the update
rule, which updates a location of the state to a new value. All together, there are
seven kinds of rules for ASMs, for all of which we have formalised the reduction.
Below, we show the formalisation of the reduction for two rules.

The mapping of the if -rule depends on which predicate holds for the guard
exp of the rule. If the guard always evaluates to true (false), the if -rule can be
omitted, and removal continues with subrule R1 (R2). If the guard is undefined,
the rule is syntactically incorrect, and should not be reachable2. If none of the
predicates hold, the removal is applied recursively to the guard and the subrules
of the if -rule, leaving the rule itself intact.

remove(if exp then R1 else R2 endif, V) =
remove(R1, V) iff true(exp, V)
remove(R2, V) iff false(exp, V)
skip iff undefined(exp, V)
if remove(exp, V) then remove(R1, V) otherwise

else remove(R2, V) endif

Figure 3 shows an if -rule with a guard expression for which false holds, given
the reduction profile in Figure 2. The if -rule is removed except for the else-
branch, which is empty.
2 This is a proof obligation that we have to verify manually. However, so far this has

only occurred in very few cases, which were the result of errors in the reduction
profile.

208 R. Grammes and R. Gotzhein

if sig ∈ s .s−Save−signalset then
...

endif

Fig. 3. if -Rule with unsatisfiable guard condition

The choose-rule nondeterministically takes an element from the finite set
defined by the constraint exp and binds it to the variable x. If no element satisfies
the constraint, as in the case where false holds, choose is equivalent to skip.If
true or undefined hold for the constraint, the choose-rule is invalid since it
ranges over a potentially infinite set.

remove(choose x : exp R endchoose, V) =
skip iff false(exp, V) ∨ true(exp, V)∨

undefined(exp, V)
choose x : remove(exp) remove(R, V) otherwise
endchoose

5 Consistency of SDL Profiles

We call a set of SDL profiles consistent, if any specification that can be stated
in all of these profiles behaves exactly the same way in each profile. Deriving the
profiles from a common language definition enables us to make statements about
consistency, because, unlike profiles defined independently, the derived profiles
share many common parts.

A run of an ASM is a sequence of states, where each subsequent state is the
result of firing all rules which conditions are true on the preceding state. For
non-deterministic, multi-agent ASMs, the legal behaviour is given by a set of
runs, each run in the set describing a possible execution of the system. Two
SDL profiles are considered consistent, if they yield the same set of runs of their
respective ASMs for all specifications contained in both profiles.

In order to prove consistency, it is sufficient to show that only dead ASM
rules are removed. This property does not follow automatically from the for-
mally defined operations for removal, since they rely on heuristics in some parts.
However, based on these operations, it is possible to derive proof obligations
that have to be verified in order to prove consistency.

For example, during removal, an if -rule can be replaced by the subrule in the
then-block of the rule, if the predicate true holds for the guard. To prove con-
sistency, it is sufficient to prove that for all specifications of the SDL profile, the
guard evaluates to true in all reachable states3. Likewise, if the predicate false
holds for the guard, we have to prove that for all specifications of the SDL profile,
the guard evaluates to false in all reachable states. In case undefined holds for
the guard, we have to prove that the if -statement can not be reached at all.
3 This condition is stronger than necessary. It would suffice to show that the guard is

always true for all reachable states that lead to the firing of the if -rule.

SDL Profiles – Formal Semantics and Tool Support 209

Figure 4 shows a part of the formal language definition that was removed
as part of the save feature of SDL, which is used to defer the consumption of
input signals. For SDL profiles that do not contain the save feature, no gram-
matical elements of Save-signalset exist. Therefore, selecting the Save-signalset
for any state yields undefined, and selecting Signal-identifier-set for the ele-
ment undefined yields the empty set. Since Save-signalset is not modified in the
formal language definition, this holds for any reachable state of the ASM. An
element can not be contained in an empty set, therefore the guard is always false,
and omitting the if -statement leads to a consistent definition for specifications
without save.

if Self .signalChecked.signalType ∈
sn.stateAS1.s−Save−signalset.s−Signal−identifier−set then

Self .SignalSaved := True
endif

Fig. 4. Removed part of formal semantics definition

Choose. Choose nondeterministically selects an element that satisfies the con-
straint given by expression exp. If a choose-rule is removed, we have to prove
consistency by proving the expression exp to be false in any reachable state,
and therefore - according to the semantics of ASMs - the choose-rule equates
to an empty update set. Alternatively, we can prove that the choose-rule can
not be reached.

Boolean Expressions. Parts of boolean expressions are removed if they have no
influence on the final result, for example if true holds for a subexpression of a
conjunction. In this case, the proof obligation is to show that the subexpression
is always true for specifications of the SDL profile.

Proof obligations on boolean expressions can be split into proof obligations
on subexpressions, as shown for ∧ and ∨ below. For example, in order to prove
consistency for predicate true on e1 ∧ e2, we can prove consistency for predicate
true on e1 and e2.

true(e1 ∧ e2) iff true(e1) and true(e2) (1)
false(e1 ∧ e2) iff false(e2) or false(e2) (2)
true(e1 ∨ e2) iff true(e1) or true(e2) (3)
false(e1 ∨ e2) iff false(e1) and false(e2) (4)

Proof obligations for ASM rules and expressions can be inserted into the reduced
formal semantics definition by the SDL-profile tool described in the following sec-
tion. In order to prove consistency, we show that all generated proof obligations
hold. Currently, this verification is done manually.

210 R. Grammes and R. Gotzhein

6 SDL-Profile Tool

Based on the formalisation provided in Section 4, we have implemented a tool
called SDL-profile tool in order to automate the reduction process, providing vis-
ible results. The tool reads the formal semantics definition, performs the remove
operation based on a reduction profile, and outputs a reduced version of the
formal semantics. Figure 5 shows the sequence of steps performed during the
removal, and the tools used for each step.

Fig. 5. Tool chain of the SDL-profile tool

6.1 Tool Chain

Parser. The parser takes an ASM specification as input and creates an abstract
syntax tree representation of the specification as output. It is generated out
of specifications of the lexis, grammar and abstract syntax of Abstract State
Machines, as used in the formal semantics of SDL-2000 [10]. The specification of
the abstract syntax is translated by kimwitu++ [12] to a data structure for the
abstract syntax tree, using C++ classes. Scanner and parser are generated by
flex and bison, respectively. Apart from minor differences, the parser is identical
to the parser used in [13].

Normalisation. The normalisation step transforms the abstract syntax tree
to a pre-removal normal form. The transformation is specified by rewrite rules
on the abstract syntax tree. The rewrite rules are translated to C++ functions
by the kimwitu tool. The main function of the normalisation step is to split up
complicated abstract syntax rules, in order to make the definition of the remove
function easier.

Remove. The remove step is the implementation of the removal formalised in
Section 4. For each type of node (called phylum) in the abstract syntax definition,
a remove function is introduced. The remove function performs removal for each
term of the respective phylum, for example the terms IfThenElse, Choose, and
Extend for the rule phylum. It returns a term of the respective phylum as result
– for example the remove function for rules always returns a term of type rule.

For a term of a phylum, removal starts by checking conditions consisting of
the predicates true, false and undefined , as defined in the formalisation of the
reduction process. If a condition evaluates to true, a modified term is returned,

SDL Profiles – Formal Semantics and Tool Support 211

calling remove recursively on the subterms of the term if necessary. For example,
for the rule term IfThenElse, if the predicate true holds for expression exp,
removal continues with the then-part, if the predicate false holds for expression
exp, removal continues with the else-part. If undefined holds for the expression
exp, the rule term Skip is returned.

IfThenElse(exp, r1, r2): {
if (eval_true(exp,V)) { return remove(r1,V); };
if (eval_false(exp,V)) { return remove(r2,V); };
if (eval_undef(exp,V)) { return Skip(); };
return IfThenElse(remove(exp,V), remove(r1,V), remove(r2,V));

}

Cleanup. The cleanup step transforms superfluous rules resulting from the
removal step to a post-removal normal form. The normal form is achieved by
defining term rewrite rules in kimwitu. Unlike removal, the rewrite rules apply
anywhere where their left hand side matches, and are applied as long as a match
is found. The cleanup step only removes trivial parts of the ASM specification.
The resulting specification is semantically equivalent to the specification before
the cleanup step.

Iteration. Given a completely defined reduction profile, only one run of the
SDL-profile tool is needed to generate a reduced ASM semantics definition.
In case the reduction profile is incomplete, the profile tool can identify fur-
ther names in the ASM signature that can be removed, and iterate the removal
process.

Unparsing. Unparsing traverses the abstract syntax tree and outputs a string
representation of every node. The result is a textual representation of the formal
semantics tree in the original input format. Therefore, the output of the profile
tool can be used as the input for a subsequent run of the profile tool. We also
provide different output formats, for example a Latex document of the formal
semantics, or a compilation to C++.

6.2 Application of the SDL-Profile Tool

Given an ASM formal semantics definition and a reduction profile, the SDL-
profile tool generates a reduced formal semantics definition in the original format.
In order to validate the removal process, we compare the original semantics
definition with the reduced version. For this, we have used graphical diff-based
tools (tkdiff) to highlight the differences between the versions. Using the SDL-
profile tool, we have created reduction profiles for several language modules,
such as timers, exceptions, save, composite states and inheritance. We have also
created reduction profiles for language profiles like SDL+ and Core, resulting
in formal semantics definitions that, with small modifications, match these SDL
profiles.

212 R. Grammes and R. Gotzhein

SelectTransitionStartPhase ≡
if (Self .currentExceptionInst �= undefined) then

Self .agentMode3 := selectException
Self .agentMode4 := startPhase

elseif (Self .currentStartNodes �= ∅) then
...

else
...

endif

SelectTransitionStartPhase ≡
if (Self .currentStartNodes �= ∅) then

...
else

...
endif

Fig. 6. Macro SelectTransitionStartPhase before and after reduction

Figure 6 shows an excerpt of the formal semantics definition before and after
applying the SDL-profile tool, using a reduction profile for SDL exceptions. The
reduction profile contains, besides other function and macro names, the function
name currentExceptionInst, which is interpreted as undefined in the context
below. Therefore, the predicate false holds for the guard of the if -rule, and the
first part of the if -rule is removed.

7 Related Work

A modular language definition can be found in the language specification of UML
[2]. The abstract syntax of UML is defined using a meta-model approach, using
classes to define language elements and packages to group language elements into
medium-grained units. The core of the language is defined by the Kernel package,
specifying basic elements of the language such as packages, classes, associations
and types. However, each meta-model class has only an informal description of
its semantics, limiting a precise definition of subsets to the language syntax.

UML has a profile mechanism that allows metaclasses from existing metamod-
els to be extended and adapted, using stereotypes. Semantics and constraints
may be added as long as they are not in conflict with the existing semantics and
constraints. The profile mechanism has been used to define a UML profile for
SDL, enabling the use of UML 2.0 as a front-end for SDL-2000 [14].

ConTraST [8] is an SDL to C++ transpiler that generates a readable C++
representation of an SDL specification by preserving as much of the original
structure as possible. The generated C++ code is compiled together with a
runtime environment that is a C++ implementation of the formal semantics
defined in Z100.F3. ConTraST is based on the textual syntax of SDL-96, and
supports SDL profiles syntactically through deactivation of language features,

SDL Profiles – Formal Semantics and Tool Support 213

and semantically by suppressing unreachable parts of the runtime environment
for a given profile, as identified by the SDL-profile tool.

In [15], the concept of program slicing is extended to Abstract State Machines.
For an expressive class of ASMs, an algorithm for the computation of a minimal
slice of an ASM, given a slicing criterion, is presented. While the complexity
of the algorithm is acceptable in the average case, the worst case complexity is
exponential. ASM slicing does not cover indeterminism, which usually occurs in
language definitions.

8 Conclusions and Outlook

In this paper, we have introduced the concept of SDL profiles as well-defined
subsets of SDL, leading to smaller, more understandable language definitions.
Tool support can be based on these profiles, leading to faster tool development
and less expensive tools. Based on the smaller language definitions, code opti-
misations can be performed when generating code from a specification. Deriving
the formal semantics of SDL profiles from a common formal semantics definition
allows us to compare the formal semantics of different SDL profiles, and to make
assertions about their consistency.

To achieve deterministic results, we have formalised the extraction of the for-
mal semantics for SDL profiles from the complete formal semantics of SDL-2000.
The extraction is based on recognising and removing dead ASM rules from the
formal semantics definition, starting from a reduced ASM signature. The re-
duction of the ASM signature is derived from the abstract syntax of removed
language modules. The extraction has been automated by the SDL-profile tool,
providing visible results. This tool has been used to create several language
profiles for SDL-2000, by removing SDL language modules from the formal se-
mantics definition, such as exceptions, timers, save and composite states. The
reduction achieved is significant. The formal semantics definition for SDL+ has
been reduced to less than 2300 lines of specification, and less than 1100 lines for
a small core of SDL, from about 3700 lines of the complete formal semantics.

Based on the formally defined process for the derivation of formal language
definitions for SDL profiles, we can define precise criteria for the consistency of
SDL profiles. Currently, some consistency criteria have to be verified manually.
Our future work will focus on improving the extraction process, so that further
criteria can be checked automatically.

References

1. ITU Recommendation Z.100: Specification and Description Language. Geneva
(1999)

2. OMG Unified Modelling Language Specification: Version 2.0 (2003) www.omg.org.
3. Glässer, U., Gotzhein, R., Prinz, A.: The Formal Semantics of SDL-2000 - Status

and Perspectives. Computer Networks, Elsevier Sciences 42 (2003) pp. 343–358
4. Gurevich, Y.: Evolving Algebras 1993: Lipari Guide. In Börger, E., ed.: Specifica-

tion and Validation Methods. Oxford University Press (1995) 9–36

214 R. Grammes and R. Gotzhein

5. Gurevich, Y.: May 1997 draft of the ASM guide. Technical Report CSE-TR-336-97,
EECS Department, University of Michigan (1997)

6. SDL Task Force: SDL+ - The Simplest, Useful ’Enhanced SDL-Subset’ for the
Implementation and Testing of State Machines (2005) www.sdltaskforce.org.

7. Grammes, R.: Formal Operations for SDL Language Profiles. In Gotzhein, R.,
Reed, R., eds.: SAM 2006: Language Profiles - 5th International Workshop on
System Analysis and Modelling (SAM 2006), Kaiserslautern, Germany. Volume
4320 of LNCS., Springer (2006) pp.51–65

8. Fliege, I., Grammes, R., Weber, C.: ConTraST - A Configurable SDL Transpiler
And Runtime Environment. In Gotzhein, R., Reed, R., eds.: SAM 2006: Lan-
guage Profiles - 5th International Workshop on System Analysis and Modelling
(SAM 2006), Kaiserslautern, Germany. Volume 4320 of LNCS., Springer (2006)
pp.222–234

9. Grammes, R., Gotzhein, R.: SDL Profiles - Definition and Formal Extraction.
Technical Report 350/06, Department of Computer Science, University of Kaiser-
slautern (2006)

10. Glässer, U., Gotzhein, R., Prinz, A.: An Introduction To Abstract State Machines.
Technical Report 326/03, Department of Computer Science, University of Kaiser-
slautern (2003)

11. ITU Study Group 10: Draft Z.100 Annex F3 (11/00) (2000)
12. von Löwis, M., Piefel, M.: The Term Processor Kimwitu++. In Callaos, N.,

Harnandez-Encinas, L., Yetim, F., eds.: SCI 2002: The 6th World Multiconference
on Systemics, Cybernetics and Informatics, Orlando, USA (2002)

13. Prinz, A., von Löwis, M.: Generating a Compiler for SDL from the Formal Lan-
guage Definition. In Reed, R., Reed, J., eds.: SDL 2003: System Design. Volume
2708 of LNCS., Springer (2003) pp. 150–165

14. ITU Study Group 17: UML Profile for SDL. Draft Recommendation Z.109 (2005)
15. Nowack, A.: Slicing Abstract State Machines. In Zimmermann, W., Thalheim, B.,

eds.: Abstract State Machines 2004. Advances in Theory and Practice, Lutherstadt
Wittenberg, Germany. Volume 3052 of LNCS., Springer (2004) 186–201

Preliminary Design of BML: A Behavioral
Interface Specification Language for Java

Bytecode�

Lilian Burdy, Marieke Huisman1, and Mariela Pavlova2,��

1 INRIA Sophia Antipolis, France
2 Ludwig-Maximilians-Universität München, German

Abstract. We present the Bytecode Modeling Language (BML), the
Java bytecode cousin of JML. BML allows the application developer
to specify the behaviour of an application in the form of annotations,
directly at the level of the bytecode. An extension of the class file format
is defined to store the specification directly with the bytecode. This is
a first step towards the development of a platform for Proof Carrying
Code, where applications come together with their specification and a
proof of correctness. BML is designed to be closely related with JML. In
particular, JML specifications can be compiled into BML specifications.
We briefly discuss the tools that are currently being developed for BML,
and that will result in a tool set where an application can be validated
throughout its development, both at source code and at bytecode level.

1 Introduction

The use of formal methods to show conformance of an implementation w.r.t. a
specification has become an accepted technique for the development of security-
critical applications. Various tools exist that allow to specify and validate com-
plex functional or security properties, using different techniques such as runtime
assertion checking, testing and verification condition generation. However, often
these techniques are restricted to source code level programs, while for many ap-
plications, and in particular for mobile code, one needs to be able to also specify
and verify the executable (or interpreted) code.

Different possible reasons for this exist: the executable code may not be ac-
companied by its (specified) source, or one simply does not trust the compiler.
And in an attempt to avoid all possible security threats, sometimes security-
critical applications are directly developed at the executable level. Thus, it is
essential to have the means to specify and to verify an application directly at
this level, without the use of a compiler, and both specification and verification
techniques should be tailored directly to the particularities of executable code.
� This work is partially funded by the IST programme of the European Commis-

sion, under the IST-2003-507894 Inspired project and the IST-2005-015905 MOBIUS
project.

�� Research done while at INRIA Sophia Antipolis.

M.B. Dwyer and A. Lopes (Eds.): FASE 2007, LNCS 4422, pp. 215–229, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

216 L. Burdy, M. Huisman, and M. Pavlova

Moreover, in order to capture all relevant security requirements, the specification
language used should be expressive enough for this.

Proof Carrying Code (PCC) is a typical example where the need to specify
and verify executable code directly is imperative, in particular when one wishes
to capture complex security policies that cannot be checked with a type checker.
PCC is a possible solution to support the secure downloading of applications on
a mobile device. The executable code of an application comes together with a
specification, and the necessary evidence from which the code client can easily
establish that the application respects its specification. In such a scenario, the
code producer, who has to produce a correctness proof, will often prefer to do the
verification at source code level, and then compile the specification and the proof
into the level of executable code. Realising a platform to support this scenario
is one of the goals of the MOBIUS project (see http://mobius.inria.fr).

This paper describes the low-level specification language that we propose to
specify the security requirements for mobile device applications. Since the most
common execution framework for mobile devices is the J2ME platform, our
language is tailored to Java bytecode, and thus to the verification of unstructured
code. To be able to translate source code level specifications into bytecode level
specifications, our specification language is also designed to be closely related to
the Java Modeling Language (JML) (see http://www.jmlspecs.org).

Over the last few years, JML has become the de facto specification language
for Java source code programs. Different tools exist that allow to validate, verify
or generate JML specifications (see [9] for an overview). Several case studies have
demonstrated that JML can be used to specify and improve realistic industrial
examples (see e.g. [8]). One of the reasons for its success is that JML uses a
Java-like syntax. Specifications are written using preconditions, postcondition,
class invariants and other annotations, where the different predicates are side-
effect-free Java expressions, extended with specification-specific keywords (e.g.
logical quantifiers and a keyword to refer to the return value of a method). Other
important factors for the success of JML are its expressiveness and flexibility,
and its ability to characterise typical security requirements.

Therefore, we define a variation of JML especially tailored to bytecode, called
BML, short for Bytecode Modeling Language. BML supports the most important
features of JML. Thus, we can express functional properties of Java bytecode
programs in the form of e.g. pre- and postconditions, class and object invariants,
and assertions for particular program points like loop invariants. Because of the
close connection with JML, JML source code level specifications can be compiled
into BML bytecode level specifications without too much difficulty, basically by
compiling the source code predicates into bytecode predicates. This allows to
do development and verification at source code level, while still being able to
ship bytecode level proofs. To the best of our knowledge, no other specification
language with similar design goals exists for Java bytecode. Notice that, even
though the design of BML was motivated by the need to specify security require-
ments for mobile device applications, just as JML, BML is a general specification
language that can be used for different kinds of applications and analyses.

Preliminary Design of BML 217

Section 2 quickly summarises the relevant features of JML. Section 3 gives a
detailed account of BML, describing its syntax and semantics, while Section 4
proposes a format to store BML specifications in a class file. Section 5 discusses
the compilation from JML to BML, while Section 6 wraps up and discusses tool
support and related and future work.

2 A Short Overview of JML

This section gives a short introduction to JML, by means of an example. Through-
out the rest of this paper, we assume that the reader is familiar with JML, its
syntax and its semantics. For a detailed overview of JML we refer to its refer-
ence manual [15]. Where necessary, we refer to the appropriate sections of this
manual. A detailed overview of the tools which support JML can be found in [9].

To illustrate the different features of JML, Figure 1 shows an example class spec-
ification, defining the class Bill. It contains an abstract method round_cost, that
computes the cost of a particular round. The method produce_bill is supposed
to sum up the costs of the different rounds.

In order not to interfere with the standard Java compiler, JML specifications
are written as special comments (tagged with @). Method specifications contain

Fig. 1. Class Bill with JML annotations

218 L. Burdy, M. Huisman, and M. Pavlova

preconditions (keyword requires), postconditions (ensures) and frame con-
ditions (assignable). The latter specify which variables may be modified by a
method. In a method body, one can annotate all statements with an assert pred-
icate and loops also with invariants (loop_invariant), variants (decreases)
and loop frame conditions (loop_modifies). The latter is a non-standard ex-
tension of JML, introduced in [11], which we found useful to make program
verification more practical. One can also specify class invariants, i.e. properties
that should hold in all visible states of the execution, and constraints, describing
a relation that holds between any two pairs of consecutive visible states (where
visible states are the states in which a method is called or returned from).

The predicates in the different conditions are side-effect free Java boolean
expressions, extended with specification-specific keywords, such as \result, de-
noting the return value of a non-void method, and \old, indicating that an
expression should be evaluated in the pre-state of the method.

JML allows to declare special specification-only variables: logical variables
(with keyword model) and so-called ghost variables, that can be assigned to in
special set annotations.

In Figure 1, the specification for round_cost states that the result of the
method should be positive, but less than the number of the round. The specifi-
cation for produce_bill requires that we compute at least one round, and then
ensures an upper-bound on the outcome of the method. We use a loop invariant
and loop frame condition to prove the method body correct. Finally, the class
invariant specifies that the sum field is always positive.

3 The Bytecode Modeling Language

Basically, BML has the same syntax as JML with two exceptions:

1. specifications are not written directly in the program code, they are added
as special attributes to the bytecode; and

2. the grammar for expressions only allows bytecode expressions.

Syntax for BML predicates. Figure 2 displays the most interesting part of the
grammar for BML predicates, defining the syntax for primary expressions and
primary suffixes1. Primary expressions, followed by zero or more primary suf-
fixes, are the most basic form of expressions, formed by identifiers, bracketed
expressions etc.

Since only bytecode expressions can be used, all field names, class names
etc. are replaced by references to the constant pool (a number, preceded by the
symbol #), while registers are used to refer to local variables and parameters.
The register lv[0] of a non-static method always contains the implicit argument
this, the other registers contain the parameters and the local variables declared
inside a method body. Compilers often reuse local variable registers throughout
the execution of a single method. Thus, when e.g. type checking an annotation
1 See http://www-sop.inria.fr/everest/BML for the full grammar of BML.

Preliminary Design of BML 219

predicate ::= . . .

unary-expr-not-plus-minus ::= . . .
| primary-expr [primary-suffix]. . .

primary-suffix ::= . ident | ([expression-list]) | [expression]
primary-expr ::= #natural % reference in the constant pool

| lv[natural] % local variable
| bml-primary
| constant | super | true | false | this | null | (expression) | jml-primary

bml-primary ::= cntr % counter of the operand stack
| st(additive-expr) % stack expressions
| length(expression) % array length

Fig. 2. Fragment of grammar for BML predicates and specification expressions

containing a local variable, it has to be taken into account at which point in the
code the annotation is evaluated (but notice that this is not more complicated
than reusing the same local variable name in different block statements).

We can use the stack counter (cntr) and stack expressions (st(e), where e
is some arithmetic expression) to describe intermediate states of a computation.
These are not used in method specifications. We also add a special expression
length(a), denoting the length of array a. Since the source code expression
a.length is compiled into a special bytecode instruction arraylength, we also
need a special specification construct for this at bytecode level.

In Java source code, one can usually leave the receiver object this implicit.
But compilation into bytecode makes this object explicit, i.e. instructions such
as putfield always require that the receiver object is loaded on the operand
stack. In analogy with this, BML specifications require that the receiver object
is written explicitly in expressions (see Figure 3 below).

In JML, many special keywords are preceded by the symbol \, to ensure that
they will not clash with variable names. For BML, we do not have to worry about
this: all variable names are replaced by references to the constant pool or local
variable registers. Therefore, the new keywords are written without a special
preceding symbol. However, for convenience, we keep the symbol for keywords
that are also JML keywords.

At the moment, the use of pure methods is not part of the BML grammar,
as there is still ongoing research on the exact semantics of method calls used
in specifications. However, we believe that if the theoretical issues have been
settled, eventually any tool supporting BML should also support this2.

Class and method specifications. BML contains equivalent constructs for all spec-
ification constructs of JML Level 0 (see [15, §2.9]), which defines the features that
should be understood and checked by all JML tools. It also contains several con-
structs from JML level 1, that we find important to be able to write meaningful

2 In fact, we think that both at source code and at bytecode level, specifications will
benefit significantly from being allowed to use method calls in them.

220 L. Burdy, M. Huisman, and M. Pavlova

specifications for the example applications studied in the MOBIUS project, namely
static invariants; object and static constraints; and loop variants.

We choose to keep the notion of loop specification in BML, even though there
is no high level loop construct in bytecode. But to be able to prove termina-
tion, one needs to prove decrease of a loop variant, which makes the treatment
of loops different from the treatment of other statements. Also, experiences
with verification of realistic case studies have shown that it is beneficial to
know which variables may be modified by the code block that corresponds
to the loop. For this, we use the special clause loop_modifies. This allows
to write concise specifications, and to efficiently generate proof obligations using
a weakest precondition calculus. Moreover by keeping the notion of loop spec-
ification explicit in BML, we keep the correspondence with JML specifications
more direct.

As mentioned above, specifications are stored as special attributes in the class
file. This means that every class contains a table with invariant and constraint
annotations, while each method has extra attributes containing its specifica-
tions. Finally, the code for the method body is annotated with local annotation
tables for the assert annotations and the loop specifications. Section 4 defines
the precise format of these attributes.

Since the bytecode and BML specifications are two separate entities, they
should be parsed independently. Concretely this means that the grammar of
BML is similar to the grammar of type specifications, method specifications and
data groups of JML [15, §A.5, A.6, A.7], restricted to the constructs in JML
level 0, plus the constructs of JML level 1 mentioned, but with the changes to
the grammar for predicates and specification expressions, as mentioned above.

An example BML specification. To show a typical BML specification, Figure 3
presents the BML version of the JML specification of method produce_bill
in Figure 1. Notice that the field sum has been assigned the number 24 in the
constant pool, and that it is always explicitly qualified with lv[0] (denoting
this). Further, lv[1] denotes the parameter n, while lv[2] denotes the local
variable i.

The class invariant gives rise to the following BML specification (stored in the
class file as a special user-specific attribute, as explained below):

invariant: #24 >= 0

This expression is not qualified with lv[0], as it is implicitly quantified over all
objects that are an instance of a subclass of class Bill (cf. the JML semantics [15,
§8.2]).

Structural and typing constraints for BML specifications. BML specifications
have to respect several structural and typing constraints, similar to the struc-
tural and typing constraints that the bytecode verifier imposes over the class file
format. Examples of typing constraints that a BML specification must respect
are the following:

Preliminary Design of BML 221

{| requires lv[1] > 0
ensures lv[0].#24 <= \old(lv[0].#24) + lv[1] * (lv[1] + 1) / 2 |}

0 iconst_1
1 istore_2
2 goto 22
5 aload_0
6 aload_0
7 getfield #24 <Bill.sum>
10 aload_0
11 iload_2
12 invokevirtual #26 <Bill.round_cost>
15 iadd
16 putfield #24 <Bill.sum>
19 iinc 2 by 1
loop_invariant 0 <= lv[2] && 0 <= lv[0].#24 && lv[2] <= lv[1] + 1 &&

lv[0].#24 <= \old(lv[0].#24) + (lv[2] - 1) * lv[2]/2
entry loop:
22 iload_2
23 iload_1
24 if_icmple 5
27 iconst_1
28 ireturn
29 astore_3
30 iconst_0
31 ireturn

Fig. 3. Bytecode + BML specification for method produce_bill in class Bill

– field access expression e.ident is well-typed only if e is of a subtype of the
class where the field described by the constant pool element at index ident
is declared;

– array access expression e1[e2] is well-typed only if e1 is of array type and e2
is of integer type; and

– predicate e1<:e2 is well-typed only if the expressions e1 and e2 are of type
java.lang.Class (which is the same as the JML type \TYPE).

Examples of structural constraints that a BML specification must respect are
the following:

– all references to the constant pool must be to an entry of the appropriate
type; for example, for field access expression e.ident, ident must reference a
field in the constant pool; while for expression \type(ident), ident must be
a reference to a constant class in the constant pool;

– every ident in a BML specification must be a correct index in the constant
pool; and

– if the expression lv[i] appears in a BML method specification, i must be a
valid index in the method’s local variables table.

These checks are best implemented as an extension of the bytecode verifier.

222 L. Burdy, M. Huisman, and M. Pavlova

Semantics of BML expressions. The semantics of BML specifications follows
the semantics of JML specifications [15]. But, just as a JML specification can be
mapped into a more fundamental Hoare triple specification, we can also define
a semantics for BML in terms of a basic logic for Java bytecode, namely the
so-called MOBIUS base logic. This logic will be the core of the PCC platform
developed within the project. This logic (see [7] for an earlier version, without
exceptions) has been proven sound in Coq w.r.t. a formalisation of the virtual
machine. On top of this, a direct verification condition generator has been proven
sound, also in Coq. And, as a first step towards efficient tool development, a
translation of bytecode into guarded commands has been defined and proven
correct, w.r.t. verification condition generation [16].

Defining the mapping of BML specifications into this MOBIUS base logic is
defined in two steps. First the evaluation of predicates is defined over the program
state (i.e. over the heap, store and operand stack), and second the complete BML
specifications are translated into judgements of the MOBIUS base logic. Notice
that this embedding allows to use the verification condition generator for the
MOBIUS base logic also for BML specifications.

Judgements in the MOBIUS base logic are of the form G, Q � {A} pc {B} (I),
where G is a proof context, and Q the local annotation table, i.e. the table that
associates assert annotations with particular instructions. Further, A is a (local)
precondition, relating the state at label pc with the initial state, while B is
a (local) postcondition, relating the initial, current and final state, and I is a
(local) invariant, i.e a predicate that is supposed to hold throughout execution
of the current method.

Mapping class specifications (invariants and constraints) and method specifi-
cations into the MOBIUS base logic is straightforward. Since the MOBIUS base
logic only has one postcondition, the normal and exceptional postconditions are
combined into a single postcondition, specifying with a case distinction which
conditions should hold if the state is normal or exceptional, respectively. Frame
conditions are also added to the postconditions, specifying explicitly which vari-
ables are allowed to be changed. Since predicates in the MOBIUS base logic
specify properties over the whole heap, this can be expressed directly: all loca-
tions that are not mentioned in the frame condition of the method (evaluated
in the pre-state of the method) should be unchanged. Methods with multiple
specifications are translated only after desugaring them into a single method
specification cf. [20].

Assert and set statements are inserted directly in the local annotation table3.
However, for loop specifications some manipulations are necessary to produce
the appropriate assert annotations, due to the unstructured nature of bytecode.
The loop invariants can be added directly to the local annotation table, but
loop variants and loop frame conditions first are transformed into a sequence
of assert and set annotations (after introducing appropriate ghost variables).

3 In fact, at the moment, the MOBIUS base logic does not support ghost variables;
but these will be added in the near future.

Preliminary Design of BML 223

This transformation is done at the level of BML, after which we can add the
annotations to the local annotation table.

The transformation of the loop variant basically proceeds as follows. Let
variant be the expression declared in the decreases clause. We declare ghost
variables loop_init (initially set to true) and loop_variant (whose initialisa-
tion is not essential). If l is the program point where we enter the loop, then at
that point we add an assertion

followed by:

//@ set loop_init = false; set loop_variant = variant;

This ensures that every time the loop entry point l is reached again, the decrease
of the loop variant is checked. Only a path that goes through the loop can set
loop_init to false.

For transforming loop frame conditions, we use again that in the MOBIUS
base logic we can express properties of the heap. We make a transformation into
a sequence of assert and set statements, declaring ghost variables to remember
the old heap and all locations mentioned in the loop frame condition, and a
ghost variable loop_init as above. Then we assert at the entry point of the
heap that if loop_init does not hold, any location that is not mentioned in
the loop frame condition should remain unchanged. Notice that this assertion
cannot be directly expressed in BML, but it can be expressed in the MOBIUS
base logic. Finally, in the MOBIUS base logic we add appropriate ghost variable
updates to remember the old heap and the locations of the loop frame condition
when the loop was first entered.

4 Encoding BML Specifications in the Class File Format

To store BML specifications together with the bytecode it specifies, we encode
them in the class file format. Recall that a class file contains all the information
related to a single class or interface, e.g. its name, which interfaces it imple-
ments, its super class and the methods and fields it declares. The Java Virtual
Machine Specification [17] prescribes the mandatory elements of the class file:
the constant pool, the field information and the method information. The con-
stant pool is used to construct the runtime constant pool upon class or interface
creation. This will serve for loading, linking and resolution of references used in
the class. The JVM specification allows to add user-specific information to the
class file ([17, §4.7.1]) as special user-specific attributes. We store BML specifi-
cations in such user-specific attributes, in a compiler-independent format4. To
ensure that the augmented class files are executable by any implementation of
the JVM, the user-specific attributes cannot be inserted in the list with bytecode
4 Another possibility would be to use metadata to encode the specifications, but this

is only supported in Java 1.5, and it is (currently) not directly compatible with JML.

224 L. Burdy, M. Huisman, and M. Pavlova

Fig. 4. Attributes for ghost field declarations and method specifications

instructions. Instead BML annotations are stored separately from the method
body, and where necessary the annotations contain the index of the instruction
that they specify. The use of special attributes ensures that the presence of BML
annotations does not have any impact on the application’s performance, i.e., the
augmented class file should not slow down loading or normal execution of the
application. requirement is important for mobile.

For each class, we add the following information to the class file:

– a second constant pool which contains constant references for the BML spec-
ification expressions;

– an attribute with the ghost fields used in the specification;
– an attribute with the model fields used in the specification;
– an attribute with the class invariants (both static and object); and
– an attribute with the constraints (both static and object).

Apart from the second constant pool, all extra class attributes basically contain
the name of the attribute, the number of elements it contains, and a list with
the actual elements.

If a model or a ghost field is dereferenced in the specification, then a
constantFieldRef is added to the second constant pool as the Java compiler
does for any dereferenced Java field in the original constant pool of the class.
Note that in this way, the BML encoding will not affect the JVM performance. In
particular, if we would use the original constant pool for storing constants orig-
inating from specifications, the search time in the original constant pool might
degrade significantly (especially for a large specification).

The left-hand column of Figure 4 shows the format of the ghost fields at-
tribute. This should be understood as follows: the name of the attribute is given
as an index into the constant pool. This constant pool entry will be representing
a string "Ghost_Field". Next we have the length of the attribute, which should
be 2 + 6*fields_count (the number of fields stored in the list). The fields

Preliminary Design of BML 225

table stores all ghost fields. For each field we store its access flags (e.g. public
or private), and the name index and descriptor index, both referring to the
constant pool. The first must be a string, representing the (unqualified) name of
the variable, the latter is a field descriptor, containing e.g. type information. The
tags u2 and u4 specifies the size of the attribute, 2 and 4 bytes, respectively.
The model field attribute is similar.

In a similar way, we define attributes for class invariants and constraints,
containing a list of invariants and constraints, respectively. These contain the
predicate, a tag whether the invariant (constraint) is defined over instances or
static, and appropriate visibility modifiers.

The JVM specification prescribes that the attribute with method information
at least contains the code of each method. We add attributes for the method
specification, set statements, assert statements, and loop specifications.

The attribute for lightweight behaviour specifications is shown in the right-
hand column of Figure 4 (heavyweight behaviour specifications are handled sim-
ilarly). The global requires formula is the disjunction of all preconditions in the
different specification cases of the method. For each specification case, we then
have a precondition (spec_requires_formula), a list of assignable expres-
sions, a postcondition (ensures_formula) and a list of exceptional postcondi-
tions (stored in the exsures attribute). If a clause is not explicitly specified, its
default value will be stored here.

The attributes for set and assert statements and loop specifications have the
same format as e.g. the ghost variable attribute: a length entry and a list of
elements. The elements storing set and assert statements do not only keep the
appropriate predicate or expression, but also an index to the appropriate point
in the bytecode. Similarly, the elements for loop specifications contain the loop
specification (invariant, variant and frame conditions), plus an index to the byte-
code instruction that corresponds to the entry of the loop. If the specification
does not contain a loop variant, we indicate this, using a special tag for the
decreases clause.

5 Compiling JML Specifications into BML Specifications

Since it is often easier and more intuitive to specify and verify at source code
level, we have defined a compiler from JML to BML: JML2BML. BML is designed
to be very close to JML, so the correspondence between the original and the
compiled specification is straightforward. Notice that in principle, the same can
be done for the proofs, i.e. a source code level proof can be compiled into a
bytecode level proof. It is future work to define this in full detail, but some work
in this direction has already been done [6].

The JML specification is compiled separately from the Java source code. In
fact, JML2BML takes as input an annotated Java source file and the Java class
file produced by a non-optimising compiler with the debug flag set.

From the debug information, we use in particular the Line_ Number_Table
and the Local_Variable_Table attributes. The presence of these attributes
is optional [17], but almost all standard non-optimising compilers can generate

226 L. Burdy, M. Huisman, and M. Pavlova

them. The Line_Number_Table links line numbers in the Java source code
with the Java bytecode instructions. The Local_Variable_Table describes
the local variables that appear in a method.

To compile loop invariants appropriately, the control flow graph corresponding
to the list of bytecode instructions resulting from the compilation of a method
body must be a reducible control flow graph, i.e. every cycle in the graph must
have exactly one entry point (see [1]). Note that this is not a serious restriction;
all non-optimising Java compilers produce reducible control flow graphs and in
practice even most hand-written bytecode is reducible.

The compilation from JML specifications into BML is defined in several steps.
As mentioned above, we assume that the Java source code has been compiled
with the debug flag set, and that we have access to the generated class file.

Compilation of ghost and model field declarations. Ghost and model vari-
ables declared in the specification are compiled into the special class at-
tributes that contain all ghost variable and model variable declarations.

Linking and resolving of source data structures. The JML specification
is transformed into an intermediate format, where the identifiers are resolved
to their corresponding data structures in the class file. The Java and JML
source identifiers are linked to their identifiers on bytecode level, i.e. the
corresponding indexes either from the second constant pool or from the Lo-
cal_Variable_Table attribute. This is similar to the linking and resolving
stage of the Java source code compiler.

Locating instructions for annotation statements. Annotation statements,
like loop specifications and asserts are associated with the appropriate point
in the bytecode program, using the Line_Number_Table attribute.

A problem is that a source line may correspond to more than one instruc-
tion in the Line_Number_Table. This makes it complicated to identify
the exact loop entry instruction in the bytecode, and thus to know to which
instruction the compiled loop specification should be associated. To solve
this, we use the following heuristics: if the control flow graph of the byte-
code is reducible and we search from an index in the Line_Number_
Table that corresponds to the first line of a source loop, then the first loop
entry instruction found will be the loop entry corresponding to this source
loop. We do not have a formal correctness proof for this algorithm, because
it depends on the particular implementation of the compiler, but experi-
ments show that the heuristic works successfully for Sun’s non-optimising
Java compiler.

Compilation of JML predicates. JML predicates are Java boolean expres-
sions. However, the JVM does not provide direct support for several integral
types, such as byte, short, char, or for booleans. Instead, they are encoded
as integers. Therefore, the compiler wraps up the boolean expressions in the
JML specification by a conditional function, returning 1 if the predicate is
true, 0 otherwise.

Generation of user-specific class attributes. Finally, the complete specifi-
cation is compiled into appropriate user-specific attributes, using the format
defined in the previous section.

Preliminary Design of BML 227

Java + JML

Bytecode +

proofguarded

Javac

JM
L2B

M
L

BML

VCGen
obligationscommands

provers certificates

Fig. 5. Overview of MOBIUS tool set

6 Conclusions and Related Work

This paper presents the Bytecode Modeling Language (BML). BML allows one
to specify and verify an application directly at the level of bytecode. Its syn-
tax and semantics are directly inspired by the source code level specification
language JML. The possibility to reason direct at the level of bytecode, with-
out relying on a compiler, is of major importance for guaranteeing the security
of applications (for example in a context of mobile code, where some applica-
tions are written in bytecode directly, to avoid security problems related with
compilation). However, to make such verifications tractable, it is important that
the specification language is intuitive and provides a sufficient degree of ab-
straction, without the need to talk too much about the internal structure of
the state (heap, store etc.). BML does exactly this: it is designed to be close
to the source code level specification language JML and provides a high level
of abstraction. It is designed for program verification, and its semantics sup-
ports the development of a verification condition generator for unstructured
code. Moreover, because of its close connection with JML, it is not too com-
plicated to compile source code level specification into bytecode level specifica-
tions. The BML language as we have defined it now, corresponds roughly to
JML level 0, i.e. that part of JML whose semantics is relatively well understood.
However, more advanced constructs of JML can be easily added to BML, if
required.

Tool support. As part of the MOBIUS project, we plan to develop a program
verification tool set that supports both JML and BML. Figure 5 outlines the
general architecture of this tool set. Thus, both Java/JML and bytecode/BML
can be used as input application. Annotated programs are translated into a
guarded command format, for which an appropriate verification condition gen-
erator is used to generate proof obligations that can be discharged with a the-
orem prover (either automatic or interactive). To support the PCC platform,
the provers will be instrumented to produce certificates. In addition, source
code applications annotated with JML can be compiled into bytecode annotated
with BML.

The development of the JML subcomponent of the tool set will be based
on experiences with ESC/Java [13] and JACK [11]. Several tools and algorithms

228 L. Burdy, M. Huisman, and M. Pavlova

(notably the compiler and the verification condition generator) for BML have al-
ready been implemented, see [10,19], but more work is needed to cover the whole
language. Moreover, to make the tool set usable in practice, we will also need a
tool to inspect and write BML specifications directly, and a run-time checker for
BML specifications. The latter can be implemented by a code transformation,
inserting explicit run-time checks in the bytecode, or by extending the virtual
machine to take the user-specific attributes with specifications into account. It
is also important to have tool support for checking the structural and typing
constraints for BML specifications. Such a tool can be built as an extension the
Java bytecode verifier.

Our initial experiments with compilation of specifications has shown that
there exists indeed a correspondence between the proof obligations generated at
source and at bytecode level, modulo differences in elimination of trivial goals,
handling of boolean expressions, and the naming convention of generated vari-
ables [19]. Moreover, when the proofs are done with the Coq prover, different
names are generated for hypotheses at source code and bytecode level. It is future
work to clean up the compilation, so there is a one-to-one correspondence.

Related work. The interest in specification and verification of bytecode applica-
tions is quite recent, and not too much work has been done in that direction.
Several logics have been developed to reason about bytecode, e.g. by Bannwart
& Müller [4] and within the MRG project [3]. However, in this work the main
focus was the development of a sound proof system, while the focus of BML
is to write understandable specifications for bytecode. JVer is a tool to verify
annotated bytecode [12]. However, as specification language they use a subset of
JML, i.e. a source code level specification language.

The development of BML is clearly inspired by the development of the JML
specification language [15]. Both JML and BML follow the Design by Contract
principle introduced first in Eiffel [18]. The Boogie project [5] introduces in
similarly the Design by Contract principles into the C# programming language,
both at source code level and for CIL, the .NET intermediate language. The
possibility to check a property at run-time, using the assert construct, has
been long adopted in the C programming language and recently also in Java
(Java 1.5, see [14, §14.10]).

Finally, we should mention the Extended Virtual Platform project5. This
project aims at developing a framework that allows to compile JML annotations,
to allow run-time checking [2]. However, in contrast to our work, they do not
intend to do static verification of bytecode programs. Moreover, their platform
takes JML-annotated source code files as starting point, so it is not possible to
annotate bytecode applications directly.

Acknowledgements. We thank Lennart Beringer and Olha Shkaravska for
discussions about the semantics of BML.

5 See http://www.cs.usm.maine.edu/~mroyer/xvp/.

http://www.cs.usm.maine.edu/~mroyer/xvp/

Preliminary Design of BML 229

References

1. A.V. Aho, R. Sethi, and J.D. Ullman. Compilers: Principles, Techniques, and
Tools. Addison-Wesley, 1986.

2. S. Alagić and M. Royer. Next generation of virtual platforms. Article in odbms.org,
2005. Available from http://odbms.org/about_contributors_alagic.html.

3. D. Aspinall, L. Beringer, M. Hofmann, H.-W. Loidl, and A. Momigliano. A program
logic for resource verification. In K. Slind, A. Bunker, and G. Gopalakrishnan,
editors, Theorem Proving in Higher Order Logics (TPHOLs’04), volume 3223 of
LNCS, pages 34–49. Springer, 2004.

4. F.Y. Bannwart and P. Müller. A logic for bytecode. In F. Spoto, editor, Bytecode
Semantics, Verification, Analysis and Transformation (BYTECODE), volume 141
of ENTCS, pages 255–273. Elsevier, 2005.

5. M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and K.R.M. Leino. Boogie:
A modular reusable verifier for object-oriented programs. In Formal Methods for
Components and Objects (FMCO ’05), LNCS. Springer, 2005.

6. G. Barthe, T. Rezk, and A. Saabas. Proof obligations preserving compilation.
In R. Gorrieri, F. Martinelli, P. Ryan, and S. Schneider, editors, Proceedings of
FAST’05, volume 3866 of LNCS, pages 112–126. Springer, 2005.

7. L. Beringer and M. Hofmann. A bytecode logic for JML and types. In ASIAN
Symposium on Programming Languages and Systems (APLAS 2006), 2006.

8. C. Breunesse, N. Cataño, M. Huisman, and B. Jacobs. Formal methods for smart
cards: an experience report. Science of Computer Programming, 55:53–80, 2005.

9. L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry, G.T. Leavens, K.R.M. Leino,
and E. Poll. An overview of JML tools and applications. STTT, 7(3), 2005.

10. L. Burdy and M. Pavlova. Java bytecode specification and verification. In L.M.
Liebrock, editor, proceedings of SAC’06. ACM, 2006.

11. L. Burdy, A. Requet, and J.-L. Lanet. Java Applet Correctness: a Developer-
Oriented Approach. In Formal Methods (FME’03), number 2805 in LNCS, pages
422–439. Springer, 2003.

12. A. Chander, D. Espinosa, N. Islam, P. Lee, and G. Necula. JVer: A Java Verifier.
In Proceedings of the Conference on Computer Aided Verification (CAV’05), 2005.

13. D. Cok and J.R. Kiniry. ESC/Java2: Uniting ESC/Java and JML. In G. Barthe,
L. Burdy, M. Huisman, J.-L. Lanet, and T. Muntean, editors, CASSIS, volume
3362 of LNCS, pages 108–128. Springer, 2004.

14. J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language Specification,
Third Edition. Sun Microsystems, Inc., 2005.

15. G.T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby, D. Cok, P. Müller,
and J. Kiniry. JML reference manual. http://www.cs.iastate.edu/~leavens/
JML/jmlrefman/jmlrefman_toc.html, 2005.

16. H. Lehner and P. Müller. Formal translation of bytecode into BoogiePL, 2007.
17. T. Lindholm and F. Yellin. The JavaTM Virtual Machine Specification. Second

Edition. Sun Microsystems, Inc., 1999.
18. B. Meyer. Object-Oriented Software Construction. Prentice Hall, 2nd rev. edition,

1997.
19. M. Pavlova. Specification and verification of Java bytecode. PhD thesis, Université

de Nice Sophia-Antipolis, 200x.
20. A.D. Raghavan and G.T. Leavens. Desugaring JML method specifications. Techni-

cal Report TR #00-03e, Department of Computer Science, Iowa State University,
2000. Current revision from May 2005.

A Service Composition Construct

to Support Iterative Development

Roy Grønmo1, Michael C. Jaeger2, and Andreas Wombacher3

1 SINTEF, P.O.Box 124 Blindern, N-0314 Oslo, Norway
Roy.Gronmo@sintef.no

2 Technische Universität Berlin, FG FLP, Sek. FR6-10, Franklinstrasse 28/29,
D-10587 Berlin, Germany
mcj@cs.tu-berlin.de

3 School of Computer and Communication Sciences, Ecole Polytechnique Federale de
Lausanne (EPFL), CH-1015 Lausanne, Switzerland

andreas.wombacher@epfl.ch

Abstract. Development of composed services requires a continues adap-
tation of the composed service to the changing environment of offered
services. Services may no longer be available or may change performance
characteristics, price, or quality of service criteria after they have been
selected and used in a composition. The replacement of such a service
requires a good understanding why this service got selected in the first
place. This is hard to accomplish as it is known from software main-
tenance. Therefore we propose an approach where the conceptual task
implemented by a selected service as well as the relationship between task
and selected service is explicated and maintained during the complete life
cycle of a composed service. This covers the design of the composition,
derivation of service search criteria, and the execution of the composed
service. The approach has been validated by an implementation in the
Service Composition Studio (SERCS) supporting the iterative develop-
ment of composed services.

1 Introduction

The vision of the service-oriented architecture (SOA) is that there are numer-
ous available services that can be reused by other parties when developing new
services. SOA involves searchable registries, such as UDDI for Web services, and
technological infrastructure regarding textual descriptions in XML for bindings
and protocols. Most attention has been given to Web services, but now also
grid and other service types are proposed to be part of the infrastructure. The
goal is that services may be easily found, that the services may be reused and
composed into new service compositions, and that the binding and execution of
these services work seamlessly. Numerous composition languages and tools have
been proposed (eg. BPEL [13], OWL-S [5]) to aid the user when building service
compositions. The important question which we will try to answer in this paper
is: What should be the main characteristics of a composition language in order
to support the iterative service composition development? When we investigate
this question we assume to some extent that the SOA visions have been properly

M.B. Dwyer and A. Lopes (Eds.): FASE 2007, LNCS 4422, pp. 230–244, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Service Composition Construct to Support Iterative Development 231

addressed and that there are lots of available, searchable services, possibly with
associated Quality-of-Service (QoS) offerings and semantic information.

We define a composition model to be a representation of a larger task into
smaller, more basic tasks. The decomposing is done to break a complex task into
smaller, more manageable tasks for which we hope to find existing services. If
existing services are found for each particular task, then we may solve the large
task by calling other, already defined services in the right order. In general,
there may be competing services from different providers and with different QoS
offerings, but with the same functionality. Thus, these services are alternative
candidates for the same task in our composition model.

It is absolutely crucial that the service composition development is iterative
since there are a number of factors which might change over time. The pool
of available services will change continuously. Some services will be withdrawn,
others will be introduced, and the available services may also change their QoS
even though their functionality remains intact. Some services may become tem-
porarily or permanently unavailable. Even if there are established contracts with
the service providers to ensure that a specific service is available and delivers the
QoS as promised, there may be competing services from other vendors with lower
price and better QoS offerings available since the time we previously searched
for services.

An example for such fast changing service offerings can be observed in emer-
gency situations. Here the situation changes fast and emergency teams request
context-specific services. Thus, the teams iteratively have to adapt the composed
service depending on the changing situation and context. In emergency situa-
tions a lot of resources of different locations and organizations are involved to
handle the situation. An example of such a situation has been the Oder flood
in Germany 1997. Certain parts of Germany along the river Oder were flooded
by the river and emergency teams from all over Germany were sent to support
the local authorities in fighting the flood [14]. A lot of resources were needed
to secure cities, houses, and embankments along the river. In particular, several
ten thousands of people have been involved in this situation. The emergency
teams were sent to different locations to help, and they were coordinated by a
hierarchic crisis management.

The emergency teams had to navigate to the different locations in an unknown
area with the constrained infrastructure imposed by the flood. Each team offers a
composed service as help to the crisis management, and in case the offer gets re-
jected they finish their operation. Otherwise, they are assigned a location for their
operation and have to find their way to that location. To illustrate the benefits of
our approach in such a scenario, a determineBestRoute service is investigated to
find the best route to the assigned location. The used determineBestRoute service
is applied iteratively, and dependent on the assigned location and the status of the
flood, different service providers should be selected. In particular, the emergency
team already working at the assigned location should provide the route service,
because they are most familiar with the local situation. We focus on the deter-
mineBestRoute service, and use it as a running example within this paper.

232 R. Grønmo, M.C. Jaeger, and A. Wombacher

This paper is organized as follows; Section 2 gives a motivation for the paper by
explaining how existing approaches fail to provide sufficient support for iterative
service composition development; Section 3 introduces our contribution, which is
a composition construct and its application within a composition language; Sec-
tion 4 shows how the composition construct enables search and discovery; Section
5 shows how the composition construct enables execution; Section 6 shortly de-
scribes the implementation in the SERCS tool; Section 7 discusses our approach;
and Section 8 summarizes with conclusions.

2 Related Work

This section describes some of the proposed composition languages and tools,
which we have placed in three main groups. We focus on how they support the
iterative development, and why they are not sufficient for iterative development.

First we define two key concepts, task and service, where one or both are present
(perhaps with different terms) in any service composition language. A task (also
commonly called goal) represents a requirement specification for what we want to
accomplish. When the tasks are sufficiently defined, they may be used to search for
existing services. A task will typically contain a syntactic interface represented by
an operation name, input and output parameters. We anticipate also the descrip-
tion of QoS requirements (throughput, availability or the time delay etc.) and of
the semantics of the service elements. The semantic information may include an
ontology reference for the inputs and outputs, classification specifications of the
service operation, preconditions and postconditions. A service, on the other hand,
will contain enough information so that an execution can bind to a unique service
and invoke it. If we look at Web services as an example, then the four values of
WSDL file, service name, port name and operation name will be enough informa-
tion to call the Web service. Implicitly, then the information of input and output
parameters are also given through the unique operation inside the WSDL file. The
necessary binding information will vary between service types.

Existing languages and tools can be placed in three groups related to the task
and service concepts: pure task-based, evolving from task-based to service-based,
and pure service-based. In the following we investigate these groups by identifying
languages or tools that belong to each group:

– Pure task-based. Pure task-based approaches provide only task constructs
as editable constructs to the user. These approaches may have an equivalent
to the service construct, but the services will be automatically selected and ex-
ecuted, and the user cannot operate at the service level. Peer’s [11] PDDL tool
and Ponnekantis’ SWORD tool [12] represent two approaches for expressing
overall composition tasks (termed goal and rule), and to automatically gen-
erate an executable service composition. Peer uses AI planning techniques on
goals defined in PDDL, while SWORD relies on a knowledge-base of axioms for
each Web service, and a rule-based expert system to generate the executable
composition. We fear that the approaches will not scale to handle the large

A Service Composition Construct to Support Iterative Development 233

number of available services in the open SOA environment, especially since
they deal with automatic decomposition. Tsalgatidou et al. suggest the USQL
language [16] to define requirements for single tasks in isolation. Pure task-
based approaches without automatic transition to execution, must always be
combined with a service-based execution approach in order to sufficiently sup-
port service composition.

– Evolving fromtask-based to service-based.The approaches in this group
start outwith modeling task-based composition that evolves to a service-based
composition when suitable services are identified for each task. The services
typically replace the tasks, and the tasks are no longer in active use at the
later development stage. Traverso and Pistore [15] present an approach to au-
tomatically transform OWL-S [5] process models into executable BPEL docu-
ments. An OWL-S process model represents a task-based composition model
for which Traverso and Pistore automatically find perfect matches among a set
of Web services (theoretically a global registry of services). Perfect matches
are then used to build a BPEL document which represents a service-based
composition model. Agarwal et al. [1] transform an abstract BPEL document
with service types (corresponding to tasks) into a concrete BPEL document
with bindings to service instances (corresponding to services). Agarwal et al.
allow for the process to be non-automatic with human intervention to select
appropriate services, negotiate service-level agreement etc., and to manually
define necessary transformations in order to use services. Cardoso and Sheth
[4] present a workflow language implemented in the METEOR tool where a
service template is a task and a service object is a service according to our def-
inition. The service template is first used to search for service objects, then the
developer selects a single service object to replace the service template.

All the approaches in this group typically startwith an original composition
graph consisting of nodes representing tasks. The graph is then transformed
into a graph with service nodes, where all the task nodes are replaced by service
nodes. The problem with this approach is that we have lost all the original
information about the tasks which were designed to search for services. The
service nodes lack the QoS requirements, and may also have less generalized
input and output parameters as well as possibly lacking the appropriate link to
semantic definitions. Thus, we are not able to sufficiently repeat the search for
services after some period of time. The iterative development in a continuously
changing Web environment is not supported properly.

– Pure service-based. Pure service-based approaches provide only service
constructs and have no equivalent to the task construct. The languages in this
group are focused on making executable service compositions. The pure
service-based group includes the graphical alternativesBPMN[3], JOpera [10],
KEPLER [2] and the textual alternatives BPEL [13] and USCL [10]. Pure
service-based approaches provide no help to define tasks and provide limited
or no help to search for services, which means that the iterative development
is not sufficiently supported.

234 R. Grønmo, M.C. Jaeger, and A. Wombacher

The first and last approaches may also be combined so that we use one tool for
maintaining a pure task-based composition and another tool for pure service-based
composition. The problem with this approach is that we now have two composi-
tions that are identical with respect to control flow and number of nodes. This
implies a need to maintain the control flow in two places, one for each of the two
compositions. Furthermore the relationship between a task and a service are only
implicitly defined by their positions in the two different compositions, such as when
we have two equivalent graph structures. When the task-based graph is used to
perform a service search, the results will have to be manually registered into the
corresponding service-based graph.The solution is likely to be error-proneand this
is not satisfactory.

All the existing tools can be placed in one of the three groups above which all
have their limitations. These limitations lead to requirements for a service compo-
sition language in order to sufficiently handle the iterative development:

– Service discovery. The composition can be used as a basis for search and
discovery of services to fulfill specific tasks. This means that the tasks need to
be associated with QoS requirements and semantic annotation.

– Service execution. The composition can be used as a basis for execution,
that means calling the part services in the correct order. The services need to
be associated with data and control flow including necessary data transfor-
mations.

– Composition using a single structure. The composition can be repre-
sented as a single structure to avoid the error-pronemaintenance issue ofmain-
taining several structures or graphs with duplication of control flow or other
information.

3 The Approach

Our contribution is based around a new service composition construct, which we
call the task-service construct. We illustrate the usefulness of the construct by in-
troducing a graphical composition language with task-service nodes as the basic
building block.

3.1 The Task-Service Construct

The task-service construct is used to bridge the task composition part with the
service composition part. The task-service construct can be viewed as a composite
node containing one task part with zero or more services. The task part can be
viewed as a requirement specification, and the services represent actual matches
to the task specification. Although there are many differences in the information
content of a task and a service (Section 2), we also see that the syntactic informa-
tion of inputs, outputs and operation name shall be represented for both a task
and a service. Still we register this information as separate objects. The reason is
that we allow for matching services that are not perfect matches. There may for
instance be minor differences with respect to the syntactic way of representing the

A Service Composition Construct to Support Iterative Development 235

input and output. Conceptually we may treat such services as matches, which we
expect will give more alternative services for the composition developer. The com-
position developer may still choose to only allow perfect matches today, or in the
future especially if the semantically described services become widespread. We will
discuss how to handle the mismatching part later by using data transformations.A
metamodel of the task-service construct is depicted in the left hand side of Figure 1.

Notice that we allow to register multiple services as matches of the task speci-
fication. There may be many competing services providing the same service with
different (or similar) QoS offerings. Having many alternatives is particularly use-
ful due to varying service performance and availability over time. This will make
the service composition less dependent on single services, as alternative services
may be used in place of temporarily unavailable ones. The control flow behavior
of the services associated to a task is related to the discriminator pattern identified
by Aalst et al. [17].

Considering the emergency scenario in Section 1, the determineBestRoute task
will be represented by a determineBestRoute task-service, where the task is to de-
termine thebest routewhich canbeprovidedbydifferent services like eg.mapquest,
map24, or a local authority of the emergency scenario. All services provide a route
service although QoS attributes as well as the actual input and output may differ
slightly. In particular, in the emergency case the local authority may provide the
best information within their territory, while routes to get initially to the specific
area of the emergency can be better provided by other service providers.

3.2 The Graphical Composition Language

The task-service construct is the basic building block of our composition language,
which has been implemented in the SERCS tool. In the following we present the
main concepts of the composition language depicted in the right part of Figure 1.
We use graphical symbols to represent the metamodel concepts and a dotted line
shows the relationship for three main concepts of the task-service construct. We
present the provided constructs in three groups.

Regular nodes. This group contains two node types: task-graph and
task-service (section 3.1). The task-graph node consists of a task part and an en-
tire subgraph. Thus we have a construct that can be repeated at arbitrary many
levels to create a recursive decomposition structure. A subgraph consists of two
or more nodes, which are either task-service or task-graph nodes. All leaf nodes are
task-service nodes.

Control flow. This group contains initialNode, finalNode, sequence, and-split,
and-join, xor-split, xor-join. These well-known basic control flow constructs have
quite logical names and a normal interpretation. An initialNode has exactly one
outgoing edge, and a finalNode has exactly one incoming edge. There is exactly
one initialNode and one finalNode for each graph. A finalNode within a subgraph
terminates only the flow of the subgraph and the flow continues in the enclosing
graph. The outermost finalNode terminates the whole composition execution. Fur-
thermore, a regular node must have exactly one incoming edge and one outgoing

236 R. Grønmo, M.C. Jaeger, and A. Wombacher

TaskTask

Services

And-Split / And-Join Xor-split / Xor-join sequence

InitialNode finalNode

task-service

R
egular
nodes

task-graph

inputParameter /
outputParameter

copyEdge

Graph

C
ontrol
flow

D
ata

flow

Task-service

Services

Service

1

InputTransf OutputTransf

ServiceOperation

1

1

0..1 0..1

0..*

Task

Graphical NotationMeta-Model Specification

Fig. 1. The composition language

edge. This means that all the control flow is handled explicitly by the control flow
constructs listed above. The proposed model represents a combination of struc-
tured flow models because each graph must have exactly one starting and one sin-
gle ending node, and arbitrary models because no restrictions on the combination
of control flow constructs are given [7].

Data flow. This group contains copyEdge, inputParameter, outputParameter
and dataTransformation. Any number of inputParameters and outputParameters
may be associated with the task parts of task-graph and task-service nodes, a ser-
vice in a task-service node, and with dataTransformation services. A parameter has
a name and a type which covers the syntactic definition and offers support for a
semantic description. Parameters cannot appear as standalone objects and the set
of inputParameters and the set of outputParameters (associated with an object) are
unordered. A copyEdge connects a source parameter to a target parameter, and
implies a deep copy. There may be an arbitrary number of outgoing copyEdges
from a parameter, but there may only be one incoming copyEdge to a parameter.
Furthermore these copyEdges may be connected between parameters at different
nesting levels, which means that there may be a copyEdge from a parameter to an-
other parameter within a subgraph. A data transformation has inputParameters
and outputParameters. Each service in a task-service node is associated with two
specialized data transformations: inputDataTransformation and outputDataTrans-
formation. The dataTransformations act as mediators between the task and its ser-
vices within a service-node. Data transformation techniques are a large matter on
its own which we do not have enough space to explore in this paper. We assume
that some kind of apparatus is available to do so. We also allow dataTransforma-
tions to be applied to inputParameters and outputParameters involving tasks only,
but this is not important for the scope of this paper.

Now that we have introduced a composition language, based upon the task-
service construct, we may take a closer look at the construct. We could require that
realizing services for a task (in the task-service construct) were perfect matches so
that the inputs and outputs corresponded one-to-one in both numbers, types and
semantics. We feel that this would be too rigid, and that we would exclude a num-
ber of relevant services with only minor data format mismatches. This could be so

A Service Composition Construct to Support Iterative Development 237

Transformationinput
(mapquest)

mapQuest

directions

1a

etuo
Rtse

Beni
mreted

end
city

1b 1c 2a 2b 2c

directions

start
street

start
city

end
street

end
city

1a 1b 1c 2a 2b 2c

Transformationinput
(map24)

map24

directions

start
street

start
city

end
street

end
city

rsrc0 rsrc1

rsrc0 rsrc1

local
authority
directions

start
street

start
city

end
street

end
city

start
street

start
city

end
street

Fig. 2. A task-service example

simple that two different services have the same logical data input, but their syn-
tactic XML tags are different. When we allow such mismatches to occur we need
to use the transformation service on input and on output to build a bridge between
a task and its service.

To illustrate the introduced concepts, we apply the definition on the scenario in
Section 1. The task determineBestRoute (see Figure 2) should be operated on the
input parameters of the starting street and city as well as the destination street
and city. The output of the task is a route description. The determineBestRoute
task can be implemented by services from mapquest, map24, or a local authority.
Since these services are right now not directly provided as Web services we use the
corresponding input and output parameters of the Web forms of the corresponding
sites. All services have a single output parameter containing the route description.
However, the input parameters required by the

– mapquest are 1a(2a) for the street, 1b(2b) for the zip code, and 1c(2c) for the
city of the start and the destination respectively;

– map24 are rsrc0 and rsrc1 for the start and destination address respectively
including all information;

– local authority are street and city of start and destination respectively.

As a consequence, a transformation service for mapquest and map24 is needed,
while direct copyEdges can be used for the local authority. Figure 2 illustrates the
scenario, where the different alternative services are depicted next to each other
in the figure. Be aware that this is not a correct task-service construct since there
are several initial and final nodes. However, we decided to depict it in such a way
to represent the set of services implementing a particular task. In addition, the
example covers several principles of our approachwhile others like e.g. graphs could
not be considered due to the space limitations.

238 R. Grønmo, M.C. Jaeger, and A. Wombacher

4 Using the Composition for Service Discovery

This section explains how the composition can be used to search for services. The
main idea is that we look at the task parts only and ignore the service parts, be-
cause the task part contains all required information for the search. In our compo-
sition language there are only two kinds of regular nodes available, task-graph and
task-service. Therefore, in the transformation to query documents we introduce
a plain task node, which contains a single task node only. Plain task nodes are
only used in transformed composition models and will never appear in an editable
composition graph. We propose to perform two sequential steps which separate
processing requirements from processing preference criteria:

1. Search. At first, a search is performed for each task-service node. The task part
is transformed into a proper query denoting the requirements about the re-
quested service covering syntactic interface definitions, semantic descriptions,
and QoS constraints. How to actually represent such information in a query
language will differ for each application case. Currently, there is no de-facto
standard for such a query language. If the search does not identify suitable
services, either the requirements must be reconsidered or the required func-
tionality must be implemented.

2. Select. If more than one service is available that matches the requirements, a
sorted list is desired where one can start with the closest matches first. In addi-
tion, QoS preference criteria can be considered selection criteria, e.g. to select
the cheapest service. This step can include the negotiation and establishment
of a QoS contract with the providers of the candidate services. This step will
end with a chosen list of services.

After the appropriate services have been identified, the composition must be up-
dated. All the necessary binding details of the chosen services must be registered
within the service part of the corresponding task-service node for which we per-
formed the search.

5 Using the Composition for Execution

This section shows how the outermost task-graph node (representing the entire
composition) can be transformed into an executable document. In the transforma-
tion to an executable documentwe introduce the plain service node, which contains
a single, executable service operation only. Plain service nodes are only used in the
transformed composition models and will never appear in an editable composition
graph. We assume that at least one service is identified for each of the task-service
nodes. An algorithm comprised of two main steps are used to transform the graph
into a one-level graph (no subgraphs) with service nodes only, and no tasks (except
for the main composition itself which is a task-graph node).

Step 1: Replace task-service nodes by an explicit subgraph structure
(transitions labeled 1 in Figure 3). The task-service node defines an implicit struc-
ture which we will transform into an explicit structure (using our composition

A Service Composition Construct to Support Iterative Development 239

language) in this transformation step. We must assume that the necessary Input-
Transformation and the OutputTransformation specifications are defined already
and are associated with the service. If not, then the specification is only partial and
we cannot generate a fully executable document. (If the data transformations are
omitted, we assume that the service is a perfect match of the task, and the con-
trol flow becomes trivial.) The task-service node is replaced by a task-graph node,
where the task part remains the same and the subgraph is produced as described
in the following text. If there is a single service inside the task, then the following
sequentially ordered subgraph is produced: initialNode, InputTransformation, Ser-
viceNode, OutputTransformation, finalNode. If there is more than one service (S1
in Figure 3), then we introduce an and-split after the initialNode and an xor-join be-
fore the finalNode. There will be parallel branches in between with the sequentially
ordered triple InputTransformation, ServiceNode and OutputTransformation for
each service. Notice that we allow an and-split to be followed by an xor-join, mean-
ing that control-flow continues when the first parallel flow arrives and the other
flows, produced in the and-split, are terminated or ignored. The decision on exe-
cuting the alternative services in parallel has been made to achieve robustness of
the implemented services. This approach is applicable as long there is no cost asso-
ciated with the alternative services, otherwise this approach is far too expensive.
A more detailed discussion of robustness and its implications can be found in [6].

Step 2: Flattening subgraphs (transitions labeled 2 in Figure 3). This trans-
formation step can be applied to all task-graph nodes except the outermost node
representing the whole composition. We flatten a task-graph node by replacing it
with the entire subgraph (except the initialNode and its outgoing edge, and the
finalNode and its incoming edge) inserted into the parent graph. This is possible
since we only allow graphs with a single outgoing edge from the initial-Node, and
a single incoming edge to the finalNode. Notice that we also remove the task part
of the original task-graph node in the process. The removal of the task part will be
semantics-preserving with respect to the control and data flow. We do not show
a proof of the claim in this paper, but illustrate in Figure 4 that the task part is
redundant for the execution logics of task-service node. The input and output para-
meters of the task part are redundant since they are simply copied to and from the
transformation services on input and output. Thus we can detach the task part
and attach all its incoming and outgoing data flow (labeled df-in and df-out)
and control flow edges (labeled cf-in and cf-out) to the transformation services
instead.

We need to repeat steps one and two until there are no more task-graph nodes,
and no more task-service nodes left. It is trivial to see that this approach can be
supported by an algorithm that is guaranteed to terminate. The following obser-
vations should be sufficient to convince the reader; None of the two steps introduce
task-service nodes; The first step reduces the number of task-service nodes; The sec-
ond step reduces the number of task-graph nodes.

We have now produced a composition graph which is flattened, and that only
uses basic control and data flow constructs, data parameters and a service node
representing an executable service. These language concepts are supported by

240 R. Grønmo, M.C. Jaeger, and A. Wombacher

S1 S1

S2

S3

• G1 is a sequence of two
task-services nodes (S2,S3)

• S1 contains 2 services: S1A, S1B
• S2 contains 1 service: S2A
• S2A does not need any transformations
• S3 contains 1 service: S3A
• S3A does not need input transformation

S2

S3

G2

S2

S3 S3

2

1 2

2+1

2+1

G1

G2

T
TT

TT

S1A S1B

TT

TT

S1A S1B

TT

TT

S1A S1B

TT

TT

S1A S1B

S3A

S2A S2A

Composition
model

Executable
model

Plain
service node

Transformation
service node

T

Transitions

Fig. 3. Example: Transformation to an executable model

in1

Transformationinput

Transformationoutput

in2 inm

in1

...
in2 inm

out1
...out2 outn

out1 ...out2 outn

<Omitted the inner service part>

Transformationinput

Transformationoutput

in1 in2 inm

<Omitted the inner service part>

df-in2df-in1 df-inm

df-out2df-out1 df-outn

cf-in

cf-out

out1
...out2 outn

df-out2df-out1 df-outncf-out

df-in2df-in1 df-inm
cf-in

Fig. 4. Task parts are removed as part of the collapsing of subgraphs

most of the service composition languages and thus we believe that our compo-
sition language is transformable to most of these languages.

Figure 3 shows how a composition graph is transformed. The main task-graph
node representing the whole composition surrounds the first subgraph structure
and it is not shown in the figure. The first subgraph contains two regular nodes
to be executed in sequence: a task-service node with the service part named S1,
and a task-graph node with the subgraph named G1. Further details necessary to
carry out the transformation are given in the text box at the bottom of the fig-
ure. Seven transitions (The last four transitions in the figure are combined into
two) are needed to produce the final executable graph structure containing only
plain services (including transformation services) and common control-flow con-
structs. For each transition we mark by an adjacent number which of the two

A Service Composition Construct to Support Iterative Development 241

algorithm steps are used. The rightmost box shows the subgraph structure named
G2, which is produced as an intermediate step in step two of the example
transformation.

6 Implementation in SERCS

Our approach has been validated by implementing a tool called the Service
Composition Studio (SERCS, pronounced circus) with the service composition
language as its core. The design principle of the language is built around the
task-service construct presented in this paper. Furthermore it is based on UML 2
activity models [9] regarding both graphical layout and most of the core concepts.
The language canbe viewed as aUMLprofile in that there are several extensions for
QoS and semantic information as well as the enforcement of the task-service node
construct. SERCS is an Eclipse-based tool with a GNU Public License. The graph-
ical user interface of SERCS offers functionality to develop compositions, search
for composition-relevant services and run service compositions. Figure 5 shows a
model of determineBestRoute in the SERCS tool.

SERCS provides the ability to transform the task part of a task-service node in
SERCS into USQL documents [16], perform a call to the externally defined USQL
engine [16] to search for services, and to bring the found services back into the ser-
vice part of the corresponding task-service node. The transformation is defined by
XSLT with SERCS composition files as input and USQL documents as output. The
transformation definition follows the approach described in Section 4 of searches
for a single task in isolation, since this is the only alternative currently provided
by the USQL engine.

SERCS provides the ability to apply an XSLT-defined transformation from a
SERCS composition into a USCL document [10], and to perform a call to the ex-
ternally defined JOpera engine [10] which executes the composition. USCL has its
own sub composition construct which can be used to directly support the task-
graph node. Thus we skipped step two of the algorithm in Section 5.

We have introduced a new graphical tool since existing languages do not sup-
port the task-service construct. We could have extended existing tools, but then we
would not be able to enforce the use of the task-service construct. SERCS composi-
tions are independent of the actual query and execution language.Thus alternative
transformations could have been defined, such as a transformation from SERCS
compositions to BPEL as the target execution language.

A running service composition, to be used in emergency situations, has been
developed by the SERCS tool. A person at the emergency location uses a mo-
bile phone to call the emergency help desk. Based on the mobile phone position,
a number of steps is performed which finally delivers a map displaying the opti-
mal driving route to the closest available ambulance. This composition consists
of five task-graph nodes, fourteen task-service nodes, fifteen Web services, one
Grid service, one Peer-to-Peer service and a number of data transformation
services.

242 R. Grønmo, M.C. Jaeger, and A. Wombacher

Fig. 5. Screenshot of the example within the SERCS tool

7 Discussion

Section 4 and Section 5 show that the requirements (final part of Section 2) of
service discovery and service execution are satisfied by our composition language.
The requirement of a single structure is satisfied since the task-service construct
enables us to use a single graph for representing tasks and services.

A possible limitation with our approach is the manual decomposition. The com-
position developermanually proposes a decomposition which has a set of leaf tasks.
It may be the case that a leaf task, T1, cannot be realized by a single service but
that there are two services, S1 and S2, that can be executed in sequence to real-
ize the leaf task. In our approach there is no way to determine this automatically.
However, it may be that the search results for T1 returns S1 and/or S2 indicated to
be partial matches, and that these give the composition developer a clue to revise
T1 into a new subcomposition graph.

In our composition language we require that all services in a composition model
belong to a task. This may seem too rigid and bothersome for cases where we know
in advance exactly which service we want to use. The SERCS tool allows the user
to insert such a service directly into the composition and the tool will automati-
cally generate a task-service node with a task part based on the imported service.
This will result in a task which initially lacks QoS requirements. It may also lack
semantic descriptions if the imported service is not semantically described. We do
allow for tasks that lack QoS and even semantic requirements, because currently
the major part of service providers does not provice such description. It may even
be argued that it is more relevant to associate QoS requirements only with the out-
ermost task since the aggregated QoS is more interesting than how it distributes
to the individual parts.

The automatic task production based on an imported service leads naturally to
a question: Are the explicit tasks redundant since they could be automatically gen-
erated by a transformation tool whenever we want to search for services? Although
this may work fine for some composition examples, we think that this in general

A Service Composition Construct to Support Iterative Development 243

is not satisfactory. This is because the automatic deducible task may be a poor
task since it depends strongly on how well the service is described semantically. In
many cases the semantic information may be missing or it may be that its interface
is too specialized leading to missing matches of relevant services. In some cases it
will also be relevant with local QoS requirements. Consider a service composition
with several tasks of which one of them deals with a payment transaction. We may
want to force a local QoS restriction of good security and high encryption level
only to the payment service. Such local QoS requirements cannot be automatically
deduced from a service since a service in the best case only advertises its own QoS
offering.

The Web Service Modelling Ontology (WSMO) [8] contains description lan-
guages for tasks (Goals), services (Webservices) and a mapping (such as our Data-
Transformation) between task and service with the wgMediator. Up to our knowl-
edge there is however no tool that enforces the coupling between a WSMO task and
a service. Thus WSMO services may exist without a defined task, and there may
be tasks which are not aware of existing mappings to services. This is a limitation
for iterative service composition development.

The discussion of task-service right now focuses on stateless services, that is,
a service associated to a task represents a service with a single request-response
communication. Statefull services are maintaining an internal state and require
several request-response communications, which may require an extension of the
proposed approach on service discovery. We leave this to future work.

8 Conclusions and Future Work

Our contribution is a task-service construct which introduces a strong coupling be-
tween the definition of what we want to accomplish with how it can be accom-
plished by existing services. The task part defines the requirements for what we
want to accomplish, and the service part defines all the discovered services that are
capable of performing the task. When this task-service construct is the basic build-
ing block in a composition language, as within our SERCS tool, we achieve the ben-
efits of maintaining a single graph which can be used both for service discovery and
for executing service compositions. This benefit is crucial in an ever-changing SOA
environment. We advocate for an iterative composition development with regular
searches for newly introduced services.The service composition should take advan-
tage of these new services and strive to always find the most appropriate services
based on their QoS offerings.

Further research is needed to explore the effects of run-time search and selection
on performance. Important topics to investigate for such run-time handling include
trust, semantic precision and failure handling.

Acknowledgement. The work of Roy Grønmo has been partially supported by
the European Commission under the contracts IST-FP6-004559 (SODIUM) and
FP6-26514 (SWING).

244 R. Grønmo, M.C. Jaeger, and A. Wombacher

References

1. Agarwal et al. A service creation environment based on end to end composition of
Web services. In International conference on World Wide Web, 2005.

2. B. Ludäscher et al. Scientific Workflow Management and the Kepler System. Con-
currency and Computation: Practice & Experience, Special Issue on Scientific Work-
flows, 2005.

3. BPMI.org. Business Process Modeling Notation (BPMN) Version 1.0, May 2004.
4. J. Cardoso and A. P. Sheth. Semantic E-Workflow Composition. Journal of Intelli-

gent Information Systems, 21(3):191–225, 2003.
5. David L. Martin et al. Bringing Semantics to Web Services: The OWL-S Approach.

In Revised Selected Papers of the Intl Workshop Semantic Web Services and Web
Process Composition (SWSWPC’04), San Diego, California, USA, July 2004.

6. M. C. Jaeger and H. Ladner. A Model for the Aggregation of QoS in WS Compo-
sitions Involving Redundant Services. Journal of Digital Information Management,
4(1):44–49, March 2006.

7. B. Kiepuszewski, A. H. M. ter Hofstede, and C. Bussler. On Structured Workflow
Modelling. In Proceedings of the 12th International Conference on Advanced In-
formation Systems Engineering (CAiSE’00), volume 1789 of LNCS, pages 431–445,
Stockholm, Sweden, June 2000. Springer Press.

8. R. Lara, D. Roman, A. Polleres, and D. Fensel. A Conceptual Comparison of WSMO
and OWL-S. In Web Services, European Conference (ECOWS 2004), September
2004. Erfurt, Germany.

9. O. M. G. (OMG). UML 2.0 Superstructure Specification, OMG Adopted Specifica-
tion ptc/03-08-02, August 2003.

10. C. Pautasso and G. Alonso. The JOpera visual composition language. Journal of
Visual Languages and Computing (JVLC), 16(1-2):119–152, 2005.

11. J. Peer. A PDDL Based Tool for Automatic Web Service Composition. In Pro-
ceedings of the Second Intl Workshop on Principles and Practice of Semantic Web
Reasoning (PPSWR), St. Malo, France, September 2004.

12. S. R. Ponnekanti and A. Fox. SWORD: A Developer Toolkit for Web Service Compo-
sition. In Proc. of the Eleventh International World Wide Web Conference (WWW,
Honolulu, Hawaii, USA, 2002.

13. Satish Tatte (Editor). Business Process Execution Language for Web Services Ver-
sion 1.1, February 2005.

14. F. Schiersner. Fallstudien: Die Oder-Flut im Sommer 1997.
http://www.krisennavigator.de/kafa1-d.htm.

15. P. Traverso and M. Pistore. Automated Composition of Semantic Web Services
into Executable Processes. In The Semantic Web - ISWC 2004: Third International
Semantic Web Conference,Hiroshima, Hiroshima, Japan, November 2004.

16. A. Tsalgatidou, M. Pantazoglou, and G. Athanasopoulos. Specification of the Uni-
fied Service Query Language (USQL), Technical Report, June 2006.

17. W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski, and A. P. Barros.
Workflow patterns. Distributed and Parallel Databases, 14(1):5–51, 2003.

Correlation Patterns in Service-Oriented

Architectures

Alistair Barros1, Gero Decker2, Marlon Dumas3, and Franz Weber4

1 SAP Research Centre, Brisbane, Australia
alistair.barros@sap.com

2 Hasso-Plattner Institute, University of Potsdam, Germany
gero.decker@hpi.uni-potsdam.de

3 Queensland University of Technology, Brisbane, Australia
m.dumas@qut.edu.au

4 SAP AG, Walldorf, Germany
franz.weber@sap.com

Abstract. When a service engages in multiple interactions concurrently,
it is generally required to correlate incoming messages with messages
previously sent or received. Features to deal with this correlation re-
quirement have been incorporated into standards and tools for service
implementation, but the supported sets of features are ad hoc as there
is a lack of an overarching framework from which their expressiveness
can be evaluated. This paper introduces a set of patterns that provide
a basis for evaluating languages and protocols for service implementa-
tion in terms of their support for correlation. The proposed correlation
patterns are grounded in a formal model that views correlation mech-
anisms as means of grouping atomic message events into conversations
and processes. The paper also provides an evaluation of relevant stan-
dards in terms of the patterns, specifically WS-Addressing and BPEL,
and discusses how these standards have and could continue to evolve to
address a wider set of correlation scenarios.

1 Introduction

Contemporary distributed system architectures, in particular service-oriented
architectures, rely on the notion of message exchange as a basic communica-
tion primitive. A message exchange is an interaction between two actors (e.g.
services) composed of two events: a message send event occurring at one actor
and a message receive event at another actor. These events are generally typed
in order to capture their purpose and the structure of the data they convey.
Examples of event types are “Purchase Order”, “Purchase Order Response”,
“Cancel Order Request”, etc. Event types are described within structural in-
terfaces using an interface definition language such as WSDL [12]. Sometimes,
message exchanges are related to one another in simple ways. For example, a
message exchange corresponding to a request may be related to the message
exchange corresponding to the response to this request. Such simple relations

M.B. Dwyer and A. Lopes (Eds.): FASE 2007, LNCS 4422, pp. 245–259, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

246 A. Barros et al.

between message exchanges are described in the structural interface as well (e.g.
as a WSDL operation definition).

The above abstractions are sufficient to describe simple interactions such as
a weather information service that provides an operation to request the fore-
casted temperature for a given location and date. However, they are insufficient
to describe interactions between services that engage in long-running business
transactions such as those that arise in supply chain management, procurement
or logistics. In these contexts, message event types can be related in complex
manners. For example, following the receipt of a purchase order containing sev-
eral line items, an order management service may issue a number of stock avail-
ability requests to multiple warehouses, and by gathering the responses from the
warehouses (up to a timeout event), produce one or several responses for the cus-
tomer. Such services are referred to as conversational services as they engage in
multiple interrelated message exchanges for the purpose of fulfilling a goal. Con-
versational services are often related to (business) process execution, although
as we will see later, conversations and processes are orthogonal concepts.

The need to support the description, implementation and execution of con-
versational services is widely acknowledged. For example, enhancements to the
standard SOAP messaging format and protocol [12] for correlating messages have
been proposed in WS-Addressing [7]. However, WS-Addressing merely allows a
service to declare (at runtime) that a given message is a reply to a previous
message referred to by an identifier. This is only one specific type of relation
between interactions that has a manifestation only at runtime (i.e. it does not
operate at the level of event types) and fails to capture more complicated scenar-
ios where two message send (or receive) events are related not because one is a
reply to another (or is caused by another), but because there is a common event
that causes both. This is the case in the above example where stock availability
requests are caused by the same “purchase order” receive event.

Another upcoming standard, namely WS-BPEL [9], provides further support
for developing conversational services. In particular WS-BPEL supports the no-
tion of process instance: a set of related message send and receive events (among
other kinds of events). Events in WS-BPEL are grouped into process instances
through a mechanism known as instance routing, whereby a receive event that
does not start a new process instance is routed to an existing process instance
based on a common property between this event and a previously recorded send
or receive event. This property may be the fact that both messages are exchanged
in the context of the same HTTP connection, or based on a common identifier
found in the WS-Addressing headers of both events, or a common element or
combination of elements in the message body of both events. Thus, WS-BPEL
allows developers to express event types, which are related to WSDL operations,
and to relate events of these types to process instances. It also allows developers
to capture ordering constraints between events related to a process instance,
which ultimately correspond to causal dependencies (or causal independence).

Despite this limited support for message event correlation, there is curr-
ently no overarching framework capturing the kinds of event correlation that

Correlation Patterns in Service-Oriented Architectures 247

service-oriented architectures should support. As a result, different approaches
to event correlation are being incorporated into standards and products in the
field, and there is no clear picture of the event correlation requirements that
these standards and products should fulfill.

In this setting, this paper makes three complementary contributions: (i) a
unified conceptualization of the notions of conversation, process and correlation
in terms of message events (Section 2); (ii) a set of formally defined correla-
tion patterns that cover a spectrum of correlation scenarios in the context of
conversational services (Sections 3, 4 and 5); (iii) an evaluation of the degree
of support for these correlation patterns offered by relevant Web service stan-
dards (Section 6). Together, these contributions provide a foundation to guide
the design of languages and protocols for conversational services.

2 Classification Framework

When talking about correlation we mainly deal with three different concepts:
events, conversations and process instances. An event is an object that is record
of an activity in a system [11]. Events have attributes which describe the cor-
responding activity such as the time period, the performer or the location of
the activity. We assume that a type is assigned to each event. In the area of
service-oriented computing, where emphasis is placed on communication in a
distributed environment, the most important kinds of events include message
send and receipt events. In addition to these communication events that capture
the externally visible behavior of actors, we consider action events, which are
records of internal activities or internal faults within an actor, as well as timeout
events. A message send event is directly caused by an action event that produces
the message in question, while a message receipt event normally leads to (i.e.
causes) an action event that consumes the message in question. We postulate the
existence of a causal relation between communication events and action events.
In addition, we postulate the existence of a causal relation between send events
and their corresponding receipt events. Figure 1 illustrates these causal relations.

Fig. 1. Action and communication events Fig. 2. Framework for classifying
correlation patterns

248 A. Barros et al.

Events can be grouped in different ways, e.g. all events occurring at one partic-
ular actor can be grouped together. Since this work deals with event correlation
in conversational services, we consider two types of event grouping: conversations
and process instances. Conversations are groups of communication events occur-
ring at different actors that all correspond to achieving a certain goal. Boundaries
of conversations might be defined through interaction models (choreographies)
or might not be defined in advance but rather discovered a posteriori. Process in-
stances are groups of action events occurring at one actor. Boundaries of process
instances are determined by process models.

Figure 2 illustrates a framework for classifying correlation patterns. At the
bottom there are partially ordered events. We assume that each event has a
timestamp, but since events may be recorded by different actors with discrepant
clocks, we may not be able to linearly order all events using their timestamps.
However, we can use the timestamps to linearly order events recorded by a given
actor (assuming a perfect clock within one actor). From there, we can derive a
partial order between events recorded by different actors using the relation be-
tween message send events and their corresponding receipt events as formalized
below. In the case of multiple clocks within one actor due to decomposition into
distributed components, causal relations between action events occurring in dif-
ferent components can replace the pure timestamp-based ordering. But for the
sake of simplicity, we assume that all events within one actor are totally ordered.

Conversations and process instances are sets of correlated events. The different
patterns describing the relationships between events, conversations and process
instances are grouped into four categories (for numbering see Figure 2).

1. Mechanisms to group events into conversations and process instances. These
correlation mechanisms are presented in Section 3.

2. Having identified conversations, we can examine how conversations are struc-
tured. In previous work we investigated common interaction scenarios be-
tween participants within one conversation [2]. The conversation patterns in
Section 4 present relationships between different conversations.

3. Relationships between conversations and process instances are covered in
Section 5.

4. Common patterns of action events within one process instance have been
studied in [1]. Additional work is required to identify patterns describing
the relationships between different process instances, but this is outside the
scope of this paper.

The proposed patterns are formally described based on the idea of viewing
events from a post-mortem perspective. This could be seen as analyzing logs
of past events. This view is taken for the sake of providing a unified formal
description. In practice the patterns will not necessarily be used to analyze event
logs, but rather to assess the capabilities of languages that deal with correlation
in SOAs. A language will be said to support a pattern if there is a construct in
the language (or a combination of constructs) that allows developers to describe
or implement services which, if executed an arbitrary number of times, would

Correlation Patterns in Service-Oriented Architectures 249

generate event logs that satisfy the conditions captured in the formalization of
the correlation pattern. In the sequel, we use the following formal notations:

– E is the set of events
– CE ,AE ⊆ E are the communication and action events (CE ∩ AE = ∅)
– A is the set of actors
– <t⊆ E ×E partially orders the events occurring at the same actor according

to their timestamps
– <c⊆ E × E is the causal relation between events, including pairs of corre-

sponding send and receipt events as well as corresponding communication
and action events

– < is a partial order relation on E being the transitive closure of <t and <c:
<:= (<t ∪ <c)+.

– Conv ⊆ ℘(CE) and PI ⊆ ℘(AE) are sets of sets of communication and ac-
tion events corresponding to groupings of events into conversations (Conv)
and process instances (PI), respectively. These sets will in principle be gen-
erated using correlation mechanisms as discussed below.

3 Correlation Mechanisms

The correlation mechanism patterns focus on how events can be correlated to
different process instances and more importantly to different conversations.

The purpose of correlation is to group messages into traces based on their
contents (including message headers). Current web service standards do not
impose that every message must include a “service instance identifier”. Hence,
assuming the existence of such identifier may be unrealistic in some situations.
Other monitoring approaches in the field of Web services have recognized this
problem and have addressed it in different ways, but they usually end up relying
on very specific and sometimes proprietary approaches. For example the Web
Services Navigator [4] uses IBM’s Data Collector to log both the contents and
context of SOAP messages. But to capture correlation, the Data Collector inserts
a proprietary SOAP header element into every message.

To achieve a general approach to correlation in SOAs, we need to make as few
assumptions as possible. In this paper, we assume that message events contain
a timestamp and data (i.e. contents), but not necessarily a message identifier.
a message identifier as part of their contents, but this is not part of our as-
sumptions. Thus, message event correlation can be performed based on data or
based on timestamp. Secondly, we assume that two events can be correlated in
the following cases: (1) Both events have a common property, e.g. there exists a
function that when applied to both events yields the same value. For example,
two events can be correlated simply because they are performed by the same
actor, or because they refer to the same purchase order. (2) One event is a cause
of the other (directly or transitively), or there is a third event which is a cause
(directly or transitively) of both events, or both events are a common cause
(directly or transitively) of a third event.

250 A. Barros et al.

Accordingly, we introduce two categories of correlation mechanisms: function-
based correlation (case 1 above) and chained correlation (case 2). Different flavors
of each category are presented, some based on data and others on time. The
application of a particular function-based or chained correlation mechanism or a
combination of different mechanisms leads to a correlation scheme. Such schemes
are sets of sets of correlated events that might be interpreted e.g. as conversations
or process instances later on. Different combinations are discussed in this section.

3.1 Function-Based Correlation

Functions assign labels to an event. Events with common labels are then grouped
together. We distinguish three correlation mechanisms in this category: the first
two deal with correlation based on data, while the third deals with correlation
based on time. Strictly speaking, the first two patterns could be merged into a
single one (i.e. the second pattern subsumes the first one). However, we treat
them separately since, as discussed later, existing standards tend to support the
first one but not the second.

C1. Key-based correlation. One or a set of unique identifiers are assigned to
an event and all events with at least one common identifier are grouped together.
Example: a process instance identifier or a conversation identifier is attached
to each event. Identifiers can be single values or compositions of several values.

C2. Property-based correlation. A function assigns a label to an event de-
pending on the value of its attributes. In contrast to key-based correlation not
only equality can be used in the function. Operators such as “greater”, “less”,
“or” and “not” must be available in the function.
Example: all events involving customers living less than 50km away from the
city centers of Brisbane, Sydney or Melbourne are grouped together (label =
“metropolitan”) as opposed to the others (label = “rural”).

C3. Time-interval-based correlation. This is a special kind of property-
based correlation. A timestamp is attached to an event and a corresponding
label is assigned to the event if the event happened within a given interval.
Example: all events that happen in July 2006 could be grouped together (e.g. la-
bel = “07/2006”) as opposed to those happening in August (label = “08/2006”).

Function-based correlation can be formalized in the following way: Let Label
be the set of all labels and F ⊆ {f | f : E → Label} a set of partial functions
assigning labels to an event. Then the set of sets of correlated events is {C ⊆
E | ∃l ∈ Label (∀e ∈ E [∃f ∈ F (l = f(e)) ⇔ e ∈ C])}.

This formalization uses one set of labels. However, in practice we would dis-
tinguish between different types of labels, e.g. intervals, product groups.

As an extension to function-based correlation relationships between the labels
can be considered (RL ⊆ Label × Label). E.g. we could assume a hierarchical
order of keys where several keys have a common super-key. In this case events
could be grouped according to their keys attached as well as according to some
super-key higher up in the hierarchy. Let us assume e.g. a set of line items that

Correlation Patterns in Service-Oriented Architectures 251

all belong to the same order. In this example events could be grouped according
to the line item ID or according to the order ID.

3.2 Chained Correlation

The basic idea of chained correlation is that we can identify relationships be-
tween two events that have to be correlated (grouped together). This relationship
might be explicitly captured in an event’s attributes or might be indirectly re-
trieved by comparing attribute values of two events. Starting from these binary
relationships we can build chains of events that belong to the same group.

Since we assume that grouping events to process instances will mostly be
done by using unique identifiers, chained correlation becomes important mostly
for identifying conversations within our framework. In the case of conversations
we especially look at the relationships between message exchanges. Depending
on whether chained correlation is done based on message data or based on time,
we can identify two chained correlation mechanisms.

C4. Reference-based correlation. Two events are correlated, if the second
event (in chronological order) contains a reference to the first event. This means
that if there is some way of extracting a datum from the second event (by
applying a function) that is equal to another datum contained in the first event.
This datum therefore acts as a message identifier, and the second message refers
to this message identifier in some way.

C5. Moving time-window correlation. Two events involving the same actor
are related if they both have the same value for a given function (like in function-
based correlation) and they occur within a given duration of one another (e.g. 2
hours). There might be chains of events where the time passed between the first
and last event might be very long and others where this time is rather short.

Chained correlation can be formalized as follows: Let R ⊆ E × E be the
relations between two events that have to be grouped together. Then the set of
sets of correlated events is {C ⊆ E | ∀e1 ∈ C, e2 ∈ E [e1 R∗ e2 ⇔ e2 ∈ C]}.

3.3 Aggregation Functions

Sometimes only a limited number of events are grouped together although ac-
cording to function-based or chaining correlation mechanisms more events would
fulfill the criteria to be part of the group. For example, only a maximum number
of 10 items are to be shipped together in one container. More items are requested
to be shipped and might have the same destination or arrive timely according
to the defined moving time window.

In this paper, we do not deal with correlation mechanisms that include such
maximality requirements. We envisage that the framework could be extended
to capture such scenarios by means of an aggregation function agg that takes
as input a set of correlated events and produces a boolean (i.e. agg : ℘(E) →
{true, false}). A correlation scheme could then be constrained to only produce
sets of events that satisfy a given aggregation function.

252 A. Barros et al.

4 Conversation Patterns

The Service Interaction Patterns proposed in [2] describe recurrent interaction
scenarios within one conversation. The following patterns focus on relationships
between different conversations.

C6. Conversation Overlap. Some interactions belong to multiple conversa-
tions. Each conversation also contains interactions that are not part of others.
Example: during a conversation centering around delivery of goods a payment
notice is exchanged. This payment and other payments is the starting point for
a conversation centering around the payment.
Two conversations C1, C2 overlap if C1 ∩ C2 �= ∅ ∧ C1 \ C2 �= ∅ ∧ C2 \ C1 �= ∅.

C7. Hierarchical Conversation. Several sub-conversations are spawned off
and merged in a conversation. The number of sub-conversations might only be
known at runtime.
Example: as part of a logistics contract negotiation between a dairy producer
and a supermarket chain a set of shippers are to be selected for transporting
goods from the producer to the various intermediate warehouses of the chain.
Therefore, negotiation conversations are started between the chain and each
potential available shipper.
A conversation C1 ∈ Conv has two sub-conversations C2, C3 ∈ Conv if ∃Cp ∈
Conv (C1, C2, C3 ⊂ Cp ∧ ∀e2 ∈ C2, e3 ∈ C3 [∃e11, e12 ∈ C1 (e11 < e2 ∧ e11 <
e3 ∧ e2 < e12 ∧ e3 < e12)]).

C8. Fork. A conversation is split into several conversations and is not merged
later on. The number of conversations that are spawned off might only be known
at runtime.
Example: an order is placed and the different line items are processed in parallel.
A split from a conversation C1 ∈ Conv into the two conversations C2, C3 ∈ Conv
occurs if ∃Cp ∈ Conv (C1, C2, C3 ⊂ Cp ∧ ∀e1 ∈ C1, e2 ∈ C2, e3 ∈ C3 [e1 <
e3 ∧ e1 < e2]).

C9. Join. Several conversations that do not originate from the same fork are
merged into one conversation. The number of conversations that are merged
might only be known at runtime.
Example: several orders arriving within one week are merged into a batch order.
A join between two conversations C1, C2 ∈ Conv into one conversation C3 ∈
Conv occurs if ∃Cp ∈ Conv (C1, C2, C3 ⊂ Cp ∧ ∀e1 ∈ C1, e2 ∈ C2, e3 ∈ C3 [e1 <
e3 ∧ e2 < e3]).

C10. Refactor. A set of conversations is refactored to another set of conver-
sations. The numbers of conversations that are merged and spawned off might
only be known at runtime. This pattern generalizes Fork and Join.
Example: goods shipped in containers on different ships have reached a harbor
where they are reordered into trucks with different destinations.
A refactoring from two conversations C1, C2 ∈ Conv into the two conversations
C3, C4 ∈ Conv occurs if ∃Cp ∈ Conv (C1, C2, C3, C4 ⊂ Cp ∧ ∀e1 ∈ C1, e2 ∈
C2, e3 ∈ C3, e4 ∈ C4 [e1 < e3 ∧ e1 < e4 ∧ e2 < e3 ∧ e2 < e4]).

Correlation Patterns in Service-Oriented Architectures 253

5 Process Instance to Conversation Relationships

So far, we have considered conversations and process instances separately. Be-
low, we consider relationships between process instances and conversations, as
well as relationships between action events and communication events. First, we
classify the relationships between process instances and conversations accord-
ing to multiplicity, and we derive three patterns from there (C11 – C13). Next,
we consider relationships between the start and the end of process instances
and conversations, and derive another three patterns (C14 – C16). Finally, we
consider scenarios that deviate from the usual case whereby one action event is
related to one communication event, and derive two more patterns (C17 & C18).

To formalize these patterns, we introduce the notion of actor. A process in-
stance is executed by exactly one actor. We rely on a relation ≈∈ ℘(AE)×℘(AE)
where p1 ≈ p2 means that the process instances p1 and p2 are executed by the
same actor. Also, we introduce a relation � ⊆ ℘(CE) × ℘(AE) indicating that
at least one event in a conversation C is causally related to at least one event
in a process instance p. � = {(C, p) ∈ ℘(CE) × ℘(AE) | ∃e1 ∈ C e2 ∈ p (e1 <c

e2 ∨ e2 <c e1)}.

C11. One Process Instance – One Conversation. A process instance is in-
volved in exactly one conversation and there is no other process instance involved
in it and executed by the same actor.
Example: a purchase order is handled within one process instance.
A one-to-one mapping for a process instance p ∈ PI to conversation C ∈ Conv
occurs if p�C∧∀q ∈ PI [(p �= q∧p ≈ q) ⇒ ¬q�C] ∧∀D ∈ Conv [C �= D ⇒ ¬p�D].

C12. Many Process Instances – One Conversation. Several process in-
stances executed by the same actor are involved in the same conversation.
Example: an insurance claim is handed over from the claim management de-
partment to the financial department. The different departments have individual
process instances to handle the case.
A many-to-one mapping for a set of process instances PI ′ ⊆ PI to conversation
C ∈ Conv occurs if ∀p1, p2 ∈ PI ′ [p1 ≈ p2] ∧ ∀p ∈ PI ′ [p � C].

C13. One Process Instance – Many Conversations. One process instance
is involved in many conversations.
Example: a seller negotiates with different shippers about shipment conditions
for certain goods. The shipper offering the best conditions is selected before
shipment can begin.
A one-to-many mapping for a process instance p ⊆ PI to a set of conversations
Conv′ ∈ Conv occurs if ∀C ∈ Conv′ [p � C].

C14. Initiate Conversation. A process instance has the role of the initiator
of a conversation if the conversation is started within the process instance.
Example: a buyer places a purchase order and triggers a conversation concern-
ing the negotiation about the price.

A process instance p ∈ PI is an initiator of a conversation C ∈ Conv if
∃e1 ∈ p e2 ∈ C (e1 <c e2 ∧ ¬∃f ∈ C (f < e2)).

254 A. Barros et al.

C15. Follow conversation. A process instance p has the role of a follower
in a conversation it participates in, if the conversation was created within an-
other process instance. Process instance p may be created because of a message
received in the context of the conversation in question.
Example: a shipping order that is part of a multi-party conversation for procur-
ing some products comes in to a shipment process and is processed in a new
instance of this process.
A process instance p ∈ PI is a follower in a conversation C ∈ Conv if ¬∃e1 ∈
p e2 ∈ C (e1 <c e2 ∧¬∃f ∈ C (f < e2)). A process instance is created because of
a message in a conversation if ∃e1 ∈ p e2 ∈ C (e2 <c e1 ∧ ¬∃g ∈ p \ C (g < e1)).

C16. Leave Conversation. A process instance decides to no longer take part
in a conversation.
Example: a carrier can no longer commit to delivery request and terminates
involvement in a shipment contract.

To formalize this pattern we introduce the notion of action event types and
conversation types. Functions AET : AE → Type and CT : ℘(CE) → Type
assign a type to each action event and conversation. Leave Conversation occurs
if leave ∈ Type is the event type corresponding to leave actions and lc ∈ Type is
the type of conversation that is to be left and for all possible process instances
p: ¬∃e1, e2 ∈ p e3 ∈ CE (AET (e1) = leave ∧ e1 < e2 ∧ CT (e3) = lc ∧ e3 < e2).

C17. Multiple Consumption. A communication event is consumed (multiple
times) by several actions, possibly belonging to different process instances.
Example: an account detail change is requested by a supplier and immedi-
ately processed. As part of a more complex fraud pattern this request leads to
investigating potential fraud.
A communication event c is consumed several times if ‖{e ∈ AE | c <c e}‖ > 1.

C18. Atomic Consumption. One action event is caused by several communi-
cation actions.
Example: a shipment is started when 500 shipment requests for the same des-
tination are collected (see more detailed example in Section 6).
An atomic consumption of a set of communication actions C ∈ ℘(CE) has
occurred if ∃e ∈ AE (∀c ∈ C [c <c e]).

6 Assessment of BPEL 1.1 and BPEL 2.0

In this section, we provide an assessment of BPEL 1.1 and 2.0 specifications for
support of the correlation patterns. Since BPEL directly concerns conversational
processes, it provides a more comprehensive insight into the capabilities of Web
services middleware vis-a-vis of event correlation than standards at lower levels
of the WS stack. Table 1 summarizes the assessment, where “+” indicates direct
support for a pattern, “+/–” partial support and “–” no support.

The mechanism in BPEL for relating action events to messages (i.e. com-
munication events) is that of correlation set. A message can match one or more

Correlation Patterns in Service-Oriented Architectures 255

correlation sets. A BPEL inbound or outbound communication action (e.g. in-
voke, receive, reply, onMessage, pick) specify one or more correlation sets. These
enable the execution engine to determine properties that a message produced or
consumed by that action should have.

A process starts a conversation by sending a message and this sending action
determines the values of properties in a correlation set, that then serve to identify
the communication actions within a process instance that belong to the conver-
sation in question. The conversation is continued by other processes receiving
messages containing values of the correlation set. When a message is received
which has the same value for a correlation set as the value of a message previously
sent as part of a conversation, the message in question is associated with this
conversation. Immediately we can see that key-based correlation is supported.
However, only equality applies so property-based correlation is not supported,
and no explicit support is available for time-interval based correlation.

From a post-mortem perspective, each message produced or consumed by the
service can be related to a conversation as follows: the message log is scanned
in chronological order, and a message is either related to a new conversation if
it corresponds to a communication action that initializes a correlation set, or is
related to a previously identified conversation if the values of its correlation set
match those of a message sent by the previous service conversation.

Explicit support for reference-based correlation is possible when WS-
Addressing is used for SOAP message exchange by BPEL processes. In the WS-
Addressing standard, a message contains an identifier (messageID header) and
may refer to a previous message through the relatesTo header. If we assume
that these addressing headers are used to relate messages belonging to the same
conversation in a chained manner, it is possible to group a service log contain-
ing all the messages sent or received by a service into traces corresponding to
conversations. Similarly, correlations can be made through the replyTo header
of a given message (say M), containing an URI uniquely identifying a message
in question. When another message M ′ is observed that has the same URI this
time in the To header, M and M ′ can be correlated.

Chaining through sliding windows, addressed in the moving time-window cor-
relation pattern, cannot be supported through BPEL. Sliding windows require
that events are buffered, however this aspect is left open in the BPEL specifica-
tions. A hand-coded solution is to implement buffering through one (continuously
running) process instance, but this leads to convoluted code.

Conversation overlap occurs when different correlation sets are used in related
message activities of two processes. By way of illustration, consider a process that
initiates a conversation through an invoke, which has a corresponding receive
in the targeted recipient, having the same correlation set (e.g. PurchaseOrder)
as the invoke. Through subsequent message exchanges, reference to a different
correlation set is made (e.g. Invoice), providing new data to correlate a different
conversation between the two processes.

For conversational structuring, BPEL 1.1 and BPEL 2.0 have a major differ-
ence. Both of them allow correlation sets to be defined not only on a per scope

256 A. Barros et al.

basis. However, in BPEL 1.1, either the number of sub-conversations has to be
known at design-time (one branch of a “parallel flow” is assign to each conversa-
tion), or the conversations in question must be entertained one after the other as
opposed to concurrently. In BPEL 2.0, a “parallel foreach” construct, allows an
unbounded number of conversations to be entertained concurrently. As such, we
can see that hierarchical conversation, conversation fork and conversation join
can be fully supported in BPEL 2.0, though only partially supported in 1.1.

The number of correlation sets in and across process instances allows for differ-
ent conversation multiplicities. Patterns C11–C13 are thus supported. A process
can initiate a conversation, if in one of its invoke activities, the correlation set’s
initiate attribute is set to “yes” (with the initiate attribute in the correspond-
ing receive in the participant also set to “yes”). Subsequent message actions of
the initiator should then have the initiate attribute be set to “no”. Similarly,
a process instance follows a conversation when one of its receive actions initi-
ates a correlation set, thus signifying that the process instance becomes aware
of a conversation. All subsequent actions referring to this correlation set should
have the initiate attribute set to “no”. For Leave Conversation, in BPEL 1.1
unsubscription from a conversation cannot be expressed. Once values are given
to a correlation set, a subscription for corresponding messages exists until the
process instance terminates. In BPEL 2.0, a subscription ends as soon as the
execution of the scope where a correlation set is defined is closed.

One source of limitation of BPEL with respect to correlation, is the fact that
every message arriving at a port is eagerly correlated to a process instance. In
other words, when a message addressed to a Web service is received by the BPEL
engine, its headers and contents are inspected and the message is consumed
immediately for instance creation or instance routing, or it is rejected. This model
is not suitable to capture scenarios where correlation can not be determined on
a per-message basis, as in the case of the atomic consumption pattern. Consider
the following scenario: A shipment aggregation service receives shipment requests
from multiple customers and aggregates them into bundles. When the service
receives a shipment request, it either: (i) creates a new bundle for the shipment’s
destination if there is no existing bundle for that destination; or (ii) assigns the
request to an existing bundle for the same destination. When a bundle reaches a
certain size, the corresponding bundle is closed and a delivery route is computed
for it. Subsequent messages to the same destination are then assigned to a new
bundle. If a bundle has been opened for more than a given time window, it
is escalated to a human operator. Thus, shipment requests are aggregated in
bundles based on their destination, until a bundle either reaches a given size
(e.g. 10 requests) or a given age (e.g. 4 hours).

In this scenario, when a shipment request is received and no existing request
for that destination is awaiting correlation, the message is buffered. It is only
later that a process instance is created to deal with either that request alone, or a
combination of requests with the same destination. Due to the “per event” nature
of its correlation mechanism, BPEL does not support such scenarios involving
multiple consumption or atomic consumption.

Correlation Patterns in Service-Oriented Architectures 257

Table 1. Support for correlation patterns in BPEL 1.1 and 2.0

Correlation Patterns BPEL 1.1 BPEL 2.0
C1. Key-based correlation + +

C2. Property-based correlation – –

C3. Time-interval-based correlation – –

C4. Reference-based correlation + +

C5. Moving time-window correlation – –

C6. Conversation overlap + +

C7. Hierarchical conversation +/– +

C8. Conversation fork +/– +

C9. Conversation join +/– +

C10. Conversation refactor +/– +

C11. One process instance – one conversation + +

C12. Many process instances – one conversation + +

C13. One process instance – many conversations + +

C14. Initiate conversation + +

C15. Follow conversation + +

C16. Leave conversation – +

C17. Multiple consumption – –

C18. Atomic consumption – –

The proposed patterns can be used to analyze other languages for Web service
implementation, such as the Web Service Choreography Description Language
(WS-CDL [10]). WS-CDL uses equality of identity tokens to identify conversa-
tions.Therefore, WS-CDL directly supports key-based correlation but does not
support property-based correlation. Like BPEL, WS-CDL can also be used in
combination with WS-Addressing leading to direct support for reference-based
correlation. The timeout attribute for interactions in WS-CDL provides a real-
ization both of time-interval-based correlation and of moving time-window corre-
lation (note that it is out of the scope of WS-CDL to specify how the individual
participants handle the required message buffering). Conversation overlap can
be realized in WS-CDL through the use of several sets of identity tokens. How-
ever, like in BPEL 1.1 there is only partial support for hierarchical conversation,
conversation fork and conversation join since WS-CDL provides no construct
to capture an unbounded number of branches that execute in parallel. WS-CDL
is a language for describing interactions between multiple Web services from a
global perspective. It does not deal with the individual behavior of each service,
and hence does not have a notion of process instance. Therefore, the patterns
from section 5 are irrelevant for WS-CDL.

7 Related Work

Two programming languages for Web service implementation propose alterna-
tive correlation mechanisms to BPEL’s one: XL [6] and GPSL [5]. XL directly
supports the concept of conversation. Conversations are identified by unique

258 A. Barros et al.

URIs that are included in a SOAP header (similar to WS-Addressing “relatesTo”
header). Conversation patterns define when should new conversation URIs be
created versus when should existing conversation URIs be reused. With respect
to BPEL, XL adds a concept of conversation timer which can deal with our time-
interval-based correlation pattern. A conversation timer is armed when a service
receives the first message related to a conversation: If a message is received by the
service after the timeout, this message is treated as part of a new conversation.
Arguably, one can achieve a similar effect in BPEL 2.0 using scoped correlation
sets combined with alarms and faults, but this would require convoluted code.
On the other hand, XL suffers from similar limitations as BPEL when it comes
to dealing with multiple consumption and atomic consumption.

GPSL on the other hand relies on the concept of join pattern to capture cor-
relation scenarios such as the shipment aggregation service above. A join pattern
is a conjunction of message channels and a filtering condition: when messages
are received over a channel they are stored in a buffer until there is a join pattern
consuming them. For a join pattern to fire, there must be a combination of mes-
sages (one per channel in the join pattern) which satisfies the filter. This feature
corresponds to the “atomic consumption” pattern. Timeouts are conceptually
treated as messages coming from a “timer service”, thus enabling time-interval-
based correlation. Also, GPSL deals with “multiple consumption” by allowing a
service to send (or re-send) a message to itself: so once a message is consumed,
the service can put it back again in the corresponding channel.

Concepts similar to join patterns have been considered in the context of com-
plex event processing [11], where they are called event patterns. IBM’s Active
Correlation Technology [3] for example, provides a rule language to capture
event patterns such as “more than four events of a given type happen in a slid-
ing window of 30 seconds”. Event rule languages can capture arbitrarily complex
correlation patterns. But the question that we attempt to answer is: how much
of this event correlation technology is needed in SOA?

Patterns of correlation in enterprise applications are presented in [8]. But this
work only considers reference-based correlation as supported by WS-Addressing.

8 Conclusion and Outlook

This paper introduced a framework for classifying and describing correlation sce-
narios in SOAs, with an emphasis on stateful services that engage in long-running
business transactions. Using this framework, we described a set of patterns that
can be used to evaluate the correlation mechanisms of standards and tools for
service implementation. In particular, we evaluated two successive versions of
BPEL and showed that, while the later version supports a larger set of correla-
tion patterns than the earlier, it still does not support certain patterns due to
its approach of correlating and consuming messages immediately upon receipt,
as well as its inability to deal with time as a factor in determining correlation.

The framework points into the direction of patterns of relationships between
process instances. In many scenarios, different process instances compete for

Correlation Patterns in Service-Oriented Architectures 259

the same messages, thus creating dependencies between them. A classification
and in-depth study of these dependencies constitutes an avenue for future work.
Furthermore, the framework can be extended to cover more sophisticated cor-
relation patterns such as those found in the area of complex event processing.
An extended version of the framework could provide a basis for evaluating the
correlation mechanisms of languages and systems for event processing in general.

Acknowledgments. The second author conducted this work while visiting
SAP Research Centre, Brisbane. The third author is funded by a fellowship
co-sponsored by SAP and Queensland Government.

References

1. W. van der Aalst, A. ter Hofstede, B. Kiepuszewski, and A. Barros. Workflow
Patterns. Distributed and Parallel Databases, 14(3):5–51, July 2003.

2. A. Barros, M. Dumas, and A. ter Hofstede. Service Interactions Patterns. In Pro-
ceedings of the 3rd International Conference on Business Process Management
(BPM), Nancy, France, September 2005, pages 65–80. Springer, 2005.

3. A. Biazetti and K. Gajda. Achieving complex event processing with Ac-
tive Correlation Technology. IBM Technical Report, November 2005. http://
www-128.ibm.com/developerworks/autonomic/library/ac-acact/

4. W. De Pauw, M. Lei, E. Pring, L. Villard, M. Arnold, and J.F. Morar. “Web Ser-
vices Navigator: Visualizing the Execution of Web Services” IBM Systems Journal
44(4):821-845, 2005.

5. D. Cooney, M. Dumas, and P. Roe. GPSL. A Programming Language for Service
Implementation. In Proceedings of the 8th International Conference on Fundamen-
tal Approaches to Software Engineering (FASE), Vienna, Austria, March 2006,
pages 3–17. Springer, 2006.

6. D. Florescu, A. Grünhagen, and D. Kossmann. XL: an XML programming language
for Web service specification and composition. Computer Networks 42(5):641–660,
2003.

7. M. Gudgin, M. Hadley, and T. Rogers (editors). Web Services Addressing
1.0 – Core. W3C Recommendation, May 2006. http://www.w3.org/Submission/
ws-addressing/

8. G. Hohpe, B. Woolf. Enterprise Integration Patterns: Designing, Building, and
Deploying Messaging Solutions. Addison-Wesley, 2003

9. D. Jordan and J. Evdemon (editors). Web Services Business Process Ex-
ecution Language Version 2.0 Public Review Draft. OASIS WS-BPEL
Technical Committee, August 2006. http://docs.oasis-open.org/wsbpel/2.0/
wsbpel-specification-draft.pdf/

10. N. Kavantzas, D. Burdett, T. Fletcher, Y. Lafon, and C. Barreto (editors). Web
Services Choreography Definition Language Version 1.0. W3C Candidate Recom-
mendation, November 2005. http://www.w3.org/TR/ws-cdl-10/

11. D. Luckham. The Power of Events: An Introduction to Complex Event Processing
in Distributed Enterprise Systems. Addison-Wesley, 2001.

12. S. Weerawarana, F. Curbera, F. Leymann, T. Storey, and D. Ferguson. Web Ser-
vices Platform Architecture : SOAP, WSDL, WS-Policy, WS-Addressing, WS-
BPEL, WS-Reliable Messaging, and More. Prentice Hall PTR, 2005.

Dynamic Characterization of Web Application

Interfaces

Marc Fisher II, Sebastian Elbaum, and Gregg Rothermel

University of Nebraska-Lincoln
{mfisher,elbaum,grother}@cse.unl.edu

Abstract. Web applications are increasingly prominent in society, serv-
ing a wide variety of user needs. Engineers seeking to enhance, test, and
maintain these applications and third-party programmers wishing to ut-
lize these applications need to understand their interfaces. In this paper,
therefore, we present methodologies for characterizing the interfaces of
web applications through a form of dynamic analysis, in which directed
requests are sent to the application, and responses are analyzed to draw
inferences about its interface. We also provide mechanisms to increase
the scalability of the approach. Finally, we evaluate the approach’s per-
formance on six non-trivial web applications.

1 Introduction

Consider a flight reservation web application, such as Expedia. Such an ap-
plication compiles data from multiple airlines, and provides a web site where
customers can search for flights and purchase tickets. The site itself consists
of HTML forms that are displayed to the customer in a web browser. Within
these forms, the customer can enter information in fields (e.g. radio buttons, text
fields) to specify the parameters for a flight (e.g. departure date, return date,
number of passengers). The web browser then uses this entered information to
assemble a request that is sent to a form handler. The form handler is a compo-
nent that serves as an interface for the web application. This form handler could
be responsible for queries submitted via multiple different forms, such as forms
for round-trip flights or one-way flights.

Proper understanding of the interface exposed by the form handler can help
engineers generate test cases and oracles relevant to the underlying web appli-
cations. Such an understanding may also be useful for directing maintenance
tasks such as re-factoring the web pages. Finally, as we shall show, information
that helps engineers comprehend web application interfaces may also help them
detect anomalies in those interfaces and the underlying applications.

An understanding of web application interfaces can also be valuable for third
party developers attempting to incorporate the rendered data as a part of a
web service (e.g. a site that aggregates flight pricing information from multiple
sources). Although web applications that are commonly used by clients may pro-
vide interface descriptions (e.g. commercial sites offering web services often offer

M.B. Dwyer and A. Lopes (Eds.): FASE 2007, LNCS 4422, pp. 260–275, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Dynamic Characterization of Web Application Interfaces 261

Fig. 1. WebAppSleuth architecture

a WSDL-type [1] description), many sites do not currently provide such support
mechanisms. Moreover, as we shall show, the level of interface understanding
that could be useful for comprehension and anomaly detection goes beyond that
usually provided by such interface descriptions, and could serve as a complement
to a WSDL description.

To support the various activities of both the engineers of sites, and third party
developers incorporating information from other sites, we have been research-
ing methods for automatically characterizing the properties of and relationships
between variables and values in web application interfaces. In this paper, we
present a methodology for characterizing the interface of a web application. Our
methodology involves making requests to a target web application, and analyz-
ing the application’s responses to draw inferences about the variables and values
that can be included in a request and the relationships among those variables
and values. We identify three specific types of inferences, all of which have the
ability to find anomalous behavior in and help increase understanding of web
applications. To enhance the scalability of the approach, we provide a family of
techniques for selecting requests to submit to the application.

We report the results of empirical studies of this approach, in which we apply
it to six non-trivial, real-world web applications from various sources (academic,
government, and commercial). Our studies show that our inferences are useful
for finding anomalous behavior in these applications. In addition, we show that
for these applications, our request selection techniques can reduce the number
of requests needed to find correct inferences and filter out incorrect inferences,
enhancing the scalability of the approach.

2 Methodology

Our methodology works by selectively submitting requests to a web applica-
tion, and using the responses to those requests to discover relationships between
variables and values in the application. Figure 1 shows the overall architec-
ture for our web application interface characterization methodology, WebApp-
Sleuth, with various processes (sub-systems) in the methodology shown as boxes.
WebAppSleuth begins with a Page Analyzer process, which statically analyzes
a target page containing a form generated by the web application. The Page

262 M. Fisher II, S. Elbaum, and G. Rothermel

Analyzer identifies all variables associated with the fields in the form, and then
associates a list of potential values with each identified variable. For each pull-
down, radio-button, or check-box variable, the Page Analyzer obtains values
from the possible values defined in the form. For text-type variables, the Page
Analyzer prompts the user to supply values that may elicit a correct response
from the web application.

Next, the Request Generator creates a pool of potential requests by explor-
ing all combinations of values provided for each variable, as well as cases where
variables are missing. Given this pool of requests, the Request Selector deter-
mines which request or requests will be submitted to the target application.
There are two general request selection modes: Batch (requests are selected all
at once) and Incremental (requests are selected one at a time guided by a feed-
back mechanism). The Request Submitter assembles the http request, sends it
to the web server, and stores the response. This response is classified by the Re-
sponse Classifier. The selected request and the classified response are then fed
into the Inference Engine, which infers various properties about the variables
and values used in submitted requests.

Currently, our methodology analyzes a single form handler within a web ap-
plication. The form handler is assumed to be stateless and deterministic with
respect to its inputs. Numerous important web applications satisfy (or mostly
satisfy) these requirements, including applications that support travel reserva-
tion searches (e.g. Expedia), mapping applications (e.g. MapQuest), product
searches (e.g. BuyAToyota’s used car search) and other search sites (e.g. NSF’s
funding search). For sites that do not fully satisfy these requirements, it is often
possible to approximate them by temporarily controlling the state (for develop-
ers characterizing their own site) or by limiting the time frame within which the
site is accessed to limit potential changes to the underlying state.

In the following sections, we explain (1) how we classify responses, (2) how
we use requests and responses to generate inferences, and (3) how we select the
requests we are submitting, including methods that use previously submitted
requests with responses and generated inferences to guide the request selection
process.

2.1 Classifying Responses

After submitting each request, we classify the response. The user must choose
between one of two methods for classification depending on the types of responses
received and the types of inferences they wish to make. For some sites, the
response is either some piece of information (i.e. a map for MapQuest) or an error
message. Therefore our first method is to classify responses as either “Valid”
(returns the request information) or “Invalid” (returns an error message). To
classify these types of responses, our methodology searches for substrings in the
result that match simple regular expressions.

Our second method is to extract a set of results from the response (for the
inference algorithms that require valid/invalid classification, an empty set is in-
valid, and any non-empty set is valid). For example, for BuyAToyota the response

Dynamic Characterization of Web Application Interfaces 263

page includes a set of identifiers representing cars, possibly with links to addi-
tional pages with more cars. We collect this set of identifiers (iterating through
the additional pages if necessary), and store these as the classification for the
request.

2.2 Discovering Inferences

We have devised a family of inference algorithms to characterize the variables
that are part of a web application interface, and the relationships between them.
The algorithms operate on the list of variable-value pairs that are part of each
submitted request, and on the classified responses (valid/invalid or a set of re-
turned results) to those requests.

To facilitate the explanation of the subsequent algorithms we use examples
that are further explored in our study in Section 3. Also, we simplify the termi-
nology by defining a valid request as one that generates a valid response from
the application, and defining an invalid request as one that generates an invalid
response. For space reasons, detailed algorithms and descriptions are omitted,
but can be found in [2].

Variable Classes and Values. It is common for web applications to evolve,
incorporating additional and more refined services in each new deployment. As
an application evolves, it becomes less clear what variables are mandatory (re-
quired in every valid request), and what variables are optional (may be included
or absent in a valid request). Distinguishing between these classes of variables is
helpful, for example, to anyone planning to access the web application interface,
and to developers of the web application who wish to confirm that changes in
the application have the expected results in the interface.

In addition to assisting developers with evolving applications, we can identify
anomalies in the application by finding mandatorily absent variables (variables
absent in every valid request). There are two potential reasons mandatorily ab-
sent variables may be identified: 1) the web page or web application contains a
error (e.g. a field was left in a form but is no longer used by the web application)
or 2) additional requests are needed to provide an appropriate characterization
of that variable.

Our algorithm identifies as mandatory any variable that appears in all valid
requests and is absent in at least one invalid request. Our algorithm identifies
as optional any variable that appears in at least one valid request and is absent
in at least one valid request. Our algorithm identifies as mandatorily absent any
variable that is absent in all valid requests and appears in at least one invalid
request.

In addition to finding mandatory, optional, and mandatorily absent variables,
we also find the range of values for variables that produced valid responses.
This allows us to detect values that never return valid results. These values
could indicate that there are problems with the web application (e.g. the form
includes a value for a variable that is no longer used in the application), that
more requests need to be made, or that there exists an opportunity for improving

264 M. Fisher II, S. Elbaum, and G. Rothermel

Table 1. MapQuest Requests and Variable Implications

address city state zip Implication At least one-of
1 absent absent present absent address =⇒ state
2 absent absent absent present address =⇒ state ∨ zip
3 present absent absent present address =⇒ zip state ∨ zip
4 present present present absent address =⇒ zip ∨ (city ∧ state) state ∨ zip
5 present present present present address =⇒ zip ∨ (city ∧ state) state ∨ zip

the web application (e.g. a possible value for a variable represents a value that
does not exist in the current state of the database, and filtering the values in
the form based on this state could be useful).

To find the range of values, our algorithm keeps track of the values that
appear in requests (distinguishing between those that appear in valid and invalid
requests) and reports a list of values that appeared in valid requests for each
variable. To reduce the number of falsely reported value inferences, the algorithm
reports an inference for a variable only after all values included for that variable
have been used at least once.

Variable Implication. Sometimes a request that contains a particular variable
can be valid only if other specific variables are present. Identifying such relation-
ships between variables is helpful for understanding the impact of application
changes, and for avoiding sending incomplete requests to the application.

To investigate this type of relationship, we began by defining the notion of
implication as a conditional relationship between variables p and q, namely: if p is
present, then q must be present. After examining existing implications on many
sites we decided to expand our attention to implications in which the right hand
side is a proposition in disjunctive normal form and does not contain negations
or the constant TRUE. This guarantees that our implications are satisfiable but
not tautological. Further, this type of implication (referred to henceforth as a
“standard” implication) is relatively simple to understand because it can easily
be mapped to the variables’ expected behavior.

Our technique constructs an implication for each variable in the application
by iterating through submitted requests, and adding clauses to the implica-
tion for requests in which the set of variables present is not a superset of the
variables in any other clause in the implication. For a basic notion of how our
technique operates consider Table 1, which shows the process for constructing
the address implication for MapQuest across a sequence of requests. For the
first two requests, address is not present in the request, so we do not update
the implication. The third row includes address and zip, so we need to add the
clause zip to the right side of the implication. The next request includes address,
city, and state, but does not include zip (the only variable included in the clause
in the implication so far), so we add the clause city ∧ state to the implication.
Finally, the fifth request includes all four variables, a superset of the variables
included in either of the existing two clauses, so a new clause is not needed.

Dynamic Characterization of Web Application Interfaces 265

In addition to standard implications, we use a similar algorithm to detect two
other types of inferences. One of these is the “at least one-of” inference. This
inference is a proposition in disjunctive normal form like those found on the right
side of our implications. Only one of these is created per site. The last column of
Table 1 shows how an “at least one-of” inference is found for the MapQuest site.

The other type of inference is value-based implication. This inference is an
implication in which the left side has the form of p = q, where p is a variable
and q is some value for that variable. We create one of these for each value of
each variable in the site.

Value Hierarchies. It is often the case that when given two values for a vari-
able, one of them should always return a subset of the results returned for the
other value. Consider the case for real estate search engines, which typically pro-
vide a “minimum price” variable. As the minimum price increases, if all other
variables are held constant, the returned results should be a subset of the results
for lower minimum prices. Such relationships cause a hierarchy of values to exist.
In the case of minimum price, this is a simple linear hierarchy with each lower
price subsuming all of the results of the higher prices.

We represent hierarchy relationships as a graph, with a node for each value,
and directed edges p → q indicating that q ⊆ p.

Most constrained inputs (i.e. radio button or pull-down inputs) should have
a hierarchical relationship between their different values. When this is the case,
the graph is a directed acyclic graph with a single root node, where that root
node represents an “all” or “don’t care” value for the variable (Figure 2(a)).

Anomalies in the structure of these graphs can be useful for finding problems
in the web application. For example, a common anomaly seen in the applications
used for our study in Section 3 is the presence of values without edges leading
to them from the “all” value. This usually indicates that there were results that
did not appear when the variable was set to its “all” value, but did appear under
some other circumstance.

There are two special cases of the hierarchy pattern that appear often enough
in web sites to warrant special consideration. The “flat” pattern (Figure 2(b))
often occurs when the underlying application looks only for exact matches of the
values for the variable (excluding the “all” value).

The other special case is the “ordered” pattern (Figure 2(c)). This represents
variables with values that indicate progressive restriction. The minimum price
variable mentioned above is an example of this case.

Similar to our methodology for finding implications, our hierarchy inference
methodology begins by creating a potential hierarchy for each variable in the
application. Each potential hierarchy has two n by n boolean arrays, where n
is the number of possible values for the associated variable. One of the arrays,
subset, keeps track of whether we have found a case in which the subset rela-
tionship holds between the two values. The other array, notSubset, keeps track
of whether we have found a case where the subset relationship does not hold

266 M. Fisher II, S. Elbaum, and G. Rothermel

all

v1 v2

v3 v4

empty

(a) Hierarchy

all

v1 v2 v3

empty

(b) Flat

all

v1

v2

v3

(c) Ordered

Fig. 2. Example Hierarchies

between the two values. Each of these arrays is initialized with “false” in each
of their cells. Then, as each request R1 is submitted and classified, these arrays
are updated.

To display hierarchical relationships, we iterate through all the possible com-
binations of values. If the cell in the subset array is “true” and the cell in
the notSubset array is “false”, we place an edge between the nodes. Beyond
this there are two optimizations that can be made to make the graph more
readable. The first is to combine values that return the same result into a sin-
gle node (frequently we find several values that always return the empty set).
The second optimization is to remove “transitive” edges from the graph. A tran-
sitive edge is any edge (u, v) where there also exist edges (u, u1), . . . (un, v).
Currently our tool outputs the graph in dot format, which can then be read into
GraphViz [3].

2.3 Selecting Requests

One of the fundamental challenges for characterizing a web application through
directed requests is to control the number of requests. Larger numbers of re-
quests imply larger amounts of time required to collect request-response data
(for Expedia, one of the sites we study in Section 3, each request took about 30
seconds) and this slows down the inferencing process. In addition, our techniques
are sensitive to the state of the underlying database, so when applying them to a
live web application, we need to limit the time frame within which the requests
are made to obtain consistent results.

To address these problems, the Request Selector can either select a sample of
requests from the pool up-front, or it can operate incrementally by selecting a
request based on previous results and continue selecting requests until the user
no longer wishes to refine the inference set.

We consider two batch selection approaches. The first approach, Random, sim-
ply selects a set of random requests from the pool of requests without repetition.
The second approach, Covering-Array, utilizes covering arrays [4] to determine
the set of requests to submit. In general, covering arrays ensure that all n-way
combinations of values are covered by the selected requests. For a given site with
m variables, we consider all n, such that 1 ≤ n < m (when n = m, all generated

Dynamic Characterization of Web Application Interfaces 267

requests are included). We used a tool developed by Cohen et al. [5] that uses
simulated annealing to find covering arrays.

We consider one incremental approach, Inference-Guided, which selects re-
quests based on requests already submitted and inferences already derived. To
select which request to submit, for each unsubmitted request, this approach de-
termines an award value, and selects the request with the highest award value.
To determine an award value for each unsubmitted request Ru, we consider those
requests that differ from some submitted request Rs in one variable (all other
unsubmitted requests are assigned an award value of 0). We focus on this set
of requests because it seems that similar requests are likely to return similar
results, and we can therefore use the classification of Rs as a predictor for the
classification of Ru. The award value of Ru is equal to the number of potential
inferences that would be changed if Ru has the same classification as Rs.

Inference-Guided selection requires that some requests be submitted before it
can begin to compute award values for other requests. We use two approaches
for this. One approach begins by randomly selecting the initial requests. Another
approach uses the Covering-Array tactic (for n = 2) to select an initial set of
requests to submit, and then incrementally selects additional requests.

3 Empirical Evaluation

The goal of our study is to assess whether our methodology can effectively and
efficiently characterize real web sites. In particular, we wish to answer the fol-
lowing research questions:

RQ1: What is the effectiveness of the characterization? We would like
our characterization to be useful for understanding and finding anomalies in web
applications. Therefore, we examine the inferences generated for various sites,
and consider how they reflect the observed behavior of those sites.

RQ2: What is the tradeoff between effectiveness and efficiency? As the
number of requests submitted to a web application increases, the quality of the
inferences we can obtain should improve. However, the number of requests that
can be made is limited by practical considerations. Therefore, we examine how
the quality of inferences varies as requests are selected.

3.1 Objects of Analysis

Our objects of analysis (see Table 2) are six applications from various domains
and implemented by various organizations. Three of them, MapQuest, Expedia,
and Travelocity, have been used in other studies [6,7] and are among the top-40
performers on the web [8]. BuyAToyota is an application to search for Toyota
certified used cars at local dealerships. NSF is an application supporting searches
for NSF funding opportunities. UNL is a job search application maintained by
the University of Nebraska - Lincoln human resources department.

268 M. Fisher II, S. Elbaum, and G. Rothermel

Table 2. Objects of Analysis

Object Relevant variables identified Variables Size
by Page Analyzer considered of

Text List Check & for request
Box Box Radio analysis pool

MapQuest 4 0 0 4 16
Expedia 4 5 2 9 49,996
Travelocity 4 7 1 9 49,996
BuyAToyota 2 5 0 5 33,408
NSF 1 7 0 7 72,576
UNL 2 4 0 4 42,345

Table 2 lists the numbers of variables identified by our Page Analyzer on the
main page produced by each of our target web applications, at the time of this
analysis, subdivided into basic input types, the numbers of those that we used
for our analysis, and the total of number requests in the initial request pool for
each of these applications. To keep the total number of requests manageable,
we limited the variables and values for those variables that we considered as
well as choosing relatively static web sites. When choosing which variables and
values to consider, we attempted to select them such that an interesting, but
representative range of behaviors for the web applications was explored. As we
show in Section 3.4, we did not always achieve this.

3.2 Variables and Measures

Our study requires us to apply our inferencing algorithms on a collected data
set of requests and responses to characterize the objects of study. Throughout
the study we utilize four request selection procedures corresponding to those
described in Section 2.3: Random, Covering-Array, Inference-Guided (Random),
and Inference-Guided (Covering-Array).

To quantify the impact of the request selection algorithms, we compute the
recall and precision as we select requests. To compute recall and precision, we
had to define a set of inferences as a baseline (the “expected” inferences). For
each application, we defined this set as the set of inferences reported when all
requests were selected. TotalExpectedInf is the cardinality of this set. Then, after
submitting a subset of the requests, S , we can define two additional values. The
first, ReportedExpectedInfS , is the number of inferences from the set of expected
inferences that were reported after submitting S . The second, ReportedInfS , is
the total number of inferences reported after submitting S . Finally we get:

RecallS = ReportedExpectedInfS/TotalExpectedInf
and

PrecisionS = ReportedExpectedInfS/ReportedInfS

Note that RecallS is 100% when the methodology reports all of the expected
inferences after submitting S , and that PrecisionS is 100% if we report no un-
expected inferences after submitting S .

Dynamic Characterization of Web Application Interfaces 269

3.3 Design and Setup

We applied the WebAppSleuth methodology to each of the objects of study. This
involved tailoring our request submission and response classification routines as
described in Section 2.1. For three of the sites (MapQuest, Travelocity, and
Expedia), we used the valid/invalid classification method. For the remaining
three sites we were able to collect a set of results (cars for BuyAToyota, funding
opportunities for NSF, and jobs for UNL).

To expedite the exploration of several alternative request selection mecha-
nisms and inference algorithms without making the same set of requests multiple
times, we performed all the requests in the pool, and then applied the different
mechanisms and algorithms to these results. This controlled for potential changes
in the state of the web applications by giving a common set of response pages to
operate on, while still obtaining results identical to what would have occurred
had we applied the analysis to the site directly.

We performed the analysis 25 times with each type of Request Selector to con-
trol for the randomness factor in the request selection algorithms. For the Ran-
dom and Inference-Guided selection each of these 25 runs selected one request at a
time and generated inferences after each request, continuing until all the requests
in the pool were selected. For Covering-Array, we selected 25 sets of requests for
each level of interaction from one to one less than the number of variables in the
application, and generated inferences for each of these sets of requests.

3.4 Results

We present the results in two steps, corresponding to our two research questions.
First, we show and discuss the characterization provided by the methodology for

Table 3. Inferences Found for each Web Application

Website Type Inferences
MapQuest Optional address, city, state, zip

Implications city =⇒ zip ∨ state, address =⇒ zip ∨ (city ∧ state)
Expedia Mandatory depCity, arrCity, depDate, retDate, depTime, retT ime

Optional adults, seniors, children
Implications (adults ∨ seniors)
Values children: 1 of 4 values

Travelocity All inferences from Expedia
Implications (adults = 0) =⇒ seniors, (seniors = 0) =⇒ adults

BuyAToyota Optional model, year, price, mileage, distance
Implications (year = 2006) =⇒ model
Values model: 13 of 28 values, price: 5 of 7 values
Hierarchies model: Flat, missing 3 edges from “all” value, empty val-

ues, mileage: Ordered, year: Flat, price: Ordered
NSF Mandatory pubSelect, fundType, queryText

Optional month, day, year, organization
Values organization: 46 of 48 values
Hierarchies fundType: Flat, organization: Missing edges from “all”

value, empty values, other anomalies, year: Ordered
UNL Values fte: 7 of 8 values, category: 7 of 9 values

Hierarchies fte: Flat, missing 5 edges from “all” value, empty value,
category: Flat, missing 1 edge from “all” value, empty
value, reportsTo: Flat, title: Flat

270 M. Fisher II, S. Elbaum, and G. Rothermel

Table 4. Summary of Anomalies Found in Sites

Site and Symptom Significance
Expedia and Travelocity:
children had 3 invalid values

We did not consider the age variables associated
with the children variable

Expedia: missing implica-
tions

Site returned flights in some cases when the total
number of travelers was 0

BuyAToyota: missing values
for model and price

We limited our search geographically, excluding
results that would have filled in the missing values

BuyAToyota: year =
2006 =⇒ model

New cars were added to site as we collected re-
quests

BuyAToyota: model hierar-
chy was flat

Models such as “Camry” did not include submod-
els such as “Camry Solara”

BuyAToyota: misplaced
value in hierarchy

“> 100,000” miles functioned like “< 32, 767”
miles

NSF: queryText variable was
mandatory

Blank value for queryText treated different than
not including queryText

NSF: missing values for
program

We limited our search to active funding opportuni-
ties, excluding archived funding opportunities that
would have filled in the missing values

NSF: fundType hierarchy
was flat

Aggregate values such as “Standard or Continuing
Grant” not treated proper aggregates

NSF: program hierarchy had
numerous anomalies

Problems with application logic

NSF: inconsistent treatment
of missing variables

Design inconsistency makes maintenance more dif-
ficult

NSF: missing implication
(pubSelect = “After”) =⇒
day ∧ month ∧ year

Site treated “After” the same as “Ignore” if de-
pendent values were missing

UNL: fte and category had
missing values

Certain values of these fields did not appear in
database

UNL: title hierarchy was flat Titles such as “Assistant Professor” and “Assis-
tant Professor-Political Science” returned disjoint
sets of results

UNL: missing edges in fte
and category hierarchies

Either problems with application logic or the data-
base state changed as we submitted requests

each target web application when the entire pool of requests is utilized. Second,
we analyze how the characterization progresses as the requests are submitted
and analyzed, utilizing four different request selection mechanisms.

RQ1: Effectiveness of the Characterization. Table 3 presents the inferences
derived from the requests we made and the responses provided by each of the
target applications. Overall, we were able to find anomalies on five of the six
web applications, suggesting that our methodology can be used to help improve
the dependability or usability of web applications. Table 4 summarizes all of the
anomalies found. For space reasons we discuss just two of these in detail, the
others are discussed in Reference [2].

The first example anomaly is for Expedia and Travelocity. On these appli-
cations we looked at sets of variables and values for which we expected to get
identical results. However, there were two value-based implications found for
Travelocity that did not appear in Expedia. These implications were the result
of Travelocity never returning a list of flights if the total number of selected
passengers was 0, while in some cases Expedia would return a list of flights.
Since flight search in both of these sites is just the first step in a process for pur-
chasing tickets and since Expedia’s behavior has changed since the original set

Dynamic Characterization of Web Application Interfaces 271

all

BIO EHR MPS OPP

BIO/EF EHR/DUE MPS/DMS MPS/OMA OPP/PRSS

(a) Expected

BIO

BIO/EF

MPS/OMA

all

EHRMPS OPP

EHR/DUE

OPP/PRSS

MPS/DMS

(b) Actual

Fig. 3. NSF Organization Hierarchy

of requests was submitted, this difference in behavior indicates that the earlier
version of Expedia probably contained a fault.

The second example anomaly was on NSF. The NSF grant search applica-
tion includes a variable, organization, that allows the user to select which NSF
program they are interested in. Figure 3(a) shows the expected hierarchy for an
interesting subset of the values for the organization variable, while Figure 3(b)
shows the hierarchy that was actually generated. The first thing to note is some
missing edges (e.g. between all and BIO and between MPS and MPS/DMS).
In addition, the value MPS/OMA is a child of multiple values: BIO/EF, MPS,
MPS/DMS, and EHR/DUE. This occurred because particular grants could be-
long to multiple programs and, in this case, only one grant offered through
MPS/OMA appeared in our results, and it belonged to the other programs as
well. Finally, OPP/PRSS appears at the bottom as a descendant of every other
node as no grants were ever returned for this value.

RQ2: Effects of Request Selection. Figure 4 presents our results with re-
spect to the precision and recall of the Inference-Guided and Random request
selection techniques, for three of the six web applications (with only 16 requests,
MapQuest is too small an example for request selection to be useful, Travelocity
had results nearly identical to Expedia and NSF had results similar to Buy-
AToyota). In each of the graphs, the x-axis represents the number of requests
selected from the pool, and the y-axis represents the average recall (left column)
or precision (right column) over the 25 runs. Each of the lines represents one
of the request selection techniques, and the legend below indicates which line
corresponds to which technique.

On two applications, Expedia and UNL, Inference-Guided request selection
(with Random or Covering-Array seeds) had average recall equal to or bet-
ter than Random or Covering-Array request selection regardless of the number
of requests selected. On these objects we see little difference between the two
Inference-Guided techniques or between the Random and Covering-Array tech-
niques (when considering the graphs for the Covering-Array technique, the points
of interest are the corners of the “steps” as these represent the collected data
points, while the other points along these plots are meant to aid in their inter-
pretation). For BuyAToyota, all the techniques were only slightly different in
terms of recall throughout the process.

272 M. Fisher II, S. Elbaum, and G. Rothermel

(a) Expedia

(b) BuyAToyota

(c) UNL

Fig. 4. Recall and precision vs percent of requests submitted

For all of the web applications, Inference-Guided request selection
(with Random or Covering-Array seeds) had average precision equal to or bet-
ter than Random or Covering-Array request selection throughout the request
selection process. Again, there was little difference between Inference-Guided
(Random) and Inference-Guided (Covering-Array) or between Random and
Covering-Array.

These results are encouraging because they show that we can often dramati-
cally reduce the number of requests required, while still reporting most correct
inferences and few incorrect inferences. In particular, for the application with
just valid and invalid classifications (Expedia) we needed fewer than 650 requests
(1.3% of the pool) to achieve 100% recall and precision with the Inference-Guided

Dynamic Characterization of Web Application Interfaces 273

techniques, and 21,500 requests (43% of the pool) with Random selection. The
addition of set classification and hierarchy inferences makes request selection
less effective, but we can still reduce reported incorrect inferences quickly using
Inference-Guided selection. In addition, it appears that using Covering-Array
techniques does little overall to improve the recall and precision of reported in-
ferences (either by itself in comparison to Random or as a seeding technique for
Inference-Guided instead of using random seeding).

4 Related Work

There has been a great deal of work to help identify deficiencies in web sites,
to provide information on users’s access patterns, and to support testing of web
applications [9,10,11,12,13]. Among these tools, our request generation approach
most resembles the approach used by load testing tools, except that our goal is
to generate a broad range of requests to characterize the variables in the web
application interface. There are also tools that automatically populate forms by
identifying known keywords and their association with a list of potential values
(e.g., zipcode has a defined set of possible values, all with five characters). This
approach is simple but often produces incorrect or incomplete requests, so we
refrained from using it in our studies to avoid biasing the inferencing process.

Our work also relates to research efforts in the area of program character-
ization through dynamic analysis [14,15,16,17,18,19]. These efforts provide ap-
proaches for inferring program properties based on the analysis of program runs.
These approaches, however, target more traditional programs or their byprod-
ucts (e.g., traces) while our target is web application interfaces. Targeting web
applications implies that the set of properties of interest to us are different and
that we are making inferences on the program interface instead of on the program
internals.

Recent approaches also attempt to combine dynamic inference with input
generation [20,21]. These approaches use dynamic inference techniques to classify
the behavior of the program under generated inputs to determine the usefulness
of these inputs for finding faults. Our approach differs in that we want to avoid
executing new inputs that will not help our characterization due to the high cost
of their execution and the large number of potential requests.

In our own prior work, we have made several inroads into the problems of au-
tomatically characterizing the properties of and relationships between variables
in web application interfaces. In earlier work [7] we presented static approaches
for analyzing HTML and JavaScript code to identify variable types, and a dy-
namic approach for providing simple characterizations of the values allowed for
variables (e.g., a variable cannot be empty). However, deeper characterizations
of web application interfaces were not obtainable through the mechanisms that
we considered. More recent work [6] presented our techniques for finding manda-
tory, optional and valid value and implication inferences as well as a less general
version of our Inference-Guided request selection technique. This work did not

274 M. Fisher II, S. Elbaum, and G. Rothermel

consider classification of sets of results, hierarchy inferences, or the application
of covering array techniques to request selection, and looked at only three of the
six applications we examined here.

5 Conclusion

We have presented and evaluated what we believe to be the first methodology for
semi-automatically characterizing web application interfaces. This methodology
submits requests to exercise a web application, and analyzes the responses to
make inferences about the variables and values within the application interface.
As part of the methodology we have introduced a family of selection mechanisms
for submitting requests more efficiently. Further, the results of an empirical study
of six web applications from a variety of domains indicate that the methodology
can effectively derive inferences that can help with anomaly detection or under-
standing of the web application interface and that our Inference-Guided request
selection technique can reduce the number of requests required to get correct
inferences and filter out incorrect ones.

These results suggest several directions for future work. First, we would like
to extend our methodology to work with different types of web applications.
Second, the current non-automated steps of the methodology, customization
of the request submission and response classification routines, required between
four and eight hours for each of the sites we studied. Hence, we plan on leveraging
patterns in web applications along with clustering techniques to build heuristic
methods for automating these parts of WebAppSleuth. Finally, we will explore
additional types of inferences.

Acknowledgements. Thanks to M. Cohen who provided us with her tool
for generating covering arrays. K.-R. Chilakamarri participated in the early
portions of this work. This work was supported in part by NSF CAREER
Award 0347518, the EUSES Consortium through NSF-ITR 0325273 and the
ARO through DURIP award W911NF-04-1-0104.

References

1. Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web services de-
scription language. http://www.w3.org/TR/wsdl (2001)

2. Fisher II, M., Elbaum, S., Rothermel, G.: Dynamic characterization of web applica-
tion interfaces. Technical Report UNL-TR-CSE-2006-0010, University of Nebraska
- Lincoln (2006)

3. GraphViz. http://www.graphviz.org/ (2006)
4. Cohen, D., Dalal, S., Fredman, M., Patton, G.: The AETG system: An approach

to testing based on combinatorial design. IEEE Trans. on Softw. Eng. 23(7) (1997)
437–444

5. Cohen, M., Colbourn, C., Gibbons, P., Mugridge, W.: Constructing test suites for
interaction testing. In: Int’l Conf. on Softw. Eng. (2003) 38–48

http://www.w3.org/TR/wsdl
http://www.graphviz.org/

Dynamic Characterization of Web Application Interfaces 275

6. Elbaum, S., Chilakamarri, K.R., Fisher II, M., Rothermel, G.: Web application
characterization through directed requests. In: Int’l Workshop on Dynamic Analy-
sis. (2006)

7. Elbaum, S., Chilakamarri, K.R., Gopal, B., Rothermel, G.: Helping end-users
“engineer” dependable web applications. In: Int’l Symp. on Softw. Reliability Eng.
(2005) 31–40

8. Consumer top 40 sites. http://www.keynote.com/solutions/performance indices/
consumer index/consumer 40.html(2006)

9. Benedikt, M., Freire, J., Godefroid, P.: VeriWeb: Automatically testing dynamic
web sites. In: Int’l WWW Conf. (2002)

10. Elbaum, S., Rothermel, G., Karre, S., Fisher II, M.: Leveraging user-session data
to support web application testing. IEEE Trans. on Softw. Eng. (2005) 187–201

11. Ricca, F., Tonella, P.: Analysis and testing of web applications. In: Int’l Conf. on
Softw. Eng. (2001) 25–34

12. Software QA and Testing Resource Center: Web Test Tools.
http://www.softwareqatest.com/qatweb1.html (2006)

13. Tilley, S., Shihong, H.: Evaluating the reverse engineering capabilities of web tools
for understanding site content and structure: A case study. In: Int’l Conf. on Softw.
Eng. (2001) 514–523

14. Ammons, G., Bodik, R., Larus, J.: Mining specifications. In: Symp. on Principles
of Prog. Lang. (2002) 4–16

15. Ernst, M., Cockrell, J., Griswold, W., Notkin, D.: Dynamically discovering likely
program invariants to support program evolution. In: Int’l Conf. on Softw. Eng.
(1999) 213–224

16. Hangal, S., Lam, M.: Tracking down software bugs using automatic anomaly de-
tection. In: Int’l Conf. on Softw. Eng. (2002) 291–301

17. Henkel, J., Diwan, A.: Discovering algebraic specifications from Java classes. In:
Eur. Conf. on OO Prog. (2003) 431–456

18. Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., Anderson, T.: Eraser: A
dynamic data race detector for multithreaded programs. ACM Trans. on Comp.
Systems 15(4) (1997) 391–411

19. Yang, J., Evans, D.: Dynamically inferring temporal properties. In: Workshop on
Prog. Analysis for Softw. Tools and Eng. (2004) 23–28

20. Pacheco, C., Ernst, M.: Eclat: Automatic generation and classification of test
inputs. In: Eur. Conf. on OO Prog. (2005) 504–527

21. Xie, T., Notkin, D.: Tool-assisted unit test selection based on operational viola-
tions. In: Int’l Conf. on Auto. Softw. Eng. (2003) 40–48

http://www.keynote.com/solutions/performance_indices/consumer_index/consumer_40.html
http://www.keynote.com/solutions/performance_indices/consumer_index/consumer_40.html
http://www.softwareqatest.com/qatweb1.html

A Prioritization Approach for Software

Test Cases Based on Bayesian Networks

Siavash Mirarab and Ladan Tahvildari

Department of Electrical and Computer Engineering,
University of Waterloo, Ontario, Canada N2L 3G1

{smirarab,ltahvild}@uwaterloo.ca

Abstract. An important aspect of regression testing is to prioritize the
test cases which need to be ordered to execute based on specific criteria.
This research work presents a novel approach to prioritizing test cases
in order to enhance the rate of fault detection. Our approach is based
on probability theory and utilizes Bayesian Networks (BN) to incorpo-
rate source code changes, software fault-proneness, and test coverage
data into a unified model. As a proof of concept, the proposed approach
is applied to eight consecutive versions of a large-size software system.
The obtained results indicate a significant increase in the rate of fault
detection when a reasonable number of faults are available.

Keywords: Test case Prioritization, Regression Testing, Bayesian Net-
works.

1 Introduction

Prioritizing existing test cases from earlier versions of software is one of the
main techniques used to address the problem of regression testing. Regression
testing is considered as one of the most expensive tasks in software maintenance
activities [1]. Such a technique uses the test-suite developed for an earlier ver-
sion of a software system to conform the new added requirement in the current
version. Selecting all or a portion of the test-suite to execute which is referred
to as Regression Selection Techniques (RST) can be very costly [2,3,4]. Fur-
thermore using RST, testers do not have the option to adjust their test-effort
to their budget. To provide the missing flexibility, researchers have introduced
prioritization techniques [5,6] by means of which testers can order the test cases
based on certain criteria, and then run them in the specified order and as much
as they can afford. To further assist testers to adjust the cost and effort, models
of cost-benefit analysis are introduced [7]. During the past ten years, there has
been much research on techniques of prioritization [8,9,10,11,12,13].

Despite all the above-mentioned research activities, empirical studies indicate
that there is a significant gap between optimal solutions to prioritization problem
and proposed techniques [9]. Also, they show that the performance of different
techniques depend largely on the target software system. Furthermore, one can
imply that techniques using more than one factor typically perform better than

M.B. Dwyer and A. Lopes (Eds.): FASE 2007, LNCS 4422, pp. 276–290, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Prioritization Approach for Software Test Cases 277

those with one criterion. Therefore, to fill the mentioned gap, we need to build
techniques which can incorporate a diverse range of available data, from test
coverage to history of fault detection.

In this paper, we present a novel test-suite prioritization framework which
integrates various sources of information into one single model. Our technique
is based on a probabilistic specification of the problem. Similar to the definition
of Kim at el. [10], our prioritization approach is based on ordering test cases
according to their success probability. The proposed process uses conditional
probability and utilizes a Bayesian Network [14] model which takes advantage
of source code modification information, univariate measures of fault-proneness,
and test coverage data. We evaluate the performance of our technique using
APFD (Average Percentage Faults Detected) [5] measure on eight consecutive
versions of a large-size Java application augmented with hand-seeded faults; we
then compare our results to some of the common techniques from literature. The
results show that when there are reasonable number of faults in the source code,
our proposed novel technique is capable of achieving better values of APFD in
the comparison with other techniques.

The rest of the article is organized as follows: Section 2 deals with the prob-
lem statement. Then, our proposed approach to solve the problem is presented.
Section 4 gives a brief introduction to Bayesian Networks (BN) while elaborat-
ing on how we have designed our BN model. Section 5 discusses the obtained
results after applying our techniques on a large size case study. Finally we make
conclusion and point out some future directions for this research work.

2 Problem Statement

The classic definition of test case prioritization is based on finding a permutation
of test cases which can maximize an award function [5]. Kim et al. look at the
same problem from a probabilistic point of view. They describe prioritization as:
i) applying an RST technique, ii) assigning a selection probability to each of the
remaining tests, iii) drawing a test case using the assigned probabilities, and iv)
repeating until time is exhausted. Adopting the probabilistic nature of their de-
scription and with some modification, a prioritization can be considered as:

1. Gathering all “useful” evidences Ei from software system.
2. Using a “prioritization technique” to assign a probability of success to each

test case ti in test-suite T, given all the evidences P (Tj |E1, . . . , En).
3. Selecting and running a test case from T based on the defined probability

model.
4. Updating the P (Tj |E1, . . . , En) values when applicable.
5. Repeating step 4 until release criteria is met.

We do not think of the first step in Kim’s description as a part of prioriti-
zation; thus, it is taken out. Moreover, in this approach some sort of selection
is automatically done when low probabilities are assigned to test cases. However,

278 S. Mirarab and L. Tahvildari

in practice one may prefer to apply some less costly selection techniques be-
fore prioritization in order to reduce the size of test-suite. “Useful” evidence in
step 1 means all information the “prioritization technique” of step 2 is interested
in (e.g. test coverage information, code change). In step 2, the main part of this
process, we have a set of random variables ti, each of which reflect the outcome
of a test case ti from T. These variables have two possible values of “Success”
(meaning that a defect is detected) and “Failure”. The event of “Success” in ti

is denoted as Ti. A “prioritization techniques” is a systematic way to estimate
all P (Tj |E1, . . . , En)s. Step 3 is also slightly different than Kim’s. Although the
notion of drawing test cases using assigned probabilities is interesting in that it
gives all test cases some selection chance and helps discover the residual faults,
it is not the only option. One may simply order test cases according to their
probability, particularly when experimentation is involved deterministic nature
of the later approach is more appropriate. Step 4 is an important addition to
previous definitions which provides a feedback mechanism to add the learned
information from each test execution (e.g. its outcome) to the model defined
in step 2. Note that this mechanism includes, but is not limited to the tech-
niques of [5] where feedback is used while ordering test cases not after each run.
Finally, in step 5 we generalize the stopping condition to “met release criteria”
which can be anything from testing time exhaustion to reliability requirement
satisfaction [15].

The proposed view of prioritization can be applied to existing techniques. In
the following, two families of existing techniques are briefly described in accor-
dance with the aforementioned view of prioritization problem.

– Coverage-based Techniques. The most important aspect of any tech-
nique is the set of evidences it takes advantage of. In this family of prioriti-
zation techniques, the evidence variable is the number of code elements that
are covered by each test case. For example, at method level coverage-based
technique, the number of covered methods is used to estimate the probability
of success for each test case:

P (Tj |E) =
the number of methods covered by ti

total number of methods

– Change-coverage Techniques. In this family of techniques both informa-
tion of test coverage and source code change are used as the evidence. At
block level, for example, the estimation of success probability is:

P (Tj |E) =
the number of changed blocks covered by ti

total number of changed blocks

The main part of the described process is step 2 where one should estimate the
probability of success for each test case. The problem that this paper addresses
is to build such techniques. In the following section, our approach to solve this
problem is described.

A Prioritization Approach for Software Test Cases 279

3 Proposed Approach

Our approach addresses the prioritization problem by: i) extracting different
sets of evidence from the source code, ii) integrating all information to a sin-
gle Bayesian network model, and iii) using probabilistic inference to compute
P (Tj |E) values. Fig. 1 illustrates a high-level schema of this approach. The first

Measuring Fault-
proneness metric

Analyzing source
code changes

Tracing
Test case
coverage

Extracting Evidences

Test-Suite

Building
Bayesian
Network

Probabilistic
Inference

BN
Model P(Ti)

A Program
 (change

history, source-
code, etc.) Evidences

Data Flow

Process f

Fig. 1. Three Phases of Proposed Approach

step in performing prioritization is to gather all useful information that is to be
included in the model. Our current solution exploits three sources of informa-
tion: software quality metrics, test coverage measures, and change analysis data.
Extracting evidences is undertaken in order to provide the necessary data for
the next phase, Building Bayesian Network, in which an inclusive probabilistic
model to relate these data is built. The details and rational behind using these
evidences will be covered in the next section, where we give an in-depth descrip-
tion of the second phase. The last phase is to employ the probabilistic inference
algorithms to associate to each test case its probability of success given the col-
lected evidences. Note that the first and last phases are well-established research
works and here we just make use of the existing contributions to implement them.

4 Building Bayesian Network

In this section, first we introduce Bayesian Networks briefly and then elaborate
further on the second phase of our proposed process through which the other
phases are more clarified.

4.1 Background: Bayesian Network

Bayesian Network (BN) is a special type of “probabilistic graphical models” [14].
A BN is a directed acyclic graph consisting of three elements: nodes repre-
senting random variables, arcs representing probabilistic dependency among
those variables, and Conditional Probability Distribution Table (CPT) for each
variable, given its parents. The nodes can be either evidence or latent variables.

280 S. Mirarab and L. Tahvildari

An evidence variable is a variable of which we know its values (i.e. it is mea-
sured). Arcs specify the causal relation between variables. Each node has a table
which includes the probabilities of outcomes of its variable given the values of its
parents.

Bayesian networks reflect the belief of experts about the problem domain. They
can be used to answer probabilistic queries. For example, based on the evidence
(observed) variables, the posterior probability distributions of some other vari-
ables can be computed (probabilistic inference). However, designing a BN model
is not a trivial task. There are two facets to modeling a BN, designing the struc-
ture and computing the parameters. Regarding the first issue, the notions of con-
ditional independence and causal relation [16] can be of great help. Intuitively,
two events (variables) are conditionally independent if knowing the value of some
other variables makes the outcomes of those events independent. It is important
to make sure that conditionally independent variables are not connected to each
other. Designing based on causal relationships is one way to achieve that. For com-
puting the parameters, expert knowledge, statistical learning, and probabilistic
estimations can be used. One potential problem is that we may know how a vari-
able is dependent on each of its parents, but do not have its distribution condi-
tioned on all parents. In these situations, “noisy-OR” assumption can be helpful.
The noisy-OR assumption gives the interaction between the parents and the child
a causal interpretation and assumes that all causes (parents) are independent of
each other in terms of their influence on the child [14]. More formally, this as-
sumption asserts whatever prevents one parent to cause a child is independent
from what prevents the other parents to cause the child.

4.2 Proposed BN Model

Empirical studies conducted in the literature indicate that an important factor
in performance of a technique is the evidences it utilizes [9]. The rational behind
using Bayesian networks for prioritization is to unify various types of evidences
in one single model.

As mentioned in Section 4.1, modeling is the main focus in solving the prob-
lems using BN. A description of how three basic elements of a BN is designed
in our approach follows:

Nodes. There are three categories of nodes in these models:

• ce : These variables represent change in the elements of the program. Each
software element in the considered level of granularity (i.e. a class) has a node
of this type. These variables can take a value of “Changed” or “Unchanged”.

• fe : This category reflects our belief whether each element is faulty. Similar
to the previous family, each element of the program has one node and each node
can have the values of “Faulty”, or “Non-Faulty”.

• t : These variables represent the outcome of a test case which can be “Suc-
cess” or “Failure”. Each test case has one node of this type and the probability
distributions of these nodes are what we are looking for P (Ti|E).

A Prioritization Approach for Software Test Cases 281

Arcs. Each arc in a BN indicates a causal relation between variables of two
connected nodes. There are two set of arcs in our network:

• ce − fe : Each fe node is the child of the corresponding (i.e. of the same
code element) ce node. The existence of these arcs reflect the causal relation
that changes to elements of software can introduce faults in the same element.

• fe − t : Each t node is the child of some fe nodes. These arcs imply the
causal relation between presence of fault in a software element and success of
test cases that examine that element.

In Fig. 2 the overall structure of the designed model is illustrated. Each ce
node is connected to one fe node and the fe nodes are connected to an arbitrary
number of t nodes.

Fault-proneness Test CoverageChange Data

Fig. 2. The Structure of the Bayesian Network

CPT. Each category of nodes has its own Conditional Probability Table:

• P (cei) : ce nodes are not the child of any other node, so their distribution
is not conditional. These nodes are the only “observed” variables of the model.
In a simple model, P (cei = Changed) can be set to either 0 or 1, meaning that
software is either “Changed” or “Unchanged”. However, they also can be used
to represent the amount of change an element has gone through. In this case
cei variables mean the effective change of the element and P (cei = Changed)
reflects our belief that the element has been effectively changed.

P (cei = Changed) = ChangeIntensity(ei)

In this formula, ChangeIntensity(ei) is a function which returns how
much semantic change the element ei has gone through. This function can be
implemented with algorithms as simple as Unix diff. In our study, we have used
an algorithm presented in [17] which uses byte code to estimate similarity be-
tween two versions of a program.

282 S. Mirarab and L. Tahvildari

• P (fei|cei) : Each fe nodes is a child of one and only one parent, which is
the corresponding ce variable. Considering that both fe and ce can take two
values, the CPT will contain 4 values, two of which are trivial, since P (fe =
Faulty|ce) = 1 − P (fe = Non-Faulty|ce). Therefore, we need to estimate two
values: P (fe = Faulty|ce = Changed) and P (fe = Faulty|ce = Unchanged). In
general, the probability of presence of fault in software is called fault-proneness
and is profoundly studied in literature [18,19]. It is empirically shown that one
can approximately predict the fault-proneness of code elements using software
metrics. To build these models of fault-prediction, there are two major options:
multivariate and univariate models. Univariate models estimate fault-proneness
using one single metric. Multivariate models, on the other hand, are a linear com-
bination of univariate models. To use multivariate models, one should “train”
the model on a second program and apply the potentially biased model to the
system in question. As empirically evaluated in [18], using this approach, multi-
variate models do not necessarily generate better results; thus, in this work we
use univariate models. The aforementioned studies (and also an empirical study
on the relation between APFD and software metrics [20]) indicate that measures
of complexity and coupling are better indicators of fault-proneness. One specific
study [19] has shown that coupling is a significantly better measure than other
metrics. Although our model can fit in any software metric, here we use measures
of coupling as an indicator fault-proneness:

P (fei = Present|cei = Changed) =
α CBO(ei)

max(CBO(ex))
+ δ1, (α + δ1 ≤ 1)

In this formula, ei is an element of the system, say a class, and CBO (Coupling
between Objects) is an object-oriented metric from Chidamber and Kemerer
suite [21] which counts the number of classes to which a given class is coupled
(i.e. uses its methods and/or fields). The choice of this metric is based on the
mentioned empirical studies. The dominator is a normalization factor and α and
δ1 bound the probability of fault introduction.

As for P (fei = Faulty|cei = Unchanged), estimating this value is tricky
because it represents the less probable situation that an element is faulty, even
though it is not changed. This can happen because of residual faults (from previ-
ous versions) or because of the impact of changes in other elements. Estimating
both causes is hard and calls for more thorough empirical studies. In current
modelling we use the following formula:

P (fei=Faulty|cei=Unchanged) =
β f -out(ei)

max(f -out(ex))
+ δ2 , (β + δ2 � α + δ1 ≤ 1)

Here, f -out (fan out), is a measure of the number of classes an specific class is
coupled to (i.e. uses them) [22]. Using this metric is mostly in order to capture
change impacts. As known, the more fan out a class has, the more it is endan-
gered by changes of other classes. The important invariant is that the probability
of fault presence in unchanged elements should be much less than in changed

A Prioritization Approach for Software Test Cases 283

elements. Let γ = α+δ1
β+δ2 . By adjusting γ (the change effect factor) we can control

the degree to which the presence of change in an element raises our belief in its
fault-proneness.

• P (ti|fe1 . . . fen) : Unlike the other node types, t nodes can have more than
one parent. That is due to the fact that a test case may be able to find faults
from different elements of the software. These values can be determined accord-
ing to the coverage information of a test case. Normally, the information of test
coverage is available only when test cases are executed and prioritization does
not have any justification. The solution is to use the coverage information from
previous versions for the current program. To further enhance the reliability of
this solution, one may use heuristics of [12] (however, we believe even with-
out these heuristics, the estimation is reasonable). Having test coverages, we
estimate:

P (ti = Success|fej = Faulty) = Cov(ti, ej)

Where Cov(ti, ej) is a function returning the percentage of the code element
j covered by test case i. This formula estimates the relation between a test
case and one single element. However, to build the CPT we need the proba-
bility of success for a test given all combinations of values of fe variables. In
this situation, the table would become enormous and its size would grow expo-
nentially with the number of covered elements by a test. In order to cope with
this problem, we make the noisy-OR assumption, explained in Section 4.1. The
assumption is that the relation of a test case to an element is independent from
its relation to any other element. It can be argued that the ability of a test
case to reveal a fault in one element is not related to its fault revealing ability
in other elements, hence the assumption. Having the noisy-OR assumption we
can say:

P (ti|fe1 . . . fen) = 1 − (1 − P0)
∏

j

(1 − P (Ti|fej = Faulty))
1 − P0

(1)

In this formula, P0 is P (Ti|fe1 = Non-Faulty, . . . , fen = Non-Faulty). This
value (also called “leak”) is the probability of a test case succeeding even though
all of its related elements are non-faulty. This value should be zero unless the
information of coverage is incomplete or there exists an integration fault. For
consideration of these causes, a very small constant can be assigned to leak pa-
rameter. Formula 1 is a straight-forward usage of noisy-or formula (justification
of this formula can be found in BN references such as [16]).

In this model ce nodes are observations and to estimate the distribution of t
nodes (the desired variables), we need to perform probabilistic inference. There
are many inference algorithms introduced for BNs which generally fall into two
categories of exact and sampling algorithms. Due to well-structured nature (three
layers of independent variables) of our network, we can use exact inference even
for large systems. Details of how inference algorithms work are out of the scope
of this paper but the general idea is first compiling the directed graph into a
tree, and then updating the probabilities in the tree.

284 S. Mirarab and L. Tahvildari

5 Experiment

To evaluate the proposed approach, we have built a semi-automated envi-
ronment for test case prioritization. As a proof of concept, eight consecutive
versions of Apache Ant [23] with a catalogue of 10 prioritization techniques are
examined.

5.1 Prioritization Environment

To assist future experiments of test case prioritization, a semi-automated frame-
work is implemented. Fig. 3 depicts a high-level schema of this system.

Software System

Report Repository

Test Execution Information

Report Generator

Metrics

Test Coverage

Change

Evaluation

APDF

M_A_Cov

Prioritization Techniques

Chg_Cov

Chg_A_Cov

C_Cov

Optimal

M_Cov

Random

BN

C_A_Cov

Original

Fig. 3. The High-Level Schema of the Framework

The first subsystem, “Report Generator”, is mostly implemented using exter-
nal tools. To collect software metrics, a tool called ckjm [24] is used; for gath-
ering coverage information Emma [25] is utilized and the change information is
obtained from Sandmark [17] which is a watermarking program but provides in-
teresting change track algorithms. In the second subsystem,“Prioritization Tech-
niques”, different techniques of prioritization are implemented. This subsystem
uses generated reports from the first subsystem. For implementing the BN tech-
nique we have used Smile Library [26]. Finally, the last subsystem, “Evaluation”,
is responsible for measuring evaluation metrics (merely APFD).

5.2 Experiment Setup

Subject Program. Performing experiments in test case prioritization calls for
many artifacts some of which are very expensive to gather. In particular, the
subject program needs to have many faulty versions. Do et al. [27] have built a
repository of C and Java open source programs with hand seeded faults called
“Software-artifact Infrastructure Repository (SIR)”. From their Java repository,

A Prioritization Approach for Software Test Cases 285

Table 1. Eight Consecutive Versions of Apache Ant

Metric Name v0 v1 v2 v3 v4 v5 v6 v7
Faults Count 0 1 1 2 4 4 1 6

Test Case Count 0 28 34 52 52 101 104 105

Number of Classes 143 229 343 343 533 537 537 650

Lines Of Code (K) 23 37 57 57 95 97 97 124

Apache Ant has the most number of seeded faults and has a reasonable size
(Table 1). We have used this program for all of our experimentation.

Evaluation Metric. To be able to compare our results to other empirical stud-
ies (esp. those of [8] as one of the rare studies focusing on Java programs), APFD
is used as the evaluation metric. This metric aims to calculate fault detection rate
by measuring the weighted average of the percentage of faults detected over the
test suite execution period. APFD values range from 0 to 100 and higher numbers
indicate faster fault detection rates. Its precise definition can be found in [5]. How-
ever, this metric has some drawbacks, for example, it neither takes into account
the cost of each individual test nor the severity of faults.

Prioritization Techniques. In this study, ten prioritization techniques are
examined. Table 2 lists these techniques. The first three are control techniques:
Optimal is the best possible order computed in a greedy manner; Random orders
randomly (the average of 50 runs); and Original is the original order of test cases.
The next six techniques are based on [8] and use coverage information. Their
difference is in evidences used, granularity level, and use of feedback mechanism.
Here, feedback means adjusting the coverage information after adding any test
case to the order such that elements that are already covered do not affect next
selections ([8]). Finally, BN represents our approach where the parameters are
set as: α = 0.8, δ1 = δ2 = 0.1, and γ = 8.

Table 2. Prioritization Techniques Used in the Experimentation

Name Evidences Level Feedback
Optimal Fault Matrix N/A Yes
Random Nothing N/A No
Original Nothing N/A No
C Cov (Class Coverage) Coverage Class No
M Cov (Method Coverage) Coverage Method No
C A Cov (Class Additional Coverage) Coverage Class Yes
M A Cov (Method Additional Coverage) Coverage Method Yes
Chg Cov (Change Coverage) Coverage+Change Class No
Chg A Cov (Change Additional Coverage) Coverage+Change Class Yes
BN All Class No

286 S. Mirarab and L. Tahvildari

5.3 Discussion on Obtained Results

The results of the case study are depicted in Fig. 4. Almost all techniques per-
form better than “random” and “original” (the two control techniques). As far as
the level of granularity for coverage information is concerned, there is no mean-
ingful difference between class level and method level techniques. This result is
in accordance with past empirical studies (although to our knowledge, class-level
coverage were not previously inspected), and suggests using class level coverage
information which is much easier to obtain. Also, it is evident that techniques
employing the feedback mechanism (or “additional techniques”) bring about
better results. Although using change data leads to a 2% increase in the aver-
age APFD value (Table 3), there is no strong evidence that they outperform
techniques with merely coverage information.

(a) All Versions (b) Versions with More Than One Fault

Fig. 4. Boxplot Diagram of the Experiment Results

As for BN technique, the median of its AFPD values among all versions is
better than all other techniques (however not significantly). When considering
average instead of median, although it is performing better than most of the
techniques, it is not the best when we consider all the versions of the subject
program (Table 3). More specifically, in average BN is performing better than all
techniques without feedback mechanism, but worse than additional techniques.
Note that BN as implemented in this experimentation does not take the advan-
tage of any feedback. Taking a closer look at the data, we noticed that in many
versions, BN technique is achieving the best performance. To inspect why the
average performance of BN is not the best, the fault information of the subject
program should be considered. There are three versions of the ant case study
which are seeded only with one fault. The results indicate that on these three
versions, BN achieves less fault detection rate than the other techniques. How-
ever, one can argue that one single fault does not provide a reliable basis for
comparison of techniques. Thus, we took out the versions with one fault (three
versions were such) and compared the results again.

A Prioritization Approach for Software Test Cases 287

Fig. 4 (b) illustrates that BN is performing better than all the other tech-
niques, in this scenario. There is strong evidence that BN median values are
better than all other techniques. Moreover, it results in better average APFD
values. In average, it produces 5% better APFD values than the second best
technique(Chg A Cov), 11% better than the average of all techniques except
optimal, and 17% better than the original order (Table 3).

Table 3. Average and Standard Error of Different Techniques

Technique All Versions More Than One Fault
Name Average SD Average SD

Optimal 100.47917 1.03495 99.90429 0.89719

Original 52.62632 24.43825 66.03252 24.57651

Random 62.61275 9.54245 69.28956 6.47141

C Cov 60.18787 30.75548 77.35928 8.79435

M COV 63.94816 27.70506 73.09323 14.88074

C A Cov 79.80473 10.55892 72.11833 13.09055

M A COV 81.44635 10.32284 75.01233 7.09485

Chg Cov 59.79584 29.16008 74.55728 11.42936

Chg A Cov 81.84868 11.73580 79.56256 11.04775

BN 67.66124 29.40874 83.19689 17.88581

To further inspect the effect of the number of faults, we depicted APFD of the
techniques versus the number of faults. Fig. 5 shows when the fault count of the
system grows, the APFD value of “additional” techniques decrease; whereas
the BN see an increase in the value of APFD. This suggests that feedback
employing techniques perform better when a very small number of faults are
available, but as the potential number of faults grows BN is the most promising
technique. This result sounds rational because BN is a model based on probabili-
ties and the more number of trials, the more reliable the results of a probabilistic
model.

Fig. 5 also shows another interesting phenomenon. While all “additional”
techniques have a negative slop, the techniques with no feedback mechanism
all see an increase in APFD with number of faults. This observation should
be empirically evaluated because when generalized, it has a very important
practical implication: when the software is believed to contain many faults,
the use of feedback is not useful but in more reliable systems, when tes-
ters struggle to find the last faults, feedback can improve the rate of fault
detection.

In conclusion, BN technique seems to perform better than any other tech-
nique inspected here, when there are more number of faults. In three out of four
versions with more than one fault, the BN produced the best results. Therefore,
authors believe that the BN technique will perform very well when applied in
practice to software systems that typically contain much more faults.

288 S. Mirarab and L. Tahvildari

30

40

50

60

70

80

90

100

0 2 4 6

Number of Faults

A
P

FD

Linear (BN)

Linear (Chg_A_Cov)

Linear (M_A_COV)

Linear (M_COV)

Linear (CH_Cov)

Linear (C_A_Cov)

Linear (C_Cov)

Fig. 5. APFD versus Fault Counts

6 Related Work

Many techniques for prioritization along with measures of assessing their per-
formance have been introduced in literature. In [5], authors introduce APFD
as a measure of fault detection rate and empirically evaluate their catalogue of
techniques. In [9], more techniques with more than one criterion, are evaluated
on larger case studies. In [8], the authors take a similar approach and evaluate
similar techniques on Java programs and JUnit test cases.

Kim et al. [10] formulate test case prioritization based on the probability
theory and focus on history-based prioritization to address the issue of contin-
ues software evolution and regression testing. They also introduce “total effort”
and “fault-age” to measure cost-benefit trade-offs. Srivastava et al. have built
Echelon [12] system to deal with prioritization in industrial environment. They
propose extracting coverage information from byte-code for better performance
and also provide some heuristics to address the high cost of gathering coverage
information. Saff et al. [11] take a completely different approach by introducing
continues testing. They developed a plug-in for Eclipse IDE and used devel-
oper behavior modelling to test software on the fly and during development.
PORT [28] is another attempt in which potential defect severity and also issues
related to testing of new code in regression testing are taken to account. More
recently, Walcott et al. utilize Genetic Algorithms to solve the prioritization
problem in a time-constrained situation [13].

On the other hand, employing Bayesian networks for testing has been ad-
dressed by some researchers. As early as 1997, in [29] authors described ways
of modelling uncertainty in software into BN models that can be later used by
testers and managers for either confirming, evaluating or predicting software un-
certainties. In [30], authors use graphical models to provide a prediction model
for the whole problem of software testing, and in [31] Bayesian networks is used
to asses the overall software quality.

7 Conclusion and The Future Work

In this paper we first described test case prioritization problem from a proba-
bilistic point of view, and then proposed a new approach to solve this problem

A Prioritization Approach for Software Test Cases 289

using Bayesian networks. We introduced our framework to implement the ap-
proach and presented the results of a case study. The results suggest that the
new approach can achieve high values of APFD, especially when the number of
available faults are reasonable.

In the pursual of future research, first the results should be further inspected
using empirical experiments and taking into account cost-benefit models. Also,
the software faults in this case study are all hand-seeded and their representatives
of real faults may be argued. Therefore, it is critical to evaluate this approach
on programs that contain a reasonable number of real faults.

Moreover, the feedback mechanism as described in the problem statement
section, can be added to this approach by simply making evidence nodes in BN
after each test run. This may result in longer inference time, so cost-effectiveness
should be carefully considered. The use of other metrics for fault-proneness and
change analysis is another way of extending this work. Finally, other metrics of
evaluation of prioritization techniques should be introduced and examined.

References

1. Leung, H.K.N., White, L.J.: Insights into regression testing. In: Proceedings on
IEEE International Conference of Software Maintenance (ICSM). (1989) 60–69

2. Agrawal, H., Horgan, J.R., Krauser, E.W., London, S.: Incremental regression
testing. In: Proceedings of the International Conference on Software Mainte-
nance(ICSM). (1993) 348–357

3. Chen, Y.F., Rosenblum, D.S., Vo, K.P.: Testtube: A system for selective regres-
sion testing. In: Proceedings of the ACM International Conference on Software
Engineering (ICSE). (1994) 211–220

4. Rothermel, G., Harrold, M.J.: A safe, efficient regression test selection technique.
ACM Transactions on Software Engineering and Methodology 6 (1997) 173–210

5. Rothermel, G., Untch, R.H., Chu, C., Harrold, M.J.: Prioritizing test cases for
regression testing. IEEE Transactions on Software Engineering 27 (2001) 929–948

6. Wong, W.E., Horgan, J.R., London, S., Bellcore, H.A.: A study of effective regres-
sion testing in practice. In: Proceedings of the IEEE International Symposium on
Software Reliability Engineering(ISSRE). (1997) 264–274

7. Malishevsky, A.G., Rothermel, G., Elbaum, S.: Modeling the cost-benefits tradeoffs
for regression testing techniques. In: Proceedings of the International Conference
on Software Maintenance (ICSM). (2002) 204–213

8. Do, H., Rothermel, G., Kinneer, A.: Prioritizing JUnit test cases: An empirical
assessment and cost-benefits analysis. Empirical Software Engineering: An Inter-
national Journal 11 (2006) 33–70

9. Elbaum, S., Malishevsky, A.G., Rothermel, G.: Test case prioritization: A family of
empirical studies. IEEE Transactions on Software Engineering 28 (2002) 159–182

10. Kim, J.M., Porter, A.: A history-based test prioritization technique for regres-
sion testing in resource constrained environments. In: Proceedings of the ACM
International Conference on Software Engineering(ICSE). (2002) 119–129

11. Saff, D., Ernst, M.D.: Reducing wasted development time via continuous test-
ing. In: Proceedings of the IEEE International Symposium on Software Reliability
Engineering(ISSRE). (2003) 281–292

290 S. Mirarab and L. Tahvildari

12. Srivastava, A., Thiagarajan, J.: Effectively prioritizing tests in development en-
vironment. In: Proceedings of the ACM SIGSOFT International Symposium on
Software Testing and Analysis(ISSTA). (2002) 97–106

13. Walcott, K.R., Soffa, M.L., Kapfhammer, G.M., Roos, R.S.: Timeaware test suite
prioritization. In: Proceedings of the IEEE International Symposium on Software
Testing and Analysis(ISSTA). (2006) 1–12

14. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (1988)

15. Okumoto, K., Goel, A.L.: Optimum release time for software systems based on
reliability and cost criteria. Journal of Systems and Software 1 (1980) 315–318

16. Jensen, F.V.: Bayesian Networks and Decision Graphs. (2001)
17. Christian Collberg, Ginger Myles, M.S.: An empirical study of java bytecode pro-

grams. Technical Report TR04-11, Department of Computer Science, Univeristy
of Arizona (2004)

18. Briand, L., Wüst, J.: Empirical studies of quality models in object-oriented sys-
tems. Advances in Computers 56 (2002) 98–167

19. Gyimothy, T., Ferenc, R., Siket, I.: Empirical validation of object-oriented met-
rics on open source software for fault prediction. IEEE Transactions on Software
Engineering 31 (2005) 897–910

20. Elbaum, S., Gable, D., Rothermel, G.: Understanding and measuring the sources
of variation in the prioritization of regression test suites. In: Proceedings of the
IEEE International Symposium on Software Metrics(METRICS). (2001) 169–179

21. Chidamber, S.R., Kemerer, C.F.: Towards a metrics suite for object oriented design.
In: Proceedings of the Annual ACM SIGPLAN Conference on Object-oriented
Programming Systems, Languages, and Applications (OOPSLA). (1991) 197–211

22. Fenton, N.E., Pfleeger, S.L.: Software Metrics: A Rigorous and Practical Approach.
PWS Publishing Co., Boston, MA, USA (1998)

23. : Apache Ant (2005) http://ant.apache.org.
24. : CKJM (2006) http://www.spinellis.gr/sw/ckjm/.
25. : Emma (2006) http://emma.sourceforge.net/.
26. : Genie/Smile (2005-2006) http://genie.sis.pitt.edu/.
27. Do, H., Elbaum, S., Rothermel, G.: Supporting controlled experimentation with

testing techniques: An infrastructure and its potential impact. Empirical Software
Engineering: An International Journal 10 (2005) 405–435

28. Hema Srikanth, Laurie Williams, J.O.: System test case prioritization of new and
regression test cases. In: Proceedings of the International Symposium on Empirical
Software Engineering. (2005) 64–73

29. Ziv, H., Richardson, D.J.: Constructing bayesian-network models of software test-
ing and maintenance uncertainties. In: Proceedings of the International Conference
on Software Maintenance(ICSM). (1997) 100–109

30. Wooff, D., Goldstein, M., Coolen, F.: Bayesian graphical models for software test-
ing. IEEE Transactions on Software Engineering 28 (2002) 510–525

31. Fenton, N.E., Krause, P., Neil, M.: Probability modelling for software quality
control. Journal of Applied Non-Classical Logics 12 (2002) 173–188

Redundancy Based Test-Suite Reduction

Gordon Fraser and Franz Wotawa�

Institute for Software Technology
Graz University of Technology

Inffeldgasse 16b/2
A-8010 Graz, Austria

{fraser,wotawa}@ist.tugraz.at

Abstract. The size of a test-suite has a direct impact on the costs
and the effort of software testing. Especially during regression testing,
when software is re-tested after some modifications, the size of the test-
suite is important. Common test-suite reduction techniques select subsets
of test-suites that achieve given test requirements. Unfortunately, not
only the test-suite size but also the fault detection ability is reduced
as a consequence. This paper proposes a novel approach where test-
cases created with model-checker based techniques are transformed such
that redundancy within the test-suite is avoided, and the overall size is
reduced. As test-cases are not simply discarded, the impact on the fault
sensitivity is minimal.

1 Introduction

Software testing is a process that consumes a large part of the effort and resources
involved in software development. Especially during regression testing, when
software is re-tested after some modifications, the size of the test-suite has a
large impact on the total costs. Therefore, the idea of test-suite reduction (also
referred to as test-suite minimization) is to find a minimal subset of the test-suite
that is sufficient to achieve the given test requirements.

Various heuristics have been proposed to approximate a minimal subset of the
test-suite. These techniques can reduce the number of test-cases in a test-suite
significantly. However, experiments have revealed that the quality of the test-
suite suffers from this minimization. Even though the test requirements with
regard to which the minimization was made are still fulfilled by the minimized
test-suite, it has been shown that the overall ability to detect faults is reduced.
In many scenarios, especially in the case of safety related software, such a degra-
dation is unacceptable.

This paper introduces a novel approach to test-suite reduction. This approach
tries to identify those parts of the test-cases that are truly redundant. Redun-
dancy in this context means that there are no faults that can be detected with
� This work has been supported by the FIT-IT research project “Systematic test case

generation for safety-critical distributed embedded real time systems with differ-
ent safety integrity levels (TeDES)”; the project is carried out in cooperation with
Vienna University of Technology, Magna Steyr and TTTech.

M.B. Dwyer and A. Lopes (Eds.): FASE 2007, LNCS 4422, pp. 291–305, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

292 G. Fraser and F. Wotawa

the redundant part of a test-case, and not without. Instead of discarding test-
cases out of a test-suite, the test-cases are transformed such that the redundancy
is avoided. That way, the test-suite is minimized with regard to the number of
test-cases and the total number of states, while neither test coverage nor fault
detection ability suffer from the degradation experienced in previous approaches.

The approach uses the state information that is included in functional tests
created with model-checker based test-case generation approaches. The model-
checker is also used within an optimized version of the approach. An empirical
evaluation shows that the approach is feasible.

This paper is organized as follows: Section 2 first introduces the problem of
test-suite reduction and points out drawbacks of current solutions. Then, the
necessary preliminaries for the remainder of the paper are discussed. Section 3
presents a new definition of redundancy in the context of test-cases, and shows
how test-suites can be optimized in order to reduce redundancy. Section 4 de-
scribes experiments and results with regard to this optimization. Finally, Sec-
tion 5 concludes the paper with a discussion of the results and an outlook.

2 Preliminaries

In this section, test-suite reduction and previous solutions are presented. Then,
the necessary preliminaries for our approach are introduced.

2.1 Test-Suite Reduction

During regression testing the software is re-tested after some modifications. The
costs of running a complete test-suite against the software repeatedly can be
quite high. In general, not all test-cases of a test-suite are necessary to fulfill
some given test requirements. Therefore, the aim of test-suite reduction is to
find a subset of the test-cases that still fulfills the test requirements. The original
test-suite reduction problem is defined by Harrold et al. [1] as follows:

Given: A test-suite TS, a set of requirements r1, r2, , , rn that must be satisfied
to provide the desired test coverage of the program, and subsets of TS,
T1, T2, ..., Tn, one associated with each of the ris such that any one of the
test-cases tj belonging to Ti can be used to test ri.

Problem: Find a representative set of test-cases from TS that satisfies all ris.

The requirements ri can represent any test-case requirements, e.g., test cov-
erage. A representative set of test-cases must contain at least one test-case from
each subset Ti. The problem of finding the optimal (minimal) subset is NP-hard.
Therefore, several heuristics have been presented [1,2,3].

Test-suite reduction results in a new test-suite, where only the relevant subset
remains and the other test-cases are discarded. Intuitively, removing any test-
case might reduce the overall ability of the test-suite to detect faults. In fact,
several experiments [4,5,6] have shown that this is indeed the case, although

Redundancy Based Test-Suite Reduction 293

there are other claims [7]. Note that the reduction of fault sensitivity would also
occur when using an optimal instead of a heuristic solution.

In this paper we introduce a new approach to test-suite minimization which
does not have a negative influence on the fault detection ability. However, first
we need to introduce some basic concepts and definitions.

2.2 Model-Checker Based Testing

In this paper we consider test-cases generated with model-checker based meth-
ods. A model-checker is a tool originally intended for formal verification. In
general, a model-checker takes as input a finite-state model of a system and a
temporal logic property and efficiently verifies the complete state space of the
model in order to determine whether the property is fulfilled or not. If the prop-
erty is not fulfilled then a counter-example is returned, which is a sequence of
states beginning in the initial state and leading to the violating state. There are
several different approaches that exploit this counter-example mechanism for
automated test-case generation [8,9,10,11,12,13,14]. Model-checkers use Kripke
structures as model formalism:

Definition 1. Kripke Structure: A Kripke structure K is a tuple K = (S, s0,
T, L), where S is the set of states, s0 ∈ S is the initial state, T ⊆ S × S is the
transition relation, and L : S → 2AP is the labeling function that maps each
state to a set of atomic propositions that hold in this state. AP is the countable
set of atomic propositions.

A model-checker verifies whether a model M satisfies a property P . If M violates
P , denoted as M � P , then the model-checker returns a trace that illustrates
the property violation. The trace is a finite prefix of an execution sequence of
the model (path):

Definition 2. Path: A path p := {s0, s1, ...} of Kripke structure K is a finite
or infinite sequence such that ∀i > 0 : (si, si+1) ∈ T for K.

Informally, the states of a Kripke structure and its traces consist of value assign-
ments to its input, output and internal variables. Input variables are those that
are provided by the environment to the model, output variables are returned to
the environment by the model, and internal variables are not visible outside of
the model. A trace can be used as a test-case by providing the input variables
to the system under test (SUT), and then comparing whether the outputs pro-
duced by the SUT match those of the trace. Therefore, a trace can be seen as a
test-case:

Definition 3. Test-Case: A test-case t is a finite prefix of a path p of Kripke
structure K.

The number of transitions a test-case consists of is referred to as its length.
E.g., test-case t := {s0, s1, ..., si} has a length of length(t) = i. We consider

294 G. Fraser and F. Wotawa

such test-cases where the expected correct output is included. This kind of test-
cases is referred to as passing or positive test-cases. The result of the test-case
generation is a test-suite. The aim of test-suite reduction is to optimize test-suites
with respect to their size and total length:

Definition 4. Test-Suite: A test-suite TS is a finite set of n test-cases. The
size of TS is n. The overall length of a test-suite TS is the sum of the lengths
of its test-cases ti: length(TS) =

∑n
i=1 length(ti).

Coverage criteria are used to measure test-suite quality. In the model-based sce-
nario we assumed, we are mainly interested in model-based coverage criteria. A
coverage criterion describes a set of structural items or aspects that a test-suite
should cover. The test coverage is the percentage of items that are actually cov-
ered, i.e., reached during test-case execution. A model-based coverage criterion
can be expressed as a set of properties (trap properties [8]) where a test-case
covers an item if the according property is violated.

Definition 5. Test Coverage: The coverage C of a test-suite TS with regard to
a coverage criterion represented by a set of properties P is defined as the ratio
of covered properties to the number of properties in total:

C =
1

|P| · |{x|x ∈ P ∧ covered(x, TS)}|

The predicate covered(a, TS) is true if there exists a test-case t ∈ TS such that
t covers a, i.e., t � a.

The fault detection ability describes the potential of a test-suite at detecting
faults. The higher this ability, the more faults can be detected. In practice, the
mutant score [15] is used as an estimate for the fault detection ability. A mutant
results from a single syntactic modification of a model or program. The mutant
score of a test-suite is the ratio of mutants that can be distinguished from the
original to mutants in total. A mutant is detected if the execution leads to
different results than expected.

Definition 6. Test-case execution: A test-case t = {s0, s1, ...} for model K is
executed by taking the input variables of each state si, providing them to the
SUT with a suitable test framework. These values and the produced output values
represent an execution trace tr = {s′0, s′1, ...}. A fault is detected, iff ∃(s′i, s

′
i+1) ∈

tr : (s′i, s
′
i+1) /∈ T for K. (si, si+1) is referred to as a step.

3 Test-Suite Redundancy

Previously, redundancy was used to describe test-cases that are not needed in
order to achieve a certain coverage criterion. As the removal of such test-cases
leads to a reduced fault detection ability, they are not really redundant in a
generic way. In contrast, we say a test-case contains redundancy if part of the
test-case does not contribute to the fault detection ability. This section aims to
identify such redundancy, and describes possibilities to reduce it.

Redundancy Based Test-Suite Reduction 295

3.1 Identifying Redundancy

Intuitively, identical test-cases are redundant. For any two test-cases t1, t2 such
that t1 = t2, any fault that can be detected by t1 is also identified by t2 and
vice versa, assuming the test-case execution framework assures identical precon-
ditions for both tests. Similarly, the achieved coverage for any coverage criterion
is identical for both t1 and t2. Clearly, a test-suite does not need both t1 and t2.

The same consideration applies to two test-cases t1 and t2, where t1 is a prefix
of t2. t1 is subsumed by t2, therefore any fault that can be detected by t1 is also
detected by t2 (but not vice versa). In this case, t1 is redundant and is not needed
in any test-suite that contains t2. In model-based testing it is common practice
to discard subsumed and identical test-cases at test-case generation time [12].

This leads to the kind of redundancy which we are interested in: Model-checker
based test-case generation techniques often lead to such test-suites where all test-
cases begin with the same initial state. From this state on different paths are
taken, but many of these paths are equal up to a certain state. Any fault that
occurs within such a sub-path can be detected by any of the test-cases that
begins with this sub-path. Within these test-cases, the sub-path is redundant.

This kind of redundancy can be illustrated by representing a set of test-cases
as a tree. The initial state that all test-cases share is the root-node of this tree.
A sub-path is redundant if it occurs in more than one test-case. In the tree
representation, any node below the root node that has more than one child node
contains redundancy. If there are different initial states, then there is one tree
for each initial state.

Definition 7. Test-Suite Execution Tree: Test test-cases ti = {s0, s1, ...sl} of a
test-suite TS can be represented as a tree, where the root node equals the initial
state common to all test-cases: root(TS) = s0. For each successive, distinct state
sj a child node is added to the previous node si:

sj : (si, sj) ∈ ti → sj ∈ children(si)

The depth of the tree equals the length of the longest test-case in TS. children(x)
denotes the set of child nodes of node x. Consider a test-suite consisting of three
test-cases (letters represent distinct states): ”A-B-C”, ”A-C-B”, ”A-C-D-E”. The
execution tree representation of these test-cases can be seen in Figure 1(a).
The rightmost C-state has two children, therefore the sub-path A-C is contained
in two test-cases; it is redundant. The execution tree can be used to measure
redundancy:

Definition 8. Test-Suite Redundancy: The redundancy R of a test-suite TS is
defined with the help of the execution tree:

R(TS) =
1

n − 1
·

∑

x∈children(root(TS))

R(x) (1)

The redundancy of the tree is the ratio of the sum of the redundancy values R
for the children of the root-node and the number of arcs in the tree (n − 1, with

296 G. Fraser and F. Wotawa

A

B C

C B D

E

(a) 17% redundancy

A

B C

C

B

D

E

(b) No redundancy

Fig. 1. Simple test-suite with redundancy represented as execution tree

n nodes). The redundancy value R is defined recursively as follows:

R(x) =
{

(|children(x) − 1|) +
∑

c∈children(x) R(c) if children(x) �= {}
0 if children(x) = {}

(2)

The example test-suite depicted as tree in Figure 1(a) has a total of 7 nodes,
where one node besides the root node has more than one child. Therefore, the
redundancy of this tree equals R = 1

7−1 ·
∑

x∈children(root(TS)) R(x) = 1
6 · (0 +

(1 + 0)) = 1
6 = 17%.

A test-suite contains no redundancy if for each initial state there are no test-
cases with common prefixes, e.g., if there is only one test-case per initial-state.

3.2 Removing Redundancy

Having identified redundancy, the question now is how to reduce it. This section
introduces an approach to solve this problem. It has already been stated that
the removal of test-cases from a test-suite has a negative impact on the fault
detection ability, therefore this is not an option. Instead, the proposed solution
is to transform the test-cases such that the redundant parts can be omitted.

For each test-case ti of test suite TS a common prefix among the test-cases
is determined. If such a prefix is found, then the test-case is redundant for the
length of the prefix and only interesting after the prefix. If there is another test-
case tj that ends with the same state as the prefix does, then the remainder
of the test-case ti can be appended to tj , and ti can safely be discarded. This
algorithm is shown in Listing 1. It is of interest to find the longest possible
prefixes, therefore the search for prefixes starts with the length of the test-case
under examination and then iteratively reduces the length down to 1. This also
guarantees that duplicate or subsumed test-cases are eliminated.

Redundancy Based Test-Suite Reduction 297

The function find test searches for a test-case that ends with the same state as
the currently considered prefix, its worst time complexity therefore is O(|TS|).
The complexity of has prefix is O(n) as it depends on the prefix length. Append-
ing and deleting test-cases take constant time. These operations are nested in
a loop over |TS|, which in turn is called for all possible prefix lengths. Finally,
this is done for each test-case in TS. Therefore, the worst-case complexity of
this algorithm is O(|TS|2 · n · (|TS| + n)); with realistic test-suite sizes it is still
applicable. The algorithm terminates for every finite test-suite. In the listing,
t[n] denotes the nth state of test-case t, and t[−1] the last state of t.

for each t in TS do
for n := length(t) downto 1 do

for each t2 in TS do
if has prefix (t2 , t , n) and t2 != t then

t3 := f ind test (TS, t [n])
i f t3 != None then

append postfix(t3 , t , n)
delete (TS, t)
break

end if
end if

end for
end for

end for

Listing 1. Test-suite transformation

The algorithm has to make non-deterministic choices when selecting a test-
case as a source for the prefix, when selecting a test-case to look for the common
prefix and when searching for a test-case to append to. These choices have an
influence on how fast a test-suite is processed. In addition, the number of test-
cases remaining in the final reduced test-suite also depends on these choices.
The success of the reduction depends on whether there are suitable test-cases
where parts of other test-cases can be appended. A test-case that is necessary
for removal of a long common prefix might be used to append another test-
case with a shorter common prefix earlier. In that case, the long prefix could
not be removed unless there was another suitable test-case. Determination of
the optimal order would have to take all permutations of the test-suite order
into consideration and is therefore not feasible. In practice, the algorithm is
implemented such that test-cases are selected sequentially in the order in which
they are stored in the test-suite.

Figure 1(b) illustrates the result of this optimization applied to the Fig-
ure 1(a). The test-case A-C-B has the common prefix A-C, and there is a test-case
ending in C, therefore the postfix B of A-C-B is appended to A-B-C, resulting in
A-B-C-B.

298 G. Fraser and F. Wotawa

This algorithm optimizes the total costs of a test-suite with respect to two
factors: It reduces the total number of test-cases (test-suite size), and it reduces
the overall number of states contained in the test-suite (test-suite length). In
the resulting test-suite individual test-cases can be longer than in the original
test-suite. We assume that the costs of executing two test-cases of length n are
higher than that of executing one test-case of length 2 · n because of setup and
pull-down overhead. Therefore, it is preferable to have fewer but longer test-
cases instead of many small ones. This assumption is for example also made
in [16], where the test-case generation aims to create fewer but longer test-
cases.

While the computational complexity of the algorithm is high, the success
depends on the actual test-suite. A test-suite might contain significant redun-
dancy but have few test-cases that are suitable for appending, in which case not
much optimization can be achieved. In addition, the order in which test-cases
are selected has an influence on the results.

As we assumed a model-checker based test-case generation approach, we can
make use of the model-checker for optimization purposes. If appending is not
possible, then the model-checker can be used to create a ‘glue’-sequence to ap-
pend the postfix to an arbitrary test-case. Of course the model-checker is not
strictly necessary to perform this part; there are other possibilities to find a path
in the model. However, the model-checker is a convenient tool for this task, espe-
cially if it is already used for test-case generation in the first place. Listing 2 lists
the extended algorithm. The function choose nondeterministic(TS) chooses one
test-case out of the test-suite TS non-deterministically. This choice has an influ-
ence on the length of the resulting glue-sequence. An optimal algorithm would
have to consider the lengths of all such possible glue-sequences, and therefore
calculate all of them. A distance heuristic is conceivable, which estimates the
distance between the final state of a test-case and the state the glue sequence
should lead to. For reasons of simplicity, the prototype implementation used for
experiments in this paper makes a random choice.

The function create sequence calls the model-checker in order to create a suit-
able glue sequence. A sequence from state a to state b can be created by verifying
a property that claims that such a path does not exist. If such a sequence exists,
the counter-example consists of a sequence from the initial state to a, and then
a path from a to b. For example, when using computation tree logic (CTL) [17],
this query can be stated as: AG a -> !(EF b).

The presented algorithms reduce both the number of test-cases and the to-
tal test-suite length, while previous methods selected subsets of the test-
suite. Therefore, the effects on the quality of the resulting test-suite are
different.

Each step of a test-case adhering to Definition 3 fully describes the system
state. A model-checker trace consists of the values of all input and output vari-
ables as well as internal variables. A fault is detected if the actual outputs of
the implementation differ from those of the test-case. Therefore, any fault that

Redundancy Based Test-Suite Reduction 299

for each t in TS do
for n := length(t) downto 1 do

for each t2 in TS do
if has prefix (t2 , t , n) and t2 != t then

t3 := f ind test (TS, t [n])
i f t3 != None then

append postfix(t3 , t , p)
delete (TS, t)
break

end if
else

t3 := choose nondeterministic (TS)
i f t3 != t then

s = create sequence (t3[−1], t [n])
append(t3 , s)
append postfix(t3 , t , n)
delete (TS, t)
break

end if
end if

end for
end for

end for

Listing 2. Test-suite transformation with glue sequences

occurs deterministically at a certain state can be detected with a step of a test-
case, no matter when this step is executed. As the test-suite reduction guarantees
that only redundant steps as parts of prefixes are removed, any fault that can be
detected by a test-suite TS, can also be detected by the test-suite resulting from
reduction of TS. It is conceivable that there are faults that do not deterministi-
cally occur at certain system states. For example, a fault might only occur after
a certain sequence has been executed, or if a state is executed a certain number
of times. However, we have not found such a fault in our experiments. Further-
more, it is equally possible that the transformation leads to such test-cases that
can detect previously missed non-deterministic faults.

Definition 5 allows arbitrary properties for measuring test coverage. Whether
the test-suite reduction has an impact on the test coverage depends on the
actual properties. If the coverage depends on the order of not directly adjacent
steps in the test-case, then splitting a prefix from a test-case and appending the
remainder to another test-case can reduce the coverage. For example, transition
pair coverage [18] requires all pairs of transitions to be covered. A transition pair
can be split during the transformation. However, the appending can also lead to
transition pairs previously uncovered. In practice, many coverage properties do
not consider the execution order, e.g. transition or full-predicate coverage [18],
or coverage criteria based on the model-checker source file [9].

300 G. Fraser and F. Wotawa

4 Empirical Evaluation

This section presents the results of an empirical evaluation of the concepts de-
scribed in the previous sections. The evaluation aims to determine how much
reduction can be achieved with the presented algorithms, and how they perform
in comparison to other approaches. Furthermore, the effects on coverage and
mutant score are analyzed.

4.1 Experiment Setup

The experiment uses three examples, each consisting of a model and specification
written in the language of the model-checker NuSMV [19]. For each model, 23
different test-suites are created with different methods (various coverage criteria
for coverage based methods, different mutation operators for mutation based
approaches, property based methods). The details of these methods are omitted
for space reasons and because they are not necessary to interpret the results. In
addition, a set of mutant models is created for each model. The use of a model-
checker allows the detection of equivalent mutants, therefore only non-equivalent
mutants are used for the evaluation of a mutant score. Car Control (CA) is a
simplified model of a car control. The Safety Injection System (SIS) example was
introduced in [20] and has since been used frequently for studying automated
test-case generation. Cruise Control (CC) is based on [21]. A set of faulty imple-
mentations for this example was written by Jeff Offutt. The presented algorithms
are implemented with Python, and the symbolic model-checker NuSMV is used.

4.2 Lossy Minimization with Model-Checkers

For comparison purposes, a traditional minimization approach is applied to the
model-checker scenario, similarly to Heimdahl and Devaraj [6]. Model-based cov-
erage criteria can be expressed as trap properties [8] (Section 2.2). The test-cases
are converted to models and then the model-checker is challenged with the re-
sulting models and the trap properties. For each trap property that results in a
counter-example it is known that the test-case covers the according item.

A minimized subset of the test-suite achieving a criterion can be determined
by calculating the covered properties for each test-case, and then iteratively se-
lecting the test-case that covers the most yet uncovered properties. We choose
transition coverage as first example coverage criterion. Black [13] proposed a test-
case generation approach based on mutation of the reflected transition relation.
The mutated, reflected properties can be used similarly to trap properties for
test-case generation, to determine a kind of mutant score and also for minimiza-
tion. In order to distinguish this from the mutant score determined by execution
of the test-case against mutant models we dub the former reflection coverage.

4.3 Results

Tables 1, 2 and 3 list the average values of the minimization of the 23 test-
suites for the three example models. ”Redundancy” denotes the algorithm in

Redundancy Based Test-Suite Reduction 301

100%

80%

60%

40%

20%

Mutant ScoreReflection Cov.Transition Cov.RedundancyLengthSize

Original
Transition
Reflectio

Redundancy
Redundancy+

Fig. 2. Comparison of reduction methods, average percentage over all three example
models and 23 test-suites each

Listing 1, and ”Redundancy+” the extended version of Listing 2. In all cases
the coverage-based reduction techniques result in smaller test-suites than the
direct redundancy based approach. The extended redundancy based approach
comes close to the coverage based approaches with respect to test-suite size. The
test-suite length is reduced proportionally to the test-suite size for coverage based
techniques, while as expected the redundancy based length savings are not as
significant. Again, the extended algorithm achieves better results, showing that
the potential saving in redundancy is bigger than what is added by the glue
sequences. In general, even though the reduction in the total length is smaller
with the redundancy approaches than with the coverage approaches, it is still
significant and shows that the approach is feasible.

The test coverage of coverage minimized test-suites is not changed for the cri-
terion that is used for minimization, while a degradation with the other criterion
is observable. In contrast, the redundancy based approach has no impact on the
coverage of either criterion. The extended redundancy approach even leads to
a minor increase of the coverage, due to the glue sequences. As for the mutant
score, the coverage based approaches lead to a degradation of up to 16%, while
the redundancy approach has no impact on the mutant score, and the extended
redundancy approach again results in a slight increase. Figure 2 sums up the
results of the experiments for all models and test-suites. As these experiments
use only models and mutants of the models, this raises the question whether
the results are different with regard to actual implementations. Therefore, the
Cruise Control test-suites are run against the set of faulty implementations.
Table 4 lists the results. They are in accordance with those achieved with model
mutants, which indicates the validity also for implementations.

Figure 3 illustrates the effects of the order in which test-cases are selected at
several points in the algorithm as box-plots. The box-plots illustrate minimum,
maximum, median and standard deviation for the achieved reduction with the
23 test-suites per example, each randomly sorted 5 times. Figure 3(a) shows the

302 G. Fraser and F. Wotawa

Table 1. Results in average for Cruise Control example

Method Size Length Redundancy Transition
Coverage

Mutant Score
(Reflection)

Mutant
Score

Original 36,55 213,77 44,55% 89,16% 95,93% 87,31%

Transition 6,23 35,6 32,00% 89,16% 94,46% 79,70%

Reflection 6,59 37,36 30,30% 78,67% 95,93% 73,42%

Redundancy 27,91 186,09 36,99% 89,16% 95,93% 87,31%

Redundancy+ 8,95 152,73 4,82% 89,86% 96,44% 89,13%

Table 2. Results in average for SIS example

Method Size Length Redundancy Transition
Coverage

Mutant Score
(Reflection)

Mutant
Score

Original 21,87 644,04 10,45% 89,28% 95,15% 78,29%

Transition 3,26 84,17 2,51% 89,28% 93,42% 68,72%

Reflection 4,91 126,3 4,53% 87,63% 95,15% 72,70%

Redundancy 14,48 440,39 6,15% 89,28% 95,15% 78,29%

Redundancy+ 5,52 268,78 0,46% 91,23% 96,19% 81,42%

Table 3. Results in average for Car Control example

Method Size Length Redundancy Transition
Coverage

Mutant Score
(Reflection)

Mutant
Score

Original 54,09 1351,91 10,44% 95,78% 96,07% 92,84%

Transition 3,36 71,32 3,05% 96,78% 93,76% 85,09%

Reflection 7,68 152,27 5,30% 95,54% 96,07% 87,62%

Redundancy 25,68 1182,82 4,69% 95,78% 96,07% 92,84%

Redundancy+ 11,36 1058,05 1,17% 99,03% 97,53% 95,16%

effects on the test-suite sizes. As the use of glue sequences makes it possible to
append to any test-case, the order has no effect on the resulting test-suite size in
our experiments, therefore there is no deviation. There is insignificant variation
when not using glue sequences, and also only minor variation in the test-suite
length (Figure 3(b)). In contrast, the choice of a test-case to append to using
a glue sequence has a visible influence on the resulting test-suite length. This
suggests the use of a distance heuristic instead of the random choice.

Both presented algorithms have high worst-case complexity. However, many
factors contribute to the performance: the test-suite size, the lengths of the

Table 4. Mutant scores for cruise-control implementation mutants

Original Transition Reflection RedundancyRedundancy+
75,8% 39,1% 37,2% 75,8% 76,5%

Redundancy Based Test-Suite Reduction 303

100%

80%

60%

40%

CA+CASIS+SISCC+CC

(a) Test-Suite Size Reduction

100%

80%

60%

40%

CA+CASIS+SISCC+CC

(b) Test-Suite Length Reduction

Fig. 3. Effects of the test-case order, as percentage value of original sizes and lengths.
Minimization using glue sequences is denoted by a ’+’ after the example name.

0

10

20

30

40

0 100 200 300 400 500

T
im

e
[s

]

Test-Cases

CC
SIS
CA

(a) Direct approach

0

10

20

30

40

0 100 200 300 400 500

T
im

e
[s

]

Test-Cases

CC
SIS
CA

(b) Using glue sequences

Fig. 4. Minimization time vs. test-suite size

test-cases, the contained redundancy, the suitability of test-cases for the trans-
formation, the order in which test-cases are selected, the effort of calculating
glue sequences, etc. Figure 4 depicts the performance of the minimization for
the three example models for different test-suite sizes executed on a PC with
Intel Core Duo T2400 processor and 1GB RAM. Notably, the computation time
for the car controller example increases more than for the other examples. This
example has a bigger state space, therefore appending is not easily possible.
Figure 4(b) shows that there is less difference in the increase in computation
time when using glue sequences. The additional computational effort introduced
by the generation of the glue sequences is very small, compared to its effect. How-
ever, performance measurement is difficult, as the redundancy is not constant
along the test-suites used for measurement. In order to examine the scalability
of the approach, minimization was also tested on a complex example with a
significantly bigger test-suite. The example is a windscreen wiper controller pro-
vided by Magna Steyr. For a set of 8000 test-cases, basic minimization takes
35m22s. This example also shows the effects of the model complexity, as the
calculation of glue sequences is costly for this model: Minimization with glue
sequences takes 2h1m56s. Obviously, the performance is specific to each appli-
cation and test-suite, but it seems to be acceptable in general.

304 G. Fraser and F. Wotawa

5 Conclusion

In this paper we have introduced an approach to minimize the size of a test-suite
with regard to the number of test-cases and the total length of all test-cases.
The approach detects redundancy within the test-suite and transforms test-
cases in order to avoid the redundancy. In contrast to previous approaches the
quality of the resulting test-suites does not suffer with regard to test coverage or
fault detection ability from this minimization under certain conditions. In fact,
experiments showed that the resulting test-suites can even be slightly improved.
The experiments also showed that the reduction is significant, although not as
large as with approaches that heuristically discard test-cases.

One drawback of this approach is the run-time complexity of the algorithm.
However, even without further optimizations the approach is applicable to re-
alistic test-suites without problems. The transformation relies on information
that might not be available in all test-suites. Complete state information is nec-
essary, as is provided by model-checker based test-case generation approaches.
There are several possibilities to continue work on this approach:

– It would be desirable to optimize the basic algorithm with regard to its worst
case execution time.

– The non-deterministic choice might not always lead to the best results.
Heuristics for choosing test-cases could lead to better reduction.

– The algorithms presented in this paper sequentially analyze the test-cases
in a test-suite. Therefore, a single run might not immediately eliminate all
the redundancy. It is conceivable to iteratively call the algorithm until the
redundancy is removed completely. This is likely to lead to test-suites of very
small size, where each test-case is very long.

– In this paper, a scenario of model-checker based testing was assumed. It
would be interesting to evaluate the applicability to other settings.

– The presented definition of redundancy only considers common prefixes.
However, common path segments might also exist within test-cases. Con-
sideration of this kind of redundancy might lead to further optimizations.

References

1. Harrold, M.J., Gupta, R., Soffa, M.L.: A methodology for controlling the size of a
test suite. ACM Trans. Softw. Eng. Methodol. 2(3) (1993) 270–285

2. Gregg Rothermel, Mary Jean Harrold, J.v.R.C.H.: Empirical studies of test-suite
reduction. Software Testing, Verification and Reliability 12(4) (2002) 219–249

3. Zhong, H., Zhang, L., Mei, H.: An experimental comparison of four test suite
reduction techniques. In: ICSE ’06: Proceeding of the 28th international conference
on Software engineering, New York, NY, USA, ACM Press (2006) 636–640

4. Jones, J.A., Harrold, M.J.: Test-suite reduction and prioritization for modified
condition/decision coverage. IEEE Trans. Softw. Eng. 29(3) (2003) 195–209

5. Rothermel, G., Harrold, M.J., Ostrin, J., Hong, C.: An empirical study of the
effects of minimization on the fault detection capabilities of test suites. In: ICSM
’98: Proceedings of the International Conference on Software Maintenance, Wash-
ington, DC, USA, IEEE Computer Society (1998) 34

Redundancy Based Test-Suite Reduction 305

6. Heimdahl, M.P.E., Devaraj, G.: Test-Suite Reduction for Model Based Tests:
Effects on Test Quality and Implications for Testing. In: ASE, IEEE Computer
Society (2004) 176–185

7. Wong, W.E., Horgan, J.R., London, S., Mathur, A.P.: Effect of test set mini-
mization on fault detection effectiveness. In: ICSE ’95: Proceedings of the 17th
international conference on Software engineering, ACM Press (1995) 41–50

8. Gargantini, A., Heitmeyer, C.: Using Model Checking to Generate Tests From
Requirements Specifications. In: ESEC/FSE’99: 7th European Software Engineer-
ing Conference, Held Jointly with the 7th ACM SIGSOFT Symposium on the
Foundations of Software Engineering. Volume 1687., Springer (1999) 146–162

9. Rayadurgam, S., Heimdahl, M.P.E.: Coverage Based Test-Case Generation Using
Model Checkers. In: Proceedings of the 8th Annual IEEE International Conference
and Workshop on the Engineering of Computer Based Systems (ECBS 2001), IEEE
Computer Society (2001) 83–91

10. Hamon, G., de Moura, L., Rushby, J.: Automated Test Generation with SAL.
Technical report, Computer Science Laboratory, SRI International (2005)

11. Callahan, J.R., Easterbrook, S.M., Montgomery, T.L.: Generating Test Oracles Via
Model Checking. Technical report, NASA/WVU Software Research Lab (1998)

12. Ammann, P., Black, P.E., Majurski, W.: Using Model Checking to Generate Tests
from Specifications. In: ICFEM. (1998)

13. Black, P.E.: Modeling and Marshaling: Making Tests From Model Checker Coun-
terexamples. In: Proc. of the 19th Digital Avionics Systems Conference. (2000)

14. Okun, V., Black, P.E., Yesha, Y.: Testing with Model Checker: Insuring Fault
Visibility. In Mastorakis, N.E., Ekel, P., eds.: Proceedings of 2002 WSEAS Inter-
national Conference on System Science, Applied Mathematics & Computer Science,
and Power Engineering Systems. (2003) 1351–1356

15. Ammann, P., Black, P.E.: A Specification-Based Coverage Metric to Evaluate Test
Sets. In: HASE, IEEE Computer Society (1999) 239–248

16. Hamon, G., de Moura, L., Rushby, J.: Generating Efficient Test Sets with a Model
Checker. In: Proceedings of the Second International Conference on Software En-
gineering and Formal Methods (SEFM’04). (2004) 261–270

17. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching-time temporal logic. In: Logic of Programs, Workshop, London,
UK, Springer-Verlag (1982) 52–71

18. Offutt, A.J., Xiong, Y., Liu, S.: Criteria for generating specification-based tests.
In: ICECCS, IEEE Computer Society (1999)

19. Cimatti, A., Clarke, E.M., Giunchiglia, F., Roveri, M.: NUSMV: A New Symbolic
Model Verifier. In: CAV ’99: Proceedings of the 11th International Conference on
Computer Aided Verification, London, UK, Springer-Verlag (1999) 495–499

20. Bharadwaj, R., Heitmeyer, C.L.: Model Checking Complete Requirements Speci-
fications Using Abstraction. Automated Software Engineering 6(1) (1999) 37–68

21. Kirby, J.: Example NRL/SCR Software Requirements for an Automobile Cruise
Control and Monitoring System. Technical Report TR-87-07, Wang Institute of
Graduate Studies (1987)

Testing Scenario-Based Models�

Hillel Kugler1, Michael J. Stern2, and E. Jane Albert Hubbard1

1 New York University, New York, NY, USA
kugler@cs.nyu.edu,

jane.hubbard@nyu.edu
2 Yale University, New Haven, CT, USA

Michael.Stern@yale.edu

Abstract. The play-in/play-out approach suggests a new paradigm for
system development using scenario-based requirements. It allows the user
to develop a high level scenario-based model of the system and directly
execute system behavior. The supporting tool, the Play-Engine has been
used successfully in several projects and case-studies. As systems devel-
oped using this method grow in size and complexity, an important chal-
lenge is maintaining models that are well understood in terms of their
behaviors and that satisfy the original intension of the system develop-
ers. Scenario-based methods are advantageous in early stages of system
development since behaviors can be described in isolated fragments. A
trade-off for this advantage, however, is that larger models comprising
many separate scenarios can result in executable behavior that is dif-
ficult to understand and maintain. A methodology for facile testing of
scenario-based requirements is needed. Here, we describe a methodol-
ogy and supporting prototype implementation integrated into the Play-
Engine for testing of scenario-based requirements. We have effectively
applied the method for testing a complex model containing several hun-
dred scenarios.

1 Introduction

Scenarios have been used in many approaches to describe system behavior
[1,22,19], especially in the early stages of system design. This paper deals with a
scenario-based approach that uses the language of live sequence charts (LSCs) [5]
and the Play-Engine tool [11,12] and extends it to support the testing of scenario-
based models.

One of the most widely used languages for specifying scenario-based require-
ments is that of message sequence charts (MSCs, adopted in 1996 by the ITU
[24]), or its UML variant, sequence diagrams [23]. Sequence charts (whether
MSCs or their UML variant) possess a rather weak partial-order semantics that
does not make it possible to capture many kinds of behavioral requirements of
a system. To address this, while remaining within the general spirit of scenario-
based visual formalisms, a broad extension of MSCs has been proposed, called

� This research was supported in part by NIH grant R24 GM066969.

M.B. Dwyer and A. Lopes (Eds.): FASE 2007, LNCS 4422, pp. 306–320, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Testing Scenario-Based Models 307

live sequence charts (LSCs) [5]. Among other features, LSCs distinguish between
behaviors that must happen in the system (universal) from those that may hap-
pen (existential). A universal chart contains a prechart, which specifies the sce-
nario which, if successfully executed, forces the system to satisfy the scenario
given in the actual chart body. Existential charts specify sample interactions
between the system and its environment, that must be satisfied by at least one
system run. Thus, existential charts do not force the application to behave in a
certain way in all cases, but rather state that there is at least one set of circum-
stances in which a certain behavior occurs. The distinction between mandatory
(hot) and provisional (cold) behavior applies also to other LSC constructs, e.g.,
conditions and locations, thus creating a rich and expressive language. In addi-
tion to required behavior, LSCs can also explicitly express forbidden behavior
(“anti-scenarios”).

A methodology for specifying and validating requirements, termed the “play-
in/play-out approach”, and a supporting tool called the Play-Engine is described
in [11,12]. Play-in is an intuitive way to capture requirements by demonstrating
the behavior on a graphical representation of the system, while play-out is a
method for executing LSC requirements, giving the feeling of working with an
actual system. The expressive power of universal charts, based on the pattern
“prechart implies main chart”, forms the basis of an executable semantics for an
LSC requirement model. In play-out mode, the Play-Engine monitors progress
within charts and performs system events in the main charts for universal charts
that have been activated, trying to complete all universal charts successfully.
As the events are being executed, their effects are visualized via a Graphical
User Interface (GUI), thus providing an animation of system behavior. The
combination of an expressive specification language, a convenient method for
capturing the requirements by playing them in on a GUI, and an executable
framework that uses the same GUI for visualization, makes the Play-Engine a
promising approach for modeling and system development, as shown by several
projects [16, 15, 4, 9, 21].

In general, systems developed in any language are difficult to validate as they
become large and complex, and a variety of verification and testing techniques
have been developed to aid this process. For a number of reasons, the fragmented
nature of scenario-based behavioral specifications makes large-scale modeling ef-
forts that use languages and tools like LSCs and the Play-Engine particularly
difficult to validate. First, unanticipated violations of the requirements may oc-
cur during play-out due to the interaction between several different LSCs. Fur-
thermore, while the LSC language contains techniques for representing systems
that contain significant levels of behavioral non-determinism, non-deterministic
language structures increase the complexity of avoiding such LSC violations.
Second, debugging LSC models is aided by the ability to visualize active LSCs
during execution, showing graphically the progress along each active chart. How-
ever, visualization in the current Play-Engine implementation does not scale well
for systems with hundreds of simultaneously active charts.

308 H. Kugler, M.J. Stern, and E.J.A. Hubbard

This work has been motivated by a project on modeling biological systems
using tools for software and system design. Biological systems are in general very
complex. Even the relatively small and well-defined subsystem we have focused
on - VPC fate specification in the nematode C. elegans – involved constructing
and testing a model of several hundred LSCs [17,15]. The size and complexity of
this model (which is significantly larger than that of other Play-Engine models
and also of most models used in other scenario-based approaches reported in
the literature) required us to address several issues that can typically be ignored
when dealing with “text-book” examples or small case studies, and to find so-
lutions that are efficient and scale well as the system grows. In this paper we
propose a testing-based method to address these challenges. The main strengths
of our approach is the ability to apply it to large LSC models, a smooth inte-
gration into the Play-Engine tool and development process, and a user-friendly
presentation of the test results.

2 LSCs and Play-Out Definitions

This section reviews the main ideas and definitions underlying the language of
live sequence charts and the play-out execution method. For a detailed and sys-
tematic treatment the reader is referred to [5, 11, 12]. The main strength of live
sequence charts over classical message sequence charts is the distinction between
existential and universal charts. Common to both universal and existential charts
is the notion of a scenario, in which several objects described by vertical lines
communicate by exchanging messages described using horizontal arrows. A sce-
nario induces a partial order which is determined by the order along an instance
line and by the fact that a message can be received only after it is sent.

Fig. 1. Example of an existential chart

Existential charts have a semantic interpretation close to that of a basic MSC
in classical MSCs. LSC semantics requires that for an existential LSC there must

Testing Scenario-Based Models 309

be at least one run of the system satisfying the scenario, it does not require that
this scenario hold for all runs. The chart appearing in Fig. 1 is an existential
chart as denoted by the dashed borderline. The scenario starts with a condition
- an assertion that requires specific property values for some of the objects. The
condition implies a synchronization over all participating objects. The scenario
proceeds by objects sending (self) messages. For this chart to be satisfied all
messages specified should occur but the ordering between them is not restricted
since they appear on different object lines. This interpretation of existential
charts is useful in early system design for demonstrating possible behavior, or
in biological modeling for capturing experimental observations, but is too weak
in terms of expressive power to define causality relations and provide executable
semantics.

Fig. 2. Example of a simple universal chart

For this reason, LSCs introduce the concept of a universal chart, which de-
scribes requirements that must hold for all runs, and is therefore constrained
to specific circumstances specified by a scenario appearing in the prechart. An
example of a simple universal chart appears in Fig. 2. Universal charts are de-
noted by a solid borderline. According to the LSC in Fig. 2, if the Click method
is sent from the user to the Start object, as specified in the prechart (dashed
hexagon), the Hatching method appearing in the main chart must occur. The
fact that this is a universal LSC means that this must hold for all system runs,
i.e., for every run, each Click method must be eventually followed by a Hatching
method.

The LSC language is rich and supports many constructs; a flavor of the lan-
guage is demonstrated using a more complex universal chart appearing in Fig. 3.
The prechart does not include a single message as in Fig. 2 but rather describes
a more complex behavior. The condition labeled SYNC in the prechart restricts
the ordering of events such that the prechart is satisfied and the main chart

310 H. Kugler, M.J. Stern, and E.J.A. Hubbard

activated only if the Hatching method is followed by a setFate(Primary) mes-
sage. The two VPC instances in Fig. 3 are symbolic instances, they represent the
behavior of the VPC class, which can contain many concrete instances (in our
biological model there are actually six VPCs). The behavior captured in Fig. 3
is that if the prechart holds, the relevant VPC will send the method LS to its
right neighbor. An assignment appearing at the beginning of the main chart and
binding conditions for the symbolic VPC instances (appearing in the ellipses)
are used to capture this required behavior.

Fig. 3. Example of a more complex universal chart

We now present an outline of the formal definition of LSC semantics, capturing
the requirements for a system to satisfy an LSC specification.

Formally, a mode of an LSC defines for each chart whether it is existential
or universal.

mod : m → {existential, universal}
An LSC specification is a pair

LS = 〈M, mod〉,

where M is a set of charts, and mod is the mode of each chart.
The language of the chart m, denoted by Lm, is defined as follows:

For an existential chart, mod(m) = existential, the language includes all
traces for which the chart is satisfied at least once.

Testing Scenario-Based Models 311

For a universal chart, mod(m) = universal, the language includes all traces
for which each time the prechart is satisfied the behavior specified in the main
chart follows.

Next we define for a given system S, which is compatible with an LSC specifi-
cation LS (i.e., the system includes all objects, properties and messages referred
to in the LSC specification) when the system satisfies the LSC specification.

Definition 1. A system S satisfies the LSC specification LS = 〈M, mod〉, writ-
ten S |= LS, if:

1. ∀m ∈ M, mod(m) = universal ⇒ LS ⊆ Lm

2. ∀m ∈ M, mod(m) = existential ⇒ LS ∩ Lm
= ∅

Here LS is the language consisting of all traces of system S.

Fig. 4. Activated LSC

Play-out is a method that attempts to execute an LSC specification LS directly.
This contrasts with a process in which a system S is constructed manually to
satisfy the specification LS. The idea behind play-out is actually simple, yet
leads to a surprisingly useful execution method. In response to an external event
performed by the user, the Play-Engine monitors all participating universal LSCs
to determine if a prechart has reached its maximal locations, thus activating the
main chart. In our example, if the user has clicked on the Start button, the
prechart of the LSC in Fig. 2 reaches its maximal locations and, as a result,
activates the main chart. The Play-Engine, in response, will execute the method
Hatching appearing in the main chart, thus fulfilling the requirement of this

312 H. Kugler, M.J. Stern, and E.J.A. Hubbard

Fig. 5. Cascade of LSC activation

universal chart. Executing the method Hatching as specified in the main chart
of Fig. 2, in turn will activate the LSC of Fig. 4, since the Hatching method is
the only event appearing in the prechart of Fig. 4. The Play-Engine will then
execute the message setP nonVPC(41.9). This is a typical situation in play-out,
where executing a message in one LSC activates a new LSC, creating a cascade of
events, as illustrated for our example in Fig. 5. A sequence of events carried out
by the Play-Engine as a response to an external event input by the user is called
a superstep. Play-out assumes that the Play-Engine can complete a superstep
before the next external event is performed by the user.

While play-out is an effective method for executing LSCs, it does not guaran-
tee satisfying the LSC specification. Thus, the system requirements for satisfying
an LSC specification as presented in Definition 1 do not necessarily hold. There-
fore, a mechanism is needed to test whether specifications have, in fact, been
satisfied. There are two broad instances in which specifications can fail to be
satisfied: (1) there may be existential charts that are never satisfied; and (2)
some universal charts may be violated. The latter may be due to an unforeseen
interaction between several different universal LSCs. A blatant example of uni-
versal LSC violation is when two charts are actually contradictory. One such
simple example consists of two LSCs, both being activated by the same message
a appearing in the prechart, and containing the two messages b and c in the main
chart. One chart requires that the ordering between the events is b,c while the
other chart requires that the ordering is c,b. A less blatant violation can oc-
cur if play-out is unable to execute the requirements correctly. The play-out
mechanism of [11] is rather naive when faced with nondeterminism, and makes
essentially an arbitrary choice among the possible responses. This choice may
later cause a violation of the requirements, whereas a different choice could have
satisfied the requirements. Technically, the nondeterminism has several causes:
(1) the partial order semantics among events in each chart; (2) the ability to
separate scenarios in different charts without having to state explicitly how they

Testing Scenario-Based Models 313

should be composed; and (3) an explicit nondeterministic choice construct, which
can be used in conditions. This nondeterminism, although very useful in early
requirement stages, can cause undesired under-specification when one attempts
to consider LSCs as the system’s executable behavior using play-out.

To address the challenge of arbitrary “dead ends” occurring in instances of
non-determinism, [8] introduces a technique for executing LSCs, called smart
play-out. It takes a significant step towards removing the sources of nondeter-
minism during execution, proceeding in a way that eliminates some of the dead-
end executions that lead to violations. Smart play-out uses model-checking to
execute and analyze LSCs. Smart play-out, like more ambitious synthesis meth-
ods, does not currently scale to handle large models, especially when using the
full-range of LSC constructs, including symbolic instances [20] and time [11]. For
this reason we have focused our work on using play-out and developing testing
methods to detect those cases in which play-out does not execute the LSC re-
quirements correctly. After the problems are detected and fixed, testing is used
to increase the confidence in the correctness of play-out for the new model.

3 Execution Configurations

The testing of system behavior often requires the analysis of specific variations
of distinct behavior fragments. These variations can be represented in related
sets of “execution configurations”. The execution configuration allows the user to
specify the LSCs that should be considered by the Play-Engine while executing
a model in play-out mode. An example of the execution configuration dialog is
shown in Fig. 6. The dialog is composed of three sections: the first allows the
user to select the participating universal LSCs, the second to select traced LSCs
— either universal or existential charts, and the third designates the LSC search
order. Charts selected as traced LSCs are monitored for their progress, but do
not affect the execution itself. Thus, traced universal charts that are not in the
set of participating LSCs will be monitored, and any activation or violation of
them will be detected. However, a chart that is only traced will not cause any
events in its main chart to occur. The LSC search order contained in the third
section is used by the play-out execution algorithm while searching for the next
event to be executed.

We have extended the Play-Engine to support handling and saving multiple
execution configurations for the same model, allowing the user to select among
them an active execution configuration. This allows the simultaneous mainte-
nance of several variants of an LSC model, differing in the modeling of certain
aspects of the system, values of various parameters, or corresponding to different
levels of abstraction. The testing of these alternative models can be helpful in
developing the system, in testing different possible implementation alternatives,
and in fine tuning parameters.

Our extension allows the user to add, edit and delete execution configura-
tions. There is always exactly one active execution configuration, specified by the
user, which is used in play-out mode to determine the LSCs participating in the

314 H. Kugler, M.J. Stern, and E.J.A. Hubbard

Fig. 6. The execution configuration dialog

execution, the traced LSCs and the search order. For certain applications, the
ability to change the execution configuration while in the middle of play-out may
be an interesting and useful feature. Currently, however, changing the active ex-
ecution configuration is not allowed while in the middle of a play-out session. To
set a new active execution configuration, play-out must first be stopped, the new
active execution configuration set, and only then can play-out be reactivated.

4 The Testing Environment

We have created a testing tool that allows batch runs. Using the tool, the user
designates a test plan that includes sets of initial configurations (also called
jumpstarts) paired with iteration numbers, as shown in Fig. 7. The user specifies
when to end an iteration by designating a specific universal LSC; upon the
successful completion of that LSC, the iteration ends and a new one begins. This
termination LSC, therefore, must be one that will be activated and successfully
completed in every run, thus ensuring that the iteration will end and that the
test plan execution can advance.

For each pair of initial configuration and iteration, the user can specify as
part of the test plan which execution configuration to use. If no execution con-
figuration is selected for a certain pair of initial configuration and iteration, the
last active execution configuration is used. The ability to specify an execution

Testing Scenario-Based Models 315

Fig. 7. Batch Mode Dialog

configuration permits testing several variants of a model as part of the same test
plan, allowing convenient comparison of the test results.

We have added a number of additional features that are convenient for testing.
One feature allows the user to develop a scenario-based model that does not
depend on the search order or execution policy. This is effected by selecting a
mode in which the LSC order is randomly permuted rather than fixed by the
active execution configuration. This feature can help uncover problems that were
not observable while running the model under a specific execution order.

Another set of features permits the user to allow running an unspecified num-
ber of iterations in order to satisfy a specific set of existential charts and an
initial configuration. Under these conditions, the tool will run iterations until all
of these existential charts are satisfied. Since it is often unknown a priori whether
the model is indeed capable of satisfying all charts, an additional feature was
implemented to avoid getting stuck in one initial configuration: the tool can be
made to alternate between initial configurations that still have not satisfied all
of their target charts, until all tests and charts are satisfied or until the tool is
stopped by the user. The user can also set a maximum bound on the runtime
or number of iterations after which the execution will be stopped, even if all
of the existential charts have not been satisfied. These features are particularly
necessary for the nondeterministic / probabilistic aspects of a model, where sat-
isfying the relevant existential charts from a given initial configuration typically
requires running multiple iterations.

Multiple execution configurations are also helpful for models that have
large sets of existential charts that need to be satisfied, but only smaller sub-
sets of these charts that need to be monitored per test. The user can create

316 H. Kugler, M.J. Stern, and E.J.A. Hubbard

corresponding execution configurations that vary in the list of traced charts and
use them in the test plan. Thus the computational price of monitoring many
charts that are not relevant is reduced.

5 Test Recording Methods

While developing an effective testing methodology and tool, it is important to
store sufficient information that will allow users to examine relevant test results
carefully. Adequate recorded information, combined with user-friendly ways to
display it, can provide for effective debugging of large scenario-based models. We
have developed three features that help gather, record and display test informa-
tion for effective understanding of simulation results: (1) a text log of important
events that occur during a run; (2) an excel worksheet for recording key prop-
erties of objects during a run; and (3) a full run trace.

First, there are several types of events that are stored in a text log file for each
of the runs. In the default mode, these include a list of all existential charts that
have been traced to completion and universal charts that have been violated.
In a more detailed mode, we additionally record when universal charts become
activated (the prechart has completed successfully), and when universal charts
are completed successfully. In addition, general information on the test plan,
execution configurations used, and execution time is stored at the beginning
and end of this log file.

Second, links to an excel worksheet have been enabled to store additional
information from a simulation. The Play-Engine supports basic excel functions,
which can be referred to in new or existing LSCs at specific time points to record
relevant information, e.g., values of properties for participating objects. The user
can determine exactly which information will be recorded, and at which relevant
time points during a run. Typically, information for each iteration will be written
at a distinct location in the excel sheet, for example in a new row. These results
can then easily be examined in the excel file, and scripting options for excel and
connection to existing tools may be used to allow manipulation and analysis of
the collected data.

Finally, a full trace of the runs in batch mode can be recorded and saved.
These traces can then be replayed after the test execution has ended to examine
interesting results. A recorded run can be executed without the relevant LSCs
participating, since the recorded run stores all event occurrences. All of the
events are displayed on the graphical user interface (GUI) as in normal play-
out mode, but the execution of recorded runs is much faster, allowing users to
examine interesting traces more efficiently.

6 Applications and Testing Methodology

We have effectively applied our method to a complex biological model [16] con-
taining several hundred scenarios, and are currently evaluating the method on a
telecommunication application designed by France Telecom [4]. In this section we

Testing Scenario-Based Models 317

describe the basic steps performed in testing a model and outline some method-
ological guidelines derived from our initial experience. Some of the testing tool
features have been designed with a goal of automating specific steps.

The batch run mode format for testing differs in certain fundamental ways
from the standard manual play-out mode, thus necessitating some system recon-
figuration prior to testing. Some of these adjustments are enabled by features of
the Play-Engine tool itself, while others require altering some of the LSCs. The
major difference between these two modes of play-out stems from the nature of
the interactions between the system and its environment. The Play-Engine sup-
ports specification of reactive systems, providing an explicit distinction between
the system and its environment. Environment objects are either an external user,
a more abstract “environment”, any object explicitly designated as external, or
the global clock. In a manual play-out session, the user performs the events
initiated by these environment objects, while the play-out execution engine per-
forms all system events in response. By contrast, testing is performed in batch
run mode with no user interaction, so it requires working with a closed system,
where the environment is modeled and considered part of the system. To enable
this closed-environment testing, the user creates interface system objects which
appear in the LSCs instead of the environment objects, and all external objects
are changed to system objects. In testing mode, time progresses automatically
by the play-out mechanism according to the play-out execution semantics [10].
For testing behaviors that in manual play-out mode require user interaction due
to external events, the interaction must be modeled explicitly using LSCs, by
either modifying the existing LSCs or constructing new ones. Various initial sys-
tem configurations can be pre-set in jumpstarts, obviating the need for the user
to manually play these in. Jumpstarts can also serve as shortcuts in manual
play-out mode as well.

Once the reconfigurations associated with system-environment interactions
are in place, the user next prepares a test plan containing pairs of initial config-
urations and iteration numbers as described above. If there are several variants
of models or large sets of traced LSCs, then appropriate execution configurations
are created and used for the test plan. The user runs the test plan, a task that
can typically run for several hours until all iterations are completed. Due to the
size and complexity of current scenario-based models, the testing effort can also
be distributed between several machines, each running a Play-Engine version
and performing tests independently.

Next, the test results are examined by the user. Chart violations reported in
the log file are worthwhile examining first, since these violations usually indicate
problems in the model that must be fixed before investing much time in analyzing
the other detailed results or viewing detailed simulations. Additional potential
violations for universal charts can occur if the main chart was not completed
successfully before the iteration ended. This may occur due to a real problem or
just as a consequence of arbitrarily stopping the run when the designated LSC
marking the end of the iteration is completed.

318 H. Kugler, M.J. Stern, and E.J.A. Hubbard

After several rounds of correcting the LSCs in the model and running the test
suite, the user converges to a model with no test results showing violations of
universal charts. The log file is next examined to determine if, for all tests, all
relevant existential charts are satisfied. For existential charts that have not been
satisfied, the user tries to determine whether they represent a possible outcome
that was not observed (possibly due to probabilistic choices and a limited number
of iterations) or an impossible outcome. The user can run this test again with a
larger number of iterations if the former reason is suspected.

Runs that satisfy existential charts provide evidence of desirable behavior. To
strengthen one’s confidence that these are indeed the expected results, it is useful
to examine the recordings for some of these runs and observe the simulation via
the GUI. Runs that do not satisfy any existential charts represent potential new
behaviors. In software or system development, the user should examine the run
to decide if it is indeed a desirable behavior, and, if so, an appropriate matching
existential chart can be added to the test suite. Otherwise the LSC model should
be corrected to prevent this run. In the modeling of biological systems, if this
run is clearly at odds with previous biological observations, the model must be
corrected. Otherwise, this is a possible prediction of the model that can be tested
experimentally. When the set of existential charts is rich enough, it is easier to
find such interesting runs and then examine them more carefully.

7 Related Work

Scenarios have been recognized to be useful as part of the testing process. In [18]
a methodology and tool called TestConductor is introduced that uses a subset
of LSCs to monitor and test a UML model whose behavior is specified using
statecharts. TestConductor is integrated into the Rhapsody tool [14]. A map-
ping and automatic translation for generating test descriptions in the standard
test description language TTCN-3 directly from message sequence charts is de-
scribed in [6]. Story boards are an alternative means for capturing scenarios;
an approach utilizing these scenarios for testing, integrated into the Fujaba
tool, is described in [7]. An approach for modeling use cases and scenarios in
the abstract state machine language with applications for testing is described
in [2]. Common to all of these approaches is that the scenarios serve as a re-
quirement language, while the model or system that is to be tested is described
in another language, e.g., statecharts or code. In this paper we use the same
scenario-based language (LSCs) for describing the system model and the re-
quirements. In fact, in our approach there is not such a clear separation between
the system and the requirements, since the executable system model is directly
based on running the requirements. Model-based testing [13, 3] is a general ap-
proach in which a model of the system under test is used for supporting and
automating common testing tasks such as test generation, test execution and
test evaluation. A major goal is to reduce the manual effort involved in the
testing activity.

Testing Scenario-Based Models 319

Acknowledgments

We would like to thank Dan Barak for his help in the implementation of the
testing module and its integration into the Play-Engine, and Na’aman Kam
for helpful discussions on the need for enhanced automation in the analysis of
complex biological models. This research was supported in part by NIH grant
R24 GM066969.

References

1. D. Amyot and A. Eberlein. An Evaluation of Scenario Notations and Construction
Approaches for Telecommunication Systems Development. Telecommunications
Systems Journal, 24(1):61–94, 2003.

2. M. Barnett, W. Grieskamp, Y. Gurevich, W. Schulte, N. Tillmann, and M. Veanes.
Scenario-Oriented Modeling in AsmL and its Instrumentation for Testing. In Proc.
2nd Int. Workshop on Scenarios and State Machines (SCESM’03), 2003.

3. M. Barnett, W. Grieskamp, L. Nachmanson, W. Schulte, N. Tillmann, and
M. Veanes. Towards a Tool Environment for Model-Based Testing with AsmL.
In Proc. 3rd Int. Workshop on Formal Approaches to Software Testing (FATES
’03), volume 2931 of Lect. Notes in Comp. Sci., pages 252–266. Springer-Verlag,
2004.

4. P. Combes, D. Harel, and H. Kugler. Modeling and Verification of a Telecommuni-
cation Application using Live Sequence Charts and the Play-Engine Tool. In Proc.
3rd Int. Symp. on Automated Technology for Verification and Analysis (ATVA
’05), volume 3707 of Lect. Notes in Comp. Sci., pages 414–428. Springer-Verlag,
2005.

5. W. Damm and D. Harel. LSCs: Breathing life into message sequence charts. Formal
Methods in System Design, 19(1):45–80, 2001. Preliminary version appeared in
Proc. 3rd IFIP Int. Conf. on Formal Methods for Open Object-Based Distributed
Systems (FMOODS’99).

6. M. Ebner. TTCN-3 Test Case Generation from Message Sequence Charts,. In
Workshop on Integrated-reliability with Telecommunications and UML Languages
(ISSRE04:WITUL), 2004.

7. L. Geiger and A. Zündorf. Story driven testing - SDT. In Proceedings of the fourth
international workshop on Scenarios and state machines: models, algorithms and
tools (SCESM ’05), pages 1–6. ACM Press, 2005.

8. D. Harel, H. Kugler, R. Marelly, and A. Pnueli. Smart play-out of behavioral
requirements. In Proc. 4th Intl. Conference on Formal Methods in Computer-Aided
Design (FMCAD’02), Portland, Oregon, volume 2517 of Lect. Notes in Comp. Sci.,
pages 378–398, 2002. Also available as Tech. Report MCS02-08, The Weizmann
Institute of Science.

9. D. Harel, H. Kugler, and G. Weiss. Some Methodological Observations Resulting
from Experience Using LSCs and the Play-In/Play-Out Approach. In Proc. Sce-
narios: Models, Algorithms and Tools, volume 3466 of Lect. Notes in Comp. Sci.,
pages 26–42. Springer-Verlag, 2005.

10. D. Harel and R. Marelly. Playing with time: On the specification and execution
of time-enriched LSCs. In Proc. 10th IEEE/ACM International Symposium on
Modeling, Analysis and Simulation of Computer and Telecommunication Systems
(MASCOTS’02), Fort Worth, Texas, 2002.

320 H. Kugler, M.J. Stern, and E.J.A. Hubbard

11. D. Harel and R. Marelly. Come, Let’s Play: Scenario-Based Programming Using
LSCs and the Play-Engine. Springer-Verlag, 2003.

12. D. Harel and R. Marelly. Specifying and Executing Behavioral Requirements: The
Play In/Play-Out Approach. Software and System Modeling (SoSyM), 2(2):82–107,
2003.

13. A. Hartman and K. Nagin. The AGEDIS tools for model based testing. In R.L.
Grossman, A. Nerode, A. Ravn, and H. Rischel, editors, Proceedings of the 2004
ACM SIGSOFT international symposium on Software testing and analysis (ISSTA
’04), pages 129–132. ACM Press, 2004.

14. Rhapsody. http://www.ilogix.com/, 2006.
15. N. Kam. Formal Modeling of C. elegans Vulval Development: A Scenario-Based

Approach. PhD thesis, Weizmann Institute, 2006.
16. N. Kam, D. Harel, H. Kugler, R. Marelly, A. Pnueli, E.J.A. Hubbard, and M.J.

Stern. Formal Modeling of C. elegans Development: A Scenario-Based Approach.
In Corrado Priami, editor, Proc. Int. Workshop on Computational Methods in Sys-
tems Biology (CMSB 2003), volume 2602 of Lect. Notes in Comp. Sci., pages 4–20.
Springer-Verlag, 2003. Extended version appeared in Modeling in Molecular Biol-
ogy, G.Ciobanu (Ed.), Natural Computing Series, Springer, 2004 .

17. N. Kam, H. Kugler, L. Appleby, A. Pnueli, D. Harel, M.J. Stern, and E.J.A. Hub-
bard. Hypothesis Testing and Biological Insights from Scenario-Based Modeling of
Development. Technical report, 2006.

18. M. Lettrari and J. Klose. Scenario-based monitoring and testing of real-time UML
models. In 4th Int. Conf. on the Unified Modeling Language, Toronto, October
2001.

19. S. Leue and T. Systä. Scenarios: Models, Transformations and Tools, International
Workshop, Dagstuhl Castle, Germany, September 7-12, 2003, Revised Selected Pa-
pers. In Scenarios: Models, Transformations and Tools, volume 3466 of Lect. Notes
in Comp. Sci. Springer-Verlag, 2005.

20. R. Marelly, D. Harel, and H. Kugler. Multiple instances and symbolic variables
in executable sequence charts. In Proc. 17th Ann. ACM Conf. on Object-Oriented
Programming, Systems, Languages and Applications (OOPSLA’02), pages 83–100,
Seattle, WA, 2002.

21. OMEGA - Correct Development of Real-Time Embedded Systems. http://
www-omega.imag.fr/.

22. S. Uchitel, J. Kramer, and J. Magee. Incremental elaboration of scenario-based
specifications and behavior models using implied scenarios. ACM Trans. Software
Engin. Methods, 13(1):37–85, 2004.

23. UML. Documentation of the unified modeling language (UML), 2006. Available
from the Object Management Group (OMG), http://www.omg.org.

24. Z.120 ITU-TS Recommendation Z.120: Message Sequence Chart (MSC). ITU-TS,
Geneva, 1996.

M.B. Dwyer and A. Lopes (Eds.): FASE 2007, LNCS 4422, pp. 321–335, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Integration Testing in Software Product Line
Engineering: A Model-Based Technique*

Sacha Reis1, Andreas Metzger1, and Klaus Pohl
1,2

1 Software Systems Engineering, University of Duisburg-Essen,
Schützenbahn 70, 45117 Essen, Germany

{reis, metzger, pohl}@sse.uni-due.de
2 Lero (The Irish Software Engineering Research Centre),

University of Limerick, Ireland
pohl@lero.ie

Abstract. The development process in software product line engineering is di-
vided into domain engineering and application engineering. As a consequence
of this division, tests should be performed in both processes. However, existing
testing techniques for single systems cannot be applied during domain engineer-
ing, because of the variability in the domain artifacts. Existing software product
line test techniques only cover unit and system tests. Our contribution is a
model-based, automated integration test technique that can be applied during
domain engineering. For generating integration test case scenarios, the tech-
nique abstracts from variability and assumes that placeholders are created for
variability. The generated scenarios cover all interactions between the inte-
grated components, which are specified in a test model. Additionally, the tech-
nique reduces the effort for creating placeholders by minimizing the number of
placeholders needed to execute the integration test case scenarios. We have ex-
perimentally measured the performance of the technique and the potential re-
duction of placeholders.

1 Motivation

Software product line engineering (SPLE) is a proven approach for deriving a set of
similar applications at low costs and at short time to market [8][21]. SPLE is based on
the planned, systematic, and pro-active reuse of development artifacts (including
requirements, components, and test cases). There are two key differences between
SPLE and the development of single systems [21]:

1. The development process of a software product line (SPL) is divided into two sub
processes: domain engineering and application engineering. In domain engineer-
ing, the commonalities and the variability of the SPL are defined and reusable arti-
facts, which comprise the SPL platform, are created. In application engineering,
customer-specific applications are realized by binding the variability and reusing
the domain artifacts.

* This work has been partially funded by the DFG under grant PO 607/2-1 IST-SPL and by

Science Foundation Ireland under the CSET grant 03/CE2/I303_1.

322 S. Reis, A. Metzger, and K. Pohl

2. The variability of an SPL is modeled explicitly by variation points and variants.
Variation points describe what varies between the applications of an SPL, e.g. the
payment method in an online store. Variants describe concrete instances of this
variation, e.g. payment by credit card, debit card, or invoice.

Because of the division of the development process into domain and application
engineering, there are two major kinds of development artifacts that have to be tested.
In domain engineering, the SPL platform has to be tested, in application engineering
the derived applications have to be tested.

The SPL platform contains variability. This variability prevents the use of existing
testing techniques for single systems, because the domain artifacts do not define a
single application but a set of applications. With existing techniques from single sys-
tem testing, each of these applications would have to be individually tested in domain
engineering, resulting in an enormous test effort.

In the literature, several approaches for SPL testing have been proposed (e.g.,
[4][10][15][17][20][24]). However, these approaches cover unit and system testing
only.

This paper presents a model-based, automated technique for integration testing in
domain engineering. Our technique generates integration test case scenarios (ITCSs),
which support the test of the interactions between the components of an integrated
sub-system. An ITCS describes the order and the type of interactions that have to be
performed during test execution. By augmenting an ITCS with test data, integration
test cases can be derived.

The basic idea of our approach is to create placeholders for necessary variable parts
and all components that are not part of the integrated sub-system. These placeholders
are considered during the model-based generation of ITCSs. The benefits of our tech-
nique are as follows:

� Other failures than the ones uncovered in unit testing can be found, because the
goal of integration testing is to uncover intercomponent failures (see e.g. [6]).

� Testing can be performed earlier compared to system testing. For integration test-
ing the complete system is not needed. Missing components or variants can be
simulated. Such an early test can significantly reduce costs (see e.g. [7]).

� Generally, not all possible interactions between components can be tested in inte-
gration testing. Our technique systematically selects a subset of all possible interac-
tions by using a test model.

� The ITCSs are derived in such a way that the development effort for necessary
placeholders is minimized. Thus, the testing effort is reduced.

2 Related Work

In the literature, several approaches for scenario-based integration test case derivation
are presented (see [2][12][16][26][29]). All these approaches only support integration
testing for the development of single systems, and therefore none of these approaches
considers variability. As the consideration of variability is essential when testing in
domain engineering, these approaches are not suitable for the use in the context of

 Integration Testing in Software Product Line Engineering 323

SPLs without substantial extensions. Still, they substantiate that a scenario-based
approach is one suitable approach towards integration testing.

Many approaches for test case derivation in SPLE can be found in the literature
[25]. Representatives are approaches by Bertolino and Gnesi [4][15], Geppert et al.
[10], McGregor et al. [17][18], and Nebut et al. [20]. These approaches focus on unit
and system testing only. In our previous work, we have developed the ScenTED tech-
nique for system testing [24][15] and performance testing [23]. McGregor focused on
unit [18] and system testing [17], but furthermore he pointed out that all common
artifacts can already be tested in domain engineering by integration tests. However, he
did not present a concrete technique for that.

In an approach by Muccini and van der Hoek [19] challenges in testing product
line architectures are presented. For integration testing, they suggest to integrate all
common components first and then to integrate the variant components. However,
they do not present solutions for integration test case derivation. Cohen et al. [9] state
that applying well-understood coverage criteria when testing the applications of an
SPL could lead to a low coverage of the SPL platform. They have developed specific
coverage criteria to improve on this situation. The approach by Cohen et al. [9] and
our previous work [24][15] both support an early test in domain engineering by creat-
ing sample applications. However, creating a sample application assumes that all
relevant components and variants have been developed. Consequently, this approach
will be typically applied very late in the domain engineering process.

General approaches for deriving test case scenarios from control flow graphs also
exist (e.g., [22][5][27]). In the approach of Wang et al. [27], all possible scenarios
through a test model are derived by employing existing algorithms. Then, a mathe-
matical optimization is performed to achieve the minimal set of these test case scenar-
ios for branch coverage. Other criteria than branch coverage are also discussed.
Because of the possible use of other coverage and also optimization criteria, this is a
quite general approach. Still, variability and specifics of integration testing are not
explicitly discussed.

Summarizing, none of the existing approaches for SPL testing support integration
testing in domain engineering.

3 Overview of the Technique

In the following subsections, the test models that are used as input to our technique
are described and an overview of the activities of the technique is given.

3.1 Test Models

Test models, which are used as input to our technique, are specified by UML 2.0
activity diagrams. We use UML 2.0 activity diagrams to define the control flow of the
platform (i.e. the actions and the allowed transitions between these actions) and to
define which components perform a given action. The components that perform an
action are specified by activity partitions (as an example, see C1, C2, and C3 in
Fig. 1). A set of these components has to be integrated before our technique is per-
formed according to a defined integration strategy. For each new integrated sub-
system, our technique can be applied again.

324 S. Reis, A. Metzger, and K. Pohl

To model variability, we stereotype certain elements in the activity diagrams to de-
note variation points (see VP1 in Fig. 1) and merge points (see MP1 in Fig. 1). We
define a merge point as a specific node in the diagram where all variant control flows
of a variation point are merged together and continue in a single control flow.

2 3

7

C1 C2

a

e

d

c

<<loop>> f

b

4

C3

g

5

6

1

8

VP1

MP1

h
i

jl

m

V1.3

V1.2V1.1

k

9

Fig. 1. Example of a Test Model

We assume that within the test model, variability always starts with a variation
point. There are no variable parts that can be reached without passing through a varia-
tion point. Moreover, the control flows of all variants of a variation point are always
merged together in exactly one associated merge point. The only exceptions are loops,
which are explicitly marked by a stereotype (see <<loop>> in Fig. 1).

By using activity diagrams as test models, we follow other approaches where con-
trol flow graphs are used for this purpose (e.g. see [14]). In general, a test model can
specify the behavior of the complete system or of the sub-system that should be inte-
gration tested. The abstraction level of the model strongly depends on the way the
model has been developed. For example, the model can be developed on the basis of
use cases from requirements engineering. If the scenarios of the use cases are docu-
mented in activity diagrams, these can be refined considering the architecture of the
system. The abstraction level influences the quality of test results. The more abstract
(i.e., less detailed) the model is, the less the coverage of the test object will be. Thus,
the test model defines the quality of the test results.

3.2 Activities

Our technique for the generation of ITCSs for SPL consists of three main activities
D1-D3. Fig. 2 shows these three activities together with their inputs and outputs.

Domain
Test Model

Optimal Combination of Domain
Integration Test Case Scenarios

Components of
the Integrated

Subsystem

Optimization Criteria

Next Integration Step?y

n

Simplified
Test Model

Abstract
Variability

D1

Specify Integrated
Subsystem Generate

Significant Paths

Possible Paths through
the Simplified Test Model

D2
Generate Optimal
Path Combination

D3

Fig. 2. Overview of our Technique

 Integration Testing in Software Product Line Engineering 325

In the first activity D1, we abstract the variability of the given test model. The vari-
ability is the main problem that prevents the application of test techniques from single
system development. Because of variability, no executable system exists in domain
engineering. We abstract the variability and handle it as a black box for the ITCSs
generation, because we want to test only the common parts of the platform (see
Sec. 4.1). Thereby, the complexity of the test model is reduced. The relevant result of
this activity is a simplified test model where the variability is abstracted.

In the second activity D2, all significant paths through the simplified test model are
derived. For the derivation, we use Beizer’s Node Reduction Algorithm [3]. Because
the ITCSs that are generated with our technique only need to cover the interactions
between the integrated components, we typically can reduce the number of paths (see
Section 4.2). We refer to the reduced set of paths as significant paths.

In the third activity D3, we generate an optimal path combination, i.e. an optimal
set of ITCSs, from the set of significant paths. We calculate the path combination
with the minimal number of included abstracted variability. The variable parts within
an ITCS have to be simulated by placeholders. In contrast to placeholders that are
required for structural reasons, e.g. for enabling compilation, these placeholders are
more complex because they have to simulate functionality. Therefore, the placehold-
ers of the variable parts within the ITCSs represent a significant additional test effort
in domain engineering that should be minimized to keep the overall testing effort
reasonable.

4 Generation of Integration Test Case Scenarios

In this section, the activities of our technique are described in detail.

4.1 Abstraction of Variability (Activity D1)

In our technique, we consider variability in functionality (e.g. alternative control
flows) as well as variability in the architecture (e.g. alternative components). If a
component is a variant (i.e. it can be included in a customer-specific application or
not), we will not integrate it in a sub-system for an integration test in domain engi-
neering. The interactions between these components have to be tested in application
engineering when the component is used as part of a specific application. Because
variant components are not part of the integrated sub-system, they are simulated by
placeholders in the same way that common components, which are not part of the
integrated sub-system, are simulated.

In the test model, variability in functionality is represented by variation points,
merge points and variants in the control flow. This variability is abstracted in the first
activity D1. During this abstraction, the control flow between the variation point and
the associated merge point as well as the variation point and the merge point itself are
replaced by a new action. We define these new actions as abstracted variability.

Depending on the actual structure of the test model the abstraction is performed
differently. We can differentiate between a normal arrangement of a variation point
(see “A” in Fig. 3.) and a nested one (see “B” in Fig. 3.):

326 S. Reis, A. Metzger, and K. Pohl

abstracted
variability

variation
point

merge
point

A B

input inputabstr. abstr.

C

input abstr.

Fig. 3. Examples for Transformations for Abstracting Variability

Loops in a test model can be classified into three different types:

� A backflow within a variable part exists: This type poses no problem for abstrac-
tion and is already covered by the abstraction of a normal variation point (“A”).

� A backflow out of a common part into a variable part exists: This type is not con-
forming to our assumptions from above. Because each variable part has to begin
with a variation point, this composition is not allowed.

� A backflow out of a variable part into a common part exists: This type represents a
valid violation of our above assumption that all variants have to be merged in one
merge point. Because we stereotyped all backflows, they can be identified and thus
abstracted accordingly (see “C” in Fig. 3.).

The implementation of our abstraction algorithm uses a relation matrix as a data
structure to represent the test model. We have decided to use relation matrices, be-
cause in the subsequent activities of our technique for the generation of integration
test cases, we will use existing algorithms that are based on matrices.

The dimension of the relation matrix corresponds to the number of nodes in the test
model (i.e. actions, decision points, variation points etc.). The entries of the matrix
represent the edges between the different nodes.

1

1 9 2 3 VP1 4 5 6 MP1 7 8

1 a

9

2 b

3 c

VP1 ih

4 k

5 l

6 m

MP1 d
7 e
8 g f

2

4

j

3

5

Fig. 4. Steps of the Abstraction Algorithm applied to the Example from Fig. 1

In Fig. 4. the steps of the abstraction algorithm are illustrated. The example test
model consists of 11 nodes, including one variation point. The algorithm iterates
through the rows of the matrix until a variation point is identified (see 1). With the

 Integration Testing in Software Product Line Engineering 327

entries of the identified row (see 2), the reachable nodes are identified (see 3). For
these nodes, again the reachable nodes are identified in the same way (see 4, 5). This
procedure is repeated until the merge point of the identified variation point is reached.
If a loop is detected, the procedure is finished for the respective loop node before
reaching the merge node. The rows and columns that are identified with the algorithm
are eliminated from the matrix and are replaced by a new action that represents ab-
stracted variability.

4.2 Generation of Significant Paths (Activity D2)

The second activity D2 of our technique is divided into five steps (D2a – D2e). These
steps are illustrated by the example in Fig. 5., in which components C1 and C2 are
integrated into the sub-system to be tested.

b f

A 1 0

B 1 1

P = {(a,b,c,d,e,g)A,
(a,b,c,d,e,f,c,d,e,g)B}

pexpr= ab(cdef)*cdeg

integrated subsystem
a b c d e f g

A 1 1 1 1 1 0 1

B 1 1 2 2 2 1 1

D2a

D2b

D2c

D2e

R = {(a,b,c,d,e,g)A,
(a,b,c,d,e,f,c,d,e,g)B}

D2d

G
F

2 3

7

C1 C2

a

e

d

c

<<loop>> f

b
VA1

C3

g

1

8

9

Fig. 5. Creation of an EP Matrix

Step D2a: Derivation of path expression. We start activity D2 with computing a
path expression that represents all paths of the test model in a compact string. This
path expression is generated by Beizer’s node reduction algorithm of [3]. In the ex-
ample, this leads to the expression “ab(cdef)*cdeg” (the asterisk ‘*’ denotes an arbi-
trary repetition of the expression in parentheses).

Step D2b: Derivation of paths through the simplified test model. The path expres-
sion from step D2a can be used to derive all paths through the test model. However, if
the test model contains loops, this can lead to an infinite number of paths. As we want
to cover all interactions between the integrated components, we can limit the number
of paths by restricting the loop iterations to at most one. This leads to a set P := {p1,
p2, …, pn} of paths pi. In the example, P contains the two paths A = (a, b, c, d, e, g)
and B = (a, b, c, d, e, f, c, d, e, g).

Step D2c: Selection of significant paths for the sub-system. For the integration test
of a given sub-system, only paths that affect the integrated sub-system need to be
considered. Therefore, all paths that do not contain any edges that are associated to a
component of the integrated sub-system are deleted. Further, all infeasible paths
should be eliminated. The identification of infeasible paths is nontrivial. Still, several
approaches have been suggested to identify infeasible paths (e.g., [13]). We suggest
using one of these existing approaches to eliminate the infeasible paths. Also, a do-

328 S. Reis, A. Metzger, and K. Pohl

main expert could perform this step. The result of this step is a set R ⊆ P that contains
all significant paths. In the example, paths A and B are significant, thus R = P.

Step D2d: Creation of an EP Matrix. To prepare for the following activities of our
technique, an edge-path frequency matrix (EP matrix) is created from the paths in the
set R. The rows of an EP matrix G represent the paths. The columns of the matrix
represent the edges, e ∈ E, of the test model. An element G(p, e) of the matrix G
represents how often an edge e is contained in a path p. In the example, the element
G(B, c) of the EP matrix contains a value of 2, because edge c appears twice in
path B.

Step D2e: Reduction of the EP Matrix. As a final step, the EP matrix is reduced. In
integration testing, the interactions between the components of the integrated sub-
system are tested. Therefore, only edges of the test model that cross the component
boundaries within the integrated sub-system have to be considered. As a consequence,
all columns can be eliminated that represent other transitions, leading to a reduced
matrix F. In the example, transition e is eliminated, because it is an internal transition
of component C1. Transition c is eliminated, because it is not part of the component
interactions within the integrated sub-system.

4.3 Generation of the Optimal Path Combination (Activity D3)

The third activity D3 generates a set of ITCSs based on the EP matrix F. The set of
ITCSs has to cover all necessary edges of the test model, i.e. all interactions between
the integrated components. Moreover, the set should lead to the minimal number of
abstracted variability and thus required placeholders.

An ITCS is represented by a path through the simplified test model. The optimal
set of ITCSs therefore is represented by a subset c of the paths R that are specified in
the matrix F. We want to determine a path combination that guarantees a complete
coverage of the interactions between the integrated components. The coverage for any
given path combination c can be computed from the EP matrix F as follows.

Let s(c, e) be

s(c, e) = ∑
∈cp

epF),((1)

The coverage of the interactions between the integrated components is only
achieved if s(c, e) is larger than zero for all edges e. Otherwise, at least one edge has
not been considered in the path combination.

The generation of an optimal path combination through the simplified test model
obviously represents an optimization problem. We use the generalized optimal path
selection model by Wang et al. [27] to generate the optimal path combination. This
model can easily be used for different optimization criteria. Wang et al. define the
objective function Z as follows:

Z = bT WT x (2)

The vector of decision variables x contains one decision variable for each signifi-
cant path through the simplified test model. The decision variable indicates, whether

 Integration Testing in Software Product Line Engineering 329

the path is selected for the path combination or not. Therefore, the decision variables
are binary:

x = [(X i | Xi = 0, 1)] (3)

The vector b and the matrix W enable the weighting of the decision variables to
upgrade or downgrade specific possible solutions.

The minimization of the abstracted variability that is contained in the significant
paths is realized by the weighting matrix W. Thereto, we specify a matrix V. The rows
of V represent the significant paths R. The columns of V represent the nodes v within
the simplified test model that represent the abstracted variability. An element V(p, v)
of the matrix V is 1 iff the path p contains the node v, otherwise the element has the
value 0. The matrix V is now used as weighting matrix W.

The vector b can be used to prioritize the complexity of the single abstracted vari-
ability. In contrast to this, the matrix V is used to optimize the number of abstracted
variability in the path combination. Because the complexity of abstracted variability
depends on many different factors (e.g., on the way of implementation), we currently
do not use the vector b in our optimization. The resulting objective function thus
becomes:

Z = 1T VT x (4)

It should be noted that using the matrix V leads to an approximation with respect to
minimizing the number of abstracted variability within the selected path combination.
Because of an easier realization, the overall number of abstracted variability is
minimized, not the number of different abstracted variability.

The desired coverage of the test model is achieved by defining auxiliary
conditions:

AT x ≥ r (5)

The matrix A defines the elements that have to be covered (e.g., paths, branches, or
nodes). The variable r specifies the desired degree of coverage. We specify the
coverage of the interactions between the integrated components with the matrix F.
Therefore, we can replace the matrix A with matrix F. To guarantee the coverage, it is
sufficient to run through each needed edge once. Therefore, we can set the degree of
coverage r to 1. The adapted auxiliary conditions are the following:

FT x ≥ 1 (6)

The optimization problem that is described in this manner can be solved with the
branch-and-bound approach (see e.g. [1]). Branch-and-bound is a general algorithmic
method for finding optimal solutions of integer optimization problems.

5 Evaluation of the Technique

In this section, we present the results of the experimental evaluation of our technique
concerning the performance and the benefits of the technique.

330 S. Reis, A. Metzger, and K. Pohl

5.1 Design of the Experiment

We have implemented a prototype for the complete technique in Java (JDK 1.4.2).
The multi-constraint selection of an optimal set of paths through a graph is an NP
complete problem. Therefore, the activity D3 of our technique is the most critical one
and we focus on this activity in our evaluation. Our prototype uses for this activity D3
the Gnu Linear Programming Kit (GLPK, [11]) for solving the optimization problem
with the branch-and-bound approach.

We have defined simplified test models by the random generation of EP matrices
and W matrices. Then, we have generated the optimal set of ITCSs by applying our
prototype. We have measured the computation time as well as the number of selected
scenarios and the number of the contained abstracted variability. Altogether, we have
generated and calculated over 2000 examples. All measurements have been per-
formed on a standard PC with a 2.8 GHz Pentium IV processor and 1 GB RAM, run-
ning Windows XP (SP2).

The test models that have been used as input to activity D3 are represented by EP
matrices and W matrices and can be characterized by six parameters:

1. the number of paths through the simplified test model (rows of the EP matrix)
2. the number of reduced interactions between the integrated components (columns

of the EP matrix)
3. the number of entries of the EP matrix, i.e. how many cells of the EP matrix have

a value greater than 0
4. the allocation of the EP matrix, i.e. the assignment of the values greater than 0 to

the cells of the EP matrix
5. the number of abstracted variability in the simplified test model (columns of the

W matrix)
6. the allocation of the W matrix, i.e. the assignment of the values greater than 0 to

the cells of the W matrix

For the execution of the test runs, we have varied the number of paths and interac-
tions of the EP matrix. We have started with 10 paths and 10 interactions and
increased the values incrementally by 10. For each paths/interactions combination, we
generated 5 examples with different kinds of allocations and different W matrices.
Because of our experience with previous example test models, we have fixed the
number of entries in the EP matrices to 50% and 25%. The allocation has been gener-
ated randomly. We prevent columns that contain a value greater than 0 in every row,
because these columns would be covered by every path and therefore they would be
needless and could be deleted. We also prevent columns that contain 0 in every row,
because this would lead to a wrong test model. These columns could not be covered
by any path through the simplified test model. The bounds of the number of ab-
stracted variability, VA, in the simplified test models (i.e., the number of columns in
the W matrices) are the following: 1 < VA < (10*(columns of EP)). We assume that
only 10% of the interactions of the original test model represent interactions between
the integrated components. If more than 10% of the interactions represent interactions
between the integrated components, the upper bound would be lower and less vari-
ability could be included in the model (e.g., 5*columns of EP for 20%). The number
of entries and also the allocation of the matrix W have been generated randomly.

 Integration Testing in Software Product Line Engineering 331

5.2 Validity Threats

We have analyzed different types of threats to the validity of the results of our evalua-
tion (c.f. [28]). One threat leads to the necessity of using objective and repeatable
measures. We have measured the computation time, the number of test case scenarios,
and the number of reduced abstracted variability. These measures are objective, be-
cause it involves simple counting. Because the technique is automated, the measures
are also repeatable.

The environment of our experimentation consists of a PC that has no network con-
nection and there are no other applications running on the PC. We have performed all
measurements on the same PC. Thus, the results are comparable. The implementation
of the prototype has been intensively tested before we have performed the experiment.

Because of the high number of more than 2000 computations of different test mod-
els, in our opinion the results can be generalized and with a high probability they are
also relevant for industrial practice.

5.3 Performance of the Technique

In our experiment, the performance is measured by computation time. We have ap-
plied our prototype to more than 2000 generated examples with different characteris-
tics of EP matrices and W matrices.

0

500

1000

1500

2000

2500

3000

3500

4000

0 50 100 150 200 250 300 350 400 450 500 550 600

C
al

cu
la

tio
n

tim
e

[s
]

Number of paths

50 edges
100 edges
200 edges

Fig. 6. Computation Times [s]

Fig. 6 shows the results concerning the computation time exemplary for EP matri-
ces with 50, 100, and 200 edges and an allocation of 50%. The results in the diagram
respectively represent average values of five computations. Moreover, the figure
shows the regression curves for each data set. As expected, simplified test models
with more included interactions need more computation time. The longest computa-
tion time of all executed computations was 9087 seconds for an example with 200
paths, 200 interactions (edges), and 1880 included abstracted variability. The variabil-
ity in this example could only be reduced to 1842. Examples with 100 interactions
have been smoothly calculated in an acceptable time, even if they have 600 paths. The
computation time of examples with 50 interactions was minimal. Analyzing the re-

332 S. Reis, A. Metzger, and K. Pohl

sults, we observed that the more variability could be reduced, the more computation
time decreased. The most complex computations were those, where no variability
could be reduced.

It should be noted that the measured computation times correspond to the dimen-
sions of the simplified test model. Thus, directly determining computation time from
the size of the (non-simplified) test model is not possible. However, the size of test
models typically corresponds to a multiple of the size of the simplified test models.
Because all computations of our experiment have been performed in an acceptable
time (less than three hours), these results indicate that (non-simplified) test models of
sufficient size can be calculated.

5.4 Benefit of the Technique

Our technique supports an early test in domain engineering because of the following
aspects:

� The complete system is not needed for applying our technique, because missing
parts (e.g., variability or not implemented components) can be simulated.

� The parts of the system that have to simulated are easily to identify. The variable
parts can be identified by the nodes in the ITCSs that represent abstracted variabil-
ity. The placeholders that are needed because of structural reasons can be identified
by the architectural information within the ITCSs.

� The expected coverage is guaranteed. All common interactions between the com-
ponents of the system are covered.

There are two additional benefits that could be measured in our experiment:

Low number of integration test case scenarios. Applying our technique leads to a
small set of ITCSs that guarantees the coverage of all necessary interactions of the
test model. A small test set can reduce the test effort during test execution.

N
o.

 o
f

se
le

ct
ed

T
C

S

(T
C

S
 in

 t
he

te
st

 s
et

)

No. of possible TCS (No. of paths through the test model)

0

10

20

30

0 50 100 150 200 250 300 350 400 450 500 550 600

25% allocation

50% allocation

Fig. 7. Number of selected TCS

Fig. 7. shows the number of ITCSs within the generated test set in contrast to the
number of possible ITCSs for 25% and 50% allocations of the EP matrix. The number
of scenarios within the generated test set is very small, i.e. only a few ITCSs are suffi-
cient to cover all necessary interactions of the test model. Although the number is not
minimized during the computation and the generated test models are partially very

 Integration Testing in Software Product Line Engineering 333

complex, the average number of scenarios for 25% allocations of the EP matrix is 7.2
scenarios. On an average only 3.6 scenarios are sufficient for the coverage, if the EP
allocation is 50%.

Minimal number of abstracted variability. Applying our technique leads to a test
set that contains a minimal number of abstracted variability. The minimal number of
abstracted variability reduces the test effort during the preparation of the test, because
less placeholders have to be developed.

0

100

200

300

400

500

600

700

800

900

1000

0 100 200 300 400 500 600 700 800 900 1000

ytilibairav
detcartsba fo .o

N

S
C

T
detcel

es
eht ni

Overall number of abstracted variability in the test model

0-10%

10-30%

30-50%

50-70%

70-90%

>90%

30-50%
(12%)

50-70%
(10%)

70-90%
(7%)

>90%
(4%)

0-10%
(46%)

10-30%
(21%)

Fig. 8. Measured reduction of Variability

Fig. 8 shows the number of different abstracted variability in the selected ITCSs
proportional to the overall number of different abstracted variability in the test model
(50% allocation of EP). The difference between these numbers represents the reduc-
tion of variability and therefore a reduction of needed placeholders. In the diagram,
the numbers of all performed computations are illustrated. The mean reduction is
25%. However, the standard deviation is very high and therefore the mean reduction
is not really significant. Because of the high distribution of the values, we have di-
vided the values in six categories. In 46% of the computations, only a reduction of
less than 10% could be reached. But in more than 20% of the computations, a reduc-
tion of more than 50% could be reached. 4% of the computations lead to reduction of
more than 90%. Summarizing, a high reduction is possible, but because of the high
distribution of the results estimating the reduction for a given test model is not possi-
ble. The high distribution is due to the fact that the results are influenced by a set of
parameters (e.g., allocation of the variability in the test model, size of the test model).

6 Conclusion and Outlook

In this paper, we have presented a model-based, automated technique for integration
testing in domain engineering. The technique generates integration test case scenarios,
based on which integration test cases can be developed. Our technique provides four
significant benefits for software product line testing:

� The technique facilitates integration testing by considering a test model that de-
scribes the control flow as well as its assignment to the components of the software
product line platform. Components and variable parts, which have to be simulated
by placeholders, are explicitly modeled.

334 S. Reis, A. Metzger, and K. Pohl

� The technique supports an early test in domain engineering. Variability is ab-
stracted and placeholders can be used to simulate the abstracted variable parts of
the software product line platform.

� The technique selects integration test case scenarios systematically. Based on the
test model, the integration test case scenarios are derived by our technique such
that the coverage of all interactions between the components of an integrated sub-
system is guaranteed.

� The technique reduces the testing effort, because the variable parts within the se-
lected integration test case scenarios, and thus the development effort for place-
holders, is minimized. Our experimental evaluation has shown that on an average
the number of variable parts in the scenarios can be reduced by about 25%.

Although the computations for minimizing the variable parts in the integration test
case scenarios are quite complex, our experiments have shown that the technique can
deal with large test models. However, the technique depends on the arrangement of
variability in the test models. The abstraction of an unfavorable arrangement can –
under rare circumstances – lead to an over-simplified test model, which prevents a
reasonable application of the technique.

Currently, we are planning to apply our testing technique in an industrial setting. In
addition, the reuse of the generated integration test case scenarios in application engi-
neering is one topic of our future research. We are convinced that the testing effort
can significantly be reduced, if the test case scenarios are systematically reused in
application engineering.

References

1. Balas, E.; Toth, P.: Branch and Bound Methods. In: Lawler, E.L.; Lenstra, J.K.; Rinnooy
Kan, A.H.G.; Shmoys, D.B. (eds.): The Traveling Salesman Problem, Wiley, New York
(1985) 361-401

2. Basanieri, F.; Bertolino, A.: A Practical approach to UML-based derivation of integration
tests, In: Proc. of the Quality Week Europe, paper 3T (2000)

3. Beizer, B.: Software Testing Techniques. Van Nostrand Reinhold, New York (1990)
4. Bertolino, A., and Gnesi, S. PLUTO: A Test Methodology for Product Families. In: Soft-

ware Product-Family Engineering – 5th Intl. Workshop, LNCS 3014, Springer (2004)
5. Bertolino, A.; Marré, M.: Automatic Generation of Path Covers Based on the Control Flow

Analysis of Computer Programs. IEEE Transactions on Software Engineering, Vol. 20,
No. 12 (1994) 885-899

6. Binder, R.V.: Testing Object-Oriented Systems. Addison-Wesley (2000)
7. Boehm, B.; Basili, V.R.: Software Defect Reduction Top 10 List. IEEE Computer, 34(1)

(2001) 135-137
8. Clements, P., and Northrop, L. Software Product Lines: Practices and Patterns. Addison-

Wesley (2002)
9. Cohen, M.B.; Dwyer, M.B.; Shi, J.: Coverage and Adequacy in Software Product Line

Testing. In: Proc. of the ISSTA 2006 Workshop on Role of Software Architecture for Test-
ing and Analysis, ACM, New York (2006) 53-63

10. Geppert, B.; Li, J.; Rößler, F.; Weiss, D.M.: Towards Generating Acceptance Tests for
Product Lines. In: Proc. of the 8th Intl. Conf. on Software Reuse, LNCS 3107, Springer,
Heidelberg (2004) 35-48

 Integration Testing in Software Product Line Engineering 335

11. GLPK (Gnu Linear Progrmming Kit), Gnu Project, http://www.gnu.org/software/glpk/.
12. Hartmann, J.; Imoberdorf, C.; Meisinger, M.: UML-Based Integration Testing, In: Harrold,

M.J. (ed.): Proc. of the Intl. Symposium on Software Testing and Analysis, ACM, New
York (2000) 60-70

13. Hedley, D.; Hennell, M.A.: The Causes and Effects of Infeasible Path in Computer Pro-
grams, In: Proc. of the 8th Intl. Conf. on Software Engineering, IEEE (1985) 259-267

14. Jorgensen, P.C.; Erickson, C.: Object-Oriented Integration Testing. Communications of the
ACM, Vol. 37, No. 9 (1994) 30-38

15. Käkölä, T.; Duenas, J.C. (Eds.): Software Product Lines – Research Issues in Engineering
and Management. Springer (2006)

16. Kim, Y.; Carlson, C.R.: Scenario Based Integration Testing for Object-Oriented Software
Development, In: Proc. of the 8th Asian Test Symposium, IEEE (1999) 383-288

17. McGregor, J.D. Testing a Software Product Line. Technical Report CMU/SEI-2001-TR-
022, Carnegie Mellon University, SEI (2001)

18. McGregor, J.D., Sodhani, P., and Madhavapeddi, S. Testing Variability in a Software
Product Line. In Proc. of the Intl. Workshop on Software Product Line Testing, Avaya
Labs, ALR-2004-031 (2004) 45-50

19. Muccini, H.; van der Hoek, A.: Towards Testing Product Line Architectures. In: Proc. of
the Intl. Workshop on Test and Analysis of Component-Based Systems, Electronic Notes
in Theoretical Computer Science, Vol. 82, No. 6 (2003)

20. Nebut, C.; Fleurey, F.; Le Traon, Y.; Jézéquel, J.-M.: A Requirement-based Approach to
Test Product Families. In: Software Product-Family Engineering – 5th Intl. Workshop,
LNCS 3014, Springer, Heidelberg (2004) 198-210

21. Pohl, K.; Böckle, G.; van der Linden, F.: Software Product Line Engineering – Founda-
tions, Principles, and Techniques. Springer, Heidelberg (2005)

22. Prather, R.E.; Myers, J.P.: The Path Prefix Testing Strategy. IEEE Transactions on Soft-
ware Engineering, Vol. 13, No. 7 (1987) 761-766

23. Reis, S.; Metzger, A.; Pohl, K.: A Reuse technique for Performance Testing of Software
Product Lines. In: Proc. of the Intl. Workshop on Software Product Line Testing, Mann-
heim University of Applied Sciences, Report No. 003.06, (2006) 5-10

24. Reuys, A.; Kamsties, E.; Pohl, K, Reis, S.: Model-based System Testing of Software Prod-
uct Families. In: Advanced Information Systems Engineering - CAiSE 2005, LNCS 3520,
Springer, Heidelberg (2005) 519-534

25. Tevanlinna, A., Taina, J., and Kauppinen, R., Product Family Testing – a Survey. ACM
SIGSOFT Software Engineering Notes, 29(2) (2004)

26. Tsai, W.T.; Bai, X.; Paul, R.; Shao, W.; Agarwal, V.: End-To-End Integration Testing De-
sign. In: Proc. of the 25th Annual Intl. Computer Software and Applications Conf., IEEE,
Los Alamitos (2001) 166-171

27. Wang, H.S.; Hsu, S.R.; Lin, J.C.: A Generalized Optimal Path-Selection Model for Struc-
tural Program Testing. The Journal of Systems and Software, Vol. 10 (1989) 55-63

28. Wohlin, C.; Runeson, P.; Höst, M.; Ohlsson, M.C.; Regnell, B.; Wesslen, A.: Experimen-
tation in Software Engineering – An Introduction. Kluwer Academic Publishers (2000)

29. Wu, Y.; Chen, M.-H.; Offutt, J.: UML-Based Integration Testing for Component-Based
Software. In: Proc. of the 2nd Intl. Conf. on COTS-Based Software Systems, LNCS 2580,
Springer (2003) 251-260

Practical Reasoning About Invocations and

Implementations of Pure Methods

Ádám Darvas1 and K. Rustan M. Leino2

1 ETH Zurich, Switzerland
adam.darvas@inf.ethz.ch

2 Microsoft Research, Redmond, WA, USA
leino@microsoft.com

Abstract. User-defined functions used in the specification of object-
oriented programs are called pure methods. Providing sound and practical
support for pure methods in a verification system faces many challenges,
especially when pure methods have executable implementations and can
be invoked from code at run time. This paper describes a design for
reasoning about pure methods in the context of sound, modular veri-
fication. The design addresses (1) how to axiomatize pure methods as
mathematical functions enabling reasoning about their result values; (2)
preconditions and frame conditions for pure methods enabling reasoning
about the implementation of a pure method. Two important considera-
tions of the design are that it work with object invariants and that its
logical encoding be suitable for fully automatic theorem provers. The
design has been implemented in the Spec# programming system.

1 Introduction

The notion of using user-defined functions in program specifications is both
natural and useful. In object-oriented languages, such functions are known as
pure methods—“pure” because their evaluation does not have an effect on the
caller’s program state [11]. The use of pure methods facilitates abstraction. To
illustrate that, consider the postcondition

ensures this.IsPremium() ==> balance == old(balance) ∗ 1.02;

of a method Bonus in an Account class. The condition expresses that if the
Account object is a “premium” account, then its balance gets increased by 2%.
The advantage of using pure method IsPremium in the condition is that its
specification need not be repeated, which makes the condition more concise and
comprehensible. Furthermore, even if the meaning (that is, specification and
implementation) of the method changes over time, the postcondition of method
Bonus need not be modified.

State-of-the-art languages such as Eiffel [15], Java with JML [11], and Spec#
[3] support the use of pure methods. Common to these specification-enriched
object-oriented languages is that their specifications are executable, and in par-
ticular their pure methods are executable. Like ordinary methods, pure methods

M.B. Dwyer and A. Lopes (Eds.): FASE 2007, LNCS 4422, pp. 336–351, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Practical Reasoning About Pure Methods 337

have associated pre- and postconditions that we use in static verification to rea-
son about invocations and implementations of the methods. But pure methods
are different from ordinary methods in three ways.

First, pure methods can be used in specifications, which are expressions to
assert properties of the code in a program. Since code also contains expressions,
it is tempting to treat specifications like other expressions appearing in the code.
But if the evaluation of specifications were treated as ordinary code, then it would
be difficult to allow quantifications in specifications: quantifications in code are
treated as loops, to reason about loops one needs loop invariants, and expressing
these loop invariants, in general, requires quantifiers! So, we would like to treat
specifications like mathematical expressions, not like code with control flow and
side effects. And this means that we want to treat pure-method invocations
in specifications like mathematical functions, not like procedure calls with side
effects. Hence, when reasoning about the program, we introduce a mathematical
function for every pure method, and this entails the task of turning the pure
method’s pre- and postconditions into well-founded mathematical definitions.

Second, to reason about invocations of pure methods (in our experience, more
so than for ordinary methods), it is useful to specify the read effects of pure
methods. Such specifications restrict what the result value of a pure method
may depend on, which lets callers determine if various state changes have any
effect on the pure method.

Third, there are situations in code where it is appropriate to allow a pure
method to be invoked, but not an ordinary method. Such invocations thus re-
quire that pure methods be given weaker (i.e., more applicable) preconditions
than ordinary methods. We have found that with these weaker conditions, the
abstraction techniques used to formulate frame conditions for ordinary methods
lose too much precision when reasoning about implementations of pure methods.

In this paper, we describe the design of pure methods in the static program
verifier Boogie [2] for Spec# [3]. The design addresses the issues mentioned
above. It also addresses an important engineering issue arising from the fact
that Boogie uses a fully automatic theorem prover, Simplify [7]. This automa-
tion comes at a price; relevant to our work here is the incompleteness of the
handling of quantifiers, and specifically the prover’s apparent inability to deal
with reachability and to find witnesses for existential quantifiers.

We call our design practical because it is simple to realize and is capable of
handling all cases we encountered in practice. However, it is not universal in the
sense that there are programs that our design cannot handle. Nonetheless, we
believe that the design is a practically useful solution. Parts of the design that
are not specific to the Boogie methodology can be adapted to work with other
program verifiers too, for example, Krakatoa [14]. The parts that are specific to
the Boogie methodology may not be directly adaptable to some other verifiers,
but the issues that those parts of the paper bring out are still relevant to any
verification system aiming for modular reasoning.

We have implemented our design in Boogie, which has allowed us to start
experimenting with its practicality. One of the benchmarks we have used is the

338 Á. Darvas and K.R.M. Leino

source code of Boogie itself, which comprises some 45K lines of Spec#. Although
much work remains to actually specify and verify the Boogie source code, all uses
of pure methods in the source code pass our admissibility checks.

Section 2 briefly sketches the basic encoding and axiomatization of pure meth-
ods. Section 3 presents our design for the axiomatization which takes into ac-
count the constraints of Spec#. In Section 4, we give an overview of the Boogie
methodology to prepare the reader for the remaining sections. Sections 5 and 6
study typical situations that occur during the verification of pure methods and
propose axioms for their treatment. Finally, we list related work and conclude.

2 Encoding of Pure Methods and Their Return Values

In this section, we describe how methods in an object-oriented program are en-
coded as methods with first-order pre- and postconditions, uninterpreted func-
tions, and a variety of axioms. These encodings can then be subjected to standard
verification techniques based on, for example, Hoare logic [17] or verification-
condition generation [14,2]. As is standard, our encoding represents the heap
explicitly, so where the object-oriented notation would write o.f to denote the
f field of an object referenced by o, our encoding writes h[o, f], which denotes
the value at location (o, f) in the object store (that is, heap) h.

Pure methods and their uses in specifications are encoded by uninterpreted
functions and function applications, respectively [5,6]. For each pure method M,
the encoding introduces a function #M , which we refer to as a method function.
The method function takes one argument for each parameter of the method,
including the receiver parameter, and an additional argument for the object
store in which it is evaluated. For instance, a pure method declared as:

[Pure] int Exmpl(int x)
requires this.f <= x;
ensures result <= x − this.f;

{ return (x − this.f) / 2; }

where result denotes the return value of the method, introduces a method func-
tion #Exmpl with the signature ref × int ×heap → int , where ref , int , and heap
are the sorts for references, machine integers, and object stores, respectively.
We can use a function, because it is standard to require pure methods to be
deterministic [11].

Pure methods and their implementations also give rise to method declarations
in the encoding. These method declarations are used to reason about calls to
pure methods from code and to reason about the implementations of pure meth-
ods. To make a connection between calls to a pure method M in code and calls
to M in specifications, we follow [5] and our encoding adds a postcondition that
ties the result of M to the value of #M . This is needed when the method spec-
ification does not completely determine the result value. For method Exmpl,
the additional postcondition in the encoding is result = #Exmpl(this, x , h);

Practical Reasoning About Pure Methods 339

where h denotes the object store. This postcondition allows us to verify code
like: “v = o.Exmpl(23); assert v == o.Exmpl(23);” in the source program,
since the expression in the assert statement is a specification expression.

Method function #M is axiomatized based on the specification of method M.
In essence, the axiom states that if the precondition of the method holds, then
the method returns a value that is consistent with the postcondition. Formally,
for a pure method M with pre- and postconditions Pre and Post , we would like
an axiom like:

(∀ t , p, h • Pre[t/this] ⇒ Post [t/this, #M (t , p, h)/result]) (1)

where t and p range over the possible values of the receiver object and other
parameters, respectively, and h ranges over well-formed heaps. The substitutions
replace every occurrence of this by the bound variable for the receiver object
and every occurrence of the special variable result by the function application
of #M . For method Exmpl, the axiom (after substitutions) is:

(∀ t , x , h • h[t , f] � x ⇒ #Exmpl(t , x , h) � x − h[t , f])

Unfortunately, formula (1) does not necessarily give rise to a well-founded de-
finition for #M , because the postcondition Post might be unattainable (for
example, Post might be false) [6]. This is not a problem for a verification system
when verifying ordinary code, because it will not be possible to prove the correct-
ness of any terminating path in the implementation. However, an unattainable
postcondition would be a problem for a verification system if it caused the gen-
eration of an unsound axiom, because such an axiom would let every part of the
program be verified, including the implementation of the pure method.

Formula (1) is sound if for all relevant values of the arguments, there is some
value that #M can take on. More precisely, if M’s specification does not call any
pure methods, then the soundness of (1) follows from:

(∀ t , p, h • Pre[t/this] ⇒ (∃ w • Post [t/this, w/result])) (2)

Thus, in this case, a sound axiomatization of method function #M is the impli-
cation (2) ⇒ (1). If M’s specification calls pure methods, then soundness addi-
tionally requires that any recursion be well-founded, which can be expressed by
a much more complicated form of (2) that takes into account the values of all
applications of all method functions involved in the recursion.

3 Practical Issues of Method Functions

The idea of using (2) ⇒ (1) as the axiom that defines the method function #M
suffers from two practical problems, which we describe in this section. We also
describe how we overcome these problems in our design, which is an adaptation
of previous work by Darvas and Müller [6].

3.1 Well-Founded Definitions of Method Functions

One problem with using (2) ⇒ (1) to axiomatize #M is the alternating quan-
tifiers in (2), which do not work well with our automatic theorem prover. Some

340 Á. Darvas and K.R.M. Leino

simple experiments we conducted showed that Simplify does not discover even
very simple witnesses w for the existential quantifier. In this section, we show
how some simple syntactic checks guarantee the existence of a witness, thus
satisfying the antecedent (2) once and for all.

As a first step in our heuristic process, we identify a candidate witness expres-
sion for the pure method. Then, we check that the candidate witness expression
lies below the method function in a well-founded order (that is, a partial or-
der with no infinite descending chains). If this process yields a well-founded
candidate witness expression, then (2) is satisfied, so our encoding will simply
include (1) as the axiom that constrains #M . Since the heuristics look for syn-
tactic patterns, they might not always discover a witness even if a witness does
exist.

Identifying a candidate witness expression. Our heuristics consider a method to
have a candidate witness expression E if and only if the method has exactly one
ensures clause and it has the form “result op E” or “E op result”, where op
is one of the reflexive operators ==, �, �, ⇒, or ⇔, and E is an expression that
does not contain the literal result. The syntactic nature of the heuristics might
require postconditions to be rewritten in order to have the witness discovered.

Expression ordering. An expression E lies below (an application of) a method
function #M (t , p, h) if and only if every method function in E lies below
#M (t , p, h). Method functions are ordered by a lexicographic ordering: method
function #N (s , q, h) lies below #M (t , p, h) if and only if:

– s is the term h[t , f] where f is a field declared with the rep modifier (we
explain later what rep fields are; for now, it suffices to know that rep fields
induce a well-founded order on the objects in any program state), or

– s and t are the same term, pure methods N and M are declared in the same
class, and that class orders N before M.

A suitable well-founded ordering on pure methods within a class, if one exists,
can be inferred by building a call graph based on how the postconditions of the
pure methods of the class call each other [6]. Our design uses a cruder inference
that associates a number with each method and orders the methods accord-
ingly. We let programmers override this inference by marking a pure method
with a new attribute called RecursionTermination that takes a natural number
as parameter. The inference uses the programmer-specified number, if present;
otherwise, if the method’s postconditions does not call any other pure methods,
the inferred number is 0; otherwise, the inferred number is infinity.

Our experience with the specification of Boogie suggests that the annotation
overhead may not be too bad in practice. We had to annotate only one method
in mscorlib, the Microsoft Common Object Runtime Library. This was partly
due to the simple yet helpful inference mechanism. The advantage of the ap-
proach is its simplicity compared to building and analyzing the call graph of
each class.

Practical Reasoning About Pure Methods 341

3.2 Tension Between Dynamic Execution and Static Verification

The other problem stems from a tension between our desire to encode a pure-
method invocation in a specification as an application of the corresponding
method function, which does not alter the heap, and our desire to allow the
implementation of a pure method, which will be executed at run time, to make
some changes to the heap. In this section, we describe that problem and the
solution our design uses.

Pure methods are side-effect free. That is, they are not allowed to change the
state of existing objects. However, in many practical cases it is convenient to
permit them to allocate new objects and freely modify their state. For example,
a pure method to find the median value in a collection may allocate a temporary
List object and apply a number of mutating operations to it as part of computing
the result of the pure method. This means that a call to a pure method may
change the heap, but only in a way that does not change the state of objects
that were allocated before the call.

We would like our encoding to evaluate each specification expression, includ-
ing all the method calls it contains, in a single state. But this raises some concern,
since at run time the pure methods may be invoked in different states. To il-
lustrate that this is a real concern, consider the specification expression “o.M()
== o.M()”, where the implementation of pure method M allocates and returns
a new object. At run time, the specification evaluates to false, but its encoding
#M (o, h) = #M (o, h) equals true [6].

One way to overcome this problem is to disallow pure methods to return
newly allocated objects—while still permitting the allocation and modification
of new objects [6]. This restriction makes the encoding indistinguishable from
the run-time behavior, because the objects allocated in a call are not observable
by specification expressions evaluated after the call. Although this solution leads
to a simple encoding, we found it to be too restrictive in many practical cases.

We take a more liberal approach, allowing pure methods to return newly
allocated objects provided that does not cause any discrepancy between the
dynamic execution and static verification. In the remainder of this section, we
outline the analysis.

New attributes. The analysis requires the introduction of two new attributes.
A reference-type pure method marked with attribute ResultNotNewlyAllocated
says that the returned object has been allocated before the method was called.
We encode this property as an additional postcondition

ensures result == null ∨ old(h)[result, allocated];

where old(h) refers to the value of the heap on entry to the method, and allocated
is a special field that encodes whether or not the object has been allocated.

A method marked with the attribute NoReferenceComparison says that the
method implementation does not perform any reference comparison (i.e., use
any operator == or != with reference-type operands). Two simple compile-
time checks enforce this property: (1) the method may use reference comparison

342 Á. Darvas and K.R.M. Leino

only if one of the operands is the literal null; (2) for any call contained in the
implementation, the callee must be marked with NoReferenceComparison.

By default, the attributes are not attached to methods, that is, methods may
return newly allocated objects and may compare references.

Definition of allocating expressions. We introduce the notion of an allocating
expression to describe an expression that may yield a newly allocated object. An
expression e is considered to be allocating if and only if e is of reference type and
is either (a) a constructor or method call where the callee is not marked with
ResultNotNewlyAllocated; or (b) a composite expression with any allocating
sub-expression.

The rationale behind (a) is self-evident; (b) is more subtle. Consider a field
access “this.M().f” where method M is allocating, i.e. not marked with Re-
sultNotNewlyAllocated. Then M might return a newly allocated object whose
field f refers to a newly allocated object too. Our definition of allocating over-
approximates the set of expressions that yield newly allocated objects; however,
this keeps the analysis sound and simple.

Checks on specification expressions. Having defined allocating expressions, we
can spell out the restrictions our analysis enforces on specifications: (1) reference
comparisons may have at most one operand that is allocating; (2) if two or more
parameters (possibly the receiver) of a method call are allocating, then the callee
must be one that is marked with NoReferenceComparison.

Attribute inheritance. Finally, to ensure soundness in the presence of subtyping,
we need a rule that forces an overriding method to be at least as restricted in
what its implementation is allowed to do as the overridden counterpart. That is,
if an overridden method is marked with one of the attributes then the overriding
method must be marked with that attribute too.

Limitations. There are two main limitations of our design: methods need be
annotated manually by users, and the syntactic nature of our analysis leads
to over-approximation. We believe a more accurate analysis that goes beyond
syntactic checks (e.g., points-to analysis) could lessen these limitations: most an-
notations could be inferred and more methods could be annotated with NoRef-
erenceComparison (since our requirements are not minimal).

On the other hand, as far as our experience went with the specification of
Boogie, we only had to mark two methods with ResultNotNewlyAllocated (one
in Boogie and one in mscorlib) and none with NoReferenceComparison. Fur-
thermore, we did not encounter specifications that were rejected because of how
over-approximative our analysis is.

Summary of contributions. In this section, we showed two new techniques that
yield a simple and practical encoding and axiomatization of pure methods. A
combination of simple syntactic measures can let the theorem prover off the
hook for dealing with the quantifiers in formula (2): the identification of wit-
ness candidates, and the association of methods with numbers, most all of
which can be inferred by a simple syntactic analysis. Our simple syntactic

Practical Reasoning About Pure Methods 343

allocating-expression analysis provides a plentiful solution to the tension be-
tween dynamic execution and static verification. These techniques do not rely
on the specifics of the Spec# system, thus they can be adapted by other lan-
guages and program verifiers, too.

4 The Boogie Methodology

The remainder of the paper describes encodings that build on a particular state-
of-the-art discipline of object invariants known as the Boogie methodology [1]. In
this section, we review the parts of the methodology that are necessary for the
understanding of the encodings.

Invariants and reentrancy. Any verification system needs to provide a way to
specify and verify invariants. The basic idea of a condition declared to be an
invariant is that by checking the condition at certain program points, one can
safely assume that it holds at certain other program points. In the object-oriented
setting, it is not clear where to check and assume the invariants of objects. For
example, consider the simple approach of checking object invariants at the end
of constructors, assuming them on entry to methods, and checking them again
at the end of methods. This simple approach is not sound if a call from inside
a method (where the object invariant may be temporarily broken) instigates a
chain of (perhaps dynamically dispatched) calls that reenter a method of the
object (where the simple approach said to assume invariants).

An approach that solves this problem is to explicitly track whether or not an
object is in a state where its object invariant is certain to hold [1]. Following
that approach, we say in this paper that an object is either consistent, which
implies its object invariant holds, or exposed, which allows the object’s fields to be
updated and allows the object invariant to be violated. In this approach, known
as the Boogie methodology, an appropriate precondition for a typical method is
that the receiver object is consistent. The implementation then typically changes
the state of the object from consistent to exposed, makes desired updates on the
object’s fields, and finally changes the state of the object back to consistent, at
which point the object invariant is checked. Spec# has a special block statement,
the expose statement, that performs the state change from consistent to exposed
at the beginning of the block and back at the end of the block.

Aggregate objects. One other important thing in object-oriented specification and
verification is the handling of aggregate objects. An aggregate object is a col-
lection of separately allocated objects that together form one logical object. For
example, an Engine may be an aggregate object that contains several Cylinder
objects and a FuelPump object. A typical situation is then that a method of
the Engine object, whose precondition says that the engine is consistent, calls
methods on the Cylinder and FuelPump objects, whose preconditions say that
those respective objects are consistent. The correctness of the Engine method
thus relies on that the engine’s cylinders and fuel pump are consistent, but

344 Á. Darvas and K.R.M. Leino

explicitly mentioning the consistency of those objects in the precondition of the
Engine method would be a violation of information hiding.

An approach that solves this problem is structuring the heap according to a
hierarchical ownership relation [4]. For example, one would specify that an engine
is the owner of its cylinders and fuel pump. We say that the cylinders and fuel
pump are representation objects, or just rep objects, of the engine object. Using
the ownership relation, a verification approach can ensure that the consistency
of an object implies the consistency of the objects it owns [1]. This addresses the
typical situation outlined above, because it allows an Engine method to meet the
preconditions of the calls it makes to various Cylinder and FuelPump methods.

For this approach to be sound, one needs to make sure that an object’s state
is changed from consistent to exposed only if the object’s owner is already in the
exposed state. Consequently, any method whose implementation exposes the re-
ceiver object needs to include in its precondition that the receiver object’s owner
is exposed. We say that an object is committed when its owner is consistent. In
summary, an appropriate precondition for a typical method is that the receiver
object is consistent and not committed.

In the sequel, we refer to the ownership cone of an object o to mean the
set of objects that includes o (pictured on top of the cone), the rep objects of
o (pictured one level below o), the rep objects of the rep objects (pictured yet
another level below), and so on. That is, the ownership cone of o is a hierarchical
collection of objects that includes o and all objects transitively owned by o.

Frame conditions. An important part of a method specification is its frame condi-
tion, which describes, as a postcondition, which locations in the heap the method
may modify. Commonly, the frame condition is produced partly from a user-
specified modifies clause and partly from rules prescribed by the methodology.
For example, a standard rule is to allow fields of newly allocated objects to be
modified.

A typical method implementation modifies the fields of the receiver object,
the fields of its rep objects, the fields of their rep objects, and so on—that is,
it modifies the heap locations in the ownership cone of the receiver object. We
must therefore make it possible to include an object’s entire ownership cone in
a method’s frame condition.

It is not possible to list all the locations of an ownership cone by name in
the modifies clause, because doing so would violate information hiding. One
approach is to instead use some encoding that yields the fields of all transitive
rep objects, which can be done by quantifying over field names and using some
transitive closure or reachability operator. However, experience shows that such
a closure or reachability construct is hard to process well with an automatic
theorem prover (cf. [9]).

The Boogie methodology takes a simple approach that over-approximates the
heap locations that an implementation is able to modify: it says that, in addition
to heap locations explicitly indicated in the modifies clause and heap locations

Practical Reasoning About Pure Methods 345

that belong to newly allocated objects, a method’s frame condition includes the
fields of all committed objects. More precisely, a modifies clause W gives rise to
the following frame condition:

(∀ o, f • h[o, f] = old(h)[o, f] ∨ (o, f) ∈ old(W) ∨
¬old(h)[o, allocated] ∨ (o is committed in old(h)))

(3)

where o ranges over non-null object references, f over field names, and a heap
location is a pair (o, f). This encoding has the advantage that it uses a sim-
ple quantification—it avoids transitive closure and reachability—and gives an
implementation the license to modify fields of its transitive rep objects. One
can also give an argument for why callers need not be adversely affected by the
over-approximation [1].

5 Encoding Lightweight Read-Effects

In this section, we describe an encoding and reasoning technique that makes use
of lightweight read-effect annotations of pure methods. By lightweight we mean
that users need not prescribe precisely the effects but rather in an abstract,
(over-)approximative way in terms of ownership cones.

In our attempts to run Boogie to verify Spec# code, we repeatedly find code
patterns like the following, where M is a pure method:

if (o.M() != null) { r.P(); y = o.M().f; }

This code dereferences o.M() after checking that it is not null. One way to show
that it does not throw a null-pointer exception is to prove that the two calls
to o.M() return the same value. The basic verification support needed in such
situations is knowing whether some heap changes (such as those performed by
the call to r.P() in the example above) affect the value returned by a pure
method.

Determining whether a heap change has any effect on the value returned by
a pure method depends on what the pure method reads. We find it useful to
consider three kinds of pure methods: (1) those that do not read any mutable
part of the heap (called state-independent pure methods); (2) those that confine
what they read to heap locations in the ownership cone of the receiver object
(so-called read-confined pure methods, which are the most common kind of pure
methods); and (3) those without any restrictions on what they might read (called
read-anything methods). We require that every pure method be declared to be
of one of these three read levels.

We do not go into details of how to enforce read restrictions. In our implemen-
tation of Spec#, we currently use a variation of the data-flow analysis prescribed
by Sălcianu and Rinard [18].

Since a state-independent method M does not depend on the heap, we drop
the heap argument from the signature of function #M . This encoding makes it
evident that the value returned by M in code patterns like the one above is not
affected by heap changes.

346 Á. Darvas and K.R.M. Leino

Methods that can read anything are always potentially sensitive to changes
in the heap, so we do not do anything extra for these methods.

For the most common kind of pure methods, the read-confined ones, we would
like to provide an axiom that says, “if the values of the heap locations in the
ownership cone of an object o are the same in two object stores h and k , then
the return value of o.M() is the same in h and k”. There are two problems with
trying to supply such an axiom.

One problem is that describing, in the axiom, all heap locations in the re-
ceiver’s ownership cone requires transitive closure or reachability, which makes
it difficult to apply automatic theorem provers. The other problem is that even
if the axiom mentions the entire ownership cone, frame condition (3) does not
say anything about how the state of a committed object changes. Hence, a call
like r.P() in the example above is viewed as possibly having an effect on the
committed objects in the ownership cone of o. That is, with frame condition (3),
an axiom that mentions the entire ownership cone is too weak to be useful.

To find a solution, we recall how the state of the ownership cone of an object
can change in the Boogie methodology. The methodology enforces that a field s.x
is updated only when s and all transitive owners of s are exposed. Consequently,
an object’s ownership cone remains unchanged through any time period during
which the object remains consistent. We will seek to encode this fact by recording
a snapshot of an object’s ownership cone at the time the object transitions from
exposed to consistent. The snapshot may become out-of-date when the object is
in the exposed state, so we need to make sure to use snapshots only for consistent
objects. Equipped with snapshots, which we represent by adding a field snapshot
to every object (transparent to users), we obtain the following property:

(∀ o, p, h, k • (o is consistent in h) ∧ (o is consistent in k) ∧
h[o, snapshot] = k [o, snapshot] ⇒ #M (o, p, h) = #M (o, p, k))

(4)

where o ranges over non-null object references, p ranges over the possible values
of M’s other parameters, and h and k range over heaps. Note the limited role of
p in (4); this is due to the read-confinedness of the method, i.e. it may not read
heap locations in the ownership cones of parameters. Axiom (4) lets us prove
the example above—provided r.P() does not change o.snapshot, of course.

Encoding. To make the idea described here a reality in a checker, we need to
design a suitable encoding for updating snapshot fields (to be used by the static
verifier) and an appropriate formulation of axiom (4).

We update the snapshot field of an object o at the end of the constructor of
o (when the object first becomes consistent) and at the end of expose blocks.
We might consider the update of the field as an assignment statement like:

o.snapshot := (o.x, o.y, o.z, . . . , o.r.snapshot, o.s.snapshot, . . .) (5)

where the right-hand side is a tuple of the (non-snapshot) fields x, y, z, . . . of o
and the snapshots of the rep fields r, s, . . . of o. This works if the right-hand side
represents the entire ownership cone of o. But in Spec#, we allow an unbounded
number of rep objects (à la Leino and Müller [12]), so it is not sufficient to
include the snapshots of rep fields. Instead, we abstract over the actual snapshot

Practical Reasoning About Pure Methods 347

and assign to o.snapshot an arbitrary value satisfying property (4). Given that
we postulate the property as an axiom, the assignment simply becomes “havoc
o.snapshot” where havoc is a command that sets its l-value argument to an
arbitrary value (satisfying postulated axioms).

Like for other fields, if a method has an effect on the snapshot field of a non-
new, non-committed object, then it must account for the effect in the method’s
modifies clause. To make this easier on the programmer, our implementation
implicitly adds this.snapshot to the modifies clause of every non-pure method. In
addition, for any term explicitly mentioned in the modifies clause, say p.f.g where
p is either this or another method parameter, our implementation implicitly adds
p.snapshot and p.f.snapshot to the modifies clause.

As for axiom (4), we do not encode it the way we just showed it above, because
quantifying over pairs of heaps does not give rise to good performance in the
theorem prover. The axiom really states that, for any consistent object o and
parameters p, #M (o, p, h) depends only on the reference o, the values p, and
o.snapshot, that is, #M (o, p, h) is a function of o, p, and o.snapshot. So, we
abstract again and introduce an uninterpreted function symbol ##M and write
the axiom simply as:

(∀ o, p, h • (o is consistent in h) ⇒
#M (o, p, h) = ##M (o, p, h[o, snapshot]))

(6)

This encoding solves the problem in the example above and it is the encoding
we use in Boogie.

6 Preconditions and Frame Conditions for Pure Methods

This section discusses how to write preconditions for pure methods, motivating
that a more relaxed condition is needed than the one used by the Boogie method-
ology. Then, we discuss what is an appropriate frame condition for pure methods
and introduce axioms to regain some precision lost by the relaxed preconditions.

6.1 Consequences of the Standard Precondition

Let us take a closer look at a typical method, which will lead us to some consider-
ations for the preconditions of pure methods. Consider the Engine class example
mentioned in Section 4 and suppose it has the following method, which does the
typical thing of calling a method on a rep object:

void RevUpEngine()
requires this is consistent and not committed;

{ expose (this) { this.pump.IncreaseVolume(); } }

Let’s review why this code needs the expose statement around the call. Typi-
cally, the form of the precondition of the called method, IncreaseVolume, is the
same as that of the precondition of the caller, RevUpEngine: the receiver (here,
pump) is consistent and not committed. To meet the precondition “not commit-
ted” of IncreaseVolume, it is necessary for method RevUpEngine to expose the
engine object before invoking the method on the rep object.

348 Á. Darvas and K.R.M. Leino

Now, consider the situation where both the calling method and the called
method are pure, for example where a pure GetRevStatus method calls a pure
GetVolume method on the pump. In this situation, which occurs in practice, the
pure caller method is not allowed to change the state of objects, thus it cannot
expose the receiver object, and thus it cannot establish the called method’s
precondition that the rep object not be committed. To allow this situation, we
need a more liberal precondition for pure methods. In particular, we would like
to drop the part about the receiver not being committed. That part of the
precondition was needed to support exposing and mutating an object, which
pure methods are not allowed to do anyway.

In summary, an appropriate precondition for a pure method says that the
receiver object is consistent, but says nothing about whether the object is com-
mitted or not, i.e., whether the object’s owner is consistent or exposed.

6.2 Frame Conditions of Pure Methods

It is clear that a pure method must have an empty modifies clause. However, it
is not equally clear if the frame condition for a pure method is prescribed in the
same way as it is for a mutating method.

Initially, we had thought of dropping the fourth disjunct of the frame condition
(3) for pure methods. Such a design had seemed to make sense, because pure
methods are not allowed to modify the committed objects in the cone of the
receiver or other parameter. However, consider a pure method with the body
“return (new T()).P();” where P is a method that mutates its receiver and
the cone of the receiver. It seems reasonable to want to allow this code, because
it operates only on newly allocated objects (the third disjunct). However, since
both the T constructor and the P method include the fourth disjunct in their
frame conditions (since they are mutating methods), it will be difficult to prove
that M has no effect on the state of committed objects.

Instead, we propose keeping the fourth disjunct in the frame condition of pure
methods. This gives pure method M the license to modify committed objects,
thus it is allowed to call the T constructor and P method, whose frame conditions
give them the license to modify committed objects. Despite having the license,
we will see below that pure methods cannot actually modify committed objects.

The appropriate precondition for pure methods (which does not say whether
or not the receiver is committed) and the frame condition of methods (which
does not constrain the state of committed objects) interact. We discovered this
bad interaction when we tried to verify code of the following form:

[Pure] int M()
{ int a = this.x; int b = N(); assert a == this.x; return b − a; }

where N is some pure method (whose frame condition, like the frame condition
of all methods, includes the fourth disjunct). So, N is seen as having an arbitrary
effect on the state of committed objects. This is a problem for the verification of
the assert if the receiver is committed, which the appropriate precondition for
pure methods (in particular, the precondition of M) allows it to be.

Practical Reasoning About Pure Methods 349

Intuitively, we can justify why the assert above will hold as follows. Any effect
N has on this.x must happen when this is exposed. But this is consistent on
entry to (M and) N, so N must at some point expose this. Exposing an object can
only be done if its owner is already exposed. Thus, if this is committed on entry
to N, then N must first expose the owner of this, and this same argument applies
to the owner of this, and so on. Every committed object has some transitive
owner that is consistent and not committed. In fact, that transitive owner is
unique in any given state, let’s call it the “first non-committed owner”. So, if
this is committed, then in order to expose this, one must start with exposing
the first non-committed owner of this. This, according what we have described
in Section 5, will have an irrevocable effect on the snapshot of that first non-
committed owner. Since the first non-committed owner is both allocated and not
committed, the only way its snapshot is allowed to be changed is if it is included
in W , the set of modifiable locations of the method. Since pure methods have
empty modifies clauses, we conclude that N does not have any effect on the
snapshot of the first non-committed owner of this, and thus no effect on this.x.

We encode the idea of a first non-committed owner using a field FirstNon-
CommittedOwner (fnco, for short), which has a meaningful value for any allo-
cated, committed object. We do not want to give a precise axiomatization of
fnco, because doing so would mean we need transitive closure or reachability.
Instead, we just encode the properties we need, namely that fnco is allocated
and not committed (which excludes it from the third and fourth disjuncts of the
frame condition):

(∀ o, h • h[o, allocated] ∧ (o is committed in h) ⇒
h[o, fnco] 	= null ∧ h[h[o, fnco], allocated] ∧ (h[o, fnco] not committed in h))

And we also need to say that a change to a field of a committed object requires
a change in the snapshot of the object’s first non-committed owner.

(∀ o, f , h • h[o, allocated] ∧ (o is committed in h) ⇒
(h[o, f] is a function of o, f , and h[h[o, fnco], snapshot]))

Finally, o.fnco can change only if o.fnco.snapshot does, a property that we for-
malize into a postcondition assumption after each call.

With these axioms and assumptions, we are able to regain information about
the values of fields and can prove the correctness of pure method M above.

Summary of contributions. We presented an axiom that exploits methods’ read-
confinedness, investigated what the proper precondition of pure methods is, and
proposed axioms to regain information due to that precondition. Without these
results, many code patterns often encountered in Spec# could not be handled.

7 Related Work and Conclusion

The work closest to ours on the sound axiomatization of pure methods is that
of Darvas and Müller [6]. In fact, we follow all their proposals with adaptations
required due to the different settings of our work. For example, our design is
more liberal in allowing pure methods to return newly allocated objects.

350 Á. Darvas and K.R.M. Leino

Jacobs and Piessens [8] present a reasoning technique for confined methods
that is very similar to our approach of using snapshots (Section 5). Their notion
of confinedness is extended to method parameters too—which could be encoded
in our settings as well with a slight adaption of axiom (6). They record their
snapshots, which are represented as fields fstate , explicitly from the state fields of
the rep objects. This works only if the rep objects can be enumerated syntacti-
cally (cf. (5)). However, it seems that they could use a havoc statement instead,
like we do, to overcome that limitation.

Separation logic divides up the heap and keeps track of accessible regions of
it. For example, the work of Parkinson and Bierman [16] can be used to encode
the basic Boogie methodology. Read and write effects can be handled, but the
approach has not been developed into a practical tool for a language like Spec#.

Kassios introduces a promising and powerful way to specify and reason about
changes in the heap [10]. The technique is not tied to any particular methodology.
We look forward to seeing it implemented in a tool.

In many ways, pure methods look like model fields, abstract variables whose
values are defined in terms of more concrete fields. There are, however, some
differences; for example, a model field has to be listed in the modifies clause of
a method if the method changes its value. We would like to study the relation
between pure methods and the model-field encoding by Leino and Müller [13].

Conclusion. We have presented encoding, axiomatization, and reasoning tech-
niques for pure methods as implemented in the Spec# system. The techniques
work with an automatic theorem prover and fit into a methodology for object in-
variants. Our work contributes a list of verification differences between ordinary
and pure methods, an adaptation and extension the results on axiomatizing pure
methods in [6], and an axiomatization of the special properties of read-confined
pure methods that makes them insensitive to changes in other objects, an ex-
ploration of how to write preconditions and frame conditions for pure methods
and how to provide a practical axiomatization to support these.

Acknowledgments. We thank Peter Müller for helpful discussions and Mike Bar-
nett for discussions and his help with the implementation. The idea of taking a
“snapshot” of an object’s state is originally from Bart Jacobs. Diego Garbervet-
sky implemented the effects analysis in the Spec# system.

References

1. M. Barnett, R. DeLine, M. Fähndrich, K. R. M. Leino, and W. Schulte. Verification
of object-oriented programs with invariants. JOT, 3(6):27–56, 2004.

2. M. Barnett, R. DeLine, B. Jacobs, B.-Y. E. Chang, and K. R. M. Leino. Boogie:
A modular reusable verifier for object-oriented programs. In FMCO, volume 4111
of LNCS, pages 364–387. Springer, 2006.

3. M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# programming system:
An overview. In CASSIS, volume 3362 of LNCS, pages 49–69. Springer, 2005.

4. D. G. Clarke, J. M. Potter, and J. Noble. Ownership types for flexible alias pro-
tection. In OOPSLA, volume 33(10), pages 48–64. ACM, 1998.

Practical Reasoning About Pure Methods 351

5. D. R. Cok. Reasoning with specifications containing method calls and model fields.
JOT, 4(8):77–103, October 2005.

6. Á. Darvas and P. Müller. Reasoning about method calls in interface specifications.
JOT, 5(5):59–85, June 2006.

7. D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: A theorem prover for program
checking. Tech. Rep. HPL-2003-148, Systems Research Center, HP Labs, 2003.

8. B. Jacobs and F. Piessens. Verification of programs using inspector methods. In
Formal Techniques for Java-like Programs, 2006.

9. R. Joshi. Extended static checking of programs with cyclic dependencies. Technical
Note 1997-028, Digital Equipment Corporation Systems Research Center, 1997.

10. I. T. Kassios. Dynamic frames: Support for framing, dependencies and sharing
without restrictions. In FM, volume 4085 of LNCS, pages 268–283. Springer, 2006.

11. G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary design of JML: A behavioral
interface specification language for Java. ACM SIGSOFT Software Engineering
Notes, 31(3):1–38, 2006.

12. K. R. M. Leino and P. Müller. Object invariants in dynamic contexts. In ECOOP,
volume 3086 of LNCS, pages 491–516. Springer, 2004.

13. K. R. M. Leino and P. Müller. A verification methodology for model fields. In
ESOP, volume 3924 of LNCS, pages 115–130. Springer, 2006.

14. C. Marché, C. Paulin-Mohring, and X. Urbain. The Krakatoa tool for certi-
fication of Java/JavaCard programs annotated in JML. Journal of Logic and
Algebraic Programming, 58(1–2):89–106, Jan.–Mar. 2004.

15. B. Meyer. Eiffel: The Language. Prentice Hall, 1992.
16. M. Parkinson and G. Bierman. Separation logic and abstraction. In POPL, pages

247–258. ACM, 2005.
17. A. Poetzsch-Heffter and P. Müller. A programming logic for sequential Java. In

ESOP, volume 1576 of LNCS, pages 162–176. Springer, 1999.
18. A. Sălcianu and M. C. Rinard. Purity and side effect analysis for Java programs.

In VMCAI, volume 3385 of LNCS, pages 199–215. Springer, 2005.

Finding Environment Guarantees

Marsha Chechik, Mihaela Gheorghiu, and Arie Gurfinkel

University of Toronto, Toronto, ON M5S 3G4, Canada
{chechik,mg,arie}@cs.toronto.edu

Abstract. When model checking a software component, a model of the environ-
ment in which that component is supposed to run is constructed. One of the major
threats to the validity of this kind of analysis is the correctness of the environment
model. In this paper, we identify and formalize a problem related to environment
models — environment guarantees. It captures those cases where the correctness
of the component under analysis is due solely to the model of its environment. En-
vironment guarantees provides a model-based analog to a property-based notion
of vacuity by identifying cases when the component is irrelevant to satisfaction
of a property. The paper also presents a model checking technique for the detec-
tion of environment guarantees. We show the effectiveness of our technique by
applying it to a previously published study of TCAS II, where it finds a number
of environment guarantees.

1 Introduction

As software is controlling more and more critical aspects of our lives, its reliability is
ever more important. Formal verification can help increase confidence in the software
systems being built. Among the verification methods, model checking is gaining popu-
larity due to its automated approach. In this approach, a model of the software compo-
nent being analyzed is closed with a model of the environment in which the component
is expected to run. Correctness properties of the component are then checked on the
resulting model. One of the major threats to this kind of analysis is the correctness of
the environment model. Creating a faithful model of the environment is error-prone, as
often the environment consists of parts of the physical world whose behavior is only
partially understood, or it is a complex system, e.g., an operating system, whose behav-
ior is also hard to capture in a unified model. Moreover, the model of the environment
is often simplified to enable effective model-checking, potentially leading to errors.

To illustrate the kinds of modeling errors we address, consider, for example, model
checking a traffic light controller. In this system, cars arrive at an intersection, trip
sensors, and wait for the green light. The controller, which is the component being
analyzed, uses the sensors, that represent the environment, to maximize the flow of
cars through the intersection. An essential property of the system is that if a sensor is
ever tripped, an appropriate light eventually turns green. This property is formalized in
CTL (defined in Sec. 2) as ϕ = AG (Sensor Tripped ⇒ (AF Light = green)). Suppose
there is a bug in the environment model due to which Sensor Tripped is always off. The
property then holds regardless of the correctness of the controller. Thus, although the
desired property is satisfied, the component should not be deemed correct. Instead, we
want the model checker to detect that the environment model may be wrong.

M.B. Dwyer and A. Lopes (Eds.): FASE 2007, LNCS 4422, pp. 352–367, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Finding Environment Guarantees 353

Industrial researchers noted that in practice properties with implication (such as ϕ)
may hold for the wrong reasons, referring to the problem as “antecedent failure”. IBM
researchers generalized this notion to properties that are not necessarily implications,
naming it vacuity [2]. The definition of vacuity is property-based: a formula α is vac-
uous in a subformula β in a given model if β does not influence the value of α in the
model. That is, in the traffic light example above with the faulty environment model,
the property ϕ is vacuous in Light=green: it is satisfied independently of the color of the
light because the antecedent of the implication is false. [2] also defined a vacuity detec-
tion method for a restricted class of CTL formulas and noted that when found, vacuity
always pointed to a problem in either the component, its environment, or in the prop-
erty, which was observed for 20% of the properties checked. Other researchers [16,1,13]
extended vacuity detection to general properties expressed in CTL and other common
languages. All these approaches, however, remain property-based, and are not adequate
to detect errors in the model. Vacuity information is not sufficient to decide when the
environment model is faulty. Consider the property ϕ again — it is also vacuous in
Light=green in a model where the activation of the sensors depends on a flag being set
by the controller independently of the environment, and the controller never sets that
flag. In this case, the vacuity is due to the component, and not to its environment, and is
often not effective for finding problems with the model.

In contrast to the property-centric approach of vacuity detection, Shlyakhter et al.
[21] devised a technique to debug models more directly. They identified the problem
of “overconstraining” declarative models, and pointed out that overconstraining occurs
most often in the definition of the models being checked rather than in the specifica-
tion of their correctness properties. They have developed a technique for extracting and
displaying the part of the model used for establishing satisfaction of a property. When
most of the model was unnecessary to prove a property, the authors were able to con-
clude that was due to overconstraint, caused by subtle modeling errors. This technique,
however, is restricted to declarative models, and does not exploit the view of the model
that separates the component from its environment.

In our work, we also aim to provide a technique for model debugging, but in the
case of operational models, such as those specified by state-machines, and we target the
analysis toward debugging environment models. We consider a model to be “overcon-
strained” if a property that should hold of the software component in the given environ-
ment is guaranteed solely by the environment. In other words, the component can be
replaced by another, arbitrary, component in the same environment, without affecting
the satisfaction of the property. We say that such properties are environment guaran-
tees. Environment guarantees always indicate a problem: either the desired property is
not a property of the component, and should rather be reconsidered as a property of its
environment, or there is an error in the model of the environment or in expressing the
property. The naive approach to detect environment guarantees is to generate all pos-
sible components, compose each with the given environment, and check whether the
property holds on all the composed models. This is clearly infeasible. Instead, we show
how to model the environment as an open system and check properties on it directly,
using a symbolic model-checking algorithm.

354 M. Chechik, M. Gheorghiu, and A. Gurfinkel

(a)

(b)

(c)

(d)

(e)

S=t
L=t

S=t
L=f

S=f
L=t

S=f
L=f

s0 s1

s3 s2

S=t
L=t

S=t
L=f

S=f
L=t

S=f
L=f

s0 s1

s3 s2

S=t
L=t

S=t
L=f

S=f
L=t

S=f
L=f

w0 w1

w2 w3

S=t
L=t

S=t
L=f

S=f
L=t

S=f
L=f

x0
x1

x2 x3

S=t
L=t

S=t
L=f

S=f
L=t

S=f
L=f

S=t
L=m

S=f
L=m

S=m
L=m

to all above

u0u1 u2 u3

u4
u5

u6

Fig. 1. An example Kripke structure (a). A four-valued Kripke structure of an open system (e),
and its three completions (b), (c), and (d)

A similar approach, called robust satisfaction was proposed and studied in [15]. It is
aiming to identify whether a property holds in all possible environments, and is the same
as environment guarantees with the roles of the environment and the system reversed.
While the method in [15] is complete (it always finds errors when they are present), it
is rather expensive (see Sec. 7 for a detailed discussion).

Our paper makes the following contributions: (1) We argue that a way to discover
faulty environment models is to detect cases where properties are guaranteed solely by
the environment. Although this process does not find all possible environment modeling
errors, the errors reported by this analysis always point to some error in understanding
of the model-checking results. (2) We formalize the meaning of a property being guar-
anteed by the environment by modeling the environment as an open system (Sec. 3).
(3) We show how to model open systems and define a model-checking algorithm which
can lead to a scalable technique for discovering environment guarantees (Sec. 4). (4) We
describe a simple implementation for checking environment guarantees for true univer-
sal properties (Sec. 5). (5) We show that our technique finds real errors and is scalable
for handling non-trivial systems by applying it to the well-known example of the Traf-
fic Collision and Avoidance System (TCAS II) [18,4] (Sec.6). In our case study, we
found that several essential properties of TCAS II, including some analyzed by Chan
et al.in [4], hold as the result of environment guarantees: the model of the environment
used in verifying this system has been simplified too much.

2 Background

In this section, we review the model-checking process and fix the notation.

Definition 1. A model M consists of a set V = {v1, . . . , vn} of variables and a set Δ
of rules describing the temporal behavior of those variables. A state of the model M is
a valuation of all variables in V . A rule is an expression over the model variables that
relates their values in a state at time t (current) with those at time t + 1 (next).

Without loss of generality, we assume that the variables are boolean. Therefore, the set
S of states consists of all n-tuples of boolean values. For instance, consider our previous

Finding Environment Guarantees 355

KM, s |= p iff I(p, s) KM, s |= ¬ϕ iff KM, s �|= ϕ

KM, s |= ϕ ∧ ψ iff KM, s |= ϕ ∧ KM, s |= ψ KM, s |= EXϕ iff ∃t ∈ S, (s, t) ∈ R ∧ KM, t |= ϕ

KM, s |= EGϕ iff ∃ path s = s0, s1, . . . s.t. ∀j · KM, sj |= ϕ

KM, s |= E[ϕ U ψ] iff ∃ path s = s0, s1, . . . s.t. ∃j · KM, sj |= ψ ∧ ∀k · k < j ⇒ KM, sk |= ϕ

Fig. 2. Semantics of CTL

example of a traffic light system. It can be modeled by a variable Light, which is true
iff the light is green (Light=green), and a variable Sensor, which is true iff the sensor is
tripped. For a variable v, we use v (unprimed) and v′ (primed) to denote its current and
next state value, respectively, and define V ′ = {v′1, . . . , v′n}.

We assume that rules are described in the style of the SMV language [6]. Each rule
is an assignment of the form v′i ← δ, where v′i ∈ V ′ and δ is a boolean formula over
the variables in V ∪ V ′ \ {v′i}. We assume no circularity in the rules, i.e., no variable
depends on itself if we follow any chain of the rules, and there is at least one assignment
for each variable. In our example, the rules may be Sensor′ ← ¬Sensor ∨ Light and
Light′ ← Sensor, which indicate that the sensor is on in the next state if it is currently
off or the light is on, and the light is on in the next state if the sensor is currently on. It
is convenient to think of each assignment as an equivalent boolean formula, i.e., v′ ←
δ iff (v′ ∧ δ) ∨ (¬v′ ∧ ¬δ). Multiple assignments per variable are used to indicate that
the variable changes non-deterministically, e.g., when the model M contains rules v′ ←
true and v′ ← false, it means that v′ can be either true or false in the next state of M.

Given a model M, we associate with it a state-transition graph KM, known as a
Kripke structure: The Kripke structure KM is a tuple 〈S, R, I〉, where S is the set of
states, R ⊆ S × S is the transition relation, and I : V × S → {true, false} is the
interpretation of variables. For each variable vi and state s, I(vi, s), or s(i) for short, is
the value of vi in s. Let s and s′ denote valuations of all unprimed and primed variables,
respectively. The relation R is the set of all pairs of states (s, s′) such that s and s′ satisfy
at least one of the rules of Δ for every variable in V .

The Kripke structure for our example is shown in Fig. 1(a). For brevity, we use S for
Sensor and L for Light in the diagrams. For example, in state s0, the right hand sides of
the rules for both Sensor and Light are true. Thus, both Sensor and Light have to be true
in the successor state, creating the self-loop at s0.

Properties of a model M are formulated in the temporal logic CTL, whose semantics
is given in Fig. 2, and evaluated in the states of the associated Kripke structure KM. For
example, E[ϕ U ψ] is true in s if along some path from s, ϕ continuously holds until
ψ becomes true. The following derived CTL formula is also commonly used: EF ϕ ≡
E[true U ϕ]. For instance, in the structure of Fig. 1(a), the formula EF Light (the light
eventually becomes green) is true in all states, whereas the formula AG (Sensor∨Light)
(always the sensor is tripped or the light is green) is true in states s0, s1, s3 and false in
s2. The subclass of CTL formulas containing only universal path quantifiers is called
ACTL. Often, some state of a Kripke structure, say, s0, is designated as initial. In this
case, we say that a formula ϕ holds in a Kripke structure KM to mean that KM, s0 |= ϕ.
A model M satisfies a CTL formula ϕ if KM |= ϕ.

356 M. Chechik, M. Gheorghiu, and A. Gurfinkel

3 Environment Guarantees

In this section, we formalize the notion of environment guarantees. A model described
in Sec. 2 is a composition of the software component being analyzed, called the compo-
nent from now on, with its environment. The boundary between them is often blurred
during verification: they are simply specified using a collection of rules. In what fol-
lows, we make this boundary more explicit.

We assume that the set V of model variables is partitioned into a set C of component
variables and a set E of environment variables. We further assume that this partition
can be determined syntactically, (e.g., by the names or types of the variables, or their
location, etc.), or by the model documentation. Environment variables represent the in-
puts to the software, coming from the environment. Component variables represent the
outputs from the software to the environment. The variable partition induces a partition
on the rules of a model into component rules and environment rules.

Definition 2. A partitioned model M is a tuple 〈(C, E), (ΔC , ΔE)〉, where V = C∪E
and ΔC ∪ ΔV = Δ, such that ΔC consists of assignments to v′ for each v ∈ C, and
ΔE consists of assignments to v′ for each v ∈ E.

Definition 3. Given a partitioned model M = 〈(C, E), (ΔC , ΔE)〉, the environment
of M is a tuple E = 〈V, ΔE〉.
That is, the environment consists of its rules together with all variables in the model.
In our traffic light example, Sensor is an environment variable, whereas Light is a com-
ponent variable. Consequently, the rule Sensor′ ← ¬Sensor ∨ Light is the environment
rule, and Light′ ← Sensor is the component rule. Models in which all variables have
associated rules are called closed. For example, the combination of the sensor and the
light controller for the model in Fig. 1(a) is a closed system. A model that does not
contain rules for all of its variables is called open. The environment is the open model
obtained by removing the component rules from a closed model. In our example, it
consists of a single rule Sensor′ ← ¬Sensor ∨ Light, and variables Sensor and Light.

When does the environment guarantee a property? Intuitively, when satisfaction of
some property of the model depends solely on the environment rules. For instance, if the
environment rule in our example were Sensor′ ← true, then in any state where Sensor
is true, the property AG (Sensor ∨ Light) would be guaranteed by the environment. In
this case, it is obvious that the environment alone guarantees the property; in real-life
models, however, such as the one considered in our case study (see Sec. 6), the intricate
logic may hinder the easy detection of such environment guarantees.

To define when the environment satisfies a property, we construct all possible “clo-
sures” of the environment with component rules, and then use the standard semantics of
temporal logic over the resulting closed models. In our example, one closure was shown
earlier, where the component rule Light′ ← Sensor is added to the rules of the environ-
ment. We can construct another closure by adding component rule Light′ ← ¬Sensor to
the rules of the environment.

Definition 4. A model M = (V, Δ) is a closure of an environment E = (W, Λ) if
V = W and Λ ⊆ Δ, where ∀ component variables in M, ∃ a rule in Δ \ Λ.

Rules are identified modulo logical equivalence, so v′ ← δ and v′ ← ¬¬δ are the same.

Finding Environment Guarantees 357

Definition 5. An environment E guarantees a satisfaction of temporal property ϕ in
state s, written E , s |= ϕ, if and only if all of its closures satisfy ϕ in s. An environment
guarantees a failure of ϕ in state s, written E , s |= ¬ϕ, if and only if ϕ fails in s
in all closures of E . Finally, an environment E guarantees a property ϕ in state s iff
E , s |= ϕ ∨ E , s |= ¬ϕ.

4 Environment Guarantees: Modeling and Algorithms

Given the environment rules, the rules closing them represent the behavior of a possi-
ble component in that environment. Intuitively, our notion of environment guarantee,
given in Sec. 3, means that regardless of the component the environment is combined
with, the resulting model still satisfies the property. This suggests the following naive
approach to detecting environment guarantees: generate and model check all closures
of the environment. Since there are exponentially many such closures, this approach is
clearly infeasible. To solve this problem, in this section we use another representation of
the environment that implicitly encodes all of its closures, and define a model-checking
algorithm over this representation that checks all closures at once.

4.1 Logics for Open Systems

We aim to model open systems as state-transition graphs that can be model-checked
directly. However, it is possible that an open system does not guarantee either the prop-
erty, or its negation. That happens when the truth of the property depends on how the
system is closed: in some closures the property is false; in the others, it is true.

Consider the model of the environment described in Sec. 3, with variables Sen-
sor and Light and a single rule Sensor′ ← ¬Sensor ∨ Light. Suppose we want to
check a property that the sensor does not stay off for two consecutive states, e.g., if
the sensor is off in a given state, it will be on in all of its next states, formalized as
ψ1 = AG (¬Sensor ⇒ AX Sensor). We check this property in a state where both
the sensor and the light are on. Note that the rule of the environment guarantees that
ψ1 is true, independently of Light. Therefore, this is an environment guarantee and will
evaluate to true on all of the closures. On the other hand, consider a slightly different
property: in any state, if the sensor is off, it remains off for one more time step, or
ψ2 = AG (¬Sensor ⇒ AX ¬Sensor). In this case, we can find two closures of the envi-
ronment that disagree on the value of this property. In one of them, the environment is
closed with rule (1) Light′ ← true, in the other – with (2) Light′ ← false. With (1), in any
state, after at most two steps, the sensor becomes on and stays on forever. With (2), the
sensor alternates between on and off. If checked in a state where both the sensor and the
light are on, ψ2 is true in the first closure, but false in the second. In this case, we want
the property to evaluate to “unknown” on the model of the environment alone, meaning
that the environment by itself does not have enough knowledge to satisfy or refute the
property. By this discussion, classical Kripke structures are not appropriate for model-
ing open systems since they limit reasoning to only two values. Instead, multi-valued
structures have been employed for this task [10]. In our approach, we use the 4-valued
logic known as Belnap [3] (see Fig. 3). We use this logic instead of the 3-valued ap-
proach of [10] because it enables a more precise analysis by distinguishing between the

358 M. Chechik, M. Gheorghiu, and A. Gurfinkel

t

m d

f

d

t

m

f
f

m d
m d
f
m
f d

t
f
m

d
m
t
f
¬

d

∧
t
t
f
m
d

f
f
f
f
f(a) (b)

f

(c)

Fig. 3. Belnap logic 4: (a) truth ordering, (b) information ordering, (c) truth table

partiality in the behavior of the component and that of the environment. We denote by
4 the set of values {t, f, m, d}: t and f stand for “known to be true” and “known to be
false”, respectively; m (maybe, or unknown) represents the lack of evidence to decide
truth or falsity (“possibly true or false”); and d (definite) represents “necessarily true”.
Their information content defines an information ordering (see Fig. 3(b)) : m t, f
and t, f d.

The usual boolean operations are extended to 4. For example, conjunction of m with
t is m since m may be resolved to true, in which case the result is true, or to false, and
then the result is false. Fig. 3(c) presents a table for computing conjunction and negation
of values of this logic. These operations are computed on the truth ordering pictured
in Fig. 3(a), by using greatest lower bound for conjunction and symmetry for negation.
We denote by 3 the subset {t, f, m} of 4, and by 2 the subset {t, f}.

4.2 Representing an Open System as a State-Transition Graph

So far, we have established the requirements that a model of an open system should
satisfy in order to help us in detecting environment guarantees: (1) it should support
direct model-checking, (2) it should allow properties to evaluate to more values than
just true or false, (3) it should represent all closures of the open system, and (4) its
model-checking result should be equivalent to model-checking all those closures. In
the rest of this section, we show that we can extend Kripke structures to the 4-valued
logic so that these requirements are satisfied.

The 4-valued Kripke structure for our example open system is shown in Fig. 1(e).
It captures the interaction of the environment with all possible machines. Values of
variables for which the environment does not have rules are unknown to the environ-
ment, captured by the logic value m. The transitions between states are 4-valued. In the
figure, solid and dashed lines are used to represent d and m transitions, respectively.
Definite transitions, d, indicate local environment guarantees. For example, the d tran-
sitions from u2 and u3 to u4 in Fig. 1(e) indicate that in a state where the sensor is off,
the environment guarantees that it will next become on, which can be inferred from the
corresponding rule. The value of Light is unknown in u4 since the environment cannot
guarantee anything about it, as it does not have rules allowing changes to this variable.
The m transitions capture what the machine can do, subject to environment restrictions.
For example, the two m transitions from u5 indicate that the machine has full control
of the light. The absence of m transitions from u5 to u2 and u3 means that the machine
cannot violate the environment guarantee for sensor to be on.

Finding Environment Guarantees 359

Definition 6. A 4-valued Kripke structure M over a set of variables V = {v1, . . . , vn}
is a tuple 〈SM, IM, RM〉, where SM is the set of states, consisting of all possible n-
tuples of values from 3; IM : V × SM → 3 is the interpretation of the variables that
associates to every variable, in every state, a value from 3, i.e., for every s ∈ SM and
1 ≤ i ≤ n, IM(vi, s) = s(i); and RM : SM × SM → 4 is a 4-valued transition
relation. For an n-tuple s, we denote by s(i) its ith component.

Given an open system described by a set of rules Δ, for every pair of 3-valued states
(s, s′), (1) transition (s, s′) is m if s′ is boolean (i.e., every variable in this state has a
value in 2); (2) transition (s, s′) is d if for each variable vi that is boolean in s′, s and
s′ satisfy some rule v′i ← δ ∈ Δ, and s and s′ do not violate some rule v′i ← δ ∈
Δ; (3) otherwise, the transition is false. The 4-valued structure in Fig. 1(e) has been
constructed using this algorithm.

4.3 Checking for Environment Guarantees

Our method for detecting whether the environment guarantees a property is as follows.
Given the environment rules, (1) construct the associated 4-valued Kripke structure
(using Definition 6); (2) use the multi-valued model-checking algorithm to check the
property on this structure; (3) if the algorithm answers t or f, the property is guaran-
teed by the environment. An interpretation of CTL formulas over multi-valued Kripke
structures and a corresponding model-checking algorithm have been defined [5], and
apply to our 4-valued Kripke structures without modification. We illustrate how the
property “there is a next state where the light is on”, written as EX Light, is model-
checked in state u5 of the structure in Fig. 1(e). In the classical case, the property is
true if and only if there exists a next state where Light is true. Equivalently, the value of
the property in a Kripke structure K = 〈SK, IK, RK〉 is given by the boolean formula
�

s′∈SK
RK(s, s′)∧IK(s′, Light), where RK(s, s′) is true if and only if (s, s′) ∈ RK. The

same formula is used in the 4-valued case, where the operations involved are interpreted
over 4, and for our example, we get:

(m ∧ t) // transition (u5, u0) ∨ (d ∧ m) // transition (u5, u6)
∨ (m ∧ f) // transition (u5, u1) ∨ f // all missing transitions

which evaluates to m. This is expected, because this property evaluates to true in the
first closure of our example, and to false in the second. Model-checking of other CTL
operators uses the evaluation of EX as a basic step. For example, for any formula p,
“eventually p”, or EF p, is expanded as p ∨ EX (p ∨ EX (...)), and this expansion
is finite since the system is finite-state. A property “always p”, or AG p, is equivalent
to ¬EF ¬p. If we check properties ψ1 and ψ2 on the structure of Fig. 1(e) using this
algorithm, we obtain t and m, respectively. Our algorithm points to an environment
guarantee if the property evaluates to either true or false, as it does for ψ1.

Correctness. To show that the method presented in Sec. 4.3 is sound, we need to show
that if the model-checking algorithm answers t, then all of the closures of the environ-
ment satisfy the property. In Sec. 3, we showed that each closed system is mapped to
a classical Kripke structure. Thus, such a structure exists for every closure of the envi-
ronment. For example, the structures for the two closures in our example are shown in

360 M. Chechik, M. Gheorghiu, and A. Gurfinkel

Fig. 1(b)-(c). We first define state compatibility by extending the information ordering
to tuples of values component-wise.

Definition 7. Let u be a 3-valued state and w be a boolean state over the same vari-
ables. w is more informative than u, e.g., u w if, for all 1 ≤ i ≤ n, u(i) w(i).

The compatibility relation between the boolean and 4-valued structure is defined as
follows: a 3-valued state u is compatible to all boolean states w where u w; for
any two compatible states, any d transition out of the 3-valued state is matched by a
transition out of the boolean state; conversely, any transition out of the boolean state is
matched by an m transition out of the 3-valued state. The matched transitions mean that
the destinations of these transitions are compatible. We can verify compatibility of the
structures in Fig. 1(b)-(c) with the 4-valued structure in Fig. 1(e). For example, state
u5 is compatible with w3. The d transition (u5, u4) is matched by (w3, w0), since u4
and w0 are compatible. The d transition (u5, u6) can also be matched by (w3, w0) since
u6 is also compatible with w0. Conversely, a transition (w3, w0) is matched by the m
transition (u5, u0).

Any classical Kripke structure compatible with a 4-valued Kripke structure is called
its completion.

Definition 8. A classical Kripke structure K = (SK, IK, RK) is a completion of a 4-
valued Kripke structure M = (SM, IM, RM) if for any u ∈ SM and w ∈ SK, u w
implies: (1) for all u′ ∈ SM such that RM(u, u′) � t, there exists w′ ∈ SK such that
u′ w′ and (w, w′) ∈ RK, and (2) for all w′ ∈ SK such that (w, w′) ∈ RK, there
exists u′ ∈ SM such that u′ w′ and RM(u, u′) t.

The structures in Fig. 1(b)-(c) are thus completions of that in Fig. 1(e). In fact, all
classical structures corresponding to the closures of an open system are completions of
the 4-valued structure associated with this system.

Theorem 1. Let E be an open system and ME be its associated 4-valued Kripke struc-
ture. Then, every closure of E corresponds to a classical Kripke structure that is a
completion of ME .

Thus, we can conclude that if all completions of the 4-valued Kripke structure satisfy a
property, then all closures of the open system do so as well. To complete our soundness
argument, we note that the multi-valued model-checking algorithm has the following
property: If on a given structure and a given property ϕ, the answer of the model-
checking algorithm is t (f), then all completions of that structure satisfy (violate) ϕ,
and thus ϕ is guaranteed by the environment.

Theorem 2. Let E be an open system and ME be its associated 4-valued Kripke struc-
ture. For any CTL formula ϕ and any boolean state s, if the result of the multi-valued
model-checking algorithm on ME is t or f, then E guarantees ϕ in state s.

When model-checking yields t (f), we can further conclude that ϕ holds (fails to hold)
in the composition of E with every component.

Our method is not complete, i.e., if the answer of the model-checking algorithm is
m, the environment may or may not guarantee the property.

Finding Environment Guarantees 361

5 Implementation

The multi-valued model-checking algorithm that reasons over 4-valued Kripke struc-
tures has been implemented in the tool χChek [5]. We can use χChek to check models
of the environment directly or reduce the multi-valued model-checking problem to two
classical ones, via a reduction described in [12], and then use a classical model-checker
such as NuSMV [6]. In either case, this approach is more efficient than checking all
possible closures of the environment. Unfortunately, while χChek can provide an ef-
fective reasoning over models once they have been constructed, building such models
from text-based descriptions remains a challenge. Specifically, the case study in Sec. 6
involved a model specified in SMV [6], where the full generality of the SMV modeling
language was used.

In what follows, we discuss a simple implementation that can decide environment
guarantees of true ACTL formulas. An example ACTL property is AF (Sensor∨Light).
Intuitively, since any ACTL property refers to “all paths”, if it holds on the model with
the most paths, it will hold on any model having a subset of those paths. It was shown
in [12] that truth of ACTL properties can be decided by restricting the model-checking
algorithm only to the m transitions. In the 4-valued structures we use to model open sys-
tems (see Sec. 4.2), a destination of an m transition is always a boolean state. Thus, the
reachable state space of a structure restricted to those transitions is completely boolean.
Furthermore, this boolean structure corresponds to a composition of the environment
with the component that changes its variables nondeterministically.

Let us consider the most nondeterministic component to be the one where all vari-
ables change nondeterministically, i.e., for every c ∈ C, the rules for c are c ← true and
c ← false. The closure of the environment with this component results in the model with
the most paths. If this closure satisfies an ACTL property, the closure with any other
component will satisfy the property as well. Thus, to check if an ACTL property is an
environment guarantee, it is sufficient to check if it is satisfied by the closure of the given
environment with the most nondeterministic component. Consider the environment in
our example, consisting of the rule Sensor′ ← ¬Sensor ∨ Light. The most nondeter-
ministic component in this case is described by rules Light′ ← true, Light′ ← false. The
Kripke structure associated with their composition is shown in Fig. 1(d). With s0 as
the initial state, the property AF (Sensor ∨ Light) holds in this structure. Three other
closures of the same environment, shown in Fig.s 1(a)-(c), satisfy the property as well.
Correctness of using the most nondeterministic component for checking environment
guarantees also follows from the fact that the closure of the environment with such
component simulates all other closures of that environment. For instance, the Kripke
structure in Fig. 1(d) is a simulation of models in Fig. 1(a)-(c). By [11], simulation pre-
serves true ACTL properties, giving us a correct algorithm. Because of the duality of
CTL operators, the same result holds for false existential properties.

Theorem 3. Let E be an environment, ϕ be a true ACTL property, and M be the closure
of E with the most nondeterministic component. E guarantees ϕ iff M satisfies ϕ.

The most nondeterministic environment is routinely used for checking correctness of
true universal properties of the component, e.g., [9]. However, we believe we are the

362 M. Chechik, M. Gheorghiu, and A. Gurfinkel

first to propose the use of this technique for finding environment guarantees. It is triv-
ial to construct the composition between the environment and the most nondetermin-
istic component syntactically from a text-based description of a system. Specifically,
we have implemented this method for the modeling language of NuSMV, to facilitate
reasoning about the TCAS II system (see Sec. 6). The language of NuSMV is simi-
lar to ours, and its semantics is such that if for any variable a rule is not given, the
variable is assumed to change nondeterministically. Thus, to implement the detection
of environment guarantees for true ACTL properties, it suffices to remove the compo-
nent rules from a model1, and then check the properties on the remaining model using
NuSMV [6]. The implementation is also highly efficient: increasing nondeterminism
reduces the sizes of the decision diagrams used by NuSMV, and hence its running time.

6 Case Study: Checking the TCAS II System

We illustrate our approach with the Traffic Collision Avoidance System, TCAS II [22].
TCAS II implements a protocol for conflict detection and resolution between an aircraft
and neighboring aircraft so as to avoid collisions during flight. This is a safety-critical
system required on every U.S. commercial aircraft transporting more than thirty pas-
sengers, and has also been deployed in other countries. TCAS II has also been used as
a classical case study for requirements modeling [18] and formal verification [14,19,4].

An SMV model of TCAS II has been translated from RSML [18] by Chan et al. [4]
and is part of the NuSMV distribution. It views TCAS as consisting of two main mod-
ules: Own Aircraft, which is the aircraft having TCAS II installed, and Other Aircraft,
which is a neighboring aircraft that may or may not have TCAS installed. An instance
of Own Aircraft may communicate with several instances of Other Aircraft. Own Aircraft
maintains information about the state of the host aircraft, including its altitude, direc-
tion, horizontal and vertical speeds, and it also receives similar information from Other
Aircraft. Based on this information, Own Aircraft assesses possible threats and, in case
it finds any, computes an escape maneuver (e.g., climb, or descend) and the strength of
this maneuver (i.e., the altitude rate at which it is to be carried out) and outputs both
as advisory to the pilot. TCAS II escape maneuvers are limited to the vertical plane.
The SMV model we looked at contains one instance of the Own Aircraft state machine
and one instance of an abstraction of Other Aircraft that behaves mostly nondetermin-
istically. In this work, we view Own Aircraft as the component and Other Aircraft as its
environment. Even with many features of TCAS II abstracted away, this SMV model is
non-trivial for the NuSMV model-checker: computing the reachable states of this model
takes 17 minutes on our machine (a Dell PC with an Intel Pentium 4 CPU at 2.8 GHz
and 1 GB of RAM, running Red Hat Linux 7.3) yielding 1,349,878 BDD nodes. The
model comes with several CTL formulas capturing essential properties of the system.
All of these properties are in ACTL and happen to hold in the implementation provided.
Therefore, our implementation described in Sec. 5 could be applied. We used it to check
these properties, as well as a few additional ones. For the summary of results, please
refer to Table 1.

1 If the language did not have this default semantics, we would have to also insert rules v′ ← true
and v′ ← false for every component variable v, which is simple to do syntactically as well.

Finding Environment Guarantees 363

Table 1. Results of checking properties of TCAS II

Properties
Results Time (sec.) BDD nodes

Full Env. Full Env. Full Env.
0 reachability — — 1034.61 4.2 1349878 145246
1 AG ¬ND Composite RA true true 20.63 3.8 173041 37846
2 AG (New Increase Climb ⇒ AX ¬New Increase Descend) true true 20.81 3.84 175280 37991
3 AG (OA.in Sense Climb Positive ∧ Composite RA = Descend ∧ true true 27.83 3.87 341216 38352

OA Not Evaluated Meantime ⇒ CRA Not Changed Meantime)
4 AG (Composite RA Evaluated Event ⇒ ¬DMG Inconsistent) true maybe 40.67 6.1 224611 39709

Our analysis focuses on two SMV variables: Composite RA which encodes the es-
cape maneuver, or Resolution Advisory, and Displayed Model Goal, which encodes its
strength. A desirable property of Composite RA is that it should change deterministi-
cally [14]: this is essential for ensuring that Own Aircraft has predictable behavior and
does not decide on different maneuvers under similar conditions. We checked that non-
determinism is not attained using a macro ND Composite RA defined in the model to
encode possible nondeterminism (row 1 of Table 1). We performed the check on the
original system and on the open model of the environment, and the property evaluated
to true under both checks, which shows that it is in fact guaranteed by the environment.
It seems that the modeler oversimplified the state machines, eliminating much of the
logic that computes Composite RA, which is essential in TCAS II. Table 1 summarizes
the performance of the check in terms of time and BDD node allocation, on the full
model (Full) and the environment alone (Env.).

Next, we verified a property which we expect to hold in any aircraft controller sys-
tem: no aircraft can immediately switch from increasing the rate of climbing to in-
creasing the rate of descending, i.e., an aircraft must stop climbing before descending.
The model defines macros New Increase Climb and New Increase Descend to encode
the respective resolution advisories, which we used to formulate the question (row 2
in Table 1). It also passed in both the original model and the environment only, hence
being guaranteed by the environment. This confirms the modeling error we have no-
ticed before, i.e., that Other Aircraft controls the resolution advisories of Own Aircraft.
We also checked whether it is possible for the direction (up or down) of Other Air-
craft to change without being noticed by Own Aircraft. More precisely, we checked
whether it is possible for Composite RA of Own Aircraft to remain constant if Other Air-
craft changes from climb to descend (row 3 of Table 1). Using Dwyer et al.’s property
patterns [8], we expanded OA Not Evaluated Meantime as A[(¬OA Evaluated Event ∨
AG ¬OA.in Sense Descend Positive) U OA.in Sense Descend Positive] and used a
similar expansion for CRA Not Changed Meantime. This property is also guaranteed by
the environment. The antecedent of the implication fails both in the full model and in
the environment. This reveals an environment assumption, rooted in the semantics of
RSML: environment variables cannot change without being evaluated by the compo-
nent. Discovering such assumptions is important [9] to make verification experts aware
of conditions under which their analysis is valid.

Finally, we checked one of the original properties of the TCAS II system [4]. It
states that when Composite RA is evaluated, Displayed Model Goal is computed “con-
sistently”, i.e., the cases by which its value is decided are mutually exclusive. A macro

364 M. Chechik, M. Gheorghiu, and A. Gurfinkel

DMG Inconsistent, defined in the model, captures the inconsistency conditions, result-
ing in the formula shown in row 4 in Table 1. Since the property holds in the full model,
but not on the environment, the environment alone does not guarantee it, and the prop-
erty does depend on the component. A vacuity check [16], however, indicates that the
antecedent of the implication is vacuous, potentially misleading the user into thinking
that something is wrong. [4] notes that in this model, Composite RA sometimes disagrees
with Displayed Model Goal (e.g., the advisory indicates climb, but the strength of the
maneuver is negative), but does not provide an additional explanation. Our method
helped us in identifying the reason for these anomalies: the logic for computing the
escape maneuver does not depend on the component, whereas that for computing its
strength does. As we argued in Sec. 5 and observed in our experiments in Table 1, for
true universal properties, verifying the environment alone is much more efficient than
checking the full model. This suggests that at least for this class of properties, checking
whether the environment guarantees the property can precede the verification process:
if the property evaluates to true on an environment alone, it will yield this answer also
when the environment is composed with the system.

How representative is our experience of finding a model with only true ACTL prop-
erties to verify? [4] indicates that the value of Displayed Model Goal is computed by a
case analysis consisting of seven cases. These cases are supposed to be mutually exclu-
sive. The property AG ¬DMG Inconsistent checks whether this is indeed the case. This
property was initially found false2. Upon manual inspection of the counterexample pro-
duced by the model-checker, the environment model was identified as the cause of the
violation, and it was fixed so that the property finally passed. Thus, we have evidence
that false universal properties exist “in the wild”, and detecting environment guarantees
for those is a worthwhile task which would eliminate the manual analysis of the coun-
terexample. A yet more important class of properties to handle is CTL properties with
mixed path quantifiers. For example, it is conceivable to demand that a reactive system
can always be reset. One way to implement it is to have an initial state Init and require a
property AG EF Init, i.e., from every state of the system, state Init is always reachable.
Whether such a property holds or fails, a counterexample for it cannot be generated,
and a special-purpose technique for detecting environment guarantees, such as the one
proposed in Sec. 4 is required. We leave implementing a technique for checking envi-
ronment guarantees of arbitrary CTL properties for future work.

7 Related Work and Discussion

The original definition of vacuity attempted to capture the conditions under which sat-
isfaction of a property in the model does not indicate that the model behaves correctly.
This definition was motivated by practical experience at the IBM Haifa Research Lab in
applying model-checking to verifying hardware systems [2]. This definition was devel-
oped in a context of a rather restricted fragment of a temporal logic, in which a property
is divided between a stimulus provided by the environment and an expected response
of the component. In this context, this work provided an efficient algorithm for vacuity

2 Unfortunately, we were unable to obtain this erroneous model.

Finding Environment Guarantees 365

detection that identifies errors in practice. However, it does not work for more general
properties and when the placed assumptions are not satisfied.

Over the years, the algorithm for vacuity has been generalized, extended, and im-
plemented for various temporal logics, e.g., see [16,2,1,20]. However, this work has
concentrated on the technical definition of vacuity, i.e., whether every subformula of a
property is important for its satisfaction. Without additional assumptions used by Beer
et al., these techniques can produce false positives, i.e., cases of vacuity that are not
indicative of errors in the system. Instead of detecting trivial satisfaction, they indicate
when a property can be simplified. Although this may be useful for model-checking, by
itself it does not help in identifying problems.

For example, consider the property ϕ = AG (Sensor Tripped ⇒ (AF Light = green))

from Sec. 1. It is vacuous in Sensor Tripped in a model where the light changes color
periodically, whether there is a car waiting at the intersection or not. Thus, a stronger
property, AG AF (Light = green), holds in the model, but does not necessarily signal
any errors. Suppose that ϕ was given by the requirements stakeholder for creating a
more optimal traffic controller system, and the model is just one implementation of the
controller that does not require the assumption of the sensor being tripped. Another
example is when Sensor Tripped is under the control of the component (and not the
environment), so vacuity in it may not lead to a problem either: the controller might
have some values of the sensor hard-coded into it, just to make sure that the rest of the
controller behaves correctly. We refer to such cases as property overengineering – re-
quiring a property that is weaker than the one that actually holds in the model by making
potentially unnecessary assumptions about the environment or the state of the system.
Industrial experience [7] indicates that properties are hard to get right. This process is
expensive, and the properties, once deemed correct and validated with all stakeholders,
remain fixed throughout the duration of the project, and even between different releases
of the system. So, engineers are often reluctant to modify overengineered properties,
and vacuity reports that point to such cases only distract from finding real problems.

In our paper, we have shown that Kripke structures based on 4-valued Belnap logic
can be used to approximate open systems. Godefroid [10] has also proposed to use
multi-valued logic, in his case 3-valued Kleene logic, to model open systems. He shows
that under the assumption that the component can block the environment, his 3-valued
model-checking technique is equivalent to module-checking. However, we believe that
this assumption is highly unrealistic – a component can interact with the environment,
but cannot deter its progress.

The setting of work on robust satisfaction [15] and module checking [17] is similar
to ours: given a system M , determining whether a property holds in all environments
composed with M (for environment guarantees, the roles of the system and the environ-
ment are reversed). This algorithm is complete, and the authors note that for checking
satisfaction of ACTL, robust satisfaction has the same complexity as model-checking
and can be decided using the same implementation as ours. For other properties, robust
satisfaction is exponentially more expensive than model-checking. In contrast, our al-
gorithm is partial, i.e., in some cases it may fail to detect that a property is guaranteed
by the environment, but is of the same complexity as model-checking.

366 M. Chechik, M. Gheorghiu, and A. Gurfinkel

The work of [21] is the closest to ours in spirit: determining which part of the model
is needed for checking the correctness property can alert the user to the presence of an
overconstraint in their declarative models and help him/her locate its source. As in our
case, the algorithm of [21] is efficient but not complete, and the authors report of several
overconstraints that were not detectable by it.

8 Conclusion and Future Work

In this paper, we argued for the need to provide support for debugging environment
models used in model-checking software systems. Specifically, we noted that when the
environment single-handedly guarantees (truth or falsity of) property which is expected
of the component, then either the property should be reconsidered as part of the environ-
ment, or there is an error in the model of the environment. We have called this problem
environment guarantees and argued that it can be found if the environment is modelled
as an open system. We also discussed how to construct open models of the environment
from rule-based descriptions of state-machine models, such as those created by SMV
specifications, and implemented this technique for checking whether true ACTL prop-
erties are guaranteed by the environment. We reported our experience with a model of
the TCAS II system which showed that environment guarantees present a real threat, es-
pecially when the modeler attempts to create abstractions of their systems to overcome
the state explosion problem of model-checking. We also argued that the problem is not
limited to true ACTL properties, and while we have a theoretical decision procedure
for arbitrary CTL properties, its implementation and evaluation is left for future work.

Our work opens a number of questions related to debugging models of the envi-
ronment: (1) We assumed that every variable belongs to the environment or to the
component (but not both), i.e., the environment and the component do not have shared
variables. Moreover, we considered only cases of synchronous parallelism between the
two. To make our approach applicable to more general domains, we plan to address
these limitations. (2) Clearly, there are environments that may not guarantee a property
by themselves; however, there are additional constraints imposed on them by compo-
nents, i.e., via communication channels, that lead to environment guarantees. We intend
to study this problem in future work. (3) We also assumed that there is a clear separation
between the component and its environment, and thus the environment can be captured
and its model constructed. This may not always be the case. For example, we may aim to
verify a collection of components compositionally, so while checking one component,
all remaining ones form its environment. This environment might be simply too big
to analyze. There might also be cases when the component is composed with multiple
environments, or when determining what constitutes an environment is difficult. One
potential direction to remedy these problems is to follow the approach of Shlyakhter et
al. [21], aimed at computing and highlighting the part of the overall system on which
the property depends. The user can then see whether the highlighted part is the environ-
ment and decide whether this constitutes a problem. Of course, highlighting is useful
even when the boundary between the component and the environment is well under-
stood: it points the user to the part of the environment that is entirely responsible for
satisfying the desired property, facilitating debugging.

Finding Environment Guarantees 367

Acknowledgments. We thank Shoham Ben-David for her comments on an earlier draft
of this paper. Financial support has been provided by NSERC and IBM.

References

1. R. Armoni, L. Fix, A. Flaisher, O. Grumberg, N. Piterman, A. Tiemeyer, and M. Vardi.
“Enhanced Vacuity Detection in Linear Temporal Logic ”. In Proceedings of CAV’03, volume
2725 of LNCS, pages 368–380, July 2003.

2. I. Beer, S. Ben-David, C. Eisner, and Y. Rodeh. “Efficient Detection of Vacuity in Temporal
Model Checking”. FMSD, 18(2):141–163, March 2001.

3. N.D. Belnap. “A Useful Four-Valued Logic”. In Dunn and Epstein, editors, Modern Uses of
Multiple-Valued Logic, pages 30–56. 1977.

4. W. Chan, R.J. Anderson, P. Beame, S. Burns, F. Modugno, and D. Notkin. “Model Checking
Large Software Specifications”. IEEE TSE, 24(7):498–520, July 1998.

5. M. Chechik, B. Devereux, S. Easterbrook, and A. Gurfinkel. “Multi-Valued Symbolic Model-
Checking”. ACM TOSEM, 12(4):1–38, October 2003.

6. A. Cimatti, E.M. Clarke, E. Giunchilia, F. Giunchiglia, M. Pistore, M. Roveri, R. Sebas-
tiani, and A. Tacchella. “NUSMV Version 2: An Open Source Tool for Symbolic Model
Checking”. In Proceedings of CAV’02, volume 2404 of LNCS, pages 359–364, 2002.

7. F. Copty, A. Irron, O. Weissberg, N. Kropp, and G. Kamhi. “Efficient Debugging in a Formal
Verification Environment”. STTT, 4(3):335–348, May 2003.

8. M. Dwyer, G. Avrunin, and J. Corbett. “Patterns in Property Specifications for Finite-State
Verification”. In Proceedings of ICSE’99, May 1999.

9. D. Giannakopoulou, C. S. Pasareanu, and H. Barringer. “Assumption Generation for Soft-
ware Component Verification”. In Proceedings of ASE’02, pages 3–12, 2002.

10. P. Godefroid. “Reasoning about Abstract Open Systems with Generalized Module Check-
ing”. In Proceedings of EMSOFT’03, volume 2855 of LNCS, pages 223–240, October 2003.

11. O. Grumberg and D.E. Long. “Model Checking and Modular Verification”. In Proceedings
of CONCUR’91, 1991.

12. A. Gurfinkel and M. Chechik. “Multi-Valued Model-Checking via Classical Model-
Checking”. In Proceedings of CONCUR’03, volume 2761 of LNCS, pages 263–277, 2003.

13. A. Gurfinkel and M. Chechik. “Extending Extended Vacuity”. In Proceedings of FMCAD’04,
volume 3312 of LNCS, pages 306–321, November 2004.

14. M. Heimdahl and N. Leveson. “Completeness and Consistency in Hierarchical State-Based
Requirements”. IEEE TSE, SE-22(6):363–377, June 1996.

15. O. Kupferman and M. Vardi. “Robust Satisfaction”. In Proceedings of CONCUR’99, volume
1664 of LNCS, pages 383–398, 1999.

16. O. Kupferman and M. Vardi. “Vacuity Detection in Temporal Model Checking”. STTT,
4(2):224–233, February 2003.

17. O. Kupferman, M.Y. Vardi, and P. Wolper. “Module Checking”. Information and Computa-
tion, 164(2):322–344, January 2001.

18. N.G. Leveson, M.P.E. Heimdahl, H. Hildreth, and J.D. Reese. “Requirements Specification
for Process-Control Systems”. IEEE TSE, 20(9):684–707, September 1994.

19. J. Lygeros and N. Lynch. “On the Formal Verification of the TCAS Conflict Resolution
Algorithms”. In Proceedings of Conf. on Decision and Control, December 1997.

20. M. Purandare and F. Somenzi. “Vacuum Cleaning CTL Formulae”. In Proceedings of
CAV’02, volume 2404 of LNCS, pages 485–499, July 2002.

21. I. Shlyakhter, R. Seater, D. Jackson, M. Sridharan, and M. Taghdiri. “Debugging Overcon-
strained Declarative Models Using Unsatisfiable Cores”. In Proceedings of ASE’03, 2003.

22. US Dept. of Transportation. “Introduction to TCAS II”. FAA, March 1990.

Ensuring Consistency Within Distributed Graph

Transformation Systems

Ulrike Ranger and Thorsten Hermes

RWTH Aachen University
Department of Computer Science 3 (Software Engineering)

Ahornstraße 55, 52074 Aachen, Germany
{ranger,thermes}@i3.informatik.rwth-aachen.de

Abstract. Graph transformation systems can be used for modeling the
structure and the behavior of a software system in a visual way. In our
project, we extend existing graph transformation systems to model and
execute distributed systems. One challenge in this context is the simul-
taneous and correct modification of the local runtime graphs of the par-
ticipating applications by visual distributed graph transformations.

As the execution of these transformations may cause inconsistencies
in the local runtime graphs, we present an approach to avoid inconsis-
tencies: A runtime mechanism translates invalid graph transformations
into valid transformations. This translation is based on predefined rules
describing the substitution of invalid transformation parts. Thus, new
graph transformations are dynamically built at runtime. Furthermore,
the runtime mechanism controls access within a distributed system.

1 Introduction

For the software development process, the use of visual modeling languages be-
comes more and more important. The most famous representative of such a
language is the Unified Modeling Language (UML). By using different diagram
types, like use-case, class and sequence diagrams, the UML supports the different
phases of a software development process. These diagrams are advantageous as
they serve as basic development artifacts and allow the visualization of different
abstraction levels of the software system.

There are several tools enabling the drawing of UML diagrams, e.g. Rational
Rose and Poseidon. They allow the generation of class templates according to
UML class diagrams. Unfortunately, they do not support the generation of source
code for UML behavior diagrams representing modifications on object structures.

Graph transformation systems (GTS) fill this gap, as they support the spec-
ification of static and dynamic software aspects and the generation of source
code from the specification. Graphs are descriptive data structures and math-
ematically founded. A lot of efficient algorithms already exist for solving prob-
lems on graphs. Two representatives of GTS are PROGRES [1] and Fujaba
[2], which have been used to model software system with complex data struc-
tures, e.g. process management systems, authoring tools, and systems for reverse

M.B. Dwyer and A. Lopes (Eds.): FASE 2007, LNCS 4422, pp. 368–382, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Ensuring Consistency Within Distributed Graph Transformation Systems 369

engineering. The structure of the software system is defined by a graph schema.
The dynamic aspects are modeled as graph transformations, allowing the cre-
ation and modification of a runtime graph conforming to the graph schema. Both
schema and transformations can be specified textually as well as visually.

Based on the specification, the GTS generates source code, from which a
visual prototype may be created e.g. using the UPGRADE framework [3]. As
UPGRADE is an extensive framework, the prototype can be configured and
adapted to the user’s need. With this abstraction from the runtime graph and
the graph transformations, the prototype allows the developers to observe the
modeled software system and its behavior from a desired view.

GTS are restricted to the modeling of local systems. Our project aims at
the extension of GTS for the modeling and execution of distributed systems.
In a distributed system, each participating application is based on a separate
specification and stores its own runtime graph. Every application (acting as a
server) defines its interface. It provides graph elements, which can be used in
specifications of other applications (clients). A client can either call pre-defined
transformations contained in interfaces or model new graph transformations vi-
sually, by using interface elements as remote objects. In this paper, we focus
on the visual modeling of distributed transformations, as the textual modeling
is studied in [4]. The execution of visually defined transformations modifies the
client runtime graph as well as the server runtime graphs. Since an interface
does not and even cannot cover all graph constraints of an application’s specifi-
cation, the execution may lead to inconsistencies in the different runtime graphs.
A transformation causing inconsistencies is called an invalid transformation.

In [5] we described the modeling and execution of visual distributed graph
transformations disregarding the mentioned inconsistencies. In this paper, we
present our concepts to avoid the execution of invalid transformations by en-
abling the server to modify these transformations dynamically at runtime. With
the use of queries on the runtime graph and predefined rules describing how
invalid transformation parts are translated into valid parts, valid graph transfor-
mations are built from the invalid transformations. This mechanism can also be
used for introducing access rights.

The paper is structured as follows: In Section 2 we introduce the general struc-
ture of a distributed system and show how such a system can be modeled with a
GTS. We explain these concepts considering an example of a simplified process
management system. Section 3 describes our approach for avoiding inconsisten-
cies within the distributed system, which may be caused by the execution of
invalid distributed graph transformations. We present similar approaches and
compare them to our approach in Section 4. A summary and an outlook to
future work is given in Section 5.

2 Specifying Distributed Systems with GTS

In this section, we introduce how distributed systems can be specified with GTS.
We first describe the general architecture of a distributed system and then show

370 U. Ranger and T. Hermes

Middleware

Legend

Local graph node

Reference graph node
Local graph edge

Runtime graph

Visual prototype

„Refers to“ - relation
Communication

Application 1

Transform.: Graph:
addNode()
delNode()
addEdge()
…

Node of the graph view
Edge of the graph view

Application 3

Transform.: Graph:
addNode()
delNode()
addEdge()
…

Application 2

Transform.: Graph:
addNode()
delNode()
addEdge()
…

Fig. 1. Basic architecture of a distributed system

the modeling of its structure and behavior. The modeling is shown by means of
an abstract graph language resembling the PROGRES language.

2.1 Architecture of a Distributed System

In our approach, a distributed system consists of several applications, which are
all built according to the tool construction process described in section 1:
(1) specifying the desired software application with the graph language of the
GTS, (2) generating appropriate source code from the specification, and (3) cre-
ating a visual prototype. Figure 1 shows the basic architecture of a distributed
system consisting of three applications1. For every application, the visual proto-
type and the runtime graph is depicted. The prototype shows the application’s
state, which is stored in the runtime graph. The user can call graph transforma-
tions modeled within the specification and observe their impacts on the runtime
graph. The graph transformations can vary from simple graph modifications, like
addNode for adding a new node of a certain type, to complex graph modifications,
like produceDoc which will be described in Section 2.3.

The coupled applications perform different tasks and are used separately by
different users. For coupling the applications and exchanging data between them,
they require access to runtime graphs of other applications. For restricting the
access to all data, every application has to specify an interface defining the nodes
1 For sake of simplicity, we assume that all coupled applications have well-defined

tasks and thus are based on different specifications. I.e. every specification is not
executed more than once within a distributed system.

Ensuring Consistency Within Distributed Graph Transformation Systems 371

and edges which may be used by other applications (clients) (see Section 2.2).
Our approach is general enough that an application may act as client and server
simultaneously, but in this paper we restrict the applications to act either as
client or as server. Instead of replicating remote nodes with their data, we use
reference nodes in the client runtime graphs allowing the direct access on remote
server nodes2. Reference nodes do not store any data but the location of the
remote object. They are helper structures supporting the realization of relations
between nodes located in different applications.

The communication between the applications, like propagating modifications
to remote nodes, is done by a middleware. The middleware uses existing tech-
nologies like RMI or CORBA. At the moment, we use a synchronous commu-
nication model, which supports distributed transactions guaranteeing a defined
and consistent state of the entire system. In the following, we will not focus on
its implementation but on modeling a distributed system in a visual way. The
code generation of the GTS is responsible to generate code for the middleware.

2.2 Structure of a Distributed System

In this section, we show how the static structure of a distributed system is mod-
eled with the abstract graph language. For this purpose, we introduce the sim-
plified process management system SPMS as example, which is the first distrib-
uted and extensive system we have modeled with our new concepts. The SPMS
manages the tasks, documents, and resources needed for complex processes, like
the development of a software system. These aspects are modeled and executed
as separate applications, which have to be coupled at runtime to form a com-
prehensive process management system. In Figure 2 the class diagrams of the
applications, the SPMS consists of, are depicted. The class diagrams represent
the graph schemas3 of the applications, in which the classes correspond to node
types and associations between classes correspond to edge types.

The Resource Manager handles all human and computer resources needed for
executing and performing the tasks of complex processes. A resource is mod-
eled by node type R, which has an attribute rName for its name and a boolean
attribute occupied indicating the activity state. Additionally, a resource can be
assessed by using node type A (abbreviation for assessment). In the Document
Manager the documents (modeled by node type D) are managed, which serve
as input for tasks and are produced by tasks. The Document Manager stores all
documents alphabetically ordered in a linear list using edge type nextElem. This
list is needed for giving the local users of the Document Manager a clear overview
of all existing documents. Furthermore, edge type basedOn models dependencies
between documents. In the Task Manager the actual process is designed by divid-
ing and structuring it into several smaller tasks using node type T. These tasks
have to be executed in a specific order determined by edges of type nextTask.

In the SPMS, the Task Manager is used for coupling the applications, although
another application could have also been used. As the applications are developed
2 In contrast to reference nodes, we do not store reference edges as they are of no use.
3 We use directed node- and edge-labeled graphs, in which nodes may be attributed.

372 U. Ranger and T. Hermes

Legend
Self-defined node class

Used node class
Self-defined edge type
Used edge type

<e> Export stereotype

uses

Document Manager
Specification

nextElem

1
1 D

<e>

+ dName
<e> basedOn

1
1

Resource Manager
Specification

assessed
1

A
rating*

R

<e>

+ rName
- occupied

uses

Task Manager
Specification

nextTask
T

**

needs
1

1
*

produces

basedOn
D

dName

writes
*
1

tName
1

R
rName

**

*
input

*

Fig. 2. Static structure of the SPMS

Document Manager

nextElem

Resource Manager

Task Manager

assessed

assessed

nextTask

needsproduces needsproduces

Task:
Requirements

writes

Requirements
Specialist

writes

SW-Architect

Task:
Design

input

basedOn

Document:
Design

nextElembasedOn

Document:
Requirements

Document:
Order

Fig. 3. Sample runtime-graph of the SPMS

separately, the Task Manager does not have any knowledge about the other ap-
plications. Therefore, the Resource Manager and the Document Manager define
interfaces containing the types, which may be used by the Task Manager. The
interfaces are not separated from the implementations, but implicitly defined by
marking the respective visual elements with the <e>-stereotype (including the
public attributes of node types). The interface of the Resource Manager consists
of node type R and its attribute rName. Node type D, its attribute dName and
the edge type basedOn compose the interface of the Document Manager.

Interface elements are read only and thus must not be changed by a client, e.g.
by adding an attribute to a node type. This fact is emphasized in the specification

Ensuring Consistency Within Distributed Graph Transformation Systems 373

by illustrating the used graph elements by striped rectangles and dashed arrows.
To integrate interface elements, the used graph elements and the self-defined
elements can be related by defining edge types between them. For example, if a
resource performs a certain task, this is modeled by an edge type needs in the
Task Manager relating the self-defined node type T and the used node type R
(see Figure 2). In that way, the interrelations between the different applications
can be modeled using local edges.

Figure 3 shows an example of a SPMS runtime graph, which is a possible
instantiation of the model (graph schema) depicted in Figure 2. The Task Man-
ager has several tasks for the development of a software system, which refer to
documents and resources in the other applications.

2.3 Modeling the Behavior

Based on the static structure of the SPMS shown in Figure 2, the behavior of
the distributed system can be specified by graph transformations. In this paper,
we focus on the visual specification of distributed graph transformations.

Basically, a visual graph transformation4 consists of a left-hand side (LHS)
and a right-hand side (RHS). The LHS defines a graph pattern, which is searched
for in the runtime graph. A sub-graph in the runtime graph conforming to the
LHS is called match. If several matches are found, one of them is chosen non-
deterministically. The RHS of the transformation defines the modifications of the
match, e.g. creating nodes. For the definition of visual transformations, graph
languages offer an expressive variety of language constructs. The graph languages
provide also the definition of graph queries, which only search for a match.

One essential advantage of specifying graph transformations visually is the
modeling of the behavior in a declarative way, i.e. the modeling of what the
transformation does instead of how the specified modifications can be achieved.
In distributed graph transformations, the specified behavior lead to the simul-
taneous modification of several runtime graphs belonging to different applica-
tions. Distributed graph transformations are executed as transactions, i.e. either
all modifications or no modification at all are performed, fulfilling the ACID
properties known from databases. As the syntax and semantics of distributed
transformations are described in [5], we only present a simple example here.

Figure 4 shows the distributed graph transformation produceDoc for producing
a new document by a task. This transformation is specified in the Task Manager,
but its execution affects also the state of the Document Manager. A task t and
a document d, representing a remote node in the Document Manager, are given
as input parameters. The LHS consists of these nodes and an edge of type input
incident to them. Furthermore, it contains a resource r referencing a node in the
Resource Manager, which is needed by the task t. On the RHS, all nodes and
edges of the LHS are preserved and additionally a new document nd is created.
For integrating the new document nd in the existing graphs, a writes-edge is
created connecting r and nd showing that nd is written by r. Furthermore, a
4 In some GTS approaches, a visual graph transformation is called a production or

rule.

374 U. Ranger and T. Hermes

Task Manager

Specification
transformation produceDoc(t:T, d:D) =

Runtime-Graph Runtime-Graph

::=

Legend

Edge of a self-
defined edge type

Specification

Runtime-Graph

Node of a self-
defined node class

RA

Resource Manager

Runtime-Graph Runtime-Graph

RS

Document Manager

Node of a used
node class

Edge of a used
edge type

Local edge

Reference node

Local node

needs r

writes

t
produces

nd:DbasedOn

needs r:Rt

input

TD

DR DD

TR RATD

DR

TR

RA

A5

A1

RS

RA

A5

A1

Runtime-Graph Runtime-Graph

DO DO

DD

d
input
d

DR DR

Fig. 4. Transformation for producing a new document

produces-edge incident to task t and the document nd is created. As nd is based
on d, a edge of type basedOn is created connecting both documents.

When executing produceDoc, the runtime graphs of the Task Manager and the
Document Manager are modified, as node and edge types of both are used in
the transformation. These modifications are depicted in the runtime graphs in
Figure 4 affecting local and reference nodes. For example, in the Document Man-
ager a new local node with id DD for the new document nd in the transformation
is created, while in the Task Manager only a reference node pointing to node
DD is created. This behavior is founded in the fact that node type D is specified
in the Document Manager and the Task Manager acts only as client for this
type. Thus, every node of type D logically belongs to the Document Manager
and coupled applications may only have references on these nodes. The resulting
runtime graphs depicted in Figure 4 correspond to the SPMS state shown in
Figure 3 (for lack of space only the initials of nodes are shown in Figure 4).

2.4 Execution of Distributed Transformations

The search of a graph pattern has an exponential worst-case complexity and
becomes even more cost-intensive when concerning different applications. [6]
presents an approach to divide the LHS specified in a client into several sub-
patterns, each affecting exactly one application. The sub-patterns are sent to
the server applications at runtime using GTXL [7], instead of querying the ap-
plications for every single pattern element. The server applications respond with
appropriate matches, thus reducing the communication costs. After determining
the match for the LHS in the client, the modifications are performed according to
the RHS. We use a similar mechanism for them: We divide the distributed graph
transformation of the client into several sub-transformations, each affecting one
application. The sub-transformations are sent to the server applications using
GTXL and are then executed. For example, the transformation on the left in
Figure 5 is a sub-transformation of produceDoc sent to the Document Manager.

Ensuring Consistency Within Distributed Graph Transformation Systems 375

transformation t1 (d:D) =

::=d nd:DbasedOnd

1 d:D

nd:D

basedOn

GTXL graph t1

<create>

<create>

2

d:D

nd:CreateD

CreateBasedOn

transformation graph t1
3

Fig. 5. Representations of a visual graph transformation

GTXL provides a XML-based format for exchanging graphs and transforma-
tions. The structure of a transformation in GTXL may be regarded as graph, in
which the nodes and edges are marked with stereotypes describing their modifi-
cation. Figure 5 shows an example of a graph transformation 1© and its abstract
graph representation in GTXL 2© (3© will be explained in Section 3).

When executing a sub-transformation, inconsistencies in the runtime graph
of the server application may occur. These can be caused by create operations,
which insert new nodes and edges in the server’s runtime graph, delete opera-
tions, destroying nodes and edges of a server, and attribute operations, which
change the attribute values of server objects. All these operations transform the
server runtime graph without considering its internal constraints. For example,
when executing transformation produceDoc depicted in Figure 4, a new document
is created in the Document Manager. As the Task Manager does not know that
the Document Manger stores all documents in a linear list, he has not specified
the insertion of the new document in the list. This causes local inconsistencies,
because the linear list does not contain all documents of the Document Manager,
but it relies on a consistent list structure. This problem is called graph rewrit-
ing dilemma [8]: The interfaces have to provide node and edge types, which are
visually available in client specifications, but due to data abstraction the inter-
faces do not cover entire graph schemas with all specification constraints. Since
this is an important aspect in software engineering, we present an approach for
preserving information hiding and solving the graph rewriting dilemma.

3 Meta-transformations

In this section, we describe a mechanism to deal with invalid graph transforma-
tions specified in a client application: The server dynamically translates them
into valid graph transformations, which also update the internal data hidden by
the interface. The translation mechanism is invoked by the server application
for every incoming query or transformation received from a client (via GTXL).
This mechanism can also be used for access control (e.g. as described in [9]).

3.1 The Meta-transformation Approach

Since we use graph transformations to describe the applications’s behavior, it is
only natural to use the same approach for ensuring consistency. As illustrated

376 U. Ranger and T. Hermes

in Figure 5, an incoming graph transformation5 can be viewed as a graph. The
server first translates the incoming GTXL graph 2© into a transformation graph
3©. This graph stores the actions to be performed in the type information of each
element instead of stereotypes. It is based on a transformation graph schema
derived from the application schema: For every possible action and type in the
application schema, a combined type is generated, e.g. type CreateD for creating
an instance of type D. Nodes in the transformation graph are called operations.

The transformation graph is then transformed using a pre-defined set of rules,
which we call meta-transformations. These are transformations that operate on
transformations represented by transformation graphs. They are written by the
specifier of the server application without knowledge of the transformations that
might be modeled by clients. Their application is performed at runtime, when
a transformation is received. Each meta-transformation deals with a single as-
pect of consistency or access control, and does not have to match the entire
incoming transformation. Since a big transformation may be matched by mul-
tiple meta-transformations, the specifier defines a total order over the meta-
transformations. Each meta-transformation works on the intermediate result of
previous ones. The final result is a transformation graph that represents a valid
transformation, which is then executed by the application.

We require that either at least the changes specified in the incoming transfor-
mation are performed (minimal semantics), or that no changes are performed at
all. In the later case an error is reported to the client and the distributed transfor-
mation is aborted. This ensures that distributed transformations are predictable
from the client’s perspective. There are two types of meta-transformations:

Simple Meta-Transformations. The only difference to regular graph trans-
formations is that simple meta-transformations are not defined over the applica-
tion’s graph schema, but the graph transformation schema described above. If a
match for a LHS is found in the incoming transformation, the meta-transforma-
tion is applied, either once or to every match, as defined by the specifier.

Complex Meta-Transformations. In order to deal with large incoming trans-
formations and perform sophisticated checks, complex meta-transformations use
the control structures of the graph language to combine queries and simple
meta-transformations (equivalent to PROGRES transactions). For their nota-
tion, we will use the visual flow notation of Fujaba in Section 3.2. Complex
meta-transformations do not have a LHS or RHS, and are invoked for every in-
coming transformation. In addition to queries on the transformation graph, we
provide runtime graph queries (specified using the application’s graph schema).
This allows reactions depending on the current runtime graph, e.g. rejection of
a transformation that attempts to create a document if a document with that
name already exists. The control flow together with the queries can be used to
simulate advanced features like negative application conditions [10].

5 We only discuss graph transformations, but the same mechanism applies to queries.

Ensuring Consistency Within Distributed Graph Transformation Systems 377

3.2 Examples

Maintaining an Ordered List. The Document Manager maintains a linked
list of all stored documents, ordered by their dName attribute. This implemen-
tation detail is hidden, so any document created by the Task Manager will have
to be inserted into this list by the Document Manager itself.

Legend
Query or
left-hand side /
right-hand side of a
meta-transformation

Query on the
runtime graph

metatransformation createNewDoc () =

::=

nextElemd1:D
dName < d.dName

d2:D
dName > d.dName

2

3

CreateNextElem
d

CreateNextElem

mD1:OblD
rId = d1.id

mD2:OblD

rId = d2.id

DeleteNextElem

d

4

d:CreateD

1

success

failure

Special Cases
(e.g. d is the first

document in the list)

…

Fig. 6. Meta-transformation to maintain ordered linked list

The complex meta-transformation in Figure 6 begins with a query on the
transformation graph 1© that is matched when an incoming transformation at-
tempts to create a document. The runtime graph query 2© is then executed to
find two documents between which the new document should be inserted. If a
suitable position is found, the simple meta-transformation 3© is invoked. It mod-
ifies the incoming transformation so that it does not only create the document
d, but also creates appropriate edges to d1 and d2 and deletes the existing edge
between them. Figure 7 shows the effect of createNewDoc() on the transformation
from Figure 5, translated into the standard transformation notation.

We use attributes to relate runtime graph elements with the operations on
them, e.g. to ensure that we create edges to the same documents we found in
the runtime query. The attribute id for documents in the runtime graph is used
to access the internal identifier assigned by the GTS. On the transformation
graph level, operations that affect a specific document store its identifier in the
attribute rId. Using attribute assignments in 4©, we add OblD operations for d1
and d2, meaning the corresponding documents will appear on both LHS and RHS

378 U. Ranger and T. Hermes

transformation t1 (d:D, d1:D, d2:D) =

::=d

d2

nextElem

nextElem

nd:DbasedOnd

d1

transformation t1 (d:D) =

::=d nd:DbasedOnd
applying

metatransformation
createNewDoc ()

incoming transformation executed transformation

d2

d1

nextElem

Fig. 7. Result of applying the meta-transformation createNewDoc()

metatransformation deleteDocAllowed () =

1

4

end

for_each

failure 5

success

for_eachend

Legend
Query on the
transformation
Query on the
runtime graph

Loop-construct

Stop-construct

Abort-construct

basedOnd2:D d1:D
id=d.rId

d:DeleteDd:DeleteD

1

m:DeleteD
rId=d2.id

3

2

Fig. 8. Meta-transformation preventing deletion of documents that are still referenced

of the transformation. The failure branch for handling special cases is omitted
due to space limitations. Usually, we would perform the initial query 1© inside
a loop (see next example) to deal with incoming transformations creating more
than one document.

Access Control. Documents in the Document Manager must not be deleted
while there are other documents based on them. In this case, we ensure consis-
tency not through translation, but rejection of incoming transformations.

This access control is realized by the complex meta-transformation in Figure 8.
The initial query 1© matches the deletion of a document d in the incoming
transformation. Its enclosing for each loop iterates through all matches for a
document deletion operation. For every such document d1, a runtime graph
query 2© searches for a document d2 based on it. d1 is identified using the rId
from the corresponding deletion command d. Again, the for each loop enclosing
2© ensures that we process all possible matches for d2. We perform a query 3© on
the transformation graph to check whether this document will also be deleted
by the incoming transformation. If not, this would cause an inconsistency, and
thus the failure branch leads to a special symbol 5©, which results in the rejection
of the incoming transformation. If no consistency violation is detected, the loop
ends with 4©, and processing of this meta-transformation is finished.

Ensuring Consistency Within Distributed Graph Transformation Systems 379

3.3 Evaluation

Existing GTS, like PROGRES, address some concerns of meta-transformations
by other mechanisms. We will compare them to our approach and give some
estimates regarding runtime and specification complexity.

Constraints and Repair Actions. Constraints specify invariants on the run-
time graph that are verified after every transformation. If a violation is detected,
processing is halted. This is not acceptable in a distributed system where the
client specifier cannot keep the server graph consistent because of a limited in-
terface. Repair actions [8] are an extension of constraints. Instead of terminating
the application, a transformation may be triggered to return the graph to a con-
sistent state. This is different from the meta-transformation approach, where
inconsistencies are not allowed to occur in the first place. While this approach
allows repair actions to perform iterative graph manipulation, they suffer from
several disadvantages: First, they have less available information, e.g. when delet-
ing a node, a meta-transformation can still evaluate its attributes and incident
edges before the node is deleted. A repair action is invoked after the deletion,
and thus all information about the node is lost. Second, repair actions are not in-
dependent: The specifier of a repair action must assume that every repair action
is the first action performed on a runtime graph with multiple inconsistencies,
making it hard to correctly perform the repairs. Third, constraints and repair
actions require the whole graph to be searched for inconsistency patterns after
every modification, meaning their execution time grows with the graph size.

Runtime Complexity of Meta-Transformations. Meta-transformations
operate on the transformation graph, which typically contains only few ele-
ments. For runtime graph queries, knowledge of the incoming transformation
can be used to avoid global searches on the runtime graph. Only when this is
not possible, these queries exhibit the same complexity as constraints/repair ac-
tions. This means that, except for these worst cases, the runtime complexity of
meta-transformation does not depend on the size of the runtime graph, making
them much more scalable.

Number of Meta-Transformations. To cover all possible operations (cre-
ation, deletion, and, for nodes only, attribute modification), 3 ∗ n + 2 ∗ e meta-
transformations have to be specified, where n is the number of node types and
e the number of edge types in the interface. Operations that require neither
consistency enforcement nor access control may be omitted. We are currently
investigating possibilities to support the specifier in this task.

4 Related Work

The presented meta-transformations may not be confused with the meta trans-
formation rules introduced in [11]. They translate generic graph transformations

380 U. Ranger and T. Hermes

applying type variables into several concrete transformations without type vari-
ables at specification time. At runtime, the concrete transformations are executed
instead of the generic transformations, improving the performance. These rules
can also be used for increasing the maintainability of transformations. In contrast
to meta-transformations, the meta rules of [11] operate on static transformations
known at specification time, and are performed at specification time.

In [12], the GTS Fujaba is extended by defining the life-cycle of software com-
ponents and their interactions. This is modeled by using existing diagrams and
introducing new diagram types in Fujaba, which e.g. offer the specification of de-
ploying components located on different machines. Furthermore, fault tolerance
in case of hardware failures is considered. For the interaction of components,
distributed graph transformations are needed. In contrast to our approach, no
means for modeling the distributed transformations in a visual way is provided,
thus [12] is more related to the textual specification presented in [4]. As only
textual interfaces and calls of remote procedures are used, the graph rewriting
dilemma as presented in Section 2.4 does not arise in [12].

In context of GTS, many projects deal with the integration of different models,
e.g. by using triple graph grammars [13]. Most of these approaches use only one
specification containing the different models and one runtime graph. They focus
on synchronizing the different models instead of modeling distributed systems as
presented in this paper. Furthermore, they do not concentrate on the abstraction
of implementation details, as provided by specification interfaces.

For modeling distributed systems, [14] introduces hierarchically distributed
graph transformations for GTS. Basically, a network graph defines the topology
and the relations between applications of a distributed system. Each applica-
tion is represented as a node in the network graph and in turn stores its runtime
state within a local graph. Instead of using references as described in Section 2.1,
objects are replicated in the applications. Distributed transformations are mod-
eled on the level of the network graph and not on application level, making the
applications passive components within the distributed system. Another differ-
ence between the two approaches is the level of data abstraction: We provide
abstraction on the graph schema level, while [14] offers the more fine-granular
abstraction on object level. Thus, for every object shared by two applications
an explicit relation has to be defined, which leads to the extensive definition of
object relations. However, the approach is only rudimentarily implemented and
does not offer means for solving the graph rewriting dilemma.

5 Conclusion

Our project extends existing GTS by modeling structure and behavior of a dis-
tributed system in a visual way. To achieve information hiding, applications of a
distributed system only exchange interfaces. As a drawback, distributed graph
transformations specified in a client cannot consider all constraints internally
imposed by the servers. Since this may lead to inconsistencies within the runtime

Ensuring Consistency Within Distributed Graph Transformation Systems 381

graphs, we introduce meta-transformations for translating invalid transforma-
tions into valid transformations dynamically.

Meta-transformations are based on existing concepts for visual graph transfor-
mations, but operate on graph transformations themselves instead of modifying
runtime graphs. As incoming transformations are not known at specification
time, the server specifier defines a number of translation rules, which are ap-
plied by a runtime mechanism. This also allows queries on the runtime graph, so
that the local state may be taken into account when performing the translation.
Meta-transformations provide a general mechanism, which can also be used for
realizing access control within a distributed system.

The graph rewriting dilemma [8] has been originally described for local sys-
tems, which are built from different sub-systems using one common graph. Meta-
transformations can be used for ensuring the consistency of all sub-systems in
this local case as well. As all graph transformations which will be performed
on the sub-systems are known at specification time, meta-transformations can
be applied in a pre-processing step just before generating code for the system.
Thus, the runtime infrastructure is not needed for local systems.

We have tested our concepts on a large distributed process management sys-
tem and they have shown to be suitable for solving the graph rewriting dilemma.
As a next step, we will formalize the presented concepts and integrate them into
the existing formalism of PROGRES. Additionally, we are analyzing concepts
for improving the interface mechanism presented in Section 2.2 by introducing
virtual graph views. They define an explicit view on an application instead of
implicitly determine the interface by a proper part of the graph schema. For the
realization, meta-transformations can be used for translating queries conforming
to the virtual graph view into queries conforming to the internal structure.

References

1. Schürr, A.: Operationales Spezifizieren mit programmierten Graphersetzungssys-
temen. PhD-Thesis, RWTH Aachen University (1991)

2. Fischer, T., Niere, J., Torunski, L., Zündorf, A.: Story diagrams: A new graph
rewrite language based on the Unified Modelling Language and Java. In Ehrig,
H., Engels, G., Kreowski, H.J., Rozenberg, G., eds.: 6th International Workshop
on Theory and Application of Graph Transformations, TAGT’98. Volume 1764 of
LNCS., Springer-Verlag, Heidelberg, Germany (2000) 296–309

3. Böhlen, B., Jäger, D., Schleicher, A., Westfechtel, B.: UPGRADE: A framework
for building graph-based interactive tools. In Mens, T., Schürr, A., Taentzer, G.,
eds.: 1st International Workshop on Graph-Based Tools, GraBaTs’02. Volume 72
of ENTCS., Elsevier Science Publishers (2002)

4. Böhlen, B., Ranger, U.: Concepts for specifying complex graph transformation sys-
tems. In Ehrig, H., Engels, G., Parisi-Presicce, F., eds.: 2nd International Confer-
ence on Graph Transformations, ICGT’04. Volume 3256 of LNCS., Springer-Verlag,
Heidelberg, Germany (2004) 96–111

5. Ranger, U., Schultchen, E., Mosler, C.: Specifying distributed graph transformation
systems. (2006) , presented at the 3rd International Workshop on Graph-Based
Tools, GraBaTs’06.

382 U. Ranger and T. Hermes

6. Ranger, U., Lüstraeten, M.: Search trees for distributed graph transformation
systems. In Karsai, G., Taentzer, G., eds.: 2nd International Workshop on Graph
and Model Transformation, GraMoT’06. Volume 4 of Electronic Communications
of the EASST., European Association of Software Science and Technology (2006)
(to appear).

7. Taentzer, G.: Towards common exchange formats for graphs and graph trans-
formation systems. In Ehrig, H., Ermel, C., Padberg, J., eds.: 1st International
Workshop on Uniform Approaches to Graphical Process Specification Techniques,
UNIGRA’01. Volume 44(4) of ENTCS., Elsevier Science Publishers (2001)

8. Winter, A.: Visuelles Programmieren mit Graphtransformationen. PhD-Thesis,
RWTH Aachen University (2000)

9. Heckel, R., Ehrig, H., Engels, G., Taentzer, G.: A view-based approach to system
modeling based on open graph transformation systems. In Ehrig, H., Engels, G.,
Kreowski, H.J., Rozenberg, G., eds.: Handbook on Graph Grammars and Com-
puting by Graph Transformation: Applications, Languages, and Tools. Volume 2.
World Scientific, Singapore (1999) 639–668

10. Habel, A., Heckel, R., Taentzer, G.: Graph grammars with negative application
conditions. Fundamenta Informaticae 26 (1996) 287–313

11. Varró, D., Pataricza, A.: Generic and meta-transformations for model transfor-
mation engineering. In Baar, T., Strohmeier, A., Moreira, A., Mellor, S., eds.:
7th International Conference on the Unified Modeling Language, UML’04. Volume
3273 of LNCS., Springer-Verlag, Heidelberg, Germany (2004) 290–304

12. Tichy, M.: Durchgängige Unterstützung für Entwurf, Implementierung und Betrieb
von Komponenten in offenen Softwarearchitekturen mittels UML. Diploma Thesis,
University of Paderborn (2002)

13. Schürr, A.: Specification of graph translators with triple graph grammars. In Mayr,
E.W., Schmidt, G., Tinhofer, G., eds.: 20th International Workshop on Graph-
Theoretic Concepts in Computer Science, WG’94. Volume 903 of LNCS., Springer-
Verlag, Heidelberg, Germany (1995) 151–163

14. Fischer, I., Koch, M., Taentzer, G.: Visual design of distributed object systems by
graph transformation. Technical Report 98-15, Tech. University of Berlin (1998)

Maintaining Consistency in Layered

Architectures of Mobile Ad-Hoc Networks

Julia Padberg, Kathrin Hoffmann�, Hartmut Ehrig,
Tony Modica, Enrico Biermann, and Claudia Ermel

Institute for Software Technology and Theoretical Computer Science
Technical University of Berlin, Germany

Abstract. In this paper we present a layered architecture for model-
ing workflows in Mobile Ad-Hoc NETworks (manets) using algebraic
higher order nets (aho nets). manets are networks of mobile devices
that communicate with each other via wireless links without relying on
an underlying infrastructure, e.g. in emergency scenarios, where an effec-
tive coordination is crucial among team members, each of them equipped
with hand-held devices.

Workflows in manets can be adequately modeled using a layered ar-
chitecture, where the overall workflow, the team members’ activities and
the mobility issues are separated into three different layers, namely the
workflow layer, the mobility layer and the team layer. Dividing the aho

net model into layers immediately rises the question of consistency. We
suggest a formal notion of layer consistency requiring that the team layer
is given by the mapping of the individual member’s activities to the glu-
ing of the workflow and the mobility layer. The main results concern the
maintenance of the layer consistency when changing the workflow layer,
the mobility layer and the team layer independently.

1 Introduction

Mobile Ad-Hoc Networks (manets) consist of mobile nodes, communicating in-
dependently of a stable infrastructure. The network topology is changed contin-
uously depending on the actual position and availability of the nodes. A typical
example is a team of team members communicating using hand-held devices and
laptops as e.g. in the disaster recovery scenario in Section 2. Formal modeling
of workflows in manets using algebraic higher order nets (aho nets) has been
first introduced in [5]. aho nets are Petri nets with complex tokens, namely
place/transition (P/T) nets as well as rules and net transformations for chang-
ing these nets. On this basis we present a layered architecture of the model that
allows the separation of support activities concerning the network from activities
concerning the intended workflow. This yields better and conciser models, since
supporting the network connectivity has a much finer granularity than the more

� This work has been partly funded by the research project forMAlNET (see
http://tfs.cs.tu-berlin.de/formalnet/) of the German research Council.

M.B. Dwyer and A. Lopes (Eds.): FASE 2007, LNCS 4422, pp. 383–397, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

384 J. Padberg et al.

or less fixed workflow execution. The layered architecture of aho net models of
workflows in manets distinguishes three layers, the workflow layer, the mobility
layer and the team layer. The workflow layer describes the overall workflow that
is to be achieved by the whole team. The mobility layer describes the workflows
in order to maintain the manets connectivity. The team layer describes the in-
dividual activities of the team members. Moreover, we provide a set of rules in
each layer for the transformation of corresponding P/T-nets expressing differ-
ent system states. As we distinguish different layers in which transformations
are applied independently, the question comes up how these layers fit together.
Layer consistency means that these layers together form a valid aho net model
of workflows in manets. In a mobile setting it is not realistic to expect con-
sistency at all moments, so there are different degrees of inconsistency that are
feasible during maintenance of consistency. Consider the subsequent possibil-
ities for maintaining consistency in a layered aho net model of workflows in
manets: Checking consistency means that in all states of the aho net modeling
the workflows in manets consistency can be checked. Guaranteed consistency
is given if each state of the aho net is a consistent one, that is the rules are
only applied when the conditions that guarantee consistency are satisfied. Back-
tracking consistency is the possibility to reach an inconsistent state, and to have
then the possibility to backtrack the transformations until a consistent state
is reached. Restoring consistency is the possibility of inconsistent states in the
aho net, but with a “recipe” to fix them. (So, backtracking could be consid-
ered as a special case.) This recipe provides conditions for the application of the
next transformations. The notion of consistency we present in this paper can be
used for all four possibilities. Consistency maintenance depends on the precise
aho net model. More precisely, the way consistency is maintained is given by
the way rules are applied during the firing of the transitions of the aho net
model. Orthogonally, there are other notions of consistency that are relevant
for an aho net model of workflows in manets, e.g. the intended workflow of
the whole team is covered by the individual activities of the team members.
Another important consistency notion concerns the distributed behavior that
means in which way the behavior of each member is interrelated with the be-
havior of the other team members. In the conclusion we hint at the possible
formalization of such a team work consistency or behavior consistency in our
approach.

The formal approach presented in this paper was developed in strong collab-
oration with some research projects1 where an adaptive workflow management
system for manets, specifically targeted to emergency scenarios, is partly real-
ized resp. going to be implemented. Section 2 introduces an exemplary scenario
of disaster management to illustrate our notions and results, while in Section 3
we discuss our approach to model workflows in manets using a layered archi-
tecture. The formalization to maintain consistency in layered architectures can
be found in Section 4. Finally, we discuss future work.

1 MOBIDIS - http://www.dis.uniroma1.it/pub/mecella/projects/MobiDIS, MAIS -
http://www.mais-project.it, IST FP6 WORKPAD - http://www.workpad-project.eu/

http://www.dis.uniroma1.it/pub/mecella/projects/MobiDIS
http://www.mais-project.it
http://www.workpad-project.eu/

Maintaining Consistency in Layered Architectures of MANETs 385

2 Scenario: Emergency Management

As a running example we use a scenario in archaeological disaster/recovery:
after an earthquake, a team (led by a team leader) is equipped with mobile
devices (laptops and PDAs) and sent to the affected area to evaluate the state
of archaeological sites and the state of precarious buildings. The goal is to draw a
situation map in order to schedule restructuring jobs. The team is considered as
an overall manet in which the team leader’s device coordinates the other team
member devices by providing suitable information (e.g. maps, sensible objects,
etc.) and assigning activities. A typical cooperative process to be enacted by the
team is shown in Fig. 1(a), where the team leader has to select a building based
on previously stored details of the area while team member 1 could take some
pictures of the precarious buildings and team member 2 (after a visual analysis
of a building) could fill in some specific questionnaires. Finally, these results have
to be analyzed by the team leader in order to schedule next activities.

In the following we exemplarily present P/T-nets called token nets for our sce-
nario. As described above, Fig. 1(a) presents the workflow W0 that has to be co-
operatively executed by the team. The dashed lines are an additional information
illustrating the relation among tasks and team members and are not a part of the
P/T-net itself. There is a corresponding workflow W 0 where the place p is rep-
resented by two places p1 and p2 (and similar place p’) to integrate movement
activities. In Fig. 1(b) the token net M0 presents the mobility aspect of team mem-
ber 1 stating that he/she has to go to the selected destination while team member
2 stays put. Finally, in Fig. 2 there are three separate nets for the team layer show-
ing the local view of each team member onto the workflow and the mobility net.

p’

Make Photo
Compile

Questionnaire

Matching

Team Member 1
(camera device)

Team Member 2
(bridge device)

Select Building

p

Team Leader
(picture store device)

(a) Workflow W0

p2’

Go to Destination
Start

Go to Destination

Go to Destination
Stop

Team Member 1
(camera device)

Team Member 2
(bridge device)

p1

p2

p1’

(b) Mobility net M0

Fig. 1. P/T-nets in the workflow and the mobility layer

386 J. Padberg et al.

(picture store device)

Matching

Select Building

Team Leader

(a) P/T-net t10

Start

Go to Destination
Stop

Make Photo

Team Member 1
(camera device)

Go to Destination

Go to Destination

(b) P/T-net t20

Questionnaire

(bridge device)

Compile

Team Member 2

(c) P/T-net t30

Fig. 2. Team member nets in the team layer

(picture store device)

Select Building

Go to Destination

Compile
Questionnaire

Matching

Go to Destination
Stop

Make Photo

Team Member 1
(camera device)

Team Member 2
(bridge device)

Go to Destination
Start

Team Leader

Fig. 3. Teamwork net T0

Maintaining Consistency in Layered Architectures of MANETs 387

(picture store device)

Capture Scene

Zoom on

Send Photos

damaged part

R1

Compile
Questionnaire

Matching

Team Member 1
(camera device)

Team Member 2
(bridge device)

Zoom on

Capture Scene

Send Photos

damaged part
Compile

Questionnaire

Matching

Team Member 1
(camera device)

Team Member 2
(bridge device)

Make Photo

L1

W0 W1

Select Building

Team Leader
(picture store device)

Make Photo

Select Building

Team Leader

Fig. 4. Rule rphoto in the workflow layer and its application

To maintain consistency in a layered architecture first of all the teamwork
net T0 (see Fig. 3) has to be produced by gluing the workflow W 0 and the
mobility net M0 (see Fig. 1). In more detail, the place p in the workflow W0 is
refined by the movement activities of team member 1. Moreover, the local view
of each team member (see Fig. 2) is achieved by an inclusion into the teamwork
net, called activity arrow that realizes the relation of team members to their
activities. Thus, we start with a consistent layer environment (see Section 4).

In a particular scenario the movement of the device equipped with the cam-
era could result in a disconnection from the others. To maintain the network
connectivity and ensure a path among devices a layered architecture should be
able to alert the mobility layer to select a possible “bridge” device (e.g. the one
owned by team member 2) to follow the “going-out-of-range” camera device.

388 J. Padberg et al.

In general this may result in a change of the manet topology. Specifically, the
current mobility net and the P/T-net of team member 2 have to be transformed
in order to adapt it to the evolving network topology.

Thus, according to the requirements of our scenario, the structure of the token
nets in Figs. 1 and 2 has to be changed to react to incoming events, e.g. to avoid
a ”going-out-of-range”-situation. In general we consider the change of the net
structure as rule-based transformation of P/T-nets. This theory is inspired by
graph transformation systems [12] that were generalized to net transformation
systems [7]. The existence of several consistency and compatibility results for
net transformation systems is highly profitable for maintaining consistency of
workflows in manets. The basic idea behind net transformation systems is the
stepwise development of P/T-nets by appropriate rules. Think of these rules as
replacement systems, where the left-hand side of a rule is replaced by the right-
hand side. A transformation from a P/T-net N0 to a P/T-net N1 by a rule r is
denoted by N0

r=⇒ N1.

Start

Go to Destination
Stop

Go to Destination
Start

Go to Destination
Stop

Start
Follow Member 1

R2

Member 1
Follow Team

Follow Member 1
Stop

L2

Go to Destination

(a) rule rfollow

L3

Start
Follow Member 1

Member 1
Follow Team

Follow Member 1
Stop

R3

(b) rule rm2

Fig. 5. Rules for the mobility and the team layer

In our example team member 1 has to refine his/her activity of making photos.
For this reason the structure of the workflow W0 in Fig. 1(a) is changed using the
rule rphoto depicted in the upper row in Fig. 4 resulting in the new workflow W1
in Fig. 4. Assume a probable disconnection while team member 1 is going to the
previously selected destination. Here the rule rfollow in Fig. 5(a) maintains the
network connectivity by adding movement activities for team member 2 to follow
team member 1, i.e. M0

rfollow=⇒ M1. Analogously, the net structure of the local
view of team member 2 has to be adapted to include these movement activities.
So, we provide the rule rm2 in Fig. 5(b) for the team layer to change the structure
of the token net t30 (see Fig. 2(c)), i.e. t30

rm2=⇒ t31. Note that these rules are
applied independently so that consistent transformations cannot be guaranteed

Maintaining Consistency in Layered Architectures of MANETs 389

in general. But we present in Section 4 layer consistency conditions to maintain
consistency of a layered architecture in manets, i.e. after the application of
specific rules we have again a consistent layer environment.

3 Layered Architectures of Mobile Ad-Hoc Networks

In [5] a model for manets is described by a global workflow and its transfor-
mation by a global set of rules. Following the observation that a workflow in
manets consists of different aspects we provide a layered architecture as de-
picted in Fig. 6(a) to get a more adequate model. We separate movement activi-
ties from general activities and allow a local view of team members that is most
important in such an unstable environment. From a practical point of view the
manet topology often has to be restructured to maintain the network connectiv-
ity resulting in a change of movement activities while general activities are more
or less fixed during the workflow execution. Thus, the global workflow, based on
a predictive layer, is separated into three different layers. Each of these layers
is equipped with its own P/T-nets and transformation rules. The advantage is
that we exploit some form of control on rule application by assigning a set of
rules to a specific layer. Under these restrictions transformations can be realized
in a specific layer of our model.

Team Layer

Workflow Layer

Predictive Layer

Mobility Layer

(a) Layers

Execution

Team Layer

Rules
P/T−net

Rules
P/T−net

Workflow Layer

Mobility Layer

Rules
P/T−net

Nets

Mobility Net

Team Member

WorkflowAdaption Execution

Adaption Execution

Adaption

(b) Algebraic higher order net

Fig. 6. Layered architecture for supporting cooperative work on manets

The predictive layer signals probable disconnections to the upper mobility
layer. The predictive layer implements a probabilistic technique [6] that is able
to predict whether in the next instant all devices will still be connected. The
mobility layer summarizes movement activities of the involved team members
and is in charge of managing those situations when a peer is going to disconnect.
The team layer realizes the local view of team members onto the workflow and
the mobility net. Here, a P/T-net describes those activities being relevant for

390 J. Padberg et al.

one team member. Finally, the workflow layer represents in terms of a P/T-net2

the cooperative work of the team but excludes movement activities.
The layered architecture is formalized by a layered aho net (see Fig. 6(b) for a

schematic view), so that rules in a certain layer are provided for transformations
of corresponding P/T-nets, e.g. to react to some incoming events. In general, aho

nets [8] combine an algebraic data type part and Petri nets by the inscription
of net elements with terms over the given data structure. Technically, the data
type part of the aho net in Fig. 6(b) consists of P/T-nets, the well-known token
game, rules and rule-based transformation in the sense of the double pushout
(DPO) approach [7], where all of them specified by appropriate sorts and oper-
ations. In this way, P/T-nets and rules can be used as tokens in our model, and
the token game and rule-based transformations can be implemented in the net
inscriptions. Moreover, places in the layered aho net are either system or rule
places, i.e. the state of our model is given by an appropriate marking consist-
ing of token nets and token rules. Token rules are static, i.e. rules represented
as tokens do not move and remain unchanged on the corresponding rule places
(indicated by the double arrow). In short, firing a transition Adaption changes
the structure of a corresponding token net according to an appropriate token
rule (for details we refer to [8]). Specifically, the mobility layer is in charge of
catching disconnection events incoming from the predictive layer and modify-
ing the mobility net (e.g. adding a “Follow Member X” activity) by applying
transformation rules.

The P/T-nets presented in Section 2 are possible markings of our aho net
model in Fig. 6(b). Fig. 1(a) depicts the token net W0 for the workflow layer,
i.e. it represents the current marking of the place Workflow in Fig. 6(b). For
the mobility layer in Fig. 1(b) the token net M0 is depicted (token net on the
place Mobility Net in Fig. 6(b)). Finally, the team member nets in Fig. 2 are a
marking on the place Team Member Nets in our model. Note that in general
we consider the marking of the token nets. This requires switching from P/T-
nets to P/T-systems so that firing a transition Execution in our model (see
Fig. 6(b)) computes the successor marking of a token net. But in this paper we
prefer the notion of P/T-nets because our main results focus on the structure of
token nets. Analogously, for each layer a specific transformation rule is depicted
in Figs. 4 and 5.

4 Concepts and Results for Layer Consistency

In this section we discuss the basic concepts for maintaining consistency in our
approach. Consistency is defined for the layered architecture of workflows in
manets, that is, the workflow layer, the mobility layer and the team layer. We
present a notion of consistency, that relates the layers to the team members’
activities. Moreover, as discussed in Section 2 we have rules and transforma-
tions for changes at the level of the workflow layer, of the mobility layer and for
2 Note that we have a P/T-net that describes the workflow, but this needs not be a

workflow net in the sense of [14].

Maintaining Consistency in Layered Architectures of MANETs 391

changing the individual activities of the team members. These rules and trans-
formations allow the refinement of the token nets according to the imperatives
of the network maintenance. To support the local views they have to be applied
independently but must allow precise consistency maintenance. So, we give a
precise definition of layer consistency and provide precise conditions that allow
maintaining consistency. The main theorem states the conditions under consis-
tency can be maintained stepwise. This result can be extended, so that certain
degrees of inconsistency are allowed, while restoring consistency is still possible.
In Subsection 4.3 we pick up the discussion on maintaining consistency in view of
the notions we present subsequently. Here, we present these notions and results
at a more informal level, but the notions are defined formally and the results
have been proven mathematically in [4].

4.1 Consistent Layer Environment

Based on the layered architecture for manets we have for the workflow layer a
P/T-net W , for the mobility layer a P/T-net M and for the team work layer for
each team member m = 1, ..., n a P/T-net tm representing their individual activ-
ities. Moreover, we have the relation to the activities of the whole team and rules
changing these activities. Here, we assume merely that tm are P/T-nets. Alter-
natively we could require workflow or process nets. The activities of the team
members consist of parts concerning their workflow as well as parts concerning
their mobility. Team members can change their team member nets according to
specific rules. The main goal of our approach is modeling the changes that occur
for reasons of the tasks to be achieved as well as the changes that are required
because of the mobility issues. To this end we need the workflow W and rules
rW for transforming W , the mobility net M and rules rM for transforming M
as well as each team member’s net tm and rules rm to transform these. These
rules are given as net rules and transformations in the DPO approach [7] (see for
example the P/T-net rules in Figs. 4 and 5 in Section 2). The nets W , M and tm,
as well as the rules rW , rM and rm are the tokens
in the aho net depicted in Fig. 6(b). Firing in this
aho net causes the transformation of the nets W ,
M and tm. Consistency of such a layered aho net
means in a broad sense that W , M and tm have to
be related as depicted in Fig. 7. The interface net I
is assumed to be fixed throughout this paper, but
it is straightforward to adapt our constructions to
changing the interface as well.

I

�����
���

�����
���

M

�����
���

(PO) W

�������

pg �� W

tm αm �� T

Fig. 7. Consistent layer envi-
ronment

Definition 1. A consistent layer environmentaccording to the layers in Fig. 6(b)
is given for the the workflow W , the mobility net M and team members’ nets
t1, ..., tn if the following conditions are satisfied:

1. In order to have refinement of places in W with subnets of M we allow
replacing W by W

pg→ W , where pg is a place gluing morphism (bijective on
transitions and surjective on places).

392 J. Padberg et al.

2. There is the fixed interface net I included in M and W , so that a teamwork
net T is obtained by the gluing of M and W along I, written T = M +I W .

3. There are activity arrows for each team member t1
α1

→ T, ..., tn
αn

→ T that are
net morphisms relating a team member’s activities – given by the net tm –
to the teamwork net T .

The nets W, M, (t1, ..., tn) and T correspond in our example to the nets given in
Figs. 1, 2 and 3, respectively. W 0 is obtained from W0 by splitting p in Fig. 1(a)
into two places p1 and p2 that are unconnected (and similar p’ into p1’ and
p2’). I consists of the places p1, p2, p1’ and p2’ included in W 0 and also in
M0 in Fig. 1(b) where these places are the entry and exit places.

4.2 Transformations at Different Layers

As mentioned before we want to model changes using transformation rules at the
different layers we have. The transformation of the mobility net M , the workflow
W and the team members’ activities tm is achieved using net transformations
(see [7]) as illustrated in Section 2.

Example 1. Starting at a consistent layer environment firing of the aho net
transitions Adaption in Fig. 6(b) yields various transformations in the different
layers. So, at the level of the tokens (i.e. nets and rules) we then have e.g. the
situation depicted in Fig 8: There are rules in the mobility layer, in the workflow
layer and three rules in the team layer that have been applied, yielding the

following transformations M0
rM

=⇒ M1, W0
rW

=⇒ W1 as well as rules for each team

member t10
r1=⇒ t11, t20

r2=⇒ t21 and t30
r3=⇒ t31. This is the situation as discussed in

Section 2 if we assume additional rules for the team leader and team member 1.

According to the discussion in Section 1, we now need conditions that allow to
maintain consistency. We have to obtain the teamwork net that integrates the
changes induced by the transformations above. The results for net transforma-
tions yield a variety of independence conditions for the sequential and parallel
application of rules and for the compatibility with pushouts (see [7]). Subse-
quently we develop the conditions for maintaining layer consistency based on
transformations at the mobility and the workflow layer. Later, in Corollary 1,
we assume not only transformation steps, but transformation sequences.

Let there be the transformations W0
rW

=⇒ W1 and M0
rM

=⇒ M1. We first need
to ensure compatibility with place refinement. This means that the rule rW is
also applicable to W 0 and there exists a place-gluing morphism pg1 : W 1 → W1,
such that the diagram (1) in Fig. 9 commutes.

Provided the preservation of the interface I, that is, the applications of the
rules rW and rM are independent of I, there is the parallel rule r = rW + rM ,
so that the application of r to the teamwork net T0 yields the transformation
T0

r=⇒ T1, with T1 = M1 +I W 1. So, the first step to the next consistent
layer environment is achieved. Now we restrict the transformation T0

r=⇒ T1

to the transformations tm0
rm=⇒ tm1 for each team member m = 1, ..., n. Since

Maintaining Consistency in Layered Architectures of MANETs 393

the team members’ activities are represented by activity arrows, the rules have
to be compatible with arrows. The existence of activity rules ensures that for
each team member the rule r = (L ← K → R) is restricted to an activity
rule rm = (Lm ← Km → Rm), where Km has to be the pullback (roughly an
intersection) of Lm and K as well as the pullback of Rm and K.

Moreover, each activity rule rm has to be the reduction of the corresponding
rule r to that part being relevant for the team member m. The conformance of
activity rules and team member nets means that Lm is additionally the pullback
of tm0 and L, and the application of an activity rule rm to a team member net

tm0 yields the transformation tm0
rm=⇒ tm1 .

Then we can state our first main result, that provides the conditions for
stepwise consistency maintenance.

I

�����
��

��
���

����
��

��
��

��

M0

�����
��

���
�

rM

��

(PO) W 0

����
���

���
�

pg0�� W0

rW

��

T0

t10

α1
0��

�����

r1

��

t20

α2
0

��

r2

��

t30

α3
0��

�����

r3

��
M1 t11 t21 t31 W1

Fig. 8. State after some trans-
formations

I

		��
��

��

		
		

		

��

M0

��

rM

��

W 0

��
��

��

pg0 ��

rW

��
(1)

W0

rW

��
M1

��

T0

r

W 1
pg1 ��

W1

tm0

αm
0

��

rm
��

tm1
αm

1��
T1

Fig. 9. A new consistent layer
environment for m = 1, 2, 3

Theorem 1 (Stepwise Consistency Maintenance)
Given a consistent layer environment T0 = M0 +I W 0 with the place gluing

W 0
pg0→ W0 and the activity arrows tm0

αm
0→ T0 for each member m = 1, ..., n, then

the transformations W0
rW

=⇒ W1, M0
rM

=⇒ M1 and the transformations tm0
rm=⇒ tm1

yield again a consistent layer environment T1 = M1 +I W 1 with the place gluing

W 1
pg1→ W1 and the activity arrows tm1

αm
1→ T1 for each m, provided the layer

consistency conditions hold:

1. compatibility with place refinement, i.e. the rule rW is compatible with the
morphism pg0,

2. preservation of the interface I, i.e. the application of the rules rW and rM

is independent of I,
3. existence of activity rules, i.e. for each m there are activity rules rm over

the parallel rule r = rW + rM and

394 J. Padberg et al.

4. conformance of activity rules and team member nets, i.e. tm0
rm=⇒ tm1 is

compatible with T0
r=⇒ T1.

Proof. It is shown in [4] that given the four layer consistency conditions above,
the properties for a consistent layer environment are fulfilled: existence of place
gluing morphism, compatibility of parallel rule application and gluing of W and
M , and existence of activity arrows for each team member net.

Example 2. Considering the example in Section 2, outlined in Fig. 8 we have the
following situation: The rule rphoto is compatible with place refinement because
it preserves all involved places. For the same reason, the rules rphoto and rfollow

are independent of the interface given by the overlapping of the workflow W 0
and the mobility net M0 and we obtain the parallel rule r consisting of both
rphoto and rfollow .

In a next step we focus on the rule rm2 in Fig. 5(b) that is compatible on the
one hand with the parallel rule r, i.e. the reduction to those activities of rule r
being relevant for team member 2 is equivalent to rule rm2; on the other hand
the transformation t30

rm2=⇒ t31 is compatible with the transformation T0
r=⇒ T1,

because there is a corresponding inclusion of the resulting token net t31 into
the teamwork net T1. Thus, we have the pushout T1 = M1 +I W 1 and the
construction of the activity rule for each team member yields the activity arrows

tm1
αm

1→ T1. So, we obtain the consistent layer environment depicted in Fig 9, where
rW = rphoto and rM = rfollow .

If we allow transformation sequences instead of transformation steps in Theo-
rem 1 we may obtain inconsistent states. For recovery of consistency we need
additional conditions. At the different layers rule application need to be checked
with respect to the last known consistent state, because there cannot be made
assumptions on the actual state of the layers. Technically this can be achieved
using parallel independent rules, where the independence is considered with re-
spect to the last known consistent state. The subsequent corollary states that
restoring consistency under these conditions is achieved using Theorem 1 twice.

Corollary 1 (Restoring Consistency). Given a consistent layer environ-

ment, shortly (tm0
αm

0→ T0 = M0 +I W 0
pg0→ W0), and transformation sequences

M0
∗=⇒ MnM via rM

i and W0
∗=⇒ WnW via rW

j and the transformation steps

tm0
rm=⇒ tm1 leading to a possibly inconsistent state (see Fig. 10). It is possible to

get an intermediate consistent layer environment (tm1
αm

1→ T1 = M +I W
pg→ W)

and a next consistent layer environment tm2
αm

2→ T2 = MnM +I WnW

pgnW→ WnW

(see Fig. 11) if the following conditions hold:

1. The transformation sequence M0
∗=⇒ MnM can be decomposed, such that

(M0
∗=⇒ MnM) = (M0

rM

=⇒ M
r̄M

=⇒ MnM) for suitable rules rM and r̄M .
2. The transformation sequence W0

∗=⇒ WnW can be decomposed, such that

(W0
∗=⇒ WnW) = (W0

rW

=⇒ W
r̄W

=⇒ WnW) for suitable rules rW and r̄W .

Maintaining Consistency in Layered Architectures of MANETs 395

3. The layer consistency conditions in Theorem 1 hold for (rW , rM) with rm.
4. There exist transformation steps tm1

r̄m=⇒ tm2 , such that the layer consistency
conditions in Theorem 1 hold for (r̄W , r̄M) with r̄m.

I

		�
��

��
�

����
��

��
�

M0

		

∗

��

W 0

��
��

��

pg0 �� W0

∗

��

T0

tm0

αm
0

��

rm
��

MnM
tm1 WnW

Fig. 10. Possibly inconsistent
state

M0

rM

��

∗

��

I

���������

�����
���

� W0

rW

��

∗

M

��

r̄M

��

W

�����
��

��

pg ��

r̄W

��

W

r̄W

��

T1

tm1

αm
1

��

r̄m
��

MnM

		���
��

�
tm2
αm

2
��

WnW

pgnW ��

����
��

��
WnW

T2

Fig. 11. Restoring the next consistent layer
environment

4.3 Maintaining Consistency

The notions and results we have introduced above concern the fundamental un-
derstanding of consistency in manets. As mentioned in the introduction other
notions of consistency are possible and desirable. The aho net model given in
Fig. 6(b) merely presents the rough structure but abstracts especially from the
details of the firing conditions. The exact formulation of the firing conditions
models the way the rules are applied in the different layers and constitutes the
way consistency is dealt with. The discussion below abstracts from realization
issues, as e.g. the complexity of the task to find morphisms between nets. Con-
sidering the possibilities discussed in the introduction we have:

– Checking consistency: The aho net in Fig. 6(b) allows the application of
arbitrary rules and it can be checked whether a certain state of an aho net
model for manets is a consistent layer environment. There need to be the
fixed interface I, the token nets M and W on the places Mobility Net and
Workflow, respectively, and the token nets tm for each team member m on
the place Team Member Nets, so that there are nets T and W , so that
there is a place gluing morphism W → W , T is the gluing of M and W along

I, and there are m activity arrows tm
αm

→ T .
– Guaranteed consistency: Theorem 1 ensures transformations so that each

state is consistent. Then the aho net in Fig. 6(b) may allow only the ap-
plication of rules that satisfy these conditions. Moreover, the parallel firing of

396 J. Padberg et al.

the transitions in the different layers has to be ensured to have consistency
in each state.

– Backtracking: Since all rules are symmetric (as one of the characteristics of
the DPO approach) the inverse rules can be applied in inverse order. Then the
aho net in Fig. 6(b) may allow the application of arbitrary rules, but requires a
storage of the transformations. Then an explicit backtracking can be achieved
by firing the transitions in the aho net but using only the inverse rules.

– Restoring consistency: Corollary 1 gives conditions for restoring consistency.
Then the aho net in Fig. 6(b) may allow only rule application which satisfy
these conditions. An explicit restoration is possible using the transformations
constructed in the corollary. Note that here we merely treat transformation
sequences for the mobility and the workflow layer. Restoring consistency
after transformation sequences at theteam layer is very closely related to the
question of team work consistency and hence not treated here (see Section 5
for a short discussion).

5 Conclusion

The use of a layered architecture for modeling workflows in manets has the ad-
vantage of separating different views with different granularity, but immediately
rises the question of consistency. In this paper, we have presented the notion
of layer consistent environment stating that the views in the workflow layer,
the mobility layer and the team layer fit together. Since the main modeling ad-
vantage of aho nets is the possibility to model net transformations we have
introduced maintenance means for the aho net for workflows in manets that
take changes modeled by net transformation into account.

Related work on distribution of workflows in a possibly mobile setting can be
found e.g. in [15, 3, 10] where a unique workflow is divided on the one hand in
different autonomous workflows and on the other hand the resulting workflows
are adapted by using inheritance resp. graph rules. In contrast we present a lay-
ered architecture, where a global workflow and its transformation are separated
into three different parts, each of them relevant for a specific aspect of workflows
in manets.

In this paper we present the first results of a line of research3 concerning formal
modeling and analysis of manets. So, there is a large amount of most interesting
and relevant open questions directly related to the work presented here. The
behavior of token nets has been treated in previous papers [5] and has been
excluded here deliberately. Nets in different layers have their own behavior that
is executed by firing the corresponding transitions in the aho net (see Fig. 6(b)).
This directly leads to a challenging consistency issue, namely how the individual
processes relate to each other. A solution would be to use the theory for open nets
[2]. Other relevant notions of consistency concern e.g. the consistency between
each team member’s activities and the complete team work. It should be ensured
3 The research project Formal modeling and analysis of flexible processes in mobile

ad-hoc networks (forMAlNET) of the German research Council.

Maintaining Consistency in Layered Architectures of MANETs 397

that the team members’ activities together cover the complete team work. Again,
team consistency has to be maintained during transformations in the different
layers. Especially in the area of workflow modeling, properties like safety and
liveness are of importance. In [13, 11] inheritance preserving rules and property
preserving rules, respectively, are formalized, so that restructuring of workflows
preserves properties. Thus, another interesting aspect of future work is to study
an integration of preserving rules into the aho net in Fig. 6(b).

We plan to develop a tool for our approach. For the application of net transfor-
mation rules, this tool will provide an export to AGG [1], a graph transformation
engine as well as a tool for the analysis of graph transformation properties like
termination and rule independence. Furthermore, the token net properties could
be analyzed using the Petri Net Kernel [9], a tool infrastructure for Petri nets
different net classes.

References

1. AGG Homepage. http://tfs.cs.tu-berlin.de/agg.
2. P. Baldan, A. Corradini, H. Ehrig, and R. Heckel. Compositional Semantics of

Open Petri Nets Based on Deterministic Processes. MSCS, 15(1):1–35, 2005.
3. L. Baresi, A. Maurino, and S. Modafferi. Workflow partitioning in mobile infor-

mation systems. volume 158 of IFIP International Federation for Information
Processing, pages 93–106, 2005.

4. E. Biermann, T. Modica, and K. Hoffmann. Categorical Foundation for Layer
Consistency in AHO-Net Models Supporting Workflow Management in MANETs.
Technical Report 2006/13, TU Berlin, Fak. IV, 2006.

5. P. Bottoni, F. De Rosa, K. Hoffmann, and M. Mecella. Applying Algebraic Ap-
proaches for Modeling Workflows and their Transformations in Mobile Networks.
MIS, 2(1):51–76, 2006.

6. F. De Rosa, A. Malizia, and M. Mecella. Disconnection Prediction in Mobile Ad hoc
Networks for Supporting Cooperative Work. IEEE Pervasive Comp., 4(3):62–70,
2005.

7. H. Ehrig and J. Padberg. Graph Grammars and Petri Net Transformations. volume
3098 of LNCS, pages 496–536. Springer, 2004.

8. K. Hoffmann, T. Mossakowski, and H. Ehrig. High-Level Nets with Nets and Rules
as Tokens. volume 3536 of LNCS, pages 268–288. Springer, 2005.

9. E. Kindler and M. Weber. The Petri Net Kernel - An Infrastructure for Building
Petri Net Tools. Software Tools for Technology Transfer, 3(4):486–497, 2001.

10. A. Maurino and S. Modafferi. Partitioning Rules for Orchestrating Mobile Infor-
mation Systems. Personal and Ubiquitous Computing, 9(5):291–300, 2005.

11. J. Padberg and M. Urbasek. Rule-Based Refinement of Petri Nets: A Survey.
volume 2472 of LNCS, pages 161–196. Springer, 2003.

12. G. Rozenberg. Handbook of Graph Grammars and Computing by Graph Transfor-
mations, Volume 1: Foundations. World Scientific, 1997.

13. W. M. P. van der Aalst and T. Basten. Inheritance of Workflows: An Approach to
Tackling Problems Related to Change. TCS, 270(1-2):125–203, 2002.

14. W. M. P. van der Aalst and K. van Hee. Workflow Management: Models, Methods,
and Systems. MIT Press, 2002.

15. W. M. P. van der Aalst and M. Weske. The P2P Approach to Interorganizational
Workflows. volume 2068 of LNCS, pages 140–156. Springer, 2001.

http://tfs.cs.tu-berlin.de/agg

Towards Normal Design for Safety-Critical

Systems

Derek Mannering1, Jon G. Hall2, and Lucia Rapanotti2

1 General Dynamics UK Limited
2 Centre for Research in Computing, The Open University

Abstract. Normal design is, essentially, when an engineer knows that
the design they are working on will work. Routine ‘traditional’ engi-
neering works through normal design. Software engineering has more
often been assessed as being closer to radical design, i.e., repeated inno-
vation. One of the aims of the Problem Oriented Software Engineering
framework (POSE) is to provide a foundation for software engineering to
be considered an application of normal design. To achieve this software
engineering must mesh with traditional, normal forms of engineering,
such as aeronautical engineering. The POSE approach for normalising
software development, from early requirements through to code (and
beyond), is to provide a structure within which the results of different
development activities can be recorded, combined and reconciled. The
approach elaborates, transforms and analyses the project requirements,
reasons about the effect of (partially detailed) candidate architectures,
and audits design rationale through iterative development, to produce
a justified (where warranted) fit-for-purpose solution. In this paper we
show how POSE supports the development task of a safety-critical sys-
tem. A normal ‘pattern of development’ for software safety under POSE
is proposed and validated through its application to an industrial case
study.

1 Introduction

Vincenti ([1]) defines ‘normal design’ as what the engineer is engaged in when
s/he knows from the outset

“how the device in question works, what are its customary features, and
that, if properly designed along such lines, it has a good likelihood of
accomplishing the desired task.”

Much of the routine design encountered in traditional engineering disciplines
works ‘normally’. Some have recently observed that software engineering does
not: Maibaum [2] states that

“SE ignores the principles of engineering design and almost always adopts
radical design methods, to its detriment.”

M.B. Dwyer and A. Lopes (Eds.): FASE 2007, LNCS 4422, pp. 398–411, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Towards Normal Design for Safety-Critical Systems 399

Jackson [3] states that

“Though less conspicuous than radical design, normal design makes up
by far the bulk of day-to-day engineering enterprise. Unfortunately, this
is not true of software engineering.”

Through regulation, standardisation and its co-location with traditional engi-
neering disciplines, safety-critical software intensive systems engineering may be
tending to normality. This view has something to recommend it: typically, indus-
trial standards and practices require integration with other normal engineering
processes.

Vincenti [1] characterises normal design processes as: (a) relying on engineer-
ing judgement in the searching of past experience; (b) allowing the conceptual
incorporation of the novel features that come to mind in solving a problem;
and (c) allowing the “mental winnowing of the conceived variations” to pick out
those most likely to work.

In a previous case study [4], we made a record of a current industrial safety-
critical software intensive design process, using the Problem Oriented Software
Engineering (POSE) framework [5]. Working from this record, the goal of this
paper is to show how it might reflect Vincenti’s three characteristics, and so
be called ‘normal’. To do this, we apply the record in the design of a different,
functionally unrelated avionics system component and find that the record is
a good fit to the needs of safety-critical development and consider this to be
evidence that—to some limited extent—POSE offers an approach to normal
design for software engineering.

The paper is organised as follows: background and related work are presented
in Section 2. The basics of the POSE framework are described in Section 3.
Section 4 demonstrates the use of POSE on a case study involving the develop-
ment of requirements and high level architecture for a component of an aircraft
defensive aids system. Section 5 contains a discussion and conclusions.

2 Background and Related Work

POSE is an extension and generalisation of Jackson’s Problem Frame approach
[6]. Problem Frames attempt to keep the focus of the software engineer on de-
veloping their understanding of the problem to be solved, rather than on a
(premature) move to solution of a poorly understood problem. Problem Frames
make certain fundamental assumptions: primary is the separation of descriptions
of what is given—the indicative parts of a problem—from what is required—the
optative parts of a problem. Originally confined to Requirements Engineering,
the influence of Problem Frames has spread to the fields of domain modelling,
business process modelling, software architectures and early design—see [7,8,9]
for collections of recent work.

The case study work presented in this paper is based on a multi-level safety
analysis process typical of many industries. For example, commercial airborne
systems are governed by ARP4761 [10]. ARP4761 defines a process incorporating
Aircraft FHA (Functional Hazard Analysis), followed by System FHA, followed

400 D. Mannering, J.G. Hall, and L. Rapanotti

by PSSA (Preliminary System Safety Assessment, which analyses the proposed
architecture). This paper is concerned with the latter, PSSA, but uses PSA
(Preliminary Safety Analysis, a combination of hazard identification and pre-
liminary hazard analysis as required by the safety standards) in place of PSSA.
In this paper requirements follow the fundamental clarification work of Jackson
[20] and Parnas [12] which distinguishes between the given domain properties of
the environment and the desired behaviour covered by the requirements. This
work also distinguishes between requirements that are presented in terms of the
stake-holder(s) and the specification of the solution which is formulated in terms
of objects manipulated by software [13]. Therefore there is a large semantic di-
vide between the system level requirements and the specification of the machine
solution. One of the reasons for applying POSE is that it bridges the divide by
transforming system level requirements into requirements that apply directly to
the solution.

The POSE notion of problem used in this work fits well with the Parnas 4-
Variable model. This has been used by Parnas et al. as part of a table driven
approach [12], which is particularly well suited to defining embedded critical ap-
plications as shown by its use in SCR [14] and the RSML methods. The RSML
work led to the SpecTRM [15] methods, which form part of a human centred,
safety-driven process which is supported by an artefact called an Intent specifica-
tion [16]. The work in this paper is located in the area of the second-level System
Design Principles of the Intent specification, and thus may be complementary
to the third, Blackbox level provided by SpecTRM.

The work of Anderson, de Lemos, and Saeed [17] share many of the principles
and concepts that have driven the development of this work. Particularly the
notions that safety is a system attribute and the need to apply a detailed safety
analysis to the requirements specifications. The main advantages of the POSE
approach over that work are: (a) it provides a framework for transforming re-
quirements; (b) it is rich in traceability; and (c) the models it uses are suitable
for safety analysis. The latter means it is efficient as there is no need to develop
‘new’ models (with all their attendant validation problems) to be able to perform
a PSA. Further, its support for traceability makes it particularly suited for use
with standards such as DS 00-56 [18] and the DO-178B [19] software guidelines.

3 Problem Oriented Software Engineering

POSE (see [5] for the formal definition) recognises that software engineering
processes by necessity include the identification and clarification of system re-
quirements, the understanding and structuring of the problem world, the struc-
turing and specification of a hardware/software machine that can ensure satisfac-
tion of the requirements in the problem world, and the construction of arguments,
convincing both to developers, customers, users and other stake-holders that the
developed system will provide the functionality and qualities that are needed.

Briefly, POSE generalises and extends fundamental ideas expressing the com-
pleteness of requirements engineering [20,21] and those of problem orientation
(see, for instance, [6]) to apply to software engineering.

Towards Normal Design for Safety-Critical Systems 401

In POSE, software development is viewed as solving a problem, the solution
(S , a labelled double-barred box in the figures that follow) being a machine—
that is, a program running in a computer—that will ensure satisfaction of the
requirement (R, the dotted oval in the figures) in the given problem world (W)
consisting of real-world domains (the labelled but otherwise undecorated boxes
in the figures). Typically the requirement concerns properties and behaviours
that are located in the problem world at some distance from its interface with
the machine. Like Problem Frames, POSE views the problem world W as a
collections of domains described in terms of their known, or indicative, proper-
ties, which interact through their sharing of phenomena, i.e, events, commands,
states, etc (that decorate the arcs in the figures).

POSE is defined as a Gentzen-style sequent calculus that allows problems to
be transformed into problems that are easier to solve, or that will lead to other
problems that are easier to solve. A set of transformation rule schema defined in
the calculus capture (atomic) discrete steps in development. Each requires a jus-
tification of application in order for the transformation to be solution preserving,
although justifications need not be formal. The combination of the justifications
is an argument that the solution is adequate as a solution to the original problem.
The interested reader should consult [5] for a fuller presentation of POSE.

POSE problem transformations transform problems in ways that respects
solution adequacy: simplifying only slightly, this means that a solution to a
transformed problem is also a solution to the original problem.

In the following section we will give highlights of a POSE development of an
avionics case study (more detail of the case study is given in [4]). For brevity, we
present the development in graphical form, using a Problem Frame-like notation
rather than the Gentzen-style presentation in [5]. Moreover, we present only the
relevant details of Problem Frames in this paper as and when they are needed; a
thorough presentation is beyond the scope of this paper, and can be found in [6].

3.1 A Problem-Oriented Approach to Safety Analysis

From previous work [4], we observe that POSE transformations can be combined
to form re-usable process templates or “patterns” [22] for safety-critical devel-
opment. One such process is shown in Fig. 1 as a UML activity diagram. The
activities in the figure include the following POSE transformations1:

Domain and Requirement Interpretation used to capture increasingknowl-
edge and detail in the context and requirement of the problem (used in activi-
ties 1 and 4);

Solution Expansion used to structure the solution according to a candidate
architecture (used in activity 2);

Problem Progression by which the problem is simplified by removing do-
mains (used in activity 3).

The choice point (labelled 5) in the figure is the PSA by which the candidate ar-
chitecture is assessed for suitability. The outcome of the PSA determines whether
1 Defined and described in [5,23,24].

402 D. Mannering, J.G. Hall, and L. Rapanotti

the current architecture is viable as the basis of a solution or whether backtrack-
ing in needed so that another candidate architecture can be chosen.

The pattern is iterative, ending when an architecture suitable for solution
development is found. This process is iterative in that design choices, through
the choice of candidate architecture, influence requirements, and vice versa.

As we shall see, POSE allows the capture of many important other artefacts of
the process, including a record of the choices that have been made, the rationale
for the revision of requirements statements.

Domain &

Requirement

Interpretation

Solution

Interpretation &

Expansion

Problem Progression

[PSA ok]

[not PSA ok]

start end

Requirement

Inerpretation

1

2 3 4

5

Fig. 1. POSE Safety Pattern

4 The Case Study

The POSE pattern emerged from the realisation that PSA feasibility checks can
identify the inadequacy of the architecture early in a development, and avoid
the cost associated with rework. The case study from which it was derived and
that of this paper are real developments, underdone by the first author, based
on systems flying in real aircraft. The case studies are cut-down only in the
sense that some detail has been removed for brevity, and they retain all essential
complexity. The POSE pattern was applied (retrospectively) in the context of
the first case study to confirm that architecture inadequacy could be identified
earlier in development (and, perhaps, therefore result in cost savings). In this
paper, we use the POSE pattern to guide a safety critical development process
capable of satisfying the provisions of DS 00-56 [18].

The case study concerns the development of the Decoy Controller (DC) com-
ponent of a defensive aids system on an aircraft, as shown in Fig. 2. The DC ’s
role is to control the release of decoy flares providing defence against incom-
ing missile attack. The DC interfaces with the Defence System (DS) computer,
which is responsible for controlling and orchestrating all the defensive aids on
the aircraft. The DS and other domains (see Fig. 2) already exist (and so appear
as undecorated boxes in the figure).

As is common practice in the industry, we will assumes that an aircraft level
safety analysis has been completed with safety requirements being allocated to
the main aircraft systems, including the defensive aids system. This analysis

Towards Normal Design for Safety-Critical Systems 403

Defence
System (DS)

Dispenser
Unit (DU)

Pilot

Aircraft
Status

R

D
C!{

fir
e,

se
l}

DS!{con}
AS!{air}

SPS!{out}

P!{ok}

{fire, sel}

{con}

{air}

{out}

{ok}

Safety Pin
Status (SPS)

DC

Fig. 2. The DC Problem (PInitial)

has allocated requirements to the defensive aids sub-system, including the DC :
in fact, there are two safety hazards allocated to the DC, concerned with the
inadvertent firing of the decoy flares, as follows:

H1. Inadvertent firing of decoy flare on ground. Safety Target: safety critical,
10−7 fpfh2; and

H2. Inadvertent firing of decoy flare in air. Safety Target: safety critical, 10−7

fpfh.

These hazards have both systematic (safety related) and probabilistic compo-
nents. To counter these hazards, the architectural design of the overall defensive
aids system introduces a number of safety interlocks as input to the DC to pro-
vide safety protection. These are: an input from the pilot indicating whether the
release should be allowed; an input indicating whether the aircraft is in the air;
and an input indicating whether the safety pin, present when the aircraft is on
the ground, is in place. The expected behaviour is that flare dispensing should
be inhibited if any of the following conditions hold: a) the pilot disallows flares;
b) the aircraft is not in the air; or c) the safety pin has not been removed. It
transpires that these interlocks provide extra assurance for hazard H1 but not
for H2. Therefore, the safety task is to demonstrate that H2 can be satisfied,
with the knowledge that if H2 can be satisfied, then so can H1.

4.1 The process

The first activity in the POSE pattern—“Domain and Requirement Interpre-
tation and Expansion,” (labelled 1 in Fig. 1)—details the problem context and
requirement. This works by identification of the major system components, and
the description of their phenomena and their behaviour. The initial problem rep-
resentation is problem PInitial shown in Fig. 2, with interface phenomena given
in Table 1. Here we summarise the problems components.

The decoy flare DU (Dispenser Unit) has a number of different flare types
which can be selected by control messages from the DC—the chosen type being
2 fpfh is ‘failures per flight hour.’

404 D. Mannering, J.G. Hall, and L. Rapanotti

communicated in the sel phenomena (DC !{fire, sel}3, in the figure). The DC is
told which flare type to select by phenomena controlled by the Defence System
(DS !{con})4.

The selected flares are released by the fire command (in DC !{fire, sel}) from
the DC to the DU . The Pilot domain inputs the allow release (P !{ok}) to the
DC . The Aircraft Status domain inputs the in air status (AS !{air}) to the DC .
The SPS provides the safety pin status (out) to the DC .

Table 1. Phenomena of DC Problem

Phenomenon Designation

fire Command to release the selected flare

sel Indicates which flare type should be selected

out Pin status; out = yes indicates pin has been removed

con Contains command to fire and selected flare type

air Aircraft status; air = yes indicates aircraft is in the air

ok Pilot intention; ok = yes indicates allow release

The customer requirement for the DC can be expressed as follows:

Ra. The DS shall command which flare is selected using a field in its con mes-
sage issued to the DC. The DC shall obtain the selected flare information
from this field in the con message, and use it in its sel message to the DU
to control the flare selection in the DU.

Rb. The DS shall command the DC to issue a fire command in its con message.
This shall be the only way in which a flare can be released.

Rc. The DC shall cause a flare to be released by issuing a fire command to the
DU, which will fire the selected flare.

Rd. The DC shall only issue a fire command if its interlocks are satisfied, i.e.
aircraft is in air (air = yes), SPS safety pin has been removed (out = yes)
and Pilot has issued an allow a release command (ok = yes).

As well as Ra to Rd, the DC must also satisfy its safety targets set by the
aircraft system level safety analysis. Recognising this, we add safety requirement
RS to R:

RS. The DC shall mitigate H1 & H2 (Target: safety critical 10−7 fpfh).

Therefore, the overall requirement is R = Ra & Rb & Rc & Rd & RS, and
is indicated in the dotted ellipse in Fig. 2. A complete statement of R should
also include requirements that cover space, weight, environmental performance,
interfaces and so on, but these are beyond the scope of this initial work.

3 That fire and sel are controlled by DC is indicated by the ! on the arc.
4 Note, flare selection and timing are not safety related, it is only applying an inad-

vertent fire command to any flare that is regarded as a safety issue.

Towards Normal Design for Safety-Critical Systems 405

4.2 A DC Candidate Architecture

The next POSE pattern activity—“Solution Interpretation and Expansion”, la-
belled 2 in Fig. 1—introduces the candidate architecture for DC shown in Fig. 3.
The DC architecture consists of three components, Safety Controller (SC), De-
coy Micro-controller (DM, shown in Fig. 3(b)) and Interlock Input (II), as shown
in Fig. 3(a). This choice of architecture is typical of industrial safety design
strategies that attempt to minimise the number and extent of the safety related
functions, localising them to simple, distinct blocks. These strategies justify the
candidature of the architecture, and are recorded, under POSE, as part of the
justification for the transformations involved.

SC!{fire}

DS!{con}

AS!{air}
SPS
!{ou

t}

P!{ok}

DM!{sel}
uP MB DS!{con}

DM!{sel}

DM!{fire?}

II

DM

II!{int}

D
M
!{
fir
e?
}DC

SC

Fig. 3. (a) The DC Candidate Architecture and (b) DM Internal Architecture

Briefly, component II collects together the interlock inputs and passes their
status to SC (int). Component DM is a microcontroller used to decode messages
from the Defence System (con), and when appropriate to issue the fire command
request to the SC (via fire?). The Message Buffer (MB, in Fig. 3(b)) holds the
received control message con from the DS. The micro-controller uP decodes this
message to extract: a) the fire command request status (fire?) sent to the SC,
and b) the selected flare type (sel) sent to the DU. The SC, the component to be
designed, is intended as a simple block that handles the safety critical elements
of the interlocking. SC is, therefore, expected to relate an active fire? request to
the DU (through phenomenon fire) if the interlocks are satisfied.

The introduction of the DC architecture affects the requirement R as terms
in DC are replaced by terms in DM, SC and II as appropriate. The result is a
new requirement statement

R’ = R’a & R’b & R’c & R’d & R’S

in which R’a is Ra with DC replaced by DM ; similarly for R’c and R’d,
mutandis mutatis. The most significant change occurs for R’b (changes in bold):

R’b. The DS shall command the DM to issue a fire? command in its con
message. The DM will request the SC to send the fire command.
This shall be the only way in which a flare can be released.

The result of the transformation step is problem PInterpreted shown in Fig. 4.

406 D. Mannering, J.G. Hall, and L. Rapanotti

Defence
System

DUF

Pilot

Aircraft
Status

R’
SC!{fire}

DS!{con}

AS!{air}

DU!{out}

P!{ok}

{fire,sel}

{con}

{ai
r}

{out}

{o
k}

II

DM

II!{int}

D
M
!{
fir
e?
}

DM!{sel}

DUS

SC

Fig. 4. Solution Interpretation of DC (problem PInterpreted)

4.3 Problem Simplification

Of course, this candidate architecture is not guaranteed to lead to a solution;
and we will use a PSA to determine whether the DC architecture can safely
be the basis of the DC. Performing a PSA on the problem shown in Fig. 4 is
an unnecessarily complex task that can be simplified by removing some of the
contextual domains. Domain removal is achieved in POSE through “Problem
Progression” (labelled 3 in Fig. 1), which simultaneously allows us to transform
the requirement R’ to apply directly to the safety controller, SC, used in the
simplified PSA.

For brevity, we show only the removal of the Pilot and the associated require-
ments transformation. To remove the Pilot we must alter the requirement so
that shared phenomena constrained by the Pilot ’s actions are recorded: in this
case, only that the release command (ok = yes) can occur5. In this case the
requirement is rewritten to include the assumption A1 “the input ok=yes” as
well as including “II observes the pilot input ok = yes”. Given this rewriting of
the requirement, the Pilot domain can be removed.

Transforming R’ in this way yields a new requirement statement, that we will
call R1, in which R’a becomes R1a, R’b becomes R1b, R’c becomes R1c and
R’S becomes R1S without change. R’d becomes (changes shown in bold):

R1d. The SC shall only issue a fire command if its interlocks are satisfied, i.e.
aircraft is in air (air = yes), the SPS safety pin has been removed (out =
yes) and II observes pilot input ok = yes.

There are a number of domain removals (and assumptions to the require-
ment) that follow which, for brevity, we do not describe fully6; they result in the
problem shown in Fig. 5 which is a better basis for the PSA.

5 Because the Pilot is an autonomous agent. If we fail to make this assumption, the
problem becomes trivial.

6 See [25] for more details.

Towards Normal Design for Safety-Critical Systems 407

DU R4
SC!{fire} {fire,sel}

{fire?, sel}

{air, ok, out}
II

DM

II!{int}

DM
!{f

ire
?}

DM!{sel}

SC

Fig. 5. The Reduced SC problem (problem PReduced)

4.4 Formalising the Requirements

The next activity—“Requirements Interpretation” in Fig. 1—is the formalisation
of R4 for input into the PSA. One must ensure that the justification of the
transformation properly relates informal and form requirements, in this case a
simple task. The non-safety aspects of the requirement can be formalised into a
Parnas Table-like form, shown in Table 2, with the safety targets and assumption
appended as shown.

Table 2. Formalised Requirement R4, prior to PSA

Monitor Condition Output Constraint

air = yes ∧ out = yes ∧ ok = yes ∧ fire? ∧ sel fire ∧ sel
¬(air = yes ∧ out = yes ∧ ok = yes) ∧ fire? ∧ sel ¬fire ∧ sel

¬(air = yes ∧ out = yes ∧ ok = yes) ∧ ¬fire? ∧ sel ¬fire ∧ sel
R4S: H1 & H2 safety targets satisfied and Assumptions A1 to A4 are valid

4.5 Preliminary Safety Analysis (PSA)

Many techniques can be applied to perform a PSA. The work of this case study
uses a combination of mathematical proof, Functional Failure Analysis (FFA)
[10] and functional Fault Tree Analysis (FTA) [26].

The goal of a PSA is to: (a) confirm any relevant hazards allocated by the
system level hazard analysis; (b) identify if further hazards need to be added to
the list; and (c) analyse an architecture to validate that it can satisfy the safety
targets associated with the identified relevant hazards. The solution preserving
nature of problem transformation under POSE means that any solution of the
progressed PReduced problem will be a solution to the PInitial problem7. Simply,
if the PSA fails, there is no feasible solution to PReduced .

The structuring provided by the POSE framework and the phased develop-
ment means that it is relatively straightforward to develop a formal Parnas table-
like requirement (as in Table 2) that applies directly to the solution machine.

7 We do not, of course, yet know that either has a solution; it is also worth noting
that PInitial may have a solution without PReduced having one.

408 D. Mannering, J.G. Hall, and L. Rapanotti

Table 3. FFA Summary for SC

Id. Failure Mode Effect Hazard

F1 No fire? signal Flare release inhibited No

F2 fire? signal at wrong time Inadvertent flare release Yes

F3 fire? signal when not required Inadvertent flare release Yes

F4 Intermittent fire? signal Could inhibit flare release No

F5 Continuous fire? signal Inadvertent flare release Yes

Simple logic proofs demonstrate that R4 (Table 2) has the required functional
properties. The remaining feasibility check at this level is to demonstrate that
the behaviour of the design blocks (SC, DM, and II in Fig. 5) can satisfy R4S.

The FFA can be used to identify any additional relevant hazards and, more
likely, it will identify credible failure modes that result in an existing hazard.
The FFA should be applied to each architectural component in turn. Functional
FTA can then be used to analyse if the events identified by the FFA satisfy
the targets contained in R4S. There is insufficient space to present the full
PSA, and so we summarise only its main elements to demonstrate the process
followed. The significant results from applying FFA to the DM are shown in
Table 3.

The functional FTA requires a suitable model and the architecture of Fig. 3(b)
has an appropriate form. A functional FTA can be applied to this block diagram,
using the three FFA problem cases (i.e. those with ‘Yes’ in the Hazard column)
F2, F3 and F5 as top events. The FTA indicates that a failure in uP (systematic
or probabilistic) could result in the fire? failing on. The Pilot allow input provides
some mitigation, but as soon as this is set (ok = yes) a flare will be released,
which is undesirable behaviour. Making the fire? signal integrity safety related
(not safety critical) would provide sufficient integrity, but this is contrary to the
design aim of making the DM non-safety involved.

The conclusion of the PSA is, then, that the selected DM architecture is not
a suitable basis for the design—no adequate solution can be derived from its
parametrisation. Choices at this point include: a) designing the DM to be safety
related, or b) re-structuring the DM architecture to partition the safety and non-
safety elements. The first option is undesirable due to the expense and long term
impact, i.e. timing and selection are not safety functions and are expected to be
fine-tuned to support different flare types. Making this safety-related would have
a detrimental impact on the affordability of the solution. The second option is
more appealing, and a second candidate architecture is shown in Fig. 6 in which
the simple safety functions (those associated with the fire? request) are routed
separately through MB and FPGA (a Field-Programmable Gate Array, [27,28]),
while the other complex functionality is routed through MB and uP. This means
that the MB and FPGA, which have simple functionality, have to be designed to
a safety related standard, but this is still economic compared with the alternative
of making the uP safety related.

Towards Normal Design for Safety-Critical Systems 409

The failed PSA leads to iteration of the process. We note, only the information
associated with the revised architecture is new, the remainder of the performed
transformations can be carried across from the first iteration, simplifying the
second (and any subsequent) iteration. The second iteration of the POSE pat-
tern will be similar to the first. Indeed, the revised DM of Fig. 6 has the same
interfaces as that of Fig. 3(b), hence the requirement resulting from the sec-
ond set of reductions is the same as that obtained from the first, that shown in
Table 2. Although we do not show it, the PSA applied to this revised architec-
ture shows that the modified architecture satisfies R4S; the revised architecture
model obtained from the second run through of the POSE pattern can form a
suitable basis for the remainder of the development.

uP

MB DS!{con}

DM!{sel}

DM!{fire?} FPGA

Fig. 6. Revised Candidate Architecture for DM

There is still work to do—we do not have SC as yet; a fresh application of
the process would be possible at this point. This concludes our description of
the controller synthesis.

5 Discussion and Conclusions

We have illustrated the synthesis of a controller for a safety-critical system under
POSE. We have had, from necessity, to omit many details of the process, but we
hope that some of the complexity of the development has remained, in particular,
those showing how POSE structures and guides development of the product
whilst recording the related justifications and, hence, the adequacy argument
for it.

The process by which the synthesis was achieved was captured and re-used
from a previous unrelated safety-critical development. The process appears to
exhibit Vincenti’s three characteristics, namely:

– The safety analysis of Section 4.5 demonstrated that failures in the DM
domain could result in the safety targets not being satisfied. This is a form
of “winnowing of the conceived variation” in that choices are restricted by
the need to satisfy extra constraints, in this the safety analysis.

– A revised (but not new) architecture was developed, by which“engineering
judgement was used to search past experience”;

– And this was used to mitigate failure; novel features “that come to mind”
were incorporated.

410 D. Mannering, J.G. Hall, and L. Rapanotti

We might therefore conclude that the study provides early validation that
the pattern may be suitable as the front-end of an integrated safety critical de-
velopment approach for embedded applications, hence supporting the goal of
extending the normal design concept to critical software. Of course, further and
more conclusive validation is still required and we are working closely with in-
dustrial partners to exercise the framework on further real-world safety critical
problems. A wider application of the pattern to other software engineering do-
mains is also under investigation.

The case-study as presented was cut-down to its most important, and complex,
aspects to fit within the page limit. Most of the routine detail was omitted, but
in its original form it was based directly on an industrial avionics example,
and from a conceptual viewpoint the POSE pattern worked well. However, as
size and complexity grow the desirability for tool support to handle the detail,
the more mundane tasks and keeping track of progress is greatly increased. Tool
support for POSE is ready to start development, based on an existing, successful
commercial tool for safety-critical analysis and assurance.

Acknowledgements

We are pleased to acknowledge the financial support of IBM, under the Eclipse
Innovation Grants. Thanks also go to our colleagues in the Centre for Research in
Computing and the Computing Department at The Open University, especially
Michael Jackson. The comments of the three anonymous reviewers have helped
in improving the paper greatly.

References

1. Vincenti, W.G.: What Engineers Know and How They Know It: Analytical Studies
from Aeronautical History. The Johns Hopkins University Press (1990)

2. Maibaum, T.: Mathematical foundations of software engineering: a roadmap. In:
ICSE 2000, King’s College, London (2000)

3. Jackson, M.: Problem frames and software engineering. Information and Software
Technology 47(14) (2005) 903–912

4. Mannering, D., Hall, J.G., Rapanotti, L.: Relating safety requirements and system
design through problem oriented software engineering. Technical Report 2006/11,
Open University, Dept. of Computing (2006)

5. Hall, J.G., Rapanotti, L., Jackson, M.A.: Problem oriented software engineering.
Technical Report 2006/10, Open University, Dept. of Computing (2006)

6. Jackson, M.A.: Problem Frames: Analyzing and Structuring Software Development
Problem. 1st edn. Addison-Wesley Publishing Company (2001)

7. Cox, K., Hall, J.G., Rapanotti, L., eds.: Proceedings of ICSE 1st International
Workshop on Applications and Advances of Problem Frames, IEEE CS Press (2004)

8. Cox, K., Hall, J.G., Rapanotti, L., eds.: Journal of Information and Software
Technology: Special issue on Problem Frames. Volume 47. Elsevier (November
2005)

Towards Normal Design for Safety-Critical Systems 411

9. Hall, J.G., Rapanotti, L., Cox, K., Jin, Z.: Proceedings of the 2nd International
Workshop on Advances and Applications of Problem Frames, ACM SIGSOFT
(2006)

10. SAE: ARP4761: Guidelines and methods for conducting the safety assessment
process on civil airborne systems and equipment. Technical report (December 1996)

11. Zave, P., Jackson, M.: Four dark corners of requirements engineering. ACM Trans-
actions on Software Engineering and Methodology VI(1) (1997) 1–30

12. Courtois, P.J., Parnas, D.L.: Documentation for safety critical software. In: 15th
International Conference on Software Engineering, Baltimore, USA (1997) 315–323

13. van Lamsweerde, A.: Requirements engineering in the year 00: A research per-
spective. In: ICSE’00, 22nd International Conference on Software Engineering,
Limerick (2000)

14. Bharadwaj, R., Heitmeyer, C.: Developing high assurance avionics systems with
the SCR requirements method. In: Proceedings. DASC. The 19th. Volume 1. (2000)
pages 1D1/1 –1D1/8

15. Leveson, N.G.: Completeness in formal specification language design for process-
control systems. Proceedings of the third workshop on Formal methods in software
practice 2000, Portland, Oregon. ACM Press (2000) 2000

16. Leveson, N.G.: Intent specifications: An approach to building human-centered spec-
ifications. IEEE Transactions on Software Engineering Vol. 26(1) (2000) 15–35

17. de Lemos, R., Saeed, A., Anderson, T.: On the integration of require-
ments analysis and safety analysis for safety-critical systems. Technical Report
http://citeseer.ist.psu.edu/536230.html, University of Newcastle upon Tyne (1998)

18. UK-MoD: Safety management requirements for defence systems part 1 require-
ments. Interim Defence Standard 00-56 Issue 3, MoD (17 December 2004)

19. RTCA/DO-178B: Software considerations in airborne systems and equipment cer-
tification. Technical report (December 1 1992)

20. Zave, P., Jackson, M.A.: Four dark corners of requirements engineering. ACM
Transactions on Software Engineering and Methodology 6(1) (1997) 1–30

21. Gunter, C.A., Gunter, E.L., Jackson, M., Zave, P.: A reference model for require-
ments and specifications. IEEE Software 17(3) (2000) 37–43

22. Coad, P.: Object oriented patterns. Communications of the ACM 35(9) (1992)
152–160

23. Rapanotti, L., Hall, J.G., Jackson, M.: Problem-oriented software engineering:
solving the package router control problem. Technical report 2006/07, Open Uni-
versity, Dept. of Computing (2006)

24. Rapanotti, L., Hall, J.G., Li, Z.: Deriving specifications from requirements through
problem reduction. 153(5) (October 2006) 183–210

25. Mannering, D., Hall, J.G., Rapanotti, L.: A problem-oriented approach to normal
design for safety-critical systems. Technical Report 2006/14, Centre for Research
in Computing (2006)

26. Vesely, W., Goldberg, F., Roberts, N., Haasl, D.: Fault Tree Handbook. Volume
NUREG-0492. U.S. Nuclear Regulatory Commission (1981)

27. Hilton, A.J., Townson, G., Hall, J.G.: FPGAs in critical hardware/software sys-
tems. In: FPGA 2003, Proceedings of the ACM/SIGDA International Symposium
on Field Programmable Gate Arrays. (2003) 244

28. Hilton, A., Hall, J.G.: Developing critical systems with PLD components. In
Margaria, T., Massink, M., eds.: FMICS ’05: Proceedings of the 10th international
workshop on Formal methods for industrial critical systems, New York, NY, USA,
ACM Press (2005) 72–79

M.B. Dwyer and A. Lopes (Eds.): FASE 2007, LNCS 4422, pp. 412–422, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Clustering-Based Approach for Tracing
Object-Oriented Design to Requirement

Xin Zhou1 and Hui Yu2

1 IBM China Research Lab, China
zhouxin@cn.ibm.com
2 Peking University, China

yuhui04@sei.pku.edu.cn

Abstract. Capturing the traceability relationship between software requirement
and design allows developers to check whether the design meets the
requirement and to analyze the impact of requirement changes on the design.
This paper presents an approach for identifying the classes in object-oriented
software design that realizes a given use case, which leverages ideas and
technologies from Information Retrieval (IR) and Text Clustering area. First,
we represent the use case and all classes as vectors in a vector space constructed
with the keywords coming from them. Then, the classes are clustered based on
their semantic relevance and the cluster most related to the use case is
identified. Finally, we supplement the raw cluster by analyzing structural
relationships among classes. We conduct an experiment by using this
clustering-based approach to a system – Resource Management Software. We
calculate and compare the precision and recall of our approach and non-
clustering approaches, and get promising results.

Keywords: Object-oriented software development, Requirement Traceability,
Use Case, Class, Clustering.

1 Introduction

Keeping the traceability between software requirements and other artifacts generated by
each software development phase is well recognized as significant in multiple areas,
including software maintenance, software evolving and software reuse [1][2]. Such
traceability can be obtained from two approaches: one is to record the tracing
relationships during the development duration by developers. The other one is to identify
the un-recorded tracing relationships by analyzing the requirements and the artifacts.

In current object-oriented software development, use case [3] is widely used to
model the user requirement, and class model [4] is the dominant means used to
describe the static aspect of software design that realizes requirement. If the
corresponding relationships between elements in class model and use cases are well
understood, the designers can more easily analyze how requirements have been
satisfied by their design, can more precisely locate to and modify the design elements
impacted by changing requirements, and so forth. Although designers can accurately
record and maintain such relationships while designing, they are usually reluctant to
do this due to the heavy overload brought to them.

 A Clustering-Based Approach for Tracing Object-Oriented Design to Requirement 413

The paper addresses the problem of object-oriented design to requirement
traceability by automatically identifying the potential tracing relationships. As the
designers only need to verify the generated potential tracing relationships, they will
not feel much troubled. Our approach leverages the ideas and technologies from
Information Retrieval (IR)[5][6] and Text Clustering[7][8] area. A premise of our
work is that system analyzers and designers use meaningful identifiers and
descriptions in use cases and class model so as to describe their semantic exactly.
According to the approach, the use case and the classes are represented as vectors in a
vector space constructed with the identifiers coming from them. Then, the semantic
relevance among class vectors is calculated, and those closely related classes
identified are grouped into clusters. The centroid vector of each cluster is generated
and its similarity with the use case vector is evaluated so that the cluster most closely
related to the use case is identified. Considering some classes might be missed by the
clustering process, we finally supplement some classes that have generalization or
association relationships to the selected cluster.

The following part of this paper is organized as below: we illustrate our tracing
approach in section 2. In section 3, we experiment the approach with a case. Related
works is introduced in section 4. Section 5 concludes and forecasts future works.

2 Approach Description

Given one use case UC and a set of classes {C1, C2, …, Cn}, the approach for
identifying the classes that realize UC out of the whole class set includes four major
steps. As shown in Figure 1, the first step is to extract keywords from the use case and
classes, use these keywords to construct a vector space and represent the use case and
each class as vectors in the vector space. This step is a prerequisite for further
clustering and matching. The second step is to build class clusters according to their

Fig. 1. Approach Overview

414 X. Zhou and H. Yu

semantic relevance since we believe that classes collaboratively realizing the feature
described by a use case should have closer semantic relevance. The third step is to
generate the centroid vector that summarizes and characterizes a cluster and evaluate
its similarity with the use case vector. The cluster with the highest similarity is the
post possible one that realizes such use case. As we might have missed some actually
relevant classes while constructing the cluster, in the final step we supplement the raw
cluster by analyzing generalization and association relationships among all classes.
We will introduce each step in detail in the following sub-sections.

2.1 Representing Use Case and Classes

Representing the use case and all classes in vector format is for the convenience of
further clustering and matching, which consists of three activities including keyword
extraction, vector space building and vector generation.

We take the names and description of the use case, classes, class attributes, and
class methods as the source to extract the keywords that implicate the use case’s and
classes’ semantics. The standard practice in information retrieval should be followed
while extracting keywords. Namely, only nouns and verbs are extracted and they
should be transformed to the original form (i.e. the single form of nouns and the
infinitive form of verbs). After the extraction, we can get two keyword sets: one set
includes all of the keywords from the use case, and the other set includes all of the
keywords from all classes.

An intuitive way for building the vector space is to use the keywords from the
union of use case keyword set and class keyword set to build the vector space. The
number of dimensions of the resulting vector space will be scores or even hundreds,
which causes large computational cost of clustering and matching. Considering that
we only care the common part of the use case’s semantic and the classes’ semantic
while conducting the clustering and matching, the keywords from the intersection of
use case keyword set and class keyword set are used instead to build the vector space.
This way reduces computational cost by decreasing the overall dimensions of the
vector space without losing useful information.

With the built vector space, representing the use case and classes as vectors is
simple. If the keyword on the x-th dimension of the vector space is one keyword of
the use case, then the x-th dimension of the use case’s vector is assigned as “1”,
otherwise is assigned as “0”. Similarly, the vector of each class can be generated.

2.2 Building Cluster

We believe that a use case is realized by a group of classes collaboratively and the
classes in a group have higher semantic relevance. So in this step, we group classes
into clusters according to their semantic relevance, and the resulting clusters will be
further processed in next step so that the one closest to the given use case can be
identified.

One straightforward approach for building cluster can be: firstly calculating the
semantic relevance between any two classes using the cosine of the angle between
their vectors, then creating a graph that takes all classes as its nodes and adding one

 A Clustering-Based Approach for Tracing Object-Oriented Design to Requirement 415

edge between two classes if the relevance value between them is larger than a given
threshold value, finally identifying all the complete sub-graphs that cannot be
contained by other complete sub-graphs. The classes in each identified complete sub-
graph compose a cluster. However, the exponential time complexity of finding
maximal complete sub-graph prevents the approach to be practical. With the
increasing graph size, the calculating may exhaust all computation resource.

In this paper, we modify the approach above by changing the relevance calculating
criterion and cluster creation method, which reduces the computation complexity of
clustering. We firstly choose a constant I (1≤ I ≤ N), which is the number of
dimensions that we will consider while calculating the class vector relevance. Given a

determined constant I, there are totally (I
NC) possible combinations of dimensions.

For each dimension combination {Dj1, Dj2, …, DjI} (1≤ j ≤ I
NC), all those classes,

whose vector has value ‘1’ on all these I dimensions, are grouped to one cluster. So

totally, we can get I
NC clusters. By merging the same clusters, and removing nested

clusters, the candidate class clusters are finally determined for further matching with
the given use case.

2.3 Matching Cluster to Use Case

In this step, the cluster that has the closest semantic relevance to the given use case
will be found out. We calculate the centroid of a cluster, which summarizes and
characterizes all classes in the cluster. So, the semantic relevance between all classes
in the cluster and the use case can be gotten by calculating the relevance between the
cluster centroid and the use case.

In our approach, we map each class and each use case onto a vector, and each
element of the vector corresponds to a key word extracted from the class and use case.
We use the simplest method to represent the vector, either 1 if the i-th key word
occurs in the class or use case, or 0 otherwise. This representation helps us simplify
the process of building cluster. But when we match cluster to use case, we have to
consider the frequency of a word in the use case. The frequency of the key word
reflects the importance of the word in representing the semantics of the use case.

We use a well known IR metric called tf-idf [9]. According to this metric, we
derive the vector element of cluster centroid from the term frequency tfi, and the
inverse use case frequency iufi (represented as idf in IR area). We use tfi to reflect
the importance of the i-th key word within a use case description; it is the ratio of the
number of the occurrences of the i-th key word to the total occurrences that all
keywords in the vector space appearing in use case description. And iufi is a global
weight that reflects the overall value of the i-th keyword as an indexing term for the
entire collection, and the inverse use case frequency iufi is defined as the ratio of total
number of use cases to the number of use cases containing the i-th key word. For
example, considering a very common word like “class”, it is likely to be contained in
most use case descriptions. It is not import in our retrieval process; sometimes it even
makes our retrieval result inaccurate. So a small value of global weight iuf should be
appropriate.

416 X. Zhou and H. Yu

Given {C1, C2…… Ck} are the classes in a cluster, and each Ci is represented by a
vector {ci1, ci2…… ciN}, the centroid G={g1, g2……gN} of the cluster can be calculated
following the formula given below:

1

1
log()

n

i i i ij
j

g tf iuf c
n =

= ∑ (1)

And we use a similar way to represent the query vector Q, the vector element qi in
Q is:

 *log()i i iq tf iuf= (2)

The semantic relevance between each cluster and the given use case is computed as
the cosine of the angle between the cluster centroid vector G and the query vector Q:

1

2 2

1 1

(,)

()* ()

N

i i
i

N N

i i
i i

g q
Revelance G Q

g q

=

= =

=
∑

∑ ∑
 (3)

The classes in the cluster with the highest relevance to the given use case are
regarded as the most probable realization of the use case.

2.4 Supplementing Cluster

Although we have generated the closest cluster, some actual relevant classes still
might be missed from the cluster. This is caused by several reasons. The first one is
that semantic information may be lost while keywords are extracted from natural
language sentences. The second reason is that description of some use cases or classes
may be not complete or accurate enough as expected. The third reason is that our
cluster building requires all classes in a cluster to be relevant to each other, which is a
strong precondition. Actually, there are some “common” classes in design, such as the
ones realizing database accessing, human-computer interaction, and so forth.
Although they actually contribute to the realization of some use cases, they might be
excluded from the cluster since its semantic relevance to the classes in the identified
cluster is very low. In a word, we might lose some potential relevant classes if no
extra supplement is conducted.

In order to make our approach generate more accurate result, we use relationships
in class diagram to supplement the raw cluster built. These relationships can help us
find classes missed due to the insufficiency of the semantic search algorithm, the
strong precondition of clustering approach, or lack of information in the use case
description. Three rules are followed while supplementing the raw cluster, as stated
below:

 If class A is in the raw cluster and class B is the super class of A, then B should
be added to the cluster.

 A Clustering-Based Approach for Tracing Object-Oriented Design to Requirement 417

 If class A is in the raw cluster and class B is a subordinate class of A, then B
should be added to the cluster.

 If class A is in the raw cluster and A has a unidirectional association to class B,
then B should be added to the cluster.

The major reason for supplementing cluster at the final step instead of performing
it before matching cluster to use case is that supplemented classes, especially the
common classes, might dilute the semantic correlation of the original cluster and then
cause imprecise cluster matching.

3 A Case Study

We use the approach introduced above to trace the design to requirement of
Resource Management Software developed by Electrical Engineering and Computer
Science Department of Milwaukee School of Engineering. This software schedules
and visualizes the availability of specific resources, like consultants, office spaces,
and equipment. The detailed description for each use case and the design is
provided by [10], which is the basis for our traceability analysis. Requirement of
the software is represented by 26 use cases, and the design consists of 45 classes
located in five major packages: View, Controller, Entity, Database and Util. In the
case study, we only deal with 11 use cases and 22 classes that closely relate to the
business logic.

We respectively follow our clustering-based approach and other existing approach
to identify the relative classes for each use case. Then, we carefully understand the
software’s pertinent documents and manually identify the relative classes for each use
case, which is used as the correct answer for comparing the results got by those
approaches. Two metrics, Precision and Recall, are used to quantitatively denote an
approach’s completeness and correctness. For each use case, precision is the ratio of
actual relevant classes retrieved a certain approach over all the relevant classes
regarded by this approach, and recall is calculated as the ratio of actual relevant
classes identified by a certain approach over the total actual relevant classes.

3.1 Experiment Clustering-Based Approach

We experiment our clustering-based approach by assigning the constant I mentioned
in sub-section 2.2 as 1 and 2 respectively. Table 1 illustrates the experiment result.
The first column lists all the use cases to be traced, the second and third columns list
the result of the approach with the constant I assigned as 1, and the fourth and fifth
columns list the result of the approach with the constant I assigned as 2. We can find
that if the constant I is assigned a higher value, the precision will increase while the
recall will decrease. That means we can balance the precision and recall by tuning the
value of the constant I. Usually, we prefer a higher recall value to higher precision
value, since we believe the time spent on discarding a non-relevant class will be lower
than time required for recovering a missed class.

418 X. Zhou and H. Yu

Table 1. Precision and recall of the clustering-based approach

Use Case
Clustering Method

(I = 1)
Clustering Method

(I = 2)

 Precision Recall Precision Recall

Add Client 66.67% 100.00% 80.00% 66.67%

Modify Client 60.00% 100.00% 80.00% 66.67%

Delete Client 85.71% 100.00% 80.00% 66.67%

Add Resource 75.00% 100.00% 100.00% 66.67%

Modify Resource 83.33% 100.00% 100.00% 10.00%

Delete Resource 83.33% 100.00% 100.00% 60.00%

Add Project 63.64% 100.00% 80.00% 57.14%

Modify Project 81.82% 100.00% 87.50% 77.78%

Delete Project 70.00% 100.00% 100.00% 87.50%

Add Resource
Allocation

72.72% 72.72% 72.72% 72.72%

Delete Resource
Allocation

72.72% 100.00% 72.72% 100.00%

3.2 Comparing Clustering-Based Approach with Non-clustering Approach

IR technologies, especially the probabilistic model [11] and the Vector Space Model
(VSM) [12], are widely used in tracing code to requirement documents [13][14]. The
basic idea for the VSM-based approaches is: code elements and requirement are
represented by corresponding vectors, and the requirement vector is used as a query
condition to search relevant code element vectors. The code elements, whose
semantic similarity with the query larger than a given threshold, are regarded as the
implementation of the requirement. We experiment to use such kind of non-clustering
approach to identify relevant classes for use cases in Resource Management Software.
The first time, we select a loose threshold so that higher recall can be obtained. The
second time, we select a more strict threshold so that higher precision can be
obtained. The result is illustrated in Table 2.

As illustrated in Figure 2, we compare the results of clustering-based approach
and non-clustering approach. It shows that: if a strict threshold is used, the non-
clustering approach’s precision values are as good as those of the clustering-based
approach, but its recall values are much worse, and if a loose threshold is used, the
non-clustering approach’s recall values are almost as good as those of the
clustering-based approach, but its precision values are much worse. Thus, we can
conclude that in this experiment our clustering-based approach wins over the
non-clustering approach.

 A Clustering-Based Approach for Tracing Object-Oriented Design to Requirement 419

Table 2. Precision and recall of the non-clustering approach

Non-Clustering Method
(Loose Threshold)

Non-Clustering Method
(Strict Threshold) Use Case

Precision Recall Precision Recall

Add Client 46.15% 100.00% 75.00% 50.00%

Modify Client 46.15% 100.00% 42.86% 50.00%

Delete Client 40.00% 100.00% 50.00% 50.00%

Add Resource 52.94% 100.00% 61.54% 88.89%

Modify
Resource

62.50% 50.00% 100.00% 40.00%

Delete
Resource

50.00% 100.00% 50.00% 50.00%

Add Project 50.00% 100.00% 80.00% 57.14%

Modify Project 52.94% 100.00% 75.00% 66.67%

Delete Project 50.00% 100.00% 70.00% 100.00%

Add Resource
Allocation

68.75% 100.00% 72.72% 72.72%

Delete
Resource

Allocation
50.00% 100.00% 80.00% 100.00%

420 X. Zhou and H. Yu

Use Case

20%

40%

60%

80%

100%

Clustering Method (I=1)

Non-Clustering Method (Strict Threshold)

Non-Clustering Method (Loose Threshold)

Clustering Method (I=2)

Fig. 2. Comparing clustering-based approach and non-clustering approach

4 Related Work

4.1 IR-Based Traceability Identification

Current literature provides partial solutions to the problem of traceability in various
fields of computer science. The proposed solutions are related to areas of Information
Retrieval[10][11], Database Management[15], Rule-based System[16][17], Concept-
based approach[18], etc.

Some most popular solutions are related to the area of Information Retrieval.
Papers [13][14] presented by Antoniol G. introduced a semi-automated process to
recover traceability between code and documentation. Their process starts with
processing the artifacts, then using a classifier to generate a ranked document list.
Their solution uses two IR methods as classifiers. The probabilistic method and the
vector space method are used to recover traceability links between code and
documentation. Their solution also assumes that the artifacts follow the OO paradigm
and the use of common vocabulary between code and documentation.

It’s important to note that when we use the approach mentioned above to trace
from requirement to classes, it doesn’t have high precision and recall. In our
approach, presented in section 2, we use a clustering-based approach to get the
traceability from requirement to classes. Our work uses the potential semantic
relationship between classes to get clusters, which allows our approach to lead to a
more accurate result. Moreover, in order to avoid the incompleteness and
imprecision of nature language which is used to describe use case, we use a
supplementing process after cluster retrieving process based on the IR technology.
Thus, our approach has higher precision and recall when tracing from use case to
classes.

 A Clustering-Based Approach for Tracing Object-Oriented Design to Requirement 421

4.2 Clustering-Based IR Technology

One of the common Information Retrieval (IR) technologies is clustering-based
approach. In practice of information retrieval, it is not possible to match each
analyzed document with each analyzed search request because the time consumed by
such operation would be excessive. Various solutions have been proposed to reduce
the number of needed comparisons between information items and requests, among
which, clustering technique is an effective way to do this, and therefore it is imported
to the area of information retrieval.

There is a basic hypothesis in Clustering-based Information Retrieval: closely
associated documents tend to be relevant to the same requests. This inspires us to
introduce clustering technique into our research. We do clustering by analyzing the
inherent semantic relevance between classes. The experiment reveals that such a
mechanism brings a higher recall for the traceability process.

5 Conclusions and Future Works

In this paper, we have presented an approach for identifying the group of classes in
object-oriented software design that realizes a given requirement represented in a use
case. We use the Information Retrieval (IR) and text clustering technologies as the
basis of our approach to retrieve relevant classes of a given use case. Our premise is
that system analysts and designers use common meaningful keywords for use cases,
classes, attributes, methods, parameters, etc. We represent the use case and the classes
as vectors in a vector space constructed with the keywords coming from them. Then,
we cluster the classes based on their semantic relevance and find out the cluster most
related to the use case. Finally, we supplement the raw cluster by analyzing
generalization, association relationships among all classes. An experimental study is
also reported in this paper. This clustering-based approach is used to create
traceability between the classes and use case from a system – Resource Management
Software. We calculate and compare the precision and recall of our approach and
other non-clustering approaches, which reveals that our approach works well on most
occasions.

At present, we still cannot claim that we will get similar results on all other
systems although it might be quite imaginable. In the future, we will focus on
enhancing the supplement process in order to get a more precise result. For instance,
we will consider the weight of each inter-class relationship while supplementing a
class to a cluster. Also, we will experiments more on other real systems to evaluate
and enhance the approach.

References

1. M. Jarke. “Requirements Tracing”. Communications of the ACM, Vol. 41, No. 12, pp. 32-
36, December 1998.

2. Pohl, K. PRO-ART: Enabling Requirements Pre- Traceability, In Proceedings of the
Second International Conference on Requirements Engineering, IEEE Computer Society
Press, 1996 pp. 76-84.

422 X. Zhou and H. Yu

3. I. Jacobson. Object-Oriented Software Engineering. Addison-Wesley Publishing
Company, 1992.

4. R. Brooks. Towards a theory of the comprehension of computer programs. International
Journal of an-Machine Studies, 18:543–554, 1983.

5. C.J.van Rijsbergen. Information Retrieval. Butterworths, 1979.
6. Frakes, W. and Baeza-Yates, R. Information Retrieval: Data Structures & Algorithms.

Prentice Hall, 1992.
7. Bhatia, S.K., and Deogun, J.S. 1998. "Conceptual clustering in information retrieval",

IEEE Transactions on Systems, Man and Cybernetics, Part B, 427-436.
8. Kaski, S. 1998. "Dimensionality reduction by random mapping: fast similarity

computation for clustering", Proceedings of the 1998 IEEE International Joint Conference
on Neural Networks Proceedings, 413-418.

9. G.Salton, C.Buckley. Term-weighting approaches in automatic text retrieval. Information
Processing and Management, 24(5):513–523, 1988.

10. http://people.msoe.edu/~barnicks/courses/cs400/199900/teamrpts.htm
11. KS Jones, S Walkerr, SE Robertson. A probabilistic model of information retrieval:

development and status. Information Processing and Management, 2000
12. D.Harman. Ranking algorithms. In Information Retrival: Data Structures and Algorithms,

pages 363-392. Prentice-Hall, Englewood Cliffs, NJ, 1992.
13. G. Antoniol, B. Caprile, A. Potrich, and P. Tonella, “Design-Code Traceability for Object

Oriented Systems,” The Annals of Software Eng., vol. 9, pp. 35-58, 2000.
14. G. Antoniol, G. Canfora, G. Casazza, A. DeLucia, and E. Merlo, “Recovering Traceability

Links between Code and Documentation,” IEEE Transactions on Software Engineering,
vol. 28, no. 10, pp. 970-983, Oct.2002.

15. P.K. Garg, W. Scacchi. SODOS: a software documentation support environment-its
definition. IEEE Transactions on Software Engineering, August 1986

16. A. Zisman, G. Spanoudakis, E. Perez-Minana, P. Krause. Tracing software requirement
artifacts. The 2003 International Conference on Software Engineering Research and
Practice, Las Vegas, Nevada, USA. 2003.

17. C. Nentwich, W. Emmerich, A. Finkelstein, E. Ellmer, Flexible Consistency Checking.
ACM Transactions in Software Engineering and Methodology, 12(1), 28-63, 2003.

18. M. Jarke, R. Gallersdoerfer, M. Jeusfeld, M. Staudt, and S. Eherer, TMConceptBase–A
Deductive Object Base for Meta Data Management,º Int'l J. Intelligent Information
Systems, vol. 5, no. 3, pp. 167-192, 1995.

M.B. Dwyer and A. Lopes (Eds.): FASE 2007, LNCS 4422, pp. 423–437, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Measuring and Characterizing Crosscutting in
Aspect-Based Programs: Basic Metrics and

Case Studies

Roberto E. Lopez-Herrejon1 and Sven Apel2

1 Computing Laboratory, University of Oxford, England
2 School of Computer Science, University of Magdeburg, Germany

rlopez@comlab.ox.ac.uk, apel@iti.cs.uni-magdeburg.de

Abstract. Aspects are defined as well-modularized crosscutting concerns.
Despite being a core tenet of Aspect Oriented Programming, little research has
been done in characterizing and measuring crosscutting concerns. Some of the
issues that have not been fully explored are: What kinds of crosscutting
concerns exist? What language constructs do they use? And what is the impact
of crosscutting in actual Aspect Oriented programs? In this paper we present
basic code metrics that categorize crosscutting according to the number of
classes crosscut and the language constructs used. We applied the metrics to
four non-trivial open source programs implemented in AspectJ. We found that
for these systems, the number of classes crosscut by advice per crosscutting is
small in relation to the number of classes in the program. We argue why we
believe this result is not atypical for Aspect Oriented programs and draw a
relation to other non-AOP techniques that provide crosscutting.

1 Introduction

Aspects are defined as well-modularized crosscutting concerns, that is, concerns
whose implementation would usually involve (crosscut) multiple traditional modular
units such as classes. Despite the increasing interest and research in Aspect Oriented
Programming (AOP), very little attention has been paid to measuring and
characterizing crosscutting in actual programs [8].

In this paper we present a set of basic code metrics that categorize crosscutting
according to the number of classes crosscut and their language constructs. To
facilitate the description, we present them semi-formally using a functional
programming style. Our metrics rate a crosscutting within a spectrum that goes from
homogeneous to heterogeneous, depending on the number of classes crosscut by
pieces of advice in relation to the number of classes crosscut by all crosscutting
mechanisms of AspectJ. This distinction helps drawing a relation with other
technologies that also provide support for crosscutting [7].

By analysing actual programs and categorizing their crosscutting, our metrics shed
light on the impact of aspects on the overall program structure. We applied our
metrics to four non-trivial AspectJ programs. We found that for these programs, the
number of classes crosscut by advice per crosscutting is small in relation to the

424 R.E. Lopez-Herrejon and S. Apel

number of classes in the program. We argue why we believe this result is not atypical
for Aspect Oriented programs and draw a relation to other non-AOP techniques that
provide crosscutting.

2 Aspect Oriented Programming

Aspect Oriented Programming (AOP) is a novel software development paradigm that
aims at modularizing aspects, which are defined as well-modularized crosscutting
concerns [10][25]. This type of concerns cuts across traditional module boundaries such
as classes and interfaces, and their implementation is scattered and tangled with the
implementation of other concerns. AspectJ is the flagship language of AOP [10]. This is
the implementation language of the case studies we evaluated, thus we use AspectJ to
illustrate and define our metrics. This section explains the basic constructs of the
language. In AspectJ, an application consists of two parts: base code which corresponds
to standard Java classes and interfaces, and aspect code which contains the crosscutting
code. Next we describe the two types of crosscuts that AspectJ provides.

2.1 Static Crosscuts

Static crosscuts affect the static structure of a program [26]. We consider Inter-Type
Declarations (ITDs), also known as introductions, that add fields, methods, and
constructors to existing classes and interfaces1. Let us consider the example in Figure 1a.
It contains an aspect A and three classes X, Y, and Z. The symbols si stand for any statement.
Aspect A has four ITDs that introduce: 1) field q in class X, 2) method n in class Y, 3)
constructor for class Z, and 4) method foo to class X.

aspect A {
double X.q;
void Y.n() { … }
Z.new() { … }
int X.foo() { …}

}

class X {
int p;
void m() { s1; s2; }

}

class Y {
double r;
void m() { s3; s4; }

}

class Z {
byte b;
void m() { s5;s6; }

}

class X {
int p;
void m() { s1; s2; }
double q;
int foo() { …}

}

class Y {
double r;
void m() { s3; s4; }
void n() { … }

}

class Z {
byte b;
void m() { s5;s6; }
Z () { … }

}

(a)

(b)

Fig. 1. Static Crosscut Example

1 AspectJ provides further kinds of static crosscuts which we do not consider for our basic

metrics.

 Measuring and Characterizing Crosscutting in Aspect-Based Programs 425

The process of applying the crosscutting code to the base code is known as
weaving. This is performed with an AspectJ compiler such as ajc with a command as
follows:

ajc A.java X.java Y.java Z.java

The result of weaving is shown in Figure 1b. Class X is augmented with field q and
method foo, class Y has a new method n and class Z has a new constructor. Thus,
aspect A crosscuts all 3 classes in this example as depicted with a dashed line in
Figure 1b2.

2.2 Dynamic Crosscuts

Dynamic crosscuts run additional code when certain events occur during program
execution. The semantics of dynamic crosscuts are commonly described and defined
in terms of an event-based model [27][38]. As a program executes, different events
fire. These events are called join points. Examples of join points are: variable
reference, variable assignment, execution of a method body, method call, etc. A
pointcut is a predicate that selects a set of join points. Advice is code executed
before, after, or around each join point matched by a pointcut.

(a)

(b)

aspect B {
after() : execution (void *.m()) { s7; }

}

class X {
int p;
void m() { s1; s2; s7; }

}

class Y {
double r;
void m() { s3; s4; s7; }

}

class Z {
byte b;
void m() { s5; s6; s7; }

}

Fig. 2. Dynamic Crosscut Example

Let us consider the example in Figure 2a. Aspect B contains a single piece of
advice. This advice captures the execution of methods m, with no arguments and
that return void, of any type (denoted with *). It executes an additional statement,
labelled s7, after the execution of the bodies of method m. The result of weaving
aspect B with classes X, Y, and Z of Figure 1a is shown in Figure 2b, where the
additional statement s7 is added at the end of the method m of the 3 classes. Thus in
this example the advice in aspect B crosscut the 3 classes as depicted with a dashed
line in Figure 2b (underlined and bold).

2 AspectJ generally uses more sophisticated rewrites than those shown in this paper. The

composed code snippets we present simplify illustration and are behaviourally equivalent to
those produced by ajc.

426 R.E. Lopez-Herrejon and S. Apel

3 Basic Crosscutting Metrics

In this section we provide a semi-formal description of our crosscutting metrics. A
goal is to distinguish the contribution to crosscutting stemming from static and
dynamic crosscuts. This on one hand sheds light on how the different language
constructs are used and on the other it helps to relate aspects with other technologies
that can modularize crosscutting concerns.

We describe our using a functional programming style (similar to Haskell [14])
over a simplified abstract program structure. This notation provides a more concise
description than natural language and can serve as a guideline for the implementation
of tools that automatically gather these and related metrics. We start by describing the
abstract structure of our programs, followed by the description of auxiliary functions
used to define our metrics.

3.1 Abstract Program Structure

Aspects do not work in isolation. Their functionality is typically implemented in
conjunction with a set of classes and interfaces [18][29]. Thus we modularize
programs and present our metrics in terms of features [39], sets of aspects, classes,
and interfaces. Defining our metrics in terms of features permits their application to
product line (families of related programs [17]) case studies, an area of increasing
interest for the AOP research community [7].

We define a program P to be a set of features Fi, denoted with the following list:

P=[F1,F2,...,Fn]

Where P is of type program and Fi is of type feature. Figure 3 summarizes the
abstract representation of our programs in the form of a grammar.

A feature F consists of a list of feature elements that can be classes, interfaces or
aspects. A class is a list of class_element which can be of type method,
constructor, field, etc. An interface is a list of interface_element which
can be of type field or method declaration (methoddecl). An aspect is a list of
method (methodITD), constructor (constructorITD), and field (fieldITD) inter-
type declarations, and pieces of advice (advice). These ITDs are denoted as tuples of
class and the corresponding element definition. For example, the tuple for
methodITD is of type (class, method). For pieces of advice we focus only on
the pointcut expression pce and a body. We consider both named and anonymous
pointcuts but we focus only on the pointcut expression formed with poincut
designators and their combinations denoted with operators &&, ||, (), and !.

Finally we define an auxiliary type shadow with a tuple whose elements are a
program_element (elements of classes, interfaces and aspects), a class, and a
pointcut expression pce. A shadow is a place on the source code whose execution
creates join points [32]. We represent a shadow with a tuple of three elements. The
first element of shadow contains the program element that has the shadow (a method
for example for a execution join point), the class that contains the program

 Measuring and Characterizing Crosscutting in Aspect-Based Programs 427

element, and pointcut expression pce that casts the shadow in that program element.
This data structure is not created when programs are originally parsed, instead it is the
result of a weaving mechanism.

In this paper we use only the subset of program structures of AspectJ shown in
Figure 3. However this abstract program representation can be extended, the same is
true for the set of auxiliary functions and metrics we describe in next subsections.

program :: [feature]
feature :: [feature_element]
feature_element :: class | interface | aspect
class :: [class_element]
class_element :: method | constructor | ...
interface :: [interface_element]
interface_element :: methoddecl | field
aspect :: [aspect_element]
aspect_element :: methodITD | constructorITD | fieldITD | advice
methodITD :: (class, method)
constructorITD :: (class, constructor)
fieldITD :: (class, field)
advice :: (pce,body)
pce :: pointcut_expression
shadow :: (program_element, class, pce)
program_element :: class_element | interface_element | aspect_element

Fig. 3. Abstract Program Representation

3.2 Auxiliary Functions

The following functions provide the basic building blocks of the definitions of our
metrics. Note that the names of some of these functions are the plural of the type of
element they return as result.

count. This function returns the number of elements in a list. It has signature (where a
is any type and n is a number):

count :: [a] -> n

loc. This function returns the number of lines of code (LOC). It has signature (where
a is any type and n is a number):

loc :: [a] -> n

union. N-ary and polymorphic disjoint set union. It receives any number of
arguments, unions them and eliminates any repeated elements. We denote its
signature with n entries of type b that when unioned return a list of b elements:

union :: [b1] -> ...-> [bn] -> [b]

sum. Receives as input a list of numbers and performs the summation on them. It has
the following signature where n is a number:

sum :: [n] -> n

428 R.E. Lopez-Herrejon and S. Apel

foreach. Receives as input a list and a function. which applies to all the elements in
the list. It has signature (where a and b are any type):

foreach :: [a] -> a -> b -> [b]

classes. Receives a feature and returns the list of classes in that feature. It has
signature:

classes :: feature -> [class]

interfaces. Receives a feature and returns the list of interfaces in that feature. It has
signature:

interfaces :: feature -> [interface]

aspects. Receives a feature and returns the list of aspects in that feature. It has
signature:

aspects :: feature -> [aspect]

advices. Receives as input a list of aspects and returns the list of pieces of advice
contained in the aspects.

advices :: [aspect] -> [advice]

methodITDs. Receives as input a list of aspects and returns the list of method ITDs
or introductions contained in the aspects.

methodITDs :: [aspect] -> [methodITD]

constructorITDs. Receives as input a list of aspects and returns the list of constructor
ITDs or introductions contained in the aspects.

constructorITDs::[aspect] -> [constructorITD]

ccclasses. This function computes the crosscutting classes from a list of method ITDs,
constructor ITDs or field ITDs, and removes any repeated elements. It has signature
(where symbol | stands for logical or):

ccclasses :: [methodITD | constructorITD | fieldITD] -> [class]

pointcuts. Receives as input a list of aspects and returns a list of pointcut designators
(pce).

pointcuts :: [aspect] ->[pce]

shadows. This function receives as input a list of pointcuts, finds the join point
shadows in a program and returns them in a list:

shadows :: [pce] -> [shadow]

sclasses. This function receives a list of shadows, extracts their classes (second
elements in the shadow tuples), and removes any duplicates.

sclasses :: [shadow] -> [class]

3.3 Program Structure Metrics

The metrics in this section highlight the contribution of aspects to the overall structure
of programs measured in lines of code.

Let P be a program. We define the following metrics:

NOF. Number Of Features. Counts the number of features in a program.
NOF (P) = count (P)

 Measuring and Characterizing Crosscutting in Aspect-Based Programs 429

NOA. Number Of Aspects. Counts the number of aspects in a program.

NOA (P) = sum(foreach (P, λf.(count (aspects (f)))))

The way to understand this definition is as follows. For each feature f in program P
extract its aspects and count them. Sum up all the counts of the aspects in all the
features.

NCI. Number of Classes and Interfaces. Counts the number of classes and interfaces
in a program.

NCI (P) = sum(foreach (P, λf.(count (union (classes (f)) (interfaces(f))))))

BCF. Base Code Fraction. Corresponds to the number of lines of code that come
from standard Java classes and interfaces relative to the lines of code in a program.

BCF(P)= sum(foreach (P, λf.(sum (loc (classes (f)))
 (loc (interfaces (f))))))
 / loc(P)

ACF. Aspects Code Fraction. Corresponds to the number of lines of code that come
from aspects relative to the lines of code in a program.

BCF (P) = sum(foreach (P, λf.(loc (aspects (f))))) / loc(P)

IF. Introductions Fraction. Corresponds to the number of lines of code that come
from introductions or inter-type declarations relative to the lines of code in a program.

IF (P) = sum (foreach (P, λf.(sum (loc (fieldITDs (aspects (f))))
 (loc (methodITDs(aspects (f))))
 (loc (constructorITDs (aspects (f)))))))

 / loc(P)

AF. Advice Fraction. Corresponds to the number of lines of code that come from
pieces of advice relative to the lines of code in a program.

AF (P) = sum (foreach (P, λf.(loc (advices (aspects (f))))))) / loc(P)

3.4 Feature Crosscutting Metrics

In AOP literature, an homogenous concern is one that applies a same piece of advice
to several places; whereas an heterogeneous concern applies different pieces of
advice to different places [7][18]. The metrics in this section adapt these concepts to
features and provide a quantitative criteria to classify features within a spectrum that
goes from homogeneous to heterogeneous according to the number and type of
crosscuts they implement.

Let f be a feature of a program P, we define the following metrics:

FCD. Feature Crosscutting Degree. Corresponds to the number of classes that are
crosscut by all pieces of advice in a feature and those crosscut by the ITDs.

FCD(f,P)= count(union(ccclasses(methodITDs(aspects (f))),
 ccclasses(constructorITDs(aspects (f))),
 ccclasses(fieldITDs(aspects(f))),
 sclasses(shadows(pointcuts(advices(aspects(f))),P))))

430 R.E. Lopez-Herrejon and S. Apel

ACD. Advice Crosscutting Degree. Corresponds to the number of classes that are
crosscut exclusively by the pieces of advice in a feature.

ACD(f,P)= count(sclasses(shadows(pointcuts(advices(aspects(f))),P)))

HQ. We define Homogeneity Quotient as the division of the advice crosscutting
degree (ACD) by the feature crosscutting degree (FCD):

HQ(f,P) = ACD(f,P)/FCD(f,P) if FCD(f,P)!=0
 = 0 otherwise

PHQ. Program Homogeneity Quotient. It corresponds to the summation of the
homogeneity quotients for all the features in a program, divided by the number of
features NOF.

PHQ(P) = sum(foreach(P, λg.HQ(g,P)))/NOF(P)

3.5 Homogeneous vs. Heterogeneous Features

We can categorize features according to their Homogeneity Quotient (HQ) within a
continuum that has at its ends:

• Fully Homogenous Feature: Its pieces of advice crosscut all the classes crosscut
by the feature. That is ACD=FCD and thus HQ=1.

• Fully Heterogeneous Feature: It is either base code (no crosscutting) or all the
crosscutting it does is via ITDs. That is HQ=0.

If the Program Homogeneity Quotient or PHQ tends to value 1 the program is
exploiting the crosscutting capabilities of advice. Also, if PHQ tends to value 0, it can
have two interpretations: 1) majority class crosscuts are due to inter-type declarations,
2) majority of features have no crosscuts at all. Next section we apply our metrics to
four case studies.

4 Case Studies

We applied our set of metrics to four different AspectJ product line systems
developed by us and other researchers. They are:

• ATS. AHEAD Tool Suite is a set of stand alone and language-extensible tools
[3] which implement Feature Oriented Programming (FOP), a technology that
studies feature modularity in program synthesis for product lines [13]. We
performed our study in the AspectJ implementation of five core tools of ATS
[30]. Its code is available upon request.

• FACET. Framework for Aspect Composition for an EvenT channel is an
AspectJ implementation of a CORBA event channel, developed at the
Washington University [24]3. The goal of the FACET project is to investigate
the development of customizable middleware using AOP. Features in FACET
are for example different event types, synchronization, the CORBA core, or
tracing.

3 Source code available at http://www.cs.wustl.edu/~doc/RandD/PCES/facet/

 Measuring and Characterizing Crosscutting in Aspect-Based Programs 431

0.10
0.13

0.08
0.31
0.69

107
55
19

3964

Prevayler

0.00
0.00

0.01
0.01
0.99

351
10
13

22104

AJHotDraw

0.080.12Other Aspect Code
0.060.01AF - Advice Fraction

0.050.19IF - Introductions Fraction
0.190.32ACF - Aspect Code Fraction
0.810.68BCF - Base Code Fraction

181524NCI - Number of Classes & Interfaces
113503NOA - Number Of Aspects
3448NOF - Number Of Features

636456727Program Total Lines Of Code

FACETAHEAD

0.10
0.13

0.08
0.31
0.69

107
55
19

3964

Prevayler

0.00
0.00

0.01
0.01
0.99

351
10
13

22104

AJHotDraw

0.080.12Other Aspect Code
0.060.01AF - Advice Fraction

0.050.19IF - Introductions Fraction
0.190.32ACF - Aspect Code Fraction
0.810.68BCF - Base Code Fraction

181524NCI - Number of Classes & Interfaces
113503NOA - Number Of Aspects
3448NOF - Number Of Features

636456727Program Total Lines Of Code

FACETAHEAD

Fig. 4. Program Structure Metrics Summary

• Prevayler. Prevayler is a Java application that implements transparent
persistence for Java objects. In other words, it is a fully-functional main
memory database system in which a business object may be persisted. Prevayler
was refactored at the Universtiy of Toronto using AspectJ and horizontal
decomposition [21]4. Features are for example persistence, transaction, query,
and replication management.

• AJHotDraw. AJHotDraw is an aspect-oriented refactoring of the JHotDraw
two-dimensional graphics framework. It is an open source software project that
provides numerous features for drawing and manipulating graphical and planar
objects [1].

4.1 Program Structure Metrics

We applied the first set of metrics to our four case studies. We obtained the following
results, summarized in Figure 4:

• ATS. The core tools are formed with 48 features for a total 56727 LOC. To
the best of our knowledge, we are not aware of any product line in AspectJ of
scale comparable to this case study. Base code constitutes 68% of the program
code implemented in 524 standard Java classes and interfaces. Aspect
corresponds to 32% implemented in 503 aspects. Of this percentage, 19%
comes from ITDs, while approximately 1% was contributed by from pieces of
advice. The remaining 12% correspond to other constructs such as package
imports.

• FACET. It consists of 34 features implemented in 6364 LOC. Base code is
81% of total LOC using 181 classes and interfaces. Aspect code is 19% of
which 5% are ITDs, 6% are pieces advice, and the remaining 8% comes from
other aspect constructs such as aspect methods.

• Prevayler. The code base of Prevayler is 3964 LOC modularized into 19
features. Base code is 69% of features LOC and its implemented in 107 classes

4 Source code available at http://www.msrg.utoronto.ca/code/RefactoredPrevaylerSystem/

432 R.E. Lopez-Herrejon and S. Apel

and interfaces. The other 31% of total LOC is aspect code, of which 8% comes
from ITDs, 13% from pieces of advice, and the remaining 10% from other
aspect constructs.

• AJHotDraw. It consists of 13 features for a total of 22104 LOC. It is
implemented with 351 classes and interfaces and only 10 aspects. Not
surprisingly 99% percent of the code is standard Java and only 1% of aspect
code, of which almost all comes from ITDs.

4.2 Feature Crosscutting Metrics

ATS. Figure 5 shows the histogram of the homogeneity quotient of the 48 features of
ATS. As expected, given the program structure metrics of ATS, most features have no
crosscutting, homogeneity quotient of 0. The program homogeneity quotient (PHQ) is
0.03 which indicates a very small use of pieces of advice.

ycneuqerF

0

10

20

30

40

0 0.5 1

HQ Values

HQ Histogram

ycneuqerF

0

10

20

30

40

0 0.5 1

HQ Values

HQ Histogram

Fig. 5. ATS Homogeneity Quotient Histogram

FACET. Figure 6 shows the homogeneity quotient histogram of the 34 features of
FACET. This histogram, as opposed to the one for ATS, has a more balanced
distribution, with a program homogeneity quotient whose value is 0.5098.

However, this number has to be put in context. Out of the 34 features of FACET,
22 use pieces of advice. Almost all features that use advice crosscut between 1 and 4
classes, on average 1.3
classes. The exception is
a tracing feature that
crosscuts all the 181
classes of FACET. Thus,
even though around a half
of the features are homo-
geneous the actual impact
of advice is limited in
terms of the number of
classes they crosscut, and
the percentage of code they
constitute.

HQ Histogram

0

5

10

15

0 0.2 0.4 0.6 0.8 1

HQ Values

ycneuqerF

HQ Histogram

0

5

10

15

0 0.2 0.4 0.6 0.8 1

HQ Values

ycneuqerF

Fig. 6. FACET Homogeneity Quotient Histogram

 Measuring and Characterizing Crosscutting in Aspect-Based Programs 433

Prevayler. Figure 7 shows the homogeneity quotient histogram of the 19 features of
Prevayler. This histogram shows that most of Prevayler’s features are homogeneous
with a program homogeneity quotient of 0.7805. Again this result is put in context.
On average, each feature crosscuts 3.5 classes, a small percentage of the 107 classes
that form Prevayler.

HQ Histogram

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1

HQ Values

ycneuqerF

HQ Histogram

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1

HQ Values

ycneuqerF

Fig. 7. Prevayler Homogeneity Quotient Histogram

AJHotDraw. Figure 8 shows the homogeneity quotient histogram of the 13 features
of AJHotDraw. Given that most of its code is standard Java, its program homogeneity
quotient is close to zero 0.0854. Only three of the thirteen features implement
crosscuttings: one fully homogenous (uses advice and crosscuts 12 classes), one fully
heterogeneous, and one where most crosscutting comes from ITDs (uses advice and
crosscuts one class, HQ is 0.1111).

HQ Histogram

0
2
4
6
8

10
12

0 0.2 0.4 0.6 0.8 1

HQ Values

ycneuqerF

HQ Histogram

0
2
4
6
8

10
12

0 0.2 0.4 0.6 0.8 1

HQ Values

ycneuqerF

Fig. 8. AJHotDraw Homogeneity Quotient Histogram

434 R.E. Lopez-Herrejon and S. Apel

5 Collaborations and Heterogeneous Features

Aspects are not the only technique that provides support for crosscutting. There are
several techniques categorized as collaboration-based designs that also have
crosscutting capabilities. This line of research is at least a decade old
[23][34][36][37]. A collaboration is a set of objects (hence the crosscutting) and a
protocol that determines how the objects interact. The part of an object that enforces
the protocol in a collaboration is called a role [35][37]. One of their goals is to
provide a more flexible modularity unit to improve reuse in multiple configurations or
compositions for the development of different programs. Thus, collaborations are
mechanisms to implement features for product lines [12].

Collaborations can be implemented using several Object Oriented techniques. The
kinds of program increments these techniques support are ultimately bound by the
Object Oriented ideas they rely upon (i.e. inheritance, polymorphism, encapsulation,
etc.). A technique that implements collaborations is FOP and its implementation in
AHEAD [13]. For example, using FOP the crosscutting implemented in aspect A of
Figure 1a is implemented as follows:

refines class X {
double q;
int foo() {…}

}

refines class Y {
void n() { …}

}

refines classZ {
Z () { …}

}

Fig. 9. Crosscutting Example in FOP

The kinds of crosscutting that AHEAD and other collaboration-based designs
techniques support correspond to AspectJ’s static crosscutting inter-type declarations
that we considered. In other words, the distinctive characteristic of aspects is its
support for dynamic crosscuts implemented with pieces of advice.

We have seen that in the four case studies we analysed, the pieces of advice
crosscut a relatively small number of classes in comparison with the number of
classes in the entire programs. Furthermore, the percentage of lines of code is also
small, ranging from 1% to 13% in our examples, on average 6%. These numbers beg
the questions: Are these results typical? What is the real impact of aspects in software
development if their distinctive trait is advice?

We claim that these results are not atypical. Our experiences and other’s working
with product lines and aspect programs lead us to conjecture that most of the features
or crosscuttings in programs are of heterogeneous nature, and that pieces of advice
crosscut few classes relative to the number of classes that build a system [8][30][18].
Intuitively, the reason behind this conjecture is that large programs are not
synthesized by adding the same piece of code in different places, but rather, adding
different pieces of code in different places [6].

Our response to the second question is that aspects can be extremely useful for
modularizing crosscutting that involves many classes such as logging, however these
types of crosscutting are not pervasive in all software systems and constitute a small
fraction of the overall code.

 Measuring and Characterizing Crosscutting in Aspect-Based Programs 435

6 Related Work

Several metrics have been proposed for aspects. Zhao and Xu describe metrics for
aspect cohesion based on aspect dependencies graphs [41]. Zhao also utilizes a similar
framework to define measurements for aspect coupling [40]. Their metrics are
formally described, however they lack concrete architectural interpretation and, to the
best of our knowledge, have not been applied to actual case studies.

Coupling metrics have been proposed by Ceccato and Tonella [15]. They extend
and adapt to AOP some of Chidamber and Kemerer’s metrics for Object Oriented
systems [16]. This set of metrics is defined informally and it is applied to a tiny case
study (250+ LOC), Hannemann’s implementation of the Observer Pattern [22].
However, its is unclear how these metrics would extrapolate to larger case studies and
their architectural significance.

Bartsch and Harrison evaluate five metrics in Ceccato and Tonella’s work [11].
They argue that only one of the evaluated metrics can be considered well-defined
(lacks any interpretation ambiguities), and none of them are completely valid from a
measurement theory point of view. Along the same lines, Mehner proposes a series of
steps to validate AOP metrics and their application [33].

An extensive study on modularizing design patterns have been performed by
Garcia et al. [20]. They use Hannemann’s implementation of GoF patterns to apply
seven metrics that extend and adapt to AOP Chidamber and Kemerer’s metrics [16].
Their metrics are informally defined and their results are given an interpretation in
terms of improvement of separation of concerns and reuse.

Coupling metrics for AOP certainly depend on the crosscutting capabilities of
aspects. Our metrics focus only on crosscutting relations produced by pointcut
shadows and ITD’s, and do not consider cases such as method calls or field references
which the above coupling metrics account for.

7 Conclusions and Future Work

In this paper we present a semi-formal description of a set of crosscutting metrics.
Our metrics categorize crosscutting within an spectrum from heterogeneous to
homogeneous depending on the number of classes crosscut by pieces of advice in
relation to the number of classes crosscut by all crosscutting mechanisms of AspectJ.
This distinction helps draw a relation with other technologies that also provide
support for crosscutting.

We applied our set of metrics to four case studies. We found that for these
programs, the number of classes crosscut by advice per crosscutting is small in
relation to the number of classes in the program, and that crosscuttings are mostly
heterogeneous. We argued that this finding is not atypical as programs are not
synthesized by adding the same piece of code in different places, but rather, adding
different pieces of code in different places. We are in the process of applying our
metrics to other case studies to provide more empirical arguments to further support
our conjecture.

Earlier work of the first author described a preliminary definition of our metrics
that were applied to a single case study [31]. Work of the second author categorizes

436 R.E. Lopez-Herrejon and S. Apel

crosscuts in two dimensions [7][9]. We plan to integrate these two dimensions into
the set of metrics presented here. We also intend to extend our metrics to address
issues such as cohesion and coupling for features. These extended metrics could help
identify opportunities for feature refactoring.

We collected the Program Structure Metrics with the AJStats tool. This tools is
under development at the University of Magdeburg and it is publicly available [2].
Currently we are collecting the Feature Crosscutting Metrics manually. We are
exploring different possibilities to extend AJStats to collect this set of metrics. Our
goal is to develop tool infrastructure that would allow the implementation of these and
other metrics in a simple and extensible way.

References

1. AJHotDraw project web site http://sourceforge.net/projects/ajhotdraw .
2. AJStats tool project website http://wwwiti.cs.uni-magdeburg.de/iti_db/forschung/ajstats/ .
3. AHEAD Tool Suite (ATS). http://www.cs.utexas.edu/users/schwartz
4. Alves, V., Matos, P., Cole, L., Borba, P., Ramalho, G.: Extracting and Evolving Game

Product Lines. SPLC (2005)
5. Anastasopoulus, M., Muthig, D.: An Evaluation of Aspect-Oriented Programming as a

Product Line Implementation Technology. ICSR (2004)
6. Apel, S.: The Role of Features and Aspects in Software Development. PhD Dissertation.

School of Computer Science, University of Magdeburg, 2007.
7. Apel, S., Leich,T., Saake. G.: Aspectual Mixin Layers: Aspects and Features in Concert.

ICSE (2006)
8. Apel, S., Batory, D.: When to Use Features and Aspects? A Case Study. GPCE (2006)
9. Apel, S., Batory, D.: On the Structure of Crosscutting Concerns: Using Aspects or

Collaborations?. AOPLE (2006)
10. AspectJ, http://eclipse.org/aspectj/.
11. Bartsch, M., Harrison, R.: An Evaluation of Coupling Measures for AspectJ. LATE

Workshop AOSD (2006)
12. Batory, D., Cardone, R., Smaragdakis, Y.: Object-Oriented Frameworks and Product-

Lines. SPLC (2000)
13. Batory, D., Sarvela, J.N., Rauschmayer, A.: Scaling Step-Wise Refinement. IEEE TSE,

June (2004)
14. R. Bird.: Introduction to Functional Programming using Haskell. Prentice Hall (1998)
15. Ceccato, M., Tonella, P.: Measuring the Effects of Software Aspectization. First Workshop

on Aspect Reverse Engineering. Delft, The Netherlands (2004)
16. Chidamber, S., Kemerer, C.: A Metrics Suite for OOD Design. IEEE TSE 20(6) (1994)
17. Clements, P., Northrop, L.: Software product lines: practices and patterns. Addison-

Wesley (2002)
18. Coyler, A., Clement, A.: Large-scale AOSD for Middleware. AOSD (2004)
19. Coyler, A., Rashid, A., Blair, G.: On the Separation of Concerns in Program Families.

TRCOMP-001-2004, Computing Department, Lancaster University, UK (2004)
20. Garcia, A., Sant’Anna, C., Figueiredo, E., Kulesza, U., Lucena, C., von Staa, A.:

Modularizing Design Patterns with Aspects: A Quantitative Study. Transactions on
TAOSD I. LNCS 3880 (2006)

21. Godil, I., Jacobsen, H.-A.: Horizontal Decomposition of Prevayler. CASCON (2005)

 Measuring and Characterizing Crosscutting in Aspect-Based Programs 437

22. Hannemann, J.: AspectJ implementation of GoF patterns. http://www.cs.ubc.ca/~jan/
AODPs

23. Holland, I.: Specifying Reusable Components using Contracts. ECOOP (1992)
24. Hunleth, F., Cytron, R.: Footprint and Feature Management Using Aspect-Oriented

Programming Techniques. In Proceedings of the Joint Conference on Languages,
Compilers, and Tools for Embedded Systems & Software and Compilers for Embedded
Systems (LCTES/SCOPES), pages 38~V45 (2002)

25. Kiczales, G., Hilsdale, E., Hugunin, J., Kirsten, M., Palm, J., Griswold, W.G.: An
overview of AspectJ. ECOOP (2001)

26. Laddad, R.:. AspectJ in Action. Practical Aspect-Oriented Programming. Manning (2003)
27. Lämmel, R.: Declarative Aspect-Oriented Programming. PEPM (1999)
28. Lopez-Herrejon, R.E., Batory, D., Cook, W.: Evaluating Support for Features in Advanced

Modularization Techniques. ECOOP (2005)
29. Lopez-Herrejon, R.E., Batory, D., Lengauer, C.: A disciplined approach to aspect

composition. PEPM (2006)
30. Lopez-Herrejon, R.E., Batory, D.: From Crosscutting Concerns to Product Lines: A

Function Composition Approach. Tech. Report UT Austin CS TR-06-24. May (2006)
31. Lopez-Herrejon. R.E.: Towards Crosscutting Metrics for Aspect-Based Features. AOPLE

Workshop at GPCE (2006)
32. Masuhara, H., Kiczales, G.: Modeling Crosscutting Aspect-Oriented Mechanisms. ECOOP

(2003)
33. Mehner, K.: On Using Metrics in the Evaluation of Aspect-Oriented Programs and

Designs. LATE Workshop AOSD (2006)
34. Reenskaug, T., Anderson, E., Berre, A., Hurlen, A., Landmanrk, A., Lehne, O.,

Nordhagen, E., Ness-Ulseth, E., Ofdetal, G., Skaar, A., Stenslet, P.: OORASS : Seamsless
Support for the Creation and Maintenance of Object-Oriented Systems. Journal of Object
Oriented Programming, 5(6): (1992)

35. Smaragdakis, Y., Batory, D.: Mixin Layers: An Object-Oriented Implementation
Technique for Refinements and Collaboration-Based Designs. ACM TOSEM April (2002)

36. Van Hilst, M., Notkin, D.: Using C++ Templates to Implement Role-Based Designs.
JSSST International Symposium on Object Technologies for Advanced Software.
Springer-Verlag (1996)

37. Van Hilst, M., Notkin, D.: Using Role Components to Implement Collaboration-Based
Designs. OOPSLA (1996)

38. Wand, M., Kiczales, G., Dutchyn, C.: A Semantics for Advice and Dynamic Join Points in
Aspect Oriented Programming. TOPLAS (2004)

39. Zave, P.: FAQ Sheet on Feature Interaction. http:// www.research.att.com/~pamela/ faq.html
40. Zhao, J.: Measuring Coupling in Aspect-Oriented Systems. Technical Report SE-142-6.

Information Processing Society of Japan (IPSJ), June (2003)
41. Zhao, J., Xu, B.: Measuring Aspect Cohesion. FASE (2004)

Author Index

Apel, Sven 423

Bach, Markus 117
Barros, Alistair 245
Biermann, Enrico 383
Bosch, Jan 1
Burdy, Lilian 215

Chechik, Marsha 352
Cortellessa, Vittorio 57

Darvas, Ádám 336
Decker, Gero 245
Di Marco, Antinisca 57
Dumas, Marlon 245

Edwards, George 125
Ehrig, Hartmut 72, 383
Ehrig, Karsten 72
Elbaum, Sebastian 260
Ermel, Claudia 72, 383

Fisher II, Marc 260
Forster, Florian 117
Fraser, Gordon 291

Gall, Harald 12
Gao, Jimin 102
Gheorghiu, Mihaela 352
Giese, Holger 185
Gotzhein, R. 200
Grammes, R. 200
Grønmo, Roy 230
Gurfinkel, Arie 352

Hall, Jon G. 398
Harel, David 121
Heimdahl, Mats 102
Hennicker, Rolf 87
Hermann, Frank 72
Hermes, Thorsten 368
Hoareau, Didier 140
Hoffmann, Kathrin 383
Hubbard, E. Jane Albert 306
Huisman, Marieke 215

Inverardi, Paola 57

Jaeger, Michael C. 230

Kadri, Reda 140
Klein, Florian 185
Kleinbort, Asaf 121
Knapp, Alexander 87
Kugler, Hillel 306

Lanza, Michele 27
Leino, K. Rustan M. 336
Lopez-Herrejon, Roberto E. 423
Lungu, Mircea 27

Malek, Sam 125
Manna, Zohar 155
Mannering, Derek 398
Maoz, Shahar 121
Medvidovic, Nenad 125
Metzger, Andreas 321
Meyer, Bertrand 11
Mirarab, Siavash 276
Modica, Tony 383

Padberg, Julia 383
Pavlova, Mariela 215
Pinzger, Martin 12
Pohl, Klaus 321

Ranger, Ulrike 368
Rapanotti, Lucia 398
Ratzinger, Jacek 12
Reis, Sacha 321
Robbes, Romain 27
Rothermel, Gregg 260

Salem da Silva, Paulo 42
Sánchez, César 155
Sipma, Henny B. 155
Steimann, Friedrich 117
Stern, Michael J. 306

Taentzer, Gabriele 72
Tahvildari, Ladan 276
Tibermacine, Chouki 140

Van Wyk, Eric 102
Vieira de Melo, Ana C. 42

440 Author Index

Weber, Franz 245
Whittle, Jon 170
Wombacher, Andreas 230
Wotawa, Franz 291

Yu, Hui 412

Zhou, Xin 412

	Title pages
	Foreword
	Preface
	Organization
	Table of Contents
	Software Product Families: Towards Compositionality
	Introduction
	Problem Statement
	Towards Compositionality
	Component Model for Compositional Platforms
	Conclusions
	References

	EQ-Mine: Predicting Short-Term Defects forSoftware Evolution
	Introduction
	Hypotheses
	Related Work
	DataMeasures
	Features
	Data Mining

	Case Study
	Experimental Setup
	Results
	Limitations

	Conclusions and Future Work
	References

	An Approach to Software EvolutionBased on Semantic Change
	Introduction
	Change-Based Object-Oriented Software Evolution
	Case Studies
	Detailing the Evolution of a Student Project

	Discussion
	Related Work
	Tool Implementation
	Conclusion and Future Work

	A Simulation-Oriented Formalization for aPsychological Theory
	Introduction
	Formalization Process
	A Brief Introduction to Behavior Analysis
	Results
	Specification Overview
	Specification: Main Elements

	Discussion

	Integrating Performance and Reliability Analysisin a Non-Functional MDA Framework
	Introduction
	Non-Functional MDA Framework
	Tool Support for the NFMDA Framework
	Two NFMDA Framework Instances
	Performance Analysis in MDA
	Reliability Analysis in MDA

	Conclusions

	Information Preserving BidirectionalModel Transformations
	Introduction
	Review of Triple Rules and Triple Graph Grammars
	Case Study: CD2RDBM Model Transformation
	Information Preserving Forward and Backward Transformations
	General Theory of Triple Graph Transformations
	Triple Graph Transformations as Instantiation of Adhesive HLR Categories
	Proof of Theorem 1

	Related Work and Conclusion

	Activity-Driven Synthesis of State Machines
	Introduction
	Scenarios
	Generating Behaviours from Scenarios
	Integrating Behaviours into I/O-Automata
	I/O-Automata
	Feedback

	Translating I/O-Automata into UML 2.0 State Machines
	Related Work
	Conclusions and Future Work

	Flexible and Extensible Notations for ModelingLanguages
	Introduction
	Mini-Lustre: The Host Language
	Mini-Lustre Extensions
	Tables
	Equals Clauses
	State Variables
	Events
	Scenario Implementations

	Discussion
	Related Work

	Conclusion

	Declared Type Generalization Checker:An Eclipse Plug-In for Systematic Programming withMore General Types
	The Problem: Too Strong Coupling Due to Overly SpecificTypes
	The Solution: The Declared Type Generalization Checker
	Generation of Warnings
	Provision of Quick Fixes
	Algorithms Computing More General Types

	Performance Evaluation
	Extending the Declared Type Generalization Checker
	Availability
	References

	S2A: A Compiler for Multi-modal UMLSequence Diagrams
	Introduction
	Overview of S2A
	Conclusions and Future Work

	Scenario-Driven Dynamic Analysisof Distributed Architectures
	Introduction
	Related Work
	Model-Driven Engineering
	Software Architecture

	Reconceptualization of ADLs
	ADLs as Domain-Specific Modeling Languages
	Architectural Analyses as Model Interpreters

	The XTEAM Tool-Chain
	Composing ADLs and Implementing a Model Interpreter Framework
	Domain-Specific Extensions and Architectural Analyses

	Discussion
	Providing Design Rationale
	Weighing Architectural Trade-Offs
	Understanding Compositions of Off-the-Shelf Components

	Conclusions
	References

	Enforcing Architecture and DeploymentConstraints of Distributed Component-BasedSoftware
	Introduction
	Formalizing Architectural Choices During Development
	Architectural Choices at Architecture Design Stage
	Architectural Choices at Component Design Stage
	Architectural Choices at Component Implementation Stage
	Resource and Location Requirements at Deployment Stage

	Preserving Architectural Choices at Runtime
	From Architectural Constraints to Runtime Constraints
	Deployment Process: A Centralized Evolution
	Deployment Evolution in a Partitioned Network

	Implementation Status and Results
	Related Work
	Conclusion and Future Work

	A Family of Distributed Deadlock AvoidanceProtocols and Their Reachable State Spaces
	Introduction
	Computational Model
	A Family of Local Protocols
	Allocation Sequences
	Reachable State Spaces
	Preference Orders
	Reachable States

	Applications and Conclusions

	Precise Specification of Use Case Scenarios
	Introduction
	Example of Use Case Charts
	Use Case Chart Syntax
	Abstract Syntax for Scenario Charts (Level-2)
	Abstract Syntax for Use Case Charts (Level-1)

	Use Case Chart Semantics
	Semantics of UML2.0 Interaction Diagrams (Level-3)
	Semantics of Scenario Charts (Level-2)
	Semantics of Use Case Charts (Level-1)

	Related Work
	Conclusion

	Joint Structural and Temporal Property SpecificationUsing Timed Story Scenario Diagrams
	Introduction
	Specifying Structural Properties
	Specifying Temporal Properties
	Specification Pattern System
	Deriving Specifications from Textual Requirements
	Conclusion and Future Work

	SDL Profiles – Formal Semantics and ToolSupport
	Introduction
	Language Definition of SDL
	Specification and Description Language (SDL)
	Abstract State Machines

	Outline of the Extraction Approach for SDL Profiles
	Formalisation
	Reduction Profile
	Formalisation Signature
	Formal Definition of true and false
	Formal Reduction of ASM Rules

	Consistency of SDL Profiles
	SDL-Profile Tool
	Tool Chain
	Application of the SDL-Profile Tool

	Related Work
	Conclusions and Outlook

	Preliminary Design of BML: A BehavioralInterface Specification Language for JavaBytecode
	Introduction
	A Short Overview of JML
	The Bytecode Modeling Language
	Encoding BML Specifications in the Class File Format
	Compiling JML Specifications into BML Specifications
	Conclusions and Related Work

	A Service Composition Constructto Support Iterative Development
	Introduction
	Related Work
	The Approach
	The Task-Service Construct
	The Graphical Composition Language

	Using the Composition for Service Discovery
	Using the Composition for Execution
	Implementation in SERCS
	Discussion
	Conclusions and Future Work

	Correlation Patterns in Service-OrientedArchitectures
	Introduction
	Classification Framework
	Correlation Mechanisms
	Function-Based Correlation
	Chained Correlation
	Aggregation Functions

	Conversation Patterns
	Process Instance to Conversation Relationships
	Assessment of BPEL 1.1 and BPEL 2.0
	Related Work
	Conclusion and Outlook

	Dynamic Characterization of Web ApplicationInterfaces
	Introduction
	Methodology
	Classifying Responses
	Discovering Inferences
	Selecting Requests

	Empirical Evaluation
	Objects of Analysis
	Variables and Measures
	Design and Setup
	Results

	Related Work
	Conclusion

	A Prioritization Approach for SoftwareTest Cases Based on Bayesian Networks
	Introduction
	Problem Statement
	Proposed Approach
	Building Bayesian Network
	Background: Bayesian Network
	Proposed BN Model
	Nodes.
	Arcs.
	CPT.

	Experiment
	Prioritization Environment
	Experiment Setup
	Subject Program.
	Evaluation Metric.
	Prioritization Techniques.

	Discussion on Obtained Results

	Related Work
	Conclusion and The Future Work

	Redundancy Based Test-Suite Reduction
	Introduction
	Preliminaries
	Test-Suite Reduction
	Model-Checker Based Testing

	Test-Suite Redundancy
	Identifying Redundancy
	Removing Redundancy

	Empirical Evaluation
	Experiment Setup
	Lossy Minimization with Model-Checkers
	Results

	Conclusion

	Testing Scenario-Based Models
	Introduction
	LSCs and Play-Out Definitions
	Execution Configurations
	The Testing Environment
	Test Recording Methods
	Applications and Testing Methodology
	Related Work

	Integration Testing in Software Product LineEngineering: A Model-Based Technique
	Motivation
	Related Work
	Overview of the Technique
	Test Models
	Activities

	Generation of Integration Test Case Scenarios
	Abstraction of Variability (Activity D1)
	Generation of Significant Paths (Activity D2)
	Generation of the Optimal Path Combination (Activity D3)

	Evaluation of the Technique
	Design of the Experiment
	Validity Threats
	Performance of the Technique
	Benefit of the Technique

	Conclusion and Outlook
	References

	Practical Reasoning About Invocations andImplementations of Pure Methods
	Introduction
	Encoding of Pure Methods and Their Return Values
	Practical Issues of Method Functions
	Well-Founded Definitions of Method Functions
	Tension Between Dynamic Execution and Static Verification

	The Boogie Methodology
	Encoding Lightweight Read-Effects
	Preconditions and Frame Conditions for Pure Methods
	Consequences of the Standard Precondition
	Frame Conditions of Pure Methods

	Related Work and Conclusion

	Finding Environment Guarantees
	Introduction
	Background
	Environment Guarantees
	Environment Guarantees: Modeling and Algorithms
	Logics for Open Systems
	Representing an Open System as a State-Transition Graph
	Checking for Environment Guarantees

	Implementation
	Case Study: Checking the TCAS II System
	Related Work and Discussion
	Conclusion and Future Work

	Ensuring Consistency Within Distributed GraphTransformation Systems
	Introduction
	Specifying Distributed Systems with GTS
	Architecture of a Distributed System
	Structure of a Distributed System
	Modeling the Behavior
	Execution of Distributed Transformations

	Meta-transformations
	The Meta-transformation Approach
	Examples
	Evaluation

	Related Work
	Conclusion

	Maintaining Consistency in LayeredArchitectures of Mobile Ad-Hoc Networks
	Introduction
	Scenario: Emergency Management
	Layered Architectures of Mobile Ad-Hoc Networks
	Concepts and Results for Layer Consistency
	Consistent Layer Environment
	Transformations at Different Layers
	Maintaining Consistency

	Conclusion

	Towards Normal Design for Safety-CriticalSystems
	Introduction
	Background and Related Work
	Problem Oriented Software Engineering
	A Problem-Oriented Approach to Safety Analysis

	The Case Study
	The process
	A DC Candidate Architecture
	Problem Simplification
	Formalising the Requirements
	Preliminary Safety Analysis (PSA)

	Discussion and Conclusions

	A Clustering-Based Approach for TracingObject-Oriented Design to Requirement
	Introduction
	Approach Description
	Representing Use Case and Classes
	Building Cluster
	Matching Cluster to Use Case
	Supplementing Cluster

	A Case Study
	Experiment Clustering-Based Approach
	Comparing Clustering-Based Approach with Non-clustering Approach

	Related Work
	IR-Based Traceability Identification
	Clustering-Based IR Technology

	Conclusions and Future Works
	References

	Measuring and Characterizing Crosscutting inAspect-Based Programs: Basic Metrics andCase Studies
	Introduction
	Aspect Oriented Programming
	Static Crosscuts
	Dynamic Crosscuts

	Basic Crosscutting Metrics
	Abstract Program Structure
	Auxiliary Functions
	Program Structure Metrics
	Feature Crosscutting Metrics
	Homogeneous vs. Heterogeneous Features

	Case Studies
	Program Structure Metrics
	Feature Crosscutting Metrics

	Collaborations and Heterogeneous Features
	Related Work
	Conclusions and Future Work
	References

	Author Index

