
Self-organizing Software Components
in Distributed Systems

Ichiro Satoh

National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

ichiro@nii.ac.jp

Abstract. This paper presents a framework for deploying software components
over a distributed system by using the notion of dynamics between components.
It enables an application to be composed of one or more mobile components that
can be deployed to different computers when the application is being executed.
The key idea behind the framework is to provide components with deployment
policies corresponding to gravitational and repulsive forces. The polices control
the relocation relation between two components. As a result, a federation of dis-
tributed components can be moved and changed over a distributed system in a
self-organizing manner. This paper also presents a prototype implementation of
the approach and its applications.

1 Introduction

Distributed computing systems are composed of a number of software components
running on different computers and interacting with one another via a network. The
scale and complexity of modern distributed systems impair our ability to deploy com-
ponents to appropriate computers using traditional approaches, such as those that are
centralized and top-down. The structure of a distributed system may also be frequently
changed by adding or removing components and changing the network topology. Ap-
plications, which consist of components running on different computers, must adapt to
such changes. When computers are about to shut down, for example, the components
running on them must be deployed elsewhere. Moreover, the requirements of the ap-
plications tend to vary and changed dynamically. For example, users in a ubiquitous
computing setting may also want to constantly interact with their applications running
on nearby stationary computers. When they move from location to location, the com-
ponents that the application consists of should be dynamically deployed at computers
that are near their current position and can offer the computational resources required
by the components.

To solve these problems, we have developed a framework for dynamically dispers-
ing software components over a distributed system. It provides components with their
own relocation policies without the need of any global policies. As a result, it en-
ables individual components or a group of components to migrate over a network in a
self-organizing manner without losing their previous coordination. We have presented
earlier versions of the framework in this paper in our previous papers [13,15]. These
previous versions supported the attachment of components to other components, but not

P. Lukowicz, L. Thiele, and G. Tröster (Eds.): ARCS 2007, LNCS 4415, pp. 185–198, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

186 I. Satoh

the detachment of components, unlike this version. This problem is serious in imple-
menting load-balancing and in fault-tolerant systems. The framework supports a mech-
anism for distributing components in addition to that for organizing a moving mass of
components.

This paper describes our design goals (Section 2), the design of the framework,
and a prototype implementation (Section 3). We also describe our experience with it
(Section 4). We then briefly review related work (Section 5), provide a summary, and
discuss some future issues (Section 6).

2 Basic Approach

Most modern large-scale systems consist of software components, which may run on
different computers over a distributed system. The deployment of software components
which a system consists of, seriously affects what a system can achieve and how ef-
ficiently it can achieve this. These components also need to be dynamically deployed
and replaced at computers without them losing any previous coordination according
to changes in the structure of the distributed system and the requirements of the sys-
tem’s applications. However, it is almost impossible for any centralized management
systems to deploy components at appropriate computers because the systems have no
global view of the distributed system as a whole. To solve this problem, our framework
introduces two metaphors, i.e., gravitational and repulsive forces between components
(Fig. 1). The former deploys components that coordinate with one another at the same
computers or those nearby even when they move to other locations. The latter prevents
specified components from being at the same or nearby computers. These component-
deployment approaches are specified and managed as a relocation relationship between
two components. That is, the framework enables each component to explicitly specify
a deployment policy for its own migration as relocation between its current location
and another component’s location. An aggregation of components, each with its own
deployment policies, can change its structure and move over a distributed system in
response to changes in the underlying system and the requirements of the system’s
applications. All the deployment policies presented in this paper are managed in a non-
centralized manner to maintain scalability and reliability.

Most interactions between components in object-oriented systems within a computer
can be covered by three primitives: event passing, method invocation, and stream com-
munication. Our framework enables these primitives to be available in partitioned sys-
tems on different computers. Achieving syntactic and (partial) semantic transparency
for remote interactions requires the use of proxy objects that have the same interfaces
as the remote components. The framework introduces such objects, called references, to
track possibly moving targets and to interact with the these through the three primitives.

Remark
This framework was inspired by our earlier versions presented in previous papers
[13,15]. The previous papers aimed at presenting the middleware for building and op-
erating a large-scale system as a federation of one or more mobile components like
the framework presented here, but they addressed ubiquitous computing environments

Self-organizing Software Components in Distributed Systems 187

Fig. 1. Gravitational and repulsive policies

whose computers are heterogenous rather than large-scale distributed systems. The pre-
vious versions offered some of the gravitational relocation policies supported by this
framework, but lacked any of the repulsive policies, which are essential in support-
ing load-balancing and fault-tolerant mechanisms. In fact, when many components are
organized and deployed over a distributed system by only using the gravitational relo-
cation policies, they tend to gather at several computers.

3 Design and Implementation

This framework consists of two parts: runtime systems and components. Each compo-
nent in the current implementation is a collection of Java objects.

3.1 Component Runtime System

Each runtime system is running on a computer and is responsible for executing and
migrating components to other computers. It establishes at most one TCP connection
with each of its neighboring computers and exchanges control messages, components,
and inter-component communications with these through the connection. Fig. 2 outlines
the basic structure of a runtime system. Each component in the current implementation
is a collection of Java objects in the standard JAR file format and can migrate from
computer to computer and duplicate itself by using mobile agent technology [9].1 When
a component is transferred over the network, the component runtime system on the
sending side marshals the code of the component and its state, e.g., instance variables in
Java objects, into a bit-stream and then transfers them to the destination. The component
runtime system on the receiving side receives and unmarshals the bit-stream so that the
component can continue to be executed at the destination.

3.2 Component Programming Model

Each component runtime system governs all the components inside it and maintains
their life-cycle states. When the life-cycle state of a component changes, e.g., when it is

1 JavaBeans can easily be translated into components in the framework.

188 I. Satoh

Fig. 2. Component runtime system

created, terminates, or migrates to another computer, the runtime system issues specific
events to the component. This is because the component may have to acquire various re-
sources, e.g., files, windows, or sockets, or release ones it had previously acquired. The
current implementation uses Java’s object serialization package for marshaling compo-
nents. This package can save the content of instance variables in a component program
but does not enable the stack frames of threads to be captured. Consequently, runtime
systems cannot serialize the execution states of any thread objects. Instead, when a com-
ponent is marshaled or unmarshaled, the runtime system propagates certain events to its
components instructing them to stop their active threads and it then automatically stops
and marshals them after a given period of time. Each component must be an instance of
a subclass of the MComponent class. Here, we will explain the programming interface
characterizing the framework.

class MComponent extends MobileAgent implements Serializable {
void go(URL url) throws NoSuchHostException { ... }
void duplicate() throws IllegalAccessException { ... }
setPolicy(ComponnetProfile cref, MigrationPolicy mpolicy) { ... }
setTTL(int lifespan) { ... }
void setComponentProfile(ComponentProfile cpf) { ... }
boolean isConformableHost(HostProfile hfs) { ... }
void send(URL url, ComponentID id, Message msg) throws
NoSuchHostException, NoSuchComponentException, ... { }

Object call(URL url, ComponentID id, Message msg) throws
NoSuchHostException, NoSuchComponentException, ... { }

....
}

A component executes go(URL url) to move to the destination host specified as
a url by its runtime system, and duplicate() creates a copy of the component,
including its code and instance variables. The setTTL() specifies the life span, called
time-to-live (TTL), of the component. The life span decrements TTL over time. When
the TTL of a component reaches zero, the component automatically removes itself.

Self-organizing Software Components in Distributed Systems 189

Component migration

Component BComponent A

Component migration

Computer 2Computer 1

Follow policy

Component BComponent A

Computer 3Computer 2Computer 1

Component migration

Component migration

Shift policy

Follow policy Shift policy

Component AComponent BComponent A

Component migration

Component BComponent A
Component migration

Computer 2Computer 1

Dispatch policy

Component BComponent A

Computer 3Computer 2Computer 1

Component migration

Component migration

Fill policy

Dispatch policy Fill policy

Component B
Component A

clone

Component A

clone

Step 1

Step 2

Step 1

Step 2

Step 1

Step 2

Step 1

Step 2
Component B

Component B

Component AComponent A

Fig. 3. Gravitational policies

Each component can have more than one listener object that implements a specific
listener interface to hook certain events issued before or after changes are made in its
life-cycle state. That is, each component host invokes the specified callback methods of
its components when the components are created, destroyed, or migrate to another host.

3.3 Component Deployment Policy

A component can declare its own deployment policy by invoking the setPolicy
method of the MComponent class while a component is running .

Let us now explain four gravitational policies (Fig. 3).

– If one component declares a follow policy for another, when the latter exists or
migrates to a host, the former migrates to the latter’s current or destination host.

– If a component declares a dispatch policy for another, when the latter migrates to
another host, a copy of the former is created and deployed at the latter’s destination
host.

– If a component declares a shift policy for another, when the latter migrates to an-
other host, the former migrates to the latter’s source host.

– If a component declares a fill policy for another, when the latter migrates to another
host, a copy of the former is created and deployed at the latter’s source host.

The framework allows each component to have at most one gravitational policy for at
most one component to reduce conflicts in individual or multiple policies. The follow
policy is useful when relationships between components comprising an application
need to be retained, and the fill policy is useful when components are distributed to
hosts along the tracks of moving components. The deployment of one component de-
pends on the location of another but the deployment of the latter does not need to depend

190 I. Satoh

on the location of the former. Instead, two components can explicitly declare policies
for each other. When a component is created, the dispatch and fill policies can explicitly
control whether the newly created component can inherit the state of its original.

We will next describe two repulsive policies. Each component can have more than
one repulsive policy in addition to either the shift or fill policy.

– If a component declares an exclusive policy for one or more components, when the
former and one of the latter are running on the same host, the former migrates to
another host on which the latter components are not running.

– If a component declares an extinct policy for one or more components, when the
former and one of the latter are running on the same host, the former terminates.

Fig. 4 illustrates these policies. If a component declares two or more polices, these
policies must have different targets. The first corresponds to repulsive force and the
second is used to eliminate components.

Components duplicated by the dispatch or fill policy have this policy for their original
components. Each component can specify a requirement that its destination host must
satisfy by invoking setComponentProfile(), with the requirement specified as
cpf, where it is defined in CC/PP (composite capability/preference profiles) form [17],
which describes the capabilities of the component host and the components’ require-
ments. The class has a service method called isConformableHost(), which the
component uses to determine whether the capabilities of the component host specified
as an instance of the HostProfile class satisfy it requirements. Runtime systems
transform the profiles into their corresponding LISP-like expressions and then evaluate
them by using a LISP-based interpreter. When a component migrates to the destination
according to its policy, if the destination cannot satisfy the requirements of the com-
ponent, the runtime system recommends candidates that are hosts in the same network
domain to the component. If a component declares repulsive policies in addition to a
gravitational policy, the runtime system detects the candidates using the latter’s pol-
icy and then recommends final candidates to the component using the former policy,
assuming that the component is in each of the detected candidates.

3.4 Component Deployment Management

The policy-based deployment of components is managed by each component host with-
out a centralized management server. Each component host periodically advertises its
address to the others through UDP multicasting, and these hosts then return their ad-
dresses and capabilities to the host through a TCP channel.2 (1) When a component
migrates to another component host, each component automatically registers its de-
ployment policy with the destination host. (2) The destination host sends a query mes-
sage to the source host of the visiting component. There are two possible scenarios:
the visiting component has a policy for another component or it is specified in another
component’s policies. (3-a) Since the source host in the first scenario knows the host
running the target component specified in the visiting component’s policy, it asks the

2 We assumed that the components comprising an application would initially be deployed at
hosts within a localized space smaller than the domain of a sub-network.

Self-organizing Software Components in Distributed Systems 191

Component migration

Component BComponent A
Component migration

Computer 3Computer 2

Exclusive policy

Computer 1

Exclusive policy

Component B

terminated

Component BComponent A
Component migration

Computer 2

Extinct policy

Computer 1

Extinct policyExclusive policy

Fig. 4. Repulsive policies

host to send the destination host information about itself and about neighboring hosts
that it knows, e.g., network addresses and capabilities. If the target host has retained
the proxy of a target component that has migrated to another location, it forwards the
message to the destination of the component via the proxy. (3-b) In the second scenario,
the source host multicasts a query message within current or neighboring sub-networks.
If a host has a component whose policy specifies the visiting component, it sends the
destination host information about itself and its neighboring hosts. (4) The destination
host next instructs the visiting component or its clone to migrate to one of the candi-
date destinations recommended by the target host, because this framework treats every
component as an autonomous entity. Moreover, when the capabilities of a candidate
destination do not satisfy all the requirements of the component, the component itself
decides, on the basis of its own configuration policy, whether it will migrate itself to
the destination and adapt itself to the destination’s capabilities. The destination of the
component may go into divergence or vibration mode due to conflicts between some of
a component’s policies, when it has multiple deployment policies. However, the current
implementation does not exclude such divergence or vibration.3

3.5 Intercomponent Communication

The current implementation offers two communication policies for intercomponent in-
teractions as follows:

– If a component declares a forward policy for another, when specified messages are
sent to other components, the messages are forwarded to the latter as well as the
former.

– If a component declares a delegate policy for another, when specified messages are
sent to the former, the messages are forwarded to the latter but not to the former.

The former policy is useful when two components share the same information and the
latter policy provides a master-slave relation between them. The framework provides
three interactions: publish/subscribe for asynchronous event passing, remote method
invocation, and stream-based communication as well as message forward and delegate

3 From our experience with several applications, most components in a system have at most a
gravitational or a repulsive policy. Therefore, we do not always feel the needs to resolve such
conflicts.

192 I. Satoh

Reference update message

Migration-
transparent
coordination

serviceReference

Component A

B

Migration-
transparent
coordination

service

Computer 1

Component B
A

Migration-
transparent
coordination

service

Component Host

Component B
A

Migration-
transparent
coordination

service
Reference

B

Suspend message

Reference

Step 1

Migration-
transparent
coordination

serviceReference

Component A

B

Migration-
transparent
coordination

service

Proxy for

Component B

Migration-
transparent
coordination

service

Migration-
transparent
coordination

service
Reference

Component C

B

Proxy creation

Step 2

Component migration

Component

B

Computer 2 Computer 3 Computer 4

Migration-
transparent
coordination

serviceReference

Component A

B

Migration-
transparent
coordination

service

Proxy for

Component B

Migration-
transparent
coordination

service

Component B
A

Migration-
transparent
coordination

service
Reference

Component C

BReference

Step 3

Arrival message

Suspend message

Reference update message

Resumption message

Migration-
transparent
coordination

serviceReference

Component A

B

Migration-
transparent
coordination

service

Migration-
transparent
coordination

service

Component B
A

Migration-
transparent
coordination

service
Reference

Component C

BReference

Step 4

Arrival message
Resumption message

Component C

Fig. 5. Forwarding messages to migrated component

policies. Each runtime system offers a remote method invocation (RMI) mechanism
through a TCP connection. It is implemented independent of Java’s RMI because this
has no mechanisms for updating references for migrating components. Each runtime
system can maintain a database that stores pairs of identifiers of its connected com-
ponents and the network addresses of their current runtime systems. It also provides
components with references to the other components of the application federation to
which it belongs. Each reference enables the component to interact with the component
that it specifies, even if the components are on different hosts or move to other hosts.

Fig. 5 shows an approach enabling communication between a component moving
from computer 2 to 3 and two components at computers 1 and 3. When a component,
i.e., component B, requests the current runtime system to migrate to another computer,
the system searches its database for the network addresses of runtime systems with
components, i.e., computer 1 and 4. 1) It sends suspend messages to these systems to
block any new uplinks from them to the migrating component with the destination’s ad-
dress. If the moving component contains references, the current runtime system sends
the destination’s address to the runtime systems that are running the components speci-
fied in the references so that they can update their databases. 2) It creates its own proxy
at its current location and It migrates to its destination. 3) After the component arrives at
its destination, it sends an arrival message with the network address of the destination
to the departure runtime system and then update messages to the systems. 4) When the
departure system receives the arrival message, it sends resumption messages with the
address of the destination to runtime systems that may hold references to the moved
component and then remove the proxy.

When a component begins to interact with another that is moving, the former can
send messages to the source of the one that is moving before the basic algorithm above

Self-organizing Software Components in Distributed Systems 193

is completed. To solve this, a migrating component creates and leaves a proxy at the de-
parture runtime system for the duration it takes the algorithm to finish. The proxy com-
ponent receives uplinks from other runtime systems and forwards them to the moved
component. Since not all components have to be tracked for other components to com-
municate with them, components can leave proxy components along their trail under
their own control. Proxy components are also programmable entities, like components,
so they can be modified based on application requirements.

3.6 Security

The current implementation is a prototype system to dynamically deploy the compo-
nents presented in this paper. Nevertheless, it has several security mechanisms. For
example, it can encrypt components before migrating them over the network and it can
then decrypt them after they arrive at their destinations. Moreover, since each compo-
nent is simply a programmable entity, it can explicitly encrypt its individual fields and
migrate itself with these and its own cryptographic procedure. The Java virtual machine
could explicitly restrict components so that they could only access specified resources
to protect computers from malicious components. Although the current implementation
cannot protect components from malicious computers, the runtime system supports au-
thentication mechanisms to migrate components so that all runtime systems can only
send components to, and only receive from, trusted runtime systems.

3.7 Current Status

A prototype implementation of this framework was constructed with Sun’s Java Devel-
oper Kit, version 1.4 or later version.4 Although the current implementation was not
constructed for performance, we evaluated the migration of two components based on
deployment policies. When a component declares a follow, dispatch, shift, or fill pol-
icy for another, the cost of migrating the former or its clone to the destination or the
source of the latter after the latter begins to migrate is 92 ms, 116 ms, 89 ms, 118 ms,
or 136 ms if the policy is follow, dispatch, shift, fill, or exclusive, where the cost of
component migration between two computers over a TCP connection is 35 ms and the
cost of duplicating a component in a computer was less than 7 ms.5 This experiment
was done with three computers (Pentium M-1.8 GHz with Windows XP and JDK ver.5)
connected through a Fast Ethernet network. Migrating components included the cost of
opening a TCP-transmission, marshaling the components, migrating them from their
source computers to their destination computers, unmarshaling them, and verifying
security.

4 Experience

This section presents several example applications that illustrate how the framework
works.

4 The functionalities of the framework, except for subscribe/publish-based remote event passing,
can be implemented on Java Developer Kit version 1.1 or later, including Personal Java.

5 The size of each of the three components was about 8 KB in size.

194 I. Satoh

4.1 Dynamic Deployment for Duplicated Servers

We can easily implement distributed systems. Here, we present a fault-tolerant HTTP-
based server to illustrate the use of these policies by combining gravitational policies,
repulsive policies, and communication policies. Each component supports an HTTP
server. It is a clonable component, where it and its clone declare forward policies for
each other and its clone declares an exclusive policy for it. When a component is dupli-
cated at a host, a clone is created at the host, but its exclusive policy deploys the clone
at another host to distribute the original and cloned components at different computers
to ensure tolerance against faults. When one of these receives messages from external
systems, their forward policies send the messages to another so that they can share the
same states. After the component duplicates itself, the cost of deploying its clone at an-
other host is about 280 ms in the distribution system presented in the previous section.6

This does not include the cost of terminating and restarting the HTTP server. The cost
of forwarding a message is about 28 ms, where this is measured as the round-trip time
and the message has no value. If the components declare delegate policies, they can
support a master-slave instead of a duplication model.

4.2 Ant-Based Routing Mechanisms

Ants are able to locate a path to a food source using the trails of chemical substances
called pheromones that are deposited by other ants. Several researchers have attempted
to use the notion of ant pheromones for network-routing mechanisms [1,2]. Our frame-
work allows moving components to leave themselves on their trails and to become
automatically volatile after their life-spans are over. A component corresponding to an
ant, A, corresponding to a pheromone is attached to another component corresponding
to an ant according to the fill policy. When the latter component randomly selects its
destination and migrates to the selected destination, the former creates a clone and mi-
grates to the source host of the latter. Since each of the cloned components defines its
life-span by invoking setTTL(), they are active for a specified duration after being
created. If there are other components corresponding to pheromones in the host, the vis-
iting component adds their time spans to its own time span. When another component
corresponding to another ant migrates over the network, it can select a host that has
components corresponding to pheromones with the longest time-spans from neighbor-
ing hosts. We experimented with ant-based routing for components using this prototype
implementation with more than eight hosts. However, we knew that it would be difficult
to quickly converge a short-path to the destination in real distributed systems, because
routing mechanisms tend to diverge.

4.3 Component Diffusion in Sensor Networks

The third example is the speculative deployment of components like cell-lamellipodia.
This provides a mechanism that dynamically and speculatively deploys components at
sensor nodes when there are environmental changes. This mechanism was inspired by

6 This experiment assumes that the destination of the clone has been statically derived.

Self-organizing Software Components in Distributed Systems 195

Component AComponent B

Computer 4Computer 3Computer 2Computer 1

Fill policy

Component duplication and migration

Step 1

Component migration

Fill policyStep 2

Step 3 Fill policy

Step 4 Fill policy
Component migration

Step 5

Component duplication and migration

Fill policy

A

A

A

A

B

B

B'

B'

B''

TTL

TTL

TTL

TTL

A

Fig. 6. Implementation of ant-based routing mechanism

lamellipodia in cells. It assumes that the sensor field is a two-dimensional surface com-
posed of sensor nodes and it monitors environmental changes, such as motion in objects
and variations in temperature. It is a well known fact that after a sensor node detects
environmental changes in its area of coverage, some of its geographically neighboring
nodes tend to detect similar changes after a period of time. It deploys monitoring com-
ponents at sensor nodes, where each monitoring component can control and monitor its
current sensor node and has its own TTL. Diffusion occurs as follows. When a compo-
nent detects the presence of its target, it creates a specified number of its clones, e.g.,
two clones, where this number depends on the number of neighboring sensor nodes
(Fig. 7). Each of the clones declares an exclusive policy for other monitoring compo-
nents. It must migrate to a neighboring node according to the policy, because its original
monitoring component is running on its current node. As a result, these clones are de-
ployed at neighboring nodes around the target. When the target moves to another loca-
tion, the monitoring components located at the nodes near the target detect the presence
of the target and create their clones in the same way. We can provide application-specific
components that declares a follow policy to monitor components. These components
can be automatically deployed at nodes near the entity to annotate and assist the target.
Each clone is associated with a resource limit that functions as a generalized TTL field.
Although a node can monitor changes in interesting environments, it sets the TTLs of
its components to their own initial values. It otherwise decrements TTLs as the passage
of time. When the TTL of a component becomes zero, the component automatically
removes itself.

196 I. Satoh

Fig. 7. Component diffusion for moving entity

5 Related Work

There have been several attempts to develop infrastructures for dynamically deploying
components between computers in large-scale computing environments, e.g.,
workstation-clusters and grid computing. Most of them have aimed at dynamically de-
ploying partitioned applications or systems to different computers in distributed systems
to balance computational loads or network traffic. However, as they have explicitly or
implicitly assumed centralized management approaches to deploying partitioned appli-
cations or systems to different computers, they have not allowed all partitioned appli-
cations or systems to have its own deployment approaches.

Of these, the FarGo system introduces a mechanism for distributed applications dy-
namically laid out in a decentralized manner [5]. This is similar to our relocation policy
in the sense that it allows all components to have their own policies, but it is aimed at
allowing one or more components to control a single component, whereas ours aims
at allowing one component to describe its own migration. This is because our frame-
work treats components as autonomous entities that travel from computer to computer
under their own control. This difference is important, because FarGo’s policies may
conflict if two components can declare different relocation policies for one single com-
ponent. Our framework is free of any conflict because each component can only declare
a policy for its own relocation, and not for other components. Several researchers have
introduced the dynamic deployment of partitioned applications as a technology that
enables distributed computers to support various services, which they may not have
initially been designed for, rather than to balance computational loads and traffic in a
distributed system. For example, the Aura project [4] by CMU provides an infrastruc-
ture for binding tasks associated with users and migrating applications from computer to
computer as users move about, like our framework does. Although Aura shares several
common design goals with our framework, it focuses on providing contextual services
to users rather than on integrating multiple computers to support functions and per-
formance unattainable with a single computer. Like our framework, the Gaia project by
the University of Illinois at Urbana-Champaign allows applications to be partitioned be-
tween different computers and move from computer to computer [8]. Gaia assumes that

Self-organizing Software Components in Distributed Systems 197

applications will be constructed based on a design pattern, called MPACC, which is is
an extension of the MVC pattern [6], whereas our framework supports a variety of inter-
actions between partitioned applications so that we do not have to assume any particular
application model.

6 Conclusion

We described a framework for dynamically aggregating distributed applications in a
distributed system based on physical dynamics. It was used to build an application
from mobile software components, which can explicitly have policies for their own
deployment. It enables a federation of components to be dynamically structured in a
self-organized manner and to be deployed at computers as components that have gravi-
tational and repulsive forces between them. We designed and implemented a prototype
system for the framework and demonstrated its effectiveness in several practical appli-
cations. We believe that the framework provides a general and practical infrastructure
for building distributed and mobile applications.

In concluding, we would like to identify further issues that need to be resolved. The
current implementation relies on Java’s security manager. Nevertheless, we are inter-
ested in security mechanisms for components that have their own deployment policies
and plan on introducing various such policies to support adaptive applications over a
distributed system. We also proposed a specification language for the itinerary of mo-
bile software [14]. The language enables more flexible and varied policies for deploying
the components to be defined.

References

1. O. Babaoglu and H. Meling and A. Montresor, Anthill: A Framework for the Development
of Agent-Based Peer-to-Peer Systems, Proceeding of 22th IEEE International Conference on
Distributed Computing Systems, July 2002.

2. G. Di Caro and M. Dorigo, AntNet: A Mobile Agents Approach to Adaptive Routing, Pro-
ceedings of Hawaii International Conference on Systems, pp.74-83, Computer Society Press,
January, 1998.

3. E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns, Addison-Wesley, 1995.
4. D. Garlan, D. Siewiorek, A. Smailagic, and P. Steenkiste, Project Aura: Towards Distraction-

Free Pervasive Computing, IEEE Pervasive Computing, vol. 1, pp. 22-31, 2002.
5. O. Holder, I. Ben-Shaul, and H. Gazit, System Support for Dynamic Layout of Distributed

Applications, Proceedings of International Conference on Distributed Computing Systems
(ICDCS’99), pp 403-411, IEEE Computer Soceity, 1999.

6. G. E. Krasner and S. T. Pope, A Cookbook for Using the Model-View-Controller User In-
terface Paradigma in Smalltalk-80, Journal of Object Oriented Programming, vol.1 No.3, pp.
26-49, 1988.

7. M. Román, C. K. Hess, R. Cerqueira, A. Ranganat R. H. Campbell, K. Nahrstedt K, Gaia:
A Middleware Infrastructure to Enable Active Spaces, IEEE Pervasive Computing, vol. 1,
pp.74-82, 2002.

8. M. Román, H. Ho, R. H. Campbell, Application Mobility in Active Spaces, Proceedings of
International Conference on Mobile and Ubiquitous Multimedia, 2002.

198 I. Satoh

9. I. Satoh, MobileSpaces: A Framework for Building Adaptive Distributed Applications Us-
ing a Hierarchical Mobile Agent System, Proceedings of IEEE International Conference on
Distributed Computing Systems (ICDCS’2000), pp.161-168, April 2000.

10. I. Satoh, Building Reusable Mobile Agents for Network Management, IEEE Transactions on
Systems, Man and Cybernetics, vol.33, no. 3, part-C, pp.350-357, August 2003.

11. I. Satoh, Configurable Network Processing for Mobile Agents on the Internet, Cluster Com-
puting, vol. 7, no.1, pp.73-83, Kluwer, January 2004.

12. I. Satoh, Linking Phyical Worlds to Logical Worlds with Mobile Agents, Proceedings of
IEEE International Conference on Mobile Data Management (MDM’2004), pp. 332-343,
IEEE Computer Society, January 2004.

13. I. Satoh, Dynamic Federation of Partitioned Applications in Ubiquitous Computing Environ-
ments, Proceedings of 2nd International Conference on Pervasive Computing and Commu-
nications (PerCom’2004), pp.356-360, IEEE Computer Society, March 2004.

14. I. Satoh, Selection of Mobile Agents, Proceedings of IEEE International Conference on Dis-
tributed Computing Systems (ICDCS’2004), pp.484-493, IEEE Computer Society, March
2004.

15. I. Satoh, Organization and Mobility in Mobile Agent Computing, Programming Multi-Agent
Systems (Postproceedings of 3rd Workshop on ProMAS’05), Lecture Notes in Computer
Science, vol. 3862, pp.187-205, April 2006.

16. C. Szyperski, Component Software, Addison-Wesley, 1998.
17. World Wide Web Consortium (W3C), Composite Capability/Preference Profiles (CC/PP),

http://www.w3.org/TR/NOTE-CCPP, 1999.

	Introduction
	Basic Approach
	Design and Implementation
	Component Runtime System
	Component Programming Model
	Component Deployment Policy
	Component Deployment Management
	Intercomponent Communication
	Security
	Current Status

	Experience
	Dynamic Deployment for Duplicated Servers
	Ant-Based Routing Mechanisms
	Component Diffusion in Sensor Networks

	Related Work
	Conclusion

