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Summary. In this article we present a brief overview of the nature of localized
solitary wave structures/solutions underlying integrable nonlinear dispersive wave
equations with specific reference to shallow water wave propagation and explore their
possible connections to tsunami waves. In particular, we will discuss the derivation of
Korteweg-de Vries family of soliton equations in unidirectional wave propagation in
shallow waters and their integrability properties and the nature of soliton collisions.

1 Introduction

The term ’tsunami’ which was perhaps an unknown word even for scientists in coun-
tries such as India, Srilanka, Thailand, etc. till recently has become a house-hold
word since that fateful morning of December 26, 2004. When a powerful earthquake
of magnitude 9.1-9.3 on the Richter scale, epicentered off the coast of Sumatra, In-
donesia, struck at 07:58:53 local time described as the 2004 Indian Ocean earthquake
or Sumatra-Andaman earthquake it triggered a series of devastating tsunamis as

high as 30 meteres that spread throughout the Indian Ocean killing about 2,75,000
people and inundating coastal communities across South and Southeat Asia, includ-
ing parts of Indonesia, Srilanka, India and Thailand and even reaching as far as the
east coast of Africa. The catastrophe is considered to be one of the deadliest diasters
in modern history (see Figs. 1 and 2 for some details 1) (1; 2).

Since this earthquake and consequent tsunamis, several other earthquakes of
smaller and larger magnitudes keep occurring off the coast of Indonesia. Even as
late as July 17, 2006 an earthquake of magnitude 7.7 on the Richter scale struck off
the town of Pangadaran at 15.19 local time and set off a tsunami of 2m high which
had killed more than 300 people.

These tsunamis, which can become monstrous tidal waves when they approach
coastline, are essentially triggered due to the sudden vertical rise of the seabed by
several meters (when earthquake occurs) which displaces massive volume of water.

1 Fig. 1 http:// www.blogaid.org.uk
Fig. 2a) http:// www.hinduonnet.com/gallery/0071/007108.htm
Fig. 2b) http:// www.bhoomikaindia.org
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Fig. 1. December 2004 Tsunami in Indian Ocean

(a)
(b)

Fig. 2. (a) Thiruvalluvar statue in Kanyakumari (in the southern tip of peninsular
India), height 133ft (b) Tsunami waves rising near the statue on December 26, 2004
(to almost its top)

The tsunamis behave very differently in deep water than in shallow water as pointed
out below. By no means the tsunami of 2004 and later ones are exceptional; More
than two hundred tsunamis have been recorded in scientific literature since ancient
times. The most notable earlier one is the tsunami triggered by the powerful earth-
quake ( 9.3 magnitude) off southern Chile on May 22, 1960 (3); Fifteen hours after
the devastating earthquake, the tsunami hit Hawai (namely 10,000 kms away from
the epicenter of earthquake), killing 61 people. Seven hours later, the Japanese is-
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lands of Honshu and Hokkaido were struck by a wall of water 21-feet high and 197
people drowned.

It is clear from the above events that the tsunami waves are fairly permanent
and powerful waves, having the capacity to travel extraordinary distances without
practically diminishing in size or speed. In this sense they seem to have considerable
resemblance to shallow water nonlinear dispersive waves, particularly solitary waves
and solitons. In particular, the Kortweg-de Vries family of nonlinear dispersive wave
equations admit such solitary waves and solitons and describe unidirectional wave
propagation in shallow waters, and it is appropriate to critically review the derivation
of KdV and related equations. We will also briefly mention the nature of the solitary
wave and soliton solutions and other integrability properties associated with KdV
family of equations, including variable KdV and recently derived Camassa-Holm
equation. Possible two dimensional generalizations will be also briefly touched.

The plan of the article is as follows. In sec.2, we will summarize the characteristic
properties of tsunami waves. In sec.3, we will critically analyse how the Korteweg-de
Vries equation was originally derived to describe the Scott-Russel phenomenon to
describe shallow water wave propagation. In sec.4, we will discuss the properties
of solitary waves and soliton solutions of the KdV equation. We will also briefly
touch upon the complete integrability properties of the KdV equation. In sec.5,
other interesting KdV type dispersive wave equations will be discussed. Finally, we
summarize the discussion in sec.6.

2 Basics of Tsunami Waves

As noted above tsunami (tsu: harbour, nami: wave) waves of the type described ear-
lier are essentially triggered by massive earthquakes which lead to vertical displace-
ment of a large volume of water. Other possible reasons also exist for the formation
and propagation of tsunami waves: underwater nuclear explosion, larger meteorites
falling into the sea, volcano explosions, rockslides, etc. But the most predominanat
cause of tsunamis appear to be large earthquakes as in the case of the Sumatra-
Andaman earthquake of 2004. Then there are three major aspects associated with
the tsunami dynamics:

1. Generation of tsunamis
2. Propagation of tsunamis
3. Tsunami run up and inundation

There exist rather successful models to approach the generation aspects of tsunamis
when they occur due to the earthquakes (4). Using the available seismic data it
is possible to reconstruct the permanent deformation of the sea bottom due to
earthquakes and simple models have been developed (see for example, the article of
F. Dias in this volume). Similarly the tsunami run up and unundation problems are
extremely complex and they require detailed critical study from a practical point of
view in order to save structures and lives when a tsunami strikes.

However, in this article we will be more concerned with the propagation of
tsunami waves and their possible relation to wave propagation associated with non-
linear dispersive waves in shallow waters. In order to appreciate such a possible
connection, we first look at the typical characteristic properties of tsunami waves as
in the case of 2004 Indian Ocean tsunami waves or 1960 Chilean tsunamis.
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Considering the Indian Ocean 2004 tsunami, satellite observations after a couple
of hours after the earthquake establish an amplitude of approximately 60 cms in the
open ocean for the waves. The estimated typical wavelength is about 200 kms (5).
The maximum water depth h is between 1 and 4 kms.

Consequently, one can identify the following small parameters (ε and δ2) of
roughly equal magnitude:

ε =
a

h
≈ 10−4 << 1, (1)

δ =
h

l
≈ 10−2 << 1 (2)

As a consequence, it is possible that a nonlinear shallow water wave theory
where dispersion also plays an important role has some relevance. However, we
also wish to point out here that there are other points of view: Constantin and
Johnson (6) estimate ε ≈ 0.002 and δ ≈ 0.04 and conclude that for both nonlinearity

and dispersion to become significant the quantity δε−
3
2×wavelength estimated as

90,000 kms is too large and shallow water equations with variable depth (without
dispersion) should be used. However, it appears that these estimates can vary over a
rather wide range and with suitable estimates it is possible that the range of 10,000
− 20,000 kms could be also possible ranges and hence taking into account the fact
that both the Indian Ocean 2004 and Chilean 1960 tsunamis have travelled over 10
hours or more before encountering land mass appears to allow for the possibility of
nonlinear dispersive waves as relevant features for the phenomena.

From this point of view in the next section we discuss the shallow water wave
theory to deduce KdV equation.

3 Scott Russel Phenomenon and KdV Equation

It is a folklore that the first scientificaly recorded observation of a solitary wave was
made by the Scottish naval engineer John Scott Russel in the year 1837 (7) when he
identified a large solitary heap of water travelling with undiminished speed or shape
over a distance in the Union Canal connecting the cities of Edinburg and Glasgow in
Scotland. He went on to repeat the phenomenon at the laboratory in a rectangular
channel of water by dropping wieghts at one end. By measuring the velocity and
height of the wave he also established a phenomenological relation connecting these
quantities which has stood the test of time.

In 1895, Kortweg and de Vries (8) considered the wave phenomenon underlying
the observations of Scott Russel, from first principles of fluid dynamics. The basic
features of their analysis can be summarized as follows (9; 10).

Consider the one-dimensional (x-direction) wave motion of an incompressible
and inviscid fluid (water) in a shallow channel of height h, and of sufficient width with
uniform cross-section leading to the formation of a solitary wave propagating under
gravity. Let the length of the wave be l and the maximum value of its amplitude,
η(x, t), above the horizontal surface be a (see Fig.3). Then we can introduce two
natural small parameters into the problem ε and δ as defined in Eqs. (1) and (2).
Then we can proceed with the analysis as follows.
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Fig. 3. One-dimensional wave motion in a shallow channel

A. Equation of Motion

The fluid motion can be described by the velocity vector

V(x, y, t) = u(x, y, t)i + v(x, y, t)j , (3)

where i and j are the unit vectors along the horizontal and vertical directions,
respectively. As the motion is irrotational, we have

∇ × V = 0 . (4)

Consequently, we can introduce the velocity potential φ(x, y, t) by the relation

V = ∇φ . (5)

(i) Conservation of Density

The system obviously admits the following conservation law for the mass density
ρ(x, y, t) of the fluid,

dρ

dt
= ρt + ∇ · (ρV) = 0 , (6)

where V(x, y, t) is the velocity vector of the fluid. As ρ is a constant, from (6) we
have

∇ · V = 0 . (7)

Then using (5) in (7), we find that φ obeys the Laplace equation

∇2φ(x, y, t) = 0 . (8)
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(ii) Euler’s Equation

As the density of the fluid ρ = ρ0 =constant, using Newton’s law for the rate of
change of momentum, we can write

dV

dt
=
∂V

∂t
+ (V · ∇)V

= − 1

ρ0
∇p− gj , (9)

where p = p(x, y, t) is the pressure at the point (x, y) and g is the acceleration due
to gravity, which is acting vertically downwards (here j is the unit vector along the
vertical direction). Making use of (5) in (9), we obtain (after one integration)

φt +
1

2
(∇φ)2 +

p

ρ0
+ gy = 0 . (10)

(iii) Boundary Conditions

The above two equations (8) and (9) or (10) for the velocity potential φ(x, y, t) of
the fluid have to be supplemented by appropriate boundary conditions, by taking
into account the fact (see Fig.2) that

(a) the horizontal bed at y = 0 is hard and
(b) the upper boundary y = y(x, t) is a free surface .

As a result
(a) the vertical velocity at y = 0 vanishes,

v(x, 0, t) = 0 , (11)

which implies (using (3) and (5))

φy(x, 0, t) = 0 . (12)

(b) As the upper boundary is free, let us specify it by y = h + η(x, t) (see Fig.2).
Then at the point x = x1, y = y1 ≡ y(x, t), we can write

dy1
dt

=
∂η

∂t
+
∂η

∂x
· dx1

dt
= ηt + ηxu1 = v1 . (13)

Since v1 = φ1y, u1 = φ1x, the last two parts of (13) can be rewritten as

φ1y = ηt + ηxφ1x . (14)

(c) Similarly at y = y1, the pressure p1 = 0. Then from (10), it follows that

u1t + u1u1x + v1v1x + gηx = 0 . (15)

Thus the motion of the surface of water wave is essentially specified by the
Laplace equation (8) and (10) along with one fixed boundary condition (12) and
two variable nonlinear boundary conditions (14) and (15). One has to then solve
the Laplace equation subject to these boundary conditions.
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(iv) Taylor Expansion of φ(x, y, t) in y

Making use of the fact δ = h/l � 1, h� l, we assume y(= h+ η(x, t)) to be small
to introduce the Taylor expansion

φ(x, y, t) =
∞X

n=0

ynφn(x, t) . (16)

Substituting the above series for φ into the Laplace equation (8), solving recursively
for φn(x, t)’s and making use of the boundary condition (14), φy(x, 0, t) = 0, one
can show that

u1 = φ1x = f − 1

2
y21fxx + higher order in y1 , (17)

v1 = φ1y = −y1fx +
1

6
y31fxxx + higher order in y1 , (18)

where f = ∂φ0/∂x. We can then substitute these expressions into the nonlinear
boundary conditions (13),(14) and (15) to obtain equations for f and η.

(v) Introduction of Small Parameters ε and δ

So far the analysis has not taken into account fully the shallow nature of the channel
(a/h = ε� 1) and the solitary nature of the wave (a/l = a/h ·h/l = εδ � 1, ε� 1,
δ � 1), which are essential to realize the Scott Russel phenomenon. For this purpose
we stretch the independent and dependent variables in the defining (13)–(15), (17)
and (18) through appropriate scale changes, but retaining the overall form of the
equations. To realize this we can introduce the natural scale changes

x = lx′ , η = aη′ (19)

along with

t =
l

c0
t′ , (20)

where c0 is a parameter to be determined. Then in order to retain the form of (17),
(18) we require

u1 = εc0u
′
1 , v1 = εδc0v

′
1 , f = εc0f

′ . (21)

We also have
y1 = h+ η(x, t) = h

`
1 + εη′

`
x′, t′

´´
. (22)

Substituting the transformations (19)–(22) into (17), we obtain

u′1 = f ′ − 1

2
δ2
`
1 + εη′

´2
f ′x′x′

= f ′ − 1

2
δ2f ′x′x′ , (23)

where we have omitted terms proportional to δ2ε as small compared to terms of the
order δ2. Similarly from (18), we obtain

v′1 = − `1 + εη′
´
f ′x′ +

1

6
δ2f ′x′x′x′ . (24)
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Now considering the nonlinear boundary condition (14) in the form

v1 = ηt + ηxu1 , (25)

it can be rewritten, after making use of the transformations (19)–(22) and neglecting
terms involving εδ2, as

η′t′ + f ′x′ + εη′f ′x′ + εf ′η′x′ − 1

6
δ2f ′x′x′x′ = 0 . (26)

Similarly considering the other boundary condition (16) and making use of the above
transformations, it can be rewritten, after neglecting terms of the order ε2δ2, as

f ′t′ + εf ′f ′x′ +
ga

εc20
η′x′ − 1

2
δ2f ′x′x′t′ = 0 . (27)

Now choosing the arbitrary parameter c0 as

c20 = gh (28)

so that η′x term is of order unity, (27) becomes

f ′t′ + η′x′ + εf ′f ′x′ − 1

2
δ2f ′x′x′t′ = 0 . (29)

For notational convenience we will hereafter omit the prime symbol in all the vari-
ables, however remembering that all the variables hereafter correspond to rescaled
quantities. Then the evolution equation for the amplitude of the wave and the func-
tion related to the velocity potential reads

ηt + fx + εηfx + εfηx − 1

6
δ2fxxx = 0 , (30)

ft + ηx + εffx − 1

2
δ2fxxt = 0 . (31)

Note that the small parameters ε and δ2 have occurred in a natural way in (30),
(31).

(vi) Perturbation Analysis

Since the parameters ε and δ2 are small in (30), (31), we can make a perturbation
expansion of f in these parameters:

f = f (0) + εf (1) + δ2f (2) + higher order terms , (32)

where f (i), i = 0, 1, 2, ... are functions of η and its spatial derivatives. Substituting
this into (30), (31) and regrouping, we obtain

ηt + f (0)
x + ε

h
f (1)

x + ηf (0)
x + ηxf

(0)
i

+ δ2
»
f (2)

x − 1

6
f (0)

xxx

–
+ higher order terms in (ε, δ2) = 0 , (33)

ηx + f
(0)
t + ε

h
f

(1)
t + f (0)f (0)

x

i
+ δ2

»
f

(2)
t − 1

2
f

(0)
xxt

–
+ higher order terms in (ε, δ2) = 0 . (34)
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In order that (33) and (34) are self consistent as evolution equations for an
one-dimensional wave propagating to the right, we can choose

f (0) = η +O
`
ε, δ2

´
, (35)

where O(ε, δ2) stands for terms proportional to ε and δ2. Then (33), (34) become

ηt + ηx + ε
h
f (1)

x + 2ηηx

i
+ δ2

»
f (2)

x − 1

6
ηxxx

–
= 0 , (36)

ηt + ηx + ε
h
f

(1)
t + ηηx

i
+ δ2

»
f

(2)
t − 1

2
ηxxt

–
= 0 , (37)

where higher order terms in ε and δ2 are neglected. Since f (1) and f (2) are functions
of η (and its spatial derivatives)

f (1)
x = f (1)

η ηx, f
(1)
t = f (1)

η ηt = −f (1)
η ηx +O

`
ε, δ2

´
= −f (1)

x , (38)

where in the last relation, (33), (34) have been used for ηt and ηx. Similarly, we can
argue that

f (2)
x = f (2)

η ηx, f
(2)
t = −f (2)

η ηx +O
`
ε, δ2

´
= −f (2)

x , (39)

Substituting (38), (39) into (36), (37) , we obtain

ηt + ηx + ε
h
f (1)

x + 2ηηx

i
+ δ2

»
f (2)

x − 1

6
ηxxx

–
= 0 , (40)

ηt + ηx + ε[−f (1)
x + ηηx] + δ2

»
−f (2)

x +
1

2
ηxxx

–
= 0 . (41)

Compatibility of these two equations require that

f (1)
x = −1

2
ηηx, f (2)

x =
1

3
ηxxx . (42)

Integrating, we find

f (1) = −1

4
η2, f (2) =

1

3
ηxx . (43)

Substituting f (1) and f (2) into (40), (41) , we ultimately obtain the KdV equation
in the form

ηt + ηx +
3

2
εηηx +

δ2

6
ηxxx = 0 , (44)

describing the unidirectional propagation of shallow water waves.

(vii) The Standard (Contemporary) Form of KdV Equation

Finally, changing to a moving frame of reference,

ξ = x− t, τ = t (45)

so that

∂

∂x
=
∂

∂ξ
,

∂

∂t
= − ∂

∂ξ
+
∂

∂τ
, (46)
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(44) can be rewritten as

ητ +
3

2
εηηξ +

1

6
δ2ηξξξ = 0 . (47)

Then introducing the new variables

u =
3ε

2δ2
η, τ ′ =

6

δ2
τ , (48)

(47) can be expressed as
uτ ′ + 6uuξ + uξξξ = 0 . (49)

Redefining the variables τ ′ as t and ξ as x, again for notational convenience, we
finally arrive at the ubiquitous form of the KdV equation as

ut + 6uux + uxxx = 0 . (50)

4 Solitary Wave, Solitons and Complete Integrability of

KdV equation

The Korteweg-de Vries equation (50) admits cnoidal wave solution and in the limit-
ing case solitary wave solution as well. More importantly, the KdV solitary wave is
a soliton : it retains its shape and speed upon collision with another solitary wave
of different amplitude, except for a phase shift (11). In fact for an arbitrary initial
condition, the solution of the Cauchy initial value problem consists of N-number
of solitons of different amplitudes in the background of small amplitude dispersive
waves. All these results ultimately lead to the result that the KdV equation is a
completely integrable, infinite dimensional, nonlinear Hamiltonian system. It pos-
sesses

(i) a Lax pair of linear differential operators and is solvable through the so called
inverse scattering transform (IST) method (12),

(ii) infinite number of conservation laws and associated infinite number of involutive
integrals of motion

(iii)N-soliton solution
(iv)Hirota bilinear form
(v) Hamiltonian structure

and a host of other interesting properties (see for example (9; 10)). We will very
briefly consider some of these properties.

4.1 Korteweg–de Vries Equation and the Solitary Waves and
Cnoidal Waves

Let us look for elementary wave solutions of (50) in the form

u = 2f(x − ct) (51)

= 2f(ξ) , ξ = x− ct . (52)

Then the KdV equation reduces to an ordinary differential equation of the form
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−cfξ + 6
`
f2´

ξ
+ fξξξ = 0 . (53)

Integrating twice the above equation, the solution of can be expressed in terms of
Jacobian elliptic function as

f(ξ) = f(x− ct) = α3 − (α3 − α2)sn
2 ˆ√α3 − α1 (x− ct) ,m˜ , (54)

where

(α1 + α2 + α3) =
c

4
, m2 =

α3 − α2

α3 − α1
. (55)

Here α1, α2 and α3 are related to the three integration constants. Equations (54),
(55) represent in fact the so-called cnoidal wave for obvious reasons.

Special Cases:

(i) m ≈ 0: Harmonic wave

When m ≈ 0, (54) leads to elementary progressing harmonic wave solutions. This
can be verified by taking the limit m→ 0 in (54), (55).

(ii) m = 1: Solitary wave

When m = 1, we have

f = α3 − (α3 − α2) tanh2 ˆ√α3 − α1 (x− ct)˜ , (56)

that is,
f = α2 + (α3 − α2) sech2 ˆ √α3 − α1 (x− ct)˜ . (57)

Choosing now α2 = 0, α1 = 0, we have

f =
α3

4
sech2 [

√
α3 (x− ct)] . (58)

Using (55), (58) can be written as

f =
c

4
sech2

»√
c

2
(x− ct)

–
. (59)

Substituting (59) into (51), the solution can be written as

u(x, t) = 2f =
c

2
sech2

»√
c (x− ct)

2

–
. (60)

This is of course the Scott Russel solitary wave (Fig.4),
The characteristic feature of the above solitary wave is that the velocity of the

wave (v = c) is directly proportional to the amplitude (a = c/2): the larger the
wave, the faster it moves. Unlike the progressing wave, it is fully localized, decaying
exponentially fast as x→ ±∞ (see Fig.4).
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4.2 Lax pair and linearization

The KdV equation is well known to posses the Lax pair (12)

L = − ∂2

∂x2
+ u(x, t) (61)

and

B = −4
∂3

∂x3
+ 3

„
u
∂

∂x
+
∂

∂x
u

«
(62)

so that the Lax equation
Lt = [B,L] (63)

is equivalent to the KdV equation. Or in other words the KdV equation is linearizable
in the sense that it is the compatibility condition corresponding to a linear eigenvalue
problem (the Schrödinger spectral problem) and a linear time evolution equation for
the eigen function

Lψ = λψ , (64)

ψt = Bψ . (65)

Consequently a nonlinear generalization of the Fourier transform method, namely
the inverse scattering transform (IST) technique can be formulated to solve the
Cauchy initial value problem of the KdV equation. Schematically it is shown in
Fig.5, which is self explanatory. For more details, see for example refs. [9,10]. The
final result is that the general solution of the KdV equation can be written as

u(x, t) = −2
d

dx
K(x, x+ 0, t) . (66)

where K(x, y, t) is the solution of the Gelfand-Levitan-Marchenko linear integral
equation

K(x, y, t) +F (x+ y, t)

+

Z ∞

x

F (y + z, t)K(x, z, t)dz = 0 , y > x (67)

420-2-4

2

1

0

Fig. 4. Solitary wave solution (60) of the KdV equation.
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and

F (x+ y, t) =

NX
n=1

C2
n(0)e8κ3

nte−κn(x+y) +
1

2π

Z ∞

−∞

R(k, 0)e−8ik3teik(x+y)dk . (68)

Here Cn, κn and R(k, 0) are the spectral data associated with the Schrödinger
spectral problem (64) for t = 0. Then the discrete states in eq.(68) essentially lead
to the soliton picture: N discrete states correspond to N-soliton solutions.

u(x,0)

u(x,t)

    Scattering 
     data S(0)
       at t=0

      Scattering
       data S(t)
      at time t>0

Direct
scattering

Inverse scattering

   
T
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e 
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n 
of
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at
te

ri
ng

 d
at

a

Fig. 5. Schematic diagram of the inverse scattering transform method

For example, the two soliton solution can be written as

u(x, t) = −2
`
κ2

2 − κ2
1

´ κ2
2 cosech2γ2 + κ2

1 sech2γ1

(κ2 cothγ2 − κ1 tanhγ1)
2 , (69)

where γi = κix−4κ3
i t−δi, δi = 1

2
log
“

C2
i0

2κi

(κ2−κ1)
(κ2+κ1)

”
, i = 1, 2. When the solution (69)

is plotted as in Fig.6, it clearly demonstrates the basic soliton property of elastic
collision.

4.3 KdV as a Hamiltonian system

Defining the Hamiltonian density

H =
1

2
u2

x + u3 (70)

so that the Hamiltonian becomes

bH =

Z „
1

2
u2

x + u3

«
dx . (71)
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Fig. 6. Two soliton interaction of the KdV equation

KdV equation can be written as

ut =
∂

∂x

δ bH
δu
. (72)

Thus, KdV equation has a Hamiltonian structure.
Now, defining the Poisson bracket between two functionals U and V as

{U, V } =

Z
dx

δU

δu(x)

∂

∂x

δV

δu(x)
. (73)

it has been shown (13) that the inverse scattering transform discussed earlier allows
one to identify appropriate set of (infinite number of) action-angle variables. Further
one can show that in terms of these new variables, the Hamiltonian (71) can be
expressed purely in terms of action variables alone. Consequently the corresponding
canonical equations can be trivially integrated. In this sense KdV equation has been
proved to be a complete integrable infinite dimensional Hamiltonian system.

4.4 Bilinearization of KdV

The KdV equation is not only linearizable but also can be bilinearized (14) under
the transformation

u = 2
∂2

∂x2
logF . (74)

Eq. (52) can be rewritten in the bilinear form as

FxtF − FxFt + FxxxxF − 4FxxxFx + 3F 2
xx = 0 . (75)

Then it is fairly straightforward to obtain the soliton solutions by expanding F
formally as a power series in terms of a small parameter ε so that eq. (75) is written
as a system of linear partial differential equations. Restricting to a finite number of
terms in the power series and solving the resultant system of linear partial differential
equation recursively, one can obtain the N-soliton solution explicitly and the soliton
property can be analysed.

Besides the above properties, KdV equation possesses many other characteristic
features of integrable systems: (i) Existence of infinite number of conservation laws
and constants of motion (ii) Bäcklund transformations (iii) Lie-Bäcklund symme-
tries, (iv) Painlevé property and so on. Again for details see refs. (9; 10)
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5 KdV related Integrable and Nonintegrable Equations

Depending on the actual physical situation, the derivation of the shallow water wave
equation can be suitably modified to obtain other forms of nonlinear dispersive wave
equations in (1+1) dimensions as well as in (2+1) dimensions without going into
the actual derivations. Some of the important equations are listed below (11).

• Boussinesq equation

ut + uux + gηx − 1

3
h2utxx = 0 (76)

ηt + [u(h+ η)]x = 0 (77)

• Benjamin-Bona-Mahoney (BBM) equation

ut + ux + uux − uxxt = 0 (78)

• Camassa-Holm equation (15)

ut + 2κux + 3uux − uxxt = 3uxuxx + uuxxx (79)

• Kadomtsev-Petviashville (KP) equation

(ut + 6uux + uxxx)x + 3σ2uyy = 0 (80)

σ2=-1: KP-I, σ2=+1: KP-II.

There also exist some interesting nonlinar dispersive wave equations to describe deep
water wave propagation. These include the following.

• Nonlinear Schrödinger (NLS) equation

iqt + qxx + |q|2q = 0, (81)

• Davey-Stewartson equation

iqt + qxx + qyy + 2|q|2q + qu = 0 ,
uxx − uyy = 4

`|q|2´
xx
.

(82)

In the derivation of the above equations, generally the bottom of water column or
fluid bed is assumed to be flat. However in realistic situations the water depth varies
as a function of the horizontal coordinates. In this situation, one often encounters
inhomogeneous forms of the above wave equations. Typical example is the variable
coefficient KdV equation (16):

ut + f(x, t)uux + g(x, t)uxxx = 0, (83)

where f and g are functions of x, t. More general forms can also be deduced de-
pending upon the actual situations, see for example ref. (17).

All these equations can be helpful to deal with tsunami wave propagation at
different situations. Which one will suit which situation requires detailed analysis
depending upon the experimental observations. Many of the above equations are
integrable such as the Boussinesq, Camassa-Holm, KP, nonlinear Schrödinger and
Davey-Stewartson equations and certain forms of inhomogeneous KdV equations,



46 Lakshmanan

while BBM equation and general forms of inhomogeneous KdV equations are non-
integrable but may possess solitary wave solutions and are amenable to perturbation
analysis. Integrable equations in the above list admit interesting new types of so-
lutions. For example, the Camassa-Holm equation admits peakon solution (see Fig.
7), while the KP equation and Davey-Stewartson equation can admit lump (alge-
braically decaying) solutions and line soliton solutions. The latter one also admits
dromion (exponentially localized) solutions (see Figs. 8−10). These solutions can
also be used for possible description of tsunami wave propagation in the appropriate
situations.

Fig. 7. Solitary wave (including peakon ) solution of Camassa-Holm equation

6 Summary and Conclusions

In this article, we have discussed briefly the possibility of describing tsunami waves of
the type which occurred in the Indian Ocean 2004 earthquake in terms of nonlinear
shallow water wave equation of dispersive type like the Korteweg-de Vries equation.
In particular, we have pointed how the KdV wave equation can be derived to describe
the Scott-Russel phenomenon of unidirectional shallow water wave propagation.
Existence of solitary waves, solitons and complete integrability properties of the KdV
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Fig. 8. Two line soliton solution of KP-II equation
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Fig. 9. Lump soliton solution of KP-I equation

equation was briefly explained. Other related equations which can be of some use in
tsunami dynamics were also briefly touched upon. The generation and propagation
of tsunami waves is an extremely complex process. Yet nonlinear dispersive waves of
shallow water may be of considerable importance in describing the tsunami dynamics
and much work remains to be done in this direction.
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