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Preface

The work embodied in this volume was presented across three consecutive edi-
tions of the International Workshop on Learning Classifier Systems that took
place in Chicago (2003), Seattle (2004), and Washington (2005). The Genetic
and Evolutionary Computation Conference, the main ACM SIGEvo conference,
hosted these three editions. The topics presented in this volume summarize the
wide spectrum of interests of the Learning Classifier Systems (LCS) community.
The topics range from theoretical analysis of mechanisms to practical consid-
eration for successful application of such techniques to everyday data-mining
tasks.

When we started editing this volume, we faced the choice of organizing the
contents in a purely chronological fashion or as a sequence of related topics that
help walk the reader across the different areas. In the end we decided to orga-
nize the contents by area, breaking the time-line a little. This is not a simple
endeavor as we can organize the material using multiple criteria. The taxon-
omy below is our humble effort to provide a coherent grouping. Needless to
say, some works may fall in more than one category. The four areas are as
follows:

Knowledge representation. These chapters elaborate on the knowledge rep-
resentations used in LCS. Knowledge representation is a key issue in any
learning system and has implications for what it is possible to learn and
what mechanisms should be used. Four chapters analyze different knowledge
representations and the LCS methods used to manipulate them.

Mechanisms. This is by far the largest area of research. Nine chapters re-
late theoretical and empirical explorations of the mechanisms that define
LCS on the following subjects: (1) bloat control for variable-length repre-
sentations, (2) classifier manipulation techniques: classifier ensembles and
post processing (3) error guidance and the exploration/exploitation dilemma,
(4) internal-model driven multistep LCS, (5) effects of class imbalance, (6)
bounding convergence criteria for reinforcement-based LCS, and (7) tech-
niques for dealing with missing data.

New directions. This group of chapters focuses on LCS applied to new and
unconventional problems. T'wo chapters present work on the usage of LCS as
learning models for system composition where they are used to create com-
plex strategies based on properly assembling basic capabilities. Two other
chapters explore seminal work on LCS as function approximators, exploring
different architectures and methods to efficiently achieve this goal. Another
chapter describes a new way of using LCS for determining relevant variables
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for the predictive process, instead of only focusing on classification perfor-
mance. The last chapter of this group explores formal relations between LCS
and ant colony optimization for the traveling salesman problem, illustrating
how LCS can also be used to solve such a class of problems.

Application-oriented research and tools. The last group of chapters de-

scribes applied research, mostly oriented to data-mining applications. Two
chapters explore and analyze how to improve the performance and accuracy
of LCS for data-mining tasks. Two other chapters explore a more practi-
cal path that involves the creations of tools for (1) assisting the process of
knowledge discovery and its visualization for medical data, and (2) creating
computer-aided design tools that can help designers to identify and explore
application areas where LCS methods can provide an efficient solution.

As mentioned earlier, this volume is based on the 6th, 7th, and 8th editions of
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Abstract. To evaluate a real-valued XCS classifier system, we present
a validation of Wilson’s XCSR from two points of view. These are: (1)
sensitivity of real-valued XCS specific parameters on performance and
(2) the design of classifier representation with classifier operators such
as mutation and covering. We also propose model with another classifier
representation (LU-Model) to compare it with a model with the origi-
nal XCSR classifier representation (CS-Model.) We did comprehensive
experiments by applying a 6-dimensional real-valued multiplexor prob-
lem to both models. This revealed the following: (1) there are critical
threshold on covering operation parameter (ro), which must be consid-
ered in setting parameters to avoid serious decreases in performance; and
(2) the LU-Model has an advantage in smaller classifier population size
within the same performance level over the CS-Model, which reveals the
superiority of alternative classifier representation for real-valued XCS.

1 Introduction

XCS [0] is a learning classifier system which has the potential to evolve accu-
rate, maximally general classifiers to cover the state space for each action [3lf7].
XCS takes bit string inputs, the same as traditional learning classifier systems
[2] (LCS). To facilitate XCS and broaden the range of applicable problem rep-
resentation while keeping its generalization abilities, XCSR [§] was proposed by
Wilson to deal with real-valued problems, and he found that XCSR could learn
appropriately on the real-valued 6-multiplexor problem.

Although Wilson analyzed the potential of XCSR, its validity was insufficient
in two respects. Firstly, the parameter settings used for the experiment seemed
to be set ad hoc, especially for the two newly introduced parameters mg and

X. Llora et al. (Eds.): IWLCS 2003-2005, LNAI 4399, pp. 16l 2007.
© Springer-Verlag Berlin Heidelberg 2007



2 A. Wada et al.

ro that were used in the real-valued classifier operations of mutation and cov-
ering. Secondly, the reason he adopted proposed classifier representation is not
discussed, despite the possibility of other classifier representations.

Therefore, what we focus in this paper are (1) an analysis of the settings
of real-valued XCS specific parameters to evaluate the model; and (2) an anal-
ysis of classifier representation with classifier operators such as covering and
mutation. To achieve the latter, we propose an opponent model that presents
another real-valued classifier representation that was inspired by Wilson’s other
model XCSI to deal with integer-valued input [9]. Although the requirement of
extending XCS to integer-valued input is basically similar to that of extending
XCS to real-valued input, XCSI adopts a different design concept over classifier
representation. This concept can easily be applied to design another real-valued
classifier representation, which we propose and adopt in the opponent model.
For convenience, we have called this opponent the LU-Model and the original
model the CS-Model, names which originate from the attributes used in each
classifier condition that will be described later.

The rest of the paper is organized as follows. Section [2] describes both the
CS and LU-Models by revealing the part extended from the XCS to achieve
real-valued input. Section [3] describes the real-valued 6-multiplexor problem.
Section M presents some simulation experiments that were done by applying
both the CS and LU-Models to the real-valued 6-multiplexor problem. Section
has discussions based on the experimental results to validate real-valued XCS.
Section [ is the conclusion.

2 Extensions to XCS for Real-Valued Input

Both CS and LU-Models are based on XCS but differ in their classifier rep-
resentation. This section presents the CS-Model, which adopts XCSR classifier
representation and the LU-Model, where classifier representation is inspired by
XCSI. It is done by describing their classifier representations in detail, which are
the extended parts from XCS.l.

2.1 XCSR-Based Classifier Representation (CS-Model)

This section explains the CS-Model regarding its difference from XCS, which is
equivalent to describing XCSR classifier representation with classifier operators
such as covering, mutation, and crossover. To catch up with recent developments
in XCS called the classifier subsumption mechanism, the “is-more-general” op-
erator has been additionally defined which checks whether the classifier can
subsume the other target classifier.

Representation of Classifier Conditions: The representation of the classi-
fier in the CS-Model differs from the original XCSR in the condition part, which

! The implementation of the XCS part of the CS and LU-Models is based on Butz
and Wilson [I].



Analyzing Parameter Sensitivity and Classifier Representations 3

replaces the bit string with a set of attributes named interval predicates by Wil-
son. The interval predicate is composed of two real values (¢;, s;) where suffix
1 denotes the position in the condition part. Each interval predicate represents
an interval [¢; — $;,¢; + s;] on the real number line, and if the corresponding
element of the input (which is a real-valued vector) is included in the interval,
matching succeeds. If, and only if, all elements match the corresponding interval
predicates in the classifier condition, can matching be considered a success. The
domain of attributes ¢; and s; are both set between 0 and 1, which inherit the
setting of XCSR in the CS-Model, but is not a necessary requirement for this
representation.

Covering Operator: The covering operator creates anew classifier that matches
a specified input. When a real-valued vector is denoted as (x1, ..., x;, ..., T, ), where
n is the dimension of input, each interval predicate of covered classifier condition
(c1,51)...(Ciy 8i)...(Cny S 1s set as follows.

C;, = X5

{si = rand(rg). (1)
Here, r( is a parameter used to decide the distribution range of the spread of
the covering interval, where rand(x) is a function that returns a random value
distributed in the interval 0 < rand(z) < z. The value of r¢ is set below 1 to
maintain the s; within its domain of [0,1] inherited from XCSR, but is not a
necessary requirement for this operation.

Mutation Operator: The mutation operator mutates the classifier condition
by adding delta values Ac; and As; to interval predicate variables ¢; and s; at
the constant possibility of mutation parameter p at each interval predicate. Each
delta value for attributes ¢; and s; are calculated as follows.

Ac; = trand(mg) @)
As; = trand(myg).

Here, my is a parameter used to decide the distribution range of both A¢; and
As;, where £rand(x) is a function that returns a random value distributed in
interval 0 < rand(z) < x with the sign chosen uniform randomly. If the mutated
value exceeds the domain of [0, 1], the value is adjusted to 0 or 1. The setting
for this domain is inherited from XCSR, but is not a necessary requirement for
this operation.

Crossover Operator: The crossover operator works the same as the crossover
in XCS, except that the crossover point is not set between the condition bits but
between the interval predicates.

Is-More-General Operator: The is-more-general operator judges whether a
classifier condition is more general than another classifier condition. The ba-
sic idea of generality is the inclusion of the set of classifier condition’s possible
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matching inputs. If the possible matching inputs of classifier condition X com-
pletely include and are larger than the possible matching inputs of classifier
condition Y, X is more general than Y. This idea can be realized for real-
valued classifier representation by comparing the inclusion of the interval on
the real number line for each corresponding interval predicate. For two classi-
fier conditions X : (c1, $1)...(¢i, 8i)-..(Cny 8n) and Y : (cf, 8Y)...(ch, 8%)...(c,, 8b), if
(c; —si) < (¢ —s5) and (¢ + s5) < (¢; + ;) for all i except where all attributes
are equal, X is more general than Y.

2.2 XCSI-Inspired Classifier Representation (LU-Model)

This subsection proposes the LU-Model with another real-valued classifier rep-
resentation inspired by XCSI, which is an XCS extended model to deal with
integer-valued inputs. XCSI adopts a different design concept over classifier rep-
resentation, as it specifies the interval by using the value for the lower and upper
bounds. This concept can easily be applied to designing real-valued classifier rep-
resentation that differs from the CS-Model. The details are described below.

Representation of Classifier Condition: The representation of classifier
condition in the LU-Model seems to be like that in the CS-Model as its interval
predicate is composed of two real values (;, u;), where suffix ¢ denotes the posi-
tion in the condition part. However, the denoting interval on the real number line
differs from the CS-Model. The ith interval predicate simply denotes an interval
[;, u;]. If the corresponding element of input is included in the interval, match-
ing between the element and the interval predicate succeeds. If, and only if, all
elements match the corresponding interval predicates in the classifier condition,
can matching be considered a success. The domain of attributes is restricted to
0 <1I; <wu; < 1. This setting for domain inherits the concept of XCSI, but is not
a necessary requirement for this representation.

Covering Operator: The covering operator creates a new classifier that matches

a specified input. When a real-valued vector is denoted as (z1, ..., z;, ..., T, ), where

n is the dimension of the input, each interval predicate of the covered classifier

condition (Iy,u1)...(I;, w;)...(In, uy) is set as follows.
l; = x; — rand(rg)

3)

u; = x; + rand(ro).

Here, 7 is a parameter used to decide the distribution range of the distance from
input value z; to [; and u;, where rand(x) is a function that returns a random
value distributed in the interval 0 < rand(z) < x. If the covering value exceeds
the domain of 0 < I; < u; < 1, [; and u; are set to be kept within their domains as
the follows: if [; is smaller than 0, [; is set to 0; and if u; exceeds 1, u; is set to 1.

Mutation Operator: The mutation operator mutates the classifier condition
by adding delta values Al; and Au; to [; and u; at the constant possibility of



Analyzing Parameter Sensitivity and Classifier Representations 5

mutation parameter p at each interval predicate. Each delta value for attributes
l; and wu; is calculated as follows.

Al; = trand(myg) (@)
Au; = £rand(my).

Here, myq is a parameter used to decide the distribution range of both Al; and
Au;, where £rand(z) is a function that returns a random value distributed in
the interval 0 < rand(z) < x with the sign chosen uniform randomly. If the
mutated value exceeds the domain of 0 < 1[; < wu; <1, ; is set to 0 or u;, and u;
is set to [; or 1 depending on the following: (1) if the mutated I; is smaller than
0, I; is set to 0; (2) if the mutated I; exceeds u;, I; is set to u;; (3) if the mutated
u; exceeds 1, u; is set to 1; and (4) if the mutated u; is smaller than I;, u; is set
to li.

Crossover Operator: The crossover operator works the same as the crossover
in the CS-Model, except for the difference between the format of interval predi-
cates, which is of no concern in this operation.

Is-More-General Operator: The is-more-general operator judges whether
a classifier condition is more general than another classifier condition. This is
achieved for LU-Model classifier representation as follows. For two classifier con-
ditions X : (I1,u1)...(ljy ug) .. (lpyun) and Y o (19, uh).. (U, ul) . (10, ul), if 1; <
and u} < u; for all i except for where all attributes are equal, X is more general

than Y.

2.3 Real-Valued XCS Specific Parameters

While extending XCS to deal with real-valued inputs, new parameters mg and
ro are introduced to XCS for both CS and LU-Models. Although the processes
for how mg and ry are used in each model are different, roughly mg controls
the upper limit for the random distribution of delta values used in the mutation
operator, while ry is concerned with the distribution of the spread of covering
condition intervals. Originally, the corresponding parameters in XCSR were la-
beled m and so. However, to avoid confusion caused by differences in discussing
both models, we unified the names of these corresponding parameters to mg and
rg. The correspondence in the names of these parameters are in Table [Il where
XCSR’s parameters have been renamed mg and rg in the CS-Model to match
the others.

Table 1. Correspondence of names of real-valued XCS specific parameters

XCSR  XCSI CS-Model LU-Model

m mo mo mo
S0 To To To
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3 Real-Valued 6-Multiplexor Problem

The real-valued 6-multiplexor problem is a sample problem presented by Wilson
to validate XCSR, which is a real-valued version of the Boolean 6-multiplexor
problem. We also employed this problem for two reasons. The first was that
the simplicity of the problem made analysis of the experimental results easier
while low computational costs allowed comprehensive experiments to analyze
parameter dependence in the model that required a huge number of simulations.
The second reason was that it would enable us to refer to Wilson’s preceding
experiment on XCSR, and further discuss the validity of XCSR, and the CS and
LU-Models under the same conditions.

The Boolean 6-multiplexor function took a six-bit string as input and output
a truth value of 1 or 0. The function was designed as output that would have a
value of (n + 2)th bits where n was calculated by interpreting the two leftmost
bits as a binary formatted number. For example, the first two bits of the input
string “011010” were “01”, which denotes the decimal 1 when interpreted as a
binary formatted number, so the output value is the third bit of the string, in
this case, 1. Alternatively, in disjunctive normal form, the Boolean 6-multiplexor
function Fg is given as follows where b; stands for the i-th bit of the strings, the
over-line negates the bit, and “4” takes a logical sum.

Fg = bob1bs + bob1b3 + bob1bg + bob1bs. (5)

To modify the Boolean 6-multiplexor problem to the real-valued 6-multiplexor
problem, a parameter vector 8 = (0o, ...,05) is introduced. For each element in
the real-valued input vector x = (xg,...,x5), x; is converted to 0 if z; < 0;;
otherwise it is 1. In each learning step of simulation, a randomly chosen value
from the domain [0,1] is set to each element of vector x and given for input. If
the returned output for z is correct, which has the same value as Fg(x), reward
Timm 1S given, where this is a parameter denoting “immediate reward.”

4 Experiment

Simulation experiments were done to validate real-valued XCS by applying the
CS and LU-Models to the real-valued 6-multiplexor problem. Common condi-
tions for all experiments can be described as followdd: N (max population size)=
800, f(learning rate)= 0.2, ¢p(error threshold to calculate classifier fitness)= 0.2,
v(power parameter to calculate classifier fitness)= 5, 654 (threshold to invoke
GA)= 12, x(possibility invoking crossover)= 0.8, p(possibility invoking muta-
tion) = 0.04. The threshold parameter vector 6;(i = 1, ...,6) for the real-valued
6-multiplexor problem was set as (0.5,0.5,0.5,0.5,0.5,0.5). In all simulations, the
initial classifier population was set to empty. These settings to evaluate XCSR,
were the same as those in Wilson experiments.

The simulations for all experiments were evaluated by the average reward
and the size of the classifier population. The classifier system was expected to

% Refer to Wilson [§] for meaning of these parameters.
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acquire a population as small as possible to attain high average reward. For both
values, the moving average of 50 previous iterations were calculated to check the
temporal change. Here, iteration denotes the number of explored problems in
the real-valued 6-multiplexor. Ten simulations were done on each case to obtain
average variations.

4.1 Preliminary Experiment 1: Parameter Dependency on
CS-Model

To examine the dependence of real-valued classifier representation specific pa-
rameters mg and rg, we did a preliminary experiment by applying the CS-Model
to the real-valued 6-multiplexor problem using four sample combinations of
(mg, ro) pairs: (a) (0.1,1.0), (b) (0.1,0.5), (¢) (0.1,0.25) and (d) (0.5, 0.5). Here,
the setting for (a) represents the same conditions as Wilson’s experiment. The
settings for (b) and (c¢) were selected to check the effect of change on r¢ param-
eter compared with (a). The setting for (d) was selected to check the effect of
the mg parameter.

The results we obtained from the experiments are Fig. [[l which shows the re-
lation between average reward on the vertical axis and iterations on the horizon-
tal axis. Figure 2l shows the relation between population size on the vertical axis
and iterations on the horizontal axis. Focusing on the rg parameter by comparing
(a), (b) and (c), there is a significant difference between (c) and the others. For
(¢), there is no improvement in average reward as Fig. [[l shows, and the popula-
tion size remains at a maximum limit of 800 throughout the simulation period in
Fig.[2l This implies the existence of a threshold on parameter 7o, which is roughly
between the 0.5 used in (b) and the 0.25 used in (c¢) causing a serious decrease in
performance . Focusing on the m( parameter by comparing (a) and (d), there are
no noticeable differences in average reward as shown in Fig.[Il In terms of popu-
lation size, (d) converges smaller than (a) as shown in Fig.[2l where the difference
is far smaller than that of the previous effect of ro between (a) and (c).

4.2 Preliminary Experiment 2: CS-Model vs. LU-Model

To evaluate the differences between the CS and LU-Models, we did another pre-
liminary experiment by applying the LU-Model to the real-valued 6-multiplexor
problem. We used 2 settings of (a) (0.1,1.0) and (¢) (0.1,0.25) for parame-
ters (mo,r0). (a) had the same setting as Wilson’s original experiment, and (c)
yielded a distinctive result in the previous experiment on the CS-Model.

The experimental results for the LU-Model compared with the results of the
previous experiment on the CS-Model are in Fig. [Bl which reveals the relation
between average reward on the vertical axis and iterations on the horizontal
axis. Figure [ has the relation between population size on the vertical axis and
iterations on the horizontal axis. By comparing the CS and LU-Models, for (a),
there is a difference where the LU-Model records a higher average reward than
the CS-Model throughout the period of simulation as Fig. Bl shows, while the
population size converges to less than that in the CS-Model in Fig. @ In the
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Fig. 1. Experimental results for (a) to (d) on CS-Model: relation between average
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Fig. 2. Experimental results for (a) to (d) on CS-Model: relation between average
performance and iterations

(c) of the LU-Model, a similar phenomenon with that of the CS-Model can be
observed where there are no improvements in average reward in Fig.[3l and the
population size remains at a maximum limit of 800 throughout the simulation



Analyzing Parameter Sensitivity and Classifier Representations 9

1000 T T T

900
8 800 -
<
=
i
y 700
I / LU-Model (c) (mq,ry
j% 600 I CS-Model (a) (mg,rg

(©) (mo,To
500 f
400 ' ' '
0 2500 5000 7500 10000

lterations

Fig. 3. Comparison of the experiments between CS and LU-Models for (a) and (c):
relation between average performance and iterations

800 e
700 — -
600
500

400 f

Population Size

300 |
200

100

0 2500 5000 7500 10000
Iterations

Fig. 4. Comparison of the experiments between CS and LU-Models for (a) and (c):
relation between average performance and iterations

period in Fig. @ From a comparison of both cases, there seems to be a similar
performance dependence on the rg setting between the CS and LU-Models, which
indicates that learning proceeds during a large ry value but fails with a small rg
value.
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4.3 Comprehensive Experiment

The results of the two preliminary experiments described in Section EI] and
Section indicate that there seems to be a significant dependence of both
average reward and population size on the combination of parameters mg and
ro. To reveal the big picture on the landscape for the mg-rg plane, we did a
comprehensive experiment on both the CS and LU-Models. In the experiment,
400 combinations of parameters mg and ry were examined, which covered the
mo-19 plane with a series of grid points defined in the following matrix. The grid
size was set to 0.05, so that the grid points included four sample combinations
(a) (0.1,1.0), (b) (0.1,0.5), (c) (0.1,0.25) and (d) (0.5, 0.5), which were used in
the preliminary experiments.

(0.05,0.05)  (0.05,0.10) ... (0.05,1.00)
(0.10,0.05) (0.10,0.10) ... (0.10,1.00)

(mo, o) = : : . : (6)
(1.00,0.05) (0.10,0.10) ... (1.00,1.00)

The results are as follows. Figures Bl [6 [ and §] show the average reward for
the CS-Model, its population size, and the average reward for the LU-Model,
and its population size. In all figures, the z-axis denotes mg, and the y-axis
denotes rg. Converged values at iterations of 10000 were used to describe the
surface for the z-axis. Each grid points’ height from the mg-rg plane denotes the

Average performance

Fig. 5. Relation between average performance and time steps in CS-Model
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corresponding values. The viewpoint of Figs. [l and [§ differs from that of Figs.
and [7 presenting the whole surface without hidden regions. The labels (a) to (d)
each denote the four sample conditions used in the preliminary experiments.

The simulations on the CS-Model revealed the dependence of performance on
the mg-r¢ plane, which can clearly be seen in Figs.[[land[8l There is an r threshold
where the rg value is between 0.2 to 0.5, which is plotted as a sharp drop on each
surface. In the middle of this drop and, in the area where ry is larger, the average
reward is quite high being over 900 and the classifier population size converge to-
wards 300. In the other area where rg is smaller, the average reward remains low
at 500 and the population size nearly remains at the maximum limit of 800. From
the simulations on the LU-Model described in Figs. Bl and [6, we can see that the
dependence of performance on the mg-rg plane is quite similar to that of the CS-
Model, which can be explained by the similarity in the shapes of their landscapes.
However, comparing their corresponding values, population size of the LU-Model
at less than 200 is below the CS-Model’s of above 300 when rq is large.

5 Discussion

5.1 Validating Parameter Sensitivity of XCSR (CS-Model):
Analysis of Cover Spread Parameter(rg) Sensitivity

To validate our evaluation of XCSR, we will discuss the sensitivity of model spe-
cific parameters for the CS-Model, especially the serious performance decrease
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caused by the small ry value. We first found this in the first preliminary experi-
ment and verified it through the comprehensive experiment described in Section
It was not a special case on a specific (mg, o) setting, but a general phe-
nomenon that occurred when ry was smaller than a specific threshold that was
roughly between 0.2 to 0.5.

As 7y is a parameter used to decide the distribution range of intervals in cov-
ered classifier condition, an assumption concerning the covering process can be
made, where the scenario can be described as follows. Consider the entire pro-
cess of simulation where rg was set to be small. In the early stages of simulation,
the covering would frequently occur as classifier population was initially set as
empty. The population size would soon reach the maximum limit, because the
classifiers created by covering could only cover small areas of the input state
space as the size of their condition intervals were limited within rq. Soon, input
that was not covered by the present classifier population would arrive, then a
new classifiers would be created to cover it while one of the existing classifiers
would be deleted. This cycle would be repeated until the state space was cov-
ered through simulation. During this period, classifiers would be replaced one
after another before they had become experienced, and learning could not be
attained.

This assumption explains results such as (c¢), where no improvements in the
average reward can be seen (Fig. [I]) and the population size remains at a maxi-
mum limit of 800 throughout the simulation period (Fig.[2l) We can check this
assumption by calculating the rate the area is covered by the N classifiers over
the state space, where N is the maximum limit for population size. In the real-
valued 6-multiplexor problem, the area of the state space is 1.0%. Here, if we
assume that all the intervals in N classifier conditions takes a maximum value
of g, the total area of the covered space would be N x 1% and the coverage rate
would be (N x 74%)/1.0% where 79 must at least be larger to make (N x 74°%)/1.0°
larger than 1.0 to cover the entire state space. In practice, there are overlap-
ping areas between each classifier condition, which require an extra ro value to
cover the state space. This can be calculated by simple simulation that examines
the rate of coverage of the state space by N covered classifiers. The process of
simulation is described as follows.

1. Generate a 6-dimensional input vector by setting a random number within
a range of [0,1] for each element and check if the randomly generated input
vector is covered by any existing classifiers. Repeat until the uncovered input
vector is found.

2. Create a classifier by covering operation for the input vector generated in 1

and insert it into the classifier population.

Repeat 1 and 2 until the size of the classifier population reaches V.

Calculate the rate of coverage of the state space by generating 1000 sample

random inputs. The coverage rate is estimated by dividing the number of

covered inputs within the number of total sample inputs.

P o

The results are in Fig. [ indicating the relation between 7y and the simulated
value for state space coverage rate compared with the value of (N x r%)/1.0°.
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The horizontal axis denotes ry and the vertical axis denotes the coverage rate
of state space. When 7y gets smaller than the threshold roughly between 0.2
and 0.5, the simulated coverage rate quickly decreases to converge to 0. As this
curve resembles the curve of the relation between ry and average reward, the
assumption seems to be valid.

Therefore, the evaluation done by Wilson where XCSR could learn appropri-
ately on the real-valued 6-multiplexor problem should be limited within condi-
tions where the parameter rg is set sufficiently large for the covered classifiers
conditions to cover the entire input state space. These conditions should be
maintained to avoid serious decreases in performance.

5.2 Validating Classifier Representation for Real-Valued XCS:
Superiority of LU-Model to CS-Model on Classifier Population
Size

Although the CS and LU-Models have a similar tendency towards parameter
dependence, by focusing on an absolute value of performance, the LU-model
performs well as was found during the second preliminary experiment in Section
2] and verified by the comprehensive experiment in Section .3l and this is what
we will discuss here. The superiority of the LU-Model over the CS-Model is that
it requires a smaller classifier population size, while achieving the same average
reward where r( is large enough to learn, where the threshold is that discussed
in the first discussion. This can be explained by analyzing how the difference in
the classifier condition expression affects the difficulty of classifier subsumption.
The classifier subsumption is a process that suppresses the classifier population
size by letting a more general classifier to subsume the other classifier, where
the definition of generality is described in Section 2] for the CS-Model and in
Section for the LU-Model.
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Intervals expressed by interval predicates (c;, s;) are allowed to take ranges
which exceed [0,1] in the CS-Model, because the bounds of both ¢; and s; are
between 0 and 1. For example, the interval predicate (¢;, s;) = (0.1, 0.3) denotes
[-0.2,0.4] as indicated by (b) in Fig. [0, where ¢; and s; values are both within
[0,1] but the denoting interval exceeds [0,1]. Here, the Fig. [0 has three intervals
(a) to (c) on the real number line, where the horizontal axis denotes the real
number line and the vertical axis is used to distinguish the three intervals. This
excess of matching, covering and mutation operations causes no problems, as
only the sub part within [0,1] is used for the classifier operations, which is [0,0.4]
in this case, described as interval (c) in Fig. However, there is a problem
with subsumption. For example, although interval (a) in Fig. [0l denoting [0,0.6]
is more general than interval (b) in the effective range, which is equal to (c),
interval (a) cannot subsume interval (b). This could occur, in general, to an
interval that exceeds the range of [0,1].

However, the LU-Model does not suffer from this problem, as the interval
expressed by its interval predicate (I;,u;) is limited within the effective range of
0 < 1; < u; < 1. For this reason, we found that the LU-Model could success-
fully subsume not general classifiers which could be alternated by more general
classifiers, and this resulted in a smaller classifier population size than in the CS-
Model. This presents the possibility of an alternative classifier representation for
real-valued XCS, which was adopted and validated in the LU-Model.

6 Conclusion

In this paper, we discussed a validation of XCSR in Wilson’s experiment in two
respects: (1) we analyzed the settings of real-valued XCS specific parameters to
evaluate the model; and (2) we analyzed classifier representation with classifier
operators such as covering and mutation. To achieve the latter, we proposed an
opponent — the LU-Model and compared it with the original — the CS-Model.
We conducted comprehensive experiments by applying the 6-dimensional real-
valued multiplexor problem to both models, which revealed the following: (1)
there is a critical threshold on covering operation parameter (rg), which must be
considered in setting parameters to avoid a serious decrease in performance; and
(2) the LU-Model has an advantage with smaller classifier population size within
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the same rate of performance as the CS-Model, which demonstrated alternative
classifier representation for real-valued XCS.

In future work, we intend to do an intensive analysis on GA operations to
validate the discovery of a general and accurate real-valued classifier set. Other
classes of problems should then be applied to make the discussion general, as all
the results are based on the real-valued 6-multiplexor problem in this paper.
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Abstract. This paper deals with the use of learning classifier system—LCS—
for inferring a nontrivial natural language grammar. In a repeated analysis LCS
infers the grammar of a given natural language from an exemplary set of correct
and incorrect sentences. A genetic algorithm used periodically strengthens
LCS’s operation. A context-free grammar is used in the description of language
structure.

1 Introduction

One among the key elements in the successful communication of humans with the
computer is an exact grammar modelled upon a natural language. However, devising
such a model is a difficult and expensive task, and essentially requires an input of
expert knowledge into the system. Therefore, grammar search involving learning
classifier system, and especially grammatical inference, seems a better solution [4].
Thanks to this approach, it is possible to infer a language structure model by employ-
ing a learning set of correct and incorrect sentences. Moreover, having made an ade-
quate algorithm, we can relatively easily adjust the system to infer the grammar of
another natural language by introducing changes only in the given learning sentences
and certain system parameters. Furthermore, we obtain in this way a dynamic knowl-
edge of a language, thanks to creating an expandable language model that can be
adapted to our needs by adding a new learning set.

Still, we should bear in mind that inferring a correct grammar only from a set of
positive sentences is impossible [4], and effective learning algorithms exist solely for
regular languages [16]. Making algorithms that learn free-context grammars is one of
the open and at the same time critical problems of grammatical inference [6]. Free-
context grammar inference applies evolution methods among others [2, 3, 10, 12, 13,
14, 15, 17, 19, 21]. This paper is based on the assumption that the searched-for natural
language model is described with context - free grammar, and that machine learning
is based on genetically modified classifier systems. Section 2 contains a presentation
of classifier systems. Section 3 introduces context - free grammars. Section 4 deals

X. Llora et al. (Eds.): IWLCS 2003-2005, LNAI 4399, pp. 17-24] 2007.
© Springer-Verlag Berlin Heidelberg 2007
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with the architecture of an LCS inferring a natural language grammar. Section 5
shows a selection of experiment results. Section 6 contains conclusions upon the
results.

2 Learning Classifier Systems

Classifier systems were created by Holland [7, 8]. According to Goldberg’s definition
[5], a classifier system learns syntactically simple rules (namely, classifiers) in order
to coordinate its own operations in a given environment. Other elements, apart from
an environment, are: receptors ‘observing’ their environment, effectors with which
the system influences its environment, and the system itself.

The aforementioned syntactically simple rules are so called product rules (produc-
tions), if <condition> then <action>. A classic classifying system allows the usage of
fixed length rules and simultaneous execution of rules. Thanks to the interaction with
its environment, a system can evaluate the strength of particular rules. Rules compete
among themselves for the right to match the external messages—posted by the envi-
ronment—by entering the bid with their offers. Bid entrance fees become the prizes
for senders of those messages which have been matched by rules. In this way, a chain
connecting receptors and a group of effectors is created. The strength-bid adjustment
mechanism depicted above guarantees that the ‘good’ classifiers, that is the rules
which frequently enter the bid and achieve payoff, will survive, and the ‘weak’ ones
will be eliminated. Additionally, a genetic algorithm is employed, which allows muta-
tion and crossing, thanks to which new rules can be created.

It should be noted that apart from the classic classifier systems structure created by
Holland, there are proposed their promising mutations, as, for instance, Wilson’s XCS
[20], Stolzmann’s ACS [18], or Holmes’s EpiCS [9].

3 Context-Free Grammar

The description of the language structure in the system is based upon context-free
grammar, which is conditioned by its following properties:

— context-free grammar describes well even the highly complex syntactical re-
lationships of any chosen language, including natural languages;

— machine systems based on context- free grammars usually operate faster than
comparable applications employing other solutions;

— context-free grammar formalism can be relatively easily (by comparison to
ATN or systemic grammars) implemented by using any of the majority of
popular programming languages.

Formally, context- free grammar is a quadruple:

G=(Vy Vi, P, S) (1)
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where production rules P are expressed as: A 2o and A € Vyand o € (Vy(Vy)*. S is
an initial symbol, Vy is a set of nonterminals, and V7 a set of terminals. It is assumed
that the searched for grammar is expressed as:

G ={R;R;...,R,} 2)
where R; is the rule expressed as:
Ri: Ni: piie- Dmi 3)

in which N is a nonterminal from the set Vi, and p is a production in Greibach normal
form.

An additional modification which resulted from the analysis of initial experiments
was to exclude the S symbol from the grammar, as its function might be taken over by
any nonterminal symbol.

On the assumption that the symbol a stands for an adjective, b for an adverb, ¢ for
an article, d for an auxiliary verb, e for a full stop, f for a conjunction, g for a noun, &
for a numeral, i for a preposition, j for a pronoun, k for a question mark, / for a verb,
m for an exclamation mark, n for a comma, and # for any word
the sentence

What do you like doing in your spare time?
can be represented by the string
adjlgiaagk.

The example grammar accepted the question mentioned above can be expressed as

follows:

G={

A:aB, IC

B: djl, djIC, djd
C:iD

D: aD, agk

}

where A, B, C, D belong to the nonterminal set.

4 LCS Inferring a Natural Language Grammar

The structure of LCS is based on the so called Michigan approach, where classifying
rules form a population [5]. The system generates new rules and tests the effective-
ness of the existing ones. Apart from the genetic algorithm module generating new
rules, the system contains the following elements: external environment messages
input and system-produced messages output module, incoming, outcoming and inter-
nal messages list servicing module, rules (population) module upon which the genetic
algorithm operates, and—at last—credit assignment module based on ‘bucket bri-
gade’ algorithm. The messages posted by the environment are the data coming from
the outside into the classifier system. These messages activate the classifying rules.
The rules that get activated place their messages on the list. New messages may also
activate other rules, or send certain messages to the list of output messages. These
messages are coded into output messages and are transferred to the environment as
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the system’s response. The system environment estimates the system’s answers, and
the estimating algorithm updates the estimate of the classifying rules’ strength by
either increasing or decreasing it if the answer is estimated as—respectively—correct
or incorrect.

In the system mentioned, the population of grammars plays the role of system clas-
sifiers. Every classifier is of a form: grammar_production: message, where gram-
mar_production is one of productions of the given grammar, and message is a
message sent to the list if the respective classifier reacts. Execution of a rule takes
place when a production can parse a part of a sentence or a whole sentence that is
currently being analysed.

Every classifier has an assigned strength, whose task is to determine the respective
classifier’s / production’s usability for the given grammar. In the beginning all classi-
fiers have the same strength, but in the analysis process they receive positive or nega-
tive reward, which is the result of the actions they undertake.

Every sentence of the given natural language is analysed in turns by the whole
population. The initial form of the grammars used by the system is randomly gener-
ated. The LCS has two aims. The first is checking the adjustment level of the gram-
mars, that is the correctness of analyses of the given sentences in a natural language.
The second is paying to the classifiers, or reducing the strength assigned to the classi-
fiers, free-context grammar productions taking part in the analysis. The list of mes-
sages is the system memory storing the results of every classifier’s action. The first
item in the list is always a sentence sent by the system environment. The messages in
the list are acted on by the classifiers in turns. These classifiers which are able to
match the production to the particular sentence get the right to place their own mes-
sage in the list. The list is compiled until none of the classifiers can execute its action,
that is none of the production matches the sentence part being currently analysed.
Every classifier placing its message in the list has to pay a conventional fee, being a
part of its strength. The fee is then transferred to a classifier (or distributed among a
greater number of classifiers) that placed in the message reinforcing the execution of
the current rule. The classifier finishing a sentence analysis receives reward from the
system environment. Moreover, all classifiers taking part in the full or partial analysis
of a given sentence can be additionally paid a conventional number of strength points.
The algorithm described concerns correct sentences. The only modification of the
algorithm concerning incorrect sentences is the negative value of the reward.

Genetic algorithm takes the particular grammars as chromosomes, and the gram-
mar productions as genes. Crossing and selection are carried out upon all the gram-
mars (treated as production vectors), whereas mutation modifies (adds, deletes,
replaces) singular symbols of the particular productions.

For illustration, we show the process of 2-point crossing of CFG grammars:

before crossing (the symbol // denotes randomly chosen crossing points )

G ={ Gy ={

Aprap, ap, //ags ay By by, by, /b3
Ayl ay, az, az, By: by, by, b3, by
A asz /] az, ass, azg, ass, dsg Bs: b3y, // b3,

/ /
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and after exchanging the chromosomes part between the crossing points

G]’ = { GZ’ = I/

A agy, ap, /by By by, by ags apy
A5’ bay, by, b3, boy By’ azy, az, as;,
A3’:b31 /] az, ass aszg ass ass B3’: az; // bs;

/ /

The symbols a; and bj; stand for rewriting rules, the symbols A; and B; represent
nonterminals.

Genetic operators may be used after every full analysis cycle (that is after the
analysis of the whole set of correct and incorrect sentences by all the grammars in the
population). It is also possible to define the time interval between the genetic algo-
rithm’s operations (counted as full analysis cycles).

5 Experiments

Experiments were conducted in two stages. In the first, the system was adjusted with
palindromes. In the second, the system operated on the target language grammar, that
is English. The correct sentences were purposefully ‘tampered with’ in order to create
incorrect sentences, in a way excluding the possibility of an accidental creation of a
correct sentence. Moreover, in the incorrect exemplary set the syntactically wrong
structures were placed at the end of most sentences, which aimed at sensitivising the
system to the numerous cases of incorrect sentences only slightly differing from the
correct ones [1].

About a hundred of correct and thirty incorrect sentences were used in the experi-
ments. The average adjustment strength for all grammar classifiers / productions, and
the difference of the number of the analysed correct and incorrect sentences were
taken as the fitness function.

Figure 1 illustrates the results of one of the numerous experiments conducted upon
English sentences. Figure 1 shows values of the analysed features averaged for all
grammars in the given population. Graph A denotes the number of full parse paths
performed in a single analysis cycle. Graph B denotes the number of correct sentences
fully analysed by the grammars in a single analysis cycle. Graph C denotes the num-
ber of full paths of analysed incorrect sentences in a single analysis cycle. Graph D
denotes the number of incorrect sentences fully analysed by the grammars in a single
analysis cycle. The number of sentences analysed correctly by the evolved grammars
reaches 90%. The values of certain parameters were as follows: 5000 generations, 14
terminals, 8§ nonterminals, maximally 16 rules for one nonterminal, 8§ symbols in a
rule, fitness function of the type ‘number of correct sentences analysed by the gram-
mar minus number of incorrect sentences analysed’, size of the population 30, 3-point
crossing, crossing probability 90%, mutation probability 1%, genetic algorithm opera-
tion every 10 cycles, reward for a full analysis of a correct sentence 40 points, reward
for a partial analysis 25 points, negative reward for full analysis of an incorrect sen-
tence 20 points, negative reward for partial analysis 10 points, 102 correct and 30
incorrect sentences in the learning set.
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An example of grammar found is given beneath. The strength of classifi-
ers/productions is shown in curl brackets.

G={
A: dF(315), ID(30), jA(492), iD(245), cF (872), bA(381), jF(92), Im (200), ebiA(200),
gelgC(200), khfkehjB(200), hagB(200), fgiD(200), dk(290)
B: ¢D(1108), aD(891), b(200), fnjab(200), gamhlb(200), ijB(251), fc(200),
ImhefC(200), chhC(200), j#(495), dA(858), idide(200), cdnaF(200)
C: IbB(1038), cA(354), jinF(200), andg#f(200), keclfaA(200), cjkD(200), dbE(148),
ad(200)
D: gD(123), e(339), k(221), eA(540), gnA(200), hhE(200), ae(495), c(200),
ageD(200), jgci(200), fehaB(200)
: h#m(200), kf(200), aF(307), biC(200), d(200), jcE(200), g(200), ad#D(200)
: bB(459), aE(37), cce(200), dhimE(200), eB(646), fnbnaji(200), aB(736), inC(200),
2d(200), fcdf(200), ejdaB(200), aA(477), fia(200), kF(15), jmD(200), jjibmiim(200)
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Fig. 1. Average values of parameters for evolved grammars

6 Conclusions

The initial assumptions have been proven by the results of experiments. Firstly, the
best individuals of the population were able to analyse even 90% of the correct sen-
tences. Secondly, the generalizing properties of the LCSs have been proven. Moreover,
it appeared that the genetic algorithm operates in a better way when time intervals
between its every operation are longer than a single analysis cycle. This stems from the
fact that during several analysis cycles performed on the same learning sets of sen-
tences the differences in strength of the ’very good’ (well adjusted) productions /
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classifiers and the ‘very weak’ (badly adjusted) ones start to deepen. Such a situation
strengthens the employed selection and mutation operators. Better results can be ob-
tained by employing a greater population of grammars, than by increasing sizes of
individuals, that is by increasing excessively the number of productions and their
lengths.
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Abstract. Learning Classifier Systems traditionally use a binary string rule
representation with wildcards added to allow for generalizations over the
problem encoding. We have presented a neural network-based representation to
aid their use in complex problem domains. Here each rule’s condition and
action are represented by a small neural network, evolved through the actions of
the genetic algorithm. In this paper we present results from the use of
backpropagation in conjunction with the genetic algorithm within XCS. After
describing the minor changes required to the standard production system
functionality, performance is presented from using backpropagation in a
number of ways within the system. Results from both continuous and discrete
action tasks indicate that significant decreases in the time taken to reach optimal
behaviour can be obtained from the incorporation of the local learning
algorithm.

1 Introduction

Since their inception Learning Classifier Systems (LCS) [10] have been compared to
neural networks, both conceptually [8] and functionally ([6],[7] and [21]). Previously,
we have presented a way to incorporate the neural paradigm into the accuracy-based
XCS [24], termed X-NCS [4]. Learning Classifier Systems traditionally incorporate a
binary rule representation, augmented with ‘wildcard’ symbols to allow for
generalizations. This representation can be limiting in complex domains (e.g., see [20]
for early discussions). As a consequence, more sophisticated rule representations have
been presented, including integers [26], real numbers [25], messy GAs [14], logical S-
expressions [15], and those where the output is a function of the input, including
numerical S-expressions [1] and fuzzy logic [22].

We have presented a neural network-based scheme where each rule’s condition and
action are represented by a neural network, typically using multi-layer perceptrons.
The weights of each neural rule being concatenated together and evolved under the
actions of the genetic algorithm (GA)[10]. The approach is closely related to the use
of evolutionary computing techniques in general to produce neural networks (see [28]
for an overview). In contrast to most of that work, an LCS-based approach is
coevolutionary, the aim being to develop a number of (small) cooperative neural

X. Llora et al. (Eds.): IWLCS 2003-2005, LNAI 4399, pp. 25 2007.
© Springer-Verlag Berlin Heidelberg 2007
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networks to solve the given task, as opposed to the evolution of one (large) network.
That is, our approach is potentially decompositional in an automatic way. Moriarty
and Miikulainen’s SANE [17] is most similar, however SANE coevolves individual
neurons to form a large network rather than small networks of neurons as rules.

In this paper we investigate ways in which to include backpropagation (BP)[19]
within X-NCS in order to increase performance, termed X-NCS(BP). Belew et al. [2]
were the first to highlight the potential of combining the two search techniques in the
evolution of artificial neural networks, suggesting that “local search performed by
backpropagation and other gradient descent procedures is well complemented by the
global sampling performed by the GA” (see also ([16], [18]). Using a version of the
LCS for function approximation we examine the effects of varying the amount of BP
undertaken and which rules to update. Versions of X-NCS(BP) are then investigated
for single-step and multi-step tasks with discrete outputs.

2 X-NCS: A Neural LCS

2.1 Discrete Actions

The neural learning classifier system (NCS) used here is based on Wilson’s accuracy-
based XCS (see [5]) and the majority of its internal mechanisms are unchanged. Each
traditional condition-action rule is replaced by a fully connected multi-layer
perceptron (MLP). All rules have the same number of nodes in their hidden layers
(simplest case [4]) and one more output node than there are possible actions. All
weights are randomly initialized in the range [-1.0, 1.0] concatenated together in an
arbitrary order and thereafter determined by the GA (and BP here). The system starts
with an initial random population, containing the maximum number of classifiers
specified in the particular experiment.

The production system cycles through the same input-match-action-update cycle as
XCS. However, since all rules explicitly ‘see’ all inputs, unlike the traditional scheme
whereby defined loci can exclude certain rules from certain matchsets, the extra
output node is added. This is used to signify membership of a given matchset. After
the presentation of an input, each neural network rule produces a value on each of its
output nodes in the appropriate manner, i.e., fed forward through sigmoid transfer
function nodes. If the extra ‘not matchset member’ node has the highest output value,
the rule does not form part of the resulting matchset. In all other cases the rule forms
part of the matchset, proposing the action corresponding to the output node with the
highest activation. This matching procedure is repeated for all rules on each cycle.

Rule discovery operates in the same way as usual for XCS with real numbers [25].
Hence the mutation operator is altered to adjust gene values using a normal
distribution; small changes in weights are more likely than large changes upon
satisfaction of the mutation probability (). The cover operator is altered such that
when the matchset is empty, random neural networks are created until one gives its
highest activation on an action node for the given input. Subsumption is not included.
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2.2 Continuous-Valued Actions: Function Approximation

It is well-known that multi-layered perceptrons with an appropriate single hidden
layer and a non-linear activation function are universal classifiers (e.g.,[10]). Until
recently LCS had not been used to solve tasks of the form y = f{x) since their
traditional representation scheme does not lend itself to such classes of problem.
Fuzzy Logic LCS (see [3] for an overview) represent, in principle, a production
system-like scheme which can be used for such tasks but this remains unexplored.
Ahluwalia and Bull [1] presented a simple form of LCS which used numerical S-
expressions for feature extraction in classification tasks. Here each rule’s condition
was a binary string indicating whether or not a rule matched for a given feature and
the actions were S-expressions which performed a function on the input feature
value. Wilson [27] has presented a form of XCS, termed XCSF, which uses
piecewise-linear approximation for such tasks; using only explore trials all
matching rules update their parameters, where such trials are run consecutively as a
training period.

We have presented a version of X-NCS for tasks of the form y = f{x), where both x
and y are real numbers between 0.0 and 1.0. However, unlike the above mentioned
work, the system requires very few changes to the design of the standard XCS system:

2.2.1 Processing of Real Numbers

The real number inputs are scaled between 0.4 and 0.8 to accommodate the lack of
discrimination of the upper and lower end of the sigmoid function, as is usual in the
use of MLPs.

2.2.2 Changes to Error Threshold Processing and System Error

In standard XCS, the error threshold &, is a fixed fraction of the payment range.
However with function approximation across a continuous value range, a fixed value
may result in very inaccurate classifiers at the bottom end of the input range. It was
therefore decided that & should be variable to enable the accuracy, and hence fitness,
of the classifiers across the range to be equivalent. The variable value was chosen as
the percentage of the target value at any particular point. The percentage chosen was
1% so, for example under x-squared, if the input was 0.3 the target output value f{x)
would be 0.09. Here the required accuracy & would be 0.0009 and so classifiers that
predicted within the range 0.0891 to 0.0909 would be given an accuracy of 1.0. In the
same way, when the performance of the system is measured, the system error was
calculated by taking the absolute difference between the target value and the
prediction of the selected classifier, and dividing this by the target value, i.e., the
system error is the percentage error between the target and the prediction value.

2.2.3 Matchset and Action Set Processing

The rule prediction value is taken from one output node of the individual’s neural
network. The selection of the match set is such that the ‘not matchset member’ output
node merely has to have a positive value, rather than a value less than the primary
output node, to indicate a match. In exploration all members of the match set are
updated and rule discovery invoked if appropriate as per standard XCS. In XCS,
under exploitation, all classifiers that advocate the same action are put into the same
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set [A]. The chosen action set is the one that has the highest fitness weighted
prediction. For function approximation we are looking for the rule whose prediction is
most accurate, i.e., has the least error, and hence taking the classifier with the highest
fitness weighted prediction would be inappropriate. Instead, the counterpart of
prediction for such tasks is chosen, i.e., rule error, and so we choose the rule with the
lowest value of error divided by fitness. This is equivalent to having the chosen action
set containing just one macro-classifier.

2.2.4 Rule Updating
The prediction value for each rule is taken as the value of the output of the neural
network, i.e., the prediction value of the classifier can change at each iteration. By
contrast, the error value of a rule is determined as per standard XCS. Accuracy is
determined in the standard XCS way except, as mentioned above, the accuracy
criterion is taken as a percentage of the current target value. Fitness is again
calculated in the standard XCS way. Thus the output value for a particular rule will
change for each different input value. For example, for problem »n with input value 0.3
-> prediction 0.0891, but problem n+1 with input 0.4 -> prediction 0.160. However
the error value for each accurate classifier, although it varies as the predictions can
deviate from their respective targets, is a small value that oscillates according to &.
We now examine the effects of incorporating backpropagation into X-NCS,
starting with function approximation tasks.

3 Function Approximation

3.1 Backpropagation

In this paper we use standard BP with a learning rate of 0.2 which determines by how
much we change the weights at each step and a momentum rate 0.5. If the learning
rate is too small, the weights take a long time to converge, conversely, if it is too
large, we may end up reverberating around the error surface. Use of a momentum
term helps reduce oscillation between iterations, and allows a higher learning rate to
be specified without the risk of non-convergence. The learning rate is comparable to
the  parameter in XCS.

We have experimented with two training procedures: in the first, only the
macroclassifier in the selected actionset, i.e., that providing the system output, is
updated under exploit trials; and in the second, all rules in the match set have their
weights updated using the target value for f{x) under both explore and exploit trails. In
both cases offspring are produced using the parent rules’ current (BP adjusted)
connection weights rather than their original weights; a Lamarckian learning scheme
is utilized (e.g., [23]) rather than the Baldwin effect (e.g., [9]). Further, we have
experimented with using one, two and three cycles of BP per system cycle.

3.2 Results for y=x’

In this task training consists of (alternating) 20,000 explore trials and 20,000 exploit
trials each presenting a random input in the range [0.0, 1.0] scaled as described above.
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Figure 1 shows the performance of the accuracy-based neural classifier system on the
x-squared function, averaged over ten runs, with a running average over the previous
fifty exploit trials. The parameters used were: N=3200, $=0.2, $=0.5, u=0.15, 0=0.1,
%x=0.8, 6=10, 6=0.1, F;=1.0, €,=1%. Rules contained five hidden layer nodes.

X-NCS X Squared with backpropagation

% age error
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6 1 ' — -target

2500 5000 7500 10000 12500 15000 17500
exploit problems

Fig. 1. X-NCS on the x-squared problem

From Figure 1 it can be seen that when not using BP, X-NCS requires around
15,000 problems to solve the task, i.e., for the accuracy of the approximations to fall
within 1% of the real f(x). It also can be seen that after 6000 problems the accuracy
comes very close to 1% and then gradually reduces to be less than 1%. Analysis of the
resulting systems shows that better performance is achieved when one neural network
emerges to cover the whole problem space, rather than through cooperative neural
networks. The reasons for this appear two-fold: MLPs attempt to form global models
by approximating between known data points; and the niche-based scheme of XCS
encourages maximally general rules through increased chances to reproduce sets (see
[4] for discussions). However, other work (unpublished) on a more difficult real-
world problem indicated that, in such circumstances, the problem space is divided
into a small number of regions covered by separate neural networks. Additionally,
within these discrete regions very accurate classifiers appear, covering very small
regions of the problem space. Similar results have been gained from using Radial
Basis Function networks on the problems used here [4]. Figure 1 also shows the
effects of using one to three cycles of BP, in this case reducing the learning time to
less than 2000 problems. It can be seen that BP always reduces the time taken for the
system to reach optimal performance but, that three cycles gives no greater benefit
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Fig. 2. X-NCS on the x-squared problem using second update scheme

over one. It can also be seen that with BP a more accurate solution is produced than
the pre-specified criterion.

Figure 2 shows the results from the same experiments but using the second update
scheme, that is, all of the matchset were updated per exploit trial, as happens on
explore trials. The parameters are the same as for the previous scheme. It can be seen
that worse (slower) performance is obtained than under the previous scheme, and that,
again, no benefits are gained from more than one BP cycle. We suggest that the
previous update scheme helps XCS separate the more accurate rules from the rest of
the match set, by updating them more often.

3.3 Results for Root-Mean-Square

We have also examined the performance of the system on functions which contain
more than one variable. Wilson [27] presented a general, multi-dimensional function
of the form y = [(xI? + ... + xn’) / n] %. We have used this “root mean squared”
function with n=6, where training was identical to that of the x-squared task above.
The parameters used were: N=3200, =0.2, ¢=0.5, pu=0.07, a=0.1, ¥=0.8, 6=10,
6=0.1, F;=1.0, €,=1%. Rules contained five hidden layer nodes.

From Figure 3 it can be seen that using the neural representation on its own
requires around 14,000 problems to solve the task to an accuracy of 1%. As with the
x-squared function, the most accurate solutions came from those in which one
classifier covered the whole input range. Again, three cycles of BP gives similar
benefit as one. Results from using the second update scheme, updating all the
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classifiers in the matchset, again gave inferior performance to updating the best
macro-classifier (not shown).

Therefore it would appear that the search process of the GA is greatly enhanced
by the inclusion of the BP search heuristic within the LCS framework. That is, as
discussed by Belew et al. [2], the BP allows the GA to sample the fitness
landscape in a way where it need only be possible to reach good solutions via BP
rather than consistently produce an exact, high-performance solution. We now
investigate applying the approach to a commonly used single-step task with
discrete outputs.
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Fig. 3. X-NCS on the 6RMS problem

4 Multiplexer Task

We have tested the scheme on the 6-bit and 11-bit multiplexer problems. These
Boolean functions are defined for binary strings of length I = k + 2" under which the
first k bits index into the 2" remaining bits, returning the indexed bit. A payoff of 1000
is given for a correct answer, otherwise 0.

Two learning schemes have been explored for such tasks. In these schemes we
move away from the supervised learning scenario and each rule has three output
nodes as described in Section 2.1. In the first (penalty) scheme, when a rule is in an
action set proposing a different payoff level to the fittest rule, the value zero is used in
a BP cycle(s) on its 'matchset member node‘ along with its own output values on the
other two nodes. In the second (general) scheme, the output values of the fittest rule
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Fig. 4. X-NCS on the 6-bit Multiplexer

(ties broken randomly) are used by the BP as a target for all classifiers to be updated,
regardless of a rule’s predicted payoff.

Figure 4 shows the results of using X-NCS on the 6-bit version of the single-step
problem, averaged over ten runs, with the following parameters: N=1000, u=0.01,
B=0.2, $=0.5, 0=0.1, x=0.8, 6=10, 6=0.1, pI=0, FI1=1.0, £,=0.0. Rules contain five
nodes in their hidden layer.

From Figure 4 it can be seen that using the neural representation alone requires
around 5000 problems to solve the task. Analysis of the resulting rule-bases shows
that, as well as the usual rules which match multiple inputs and propose a single
action at a given payoff prediction level, multiple action rules emerge. That is, for a
given prediction level, accurate rules are evolved which suggest different actions
depending on the input. Figure 4 also shows results from the BP penalty training
scheme under which rules predicting a different payoff level to the fittest rule are
encouraged not to match in that action set in future by receiving a zero input on their
match node. It can be seen that this type of BP is beneficial and we have found that
three cycles (not shown) gives no greater benefit over two (shown). It can also been
seen that using the more general BP update procedure gives some benefit, but not as
great as for the penalty form of BP.

Figure 5 shows results for the same versions of the system on the 11-bit
multiplexer using the same parameters as before, except: N=3000. Again, the penalty
form of BP is most beneficial and we have found that no more than one cycle of BP
provides any benefit (not shown).



Backpropagation in Accuracy-Based Neural Learning Classifier Systems 33

X-NCS 11 bit Multiplexer with general and penalty
BP

- =no BP

—— BP 3 cycle penalty
—BP 3 cycle general

performance
o
o
|

15000 30000 45000 60000 75000
exploit problems

Fig. 5. X-NCS on the 11-bit Multiplexer using backpropagation

5 Multi-step Environments

5.1 Woods 2

Wilson [24] presented the multi-step, and hence delayed reward, maze task Woods 2
to test XCS. Woods 2 is a toroidal grid environment containing two types of food
(encoded 110 and 111), two types of rock (encoded 010 and 011) in regularly spaced
3 by 3 cells, and free space (000) (see [ibid]) for full details). The learner is positioned
randomly in one of the blank cells and can move into any one of the surrounding eight
cells on each discrete time step, unless occupied by a rock. If it moves into a food cell
the system receives a reward from the environment (1000) and the task is reset, i.e.,
food is replaced and the learner randomly relocated. On each time-step the learning
system receives a sensory message, which describes the eight surrounding cells,
ordered with the cell directly north and proceeding clockwise around it. Here, as in
[24], the trial is repeated 10000 times, half explore and half exploit, and a record is
kept of the moving average (over the previous 50 exploit trials) of how many steps it
takes the system to move into a food cell on each trial. The parameters used for all the
following were: N=3200, B=0.2, ¢=0.5, u=0.07, 0=0.1, x=0.8, 6=10, 6=0.1, F;=1.0,
€,=1%. Rules contained five hidden layer nodes.

Figure 6 shows how X-NCS without BP takes around 3000 trials to solve Woods 2.
Analysis of the resulting rule-bases shows that neural rules emerge which have no
error and produce different actions depending upon the input. Unlike in the
multiplexer problem, we find that for some payoff levels these multi-action rules are
more numerous than the equivalent single action rules. We presume that, if left to run
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X-NCS Woods2 with with backpropagation
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Fig. 7. X-NCS on the Woods2 problem with varying fitness differentials

for longer, the system would converge on a single neural rule for each payoff level;
maximal generalizations would be produced in both the condition and action space.
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In multi-step tasks the number of payoff levels is potentially large and rules’
estimations of their expected payoff may take much longer to stabilize under the
temporal difference chains. Hence, the penalty BP scheme described above would not
appear to be appropriate in such tasks. Therefore we have only applied the general
scheme here. Figure 6 shows how the scheme seems to have a disruptive effect,
performing worse than the original system without BP. This was found to be true
regardless of the number of BP cycles used. It was therefore decided to try to limit
this disruption by only updating those classifiers that were very unfit compared to the
fittest classifier. This was achieved by only updating those classifiers whose fitness
was smaller than the fittest by a factor Z - the fitness differential. Here, if the fittest
classifier had a fitness f, then only those classifiers with a fitness less than f/Z would
be updated.

Figure 7 shows the results from using the general BP update procedure with fitness
differentials of 10, 15 and 25, and with 3 cycles of BP, as this amount gave slightly
better results in Figure 6. As can be seen, a differential of 10 produces a result worse
than that of Woods2 without BP, and that with a differential of 15 and 25, the overall
performance with BP is only marginally better than without BP, and even then only in
the early stages of the trial.

5.2 Mazes 5and 6

As mentioned above, results for Woods2 showed very little advantage to using BP.
However, the Woods2 problem is relatively easy and thus any advantage from using
BP might not be significant. To verify this, we tested the BP scheme on two well-
known larger environments: Maze5 and Maze6 (Figure 8.a and Figure 8.b)[15].

TITITITITITITITIT TITJTITITITITIT JT
T FIT T TIF|T
T T TIT T T T TiT T
T T T T T T
T TIiT T T TIiT T
T T T TIT T T T TIT
T T T T T T T
T T T T T T
TITITITITITITITIT TITITITITIT T T T

Fig. 8. (a) The Maze5 environment, and (b) the Maze6 environment

Maze6 is derived from Maze5 by moving one obstacle so that the final step to food
is reduced from two squares to one. This both increases the optimal solution from
475 steps to 5.05 steps and also reduces the number of penultimate and ante-
penultimate steps to food. Therefore it is significantly harder than Maze5.

The parameters used were: N=6500, $=0.2, $=0.5, u=0.07, o=0.1, ¥x=0.8, 6=10,
0=0.1, F;=1.0, £,=1%. The BP parameter fitness differential Z value was set at 15.
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Fig. 9. X-NCS on the Maze5 problem with varying cycles of BP
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Fig. 10. X-NCS on the Maze6 problem with two cycles of BP

From Figure 9 it can be seen that using the neural representation alone requires
around 125,000 problems to solve the task. Figure 9 also shows results from using the
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general BP update procedure with the fitness differential. As can be seen, a significant
change in performance is obtained, although four cycles do not have much more
advantage than two.

Figure 10 shows the performance of X-NCS(BP) on the harder Maze 6 task using
two cycles of BP and the same parameters as for Maze 5. The original X-NCS has not
been tried on this maze simply for time reasons; runs longer than 125,000 problems
are expected. As can be seen, it takes approximately 3000 problems to solve the task.
Runs with more cycles of BP (e.g., 4) give roughly the same performance (not
shown). Therefore, again, the use of backpropagation proves very beneficial to X-
NCS on a complex task.

6 Conclusions

In this paper we have presented results from using backpropagation in conjunction
with a neural rule representation scheme within an accuracy-based learning classifier
system. The effective combination of evolutionary computing and neural computing
has long been an aim of machine learning (e.g., see [28] for discussions). It is our aim
to exploit the coevolutionary and accuracy processes of XCS to realize such systems
for reinforcement learning in complex domains. We have presented mechanisms by
which to effectively exploit the local search of BP on top of the traditional GA-based
search of LCS in a number of single-step and multi-step tasks.

This version of XCS is a more complex implementation, than standard XCS, and
for function approximation at least, does not provide rules that are comprehensible,
which is one of the key strengths of LCS. Set against this, is the ease which the
embedded neural network can accept all types of input, i.e., binary, integer, real or
ordinal in any combination, and importantly that neural networks can be universal
approximators, which, in principle, means that they can represent any problem.
Furthermore, that unlike the traditional use of neural networks, where the neural
network has to cover the whole of the problem space, the XCS classifier itself
determines what part of the problem space, or niche, it will cover without reference to
external domain expertise. This we feel offsets the disadvantages of lack of
comprehension in areas where the problem space is unknown, sparse and noisy.

We are currently examining the use of the hybrid system for more complex single-
step tasks, and with discrete or continuous action spaces. In addition are planning to
introduce recurrent connections, (a well established neural network architecture) to
the evolving neural networks to add memory so that our method can be used in non-
Markovian problems.
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Abstract. Several binary rule encoding schemes have been proposed for
Pittsburgh-style classifier systems. This paper focus on the analysis of
how maximally general and accurate rules, regardless of the encoding,
can be evolved in a such classifier systems. The theoretical analysis of
maximally general and accurate rules using two different binary rule
encoding schemes showed some theoretical results with clear implications
to the scalability of any genetic-based machine learning system that uses
the studied encoding schemes. Such results are clearly relevant since one
of the binary representations studied is widely used on Pittsburgh-style
classifier systems, and shows an exponential shrink of the useful rules
available as the problem size increases . In order to be able to perform
such analysis we use a simple barebones Pittsburgh classifier system—
the compact classifier system (CCS)—based on estimation of distribution
algorithms.

1 Introduction

The work of Wilson in 1995 [I] was the starter of a major shift on the way that
fitness was computed on classifier systems of the so call Michigan approach. Ac-
curacy became a central element in the process of computing the fitness of rules
(or classifiers). With the inception of XCS, the evolved rules targeted became
the ones that were maximally maximally general (cover a large number of ex-
amples) and accurate (good classification accuracy) . After a decade since the
paper published by Wilson, such road has been shown to be a successfull one.
However, few attempts have been made to do the same revision exercise on the
Pittsburgh-style classifier systems.

This paper revisits Wilson’s work and applies some of the his original ideas to
Pittsburgh-style classifier systems. We start analyzing how maximally general
and accurate rules can be obtained in a barebones Pittsburgh style classifier
system. Usually, classifier systems are built around a given knowledge represen-
tation and encoding of the rules is not even considered as a variable in the design
of most classifier systems. Little research has been done about the relevance of
the rule encoding schemes used in Pittsburgh-style systems. Our work propose
an alternative of how such rules may be evolved using a simple barebones Pits-
burgh style classifier systems—the compact classifier system (CCS)—based on
estimation of distribution algorithms.

X. Llora et al. (Eds.): IWLCS 2003-2005, LNAT 4399, pp. 40 2007.
© Springer-Verlag Berlin Heidelberg 2007
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Such work also analyzed two different binary rule encoding schemes. Surpris-
ingly, one of the most commonly used representation [2I3] inherently posses a
bias that challenge the scalability of any system that uses such encoding. In
this representation, theory show how the area of meaningful rules shrinks ex-
ponentially, leading the learning mechanism into a nail-in-a-haystack situation.
Such situation can be corrected using alternating binary encoding schemes, as
we show with a simple alternative binary encoding mechanism.

The rest of this paper is structured as follows. Section [2] reviews the binary
rule encoding proposed by De Jong & Spears [2], widely used on Pittsburgh-
style systems. Section B] presents how maximally general and accurate rules may
be characterized regardless of the representation used. Given the elements pre-
sented in the previous sections, theory of exponential shrinking of the number
of meaningful rules is presented in section @] when the De Jong & Spears rep-
resentation is used. Section [l presents an alternative encoding and how such
exponential shrinking behavior may be avoided. Section [6] presents a first em-
pirical study of the how maximally general and accurate rules may be evolved
using a Pittsburgh-style systems. Finally, a summary of the conclusions of the
work presented in this paper is presented in section [7

2 Binary Rule Encoding

Regardless of the Pittsburgh or Michigan approach taken, a wide variety of
knowledge representations have been used to describe rules in the genetics-based
machine learning community [UBI62BI7ISIOTOIT]. This paper focuses on the
rule representation proposed by De Jong & Spears [2] and later adopted by
Janikow [3] in their early works on Pittsburgh-style classifier systems. The main
property of such representation is it simple mapping on binary string, when
compared to the y-ary mapping required by the initial Michigan one proposed
by Holland [4] and later mainly followed by Goldberg [5] and Wilson [IJ.

The rule representation proposed by De Jong [2] is based on a finite set of
attributes with a finite number of possible values, and a close world assumption.
We illustrate the rule encoding representation with the help of a simple example.
Let’s assume that for a given learning problem objects are described by three
different attributes: color, shape, and size. The available colors are red, green,
blue, and white. Shape comes in two forms, round and square. Finally, huge,
large, medium, and small are the possible sizes. Rules describing patterns of
objects are encoded as follows

color shape size
red green blue white round square huge large medium small
1 1 1 1 0 1 0 1 1 0

The previous rule (1111]01]0110) represents all square and large or medium
objects. A 0 represents excluding a value, whereas a 1 indicates that such value
may be present on the described object. Such simple example shows one of the
main differences between this representation and the usual one used in the Michi-
gan approach. This representation holds internal disjunctions among attribute
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values. The previous rule using the y-ary alphabet used by traditional Michigan
approaches would require two rules {#11, #12}E| to express the same concept.

The previous rule states that the target object may have any possible color
by means of allowing all its possible values (red, green, blue, and white).
Such approach represents the equivalent of the don’t care symbol (#) used by
traditional Michigan systems. Another important difference is that a rule may
never be matched. An example of such situation is the following rule.

color shape size
red green blue white round square huge large medium small
1 1 1 1 0 0 0 1 1 0

The rule 111110010110 describes objects that are not round nor square. Since
the objects or the problem may only take two possible values (round nor square),
such a rule would never be satisfied.

Finally, a concept can be expressed by the disjunction of several of the afore-
mentioned rules. For instance, the rule set {111110110100,0010[10/0010} rep-
resents all the square and large objects, as well as all blue, round, and medium
ones.

The initial proposal by De Jong [2] assumed that rules match positive exam-
ples of the concept to be learnt. Any example not matched by a given rule set is,
therefore, a negative example of such concept—or close world assumption [12].

3 Maximally General and Accurate Rules

Wilson [I] introduced the concept of classifiers based on accuracy. Besides setting
one of the current Michigan approach standards (XCS), Wilson’s work empha-
sized the importance of taking into account the accuracy when evaluating the
fitness of classifiers—or rules. Another important concept of such work was the
definition of maximally general and accurate rules. Such rules are at the bound-
ary of accuracy and generality—a more general rule will have lower accuracy than
the maximally general and maximally accurate one. This section applies some of
the Wilson’s ideas to Pittsburgh style classifiers. Such an endeavor requires an
initial revision of the knowledge representation used and how to introduce the
concept of maximally general and accurate rules for a Pittsburgh-style classifier
systems.

In order to promote maximally general and maximally accurate rules a la
XCS [II, we need to compute the accuracy of a rule («) and its error (¢). In
a Pittsburgh-style classifier, the accuracy may be computed as the proportion
of overall examples correctly classified, whereas the error is the proportion of
incorrect classifications issued by the activation of the rule. For computation
simplicity we assume () = 1 when all the predictions were accurate, and e(r) =
0 when all were incorrectly issued. Let ny be the number of positive examples

! Please refer to Holland (1975) [H], Goldberg (1995) [6], or Wilson (1995) [1] for
further details about the equivalent Michigan x-ary encoding.
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correctly classified, n;— the number of negative examples correctly classified,
n., the number of times that a rule has been matched, and n; the number of
examples available. Using this values the accuracy and error of a rule r can be
computed as:

_ Tt (T) + g (T) (1)

=" (2)

Tt is worth to note that the error (equation2]) only take into account the number
of correct positive examples classifiedd. This is a byproduct of the close world
assumption of this knowledge representation. Once the accuracy and error of a
rule are known, the fitness can be computed as follows.

f(r) =a(r) -e(r)? 3)

Such fitness favors rules with a good classification accuracy and a low error, or
maximally general and maximally accurate rules. Throughout the rest of this
paper we assume v = 1. Traditional Pittsburgh-style classifier systems mainly
relied on some sort of fitness based only on the accuracy (equation [) [2U3UT0].
Such fitness guidance makes no differences between two rules with the same accu-
racy but different errors. Hence, no bias toward maximally general and accurate
rules usually exist in the initial Pittsburgh-style systems.

4 Unmatchable Rules: A Representation Side Product

Figures[l 2] andBlshow the fitness presented in equation[3lfor each of the possible
rules in three different multiplexer problem (MUX3, MUX6, and MUX11). Figure s
@ 2 and B also show another property of the encoding proposed by De Jong &
Spears [2], the exponential growth in the number of unmatchable rules. If a rule,
because of the close world assumption in a binary classification problem, does not
match a positive example, then the example is classified a as negative one. Hence,
in a binary problem with a 50% positive and 50% negative examples—such as any
multiplexer problem,—an unmatchable rule presents an accuracy a(r) = 0.5—
since an unmatchable rule classifies all instances as negative due to the close
world assumption—and an error (r) = 1-—since it was never activated and no
prediction was issued. Hence the fitness of an unmatched rule is f(r) = 0.5.

Comparing figures [[(b)} 2(b)] and [3(b)] a central plateau of unmatched rules
grows non linearly. Moreover, the size of such plateau—Ilet @&(¢) be the number of
unmatched rules—is theoretically computable. The following calculations assume
the binary coding for a binary attribute problem such as the multiplexer problem
discussed above. However, such measure is easily extend to any arbitrary y-ary
attribute problem.

2 We also assume that if a rule is never matched, no error is made and, hence, e(r) = 1.
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Fig. 1. Given the fitness presented in equation [B] figures display the fitness of all
possible rules for the 3-input multiplexer (MUX3) using De Jong & Spears representation.
The normalized rules space is obtained by sorting all the possible rules according to
their fitness.
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Fig. 2. Given the fitness presented in equation [B] figures display the fitness of all
possible rules for the 6-input multiplexer (MUX6) using De Jong & Spears representation.
The normalized rules space is obtained by sorting all the possible rules according to

their fitness.
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Fig. 3. Given the fitness presented in equation 8] figures display the fitness of all possi-
ble rules for the 11-input multiplexer (MUX11) using De Jong & Spears representation.
The normalized rules space is obtained by sorting all the possible rules according to

their fitness.
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The total number of possible binary-encoded rules X' given a given length /¢
is,
2 =2" (4)
A rule is matchable if it guarantees that for each binary attribute, the two
coding bits are not both 0 simultaneously. Thus, for any given binary attribute,
four possible combinations are possible (00, 01, 10, and 11), and one (00) needs
to be avoided to guarantee that the attribute is matchable. Since the total num-
ber of attributes of the rule is ¢/2, the number of matchable rules ¥(¢)—the
ones that none of the attributes contain the 00 combination—is:

T(0) = 3> (5)

Hence, the size of the plateau of unmatchable rules @(¢), is computed as

)4

D) = X(0) —w(l) =2 - 32 (6)

Figures [T(a)} R(a)] and [3(a)] display the fitness of all possible rules for three
different multiplexer problems, 3-input (MUX3), 6-input (MUX6), 11-input (MUX11).
The rule space presented by each figure can be normalized, as ﬁgures
and show. Such normalization is achieved by sorting the rules according to
their fitnes f(r). After the normalization, the grow of the plateau is obvious.
Such growth needs to be compared to the growth of matchable rules. The ratio
between unmatchable and matchable rules p(¢) shows how scallable such rule
encoding is. The p(¢) ratio may be computed using equations Bl and [ as

14
0= i) = e =1 ™

Equation[flcomputes the exact ratio among unmatchable and matchable rules.
Since we are interest on how p(¢) grows, such ratio may be approximated as

follows ,
p(l) = e (8)

c:ln(j?)) —0.143 )

Figure[shows p(¢) and its approximation by equation[8 Unfortunately, equa-
tion [ also shows that p(¢) grows exponentially. That is, such a rule coding
procedure produce an exponentially growing number of unmatchable rules, in-
troducing a serious handicap to the scalability of any genetic-based machine
learning approach using it.

where c is given by

5 Specificity-Based Rule Encoding: An Alternative

Butz, Pelikan, Llora, and Goldberg [13/14] introduced an alternative binary en-
coding as the result of the work for building-block identification in XCS. Such
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Fig. 4. Figure shows p({) and its approximation by equation [§ growing exponentially

endeavor requires transcoding each 3-ary (0,1,#) rule into a binary represented
rule. The reason behind such transcoding is the need of the simplest ECGA and
BOA [15] models used to deal with binary strings. Such encoding was proposed
for binary-valued attributes (0,1), however the same approach can be applied
to y-ary alphabets without lost of generality. A detailed discussion of this work
can be found elsewhere [I3J14].

For each attribute, two genes are available in Butz, Pelikan, Llora, and Gold-
berg representation. The first gene selects if the condition is a general (equivalent
of having a # in such position) or specific one. If the condition is marked as spe-
cific, then the value used is the one represented on the second binary-encoded
gene value.

As introduced in the example presented in section [2 let’s assume that for
a given learning problem objects are described by three different attributes:
color, shape, and size. The available colors are red, green, blue, and white.
Shape comes in two forms, round and square. Finally, huge, large, medium, and
small are the possible sizes. A rule describing all round and large objects will
be encoded as (#01) in a Michigan x-ary alphabet. The equivalent transcoded
rule obtained using the procedure mentioned above is

color shape size
specific valueg value; specific valueg specific valueg value;
0 0 1 1 0 1 0 1

Hence, the equivalent binary transcoded rule for (#01) is (001110]101) .

This encoding presents two interesting properties. The first one is that the
relation general:specific is 1:1, removing any bias toward general or specific con-
ditions. The second property is related to the expression of the second gene of
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Fig.5. Given the fitness presented in equation [ figures display the fitness of all
possible rules for the 3-input multiplexer (MUX3) using Butz, Pelikan, Llora & Goldberg
representation. The normalized rules space is obtained by sorting all the possible rules
according to their fitness.

an attribute and rule redundancy. If an attribute is marked as general then, at
least y binary rules represent the same rule before the transcoding process, and
the second gene is not expressed.

Figures[5(a) [6(a)} and[7(a)]display the fitness of all possible rules using the en-
coding mentioned above for three different multiplexer problems, 3-input (MUX3),
6-input (MUX6), 11-input (MUX11). The rule space presented by each figure is also
normalized, as figures [5(b)] [6(b)} and [7(b)] show. Figures also show a plateau of
equally evaluated rules.
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Fig. 6. Given the fitness presented in equation [B] figures display the fitness of all
possible rules for the 6-input multiplexer (MUX6) using Butz, Pelikan, Llora & Goldberg
representation. The normalized rules space is obtained by sorting all the possible rules

according to their fitness.

A close inspection to these rules show a total different scenario than the one
proposed by DeJong & Spears encoding. The plateau of equally evaluated rules
represent those rules whose prediction is randomly left to the input values. For
instance, in the MX3 28 redundant binary transcoded rules form such plateau,
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Fig. 7. Given the fitness presented in equation [3] figures display the fitness of all pos-
sible rules for the 11-input multiplexer (MUX11) using Butz, Pelikan, Llora & Goldberg
representation. The normalized rules space is obtained by sorting all the possible rules
according to their fitness.
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Fig. 8. Ratio between plateau size and rule space size for the two representations
studied. Two different tendencies are clearly identified as the problem size grows.

representing the following nine Michigan-encoded rules {###, #01, #10, 0##, 0#0,
O#1, 1##, 10#, 11# }. Each of these rules show how the classification has a fifty-
fifty change of being properly issued. Thus, these rules presents the same fitness
f(r)=10.25 (a(r) = 0.5 and e(r) = 0.5).

However, this plateau presents a total different behavior. Figure [§ shows how
the exponential growth of unmatchable rules in De Jong & Spears representa-
tion reduce the space left to useful rules. On the other hand, the plateau of
equally evaluated random guessing rules in Butz, Pelikan, Llora & Goldberg
shrinks as the problem size increase. Such shrinking behavior leave more room
for interesting rules that may be explore along an evolutionary learning process.

6 Maximally General and Accurate Rules with the
Compact Genetic Algorithm

In order to evolve maximally general and accurate rules, we use the compact
gentic algorithm (¢cGA) [16]. It is important to mention here, that such algo-
rithm does not provide any nitching capability and, hence, will only produce
one maximally general and accurate rule. How to overcome such limitation is
explained elsewhere [I7].

6.1 The Compact Genetic Algorithm

The compact genetic algorithm [I6], is one of the simplest estimation distri-
bution algorithms (EDAs) [I5/I8]. Similar to other EDAs, cGA replaces tradi-
tional variation operators of genetic algorithms by building a probabilistic model
of promising solutions and sampling the model to generate new candidate so-
lutions. The probabilistic model used to represent the population is a vector
of probabilities, and therefore implicitly assumes each gene (or variable) to be
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independent of the other. Specifically, each element in the vector represents the
proportion of ones (and consequently zeros) in each gene position. The prob-
ability vectors are used to guide further search by generating new candidate
solutions variable by variable according to the frequency values.

The compact genetic algorithm consists of the following steps:

1. Initialization: As in simple GAs, where the population is usually initialized
with random individuals, in cGA we start with a probability vector where the
probabilities are initially set to 0.5. However, other initialization procedures
can also be used in a straightforward manner.

2. Model sampling: We generate two candidate solutions by sampling the proba-
bility vector. The model sampling procedure is equivalent to uniform crossover
in simple GAs.

3. Fwaluation: The fitness or the quality-measure of the individuals are
computed.

4. Selection: Like traditional genetic algorithms, cGA is a selectionist scheme,
because only the better individual is permitted to influence the subsequent
generation of candidate solutions. The key idea is that a “survival-of-the-
fittest” mechanism is used to bias the generation of new individuals. We
usually use tournament selection [I9] in cGA.

5. Probabilistic model updation: After selection, the proportion of winning alle-
les is increased by 1/n. Note that only the probabilities of those genes that
are different between the two competitors are updated. That is,

Pl o+ 1/nIf 2y # xei and 2y = 1,
p;—l_l = p; - 1/7?, If xu)vi # x(;vi and $w7i = 07 (10)
L, Otherwise.

Where, x,,,; is the i*" gene of the winning chromosome, X, is the ith gene
of the competing chromosome, and p’, is the i element of the probability
vector—representing the proportion of i** gene being one—at generation ¢.
This updating procedure of ¢cGA is equivalent to the behavior of a GA with
a population size of n and steady-state binary tournament selection.

6. Repeat steps 2-5 until one or more termination criteria are met.

The probabilistic model of ¢cGA is similar to those used in population-based
incremental learning (PBIL) [2002I] and the univariate marginal distribution al-
gorithm (UMDA) [2223]. However, unlike PBIL and UMDA, c¢GA can simulate
a genetic algorithm with a given population size. That is, unlike the PBIL and
UMDA, cGA modifies the probability vector so that there is direct correspon-
dence between the population that is represented by the probability vector and
the probability vector itself. Instead of shifting the vector components propor-
tionally to the distance from either 0 or 1, each component of the vector is
updated by shifting its value by the contribution of a single individual to the
total frequency assuming a particular population size.

Additionally, cGA significantly reduces the memory requirements when com-
pared to simple genetic algorithms and PBIL. While the simple GA needs to
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store n bits, ¢cGA only needs to keep the proportion of ones, a finite set of n
numbers that can be stored in log,n for each of the ¢ gene positions. With
PBIL’s update rule, an element of the probability vector can have any arbitrary
precision, and the number of values that can be stored in an element of the
vector is not finite.

Elsewhere, it has been shown that ¢GA is operationally equivalent to the
order-one behavior of simple genetic algorithm with steady state selection and
uniform crossover [16]. Therefore, the theory of simple genetic algorithms can
be directly used in order to estimate the parameters and behavior of the cGA.
For determining the parameter n that is used in the update rule, we can use an
approximate form of the gambler’s ruin population—sizin£ model proposed by
Harik, Canttu-Paz, Goldberg, & Miller [24]:

n = —loga - JZB 2R/ m, (11)

where k is the BB size, m is the number of BBs (note that the problem size
¢ = k-m), dis the size signal between the competing BBs, and opp is the
fitness variance of a building block, and « is the failure probability.

6.2 Model Perturbation

However, as mentioned earlier, cGA evolves only one rule at a time. Therefore we
propose a modifies cGA to evolve different maximally accurate and maximally
general rules not based on niching techniques. We note that the proposed ap-
proach is a viable alternative to niching mechanisms. Our approach is based on
perturbating the initial probability vector with an uniform noise. Several runs
of ¢cGA using different initial perturbated initial probability vectors may lead
to different accurate and maximally general rules. Instead of the initial cGA
probability vector we used

pY. =0.5+U(—0.4,0.4) (12)

Such a perturbation arises another question. Is there any relation among the
initial perturbed model and the final rule obtained? Since our approach requires
the evolution of rules based on c¢GA reruns, such relation among the initial
perturbated model and the evolved rule is a key element. In order to analyze
such a relation, we conducted a simple experiment based on the 3-input multi-
plexer (MUX3) problem. We randomly generate 1,000 perturbated models using
the equation [[2]and run ¢GA. The rule representation used was the on proposed
by De Jong & Spears.

About 97% of the runs lead to one of the three accurate and maximally general
rules, 10101111 (01#), 01111]01 (1#1), and 11101101) (#11). Figure[@ presents
pair plots of the initial perturbated probability vector of CGA that leaded to
evolve a 0111101 (1#1) rule. Figure [0 shows all the initial probability vectors
that lead to the rule 01111101 (1#1). The pair-wise of the probability vectors

3 The experiments conducted in this paper used n = 3¢.
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Fig. 9. Pair plots of the initial perturbation of CGA model. The pair-wise plots display
the initial probability vectors that evolved the rule 01111]01 (1#1). The pair-wise plots
between (ao = 1,io = 0) show a clear infeasible region. Such region arises from the rule
learned in the multiplexer problem. If a 0 is set in ao, then i1 should not contain a
0 in order to evolve the rule 01111101 (1#1). This rule was evolved in 31.1% of the
successful runs.

that lead to this rule show a clear infeasible region between bits (ag = 1, ig = 0).
This region is directly connected to the 3-input multiplexer structure problem. If
a 1isset in ag, then 7y should not contain a 0 in order to evolve the rule 011101
(1#1). Such behavior repeated for the other maximally general and accurate
rules in MX3. The same behavior also repeated in the other two multiplexer
problems MX6 and MX11. The same kind of unfeasible regions appear on the Butz,
Pelikan, Llora, & Goldberg representation. However, in that representation the
unfeasibility regions tend to show up more often between the specificity bits of
of the different multiplexer attributes.
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Another interesting results of these runs is the success rate achieving maxi-
mally general and accurate rules. We repeated 10,000 independent runs of cGA
for each of the multiplexer problems, and the two representations available as
well. Table [Tl presents the averaged quality achieved in those runs. Quality is
defined as the percentage of the runs that evolved a maximally general and ac-
curate rules. Qualities goes down as the problem grows regardless of the repre-
sentation. However, preliminary results show a tendency to stabilize much faster
in the Butz, Pelikan, Llora, & Goldberg representation than in the De Jong &
Spears one. The exponential growth of p for the De Jong & Spears model clearly
supports such intuition. However, further empirical investigation using larger
multiplexer problems is required.

Table 1. Quality of the rules evolved using cGA using the two available representations
in three multiplexer problems

Representation MX3 MX6 MX11

De Jong & Spears 97%  73.93% 43.03%
Butz, Pelikan, Llora & Goldberg 95.55% 68.71% 47.97%

7 Conclusions

This paper has presented an analysis of how maximally general and accurate
rules, regardless of the encoding, can be evolved Pittsburgh-style systems. The
theoretical analysis of maximally general and accurate rules using two different
binary rule encoding schemes showed some theoretical results with clear impli-
cations to the scalability of any genetic-based machine learning system that uses
the studied encoding schemes.

The binary rule-encoding representation proposed by De Jong & Spears [2]
inherently posses a bias that challenges the scalability of any system that uses
such encoding. In this representation, theory shows how the area of meaning-
ful rules—the p ratio—shrinks exponentially, leading the learning mechanism
into a nail-in-a-haystack situation.A way for fixing such a behavior would be to
turn the unmatching conditions into dont care ones. In binary problems, such
a change will behave in the same manner as the ternary representation. How-
ever, increasing the cardinality beyond binary will drastrically chage the balance
among generality and specificity distribution of those conditions. Nevertheless,
the alternative representation—proposed by Butz, Pelikan, Llora, & Golberg
[13UT4]—show that such an exponentially trend is only linked to the encoding
scheme used.

Another interesting results after the CCS runs to evolve maximally general
and accurate rules is the empirical result that the quality of the rules evolve
goes down as the problem grows regardless of the representation used. Such re-
sult suggest that a revision of the population size used by the cGA of the CCS
is needed. Nevertheless, the preliminary results show a tendency to stabilize the
quality drop much faster in the Butz, Pelikan, Llora, & Goldberg representation
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than in the De Jong & Spears one. The exponential behavior of p for the De
Jong & Spears model clearly supports such intuition. However, further empir-
ical investigation using larger multiplexer problems is required. Another open
research area is to formally define the p ratio for the Butz, Pelikan, Llora &
Goldberg representation, and theoretically computed the expression of p.
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Abstract. Bloat control and generalization pressure are very important
issues in the design of Pittsburgh Approach Learning Classifier Systems
(LCS), in order to achieve simple and accurate solutions in a reasonable
time. In this paper we propose a method to achieve these objectives based
on the Minimum Description Length (MDL) principle. This principle is a
metric which combines in a smart way the accuracy and the complexity
of a theory (rule set , instance set, etc.). An extensive comparison with
our previous generalization pressure method across several domains and
using two knowledge representations has been done. The test show that
the MDL based size control method is a good and robust choice.

1 Introduction

The application of Genetic Algorithms (GA) [I] to classification domains is usu-
ally known as Genetic Based Machine Learning (GBML), and it has traditionally
been addressed from two different points of view: the Pittsburgh approach (or
Pittsburgh LCS) and the Michigan approach (or Michigan LCS), early exempli-
fied by LS-1 [2] and CS-1 [3], respectively. Some representative systems of each
approach are GABIL [4] and XCS [3].

The Pittsburgh approach systems usually evolve variable-length individuals
that are complete solutions to the classification problem. This paper deals with
the control of the individuals length. This control is a very important issue for two
main reasons. The first one is that the evolution of variable-length individuals
can lead to solutions growing without control. This phenomenon is usually known
as Bloat [6] and it has been widely studied in the Genetic Programming field.

The second reason is derived from the fact that usually the fitness of the in-
dividuals is only based on their predictive accuracy over the training examples,
and doesn’t take into account their complexity. Given this fitness function, the
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easiest way to increase it is to maximize the probability of correctly classifying
the train examples, which is achieved by increasing the size of the individuals.
This fact produces solutions that are bigger than necessary, contradicting the
Occam’s razor principle [7] which says that “the simplest explanation of the ob-
served phenomena is most likely to be the correct one”. A probable consequence
of the “over-complexity” is an over-fitting of the solutions created which can
lead to a decrease of the generalization capacity. We observed this problem in
our previous work [8].

In this paper we propose a bloat control and generalization pressure method
(GPM) based on the Minimum Description Length (MDL) principle [9]. It is
an interpretation of the Occam’s Razor principle based on the idea of data
compression, that takes into account both the simplicity and predictive accuracy
of a theory. Pfahringer [10] did a very good and brief introduction of the principle:

Concept membership of each training example is to be communicated
from a sender to a receiver. Both know all examples and all attributes used
to describe the examples. Now what is being transmitted is a theory (set
of rules) describing the concept and, if necessary, explicitly all positive
examples not covered by the theory (the false-negative examples) and all
negative examples erroneously covered by the theory (the false-positive
examples). Now the cost of a transmission is equivalent to the number
of bits needed to encode a theory plus its exceptions in a sensible scheme.
The MDL principle states that the best theory derivable from the training
data will be the one requiring the minimum number of bits.

The MDL principle is integrated into our Pittsburgh LCS adapting it to two
knowledge representations. The classic GABIL one [] for discrete attributes
and our own Adaptive Discretization Intervals (ADI) rule representation [11]
for the real-valued ones. We have also added an adaptive heuristic in order to
simplify the task of domain specific parameter tuning. The GPM based on the
MDL principle is compared across several domains with our previous work in
this area: The hierarchical selection operator [8], which is explained in section 3

The paper is structured as follows. Section Bl presents a short description of
how the bloat effect affects Pittsburgh LCS and also some guidelines about how
should be defined the measures used to alleviate the bloat effect. Next, section [3]
presents some related work. After the related work we describe the framework of
our classifier system in section @l Our implementation of the MDL is explained
in section Bl Next, section [G] describes the test suite used in the comparison. The
results obtained are summarized in section [ Finally, section [§] discusses the
conclusions and some further work.

2 Bloat Effect in Pittsburgh Approach LCS

In this section we will do a brief and illustrative introduction about how and why
the bloat effect affects Pittsburgh approach LCS. We will also show that fixing
this problem is not a simple task, showing how bad ways to fix this problem can
collapse the learning process.
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2.1 What Form Does It Take the Bloat Effect?

Usually the bloat effect is defined as the growth without control of the individuals
length, and it is a phenomenon that can affect in general all variable-length rep-
resentations. In Pittsburgh LCS this effect takes the form of an exponential-rate
growing of the number of rules of the individuals. This effect can be illustrated
by the first 15 iterations in figure [[l which represents the evolution of the aver-
age individual size for the MX11 problem. If we did not apply any measure to
control this, the program would crash from out of memory shortly after.

2.2 Why Do We Have Bloat Effect?

The reason of the bloat effect is well explained in [6]. Its cause is the use of
a fitness function which only takes into account the goodness of the solution
(accuracy in our case). Having a variable-length representation means that it
possible to have several individuals with the same fitness value, and there will
be more long representations of a given solution (fitness value) that short ones.
So, when the exploration finds new solutions, it is more probable that these
solutions will be long than short.

The interpretation of this idea in LCS is that, it is more probable to classify
correctly more train examples with an individual with a lot of rules that with
a short individual. Is this long individual a good solution? Probably no, as this
individual is memorizing the train examples instead of learning them. This shows
a side effect of the bloat effect in LCS': the generated solutions will probably lack
generalization, and its test accuracy will probably be poor.

2.3 How Can We Solve the Bloat Effect?

It is obvious that we need to add to the system some bias towards good but
simple solutions, but will any intervention in this sense work? The answer is no.
If we introduce too much pressure towards finding simple solutions, we are in
danger of collapsing the population into individuals of only one rule, which can
not generate longer individuals anymore. With this kind of individuals we can
only classify the majority class. Again in figure[[lwe can see an example of a too
much strong pressure in the MX11, which is activated just after 15 iterations.
With only a few iterations, a population of an average of more than 120 rules
per individual is reduced to one rule individuals. The bloat control method that
created this situation is the same presented in this paper, but bad parametrized
(InitialRateOfComplexity=0.5).

So, what is the good way to control the bloat effect? There is not a single
answer and, beside the method presented in this paper, in the related work
section several methods that achieve this control are described. Intuitively we
can say that the best method will be the one finding the best balance between
accuracy and complexity.
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Evolution of the average individual size for the MUX problem with too much strong complexity pressure
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Fig. 1. Illustration of the bloat effect and how a badly designed bloat control method
can destroy the population

3 Related Work

The MDL principle has been applied as a part of modeling tasks in many different
fields. For example, handwriting recognition and robotic arms [12]. The principle
has also been widely applied in the Machine Learning field. Some examples are
Genetic Programming [I3] or c4.5rules [14], where the MDL principle is used to
select the best subset of rules derived from a c4.5 induced decision tree.

There is extensive prior work in the Evolutionary Computation (EC) field
to control the bloat effect, specially in Genetic Programming [13UT5] where this
effect has been more widely studied. However, it has also been studied in other
EC paradigms like Genetic Algorithms [8IT6] or Evolution Strategies [16]. There
is also some work on generalization pressure operators in systems that not suffer
the bloat effect [17].

4 Framework

In this section we describe the main features of our classifier system. GAssist
(Genetic clASSIfier sySTem) [1§] is a Pittsburgh style classifier system based
on GABIL []. Directly from GABIL we have borrowed the semantically correct
crossover operator.

4.1 General Operators and Policies

Matching strategy. The matching process follows a “if ... then ... else if ... then...”
structure, usually called Decision Lists [19].

Mutation operators. The system manipulates variable-length individuals, mak-
ing more difficult the tuning of the classic gene-based mutation probability. In
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order to simplify this tuning, we define p,,,: as the probability of mutating
an individual. When an individual is selected for mutation (based on py,.i), a
random gene is chosen inside its chromosome to be mutated.

Policy for missing values. Some of the problems used in the experimentation
reproduced in this paper have missing values. A substitution policy has been
used. Before starting the learning process all missing values are changed with
either the average value of the attribute (for real-valued attributes) or the most
frequent value (for symbolic attributes). These averages are not computed using
all the train instances, but only the ones belonging to the same class as the
instance with a missing values being substituted.

4.2 Bloat Control an Generality Pressure:

We describe briefly our previous work in this area because the MDL method
presented in this paper will be compared to it in the results section. The bloat
control and generalization pressure was achieved by combining the following two
techniques:

— Rule deletion: This operator deletes the rules of each individual that do
not match any training example. This rule deletion is done after the fitness
computation and has two constraints: (a) the process is only activated after
a predefined number of iterations, to prevent a massive diversity loss and
(b) the operator stops when the number of rules of the individual reaches a
certain lower threshold.

— Selection bias using the individual size: Selection is guided as usual by the ac-
curacy of the individual. However, it also gives certain degree of relevance to
the size of the individuals, having a policy similar to multi-objective systems.
We use tournament selection because its local behavior lets us implement
this policy. The criterion of the tournament is given by our own operator
called “hierarchical selection” [8], defined as follows:

o If |accuracy, — accuracyy| < threshold then:
x If length, < lengthy then a is better than b
x If length, > lengthy, then b is better than a
x If length, = lengthy then we will use the general case
e Otherwise, we use the general case: we select the individual with higher
fitness.

4.3 Knowledge Representations

The following paragraphs describe the knowledge representations that we use to
solve problems with symbolic or real-valued attributes. Some of these represen-
tations are well known or have been described in detail elsewhere, but we believe
that it is important to describe them again because the MDL principle has to
be carefully adapted for each of them.
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Rule Representations for symbolic or discrete attributes. We will use the GABIL
[4] representation for this kind of attributes. Each rule consists of a condition
part and a classification part: condition — classification. Each condition is a
Conjunctive Normal Form (CNF) predicate defined as:

(A =VEiVv.. VA =VOA . ANA, =V V.. A, =)

Where A; is the ith attribute of the problem and V; is the jth value that can
take the ¢th attribute.

This kind of predicate can be encoded into a binary string where there is a
bit for each value of all attributes of the domain. Attribute values that appear in
the CNF predicate have their associated bit set to one. If they not appear in the
predicate they have their bit set to 0. An example follows: if we have a problem
with two attributes, where each attribute can take three different values {1,2,3},
a rule of the form “If the first attribute has value 1 or 2 and the second one has
value 3 then we assign class 1”7 will be represented by the string 110/001]|1.

Rule Representations for real-valued attributes. The representation for real-
valued attributes is our own representation called Adaptive Discretization
Intervals rule representation [I8]. Specifically, we will use the second version of
the representation (ADI2) [I1].

This representation is an evolution of the GABIL discrete rule representation.
In GABIL for each attribute we would use a set of static discretization intervals
instead of nominal values. The intervals of the ADI2 representation are not
static, but they evolve through the iterations splitting and merging among them
(having a minimum size called micro-interval). Thus, the binary coding of the
GABIL representation is extended as represented in figure [2 also showing the
split and merge operations.

Rule set Interval T mutate

LI LTl [l [ [ 1] At

Lo i

Rule | | | <+—C1ass
) \ Split Merge
V/ \\
! ! z - - z - -
Microinterval 7 5 Interval tlic i B NN | N
g —— o o] [ 1] o
Interval value— 1| 1 | 0 |1 Attribute Cut point Neighbour selected to merge

Fig. 2. Adaptive intervals representation and the split and merge operators

The ADI2 representation is defined in depth as follows:

1. Each individuals initial rule and attribute term is assigned a number of
“low level” uniform-width and static discretization intervals (called micro-
intervals).
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The intervals of the rule are built joining together adjacent micro-intervals.
Attributes with different numbers of micro-intervals can coexist in the pop-
ulation. The evolution will choose the correct number of micro-intervals for
each attribute.

For computational cost reasons, we will have an upper limit in the number
of intervals allowed for an attribute, which in most cases will be less than
the number of micro-intervals assigned to each attribute.

When we split an interval, we select a random point in its micro-intervals
to break it.

When we merge two intervals, the state (1 or 0) of the resulting interval is
taken from the one which has more micro-intervals. If both have the same
number of micro-intervals, the value is chosen randomly.

The number of micro-intervals assigned to each attribute term is chosen
from a predefined set.

The number and size of the initial intervals is selected randomly.

The cut points of the crossover operator can only take place in attribute
terms boundaries, not between intervals. This restriction takes place in order
to maintain the semantical correctness of the rules.

The hierarchical selection operator uses the length of the individuals (defined
as the sum of all the intervals of the individual) instead of the number of
rules as the secondary criteria. This change promotes simple individuals with
more reduced interval fragmentation.

In order to make the interval splitting and merging part of the evolutionary

process, we have to include it in the GA genetic operators. We have chosen to
add to the GA cycle two special stages applied to the offspring population after
the mutation stage. The split and merge operators are controlled by a probability
(psplit and pperge) defined for each attribute term of each rule. The code for the
merge operator probability is represented in figure

5

ForEach Individual i of Population
ForEach Rule j of Population individual ¢
ForEach Attribute k of Rule j of Population individual ¢
If random [0..1] number < Pmerge
Select one random interval of attribute term k
of rule j of individual ¢
Apply a merge operation to this interval
EndIf
EndForEach
EndForEach
EndForEach

Fig. 3. Code of the application of the merge operator

The MDL Principle Applied to Generalization Pressure

In this section we describe our proposal of bloat control and generalization pres-
sure based on the MDL principle. First, we introduce our implementation of the
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basic formula of the principle and its adaptation to each of the knowledge rep-
resentations uses. Finally , we propose a method to adjust automatically the W
parameter of the main MDL formula that appears in the introduction section,
simplifying the domain-specific adjusting of the principle.

5.1 Basic MDL Formula

As said in the introduction section, the M DL principle is a metric used to evaluate
the complexity and accuracy of a theory which is inspired by data compression.
The class membership of each training example is to be communicated from a
sender to a receiver. This is done by transmitting a theory (set of rules in our
case) and, if necessary, transmitting the exceptions to this theory. That is, the
misclassified and non-classified examples. The cost of the transmission is equiv-
alent to the number of bits needed to encode the theory plus its exceptions in
a sensible scheme. The principle states that the best theory is the one requir-
ing the minimum number of bits. Therefore, the fitness function becomes the
minimization of the MDL formula [14]:

MDL =W - theory bits + exception bits (1)

W is a weight that adjust the relation between theory and exception bits. The
length of the theory bits (TL) is defined as follows:

nr
TL=) TL; (2)
=1

Where nr is the number of rules of the theory. The definition of the rules for
all the knowledge representations used share a common structure: condition —
class. The condition is defined as a conjunction of predicates, where each pred-
icate is associated to an attribute of the problem. Therefore, T'L; is defined as

follows:
na

TL;=)» TL. (3)
j=1

Where na is the number of attributes of the problem. T'L] is the length of the
predicate associated to the attribute j of the rule 7, and has a specific formula for
each knowledge representation used. The reader can see that we have omitted a
term in the formula related to the class associated to the rule. As it is a value
common for all the possible rules it becomes irrelevant and it has been removed
for simplicity reasons.

The exceptions part of the MDL principle (EL) represents the act of sending
the class for the misclassified or unclassified examples to the receiver. We imple-
ment this idea by sending the number of exceptions plus, for each exception, its
index in the examples set (supposing that sender and receiver have the examples
organized in the same order) and its class:

EL = loga(ne) + (nm + nu) - (loga(ne) + loga(nc)) (4)
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Where ne is the total number of examples, nm is the number of wrongly classi-
fied examples, nu is the number of unclassified examples and nc is the number
of classes of the problem. This definition is independant from the knowledge
representation.

5.2 Adaptation of the MDL Principle for Each Knowledge
Representation

The length of the predicate associated to each attribute (7'L?) has to be adapted
to the type of the attribute and the knowledge representation. While designing
the formula to calculate this length we have to remember that the philosophy
of the MDL principle is to promote simple but accurate solutions. Therefore,
we will prefer formula definitions that promote bias towards simpler solutions
although there may exist shorter definitions.

MDL Formula for Real-Valued Attributes and ADI2 Rule Representa-
tion. The predicate associated to an attribute by this representation is defined
as a disjunction of intervals, where each interval is a non-overlapping number
of micro-intervals and can take a value of either true of false. Therefore, the
information to transmit is the number of intervals of the predicate plus, for each
interval, its size and value (1 or 0).

TL! = loga(MaxI) + ni? - (loga(MaxMI) + 1) (5)

Mazxl is the maximum number of intervals allowed in a predicate, ni is the
actual number of intervals of the predicate and MaxM I is the maximum allowed
number of micro-intervals in the predicate.

Given the example of attribute predicate in figure d, where we have 4 intervals
, and supposing that the maximum numbers of intervals and micro-intervals are
respectively 10 and 25, its MDL size is defined as follows:

TL! = 10g2(10) + 4 - (log2(25) + 1)

1[0 N

Fig. 4. Example of an ADI2 attribute predicate

MDL Formula for Discrete Attributes and GABIL Representation.
The predicate associated to an attribute by this representation is defined as a
disjunction of all the possible values that can take the attribute. The simpler
way of transmitting this predicate is sending the binary string that the repre-
sentation uses to encode it. This is the approach used by Quinlan in C4.5rules
[14]. However, this definition does not take into account the complexity of the
term and does not provide a bias towards generalized solutions.
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Therefore, we define a different formula which is very similar to the one pro-
posed for the ADI2 knowledge representation. In this formula we simulate that
we have merged the neighbor values of the predicate which have the same value
(true or false): A A

TL] = logs(nvj) 4+ 1+ nil - logs(nv;) (6)

nv is the number of possible values of the attribute j and n: is the number of
“simulated intervals” that exist in the predicate. The only difference between
this formula and the ADI2 one is that we do not have to transmit the value of
all the “simulated intervals”, but only the first one (one bit).

If we had an attribute predicate such as “1111100001” we can see that we have
10 values and 3 “simulated intervals” and that the MDL size of the predicate
would be: 4

TL! =1og2(10) + 1+ 3 - log2(10)

This approach completely makes sense for ordinal attributes, where there
exist an order between values, but not for nominal ones. However, we think that
this definition is also useful for nominal attributes because we want to promote
generalized predicates, where most of the values are true, and this means having
few “simulated intervals”.

5.3 Looking for a Parameter-Less M DL Principle

If we examine all the formulas of the MDL principle we only find one parameter:
W which adjusts the relation between the length of the theory and the length of
the exceptions. Quinlan used a value of 0.5 for this parameter in C4.5rules and
reported the following in page 53 of [14]:

Fortunately, the algorithm does not seem to be particularly sensitive to the
value of W.

Unfortunately, our environment of application of the MDL principle (a GBML
system) is quite different and the value of the W parameter is quite sensitive. If
the value of W is too high, the population will collapse into one rule individuals,
as it can be seen in section bloat. If W is too low, the individuals probably will
be too much specific.

This problem with the adjusting of W leads to a question: Is it possible to
find a good method to adjust automatically this parameter? The completely rig-
orous answer, being aware of the No Free Lunch Theorem [20] and the Selective
Superiority Problem [21] is no.

Nevertheless, at least we can try to find a way to automatically make the sys-
tem perform “quite well” in a broad range of problems. In order to achieve this
objective we have developed a simple approximation which starts the learning
process with a very strict weight (but loose enough to avoid a collapse of the
population) and relaxes it through the iterations when the GA has not found
a better solution for a certain number of iterations. This method can be repre-
sented by the code in figure
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Initialize GA
Ind = Individual with best accuracy from the initial GA population
TL = Theory Length of Ind
FEL = Exceptions Length of Ind
NR = Number of rules of Ind
NC = Number of Classes of the domain
TL =TL- VE
W — Init‘ia‘,lgateOfComplezit‘y»EL
(1—Initial RateO fComplexity)-TL’
Iteration =0
IterationsSinceBest = 0
While Iteration < Numlterations
Run one iteration of the GA using W in fitness computation
If a newbest individual has been found then
IterationsSinceBest = 0
Else
IterationsSinceBest = IterationsSinceBest + 1
EndIf
If IterationsSinceBest > MazimumBestDelay then
W =W . WeightRelaxationFactor
IterationsSinceBest = 0
EndIf
Iteration = Iteration + 1
EndWhile

Fig. 5. Code of the parameter-less learning process with automatically adjusting of W

Initial RateO fComplexity defines which percentage of the M DL formula
should the term W - TL have. Using this supposition and given one individ-
ual from the initial population, we can calculate the value of W. We have
used a simple policy to select this individual: the one with more train accu-

_ Initial RateO fComplexity-EL
racy ( — (1—Initial RateO f Complexity)-T L’ )

This issue raises a question: is this individual good enough? If we recall section[2]
it is more probable that this individual will be long than short. Then, maybe we
would be initializing W with a too small value. Therefore, before calculating the
initial value of W we do a last step: scaling the theory length of this individual
(TL' =TL- ]Nvg), using as a reference the minimum possible number of rules of
an optimal solution: the number of classes of the domain.

We can see that in order to automatically adjust one parameter we have
introduced three extra parameters (InitialRateOfComplexity, MazimumBestDe-
lay and WeightRelazationFactor). The second parameter is easy to setup if we
consider the takeover time for the tournament selection [22]. Given a tourna-
ment size of 3 and a population size of 300, the takeover time is 6.77 itera-
tions. Considering that we have both crossover and mutation in our GA, setting
MazximumBestDelay to 10 seems quite safe.

Setting Initial RateO fComplexity is also relatively easy: it the value is too
high (giving too much importance to the complexity factor of the M DL formula)
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Table 1. Tests with the MX-11 domain done to find the values of InitialRateOfCom-
plexity (IROC) and WeightRelaxationFactor (WRF)

WRF IROC Test acc. Num. of Rules Iterations until perfect accuracy

0.05 100.0£0.0 9.3£0.6 301.4+56.8
0.7 0.075 100.040.0 9.2£0.5 309.0+62.6
0.1  100.0£0.0 9.2£0.5 333.3+62.2
0.05 100.040.0 9.3£0.5 331.0£71.5
0.8 0.075 100.0£0.0 9.2+0.3 364.4+75.3
0.1  100.0£0.0 9.2£0.5 374.3+66.9
0.05 100.0£0.0 9.2£0.5 428.6+£99.7
0.9 0.075 100.0£0.0 9.2+£0.4 475.5+95.6
0.1 100.0£0.0 9.1+0.4 518.44+110.2

the population will collapse. Therefore, we have to find the maximum value of
Initial RateO fComplexity that lets the system perform a correct learning pro-
cess. Doing some short tests with various domains we have seen that values
over (.1 are too much dangerous. In order to adjust more finely this param-
eter and also set WeightRelaxationFactor we have done tests using again the
MX-11 domain testing three values of each parameter: 0.1, 0.075 and 0.05 for
Initial RateO fComplezity and 0.9, 0.8 and 0.7 for Weight RelaxationFactor.

The results can be seen in table [[l showing three things: test accuracy and
the number of rules of the best individual in the final population and also the
average iteration where 100% train accuracy was reached. We can see that all
the tested configuration manage to reach a perfect accuracy, and also that the
number of rules of the solutions are very close to the optimum 9 ordered rules.
The only significant differences between the combinations of parameters tested
comes when we observe the iterations needed to reach 100% train accuracy. We
can see that as more mild are the parameters used, fewer iterations are needed.
This arises the question of how extrapolative to other domains is this behaviour.
We have to be aware that MX-11 is a synthetic problem without noise.

Table 2. Tests with the Wisconsin Breast Cancer domain done to find the values of
InitialRateOfComplexity (IROC) and WeightRelaxationFactor (WRF')

WRF IROC Train acc. Test acc. Num. of Rules

0.05 98.2+0.3 95.6£1.5 4.3£1.5
0.7 0.075 98.2£0.3 95.841.5 4.1+1.3
0.1 98.1+£0.3 95.9+£1.7 3.9£1.2
0.05 98.1£0.3 95.8£1.5 3.9+1.3
0.8 0.075 98.0£0.3 96.0+1.7 3.7£0.8
0.1 97.94+0.3 96.0£1.7 3.5£0.9
0.05 97.8+0.3 95.9£1.7 2.9+0.9
0.9 0.075 97.6£0.3 96.0+1.8 2.3£0.6
0.1 97.54+0.3 95.9+£1.8 2.240.5
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In order to check how is the system behaving in real problems, we repeated
this test with another well-known problem: Wisconsin Breast Cancer. The results
can be seen in table2l Tterations are not included in this table because we do not
know the ideal solution for this problem. Instead, we have included train accu-
racy. It will help illustrate the completely different landscape that we have here:
Although the differences are not significant, we can see that as more mild are the
parameters used, we have more train accuracy, more rules and less test accuracy.
It seems quite clear that the system suffers from over-learning if its working pa-
rameters are not enough strict. Therefore, we select 0.075 and 0.9 as the values
of Initial RateO fComplexity and Weight Relaxation Factor respectively for the
rest of this paper. These values seem to be the most stable ones.

Before showing the results for all the datasets tested it would be interesting
to see the stability of the W tuning heuristic presented in this section. In figure
[6l we can see the evolution of W through the learning process for the bre and tao
problems [. The values in the figure have been scaled in relation to the initial
W value. These two problems are selected because they show two alternative
behaviours due to having very different number of rules in their optimal solutions.
We can see that the differences in the evolution of W for different executions
shrink through the iterations, showing the stability of the heuristic.

Winsconsin Breast Cancer problem TAO problem

" ER

L L L L L L L L n
0 50 100 150 200 250 0 100 200 300 400 500 600 700 800 900 1000
Iterations. Iterations.

Fig. 6. Evolution of W through the learning process

6 Test Suite

This section summarizes the tests done across several domains in order to eval-
uate the accuracy and efficiency of the method presented in this paper. We also
compare it with our previous proposal.

6.1 Test Problems

The selected test problems for this paper present different characteristics in order
to give us a broad overview of the performance of the methods being compared.

! Datasets are detailed in section
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Table 3. Characteristics of the test problems

Dataset Number of examples real-valued attributes discrete attributes classes

aud 226 - 69 24
bps 1027 24 - 2
bre 699 - 9 2
gls 214 9 - 6
ion 351 34 - 2
irs 150 4 - 3
led 2000 - 7 10
Irn 648 4 2 5
mmg 216 21 - 2
mux 2048 - 11 2
pim 768 8 - 2
prt 339 - 17 22
tao 1888 2 - 2

First we have some synthetic problems: Tao (tao) [23], a problem that has non-
orthogonal class boundaries, the 11 input multiplexer (muz) and LED (led), a
problem which represents a seven segments display having the represented digit
as the class. This problem has a 10% artificially added noise. Second, we also use
several real problems provided by the University of California at Irvine (UCI)
repository [24]. The problems selected are: Audiology (aud), Glass gls, Iris irs,
Ionosphere (ion), Pima-indians-diabetes (pim), Primary-Tumor (prt) and
Wisconsin-breast-cancer (bre). Finally, we will use three problems from our own
private repository. The first two deal with the diagnosis of breast cancer based of
biopsies (bps) [25] and mammograms (mmg) [26] whereas the last one is related
to the prediction of student qualifications (irn) [27]. The characteristics of all the
datasets are listed in table Bl The partition of the examples into the train and
test sets was done using the stratified ten-fold cross-validation method [2§].

6.2 Experimentation Design

The goal of the tests done in this paper is to evaluate the performance of the
implementation of the MDL principle described in the prior section. This evalu-
ation includes a comparison of this method our previous generalization pressure
methods (GPM): the Hierarchical Selection operator [8].

In our previous work, the Hierarchical Selection operator was used in com-
bination with the rule deletion operator because it could not control the bloat
effect by itself, but only improved the generalization pressure. This fact makes
us question if it is necessary to use the rule deletion operator for the MDL meth-
ods. We performed a short test to answer this question. The test used again
Wisconsin Breast Cancer. We use the same GA configuration being used in the
global tests which is detailed at the end of this section.

The results of this short test are in table @l We show, for each configuration
(GPM with/without rule elimination), the averages and mean deviations of the



Bloat Control and Generalization Pressure Using the MDL Principle 73

Table 4. Test of the effects of the Rule Deletion operator for the Breast problem

GPM Rule Deletion Test accuracy Number of Rules Run Time (s)
Min. Max. Avg.

Hierar. No 95.6+1.3 22 2 4.943.6 92.8425.6
Hierar. Yes 95.84+1.6 6 2 2440.7 57.442.5
MDL No 95.941.7 6 2  2440.7 589434
MDL Yes 96.1+1.8 4 2 2.440.7 55.841.9

test accuracy, the number of rules of the final solution and the run time in seconds
(using a Pentium IV at 1.5GHz). We can see that the use of the rule deletion
operator improved the accuracy for all the GPM. Also, there is a reduction in
the average number of rules (for the Hierarchical GPM) and run time. The rule
set size reduction does not seem very big in average, but the differences are
considerable if we look at the maximum and minimum sizes for the Hierarchical
method, reflecting that it sometimes cannot control the bloat effect.

Other domains showed similar results. As it seems there does not exist a bad
interaction between the GPM and the rule elimination operator, we have decided
to use the operator for the rest of the tests.

In order to allow the replication of our results we show the detailed configu-
ration of our tests in table Bl This table is divided in two parts: common and
domain-specific parameters.

The value of the initialization probability (p1) is greater than the usual 0.5
value for some problems. All these problems share a common trait: a high num-
ber of attributes. In this environment, a regular initialization policy can lead
to a situation where very few (or none) train examples are matched by the in-
dividuals. This situation can lead to a collapse of the population towards one
rule individuals, because accuracy becomes an insignificant part of the fitness
computation.

7 Results

In this section we present the results obtained. The aim of the tests was to
determine the performance of the GPM tested in three aspects: accuracy and
size of the solutions as well as computational cost. For each method and test
problem we show the average and standard deviation values of: (1) the cross-
validation accuracy, (2) the size of the best individual in number of rules and (3)
the execution time in seconds. The tests were executed in an AMD Athlon 1700+
using the Linux operating system, C++ language and GCC v3.2.2 compiler.

The results can be seen in table[@l The results were also analyzed using paired
two-sided statistical t-test [29] in order to determine if the MDL method out-
perform our previous approach with a significance level of 1%. No significant
outperformances were detected.



74 J. Bacardit and J.M. Garrell

Table 5. Common and problem-specific parameters of the GA

Parameter Value
General parameters
Crossover probability 0.6
Selection Algorithm Tournament
Tournament size 3
Population size 300
Probability of mutating an individual 0.6
Number of seeds for each experiment 15
MDL Weight heuristically adjusting
InitialRateOfComplexity 0.075
MaximumBestDelay 10
WeightRelaxationFactor 0.9
rule deletion operator
Iteration of activation 40

Minimum number of rules before disabling the operator numClasses + 3
Hierarchical Selection

Iteration of activation 40
ADI rule representation
Maximum number of intervals per attribute 10
Possible size in micro-intervals of an attribute 5,6,7,8,10,15,20,25
Psplit 0.05
Pmerge 0.05

Code Parameter

#iter Number of GA iterations

p1 Probability of value 1 in initialization

dcomp Threshold parameter in Hierarchical Selection

Problem Parameter
#iter p1 deomp
aud 1500 0.9 0.005
bps 300 0.75 0.015
bre 250 0.5 0.010
gls 1100 0.5 0.010
ion 450 0.75 0.010
irs 200 0.5 0.010
led 1000 0.5 0.001
Irn 700 0.5 0.010
mmg 275 0.75 0.010
mux 1000 0.5 0.001
pim 225 0.5 0.010
prt 1000 0.9 0.005
tao 900 0.5 0.001

As an external reference of the results, in table [[ the accuracy of the two
above methods is compared to IB1 [30], C5.5 [14] A and XCS [5] . We can see
that, as usual, each method is the best in some problems but all of them perform
similarly in average.

What can we observe in the results? First of all we can see that for the muz
problem, the MDL method manages to generate solutions more near to the opti-
mum rule set than the Hierarchical Selection method. Also, from a global point
of view the results tell us that the MDL method has achieved our objective of
developing a robust and easier to adjust GPM. It has managed to outperform

2 Using the Weka [29] implementations.
3 Results taken from [3T].
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Table 6. Results of the comparative tests. Bold entries show the method with best
results for each test problem.

Problem Configuration Accuracy Number of Rules

aud
bps
bre

gls

ion

led
Irn
mmg

mux

average

Hierar.
MDL
Hierar.
MDL
Hierar.
MDL
Hierar.
MDL
Hierar.
MDL
Hierar.
MDL
Hierar.
MDL
Hierar.
MDL
Hierar.
MDL
Hierar.
MDL
Hierar.
MDL
Hierar.
MDL
Hierar.
MDL

Hierar.
MDL

60.0+4.2
63.5+3.9
80.2+2.9
80.2+2.9
95.84+1.6
96.1+1.8
64.44+3.6
64.8+3.0
90.74+2.8
91.3+2.9
95.14+2.1
95.6+3.0
74.44+1.7
74.6+1.7
68.2+4.6
68.1+4.1
66.3+4.5
64.4+6.4
100.0+£0.0
100.0+£0.0
75.0£3.4
74.8+3.4
46.9+5.3
47.1+5.2
94.9+1.1
94.74+0.9

77.84£15.9
78.1£15.8

11.2+2.2
10.6£2.9
3.4£0.8
3.3£1.0
2.44+0.7
2.44+0.7
7.2+1.4
8.7£1.1
4.0£1.2
5.0+1.6
4.8£1.0
4.6£0.8
18.0£2.0
19.3+2.2
7.1+1.6
9.6£2.0
5.1+1.1
5.3+1.1
10.9+1.1
9.2+£0.4
4.5£1.3
3.9£0.9
10.2£2.6
14.9+3.5
18.1+3.9
15.1£4.6

8.2£5.0
8.6£5.0

Time (s)
89.1+12.4
121.2420.2
218.0+£17.3
218.9+13.4
44.6+1.9
43.4%+1.5
71.1£7.9
74.248.2
177.6+20.8
173.7+£17.5
5.3+£0.3
5.4+0.3
344.3+13.4
332.7£8.2
82.94+5.9
85.4+5.5
39.9+4.7
38.6+4.7
519.0+36.7
474.2+14.4
57.8+£5.0
57.4+4.7
39.4+5.3
47.1+5.5
461.3+46.5
414.1£33.0

165.4+164.7
160.51+148.5

(in average) our previous work, the Hierarchical Selection method, in two ways:
accuracy and reduction of the computational cost.

Nevertheless, the differences in the results do not seem to be much significant,
but the way to reach these results, the internal behaviour of each method, is very
different for both methods. We can observe this fact looking at the evolution of
the accuracy average individual size (in rules) through the iterations. It figure[7]

Table 7. Accuracy of Hierar. and MDL methods compared to IB1, C4.5 and XCS.
Bold entries show the method with best results for each test problem.

Problem Hierar.

aud
bps
bre
gls
ion
irs
led
Irn
mmg
mux
pim
prt
tao

60.01+4.2
80.2+2.9
95.8+1.6
64.41+3.6
90.7+2.8
95.1+2.1
74.4£1.7
68.21+4.6

66.3+4.5

75.0£3.4

94.9+1.1

MDL

C4.5

XCS

63.56+3.9 76.0£6.3 79.0+£6.2 41.648.1
80.24+2.9 83.24+3.0 80.1+4.5
96.1+£1.8 96.0+£1.4 95.4%1.5
64.84+3.0 66.3£10.4 65.84+9.9
91.3+2.9 86.9+4.6 89.8+4.
95.6+3.0 95.3+3.1 95.3+3.1
74.6+1.7 56.5£1.7 75.0+2.1
68.1+4.1 61.4+5.8 68.6+t4.4 —
64.4+6.4 63.5+11.5 64.84+6.0
100.0£0.0 100.0£0.0 78.6+£3.8 99.940.2
74.84+3.4 70.3+£3.3 73.1£5.0
46.9+5.3 47.1+5.2 37.8+£5.3 44.1+£5.8 39.91+6.6
94.7£0.9 96.1+1.1 95.1+1.9 89.9+1.2

83.2+2.9
96.4+2.4
70.8+8.1
94.74+5.0
74.5+1.9

64.31+6.4
100.0£0.0
75.4+t4.4
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we can see this evolution for the bps,bre, mux and tao problems. The plot for the
iterations before the rule deletion activation have been removed from the graph
because they introduce a high distortion.

The Hierarchical Selection method uses a specific-to-general policy. In the
early iterations of the learning process it frequently finds new solutions that
outreach the previous best accuracy by more than d.omp. In this situation the
number of rules of the individuals is irrelevant. But as the learning curve stabi-
lizes, the differences in accuracy between the bests individuals of the population
become smaller than dcomp. Then, the smaller individual are mostly selected
and, as a consequence, the average individual size slowly decreases.

On the other hand the MDL method, because of the behaviour of the W
control heuristic, starts the learning process giving much importance to the size
of the individual, and relaxes this importance through the iterations as dictated
by the heuristic. Therefore, the behaviour is general-to-specific.

In figure [[ we can also see the main problem of the MDL method, which is
the over-relaxation of the W weight. The philosophy of the algorithm we have
proposed to tune W is that we relax this weight when it is too much strict,
that is, when the GA cannot find a better individual for a certain number of
iterations. This condition is sometimes difficult to control, and maybe if the

bre problem bps problem

MDI MDI
Hierar, ------- Hierar, -------

Number of rules
Number of rules

L L L . L L
100 150 200 100 150 250
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mux problem

lterations
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Fig. 7. Evolution of the average individual size for the bre and bps problems and ADI

representation
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system was given more iterations, the test performance in some domains would
decrease. On the other hand we can see in figure [ and in table [f the reverse
situation for the tao problem: The accuracy obtained by the MDL method is
below the Hierarchical Selection one because the rule set is too much simple.
With some more iterations this method probably would increase its accuracy.

Figure [[ can also help explain the notable computational cost difference be-
tween the tested methods in some domains (muz and tao). Smaller individuals
are faster to evaluate. Therefore, the notable differences in the average individual
size have their consequence in the overall computational cost.

8 Conclusions and Further Work

In this paper we have proposed a generalization pressure method for Pittsburgh
Approach Classifier Systems based on the MDL principle. This technique pro-
poses a fitness function which combines in a smart way the accuracy and the
complexity of the individual being evaluated. The complexity measure is not
based only on the size of the individual (number of rules) but also on the con-
tent of the rules. This if one of the main differences between this method and
others found in the literature. Having a bloat control method that takes into
account the semantical content of the rules can help explore better the search
space, beside managing the size of the individual.

Extensive tests comparing the MDL method with our previous proposal have
been done. These tests show that the technique performs slightly better (al-
though not in a significant way based on Student t-tests) and runs also slightly
faster. Beside its good results, the M DL method has another interesting feature,
compared to our previous work in GPM, which is that it does not need a specific
adjustment for each problem being solved. This is due to an adaptive adjustment
of the W parameter. This adjustment is done by an heuristic process that we
have developed. The adjusting of the W parameter is critical because applying
too much or too little generalization pressure in the population can lead to an
incorrect learning process. In the first case the population can collapse into in-
dividuals which are too simple. On the other hand, too little pressure can lead
to over-fitted solutions. The tests have show that the adjustment of W is good,
although it could be better controlled.

Therefore, as further work, other methods of adjusting W (like a specific-to-
general policy) or maybe a stop criterion for the current method (leaving the
value of W fixed after a certain point of the learning process) should be studied.
Also, it could be interesting to extract other measures from the performance of
the GPM tested, like the degree of diversity existing in the population.

Also, it would be very interesting to compare this bloat control method with
recent Pareto-based Multi-Objective techniques like MOLCS [16]. This method
is completely parameter-less, which was one of our goals. However, this means that
the pressure applied to the complexity objective cannot be adjusted and, probably,
it will be too strong or too mild for certain problems. If we know how the system
will behave, having the possibility of some fine-tuning if quite desirable.
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Abstract. XCS is a stochastic algorithm, so it does not guarantee to
produce the same results when run with the same input. When inter-
pretability matters, obtaining a single, stable result is important. We
propose an algorithm which applies clustering in order to merge the rules
produced from many XCS runs. Such an algorithm needs a measure of
distance between rules; we then suggest a general definition for such a
measure. We finally evaluate the results obtained on two well-known data
sets, with respect to performance and stability. We find that stability is
improved, while performance is slightly impaired.

1 Introduction

Randomness of the search process is one of the chief characteristics of evolution-
ary algorithms (EA), and indeed one of their strong points. It is randomness
which allows them to escape local optima, and ensures a broader portion of the
search space to be explored.

This non-deterministic behaviour is however a double-edged weapon; in fact,
for non-trivial problems, it is likely that many repetitions of the algorithm will
produce many different final solutions. For some kinds of tasks, the problem can
be solved by simply picking the solution with best fitness: if we are solving the
Travelling Salesman Problem with EA, the solution with lower cost is the one
to choose, and the others can just be discarded. This is typically the case with
strictly single-objective tasks. More often this is not possible; for instance, when
employing EAs to train neural networks, many networks with similar accuracy
might be found. In such a situation, since there is no obvious way to choose one,
a viable alternative is to keep all of them, and set up a voting mechanism to
take every one into account.

There are occasions however in which both choosing a single solution and
voting are unviable or undesirable. Voting in fact has an important side-effect:
it heavily obfuscates the reason why a certain decision was taken, distributing
the responsibility among the set of classifiers.

XCS [7] too suffers from the variance problem; even after employing a ruleset
reduction algorithm (like CRA []]), on non-trivial problems many runs will pro-
duce different rulesets, each one with its own rules, with similar performance but

X. Llora et al. (Eds.): IWLCS 2003-2005, LNAI 4399, pp. 80-@2] 2007.
© Springer-Verlag Berlin Heidelberg 2007
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no evident way to build (or to choose) a single merged set. This causes one of
the most appealing properties of XCS to be lost: interpretability of the classifiers
appears much less interesting, if these classifiers continuously change among dif-
ferent executions. The problem is exacerbated by the fact that the same rule can
come in many slightly variated forms, from whence the need to define a measure
of similarity between rules.

Stability of the results is a main concern in all the settings where finding
a set of interpretable classifiers is more the starting point of further research,
than the arrival point; this happens for instance in the knowledge discovery in
databases framework. One typical case of such a situation is medical research.
Medical researchers collect general data, and would like to find associations and
rules within it. When a “good” set of rules is found, effort must be spent in order
to correctly interpret it, possibly involving the set up of specific medical trials.
This makes stability a primary requirement, on par with performance.

We present a post-processing algorithm which tries to solve this problem, or
at least mitigate it. The basic assumption is that good rules will be preferred by
XCS, and will then appear more often in the output sets, although with slight
variations. We repeat an XCS experiment a number of times; then a clustering
algorithm is performed on all the resulting rules, putting together similar ones.
Bigger clusters contain more frequent rules, so a representative from each of the
biggest clusters is chosen; finally, a reduced version of XCS is executed again
on this set of rules, in order to train them together and to set their working
parameters (accuracy, fitness, etc.).

Section [ will present all the definition that will be used in the rest of the
paper. Subsection [Z]] will show the definitions necessary to understand and run
the post-processing algorithm; subsection 2.2 will instead contain the definitions
necessary to evaluate the effectiveness of the algorithm. The algorithm itself is
outlined in section Bl Section@reports the benchmarks performed to evaluate the
algorithm. Sections [ and [f describe and discuss the obtained results. Summary
and conclusions are drawn in section [7

2 Definitions

Some definitions are necessary before presenting the variability reduction algo-
rithm: they are described in the following subsection. Subsection reports
instead the definitions necessary to evaluate the actual effectiveness of the algo-
rithm; they are not necessary to simply run it.

2.1 Algorithm Definitions

In the following, we will make use of a measure of distance D, and will assume
that a corresponding measure of similarity S can be defined (which decreases as
distance increases). A formal definition of distance and similarity, along with a
survey of common measures, can be found in [9]. For our purposes, it will suf-
fice to say that the measure & must lie in the range from 0 (maximally different
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items) to 1 (equal items). If the distance measure D provides values in the [0, 1]
range, a corresponding S can be simply obtained as S = 1 —D. If instead D can
return any positive value, one possible family of valid definitions of S given D is

S=(1+D)™ (1)

where a can be any positive number.

The basic function required by the algorithm is a measure of distance between
rules. In general, the shape of rules is completely problem-dependent, so this
measure has to be problem-dependent too. We suggest however a way to define
it which makes it independent, as long as the problem provides a set of input
data to be learned; this is not always the case, as XCS works by reinforcement
learning, where the existence of such a set is just a particular situation.

In case this set exists, we define the S—signatunﬂ of a rule r as the set of
input patterns the rule applies to. We then define two rules to be similar if
they apply mostly to the same inputs (with a maximum when their signatures
are equal); they are defined to be diverse instead when they apply to different
inputs (with a minimum when the signatures do not have common elements). A
suitable measure of distance can then be the Jaccard coefficient [4]:

1(r1) 1 5 (r2)
1S(1) U S @
1S(r1) N S(r)

=1 150 4 [S(r2)| — [S(ra) 1 S(r) ®)

D(Tlﬂ’g) =1-

This measure ranges from 0 (maximally different rules) to 1 (equal rules), and
has been demonstrated to be a metric []. The corresponding similarity function
is simply S(r1,72) =1 — D(r1,72).

An equivalent way to view a rule signature is as a Boolean vector. Since the
input set size is a fixed value n, the B-signature of a rule r could be represented
as a vector b € {0,1}", where b; = 1 iff rule r applies to input pattern i. Jaccard
distance becomes then

~ 2ie1 B(r1)i A B(r2);
>y B(r1)i vV B(r2);

It is important to note that this measure is not strictly related to the intuitive
notion of similarity between two rules. In fact, it bears no notion of how the rules
actually appear: two rules could look completely different, and still apply to the
same set of input patterns. This has experimentally been found to be common
when rules are “tailored” to pick a very small subset of inputs — for instance,
an outlier. In that situation, the data set probably offers many possible ways to
match only that particular pattern with a number of conditions on its values;
this will produce many different-looking rules, which for the system actually

D(ry,r2) =1 (4)

! Note that this S is for “set”, and is not to be confused with the S in Eq. [l which
was for “similarity”.
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have the same meaning. Consider for instance a setting where a single particular
condition is sufficient to make a classifier match one pattern only (say age> 90,
in a data set where only one person is that old). All the other conditions of the
classifier can then vary freely, as long as they continue to cover the pattern; it
is then easy to build two different-looking classifiers, which maintain the same
signature — that is, the same meaning to the system.

Another advantage of this definition of distance is that it does not require
to choose a weighting strategy for attributes. If we had to compute similarity
on the rule appearance (that is, on its conditions), we should decide how much
importance to give to mismatches in the different attributes. This becomes more
challenging when attributes do not have the same type. To exemplify, consider
again a dataset containing people, with age and gender attributes among the
others. Is the classifier (gender=M A age>25) closer to (gender=F A age>25),
or to (gender=M A age>75)7

As last remark, choosing a measure of similarity can create unexpected difficul-
ties also within the same attribute. When modelling a real value for instance, it is
entirely possible that its distribution is not uniform in the whole range of valid-
ity. Then, a little variation where the values are more frequent should be weighted
more than a larger variation in areas where values are few. Recalling the previous
example, if the only person above 90 is 95, the two conditions age>90 and age> 9/
appear equal to the system — while age>50 and age> 54, although differing of the
same amount, probably describe quite different pattern sets.

2.2 Evaluation Definitions

In order to evaluate the goodness of a method to reduce variability, it is first
necessary to provide a quantitative definition of variability. The basic block for
such a definition is a measure of similarity between results of a classification
algorithm. Since the results of our algorithms are rule sets, we need to define
a measure of similarity between sets of rules — that is, sets of items which
have themselves a similarity measure. This is what Jaccard coefficient does,
using the simple equals relationship. We then extended Jaccard coefficient to
this more general setting; to the best of our knowledge, this extension has not
been proposed before.

The only thing which needs to be redefined in (B]) for this extension is the size
of the intersection. Notice that maximizing this value will minimize set distance
(thus maximizing set similarity). We can put the items of the two sets in a
fully connected bipartite graph, where each edge is weighted with the similarity
between the two nodes. We then define the size of the intersection as the value
of the maximal matching in the bipartite graph. This means that we assign each
item from one set to at most one item from the other set; the size of intersection
is then measured by taking the sum of similarities between the matched items,
and by picking the matching which maximizes this sum.

Once we can measure the distance between two results, we must assess the
variability contained in a set of such results. In the classical setting where a single
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result is a real number, the most widespread measure of variability is variance,
defined as the average squared difference between each result and the average of
the results.

Unfortunately, since in our setting each result is a ruleset, to calculate the
classical variance we should be able to define an “average” ruleset. This is exaclty
the goal of our algorithm, but we cannot use it to evaluate itself. We provide
then two ways to evaluate variability of a set of rulesets:

— The mean and the standard deviation of the pairwise distance of the rulesets
in the set. If we have p rulesets, this will calculate the mean and the standard

1)

deviation of ,  distances.

— A plot of the distribution of the ** "y D distances. This is not quantitative,

but can provide more insight on the dynamics of variability.

3 The Algorithm

We now describe the algorithm we propose to join the results of many runs of
XCS. We recall that the underlying assumption is that more important rules
will be discovered and reported by XCS more often. This means in turn that,
when joining all the rules generated by many runs, they will be more numerous
than less important ones. Clustering all these rules, in order to put similar rules
together, should thus yield bigger clusters for more important rules, and smaller
clusters for less useful ruled?. The algorithm is sketched in Fig. [l

After each XCS run, a ruleset reduction algorithm is performed, in order to
pick the most important rules. We applied Wilson’s CRA [§], with two slight
modifications. A sketch of the modified algorithm is in Fig. 2 The symbols
follow Wilson’s definition.

The first modification is the performance target: in the original CRA, step
(a) is executed while maintaining performance at 100%. Our full rulesets did not
reach that level of performance, so we simply executed step (a) maintaining the
performance value of the original ruleset.

The second modification is in step (b). On the M,,~ set, we remove in turn
each classifier ¢;, but starting with ¢ = n* and working back to ¢ = 0. If the
performance on the reducing set has dropped, we add the classifier again to
the set. There are two differences from the original algorithm. First of all, this
procedure recalculates performance at each removal, and cancels the removal
if there is a negative variation: this ensures the original performance level is
maintained. The second difference is the backwards order: we believe that, in
this way, we first remove the less important classifiers — which are also more
likely to suffer from higher variance.

After ruleset reduction, the Boolean signature B(r) of all the m rules result-
ing from the runs is computed. This produces m Boolean vectors, which will be

2 Notice that bigger and smaller refer to the number of items in each cluster. We
suppose that the clustering algorithm produces clusters with a similar value of
dispersion.
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partitioned with a clustering algorithm (like k-means [3], or ROCK [2]) accord-
ing to the chosen rule distance. Following the basic assumption — the frequency
of a rule is a mark of its importance — the cluster sizes sort rules over their
importance; the [ biggest clusters will then describe the [ most important rules.
From them, one representative rule must be chosen (in the k-means implemen-
tation, we picked the rule closest to the cluster centroid). Finally, the [ chosen
rules should be trained again to work together; this can be done running XCS
again with a fixed population consisting of them alone, and allowing only the
performance, error, and fitness values to vary.

1. Run XCS R times; collect the resulting R rulesets.

Execute a ruleset reduction algorithm on each of the R rulesets.

Collect all the rules from each reduced ruleset; ignore all the parameters (fitness,
numerosity, ... ). Call m the number of resulting rules.

Cluster the m rules, obtaining k clusters.

Sort the clusters by descending size (number of rules inside a cluster).

Pick a representative rule from the first [ clusters.

Train these [ rules again with fixed-population XCS.

w N

N O

Fig. 1. Sketch of the general variability reduction algorithm

(a) Find the smallest n* such that M,« achieves the same performance v as the full
ruleset.

(b) Remove from M, each classifier ¢ such that the performance of M= \ {c} is not
below v. Check backwards, from the end of M,«, up to the start.

(c) Same as Wilson: sort the classifiers in descending order of marginal contribution.

Fig. 2. Details of our implementation of Wilson’s CRA

4. Apply k-means to cluster the m rules:
(a) Calculate the boolean signature of the m rules.
(b) Calculate distances between rules according to Eq. [l
(¢c) Apply k-means, with k = g’g
5. Discard clusters containing less than R/3 rules.
6. From the remaining clusters, choose the rule closest to the centroid as representa-
tive.

Fig. 3. Details of the particular implementation of steps 4-6 of the general algorithm

4 Test Setting

We tested the whole algorithm on the well-known WBC' and mushroom data sets,
from the UCI repository [6]. The first aim was to evaluate the effective reduction
in variability provided by the algorithm. 300 10-fold cross-validated XCS runs
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Table 1. Summary of XCS parameters. Naming of the variables follows [I].

15 0.15 m 0.04 €1 10
o 0.1 Oder 10 Fr 0.01
€0 10 0 0.1 Omna 2
14 5 Gsub 20 Pexplr 0.5
5 N/A Py 0.333 pGaswy 1.0
Gga 40 prI 500 PASsub 1.0
X 0.8

were executed for each data set; then, the original variability was calculated, by
taking the distance between each pair of results obtained from the same fold.
This produces 10 - % -300 - 299 = 448500 distances, whose distribution is plotted
on the top-left graph in Figs. Bl and [6 We now applied the clustering algorithm
as follows: chosen a number R, we clustered together the results of R runs of
the original algorithm, and applied retraining. We finally evaluated distances
again, obtaining 10 - é . 310%0 . (3%0 — 1) distances, which again are plotted on the
graph. Average and standard deviation of the distance are calculated as well,
and reported on the last column of Tables [2 and

The second aim in testing was to assess if, and how much, the clustering
process affected performance. As we already stated, taking apart rules struc-
tured to work together and putting them with rules coming from different sets
could disrupt their cooperative effect, and impair performance. This effect was
evaluated through the accuracy value in the test set obtained through cross
validation.

The parameters of XCS common to both problems are reported in Table [Tk
they are the typical default values. WBC could appear a simpler problem than
Mushroom, since its input space is 10'°, compared to Mushroom’s which is
~ 10'°. However, the search space complexity is the opposite: while Mushroom
has to find good classifiers in a ~ 10'7 space, WBC must work in a = 10%°
space. We decided then to employ a population size of 200 for Mushroom and
400 for WBC; evolution was allowed to run for 150k generations in Mushroom,
compared to 250k in WBC. These figures, although not very high, were sufficient
for the ruleset to reach a stable accuracy.

As regards the clustering procedure (see Fig. Bl for a sketch of the algorithm),
we employed k-means with k = é}’%‘, where m is the total number of classifiers
being clustered, and R is again the number of basic XCS runs these classifiers
were produced by. ‘7 is the average number of classifier produced by a run; if
all the runs produced the same classifiers, we should obtain exactly 7, clusters,
with R rules each. Since this is generally not the case, we added the g coeflicient.
Then, the clusters with less than R/3 rules were discarded; approximately, this
means that we keep only the rules which appeared at least once out of three
runs. From each cluster, the classifier closest to the cluster centroid was taken
as the representative rule.
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5 Results

Results of the tests are summarized in Tables2land [ with increasing number R
of basic XCS experiments clustered together. Figures [Bl and [ show instead the
density function of the distance between two rulesets produced by clustering,
again with increasing number of basic experiments joined.

Eye inspection of accuracy, specificity and sensitivity values of the test set
for both data sets shows a moderate decrease in performance after clustering,
substantially independent of the R value. Statistical analysis confirms these first
impressions. On Mushroom, the Kruskal-Wallis test on the accuracy, specificity
and sensitivity values did not reveal any significant differences between all the
clustered results (p-values: .582, .274 and .320 respectively). On the other side,
a Kolmogorov-Smirnov test between the original results and all the clustered
results showed a significant difference (all the p values are .000 for accuracy,
specificity and sensitivityﬁ. Figures for the WBC problem are similar: no signif-
icant difference between clustered results (p-values: .398, .667, .953), significant
difference between them and the original results (again the p-values are all .000).

While the two data sets appeared of comparable difficulty with respect to
accuracy, results look very different for the distance of produced rules. In fact, in
the mushroom problem the original rulesets have a quite broad range of distances,
centered around the 0.5 value. In the WBC' problem the distribution curve of
distances appears radically different, with a high peak around 0.9, and a long,
mostly low tail towards 0. As regards the effects of clustering on distance, small
values of R immediately create a radical shift in the distribution, filtering out the
tails (on both sides) and lowering the average. t-tests performed on consecutive
pairs of results (e.g. R =1 with R =5, R = 5 with R = 10 and so on) show
that for Mushroom there is not much improvement in clustering more than 12
results, while for WBC improvement stops around 25 clustered results (values
reported in Tables 2 and []).

The mushroom data set after clustering produces a distribution with at least
three distinct peaks. This peculiar shape could be explained by the resulting
rulesets being roughly divided into two groups; the distance within each group is
represented by two of the peaks, while the third is the distance across the groups.
Further investigation is however necessary in order to confirm this hypothesis.

6 Discussion

The test setting was designed to check whether the clustering algorithm dis-
rupted the original performance, and whether it could reduce variability of the
results.

As regards performance, the decrease is not too marked (around 4%), but
is significant. The increase in standard deviation is a hint of what’s actually
happening: a check on the distribution of accuracy values (Fig. ) reveals that
the clustered results have a left tail of sporadic, unsuccesful experiments. Further

3 For the p-values, we use “.000” as a shorthand for “< .001”.
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Table 2. Summary of results on the Mushroom data set. Accuracy, specificity and
sensitivity are computed on the test set. The first row reports the results without
clustering. The last column shows the p-value of a two-tailed ¢-test with the distances
on the previous row.

R value Accuracy  Specificity Sensitivity  Rules no. Distance  p-value

— .98+ .01 .99 + .01 97+ .01 11+3 A48 +£ .21 —

5 .95+£.11 .95 +£.19 95 £ .11 12+1 28 £.10 .000
10 944 .12 .95+ .19 94+ .11 11+1 .25 £.08 .000
12 954+ .10 .95+ .19 .95 + .08 11+1 .23 £.08 .000
15 954 .12 94 + .20 .95 4+ .10 1141 .24 + .08 .042
20 .96 £ .08 97+ .13 .95+ .10 11+1 .24 £ .07 .031
25 .95+.10 .94 + .20 .96 + .06 11+1 .24 £ .07 245
30 .94+ .13 94 4+ .21 94 4+ .13 1141 .24 + .07 316

Table 3. Summary of results on the WBC data set. Accuracy, specificity and sensitivity
are computed on the test set. The first row reports the results without clustering. The last
column shows the p-value of a two-tailed t-test with the distances on the previous row.

R value Accuracy  Specificity Sensitivity — Rules no. Distance  p-value
— .93+ .04 .88 +.10 .96 + .03 7+6 .69 £ .23 —
5 .88+.13 .84+ .19 91+ .20 6+2 .62 £ .10 .000
10 .89+ .14 .85+ .17 91+ .21 6+1 .55 £.09 .000
12 874+ .17 .83 £ .21 .89 £ .25 6+1 .54 £ .10 .000
15 .90+ .12 .85 +.19 92 + .18 6+1 .52 £.09 .000
20 .89+ .13 .84+ .20 92+ .19 6+1 49 £ .08 .000
25 .88+ .14 .85 £.19 .90 £ .23 6+1 AT £ .09 .002
30 .89 +.15 .86 £ .19 91+ .21 6+1 AT £ .09 474
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Fig. 4. Distribution of accuracy values for R = 1 (solid line) and for R = 5 (dashed
line) in the WBC experiment. The graph on the right is a detail of the left one.

analysis on the accuracy distribution of WBC reported that 10% of the clustered
results were off the unclustered average by more than 3 times the unclustered
standard deviation. Most of the time the algorithm does not impair performance;
however, the possibility of a failure must then be taken into account in the
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Fig. 5. Distribution of distances for the mushroom data set as the number of clustered
experiments R grows. The X axis displays distance; the solid curve is the density
function of distance for the R value displayed; the dashed curve is the density function

for the previous R value.
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Fig. 6. Distribution of distances for the WBC' data set as the number of clustered
experiments R grows. The X axis displays distance; the solid curve is the density
function of distance for the R value displayed; the dashed curve is the density function
for the previous R value.
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implementation (for instance, repeating the experiment if the accuracy obtained
after clustering is much lower than the average of the original accuracies).

Moving to the analysis of distances, the flat distribution for Mushroom values
can be interpreted as XCS generally producing a common subset of similar rules,
with some slight modifications which account for the higher distance levels. The
high peak at 0.9 on WBC is instead a mark of XCS producing very different
rulesets, with little in common. The high variance in the results, paired with the
low variance in accuracy, points out that the problem is complex enough to offer
a fitness surface with many local optima, equivalent from the accuracy point of
view, but radically distant in the search space. On this data the algorithm is
more effective, moving the distribution of distances towards a 0.5 average.

Finally, while performance was affected in the same way for all R levels,
distance gets significantly lower as R increases. This effect however decreases
in magnitude as R increases, until it stops: further increases of the number of
results clustered together do not promote further decreases on variance.

Our method is not able to produce “the” ruleset for a certain data set. It
does instead give a way to merge the sets of rules resulting from many repeti-
tions of experiments, obtaining a single set with comparable performance and
higher stability. Very often experiments are already run many times; then, one is
choosen either by visual inspection or by higher performance. Running the clus-
tering algorithm in this situation has a low computational cost, and the benefit
of lowering variability.

7 Conclusions

This paper tackled the problem of variability in the rules resulting from XCS
runs. We presented a measure of distance between rules, and used it in a clus-
tering algorithm to find recurring rules between different runs. Bigger clusters
should contain more frequent rules, and thus more important and stable ones.
We tested the algorithm on two data sets from the UCI repository, namely
mushroom and WBC, and evaluated the distance between the resulting rulesets
through a novel measure of distance. Results show the algorithm is effective, en-
hancing stability of the results while maintaining performance. Stability however
does not appear to be improvable over a certain level, although incrementing the
number of basic runs being clustered together (and thus the quantity of data
available to clustering).

Future work will involve the application of different, possibly non-parametric
clustering algorithms, in order to remove the dependency on a fixed number
of clusters k, and to more easily isolate outliers. Another interesting point is
the evaluation of the measure of distance between rules against other possible
measures. Finally, a different approach could focus on building ruleset reduc-
tion algorithms (like CRA) specifically geared towards obtaining low-variance
results.
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Abstract. This paper proposes LCSE, a learning classifier system en-
semble, which is an extension to the classical learning classifier sys-
tem(LCS). The classical LCS includes two major modules, a genetic
algorithm module used to facilitate rule discovery, and a reinforcement
learning module used to adjust the strength of the corresponding rules
after the learning module receives the rewards from the environment. In
LCSE we build a two-level ensemble architecture to enhance the gener-
alization of LCS. In the first-level, new instances are first bootstrapped
and sent to several LCSs for classification. Then, in the second-level, a
simple plurality-vote method is used to combine the classification results
of individual LCSs into a final decision. Experiments on some bench-
mark medical data sets from the UCI repository have shown that LCSE
has better performance on incremental medical data learning and better
generalization ability than the single LCS and other supervised learning
methods.

1 Introduction

Medical data analysis is aimed at discovery and refinement of concepts, or rules,
that exist in medical databases. Supervised machine learning systems have been
proved useful tools for medical data analysis in several medical domains. Because
of special characteristics of medical data, the current learning systems need to
be further enhanced. Firstly, sufficient samples for batch training are often dif-
ficult to collect in a short time. This requires the learning system to be able to
incrementally learn from gradually incoming medical cases. Secondly, the pos-
itive and the negative cases are not always identifiable. The conclusions often
depend on the historical experience of some rewards (payoff or penalty) received
from the environment. In other words, the reinforcement learning paradigm must
be adapted to the learning process. Thirdly, in order to understand the learnt
knowledge, the process and results of the learning system should be easily inter-
pretable. Many supervised machine learning methods do not have the ability for
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incremental reinforcement learning. Although some are able to learn incremen-
tally, such as the artificial neural network systems, the learning process and rules
are not comprehensible because of the black box nature of these techniques.

The Learning Classifier System(LCS) is a machine learning technique that
combines reinforcement learning, evolutionary computing and heuristics into
an adaptive system. Each learning classifier system is a rule-based system in
which the rules are in the form of ”If conditions THEN action”. Evolutionary
computing techniques and heuristics are used to search for the possible rules,
whilst the reinforcement learning techniques are used to assign utility to existing
rules, thereby guiding the search for better rules. Bonelli et al.[I] have demon-
strated that the learning classifier system is suitable in three medical domains.
Holmes applied LCS to knowledge discovery in the clinical research databases
and achieved some fruitful results in estimation of disease risk and epidemio-
logic surveillance [2][3]. Wilson [][5] proposed the XCSR technique to adapt
real-value attributes in LCS and used XCS in the oblique data set from the Wis-
consin Breast Cancer data. Bernadé et al.[d] selected several data sets from the
UCIT repository, such as Pima-indians etc., to compare the performances of XCS
and GALE. Similar works have been done by Bacardit et al. on comparison of
XCS and GAssist[7].

The above research has shown that LCS works well on medical data mining.
However, LCS tends to over-fit the data for smaller data sets[7]. Other problems
are noisy data (incorrect measured values) and missing values which often occur
in medical data sets. To solve these problems with LCS, we need to improve
it in terms of generalization to avoid over-fitting and to increase accuracy of
classification. So far, the ensemble method is one of most interesting and at-
tractive learning systems with strong generalization ability. Ensemble learning
refers to a collection of methods that learn a target function by training a num-
ber of individual learners and combing their predictions[8]. Breiman[J] proved
that generating multiple versions of a predictor and using them to get an ag-
gregated predictor can improve the prediction accuracy of a weak predictor.
Usually, multiple learners are generated by training individual classifiers on dif-
ferent datasets obtained by resampling a common training set(such as bagging
or boosting). Then, the multiple learners are integrated to form the best learner
using a combination strategy(such as voting, averaging the counts, etc.) The en-
semble technology based on supervised machine learning has been studied and
applied to several domains, such as medical diagnosis, face recognition, scientific
image analysis [10], etc. However, combination of LCS with ensemble learning
has not yet been well tested.

In this paper, we propose a two-level LCS ensemble system(LCSE) and dis-
cuss its applications in knowledge discovery of incremental medical data. In the
first-level of the ensemble, new instances are first bootstrapped and sent to sev-
eral LCSs for classification. Then, in the second-level, a plurality-vote method
is used to combine the classification results of individual LCSs into a final deci-
sion. Experiments on some benchmark medical data sets from the UCI reposi-
tory have shown that LCSE has better performance on incremental medical data
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learning and better generalization ability than the single LCS and other super-
vised learning methods.

The paper is organized as follows. In Section [2] we introduce the architecture
of XCSR which is one of the popular learning classifier systems used to deal
with real-value attributes. In Section [3 a two-level learning classifier system
ensemble is presented and the learning process is discussed in detail. We present
some test experiments on the Pima Indians Diabetes data set and investigate
the performance of the respective approaches in Section[dl Finally, we draw some
conclusions and outline future works in Section [l

2 The Architecture and Process Cycle of XCSR

The traditional classifier system(CS) is designed for batch data training. Holland
et al. introduced the reinforcement component to the CS to improve the system
performance from incremental instances. The new CS was named the Learning
Classifier System (LCS)[L1]. LCS consists of two important components. One is
the genetic algorithm module for LCS to create new classifier rules. The other
is the reinforcement learning module that receives payoff from the environment,
distributes the message and adjusts the classifier’s strength. Currently, there are
three types of learning classifier systems — ZCS, XCS and ACS. Considering
there is non-causality between the sequence medical instances, we use XCS in
the learning classifier system ensemble in this paper. The basic architecture of
LCS will be explained using the advanced learning classifier system, XCSR[4].

The condition of rule is often composed of the conjunction of different binary
attributes, which can easily match the discrete-valued inputs in LCS. In order
to deal with the continuous-valued variables such as temperature, blood pres-
sure etc., XCSR changed the rule representation’s structure to use the interval
representations instead of a ternary representation (0, 1, #)[4]. The real-value at-
tribute is represented as a half-open interval in the form of (centre-value, width).
Based on this representation, XCSR can be broadly applied to the problems in
continuous-valued environments. The framework of XCSR is presented in Figlll

The XCSR includes two interface modules, the sensor and the effector. The
sensor receives outside input and the effector specifies an action. When applied
to the data mining domain, the sensor module receives a new instance (without
the categorical label) whilst the effector module outputs the classification of the
respective input.

There are four important data structures in XCSR. The first one is the pop-
ulation of classification rules, [P]. The jth rule C; in [P] is represented as a
5-tuple of (condition, action, predictive reward p;, predictive reward’s error e;;,
fitness value f;). The condition of a rule uses an interval representation. The
action represents a possible category. If C; is a rule that correctly predicts the
reward, then the predictive reward p; is positive. Otherwise, p; is negative or
zero. The predictive reward’s error e; measures the difference between p; and
the actual receiving reward R as shown in equation(]).
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Fig. 1. The Schematic of XCSR

Equation(Z]) defines the accuracy x; and the relative accuracy /{;. That the ini-

tial fitness f; is O reflects the adaption capacity. f; is calculated from HZ; in the
reinforcement learning module. In general, the learning system intends to reserve
the rules which have higher accuracy and higher relative accuracy. We use the pa-
rameter P to measure the size of [P]. If we increase the value of P, the system’s
performance will be improved but the computation cost is increased distinctly.

¢j = |R —pj| (1)
Kj = 0.1(€j/60)_n if €; > €p

kj =1 if e; < eg (2)

Kj=Kj[ D Ki

The second data structure is the match set [M]. In the 3rd process of Fig.[I]
the system checks the input against the conditions of the rules in [P]. The rules
that meet the conditions form the match set [M]. In implementation, we add a
flag for each rule in [P] in order to reduce the storage complexity of the system.
When the flag of a rule is set true, it indicates that the rule is in [M].

The action set [4] is the third data structure. In [M], each rule has an action(or
category). By balancing the exploration and exploitation, we use the roulette
wheel selecting algorithm to choose an action in process 4. All rules that have
an action the same as the selected action form the action set [A]. The action set
[A]_1 is the action set in the last learning step.
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The most important modules in XCSR are the reinforcement learning module
and the genetic algorithm module. When the system outputs an action in [A],
the environment returns a corresponding payoff in process 7. The system will get
the positive reward R if it outputs the correct category. Otherwise, the system
will get a negative value. In process 8, according to the payoff R, the system
adjusts the performance parameters of all rules in the action set [A]_; using
equations(@)), (@) and @) in the reinforcement learning module. Of course, the
previous action set [A]_q in Fig.[[lis replaced with the current action set [A] when
the problem is single-step. While the system is running, the genetic algorithm
module is activated at every regular interval. Using the roulette wheel selection
method, two rules that have the great fitness value are chosen from the action
set [A] and crossed over two-point with the probability x and mutated with the
probability u per allele in the 9th process. The newly generated rules are inserted
into the population set [P] and two low-fitness rules are removed from [P]. If all
rules in the population set [P] could’t match the incoming instance, the cover
module is activated and generates rules in the 10th process.

pj < pj + B(R - p;) (3)

fi— fi +B(r; — f3) (4)

3 Learning Classifier System Ensemble

The learning classifier system ensemble or LCSE we propose in this paper com-
bines the learning classifier system with ensemble learning in order to improve
the system generality. Ensemble learning refers to a collection of methods that
learn a target function by training a number of individual learners and combin-
ing their predictions. Dietterich showed that the uncorrelated errors of individual
classifiers can be eliminated through averaging method, so the ensemble machine
may approximate the desired target function[8]. Currently, major methods for
constructing ensembles include subsampling the training examples, manipulating
the input features, manipulating the output targets and modifying the learning
parameters of the classifier. In this paper, we choose the first method to construct
the ensemble learner.

Fig. @ shows the system architecture of LCSE. Besides several sub LCSs, a
bootstrap module and a voting module are added. The bootstrap module is used
to distribute the inputs to different sub-LCSs and the voting module is used to
combine all classification results of sub-LCSs to produce the final system out-
put. When subsampling the training set, two different sampling techniques are
used, bagging and boosting. Bagging is the sampling-with-replacement proce-
dure where each learner in ensembles is trained on the average probability of
the training examples[d]. Boosting takes a different resampling approach than
bagging, which maintains a constant probability of 1/N for selecting each indi-
vidual example[12]. In our current research, we investigate the bagging method
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Fig. 2. The Architecture of Two-level Learning Classifier System Ensemble

to construct the ensemble learner. The boosting method will be considered in
our future work.

At initialization of the system, the sub-LCSs random initialize their popula-
tion sets. In each episode, the bootstrap module inputs new samples to every
sub-LCSs randomly with respect to the probability A given in equation (&) where
LCS; denotes the ith sub-LCS. In other words, the bootstrap module executes
the bagging procedure. Given a dataset D containing S samples, the bootstrap
module generates N bootstrap data sets by drawing some samples from D for
N times. Because all samples for training did not be obtained in batch in LCSE,
we design the bootstrap module of LCSE as equation(®]). The sampling proba-
bility \ is set as 63.2% because each sample has a probability of 1 — (1 —1/5)°
of being selected at least once in the S samples of a dataset D in the bagging
procedure[I13]. When S — oo, the sampling probability converges to 0.632. Ac-
cording to equation(@), the ith sub-LCS receives current input if the random
number generated by the ith sub-LCS is not greater than A. Or else, the ith
sub-LCS rejects current input.

After the ¢th sub-LCS receives an input, it constructs the match set [M];.
Then the roulette wheel selecting algorithm is used to get the action set [A];.
Finally, the ith sub-LCS outputs its classification result a;. Hence, multiple dif-
ferent learning classifier systems with the different accuracy on the data are
constructed. In order to find the best or near optimal learning classifier sys-
tem, LCSE combines all sub-LCSs that belong to the same classification result.
Usually, the combined result can be obtained by voting or averaging to reduce
the overall expected error and improve the generalization performance of LCSE.
Since LCSE aims at classifying the unknown medical instances correctly, the
majority voting is used to select the final action of each instance. So, the vot-
ing module ensembles the sub-LCSs’ outputs according to equation(@]) to get
the final system’s classification result arcsg. The voting module uses the basic
plurality voting method.
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if rand;() <X bootstrap(LC'S;) < TRUFE

(5)
else bootstrap(LCS;) «— FALSE

ALCSE “— argmatg Z vote(a;) (6)
K3
We must emphasize that each sub-LCS that participates in voting will receive a
respective payoff r; from the environment with respect to its input a;. The sub-LCS
will get a reward of positive value r if its output is correct. Otherwise, the sub-LCS
will pay the penalty with the negative value —r. Then, every sub-LCS processes
reinforcement learning of the rule strength and rule discovery based on its payoff.
In Fig. Bl the solid line represents that the ith sub-LCS is activated. The dashed
line indicates that the respective sub-LCS is not activated in the learning episode.
Essentially, the bootstrap module in LCSE aims at developing multiple sub-
LCSs with different classification performances by means of inputting different
samples, initiating different population sets, and undertaking different rule learn-
ing and discovery processes. In other words, the classification results of every
sub-LCS may be different even though the input sample is same. Therefore, the
generality of the learning classifier system is improved when combining multiple
sub-LCSs with ensemble learning.
Table [l gives the detail process of LCSE and Table [ lists the parameters of
LCSE.

Table 1. The process of LCSE

1. Create populations of each sub-LCS in the system and initialize;
2. While not reach the maximum learning step 7" {

2.1 Distribute the input to sub-LCSs randomly using (&l);

2.2 If the ith sub-LCS is activated, form the match set [M];. Otherwise, do nothing;

2.3 If the ith sub-LCS is activated, construct the action set [A]; using the roulette
wheel selecting algorithm and generate the classification output a;. Otherwise, do
nothing;

2.4 Vote the system output arcsg with (Iﬁl);

2.5 If the ith sub-LCS is an activated sub-LCS, receive its own payoff r; depending
on a;. Otherwise, do nothing;

2.6 If the ith sub-LCS is an activated sub-LCS, adjust rule parameters using (),
@), @) and ). Otherwise, do nothing;

2.7 When T reaches the regular steps, do GA on its own action set of every sub-LCS;

}

3. Return;

4 Experimental Results and Analysis

The Pima Indians Diabetes data set from National Institute of Diabetes and
Digestive and Kidney diseases was used in a benchmark performance test. The
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Table 2. The description and values of parameters in LCSE

Para. Description Value
N Number of sub-LCSs 3,5, Tor9
P Population set’s size of each sub-LCS 800

T Total training steps 2000
«@ Learning rate of reinforcement learning 0.2

X Probability of crossover operator 0.8

W Probability of mutation operator 0.04
Oca The number of steps when activating GA process 12
Ocovering Threshold for covering process 5

€0 Threshold of computing error of a classifier 10

So The parameter of create random scope of a condition in classifier 1.0

diabetes dataset consist of eight condition attributes. They are (1) the number of
pregnancy times, (2) plasma glucose concentration in 2 hours in an oral glucose
tolerance test, (3) diastolic blood pressure (mm Hg), (4) triceps skin fold thick-
ness (mm), (5) 2-hour serum insulin (mu U/ml), (6) body mass index (weight in
kg/(height in m)?), (7) diabetes pedigree function, and (8) age (years). The out-
put value 0 represents the benign state (500 instances, 65.1%) and 1 represents
the malignant state (268 instances, 34.9%).

4.1 Experiment 1

In order to highlight the over-fitting problem, the stratified tenfold cross-validation
method was applied to the diabetes dataset in the first experiment. We randomly
divided the diabetes dataset into 10 subsets (or folds). In each subset all actions
had the same likelihood to be taken. In each trial, we used one subset for testing
and the remaining nine subsets for learning. Table[2 gives the parameter settings.

Results of the stratified cross-validation test of LCSE with seven sub-LCSs are
shown in Table [8l Table B shows the comparison results of the average fraction
correct between LCSE and other learning methods. Among these methods, we
used the decision tree and neural network methods in the Weka toolbox from
the University of Waikato in New Zealand [14]. In Table [l detailed results of
stratified cross-validation test on the benchmark dataset is exhibited.

From Table ] and Table Fl we can see that most LCSE configurations per-
formed better than LCS(XCSR). And, we can also see from Table 3] that the av-
erage fraction accuracy increases as the number of sub-LCSs increases in LCSE.
For LCSE with 7 sub-LCSs, its average prediction accuracy reached 77.34%. For
LCSE with 9 sub-LCSs, this value is 77.47%. Because the difference between
them is not obvious, we think that there is a limit in which the method ap-
proaches the maximal accuracy and further addition of sub-LCSs will no longer
have effect. But, the LCSE is not enough stable since their standard deviations
are greater than XCSR, decision tree and neural network. So, we expect we can
decrease the standard deviation of LCSE in the future work.
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Table 3. Comparing Performance of LCSE with XCSR, Decision Tree and Neural
Network

Learning Method  Correct Clas- Misclassification Average Fraction Standard

sification Accuracy Deviations
LCSE with 9 sub-LCSs 595 173 0.7747 0.00240
LCSE with 7 sub-LCSs 594 174 0.7734 0.00189
LCSE with 5 sub-LCSs 577 191 0.7513 0.00192
LCSE with 3 sub-LCSs 564 204 0.7344 0.00333
XSCR 548 220 0.7135 0.00107
Decision Tree(J48) 554 214 0.7213 0.00110
Neural Network 585 183 0.7617 0.00049

Table 4. Detailed results of stratified cross-validation test on the benchmark dataset
(Correct calssification/Misclassification)

XCSR LCSE with 3 LCSE with 5 LCSE with 7 LCSE with 9 DT(J48) NN
sub-LCSs sub-LCSs sub-LCSs sub-LCSs

Trial 1 52/25 52/25 54/23 58/19 66/11 60/17 58/19
Trial 2 56/21 61/16 62/15 59/16 57/20 57/20 58/19
Trial 3 53/24 57/20 53/24 54/23 61/16 54/23 58/19
Trial 4 50/27 49/28 56/21 57/20 59/18 57/20 58/19
Trial 5 55/22 56/21 57/20 58/19 56,21 57/20 63/14
Trial 6 58/19 56,21 59/18 61/16 59/18 53/24  60/17
Trial 7 54/23 54/23 60/17 63/14 62/15 51/26 57/20
Trial 8 57/20 65/12 61/16 64/13 61/16 53/24 59/18
Trial 9 56/20 54/22 54/22 56,20 62/14 56/20 56/20
Trial 10 57/19 60/16 61/15 64/12 52/24 56/20 58/18

4.2 Experiment 2

We conducted the second experiment on the Pima Indians Diabetes data set
to investigate the on-line learning performance. In the second experiment, we
also split the whole dataset into 10 subsets. Firstly, we used the first subset for
learning and the second subset for testing. Then, we used the first two subsets
for learning and the third subset for testing. This process continued till the
step that the first nine subsets were used for learning and the last subset for
testing. In fact, since both the learning classifier system LCS and the learning
classifier system ensemble LCSE are on-line learning methods, it is unnecessary
to separate the testing process from the learning process. The purpose of the
above learning and testing stages was to compare LCSE with decision tree and
neural network methods.

We conducted 10 trials on each learning method. The results are shown in
FigBland Fig[l We can see that the prediction accuracy has been improved when
the systems learnt more instances. LCSE with 7 sub-LCSs performed better in
the on-line learning than other LCSEs and LCS in almost all learning stages.
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5 Conclusions and Future Work

This paper has presented a Learning Classifier System Ensemble (LCSE) which
combines the learning classifier system with ensemble learning to improve the
generality of the single learning classifier system. The experiment results have
shown that LCSE with sub-LCSs performs better than other learning methods
such as decision tree and neural networks on the diabetes data set. Furthermore,
the LCSEs with more sub-LCSs outperformed the LCSEs with less sub-LCSs
as well as LCS. These initial results have demonstrated the advantages of the
LCSE learning system. But, we know this work is a first step to using ensembles
of Learning Classifier System to improve classification accuracy. In our future
work, we plan to investigate other ensemble methods and benchmark LCSE on
other data mining domains.
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Abstract. The accuracy-based fitness approach in XCS is one of the
most significant changes in comparison with original learning classifier
systems. Nonetheless, neither the scaled accuracy function, nor the im-
portance of the relative fitness approach has been investigated in detail.
The recent introduction of tournament selection to XCS has shown to
make the system more independent from parameter settings and scal-
ing issues. The question remains if relative accuracy itself is actually
necessary in XCS or if the evolutionary process could be based directly
on error. This study investigates advantages and disadvantages of pure
error-based fitness vs. relative accuracy-based fitness in XCS.

1 Introduction

Recent advances in XCS understanding have shown that the accuracy-based fit-
ness approach can guide the evolutionary process to the discovery of accurate,
maximally general classifiers [7]. Additionally, with the introduction of tour-
nament selection, XCS gained a more reliable and persistent pressure towards
accuracy [9]. However, it did not become clear why accuracy needs to be scaled
nor why fitness is derived from the relative accuracy.

This study investigates the fitness approach in XCS. The relative accuracy-
based fitness approach underlies several peculiar parameter choices which need
to be investigated and clarified. Moreover, although XCS’s fitness approach was
successful in many different investigations (e.g. [2UTTH4]), it is not clear if the
additional accuracy bias is necessary for a successful evolutionary process in
XCS. In fact, it seems possible that XCS selection with tournament selection
could be solely based on minimizing error instead of maximizing accuracy. In
this way, the additional accuracy bias would become irrelevant and parameter
estimations should reach less noisy values faster.

The remainder of this study is structured as follows. The next section gives
a short overview over the XCS system with the relevant parameter initialization

X. Llora et al. (Eds.): IWLCS 2003-2005, LNAT 4399, pp. 104 2007.
© Springer-Verlag Berlin Heidelberg 2007
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method and update methods. Next, we study the effect of basing selection directly
on error instead of accuracy-based fitness. Summary and conclusions conclude the
study.

2 XCS Overview

XCS is a very general learning mechanism that combines gradient-based op-
timization of predictions with evolutionary-based space partitioning. The par-
titions evolve to enable maximally accurate predictions. While XCS was also
successfully applied in multi-step problems [22IT5IT6/T], we restrict this study to
classification problems to avoid the additional problem of reward propagation.
However, the insights of this study should readily carry over to multi-step prob-
lems. This section introduces XCS as a pure classification system providing the
necessary details to comprehend the remainder of this work. For a more com-
plete introduction to XCS the interested reader is referred to the original paper
[22] and the algorithmic description [10].

We define a classification problem as a problem that consists of problem in-
stances s € S that need to be classified by XCS with one of the possible classifica-
tions a € A. The problem then provides scalar payoff R € R with respect to the
made classification. The goal for XCS is to choose the classification that results in
the highest payoff. To do that, XCS is designed to learn a complete mapping from
any possible s X a combination to an accurate payoff value. To keep things simple,
we investigate problems with Boolean input and classification, i.e. S C {0, 1}
where L denotes the fixed length of the input string and A = {0, 1}.

XCS evolves a population [P] of rules, or classifiers. Each classifier in XCS
consists of five main components. The condition C € {0, 1, #} specifies the sub-
space of the problem instances in which the classifier is applicable, or matches.
The “don’t care” symbol # matches in all input cases. The action part A € A
specifies the advocated action, or classification. The payoff prediction p ap-
proaches the average payoff encountered after executing action A in situations in
which condition C' matches. The prediction error € estimates the average devia-
tion, or error, of the payoff prediction p. The fitness reflects the average relative
accuracy of the classifier with respect to other overlapping classifiers.

XCS iteratively updates its knowledge base with respect to each problem
instance. Given current input s, XCS forms a match set [M] consisting of all
classifiers in [P] whose conditions match s. If an action is not represented in
[M], a covering classifier is created that matches s (#-symbols are inserted with
a probability of Py at each position). For each classification, XCS forms a payoff
prediction P(a), i.e. the fitness-weighted average of all reward prediction esti-
mates of the classifiers in [M] that advocate classification a. The payoff predic-
tions determine the appropriate classification. After the classification is selected
and sent to the problem, payoff R is provided according to which XCS updates all
classifiers in the current action set [A] which comprises all classifiers in [M] that
advocate the chosen classification a. After update and possible GA invocation,
the next iteration starts.
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Prediction and prediction error parameters are update in [A] by p «— p +
B(R —p) and € «— ¢ + B(|R — p| — ) where 5 (8 € [0,1]) denotes the learning
rate. The fitness value of each classifier in [4] is updated according to its current
scaled relative accuracy x':

o 1 if e <eg o K (1)
a (% )V otherwise Y ke
zE€[A]
F e F+p(x - F) )

The parameter ¢ (g9 > 0) controls the tolerance for prediction error ; param-
eters a (a € (0,1)) and v (v > 0) are constants controlling the rate of decline
in accuracy x when ¢ is exceeded. The accuracy values k in the action set [A]
are then converted to set-relative accuracies x’. Finally, classifier fitness F' is
updated towards the classifier’s current set-relative accuracy. All parameters ex-
cept for fitness F' are updated using the moyenne adaptive modifée technique
[19]. This technique sets parameter values directly to the average of the so far
encountered cases as long as the experience of a classifier is still less than 1/(.
Each time the parameters of a classifier are updated, the experience counter exp
of the classifier is increased by one.

A GA is invoked in XCS if the average time since the last GA application on
the classifiers in [A] exceeds threshold 64,. The GA selects two parental classi-
fiers using roulette-wheel selection [22] or the recently introduced tournament
selection [9]. Two offspring are generated reproducing the parents and applying
crossover and mutation. Parents stay in the population competing with their
offspring. We apply free mutation in which each attribute of the offspring condi-
tion is mutated to the other two possibilities with equal probability. Parameters
of the offspring are inherited from the parents, except for the experience counter
exp which is set to one, the numerosity num which is set to one, and the fitness
F which is multiplied by 0.1. In the insertion process, subsumption deletion may
be applied [23] to stress generalization.

The population of classifiers [P] is of fixed size N. Excess classifiers are deleted
from [P] with probability proportional to an estimate of the size of the action
sets that the classifiers occur in (stored in the additional parameter as). If the
classifier is sufficiently experienced and its fitness F' is significantly lower than the
average fitness of classifiers in [P], its deletion probability is further increased.

3 Error-Based Selection

Although an error-based selection method still pursues the XCS goal of evolv-
ing a complete and accurate reward map of a problem several differences can
be identified. This section discusses these differences and experimentally inves-
tigates error-based fitness in XCS.
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3.1 Major Differences

As mentioned in the XCS overview, selection is usually based on the set-relative
accuracy derived fitness estimate of a classifier. In offspring classifiers this fitness
is usually derived from the parents (sometimes also from the average fitness in the
population) and multiplied by 0.1 to be pessimistic about the offspring quality.
Dependent on the learning rate 3, the moyenne adaptive modifée (MAM) tech-
nique, the experience counter, and the accuracy scaling, more accurate offspring
reaches a fitness value higher than the parental value after a certain amount of
updates. Only then the more-accurate offspring has the chance to outperform
its parents and take-over the specific environmental niche it covers. The number
of influences suggest that complex interactions of different factors can occur.

Similar to the fitness approach, though, it seems also possible to base selec-
tion directly on the prediction error estimate of a classifier. While accuracy-based
fitness needs to be maximized, error-based fitness needs to be minimized. Addi-
tional effects are expectable, though, since the error estimate is directly derived
from the parental value (without a pessimistic increase) and the error estimate
is not set relative, effectively disabling fitness sharing. While the former factor
should have the effect that offspring sometimes causes additional disruption, the
latter factor might result in weaker niche support pressure. These factors are
investigated in our experimental study.

Interestingly, though, due to the lack of fitness sharing, additionally, over-
lapping classifiers are enabled in this framework. The relative-accuracy-based
fitness approach in the original XCS causes the evolution of non-overlapping
niches that cover the whole reward map of a learning problem (see e.g. [I3I14]
for further analyses). Error-based fitness will cause the evolution of a similar
complete reward map but allows overlapping classifiers. This might be advanta-
geous in unevenly overlapping niches, but has the drawback that more classifiers
need to be sustained to continuously cover the whole problem space. The ad-
ditional classifiers also undergo additional competition due to the unrestricted
population-wide deletion technique.

3.2 Implementation

Error-based selection is realized applying tournament selection. Instead of max-
imizing the fitness estimate of a classifier, the error estimate is minimized. Thus,
the classifier wins in the current tournament in an action set that has the lowest
reward prediction error estimate. Parameter updates are not changed.
Additionally, to free XCS completely from the fitness evaluation, the predic-
tion array needs to be formed with respect to a classifier’s error estimate and not
to its fitness estimate. Since the error estimate in young classifiers is very noisy,
the reward prediction estimate is less trusted than in elder classifiers. Widrow
& Stearns (1985) formalized how the reward prediction error can be expected to
vary with respect to the number of encountered reward prediction updates [20].
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Assuming the encountering of a perfect signal P and the initial estimate p;, then
the error of the actual estimate p(t) can be determined as follows [20]:

p(t) =P+ (1-p8)(pi - P) ®3)

Assuming the worst-case initialization error €,. = max{p;; Pmaz — p:i} as the
initial error and assuming furthermore a perfect reward signal from then on, the
maximal difference from the actual average encountered reward can be estimated
as follows:

Ap = (1= ) Pewe (4)

Since the prediction error of a classifier can reach on average half the maximal
reward prediction Py,q. /2 (temporarily it might also lie a little above this value),
the maximal error in the reward prediction error can be determined as follows
denoting €., as the maximum possible error of the error and assuming a perfect
signal.

Ae = (1 - B)"Pecwe (5)

The actual error of a classifier can now be estimated somewhat pessimistic as the
actual error estimate plus the worst-case differing amount (assuming a perfect
signal).

€ =e+ Ae (6)

The prediction array may now be weighted according to the estimated error €
in conjunction with the actual reward prediction value p:

Docle(MAcl. Aq €l-p - 1/cl.€ - cl.num

chE[M]/\cl.A:a 1/cl.€" - cl.num

This prediction array determination consequently ignores fitness but weights the
reward estimates according to the actual inverse error estimate. Finally, deletion
cannot be biased on the fitness estimate of a classifier as originally proposed
and investigated in [I2]. Consequently, deletion is proportional to the action set
size estimate alone as in the original XCS implementation [22]. The next section
investigates the impact of these modifications in several typical Boolean function
problems.

PA(a) = (7)

3.3 Experimental Investigation

Several questions need to be investigated in the new approach. First, the question
is if in fact overlapping, accurate classifiers evolve. Next, the speed of evolution
will show if the direct error dependence allows a faster or slower detection of
the relevant environmental niches and thus, if performance speed increases or
decreases. Finally, due to the additional overlapping classifiers, the support of
each environmental niche needs to be investigated. Will XCS be able to sustain
the representation of the complete problem with the same number of classifiers?

To answer these questions, we apply XCS to the multiplexer function [226]
and the count ones problem [Gg].
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Table [l shows the typical difference in the classifier lists of relative-accuracy-
based fitness and error-based fitness in the six multiplexer. While in the relative
case mainly non-overlapping classifiers evolve, that explicitly identify each envi-
ronmental niche, in the error-based case those classifiers evolve as well as classifiers
that overlap two niches. For example, niches 01%0**-1 and 11***0-1 (specifying
accurately the incorrect class) would be represented perfectly by the similar clas-
sifiers substituting don’t care symbols for the star symbols. These evolve in the
relative-accuracy-based case. However, in the error-based case, also the overlap-
ping classifiers gain a high numerosity value such as classifier #1#0#0-1. Note that
in the exemplar runs, the maximal population size was set to N = 2000 so that
niche support was not a problem in this case. The overlapping classifiers gain a
similar numerosity (on average) as the non-overlapping ones do. Hardly any pres-
sure towards the non-overlapping classifiers can be detected.

Table 1. Typical resulting classifier list for relative-accuracy-based fitness and error-
based fitness in the 6-multiplexer problem

Relative-Accuracy Based Error Based

C A p € F num exp C A p € F num exp
11###0 1 0 00.836775 85 5134 01#0## 1 0 0 0.900787 106 5994
114441 1 1000 0 0.792768 73 5478 #14#141 1 1000 0 0.637662 91 4973
10##0# 1 0 00.702730 67 5847 1##+#00 1 0 0 0.587410 82 5651
10##1# 1 1000 0 0.653202 59 5270 #01#14# 1 1000 0 0.532509 81 2592
01#0## 1 0 00.471205 49 5306 0#114#4# 1 1000 0 0.429461 65 3552
01#14#+# 1 1000 0 0.418793 38 5306 000### 1 0 0 0.712403 63 5175
01#00# 1 0 0 0.252941 28 1976 #00#04# 1 0 0 0.435288 62 4410
001##+# 1 1000 0 0.301881 28 5726 #1#0#0 1 0 0 0.369763 46 5853
#00#04# 1 0 0 0.242931 27 4925 11##4#1 1 1000 0 0.504067 41 4982
000### 1 0 00.328251 27 5529 10##10 1 1000 0 0.412228 38 325
01#01# 1 0 0 0.234058 26 2557 10##0# 1 0 0 0.491715 36 4408
0010## 1 1000 0 0.272719 25 2095 01#14#4# 1 1000 0 0.409011 32 1174
10##10 1 1000 0 0.256431 24 2269 11###0 1 0 0 0.445064 32 4524
10##01 1 0 00.232770 24 2481 10##1# 1 1000 0 0.288221 28 1054
01#10# 1 1000 0 0.242531 22 2570 1##411 1 1000 0 0.270195 27 5872
01#0#1 1 0 0 0.210961 22 2636 001##1 1 1000 0 0.239064 25 466
01#11# 1 1000 0 0.222898 20 2651 001### 1 1000 0 0.270045 19 1891
000##1 1 0 00.230527 20 2740 0#11#0 1 1000 0 0.139190 13 97
001#0# 1 1000 0 0.204827 20 2786 #00#00 1 0 0 0.049742 8 75
001##0 1 1000 0 0.198300 19 1849 0001## 1 0 0 0.053201 5 67
01#14#0 1 1000 0 0.214924 19 2692 #01#11 1 1000 0 0.043135 5 102
000#1# 1 0 00.222182 19 2667 #1#1#0 1 405 501 0.000000 4 1654
001##1 1 1000 0 0.202509 19 2867 1##4#0%# 1 161 302 0.000000 3 191
#1#0#0 1 0 00.170386 18 5351 00#04## 1 519 509 0.000000 3 316

Further experiments in the larger 20 multiplexer problem are displayed in
Figure [l showing the normal multiplexer problem, and the problem with addi-
tional Gaussian noise (adding a Gaussian Noise with standard deviation o = 300
on the provided reward reflecting noise in the fitness evaluation function).

All runs show that XCS with error-based fitness is able to solve the problem as
well. The evolutionary speed is slightly decreased, that is, perfect performance
is reached after a larger number of steps in comparison to relative-accuracy-
based fitness. Part of the explanation for this decrease in learning speed can
be attributed to the larger number of classifiers that is evolved. Additionally,
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Fig. 1. Slight advantages due to relative-accuracy based selection can be observed
in the multiplexer problem. However, the simplicity of error-based selection remains
appealing.

parameter initialization issues appear relevant. Since fitness is decreased by 0.1
in offspring classifiers and fitness is updated by the Widrow-Hoff rule from the
beginning, disruption by young classifiers appears to be prevented better in the
fitness-based selection case than in the error-based selection case.

The relative fitness approach also results in a slightly stronger generalization
pressure. The pressure appears to be mainly due the initial decrease in offspring
fitness. The decrease in fitness assures that similarly accurate parents win the
tournament against their offspring. More specialized classifiers undergo param-
eter updates less frequently so that the more specialized a classifier the longer
it takes for it to exceed its parent’s fitness. Thus, more generalized similarly
accurate classifiers reach higher fitness values faster.

Besides the multiplexer problem, we experiment with the count ones problem
in which overlapping niches need to be sustained to ensure the representation
of a complete problem solution. Besides Gaussian noise, we also added alter-
nating noise, in which the incorrect reward is provided with a probability of
0.15, reflecting noise with incorrect classification cases [6]. Similar performance
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Fig. 2. Differences in the count ones problem with string length 100 and 7 relevant
bits are minor. Lower (3 rates decrease convergence speed but increase accuracy.

observations can be made. The error-based approach again suffers more from
more offspring disruption so that a reliable 100% performance is reached slighlty
slower. However, particularly in the noisy problem cases, XCS with error-based
selection reaches a slightly higher performance level. Thus, fitness sharing may
cause disruption in problems in which overlapping niches actually need to be
sustained for a complete problem solution.



112 M.V. Butz, D.E. Goldberg, and P.L. Lanzi
4 Summary and Conclusions

Summing up, we could show that an XCS in which selection is purely based
on error is able to solve similar Boolean function problems as the normal XCS.
Hereby, performance was slightly worse than in the original XCS approach but
with the gain of having less parameters per classifier and depending less on
learning rate (3. Moreover, the peculiar accuracy-scaling function is not necessary
anymore. Parameter estimates can now be directly inherited from the parents.
An additional parameter estimate decrease is not necessary.

Despite the successful application, it became also clear that the approach
deserves further investigation. A similar error estimate as done for the predic-
tion array calculation might be useful in the selection mechanism to prevent
disruption in the error-based case. Other mechanisms are imaginable to prevent
disruption but still ensure detection of better classifiers fast.

In conclusion, the results show that fitness sharing is actually not necessary
in the XCS framework. Niching is assured due to the niche-based reproduction
in conjunction with population-wide deletion. Thus, while fitness-sharing is very
likely to be mandatory in other LCS frameworks, such as the ZCS system [2T1/3],
niching in XCS is accomplished by the niche-based reproduction mechanism.
This niching effect and its impact on population sizing in XCS is investigated in
detail elsewhere [514].

The study also points out that parameter initialization in offspring classifiers
is still in its infancy. Proper mathematical approaches to the parameter estima-
tions are necessary to understand possible disruption and ensure fast detection
of more accurate (or lower error) classifiers. Additionally, the MAM technique
might be questioned because initial, large updates may be highly disruptive.
However, parameter initialization becomes even more crucial once pure Widrow-
Hoff updates are applied (since then an incorrect initial value can cause strong
disruption). More resent modifications of XCS showed that the prediction part
in XCS is generally very flexible enabling the estimation of linear and polyno-
mial predictions approximated with recursive least squares or the pseudo inverse
[T

The results herein show that in strongly overlapping problems, the fitness
sharing approach may be reconsidered or may actually be obsolete. Future anal-
yses on this matter will be relevant not only for the XCS classifier system but also
for LCSs in general since all (Michigan-style) classifier systems rely on iterative
parameter updates and thus noisy fitness estimates.
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Abstract. Exploration/Exploitation dilemma is one of the most challenging
issues in reinforcement learning area as well as learning classifier systems such
as XCS. In this paper, an intelligent method is proposed to control the
exploration rate in XCS to improve its long-term performance. This method is
called Intelligent Exploration Method (IEM) and is applied to some benchmark
problems to show advantages of adaptive exploration rate for XCS.

Keywords: Learning Classifier Systems, XCS, Exploration, Exploitation,
Adaptive Exploration Rate.

1 Introduction

Assume an agent tries to learn the environment E. At each time step, the agent
receives the environmental state as the vector X, then carries out the action a and
receives the reward r from the environment. In this model, the agent tries to satisfy
two objectives: (i) to learn which actions consequence to achieve more reward in its
life time to upgrade its performance and (ii) to reach its predefined goal(s).

When an agent tries to learn to act in an unknown environment, using
reinforcement learning paradigm, it always faces a critical problem. It must choose
between acting based on its previous experiences and trying some new actions
expecting to achieve new knowledge about the environment. The rationale behind the
latter approach is to gain some useful information which may help the agent to
improve its performance in that environment. The problem of creating a balance
between achieving new information and acting based on previous ones is usually
called Exploration/Exploitation Dilemma (EED). Holland was one of the first to
discuss the dilemma in connection with adaptive systems [1]. He summarizes:
“[obtaining] more information means a performance loss, while exploitation of the
observed best runs the risk of error perpetuated”. The EED is described in the
reinforcement learning framework in the following:

All machine-learning approaches which are based on the reinforcement learning
paradigm, suffers from this issue. One of these approaches is Learning Classifier
Systems (LCS). LCSs are a kind of reinforcement learning algorithms first proposed
by Holland and later modified and extended by Wilson [2]. Wilson’s Extension is
called Accuracy Based Classifier System (XCS) and now is the mostly used extension
of LCS.

X. Llora et al. (Eds.): IWLCS 2003-2005, LNAI 4399, pp. 115 2007.
© Springer-Verlag Berlin Heidelberg 2007
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One of the most challenging issues in XCS as well as other reinforcement learning
approaches is to develop a proper EED strategy. In this paper, we propose a new
method to develop this balance between the exploration and exploitation rates in
XCS's life cycle using Fuzzy Logic.

The rest of the paper is organized as follows: at first we describe some important
researches about EED, and then we describe XCS in brief and describe its original
approach to create EED balance. Then we introduce our proposed method and
describe it in details and finally some benchmark problems are considered, and our
experimental results are presented and discussed.

2 Related Works on EED

In this section, we summarize some important researches related to EED issue to
show the state of the EED research.

If a system has a well-defined way of making the Explore/Exploit decision at each
time-step, we say it has an EED strategy. In [3], the author categorized some famous
EED strategies. He introduced two general categories: Global Strategies and Local
Strategies. The first category includes the policies where the rate of exploration is
based on some features which are independent of the system itself, such as time or the
measure of the system’s overall performance. These strategies do not change with
respect to the time or the problem’s experience. As an example of these policies, we
can refer to static probability policy, variable probability with respect to prediction
error and so on. The local category of policies includes the policies which their
exploration rate is determined with respect to the response of the system to the current
input of the environment.

In the other words, the global strategies use the property of the whole system to
adapt the exploration rate but the local strategies determine the exploration rate based
on the current input of the system. These strategies are based on this idea that in some
iteration, learning may not be necessary or may be even disruptive. There are many
exploration strategies which lay in this category such as roulette wheel selection.

In [4], the authors proposed an EED strategy based on some meta-knowledge about
the environment. Their strategy reacts to the performance of the agent. To validate
their approach, they applied it to some economic systems and compare it to two
adaptive methods: one local and one global.

And finally in [5], the authors develop a model, based on the combination of
exploration and exploitation in a common framework. They defined a new concept
called ‘degree of exploration’. This value is defined for a particular state as the
entropy of the probability distribution on the set of acceptable actions. This value is
controlled by the user of the system. In [5], the EED problem was seen from another
perspective: a global optimization problem. The problem is to find a policy that
minimizes the expected cost with a fixed degree of entropy. This formulation leaded
the authors to a set of nonlinear updating rules. The authors showed that in specific
circumstances, there are some non-linear equations which can easily be solved to
obtain the desired policy. Some reported simulations showed that their model works
as expected.
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3 XCS in Brief

In this section, we briefly describe XCS. XCS contains a population of the classifiers
which is called [P]. This population can be empty in the beginning of the experience,
or be filled randomly. Each classifier in [P] is made up different parts. These parts
are: a condition from the alphabet {0, 1, #}, an action which is an integer, and a set of
associated parameters. These parameters are (1) payoff prediction P;, which estimates
the payoff which the system will receive when its action is applied to the
corresponding environment; (2) the prediction error ¢, (3) the fitness Fj, and some
other parameters such as exp, num and etc.

3.1 A Life Cycle of XCS

When XCS receives the environmental state, it forms the related match set [M]. This
set includes the classifiers which their condition parts matches the current
environmental state. If no classifiers match, the covering operator creates a predefined
number of classifiers which match the current input and insert them into the
population and into the [M]. If the size of population grows over a predefined size N,
due to covering, then some other classifiers are eliminated from the population
regarding their fitness and experience.

Then, for each action a;, which is proposed by the classifiers in [M], the system
computes a fitness weighted average P’ using this equation: P’y = ?} I;’} 1:;, where Py is
the prediction of the classifiers which propose action a,, this value is used as the bid
of corresponding action to win the exploitation phases. Then, XCS chooses an action
from those proposed in [M] regarding its EED strategy. Finally, an action set [A] is
formed consisting of the subset of [M] having the chosen action.

After that, the selected action is applied to the environment and a reward R was
received from the environment which may be zero. Then, the parameters of the
classifiers in [A] are re-estimated according to that reward. At first, the predictions are
updated as follows: P; « P; + B(R — P;). Next, the errors are re-estimated using this

equation: & = g +B(R —PJ-|). Then the relative accuracy for the corresponding

classifier is calculated as follows: k; = 0.1 %_v for g;>¢, else 1.0. The parameter & is
g

termed the error threshold and v is a positive integer: both of them are initiated at the
beginning of the experiments.

Then, this raw accuracy is used to calculate the relative accuracy for each classifier

k .

using the following equation: k= TLJ And at last, this relative accuracy is used to
update the classifier’s fitness: F; = F; + B(|k; — F;).

These updated values are used in another important component of XCS: The
discovery component. On a regular basis depending on the parameter ,,, the genetic
algorithm is applied to the classifiers in [A]. As usual, applying GA consists of three

phases: selection, crossover and mutation. In the selection phase, two classifiers are
selected with proportionate selection operator regarding their fitness. The crossover
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operator, usually one-point crossover operator, is applied on the two selected parents
at the rate of y. Then, at the rate of x, each allele of the generated offspring is mutated.
The resulting offspring are inserted into the population and two classifiers are deleted
to keep the population size constant.

4 EED in XCS

We encounter the EED in the action selection procedure of XCS. Due to the online
performance measuring in XCS, the question is how to create the desired balance
between selecting the winner action with respect to agent’s previous experiments or
let the agent to explore its environment in order to gain more useful information.

It seems that agent must create a balance between these two choices; but the major
question is how to create this balance. Yet another issue to be addressed is how to
select the winner action during exploration phase. Should this decision be purely
random or must incorporate some previously gained knowledge?

In this paper, we try to provide answers by inspecting the current XCS implementation
based on [6] by M. Butz and S.W. Wilson. In this implementation the balance between
Exploration and Exploitation is created using a P,,, constant. P,,, is used to determine
the probability of exploring environment. This probability remains unchanged during the
agent’s life cycle and commonly is set equal to 0.5. Therefore, this balance is created by
using only a constant parameter. Considering the second question, [6] uses a random
policy to select the winner action in the exploration phase and no other parameter such as
Fitness or Strength is involve. In the next section, we propose an adaptive intelligent
technique to develop an intelligent Exploration/Exploitation strategy.

5 Intelligent Exploration Method (IEM)

The main rational behind our proposed method is that a constant exploration rate
seems to be not an appropriate EED strategy and we need to adapt it during the
agent’s life cycle. For example in the beginning of the learning procedure due to the
lack of experience in the environment, acting with respect to previous experiences has
no difference with random strategy. Therefore, in the beginning phase, existence or
lack of exploration has no significant effect on online and long-term performance.
However, in the middle phase, exploration helps us to find more information on the
search space and may cause better long-term performance and in the final phase,
exploration can help us to escape from local optima but also it may cause some kind
of disturbance in agent’s knowledge about the world and can reduce the agent’s
performance. It seems that adaptive changes in exploration probability can improve
XCS’s performance. Due to this hypothesis, we designed a system called IEM. It tries
to propose a suitable exploration rate according to its information about the agent’s
performance and the environmental changes. IEM tries to distinguish the beginning,
middle and final phases in order to propose the appropriate exploration probability for
each phase. Figure 1, depicts XCS with IEM.
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Creating Matching Condition from
Environmental States and
Arrange Match Set

I
[ Creating Action Set ]

| Ask Explore Probability
from IEM

Do Explore or Exploit
with respect to Pexp

Fig. 1. XCS with IEM

5.1 IEM Internal Architecture

In this section, we describe the internal structure and overall architecture of IEM. As
shown in Figure 2, IEM receives environment's state via its interface and chooses
suitable control parameters with respect to its predefined rule base to apply to XCS.

XCS and Environment

Fig. 2. IEM Architecture

IEM consists of different parts namely: input interface, rule base, inference engine
and output interface. These parts are described in the following subsections.

5.2 The Input Parameters of IEM

The input parameters of [EM must indicate the current state of XCS with respect to its
internal evolutionary process and its online performance. Our chosen input parameters
are as follows:

e PERF: this factor is calculated using formula 1, where N, is number of trials
with correct actions since the beginning and N, is the total number of
exploitation trials since the beginning of experiment.
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N,,
PERF = %Ve (1)

e N, this factor is calculated according to formula 2; where N, is the total
number of explore trials since the beginning and A, is the total number of trials
since the beginning of the experiment.

_N,
Nexr - /Vt (2)

e N,,: this factor is calculated using formula 3, where N, and N, are as the

above.
N
Newp = /\/ 3)

e Age: This parameter is used to distinguish XCS's beginning, middle and final
phases and is calculated using formula 4, where N,is as the above and T’
is the expected number of trials that XCS is going to accomplish.

Age=" 4 “)

Fesi: Best fitness the chromosomes in the XCS's rule base.

Fiean: Mean fitness of the chromosomes in the XCS's rule base.

F,: Fitness variance of the chromosomes in the XCS's rule base.

D,an and D,: These parameters are calculated using Hamming Distance
concept. To calculate these parameters, we measure all chromosome's distance
with the best one in the population considering Hamming criterion and then
we calculate the mean and the variance of these calculated distances.

Our motivation to choose these input parameters are as follows: First parameter
determines the overall picture of XCS's performance. Second and third parameters
show the state of the EED balance. Forth parameter is used to determine the current
phase of XCS's learning procedure; and Fifth to ninth parameters are selected to
determine the state of XCS’s internal evolutionary process based on proposed
parameters in [7].

5.3 IEM Output

IEM produces only one output; P,,, that is taken as the Exploration Probability by
XCS. It means that XCS chooses a random action with probability of P,,, in current
epoch; otherwise it selects the best action.

5.4 Rule Base of IEM

IEM is a Fuzzy Controller; so it uses a Fuzzy rule base. Due to the lack of learning
ability of IEM, some of these rules are initiated using previous experiments and some
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Table 1. Fuzzy rules, the relation between P,,, and PERF. This Table's structure is very simple,
for example, indicated cell is interpreted as follows: if PERF is low then P, must be high.

PERF P,
Low High
Medium Medium
High Low

Table 2. Fuzzy rules, the relation between P,,,, Nexp and N, This Table has two parts, first
column shows N,,,'s Membership functions and first row shows the N,'s membership
functions. For example, indicated cell is interpreted as follows: if N.,, was medium and N,,, was
low then P, must be high.

N, exp N, exr

Low Medium High
Low Low Low Low
Medium High Medium Low
High High Medium Low

Table 3. Fuzzy rules, the relation between P,,, and D,,..,. This Table is interpreted as Table 1.

Dmean Pexp
Low High
Medium Medium
Normal Low
High Low

of them are drawn from [8], then they are tuned manually using many experiments
with IEM and XCS. In Tables 1, 2 and 3, three types of such rules are shown. These
rules are about relation between P, N,yp, Nexrs Dypean and PERF'.

Because of the fuzzy nature of IEM, each input and output variable must be
associated with some membership functions. These membership functions are shown
in Figure 3. It is notable that membership functions of the output parameter and the
three first input parameters have been chosen experimentally, and others are delivered
from [8].

5.5 A Life Cycle of IEM

In this section, we explain a sample life cycle of IEM to illustrate its overall
architecture and its interaction with XCS. In all iterations, at first the input parameters
are calculated using XCS's internal or environmental parameters. Then these
parameters are fuzzified using Mamdani's techniques. After that, IEM rules with
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Fig. 3. Membership functions of input and output variables in [EM

trigger values greater than a predefined threshold (This threshold is set to 0.2 in this
research experimentally) are selected for aggregation and defuzzification process. Our
selected defuzzification method is Center of Gravity technique [9]. After
defuzzification phase, the obtained P,,, is applied to XCS. XCS uses this value as the
probability of exploring the environment.

6 Problems and Results

Our benchmark problems are chosen from known benchmark problems of single and
multi step categories; Multiplexer family and Woods family. These problems are
described here in brief, interested readers can refer to [2] for further reading.

Multiplexer Family: Boolean multiplexer functions are defined for binary strings of

lengthl =k+2" . The function’s value may be determined by treating the first k bits
as an address that indexes into the remaining 2% bits, and returning the indexed bit. For
example, in the 6-multiplexer (/=6), the value for the input string 100010 is 1, since
the “address”, 10, indexes bit 2 of the remaining four bits. In disjunctive normal form,
the 6-multiplexer is fairly complicated (the primes indicate negation):

Fgs = xp'x;'x2 + xpx1x3 + Xox;'X4 + XpX X5 )

To construct the payoff landscape, we associated two payoff values, 1000 and O.
Payoff 1000 was for the right answer and payoff 0 was for the wrong answer. There



A Fuzzy System to Control Exploration Rate in XCS 123

are more complicated instances of this problem such as MP11 (I=11) or MP20 (1=20).
In this paper, we use MP11 and MP20 as our benchmark problems.

Woods Family: A maze consists of some squares which are arranged in a usually
rectangular boundary. These squares are called cells. These cells are categorized into
empty cells, which the agent can move through it and stays in it, blocked cells, that
the agent cannot move through it and some cells with walls. In the latter type, the
agent can stay in the cell but cannot move from this cell to the adjacent ones which
have a wall in their common boundary with the current cell. Some other cells in the
maze contain virtual food. The goal of the agent is to reach a food (G or F Cells) as
fast as possible from any cell in the maze as the initial state. The agent can move in all
eight directions. At each time step, the agent receives the environmental state which
mentions the agents’ adjacent cells using a coded string. Then it must choose a proper
direction to move and carry out the corresponding action. If the action moves the
agent to a food cell, the agent receives a reward r (usually equal to 1000) from the
environment, unless no reward was given to the agent. As mentioned before, the task
is to learn how to reach the food from any initial state using minimum number of
steps. Our chosen maze is Woods2 which is depicted in Figure 4.

F
=
S
rF

Fig. 4. Used instance of Woods2 Environment. This figure is downloaded from [10].

e
2o
SH==E

7 The Experimental Results

Our experiments are done separately by the XCS with IEM (we call it XCSI) and the
original XCS based on [6]. For each problem, experiments are carried out 100 times
separately and the final results are averaged over all of them. These results are shown
in Figures 5 to 7. Vertical axis is system’s performance for MP Family, which is equal
to correct answers in last 50 exploit epochs, and average step to food for Woods
family and the horizontal axis is epoch-number/50. All XCS parameters are initialized
as in [6]; population size is 400 for MP11 and Woods2 and 1000 for MP20 for both
XCS and XCSI.
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Fig. 7. Comparison of XCS (solid line) and XCSI (dashed line) in Woods2 Problem

8 Discussion

As the presented results show, XCSI achieves better performance than XCS in all
benchmark problems. It is better to have a closer look at the IEM’s operation during
each run to describe this behavior. To do this, the best way is to inspect the proposed
P,,, for each of these three problems.

In Figure 8 to 10, the proposed exploration rate by IEM rate is shown as vertical axis
and the horizontal axis is epoch-number/50. Due to these Figures, the proposed
exploration rate for these problems are low at the beginning and it grows higher with
respect to the epoch number and the problem’s complexity (as mentioned before, MP20
is more complex than MP11 and the Woods2 is more complex than the other two).

— XCs
- - XCsl

L L L L L L L L L
0 100 200 200 400 500 600 700 800 900 1000

Fig. 8. The proposed Exploration Rate in XCS (Solid line) and XCSI (Dashed line) in MP11
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Fig. 9. The proposed Exploration Rate in XCS (Solid line) and XCSI (Dashed line) in MP20
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Fig. 10. The proposed Exploration Rate in XCS (Solid line) and XCSI (Dashed line) in Woods2

According to these Figures, we can explain the superiority of XCSI. This superiority
is due to exploring more than XCS in the middle phase. In XCSI, this exploration
epochs give the internal Genetic Algorithm more power to escape from local optima,
better than XCS and less exploration at the beginning and final phase reduces needed
epochs to reach the optimal performance. It is notable that IEM has no ability to learn
from its environment and as mentioned before its rule base is set experimentally. It
may work better with the ability to learn its rule base.

9 Conclusion

As we described before, it seems that constant exploration rate is not suitable for XCS
and an adaptive one can improve XCS’s performance. To realize this idea, we
proposed an intelligent system called IEM. It is a fuzzy controller designed to propose
the exploration rate for XCS. IEM is added to XCS and the new system, called XCSI,
is applied to some benchmark problems. The obtained results demonstrate our
intuition about usefulness of adaptive exploration rate for XCS performance. The
main weakness of the proposed method is its static rule base. Another research is
ongoing to add the learning capability to IEM.
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Abstract. Aiming at clarifying the convergence or divergence condi-
tions for Learning Classifier System (LCS), this paper explores: (1) an
extreme condition where the reinforcement process of LCS diverges; and
(2) methods to avoid such divergence. Based on our previous work that
showed equivalence between LCS’s reinforcement process and Reinforce-
ment Learning (RL) with Function approximation (FA) method, we
present a counter example for LCS with the Q-bucket-brigade based
on the 11-state star problem, a counter example originally proposed to
show the divergence of Q-learning with linear FA. Furthermore, the em-
pirical results applying the counter example to LCS verified the results
predicted from the theory: (1) LCS with the Q-bucket-brigade diverged
under prediction problems, where the action selection policy was fixed;
and (2) such divergence was avoided by using the implicit-bucket-brigade
or applying residual gradient algorithm to the Q-bucket-brigade.

1 Introduction

Learning Classifier Systems (LCSs) [I] are rule-based adaptive systems intended
for a general framework to realize an intelligent behavior by combining two bi-
ologically inspired adaptive mechanisms — learning and evolution — with each
essentially connecting to the fields of Reinforcement Learning (RL) and Evolu-
tionary Computation (EC).

One of the main concern in LCS field has been generalization since XCS [2]
was introduced, which became the currently mainstream model and was analyzed
in theoretical aspect for its accuracy-based rule discovery process [34U56].

In such context, formal analysis of LCS’s reinforcement process, together with
generalization issue has become essential in this context. For a long time, the
relationship between LCSs and Reinforcement Learning [7] has been regarded as
one of the essential issue to be clarified. Comparison between the bucket-brigade
algorithms in LCS and the concept of Temporal Difference (TD) in RL were
carried out [8J9] due to the history of both sharing the concept of reinforcement.

X. Llora et al. (Eds.): IWLCS 2003-2005, LNAT 4399, pp. 128 2007.
© Springer-Verlag Berlin Heidelberg 2007
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However, when focusing on the generalization issue, few studies have dealt
with LCSs’ reinforcement process in company with the generalized representa-
tion of LCS’s rule condition to be rigidly compared with TD update of RL with
generalization.

Towards our goal to build the foundations of LCS seamlessly connected to the
basis of RL, this paper addresses the issue of the convergence proof for LCS’s
reinforcement process. We have approached to this issue by focusing on Func-
tion Approximation method, a common generalization technique in RIL, to be
compared with LCS’s reinforcement process with rule condition generalization.
In [I3I14], we revealed that the reinforcement process of ZCS[I5] with the Q-
bucket-brigade is equivalent with Q-learning with Function Approximation (FA)
method[I6] within the class of the linear approximation. Also, a disappointing re-
sults was derived that currently there exists no convergence proof for Q-learning
with linear FA, while some counter example exist that leads the learning to
diverge. This problem motivated us to propose ZCS with residual gradient al-
gorithm[I7], a RL technique that can introduce convergence to Q-learning with
linear FA[IS] .

In this paper, we proceed to further steps exploring: (1) an extreme condition
where the reinforcement process of LCS diverges; and (2) the methods to avoid
such divergence. For this objective, we present a counter example for LCS with
the Q-bucket-brigade based on the 11-state star problem, which is originally
proposed as the counter example for Q-learning with linear FA, and present an
empirical results by applying it to Reinforcement learning-based XCS (RXCS),
a LCS based on XCS but modified to be consistent with Q-learning with FA.

The rest of this paper is organized as follows. Section 2 introduces the current
state of the convergence proofs for RL methods. Section 3 introduces RXCS.
Section 5 proposes the 11-state star problem, the counter example for LCS and
Section 6 gives the experimental results of applying the 11-state star problem to
RXCS. Finally, Section 7 includes our discussions and conclusion.

2 State of Convergence Proofs for Reinforcement
Learning

In this section, we first explain the properties of RL methods identifying the
types of RL methods, which affects the availability of the convergence proofs.
And next, based on the difference between these properties, the current state of
the convergence proofs for RL methods is introduced.

! Issues relating LCS with Function approxmation method for RL has been attracting
increasing attention. For example, several studies are presented from performance
improvement aspect [I0] and from high representation capability aspect [ITII2].

2 The approach applying residual gradient algorithm to LCS was also presented in
[10], which contributed to further improvement of XCSG, a variant of XCS, to build
accurately estimated payoff landscapes, while the main concern is rather different
from ours, which examine closely a convergence or a divergence condition for LCS’s
reinforcement process.
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2.1 Properties of Reinforcement Learning

Prediction and control problems. RL has two aspects regarding its learn-
ing: (1) policy evaluation, which estimates the action values, which are of-
ten Q-values, for an arbitrary policy ﬂ'ﬁ; and (2) policy improvement, which
improves the current policy 7 to a better policy 7' referring to the cur-
rent action values. In prediction problems, the policy is fixed through the
learning and the action values for that policy is estimated. In control prob-
lems, policy evaluation and policy improvement are performed at the same
time.

On-policy and off-policy methods. On-policy methods, such as Sarsa, esti-
mate the action values of the policy which controls the actual action selec-
tion. On the other hand, off-policy methods, such as Q-learning estimate a
policy different from the policy controlling the actual action selection.

Classes of the approximated action value function. Severalrepresentations
for designing the generalized action value function have been proposed for
RL methods, such as state-aggregation, tile-coding, and highly sophisticated
representations such as RBF networks and Neural Networks are applicable.
These representations can be categorized into the following classes by their
mathematical properties: (I) tabular; (IT) state-aggregation; (III) linear ap-
proximation; and, (IV) non-linear approximation.

2.2 Convergence Proofs

Referring to RL literature, the current state of the convergence proofs for RL
methods under the prediction and the control problems can be described as
Figs. [ (a) and (b), respectively. In both the figures, the white regions, the light
gray regions and the thick gray regions each represent the current state: the con-
vergence proof is available, the convergence proof is not available but proved to
converge near optimal and oscillates, and the convergence proof is not available.
Classes (I), (II), and (III) denote different types of function approximations:
tabular, state-aggregation and linear approximation, respectively.

Under the prediction problems, on-policy methods are proved to converge
within the class of linear approximation including both the tabular and the state
aggregation, which is illustrated as the left column in Fig.[Il (a) [T920/2112212324].
However, in the case of off-policy methods, these proofs only covers the class of
state aggregation. Within the class of linear approximation in general, off-policy
methods are known to have the risk of divergence[17].

Under the control problems, the range where convergence proofs are available
shrinks to the class of state aggregation for both the case of on-policy methods
and off-policy methods, which is illustrated in Fig. [l (b) [25I26l27/28]. In the case
of the class of linear approximation, on-policy methods are proved to oscillate
near optimal[24] and off-policy methods have the risk of divergence[I7].

3 In RL literature, policy m.q is defined as a set of probability for all the possible
combinations of taking a possible action a at a possible state x.
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Fig. 1. The state of convergence proofs under prediction problems and control problems
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2.3 Relation Between LCSs’ Reinforcement Process

We presented in our previous work that the reinforcement process of ZCS with
the Q-bucket-brigade is equivalent with Q-learning with Function Approxima-
tion (FA) method within the class of the linear approximation. Thus, the cate-
gories for off-policy methods with the class (III), the linear approximation will
tell us the availability of the convergence proofs for ZCS’s reinforcement process.
From Figs. [0l (a) and (b), we can see that no convergence proof is available for
such under both the prediction and the control problem. But we can also say
that if we modify off-policy method to on-policy method within the class (III),
the convergence proof is available under prediction problems and the proof for
oscillating near the optimal is available under the control problems.

Another approach to avoid the risk of the divergence for the categories of
off-policy method within the FA class of (III) is to apply residual gradient al-
gorithm[I7] to the update equation of off-policy methods. In [I§], we applied
residual gradient algorithm to the Q-bucket-brigade of ZCS, which resulted in a
LCS with off-policy update but avoided its risk of the divergence.

Note that these discussions are not specific to ZCS but also applicable to any
LCSs having RL with FA equivalent reinforcement processes, including Rein-
forcement learning based XCS (RXCS) which is presented in the next section.

3 Reinforcement Learning Based XCS (RXCS)

Reinforcement learning based XCS (RXCS) is an LCS originally proposed in
[14] comparing XCS’s reinforcement process with Q-learning with linear FA. In
this study, RXCS is designed by modifying XCS to become equivalent with RL
with linear FA regarding its reinforcement process. Here we only describe the
modifications from the original XCS. See [29] for the entire algorithm of XCS.

3.1 Payoff Definition
The payoff definition of RXCS is defined as:

P(a;) = ZClkE[M]lai Pr X numy N
Z ZCZ’CE[M”ai numg

where the fitness weighted average of classifier predictions in the XCS’s original
payoff definition is modified to the numerosity weighted average of classifier
predictions.

3.2 Update Process

The update equation of the classifier prediction is defined as:
num;

pJ<_pJ+ﬁ(P_P71)Zl (A ]numkv
clpy€|lA_1
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where P_; is a numerosity-weighted prediction for the classifiers included in the
previous action set [A_;] defined as:

chke[A,l] Dr X numy

P,=
chke[A,l] nunm

3)

Q-Bucket-Brigade and Implicit-Bucket-Brigade. In original XCS, the tar-
get value P for the update in Equation 2 is defined:

P — r+ymax P(a), (4)

which is defined as a sum of the current reward and the discounted payoff value
for the current greedy action a* = arg max, P(a). This type of update, namely,
the Q-bucket-brigade is originally introduced for ZCS in [15] with another al-
ternative update named the implicit-bucket-brigade, which can be described by
modifying Equation M as:

P —r+~P(a), (5)

where the max operator is removed from the update equation for the Q-bucket-
brigade.

Residual-Bucket-Brigade. Following the same process that we applied resid-
ual gradient algorithm to ZCS in [I8], RXCS with residual gradient algorithm
can be obtained. This is simply realized by adding the update process for the
classifiers in the greedy action set [M]|,+ defined as:

pw—pj—vﬂ(P—Pq)zl g T
clre|A—1

(6)
which works complementary with the ordinary update process for classifiers in
the previous action set [A_;] defined as Equation [6l Here, we name this update
process, the residual-bucket-brigade for convenience.

3.3 Convergence Proofs

As RXCS is designed to be equivalent with RL with linear FA, the discussion in
is also applicable to RXCS, which means that: (i) RXCS with the Q-bucket-
brigade is within the category of off-policy method within the FA class of (III)
the linear approximation, which might have the risk of the divergence of the
learning; and (ii) such risk can be avoided in RXCS with the implicit-bucket-
brigade or the residual-bucket-brigade.

4 Counter Example for Off-Policy Update

In this section, a counter example for RXCS with the Q-bucket-brigade is pro-
posed, which is based on the 11-state star problem originally presented in [30].
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Fig. 2. The state transition diagram for the 11-state star problem, which is originally
proposed by Baird as a counterexample for Q-learning with linear FA

4.1 The 11-State Star Problem

The 11-state star problem is originally proposed by Baird as a counter example
for Q-learning with linear FA, whose state transitions are described as Fig.[21 The
circles in the figure denotes the states {X1,...,X11}. Every transition receives
zero reward, and each state has two actions, the action Al represented by a solid
line, and the other action A2 represented by a dotted line. In all states, the action
A1 invoke the transition to state X11. And the action A2 invoke the transition
to one of the randomly chosen states within X1 through X10 except for the case
when the current state is X11, where the transition follows the same rule with
probability 9/10 but otherwise transits to the terminal state with probability
1/10. The discount factor v is set to 0.9.

The approximated action value function is designed as described in Table [I]
where the value of each state is given by the single approximation parame-
ter or the linear combination of two approximation parameters. The function-
approximation system is simply a lookup table, except for one additional
approximation parameter 6(0) giving generalization. Note that the coefficient
of the parameter 0(0) in the action value for (X11,A1) is twice as large as that
of other action values for A1l. This difference in the coefficient regarding the
center state X11 is known to cause the monotonic increase of the value of the
approximation parameter and thus derives the divergence of the learning.
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Table 1. Action value function for the 11-state star problem

State Action values for A1l Action values for A2
X1 0(0) +26(1) 0(12)
X2 0(0) +26(2) 0(13)
X3 0(0) + 20(3) 0(14)
X4 0(0) +260(4) 0(15)
X5 0(0) + 26(5) 0(16)
X6 0(0) + 20(6) 0(17)
X7 0(0) + 20(7) 0(18)
X8 0(0) + 26(8) 0(19)
X9 0(0) + 260(9) 0(20)
X10 6(0) + 26(10) 0(21)
X11 20(0) + 6(11) 0(22)

4.2 Representation for LCS

To apply the 11-state star problem to LCS, the following steps are required: (1)
represent the states and the actions using LCS’s representation; and (2) represent
the approximated action value function as a classifier population. Here, we adopt
the ternary representation, the most common representation for LCS.

For the former step, a simple conversion rules are designed that convert: (a) the
states {X1,...,X11} into a corresponding 4-bits binary strings {0000, ...,1011};
and (b) the actions A1 and A2 into single bits 0 and 1, respectively.

For the latter step, we propose a classifier population design that represents
the approximated action value function for the 11-state star problem. Table
shows how the population is composed. For each state-action pair, there exists
a corresponding classifier that identically matches that state-action pair. The
classifier 0 is the only exception that matches with any states and having the
action part of 0, that is, the action A1. In the case of RXCS, this composition
of the classifier population represents the approximated action value function
described as Table Bl From the table, we can see that the essential property of
the 11-state problem is successfully expressed, where the coefficient of pg, the
prediction of the classifier 0 in the action value for (X11, A1) is twice as large as
that of other action values for A1. This is due to the payoff definition of RXCS,
where the predictions of classifiers in the action set is weighted by the value of
each classifier’s numerosity and averaged.

5 Simulation Experiments

In this section, we apply the 11-state star problem to RXCS with the Q-bucket-
brigade, the implicit-bucket-brigade and the residual-bucket-brigade. These three
cases are tested for the condition representing a prediction problem with a fixed
and a decaying learning rate, whose detail is explained as follows:
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Table 2. The design of classifier population for representing the 11-state star problem

ID Matching states Action Numerosity condition; : action;

0 {X1,X2,...,X11} At 2 Ht 2 0
1 {x1} Al 4 0001 : 0
2 {x2} Al 4 0010 : 0
3 {x3} Al 4 0011 : 0
4 {xa} Al 4 0100 : 0
5 {x5} At 4 0101 : 0
6 {x6} Al 4 0110 : 0
7 {x7} At 4 0111 : 0
8 {x8} At 4 1000 : 0
9 {xo} Al 4 1001 : 0
10 {XlO} Al 4 1010 : O
11 {Xll} Al 1 1011 : O
12 {x1} A2 1 0001 : 1
13 {x2} A2 1 0010 : 1
14 {x3} A2 1 0011 : 1
15 {x4} A2 1 0100 : 1
16 {x5} A2 1 0101 : 1
17 {x6} A2 1 0110 : 1
18 {x7} A2 1 0111 : 1
19 {x8} A2 1 1000 : 1
20 {x9} A2 1 1001 : 1
21 {XlO} A2 1 1010 : 1
22 {Xll} A2 1 1011 : 1
Table 3. Action value function

State Action values for A1l Action values for A2

X1 (2po + 4p1)/6 P12

X2 (2po +4p2)/6 P13

X3 (2po + 4p3)/6 P14

X4 (2po + 4p4) /6 P15

X5 (2po + 4ps) /6 P16

X6 (2po + 4pe) /6 P17

X7 (2po + 4p7)/6 Ppis

X8 (2po + 4ps) /6 P19

X9 (2po +4p9) /6 P20

X10 (2po + 4p10)/6 P21

X11 (2po +p11)/3 P22

Action selection policy: The action selection policy is fixed to satisfy the
condition for prediction problems. The probability of taking the actions A1l
and A2 are fixed to 1/10 and 9/10, respectively.

Fixed and decaying learning rate: In both the cases of adopting the fixed
and the decaying learning rate, the learning rate ( is initially set to 0.01.
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In the case of adopting the decaying learning rate, § is decreased by the
decaying coefficient of 1/n, where n is initially set to 1 but incremented by
1 in every 1000 stepsﬂ.

The common conditions used for the experiments are as follows. The discount
factor v is set to 0.9. RXCS is suppressed with its rule discovery process of GA
invocation, covering, and deletion. In all cases, ten simulations are performed
with each, including a total of 100,000 episodes.

5.1 Empirical Results

Figures [l @ and [l presents the results for RXCS with the Q-bucket-brigade,
the implicit-bucket-brigade and the residual-bucket-brigade, respectively. In all
the figures, the graphs on the upper-hand side, labeled (a) represents the cases
for the fixed learning rate and the graphs on the lower-hand side, labeled (b)
represents the cases for the decaying learning rate. In all the graphs, the x-axis,
the y-axis and the z-axis measures the number of episodes, the identification
number of the classifier and the value of the corresponding classifier prediction.

The Q-bucket-brigade with both the fixed and the decaying learning rate
showed the monotonical increase of the classifier predictions as shown in
Figures B (a) and (b), while the the implicit-bucket-brigade and the residual-
bucket-brigade converged to the correct value of 0 in both the cases of the fixed
and the decaying learning rate.

6 Discussion and Conclusion

So far, the convergence regarding the reinforcement process of LCS is discussed
from both the aspects of theory and practice. From the theoretical aspect, we
referred to the convergence proofs of RL and clarified that: (1) RXCS with the
Q-bucket-brigade is within the category of off-policy method within the FA class
of (III) the linear approximation, which might have the risk of the divergence
of the learning; and (2) such risk can be avoided in RXCS with the implicit-
bucket-brigade or the residual-bucket-brigade. For an experimental aspect, we
presented LCS version of the 11-state star problem, the counter example for off-
policy RL methods with linear FA. The empirical results applying this counter
example to RXCS verified that the properties of each bucket-brigade algorithms
predicted from the theory applies to actual learning dynamics as follows: (1)
RXCS with the Q-bucket-brigade diverged under prediction problems, where
the action selection policy was fixed; and (2) such divergence was avoided by
using the implicit-bucket-brigade or applying residual gradient algorithm to the
Q-bucket-brigade.

4 This decaying condition satisfies the general convergence condition required for 5,
the learning rate at the total steps ¢t within an episode as follows: ), 3; — oo,

Zt Btz — 0.
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Fig. 3. The dynamics of the prediction value for each classifier in the classifier popu-
lation of RXCS with the Q-bucket-brigade under prediction problems
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The conditions for LCSs presented here are quite strict from practical appli-
cation point of view. However, our approach keeps a rigid consistency between
LCS’s reinforcement process and RL’s theory, which showed that one of the
essence from RL’s theory, convergence proofs for learning, can be applied to
LCS and successful for predicting the properties of learning dynamics such as
the divergence of Q-bucket-brigade under a specifically designed ill conditions.

Here, a natural question occurs whether such divergence can be observed for
LCS under normal conditions. We attempt an additional experiments applying
control problems to RXCS by replacing the fixed action policy with e-greedy
action selection with the exploration rate epsilon set to 0.1. In all the cases for
implicit, Q, and residual bucket-brigades, the learning converged and made no
difference between the three algorithms.

In RL fields, at the moment, the divergence or the convergence under such
condition is still a difficult issue, which can be categorized as a class of control
problem with asynchronous update applying linear approximations, even for the
most simplest case of using gradient descent based update ﬁ, and much strong
analysis that can apply to this domain is awaited.

The other question is supposed regarding the lack of evolutionary process in
LCS, the rule discovery process, throughout our analysis. As the original theories
for RL methods referred do not suppose any dynamical change in the design of
approximated action value function, any genetic operation to modify the classifier
population in LCS breaks the consistency with RL with function approximation.
Although, at least, the results presented in this paper applies to a situation for
an LCS such as the last phase of the learning where the rule discovery is already
succeeded and suppressed for the reinforcement process to stabilize.

In addition, from XCS’s accuracy-based rule discovery point of view, it is
possible to expect that the divergence of an action value due to the corresponding
overestimated or underestimated classifier predictions can be eliminated under
the selection pressure towards accuracy. Such phenomenon might put light on
the accuracy-based rule discovery not only from the generalization issue but also
from the divergence avoiding issue.

Towards the final goal of developing a unified theory of LCS, the influence of evo-
lutionary process in detail must be interpreted from RL perspective, which might
be able to integrate analyses for reinforcement and evolutionary processes of LCSs.
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Abstract. After two papers comparing ATNoSFERES with XCSM, a
Learning Classifier System with internal states, this paper is devoted to a
comparison between ATNoSFERES and ACS (an Anticipatory Learning
Classifier System). As previously, we focus on the way perceptual aliaz-
ing problems encountered in non-Markov environments are solved with
both kinds of systems. We shortly present ATNoSFERES, a framework
based on an indirect encoding Genetic Algorithm which builds finite-
state automata controllers, and we compare it with ACS through two
benchmark experiments. The comparison shows that the difference in
performance between both system depends on the environment. This
raises a discussion of the adequacy of both adaptive mechanisms to par-
ticular subclasses of non-Markov problems. Furthermore, since ACS con-
verges much faster than ATNoSFERES, we discuss the need to introduce
learning capabilities in our model. As a conclusion, we advocate for the
need of more experimental comparisons between different systems in the
Learning Classifier System community.

Keywords: Evolutionary Algorithms, Perceptual Aliazing, Augmented
Transition Networks.

1 Introduction

Most Learning Classifier Systems (LCS) [I] are used to control agents involved
in a sensori-motor loop with their environment. Such agents perceive situations
through their sensors as vectors of several attributes, each attribute representing
a perceived feature of the environment. As pointed out by Lanzi [2], LCS are
adaptive architectures based on Reinforcement Learning (RL) techniques [3], but
endowed with generalization capabilities. Thanks to a LCS, an agent can learn
the optimal policy — i.e. which action to perform in every situation, in order

X. Llora et al. (Eds.): IWLCS 2003-2005, LNAT 4399, pp. 144 2007.
© Springer-Verlag Berlin Heidelberg 2007
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to maximize a reward obtained in the environment. The policy is defined by a
set of rules — or classifiers — specifying an action according to some conditions
concerning the perceived situation.

Standard RL algorithms are generally used in situations where the state of the
agent-environment interaction is always known without ambiguity. But in real
world environments, it often happens that agents perceive the same situation in
several different states, eventually requiring different optimal actions, giving rise
to the so called “perceptual aliazing” problem. In such a case, the environment
is said non-Markov, and agents cannot perform optimally if their decision at a
given time step only depends on their perceptions at the same time step.

There are several attempts to apply LCSs to non-Markov problems, relying
on different approaches to the problem. For instance, in XCSM [4] added explicit
internal states to the classical (condition, action) pair of the classifiers used in
XCS [5]. From XCS again, [6] proposed in CXCS a rule-chaining mechanism able
to build a bridge over ambiguous situations. ACS, an Anticipatory LCS (ALCS),
uses a similar rule-chaining mechanism to solve non-Markov problems.

In two recent papers [1I8], we have presented a new framework, “ATNoS-
FERES” [9], also used to automatically design the behavior of agents and able
to cope with non-Markov environments. ATNoSFERES relies on an evolution-
ary approach instead of classical reinforcement learning techniques, but we have
shown in [7] that the resulting graph-based representation was semantically very
similar to the LCS representation, giving rise to a detailed comparison between
both classes of systems. In particular, we have shown that two important advan-
tages of the graph-based representation were its minimality and its readability.
As a result, the structure of the controller gives a lot of information about the
structure of the problem faced by the system. In these papers, ATNoSFERES
was compared with XCSM on the well-known Mazel0 environment and then on
a new environment called 12-Candlesticks.

In the present paper, we provide a new comparison between ATNoSFERES
and another LCS, ACS. We rely on a study from [I0] to compare the perfor-
mance of both systems on two distinct environments. Our comparison reveals
new features of the interaction of LCSs with non-Markov problems.

In the next section, we summarize the features and properties of the ATNoS-
FERES model, and we highlight the formal similarity between ATNoSFERES
and LCS representations. In section Bl we briefly present the different approaches
used in LCSs to cope with non-Markov problems. Then we actually compare
ATNoSFERES with ACS in section @l This new study reveals that some prob-
lems found difficult with ACS appear easier with ATNoSFERES and vice versa.
We discuss this point in section Bl Finally, we draw lessons from the fact that
ATNoSFERES converges slower than ACS to conclude that we should include
on-line learning mechanisms in our model, and we highlight the need of more
experimental comparisons between classes of Learning Classifier Systems now
that the field is getting more mature.
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2 The ATNoSFERES Model and Learning Classifier
Systems

2.1 Graph-Based Expression of Behaviors

The architecture provided by the ATNoSFERES model [9/T1] involves an ATN]
graph [I2] which is basically an oriented, labeled graph with a Start (or initial)
node and an End (or final) node (see figure [7). Nodes represent states while
edges represent transitions of an automaton.

Like LCSs, ATNoSFERES binds conditions expressed as a set of attributes
to actions, and is endowed with the ability to generalize conditions by ignoring
some attributes. But in ATNoSFERES, the conditions and actions are used in
a graph structure that provides internal states.

The graph describing the behaviors is built from a genotype by adding nodes
and edges to a basic structure containing only the Start and End nodes. The
graph-building process was described in [7)8] and will not be detailed here again.
For the self-consistency of the paper, we just have to mention that the process
is separated into two steps:

1. The bitstring (genotype) is translated into a sequence of tokens.
2. The tokens are interpreted as instructions of a robust programming language,
dedicated to graph building.

Since any sequence of tokens is meaningful, the graph-building language is
highly robust to any variations affecting the genotype, thus there is no specific
syntactical nor semantical constraint on the genetic operators. In addition, the
sequence of tokens is to some extent order-independent and a given graph can be
produced from very different genotypes, which guarantees a degeneracy property.

2.2 ATNoSFERES Model and Learning Classifier Systems

As explained in more details in [7] and illustrated in figure [[ an ATN such as
those evolved by ATNoSFERES can be translated into a list of classifiers. The
nodes of the ATN play the role of internal states and endow ATNoSFERES
with the ability to deal with perceptual aliazing. The edges of the ATN are
characterized by several informations which can also be represented in classifiers:
the source and destination nodes of the edge correspond to internal states; the
conditions associated to the edges correspond to the conditions of the classifiers
and the actions associated to the edges correspond to the actions of the classifiers.

3 Background: LCSs and Non-markov Problems

Dealing with simple Condition-Action classifiers does not endow an agent with
the ability to behave optimally in perceptually aliazed problems. In such prob-
lems, it may happen that the current perception does not provide enough in-
formation to always choose the optimal action: as soon as the agent perceives

L ATN stands for “Augmented Transition Networks”.
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Fig. 1. The sensori-motor loop with ATNoSFERES and a standard LCS. The agent
perceives the presence/absence (resp. 1/0) of blocks in each of the eight surrounding
cells and must decide towards which of the eight adjacent cells it should move. In AT-
NoSFERES, from its current location, the agent perceives [E —NE N —NW —W —SW S
—SE] (token E is true when the east cell is empty). From the current state (node) of its
graph, two edges (in bold) are eligible, since the condition parts of their label match
the perceptions. One is selected either deterministically or not, then its action part
(move east) is performed and the current state is updated. In a LCS case, the agent
perceives [01010111] (starting north and rotating clockwise). Within the list of classi-
fiers characterizing it, the LCS first selects those matching the current situation. Then,
it selects one of the matching classifiers and the corresponding action is performed.
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the same situation in different states, it will choose the same action even if this
action is inappropriate in some of these states.

For such problems; it is necessary to provide the system with more than just
current perceptions. In the general reinforcement learning framework, several
kinds of solutions have been tested.

— The first one consists in adding explicit internal states to the perceptions
involved in the decisions of the system. This approach was used by Holland
in his early LCSs thanks to an internal message list [I3]. But both [14]
and [I5] reported unsatisfactory performance of Holland’s system on non-
Markov problems. In the context of more recent LCS research, the explicit
internal state solution was adopted by [16] in ZCSM and by [17] in XCSM
and XCSMH.

— The second one, memory window management, is a special case of explicit
internal state management where the internal state consists in an immediate
memory of the past of length k. Some systems use a fixed size window (see
[18] for a review) while others use a variable size window (e.g. [19]). The next
solution, rule-chaining, can be seen as an alternative view of the variable size
window mechanism.

— The third one consists in chaining the decisions, making one decision depend
on the decisions previously taken, so as to use a memory of what was done
previously to disambiguate the current situation. Among LCSs, this solution
was used in ZCCS [20], CXCS [6] and ACS [21].

— The fourth one consists in splitting a non-Markov problem into several
Markov problems, making sure that aliased states are scattered among dif-
ferent sub-problems. This solution has been investigated first by [22], and
then improved by [23]. To our knowledge, no LCS actually uses this solution,
despite its very interesting properties.

— The last solution consists in building a finite state automaton corresponding
to the structure of the problem, as [24] or [25] do, in a context where the
structure of the problem is known in advance. This is the solution chosen
in ATNoSFERES, using a Pittsburg style evolutionary algorithm, but in a
context where the agents do not know anything about the structure of the
problem before starting.

4 Experimental Comparison with ACS

4.1 ACS

In previous papers, we have compared ATNoSFERES with XCSM on two non-
Markov problems. In order to go deeper into the comparison between the abilities
of ATNoSFERES and LCSs to cope with the perceptual aliazing problem, we
present in this section a comparison with another system, ACS.

The Anticipatory Classifier System has been developed by Stolzmann [26]. Tt
differs from classical Learning Classifier Systems by adding to the perception-
action rules an “effect part” that represents a perceptual anticipation of the
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consequences of the action upon the environment. ACS relies on an Anticipatory
Learning Process (ALP) [26] and has been successfully applied to both Markov
and non-Markov environments.

The main feature of ACS with respect to XCS-like LCSs relies in the fact
that their use of anticipation make it possible to design some efficient heuris-
tics that are believed to make the system converge faster, though no explicit
performance comparison has been published yet. Gérard and Sigaud have pro-
posed two ALCSs similar to ACS, namely YACS [27] and MACS [2§], that have
been shown to be faster than ACS, but are limited to Markov and deterministic
environments.

In ACS, in order to deal with non-Markov environments, it was chosen to
use a rule-chaining mechanism like in CXCS [6]. In that case, the effect part
of a classifier consisting in a behavioral sequence is intended to represent the
perceptual consequence of the sequence of actions. As it is the case with CXCS,
this feature makes ACS able to deal efficiently with non-Markov environments
[21].

In order to build such a behavioral sequence, a new parameter was added to
ACS, namely “BS,a:” . BSmae represents the maximal length of the behavioral
sequences that ACS may build. Its value must be decided before starting any
run.

4.2 Experimental Setup

We tried to reproduce an experimental setup as close as possible to that used in
[4] with the Maze10 environment and ACS in E1 and E2 environments, taking
into account the specificities of our model. This setup has been applied to all
the experiments presented in this paper.

Perception/Action abilities and Tokens. The agents used for the experiments
are able to perceive the presence/absence of walls or the presence of food in the
eight adjacent cells of the grid, these three perceptions being mutually exclusive.
They can move in adjacent cells (the move will be effective if the cell is empty
or contains food). Thus, the genetic code includes 24 condition tokens, 8 action
tokens, 7 stack manipulation tokens and 4 node creation/connection tokens. We
used 7 bits encoding to define the tokens (27 = 128 tokens, which means that
some tokens are encoded twice or more).

In [8], we demonstrated that the performances of ATNoSFERES could be
increased by using a new token, selfConnect, endowing our model with the ability
to build easily self-connecting edges from a node to itself. This new token has
been used in all the experiments presented below.

Course of Experiments. Each experiment involves the following steps:

1. Initialize the population with N = 300 agents with random bitstrings.
2. For each generation, build the graph of each agent and evaluate it in the
environment.
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3. Select the 20 % best individuals of the population and produce new ones
by crossing over the parents. The system performs probabilistic mutations
(with a 1% rate) and insertions or deletions of codons (with a 0.5% rate) on
the bitstring of the offspring.

4. Tterate the process in 2 with the new generation.

Fitness function. Each individual is evaluated by putting it into the environ-
ment, starting on a blank cell in the grid, and letting it try to find the food
within a limited amount of time (the limit is 20 time steps in all experiments
described below). The agent can perceive the food, and it can perform only one
action per time step; when this action is incompatible with the environment
(e.g. go west when the west cell contains an obstacle), it is simply discarded (the
agent loses one time step and stays on the same cell).

The fitness of the agent for each run is the remaining time if the food has
been found within the time limit. Thus, the selection pressure encourages short
paths to food. For one generation, each agent is evaluated one time starting
on each empty cell, then its total fitness for this generation is the sum of the
fitnesses computed for each run. Each agent is reevaluated at each generation
in order to average its fitness over generations. This is necessary because of the
non-deterministic aspects of the automata.

Indeed, there are several potential sources of non-determinism in our au-
tomata. The first one is due to the fact that several arcs might be eligible from
the current node in the current situation. In that case, we can either choose
one arc randomly, giving rise to a non-deterministic behavior, or assign fixed
priorities (by order of creation, for instance) to arcs, so as to keep the automata
deterministic. In all the experiments presented here, we have chosen the deter-
ministic stance, after having checked that we obtain better performance with
such a choice.

But there are still two sources of non-determinism in our automata. In a
situation where no arc is eligible, or when an edge to cross does not carry any
action label, one action is chosen randomly. Thus an automaton will be fully
deterministic only in the case where one arc can be elected in any encountered
situation, and if all such arcs bear an action to perform. This explains the need
to average the performance over several runs.

4.3 Experimental Environments

The experiments described below take place in two non-Markov environments
(E1 and E2, see figure [L3)) that have been used in [I0] to study how ACS deals
with non-Markov problems. E1 presents 20 aliazed situations (among the 44
free cells) which are perceived as 9 distinct situations. E2 presents 36 aliazed
situations (among 48 free cells), which are perceived as 5 distinct situations.

On figure3], we show the number of steps an optimal agent among several may
need to reach food from each starting cell, given that its perception is limited
(an omniscient agent could perform even better).
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(a) E1 environment (b) E2 environment

Fig. 2. E1 and E2 environments. F (food) is the goal. Other marked cells represent
aliazed situations (identical letters imply the same perception).

4.4 Comparison with ACS

Before comparing, we have to emphasize a major difference between the way
ACS and ATNoSFERES deal with these environments. This difference regards
the implicit selection of possible movements. In ACS experiments, as they are
described in [I0, § 4.1 and 4.2], the only movements tested in each free position
are transitions towards surrounding free cells (for example, if the cell to the
north contains an obstacle, the move to the north is not considered as a possible
move, thus it is not tested). This constitutes a kind of prior domain-dependent

(a) E1 environment (b) E2 environment

Fig. 3. One optimal policy for E1 (resp. E2), represented by the number of steps needed
to reach food from each Start cell. Other equivalent policies can be obtained at least
by applying all possible rotations and symmetries to all the numbers given. In E1, the
optimal average number of steps to food is 2.8181 steps. In E2, it is 2.9792 steps.
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knowledge about consistent perceptions-actions bindings, which significantly bi-
ases the learning process by reducing the number of classifiers to test. In [29], we
have shown that prohibiting the use of this bias can severely impair some learn-
ing algorithms. For instance, McCallum’s U-Tree algorithm [I9] which works
well in non-Markov mazes such as those studied here if the agent is prevented
from bumping into walls, might grow an infinitely deep tree if it keeps bumping
into the same wall in an aliased situation.

In ATNoSFERES, on the contrary, any move token can be used as an action
label. When the corresponding movement is impossible, the agent stays where
it is and loses a time step (it is penalized only in an indirect way, through the
fitness function).

The experiments reported here were carried out on various initial genotype
sizes. In E1, the genotypes that have been tested are between 40 and 150 tokens
long (with step 10), as in E2. Using these different sizes was necessary because
we do not know in advance the minimum size required to produce an efficient
automaton.

The original population genotype sizes may drift during an evolution, since
some genetic operators insert or delete parts of the genotype randomly. Each
experiment is stopped after 10,000 generations, and 10 experiments have been
performed in each experimental situation.

4.5 Results

Figure Ml gives the respective fitness values obtained by the best automata in
E1l and E2 experiments, depending on initial lengths of the genotypes. Each
cross in the figures represent the performance of the best automaton obtained
after 10,000 generations in one run. Thus there are ten crosses for each initial
length. From figuredl (a), it can be seen that in E1, ATNoSFERES easily reaches
the performance of ACS in the case where BS,,,, = 1, but hardly reaches

obtima\‘ obtima\‘
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initial length (number of codons) initial length (number of codons)
(a) E1 environment (b) E2 environment

Fig. 4. Minimal average time to reach food in E1 (resp. E2) experiments with “deter-
ministic” automata as a function of the initial length of the bitstring
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the performance of ACS with BS,,q. = 2, which is very close to the optimal
performance.

In E2, the performance obtained with ATNoSFERES is significantly better
than the one obtained with ACS with BS,.. = 2 and BSpq: = 3. Indeed,
ATNoSFERES is about twice closer to the optimum performance.

In order to check whether ATNoSFERES could reach an even higher perfor-
mance in E1, we took the best run on figure @l (a) and ran it up to 100,000
generations. The best performance was slightly improved again, reaching 3.2 (it
was 3.3 after 10,000 runs).

" optimal’ " optimal’
best best

average
16 F ACS EBSmax:I
ACS

average
) 1 16 L ACS (BSmax=2 and BSmax=3)
(BSmax=2) ——-~ d

fitness.

2 L L L L L L L L L 2 L L L L L L L L L
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
generation generation

(a) E1 environment (b) E2 environment

Fig.5. Best fitness evolution in E1 (resp. E2) experiment as a function of genera-
tions; the shape and smoothness of the curve are representative for all E1 (resp. E2)
evolutions. The thickness of the curves (particularly manifest in E1) is due to the inde-
terministic behavior of agents. In E2, it seems that the pressure towards deterministic
behavior is stronger.

Figure [0l gives the evolution of the best fitnesses, respectively in E1 and
E2 environments. It appears clearly that gradual improvements occur in both
environments.

4.6 Representative Solutions

E1 environment. We present on figure [§] the best automaton obtained in E1
experiments after 100,000 generations, on figure [ the best automaton obtained
after 10,000 generations, and on figure [l a more representative automaton ob-
tained after 10,000 generations. From these figures it is clear that the most
common solutions found are nearly reactive. The graph of the more common au-
tomata contains a single node (in addition to the Start and End node that always
exist in ATNoSFERES graphs), which means that a reactive behavior already
performs well in E1. The results show that this kind of behavior is produced
in most cases and gets high fitness values, more easily than solutions involving
internal states.
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Fig. 6. A representative automaton found with ATNoSFERES in E1 experiment (after
10,000 generations). Its average number of steps to food is about 3.8.

Fig. 7. The best automaton found with ATNoSFERES in E1 experiment (after 10,000
generations). Its average number of steps to food is about 3.3.

However, the automaton depicted on figure [ shows that adding one node can
already improve significantly the global performance.

The main difference between the best automaton obtained after 10,000 gener-
ations and the one obtained after 100,000 generations is that the latter contains
several additional arcs. In particular, the agent will more often take into account
the presence of food (label f on the edges) in its immediate surrounding to reach
it immediately.

Indeed, we can see on figure [ (a) that in several situations where the food
is visible the agent needs more than one step to reach it, though a more effi-
cient behavior is obvious. ATNoSFERES has a lot of difficulties in finding these
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Fig. 8. The best automaton found with ATNoSFERES in E1 experiment (after 100,000
generations). Its average number of steps to food is about 3.2.

(a) E1 environment (b) E2 environment

Fig. 9. Best policy found with ATNoSFERES in E1 (resp. E2) in 10,000 generations,
represented by the number of steps needed to reach food from each Start cell (see
figure Bl for optimal policy)

reactive rules that a reinforcement learning algorithm combining exploration and
exploitation would find immediately.

However, even if these additional arcs could improve the performance a bit
more, this would not be enough to reach the true optimal performance. A care-
fully hand-crafted optimal automaton needs much more internal states than the
ones shown in this section.



156 S. Landau et al.

Fig. 10. The best automaton found with ATNoSFERES in E2 experiment. Its average
number of steps to food is about 3.8.

E2 environment. Figure[[Ogives the best automaton found in E2 environment.
From this figure it is immediately clear that a good automaton in E2 needs more
nodes than it is the case in E1. This seems to imply that reactive and nearly
reactive behaviors perform much worse in E2 than in E1. This fact, in addition
to the fact that ATNoSFERES clearly outperforms ACS on E2 while it is less
the case in E1, will be at the heart of the discussion that follows.

5 Discussion

The experimental study presented in the previous section reveals that different
subclasses of non-Markov problems should be distinguished more accurately.
Indeed, some problems, like E1, are actually non-Markov, but in such a way
that reactive behaviors can still perform well on such problems.

In E1, our study has shown that through an evolutionary process, it is easy
to gradually grow a set of ad hoc rules (which are to some extent independent
from each other), even more if the agent is tested from each cell: thus, an agent
can start with a few rules that are efficient for a few cells, and evolve from
one generation to another rules that are useful for additional cells. From such
a reactive solution, built by the accumulation of small changes, it is unlikely to
develop internal states to deal with a few particular cases, since it requires at the
same time additional nodes, linked with consistent edges, conditions and actions.
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We meet again the structural cost mentioned in [7]: “simple”, incremental good
solutions are preferred to structurally complex optima.

On the contrary, other problems, like E2, should be said “highly non-Markov”,
since reactive policies perform very poorly on such problems. In E2, there is no
hope that a reactive behavior could lead to the food in a reasonable amount of
time, due to the location and the nature of aliazed situations.

Our comparative study has revealed that ACS performs very well on the
first subclass of problems and more poorly on the second, while ATNoSFERES
performs consistently on both subclasses.

Now we should ask ourselves why this is so. On first thoughts, one might
consider that the maximal length of sequences in ACS plays a major role in the
phenomenon. One could expect that setting BS,, 4, to more than 3 in E2 should
fix the problem. A closer examination, however, reveals that this is not so.

In [I0], the authors show that setting BSy,qz to 3 is enough to let ACS build a
completely reliable model of E2, under the form of (situation, action, next
situation) classifiers. This explains why they did not try BS,,q. = 4 or more.

But the performance concern and the model reliability concern are not strictly
correlated. Regarding the convergence to stable reward performance, [10] em-
phasize that increasing the maximum length of the behavioral sequence “does
not improve the ‘steps to food’ performances”, i.e. a “good” behavioral solu-
tion can be exploited without having built an exhaustive representation of the
environment.

One reason explaining that building longer action sequences would not im-
prove the performance comes from the fact that these sequences specify a blind
series of actions to perform without interruption and without checking between
its beginning and its end the situation perceived in the environment by the agent.
These sequences can improve the performance of the agent when they let it jump
over ambiguous situations, but they have two main drawbacks:

— first, they do not help the agent when it is starting from an ambiguous
situation, since at the first time step the agent benefits from no memory to
help disambiguating its situation;

— second, once a sequence is elected, the agent will at least perform the number
of actions specified in the sequence.

Since the number of steps to the food given by the optimal policy in E1 and E2 is
generally less than 4, it is very unlikely that letting the agent perform sequences
of 4 actions or more will help reaching the optimal performance.

Even worse, if an agent starts from an ambiguous situation and then follows
a long sequence of actions, this sequence will delay the time at which the agent
can discover its actual location and then follow an optimal path to the food.

Indeed, our experience with ATNoSFERES in small environments like E1
and E2 is that the main issue for the agent consists in discovering as fast as
possible where it is from an initially ambiguous situation and then follow the
shortest path to the goal. Maybe the situation about the use of sequences would
be different in much bigger environments, but we will not treat this issue here.
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Finally, we must compare the number of elementary runs necessary to reach
a good performance with ACS and ATNoSFERES. In the experiments reported
in [I0], ACS needs about 60,000 steps (resp. 120,000 steps) to build an exhaus-
tive internal model of E1 (resp. E2) given a convenient length of the behavioral
sequence used as action part in ACS. With ATNoSFERES, about 1500 gener-
ations of 300 individuals are necessary to obtain a performance similar to that
of ACS with BSy,0: = 1 in E1 and BS,,4, = 2 or 3 in E2, which makes about
450,000 runs of 6 to 15 steps on average. Thus it is clear that ATNoSFERES
still needs several orders of magnitude more steps than ACS to converge.

This can be easily explained by the fact that ATNoSFERES evolves automata
thanks to a blind GA process while ACS relies on a reinforcement learning algo-
rithm which extracts information about the environment from its experiences.
From this comparison, it is clear that an area for a major improvement of AT-
NoSFERES consists in endowing it with reinforcement learning capabilities. This
is our immediate agenda for future work.

A source of inspiration in that direction comes from the SAMUEL system [30].
Like ATNoSFERES, SAMUEL is a Pittsburg style system based on a single chro-
mosome GA, but it also includes lamarckian operators that endow it with basic
learning capabilities. As a result, as claimed by the author, “Samuel represents
an integration of the major genetic approaches to machine learning, the Michigan
approach and the Pittsburg approach”. Most of the operators used in SAMUEL
can be transposed in ATNoSFERES, the main difference being that ATNoS-
FERES does not provide a high level symbolic representation and that SAMUEL
does not include any mechanism to solve perceptual aliasing problems.

6 Conclusion and Future Work

In this paper, we have applied ATNoSFERES to non-Markov environments that
have been investigated with ACS. Our experiments confirm that ATNoSFERES
encounters more difficulties in producing an optimal behavior in some environ-
ments where reactive solutions are highly valuable than in environments that
are more difficult for ACS.

Such a result suggests that the difficulties of different non-Markov problems
with different hidden-state structure such as E1 and E2 should be distinguished
in more details than is usually done. Along that line, we believe that, thanks to
the information ATNoSFERES provides on the structure of different problems,
it can be seen as a tool that may help understanding which kind of system will
perform best in which kind of environment and why.

Finally, we would like to highlight the fact that the comparative studies we
provided with ATNoSFERES both in this paper and in [7] and [§] should be gen-
eralized in the LCS community. Previously, we have compared ATNoSFERES
with XCSM on some environments qualitatively, without comparing both sys-
tems performances. Here we have compared ATNoSFERES with ACS quanti-
tatively on other environments, relying on the experiments presented on the
available literature. Since XCSM and ACS have not been tested on the same
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environments, a precise comparison of their respective performance has never
been published yet. A lot of work deserves to be done to provide more global
comparisons between several systems and classes of systems. We strongly believe
that such comparisons would greatly enhance the understanding of the current
state of the art in the LCS research community.
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Abstract. The class imbalance problem has been said recently to hinder
the performance of learning systems. In fact, many of them are designed
with the assumption of well-balanced datasets. But this commitment is
not always true, since it is very common to find higher presence of one
of the classes in real classification problems. The aim of this paper is to
make a preliminary analysis on the effect of the class imbalance problem
in learning classifier systems. Particularly we focus our study on UCS, a
supervised version of XCS classifier system. We analyze UCS’s behavior
on unbalanced datasets and find that UCS is sensitive to high levels of
class imbalance. We study strategies for dealing with class imbalances,
acting either at the sampling level or at the classifier system’s level.

1 Introduction

Learning Classifiers Systems (LCSs) [II12] are rule-based systems that have
been demonstrated to be highly competitive in classification problems with re-
spect to other machine learning methods. Nowadays, XCS [2827], an evolution-
ary online learning system, is one of the best representatives of LCSs.

The performance of XCS on real classification problems has been tested ex-
tensively in many contributions [I8TIBI5II7]. In addition, some analyses on the
factors that make a problem hard for XCS have been made [I5], and some theo-
ries have been formulated [B]. This work focuses on one of the complexity factors
which is said to hinder the performance of standard learning methods: the class
imbalance problem.

The class imbalance problem corresponds to classification domains for which
one class is represented by a larger number of instances than other classes. The
problem is of great importance since it appears in a large number of real do-
mains, such as fraud detection [9], text classification [6], and medical diagnosis
[20]. Traditional machine learning approaches may be biased towards the ma-
jority class and thus, may predict poorly the minority class examples. Recently,
the machine learning community have paid increasing attention to this problem
and how it affects the learning performance of some well-known classifier sys-
tems such as C5.0, MPL, and support vector machines [22[23[10]. In the LCS’s
framework, some approaches have been proposed to deal with class imbalances
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in epidemiological data [13]. The aim of this paper is to enhance the analysis
on class imbalances into the LCS’s framework, and debate whether this problem
affects LCSs, to what degree, and, if it is necessary, study different methods to
overcome the difficulties.

Our analysis is centered on Michigan-style learning classifier systems. We
choose UCS [7] as the test classifier system for our analysis, with the expectation
that our results and conclusions can also be extended to XCS and other similar
LCSs. UCS is a version of XCS that learns under a supervised learning scheme. In
order to isolate the class imbalance problem and control its degree of complexity,
we designed two artificial domains. We study UCS’s behavior on these problems
and identify factors of complexity when the class imbalance is high, which makes
us to analyze different approaches to deal with these difficulties.

The remainder of this paper is organized as follows. Section [2] describes the
UCS classifier system, focusing on the differences with XCS. Section 3] gives the
details on the domain generation. In section @ UCS is trained in the designed
problems, and the class imbalance effects are analyzed. Section [ describes the
main approaches for dealing with the class imbalance problem, and sections[@and
[0 analyze these approaches under UCS’s framework. Finally, we summarize our
main conclusions, give limitations of the current study, and provide directions
for further work.

2 Description of UCS

UCS [18/7] is a Michigan-style classifier system derived from XCS [28/27]. The
main difference is that UCS was designed under a supervised learning scheme,
while XCS follows a reinforcement learning scheme. In the following, we give a
brief description of UCS, emphasizing the main differences with XCS. For more
details, the reader is referred to [1].

2.1 Representation

UCS evolves a population of [P] classifiers. Each classifier has a rule of type
condition — class, as in XCS, and a set of parameters estimating the quality
of the rule.

The main parameters of a rule are: a) the rule’s accuracy ace, b) the fitness F,
¢) the experience exp, d) the niche size ns, ) the last time of the GA activation
ts, and g) the numerosity num.

2.2 Performance Component

UCS learns incrementally according to a supervised learning scheme. During
learning, examples are provided to the system. Each example comes with its
attributes © = (1,... x,,) and its corresponding class ¢. Then, the system creates
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a match set [M] consisting of those classifiers whose conditions match the input
example. From [M], the classifiers that correctly predict the class ¢ form the
correct set [C]. The remaining classifiers belong to [!C]. If [C] is empty, the cov-
ering operator is activated, creating a new classifier with a generalized condition
matching z and class c.

In ezploit or test mode, an input x is presented and UCS must predict its
associated class. In this case, the match set [M] is formed, and the system selects
the best class from the vote (weighted by fitness) of all classifiers present in [M].

2.3 Parameter Updates

In learning mode, the classifier parameters are updated. First of all, the classi-
fier’s accuracy is updated:

number of correct classifications
acc = .
experience

Fitness is calculated as a function of accuracy:
F = (acc)”

where v is a parameter set by the user. A typical value is 10. Thus, accuracy
accumulates the number of correct classifications that each classifier has done,
and fitness scales exponentially with accuracy.

The experience of a classifier exp is updated every time a classifier participates
in a match set. The niche set size ns stores the average number of classifiers in
[C]; it is updated each time the classifier belongs to a correct set.

2.4 Discovery Component

In UCS, the genetic algorithm (GA) is used as the search mechanism in a similar
way to that in XCS. The GA is applied to [C] instead of all the population. It
selects two parents from [C] with a probability proportional to fitness and copies
them. Then, the copies are recombined and mutated with probabilities y and p
respectively. The resulting offspring are introduced into the population. First,
each offspring is checked for subsumption. In an offspring can not be subsumed, it
is inserted in the population, deleting potentially poor classifiers if the population
is full. The deletion probability is computed in the same way as in XCS (see [14]).

3 Dataset Design

In order to isolate the class imbalance problem from other factors that affect
UCS’s performance [I5], two artificial domains were generated. Each one tries
to highlight different traits of the system. These are the checkerboard problem
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(denoted as chk) and the position problem (denoted as pos). They are described
in the following.

3.1 Chk Domain Generation

The chk problem is based on the balanced checkerboard problem, used as a
benchmark in [8I26]. It has two real attributes (z and y) that can take values
from zero to one (x,y € [0,1]). Instances are grouped in two non-overlapping
classes, drawing a checkerboard in the feature space.

The complexity of the problem can be varied along three different dimensions
(similarly to [23]): the degree of concept complexity (c), the dataset size (s),
and the imbalance level between the two classes (7). Concept complexity defines
the number of class boundaries, pointed as a complexity factor in XCS [8]. The
dataset size is the size of the balanced dataset. The imbalance level determines
the ratio between the number of minority class instances and the number of
majority class instances.

The generation process creates a balanced two-class domain, and then pro-
ceeds to unbalance it by removing some of the minority class instances. The
original balanced problem is defined by the dataset size s, and the concept com-
plexity ¢, which defines c? alternating squares. We randomly drew points into
the feature space so that each checkerboard square received s/c? instances. For
the balanced dataset, i=0.

An imbalance degree i corresponds to the case where the minority class has
1/2%h of its normally entitled points, while the majority class maintains the
same points as in the original dataset. This means that the ratio between the
minority class instances and the majority class instances is 1/2%. Given s, ¢, and
an imbalance level i, each square of the majority class has s/c? instances, while
each square of the minority class has s/(c?-2%) instances. For example, for ¢ = 4,
s = 4096, and ¢ = 3, each square of the majority class is represented by 256
examples, and each square of the minority class is represented by 32 examples.
The domain generation unbalances the dataset iteratively. For ¢ = 1, it takes the
balanced dataset and removes half of the instances from the minority class. For
1 = 2, it takes the dataset obtained in the previous step and again removes half
of the minority class instances, and so on.

3.2 Pos Domain Generation

The pos problem [7] has multiple classes and different proportions of examples
per class. Given a binary input « of fixed length [, the output class corresponds
to the position of the leftmost one-valued bit. If there is not any one-valued bit,
the class is zero. The length of the string | determines both the complexity of
the problem and the imbalance level.

In the position problem, the most specific rules are activated very sparsely and
thus they have very few opportunities to reproduce. Our motivation to include
such an extreme domain in the current analysis, rather than trying to solve this
particular problem, is to validate our findings in the checkerboard domain.
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Fig. 1. Training datasets for the chk problem, generated with parameters s=4096, c=4,
and imbalance levels from 0 to 7

4 UCS’s Behavior on Unbalanced Datasets

In this section we analyze UCS’s performance with unbalanced datasets, using
the artificial problems described in the last section.

4.1 Chk Problem

We ran UCS in the checkerboard problem with a fixed dataset size s =4096 and
concept complexity ¢=4, which corresponds to sixteen alternating squares. We
varied the imbalance level from i=0 to i=7. For =0, the dataset is balanced,
with 2048 instances per class. For increasing ¢ values we took out half of the
instances of the minority class. Thus, the last configuration (i=7) corresponds to
256 instances per square belonging to the majority class, and only two instances
for each square of the minority class. Figure [l depicts all the datasets generated,
showing the location of each training point in the feature space.

Since there is not overlapping among instances of different classes, the minority
class instances should not be dealt as noise. Even in the most unbalanced dataset
(figure 1(h)), all the minority class instances are isolated from the regions con-
taining the majority class instances, and this should be enough to let the system
discover the minority class regions. However, it is reasonable to expect that some
regions will be more difficult to evolve, depending on the distance of the training
points of the minority class to the training points of the majority class.
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(a) i=0 (b) i=1 (c) i=2 (d) i=3

(e) i=4 (f) i=5 (g) i=6 (h) =7

Fig. 2. Boundaries evolved by UCS in the chk problem with imbalance levels from 0 to
7. Plotted in black are the regions belonging to the minority class and plotted in gray
are the regions of the majority class.

UCS was trained with each of the datasets for 200,000 learning iterations,
with the following parameter settings (see [21] for the notation): N=40J, a=0.1,
£=0.2, 6=0.1, v=10, 04¢;=20, Osyp = 20, accy=0.99, x=0.8, u=0.04, 0G41=25,
GASub = true, [A]Sub=false. Specify was enabled with parameters Nsp =20
and Psp =0.5 (see [16]).

Figure [2 shows the classification boundaries obtained by UCS in all the
datasets. Figure 2(a) corresponds to the balanced dataset. As expected, UCS
is able to discover the optimal ruleset. A similar behavior is shown for imbalance
levels i={1,2,3}, as seen in figures 2(b), 2(c), and 2(d) respectively. In these cases,
the class imbalance does not prevent UCS from evolving the correct boundaries.

The problem arises with imbalance levels equal or greater than 4. Figure 2(e)
shows that the system is not able to classify correctly any of the minority class
squares. Looking at the training dataset, shown in figure 1(e), it seems feasible
that UCS could learn the minority class regions since the number of instances
representing these regions define a distinguished space in the eyes of a human
beholder. In addition, any model evolved with higher imbalance levels is not able
to discover any minority class region, as shown in figures 2(f), 2(g), and 2(h).
This abrupt change in the UCS’s behavior led us to make a deeper analysis.

Table [ shows the rules evolved by UCS in the chk problem for imbalance
level i=4. The table shows, to our surprise, that UCS evolved accurate and
maximally general classifiers that cover the minority class regions. Actually, the

! The value was set to sixteen times the optimal population size, as suggested in 7.
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Table 1. Most numerous rules evolved by UCS in the chk problem with imbalance
level i=4, sorted by class and numerosity. Columns show respectively: the rule number,
the condition and class of the classifier, where 0 is the majority class and 1 the minority
class, the accuracy (acc), fitness (F), and numerosity (num).

id condition class acc F num
1 [0.509, 0.750] [0.259, 0.492] :1 1.00 1.00 39
2 [0.000, 0.231] [0.252, 0.492] :1 1.001.00 38
3 [0.000, 0.248] [0.755, 1.000] : 1 1.00 1.00 35
4 [0.761, 1.000] [0.000, 0.249] :1 1.00 1.00 34
5 [0.255, 0.498] [0.520, 0.730] : 1 1.00 1.00 33
6 [0.751, 1.000] [0.514, 0.737] : 1 1.00 1.00 31
7 [0.259, 0.498] [0.000, 0.244] : 1 1.00 1.00 27
8 [0.501, 0.743] [0.751, 1.000] :1 1.001.00 18
9 [0.500, 0.743] [0.751, 1.000] : 1 1.001.00 9
10 [0.751, 1.000] [0.531, 0.737] :1 1.00 1.00 8
18 [0.509, 0.750] [0.246, 0.492] :1 0.640.01 1
19 [0.000, 1.000] [0.000, 1.000] : 0 0.94 0.54 20
20 [0.000, 1.000] [0.000, 0.990] :0 0.94 0.54 13
21 [0.012, 1.000] [0.000, 0.990] : 0 0.94 0.54 10

64 [0.012, 1.000] [0.038, 0.973] : 0 0.94 0.54 1

eight most numerous rules are those that cover the eight minority class regions,
and all of them are accurate. Besides these rules, the table also shows some less
numerous rules predicting the majority class. These are overgeneral rules; they
cover inaccurately almost all the feature space. From these results two questions
arise. Why does UCS evolve these overgeneral rules? And why the system does
not properly use the specific rules to classify the minority class regions instead
of these overgeneral rules?

To explain UCS’s tendency to evolve these overgeneral rules, other populations
evolved with lower imbalance levels were checked. We found that all populations
evolved with an imbalance level higher than 1 contained the most general rule
(aty € [0,1] and ats € [0,1]), as shown in figure Pl for imbalance level i=3.

We hypothesize that the generalization pressure produced by the GA induces
the creation of these overgeneral rules. Once created, these rules are activated
in nearly any action set, because of its overgeneral condition. In balanced or
low-unbalanced datasets, these overgeneral rules tend to have low accuracy and
consequently, low fitness. For example, the most general rule has a 0.50 of ac-
curacy in a balanced dataset. Thus, overgeneral rules with low fitness tend to
have low probabilities of participating in reproductive events and finally, they
are removed from the population. The problem comes out with high imbalance
levels, where overgeneral rules have a high tendency to be maintained in the pop-
ulation. The reason is that the data distribution does not allow to penalize the
classifier’s accuracy so much, as long as the minority class instances are sampled
in a lower frequency. So, the higher the imbalance level, the more accurate an
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Table 2. Most numerous rules evolved by UCS in the chk problem with imbalance
level i=3, sorted by class and numerosity. Columns show respectively: the rule number,
the condition and class of the classifier, where 0 is the majority class and 1 the minority
class, the accuracy (acc), fitness (F), and numerosity (num).

id condition class acc F num
1[0.251, 0.498] [0.000, 0.244] : 1 1.00 1.00 39
2 [0.501, 0.751] [0.760, 1.000] :1 1.001.00 37
3 [0.000, 0.246] [0.259, 0.500] : 1 1.00 1.00 36
4[0.259, 0.499] [0.504, 0.751] :1 1.00 1.00 33
5 [0.506, 0.746] [0.263, 0.498] : 1 1.00 1.00 30
6 [0.751, 1.000] [0.502, 0.749] : 1 1.00 1.00 29
7 [0.752, 1.000] [0.000, 0.240] : 1 1.00 1.00 27
8 [0.000, 0.246] [0.759, 1.000] : 1 1.00 1.00 20
25 [0.000, 0.233] [0.584, 1.000] :1 0.130.00 1
26 [0.000, 1.000] [0.000, 1.000] :0 0.89 0.31 13

27 [0.010, 1.000] [0.000, 1.000] :0 0.89 0.31 12

60 [0.051, 1.000] [0.017, 0.926] : 0 0.89 0.31 1

overgeneral classifier is considered (and also the higher fitness it has). This effect
is clearly seen in tables[2 and[Il Observe that for i=3 (table[J), overgeneral rules
have accuracies of 0.89. Similar overgeneral rules for i=4 (table [Il) have 0.94 of
accuracy. Consequently, in high imbalance levels overgeneral rules tend to have
higher accuracies, presenting more opportunities to be selected by the GA, and
also lower probabilities of being removed by the deletion procedure.

After analyzing why overgeneral rules are created and maintained in the pop-
ulation as the imbalance level increases, let’s consider why the system does not
predict the minority class even though it evolved the appropriate rules. For i=3,
UCS was able to predict the minority class regions but not for i=4, although
apparently the populations evolved were similar. For i=3, there are several nu-
merous and overgeneral rules, but their vote in the prediction array is not enough
to overcome the vote of the accurate rules predicting the minority class. There-
fore, UCS is able to predict accurately the minority class. The problem arises
at a certain point in the imbalance level that makes the vote of the overgeneral
rules higher than the vote of the accurate rules. In our datasets, this happens at
imbalance level 4. The population evolved in this dataset consists of 64 macro-
classifiers, 46 of them predicting the majority class and only 18 predicting the
minority class. Taking into account the classifiers’ numerosities, there are more
than 100 microclassifiers covering all the feature space with the majority class,
and only 32 microclassifiers in average for each of the minority class squares.
When an instance belonging to a minority class region is shown to UCS, the
prediction vote for the majority class is greater, and this makes UCS to classify
this instance wrongly.
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Fig. 3. Percentage of optimal population evolved by UCS in the pos problem. Each
curve corresponds to the average of five seeds.

4.2 Pos Problem

UCS was trained with the pos problem with condition lengths [ from 8 to 15.
We ran UCS for 400000 iterations with the the following parameter settings:
N=25-(l+1), a=0.1, 8=0.2, 6=0.1, v=10, 04¢,=20, 05, = 20, acco=0.99, x=0.8,
1=0.04, 0 4=25, GASub = true, [A]Sub=false, Specify=true, Nsp =20, Psp
=0.5. The experiments were averaged over five different runs.

To analyze UCS’s behavior on this problem, we show the curves of perfor-
mance of UCS during training. We consider here the percentage of optimal clas-
sifiers (%[O]) [I5] achieved by UCS along the iterations. We use this metric
instead of accuracy, because accuracy is biased towards the majority classes.
Since we aim to evaluate the system’s capability to evolve all the classes, we use
a measure that gives equal importance to each of the classes independently of
the a priori probabilities of each class. Alternatively, a measure of cost per class
could be used.

Figure Bl depicts the percentage of optimal population achieved during train-
ing. Each curve represents a different level of complexity in the pos problem,
ranging from [=8 until [=15. It shows that UCS has difficulties in learning all
the optimal classifiers as the condition length grows. Table [3] shows an example
of the population evolved by UCS for the pos problem at [=12. Note that the
system can discover the most general optimal rules, being not able to discover
the three most specific ones. This behavior is also observed in other evolved
populations. As expected, more general rules have higher numerosities. This be-
havior is attributed to the fact that specific rules activate less often than more
general ones, and thus they have fewer reproductive opportunities. Therefore,
in a problem with class imbalances the system has more opportunities to learn
rules that cover the majority class than those that cover the minority class [7].

5 How to Deal with Class Imbalances

This section reviews different strategies for dealing with the class imbalance prob-
lem. The first two are general methodologies applicable to any type of classifier
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Table 3. Most numerous rules evolved by UCS in the pos problem for (=12, sorted
by numerosity. Columns show respectively: the rule number, the condition and class of
the classifier, the accuracy (acc), fitness (F), and numerosity (num).

condition class acc F num
Vias# 012 1.00 1.000 56
000 1######## - O 1.00 1.000 49
Ol #tttttahatatiatatst <11 1.00 1.000 46
00 1######### (10  1.00 1.000 43
0000 1####### - 8 1.00 1.000 32

000001###### : 7 1.00 1.000 24
0000001##### : 6 1.00 1.000 16
00000001#### : 5  1.00 1.000 11
000000001### : 4  1.00 1.000 10
0000000001## : 3 1.00 1.000 5
00#00#00000# : 1 0.20 0.000 4
0000000#01## : 3 0.70 0.028 2
0000000000#0 : 2 0.66 0.017 2

since they are based on dataset resampling. The aim of resampling is to balance
the a priori probabilities of the classes. The last methods are specially designed
for UCS, although they can also be adapted to other classifier schemes.

Oversampling. This method consists of oversampling the examples of the mi-
nority class until their number is equal to the number of instances in the majority
class [22]. Two variants can be considered. Random oversampling resamples at
random the minority class examples. Focused resampling oversamples mainly
those instances closer to class boundaries.

Undersampling. Undersampling consists of eliminating some of the majority
class instances until we reach the same number of majority class instances as
minority class instances [22]. Two classic schemes are random undersampling,
which removes at random majority class instances, and focused resampling, which
removes only those instances further away from class boundaries.

Adaptive sampling. This method, initially proposed in [4], is inspired in over-
sampling and in the way boosting [25] works. It proposes to maintain a weight
for each dataset instance (initially set to 1), which indicates the probability that
the sample process selects it. Weights are updated incrementally when the sys-
tem makes a prediction under exploit mode. Depending on whether the system
has made a correct prediction or not on a given example, the weight for that ex-
ample will be decreased or increased by a factor « (in the experiments we fixed
a=0.1).

Class-sensitive accuracy. Class-sensitive accuracy modifies the way in which
UCS computes accuracy so that each class is considered equally important re-
gardless of the number of instances representing each class. UCS was slightly
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modified to compute the experience of a classifier per each class. The proportion
of examples covered per each class is taken in account to calculate the classi-
fier’s fitness, counterbalancing the bias produced by class imbalances. See [I] for
further details.

Selected techniques. We chose to analyze three main representative
approaches: random oversampling, adaptive sampling, and class-sensitive ac-
curacy with weighted experience. Undersampling was not considered for being
too extreme in the case of highly imbalanced datasets. Under our point of view,
undersampling majority class instances to the same degree as minority class
instances may produce a loss of valuable information and may change class
boundaries unnecessarily. The problem may degenerate into a problem of spar-
sity, for which classifier schemes in general are expected to show poor general-
ization capability. Next section compares each of the selected strategies under
the checkerboard problem.

6 UCS in the Chk Problem

We run UCS in the checkerboard problem for imbalance levels from i=0 to i=7
using the three aforementioned strategies. We use the same parameter settings
as those in section[d], adding the new parameter 6,.. for the case of class-sensitive
computation. .. is set to 50 to protect the fitness decrease of young classifiers.

6.1 Random Oversampling

Figure@lshows the boundaries evolved by UCS under random oversampling. Note
that UCS was able to evolve some boundaries for the minority class examples
even for the highest imbalance levels. In many cases, these boundaries do not
reach the real boundaries of the original balanced dataset. But this result is
reasonable since the distribution of training points has changed with respect to
the original dataset.

Under oversampling, UCS works as the problem was a well balanced dataset,
because the proportion of minority class examples has been adjusted a priori.
UCS sees a dataset with the same number examples per class, but with some
gaps in the feature space that are not represented by any example. These gaps
are mostly covered by rules predicting the majority class rather than by minority
class rules. In fact, what happens is that rules from both classes tend to expand
as much as possible into these gaps until they reach points belonging to the
opposite classes. That is, rules tend to expand as long as they are accurate. Thus,
there are overlapping rules belonging to different classes in the regions that are
not covered by any example. When we test UCS in these regions, the majority
class rules have higher numerosities and their vote into the prediction array is
higher. The reason why majority class rules have higher numerosities is that
their boundaries are less complex, so in many cases a single rule suffices for all
the region. This rule tends to cover all the examples of a majority class square
and benefits from long experience and numerosity. On the contrary, minority
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(a) i=0 (b) i=1 (¢) i=2 (d) i=3

(e) i=4 (f) i=5 (g) i=6 (h) i=7

Fig. 4. Class boundaries evolved by UCS with random oversampling in the chk problem
with imbalance levels from 0 to 7

class regions are more complex, and rules covering these regions tend to have
less experience and numerosity.

6.2 Adaptive Sampling

Figure [f shows the results obtained by UCS under the adaptive sampling strat-
egy. UCS evolved part of the squares belonging to the minority class. For i=4
and i=5, the boundaries evolved by UCS almost approximate the real bound-
aries of the original problem. In these cases, adaptive sampling allowed UCS to
evolve fairly good approximations with respect to the original results shown in
figure2l For higher imbalance levels, UCS found more difficulties in finding good
approximations for the minority class squares. In these cases, the result achieved
under the adaptive sampling strategy is worse than that achieved by UCS under
oversampling (see figure [)).

We tried to use a more disruptive function for the weight computation of the
adaptive sampling strategy but we found no improvements. On the contrary,
trying to use a higher o parameter so that weights could be further increased if
instances were poorly classified led to oscillations in the weights and difficulties
to stabilize the boundaries evolved.

Analyzing the behavior of UCS under these two strategies (not detailed for
brevity), we found that under adaptive sampling there is less generalization
pressure towards the minority class rules than with oversampling. The reason
is that, with adaptive sampling, once all instances are well classified, weights
stabilize and then, all instances are sampled as the original a priori probabilities.
Under oversampling, minority class instances are always sampled at the same
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(a) i=0 (b) i=1 (c) i=2 (d) i=3

(e) i=4 (f) i=5 (g) i=6 (h) i=7

Fig. 5. Class boundaries evolved by UCS with adaptive sampling in the chk problem
with imbalance levels from 0 to 7

a priori probability as majority class instances, keeping the same generalization
pressure towards both classes. This may justify why, under adaptive sampling,
UCS finds more difficulties in the generalization of rules covering the minority
class instances, especially for the highest imbalance levels.

6.3 Class-Sensitive Accuracy

Figure [0l shows the results of UCS under class-sensitive accuracy. Note that the
boundaries evolved in all imbalance levels are better at discovering minority
class regions than those evolved by raw UCS. However, for the lowest imbalance
levels (i.e., i=[1-3]), there is a little tendency to leave some blank spaces near the
class boundaries. These gaps predominantly belong to the minority class regions.
The reason is that rules covering minority class regions easily get inaccurate
when they overpass slightly into the majority class regions. Rules classifying
the majority class squares and getting inside minority class squares have less
probability to cover minority instances (because they are less frequent) so that
their accuracy is not penalized as much. This gap effect in the class boundaries
was even stronger for class-sensitive accuracy without the weighted experience
modification, as shown in [I]. Note that for the balanced dataset, i.e., i=0, the
gap effect is also present although with few incidence. These gaps also appeared
slightly under oversampling and adaptive sampling, although in the latter to a
lower extent.

For imbalance levels i=4 and i=5, UCS with class-sensitive accuracy clearly
improves raw UCS in terms of the boundaries evolved. Furthermore, the
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(a) i=0 (b) i=1 (c) i=2 (d) i=3

(e) i=4 (f) i=5 (g) i=6 (h) i=7

Fig. 6. Boundaries evolved by UCS with class-sensitive accuracy for 0 to 7. Black
regions are those classified as minority class. Grey regions are regions classified as
majority class. White regions are non-covered domain regions.

tendency of evolving overgeneral rules is restrained. Table H depicts the most
numerous rules evolved by UCS for imbalance level i=4. Note that overgeneral
rules are not evolved. Instead there are maximally general rules covering each of
the alternating squares.

Finally, figures 6(g) and 6(h) show the models evolved with imbalance levels
i=6 and i=7. As the imbalance level increases, the system finds it harder to evolve
the minority class regions. For the highest class imbalances, UCS can only draw
partially four of the minority class regions. Looking at the evolved population,
not shown for brevity, we confirm that the problem is not attributable to the
evolution of overgeneral rules but to the fact that the imbalance ratio is so high
(1:128) that it could be considered as an sparsity problem. There are so few
representatives of the minority class regions that we may debate whether these
points are representative of a sparse class region or whether they belong to noisy
cases. In the latter case, we would acknowledge that UCS should not find any
distinctive region.

7 Contrasting Results with Pos Problem

In last section, we isolated and analyzed the imbalance class problem under the
chk domain. Now, we analyze the pos problem, which combines jointly differ-
ent complexity factors. Increasing the condition length increases not only its
imbalance level but also other identified complexity factors such as the number
of classes, the size of the training dataset and the condition length itself. Our
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Table 4. Most numerous rules evolved by UCS with class-sensitive accuracy in the chk
problem for imbalance level i=4, sorted by numerosity. Columns show respectively: the
rule number, the condition and class of the classifier, where 0 is the majority class
and 1 the minority class, the accuracy for each class (acco and accy), fitness (F), and
numerosity (num).

id condition class accg acct F num
1 [0.000 - 0.200] [0.492 - 0.756] :0 1 - 1.00 34
2 [0.754 - 1.000] [0.757 - 1.000] :0 1 - 1.00 32
3 [0.000 - 0.253] [0.000 - 0.242] :0 1 - 1.00 26
4 [0.730 - 1.000] [0.260 - 0.527] :0 1 - 1.00 15
5 [0.491 - 0.759] [0.480 - 0.753] :0 1 - 1.00 12
6 [0.000 - 0.250] [0.770 - 1.000] :1 - 1 1.00 20
7 [0.519 - 0.748] [0.260 - 0.483] :1 - 1 1.00 19
8 [0.751 - 1.000] [0.000 - 0.247] :1 - 1 1.00 17
9 [0.257 - 0.454] [0.510 - 0.722] :1 - 1 1.00 15
10 [0.000 - 0.246] [0.253 - 0.460] :1 - 1 1.00 15
11 [0.763 - 1.000] [0.526 - 0.740] :1 - 1 1.00 13
12 [0.482 - 0.786] [0.000 - 0.241] :0 1 0 039 19
13 [0.264 - 0.565] [0.699 - 1.000] :0 1 0 0.87 18
14 [0.114 - 0.547] [0.156 - 0.529] :0 1 0 0.66 15
69 [0.156 - 0.547] [0.201 - 0.507] :0 1 0 043 1

purpose here is to analyze the three strategies under a more difficult problem,
as a previous step to the analysis of real-world problems which will be left as a
future work.

7.1 Oversampling

UCS was run under oversampling with the same parameter settings as in the
original pos problem (see section [L.2). Figure [1 shows the percentage of optimal
population achieved by UCS in the pos problem for condition-lengths [ from 8
to 15. Curves are averages of five runs. The figure shows high oscillations in the
learning curves of UCS. Note that the learning curves have worsened significantly
with respect to the original results with UCS (as shown in figure B)).

Making a deeper analysis, some harmful traits of oversampling, which were
not observed in the chk problem, come out. In the pos problem, changing the
a priori probabilities of examples makes accurate generalizations very hard to
be evolved. UCS learns accurate and maximally general rules by the presence of
the appropriate examples and counter-examples. While the presence of numer-
ous examples favor the generalization of rules, counter-examples set the limit for
these generalizations. If rules overgeneralize, the presence of counter-examples
makes the rule inaccurate. Therefore rules generalize as long as they cover all the
examples of the same class and cover no counter-examples. In the pos problem,
we oversample minority class examples. Thus, the system gets a higher num-
ber of examples for the minority class rules, but on the contrary receives few
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Fig. 7. Percentage of optimal population evolved by UCS under oversampling in the
pos problem for [=8 until (=15

proportion of counter-examples for these rules. The result is that UCS tends to
overgeneralize the rules covering the minority class examples. And the discovery
of specific rules for the minority class examples remains unsolved.

We wonder why this effect did not arise in the chk problem. The reason is
that the chk problem has originally the same generalization for each of the rules.
Oversampling makes each rule to receive the same proportion of examples and
counter-examples. So it is easier to find accurate generalizations.

The results of oversampling on the position problem suggest that this method
could be harmful depending on the topology of the problem. So this is a method
that should be applied with caution in real-world problems, at least for classifier
schemes using similar learning patterns to those of UCS.

7.2 Adaptive Sampling

Figure [§] shows the percentage of optimal population achieved by UCS under
adaptive sampling. Curves are averages of five runs. See that the oversampling
effect does not appear here. If a rule is inaccurate because it does not classify
properly an example, the probability of sampling that example is increased.
Thus, this example will serve as a counter-example for overgeneral rules, and as
an example to help discover rules covering it accurately. Note that the learning
curves have improved with respect to the original problem (figure B]), although
there is still a high difficulty in discovering the optimal populations for the
highest complex levels.

7.3 Class-Sensitive Accuracy

Figure[@ shows the percentage of optimal population evolved by UCS with class-
sensitive accuracy. The figure does not reveal significant improvements with re-
spect to raw UCS, as shown in figure[8l The problem here is that UCS is receiving
very few instances of the most specific classes, i.e., it receives exactly the same
instances as in the original problem. For example, for [=15, UCS receives only
one instance of class 0 each 32768 instances. Thus, even though UCS weighs
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Fig. 8. Percentage of optimal population evolved by UCS under adaptive sampling in
the pos problem from [=8 to [=15
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Fig. 9. Percentage of optimal population evolved by UCS with class-sensitive accuracy
in the pos problem, from [=8 to [=15

the contribution of each class equally, if the minority class instances come very
sparsely, rules covering them have few reproductive events. We find it interest-
ing to analyze a hybrid strategy between adaptive sampling and class-sensitive
accuracy so that the benefits of each approach could be combined.

8 Conclusions

We analyzed the class imbalance problem in UCS classifier system. We found
that UCS has a bias towards the majority class, especially for high degrees of
class imbalances. Isolating the class imbalance problem by means of artificially
designed problems, we were able to explain this bias in terms of the population
evolved by UCS.

In the checkerboard problem, we identified the presence of overgeneral rules pre-
dicting the majority class which covered almost all the feature space. For a given
imbalance level, these rules overcame the vote of the most specific ones and thus,
UCS predicted all instances as belonging to the majority class. Different strategies
were analyzed to prevent the evolution of these overgeneral rules. We found that all
tested strategies (oversampling, adaptive sampling, and class-sensitive accuracy)
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prevented UCS from evolving these overgeneral rules, and class boundaries —for
both the minority and majority classes— were approximated fairly better than
with the original setting. However, the analysis on the position problem revealed
many inconveniences in the oversampling strategy which make UCS’s learning un-
stable. This leads us to discard this method for real-world datasets.

The study would be much enhanced with the analysis of the class imbalance
problem on other LCSs. Preliminary experiments made with two other evolution-
ary learning classifier systems, GAssist [2] and HIDER [24], showed that they
are even more sensitive to the class imbalance problem. Moreover, the analysis of
the class imbalance problem in other classifier schemes such as nearest neighbors,
support vector machines and C4.5, and their comparison with LCSs, could give
higher understanding on how imbalance class problems affect classifier schemes,
and whether they affect LCSs to a higher degree than others.

Also, we would like to extend this analysis to other artificial problems, as well
as to real-world datasets. We suspect that the proposed strategies may be very
sensitive in noisy problems, i.e, in problems having misclassified instances. The
combination of noisy instances and strategies for dealing with class imbalances
may worsen significantly the generalization of learners, resulting in too overfitted
boundaries. As this is a feature often present in real-world datasets, this should
be analyzed in detail as a previous step to understand the behavior of these
strategies on real-world datasets.
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Abstract. Missing data pose a potential threat to learning and classification in
that they may compromise the ability of a system to develop robust, generalized
models of the environment in which they operate. This investigation reports on
the effects of three approaches to covering these data using an XCS-style
learning classifier system. Using fabricated datasets representing a wide range
of missing value densities, it was found that missing data do not appear to
adversely affect LCS learning and classification performance. Furthermore,
three types of missing value covering were found to exhibit similar efficiency
on these data, with respect to convergence rate and classification accuracy.

1 Introduction

Learning Classifier Systems (LCS) are used for a number of functions, including
agent control and data mining. All of the environments in which LCS operate are
potentially plagued by the problem of incomplete, or missing, data. Missing data
arise from a number of different scenarios. In databases, fields may have values that
are missing because they weren’t collected, or they were lost or corrupted in some
way during processing. In real-time autonomous agent environments, data may be
missing due to the malfunctioning of a sensor. In any case, missing data can cause
substantial inaccuracies due to their frequency, their distribution, or their association
with other features that are important to learning and classification. As a result, the
problem of missing data has attracted substantial attention in the data mining and
machine learning communities [1, 2, 10, 11, 15, 16].

Although one study [12] has investigated the use of a genetic algorithm in
analyzing clinical data with missing values, and one other [9] has investigated their
use in spectral estimation, the effects of missing data on LCS learning and
classification performance have been described only by Holmes and Bilker [8]. They
found that missing data adversely affect learning and classification performance in a
stimulus-response LCS based on the NEWBOOLE [3] paradigm, and this effect is
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positively correlated with increasing fractions of missing data. However, no work to
date has investigated the effects of missing data on XCS-type LCS, nor on the use of
real-time, system-level imputation for dealing with these data.

This paper reports on an investigation into the comparative efficacy of three
methods of covering missing data and their effects on the learning and classification
performance of an XCS-type LCS, EpiXCS, when it is applied to a simulated datasets
with highly controlled numbers of missing values. This investigation focuses on the
use of LCS in a simulated data mining task, rather than one in agent-based
environments. However, the results of this investigation are applicable to a variety of
settings wherever missing data are present in the environment.

1.1 Types of Missing Data

The values of fields in a database can be considered as “responses” to a query, such
that for a field such as gender, the value for any given record (or row) in the database
reflects a response to the question “What is the gender of [what or whom is
represented by the record]?” within the response domain {MALE, FEMALE}.
Responses can be actual, that is, valid responses within the domain, or they can be
missing, such that a response value does not exist for that field in the record. Note
the important distinction between missing data and erroneous data: missing data are
not responsive, while erroneous data are responsive, but not within the response
domain for the field.

Missing responses, or more generally, missing data, are typically categorized into
one of three types, depending on the pattern of the response [5, 13] on a given field, x,
and the other fields, represented collectively as y, in the database. The first type of
missing data is characterized by responses to x that are statistically independent of
responses to x or y. That is, the probability of a missing value for x is independent of
the value of x, as well as of the values of the variables y. This type of missing data is
referred to as missing completely at random (MCAR). An example of MCAR data
would be where the value for gender is randomly missing for some cases, but the
“missingness” of gender for any particular case is unrelated to the value of y, as well
as the true, but unknown, value of x itself.

A second type of missing data occurs when the probability of a response to x is
dependent on the response to y (or, more simply, the value of y). Data such as these
are missing at random (MAR). An example of MAR data would be where the value
for gender is missing when the value of y is at a certain value, or more specifically, if
the probability of a missing value for gender is highest when another field, such as
race, is equal to Asian. In this case, the missing values for gender are MAR. While
the probability of a missing value for gender is essentially random, there is an implicit
dependency on race which lessens the degree of randomness of response to the gender
field. Thus, it can be seen that MAR data are qualitatively less desirable, and
potentially more problematic than MCAR, in analyses and possibly classification.

The last type of missing data is not missing at random (NMAR), and these pose the
greatest threat to data analysis. NMAR data are found where the probability of a
response to x is dependent on the value of x or a set of data which have not been
measured. An example of NMAR data would be where the probability of a missing
value for gender is highest when gender is male. NMAR data are not ignorable in a
statistical analysis, due to the possibility of extreme bias that may be introduced by them.
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In traditional statistical analyses, missing data may be dealt with by using a variety
of procedures loosely grouped under the rubric of imputation, which calls for the
replacement of missing data with statistically plausible values created by means of
one of numerous algorithmic approaches [13]. This is the only viable option when
there is a large fraction of missing data. However, for cases where the fraction of
missing data is small, it may be reasonable to omit cases with missing data only for
MCAR. For MAR or NMAR data, omitting these cases will result in uncorrected
bias, so even where the fraction of missing data is small, imputation should be
considered in analysis, and it is reasonable to assume that it should be considered in
using LCS for classification.

This paper reports on the application of three covering methods MCAR data. The
rationale for restricting the investigation to MCAR data is that this type of missing
data is the most common of the three, even if it is not the most potentially deleterious.

1.2 Covering in XCS

In the XCS paradigm, covering occurs when the number of actions represented in a
Match Set [M] fail to reach a predetermined threshold (specified as 6,,,, in [4]). One
way in which this will occur is when an input, o, cannot be matched by any classifier
in the population. In this situation, a copy of ¢ will be created and inserted into the
population after adding “wild-card” or “don’t care” values for specific features at
some probability. Covering occurs perhaps most frequently during the early training
phase when starting with an empty classifier population, although it can occur later,
especially if the dimensionality of the environment (such as a training set) is high.

There are two potential problems associated with this approach to covering. The
first is that it does not account for missing data in ¢ during the process of generating
[M]. Specifically, a o such as 010?70, where the ?s represent missing values for the
fourth and fifth features in a six-feature o, would be evaluated for matching only on
the first three and the sixth feature. Thus a way for dealing with missing values in o
when matching it against the classifiers in the population is needed. Even if this
problem were addressed, a second problem is that there is a danger of
overgeneralization of the covering classifier. For example, if there are large numbers
of missing values in a given o that is being covered, and these missing values are
represented by #s, the covering classifier could become saturated with #s as they are
injected into it at some probability ps. Potentially, this problem could be addressed by
incorporating a heuristic that ensures against overgeneralization during the covering
procedure, but this seems somewhat arbitrary. Other approaches that reflect statistical
imputation and thus are more grounded in analytic practice, could provide more
robust ways to deal with missing input data during matching and covering. Three
such approaches are discussed in the next section.

1.3 Alternative Approaches: Covering in EpiXCS

Missing values in input (training or testing) data are addressed in EpiXCS during the
creation of the Match Sets ([M]) by one of three approaches. FEach of these
approaches assumes that missing values are specifically encoded as such. It doesn’t
matter to EpiXCS which characters are used to encode missing values as long as they
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do not conflict with the natural coding for a given feature. That is, if a dichotomous
feature is normally coded O or 1, then a different value must be used to indicate a
missing value for that feature, such as 9 or “*”.

Approach 1: Wild-to-Wild. The first approach to handling missing values in a ¢ is
Wild-to-Wild, in which any classifiers in the population that match on the specific
features of an input case are added to [M]. The features of population classifiers that
correspond to features with missing values in ¢ are considered matches as well. Thus,
an input case consisting of six features, 001?70 (where ?’s are missing values and
treated as “wild cards,” or wilds), will match (among others) 00#110, ##1010, or
001110 (where #s are “don’t cares” or “wilds”) in the population. In this approach,
“wilds” exist in both the input data (as missing values) and in the classifier population
(as “don’t cares”). Thus, if matching classifiers exist in the population at that time
step, no covering will need to occur. However, if no matching classifiers exist in the
population the input case will be added to the classifier population as 001##0, where
the missing values have now been replaced by the “#” symbol. The “Wild-to-Wild”
approach is perhaps the most intuitively obvious way of covering os with missing data.

Approach 2: Population Average. The Population-Average approach uses a measure
of central tendency for covering missing values in ¢. In this approach, the population
mean (for continuously-coded features) or median (for categorically-coded features)
will be used as the covering value. For example, consider a ¢ that consists of six
numeric features:

2 2.0 2 38.0 19 4.54

where ? is a missing value for the third (categorically-coded) feature, and the
population mode for the third feature at that time step is 394. In this case, the feature
will be replaced with that value, so that the new (covering) classifier to be inserted
into the population will be:

2 2.0 394 38.0 19 4.54

Approach 3: Random Assignment. The random assignment approach replaces a
feature’s missing value with a value that is randomly selected within the range for that
feature. For example, if the range for the third feature in the preceding example is 45
to 400, based on the classifiers in the population at a given time step, the missing value
would be replaced with a value randomly selected within this range. Categorically-
coded features are preserved to the extent that missing data are not replaced with real
values. A variant on this approach, which uses a random number selected within the
range of the standard deviation is also available in EpiXCS, but not used in this
investigation, which focuses on dichotomous, rather than continuous data.

2 Methods

2.1 Data

Generation of the baseline datasets. This investigation used datasets that were
created with the DataGen [14] simulation dataset generator. This software facilitates
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the creation of datasets for use in testing data mining algorithms and is freely
available on the Web. Twenty-five baseline datasets were created, each containing
500 records consisting of 10 dichotomously coded (¢ {0,1}) predictor features and
one dichotomously coded (e {0,1}) class feature. No missing values were
incorporated into the baseline datasets, and although each dataset contained the same
number of features, each was unique in that significant differences existed between
the datasets with respect to the distribution of the predictor features (p>>0.05) and in
the association of each predictor with the class features (p>>0.05).

The baseline datasets were created in such a way as to incorporate noise at a rate of
20%; thus, over the 5,000 feature-record pairs in each dataset, there were 1,000
features that conflicted or contradicted a putative association with the class feature.
This was done to ensure that the dataset was sufficiently difficult in terms of learning
and classification. In addition to incorporating noise, the user of DataGen has the
capability of specifying the number of expected conjuncts per rule; the higher the
number, the more complex the relationships between the predictor features and the
class. For this investigation, the maximum number of conjuncts per rule was set at
six. After examining the resulting conjuncts, one of the 10 predictor features was
found to be prevalent in most, or all, of the rules. This feature was used to hold
missing values, and thus corresponds to x that is discussed in Section 1.1. The
baseline datasets are described in the Appendix.

Generation of datasets with missing values. From the baseline datasets, separate
versions were created to simulate 30 increasing proportions, or densities, of missing
data, ranging from 2.5% to 75%, in 2.5% intervals. The density of missing data was
determined as a proportion of the possible feature-record pairs that result from
multiplying the number of possible candidate features by the number of records (500).
In each of the datasets, only one feature was replaced with a missing value. The
actual number of records that contained a missing value changed, depending on the
missing value density. For example, at 5% density, there were a total of 25
(500%0.05) records with missing values, all in gearvpe x. In summary, separate
datasets were created at 30 missing value densities for each of the 25 baseline
datasets, for a total of 750 datasets; with the addition of the 25 baseline datasets, there
were 775 datasets in all. Each of these datasets provided separate pools of data from
which training and testing cases were drawn, as described below.

Creation of training and testing sets. This investigation focused on a supervised
learning task, requiring the creation of training and testing sets.Once created, the 775
datasets were partitioned recursively into training and testing sets by randomly
selecting records without replacement at a sampling fraction of 0.50. Thus, each
training and testing set contaned 250 mutually exclusive records. Care was taken to
sample the records so as to preserve the original class distribution, which was 50%
positive and 50% negative cases.

2.2 EpiXCS

System description. EpiXCS is an XCS version of EpiCS [7], a stimulus-response
LCS employing the NEWBOOLE model [3]. It was developed to apply the XCS
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paradigm to the unique challenges of classification and knowledge discovery in
epidemiologic data. EpiXCS uses the XCS class library implemented by Lanzi
(http://xcslib.sourceforge.net/), and implements several additional features that tailor
the XCS paradigm to the demands of epidemiologic data and users who are not
familiar with learning classifier systems. The distinctive features of EpiXCS include
a graphical knowledge discovery workbench for parameterization and rule
visualization, facilities for handling missing input data, multi-threaded and batch
processing, and a methodology for determining risk as a classification metric.
EpiXCS uses a variety of test characteristic-based metrics, such as area under the
receiver operating characteristic curve and positive and negative predictive values as a
means for driving the performance and reinforcement components. Binary,
categorical, ordinal, and real data formats are all acceptable, even in the same dataset.

2.3 Metrics and Analytic Issues

Several metrics were used to evaluate the learning and classification performance of
EpiXCS in this investigation.

Learning metrics. First, the area under the receiver operating characteristic curve
(AUC) was used to evaluate evolving classification accuracy during learning and
accuracy on classifying novel data. The AUC is preferable to the traditional
“accuracy” metric (usually expressed as “percent correct”), as it is not sensitive to
imbalanced class distributions such as is found in the simulation data used in this
investigation [6]. In addition, the AUC represents, as a single metric, the relationship
between the true positive and false positive rates, thereby taking into account the
different types of error that can be measured in a two-choice decision problem.

Second, convergence rate was evaluated by means of a metric, A, created
specifically for this purpose. This metric was calculated as follows:

/1 _ AUCShoulder
Shoulder

Shoulder is the iteration at which 95% of the maximum AUC obtained during
training is first attained, and AUCgj,,4.- i the AUC obtained at the shoulder. Thus,
the higher the value of A, the faster the system reaches convergence on the training
data. As the first AUC is not measured until the 100" iteration, and the maximum
AUC measurable is 1.0, the maximum value of A is 10.0. The minimum & is 0.0.

Third, the ability of the trained EpiXCS system to classify previously unseen cases
of similar genre to the training cases was assessed. This was done by comparing the
AUCs obtained at testing across the range of missing value densities. In addition to
classification accuracy, as measured by the AUC, it is important to assess the extent
to which novel data is unclassifiable, and therefore doesn’t factor in to the calculation
of the AUC. A metric designed for this purpose, the Indeterminant Rate (IR), was
used to quantify the proportion of testing cases that could not be classified on testing:

)1000 ey

. Number of testing cases not classifiable
Indeterminant Rate = )

Total number of testing cases
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These metrics were used in a variety of statistical analyses. To evaluate the effects
of missing data on learning performance, the x5 were correlated by Spearman’s rho
(p) the nonparametric equivalent of Pearson’s r. The nonparametric test was chosen
because the independent variable in the correlation analyses, missing value density, is
ordered-categorical. The As were compared, using the baseline dataset as the
reference, across the range of the missing value densities.

Classification metrics. Classification performance was evaluated by AUC, adjusted
by the IR, as described above. In addition, the sensitivity, specificity, and positive
and negative predictive values were calculated as described below and derived from
the confusion matrix in Figure 1.

Gold standard (class value in data)
As classified by EpiXCS Positive Negative
Positive A B
Negative C D

Fig. 1. 2x2 confusion matrix for a two-choice decision problem. The columns represent the
“gold standard,” or the classifications as they exist in the data. The rows represent the
classification. A=True positives; B=False positives; C=False negatives; D=True negatives.

Sensitivity = True positive rate =
y p A+C 3)
Specificity =True negative rate = 4)
B+D

Positive predictive value = (5)

A+B
Negative predictive value = (6)

8 P C+D

Sensitivity and specificity are prior probabilities: they indicate the accuracy of
positive or negative classifications, respectively, made by EpiXCS in the past, prior to
the current classification. Thus, one would want to know the sensitivity and
specificity in deciding whether or not to use EpiXCS for a given decision task. The
predictive values are posterior probabilities, and indicate the positive or negative
classification accuracy of EpiXCS on a decision task just performed. The predictive
values reflect the confidence one might place in a classification made by EpiXCS.

2.4 Experimental Procedure

Training. EpiXCS was trained over 2,500 iterations, comprising a training epoch.
At each iteration, the system was presented with a single training case, 0. As training
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cases were drawn randomly from the training set with replacement, it could be
assumed that the system would be exposed to all such cases with equal probability
over the course of the 2,500 iterations of the training epoch. At the Oth and each
100th iteration thereafter, the convergence of EpiXCS was evaluated by presenting
the taxon of every case in the training set, in sequence, to the system for
classification. ~ As these iterations constituted a test of the training set, the
reinforcement component and the genetic algorithm were disabled on these occasions.
The decision advocated by EpiXCS for a given training case was compared to the
known classification of the training case. The decision type was classified in one of
four categories: true positive, true negative, false positive, and false negative, and
tallied for each classifier. From the four decision classifications, the AUC and IR
were calculated and written to a file for analysis.

Testing. After the completion of the designated number of iterations of the training
epoch, EpiXCS entered the testing epoch, in which the final learning state of the
system was evaluated using every case in the testing set, each presented only once in
sequence. As in the interim evaluation phase, the reinforcement component and the
genetic algorithm, were disabled during the testing phase. At the completion of the
testing phase, the AUC and IR were calculated and written to a file for analysis, as
was done during the interim evaluations. The entire cycle of training and testing
comprised a single trial; a total of 20 trials were performed for this investigation for
each of the 775 datasets.

Parameterization. EpiXCS was parameterized as described in Butz and Wilson [4],
except that the population size was set to 500, which was found empirically to be
optimal. In addition, the baseline prediction error (g,) was evaluated over a range
from 0.5 to 4.0 to determine if the randomness of the data affected learning
performance; the default of 1.0 was found to be optimal. Both action set and genetic
algorithm subsumption were performed.

3 Results

3.1 Effects of Missing Data on Learning Performance

The convergence rate (4) of EpiXCS was remarkably stable across all missing value
densities using MCAR data. No variance was noted in progressing from low to high
densities, indicating that the system is not affected by even high proportions of
missing input data during learning. In addition, relatively little variation was found

Table 1. Convergence rate (A) for each covering method. Values averaged over the 20 runs,
and then the 25 datasets at each density.

Covering Method Mean A | SD A
Mode 5.45 2.77
Random assignment 5.49 2.73
Wild-to-Wild 5.44 2.69
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between the three covering methods, as shown in Table 1. In addition, no correlation
was found between A and missing value density.

3.2 Effects of Missing Data on Classification Performance

The evaluation of the effect of missing data on classification performance focused on
comparing the various test characteristics obtained on the testing set with missing
value density, separately for each type of covering. These characteristics included
sensitivity, specificity, AUC, IR, and positive and predictive values. Virtually no
effect of missing data density was observed on classification performance; the mean
values for these metrics were virtually identical across the range of densities. Slight
differences in the mean values for these metrics were noted between the three
covering methods. These differences were not significant, and are shown in Table 2.

Table 2. Test characteristics indicating classification performance on testing data. Values
averaged over the 20 runs, and then the 25 datasets at each density. Standard deviation
represented in parentheses.

Mode Random Wild-to-Wild
Area under the curve 0.970 (0.021) | 0.969 (0.023) | 0.969 (0.022)
Sensitivity 0.967 (0.029) | 0.966 (0.032) | 0.966 (0.031)
Specificity 0.973 (0.026) | 0.973 (0.027) | 0.973 (0.027)
Positive predictive value 0.973 (0.026) | 0.972 (0.026) | 0.973 (0.026)
Negative predictive value | 0.969 (0.027) | 0.968 (0.029) | 0.968 (0.027)
Indeterminant Rate 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)

Correlation of classification accuracy with missing value density. No correlation
was found between classfication accuracy, using any of the above test characteristics,
and missing value density.

4 Discussion

Table 1 clearly demonstrates that neither missing value density nor covering method
affected convergence rate, either positively or negatively. This indicates, at least on
the simple MCAR datasets used in this investigation, that EpiXCS, and indeed XCS
in general, is insensitive to even large amounts of missing data during the training
phase in supervised learning environments. However, it is not yet clear what would
happen when MAR, or particularly NMAR, data need to be covered. Nor is it clear
that this level of learning performance would be seen in larger, more complicated
datasets, consisting of large numbers of features with mixtures of the three types of
missing data, especially where the feature set y consists of larger numbers of features
that may include complicated interactions.

Table 2 demonstrates a similar phenomenon: classification accuracy is essentially
not affected by MCAR-type missing data, across a wide range of missing value
densities. Some slight differences were observed in the evaluation metrics using the
different covering methods, but it is not clear that this should dictate the use of one
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covering method over another. In fact, this study indicates that much more
investigation is needed into the properties of the three covering methods, and in the
face of a wide variety of contrived as well as real datasets.

Limitations of this study. While there is much in this investigation to suggest that
EpiXCS is insensitive to missing data in terms of convergence rate and classification
accuracy, there are several ways to confirm these conclusions. First, only one feature
in the data was used as a candidate for assigning missing data.. It would be
interesting to extend the patterns of missing data to sets of features that included more
than one each, such that x (and/or y, when extended to MAR and NMAR data) would
have many features contained within them. It should be noted, however, that doing so
would substantially increase the complexity of the analysis, due to the possibility for
interactions, so these would have to be handled carefully in creating the datasets.

Second, as noted previously, this study used small datasets. While these provide
the basic groundwork for further investigation, more work needs to be done in
extending this work to larger and real-world data that contain a variety of features
with missing data as well as missing data types.

5 Conclusions

This investigation is the first report into the effects of covering missing data on the
learning and classification performance in an XCS-based learning classifier system.
EpiXCS is insensitive to the missing data used in this study, but this is by no means
the end of the story. Even in the face of the results presented here, researchers would
be wise to exercise caution when employing LCS in any environment that may
contain missing data.

A future task, in addition to researching the effects of covering a wider range of
missing value densities and patterns in a variety of datasets and dataset sizes, is to
study the effects of pre-processing imputation on LCS performance. Imputation
performed by value assignment or multivariate methods (“multiple imputation”) is
typically accomplished by processing the data prior to statistical modeling, and there
is no reason why these procedures couldn’t be used before modeling with XCS. In a
real sense, covering is a form of real-time, system-based imputation, but it is highly
non-traditional in the statistical and machine learning worlds, where missing data are
imputed (“covered”) even prior to exposure to the system. Thus, an interesting
question remains: are standard methods of imputation better than the covering
methods described here, or are they superfluous? Either way, the answer to this
question has serious implications for the use of LCS in a variety of environments and
domains, including maze learning and knowledge discovery, to name two.
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Appendix

Variable-by-variable description of the 25 baseline datasets created by the DataGen
generator. Cell values are modes for each predictor variable, for each dataset. The
class distribution for each dataset was 50% Class 1 and 50% Class 2.
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Abstract. Evolutionary Algorithms (EAs) have been successfully re-
ported by academics in a wide variety of commercial areas. However,
from a commercial point of view, the story appears somewhat different;
the number of success stories does not appear to be as significant as those
reported by academics. For instance, Heuristic Algorithms (HA) are still
very widely used to tackle practical problems in operations research,
where many of these are NP-hard and exhaustive search is often compu-
tationally intractable. There are a number of logical reasons why practi-
tioners do not embark so easily in the development and use of EAs. This
work is concerned with a new line of research based on bringing together
these two approaches in a harmonious way. The idea is that instead of
using an EA to learn the solution of a specific problem, use it to find
an algorithm, i.e. a solution process that can solve well a large family of
problems by making use of familiar heuristics. The work of the authors is
novel in two ways: within the Learning Classifier Systems (LCS) current
body of research, it represents the first attempt to tackle the Bin Packing
problem (BP), a different kind of problem to those already studied by
the LCS community, and from the Hyper-Heuristics (HH) framework, it
represents the first use of LCS as the learning paradigm. Several reward
schema based on single or multiple step environments are studied in this
paper, tested on a very large set of BP problems and a small set of widely
used HAs. Results of the approach are encouraging, showing outperfor-
mance over all HAs used individually and over previously reported work
by the authors, including non-LCS (a GA based approach used for the
same BP set of problems) and LCS (using single step environments).
Several findings and future lines of work are also outlined.
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1 Introduction

Among the main criticisms of bio-inspired algorithms, and in more general terms
of stochastic based problem solving techniques, is the fact that they involve some
randomness throughout several stages of the method. In addition to this, they
generally offer no guarantees of solution quality; the user may have to do many
runs to sample the quality of possible solutions. Many algorithms also have a
sizeable set of parameters that need to be set, a process that can require consider-
able skill and experience. The delivered solution may also be fragile, in the sense
that there is little continuity between problem specification and EA solution:
if you change the problem only slightly, the solution found by re-running the
EA changes drastically. Even renowned academical texts [3I] can be very cau-
tious about them, and users may justifiably prefer to use simpler deterministic
approaches even if those approaches generally produce poorer results.

While evolutionary algorithms have reached maturity in recent years, it is
fair to say that the impact of commercial applications deployed has not met the
expectations set some years ago. Many of the problems are NP-hard [I5] and
exhaustive search, often computationally intractable, is not a viable option. Also,
many state-of-the-art developments on search are too problem-specific or too
knowledge-intensive to be implemented in cheap, easy-to-use computer systems.
As a result, users often employ simpler heuristics which are easy to understand
and implement, even at the expense of poor performances. Commercially, there
is not enough interest in solving optimisation problems to optimality, or even
close to optimality. Instead the interest seems to be in obtaining ”good enough
- soon enough - cheap enough” kind of solutions. It is for these reasons that
HAs are very widely used to tackle practical problems in operations research.
They are also simple, easy to understand and inspire confidence. Besides, many
optimisation problems have simple heuristic methods to solve them, with the
additional benefit that these heuristics may have associated theoretical best and
worst performance limits.

Hyper-heuristics attempt to avoid some of the drawbacks of bio-inspired and
stochastic methods, while exploiting the trust that the heuristic algorithms in-
spire. The idea is to use the evolutionary methods to search for a novel problem-
solving algorithm rather than to solve individual problems. The novel algorithm
is to be constructed from simple heuristic ingredients and should, ideally, be
fast and deterministic and with good worst-case performance across a range of
problems. The general framework that is considered is that of algorithms that
use a simplified problem state description and associate a simple heuristic with
different states. That is, repeatedly: determine the current state of the partially-
solved problem; look up which heuristic to use to extend the solution a little;
apply it -until the problem has been fully solved.

In the following sections, an example of using hyper-heuristic methods to tackle
one-dimensional bin-packing problems is described. XCS [37] is used to learn a
set of rules which associate characteristics of the current state of a problem with
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specific heuristics being used. The set of rules is used to solve problems as men-
tioned: given the initial problem characteristics P, a heuristic H is chosen to pack
a bin, thus gradually altering the characteristics of the problem that remains to be
solved. At each step, a rule appropriate to the current problem state P’ is chosen,
and the process repeats until all items have been packed. This means that different
widely used heuristics can be used to pack one bin, as opposed to only using one.

XCS represents an elegant and simple way to try to fabricate a composite
algorithm, and the interest lies in assessing competitiveness of its performance.
It has already been presented in [30J33], that even when the model was trained
using only a few problems, it generalised and also performed well on a large
number of unseen problems. That was a useful step towards the concept of using
EAs to generate strong solution processes, rather than merely using them to find
good individual solutions. Later work [27I29/28], using alternate EAs (a genetic
algorithm) and applied to a different kind of problem (timetabling) provided
further evidence of the benefits of the hyper-heuristics approach.

In [30] an XCS was applied using exclusively single-step environments, mean-
ing that rewards were available only after each action had taken place. Here
the approach is extended to multi-step environments (preliminary results were
presented at [33], and analysed under two different reward schemes. In the first
one, rewards are assigned on the basis of actions (after one action is the case of
single-step), and in the second one, on the basis of states. Note that a state can
have a large number of actions, and chains of various lenghts can be selected for
both types of rewards. These approaches are tested using a large set of bench-
mark BP problems and a small set of eight heuristics, consisting of widely used
algorithms, and combinations of these devised by the authors.

The work reported here attempts to find an algorithm that iteratively builds
a solution, however it is important to note that this is atypical in the field. It
is more common for an algorithm to start with a complete candidate solution
and then search for improvements by making modifications, eg by some kind of
controlled neighbourhood search. Hyper-heuristics could also be applied to try to
discover a good, fast algorithm of that type, with tightly-bounded performance
costs; this might be a topic for further research and outside the scope of the
present work.

The rest of this paper is organised as follows: in section 2 the idea of hyper-
heuristic is further developed and justified. Section [3 explains the different styles
of LCS and the reasons of choosing the classifier used in this work, the Extended
Classifier System (XCS). Section Hlintroduces one-dimensional bin-packing prob-
lems and some of their features. In section Bl the different heuristics used to solve
the bin-packing problem are presented, followed by descriptions of how the state
of the problem solving procedure is represented. Both, heuristics and state cor-
respond, respectively, to the actions and the messages (context) for the XCS.
Section [ reports the experiments performed, including set-up and results ob-
tained. Finally, in section [0 conclusions are drawn and further lines of research
are suggested.
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2 The Idea of Hyper-Heuristics

Despite the aforementioned mistrust from general practitioners with regards to
evolutionary techniques, their use is often justified simply by results. Evolution-
ary algorithms can be excellent for searching very large spaces, at least when
there is some reason to believe that there are ’building blocks’ to be found. A
"building block’ is a fragment, in the chosen representation, such that chromo-
somes which contain it tend to have higher fitness than those which don’t. EAs
bring building blocks together by chance recombination, and building blocks
which are not present in the population at all may still be generated by muta-
tion. Some EAs allow, as well, reinforcement learning, to be applied when some
measure of reward can be granted to actions that produced good results. This
type of learning procedure is especially useful in tasks where the solution to
be found is a sequence of actions. In particular, learning classifier systems have
repeatedly shown capabilities to deal with this kind of problems.

Hyper-Heuristics represents a step towards a new way of using EAs that may
solve some problems of acceptability, mentioned above, for potential real-world
use. The basic idea of HH is as follows: instead of using an EA to discover
a solution to a specific problem, the EA is used to try to fabricate a solution
process applicable to many problem instances built from simple, well-understood
heuristics. Such a solution process might consist of using a certain heuristic
initially, but after a while the nature of the remainder of the task may be such
that a different heuristic becomes more appropriate to use. Once such solution
process is discovered, it can be provided to users that can apply it as many times,
and to as many different problems, as desired. The problems will be solved using
the reassuring and simple heuristics that users are familiar with. A good general
overview of hyper-heuristics and their applications can be found in [5].

For example, in [35] an early version of this idea was used to tackle large exam
timetabling problems by choosing two heuristics and associated parameters, to-
gether with a test for when to switch from using the first to using the second.
This was motivated by the unsurprising observation that different academic in-
stitutions have very different constraints. One institution might have some very
large exams, limited exam seating and many smaller exams, so that the impor-
tant task early on is to pack those large exams together as far as possible in
order to have plenty of space to deal with placing the many smaller exams. An-
other institution might not have very large exams, but instead the exams can be
clustered such that there are very few inter-cluster constraints, and exam clus-
ters can therefore be viewed as relatively independent sub-problems, for which
one might naturally choose some other heuristic that placed little emphasis on
packing large exams.

The key idea in hyper-heuristics is to use members of a set of known and
reasonably understood heuristics to transform the state of a problem. The key
observation is a simple one: the strength of a heuristic often lies in its ability
to make some good decisions on the route to fabricating an excellent solution.
Why not, therefore, try to associate each heuristic with the problem conditions
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under which it flourishes and hence apply different heuristics to different parts
or phases of the solution process?

The alert reader will immediately notice an objection to this whole idea. Good
decisions are not necessarily easily recognisable in isolation. It is a sequence of de-
cisions that builds a solution, and so there can be considerable epistasis involved
- that is, a non-linear interdependence between the parts. However, many general
search procedures such as evolutionary algorithms and, in particular, classifier
systems, can cope with a considerable degree of epistasis, so the objection is not
necessarily fatal.

Therefore, a possible framework for a hyper-heuristic algorithm:

1. Start with a set H of heuristic ingredients, each of which is applicable to a
problem state and transform it to a new problem state.

2. Let the initial problem state be Sy

3. If the problem state is S; then find the ingredient that is in some sense
most suitable for transforming that state. Apply it, to get a new state of the
problem S; 1

4. If the problem is solved, stop. Otherwise go back to 3.

There could be many variants of this, for example, in which the set H varies
as the algorithm runs or in which suitability estimates are updated across the
iterations, or in which the size of a single state transformation varies because the
heuristic ingredients are dynamically parameterised. There is very considerable
scope for research here.

3 Learning Classifier Systems

This section is intended for readers not familiar with LCS in general. For those
who are, it might be best to go to the following section.

3.1 Introduction to LCS

As defined in [I7], a ”classifier system is a machine learning system that learns
syntactically simple string rules (called classifiers) to guide its performance in
an arbitrary environment”, where machine learning primarily refers to systems
which acquire and improve knowledge by using input information.

In LCS, the general idea is to learn concepts through decision rules that ac-
count for positive examples in order to "predict a classification of previously
unseen examples, or suggest (possibly more than one) classifications of partially
specified descriptors” [26]. The learning takes place by adjusting certain values
associated to the rules according to the environmental feedback they receive and
by discovering new and better rules. Considering that chromosomes are good
ways of representing knowledge as well as good candidates to be manipulated
by genetic operators, the GA community quickly responded with two distinc-
tive approaches that were labelled according to the Universities where they were
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developed: Pittsburgh (or 'Pitt approach’; led by De Jong and his students) and
Michigan (mainly led by Holland, Reitman and Booker).

In the Pittsburgh-style classifier approach (also known as population of rule-
sets approach), the competition occurs between rule-sets. The idea here is ”to
represent an entire rule set as a string (an individual), maintain a population
of candidate rule sets, and use selection and genetic operators to produce new
generations of rule sets” [I0]. So, the population is composed of multiple rule-
sets competing to mate other rule-sets and exchanging individual rules with the
hope to combine rules over many generations to form an effective rule-set.

In the Michigan-style approach (population of rules approach), it is pointed
out in [I0] that ”the members of the population are individual rules and a
rule set is represented by the entire population (e.g., see [I813])”. In this view,
individuals compete via fitness for reproductive rights. The competition of rules
takes place within the set of rules, and highly fit individuals have the opportunity
to match with other highly fit individuals with the hope of increasing survival
characteristics of their progeny.

The main difference between these two approaches, apart from their State of
origin, resides in the nature of the members of the population created: either
single rules, or sets of rules.

3.2 Choosing the Appropriate Classifier

The classifier used in this work is of the Michigan type. As mentioned above,
learning classifier systems of the Michigan type evolve a set of condition-action
rules, by measuring the performance of individual rules and then periodically
using crossover and mutation to breed new rules from old ones. An early account
can be found in [I7], and a collaction of more recent work in [2112212324U344].

In early learning classifier systems, rules occasionally did an action that earned
external reward, and this contributed to the rule’s fitness and to the fitness of
those that enabled it to fire. Earned rewards were spread by the so-called 'bucket
brigade algorithm’ (effectively a trickle-down economy) or ’profit-sharing plan’
(essentially a communal reward-sharing) or other such algorithm. However, in
those early systems, a rule’s fitness was a measure of the reward it might earn
(when considering what rule to fire) and also a measure of the reward it had
earned (when selecting rules for breeding). This caused various problems, notably
that rules which fired very rarely but were crucial when they did, would tend to
be squeezed out of the population by the evolutionary competition, long before
they could demonstrate their true value. XCS [37] largely fixed this by instead
valuing a rule for the accuracy rather than the size of its prediction of reward.

For this reason — because, in this application, there might be heuristics which
were rarely used but crucial — it was chosen to use XCS rather than, say, Gold-
berg’s SCS.

3.3 The End Product

The idea behind XCS is that the end product of combining accuracy and a niche
GA results in a complete and accurate mapping X x A => P from inputs and
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actions to payoff predictions. Further, as Wilson stated ”XCS tends to evolve
classifiers that are maximally general subject to an accuracy criterion, so that
the mapping gains representational efficiency. In traditional classifier systems
there is in theory no adaptive pressure toward accurate generalisation, and in
fact accurate generalised classifiers have rarely been exhibited, except in studies
using payoff regimes biased toward formally general classifiers (e.g. [36])”.

The classic paper entitled ” A Critical Review of Classifier Systems” [38] gives
a good summary of the unsolved problems and new challenges that LCS faced
in the late 80s. Since then, there have been great accomplishments in theoretical
aspects (mapping performance and generalisation), of XCS solving a variety of
single-step environments such as the boolean multiplexer and sequential envi-
ronments (multi-step) like the woods-type of problems.

4 One-Dimensional Bin-Packing Problems

In the one-dimensional Bin Packing problem (1DBPP), there is an unlimited
supply of bins, each with capacity ¢ (a positive number). A set of n items is to
be packed into the bins, the size of item i is s; > 0, and items must not over-fill

any bin:
> wse
iebin(k)

The task is to minimise the total number of bins used. Despite its simplicity,
this is an NP-hard problem. If M is the minimal number of bins needed, then

clearly:
n

M =3 s/l
i=1
and for any algorithm that does not start new bins unnecessarily, M < bins used <
2M (because if it used 2M or more bins there would be two bins whose combined
contents were no more than ¢, and they could be combined into one).

Many results are known about specific algorithms. For example, a commonly-
used algorithm is Largest-Fit-Decreasing (LFD): items are taken in order of
size, largest first, and put in the first bin where they will fit (a new bin is
opened if necessary, and effectively all bins stay open). It is known [19] that this
uses no more than 11M/9 + 4 bins. A good survey of such results can be found
in [9]. A good introduction to bin-packing algorithms can be found in [25], which
also introduced a widely-used heuristic algorithm, the Martello-Toth Reduction
Procedure (MRTP). This simply tries to repeatedly reduce the problem to a
simpler one, by finding a combination of 1-3 items that provably does better
than anything else (not just any combination of 1-3 items) at filling a bin, and if
so packing them. This may eventually halt with some items still unpacked; the
remainder are packed using a 'largest first, best fit” algorithm.

Various authors have applied EAs to bin-packing, notably Falkenauer’s group-
ing GA [T2[T4UT3]; see also [20] for a different approach. Falkenauer also produced
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two of several sets of benchmark problems. In one of these, the so called triplet
problems, every bin contains three items; they were generated by first construct-
ing a solution which filled every bin exactly, and then randomly shrinking items
a little so that the total shrinkage was less than the bin capacity (thus the same
number of bins is necessary). Note that these algorithms solve each problem in
independent runs for each one.

As ever, specific knowledge about problems can help greatly. Suppose you know
in advance that each bin contains exactly three items. Take items in order, largest
first, and for each item search for two others that come very close to filling the bin.
A backtracking algorithm that considers such ’filler pairs’, taking pairs in which
the two members at most nearly equal in size first and permitting only limited
backtracking, solves many of the Falkenauer triplet problems very quickly. See [16]
for some questions about whether these problems are hard or not.

The reader may wonder if the simple strategy of searching for a combination
of items which come as close as possible to filling a bin, thereby reducing the
problem to a simpler one in which there seems to be more available slack, is a
good one. But consider a problem in which bins have capacity 20 and there are
six items: 12, 11, 11, 7, 7, 6. One bin can be completely filled (7 + 7 4 6) but
then three more bins are needed since the three largest items are each larger
than half a bin. If bins are under-filled, then a three-bin solution is possible, for
example 1247, 11+ 7, 11+ 6. This should help to convince the reader that even
one-dimensional bin-packing problems have their interest. And they are worth
studying, because bin-packing is a constituent task of many other optimisation
problems; exam timetabling is just one such example.

4.1 Bin-Packing Benchmark Problems

The problems used in this work come from two sources. The first collection is
available from Beasley’s OR-Library [I], and contains problems of two kinds that
were generated and largely studied by Falkenauer [I3]. The first kind, 80 prob-
lems named uN_M, involve bins of capacity 150. N items are generated with sizes
chosen randomly from the interval 20-100. For N in the set (120,250,500, 1000)
there are twenty problems, thus M ranges from 00 to 19. The second kind, 80
problems named tN_M, are the triplet problems mentioned earlier. The bins have
capacity 1000. The number of items N is one of 60, 120, 249, 501 (all divisible
by three), and as before there are twenty problems per value of N. Item sizes
range from 250 to 499 but are not random; the problem generation process was
described earlier.

The second class of problems studied in this paper comes from the Operational
Research Library [2] at the Technische Universitit Darmstadt. Their 'bppl-1’
set and their very hard ’bppl-3’ set were used in this paper. In the bppl-1 set
problems are named NxCyWz_a where x is 1 (50 items), 2 (100 items), 3 (200
items) or 4 (500 items); y is 1 (capacity 100), 2 (capacity 120) or 3 (capacity
150); z is 1 (sizes in 1...100), 2 (sizes in 20. ..100) or 4 (sizes in 30...100); and a is



A Hyper-Heuristic Framework with XCS 201

a letter in A...T indexing the twenty problems per parameter set. (Martello
and Toth [25] also used a set with sizes drawn from 50...100, but these are far
too easy to solve so they have been excluded from this work.) Of these 720
problems, the optimal solution is known in 704 cases and in the other sixteen, the
optimal solution is known to lie in some interval of size 2 or 3. In the hard bpp1-3
set there are just ten problems, each with 200 items and bin capacity 100,000;
item sizes are drawn from the range 20, 000...35,000. The optimal solution is
known in only three cases, in the other seven the optimal solution lies in an
interval of size 2 or 3. These results were obtained with an exact procedure
called BISON [32] that employs a combination of tabu search and modified
branch-and-bound.
In all, therefore, 890 benchmark problems are used.

5 Combining Heuristics with XCS

This section is divided into three parts. The first subsection describes the heuris-
tics used, addressing why they were selected. The next subsection describes the
representation used within XCS. Finally, how XCS is used to discover a good
set of rules is explained.

5.1 The Set of Heuristics

First, a variety of heuristics were developed and their performances were evalu-
ated on the benchmark collection. Of the fourteen that were implemented and
tested, some were taken directly from the literature, others were variants cre-
ated by the authors. Some of these algorithms were always dominated by others;
among those that sometimes obtained the best of the fourteen results on a prob-
lem, some were always first-equal, rather than being uniquely the best of the
set. There is no space here to describe the full set, but four, whose performance
seemed collectively to be representative of the best, were selected as follows:

— Largest Fit Decreasing (LFD), described in Section l above. This was the
best of the fourteen heuristics in over 81% (compared with other heuristics
tested and not with the results reported in literature) of the bpp1-1 problems,
but was never the winner in the bppl-3 problems.

— Next-Fit-Decreasing (NFD): an item is placed in the current bin if possible,
or else a new bin is opened, becoming the current bin where the item is
placed. This is usually very poor.

— Djang and Finch’s algorithm (DJD), see [I1]. This puts items into a bin,
taking items largest-first, until that bin is at least one third full. It then
tries to find one, or two, or three items that completely fill the bin. If there
is no such combination it tries again, but looking instead for a combination
that fills the bin to within 1 of its capacity. If that fails, it tires to find such a
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combination that fills the bin to within 2 of its capacity; and so on. This of
course gets excellent results on, for example, Falkenauer’s problems; it was
the best performer on just over 79% of those problems but was never the
winner on the hard bppl-3 problems.

— DJT (Djang and Finch, more tuples): devised by the authors, this corre-
sponds to a modified form of DJD, considering combinations of up to five
items rather than three items. In the Falkenauer problems, DJT performs
exactly like DJD, as one would expect; in the bppl-1 problems it is a little
better than DJD.

In addition to these four, a filler’ process was also used (coupled with each
algorithm), which tried to find items to pack in any open bins, rather than
moving on to a new bin. This might, for example, make a difference in DJD if
a bin could be better filled by using more than three items once the bin was
one-third full. Thus, in all, eight heuristics were used. The action of the filler
process is described later.

5.2 Representing Problem State for XCS

As explained above, the idea is to find a good set of rules each of which associates
a heuristic with some description of the current state of the problem. To execute
the rules, the initial state is used to select a heuristic and that heuristic is used
to pack a bin. The rules are then consulted again to find a heuristic appropriate
to the altered problem state, and the process repeats until all items have been
packed.

The problem state is reduced to the following simple description. The number
of items remaining to be packed are examined, and the percentage R of items in
each of four range is calculated. These ranges are shown in table [

Table 1. Item size ranges

Huge: items over 1/2 of bin capacity

Large: items from 1/3 up to 1/2 of bin capacity
Medium: items from 1/4 up to 1/3 of bin capacity

Small: items up to 1/4 of bin capacity

These are, in a sense, natural choices, since at most one huge item will fit in
a bin, at most two large items will fit a bin, and so on. The percentage of items
that lie within any one of these ranges is encoded using two bits as shown in
table

Thus, there are two bits for each of the four ranges. Finally, it seemed impor-
tant to also represent how far the process had got in packing items. For example,
if there are very few items left to pack, there will probably be no huge items
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Table 2. Representing the proportion of items in a given range

Bits Proportion of items

00 0-10%
01 10 - 20%
10 20 - 50%
11 50 —100%

Table 3. Percentage of Items Left

Bits % left to pack Bits % left to pack
000 0-125 100 50-62.5
001 125-25 101 625-75
010 25-37.5 110 75-875
011 37.5-50 111 87.5-100

left. Thus, three bits are used to encode the percentage of the original number
of items that still remain to be packed; table Bl illustrates this.

The action is an integer indicating the decision of which strategy to use at
the current environmental condition, as shown in table[d As mentioned earlier,
the second four actions use a filler process too, which tries to fill any open
bins as much as possible. If the filling action successfully inserts at least one
item, the filling step finishes. If no insertion was possible, then the associated
heuristic (for example, LFD in 'Filler+LFD’) is used. This forces a change in
the problem state. It is important to remember that the trained XCS chooses
deterministically, so that it is important for the problem state (if not the state
description) to change each time, to prevent endless looping.

Table 4. The action representation

Action Meaning, Use Action Meaning, Use

000 LFD 100 Filler + LFD
001 NFD 101 Filler + NFD
010 DJD 110 Filler + DJD
011 DJT 111 Filler + DJT

The alert reader might wonder whether the above problem state description
in some way made heuristic selection an easy task. However, when each of our
14 original heuristics were evaluated, it was found that many cases where two
problems had the same initial state description, but different algorithms, were
the winners of the 14-way contest. For each of the 14 algorithms it was tried
using a perceptron to see whether it was possible to classify problems into those
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on which a given algorithm was a winner and those on which it was not a winner.
In every case, it was not possible, and therefore the learning task faced by XCS
was not a trivial one.

6 The Experiments

The core of the application is Martin Butz’ version of XCS [6I7/S], freely available
over the web from the IIliGAL site. The reward scheme, including when and
what to reward, lies in a level above the general XCS implementation. Some
modifications were made for multi-step environment, which will be explained
below, but the core remained the same, in an effort of providing more evidence
of the usefulness and generality capabilities of XCS. The XCS parameters used
were exactly as in [37], unless otherwise stated.

6.1 Set-Up

Training and Testing Sets: Each set of bin-packing problems is divided into
training and test sets. In each case, the training set contained 75% of the prob-
lems; every fourth problem was placed in the test set. Since the problems come
in groups of twenty for each type, the different sorts of problem were well repre-
sented in both training and test sets. All types of problems were combined into
one large set of 890 problems that divided in training and test sets in the same
manner. The reports below focus only on results by this combined collection,
in which the training set has 667 problems and the test set has 223 problems.
Other results obtained with the different types of problems have been omitted
due to space limitations. The combined set provides a good test of whether the
system can learn from a very varied collection of problems.

Computational Effort: The experiments proceeded as follows. A limit of L for
training cycles for XCS was set, where the values tried were L = 10000, 15000,
20000, 25000, 30000. During the learning phase, XCS first randomly chooses a
problem to work on from the training set. One step, whether explore or exploit,
usually corresponds to filling one bin (see below more about steps). In an explore
step the action is chosen randomly, in an exploit step it is chosen according to the
maximum prediction appropriate to the current problem state description. This
is repeated until all the items in the current problem have been packed. A new
random problem is then chosen. A cycle will always be considered as packing a
single bin (some ’steps’ can pack several bins). Clearly, a large problem such as
one of the u1000_M will consume a great number of cycles.

Recording the Results: The best result obtained on each problem during this
training phase is recorded. Remember, however, that training continues, so the
rule set may change after such best result was found. In particular, the final rule
set at the end of the training phase might not be able to reproduce the best
result ever recorded on every problem. Note as well that, during training, there
is some exploration that uses random choices. Nevertheless, it is reasonable to
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record the best result ever found during (rather than at the end of) training
on each problem also, because these are still reproducible results, by re-running
the training with the same seed, and easily so. That best result obtained during
training will be termed as TRB. It represents a potential achievable result for
the hyper-heuristics.

At the end of training, the final rule set is used on every problem in the same
training set to assess how well this rule set works. This is done using exploitation
all the time so the result may be worse than the aforementioned best result
recorded during the training process. This reproducible training result will be
referred to as TRR.

Of course, the classifier obtained is also applied to every problem in the test
set to measure the generalisation capabilities of the process. These test results
will be shown under the label TST.

In summary, there would be two values for the training problems set: best
ever explored (TRB) and the best recalled (TRR). Likewise, there is one value
for the testing problems set (TST). All results shown are averages over ten runs
with different seeds, unless stated otherwise.

In previous work [S0/27I33] comparisons where made not only against the best
results reported in literature, but also with the best result obtained by any of the
constituent heuristics used. This makes sense, as a fair measure of the synergistic
effect of hyper-heuristics is to compare it with the best of all of its individual
components for each problem. However, since results of these comparisons were
excellent —always above 98% and for the extra 2%, only one extra bin was used—
, demonstrating the convenience of using hyper-heuristics over single heuristics
has been set aside in this work. So in what follows, only comparisons against
best results reported in literature will be provided.

Rewards: The reward earned is proportional to how efficiently a bin was packed.
For example, if a bin is packed to 94% of its capacity, then the reward earned
is 0.94. Remember that 'packing’ here means continuing to the point where the
heuristic would switch bins, rather than optimally packing. A reward of 1.0 is
paid for packing the final bin. Otherwise, an algorithm which, say, placed the
final item of size 1 in a final bin in order to complete the packing, would earn
only 0.01. The filler is rewarded in a slightly different way; it is rewarded in
proportion to how much it reduces the empty space in the open bins.

Random Algorithm for Comparison: The problems where also solved using
an algorithm that chooses randomly a heuristic to be applied. This is done to
double check that the algorithm is learning indeed. The results are also aver-
aged over 10 seeds as well. However, the random choice of the heuristic solved
optimally only 50.4% and 54.9% of the problems on the training and test sets
respectively, and the HH reaches over 80%. Since the value is so low, it is not
included in the following figures. But note that the "random” word that appears
in the results shown later, refers to random size of multi-step chains, not to the
random algorithm; this will be explained.



206 J.G. Marin-Blézquez and S. Schulenburg

6.2 Alternatives Explored

In the experiments performed, the focus was directed towards several aspects
considered interesting to study. These are as follows:

Step by State/Action: In [30] one step is defined as packing one bin (LFD was
modified to pack only one bin and stop). From deeper study of the sequences
of actions applied and the status of the problems, it was clear that in many
cases the filling of a single bin does not change the status itself, given the binary
representation proposed. It is easy to see that, as what is represented is ranges,
and not absolute values, slight changes may not be reflected immediately in a
change of status. As an alternative, one step can be considered to be taking a
'single action’ (the repetition of the same single bin packing action) until there
is a change of state.

The reward is the average of the different rewards obtained in each action of
packing a single bin, and is only applied once at the change of state. For example,
if four actions of type 2 were applied to perform a single step by state —2222—
and each action has rewards of, say: 990, 560, 230, and 870, the reward given to
the action set (the rules that suggested the action) would be 990+560+230+870
= 2650/4 = 662.5, and it will be rewarded only once.

Single-Step and Multiple-Step Environment: As mentioned, in single step
environments, rewards are available at every step (being this step delimited by
either a change of state or action). A multi-step environment allows to consider
sequences of steps and be rewarded together as a chain. This means that the
reward can be paid after performing a number of complete states, or individual
actions (depending if step by state is used or not, respectively). In these cases
is likely that several and different actions are applied in one multi-step. Several
multi-step chain sizes have been tried, namely chains of size 2, 5 and 10 actions.
In addition, a random length from 2 to 10, but biased towards small numbers
(in particular the smallest of 3 equally probable random numbers between 2 and
10), was also tested. The results on the following tables refer to this random size
of chain length, and should not be confused with the aforementioned result of a
Random choice of heuristics.

Combining Single-Step and Multi-Step, with Step by Action or by
State: Combining single or multiple step with step by action or state can be
confusing. To clarify the procedure, let’s consider the following example:

Given a hypothetical sequence of actions (dash represent a change in state)
as follows:

-222 - 11 -3333- 2 - 111 - 1

S GARNE T

S1 Sa S3 S4 Ss Se

Here, there are 6 different states and 14 different actions of 3 types. Each of the

14 actions produces a potential reward r; based, as mentioned, in how efficient
was the packing of a single bin.

In the sequence below, underlines will represent where the reward pointed by

the upwards arrow is applied. Overbraces will represent how the rewards to be
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used are obtained (by averaging). If Single Step and Step by Action is used,
then each single one is rewarded with its own action reward value r;, the reward
routine is therefore called 14 times, as shown below:
T1 T2 T3 T4 T5 T6 r7 T8 9 T10 T11 T12 13 T14
ANASNASN AN AN AN AN AN AN AN AN AN AN AN
2 2 2 1 1 3 3 3 3 2 1 1 1 1
T 1 1 T 1 1 T 1 1 T T 1 T T

T1 2 T3 T4 5 Te 7 8 T9 Ti0 Ti1  Ti2 713 T14
If Single Step and Step by State is used, then the rewards are averaged for
each state, and rewards applied only once per state, therefore rewards were given
6 times, as follows:
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If a Multi-Step (of, for example, chain size 2) and Step by Action is used, then
each action is rewarded with the average of its multiple step. In this example it
means that the two rewards of the multi-step are averaged, and then the result is
awarded to each component individually. So there are 7 different reward values,
but these are given 14 times (because there are 14 actions), as represented here:
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Finally, if Multi-Step (size 2) and Step by State is used, then rewards are
calculated as the averages of the rewards of the states (already averaged over
its actions as explained in Step by State), and awarded only once per state.
Therefore there are 3 different reward values, given 6 times:

Ry R2 Rs
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M1+ M. M. ]\/? M5+ M,
Ry = 1-52 Ry = 3-54 Ry = 0‘56
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A keen reader may realise that if the step is by action, it is not necessarily
true, that the sequences of actions in the same state are of the same type, at
least during training. This is so because in an exploration cycle, a random action
is chosen regardless of what the classifier may be suggesting. Nevertheless, this
does not invalidate the example, as it is easy to see, that when step by action is
used, each action executed is finally rewarded individually. On the other hand,
when using step by state the classifier is only consulted once for each time the
state changes, no matter how many actions are required. Therefore, in step by
state, all the actions for that state are of the same type. Likewise the classifier
is rewarded only once (with the averages shown above) for the whole group of
actions.

Exploration vs Exploitation Scheme: The results reported in [30] used a
50/50 explore/exploit ratio. In the present work it was considered interesting
to try an alternative schema. It is simply lineally decreasing from 100/0 ex-
plore/exploit ratio at the beginning of the search, to a 0/100 explore/exploit
at the end. This ratio is the epsilon parameter of the XCS implementation of
Martin Butz.

6.3 Results

Exploration vs Exploitation Scheme: Figure [Tl shows average runs with a
multi-step of size 2 and with step by state for the two schemes for the epsilon
value, namely decreasing or 50/50, drawn against the number of training steps.
There is a rather consistent but slight advantage, when less training steps are
allowed, of the 50/50 scheme over the decreasing one. This seems to point to
the fact that very early in the training, some general rules are learnt, and its
exploitation during these first stages has, in general, a positive effect. The bin
packing problem is sensible to inappropriate early allocations, no matter how
efficiently the last bins are packed. Excess of randomness usually produces poor
results. This can have dramatic effects when trying to learn long chains. Never-
theless, as more training is allowed, the differences become less significant within
the same chain length. Interestingly, as it will be seen later, the 50/50 scheme,
when allowed enough time, seems to have a synergistic effect with step by state.

Computational Effort: Figure shows average runs with exploration/
exploitation in decreasing mode and step by state for steps of size 1 and 2 drawn
against the number of training cycles. As it can be expected, the more cycles
allowed to the classifier, the better the results. Nevertheless, there are differences
between the best ever obtained while training (TRB) and what can be later re-
called (TRR) on the same training problems (see section [6.1]). While the former
is obtaining better and better results, the latter seems to level near the 80%. This
points to the fact that it seems that although the heuristics can be combined
to achieve the results given by TRB values, the classifier, in exploiting mode
(TRR), is unable to reproduce them later. It seems that the representation of
the state is too poor to provide enough information about situations where other
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Chain Size 2, Step by State
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Fig. 1. Exploration vs Exploitation

actions are more fruitful. Remember that in exploiting mode the same action is
performed until the state representation changes, as expected of a deterministic
algorithm. There is sufficient evidence of the learning capabilities of XCS, even
within the limitations of its binary representation, so research was conducted
to evaluate the effects of using more information for the state representation
[2928] and with alternative learning methods using real numbers [27]. There
was a substantial increase in performance, reaching values close to the best of
training. This seems to support the idea that the state representation used can
be improved and that XCS will then be provided with enough information to
properly discriminate. Experiments with extended status representations using
XCS are proposed as further research.

Single step seems to have a ceiling of performance at around 78% on TRR
values (on the averaged results). This ceiling is reached with just 10000 cycles,
except with Epsilon Decreasing and Step by Action, which needs 25000 cycles.
More cycles do not improve the results significantly. Figure [3 shows, for a 50/50
Epsilon schema and step by state, the effect on performance for several different
training efforts with regards to the length of the chains used in single and multi-
step environments. There, the small impact of increasing the number of cycles
on single step environments can be seen. It seems to learn fast what it can learn.
But that is below what multi-step environments can achieve, albeit with more
computational effort, as will be seen next.
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Epsilon Decreasing, Step by State
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Fig. 2. Computational Effort

Step by Action vs Step by State: Figure [ shows average runs with explo-
ration/exploitation in decreasing mode and 25000 training cycles, using either
step by action or step by state, drawn against the size of the multiple step used.
Figure Bl shows the same, but using an exploration/exploitation scheme of 50/50.
The most striking difference when comparing the type of step used is that TRB
values are much better when step by state is used. This provides more evidence
of the harmful effect of too much randomness. Remember that step by state
means the same action during a particular state while by action it means that
there can be several random exploration attempts for that same state. Consis-
tent use of an action under the same conditions (same state) seems to be useful
indeed. XCS is very robust to take advantage of less exploration if the new rules
are accurate enough.

On the other hand, state by action performs worse than step by state on TRR
and TST as well. Remember that these are the results provided by the classifier
once the learning has finished. This is to be expected, as it makes easier the
reinforcement learning by providing more consistent and smooth rewards for the
same position, making predictions more accurate. State by action would focus
on same set of rules several times, until there is a change in state. As reward
variability can be high due to the limited information provided to XCS, it seems
to have disruptive effects on accuracy of predictions, and it appears to slow down
the learning.



A Hyper-Heuristic Framework with XCS 211

Epsilon 50/50, Step by State
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Fig. 3. Single vs Multiple step approach

Single vs Multiple Step Approach: Again, figures @ and E] show the effect
on multiple step learning of both epsilon schemes and also the use of step by
action and by state. In [33] early experiments with multiple step (size 2) and
step by state provided promising results on its impact in hyper-heuristic bin
packing using XCS. When, in this work, larger chains were tested, a decrease in
performance was clearly revealed. While size 2 and step by state with 50/50 ep-
silon schema outperformed single step, it failed to generalise with longer chains.
It needs many more training cycles to achieve closer results. Figure Bl shows how
the longer the chain, the more training needed. Nevertheless, remember that in
multiple step environments the rewards are usually given much less frequently
than in single environment (or using action as the step). Training cycles are
counted as bins packed, and not as rewards applied, and rightly so, as the bin
packing procedure is much more costly than rewarding the classifier. It would
be unfair to count rewards applied instead of bins packed, because it would hide
the computational effort needed to achieve similar results.

On the other hand, as mentioned above, when the size of the chain to be learnt
becomes larger, a more stable reward schema produces much better results and
needs less training. Decreasing epsilon, with its many random choices, at the
beginning and possibly insufficient exploration at the end, makes more difficult
the learning of long chains. Martin Butz’s 50/50 ratio seems a better schema,
especially when combined with step by state. That effect is clear in Fig Bl
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Epsilon Decreasing, 25000 training cycles
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This result of a performance peak on size 2 chains while it decreases on longer
chains is very interesting. It suggests that there must be pairs of actions that
seem to be useful enough, one after the other, as to easily emerge after the
reinforcement learning. This is so even though, as mentioned, the XCS receives
less updates via rewards. Unfortunately, longer chains seem not to be as useful
for the bin packing problem as to easily overcome this decrease in the application
of rewards that the proposed multi-step environment require.

Of course, it may also be that 10000, the minimum number of cycles chosen,
is enough for the size 2 chains to overcome the reduction in rewards applied, and
that single environments have reached their ceiling some cycles before. But this
then highlights the potential of multi-step environments, as the ceilings seem to
be above single step ones. The issue then will be at which computational cost to
achieve a gain. Here 10000 cycles is enough, under Epsilon 50/50 and Step by
State (see fig. Bl), for multi-step environments to start to show its potential.

Best Runs: While the results provided are averages, on several runs of the
XCS training, to show the general behaviour expected, it is true that a single
run is usually easily affordable (with respect to computer use) in applications
that are not time-critical. This means that several runs with different seeds can
be computed, and the best chosen as the final product. Figure [6l shows the best
results (here only TRR and TST are shown) out of the 10 runs for Step by
State, Epsilon 50/50 for the chain sizes 1, 2 and 10, drawn against the number
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Epsilon 50/50, 25000 training cycles
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of cycles allowed for training. Here it is more clear that longer chain schemes
may catch up with shorter ones, but at the cost of much more training. This
graph also hints that with the configuration used, the status chosen and the
heuristics available, the best recallable XCS is at around the 82% mark, with
80% on the testing set. The best attainable ever found (that is, the best TRB
result) reached an exceptional 86.1% of optimality.

6.4 Generalisation Properties

Although not previously mentioned, it seems clear from the figures that the
results on the testing set where similar to those obtained in the training set, a
good indication that the system is able to generalise well. Results of the exploit
steps during training are very close to results using a trained classifier on new test
cases. This means that particular details learnt (a structure of some kind) during
the adaptive phase (when the classifier rules are being modified according to
experience, etc.) can be reproduced with completely new data (unseen problems
taken from the test sets). As an example, as already reported in [30], for one of
Falkenauer’s problems, DJD (and our DJT) produced a new best, and optimal
result (this had already been reported in [II] where DJD was described). Even if
this problem is excluded from the training set, the learnt rule set can still solve
it optimally.
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Epsilon 50/50, Step by State (Max values out of 10 runs)
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7 Conclusions and Further Work

This work has extended the experiments and applied some of the suggested
enhancements of previous work [30127/33] on applying hyper-heuristics to the
bin packing problem using learning classifiers. Several reward schemes have been
tested, in combination with alternate exploration/exploitation ratios, and several
sizes and flavours of multi-step environments.

It will be appreciated that the scope of this work is broad. Attempts have been
made to address several important issues, including narrowing the gap between
the use of heuristic algorithms and evolutionary algorithms, and that of academic
reports, and real-world applications. In summary, XCS was able to create a
solution process that performed competitively well on a large collection of NP-
hard, non-trivial problems found in literature. The system performed better than
any of its constituent individual heuristics, and always performed better than
the worst of the algorithms involved.

In particular, when using the heuristics independently, the best one of all (our
own DJD version), achieved optimality in around 73% of the problems. However,
the evolved XCS rule-sets were able to produce optimal solutions for over 78% of
the problems (on unseen testing problems) in single-step environments, and over
81% in multi-step environments (also on unseen testing problems), while in the
rest it produced a solution very close to optimal. The best attainable found was
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86.1%, which indeed represents an exceptionally good result given the ingredients
used, and a considerable improvement from previous work reported.

Experiments showed that multistep environments of small size, under the right
conditions of step by state and a simple 50/50 exploration/exploitation ratio
outperform single step results. Longer chain schemes need much more training,
although it must be stressed that they receive less updating in the learning. This
research also hints that schemes of even exploration/exploitation rates seem to
help the XCS to learn long chains faster.

In addition, results seem to point out that multi-step environments can obtain
better results than the single step environments could ever achieve. The ceiling,
after which an increase of training cycles does not provide better results, appears
to be higher in multi-step environments.

Throughout the paper some suggestions for further research have been out-
lined, including the following:

— The number of heuristics could be increased to give more options to the sys-
tem. This can make learning harder, but could improve results a bit further.

— The number of available heuristics could be changed as conditions change.
For example, some heuristics can be good at the first choices, while others are
good finishers. Allowing different subgroups of heuristics in different general
conditions can increase the effective options, while not burdening the system
with many of them at the same time, as just a few would be active at a given
moment.

— Adding more (or different) information could help XCS to discriminate more
situations. This, again could result in more complex learning process, since
each additional bit multiplies by 3 times the number of possible antecedents
of the rules. Later work on related problems [29)28] have hinted that, for
example, the percentage of items left, may not be as informative as expected,
and that these bits could be used to provide other kind of information to
the system.

— The hyper-heuristic explained here is constructive, meaning that it builds a
solution step by step, until a complete solution is obtained. There is no tuning
of that final solution. Hyper-heuristics, in principle, can also be designed to
be used in a tuning process to be pipelined after the constructive one. Using
the proposed approach of: ”given a state, apply this heuristic”, one must
remember that statuses must eventually change, or endless looping would
occur. As tuning is usually hill-climbing style, and decrease in performance
is usually unaccepted, the suggested actions may not be applied and, if status
is based just on the solution, no change is reflected. A simple way to avoid
this would be to include a kind of timer in the status designed, which would
force changes in the state, even if the solution is not being modified.

— One of the disadvantages mentioned of multi-step environments is that it may
take much longer to achieve results similar to those achieved by shorter chain
environments. A way to speed up the learning could be to create multi-action
classifiers. It can be interesting to test learning classifiers with actions that
would encode fixed sequences of actions instead of expecting them to emerge
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from the reward schemes proposed for long chains of individual actions. They
would move from point A to C without having to visit B, and making B
to learn to go to C. Although this is, in fact, similar to revert to single
environments, but giving them a higher variety of options. Besides, this is
not as straightforward as it sounds, as it only can be applied to step by
action. Remember that step by state can not foresee the number of actions
to be taken needed to change the state. And of course, the idea behind step
by state is, precisely, that each step taken changes the state.
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Abstract. Previous work [I] introduced a new approach to value func-
tion approximation in classifier systems called hyperplane coding. Hyper-
plane coding is a closely related variation of tile coding [I3] in which
classifier rule conditions fill the role of tiles, and there are few restric-
tions on the way those “tiles” are organized. Experiments with hyper-
plane coding have shown that, given a relatively small population of
random classifiers, it computes much better approximations than more
conventional classifier system methods in which individual rules com-
pute approximations independently. The obvious next step in this line
of research is to use the approximation resources available in a random
population as a starting point for a more refined approach to approx-
imation that re-allocates resources adaptively to gain greater precision
in those regions of the input space where it is needed. This paper shows
how to compute such an adaptive function approximation.

1 Introduction

Considerable attention has been paid to the issue of value function approxi-
mation in the reinforcement learning literature [I3]. One of the fundamental
assumptions underlying algorithms for solving reinforcement learning problems
is that states and state-action pairs have well-defined values that can be ap-
proximated and used to help determine an optimal policy. The quality of those
approximations is a critical factor in determining the success of many algorithms
in solving reinforcement learning problems.

One approach to improving approximation quality in classifier systems is to
increase the computational abilities of individual rules so that they become more
capable function approximators (e.g., [I6l3]). Another idea is to look back to the
original concepts underlying the classifier system framework and seek to take
advantage of the properties of distributed representations in classifier systems
[2]. This paper follows in the spirit of the latter approach, looking for ways to tap
the distributed representational power present in a collection of rules to improve
the quality of value function approximations.

Previous work [I] introduced a new approach to value function approximation
in classifier systems called hyperplane coding. Hyperplane coding is a closely

X. Llora et al. (Eds.): IWLCS 2003-2005, LNATI 4399, pp. 219-238] 2007.
© Springer-Verlag Berlin Heidelberg 2007



220 L.B. Booker

related variation of tile coding [13] in which classifier rule conditions fill the role
of tiles, and there are few restrictions on the way those “tiles” are organized. The
basic idea is to treat rules as features that collectively specify a linear gradient-
descent function approximator. The hypothesis behind this idea is that classifier
rules can be more effective as function approximators if they work together to
implement a distributed, coarse-coded representation of the value function.

Experiments with hyperplane coding have shown that it computes much bet-
ter approximations than more conventional classifier system methods in which
individual rules compute approximations independently. The results to date also
demonstrate that hyperplane coding can achieve levels of performance compara-
ble to those achieved by more well-known approaches to function approximation
such as tile coding. High quality value function approximations that provide
both data recovery and generalization are a critically important component of
most approaches to solving reinforcement learning problems. Because hyper-
plane coding substantially improves the quality of the approximations that can
be computed by a classifier system using relatively small populations of clas-
sifiers, it may provide the foundation for significant improvements in classifier
system performance.

One open question remaining about hyperplane coding is how the quality
of the approximation is affected by the set of classifiers in the population. A
random population of classifiers is sufficient to obtain good results. Would a
more carefully chosen population do even better? The obvious next step in this
research is to use the approximation resources available in a random population
as a starting point for a more refined approach to approximation that re-allocates
resources adaptively to gain greater precision in those regions of the input space
where it is needed. This paper shows how to compute such an adaptive function
approximation. The goal is learn a population of classifiers that reflects the
structure of the input space (Dean & Wellman, 1991). This means more rules
(i.e. more tiles) should be used to approximate regions which are sampled often
and in which the function values vary a great deal. Fewer rules should be used in
regions which are rarely sampled and in which the function is nearly constant.
We discuss how to adaptively manage the space in the population in a way that
achieves this goal.

2 Value Function Approximations

Given a decision policy 7, most approaches to solving reinforcement learning
problems compute and store some explicit representation of the value function
V. For very simple problems, a lookup table is an adequate way to represent the
value function. In most cases of interest, however, the input space is too large to
represent V; exhaustively in tabular form so the function must be represented
more compactly. Efficient storage is not the only important issue though. In
a large state space the learning agent will only directly experience a relatively
small number of inputs. The agent nevertheless needs to leverage that experience
to determine how to behave when it encounters inputs that have not been seen
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before. This implies that generalization is a key issue for reinforcement learning
problems with large state spaces. The most common approach to addressing
these issues is to use function approximation techniques to compute a compact
representation of V. that generalizes well.

The approach to approximating V;. used in learning classifier systems belongs
to a class of techniques known as soft state aggregation [IT]. In the simplest forms
of state aggregation, the states are partitioned into a set of disjoint groups or
clusters. A reinforcement learning problem can be solved at the cluster level
to compute a value function for the clusters. The value of a cluster is then
used as the value for each of the states in that cluster. Soft state aggregation
techniques allow a single state to belong to more than one cluster, providing
for cluster overlap. This is accomplished by defining cluster probabilities P(x|7)
that specify the degree to which state ¢ is associated with cluster x. The value
for a state is given by a weighted average of the values of the clusters the state
is associated with; that is,

V(i) =Y Plali)Va(w)

Rule input conditions designate the clusters of states used by learning classifier
systems. Each condition represents a set of states whose value is summarized in
various ways by the rule’s utility measure. In XCS, for example, a cluster’s value
is represented by the prediction parameter of the corresponding rule. The cluster
probabilities are given by the rule’s fitness divided by the sum of the fitnesses of
all the rules matching state i.

While state aggregation approaches to function approximation can be useful
in some settings, they are known to have serious shortcomings [I3]. First, they
tend to scale poorly as the number of dimensions of the state space increases.
Second, large numbers of clusters may be needed to represent smooth functions
accurately. The most widely used approaches to function approximation for re-
inforcement learning avoid these problems by relying on linear gradient-descent
methods.

The remainder of this section takes a brief look at linear gradient-descent
methods and one important special case that uses binary features.

2.1 Linear Approximations and Coarse Coding

Linear gradient-descent methods for value function approximation begin with a
linearly parameterized representation of the value function given by

V(zg) = Z w; (t)di(zt)

where the ¢; are features defined on the state space and the w; are real-valued
adjustable weight parameters. The weights are adjusted to try to reduce the error
on the observed sample points x, and to generalize from that data to provide
good approximations for other points that have not yet been seen.



222 L.B. Booker

Gradient-descent methods try to minimize error by adjusting the weights on
each step in the direction that reduces error the most. In the linear case, the
gradient descent update for adjusting the weights is given by

wilt +1) = wi(t) + afo(t) = VeV, V()

where V.,V (2;) = ¢;(2;) is the gradient of the linear function with respect to
weight parameter w; and v(t) is the true function value for x;.

Linear gradient-descent methods are simple and they are particularly well-
suited to reinforcement learning [I3]. A key aspect determining how well these
methods work in practice, though, is the quality of the features they use. The
features must represent whatever task-relevant qualities of the state may be
needed to discriminate one state from another, as well as any associated feature
interactions that may be important.

2.2 Tile Coding

Coarse coding [8] is a general approach to defining a set of adequate features.
In this form of representation, each feature corresponds to some subset of the
state space (the feature’s “receptive field”). For a given state, a feature is said
to be activated if the state belongs to that receptive field. The representation of
state is coarse coded in the sense that the receptive fields overlap to produce a
distributed representation whose acuity is proportional to the number of features
activated in a given state. One general-purpose way to define receptive fields
suitable for efficient on-line learning is called tile coding [13].

Tile coding is a particular form of coarse coding in which the receptive fields
for all features are organized into exhaustive partitions of the input space. The
features are assumed to be binary, the receptive fields are called tiles, and each
partition is called a tiling. The tilings are offset from each other in order to
achieve the overlap needed for local generalizations. For a single input dimension,
the offsets typically used in tile coding are given by i(w/n) where 4 is the index
of the tiling, w is the tile width, and n is the number of tilings (0 < ¢ < n). This
concept is illustrated in Figure [l

There are several advantages to organizing the receptive fields in this way.
Every point in the input space activates the same number of tiles, so there is strict
control over the density of tiles and the resulting precision of the approximation.
It is also easy to set the learning rate for a linear gradient-descent function
approximator based on tile coding. Since the number of features active for each
point is equal to the number of tilings m, the learning rate can be expressed
intuitively as a fraction of the rate 1/m which gives exact one-trial learning.
The weight update for activated features is given by

wi(t+1) = wi(t) +  [v(t) = V(x)]

where « is the desired fraction.
Tile coding has been been used extensively for reinforcement learning, and the
overall coarse coding approach is known to be capable of computing high quality
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Fig. 1. Tile coding for a 1-dimensional input space. Every point x activates the same
number of tiles.

approximations [I0]. Recent work [I] has shown that there are aspects of the tile
coding approach that can be leveraged to improve the value function approxi-
mations computed in classifier systems. That work introduced a new variation of
tile coding called hyperplane coding. Initial experiments with hyperplane coding
have shown that by carefully using the resources available in a random popula-
tion of classifiers, continuous value functions can be approximated with a high
degree of accuracy. The next section provides a brief overview of hyperplane
coding, along with empirical results showing how its performance compares to
other approaches.

3 Hyperplane Coding

Hyperplane coding is a closely related variation of tile coding in which classifier
rule conditions fill the role of tiles, and there are few restrictions on the way those
“tiles” are organized. The hypothesis behind this idea is that classifier rules can
be more effective as function approximators if they collectively implement a
distributed representation of the value function. The distributed representation
is realized by treating individual rules as features rather than as independent
function approximators whose estimates are pooled to compute an overall result.

3.1 Overview

The coarse coding idea requires the ability to represent patterns of contiguous
inputs (the tiles arranged in a tiling) that can be offset from each other by
arbitrary amounts. This requirement is trivial to fulfill in tile coding. The tiles
are fixed sized intervals in each dimension, and the interval endpoints can be
adjusted as needed. The standard syntax for the input condition of a classifier
rule does not provide this kind of flexibility. It is not clear how to adjust that
syntax to represent hyperplanes offset by arbitrary amounts in input space,
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while preserving the simple matching operations between rules and messages. For
example, it is easy to represent the lower half of the input range [0, 1] with the
condition O#. . .#, which corresponds to the interval [0, 0.5] using the standard
binary encoding. How do we represent the hyperplane corresponding to the offset
interval [0 +¢€,0.5 + €]?

One obvious way to manage this issue is to apply the offset to the input space,
then define hyperplanes on that transformed space in the usual way. Looking at
the offset interval [0 + €,0.5 + €] again, we can determine if some input value x
belongs to that interval by checking if a message encoding the translated value
x — € matches the condition O#. . .#. This leads to the following ideas for the way
a population of classifiers is organized to implement coarse coding. Each classifier
is assigned to a specific tilin@7 just like each tile belongs to a specific tiling under
tile coding. In this case, though, there is no specific organization imposed on the
tiling. Continuing with the analogy, we do associate a fixed offset with each
tiling. The classifier system operating principles are also adjusted somewhat.
Instead of having a single message matched against all rules on each cycle, we
generate a separate message for each tiling. Each message is computed from the
raw input by applying the offset associated with the tiling in question.

The only remaining details needing attention have to do with tile width and
offsets. Since hyperplanes in general do not correspond to simple contiguous
regions of the input space, some thought must be given to the issue of how to
define tile width. There are several possibilities and we choose one of the simplest.
The width of the smallest possible contiguous region defined by a hyperplane is
given by the resolution size used to discretize the raw input. The width of every
contiguous region matched completely by some hyperplane is a multiple of this
resolution size. The resolution size is the simplest tile width that makes sense for
classifier conditions with a specific bit at the lowest order bit position, and those
classifiers occupy a large fraction of a random population. Larger tile widths
are possible for the remaining classifiers, however, and the increased overlap can
improve the acuity of the overall approximation. Consequently, classifiers are
organized into two types of features, coarse and fine, which are stored in two
separate groups of tilings. The fine features are those classifiers with a specific
bit at the lowest order bit position. These classifiers use the resolution size as
the tile width. The remaining classifiers are all treated as coarse features, which
use a tile width equal to twice the resolution size. This organization results in
a system that, on each cycle, generates up to 4n potentially distinct messages
where n is the number of tilings used in a comparable tile coding scheme.

As noted previously, the offsets typically used in tile coding are given by
i(w/n) where i is the index of the tiling, w is the tile width, and n is the number
of tilings (0 < ¢ < n). This translation scheme uses only positive offsets that
translate tiles to the right. A point gets grouped with its neighboring points on
the left when the adjacent tile on the left (that does not originally contain all

! We will call each major grouping of classifiers a tiling, even though the set does not
partition the input space (i.e., the elements are not disjoint, and they may not span
the entire space).
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the points) gets translated to cover those points. This scheme does not work well
in the classifier system setting, however. An unmodified input message matches
classifiers representing the base tiles (i.e., tiling ¢ = 0) covering a point x. If
we adhere to the usual concept of a match set, the only way that x will be
grouped into a tile with any other point is if the match set contains a classifier
that matches both points. Offsets can change the groupings by excluding some
points, but there is no way to include points that are not covered by the base
match set. This makes it important to group the matched points in as many
ways as possible. Accordingly, we use a more symmetric set of offsets given by
i(w/n) with —n/2 < i < n/2 so that points get grouped in both directions.

3.2 Basic Implementation

A basic implementation of linear function approximation based on hyperplane
coding uses the concepts and principles described above in a simple, skeletal clas-
sifier system. This skeletal system has traditional ternary rules with no actions
and no rule discovery mechanisms. On every step the system is presented with
a data point z, and the reward received is the function value f(z). The system
forms a match set and proceeds to update the basic parameters for individual
classifiers. This approach of using function values as rewards is commonly used
to assess classifier system methods for function approximation [I6].

Two other implementation details need to be mentioned. The first detail con-
cerns the way inputs should be encoded. One of the important properties of ap-
proximation techniques like tile coding is that the generalizations they compute
are localized. Points that are sufficiently close in input space will produce output
values that are close. Moreover, values in widely spaced regions can be learned
with relatively little interference. This property can be compromised somewhat
with hyperplane coding since hyperplanes are not restricted to contain localized
collections of points.

The Gray code is known to be a representation for bit strings that provides
more localized collections of points [7]. In order to see why this is true, consider
the classifier condition ##10. The bit strings matching that condition are 0010,
0110, 1010, and 1110. None of these points are contiguous under a binary cod-
ing. A binary reflected Gray code, however, groups these points into two clusters
of consecutive points: (0010, 0110) and (1110, 1010). This example is illus-
trative of a more general phenomenon. A Gray code will never group bit strings
matching some condition into more clusters of consecutive points than a binary
code does. Furthermore, for some conditions, the Gray code will organize the
points into fifty percent fewer clusters than the binary code (as in our simple ex-
ample). See Faloutsos [7] for more details. This analysis suggests that inputs for
the hyperplane function approximator should always be encoded using a binary
reflected Gray code.

The second implementation detail concerns how to handle the issue of feature
salience. Under tile coding, every point belongs to exactly one tile in every tiling.
As noted previously, a point belongs to many tiles in each tiling under hyperplane
coding. Because the hyperplanes in a tiling are so diverse, they may not all be
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equally useful for approximating the function. It might matter that some are
more specific than others, some may correspond more closely to key regularities
in the function, and so on. This presents the approximation algorithm with a
feature selection problem that does not occur with tile coding. The problem is
important because irrelevant features are a source of noise that can slow down
learning of relevant features.

One way to address this feature selection problem is to use the frequency that
features are activated to identify which rule-based features are most relevant in
a given context. The idea is that features that are active across a large number
inputs may over-generalize across a broad range of function values. The smaller
the set of activating inputs, the less likely this will occur (generally speaking) and
the more likely it is that the feature will be relevant to the approximation task.
Classifier systems traditionally use specificity to measure the relevance of a rule
condition in a given context. When inputs are uniformly distributed, specificity
is directly correlated with frequency of activation. However, when the input
distribution is not uniform, the activation frequency must be estimated from
experience. Two parameters are used for this purpose. The experience parameter
€; counts the number of times the feature &; has been activated in a match set.
The age parameter a; records the time step when §; was created. The activation
frequency for &; is therefore given by v; = €;/(t — a;) where ¢ is the current time
step. The relevance of a feature is then estimated by the inverse function 1/v;.
This relevance measure is used to change the weight update for activated features
by replacing the factor «/m, which divides the step size « equally among all m

features, with the term
@

m—1 1
Vi Zj:O vj
which biases the allocation of step size based on presumed relevance. This bias
helps make learning and generalization more efficientld.

3.3 Initial Empirical Results

Experiments have shown that hyperplane coding can provide high quality func-
tion approximations [I]. The test function suite for those experiments was taken
from a set of functions proposed by Donoho and Johnstone [6] that has been
widely used in the literature on statistical estimation and reconstruction of sig-
nals from data. Four one-dimensional functions were used — Blocks, Bumps,
Doppler, and HeaviSine — that provide a good variety of spatial variability
and smoothness (see definitions in the Appendix). The training data for each
function was drawn from a set of 2048 equally spaced sample points. A sepa-
rate distinct set of 2000 equally spaced sample points was set aside to use as a
test set. Providing a separate set of data for testing is critically important. The

2 The original implementation [I] used Sutton’s [I2] Incremental Delta-Bar-Delta
(IDBD) method to adjust the learning rates for individual features. That algorithm
works well, but the new approach based on activation frequency is just as effective
in this setting and is much simpler to implement.
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quality of a function approximator is not just determined by the size of the ap-
proximation error on the training data. Though that error is a good indication of
how the function approximator performs data recovery, it tells us nothing about
how well the approximator can generalize to new data. It also tells us very little
about the quantity of approximation resources (e.g., the number of features) that
was needed to achieve that level of performance. A good function approximator
performs well on both data recovery and generalization, while minimizing the
quantity of resources required.

The quality of an approximation was measured in terms of the average squared
error at the sample points. More specifically, the performance measure was

R=n S () — Fl)?
=0

where f is the approximation and f is the true function. Performance was mea-
sured separately on the test data and the training data. In all of the experiments,
learning proceeded over 100 trials with 10,000 steps per trial, and with a random
data point selected from the training set on each step. This gave each function
approximator ample time to converge to its most accurate output. Results were
averaged over 10 replications, and statistical significance was assessed using a
Student’s t-test with significance level 0.05.

The experiments provided an empirical comparison of hyperplane coding with
tile coding and with the widely used classifier system mechanisms in XCS [4] for
predicting expected payoﬂﬁ. The goal of the comparison was to assess how well
each approach makes use of a fixed allocation of resources to approximate a value
function. For tile coding this means that the number of tiles and the way they are
organized was fixed. Each test function was approximated using 2048 grid-like
tiles each having width 1/256. The tiles were organized into 8 tilings offset as
described previously. The learning rate was specified by the assignment a = 0.2.
For the XCS prediction mechanism and for hyperplane coding, the population of
classifiers was fixed at 2048 rules generated randomly using a probability of 1/3
for placing the # symbol at any given position in a rule condition. Each classifier
condition was 8 bits, giving every classifier the same input resolution as one of
the grid-like tiles.

The XCS prediction mechanism was implemented in one of the skeletal clas-
sifier systems described above. On every step the system forms a match set and
proceeds to update the basic XCS parameters: experience, prediction, predic-
tion error, and fitness. The system prediction is calculated in the usual way and
that prediction becomes the system’s estimate for the value of x. The parameter

3 The XCS mechanism was chosen because it is the typical approach used to approxi-
mate value functions in classifier systems. Moreover, because each rule uses one ad-
justable parameter for the approximation, this mechanism can be directly compared
to algorithms like tile coding and hyperplane coding that use the same amount of
approximation resources. The issue of comparable approximation resources becomes
problematic with alternative approaches like XCSF [16], which use more parameters
and more computation per rule to compute approximations.
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Table 1. Average square errors for XCS prediction, tile coding and hyperplane coding

Approximation Error
Algorithm Blocks Bumps Doppler HeaviSine
Train  Test Train  Test Train  Test Train  Test
XCS prediction 3.0979 2.9054 23.841 24.793 2.0295 2.0252 0.10821 0.11192
Tiles 0.06988 1.7535 0.16809 0.93068 0.03579 0.08922 0.02327 0.06458
Hyperplanes 0.12150 0.29966 0.33694 0.99382 0.04145 0.07626 0.01473 0.02500

settings were consistent with those used for XCS in the literature [10]: learning
rate 0.2, error threshold 0.2, fitness power 5.0, and fitness scale (i.e., @) 0.1. See
Butz and Wilson [4] for details about these parameters and computations.

The linear function approximator based on hyperplane coding organized the
population of 2048 random classifiers into 16 tilings of 128 classifiers each. Each
classifier has a weight parameter w that is adjusted by gradient descent just
as in tile coding. The learning parameter « for gradient decent was set to 0.2,
again in agreement with the tile coding experiments. These choices gave the
linear approximator based on hyperplane coding roughly the same amount of
approximation resources to work with as the tile coding version had.

The overall results of those experiments are summarized in Table Il All of
the differences in performance between the XCS prediction and the other two
approximation techniques are statistically significant. Tile coding and hyper-
plane coding are substantially more effective than the XCS prediction on these
functions. Both tile coding and hyperplane coding show an impressive ability
to reconstruct functions with respect to the training data. Their performance
on the four test functions compares favorably with results on the same data
achieved by more sophisticated approximation techniques like a discrete wavelet
transform [6]. The reconstructions shown in Figure 2 show that these two meth-
ods have enough precision to pinpoint the location of abrupt changes in function
values. Moreover, both techniques also have local generalization properties that
are adequate enough to make the approximations fairly smooth.

The XCS prediction, on the other hand, does poorly from the standpoint of
both precision and smoothness. There is a sense in which this is not surprising,
since the mechanisms were intended to be used in combination with rule discov-
ery to compute a good approximation of the value function. There is a dilemma
with that arrangement, however. Rule discovery depends on guidance from the
prediction computations in order to know what type of rules to generate. If that
guidance is poor, then rule discovery will have to thrash around somewhat ran-
domly until it discovers something that improves the approximation. Overall, the
performance of the XCS mechanisms suggest that classifier systems typically do
a poor job of approximating value functions as they solve reinforcement learning
problems.

Tile coding has a statistically significant performance advantage over hyper-
plane coding on the training data for all of the test functions except HeaviSine,
where hyperplane coding is far superior. Hyperplane coding has a statistically
significant performance advantage on the test data for all of the test functions
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Fig. 2. Reconstructions computed by XCS prediction, tile coding, and hyperplane
coding

except Bumps, where tile coding has a small but significant advantage. It ap-
pears that hyperplane coding offers an alternative for linear approximations that
is comparable in performance to what can be achieved with a more conventional
approach like tile coding.

4 Adaptive Hyperplane Coding

The hyperplane coding approach seems to offer more opportunities than tile cod-
ing for increasing precision without incurring significantly greater computational
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costs. The density of tiles in hyperplane coding is naturally higher than the density
in tile coding. This contributes to more resolution in the final approximation. The
precision of the approximation can also be increased by increasing the length of
the classifier input conditions instead of by adding more tiles. Most importantly,
the hyperplane coding scheme makes it possible to adapt the collection of tiles to
achieve more precision. The obvious next step in this research is to use the ap-
proximation resources available in a random population as a starting point for a
more refined approach to approximation that re-allocates resources adaptively to
gain greater precision in those regions of the input space where it is needed. The
remainder of this paper discusses how to adaptively manage the space in the clas-
sifier population in order to accomplish this objective.

4.1 Unsupervised Methods for Online Learning

The random population of classifiers used in hyperplane coding can be viewed
as a kind of random representation that avoids the difficult questions about how
to choose the “right” set of features by simply generating a sufficiently large
variety of features. One important advantage of this approach to representation
is that it is well-suited to online learning tasks. Sutton and Whitehead [14], for
example, have shown that many approaches to online learning share a common
two-layered structure. The first layer maps the input into a high-dimensional
feature space. The second layer maps that feature space into the final answer
using some simple supervised learning procedure like gradient decent. When a
random representation is used in the first layer, unsupervised learning techniques
can be very effective in adapting that representation online and improving the
effectiveness of the overall system. Clearly, the combination of coarse-coded fea-
tures with linear-gradient decent methods fits this characterization of a random
representation.

This suggests that the most straightforward way to implement adaptive hy-
perplane coding is to use unsupervised methods to change various statistical
properties of the random population. Sutton and Whitehead focused on reduc-
ing the size of a random representation by adapting the number of features active
at one time and the frequency that any particular feature is activated. There
are two related goals for adaptive hyperplane coding: to make sure minimal
amounts of approximation resources are available throughout the input space;
and, to provide more resources as needed in regions where the approximation
error is high. One key statistical property relevant to both of these goals is the
size of a match set.

A simple statistical argument provides a useful criterion for managing the size
of a match set. Given an input message s, we can view a random population of N
classifiers as if it were generated by a sequence of Bernoulli trials, each trial hav-
ing probability p,, of producing a classifier matching s. This allows us to treat
the size of the match set as a binomial random variable M with mean Np,, and
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variance Np,,(1 — p,,). Assuming that specificity in the random classifiers is
binomially distributed, then p,, is given by

l
_(pgt+1
po= (")

where py is the probability of the # symbol appearing at any position in the
condition, and [ is the length of the condition. A reasonable range for the value
of M in a random population should rule out values that are too large or too
small. One computationally efficient way to specifying such a range is to simply
use the interval containing values within one standard deviation of the expected
value of M.

Given this criterion for a desirable match set size as a starting point, adaptive
hyperplane coding uses two mechanisms for implementing unsupervised learn-
ing: triggered rule creation and stochastic deletion. Learning triggers add a new
random rule to a match set whenever some condition related to the input dis-
tribution becomes true. Various triggers are defined to manage the match set
size as described below. The deletion mechanism is structured to minimize the
impact that removing a feature will have on the approximation error. A feature
has minimal impact on approximation error when its weight is small. Since the
gradient descent procedure distributes responsibility for reducing error among
all activated features, the features in large match sets will also tend to have a
relatively small impact on the approximation error. We will consider a weight
to be “small” if it is consistently smaller than the median weight in the match
sets it belongs to. We will consider a match set “large” if it is more than one
standard deviation larger than the expected match set size.

The deletion mechanism is accordingly defined as follows. Two additional pa-
rameters are defined for each feature. The match set size ¢ estimates the average
size of the match sets a feature belongs to. The impact-below-average parameter
¢ estimates how frequently the absolute value of the feature weight is smaller than
the median in the match sets the feature belongs to. These parameters are updated
just like other typical classifier system parameters, using the standard Widrow-
Hoff delta rule with the MAM technique [I5] and learning rate 8 = 0.05. Deletion
candidates are selected from those rules whose parameter ¢ is more than one stan-
dard deviation bigger than Np,,. Features are deleted stochastically, using a prob-
ability distribution derived from the quantity ¢;¢; for each candidate feature &;. The
next section describes experiments that empirically evaluate the performance of
these mechanisms in an implementation of adaptive hyperplane coding.

5 Experiments

We evaluate the adaptive hyperplane coding approach described above by mod-
ifying the skeletal classifier system used in the previous experiments to include
mechanisms for inserting and deleting rules online. This section presents a series
of learning triggers that improve the performance of the function approximator.
The experiments use the same parameter settings as the previous experiments
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Table 2. Average square errors for variations of adaptive hyperplane coding on the
Bumps function

Algorithm Approximation Error
Learning Trigger Train Test
Baseline 0.33694  0.99382

Minimal [M] size 0.33763  0.97809
[M] size for large errors 0.31676  0.95900
[M] size for outlier errors 0.28222  0.93383
Unbalanced tile offsets 0.26607  0.92007

with hyperplane coding, except that the following results are averaged over 20
replications. We initially focus our attention on the Bumps function, since tile
coding out-performed hyperplane coding on both the test and training data for
that function.

5.1 Minimal Match Set Size

The first learning trigger is designed to make sure that every match set con-
tains some minimum amount of approximation resources. Whenever the size of
a match set is less than one standard deviation below the expected value, a new
random classifier matching the current input is generated. The new classifier
is assigned to the tiling in this match set that contains the fewest number of
existing classifiers. This learning trigger, like all subsequent triggers, is not oper-
ative until all classifiers in the match set have been activated at least 1/ times.
By enforcing this restriction, each match set has an opportunity to absorb the
effects of a new member before another new rule is inserted.

Maintaining a minimum level of resources in each match set should provide
some increase in generalization performance on the test data. Table[2lshows that
there is indeed some performance improvement on the test data, but it is not
statistically significant. This first result is important, though, because it shows
that the insertion and deletion mechanisms can operate online without adversely
impacting the quality of the approximation.

5.2 Match Set Size for Large Errors

Once the function approximator has a minimal amount of resources to use for each
input, it is reasonable to ask if the resources available at a particular point are
adequate given the current quality of the approximation. An important goal for
an adaptive function approximator is to use more resources in those input regions
where approximation error is high. This section describes a simple error-driven
trigger that adds more rules to a match set when the error is larger than expected.

The first step to defining the error-driven trigger is to identify which errors
warrant the extra resources. The histogram in Figure Blshows the distribution of
squared errors at the end of a typical run of hyperplane coding on the training
data for the Bumps function. The approximation error is small for the large
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majority of training points ( out of 2048 points, 1746 points have squared error
less than 0.5 and fall into the first bin.) It is also interesting to note that the
error distribution has a long tail (the largest squared error is 24.75) These char-
acteristics suggest that the points with the worst errors can be easily identified
by using techniques for finding outliers in statistical data.

Since the exact properties of the error distribution are unknown, and the as-
sumption of a normal distribution is clearly not justified, the most appropriate
techniques to use here are those based on non-parametric statistics. The box-
plot technique [9] is one widely used, robust approach to labeling outliers. This
technique uses two measures computed from the data: the value of the 25th
percentile (the lower quartile ¢1), and the value of the 75th percentile (the up-
per quartile ¢3). A box around the median is then specified by computing the
interquartile range g3 — g1 and defining cutoff points (or fences) at 1.5(qs — q1)
above g3 and the same distance below ¢;. Any value that falls outside either
fence is considered more extreme than “expected”. This approach is effective
in part because the interquartile range is a measure of variability that focuses
on the spread of the data values near the median and ignores the variability in
the tails. When applied to the data shown in Figure Bl the upper fence lies at
the value 0.66. The upper tail defined by this value includes roughly 11% of the
data points and accounts for about 68% of the total error. This result seems to
capture the intuition about which errors are larger than normal in this case. The
boxplot approach appears to be a good choice for identifying which errors need
additional approximation resources.

The next question concerns how to compute the quartiles. Several approaches
are available for computing incremental estimates of percentiles for a stream of
data [0]. Since the percentiles used here are not extreme ones (i.e., not close
to 0 or 1) requiring careful management of sample biases, a simple moving av-
erage should be sufficient for our purposes. Consequently, we maintain a mov-
ing window of data values. In each window, sample estimates of ¢; and ¢35 are
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computed from the data and then used to update an exponentially weighted
moving average as follows:

1. Initialize a window of A/ data values. Set ¢t = 0.

2. Sort the values in the current window and compute sample estimates of ¢, ()
and gs(t).

3. Update the incremental estimates Q1(t) and Q3(t):

() ift ==
Ql(t) — {E]i - W)Ql(t _ 1) + wqq (t) otherwise

) it ==
QS (t) «— {E]i - w)Qg(t _ ]_) + wqs (t) otherwise

4. Remove the oldest data value from the window and add the next new value.
5. Set t «— t+ 1 and go to Step 2.

The experiments described here used a window size N/ = 100 and a step size
w = 0.001.

The boxplot technique and the incremental quartile estimates were used to
specify a learning trigger as follows. Whenever the approximation error in a
match set is larger than expected (as determined by the boxplot method), a
check is made to see if the match set size is also larger than expected (assum-
ing a randomly generated population). If the match set size is smaller than
expected, learning is triggered to generate one new rule for this match set. The
results in Table 2l show that this simple trigger had the desired effect. Increas-
ing the resources allocated to regions with large errors, in combination with the
trigger maintaining a floor on match set sizes, gives a significant improvement
in performance on the test data. Apparently, this re-allocation of resources leads
directly to improved generalization for the function approximator. The increase
in performance on the training data was not statistically significant.

5.3 Match Set Size for Error Outliers

It is important to recognize that the points outside the standard upper fence in a
boxplot should not all be labeled as outliers. They are usually just called “outside
values” that merit closer scrutiny. A conservative and reliable test for outliers
sets additional fences at a distance 3.0(g3 — ¢1) beyond the lower and upper
quartiles. Points beyond these values are clearly in a different category and can
be confidently labeled as outliers. Adaptive hyperplane coding might perform
even better if it allocated additional resources to the match sets corresponding
to these error outliers.

In order to test this hypothesis, another trigger was defined using the addi-
tional upper fence for outlier identification. Whenever the approximation error
in a match set is an outlier, a check is made to see if the match set size is at
least half a standard deviation bigger than the expected size. If the match set
size is smaller than this, learning is triggered to generate one new rule for this
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match set. This trigger is designed to make sure that the match set size for error
outliers is in the upper tail of the distribution of sizes in the current population.
Table[2 shows that this new trigger worked as expected. Significant performance
improvements were obtained on both the training data and the test data.

5.4 Unbalanced Tile Offsets

The final learning trigger addresses the way approximation resources are orga-
nized in the input space. The classifiers in every match set are organized into
tilings that are intended to be symmetrically offset from the unmodified input
message. The offsets group together nearby inputs in both directions in many
ways. The overlap of these tilings is a key factor underlying the precision and
generalization that makes coarse coding effective. In a random population where
the tilings are assigned randomly, the set of feature offsets in any particular
match set might be far from symmetric. This could seriously limit the ability of
the approximator to achieve the desired precision or generalization with respect
to the affected inputs.

The final learning trigger was designed to address this issue. Whenever the
match set size is adequate, which means that none of the other triggers apply, the
number of features shifted to the left and to the right are counted. The expected
number of features shifted in one direction can be viewed as a binomial random
variable with an easily computed mean and variance. If the actual number of
features shifted in one direction is more than 1.5 standard deviations from the
expected numbeIH, the offsets are considered imbalanced. The learning trigger
selects the classifier with the lowest impact (i.e., highest value of ¢) from those
offset in the overloaded direction, then changes the tiling of that classifier to be
the least populated tiling shifted in the opposite direction. The results in Table[2]
shows that this new trigger is effective. Performance improved on both the test
data and the training data, though only the improvements on the training data
were statistically significant.

6 Conclusions

The overall performance of this version of adaptive hyperplane coding on the
test function suite is summarized in Table Bl Adaptive hyperplane coding is sig-
nificantly more competitive with tile coding than plain hyperplane coding was.
While tile coding retains a statistically significant performance advantage on
the training data for Blocks and Bumps, that advantage is smaller than the one
shown in Table [[l over plain hyperplane coding. Moreover, adaptive hyperplane
coding performs significantly better than tile coding on the training data for
Doppler while it increases the performance advantage on Heavisine. On the test
data, adaptive hyperplane coding has a statistically significant performance ad-
vantage on all of the test functions except Bumps, where the small advantage

4 A tighter criterion that keeps the number within 1 standard deviation is too restric-
tive and leads to so many trigger activations that it becomes counterproductive.
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Table 3. Average square errors for tile coding and adaptive hyperplane coding

Approximation Error
Algorithm Blocks Bumps Doppler HeaviSine
Train  Test Train  Test Train  Test Train  Test
Tiles 0.06988 1.7535 0.16809 0.93068 0.03579 0.08922 0.02327 0.06458
Hyperplanes 0.09157 0.26932 0.26607 0.92007 0.02833 0.06379 0.01161 0.02167

shown is not significant. This suggests that adaptive hyperplane coding supports
generalizations better than tile coding.

This paper has shown that adaptive hyperplane coding offers a promising al-
ternative for approximating value functions. Its performance is comparable to —
and in many cases better than — a more conventional approach like tile coding.
Adaptive hyperplane coding computes much better approximations than stan-
dard classifier system methods in which individual rules compute value function
approximations independently. High quality value function approximations that
provide both data recovery and generalization are a critically important compo-
nent of most reinforcement learning algorithms. Future research will investigate
how to increase the quality of value function approximations in classifier systems
by integrating adaptive hyperplane coding techniques into a complete classifier
system architecture. This is expected to provide significant improvements in
classifier system performance on reinforcement learning problems. Future work
will also compare hyperplane coding with stand-alone classifier system function
approximation methods like XCSF [I6].

Acknowledgments

This work is based on research originally funded by the MITRE Sponsored Re-
search program. That support is gratefully acknowledged. The author’s affiliation
with The MITRE Corporation is provided for identification purposes only, and
is not intended to convey or imply MITRE’s concurrence with, or support for,
the positions, opinions or viewpoints expressed by the author.

References

1. Lashon B. Booker. Approximating value functions in classifier systems. In
Larry Bull and Tim Kovacs, editors, Foundations of Learning Classifier Systems.
Springer, 2005.

2. Lashon B. Booker, David E. Goldberg, and John H. Holland. Classifier Systems
and Genetic Algorithms. Artificial Intelligence, 40:235-282, 1989.

3. Larry Bull and Toby O’Hara. Accuracy-based neuro and neuro-fuzzy classifier
systems. In W. B. Langdon, E. Canti-Paz, K. Mathias, R. Roy, D. Davis, R. Poli,
K. Balakrishnan, V. Honavar, G. Rudolph, J. Wegener, L. Bull, M. A. Potter, A. C.
Schultz, J. F. Miller, E. Burke, and N. Jonoska, editors, GECCO 2002: Proceedings
of the Genetic and FEvolutionary Computation Conference, pages 905-911. Morgan
Kaufmann Publishers, 9-13 July 2002.



10.

11.

12.

13.

14.

15.

16.

Adaptive Value Function Approximations in Classifier Systems 237

Martin V. Butz and Stewart W. Wilson. An Algorithmic Description of XCS. In
Pier Luca Lanzi, Wolfgang Stolzmann, and Stewart W. Wilson, editors, Advances
in Learning Classifier Systems, volume 1996 of LNAI, pages 253-272. Springer-
Verlag, Berlin, 2001.

Fei Chen, Diane Lambert, and Jose C. Pinheiro. Incremental quantile estimation
for massive tracking. In Proceedings of ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 516-522, New York, 2000. ACM
Press.

David L. Donoho and Iain M. Johnstone. Ideal spatial adaptation by wavelet
shrinkage. Biometrika, 81:425-455, 1994.

Christos Faloutsos. Gray codes for partial match and range queries. IEEE Trans-
actions on Software Engineering, 14(10):1381-1393, October 1988.

Geoffrey E. Hinton, James L. McClelland, and David E. Rumelhart. Distributed
representations. In David E. Rumelhart, James L. McClelland, and CORPORATE
PDP Research Group, editors, Parallel distributed processing: explorations in the
microstructure of cognition, vol. 1: foundations, pages 77-109. MIT Press, 1986.
Boris Iglewicz and David C. Hoaglin. How to Detect and Handle Outliers. Amer-
ican Society for Quality Control Basic References in Quality Control: Statistical
Techniques (Volume 16). ASQC Quality Press, Milwaukee WI, 1993.

W. Thomas Miller, Filson H. Glanz, and L. Gordon Kraft. CMAC: An asso-
ciative neural network alternative to backpropagation. Proceedings of the IEEE,
78(10):1561-1567, October 1990.

Satinder P. Singh, Tommi Jaakkola, and Michael I. Jordan. Reinforcement learning
with soft state aggregation. In G. Tesauro, D. Touretzky, and T. Leen, editors,
Advances in Neural Information Processing Systems, volume 7, pages 361-368. The
MIT Press, 1995.

Richard S. Sutton. Adapting bias by gradient descent: An incremental version
of delta-bar-delta. In Proceedings of the Tenth National Conference on Artificial
Intelligence, pages 171-176, 1992.

Richard S. Sutton and Andrew G. Barto. Introduction to Reinforcement Learning.
MIT Press, Cambridge, MA, 1998.

Richard S. Sutton and Steven D. Whitehead. Online Learning with Random Rep-
resentations. In Machine Learning: Proceedings of the Tenth International Confer-
ence, pages 314-321, San Mateo, CA, 1993. Morgan Kaufmann.

Gilles Venturini. Apprentissage Adaptatif et Apprentissage Supervisé par Algo-
rithme Génétique. PhD thesis, Université de Paris-Sud., 1994.

Stewart W. Wilson. Classifiers that approximate functions. Natural Computing,
1(2-3):211-234, 2002.



238 L.B. Booker

Appendix - Test Functions
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Fig. 4. The Four Donoho Test Functions

Blocks
f(t) =3.65948 % > h;K(t —t;) where K(t) = (1 +sgn(t))/2

(t;) = (0.1,0.13,0.15,0.23,0.25, 0.4, 0.44, 0.65, 0.76, 0.78, 0.81)
(h;) = (4, 5,3, —4,5,—4.2,2.1,4.3,—3.1,2.1, —4.2)

Bumps
F(t) =105174 % > h;K((t —t;)/w;) ;where K(t) = (1+ [t[)~*
(t;) = (0.1,0.13,0.15,0.23,0.25, 0.4, 0.44, 0.65, 0.76, 0.78, 0.81)
(hj) = (4,5,3,4,5,4.2,2.1,4.3,3.1,5.1,4.2)
(w;) = (0.005,0.005, 0.006, 0.01,0.01, 0.03, 0.01,0.01, 0.005, 0.008, 0.005)

Doppler

f(t) = 24.2158  sin (27 (1 + €) /(t + €))/t(1 — t) , where € = 0.05

HeaviSine

f(t) = 2.3564 * [4sin(4nt) — sgn(t — 0.3) — sgn(0.72 — t)]
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Abstract. Three classifier system architectures are introduced that per-
mit the systems to have continuous (non-discrete) actions. One is based
on interpolation, the second on an actor-critic paradigm, and the third
on treating the action as a continuous variable homogeneous with the
input. While the last architecture appears most interesting and promis-
ing, all three offer potential directions toward continuous action, a goal
that classifier systems have hardly addressed.

1 Introduction

Typically, classifiers in learning classifier systems have fixed, discrete actions,
e.g., “turn left”, “turn right”, “yes”, “no”. Classifiers have not been introduced in
which the action is continuous in the sense that it depends on and is a continuous
function of the input. Continuous actions, however, are desirable in domains
where fine reactions and control are important, such as robotics. This paper
describes three distinct classifier system architectures that permit continuous
actions.

The first architecture, termed “interpolating action learner” (IAL) [12], has
one classifier system observing a second classifier system’s optimal (discrete)
actions and learning them as a smooth function of the input. TAL is perhaps
the simplest approach to continuous action. The second approach, “continuous
actor-critic” (CAC) is a continuous-action, classifier-system version of the well-
known actor-critic architecture [9). CAC is quite intricate but is a plausible
approach to direct learning of optimal continuous actions. The third architecture,
a “generalized classifier system” (GCS) [II]], breaks new ground by aggregating
a continuous action with the input, and learning payoff as a function of both
together. In GCS, the optimal action is chosen as the action that maximizes
this function. All three architectures make use of a recently introduced function-
approximating classifier system called XCSF.

XCSF [I4/15] extends XCS [I313], a classifier system with fitness based on pre-
diction accuracy, to real-valued inputs and continuous payoff landscapes. XCSF
learns an approximation to P(z,ax), the environmental payoff function of input
x and discrete actions aj. Denoting the approximation }S(rmak)7 and given a
particular input z, XCSF maximizes payoff by picking the action aj that max-
imizes P(Lak). However, XCSF may be used to approximate functions other
than payoff, a flexibility that is exploited here.

X. Llora et al. (Eds.): IWLCS 2003-2005, LNAT 4399, pp. 239 2007.
© Springer-Verlag Berlin Heidelberg 2007
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The three architectures are illustrated using a simple one-dimensional but
non-linear testbed problem introduced in [I5]. In this so-called “frog” problem,
a system (frog) senses an object (fly) via a signal that monotonically decreases
with the distance between them. The frog has available a continuous range of
jump lengths and is supposed to learn to jump exactly the distance to the fly.
Following the jump, which may undershoot or overshoot the fly, payoff is given
by the resulting sensory signal.

The paper begins with a more detailed description of the frog problem, pro-
viding a concrete context for the three architectures. Then XCSF is briefly re-
viewed. Further sections describe and test the architectures themselves, followed
by conclusions as to their merits and suggestions for further work.

2 Frog and Fly: A 1-D Continuous-Action Problem

As noted in Section [I] the frog should learn to pounce on the fly in one jump.
Let d be the frog’s distance from the fly, with 0.0 < d < 1.0. For simplicity, we
assume z, the frog’s sensory input, falls linearly with distance: 2(d) = 1 —d. The
frog “sees the fly better” the closer it is.

The payoff should be any function of # and action a that is bigger the smaller
the distance d’ that remains after jumping. That is, P(z, a) should monotonically
increase with smaller d’. A natural choice is to let the payoff equal the sensory
input following the jump, as though the frog is rewarding itself based on what
it “sees”. Then, with the sensory function above, P =1 —d'.

To write the payoff in terms of x and a, we need to make one assumption.
Suppose the frog’s jump overshoots, i.e., the frog lands beyond the target fly.
In this case we assume that d’ equals the amount of the overshoot (taken as a
positive number). Thus d’ = d—a for a < d and d’ = a—d for a > d. Substituting
for d in P =1—d’, then using d = 1 — z and rearranging, we get

. r+a : rz+a<l
P(x’a)_{Q—(x+a) D rxta>1 (1)

Figure [ illustrates P(z,a). For a given sensory input z, the payoff in general
first rises, reaches a peak, then falls as a increases. The “ridge” of the func-
tion’s tent shape in fact corresponds to the maximum payoff and thus optimal
action over z’s range. Note that the payoff function is highly non-linear—albeit
composed of two linear planes.

To solve the frog problem, a system must learn to choose, given x, the value
of a corresponding to maximum payoff. In the context of classifier systems (and
reinforcement learning (RL) [9] in general) this is a non-trivial problem. The
reason is that the only feedback allowed the system is in terms of payoff; the
system gets no “error signal” with respect to its action choice. From the RL point
of view, this restriction models the actual learning situation of many natural and
artificial systems. Classifier systems (as well as other RL systems) deal with the
restriction by, in effect, observing and estimating the payoffs associated with
different action choices, then, given an input, choosing the action that appears
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Payoff Function P(x,a)

Fig. 1. Frog problem payoff function P(z,a)

to pay the best. This process is quite well understood within the framework of
discrete actions. We build on this understanding in the three architectures for
continuous action.

3 Brief Review of XCSF

XCSF is similar to XCS. This section assumes familiarity with XCS and discusses
only differences between XCSF and the earlier system.

The essential innovation in XCSF with respect to XCS is that classifier pre-
dictions in XCSF are calculated instead of being fixed scalars. Each classifier has
a weight vector w which is combined with the input vector x to form a predic-
tion that is a linear function of the input. As a result, continuous, real-valued
payoff landscapes can be approximated more efficiently [15] than would be the
case with fixed scalar predictions, which allow only piecewise-constant approxi-
mations. Polynomials of order higher than linear may also be used in XCSF [7].

The classifier condition in XCSF is a truth function, denoted ¢(x), which
defines a subspace of the real-valued (or integer-valued) input space such that a
classifier matches if an input is in that subspace. In the simplest case, t(x) is a
concatenation of “interval predicates”, int; = (I;,u;), where [; (“lower”) and u;
(“upper”) are reals. A classifier matches an input z with components z; if and
only if [; < z; < u; for all ;. However, t(x) can be any evolvable function that
defines a subspace of the input space.

With these definitions, a classifier in XCSF can be conveniently notated

t(x):w:ar = p(z,ar), (2)

where ay, is the kth discrete action. The expression p(z,ay) is the classifier’s
prediction given x and ag.
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In operation, XCSF differs significantly from XCS only with respect to pre-
diction calculation and updating. To calculate its prediction, a classifier with
action ay, forms p(z,ar) = w -2, where 2’ is x augmented by a constant x, i.e.,
' = (29,21, ..., x,). Just as in XCS, the prediction is only produced when the
classifier matches the input. As a result, p(z, ay) in effect computes a hyperplane
approzimation to the payoff function P(z,ay) over the subspace defined by ¢(z).
The value of z( is chosen to be of the same order as the component values of x.

As in XCS, XCSF forms a system prediction P(x,ay,) for each ay as a fitness-
weighted average of the predictions p(x,ay) of the classifiers that match the
input. Then, if XCSF is in exzplore mode, one of the ay, is chosen at random and
sent to the environment. If in exploit mode, the action with the highest system
prediction, aj is chosen. In explore mode, the payoff actually received, P(z, ax),
is used to update the predictions of the classifiers that advocated the chosen
action (i.e., the action set classifiers).

The predictions are updated using a modified delta rule

Aw; = (n/[2'[*)(t — 0)a; 3)

in which ¢ (“target”) is the current payoff P(x, a;) and o (“output”) is the current
calculated value of p(z,ax). The factor 7 is a rate constant; the normalization
|2'|? makes the change in output strictly proportional to (¢ — o) and controllable
by n. More powerful techniques of updating have been investigated [6].

Other differences from XCS adjust the genetic algorithm (GA) and the cover-
ing of unmatched inputs to accord with the structure of ¢(z). Further details on
this and the above material may be found in [I5]. To be noted at this point is
the fact that XCSF can be employed either as a discrete-action classifier system
or, by reducing the a; to a single, dummy, action, as a function approximator.
In the latter case, the prediction becomes just p(z), with P(x) representing a
function to be learned by approximation. XCSF is used both ways in the three
architectures.

4 Interpolating Action Learner (IAL)

4.1 TAL Concept

In TAL, a second classifier system learns the action choices of a first classifier sys-
tem. The overall system, shown schematically in Fig. 2l consists of two classifier
systems S1 and S2 working in tandem.

The lower system S1 is in contact with an environment Env that provides
real state vectors x to S1, receives discrete actions aj from S1, and provides real
payoffs P(z,ax) to S1 in response. The system S1 is based on XCSF. For each
possible z, S1 learns to approximate the payoff P(z,ax) to be expected for each
ay it might take.

While S1 is learning, the system S2 observes S1’s prediction array (the array
containing S1’s system predictions). Thus, given x, S2 can see what payoff S1
expects for each ai. In particular, S2 notes which a; has the mazimum expected



Three Architectures for Continuous Action 243

a
S k

P(x,a; )
Env

Fig. 2. Interpolating Action Learner. Both S1 and S2 are XCSF systems, but S2 ob-
serves S1’s optimal actions and learns a continuous approximation to a*(z), the optimal
policy for environment Enuv.

payoff, and uses this action value, a}, as an input. The other input to S2 is z.
52’s objective is to learn to predict, given x, the correct value of aj.

The combined system S1-S2 has two innovations. First, once S2 has learned
to predict correctly, it represents a direct mapping from x to the optimal action,
thus embodying the optimal policy a*(z). Ordinarily, RL systems do not directly
map from z to a*(x). Instead, as with S1, they learn expected payoffs for each
ag, then, given an x, choose the a; with the maximum expectation and send it
to the environment. In contrast, S2 sees x and predicts a*(x) directly.

Second, the architecture permits the output of S2 to be continuous-valued,
despite the fact that S2 is only capable of discrete actions. Like S1, S2 is a clas-
sifier system based on XCSF, but it is configured for just one, dummy, action.
In this configuration aj is treated formally like a payoff to be learned, with a*
the predicted value. Thus S2 in effect acts as a function approximator approxi-
mating a*(x). If S2’s error threshold ¢ is small (strict) then S2’s approximation
a* should be similar to aj(z) which—for the frog problem employed here—is
a staircase-like function of x. However, if €; is not small, S2’s approximation
should be less discontinuous, becoming smoother with larger €;. Consequently,
as x changes continuously, a* should also change continuously so that S2 will
approximate a*(z), the optimal continuous policy for Env.

4.2 TAL Experiments

The TAL system was tested on a version of the frog problem in which the frog
had five discrete jump lengths: 0.0, 0.25, 0.50, 0.75, and 1.0. This is the same
problem learned by XCSF in [I5].
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Parameter settings for S1 were the same as in [I5]: population size N =
500, learning rate 8 = 0.2, error threshold ¢y = 0.01, fitness power v = 5,
GA threshold 654 = 48, crossover probability x = 0.8, mutation probability
1 = 0.04, deletion threshold 64, = 50, fitness fraction for accelerated deletion
6 = 0.1. Also, mutation increment mg = 0.1, covering interval ro = 0.1, n = 0.2
and zg = 1.0. GA subsumption was enabled, with Ogasus = 100. The same
parameter set was used in S2, except that the error threshold ¢y was different in
each of three experiments: 0.01, 0.05, and 0.10 [,

In an experiment, each problem consisted of placing the fly at a random
distance (0.0 < d < 1.0) from the frog and having S1 go through a standard
explore cycle in which it matched the input, chose an action at random, got payoff
according to the resulting distance from the fly, updated the action set classifiers,
and possibly performed the GA. At the same time, S2 watched S1’s prediction
array, noted the optimal action (the one with the largest predicted payoff), and
learned that action, aj, by approximating it via the XCSF mechanism, as a
function of x. That is, given x, S2’s classifiers predicted S1’s action (instead of a
payoff) and were updated according to the actual value of a;. (Those classifiers
thus had the format, ¢(x) : w = a(zx), where a(x) took the place of p(z,a) and
the classifiers themselves had no action variable per se.)

Each experiment consisted of 400,000 problems to be sure the system had
stabilized. At the end of each experiment, the input range was scanned with a
resolution of 0.01 and S2’s predicted action a* was calculated for each point and
plotted. Figure [ shows the results for each value of €.

For the smallest ¢g, the plot of a* is an almost perfect staircase correspond-
ing to the best discrete ap vs. . With the middle value of ¢y, the plot shows
a tendency to flatten, and with the largest value, 0.10, it is a straight line cor-
responding to the optimum continuous action (except that the line is displaced
slightly upward!).

Examination of the final populations for the three cases showed 14 classifiers
for ¢ = 0.01, 39 for 0.05, and exactly one classifier for ¢y = 0.10. That classifier’s
weight vector is directly indicated by the slope and intercept of the straight-line
plot in Figure[3l The population for ¢y = 0.10 reached less than a dozen classifiers
by 50,000 problems and fell to one classifier around 200,000 problems. Maximum
accuracy in approximating a*(z) was reached much quicker, in a few thousand
problems.

4.3 TAL Discussion

The experiments suggest that the TAL system can do what was intended, i.e., ap-
proximate a*(z) from the payoffs to a set of discrete actions. However, the func-
tion to be approximated—a straight line over a 1-D input domain—is certainly
about the simplest imaginable. Because the IAL method achieves smoothness of
approximation through a large error threshold, approximation accuracy in func-
tions with higher bandwidth may be limited. A second drawback is that while

! The values given are the actual error threshold divided by the maximum possible
payoff, in this case 1000.
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Fig. 3. Frog problem results for IAL. Predicted optimal action a* (jump length) vs.
input z (sensory input) as learned by S2 for three values of error threshold €. Larger
values permit closer approximation of optimal continuous action.

the optimal continuous action is learned, nothing is learned about the value of
non-optimal actions. That is, the rest of the continuous payoff landscape remains
unknown to the system. Depending on the goals for the system, this may not
matter, however.

The fall of the population size to a single classifier in the straight-line case (and
to small numbers in the others) is encouraging because it confirms the ability
of XCSF to evolve classifiers that approximate functions with high efficiency.
This property of XCS-like systems has been investigated theoretically [I]. On
the other hand, the time—tens of thousands and more of problem instances—to
reach this efficiency seems very long. That may be a consequence of working
in the real domain—instead of the binary, as with XCS—and calls for further
investigation.

Overall, TAL seems interesting but not outstanding as an architecture for
achieving continuous action. Better would seem an architecture that more di-
rectly developed an approximation to a*(z), instead of indirectly as a secondary
process. A step in this direction is taken in the next section.

5 Continuous Actor-Critic (CAC)

5.1 CAC Concept

In the actor-critic approach to reinforcement learning problems, one system,
termed “actor”, produces actions in response to an environmental input, x, and
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a second system, “critic”, adjusts the actor with the intention of improving the
actor’s response. On what basis can the critic do this? The general scheme is
shown in Figure @l where S3 is the actor and S4 the critic.

P
- S4 -
i
P
(=~
'
a
- S3
P(x,a)
X

Env

Fig. 4. Continuous Actor-Critic. S4 (“critic”) is an XCSF system, learning P(z), but
S3 (“actor”) is a special system with classifiers of the form t(z) : w = a(z). S4’s
prediction error modifies probabilities of activation of S3’s classifiers.

While S3 interacts with Env, S4, an XCSF system, learns to predict Env’s
payoffs. Specifically, S4 learns an approximation to P(z). On every learning step,
there will in general be a difference between S4’s prediction and the actual payoff
received. If, for instance, the actual payoff is less than the predicted one, it is
likely that S3 could have chosen a better action than it did. This information,
though possibly erroneous, is used to reduce the probability of that action be-
ing chosen in the future. Conversely, if the payoff is larger than predicted, the
probability of the current action is increased.

If S3 were simply choosing actions randomly, these corrective signals from S4
would be meaningless. However, if the probability of S3’s actions is affected as
above by S4’s prediction errors, there should be a convergence in which S4’s
predictions become more and more accurate and S3’s actions produce payoffs
that are increasingly likely to be maximal. This is the essence of the actor-critic
idea [9]. As a method in RL, it has been somewhat displaced by the introduction
of Q-learning [I0]. However, actor-critic retains computational advantages where
the action is computed as a continuous function of the input, as it is here (in
the language of RL, “the policy is explicitly stored” [9]).

CAC is an actor-critic architecture implemented with classifier systems. As
noted, S4 is XCSF used as a function approximator to predict P(x). S3, however,
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is not an XCSF system. It contains classifiers with the format t(x) : w = a(x)
each of which has an associated probability of activation m; (i indexes the classi-
fier). Given x, classifiers form a match set as usual, but then one of the matching
classifiers is chosen based on their relative probabilities (the m; are first normal-
ized). This classifier calculates an action using = and its weight vector w, then
the action is sent to the environment. The environment returns payoff, but this
is unusable directly by S3 since S3 emitted an action, not a payoff prediction.
Instead, the payoff is sent to S4, where it is used to adjust the payoff prediction
of S4. Finally, the difference between S4’s prediction and the actual payoff is
used to adjust the probability 7 of the activated classifier.
A straightforward method would adjust the probability as follows:

7+ g(AP/P)r : AP <0 4
T {77+g(AP/P)(1.O—7r) . AP >0 )

Here g (0 < g < 1) is a gain factor and AP is the error in S3’s prediction, i.e.,
(}5 — P). The adjustment is intended to have the effect that the best matching
classifier’s probability tends toward 1.0 and the probabilities of other classifiers
tend toward 0.0.

S3’s classifiers are generated by a genetic algorithm acting on the match
sets, using the probabilities m; as fitnesses. Thus classifiers whose actions re-
sult, on the average, in above-average payoffs should tend to be selected and
reproduced. Furthermore, there should be a pressure to preferentially reproduce
higher-probability, more-general (having large ¢(x) domains) classifiers because
such classifiers will occur in more match sets than more-specific classifiers [IJ.
As a result, S3’s population should tend toward efficient coverage of the input
space.

An important difference between S3 and XCSF-like systems is that the weight
vector w must be evolved along with ¢(z); it cannot be adjusted based on envi-
ronmental feedback since the classifiers compute actions, and the feedback is in
terms of payoff.

5.2 CAC Discussion

Unfortunately, significant experiments on CAC have not been done. As a pre-
liminary test, an XCSF system was investigated in which the weight vector was
evolved instead of adjusted. The adaptation was slow and irregular, suggesting
that adjustment might be superior to evolution in this case. However, recent
work by Hamzeh and Rahmani [4] evolved weight vectors successfully. Also, evo-
lutionary techniques other than the GA may prove better for this kind of smooth
maximization problem.

Assuming the CAC concept can work, it is an advance over the first tech-
nique, TAL, because it should result in classifiers in S3 that closely approximate
a*(x), instead of achieving continous action through large approximation error.
However, like TAL, CAC still fails to learn anything about the payoff landscape
associated with non-optimal actions. The third architecture, presented in the



248 S.W. Wilson

next section, remedies this and though it too has problems, it may turn out to
be the best-founded direction for continuous action.

6 Generalized Classifier System (GCS)

6.1 GCS Concept

As a discrete-action classifier system, XCSF learns P(z,ay). It uses classifiers
of the form, t(z) : w : ar = p(z,ax), in which the variable a; is not only
discrete, but treated separately from the variable x. However, the underlying
payoff landscape is simply P(z,a); not only is a continuous but it is functionally
homogeneous with x. Why not learn P(x,a) directly? Why not have classifiers
of the form t(z,a) : w = p(z,a), in which the condition depends on, and the
weight vector refers to, both x and a? We term this sort of classifier system
“generalized” in recognition of the homogeneous treatment of input and action,
with both permitted to be real Variables%.

a

~ S5

A

P(x,a)
Env

Fig. 5. Generalized Classifier System. S5 is a new system partly based on XCSF with
classifiers of the form t(x,a) : w = P(z,a).

Learning, or exploration, in GCS is straightforward and similar to learning in
XCSF. Given an input x, the system picks an action a according to its current
exploration regime, e.g., it might try actions randomly. Then a match set [M]
is formed of classifiers satisfying ¢(z, a). The predictions p(x, a) of each member
of [M] are calculated, using the member’s w, just as in XCSF. The action is
performed in the environment and payoff P received. P is then used to adjust
the error and fitness of each classifier in [M], and to update the w’s of [M], again
just as in XCSF. New classifiers are formed by the GA, and classifiers created by
covering if needed, just as done in XCSF, except of course that now the condition
and weight vector include a as well as x.

It is in the “exploit” side of GCS that substantially new steps are required.
The object is to determine, given an input x, what action a will produce the

2 As defined here, GCS is not, of course, fully general since operation in multi-step
tasks is not discussed, and the system has no provision for internal state variables,
as in [8]. Neither extension appears problematic.
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greatest payoff. The simplest way conceptually would appear to be to scan all
possible actions a, form an [M] for each, and choose a* as the one for which the
system prediction P(ax, a) was highest. But there are difficulties. In the first place,
scanning the range of @ inevitably means discretizing the range, which in turn
implies that the system’s action is not truly continuous. Secondly, the higher the
scan’s resolution the greater the number of match sets [M] that must be formed,
so that higher approximate continuity in a trades off against efficiency. For GCS,
a new approach to picking a* seems desirable.

Consider the exploit situation. An input x comes in. The action a has not
been determined, so how does the system determine which classifiers belong in
[M]? The answer is: a classifier belongs in [M] if there exists an a such that that
classifier’s t(x, a) is satisfied. For example, if ¢(x, a) employs interval predicates,
x need only satisfy the predicates devoted to 2’s components (a can be any value
satisfying its predicate). For other forms of ¢(z, a) the answer to the question and
the computational expense of answering it depend on the form. An important
form of t(x, a) for which matching is quick will be mentioned shortly.

Once the match set [M] is built, the system moves on to determine the highest-
paying action a*. Consider first a classifier in [M] and suppose for concreteness
that interval predicates are employed in ¢(x, a). Let (a;, a,,) be the action predi-
cate. Since, p(z,a) is computed linearly, i.e., using a weight vector w, it is clear
that either a; or a, will yield a higher prediction than any other value of a that
satisfies the interval. Thus, no scanning is necessary to determine this classifier’s
best action, apest; it is only necessary to compare p(x, a;) with p(x, a,). Finally,
for a*, the system picks the highest-paying ap.s¢ of the individual classifiers
of [M].

At this point it is necessary to note a disabling drawback of basing t(z,a)
on interval predicates. Consider a classifier in [M]. For this classifier, apes: is
a constant; it equals either a; or a,, independent of z. Similarly, the values of
apest for the other members of [M] are also constant. The implication is that
if © changes slightly, a* will either not change, or it will change abruptly as a
different apest, from another classifier in [M], becomes a*. Thus the use of interval
predicates has the consequence that a* is discontinuous with respect to z.

This effect will be especially evident if the payoff landscape, P(x, a) is oblique,
as in Figure[ll The “ridge” corresponding to the maximum of the function is not
parallel with either axis. Consequently, approximating the function with con-
ditions based on (axis-parallel) interval predicates would require that classifiers
overlap in staircase fashion at the ridge, so that a* could approximate continuity
only by employing large numbers of such classifiers. On the other hand, if the
classifier conditions could have non-axis-parallel contours then much or all of the
staircasing discontinuity could be avoided.

Consider, as a sort of thought-experiment, the possibility of evolving con-
ditions with arbitrary contours. Then imagine a classifier whose ¢(z, a) exactly
covered the portion of the z-a plane lying below the line x +a = 1. This classifier
would match any x and, significantly, its apest = 1 — x, which is both perfectly
continuous and exactly the correct solution to the frog problem. To represent
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the complete landscape, just one more classifier would be needed; its condition
would cover the portion of the plane lying above the z + a = 1 line. Thus it
appears that GCS can achieve both continuous action and exact solutions—as
well as economy of representation—if classifier conditions can be evolved that
have arbitrary contours. While this thought-experiment is illuminating, evolu-
tion of arbitrary t(z, a) is difficult (see [5] for an initial attempt). The essential
requirement, however, is for conditions that can evolve so that their contours
align with oblique features of the payoff landscape. The rest of this section out-
lines an example approach using orientable elliptical conditions that appears to
offer considerable continuity, precision, and economy.

Using XCSF, Butz [2] investigated classifiers having general hyperellipsoidal
conditions and showed they could approximate highly oblique functions more
efficiently (smaller populations, lower system error) than classifiers having hy-
perrectangular interval conditions. The general hyperellipsoids had the property
that they could rotate with respect to the coordinate axes, permitting them to
orient to the contours of the function [. Butz’s work applied to function ap-
proximation, but the idea appears promising for continuous action as well. The
following describes GCS with orientable elliptical conditions and its application
to the frog problem.

In the frog problem, P(xz,a) is 2-dimensional so that conditions can be repre-
sented with ordinary ellipses. We define such a condition using the parameters
< Mg, Mg, ly, 1,0 >. In general, the ellipse is not centered at the origin, and
it is rotated with respect to the z-axis. To obtain the actual ellipse using the
parameters, we imagine it “starts” at the origin and that its semi-axis in the x
direction is aligned with that axis and has length [,; similarly, the a semi-axis
has length [,. Now, rotate the ellipse (counterclockwise) with respect to the -
axis through angle 6 and displace its center to the point (m,,m,) to obtain the
actual ellipse used in the condition. The equation for that ellipse is

(x —mg)cost + (a —mg)siné 2+ —(z — mg)sind + (a — my) cos 0\
I, la
(5)
This may be expressed compactly as

(EV)? =1, (6)
where E equals the ellipse matrix

cos@/l, sinf/l,
—sinf/l, cosd/l,

and V is the column vector
(x —my)
(a —myg)
3 For hyperellipsoids, rotation (which is not possible to visualize) is considered more

generally as the introduction of cross-product terms, e.g., z4x7, in the hyperellipsoid
definition, in analogy to the definition of a rotated ellipse.
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The condition t(x, a) is represented by the ellipse of Equn. [ it is satisfied if
(EV)? <1, (7)

i.e., if the point (z,a) is inside the ellipse.

In explore mode, as noted earlier, GCS combines the input x with a randomly
chosen a and forms the match set [M] with classifiers whose conditions ¢(z, a)
satisfy ([@). In exploit mode, [M] consists of classifiers for which, given z, there
(x —mg)

0 9
i.e., by choosing a equal to the center a-value of the condition (if the condition
does not hold for this value, it will certainly not hold for any other value).

The next step, in exploit, is to determine the apest of each classifier in [M].
Consider the condition of a matching classifier. The input = defines a straight line
crossing the ellipse parallel to the a axis. The line intersects the ellipse twice, at
two values of a. By the reasoning used earlier in this section in connection with
interval predicates, one of these values must be apes:. The two values are found
by solving Eqn. B a quadratic equation with two roots, for a. The root with the
larger predicted payoff, as calculated using w, is apest. Finally, the largest apest
of the classifiers in [M] becomes the system’s chosen action, a*.

It is important to observe that, for a given matching classifier the value of
apest Will in general change—continuously—as = changes. The reason is that
since t(z,a) is elliptical, its contour varies continuously with z. Furthermore,
since the ellipses can rotate and elongate, they may evolve to align with and
along a considerable length of the oblique ridge in P(x,a). Thus the transition
between different a*s as x changes may be substantially continuous and not stair-
cased. Moreover, the ability of the conditions to rotate holds out the possibility,
in the frog problem, of evolving very small populations, since in principle just
two extremely elongated ridge-parallel classifiers could cover the whole payoff
landscape.

This completes the description of the GCS concept. In summary, the landscape
P(z,a) is approximated using an XCSF-like method in which a is an “input”
along with . Optimal actions are chosen as the best of the best of recommen-
dations of individual classifiers. The actions are largely continuous with respect
to x because the condition contours are continuous with respect to x and the
conditions themselves can orient to align with landscape features. In the next
section we examine the results of an experiment with GCS.

exists an a such that (@) holds. This is accomplished by setting V = [

6.2 GCS Experiments

Experimental investigations of GCS are work in progress. Reported here is one
of the first experiments that showed some aspects of what the concept suggested
should happen. In fact, it took a number of experiments to arrive at an im-
plementation of the concept that seemed correct. This was due largely to the
unaccustomed use of the action variable as a kind of input.
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Parameters for the experiment were as follows: population size N = 2000,
learning rate 8 = 0.5, error threshold ¢y = 0.01, fitness power v = 5, GA
threshold g4 = 48, crossover probability xy = 0.8, mutation probability u =
0.04, deletion threshold 84.; = 50, fitness fraction for accelerated deletion 6 = 0.1,
7 = 0.2 and zp = 1.0. Neither GA nor action-set subsumption was enabled.

Mutation was handled differently according to the ellipse parameter being
mutated. For ellipse center coordinates m, and m,, the value was changed by
a random quantity from [-0.1,0.1]. For ellipse axis lengths I, and [, the value v
was changed (following [2]) by a random quantity from [—0.5v, 0.5v]. For ellipse
angle 0, the value was changed by a random quantity from [-0.5,0.5] (radians).
In covering: m, was given by the z input; m, was the selected action if it was an
explore problem, otherwise a random value from [0.0,1.0]; the axis lengths were
random from [0.0,0.1]; and 6 was random from [0.0,1.0].

In each problem of an experiment, the fly was placed at a random distance
(0.0 < d < 1.0) from the frog. A conventional design was used in which with prob-
ability 0.5 the problem was an explore problem, otherwise an exploit problem.
Figure [6] shows the results of one run that ended at 100,000 explore problems.
Each curve plots a moving average over the past 50 exploit problems.

06 ]
; Payoff ——
i Popsize/2000 -
0.4 System Error -~ i
02} -
ol
0 20000 40000 60000 80000 100000

Explore problems

Fig. 6. Results for GCS in a frog problem experiment (curve order same as in legend)

The Payoff curve shows that by a few thousand problems, the system was
regularly receiving payoff greater than 0.95. Thus, since P = 1 — d’ in this ex-
periment, the frog was regularly jumping to a position less an 0.05 from the fly.
The System Error curve approximately complements the Payoff curve, though
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not precisely since system error is the difference between actual and predicted
payoffs. In both curves there appears to be a slow degradation toward greater
volatility. The population size curve rises to about 70% of N and then declines
very gradually.

Inspection of the population at 100,000 problems (as well as much earlier)
showed that the w; and wy components of the weight vectors of most classifiers
had converged either to (1.0,1.0) or to (-1.0,-1.0), depending on whether the
classifier’s condition applied below the ¢ = 1 — x diagonal or above it. Thus
most classifiers were indeed approximating the payoff function (Eqn.[d]). In fact,
most classifiers had an error less than .0005, even though the system error was
much higher.

The conditions of the population’s ten highest-numerosity classifiers were plot-
ted to get an idea of their size and orientation (Fig.[d). The figure indicates that
the conditions have evolved so that their major axes are approximately aligned
with the ¢« = 1 — x landscape ridge. The ellipse sizes appear reasonable for
collectively approximating the regions above and below the ridge.

As a direct indication of the system’s ability to choose the best action a*
and to gauge a*’s continuity with respect to x, the input was scanned with
increment 0.001 and the resulting a* plotted (Fig. B). The plot lies close to
the diagonal and shows intervals of continuous change broken by abrupt small
discontinuities suggesting the system is switching from one highest-predicting
classifier to another.

6.3 GCS Discussion

The limited experimental results with GCS are mixed but quite promising. The
condition ellipses indeed seem to be evolving to align with the diagonal (oblique)
feature of the frog problem environment. Their sizes are reasonable: not so small
as to require large numbers to approximate the diagonal nor so large—or fat—
as to produce a poor approximation. At the same time, we did not observe the
evolution of just two dominant ellipses, one covering each landscape region, each
very long so that its side was practically a straight line. This would have been
the ideal result, and it is not clear why the system’s generalization pressure [I]
did not cause larger- and particularly longer-condition accurate classifiers to win
out until just two dominant ones remained.

In the binary domain, generalization involves substituting #’s (don’t-cares)
for specified alleles in the condition. Each additional # in fact doubles the sub-
space that the condition matches. If corresponding inputs occur, the classifier
becomes twice as active and thus has twice the reproductive opportunity com-
pared with classifiers that are just one # less general. In the real-valued domain,
in contrast, mutation of a single allele normally results in a condition that is at
most only slightly more general than the next-more-specific classifiers, so that
the evolutionary pressure over them is considerably less than in the binary case.
It may be that this weakness of generalization pressure explains the fact that
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Fig. 7. Elliptical conditions of the 10 highest-numerosity classifiers in GCS frog prob-
lem experiment. Diagonal (a = 1 — x) corresponds to “ridge” in payoff landscape.
Breaks in ellipses are a plotting artifact.
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Fig. 8. Scan of best action a™ vs. input x for GCS frog problem experiment (x increment
0.001)
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the population did not appreciably “condense” (shrink) in our experiment, and
may explain other similar real-domain classifier system results. One of the most
attractive features of accuracy-based classifier systems is their ability, under the
right conditions, to generalize, i.e., condense down to a set of classifiers that quite
directly expresses the regularities of the payoff environment. It seems important
for future research to understand how this process can be as effective in the
real domain as it is in the binary—clearly the present frog problem offers the
possibility of very substantial generalization: to just two classifiers!

Apart from the important issue of generalization, the GCS concept appears,
from the experiments so far, to be relatively sound. It is not understood why the
performance became more volatile with time but more intimate tracking of pop-
ulations should yield clues. Often deterioration of this sort is due to increasing
overgeneralization—which in this instance would mean classifiers whose condi-
tions fall across the landscape diagonal. Yet, as seen, the highest-numerosity
classifiers at 100,000 problems were fine in this respect.

While volatile, the performance did rise quickly to near-optimal. Why it did
not go all the way to optimal (payoff 1.0) appears to depend at least in part
on the specific classifier that ends up providing its apes: for a*. The edge of
this classifier’s condition lies close to the landscape diagonal: it may fall slightly
short of the diagonal, or go over a bit. In some cases the classifier may be newly
generated and inexperienced and thus not accurate; choosing its apes¢ could mean
a large error. In earlier experiments it was found that system error improved if
classifiers with prediction errors greater than a threshold were excluded from the
a* competition; this criterion was in force in the experiment reported.

Unlike the frog problem, most practical problems involve more than one in-
put dimension. With a two-dimensional input, GCS would need ellipsoidal condi-
tions, which require three (Euler) angles to specify their orientation. Above that,
direct visualization is lost and (if keeping an ellipsoid-like basis) one would need
to move to general hyperellipsoids of the kind already investigated by Butz [2]. It
is interesting, however, that even for higher input dimensionality, the calculation
of apest still only requires solution of a quadratic equation.

7 General Conclusion

Three architectures for continuous action in classifier systems have been intro-
duced and examined. None appears unreasonable, and the third, GCS, appears
to be perhaps the most interesting direction since it treats the action homoge-
neously with the input—reflecting the nature of the payoff landscape—and it is
the only one that learns the landscape and not just its highest-paying region.
Yet all three architectures as presented are quite crude and unrefined and need
much more work (including, probably, correction of errors!). Perhaps the most
useful perspective on the offering here is as a smorgasbord from which with care-
ful selection and combination new insights toward continuous action might be
gleaned.
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Abstract. This paper demonstrates that, with minimal modifications, a classi-
fier system can be made to operate just as an ant colony optimizer does for solv-
ing the TSP. The paper contains a formal proof of this result, and suggests that
the modifications made could be useful in other ways. In effect, the paper sug-
gests that there may be a new role for classifier systems in optimization,
inspired by the way that ant colony optimizers have achieved their successes.
The paper also suggests that there may be ways suggested by classifier systems
to modify ant colony optimization practice.

1 Introduction

This paper centers on three topics. First, it shows how to transform any ant colony
optimizer that solves the Traveling Salesman Problem, as specified in initial papers by
Marco Dorigo and his collaborators, into a functionally equivalent classifier system.
Second, it considers whether a reverse transformation, from any classifier system into
an equivalent ant colony optimizer, can be produced in a similar way. Finally, it
suggests that the formal results in the paper have some practical implications for the
future direction of both ant colony optimizer and classifier system applications.

2 A Formal Specification of ACO-TSP

In the seminal papers Dorigo et al 1996 and Dorigo et al 1997, Marco Dorigo and his
collaborators went a long way toward creating the current field of ant systems and ant
colony optimization. In those papers the authors described ant colony optimizers—
ingenious optimization algorithms inspired by the way ants find short paths to and
from food sources. The initial ant colony optimizer was used to solve the Traveling
Salesperson Problem—also a problem having to do with minimizing path lengths—
and it had some features that were new to the world of algorithms. These novel fea-
tures included a new source of algorithmic metaphor—chemical deposition and
evaporation as carried out by foraging ants; new ways of using solution evaluations in
the optimization process; and a specification of the current state of the Traveling
Salesperson Problem (henceforth, “TSP”) optimization process that was completely
contained in two vectors, one of fixed and one of variable weights.

X. Llora et al. (Eds.): IWLCS 2003-2005, LNAT 4399, pp. 258 2007.
© Springer-Verlag Berlin Heidelberg 2007
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Let us call the ant colony optimizer that Dorigo described in his paper the ACO-
TSP. The next two sections of this paper describe the TSP and the ACO-TSP in a
formal way.

3 A Formal Description of the TSP

A central point of this paper is a proof that any ant colony optimizer of the type ACO-
TSP can be transformed into a functionally equivalent classifier system. In order to
state the proof clearly, we require some formalism. First, let us consider some nota-
tion that describes the TSP itself.

Let G be the graph for which short paths containing all nodes are to be found.

Let N be the set of nodes in G.

Let n; be the ith member of N.

Let L be the set of links in G such that every pair of nodes in N has exactly one as-
sociated member of L, and let /; be the ith member of L.

Let J be the number of nodes in n.

Let K be the number of links in L.

Let 7, a solution to the TSP, be a permutation of N.

There are several functions used in the definition of the TSP.

Let A(n; n;) be the link in L associated with nodes n; and n;.

Let D(n;, n;) be the distance between nodes n; and n;, such that D(n;, n;) = D(n;, n,).

Let E(T) be the evaluation of a solution 7. For every solution T, where each n; is a
member of T, E(T) = D(n;, n,) + D(ny, n3) + ... + D(ny;, n;) + D(n;, ny).

Given these definitions, we can then say that the TSP is the task of finding an or-
dering T of the nodes of G such that E(T) is minimized.

4 A Formal Description of ACO-TSP

Now let us describe the structure of ACO-TSP (please note in what follows that, in

order to expedite exposition, this description is not identical to Dorigo and his co-

authors’ practice with regard to variable names and with regard to terminology.)
ACO-TSP has a number of parameter settings. These include:

a, an exponent used when the strength of a link is computed;

b, an exponent used when the strength of a link is computed;

d, a weight decay rate;

u, the value of each fixed weight;

m, the total number of solutions to build during optimization;

x, the number of solutions to build before updating weights; and
s, the seed for the random number generator used by ACO-TSP.

ACO-TSP uses two data structures to hold weights. Each is a vector of length K:

F, alist of fixed weights, one for each link in L, and
V, a list of variable weights, one for each link in L.
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The values in F are set upon initialization and do not change during the optimiza-
tion process. The values in V are given starting values on initialization and are modi-
fied during the optimization process during a weight update process.

ACO-TSP uses two data structures to hold solutions and their scores between
weight updates. Each is a vector of length x:

X, a list of solutions, and
Y, a list of evaluations of these solutions.

ACO-TSP uses two data structures to hold the best solution found and its evaluation:

B holds the best solution found.

E is the evaluation of B.

Q is ACO-TSP’s pseudorandom number generator, with a state initialized by s.

O(l;, n;) is the other node on a link. That is, where /; connects nodes n; and n,,
O(l, n;) = ny and O(l;, ny) = n;.

5 How ACO-TSP Works

This section contains the steps that ACO-TSP goes through in order to produce a
solution to a TSP.

Step 1: Initialization
1. Foreachfieldf;inF,fi=u
2. For each field v;in V, vi = 1/D(n;, n;), where n; and n; are the two nodes con-
nected by /;.
3. B=null.
Step 2: Optimization
Repeat this process until m solutions have been produced:
1. i=1
2. Create 7, a solution to the TSP, executing the Solution Generation Proce-
dure described below
If Bisnull orif E(T) < E(B), set Bto T
X;=Tand Y;= E(T)
Increment i
If i = updatelnterval, execute the Weight Update Procedure described below
and go to 1; otherwise, go to 2

SNk W

When m solutions have been produced, B holds the best solution found, and E is its
evaluation.

The Solution Generation Procedure, referred to above, proceeds as follows. It gen-
erates a solution 7+

j=1

Set each field of 7 to a null value

Set T; to a node randomly chosen from the members of N

Compute a probability vector P of length K, such that for each p; in P, if /;
connects to n, and if O(l; n,) is not a member of 7, then p; = Fi + Vi, 1If l;
does not connect to n, or if O(I;, n,) is a member of 7, then p; = 0.

BN
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9.

Choose i from the distribution based on P, such that each i has a chance of
being chosen proportional to P;. (This is what evolutionary algorithm prac-
titioners will recognize as a roulette wheel selection process).

Setn, = O(l; n,).

Set T = n,.

Increment j.

If j = J, stop; else, go to 5.

The output of this procedure is 7, a set of J nodes that are a solution to the TSP.
The Weight Update Procedure, referred to above, proceeds as follows.

1.

For each weight v; in V, set v; to be v; * d

2. For each solution x; in the list of recently generated solutions X, and for

3.

each evaluation v; in the list of evaluations for those solutions, use the Solu-
tion Weight Update procedure to update x;’s weights.
Clear X and V.

The Solution Weight Update procedure, referred to above, proceeds as follows. It
updates the variable weights on the links that are determined by a solution 7" with
evaluation E(T):

1.

For each pair of nodes n;, n; in 7, including the pair consisting of the first
and last nodes in 7,

a. letL;=A(n; ny).

b. Increment V;by I/E(T).

This concludes the description of ACO-TSP.

6 Can an Equivalent Classifier System Be Produced?

An examination of the preceding description of ACO-TSP suggests that an attempt to
create a functionally equivalent classifier system is unlikely to succeed. Here are
some differences between ant colony optimizers and classifier systems that would
lead us to believe that such a project is infeasible:

Ant colony optimizers have no functional units corresponding to classifiers.
Classifiers have fitnesses, which are missing in ant colony optimizers.
Classifier systems use an evolutionary algorithm to create new structures,
and the ant colony optimizer does not.

No new structures are added by the ant colony optimizer during optimiza-
tion, but they are added during the run of a typical classifier system.
Classifier systems do not optimize; instead, they form cooperating and
competing groups of rules that generate responses to external stimuli.

Ant colony optimizers do not typically generate responses to external
stimuli; instead, they optimize.

In what follows, these differences between ant colony optimizers and classifier
systems will be resolved in one of two ways. Either the classifier system will be
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reduced in functionality to eliminate capabilities that are not needed to carry out the
transformation of ACO-TSP into an equivalent classifier system, or the classifier
system will be extended with capabilities that it does not have in standard practice,
but that are required to support the equivalence result. In a later section of this paper,
we will consider the question whether the exercise has produced any result of practi-
cal value, given that there have been modifications made to the traditional classifier
system in order to cause its functionality to match that of the ant colony optimizer.

7 A Formal Description of CS-TSP

Let us now consider CS-TSP, a classifier system that is functionally equivalent to
ACO-TSP. First, some general remarks about CS-TSP and the intuitions underlying it.

First, following general classifier system practice, we describe two entities in-
volved in the optimization. One is an external environment that presents stimuli to
CS-TSP, receives CS-TSP’s responses, and provides CS-TSP with feedback from
time to time. The other is CS-TSP itself.

The environment will do two things. During the process of building solutions, it
will present CS-TSP with binary input patterns and use CS-TSP’s responses to build
routes. It will also present CS-TSP with the evaluation of each route that is produced.

CS-TSP will store solutions and their evaluations, just as ACO-TSP did. Let us
use the same terminology as in our description of ACO-TSP for the vector of solu-
tions and the vector of solution evaluations used by the environment—they will be
referred to as X and E. CS-TSP will also store its best solution and its best solution’s
evaluation. As we did for ACO-TSP, we will denote these as B and E.

Now let’s look at CS-TSP in detail. CS-TSP contains these components:

C, a list of classifiers, two for each /i in L;

X, a list of solutions,

Y, a list of evaluations of these solutions;

B, the best solution found;

E, the evaluation of B; and

Q, CS-TSP’s pseudorandom number generator, shared with its environment, with a
state initialized by s.

Each classifier in CS-TSP has these components: a match pattern, an output pat-
tern, a fixed strength, and a variable strength.

A classifier’s match pattern is a concatenation of two symbol patterns, each of
length J. The first half of a match pattern contains J—/ zeros and one “1”, which can
occur at any position in this part of the list. For example, if /=8, then this is a possi-
ble first half of a match pattern for a CS-TSP classifier: 0000 10 00. The symbol
“1” represents the current node in the process of constructing a route. If this pattern
forms the first part of a match pattern, then the classifier having that match pattern
will match a case when the 5™ node is the one just arrived at in the current construc-
tion of the route.

The second half of the match pattern is a pattern containing J—/ “don’t care” sym-
bols (represented as “#” here) and one “1”, which can occur at any position in this
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part of the list, except the position occupied by the “1” in the first half of the match
pattern. For example, if /=8, then this is a possible second half of a match pattern for
a CS-TSP classifier: # 1 # # # # # #. The symbol “1” represents the next node to go
to in the process of constructing a route. If this pattern and the one described above
form the match pattern for a classifier, then the match pattern would be written as

Example match pattern: 00001000 # 1 #### ##,

and the interpretation of this match pattern would be that if node 5 is the current node,
and if node 2 is a legal next node for the route at this point, then the next node in the
route should be node 2.

The output pattern for a classifier is a bit string J bits long, like the second half of
the match pattern, except that “0”s are substituted for “#’s. Thus, the output pattern
for the classifier in the example just discussed would be

Example output pattern: 0100000 0.

The fixed strength of a classifier will represent the fixed strength of a link in ACO-
TSP. The variable strength of a classifier will represent the variable strength of a link
in ACO-TSP.

The fixed weight and variable weight of a classifier correspond to their values
stored in vectors in ACO-TSP. These weights may be somewhat reminiscent of the
way that fitness, strength, accuracy, and other measures of performance are associated
with classifiers in standard classifier system practice.

A classifier containing the components listed above is associated with a link in L.
The classifier’s fixed and variable strengths will be equal to the fixed and variable
strengths of that link during the corresponding path construction and weight update
procedures in ACO-TSP.

Now let us define a function that will associate classifiers in CS-TSP with links in
the TSP. Let ¢ be a CS-TSP classifier. Then L(c) is the link associated with the clas-
sifier. If i is the position of the “1” in the first half of the classifier’s match pattern
and j is the position of the “1” in the second half of the classifier’s match pattern, and
if n; is the ith member of N and n; is the jth member of N, then L(c) is A(n;, n,). That
is, the link associated with a classifier is the link connecting the node it references in
the first half of its match pattern to the node it references in the second half of its
match pattern.

The two correlate classifiers for a link L are in a set that is the value of the function
C(L). Assume that L connects nodes n; and n;. Then C(L) is ¢, and ¢;, where the only
two 1’s in the match pattern of ¢, are in the ith and J+kth positions and the only two
1’s in the match pattern of ¢; are in the kth and J+ith positions.

Finally, let us define the correlate of a classifier. U(c) is the correlate of c. That is,
if L(c) = I;, then U(c) is the classifier ¢, not equal to ¢ such that ¢; is a member of
C(l).
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8 How CS-TSP Works

Now let us consider how CS-TSP optimizes.

Step 1: Initialization.

1.

4.

Let S, the set of classifiers in CS-TSP, contain all classifiers ¢ such that the
first half of the match pattern of ¢ is of the form described above, the sec-
ond half of the match pattern of ¢ is of the form described above, and the
output pattern of ¢ is derived from the second half of the match pattern of ¢
as described above. S will contain no duplicate classifiers, and no classifi-
ers other than those just described. S is a set of classifiers that represents all
the links in G, with two classifiers for each link—one for each direction of
traversal of the link.

Set the fixed strength of each classifier ¢ in S to equal the fixed strength of
L(c) in ACO-TSP. Set the variable strength of each classifier ¢ in S to equal
the variable strength of L(c) in ACO-TSP when ACO-TSP is initialized.
Order the classifiers in S so that the two classifiers C(/;) are first, then the
two classifiers C(1,), and so on. Now the order of the classifiers (and their
weights) matches the order of the weights in the ACO-TSP weight vectors.
Set B to null.

Step 2: Optimization
Repeat this process until m solutions have been produced:

1.
2.

3.
4.

5.
6.

i=1

Create T, a solution to the TSP, executing the Solution Generation Proce-
dure described below

If Bisnull orif E(T) < E(B), set B to T and set E to E(B)

The environment passes 7 and E(T) to CS-TSP, and CS-TSP sets X;= T and
Yi=ET)

Increment i

If i = x, execute the Weight Update Procedure described below and go to 1;
otherwise, go to 2

When m solutions have been produced, B holds the best solution found, and E is its
evaluation.

The Solution Generation Procedure, referred to above, proceeds as follows. It gen-
erates a solution 7+

I.
2.
3.

j=1
Initialize each field of T to be null
The environment sets 7; to a node randomly chosen from the members of N,
using one call to the random number generator to select the initial node.
The environment constructs a message to send to CS-TSP by concatenating
these two bit strings:
a. J bits all of which are 0 except the pth bit, where p is the index of
the current node in the path, and
b. J symbols all of which are “1” except for a “0” at the position of the
index of each node already on the path

. CS-TSP forms the set of classifiers matching the environment’s message.
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6. CS-TSP chooses the winning classifier from the match set by using a rou-
lette wheel selection process, where the selection weight associated with
each classifier matching the message equals f* + v’. This results in one call
to the random number generator.

7. The output message of the winning classifier is sent to the environment.

8. Where i is the position of the “1” in the output message, the environment
sets T; = n;.

9. Increment j.

10. If j = J, stop. Otherwise, go to 5.

The Weight Update Procedure, referred to above, proceeds as follows:

1. For each classifier ¢ in S and variable weight v in ¢, v= v*d.

2. For each solution T; in the list of recently generated solutions X, and for
each evaluation v; in the list of evaluations for those solutions, use the Solu-
tion Weight Update procedure to update classifier weights.

3. Clear X and V.

The Solution Weight Update procedure, referred to above, proceeds as follows. It
updates the variable weights on the classifiers associated with a solution 7; with
evaluation E;:

1. Compute w, the new weight to be used in the update, equal to I/E;.
2. For each pair of adjacent nodes n; and n; in T}, including the pair consisting
of the first and last nodes of T},
a. Let L; be the link D(n,, n,)
b.Let ¢; and ¢, be the classifiers in the set C(L;)
c. Add w to the variable weight of ¢; and ¢,

(Note that since two classifiers are correlated with each link, in order to match the
functioning of ACO-TSP, the weights on both classifiers must be incremented.)

Table 1 is an example of the way that CS-TSP would work for a three-node TSP,
assuming a=1/ and b=1.

Table 1. Table of classifiers

Associated Match pattern Output Fixed Variable
link pattern strength Str.
1-2 100 #1# 010 1.6 23.9
2-1 010 1## 100 1.6 14.7
1-3 100 ##1 001 1.6 12.0
3-1 001 1## 100 1.6 4.2
2-3 010 ##1 001 1.6 37.3
3-2 001 #1# 010 1.6 21.6

Let us suppose that the environment chose node 2 as the first node in the route. It
then sends the message “0 1 0 1 0 1” to CS-TSP. The 2-1 and 2-3 classifiers are the
only ones that match. The 2-1 classifier recommends node 1 with a strength of 16.3
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and the 2-3 classifier recommends node 3 with a strength of 38.9. Let’s suppose that
the environment calls the random number generator for a number between 0 and 55.2
(= 16.3 and 38.9). The returned value is 24.6, so the 2-3 classifier wins and node 3 is
the next node in the route. The environment updates the route so that it goes from 2 to
3. Now it wants to know what node to go to next. It sends the message “00 110 0”
to CS-TSP. (Note that the last half of the message restricts the route from revisiting
nodes 2 or 3.) The only classifier to match is classifier 3-1. Node 1 is added to the
route and B and E are updated if this route is better than the current B. The route con-
struction is complete. The route and its evaluation are stored in the vectors X and Y.

One important point to note in this simple example is that the message sent from
the environment activates all and only those classifiers representing links that could
be used at this point in the route construction for ACO-TSP. The weights on the clas-
sifiers determine which link is followed through a roulette wheel selection process,
just like the one that occurs in ACO-TSP.

9 A Proof of the Functional Equivalence of ACO-TSP and
CS-TSP

Given the notation introduced in the last two sections, we can now show that ACO-
TSP and CS-TSP are functionally equivalent. In what follows, it may be helpful to
assume that we are watching runs of computer programs executing both ACO-TSP
and CS-TSP on the same problem, with both ACO-TSP and CS-TSP using pseudo-
random number generators with the same structure. That is, if their random number
generators are in the same state, then each algorithm will generate the same sequence
of random numbers from that point forward. We assume also that CS-TSP and its
environment share the same random number generator, so that a call to the random
number generator by either CS-TSP or its environment changes the state of the same
random number generator.
The proof proceeds as follows.

Definition: ACO-TSP and CS-TSP are functionally equivalent if and only if:

1. The pseudorandom number generators for the two algorithms are in the
same state,

2. The routes under construction for the two algorithms contain the same
nodes in the same order,

3. The X and Y vectors for the two algorithms contain identical entries,

The fixed weights for the classifiers in CS-TSP equal the entries in F, and

5. For each link L;, V; in ACO-TSP equals the variable weights for the two
classifiers in C(L;).

&

Theorem 1: ACO-TSP and CS-TSP are functionally equivalent after initialization.

Proof: All five requirements of functional equivalence are met on initialization: the
random number generators for the two algorithms are initialized by the same seed;
there are no routes under construction; there are no X and Y entries; and all fixed and
variables weights in CS-TSP were set equal to their correlates in ACO-TSP. Hence,
the theorem is true.
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Theorem 2: if ACO-TSP and CS-TSP are functionally equivalent before a selection
of a node for a route, then they are functionally equivalent after the selection of a
node for a route.

Proof: If the node being selected is an initial route node, then it is selected by a simi-
lar call to Q, which is in an identical state by hypothesis. If the node being selected is
a later node in the route, then it is selected by a call to Q with a roulette wheel selec-
tion. By inspection, we see that each link considered by ACO-TSP has a correspond-
ing classifier in the match set constructed by CS-TSP. The order of the classifiers
matches the order of the links, and the weights of the classifiers in CS-TSP equal the
weights of the links in ACO-TSP, so the roulette wheel selection process will make
identical node choices for the two algorithms, with a single call. Parts 1 and 2 of the
definition of functional equivalence are maintained by this process, and parts 3, 4, and
5 are unaffected, so the theorem is proved.

Theorem 3: if ACO-TSP and CS-TSP are functionally equivalent before construct-
ing a route, then they are functionally equivalent after constructing a route.

Proof: The construction of a route involves iterating the selection of a node to add to
the route. Theorem 2 proves that this process does not violate the state of functional
equivalence. Hence, the theorem is proved.

Theorem 4: if ACO-TSP and CS-TSP are functionally equivalent before updating
weights, then they are functionally equivalent after updating weights.

Proof: The weight update process involves decrementing all variable weights in both
algorithms by the same constant. It then involves adding a quantity associated with
each route in X to the variable weights (in ACO-TSP) and the variable weights of
classifiers (in CS-TSP). By inspection, we see that for each update of a variable
weight in ACO-TSP, there is a corresponding update of the variable weights of the
two corresponding classifiers in CS-TSP. Parts 1-3 of the definition of functional
equivalence are unaffected by this process. Parts 4 and 5 are maintained. Hence, the
theorem is proved.

Theorem 5: ACO-TSP and CS-TSP are functionally equivalent throughout their runs
on the same problem.

Proof: Theorem 1 tells us that the two algorithms begin their runs in a state of func-
tional equivalence. The runs consist of only two processes: constructing routes and
updating weights. Theorem 3 tells us that constructing routes preserves functional
equivalence. Theorem 4 tells us that updating weights preserves functional equiva-
lence. Hence, functional equivalence is preserved throughout the runs, and the theo-
rem is proved.

10 Is the Reverse Mapping Possible?

What about the reverse process? Could we create an ant colony optimizer that mim-
ics the operation of any classifier system? This is an interesting question. It would
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seem not, since there are a number of features of classifier systems that the basic ant
colony optimizer does not include. These were mentioned earlier, and the evolution-
ary algorithm is one of the most significant. Importing the machinery of an evolu-
tionary algorithm into an ant colony optimizer seems a larger-scale expansion than
any of the modifications of the classifier system carried out above. Nonetheless, it is
interesting to consider what such expansions would be like, for they would involve
new types of optimization algorithms, with possible niches in which they could per-
form better than any algorithms we currently use. Consideration of what it would
take to produce such a reverse mapping would a good subject for another paper.

11 Is There Any Practical Relevance of the Proof Presented Here?

There are two areas in which it seems the proof above may help us to extend or im-
prove the practice of classifier systems and ant colony optimizers.

The first is the addition of a solution “memory” to classifier systems. The proof
given above shows how to convert a basic ant colony optimizer into an equivalent
classifier system. The conversion required us to reduce classifier system functionality
(particularly with regard to using an evolutionary algorithm to find new classifiers)
and to add a solution maintenance and reinforcement mechanism that has not been
used in standard classifier system practice. This mechanism involved maintaining
several complete solutions and their evaluations, and reinforcing classifiers from
multiple solutions at a single time. Classifier systems typically reinforce their classi-
fiers after a single complete solution has been produced—a single reinforcement
event. Dorigo notes in his paper that this multiple-solution approach to reinforcement
works much better than reinforcement after a single solution is produced, so a classi-
fier system based on an ant colony optimizer and lacking the capability to store in-
formation on multiple solutions will perform worse than one that has this capability.

Once we accept the need to add this module in order to match ACO-TSP capabili-
ties, could we consider adding such a module to classifier systems for other reasons?
It seems so. In Davis, Wilson, and Orvosh 1993, the authors show that if a classifier
system maintains a list of examples that were incorrectly classified together with their
solutions, and if the classifier system reruns those examples “internally” at some low
frequency in addition to the examples that are generated by the environment, this
process increases the classifier system’s learning speed. Similarly, it would appear
that “remembering” routes and their evaluations could provide similar benefits for a
self-reflective classifier system that is solving a TSP. And similar benefits could
obtain for an animat if it were given a memory of prior examples and their outcomes.
In each of these cases, it would appear that the classifier system can gain performance
benefits if it has the extra memory available to “remember” prior cases.

The point made here is that the reinforcement mechanism added to CS-TSP is a
special case of adding a memory for examples and their evaluations to the classifier,
and this capability has already been shown in other contexts to provide benefits to
classifier systems. One’s hope is that the present result suggests other benefits to be
gained, if one were to apply classifier systems seriously to combinatorial optimization
problems, the area in which ant colony optimizers have most commonly operated.
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A second practical consequence of the formal result above may be relevant to ant
colony optimizers. As the size of a TSP increases, the number of links grows quickly.
If the ant colony optimizer has memory limitations, then it may be necessary to re-
duce the number of links under consideration. If we suppose that links are maintained
locally—that the links in memory are those between closest nodes in the problem—
and if we suppose that the coding of the links reflects proximity, perhaps in a fashion
akin to Gray coding, then it could be of use to an ant colony optimizer to use an evo-
lutionary algorithm to generate new links that could be tried by the ant colony opti-
mizer. This could also be a useful approach in problems of real-valued optimization
rather than combinatorial optimization, where the number of possible positions is
infinite. One promising approach might be to add an evolutionary algorithm module
to the ant colony optimizer that provides it with new route points to try as it attempts
to construct optimal answers.

12 Conclusions

This paper has shown a way to create a classifier system that functions in the same
way as an ant colony optimizer for solving the TSP. The translation process includes
modifying the capability of the classifier system approach, through capability deletion
and addition. Nonetheless, it is interesting to see how little addition of capability is
required in order to accomplish the transformation. The results above suggest an
interesting approach to extending classifier system practice, and an interesting ap-
proach to extending ant colony optimizer practice. Finally, it may be interesting to
recall that Marco Dorigo was a long-time, experienced classifier system practitioner
before he began his seminal work on ant colony optimizers. The translation proce-
dure described here might have a historical, as well as theoretical, grounding.
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Abstract. Knowledge discovery in databases has traditionally focused on
classification, prediction, or in the case of unsupervised discovery, clusters and
class definitions. Equally important, however, is the discovery of individual
predictors along a continuum of some metric that indicates their association
with a particular class. This paper reports on the use of an XCS learning
classifier system for this purpose. Conducted over a range of odds ratios for a
fixed variable in synthetic data, it was found that XCS discovers rules that
contain metric information about specific predictors and their relationship to a
given class.

1 Introduction

A number of study designs exist for the collection and analysis of epidemiologic
surveillance data. These range from static, one-time observational (prevalence)
studies of an existing population or sample, to ongoing observation of a given
population or sample. The latter, commonly called a cohort study, is of particular
interest, in that it provides the ability to investigate the incidence of outcomes, such as
specific diseases, injuries, or other clinical events over time. Because of this added
informational dimension, it is possible to create more robust models of causation that
as would be the case in simple observational studies. Individuals are enrolled into a
cohort based on their exposure to a putative agent or risk factor. Ingestion of a
particular drug, cigarette smoking, or employment in a chemical factory are examples
of risk factors or exposures that could be investigated in a cohort study. Often, more
than one risk factor, and almost certainly many covariates, will be included in the set
of predictor variables under investigation. Once enrolled, the members of the cohort
are observed over time to determine if an outcome of interest occurs. Cohorts may be
followed prospectively or retrospectively, where the investigation begins before or
after, respectively any outcomes have occurred. A prospective cohort study may be
used to evaluate risk factors associated with outcomes having short latency, or time-
to-event after exposure. They tend to be expensive, as they require sophisticated
follow-up methods to ensure the maintenance of the cohort, and even in outcomes
with short latency they can require extended follow-up time. Retrospective cohort
studies can be more cost-effective; however, as they rely on data that has already been
collected, often for another purpose, they can suffer from poor data quality. Even
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with these limitations, cohort studies are very common in epidemiologic surveillance
and research.

One of the essential analytic parameters in the cohort study is the relative risk,
sometimes called the risk ratio, or RR. The RR is simply the ratio of the incidence of
an outcome in those with a given exposure to the incidence of the outcome in those
without the exposure. The RR indicates the degree to which an individual is at risk of
an outcome given an exposure, compared to one who has not experienced the
exposure[6]. Restated, the RR indicates the degree to which a specific exposure
influences the risk of developing a given outcome. For dichotomous exposure and
outcome variables, the RR is calculated as shown in Figure 1.

Exposure Class
Outcome No outcome
Exposed A B
Not Exposed C D

Fig. 1. A 2x2 table showing outcome by exposure status

The relative risk is calculated as follows:
_ A/(A+B)
C/(C+D)

A RR less than 1 indicates a protective effect of the exposure of interest on clinical
outcome; while a RR exceeding than 1 indicates a positive association of the outcome
with the exposure. If the RR is 1.0, the predictor has no association, positive or
protective, with the outcome. The RR described in the above figure is commonly
referred to as the crude risk ratio, because it has not been adjusted for other variables
that may be important confounders or effect modifiers. While the crude RR is useful,
the adjusted RR, typically derived by means of a Poisson regression or generalized
linear model, is of more importance in ascertaining the true effect of a given variable
on an outcome. However, these multivariate models are not without some degree of
weakness: small sample sizes, missing data, and model complexity that may cause
failure of the model to converge are some of the reasons why important variables
might not be identified as statistically significant. This is especially the case in the
early phases of epidemiologic surveillance, where the number of exposure-outcome
associations may be small and apparently random. The discovery of features
(variables as well as specific values of variables) that act as sentinels in alerting
investigators to potential relationships is of great importance to epidemiologic
surveillance and research.

This paper describes an investigation into the ability of an XCS-type learning
classifier system to identify such exposure-outcome associations in a simulated cohort
study under strict experimental conditions. Of particular interest is the detection of
sentinel features, or those variables that may provide “early warning” as to the
association between an exposure and outcome. To evaluate this ability, a sensitivity
analysis was performed for this investigation, focusing on a single candidate sentinel
feature nested in an array of covariate exposure variables. A series of 10 different

ey
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cohorts were simulated over a range of RRs from 0.5 (highly protective) to 5.0 (high
risk). These cohorts were experimentally constrained to ensure that their size,
outcome distribution, and covariate value distributions were maintained across the
range of RRs. One variable was selected as the exposure of interest and therefore was
modified in progressing across the range of RRs. Thus, this investigation simulated a
series of retrospective cohort studies. Three research questions motivate this work:

1. Do the magnitude and direction of relative risk affect classification accuracy
in XCS?

2. Do the magnitude and direction of relative risk affect rule and rule set
complexity?

3. Is there a detection threshold at which XCS can detect predictive risk factors,
defined here as sentinel features, at experimentally controlled relative risk

levels?
2 Methods
2.1 Data

Baseline Data. A series of retrospective cohort studies were simulated by first
creating a baseline dataset consisting of 10 dichotomous exposure variables and one
dichotomous outcome variable. The value of each predictor was randomly generated
using a binomial distribution, where 0="Absent” and 1="Present.” The outcome
variable was also randomly generated, using a binomial distribution, and constrained
such that the dataset contained 1000 records, with equivalent class frequency to yield
500 outcome-positive and 500 outcome-negative records. The outcome variable was
linguistically the same as the exposure variables. Then, a single exposure variable,
referred to here as V5, was recoded to ensure that it yielded a RR of 1.0. The RR
associated with V5 is designated as RRys. Figure 2 demonstrates the crosstabulation
of V5 with outcome in the baseline dataset.

Outcome
\%4) I 0
1 250 250
250 250

Fig. 2. Crosstabulation of the exposure of interest, V5, with the outcome variable

The crude and adjusted RRs for each exposure variable were calculated and found
to be approximately 1.0 and generally not statistically significant. Variable 8
demonstrates mild association with the outcome with respect to the crude RR, but on
adjustment this association weakens. The variable was left unaltered in the baseline
dataset as a result. The baseline dataset is described below in Table 1; results
obtained from analyses using the STATA SE9.0 procedures cs and poisson [8].
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Table 1. The baseline dataset used for this investigation. The putative exposure, V5, is
highlighted in the table.

Variable Crude Relative Risk | Adjusted Relative Risk
[95%CI] [95%CI]
Vi 1.03 [0.91, 1.17] 1.03 [0.86, 1.23]
V2 1.10 [0.96, 1.24] 1.09 [0.92, 1.30]
V3 1.04 [0.92, 1.18] 1.06 [0.89, 1.26]
V4 0.90 [0.79, 1.02] 0.89 [0.75, 1.07]
V5 1.00 [0.88, 1.13] 1.01 [0.85, 1.20]
Vo6 1.07 [0.95, 1.22] 1.08 [0.91, 1.29]
V7 1.02 [0.90, 1.15] 1.02 [0.86, 1.22]
V8 1.15[1.02, 1.30] 1.16 [0.97, 1.38]
V9 1.04 [0.91, 1.17] 1.04 [0.87, 1.24]
V10 0.93 [0.82, 1.05] 0.93 [0.78, 1.12]

Incremental Data. The goal of this investigation was to evaluate the ability of XCS
to discover a single sentinel feature over a range of relative risks. The baseline
dataset was altered to decrease or increase the relative risk for a single variable,
Attribute 5, labeled RRys. This was accomplished by sequentially selecting records
from the baseline dataset and changing the value of V5, depending on the value of the
outcome variable. All other variables, including the outcome, were not changed; thus
RRys was rigorously controlled over the entire suite of simulation datasets. Figures 3
and 4 illustrate the crosstabulation of V5 with the outcome at RRy5=0.5 and RRys
=5.0, respectively. As seen in these figures, the proportion of records where V5=1
and the outcome is 1 increases from low to high RRs.

Each iteration was successively written to a different dataset for evaluation. Thus,
each dataset contained the alterations of the one created before it, in addition to the
alteration at that iteration. A total of 10 such datasets were created, with RRysranging
from 0.5 to 5.0 in increments of 0.5.

Outcome
\%4) I 0
1 166 334
0 334 166

Fig. 3. Crosstabulation of V5 with the outcome variable at RRy5=0.5

Outcome
\%4) I 0
1 417 82
0 82 417

Fig. 4. Crosstabulation of V5 with the outcome variable at RRy5=5.0
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The system. EpiXCS [5] was used as the learning classifier system for the
experiments. Using the Lanzi XCSLib kernel [7], EpiXCS outputs condition-action
rule sets in IF-THEN syntaxas well as graphical display for ease of reading and
visualization. In addition, EpiXCS provides evaluation metrics commonly used in the
decision sciences literature (described below). The system parameters were set as
follows. The population size, number of iterations, and initial prediction error were
evaluated on the baseline dataset as well as those at RRys=0.5 and RRy5=5.0 in order
to “frame” the parameters and evaluate their effects on classification accuracy. This
was important given that the exposure variables were randomly generated and this
could have an effect reflecting the value assigned to €,. No such effect was noted, and
the final parameters were set as in [1], except that the optimal population size was
determined to be 2500. Each experiment took place over 1000 iterations; even though
each dataset contained 1000 records, extending the training phase beyond 1000
iterations did not substantially improve the classification accuracy or the quality of
the rules returned by EpiXCS. As this investigation focused on the identification
sentinels in the training period, no separate testing set was used; classification
performance was determined using the training set.

Experimental procedure. This investigation focused on rule discovery occurring
during the training phase in a supervised learning environment. As a result, no
training-testing set pairs were created; however, 10-fold cross-validation was used to
ensure random and complete exposure to each record in the datasets. Each dataset
was trained in EpiXCS over 20 runs, wherein each run comprised 1000 iterations.
The rule sets described here represent the conflation of these sets into a “meta-set”
that was created by ranking the rules by their predictive value. The rule sets derived
by EpiXCS were evaluated using the visualization tool provided in this software.

Evaluation metrics. Classification accuracy was ascertained by the area under the
receiver operating characteristic curve (AUC) and the positive and negative predictive
values (PPV and NPV, respectively). AUC provides a single measure of
classification accuracy, wherein high values (approaching 1.0) indicate that the
system discriminates between positive and negative exposure-outcome associations
accurately. The AUC reflects the prior probability, and answers the question “will
XCS accurately detect a given condition?” where in this investigation, the “condition”
is the sentinel feature. An AUC, averaged over the 20 runs, is reported for each RRys.
The predictive values provide posterior probabilities, and answer the question “given
that XCS has detected an exposure as a sentinel feature, is this detection accurate?”
The predictive values are calculated in two ways. First, they are reported for each
RRys, as is AUC. Second, a predictive value is calculated for each rule: a PPV is
calculated for an outcome-positive rule, and a NPV for an outcome-negative rule.

In addition to AUC and the predictive values, the rule sets returned by EpiXCS at
each RRy; level were evaluated on the following metrics. Rule set size is the number
of rules in the set, stratified by the value of the outcome in the rules. Rule size
represents the number of conjuncts in a rule, and is averaged separately for each
outcome value. Emergence is the proportion of a rule set where V5 is predictive
(positive), and the outcome is either positive (thus V5 emerges as a risk factor) or
negative (V5 emerges as a protective factor). Thus, there two emergence metrics: risk
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factor emergence and protective factor emergence. The emergence metrics are
calculated separately for positive- and negative outcome-rules having a predictive
value of 0.60 or greater:

Z Rulej 1 V5 =1and Outcome =1
Risk Factor Emergence = = 2)

Zn: Rule;
j=1

Z Rulej 1 V5 =1and Outcome =0

Protective Factor Emergence = = - (3)
Z Rule;
j=1

3 Results

3.1 C(lassification Accuracy

Generally, AUC and the predictive values correlated linearly with RRys, as shown in
Figures 5-7. Overall, these accuracy point estimates are not particularly high,
probably due to the randomness of the exposure variables other than V5. Nine
random variables, against one nonrandom, will place disproportionate pressure on
these estimates. The wide variances at lower RRys would be expected, given the
relative lack of pressure placed on the risk estimate by V5 at these levels. This is
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Fig. 5. Area under the receiver operating characteristic curve at each relative risk of V5 tested.
Results based on average of 20 runs. Error bars represent plus/minus one standard deviation.
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Fig. 6. Positive predictive value at each relative risk of V5 tested. Results based on average of
20 runs. Error bars represent plus/minus one standard deviation.
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Fig. 7. Negative predictive value at each relative risk of V5 tested. Results based on average of
20 runs. Error bars represent plus/minus one standard deviation.

further supported by the dips in the point estimates at RRys =1.0, as the data were
randomly distributed on all exposure variables at this level. Note, however, the
decrease in variance in all three point estimates as RRys approaches 5.0, suggesting a
threshold at which XCS begins to stabilize with respect to classification accuracy.

3.2 Rule Discovery by XCS

Rule set size. The number of rules, both those advocating positive as well as those
advocating negative outcomes, was remarkably similar across the range of RRys, as
shown in Figure 8. The slight differences at RRys of 2.5.and 3.0 are not significant
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with respect to the rule set sizes at the other RRys levels. It is remarkable that the
number of rules in each set was lower than one may expect, given the size of the
classifier population. However, this is probably due to the small number of variables,
and the dichotomous coding scheme.

Rule size. The mean number of conjuncts per rule is shown in Figure 9, grouped by
outcome. There are obvious differences in rule size across the range of RRys, and

@ Outcome=Negative
@ Outcome=Positive

Number of rules in final rule set

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Relative Risk

Fig. 8. Rule set size for positive and negative outcomes, grouped by RRys
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m Outcome=Positive

Mean number of conjuncts/rule
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‘
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Relative Risk

Fig. 9. Rule size, expressed as average number of conjuncts per rule, for positive and negative
outcomes. Error bars represent plus/minus one standard deviation.



278 J.H. Holmes

these are supported statistically, although the correlations are not strong. Spearman
rho (the nonparametric equivalent of Pearson correlation, r, was 0.36 (p<0.001) for
the negative outcomes, and 0.26 (p<0.01) for the positive outcomes. Kruskal-Wallis
nonparametric one-way analysis of variance supported the observation that there are
visually obvious differences in rule set size between the RRyss.

Sentinel feature emergence. Figure 10 illustrates the emergence score obtained
from rules including V5 as a conjunct, where the value of V5 is 1. With the exception
of the RRy5 =0.5 all rules in both classes contained V5. As can be seen in the figure,
V5 is a very powerful predictor of the outcome. The reason for the slight drop in the
risk factor emergence score between RRys=1.5 and 2.0 is not clear, and may be due to
such factors as the randomness of the initial classifier population or interactions
between the exposure variables that were not previously identified in the bivariate
analysis for quality control that was performed on the data prior to the experiments.
Regardless, RRys is highly correlated with the risk factor emergence score (r=0.72,
p<0.001) and negatively correlated with the protective factor emergence score
(r=0.57, p<001).
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Fig. 10. Emergence scores for V5 obtained over the range of RRys, separately for positive and

negative outcomes

4 Discussion

In discussing the results and implications of this investigation, it is worthwhile to
return to the three research questions that motivated this work. First, there was a clear
relationship between the magnitude and direction of the relative risk with



Detection of Sentinel Predictor-Class Associations with XCS: A Sensitivity Analysis 279

classification accuracy. Although this study was limited to ten simulation datasets of
a small number of variables, the results suggest that the relationship is largely linear,
with increasing classification accuracy associated with increasing relative risk.
However, it appears that a bimodal distribution may underlie this relationship. The
observed relationship is not completely unexpected: a relative risk of 0.5 represents a
very strong protective effect, much more strong than a corresponding increase of the
relative risk from 1.0 to 1.5, because of the exponential function underlying relative
risk. Even so, this observation bears further investigation with an extended sensitivity
analysis at more finely grained relative risks, especially below 1.0. More potentially
troubling is the apparently random distribution of the classification accuracy metric
variances across all values of RRys. The reason for this is not clear, and one could
argue that the observed pattern of variances is artifact, resulting from aberrations in
the data. The validity of this argument would be valid were it not for the fact that all
of the exposure variables except for V5 were kept constant in each of the 10 datasets.
Furthermore, the distribution of positive and negative values for V5 was carried over
from one dataset to the next, the only difference between them being that the values
were switched from positive to negative and vice-versa, depending on the value of the
outcome and the RRys for that data increment. More likely is the possibility that
interactions occur between V5 and the other exposure variables as the value of V5 is
changed in each increment. For example, an interaction between V5 and another
exposure variable (or combination thereof) could explain the increase in variance of
the AUC in creating the RRys =1.5 dataset from the baseline data (RRys=1.0). The
subsequent decrease in variance in creating the dataset at RRys =2.0 could be
explained by a washout of the interaction at RRys =1.5. Again, a fine-grained
sensitivity analysis, as well as the addition of rigorous interaction evaluation (not
performed here) could solve this problem.

Second, it was found that the magnitude and direction of the relative risk of a given
exposure variable, V5, did affect the size of the rule sets and the complexity of the
rules, as determined by the average number of conjuncts per rule. However, this
association was moderately weak, although statistically significant. It is important to
note that no post-hoc rule reduction algorithms, such as that suggested by Wilson [9],
were applied in this version of XCS. Rather, the rule sets discovered by the software
represent the rules as they exist in the macroclassifier population at the end of
training. Even so, the size of the rule sets remained fairly constant at approximately
10 for both positive and negative outcome rules. This is probably due to the type of
feature coding (dichotomous) and the small number of variables. The results
presented in Figure 9 are somewhat surprising, not so much that the number of rules
in the rule sets is small, but that the number is so constant across the values of RRys.
One explanation for this could be that even very a highly significant association such
as that between the outcome and V5 at RRys =5.0 is suppressed by the pressure
exerted by the other variables, expressed as conjuncts in the rules. In fact, the number
of conjuncts fails to decrease appreciably as RRys increases. One would expect the
rules to become smaller in size, focusing on the exposure that is most associated with
the outcome, much like a default hierarchy. This was clearly not the case in this
study, evidenced by Figure 9, where the observed pattern of rule size is the opposite
of what might be expected.
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Third, even in this highly controlled experimental study, a clear threshold at which
XCS could identify the sentinel feature was not found. Again, this is probably due to
the need for a more finely grained sensitivity analysis, particularly with relative risks
between 0.1 and 2.0. In a sense, this is good news, because XCS was clearly able to
identify the obvious relationship found at RRys=1.5 (see Figure 10), which represents
at fairly low threshold of association in real life. It is probably reasonable to assume
that XCS could identify a sentinel feature earlier on, but this ability may be data-
dependent and this bears further investigation. Clearly, the lack of any concordant
rules at RRy5=0.5 troubling. In addition, another approach to the issue of emergence
is to use some of the measures of surprisingness used in data mining and pattern
detection. Work by Freitas and colleagues provides possible approaches to this
problem [2, 3, 4].

5 Conclusion and Implications for Future Work

This paper reports on an ongoing investigation into the use of EpiXCS as a
knowledge discovery tool in epidemiologic surveillance. The results indicate that
EpiXCS is capable of discovering values of specific attributes that are associated with
a particular class in a supervised learning problem. The importance of this finding is
substantial. Heretofore, various univariate and multivariate methods, such as
crosstabulation, logistic and Poisson regression and generalized linear models have
been the analytic tools of choice for this problem. However, these analyses do not
provide semantically useful rule ensembles that can be used easily for hypothesis
generation. The single, mathematical model provided by regression analysis is highly
useful, but the advantage to the knowledge discovery process that is provided by the
multiple disjunctions in a rule set is lost. In addition, as noted earlier, these methods
are not without their shortcomings, emanating from statistical assumptions that cannot
always be met with the dataset at hand.

Even though the focus in this investigation is in epidemiologic surveillance, any
problem domain to which data mining could be applied may benefit from the findings
presented here.

This is very much a nascent study, and much needs to be done in the area of
applying learning classifier systems, particularly XCS (but others as well) to the
problem of discovering attribute-class associations. First, larger, more complex
datasets need to be developed and evaluated. The small size of the datasets used here
represents a real limitation to interpreting the results of this study. A related
enterprise would be to simulate prospective studies using data overlays onto existing
surveillance datasets. In this approach, the relative risks are adjusted by adding new
cases to the datasets with specific associational patters that will cause the relative risk
to increase (or decrease). Simulations using these types of datasets are becoming
more popular in evaluating pattern recognition algorithms for detecting disease
outbreaks and bioterrorism events.

Second, more work needs to be done with regard to parameterization. At lower
relative risks, in the presence of more complex (read, conflicting) data, it is probably
that population size, number of iterations, and perhaps genetic algorithm parameters
will need to be adjusted. Finally, there is the intriguing possibility that the relative
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risk could be useful as a learning parameter. There could be at least two reasons why
a relative risk would be low: the data don’t support a higher value, or it represents a
rare, but emerging association. In the latter situation, the relative risk could be
considered as an interestingness metric that would help drive reinforcement.

Third, but not finally, is the extension of this work to prospective studies that
capture data in real time. In these studies, time series analysis is often used to
evaluate historical data on the cohort and to develop accurate forecasts of impending
clinical events.
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Abstract. This paper compares performance of the Pittsburgh-style
system GAssist with the Michigan-style system XCS on several datamin-
ing problems. Our analysis shows that both systems are suitable for
datamining but have different advantages and disadvantages. The study
does not only reveal important differences between the two systems but
also suggests several structural properties of the underlying datasets.

1 Introduction

Successful data mining applications are important for modern-day learning clas-
sifier systems (LCSs). Additionally, the study and comparison of different types
of data miners on various data sets may enable the identification of strengths
and weaknesses of the respective data miners. Several types of problem difficulty
can be distinguished in data mining including data volume, search space size
and type, complexity of the concept, noise in the data, the handling of missing
values, or the problem of over-fitting.

Successful datamining applications of learning classifier systems have been
shown in the past [5] investigating and comparing performance of the accuracy-
based Michigan-style LCS XCS [II] and the Pittsburgh-style LCS GALE [I0].
Both systems showed competent performance in comparison to six other machine
learning systems.

Recently, new systems have appeared in the LCS field, like the Pitt-style LCS
GAssist [2]. Also, there are improved versions of already established systems,
like the XCS with tournament selection [8]. The objectives of this paper are two-
fold: (1) We provide further performance results of GAssist and XCS on several
interesting datasets. (2) We compare and investigate performance of the two
systems revealing problem dependencies, suitability of the respective approaches,
as well as over-fitting or over-generalization tendencies.
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2 Framework

Before we start with the datamining analysis, this section provides a short in-
troduction to the LCSs under investigation.

2.1 GAssist

GAssist [2] is a Pittsburgh genetic-based machine learning system descendant
of GABIL [9]. The system applies a near-standard GA that evolves individuals
that represent complete problem solutions. An individual consists of an ordered,
variable-length rule set. Bloat control is achieved by a combination of a fitness
function based on the minimum description length (MDL) principle and a rule
deletion operator [3].

The knowledge representation used for real-valued attributes is called adap-
tive discretization intervals rule representation (ADI) [I]. This representation
uses the semantics of the GABIL rules (conjunctive normal form predicates),
but applies non-static intervals formed by joining several neighbor discretization
intervals. These intervals can evolve through the learning process splitting or
merging among them potentially using several discretizers at the same time.

The system also uses a windowing scheme called ILAS (incremental learning
with alternating strata) [4]. This scheme stratifies the training set into s subsets
of equal size and approximately uniform class distribution. Each GA iteration
uses a different strata to perform its fitness computation, using a round-robin
policy. This method showed to introduce an additional implicit generalization
pressure to GAssist.

Figure [Ml presents the pseudocode of ILAS. This kind of scheme is reported to
apply some extra generalization pressure to the system, which is an interesting
feature for data mining domains.

2.2 XCS

The XCS classifier system [ITIT2/7] evolves online a set of condition-action rules,
that is, a population of classifiers. In difference to GAssist, in XCS the population
as a whole represents the problem solution. XCS differs in two fundamental ways
to other Michigan-style LCSs: (1) Rule fitness is derived from rule accuracy

1 GAssist’s parameters were set as follows: Crossover probability 0.6; tournament se-
lection; tournament size 3; population size 400; probability of mutating an individual
0.6; initial number of rules per individual 20; probability of “1” in initialization 0.75;
Rule Deletion Operator: Iteration of activation: 5; minimum number of rules: num-
ber of classes of domain +3; MDL-based fitness function: Iteration of activation 25;
initial theory length ratio: 0.075; weight relax factor: 0.9. ADI knowledge represen-
tation: split and merge probability: 0.05; reinitialize probability at initial iteration:
0.02; reinitialize probability at final iteration: 0; merge restriction probability: 0.5;
maximum number of intervals: 5; set of uniform discretizers used: 4, 5, 6, 7, 8, 10,
15, 20 and 25 bins; iterations: maximum of 1500. Results are averaged over 150
experiments.
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Procedure Incremental Learning with Alternating Strata
Input : Examples, NumStrata, NumlIterations
Initialize GA
Reorder Exzamples in NumStrata parts of approximately
equal class distribution
Iteration =0
StrataSize = size(Examples)/NumStrata
While Iteration < Numlterations
If Iteration = Numliterations — 1 Then
TrainingSet = Examples
Else
CurrentStrata = Iteration mod NumStrata
TrainingSet= examples from
Ezxzamples|CurrentStrata - StrataSize] to
Exzamples[(CurrentStrata+ 1) - StrataSize]
EndIf
Run one iteration of the GA with TrainingSet
Iteration = Iteration 4+ 1
EndWhile
Output : Best individual (set of rules) from G A population

Fig. 1. Pseudocode of the incremental learning with alternating strata (ILAS) scheme

instead of rule reward prediction. (2) GA selection is applied in the subsets of
currently active classifiers resulting in an implicit pressure towards more general
rules.

Due to the variable properties of the investigated datasets including real val-
ues, nominals, and binary features, we use a hybrid XCS/XCSR approach that
can handle any feature combination as done before in [5]. Additionally, we apply
tournament selection, which proved to result in more robust fitness pressure to-
ward accurate rules [§]. In the investigated problems, a reward of 1000 is provided
if the classification is correct, and 0 otherwise.

3 Experiments

3.1 Setup

In Table [l we show the most important properties of the datasets we have
selected from the University of California at Irvine (UCI) repository [6]. The
selected datasets are:

2 XCS’s parameters are set as follows: N = 6400, ro = 4(100), Py = 0.6, 8 = 0.2,
x = 1.0 applying uniform crossover, pu = 0.04, mo = 0.2, ga = 48, 7 = 0.4, ¢ = 1,
6 = 0.1, O4e; = 50, GA Subsumption is applied with 6s,, = 50. Experiments are run
applying either 100,000 learning steps (averaging over 150 experiments) or 500,000
learning steps (averaging over 20 experiments).
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Annealing Data (ann)

1985 Auto Imports Database (aut)

Balance Scale Weight & Distance (bal)

— Contraceptive Method Choice (¢mc)

Horse Colic (col)

— German Credit (cr-g)

Glass Identification (gls)

— Cleveland Heart Disease (h-c)

— Hungarian Heart Disease (h-h)

— Johns Hopkins University Ionosphere database (ion)
— Sonar, Mines vs. Rocks database (son)

— Wisconsin Breast Cancer database (wbcd)
— Wisconsin Diagnostic Breast Cancer (wdbc)

The selection of datasets gives a representative overview over the phenomena we
were able to detect while comparing GAssist with XCS.

Table 1. The dataset properties indicate complexity, size, and data distributions in
the respective datasets. #Inst. = Number of Instances, #Attr. = Number of attributes,
#Real = Number of real-valued attributes, #Nom. = Number of nominal attributes,
#Cla. = Number of classes, Dev.C = Deviation of class distribution, Maj.C. = Per-
centage of instances belonging to the majority class, Min.C. = Percentage of instances
belonging to the minority class, MV I. = Percentage of instance with missing values,
MV A. = Number of attributes with missing values, MV V. = Percentage of values
(#instances - #attr) with missing values.

Dataset Properties
Name #lInst #Attr #Real #Nom #Cla Dev.C Maj.C MinC MVI MV A MVV

ann 898 38 6 32 5 28.28 76.17 0.89 —
aut 205 25 15 10 6 10.25 32.68 1.46 22.44 7 1.11
bal 625 4 4 — 3 18.03 46.08 7.84 —
cmce 1473 9 2 7 3 8.26 42.70 22.61 — — —
col 368 22 7 15 2 13.04 63.04 36.96 98.10 21 22.77
cr-g 1000 20 8 12 2 20.00 70.00  30.00 — — —
gls 214 9 9 — 6 12.69 35.51 4.21 — — —
h-cl 303 13 6 7 2 4.46 54.46  45.54 2.31 2 0.17
h-h 294 13 6 7 2 13.95 63.95 36.05  99.66 9 19.00
ion 351 34 34 — 2 14.10 64.10  35.90 — — —
son 208 60 60 — 2 3.37 53.37  46.63 — — —
wbcd 699 9 9 — 2 15.52 65.52 34.48 2.29 1 0.23
wdbc 569 30 30 — 2 12.74 62.74  37.26 — — —

The test design for GAssist has two goals: Comparing the effect of using both
different number of iterations and different degrees of generalization pressure.
The latter goal is achieved by using the ILAS windowing scheme. However, our
goal is not run-time reduction, but rather the maximization of the generaliza-
tion pressure introduced by the ILAS scheme. Thus, we will increase the number
of iterations when using windowing proportional to the number of strata used.
This means having constant number of learning steps (using the Michigan-LCS
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meaning of the term). We will also test another stratified setup using a number
of iterations that makes it equivalent in run-time compared to the non-windowed
setting (1 strata).

3.2 Results

Results of GAssist and XCS are shown in Table[2l The comparison is not meant
to determine which system is better in general but rather to show in which
problem types which system appears to have advantages. Our comparison starts
with a general data observation and then investigates separate datasets with
respect to specific phenomena.

A look at the overall performance shows that XCS and GAssist show com-
parative performance results indicating the general difficulty of the respective
datasets. XCS tends to learn the training data much more precisely which how-
ever is not necessarily advantageous for performance on the test data (using
stratified ten-fold cross-validation). The solution representation differs (as ex-
pected) very significantly between GAssist and XCS: The number of rules in the
best individual in GAssist is much smaller than the number of rules in XCS.
However, it should be noted that GAssist maintains 400 individuals and thus
the overall number of rules is actually similar to the number of rules in XCS.
While we did not make explicit speed comparisons it appears that XCS runs
take longer than GAssist’s. Again, this is expectable since XCS is an online
learner that learns from each problem instance separately and iteratively. Thus,
the number of necessary learning iterations are higher.

Taking a closer look at the particular datasets we see that in the anneal
(ann) dataset, performance of both systems reaches a similar level if XCS is run
long enough. As also indicated by XCS’s smaller population size in longer runs,
generalization appears important and requires sufficient learning time. General-
ization is even more important in the autos (aut) problem indicated by XCS’s
poor performance when starting specific and its improved test performance and
smaller population size in longer runs as well as in GAssist’s slight performance
improvement and rule number decrease when using three strata. Additionally,
the higher population size of XCS compared to the anneal problem indicates a
general higher complexity of the problem. Balance-scale (bal) is a typical prob-
lem which can be over-fitted easily: XCS’s performance is worse when starting
more specific and when performing longer runs. Note that the population size
of XCS actually increases when starting general and running more iterations—a
clear indication of over-fitting. GAssist’s performance points in the same direc-
tion in that generalization can slightly improve performance but longer runs are
not helpful. The cmc problem appears to be a tough problem in general. XCS
over-fits the data more than GAssist showing higher train performance but worse
test performance. In the colic (col) as well as in the heart-h (h-h) problem, per-
formance of XCS is significantly worse compared to GAssist. The major reason
for this appears to be the missing value policy. While in GAssist a missing value
is replaced by the majority value for the nominal case or by the average value
in the real-valued case, XCS assumes a match in the missing value case. The
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Table 2. Train and test performance results of GAssist and XCS using 10-folded
cross-validation. Besides the performance results, we show the number of rules in the
best individual of GAssist and the number of (macro-)classifiers in XCS (at the end of
a run). The different GAssist runs distinguish a different application of strata (1 vs. 3
strata) as well as number of iterations (609, 1827, and 1447, respectively). In XCS, we
compare long (500,000 learning iterations) and short learning runs (100,000 learning
iterations) as well as a general (ro = 100) and specific (ro = 4) initialization of the
population.

G Assist XCS (500,000) XCS (100,000)
Data  Res. 1 strata 3 s.(steps) 3 s.(time) ro = 100 ro =4 ro = 100 ro =4
Train 97.442.2 97.843.3 97.942.5 99.6+.46 1004.18 94.34+2.0 98.9+.61
ann Test 97.0+2.6 97.443.5 97.5+2.8 98.4+1.6 98.6+1.5 91.242.7 91.7+2.9
#rules 6.9+.9 6.31+.7 6.3+.5 25074232  3211+146 4440487 5426451
Train 85.54+2.9 84.7£3.2 82.8+3.7 99.8+.23 99.6+£.39 99.3+.67 99.4+.56
aut Test 67.5+9.8 68.84£9.7 67.5+9.5 71.5+9.5 68.8+12 64.74+9.6 13.44+6.9
#rules 12.8+2.7 7.8+1.1 7.84+1.0 34034+98.5 46794217 4281+87.3 54264+36.9
Train 87.74.49  86.0%.69 85.9+.73 98.4+.72 98.6+.64 90.6+2.2 97.9+.86
bal Test 79.04+4.2 78.8+3.8 79.2+4.4 81.4+3.6 81.0+£3.8 84.6+3.3 82.0+3.5
#rules 13.14+2.0 9.6+1.6 9.84+1.6 20614+73.2 2014+59.8 1611+169 2465+65.9
Train 59.84.96 59.6+1.1 59.8+1.1 70.5+1.9 77.6£2.0 57.0+£1.8 71.5+2.2
cme Test 54.8+4.2 54.6+4.0 54.944.1 53.64+4.0 52.9+£4.7 50.1+£4.7 53.64+3.6
#rules 7.7+1.4 9.34+3.0 9.14+2.9 32614+88.1 3210+84.3 3958+91.4 3929+64.7
Train 99.74+.34  99.6£.48 99.5+.50 94.6+1.2 95.5£1.3 91.7+1.6 95.0£1.1
col Test 93.0+4.7 93.84+4.6 94.1+4.3 84.4+5.0 83.7+5.8 84.54+5.8 84.8+5.6
#rules 7.44+1.6 7.0+1.4 7.0+1.4 3102+156 3685+84.2 36124169 4100+96.3
Train 82.0+.76  83.7+.94 84.3+.83 98.2+1.2 99.6+.34 89.74+3.2 94.4+1.4
cr-g Test 72.3+3.6 72.0+4.2 72.2+3.8 70.2+3.6 72.3+4.2 71.4+3.9 72.5+3.1
#rules 6.84+1.5 11.34+3.0 13.14+2.1 20164+69.2 2623+75.4 3217+106 44014104
Train 82.14+1.8 80.4+1.9 79.9+1.8 98.8+.64 99.6+.67 89.74+2.8 96.6+1.4
gls Test 68.249.3  69.449.2 68.44+9.9 T4.TET.T 71.248.7 70.7+8.2 70.7+£8.4
#rules 8.84+1.4 6.64+0.8 6.64+0.8 1808+86.5 21434+78.4 30934134 3137+92.7
Train 93.44+.82 91.4+.98 92.6+.86 99.9+.25 10040.0 99.5+.46 100+0.0
h-c1 Test 80.24+7.0 80.0+6.8 80.28+6.5 76.4+6.7 79.6+£6.5 77.716.8 68.9+8.6
#rules 9.3%+1.5 6.94+1.1 7.441.2 20434+69.2 2808+89.6 2854+99.6 2907+68.2
Train 99.74.32  99.0£.48 99.0£.50 99.7+.44 100£0.0 95.44+2.2 100£0.0
h-h Test 95.54+4.4 95.7+4.4 95.8+3.3 78.7+£9.0 76.6£6.9 79.4+7.7 70.8+6.9
#rules 6.14+0.7 6.31+0.5 6.040.2 20724103 2686+71.9 3091+136 2861+67.5
Train 98.24+.46  96.8+.63 96.8+.59 99.9+.19 99.7+.41 99.74.32 99.8+.34
ion Test 92.54+4.9 92.74+4.7 93.0+4.8 89.3+4.8 57.4+6.4 90.7+5.3 57.1+6.8
#rules 3.940.8 2.240.7 2.240.8 2935+93.5 5613+£28.9 34794+97.6 5685+31.4
Train 97.0+£1.0 96.6+1.2 96.3+1.2 100£0.0 100+0.0 99.94.30 100£0.0
son Test 74.448.9 76.8+£9.0 77.5+£9.2 78.4+7.4 82.6£8.3 77.3£8.1 81.6£7.9
#rules 8.31+1.4 6.8+1.1 6.9+1.1 49594120 4168+142 51484107 4473+89.8
Train 99.14+.27  97.8£.50 97.94.47 99.8+.24 100£0.0 97.7+.89 99.9+.13
wbed  Test 95.242.9 96.1+2.6 96.0+2.4 96.1+2.8 96.2+2.2 96.24+2.2 96.5+1.9
#rules 5.0+1.0 2.440.6 2.440.6 15624+96.8 21314529 1108+144 3137+81.8
Train  98.6+.5 97.6+.68 97.6+.78 100+.09 100£0.0 99.8+.22 99.9+.24
wdbc Test 94.14+3.0 94.24+2.9 94.14+2.8 96.1+£2.5 96.7+£2.2 95.94+2.6 92.943.3
#rules 6.04+1.3 3.84+0.7 3.940.9 4104+112 5051450.9 44854+85.5 5551+87.7

latter strategy appears mediocre in the investigated data mining experiments
explaining XCS’s poor performance in these settings.

Performance in the credit-g problem (cr-g) indicates that over-fitting is un-
likely but in order to reach higher performance more specific initialization is
helpful. Again, XCS reaches a much higher train performance but test perfor-
mance is hardly influenced.

XCS’s behavior in the glass problem (gls) is similar to that of credit-g. How-
ever, generalization is more important as also indicated by the performance im-
provement in GAssist when using three strata. Similar to the autos problem, XCS
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outperforms GAssist in the glass problem indicating higher problem complexity
which might partially stem from the large number of classes in the problem.

XCS’s performance in heart-cl (h-c1) is actually very similar to the perfor-
mance in in heart-h (h-h) suggesting that besides the problem of missing values
in heart-h, XCS tends to strongly over-fit the training data. GAssist does not
suffer from this problem in these datasets.

Another interesting observation was made in the ionosphere problem (ion)
in which the automatic default rule detection mechanism in GAssist is actually
able to discover that the minority class results in a better problem performance.
XCS tends to over-fit as indicated by the poor performance and large population
size when starting too specific.

On the other hand, in the sonar problem (son) a start from the specific side
is actually beneficial for XCS suggesting small special-case niches which can be
separated only if the population is initialized more specific. The more generalized
representation of GAssist is not advantageous in this dataset.

In the Wisconsin breast-cancer dataset (wbcd) performance of both systems
is similar and the problem appears to be generally easy as indicated by the small
number of rules in both systems.

Finally, wdbc is another problem in which the complexity of the problem
makes it hard for GAssist to reach XCS’s performance level. XCS needs a large
number of classifiers to solve the problem but is able to evolve the appropriate
set. Slight generalizations are possible. GAssist on the other hand learns a very
general—but slightly over—general solution.

4 Summary and Conclusions

In sum, both LCS systems showed that they are suitable for data-mining ap-
plications developing very different problem solutions that nonetheless perform
similarly well on the test sets. Additionally, the comparison showed that regard-
less of offline (GAssist) or online (XCS) learning, LCSs are suitable data-miners.

The results allowed us to infer problem properties as well as problem diffi-
culties. We saw that the current policy of handling missing values in XCS can
affect performance negatively. Also, while GAssist has the tendency to ignore ad-
ditional problem complexity, XCS tends to over-fit the training data more often
(dependent on the nature of the data). Additionally, GAssist has slight problems
with handling many output classes as well as a huge search space suggesting the
addition of special covering operators that could ensure that each individual in
GAssist differentiates at least all classes in the problem at hand. On the other
hand, XCS’s generalization tendency needs to be revisited in the data-mining
domain. Especially in smaller datasets, XCS clearly tends to over-fit the data.
Due to the small size of the datasets, the natural generalization pressure due
to the niche reproduction mechanism hardly applies. Thus, additional pressure
towards syntactic generality becomes more important and may be reconsidered
in these problem domains.
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The insights gained from our study prepare the systems for a more general
problem application suggesting initial testing with each learning approach for
suitability and appropriate initialization. XCS may need to be improved in terms
of generalization to avoid over-fitting. GAssist may be endowed with further cov-
ering mechanism to ensure that all problem classes are covered by each individual
and that it is able to detect additional small but significant problem subspaces.

Acknowledgments

The authors would like to thank Professor David E. Goldberg and the whole I1li-
GAL lab for their support and advise during this work. Support from the follow-
ing sources is acknowledged: the Spanish Research Agency (CICYT) under grant
numbers TIC2002-04160-C02-02 and TIC 2002-04036-C05-03; the Department
of Universities, Research and Information Society (DURSI) of the Autonomous
Government of Catalonia under grants 2002SGR 00155 and 2001FI 00514; the
German research foundation (DFG) under grant DFG HO1301/4-3; the Euro-
pean commission contract no. FP6-511931; the Air Force Office of Scientific
Research, Air Force Materiel Command, USAF, under grant F49620-03-1-0129;
the Computational Science and Engineering graduate option program (CSE) at
the University of Illinois at Urbana-Champaign.

References

1. J. Bacardit and J. M. Garrell. Analysis and improvements of the adaptive dis-
cretization intervals knowledge representation. In GECCO 2004: Proceedings of
the Genetic and Evolutionary Computation Conference, pages 726-738. Springer-
Verlag, LNCS 3103, 2004.

2. Jaume Bacardit. Pittsburgh Genetics-Based Machine Learning in the Data Min-
ing era: Representations, generalization, and run-time. PhD thesis, Ramon Llull
University, Barcelona, Catalonia, Spain, 2004.

3. Jaume Bacardit and Josep M. Garrell. Bloat control and generalization pressure
using the minimum description length principle for a pittsburgh approach learning
classifier system. In Proceedings of the 6th International Workshop on Learning
Classifier Systems. (in press), LNAI, Springer, 2003.

4. Jaume Bacardit and Josep M. Garrell. Incremental learning for pittsburgh ap-
proach classifier systems. In Proceedings of the “Sequndo Congreso Espaol de
Metaheuristicas, Algoritmos Evolutivos y Bioinspirados.”, pages 303-311, 2003.

5. Ester Bernadd, Xavier Llora, and Josep M. Garrell. XCS and GALE: a compar-
ative study of two learning classifier systems with six other learning algorithms
on classification tasks. In Fourth International Workshop on Learning Classifier
Systems - IWLCS-2001, pages 337-341, 2001.

6. C. Blake, E. Keogh, and C. Merz. UCI repository of machine learning databases,
1998. (www.ics.uci.edu/mlearn/MLRepository.html).

7. M. V. Butz. Rule-Based Evolutionary Online Learning Systems: A Principled Ap-
proach to LCS Analysis and Design. Studies in Fuzziness and Soft Computing.
Springer-Verlag, Berlin Heidelberg, 2005.



290 J. Bacardit and M.V. Butz

8. Martin V. Butz, Kumara Sastry, and David E. Goldberg. Tournament selection in
XCS. Proceedings of the Fifth Genetic and Evolutionary Computation Conference
(GECCO-2003), pages 18571869, 2003.

9. Kenneth A. DeJong, William M. Spears, and Diana F. Gordon. Using genetic
algorithms for concept learning. Machine Learning, 13(2/3):161-188, 1993.

10. Xavier Llora and Josep M. Garrell. Knowledge-independent data mining with fine-
grained parallel evolutionary algorithms. In Proceedings of the Third Genetic and
FEvolutionary Computation Conference, pages 461-468. Morgan Kaufmann, 2001.

11. Stewart W. Wilson. Classifier fitness based on accuracy. Evolutionary Computa-
tion, 3(2):149-175, 1995.

12. Stewart W. Wilson. Get real! XCS with continuous-valued inputs. In L. Booker,
Stephanie Forrest, M. Mitchell, and Rick L. Riolo, editors, Festschrift in Honor of
John H. Holland, pages 111-121. Center for the Study of Complex Systems, 1999.



Improving the Performance of a Pittsburgh
Learning Classifier System Using a Default Rule

Jaume Bacardit!, David E. Goldberg?, and Martin V. Butz®

1 ASAP, School of Computer Science and IT, University of Nottingham, Jubilee
Campus, Wollaton Road, Nottingham, NG8 1BB, UK
jgb@cs.nott.ac.uk
http://www.cs.nott.ac.uk/ jgb/

% Tllinois Genetic Algorithms Laboratory (IliGAL), Department of General
Engineering, University of Illinois at Urbana-Champaign, 104 S. Mathews Ave,
Urbana, IL 61801
deg@uiuc.edu
http://www-illigal.ge.uiuc.edu/goldberg/d-goldberg.html
3 Department of Cognitive Psychology, University of Wiirzburg,

97070 Wiirzburg, Germany
butz@psychologie.uni-wuerzburg.de
http://www-illigal.ge.uiuc.edu/ butz/

Abstract. An interesting feature of encoding the individuals of a Pitts-
burgh learning classifier system as a decision list is the emergent genera-
tion of a default rule. However, performance of the system is strongly tied
to the learning system choosing the correct class for this default rule. In
this paper we experimentally study the use of an explicit (static) default
rule. We first test simple policies for setting the class of the default rule,
such as the majority/minority class of the problem. Next, we introduce
some techniques to automatically determine the most suitable class.

1 Introduction

One of the ways to solve classification problems using a genetic algorithm [T2] is
called Pittsburgh approach [3] or Pittsburgh learning classifier system. The indi-
viduals of this system encode a full and variable-length rule set and the solution
proposed is the best individual of the population. There are several encoding
options for an individual. One of them is coding an individual as a decision list
[4] (an ordered set of rules). If we apply this strategy in the evolutionary frame-
work, often the system evolves a default rule. That is, a rule that matches any
input instance.

Default rules can be very useful in combination with a decision list because
the size of the rule set can be reduced significantly. For instance, for the 11-bit
multiplexer we can obtain a rule set of 9 rules instead of 16 unordered ones,
as represented in Figure[[l With a smaller rule set, the search space is reduced
resulting in two potential advantages: (1) the learner can learn fewer rules faster
(representing only the other classes of the dataset) and (2) with a smaller rule
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Fig. 1. Unordered and ordered rule sets for the MX-11 domain

set the system may be less sensitive to over-learning, potentially increasing the
test accuracy of the system.

The objective of this paper is to investigate the potential benefits of using
an explicit and static default rule in a Pitt LCS. Along those lines, the question
arises which is the best default class to use. Simple strategies may use the major-
ity class. However, our tests show that dependent on the problem, the minority
class may be better as the default class choice. Thus, we develop a mechanism
that is able to automatically determine the best class for the default rule.

The rest of the paper is structured as follows: Section 2] shows some related
work. Next, Section [ describes briefly the main characteristics of the system
used in this paper. Later, Section Ml illustrates the motivation of using a default
rule, followed by Section [l that reports the modifications applied to the knowl-
edge representation of the system to integrate the default rule. Next, Section
shows some illustrative results of the simple policies for the default rule. After the
simple policies, we describe the more sophisticated ones in Section [l Section
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shows the experimentation results of applying the described policies. Finally,
Section [@ presents conclusions and further work.

2 Related Work

We can find previous uses of a static default rule in the LCS field, although not
in an explicit way: Classic Pitt-approach systems such as GABIL [3] or GIL [5],
which perform concept learning (learning a concept from sets of positive /negative
examples), implicitly have a default rule that covers the negative examples. The
rules generated do not have an associated class because all of them cover the
positive examples. However, there is no explicit policy to decide which set is the
positive or negative one in order to learn better. The decision simply comes from
the definition of the dataset.

Looking at the machine learning field in general we find other examples of
default rules. The C4.5 rule system [6] uses an explicit default rule and, alike
our system, it generates a rule set acting as a decision list. To select the class
for this default rule, it uses the class that has less instances covered by the other
rules in the rule set. This kind of approach seems feasible when we have induced
the rule set beforehand, instead of using it during learning as our system does.

The IREP system [7] induces the rules in order, modeling each class of the
problem (using the instances of the classes still to be learned as negative ex-
amples). The criteria of this global order is ascendant frequency of examples.
Therefore, the default rule of this system uses a majority class policy.

3 Framework

GAssist [§] is a Pittsburgh genetic-based machine learning system descendant
of GABIL [3]. The system applies a near-standard GA that evolves individuals
that represent complete problem solutions. An individual consists of an ordered,
variable-length rule set. Directly from GABIL we have taken the semantically
correct crossover operator for variable-length individuals.

Dealing with variable-length individuals raises some important issues. One of
the most important one is the control of the size of the evolving individuals [9].
This control is achieved in GAssist using two different operators:

1. Rule deletion. This operator deletes the rules of the individuals that do
not match any training example. This rule deletion is done after the fitness
computation and has two constraints:

(a) The process is only activated after a predefined number of iterations (to
prevent an irreversible diversity loss)

(b) The number of rules of an individual never decreases below a threshold.
This introduces some “neutral code” that can protect the individuals
from the disruptive effect of the crossover operator.

2. Minimum description length-based fitness function. The minimum descrip-
tion length (MDL) principle [I0] is a metric applied in general to a theory
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(being a rule set in this paper) which balances the complexity and accuracy
of the rule set. In previous work we developed a fitness function based on
this principle. A detailed explanation of the fitness function can be found
in [I1].

The knowledge representation used for real-valued attributes is called adap-
tive discretization intervals rule representation (ADI) [12]. This representation
uses the semantics of the GABIL rules (conjunctive normal form predicates),
but applies non-static intervals formed by joining several neighbor discretization
intervals. These intervals can evolve through the learning process splitting or
merging among them potentially using several discretizers at the same time.

Parameters of the system are set as follows: Crossover probability 0.6; tour-
nament selection; tournament size 3; population size 300; Individual-wise muta-
tion probability 0.6; initial number of rules per individual 20; probability of “1”
in initialization 0.75; Rule Deletion Operator: Iteration of activation: 5; minimum
number of rules: number of active rules +3; MDL-based fitness function: Itera-
tion of activation 25; initial theory length ratio: 0.075; weight relax factor: 0.9.
ADI knowledge representation: split and merge probability: 0.05; reinitialize prob-
ability at initial iteration: 0.02; reinitialize probability at final iteration: 0; merge
restriction probability: 0.5; maximum number of intervals: 5; set of uniform dis-
cretizers used: 4, 5, 6, 7, 8, 10, 15, 20 and 25 bins; iterations: maximum of 1500.

4 Motivation

In order to illustrate the benefits of the default rule, we show the results of
running the system with no static default rule for the Glass problem from the
UCT repository [I3] in table [l We used stratified ten-fold cross validation for
the tests and a hundred random seeds for each fold (a total of 1000 runs, unlike
the 15 seeds and 150 runs used in the rest of the paper).

We can see the benefits of using a default rule and, more importantly, the
benefits of choosing the correct class for the default rule. The choice of the
class for the default rule has a significant influence on the resulting accuracy,
suggesting that a good default rule choice can improve learning performance and
generality of the resulting solution.

5 Static Default Rule Mechanism

To force the usage of a default rule, few modifications are necessary: we only
need to codify our individuals as decision lists, independent of the knowledge
representation used. The implementation of the static default rule is very simple.
Basically it affects only the matching function classifying any input instance
by the default class if no rule (in the decision list) matches the instance. The
pseudocode in Figure @] clarifies this mechanism. Additionally, the default rule
class is removed from the classes that can be used by the rest of the rules in
the population, effectively reducing the search space. A general representation
of the extended rule set is shown in Figure [3
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Table 1. How the generation of a default rule can affect the performance in the Glass
dataset

Runs generating a default rule 736
Runs not generating a default rule 264
Accuracy of runs with a default rule 66.98+8.00
Accuracy of runs without a default rule 66.27+7.79

Average accuracy of runs using class 1 as default rule 65.454+7.39
Average accuracy of runs using class 2 as default rule 67.76+7.81
Average accuracy of runs using class 3 as default rule 59.40+5.51
Average accuracy of runs using class 4 as default rule 66.18+8.70
Average accuracy of runs using class 5 as default rule 67.661+8.58
Average accuracy of runs using class 6 as default rule 64.484+7.36

1. We determine with some criterion (in the following sections several criteria
are studied) which class is the default class.

2. An individual predicts this default class when no rule matches an input
instance.

3. The other rules of the individual cannot use the default class. Neither ini-
tialization nor mutation can make a regular rule of the individual point to
the default class.

4. The default rule is included in the size of the rule set. This means that the
rest of the system transparently sees an individual with one more rule. This
affects the parts of the fitness formula that uses the size of the rule set as a
variable.

5. The default rule cannot be affected by crossover, mutation nor any other
recombination operator.

6. The rule deletion operator ignores the petitions to delete this rule, in the
rare chance that this rule matches nothing (all problem instances are covered
by other rules already).

7. The MDL-based fitness function computes a theory length for this rule sup-
posing that the rule is totally general, that is, as if it were the emergent
default rule observed before implementing this mechanism.

For the specific case of two-class domains, the classification problem is trans-
formed into a concept learning problem and the resulting knowledge representa-
tion is quite close to the ones used in other evolutionary concept learning systems
like GABIL [3] or GIL [5].

6 Simple Policies Determining the Default Rule Class

In order to answer the question of which class is suitable for being the default
class we start by experimenting with two simple policies: using the most and
least frequent class in the domain. In Section [§] we can see the results of these
tests for several datasets. Here we show the results (in Table Bl of only two
datasets (Glass and Ionosphere), also from UCI. For Glass the best policy is
using the majority class. For ITonosphere the best policy is using the minority
class. The point of showing these two datasets is that it is very difficult to decide
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Match process
Input : RuleSet, Instance
Index =0
Found = false
‘While Index < RuleSet.size and not Found Do
If RuleSet.rule[Index] matches Instance Then
Class = RuleSet.rule[Indez].class
Found = true
Else
Index + +
EndIf
EndWhile
If not Found Then
Class = DefaultClass
EndIf
Output : Predict class Class for instance Instance

Fig. 2. Match process using an static default rule

Rule I | Rule predicate (knowledge represenlation—dependaﬁl} Class

Class 0
Elements of the Rule2 | Rule predicate (knowledge represenlation-dependav*l} Class Cla‘ss I
individuals that .
can be modified | gm :}
. | 1
by the genetic 3 v
operators 3 3
3 Classn
Rulen | Rule predicate (knowledge representation-dependant) Class
Stat,l ¢ part of  Deful Match any instance Class i
the individuals ™l

Fig. 3. Representation of the extended rule set with the static default rule

Table 2. Results using majority and minority policy for the default class in the Glass
and lonosphere datasets

Domain Def. Class. Policy Train accuracy Test accuracy Number of rules

Glass disabled 79.9+2.6 66.4£8.1 6.44+0.7
Glass majority 83.2+1.6 69.5£6.9 6.61+0.8
Glass minority 80.6+£2.3 66.7£8.0 7.240.8
Ionosphere disabled 96.0£0.6 92.8+3.6 2.3£0.6
Ionosphere majority 95.7£0.8 90.0+4.4 5.7+1.2

Ionosphere minority 96.8+0.7 93.0£3.7 2.6+0.8
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a priori which is the most suitable default rule class for each dataset. The values
of the train accuracy and the number of rules give hints about how to combine
the two policies to maximize the performance of the system. In Section [§ we
show a simple combination consisting of choosing at the test stage the policy
which has more train accuracy.

7 Automatically Determined Default Rule Class

Given that the majority class does not always suite best as default class, the
next step is to modify the system to automatically determine the best default
class. Our initial approach simply assigns a randomly chosen class as default
class to each individual in the initial population. Additionally, we introduce a
restricted mating mechanism to avoid crossover operations between individuals
having different default classes, summarized by the code in Figure @l Having
removed the default class from the rest of the rules, crossing individuals with
different default classes may create lethals with high probability. Especially in
the specific case of two-class domains, the regular rules of individuals using
different default classes cover completely different subsets of rules. Therefore,
it is impossible to integrate the rules of these two individuals using the regular
crossover operator.

Niched crossover algorithm
Comment To simplify the code, Parents contains only the parent individuals
Comment already selected for crossover by the probability of crossover
Input : Parents
Of fspringSet = ()
While Parents is not empty
Parentl = select randomly and individual from Parents
Remove Parentl from Parents
Niche = default class of Parentl
If there are individuals in Parents belonging to Niche
Parent2 = select randomly and individual from Parents
belonging to Niche
Remove Parent2 from Parents
Of fspringl, Of fspring2 = apply crossover to Parentl, Parent2
Add Of fspringl, O f fspring2 to Of fspringSet

Else
Of fspring = clone of Parentl
Add Of fspring to Of fspringSet
EndIf
EndWhile

Output : Of fspringSet

Fig. 4. Code of the crossover algorithm with restricted mating
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Fig. 5. Evolution of the train accuracy and the number of rules for the Ionosphere
problem using majority /minority default class policies

If we run the system in this setting, we observed that usually all individuals
with one default class take over the population. The question is if the system is
able to choose the correct default class during the initial iterations. To answer
this question, we show the evolution of the train accuracy and the number of rules
for the ITonosphere tests described in the previous section in Figure [l We can
see that the train accuracy of the default class policy using the suitable class for
this problem (that is, the minority class) is lower at the initial iterations than
the accuracy of the majority class policy. Also, we can see the reason for the
better test accuracy of the minority policy in the smaller (better generalized)
rule set created by this policy.

Thus, it appears necessary to introduce an additional niching mechanism that
preserves individuals for all default classes until the system has learned enough
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to decide correctly on the best default class. This niching is achieved using a
modified tournament selection mechanism, inspired by [I4] in which the indi-
viduals participating in each tournament are forced to belong to the same class.
Also, each default class has an equal number of tournaments. This niched tour-
nament selection is represented by the pseudocode in Figure[@ The tournament
with niche preservation is used until the best individuals of each default class
have similar train accuracy. After this point, the niching is disabled and the
system chooses freely among the individuals. Specifically, we compute for each
niche the average accuracy over the last 15 iterations of its best individual. When
the standard deviation of all these averages is smaller than 0.5%, we disable the
niched tournament selection, effectively enabling the superior default class to
take over the whole population.

Niched tournament selection
Input : Population, PopSize, NumNiches, TournamentSize
NextPopulation = ()
For i =1 to NumNiches

ProportionNiche[i] = PopSize/NumNiches
EndFor

For i =1 to PopSize
Niche = select randomly a niche based on ProportionNiche
ProportionNiche[Niche] — —
Select TournamentSize individuals from Population belonging to Niche
winner=Apply tournament
Add winner to NextPopulation

EndFor

Output : NextPopulation

Fig. 6. Pseudocode for the niched tournament selection

To summarize, the changes introduced to the default rule model by the auto-
matic policy are the following:

1. Initialization assigns randomly to each individual a class as being the default

class.

This class cannot be used in the regular rules of the individual.

3. Individuals having different default classes cannot exchange rules. The
crossover algorithm is modified adding this mating restriction.

4. Niched tournament selection preserves an uniform proportion of individuals
from all default classes in the population. This niching process is achieved re-
serving a quota of tournaments to each niche and only applying tournaments
among individuals belonging to the same niche.

5. The niching mechanism is disabled when individuals using different default
classes can compete fairly among themselves. Specifically, we compute, for
each default class, the average accuracy over the last 15 iterations of its best
individual. When the standard deviation of all these averages is smaller than
0.5%, the niched tournament selection is disabled and a regular tournament
selection takes places until the end of the learning process.

[\
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8 Results

In this section, we show the results of comparing the three policies tested for the
default class (majority, minority,auto to the original system (orig) with emergent
default rule. The tests include 15 datasets used previously in [12], summarized in
table[3l Each dataset has been partitioned into training/test sets using stratified
ten-fold cross-validation [I5], and having for each fold the tests repeated 15
times.

Table 3. Features of the datasets used in the experimentation of this paper

Dataset Properties
Domain #Inst. #Attr. #Real #Nom. #Cla. Dev.cla. Maj.cla. Min.cla.

bpa 345 6 6 — 2 7.97%  57.97%  42.03%
bps 1027 24 24 — 2 1.60%  51.61%  48.39%
bre 699 9 9 — 2 15.52%  65.52%  34.48%
gls 214 9 9 — 6 12.69%  35.51% 4.21%
h-s 270 13 13 — 2 5.56%  55.56%  44.44%
ion 351 34 34 — 2 14.10%  64.10%  35.90%
Irn 648 6 4 2 5 14.90%  45.83% 1.54%
mmg 216 21 21 — 2 6.01% 56.02%  43.98%
pim 768 8 8 — 2 15.10%  65.10%  34.90%
son 208 60 60 — 2 3.37%  53.37%  46.63%
thy 215 5 5 — 3 25.78%  69.77%  13.95%
veh 846 18 18 — 4 0.89%  25.77%  23.52%
wdbc 569 30 30 — 2 12.74%  62.74%  37.26%
wine 178 13 13 — 3 5.28%  39.89%  26.97%
wpbc 198 33 33 — 2 26.26%  76.26% = 23.74%

Table H shows the results for these tests, also including a fifth configuration
(magority+minority), in which the majority /minority policy is chosen in the test
stage that obtained more training accuracy. This configuration usually chooses
the correct policy (although there are some exceptions, like bpa). The results were
analyzed using pair-wise statistical t-tests with Bonferroni correction to determine
how many times each method could significantly outperform or be outperformed
by the other methods. These statistical tests are summarized in table [l

At first glance, we can see that all but two datasets (wbcd and wpbc) can ben-
efit (by one or more of the studied default class policies) from the inclusion of a
default rule. However, the achieved accuracy increase is not uniform across the
datasets. Some of them, like gls or son, show a notable accuracy increase, while
some others only show a small, non-significant increase. To understand these
different degrees of accuracy increase we have computed the percentage of runs
where the orig configuration was already generating a default rule emergently.
Table [6] shows these results including the accuracy of the orig configuration as
well as the accuracy of the best default class policy for each dataset (and their
difference). Although it is not totally clear, we can see a correlation between the
percentage of discovered default rules and the accuracy difference between us-
ing/not using the default rule. The clearest exception is the gls dataset. However,
considering that this dataset has 6 classes, the benefits of removing the default
class from the pool of classes used in the regular rules are already substantial
even if the orig configuration was already using a default rule.
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Table 4. Results of the tests comparing the studied default class policies to the original
configuration using pop. size 300

Domain Result

Train

bpa Test
#rules

Train

bps Test
#rules

Train

bre Test
#rules

Train

gls Test
#rules

Train

h-s Test
#rules

Train

ion Test
#rules

Train

Irn Test
#rules

Train

mmg  Test
#rules

Train

pim Test
#rules

Train

son Test
#rules

Train

thy Test
#rules

Train

veh Test
#rules

Train

wdbc  Test
#rules

Train

wine Test
#rules

Train

wpbe  Test
#rules

Train
ave. Test
#rules

Default rule policy
Disabled  Major Minor Auto

78.6+1.6 81.4%£1.3 80.1£1.6 80.8£1.4
63.8+7.4 62.94£7.8 65.2+6.5 64.0£6.9
6.7£1.0 8.9+1.4 8.3+1l.5 8.5t1.6
84.840.9 86.0+0.7 86.8+0.7 86.6+0.7
80.1+£3.9 81.24+3.6 81.5+£3.6 81.4%3.7
5.1+0.4 6.1x1.1 5.7+£0.9 5.64+0.8
97.7+0.3 98.24+0.3 98.4+0.3 98.4£0.3
95.942.2 95.0+2.5 95.7£2.0 95.6+2.2
2.6+0.7 5.8+1.2 3.240.6 3.3+0.7
79.94£2.6 83.2£1.6 80.6£2.3 79.0£1.8
66.4+8.1 69.5+6.9 66.7£8.0 66.9£7.4
6.4£0.7 6.6£0.8 7.2+0.8 6.9+0.9
89.8+1.2 91.6+0.9 92.1£0.8 91.9£0.9
79.5£6.2 79.3£6.4 81.3+£6.8 81.3+6.1
6.7£0.9 7.6£1.2 7.3£1.2 7.4%+1.3
96.0+0.6 95.7+0.8 96.8+0.7 96.8+0.7
92.843.6 90.0+4.4 93.0£3.7 93.1£3.9
2.3+0.6 5.7+1.2 2.6+0.8 2.64+0.7
75.24+1.9 76.8£0.8 75.4+1.4 75.4+£1.0
68.5+4.7 68.94+5.7 68.9+4.5 68.6+5.6
8.5£1.9 9.6£1.9 9.241.9 8.6x1.7
79.7£1.8 83.2£1.3 83.1£1.3 83.0£1.4
66.2+7.8 68.9+8.3 67.8£8.4 66.8+9.0
6.5£0.8 6.7£0.9 6.7£0.8 6.6+0.9
79.7£0.9 81.3£0.8 80.9+0.7 81.1+£0.8
74.7£4.7 75.4£4.8 75.0+£4.7 75.0+4.5
5.2+0.4 6.2+1.0 5.6+0.8 6.1£1.0
92.24+1.6 96.1+1.2 94.841.4 95.5+1.4
72.6+11.5 77.0£9.0 76.1£9.7 76.1£9.3
6.7£1.1 7.6£14 7.7£1.3 T7.4%1.1
97.4+1.0 98.44+0.7 98.4+0.7 98.1£0.8
91.94+5.6 92.84+4.8 92.3£5.3 92.2+5.6
5.2+0.4 5.7+£0.6 5.4+0.5 5.54+0.6
71.1£2.2 73.5£1.4 73.5+£1.4 72.0£1.5
66.4+4.7 68.1+4.5 67.4+4.9 67.5£4.7
6.6£1.2 9.3£2.0 9.9+1.6 8.0*1.8
97.240.8 97.84+0.6 97.8£0.6 97.8+£0.7
94.1+3.0 94.243.1 94.0£3.0 94.3£3.1
4.3£1.1 4.6£0.9 4.4+£1.0 4.5%1.0
99.44+0.5 99.7+0.4 99.94£0.3 99.6+0.4
92.7+5.9 93.3+6.2 92.24+6.3 93.9£5.9
3.8£0.7 3.6£0.6 4.1£0.5 3.84+0.6
84.3+3.0 89.44+2.0 86.4+3.4 88.7£2.3
76.0£7.3 75.8£7.4 72.6+£8.5 75.2+7.5
2.840.8 3.8+£0.9 4.2+1.2 3.6%£1.0
86.91+9.0 88.84+8.4 88.3+8.8 88.3%£9.0
78.84+11.4 79.5+10.7 79.3+11.0 79.5£11.3
5.3+1.8 6.5+1.8 6.1+2.1 5.94+1.9

Major+Minor
81.4+1.3
62.9£7.8
8.9+1.4
86.8+0.7
81.5+3.6
5.74+0.9
98.4+0.3
95.7£2.0
3.24+0.6
83.2+1.6
69.5£6.9
6.61+0.8
92.1£0.8
81.3£6.8
7.3+1.2
96.8£0.7
93.0£3.7
2.6+0.8
76.8+0.8
68.945.7
9.6+1.9
83.2+1.3
68.9£8.3
6.7+0.9
81.3£0.8
75.4+4.8
6.24+1.0
96.1+1.2
77.0£9.0
7.6+1.4
98.4+0.7
92.8+4.8
5.74+0.6
73.5+£1.4
68.1+4.5
9.3+2.0
97.8£0.6
94.243.1
4.61+0.9
99.940.3
92.246.3
4.14+0.5
89.4+2.0
75.8£7.4
3.84+0.9
89.0£8.5
79.8£10.9
6.1+2.1

From the test accuracy averages and the t-test results it is clear that the ma-
jor+minor policy is the best configuration, both in performance and robustness,
because it has been never outperformed in a significant way. However, having in
this configuration a run-time two times larger than in the other configurations,
we have to question whether the computational cost sacrifice is worth it. Looking
at the other configurations, major and auto are tied in accuracy average, but
auto is much more robust than major according to the t-tests.



302 J. Bacardit, D.E. Goldberg, and M.V. Butz

Table 5. Summary of the statistical t-tests applied to the experimentation results of
popsize 300, with a confidence level of 0.05. Cells in table count how many times the
method in the row significantly outperforms the method in the column.

Policy Disabled Major Minor Auto Major+Minor Total
Disabled - 2 1 0 0 3
Major 3 - 2 1 0 6
Minor 2 2 - 0 0 4
Auto 2 1 1 - 0 4
Major+Minor 4 2 2 1 - 9
Total 11 7 6 2 0

Table 6. Percentage of runs where orig configuration was already generating a default
rule, accuracy difference between orig and the best default class policy for each dataset

Rows are sorted by the percentage of default rule generation in orig

Label meaning

DRG Percentage of runs where the default rule was generated in orig configuration
AccO Accuracy of the orig configuration
AccDR Accuracy of the best rule policy on the dataset

AccDif Accuracy difference between AccO and AccDR

Dataset DRG AccO AccDR AccDif

19.33% 66.21% 68.88% -2.67%

mmg
son  36.00% 72.58% 76.99% -4.42%
bps  40.00% 80.10% 81.55% -1.44%
veh  46.67% 66.43% 68.15% -1.72%
pim  50.67% 74.65% 75.37% -0.71%
wdbce  55.33% 94.06% 94.26% -0.20%
h-s  57.33% 79.46% 81.31% -1.85%
bpa  65.33% 63.79% 65.22% -1.43%
thy  68.67% 91.92% 92.79% -0.87%
wine 71.33% 92.74% 93.85% -1.12%
gls  74.00% 66.37% 69.52% -3.15%
Irn  76.00% 68.55% 68.93% -0.39%
wpbe  82.00% 76.03% 75.78% 0.25%
ion  86.00% 92.85% 93.13% -0.29%
bre  96.00% 95.88% 95.74% 0.14%

Nevertheless, it is important to investigate why the auto policy reaches a
lower performance than major+minor. Table [0 shows the class distribution of
the default rules that appear in the auto configuration runs. We can see that
this configuration is not able to determine, which is the most suitable default
class. Actually, on only 5 of the 15 datasets the chosen default class was almost
or totally concentrated on a single class.

Another important issue is the number of iterations where the niched tourna-
ment selection was used. Table Bl shows these results. We can see that for some
datasets, the niching process was used for quite a long time.
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Table 7. Default class behavior in the auto configuration

Dataset Major. class pos. Minor. class pos. Class distribution in default rule

bpa 2 1 (50.67%,49.33%)

bps 1 2 (14.67%,85.33%)

bre 1 2 (0.00%,100.00%)

gls 2 4 (14.00%,40.00%,8.67%,9.33%,14.00%,14.00%)
h-s 1 2 (32.00%,68.00%)

ion 2 1 (97.33%,2.67%)

Irn 1 5 (17.33%,35.33%,34.00%,11.33%,2.00%)
mmg 1 2 (48.00%,52.00%)

pim 1 2 (62.00%,38.00%)

son 2 1 (32.00%,68.00%)

thy 1 3 (40.67%,18.67%,40.67%)

veh 3 4 (35.33%,24.00%,13.33%,27.33%)

wdbc 2 1 (48.00%,52.00%)

wine 2 3 (4.00%,70.67%,25.33%)

wpbc 2 1 (1.33%,98.67%)

Table 8. Percentage of iterations that used the niched tournament selection in the
default rule auto configuration

Dataset Percentage of iterations

bpa 8.19%
bps 15.10%
bre 13.71%
gls 97.82%
h-s 13.33%
ion 6.72%
Irn 69.06%
mmg 10.79%
pim 9.41%
son 15.45%
thy 30.20%
veh 20.29%
wdbc 7.66%
wine 34.11%
wpbc 12.43%

Tt is reported in the niching literature [16] that we should increase the popu-
lation size in order to guarantee that all niches can be learned properly. For this
reason, a second set of tests was performed increasing the population size from
300 to 400. The results are shown in table [@l The summary of the statistical
t-tests applied to these results is in table [0

Now we can see a different picture. The increase in population size actually
enables the auto policy to permit all niches to be learned properly. This fact
is reflected by the accuracy performance of this policy, which manages to reach
major+minor, both in accuracy and in robustness, based on the t-tests. Now
that both policies are competitive, the smaller computational cost of auto (also
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Table 9. Results of the tests comparing the studied default class policies to the original
configuration using pop. size 400

Domain Result

bpa

bps

gls

h-s

Irn

mmg

pim

son

thy

veh

wdbc

wine

wpbc

ave

Train
Test
#rules
Train
Test
#rules
Train
Test
#rules
Train
Test
#rules
Train
Test
#rules
Train
Test
#rules
Train
Test
#rules
Train
Test
#rules
Train
Test
#rules
Train
Test
#rules
Train
Test
#rules
Train
Test
#rules
Train
Test
#rules
Train
Test
#rules
Train
Test
#rules
Train
Test
#rules

Disabled

79.3£1.7
64.0+7.5
6.8£1.0
84.94+0.9
80.4+4.5
5.1+0.4
97.7+0.4
95.7+2.3
2.6+0.8
80.8+2.5
66.8+7.0
6.5£0.7
90.1+1.0
79.4£7.0
6.6£0.8
96.1+0.6
93.5+3.5
2.3+0.7
75.7£1.7
68.0+5.0
8.4£1.9
80.3+1.7
65.9+8.3
6.5£0.8
80.0+1.0
74.7£4.6
5.3+0.6
92.7+1.5
71.3£9.4
6.7£1.0
97.61+0.9
91.5+6.2
5.240.5
71.9£1.9
66.91+4.3
6.5£1.3
97.24+0.8
93.94+2.9
4.3£1.2
99.44+0.6
94.1+6.0
3.8£0.7
84.94+2.8
76.6+6.7
2.840.9

87.21+8.8

Default rule policy

Major
82.0+1.4
62.6+7.5
8.9£1.4
86.2+0.7
80.943.8
6.1£1.1
98.34+0.3
95.0+2.6
5.8+1.1
83.8+1.6
69.1+£7.7
6.8£0.8
92.0+0.9
79.2+5.8
7.8+1.3
95.940.8
90.44+4.3
5.7+1.2
77.240.8
69.1+5.4
9.5£1.6
83.44+1.3
69.0+£8.0
6.5£0.9
81.5+0.7
75.2+4.4
6.3£1.1
96.7+1.1
76.249.1
7.6+1.3
98.6+0.7
92.0+5.2
5.7+0.7
74.1£1.3
67.6+4.2
9.4£1.8
98.0+0.5
94.443.1
4.8£1.1
99.74+0.4
93.24+6.4
3.7£0.6
89.94+1.8
75.3£7.0
3.9£0.9

89.248.3

Minor

80.7+1.4
64.41+6.9
8.3£1.6
87.1+0.6
81.6+3.8
5.9+£1.0
98.5+0.4
95.7+1.9
3.3+£0.7
81.3+2.1
68.0+8.3
7.5£0.9
92.44+0.8
81.6+6.9
7.4+£1.2
97.1+0.7
93.44+3.5
2.6+£0.7
75.8+1.4
68.7+5.2
9.3£1.9
83.4+1.3
67.3+8.9
6.8+1.0
81.24+0.7
74.8+4.7
5.84£0.9
95.3+1.3
74.6+10.1
7.7£1.5
98.61+0.7
92.44+4.8
5.4+0.6
74.2+1.2
68.3+4.5
10.0£1.8
97.91+0.6
94.44+3.2
4.240.7
99.84+0.3
92.0+6.5
4.2£0.5
87.1+3.3
72.449.1
4.4£1.2

88.71+8.6

78.84+11.5 79.3+10.7 79.3£11.1

5.3+1.7

6.6£1.7

6.2+2.1

Auto

81.0+1.6
64.5+7.3
8.7£1.4
86.91+0.8
81.2+3.9
5.8+1.0
98.41+0.4
95.8+1.9
3.2£0.7
79.5+1.7
67.1+7.4
6.7£0.8
92.24+0.8
81.2+6.6
7.4+1.2
96.91+0.7
92.84+4.0
2.6+0.9
75.7£1.0
69.1+4.9
8.8£1.8
83.5+1.1
69.7+7.7
6.6£0.9
81.44+0.7
74.9£4.6
6.1£1.0
96.1+1.3
76.3+8.9
7.6x1.4
98.31+0.8
91.4+5.6
5.5+0.6
72.6£1.3
67.9+4.8
8.4£1.8
97.84+0.6
94.443.1
4.5£0.9
99.61+0.4
93.24+6.3
3.8£0.7
89.0+2.1
76.3£7.1
3.7£1.0
88.61+8.9
79.74£10.8
6.0£2.0

Major+Minor
82.0+£1.4
62.6£7.5
8.9+1.4
87.1£0.6
81.6+3.8
5.941.0
98.5+0.4
95.7£1.9
3.3+0.7
83.8+1.6
69.1£7.7
6.84+0.8
92.440.8
81.6£6.9
7.44+1.2
97.1£0.7
93.443.5
2.6+0.7
77.240.8
69.1+£5.4
9.5+1.6
83.4+1.3
69.0£8.0
6.5+0.9
81.5£0.7
75.2+4.4
6.3+1.1
96.7£1.1
76.249.1
7.6+1.3
98.6£0.7
92.4+4.8
5.440.6
74.2+1.2
68.3+4.5
10.0+1.8
98.0£0.5
94.4+3.1
4.84+1.1
99.8+0.3
92.0£6.5
4.240.5
89.9+1.8
75.3£7.0
3.940.9
89.3+8.3
79.7£11.7
6.24+2.2

compared to major+minor using a population size of 300) clearly makes it the
most suitable configuration for the default class.

Moreover, we can see how the only method that degrades performance when
we increase the population size is the majority class policy, suggesting that the
system is sensitive to over-learning in domains where the majority class policy is
not suitable. The larger average number of rules and the better training accuracy
of the solutions generated by this policy confirm the over-learning problem.
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Table 10. Summary of the statistical t-tests applied to the experimentation results of
popsize 400, with a confidence level of 0.05. Cells in table count how many times the
method in the row significantly outperforms the method in the column.

Policy Disabled Major Minor Auto Major+Minor Total

Disabled - 2 1 0 0 3
Major 1 - 1 0 0 2
Minor 1 3 - 0 0 4

Auto 1 3 1 - 0 5
Major+Minor 2 3 1 0 - 6
Total 5 11 4 0 0

9 Conclusions and Future Work

In this paper we have tested some methods that extend the rule-based and
decision-list-style knowledge representations for a Pittsburgh Learning Classifier
System by using a static default rule. This kind of systems tend to generate
an emergent default rule, which can increase the performance of the system.
By forcing the representation of a default rule, we intended to guarantee these
positive effects.

Simple policies such as using the majority /minority class as the default class
perform quite well compared to the original system. However, they perform
poorly on certain datasets somewhat showing a lack of robustness. We can al-
most integrate the best results of both policies by using the simple heuristic of
selecting the policy with more training accuracy. This mechanism introduces a
good performance boost, but doubles the run-time.

For this reason, we have developed a mechanism that decides automatically
the class for the default rule. This technique works by integrating in a single
population individuals using all possible default classes and letting them compete
among themselves. This approach has a problem, however, which is providing a
fair competition framework, because each default rule class can yield different
learning progress. In order to achieve this fairness, we use a niched tournament
selection that guarantees that all niches (different default rules) survive in the
population until they can compete successfully by themselves. This automatic
mechanism performs best when we increase the population size, which is an usual
requirement in most systems that use niching, because we have to guarantee that
each niche has enough individuals to ensure sufficient diversity for building block
supply and thus successful and reliable learning.

The increase in population size for the majority/minority policies, however,
showed no performance increase or even some performance decrease, suggesting
the amplification of the policy weaknesses This weaknesses are derived from
overlearning, which is reflected in the larger training accuracy and larger average
rule set sizes and also on the statistical tests.

Although the automatic policy does not outperform the major+minor policy,
the accuracy difference is quite small in most datasets and the computational cost
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is significantly lower. Therefore, it appears that in most situations the automatic
policy is the best method.

One of the main sacrifices done in the auto default class determination policy
is the mating restriction introduced in the crossover algorithm, preventing the
creation of lethals, because it is almost impossible to create competitive offspring
if the parents cover different subsets of the training instances. However, it would
be useful to study if there are any feasible ways to recombine successfully in-
dividuals with different default classes. If we achieve this objective, perhaps we
can reduce the population size requirements of the auto policy.

Another alternative would be to develop more sophisticated heuristics that
combine the simple default class policies. It might be possible to have a method
that only requires a short run to reliably decide on the most suitable default rule
class, instead of running a full test for each candidate class. To do so, it appears
necessary to also investigate in general in which cases which default rule class is
most appropriate. It is expected that the best default rule class does not only
depend on the class distribution and class boundaries but also, mutually, on the
representation of the class boundaries in the evolving rules. Future research will
shine further light on this matter.
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Abstract. Learning classifier systems have previously been shown to have
some application in single-step tasks. This paper extends work in the area by
applying the classifier system to progressively more complex multi-modal test
environments, each with typical search space characteristics, convex/non-
convex regions of high performance and complex interplay between variables.
In particular, two test environments are used to investigate the effects of differ-
ent degrees of feature sampling, parameter sensitivity, training set size and rule
subsumption. Results show that XCSR is able to deduce the characteristics of
such problem spaces to a suitable level of accuracy. This paper provides a
foundation for the possible use of XCS as an exploratory tool that can provide
information from conceptual design spaces enabling a designer to identify the
best direction for further investigation as well as a better representation of their
design problem through redefinition and reformulation of the design space.

1 Introduction

In this paper, the XCSR classifier system [35] is cast as an induction engine that is
trained using a reinforcement learning approach, i.e., an external agent provides a
reward for each successfully classified data instance. Once the system has completed
its training, new unseen data are presented and a measure of classification accuracy
made. There have been several papers published that demonstrate XCS’s capabilities
for data-mining through rule induction. In [3], Bernado et al. describe an experimental
comparison of XCS with seven other learning schemes, including C4.5, Naive Bayes
and Support Vector Machines. Fifteen UCI repository datasets [4] were used each
with mixture of attribute types and differing numbers of classes and dataset sizes. The
XCS system is shown to be highly competitive when compared with the other learn-
ing schemes. Wilson [36][37] has also demonstrated the capabilities of an interval
based encoding when used to induce rules describing the Wisconsin Breast Cancer
dataset, where XCS improved on the best known performance for that dataset.

The studies described above highlight the capabilities of XCS for data-mining
through rule-induction and provide some motivation for the investigation presented
here. It is hoped that this paper can provide a clear foundation for the possible use of
XCS as an exploratory tool, and in particular one that can provide information from
conceptual design spaces enabling a designer to identify the best direction for further
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investigation [24] as well as a better representation of their design problem through
redefinition and reformulation of the design space. The objective is to develop the
XCS classifier system to enable the evolution of an accurate set of maximally general
rules that can identify and describe the high performance regions of any given test
environment, before exploring the utility of this approach within more real-world
problem environments. In particular, the XCSR [35] classifier system is expected to
induce rules from continuous-valued domains where some discretised classification is
defined for each sample point.

Parmee [23] introduced the concept of the identification of high performance re-
gions of complex preliminary design spaces rather than the identification of single
optimal design solutions. A region of high performance is any contiguous set of
points in a given design space which are considered to be exceptional solutions to a
particular set of possibly conflicting design criteria. Parmee introduced a new evolu-
tionary search method, namely the Cluster-Oriented Genetic Algorithm (COGA),
which proved itself capable of rapidly discovering high performance regions of an
unknown design space whilst achieving a high percentage of solutions within regions
of high performance [6]. The interested reader is directed to [23], [6] and [25] for
more information. We are interested in the utility of XCS for such tasks.

This paper extends work presented in [7] in which XCSR was applied to a well-
known single-step task, the Boolean Multiplexor Problem. These single-step functions
are traditionally defined for binary strings of length [ = k + 2* under which the first k
bits index into the 2 remaining bits, returning the indexed bit. In fact, the Boolean
Multiplexor Problem can be redefined such that each binary digit in the problem
string is represented as a real value in the interval [0, 1] together with a fixed thresh-
old value, usually 0.5. The threshold is used to convert a real value to its correspond-
ing binary digit, e.g. the real-valued string 0.30, 0.7, 0.58 decodes to the binary string
011 given a threshold of 0.5. It is the task of XCSR to learn accurate general classifi-
cation rules that describe the range of real values that correspond to 0’s, 1’s and #’s in
the binary-encoded solutions, which can be simplified to the finding interval bounds
for each variable. This view of finding a Boolean Multiplexor Problem solution casts
the act of solving the problem as one of identifying regions of high performance -
assuming some simplification of the definition given above, that is, a solution to the
Multiplexor Problem is either correct or incorrect whereas a design problem will have
many different levels of performance.

Initial investigations in [7] show that the XCSR system is able to identify high per-
formance regions from a continuous multi-variable search space using a sample of
training data points. The solution provided is a complete set of simple classification
rules that define orthogonal regions of the solution space with attached classification
labels. Investigations continued using a new simplified learning scheme with the aim
of improving XCSR performance with respect to learning speed and ability to respond
to changes in the underlying test environment (such as class relabelling). The new
system was termed sXCSR and results showed that improvements can be made under
the new learning scheme. The work presented clearly demonstrated the capability of
XCSR to evolve real-valued pairs to describe interval bounds for each variable in the
multi-variable problem and thereby define a set of simple classification rules for the
high performance regions of an eleven variable Multiplexor-related search space.
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The investigation of XCSR’s capabilities for describing regions of high perform-
ance is continued in this paper by applying XCSR and sXCSR to progressively more
complex multi-modal test environments each with typical search space characteristics,
convex/non-convex regions of high performance and complex interplay between
variables. In particular, two test environments are used to investigate the effects of
different degrees of feature sampling, parameter sensitivity, training set size and rule
subsumption. These environments were previously used by Bonham [5][25] to inves-
tigate the capabilities of the COGA system. Both test environments are constructed
using a combination of functions allowing for the simple generation of training and
test points, where each sample point can be represented by a vector of continuous
values and a continuous performance measure which may be discretised as appropri-
ate. Fixed size training datasets are used in an effort to provide some consistency in
experimentation with those design problems for which the cost of an on-line evalua-
tion per sample point is high or for which datasets are constructed from other off-line
data sources.

The XCSR experiments presented below use an exact performance threshold, W,
that has been defined with prior knowledge of the test environments to allow for a
cleaner analysis of the XCSR system. The performance threshold defines a two-class
classification task where a given sample point is classified as High or Low. A similar
approach was adopted during the development of COGA utilising a similar set of test
functions [5][6]. This approach is essential in order to evaluate algorithm performance
in terms of a set of predefined criteria.

The paper is arranged as follows: the next section describes the XCSR system used
throughout; section 3 describes and presents results for a two dimensional test envi-
ronment; section 4 considers the class imbalance problem; section 5 describes and
presents results for a six dimensional test environment; and finally, all findings are
discussed.

2 XCSR

In [35], Wilson presents a version of XCS [34] for problems which can be defined by
a vector of bounded continuous real-coded variables — XCSR. In that system, each
rule in the classifier system population consists of the following parameters: <condi-
tion> : <action> : prediction (p) : prediction error (€) : fitness (F) : experience (exp) :
time-stamp (zs) : action set size (as) : numerosity (n). Given that XCSR is an accu-
racy-based classifier system, the three parameters p, € and F represent how accurately
a rule predicts <action> given an input vector matched by <condition>. In [35],
Wilson defines a <condition> as consisting of interval predicates of the form
{{cis:}, ..... {cws,}}, where c is the interval’s range centre and s is the “spread” from
that centre - termed here as the Centre-Spread encoding. Each interval predicate’s
upper and lower bounds are calculated as follows : [c, - s,, ¢, + s,]. If an interval
predicate goes outside the variable's defined bounds, it is truncated. In order for a rule
to match the environmental stimulus, each input vector value must sit within the in-
terval predicate defined for that variable. The other parameters, exp, ts, as and n, are
used by the classifier system to maintain the internal dynamics of the system, such as
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balancing resources across environmental niches, genetic algorithm invocation and
computational issues. In [36], Wilson describes another version of XCS which could
also be used for such multi-variable problems in which a vector of integer-coded
interval predicates is used in the form {[/;u;], ..... [[,u,]}, where [ and u are the in-
tervals’ lower and upper bounds, respectively - termed here as the Interval encoding.
It is clear that a real-coded version of the integer bounded interval predicates would
be trivial to implement.

The form of subsumption used for both types of encoding is that a rule may sub-
sume another if every interval predicate in the subsumee's <condition> can be sub-
sumed by the corresponding predicate in the subsumer. In order to identify if a predi-
cate may be subsumed, the subsumee's lower bound must be greater and its upper
bound must be lesser than the corresponding subsuming predicate. In fact, XCS im-
plements two different forms of subsumption, Action Set Subsumption and Genetic
Algorithm Subsumption. In the first form, a single rule is defined as the most general
in a given Action Set and is permitted to subsume any other rule in the Action Set
providing it is sufficiently experienced and accurate enough. In [36], Wilson defines
a generality measure for each rule as X (u; - [; + 1) Vi. However, this approach was
not used for the experimental results presented throughout this paper. Instead, the
Action Set rule that has a lower bound lesser than and an upper bound greater than
any other rule in the Action Set is defined as the most general rule. In the second
form of subsumption, a newly generated offspring rule may be subsumed if either of
its parents are more general than it, sufficiently experienced and accurate enough.

All other XCS processing remains as described in [8] for both the Centre-Spread
and Interval encoded versions except that mutation is implemented via a random step
(range —0.1 < x < 0.1) and cover produces rules centred on the input value with a
range of sy. It is important to note in the case of the Interval encoding, a potential
problem may arise as a result of the action of the mutation operator such that it is
possible for a variable predicate's upper bound to become smaller than its lower
bound. There are two ways to deal with this problem, termed here as Ordered Interval
and Unordered Interval [27]. The first way uses a repair operator to enforce an order-
ing restriction on the predicates by swapping the offending values to ensure that all
interval predicates in the <condition> remain feasible, i.e., in the form {[/,,u;], .....
[l,u,]}. The second way lifts the ordering restriction such that an interval [/,u,] is
equivalent to [u, [, ]. The reader is referred to [27] for a discussion of the issues re-
lated to the differences between interval encodings.

The results for each parameter setting of the XCSR system are averaged over five
independent runs and presented together with a standard deviation for that sample.
Any conclusions made in this paper are based on the application of Mann-Whitney
Rank Sum Test which makes no assumptions about the distribution of population
from which the runs where sampled. It should also be made clear that those figures
showing classification accuracy for a given parameter setting represent the perform-
ance of the system on the test dataset during the entire learning phase. The apparent
improvement in performance during the first 10-20% of each figure should only be
taken as an indicator of successful learning due to cover.
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Fig. 1. The Modified Himmelblau Function Contour with Four High Performance Regions

3 A Two Dimensional Test Environment

The two dimensional test environment used in this paper is the multi-modal modified
Himmelblau function [2]. The equation for the modified Himmelblau function, which
is used to evaluate each sample point, is given in the Appendix. There are four op-
tima of approximately equal magnitude. This function is used to define a two-class
classification task to investigate the effects of different degrees of feature sampling,
parameter sensitivity, training set size and rule subsumption on the performance of the
XCSR and sXCSR classifier systems. In particular, an exact threshold value of y =
184, where y € [-1986, 200], is used to define High/Low class decision boundaries.
Figure 1 shows a contour plot of the function, clearly indicating the four regions of
high performance as defined by the threshold value given above.

The XCSR system was trained using two different training datasets and tested us-
ing a single test dataset generated from a uniform random distribution which has been
manipulated in such a way as to provide an equal number of test points per classifica-
tion as shown in Figure 2. In particular, n points are sampled from a uniform random
distribution and evaluated according to the current environment. The sample points
are sorted in descending order of performance and the top 2m points are used to de-
fine the test dataset, where m equals the total number of High points generated. All
three datasets have two defined classes, High and Low. The two training datasets,
Figure 2(a) and Figure 2(b), were both generated from a Halton Sequence Leaped
(HSL) sequence [14] with 500 and 2000 sample points, respectively. The HSL is a
quasi-random sequence which provides a set of real numbers whose degree of uni-
formity is high. The test dataset used for this section of the paper was generated
from a uniform random distribution with 2116 sample points, where 1073 points are
defined as High - shown as faint dots in Figure 2 (c) below. In particular, the test
dataset was manipulated to include sample points from both classifications near to the
classification decision boundaries. It is hoped that results using this dataset will give
clear evidence of the classifier system’s capability to evolve rules that define those
boundaries.

Experiments were conducted to discover if there were any underlying trends in the
parameter space for this problem. This involved altering subsumption parameters,
training dataset size, rule encodings and using the new update technique for payoff
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prediction [7]. However, an approach is required to enable comparisons of perform-
ance to be made between different parameter sets. One common way to define the
performance of a classification system is to use a confusion matrix [15] of size L x L,
where L is the number of different classifications. The matrix contains information
about the actual and predicted classifications resulting from the classification task and
provides a simple format to record and analyse a system’s performance. Figure 3
gives an example of a 2 x 2 confusion matrix with the two possible classifications
used in this section of the paper.

= O = W m m

Fig. 2. Two (a & b) Training Datasets and One Test Dataset (c) : (a) 500 HSL-generated Points,
(b) 2000 HSL-generated Points, (c) Uniform Random (equal points per classification)

There are a number of possible measures of classification accuracy based on con-
fusion matrices, which include the Lewis and Gale’s F-measure [21], the geometric
mean as defined by Kubat et al in [18], using ROC graphs to examine classifier per-
formance [28] and Kononenko and Bratko’s information-based evaluation criterion
[16]. In fact, all of the above measures were developed to overcome problems associ-
ated with analysis where the number of examples in each classification is significantly
different. Given that all the test datasets used in this paper have been manipulated
such that the number of examples per classification are nearly equal, a simple accu-
racy measure will suffice for basic analysis. For this two-class classification problem,
the accuracy measure is defined as the number of examples correctly classified as
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High plus the number of examples correctly classified as Low divided by the total
number of examples classified, that is, (a + d) / (a + b + ¢ + d) using the cells shown
in Figure 3. However, it should be made clear that this measure may fail to provide
usable analytical data when the differences between the percentage correct for each
classification are too large. The percentage of High and Low points correctly classi-
fied are traditionally known as the sensitivity and specificity, respectively. These
terms frequently appear in the medical literature and are mainly used to describe the
result of medical trials for disease prevention, but have come to be used in many non-
medical classification tasks including information retrieval. In fact, a similar set of
performance metrics were introduced for the EpiCS [11] system.

Predicted
Class
Low High
= @ Low a b
2 3
ST .
< High c d

Fig. 3. An example 2 x 2 Confusion Matrix with High and Low Classifications

Table 1 shows three performance measures using the Uniform Random test dataset
for each parameter combination, that is, the accuracy measure defined above, the
percentage of High examples correctly classified, or sensitivity, and the percentage of
Low examples correctly classified, or specificity. The parameter combinations used
include running XCSR/sXCSR with and without Action Set Subsumption using three
different encodings - Centre-Spread, Ordered Interval and Unordered Interval.

It is clear from Table 1 that the system performed well on the two dimensional
Himmelblau test problem in terms of correct classification of unseen data, between
62.3% and 91.1% depending on rule encoding, subsumption type and training sample
size. The system also performed at a very high level, around 98%, when presented
with “probe points” randomly distributed across the entire search space (not shown),
providing empirical evidence of the ability of XCS to accurately describe the entire
search space. The performance gain for XCSR when Action Set Subsumption is
turned off is remarkably clear in Table 1. In fact, the difference between XCSR with
and without Action Set Subsumption is statistically significant (>99%) for all other
parameter settings shown. Figure 4 shows the performance gain for the Ordered In-
terval XCSR encoding using a 2000 HSL-generated training dataset. This improve-
ment may be a result of permitting initially weaker rules enough time to show their
true potential by reducing the early domination of more numerate rules in a given
Action Set as was suggested in [7].
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Table 1. Classification Accuracy for XCSR Using a Uniform Random Test Dataset based on
the modified Himmelblau Function, where Trials = 200000, N = 8000, #=0.2, o= 0.1, &= 10,
v=>5, 0510=12, y=038, u=0.04, 6;,=20, 6=0.1, p; =10, =0, F;,=0.01, 6,,, .= 2, G, =
20, m = +10% and sy = 2%. Table 1 presents results for each parameter combination in the
format : % Accuracy 4, over Sensitivity & Specificity.

Centre-Spread Encod-  Ordered Interval En- Unordered Interval
ing coding Encoding

500 HSL 2000 HSL 500 HSL 2000 HSL 500 HSL 2000 HSL

5 % 64das 7505y 623uy  T0de 64550  68.5ay
=

§ 340 957 532 97.5 35.9 89.5 42.1 98.8 40.1 89.6 38.5 99.4
2

=

@

[0}
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=
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Regarding the different rule encodings, Table 1 shows that the Ordered and Unor-
dered Interval encodings out-perform the Centre-Spread encoding on smaller training
datasets with Action Set Subsumption turned off. Although this difference in per-
formance is statistically significant (>95%), there does not appear to be any signifi-
cant performance differences between the Ordered and Unordered Interval encodings.
Figure 5 shows the learning speed and system error for the Ordered Interval XCSR
and Ordered Interval sXCSR encoded systems using a 2000 HSL-generated training
dataset with No Action Set Subsumption. It is clear from Table 1 and Figure 5 that
there are no statistically significant differences in final performance between the
sXCSR and XCSR versions of the system or in learning speed between the two sys-
tems but that there is a small improvement in system error for the sXCSR system.
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According to Table 1 and Figure 6, as the number of training points increases the
performance of the system improves, suggesting that the system can gain more infor-
mation about the dimensionality of the high performance regions when more points
are sampled in that area. However, this statement is only statistically significant
(>99%) for those XCSR parameters settings with Action Set Subsumption turned off.
Figure 7 shows that there is little difference in the learning speed and system error for
the number of training points used here given that the classifier system is able to de-
scribe the training set perfectly within a few thousand trials. It should be made clear
that the classifier system is expected to learn accurate general classification rules that
describe regions of the search space rather than single training data points and so
simply stopping as soon as the training data has been learned is not enough to com-
plete the region discovery aspects of learning — this should follow as the classifier
system evolves general rules that cover regions of the search space.
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Fig. 4. Comparison of Classification Accuracy for Different Subsumption Settings (a) with
Action Set Subsumption and (b) without Action Set Subsumption, where Trials = 200000, N =
8000, #=0.2, =0.1, =10, v=35, 654 =12, y=0.8, u=0.04, 6,,,=20, 6=0.1, p; =10, =
0, F;=0.01, 6,,,,=2, 6y, =20, m =+10% and sy= 2%

There is an important issue regarding the imbalanced nature of the training sets
used for the experiments discussed above. Given that only a small fraction, around
5%, of the training examples are from the high performance region and that the classi-
fier system is expected to form accurate descriptions of these regions, it is clear that
some degree of re-sampling may be necessary in more complex environments. The
next section provides a definition of this problem and details a small number of the
published attempts to overcome it.

4 The Class Imbalance Problem

The class imbalance problem [13] can be defined as a problem encountered by any
inductive learning system in domains for which one class is under-represented and
which assume a balanced class distribution in the training data. For a two-class prob-
lem, the class defined by the smaller set of examples is referred to as the minority
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class while the other class is referred to as the majority class. However, much of the
following discussion also applies to multi-class problems. A few papers detailing
attempts to deal with this problem are discussed below.
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In [13], Japkowicz and Stephen discuss several methods for dealing with the class
imbalance problem including minority over-sampling, majority under-sampling and
Elkan’s Cost Sensitive Learning method [9]. Minority over-sampling refers to the
repeated sampling of, or duplicating of, examples from the minority class with re-
placement until the number of examples in the minority class equals some pre-defined
fraction of the majority class size. Majority under-sampling refers to the elimination
of examples from the majority class until its’ size equals some pre-defined multiple of
the minority class. Both of these approaches have known drawbacks. For instance,
majority under-sampling may cause potentially useful information to be lost and,
depending upon the degree of minority over-sampling, there may be an increased
chance of overfitting. Elkan’s Cost Sensitive Learning method modifies the relative
cost associated with misclassifying an example to compensate for the imbalance and
provides a theorem that shows “how to change the proportion of minority examples in
a training set in order to make optimal cost-sensitive classification decisions using a
classifier learned by a standard non-cost-sensitive learning method*.

In [31], Weiss and Provost provide an interesting empirical study of the effect of
class distribution on classifier performance for twenty-five published datasets. A
majority under-sampling approach was used to form a two class distribution, that is,
stratified random sampling without replacement of the majority examples with no
replication of any minority example. The authors suggest that the reasons why classi-
fier systems perform differently on the minority class versus the majority class can be
justified by two observations. The first observation is that “classification rules that
predict the minority class tend to have a much higher error rate than those that predict
the majority class®. They reason that higher error rate for minority classification is in
part because of conventional wisdom which suggests that a test-set should match the
natural class distribution of the underlying domain and also that rules classifying the
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minority class are generally formed from fewer training examples than their majority
counterparts. The second observation is that “test examples belonging to the minority
class are misclassified more often than test examples belonging to the majority class®.
One reason for this is that the marginal probabilities of the natural class distribution
are biased towards the majority class. It is also true that with fewer examples of the
minority class in any given dataset, the decision boundaries between classes are less
likely to sufficiently well defined for most inductive algorithms. The authors suggest
that “the strategy of always allocating half of the training examples to the minority
class...will generally lead to results which are no worse than, and often superior to,
those which use the natural class distribution.

Ordered Interval Encoding with No AS-Subsumption Ordered Interval Encoding with No AS-Subsumption
Using a Population of 8000 Rules Using a Population of 8000 Rules
1 1
08 /‘__‘\“_ e 0 fm

Classification Accuracy
Classification Accuracy

i} 20000 100000 150000 200000 0 50000 100000 150000 200000|
Exploit Trials ExploitTrals
—— Acclracy snnen SENSitivity — Specificity —— Accuracy nnnnnn 3@ SifiviLY — Specificity

(a) (b)

Fig. 6. Comparison of Classification Accuracy for Different Training Set Sizes (a) 500 HSL-
generated data-points and (b) 2000 HSL-generated data-points , where Trials = 200000, N =
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Kubat and Matwin [17] addressed the problem by using an “intelligent™ under-
sampling method which attempts to remove majority examples according to their
membership of the following four groups : examples suffering from class-label noise,
borderline examples, redundant examples or safe examples. An attempt to reduce the
redundant majority examples is defined as that of constructing a subset C of the main
training set S by taking every minority example from S and one randomly chosen
majority example. Examples remaining in S are classified by subset C using the 1-
Nearest Neighbour (using a Euclidean distance measure) with any misclassified ex-
amples added to C as suggested by Hart in [10][33]. The method also makes use of
the concept of Tomek links [29] to identify noisy or borderline examples, that is,
choose a pair of examples (x, y), one from each class; the distance between examples
is denoted d(x, y); the pair (x, y) are called a Tomek link if no example z exists such
that d(x, z) < 8(x, y) or &(y, z) < 8(y, x); remove any majority class example from the
subset C that participates in a Tomek link. The remaining examples represent the new
training set 7. A counter-example of this technique is discussed in [30]. In [19],
Laurikkala develops another method of “intelligent* under-sampling which is based
on the one-sided selection principle developed by Kubat and Matwin [17]. The new
method was designed to work with multi-class problems and considers the quality of
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data to be removed from the majority subset of the training dataset more rigorously.
In particular, the new method uses a neighbouthood cleaning rule that is less sensitive
to noise. The new method utilizes Wilson’s edited nearest neighbour rule [33], to
identify noisy data, by removing examples whose classification differs from the ma-
jority class of the k nearest neighbours (where k normally equals 3). In fact, the
method will “clean® neighbourhoods by removing data that misclassify examples of
the class of interest, i.e. the minority class. In addition, a heterogeneous value differ-
ence metric [32] is used which treats nominal attributes more appropriately. Laurik-
kala [19] was able to show that the neighbourhood cleaning rule is significantly better
than Kubat and Matwin’s method using ten real-world datasets.
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In [20], Lee describes an oversampling method to help overcome the Class Imbal-
ance Problem which produces “noisy replicates of the rare cases while keeping the
dominant class cases unchanged®, that is, new examples of the minority class are
created such that there will be m; replicates of the minority examples with added
noise. Each noisy example is generated by adding a small noise term, &, to each di-
mension of its corresponding minority example. The noise term, & can be defined as
N(O, 02,,0,«53) where the noisy replicates become just m; exact copies of each minority
example as the variance of ¢ tends toward zero. The original majority and minority
examples are added to the noisy replicates to form a new training set 7. In particular,
Lee suggests that when the new data is used with some form of bootstrapping tech-
nique, a regularisation or “smoothing® effect is produced on the minority examples to
help avoid overfitting and improve generalisation. This effect has been studied exten-
sively in the Neural Network domain for which [26] provides a good starting point.
In [1], An suggests that the addition of noise to inputs in neural network training sig-
nificantly reduces the generalisation error of the network while Holmstréom and
Koistinen [12] show that the method of interpreting the addition of noise to the net-
work inputs for generating additional training data is asymptotically consistent, that
is, as the size of training dataset approaches infinity and variance of added noise



320 D. Wyatt, L. Bull, and I. Parmee

=
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Fig. 8. Three local, two dimensional planes of Bonham’s Six Dimensional Function : (a) Plane
1 with three high performance regions, (b) Plane 2 with two high performance regions, and (c)
Plane 3 with three high performance regions

approaches zero, the method is equivalent to minimising the true error function. It is
not clear whether the same effects would be seen for the classifier system, but it is
certainly an approach worth investigating further.

Ling and Li [22] define the class imbalance problem in terms of a direct marketing
domain in which class distribution can be extremely imbalanced. The authors moti-
vate the need for data mining and machine learning in direct marketing and discuss
the need for a finer distinction among buyers and non-buyers to allow flexibility in
decisions about the means of promotion used. The exact details of their approach can
be found in [22]. An aspect of their work which is of interest here, is a solution sug-
gested for the class imbalance problem which uses both minority oversampling and
majority undersampling. In particular, the minority class is oversampled with re-
placement until some pre-defined multiple, n, of the original sample size is achieved,
that is, by setting n equal to two, twice as many minority class examples are used
during training as those occurring in the original dataset. The majority class is under-
sampled without replacement until a number of examples equal to those sampled from
the minority class have been defined. In addition, to the balancing of examples
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volumes per class, which has already been shown to be advantageous, no information
about the search space is discarded unnecessarily.

Ling and Li’s solution [22] to the Class Imbalance Problem is used in the following
section to demonstrate XCSR’s capability for accurately describing the high perform-
ance regions of a six dimensional multi-modal environment. The approach provides a
straightforward solution to a major data sampling problem common to many inductive
learning systems. Weiss and Provost [31] suggest that one characteristic of a good
solution to the imbalance problem is to ensure half of the training examples are allo-
cated to the minority class while Japkowicz and Stephen [13] suggest several strate-
gies to achieve this re-balancing of class examples through minority oversampling or
majority undersampling. Ling and Li’s solution combines the minority oversampling
and majority undersampling strategies in an attempt provide an equality to the volume
of examples per class as well as addressing the issues of a potential loss of useful
information implicit in the majority examples. Other approaches should also be in-
vestigated for their effects on performance of XCSR in the six dimensional test envi-
ronment detailed below as well as other test environments which suffer from the class
imbalance problem.

5 A Six Dimensional Test Environment

The six dimensional test environment used in this paper is a multi-modal function
developed by Bonham and Parmee, [5] and [6], and is described in the Appendix at
the end of this paper. It is defined by the additive effect of three different two dimen-
sional planes as shown in contour plot form in Figure 8. Each plane has an associated
“local* fitness value and the “global* fitness value of the six dimensional function is
defined by adding each of these “local® fitness values together, that is, fitness,opa =
Sitness,aner + fitness,anez + fithesspia.;. Each sample point is defined by a six dimen-
sional vector of the form {a, b, c, d, e, f}, where a...f € [0, 1]. In this two class prob-
lem, a sample point is classified as either High or Low. It is classified as High only
when each “local® fitness value is greater than the exact threshold value y = 0.35,
where y € [0, 0.5], and the “global* fitness value is greater than exact threshold value
ys = 1.20, where yg € [0, 1.5], otherwise the point is classified as Low. By combin-
ing local regions of high performance, an environment of eighteen unique regions of
globally high performance are defined, that is, three local high performance regions in
Plane 1, two in Plane 2 and three in Plane 3. An important advantage of using this
environment is that visualisation and subsequent interpretation of rules produced by
XCSR is made less problematic by being able to identify rules that accurately cover
each of the eighteen regions. This would be much more difficult with a non-
decomposable six dimensional function.

As before, the XCSR system was trained using two different training datasets and
tested using a single test dataset generated from a uniform random distribution. An
attempt was made to replicate the decision boundary manipulation used for the two
dimensional environment above, that is, the top 2m sorted sample points taken from a
uniform random distribution are used to form the test dataset with 1693 sample points,
where 813 points are defined as High. The two training datasets (not shown) were
generated using a HSL sequence with 6000 and 12000 sample points, respectively.
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Table 2. Classification Accuracy for XCSR Using a Uniform Random Test Dataset based on
the Six Dimensional Test Function, where Trials = 500000, N = 8000, f= 0.2, = 0.1, &= 10,
v=3, G4=12, y=0.8, u=0.04, 6;,=20, 6=0.1, p;=10, =0, F;=0.01, s =2, G =
20, m = £10% and sy = 25%. Table 2 presents results for each parameter combination in the
format : % Accuracy 4, over Sensitivity & Specificity.

Centre-Spread Encod-  Ordered Interval En- Unordered Interval
ing coding Encoding
6000 12000 6000 12000 6000 12000
HSL HSL HSL HSL HSL HSL
S % 68.8(1.6) 75.6(2.1) 67-3(3.2) 75-4(1.]) 66.9(3.5) 74.9(2.7)
a O
§ M 557 808 762 750 S38 798 740 766 559 790 754 T4S
2
=
“
%)
i % 69.2,4 76.91.6) 68.0(1.2) 74.41.4) 67.9.6) 74.7 1.2
= O
= % 563 812 778 760 550 800 758 730 550 798 769 728
.§ % 69.1:,3 77.30.9) 69.0.9 78.6(1.4) 7145 77.51.2)
& 0
§ M S48 s24 738 805 565 805 794 719 6Ll 812 753 795
S
X
%)
<
*g % 70.41.4) 78.50.0) 71022 80.2(1., 72.2.4 7911
<
= X
2 Y 572 85 7716 793 615 801 826 780 626 8.0 803 780

Initial experiments for the six dimensional test problem, using the same approach
as for the two dimensional Himmelblau test problem, highlighted the concerns ex-
pressed in the previous section over the class imbalance problem. In fact, a HSL-
generated sample of the search space provides as little as 1.6% high performance
region cover, which is clearly too small for the system to learn anything other than an
accurate description of the majority class, that is, the low performance regions of this
space. XCSR achieves this by generating a completely general rule for the environ-
ment, {[0, 1], [0, 1], [0, 1], [0, 1], [O, 1], [0, 1]}, which is correct for 98.4% of the
training data points and approximately 50% of the test data points (not shown). In
fact, this problem was evident in [35] in which Wilson applied XCSR to a problem
where a small number of input patterns were much less prevalent than that of the
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majority of input patterns. An explanation for this problem was provided in [27],
where Stone and Bull showed that by oversampling data points from the minority
class, the effects of the imbalance were mitigated.

Table 3. Classification Accuracy for XCSR Using a Uniform Random Test Dataset based on
the Six Dimensional Test Function, where Trials = 500000, N = 2000, f= 0.2, = 0.1, &= 10,
v=35, O5,=12, y=08, £=0.04, 6,,=20, 6=0.1, p;= 10, =0, F;=0.01, 6,,,,=2, 6, =
20, m = *10% and sy = 25%. Table 3 presents results for each parameter combination in the
format : % Accuracy 4, over Sensitivity & Specificity.

Centre-Spread Encod-  Ordered Interval En- Unordered Interval
ing coding Encoding
6000 12000 6000 12000 6000 12000
HSL HSL HSL HSL HSL HSL
S % 77.5(2.5) 82'0(1.6) 76'9(2.8) 80.9(1.0) 78.1(1.9) 81.6(0.9)
g 0
§ M52 7 05 T4l 764 T3 887 Tr6 76 786 862 714
2
=
“
%)
i % 77.4(2.7) 79°7(2.6) 74.6{1_8) 79.6{2_8) 76.7{1_2) 79.5{1_0)
= O
= % 780 769 894 707 732 762 8.8 720 719 7156 813 723
§ % 76.2(2.3) 82.4(2.7) 76.5(2.9) 81‘4(0.6) 76.1(2.9) 81.9(1.0)
= O
§ M 714 811 880 7723 735 797 888 748 726 803 907 738
S
«
0]
<
g Q{n{‘ 77.1(1.3) 82-5(3.9) 77.5(2.1) 82-6(0.1) 77'2(1.8) 82.4(0.5)
= Q
=X
Z Y 739 800 896 760 750 799 906 752 755 790 897 757

In order to overcome the severe level of class imbalance exhibited by the six di-
mensional test environment, the approach suggested by Ling and Li [22] is used. In
particular, the minority class is oversampled with replacement for a predefined multi-
ple of n =32, and the majority class undersampled without replacement until a num-
ber of examples equal to those sampled from the minority class have been defined.
This re-balancing of sample points per classification in the original HSL-generated
datasets creates two new datasets with 5824 and 11968 sample points, that is, within
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3% of their original size. In particular, experimentation and analysis for the six di-
mensional environment concentrates on two different population sizes, N = 2000 and
N = 8000, in order to identify and explain any similarities or differences between
them. Using the same format as Table 1, Table 2 and Table 3 show the accuracy
measure, the percentage of High examples correctly classified and the percentage of
Low examples correctly classified using the Uniform Random test dataset defined
above for the population sizes, N = 8000 and N = 2000, respectively. The parameter
combinations used are the same as used in the two dimensional environment.
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Fig. 9. Comparison of Classification Accuracy for Different Population Sizes (a) N = 8000 and
(b) N = 2000, where Trials = 500000, f#=0.2, =0.1, =10, v=15, G54 =12, y=0.8, u =
0.04, 6,,,=20, 6=0.1, p;=10, =0, F;=0.01, 6,,,,=2, 6, = 20, m = £10% and sp=25%

It is clear from Table 2 and Table 3 and also from Figure 9 that when N = 2000 the
system performs significantly better than when N = 8000, that is, there is between
2.3% and 11.2% improvement for different parameter combinations. These im-
provements are statistically significant at a level of >95%. A closer investigation of
this result shows that the improvement is due to the system’s inability to accurately
classify the High test dataset points represented by the sensitivity line when N = 8000.
Both population sizes produce the same level of accuracy for Low test data-points
suggesting that a system with too large a population may lead to overfitting the over-
sampled High training data-points thereby reducing the performance of the system on
previously unseen test data. Figure 10 shows that a system with N = 8000 actually
performs at a higher level for the training dataset than a system with N = 2000, imply-
ing perhaps that the larger system has learnt the training dataset at the expense of
performance on the test dataset.

The results shown in Table 2 and Table 3 indicate that there is no clear advantage in
performance for the smaller population on the test dataset to be gained when Action
Set Subsumption is turned off, but that there is a statistically significant improvement
(>95%) for the Ordered and Unordered Interval encoded versions of the N = 8000
system. There was a pronounced effect in the two dimensional problem. The disrup-
tive effects of Action Set Subsumption may be weakened as a result of the difference
in complexity of the problem. The number of training sample points is almost an order
higher in the more complex six dimensional problem and so it is less likely for a highly
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numerate rule to dominate an Action Set early in an experimental run. Although this
effect may provide some implicit protection for the weaker rules, an explicit form of
protection may be afforded to the weaker rules by increasing the Subsumption Experi-
ence threshold (as suggested in [7]), that is, those rules that have the potential to sub-
sume other members of an Action Set are expected to have taken part in many more
Action Sets before they are permitted to subsume. Clearly, the same form of protec-
tion could be used for less complex environments while gaining some of the generali-
sation advantages inherent in the Action Set Subsumption technique.
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Fig. 10. Comparison of Learning Speed and System Error for Different Population Sizes (a) N
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It is also true that as the number of training points increases the test dataset per-
formance of the system improves, regardless of training dataset size, suggesting that
the system can gain more information about the dimensionality of the high perform-
ance regions when more points are sampled in that area. In fact, the statistical signifi-
cance of the difference in performance for the larger population is >99% while for the
smaller population the difference is significant at the level of >95%. Figure 11 clearly
shows the improvement gain for the 12000 HSL-generated training dataset over the
6000 HSL and, in particular, shows the sensitivity measure to be the main difference
between them, that is, the system performs better when there are more sample points
from the high performance regions in the training dataset. In fact, Figure 12 suggests
that this improvement in classification accuracy is gained at no extra expense in terms
of learning speed.

Given that this paper represents a preliminary investigation into the use of XCS as
an exploratory tool, it makes sense to discuss some of the issues related to computa-
tional load. Experimental timings have shown that the system takes four times longer
to complete a 500,000 exploit trial experiment for the N = 8000 population sized
system than the N = 2000 population sized system, that is, there is a linear decrease in
computational time as the population size drops from 8000 to 2000. In fact, the type
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of encoding used for each rule may also have an effect on the computational time. A
comparison of timing by encoding for the larger populated system shows that it takes
longer to complete the experiment using Centre-Spread than for the other encodings
(not shown). However, there are no statistically significant differences between en-
codings for this six dimensional environment and so this timing issue means very
little. It was expected that the sXCSR system would provide some speed-up in learn-
ing as was demonstrated in [7], but for both the two and six dimensional environ-
ments used in this paper there does not appear to be any significant difference in
performance or learning time. Figure 13 shows the learning speed and system error
for the Ordered Interval XCSR and Ordered Interval sXCSR encoded systems with
Action Set Subsumption and trained on a 12000 HSL-generated dataset.
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Fig. 11. Comparison of Classification Accuracy for Different Training Set Sizes (a) 6000 HSL-
generated data-points and (b) 12000 HSL-generated data-points, where Trials = 500000, N =
8000, f=0.2, =0.1, =10, v=5, G54= 12, y=0.8, u=0.04, 6,,,= 20, 6=0.1, p;= 10, =
0, F;=0.01, 6,,,=2, 6y, = 20, m =£10% and sy=25%

6 Conclusion

The motivation for this work was to investigate how accurately XCS is able to de-
scribe high performance regions in a design-oriented environment given its previously
demonstrated capabilities in the main-stream field of data-mining. The objective is to
develop the XCS classifier system to evolve a complete and accurate set of maximally
general rules that identify and describe the high performance regions of real-world
problem environments with particular emphasis on an interactive process of design
evolution. In this role, XCS would act as an information-gathering tool that is capa-
ble of providing aid to the designer in decision making relevant to a better representa-
tion of their design problem through the reformulation and redefinition of the design
problem. It is hoped that XCS can provide compact understandable rules that de-
scribe the regions of interest to the designer. This aspect of the investigation provides
a great deal of potential for further research given the apparent mismatch between the
use of orthogonal rules and the complex regions of design space. It is also clear that
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Fig. 12. Comparison of Learning Speed and System Error for Different Training Set Sizes (a)
6000 HSL-generated data-points and (b) 12000 HSL-generated data-points, where Trials =
500000, N = 8000, f=0.2, =0.1, §=10, v=35, 5,=12,y=0.8, £ = 0.04, 6,,,= 20, 6=0.1,
pi=10, =0, F;=0.01, 6,,,=2, 6y = 20, m =x10% and sy=25%

some further work will be required to fully understand XCS’s capabilities in design-
oriented problem environments.

An analysis of the many experiments performed on the six dimensional environ-
ment show that performance on the test dataset levels off at around 150,000 exploit
trials, regardless of population size. The same is also true of the two dimensional test
environment, where performance on the test dataset levels off at around 100,000 ex-
ploit trials. In fact, this leveling off coincides with a marked reduction in cover opera-
tor usage, that is, shortly after the system’s ruleset has a rule for every training dataset
point, it also achieves its best classification of the test dataset points. It is likely that
further trials of the system will only result in a compaction of the ruleset, that is, most
of the learning takes place during the first 150,000 trials. However, this suggests that
an initial period of covering is required by the system before an accurate description
of the high performance regions is possible which also implies any extraction of sim-
ple meaningful and accurate rules that describe the regions of high performance will
have a minimum temporal overhead of around 150,000 trials.

It is clear from comparing results of the sSXCSR system with those of the original
XCSR system that the sXCSR attains the same level of performance as XCSR. Al-
though, the learning speed-up apparent in [7] does not appear to have been matched in
this set of experiments, the results in that paper were based on an eleven variable
problem. There is some evidence that improvements under the new learning scheme
are related to the complexity of the environment, given that results for a six variable
multiplexor problem showed no learning speed-up. However, it is unclear at this
point whether any real improvement in learning speed will be seen in sXCSR for a
more complex eleven variable design problem with a finite training set.

Results for both XCSR and sXCSR showed a statistically significant improvement
in performance, between 5% and 10%, when the population size was reduced from
8000 to 2000 rules in the six dimensional test environment. In fact, the improvements
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appear to be a result of the system’s inability to accurately classify the High test data-
set points when a larger number of rules are present in the system. This may be
because a larger population is more likely to overfit the training data-points reducing
the performance of the system on previously unseen test data. It was also clear that
turning off Action Set Subsumption had an important effect on performance, espe-
cially for the two dimensional environment, which may be a result of permitting ini-
tially weaker rules enough time to show their true potential by reducing the early
domination of more numerate rules in a given Action Set as was suggested in [7].
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The investigation presented in this paper clearly shows XCSR/sXCSR’s capabilities
for describing regions of high performance for two complex multi-modal test environ-
ments both of which embody typical search space characteristics. In particular, issues
concerning data sampling and performance measures were raised as well as an attempt
to provide empirical evidence of the efficacy of the new update mechanism introduced
in [7]. We also compared three different real-coded interval encodings that may be
used with XCS (see Stone and Bull [27] for a discussion of the issues related to the
differences between interval encodings). Results showed that there was little or no
difference between the different encodings for the two test environments used.
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Appendix: Test Environment Descriptions

Modified Himmelblau Function
F(x,x,)=200—(x; +x, —11)° = (x3 +x, = 7)°
Chris Bonham's 6D Function

a,b,c,d,e, f €[0,1]
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1 Introduction

The EpiXCS Workbench is a knowledge discovery tool that provides the user with the
capability for knowledge discovery and visualization in medical data. The foundation
for the workbench is the XCS paradigm [1]. The workbench is designed to benefit
both expert learning classifier systems (LCS) researchers and inexperienced end-users
in a variety of domains, especially clinical, epidemiologic, and public health
researchers. It was implemented in Microsoft Visual C++, Version 6.0, using the
GNU Scientific Library, using the XCSlib class library developed by Lanzi [2].
EpiXCS is designed to run on Intel Pentium processor environments at 1.0GHz and
higher. No special graphics or other co-processors are required.

1.1 Demonstration Data

The Wisconsin Breast Cancer dataset [3] is used here to illustrate the various features
of EpiXCS. The dataset consists of nine predictor features (shown in Section 2.1) and
one class feature (malignant/non-malignant).

2 Architecture

While using the XCS class library implemented by Lanzi, EpiXCS implements several
additional features that tailor the XCS paradigm to the demands of epidemiologic data
and users who are not familiar with learning classifier systems. These features include
specialized data encoding, evaluation metrics, reinforcement, missing values handling,
classifier ranking, and risk assessment. Finally, a workbench-style interface is used for
visualization and parameterization.

2.1 Environment Data Encoding

Training and testing data can be encoded in variety of ways for use with EpiXCS.
Binary, categorical, ordinal, and real formats are all acceptable, even in the same

X. Llora et al. (Eds.): IWLCS 2003-2005, LNAT 4399, pp. 333 2007.
© Springer-Verlag Berlin Heidelberg 2007
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dataset. Data files are constructed using a modified Attribute-Relation File Format
(ARFF), developed at the University of Waikoto [4]. ARFF files include a header
and data in a single file, as shown below. In the header, features are declared with the
ATTRIBUTE token, and enumerated from 0. Any missing values are declared using
the WILD token, followed by the specific values enclosed in double quotes. The type
of the feature is declared next. Finally, the name of the feature is declared; this name
will be used as the feature reference in visualizing the evolved rule sets in natural
language format after training the system. The action feature declaration completes
the header; actions are limited to binary decisions (€ {0,1}) in this version of
EpiXCS. The data immediately follow the header, using space-delimited format.

ATTRIBUTE 0 <WILD "99"><REAL><STRING "Clump Thickness">
ATTRIBUTE 1 <WILD "99"><REAL><STRING "Uniformity of Cell Size">
ATTRIBUTE 2 <WILD "99"><REAL><STRING "Uniformity of Cell Shape">
ATTRIBUTE 3 <WILD "99"><REAL><STRING "Marginal Adhesion">
ATTRIBUTE 4 <WILD "99"><REAL><STRING "Single Epithelial Cell Size">
ATTRIBUTE 5 <WILD "99"><REAL><STRING "Bare Nuclei">
ATTRIBUTE 6 <WILD "99"><REAL><STRING "Bland Chromatin">
ATTRIBUTE 7 <WILD "99"><REAL><STRING "Normal Nucleoli">
ATTRIBUTE 8 <WILD "99"><REAL><STRING "Mitoses">

ACTION 9 <STRING "Malignant">
5111213110

6881343710

2.2 Classifier Encoding

Classifiers are represented in EpiXCS using the “center-spread” approach described
by Wilson [5]. This representation uses two genes for each feature, one for the
“center”” value and the other for the “spread,” which corresponds to an interval within
which matches to input data from the environment are made. Initialization of the full
classifier population is automatically performed at start-up, facilitated by a routine
that scans the training set for minimum and maximum values for each feature. This
routine selects a hypothetical “center” value for each feature, based on its mean,
median, or randomly selected value within its empirically observed range. The spread
for each feature is determined by its range in the training data.

2.3 Evaluation Metrics

EpiXCS uses the same set of evaluation metrics as its predecessor, EpiCS [6]. These
include crude accuracy, sensitivity, specificity, positive and negative predictive
values, and area under the receiver operating characteristic curve, or AUC. These are
provided in Equations 1 through 5, respectively. The calculation of AUC is described
in detail in [7].
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Gold standard (class value in data)
As classified by EpiXCS Positive Negative
Positive A B
Negative C D

Fig. 1. 2x2 confusion matrix for a two-choice decision problem. The columns represent the
“gold standard,” or the classifications as they exist in the data. The rows represent the
classification. A=True positives; B=False positives; C=False negatives; D=True negatives.

Crude Accuracy = __A+D (D
A+B+C+D
Sensitivity = A (2)
Y A+C
D
Specificity = —— (3)
P Y B+D
Positive predictive value = 4)
A+B
Negative predictive value = 3)
& P C+D

These metrics are calculated at every 100th iteration during training and then on the
testing set. These metrics are displayed in text and graphical formats during training
and in text format at testing. In addition, the predictive values are used to rank the
macroclassifiers obtained after training. Specifically, classifiers advocating positive-
class decisions are ranked by their positive predictive value; those advocating
negative decisions are ranked by the negative predictive value. This helps the user to
focus on the most highly accurate rules in the knowledge discovery process.

In addition to these classical metrics, the convergence rate, 4 , is calculated during

learning:
/1 — AUCShoulder 1000 (6)
Shoulder

Shoulder is the iteration at which 95% of the maximum AUC obtained during
training is first attained, and AUCg,,.4.- is the AUC obtained at the shoulder. Thus,
the higher the value of A, the faster the system reaches convergence on the training
data. As the first AUC is not measured until the 100" iteration, and the maximum
AUC measurable is 1.0, the maximum value of A4 is 10.0. The minimum A is 0.0.
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2.4 Missing Value Handling

Missing values in input data are dealt with during creation of the match sets by means
of simple pass-through. During covering, one of four approaches may be used to
represent missing values present in the non-matching input case. These include:

Wild-to-Wild: missing values are covered as #s, equivalent to “don’t care”
Random within range: a covering value is selected randomly from the range
for the feature with the missing value

e Population average: the population average for the feature with the missing
value is used for the covering value

e Population standard deviation: a random value within the standard deviation
for the feature is selected as the covering value

3 The EpiXCS Workbench Interface

The basic EpiXCS Workbench interface is shown in Figure 2:
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AGA 48.000 ey
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pReal 0500 AUC 2
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Iteration

Run #0 | Train Evaluation | Test Evaluation | Rules Predicting Positive | Rules Predicting Negative |

Fig. 2. The EpiXCS Workbench
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The left pane is an interface to the learning parameters which are adjustable by the
user prior to runtime. These parameters correspond to those discussed in Butz and
Wilson [8], and include additional parameters for modifying the reward given to
classifiers based on the accuracy of the decision they advocate. The middle pane
contains the results of the classification metrics, which are obtained at each 100™
iteration during training (top half) and at testing (bottom half). This pane also includes
the legend to the graph in the right pane, which displays classification performance as
plots of the classification metrics in real time during training. The tabs at the bottom
of the figure are described in Section 3.1.

EpiXCS
File  Help

New Project X]
Proect Fle CilUsersIEpIXCS\br prof save x|
Cancel
Output Fils C\Uisers\EpIXCSIbr oLt dat Save
eters [ Ciisers\EpiiCSibrinfa Cpen
Ci\Users\EpiRCS)brirain.dat Open

[ CiuserstEpikCSibrtest dat Cpen

Fig. 3. Selection of project, parameter, output, and data files

3.1 Experimentation

EpiXCS is intended to support the needs of LCS researchers as they experiment with
such problems as parameterization. For the purposes of this paper, an experiment is a
set of one or more runs that use the same learning parameters and input and output. A
run is defined as a single excursion through a training-testing cycle. A batch run is
defined as a group of multiple similar runs contained within an experiment.
Multitasking enables the user to perform multiple simultaneous experiments as well as
multiple simultaneous batch runs for a particular experiment.
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Multitasking for multiple similar experiments enables the user to run several
experiments with different learning parameters, data input files, and output files. For
example, this feature could be used to compare different learning parameter settings
or to run different datasets at the same time. Multitasking in a batch run allows the
user some choice in the way in which the processor’s resources are used by the
program. In a batch run the user is given the option to choose the number of threads
to perform the requested number of runs in order to take advantage of any efficiency
gains from multithreading. The order and start times of the runs do not significantly
affect the experiment results because the variation in results in a batch run, which
have the same data set and learning parameters for each run, is solely determined by
the random number generator. In the workbench, each separate experiment is run in
at least one thread, but the user has the option to increase the number of threads per
experiment up to the total number of runs requested for that experiment. Thus
simultaneous and sequential runs can be performed within a batch run depending on
the ratio of the number of runs to the number of threads.

Visual clues convey the difference between experiments and runs to the user. Each
simultaneous experiment is displayed in a separate child window. The learning
parameters can be set for each individual experiment at run-time by means of a dialog
box. Each run in a batch run is displayed on a separate tab in the parent experiment’s

EpiXCS - [C:\Usors\EpiXCS\br. proj] [AEE
B Fle Experiment Diplay Window Help 151X
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Total lterations 10000 teration 10000 \/J\\J_\/M N V\
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= 0,800 Sensitivity 0975
1 0.040 Specificity 0.956 08
wReal 0.500 AUC 0.966 -
Belel 50 IR 0.000
5 0100
Bsub 100 s 95000%A-1878 (500,0.939)
P 0300
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Fi 0010 Iteration 10000
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0.0
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Fig. 4. Plot of classification metrics obtained during training. Shown here is the plot for one of
the 10 runs on the Wisconsin Breast Cancer data.
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window. Each run tab displays the classification metrics in both graphical and textual
forms. Since the overall results of a batch run may be of interest to the user, additional
tabs are provided for the training and testing evaluations. These tables include the
mean and standard deviation of the aforementioned metrics calculated for all runs in
the experiment. In addition to these metrics, detailed information such as the final
population set is dumped to a permanent text file for further use.

Figure 4 illustrates the training epoch of a batch run consisting of 10 individual
runs on the Wisconsin Breast Cancer data. The user can select the plots obtained
during training for each run by selecting the appropriate tab.

Figure 5 illustrates the summary statistics obtained at testing over the 10 runs;
similar results are also available for the results obtained during training by selecting
the appropriate tab.
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Fig. 5. Classification metrics obtained on the testing set, summarized for the 10 runs on the
Wisconsin Breast Cancer data

3.2 Rule Visualization

Often, obscure coding is used for taxons and actions. As a result, translating the
classifiers in final populations and understanding their significance is usually very
difficult, especially without understanding the coding and how classifier fitness,
prediction, prediction error, numerosity, and accuracy interact. The EpiXCS
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workbench attempts to help alleviate this problem by providing two additional tabs on
the interface that allow the user to examine the classifiers, expressed as condition-
action rules in natural language, that predict positive and negative, respectively. Each
of the two tabs summarizes the best-predicting classifiers from all runs. Classifiers
are chosen to be displayed on these tabs by their predictive value, which indicates
their accuracy, once in hand, as a posterior probability. The -classifiers are
represented by “human readable strings”, if-then statements which use strings to
represent the knowledge held in each attribute position. For numerically-encoded
data, a graph is used to show the center and spread within the minimum and
maximum possible range. This feature is illustrated in Figure 6:
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Fig. 6. Rule visualization tool in EpiXCS. Rules are presented in natural language in the bottom
pane. Clicking on the checkbox next to a rule causes the values to be plotted in the graphic in
the upper pane. Multiple rules can be plotted for comparison and for visual identification of
patterns that tend to recur from rule to rule.

4 Evaluation of EpiXCS

4.1 Source of Data

Classification and rule discovery performance of EpiXCS were evaluated using five
well-known datasets from the Machine Learning Repository at the University of
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California at Irvine [9]. In addition to the Wisconsin Breast Cancer dataset, the
Echocardiogram [10], Cleveland Heart [11], Hepatitis [12], and Pima Indians
Diabetes [13] datasets were used as the test suite. These datasets were selected
because of their popularity as benchmarks in the machine learning and knowledge
discovery (KDD) literature, and their application to a variety of medical domains.
Thus, even though they are rather small in size, especially for a KDD exercise, they
afford a degree of comparability with other approaches. In addition, they offer a
breadth of degree of difficulty in terms of contradictions, conflicts, and imbalanced
class distributions. There were some additional constraints that influenced the
selection of this particular suite of datasets. These included a requirement for
dichotomous class attributes (EpiXCS does not support polytomous or real-encoded
classes at this time) and a sufficient number of number of records for creation of
training and testing sets. The datasets selected for this investigation are described in
Table 1.

Table 1. Datasets used for evaluating EpiXCS

Positive Negative
Dataset class Class Total
Breast cancer 241 458 699
Echo 43 89 132
Heart 164 139 303
Hepeatitis 32 123 155
Pima 500 268 768

The datasets were prepared for analysis by standardizing class attribute values to 0
(Negative) and 1 (Positive). Ordinarily, this meant that “positive” cases were those
with a disease, but in the case of the Echo dataset, the positive class represented living
cases.

4.2 Comparison Method

See5 [14] a well-known decision tree and rule inducer, was selected as the
comparison method. See5 has been used extensively in KDD and it provides an
ensemble of rule-based classifiers that are similar in format to those provided in
EpiXCS.

4.3 Experimental Procedure

This study focused on a supervised learning problem, and therefore required the
creation of training-testing set pairs. However, even with random selection, there is
the possibility that the pairs may not represent the dataset as a whole. This can be
addressed by various methods, including “leave-one-out” sampling or n-fold cross-
validation. Although See5 supports cross-validation internally, EpiXCS does not yet
do so. In order to ensure that the two systems were exposed to the same training and
testing data, 10 training-testing set pairs were created for each dataset, using different
random number seeds. The distributions of each predictor and class attribute were
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found to be comparable within each training-testing set pair and across all training
and testing sets. EpiXCS and See5 were trained using a given training set and then
immediately tested using the testing set in the pair. To ensure that EpiXCS arrived at
a stable state of learning, and to account for perturbations in the random distribution
of the genetic operators, 20 runs were completed on each dataset. The system was
parameterized specifically for each dataset in order to obtain optimal results on
classification. In general, the default parameters described in Butz and Wilson [8]
provided satisfactory classification performance; only the population size and number
of iterations required alteration of the defaults for two of the datasets, Pima and
Hepatitis, described below. The same training-testing set pairs were used for the See5
runs. Sensitivity, specificity, and area under the receiver operating characteristic
curve were obtained on the testing set, and for the EpiXCS runs, averaged over the 20
runs. Then, the results were averaged over the 10 training-testing set pairs separately
for EpiXCS and See5 runs.

4.4 Classification Performance

The classification performance of EpiXCS and See5 on the testing sets is shown in
Table 2. EpiXCS demonstrates at least equal accuracy in classifying novel cases. Of
some surprise is EpiXCS’ significantly better performance on the Heart and Hepatitis
datasets. It should be noted that these data as well as the Pima Indians dataset required
more iterations (50,000, compared to 10,000 for he other datasets), and in the case of
Pima, a larger population size (3,000, compared to 500 for the other sets). This
parameterization reflects the comparable complexity among the datasets: Pima and
Hepatitis contain numerous conflicts in the data, mandating a larger exploration
space, expressed in longer training times needed to reach convergence and larger
classifier populations.

Table 2. Classification performance on testing sets (as AUC) of EpiXCS and See5. Numbers
in parentheses are one standard deviation of the mean of 10 training-testing set pairs.

EpiXCS SeeS
Breast cancer 0.96 (0.02) 0.91 (0.01)
Echo 0.85 (0.07) 0.84 (0.05)
Heart 0.78 (0.02) 0.64 (0.05)
Hepatitis 0.98 (0.01) 0.77 (0.04)
Pima Indians 0.82 (0.04) 0.81 (0.03)

4.5 Rule Discovery

A sample of highly positive-predictive rules discovered by EpiXCS in the five
datasets are shown below. Qualitatively, these compare very favorably with those
discovered by See5 on the same dataset. However, there were some differences
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between them. For example, the EpiXCS rulesets were as much as 20% larger,
probably due to pruning in See5. In addition, rules in EpiXCS demonstrated more
complex structure, in that they contained more conjuncts. However, these were not
ordinarily superfluous, and they tended to provide increased coverage when applied to
test data.

Breast: IF Uniformity of Cell Shape is 6.0 + 4.0
AND Single Epithelial Cell Size is 2 + 1
AND Mitoses is 3 + 0
THEN Malignant

Echo: IF Months-surviving is 30+265.
AND Age-At-MI is 53+1.5
THEN Died

Heart: IF Pain is Severe
AND Exercise-Angina is Present
THEN Died

Hepeatitis: IF Ascites is Present
AND Age>30
THEN Hepatitis-Positive

Pima: IF Glucose is 170+27.0
AND BMI is 39+16
AND Age is 53+19
THEN Diabetes-Positive

5 Future Work

Several key areas of future work remain in developing EpiXCS. First, it is currently
restricted to two-class problems. While these are perhaps most common in medical
data, there are situations where polytomous classification is used, such as in cancer
staging, where there may be three, four, or five classes. Second, the performance of
EpiXCS degrades with larger problems. For example, in testing EpiXCS on 56,000
records with 35 attributes in a database of fatal motor vehicle accidents occurring in
the United States, the training time was too slow to make its use practical. Future
work will focus on incorporating partitioning and boosting algorithms to improve
training performance. Finally, the interface will continue to be a focus of research by
testing the described version of EpiXCS on actual users to learn about more about
these users’ needs.
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