Optimized L*-Based Assume-Guarantee
Reasoning*

Sagar Chaki' and Ofer Strichman?

1 Software Engineering Institute, Pittsburgh, USA
chaki@sei.cmu.edu
2 Information Systems Engineering, IE, Technion, Israel
ofers@ie.technion.ac.il

Abstract. In this paper, we suggest three optimizations to the L*-based
automated Assume-Guarantee reasoning algorithm for the compositional
verification of concurrent systems. First, we use each counterexample
from the model checker to supply multiple strings to L*, saving candi-
date queries. Second, we observe that in existing instances of this para-
digm, the learning algorithm is coupled weakly with the teacher. Thus,
the learner ignores completely the details about the internal structure of
the system and specification being verified, which are available already
to the teacher. We suggest an optimization that uses this information
in order to avoid many unnecessary — and expensive, since they involve
model checking — membership and candidate queries. Finally, and most
importantly, we develop a method for minimizing the alphabet used by
the assumption, which reduces the size of the assumption and the num-
ber of queries required to construct it. We present these three optimiza-
tions in the context of verifying trace containment for concurrent systems
composed of finite state machines. We have implemented our approach
and experimented with real-life examples. Our results exhibit an average
speedup of over 12 times due to the proposed improvements.

1 Introduction

Formal reasoning about concurrent programs is particularly hard due to the
number of reachable states in the overall system. In particular, the number
of such states can grow exponentially with each added component. Assume-
Guarantee (AG) is a method for compositional reasoning that can be helpful in
such cases. Consider a system with two components M; and Ms that need to
synchronize on a given set of shared actions, and a property ¢ that the system
should be verified against. In its simplest form, AG requires checking one of the
components, say M7, separately, while making some assumption on the behaviors
permitted by Ms. The assumption should then be discharged when checking Ms
in order to conclude the conformance of the product machine with the property.
This idea is formalized with the following AG rule:

* This research was supported by the Predictable Assembly from Certifiable Compo-
nents (PACC) initiative at the Software Engineering Institute, Pittsburgh, USA.

O. Grumberg and M. Huth (Eds.): TACAS 2007, LNCS 4424, pp. 276 2007.
© Springer-Verlag Berlin Heidelberg 2007

Optimized L*-Based Assume-Guarantee Reasoning 277

AXMlj(p
My=< A

M, x My < o (AG-NC) (1)
where < stands for some conformance relatio. For trace containment, simula-
tion and some other known relations, AG-NC is a sound and complete rule. In
this paper, we consider the case in which M;, My and ¢ are non-deterministic
finite automata, and interpret < as the trace containment (i.e., language inclu-
sion) relation.

Recently, Cobleigh et al. proposed [I] a completely automatic method for find-
ing the assumption A, using Angluin’s L* algorithm [2]. L* constructs a minimal
Deterministic Finite Automaton (DFA) that accepts an unknown regular lan-
guage U. L* interacts iteratively with a Minimally Adequate Teacher (MAT).
In each iteration, L* queries the MAT about membership of strings in U and
whether the language of a specific candidate DFA is equal to U. The MAT is
expected to supply a “Yes/No” answer to both types of questions. It is also ex-
pected to provide a counterexample along with a negative answer to a question
of the latter type. L* then uses the counterexample to refine its candidate DFA
while enlarging it by at least one state. L* is guaranteed to terminate within no
more than n iterations, where n is the size of the minimal DFA accepting U.

In this paper we suggest three improvements to the automated AG procedure.
The first improvement is based on the observation that counterexamples can
sometimes be reused in the refinement process, which saves candidate queries.

The second improvement is based on the observation that the core L* al-
gorithm is completely unaware of the internal details of M;, My and . With
a simple analysis of these automata, most queries to the MAT can in fact be
avoided. Indeed, we suggest to allow the core L* procedure access to the inter-
nal structure of My, My and ¢. This leads to a tighter coupling between the L*
procedure and the MAT, and enables L* to make queries to the MAT in a more
intelligent manner. Since each MAT query incurs an expensive model checking
run, overall performance is improved considerably.

The last and most important improvement is based on the observation that
the alphabet of the assumption A is fixed conservatively to be the entire interface
alphabet between M; and ¢ on the one hand, and M5 on the other. While the
full interface alphabet is always sufficient, it is often possible to complete the ver-
ification successfully with a much smaller assumption alphabet. Since the overall
complexity of the procedure depends on the alphabet size, a smaller alphabet
can improve the overall performance. In other words, while L* guarantees the
minimality of the learned assumption DFA with respect to a given alphabet, our
improvement reduces the size of the alphabet itself, and hence also the size of
the learned DFA. The technique we present is based on an automated abstrac-
tion/refinement procedure: we start with the empty alphabet and keep refining it
based on an analysis of the counterexamples, using a pseudo-Boolean solver. The
procedure is guaranteed to terminate with a minimal assumption alphabet that

1 Clearly, for this rule to be effective, A x M; must be easier to compute than M; x Mo.

278 S. Chaki and O. Strichman

suffices to complete the overall verification. This technique effectively combines
the two paradigms of automated AG reasoning and abstraction-refinement.

Although our optimizations are presented in the context of a non-circular AG
rule, they are applicable for circular AG rules as well, although for lack of space
we do not cover this topic in this paper. We implemented our approach in the
CoMFORT [3] reasoning framework and experimented with a set of benchmarks
derived from real-life source code. The improvements reduce the overall number
of queries to the MAT and the size of the learned automaton. While individual
speedup factors exceeded 23, an average speedup of a factor of over 12 was
observed, as reported in Section [Gl

Related Work. The L* algorithm was developed originally by Angluin [2]. Most
learning-based AG implementations, including ours, use a more sophisticated
version of L* proposed by Rivest and Schapire [4]. Machine learning techniques
have been used in several contexts related to verification [BJ6I7U8I9]. The use of
L* for AG reasoning was first proposed by Cobleigh et al. [1]. A symbolic ver-
sion of this framework has also been developed by Alur et al. [I0]. The use of
learning for automated AG reasoning has also been investigated in the context of
simulation checking [T1] and deadlock detection [12]. The basic idea behind the
automated AG reasoning paradigm is to learn an assumption [I3], using L*, that
satisfies the two premises of AG-NC. The AG paradigm was proposed originally
by Pnueli [I4] and has since been explored (in manual/semi-automated forms)
widely. The third optimization we propose amounts to a form of counterexample-
guided abstraction refinement (CEGAR). The core ideas behind CEGAR were
proposed originally by Kurshan [I5], and CEGAR has since been used success-
fully for automated hardware [I6] and software [17] verification. An approach
similar to our third optimization was proposed independently by Gheorghiu et.
al [I8]. However, they use polynomial (greedy) heuristics aimed at minimizing
the alphabet size, whereas we find the optimal value, and hence we solve an
NP-hard problem.

2 Preliminaries

Let A and - denote the empty string and the concatenation operator respectively.
We use lower letters («, 3, etc.) to denote actions, and higher letters (o, 7, etc.)
to denote strings.

Definition 1 (Finite Automaton). A finite automaton (FA) is a 5-tuple
(S, Init, X, T, F) where (i) S is a finite set of states, (ii) Init C S is the set
of initial states, (iii) X is a finite alphabet of actions, (iv) T C S x X x S is the
transition relation, and (v) F C S is a set of accepting states.

For any FA M = (S, Init, X, T, F), we write s = s’ to mean (s, a, s') € T. Then
the function § is defined as follows: Va € X.Vs € S.6(a, s) = {s'|s = s'}. We

extend 0 to operate on strings and sets of states in the natural manner. Thus,
for any 0 € X¥* and S’ C S, §(0,5’) denotes the set of states of M reached

Optimized L*-Based Assume-Guarantee Reasoning 279

by simulating o on M starting from any s € S’. The language accepted by M,
denoted L(M), is defined as follows: L(M) = {0 € X* | §(o, Init) N F # (}.

Determinism. An FA M = (S, Init, X, T, F) is said to be a deterministic FA,
or DFA, if [Init| = 1 and Va € Y. Vs € S.|6(a,)| < 1. Also, M is said to be
complete if Vao € X.Vs € S.]6(av, s)| > 1. Thus, for a complete DFA, we have the
following: Voo € X.Vs € S.|6(e, s)| = 1. Unless otherwise mentioned, all DFA
we consider in the rest of this paper are also complete. It is well-known that a
language is regular iff it is accepted by some FA (or DFA, since FA and DFA
have the same accepting power). Also, every regular language is accepted by a
unique (up to isomorphism) minimal DFA.

Complementation. For any regular language L, over the alphabet X, we write
L to mean the language X* — L. If L is regular, then so is L. For any FA M we
write M to mean the (unique) minimal DFA accepting L£(M).

Projection. The projection of any string o over an alphabet X is denoted by
ol|x and defined inductively on the structure of o as follows: (i) A\|x= A, and
(ii) (a-0")|x=a- (¢']lx) if @ € X and ¢'|5 otherwise. The projection of any
regular language L on an alphabet X' is defined as: L|s= {o|x| o € L}. If L is
regular, so is L] 5. Finally, the projection M|y of any FA M on an alphabet 3
is the (unique) minimal DFA accepting the language L(M)] 5.

For the purpose of modeling systems with components that need to synchro-
nize, it is convenient to distinguish between local and global actions. Specifically,
local actions belong to the alphabet of a single component, while global actions
are shared between multiple components. As defined formally below, components
synchronize on global actions, and execute asynchronously on local actions.

Definition 2 (Parallel Composition). Given two finite automata M; =
(S1, Inity, X1, T1, F1) and My = (So, Inite, Yo, Ts, Fy), their parallel composi-
tion My x Mo is the FA (Sl X So, Imity x Inite, X7 U X9, T, Fy X FQ) such
that Vs1,s) € Si.Vsa,sh € Sa, (s1,82) — (sh,8h) iff for i € {1,2} either
a g X Ns;=s, orsiisg.

Trace Containment. For any FA M; and Ms, we write M; < M> to mean
L(My x M) = 0. A counterexample to M7 =< My is a string o € L(M; X My).

3 The L* Algorithm

The L* algorithm for learning DFAs was developed by Angluin [2] and later
improved by Rivest and Schapire [4]. In essence, L* learns an unknown regular
language U, over an alphabet X, by generating the minimal DFA that accepts
U. In order to learn U, L* requires “Yes/No” answers to two types of queries:

1. Membership query: for a string o € X* ‘isoc e U 7
2. Candidate query: for a DFA C, ‘is L(C) =U 7

280 S. Chaki and O. Strichman

If the answer to a candidate query is “No”, L* expects a counterexample string
o such that 0 € U — L(C) or 0 € L(C) — U. In the first case, we call o a
positive counterexample, because it should be added to L£(C). In the second
case, we call o a negative counterezample since it should be removed from £(C).
As mentioned before, L* uses the MAT to obtain answers to these queries.

Observation Table. L* builds an observation table (S, E,T') where: (i) S C X*
is the set of rows, (ii) £ C X* is the set of columns (or experiments), and (iii)
T:(SUS-X)x E— {0,1} is a function defined as follows:

1 s-ecU

Vse (SUS-X).Vee E.T(s,e) = {O otherwise

(2)

Consistency and Closure. For any s1, s € (SUS-Y), s1 and sq are equivalent
(denoted as sy = s2) if Ve € E.T(s1,e) = T(s2,€). A table is consistent if
Vs1,50 € S.81 # 82 = s1 # so. L* always maintains a consistent table. In
addition, a table is closed if Vs € S.Va € X.3s' € S.s' =s- a.

Candidate Construction. Given a closed and consistent table (S, E,T), L*
constructs a candidate DFA C' = (S, {\}, X, A, F) such that: (i) F = {s € S|
T(s,A\) =1}, and (ii) A = {(s,a,5") | 8 = s - a}. Note that C is deterministic
and complete since (S, E,T) is consistent and closed. Since a row corresponds
to a state of C, we use the terms “row” and “candidate state” synonymously.

=

@
N
@
w

R L >
— = e
S OO OO

Q

Q
@ R
O R O O >

Fig. 1. An Observation Table and the Corresponding Candidate DFA

Ezxample 1. Consider Figure[ll On the left is an observation table with the entries
being the T values. Let X' = {«, #}. From this table we see that {ez, o, a - ea, 5
ez, aq, ...} € U. On the right is the corresponding candidate DFA. ad

L* Step-By-Step. We now describe L* in more detail, using line numbers
from its algorithmic description in Figure 2l This conventional version of L* is
used currently in the context of automated AG reasoning. We also point out the
specific issues that are addressed by the improvements we propose later on in
this paper. Recall that A\ denotes the empty string. After the initialization at
Line 1, the table has one cell corresponding to (A, A). In the top-level loop, the
table entries are first computed (at Line 2) using membership queries.

Optimized L*-Based Assume-Guarantee Reasoning 281

Next, L* closes the table by trying to find (at Line 3) for each s € S, some
uncovered action « € X' such that Vs’ € S.s’ # s- . If such an uncovered action
« is found for some s € S, L* adds s -« to S at Line 4 and continues with the
closure process. Otherwise, it proceeds to the next Step. Note that each oo € X
is considered when attempting to find an uncovered action.

(1) let S=E={\}
loop {
(2) Update T using queries
while (S, E,T) is not closed {
(3) Find (s,a) € S x X such that Vs’ € S.s' Z s«
(4) Add s-ato S

}
Construct candidate DFA C from (S, E,T)

(5)

(6) Make the conjecture C

(7) if C is correct return C

(8) else Add e € X* that witnesses the counterexample to E

Fig. 2. The L* algorithm for learning an unknown regular language

Once the table is closed, L* constructs (at Line 5) a candidate DFA C us-
ing the procedure described previously. Next, at Line 6, L* conjectures that
L(C) = U via a candidate query. If the conjecture is wrong L* extracts from the
counterexample CE (returned by the MAT) a suffix e that, when added to E,
causes the table to cease being closed. The process of extracting the feedback
e has been presented elsewhere [4] and we do not describe it here. Once e has
been obtained, L* adds e to F and iterates the top-level loop by returning to
line 2. Note that since the table is no longer closed, the subsequent process of
closing it strictly increases the size of S. It can also be shown that the size of S
cannot exceed n, where n is number of states of the minimal DFA accepting U.
Therefore, the top-level loop of L* executes no more than n times.

Non-uniform Refinement. It is interesting to note that the feedback from
CE does not refine the candidate in the abstraction/refinement sense: refine-
ment here does not necessarily add/eliminate a positive/negative CFE; this oc-
curs eventually, but not necessarily in one step. Indeed, the first improvement
we propose leverages this observation to reduce the number of candidate queries.
It is also interesting to note that the refinement does not work in one direction:
it may remove strings that are in U or add strings that are not in U. The only
guarantee that we have is that in each step at least one state is added to the
candidate and that eventually L* learns U itself.

Complexity. Overall, the number of membership queries made by L* is O(kn?+
nlogm), where k = |X| is the size of the alphabet of U, and m is the length of
the longest counterexample to a candidate query returned by the MAT [4]. The

282 S. Chaki and O. Strichman

dominating fragment of this complexity is kn? which varies directly with the
size of Y. As noted before, the X used in the literature is sufficient, but often
unnecessarily large. The third improvement we propose is aimed at reducing the
number of membership queries by minimizing the size of X.

4 AG Reasoning with L*

In this section, we describe the key ideas behind the automated AG procedure
proposed by Cobleigh et al. [I]. We begin with a fact that we use later on.

Fact 1. For any FA My and My with alphabets X1 and Yo, L(M1 x Ms) # 0
Zﬁ do € £(M1)- O'J (21m22)€ [.:(MQ)J (Z1N35) -

Let us now restate AG-NC to reflect our implementation more accurately:

Ax (Myxg) <L
My =< A

(M1X()5)XM25J_ (3)

where | denotes a DFA accepting the empty language. The unknown language
to be learned is
U= L((M1x9)|x) (4)

over the alphabet X' = (X U X,) N Xy where ¥, Yy and X, are the alphabets
of My, My and ¢ respectwely@ The choice of U and X is 51gn1ﬁcant because,
by Fact [l the consequence of Eq. Bl does not hold iff the intersection between
U= L(M;x@)|s) and L(Mz]5) is non-empty. This situation is depicted in
Fig. Bla). Hence, if A is the DFA computed by L* such that £(A) = U, any
counterexample to the second premise My < A is guaranteed to be a real one.
However, in practice, the process terminates after learning U itself only in the
worst case. As we shall see, it usually terminates earlier by finding either a
counterexample to M7 X My =< ¢, or an assumption A that satisfies the two
premises of Eq. Bl This later case is depicted in Fig. Bi(b).

MAT Implementation. The answer to a membership query with a string o is
“Yes” iff o cannot be simulated on M; x @ (see Eq. H]). A candidate query with
some candidate A, on the other hand, is more complicated, and is described
step-wise as follows (for brevity, we omit a diagram and refer the reader to the
non-dashed portion of Figure HI):

Step 1. Use model checking to verify that A satisfies the first premise of Eq. Bl
If the verification of the first premise fails, obtain a counterexample trace m €
L(A x My x @) and proceed to Step 2. Otherwise, go to Step 3.

2 Note that we do not compute U directly because complementing Mj, a non-
deterministic automaton, is typically intractable.

Optimized L*-Based Assume-Guarantee Reasoning 283

(© \/ (@)

Fig. 3. Different L* scenarios. The gray area represents the candidate assumption A.

Step 2. Denote 7| 5 by 7’. Check via simulation if 7’ € £L(Ms] 5). If so, then by
Fact D L(Mix@ x My) # 0 (i.e., My x My £ ¢) and the algorithm terminates.
This situation is depicted in Fig. Blc). Otherwise #’ € L(A) — U is a negative
counterexample, as depicted in Fig. Bl(d). Control is returned to L* with #'.

Step 3. At this point A is known to satisfy the first premise. Proceed to model
check the second premise. If Ms < A holds as well, then by Eq. [conclude that
My x My < ¢ and terminate. This possibility was already shown in Fig. B(b).
Otherwise obtain a counterexample 7 € L(M3 x A) and proceed to Step 4.

Step 4. Once again denote 7 |x by 7’. Check if #’ € L((M;x@)]|s). If so,
then by Fact [0l L(M71x@ x M) # 0 (i.e., My x My A ¢) and the algorithm
terminates. This scenario is depicted in Fig. Ble). Otherwise 7/ € U — L(A) is a
positive counterexample, as depicted in Fig. B(f) and we return to L* with 7'
Note that Steps 2 and 4 above are duals obtained by interchanging M; x ¢
with Ms and U with £(A). Also, note that Fact [l could be applied in Steps 2
and 4 above only because X' = (X U X,) N Xs. In the next section, we propose

284 S. Chaki and O. Strichman

an improvement that allows X' to be varied. Consequently, we also modify the pro-
cedure for answering candidate queries so that Fact[Ilis used only in a valid manner.

5 Optimized L*-Based AG Reasoning

In this section we list three improvements to the algorithm described in Section[dl
The first two improvements reduce the number of candidate and membership
queries respectively. The third improvement is aimed at completing the verifica-
tion process using an assumption alphabet that is smaller than (X7 U X,) N Xs.

5.1 Reusing Counterexamples

Recall from Section [3] that every candidate query counterexample 7 returned to
L* is used to find a suffix that makes the table not closed, and hence adds at least
one state (row) to the current candidate C' (observation table). Let C’ denote
the new candidate constructed in the next iteration of the top-level loop (see
Figure 2)). We say that C’ is obtained by refining C' on 7. However, the refine-
ment process does not guarantee the addition/elimination of a positive/negative
counterexample from C’. Thus, a negative counterexample 7 € L(C) — U may
still be accepted by C’, and a positive counterexample 7 € U — L(C) may still
be rejected by C'. This leads naturally to the idea of reusing counterexamples.
Specifically, for every candidate C” obtained by refining on a negative counterex-
ample 7, we check, via simulation, whether = € L£(C"). If this is the case, we
repeat the refinement process on C’ using 7 instead of performing a candidate
query with C’. The same idea is applied to positive counterexamples as well.
Thus, if we find that = ¢ £(C") for a positive counterexample , then 7 is used
to further refine C’. This optimization reduces the number of candidate queries.

5.2 Selective Membership Queries

Recall the operation of closing the table (see Lines 3 and 4 of Figure 2]) in L*.
For every row s added to S, L* must compute T for every possible extension of
s by a single action. Thus L* must decide if s-«a-e € U for each a« € X and
e € E — atotal of |X|-|E| membership queries. To see how a membership query
is answered, for any o € X*, let Sim(o) be the set of states of My x ¢ reached
by simulating o from an initial state of M; x @ and by treating actions not in X/
as € (i.e., e-transitions are allowed where the actions are local to M; x@). Then,
o € U iff Sim(o) does not contain an accepting state of My X @.

Let us return to the problem of deciding if s-«-e € U. Let En(s) = {d’ €
X | 8(c/, Sim(s)) # 0} be the set of enabled actions from Sim(s) in Mi x @.
Now, for any a € En(s), Sim(s-«-e) =) and hence s - « - e is guaranteed to
belong to U. This observation leads to our second improvement. Specifically, for
every s added to S, we first compute En(s). Note that En(s) is computed by
simulating s|x, on M; and s|yx, on ¢ separately, without composing M; and
. We then make membership queries with s- « - e, but only for a € En(s). For
all a ¢ En(s) we directly set T'(s - a,e) = 1 since we know that in this case

Optimized L*-Based Assume-Guarantee Reasoning 285

s-a-e € U. The motivation behind this optimization is that En(s) is usually
much smaller that Y for any s. The actual improvement in performance due to
this tactic depends on the relative sizes of En(s) and X for the different s € S.

5.3 Minimizing the Assumption Alphabet

As mentioned before, existing automated AG procedures use a constant assump-
tion alphabet X' = (X; U X,) N X,. There may exist, however, an assumption A
over a smaller alphabet Y. C X' that satisfies the two premises of Eq. Bl Since
Eq. Blis sound, the existence of such an A would still imply that M; x My < .
However, recall that the number of L* membership queries varies directly with
the alphabet size. Therefore, the benefit, in the context of learning A, is that a
smaller alphabet leads to fewer membership queries.

In this section, we propose an abstraction-refinement scheme for building an
assumption over a minimal alphabet. During our experiments, this improvement
led to a 6 times reduction in the size of the assumption alphabet. The main prob-
lem with changing X' is of course that AG-NC is no longer complete. Specifically,
if Yo C X, then there might not exist any assumption A over X¢ that satisfies
the two premises of AG-NC even though the conclusion of AG-NC holds. The
following theorem characterizes this phenomenon precisely.

Theorem 1 (Incompleteness of AG-NC). Suppose there exists a stringm and
an alphabet X such that: (INC) w|s,€ L(M1%x@)]s.) and] s, € L(M2]s,).
Then no assumption A over Yo satisfies the two premises of AG-NC.

Proof. Suppose there exists a 7 satisfying INC and an A over X¢ satisfying the
two premises of AG-NC. This leads to a contradiction as follows:

— Case I: w|5,€ L(A). Since A satisfies the first premise of AG-NC, we have
oo L((M1x@)| 5.), a contradiction with INC.

— Case 2. 7]x.¢ L(A). Hence 7 |x.€ L(A). Since A satisfies the second
premise of AG-NC, we have 7| 5. & L(M2|x.), again contradicting INC. O

We say that an alphabet X is incomplete if Yo # 3 and there exists a trace
7 satisfying condition INC above. Therefore, whenever we come across a trace m
that satisfies INC, unless Yo = Y, we know that the current X is incomplete
and must be refined. We now describe our overall procedure which incorporates
testing X'¢ for incompleteness and refining an incomplete X'« appropriately.

Detecting Incompleteness. Our optimized automated AG procedure is de-
picted in Fig.[dl Initially X, = @B. Let us write 7 and 7 to mean 7| s and 7| o
respectively. The process continues as in Section] until one of the following two
scenarios occur while answering a candidate query:

— Scenario 1: We reach Step 2 with a trace m € L(A x M; x@). Note that this
implies 7’ € L((M1 X @)|x.). Now we first check if 7’ € L(Ms|x,). If not,

3 We could also start with X, = X, since it is very unlikely that ¢ can be proven or
disproven without controlling the actions that define it.

286 S. Chaki and O. Strichman

iReﬁnement: i
G Update X, T T
: ””””” : A[]X]\/j2ﬁ\0
| Negative counterexample: m € L(A) — U !
Y ¢ .N !
e L* L» ij\jljw N7T 77/5]\12]20 :N Y

lY Y | Repeat check |
' with X for Y¢ |

Mo < A T T =< Myx 3|5 yand 7 for
2 2 | 7= o]

¢Y N
My x My < ¢

Positive counterexample: 7 € U — L(A)

Fig.4. Generalized AG with L*, with an abstraction-refinement loop (added with
dashed lines) based on the assumption alphabet X, C X. Strings 7' and 7" denote
7| 5 and 7|z respectively.

we return 7’ as a negative counterexample to L* exactly as in Section [l
However, if 7’ € £L(M2] 5.), then 7 satisfies the condition INC of Theorem/[I]
and hence Yo is incomplete. Instead of refining Y- at this point, we first
check if 7" € L(Msy|x). If so, then as in Section @ by a valid application
of Fact M, My x Ms A ¢ and the algorithm terminates. Otherwise, if 7" &
L(Ms]5), we refine Yc.

— Scenario 2: We reach Step 4 with 7 € L(Mz x A). Note that this implies
' € L(Mz]|x.). We first check if 7’ € L((M1x@)]|x.). If not, we return
7' as a positive counterexample to L* exactly as in Section @ However,
if 7 € L(M1x@)|s.), then 7 satisfies INC, and hence by Theorem [I]
Yo is incomplete. Instead of refining X at this point, we first check if
7" € L((M1x@)|x). If so, then as in Section [by a valid application of
Fact [l My x My A ¢ and we terminate. Otherwise, if 7" & L((M1x@)|x),
we refine Y.

Note that the checks involving 7" in the two scenarios above correspond to
the concretization attempts in a standard CEGAR loop. Also, Scenarios 1 and 2
are duals (as in the case of Steps 2 and 4 in Section H]) obtained by interchanging
My x@ with My and U with £(A). In essence, while solving a candidate query, an
incomplete X'¢ results in a trace (specifically, 7 above) that satisfies INC and leads
neither to an actual counterexample of M x My < ¢, nor to a counterexample to
the candidate query being solved. In accordance with the CEGAR terminology,
we refer to such traces as spurious counterexamples and use them collectively to
refine Yo as described next. In the rest of this section, all counterexamples we
mention are spurious unless otherwise specified.

Optimized L*-Based Assume-Guarantee Reasoning 287

Refining the Assumption Alphabet. A counterexample arising from Sce-
nario 1 above is said to be negative. Otherwise, it arises from Scenario 2 and is
said to be positive. Our description that follows unifies the treatment of these
two types of counterexamples, with the help of a common notation for M; x @
and M. Specifically, let

M — M;x¢@ 7 is positive
T Mo 7 is negative

We say that an alphabet X’ eliminates a counterexample 7, and denote this with
Elim(m, X'), if 7| 5o L(M ™|). Therefore, any counterexample 7 is eliminated
if we choose X¢ such that Elim(m, ¥¢) holds since 7 no longer satisfies the
condition INC. Our goal, however, is to find a minimal alphabet Y¢ with this
property. It turns out that finding such an alphabet is computationally hard.

Theorem 2. Finding a minimal eliminating alphabet is NP-hard in |X)|.

Proof. The proof relies on a reduction from the minimal hitting set problem.

Minimal Hitting Set. A Minimal Hitting Set (MHS) problem is a pair (U, T)
where U is a finite set and 7' C 2Y is a finite set of subsets of U. A solution to
(U,T) is a minimal X C U such that VI" € T. X NT" # . It is well-known that
MHS is NP-complete in |U|.

Now we reduce MHS to finding a minimal eliminating alphabet. Let (U,T)
be any MHS problem and let < be a strict order imposed on the elements of
U. Consider the following problem P of finding a minimal eliminating alphabet.
First, let) = U. Next, for each T € T we introduce a counterexample 7(T")
obtained by arranging the elements of U according to <, repeating each element
of TV twice and the remaining elements of U just once. For example suppose
U = {a,b,c,d,e} such that a < b < ¢ < d < e. Then for T' = {b,d,e} we
introduce the counterexample 7(7") = a-b-b-c-d-d-e-e. Also, for each
counterexample 7(7T”) introduced, let M (m(T")) accept a single string obtained
by arranging the elements of U according to <, repeating each element of U
just once. Thus, for the example U above, M (w(T")) accepts the single string
a-b-c-d-e.

Let us first show the following result: for any 7" € T and any X C U, XNT"' #
0 iff Elim(m(T"), X). In other words, X NT" # 0 iff n(T")|x& LM (7(T"))] x).
Indeed suppose that some o« € X NT". Then w(T’)] x contains two consecutive
occurrences of o and hence cannot be accepted by M (7(T"))| x. By the converse
implication, if M (7(T"))] x does not accept m(T")| x, then 7(T’)] x must contain
two consecutive occurrences of some action a. But then « € X NT" and hence
X NT’ # (). The above result implies immediately that any solution to the MHS
problem (U, T) is also a minimal eliminating alphabet for P. Also, the reduction
from (U, T) to P described above can be performed using logarithmic space in
|U| + |T). Finally, |X| = |U|, which completes our proof. O

As we just proved, finding the minimal eliminating alphabet is NP-hard in |X].
Yet, since | X| is relatively small, this problem can still be feasible in practice (as

288 S. Chaki and O. Strichman

our experiments have shown: see Section [B]). We propose a solution based on a
reduction to Pseudo-Boolean constraints. Pseudo-Boolean constraints have the
same modeling power as 0-1 ILP, but solvers for this logic are typically based on
adapting SAT engines for linear constraints over Boolean variables, and geared
towards problems with relatively few linear constraints (and a linear objective
function) and constraints in CNF.

Optimal Refinement. Let IT be the set of all (positive and negative) counterex-
amples seen so far. We wish to find a minimal X¢ such that: Vrr € ILElim(7, X¢).
To this end, we formulate and solve a Pseudo-Boolean constraint problem with
an objective function stating that we seek a solution which minimizes the cho-
sen set of actions. The set of constraints of the problem is @ = J, . @(7). In
essence, if M!™ is the minimal DFA accepting {n}, then &(7) represents sym-
bolically the states reachable in M x M (™) taking into account all possible
values of YX¢. Henceforth, we continue to use square brackets when referring to
elements of M and regular parenthesis when referring to elements of M (™).

We now define () formally. Let M[™ = (SI7] [n4tl™] =] 7l Flrl) and
M = (8™ Init) £ 7 F@), Let 6171 and 6 be the § functions of
M!™ and M) respectively. We define a state variable of the form (s,t) for
each s € Sl and ¢t € S(™). Intuitively, the variable (s,t) indicates whether the
product state (s,t) is reachable in M!™ x M (™). We also define a choice variable
s(a) for each action a € ¥, indicating whether « is selected to be included in
Yc. Now, @(m) consists of the following clauses:

Initialization and Acceptance: Every initial and no accepting state is reachable:
Vs € Init™. vt € Init™. (s,1) Vs e FIrl, vt € F(M, —(s,1)
Shared Actions: Successors depend on whether an action is selected or not:

Va € X.Vs € ST vs € 61 (a, s) .Vt € S Wt € 60 (a,t). (s,t) = (s, 1)
Va € X.Vs e ST .V € 6l (a,s) .Vt € S . =s(a) A(s,t) = (5, 1)
Va € X.Vs e SIT.vt e S vt € 60 (a,t) . ms(a) A (s,t) = (s,1)

Local Actions: Asynchronous interleaving:

Va € X7 — 3. Vs € SI7 Vs’ € 17l(a,s) .Vt € ST, (5,1) = (5, 1)
Va e XM — 2 .vs e SiT.vt € S vt € 6 (a,t) . (s,t) = (s,1)

As mentioned before, the global set of constraints @ is obtained by collecting
together the constraints in each @(w). Observe that any solution v to @ has
the following property. Let Yo = {a | v(s(a)) = 1}. Then we have Vr €
ILL(M!™) 5.)x (M™]5.)) = 0. But since L(M™]) = {n}, the above statement
is equivalent to Vrr € IT. (r]s.) € L(M(™]x.), which is further equivalent to
vV € II. Elim(m, Y¢). Thus, Y¢ eliminates all counterexamples. Finally, since
we want the minimal such Y&, we minimize the number of chosen actions via
the following objective function: min) . 5. s(a).

Optimized L*-Based Assume-Guarantee Reasoning 289

O O O,
My x@ $@L@L

Fig. 5. A positive counterexample m and M(™ = M; x @

Ezxample 2. Consider Fig. Bl in which there is one counterexample 7, and an FA
M = My x @ on which 7 can be simulated if ¥. = (. The state variables are
(si,t;) for 4,5 € [0..2] and the choice variables are s(a), s(3). The constraints
are:

Initialization : (s, to) Acceptance : —(sa,t2)
SharedActions : (sg,t1) — (s1,t2) (s1,t0) — (s2,t1)
(s0,t0) A =s(a) — (s1,t0) (s1,t0) A =s(B) — (s2,10)
(80,t1) A =s(a) — (s1,t1) (s1,t1) A=s(B) — (s2,11)
(80,t2) A =s(a) — (s1,t2) (51,t2) A =s(B) — (s2,12)
(80,t0) A =s(B) — (0, t1) (80,t1) A =s(a) — (s0,t2)
(51,%0) A s(B) — (s1,t1) (51,t1) A =s(a) — (s1,t2)
(52,%0) A 2s(B) — (s2,t1) (52,t1) A =s(a) — (s2,t2)

Since there are no local actions, these are all the constraints. The objective is to
minimize s(a) + s(§). The optimal solution is s(a) = s(8) = 1, corresponding
to the fact that both actions need to be in X« in order to eliminate . a

6 Experiments

We implemented our technique in COMFORT and experimented with a set of
benchmarks derived from real-life source code. All our experiments were carried
out on quad 2.4 GHz machine with 4 GB RAM running RedHat Linux 9. We
used PBS version 2.1H to solve the Pseudo-Boolean constraints. The benchmarks
were derived from the source code of OpenSSL version 0.9.6¢. Specifically, we
used the code that implements the handshake between a client and a server
at the beginning of an SSL session. We designed a suite of 10 examples, each
aiming a specific property (involving a sequence of message-passing events) that
a correct handshake should exhibit. For instance, the first example (SSL-1) was
aimed at verifying that a handshake is always initiated by a client and never by
a server.

The experiments were aimed at evaluating our proposed improvements sepa-
rately, and in conjunction with each other in the context of AG-NC. The results
are described in Figure [l The columns labeled Mem@Q and CandQ contain the
total number of membership and candidate queries respectively. The columns
labeled with T; and —T; contain results with/without the i*" improvement for

4 http://www.eecs.umich.edu/~faloul/Tools/pbs

290 S. Chaki and O. Strichman

Name CandQ MemQ Alph Time =T} Time T
=15 T —T5 T

=T Ty T T ST T3 —Ts Tz =13 Ts T3 T3 13 Ts
SSL-1 2.2 2.0 375 4.5 12 1 254 19.7 12.3 20.0 23.8 20.1 10.5 20.5
SSL-2 5.0 5.2 101.5 11.5 12 31.5 40.0 12.6 30.0 32.4 44.6 13.7 30.2
SSL-3 8.5 7.5 163.0 28.0 12 43.8 49.1 14.5 35.3 456 48.9 15.6 35.5
SSL-4 13.0 10.5 248.0 56.5 12 63.0 67.5 17.4 58.1 61.5 67.7 18.6 48.4
SSL-5 3.2 3.0 73.0 9.5 12 33.8 22.3 13.6 24.1 36.2 22.2 13.8 22.2
SSL-6 6.8 7.2 252.0 36.5 12 102.8 30.6 24.2 29.0 102.2 43.3 23.1 29.8
SSL-7 9.8 8.0 328.8 52.5 12 139.9 44.4 27.8 43.9 138.2 38.6 28.2 40.6
SSL-8 15.0 13.0 443.0 77.5 12 183.3 73.6 37.1 67.9 184.0 73.2 35.8 64.2
SSL-9 23.5 18.2 568.0 109.5 12 234.1 120.5 44.1 133.7 236.2 133.4 41.0 109.3
SSL-10 25.5 22.0 689.5 128.5 12 293.9 188.6 48.4 168.1 297.0 179.9 45.9 169.7
Avg. 10.8 9.2 290.0 51.0 12 115.1 65.6 25.2 61.0 115.7 67.2 24.6 57.1

N WWWNNRFE & BB

Fig. 6. Experimental Results for Non-Circular Rule AG-NC

i € {1,2,3}. The row labeled “Avg.” contains the arithmetic mean for the rest
of the column. Best figures are highlighted. Note that entries under MemQ and
CandQ are fractional since they represent the average over the four possible val-
ues of the remaining two improvements. Specifically, these are improvements 2
and 3 for CandQ, and improvements 1 and 3 for MemQ.

We observe that the improvements lead to the expected results in terms of
reducing the number of queries and the size of assumption alphabets. The second
and third improvements also lead to significant reductions in overall verification
time, by a factor of over 12 on an average. Finally, even though the first im-
provement entails fewer candidate queries, it is practically ineffective for reducing
overall verification time.

References

1. Cobleigh, J.M., Giannakopoulou, D., Pasareanu, C.S.: Learning assumptions for
compositional verification. In: Proc. of TACAS. (2003)

2. Angluin, D.: Learning Regular Sets from Queries and Counterexamples. Informa-
tion and Computation (2) (1987)

3. Chaki, S., Ivers, J., Sharygina, N., Wallnau, K.: The ComFoRT Reasoning Frame-
work. In: Proc. of CAV. (2005)

4. Rivest, R.L., Schapire, R.E.: Inference of Finite Automata Using Homing Se-
quences. Information and Computation (2) (1993)

5. Peled, D., Vardi, M., Yannakakis, M.: Black box checking. In: Proc. of FORTE.
(1999)

6. Groce, A., Peled, D., Yannakakis, M.: Adaptive Model Checking. In: Proc. of
TACAS. (2002)

7. Alur, R., Cerny, P., Gupta, G., Madhusudan, P., Nam, W., Srivastava, A.: Synthesis
of Interface Specifications for Java Classes. In: POPL. (2005)

8. Habermehl, P., Vojnar, T.: Regular model checking using inference of regular
languages. In: Proc. of INFINITY. (2005)

10.

11.

12.

13.

14.

15.

16.

17.

18.

Optimized L*-Based Assume-Guarantee Reasoning 291

Ernst, M., Cockrell, J., Griswold, W., Notkin, D.: Dynamically Discovering Likely
Program Invariants to Support Program Evolution. In: Proc. of ICSE. (1999)
Alur, R., Madhusudan, P., Nam, W.: Symbolic compositional verification by learn-
ing assumptions. In: Proc. of CAV. (2005)

Chaki, S., Clarke, E., Sinha, N., Thati, P.. Automated Assume-Guarantee Rea-
soning for Simulation Conformance. In: Proc. of CAV. (2005)

Chaki, S., Sinha, N.: Assume-guarantee reasoning for deadlock. In: Proc. of FM-
CAD. (2006)

Giannakopoulou, D., Pasareanu, C., Barringer, H.: Assumption Generation for
Software Component Verification. In: Proc. of ASE. (2002)

Pnueli, A.: In Transition from Global to Modular Temporal Reasoning About
Programs. Logics and Models of Concurrent Systems (1985)

Kurshan, R.: Computer-Aided Verification of Coordinating Processes: The
Automata-Theoretic Approach. Princeton University Press (1994)

Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-Guided Ab-
straction Refinement for Symbolic Model Checking. Journal of the ACM (JACM)
(5) (2003)

Ball, T., Rajamani, S.: Generating Abstract Explanations of Spurious Counterex-
amples in C Programs. Technical Report MSR-TR-2002-09, Microsoft (2002)
Gheorghiu, M., Giannakopoulou, D., Pasareanu, C.: Refining Interface Alphabets
for Compositional Verification. In: Proc. of TACAS. (2007)

	Introduction
	Preliminaries
	The L* Algorithm
	AG Reasoning with L*
	Optimized L*-Based AG Reasoning
	Reusing Counterexamples
	Selective Membership Queries
	Minimizing the Assumption Alphabet

	Experiments

