Deciding an Interval Logic
with Accumulated Durations*

Martin Franzle! and Michael R. Hansen?**

! Dpt. Informatik, C. v. Ossietzky Universitit Oldenburg, Germany
fraenzle@informatik.uni-oldenburg.de
2 Informatics and Math. Modelling, Technical University of Denmark
mrh@imm.dtu.dk

Abstract. A decidability result and a model-checking procedure for a
rich subset of Duration Calculus (DC) [19] is obtained through reductions
to first-order logic over the real-closed field and to Multi-Priced Timed
Automata (MPTA) [13]. In contrast to other reductions of fragments
of DC to reachability problems in timed automata, the reductions do
also cover constraints on positive linear combinations of accumulated
durations. By being able to handle accumulated durations under chop as
well as in arbitrary positive Boolean contexts, the procedures extend the
results of Zhou et al. [22] on decidability of linear duration invariants to
a much wider fragment of DC.

Keywords: Real-time systems, metric-time temporal logic, decidability,
model-checking, multi-priced timed automata.

1 Introduction

The Duration Calculi (DC) are a family of metric-time temporal logics facilitat-
ing reasoning about embedded real-time systems at a high level of abstraction
from operational detail [2TIT9]. Its major ingredients permitting such abstract-
ness are, on one hand, that it is an interval-based [I0] rather than a situation-
based temporal logic [14] and, on the other hand, the notion of an accumulated
duration of a predicate being true over some observation interval. While the
former permits a less state-based style of specification, the latter supports ab-
straction from the fine-granular distribution of interesting or critical situations
along the time line. An example is the accumulated runtime of some task in a
multitasking environment, where the time instants where the task actually is
run are of minor importance, provided the accumulated duration of running it
before its deadline is sufficient for its completion.

* This work has been supported by the German Research Council (DFG) as part of the
Transregional Collaborative Research Center “Automatic Verification and Analysis
of Complex Systems” (SFB/TR 14 AVACS, www.avacs.org) and by Velux Fonden,
Sgborg, Denmark, through the Velux Visiting Professors Programme.

** This work has been partially funded by The Danish Council for Strategic Research
under project MoDES.

O. Grumberg and M. Huth (Eds.): TACAS 2007, LNCS 4424, pp. 201{215,]2007.
© Springer-Verlag Berlin Heidelberg 2007

202 M. Franzle and M.R. Hansen

While the abstractness supported by DC is desirable for system specification
and analysis, it proved to be a burden for automatic verification support. Both
the satisfiability problem and the model-checking problem wrt. timed automata
of most non-trivial fragments of DC are known to be undecidable [20/19]. In the
dense-time setting with finitely variable models as interpretation, decidability
has in general only been obtained by either dropping metric time altogether [20]
or by dropping accumulated durations and, furthermore, seriously restricting
the use of negation or chop (DC’s only modality) [BII2/86]. The only notable
exception is [22], where a conjunction of linear duration invariants is automati-
cally checked on the possible runs of a timed transition table, where transition
occurrences are constrained by upper and lower bounds on the residence time
in the source state. Linear duration invariants are, however, an extremely small
fragment of DC: They are formulae ¢y < ¢ = Z;L:1 ¢ fB < ¢p41 expressing that
the weighted sum ", ¢; [P; of the accumulated durations [P; of some mutu-
ally exclusive state properties P; is always less than c,11, provided the length
of the observation interval exceeds c¢g. Furthermore, the automaton model dealt
with is very restrictive: by only featuring timing bounds on the residence time
in the source state of a transition, it is considerably less expressive than timed
transition systems with clocks [I/4]. In particular, it is not closed under, e.g.,
parallel composition.

Within this paper, we do complement the aforementioned decidability results
by procedures that are able to

1. check satisfiability of formulae featuring multiple different accumulated du-
rations within subformulae which, furthermore, may occur under arbitrarily
nested chop and within complex Boolean contexts, provided the chop modal-
ities occur in positive context, and to

2. check whether every run of a timed automaton A satisfies —¢, where ¢ is a
formula as described under point (). This model-checking problem is usually
written A = —¢, and in this special form ¢ is a specification of an undesired
situation, and A = —¢ asserts that no run of A exist which exhibits the
undesired situation. This idea is, for example, pursued in [I5II], where ¢
can have the restricted form of a DC implementable [16], thus abandoning
accumulated durations and replacing chop by more restricted, operationally
inspired operators. We extend their work by allowing formulae featuring
accumulated durations and arbitrary positive chop.

For the decidability results concerning satisfiability of formulae, our construc-
tion builds on a small model property permitting the reduction of model con-
struction for DC to satisfiability of first-order logic over the reals with addition
FOL(R,+, <). The model-checking results are obtained through a reduction to
Multi-Priced Timed Automata (MPTA) [13], where weighted sums of accumu-
lated durations are encoded by prices. The syntactic structure of the formula to
be checked reflects in the structure of the MPTA generated, where conjunction
and disjunction map to the corresponding operations on automata, while the
chop modality yields concatenation.

Deciding an Interval Logic with Accumulated Durations 203

Structure of the paper: In Sect. 2] we introduce Duration Calculus and the
relevant notions of satisfiability and satisfiability over length-bounded models.
Section 3] provides the decidability result concerning satisfiability, while Sect.
provides the corresponding result for the model-checking problem. In between,
Sect. @ reviews multi-priced timed automata, as defined by Rasmussen and
Larsen in [I3]. Section [finally, discusses how close these results are to the
decidability borderline.

2 Duration Calculus

Duration Calculus (abbreviated DC in the remainder) is a real-time logic that is
developed for reasoning about durational constraints on time-dependent
Boolean-valued states. Since its introduction in [2I], many variants of DC have
been defined [19]. In this paper we aim at a subset involving durational con-
straints, which can be supported by automated reasoning.

2.1 Syntax

The syntax of DC used in this paper is defined below. We shall define two
syntax categories: state expressions, ranged over by S, S, Se, ..., and formulae,
ranged over by ¢, ¢1,¥, 11, State expressions are Boolean combinations of
state variables, and they describe combined states of a system at a given point
in time. Formulae can be considered as truth-valued functions on time intervals,
i.e. for a given time interval, a formula is either true or false.

The abstract syntax for state expressions and formulae is defined by:

S:::0|1|P‘—\S‘Sl\/52
pu=Loak [[ST] Xt cifSixk| =gl oV |ond |~

where ¢ is a special symbol denoting the interval length, P ranges over state
variables, k,m,c; € N, and e {<, <, =,>,>}.

In the remainder, we will call any formula built according to the above syntax
a DC formula. The subset of DC formulae where the chop modality “~” do only
occur under a positive number of negations is denoted DCp0s. DC\ -, will name
the set of all negation-free (at formula level) DC formulae. Finally, DC,, contains
all DC, ., formulae which contain only upper bound constraints on durations,
i.e. where e {<,<}, and where exactly one duration constraint is a strict
inequality.

2.2 Semantics

An interpretation Z associates a function Pr : R>g — {0,1} with every state
variable P, where R>q models the dense time line such that interpretations yield
time-dependent, Boolean-valued valuations of state variables. We impose the
finite variability restriction that Pz has at most a finite number of discontinuity
points in any interval [a, b].

204 M. Franzle and M.R. Hansen

The semantics of a state expression S, given an interpretation Z, is a function:
Z[S] : R>o — {0,1}, which is defined inductively as follows:

Thol I R

) =
[)(t) = |
I[PI() = Pe(t) T[SV Sa](t) = { 0if Z[$1](¢) = Z[Sa1(t) = 0

1 otherwise.

We shall use the abbreviation S7 & T ST

Satisfaction of formulae ¢ is defined over pairs (Z, [a,b]) of an interpretation
7 and a time interval [a,b] with a,b € R>¢. Such a pair (Z, [a,b]) is called an
observation. The satisfaction relation Z, [a,b] = ¢ is defined recursively, where
T is an interpretation, [a,b] is an interval, and ¢ is a formula:

Z,la,b] Ll k if b—amxk

Z,la,b] E [5] iff a<bandf Sz(t)dt=b—a
I,[a,b]):zzlclfS >k iff leZI Sir(t)dt > k
Z,[a,b] E - it Z,[a,b] £ &

I7[a7b]):¢\/z/) i Z,[a,b] = 6 or 7, [a,b] F v
Z,[a,b]) = ¢ it Z,[a,b] E ¢ and Z,[a,b] E ¢
Z,la,b] = ¢ w if Z,[a,m] = ¢ and Z,[m,b] = 9,

for some m € [a, b)].

Whenever Z, [a,b] = ¢ holds we say that ¢ is true in [a,b] wrt. Z. A formula
¢ is said to be walid (written |= @) if Z, [a, b] = ¢ holds for all interpretations 7
and all intervals [a, b]. Furthermore, a formula ¢ is satisfiable if Z, [a,b] = ¢ for
some observation (Z, [a, b]). Given k € N, we say that ¢ is k-bounded satisfiable if
there is an interpretation Z with at most k discontinuity points@ and an interval
[a,b] such that Z, [a,b] = ¢. In this case, we say that observation (Z,[a,b]) is a
k-bounded model of ¢.

Since every occurrence of a state variable is within the scope of an integral, we
can form equivalence classes of interpretations, where no formula can distinguish
between interpretations belonging to the same class. This leads to the following
definition and lemma:

Definition 1. Two interpretations I,Z’" are called equivalent in [a,b], written
T =jap I', if Pr and Py disagree on at most a finite number of points in [a, b],
for every state variable P.

Lemma 1. For any formula ¢, interpretations Z,Z" and interval [a,b):

IfT = T', then T,[a,b] = ¢ iff T/, [a,b] |= .

! Formally speaking, Z is a vector of functions P;r and has no discontinuity
points itself. By the discontinuity points of Z we mean the set {t € R |
P is state variable, Pr has a discontinuity point in ¢} of all discontinuity points of
the individual Pz.

Deciding an Interval Logic with Accumulated Durations 205
3 Decidability of the Satisfiability Problem

It has been observed previously, e.g. by Guelev (personal communication, 1997)
and by Hoenicke [I1], that for fixed k € N, the k-bounded satisfiability problem
for Duration Calculus (as defined in Sect.) is decidable via a reduction to
first-order logic over the reals with addition FOL(R, +, <), whose decidability is
classical [18§].

Lemma 2. Let k € N and ¢ a DC formula.

It is decidable whether ¢ is k-bounded satisfiable.

If ¢ is k-bounded satisfiable then ¢ is satisfiable.

If ¢ is satisfiable then there exists | € N such that ¢ is l-bounded satisfiable.
There is no algorithm which, given a satisfiable formula ¢, computes the
bound I from item [3.

T Lo o~

Proof. A proof of (Il) can be found in [I11, p.24ff]. (@) and (B]) are obvious from the
definitions. (@) is a consequence of the general undecidability results of Duration
Calculus (e.g., [20/19]) and the decidability result stated in (). O

Item M of Lemma [2 shows that k-bounded satisfiability is much more limited
than satisfiability in general and that, consequently, the corresponding decid-
ability results are of limited value. For full DC, they do only provide a semi-
decision procedure for (unbounded) satisfiability, based on testing increasing k
in Lemma [2] () and exploiting the correspondences from Lemma 2] (2 and []).

We shall show below that formulae of DC,os have a small-model property
permitting effective computation of a bound on the length of minimal models of
satisfiable formulae. According to Lemma [2] (), this implies decidability of the
satisfiability problem. The main idea behind this result is that the truth value
of a formula ¢ € DC\qs for an observation (Z, [a, b]) is invariant to reshuffling of
certain segments of 7 in [a, b].

To explain this, let (Z1, [a1, b1]) and (Z2, [az, b2]) be observations. Then obser-
vation concatenation a : (1, [a1,b1]) ~ (Z2, [az, b)) denotes the (set of B obser-
vations (Z', [a,a + by — a1 + by — ag]) with Z’ for all state variables P satisfying
Vt € [O,bl — al).le (a1 + t) = P (a + t) and Vt € (O,bz — az].P1'2 (Clg + t) =
Pr(a 4+ by — a1 + t). We shall omit repeated a : in repeated concatenations
a: (a:l'l AIQ) ’\Ig.

Lemma 3. Let ¢ be a chop-free formula and (Z,[a,b]) =a: 01 ~ Oy ~ -+~
Oy be a concatenation of observations O;. Then

a: (01~ 027~ Op)[a, 0] Ediffa: (O = O ~ -~ 04, [a,b] F 6,
for any permutation iq,1s,...1x of 1,2,... k.

2 Note that interpretation outside the observation interval is irrelevant to the semantics
of DC such that the fact that concatenation actually yields a set is irrelevant in
practice.

206 M. Franzle and M.R. Hansen

Proof. The proof is by induction on the structure of ¢. The base case ¢ ~ k
is simple, since the truth value depends on the interval [a,b] only. The other
two base cases: [S] and Y..", ¢ [S; > k, are simple since their truth values
are defined in terms of integrals of state expressions, and such integrals are
invariant to the reshuffling. The inductive steps for the propositional connectives
are straightforward. O

This lemma provides a small-model property for any chop-free formula ¢.
Suppose that ¢ contains n state variables, and that (Z, [a,b]) is a model of ¢.
There are 2™ different truth assignments to n Boolean variables, and the above
lemma allows us to reshuffle the segments of 7 in [a, b] to arrive at a 2"-bounded
model of ¢.

Corollary 1. If a chop-free formula ¢ is satisfiable then it has a 2™-bounded
model, where n is the number of state variables occurring in ¢

To show the small model property for DCqs, we first introduce another operator
to DC: In a timed chop ¢ —c 1, where ¢ € R>q, the chop point is confined to
occur exactly at time c:

Z,ja,b)E ¢~ iff a<c<bandZ,la,clE¢andZcb] .

It is obvious that a DC formula ¢ € DCy,os is satisfiable iff there is some satisfiable
formula 1 which is syntactically equal to 1 except that all chops have been
replaced by timed chops. For such a 1, we can now show that 1, if satisfiable,
has a model of length linear in the number of (timed) chops in .

Lemma 4. If ¥ does not contain an untimed chop and is satisfiable then 1 is
2"(m + 1)-bounded satisfiable, where m is the number of (timed) chops in 1 and
n is the number of state variables occurring in 1.

Proof. sketch: Between chop points —which are now fixed to constant occurrence
times and thus cannot permute—, one can reshuffle the segments in Z arbitrarily,
thus ending up with at most 2" segments between each two chops according to
Corollary [Tl Since there are m chop points, there are m + 1 such segments. O

As chop is a relaxation of timed chop, all models of ¢ are also models of ¢.
Therefore, the above result generalizes to DC formulae with untimed chop:

Corollary 2. If a formula ¢ € DCs is satisfiable then it has a 2"(m + 1)-
bounded model, where m is the number of chops in ¢ and n is the number of
state variables occurring in ¢@.

Proof. As DCyqs contains the duals of all operators except chopE we can rewrite
¢ to negation-free form ¢ € DC\ . If ¢ is satisfiable then it has at least one
satisfiable counterpart v containing only timed chops. According to the previous
Lemma, v has a 2"(m + 1)-bounded model. As satisfaction of timed chop im-
plies satisfaction of chop, and due to monotonicity of all other operators in the
negation-free fragment DC, -, this model is also a model of ¢’ and thus ¢. O

3 For [S], we have the duality [S] = —(£ =0V =S > 0). All other dualities are the
classical ones from predicate logics.

Deciding an Interval Logic with Accumulated Durations 207

As a consequence, we obtain decidability of the satisfiability problem of DC:
Theorem 1. It is decidable whether a formula ¢ € DCp, is satisfiable.

Proof. According to Corollary 2] in order to check for satisfiability of ¢ it suffices
to check whether ¢ has a 2"(m + 1)-bounded model, where m is the number of
chops in ¢ and n is the number of state variables occurring in ¢. Lemma 2] ()
shows decidability of 2”(m + 1)-bounded satisfiability. O

As —after rewriting to negation-free form DC_— there are no negations in our
fragment of DC, the FOL(R, +, <) formula constructed turns out to be in the
existential fragment of FOL(R, +, <. Its size is linear in |¢| and in the bound
k = 2"(m + 1) of model construction. For a fixed number n of state variables,
it is thus worst-case quadratic in |@|. As deciding the existential fragment of
FOL(R, +, <) is NP-complete, this implies that satisfiability of DC formulae
with a fixed number of state variables is in NP. Without a bound on the number
of variables, it obviously is singly exponential.

4 Priced Timed Automata

In this section, we review the definition of Linearly Multi- Priced Timed Automata
(MPTA) together with the theorems that we shall use in order to establish our
decidability result for DC. The presentation of MPTA is based on [13]. MPTA
are an extension of timed automata [II4], where prices are associated with edges
and locations. The cost of taking an edge is the price of that edge, and the cost
of staying in a location is given by the product of the cost-rate for that location
and the time spent in the location.

Let C be a finite set of clocks. An atomic constraint is a formula of the form:
x> n, where x € C, <€ {<,=,>,<,>},and n € N. A clock constraint over C is
a conjunction of atomic constraints. Let B(C) denote the set of clock constraints
over C and let B(C)* denote the set of clock constraints over C involving only
upper bounds, i.e. < or <. Furthermore, let 2€ denote the power set of C.

A clock valuation v : C — R>q is a function assigning a non-negative real
number with each clock. The valuation v satisfies a clock constraint g € B(C),
if each conjunct of g is true in v. In this case we write v € g. Let RS, denote
the set of all clock valuations. a

Definition 2 (cf. [13]). A multi-priced timed automaton A over clocks C is a
tuple (L, 1o, E, I, P), where L is a finite set of locations, ly is the initial location,
E C L x B(C) x 2% x L is the set of edges, where an edge contains a source, a
guard, a set of clocks to be reset, and a target. I : L — B(C)* assigns invariants
to locations, and P : (LU E) — N™ assigns a vector of prices to both locations

and edges. In the case of (I, g,r,1') € E, we write | 2L,

In order to give semantics to linearly multi-priced timed automata, the notion of
a multi-priced transition system is introduced. A multi-priced transition system

* Also known as “LinSAT”, featuring powerful tool support, e.g. [Bl9].

208 M. Franzle and M.R. Hansen

is a structure T = (S, so, X, —), where S is a, possibly infinite, set of states,
so € S is the initial state, X is a finite set of labels, and — is a partial function
from Sx X'x.5 to R, defining the possible transitions and their associated costs.

The notation s —, s’ means that — (s, a, s’) is defined and equal to p. An

. . . ai az an
execution of T is a finite sequence & = s9 —p, 51 —p, 52 *** Sn—1 —=p, Sn,
and the associated cost of « is cost(a) = 1| p;.

For a given state s and a vector u = (u1,...,Un_1) € R;”JH let mincosty 4, (s)

denote the minimum cost wrt. the last component of the price vector of reaching
s while respecting the upper bound constraints to the other prices which are
given by w. This is defined as the infimum of the cost of all executions ending
in s and respecting price constraint u, i.e.

Vi € Ny, cost(a); < u;

i i tion of T ending i
mlHCOStT)u(S) — inf {COSt(a)m Q. an execution o ending 1n s, } .

Furthermore, for a set of states G C S, let mincosty ., (G) denote the minimal
cost of reaching some state in G while respecting the upper price bounds u.
The semantics of a linearly multi-priced timed automaton A = (L, lo, E, I, P)
is a multi-priced transition system Ta = (S, sg, X, —), where
- §=LxRE,,
— 80 = (lo, vo), where vy is the (clock) valuation assigning 0 to every clock,
— XY = EU {6}, where ¢ indicates a delay and e € E the edge taken, and
— the partial transition function — is defined as follows:
o (ILv) -5, (Lv+d) ifVeO<e<d:v+eeI(l),and p=d-P(l),
o (I,v) —=, (I',v) if (I,g,7,1') € E,v € g,v" = v[r — 0] and p = P(e),
where v + d means the clock valuation where the value of z is v(z) + d, for
z € C,d € R>¢, and v[r — 0] is the valuation which is as v except that
clocks in r are mapped to 0.

In case T4 performs a ¢ step (I,v) Lp (I,v + d), we say that the duration of
the step is d. All other steps, i.e. those labelled e € F, have duration 0.

The main results that we shall exploit concerning linearly multi-priced timed
automata is that the minimum cost of reaching some target location is com-
putable for any (set of) target location(s) and any upper bound on the remain-
ing prices: Given an MPTA A = (L,lp, E,I, P), a target G C L, and some
cost constraint u € R 1 we define the minimum cost mincost 4u(G) to be

mincostr, (G X Rgo) .

Theorem 2 ([13]). For any MPTA A = (L,ly,E,I,P), any set G C L, and
any cost constraint u € Rgo_ L the minimum cost mincost Au(G) is computable.

5 Encoding of DC,;, Formulae by MPTA

Within this section, we will provide an encoding of DC,, formulae ¢ by MPTA
representing their models. The encoding will be such that each model of ¢

Deciding an Interval Logic with Accumulated Durations 209

corresponds to a run of the corresponding MPTA with the associated costs repre-
senting and satisfying the duration constraints in ¢. In detail, we shall represent
each formula ¢ by a tuple (L, s, E, I, P, f, A) denoted Ay, where (L, s, E, I, P) is
a multi-priced timed automaton, f is a special final location to be reached, and A
is a function associating a DC state-expression S with every location. The con-
struction will be such that the automaton will not be allowed to spend positive
time in the final location, and the intuition is that the satisfying observations of
¢ are represented by the set of executions of Ay ending in f. Subformulae of the
form Z:Zl ¢ fSi > k will, however, receive a special treatment. The intuition
about the automaton for such a formula is that its executions ending in f can
generate all possible interpretations to the state variables and that the value
of the expression > ., ¢; [S; is the cost of the execution, and a bounding of
the cost or an analysis of the minimal cost of executions can be used to decide
satisfaction of Y .| ¢; [S; < k.

5.1 The Construction
In the construction we shall use the following conventions:

— the cost of an edge is always 0,

the cost-rate of a location is 0 unless otherwise stated,

the invariant of a location is true unless otherwise stated,

— the mark of a location [is the state expression 1, i.e. A(l) = 1, unless
otherwise stated.

In the following we assume that the formula ¢ under consideration contains
n distinct state variables Py, ..., P, and m subformulae Y .7 ¢; ; [Si; <5 kj,
where >, =< and ;=< for every j < m. We shall give a recursive construction
of an automaton which follows the structure of the formula. The base cases are

I k, ,[S-H and Zni]l szSz >]{}j.

K3

The case ¢ = > k. Let Ay = (L,s,E, I, P, f,A), where

- L:{Saf}v
— E={(s,z >k, {z}, f)}, and
S I(f)=z <0,

This automaton is depicted in Fig. [la).
The case ¢ = [S]. Let Ay = (L,s, E,I, P, f, A), where

- L= {Salhf}a

— E = {e1,eq,e3}, where e; = (s,true,{},11), e2 = (l1,y > 0,{y},s), and
€3 = (1171' > 07 {‘r}af)v

—I(s)=y<0and I(f) =2 <0, and

— A(ly) = S.

This automaton is depicted in Fig. dI(b).

210 M. Franzle and M.R. Hansen

a \ ;
S o
true/
.
x> k/ > gi%
z:=0 =

f
true/
z:=0 (1,0) (1,1)
b

. J

Fig. 1. MPTA encoding of atomic formulae: (a) £k, (b) [S], (¢) ¢/[Q+d[Q V R k.
State decorations above the dashed line denote invariants and cost assignments (both
omitted if trivial), while those below the dashed line denote the labeling function A.

The case ¢ = > i cij [Sij > kj. Let Ay = (L,s,E,I, P, f, A), where L =
{s, ftuU{0,1}™ and E,I, P and A are defined below. Each n-tuple in {0,1}" is
a bit-vector b = (by,...,b,) and the idea with this is that b; = 1 iff the value of
P; is 1 in that state.

The set of edges E = E1 U Es U FEj3 is defined as the union of three sets, where

— Ey ={(s,true,0,b) | b e {0,1}"},

— FEy = {(b,true,0,b') | b,b' € {0,1}" Ab# b}, and

— B3 = {(b,true, {z}, f) | be {0,1}"}.

For b € {0,1}", we define two sets: b" = {l e N |1 <[< nAb = 1} and
b-={leN|1<I<nAb =0} Let F(b) denote the state expression:

AP AR
leb— lebt

. . . . mj
For each state expression S;; occurring in the summation Y, ¢ ; [S; ;, we
define the cost rate as follows:

Cii if F(b) = S, ;
C b S,L N WA 3]0
(b)(Si5) {C(b)(si,j) =0 otherwise.

The invariants of locations are as follows: I(s) =z < 0,I(f) = « < 0, and for
all other locations the invariant is true.
The cost assignment P : L U E — N™ is defined as follows:

Py, =14 ifl=sorl=fork#jorleE
" S C(1)(Si,;) otherwise.

Deciding an Interval Logic with Accumulated Durations 211

The definition of the labelling function A is A(l) =1 iff l=sorl = f and F(I)
otherwise. An example of this automaton construction is shown in Fig. [Iic).
We now consider the recursive cases: ¢ V ¥, ¢ A ¥ and ¢ . In these cases,
we will assume that the automata Ay, = (L1, s1, B, I1, P1, f1,41) and Ay =
(Lo, s2, Ea, I, P, fa, A3), have disjoint sets of locations and clocks, respectively.

The case ¢V). Assume that s and f are two new locations and that x is a new
clock. Let Agyy = (L, s, E, I, P, f, A), where

- L:{S,f}ULlLJLQ,

— E ={e1,e2,e3,e4}UE1UE>, where e; = (s, true, {}, 1), e2 = (s, true, {}, s2),
es = (f1,true, {z}, f), and eq = (f2, true, {z}, f).

—I(s)=I(f) =2 <0, I(l) = I1(I), for l € Ly, and I(l) = Iz(l), for | € Lo,
P(l) = P (1), for I € Ly, and P(l) = Px(l), for | € La, and

A(l) = Ay (1), for I € Ly, and A(l) = Ax(l), for | € Lo.

The case: ¢ AN1p. Let Agny = (L, (81, 82), E, I, P, (f1, f2), A), where

— L={(l3,l2) € L1 x Ly | A1(l1) A Az(l2) is satisfiable},

(lhlg) (l) eL
(ll,gl,’l"l,)EEl U
(l27g27T27l2) € by
{((l1,02), 91,71, (11, 02)) | (la,l2), (I, 12) € LA (I, 91,m1,04) € Ex } U

{((1,12), 9177"17(11’ 2)) | (I, 12), (l17l2) € LA (l2,92,72,15) € Eo }

— (lhlg) = Il(ll) /\IQ(ZQ) for (ll,lg) €L,
- P(lhlg)k = Pl(ll)k: +P2(l2)k7 for (lhlg) eLand 1 <k<mand
A(h,lg) = Al(ll) A AQ(Z2)7 for (lhlg) e L.

— E= 1< ((l1,l2),91 A ga,m1 Ura, (17, 15))

The case: ¢ ~1p. Let Ag~yp = (L1 U Lo, s1, E, I, P, fa, A), where

— E = {(f1,true,Cs, s2)} U E1 U Es, where Cj is the set of clocks used by Ay,
I(l) = L(I), for l € Ly, and I(l) = I>(l), for | € Lo,

P(l) = Py(l), for I € Ly, and P(I) = Py(1), for | € L.

— A(l) = A1(1), for | € Ly, and A(l) = Ay(l), for | € Lo.

Note that the transition from f; to se has to be taken immediately when f; is
reached, as the clock constraints imposed in I;(f1) does not permit durational
stays in fj.

5.2 Correspondence Between Interpretations of Formulae and Runs
of Corresponding MPTA

The above construction yields a correspondence between satisfiability of the
encoded DC formula and existence of runs in A4 featuring adequate prices. In
order to show this, we shall first establish a connection between DC observations
and the runs of automata.

Let A= (L,s,E,I,P, f,A) and a = 89 —op, 51 —2p, 82 =+ Sp_1 —op, Sn
be a run of (L,s, E,I, P). The duration of «, written A(a), is the sum of all

212 M. Franzle and M.R. Hansen

the durations of steps in a. We shall below define the set of DC observations
generated by run « as a set of interpretations observed over the interval [0, A(«)].
We first define anchored concatenation (71, [0, e1]) ~ (Z2, [0, e2]) of observations
(71,0, e1]) and (Z2, [0, e2]) as the set of observations 0 : (Z1, [0, e1]) ~ (Z2, [0, e2]),
as defined on page[205 This definition extends to sets of observations: S; ~ Sy =
Uo,es1,0.e5, 01~ O

Based on this, we will now define Intp(«) in two steps: First, we define Intp(s;)
for each step in a = s ﬂ’m s1.... Then, we concatenate these observations. For
each step s; in «, the set Intp(s;) of interpretations over that state is defined by:

Intp(s;) = {(Z,]0,0]) | T an arbitary interpretation}
if = 0 or if s; is reached via an edge e € F in «,
Intp(si) = {(Z,[0,d]) | Z,[0,d] = [A(L:)]}

if s; is reached by a delay transition of duration d in a.

The set of observations Intp(«) corresponding to « is then defined as the con-
catenation of the individual Intp(s;):

Intp(a) = Intp(sg) — Intp(sy) — -~ Intp(sy) -

With the above correspondence between runs and interpretations, we can
now formalize the correspondence between DC formulae and the corresponding
multi-priced timed automata.

Lemma 5. Let ¢ be a DC\-, formula and Ay = (L, s, E, I, P, f, A) be the corre-
sponding multi-priced timed automaton.Then Z,[0,¢e] = ¢ iff there exists a run
a of Ay with (Z,]0,€]) € Intp(ar) and cost(a); ;5 kj for 1 < j <m.

Proof. By induction over the structure of ¢. O

As a consequence, we obtain a correspondence between satisfiability of the en-
coded DC formula and existence of runs in Ay featuring adequate prices.

Theorem 3. Let ¢ be a formula in DCyp, let Ay = (L,s, E, I, P, f, A) be the
corresponding multi-priced timed automaton, and let w = (k1,...,km—1). Then
mincost(r, 5. g,1,p),u(f) < km iff ¢ is satisfiable.

Proof. By the previous lemma, Z, [0,b] |= ¢ iff there is a run a of A, such that
(Z,10,b]) € Intp(a) and cost(cr); >; kj for 1 < j < m. As Intp is a total function,
this implies that ¢ is satisfiable iff Ay has run a with cost(a); 1; k;. By b;j=<,
for 1 <j < m, and <,,=<, this is the case iff mincosty (s) < kn,. a

The above construction can also be used for model-checking timed automata wrt.
negations of DC formulae. The cornerstone is to exploit an appropriate automata
product between timed automata and priced timed automata to establish an
automata-based verification procedure. The model-checking problem considered
here has the form A |= —¢, where A = (L4, s1, E1, I1, A1) is an arbitrary timed
automaton (L1, s1, F1, 1), extended by a labeling A; : L1 — S of locations with

Deciding an Interval Logic with Accumulated Durations 213

state expressions. We say that A | —¢ holds iff for each run « of A, the setf] of
all corresponding DC interpretations Intp(«) satisfies —¢.

Theorem 4. Let A = (L1, $1, E1,11,41) be a timed automaton (L1, 1, E1,11)
extended by a location labelling Ay : L1 — S, let ¢ be a DCypy formula, let
A¢ = (L27$2’E2712’P27f2’/12), and let u = (kl,...,km_l). Then A): _\¢ fo
mincost(r, 5. g,1,p),u(f X L1) > ki, where

— B=(L1,%1,E1, I, Po,s, A1) is A converted to an MPTA by extension with
the trivial cost function Py = 0 and an irrelevant terminal state s € Ly,

— (L,s,E,I,P, f,P) = Ay ® B is the multi-priced automaton product from case
o N,

Proof. Similar to the previous theorem it can be shown that for each run « of
A and each model (Z, [0,b]) of ¢ with (Z,[0,0]) € Intp() it is the case that «
is a run of Ay ® B with cost(a); p; kj for 1 < j < m. Le., A has a run « with
Intp(a) = ¢ iff mincost(z 5 .7,p)u(f X L1) < km. Consequently, all runs of A
Satisfy _'¢ iff miHCOSt(L’S)E)I)p)’u(f X Ll) > k‘m O

Model-checking timed automata against DCyp formulae is thus possible.

6 Conclusion

Within this paper, two new decision procedures for rich subsets of Duration
Calculus have been devised:

1. We have shown that satisfiability of DC formulas with linear combinations of
accumulated durations, yet chop confined to occur in positive context only,
is decidable.

2. A model-checking procedure for timed automata against DC formula with
only upper bound duration constraints and only a single, outermost negation
has been established based on a reduction to multi-priced timed automata.

Both procedures do considerably extend the scope of automatic procedures
for DC beyond the previous state of the art: These procedures are the first to
combine reasoning over accumulated durations and over chop within automated
decision procedures. Furthermore, (2.) extends model-checking procedures for
timed transition systems against accumulated duration properties, as pioneered
in [22], from timed transition tables with per-transition delays to timed automata
with clocks.

For the first of the two procedures, it is clear that the positive decidability
results marks the frontier to undecidability, as admitting chop in negative context
leads to undecidability [20]. The correspondence of DC without accumulated
durations to timed regular expressions [2] shown in [§], together with the lacking
closure of timed regular languages under negation [I], shows that decidability is

5 Note that the labeling A1 may permit multiple different valuations within a single
location [€ L.

214 M. Franzle and M.R. Hansen

even lost without nesting of chop under different polarity; negative chop itself
leads to undecidability. Accordingly, the encodings of two-counter machines by
DC formulas used in [20] or of stop-watch automata used in [7, App. A] to
demonstrate undecidability of DC do only use negative chop.

With respect to the model-checking result, the exact borderline to undecid-
ability is open. While one might well expect that lower bounds on accumulated
durations should also be decidable, e.g. through replacing minimum price reach-
ability in priced timed automata by maximum price reachability, the current
notion of maximum price reachability in priced timed automata does not permit
an adequate reduction. Being inspired by scheduling problems, the theory of
priced timed automata does define the maximum price to be infinite as soon as
path length in the automaton is unbounded. This does interfere with the notion
of accumulated duration, as an accumulated duration may well be bounded even
though the number of state changes in the run is not a priori bounded, as can
be seen from the formula ¢ = (¢ < 2A [P > 2). This formula is unsatisfiable, yet
the automaton construction from Sect. Bl yields an automaton with unbounded
path length (cf. Fig. [l(c)) such that maximum cost reachability would consider
the cost P to be infinite, suggesting [P > 2 to hold.

Another open question is whether the more restricted notion of chop used in
Interval Duration Logic (IDL) [I7] facilitates model-checking of larger formula
classes. It is obvious that all the procedures detailed in this paper do also work
on IDL with the appropriate minor modifications.

References

1. R. Alur and D. L. Dill. A theory of timed automata. Theoretical Comput. Sci.,
126(2):183-235, 1994.

2. E. Asarin, P. Caspi, and O. Maler. A Kleene theorem for timed automata. In
G. Winskel, editor, 12th Annual IEEE Symposium on Logic in Computer Science
(LICS’97). IEEE Computer Society Press, 1997.

3. G. Audemard, P. Bertoli, A. Cimatti, A. Kornilowics, and R. Sebastiani. A SAT-
based approach for solving formulas over boolean and linear mathematical propo-
sitions. In A. Voronkov, editor, Automated Deduction — CADE-18, volume 2392
of Lecture Notes in Computer Science, pages 193-208. Springer-Verlag, 2002.

4. J. Bengtsson, K. Larsen, F. Larsson, P. Pettersson, and W. Yi. Uppaal — a tool
suite for automatic verification of real-time systems. In R. Alur, T. Henzinger, and
E. Sonntag, editors, Hybrid Systems III — Verification and Control, volume 1066
of Lecture Notes in Computer Science, pages 232-243. Springer-Verlag, 1997.

5. A. Bouajjani, Y. Lakhnech, and R. Robbana. From duration calculus to linear
hybrid automata. In P. Wolper, editor, Computer Aided Verification (CAV ‘95),
volume 939 of Lecture Notes in Computer Science. Springer-Verlag, 1995.

6. H. Dierks. Synthesizing controllers from real-time specifications. In Tenth Interna-
tional Symposium on System Synthesis (ISSS ‘97), pages 126-133. IEEE Computer
Society Press, 1997.

7. M. Fréanzle. Controller Design from Temporal Logic: Undecidability need not mat-
ter. Dissertation, Technische Fakultdt der Chr.-Albrechts-Universitiat Kiel, Ger-
many, 1997.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Deciding an Interval Logic with Accumulated Durations 215

M. Franzle. Model-checking dense-time duration calculus. Formal Aspects of Com-
puting, 16(2):121-139, 2004.

. M. Franzle and C. Herde. Efficient proof engines for bounded model checking of

hybrid systems. In J. Bicarregui, A. Butterfield, and A. Arenas, editors, Proceedings
Ninth International Workshop on Formal Methods for Industrial Critical Systems
(FMICS 04), volume 133 of Electronic Notes in Theoretical Computer Science,
pages 119-137. Elsevier Science B.V., 2005.

J. Halpern, B. Moszkowski, and Z. Manna. A hardware semantics based on tempo-
ral intervals. In J. Diaz, editor, International Colloquium on Automata, Languages,
and Programming (ICALP‘83), volume 154 of Lecture Notes in Computer Science,
pages 278-291. Springer-Verlag, 1983.

J. Hoenicke. Combination of Processes, Data and Time. Dissertation, Carl von
Ossietzky Universitat, Oldenburg, Germany, 2006.

Y. Laknech. Specification and Verification of Hybrid and Real-Time Systems. Dis-
sertation, Technische Fakultét der Chr.-Albrechts-Universitat Kiel, Germany, 1996.
K. G. Larsen and J. I. Rasmussen. Optimal conditional reachability for multi-
priced timed automata. In V. Sassone, editor, Foundations of Software Science
and Computation Structures (FOSSACS ’05), volume 3441 of Lecture Notes in
Computer Science, pages 230-244. Springer-Verlag, 2005.

Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems,
volume 1. Springer-Verlag, 1992.

E.-R. Olderog and H. Dierks. Decomposing real-time specifications. In H. Lang-
maack, W. de Roever, and A. Pnueli, editors, Compositionality: The Significant
Difference, Lecture Notes in Computer Science. Springer-Verlag, 1998.

A. P. Ravn. Design of Embedded Real-Time Computing Systems. Doctoral dis-
sertation, Department of Computer Science, Danish Technical University, Lyngby,
DK, Oct. 1995. Available as technical report ID-TR: 1995-170.

P. Sharma, P. K. Pandya, and S. Chakraborty. Bounded validity checking of in-
terval duration logic. In TACAS 2005, volume 3440 of Lecture Notes in Computer
Science. Springer-Verlag, 2005.

A. Tarski. A decision method for elementary algebra and geometry. RAND Cor-
poration, Santa Monica, Calif., 1948.

Zhou Chaochen and M. R. Hansen. Duration Calculus — A Formal Approach
to Real-Time Systems. EATCS monographs on theoretical computer science.
Springer-Verlag, 2004.

Zhou Chaochen, M. R. Hansen, and P. Sestoft. Decidability and undecidability
results for duration calculus. In P. Enjalbert, A. Finkel, and K. W. Wagner, editors,
Symposium on Theoretical Aspects of Computer Science (STACS 93), volume 665
of Lecture Notes in Computer Science, pages 58—68. Springer-Verlag, 1993.

Zhou Chaochen, C. A. R. Hoare, and A. P. Ravn. A calculus of durations. Infor-
mation Processing Letters, 40(5):269-276, 1991.

Zhou Chaochen, Zhang Jingzhong, Yang Lu, and Li Xiaoshan. Linear duration
invariants. In H. Langmaack, W.-P. de Roever, and J. Vytopil, editors, Formal
Techniques in Real-Time and Fault-Tolerant Systems (FTRTFT ‘94), volume 863
of Lecture Notes in Computer Science, pages 86—109. Springer-Verlag, 1994.

	Introduction
	Duration Calculus
	Syntax
	Semantics

	Decidability of the Satisfiability Problem
	Priced Timed Automata
	Encoding of DCub Formulae by MPTA
	The Construction
	Correspondence Between Interpretations of Formulae and Runs of Corresponding MPTA

	Conclusion

