
Causal Dataflow Analysis for
Concurrent Programs

Azadeh Farzan and P. Madhusudan

Department of Computer Science,
University of Illinois at Urbana-Champaign

{afarzan,madhu}@cs.uiuc.edu

Abstract. We define a novel formulation of dataflow analysis for con-
current programs, where the flow of facts is along the causal dependencies
of events. We capture the control flow of concurrent programs using a
Petri net (called the control net), develop algorithms based on partially-
ordered unfoldings, and report experimental results for solving causal
dataflow analysis problems. For the subclass of distributive problems,
we prove that complexity of checking data flow is linear in the number
of facts and in the unfolding of the control net.

1 Introduction

Advances in multicore technology and the wide use of languages that inherently
support threads, such as Java, foretell a future where concurrency will be the
norm. Despite their growing importance, little progress has been made in static
analysis of concurrent programs. For instance, there is no standard notion of
a control-flow graph for concurrent programs, while the analogous notion in
sequential programs has existed for a long time [10]. Consequently, dataflow
analysis problems (arguably the simplest of analysis problems) have not been
clearly understood for programs with concurrency.

While it is certainly easy to formulate dataflow analysis for concurrent pro-
grams using the global product state space of the individual threads, the useful-
ness of doing so is questionable as algorithms working on the global state space
will not scale. Consequently, the literature in flow analysis for threaded programs
concentrates on finding tractable problem definitions for dataflow analysis. A
common approach has been to consider programs where the causal relation be-
tween events is static and apparent from the structure of the code (such as fork-
join formalisms), making feasible an analysis that works by finding fixpoints on
the union of the individual sequential control flow graphs. These approaches are
often highly restrictive (for example, they require programs to have no loops [23]
or at least to have no loops with concurrent fork-join constructs [13,14]), and
cannot model even simple shared-memory program models. In fact, a coherent

O. Grumberg and M. Huth (Eds.): TACAS 2007, LNCS 4424, pp. 102–116, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Causal Dataflow Analysis for Concurrent Programs 103

formulation of control-flow that can capture programs with dynamic concur-
rency (including those with shared memory) and a general definition of dataflow
analysis problems for these programs has not been formulated in the literature
(see the end of this section for details on related work).

The goals of this paper are (a) to develop a formal control-flow model for
programs using Petri nets, (b) to propose a novel definition of dataflow analyses
based on causal flows in a program, (c) to develop algorithms for solving causal
flow analyses when the domain of flow facts is a finite set D by exploring the
partially-ordered runs of the program as opposed to its interleaved executions,
and (d) to provide provably efficient algorithms for the class of distributive CCD
problems, and support the claim with demonstrative experiments. The frame-
work we set forth in this paper is the first one we know that defines a formal
general definition of dataflow analysis for concurrent programs.

We first develop a Petri net model that captures the control flow in a con-
current program, and give a translation from programs to Petri nets that ex-
plicitly abstracts data and captures the control flow in the program. These nets,
called control nets, support dynamic concurrency, and can model concurrent
constructs such as lock-synchronizations and shared variable accesses. In fact,
we have recently used the same model of control nets to model and check atom-
icity of code blocks in concurrent programs [7]. We believe that the control net
model is an excellent candidate for capturing control flow in concurrent pro-
grams, and can emerge as the robust analog of control-flow graphs for sequential
programs.

The causal concurrent dataflow (CCD) framework is in the flavor of a meet-
over-all-paths formulation for sequential programs. We assume a set of dataflow
facts D and each statement of the program is associated with a flow transformer
that changes a subset of facts, killing some old facts and generating new facts.
However, we demand that the flow transformers respect the concurrency in the
program: we require that if two independent (concurrent) statements transform
two subsets of facts, D and D′, then the sets D and D′ must be disjoint. For
instance, if there are two local variable accesses in two different threads, these
statements are independent, and cannot change the same dataflow fact, which is
a very natural restriction. For example, if we are tracking uninitialized variables,
two assignments in two threads to local variables do affect the facts pertaining
to these variables, but do not modify the same fact. We present formulations of
most of the common dataflow analysis problems in our setting.

The structural restriction of requiring transformers to respect causality en-
sures that dataflow facts can be inferred using partially ordered traces of the
control net. We define the dataflow analysis problem as a meet over partially
ordered traces that reach a node, rather than the traditional meet-over-paths
definition. The meet-over-traces definition is crucial as it preserves the con-
currency in the program, allowing us to exploit it to solve flow analysis us-
ing partial-order based methods, which do not explore all interleavings of the
program.

104 A. Farzan and P. Madhusudan

Our next step is to give a solution for the general causal dataflow analy-
sis problem when the set of of facts D is finite by reducing the problem to a
reachability problem of a Petri net, akin to the classic approach of reducing
meet-over-paths to graph reachability for sequential recursive programs [21].
Finally, the reachability/coverability problem is solved using the optimized
partial-order unfolding [16,6] based tool called PEP [9].

For the important subclass of distributive dataflow analysis problems, we de-
velop a more efficient algorithm for checking flows. If N is the control net of a
program and the size of its finite unfolding is n, we show that any distributive
CCD problem over a domain D of facts results in an augmented net of size n|D|
(and hence in an algorithm working within similar bounds of time and space).
This is a very satisfactory result, since it proves that the causal definition does
not destroy the concurrency in the net (as that would result in a blow-up in
n), and that we are exploiting distributivity effectively (as we have a linear de-
pendence on |D|). The analogous result for sequential recursive programs also
creates an augmented graph of size n|D|, where n is the size of the control-flow
graph.

Related Work. Although the majority of flow analysis research has focused on
sequential software [1,19,17,20], flow analysis for concurrent software has also
been studied to some extent. Existing methods for flow-sensitive analyses have
at least one of the following restrictions: (a) the programs handled have simple
static concurrency and can be handled precisely using the union of control flow
graphs of individual programs, or (b) the analysis is sound but not complete,
and solves the dataflow problem using heuristic approximations.

A body of work on flow-sensitive analyses exists in which the model for the pro-
gram is essentially a collection of CFGs of individual threads (tasks, or compo-
nents) together with additional edges among the CFGs that model inter-thread
synchronization and communication [15,18,22]. These analyses are usually re-
stricted to a class of behaviors (such as detecting deadlocks) and their models
do not require considering the set of interleavings of the program. More general
analyses based on the above type of model include [12] which presents a unidirec-
tional bit-vector dataflow analysis framework based on abstract interpretation
(where the domain D is a singleton). This framework comes closest to ours in
that it explicitly defines a meet-over-paths definition of dataflow analysis, can
express a variety of dataflow analysis problems, and gives sound and complete
algorithms for solving them. However, it cannot handle dynamic synchronization
mechanisms (such as locks), and the restriction to having only one dataflow fact
is crucially (and cleverly) used, making multidimensional analysis impossible.
For example, this framework cannot handle the problem of solving uninitialized
variables. See also [23] for dataflow analysis that uses flow along causal edges
but disallows loops in programs and requires them to have static concurrency.
The works in [13,14] use the extension of the static single assignment form [3]
for concurrent programs with emphasis on optimizing concurrent programs as
opposed to analyzing them.

Causal Dataflow Analysis for Concurrent Programs 105

In [4], concurrent models are used to represent interleavings of programs,
but the initial model is coarse and refined to obtain precision, and efficiency is
gained by sacrificing precision. Petri nets are used as control models for Ada
programs in [5], although the modeling is completely different form ours. In [2],
the authors combine reachability analysis with symbolic execution to prune the
infeasible paths in order to achieve more effective results.

This paper presents only the gist of the definitions and proofs. For more
detailed definitions of Petri nets, unfoldings, the framework for backward flow
analyses and the non-distributive framework, for further examples and detailed
proofs, we refer the reader to the technical report [8].

2 Preliminaries

A Simple Multithreaded Language. We base our formal development on the
language SML (Simple Multithreaded Language). Figure 1 presents the syntax
of SML. The number of threads in an SML program is fixed and preset. There
are two kinds of variables: local and global, respectively identified by the sets
LVar and GVar. All variables that appear at the definition list of the program
are global and shared among all threads. Any other variable that is used in a
thread is assumed to be local to the thread.

We assume that all variables are integers and are initialized to zero. We use
small letters (capital letters) to denote local (global, resp.) variables. Lock is a
global set of locks that the threads can use for synchronization purposes through
acquire and release primitives. The semantics of a program is the obvious one
and we do not define it formally.

P ::= defn thlist (program)
thlist ::= null | stmt || thlist (thread list)
defn ::= int Y | lock l | defn ; defn (variable declaration)
stmt ::= stmt ; stmt | x := e | skip

| while (b) { stmt } | acquire(l) | release(l)
| if (b) { stmt } else { stmt } (statement)

e ::= i | x | Y | e + e | e ∗ e | e/e (expression)
b ::= true | false | e op e | b ∨ b | ¬b (boolean expression)

op ∈ {<, ≤, >, ≥, =, ! =}
x ∈ LVar, Y ∈ GVar, i ∈ Integer, l ∈ Lock

Fig. 1. SML syntax

Petri Nets and Traces
A Petri net is a triple N = (P, T, F), where P is a set of places, T (disjoint
from P) is a set of transitions, and F ⊆ (P × T) ∪ (T × P) is the flow relation.

106 A. Farzan and P. Madhusudan

For a transition t of a (Petri) net, let •t = {p ∈ P |(p, t) ∈ F} denote its set of
pre-conditions and t• = {p ∈ P |(t, p) ∈ F} its set of post-conditions. A marking
of the net is a subset M of positions of P .1 A marked net is a structure (N, M0),
where N is a net and M0 is an initial marking. A transition t is enabled at a
marking M if •t ⊆ M . The transition relation is defined on the set of markings:
M

t−→ M ′ if transition t is enabled at M and M ′ = (M \•t)∪t•. Let ∗−→ denote
the reflexive and transitive closure of −→. A marking M ′ covers a marking M
if M ⊆ M ′. A firing sequence is a finite sequence of transitions t1t2 . . . provided
we have a sequence of markings M0M1 . . . and for each i, Mi

ti+1−→ Mi+1. We
denote the set of firing sequences of (N, M0) as FS (N, M0). Given a marked net
(N, M0), N = (P, T, F), the independence relation of the net IN is defined as
(t, t′) ∈ I if the neighborhoods of t and t′ are disjoint, i.e. (•t∪t•)∩(•t′∪t′•) = ∅.
The dependence relation DN is defined as the complement of IN .

Definition 1. A trace of a marked net (N, M0) is a labeled poset Tr = (E , �, λ)
where E is a finite or a countable set of events, � is a partial order on E, called
the causal order, and λ : E −→ T is a labeling function such that the following
hold:

– ∀e, e′ ∈ E , e≺· e′ ⇒ λ(e)DNλ(e′).2 Events that are immediately causally re-
lated must correspond to dependent transitions.

– ∀e, e′ ∈ E , λ(e)DNλ(e′) ⇒ (e � e′ ∨ e′ � e). Any two events with dependent
labels must be causally related.

– If σ is a linearization of Tr then σ ∈ FS(N, M0).

For any event e in a trace (E , �, λ), define ↓ e = {e′ ∈ E | e′ � e} and let
⇓ e = ↓ e \ {e}.

3 The Control Net of a Program

We model the flow of control in SML programs using Petri nets. We call this
model the control net of the program. The control net formally captures the
concurrency between threads using the concurrency constructs of a Petri net,
captures synchronizations between threads (e.g.. locks, accesses to global vari-
ables) using appropriate mechanisms in the Petri net, and formalizes the fact
that data is abstracted in a sound manner.

We describe the main ideas of this construction but skip the details (see [8]
for details). Transitions in the control net correspond to program statements,
and places are used to control the flow, and to model the interdependencies and
synchronization primitives. Figure 2 illustrates a program and its control net.

1 Petri nets can be more general, but in this paper we restrict to 1-safe Petri nets
where each place gets at most one token.

2 ≺· is the immediate causal relation defined as: e≺· e′ iff e ≺ e′ and there is no event
e′′ such that e ≺ e′′ ≺ e′.

Causal Dataflow Analysis for Concurrent Programs 107

There is a place l associated to each lock l which initially has a token in it. To
acquire a lock, this token has to be available which then is taken and put back
when the lock is released.

aquire(l)

release(l)

l

Y1

Y2

Y := 5

Y := 3

x := Y - 2

T T’

acquire(l);
Y := 5; x := Y - 2;
Y := 3;

release(l);

T ′T

Fig. 2. Sample Net Model

For each global variable Y, there are
n places Y1, . . . , Yn, one per thread.
Every time the thread Ti reads the vari-
able Y (Y appears in an expression), it
takes the token from the place Yi and
puts it back immediately. If Ti wants
to write Y (Y is on the left side of an
assignment), it has to take one token
from each place Yj, 1 ≤ j ≤ n and
put them all back. This ensures cor-
rect causality: two read operations of
the same variable by different threads
will be independent (as their neighbor-
hoods will be disjoint), but a read and
a write, or two writes to a variable are
declared dependent.

4 Causal Concurrent Dataflow Framework

We now formulate our framework for dataflow analysis of concurrent programs
based on causality, called the Causal Concurrent Dataflow (CCD) frame-
work.

A property space is a subset lattice (P(D), �, �, ⊥) where D is a finite set of
dataflow facts, ⊥ ⊆ D, and where � and � can respectively be ∪ and ⊆, or
∩ and ⊇. Intuitively, D is the set of dataflow facts of interest, ⊥ is the initial
set of facts, and � is the meet operation that will determine how we combine
dataflow facts along different paths reaching the same control point in a program.
“May” analysis is formulated using � = ∪, while “must” analysis uses the � = ∩
formulation. The property space of an IFDS (interprocedural finite distributive
subset) problem [21] for a sequential program (i.e. the subset lattice) is exactly
the same lattice as above.

For every transition t of the control net, we associate two subsets of D, Dt

and D∗
t . Intuitively, D∗

t is the set of dataflow facts relevant at t, while Dt ⊆
D∗

t is the subset of relevant facts that t may modify when it executes. The
transformation function associated with t, ft, maps every subset of Dt to a
subset of Dt, reflecting how the dataflow facts change when t is executed.

Definition 2. A causal concurrent dataflow (CCD) problem is a tuple (N, S, F ,
D, D∗) where:

– N = (P, T, F) is the control net model of a concurrent program,
– S = (P(D), �, �, ⊥) is a property space,
– D = {Dt}t∈T and D∗ = {D∗

t }t∈T , where each Dt ⊆ D∗
t ⊆ D.

108 A. Farzan and P. Madhusudan

– F is a set of functions {ft}t∈T : 2Dt → 2Dt such that:
(*) ∀t, t′ : (t, t′) ∈ IN ⇒ (Dt ∩ D∗

t′ = D∗
t ∩ Dt′ = ∅).3

We call a CCD problem distributive if all transformation functions in F are
distributive, that is ∀ft ∈ F , ∀X, Y ⊆ Dt : ft(X � Y) = ft(X) � ft(Y).

Remark 1. Condition (*) above is to be specially noted. It demands that for any
two concurrent events e and e′, e cannot change a dataflow fact that is relevant
to e′. Note that if e and e′ are events in a trace such that Dλ(e) ∩ D∗

λ(e′) is
non-empty, then they will be causally related.

4.1 Meet over All Traces Solution

t1

t2 t3

t4

in(t1) = ∅
Dt1 = {d1, d2}

in(t2) = ∅
Dt2 = {d3} Dt3 = {d2, d4}

in(t3) = {d2}

Dt4 = {d1, d2, d3, d4}
in(t4) = {d1, d3, d4}

d1, d2d1, d2

d3 d4

Fig. 3. Flow of facts over a trace

In a sequential run of a pro-
gram, every event t has at most
one predecessor t′. Therefore,
the set of dataflow facts that
hold before the execution of t
(let us call this in(t)) is exactly
the set of dataflow facts that
hold after the execution of t′

(out(t′)). This is not the case
for a trace (a partially ordered
run). Consider the example in
Figure 3. Assume t1 generates
facts d1 and d2, t2 generates d3
and t3 kills d2 and generates d4. The corresponding Dt sets appear in the Figure.
Trying to evaluate the “in” set of t4, we see three important scenarios: (1) t4
inherits independent facts d3 and d4 respectively from its immediate predecessors
t2 and t3, (2) t4 inherits fact d1 from t1 which is not its immediate predecessor,
and (3) t4 does not inherit d2 from t1 because t3, which is a (causally) later
event and the last event to modify d2, kills d2.

This example demonstrates that in a trace the immediate causal predecessors
do not specify the “in” set of an event. The indicating event is actually the
(causally) last event that can change a dataflow fact (eg. t3 for fact d2 in com-
puting in(t4)). We formalize this concept by defining the operator maxcd

�(Tr),
for a trace Tr = (E, �, λ) as maxcd

�(Tr) = max�({e |e ∈ E ∧ d ∈ Dλ(e)}). Note
that this function is undefined on the empty set, but well-defined on non-empty
sets because all events that affect a dataflow fact d are causally related due to
(*) in Definition 2.

Remark 1 suggests that for each event e it suffices to only look at the facts
that are in the “out” set of events in ⇓ e (events that are causally before e),
since events that are concurrent with e will not change any fact that’s relevant
to e.
3 And hence Dt ∩ Dt′ = ∅.

Causal Dataflow Analysis for Concurrent Programs 109

Definition 3. For any trace Tr = (E, �, λ) of the control net and for each event
e ∈ E, we define the following dataflow sets:{

inTr (e) =
⋃

d∈D∗
λ(e)

(outTr (maxcd
�(⇓ e)) ∩ {d}))

outTr (e) = fλ(e)(inTr (e) ∩ Dλ(e))

where inTr (e) (respectively outTr (e)) indicates the set of dataflow facts that hold
before (respectively after) the execution of event e of trace Tr.

In the above definition, maxcdi

� (⇓ e)) may be undefined (if ⇓ e = ∅), in which
case we assume inTr (e) evaluates to the empty set.

We can now define the meet over all traces solution for a program Pr,
assuming the T (N) denotes the set of all traces induced by the control net N .

Definition 4. The set of dataflow facts that hold before the execution of a tran-
sition t of a control net N is MOT (t) =

⋃
Tr∈T (N),e∈Tr,λ(e)=t inTr (e).

The above formulation is the concurrent analog of the meet-over-all-paths formu-
lation for sequential programs. Instead of the above definition, we could formu-
late the problem as a meet-over-all-paths problem, where we take the meet over
facts accumulated along the sequential runs (interleavings) of the concurrent
program. However, due to the restriction (*) in Definition 2, we can show that
the dataflow facts accumulated at an event of a trace is precisely the same as that
accumulated using any of its linearizations. Consequently, for dataflow problems
that respect causality by satisfying the condition (*), the meet-over-all-paths
and the meet-over-traces formulations coincide. The latter formulation however
yields faster algorithms based on partial-order methods based on unfoldings to
solve the dataflow analysis problem.

4.2 Formulation of Specific Problems in the CCD Framework

A wide variety of dataflow analysis problems can be formulated using the CCD
framework, including reaching definitions, uninitialized variables, live variables,
available expressions, copy constant propagation, very busy expressions, etc.
Some of these are backward flow analysis problems that can be formulated using
an adaptation of CCD for backward flows. Due to lack of space, we detail only
a couple of representative forward flow problems here; formulation of several
others, including formulation of backward flows can be found in [8].

Reaching Definitions. The reaching definitions analysis determines: “For each
control point, which relevant assignments may have been made and not over-
written when program execution reaches that point along some path ”. The rel-
evant assignments are the assignments to variables that are referred to in that
control point. Given the control net N = (P, T, F) for a program Pr, de-
fine Defs = {(v, t) | t ∈ T, v ∈ (GVar ∪ LVar), and v is assigned in t}. The

110 A. Farzan and P. Madhusudan

property space is (Defs , ⊆, ∪, ∅), where presence of (v, t) in Din(t′) means that
the definition of v at t may reach t′.

Let Dt = {(v, t′) | v is assigned in t}; D∗
t = {(v, t′) | v is assigned or accessed

by t}.
For each transition t and each set S ⊆ Dt:

ft(S)(=
{

S if t is not an assignment
S − {(v, t′)|t′ ∈ T } ∪ {(v, t)} if t is of the form v := e

The construction of the control net ensures that two accesses of a variable v where
one of them is a write, are dependent (neighborhoods intersect). This guarantees
that the condition (*) of Definition 2 holds, i.e. our formulation of reaching-
definitions ensures that information is inherited only from causal predecessors.
Note that the above formulation is also distributive.

Available Expressions. The available expressions analysis determines: “For
a program point containing x := Exp(x1, . . . , xk) whether Exp has already been
computed and not later modified on all paths to this program point”.

z := x + Y

w := x + Y

x := 2 Y := 6

T T ′

e1

e2 e3

e4

In the standard (sequential) formulation of available expres-
sions analysis, dataflow facts are defined as pairs (t,Exp),
where Exp is computed at t. This formulation does not work
for the concurrent setting. To see why consider the trace on
the right where x is a local variable in T and Y is a global
variable. Events e2 and e3 are independent (concurrent), but
they both can change (kill) the dataflow fact associated with
x + Y, which is not in accordance with the condition (*) of
Definition 2. The natural remedy is to divide this fact into
two facts, one for x and another for Y. Let us call these two
facts x + Y : x and x + Y : Y. The fact x + Y : x (respectively
x + Y : Y) starts to hold when the expression x + Y is com-
puted, and stops to hold when a definition to x (respectively Y) is seen. The
problem is that x + Y holds when x + Y : x holds and x + Y : Y holds, which
makes the framework non-distributive. Although we can solve non-distributive
problems in the CCD framework (see Appendix), distributive problems yield
faster algorithms (see Section 5).

The analysis can however be formulated as a distributive CCD problem by
looking at the dual problem; that is, for unavailability of expressions. The
dataflow fact x + Y indicates the expression being unavailable, and accordingly
the presence of x + Y : x or x + Y : Y can make it hold. We are now in a distrib-
utive framework. Assume EXP presents the set of all expressions appearing in
the program code, and define D = {exp : xi | exp ∈ EXP ∧ xi appears in exp}.
The property space is the subset lattice (D, ⊆, ∪, D), where presence of exp
in Din(t′) means that exp is unavailable at t. We have Dt = D∗

t = {exp :
x | x is assigned in t or exp appears in t}. For each transition t and each set
S ⊆ D:

Causal Dataflow Analysis for Concurrent Programs 111

ft(S) =

⎧⎨
⎩

S t is not an assignment
S ∪ {exp′ : x | ∀exp′ ∈ EXP , x ∈ V (exp′)}

− {exp : y | y ∈ V (exp)} t is x := exp

where V (exp) denotes the set of variables that appear in exp.

5 Solving the Distributive CCD Problem

In this section, we show how to solve a dataflow problem in the CCD framework.
The algorithm we present is based on augmenting a control net to a larger net
based on the dataflow analysis problem, and reducing the problem of checking
whether a dataflow fact holds at a control point to a reachability problem on
the augmented net. The augmented net is carefully constructed so as to not
destroy the concurrency present in the system (crucially exploiting the condition
(*) in Definition 2). Reachability on the augmented net is performed using net
unfoldings, which is a partial-order based approach that checks traces generated
by the net as opposed to checking linear runs.

Due to space restrictions, we present only the solution for the distributive
CCD problems where the meet operator is union, and we prove upper bounds
that compare the unfolding of the augmented net with respect to the size of the
unfolding of the original control net.

In order to track the dataflow facts, we enrich the control net so that each
transition performs the transformation of facts as well. We introduce new places
which represent the dataflow facts. The key is then to model the transformation
functions, for which we use representation relations from [21].

Definition 5. The representation relation of a distributive function f : 2D →
2D (D ⊆ D) is Rf ⊆ (D∪{⊥})×(D∪{⊥}), a binary relation, defined as follows:

Rf = {(⊥, ⊥)} ∪ {(⊥, d) | d ∈ f(∅)} ∪ {(d, d′) | d′ ∈ f({d}) ∧ d′ �∈ f(∅)}

The relation Rf captures f faithfully in that we can show that f(X) = {d′ ∈
D | (d, d′) ∈ Rf , where d = ⊥ or d ∈ X}, for any X ⊆ D.

Given a CCD framework (N, S, F , D, D∗) with control net N = (P, T, F), we
define the net representation for a function ft as below:

Definition 6. The net representation of ft is a Petri net Nft = (Pft , Tft , Fft)
defined as follows:

– The set of places is Pft = •t ∪ t• ∪ {⊥m | m ∈ [1, n]} ∪
⋃

di∈Dt
{pi, pi} where

a token in pi means the dataflow fact di holds, while a token in pi means
that di does not hold, and n is the number of dataflow facts.

– The set of transitions Tf contains exactly one transition per pair (di, dj) ∈
Rft , and is defined as:

Tft =
{
st
(⊥,⊥)

}
∪

{
st
(⊥,j)| (⊥, dj) ∈ Rft

}
∪

{
st
(i,j)| (di, dj) ∈ Rft

}
Note that if Dt = ∅ then Tft =

{
st
(⊥,⊥)

}
.

112 A. Farzan and P. Madhusudan

– The flow relation is defined as follows:

Fft =
⋃

s∈Tft

(⋃
p∈•t

{(p, s)} ∪
⋃

p∈t•

{(s, p)}
)

∪
⋃

dk∈Dt

{
(pk, st

(⊥,⊥)), (s
t
(⊥,⊥), pk)

}

∪
⋃

(⊥,dj)∈Rft

({
(⊥m, st

(⊥,j)) | t ∈ Tm

}
∪

{
(st

(⊥,j), pj)
}

∪
⋃

dk∈Dt

{
(pk, st

(⊥,j))
}

∪
⋃
k �=j

{
(st

(i,j), pk)
})

∪
⋃

(di,dj)∈Rft
i�=j

({
(pi, s

t
(i,j)), (s

t
(i,j), pj), (pj , s

t
(i,j)), (s

t
(i,j), pi)

})

∪
⋃

(di,di)∈Rft

({
(pi, s

t
(i,i)), (s

t
(i,i), pi)

})

The idea is that each transition st
(i,j) is a copy of transition t that, besides

simulating t, models one pair (di, dj) of the relation Rft , by taking a token out
of place pi (meanwhile, also checking that nothing else holds by taking tokens out
of each pk, k �= i) and putting it in pj (also returning all tokens pk, k �= j). Thus
if di holds (solely) before execution of t, dj will hold afterwards. The transitions
st
⊥,j generate new dataflow facts, but consume the token ⊥m associated with the

thread. We will engineer the net to initially contain only one ⊥m marking (for
some thread m), and hence make sure that only one fact is generated from ⊥.

For every t, transitions st
(i,j) are in conflict since they have •t as common

predecessors. This means that only one of them can execute at a time, gener-
ating a single fact. If we assume that initially nothing holds (i.e., initial tokens
are in every pi’s and no initial tokens in any of the pi’s), then since each tran-
sition consumes one token and generates a new token, the following invariant
always holds for the system: “At any reachable marking of the augmented net,
exactly one position pi corresponding to some dataflow fact di holds”. We use
this observation later to argue the complexity of our analysis.

Definition 7. The augmented marked net NS,F of a CCD problem (N, S, F)
is defined as

⋃
f∈F Nf where the union of two nets N1 = (P1, T1, F1) and N2 =

(P2, T2, F2) is defined as N1 ∪N2 = (P1 ∪P2, T1 ∪T2, F1 ∪F2). It is assumed that
Nf ’s have disjoint set of transitions, and only the common places are identified
in the union. Furthermore we add a new position p∗, make each p̄i initial, and
also introduce n initial transitions t∗m, one for each thread, that removes p∗ and
puts a token in ⊥m and a token in the initial positions of each thread.

The above construction only works when ⊥ = ∅. When ⊥ = D0, for some D0 ⊆
D, we will introduce a new initial set of events (all in conflict) that introduce
nondeterministically a token in some pi ∈ D0 and remove p̄i.

The problem of computing the MOT solution can be reduced to a coverability
problem on the augmented net. To be more precise, fact di may hold before the

Causal Dataflow Analysis for Concurrent Programs 113

execution of transition t of the control net if and only if {pi, pt} is coverable
from the initial marking of the control net where pt is the local control place
associated to transition t in its corresponding thread.

Theorem 1. A dataflow fact di holds before the execution of a transition t in
the control net N of a program if and only if di ∈ D∗

t and the marking {pi, pt}
is coverable from the initial marking in the augmented net NS,F constructed
according to Definition 7.

Checking coverability: While there are many tools that can check reachabil-
ity/coverability properties of Petri nets, tools that use unfolding techniques [16,6]
of nets are particularly effective, as they explore the state space using partially
ordered unfoldings and give automatic reduction in state-space (akin to partial-
order reduction for model checking of concurrent systems). We assume the reader
is familiar with net unfoldings and refer to [6] for details.

Complexity of distributive CCD: Algorithms for Petri nets which use finite
unfoldings essentially produces a finite unfolding of the net, from which cover-
ability of one position can be checked in linear time. For every transition t′ ∈ Tft

and every fact di ∈ D∗
t , we can create a new transition whose preconditions are

those of t′ plus pi, and outputs a token in a new position (t, di). By Theorem 1,
coverability of this single position is equivalent to fact di holding at t. Further-
more, we can argue that the unfolding of this net introduces at most n|D| new
events compared to the unfolding of the augmented net.

Let us now analyze the size of the unfolding of the augmented net in terms of
the size of the unfolding of the original control net; let us assume the latter has
n events. We can show that (a) every marking reachable by a local configuration
of the control net has a corresponding event in its finite unfolding that realizes
this marking, and (b) that for every marking reached by a local configuration
of the control net, there are at most |D| corresponding local configurations in
the augmented net (at most one for each dataflow fact), and this covers all local
configurations of the augmented net. Since the number of events in the unfold-
ing is bounded by the number of markings reachable by local configurations, it
follows that the size of the unfolding of the augmented net is at most |D| times
that of the control net. This argues the efficacy of our approach in preserving
the concurrency inherent in the control net and in exploiting distributivity to
its fullest extent.

Theorem 2. Let (N, S, F) be a distributive CCD problem, with S = (P(D), ⊆
, ∪, ⊥). Let n be the size of the unfolding of N . Then the size of the unfolding
of the augmented net NS,F (and even the complexity of checking whether a fact
holds at a control point) is at most O(n|D|).

6 Experiments

We have applied the techniques from Section 5 to perform several dataflow analy-
ses for concurrent programs. Unfortunately, there is no standard benchmark for

114 A. Farzan and P. Madhusudan

concurrent dataflow programs. We have however experimented our algorithms
with sample programs for the primary dataflow analysis problems, and studied
performance when the number of threads is increased.

The motive of the experiments is to exhibit in practice the advantages of
concurrent dataflow that exploit the causal framework set forth in this paper.
While the practical efficacy of our approach on large programs is still not vali-
dated, we believe that setting up a general framework with well-defined problems
permitting reasonable algorithms is a first step towards full-scale flow analysis.
Algorithms that work on large code may have to implement approximations and
heuristics, and we believe that the our framework will serve as a standard for
correctness.

In many of our examples, there is an exponential increase in the set of reach-
able states as one increases the number of threads, but the partial order methods
inherent to these techniques substantially alleviate the problem. We use the Pep

tool [9] to check the coverability property on the augmented net to answer the
relevant coverability queries.

For each example, we have included the sizes of the unfolding for the program’s
control net and of the augmented net (see Table 1). The construction time refers
to the time to build the unfolding, and the checking time refers to the time for
a single fact checking. Note the huge differences between the two times in some
cases, and also note that the unfolding is only built once and is then used to
answer several coverability queries. All experiments were performed on a Linux
machine with a 1.7GHz processor and 1GB of memory. The numbers are all in
seconds (with a precision of 0.01 seconds).

Uninitialized Variables. This set of examples contains a collection of n threads
with n global variables X0, . . . , Xn. One uninitialized variable X0 in one thread can
consequently make all Xis uninitialized. Concurrency results in many possible
interleavings in this example, a few of which can make a certain variable Xj

uninitialized.

T T’

acquire(l); acquire(l)
Y := 1; x := Y + 1;
Y := 2; release(l)

release(l);

Reaching Definitions. This example set demon-
strates how our method can successfully handle syn-
chronization mechanisms. There are two types of
threads: (1) those which perform two consequent
writes to a global variable Y, and (2) those which
perform a read of Y. There are two variations of this
example: (1) where none of the accesses is protected
by a lock, which we call RD, and (2) where the read, and the two writes com-
bined are protected by the same lock, which we call RDL (the code on the right).
The main difference between the two versions is that Y := 1 will reach the read
in the lock-free version, but cannot reach it in the presence of the locks. In a
setting with one copy of T ′ and n copies of T , there are 2n definitions where
only n of them can reach the line x := Y + 1 of T ′.

Causal Dataflow Analysis for Concurrent Programs 115

Table 1. Programs and Performances

Example |D| #Threads Unfolding Unfolding Checking Construction
Control Net Augmented Net Time (sec) Time (sec)

UV(10) 11 11 906 4090 < 0.01 <0.01
UV(20) 21 21 3311 16950 < 0.01 0.70
UV(60) 61 61 40859 156390 0.01 60.11
RD(3) 4 6 410 1904 < 0.01 0.03
RD(4) 5 8 1545 9289 0.01 1.5
RD(5) 6 10 5596 41186 0.01 133.16
RDL(3) 6 4 334 1228 < 0.01 0.01
RDL(4) 8 5 839 3791 < 0.01 29
RDL(5) 10 6 2024 10834 < 0.01 5.35
RDL(6) 12 7 4745 29333 0.01 121.00
AE(50) 2 50 250 650 < 0.01 < 0.01
AE(150) 2 150 750 1950 < 0.01 0.34
AE(350) 2 350 1750 4550 < 0.01 4.10

Available Expressions. The example set AE shows how the unfolding method
can fully benefit from concurrency. The threads here do not have any
dependencies. Each thread defines the same expression X + Y twice, and there-
fore, the expression is always available for the second instruction of each thread.
Table 1 shows that in the case of zero dependencies, the size of the unfolding
grows linearly with the number of threads (understandably so since new threads
do not introduce new dataflow facts).

7 Conclusions

The main contribution of this paper lies in the definition of a framework that
captures dataflow analysis problems for concurrent program using partial orders
that preserves the concurrency in the system. The preserved concurrency has
been exploited in the partial-order based analysis, but could instead have been
exploited in other ways, for example using partial-order reduction strategies as
those used in SPIN.

As for future directions, the first would be to study local or compositional
methods to solve the CCD problems and deploy them on large real world pro-
grams. This would have to handle (approximately) complex data such as pointers
and objects. Our algorithms do not work for programs with recursion, and it is
well known that dataflow analysis for concurrent programs with recursion quickly
leads to undecidability. Structural restrictions like nested locking (see [11]) would
be worth studying to obtain decidable fragments. Studying a framework based
on computing minimal fixpoints for concurrent programs would be also inter-
esting. Extending our approach to decide flow problems with infinite domains
of finite height is challenging as well (they can be handled in the sequential
setting [20]).

116 A. Farzan and P. Madhusudan

References

1. Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: principles, tech-
niques, and tools. Addison-Wesley Longman Publishing Co., Inc., 1986.

2. A. T. Chamillard and Lori A. Clarke. Improving the accuracy of petri net-based
analysis of concurrent programs. In ISSTA, pages 24–38, 1996.

3. Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Ken-
neth Zadeck. Efficiently computing static single assignment form and the control
dependence graph. ACM Trans. Program. Lang. Syst., 13(4):451–490, 1991.

4. M. Dwyer, L. Clarke, J. Cobleigh, and G. Naumovich. Flow analysis for verifying
properties of concurrent software systems, 2004.

5. Matthew B. Dwyer and Lori A. Clarke. A compact petri net representation and
its implications for analysis. IEEE Trans. Softw. Eng., 22(11):794–811, 1996.

6. J. Esparza, S. Römer, and W. Vogler. An improvement of McMillan’s unfolding
algorithm. Formal Methods in System Design, 20:285–310, 2002.

7. A. Farzan and P. Madhusudan. Causal atomicity. In CAV, LNCS 4144, pages 315
– 328, 2006.

8. A. Farzan and P. Madhusudan. Causal dataflow analysis for concurrent programs.
Technical Report UIUCDCS-R-2007-2806, CS Department, UIUC, 2007.

9. B. Grahlmann. The PEP tool. In CAV, pages 440–443, 1997.
10. M. Hecht. Flow Analysis of Computer Programs. Elsevier Science Inc., 1977.
11. V. Kahlon, F. Ivancic, and A. Gupta. Reasoning about threads communicating via

locks. In CAV, volume LNCS 3576, pages 505–518, 2005.
12. Jens Knoop, Bernhard Steffen, and Jürgen Vollmer. Parallelism for free: Efficient

and optimal bitvector analyses for parallel programs. TOPLAS, 18(3):268–299,
May 1996.

13. Jaejin Lee, Samuel P. Midkiff, and David A. Padua. Concurrent static single
assignment form and constant propagation for explicitly parallel programs. In
Languages and Compilers for Parallel Computing, pages 114–130, 1997.

14. Jaejin Lee, David A. Padua, and Samuel P. Midkiff. Basic compiler algorithms for
parallel programs. In PPoPP, pages 1–12, 1999.

15. Stephen P. Masticola and Barbara G. Ryder. Non-concurrency analysis. In
PPOPP, pages 129–138, 1993.

16. K. McMillan. A technique of state space search based on unfolding. Formal Methods
in System Design, 6(1):45–65, 1995.

17. S. S. Muchnick. Advanced Compiler Design and Imlementation. Morgan Kauf-
mann, 1997.

18. Gleb Naumovich and George S. Avrunin. A conservative data flow algorithm for
detecting all pairs of statements that may happen in parallel. In SIGSOFT/FSE-6,
pages 24–34, 98.

19. F. Nielson and H. Nielson. Type and effect systems. In Correct System Design,
pages 114–136, 1999.

20. T. Reps, S. Schwoon, S. Jha, and D. Melski. Weighted pushdown systems and
their application to interprocedural dataflow analysis. Sci. Comput. Program.,
58(1-2):206–263, 2005.

21. Thomas Reps, Susan Horwitz, and Mooly Sagiv. Precise interprocedural dataflow
analysis via graph reachability. In POPL, pages 49–61, 1995.

22. Alexandru Salcianu and Martin Rinard. Pointer and escape analysis for multi-
threaded programs. In PPoPP, pages 12–23. ACM Press, 2001.

23. Eric Stoltz and Michael Wolfe. Sparse data-flow analysis for dag parallel programs,
1994.

	Introduction
	Preliminaries
	The Control Net of a Program
	Causal Concurrent Dataflow Framework
	Meet over All Traces Solution
	Formulation of Specific Problems in the CCD Framework

	Solving the Distributive CCD Problem
	Experiments
	Conclusions

