

Lecture Notes in Computer Science 4424
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Orna Grumberg Michael Huth (Eds.)

Tools and Algorithms
for the Construction
andAnalysis of Systems

13th International Conference, TACAS 2007
Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2007
Braga, Portugal, March 24 - April 1, 2007
Proceedings

13

Volume Editors

Orna Grumberg
Technion
Israel Institute of Technology
Haifa 32000, Israel
E-mail: orna@cs.technion.ac.il

Michael Huth
Imperial College London
United Kingdom
E-mail: M.Huth@doc.imperial.ac.uk

Library of Congress Control Number: 2007922076

CR Subject Classification (1998): F.3, D.2.4, D.2.2, C.2.4, F.2.2

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-71208-9 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-71208-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12029204 06/3142 5 4 3 2 1 0

Foreword

ETAPS 2007 is the tenth instance of the European Joint Conferences on Theory
and Practice of Software, and thus a cause for celebration.

The events that comprise ETAPS address various aspects of the system de-
velopment process, including specification, design, implementation, analysis and
improvement. The languages, methodologies and tools which support these ac-
tivities are all well within its scope. Different blends of theory and practice
are represented, with an inclination towards theory with a practical motivation
on the one hand and soundly based practice on the other. Many of the issues
involved in software design apply to systems in general, including hardware sys-
tems, and the emphasis on software is not intended to be exclusive.

History and Prehistory of ETAPS

ETAPS as we know it is an annual federated conference that was established
in 1998 by combining five conferences [Compiler Construction (CC), European
Symposium on Programming (ESOP), Fundamental Approaches to Software En-
gineering (FASE), Foundations of Software Science and Computation Structures
(FOSSACS), Tools and Algorithms for Construction and Analysis of Systems
(TACAS)] with satellite events.

All five conferences had previously existed in some form and in various colo-
cated combinations: accordingly, the prehistory of ETAPS is complex. FOSSACS
was earlier known as the Colloquium on Trees in Algebra and Programming
(CAAP), being renamed for inclusion in ETAPS as its historical name no longer
reflected its contents. Indeed CAAP’s history goes back a long way; prior to
1981, it was known as the Colleque de Lille sur les Arbres en Algebre et en
Programmation. FASE was the indirect successor of a 1985 event known as Col-
loquium on Software Engineering (CSE), which together with CAAP formed a
joint event called TAPSOFT in odd-numbered years. Instances of TAPSOFT, all
including CAAP plus at least one software engineering event, took place every
two years from 1985 to 1997 inclusive. In the alternate years, CAAP took place
separately from TAPSOFT.

Meanwhile, ESOP and CC were each taking place every two years from 1986.
From 1988, CAAP was colocated with ESOP in even years. In 1994, CC became
a “conference” rather than a “workshop” and CAAP, CC and ESOP were there-
after all colocated in even years.

TACAS, the youngest of the ETAPS conferences, was founded as an inter-
national workshop in 1995; in its first year, it was colocated with TAPSOFT. It
took place each year, and became a “conference” when it formed part of ETAPS
1998. It is a telling indication of the importance of tools in the modern field of
informatics that TACAS today is the largest of the ETAPS conferences.

VI Foreword

The coming together of these five conferences was due to the vision of a small
group of people who saw the potential of a combined event to be more than the
sum of its parts. Under the leadership of Don Sannella, who became the first
ETAPS steering committee chair, they included: Andre Arnold, Egidio Aste-
siano, Hartmut Ehrig, Peter Fritzson, Marie-Claude Gaudel, Tibor Gyimothy,
Paul Klint, Kim Guldstrand Larsen, Peter Mosses, Alan Mycroft, Hanne Riis
Nielson, Maurice Nivat, Fernando Orejas, Bernhard Steffen, Wolfgang Thomas
and (alphabetically last but in fact one of the ringleaders) Reinhard Wilhelm.

ETAPS today is a loose confederation in which each event retains its own
identity, with a separate programme committee and proceedings. Its format is
open-ended, allowing it to grow and evolve as time goes by. Contributed talks
and system demonstrations are in synchronized parallel sessions, with invited
lectures in plenary sessions. Two of the invited lectures are reserved for “uni-
fying” talks on topics of interest to the whole range of ETAPS attendees. The
aim of cramming all this activity into a single one-week meeting is to create a
strong magnet for academic and industrial researchers working on topics within
its scope, giving them the opportunity to learn about research in related areas,
and thereby to foster new and existing links between work in areas that were
formerly addressed in separate meetings.

ETAPS 1998–2006

The first ETAPS took place in Lisbon in 1998. Subsequently it visited Ams-
terdam, Berlin, Genova, Grenoble, Warsaw, Barcelona, Edinburgh and Vienna
before arriving in Braga this year. During that time it has become established
as the major conference in its field, attracting participants and authors from
all over the world. The number of submissions has more than doubled, and the
numbers of satellite events and attendees have also increased dramatically.

ETAPS 2007

ETAPS 2007 comprises five conferences (CC, ESOP, FASE, FOSSACS, TACAS),
18 satellite workshops (ACCAT, AVIS, Bytecode, COCV, FESCA, FinCo, GT-
VMT, HAV, HFL, LDTA, MBT, MOMPES, OpenCert, QAPL, SC, SLA++P,
TERMGRAPH and WITS), three tutorials, and seven invited lectures (not in-
cluding those that were specific to the satellite events). We received around 630
submissions to the five conferences this year, giving an overall acceptance rate of
25%. To accommodate the unprecedented quantity and quality of submissions,
we have four-way parallelism between the main conferences on Wednesday for
the first time. Congratulations to all the authors who made it to the final pro-
gramme! I hope that most of the other authors still found a way of participating
in this exciting event and I hope you will continue submitting.

ETAPS 2007 was organized by the Departamento de Informática of the Uni-
versidade do Minho, in cooperation with

Foreword VII

– European Association for Theoretical Computer Science (EATCS)
– European Association for Programming Languages and Systems (EAPLS)
– European Association of Software Science and Technology (EASST)
– The Computer Science and Technology Center (CCTC, Universidade do

Minho)
– Camara Municipal de Braga
– CeSIUM/GEMCC (Student Groups)

The organizing team comprised:

– João Saraiva (Chair)
– José Bacelar Almeida (Web site)
– José João Almeida (Publicity)
– Lúıs Soares Barbosa (Satellite Events, Finances)
– Victor Francisco Fonte (Web site)
– Pedro Henriques (Local Arrangements)
– José Nuno Oliveira (Industrial Liaison)
– Jorge Sousa Pinto (Publicity)
– António Nestor Ribeiro (Fundraising)
– Joost Visser (Satellite Events)

ETAPS 2007 received generous sponsorship from Fundação para a Ciência e a
Tecnologia (FCT), Enabler (a Wipro Company), Cisco and TAP Air Portugal.

Overall planning for ETAPS conferences is the responsibility of its Steering
Committee, whose current membership is:

Perdita Stevens (Edinburgh, Chair), Roberto Amadio (Paris), Luciano Baresi
(Milan), Sophia Drossopoulou (London), Matt Dwyer (Nebraska), Hartmut Ehrig
(Berlin), José Fiadeiro (Leicester), Chris Hankin (London), Laurie Hendren
(McGill), Mike Hinchey (NASA Goddard), Michael Huth (London), Anna Ingólfs-
dóttir (Aalborg), Paola Inverardi (L’Aquila), Joost-Pieter Katoen (Aachen),
Paul Klint (Amsterdam), Jens Knoop (Vienna), Shriram Krishnamurthi (Brown),
Kim Larsen (Aalborg), Tiziana Margaria (Göttingen), Ugo Montanari (Pisa),
Rocco de Nicola (Florence), Jakob Rehof (Dortmund), Don Sannella (Edin-
burgh), João Saraiva (Minho), Vladimiro Sassone (Southampton), Helmut Seidl
(Munich), Daniel Varro (Budapest), Andreas Zeller (Saarbrücken).

I would like to express my sincere gratitude to all of these people and or-
ganizations, the programme committee chairs and PC members of the ETAPS
conferences, the organizers of the satellite events, the speakers themselves, the
many reviewers, and Springer for agreeing to publish the ETAPS proceedings.
Finally, I would like to thank the organizing chair of ETAPS 2007, João Saraiva,
for arranging for us to have ETAPS in the ancient city of Braga.

Edinburgh, January 2007 Perdita Stevens
ETAPS Steering Committee Chair

Preface

This volume contains the proceedings of the 13th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems (TACAS
2007) which took place in Braga, Portugal, March 26-30, 2007.

TACAS is a forum for researchers, developers and users interested in rigor-
ously based tools and algorithms for the construction and analysis of systems.
The conference serves to bridge the gaps between different communities that
share common interests in, and techniques for, tool development and its al-
gorithmic foundations. The research areas covered by such communities include
but are not limited to formal methods, software and hardware verification, static
analysis, programming languages, software engineering, real-time systems, com-
munications protocols and biological systems. The TACAS forum provides a
venue for such communities at which common problems, heuristics, algorithms,
data structures and methodologies can be discussed and explored. In doing so,
TACAS aims to support researchers in their quest to improve the utility, re-
liability, flexibility and efficiency of tools and algorithms for building systems.
The specific topics covered by the conference included, but were not limited
to, the following: specification and verification techniques for finite and infinite-
state systems; software and hardware verification; theorem-proving and model-
checking; system construction and transformation techniques; static and run-
time analysis; abstraction techniques for modeling and validation; compositional
and refinement-based methodologies; testing and test-case generation; analyti-
cal techniques for secure, real-time, hybrid, critical, biological or dependable
systems; integration of formal methods and static analysis in high-level hard-
ware design or software environments; tool environments and tool architectures;
SAT solvers; and applications and case studies.

TACAS traditionally considers two types of papers: research papers that de-
scribe in detail novel research within the scope of the TACAS conference; and
short tool demonstration papers that give an overview of a particular tool and
its applications or evaluation. TACAS 2007 received 170 research and 34 tool
demonstration submissions (204 submissions in total), and accepted 45 research
papers and 9 tool demonstration papers. Each submission was evaluated by at
least three reviewers. Submissions co-authored by a Program Committee mem-
ber were neither reviewed, discussed nor decided on by any Program Committee
member who co-authored a submission. After a 35-day reviewing process, the
program selection was carried out in a two-week electronic Program Commit-
tee meeting. We believe that this meeting and its detailed discussions resulted
in a strong technical program. The TACAS 2007 Program Committee selected
K. Rustan M. Leino (Microsoft Research, USA) as invited speaker, who kindly
agreed and gave a talk entitled “Verifying Object-Oriented Software: Lessons
and Challenges,” reporting on program verification of modern software from the

X Preface

perspective of the Spec# programming system. These proceedings also include
the title and abstract of an ETAPS “unifying” talk entitled “There and Back
Again: Lessons Learned on the Way to the Market,” in which Rance Cleaveland
reports about his experience of commercializing formal modeling and verifica-
tion technology, and how this has changed his view of mathematically oriented
software research.

As TACAS 2007 Program Committee Co-chairs we thank the authors and co-
authors of all submitted papers, all Program Committee members, subreviewers,
and especially our Tool Chair Byron Cook and the TACAS Steering Commit-
tee for guaranteeing such a strong technical program. Martin Karusseit gave us
prompt support in dealing with the online conference management service. The
help of Anna Kramer at the Springer Editorial Office with the general organi-
zation and the production of the proceedings was much appreciated. TACAS
2007 was part of the 10th European Joint Conference on Theory and Practice
of Software (ETAPS), whose aims, organization and history are detailed in the
separate foreword by the ETAPS Steering Committee Chair. We would like to
express our gratitude to the ETAPS Steering Committee, particularly its Chair
Perdita Stevens, and the Organizing Committee — notably João Saraiva — for
their efforts in making ETAPS 2007 a successful event.

Last, but not least, we acknowledge Microsoft Research Cambridge for kindly
agreeing to sponsor seven awards (2000 GBP split into seven parts) for students
who co-authored and presented their award-winning paper at TACAS 2007. The
quality of these papers, as judged in their discussion period, was the salient
selection criterion for these awards.

January 2007 Orna Grumberg and Michael Huth

Organization

TACAS Steering Committee

Ed Brinksma ESI and University of Twente (The Netherlands)
Rance Cleaveland University of Maryland and Fraunhofer USA Inc(USA)
Kim Larsen Aalborg University (Denmark)
Bernhard Steffen University of Dortmund (Germany)
Lenore Zuck University of Illinois (USA)

TACAS 2007 Program Committee

Christel Baier TU. Dresden, Germany
Armin Biere Johannes Kepler University, Linz, Austria
Jonathan Billington University of South Australia, Australia
Ed Brinksma ESI and University of Twente, The Netherlands
Rance Cleaveland University of Maryland and Fraunhofer USA Inc,

USA
Byron Cook Microsoft Research, Cambridge, UK
Dennis Dams Bell Labs, Lucent Technologies, Murray Hill, USA
Marsha Chechik University of Toronto, Canada
Francois Fages INRIA Rocquencourt, France
Kathi Fisler Worcester Polytechnic, USA
Limor Fix Intel Research Laboratory, Pittsburgh, USA
Hubert Garavel INRIA Rhône-Alpes, France
Susanne Graf VERIMAG, Grenoble, France
Orna Grumberg TECHNION, Israel Institute of Technology, Israel
John Hatcliff Kansas State University, USA
Holger Hermanns University of Saarland, Germany
Michael Huth Imperial College London, UK
Daniel Jackson Massachusetts Institute of Technology, USA
Somesh Jha University of Wisconsin at Madison, USA
Orna Kupferman Hebrew University, Jerusalem, Israel
Marta Kwiatkowska University of Birmingham, UK
Kim Larsen Aalborg University, Denmark
Michael Leuschel University of Düsseldorf, Germany
Andreas Podelski University of Freiburg, Germany
Tiziana Margaria-Steffen University of Potsdam, Germany
Tom Melham Oxford University, UK
CR Ramakrishnan SUNY Stony Brook, USA
Jakob Rehof University of Dortmund and Fraunhofer ISST,

Germany
Natarajan Shankar SRI, Menlo Park, USA
Lenore Zuck University of Illinois, USA

XII Organization

Additional Reviewers

Parosh Abdulla Erika Ábrahám Cyrille Artho
Domagoj Babic Marco Bakera Ittai Balaban
Bernd Beckert Gerd Behrmann Jens Bendisposto
Josh Berdine Marco Bernardo Tanya Berger-Wolf
Christian Bessière Per Bjesse Dragan Bosnacki
Juliana Bowles Marius Bozga Laura Brandán Briones
Manuela L. Bujorianu Thomas Chatain Krishnendu Chatterjee
Aziem Chawdhary Alessandro Cimatti Koen Lindström Claessen
Christopher Conway Patrick Cousot Frank de Boer
Leonardo de Moura Alexandre David Conrado Daws
Giorgio Delzano Henning Dierks Zinovy Diskin
Dino Distefano Daniel Dougherty Bruno Dutertre
Niklas Een Jochen Eisinger Cindy Eisner
Sandro Etalle Kousha Etessami Azaleh Farzan
Harald Fecher Bernd Finkbeiner Maarten Fokkinga
Marc Fontaine Martin Fränzle Lars Frantzen
Goran Frehse Joern Freiheit Guy Gallasch
Yuan Gan Dan Geiger Naghmeh Ghafari
Mihaela Gheorghiu Georges Gonthier Alexey Gotsman
Michael Greenberg Marcus Groesser Roland Groz
Dimitar Guelev Sumit Gulwani Arie Gurfinkel
Peter Habermehl Rémy Haemmerlé Matt Harren
Tom Hart Monika Heiner Noomene Ben Henda
Marc Herbstritt Tamir Heyman Josef Hooman
Hardi Hungar Radu Iosif Franjo Ivancic
Florent Jacquemard Himanshu Jain David N. Jansen
Thierry Jéron Barbara Jobstmann Narendra Jussien
Toni Jussila Joost-Pieter Katoen Victor Khomenko
Joachim Klein Piotr Kordy Eric Koskinen
Steve Kremer Sriram Krishnamachari Daniel Kroening
Kelvin Ku Hillel Kugler Wouter Kuijper
Viktor Kuncak Marcos E. Kurbán Marcel Kyas
Shuvendu Lahiri Charles Lakos Anna-Lena Lamprecht
Frédéric Lang Rom Langerak Richard Lassaigne
Axel Legay Jerome LeRoux Tal Lev-Ami
Nimrod Lilith Lin Liu Yoad Lustig
Angelika Mader Stephen Magill Thomas Mailund
Oded Maler Shahar Maoz Jelena Marincic
Joao Marques-Silva Thierry Massart Radu Mateescu
Frédéric Mesnard Roland Meyer Marius Mikucionis
Laurent Mounier Anca Muscholl Alan Mycroft
Ralf Nagel Kedar Namjoshi Shiva Nejati
Dejan Nickovic Brian Nielsen Gethin Norman

Organization XIII

Ulrik Nyman Iulian Ober Peter O’Hearn
Ernst-Rüdiger Olderog Rotem Oshman David Parker
Matthew Parkinson Corina Pasareanu Larry Paulson
Lee Pike Nir Piterman Daniel Plagge
Erik Poll Olivier Ponsini Riccardo Pucella
Shaz Qadeer Sophie Quinton Harald Raffelt
Zvonimir Rakamaric Jacob Illum Rasmussen Clemens Renner
Arend Rensink Pierre-Alain Reynier Jan-Willem Roorda
Oliver Roux Oliver Ruething Theo C. Ruys
Andrey Rybalchenko Tarek Sadani Hassen Saidi
Gwen Salaün German Puebla Sanchez Lutz Schroeder
Wolfgang Schubert Stefan Schwoon Helmut Seidl
Koushik Sen Wendelin Serwe Saad Sheikh
Sharon Shoham Marcus Siegle Joao Margues Silva
Jocelyn Simmonds Carsten Sinz Viorica

Sofronie-Stokkermans
Ana Sokolova Sylvain Soliman Kim Solin
Maria Sorea Scott Smolka Biblav Srivastava
Bernhard Steffen Marielle Stoelinga Zhendong Su
Greogoire Sutre Don Syme Mana Taghdiri
Hayo Thielecke Ashish Tiwari Christophe Tollu
Christian Topnik Tayssir Touili Jan Tretmans
Rachel Tzoref Sebastian Uchitel Viktor Vafeiadis
Somsak Vanit-Anunchai Moshe Vardi Helmut Veith
Jacques Verriet Marie Vidal Willem Visser
Horst Voigt Tomas Vojnar Björn Wachter
Uwe Waldmann Xu Wang Heike Wehrheim
Martin Wehrle Ou Wei Christioph Weidenbach
Georg Weissenbacher Bernd Westphal Jon Whittle
Thomas Wies Daniel Willems Christian Winkler
Verena Wolf Olaf Wolkenhauer Tao Xie
Avi Yadgar Alex Yakovlev Hongseok Yang
Karen Yorav Greta Yorsh Cong Yuan
Aleksandr Zaks Lijun Zhang

Table of Contents

Invited Contributions

THERE AND BACK AGAIN: Lessons Learned on the Way to the
Market . 1

Rance Cleaveland

Verifying Object-Oriented Software: Lessons and Challenges 2
K. Rustan M. Leino

Software Verification

Shape Analysis by Graph Decomposition . 3
R. Manevich, J. Berdine, B. Cook, G. Ramalingam, and M. Sagiv

A Reachability Predicate for Analyzing Low-Level Software 19
Shaunak Chatterjee, Shuvendu K. Lahiri, Shaz Qadeer, and
Zvonimir Rakamarić

Generating Representation Invariants of Structurally Complex Data 34
Muhammad Zubair Malik, Aman Pervaiz, and Sarfraz Khurshid

Probabilistic Model Checking and Markov Chains

Multi-objective Model Checking of Markov Decision Processes 50
K. Etessami, M. Kwiatkowska, M.Y. Vardi, and M. Yannakakis

PReMo: An Analyzer for Probabilistic Recursive Models 66
Dominik Wojtczak and Kousha Etessami

Counterexamples in Probabilistic Model Checking . 72
Tingting Han and Joost-Pieter Katoen

Bisimulation Minimisation Mostly Speeds Up Probabilistic Model
Checking . 87

Joost-Pieter Katoen, Tim Kemna, Ivan Zapreev, and
David N. Jansen

Static Analysis

Causal Dataflow Analysis for Concurrent Programs 102
Azadeh Farzan and P. Madhusudan

XVI Table of Contents

Type-Dependence Analysis and Program Transformation for Symbolic
Execution . 117

Saswat Anand, Alessandro Orso, and Mary Jean Harrold

JPF–SE: A Symbolic Execution Extension to Java PathFinder 134
Saswat Anand, Corina S. Păsăreanu, and Willem Visser

Markov Chains and Real-Time Systems

A Symbolic Algorithm for Optimal Markov Chain Lumping 139
Salem Derisavi

Flow Faster: Efficient Decision Algorithms for Probabilistic
Simulations . 155

Lijun Zhang, Holger Hermanns, Friedrich Eisenbrand, and
David N. Jansen

Model Checking Probabilistic Timed Automata with One or
Two Clocks . 170

Marcin Jurdziński, François Laroussinie, and Jeremy Sproston

Adaptor Synthesis for Real-Time Components . 185
Massimo Tivoli, Pascal Fradet, Alain Girault, and Gregor Goessler

Timed Automata and Duration Calculus

Deciding an Interval Logic with Accumulated Durations 201
Martin Fränzle and Michael R. Hansen

From Time Petri Nets to Timed Automata: An Untimed Approach 216
Davide D’Aprile, Susanna Donatelli, Arnaud Sangnier, and
Jeremy Sproston

Complexity in Simplicity: Flexible Agent-Based State Space
Exploration . 231

Jacob I. Rasmussen, Gerd Behrmann, and Kim G. Larsen

On Sampling Abstraction of Continuous Time Logic with Durations 246
Paritosh K. Pandya, Shankara Narayanan Krishna, and Kuntal Loya

Assume-Guarantee Reasoning

Assume-Guarantee Synthesis . 261
Krishnendu Chatterjee and Thomas A. Henzinger

Table of Contents XVII

Optimized L*-Based Assume-Guarantee Reasoning 276
Sagar Chaki and Ofer Strichman

Refining Interface Alphabets for Compositional Verification 292
Mihaela Gheorghiu, Dimitra Giannakopoulou, and
Corina S. Păsăreanu

MAVEN: Modular Aspect Verification . 308
Max Goldman and Shmuel Katz

Biological Systems

Model Checking Liveness Properties of Genetic Regulatory Networks . . . 323
Grégory Batt, Calin Belta, and Ron Weiss

Checking Pedigree Consistency with PCS . 339
Panagiotis Manolios, Marc Galceran Oms, and Sergi Oliva Valls

“Don’t Care” Modeling: A Logical Framework for Developing Predictive
System Models . 343

Hillel Kugler, Amir Pnueli, Michael J. Stern, and
E. Jane Albert Hubbard

Abstraction Refinement

Deciding Bit-Vector Arithmetic with Abstraction . 358
Randal E. Bryant, Daniel Kroening, Joël Ouaknine, Sanjit A. Seshia,
Ofer Strichman, and Bryan Brady

Abstraction Refinement of Linear Programs with Arrays 373
Alessandro Armando, Massimo Benerecetti, and Jacopo Mantovani

Property-Driven Partitioning for Abstraction Refinement 389
Roberto Sebastiani, Stefano Tonetta, and Moshe Y. Vardi

Combining Abstraction Refinement and SAT-Based Model Checking . . . 405
Nina Amla and Kenneth L. McMillan

Message Sequence Charts

Detecting Races in Ensembles of Message Sequence Charts 420
Edith Elkind, Blaise Genest, and Doron Peled

Replaying Play In and Play Out: Synthesis of Design Models from
Scenarios by Learning . 435

Benedikt Bollig, Joost-Pieter Katoen, Carsten Kern, and
Martin Leucker

XVIII Table of Contents

Automata-Based Model Checking

Improved Algorithms for the Automata-Based Approach to
Model-Checking . 451

Laurent Doyen and Jean-François Raskin

GOAL: A Graphical Tool for Manipulating Büchi Automata and
Temporal Formulae . 466

Yih-Kuen Tsay, Yu-Fang Chen, Ming-Hsien Tsai,
Kang-Nien Wu, and Wen-Chin Chan

Faster Algorithms for Finitary Games . 472
Florian Horn

Specification Languages

Planned and Traversable Play-Out: A Flexible Method for Executing
Scenario-Based Programs . 485

David Harel and Itai Segall

motor: The modest Tool Environment . 500
Henrik Bohnenkamp, Holger Hermanns, and Joost-Pieter Katoen

Syntactic Optimizations for PSL Verification . 505
Alessandro Cimatti, Marco Roveri, and Stefano Tonetta

The Heterogeneous Tool Set, Hets . 519
Till Mossakowski, Christian Maeder, and Klaus Lüttich

Security

Searching for Shapes in Cryptographic Protocols . 523
Shaddin F. Doghmi, Joshua D. Guttman, and F. Javier Thayer

Automatic Analysis of the Security of XOR-Based Key Management
Schemes . 538

Véronique Cortier, Gavin Keighren, and Graham Steel

Software and Hardware Verification

State of the Union: Type Inference Via Craig Interpolation 553
Ranjit Jhala, Rupak Majumdar, and Ru-Gang Xu

Hoare Logic for Realistically Modelled Machine Code 568
Magnus O. Myreen and Michael J.C. Gordon

Table of Contents XIX

VCEGAR: Verilog CounterExample Guided Abstraction Refinement . . . 583
Himanshu Jain, Daniel Kroening, Natasha Sharygina, and
Edmund Clarke

Decision Procedures and Theorem Provers

Alloy Analyzer+PVS in the Analysis and Verification of Alloy
Specifications . 587

Marcelo F. Frias, Carlos G. Lopez Pombo, and Mariano M. Moscato

Combined Satisfiability Modulo Parametric Theories 602
Sava Krstić, Amit Goel, Jim Grundy, and Cesare Tinelli

A Gröbner Basis Approach to CNF-Formulae Preprocessing 618
Christopher Condrat and Priyank Kalla

Kodkod: A Relational Model Finder . 632
Emina Torlak and Daniel Jackson

Model Checking

Bounded Reachability Checking of Asynchronous Systems Using
Decision Diagrams . 648

Andy Jinqing Yu, Gianfranco Ciardo, and Gerald Lüttgen

Model Checking on Trees with Path Equivalences . 664
Rajeev Alur, Pavol Černý, and Swarat Chaudhuri

Uppaal/DMC – Abstraction-Based Heuristics for Directed Model
Checking . 679

Sebastian Kupferschmid, Klaus Dräger, Jörg Hoffmann,
Bernd Finkbeiner, Henning Dierks, Andreas Podelski, and
Gerd Behrmann

Distributed Analysis with µCRL: A Compendium of Case Studies 683
Stefan Blom, Jens R. Calamé, Bert Lisser, Simona Orzan,
Jun Pang, Jaco van de Pol, Mohammad Torabi Dashti, and
Anton J. Wijs

Infinite-State Systems

A Generic Framework for Reasoning About Dynamic Networks of
Infinite-State Processes . 690

Ahmed Bouajjani, Yan Jurski, and Mihaela Sighireanu

XX Table of Contents

Unfolding Concurrent Well-Structured Transition Systems 706
Frédéric Herbreteau, Grégoire Sutre, and The Quang Tran

Regular Model Checking Without Transducers (On Efficient Verification
of Parameterized Systems) . 721

Parosh Aziz Abdulla, Giorgio Delzanno, Noomene Ben Henda, and
Ahmed Rezine

Author Index . 737

THERE AND BACK AGAIN:
Lessons Learned on the Way to the Market

Rance Cleaveland

Department of Computer Science, University of Maryland &
Fraunhofer USA Center for Experimental Software Engineering &

Reactive Systems Inc.
rance@cs.umd.edu

Abstract. In 1999 three formal-methods researchers, including the speaker, fou-
nded a company to commercialize formal modeling and verification technology
for envisioned telecommunications customers. Eight years later, the company
sells testing tools to embedded control software developers in the automotive,
aerospace and related industries. This talk will describe the journey taken by the
company during its evolution, why this journey was both less and more far than
it seems, and how the speaker’s views on the practical utility of mathematically
oriented software research changed along the way.

O. Grumberg and M. Huth (Eds.): TACAS 2007, LNCS 4424, p. 1, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Verifying Object-Oriented Software:
Lessons and Challenges

K. Rustan M. Leino

Microsoft Research, Redmond, WA, USA
leino@microsoft.com

Abstract. A program verification system for modern software uses a host of
technologies, like programming language semantics, formalization of good pro-
gramming idioms, inference techniques, verification-condition generation, and
theorem proving. In this talk, I will survey these techniques from the perspective
of the Spec# programming system, of which I will also give a demo. I will reflect
on some lessons learned from building automatic program verifiers, as well as
highlight a number of remaining challenges.

O. Grumberg and M. Huth (Eds.): TACAS 2007, LNCS 4424, p. 2, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Shape Analysis by Graph Decomposition

R. Manevich1,�, J. Berdine3, B. Cook3, G. Ramalingam2, and M. Sagiv1

1 Tel Aviv University
{rumster,msagiv}@post.tau.ac.il

2 Microsoft Research India
grama@microsoft.com

3 Microsoft Research Cambridge
{bycook,jjb}@microsoft.com

Abstract. Programs commonly maintain multiple linked data struc-
tures. Correlations between multiple data structures may often be non-
existent or irrelevant to verifying that the program satisfies certain safety
properties or invariants. In this paper, we show how this independence
between different (singly-linked) data structures can be utilized to per-
form shape analysis and verification more efficiently. We present a new
abstraction based on decomposing graphs into sets of subgraphs, and
show that, in practice, this new abstraction leads to very little loss of
precision, while yielding substantial improvements to efficiency.

1 Introduction

We are interested in verifying that programs satisfy various safety properties
(such as the absence of null dereferences, memory leaks, dangling pointer deref-
erences, etc.) and that they preserve various data structure invariants.

Many programs, such as web-servers, operating systems, network routers,
etc., commonly maintain multiple linked data-structures in which data is added
and removed throughout the program’s execution. The Windows IEEE 1394
(firewire) device driver, for example, maintains separate cyclic linked lists that
respectively store bus-reset request packets, data regarding CROM calls, data re-
garding addresses, and data regarding ISOCH transfers. These lists are updated
throughout the driver’s execution based on events that occur in the machine.
Correlations between multiple data-structures in a program, such as those illus-
trated above, may often be non-existent or irrelevant to the verification task of
interest. In this paper, we show how this independence between different data-
structures can be utilized to perform verification more efficiently.

Many scalable heap abstractions typically maintain no correlation between
different points-to facts (and can be loosely described as independent attribute
abstractions in the sense of [7]). Such abstractions are, however, not precise
enough to prove that programs preserve data structure invariants. More precise
abstractions for the heap that use shape graphs to represent complete heaps [17],
however, lead to exponential blowups in the state space.
� This research was partially supported by the Clore Fellowship Programme. Part of

this research was done during an internship at Microsoft Research India.

O. Grumberg and M. Huth (Eds.): TACAS 2007, LNCS 4424, pp. 3–18, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

4 R. Manevich et al.

In this paper, we focus on (possibly cyclic) singly-linked lists and introduce
an approximation of the full heap abstraction presented in [13]. The new graph
decomposition abstraction is based on a decomposition of (shape) graphs into sets
of (shape) subgraphs (without maintaining correlations between different shape
subgraphs). In our initial empirical evaluation, this abstraction produced results
almost as precise as the full heap abstraction (producing just one false positive),
while reducing the state space significantly, sometimes by exponential factors,
leading to dramatic improvements to the performance of the analysis. We also
hope that this abstraction will be amenable to abstraction refinement techniques
(to handle the cases where correlations between subgraphs are necessary for
verification), though that topic is beyond the scope of this paper.

One of the challenges in using a subgraph abstraction is the design of safe and
precise transformers for statements. We show in this paper that the computation
of the most precise transformer for the graph decomposition abstraction is FNP-
complete.

We derive efficient, polynomial-time, transformers for our abstraction in sev-
eral steps. We first use an observation by Distefano et al. [3] and show how
the most precise transformer can be computed more efficiently (than the naive
approach) by: (a) identifying feasible combinations of subgraphs referred to by a
statement, (b) composing only them, (c) transforming the composed subgraphs,
and (d) decomposing the resulting subgraphs. Next, we show that the trans-
formers can be computed in polynomial time by omitting the feasibility check
(which entails a possible loss in precision). Finally, we show that the resulting
transformer can be implemented in an incremental fashion (i.e., in every iter-
ation of the fixed point computation, the transformer reuses the results of the
previous iteration).

We have developed a prototype implementation of the algorithm and com-
pared the precision and efficiency (in terms of both time and space) of our new
abstraction with that of the full heap abstraction over a standard suite of shape
analysis benchmarks as well as on models of a couple of Windows device drivers.
Our results show that the new analysis produces results as precise as the full
heap-based analysis in almost all cases, but much more efficiently.

A full version of this paper contains extra details and proofs [11].

2 Overview

In this section, we provide an informal overview of our approach. Later sections
provide the formal details.

Fig. 1 shows a simple program that adds elements into independent lists: a
list with a head object referenced by a variable h1 and a tail object referenced
by a variable t1, and a list with a head object referenced by a variable h2 and
a tail object referenced by a variable t2. This example is used as the running
example throughout the paper. The goal of the analysis is to prove that the data
structure invariants are preserved in every iteration, i.e., at label L1 variables h1

Shape Analysis by Graph Decomposition 5

//@assume h1!=null && h1==t1 && h1.n==null && h2!=null && h2==t2 && h2.n==null
//@invariant Reach(h1,t1) && Reach(h2,t2) && DisjointLists(h1,t1)
EnqueueEvents() {
L1: while (...) {

List temp = new List(getEvent());
if (nondet()) {

L2: t1.n = temp;
L3: t1 = temp;

} else {
t2.n = temp;
t2 = temp;

} } }

Fig. 1. A program that enqueues events into one of two lists. nondet() returns either
true or false non-deterministically.

and t1 and variables h2 and t2 point to disjoint acyclic lists, and that the head
and tail pointers point to the first and last objects in every list, respectively.

The shape analysis presented in [13] is able to verify the invariants by gener-
ating, at program label L1, the 9 abstract states shown in Fig. 2. These states
represent the 3 possible states that each list can have: a) a list with one element,
b) a list with two elements; and c) a list with more than two elements. This
analysis uses a full heap abstraction: it does not take advantage of the fact that
there is no interaction between the lists, and explores a state-space that contains
all 9 possible combinations of cases {a, b, c} for the two lists.

h1 t1

null

1

h2 t2

1

h1 t1

null

1

h2 t2

1
1

h1 t1

null

1

h2 t2

>1
1

nullh2 t2

1

h1 t1

1 1

h1 t1

1

nullh2 t2

1 1

1

S1 S2 S3 S4 S5

h1 t1

1

h2 t2

>1

1

null

1

nullh2 t2

1

h1 t1

>1 1

h1 t1

>1

h2 t2

1

1

null

1

h1 t1

>1

h2 t2

>1

1

null

1

S6 S7 S8 S9

Fig. 2. Abstract states at program label L1, generated by an analysis of the program
in Fig. 1 using a powerset abstraction. Edges labeled 1 indicate list segments of length
1, whereas edges labeled with >1 indicate list segments of lengths greater than 1.

The shape analysis using a graph decomposition abstraction presented in this
paper, represents the properties of each list separately and generates, at program
label L1, the 6 abstract states shown in Fig. 3. For a generalization of this
program to k lists, the number of states generated at label L1 by using a graph
decomposition abstraction is 3 × k, compared to 3k for an analysis using a full
heap abstraction, which tracks correlations between properties of all k lists.

6 R. Manevich et al.

h1 t1

null
1

h1 t1

1
null

1

h1 t1

>1
null

1

h2 t2

null
1

h2 t2

1
null

1

h2 t2

>1
null

1

M1 M2 M3 M4 M5 M6

Fig. 3. Abstract states at program label L1, generated by an analysis of the program
in Fig. 1 using the graph decomposition abstraction

In many programs, this exponential factor can be significant. Note that in cases
where there is no correlation between the different lists, the new abstraction of
the set of states is as precise as the full heap abstraction: e.g., Fig. 3 and Fig. 2
represent the same set of concrete states.

We note that in the presence of pointers, it is not easy to decompose the
verification problem into a set of sub-problems to achieve similar benefits. For
example, current (flow-insensitive) alias analyses would not be able to identify
that the two lists are disjoint.

3 A Full Heap Abstraction for Lists

In this section, we describe the concrete semantics of programs manipulating
singly-linked lists and a full heap abstraction for singly-linked lists.

A Simple Programming Language for Singly-Linked Lists. We now de-
fine a simple language and its concrete semantics. Our language has a single
data type List (representing a singly-linked list) with a single reference field n
and a data field, which we conservatively ignore.

There are five types of heap-manipulating statements: (1) x=new List(),
(2) x=null, (3) x=y, (4) x=y.n, and (5) x.n=y. Control flow is achieved by
using goto statements and assume statements of the form assume(x==y) and
assume(x!=y). For simplicity, we do not present a deallocation, free(x), state-
ment and use garbage collection instead. Our implementation supports memory
deallocation, assertions, and detects (mis)use of dangling pointers.

Concrete States. Let PVar be a set of variables of type List . A concrete program
state is a triple C

·= (UC , envC , nC) where UC is the set of heap objects, an
environment envC : PVar ∪ {null} → UC maps program variables (and null)
to heap objects, and nC : UC → UC , which represents the n field, maps heap
objects to heap objects. Every concrete state includes a special object vnull such
that env(null) = vnull.We denote the set of all concrete states by States .

Concrete Semantics. We associate a transition function [[st]] with every statement
st in the program. Each statement st takes a concrete state C, and transforms
it to a state C′ = [[st]](C). The semantics of a statement is given by a pair
(condition, update) such that when the condition specified by condition holds the
state is updated according to the assignments specified by update. The concrete
semantics of program statements is shown in Tab. 1.

Shape Analysis by Graph Decomposition 7

Table 1. Concrete semantics of program statements. Primed symbols denote post-
execution values. We write x,y, and x′ to mean env(x), env(y), and env′(x), respectively.

Statement Condition Update

x=new List() x′ = vnew, where vnew is a fresh List object
n′ = λ v . (v = vnew ? null : n(v))

x=null x′ = null
x=y x′ = y

x=y.n y �= null x′ = n(y)

x.n=y x �= null n′ = λ v . (v = x ? y : n(v))

assume(x!=y) x �= y

assume(x==y) x = y

3.1 Abstracting List Segments

The abstraction is based on previous work on analysis of singly-linked lists [13].
The core concepts of the abstraction are interruptions and uninterrupted list.
An object is an interruption if it is referenced by a variable (or null) or shared
(i.e., has two or more predecessors). An uninterrupted list is a path delimited by
two interruptions that does not contain interruptions other than the delimiters.

Definition 1 (Shape Graphs). A shape graph G
·= (V G, EG, envG, lenG) is

a quadruple where V G is a set of nodes, EG is a set of edges, envG : PVar ∪
{null} → V G maps variables (and null) to nodes, and lenG : EG → pathlen
assigns labels to edges. In this paper, we use pathlen ·= {1, >1}.1

We denote the set of shape graphs by SGPVar, omitting the subscript if no
confusion is likely, and define equality between shape graphs by isomorphism.
We say that a variable x points to a node v ∈ V G if envG(x) = v.

We now describe how a concrete state C
·= (UC , envC , nC) is abstracted into

a shape graph G
·= (V G, EG, envG, lenG) by the function βFH : States → SG.

First, we remove any node in UC that is not reachable from a (node pointed-
to by a) program variable. Let PtVar(C) be the set of objects pointed-to by
some variable, and let Shared(C) the set of heap-shared objects. We create a
shape graph βFH(C) ·= (V G, EG, envG, lenG) where V G ·= PtVar(C)∪Shared(C),
EG ·= {(u, v) | (u, . . . , v) is an uninterrupted list}, envG restricts envC to V G,
and lenG(u, v) is 1 if the uninterrupted list from u to v has one edge and >1
otherwise. The abstraction function αFH is the point-wise extension of βFH to
sets of concrete states2. We say that a shape graph is admissible if it is in the
image of βFH.

1 The abstraction in [13] is more precise, since it uses the abstract lengths {1, 2, > 2}.
We use the lengths {1, > 1}, which we found to be sufficiently precise, in practice.

2 In general, the point-wise extension of a function f : D → D is a function f :
2D → 2D, defined by f(S)

·
= {f(s) | s ∈ S}. Similarly, the extension of a function

f : D → 2D is a function f : 2D → 2D, defined by f(S)
·
=
�

s∈S f(s).

8 R. Manevich et al.

h1 t1

null

h2t2

n n n n n n

h1 t1

null

h2t2

>1 1 1 1

(a) (b)

Fig. 4. (a) A concrete state, and (b) The abstraction of the state in (a)

Proposition 1. A shape graph is admissible iff the following properties hold:
(i) Every node has a single successor; (ii) Every node is pointed-to by a variable
(or null) or is a shared node, and (iii) Every node is reachable from (a node
pointed-to by) a variable.

We use Prop. 1 to determine if a given graph is admissible in linear time and to
conduct an efficient isomorphism test for two shape graphs in the image of the
abstraction. It also provides a bound on the number of admissible shape graphs:
25n2+10n+8, where n

·= |PVar|.

Example 1. Fig. 4(a) shows a concrete state that arises at program label L1 and
Fig. 4(b) shows the shape graph that represents it. ��

Concretization. The function γFH : SG → 2States returns the set of concrete
states that a shape graph represents: γFH(G) ·= {C | βFH(C) = G}. We define
the concretization of sets of shape graphs by using its point-wise extension. We
now have the Galois Connection 〈2States , αFH, γFH, 2SG〉.

Abstract Semantics. The most precise, a.k.a best, abstract transformer [2] of
a statement is given by [[st]]# ·= αFH ◦ [[st]] ◦ γFH. An efficient implementation
of the most precise abstract transformer is shown in the full version [11].

4 A Graph Decomposition Abstraction for Lists

In this section, we introduce the abstraction that is the basis of our approach
as an approximation of the abstraction shown in the previous section. We define
the domain we use—2ASSG, the powerset of atomic shape subgraphs—as well as
the abstraction and concretization functions between 2SG and 2ASSG.

4.1 The Abstract Domain of Shape Subgraphs

Intuitively, the graph decomposition abstraction works by decomposing a shape
graph into a set of shape subgraphs. In principle, different graph decomposi-
tion strategies can be used to get different abstractions. However, in this paper,
we focus on decomposing a shape graph into a set of subgraphs induced by
its (weakly-)connected components. The motivation is that different weakly con-
nected components mostly represent different “logical” lists (though a single list
may occasionally be broken into multiple weakly connected components during
a sequence of pointer manipulations) and we would like to use an abstraction

Shape Analysis by Graph Decomposition 9

that decouples the different logical lists. We will refer to an element of SGPVar

as a shape graph, and an element of SGVars for any Vars ⊆ PVar as a shape
subgraph. We denote the set of shape subgraphs by SSG and define Vars(G) to
be the set of variables that appear in G, i.e., mapped by envG to some node.

4.2 Abstraction by Graph Decomposition

We now define the decomposition operation. Since our definition of shape graphs
represents null using a special node, we identify connected components after
excluding the null node. (Otherwise, all null -terminated lists, i.e. all acyclic lists,
will end up in the same connected component.)

Definition 2 (Projection). Given a shape subgraph G
·= (V, E, env, len) and

a set of nodes W ⊆ V , the subgraph of G induced by W , denoted by G|W ,
is the shape subgraph (W, E′, env′, len′), where E′ ·= E ∩ (W × W), env′ ·=
env ∩ (Vars(G) × W), and len′ ·= len ∩ (E′ × pathlen).

Definition 3 (Connected Component Decomposition). For a shape sub-
graph G

·= (V, E, env, len), let R
·= E′∗ be the reflexive, symmetric, transitive

closure of the relation E′ ·= E \ {(vnull, v), (v, vnull) | v ∈ V }. That is, R does
not represent paths going through null. Let [R] be the set of equivalence classes
of R. The connected component decomposition of G is given by

Components(G) ·= {G|C′ | C′ = C ∪ {vnull}, C ∈ [R]} .

Example 2. Referring to Fig. 2 and Fig. 3, we have Components(S2)={M1, M5}.

AbstractingAwayNull-valueCorrelations. ThedecompositionComponents
manages to decouple distinct lists in a shape graph. However, it fails to decouple
lists from null-valued variables.

if (?) x = new List() else x = null;
y = new List();

null
1

y

null
1

xy

null
1

x

M1 M2 M3

(a) (b)

Fig. 5. (a) A code fragment; and (b) Shape subgraphs arising after executing y=new
List(). M1: y points to a list and x is not null, M2: y points to a list and x is null;
and M3: x points to a list and y is not null.

Example 3. Consider the code fragment shown in Fig. 5(a) and the shape sub-
graphs arising after y=new List(). y points to a list (with one cell), while x
is null or points to another list (with one cell). Unfortunately, the y list will
be represented by two shape subgraphs in the abstraction, one corresponding
to the case that x is null (M2) and one corresponding to the case that x is not

10 R. Manevich et al.

null (M1). If a number of variables can be optionally null, this can lead to an
exponential blowup in the representation of other lists! Our preliminary investi-
gations show that this kind of exponential blow-up can happen in practice. ��

The problem is the occurrence of shape subgraphs that are isomorphic except
for the null variables. We therefore define a coarser abstraction by decompos-
ing the set of variables that point to the null node. To perform this further
decomposition, we define the following operations:

– nullvars : SSG → 2PVar returns the set of variables that point to null in a
shape subgraph.

– unmap : SSG×2PVar → SSG removes the mapping of the specified variables
from the environment of a shape subgraph.

– DecomposeNullVars : SSG → 2SSG takes a shape subgraph and returns: (a)
the given subgraph without the null variables, and (b) one shape subgraph
for every null variable, which contains just the null node and the variable:

DecomposeNullVars(G) ·= {unmap(G,nullvars(G))}∪
{unmap(G|vnull ,Vars(G) \ {var} | var ∈ nullvars(G)} .

In the sequel, we use the point-wise extension of DecomposeNullVars.

We define the set ASSG of atomic shape subgraphs to be the set of subgraphs
that consist of either a single connected component or a single null -variable fact
(i.e., a single variable pointing to the null node). Non-atomic shape subgraphs
correspond to conjunctions of atomic shape subgraphs and are useful intermedi-
aries during concretization and while computing transformers.

The abstraction function βGD : SG → 2ASSG is given by

βGD(G) ·= DecomposeNullVars(Components(G)) .

The function αGD : 2SG → 2ASSG is the point-wise extension of βGD. Thus,
ASSG = αGD(SG) is the set of shape subgraphs in the image of the abstraction.

Note: We can extend the decomposition to avoid exponential blowups created
by different sets of variables pointing to the same (non-null) node. However, we
believe that such correlations are significant for shape analysis (as they capture
different states of a single list) and abstracting them away can lead to a significant
loss of precision. Hence, we do not explore this possibility in this paper.

4.3 Concretization by Composition of Shape Subgraphs

Intuitively, a shape subgraph represents the set of its super shape graphs. Con-
cretization consists of connecting shape subgraphs such that the intersection of
the sets of shape graphs that they represent is non-empty. To formalize this, we
define the following binary relation on shape subgraphs.

Definition 4 (Subgraph Embedding). We say that a shape subgraph G′ ·=
(V ′, E′, env′, len′) is embedded in a shape subgraph G

·= (V, E, env, len), denoted

Shape Analysis by Graph Decomposition 11

G′ � G, if there exists a function f : V → V ′ such that: (i) (u, v) ∈ E iff
(f(u), f(v)) ∈ E′; (ii) f(env(x)) = env′(x) for every x ∈ Vars(G); and (iii) for
every x ∈ Vars(G′) \ Vars(G), f−1(env′(x)) ∩ V = ∅ or env′(x) = env′(null).3

Thus, for any two atomic shape subgraphs G and G′, G′ � G iff G = G′.
We make 〈SSG, �〉 a complete partial order by adding a special element ⊥ to

represent infeasible shape subgraphs, and define ⊥ � G for every shape subgraph
G. We define the operation compose : SSG×SSG → SSG that accepts two shape
subgraphs and returns their greatest lower bound (w.r.t. to the � ordering). The
operation naturally extends to sets of shape subgraphs.

Example 4. Referring to Fig. 2 and Fig. 3, we have S1 � M1 and S1 � M4, and
compose(M1, M4) = S1. ��

The concretization function γGD : 2ASSG → 2SG is defined by

γGD(XG) ·= {G | G = compose(Y), Y ⊆ XG, G is admissible} .

This gives us the Galois Connection 〈2SG, αGD, γGD, 2ASSG〉.

Properties of the Abstraction. Note that there is neither a loss of precision
nor a gain in efficiency (e.g., such as a reduction in the size of the represen-
tation) when we decompose a single shape graph, i.e., γGD(βGD(G)) = {G}.
Both potentially appear when we abstract a set of shape graphs by decomposing
each graph in a set. However, when there is no logical correlation between the
different subgraphs (in the graph decomposition), we will gain efficiency without
compromising precision.

Example 5. Consider the graphs in Fig. 2 and Fig. 3. Abstracting S1 gives
βGD(S1) = {M1, M4}. Concretizing back, gives γGD({M1, M4}) = {S1}. Ab-
stracting S5 yields βGD(S5) = {M2, M5}. Concretizing {M1, M2, M4, M5} re-
sults in {S1, S2, S4, S5}, which overapproximates {S1, S5}. ��

5 Developing Efficient Abstract Transformers
for the Graph Decomposition Abstraction

In this section, we show that it is hard to compute the most precise trans-
former for the graph decomposition abstraction in polynomial time and develop
sound and efficient transformers. We demonstrate our ideas using the statement
t1.n=temp in the running example and the subgraphs in Fig. 6 and Fig. 3.

An abstract transformer Tst : 2ASSG → 2ASSG is sound for a statement st if
for every set of shape subgraphs XG the following holds:

(αGD ◦ [[st]]# ◦ γGD)(XG) ⊆ Tst(XG) . (1)

3 We define f−1(x)
·
= {y ∈ V . f(y) = x}.

12 R. Manevich et al.

null
1

temp

M7

h1

t1

1
null

1

temp h1 t1

1 1
null

1

temp h1 t1

>1 1
null

1

temp

M8 M9 M10

(a) (b)

Fig. 6. (a) A subgraph at label L2 in Fig. 1, and (b) Subgraphs at L3 in Fig. 1

5.1 The Most Precise Abstract Transformer

We first show how the most precise transformer [[st]]GD ·= αGD ◦ [[st]]# ◦ γGD can
be computed locally, without concretizing complete shape graphs. As observed by
Distefano et al. [3], the full heap abstraction transformer [[st]]# can be computed
by considering only the relevant part of an abstract heap. We use this observation
to create a local transformer for our graph decomposition abstraction.

The first step is to identify the subgraphs “referred” to by the statement st.
Let Vars(st) denote the variables that occur in statement st. We define:

– The function modcompsst : 2SSG → 2SSG returns the shape subgraphs that
have a variable in Vars(st): modcompsst(XG) ·= {G ∈ XG | Vars(G) ∩
Vars(st) �= ∅} .

– The function samecompsst : 2SSG → 2SSG returns the complementary subset:
samecompsst(XG) ·= XG \ modcompsst(XG) .

Example 6. modcompst1.n=temp({M1, . . . , M7}) = {M1, M2, M3, M7} and
samecompst1.n=temp({M1, . . . , M7}) = {M4, M5, M6}. ��

Note that the transformer [[st]]# operates on complete shape graphs. However, the
transformer can be applied, in a straightforward fashion, to any shape subgraph
G as long as G contains all variables mentioned in st (i.e., Vars(G) ⊇ Vars(st)).
Thus, our next step is to compose subgraphs in modcompsst(XG) to generate
subgraphs that contain all variables of st. However, not every set of subgraphs
in modcompsst(XG) is a candidate for this composition step.

Given a set of subgraphs XG, a set XG′ ⊆ XG, is defined to be weakly feasible
in XG if compose(XG′) �=⊥. Further, we say that XG′ is feasible in XG if there
exists a subset XR ⊆ XG such that compose(XG′ ∪ XR) is an admissible shape
graph (i.e., ∃G ∈ SG : XG′ ⊆ αGD(G) ⊆ XG).

Example 7. The subgraphs M1 and M7 are feasible in {M1, . . . , M7}, since they
can be composed with M4 to yield an admissible shape graph. However, M1 and
M2 contain common variables and thus {M1, M2} is not (even weakly) feasible
in {M1, . . . , M7}. In Fig. 7, the shape subgraphs M1 and M4 are weakly-feasible
but not feasible in {M1, . . . , M5} (there is no way to compose subgraphs to
include w, since M1 and M2 and M3 and M4 are not weakly-feasible.). ��

Shape Analysis by Graph Decomposition 13

x z

null
1

w x

null
1

y w

null
1

y

null
1

z

null
1

M1 M2 M3 M4 M5

Fig. 7. A set of shape subgraphs over the set of program variables {x,y,z,w}

Let st be a statement with k
·= |Vars(st)| variables (k ≤ 2 in our language). Let

M (≤k) denote all subsets of size k or less of a set M . We define the transformer
for a heap-mutating statement st by:

TGD
st (XG) ·= let Y = {[[st]]#(G) | M = modcompsst(XG), R ∈ M (≤k),

G = compose(R),Vars(st) ⊆ Vars(G),
R is feasible in XG}

in samecompsst(XG) ∪ αGD(Y) .

The transformer for an assume statement st is slightly different. An assume
statement does not modify incoming subgraphs, but filters out some subgraphs
that are not consistent with the condition specified in the assume statement. Note
that it is possible for even subgraphs in samecompsst(XG) to be filtered out by
the assume statement, as shown by the following definition of the transformer:

TGD
st (XG) ·= let Y = {[[st]]#(G) | R ∈ XG(≤k+1),

G = compose(R),Vars(st) ⊆ Vars(G),
R is feasible in XG}

in αGD(Y) .

Example 8. The transformer TGD
t1.n=temp: (a) composes subgraphs: compose(M1,

M7), compose(M2, M7), and compose(M3, M7); (b) finds that the three pairs
of subgraphs are feasible in {M1, . . . , M7}; (c) applies the local full heap ab-
straction transformer [[t1.n=temp]]#, producing M8, M9, and M10, respectively;
and (d) returns the final result: TGD

t1.n=temp({M1, . . . , M7}) = {M4, M5, M6} ∪
{M8, M9, M10}. ��

Theorem 1. The transformer TGD
st is the most precise abstract transformer.

Although TGD
st applies [[st]]# to a polynomial number of shape subgraphs and

[[st]]# itself can be computed in polynomial time, the above transformer is still
exponential in the worst-case, because of the difficulty of checking the feasibility
of R in XG. In fact, as we now show, it is impossible to compute the most precise
transformer in polynomial time, unless P=NP.

Definition 5 (Most Precise Transformer Decision Problem). The deci-
sion version of the most precise transformer problem is as follows: for a set of
atomic shape subgraphs XG, a statement st, and an atomic shape subgraph G,
does G belong to [[st]]GD(XG)?

14 R. Manevich et al.

Theorem 2. The most precise transformer decision problem, for the graph de-
composition abstraction presented above, is NP-complete (even when the input
set of subgraphs is restricted to be in the image of αGD). Similarly, checking if
XG′ is feasible in XG is NP-complete.

Proof (sketch). By reduction from the EXACT COVER problem: given a uni-
verse U = {u1, . . . , un} of elements and a collection of subsets A ⊆ 2U , decide
whether there exists a subset B ⊆ A such that every element u ∈ U is contained
in exactly one set in B. EXACT COVER is known to be NP-complete [4]. ��

5.2 Sound and Efficient Transformers

We safely replace the check for whether R is feasible in XG by a check for
whether R is weakly-feasible (i.e., whether compose(R) �=⊥) and obtain the
following transformer. (Note that a set of subgraphs is weakly-feasible iff no two
of the subgraphs have a common variable; hence, the check for weak feasibility
is easy.) For a heap-manipulating statement st, we define the transformer by:

̂TGD
st (XG) ·= let Y = {[[st]]#(G) | M = modcompsst(XG), R ∈ M (≤k),

G = compose(R) �=⊥,Vars(st) ⊆ Vars(G)}
in samecompsst(XG) ∪ αGD(Y) .

For an assume statement st, we define the transformer by:

̂TGD
st (XG) ·= let Y = {[[st]]#(G) | R ∈ XG(≤k+1),

G = compose(R) �=⊥,Vars(st) ⊆ Vars(G)}
in αGD(Y) .

By definition, (1) holds for ̂TGD
st . Thus, ̂TGD

st is a sound transformer.

We apply several engineering optimizations to make the transformer ̂TGD
st effi-

cient in practice: (i) by preceding statements of the form x=y and x=y.n with an
assignment x=null, we specialize the transformer to achieve linear time complex-
ity; (ii) we avoid unnecessary compositions of shape subgraphs for statements
of the form x.n=y and assume(x==y), when a shape subgraph contains both x
and y; and (iii) assume statements do not change subgraphs, therefore we avoid
performing explicit compositions and propagate atomic subgraphs.

5.3 An Incremental Transformer

The goal of an incremental transformer is to compute ̂TGD
st (XG∪{D}) by reusing

̂TGD
st (XG).We define the transformer for a heap-manipulating statement st by:

̂TGD
st (XG ∪ {D}) ·= if D ∈ modcompsst({D})

let Y = {[[st]]#(G) | M = modcompsst(XG ∪ {D}),
R ∈ M (≤k), D ∈ R,
G = compose(R) �=⊥,Vars(st) ⊆ Vars(G)}

Shape Analysis by Graph Decomposition 15

in ̂TGD
st (XG) ∪ αGD(Y)

else
̂TGD

st (XG) ∪ {D} .

Here, if the new subgraph D is not affected by the statement, we simply add
it to the result. Otherwise, we apply the local full heap abstraction transformer
only to subgraphs composed from the new subgraph (for sets of subgraphs not
containing D, the result has been computed in the previous iteration).

For an assume statement st, we define the transformer by:

̂TGD
st (XG ∪ {D}) ·= let Y = {[[st]]#(G) | R ∈ (XG ∪ {D})(≤k+1),

D ∈ R, G = compose(R) �=⊥,Vars(st) ⊆ Vars(G)}
in ̂TGD

st (XG) ∪ αGD(Y) .

Again, we apply the transformer only to (composed) subgraphs containing D.

6 Prototype Implementation and Empirical Results

Implementation. We implemented the analyses based on the full heap abstrac-
tion and the graph decomposition abstraction described in previous sections
in a system that supports memory deallocation and assertions of the form
assertAcyclicList(x), assertCyclicList(x), assertDisjointLists(x,y),
and assertReach(x,y). The analysis checks null dereferences, memory leakage,
misuse of dangling pointers, and assertions. The system supports non-recursive
procedure calls via call strings and unmaps variables as they become dead.

Example Programs. We use a set of examples to compare the full heap abstraction-
based analysis with the graph decomposition-based analysis. The first set of ex-
amples consists of standard list manipulating algorithms operating on a single list
(except for merge). The second set of examples consists of programs manipulating
multiple lists: the running example, testing an implementation of a queue by two
stacks4, joining 5 lists, splitting a list into 5 lists, and two programs that model as-
pects of device drivers. We created the serial port driver example incrementally,
first modeling 4 of the lists used by the device and then 5.

Precision. The results of running the analyses appear in Tab. 2. The graph
decomposition-based analysis failed to prove that the pointer returned by getLast
is non-null5, and that a dequeue operation is not applied to an empty queue in
queue 2 stacks. On all other examples, the graph decomposition-based analysis
has the same precision as the analysis based on the full heap abstraction.
4 queue 2 stacks was constructed to show a case where the graph decomposition-based

analysis loses precision—determining that a queue is empty requires maintaining a
correlation between the two (empty) lists.

5 A simple feasibility check while applying the transformer of the assertion would have
eliminated the subgraph containing the null pointer.

16 R. Manevich et al.

Performance. The graph decomposition-based analysis is slightly less efficient
than the analysis based on the full heap abstraction on the standard list ex-
amples. For the examples manipulating multiple lists, the graph decomposition-
based analysis is faster by up to a factor of 212 (in the serial 5 lists example)
and consumes considerably less space. These results are also consistent with the
number of states generated by the two analyses.

Table 2. Time, space, number of states (shape graphs for the analysis based on full
heap abstraction and subgraphs for the graph decomposition-based analysis), and num-
ber of errors reported. Rep. Err. and Act. Err. are the number of errors reported, and
the number of errors that indicate real problems, respectively. #Loc indicates the
number of CFG locations. F.H. and G.D. stand for full heap and graph decomposition,
respectively.

Benchmark Time (sec.) Space (Mb.) #States R. Err./A. Err.
(#Loc) F.H. G.D. F.H. G.D. F.H. G.D. F.H. G.D.
create (11) 0.03 0.19 0.3 0.3 27 36 0/0 0/0

delete (25) 0.17 0.27 0.8 0.9 202 260 0/0 0/0

deleteAll (12) 0.05 0.09 0.32 0.36 35 64 0/0 0/0

getLast (13) 0.06 0.13 0.42 0.47 67 99 0/0 1/0

getLast cyclic (13) 0.08 0.09 0.39 0.41 53 59 0/0 0/0

insert (23) 0.14 0.28 0.75 0.82 167 222 0/0 0/0

merge (37) 0.34 0.58 2.2 1.7 517 542 0/0 0/0

removeSeg (23) 0.19 0.33 0.96 1.0 253 283 0/0 0/0

reverse (13) 0.09 0.12 0.47 0.46 82 117 0/0 0/0

reverse cyclic (14) 0.14 0.36 0.6 1.4 129 392 0/0 0/0

reverse pan (12) 0.2 0.6 0.9 2.2 198 561 0/0 0/0

rotate (17) 0.05 0.08 0.3 0.4 33 50 0/0 0/0

search nulldref (7) 0.06 0.1 0.4 0.4 48 62 1/1 1/1

swap (13) 0.05 0.09 0.3 0.4 35 62 0/0 0/0

enqueueEvents (49) 0.2 0.2 1.2 0.7 248 178 0/0 0/0

queue 2 stacks (61) 0.1 0.2 0.6 0.7 110 216 0/0 1/0

join 5 (68) 12.5 0.5 67.0 2.4 14,704 1,227 0/0 0/0

split 5 (47) 28.5 0.3 126.2 1.7 27,701 827 0/0 0/0

1394diag (180) 26.2 1.8 64.7 8.5 10,737 4,493 0/0 0/0

serial 4 lists (248) 36.9 1.7 230.1 11.7 27,851 6,020 0/0 0/0

serial 5 lists (278) 552.6 2.6 849.2 16.4 89,430 7,733 0/0 0/0

7 Related Work

Single-graph Abstractions. Some early shape analyses used a single shape graph
to represent the set of concrete states [8,1,16]. As noted earlier, it is possible to
generalize our approach and consider different strategies for decomposing shape
graphs. Interestingly, the single shape graph abstractions can be seen as one
extreme point of such a generalized approach, which relies on a decomposition

Shape Analysis by Graph Decomposition 17

of a graph into its set of edges. The decomposition strategy we presented in this
paper leads to a more precise analysis.

Partially Disjunctive Heap Abstraction. In previous work [12], we described a
heap abstraction based on merging sets of graphs with the same set of nodes
into one (approximate) graph. The abstraction in the current paper is based
on decomposing a graph into a set of subgraphs. The abstraction in [12] suffers
from the same exponential blow-ups as the full heap abstraction for our running
example and examples containing multiple independent data structures.

Heap Analysis by Separation. Yahav et al. [18] and Hackett et al. [6] decompose
heap abstractions to separately analyze different parts of the heap (e.g., to estab-
lish the invariants of different objects). A central aspect of the separation-based
approach is that the analysis/verification problem is itself decomposed into a set
of problem instances, and the heap abstraction is specialized for each problem
instance and consists of one sub-heap consisting of the part of the heap relevant
to the problem instance, and a coarser abstraction of the remaining part of the
heap ([6] uses a points-to graph). In contrast, we simultaneously maintain ab-
stractions of different parts of the heap and also consider the interaction between
these parts. (E.g., it is possible for our decomposition to dynamically change as
components get connected and disconnected.)

Application to Other Shape Abstractions. Lev-Ami et al. [9] present an abstrac-
tion that could be seen as an extension of the full heap abstraction in this paper
to more complex data structures, e.g., doubly-linked lists and trees. We believe
that applying the techniques in this paper to their analysis is quite natural and
can yield a more scalable analysis for more complex data structures. Distefano
et al. [3] present a full heap abstraction based on separation logic, which is sim-
ilar to the full heap abstraction presented in this paper. We therefore believe
that it is possible to apply the techniques in this paper to their analysis as well.
TVLA[10] is a generic shape analysis system that uses canonical abstraction.
We believe it is possible to decompose logical structures in a similar way to
decomposing shape subgraphs and extend the ideas in this paper to TVLA.

Decomposing Heap Abstractions for Interprocedural Analysis. Gotsman et al. [5]
and Rinetzky et al. [14,15] decompose heap abstractions to create procedure
summaries for full heap+ abstractions. This kind of decomposition, which does
not lead to loss of precision (except when cutpoints are abstracted), is orthogonal
to our decomposition of heaps, which is used to reduce the number of abstract
states generated by the analysis. We believe it is possible to combine the two
techniques to achieve a more efficient interprocedural shape analysis.

Acknowledgements. We thank Joseph Joy from MSR India for helpful dis-
cussions on Windows device drivers.

18 R. Manevich et al.

References

1. D. R. Chase, M. Wegman, and F. Zadeck. Analysis of pointers and structures. In
Proc. Conf. on Prog. Lang. Design and Impl., New York, NY, 1990. ACM Press.

2. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Conference
Record of the Fourth Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, Los Angeles, California, 1977. ACM Press, New York,
NY.

3. D. Distefano, P. W. O’Hearn, and H. Yang. A local shape analysis based on
separation logic. In In Proc. 13th Intern. Conf. on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’06), 2006.

4. M. R. Garey and D. S. Johnson. Computers and Intractability, A Guide to the
Theory of NP-Completeness. W. H. Freeman and Company, New York, 1979.

5. A. Gotsman, J. Berdine, and B. Cook. Interprocedural shape analysis with sepa-
rated heap abstractions. In Proceedings of the 13th International Static Analysis
Symposium (SAS’06), 2006.

6. B. Hackett and R. Rugina. Region-based shape analysis with tracked locations. In
Proc. Symp. on Principles of Prog. Languages, 2005.

7. N. D. Jones and S. S. Muchnick. Complexity of flow analysis, inductive assertion
synthesis, and a language due to dijkstra. In Program Flow Analysis: Theory and
Applications, chapter 12. Prentice-Hall, Englewood Cliffs, NJ, 1981.

8. N. D. Jones and S. S. Muchnick. Flow analysis and optimization of Lisp-like
structures. In S. S. Muchnick and N. D. Jones, editors, Program Flow Analysis:
Theory and Applications, chapter 4. Prentice-Hall, Englewood Cliffs, NJ, 1981.

9. T. Lev-Ami, N. Immerman, and M. Sagiv. Abstraction for shape analysis with fast
and precise transformers. In CAV, 2006.

10. T. Lev-Ami and M. Sagiv. TVLA: A system for implementing static analyses. In
Proc. Static Analysis Symp., 2000.

11. R. Manevich, J. Berdine, B. Cook, G. Ramalingam, and M. Sagiv. Shape analysis
by graph decomposition. 2006. Full version.

12. R. Manevich, M. Sagiv, G. Ramalingam, and J. Field. Partially disjunctive heap
abstraction. In Proceedings of the 11th International Symposium, SAS 2004, Lec-
ture Notes in Computer Science. Springer, August 2004.

13. R. Manevich, E. Yahav, G. Ramalingam, and M. Sagiv. Predicate abstraction and
canonical abstraction for singly-linked lists. In Proceedings of the 6th International
Conference on Verification, Model Checking and Abstract Interpretation, VMCAI
2005. Springer, January 2005.

14. N. Rinetzky, J. Bauer, T. Reps, M. Sagiv, and R. Wilhelm. A semantics for proce-
dure local heaps and its abstractions. In 32nd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL’05), 2005.

15. N. Rinetzky, M. Sagiv, and E. Yahav. Interprocedural shape analysis for cutpoint-
free programs. In 12th International Static Analysis Symposium (SAS), 2005.

16. M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-analysis problems in languages
with destructive updating. ACM Transactions on Programming Languages and
Systems, 20(1), January 1998.

17. M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic.
ACM Transactions on Programming Languages and Systems, 2002.

18. E. Yahav and G. Ramalingam. Verifying safety properties using separation and
heterogeneous abstractions. In Proceedings of the ACM SIGPLAN 2004 conference
on Programming language design and implementation, 2004.

A Reachability Predicate for Analyzing

Low-Level Software

Shaunak Chatterjee1, Shuvendu K. Lahiri2, Shaz Qadeer2,
and Zvonimir Rakamarić3

1 Indian Institute of Technology, Kharagpur
2 Microsoft Research

3 University of British Columbia

Abstract. Reasoning about heap-allocated data structures such as
linked lists and arrays is challenging. The reachability predicate has
proved to be useful for reasoning about the heap in type-safe languages
where memory is manipulated by dereferencing object fields. Sound and
precise analysis for such data structures becomes significantly more chal-
lenging in the presence of low-level pointer manipulation that is prevalent
in systems software.

In this paper, we give a novel formalization of the reachability predi-
cate in the presence of internal pointers and pointer arithmetic. We have
designed an annotation language for C programs that makes use of the
new predicate. This language enables us to specify properties of many
interesting data structures present in the Windows kernel. We present
preliminary experience with a prototype verifier on a set of illustrative
C benchmarks.

1 Introduction

Static software verification has the potential to improve programmer productiv-
ity and reduce the cost of producing reliable software. By finding errors at the
time of compilation, these techniques help avoid costly software changes late in
the development cycle and after deployment. Many successful tools for detecting
errors in systems software have emerged in the last decade [2,16,10]. These tools
can scale to large software systems; however, this scalability is achieved at the
price of precision. Heap-allocated data structures are one of the most significant
sources of imprecision for these tools. Fundamental correctness properties, such
as control and memory safety, depend on intermediate assertions about the con-
tents of data structures. Therefore, imprecise reasoning about the heap usually
results in a large number of annoying false warnings increasing the probability
of missing the real errors.

The reachability predicate is important for specifying properties of linked data
structures. Informally, a memory location v is reachable from a memory location
u in a heap if either u = v or u contains the address of a location x and v
is reachable from x. Automated reasoning about the reachability predicate is
difficult for two reasons. First, reachability cannot be expressed in first-order

O. Grumberg and M. Huth (Eds.): TACAS 2007, LNCS 4424, pp. 19–33, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

20 S. Chatterjee et al.

logic, the input language of choice for most modern and scalable automated
theorem provers. Second, it is difficult to precisely specify the update to the
reachability predicate when a heap location is updated.

Previous work has addressed these problems in the context of a reachability
predicate suitable for verifying programs written in high-level languages such
as Java and C# [22,18,1,17,5]. This predicate is inadequate for reasoning about
low-level software, which commonly uses programming idioms such as internal
pointers (addresses of object fields) and pointer arithmetic to move between
object fields. We illustrate this point with several examples in Section 2.

The goal of our work is to build a scalable verifier for systems software that
can reason precisely about heap-allocated data structures. To this end, we intro-
duce in this paper a new reachability predicate suitable for verifying low-level
programs written in C. We describe how to automatically compute the precise
update for the new predicate and a method for reasoning about it using auto-
mated first-order theorem provers. We have designed a specification language
that uses our reachability predicate, allows succinct specification of interesting
properties of low-level software, and is conducive to modular program verifica-
tion. We have implemented a modular verifier for annotated C programs called
Havoc (Heap-Aware Verifier Of C). We report on our preliminary encouraging
experience with Havoc on a set of small but interesting C programs.

1.1 Related Work

Havoc is a static assertion checker for C programs in the same style that
ESC/Java [15] is a static checker for Java programs, and Spec# [4] is a sta-
tic checker for C# programs. However, Havoc is different in that it deals
with the low-level intricacies of C and provides reachability as a fundamen-
tal primitive in its specification language. The ability to specify reachability
properties also distinguishes Havoc from other assertion checkers for C such as
CBMC [9] and SATURN [23]. The work of McPeak and Necula [20] allows reason-
ing about reachability, but only indirectly using ghost fields in heap-allocated ob-
jects. These ghost fields must be updated manually by the programmer whereas
Havoc provides the update to its reachability predicate automatically.

There are several verifiers that do allow the verification of properties based
on the reachability predicate. TVLA [19] is a verification tool based on abstract
interpretation using 3-valued logic [22]. It provides a general specification logic
combining first-order logic with reachability. Recently, they have also added an
axiomatization of reachability in first-order logic to the system [18]. However,
TVLA has mostly been applied to Java programs and, to our knowledge, cannot
handle the interaction of reachability with pointer arithmetic.

Caduceus [14] is a modular verifier for C programs. It allows the program-
mer to write specifications in terms of arbitrary recursive predicates, which are
axiomatized in an external theorem prover. It then allows the programmer to
interactively verify the generated verification conditions in that prover. Havoc
only allows the use of a fixed set of reachability predicates but provides much
more automation than Caduceus. All the verification conditions generated by

A Reachability Predicate for Analyzing Low-Level Software 21

Flink
Blink

Flink
Blink

Flink
Blink

Flink
Blink

Flink
Blink

Flink
Blink

p

p+4

q

k

Fig. 1. Doubly-linked lists in Java and C

Havoc are discharged automatically using SMT (satisfiability modulo-theories)
provers. Unlike Caduceus, Havoc understands internal pointers and the use of
pointer arithmetic to move between fields of an object.

Calcagno et al. have used separation logic to reason about memory safety
and absence of memory leaks in low-level code [7]. They perform abstract in-
terpretation using rewrite rules that are tailored for “multi-word lists”, a fixed
predicate expressed in separation logic. Our approach is more general since we
provide a family of reachability predicates, which the programmer can compose
arbitrarily for writing richer specifications (possibly involving quantifiers); the
rewriting involved in the generation and validation of verification conditions is
taken care of automatically by Havoc. Their tool can infer loop invariants but
handles procedures by inlining. In contrast, Havoc performs modular reasoning,
but does not infer loop invariants.

2 Motivation

Consider the two doubly-linked lists shown in Figure 1. The list at the top
is typical of high-level object-oriented programs. The linking fields Flink and
Blink point to the beginning of the successor and predecessor objects in the list.
In each iteration of a loop that iterates over the linked list, the iterator variable
points to the beginning of a list object whose contents are accessed by a simple
field dereference. Existing work would allow properties of this linked list to be
specified using the two reachability predicates RFlink and RBlink, each of which is
a binary relation on objects. For example, RFlink(a, b) holds for objects a and b
if a.Flinki = b for some i ≥ 0.

The list at the bottom is typical of low-level systems software. Such a list
is constructed by embedding a structure LIST ENTRY containing the two fields,
Flink and Blink, into the objects that are supposed to be linked by the list.

22 S. Chatterjee et al.

typedef struct _LIST_ENTRY {
struct _LIST_ENTRY *Flink;
struct _LIST_ENTRY *Blink;

} LIST_ENTRY;

The linking fields, instead of pointing to the beginning of the list objects, point to
the beginning of the embedded linking structure. In each iteration of a loop that
iterates over such a list, the iterator variable contains a pointer to the beginning
of the structure embedded in a list object. A pointer to the beginning of the list
object is obtained by performing pointer arithmetic captured with the following
C macro.

#define CONTAINING_RECORD(a, T, f) \
(T *) ((int)a - (int)&((T *)0)->f)

This macro expects an internal pointer a to a field f of an object of type T and
returns a typed pointer to the beginning of the object.

There are two good engineering reasons for this ostensibly dangerous pro-
gramming idiom. First, it becomes possible to write all list manipulation code
for operations such as insertion and deletion separately in terms of the type
LIST ENTRY. Second, it becomes easy to have one object be a part of several dif-
ferent linked lists; there is a field of type LIST ENTRY in the object corresponding
to each list. For these reasons, this idiom is common both in the Windows and
the Linux operating system1.

Unfortunately, this programming idiom cannot be modeled using the predi-
cates RFlink and RBlink described earlier. The fundamental reason is that these
lists may link objects via pointers at a potentially non-zero offset into the ob-
jects. Different data structures might use different offsets; in fact, the offset used
by a particular data structure is a crucial part of its specification. This is in stark
contrast to the first kind of linked lists in which the linking offset is guaranteed
to be zero.

The crucial insight underlying our work is that for analyzing low-level soft-
ware, the reachability predicate must be a relation on pointers rather than objects.
A pointer is a pair comprising an object and an integer offset into the object,
and the program memory is a map from pointers to pointers. We introduce an
integer-indexed set of binary reachability predicates: for each integer n, the pred-
icate Rn is a binary relation on the set of pointers. Suppose n is an integer and p
and q are pointers. Then Rn(p, q) holds if and only if either p = q, or recursively
Rn(∗(p + n), q) holds, where ∗(p + n) is the pointer stored in memory at the
address obtained by incrementing p by n.

Our reachability predicate captures the insight that in low-level programs a
list of pointers is constructed by performing an alternating sequence of pointer
arithmetic (with respect to a constant offset) and memory lookup operations.
For example, let p be the address of the Flink field of an object in the linked
list at the bottom of Figure 1. Then, the forward-going list is captured by the

1 In Linux, the CONTAINING RECORD macro corresponds to the list entry macro.

A Reachability Predicate for Analyzing Low-Level Software 23

typedef struct { int data; LIST_ENTRY link; } A;

struct { LIST_ENTRY a; } g;

requires BS(&g.a) && B(&g.a, 0) == &g.a
requires forall(x, list(g.a.Flink, 0), x == &g.a || Off(x) == 4)
requires forall(x, list(g.a.Flink, 0), x == &g.a || Obj(x) != Obj(&g.a))
modifies decr(list(g.a.Flink, 0), 4)
ensures forall(x, list(g.a.Flink, 0), x == &g.a || deref(x-4) == 42)

void list_iterate() {
LIST_ENTRY *iter = g.a.Flink;
while (iter != &(g.a)) {

A *elem = CONTAINING_RECORD(iter, A, link);
elem->data = 42;
iter = iter->Flink;

}
}

Fig. 2. Example

pointer sequence p, ∗(p + 0), ∗(∗(p + 0) + 0), Similarly, assuming that the
size of a pointer is 4, the backward-going list is captured by the pointer sequence
p, ∗(p + 4), ∗(∗(p + 4) + 4),

The new reachability predicate is a generalization of the existing reachability
predicate and can just as well describe the linked list at the top of Figure 1.
Suppose the offset of the Flink field in the linked objects is k and q is the
address of the start of some object in the list. Then, the forward-going list is
captured by q, ∗(q+k), ∗(∗(q+k)+k), . . . and the backward-going list is captured
by q, ∗(q + k + 4), ∗(∗(q + k + 4) + k + 4),

2.1 Example

We illustrate the use of our reachability predicate in program verification with
the example in Figure 2. The example has a type A and a global structure g
with a field a. The field a in g and the field link in the type A have the type
LIST ENTRY, which was defined earlier. These fields are used to link together in
a circular doubly-linked list the object g and a set of objects of type A. The field
a in g is the dummy head of this list. The procedure list iterate iterates over
this list setting the data field of each list element to 42.

In addition to verifying the safety of each memory access in list iterate, we
would like to verify two additional properties. First, the only parts of the caller-
visible state modified by list iterate are the data fields of the list elements.
Second, the data field of each list element is 42 when list iterate terminates.

To prove these properties on list iterate, it is crucial to have a precondition
stating that the list of objects linked by the Flink field of LIST ENTRY is circular.

24 S. Chatterjee et al.

To specify this property, we extend the notion of well-founded lists, first described
in an earlier paper [17], to our new reachability predicate. The predicate Rn is
well-founded with respect to a set BS of blocking pointers if for all pointers p,
the sequence ∗(p+n), ∗(∗(p+n)+n), . . . contains a pointer in BS. This member
of BS is called the block of p with respect to the offset n and is denoted by
Bn[p]. Typical members of BS include pointer values that indicate the end of
linked lists, e.g., the null pointer or the head &g.a of the circular lists in our
example.

Our checker Havoc enforces a programming discipline associated with well-
founded lists. Havoc provides an auxiliary variable BS whose value is a set of
pointers and allows program statements to add or remove pointers from BS.
Further, each heap update in the program is required to preserve the well-
foundedness of Rn with respect to each offset n of interest.

The first precondition of list iterate uses the notion of well-foundedness to
express that &g.a is the head of a circular list. In this precondition, B(&g.a,0)
refers to B0[&g.a]. We use B0 to specify that the circular list is formed by the
Flink field, which is at offset 0 within LIST ENTRY. The second precondition illus-
trates how facts about an entire collection of pointers are expressed in our speci-
fication language. In this precondition, the expression list(g.a.Flink,0) refers
to the finite and non-empty set of pointers in the sequence g.a.Flink,∗(g.a.Flink
+ 0), . . . upto but excluding the pointer B0(g.a.Flink). Also, the function Off
retrieves the offset (or the second component) from a pointer. This precondi-
tion states that the offset of each pointer in list(g.a.Flink,0), excluding the
dummy head, is equal to 4, the offset of the field sequence link.Flink in the
type A. The third precondition uses the function Obj, which retrieves the object
(or the first component) from a pointer. This precondition says that the object
of each pointer, excluding the dummy head, in list(g.a.Flink,0) is different
from the object of the dummy head.

The modifies clause illustrates yet another constructor of a set of pointers
provided by our language. If S is a set of pointers, then decr(S, n) is the set of
pointers obtained by decrementing each pointer in S by n. The modifies clause
captures the update of the data field at relative offset −4 from the members of
list(g.a.Flink,0).

The postcondition of the procedure introduces the operator deref, which
returns the content of the memory at a pointer address. This postcondition says
that the value of the data field of each object in the list, excluding the dummy
head, is 42.

Using loop invariants provided by us (not shown in the figure), Havoc is able
to verify that the implementation of this procedure satisfies its specification.
Note that in the presence of potentially unsafe pointer arithmetic and casts, it
is nontrivial to verify that the heap update operation elem->data := 42 does
not change the linking structure of the list. Since Havoc cannot rely on the
static type of the variable elem, it must prove that the offset of elem before the
operation is 0 and therefore the operation cannot modify either linking field.

A Reachability Predicate for Analyzing Low-Level Software 25

typedef struct { int x; int y[10]; } DATA;

DATA *create() {
int a;

DATA *d =
(DATA *) malloc(sizeof(DATA));

init(d->y, 10, &a);

d->x = a;

return d;
}

procedure create() returns d:ptr {
var a:ptr;
a := call malloc(4);
d := call malloc(44);

call init(PLUS(d, Ptr(null,4)),
Ptr(null,10), a);

Mem[PLUS(d, Ptr(null,0))] := Mem[a];
call free(a);

}

void init(int *in, int size,
int *out) {

int i;
i = 0;
while (i < size) {
in[i] = i;
*out = *out + i;
i++;

}
}

procedure init(in:ptr, size:ptr,
out:ptr) {

var i:ptr;
i := Ptr(null,0);
while (LT(i, size)) {
Mem[PLUS(in, i)] := i;
Mem[out] := PLUS(Mem[out], i);
i := PLUS(i, Ptr(null,1));

}
}

Fig. 3. Translation of C programs

3 Operational Semantics of C

Our semantics for C programs depends on three fundamental types, the unin-
terpreted type ref of object references, the type int of integers, and the type
ptr = ref × int of pointers. Each variable in a C program, regardless of its
static type, contains a pointer value. A pointer is a pair containing an object
reference and an integer offset. An integer value is encoded as a pointer value
whose first component is the special constant null of type ref. The constructor
function Ptr : ref× int → ptr constructs a pointer value from its components.
The selector functions Obj : ptr → ref and Off : ptr → int retrieve the first
and second component of a pointer value, respectively.

The heap of a C program is modeled using two map variables, Mem and Alloc,
and a map constant Size. The variable Mem maps pointers to pointers and intu-
itively represents the contents of the memory at a pointer location. The variable
Alloc maps object references to the set {UNALLOCATED, ALLOCATED, FREED}
and is used to model memory allocation. The constant Size maps object refer-
ences to positive integers and represents the size of the object. The procedure call
malloc(n) for allocating a memory buffer of size n returns a pointer Ptr(o, 0)
where o is an object such that Alloc[o] = UNALLOCATED before the call and
Size[o] ≥ n. The procedure modifies Alloc[o] to be ALLOCATED. The proce-
dure call free(p) for freeing a memory buffer whose address is contained in

26 S. Chatterjee et al.

p requires that Alloc[Obj(p)] == ALLOCATED and Off(p) == 0 and updates
Alloc[Obj(p)] to FREED. The full specification of malloc and free is given in
a detailed report [8].

Havoc takes an annotated C program and translates it into a BoogiePL [11]
program. BoogiePL has been designed to be an intermediate language for pro-
gram verification tools that use automated theorem provers. This language is
simple and has well-defined semantics. The operational semantics of C, as in-
terpreted by Havoc, is best understood by comparing a C program with its
BoogiePL translation. Figure 3 shows two procedures, create and init, on the
left and their translations on the right. The example uses the C struct type DATA.

Note that variables of both static type int and int* in C are translated
uniformly as variables of type ptr. The translation of the first argument d->y
of the call to init shows that we treat field accesses and pointer arithmetic
uniformly. Since the field y is at an offset 4 in DATA, we treat d->y as d+4. The
translation uses the function PLUS to model pointer arithmetic and the function
LT to model arithmetic comparison operations on the type ptr. The definitions
of these functions are also given in the detailed report [8].

The example also shows how we handle the & operator. In the procedure
create, the address of the local variable a is passed as an out-parameter to
the procedure init. Our translation handles this case by allocating a on the
heap. Note that our translator allocates a static variable on the heap only if
the program takes the address of that variable. For example, there is no heap
allocation for the local variable i in the procedure init. To prevent access to
the heap-allocated object corresponding to a local variable of a procedure, it is
freed at the end of the procedure.

4 Reachability and Pointer Arithmetic

We now give the formal definition of our new reachability predicate in terms
of the operational semantics of C as interpreted by Havoc. As in our previ-
ous work [17], we define the reachability predicate on well-founded heaps. Let
the heap be represented by the function Mem : ptr → ptr and let BS ⊆ ptr
be a set of pointers. We define a sequence of functions f i : int × ptr → ptr
for i ≥ 0 as follows: for all n ∈ int and u ∈ ptr, we have f0(n, u) = u and
f i+1(n, u) = Mem[f i(n, u) + n] for all i > 0. Then Mem is well-founded with re-
spect to the set of blocking pointers BS and offset n if for all u ∈ ptr, there
is i > 0 such that f i(n, u) ∈ BS. If a heap is well-founded with respect to BS
and n, then the function idxn maps a pointer u to the least i > 0 such that
f i(n, u) ∈ BS. Using these concepts, we now define for each n ∈ int, a predicate
Rn ⊆ ptr × ptr and a function Bn : ptr → ptr.

Rn[u, v] ≡ ∃i. 0 ≤ i < idxn(u) ∧ v = f i(n, u)
Bn[u] ≡ f idxn(u)(n, u)

Suppose a program performs the operation Mem[x] := y to update the heap.
Then Havoc performs the most precise update to the predicate Rn and the func-
tion Bn by automatically inserting the following code just before the operation.

A Reachability Predicate for Analyzing Low-Level Software 27

n ∈ int
e ∈ Expr ::= n | x | addr(x) | e + e | e - e | deref(e) | block(e, n) |

old(x) | old deref(e) | old block(e, n)
S ∈ Set ::= {e} | BS | list(e, n) | old list(e, n) | array(e, n, e)
φ ∈ Formula ::= alloc(e) | old alloc(e) | Obj(e) == Obj(e) | Off(e) < Off(e) |

in(e, S) | ! φ | φ && φ | forall(x, S, φ)
C ∈ CmpdSet ::= S | incr(C, n) | decr(C, n) | deref(C) | old deref(C)

union(C, C) | intersection(C,C) | difference(C, C)

Fig. 4. Annotation language

assert(Rn[y, x− n] ⇒ BS[y])
Bn := λ u : ptr. Rn[u, x− n]? (BS[y] ? y : Bn[y]) : Bn[u]
Rn := λ u, v : ptr.

Rn[u, x − n]
? (Rn[u, v] ∧ ¬Rn[x − n, v]) ∨ v = x − n ∨ (¬BS[y] ∧ Rn[y, v])
: Rn[u, v]

The assertion enforces that the heap stays well-founded with respect to the
blocking set BS and the offset n. The value of Bn[u] is updated only if x − n
is reachable from u and otherwise remains unchanged. Similarly, the value of
Rn[u, v] is updated only if x − n is reachable from u and otherwise remains
unchanged. These updates are generalizations of the updates provided in our
earlier paper [17] to account for pointer arithmetic.

We note that the ability to provide such updates as described above guar-
antees that if a program’s assertions —preconditions, postconditions, and loop
invariants— are quantifier-free, then its verification condition is quantifier-free
as well. This property is valuable because the handling of quantifiers is typi-
cally the least complete and efficient aspect of all theorem provers that combine
first-order reasoning with arithmetic.

5 Annotation Language

Our annotation language has three components: basic expressions that evaluate
to pointers, set expressions that evaluate to sets of pointers, and formulas that
evaluate to boolean values. The syntax for these expressions is given in Figure 4.

The set of basic expressions is captured by Expr . The expression addr(x)
represents the address of the variable x. The expression x represents the value
of x in the post-state and old(x) refers to the value of x in the pre-state of the
procedure. The expressions deref(e) and old deref(e) refer to the value stored
in memory at the address e in the post-state and pre-state, respectively. The
expressions block(e, n) and old block(e, n) represent Bn[e] in the post-state
and pre-state of the procedure, respectively.

The set expressions are divided into the basic set expressions in Set and the
compound set expressions in CmpdSet . The expression array(e1, n, e2) refers to
the set of pointers {e1, e1 + n, e1 + 2 ∗ n, . . . , e1 + Off(e2) ∗ n}. The expressions

28 S. Chatterjee et al.

// translation of requires φ
requires [|φ|]

// translation of ensures ψ
ensures [|ψ|]

// translation of modifies C
modifies Mem
ensures forall x:ptr:: old(Alloc)[Obj(x)] == UNALLOCATED ||

old([|in(x, C)|]) ||
old(Mem)[x] == Mem[x]

modifies Rn

ensures forall x:ptr:: old(Alloc)[Obj(x)] == UNALLOCATED ||
exists y:ptr:: old(Rn)[x,y] && old([|in(y + n, C)|]) ||
forall z:ptr:: old(Rn)[x,z] == Rn[x,z]

modifies Bn

ensures forall x:ptr:: old(Alloc)[Obj(x)] == UNALLOCATED ||
exists y:ptr:: old(Rn)[x,y] && old([|in(y + n, C)|]) ||
old(Bn)[x] == Bn[x]

// translation of frees D
modifies Alloc
ensures forall o:ref:: old(Alloc)[o] == UNALLOCATED ||

(old([|in(Ptr(o, 0), D)|]) &&
Alloc[Obj(x)] != UNALLOCATED) ||
Alloc[x] == old(Alloc)[x]

Fig. 5. Translation of requires φ, ensures ψ, modifies C, and frees D

list(e, n) and old list(e, n) represent the list of pointers described by the
reachability predicate Rn in the post-state and pre-state, respectively. The com-
pound set expressions include incr(C, n) and decr(C, n) which respectively in-
crement and decrement each element of C by n, and deref(C) and old deref(C)
which read the contents of memory at the members of C in the post-state and
pre-state, respectively. The expressions union(C, C), intersection(C, C), and
difference(C, C) provide the basic set-theoretic operations.

Havoc is designed to be a modular verifier. Consequently, we allow each
procedure to be annotated by four possible specifications, requires φ, ensures
ψ, modifies C, and frees D, where φ, ψ ∈ Formula and C, D ∈ CmpdSet .
The default value for φ and ψ is true, and for C and D is ∅. The translation of
these specifications is given in Figure 5. The translation refers to the translation
function [| ◦ |], which is defined in the Appendix of the detailed report [8]. We
also allow each loop to be annotated with a formula representing its invariant.

In Figure 5, the translation of requires φ and ensures ψ is obtained in
a straightforward fashion by applying the translation function [| ◦ |] to φ and
ψ respectively. Then, there are four pairs of modifies and ensures clauses. The
translation of modifies C is captured by the first three pairs and the translation
of frees D is captured by the fourth pair. Our novel use of set expressions in

A Reachability Predicate for Analyzing Low-Level Software 29

these specifications results in a significant reduction in the annotation overhead
at the C level.

The first pair of modifies and ensures clauses in Figure 5 states that the
contents of Mem remains unchanged at each pointer that is allocated and not a
member of C in the pre-state of the procedure. The second pair is parameter-
ized by an integer offset n and specifies the update of Rn. Similarly, the third
pair specifies the update of Bn. Based on the set C provided by the program-
mer in the modifies clause, one such pair is automatically generated for each
offset n of interest. The postcondition corresponding to Rn says that if the set
of pointers reachable from any pointer x is disjoint from the set decr(C, n),
then that set remains unchanged by the execution of the procedure. The post-
condition corresponding to Bn says that if the set of pointers reachable from
any pointer x is disjoint from the set decr(C, n), then Bn[x] remains unchanged
by the execution of the procedure. These two postconditions are guaranteed by
our semantics of reachability and the semantics of the modifies clause. Conse-
quently, Havoc only uses these postconditions at call sites and does not attempt
to verify them. The set D in the annotation frees D is expected to contain only
pointers with offset 0. Then, the fourth pair states that the contents of Alloc re-
main unchanged at each object that is allocated and is such that a pointer to the
beginning of that object is not a member of D in the pre-state of the procedure.

6 Implementation

We have developed Havoc, a prototype tool for verifying C programs annotated
with specifications in our annotation language. We use the ESP [10] infrastruc-
ture to construct the control flow graph and parse the annotations. Havoc
translates an annotated C program into an annotated BoogiePL program as
described in Section 3. The Boogie verifier generates a verification condition
(VC) from the BoogiePL description, which implies the partial correctness of the
BoogiePL program. The VC generation in Boogie is performed using a varia-
tion [3] of the standard weakest precondition transformer [13]. The resulting VC
is checked for validity using the Simplify theorem prover [12].

6.1 Proving Verification Conditions

The verification condition generated is a formula in first-order logic with equality,
augmented with the following theories:

1. The theory of integer linear arithmetic with symbols +, ≤ and constants
. . . , −1, 0, 1, 2,

2. The theory of arrays with the select and update symbols [21].
3. The theory of pairs, consisting of the symbols for the pair constructor Ptr,

and the selector functions Obj and Off.
4. The theory of the new reachability predicate, consisting of the symbols Rn,

Bn, BS and Mem.

30 S. Chatterjee et al.

∀u : ptr. u = Ptr(Obj(u), Off(u))
∀x : ref, i : int. x = Obj(Ptr(x, i))
∀x : ref, i : int. i = Off(Ptr(x, i))

Fig. 6. Axioms for the theory of pairs

To verify the verification conditions, the Simplify theorem prover requires
axioms about the theory of pairs and the theory of reachability. The axioms for
the theory of pairs are fairly intuitive and are given in Figure 6. The axioms
for the theory of reachability are given in Figure 7. Note that the symbol + in
Figure 7 is the addition operation on pointers. We have overloaded + for ease of
exposition. The first axiom defines that Rn[u, v] is true if and only if either v = u,
or the pointer Mem[u + n] is not a blocking pointer in BS and Rn[Mem[u + n], v] is
true. The second axiom similarly defines Bn[u]. We call these two axioms the base
axioms of reachability because they attempt to capture the recursive definitions
of Rn and Bn.

Rn[u, v] ⇔ (v = u ∨ (¬BS[Mem[u + n]] ∧ Rn[Mem[u + n], v]))
v = Bn[u] ⇔ (BS[Mem[u + n]] ? v = Mem[u + n] : v = Bn[Mem[u + n]])

Rn[u, v] ∧ Rn[v, w] ⇒ Rn[u, w]
BS[u] ∧ Rn[v, u] ⇒ u = v

Rn[u, v] ⇒ Bn[u] = Bn[v]
u = Mem[u + n] ⇒ BS[u]

¬BS[Mem[u + n]] ⇒ Rn[Mem[u + n]] = Rn[u] \ {u}

Fig. 7. Derived axioms for the theory of reachability predicate. The variables u, v and
w are implicitly universally quantified.

It is well known that the reachability predicate (ours as well as the classic
one) cannot be expressed in first-order logic [6]. Hence, similar to our previous
work [17], we provide a sound but (necessarily) incomplete axiomatization of the
theory by providing a set of derived axioms following the base axioms in Fig-
ure 7. Since the definitions of Rn and Bn are well-founded, these derived axioms
can be proved from the base axioms using well-founded induction. The derived
axioms are subtle generalizations of similar axioms presented for well-founded
lists without pointers [17]. They have sufficed for all the examples in this paper.

7 Evaluation

In this section, we describe our experience applying Havoc to a set of examples.
These examples illustrate the use of pointer arithmetic, internal pointers, arrays,
and linked lists in C programs. For each of these examples, we prove a variety
of partial correctness properties, including the absence of null dereferences.

Figure 8 lists the examples considered in this paper. iterate is the example
from Figure 2 in Section 2. iterate acyclic and array iterate are versions

A Reachability Predicate for Analyzing Low-Level Software 31

Example Time(s)

iterate 1.8
iterate acyclic 1.7
array iterate 1.4
slist add 1.5

reverse acyclic 2.0

Example Time(s)

array free 2.5
slist sorted insert 16.43

dlist add 38.9
dlist remove 45.4
allocator 901.8

Fig. 8. Results of assertion checking. Simplify was used as the theorem prover. The
experiments were conducted on a 3.2GHz, 2GB machine running Windows XP.

of iterate for an acyclic list and an array, respectively. reverse acyclic per-
forms in-place reversal of an acyclic singly-linked list; we verify that the output
list is acyclic and contains the same set of pointers as the input list. The ex-
ample slist add adds a node to an acyclic singly-linked list. dlist add and
dlist remove are the insertion and deletion routines for cyclic doubly-linked
lists used in the Windows kernel. The examples using doubly-linked lists require
the use of R0 and R4 to specify the lists reachable through the Flink and Blink
fields of the LIST ENTRY structure. The example slist sorted insert inserts a
node into a sorted (by the data field) linked list; we verify that the output list is
sorted. This example illustrates the use of arithmetic reasoning (using ≤) on the
data fields. The example array free takes as input an array a of pointers, and
iterates over the array to free the pointers that are not null. We check that an
object is freed at most once. To verify this property, we needed to express the
invariant that if i is distinct from j, then the pointers a[i] and a[j] are aliased
only if they both point to null.

The final example allocator is a low-level storage allocator that closely re-
sembles the malloc firstfit acyclic example described by Calcagno et al. [7].
The allocator maintains a list of free blocks within a single large object; each
node in the list maintains a pointer to the next element of the list and the size of
the free block in the node. Allocation of a block may result in either removing a
node (if the entire free block at the node is returned) from the list, or readjusting
the size of the free block (in case only a chunk of the free block is returned). We
check two main postconditions: (i) the allocated block (when a non null pointer
is returned) is a portion of some free block in the input list, and (ii) the free
blocks of the output list do not overlap. This example required the use of R0 to
specify the list of free blocks.

Figure 8 gives the running times taken by Simplify to discharge the veri-
fication conditions. The examples involving singly-linked lists and arrays take
only a few seconds. The examples involving doubly-linked lists take much longer
because they make heavy use of quantifiers to express the invariant that con-
nects the forward-going and backward-going links in a doubly-linked list. The
allocator example makes heavy use of arithmetic as well as quantifiers, and
therefore takes the longest to verify.

Interestingly, Havoc revealed a bug in our implementation of the allocator.
This bug was caused by an interaction between pointer casting and pointer
arithmetic. Instead of the following correct code

32 S. Chatterjee et al.

return ((unsigned int) cursor) + sizeof(RegionHeader);

we had written the following incorrect code

return (unsigned int) (cursor + sizeof(RegionHeader));

Note that the two are different because the size of RegionHeader, the static
type of cursor, is different from the size of unsigned int. We believe that such
mistakes are common when dealing with low-level C code, and our tool can
provide great value in debugging such programs.

8 Conclusions and Future Work

In this work, we introduced a new reachability predicate suitable for reasoning
about data structures in low-level systems software. Our reachability predicate is
designed to handle internal pointers and pointer arithmetic on object fields. It is
a generalization of the classic reachability predicate used in existing verification
tools. We have designed an annotation language for C programs that allows
concise specification of properties of lists and arrays. We have also developed
Havoc, a verifier for C programs annotated with assertions in our specification
language.

We believe that Havoc is a good foundation for building powerful safety
checkers for systems software based on automated first-order theorem proving.
We are currently working to extend Havoc with techniques for inference and
abstraction to enable its use on realistic code bases inside Windows.

Acknowledgements. Our formalization of the C memory model has been
deeply influenced by discussions with Madan Musuvathi. We are grateful to
Stephen Adams, Henning Rohde, Jason Yang and Zhe Yang for their help with
the ESP infrastructure. Rustan Leino answered numerous questions about Sim-
plify and Boogie. Finally, we thank Tom Ball and Rustan Leino for providing
valuable feedback on the paper.

References

1. I. Balaban, A. Pnueli, and L. D. Zuck. Shape analysis by predicate abstraction.
In Verification, Model checking, and Abstract Interpretation (VMCAI ’05), LNCS
3385, pages 164–180, 2005.

2. T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani. Automatic predicate
abstraction of C programs. In Programming Language Design and Implementation
(PLDI ’01), pages 203–213, 2001.

3. M. Barnett and K. R. M. Leino. Weakest-precondition of unstructured programs.
In ACM SIGPLAN-SIGSOFT Workshop on Program Analysis For Software Tools
and Engineering (PASTE ’05), pages 82–87, 2005.

4. M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# programming system: An
overview. In Construction and Analysis of Safe, Secure and Interoperable Smart
Devices, LNCS 3362, pages 49–69, 2005.

A Reachability Predicate for Analyzing Low-Level Software 33

5. J. Bingham and Z. Rakamarić. A logic and decision procedure for predicate ab-
straction of heap-manipulating programs. In Verification, Model Checking, and
Abstract Interpretation (VMCAI ’06), LNCS 3855, pages 207–221, 2006.

6. E. Börger, E. Grädel, and Y. Gurevich. The Classical Decision Problem. Springer-
Verlag, 1997.

7. C. Calcagno, D. Distefano, P. W. O’Hearn, and H. Yang. Beyond reachability:
Shape abstraction in the presence of pointer arithmetic. In Static Analysis Sym-
posium (SAS ’06), LNCS 4134, pages 182–203, 2006.

8. S. Chatterjee, S. K. Lahiri, S. Qadeer, and Z. Rakamarić. A reachability predicate
for analyzing low-level software. Technical Report MSR-TR-2006-154, Microsoft
Research, 2006.

9. E. Clarke, D. Kroening, N. Sharygina, and K. Yorav. Predicate abstraction of
ANSI–C programs using SAT. Formal Methods in System Design (FMSD), 25:105–
127, September–November 2004.

10. M. Das, S. Lerner, and M. Seigle. ESP: Path-sensitive program verification in
polynomial time. In Programming Language Design and Implementation (PLDI
’02), pages 57–68, 2002.

11. R. DeLine and K. R. M. Leino. BoogiePL: A typed procedural language for checking
object-oriented programs. Technical Report MSR-TR-2005-70, Microsoft Research,
2005.

12. D. L. Detlefs, G. Nelson, and J. B. Saxe. Simplify: A theorem prover for program
checking. Technical report, HPL-2003-148, 2003.

13. E. W. Dijkstra. Guarded commands, nondeterminacy and formal derivation of
programs. Communications of the ACM, 18:453–457, 1975.

14. J. Filliâtre and C. Marché. Multi-prover verification of C programs. In Inter-
national Conference on Formal Engineering Methods (ICFEM ’04), LNCS 3308,
pages 15–29, 2004.

15. C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and R. Stata.
Extended static checking for Java. In Programming Language Design and Imple-
mentation (PLDI’02), pages 234–245, 2002.

16. T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. In
Principles of Programming Languages (POPL ’02), pages 58–70, 2002.

17. S. K. Lahiri and S. Qadeer. Verifying properties of well-founded linked lists. In
Principles of Programming Languages (POPL ’06), pages 115–126, 2006.

18. T. Lev-Ami, N. Immerman, T. W. Reps, S. Sagiv, S. Srivastava, and G. Yorsh.
Simulating reachability using first-order logic with applications to verification of
linked data structures. In Conference on Automated Deduction (CADE ’05), LNCS
3632, pages 99–115, 2005.

19. T. Lev-Ami and S. Sagiv. TVLA: A system for implementing static analyses. In
Static Analysis Symposium (SAS ’00), LNCS 1824, pages 280–301, 2000.

20. S. McPeak and G. C. Necula. Data structure specifications via local equality
axioms. In Computer-Aided Verification (CAV ’05), LNCS 3576, pages 476–490,
2005.

21. G. Nelson and D. C. Oppen. Simplification by cooperating decision procedures.
ACM Transactions on Programming Languages and Systems (TOPLAS), 2(1):245–
257, 1979.

22. S. Sagiv, T. W. Reps, and R. Wilhelm. Solving shape-analysis problems in lan-
guages with destructive updating. ACM Transactions on Programming Languages
and Systems (TOPLAS), 20(1):1–50, 1998.

23. Y. Xie and A. Aiken. Scalable error detection using boolean satisfiability. In
Principles of Programming Languages (POPL ’05), pages 351–363, 2005.

Generating Representation Invariants of
Structurally Complex Data

Muhammad Zubair Malik, Aman Pervaiz, and Sarfraz Khurshid

The University of Texas at Austin, 1 University Station C5000, Austin, TX 78712
{mzmalik,pervaiz,khurshid}@ece.utexas.edu

Abstract. Generating likely invariants using dynamic analyses is becoming an
increasingly effective technique in software checking methodologies. This paper
presents Deryaft, a novel algorithm for generating likely representation invariants
of structurally complex data. Given a small set of concrete structures, Deryaft
analyzes their key characteristics to formulate local and global properties that
the structures exhibit. For effective formulation of structural invariants, Deryaft
focuses on graph properties, including reachability, and views the program heap
as an edge-labeled graph.

Deryaft outputs a Java predicate that represents the invariants; the predicate
takes an input structure and returns true if and only if it satisfies the invariants.
The invariants generated by Deryaft directly enable automation of various exist-
ing frameworks, such as the Korat test generation framework and the Juzi data
structure repair framework, which otherwise require the user to provide the in-
variants. Experimental results with the Deryaft prototype show that it feasibly
generates invariants for a range of subject structures, including libraries as well
as a stand-alone application.

1 Introduction

Checking programs that manipulate dynamically-allocated, structurally complex data
is notoriously hard. Existing dynamic and static analyses [19, 4, 8, 20, 2, 10] that check
non-trivial properties of such programs impose a substantial burden on the users, e.g.,
by requiring the users to provide invariants, such as loop or representation invariants,
or to provide complete executable implementations as well as specifications.

We present Deryaft, a novel framework for generating representation invariants of
structurally complex data given a (small) set of structures. The generated invariants
serve various purposes. Foremost, they formally characterize properties of the given
structures. More importantly, they facilitate the use of various analyses. To illustrate,
consider test generation using a constraint solver, such as Korat [4], which requires
the user to provide detailed invariants. Deryaft enables using just a handful of small
structures to allow these solvers to efficiently enumerate a large number of tests and
to systematically test code. The generated invariants can similarly be used directly in
other tools, such as ESC/Java [8], that are based on the Java Modeling Language [17],
which uses Java expressions, or simply be used as assertions for runtime checking, e.g.,
to check if a public method establishes the class invariant. The invariants even enable
non-conventional assertion-based analyses, such as repair of structurally complex data,
e.g., using the Juzi framework [15].

O. Grumberg and M. Huth (Eds.): TACAS 2007, LNCS 4424, pp. 34–49, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Generating Representation Invariants of Structurally Complex Data 35

Given a set of structures, Deryaft inspects them to formulate a set of hypotheses
on the underlying structural as well as data constraints that are likely to hold. Next, it
checks which hypotheses actually hold for the structures. Finally, it translates the valid
hypotheses into a Java predicate that represents the structural invariants of the given
structures. The predicate takes an input structure, traverses it, and returns true if and
only if the input satisfies the invariants.

Deryaft views the program heap as an edge-labeled graph whose nodes represent ob-
jects and whose edges represent fields [14] and focuses on generating graphs properties,
which include reachability. To make invariant generation feasible, Deryaft incorporates
a number of heuristics, which allow it to hone on relevant properties. For non-linear
structures, Deryaft also conjectures properties about lengths of paths from the root, and
completeness of acyclic structures. Thus, it conjectures local as well as global proper-
ties. In addition to properties of structure, Deryaft also conjectures properties among
data values in the structures. For example, it conjectures whether the key in a node
is larger than all the keys in the node’s left sub-tree, or whether the value of a field
represents a function of the number of nodes in the structure.

The undecidability of the problem that Deryaft addresses necessitates that its con-
straint generation, in general, cannot be sound and complete [7]. The generated con-
straints are sound with respect to the set of given structures. Of course, unseen struc-
tures may or may not satisfy them. Deryaft’s generation is not complete: it may not
generate all possible constraints that hold for the given set of structures. We provide a
simple API for allowing users to systematically extend the pool of invariants Deryaft
hypothesizes.

Even though Deryaft requires a small set of structures to be given, if a method that
constructs structures is given instead, Deryaft can use the method in place of the struc-
tures. For example, consider a method that adds an element to a binary search tree.
Exhaustive enumeration of small sequences of additions of say up to three arbitrarily
selected elements, starting with an empty tree, automatically provides a set of valid bi-
nary search trees (assuming the implementation of add is correct) that Deryaft requires.

Deryaft’s approach has the potential to change how programmers work. Test-first
programming [3] already advocates writing tests before implementations. Having writ-
ten a small test suite, the user can rely on Deryaft to generate an invariant that represents
a whole class of valid structures; Korat can use this invariant to enumerate a high quality
test suite; Juzi can use the same invariant to provide data structure repair. Thus, Deryaft
facilitates both systematic testing at compile-time as well as error recovery at runtime.

We make the following contributions:

–Algorithm. Deryaft is a novel algorithm for generating representation invariants of
structurally complex data from a given small set of structures;

–Java predicates. Deryaft generates invariants as Java predicates that can directly
be used in other applications, e.g., for test generation and error recovery;

–Experiments. We present experiments using our prototype to show the feasibility
of generating invariants for a variety of data structures, including libraries as well
as a stand-alone application.

36 M.Z. Malik, A. Pervaiz, and S. Khurshid

2 Example

We present an example to illustrate Deryaft’s generation of the representation invariant
of acyclic singly-linked lists. Consider the following class declaration:
public class SinglyLinkedList {

private Node header; // first list node
private int size; // number of nodes in the list

private static class Node {
int elem;
Node next;

}
}

A list has a header node, which represents the first node of the list, and caches the
number of nodes it contains in the size field. Each node has an integer element elem
and a next field, which points to the next node in the list.

Assume that the class SinglyLinkedList implements acyclic lists, i.e., there are
no directed cycles in the graph reachable from the header node of any valid list. Fig-
ure 1 shows a set of three lists, one each with zero, one and three nodes, which are all
acyclic. Given a set of these lists, i.e., a reference to a HashSet containing the three list
objects shown, Deryaft generates the representation invariant shown in Figure 2.

The method repOk performs two traversals over the structure represented by this.
First, repOk checks that the structure is acyclic along the next field. Second, it checks
that the structure has the correct value for the size field. The acyclicity checks that
there is a unique path from header to every reachable node, while the check for size
simply computes the total number of reachable nodes and verifies that number.

To illustrate how Deryaft automates existing analyses, consider enumeration of test
inputs using the Korat framework, which requires the user to provide a repOk and a
bound on input size. To illustrate, given the repOk generated by Deryaft, and a bound
of 5 nodes with integer elements ranging from 1 to 5, Korat takes 1.9 seconds to generate
all 3905 nonisomorphic lists with up to 5 nodes. Using the inputs that Korat enumerates,
any given implementation of the list methods can be tested systematically.

Notice that neither the generation of repOk nor the enumeration of test inputs re-
quired an a priori implementation of any method of the class SinglyLinkedList. In-
deed once such methods are written, they can be checked using a variety of frameworks

size: 0 size: 3

1 −1 1
next next

header

size: 1

0

header

N0 N1 N2 N3

Fig. 1. Three acyclic singly-linked lists, one each containing zero, one, and three nodes, as indi-
cated by the value of the size field. Small hollow squares represent the list objects. The labeled
arrows represent the fields header and next. N0, N1, N2, and N3 represent the identities of
node objects. The nodes also contain the integer elements, which for the given three lists range
over the set {-1, 0, 1}.

Generating Representation Invariants of Structurally Complex Data 37

public boolean repOk() {
if (!acyclicCore(header)) return false;
if (!sizeOk(size, header)) return false;
return true;

}

private boolean acyclicCore(Node n) {
Set<Node> visited = new HashSet<Node>();
LinkedList<Node> worklist = new LinkedList<Node>();
if (n != null) {

worklist.addFirst(n);
visited.add(n);

}
while (!worklist.isEmpty()) {

Node current = worklist.removeFirst();
if (current.next != null) {

if (!visited.add(current.next)) {
//re-visiting a previously visited node
return false;

}
worklist.addFirst(current.next);

}
}
return true;

}

private boolean sizeOk(int s, Node n) {
Set<Node> visited = new HashSet<Node>();
LinkedList<Node> worklist = new LinkedList<Node>();
if (n != null) {

worklist.addFirst(n);
visited.add(n);

}
while (!worklist.isEmpty()) {

Node current = worklist.removeFirst();
if (current.next != null) {

if (visited.add(current.next)) {
worklist.addFirst(current.next);

}
}

}
return (s == visited.size());

}

Fig. 2. Invariant generated by Deryaft. The method repOk represents the structural invariants of
the given set of list structures. The method acyclicCore uses a standard work-list based graph
traversal algorithm to visit all nodes reachable from n via the field next and returns true if and
only if the structure is free of cycles. The method sizeOk performs a similar traversal to checks
that the number of nodes reachable from n equals s.

that make use of the representation invariants, which traditionally have been provided
by the user but can now be generated using Deryaft.

In case a partial implementation of the class SinglyLinkedList is available,
Deryaft is able to utilize that. For example, assume that we have an implementation
of the instance method add:

void add(int i) { ... }

which adds the given integer i at the head of the list this. Given add, it is trivial to
automatically synthesize a driver program that repeatedly invokes add to enumerate all
lists within a small bound, e.g., with up to 3 nodes, using the integer elements {-1, 0,
1}. These lists then serve as the set of input structures for Deryaft.

38 M.Z. Malik, A. Pervaiz, and S. Khurshid

3 Deryaft

This section describes Deryaft. We first describe an abstract view of the program heap.
Next, we define core and derived sets. Then, we characterize the invariants that Deryaft
can generate. Finally, we describe how its algorithm works and illustrate it.

3.1 Program Heap as an Edge-Labeled Graph

We take a relational view [14] of the program heap: we view the heap of a Java program
as an edge-labeled directed graph whose nodes represent objects and whose edges rep-
resent fields. The presence of an edge labeled f from node o to v says that the f field of
the object o points to the object v (or is null) or has the primitive value v. Mathemati-
cally, we treat this graph as a set (the set of nodes) and a collection of relations, one for
each field. We partition the set of nodes according to the declared classes and partition
the set of edges according to the declared fields; we represent null as a special node.
A particular program state is represented by an assignment of values to these sets and
relations. Since we model the heap at the concrete level, there is a straightforward iso-
morphism between program states and assignments of values to the underlying sets and
relations.

To illustrate, recall the class declaration for SinglyLinkedList from Section 2.
The basic model of heap for this example consists of three sets, each corresponding to
a declared class or primitive type:
SinglyLinkedList
Node
int

and four relations, each corresponding to a declared field:
header: SinglyLinkedList x Node
size: SinglyLinkedList x int
elem: Node x int
next: Node x Node

The “size: 3” list from Figure 1 can be represented using the following assignment
of values to these sets and relations:
SinglyLinkedList = { L0 }
Node = { N1, N2, N3 }
int = { -1, 0, 1 }

header = { <L0, N0> }
size = { <L0, 3> }
elem = { <N1, 1>, <N2, -1>, <N3, 0> }
next = { <N1, N2>, <N2, N3>, <N3, null> }

Deryaft assumes (without loss of generality) that each structure in the given set has
a unique root pointer. Thus, the abstract view of a structure is a rooted edge-labeled
directed graph, and Deryaft focuses on generating properties of such graphs, including
properties that involve reachability, e.g., acyclicity.

3.2 Core and Derived Fields

Deryaft partitions the set of reference fields declared in the classes of objects in the
given structures into two sets: core and derived. For a given set, S, of structures, let F
be the set of all reference fields.

Generating Representation Invariants of Structurally Complex Data 39

Set coreFields(Set ss) {
// post: result is a set of core fields with respect to the
// structures in ss

Set cs = allClasses(ss);
Set fs = allReferenceFields(cs);
foreach (Field f in fs)

Set fs’ = fs - f;
boolean isCore = false;
foreach (Structure s in ss) {

if (reachable(s, fs’) != reachable(s, fs)) {
isCore = true;
break;

}
}
if (!isCore) fs = fs’;

}
return fs;

}

Fig. 3. Algorithm to compute a core set. The method allClasses returns the set of all classes
of objects in structures in ss. The method allReferenceFields returns the set of all ref-
erence fields declared in classes in cs. The method reachable returns a set of objects reachable
from the root of s via traversals only along the fields in the given set.

Definition 1. A subset C ⊆ F is a core set with respect to S if for all structures s ∈ S,
the set of nodes reachable from the root r of s along the fields in C is the same as the
set of nodes reachable from r along the fields in F .

In other words, a core set preserves reachability in terms of the set of nodes. Indeed, the
set of all fields is itself a core set. We aim to identify a minimal core set, i.e., a core set
with the least number of fields.

To illustrate, the set containing both the reference fields header and next in the
example from Section 2 is a minimal core set with respect to the given set of lists.

Definition 2. For a core set C, the set of fields F − C is a derived set.

Since elem in Section 2 is a field of a primitive type, the SinglyLinkedList example
has no fields that are derived.

Our partitioning of reference fields is inspired by the notion of a back-bone in certain
data structures [19].

Algorithm. The set of core fields can be computed by taking each reference field in
turn and checking whether removing all the edges corresponding to the field from the
graph changes the set of nodes reachable from root. Figure 3 gives the pseudo-code of
an algorithm to compute core fields.

3.3 Properties of Interest

We consider global as well as local properties of rooted edge-labeled directed graphs,
which are likely representatives of structurally complex data. The properties are divided
into various categories as follows.

Global: reachability. Reachability properties include the shape of the structure reach-
able from root along some set of reference fields. The shapes can be acyclic (i.e., there

40 M.Z. Malik, A. Pervaiz, and S. Khurshid

is a unique path from the root to every node), directed-acyclic (i.e., there are no directed
cycles in the graph), circular (i.e., all the graph nodes of a certain type are linked in a
cycle), or arbitrary. Note that any acyclic graph is also directed-acyclic.

To illustrate, the property acyclic(header, {next}), i.e, the structure reachable
from header along the field next is acyclic, holds for all the lists shown in Figure 1.

Global: primitive fields. In reasoning about graphs, the notion of a cardinality of a
set of nodes occurs naturally. We consider properties relating values of integer fields
and cardinalities of sets of reachable objects. For example, the property equals(size,
reachable(header, next).cardinality()) checks whether size is the cardinality of
the set of objects reachable from header following zero or more traversals of next.

Global: path lengths. For non-linear structures, such as trees, we consider properties
that relate lengths of different paths from root. For example, the property balanced rep-
resents that no simple path from the root differs in length from another simple path by
more than one. For binary trees, this property represents a height-balanced tree.

Local: reference fields. In edge-labeled graphs that are not acyclic (along the set of
all fields), local properties that relate different types of edges are likely. To illustrate,
consider a graph where if an edge connects a node n of type N to a node m of type M ,
there is a corresponding edge that connects m to n. We term such properties two-cycles.
For a doubly-linked list, next and previous form a two-cycle.

Another local property on reference fields is whether a particular node always has an
edge of a particular type from it to null.

Local: primitive fields. Another category of local properties pertains to primitive val-
ues. For example, in a binary tree, the value in a node might be greater than the values
in the node’s children. We consider local properties that relate a node’s value to it’s
successors along reference fields.

3.4 Algorithm

Given a set of structures, Deryaft traverses the structures to formulate a set of hypothe-
ses. Next, it checks which of the hypotheses actually hold for the given structures.
Finally, it translates the valid hypotheses into a Java predicate that represents the struc-
tural invariants of the given structures, i.e., it generates a method that takes an input
structure, traverses it, and returns true if and only if the input satisfies the invariants.

To make invariant generation feasible, a key heuristic that Deryaft incorporates to fo-
cus on relevant properties is: hypothesize properties about reachability, such as acyclic-
ity or circularity, only for the fields in the core set; and hypothesize local properties that
relate derived fields and core fields, e.g., whether a derived field forms two-cycles with
some core fields.

Figure 4 presents the Deryaft algorithm using Java-like pseudo-code. To minimize the
number of properties that are checked on the given structures, the checkProperties
does not check a property p if a property q that contradicts p is already known to be true,
e.g., if acyclic holds then circular (for the same set of fields) is not checked.

Generating Representation Invariants of Structurally Complex Data 41

String deryaft(Set structs) {
// post: result is a string representation of a Java method
// that represents the structural invariants of the
// given structures

Set classes = allClasses(structs);
Set fields = allFields(structs);
Set core = coreFields(fields);
Set derived = derivedFields(fields, core);
Set relevantGlobal =

globalProperties(structs, core, classes);
Set relevantLocal =

localProperties(structs, derived, classes);
Set propertiesThatHold =

checkProperties(relevantGlobal, structs);
propertiesThatHold.addAll(

checkProperties(relevantLocal, structs));
simplify(propertiesThatHold);
return generateInvariants(propertiesThatHold);

}

Fig. 4. The Deryaft algorithm. The methods allClasses and allFields respectively re-
turn a set of all classes and a set of all fields from the given set of structures. The method
coreFields (derivedFields) returns the set of core (derived) fields. The methods
globalProperties (localProperties) compute sets of relevant global (local) prop-
erties. The method checkProperties returns a subset of given properties, which hold
for all given structures. The method simplify removes redundant constraints. The method
generateInvariants generates a Java predicate that corresponds to the given properties.

To minimize the number of checks in the generated repOk, the simplify method
removes redundant properties from set of properties that actually hold, e.g., if a graph
is acyclic, there is no need to generate a check for directed-acyclic.

In summary, the algorithm performs the following five key steps:

–Identification of core and derived fields;
–Formulation of global and local properties that are relevant;
–Computation of properties that actually hold;
–Minimization of properties; and
–Generation of Java code that represents properties.

3.5 Illustration: Binary Tree Representation of Heaps

To illustrate the variety of invariants that Deryaft can generate, we next present a case
study on generating invariants of the heap data structure, which is also called a priority
queue [5]. We consider a binary tree representation of heaps.

The following class declares a binary tree with parent pointers:
public class BinaryTree {

Node root; // first node in the tree
int size; // number of nodes in the tree

private static class Node {
Node left;
Node right;
Node parent;
int key;

}
}

42 M.Z. Malik, A. Pervaiz, and S. Khurshid

right

size: 0

1 00

size: 1

0 1 2

root root

size: 2

root

size: 3

left left

N4 N5N2

N0 N1 N3

Fig. 5. Four heaps represented using binary trees, one each containing zero, one, two and
three nodes, as indicated by the value of the size field. Small hollow squares represent the
BinaryTree objects. The labeled arrows represent the fields root, left, right. The dotted
arrows with hollow heads represent parent fields, which have not been labeled for clarity. N0,
. . . , N5 represent the identities of node objects. The nodes also contain the integer keys, which
for the given four heaps range over the set {0, 1, 2}.

Consider a binary tree representation of heap, which requires: acyclicity along left
and right; correctness of parent and size; heap property: the key of a node is greater
than any key in a left or right child; and nearly complete binary tree.

Consider the heaps represented in Figure 5. As an example execution of the algorithm
for computing the core fields (Figure 3), consider computing the set with respect to these
structures. The algorithm initially sets fs to {left, right, parent}, i.e., the set that
contains all the fields that represent homogeneous relations. Removing left from the
set changes reachability, e.g., in the case of the structure with three nodes and therefore
left is core; similarly right is core; however, removing parent does not effect the
reachability in any of the given structures and therefore parent is not core.

As an example execution of the deryaft algorithm (Figure 4), consider computing
the representation invariants for the given structures. The formulation of relevant global
properties gives:

–acyclic(root, {left, right})
–directed-acyclic(root, {left, right})
–circular(root, {left, right})
–equals(size, reachable(root, {left, right}).cardinality())
–equals(size + 1, reachable(root, {left, right}).cardinality())
–height-difference(root, {left, right}, x)
–nearly-complete(root, {left, right})

The formulation of relevant local properties gives:

–two-cycle(root, parent, left)
–two-cycle(root, parent, right)
–is-null(root, parent)
–{<, ≤, >, ≥}(root, {left})
–{<, ≤, >, ≥}(root, {right})

Generating Representation Invariants of Structurally Complex Data 43

public boolean repOk() {
if (!acyclicCore(root)) return false;
if (!sizeOk(size, root)) return false;
if (!nearlyComplete(root)) return false;
if (!parentNull(root)) return false;
if (!parentTwoCycleLeft(root)) return false;
if (!parentTwoCycleRight(root)) return false;
if (!greaterThanLeft(root)) return false;
if (!greaterThanRight(root)) return false;
return true;

}

private boolean parentNull(Node n) {
return (n.parent == null);

}

private boolean parentTwoCycleLeft(Node n) {
Set<Node> visited = new HashSet<Node>();
LinkedList<Node> worklist = new LinkedList<Node>();
if (n != null) {

worklist.addFirst(n);
visited.add(n);

}
while (!worklist.isEmpty()) {

Node current = worklist.removeFirst();
if (current.left != null) {

if (current.left.parent != current) return false;
if (visited.add(current.left)) {

worklist.addFirst(current.left);
}

}
if (current.right != null) {

if (visited.add(current.right)) {
worklist.addFirst(current.right);

}
}

}
return true;

}

Fig. 6. Code snippet of heap invariant generated by Deryaft

The computation of properties that actually hold gives:

–acyclic(root, {left, right})
–directed-acyclic(root, {left, right})
–equals(size, reachable(root, {left, right}).cardinality())
–height-difference(root, {left,right}, 1)
–nearly-complete(root, {left, right})
–two-cycle(root, parent, left)
–two-cycle(root, parent, right)
–is-null(root, parent)
–{>, ≥}(root, {left})
–{>, ≥}(root, {right})

Removal of redundant properties gives:

–acyclic(root, {left, right})
–equals(size, reachable(root, {left, right}).cardinality())
–nearly-complete(root, {left, right})

44 M.Z. Malik, A. Pervaiz, and S. Khurshid

–two-cycle(root, parent, left)
–two-cycle(root, parent, right)
–is-null(root, parent)
–greater-than(root, {left})
–greater-than(root, {right})

Deryaft’s code generation takes these resulting properties and generates Java code,
which performs appropriate traversals to check the properties. Figure 6 gives a code
snippet of Deryaft’s output. The method repOk represents the structural invariants of
the given heaps. It invokes several helper methods to perform several traversals on
the input structure to determine the structure’s validity. The method acyclicCore re-
turns true if and only if the input structure is free of cycles along the fields left and
right. The method parentNull checks that the parent of n is null. The method
parentTwoCycleLeft checks that for each node n, if n has a left child m, m’s par-
ent is n, i.e., parent and left form a two-cycle; parentTwoCycleRight checks that
for each node n, if n has a right child m, m’s parent is n. The method sizeOk checks
the number of nodes reachable from n equals s. The method greaterThanLeft

checks that for any node n, if n has a left child m, n’s key is greater than m’s key;
the method greaterThanRight checks that for any node n, if n has a right child m,
n’s key is greater than m’s key.

4 Experiments

This section describes Deryaft’s generation of structural invariants for seven subjects,
which include some structures library classes as well as a standalone application. For
each subject, we constructed by hand five small representative structures and gave them
as inputs to Deryaft. For all subjects, Deryaft correctly generated all the standard data
structure invariants. The subjects were as follows.

Singly-linked acyclic list. A list object has a header node; each list node has a
next field. Integrity constraint is acyclicity along next.

Ordered list. An ordered list is a singly-linked acyclic list, whose nodes have integer
elements. Integrity constraints are acyclicity and an (ascending or descending) ordering
on the elements.

Doubly-linked circular list. A list object has a header node; each list node has a
next and a previous field. Integrity constraints are circularity along next and the
transpose relation between next and previous. This subject is based on the library
class java.util.LinkedList.

Binary search tree. A binary search tree object has a root node; each node has a
left and a right child node, a parent, and an integer key. Integrity constraints are
acyclicity along left and right, correctness of parent as well as correct ordering of
keys: for each node, its key is larger than any of the keys in the left sub-tree and smaller
than any of the keys in the right-sub tree.

AVL tree. An AVL tree [5] is a height-balanced binary search tree. Integrity con-
straints are the binary search tree constraints as well as the height-balance constraint.

Heap array. Heap arrays provide an array-based implementation of the binary heap
data structure that is also commonly known as a priority queue. A heap has a capacity

Generating Representation Invariants of Structurally Complex Data 45

that is the length of the underlying array and a size that is the number of elements
currently in the heap. For a heap element at index i, its left child is at index 2∗ i+1 and
the right child is at index 2 ∗ i + 2. Integrity constraints are size <= capacity and
the heap satisfies the max-heap (respectively min-heap) property: an element is larger
(respectively smaller) than both its children.

Intentional name. The Intentional Naming System [1] (INS) is a service location
system that allows client applications to specify what they are looking for without hav-
ing to know where it may be situated in a dynamic network. A key data structure in
INS is an intentional name—a hierarchical arrangement of attribute-value pairs that
describe service properties. Clients use these names to locate services, while services
use them as advertisements.

An intentional name can be implemented using the class AVPair that has two
String fields attribute and value and a Vector<AVPair> field children. Struc-
tural integrity constraints for AVPair are: (1) attribute and value of the root are null;
(2) the children of a node have unique attributes; and (3) the structure is acyclic along
the children field.

5 Discussion

This section discusses current limitations of Deryaft and future work.

Limitations. Constraint generation using a given set of structures has two limitations.
One, the set may not be representative of the class of desired structures. Two, not all
relevant properties can feasibly be identified, e.g., conjecturing all possible relations
among integer fields is infeasible even using simple arithmetic operators. Deryaft’s cur-
rent generation algorithm therefore, focuses on structural properties which involve ref-
erence fields, which can naturally be viewed as edges in a graph, and simple constraints
on primitive data. In future, we plan to explore more complex relations among primitive
as well as reference fields.

Our Deryaft implementation is under construction. The prototype at this stage can
handle a class of structures similar to the ones illustrated in this paper.

Optimization of Repeated Traversals. The repOk code that Deryaft outputs typically
performs several traversals over a given structure. While an optimization of these tra-
versals might not produce a noticeable speed-up in code generation due to the small
size of given structures, optimizations may be quite important in the context of where
the generated code is to be used. In fact, based on the usage context, very different
optimizations may be necessary.

Consider the case for structure enumeration using a constraint solver. It is well-
known that the performance of constraint solvers, such as propositional satisfiability
(SAT) solvers, depends crucially on the formulation of given invariants—the same holds
for Korat and the Alloy Analyzer [18]. In fact, repeated traversals which may seemingly
be slow, may actually elicit faster generation.

The case for assertion evaluation is usually different: generated code that minimizes
the number of traversals is likely to improve the time to check the assertion. Thus, it
is natural to extend Deryaft to incorporate information about the context to tune its
generation to the intended use.

46 M.Z. Malik, A. Pervaiz, and S. Khurshid

Introduction of New Invariants. It would be useful to build an extensible invariant
generation system, where new invariants that involve new operators can be plugged into
the invariant generator. This would enable not only focused generation on the particular
domain of interest, but also generation of a wider class of invariants. Such extensibility
requires a language for expressing invariants.

Integration with Other Software Analysis Frameworks. We have given an example
of how Korat can be used for input enumeration using invariants generated by Deryaft.
We plan to fully integrate Deryaft’s algorithm with various existing frameworks.

Static Analysis for Optimizing Generation. While in the presence of a partial imple-
mentation we may not require the user to provide a set of structures, we can use the
implementation in a different way as well: a static analysis of the code, say the method
that adds a node to a heap, can help formulate the likely invariants more accurately.

6 Related Work

Dynamic analyses Our work is inspired by the Daikon invariant detection engine [7],
which pioneered the notion of dynamically detecting likely program invariants in the
late 90s and has since been adapted by various other frameworks [12, 11]. Deryaft dif-
fers from Daikon in three key aspects. First, the model of data structures in Daikon uses
arrays to represent object fields. While this representation allows detecting invariants
of some data structures, it makes it awkward as to how to detect invariants that involve
intricate global properties, such as relating lengths of paths. Deryaft’s view of the heap
as an edge-labeled graph and focus on generic graph properties enables it to directly
capture a whole range of structurally complex data. Second, Deryaft employs specific
heuristics that optimize generation of invariants for data structures, e.g., the distinction
between core and derived fields allows it to preemptively disallow hypothesizing rela-
tions among certain fields. We believe this distinction, if adopted, can optimize Daikon’s
analysis too. Third, Deryaft generates invariants in Java, which can directly be plugged
into a variety of tools, such as the Korat testing framework [4] and the Juzi [15] repair
framework.

We have conducted some intial experiments to compare the output of Daikon with
Deryaft. Daikon does not seem to generate rich data structure invariants for the subjects
we have presented in this paper. For example, for the SinglyLinkedList class (Sec-
tion 2), using the lists shown in Figure 1, Daikon generates the following class invariant
for SinglyLinkedList:
/*@ invariant this.header.next.next != null; */
/*@ invariant this.header.next.elem == -1; */
/*@ invariant this.header.elem == 0 || this.header.elem == 1; */
/*@ invariant this.size == 0; */

and the following for Node:
/*@ invariant this.next == null; */
/*@ invariant this.elem == -1 || this.elem == 0 || this.elem == 1; */

Even using a larger test suite with 100 randomly generated lists using the API methods
of SinglyLinkedList, we were not able to generate more precise invariants with

Generating Representation Invariants of Structurally Complex Data 47

Daikon. We believe that Daikon experts can set its parameters so that it generates a
richer class of invariants.

In previous work [16], we developed aDeryaft, a tool for assisting Alloy [13] users
build their Alloy specifications. aDeryaft generates first-order logic formulas that repre-
sent structural invariants of a given set of Alloy instances. This paper extends both the
design and implementation of aDeryaft by (1) supporting all of Java data-types (includ-
ing arrays), which significantly differ from Alloy’s relational basis, (2) extending the
class of invariants supported and (3) evaluating using a wide class of subject structures,
including those from a stand-alone application.

Static analyses Researchers have explored invariant generation using static analyses for
over three decades. There is a wide body of research in the context of generating loop
invariants [9,6,23,21] using recurrence equations, abstract interpretation with widening,
matrix theory for Petri nets, constraint-based techniques etc. Most of these analyses are
limited to relations between primitive variables.

Shape analyses [10, 20, 19, 2] can handle structural constraints using abstract heap
representations, predicate abstraction etc. However, shape analyses typically do not con-
sider rich properties of data values in structures and mostly abstract away from the data.
Moreover, none of the existing shape analyses can feasibly check or detect rich struc-
tural invariants, such as height-balance for binary search trees, which involve complex
properties that relate paths.

Combined dynamic/static analyses Some recent approaches combine static and dy-
namic analyses for inferring API level specifications [22, 25].

Invariant generation has also been used in the context of model checkers to explain
the absence of counterexamples, while focusing on integer variables [24].

7 Conclusions

Dynamically detecting likely invariants, as pioneered by Daikon, is becoming
immensely popular. In this paper, we focused on generating representation invariants
of structurally complex data, given a small set of concrete structures. We presented
Deryaft, a novel invariant generation algorithm. Deryaft analyzes the key characteristics
of the given structures to formulate local and global properties that the structures have
in common. A key idea in Deryaft is to view the program heap as an edge-labeled graph,
and hence to focus on properties of graphs, including reachability. Deryaft partitions the
set of edges into core and derived sets and hypothesizes different classes of properties
for each set, thereby minimizing the number of hypotheses it needs to validate.

Deryaft generates a Java predicate that represents the properties of given structures,
i.e., it generates a method that takes an input structure, traverses it, and returns true if
and only if the input satisfies the properties. Even though Deryaft does not require an
implementation of any methods that manipulate the given structures, in the presence of
such an implementation, it can generate the invariants without a priori requiring a given
set of structures. The invariants generated by Deryaft enable automation of various
software analyses. We illustrated how the Korat framework can use these invariants to
enumerate inputs for Java programs and to check their correctness.

48 M.Z. Malik, A. Pervaiz, and S. Khurshid

Acknowledgments

We thank the anonymous reviewers and Darko Marinov for useful comments. This work
was funded in part by the Fulbright Program and the NSF Science of Design Program
(award #0438967).

References

1. William Adjie-Winoto, Elliot Schwartz, Hari Balakrishnan, and Jeremy Lilley. The design
and implementation of an intentional naming system. In Proc. 17th ACM Symposium on
Operating Systems Principles (SOSP), Kiawah Island, December 1999.

2. Ittai Balaban, Amir Pnueli, and Lenore D. Zuck. Shape analysis by predicate abstraction. In
Proc. 6th International Conference on Verification, Model Checking and Abstract Interpre-
tation, Paris, France, 2005.

3. Kent Beck and Erich Gamma. Test infected: Programmers love writing tests. Java Report,
3(7), July 1998.

4. Chandrasekhar Boyapati, Sarfraz Khurshid, and Darko Marinov. Korat: Automated testing
based on Java predicates. In Proc. International Symposium on Software Testing and Analysis
(ISSTA), July 2002.

5. Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to Algorithms.
The MIT Press, Cambridge, MA, 1990.

6. P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among variables of a
program. In Proc. 5th Annual ACM Symposium on the Principles of Programming Languages
(POPL), Tucson, Arizona, 1978.

7. Michael D. Ernst. Dynamically Discovering Likely Program Invariants. PhD thesis, Univer-
sity of Washington Department of Computer Science and Engineering, August 2000.

8. Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson, James B. Saxe, and
Raymie Stata. Extended static checking for Java. In Proc. ACM SIGPLAN 2002 Conference
on Programming language design and implementation, 2002.

9. Steven M. German and Ben Wegbreit. A synthesizer of inductive assertions. IEEE Trans.
Software Eng., 1(1), 1975.

10. Rakesh Ghiya and Laurie J. Hendren. Is it a tree, a DAG, or a cyclic graph? A shape analysis
for heap-directed pointers in C. In POPL ’96: Proceedings of the 23rd ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, 1996.

11. Neelam Gupta and Zachary V. Heidepriem. A new structural coverage criterion for dynamic
detection of program invariants. In Proc. 18th Conference on Automated Software Engineer-
ing (ASE), San Diego, CA, October 2003.

12. Sudheendra Hangal and Monica S. Lam. Tracking down software bugs using automatic
anomaly detection. In ICSE ’02: Proceedings of the 24th International Conference on Soft-
ware Engineering, 2002.

13. Daniel Jackson. Software Abstractions: Logic, Language and Analysis. The MIT Press,
Cambridge, MA, 2006.

14. Daniel Jackson and Alan Fekete. Lightweight analysis of object interactions. In Proc. Fourth
International Symposium on Theoretical Aspects of Computer Software, Sendai, Japan, Oc-
tober 2001.

15. Sarfraz Khurshid, Iván Garcı́a, and Yuk Lai Suen. Repairing structurally complex data. In
Proc. 12th SPIN Workshop on Software Model Checking, San Francisco, CA, 2005.

16. Sarfraz Khurshid, Muhammad Zubair Malik, and Engin Uzuncaova. An automated approach
for writing Alloy specifications using instances. In 2nd International Symposium on Lever-
aging Applications of Formal Methods, Verification and Validation, Paphos, Cyprus, 2006.

Generating Representation Invariants of Structurally Complex Data 49

17. Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary design of JML: A behav-
ioral interface specification language for Java. Technical Report TR 98-06i, Department of
Computer Science, Iowa State University, June 1998.

18. Darko Marinov, Sarfraz Khurshid, Suhabe Bugrara, Lintao Zhang, and Martin Rinard. Op-
timizations for compiling declarative models into boolean formulas. In 8th Intl. Conference
on Theory and Applications of Satisfiability Testing (SAT), 2005.

19. Anders Moeller and Michael I. Schwartzbach. The pointer assertion logic engine. In Proc.
SIGPLAN Conference on Programming Languages Design and Implementation, Snowbird,
UT, June 2001.

20. Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Solving shape-analysis problems in
languages with destructive updating. ACM Transactions on Programming Languages and
Systems (TOPLAS), January 1998.

21. Sriram Sankaranarayanan, Henny B. Sipma, and Zohar Manna. Non-linear loop invariant
generation using groebner bases. In POPL ’04: Proceedings of the 31st ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, 2004.

22. Mana Taghdiri. Inferring specifications to detect errors in code. In Proceedings of the 19th
IEEE International Conference on Automated Software Engineering, Washington, DC, 2004.

23. Ashish Tiwari, Harald Rue, Hassen Saidi, and Natarajan Shankar. A technique for invariant
generation. In Proc. 7th Conference on Tools and Algorithms for Construction and Analysis
of Systems (TACAS), London, UK, 2001.

24. M. Vaziri and G. Holzmann. Automatic detection of invariants in spin. In Proc. SPIN
Workshop on Software Model Checking, November 1998.

25. John Whaley, Michael C. Martin, and Monica S. Lam. Automatic extraction of object-
oriented component interfaces. In Proc. International Symposium on Software Testing and
Analysis (ISSTA), July 2002.

Multi-objective Model Checking of

Markov Decision Processes

K. Etessami1, M. Kwiatkowska2, M.Y. Vardi3, and M. Yannakakis4

1 LFCS, School of Informatics, University of Edinburgh
2 School of Computer Science, Birmingham University

3 Dept. of Computer Science, Rice University
4 Dept. of Computer Science, Columbia University

Abstract. We study and provide efficient algorithms for multi-objective
model checking problems for Markov Decision Processes (MDPs). Given
an MDP, M , and given multiple linear-time (ω-regular or LTL) proper-
ties ϕi, and probabilities ri ∈ [0, 1], i = 1, . . . , k, we ask whether there
exists a strategy σ for the controller such that, for all i, the probability
that a trajectory of M controlled by σ satisfies ϕi is at least ri. We pro-
vide an algorithm that decides whether there exists such a strategy and if
so produces it, and which runs in time polynomial in the size of the MDP.
Such a strategy may require the use of both randomization and memory.
We also consider more general multi-objective ω-regular queries, which
we motivate with an application to assume-guarantee compositional rea-
soning for probabilistic systems.

Note that there can be trade-offs between different properties: satisfy-
ing property ϕ1 with high probability may necessitate satisfying ϕ2 with
low probability. Viewing this as a multi-objective optimization problem,
we want information about the “trade-off curve” or Pareto curve for max-
imizing the probabilities of different properties. We show that one can
compute an approximate Pareto curve with respect to a set of ω-regular
properties in time polynomial in the size of the MDP.

Our quantitative upper bounds use LP methods. We also study quali-
tative multi-objective model checking problems, and we show that these
can be analysed by purely graph-theoretic methods, even though the
strategies may still require both randomization and memory.

1 Introduction

Markov Decision Processes (MDPs) are standard models for stochastic opti-
mization and for modelling systems with probabilistic and nondeterministic or
controlled behavior (see [Put94, Var85, CY95, CY98]). In an MDP, at each state,
the controller can choose from among a number of actions, or choose a proba-
bility distribution over actions. Each action at a state determines a probability
distribution on the next state. Fixing an initial state and fixing the controller’s
strategy determines a probability space of infinite runs (trajectories) of the MDP.
For MDPs with a single objective, the controller’s goal is to optimize the value
of an objective function, or payoff, which is a function of the entire trajectory.

O. Grumberg and M. Huth (Eds.): TACAS 2007, LNCS 4424, pp. 50–65, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Multi-objective Model Checking of Markov Decision Processes 51

.8 1

�P1

.5

.6

1

.5�P2

.2.8.5.5.6.4

P1 P2 P0P0

1 1 11

s

a1 a3
a2

Fig. 1. An MDP with two objectives, �P1 and �P2, and the associated Pareto curve

Many different objectives have been studied for MDPs, with a wide variety of
applications. In particular, in verification research linear-time model checking of
MDPs has been studied, where the objective is to maximize the probability that
the trajectory satisfies a given ω-regular or LTL property ([CY98, CY95, Var85]).

In many settings we may not just care about a single property. Rather, we
may have a number of different properties and we may want to know whether we
can simultaneously satisfy all of them with given probabilities. For example, in a
system with a server and two clients, we may want to maximize the probability
for both clients 1 and 2 of the temporal property: “every request issued by client
i eventually receives a response from the server”, i = 1, 2. Clearly, there may be
a trade-off. To increase this probability for client 1 we may have to decrease it
for client 2, and vice versa. We thus want to know what are the simultaneously
achievable pairs (p1, p2) of probabilities for the two properties. More specifically,
we will be interested in the “trade-off curve” or Pareto curve. The Pareto curve
is the set of all achievable vectors p = (p1, p2) ∈ [0, 1]2 such that there does
not exist another achievable vector p′ that dominates p, meaning that p ≤ p′

(coordinate-wise inequality) and p �= p′.
Concretely, consider the very simple MDP depicted in Figure 1. Starting at

state s, we can take one of three possible actions {a1, a2, a3}. Suppose we are
interested in LTL properties �P1 and �P2. Thus we want to maximize the prob-
ability of reaching the two distinct vertices labeled by P1 and P2, respectively.
To maximize the probability of �P1 we should take action a1, thus reaching P1
with probability 0.6 and P2 with probability 0. To maximize the probability of
�P2 we should take a2, reaching P2 with probability 0.8 and P1 with probability
0. To maximize the sum total probability of reaching P1 or P2, we should take
a3, reaching both with probability 0.5. Now observe that we can also “mix” these
pure strategies using randomization to obtain any convex combination of these
three value vectors. In the graph on the right in Figure 1, the dotted line plots
the Pareto curve for these two properties.

The Pareto curve P in general contains infinitely many points, and it can be
too costly to compute an exact representation for it (see Section 2). Instead of
computing it outright we can try to approximate it ([PY00]). An ε-approximate
Pareto curve is a set of achievable vectors P(ε) such that for every achievable

52 K. Etessami et al.

vector r there is some vector t ∈ P(ε) which “almost” dominates it, meaning
r ≤ (1 + ε)t.

In general, given a labeled MDP M , k distinct ω-regular properties, Φ = 〈ϕi |
i = 1, . . . , k〉, a start state u, and a strategy σ, let Prσ

u(ϕi) denote the probability
that starting at u, using strategy σ, the trajectory satisfies ϕi. For a strategy
σ, define the vector tσ = (tσ1 , . . . , tσk), where tσi = Prσ

u(ϕi), for i = 1, . . . , k. We
say a value vector r ∈ [0, 1]k is achievable for Φ, if there exists a strategy σ such
that tσ ≥ r.

We provide an algorithm that given MDP M , start state u, properties Φ,
and rational value vector r ∈ [0, 1]k, decides whether r is achievable, and if so
produces a strategy σ such that tσ ≥ r. The algorithm runs in time polynomial
in the size of the MDP. The strategies may require both randomization and
memory. Our algorithm works by first reducing the achievability problem for
multiple ω-regular properties to one with multiple reachability objectives, and
then reducing the multi-objective reachability problem to a multi-objective linear
programming problem. We also show that one can compute an ε-approximate
Pareto curve for Φ in time polynomial in the size of the MDP and in 1/ε. To
do this, we use our linear programming characterization for achievability, and
use results from [PY00] on approximating the Pareto curve for multi-objective
linear programming problems.

We also consider more general multi-objective queries. Given a boolean com-
bination B of quantitative predicates of the form Prσ

u(ϕi)Δp, where Δ ∈ {≤, ≥
, <, >, =, �=}, and p ∈ [0, 1], a multi-objective query asks whether there exists a
strategy σ satisfying B (or whether all strategies σ satisfy B). It turns out that
such queries are not really much more expressive than checking achievability.
Namely, checking a fixed query B can be reduced to checking a fixed number
of extended achievability queries, where for some of the coordinates tσi we can
ask for a strict inequality, i.e., that tσi > ri. (In general, however, the number
and size of the extended achievability queries needed may be exponential in the
size of B.) A motivation for allowing general multi-objective queries is to enable
assume-guarantee compositional reasoning for probabilistic systems, as explained
in Section 2.

Whereas our algorithms for quantitative problems use LP methods, we also
consider qualitative multi-objective queries. These are queries given by boolean
combinations of predicates of the form Prσ

u(ϕi)Δb, where b ∈ {0, 1}. We give an
algorithm using purely graph-theoretic techniques that decides whether there
is a strategy that satisfies a qualitative multi-objective query, and if so pro-
duces such a strategy. The algorithm runs in time polynomial in the size of the
MDP. Even for satisfying qualitative queries the strategy may need to use both
randomization and memory.

In typical applications, the MDP is far larger than the size of the query. Also,
ω-regular properties can be presented in many ways, and it was already shown
in [CY95] that the query complexity of model checking MDPs against even a
single LTL property is 2EXPTIME-complete. We remark here that, if properties
are expressed via LTL formulas, then our algorithms run in polynomial time in

Multi-objective Model Checking of Markov Decision Processes 53

the size of the MDP and in 2EXPTIME in the size of the query, for deciding
arbitrary multi-objective queries, where both the MDP and the query are part
of the input. So, the worst-case upper bound is the same as with a single LTL
objective. However, to keep our complexity analysis simple, we focus in this paper
on the model complexity of our algorithms, rather than their query complexity
or combined complexity.

Due to lack of space in the proceedings, many proofs have been omitted.
Please see [EKVY07] for a fuller version of this paper, containing an appendix
with proofs.

Related work. Model checking of MDPs with a single ω-regular objective has
been studied in detail (see [CY98, CY95, Var85]). In [CY98], Courcoubetis and
Yannakakis also considered MDPs with a single objective given by a positive
weighted sum of the probabilities of multiple ω-regular properties, and they
showed how to efficiently optimize such objectives for MDPs. They did not con-
sider tradeoffs between multiple ω-regular objectives. We employ and build on
techniques developed in [CY98].

Multi-objective optimization is a subject of intensive study in Operations Re-
search and related fields (see, e.g., [Ehr05, Cĺı97]). Approximating the Pareto
curve for general multi-objective optimization problems was considered by Pa-
padimitriou and Yannakakis in [PY00]. Among other results, [PY00] showed that
for multi-objective linear programming (i.e., linear constraints and multiple lin-
ear objectives), one can compute a (polynomial sized) ε-approximate Pareto
curve in time polynomial in the size of the LP and in 1/ε.

Our work is related to recent work by Chatterjee, Majumdar, and Henzinger
([CMH06]), who considered MDPs with multiple discounted reward objectives.
They showed that randomized but memoryless strategies suffice for obtaining any
achievable value vector for these objectives, and they reduced the multi-objective
optimization and achievability (what they call Pareto realizability) problems for
MDPs with discounted rewards to multi-objective linear programming. They
were thus able to apply the results of [PY00] in order to approximate the Pareto
curve for this problem. We work in an undiscounted setting, where objectives
can be arbitrary ω-regular properties. In our setting, strategies may require both
randomization and memory in order to achieve a given value vector. As described
earlier, our algorithms first reduce multi-objective ω-regular problems to multi-
objective reachability problems, and we then solve multi-objective reachability
problems by reducing them to multi-objective LP. For multi-objective reacha-
bilility, we show randomized memoryless strategies do suffice. Our LP methods
for multi-objective reachability are closely related to the LP methods used in
[CMH06] (and see also, e.g., [Put94], Theorem 6.9.1., where a related result
about discounted MDPs is established). However, in order to establish the re-
sults in our undiscounted setting, even for reachability we have to overcome some
new obstacles that do not arise in the discounted case. In particular, whereas
the “discounted frequencies” used in [CMH06] are always well-defined finite val-
ues under all strategies, the analogous undiscounted frequencies or “expected
number of visits” can in general be infinite for an arbitrary strategy. This forces

54 K. Etessami et al.

us to preprocess the MDPs in such a way that ensures that a certain family of
undiscounted stochastic flow equations has a finite solution which corresponds
to the “expected number of visits” at each state-action pair under a given (mem-
oryless) strategy. It also forces us to give a quite different proof that memoryless
strategies suffice to achieve any achievable vector for multi-objective reachability,
based on the convexity of the memorylessly achievable set.

Multi-objective MDPs have also been studied extensively in the OR and sto-
chastic control literature (see e.g. [Fur80, Whi82, Hen83, Gho90, WT98]). Much
of this work is typically concerned with discounted reward or long-run average
reward models, and does not focus on the complexity of algorithms. None of this
work seems to directly imply even our result that for multiple reachability objec-
tives checking achievability of a value vector can be decided in polynomial time,
not to mention the more general results for multi-objective model checking.

2 Basics and Background

A finite-state MDP M = (V, Γ, δ) consists of a finite set V of states, an action
alphabet Γ , and a transition relation δ. Associated with each state v is a set
of enabled actions Γv ⊆ Γ . The transition relation is given by δ ⊆ V × Γ ×
[0, 1] × V . For each state v ∈ V , each enabled action a ∈ Γv, and every state
v′ ∈ V , we have exactly one transition (v, γ, p(v,γ,v′), v

′) ∈ δ, for some probability
p(v,γ,v′) ∈ [0, 1], such that

∑
v′∈V p(v,γ,v′) = 1. Thus, at each state, each enabled

action determines a probability distribution on the next state. There are no other
transitions, so no transtitions on disabled actions. We assume every state v has
some enabled action, i.e., Γv �= ∅, so there are no dead ends. For our complexity
analysis, we assume of course that all probabilities p(v,γ,v′) are rational. A labeled
MDP M = (V, Γ, δ, l) has, in addition a set of propositional predicates Q =
{Q1, . . . , Qr} which label the states. We view this as being given by a labelling
function l : V
→ Σ, where Σ = 2Q. There are other ways to present MDPs,
e.g., by separating controlled and probabilistic nodes into distinct states. The
different presentations are equivalent and efficiently translatable to each other.
For a labeled MDP M = (V, Γ, δ, l) with a given initial state u ∈ V , which we
denote by Mu, runs of Mu are infinite sequences of states π = π0π1 . . . ∈ V ω,
where π0 = u and for all i ≥ 0, πi ∈ V and there is a transition (πi, γ, p, πi+1) ∈ δ,
for some γ ∈ Γπi and some probability p > 0. Each run induces an ω-word over
Σ, namely l(π) .= l(π0)l(π1) . . . ∈ Σω.

A strategy is a function σ : (V Γ)∗V
→ D(Γ), which maps a finite history
of play to a probability distribution on the next action. Here D(Γ) denotes the
set of probability distributions on the set Γ . Moreover, it must be the case that
for all histories wu, σ(wu) ∈ D(Γu), i.e., the probabilty distribution has support
only over the actions available at state u. A strategy is pure if σ(wu) has support
on exactly one action, i.e., with probability 1 a single action is played at every
history. A strategy is memoryless (stationary) if the strategy depends only on
the last state, i.e., if σ(wu) = σ(w′u) for all w, w′ ∈ (V Γ)∗. If σ is memoryless,
we can simply define it as a function σ : V
→ D(Γ). An MDP M with initial

Multi-objective Model Checking of Markov Decision Processes 55

state u, together with a strategy σ, naturally induces a Markov chain Mσ
u , whose

states are the histories of play in Mu, and such that from state s = wv if γ ∈ Γv,
there is a transition to state s′ = wvγv′ with probability σ(wv)(γ) · p(v,γ,v′). A
run θ in Mσ

u is thus given by a sequence θ = θ0θ1 . . ., where θ0 = u and each
θi ∈ (V Γ)∗V , for all i ≥ 0. We associate to each history θi = wv the label of its
last state v. In other words, we overload the notation and define l(wv) .= l(v).
We likewise associate with each run θ the ω-word l(θ) .= l(θ0)l(θ1) Suppose
we are given ϕ, an LTL formula or Büchi automaton, or any other formalism
for expressing an ω-regular language over alphabet Σ. Let L(ϕ) ⊆ Σω denote
the language expressed by ϕ. We write Prσ

u(ϕ) to denote the probability that
a trajectory θ of Mσ

u satistifies ϕ, i.e., that l(θ) ∈ L(ϕ). For generality, rather
than just allowing an initial vertex u we allow an initial probability distribution
α ∈ D(V). Let Prσ

α(ϕ) denote the probability that under strategy σ, starting with
initial distribution α, we will satify ω-regular property ϕ. These probabilities
are well defined because the set of such runs is Borel measurable (see, e.g.,
[Var85, CY95]).

As in the introduction, for a k-tuple of ω-regular properties Φ = 〈ϕ1, . . . , ϕk〉,
given a strategy σ, we let tσ = (tσ1 , . . . , tσk), with tσi = Prσ

u(ϕi), for i = 1, . . . , k.
For MDP M and starting state u, we define the achievable set of value vectors
with respect to Φ to be UMu,Φ = {r ∈ R

k
≥0 | ∃σ such that tσ ≥ r}. For a set

U ⊆ R

k, we define a subset P ⊆ U of it, called the Pareto curve or the Pareto set
of U , consisting of the set of Pareto optimal (or Pareto efficient) vectors inside
U . A vector v ∈ U is called Pareto optimal if ¬∃v′(v′ ∈ U ∧ v ≤ v′ ∧ v �= v′).
Thus P = {v ∈ U | v is Pareto optimal}. We use PMu,Φ ⊆ UMu,Φ to denote the
Pareto curve of UMu,Φ.

It is clear, e.g., from Figure 1, that the Pareto curve is in general an infinite set.
In fact, it follows from our results that for general ω-regular objectives the Pareto
set is a convex polyhedral set. In principle, we may want to compute some kind
of exact representation of this set by, e.g., enumerating all the vertices (on the
upper envelope) of the polytope that defines the Pareto curve, or enumerating
the facets that define it. It is not possible to do this in polynomial-time in general.
In fact, the following theorem holds (the proof is omitted here):

Theorem 1. There is a family of MDPs, 〈M(n) | n ∈ N〉, where M(n) has n
states and size O(n), such that for M(n) the Pareto curve for two reachability
objectives, �P1 and �P2, contains nΩ(log n) vertices (and thus nΩ(log n) facets).

So, the Pareto curve is in general a polyhedral surface of superpolynomial size,
and thus cannot be constructed exactly in polynomial time. We show, however,
that the Pareto set can be efficiently approximated to any desired accuracy ε > 0.
An ε-approximate Pareto curve, PMu,Φ(ε) ⊆ UMu,Φ, is any achievable set such
that ∀r ∈ UMu,Φ ∃t ∈ PMu,Φ(ε) such that r ≤ (1 + ε)t. When the subscripts Mu

and Φ are clear from the context, we will drop them and use U , P , and P(ε) to
denote the achievable set, Pareto set, and ε-approximate Pareto set, respectively.

We also consider general multi-objective queries. A quantitative predicate over
ω-regular property ϕi is a statement of the form Prσ

u(ϕi)Δp, for some rational
probability p ∈ [0, 1], and where Δ is a comparison operator Δ ∈ {≤, ≥, <, >, =}.

56 K. Etessami et al.

Suppose B is a boolean combination over such predicates. Then, given M and
u, and B, we can ask whether there exists a strategy σ such that B holds, or
whether B holds for all σ. Note that since B can be put in DNF form, and
the quantification over strategies pushed into the disjuction, and since ω-regular
languages are closed under complementation, any query of the form ∃σB (or
of the form ∀σB) can be transformed to a disjunction (a negated disjunction,
respectively) of queries of the form:

∃σ
∧

i

(Prσ
u(ϕi) ≥ ri) ∧

∧

j

(Prσ
u(ψj) > r′j) (1)

We call queries of the form (1) extended achievability queries. Thus, if the
multi-objective query is fixed, it suffices to perform a fixed number of extended
achievability queries to decide any multi-objective query. Note, however, that
the number of extended achievability queries we need could be exponential
in the size of B. We do not focus on optimizing query complexity in this
paper.

A motivation for allowing general multi-objective queries is to enable assume-
guarantee compositional reasoning for probabilistic systems. Consider, e.g., a
probabilistic system consisting of the concurrent composition of two components,
M1 and M2, where output from M1 provides input to M2 and thus controls M2.
We denote this by M1 � M2. M2 itself may generate outputs for some external
device, and M1 may also be controlled by external inputs. (One can also consider
symmetric composition, where outputs from both components provide inputs to
both. Here, for simplicity, we restrict ourselves to asymmetric composition where
M1 controls M2.) Let M be an MDP with separate input and output action
alphabets Σ1 and Σ2, and let ϕ1 and ϕ2 denote ω-regular properties over these
two alphabets, respectively. We write 〈ϕ1〉≥r1M〈ϕ2〉≥r2 , to denote the assertion
that “if the input controller of M satisfies ϕ1 with probability ≥ r1, then the
output generated by M satisfies ϕ2 with probability ≥ r2”. Using this, we can
formulate a general compositional assume-guarantee proof rule:

〈ϕ1〉≥r1M1〈ϕ2〉≥r2

〈ϕ2〉≥r2M2〈ϕ3〉≥r3

————————————
〈ϕ1〉≥r1 M1 � M2 〈ϕ3〉≥r3

Thus, to check 〈ϕ1〉≥r1M1 � M2〈ϕ3〉≥r3 it suffices to check two properties of
smaller systems: 〈ϕ1〉≥r1M1〈ϕ2〉≥r2 and 〈ϕ2〉≥r2M2〈ϕ3〉≥r3 . Note that checking
〈ϕ1〉≥r1M〈ϕ2〉≥r2 amounts to checking that there does not exist a strategy σ
controlling M such that Prσ

u(ϕ1) ≥ r1 and Prσ
u(ϕ2) < r2.

We also consider qualitative multi-objective queries. These are queries re-
stricted so that B contains only qualitative predicates of the form Prσ

u(ϕi)Δb,
where b ∈ {0, 1}. These can, e.g., be used to check qualitative assume-guarantee
conditions of the form: 〈ϕ1〉≥1M〈ϕ2〉≥1. It is not hard to see that again, via

Multi-objective Model Checking of Markov Decision Processes 57

1

1a

b
u P1 P2

Fig. 2. The MDP M ′

boolean manipulations and complementation of automata, we can convert any
qualitative query to a number of queries of the form:

∃σ
∧

ϕ∈Φ

(Prσ
u(ϕ) = 1) ∧

∧

ψ∈Ψ

(Prσ
u(ψ) > 0)

where Φ and Ψ are sets of ω-regular properties. It thus suffices to consider only
these qualitative queries.

In the next sections we study how to decide various classes of multi-objective
queries, and how to approximate the Pareto curve for properties Φ. Let us observe
here a difficulty that we will have to deal with. Namely, in general we will need
both randomization and memory in our strategies in order to satisfy even simple
qualitative multi-objective queries. Consider the MDP, M ′, shown in Figure 2,
and consider the conjunctive query: B ≡ Prσ

u(��P1) > 0 ∧ Prσ
u(��P2) > 0. It

is not hard to see that starting at state u in M ′ any strategy σ that satisfies B
must use both memory and randomization. Each predicate in B can be satisfied
in isolation (in fact with probability 1), but with a memoryless or deterministic
strategy if we try to satisfy ��P2 with non-zero probability, we will be forced to
satisfy ��P1 with probability 0. Note, however, that we can satisfy both with
probability > 0 using a strategy that uses both memory and randomness: namely,
upon reaching the state labeled P1 for the first time, with probability 1/2 we use
move a and with probability 1/2 we use move b. Thereafter, upon encountering
the state labeled P1 for the nth time, n ≥ 2, we deterministically pick action a.
This clearly assures that both predicates are satisfied with probability = 1/2 > 0.

3 Multi-objective Reachability

In this section, as a step towards quantitative multi-objective model checking
problems, we study a simpler multi-objective reachability problem. Specifically,
we are given an MDP, M = (V, Γ, δ), a starting state u, and a collection of target
sets Fi ⊆ V , i = 1, . . . , k. The sets Fi may overlap. We have k objectives: the
i-th objective is to maximize the probability of �Fi, i.e., of reaching some state
in Fi. We assume that the states F =

⋃k
i=1 Fi are all absorbing states with a

self-loop. In other words, for all v ∈ F , (v, a, 1, v) ∈ δ and Γv = {a}.1

We first need to do some preprocessing on the MDP, to remove some useless
states. For each state v ∈ V \ F we can check easily whether there exists a
1 The assumption that target states are absorbing is necessary for the proofs in this

section, but it will of course follow from the model checking results in Section 5,
which build on this section, that multi-objective reachability problems for arbitrary
target states can also be handled with the same complexities.

58 K. Etessami et al.

Objectives (i = 1, . . . , k): Maximize
P

v∈Fi
yv;

Subject to:

P
γ∈Γv

y(v,γ) −
P

v′∈V

P
γ′∈Γ

v′

p(v′,γ′,v)y(v′,γ′) = α(v) For all v ∈ V \ F ;

yv −
P

v′∈V \F

P
γ′∈Γ

v′
p(v′,γ′,v)y(v′,γ′) = 0 For all v ∈ F ;

yv ≥ 0 For all v ∈ F ;
y(v,γ) ≥ 0 For all v ∈ V \ F and γ ∈ Γu;

Fig. 3. Multi-objective LP for the multi-objective MDP reachability problem

strategy σ such that Prσ
v (�F) > 0: this just amounts to whether there exists a

path from v to F in the underlying graph of the MDP. Let us call a state that
does not satisfy this property a bad state. Clearly, for the purposes of optimizing
reachability objectives, we can look for and remove all bad states from an MDP.
Thus, it is safe to assume that bad states do not exist.2 Let us call an MDP with
goal states F cleaned-up if it does not contain any bad states.

Proposition 1. For a cleaned-up MDP, an initial distribution α ∈ D(V \ F),
and a vector of probabilities r ∈ [0, 1]k, there exists a (memoryless) strategy
σ such that

∧k
i=1 Prσ

α(�Fi) ≥ ri if and only if there exists a (respectively,
memoryless) strategy σ′ such that

∧k
i=1 Prσ′

α (�Fi) ≥ ri ∧
∧

v∈V Prσ′

v (�F) > 0.

Now, consider the multi-objective LP described in Figure 3.3 The set of variables
in this LP are as follows: for each v ∈ F , there is a variable yv, and for each
v ∈ V \ F and each γ ∈ Γv there is a variable y(v,γ).

Theorem 2. Suppose we are given a cleaned-up MDP, M = (V, Γ, δ) with mul-
tiple target sets Fi ⊆ V , i = 1, . . . , k, where every target v ∈ F =

⋃k
i=1 Fi

is an absorbing state. Let α ∈ D(V \ F) be an initial distribution (in particular
V \F �= ∅). Let r ∈ (0, 1]k be a vector of positive probabilities. Then the following
are all equivalent:

(1.) There is a (possibly randomized) memoryless strategy σ such that
∧k

i=1(Prσ
α(�Fi) ≥ ri)

2 Technically, we would need to install a new “dead” absorbing state vdead �∈ F ,
such that all the probabilities going into states that have been removed now go to
vdead. For convenience in notation, instead of explicitly adding vdead we treat it as
implicit: we allow that for some states v ∈ V and some action a ∈ Γv we have�

v′∈V p(v,γ,v′) < 1, and we implicitly assume that there is an “invisible” transition
to vdead with the residual probability, i.e., with p(v,γ,vdead) = 1 −

�
v′∈V p(v,γ,v′). Of

course, vdead would then be a “bad” state, but we can ignore this implicit state.
3 We mention without further elaboration that this LP can be derived, using comple-

mentary slackness, from the dual LP of the standard LP for single-objective reach-
ability obtained from Bellman’s optimality equations, whose variables are xv, for
v ∈ V , and whose unique optimal solution is the vector x∗ with x∗

v = maxσ Prσ
v (�F)

(see, e.g., [Put94, CY98]).

Multi-objective Model Checking of Markov Decision Processes 59

(2.) There is a feasible solution y′ for the multi-objective LP in Fig. 3 such that
∧k

i=1(
∑

v∈Fi
y′

v ≥ ri)

(3.) There is an arbitrary strategy σ such that
∧k

i=1(Prσ
α(�Fi) ≥ ri)

Proof
(1.) ⇒ (2.). Since the MDP is cleaned up, by Proposition 1 we can assume
there is a memoryless strategy σ such that

∧k
i=1 Prσ

α(�Fi) ≥ ri and ∀v ∈ V
Prσ

v (�F) > 0. Consider the square matrix P σ whose size is |V \ F | × |V \ F |,
and whose rows and columns are indexed by states in V \F . The (v, v′)’th entry
of P σ, P σ

v,v′ , is the probability that starting in state v we shall in one step end
up in state v′. In other words, P σ

v,v′ =
∑

γ∈Γv
σ(v)(γ) · pv,γ,v′ .

For all v ∈ V \ F , let y′
(v,γ) =

∑
v′∈V \F α(v′)

∑∞
n=0(P

σ)n
v′,vσ(v)(γ). In other

words y′
(v,γ) denotes the “expected number of times that, using the strategy σ,

starting in the distribution α, we will visit the state v and upon doing so choose
action γ”. We don’t know yet that these are finite values, but assuming they
are, for v ∈ F , let y′

v =
∑

v′∈V \F

∑
γ′∈Γv′ p(v′,γ′,v)y

′
(v′,γ′). This completes the

definition of the entire vector y′.

Lemma 1. The vector y′ is well defined (i.e., all entries y′
(v,γ) are finite).More-

over, y′ is a feasible solution to the constraints of the LP in Figure 3.

Now we argue that
∑

v∈Fi
y′

v = Prσ
α(�Fi). To see this, note that for v ∈ F ,

y′
v =

∑
v′∈V \F

∑
γ′∈Γv′ p(v′,γ′,v)y

′
(v′,γ′) is precisely the “expected number of times

that we will transition into state v for the first time”, starting at distribution α.
The reason we can say “for the first time” is because only the states in V \F are
included in the matrix P σ. But note that this italicised statement in quotes is
another way to define the probability of eventually reaching state v. This equal-
ity can be establish formally, but we omit the formal algebraic derivation here.
Thus

∑
v∈Fi

y′
v = Prσ

α(�Fi) ≥ ri. We are done with (1.) ⇒ (2.).

(2.) ⇒ (1.). We now wish to show that if y′′ is a feasible solution to the multi-
objective LP such that

∑
v∈Fi

y′′
v ≥ ri > 0, for all i = 1, . . . , k, then there exists

a memoryless strategy σ such that
∧k

i=1 Prσ
α(�Fi) ≥ ri.

Suppose we have such a solution y′′. Let S = {v ∈ V \ F |
∑

γ∈Γv
y′′
(v,γ) > 0}.

Let σ be the memoryless strategy, given as follows. For each v ∈ S

σ(v)(γ) :=
y′′
(v,γ)

∑
γ′∈Γv

y′′
v,γ′

Note that since
∑

γ∈Γv
y′′
(v,γ) > 0, σ(v) is a well-defined probability distribution

on the moves at state v ∈ S. For the remaining states v ∈ (V \ F) \ S, let σ(v)
be an arbitrary distribution in D(Γv).

Lemma 2. This memoryless strategy σ satisfies
∧k

i=1 Prσ
α(�Fi) ≥ ri.

60 K. Etessami et al.

Proof. The proof is in [EKVY07]. Here we very briefly sketch the argument. We
can think of a feasible solution y′′ to the LP constraints as defining a “stochastic
flow”, whose “source” is the initial distribution α(v), and whose sinks are F .
By flow conservation, vertices v ∈ V \ F that have positive outflow (and thus
positive inflow) must all be reachable from the support of α, and must all reach
F , and can not reach any vertex with zero outflow. The strategy σ is obtained
by normalizing the outflow on each action at the states with positive outflow. It
can be shown that, using σ, the expected number of times we choose action γ
at vertex v is again given by y′′

(v,γ). Therefore, since transitions into the states
v ∈ F from V \ F are only crossed once, the constraint defining the value y′′

v

yields y′′
v = Prσ

α(�{v}). ��
This completes the proof that (2.) ⇒ (1.).

(3.) ⇔ (1.). Clearly (1.) ⇒ (3.), so we need to show that (3.) ⇒ (1.).
Let U be the set of achievable vectors, i.e., all k-vectors r = 〈r1 . . . rk〉 such

that there is a (unrestricted) strategy σ such that
∧k

i=1 Prσ
α(�Fi) ≥ ri. Let

U� be the analogous set where the strategy σ is restricted to be a possibly
randomized but memoryless (stationary) strategy. Clearly, U and U� are both
downward closed, i.e., if r ≥ r′ and r ∈ U then also r′ ∈ U , and similarly with
U�. Also, obviously U� ⊆ U . We characterized U� in (1.) ⇔ (2.), in terms
of a multi-objective LP. Thus, U� is the projection of the feasible space of a
set of linear inequalities (a polyhedral set), namely the set of inequalities in the
variables y given in Fig. 3 and the inequalities

∑
v∈Fi

yv ≥ ri, i = 1, . . . , k. The
feasible space is a polyhedron in the space indexed by the y variables and the
ri’s, and U� is its projection on the subspace indexed by the ri’s. Since the
projection of a convex set is convex, it follows that U� is convex.

Suppose that there is a point r ∈ U \ U�. Since U� is convex, this implies
that there is a separating hyperplane (see, e.g., [GLS93]) that separates r from
U�, and in fact since U� is downward closed, there is a separating hyperplane
with non-negative coefficients, i.e. there is a non-negative “weight” vector w =
〈w1, . . . , wk〉 such that wT r =

∑k
i=1 wiri > wT x for every point x ∈ U�.

Consider now the MDP M with the following undiscounted reward structure.
There is 0 reward for every state, action and transition, except for transitions
to a state v ∈ F from a state in V \ F ; i.e. a reward is produced only once, in
the first transition into a state of F . The reward for every transition to a state
v ∈ F is

∑
{wi | i ∈ {1, . . . , k} & v ∈ Fi}. By the definition, the expected

reward of a policy σ is
∑k

i=1 wi Prσ
α(�Fi). From classical MDP theory, we know

that there is a memoryless strategy (in fact even a deterministic one) that max-
imizes the expected reward for this type of reward structure. (Namely, this is a
positive bounded reward case: see, e.g., Theorem 7.2.11 in [Put94].) Therefore,
max{wT x | x ∈ U} = max{wT x | x ∈ U�}, contradicting our assumption that
wT r > max{wT x | x ∈ U�}. ��
Corollary 1. Given an MDP M = (V, Γ, δ), a number of target sets Fi ⊆ V ,
i = 1, . . . , k + k′, such that every state v ∈ F =

⋃k+k′

i=1 Fi is absorbing, and an
initial state u (or even initial distribution α ∈ D(V)):

Multi-objective Model Checking of Markov Decision Processes 61

(a.) Given an extended achievability query for reachability, ∃σB, where

B ≡
k∧

i=1

(Prσ
u(�Fi) ≥ ri) ∧

k+k′
∧

j=k+1

(Prσ
u(�Fj) > rj),

we can in time polynomial in the size of the input, |M |+ |B|, decide whether
∃σ B is satisfiable and if so construct a memoryless strategy that satisfies
it.

(b.) For ε > 0, we can compute an ε-approximate Pareto curve P(ε) for the
multi-objective reachability problem with objectives �Fi, i = 1, . . . , k, in
time polynomial in |M | and 1/ε.

4 Qualitative Multi-objective Model Checking

Theorem 3. Given an MDP M , an initial state u, and a qualitative multi-
objective query B, we can decide whether there exists a strategy σ that satisfies
B, and if so construct such a strategy, in time polynomial in |M |, and using only
graph-theoretic methods (in particular, without linear programming).

Proof. (Sketch) By the discussion in Section 2, it suffices to consider the case
where we are given MDP, M , and two sets of ω-regular properties Φ, Ψ , and we
want a strategy σ such that

∧

ϕ∈Φ

Prσ
u(ϕ) = 1 ∧

∧

ψ∈Ψ

Prσ
u(ψ) > 0

Assume the properties in Φ, Ψ are all given by (nondeterministic) Büchi au-
tomata Ai. We will use and build on results in [CY98]. In [CY98] (Lemma 4.4,
page 1411) it is shown that we can construct from M and from a collection Ai,
i = 1, . . . , m, of Büchi automata, a new MDP M ′ (a refinement of M) which
is the “product” of M with the naive determinization of all the Ai’s (i.e., the
result of applying the standard subset construction on each Ai, without impos-
ing any acceptance condition).4 This MDP M ′ has the following properties. For
every subset R of Φ ∪ Ψ there is a subset TR of corresponding “target states” of
M ′ (and we can compute this subset efficiently) that satisfies the following two
conditions:

(I) If a trajectory of M ′ hits a state in TR at some point, then we can apply
from that point on a strategy μR (which is deterministic but uses memory)
which ensures that the resulting infinite trajectory satisfies all properties
in R almost surely (i.e., with conditional probability 1, conditioned on the
initial prefix that hits TR).

4 Technically, we have to slightly adapt the constructions of [CY98], which use the
convention that MDP states are either purely controlled or purely probabilistic, to
the convention used in this paper which combines both control and probabilistic
behavior at each state. But these adaptations are straightforward.

62 K. Etessami et al.

(II) For every strategy, the set of trajectories that satisfy all properties in R and
do not infinitely often hit some state of TR has probability 0.

We now outline the algorithm for deciding qualitative multi-objective queries.

1. Construct the MDP M ′ from M and from the properties Φ and Ψ .
2. Compute TΦ, and compute for each property ψi ∈ Ψ the set of states TRi

where Ri = Φ ∪ {ψi}.5

3. If Φ �= ∅, prune M ′ by identifying and removing all “bad” states by applying
the following rules.
(a) All states v that cannot “reach” any state in TΦ are “bad”.6

(b) If for a state v there is an action γ ∈ Γv such that there is a transition
(v, γ, p, v′) ∈ δ, p > 0, and v′ is bad, then remove γ from Γv.

(c) If for some state v, Γv = ∅, then mark v as bad.
Keep applying these rules until no more states can be labelled bad and no
more actions removed for any state.

4. Restrict M ′ to the reachable states (from the initial state u) that are not
bad, and restrict their action sets to actions that have not been removed,
and let M ′′ be the resulting MDP.

5. If (M ′′ = ∅ or ∃ψi ∈ Ψ such that M ′′ does not contain any state of TRi)
then return No.

Else return Yes.

Correctness proof: In one direction, suppose there is a strategy σ such that∧
ϕ∈Φ Prσ

u(ϕ) = 1∧
∧

ψ∈Ψ Prσ
u(ψ) > 0. First, note that there cannot be any finite

prefix of a trajectory under σ that hits a state that cannot reach any state in TΦ.
For, if there was such a path, then all trajectories that start with this prefix go
only finitely often through TΦ. Hence (by property (II) above) almost all these
trajectories do not satisfy all properties in Φ, which contradicts the fact that all
these properties have probability 1 under σ. From the fact that no path under σ
hits a state that cannot reach TΦ, it follows by an easy induction that no finite
trajectory under σ hits any bad state. That is, under σ all trajectories stay in
the sub-MDP M ′′. Since every property ψi ∈ Ψ has probability Prσ

u(ψi) > 0 and
almost all trajectories that satisfy ψi and Φ must hit a state of TRi (property
(II) above), it follows that M ′′ contains some state of TRi for each ψi ∈ Ψ . Thus
the algorithm returns Yes.

In the other direction, suppose that the algorithm returns Yes. First, note
that for all states v of M ′′, and all enabled actions γ ∈ Γv in M ′′, all transitions
(v, γ, p, v′) ∈ δ, p > 0 of M ′ must still be in M ′′ (otherwise, γ would have been
removed from Γv at some stage using rule 3(b)). On the other hand, some states
may have some missing actions in M ′′. Next, note that all bottom strongly

5 Actually these sets are all computed together: we compute maximal closed compo-
nents of the MDP, determine the properties that each component favors (see Def.
4.1 of [CY98]), and tag each state with the sets for which it is a target state.

6 By “reach”, we mean that starting at the state v = v0, there a sequence of transitions
(vi, γ, pi, vi+1) ∈ δ, pi > 0, such that vn ∈ TΦ for some n ≥ 0.

Multi-objective Model Checking of Markov Decision Processes 63

connected components (bscc’s) of M ′′ (to be more precise, in the underlying
one-step reachability graph of M ′′) contain a state of TΦ (if Φ = ∅ then all states
are in TΦ), for otherwise the states in these bsccs would have been eliminated at
some stage using rule 3(a).

Define the following strategy σ which works in two phases. In the first phase,
the trajectory stays within M ′′. At each control state take a random action that
remains in M ′′ out of the state; the probabilities do not matter, we can use any
non-zero probability for all the remaining actions. In addition, at each state,
if the state is in TΦ or it is in TRi for some property ψi ∈ Ψ , then with some
nonzero probability the strategy decides to terminate phase 1 and move to phase
2 by switching to the strategy μΦ or μRi respectively, which it applies from that
point on. (Note: a state may belong to several TRi ’s, in which case each one of
them gets some non-zero probability - the precise value is unimportant.)

We claim that this strategy σ meets the desired requirements - it ensures
probability 1 for all properties in Φ and positive probability for all properties
in Ψ . For each ψi ∈ Ψ , the MDP M ′′ contains some state of TRi ; with nonzero
probability the process will follow a path to that state and then switch to the
strategy μRi from that point on, in which case it will satisfy ψi (property (I)
above). Thus, all properties in Ψ are satisfied with positive probability.

As for Φ (if Φ �= ∅), note that with probability 1 the process will switch at
some point to phase 2, because all bscc’s of M ′′ have a state in TΦ. When it
switches to phase 2 it applies strategy μΦ or μRi for some Ri = Φ ∪ {ψi}, hence
in either case it will satisfy all properties of Φ with probability 1. ��

5 Quantitative Multi-objective Model Checking

Theorem 4

(1.) Given an MDP M , an initial state u, and a quantitative multi-objective
query B, we can decide whether there exists a strategy σ that satisfies B,
and if so construct such a strategy, in time polynomial in |M |.

(2.) Moreover, given ω-regular properties Φ = 〈ϕ1, . . . , ϕk〉, we can construct an
ε-approximate Pareto curve PMu,Φ(ε), for the set of achievable probability
vectors UMu,Φ in time polynomial in M and in 1/ε.

Proof. (Sketch.) For (1.), by the discussion in Section 2, we only need to consider
extended achievability queries, B ≡

∧k′

i=1 Prσ
u(ϕi) ≥ ri ∧

∧k
j=k′+1 Prσ

u(ϕj) > rj ,
where k ≥ k′ ≥ 0, and for a vector r ∈ (0, 1]k. Let Φ = 〈ϕ1, . . . , ϕk〉. We are
going to reduce this multi-objective problem with objectives Φ to the quantitative
multi-objective reachability problem studied in Section 3. From our reduction,
both (1.) and (2.) will follow, using Corollary 1. As in the proof of Theorem
3, we will build on constructions from [CY98]: form the MDP M ′ consisting of
the product of M with the naive determinizations of the automata Ai for the
properties ϕi ∈ Φ. For each subset R ⊆ Φ we determine the corresponding subset
TR of target states in M ′.7

7 Again, we don’t need to compute these sets separately. See Footnote 5.

64 K. Etessami et al.

Construct the following MDP M ′′. Add to M ′ a new absorbing state sR for
each subset R of Φ. For each state u of M ′ and each maximal subset R such that
u ∈ TR add a new action γR to Γu, and an new transition (u, γR, 1, sR) to δ. With
each property ϕi ∈ Φ we associate the subset of states Fi = {sR | ϕi ∈ R}. Let
F = 〈�F1, . . . , �Fk〉. Let u∗ be the initial state of the product MDP M ′′, given
by the start state u of M and the start states of all the naively determinized
Ai’s. Recall that UMu,Φ ⊆ [0, 1]k denotes the achievable set for the properties
Φ in M starting at u, and that UM ′′

u∗ ,F denotes the achievable set for F in M ′′

starting at u∗.

Lemma 3. UMu,Φ = UM ′′
u∗ ,F . Moreover, from a strategy σ that achieves r in

UMu,Φ, we can recover a strategy σ′ that achieves r in UM ′′
u∗ ,F , and vice versa.

It follows from the Lemma that: there exists a strategy σ in M such that
∧k′

i=1 Prσ
u(ϕi) ≥ ri ∧

∧k
j=k′+1 Prσ

u(ϕj) > rj if and only if there exists a strategy

σ′ in M ′′ such that
∧k′

i=1 Prσ
u∗(�Fi) ≥ ri ∧

∧k
j=k′+1 Prσ

u∗(�Fj) > rj . Moreover,
such strategies can be recovered from each other. Thus (1.) and (2.) follow, using
Corollary 1. ��

6 Concluding Remarks

We mention that although our quantitative upper bounds use LP methods,
in practice there is a way to combine efficient iterative numerical methods for
MDPs, e.g., based on value iteration, with our results in order to approximate
the Pareto curve for multi-objective model checking. This is because the results
of [PY00] for multi-objective LPs only require a black-box routine that optimizes
(exactly or approximately) positive linear combinations of the LP objectives. We
omit the details of this approach.

An important extension of the applications of our results is to extend the
asymmetric assume-guarantee compositional reasoning rule discussed in Section
2 to a general compositional framework for probabilistic systems. It is indeed
possible to describe symmetric assume-guarantee rules that allow for general
composition of MDPs. A full treatment of the general compositional frame-
work requires a separate paper, and we plan to expand on this in follow-up
work.

Acknowledgements. We thank the Newton Institute, where we initiated dis-
cussions on the topics of this paper during the Spring 2006 programme on
Logic and Algorithms. Several authors acknowledge support from the following
grants: EPSRC GR/S11107 and EP/D07956X, MRL 2005-04; NSF grants CCR-
9988322, CCR-0124077, CCR-0311326, and ANI-0216467, BSF grant 9800096,
Texas ATP grant 003604-0058-2003, Guggenheim Fellowship; NSF CCF-04-
30946.

Multi-objective Model Checking of Markov Decision Processes 65

References

[Cĺı97] J. Cĺımaco, editor. Multicriteria Analysis. Springer-Verlag, 1997.
[CMH06] K. Chatterjee, R. Majumdar, and T. Henzinger. Markov decision processes

with multiple objectives. In Proc. of 23rd Symp. on Theoretical Aspects of
Computer Science, volume LNCS 3884, pages 325–336, 2006.

[CY95] C. Courcoubetis and M. Yannakakis. The complexity of probabilistic ver-
ification. Journal of the ACM, 42(4):857–907, 1995.

[CY98] C. Courcoubetis and M. Yannakakis. Markov decision processes and reg-
ular events. IEEE Trans. on Automatic Control, 43(10):1399–1418, 1998.

[Ehr05] M. Ehrgott. Multicriteria optimization. Springer-Verlag, 2005.
[EKVY07] K. Etessami, M. Kwiatkowska, M. Vardi, & M. Yannakakis. Multi-

Objective Model Checking of Markov Decision Processes. Fuller version
of this conference paper with proofs. http://homepages.inf.ed.ac.uk/
kousha/homepages/tacas07long.pdf

[Fur80] N. Furukawa. Characterization of optimal policies in vector-valued
Markovian decision processes. Mathematics of Operations Research,
5(2):271–279, 1980.

[Gho90] M. K. Ghosh. Markov decision processes with multiple costs. Oper. Res.
Lett., 9(4):257–260, 1990.

[GLS93] M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and
Combinatorial Optimization. Springer-Verlag, 2nd edition, 1993.

[Hen83] M. I. Henig. Vector-valued dynamic programming. SIAM J. Control Op-
tim., 21(3):490–499, 1983.

[Put94] M. L. Puterman. Markov Decision Processes. Wiley, 1994.
[PY00] C. Papadimitriou and M. Yannakakis. On the approximability of trade-

offs and optimal access of web sources. In Proc. of 41st IEEE Symp. on
Foundations of Computer Science, pages 86–92, 2000.

[Var85] M. Vardi. Automatic verification of probabilistic concurrent finite-state
programs. In Proc. of 26th IEEE FOCS, pages 327–338, 1985.

[Whi82] D. J. White. Multi-objective infinite-horizon discounted Markov decision
processes. J. Math. Anal. Appl., 89(2):639–647, 1982.

[WT98] K. Wakuta and K. Togawa. Solution procedures for multi-objective
Markov decision processes. Optimization. A Journal of Mathematical Pro-
gramming and Operations Research, 43(1):29–46, 1998.

PReMo:

An Analyzer for Probabilistic Recursive Models

Dominik Wojtczak and Kousha Etessami

School of Informatics, University of Edinburgh

Abstract. This paper describes PReMo, a tool for analyzing Recursive
Markov Chains, and their controlled/game extensions: (1-exit) Recursive
Markov Decision Processes and Recursive Simple Stochastic Games.

1 Introduction

Recursive Markov Chains (RMCs) [4,5] are a natural abstract model of proba-
bilistic procedural programs and other systems involving recursion and proba-
bility. They are formally equivalent to probabilistic Pushdown Systems (pPDSs)
([2,3]), and they define a class of infinite-state Markov chains that generalize a
number of well studied stochastic models such as Stochastic Context-Free Gram-
mars (SCFGs) and Multi-Type Branching Processes. In a series of recent papers
([4,5,6,7]), the second author and M. Yannakakis have developed algorithms for
analysis and model checking of RMCs and their controlled and game extensions:
1-exit Recursive Markov Decision Processes (1-RMDPs) and 1-exit Recursive
Simple Stochastic Games (1-RSSGs). These extensions allow modelling of non-
deterministic and interactive behavior.

In this paper we describe PReMo, a software tool for analysing models based
on RMCs, 1-RMDPs, and 1-RSSGs. PReMo allows these models to be speci-
fied in several different input formats, including a simple imperative-style lan-
guage for specifying RMCs and RSSGs, and an input format for SCFGs. For
RMCs/RSSGs, PReMo generates a graphical depiction of the model, useful for
visualizing small models (see Figure 1). PReMo has implementations of numeri-
cal algorithms for a number of analyses of RMCs and 1-RSSGs. From an RMC,
PReMo generates a corresponding system of nonlinear polynomial equations,
whose Least Fixed Point (LFP) solution gives precisely the termination prob-
abilities for vertex-exit pairs in the RMC. For 1-RSSGs, it generates a system
of nonlinear min-max equations, whose LFP gives the values of the termination
game starting at each vertex. Computation of termination probabilities is a key
ingredient for model checking and other analyses for RMCs and pPDSs ([4,5,2]).
PReMo provides a number of optimized numerical algorithms for computing ter-
mination probabilities. Methods provided include both dense and sparse versions
of a decomposed Newton’s method developed in [4], as well as versions of value
iteration, optimized using nonlinear generalizations of Gauss-Seidel and SOR
techniques. The latter methods also apply to analysis of 1-RSSGs.

In addition to computing termination probabilities, PReMo can compute the
(maximum/minimum/game) expected termination time in 1-RMCs, 1-RMDPs,

O. Grumberg and M. Huth (Eds.): TACAS 2007, LNCS 4424, pp. 66–71, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

PReMo: An Analyzer for Probabilistic Recursive Models 67

Fig. 1. Source code of an RMC, and its visualization generated by PReMo

and 1-RSSGs. It does so by generating a different monotone system of linear
(min-max) equations, whose LFP is the value of the game where the objectives
of the two players are to maximize/minimize the expected termination time
(these expected times can be infinity). (This analysis extends, to a game set-
ting, the expected reward analysis for pPDSs (equivalently, RMCs) studied in
[3]. The generalization works for 1-RMDPs and 1-RSSGs, which correspond to
controlled/game versions of stateless pPDSs, also known as pBPAs. We do not
explicate the theory behind these game analyses here. It is a modification of
results in [6,7], and will be explicated elsewhere.)

PReMo is implemented entirely in Java, and has the following main compo-
nents: (1) A parsers for text descriptions of RMCs, RSSGs, and SCFGs, using
one of several input formats; (2) A menu-driven GUI (using the Standard Wid-
get Library(SWT)), with an editor for different input formats, and menu choices
for running different analyses with different methods; (3) A graphical depiction
generator for RMCs and RSSGs, which produces output using the dot format.
(4) Optimized solvers: Several solvers are implemented for computation of ter-
mination probabilities/values for RMCs and 1-RSSGs, and also computation of
expected termination times for 1-RMCs, 1-RMDPs, 1-RSSGs. We conducted a
range of experiments. Our experiments indicate very promising potential for sev-
eral methods. In particular, our decomposed Sparse Newton’s method performed
very well on most models we tried, up to quite large sizes. Although these nu-
merical methods appear to work well in practice on most instances, there are no

68 D. Wojtczak and K. Etessami

theoretical guarantees on their performance, and there are many open questions
about the complexity of the underlying computational problems (see [4,5,6,7]).

We can see PReMo source code for an RMC, together with a visualization
that PReMo generates for it, in Figure 1. Informally, an RMC consists of several
component Markov Chains (in Fig. 1, these are named A and B) that can call
each other recursively. Each component consists of nodes and boxes with pos-
sible probabilistic transitions between them. Each box is mapped to a specific
component so that every time we reach an entry of this box, we jump to the
corresponding entry of the component it is mapped to. When/if we finally reach
an exit node of that component, we will jump back to a respective exit of the box
that we have entered this component from. This process models, in an obvious
way, function invocation in a probabilistic procedural program. Every potential
function call is represented by a box. Entry nodes represent parameter values
passed to the function, while exit nodes represent returned values. Nodes within
a component represent control states inside the function. Documentation about
the input languages is available on the PReMo web page.

The core numerical computation for all the analyses provided by PReMo in-
volves solving a monotone systems of nonlinear min-max equations. Namely, we
have a vector of variables x = (x1, . . . , xn), and one equation per variable of
the form xi = Pi(x), where Pi(x) is a polynomial-min-max expression with ra-
tional coefficients. In vector notation, this system of equations can be denoted
x = P (x). The goal is to find the Least Fixed Point solution, i.e., the least non-
negative solution, q∗ ∈ R

n
≥0, of these equations, which is limk→∞ P k(0). In brief,

the solvers in PReMo work as follows (see [4,6] for more background). First, we
decompose the equations into SCCs and calculate the solution “bottom-up”,
solving the Bottom SCCs first and plug in the solution as constants in higher
SCCs. To solve each SCC, PReMo provides several methods:

Value iteration: nonlinear Jacobi & Gauss-Seidel. Optimized forms of nonlinear
value iteration have been implemented for computing the LFP of x = P (x).
Jacobi, or basic iteration, just computes x0 = 0,x1,x2, . . ., where xi = P (xi−1).
Gauss-Seidel iteration optimizes this slightly: inductively, having computed xk+1

j

for j < i, let xk+1
i := Pi(xk+1

1 , . . . , xk+1
i−1 , xk

i , xk
i+1, . . . , x

k
n). Successive Overrelax-

ation (SOR) is an “optimistic” modification of Gauss-Seidel, which isn’t guar-
anteed to converge in our case.
Dense and sparse decomposed Newton’s method. Newton’s method attempts to
compute solutions to F (x) = 0. In n-dimensions, it works by iterating xk+1 :=
xk−(F ′(xk))−1F (xk) where F ′(x) is the Jacobian matrix of partial derivatives of
F . In our case we apply this method for F (x) = P (x)−x. It was shown in [4] that
if the system is decomposed into SCCs appropriately, convergence to the LFP is
guaranteed, if we start with x0 = 0. The expensive task at each step of Newton
is the matrix inversion (F ′(xk))−1. Explicit matrix inversion is too expensive
for huge matrices. But this matrix is typically sparse for RMCs, and we can
handle much larger matrices if instead of inverting (F ′(xk)) we solve the following
equivalent sparse linear system of equations: (F ′(xk))(xk+1 − xk) = F (xk) to
compute the value of xk+1 − xk, and then add xk to obtain xk+1. We used

PReMo: An Analyzer for Probabilistic Recursive Models 69

the solver library MTJ (Matrix Toolkit for Java) and tried various sparse linear
solvers. Our Dense Newton’s method uses LU decomposition to invert (F ′(xk)).

Iterative numerical solvers can only converge to within some error to the actual
solution. PReMo provides different mechanisms for users to choose when to stop
the iteration: absolute tolerance, relative tolerance, and a specified number of
iterations. In, e.g., the absolute tolerance mode, the algorithm stops after the
first iteration when the absolute difference in the value for all variables changed
less than a given ε > 0. This does not in general guarantee closeness to the actual
solution, but it behaves well in practice.

2 Experimental Results

We ran a wide range of experiments on a Pentium 4 3GHz with 1GB RAM,
running Linux Fedora 5, kernel 2.6.17, using Java 5.0. Please see our fuller report
[9] for more details about our experimental results.

SCFGs generated from the Penn Treebank NLP corpora. We checked the consis-
tency1 of a set of large SCFGs, with 10,000 to 50,000 productions, used by
the Natural Language Processing (NLP) group at University of Edinburgh and
derived by them from the Penn Treebank NLP corpora. These SCFGs were
assumed to be consistent by construction. Our most efficient method (Sparse
Newton) solved all these SCFGs in a few seconds (see Table 1). Two out of
seven SCFGs were (very) inconsistent, namely those derived from the brown
and switchboard corpora of Penn Treebank, with termination probabilities as
low as 0.3 for many nonterminals. This inconsistency was a surprise to our NLP
colleagues, and was subsequently identified by them to be caused by annotation
errors in Penn Treebank itself ([1]). Note that both dense and sparse versions
of decomposed Newton’s method are by far the fastest. Since the largest SCCs
are no bigger than 1000 vertices, dense Newton also worked on these examples.
Most of the time for Newton’s method was in fact taken up by the initialization
phase, for computing all the partial derivatives in entries of the Jacobian F ′(x).
We thus optimized the computation of the Jacobian in several ways.

Randomly generated RMCs and 1-RSSGs. We tested PReMo on randomly gener-
ated RMCs of different sizes, ranging from 10,000 to 500,000 nodes (variables).
In random large instances, with very high probability most nodes are in one
huge SCC with small diameter (“small world phenomenon”). Dense Newton’s
method did not work at all on these huge SCCs, because inverting such large
matrices is too costly, but both Gauss-Seidel and Sparse Newton did very well.
In particular, Sparse Newton handled instances with 500,000 variables in ∼ 45
seconds. For random 1-RSSGs, although we have no Newton’s method available
for 1-RSSGs, value iteration performed well (see [9]).

Quicksort. For expected termination time analyses, we considered a toy model
of randomized Quicksort, using a simple hierarchical 1-RMC. The model has
1 An SCFG is called consistent if starting at all nonterminals in the grammar, a random

derivation terminates, and generates a finite string, with probability 1.

70 D. Wojtczak and K. Etessami

Table 1. Performance results for checking consistency of SCFGs derived from Penn
Treebank. Time is in seconds. In parentheses is the number of iterations for the biggest
SCC. Stopping condition: absolute tolerance ε = 10−12. SCFG was declared “consis-
tent” if all nonterminals had termination probability ≥ (1 − 10−4). The SCFGs brown
and swbd failed consistency by a wide margin.

name #prod max-scc Jacobi Gauss Seidel SOR ω=1.05 DNewton SNewton

brown 22866 � 448 312.084(9277) 275.624(7866) diverge 2.106(8) 2.115(9)
lemonde 32885 � 527 234.715(5995) 30.420(767) diverge 1.556(7) 2.037(7)
negra 29297 � 518 16.995(610) 4.724(174) 4.201(152) 1.017(6) 0.499(6)
swbd 47578 � 1123 445.120(4778) 19.321(202) 25.654(270) 6.435(6) 3.978(6)
tiger 52184 � 1173 99.286(1347) 16.073(210) 12.447(166) 5.274(6) 1.871(6)

tuebadz 8932 � 293 6.894(465) 1.925(133) 6.878(461) 0.477(7) 0.341(7)
wsj 31170 � 765 462.378(9787) 68.650(1439) diverge 2.363(7) 3.616(8)

n components, Qi, i = 1, . . . , n, corresponding to invocations of Quicksort on
arrays of size i. Component Qi takes time i to pivot and split the entries, and
then recurses on the two partitions. This is modeled by transitions of probability
1/(i − 1), for each d ∈ {1, . . . , i − 1}, to two sequential boxes labeled by Qd and
Qi−d. We computed expected termination time for various sizes n. We also tried
letting the pivot be controlled by the minimizer or maximizer, and we computed
optimal expected running time for such 1-RMDPs, in order to consider best-
case and worst-case running times of Quicksort. As expected, the results fitted
the well-known theoretical analysis of Θ(n log n) and Θ(n2) for running times of
randomized/best-case, and worst-case Quicksort, respectively.

3 Future Work

The next important step is to extend the RMC language to allow variables
and conditional branching, i.e., probabilistic Boolean Programs. We are working
toward implementation of a full-fledged linear-time model checker for RMCs.
This is a major challenge because there are very difficult numerical issues that
have to be overcome in order to enable general model checking. PReMo 1.0 is
available at: http://homepages.inf.ed.ac.uk/s0571094/PReMo

Acknowledgements. Thanks to Mihalis Yannakakis: the second author’s work
on analysis of RMCs/RSSGs, on which PReMo is based, is joint work with him.
Thanks to Mark-Jan Neiderhof and Giorgio Satta for pointing us in the direction
of large SCFG libraries used in NLP, and telling us about their own current work
on implementing these methods [8]. Thanks to Amit Dubey and Frank Keller
for providing us SCFGs from their NLP work.

References

1. A. Dubey and F. Keller. personal communication, 2006.
2. J. Esparza, A. Kučera, and R. Mayr. Model checking probabilistic pushdown au-

tomata. In Proc. LICS’04, 2004.

PReMo: An Analyzer for Probabilistic Recursive Models 71

3. J. Esparza, A. Kučera, and R. Mayr. Quantitative Analysis of Probabilistic Push-
down Automata: Expectations and Variances. In Proc. LICS’05, 2005.

4. K. Etessami and M. Yannakakis. Recursive markov chains, stochastic grammars,
and monotone systems of nonlinear equations. In Proc. STACS’05, 2005.

5. K. Etessami and M. Yannakakis. Algorithmic verification of recursive probabilistic
state machines. In Proc. TACAS’05, 2005.

6. K. Etessami and M. Yannakakis. Recursive markov decision processes and recursive
stochastic games. In Proc. ICALP’05, 2005.

7. K. Etessami and M. Yannakakis. Efficient qualitative analysis of classes of recursive
markov decision processes and simple stochastic games. In Proc. STACS’06, 2006.

8. M. J. Neiderhof and G. Satta. Using Newton’s method to compute the partition
function of a PCFG, 2006. unpublished draft manuscript.

9. D. Wojtczak and K. Etessami. PReMo: an analyzer for Probabilistic
Recursive Models. Fuller report, with more experimental data.
http://homepages.inf.ed.ac.uk/s0571094/PReMo/tacas07premo-long.pdf

Counterexamples in Probabilistic Model Checking

Tingting Han and Joost-Pieter Katoen

Software Modelling and Verification, RWTH Aachen, Germany
Formal Methods and Tools, University of Twente, The Netherlands

{tingting.han,katoen}@cs.rwth-aachen.de

.

Abstract. This paper considers algorithms for counterexample generation for
(bounded) probabilistic reachability properties in fully probabilistic systems.
Finding the strongest evidence (i.e, the most probable path) violating a (bounded)
until-formula is shown to be reducible to a single-source (hop-constrained) short-
est path problem. Counterexamples of smallest size that are mostly deviating from
the required probability bound can be computed by adopting (partially new hop-
constrained) k shortest paths algorithms that dynamically determine k.

1 Introduction

A major strength of model checking is the possibility to generate counterexamples in
case a property is violated. The shape of a counterexample depends on the checked for-
mula and the used temporal logic. For logics such as LTL, typically paths through the
model suffice. The violation of linear-time safety properties is indicated by finite path
fragments that end in a “bad” state. Liveness properties, instead, require infinite paths
ending in a cyclic behavior indicating that something “good” will never happen. LTL
model checkers usually incorporate breadth-first search algorithms to generate short-
est counterexamples, i.e., paths of minimal length. For branching-time logics such as
CTL, paths may act as counterexample for a subclass of universally quantified formu-
lae, ACTL∩LTL, to be exact. To cover a broader spectrum of formulae, though, more
advanced structures such as trees of paths [11], proof-like counterexamples [18] (for
ACTL\LTL) or annotated paths [26] (for ECTL) are used.

Counterexamples are of utmost importance in model checking: first, and for all, they
provide diagnostic feedback even in cases where only a fragment of the entire model can
be searched. They constitute the key to successful abstraction-refinement techniques
[10], and are at the core of obtaining feasible schedules in e.g., timed model check-
ing [8]. As a result, advanced counterexample generation and analysis techniques have
intensively been investigated, see e.g., [21,7,13].

This paper considers the generation of counterexamples in probabilistic model
checking. Probabilistic model checking is a technique to verify system models in which
transitions are equipped with random information. Popular models are discrete- and
continuous-time Markov chains (DTMCs and CTMCs, respectively), and variants
thereof which exhibit nondeterminism. Efficient model-checking algorithms for these
models have been developed, have been implemented in a variety of software tools,
and have been applied to case studies from various application areas ranging from ran-
domized distributed algorithms, computer systems and security protocols to biological

O. Grumberg and M. Huth (Eds.): TACAS 2007, LNCS 4424, pp. 72–86, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Counterexamples in Probabilistic Model Checking 73

systems and quantum computing. The crux of probabilistic model checking is to appro-
priately combine techniques from numerical mathematics and operations research with
standard reachability analysis. In this way, properties such as “the (maximal) probability
to reach a set of goal states by avoiding certain states is at most 0.6” can be automati-
cally checked up to a user-defined precision. Markovian models comprising millions of
states can be checked rather fast.

In probabilistic model checking, however, counterexample generation is almost not
developed; notable exception is the recent heuristic search algorithm for CTMCs and
DTMCs [3,4] that works under the assumption that the model is unknown. Instead, we
consider a setting in which it has already been established that a certain state refutes
a given property. This paper considers algorithms and complexity results for the gen-
eration of counterexamples in probabilistic model checking. The considered setting is
probabilistic CTL [19] for discrete-time Markov chains (DTMCs), a model in which all
transitions are equipped with a probability. In this setting, typically there is no single
path but rather a set of paths that indicates why a given property is refuted. We concen-
trate on properties of the form P�p(ΦU�hΨ) where p is a probability and h a (possibly
infinite) bound on the maximal allowed number of steps before reaching a goal (i.e., a
Ψ -) state. In case state s refutes this formula, the probability of all paths in s satisfying
ΦU�hΨ exceeds p. We consider two problems that are aimed to provide useful diag-
nostic feedback for this violation: generating strongest evidences and smallest, most
indicative counterexamples.

Strongest evidences are the most probable paths that satisfy ΦU�hΨ . They “con-
tribute” mostly to the property refutation and are thus expected to be informative. For
unbounded until (i.e., h=∞), determining strongest evidences is shown to be equivalent
to a standard single-source shortest path (SP) problem; in case h is bounded, we obtain
a special case of the (resource) constrained shortest path (CSP) problem [2] that can be
solved in O(hm) where m is the number of transitions in the DTMC. Alternatively, the
Viterbi algorithm can be used for bounded h yielding the same time complexity.

Evidently, strongest evidences may not suffice as true counterexamples, as their prob-
ability mass lies (far) below p. As a next step, therefore, we consider the problem of
determining most probable subtrees (rooted at s). Similar to the notion of shortest coun-
terexample in LTL model checking, we consider trees of smallest size that exceed the
probability bound p. Additionally, such trees, of size k, say, are required to maximally
exceed the lower bound, i.e., no subtrees should exist of size at most k that exceed p
to a larger extent. The problem of generating such smallest, most indicative counterex-
amples can be casted as a k shortest paths problem. For unbounded-until formulae (i.e.,
h=∞), it is shown that the generation of such smallest counterexamples can be found in
pseudo-polynomial time by adopting k shortest paths algorithms [15,24] that compute k
on the fly. For bounded until-formulae, we propose an algorithm based on the recursive
enumeration algorithm of Jiménez and Marzal [20]. The time complexity of this adapted
algorithm is O(hm+hk log(m

n)), where n is the number of states in the DTMC.
Finally, we show how the algorithms for P�p(ΦU�hΨ) can be exploited for gener-

ating strongest evidences and counterexamples for lower bounds on probabilities, i.e.,
P�p(ΦU�hΨ).

74 T. Han and J.-P. Katoen

2 Preliminaries

DTMCs. Let AP denote a fixed, finite set of atomic propositions ranged over by
a, b, c, A (labelled) discrete-time Markov chain (DTMC) is a Kripke structure in
which all transitions are equipped with discrete probabilities such that the sum of out-
going transitions of each state equals one. Formally, DTMC D = (S, P, L) where S is
a finite set of states, P : S × S → [0, 1] is a stochastic matrix, and L : S → 2AP is a
labelling function which assigns to each state s ∈ S the set L(s) of atomic propositions
that are valid in s. A state s in D is called absorbing if P(s, s) = 1. W.l.o.g. we assume
a DTMC to have a unique initial state.

Definition 1 (Paths). Let D = (S,P, L) be a DTMC.

– An infinite path σ in D is an infinite sequence s0·s1·s2· . . . of states such that
P(si, si+1) > 0 for all i � 0.

– A finite path in D is a finite prefix of an infinite path.

For state s and finite path σ = s0·s1· . . . ·sn with P(sn, s) > 0, let σ·s denote the path
obtained by extending σ by s. Let |σ| denote the length of the path σ, i.e., |s0·s1·...·sn|=
n, |s0| = 0 and |σ| = ∞ for infinite σ. For 0 � i � |σ|, σ[i] = si denotes the (i+1)-st
state in σ. Path(s) denotes the set of all infinite paths that start in state s and Pathfin(s)
denotes the set of all finite paths of s.

A DTMC D enriched with an initial state s0 induces a probability space. The under-
lying σ-algebra from the basic cylinder is induced by the finite paths starting in s0. The
probability measure PrDs0

(briefly Pr) induced by (D, s0) is the unique measure on this
σ-algebra where:

Pr{σ ∈ Path(s0) | s0·s1·...·sn is a prefix of σ
︸ ︷︷ ︸

basic cylinder of the finite path s0·s1·...·sn

} =
∏

0�i<n

P(si, si+1).

s s1 t1

u s2 t2

0.6
1
3

2
3

0.3
0.1

0.7 0.3

0.7

0.3

0.5

0.3 10.2

{a} {a} {b}

∅ {a} {b}

Fig. 1. An example DTMC

Example 1. Fig. 1 illustrates a sim-
ple DTMC with initial state s. AP =
{a, b} and L is given through the sub-
sets of AP labelling the states as L(s) =
L(si) = {a}, for 1 � i � 2; L(t1) =
L(t2) = {b} and L(u) = ∅. t2 is an
absorbing state. σ1 = s·u·s2·t1·t2 is a
finite path with Pr{σ1} = 0.1 × 0.7 ×
0.5 × 0.7 and |σ1| = 4, σ1[3] = t1.
σ2 = s·(s2·t1)ω is an infinite path.

PCTL. Probabilistic computation tree logic (PCTL) [19] is a probabilistic extension of
CTL in which state-formulae are interpreted over states of a DTMC and path-formulae
are interpreted over paths in a DTMC. The syntax of PCTL is as follows:

Φ ::= tt | a | ¬Φ | Φ ∧ Φ | P�p(φ)

Counterexamples in Probabilistic Model Checking 75

where p ∈ [0, 1] is a probability, � ∈ {<, �, >, �} and φ is a path formula defined
according to the following grammar:

φ ::= ΦU�hΦ | ΦW�hΦ

where h ∈ N∪{∞}. The path formula ΦU�hΨ asserts that Ψ is satisfied within h tran-
sitions and that all preceding states satisfy Φ. For h=∞ such path-formulae are standard
(unbounded) until-formulae, whereas in other cases, these are bounded until-formulae.
W�h is the weak counterpart of U�h which does not require Ψ to eventually become
true. For the sake of simplicity, we do not consider the next-operator. The temporal
operators ♦�h and ��h are obtained as follows:

P�p(♦�hΦ) = P�p(tt U�h Φ) and P�p(��hΦ) = P�p(ΦW�hff)

Note that ff = ¬tt. Some example formulae are P�0.5(aUb) asserting that the proba-
bility of reaching a b-state via an a-path is at most 1

2 , and P>0.001(♦�50error) stating
that the probability for a system error to occur within 50 steps exceeds 0.001. Dually,
P�0.999(��50¬error) states that the probability for no error in the next 50 steps is at
most 0.999.

Semantics. Let DTMC D = (S, P, L). The semantics of PCTL is defined by a satisfac-
tion relation, denoted |=, which is characterized as the least relation over the states in S
(paths in D, respectively) and the state formulae (path formulae) satisfying:

s |= tt iff true s |= a iff a ∈ L(s) s |= ¬Φ iff not (s |= Φ)
s |= Φ ∧ Ψ iff s |= Φ and s |= Ψ s |= P�p(φ) iff Prob(s, φ) � p

Let Path(s, φ) denote the set of infinite paths that start in state s and satisfy φ. Formally,
Path(s, φ) = {σ ∈ Path(s) | σ |= φ}. Here, Prob(s, φ) = Pr{σ | σ ∈ Path(s, φ)}
denotes the probability of Path(s, φ). Let σ be an infinite path in D. The semantics of
PCTL path formulae is defined as:

σ |= ΦU�hΨ iff ∃i � h such that σ[i] |= Ψ and ∀j : 0 � j < i.(σ[j] |= Φ)
σ |= ΦW�hΨ iff either σ |= ΦU�hΨ or σ[i] |= Φ for all i � h

For finite path σ, |= is defined in a similar way by changing the range of i to i �
min{h, |σ|}. Let Pathfin(s, φ) denote the set of finite paths starting in s that fulfill φ.

The until and weak until operators are closely related. This follows from the follow-
ing equations. For any state s and all PCTL-formulae Φ and Ψ we have:

P�p(ΦW�hΨ) ≡ P�1−p((Φ ∧ ¬Ψ)U�h(¬Φ ∧ ¬Ψ))
P�p(ΦU�hΨ) ≡ P�1−p((Φ ∧ ¬Ψ)W�h(¬Φ ∧ ¬Ψ))

For the rest of the paper, we explore counterexamples for PCTL formulae of the form
P�p(ΦU�hΨ). In Section 7, we will show how to generate counterexamples for formu-
lae of the form P�p(ΦU�hΨ).

76 T. Han and J.-P. Katoen

3 Strongest Evidences and Counterexamples

Let us first consider what a counterexample in our setting actually is. To that end, con-
sider the formula P�p(φ), where we denote φ = ΦU�hΨ (h ∈ {∞} ∪ N) for the rest
of the paper. It follows directly from the semantics that:

s � P�p(φ) iff not (Prob(s, φ) � p) iff Pr{σ | σ ∈ Path(s, φ)} > p.

So, P�p(φ) is refuted by state s whenever the total probability mass of all φ-paths
that start in s exceeds p. This indicates that a counterexample for P�p(φ) is in general
a set of paths starting in s and satisfying φ. As φ is an until-formula whose validity
(regardless of the value of h) can be witnessed by finite state sequences, finite paths do
suffice in counterexamples. A counterexample is defined as follows:

Definition 2 (Counterexample). A counterexample for P�p(φ) in state s is a set C of
finite paths such that C ⊆ Pathfin(s, φ) and Pr(C) > p.

A counterexample for state s is thus a set of finite paths that all start in s. We will not
dwell further upon how to represent this set, being it a finite tree (or dag) rooted at s, or
a bounded regular expression (over states), and assume that an abstract representation as
a set suffices. Note that the measurability of counterexamples is ensured by the fact that
they just consist of finite paths; hence, Pr(C) is well-defined. Let CXp(s, φ) denote the
set of all counterexamples for P�p(φ) in state s. For C ∈ CXp(s, φ) and C’s superset
C′: C ⊆ C′ ⊆ Pathfin(s, φ), it follows that C′ ∈ CXp(s, φ), since Pr(C′) � Pr(C) >
p. That is to say, any extension of a counterexample C with paths in Pathfin(s, φ) is a
counterexample.

Definition 3 (Minimal counterexample). C ∈ CXp(s, φ) is a minimal counterexam-
ple if |C| � |C′|, for any C′ ∈ CXp(s, φ).

Note that what we define as being minimal differs from minimality w.r.t. ⊆. As a coun-
terexample should exceed p, a maximally probable φ-path is a strong evidence for the
violation of P�p(φ). For minimal counterexamples such maximally probable paths are
essential.

Definition 4 (Strongest evidence). A strongest evidence for violating P�p(φ) in state
s is a finite path σ ∈ Pathfin(s, φ) such that Pr{σ} � Pr{σ′} for any σ′ ∈ Pathfin(s, φ).

Dually, a strongest evidence for violating P�p(φ) is a strongest witness for fulfilling
P>p(φ). Evidently, a strongest evidence does not need to be a counterexample as its
probability mass may be (far) below p.

As in conventional model checking, we are not interested in generating arbitrary
counterexamples, but those that are easy to comprehend, and provide a clear evidence
of the refutation of the formula. So, akin to shortest counterexamples for linear-time
logics, we consider the notion of a smallest, most indicative counterexample. Such
counterexamples are required to be succinct, i.e., minimal, allowing easier analysis of
the cause of refutation, and most distinctive, i.e., their probability should mostly exceed
p among all minimal counterexamples.

Counterexamples in Probabilistic Model Checking 77

Definition 5 (Smallest counterexample). C ∈ CXp(s, φ) is a smallest (most indica-
tive) counterexample if it is minimal and Pr(C) � Pr(C′) for any minimal counterex-
ample C′ ∈ CXp(s, φ).

The intuition is that a smallest counterexample is mostly deviating from the required
probability bound given that it has the smallest number of paths. Thus, there does not
exist an equally sized counterexample that deviates more from p. Strongest evidences,
minimal counterexamples or smallest counterexamples may not be unique, as paths may
have equal probability. As a result, not every strongest evidence is contained in a mini-
mal (or smallest) counterexample. Whereas minimal counterexamples may not contain
any strongest evidence, any smallest counterexample contains at least one strongest
evidence. Using some standard mathematical results we obtain:

Lemma 1. A smallest counterexample for s �|= P�p(φ) is finite.

Remark 1 (Finiteness). For until path formulae, smallest counterexamples are always
finite sets of paths if we consider non-strict upper-bounds on the probability, i.e., proba-
bility bounds of the form � p. In case of strict upper-bounds of the form < p, finiteness
of counterexamples is no longer guaranteed as C for which Pr(C) equals p is a small-
est counterexample, but may contain infinitely many paths. For instance, consider the
following DTMC:

s t
1
2

1
1
2

∅ {a}

The violation of P<1(♦a) in state s can only be shown by an infinite set of paths, viz.
all paths that traverse the self-loop at state s arbitrarily often.

Example 2. Consider the DTMC in Fig. 1, for which s violates P� 1
2
(aUb). Evidences

are, amongst others, σ1 = s·s1·t1, σ2 = s·s1·s2·t1, σ3 = s·s2·t1, σ4 = s·s1·s2·t2, and
σ5 = s·s2·t2. Their respective probabilities are 0.2, 0.2, 0.15, 0.12 and 0.09. Paths σ1
and σ2 are strongest evidences. The set C1 = {σ1, . . . , σ5} with Pr(C1) = 0.76 is a
counterexample, but not a minimal one, as the removal from either σ1 or σ2 also yields
a counterexample. C2 = {σ1, σ2, σ4} is a minimal but not a smallest counterexample,
as C3 = {σ1, σ2, σ3} is minimal too with Pr(C3) = 0.56 > 0.52 = Pr(C2). C3 is a
smallest counterexample.

In the remainder of the paper, we consider the strongest evidence problem (SE),
that for a given state s with s �|= P�p(φ), determines the strongest evidence for this
violation. Subsequently, we consider the corresponding smallest counterexample prob-
lem (SC). For both cases, we distinguish between until-formulae for which h=∞ (un-
bounded until) and h ∈ N (bounded until) as distinctive algorithms are used for these
cases.

4 From a DTMC to a Weighted Digraph

Prior to finding strongest evidences or smallest counterexamples, we modify the DTMC
and turn it into a weighted digraph. Let Sat(Φ) = {s ∈ S | s |= Φ} for any Φ. Due to the
bottom-up traversal of the model-checking algorithm over the formula φ = ΦU�hΨ ,
we may assume that Sat(Φ) and Sat(Ψ) are known.

78 T. Han and J.-P. Katoen

Step 1: Adapting the DTMC. First, we make all states in the DTMC D = (S,P, L)
that neither satisfy Φ nor Ψ absorbing. Then we add an extra state t so that all outgoing
transitions from a Ψ -state are replaced by a transition to t with probability 1. State t can
thus only be reached via a Ψ -state. The obtained DTMC D′ = (S′,P′, L′) has state
space S ∪ {t} for t �∈ S. The stochastic matrix P′ is defined as follows:

P′(s, s) = 1 and P′(s, s′) = 0 for s′ �= s if s /∈ Sat(Φ) ∪ Sat(Ψ) or s = t
P′(s, t) = 1 and P′(s, s′) = 0 for s′ �= t if s ∈ Sat(Ψ)
P′(s, s′) = P(s, s′) for s′ ∈ S and P′(s, t) = 0 otherwise

L′(s) = L(s) for s ∈ S and L′(t) = {at t}, where at t /∈ L(s′) for any s′ ∈ S, i.e.,
at t uniquely identifies being at state t. Remark that all the (¬Φ ∧ ¬Ψ)-states could be
collapsed into a single state, but this is not further explored here. The time complexity
of this transformation is O(n) where n = |S|. It is evident that the validity of ΦU�hΨ
is not affected by this amendment of the DTMC. By construction, any finite path σ·t
in D′ satisfies (Φ ∨ Ψ)U�h+1at t and has the form s0·...·si·si+1·t where sj |= Φ for
0 � j � i < h, si+1 |= Φ; the prefix σ (in D) satisfies ΦU�hΨ where σ′ and σ are
equally probable.

Step 2: Conversion into a weighted digraph. As a second preprocessing step, the
DTMC obtained in the first phase is transformed into a weighted digraph. Recall that a
weighted digraph is a tuple G = (V, E, w) where V is a finite set of vertices, E ⊆ V ×V
is a set of edges, and w : E → R�0 is a weighted function.

Definition 6. [Weighted digraph of a DTMC] For DTMC D = (S,P, L), the weighted
digraph GD = (V, E, w) where:

V = S and (v, v′) ∈ E iff P(v, v′) > 0 and w(v, v′) = log(P(v, v′)−1).

Note that w(s, s′) ∈ [0, ∞) if P(s, s′) > 0. Thus, we indeed obtain a non-negatively
weighted digraph. Note that this transformation can be done in O(m), where m = |P|,
i.e., the number of non-zero elements in P.

A path σ from s to t in G is a sequence σ = v0·v1·...·vj ∈ V +, where v0 = s, vj = t
and (vi, vi+1) ∈ E, for 0 � i < |σ|. As for paths in DTMCs, |σ| denotes the length of
σ. The distance of finite path σ = v0·v1·...·vj in graph G is d(σ) =

∑j−1
i=0 w(vi, vi+1).

Due to the fact that multiplication of probabilities in D corresponds to addition of
weights in GD, and that weights are based on taking the logarithm of the reciprocal
of the transition probabilities in D, distances in G and path-probabilities in DTMC D
are related as follows:

Lemma 2. Let σ and σ′ be finite paths in DTMC D and its graph GD . Then:

Pr{σ′} � Pr{σ} iff d(σ′) � d(σ).

The correspondence between path probabilities in the DTMC and distances in its
weighted digraph as laid down in the following lemma, constitutes the basis for the
remaining algorithms in this paper.

Lemma 3. For any path σ from s to t in DTMC D, k > 0, and h ∈ N ∪ {∞}: σ is a
k-th most probable path of at most h hops in D iff σ is a k-th shortest path of at most h
hops in GD.

Counterexamples in Probabilistic Model Checking 79

5 Finding Strongest Evidences

Unbounded until. Based on the results of Lemma 3 where k = 1 and h = ∞, we
consider the well-known shortest path problem. Recall that:

Definition 7 (SP problem). Given a weighted digraph G = (V, E, w) and s, t ∈ V , the
shortest path (SP) problem is to determine a path σ from s to t such that d(σ) � d(σ′)
for any path σ′ from s to t in G.

From Lemma 3 together with the transformation of a DTMC into a weighted digraph, it
follows that there is a polynomial reduction from the SE problem for unbounded until
to the SP problem. As the SP problem is known to be in PTIME, it follows:

Theorem 1. The SE problem for unbounded until is in PTIME.

Various efficient algorithms [14,9,12] exist for the SP problem, e.g., when using Dijk-
stra’s algorithm, the SE problem for unbounded until can be solved in time O(m +
n log n) if appropriate data structures such as Fibonacci heaps are used.

Bounded until. Lemma 3 for k = 1 and h ∈ N suggests to consider the hop-constrained
SP problem.

Definition 8 (HSP problem). Given a weighted digraph G = (V, E, w), s, t ∈ V and
h ∈ N, the hop-constrained SP (HSP) problem is to determine a path σ in G from s to t
with |σ| � h such that d(σ) � d(σ′) for any path σ′ from s to t with |σ′| � h.

The HSP problem is a special case of the constrained shortest path (CSP) problem
[25,2], where the only constraint is the hop count.

Definition 9 (CSP problem). Given a weighted digraph G = (V, E, w), s, t ∈ V and
resource constraints λi, for 1 � i � c. Edge e ∈ E uses ri(e) � 0 units of resource i.
The (resource) constrained shortest path problem (CSP) is to determine a shortest path
σ in G from s to t such that

∑
e∈σ ri(e) � λi for 1 � i � c.

The CSP problem is NP-complete, even for a single resource constraint [2]. However, if
each edge uses a constant unit of that resource (such as the hop count), the CSP problem
can be solved in polynomial time, cf. [17], problem [ND30]. Thus:

Theorem 2. The SE problem for bounded until is in PTIME.

For h � n−1, it is possible to use Dijkstra’s SP algorithm (as for unbounded until),
as a shortest path does not contain cycles. If h < n−1, however, Dijkstra’s algorithm
does not guarantee to obtain a shortest path of at most h hops. We, therefore, adopt the
Bellman-Ford (BF) algorithm [9,12] which fits well to our problem as it proceeds by
increasing hop count. It can be readily modified to generate a shortest path within a
given hop count. In the sequel of the paper, this algorithm is generalized for computing
smallest counterexamples. The BF-algorithm is based on a set of recursive equations;
we extend these with the hop count h. For v ∈ V , let πh(s, v) denote the shortest path
from s to v of at most h hops (if it exists). Then:

πh(s, v) =

⎧
⎨

⎩

s if v = s and h � 0 (1a)
⊥ if v �= s and h = 0 (1b)
arg minu{d(πh−1(s, u) · v) | (u, v) ∈ E} if v �= s and h > 0 (1c)

80 T. Han and J.-P. Katoen

where ⊥ denotes nonexistence of such a path. The last clause states that πh(s, v) con-
sists of the shortest path to v’s predecessor u, i.e., πh−1(s, u), extended with edge (u, v).
Note that minu{d(πh−1(s, u) · v) | (u, v) ∈ E} is the distance of the shortest path; by
means of arg, the path is obtained. It follows (cf. [22]) that equation (1a)∼(1c) charac-
terizes the shortest path from s to v in at most h hops, and can be solved in time O(hm).
As h < n−1, this is indeed in PTIME. Recall that for h � n−1, Dijkstra’s algorithm
has a favorable time complexity.

Exploiting the Viterbi algorithm. An alternative to using the BF algorithm is to adopt
the Viterbi algorithm [16,27]. In fact, to apply this algorithm the transformation into
a weighted digraph is not needed. The Viterbi algorithm is a dynamic programming
algorithm for finding the most likely sequence of hidden states (i.e., a finite path) that
result in a sequence of observed events (a trace), especially in the context of hidden
Markov models. Let D be a DTMC that is obtained after the first step described in Sec-
tion 4, and suppose that L(s) contains the set of atomic propositions that are valid in
s and all subformulae of the formula under consideration. (Note that these labels are
known due to the recursive descent nature of the PCTL model checking algorithm.)
Let tr(σ) denote the projection of a path σ = s0·s1· . . . ·sh on its trace, i.e., tr(σ) =
L(s0)·L(s1)·...·L(sh). σ↓i denotes the prefix of path σ truncated at length i (thus end-
ing in si), formally, σ↓i = σ[0]·σ[1]·...·σ[i]. Thus, tr(σ↓i) = L(s0)·L(s1)·...·L(si).
γ↓i denotes the prefix of trace γ with length i. Let ρ(γ, i, v) denote the probability of
the most probable path σ↓i whose trace equals γ↓i and reaches state v. ρ(γ, i, v) can be
formally defined as follows:

ρ(γ, i, v) = max
tr(σ↓i)=γi

i−1∏

j=0

P(sj , sj+1) · 1v(si),

where 1v(si) is the characteristic function of v, i.e., 1v(si) returns 1, if si = v, and 0
otherwise. The Viterbi algorithm provides an algorithmic solution to compute ρ(γ, i, v):

ρ(γ, i, v) =

⎧
⎨

⎩

1 if s = v and i = 0
0 if s �= v and i = 0
maxu∈S ρ(γ, i − 1, u) · P(u, v) otherwise

By computing ρ(ΦhΨ, h, sh), the Viterbi algorithm determines the most probable h-
hop path σ = s0·s1·...·sh that generates the trace γ = L′(s0)L′(s1)...L′(sh) = ΦhΨ
with length (h+1). Here, L′(s) = L(s) ∩ {Φ, Ψ}, i.e., L′ is the labelling restricted to
the subformulae Φ and Ψ . For our SE problem for bounded until, the trace of the most
probable hop-constrained path from s to t is among {Ψatt, ΦΨat t, ..., Φ

hΨat t}. The
self-loop at vertex t with probability one ensures that all these paths have length h+1
while not changing their probabilities. For instance, the path with trace ΦiΨat t can be
extended so that the trace becomes ΦiΨat t

h+1−i, where i � h. Since the DTMC is
already transformed as in Step 1, we can obtain the most probable path for ΦU�hΨ by
computing ρ((Φ∨Ψ∨at t)h+1at t, h+1, t) using the Viterbi algorithm. The time com-
plexity is O(hm), as for the BF algorithm.

Counterexamples in Probabilistic Model Checking 81

6 Finding Smallest Counterexamples

Recall that a smallest (most indicative) counterexample is a minimal counterexample,
whose probability—among all minimal counterexamples—deviates maximally from
the required probability bound. In this section, we investigate algorithms and com-
plexity bounds for computing such smallest counterexamples. First observe that any
smallest counterexample that contains, say k paths, contains the k most probable paths.
This follows from the fact that any non-k most probable path can be exchanged with a
more probable path, without changing the size of the counterexample, but by increasing
its probability.

Unbounded until. Lemma 3 is applicable here for k > 1 and h = ∞. This suggests to
consider the k shortest paths problem.

Definition 10 (KSP problem). Given a weighted digraph G = (V, E, w), s, t ∈ V ,
and k ∈ N, the k shortest paths (KSP) problem is to find k distinct shortest paths
between s and t in G, if such paths exist.

Theorem 3. The SC problem for unbounded until is a KSP problem.

Proof. We prove that a smallest counterexample of size k, contains k most probable
paths. It is proven by contradiction. Let C be a smallest counterexample for φ with
|C| = k, and assume C does not contain the k most probable paths satisfying φ. Then
there is a path σ /∈ C satisfying φ such that Pr{σ} > Pr{σ′} for some σ′ ∈ C. Let
C′ = C \ {σ′} ∪ {σ}. Then C′ is a counterexample for φ, |C| = |C′| and Pr(C) >
Pr(C′). This contradicts C being a smallest counterexample. ��

The question remains how to obtain k. Various algorithms for the KSP problem require
k to be known a priori. This is inapplicable in our setting, as the number of paths in a
smallest counterexample is implicitly provided by the probability bound in the PCTL-
formula and is not known in advance. We therefore consider algorithms that allow to
determine k on the fly, i.e., that can halt at any k and resume if necessary. A good
candidate is Eppstein’s algorithm [15]. Although this algorithm has the best known
asymptotic time complexity, viz. O(m+n log n+k), in practice the recursive enumera-
tion algorithm (REA) by Jiménez and Marzal [20] prevails. This algorithm has a time
complexity in O(m+kn log m

n) and is based on a generalization of the recursive equa-
tions for the BF-algorithm. Besides, it is readily adaptable to the case for bounded h,
as we demonstrate below. Note that the time complexity of all known KSP algorithms
depends on k, and as k may be exponential, their complexity is pseudo-polynomial.

Bounded until. Similar to the bounded until case for strongest evidences, we now con-
sider the KSP problem where the path length is constrained, cf. Lemma 3 for h ∈ N.

Definition 11 (HKSP problem). Given a weighted digraph G = (V, E, w), s, t ∈ V
and h, k ∈ N, the hop-constrained KSP (HKSP) problem is to determine k shortest
paths each of length at most h between s and t.

Similar to Theorem 3 we obtain:

Theorem 4. The SC problem for bounded until is a HKSP problem.

82 T. Han and J.-P. Katoen

To our knowledge, algorithms for the HKSP problem do not exist. In order to solve
the HKSP problem, we propose a new algorithm that is strongly based on Jiménez and
Marzal’s REA algorithm [20]. The advantage of adapting this algorithm is that k can
be determined on the fly, an essential characteristic for our setting. The algorithm is a
conservative extension of the REA algorithm.

For v ∈ V , let πk
h(s, v) denote the k-th shortest path from s to v of length at most

h (if it exists). As before, we use ⊥ to denote the non-existence of a path. We establish
the following equations:

πk
h(s, v) =

��
�

s if k = 1, v = s and h � 0 (2a)
⊥ if (k > 1, v = s, h = 0) or (v �= s, h = 0) (2b)

arg minσ{d(σ) | σ ∈ Qk
h(s, v)} otherwise (2c)

where Qk
h(s, v) is a set of candidate paths among which πk

h(s, v) is chosen. The candi-
date sets are defined by:

Qk
h(s, v)=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

{π1
h−1(s, u)·v | (u, v) ∈ E}

if k = 1, v �= s or k = 2, v = s

(Qk−1
h (s, v) − {πk′

h−1(s, u)·v}) ∪ {πk′+1
h−1 (s, u)·v}

if k > 1 and u, k′ are the node and index,
such that πk−1

h (s, v) = πk′

h−1(s, u)·v

(3)

Path πk′+1
h−1 (s, u)·v = ⊥ occurs when Qk′+1

h−1 (s, u) = ∅. Note that ⊥·v = ⊥ for any
v ∈ V . Qk

h(s, v) = ∅ if it only contains ⊥.
If k=1, the shortest path to v′s predecessor u is extended with the edge to v. In the

latter clause, πk′

h−1(s, u) denotes the selected (k−1)-st shortest path from s to u, where
u is the direct predecessor of v. Paths in Qk

h(s, v) for k > 1 are thus either candidate
paths for k−1 where the selected path is eliminated (first summand) or the (k′+1)-st
shortest path from s to u extended with edge (u, v) (second summand). Note that for
the source state s, there is no need to define Qk

h(s, s) as πk
h(s, s) is defined by equations

(2a) and (2b), which act as termination conditions. In a similar way as in [20] it can be
proven that:

Lemma 4. The equations (2a)-(2c) and (3) characterize the hop-constrained k short-
est paths from s to v in at most h hops.

The adapted REA. The adapted REA for computing the k shortest paths from s to t
which each consist of at most h hops is sketched as follows. The algorithm is based on
the recursive equations given just above.

(i) Compute π1
h(s, t) by the BF algorithm and set k := 1.

(ii) Repeat until
k∑

i=1

Pr{πi
h(s, t)} > p:

(a) Set k := k+1 and compute πk
h(s, t) by invoking NextPath(v, h, k).

For k>1, and once π1
h(s, v), . . . , πk−1

h (s, v) are available, NextPath(t, h, k) computes
πk

h(s, v) as follows:

Counterexamples in Probabilistic Model Checking 83

1. If h�0, goto step 4.
2. If k=2, then set Q[v, h] :={π1

h−1(s, u)·v | (u, v)∈E and π1
h(s, v) �=π1

h−1(s, u)·v}.
3. Let u and k′ be the node and index such that πk−1

h (s, v) = πk′

h−1(s, u)·v.

(a) If πk′+1
h−1 (s, u) has not yet been computed, invoke NextPath(u, h−1, k′+1).

(b) If πk′+1
h−1 (s, u) exists, then insert πk′+1

h−1 (s, u)·v in Q[v, h].
4. If Q[v, h] �= ∅, then select and delete a path with minimum weight from Q[v, h]

and assign it to πk
h(s, v), else πk

h(s, v) does not exist.

In the main program, first the shortest path from s to t is determined using, e.g., the
BF-algorithm. The intermediate results are recorded. Then, the k shortest paths are
determined iteratively using the subroutine NextPath. The computation terminates when
the total probability mass of the k shortest paths so far exceeds the bound p. Recall that
p is the upper bound of the PCTL formula to be checked. Note that Q[v, h] in the
algorithm corresponds to Qk

h(s, v), where k is the parameter of the program. In steps 2
through 3, the set Qk

h(s, v) is determined from Qk−1
h (s, v) according to equation (3). In

the final step, πk
h(s, v) is selected from Qk

h(s, v) according to equation (2c).
To determine the computational complexity of the algorithm, we assume the candi-

date sets to be implemented by heaps (as in [20]). The k shortest paths to a vertex v
can be stored in a linked list, where each path πk

h(s, v) = πk′

h−1(s, u)·v is compactly

represented by its length and a back pointer to πk′

h−1(s, u). Using these data structures,
we obtain:

Theorem 5. The time complexity of the adapted REA is O(hm + hk log(m
n)).

Note that the time complexity is pseudo-polynomial due to the dependence on k which
may be exponential in n. As in our setting, k is not known in advance, this can not be
reduced to a polynomial time complexity.

7 Lower Bounds on Probabilities

For the violation of PCTL formulae with lower bounds, i.e., s �|= P�p(ΦU�hΨ), the for-
mula and model will be changed so that the algorithms for finding strongest evidences
and smallest counterexamples for PCTL can be applied.

Unbounded until. For h = ∞, we have:

P�p

(
ΦU Ψ

)
≡P�1−p

(
(Φ ∧ ¬Ψ)
︸ ︷︷ ︸

Φ∗

W (¬Φ ∧ ¬Ψ)
︸ ︷︷ ︸

Ψ∗

)
≡P�1−p

(
(Φ ∧ ¬Ψ)
︸ ︷︷ ︸

Φ∗

U(atu ∨ atb)
)
,

where atu and atb are two new atomic propositions such that (i) s |= atu iff s |= Ψ∗

(ii) s |= atb iff s ∈ B where B is a bottom strongly connected component (BSCC) such
that B ⊆ Sat(Φ∗), or shortly s ∈ BΦ∗ . A BSCC B is a maximal strong component that
has no transitions that leave B.

Algorithmically, the DTMC is first transformed such that all the (¬Φ∗ ∧¬Ψ∗)-states
are made absorbing. Note that once those states are reached, Φ∗WΨ∗ will never be
satisfied. As a second step, all the Ψ∗-states are labelled with atu and made absorbing.
Finally, all BSCCs are obtained and all states in BΦ∗ are labelled with atb. The obtained
DTMC now acts as the starting point for applying all the model transformations and
algorithms in Section 4-6 to generate a counterexample for P�1−p

(
Φ∗U(atu ∨ atb)

)
.

84 T. Han and J.-P. Katoen

Bounded until. For h ∈ N, identifying all states in BSCC BΦ∗ is not sufficient, as a
path satisfying ��hΦ∗ may never reach such BSCC. Instead, we transform the DTMC
and use:

P�p(ΦU�hΨ) ≡ P�1−p((Φ ∧ ¬Ψ)
︸ ︷︷ ︸

Φ∗

U=h(atu ∨ ath)),

where atu and ath are new atomic propositions such that atu is labelled as before and
s′ |= ath iff there exists σ ∈ Pathfin(s) such that σ[h] = s′ and σ |= ��hΦ∗.

Algorithmically, the (¬Φ∗ ∧ ¬Ψ∗)-states and Ψ∗-states are made absorbing; be-
sides, all Ψ∗-states are labelled with atu. As a second step, all the Φ∗-states that can
be reached in exactly h hops are computed by e.g., a breadth first search (BFS) al-
gorithm. The obtained DTMC now acts as the starting point for applying all the model
transformations and algorithms in Section 4-6 to generate a counterexample for
P�1−p

(
Φ∗U=h(atu ∨ ath)

)
. Finite paths of exactly h paths suffice to check the va-

lidity of σ |= ��hΦ∗, thus Φ∗U=hath (not Φ∗U�hath) is needed; besides the validity
is unaffected if we change ΦU�hatu into ΦU=hatu, since all atu states are absorbing.
Note that it is very easy to adapt the strongest evidences and smallest counterexamples
algorithms for U�h to those for U=h – only the termination conditions need a slight
change. The time complexity remains the same.

In the above explained way, counterexamples for (bounded) until-formulae with
a lower bound on their probability are obtained by considering formulae on slightly
adapted DTMCs with upper bounds on probabilities. Intuitively, the fact that s refutes
P�p(ΦU�hΨ) is witnessed by showing that violating paths of s are too probable, i.e.,
carry more probability mass than p. Alternatively, all paths starting in s that satisfy
ΦU�hΨ could be determined as this set of paths has a probability less than p.

8 Conclusion

Summary of results. We have investigated the computation of strongest evidences (max-
imally probable paths) and smallest counterexamples for PCTL model checking of
DTMCs. Relationships to various kinds of shortest path problems have been estab-
lished. Besides, it is shown that for the hop-constrained strongest evidence problem,
the Viterbi algorithm can be applied. Summarizing we have obtained the following
connections and complexities:

counterexample shortest path
problem problem

algorithm time complexity

SE (until) SP Dijkstra O(m + n log n)
SE (bounded until) HSP BF/Viterbi O(hm)

SC (until) KSP Eppstein O(m + n log n + k)
SC (bounded until) HKSP adapted REA O(hm + hk log(m

n
))

where n and m are the number of states and transitions, h is the hop bound, and k is the
number of shortest paths.

Counterexamples in Probabilistic Model Checking 85

Extensions. The results reported in this paper can be extended to (weak) until-formulae
with minimal or interval bounds on the number of allowed steps. For instance, strongest
evidences for s �|= P�p(ΦU [h,h′]Ψ) with 0 < h � h′ can be obtained by appropriately
combining maximally probable paths from s to states at distance h from s, and from
those states to Ψ -states. Similar reasoning applies to the SC problem. For DTMCs
with rewards, it can be established that the SE problem for violating reward- and hop-
bounded until-formulae boils down to solving a non-trivial instance of the CSP problem.
As this problem is NP-complete, efficient algorithms for finding counterexamples for
PRCTL [5], a reward extension to PCTL, will be hard to obtain.

Further research. Topics for further research are: succinct representation and visual-
ization of counterexamples, experimental research of the proposed algorithms in prob-
abilistic model checking and considering loopless paths (see e.g., [23]).

Related work. The SE problem for timed reachability in CTMCs is considered in [3].
Whereas we consider the generation of strongest evidences once a property violation
has been established, [3] assumes the CTMC to be unknown. The SE problem for
CTMCs is mapped onto an SE problem on (uniformised) DTMCs, and heuristic search
algorithms (Z∗) are employed to determine the evidences. The approach is restricted
to bounded until and due to the use of heuristics, time complexities are hard to obtain.
In our view, the main advantage of our approach is the systematic characterization of
generating counterexamples in terms of shortest path problems. Recently, [4] general-
izes the heuristic approach to obtain failure subgraphs, i.e., counterexamples. To our
knowledge, smallest counterexamples have not been considered yet.

Acknowledgement. Christel Baier and David N. Jansen are kindly acknow-
ledged for their useful remarks on the paper. This research has been financially
supported by the NWO project QUPES and by 973 and 863 Program of China
(2002CB3120022005AA113160, 2004AA112090, 2005AA113030) and NSFC
(60233010, 60273034, 60403014).

References

1. A.V. Aho, J.E. Hopcroft and J.D. Ullmann. The design and analysis of computer algorithms.
Addison-Wesley, 1974.

2. R.K. Ahuja, T.L. Magnanti and J.B. Orlin. Network Flows: Theory, Algorithms and Applica-
tions, Prentice Hall, Inc., 1993.

3. H. Aljazzar, H. Hermanns and S. Leue. Counterexamples for timed probabilistic reachability.
FORMATS 2005, LNCS 3829: 177-195, 2005.

4. H. Aljazzar and S. Leue. Extended directed search for probabilistic timed reachability. FOR-
MATS 2006, LNCS 4202: 33-51, 2006.

5. S. Andova, H. Hermanns and J.-P. Katoen. Discrete-time rewards model-checked. FOR-
MATS 2003, LNCS 2791: 88-104, 2003.

6. C. Baier, J.-P. Katoen, H. Hermanns and V. Wolf. Comparative branching-time semantics for
Markov chains. Inf. Comput. 200(2): 149-214 (2005).

7. T. Ball, M. Naik and S. K. Rajamani. From symptom to cause: localizing errors in counterex-
ample traces. POPL: 97-105, 2003.

86 T. Han and J.-P. Katoen

8. G. Behrmann, K. G. Larsen and J. I. Rasmussen. Optimal scheduling using priced timed
automata. ACM SIGMETRICS Perf. Ev. Review 32(4): 34-40 (2005).

9. R. Bellman. On a routing problem. Quarterly of Appl. Math., 16(1): 87-90 (1958).
10. E.M. Clarke, O. Grumberg, S. Jha, Y. Lu and H. Veith: Counterexample-guided abstraction

refinement. CAV, LNCS 1855: 154-169, 2000.
11. E.M. Clarke, S. Jha, Y. Lu and H. Veith. Tree-like counterexamples in model checking. LICS:

19-29 (2002).
12. T.H. Cormen, C.E. Leiserson, R.L. Rivest and C. Stein. Introduction to Algorithms, 2001.

Section 24.1: The Bellman-Ford algorithm, pp.588-592.
13. L. de Alfaro, T.A. Henzinger and F. Mang. Detecting errors before reaching them. CAV,

LNCS 2725: 186-201, 2000.
14. E.W. Dijkstra. A note on two problems in connection with graphs. Num. Math., 1:395-412

(1959).
15. D. Eppstein. Finding the k shortest paths. SIAM J. Comput. 28(2): 652-673 (1998).
16. G.D. Forney. The Viterbi algorithm. Proc. of the IEEE 61(3): 268-278 (1973).
17. M.R. Garey and D.S. Johnson. Computers and Intractability, A Guide to the Theory of NP-

Completeness, Freeman, San Francisco, 1979.
18. A. Gurfinkel and M. Chechik. Proof-like counter-examples. TACAS, LNCS 2619: 160-175,

2003.
19. H. Hansson and B. Jonsson. A logic for reasoning about time and reliability. Formal Asp.

Comput. 6(5): 512-535 (1994).
20. V.M. Jiménez and A. Marzal. Computing the K shortest paths: A new algorithm and an

experimental comparison. WAE 1999, LNCS 1668: 15-29, 1999.
21. H. Jin, K. Ravi and F. Somenzi. Fate and free will in error traces. STTT 6(2): 102-116 (2004).
22. E.L. Lawler. Combinatorial Optimization: Networks and Matroids. Holt, Reinhart, and Win-

ston, 1976.
23. E.Q.V. Martins and M.M.B. Pascoal. A new implementation of Yen’s ranking loopless paths

algorithm. 4OR 1(2): 121-133 (2003).
24. E.Q.V. Martins, M.M.B. Pascoal and J.L.E. Dos Santos. Deviation algorithms for ranking

shortest paths. Int. J. Found. Comput. Sci. 10(3): 247-262 (1999).
25. K. Mehlhorn and M. Ziegelmann. Resource constrained shortest paths. ESA 2000, LNCS

1879: 326-337, 2000.
26. S. Shoham and O. Grumberg. A game-based framework for CTL counterexamples and 3-

valued abstraction-refinement. CAV, LNCS 2725: 275-287, 2003.
27. A.J. Viterbi. Error bounds for convolutional codes and an asymptotically optimum decoding

algorithm. IEEE Trans. on Inf. Theory 13(2):260-269, 1967.

Bisimulation Minimisation Mostly Speeds Up

Probabilistic Model Checking

Joost-Pieter Katoen1,2, Tim Kemna2, Ivan Zapreev1,2, and David N. Jansen1,2

1 Software Modeling and Verification Group, RWTH Aachen, Germany
2 Formal Methods and Tools, University of Twente, The Netherlands

Abstract. This paper studies the effect of bisimulation minimisation in
model checking of monolithic discrete-time and continuous-time Markov
chains as well as variants thereof with rewards. Our results show that—as
for traditional model checking—enormous state space reductions (up to
logarithmic savings) may be obtained. In contrast to traditional model
checking, in many cases, the verification time of the original Markov chain
exceeds the quotienting time plus the verification time of the quotient.
We consider probabilistic bisimulation as well as versions thereof that
are tailored to the property to be checked.

1 Introduction

Probabilistic model checking enjoys a rapid increase of interest from different
communities. Software tools such as PRISM [31] (with about 4,000 downloads),
MRMC [29], and LiQuor [4] support the verification of Markov chains or variants
thereof that exhibit nondeterminism. They have been applied to case studies
from areas such as randomised distributed algorithms, planning and AI, security,
communication protocols, biological process modeling, and quantum computing.
Probabilistic model checking engines have been integrated in existing tool chains
for widely used formalisms such as stochastic Petri nets [11], Statemate [9],
and the stochastic process algebra PEPA [24], and are used for a probabilistic
extension of Promela [4].

The typical kind of properties that can be checked is time-bounded reach-
ability properties—“Does the probability to reach a certain set of goal states
(by avoiding bad states) within a maximal time span exceed 1

2?”—and long-run
averages—“In equilibrium, does the likelihood to leak confidential information
remain below 10−4?” Extensions for cost-based models allow for checking more
involved properties that refer to e. g., the expected cumulated cost or the in-
stantaneous cost rate of computations. Intricate combinations of numerical or
simulation techniques for Markov chains, optimisation algorithms, and tradi-
tional LTL or CTL model-checking algorithms result in simple, yet very efficient
verification procedures. Verifying time-bounded reachability properties on mod-
els of tens of millions of states usually is a matter of seconds.

Like in the traditional setting, probabilistic model checking suffers from state
space explosion: the number of states grows exponentially in the number of
system components and cardinality of data domains. To combat this problem,

O. Grumberg and M. Huth (Eds.): TACAS 2007, LNCS 4424, pp. 87–101, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

88 J.-P. Katoen et al.

various techniques have been proposed in the literature. Variants of binary de-
cision diagrams (multi-terminal BDDs) have been (and still are) successfully
applied in PRISM [31] to a range of probabilistic models, abstraction-refinement
has been applied to reachability problems in MDPs [12], partial-order reduction
techniques using Peled’s ample-set method have been generalised to MDPs [19],
abstract interpretation has been applied to MDPs [36], and various bisimulation
equivalences and simulation pre-orders allow model aggregation prior to model
checking, e. g., [7,39]. Recently proposed techniques include abstractions of prob-
abilities by intervals combined with three-valued logics for DTMCs [15,25,26],
stochastic ordering techniques for CSL model checking [8], abstraction of MDPs
by two-player stochastic games [32], and symmetry reduction [33].

The purpose of this paper is to empirically investigate the effect of strong
bisimulation minimisation in probabilistic model checking. We hereby focus on
fully probabilistic models such as discrete-time and continuous-time Markov
chains (DTMCs and CTMCs, for short), and variants thereof with costs. The
advantages of probabilistic bisimulation [34] in this setting are manifold. It pre-
serves the validity of PCTL [20] and CSL [2,6] formulas, variants of CTL for the
discrete- and continuous-time probabilistic setting, respectively. It implies ordi-
nary lumpability of Markov chains [10], an aggregation technique for Markov
chains that is applied in performance and dependability evaluation since the
1960s. Quotient Markov chains can be obtained in a fully automated way. The
time complexity of quotienting is logarithmic in the number of states, and lin-
ear in the number of transitions—as for traditional bisimulation minimisation—
when using splay trees (a specific kind of balanced tree) for storing partitions
[14]. Besides, probabilistic bisimulation can be used for obtaining (coarser) ab-
stractions that are tailored to the properties of interest (as we will see), and
enjoys the congruence property for parallel composition allowing compositional
minimisation. We consider explicit model checking as the non-trivial interplay
between bisimulation and MTBDDs would unnecessarily complicate our study;
such symbolic representations mostly grow under bisimulation minimisation [23].

Thanks to extensive studies by Fisler and Vardi [16,17,18], it is known that
bisimulation minimisation for LTL model checking and invariant verification
leads to drastic state space reductions (up to logarithmic savings) but at a time
penalty: the time to minimise and model check the resulting quotient Kripke
structure significantly exceeds the time to verify the original model. This paper
considers these issues in probabilistic (i. e., PCTL and CSL) model checking. To
that end, bisimulation minimisation algorithms have been realised in the pro-
totypical explicit-state probabilistic model checker MRMC, several case studies
have been considered that are widely studied in the literature (and can be consid-
ered as benchmark problems), and have been subjected to various experiments.
This paper presents our results. As expected, our results show that enormous
state space reductions (up to logarithmic savings) may be obtained. In con-
trast to the results by Fisler and Vardi [16,17,18], the verification time of the
original Markov chain mostly exceeds the quotienting time plus the verification
time of the quotient. This effect is stronger for probabilistic bisimulation that

Bisimulation Minimisation Mostly Speeds Up Probabilistic Model Checking 89

is tailored to the property to be checked and for model checking Markov chains
with costs (i. e., rewards). This is due to the fact that probabilistic model check-
ing is more time-consuming than traditional model checking, while minimiza-
tion w. r. t. probabilistic bisimulation is only slightly slower than for traditional
bisimulation.

The paper is organised as follows. Section 2 introduces the considered proba-
bilistic models. Section 3 considers probabilistic bisimulation and the algorithms
used. Section 4 presents the considered case studies, the obtained results, and
analyses these results. Section 5 concludes the paper.

2 Preliminaries

DTMCs. Let AP be a fixed, finite set of atomic propositions. A (labelled) DTMC
D is a tuple (S,P, L) where S is a finite set of states, P : S × S → [0, 1] is a
probability matrix such that

∑
s′∈S P(s, s′) = 1 for all s ∈ S, and L : S → 2AP

is a labelling function which assigns to each state s ∈ S the set L(s) of atomic
propositions that hold in s. A path through a DTMC is a sequence1 of states
σ = s0 s1 s2 . . . with P(si, si+1) > 0 for all i. Let PathD denote the set of all
paths in DTMC D. σ[i] denotes the (i+1)th state of σ, i. e., σ[i] = si.

The logic PCTL. Let a ∈ AP, probability p ∈ [0, 1], k ∈ N (or k = ∞) and ��
be either ≤ or ≥. The syntax of Probabilistic CTL (PCTL) [20] is defined by:

Φ ::= tt
∣
∣
∣ a

∣
∣
∣ Φ ∧ Φ

∣
∣
∣ ¬Φ

∣
∣
∣ P�� p(Φ U≤k Φ).

A state s satisfies P�� p(Φ U≤k Ψ) if { σ ∈ PathD(s) | σ |= Φ U≤k Ψ } has a
probability that satisfies �� p. A path σ satisfies Φ U≤k Ψ if within k steps a Ψ -
state is reached, and all preceding states satisfy Φ. That is, if σ[j] |= Ψ for some
j ≤ k, and σ[i] |= Φ for all i < j. We define the abbreviation �≤kΦ := tt U≤k Φ.
The unbounded until formula that is standard in temporal logics is obtained by
taking k = ∞, i. e., Φ U Ψ = Φ U≤∞ Ψ .2

Given a set F of PCTL formulas, we denote with PCTLF the smallest set of
formulas that contains F and is closed under the PCTL operators ∧, ¬, and U .

Verifying hop-constrained probabilistic reachability. PCTL model checking [20]
is carried out in the same way as verifying CTL by recursively computing the
set Sat(Φ) = { s ∈ S | s |= Φ }. The probability of { σ | σ |= Φ U≤k Ψ } is the
least solution of the following linear equation system. Let S1 = { s | s |= Ψ },
S0 = { s | s |= ¬Φ ∧ ¬Ψ }, and S? = { s | s |= Φ ∧ ¬Ψ } = S \ (S1 ∪ S0).

ProbD(s, Φ U≤k Ψ) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if s ∈ S1
∑

s′∈S

P(s, s′) · ProbD(s′, Φ U≤k−1 Ψ) if s ∈ S? ∧ k > 0

0 otherwise

1 In this paper, we do not dwell upon the distinction between finite and infinite paths.
2 For simplicity, we do not consider the next operator.

90 J.-P. Katoen et al.

One can simplify this system by replacing S0 by U0 = S0 ∪ { s ∈ S? | ¬∃σ ∈
PathD(s) : σ |= Φ U Ψ }. If k = ∞, one may also replace S1 by U1 = S1 ∪ { s ∈
S? | ∀σ ∈ PathD(s) : σ |= Φ U Ψ }. The sets U0 and U1 can be found via a simple
graph analysis (a depth-first search) in time O(|S|+|P|).

Alternatively, the probabilities can be calculated by making the states s �∈ S?
absorbing as follows. For DTMC D = (S,P, L) and A ⊆ S, let D[A] be the
DTMC (S,P[A], L) where the states in A are made absorbing: If s ∈ A, then
P[A](s, s) = 1 and P[A](s, s′) = 0 for s′ �= s. Otherwise, P[A](s, s′) = P(s, s′).
Let πD(s k� s′) denote the probability of being in state s′ after exactly k steps
in DTMC D when starting in s. Then:

ProbD(s, Φ U≤k Ψ) =
∑

s′∈S1

πD[S0∪S1](s k� s′).

Calculating ProbD(s, Φ U≤k Ψ) thus amounts to computing (P[S0 ∪ S1])k·ιS1 ,
where ιS1(s) = 1 if s ∈ S1, and 0 otherwise.

CTMCs. A (labelled) CTMC C is a tuple (S,P, E, L) where (S,P, L) is a DTMC
and E : S → R≥0 provides the exit rate for each state. The probability of taking
a transition from s within t time units equals 1 − e−E(s)·t. The probability of
taking a transition from state s to state s′ within time t is given by: P(s, s′) ·
(1 − e−E(s)·t).

A path through a CTMC is a sequence of states and sojourn times σ =
s0 t0 s1 t1 . . . with P(si, si+1) > 0 and ti ∈ R≥0 for all i. Let PathC denote the
set of all paths in CTMC C.

Uniformisation. In a uniform CTMC, the exit rate of all states is the same.
A non-uniform CTMC can be uniformized by adding self loops as follows: let
C = (S,P, E, L) be a CTMC and choose Ẽ ≥ maxs∈S E(s). Then, Unif Ẽ(C) =
(S,P′, E′, L) where E′(s) = Ẽ for all s, P′(s, s′) = E(s)P(s, s′)/Ẽ if s �= s′ and
P′(s, s) = 1 −

∑
s′ 	=s P′(s, s′). The probability to be in a given state at a given

time in the uniformized CTMC is the same as the one in the original CTMC.

The logic CSL. Continuous stochastic logic (CSL, [6]) is similar to PCTL. For
a, p and �� as before, time bounds t1 ∈ [0, ∞) and t2 ∈ [t1, ∞], the syntax is:

Φ ::= tt
∣
∣
∣ a

∣
∣
∣ Φ ∧ Φ

∣
∣
∣ ¬Φ

∣
∣
∣ P�� p(Φ U [t1,t2] Φ)

∣
∣
∣ S�� p(Φ)

A state s satisfies P�� p(Φ U [t1,t2] Ψ) if the set of timed paths { σ ∈ PathC(s) |
σ |= Φ U [t1,t2] Ψ } has a probability �� p. A timed path satisfies Φ U [t1,t2] Ψ if
within time t ∈ [t1, t2] a Ψ -state is reached, and all preceding states satisfy Φ.
We will mostly let t1 = 0 and denote this as Φ U≤t2 Ψ . A state s satisfies the
formula S�� p(Φ) if the steady-state probability to be in a Φ-state (when starting
in s) satisfies the constraint �� p.

CSL model checking [2,6] can be implemented as follows. The operator S can
be solved by a (standard) calculation of the steady-state probabilities together

Bisimulation Minimisation Mostly Speeds Up Probabilistic Model Checking 91

with a graph analysis. For the time-bounded until operator, note that, after
uniformisation the probability to take k steps within time t does not depend
on the actual states visited. This probability is Poisson distributed, and the
probability to satisfy the until formula within k steps is calculated using the
PCTL algorithm. The total probability is an infinite sum over all k, which can
be approximated well.

Rewards. A discrete-time Markov reward model (DMRM) Dr is a tuple (D, r)
where D is a DTMC and r : S → R≥0 is a reward assignment function. The
quantity r(s) indicates the reward that is earned on leaving state s. Rewards
could also be attached to edges in a DTMC, but this does not increase expres-
sivity. A path through a DMRM is a path through its DTMC, i. e., sequence of
states σ = s0 s1 s2 . . . with P(si, si+1) > 0 for all i.

Let a, p and k be as before, and r ∈ R≥0 be a nonnegative reward bound. The
two main operators that extend PCTL to Probabilistic Reward CTL (PRCTL)
[1] are P�� p(Φ U≤k

≤r Ψ) and E=k
≤r (Φ). The until-operator is equipped with a bound

on the maximum number (k) of allowed hops to reach the goal states, and a
bound on the maximum allowed cumulated reward (r) before reaching these
states. Formula E=k

≤r (Φ) asserts that the expected cumulated reward in Φ-states
until the k-th transition is at most r. Thus, in order to check the validity of this
formula for a given path, all visits to Φ-state are considered in the first k steps
and the total reward that is obtained in these states; the rewards earned in other
states or earned in Φ-states after the first k steps are not relevant. Whenever
the expected value of this quantity over all paths that start in state s is at most
r, state s |= E=k

≤r (Φ).
A continuous-time Markov reward model (CMRM) Cr is a tuple (C, r) where

C is a CTMC and r : S → R≥0 is a reward assignment function (as before). The
quantity r(s) indicates that if t time units are spent in state s, a reward r(s) · t
is acquired. A path through a CMRM is a path through its underlying CTMC.
Let σ = s0 t0 s1 t1 . . . be a path. For t =

∑k−1
j=0 tj + t′ with t′ ≤ tk we define

r(σ, t) =
∑k−1

j=0 tj · r(sj) + t′ · r(sk), the cumulative reward along σ up to time t.
CSRL [5] is a logic that extends CSL with one operator P�� p(Φ U≤t

≤r Ψ) to ex-
press time- and reward-bounded properties. Checking this property of a CMRM
is difficult. One can either approximate the CMRM by a discretisation of the
rewards or compute for each (untimed) path the probability to meet the bound
and sum them up. Reward-bounded until properties of a CMRM can be checked
via a transformation of rewards into exit rates and checking a corresponding
time-bounded until property [5].

3 Bisimulation

Bisimulation. Let D = (S,P, L) be a DTMC and R an equivalence relation on
S. The quotient of S under R is denoted S/R. R is a strong bisimulation on D
if for s1 R s2:

L(s1) = L(s2) and P(s1, C) = P(s2, C) for all C in S/R.

92 J.-P. Katoen et al.

s1 and s2 in D are strongly bisimilar, denoted s1 ∼d s2, if there exists a strong
bisimulation R on D with s1 R s2. Strong bisimulation [10,24] for CTMCs, that
implies ordinary lumpability, is a mild variant of the notion for the discrete-time
probabilistic setting: in addition to the above, it is also required that the exit
rates of bisimilar states are equal: E(s1) = E(s2).

Measure-driven bisimulation. Requiring states to be equally labelled with all
atomic propositions is rather strong if one is interested in checking formulas that
just refer to a (small) subset of propositions, or more generally, sub-formulas.
The following notion weakens the labelling requirement in strong bisimulation
by requiring equal labellling for a set of PCTL formulas F . Let D = (S,P, L) be
a DTMC and R an equivalence relation on S. R is a F -bisimulation on D if for
s1 R s2:

s1 |= Φ ⇐⇒ s2 |= Φfor all Φ ∈ F

P(s1, C) = P(s2, C) for all C ∈ S/R.

States s1 and s2 are F -bisimilar, denoted s1 ∼F s2, if there exists an F -
bisimulation R on D with s1 R s2. F -bisimulation on CTMCs (for a set of
CSL formulas F) is defined analogously [5]. Note that strong bisimilarity is F -
bisimilarity for F = AP.

Preservation results. Aziz et al. [3] have shown that strong bisimulation is sound
and complete with respect to PCTL (and even PCTL∗):

Proposition 1. Let D be a DTMC, R a bisimulation and s an arbitrary state
of D. Then, for all PCTL formulas Φ, s |=D Φ ⇐⇒ [s]R |=D/R Φ.

This result can be generalised to F -bisimulation in the following way:

Proposition 2. Let D be a DTMC, R an F -bisimulation and s an arbitrary
state of D. Then, for all PCTLF formulas Φ, s |=D Φ ⇐⇒ [s]R |=D/R Φ.

Similar results hold for CSL and bisimulation on CTMCs [6], for PRCTL on
DMRM, and for CSRL on CMRM.

Bisimulation minimisation. The preservation results suggest that one can ver-
ify properties of a Markov chain on a bisimulation quotient. The next issue to
consider is how to obtain the quotient. An often used algorithm (called partition
refinement) is based on splitting: Let Π be a partition of S. A splitter for some
block B ∈ Π is a block Sp ∈ Π such that the probability to enter Sp is not
the same for each state in B. In this case, the algorithm splits B into subblocks
such that each subblock consists of states s with identical P(s, Sp). This step
is repeated until a fixpoint is reached. The final partition is the coarsest bisim-
ulation that respects the initial partition. The worst-case time complexity of this

Bisimulation Minimisation Mostly Speeds Up Probabilistic Model Checking 93

algorithm is O(|P| log |S|) provided that splay trees are used to store blocks [14].
These data structures are adopted in our implementation.3

Initial partition. The choice of initial partition in the partition refinement al-
gorithm determines what kind of bisimulation the result is. If we group states
labelled with the same atomic propositions together, the result is the strong
bisimulation quotient S/∼d. If we choose the initial partition according to the
satisfaction of formulas in F , the resulting partition is the F -bisimulation quo-
tient S/∼F . To get the smallest bisimulation quotient, it is important to start
with a coarse initial partition. Instead of only calculating the strong bisimulation
quotient, we will also use measure-driven bisimulation for a suitable set F .

A naive approach for formula P�� p(Φ U Ψ) is to choose F = { Ψ, Φ ∧ ¬Ψ }. In
fact, P�� p(Φ U Ψ) is not in PCTLF , but the equivalent formula P�� p(Φ∧¬Ψ U Ψ)
is. This yields an initial partition consisting of the sets S1 = Sat(Ψ), S? =
Sat(Φ∧¬Ψ) and S0 = S\(S1∪S?) (cf. Section 2). Note that selecting F = { Ψ, Φ }
would lead to a less efficient initial partition with four blocks instead of three. We
improve this initial partition by replacing S0 by U0 = Sat(P≤0(Φ U Ψ)) and S1
by U1, which is essentially4 Sat(P≥1(Φ U Ψ)). (Defining U0 and U1 as satisfaction
sets of some formula has the advantage that we can still use Proposition 2.) The
sets of states U0 and U1 can be collapsed into single states u0 and u1, respectively.
This results in the initial partition { {u0}, {u1}, S \ (U0 ∪ U1) }.

For bounded until, one can still use U0, but not U1, since the fact that (al-
most) all paths satisfy Φ U Ψ does not imply that these paths reach a Ψ -state
within the step or time bound. Therefore, for this operator the initial partition
is { {u0}, {s1}, S \ (U0 ∪ S1) } with u0 as before and s1 the collapsed state for
S1.5 Thus, for bounded until the measure-driven initial partition is finer than
for unbounded until. In the experiments reported in the next section, the effect
of the granularity of the initial partition will become clear.

4 Experiments

To study the effect of bisimulation in model checking, we realised the minimisa-
tion algorithms in MRMC and applied them to a variety of case studies, most of
which can be obtained from the PRISM webpage.6 We used PRISM to specify
the models and generate the Markov chains. Subsequently, the time and memory
requirements have been considered for verifying the chains (by MRMC), and for
minimising plus verifying the lumped chain (both by MRMC). All experiments
were conducted on a 2.66 GHz Pentium 4 processor with 1 GB RAM running
Linux. All reported times are in milliseconds and are obtained by taking the
average of running the experiment 10 times.
3 In practice, an implementation using red-black trees is often slightly faster, although

this raises the theoretical complexity to O(|P| log2 |S|), cf. [13, Section 3.4].
4 Up to states s where the set { σ ∈ PathD(s) | σ �|= Φ U Ψ } is only almost empty.
5 For the sake of brevity, we omit the details for the optimal initial partition for

time-bounded until-formulas of the form U [t1,t2] with 0 < t1.
6 see http://www.cs.bham.ac.uk/dxp/prism/index.php.

94 J.-P. Katoen et al.

4.1 Discrete Time

Crowds protocol [38]. This protocol uses random routing within a group of nodes
(a crowd) to establish a connection path between a sender and a receiver. Rout-
ing paths are reconstructed once the crowd changes; the number of such new
route establishments is R, and is an important parameter that influences the
state space. Random routing serves to hide the secret identity of a sender. The
table below summarises the results for checking P≤p(�observe) where observe
characterises a situation in which the sender’s id is detected. The parameter N
in the first column is the number of honest crowd members; our models include
N/5 dishonest members. The second column shows parameter R. The next three
columns indicate the size of the state space of the DTMC (i. e., |S|), the number
of transitions (i. e., the number of non-zero entries in P), and the verification
time. The next three columns indicate the number of states in the quotient
DTMC, the time needed for obtaining this quotient, and the time to check the
validity of the same formula on the quotient. The last two columns indicate
the reduction factor for the number of states and total time. Note that we ob-
tain large state space reductions. Interestingly, in terms of time consumption,
quotienting obtains a reduction in time of about a factor 4 to 7.

original DTMC lumped DTMC red. factor

N R states transitions ver. time blocks lump time ver. time states time
5 3 1198 2038 3.2 53 0.6 0.3 22.6 3.7
5 4 3515 6035 11 97 2.0 0.5 36.2 4.4
5 5 8653 14953 48 153 6.0 0.9 56.6 6.9
5 6 18817 32677 139 209 14 1.4 90.0 9.0

10 3 6563 15143 24 53 4.6 0.2 124 4.9
10 4 30070 70110 190 97 29 0.5 310 6.4
10 5 111294 261444 780 153 127 0.9 727 6.1
10 6 352535 833015 2640 221 400 1.4 1595 6.6
15 3 19228 55948 102 53 23 0.2 363 4.4
15 4 119800 352260 790 97 190 0.5 1235 4.1
15 5 592060 1754860 4670 153 1020 0.9 3870 4.6
15 6 2464168 7347928 20600 221 4180 1.5 11150 4.9

Leader election [28]. In this protocol, N nodes that are arranged in an unidi-
rectional ring select an identity randomly according to a uniform distribution
on { 1, . . . , K }. By means of synchronous message passing, processes send their
identity around the ring. The protocol terminates once a node has selected a
unique id (the node with the highest unique id becomes the leader); if no such
node exists, the protocol restarts. The property of interest is the probability to
elect a leader within a certain number of rounds: P≤q(�≤(N+1)·3 leader elected).
The obtained results are summarised in the table below. For a fixed N , the num-
ber of blocks is constant. This is due to the fact that the initial state is the only
probabilistic state and that almost all states that are equidistant w. r. t. this ini-
tial state are bisimilar. For N = 4, no gain in computation time is obtained due
to the relatively low number of iterations needed in the original DTMC. When N
increases, bisimulation minimisation also pays off timewise; in this case a small
reduction of the time is obtained (more iterations are needed due to the bound
in the until-formula that depends on N).

Bisimulation Minimisation Mostly Speeds Up Probabilistic Model Checking 95

original DTMC lumped DTMC red. factor

N K states transitions ver. time blocks lump time ver. time states time
4 2 55 70 0.02 10 0.05 0.01 5.5 0.4
4 4 782 1037 0.4 10 0.5 0.01 78.2 0.8
4 8 12302 16397 7.0 10 9.0 0.01 1230 0.8
4 16 196622 262157 165.0 10 175 0.01 19662 0.9
5 2 162 193 0.1 12 0.1 0.02 13.5 0.9
5 4 5122 6145 2.8 12 2.9 0.02 427 0.9
5 6 38882 46657 28 12 26 0.02 3240 1.1
5 8 163842 196609 140 12 115 0.02 13653 1.2

Cyclic polling server [27]. This standard example in performance analysis con-
siders a set of stations that are allowed to process a job once they possess the
token. The single token circulates among the stations. The times for passing a
token to a station and for serving a job are all distributed exponentially. We
consider the DTMC that is obtained after uniformisation, and check the for-
mula: P��p(

∧N
j 	=1 ¬servej U serve1), i. e. with probability �� p station 1 will be

served before any other station, as well as a time-bounded version thereof.7

Ordinary (strong) bisimulation yields no state-space reduction. The results for
measure-driven bisimulation minimisation are summarised below. In checking
the bounded until formula, we used the naive initial partition { {s0}, {s1}, S? }.
The improved initial partition with {u0} would have led to almost the same num-
ber of blocks as the unbounded until, e. g. 46 instead of 151 blocks for N = 15.
For both formulas, large reductions in state space size as well as computation
time are obtained; the effect of {u0} on the number of blocks is also considerable.

time-bounded until unbounded until
original DTMC lumped DTMC red. factor lumped DTMC red. factor

N states transitions time U≤t time U blocks time states time blocks time states time
4 96 368 1.4 2.1 19 0.4 5.1 3.5 12 0.9 8 2.3
6 576 2784 10 11 34 1.2 16.9 8.3 18 1.4 32 7.9
8 3072 17920 62 52 53 4.0 58 15.5 24 2.9 128 17.9
12 73728 577536 3050 3460 103 120 716 25.4 36 55 2048 62.9
15 737280 6881280 39000 32100 151 1590 4883 24.5 45 580 16384 55.3

Randomised mutual exclusion [37]. In this mutual exclusion algorithm, N
processes make random choices based on coin tosses to ensure that they can all
enter their critical sections eventually, although not simultaneously. The following
table summarizes our results for verifying the property that process 1 is the first
to enter the critical section, i. e., the PCTL formula P≤q(

∧N
j 	=1 ¬enterj U enter1).

strong bisimulation F -bisimulation
original DTMC lumped DTMC red. factor lumped DTMC red. factor

N states transitions ver. time blocks lump time ver. time states time blocks time states time
3 2368 8272 3.0 1123 8.0 1.6 2.1 0.3 233 2.9 10.2 1.0
4 27600 123883 47.0 5224 192 19 5.3 0.4 785 29 35.2 1.6
5 308800 1680086 837 18501 2880 120 16.7 0.3 2159 507 143 1.7
6 3377344 21514489 9589 – > 107 – – – 5166 7106 653 1.4

Due to the relatively high number of transitions, quotienting the DTMC ac-
cording to AP-bisimilarity is computationally expensive, and takes significantly
7 For the sake of comparison, the unbounded until-formula is checked on the uni-

formised and not on the embedded DTMC.

96 J.-P. Katoen et al.

more time than verifying the original DTMC. However, measure-driven bisimi-
larity yields a quotient that is roughly an order of magnitude smaller than the
quotient under AP-bisimilarity. Due to the coarser initial partition, this quotient
is constructed rather fast. In this case, verifying the original model is more time
consuming.

4.2 Continuous Time

Workstation cluster [22]. This case study considers a system consisting of two
clusters of workstations connected via a backbone. Each cluster consists of N
workstations, connected in a star topology with a central switch that provides the
interface to the backbone. Each component can break down according to a failure
distribution. A single repair unit is available to repair the failed components. The
number of correctly functioning workstations determines the level of quality of
service (QoS). The following two tables summarise the results for checking the
probability that:

– In the long run, premium QoS will be delivered in at least 70% of the cases;
– QoS drops below minimum QoS within 40 time-units is at most 0.1;
– QoS goes from minimum to premium between 20 and 40 time units.

The last property involves a sequence of two transient analyses on different
CTMCs. The results for the long-run property:

original CTMC lumped CTMC red. factor

N states transitions ver. time blocks lump time ver. time states time
8 2772 12832 3.6 1413 12 130 2 0.03

16 10132 48160 21 5117 64 770 2 0.03
32 38676 186400 114 19437 290 215 2 0.2
64 151060 733216 730 75725 1360 1670 2 0.2

128 597012 2908192 6500 298893 5900 14900 2 0.2
256 2373652 11583520 103000 1187597 25400 175000 2 0.2

The plain verification time of the quotient is larger than of the original CTMC, de-
spite a state space reduction of a factor two.This is due to the fact that the subdom-
inant eigenvalues of the Gauss-Seidel iteration matrices differ significantly—the
closer this value is to one, the slower the convergence rate for the iterative Gauss-
Seidel method. For instance for N = 8, the values of the original (0.156) and the
quotient (0.993) are far apart and the number of iterations needed differ for about
two orders of magnitude. The same applies for N = 16. These differences are much
smaller for larger values of N .

The results for time-bounded reachability:

time-bounded until [0, 40] time-bounded until [20, 40]
original CTMC lumped CTMC red. factor lumped CTMC red. factor

N states transitions ver. time ver. time blocks time states time blocks time states time
U≤40 U [20,40]

8 2772 12832 36 49 239 16.3 11.6 2.2 386 24.0 7.2 2.0
16 10132 48160 360 480 917 70 11.0 5.1 1300 96.0 7.8 5.0
32 38676 186400 1860 2200 3599 300 10.7 6.2 4742 430 8.2 5.1
64 151060 733216 7200 8500 14267 1810 10.6 4.0 18082 2550 8.4 3.3

128 597012 2908192 29700 33700 56819 9300 10.5 3.2 70586 12800 8.5 2.6
256 2373652 11583520 121000 143000 226787 45700 10.5 2.6 278890 60900 8.5 2.3

Bisimulation Minimisation Mostly Speeds Up Probabilistic Model Checking 97

These results are obtained using a measure-driven bisimulation. In contrast, for
an AP-bisimulation, we only obtained a 50% state-space reduction. For measure-
driven bisimulation another factor 4–5 reduction is obtained. The reduction fac-
tors obtained for this case study are not so high, as its formal (stochastic Petri
net) specification already exploits some lumping; e. g., workstations are modeled
by anonymous tokens.

IEEE 802.11 group communication protocol [35]. This is a variant of the cen-
tralized medium access protocol of the IEEE 802.11 standard for wireless local
area networks. The protocol is centralized in the sense that medium access is
controlled by a fixed node, the Access Point (AP). The AP polls the wireless
stations, and on receipt of a poll, stations may broadcast a message. Stations
acknowledge the receipt of a message such that the AP is able to detect whether
or not all stations have correctly received the broadcast message. In case of a
detected loss, a retransmission by the originator takes place. It is assumed that
the number of consecutive losses of the same message is bounded by OD, the
omission degree. This all refers to time-critical messages; other messages are sent
in another phase of the protocol. The property of interest is, as in [35] and other
studies of this protocol, the probability that a message originated by the AP
is not received by at least one station within the duration of the time-critical
phase, i. e., t = 2.4 milliseconds, i. e., P��p(�≤24000fail) where fail identifies all
states in which more than OD losses have taken place. The following table re-
ports the results for the verification of this property for different values of OD
and the minimization results for a measure-driven bisimulation.

original CTMC lumped CTMC red. factor

OD states transitions ver. time blocks lump + ver. time states time
4 1125 5369 121.9 71 13.5 15.9 9.00

12 37349 236313 7180 1821 642 20.5 11.2
20 231525 1590329 50133 10627 5431 21.8 9.2
28 804837 5750873 195086 35961 24716 22.4 7.9
36 2076773 15187833 5103900 91391 77694 22.7 6.6
40 3101445 22871849 7725041 135752 127489 22.9 6.1

We obtain a state space reduction of about a factor 22, which results in an
efficiency improvement of a factor 5 to 10. The reason that the verification times
are rather excessive for this model stems from the fact that the time bound
(24000) is very large, resulting in many iterations. These verification times can
be improved by incorporating an on-the-fly steady-state detection procedure [30],
but this is not further considered here.

Simple P2P protocol [33]. This case study describes a simple peer-to-peer pro-
tocol based on BitTorrent—a “torrent” is a small file which contains metadata
about the files to be shared and about the host computer that coordinates the
file distribution. The model comprises a set of clients trying to download a file
that has been partitioned into K blocks. Initially, there is a single client that has
already obtained all blocks and N additional clients with no blocks. Each client
can download a block (lasting an exponential delay) from any of the others but
they can only attempt four concurrent downloads for each block. The following

98 J.-P. Katoen et al.

table summarises our minimisation results using AP-bisimilarity in columns 3
through 6. The property of interest is the probability that all blocks are down-
loaded within 0.5 time units. The last columns list the results for a recently
proposed symmetry reduction technique for probabilistic systems [33] that has
been realised in PRISM.

bisimulation minimisation symmetry reduction
original CTMC lumped CTMC red. factor reduced CTMC red. factor

N states ver. time blocks lump time ver. time states time states red. time ver. time states time
2 1024 5.6 56 1.4 0.3 18.3 3.3 528 12 2.9 1.93 0.38
3 32768 410 252 170 1.3 130 2.4 5984 100 59 5.48 2.58
4 1048576 22000 792 10200 4.8 1324 2.2 52360 360 820 20.0 18.3

We observe that bisimulation minimisation leads to a significantly stronger state-
space reduction than symmetry reduction. For N = 3 and N = 4, bisimulation
minimisation leads to a state-space reduction of more than 23 and 66 times,
respectively, the reduction of symmetry reduction. Symmetry reduction is—as
expected—much faster than bisimulation minimisation, but this is a somewhat
unfair comparison as the symmetries are indicated manually. These results sug-
gest that it is affordable to first apply a (fast) symmetry reduction, followed by
a bisimulation quotienting on the obtained reduced system. Unfortunately, the
available tools did not allow us to test this idea.

4.3 Rewards

This section reports on the results for bisimulation minimisation for Markov
reward models. Note that the initial partitions need to be adapted such that
only states with equal reward are grouped. We have equipped two DTMCs and
one CTMC with a reward assignment function r:

– Crowds protocol (DMRM): the reward indicates the number of messages
sent;

– Randomised mutual exclusion protocol (DMRM): the reward indicates the
number of attempts that have been undertaken to acquire access to the
critical section;

– Workstation cluster (CMRM): the reward is used to measure the repair time.

Recall that for DMRMs, r(s) indicates the reward that is earned on leaving a
state, while for CMRMs, r(s)·t is the earned reward when staying t time-units
in s. The experiments are focused on verifying time- and reward-bounded until-
formulas. For DMRMs, these formulas are checked using a path graph generation
algorithm as proposed in [1] which has a time complexity in O(k·r·|S|3), where
k and r are the time-bound and reward-bound, respectively. For CMRMs, we
employed the discretization approach by Tijms and Veldman as proposed in [21]
which runs in time O(t·r·|S|3·d−2) where d is the step size of the discretisation.
In our experiments, the default setting is d = 1

32 .
For the Crowds protocol (for R = 3), we checked the probability that the

sender’s id is discovered within 100 steps and maximally two messages, i. e.,
P≤p(�

≤100
≤2 observe). In case of the randomised mutual exclusion protocol, we

Bisimulation Minimisation Mostly Speeds Up Probabilistic Model Checking 99

checked P≤q(
∧N

j 	=1 ¬enterj U≤50
≤10 enter1), i. e., maximally 10 attempts are allowed

to enter the critical section. Finally, for the workstation cluster, we checked the
change of providing minimum QoS to premium QoS within maximally 5 time
units of repair (and 10 time units). All results are listed in the following table.

Due to the prohibitive (practical) time-complexity, manageable state space
sizes are (much) smaller than for the case without rewards. Another consequence
of these large verification times, bisimulation minimisation is relatively cheap,
and results in possibly drastic time savings, as for the Crowds protocol.

Crowds protocol with rewards
original DTMC lumped DTMC red. factor

N states transitions ver. time blocks lump + ver. time states time
5 1198 2038 2928 93 44.6 12.88 65.67

10 6563 15143 80394 103 73.5 63.72 1094.49
15 19228 55948 1004981 103 98.7 186.68 10182.13
20 42318 148578 5174951 103 161 410.85 32002.61

Randomised mutual exclusion protocol with rewards
2 188 455 735 151 616 1.25 1.19
3 2368 8272 60389 1123 19010 2.11 3.18
4 27600 123883 5446685 5224 298038 5.28 18.28
5 308800 1680086 > 107 18501 3664530 16.69 –

Workstation cluster with rewards
2 276 1120 278708 147 55448 1.88 5.03
3 512 2192 849864 268 151211 1.91 5.62
4 820 3616 2110095 425 347324 1.93 6.08
5 1200 5392 > 107 618 2086575 1.94 –
6 1652 7520 > 107 847 3657682 1.95 –

5 Concluding Remarks

Our experiments confirm that significant (up to logarithmic) state space reduc-
tions can be obtained using bisimulation minimisation. The appealing feature of
this abstraction technique is that it is fully automated. For several case studies,
also substantial reductions in time have been obtained (up to a factor 25). This
contrasts results for traditional model checking where bisimulation minimisation
typically outweighs verifying the original system. Time reduction strongly de-
pends on the number of transitions in the Markov chain, its structure, as well as
on the convergence rate of numerical computations. The P2P protocol experi-
ment shows encouraging results compared with symmetry reduction [33] (where
symmetries are detected manually). For measure-driven bisimulation for models
without rewards, this speedup comes with no memory penalty: the peak memory
use is typically unchanged; for ordinary bisimulation some experiments showed
an increase of peak memory up to 50%. In our case studies with rewards, we
experienced a 20–40% reduction in peak memory use.

We plan to further investigate combinations of symmetry reduction with
bisimulation minimisation, and to extend our experimental work towards MDPs
and simulation preorders.

Acknowledgement. This research has been performed as part of the MC=MC project

that is financed by the Netherlands Organization for Scientific Research (NWO), and

the project VOSS2 that is financed by NWO and the German Research Council (DFG).

100 J.-P. Katoen et al.

References

1. Andova, S., Hermanns, H., Katoen, J.-P.: Discrete-time rewards model-checked. In
Larsen, K. G., et al. (eds.): FORMATS. LNCS, Vol. 2791. Springer, Berlin (2003)
88–104

2. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Model-checking continuous time
Markov chains. ACM TOCL 1 (2000) 162–170

3. Aziz, A., Singhal, V., Balarin, F., Brayton, R. K., Sangiovanni-Vincentelli, A. L.:
It usually works: the temporal logic of stochastic systems. In Wolper, P. (ed.):
CAV. LNCS, Vol. 939. Springer, Berlin (1995) 155–165

4. Baier, C., Ciesinski, F., Größer, M.: ProbMela and verification of Markov decision
processes. Performance Evaluation Review 32 (2005) 22–27

5. Baier, C., Haverkort, B., Hermanns, H., Katoen, J.-P.: On the logical characteri-
sation of performability properties. In Montanari, U., et al. (eds.): ICALP. LNCS,
Vol. 1853. Springer, Berlin (2000) 780–792

6. Baier, C., Haverkort, B., Hermanns, H., Katoen, J.-P.: Model-checking algorithms
for continuous-time Markov chains. IEEE TSE 29 (2003) 524–541

7. Baier, C., Katoen, J.-P., Hermanns, H., Wolf, V.: Comparative branching-time
semantics for Markov chains. Information and Computation 200 (2005) 149–214

8. Ben Mamoun, M., Pekergin, N., Younès, S.: Model checking of continuous-time
Markov chains by closed-form bounding distributions. In: QEST. IEEE CS, Los
Alamitos (2006) 189–198

9. Böde, E., Herbstritt, M., Hermanns, H., Johr, S., Peikenkamp, T., Pulungan, R.,
Wimmer, R., Becker, B.: Compositional performability evaluation for Statemate.
In: QEST. IEEE CS, Los Alamitos (2006) 167–178

10. Buchholz, P.: Exact and ordinary lumpability in finite Markov chains. Journal of
Applied Probability 31 (1994) 59–75

11. D’Aprile, D., Donatelli, S., Sproston, J.: CSL model checking for the GreatSPN
tool. In Aykanat, C., et al. (eds.): Computer and Information Sciences, ISCIS.
LNCS, Vol. 3280. Springer, Berlin (2004) 543–553

12. D’Argenio, P. R., Jeannet, B., Jensen, H. E., Larsen, K. G.: Reachability analysis
of probabilistic systems by successive refinements. In de Alfaro, L., et al. (eds.):
PAPM–PROBMIV. LNCS, Vol. 2165. Springer, Berlin (2001) 39–56

13. Derisavi, S.: Solution of Large Markov Models using Lumping Techniques and
Symbolic Data Structures. PhD thesis, Univ. of Illinois at Urbana-Champaign
(2005)

14. Derisavi, S., Hermanns, H., Sanders, W. H.: Optimal state-space lumping in
Markov chains. IPL 87 (2003) 309–315

15. Fecher, H., Leucker, M., Wolf, V.: Don’t know in probabilistic systems. In Valmari,
A. (ed.): Model Checking Software. LNCS, Vol. 3925. Springer, Berlin (2006) 71–88

16. Fisler, K., Vardi, M. Y.: Bisimulation minimization in an automata-theoretic ver-
ification framework. In Gopalakrishnan, G., et al. (eds.): FMCAD. LNCS, Vol.
1522. Springer, Berlin (1998) 115–132

17. Fisler, K., Vardi, M. Y.: Bisimulation and model checking. In Pierre, L., et al.
(eds.): CHARME. LNCS, Vol. 1703. Springer, Berlin (1999) 338–342

18. Fisler, K., Vardi, M. Y.: Bisimulation minimization and symbolic model checking.
Formal Methods in System Design 21 (2002) 39–78

19. Groesser, M., Baier, C.: Partial order reduction for Markov decision processes: a
survey. In de Boer, F. S., et al. (eds.): FMCO. LNCS, Vol. 4111. Springer, Berlin
(2006) 408–427

Bisimulation Minimisation Mostly Speeds Up Probabilistic Model Checking 101

20. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Aspects of Computing 6 (1994) 512–535

21. Haverkort, B., Cloth, L., Hermanns, H., Katoen, J.-P., Baier, C.: Model checking
performability properties. In: DSN. IEEE CS, Los Alamitos (2002) 103–112

22. Haverkort, B. R., Hermanns, H., Katoen, J.-P.: On the use of model checking
techniques for quantitative dependability evaluation. In: 19th IEEE Symposium
on Reliable Distributed Systems. IEEE CS, Los Alamitos (2000) 228–237

23. Hermanns, H., Kwiatkowska, M., Norman, G., Parker, D., Siegle, M.: On the use
of MTBDDs for performability analysis and verification of stochastic systems. J.
of Logic and Alg. Progr. 56 (2003) 23–67

24. Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge
University Press (1996)

25. Huth, M.: An abstraction framework for mixed non-deterministic and probabilistic
systems. In Baier, C., et al. (eds.): Validation of Stochastic Systems. LNCS, Vol.
2925. Springer, Berlin (2004) 419–444

26. Huth, M.: On finite-state approximants for probabilistic computation tree logic.
TCS 346 (2005) 113–134

27. Ibe, O. C., Trivedi, K. S.: Stochastic Petri net models of polling systems. IEEE J.
on Selected Areas in Communications 8 (1990) 1649–1657

28. Itai, A., Rodeh, M.: Symmetry breaking in distributed networks. Information and
Computation 88 (1990) 60–87

29. Katoen, J.-P., Khattri, M., Zapreev, I. S.: A Markov reward model checker. In:
QEST. IEEE CS, Los Alamitos (2005) 243–244

30. Katoen, J.-P., Zapreev, I. S.: Safe on-the-fly steady-state detection for time-
bounded reachability. In: QEST. IEEE CS, Los Alamitos (2006) 301–310

31. Kwiatkowska, M., Norman, G., Parker, D.: Probabilistic symbolic model checking
with PRISM: a hybrid approach. Int. J. on STTT 6 (2004) 128–142

32. Kwiatkowska, M., Norman, G., Parker, D.: Game-based abstraction for Markov
decision processes. In: QEST. IEEE CS, Los Alamitos (2006) 157–166

33. Kwiatkowska, M., Norman, G., Parker, D.: Symmetry reduction for probabilistic
model checking. In Ball, T., et al. (eds.): CAV. LNCS, Vol. 4144. Springer, Berlin
(2006) 234–248

34. Larsen, K. G., Skou, A.: Bisimulation through probabilistic testing. Information
and Computation 94 (1991) 1–28

35. Massink, M., Katoen, J.-P., Latella, D.: Model checking dependability attributes
of wireless group communication. In: DSN. IEEE CS, Los Alamitos (2004) 711–720

36. Monniaux, D.: Abstract interpretation of programs as Markov decision processes.
Science of Computer Programming 58 (2005) 179–205

37. Pnueli, A., Zuck, L.: Verification of multiprocess probabilistic protocols. Distributed
Computing 1 (1986) 53–72

38. Reiter, M. K., Rubin, A. D.: Crowds: anonymity for web transactions. ACM
Transactions on Information and System Security 1 (1998) 66–92

39. Sproston, J., Donatelli, S.: Backward bisimulation in Markov chain model checking.
IEEE TSE 32 (2006) 531–546

Causal Dataflow Analysis for

Concurrent Programs

Azadeh Farzan and P. Madhusudan

Department of Computer Science,
University of Illinois at Urbana-Champaign

{afarzan,madhu}@cs.uiuc.edu

Abstract. We define a novel formulation of dataflow analysis for con-
current programs, where the flow of facts is along the causal dependencies
of events. We capture the control flow of concurrent programs using a
Petri net (called the control net), develop algorithms based on partially-
ordered unfoldings, and report experimental results for solving causal
dataflow analysis problems. For the subclass of distributive problems,
we prove that complexity of checking data flow is linear in the number
of facts and in the unfolding of the control net.

1 Introduction

Advances in multicore technology and the wide use of languages that inherently
support threads, such as Java, foretell a future where concurrency will be the
norm. Despite their growing importance, little progress has been made in static
analysis of concurrent programs. For instance, there is no standard notion of
a control-flow graph for concurrent programs, while the analogous notion in
sequential programs has existed for a long time [10]. Consequently, dataflow
analysis problems (arguably the simplest of analysis problems) have not been
clearly understood for programs with concurrency.

While it is certainly easy to formulate dataflow analysis for concurrent pro-
grams using the global product state space of the individual threads, the useful-
ness of doing so is questionable as algorithms working on the global state space
will not scale. Consequently, the literature in flow analysis for threaded programs
concentrates on finding tractable problem definitions for dataflow analysis. A
common approach has been to consider programs where the causal relation be-
tween events is static and apparent from the structure of the code (such as fork-
join formalisms), making feasible an analysis that works by finding fixpoints on
the union of the individual sequential control flow graphs. These approaches are
often highly restrictive (for example, they require programs to have no loops [23]
or at least to have no loops with concurrent fork-join constructs [13,14]), and
cannot model even simple shared-memory program models. In fact, a coherent

O. Grumberg and M. Huth (Eds.): TACAS 2007, LNCS 4424, pp. 102–116, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Causal Dataflow Analysis for Concurrent Programs 103

formulation of control-flow that can capture programs with dynamic concur-
rency (including those with shared memory) and a general definition of dataflow
analysis problems for these programs has not been formulated in the literature
(see the end of this section for details on related work).

The goals of this paper are (a) to develop a formal control-flow model for
programs using Petri nets, (b) to propose a novel definition of dataflow analyses
based on causal flows in a program, (c) to develop algorithms for solving causal
flow analyses when the domain of flow facts is a finite set D by exploring the
partially-ordered runs of the program as opposed to its interleaved executions,
and (d) to provide provably efficient algorithms for the class of distributive CCD
problems, and support the claim with demonstrative experiments. The frame-
work we set forth in this paper is the first one we know that defines a formal
general definition of dataflow analysis for concurrent programs.

We first develop a Petri net model that captures the control flow in a con-
current program, and give a translation from programs to Petri nets that ex-
plicitly abstracts data and captures the control flow in the program. These nets,
called control nets, support dynamic concurrency, and can model concurrent
constructs such as lock-synchronizations and shared variable accesses. In fact,
we have recently used the same model of control nets to model and check atom-
icity of code blocks in concurrent programs [7]. We believe that the control net
model is an excellent candidate for capturing control flow in concurrent pro-
grams, and can emerge as the robust analog of control-flow graphs for sequential
programs.

The causal concurrent dataflow (CCD) framework is in the flavor of a meet-
over-all-paths formulation for sequential programs. We assume a set of dataflow
facts D and each statement of the program is associated with a flow transformer
that changes a subset of facts, killing some old facts and generating new facts.
However, we demand that the flow transformers respect the concurrency in the
program: we require that if two independent (concurrent) statements transform
two subsets of facts, D and D′, then the sets D and D′ must be disjoint. For
instance, if there are two local variable accesses in two different threads, these
statements are independent, and cannot change the same dataflow fact, which is
a very natural restriction. For example, if we are tracking uninitialized variables,
two assignments in two threads to local variables do affect the facts pertaining
to these variables, but do not modify the same fact. We present formulations of
most of the common dataflow analysis problems in our setting.

The structural restriction of requiring transformers to respect causality en-
sures that dataflow facts can be inferred using partially ordered traces of the
control net. We define the dataflow analysis problem as a meet over partially
ordered traces that reach a node, rather than the traditional meet-over-paths
definition. The meet-over-traces definition is crucial as it preserves the con-
currency in the program, allowing us to exploit it to solve flow analysis us-
ing partial-order based methods, which do not explore all interleavings of the
program.

104 A. Farzan and P. Madhusudan

Our next step is to give a solution for the general causal dataflow analy-
sis problem when the set of of facts D is finite by reducing the problem to a
reachability problem of a Petri net, akin to the classic approach of reducing
meet-over-paths to graph reachability for sequential recursive programs [21].
Finally, the reachability/coverability problem is solved using the optimized
partial-order unfolding [16,6] based tool called PEP [9].

For the important subclass of distributive dataflow analysis problems, we de-
velop a more efficient algorithm for checking flows. If N is the control net of a
program and the size of its finite unfolding is n, we show that any distributive
CCD problem over a domain D of facts results in an augmented net of size n|D|
(and hence in an algorithm working within similar bounds of time and space).
This is a very satisfactory result, since it proves that the causal definition does
not destroy the concurrency in the net (as that would result in a blow-up in
n), and that we are exploiting distributivity effectively (as we have a linear de-
pendence on |D|). The analogous result for sequential recursive programs also
creates an augmented graph of size n|D|, where n is the size of the control-flow
graph.

Related Work. Although the majority of flow analysis research has focused on
sequential software [1,19,17,20], flow analysis for concurrent software has also
been studied to some extent. Existing methods for flow-sensitive analyses have
at least one of the following restrictions: (a) the programs handled have simple
static concurrency and can be handled precisely using the union of control flow
graphs of individual programs, or (b) the analysis is sound but not complete,
and solves the dataflow problem using heuristic approximations.

A body of work on flow-sensitive analyses exists in which the model for the pro-
gram is essentially a collection of CFGs of individual threads (tasks, or compo-
nents) together with additional edges among the CFGs that model inter-thread
synchronization and communication [15,18,22]. These analyses are usually re-
stricted to a class of behaviors (such as detecting deadlocks) and their models
do not require considering the set of interleavings of the program. More general
analyses based on the above type of model include [12] which presents a unidirec-
tional bit-vector dataflow analysis framework based on abstract interpretation
(where the domain D is a singleton). This framework comes closest to ours in
that it explicitly defines a meet-over-paths definition of dataflow analysis, can
express a variety of dataflow analysis problems, and gives sound and complete
algorithms for solving them. However, it cannot handle dynamic synchronization
mechanisms (such as locks), and the restriction to having only one dataflow fact
is crucially (and cleverly) used, making multidimensional analysis impossible.
For example, this framework cannot handle the problem of solving uninitialized
variables. See also [23] for dataflow analysis that uses flow along causal edges
but disallows loops in programs and requires them to have static concurrency.
The works in [13,14] use the extension of the static single assignment form [3]
for concurrent programs with emphasis on optimizing concurrent programs as
opposed to analyzing them.

Causal Dataflow Analysis for Concurrent Programs 105

In [4], concurrent models are used to represent interleavings of programs,
but the initial model is coarse and refined to obtain precision, and efficiency is
gained by sacrificing precision. Petri nets are used as control models for Ada
programs in [5], although the modeling is completely different form ours. In [2],
the authors combine reachability analysis with symbolic execution to prune the
infeasible paths in order to achieve more effective results.

This paper presents only the gist of the definitions and proofs. For more
detailed definitions of Petri nets, unfoldings, the framework for backward flow
analyses and the non-distributive framework, for further examples and detailed
proofs, we refer the reader to the technical report [8].

2 Preliminaries

A Simple Multithreaded Language. We base our formal development on the
language SML (Simple Multithreaded Language). Figure 1 presents the syntax
of SML. The number of threads in an SML program is fixed and preset. There
are two kinds of variables: local and global, respectively identified by the sets
LVar and GVar. All variables that appear at the definition list of the program
are global and shared among all threads. Any other variable that is used in a
thread is assumed to be local to the thread.

We assume that all variables are integers and are initialized to zero. We use
small letters (capital letters) to denote local (global, resp.) variables. Lock is a
global set of locks that the threads can use for synchronization purposes through
acquire and release primitives. The semantics of a program is the obvious one
and we do not define it formally.

P ::= defn thlist (program)
thlist ::= null | stmt || thlist (thread list)
defn ::= int Y | lock l | defn ; defn (variable declaration)
stmt ::= stmt ; stmt | x := e | skip

| while (b) { stmt } | acquire(l) | release(l)
| if (b) { stmt } else { stmt } (statement)

e ::= i | x | Y | e + e | e ∗ e | e/e (expression)
b ::= true | false | e op e | b ∨ b | ¬b (boolean expression)

op ∈ {<, ≤, >, ≥, =, ! =}
x ∈ LVar, Y ∈ GVar, i ∈ Integer, l ∈ Lock

Fig. 1. SML syntax

Petri Nets and Traces
A Petri net is a triple N = (P, T, F), where P is a set of places, T (disjoint
from P) is a set of transitions, and F ⊆ (P × T) ∪ (T × P) is the flow relation.

106 A. Farzan and P. Madhusudan

For a transition t of a (Petri) net, let •t = {p ∈ P |(p, t) ∈ F} denote its set of
pre-conditions and t• = {p ∈ P |(t, p) ∈ F} its set of post-conditions. A marking
of the net is a subset M of positions of P .1 A marked net is a structure (N, M0),
where N is a net and M0 is an initial marking. A transition t is enabled at a
marking M if •t ⊆ M . The transition relation is defined on the set of markings:
M

t−→ M ′ if transition t is enabled at M and M ′ = (M \•t)∪t•. Let ∗−→ denote
the reflexive and transitive closure of −→. A marking M ′ covers a marking M
if M ⊆ M ′. A firing sequence is a finite sequence of transitions t1t2 . . . provided
we have a sequence of markings M0M1 . . . and for each i, Mi

ti+1−→ Mi+1. We
denote the set of firing sequences of (N, M0) as FS (N, M0). Given a marked net
(N, M0), N = (P, T, F), the independence relation of the net IN is defined as
(t, t′) ∈ I if the neighborhoods of t and t′ are disjoint, i.e. (•t∪t•)∩(•t′∪t′•) = ∅.
The dependence relation DN is defined as the complement of IN .

Definition 1. A trace of a marked net (N, M0) is a labeled poset Tr = (E , �, λ)
where E is a finite or a countable set of events, � is a partial order on E, called
the causal order, and λ : E −→ T is a labeling function such that the following
hold:

– ∀e, e′ ∈ E , e≺· e′ ⇒ λ(e)DNλ(e′).2 Events that are immediately causally re-
lated must correspond to dependent transitions.

– ∀e, e′ ∈ E , λ(e)DNλ(e′) ⇒ (e � e′ ∨ e′ � e). Any two events with dependent
labels must be causally related.

– If σ is a linearization of Tr then σ ∈ FS(N, M0).

For any event e in a trace (E , �, λ), define ↓ e = {e′ ∈ E | e′ � e} and let
⇓ e = ↓ e \ {e}.

3 The Control Net of a Program

We model the flow of control in SML programs using Petri nets. We call this
model the control net of the program. The control net formally captures the
concurrency between threads using the concurrency constructs of a Petri net,
captures synchronizations between threads (e.g.. locks, accesses to global vari-
ables) using appropriate mechanisms in the Petri net, and formalizes the fact
that data is abstracted in a sound manner.

We describe the main ideas of this construction but skip the details (see [8]
for details). Transitions in the control net correspond to program statements,
and places are used to control the flow, and to model the interdependencies and
synchronization primitives. Figure 2 illustrates a program and its control net.

1 Petri nets can be more general, but in this paper we restrict to 1-safe Petri nets
where each place gets at most one token.

2 ≺· is the immediate causal relation defined as: e≺· e′ iff e ≺ e′ and there is no event
e′′ such that e ≺ e′′ ≺ e′.

Causal Dataflow Analysis for Concurrent Programs 107

There is a place l associated to each lock l which initially has a token in it. To
acquire a lock, this token has to be available which then is taken and put back
when the lock is released.

aquire(l)

release(l)

l

Y1

Y2

Y := 5

Y := 3

x := Y - 2

T T’

acquire(l);
Y := 5; x := Y - 2;
Y := 3;

release(l);

T ′T

Fig. 2. Sample Net Model

For each global variable Y, there are
n places Y1, . . . , Yn, one per thread.
Every time the thread Ti reads the vari-
able Y (Y appears in an expression), it
takes the token from the place Yi and
puts it back immediately. If Ti wants
to write Y (Y is on the left side of an
assignment), it has to take one token
from each place Yj, 1 ≤ j ≤ n and
put them all back. This ensures cor-
rect causality: two read operations of
the same variable by different threads
will be independent (as their neighbor-
hoods will be disjoint), but a read and
a write, or two writes to a variable are
declared dependent.

4 Causal Concurrent Dataflow Framework

We now formulate our framework for dataflow analysis of concurrent programs
based on causality, called the Causal Concurrent Dataflow (CCD) frame-
work.

A property space is a subset lattice (P(D), �, �, ⊥) where D is a finite set of
dataflow facts, ⊥ ⊆ D, and where � and � can respectively be ∪ and ⊆, or
∩ and ⊇. Intuitively, D is the set of dataflow facts of interest, ⊥ is the initial
set of facts, and � is the meet operation that will determine how we combine
dataflow facts along different paths reaching the same control point in a program.
“May” analysis is formulated using � = ∪, while “must” analysis uses the � = ∩
formulation. The property space of an IFDS (interprocedural finite distributive
subset) problem [21] for a sequential program (i.e. the subset lattice) is exactly
the same lattice as above.

For every transition t of the control net, we associate two subsets of D, Dt

and D∗
t . Intuitively, D∗

t is the set of dataflow facts relevant at t, while Dt ⊆
D∗

t is the subset of relevant facts that t may modify when it executes. The
transformation function associated with t, ft, maps every subset of Dt to a
subset of Dt, reflecting how the dataflow facts change when t is executed.

Definition 2. A causal concurrent dataflow (CCD) problem is a tuple (N, S, F ,
D, D∗) where:

– N = (P, T, F) is the control net model of a concurrent program,
– S = (P(D), �, �, ⊥) is a property space,
– D = {Dt}t∈T and D∗ = {D∗

t }t∈T , where each Dt ⊆ D∗
t ⊆ D.

108 A. Farzan and P. Madhusudan

– F is a set of functions {ft}t∈T : 2Dt → 2Dt such that:
(*) ∀t, t′ : (t, t′) ∈ IN ⇒ (Dt ∩ D∗

t′ = D∗
t ∩ Dt′ = ∅).3

We call a CCD problem distributive if all transformation functions in F are
distributive, that is ∀ft ∈ F , ∀X, Y ⊆ Dt : ft(X � Y) = ft(X) � ft(Y).

Remark 1. Condition (*) above is to be specially noted. It demands that for any
two concurrent events e and e′, e cannot change a dataflow fact that is relevant
to e′. Note that if e and e′ are events in a trace such that Dλ(e) ∩ D∗

λ(e′) is
non-empty, then they will be causally related.

4.1 Meet over All Traces Solution

t1

t2 t3

t4

in(t1) = ∅
Dt1 = {d1, d2}

in(t2) = ∅
Dt2 = {d3} Dt3 = {d2, d4}

in(t3) = {d2}

Dt4 = {d1, d2, d3, d4}
in(t4) = {d1, d3, d4}

d1, d2d1, d2

d3 d4

Fig. 3. Flow of facts over a trace

In a sequential run of a pro-
gram, every event t has at most
one predecessor t′. Therefore,
the set of dataflow facts that
hold before the execution of t
(let us call this in(t)) is exactly
the set of dataflow facts that
hold after the execution of t′

(out(t′)). This is not the case
for a trace (a partially ordered
run). Consider the example in
Figure 3. Assume t1 generates
facts d1 and d2, t2 generates d3
and t3 kills d2 and generates d4. The corresponding Dt sets appear in the Figure.
Trying to evaluate the “in” set of t4, we see three important scenarios: (1) t4
inherits independent facts d3 and d4 respectively from its immediate predecessors
t2 and t3, (2) t4 inherits fact d1 from t1 which is not its immediate predecessor,
and (3) t4 does not inherit d2 from t1 because t3, which is a (causally) later
event and the last event to modify d2, kills d2.

This example demonstrates that in a trace the immediate causal predecessors
do not specify the “in” set of an event. The indicating event is actually the
(causally) last event that can change a dataflow fact (eg. t3 for fact d2 in com-
puting in(t4)). We formalize this concept by defining the operator maxcd

�(Tr),
for a trace Tr = (E, �, λ) as maxcd

�(Tr) = max�({e |e ∈ E ∧ d ∈ Dλ(e)}). Note
that this function is undefined on the empty set, but well-defined on non-empty
sets because all events that affect a dataflow fact d are causally related due to
(*) in Definition 2.

Remark 1 suggests that for each event e it suffices to only look at the facts
that are in the “out” set of events in ⇓ e (events that are causally before e),
since events that are concurrent with e will not change any fact that’s relevant
to e.
3 And hence Dt ∩ Dt′ = ∅.

Causal Dataflow Analysis for Concurrent Programs 109

Definition 3. For any trace Tr = (E, �, λ) of the control net and for each event
e ∈ E, we define the following dataflow sets:

{
inTr (e) =

⋃
d∈D∗

λ(e)
(outTr (maxcd

�(⇓ e)) ∩ {d}))

outTr (e) = fλ(e)(inTr (e) ∩ Dλ(e))

where inTr (e) (respectively outTr (e)) indicates the set of dataflow facts that hold
before (respectively after) the execution of event e of trace Tr.

In the above definition, maxcdi

� (⇓ e)) may be undefined (if ⇓ e = ∅), in which
case we assume inTr (e) evaluates to the empty set.

We can now define the meet over all traces solution for a program Pr,
assuming the T (N) denotes the set of all traces induced by the control net N .

Definition 4. The set of dataflow facts that hold before the execution of a tran-
sition t of a control net N is MOT (t) =

⋃
Tr∈T (N),e∈Tr,λ(e)=t inTr (e).

The above formulation is the concurrent analog of the meet-over-all-paths formu-
lation for sequential programs. Instead of the above definition, we could formu-
late the problem as a meet-over-all-paths problem, where we take the meet over
facts accumulated along the sequential runs (interleavings) of the concurrent
program. However, due to the restriction (*) in Definition 2, we can show that
the dataflow facts accumulated at an event of a trace is precisely the same as that
accumulated using any of its linearizations. Consequently, for dataflow problems
that respect causality by satisfying the condition (*), the meet-over-all-paths
and the meet-over-traces formulations coincide. The latter formulation however
yields faster algorithms based on partial-order methods based on unfoldings to
solve the dataflow analysis problem.

4.2 Formulation of Specific Problems in the CCD Framework

A wide variety of dataflow analysis problems can be formulated using the CCD
framework, including reaching definitions, uninitialized variables, live variables,
available expressions, copy constant propagation, very busy expressions, etc.
Some of these are backward flow analysis problems that can be formulated using
an adaptation of CCD for backward flows. Due to lack of space, we detail only
a couple of representative forward flow problems here; formulation of several
others, including formulation of backward flows can be found in [8].

Reaching Definitions. The reaching definitions analysis determines: “For each
control point, which relevant assignments may have been made and not over-
written when program execution reaches that point along some path ”. The rel-
evant assignments are the assignments to variables that are referred to in that
control point. Given the control net N = (P, T, F) for a program Pr, de-
fine Defs = {(v, t) | t ∈ T, v ∈ (GVar ∪ LVar), and v is assigned in t}. The

110 A. Farzan and P. Madhusudan

property space is (Defs , ⊆, ∪, ∅), where presence of (v, t) in Din(t′) means that
the definition of v at t may reach t′.

Let Dt = {(v, t′) | v is assigned in t}; D∗
t = {(v, t′) | v is assigned or accessed

by t}.
For each transition t and each set S ⊆ Dt:

ft(S)(=
{

S if t is not an assignment
S − {(v, t′)|t′ ∈ T } ∪ {(v, t)} if t is of the form v := e

The construction of the control net ensures that two accesses of a variable v where
one of them is a write, are dependent (neighborhoods intersect). This guarantees
that the condition (*) of Definition 2 holds, i.e. our formulation of reaching-
definitions ensures that information is inherited only from causal predecessors.
Note that the above formulation is also distributive.

Available Expressions. The available expressions analysis determines: “For
a program point containing x := Exp(x1, . . . , xk) whether Exp has already been
computed and not later modified on all paths to this program point”.

z := x + Y

w := x + Y

x := 2 Y := 6

T T ′

e1

e2 e3

e4

In the standard (sequential) formulation of available expres-
sions analysis, dataflow facts are defined as pairs (t,Exp),
where Exp is computed at t. This formulation does not work
for the concurrent setting. To see why consider the trace on
the right where x is a local variable in T and Y is a global
variable. Events e2 and e3 are independent (concurrent), but
they both can change (kill) the dataflow fact associated with
x + Y, which is not in accordance with the condition (*) of
Definition 2. The natural remedy is to divide this fact into
two facts, one for x and another for Y. Let us call these two
facts x + Y : x and x + Y : Y. The fact x + Y : x (respectively
x + Y : Y) starts to hold when the expression x + Y is com-
puted, and stops to hold when a definition to x (respectively Y) is seen. The
problem is that x + Y holds when x + Y : x holds and x + Y : Y holds, which
makes the framework non-distributive. Although we can solve non-distributive
problems in the CCD framework (see Appendix), distributive problems yield
faster algorithms (see Section 5).

The analysis can however be formulated as a distributive CCD problem by
looking at the dual problem; that is, for unavailability of expressions. The
dataflow fact x + Y indicates the expression being unavailable, and accordingly
the presence of x + Y : x or x + Y : Y can make it hold. We are now in a distrib-
utive framework. Assume EXP presents the set of all expressions appearing in
the program code, and define D = {exp : xi | exp ∈ EXP ∧ xi appears in exp}.
The property space is the subset lattice (D, ⊆, ∪, D), where presence of exp
in Din(t′) means that exp is unavailable at t. We have Dt = D∗

t = {exp :
x | x is assigned in t or exp appears in t}. For each transition t and each set
S ⊆ D:

Causal Dataflow Analysis for Concurrent Programs 111

ft(S) =

⎧
⎨

⎩

S t is not an assignment
S ∪ {exp′ : x | ∀exp′ ∈ EXP , x ∈ V (exp′)}

− {exp : y | y ∈ V (exp)} t is x := exp

where V (exp) denotes the set of variables that appear in exp.

5 Solving the Distributive CCD Problem

In this section, we show how to solve a dataflow problem in the CCD framework.
The algorithm we present is based on augmenting a control net to a larger net
based on the dataflow analysis problem, and reducing the problem of checking
whether a dataflow fact holds at a control point to a reachability problem on
the augmented net. The augmented net is carefully constructed so as to not
destroy the concurrency present in the system (crucially exploiting the condition
(*) in Definition 2). Reachability on the augmented net is performed using net
unfoldings, which is a partial-order based approach that checks traces generated
by the net as opposed to checking linear runs.

Due to space restrictions, we present only the solution for the distributive
CCD problems where the meet operator is union, and we prove upper bounds
that compare the unfolding of the augmented net with respect to the size of the
unfolding of the original control net.

In order to track the dataflow facts, we enrich the control net so that each
transition performs the transformation of facts as well. We introduce new places
which represent the dataflow facts. The key is then to model the transformation
functions, for which we use representation relations from [21].

Definition 5. The representation relation of a distributive function f : 2D →
2D (D ⊆ D) is Rf ⊆ (D∪{⊥})×(D∪{⊥}), a binary relation, defined as follows:

Rf = {(⊥, ⊥)} ∪ {(⊥, d) | d ∈ f(∅)} ∪ {(d, d′) | d′ ∈ f({d}) ∧ d′ �∈ f(∅)}

The relation Rf captures f faithfully in that we can show that f(X) = {d′ ∈
D | (d, d′) ∈ Rf , where d = ⊥ or d ∈ X}, for any X ⊆ D.

Given a CCD framework (N, S, F , D, D∗) with control net N = (P, T, F), we
define the net representation for a function ft as below:

Definition 6. The net representation of ft is a Petri net Nft = (Pft , Tft , Fft)
defined as follows:

– The set of places is Pft = •t ∪ t• ∪ {⊥m | m ∈ [1, n]} ∪
⋃

di∈Dt
{pi, pi} where

a token in pi means the dataflow fact di holds, while a token in pi means
that di does not hold, and n is the number of dataflow facts.

– The set of transitions Tf contains exactly one transition per pair (di, dj) ∈
Rft , and is defined as:

Tft =
{
st
(⊥,⊥)

}
∪

{
st
(⊥,j)| (⊥, dj) ∈ Rft

}
∪

{
st
(i,j)| (di, dj) ∈ Rft

}

Note that if Dt = ∅ then Tft =
{
st
(⊥,⊥)

}
.

112 A. Farzan and P. Madhusudan

– The flow relation is defined as follows:

Fft =
⋃

s∈Tft

(⋃

p∈•t

{(p, s)} ∪
⋃

p∈t•

{(s, p)}
)

∪
⋃

dk∈Dt

{
(pk, st

(⊥,⊥)), (s
t
(⊥,⊥), pk)

}

∪
⋃

(⊥,dj)∈Rft

({
(⊥m, st

(⊥,j)) | t ∈ Tm

}
∪

{
(st

(⊥,j), pj)
}

∪
⋃

dk∈Dt

{
(pk, st

(⊥,j))
}

∪
⋃

k �=j

{
(st

(i,j), pk)
})

∪
⋃

(di,dj)∈Rft
i�=j

({
(pi, s

t
(i,j)), (s

t
(i,j), pj), (pj , s

t
(i,j)), (s

t
(i,j), pi)

})

∪
⋃

(di,di)∈Rft

({
(pi, s

t
(i,i)), (s

t
(i,i), pi)

})

The idea is that each transition st
(i,j) is a copy of transition t that, besides

simulating t, models one pair (di, dj) of the relation Rft , by taking a token out
of place pi (meanwhile, also checking that nothing else holds by taking tokens out
of each pk, k �= i) and putting it in pj (also returning all tokens pk, k �= j). Thus
if di holds (solely) before execution of t, dj will hold afterwards. The transitions
st
⊥,j generate new dataflow facts, but consume the token ⊥m associated with the

thread. We will engineer the net to initially contain only one ⊥m marking (for
some thread m), and hence make sure that only one fact is generated from ⊥.

For every t, transitions st
(i,j) are in conflict since they have •t as common

predecessors. This means that only one of them can execute at a time, gener-
ating a single fact. If we assume that initially nothing holds (i.e., initial tokens
are in every pi’s and no initial tokens in any of the pi’s), then since each tran-
sition consumes one token and generates a new token, the following invariant
always holds for the system: “At any reachable marking of the augmented net,
exactly one position pi corresponding to some dataflow fact di holds”. We use
this observation later to argue the complexity of our analysis.

Definition 7. The augmented marked net NS,F of a CCD problem (N, S, F)
is defined as

⋃
f∈F Nf where the union of two nets N1 = (P1, T1, F1) and N2 =

(P2, T2, F2) is defined as N1 ∪N2 = (P1 ∪P2, T1 ∪T2, F1 ∪F2). It is assumed that
Nf ’s have disjoint set of transitions, and only the common places are identified
in the union. Furthermore we add a new position p∗, make each p̄i initial, and
also introduce n initial transitions t∗m, one for each thread, that removes p∗ and
puts a token in ⊥m and a token in the initial positions of each thread.

The above construction only works when ⊥ = ∅. When ⊥ = D0, for some D0 ⊆
D, we will introduce a new initial set of events (all in conflict) that introduce
nondeterministically a token in some pi ∈ D0 and remove p̄i.

The problem of computing the MOT solution can be reduced to a coverability
problem on the augmented net. To be more precise, fact di may hold before the

Causal Dataflow Analysis for Concurrent Programs 113

execution of transition t of the control net if and only if {pi, pt} is coverable
from the initial marking of the control net where pt is the local control place
associated to transition t in its corresponding thread.

Theorem 1. A dataflow fact di holds before the execution of a transition t in
the control net N of a program if and only if di ∈ D∗

t and the marking {pi, pt}
is coverable from the initial marking in the augmented net NS,F constructed
according to Definition 7.

Checking coverability: While there are many tools that can check reachabil-
ity/coverability properties of Petri nets, tools that use unfolding techniques [16,6]
of nets are particularly effective, as they explore the state space using partially
ordered unfoldings and give automatic reduction in state-space (akin to partial-
order reduction for model checking of concurrent systems). We assume the reader
is familiar with net unfoldings and refer to [6] for details.

Complexity of distributive CCD: Algorithms for Petri nets which use finite
unfoldings essentially produces a finite unfolding of the net, from which cover-
ability of one position can be checked in linear time. For every transition t′ ∈ Tft

and every fact di ∈ D∗
t , we can create a new transition whose preconditions are

those of t′ plus pi, and outputs a token in a new position (t, di). By Theorem 1,
coverability of this single position is equivalent to fact di holding at t. Further-
more, we can argue that the unfolding of this net introduces at most n|D| new
events compared to the unfolding of the augmented net.

Let us now analyze the size of the unfolding of the augmented net in terms of
the size of the unfolding of the original control net; let us assume the latter has
n events. We can show that (a) every marking reachable by a local configuration
of the control net has a corresponding event in its finite unfolding that realizes
this marking, and (b) that for every marking reached by a local configuration
of the control net, there are at most |D| corresponding local configurations in
the augmented net (at most one for each dataflow fact), and this covers all local
configurations of the augmented net. Since the number of events in the unfold-
ing is bounded by the number of markings reachable by local configurations, it
follows that the size of the unfolding of the augmented net is at most |D| times
that of the control net. This argues the efficacy of our approach in preserving
the concurrency inherent in the control net and in exploiting distributivity to
its fullest extent.

Theorem 2. Let (N, S, F) be a distributive CCD problem, with S = (P(D), ⊆
, ∪, ⊥). Let n be the size of the unfolding of N . Then the size of the unfolding
of the augmented net NS,F (and even the complexity of checking whether a fact
holds at a control point) is at most O(n|D|).

6 Experiments

We have applied the techniques from Section 5 to perform several dataflow analy-
ses for concurrent programs. Unfortunately, there is no standard benchmark for

114 A. Farzan and P. Madhusudan

concurrent dataflow programs. We have however experimented our algorithms
with sample programs for the primary dataflow analysis problems, and studied
performance when the number of threads is increased.

The motive of the experiments is to exhibit in practice the advantages of
concurrent dataflow that exploit the causal framework set forth in this paper.
While the practical efficacy of our approach on large programs is still not vali-
dated, we believe that setting up a general framework with well-defined problems
permitting reasonable algorithms is a first step towards full-scale flow analysis.
Algorithms that work on large code may have to implement approximations and
heuristics, and we believe that the our framework will serve as a standard for
correctness.

In many of our examples, there is an exponential increase in the set of reach-
able states as one increases the number of threads, but the partial order methods
inherent to these techniques substantially alleviate the problem. We use the Pep
tool [9] to check the coverability property on the augmented net to answer the
relevant coverability queries.

For each example, we have included the sizes of the unfolding for the program’s
control net and of the augmented net (see Table 1). The construction time refers
to the time to build the unfolding, and the checking time refers to the time for
a single fact checking. Note the huge differences between the two times in some
cases, and also note that the unfolding is only built once and is then used to
answer several coverability queries. All experiments were performed on a Linux
machine with a 1.7GHz processor and 1GB of memory. The numbers are all in
seconds (with a precision of 0.01 seconds).

Uninitialized Variables. This set of examples contains a collection of n threads
with n global variables X0, . . . , Xn. One uninitialized variable X0 in one thread can
consequently make all Xis uninitialized. Concurrency results in many possible
interleavings in this example, a few of which can make a certain variable Xj

uninitialized.

T T’

acquire(l); acquire(l)
Y := 1; x := Y + 1;
Y := 2; release(l)

release(l);

Reaching Definitions. This example set demon-
strates how our method can successfully handle syn-
chronization mechanisms. There are two types of
threads: (1) those which perform two consequent
writes to a global variable Y, and (2) those which
perform a read of Y. There are two variations of this
example: (1) where none of the accesses is protected
by a lock, which we call RD, and (2) where the read, and the two writes com-
bined are protected by the same lock, which we call RDL (the code on the right).
The main difference between the two versions is that Y := 1 will reach the read
in the lock-free version, but cannot reach it in the presence of the locks. In a
setting with one copy of T ′ and n copies of T , there are 2n definitions where
only n of them can reach the line x := Y + 1 of T ′.

Causal Dataflow Analysis for Concurrent Programs 115

Table 1. Programs and Performances

Example |D| #Threads Unfolding Unfolding Checking Construction
Control Net Augmented Net Time (sec) Time (sec)

UV(10) 11 11 906 4090 < 0.01 <0.01
UV(20) 21 21 3311 16950 < 0.01 0.70
UV(60) 61 61 40859 156390 0.01 60.11

RD(3) 4 6 410 1904 < 0.01 0.03
RD(4) 5 8 1545 9289 0.01 1.5
RD(5) 6 10 5596 41186 0.01 133.16

RDL(3) 6 4 334 1228 < 0.01 0.01
RDL(4) 8 5 839 3791 < 0.01 29
RDL(5) 10 6 2024 10834 < 0.01 5.35
RDL(6) 12 7 4745 29333 0.01 121.00

AE(50) 2 50 250 650 < 0.01 < 0.01
AE(150) 2 150 750 1950 < 0.01 0.34
AE(350) 2 350 1750 4550 < 0.01 4.10

Available Expressions. The example set AE shows how the unfolding method
can fully benefit from concurrency. The threads here do not have any
dependencies. Each thread defines the same expression X + Y twice, and there-
fore, the expression is always available for the second instruction of each thread.
Table 1 shows that in the case of zero dependencies, the size of the unfolding
grows linearly with the number of threads (understandably so since new threads
do not introduce new dataflow facts).

7 Conclusions

The main contribution of this paper lies in the definition of a framework that
captures dataflow analysis problems for concurrent program using partial orders
that preserves the concurrency in the system. The preserved concurrency has
been exploited in the partial-order based analysis, but could instead have been
exploited in other ways, for example using partial-order reduction strategies as
those used in SPIN.

As for future directions, the first would be to study local or compositional
methods to solve the CCD problems and deploy them on large real world pro-
grams. This would have to handle (approximately) complex data such as pointers
and objects. Our algorithms do not work for programs with recursion, and it is
well known that dataflow analysis for concurrent programs with recursion quickly
leads to undecidability. Structural restrictions like nested locking (see [11]) would
be worth studying to obtain decidable fragments. Studying a framework based
on computing minimal fixpoints for concurrent programs would be also inter-
esting. Extending our approach to decide flow problems with infinite domains
of finite height is challenging as well (they can be handled in the sequential
setting [20]).

116 A. Farzan and P. Madhusudan

References

1. Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: principles, tech-
niques, and tools. Addison-Wesley Longman Publishing Co., Inc., 1986.

2. A. T. Chamillard and Lori A. Clarke. Improving the accuracy of petri net-based
analysis of concurrent programs. In ISSTA, pages 24–38, 1996.

3. Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Ken-
neth Zadeck. Efficiently computing static single assignment form and the control
dependence graph. ACM Trans. Program. Lang. Syst., 13(4):451–490, 1991.

4. M. Dwyer, L. Clarke, J. Cobleigh, and G. Naumovich. Flow analysis for verifying
properties of concurrent software systems, 2004.

5. Matthew B. Dwyer and Lori A. Clarke. A compact petri net representation and
its implications for analysis. IEEE Trans. Softw. Eng., 22(11):794–811, 1996.

6. J. Esparza, S. Römer, and W. Vogler. An improvement of McMillan’s unfolding
algorithm. Formal Methods in System Design, 20:285–310, 2002.

7. A. Farzan and P. Madhusudan. Causal atomicity. In CAV, LNCS 4144, pages 315
– 328, 2006.

8. A. Farzan and P. Madhusudan. Causal dataflow analysis for concurrent programs.
Technical Report UIUCDCS-R-2007-2806, CS Department, UIUC, 2007.

9. B. Grahlmann. The PEP tool. In CAV, pages 440–443, 1997.
10. M. Hecht. Flow Analysis of Computer Programs. Elsevier Science Inc., 1977.
11. V. Kahlon, F. Ivancic, and A. Gupta. Reasoning about threads communicating via

locks. In CAV, volume LNCS 3576, pages 505–518, 2005.
12. Jens Knoop, Bernhard Steffen, and Jürgen Vollmer. Parallelism for free: Efficient

and optimal bitvector analyses for parallel programs. TOPLAS, 18(3):268–299,
May 1996.

13. Jaejin Lee, Samuel P. Midkiff, and David A. Padua. Concurrent static single
assignment form and constant propagation for explicitly parallel programs. In
Languages and Compilers for Parallel Computing, pages 114–130, 1997.

14. Jaejin Lee, David A. Padua, and Samuel P. Midkiff. Basic compiler algorithms for
parallel programs. In PPoPP, pages 1–12, 1999.

15. Stephen P. Masticola and Barbara G. Ryder. Non-concurrency analysis. In
PPOPP, pages 129–138, 1993.

16. K. McMillan. A technique of state space search based on unfolding. Formal Methods
in System Design, 6(1):45–65, 1995.

17. S. S. Muchnick. Advanced Compiler Design and Imlementation. Morgan Kauf-
mann, 1997.

18. Gleb Naumovich and George S. Avrunin. A conservative data flow algorithm for
detecting all pairs of statements that may happen in parallel. In SIGSOFT/FSE-6,
pages 24–34, 98.

19. F. Nielson and H. Nielson. Type and effect systems. In Correct System Design,
pages 114–136, 1999.

20. T. Reps, S. Schwoon, S. Jha, and D. Melski. Weighted pushdown systems and
their application to interprocedural dataflow analysis. Sci. Comput. Program.,
58(1-2):206–263, 2005.

21. Thomas Reps, Susan Horwitz, and Mooly Sagiv. Precise interprocedural dataflow
analysis via graph reachability. In POPL, pages 49–61, 1995.

22. Alexandru Salcianu and Martin Rinard. Pointer and escape analysis for multi-
threaded programs. In PPoPP, pages 12–23. ACM Press, 2001.

23. Eric Stoltz and Michael Wolfe. Sparse data-flow analysis for dag parallel programs,
1994.

Type-Dependence Analysis and Program

Transformation for Symbolic Execution

Saswat Anand, Alessandro Orso, and Mary Jean Harrold

College of Computing, Georgia Institute of Technology
{saswat,orso,harrold}@cc.gatech.edu

Abstract. Symbolic execution can be problematic when applied to real
applications. This paper addresses two of these problems: (1) the con-
straints generated during symbolic execution may be of a type not han-
dled by the underlying decision procedure, and (2) some parts of the
application may be unsuitable for symbolic execution (e.g., third-party
libraries). The paper presents type-dependence analysis, which performs
a context- and field-sensitive interprocedural static analysis to identify
program entities that may store symbolic values at run-time. This in-
formation is used to identify the above two problematic cases and as-
sist the user in addressing them. The paper also presents a technique
to transform real applications for efficient symbolic execution. Instead
of transforming the entire application, which can be inefficient and in-
feasible (mostly for pragmatic reasons), our technique leverages the re-
sults of type-dependence analysis to transform only parts of the program
that may interact with symbolic values. Finally, the paper discusses the
implementation of our analysis and transformation technique in a tool,
stinger, and an empirical evaluation performed on two real applications.
The results of the evaluation show the effectiveness of our approach.

1 Introduction

Testing is one of the most commonly used techniques to gain confidence in
the correct behavior of software. Because manual generation of test inputs is
time consuming and usually results in inadequate test suites, researchers have
proposed automated techniques for test-input generation. One of these tech-
niques, symbolic execution, generates test-inputs by interpreting a program over
symbolic values and solving constraints that lead to the execution of a specific
program path. Although symbolic execution was first introduced in the mid
1970s [15], the dramatic growth in the computational power of the average ma-
chine and the availability of increasingly powerful decision procedures in recent
years have renewed interest in using symbolic execution for test-input generation
(e.g., [2,11,19,25,28]).

Despite the fact that symbolic execution is well understood, and performing
symbolic execution on simple programs is straightforward, problems arise when
attempting to symbolically execute real applications. In this paper, we address
two such problems. The first problem concerns the capabilities of the underlying
decision procedure used to check satisfiability and solve path conditions. If the

O. Grumberg and M. Huth (Eds.): TACAS 2007, LNCS 4424, pp. 117–133, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

118 S. Anand, A. Orso, and M.J. Harrold

underlying decision procedure is incapable of (or inefficient in) handling the types
of constraints produced during symbolic execution, users must rewrite parts of
the program so that the offending constraints are not produced. However, this
rewriting requires a user to identify those parts of the program that may generate
problematic constraints, which is a difficult task. The second problem concerns
the flow of symbolic values outside the boundaries of the software being sym-
bolically executed. In these cases (e.g., when a symbolic value is passed as a
parameter to an external library call), the execution must abort because external
code cannot handle symbolic values. In real applications, there can be many in-
stances of this problem, such as calls to native methods in Java, unmanaged code
in the .NET framework, and third-party pre-compiled libraries. To address this
issue, users must replace the calls to external components that may be reached
by symbolic values with calls to stubs that model the components’ behaviors.
Like the first problem, performing this transformation requires manual interven-
tion: the users must identify the external calls that may be problematic before
actually performing symbolic execution.

In some studies on symbolic execution [25,28], the two problems do not arise
because of the types of programs used (e.g., implementations of data structures).
In other studies where these problems arise, researchers have taken various ap-
proaches to address them. Some researchers proposed approaches that replace
symbolic values with concrete values whenever the symbolic values cannot be
handled by the decision procedure or by an external component [10,19]; these
approaches make the technique incomplete, in that it may fail to generate test in-
puts for a feasible program path. Other researchers proposed approaches based
on “trial and error” [3]—every time the symbolic execution cannot continue
because of a call to an external-library function with one or more symbolic para-
meters, the users are notified and must modify the code appropriately; although
this solution may eventually lead to a successful execution, it can be inefficient
when the interaction with the user is frequent. Yet other researchers proposed
to use decision procedures for bit vectors that use boolean satisfiability (SAT)
solvers [2]. Such decision procedures (e.g., STP [9]) can theoretically handle
most types of constraints that may arise in a program under the assumption of
finite representation of numbers. However, they are inefficient in handling linear
integer arithmetic constraints, when compared to decision procedures specifically
designed for this domain, such as Omega [17] and Yices [6].

To facilitate symbolic execution of real applications, where the previously de-
scribed problems are frequently encountered, we present a new approach. Our
approach is based on the insight that both of these problems are caused by
the flow of symbolic values to problematic variables, such as parameters of li-
brary calls or operands of expressions that cannot be handled by the underlying
decision procedure. Our approach is based on a novel static analysis, called
type-dependence analysis, that identifies problematic variables before perform-
ing symbolic executions. Our type-dependence analysis formulates the problem
of identifying variables that may assume symbolic values as a value-flow analysis
problem. The analysis is context- and field-sensitive, which has the advantage

Type-Dependence Analysis and Program Transformation 119

of providing fairly precise results. The benefit of our analysis is that it can
automatically detect parts of the program that may be problematic for sym-
bolic execution (e.g., a modulo operation that involves at least one symbolic
operand). For any such part, the analysis reports to the users the identified prob-
lem, together with contextual information, to help them understand the issue
and perform necessary program changes.

In this paper, we also present a technique that leverages the results of the
analysis to transform applications and prepare them for symbolic execution.
The basic idea behind the transformation is to replace concrete types with sym-
bolic types and concrete operators with operators that work over symbolic val-
ues [14]. Naively applying such transformation to the entire application leads
to two problems. First, in practice, execution engines such as the Java virtual
machine make implicit assumptions about the internal structures of some com-
ponents. Transforming such components is thus problematic. Second, symbolic
operations are more expensive than their concrete counterparts, even when they
operate on concrete values (the extra overhead is incurred in checking whether
a value is symbolic or concrete). Therefore, transforming those components of
the program that may not interact with symbolic values introduces inefficiencies.
Because type-dependence analysis can identify which variables may be symbolic,
our technique avoids transforming parts of the code that have no interactions
with symbolic values, thus improving both applicability and efficiency of sym-
bolic execution.

To evaluate our type-dependence analysis and transformation technique, we
implemented them in a tool, called stinger, that works on Java and is integrated
in Java Pathfinder [13], and used the tool to perform an empirical evaluation on
two real programs. To the best of our knowledge, the programs that we used are
considerably larger than those used in previous studies on symbolic execution.
The results of the studies show that our analysis can be effective in (1) statically
identifying areas of the code that would be problematic for symbolic execution,
(2) providing useful feedback to the users to guide them in the resolution of the
problems, and (3) limiting the transformation necessary for symbolic execution.

The main contributions of the paper are

– A context- and field-sensitive static flow analysis that can identify the vari-
ables in a program that may hold symbolic values, given a set of symbolic
inputs. The analysis results enable static identification of program segments
that are potentially problematic for symbolic execution and can guide users
in transforming the program to eliminate the problems.

– A general transformation technique that leverages the type-dependence analy-
sis to transform programs into “symbolic programs” (i.e., programs whose
execution essentially performs symbolic execution of the original program).

– A tool, stinger, that implements our approach for Java and is integrated
in Java Pathfinder.

– A set of empirical studies, performed on two real programs, whose results
show the usefulness of our approach.

120 S. Anand, A. Orso, and M.J. Harrold

2 Type-Dependence Analysis

This section presents our type-dependence analysis, which computes the set of
program entities that may store symbolic values when a program is symbolically
executed. We target a typical scenario in which the user selects a set of variables
to hold symbolic input values for a program and then symbolically executes the
program. In this context, the type of the selected variables and of other variables
that can hold values derived from these selected variables must be symbolic.

public class Object{
public static native Object c lone () ;

}
public class M extends Object{

int m;
M(int x){ this .m = x ; }
int getM(){ return this .m; }
static native boolean i sPrime (int x) ;
public static void main (S t r i ng [] arg){

int s = Symbolic . i n t e g e r () ;
M a = new M(s) ; M b = new M(4) ;
int p = a . getM () ; int q = b . getM () ;
i f (isPrime (p) && q % 3 == 0)

M c = (M) a . c lone () ;
}

}

Fig. 1. Motivating example

Before discussing the details of our analysis, we introduce a motivating ex-
ample that illustrates some of the issues that the analysis can help to address.
Suppose that we want to symbolically execute the Java program shown in Fig. 1,
and that s represents the (symbolic) input to the program (as shown by the
assignment of Symbolic.integer() to s). On initial inspection, the program
contains three potentially-problematic cases: the use of the modulo (%) oper-
ation, which is not supported by many decision procedures; the invocation of
native method clone; and the invocation of native method isPrime. However, a
more careful inspection reveals that the first two cases are not problematic: the
modulo operator never operates on symbolic values and native method clone
can access only fields of class Object,1 none of which may store symbolic values.
As for the third potentially-problematic case, a symbolic value is passed as an
argument to native method isPrime and is likely to be problematic because the
method expects a concrete value. Our type-dependence analysis can discover
that the first two cases are not problematic but the third case is. For this third
case, the analysis can provide context information to help the user understand
the problem and address it.

We call our analysis type-dependence analysis because it identifies type de-
pendence between variables. We define type dependence as follows: For a given
1 This conclusion is based on the common assumption that native methods do not

use dynamic type discovery and thus access only fields of declared types of their
parameters [23].

Type-Dependence Analysis and Program Transformation 121

(assignment) p = x p x
(binop) p = x y p x, p y

(load) p = o.f p
get f

o

(store) o.f = x o
put f

x
(return) return x Rm x, where m is the concerned method

(array-new) a = new t[size] a
put length

size

(array-assign1) a[i] = x a
put elem

x

(array-assign2) p = a[i] p
get elem

a

(array-length) p = a.length p
get length

a
(invocation) x = a.foo(a1, . . . , an) x Rfoo, P

1
foo a1, . . . , P

n
foo an

Fig. 2. Rules for building the type-dependence graph

type-correct program, an entity x is type dependent on an entity y iff x’s type
may need to be changed as a consequence of a change in y’s type to maintain
type correctness. Our type-dependence analysis computes a conservative approx-
imation of the type-dependence relation between a given set of entities and the
other entities in the program. The type-dependence analysis is an instance of
the more general value-flow analysis, which identifies whether the value of an
entity x can flow to an another entity y in the program. In the definition of our
analysis, we leverage techniques for demand-driven interprocedural analysis [12]
and cloning-based interprocedural analysis [27], and techniques that use binary
decision diagrams for scaling interprocedural analysis [1,27].

Type-dependence analysis consists of two phases. The first phase builds a
Type-Dependence Graph (TDG) for the program, which encodes direct type-
dependence information between program entities. The second phase performs
Context-Free Language (CFL) reachability [18] on the TDG to identify transitive
type dependences.

2.1 Building the TDG

In the first phase, the analysis builds the Type-Dependence Graph (TDG), a
directed graph (N, E). N is a set of nodes, each of which represents one of
several entities: a static field, a local variable of a method, a field of primitive
type, a parameter of a method, or the return value of a method. E is a set
of directed edges. An edge x ← y in E indicates that there is a direct type
dependence between the entity represented by y and the entity represented by
x (i.e., x is directly type-dependent on y).

To build the TDG, our analysis processes each program statement once and
adds an edge to the graph for each relevant statement, according to the rules
shown in Fig. 2. Note that the rules apply only to non-constant right-hand side
values—the analysis does not add nodes or corresponding edges to the TDG for
constant entities. In the figure, o.f represents field f of object o; P i

m represents
the ith parameter of method m; Rm represents the return value of method m.

122 S. Anand, A. Orso, and M.J. Harrold

p ← x, x ∈ Sym

p ∈ Sym

p
get[f1]←−−−− q, y

put[f2]←−−−− x, f1 = f2, alias(y, q), x ∈ Sym

p ∈ Sym

Fig. 3. Context-insensitive inference rules for type dependence analysis.

For the definition of the rules, the analysis treats arrays as objects with two
fields, elem and length, that represent all array elements and the length of the
array, respectively. For space reasons, rules for statements involving static field
references, unary operations, and casting are not shown; they are analogous to
the assignment rule.

2.2 Performing CFL-Reachability on the TDG

In the second phase, the analysis performs CFL-reachability [18] on the TDG
with a user-specified set of variables selected to be symbolic, Sym0, and computes
set Sym, which contains all local variables, static fields, formal parameters, and
return values of scalar types that are type-dependent on variables in Sym0.
Instance fields and entities of array-types that are type-dependent on variables in
Sym0 are then computed from Sym; due to space constraint, this is described in
Appendix A. The analysis initializes Sym to Sym0 and applies a set of inference
rules until a fix point on Sym is reached. For clarity, we first present a context-
insensitive version of our analysis and then describe how it can be extended to
be context-sensitive.

The context-insensitive version of our analysis is represented by the two infer-
ence rules in Fig. 3. The first rule states that an entity p is added to the Sym set
if there is another entity x in Sym on which p is directly type dependent. The
second rule captures transitive type dependence through heap aliases. It states
that entity p must be added to Sym if there is another entity x in Sym and
two object references y and q such that (1) p is directly type dependent on a
field f of q, (2) the same field f of y is directly type dependent on x, and (3) y
and q may point to the same object (expressed using the notation alias(y, q)).
Without loss of generality, our analysis assumes that may-alias information is
computed on demand by some points-to analysis (e.g., [22]).

Our analysis is field-sensitive—in the second rule, the labels get[f1] and put[f2]
must refer to the same fields. This is in contrast to a field-based analysis, which
does not distinguish between different fields of an object. Field sensitivity cannot
be achieved through simple reachability. It requires our analysis to perform CFL
reachability by matching get[] and put[] labels (two matching labels must refer to
the same field), while identifying all nodes reachable from the initial set Sym0,

The context-insensitive analysis described above may compute unnecessarily-
large Sym sets. In the example in Fig. 1, for instance, the analysis would not

Type-Dependence Analysis and Program Transformation 123

distinguish between the two calls to the getM method and, thus, would not be
able to detect that variable q is not type-dependent on variable s. To improve the
precision of the analysis, we define a context-sensitive version of the TDG using
an approach similar to method cloning [27]. First, we create multiple nodes for
each entity—one for each calling context of the method that contains the entity.
The only exceptions are entities that correspond to global variables (e.g., static
fields in Java) that are represented with a single node in the context-sensitive
TDG. Second, we create copies of the TDG’s edges so that if an edge exists
between two nodes, there is an edge between corresponding (context-specific)
copies of the nodes. Note that each copy of an invocation edge is an inter-context
edge—an edge that connects nodes that belong in different contexts.

Because cloning-based approaches can lead to an exponential explosion in
the size of the graphs, we use Binary Decision Diagrams (BDDs) to represent
context-sensitive TDGs [16,27]. In addition, we adopt the k-CFA approach [21],
which limits the context of a call to the top k elements of the call stack.

After building the context-sensitive TDG, our analysis uses a context-sensitive
version of the inference rules described in Fig. 3 to compute Sym. We obtain
the context-sensitive inference rules by modifying the context-insensitive rules:
we identify each entity in the rule with respect to a specific context c. The
context-sensitive version of the first rule in Fig. 3, for instance, is

pc ← xc, xc ∈ Sym

pc ∈ Sym

3 Program Transformation

One common way to perform symbolic execution of a program is to first trans-
form the program so that it can operate on both symbolic and concrete values,
and then execute it.2 A naive program transformation technique would change
the types of all program entities to symbolic types, and change all operations
over concrete values to operations over symbolic values. In practice, this ap-
proach is not feasible for two reasons. First, execution engines typically make
implicit assumptions about the types of some entities (e.g., fields of certain
classes), and these assumptions would be violated by the transformation. Sec-
ond, treating all variables in a program as symbolic can be inefficient (compared
to having only a small subset of symbolic variables and executing parts of the
programs not affected by those variables normally). In this section, we present a
program-transformation technique that leverages the results of type-dependence
analysis to transform, in an automated way, only a subset of the program. By
doing this, our technique mitigates (when it does not completely eliminate) the
two problems mentioned above.

Our technique supports two operators that enable selective program trans-
formations: box and unbox. The box operator converts a concrete value to a
corresponding symbolic value. The unbox operator converts a symbolic value

2 There are also other approaches not based on transformation (e.g., [5,8]).

124 S. Anand, A. Orso, and M.J. Harrold

public class M {
int m;
Express ion m JPF ;
M(int x) { this (Symbolic . makeSymbolic(x)) ; }
int getM () { return Symbolic . makeConcrete int (getM JPF ()) ; }
static native boolean i sPrime (int i) ;
M(Express ion x) { this . m JPF = x ; }
Express ion getM JPF () { return this . m JPF ; }
static native boolean i sPrime JPF (Express ion exp r e s s i on) ;
public static void main (S t r i ng [] s t r i n g s) {

M a = new M(Symbolic . symbo l i c i n t ()) ;
M b = new M(4) ;
Expre ss ion p = a . getM JPF () ;
int q = b . getM () ;
i f (isPrime JPF (p) && q % 3 == 0)

M c = (M) a . c lone () ;
}

}

Fig. 4. Transformed version of the example from Fig. 1.

created by the box operator to the corresponding concrete value. These opera-
tors are needed to handle program entities that must be of symbolic types for
type correctness, but may store either symbolic and concrete values depending on
contexts. The operators let these entities store (boxed) concrete values whenever
necessary. The technique automatically adds to the program appropriate boxing
and unboxing operators to enable assignments between entities of symbolic and
concrete types. Note that unboxing a symbolic value (i.e., a symbolic value that
is not the result of a boxing operation) would cause a run-time error. However,
the transformation technique guarantees that such a situation will never occur
due to its use of the results of the conservative type-dependence analysis.

Before presenting the formal definition of the transformation, we illustrate
some features of our approach by showing, in Fig. 4, the transformed version of
the example program from Fig. 1. In the code, Expression represents the type
of symbolic expressions, and methods makeSymbolic and makeConcrete int
represent box and unbox operators, respectively. For each field that may store a
symbolic value, such as m, the transformation adds a new field of symbolic type.
Similarly, for each method that may operate on symbolic values, a new method
is added that may take symbolic values as arguments and/or return symbolic
values. Note that because the analysis determines that variable q can never
store a symbolic value at runtime, q’s type is unchanged, and the % operation
is not replaced by its corresponding symbolic operation. In contrast, p’s type
is changed to Expression because the analysis determines that it may store
a symbolic value. When a symbolic version of a method is created, only those
calls that may pass and/or receive symbolic values are changed to invoke the
new method. In the example, for instance, getM JPF () is called on a because a
symbolic value may be returned by the method at that callsite. Conversely, the
call to getM() on b is unchanged, as only concrete values are returned at the
corresponding callsite.

Type-Dependence Analysis and Program Transformation 125

Source language

l ∈ Local, f ∈ Field, r ∈ RefType

n ∈ NumType n ::= int | short | char | long | byte | float | double

τ ∈ Type τ ::= n | boolean | r | τ []

i ∈ Immediate i ::= l | const

e ∈ Expr e ::= i | i1 binop i2 | unop i | l.f (τ) | (τ) i | l[i](τ) | l.length(τ) | new τ [i]

s ∈ Stmt) s ::= l = e | l.f = i | l[i1]
(τ) = i2

binop ∈ {+, −, ∗, /, %, =, >,≥, <, ≤, �=}
unop ∈ {−, !}

Extension for symbolic execution

l̃ ∈ SymLocal, f̃ ∈ SymField

τ̃ ∈ SymType τ̃ ::= Expr | ExprArray | BoolArray | RefArray

ĩ ∈ SymImmediate ĩ ::= l̃

ẽ ∈ SymExpr ẽ ::= boxτ̃ (e) | ĩ | symbinop(ẽ1, ẽ2) | symunop ĩ | l.f̃ | castτ (ẽ) |
array getτ̃ (l̃, ẽ) | array lenτ̃ (l̃) | new arrayτ̃ (ẽ)

s̃ ∈ SymStmt s̃ ::= l̃ = ẽ | l = unboxτ̃ (ẽ) | a.f̃ = ẽ | array setτ̃ (l̃, ẽ1, ẽ2)

symbinop ∈ { plus, minus, mul, div, mod, eq, gt, ge, lt, le, ne}
symunop ∈ { neg, not}

Fig. 5. Source language and its extensions for symbolic execution

3.1 Source and Target Languages

For the sake of clarity, we define our transformation on a subset of Java, referred
to as source language, that contains only those Java features relevant to the
transformation. The transformation of a program in source language produces a
program in target language. Fig. 5 presents the source language and its extensions
for symbolic execution. The target language is the union of the source language
and its extensions.

Both the source and the target languages are statically and explicitly typed
according to Java’s type rules. Types in the source language include all types sup-
ported by Java. The target language supports four symbolic types, namely Expr,
ExprArray, BoolArray, and RefArray, that represent types of symbolic
expressions, arrays of symbolic expressions, arrays of boolean values, and ar-
rays of references, respectively. Each of the symbolic array types can also have
symbolic length. The correspondence between concrete and symbolic types (for
concrete types that have a corresponding symbolic type) is defined by function
stype : Type → SymType.

stype(τ) = Expr τ ∈ NumType stype([]boolean) = BoolArray
stype([]τ) = ExprArray τ ∈ NumType stype([]r) = RefArray

Expressions include local variables, constants, unary and binary operations,
field references, casts, array references, array length and array allocation

126 S. Anand, A. Orso, and M.J. Harrold

expressions. In the source language, τ represents the element type of array l
in terms l[i](τ) and l.length(τ), and the type of field f in term l.f (τ).

In the target language, there is one syntactic category for each category in
the source language, represented by the same symbol with a tilde on the top.
In addition, for each unary, binary, and comparison operators in the source lan-
guage, the target language provides a corresponding operator that operates on
symbolic values. In the definition of the language extensions, we use the follow-
ing terminology (where τ̃ denotes the type of array element): array getτ̃ (l̃, ẽ)
is an operation that returns the ẽth element of symbolic array l̃; array lenτ̃ (l̃)
returns the length of l̃; new arrayτ̃ (ẽ) allocates a symbolic array of size ẽ; and
array setτ̃ (l̃, ẽ1, ẽ2) stores symbolic expression ẽ2 as the element at index ẽ1 of ar-
ray l̃. The box operator is represented by boxτ̃ (e), which transforms the concrete
value e into the corresponding symbolic value of type τ̃ . Analogously, unboxτ̃ (ẽ)
indicates the transformation of the symbolic value contained in ẽ, of type τ̃ , into
its original concrete value and type.

3.2 Transformation

The transformation is performed in two steps. In the first step, new fields, meth-
ods, and local variables of symbolic types are added to the program. For each
field that may store symbolic values, the transformation adds a new field with
corresponding symbolic type. For each method m that may operate on symbolic
values, the transformation adds a new method ms, which may potentially have
parameters and return value of symbolic types. Also, for each of m’s local vari-
ables v, if v may store symbolic values, a local variable of corresponding symbolic
type is added to ms; otherwise, the original v is added to ms. Finally, all state-
ments of m are moved to ms, and m is transformed into a proxy that invokes
ms and performs boxing and unboxing of parameters and/or return values as
needed. Note that, even if the analysis is context-sensitive, it generates at most
one variant of each method because the results of the analysis are unified over
all contexts.

In the second step of the transformation, statements in the newly-added meth-
ods are transformed according to the rules provided in Fig. 6. Note that Fig. 6
does not include transformation rules that involve arrays, which are provided
in Fig. 8 (see Appendix A). Each rule defines how a specific statement in the
source language is transformed and is applicable only if the respective guard is
satisfied. The rules use the following notations:

– For a given local variable or field x that may store symbolic values, x repre-
sents the corresponding entity of symbolic type added by the transformation
in the first step. If x cannot store a symbolic value, then x simply represents
the original entity. In particular, if x is a constant, x always represents x.

– τ , represent the symbolic type corresponding to a concrete type τ , as defined
by function stype.

– For an expression e of concrete type τ , < e > represents boxτ (e) (i.e., e
boxed as a value of its corresponding symbolic type). For an expression ẽ of
a symbolic type, < ẽ > represents ẽ itself.

Type-Dependence Analysis and Program Transformation 127

Original statement Transformed statement Guard

[l = i] [l = < i >] l �= l (1)

[l = i1 binop i2] [l = boxExpr(i1 binop i2)] l �= l, i1 = i1, i2 = i2 (2)

[l = symbinop(< i1 >, < i2 >)] i1 �= i1 or i2 �= i2 (3)

[l = unop i] [l = boxExpr(unop i)] l �= l, i = i (4)

[l = symunop(i)] i �= i (5)

[l.f = i] [l.f = < i >] f �= f (6)

[l1 = l2.f
(τ)] [l1 = < l2.f >] l1 �= l1 (7)

[l1 = unboxτ (l2.f)] l1 = l1, f �= f (8)

[l1 = (τ) l2] [l1 = boxτ ((τ) l2)] l1 �= l1, l2 = l2 (9)

[l1 = castτ (l2)] l1 �= l1, l2 �= l2 (10)

Fig. 6. Transformation rules for program statements

For space reasons, we discuss transformation rules for only two types of state-
ments: assignments of a local variable or constant to a local variable and assign-
ments of a field to a local variable. According to Rule 1, assignment statements
of the form l = i are transformed only if l may store a symbolic value. If so, a
local variable of symbolic type that corresponds to l, l, is added and becomes
the l-value of the transformed statement. If i is a non-constant local variable and
has a corresponding local variable of symbolic type, i, i becomes the r-value of
the transformed statement. Otherwise, if i is either a constant or a local variable
without a corresponding local of symbolic type, i’s value is boxed and assigned
to l.

We discuss rules for statements of type l1 = l2.f
(τ) because they make use

of the unbox operator. There are two rules that involve these statements. In
the first case (Rule 7), l1 has a corresponding local of symbolic type, l1, which
becomes the l-value of the transformed statement. If field f has a corresponding
field of symbolic type, f , the value of f of l2 is assigned to l1; otherwise, the value
of field f of l2 is boxed and assigned to l1. In the second case (Rule 8), where l1
does not have a corresponding local of symbolic type, but f has a corresponding
field of symbolic type, l2.f ’s value is unboxed and assigned to l1.

4 Empirical Studies

To assess the effectiveness of our approach, we implemented our type-dependence
analysis and automatic transformation technique in a tool named stinger
(Symbolic-execution based Test INput GenEratoR), and used stinger to per-
form a set of empirical studies. stinger works on Java bytecode, leverages the
soot framework [24], and is integrated with Java Pathfinder [13]. The type-
dependence analysis is implemented using Jedd [16], a Java language extension
that supports use of binary decision diagrams to store and manipulate relations.
stinger inputs a program in Java bytecode, the initial set of program entities

128 S. Anand, A. Orso, and M.J. Harrold

specified to be symbolic (called Sym0 in Section 2), and a specification of the
capabilities of the decision procedure used by the symbolic executor (in terms
of supported operators). Given these inputs, stinger performs two tasks: (1) it
performs type-dependence analysis and identifies and reports the two kinds of
problematic cases considered (i.e., constraints that cannot be handled by the
decision procedure and symbolic values that may flow outside the scope of the
software being symbolically executed); (2) it performs an automated translation
of the program and generates skeleton stubs for the problematic cases identified,
which the user is expected to complete with appropriate code.

We used stinger to investigate three research questions:

RQ1: How effective is our technique in identifying parts of the code respon-
sible for constraints that cannot be handled by the decision procedure in use?

RQ2: How often do symbolic values flow outside the boundaries of the pro-
gram being symbolically executed? When that happens, can our analysis cor-
rectly identify and report problematic cases beforehand?

RQ3: To what extent can the use of our analysis reduce the transformation
needed to perform symbolic execution?

Empirical Setup. As subjects for our studies, we used two freely-available Java
programs: NanoXML and Antlr. NanoXML (http://nanoxml.cyberelf.be/)
is an XML-parsing library that consists of approximately 6KLOC. We selected
NanoXML because it is small yet not trivial, and lets us evaluate our technique
and inspect our results in detail. Antlr (http://www.antlr.org/) is a widely-
used language-independent lexer and parser generator that consists of 46KLOC.
Antlr was selected because it is a relatively large and complex software that can
provide more confidence in the generality of our results. NanoXML inputs a file
containing an XML document, and Antlr inputs a file containing the grammar
of a language. We changed both applications so that they input an array of
symbolic characters arr instead of reading from a file. We then ran stinger
and specified arr as the only element in the initial set of symbolic entities.
stinger produced, for each program, a report and a transformed version of the
program.

4.1 Results and Discussion

To address our research questions, we ran stinger on the subjects, and measured
several statistics as shown in Fig. 7. In the figure, the number of methods includes
both methods of the application and methods in the Java standard library, which
may also need to be transformed when symbolically executing a program. We
first discuss the results for each research question independently, and then discuss
the precision of the analysis.

RQ1. stinger finds 48 (for NanoXML) and 82 (for Antlr) cases that would
be problematic for our decision procedure of choice [6]. In this context, the prob-
lematic cases are those that involve bit-wise and modulo operations over symbolic
values. These problematic cases reside in 10 and 23 methods of NanoXML and
Antlr, respectively. These cases would be reported to the user, who would then

Type-Dependence Analysis and Program Transformation 129

Statistics NanoXML Antlr

RQ1
No. of problematic operations 48 82
No. of methods with problematic operations 10 23

RQ2
No. of native calls that may be reached by symbolic values 3 8
Total no. of native calls 27 48

RQ3

No. of methods transformed 89 253
No. of reachable methods 438 1176
No. of statements transformed 1253 4052
No. of statements in all transformed methods 2642 8547

Fig. 7. Empirical results

need to modify the methods (or replace them with stubs) to eliminate the prob-
lem. After inspecting stinger’s report, we found that many of these problematic
constraints arise because of the use of modulo operators in classes HashMap and
HashTable. Replacing these classes with another implementation of a map, such
as TreeMap, eliminates the problem. The remaining problematic methods were
methods operating on characters (e.g., to change a character from upper to lower
case). We were able to rewrite these methods and eliminate the use of bit-wise
operators in them by assuming that the input characters are ASCII characters.

RQ2. For the two subject programs, the only instances of symbolic values that
may flow outside the boundaries of the program consist of calls to native meth-
ods. stinger determines that for 3 of the 27 (for NanoXML) and for 8 of
the 48 (for Antlr) calls to native methods, a symbolic value may actually be
passed as a parameter, either through a primitive value or as a field of an object.
Based on these results we first observe that, for the two (real) applications con-
sidered, symbolic values may indeed cross the program boundaries and create
problems for symbolic execution. We also observe that our technique is successful
in identifying such problematic cases and in identifying methods that, although
potentially problematic, are guaranteed to never be actually reached by symbolic
values. For NanoXML and Antlr, our analysis lets users focus their attention
on only 15% of the potentially-problematic calls.

RQ3. Our analysis discovers that symbolic values are confined within approxi-
mately one fifth of the total number of methods for both subjects. Furthermore,
within methods that may handle symbolic values, less than half of the state-
ments are actually affected by these values. Our translator is therefore able to
transform the program so that half of the statements can be executed without
incurring any overhead due to symbolic execution.

Precision. Our analysis is conservative and can be imprecise in some cases (i.e.,
it may conclude that a variable may store symbolic values even if it never does so
in reality). Although context-sensitivity increases the precision significantly, the
underlying points-to analysis does not scale beyond 2-cfa for our subjects, and
stinger can thus produces imprecise results. For example, for NanoXML, we
found that many standard library classes are unnecessarily transformed because

130 S. Anand, A. Orso, and M.J. Harrold

of the imprecision of the analysis. We believe that this imprecision could be
reduced by using a demand-driven, highly-precise points-to analysis.

5 Related Work

Our work is related to approaches that provide tool support for abstraction
in model checking (e.g., [4,7]). In [4], type inference is used to identify a set
of variables that can be removed from a program when building a model for
model checking. In [7], a framework for type inference and subsequent program
transformation is proposed. In both approaches, the type-inference algorithm
used is not as precise as our type-dependence analysis. Precision is crucial for
our goal of reducing manual intervention and reducing the transformations that
must be performed. However, unlike our work, where only one kind of abstraction
(concrete to symbolic) is supported, the framework in [7] allows multiple user-
defined abstractions.

Our approach to symbolic execution (i.e., execution of a transformed pro-
gram) is also used in several other approaches (e.g., [2,11,19]). These approaches,
however, transform the entire program, whereas our technique leverages type-
dependence analysis to transform only the parts of the program actually affected
by the symbolic execution. In this way, our technique reduces both the manual
intervention and the amount program transformation needed. Also related to
ours is the technique presented in [5], which is based on executing the pro-
gram symbolically. The technique differs from our approach because it does not
transform the program, but executes it using a virtual machine with a special
semantics that support symbolic values.

Finally, being our type-dependence analysis a specific instance of flow analysis,
it bears similarity to other approaches based on flow analysis, such as taint
analysis [20] and information-flow analysis [26]. Our demand-driven formulation
of type-dependence analysis is similar to the formulation of points-to analysis
in [22], and our cloning-based approach to interprocedural analysis and use of
binary decision diagrams to make context-sensitive analysis scale were studied
in [27] and [1], respectively.

6 Conclusion

In this paper, we address two problems that hinder the application of symbolic
execution to real software: (1) the generation of constraints that the decision
procedure in use cannot handle and (2) the flow of symbolic values outside the
program boundary. We present type-dependence analysis, which automatically
and accurately identifies places in the program where these two problems oc-
cur, and a technique that uses the analysis results to help users address the
identified problems. We also present a program-transformation technique that
leverages the analysis results to selectively transform applications into appli-
cations that can be symbolically executed. We have implemented the analysis
and transformation techniques in a tool, stinger, that is integrated with Java

Type-Dependence Analysis and Program Transformation 131

Pathfinder’s symbolic execution engine. In our empirical evaluation, we applied
stinger to two Java applications. The results show that the problems that we
target do occur in real applications, at least for the subjects considered, and
that our analysis can identify these problems automatically and help users to
address them. Moreover, we show that our analysis is precise enough to allow
for transforming only the part of the code actually affected by symbolic values
at runtime.

In future work, we plan to use stinger for generating test inputs for real
software and investigate techniques for guiding symbolic execution to exercise
new program behaviors (e.g., coverage of specific program states). In this paper,
we consider program boundaries defined by pragmatic reasons, such as interfaces
with external libraries. In the future, we will investigate the application of our
approach to cases where the boundaries are defined by the user (e.g., to exclude
part of the system and thus reduce the state space to explore).

References

1. M. Berndl, O. Lhoták, F. Qian, L. Hendren, and N. Umanee. Points-to analysis
using BDDs. In PLDI, pages 103–114, 2003.

2. C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler. EXE:
Automatically generating inputs of death. In CCS, pages 322–335, 2006.

3. C. Cadar, P. Twohey, V. Ganesh, and D. R. Engler. EXE: A system for automati-
cally generating inputs of death using symbolic execution. Technical Report CSTR
2006-01, Stanford University., 2006.

4. D. Dams, W. Hesse, and G. J. Holzmann. Abstracting C with abC. In CAV, pages
515–520, 2002.

5. X. Deng, J. Lee, and Robby. Bogor/Kiasan: A k-bounded symbolic execution for
checking strong heap properties of open systems. In ASE, pages 157–166, 2006.

6. B. Dutertre and L. de Moura. A Fast Linear-Arithmetic Solver for DPLL(T). In
CAV, pages 81–94, 2006.

7. M. B. Dwyer, J. Hatcliff, R. Joehanes, S. Laubach, C. S. Pasareanu, Robby,
H. Zheng, and W. Visser. Tool-supported program abstraction for finite-state
verification. In ICSE, pages 177–187, 2001.

8. C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and R. Stata.
Extended static checking for Java. In PLDI, pages 234–245, 2002.

9. V. Ganesh and D. Dill. System Description of STP.
http://www.csl.sri.com/users/demoura/smt-comp/descriptions/stp.ps.

10. P. Godefroid, N. Klarlund, and K. Sen. DART: directed automated random testing.
In PLDI, pages 213–223, 2005.

11. W. Grieskamp, N. Tillmann, and W. Schulte. XRT–exploring runtime for .NET
architecture and applications. Electr. Notes Theor. Comp. Sci., 144(3):3–26, 2006.

12. S. Horwitz, T. W. Reps, and S. Sagiv. Demand interprocedural dataflow analysis.
In FSE, pages 104–115, 1995.

13. Java PathFinder. http://javapathfinder.sourceforge.net.

14. S. Khurshid, C. Pasareanu, and W. Visser. Generalized symbolic execution for
model checking and testing. In TACAS, pages 553–568, 2003.

15. J. C. King. Symbolic execution and program testing. CACM, 19(7):385–394, 1976.

h

132 S. Anand, A. Orso, and M.J. Harrold

16. O. Lhoták and L. J. Hendren. Jedd: a BDD-based relational extension of Java. In
PLDI, pages 158–169, 2004.

17. W. Pugh. The Omega test: a fast and practical integer programming algorithm
for dependence analysis. In SC, pages 4–13, 1991.

18. T. W. Reps. Program analysis via graph reachability. In ILPS, pages 5–19, 1997.
19. K. Sen, D. Marinov, and G. Agha. CUTE: a concolic unit testing engine for C. In

FSE, pages 263–272, 2005.
20. U. Shankar, K. Talwar, J. S. Foster, and D. Wagner. Detecting format-string

vulnerabilities with type qualifiers. In USENIX Security Symposium, pages 201–
218, 2001.

21. O. Shivers. Control-flow analysis in Scheme. In PLDI, pages 164–174, 1988.
22. M. Sridharan, D. Gopan, L. Shan, and R. Bod́ık. Demand-driven points-to analysis

for Java. In OOPSLA, pages 59–76, 2005.
23. E. Tilevich and Y. Smaragdakis. Transparent program transformations in the

presence of opaque code. In GPCE, pages 89–94, 2006.
24. R. Vallée-Rai, L. Hendren, V. Sundaresan, P. Lam, E. Gagnon, and P. Co. Soot -

a Java optimization framework. In CASCON, pages 125–135, 1999.
25. W. Visser, C. S. Pasareanu, and S. Khurshid. Test input generation with Java

PathFinder. In ISSTA, pages 97–107, 2004.
26. D. M. Volpano, C. E. Irvine, and G. Smith. A sound type system for secure flow

analysis. Journal of Computer Security, 4(2/3):167–188, 1996.
27. J. Whaley and M. S. Lam. Cloning-based context-sensitive pointer alias analysis

using binary decision diagrams. In PLDI, pages 131–144, June 2004.
28. T. Xie, D. Marinov, W. Schulte, and D. Notkin. Symstra: A framework for generat-

ing object-oriented unit tests using symbolic execution. In TACAS, pages 365–381,
2005.

A Type-Dependence Analysis for Fields and Entities of
Array-Types

Sym, computed by the fix-point algorithm described in section 2, contains only
local variables, static fields, formal parameters, and return values of scalar types
that are type-dependent on variables in Sym0. In this section, we describe how
type-dependent instance fields and entities of array-types are computed from
Sym.

The type-dependent instance fields are represented by the set {f s.t. y
put[f]←−−−−

x, x ∈ Sym}. In other words, a field f is type-dependent on a variable in Sym0
if the value of a local variable x that is type-dependent on Sym0 is stored into
field f of some reference variable y. To compute the type-dependent entities
of array-types, the algorithm first computes a set of program statements that
allocate arrays Arrs, as follows:

Arrs = {s s.t. s ∈ pt(a), a
put[elem]←−−−−−− x or a

put[length]←−−−−−−− x in TDG, x ∈ Sym}

A statement that allocates an array a is in Arrs if either (1) a may store a
value that is not type-compatible with a’s current element-type, or (2) length
of a may not be of integer type as a result of change in the types of variables in

Type-Dependence Analysis and Program Transformation 133

Sym0. pt(a) returns all of the statements that allocates arrays to which a local
variable a of array-type may point-to at run-time. After computing Arrs, the
entities of array-type that are type-dependent on variables in Sym0 are given
by the set {v s.t. pt(v) ∩ Arrs �= Φ}. In other words, an entity of array-type is
type-dependent on a variable in Sym0 if it may store an array allocated by one
of the statements in Arrs.

B Transformation Rules

Fig. 8 shows the transformation rules for statements referencing arrays.

Original statement
Transformed statement Guard

[s : l = new τ [i]]
[l = new arrayτ (< i >)] s ∈ Arrs (11)

[l1 = l2.length(τ)]
[l1 = boxExpr(l2.length)] l1 �= l1, l2 = l2 (12)
[l1 = unboxExpr(array lenτ (l2))] l1 = l1, l2 �= l2 (13)
[l1 = array lenτ (l2)] l1 �= l1, l2 �= l2 (14)

[l[i1](τ) = i2]
[array setτ (< l >, < i1 >, < i2 >)] τ ∈ NumType, l �= l or i1 �= i1 (15)
[array setτ (< l >, < i1 >, i2)] τ ∈ RefType or τ = boolean, l �= l or i1 �= i1 (16)

[l1 = l2[i](τ)]
[l1 = boxτ̃ (l2[i])] l1 �= l1, l2 = l2, i = i (17)
[l1 = array getτ (< l2 > , < i >)] τ ∈ NumType, l2 �= l2 or i �= i, l1 �= l1 (18)
[l1 = unboxExpr(array getτ (< l2 > , < i >))] τ ∈ NumType, l2 �= l2 or i �= i, l1 = l1 (19)
[l1 = array getτ (< l2 > , < i >)] τ = boolean, l2 �= l2 or i �= i (20)
[l1 = (τ) array getτ (< l2 > , < i >)] τ ∈ RefType, l2 �= l2 or i �= i (21)

Fig. 8. Tranformation Rules (Continuation from Fig. 6.)

JPF–SE: A Symbolic Execution Extension to

Java PathFinder

Saswat Anand1, Corina S. Păsăreanu2, and Willem Visser2

1 College of Computing, Georgia Institute of Technology
saswat@cc.gatech.edu

2 QSS and RIACS, NASA Ames Research Center, Moffett Field, CA 94035
{pcorina,wvisser}@email.arc.nasa.gov

Abstract. We present JPF–SE, an extension to the Java PathFinder
Model Checking framework (JPF) that enables the symbolic execution
of Java programs. JPF–SE uses JPF to generate and explore symbolic
execution paths and it uses off-the-shelf decision procedures to manipu-
late numeric constraints.

1 Introduction

Explicit state model checking tools, such as Java PathFinder (JPF) [5, 12], are
becoming effective in detecting subtle errors in complex concurrent software, but
they typically can only deal with closed systems. We present here JPF–SE, a
symbolic execution extension to Java PathFinder, that allows model checking of
concurrent Java programs that take inputs from unbounded domains.

JPF–SE enables symbolic execution of Java programs during explicit state
model checking, which has the following unique characteristics: (a) checks the
behavior of code using symbolic values that represent data for potentially in-
finite input domains, instead of enumerating and checking for small concrete
data domains (b) takes advantage of the built-in capabilities of JPF to perform
efficient search through the program state space: systematic analysis of different
thread interleavings, heuristic search, state abstraction, symmetry and partial
order reductions (c) enables modular analysis: checking programs on un-specified
inputs enables the analysis of a compilation unit in isolation (d) automates test
input generation for Java library classes [13] (e) uses annotations in the form
of method specifications and loop invariants to prove light-weight properties of
Java programs [8] and (f) uses a common interface to several well-known de-
cision procedures to manipulate symbolic numeric constraints; JPF–SE can be
extended easily to handle other decision procedures.

2 JPF–SE Overview

Java PathFinder. JPF [5, 12] is an explicit-state model checker for Java pro-
grams that is built on top of a customized Java Virtual Machine. By default,

O. Grumberg and M. Huth (Eds.): TACAS 2007, LNCS 4424, pp. 134–138, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

JPF–SE: A Symbolic Execution Extension to Java PathFinder 135

Instrumented
ProgramProgram

Source

Omega YICES STPCVC−Lite

Generic Decision Procedure Interface

Code
Instrumentation

Specification
Correctness

Continue/Backtrack

Test Suite

JPF

Counterexample/

Fig. 1. Tool Architecture

JPF stores all the explored states, and it backtracks when it visits a previously
explored state. The user can also customize the search (using heuristics) and it
can specify what part of the state to be stored and used for matching.

Symbolic Execution. Symbolic execution [7] is a technique that enables analy-
sis of programs that take un-initialized inputs. The main idea is to use symbolic
values, instead of actual (concrete) data, as input values and to represent the
values of program variables as symbolic expressions. As a result, the outputs
computed by a program are expressed as a function of the symbolic inputs. The
state of a symbolically executed program includes the (symbolic) values of pro-
gram variables, a path condition and a program counter. The path condition
accumulates constraints which the inputs must satisfy in order for an execution
to follow the corresponding path.

JPF–SE Architecture. In previous work, we presented a framework that uses
JPF to perform symbolic execution for Java programs [6, 8]. It has now been
added to the JPF open-source repository [5] and is illustrated in Figure 1. Pro-
grams are instrumented to enable JPF to perform symbolic execution; concrete
types are replaced with corresponding symbolic types and concrete operations
are replaced with calls to methods that implement corresponding operations on
symbolic expressions. Whenever a path condition is updated, it is checked for
satisfiability using an appropriate decision procedure. If the path condition is un-
satisfiable, the model checker backtracks. The approach can be used for finding
counterexamples to safety properties and for test input generation (that satisfy
a testing criterion, such as branch coverage).

Symbolic State Space Exploration. JPF–SE exploits JPF’s ability to ex-
plore arbitrary program control flow (loops, recursion, method invocation), but
performing symbolic execution on a program with loops (or recursion) may re-
sult in an infinite number of symbolic states. JPF–SE uses two complementary
techniques to address this problem: (a) for systematic state space exploration
JPF–SE puts a bound on the size of the program inputs and/or the search depth,

136 S. Anand, C.S. Păsăreanu, and W. Visser

Table 1. Comparative Results. “N/A” indicates not supported.

Example Interface Omega CVCL YICES STP

File 00:15 00:26 N/A N/A
TCAS Pipe 00:04 00:12 N/A N/A

Native 00:03 00:13 00:06 00:31
Native table 00:01 00:11 00:05 N/A
Native inc N/A 00:03 00:01 N/A

File 02:02 06:02 N/A N/A
TreeMap Pipe 07:42 13:04 N/A N/A

Native 01:39 06:11 03:06 >60:00
Native table 00:40 05:10 02:36 N/A
Native inc N/A 02:58 00:33 N/A

and (b) JPF–SE provides automated tool support for abstracting and compar-
ing symbolic states, to determine if a symbolic state has been visited before, in
which case the model checker will backtrack (see [1] for details).

Decision Procedures. JPF–SE uses the following decision procedures; they
vary in the types of constraints they can handle and their efficiency. Omega
library [9] – supports linear integer constraints. CVC-Lite [3] – supports inte-
ger, rational, bit vectors, and linear constraints. YICES1 [4] – supports types
and operations similar to those of CVC-Lite. STP2 [2] – supports operations
over bit vectors. In the JPF–SE interface, all integers are treated as bit vectors
of size 32. Recently, we have also added a constraint solver, RealPaver [10],
that supports linear and non-linear constraints over floating point numbers.

Generic Decision Procedure Interfaces. JPF–SE provides three interfaces
with decision procedures. They vary in their degree of simplicity and efficiency.
In the file based interface, the decision procedure is started for each query and
a query is sent (and result received) via a file. This interface is the simplest to
use and extend, but in general it is slow. With the pipe interface, the decision
procedure is run concurrently with JPF and the communication is accomplished
over a pipe. Although this does not suffer the process startup cost of the file
approach it is harder to use and extend and it is operating system and language
specific. With the native interface, JPF communicates directly with the decision
procedure through a Java Native Interface (JNI). This mode is most difficult to
implement among the three, but is usually much faster.

There are two optimizations available for the native interface: a table-based
approach for efficient storing of the path condition that allows sharing of common
sub-expressions and if the decision procedure supports incremental constraint
analysis, the path condition is not sent all at once but rather just the new
constraint that should be added/removed before checking satisfiability.

1 SMT competition 2006 winner in all categories but one.
2 SMT competition 2006 winner for QF UFBV32 (Quantifier Free, Uninterpreted

Functions, Bit Vector).

JPF–SE: A Symbolic Execution Extension to Java PathFinder 137

Experience with Different Decision Procedures. The interfaces for com-
munications with the decision procedures is defined such that it is straight-
forward to connect a new tool. As a consequence, JPF–SE is well suited for
performance comparisons across a wide array of examples. We show in Table 1
the runtime results (in mins:secs) for generating all reachable states while run-
ning JPF–SE with varying decision procedure configurations over two examples:
TCAS from the Siemens Suite and on the TreeMap example from [13]. TCAS
is small (only 2694 queries) but contains many constraints that are both satis-
fiable and unsatisfiable; TreeMap produces many queries (83592), but they are
all satisfiable.

The preliminary results indicate that the native interfaces are the fastest and
both the optimizations (where applicable) improve the performance further. For
this reason YICES and STP are only used through the native interface.

3 Conclusion and Future Work

We have presented JPF–SE, an extension to JPF that enables symbolic exe-
cution of Java programs to be performed during model checking. JPF–SE uses
JPF to generate and explore symbolic states and it uses different decision proce-
dures to manipulate numeric constraints. JPF–SE has been applied to checking
concurrent Java programs and to generating test inputs for Java classes. In the
future we plan to extend JPF–SE’s code instrumentation package, which cur-
rently handles only numeric values, to handle symbolic complex data structures.
We also plan to add compositional reasoning for increased scalability and to
interface with tools using the SMT-LIB standard [11] (through file and pipe).

Acknowledgements

We thank Sarfraz Khurshid and Radek Pelánek for contributing to this work.

References

1. S. Anand, C. Pasareanu, and W. Visser. Symbolic execution with abstract sub-
sumption checking. In Proc. SPIN, 2006.

2. C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler. Exe: Auto-
matically generating inputs of death. In Computer and Comm. Security, 2006.

3. CVCL. http://www.cs.nyu.edu/acsys/cvcl/.
4. B. Dutertre and L. de Moura. A Fast Linear-Arithmetic Solver for DPLL(T). In

Proceedings of CAV, volume 4144 of LNCS, pages 81–94. Springer-Verlag, 2006.
5. Java PathFinder. http://javapathfinder.sourceforge.net.
6. S. Khurshid, C. Pasareanu, and W. Visser. Generalized symbolic execution for

model checking and testing. In Proc. TACAS’03, Warsaw, Poland, April 2003.
7. J. C. King. Symbolic execution and program testing. Commun. ACM, 19(7), 1976.
8. C. Pasareanu and W. Visser. Verification of java programs using symbolic execution

and invariant generation. In Proc of SPIN’04, volume 2989 of LNCS, 2004.

138 S. Anand, C.S. Păsăreanu, and W. Visser

9. W. Pugh. The Omega test: A fast and practical integer programming algorithm
for dependence analysis. Commun. ACM, 31(8), Aug. 1992.

10. realPaver. http://www.sciences.univ-nantes.fr/info/perso/permanents/granvil/
realpaver/.

11. SMT-LIB. http://combination.cs.uiowa.edu/smtlib/.
12. W. Visser, K. Havelund, G. Brat, S. J. Park, and F. Lerda. Model checking pro-

grams. Automated Software Engineering Journal, 10(2), April 2003.
13. W. Visser, C. Pasareanu, and R. Pelanek. Test input generation for java containers

using state matching. In Proc. ISSTA, 2006.

A Symbolic Algorithm for

Optimal Markov Chain Lumping

Salem Derisavi

Department of Systems and Computer Engineering
Carleton University, Ottawa, Canada

derisavi@sce.carleton.ca

Abstract. Many approaches to tackle the state explosion problem of
Markov chains are based on the notion of lumpability, which allows com-
putation of measures using the quotient Markov chain, which, in some
cases, has much smaller state space than the original one. We present,
for the first time, a symbolic algorithm and its implementation for the
lumping of Markov chains that are represented using Multi-Terminal Bi-
nary Decision Diagrams. The algorithm is optimal, i.e., generates the
smallest possible quotient Markov chain. Our experiments on various
configurations of two example models show that the algorithm (1) han-
dles significantly larger state spaces than an explicit algorithm, (2) is in
the best case, faster than an efficient explicit algorithm while not pro-
hibitively slower in the worst case, and (3) generates quotient Markov
chains that are several orders of magnitude smaller than ones generated
by a model-dependent symbolic lumping algorithm.

1 Introduction

Markov chains (MCs) are among the fundamental mathematical structures used
for performance and dependability modeling of communication and computer
systems. As the size of an MC usually grows exponentially with the size of
the corresponding high-level model, one often encounters the inevitable state
explosion problem, which often makes solution of the MC intractable. Many
approaches to alleviate or circumvent this problem are implicitly or explicitly
based on the notion of lumpability [17], which allows computation of measures
of the original MC using the solution of a lumped (or quotient) MC, which, in
some cases, is much smaller than the original one.

Even a lumped MC can be extremely large, and therefore, its explicit (e.g.,
sparse matrix) representation may not fit in memory. Symbolic data structures
such as Multi-Terminal Binary Decision Diagrams (MTBDDs) [7] and Matrix
Diagrams (MDs) [6] are two of the widely-used approaches that enable us to
represent large MCs using less memory than the explicit approach. Nowadays,
algorithms that directly generate symbolic representations of MCs from the high-
level model are commonplace.

In one form of classification, there are three types of lumping algorithms:
state-level, model-level, and compositional. State-level algorithms work directly

O. Grumberg and M. Huth (Eds.): TACAS 2007, LNCS 4424, pp. 139–154, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

140 S. Derisavi

Table 1. Examples of previous work on lumping algorithms in probabilistic settings

state-level model-level compositional
explicit [9, 5] [20] Stochastic Activity Networks [12] Interactive Markov chains

symbolic [14] [10] state-sharing composed models [11] Markov chains
[18] PRISM models represented by matrix diagrams

on the MC (i.e., at the level of the states) and do not use information from
the high-level model. They are optimal, i.e., they generate the smallest possible
lumped MC, are restricted neither to a specific high-level formalism nor to a
specific type of symmetry, and are often slower than the other two types.

Both model-level and compositional algorithms exploit information from the
high-level model specification to generate lumped MCs. Neither types are
optimal because the optimal lumping cannot be computed directly from the
high-level model. Finally, both types address a specific (set of) formalism(s).
Model-level algorithms are distinguished by the fact that they exploit a restricted
type of user-specified symmetry while compositional algorithms apply a state-
level algorithm to individual components of a compositional model.

Not all model-level algorithms can automatically find and exploit all types of
symmetries. Therefore, the fact that the main source of lumpability is symmetry
in the high-level model specification does not imply that model-level algorithms
are in general preferred over state-level algorithms, as one may argue. More-
over, there are situations in which only state-level algorithms are applicable. For
example, consider an MC that is transformed by a model checking algorithm.

Table 1 shows examples of previous work on lumping algorithms for stochas-
tic/probabilistic models, e.g., Markov chains, Markov decision processes. It clas-
sifies them also based on whether they use explicit or symbolic representation.
Fairly related to MC lumping, is lumping of non-probabilistic models, a.k.a.
bisimulation minimization. Bouali et. al. [2] were the first to apply symbolic
BDD-based techniques. Wimmer et. al. [22] improve upon [2] by presenting a
general BDD-based algorithm that computes some of the popular bisimulations.

The shaded area in Table 1 indicates where our new algorithm fits. This
paper gives, to our knowledge for the first time, a symbolic MTBDD-based
MC lumping algorithm and its implementation. In [14], an algorithm based on
DNBDDs (Decision-Node BDDs) is given without a concrete implementation
or runtime analysis. Our algorithm is (1) symbolic, and hence, it can handle
much larger state spaces than explicit algorithms, (2) optimal, i.e., generates
the smallest possible lumped MC, (3) state-level, i.e., does not rely on the high-
level model, and (4) faster than the efficient explicit algorithm of [9] in the best
case, and not prohibitively slower in the worst case we experimented.

The rest of the paper is organized as follows: Section 2 gives an overview of
CTMCs1 (Continuous Time Markov Chains), lumpability of CTMCs, the explicit
lumping algorithm of [9] which is the basis of our new algorithm, and MTBDDs.
Sections 3 and 4 put forward the new contributions of this paper. The former
1 Although the paper is focused on CTMCs, the algorithms can be adapted for DTMCs

(Discrete Time Markov Chains) in a very straightforward manner.

A Symbolic Algorithm for Optimal Markov Chain Lumping 141

explains how we transformed the explicit algorithm to a symbolic algorithm that
is not so fast. The latter presents two techniques that dramatically improve the
running time of our algorithm. In Section 5, we compare the running time of our
symbolic algorithm, the explicit state-level algorithm of [9], and the symbolic
model-level algorithm of [18] by applying them to several configurations of two
example models. We finally conclude in Section 6.

2 Background

2.1 Notation, CTMC, and Lumpability

All matrices are real-valued and typeset with bold characters. All sets are finite
and typeset with roman characters. We consider a CTMC M = (S,R) with state
space S and state transition rate matrix R : S × S → R

≥0 where R(s, s) = 0
for all s ∈ S. The generator matrix Q : S × S → R is defined as Q(s, s) =
−

∑
s′∈S R(s, s′) and Q(s, t) = R(s, t) for all s, t ∈ S and s �= t. Let n = |S|

and m denote the number of non-zero entries of R. For a matrix A and C ⊆ S,
we define A(s, C) =

∑
s′∈C A(s, s′) and A(C, s′) =

∑
s∈C A(s, s′). Consider a

partition Π = {C1, . . . , C�n} of S. Sets C1, · · · , C
�n are the equivalence classes,

or in short, classes of Π . We use [s]Π to denote the class of Π that contains
s ∈ S. Partition Π ′ is a refinement of Π (or finer than Π) if every class of Π ′

is a subset of some class of Π . In that case, Π is said to be coarser than Π ′.
Often, the final goal of a CTMC analysis is not the computation of the steady-

state or transient probability of its states. Instead, it is the computation of high-
level measures such as performability. Many of those high-level measures can be
computed using reward values associated with states (i.e., rate rewards) and the
stationary and transient probability distribution [16]. In this paper, we do not
concern ourselves with those details as they do not contribute to the main ideas
of our algorithm. However, we will briefly explain how to adapt the algorithm
to take rate rewards and initial probability distribution into account.

Sometimes, the desired measures can be obtained from a smaller (lumped)
CTMC using less time and space. The lumped CTMC is constructed through
a partition (or equivalence relation) on the state space of the original CTMC.
For that to be possible, the original CTMC should satisfy a set of conditions
with respect to that partition. Following [4], two of the most important sets
of conditions (and the types of lumping they lead to) on the generator matrix
Q are outlined in Definition 1. Often, it is necessary to check the lumpability
conditions in terms of R instead of Q. Theorem 1 serves that purpose. Finally,
the lumped (or quotient) CTMC is obtained using Theorem 2. For more details
on the properties of ordinary and exact lumping see [4].

Definition 1. Consider a CTMC M = (S,R), its corresponding Q matrix, and
a partition Π of S. Then, with respect to Π, M is
1. ordinarily lumpable iff ∀ C, C′∈ Π, s, ŝ ∈ C : Q(s, C′) = Q(ŝ, C′), and
2. exactly lumpable iff ∀ C, C′∈ Π, s, ŝ ∈ C : Q(C′, s) = Q(C′, ŝ).

142 S. Derisavi

Theorem 1 (Theorem 2.1 of [8]). Consider a CTMC M = (S,R). With
respect to a partition Π, M is
1. ordinarily lumpable iff ∀ C �= C′∈ Π, s, ŝ ∈ C : R(s, C′) = R(ŝ, C′).
2. exactly lumpable if ∀ C, C′ ∈ Π, s, ŝ ∈ C : R(s, S) = R(ŝ, S) ∧ R(C′, s) =

R(C′, ŝ).

Theorem 2 (Theorems 2.2 and 2.3 of [8]). Let CTMC M = (S,R) be
ordinarily or exactly lumpable with respect to a partition Π of S. Then M̃ =
(S̃, R̃) is the lumped (or, quotient) CTMC such that

S̃ = {arbitrary element of C| C ∈ Π}

R̃(s̃, s̃′) =

⎧
⎨

⎩

R(s̃, [s̃′]Π) (ordinary) if s̃ �= s̃′

R([s̃]Π , s̃′) (exact) if s̃ �= s̃′

0 (both) if s̃ = s̃′

Note that although S̃ depends on the arbitrarily selected element of each class
of Π , all possible lumped CTMCs will be “equivalent”.

2.2 Explicit State-Level Lumping Algorithm

The basis of our new symbolic algorithm is the efficient lumping algorithm of [9].
It is an optimal and explicit state-level algorithm for ordinary lumping. In [8],
we extended the algorithm to Markov reward processes (i.e., CTMCs augmented
with rate rewards and initial probability distribution) and also to exact lumping.
Since we discuss both ordinary and exact lumping, we will use the extended
version of [8] in this paper.

Figure 1(a) shows the explicit lumping algorithm. ExpLumpCTMC (Exp
stands for explicit) takes the original CTMC M and returns the quotient CTMC
M̃ . It works in two stages. First, ExpCoarsestPart computes the coarsest
partition Π with respect to which M is lumpable by repetitive refinements of
Π ini. To extend our algorithm to Markov reward processes we only need to set
the initial partition Π ini such that all states with the same value (of rate reward
or initial probability) are in the same class. If rate rewards and initial probability
distribution are not considered, we set Π ini = {S}. In the second stage (line 2),
ExpCompQuot computes the quotient M̃ according to Theorem 2.

ExpCoarsestPart maintains L, a list of potential splitters. Each refinement
iteration of ExpCoarsestPart (line 3-5) refines Π with respect to a potential
splitter B. ExpSplit splits each class C of Π into classes C′

1, . . . , C
′
α (line 3-4)

as follows. For ordinary lumping, the states of C are grouped based on their total
outgoing rates to B (line 2o of ExpComputeKeys) and for exact lumping they
are grouped based on their total incoming rates from B (line 2e). More formally,

∀ 1 ≤ i, j ≤ α, s ∈ C′
i, s

′ ∈ C′
j : k(s) = k(s′) ⇔ i = j (1)

The algorithm works correctly regardless of the selection of C′
i in line 5 of Ex-

pSplit. If we choose C′
i to be the largest among C′

1, . . . , C
′
α, it is proved that the

A Symbolic Algorithm for Optimal Markov Chain Lumping 143

ExpLumpCTMC(M)
1 Π := ExpCoarsestPart(S,R, Πini)
2 (�S, �R) := ExpCompQuot(S,R, Π)
3 return �M = (�S, �R)

ExpCoarsestPart(S,R, Πini)
1 Π := Πini

2 L := Πini

3 while L �= ∅
4 B := Pop(L)
5 ExpSplit(Π, B, L)
6 return Π

ExpSplit(Π, B, L)
1 foreach C ∈ Π
2 k :=ExpComputeKeys(R, C, B)
3 {C′

1, . . . , C′
α} := refinement of C

according to Eq. (1)
4 Π := Π ∪ {C′

1, . . . , C′
α} − C

5 L := L ∪ {C′
1, . . . , C′

α} − arbitrary C′
i

ExpComputeKeys(R, C, B)
1 foreach s ∈ C

2o k(s) := R(s, B)
2e k(s) := R(B, s)
3 foreach s ∈ S − C
4 k(s) := 0
5 return k

(a) Explicit lumping algorithm

SymLumpCTMC(M)
1 β(Π) := SymCoarsPart(S,R, β(Πini))
2 (�R, �S) := SymCompQuot(S,R, β(Π))
3 return �M = (�R, �S)

SymCoarsestPart(R, S, β(Πini))
1 β(Π) := β(Πini)
2 for sc := 0 to |Π| − 1
3 B := GetClass(β(Π), sc)
4 SymSplit(β(Π),B)
5 return β(Π)

SymSplit(β(Π),B)
1 for c := 0 to |Π| − 1
2 C := GetClass(β(Π), c)
3 K := SymComputeKeys(R, C,B)
4 T := {leaves of K}
5 α := 1
6 foreach x ∈ T
7 C′

α := Apply(=,K, x)
8 α := α + 1
9 ReplaceClass(β(Π), c, C′

1)
10 for i := 2 to α
11 AddClass(β(Π), C′

i)

SymComputeKeys(R, C,B)
1o Ro := Apply(×,R, Apply(×, C, Permute(B)))
1e Re := Apply(×,R, Apply(×,B, Permute(C)))
2o Ko := SumC(Ro)
2e Ke := SumC(Re)
3o return Ko

3e return Ke

SymCompQuot(S,R, β(Π))
1 �S(s) := 0; �R(s, t) := 0;
2 for c := 0 to |Π| − 1

3o Cc := GetClass(β(Π), c)
3e Cc := Permute(GetClass(β(Π), c))
4 Xc := {arbitrary element of Cc}
5 �S := Apply(+, �S,Xc)
6 R′ := Apply(×, �R, �S)
7 for c := 0 to |Π| − 1

8o R′′ := SumC(Apply(×,R′, Permute(Cc)))
8e R′′ := SumR(Apply(×,R′, Permute(Cc)))
9 R′′ := Apply(×,R′′, Permute(Xc))

10 �R := Apply(+, �R,R′′)
11 return (�S, �R)

(b) Symbolic lumping algorithm

Fig. 1. Explicit lumping algorithm for Markov chains

algorithm runs in O(m lg n) time [9]. The algorithm finishes when Π is refined
with respect to all potential splitters. See [8] for more details.

2.3 Multi-Terminal Binary Decision Diagram

BDDs (Binary Decision Diagrams) [3] are a data structure for compact repre-
sentation of binary functions of k binary variables, i.e., {0, 1}k → {0, 1}. MTB-
DDs [7] are a variation of BDDs used to represent finite-ranged functions of k
binary variables, i.e., {0, 1}k → A where A is a finite set.

MTBDDs are widely used to represent transition matrices of MCs and we
follow that in this paper. To that purpose, the MTBDD uses 2L binary vari-
ables vr1, . . . , vrL and vc1, . . . , vcL that encode the row index and the column
index, respectively. Although the variable ordering can be arbitrary, we con-
sider the interleaved ordering in which the top-down order of the variables is
vr1, vc1, vr2, vc2, . . . , vrL, vcL. Interleaved ordering often leads to smaller

144 S. Derisavi

MTBDDs for MCs that are generated from high-level models [13]. We denote
the set of all possible row and column indices (states) by Sr = ×L

i=1 vri and
Sc = ×L

i=1 vci. We use calligraphic letters to denote the MTBDD representation
of matrices and sets (described below). We denote an element of R by R(s, t)
where s ∈ Sr and t ∈ Sc are encodings of states.

Our implementation is based on the CUDD package [21], a widely-used and
efficient package for the manipulation of MTBDDs. In an MTBDD-based imple-
mentation, such as CUDD, the same set of MTBDD variables are used to repre-
sent all entities, that is, matrices and sets of states. In our symbolic algorithm,
we will need to represent states using either the variable set vr1, . . . , vrL (row en-
coding) or vc1, . . . , vcL (column encoding). We define B representing a set B such
that ∀ t ∈ Sc : B(s, t) = [s ∈ B] (row encoding) or ∀ t ∈Sr : B(t, s) = [s ∈ B]
(column encoding), in which [s ∈ B] = 1 if s ∈ B and [s ∈ B] = 0 otherwise.
Since B(s, t) (resp. B(t, s)) does not depend on t in row (resp. column) encod-
ing we use B(s) as a shorthand. Permute(B), used in Fig. 1(b), switches the
encoding of the set B from row encoding to column encoding or vice versa. By
default, sets are represented using row encoding.

3 Transforming the Algorithm from Explicit to Symbolic

To transform the explicit algorithm of Figure 1(a) to a symbolic one, we need
to replace both its explicit data structures and also its explicit operations with
symbolic counterparts. We already know how to symbolically represent matrices
and sets of states. In this section, we first present a new approach for the symbolic
representation of partitions. Then, we show how to replace the set of splitters L
by partition Π , thereby representing the set of splitters symbolically. Finally, we
explain how the various explicit operations of Figure 1(a) are done symbolically.

3.1 Symbolic Representation of Partitions

The challenges in the symbolic representation of partition Π are that 1) |Π |
can be very large, and 2) Π is updated frequently during the execution of the
algorithm and modifying a symbolic data structure in an “explicit” manner is
often very inefficient. Our new symbolic approach for partition representation
tries to address these challenges. Of equal importance are its properties that
we exploit in Section 4 to improve the running time of our symbolic algorithm.
Conceptually, our partition representation technique does not need to be based
on a symbolic data structure. However, it will be very inefficient otherwise.

Before we explain our new approach, we give a quick overview of other studied
approaches. The first obvious method is to store each class of a partition as a
BDD. Another technique, given in [1], is to assign an extra set of BDD variables
to denote class indices. In particular, s ∈ Ci iff P(s, i) = 1 where P is the
BDD representation of Π . Yet another approach is to use a BDD P such that
P(s, t) = 1 iff ∃ C ∈ Π : s ∈ C ∧ t ∈ C.

A Symbolic Algorithm for Optimal Markov Chain Lumping 145

Representation. Let Π = {C0, . . . , Cd−1} be a partition of S �= ∅2. We define
a family of sets β(Π) = {P0, . . . , Pk−1, S} to represent Π as follows: s ∈ Pi

(0 ≤ i < k) iff the ith bit of the binary representation of the index of [s]Π is one.
In other words,

Pi =
⋃

ith bit of j is one

Cj and S − Pi =
⋃

ith bit of j is zero

Cj . (2)

We will use (MT)BDDs to represent members of β(Π). The important point
here is that we can represent Π with k + 1 = �lg d + 1 instead of d (MT)BDDs.

Example. Let S = {1, . . . , 8}, Π = {C0, C1, C2, C3}, C0 = {2, 3, 8}, C1 = {1},
C2 = {4, 7}, and C3 = {5, 6}. Then, β(Π) = {P0, P1, S} in which P0 = {1, 5, 6}
and P1 = {4, 5, 6, 7}.

Partition Manipulation. In the explicit algorithm, we access Π through get-
ting its classes and update Π through adding/removing classes to/from it. In
the following, we describe how to symbolically perform those manipulations by
one access procedure GetClass, and two update procedures ReplaceClass,
and AddClass. Let Π ′ be the modified partition after an update procedure is
performed on Π . Using Eq. (2) to compute the symbolic representation of Π ′,
i.e., β(Π ′), after each update procedure would take O(2k) set operations. In the
following, we show how to compute it directly from the symbolic representation
of Π , i.e., β(Π) using only O(k) set operations.

1. GetClass(β(Π), j) returns Cj . Let (bk−1 · · · b1b0)2 be the binary represen-
tation of j (0 ≤ j < d). Then, using Eq. (2), we have

GetClass(β(Π), j) = Cj =
k−1⋂

i=0

Di where Di =

{
S − Pi if bi = 0
Pi if bi = 1

(3)

Using GetClass, line 1 of ExpSplit is symbolically performed in lines 1-2
of SymSplit.

2. ReplaceClass(β(Π), l, C′
l) replaces Cl ∈ Π with C′

l such that Π ′ = (Π −
{Cl}) � {C′

l} = {C0, . . . , Cl−1, C
′
l , Cl+1, . . . Cd−1}3. We have S′ = (S − Cl) �

C′
l , and by Eq. (2),

P ′
i =

{
Pi if ith bit of l is zero
(Pi − Cl) � C′

l if ith bit of l is one

3. AddClass(β(Π), Cd) adds Cd to Π where Cd is non-empty set disjoint with
all members of Π . Obviously, we have S′ = S � Cd, and by Eq. (2),

P ′
i =

{
Pi if ith bit of d is zero
Pi � Cd if ith bit of d is one

2 Although in a strict mathematical sense, the classes of a partition are not ordered,
we assign them a total order here.

3 � is the disjoint union operation.

146 S. Derisavi

For d = 2k, assume Pk = ∅. Using ReplaceClass and a sequence of Ad-
dClass operations, line 4 of ExpSplit is symbolically performed in lines
9-11 of SymSplit.

3.2 Replacing Explicit L by Symbolic Π

In our new symbolic algorithm, we need to have a symbolic representation of L
that is efficient to update. Knowing that (1) similar to Π , L is a set of sets of
states, and (2) updates of L is very similar to updates of Π (compare lines 4 and
5 of ExpSplit), we will show how we have modified our algorithm such that we
do not need to explicitly store L. Instead, we use the symbolic representation of
Π and an index to emulate a list of potential splitters.

Consider Fig. 1. We have removed L from ExpCoarsestPart (lines 2-5)
and ExpSplit (line 5) and replaced it by an index sc in SymCoarsestPart
(lines 2-3). In line 2 of SymCoarsestPart, sc iterates through all classes of Π .
During the running time of the algorithm, classes are possibly added to (the end
of) Π . Therefore, B, in line 3 of SymCoarsestPart, will take on the value of all
those new classes, one at a time. Note that the set of potential splitters processed
by SymSplit may be different from the one processed by ExpSplit. However,
we will prove that SymCoarsestPart still works correctly by showing that the
different sets of splitters that ExpCoarsestPart and SymCoarsestPart see
have the same refinement effect on Π .

Lemma 1. Assume C ⊆ S and {C′
1, . . . , C

′
α} be a partition of C. Then, splitting

a partition Π of S with respect to any α members of T = {C, C′
1, . . . , C

′
α} leads

to the same refinement of Π.

Proof. We give the proof for ordinary lumping. The arguments for exact lumping
are similar. According to Eq. (1), for any splitter B ∈ T , R(s, B) determines
how the blocks of Π are partitioned. Moreover, for any state s ∈ S, we have
R(s, C′

1)+· · ·+R(s, C′
α) = R(s, C). Therefore, given any α terms of the equality,

the (α + 1)-st term is implicit. Hence, splitting with respect to any B ∈ T does
not further refine a partition that has already been refined with respect to the
other α members of T .

Theorem 3. The sequence of splitters seen by SymCoarsestPart leads to the
correct refinement of Π.

Proof. We need to show that each time a block C is partitioned into C′
1, . . . , C′

α,
at least α members of {C, C′

1, . . . , C′
α} have already been or will be seen by Sym-

CoarsestPart. Assume the algorithm is at the beginning of line 9 of Sym-
Split. There are two cases. If sc ≤ c, then SymCoarsestPart has not yet
seen C as a splitter, and lines 9-11 replace C with {C′

1, . . . , C′
α}. All those α sets

will be seen as splitters in future iterations of SymCoarsestPart. If sc > c,
then SymCoarsestPart has already used C as a splitter, and lines 9-11 add
α − 1 sets, i.e., {C′

2, . . . , C′
α}, to the end of Π . All of those sets will be seen by

SymCoarsestPart in its future iterations.

A Symbolic Algorithm for Optimal Markov Chain Lumping 147

3.3 Symbolic Procedures: SymComputeKeys and SymSplit

Let B, C ⊆ S. ExpComputeKeys computes R(s, B) for ordinary lumping and
R(B, s) for exact lumping for each s ∈ C. In order to compute R(s, B) and
R(B, s) symbolically, we define RC,B

o and RC,B
e as follows:

RC,B
o (s, t) = r iff R(s, t) = r ∧ C(s) = 1 ∧ B(t) = 1 (ordinary lumping)

RC,B
e (s, t) = r iff R(s, t) = r ∧ B(s) = 1 ∧ C(t) = 1 (exact lumping)

In other words, RC,B
o (resp. RC,B

e) is the same as R except that its set of
rows and columns are restricted to C and B (resp. B and C) respectively. RC,B

o

and RC,B
e are computed in lines 1o and 1e of SymComputeKeys, the sym-

bolic version of ExpComputeKeys. SymComputeKeys uses Apply(��, X , Y)
which is provided by the CUDD package and returns an MTBDD Z such that
Z(s, t) = X (s, t) �� Y(s, t) where �� is an arithmetic or logical operator. For
logical operators, Apply returns an MTBDD with only 0 and 1 terminals.

Now, we define MTBDDs KC,B
o (s, t) and KC,B

e (s, t) as follows:

∀ t ∈ Sc : KC,B
o (s, t) =

∑

t′∈Sc

RC,B
o (s, t′) =

∑

t′∈B

RC,B
o (s, t′) = R(s, B)

∀ s ∈ Sr : KC,B
e (s, t) =

∑

s′∈Sr

RC,B
e (s′, t) =

∑

s′∈B

RC,B
e (s′, t) = R(B, t).

Since KC,B
o (s, t) = R(s, B) and KC,B

e (s, t) = R(B, t), KC,B
o and KC,B

e are in fact
the MTBDD representations of k in Section 2.2. Thus, they are the key to par-
tition C into {C′

1, . . . , C′
α} according to Eq. (1). They are computed symbolically

using SumC and SumR. For an MTBDD A, SumC(A) returns A′ such that
∀ t ∈ Sc : A′(s, t) =

∑
t′∈Sc

A(s, t′). Similarly, SumR(A) returns A′ such that
∀ s ∈ Sr : A′(s, t) =

∑
s′∈Sr

A(s′, t). SumC and SumR are implemented using
Cudd addExistAbstract function of the CUDD package. Lines 4-8 of SymSplit
show how to symbolically derive C′

1, . . . , C′
α from C. Line 4 is done using a depth

first traversal of K.
Note that if there is no transition from any state in C (resp. B) to any state in

B (resp. C), then RC,B
o (resp. RC,B

e), and therefore, KC,B
o (resp. KC,B

e) are zero-
valued MTBDDs. Hence, C will not be split. The second technique in Section 4
exploits that observation to improve the running time of the symbolic algorithm.

So far, we have transformed all data structures and operations of the explicit
procedures of Figure 1(a) to symbolic ones in their corresponding symbolic pro-
cedures. That gives us the completely symbolic algorithm of Figure 1(b).

4 Improving the Symbolic Algorithm Running Time

The properties of our partition representation method enable us to improve the
running time of the symbolic algorithm developed in Section 3. In this section, we
present two techniques T1 and T2 that utilize those properties. Both techniques
use relatively small additional memory to gain significant speed improvements.

148 S. Derisavi

Based on the combination of the techniques, we distinguish three versions of
our algorithm: V1 uses neither techniques, V2 uses T1 only, and V3 uses both
T1 and T2. In the following, we present the arguments only for ordinary lumping
and they are straightforwardly adaptable to the case of exact lumping. We will
compare the performance of the three versions in Section 5.

4.1 T1: Computing GetClass(β(Π), j + 1) from GetClass(β(Π), j)

The main loops of SymCoarsestPart and SymSplit compute all classes of Π
using GetClass. T1 is an algorithm that computes those classes more efficiently
than naively applying Eq. (3) for each class. To do so, T1 exploits the similarity
between the computation of all pairs of consecutive classes of Π .

Figure 2 shows the Class Computation Tree (CCT) for Π . The tree shows the
sequence of set operations that GetClass executes for all classes of Π according
to Eq. (3)4. It has k + 1 levels numbered top-down from 0 to k, and hence, has
at most 2k+1 − 1 nodes. We denote the root node by r. A non-root node v �= r
is connected to its parent p(v) by an edge with label e(v) ⊆ S. For a non-leaf
node u at level i, we denote its left and right children by ul and ur. We define
e(ul) = S−Pi and e(ur) = Pi. A path from r to v corresponds to a set expression
E(v) defined recursively as follows:

E(r) = S, and E(v) = E(p(v)) ∩ e(v). (4)

For example, in Fig. 2, we have E(u′) = S ∩ (S − P0) = (S − P0) and E(v0) =
S ∩ (S −P0)∩ . . .∩ (S −Pk−1). Indexing the leaf nodes from left to right starting
from 0, we observe that for a leaf node vj with index j, E(vj) yields the jth
class of Π , i.e., E(vj) = Cj = GetClass(β(Π), j).

For any leaf node v, the number of set intersections in E(v), and hence, the num-
ber of times GetClass performs set intersection, is k. Hence, calling GetClass
for all classes of Π requires k · d = Θ(d lg d) set intersections in which d = |Π |.

Now consider two classes Cj , Cj′ ∈ Π (j′ = j + 1 is a special case) and their
corresponding leaf nodes vj and vj′ (See Figure 2). We observe that set expres-
sions E(vj) and E(vj′) have a common prefix subexpression which is determined
by the lowest common ancestor node x of vj and vj′ . Hence, by storing E(x)
at x during the computation of Cj = E(vj), we can compute Cj′ = E(vj′)
with smaller number of set intersections than what would be necessary for its
computation from scratch using Eq. (3).

Making the above observation, we propose the following method to compute
all classes of Π in order of their indices: perform a depth first traversal of the
CCT such that the left subtree is visited before the right subtree. At each non-
root node v compute E(v) using Eq. (4) and store it as an MTBDD. The number
of set intersections performed is the number of edges of the CCT which is at
most 2k+1 − 2 ∈ Θ(d). Note that we do not need to store E(v) for all nodes;
storing one per level suffices.

In summary, T1 reduces the number of set operations necessary to compute
all classes of Π from Θ(d lg d) to Θ(d) using k + 1 extra MTBDDs.
4 The tree is not generated or stored by the algorithm.

A Symbolic Algorithm for Optimal Markov Chain Lumping 149

r

x

u′

v0 vj vj′

1

11

11

1

0

00

00

0

C0 C1 Cj Cj′ C2k−2 C2k−1

(S − P0) P0

(S − P1)(S − P1) P1P1

(S − Pk−1) (S − Pk−1)Pk−1 Pk−1

· · ·· · ·

· · · · · ·· · ·

Fig. 2. Class Computation Tree (CCT)

4.2 T2: Fast Detection and Skipping of Stable Classes

SymSplit splits each class C ∈ Π with respect to the splitter B. However, if
there is no transition from any state in C to any state in B, then C will not be
split into smaller subclasses. Therefore, executing lines 2-11 of SymSplit can
be skipped for classes such as C. We call C stable with respect to B.

T2 is a technique for efficient detection of stable classes. It enables the main
loop of SymSplit to skip over those classes, thereby reducing SymSplit’s run-
ning time. CTMCs generated from high-level models often have sparse transition
matrices. For such CTMCs, the ratio of stable classes (with respect to a given
B) to the total number of classes is often close to 1. Therefore, T2 yields a
considerable speedup.

Let B′ be the set of states that have at least one transition to any state in
B, i.e., B′ = {s′| ∃s ∈ B, R(s′, s) �= 0}. Observe that C is stable with respect
to B iff B′ ∩ C = ∅. Therefore, the problem is reduced to evaluating whether
B′ ∩ C = ∅. If B′ = ∅ every class C ∈ Π is stable with respect to B. In the
following, we assume that B′ �= ∅.

Using the modified CCT, a slight modification of the CCT, we can efficiently
compute B′ ∩ C for all C ∈ Π . The modified CCT uses the following equation
to compute the set expression E′(v) corresponding to a node v: E′(r) = B′ and
E′(v) = E′(p(v))∩ e(v) for v �= r. Thus, E′(vj) = B′ ∩Cj for a leaf node vj with
index j. Finally, checking for emptiness of an MTBDD takes constant time.

A significant improvement is achieved by observing that if E′(v) is empty,
so is E′(v′) for all descendants v′ of v. Thus, we can prune the tree at node v,
thereby saving time on its traversal.

150 S. Derisavi

5 Performance Study

While the previous sections show that our symbolic algorithm is efficient from
a theoretical point of view, the evidence of its utility comes from its imple-
mentation and use on example models. In this section, we briefly describe the
implementation we have made, and compare its performance with implementa-
tions of other related algorithms. The performance measures that we compare
are mainly the time and space requirements of the algorithms and the size of
lumped MCs that they generate.

In particular, we compare the performance of the different versions of the
algorithm described in Section 4 (that is, V1, V2, and V3), the state-level explicit
algorithm (EA) of [9], and the model-level symbolic algorithm of Kwiatkowska
et. al. [18] (KA). Our experiments on two example models show that (1) our
symbolic algorithm is able to lump MCs that are orders of magnitude larger
than what is lumpable using an explicit lumping algorithm, (2) the techniques
explained in Section 4 reduce the running time of the symbolic algorithm by up
to 3 orders of magnitude, (3) in the best case we tried, V3, the fastest version
of our symbolic algorithm outperforms EA, and in the worst case, it is not
prohibitively slower than EA, and (4) KA is a few orders of magnitude faster
than V3 while V3 generates lumped MCs that are (sometimes several) orders of
magnitude smaller.

5.1 Implementation and Example Models

To generate both the MTBDD and sparse matrix representations of the input
Markov chains, we use the probabilistic model checking tool PRISM [15]. All the
code involved in the experiments was compiled using gcc 3.4.4. All experiments
were conducted on a Pentium 4 2.66 GHz CPU with 1 GB of RAM.

We consider two example models from the literature to study the performance
of the algorithms: A fault-tolerant parallel computer system (FPCS) [19] and a
peer-to-peer (P2P) protocol based on BitTorrent [18]. For the first model, we
converted the SAN (Stochastic Activity Network) specification to the PRISM
specification. For the second model, we used the PRISM specification given in
http://www.cs.bham.ac.uk/∼dxp/prism/casestudies/peer2peer.php.

Both models have two parameters N1 and N2. For FPCS, they denote the
number of computers in the system and the number of memory modules in each
computer, respectively. For P2P, they represent the number of clients and the
number of blocks of the file to be transmitted, respectively.

5.2 Results

Comparison of V1, V2, V3, and EA. EA is theoretically the fastest explicit
state-level lumping algorithm given so far5. We applied the ordinary lumping
algorithm of V1, V2, V3, and EA on a number of configurations of FPCS and
5 We are not aware of a study that compares the practical performance of various

explicit state-level algorithms.

A Symbolic Algorithm for Optimal Markov Chain Lumping 151

Table 2. Performance Results

(a) Performance comparison of symbolic and explicit algorithms

Config
(N1, N2)

of states # of nodes total running time (sec) peak # of nodes
n �n η �η V1 V2 V3 EA V1 V2 V3

F
P

C
S

(2,2) 1.58e4 703 5960 4979 1.83e2 4.00e1 7.50e0 5.20e−1 2.58e4 2.58e4 2.75e4
(3,1) 2.30e4 969 14370 9079 1.00e3 1.90e2 2.90e1 8.80e−1 6.42e4 6.42e4 6.86e4
(2,3) 2.57e5 2145 9114 13731 1.20e4 1.50e3 7.80e1 1.00e1 6.82e4 6.82e4 7.09e4
(3,2) 1.89e6 9139 34122 43134 TL TL 4.20e3 9.40e1 TL 4.68e5 4.78e5
(2,4) 3.80e6 5151 12314 34318 TL 2.60e4 5.80e2 1.80e2 TL 1.62e5 1.65e5
(2,5) 5.26e7 10585 15468 70809 TL 2.30e5 3.00e3 ML TL 3.49e5 3.54e5
(3,3) 1.24e8 47905 53177 151368 TL TL 1.15e5 ML TL TL 2.56e6

P
2P

(3,5) 3.28e4 56 2451 1751 3.40e0 2.72e0 1.70e0 8.38e−1 2.36e4 2.73e4 2.83e4
(4,5) 1.05e6 126 11941 5914 8.04e1 5.17e1 2.03e1 3.84e1 1.18e5 1.43e5 1.50e5
(5,5) 3.36e7 196 26266 10975 7.43e2 4.13e2 1.37e2 ML 3.63e5 4.44e5 4.68e5
(6,5) 1.07e9 266 40591 20212 3.64e3 1.91e3 5.56e2 ML 8.56e5 1.06e6 1.12e6
(7,5) 3.44e10 336 54916 26182 1.18e4 6.22e3 1.64e3 ML 1.54e6 1.83e6 1.93e6
(8,5) 1.10e11 406 69241 36153 4.43e4 2.53e4 1.14e4 ML 2.65e6 3.37e6 3.51e6

(b) Comparison of V3, Kwiatkowska’s algorithm and their combination

Model Config
(N1, N2)

of states # of nodes running times (sec)
n �nKA �nV3 η �ηKA �ηV3 V3 KA Comb.

P2P

(3,5) 3.28e4 5.98e3 56 2451 12518 1751 1.70e0 1.15e−1 2.15e0
(4,5) 1.05e6 5.24e4 126 11941 42166 5914 2.03e1 4.90e−1 2.56e1
(5,5) 3.36e7 3.77e5 196 26266 101630 10975 1.37e2 1.30e0 1.68e2
(6,5) 1.07e9 2.32e6 266 40591 189704 20212 5.56e2 3.05e0 7.09e2
(7,5) 3.44e10 1.26e7 336 54916 306123 26182 1.64e3 5.11e0 2.26e3
(8,5) 1.10e11 6.15e7 406 69241 449599 36153 1.14e4 9.17e0 1.48e4

P2P. The results are given in Table 2(a). Columns 3 to 6 give the number of
states and MTBDD nodes of the original (input) and the lumped (output) MCs.
Times shown in columns 7 to 10 include both the partition computation and the
quotient construction times. The last three columns give the maximum number
of live MTBDD nodes during the runtime of V1, V2, and V3. ML (Memory
Limit) and TL (Time Limit) mean that the corresponding data is not available
because the algorithm ran out of memory and its running time exceeded 3 days
(≈ 2.5 × 105 seconds), respectively.

Since all algorithms are optimal, they generate the same lumped MCs, and for
V1-V3, with the same MTBDD representations. It has been observed (e.g., see
[13]) that lumping often increases the size of the MTBDD representation, i.e., η <
η̃. The reason is that the structure regularity of the MTBDD of the lumped MC
is lost. In our experiments, that holds true when ñ is sufficiently large.

From Table 2(a) we can see how effective T1 and T2, the improvement tech-
niques described in Section 4, are. Based on all experiments, V3 is faster than
V2 by a factor of 1.6 to 76 and V2 is faster than V1 by a factor of 1.3 to 10.
Since T1 saves time on computing all classes of Π and T2 does so by skipping
stable classes of Π , their effects grow as |Π | and ñ increase (note that |Π | ≤ ñ
during the runtime of the algorithm). That is the reason why the speedup fac-
tors are less for P2P than FPCS and for each model the speedup factors increase
as ñ grows. Overall, the combination of T1 and T2 achieve a speedup of 2 to
700, depending on the input MC. Note that their combined memory overhead, in

152 S. Derisavi

terms of the number of alive nodes, is very low (at most 32%) relative to the
speedup they cause.

Those improvements significantly pale the speed disadvantage that V3 has
compared to EA. We observed that if the structure of input MTBDD is suffi-
ciently regular and the CTMC is significantly lumpable, V3 outperforms EA. In
configuration (4,5) of P2P, V3 is 1.9 times faster than EA. We anticipate that
the ratio of V3’s speed to EA’s would increase for larger P2P models if EA did
not run out of memory. The reason is that V3’s running time is growing slower
than n while EA’s would increase at least as fast as n. Although V3 is 45 times
slower than EA on one of the experiments, its main advantage comes from its
ability to handle MCs that are several orders of magnitude larger.

SymCompQuot of Fig. 1(b) has two explicit loops over states of the lumpable
partition. Therefore, one may not consider it as a “very symbolic” algorithm or
may have suspicion about its efficiency. Based on our measurements (not shown
in Table 2(a)), SymCompQuot never takes more than 23% of the total running
time of the symbolic algorithm for the FPCS model. The corresponding number
for the P2P model is 6%.

Comparison and Combination of Two Symbolic Algorithms. Finally, we
compare the performance of V3 against another symbolic algorithm. We are not
aware of any other state-level symbolic lumping algorithm. However, we think
that it is informative to compare our algorithm to the MTBDD-based model-level
lumping algorithm of Kwiatkowska et. al. [18]. Kwiatkowska’s algorithm (KA)
exploits a special type of symmetry, i.e., symmetry among identical components.

Table 2(b) shows the results of our experiments with V3 and KA6. In gen-
eral, ñKA �= ñV3 since KA is not optimal, and therefore, may not generate the
smallest quotient CTMC for all inputs. Based on the results given in Table 2(b),
we observe that (1) KA is a few orders of magnitude faster than our algorithm
because it gets symmetry information from the high-level specification of the
model and not from the CTMC, (2) ñV3 is (sometimes, several) orders of mag-
nitude smaller than ñKA because V3 is optimal, (3) V3 may additionally lead
to a much smaller MTBDD representation (η̃KA � η̃V3) as is the case for all
instances of P2P model we tried. Obviously, (2) generally holds for models that
are lumpable due to symmetries other than those exploited by KA. For models
that have no symmetries but those exploitable by KA, KA is much more efficient
than V3 in that it would generate the (same) smallest quotient MC much faster.

In explicit lumping algorithms, we observe the same trend when comparing
state-level and model-level algorithms: the former are slower but may generate
much smaller quotient CTMCs. Since the running time of explicit state-level
algorithms are at least linear in n, it will be beneficial to combine the the state-
level and the model-level algorithms, i.e., to apply them in sequence. First, the

6 We did not include the FPCS model in Table 2(b) because KA does not currently
support exploiting the hierarchical symmetries of the FPCS model. However, we
believe that the theory and implementation of KA are extendible to hierarchical
symmetries in a straightforward manner as in [10].

A Symbolic Algorithm for Optimal Markov Chain Lumping 153

model-level algorithm quickly produces a partially lumped CTMC. Then, the
state-level algorithm takes the result and produces the optimally lumped CTMC
much faster than what it would take the state-level algorithm to optimally lump
the original CTMC.

The last column of Table 2(b) shows the total running time of applying KA
and V3 in sequence. As we can see, in the case of symbolic algorithms, the
combination is always slower than V3. That is not a surprising result because
the running time of a symbolic state-level algorithm (e.g., V3) does not depend
on the size of the state space of the input CTMC. Rather, it depends on the
structure regularity and the number of nodes of the input MTBDD; the former is
diminished and the latter is increased by the model-level algorithm (η̃KA � η).

6 Conclusion and Future Work

In this paper, we developed the first symbolic state-level lumping algorithm for
Markov chains using a new partition representation technique whose properties
enabled us to improve the running time of the algorithm by up to three orders
of magnitude. In the worst case we experimented, our symbolic algorithm was
less than two orders of magnitude slower than an efficient explicit algorithm. In
the best case, the former was even faster by a factor of 1.9. The natural strength
of our algorithm is its ability to lump CTMCs with state spaces that are several
orders of magnitude larger than what the explicit algorithm can.

We also compared our state-level symbolic algorithm with Kwiatkowska’s
symbolic model-level algorithm. We observed in our experiments that although
our algorithm is a few orders of magnitude slower, it generates lumped CTMCs
that are several orders of magnitude smaller. Finally, we combined the two sym-
bolic algorithms. Unlike the explicit case, the combination is always slower than
the state-level algorithm due to loss of structure regularity and increase in size
of the MTBDD representation by the model-level algorithm.

There is no study that shows the effect of the various partition representation
methods on the performance of (Markov chain) lumping algorithms. This paper
is a first step toward that study. We also would like to investigate whether our
partition representation method benefits other symbolic algorithms. Finally, we
intend to integrate the algorithm into PRISM.

Acknowledgments. We would like to thank Holger Hermanns for pointing out
some of the previous work, Dave Parker,Gethin Norman, and Marta Kwiatkowska
for their technical support with the PRISM tool and and the P2P model, Shravan
Gaonkar for his helpful comments on the manuscript, and last but not least, the
reviewers for their very useful feedback.

References

1. E. Böde, M. Herbstritt, H. Hermanns, S. Johr, T. Peikenkamp, R. Pulungan,
R. Wimmer, and B. Becker. Compositional performability evaluation for STATE-
MATE. In Proc. of QEST, USA, Sep. 2006.

154 S. Derisavi

2. A. Bouali and R. de Simone. Symbolic bisimulation minimisation. In Proc. of
CAV, volume 663 of LNCS, pages 96–108. Springer, 1992.

3. R. E. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE
Trans. Comp., 35(8):677–691, Aug. 1986.

4. P. Buchholz. Exact and ordinary lumpability in finite Markov chains. Journal of
Applied Probability, 31:59–74, 1994.

5. P. Buchholz. Efficient computation of equivalent and reduced representations for
stochastic automata. Int. Journal of Comp. Sys. Sci. & Eng., 15(2):93–103, 2000.

6. G. Ciardo and A. S. Miner. A data structure for the efficient Kronecker solution
of GSPNs. In Proc. of PNPM, pages 22–31, 1999.

7. E. Clarke, M. Fujita, P. McGeer, K. McMillan, J. Yang, and X. Zhao. Multiterminal
binary decision diagrams: An efficient data structure for matrix representation.
Formal Methods in System Design, 10(2/3):149–169, 1997.

8. S. Derisavi. Solution of Large Markov Models Using Lumping Techniques and
Symbolic Data Structures. PhD thesis, U. of Illinois at Urbana-Champaign, 2005.

9. S. Derisavi, H. Hermanns, and W. H. Sanders. Optimal state-space lumping in
Markov chains. Information Processing Letters, 87(6):309–315, September 2003.

10. S. Derisavi, P. Kemper, and W. H. Sanders. Symbolic state-space exploration
and numerical analysis of state-sharing composed models. Linear Algebra and Its
Applications, 386:137–166, July 15, 2004.

11. S. Derisavi, P. Kemper, and W. H. Sanders. Lumping matrix diagram representa-
tions of markovian models. In Proc. of DSN, pages 742–751, Japan, 2005.

12. H. Hermanns. Interactive Markov Chains and the Quest for Quantified Quality,
volume 2428 of LNCS. Springer, 2002.

13. H. Hermanns, J. Meyer-Kayser, and M. Siegle. Multi terminal binary decision
diagrams to represent and analyse continuous time Markov chains. In Proc. of 3rd
Meeting on Numerical Solution of Markov Chains (NSMC), pages 188–207, 1999.

14. H. Hermanns and M. Siegle. Bisimulation algorithms for stochastic process algebras
and their bdd-based implementation. In ARTS, pages 244–264, 1999.

15. A. Hinton, M. Kwiatkowska, G. Norman, and D. Parker. PRISM: A tool for
automatic verification of probabilistic systems. In H. Hermanns and J. Palsberg,
editors, Proc. of TACAS ’06, volume 3920 of LNCS, pages 441–444. Springer, 2006.

16. R. A. Howard. Dynamic Probabilistic Systems, Volume II: Semi-Markov and De-
cision Processes. Wiley, New York, 1971.

17. J. G. Kemeney and J. L. Snell. Finite Markov Chains. D. Van Nostrand Company,
Inc., 1960.

18. M. Kwiatkowska, G. Norman, and D. Parker. Symmetry reduction for probabilistic
model checking. In T. Ball and R. Jones, editors, Proc. of CAV, volume 4114 of
LNCS, pages 234–248. Springer-Verlag, 2006.

19. W. H. Sanders and L. M. Malhis. Dependability evaluation using composed SAN-
based reward models. J. of Para. and Dist. Comp., 15(3):238–254, July 1992.

20. W. H. Sanders and J. F. Meyer. Reduced base model construction methods for
stochastic activity networks. IEEE J. on Selected Areas in Comm., 9(1):25–36,
Jan. 1991.

21. F. Somenzi. CUDD: Colorado University decision diagram package. public soft-
ware, Colorado Univeristy, Boulder, http://vlsi.colorado.edu/ fabio/.

22. R. Wimmer, M. Herbstritt, H. Hermanns, K. Strampp, and B. Becker. Sigref - a
symbolic bisimulation tool box. In Proc. of ATVA ’06, China, 2006. to appear.

Flow Faster: Efficient Decision Algorithms for

Probabilistic Simulations�

Lijun Zhang1, Holger Hermanns1, Friedrich Eisenbrand2,
and David N. Jansen3,4

1 Department of Computer Science, Saarland University, Saarbrücken, Germany
2 Department of Mathematics, University of Paderborn, Germany

3 Department of Computer Science, University of Twente, Enschede, The Netherlands
4 Software Modeling and Verification Group, RWTH Aachen, Germany

Abstract. Abstraction techniques based on simulation relations have
become an important and effective proof technique to avoid the infamous
state space explosion problem. In the context of Markov chains, strong
and weak simulation relations have been proposed [17,6], together with
corresponding decision algorithms [3,5], but it is as yet unclear whether
they can be used as effectively as their non-stochastic counterparts. This
paper presents drastically improved algorithms to decide whether one
(discrete- or continuous-time) Markov chain strongly or weakly simulates
another. The key innovation is the use of parametric maximum flow
techniques to amortize computations.

1 Introduction

To compare the stepwise behaviour of states in transition systems, simulation
relations (�) have been widely considered [18,16]. Simulation relations are pre-
orders on the state space such that if s � s′ (“s′ simulates s”) state s′ can mimic
all stepwise behaviour of s; the converse, i. e., s′ � s is not guaranteed, so state
s′ may perform steps that cannot be matched by s. Thus, if s � s′ then every
successor of s has a corresponding related successor of s′, but the reverse does
not necessarily hold. In the context of model checking, simulation relations can
be used to combat the well-known state space explosion problem, owed to the
preservation of certain classes of temporal formulas. For instance, if s � s′ then
for all safe CTL∗ formulas Φ (formulas with universal path-quantifiers only) it
follows that s′ |= Φ implies s |= Φ [9].

Verification of stochastic systems faces very similar state space explosion prob-
lems. Therefore, simulation preorders [17,6] have been proposed for discrete- and
continuous-time Markov chains (DTMCs and CTMCs). In correspondence to
the non-probabilistic setting, these preorders preserve fragments of PCTL [14]
and CSL [2,4]. They provide the principal ingredients to perform abstraction of
Markov chains, while preserving safe fragments of the respective logics. However,
� This work is supported by the NWO-DFG bilateral project VOSS and by the DFG

as part of the Transregional Collaborative Research Center SFB/TR 14 AVACS.

O. Grumberg and M. Huth (Eds.): TACAS 2007, LNCS 4424, pp. 155–169, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

156 L. Zhang et al.

it is as yet unclear whether these relations can be used with similar effectiveness
as in the non-probabilistic setting. One prerequisite is the availability of efficient
decision procedures for simulation in finite-state models.

Let n denote the number of states, and m denote the number of transitions.
For strong simulation preorder, Baier et al. [3] introduced a polynomial decision
algorithm with complexity O(n7/ logn), by tailoring a network flow algorithm
to the problem, embedded into an iterative refinement loop. This technique can
not be applied to weak simulations [7] directly. In [5], Baier et al. proved that
probabilistic weak simulation is decidable in polynomial time by reducing it to
a linear programming (LP) problem.

In this paper, we present drastically improved algorithms. For strong simu-
lation, the core observation is that the networks on which the maximum flows
are calculated, are very similar across iterations of the refinement loop. We ex-
ploit this by adaptation of the parametric maximum flow algorithm [10] to solve
the maximum flows for the arising sequences of similar networks, arriving at an
overall time complexity O(m2n).

For weak simulation, adapting the maximum flow idea is not straightforward.
This is because successor states might need to be split into two fragments and
one does not a priori know how to split them. Nevertheless, we manage to incor-
porate the parametric maximum flow algorithm into a decision algorithm with
complexity O(m2n3).

The algorithms are developed for both discrete- and continuous-time Markov
chains. Especially in the very common case, where the state fanout of a model is
bounded by a constant k (and hence m ≤ kn), our strong simulation algorithm
has complexity O(n2) which is faster by a factor of n5/ logn in comparison to
the existing algorithm. This complexity corresponds to the best algorithms for
deciding strong simulation over non-probabilistic systems [15,11]. As we will dis-
cuss the weak simulation algorithm even leads to an improvement in the order of
n10 for CTMCs (and n9 for DTMCs), compared to the one using a polynomial
LP routine [20]. Remarkably, our algorithm is polynomial in the RAM-model
of computation while no known LP-based algorithm is. We argue that espe-
cially for CTMCs, which have a very broad spectrum of applications ranging
from disk storage dimensioning to gene regulatory networks, the availability of
such algorithms can become a key ingredient to fight the state space explosion
problem.

The paper proceeds by first giving necessary definitions and background in
Section 2. Section 3 presents algorithms for deciding strong simulations while
Section 4 focuses on algorithms for weak simulations. Section 5 concludes the
paper.

2 Preliminaries

This section recalls the definitions of fully probabilistic systems, discrete- and
continuous-time Markov chains, strong and weak simulations on these models [7].
We also review the preflow algorithm to solve maximum flow problems [13].

Flow Faster: Efficient Decision Algorithms for Probabilistic Simulations 157

Models. Let X, Y be finite sets. For f : X → R, let f(A) denote
∑

x∈A f(x) for
all A ⊆ X . If f : X × Y → R is a two-dimensional function, let f(x, A) denote∑

y∈A f(x, y) for all x ∈ X and A ⊆ Y , and f(A, y) denote
∑

x∈A f(x, y) for all
y ∈ Y and A ⊆ X . Let AP be a fixed, finite set of atomic propositions.

Definition 1. A labeled fully probabilistic system (FPS) is a tuple D = (S,P, L)
where S is a finite set of states, P : S×S → [0, 1] is a probability matrix satisfying
P(s, S) ∈ [0, 1] for all s ∈ S, and L : S → 2AP is a labeling function.

A state s is called stochastic if P(s, S) = 1, absorbing if P(s, S) = 0, and sub-
stochastic otherwise.

Definition 2. A labeled discrete-time Markov chain (DTMC) is a FPS D =
(S,P, L) where s is either absorbing or stochastic for all s ∈ S.

Definition 3. A labeled continuous-time Markov chain (CTMC) is a tuple C =
(S,R, L) with S and L as before, and a rate matrix R : S × S → R≥0.

The embedded DTMC of C = (S,R, L) is defined by emb(C) = (S,P, L) with
P(s, s′) = R(s, s′)/R(s, S) if R(s, S) > 0 and 0 otherwise. We will also use P
for a CTMC directly, without referring to its embedded DTMC explicitly.

A distribution μ on S is a function μ : S → [0, 1] satisfying the condition
μ(S) ≤ 1. We let Dist(S) denote the set of distributions over the set S. μ is
called stochastic if μ(S) = 1. If it is not stochastic, we use an auxiliary state
(not a real state) ⊥ �∈ S and set μ(⊥) = 1 − μ(S). Further, for a given FPS,
let P(s, ·) denote the distribution defined by the transition probability matrix
P for all s ∈ S. Let P(s, ⊥) = 1 − P(s, S) for all s ∈ S, and let S⊥ denote the
set S ∪ {⊥}. For s ∈ S, let post(s) denote {s′ ∈ S | P(s, s′) > 0}, i. e., the set of
successor states of s. Let post⊥(s) denote {s′ ∈ S⊥ | P(s, s′) > 0}, i. e., post(s)
plus the auxiliary state ⊥ in case that P(s, ⊥) > 0. For CTMC C = (S,R, L),
let post(s) = {s′ ∈ S | R(s, s′) > 0} for all s ∈ S.

For a given FPS, DTMC or CTMC, its fanout is defined by maxs∈S |post(s)|,
the number of states is usually denoted by n, and the number of transitions is
denoted by m. For s ∈ S, reach(s) denotes the set of states that are reachable
from s with positive probability. For a relation R ⊆ S × S and s ∈ S, let R[s]
denote the set {s′ ∈ S | (s, s′) ∈ R}, and R−1[s] denote the set {s′ ∈ S | (s′, s) ∈
R}. If (s, s′) ∈ R, we write also s R s′.

Simulation relations. Strong simulation is based on the notion of a weight func-
tion. We recall the definition here from [17], adapted to FPS as in [7].

Definition 4. Let μ, μ′ ∈ Dist(S) and R ⊆ S ×S. A weight function for (μ, μ′)
w. r. t. R, denoted by μ 	R μ′, is a function Δ : S⊥ × S⊥ → [0, 1] such that
Δ(s, s′) > 0 implies s R s′ or s = ⊥, μ(s) = Δ(s, S⊥) for s ∈ S⊥ and μ′(s′) =
Δ(S⊥, s′) for s′ ∈ S⊥.

Strong simulation requires similar states to be related via weight functions on
their distributions [17].

158 L. Zhang et al.

Definition 5. Let D = (S,P, L) be an FPS. R ⊆ S × S is a strong simulation
on D iff for all s1, s2 with s1 R s2: L(s1) = L(s2) and P(s1, ·) 	R P(s2, ·). We
say that s2 strongly simulates s1 in D, denoted by s1 �d s2, iff there exists a
strong simulation R on D such that s1 R s2.

For CTMCs we say that s2 strongly simulates s1 if, in addition to the DTMC
conditions, s2 can move stochastically faster than s1 [7], which manifests itself
by a slower rate.

Definition 6. Let C = (S,R, L) be a CTMC. R ⊆ S × S is a strong simulation
on C iff for all s1, s2 with s1 R s2: L(s1) = L(s2), P(s1, ·) 	R P(s2, ·) and
R(s1, S) ≤ R(s2, S). We say that s2 strongly simulates s1 in C, denoted by
s1 �c s2, iff there exists a strong simulation R on C such that s1 R s2.

We now recall the notion of weak simulation on FPSs. Intuitively, s2 weakly
simulates s1 if they have the same labels, and if their successor states can be
grouped into sets Ui and Vi for i = 1, 2, satisfying certain conditions. We can
view steps to Vi as stutter steps while steps to Ui are visible steps. It is then
required that there exists a weight function for the conditional distributions:
P(s1,·)

K1
and P(s2,·)

K2
where Ki intuitively correspond to the probability of perform-

ing a visible step from si. For reasons explained in [7], the definition needs to
account for states which partially belong to Ui and partially to Vi. Technically,
this is achieved by functions δi that distribute si over Ui and Vi in the definition
below [7].

Definition 7. Let D = (S,P, L) be an FPS. The relation R ⊆ S × S is a weak
simulation on D iff for all s1, s2 with s1 R s2: L(s1) = L(s2) and there exist
functions δi : S⊥ → [0, 1] and sets Ui, Vi ⊆ S⊥ (for i = 1, 2) with

Ui = {ui ∈ post⊥(si) | δi(ui) > 0} and Vi = {vi ∈ post⊥(si) | δi(vi) < 1}

such that

1. (a) v1 R s2 for all v1 ∈ V1\{⊥}, and (b) s1 R v2 for all v2 ∈ V2\{⊥}
2. there exists a function Δ : S⊥ × S⊥ → [0, 1] such that:

(a) Δ(u1, u2) > 0 implies u1 ∈ U1, u2 ∈ U2 and either u1 R u2 or u1 = ⊥,
(b) if K1 > 0 and K2 > 0 then for all states w ∈ S⊥:

K1 · Δ(w, U2) = P(s1, w)δ1(w) and K2 · Δ(U1, w) = P(s2, w)δ2(w)

where Ki =
∑

ui∈Ui
δi(ui) · P(si, ui) for i = 1, 2.

3. for u1 ∈ U1\{⊥} there exists a path fragment s2, w1, . . . , wn, u2 with positive
probability such that n ≥ 0, s1 R wj for 0 < j ≤ n, and u1 R u2.

We say that s2 weakly simulates s1 in D, denoted s1 �d s2, iff there exists a
weak simulation R on D such that s1 R s2.

Condition (3.) will in the sequel be called the reachability condition. If U2 = ∅
and U1 �= ∅, which implies that K1 > 0 and K2 = 0, the reachability condition

Flow Faster: Efficient Decision Algorithms for Probabilistic Simulations 159

guarantees that for any visible step s1 → u1 with u1 ∈ U1, s2 can reach a state
u2 which simulates u1 while passing only through states simulating s1.

Weak simulation on DTMCs arises as a special case of the above definition,
as a DTMC is an FPS (where each state is absorbing or stochastic). Weak
simulation for CTMCs is defined as follows.

Definition 8 ([7,6]). Let C = (S,R, L) be a CTMC. R ⊆ S × S is a weak
simulation on C iff for s1 R s2: L(s1) = L(s2) and there exist functions δi : S →
[0, 1] and sets Ui, Vi ⊆ S⊥ (for i = 1, 2) satisfying conditions (1.) and (2.) of
Definition 7 and the rate condition holds: (3’) K1 · R(s1, S) ≤ K2 · R(s2, S).

We say that s2 weakly simulates s1 in C, denoted s1 �c s2, iff there exists a
weak simulation R on C such that s1 R s2.

In this definition, the rate condition (3’) replaces the reachability condition of
the preceding definition. We refer to [7] for a discussion of subtleties in this
definition.

Simulation up to R. For an arbitrary relation R on the state space S of an FPS
with s1 R s2, we say that s2 simulates s1 strongly up to R, denoted s1 �R s2,
if L(s1) = L(s2) and P(s1, ·) 	R P(s2, ·). Otherwise we write s1 ��R s2. Note
that s1 �R s2 does not imply s1 �d s2 unless R is a strong simulation, since
only the first step is considered for �R. Likewise, we say that s2 simulates s1
weakly up to R, denoted by s1 �R s2, if there are functions δi, sets Ui, Vi as
required by Definition 7 for this pair. Otherwise, we write s1 ��R s2. Similar to
strong simulation up to R, s1 �R s2 does not imply s1 �d s2, since no conditions
are imposed on pairs in R different from (s1, s2). These conventions extend to
DTMCs and CTMC in the obvious way.

Preflow algorithm. We briefly recall the preflow algorithm [13, p. 925] for finding
the maximum flow over the network N = (V, E, u) where V is a finite set of
vertices and E ⊆ V ×V is a set of edges. V contains a distinguished source vertex
� and a distinguished sink vertex �. u : E → R>0 is the capacity function. We
extend the capacity function to all vertex pairs: u(v, w) = 0 if (v, w) �∈ E. A flow
f on N is a function f : V × V → R that satisfies:

1. f(v, w) ≤ u(v, w) for all (v, w) ∈ V × V capacity constraints
2. f(v, w) = −f(w, v) for all (v, w) ∈ V × V antisymmetry constraint
3. f(v, V) = 0 at vertices v ∈ V \ {�, �} conservation rule

The value of a flow function f is given by f(�, V). A maximum flow is a flow of
maximum value.

A preflow is a function f : V × V → R satisfying (1.) and (2.) above, and the
relaxation of (3.): f(V, v) ≥ 0 for all v ∈ V \ {�}. The excess e(v) of a vertex v
is defined by f(V, v). A vertex v �∈ {�, �} is called active if e(v) > 0. Observe
that a flow is a preflow in which no vertex v is active for v ∈ V \ {�, �}. A
pair (v, w) is a residual edge of f if f(v, w) < u(v, w). The set of residual edges
w. r. t. f is denoted by Ef . The residual capacity uf (v, w) of the residual edge
(v, w) is defined by u(v, w) − f(v, w). If (v, w) is not a residual edge, it is called
saturated. A valid distance function (called valid labeling in [13]) d is a function

160 L. Zhang et al.

SimRels(D)

1 R, Rnew ← {(s1, s2) ∈ S × S | L(s1) = L(s2)}
2 do
3 R ← Rnew and Rnew ← ∅
4 for ((s1, s2) ∈ R)
5 if (s1 �R s2)
6 Rnew ← Rnew ∪ {(s1, s2)}.
7 until(Rnew = R)
8 return R

Fig. 1. Basic algorithm to decide strong simulation

V → R≥0 ∪ {∞} satisfying: d(�) = |V |, d(�) = 0 and d(v) ≤ d(w) + 1 for every
residual edge (v, w). A residual edge (v, w) is admissible if d(v) = d(w) + 1.

We initialise the preflow f by: f(v, w) = u(v, w) if v =� and 0 otherwise. The
distance function d is initialised by: d(v) = |V | if v =� and 0 otherwise. The pre-
flow algorithm maintains the preflow f and the valid distance function d. If there
is an active vertex v such that (v, w) is admissible, it pushes min{e(v), uf (v, w)}
flows from v toward the sink along the admissible edge (v, w). If v is active but
there are no admissible edges leaving it, the relabeling of v sets the distance of v
equal to min{d(w) + 1 | (v, w) ∈ Ef}. If there are no active vertices, the preflow
f is a maximum flow.

3 Algorithms for Deciding Strong Simulation

We recall first the basic algorithm to decide strong simulation preorder. Then,
we refine this algorithm to deal with strong simulations on FPSs, DTMCs and
CTMCs respectively.

Basic algorithm to decide strong simulation. The algorithm in [3], depicted
as SimRels in Fig. 1, takes as a parameter a model, which, for now, is an
FPS D. The subscript ’s’ stands for strong simulation; later, a very similar
algorithm, i. e., SimRelw, will be used for weak simulation. To calculate the
strong simulation relation for D, the algorithm starts with the trivial relation
Rinit = {(s1, s2) ∈ S × S | L(s1) = L(s2)} and removes each pair (s1, s2) if s2
cannot strongly simulate s1 up to the current relation R, i. e., s1 ��R s2. This
proceeds until there is no such pair left, i. e., Rnew = R. Invariantly through-
out the loop it holds that R is coarser than d. Hence, we obtain the strong
simulation preorder �d = R, once the algorithm terminates.

The decisive part of the algorithm is the check whether s1 �R s2 in line 5.
The answer is computed with the help of a maximum flow computation on a
particular network N (P(s1, ·), P(s2, ·), R) constructed out of P(s1, ·), P(s2, ·)
and R. This network is constructed via a graph containing a copy t ∈ S⊥ of
each state t ∈ S⊥ where S⊥ = {t | t ∈ S⊥} as follows: Let � (the source) and
� (the sink) be two additional vertices not contained in S⊥ ∪ S⊥. For functions

Flow Faster: Efficient Decision Algorithms for Probabilistic Simulations 161

μ, μ′ : S → R≥0 and a relation R ⊆ S × S we define the network N (μ, μ′, R) =
(V, E, u) with the set of vertices

V = {�, �} ∪ {s ∈ S⊥ | μ(s) > 0} ∪ {s ∈ S⊥ | μ′(s) > 0}

and the set of edges E is defined by

E = {(s, t) | (s, t) ∈ R ∨ s = ⊥} ∪ {(�, s)} ∪ {(t, �)}

where s, t ∈ S⊥ with μ(s) > 0 and μ′(t) > 0. The capacity function u is defined
as follows: u(�, s) = μ(s) for all s ∈ S⊥, u(t, �) = μ′(t) for all t ∈ S⊥, u(s, t) = ∞
for all (s, t) ∈ E and u(v, w) = 0 otherwise. This network is a bipartite network,
where the vertices can be partitioned into two subsets V1 := {s ∈ S⊥ | μ(s) >
0} ∪ {�} and V2 := {s ∈ S⊥ | μ′(s) > 0} ∪ {�} such that all edges have one
endpoint in V1 and another in V2. For two states s1, s2 of an FPS or a CTMC,
we let N (s1, s2, R) denote the network N (P(s1, ·),P(s2, ·), R).

The following lemma expresses the crucial relationship between maximum
flows and weight functions on which the algorithm is based. It is a direct exten-
sion of [3, Lemma 5.1] now accounting for sub-stochasticity.

Lemma 1. Let S be a finite set of states and R be a relation on S. Let μ, μ′ ∈
Dist(S). Then, μ 	R μ′ iff the maximum flow in N (μ, μ′, R) is 1.

Thus we can decide s1 �R s2 by computing the maximum flow in N (s1, s2, R).
Using the best known flow algorithm for this type of networks [8,12], one obtains
the overall complexity O(n7/ logn) for the algorithm SimRels [3]. The space
complexity is O(n2).

An improved algorithm for FPSs. We first analyse the behaviour of SimRels

in more detail. We consider an arbitrary pair (s1, s2), and assume that (s1, s2)
stays in relation R throughout the iterations, until the pair is either found not
to satisfy s1 �R s2 or the algorithm terminates with a fix-point. If we let l(s1,s2)
denote the number of iterations until either of these happens, then altogether
l(s1,s2) maximum flow algorithms are run for this pair. However, the networks
N (s1, s2, ·) constructed in successive iterations are very similar, and may often be
identical across iterations: They differ from iteration to iteration only by deletion
of some edges induced by the successive clean up of R. For our particular pair
(s1, s2) the network might not change at all in some iterations, because the
deletions from R do not affect their direct successors. We are going to exploit
this observation by an algorithm that re-uses the already computed maximum
flows, in a way that whatever happens is good: If no changes occur to N (s1, s2, ·),
then the maximum flow is equal to the one in the last iteration. If changes occur,
the preflow algorithm can be applied to get the new maximum flow very fast,
using the maximum flow constructed in the last iteration as a preflow.

To understand the algorithm, we look at the network N (s1, s2, Rinit). Let
D1, . . . , Dk be pairwise disjoint subsets of Rinit , which correspond to the pairs
deleted from Rinit in iteration i. Let N (s1, s2, Ri) denote N (s1, s2, Rinit) if i = 1,
and N (s1, s2, Ri−1 \ Di−1) if 1 < i ≤ k + 1. Let fi denote the maximum flow

162 L. Zhang et al.

of the network N (s1, s2, Ri) for i = 1, . . . , k + 1. We address the problem of
checking |fi| = 1 for all i = 1, . . . , k+1. Very similar to the parametric maximum
algorithm [10, p. 34], our algorithm Smf(s1,s2) (sequence of maximum flows)
for the pair (s1, s2) consists of initialising the preflow f(s1,s2) and the distance
function d(s1,s2) as for the preflow algorithm, setting i = 0, and repeating the
following steps at most k times:

Smf(s1,s2)
1. Increase i by 1. If i = 1 go to step 2. Otherwise, for all pairs (u1, u2) ∈ Di−1,

set f(s1,s2)(u1, u2) = 0 and replace the flow f(s1,s2)(u2, �) by f(s1,s2)(u2, �)
−f(s1,s2)(u1, u2). Set N (s1, s2, Ri) = N (s1, s2, Ri−1 \ Di−1). Let f(s1,s2) and
d(s1,s2) be the resulting flow and final valid distance function.

2. Apply the preflow algorithm to calculate the maximum flow for N (s1, s2, Ri)
with preflow f(s1,s2) and distance function d(s1,s2).

3. If |f(s1,s2)| < 1 return false for all j ≥ i. Otherwise, return true and continue
with step 1.

To understand this algorithm, assume i > 1. At step (1.), before we remove the
edges Di−1 from the network N (s1, s2, Ri−1), we modify the flow f(s1,s2), which
is the maximum flow of the network N (s1, s2, Ri−1), by

– setting f(s1,s2)(u1, u2) = 0 for all deleted edges (u1, u2) ∈ Di−1, and
– modifying f(s1,s2)(u2, �) such that the flow f(s1,s2) becomes consistent with

the flow conservation rule.

The excess e(v) is increased if there exists w such that (v, w) ∈ Di−1, and un-
changed otherwise. Hence, the modified flow is a preflow. The distance function
d(s1,s2) keeps valid, since by removing the set of edges Di−1, no new residual
edges are induced. This guarantees that, at step (2.), the preflow algorithm finds
a maximum flow over the network N (s1, s2, Ri). If |f(s1,s2)| < 1 at some iter-
ation i, then |f(s1,s2)| < 1 for all iterations j ≥ i because more edges will be
deleted in subsequent iterations. Therefore, at step (3.), the algorithm returns
true and continues with step (1.) if |f(s1,s2)| = 1, otherwise, returns false for all
subsequent iterations. We derive the complexity of the algorithm as follows:

Lemma 2. Let D1, . . . , Dk be pairwise disjoint subsets of Rinit ∩ post(s1) ×
post(s2). Let fi denote the flow constructed at the end of step (2.) in iteration i.
Assume that |post(s1)| ≤ |post(s2)|. The algorithm Smf(s1,s2) correctly computes
maximum flow fi for N (s1, s2, Ri) where i = 1, . . . , k + 1, and runs in time
O(|post(s1)||post(s2)|2).

The improved algorithm SimRel’s for FPSs is depicted in Fig. 2. The vari-
able l (line 2) denotes the number of iterations of the until-loop, and the set D
(line 9) contains edges removed from R. For every pair (s1, s2) ∈ Rinit , the net-
work N (s1, s2, Rinit) (line 4), the flow function f(s1,s2) and the distance function
d(s1,s2) are initialised as for the preflow algorithm (line 5). At line 6 a set

Listener(s1,s2) = {(u1, u2) | u1 ∈ pre(s1) ∧ u2 ∈ pre(s2) ∧ L(u1) = L(u2)}

Flow Faster: Efficient Decision Algorithms for Probabilistic Simulations 163

SimRel’s(D)

1 R,Rnew ← {(s1, s2) ∈ S × S | L(s1) = L(s2)}
2 l ← 0 // auxiliary variable to count the number of iterations.
3 for ((s1, s2) ∈ R)
4 Construct the initial network N (s1, s2, Rinit) := N (s1, s2, R)
5 Initialise the flow function f(s1,s2) and the distance function d(s1,s2)

6 Listener(s1,s2) ← {(u1, u2) | u1 ∈ pre(s1) ∧ u2 ∈ pre(s2) ∧ L(u1) = L(u2)}
7 do
8 l + +
9 D ← R\Rnew and R ← Rnew and Rnew ← ∅

10 for ((s1, s2) ∈ D)
11 for ((u1, u2) ∈ Listener(s1,s2))

12 D
(u1,u2)
l ← D

(u1,u2)
l ∪ {(s1, s2)}

13 for ((s1, s2) ∈ R)

14 if (Smf(s1,s2) returns true on the set D
(s1,s2)
l)

15 Rnew ← Rnew ∪ {(s1, s2)}.
16 until(Rnew = R)
17 return R

Fig. 2. Efficient algorithm for deciding strong simulation

is saved, where pre(s) = {t ∈ S | P(t, s) > 0}. The set Listener(s1,s2) contains
all pairs (u1, u2) such that the network N (u1, u2, R) contains the edge (s1, s2).
In lines 10–12, the pair (s1, s2) is inserted into the set D

(u1,u2)
l if (s1, s2) ∈ D and

(u1, u2) ∈ Listener(s1,s2). D
(u1,u2)
l contains edges which should be removed to

update the network for (u1, u2) in iteration l. At line 14, the algorithm Smf(s1,s2)

constructs the maximum flow for the set D
(s1,s2)
l . Note that l corresponds to i

in Smf. The initialisation of Smf corresponds to lines 4–5. In the first iteration
(in which D

(s1,s2)
1 = ∅), Smf(s1,s2) skips the computations in step (1.) and pro-

ceeds directly to step (2.), in which the maximum flow f1 for N (s1, s2, Rinit)
is constructed. In iteration l > 1, Smf(s1,s2) takes the set D

(s1,s2)
l , updates the

flow fl−1 and the network, and constructs the maximum flow fl for the net-
work N (s1, s2, Rl). If Smf(s1,s2) returns true, (s1, s2) is inserted into Rnew and
survives this iteration.

Lemma 3. SimRel’s(D) runs in time O(m2n) and in space O(m2). If the
fanout is bounded by a constant, it has complexity O(n2), both in time and space.

Algorithm for DTMCs and CTMCs. We now consider how to handle DTMCs and
CTMCs. Since each DTMC is a special case of an FPS the algorithm SimRel’s
applies directly. For CTMCs, we replace line 1 of the algorithm by

R, Rnew ← {(s1, s2) ∈ S × S | L(s1) = L(s2) ∧ R(s1, S) ≤ R(s2, S)}

to check the rate condition of Definition 6. We arrive at the same complexity.

164 L. Zhang et al.

s1

u1

1

u2

1

q1

2

s2

u3

2

q2

3

u4

2

q3

2

x1

3 u1

u2

u3

u4

� �

1
2

1
2

1
2

1
2

Fig. 3. A CTMC example

Example 1. Consider the CTMC in Fig. 3 (it has 10 states) where labels are
indicated by shades of grey. Consider the pair (s1, s2) ∈ Rinit . The network
N (s1, s2, R1) is depicted on the right of the figure. Assume that we get the
maximum flow f1 which sends 1

2 flow along the path �, u2, u4, � and 1
2 along

�, u1, u3, �. Hence, the check for (s1, s2) is successful in the first iteration. The
checks for the pairs (u1, u3), (u1, u4) and (u2, u3) are also successful in the first
iteration. However, the check for the pair (u2, u4) is unsuccessful, as no successor
of u2 has the same label as x1. In the second iteration, the network N (s1, s2, R2)
is obtained from N (s1, s2, R1) by deleting the edge (u2, u4). In N (s1, s2, R2), the
flows on (u2, u4) and (u4, �) are set to 0, and the vertex u2 has a positive excess
1
2 . Applying the preflow algorithm, we push the excess from u2, along u3, u1, u4
to �. We get a maximum flow f2 for N (s1, s2, R2) which sends 1

2 flow along
the path �, u2, u3, � and 1

2 along �, u1, u4, �. Hence, the check for (s1, s2) is also
successful in the second iteration. Once the fix-point is reached, R still contains
(s1, s2).

4 Algorithms for Deciding Weak Simulation

We now turn our attention to algorithms to decide weak simulation �c. We
first focus on FPSs before addressing DTMCs and CTMCs. The theoretical
complexity of the algorithms for DTMCs and CTMCs are the same as the one
for FPSs (except for bounded fanout). Nevertheless, we shall present dedicated
algorithms for DTMCs and CTMCs, because their specific properties can be
exploited for significant improvements in practice.

An algorithm for FPSs. The basic weak simulation algorithm SimRelw(D) is
obtained by replacing line 5 of SimRels(D) in Fig. 1 by: if (s1 �R s2). Thus
instead of checking the pairs w. r. t. �R we check them w. r. t. �R. The latter
check is performed by Ws(D, s1, s2, R), shown in Fig. 4.

Here, line 1 corresponds to the case that s1 has only stutter steps, i. e., K1 = 0:
Assuming post(s1) ⊆ R−1[s2] we choose U1 = ∅, V1 = post⊥(s1) and U2 =
post(s2), V2 = {⊥} to fulfill the conditions in Definition 7. Hence, s1 �R s2. If
line 3 is reached in Ws, s1 has at least one visible step, and all successors of
s2 can simulate s1. In this case we need to check the reachability condition (3.)
of Definition 7, which is performed in lines 3–6. Line 7 of the algorithm is only

Flow Faster: Efficient Decision Algorithms for Probabilistic Simulations 165

Ws(D, s1, s2, R)

1 if (post(s1) ⊆ R−1[s2]) return true
2 if (post(s2) ⊆ R[s1])
3 if (∃s ∈ reach(s2), such that s 	∈ R[s1]) return true
4 U1 ← {s′

1 ∈ post(s1) | s′
1 	∈ R−1[s2]}

5 if (∀u1 ∈ U1.∃s ∈ reach(s2), such that s ∈ R[u1]) return true
6 else return false
7 return WsFps(D, s1, s2, R)

Fig. 4. Algorithm to check whether s1 �R s2

touched if the checks in line 1 and 2 both return false. In this case, more work
is needed, and this work is delegated to a parametric maximum flow algorithm,
which is called by WsFps(D, s1, s2, R).

To understand the details of this algorithm, we require a bit of notation.
We focus on a particular pair (s1, s2) ∈ R, where R is the current relation. We
partition the set post⊥(si) into MUi (for: must be in Ui) and PVi (for: potentially
in Vi). The set PV1 consists of those successors of s1 which can be either put into
U1 or V1 or both. For technical reasons, we assume additionally that ⊥ ∈ PV1 if
s1 is not stochastic. Hence,

PV1 = post⊥(s1) ∩ (R−1[s2] ∪ {⊥})

The set MU1 equals post⊥(s1)\PV1 which consists of the successor states which
can only be placed in U1. The sets PV2 and MU2 are defined similarly:

PV2 = post⊥(s2) ∩ (R[s1] ∪ {⊥})

and MU2 = post⊥(s2)\PV2. Obviously, δi(u) = 1 for u ∈ MUi for i = 1, 2.
We write γP to denote a distribution P scaled by a constant γ ∈ R>0.

If s1, s2 and R are clear from the context, we let N (γ) denote the network
N (P(s1, ·), γP(s2, ·), R). We say a flow function f of N (γ) is valid for N (γ) iff f
saturates all edges (�, u1) with u1 ∈ MU1 and all edges (u2, �) with u2 ∈ MU2.
For γ ∈ R>0, we address the problem of checking whether there exists a valid
flow f for N (γ). This is a feasible flow problem with lower bounds (f saturates
edges to MU1 and from MU2) and upper bounds (the capacities) on the flows.
It can be solved by applying a simple transformation to the graph (in time
O(|MU1| + |MU2|)), solving the maximum flow problem for the transformed
graph, and checking whether the flow is large enough. Details are, for example,
described in [1, p. 169–170].

If there exists a valid flow f for N (γ), we say that γ is valid for N (γ). The
following lemma shows that the algorithm WsFps(D, s1, s2, R) can be reduced
to checking whether there exists a valid γ for N (γ).

Lemma 4. If Ws(D, s1, s2, R) reaches line 7, s1 �R s2 iff there exists a valid
γ for N (γ).

166 L. Zhang et al.

In the network N (γ) the capacities of the edges leading to the sink are an
increasing function of a real-valued parameter γ. N (γ) is a parametric network1

as described in [10, p. 33]. We recall briefly the breakpoints [10, p. 37–42] of
N (γ). Let κ(γ) denote the minimum cut capacity function, which is the capacity
of a minimum cut as a function of γ. A breakpoint is a value γ0 at which the
slope of κ(γ) changes. κ(γ) is a piecewise-linear concave function with at most
|V | − 2 breakpoints where |V | denotes the number of vertices of N (γ). The
|V | − 1 or fewer line segments forming the graph of κ(γ) correspond to |V | − 1
or fewer distinct cuts. The same minimum cut can be chosen on the same slope
of κ(γ), and at breakpoints certain edges become saturated or unsaturated. As
we expect, it is sufficient to consider only the breakpoints of N (γ):

Lemma 5. There exists a valid γ for N (γ) iff one of the breakpoints of N (γ)
is valid.

All of the breakpoints can be obtained by the breakpoint algorithm [10, p. 40],
which we embed into our algorithm WsFps as follows:

WsFps(D, s1, s2, R)
1. Compute all of the breakpoints b1 < b2 < . . . < bj of N (γ).
2. Return true, iff for some i ∈ {1, . . . , j}, bi is valid for N (bi).

The following lemma gives the correctness of the algorithm Ws:

Lemma 6. Ws(D, s1, s2, R) returns true iff s1 �R s2.

For each given breakpoint, we need to solve one feasible flow problem to check
whether it is valid. So overall we apply at most |V | − 2 times feasible flow
algorithms for all breakpoints. Applying a binary search method over the break-
points, a better bound can be achieved where only log(|V |) maximum flow prob-
lems need to be solved. This allows us to achieve the following complexity result:

Lemma 7. SimRelw(D) runs in time O(m2n3) and in space O(n2). If the
fanout g is bounded by a constant, the time complexity is O(n5).

An algorithm for DTMCs. Let D = (S,P, L) be a DTMC. We exploit the absence
of sub-stochasticity in DTMC to arrive at an improved algorithm, in which we
achieve the effect of WsFps(D, s1, s2, R) via only one maximum flow problem.

Let H denote the sub-relation R∩ [(post(s1)∪{s1})× (post(s2)∪{s2})] which
is the local fragment of the relation R. Now let A1, A2, . . . Ah enumerate the
classes of the equivalence relation (H ∪ H−1)∗ generated by H where h denotes
the number of classes. W. l. o. g., we assume in the following that Ah is the
equivalence class containing s1 and s2, i. e., s1, s2 ∈ Ah . The following lemma
gives some properties of the sets Ai provided that s1 �R s2:

1 In [10, p. 33], the capacities leading to � is a non-increasing function of γ. As in-
dicated in [10, p. 36], if we reverse the directions of all the edges and exchange the
source and sink, the algorithms presented there can be used directly.

Flow Faster: Efficient Decision Algorithms for Probabilistic Simulations 167

WsDtmc(D, s1, s2, R)

1 Construct the partition A1, . . . , Ah

2 if (h = 1) return WsFps(D, s1, s2, R)
3 foreach i ← 1, 2, . . . h − 1
4 if (P(s1, Ai) = P(s2, Ai) = 0) raise error
5 else if (P(s1, Ai) = 0 or P(s2, Ai) = 0) return false
6 else γi ← P(s1,Ai)

P(s2,Ai)

7 if (γi 	= γj for some i, j < h) return false
8 return true iff γ1 is valid for N (γ1).

Fig. 5. Algorithm to check whether s1 �R s2 tailored to DTMCs

Lemma 8. For (s1, s2) ∈ R, assume that there exists a state s′1 ∈ post(s1) such
that s′1 �∈ R−1[s2], and s′2 ∈ post(s2) such that s′2 �∈ R[s1]. Let A1, . . . , Ah be the
sets constructed for (s1, s2) as above. If s1 �R s2, the following hold:

1. P(s1, Ai) > 0 and P(s2, Ai) > 0 for all i < h
2. γi = K1

K2
for all i < h where γi = P(s1,Ai)

P(s2,Ai)

The algorithm WsDtmc is presented in Fig. 5. The partition A1, . . . , Ah is
constructed in line 1. If h = 1 (line 2), it is reduced to WsFps(D, s1, s2, R).
Lines 3–7 follows directly from Lemma 8. Line 8 follows from the following
lemma, which is the counterpart of Lemma 4:

Lemma 9. Assume WsDtmc(D, s1, s2, R) reaches line 7 and h > 1, s1 �R s2
iff γ1 is valid for N (γ1).

One might expect that this lemma allows us to establish a better time bound for
DTMCs in the order of log n. This is indeed the case if h > 1 for each pair (s1, s2)
in the initial Rinit , which is a peculiar structural restriction: the labels of at least
one successor of s1 or s2 must differ from L(s1) (or s2). In this special case we
can even establish the time bound O(m2n), the same as for strong simulation.

An algorithm for CTMCs. We now discuss how to handle CTMCs. Recall that
in Definition 8, we have the rate condition (3’) : K1R(s1, S) ≤ K2R(s2, S). To
determine the weak simulation �c, we simplify the algorithm for DTMCs as
follows. If K1 > 0 and K2 = 0, we must have s1 ��R s2 because of the rate condi-
tion. Hence, the check of the reachability condition in lines 2–6 of the algorithm
Ws(C, s1, s2, R) can be skipped. At line 7 the algorithm WsDtmc(C, s1, s2, R)
is called as before. To check the additional rate condition in WsDtmc we use
the following lemma:

Lemma 10. Assume that s1 �R s2 in emb(C) and there exists s′1 ∈ post(s1)
such that s′1 �∈ R−1[s2]. We let γmin denote the minimal valid breakpoint for
N (γmin) in emb(C). Then, s1 �R s2 in C iff γmin ≤ R(s2, S)/R(s1, S).

168 L. Zhang et al.

To check the rate condition for the case h > 1, we replace line 8 of the algorithm
WsDtmc by:

return true iff γ1 ≤ R(s2, S)/R(s1, S) and γ1 is valid for N (γ1)

In case h = 1, WsDtmc calls WsFps(C, s1, s2, R) in line 2. We replace line 2 of
WsFps by:

Return true iff, for some i ∈ {1, . . . , j}, bi ≤ R(s2, S)/R(s1, S) and bi is
valid for N (bi)

to check the rate condition. The existential quantifier corresponds to the minimal
valid breakpoint requirement. Similar to FPSs, a binary search method over the
breakpoints can be used to find the minimal valid breakpoint. As checking the
reachability condition is not required for CTMCs, we get even a better bound
for sparse CTMCs:

Lemma 11. If the fanout g of CTMC C is bounded by a constant, the time
complexity is O(n4).

5 Conclusions

We have introduced efficient algorithms to decide simulation on Markov mod-
els. For sparse models where the fanout is bounded by a constant, we achieve
the complexities O(n2) for strong and O(n4) for weak simulation relations on
CTMCs, and O(n5) for DTMCs, respectively. If instead one uses the original al-
gorithm for weak simulation combined with the polynomial method to solve such
an LP (O(n10 · r)) [20], one would obtain a time complexity of O(n14 · r) where
r is the maximal binary encoding length of a coefficient of the LP. The weak
simulation algorithm is polynomial in the RAM-model of computation while no
known linear programming based algorithm is.

We believe that the strong and weak simulation algorithms are core contribu-
tions in the quest for model checking techniques of ever larger Markov chains.
Currently, the main bottleneck is the prohibitively unstructured computations
required in the numerical solution phase, resulting in the need to store an n-
dimensional vector of floating point values in memory without much chance for
an efficient symbolic representation [19].

At first sight our situation is worse, since we have to keep flows in the order of
m2 across the iterations of our algorithm. But since these flows are resulting from
very local computations (on bipartite, loop-free networks of diameter 3), they
are much more structured, making it possible to utilise symbolic and hashing
techniques effectively in their internal representation. We therefore expect that
the algorithms in this paper can effectively be employed to reduce the – otherwise
prohibitive – size of a Markov chain prior to numerically checking a safe temporal
logic formula. By doing so, we trade time against memory, because the direct
numerical solution is practically of quadratic complexity (in n) – but only if the
above vector fits in memory.

Flow Faster: Efficient Decision Algorithms for Probabilistic Simulations 169

Acknowledgments. The authors are grateful to Björn Wachter (Saarland Uni-
versity) for helpful comments at an early state of this paper.

References

1. R. K. Ahuja, T. L. Magnanti, J. B. Orlin: Network Flows: theory, algorithms, and
applications. Prentice Hall, 1993

2. A. Aziz, K. Sanwal, V. Singhal, R. K. Brayton: Verifying Continuous Time Markov
Chains. In CAV (1996) 269–276

3. C. Baier, B. Engelen, M. E. Majster-Cederbaum: Deciding Bisimilarity and Simi-
larity for Probabilistic Processes. J. Comput. Syst. Sci. 60(1) (2000) 187–231

4. C. Baier, B. R. Haverkort, H. Hermanns, J.-P. Katoen: Model-Checking Algorithms
for Continuous-Time Markov Chains. IEEE Trans. Software Eng. 29(6) (2003)
524–541

5. C. Baier and H. Hermanns and J.-P. Katoen: Probabilistic weak simulation is
decidable in polynomial time. Inf. Process. Lett. 89(3) (2004) 123–130

6. C. Baier, J.-P. Katoen, H. Hermanns, B. Haverkort: Simulation for Continuous-
Time Markov Chains. In CONCUR (2002) 338–354

7. C. Baier, J.-P. Katoen, H. Hermanns, V. Wolf: Comparative branching-time se-
mantics for Markov chains. Inf. Comput 200(2) (2005) 149–214

8. J. Cheriyan, T. Hagerup, K. Mehlhorn: Can a Maximum Flow be Computed in
O(nm) Time? In Proc. ICALP (1990) 235–248

9. E. M. Clarke, O. Grumberg, D. E. Long: Model Checking and Abstraction. ACM
Transactions on Programming Languages and Systems 16(5) (1994) 1512–1542

10. G. Gallo, M. D. Grigoriadis, R. E. Tarjan: A fast parametric maximum flow algo-
rithm and applications. SIAM J. Comput. 18(1) (1989) 30–55

11. R. Gentilini, C. Piazza, A. Policriti: From Bisimulation to Simulation: Coarsest
Partition Problems. J. Autom. Reasoning 31(1) (2003) 73–103

12. A. V. Goldberg: Recent Developments in Maximum Flow Algorithms (Invited Lec-
ture). In SWAT (1998) 1–10

13. A. V. Goldberg, R. E. Tarjan: A new approach to the maximum-flow problem. J.
ACM 35(4) (1988) 921–940

14. H. Hansson, B. Jonsson: A Logic for Reasoning about Time and Reliability. Formal
Asp. Comput. 6(5) (1994) 512–535

15. M. R. Henzinger, T. A. Henzinger, P. W. Kopke: Computing Simulations on Finite
and Infinite Graphs. In FOCS (1995) 453–462

16. B. Jonsson: Simulations Between Specifications of Distributed Systems. In CON-
CUR (1991) 346–360

17. B. Jonsson, K. G. Larsen: Specification and Refinement of Probabilistic Processes.
In LICS (1991) 266–277

18. R. Milner: Communication and Concurrency. Prentice Hall, 1989
19. D. Parker: Implementation of Symbolic Model Checking for Probabilistic Systems.

University of Birmingham, 2002
20. A. Schrijver: Theory of Linear and Integer Programming. Wiley, 1986

Model Checking Probabilistic Timed Automata
with One or Two Clocks�

Marcin Jurdziński1, François Laroussinie2, and Jeremy Sproston3

1 Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK
2 Lab. Spécification & Verification, ENS Cachan – CNRS UMR 8643, France

3 Dipartimento di Informatica, Università di Torino, 10149 Torino, Italy
mju@dcs.warwick.ac.uk, fl@lsv.ens-cachan.fr,

sproston@di.unito.it

Abstract. Probabilistic timed automata are an extension of timed automata with
discrete probability distributions. We consider model-checking algorithms for the
subclasses of probabilistic timed automata which have one or two clocks. Firstly,
we show that PCTL probabilistic model-checking problems (such as determining
whether a set of target states can be reached with probability at least 0.99 re-
gardless of how nondeterminism is resolved) are PTIME-complete for one clock
probabilistic timed automata, and are EXPTIME-complete for probabilistic timed
automata with two clocks. Secondly, we show that the model-checking problem
for the probabilistic timed temporal logic PTCTL is EXPTIME-complete for one
clock probabilistic timed automata. However, the corresponding model-checking
problem for the subclass of PTCTL which does not permit both (1) punctual tim-
ing bounds, which require the occurrence of an event at an exact time point, and
(2) comparisons with probability bounds other than 0 or 1, is PTIME-complete.

1 Introduction

Model checking is an automatic method for guaranteeing that a mathematical model
of a system satisfies a formally-described property [8]. Many real-life systems, such
as multimedia equipment, communication protocols, networks and fault-tolerant sys-
tems, exhibit probabilistic behaviour. This leads to the study of probabilistic model
checking of probabilistic models based on Markov chains or Markov decision processes
[25,12,9,7,10,6]. Similarly, it is common to observe complex real-time behaviour in sys-
tems. Model checking of (non-probabilistic) continuous-time systems against properties
of timed temporal logics, which can refer to the time elapsed along system behaviours,
has been studied extensively in, for example, the context of timed automata [3,4], which
are automata extended with clocks that progress synchronously with time. Finally, cer-
tain systems exhibit both probabilistic and timed behaviour, leading to the development
of model-checking algorithms for such systems [2,12,10,15,5,19].

In this paper, we aim to study model-checking algorithms for probabilistic timed au-
tomata [13,15], a variant of timed automata extended with discrete probability distribu-
tions, or (equivalently) Markov decision processes extended with clocks. Probabilistic

� Supported in part by EPSRC project EP/E022030/1, Miur project Firb-Perf, and EEC project
Crutial.

O. Grumberg and M. Huth (Eds.): TACAS 2007, LNCS 4424, pp. 170–184, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Model Checking Probabilistic Timed Automata with One or Two Clocks 171

Table 1. Complexity results for model checking probabilistic timed automata

One clock Two clocks
Reachability, PCTL P-complete EXPTIME-complete

PTCTL0/1[≤, ≥] P-complete EXPTIME-complete
PTCTL0/1 EXPTIME-complete EXPTIME-complete

PTCTL[≤, ≥] P-hard, in EXPTIME EXPTIME-complete
PTCTL EXPTIME-complete EXPTIME-complete

timed automata have been used to model systems such as the IEEE 1394 root contention
protocol, the backoff procedure in the IEEE 802.11 Wireless LANs, and the IPv4 link
local address resolution protocol [14]. The temporal logic that we use to describe prop-
erties of probabilistic timed automata is PTCTL (Probabilistic Timed Computation Tree
Logic) [15]. The logic PTCTL includes operators that can refer to bounds on exact time
and on the probability of the occurrence of events. For example, the property “a re-
quest is followed by a response within 5 time units with probability 0.99 or greater”
can be expressed by the PTCTL property request ⇒ P≥0.99(F≤5response). The logic
PTCTL extends the probabilistic temporal logic PCTL [12,7], and the real-time temporal
logic TCTL [3].

In the non-probabilistic setting, timed automata with one clock have recently been
studied extensively [17,21,1]. In this paper we consider the subclasses of probabilistic
timed automata with one or two clocks. While probabilistic timed automata with a re-
stricted number of clocks are less expressive than their counterparts with an arbitrary
number of clocks, they can be used to model systems with simple timing constraints,
such as probabilistic systems in which the time of a transition depends only on the time
elapsed since the last transition. Conversely, one clock probabilistic timed automata are
more natural and expressive than Markov decision processes in which durations are as-
sociated with transitions (for example, in [11,19]). We note that the IEEE 802.11 Wire-
less LAN case study has two clocks [14], and that an abstract model of the IEEE 1394
root contention protocol can be obtained with one clock [23].

After introducing probabilistic timed automata and PTCTL in Section 2 and Sec-
tion 3, respectively, in Section 4 we show that model-checking properties of PCTL, such
as the property P≥0.99(Ftarget) (“a set of target states is reached with probability at
least 0.99 regardless of how nondeterminism is resolved”), is PTIME-complete for one
clock probabilistic timed automata, which is the same as for probabilistic reachability
properties on (untimed) Markov decision processes [22]. We also show that, in general,
model checking of PTCTL on one clock probabilistic timed automata is EXPTIME-
complete. However, inspired by the efficient algorithms obtained for non-probabilistic
one clock timed automata [17], we also show that, restricting the syntax of PTCTL to
the sub-logic in which (1) punctual timing bounds and (2) comparisons with probability
bounds other than 0 or 1, are disallowed, results in a PTIME-complete model-checking
problem. In Section 5, we show that reachability properties with probability bounds
of 0 or 1 are EXPTIME-complete for probabilistic timed automata with two or more
clocks, implying EXPTIME-completeness of all the model-checking problems that we
consider for this class of models. Our results are summarized in Table 1, where 0/1

172 M. Jurdziński, F. Laroussinie, and J. Sproston

denotes the sub-logics of PTCTL with probability bounds of 0 and 1 only, and [≤, ≥]
denotes the sub-logics of PTCTL in which punctual timing bounds are disallowed. The
EXPTIME-hardness results are based on the concept of countdown games, which are
two-player games operating in discrete time in which one player wins if it is able to
make a state transition after exactly c time units have elapsed, regardless of the strategy
of the other player. We believe that countdown games may be of independent interest.
Note that we restrict our attention to probabilistic timed automata in which positive
durations elapse in all loops of the system.

2 Probabilistic Timed Automata

Preliminaries. We use R≥0 to denote the set of non-negative real numbers, N to denote
the set of natural numbers, and AP to denote a set of atomic propositions. A (discrete)
probability distribution over a countable set Q is a function μ : Q → [0, 1] such that∑

q∈Q μ(q) = 1. For a function μ : Q → R≥0 we define support(μ) = {q ∈ Q |
μ(q) > 0}. Then for an uncountable set Q we define Dist(Q) to be the set of functions
μ : Q → [0, 1], such that support(μ) is a countable set and μ restricted to support(μ)
is a (discrete) probability distribution.

We now introduce timed Markov decision processes, which are Markov decision
processes in which rewards associated with transitions are interpreted as time durations.

Definition 1. A timed Markov decision process (TMDP) T = (S, sinit , →, lab) com-
prises a (possibly uncountable) set of states S with an initial state sinit ∈ S; a (possibly
uncountable) timed probabilistic, nondeterministic transition relation →⊆ S × R≥0 ×
Dist(S) such that, for each state s ∈ S, there exists at least one tuple (s, ,) ∈→; and
a labelling function lab : S → 2AP .

The transitions from state to state of a TMDP are performed in two steps: given that the
current state is s, the first step concerns a nondeterministic selection of (s, d, ν) ∈→,
where d corresponds to the duration of the transition; the second step comprises a prob-
abilistic choice, made according to the distribution ν, as to which state to make the
transition to (that is, we make a transition to a state s′ ∈ S with probability ν(s′)). We

often denote such a transition by s
d,ν−−→ s′.

An infinite or finite path of the TMDP T is defined as an infinite or finite sequence
of transitions, respectively, such that the target state of one transition is the source state
of the next. We use Pathfin to denote the set of finite paths of T, and Path ful the set
of infinite paths of T. If ω is a finite path, we denote by last(ω) the last state of ω. For
any path ω, let ω(i) be its (i+1)th state. Let Path ful (s) refer to the set of infinite paths
commencing in state s ∈ S.

In contrast to a path, which corresponds to a resolution of nondeterministic and prob-
abilistic choice, an adversary represents a resolution of nondeterminism only. Formally,
an adversary of a TMDP T is a function A mapping every finite path ω ∈ Pathfin to
a transition (last(ω), d, ν) ∈→. Let Adv be the set of adversaries of T. For any adver-
sary A ∈ Adv , let PathA

ful denote the set of infinite paths resulting from the choices

of distributions of A, and, for a state s ∈ S, let PathA
ful (s) = PathA

ful ∩ Path ful (s).
Then we can define the probability measure ProbA

s over PathA
ful(s) (for details, see,

Model Checking Probabilistic Timed Automata with One or Two Clocks 173

for example, [15]). Note that, by defining adversaries as functions from finite paths, we
permit adversaries to be dependent on the history of the system. Hence, the choice made
by an adversary at a certain point in system execution can depend on the sequence of
states visited, the nondeterministic choices taken, and the time elapsed from each state,
up to that point.

We distinguish the two classes of TMDP. Discrete TMDPs are TMDPs in which
(1) the state space S is finite, and (2) the transition relation → is finite and of the
form →⊆ S × N × Dist(S). In discrete TMDPs, the delays are interpreted as discrete
jumps, with no notion of a continuously changing state as time elapses. The size |T|
of a discrete TMDP T is |S| + | → |, where | → | includes the size of the encoding
of the timing constants and probabilities used in →: the timing constants are written
in binary, and, for any s, s′ ∈ S and (s, d, ν), the probability ν(s′) is expressed as a
ratio between two natural numbers, each written in binary. We let Tu be the untimed
Markov decision process (MDP) corresponding to the discrete TMDP T, in which each
transition (s, d, ν) ∈→ is represented by a transition (s, ν). We define the accumulated

duration DiscDur(ω, i) along the infinite path ω = s0
d0,ν0−−−→ s1

d1,ν1−−−→ · · · of T until
the (i+1)-th state to be the sum

∑
0≤k<i dk. A discrete TMDP is structurally non-Zeno

when any finite path of the form s0
d0,ν0−−−→ s1 · · · dn,νn−−−−→ sn+1, such that sn+1 = s0,

satisfies
∑

0≤i≤n di > 0. Continuous TMDPs are infinite-state TMDPs in which any

transition s
d,ν−−→ s′ describes the continuous passage of time, and thus a path ω =

s0
d0,ν0−−−→ s1

d1,ν1−−−→ · · · describes implicitly an infinite set of visited states. In the sequel,
we use continuous TMDPs to give the semantics of probabilistic timed automata.

Syntax of Probabilistic Timed Automata. Let X be a finite set of real-valued vari-
ables called clocks, the values of which increase at the same rate as real-time. The set
ΨX of clock constraints over X is defined as the set of conjunctions over atomic formu-
lae of the form x ∼ c, where x, y ∈ X , ∼∈ {<, ≤, >, ≥, =}, and c ∈ N.

Definition 2. A probabilistic timed automaton (PTA) P = (L, l̄, X , inv , prob, L) is a
tuple consisting of a finite set L of locations with the initial location l̄ ∈ L; a finite
set X of clocks; a function inv : L → ΨX associating an invariant condition with
each location; a finite set prob ⊆ L × ΨX × Dist(2X × L) of probabilistic edges such
that, for each l ∈ L, there exists at least one (l, ,) ∈ prob; and a labelling function
L : L → 2AP .

A probabilistic edge (l, g, p) ∈ prob is a triple containing (1) a source location l, (2)
a clock constraint g, called a guard, and (3) a probability distribution p which assigns
probability to pairs of the form (X, l′) for some clock set X and target location l′. The
behaviour of a probabilistic timed automaton takes a similar form to that of a timed
automaton [4]: in any location time can advance as long as the invariant holds, and
a probabilistic edge can be taken if its guard is satisfied by the current values of the
clocks. However, probabilistic timed automata generalize timed automata in the sense
that, once a probabilistic edge is nondeterministically selected, then the choice of which
clocks to reset and which target location to make the transition to is probabilistic.

The size |P| of the PTA P is |L| + |X | + |inv | + |prob|, where |inv | represents
the size of the binary encoding of the constants used in the invariant condition, and

174 M. Jurdziński, F. Laroussinie, and J. Sproston

|prob| includes the size of the binary encoding of the constants used in guards and the
probabilities used in probabilistic edges. As in the case of TMDPs, probabilities are
expressed as a ratio between two natural numbers, each written in binary.

A PTA is structurally non-Zeno [24] if, for every sequence X0, (l0, g0, p0), X1,
(l1, g1, p1), · · · , Xn, (ln, gn, pn), such that pi(Xi+1, li+1) > 0 for 0 ≤ i < n, and
pn(X0, l0) > 0, there exists a clock x ∈ X and 0 ≤ i, j ≤ n such that x ∈ Xi and
gj ⇒ x ≥ 1 (that is, gj contains a conjunct of the form x ≥ c for some c ≥ 1). We use
1C-PTA (resp. 2C-PTA) to denote the set of structurally non-Zeno PTA with only one
(resp. two) clock(s).

Semantics of Probabilistic Timed Automata. We refer to a mapping v : X → R≥0
as a clock valuation. Let R

X
≥0 denote the set of clock valuations. Let 0 ∈ R

X
≥0 be the

clock valuation which assigns 0 to all clocks in X . For a clock valuation v ∈ R

X
≥0

and a value d ∈ R≥0, we use v + d to denote the clock valuation obtained by letting
(v + d)(x) = v(x) + d for all clocks x ∈ X . For a clock set X ⊆ X , we let v[X := 0]
be the clock valuation obtained from v by resetting all clocks within X to 0; more
precisely, we let v[X := 0](x) = 0 for all x ∈ X , and let v[X := 0](x) = v(x) for
all x ∈ X \ X . The clock valuation v satisfies the clock constraint ψ ∈ ΨX , written
v |= ψ, if and only if ψ resolves to true after substituting each clock x ∈ X with the
corresponding clock value v(x).

Definition 3. The semantics of the probabilistic timed automaton P = (L, l̄, X , inv ,
prob, L) is the continuous TMDP T[P] = (S, sinit , →, lab) where:

– S = {(l, v) | l ∈ L and v ∈ R

X
≥0 s.t. v |= inv(l)} and sinit = (l̄,0);

– → is the smallest set such that ((l, v), d, μ) ∈→ if there exist d ∈ R≥0 and a
probabilistic edge (l, g, p) ∈ prob such that:
1. v + d |= g, and v + d′ |= inv (l) for all 0 ≤ d′ ≤ d;
2. for any (X, l′) ∈ 2X × L, we have that p(X, l′) > 0 implies (v + d)[X :=

0] |= inv(l′);
3. for any (l′, v′) ∈ S, we have that μ(l′, v′) =

∑
X∈Reset(v,d,v′) p(X, l′), where

Reset(v, d, v′) = {X ⊆ X | (v + d)[X := 0] = v′}.
– lab is such that lab(l, v) = L(l) for each state (l, v) ∈ S.

Given a path ω = (l0, v0)
d0,ν0−−−→ (l1, v1)

d1,ν1−−−→ · · · of T[P], for every i, we use
ω(i, d), with 0 ≤ d ≤ di, to denote the state (li, vi + d) reached from (li, vi) after
delaying d time units. Such a pair (i, d) is called a position of ω. We define a total
order on positions: given two positions (i, d), (j, d′) of ω, the position (i, d) precedes
(j, d′) — denoted (i, d) ≺ω (j, d′) — if and only if either i < j, or i = j and d < d′.
Furthermore, we define the accumulated duration CtsDur(ω, i, d) along the path ω until
position (i, d) to be the sum d +

∑
0≤k<i dk.

3 Probabilistic Timed Temporal Logic

We now proceed to describe a probabilistic, timed temporal logic which can be used to
specify properties of probabilistic timed automata [15].

Model Checking Probabilistic Timed Automata with One or Two Clocks 175

Definition 4. The formulae of PTCTL (Probabilistic Timed Computation Tree Logic)
are given by the following grammar:

φ ::= a | φ ∧ φ | ¬φ | P��ζ(φU∼cφ)

where a ∈ AP is an atomic proposition, ��∈ {<, ≤, ≥, >}, ∼∈ {≤, =, ≥}, ζ ∈ [0, 1]
is a probability, and c ∈ N is a natural number.

We use standard abbreviations such as true, false, φ1 ∨ φ2, φ1 ⇒ φ2, and
P��ζ(F∼cφ) (for P��ζ(trueU∼cφ)). Formulae with “always” temporal operators G∼c

can also be written; for example P≥ζ(G∼cφ) can be expressed by P≤1−ζ(F∼c¬φ)).
The modalities U, F and G without subscripts abbreviate U≥0, F≥0 and G≥0, respec-
tively. We refer to PTCTL properties of the form P��ζ(Fa) or ¬P��ζ(Fa) as (untimed)
reachability properties. When ζ ∈ {0, 1}, these properties are referred to as qualitative
reachability properties.

We define PTCTL[≤, ≥] as the sub-logic of PTCTL in which subscripts of the form
= c are not allowed in modalities U∼c, F∼c, G∼c. We define PTCTL0/1[≤, ≥] and
PTCTL0/1 as the qualitative restrictions in which probability thresholds ζ belong to
{0, 1}. Furthermore PCTL is the sub-logic in which there is no timing subscript ∼ c
associated with the modalities U, F, G. The size |Φ| of Φ is defined in the standard way
as the number of symbols in Φ, with each occurrence of the same subformula of Φ as a
single symbol.

We now define the satisfaction relation of PTCTL for discrete and continuous
TMDPs.

Definition 5. Given a discrete TMDP T = (S, sinit , →, lab) and a PTCTL formula Φ,
we define the satisfaction relation |=T of PTCTL as follows:

s |=T a iff a ∈ lab(s)
s |=T Φ1 ∧ Φ2 iff s |=T Φ1 and s |=T Φ2
s |=T ¬Φ iff s |=T Φ

s |=T P��ζ(ϕ) iff ProbA
s {ω ∈ PathA

ful (s) | ω |=T ϕ} �� ζ, ∀A ∈ Adv
ω |=T Φ1U∼cΦ2 iff ∃i ∈ N s.t. ω(i) |=T φ2, DiscDur(ω, i) ∼ c,

and ω(j) |=T φ1, ∀j < i .

Definition 6. Given a continuous TMDP T = (S, sinit , →, lab) and a PTCTL formula
Φ, we define the satisfaction relation |=T of PTCTL as in Definition 5, except for the
following rule for Φ1U∼cΦ2:

ω |=T Φ1U∼cΦ2 iff ∃ position (i, δ) of ω s.t. ω(i, δ) |=T φ2, CtsDur(ω, i, δ) ∼ c,
and ω(j, δ′) |=T φ1, ∀ positions (j, δ′) of ω s.t. (j, δ′) ≺ω (i, δ) .

When clear from the context, we omit the T subscript from |=T. We say that the
TMDP T = (S, sinit , →, lab) satisfies the PTCTL formula Φ, denoted by T |= Φ,
if and only if sinit |= Φ. Furthermore, the PTA P satisfies Φ, denoted by P |= Φ,
if and only if T[P] |= Φ. Given an arbitrary structurally non-Zeno PTA P, model
checking PTCTL formulae is in EXPTIME [15] (the algorithm consists of executing
a standard polynomial-time model-checking algorithm for finite-state probabilistic sys-
tems [7,6] on the exponential-size region graph of P). Qualitative reachability problems
are EXPTIME-complete for PTA with an arbitrary number of clocks [20].

176 M. Jurdziński, F. Laroussinie, and J. Sproston

4 Model Checking One Clock Probabilistic Timed Automata

In this section we consider the case of 1C-PTA. We will see that model checking PCTL

and PTCTL0/1[≤, ≥] over 1C-PTA is P-complete (where the lower bound follows from
the fact that qualitative reachability properties are P-hard for MDPs [22]), but remains
EXPTIME-complete for the logic PTCTL0/1. First we have the following result about
the model-checking of PCTL formulae.

Proposition 1. The PCTL model-checking problem for 1C-PTA is P-complete.

4.1 Model Checking PTCTL0/1[≤, ≥] on 1C-PTA

In this section, inspired by related work on timed concurrent game structures [16], we
first show that model-checking PTCTL0/1[≤, ≥] properties of discrete TMDPs can be
done efficiently. Then, in Theorem 1, using ideas from the TMDP case, we show that
model checking PTCTL0/1[≤, ≥] on 1C-PTA can also be done in polynomial time.

Proposition 2. Let T = (S, sinit , →, lab) be a structurally non-Zeno discrete TMDP
and Φ be a PTCTL0/1[≤, ≥] formula. Deciding whether T |= Φ can be done in time
O(|Φ| · |S| · | → |).

Proof (sketch). The model-checking algorithm is based on several procedures to deal
with each modality of PTCTL0/1[≤, ≥]. The boolean operators and the PCTL modali-
ties (without timed subscripts) can be handled in the standard manner, with the PCTL

properties verified on the untimed MDP Tu corresponding to T. For formulae
P��ζ(Φ1U∼cΦ2), we assume that the truth values of subformulae Φ1 and Φ2 are known
for any states of T. First, given that the TMDP is structurally non-Zeno, we
have the equivalences P≤0(Φ1U∼cΦ2) ≡ ¬EΦ1U∼cΦ2 and P≥1(Φ1U∼cΦ2) ≡
AΦ1U∼c(P≥1(Φ1UΦ2)), where E (resp. A) stands for the existential (resp. universal)
quantification over paths which exist in the logic TCTL. Thus we can apply the pro-
cedure proposed for model checking TCTL formulae – running in time O(|S| · | → |)
– over weighted graphs [18] (in the case of P≥1(Φ1U∼cΦ2), by first obtaining
the set of states satisfying P≥1(Φ1UΦ2), which can be done on Tu in time
O(

∑
(s,d,ν)∈→ |support(ν)|)).

The problem of verifying the remaining temporal properties of PTCTL0/1[≤, ≥] can
be considered in terms of turn-based 2-player games. Such a game is played over the
space S ∪ →, and play proceeds as follows: from a state s ∈ S, player Pn chooses
a transition (s, d, ν) ∈→; then, from the transition (s, d, ν), player Pp chooses a state
s′ ∈ support(ν). The duration of the move from s to s′ via (s, d, ν) is d. Notions of
strategy of each player, and winning with respect to (untimed) path formulae of the
form Φ1UΦ2, are defined as usual for 2-player games.

For the four remaining formulae, namely P��ζ(Φ1U∼cΦ2) for ��ζ ∈ {> 0, < 1},
and ∼∈ {≤, ≥}, we consider the functions α, β, γ, δ : S → N, for representing min-
imal and maximal durations of interest. Intuitively, for a state s ∈ S, the value α(s)
(resp. γ(s)) is the minimal (resp. maximal) duration that player Pp can ensure, re-
gardless of the counter-strategy of Pn, along a path prefix from s satisfying Φ1UΦ2
(resp. Φ1U(P>0(Φ1UΦ2))). Similarly, the value β(s) (resp. δ(s)) is the minimal

Model Checking Probabilistic Timed Automata with One or Two Clocks 177

(resp. maximal) duration that player Pn can ensure, regardless of the counter-strategy
of Pp, along a path prefix from s satisfying Φ1UΦ2 (resp. Φ1U(¬P<1(Φ1UΦ2))). 1

Using the fact that the TMDP is structurally non-Zeno, for any state s ∈ S, we
can obtain the following equivalences: s |= P>0(Φ1U≤cΦ2) if and only if α(s) ≤ c;
s |= P<1(Φ1U≤cΦ2) if and only if β(s) > c; s |= P>0(Φ1U≥cΦ2) if and only if
γ(s) ≥ c; s |= P<1(Φ1U≥cΦ2) if and only if δ(s) < c. The functions α, β, γ, δ can
be computed on the 2-player game by applying the results of [16] on timed concurrent
game structures: for each temporal operator P��ζ(Φ1U∼cΦ2), this computation runs in
time O(|S| · | → |). ��

We use Proposition 2 to obtain an efficient model-checking algorithm for 1C-PTA.

Theorem 1. Let P = (L, l̄, X , inv , prob, L) be a 1C-PTA and Φ be a PTCTL0/1[≤, ≥]
formula. Deciding whether P |= Φ can be done in polynomial time.

Proof (sketch). Our aim is to label every state (l, v) of T[P] with the set of subformulae
of Φ which it satisfies (as |X | = 1, recall that v is a single real value). For each location
l ∈ L and subformula Ψ of Φ, we construct a set Sat[l, Ψ] ⊆ R≥0 of intervals such that
v ∈ Sat[l, Ψ] if and only if (l, v) |= Ψ . We write Sat[l, Ψ] =

⋃
j=1,...,k〈cj ; c′j〉 with

〈∈ {[, (} and 〉 ∈ {],)}. We consider intervals which conform to the following rules:
for 1 ≤ j ≤ k, we have cj < c′j and cj , c

′
j ∈ N ∪ {∞}, and for 1 ≤ j < k, we have

c′j < cj+1. We will see that |Sat[l, Ψ]| – i.e. the number of intervals corresponding to a
particular location – is bounded by |Ψ | · 2 · |prob|.

The cases of obtaining the sets Sat[l, Ψ] for boolean operators and atomic proposi-
tions are straightforward, and therefore we concentrate on the verification of subfor-
mulae Ψ of the form P��ζ(Φ1U∼cΦ2). Assume that we have already computed the sets
Sat[,] for Φ1 and Φ2. Our aim is to compute Sat[l, Ψ] for each location l ∈ L.

There are several cases depending on the constraint “�� ζ”. The equivalence
P≤0(Φ1U∼cΦ2) ≡ ¬EΦ1U∼cΦ2 can be used to reduce the “≤ 0” case to the appropriate
polynomial-time labeling procedure for ¬EΦ1U∼cΦ2 on one clock timed automata [17].
In the “≥ 1” case, the equivalence P≥1(Φ1U∼cΦ2) ≡ AΦ1U∼c(P≥1(Φ1UΦ2)) relies
on first computing the state set satisfying P≥1(Φ1UΦ2), which can be handled using a
qualitative PCTL model-checking algorithm, applied to a discrete TMDP built from P,
Sat[l, Φ1] and Sat[l, Φ2], in time O(|P| · |prob | · (|Φ1|+ |Φ2|)), and second verifying the
formula AΦ1U∼c(P≥1(Φ1UΦ2)) using the aforementioned method for one clock timed
automata.

For the remaining cases, our aim is to construct a (finite) discrete TMDP Tr =
(Sr, , →r, labr), which represents partially the semantic TMDP T[P], for which the
values of the functions α, β, γ and δ of the proof of Proposition 2 can be computed, and
then use these functions to obtain the required sets Sat[, Ψ] (the initial state of Tr is
irrelevant for the model-checking procedure, and is therefore omitted). The TMDP Tr

will take a similar form to the region graph MDP of PTA [15], but will be of reduced

1 If there is no strategy for player Pp (resp. player Pn) to guarantee the satisfaction of
Φ1UΦ2 along a path prefix from s, then we let α(s) = ∞ (resp. β(s) = ∞). Similarly,
if there is no strategy for player Pp (resp. player Pn) to guarantee the satisfaction of
Φ1U(P>0(Φ1UΦ2)) (resp. Φ1U(¬P<1(Φ1UΦ2))) along a path prefix from s, then we let
γ(s) = −∞ (resp. δ(s) = −∞).

178 M. Jurdziński, F. Laroussinie, and J. Sproston

size (the size will be independent of the magnitude of the constants used in invariants
and guards): this will ensure a procedure running in time polynomial in |P|.

We now describe the construction of Tr. In the following we assume that the sets
Sat[l, Φi] contain only closed intervals and that the guards and invariant of the PTA
contain non-strict comparisons (and possibly intervals of the form [b; ∞)). The gen-
eral case is omitted for reasons of space. Formally we let B = {0} ∪ Cst(P) ∪⋃

i∈{1,2}
⋃

l∈L Cst(Sat[l, Φi]), where Cst(P) is the set of constants occurring in the
clock constraints of P, and where Cst(Sat[l, Φi]) is the set of constants occurring as end-
points of the intervals in Sat[l, Φi]. Moreover for any right-open interval [b; ∞) occur-
ring in some Sat[l,], we add the constant b+c+1 in B. We enumerate B as b0, b1, ...bM

with b0 = 0 and bi < bi+1 for i < |B|. Note that |B| is bounded by 4 · |Ψ | · |prob|. For
any interval (bi; bi+1) and clock constraint ψ ∈ ΨX , we let (bi; bi+1) |= ψ if v |= ψ for
all v ∈ (bi; bi+1).

Considering the discrete TMDP corresponding to T[P] restricted to states (l, bi), with
bi ∈ B, is sufficient to compute the values of functions α, β, γ and δ in any state (l, bi).
However, this does not allows us to deduce the value for any intermediate states in
(bi; bi+1): indeed some probabilistic edges enabled from bi may be disabled inside the
interval. Therefore, in Tr, we have to consider also (l, b+

i) and (l, b−i+1) corresponding
respectively to the leftmost and rightmost points in (bi; bi+1) (when i < M). Then Sr

is defined as the pairs (l, bi) with bi ∈ B and bi |= inv(l), and (l, b+
i) and (l, b−i+1) with

bi ∈ B, i < M and (bi; bi+1) |= inv (l). Note that the truth value of any invariant is
constant over such intervals (bi; bi+1). Moreover note that all T[P] states of the form
(l, v) with v ∈ (bi; bi+1) satisfy the same boolean combinations of Φ1 and Φ2, and
enable the same probabilistic edges. For any (l, g, p) ∈ prob, we write b+

i |= g (and
b−i+1 |= g) when (bi; bi+1) |= g. Similarly, we write b+

i |= inv(l) (and b−i+1 |= inv(l))
when (bi; bi+1) |= inv(l). We also consider the following ordering b0 < b+

0 < b−1 <
b1 < b+

1 < · · · < b−M < bM < b+
M . We now define the set →r of transitions of Tr as

the smallest set such that ((l, λ), d, ν) ∈→r, where λ ∈ {b−i , bi, b
+
i } for some bi ∈ B,

if there exists λ′ ≥ λ, where λ′ ∈ {b−j , bj , b
+
j } for some bj ∈ B, and (l, g, p) ∈ prob

such that:

– d = bj − bi, λ′ |= g, and λ′′ |= inv(l) for any λ ≤ λ′′ ≤ λ′;
– for each (X, l′) ∈ support(p), we have 0 |= inv(l′) if X = {x}, and λ′ |= inv(l′)

if X = ∅;
– for each (l′, λ′′) ∈ Sr, we have ν(l′, λ′′) = ν0(l′, λ′′) + νλ(l′, λ′′), where

ν0(l′, λ′′) = p(l′, {x}) if λ′′ = [0, 0] and ν0(l′, λ′′) = 0 otherwise, and
νλ(l′, λ′′) = p(l′, ∅) if λ′′ = λ′ and νλ(l′, λ′′) = 0 otherwise.

Finally, to define labr, for a state (l, bi), we let aΦj ∈ labr(l, bi) if and only if
bi ∈ Sat[l, Φj], for j ∈ {1, 2}. The states (l, b+

i) and (l, b−i+1) are labeled depending on
the truth value of the Φj’s in the interval (bi; bi+1): if (bi; bi+1) ⊆ Sat[l, Φj], then aΦj ∈
labr(l, b+

i) and aΦj ∈ labr(l, b−i+1). Note that given the “closed intervals” assumption
made on Sat[l, Φj], we have labr(l, b+

i) ⊆ labr(l, bi) and labr(l, b−i+1) ⊆ labr(l, bi).
Note that the fact that P is structurally non-Zeno means that Tr is structurally non-Zeno.
The size of Tr is in O(|P|2 · |Ψ |).

Now we can apply the algorithms defined in the proof of Proposition 2 and obtain
the value of the coefficients α, β, γ or δ for the states of Tr. Our next task is to define

Model Checking Probabilistic Timed Automata with One or Two Clocks 179

functions α, β, γ, δ : S → R≥0, where S is the set of states of T[P], which are ana-
logues of α, β, γ or δ defined on T[P]. Our intuition is that we are now considering
an infinite-state 2-player game, with players Pn and Pp, as in the proof of Proposi-
tion 2, over the state space of T[P]. Consider location l ∈ L. For b ∈ B, we have
α(l, b) = α(l, b), β(l, b) = β(l, b), γ(l, b) = γ(l, b) and δ(l, b) = δ(l, b). For inter-
vals of the form (bi; bi+1), the functions α and δ will be decreasing (with slope -1)
throughout the interval, because, for all states of the interval, the optimal choice of
player Pn is to delay as much as possible inside any interval. Hence, the value α(l, v)
for v ∈ (bi; bi+1) is defined entirely by α(l, b−i+1) as α(l, v) = α(l, b−i+1)−bi+1+bi+v.
Similarly, δ(l, v) = δ(l, b−i+1) − bi+1 + bi + v.

Next we consider the values of β and γ over intervals (bi; bi+1). In this case, the
functions will be constant over a portion of the interval (possibly an empty portion,
or possibly the entire interval), then decreasing with slope -1. The constant part cor-
responds to those states in which the optimal choice of player Pn is to take a prob-
abilistic edge, whereas the decreasing part corresponds to those states in which it is
optimal for player Pn to delay until the end of the interval. The value β(l, v) for
v ∈ (bi; bi+1) is defined both by β(l, b+

i) and β(l, b−i+1) as β(l, v) = β(l, b+
i) if

bi < v ≤ bi+1 − (β(l, b+
i) − β(l, β−

i+1)), and as β(l, v) = β(l, β−
i+1) − (v − β(l, b+

i))
otherwise. An analogous definition holds also for γ.

From the functions α, β, γ and δ defined above, it becomes possible to define
Sat[l, Ψ] by keeping in this set of intervals only the parts satisfying the thresholds
≤ c, > c, ≥ c and < c, respectively, as in the proof of Proposition 2. We can show
that the number of intervals in Sat[l, Ψ] is bounded by 2 · |Ψ | · |prob|. For the case in
which a function α, β, γ or δ is decreasing throughout an interval, then an interval in
Sat[l, Φ1] which corresponds to several consecutive intervals in Tr can provide at most
one (sub)interval in Sat[l, Ψ], because the threshold can cross at most once the function
in at most one interval. For the case in which a function β or γ combines a constant
part and a part with slope -1 within an interval, the threshold can cross the function
in several intervals (bi; bi+1) contained in a common interval of Sat[l, Φ1]. However,
such a cut is due to a guard x ≥ k of a given transition, and thus the number of cuts in
bounded by |prob|. Moreover a guard x ≤ k may also add an interval. Thus the number
of new intervals in Sat[q, Ψ] is bounded by 2 · |prob|.

In addition to these cuts, any interval in Sat[l, Φ2] may provide an interval in
Sat[l, Ψ]. This gives the 2 · |Ψ | · |prob| bound for the size of Sat[l, Ψ]. ��

Corollary 1. The PTCTL0/1[≤, ≥] model-checking problem for 1C-PTA is P-complete.

4.2 Model Checking PTCTL0/1 on 1C-PTA

We now consider the problem of model-checking PTCTL0/1 properties on 1C-PTA. An
EXPTIME algorithm for this problem exists by the definition of a MDP analogous to
the region graph used in non-probabilistic timed automata verification [15]. We now
show that the problem is also EXPTIME-hard by the following three steps. First we
introduce countdown games, which are a simple class of turn-based 2-player games
with discrete timing, and show that the problem of deciding the winner in a countdown
game is EXPTIME-complete. Secondly, we reduce the countdown game problem to the

180 M. Jurdziński, F. Laroussinie, and J. Sproston

PTCTL0/1 problem on TMDPs. Finally, we adapt the reduction to TMDPs to reduce
also the countdown game problem to the PTCTL0/1 problem on 1C-PTA.

A countdown game C consists of a weighted graph (S, T), where S is the set of states
and T ⊆ S × N \ {0} × S is the transition relation. If t = (s, d, s′) ∈ T then we
say that the duration of the transition t is d. A configuration of a countdown game is
a pair (s, c), where s ∈ S is a state and c ∈ N. A move of a countdown game from a
configuration (s, c) is performed in the following way: first player 1 chooses a number
d, such that 0 < d ≤ c and (s, d, s′) ∈ T, for some state s′ ∈ S; then player 2 chooses
a transition (s, d, s′) ∈ T of duration d. The resulting new configuration is (s′, c − d).
There are two types of terminal configurations, i.e., configurations (s, c) in which no
moves are available. If c = 0 then the configuration (s, c) is terminal and is a winning
configuration for player 1. If for all transitions (s, d, s′) ∈ T from the state s, we have
that d > c, then the configuration (s, c) is terminal and it is a winning configuration for
player 2. The algorithmic problem of deciding the winner in countdown games is, given
a weighted graph (S, T) and a configuration (s, c), where all the durations of transitions
in C and the number c are given in binary, to determine whether player 1 has a winning
strategy from the configuration (s, c). If the state from which the game is started is
clear from the context then we sometimes specify the initial configuration by giving the
number c alone.

Theorem 2. Deciding the winner in countdown games is EXPTIME-complete.

Proof (sketch). Observe that every configuration of a countdown game played from a
given initial configuration can be written down in polynomial space and every move can
be computed in polynomial time; hence the winner in the game can be determined by a
straightforward alternating PSPACE algorithm. Therefore the problem is in EXPTIME
because APSPACE = EXPTIME.

We now prove EXPTIME-hardness by a reduction from the acceptance of a word by
a linearly-bounded alternating Turing machine. Let M = (Σ, Q, q0, qacc, Q∃, Q∀, Δ)
be an alternating Turing machine, where Σ is a finite alphabet, Q = Q∃ ∪Q∀ is a finite
set of states partitioned into existential states Q∃ and universal states Q∀, q0 ∈ Q is an
initial state, qacc ∈ Q is an accepting state, and Δ ⊆ Q × Σ × Q × Σ × {L, R} is
a transition relation. Let B > 2 · |Q × Σ| be an integer constant and let w ∈ Σn

be an input word. W.l.o.g. we can assume that M uses exactly n tape cells when
started on the word w, and hence a configuration of M is a word b0b1 · · ·bn−1 ∈
(Σ ∪ Q × Σ)n. Let 〈·〉 : (Σ ∪ Q × Σ) → { 0, 1, . . . , B − 1 } be an injection. For
every a ∈ Σ ∪ Q × Σ, it is convenient to think of 〈a〉 as a B-ary digit, and we can
encode a configuration u = b0b1 · · ·bn−1 ∈ (Σ ∪ Q × Σ)n of M as the number
N(u) =

∑n−1
i=0 〈bi〉 · Bi.

Let i ∈ N, 0 ≤ i < n, be a tape cell position, and let a ∈ Σ ∪ Q × Σ. We de-
fine a countdown game Checki,a, such that for every configuration u = b0 · · ·bn−1
of M , player 1 has a winning strategy from the configuration (si,a

0 , N(u)) of the game
Checki,a if and only if bi = a. The game Checki,a has states S = { si,a

0 , . . . , si,a
n },

and for every k, 0 ≤ k < n, we have a transition (si,a
k , d, si,a

k+1) ∈ T, if:

d =

{
〈a〉 · Bk if k = i,

〈b〉 · Bk if k = i and b ∈ Σ ∪ S × Σ.

Model Checking Probabilistic Timed Automata with One or Two Clocks 181

There are no transitions from the state si,a
n . Observe that if bi = a then the win-

ning strategy for player 1 in game Checki,a from N(u) is to choose the transitions
(si,a

k ,bk · Bk, si,a
k+1), for all k, 0 ≤ k < n. If, however, bi = a then there is no way for

player 1 to count down from N(u) to 0 in the game Checki,a.
Now we define a countdown game CM , such that M accepts w = σ0σ1 . . . σn−1

if and only if player 1 has a winning strategy in CM from configuration (q0, N(u)),
where u = (q0, σ0)σ1 . . . σn−1 is the initial configuration of M with input w. The
main part of the countdown game CM is a gadget that allows the game to simulate one
step of M . Note that one step of a Turing machine makes only local changes to the
configuration of the machine: if the configuration is of the form u = a0 . . .an−1 =
σ0 . . . σi−1(q, σi)σi+1 . . . σn−1, then performing one step of M can only change en-
tries in positions i − 1, i, or i + 1 of the tape. For every tape position i, 0 ≤ i < n, for
every triple τ = (σi−1, (q, σi), σi+1) ∈ Σ × (Q × Σ) × Σ, and for every transition
t = (q, σ, q′, σ′, D) ∈ Δ of machine M , we now define the number di,τ

t , such that if
σi = σ and performing transition t at position i of configuration u yields configura-
tion u′ = b0 . . .bn−1, then N(u) − di,τ

t = N(u′). For example, assume that i > 0
and that D = L; we have that bk = ak = σk , for all k ∈ { i − 1, i, i + 1 } and
bi+1 = ai+1 = σi+1. Moreover we have that bi−1 = (q′, σi−1), and bi = σ′. We
define di,τ

t as follows:

di,τ
t = (〈bi−1〉 − 〈ai−1〉) · Bi−1 + (〈bi〉 − 〈ai〉) · Bi

= (〈(q′, σi−1)〉 − 〈σi−1〉) · Bi−1 + (〈σ′〉 − 〈(q, σi)〉) · Bi.

The gadget for simulating one transition of M from a state q ∈ Q \ { qacc } has
three layers. In the first layer, from a state q ∈ Q \ { qacc }, player 1 chooses a pair
(i, τ), where i, 0 ≤ i < n, is the position of the tape head, and τ = (a,b, c) ∈
Σ × (Q × Σ) × Σ is his guess for the contents of tape cells i − 1, i, and i + 1. In
this way the state (q, i, τ) of the gadget is reached, where the duration of this transition
is 0. Intuitively, in the first layer player 1 has to declare that he knows the position i
of the head in the current configuration as well as the contents τ = (a,b, c) of the
three tape cells in positions i − 1, i, and i + 1. In the second layer, in a state (q, i, τ)
player 2 chooses between four successor states: the state (q, i, τ, ∗) and the three sub-
games Checki−1,a, Checki,b, and Checki+1,c. The four transitions are of duration 0.
Intuitively, in the second layer player 2 verifies that player 1 declared correctly the con-
tents of the three tape cells in positions i − 1, i, and i + 1. Finally, in the third layer, if
q ∈ Q∃ (resp., q ∈ Q∀), then from a state (q, i, τ, ∗) player 1 (resp., player 2) chooses
a transition t = (q, σ, q′, σ′, D) of machine M , such that b = (q, σ), reaching the state
q′ ∈ Q of the gadget, with a transition of duration di,τ

t .
Note that the gadget described above violates some conventions that we have adopted

for countdown games. Observe that durations of some transitions in the gadget are 0
and the duration di,τ

t may even be negative, while in the definition of countdown games
we required that durations of all transitions are positive. In order to correct this we
add the number Bn to the durations of all transitions described above. This change
requires a minor modification to the subgames Checki,a: we add an extra transition
(si,a

n , Bn, si,a
n). We need this extra transition because instead of starting from (q0,

N(u)) as the initial configuration of the game CM , where u is the initial configuration

182 M. Jurdziński, F. Laroussinie, and J. Sproston

of M running on w, we are going to start from the configuration (q0, B
3n + N(u)). In

this way the countdown game can perform a simulation of at least Bn steps of M ; note
that Bn is an upper bound on the number of all configurations of M .

W.l.o.g., we can assume that whenever the alternating Turing machine M accepts an
input word w then it finishes its computation with blanks in all tape cells, its head in
position 0, and in the unique accepting state qacc; we write uacc for this unique accept-
ing configuration of machine M . Moreover, assume that there are no transitions from
qacc in M . In order to complete the definition of the countdown game GM , we add a
transition of duration N(uacc) from the state qacc of game CM . ��

Proposition 3. The PTCTL0/1 model-checking problem for structurally non-Zeno dis-
crete TMDPs is EXPTIME-complete.

Proof. An EXPTIME algorithm can be obtained by employing the algorithms of [19].
We now prove EXPTIME-hardness of PTCTL0/1 model checking on discrete TMDPs
by a reduction from countdown games. Let C = (S, T) be a countdown game and (s, c)
be its initial configuration. We construct a TMDP TC,(s,c) = (S, sinit , →, lab) such that
player 1 wins C from (s, c) if and only if TC,(s,c) |= ¬P<1(F=ctrue). Let S = S and
sinit = s. We define → to be the smallest set satisfying the following: for each s ∈ S
and d ∈ N>0, if (s, d, s′) ∈ T for some s′ ∈ T, we have (s, d, ν) ∈→, where ν is an
arbitrary distribution over S such that support(ν) = {s′ | (s, d, s′) ∈ T}. The labelling
condition lab is arbitrary. Then we can show that player 1 wins from the configuration
(s, c) if and only if there exists an adversary of TC,(s,c) such that a state is reached
from sinit = s after exactly c time units with probability 1. The latter is equivalent to
sinit |= ¬P<1(F=ctrue). ��

We now show that the proof of Proposition 3 can be adapted to show the EXPTIME-
completeness of the analogous model-checking problem on 1C-PTA.

Theorem 3. The PTCTL0/1 model-checking problem for 1C-PTA is EXPTIME-
complete.

Proof. Recall that there exists an EXPTIME algorithm for model-checking PTCTL0/1

properties on PTA; hence, it suffices to show EXPTIME-hardness for PTCTL0/1 and
1C-PTA. Let C be a countdown game with an initial configuration (s, c). We con-
struct the 1C-PTA P1C

C,(s,c) = (L, l̄, {x}, inv , prob, L) which simulates the behaviour
of the TMDP TC,(s,c) of the proof of Proposition 3 in the following way. Each state
s ∈ S of TC,(s,c) corresponds to two distinct locations l1s and l2s of P1C

C,(s,c), and we let

Li = {lis | s ∈ S} for i ∈ {1, 2}. Let l̄ = l1s . For every transition (s, d, ν) ∈→ of
TC,(s,c), we have the probabilistic edges (l1s , x = 0, p1), (l2s , x = d, p2) ∈ prob, where
p1({x}, l2s) = 1, and p2({x}, l1s′) = ν(s′) for each location s′. For each state s ∈ S, let
inv(l1s) = (x ≤ 0) and inv(l2s) = (x ≤ d). That is, the PTA P1C

C,(s,c) moves from the

location l1s to l2s instantaneously. Locations in L1 are labelled by the atomic proposi-
tion a, whereas locations in L2 are labelled by ∅. Then we can observe that P1C

C,(s,c) |=
¬P<1(F=ca) if and only if TC,(s,c) |= ¬P<1(F=ctrue). As the latter problem has
been shown to be EXPTIME-hard in the proof of Proposition 3, we conclude that model
checking PTCTL0/1 on 1C-PTA is also EXPTIME-hard. ��

Model Checking Probabilistic Timed Automata with One or Two Clocks 183

5 Model Checking Two Clocks Probabilistic Timed Automata

We now show EXPTIME-completeness of the simplest problems that we consider on
2C-PTA.

Theorem 4. Qualitative probabilistic reachability problems for 2C-PTA are
EXPTIME-complete.

Proof. EXPTIME algorithms exist for probabilistic reachability problems on PTA, and
therefore it suffices to show EXPTIME-hardness. We proceed by reduction from count-
down games. Let C be a countdown game with initial configuration (s, c), and let
P1C
C,(s,c) = (L, l̄, {x}, inv , prob, L) be the 1C-PTA constructed in the proof of Theo-

rem 3. We define the 2C-PTA P2C
C,(s,c) = (L ∪ {l
}, l̄, {x, y}, inv ′, prob ′, L′) in the

following way. The set of probabilistic edges prob ′ is obtained by adding to prob
the following: for each location l ∈ L, we extend the set of outgoing probabilistic
edges of l with (l, y = c, pl�), where pl�(∅, l
) = 1; to make prob ′ total, we also add
(l
,true, pl�). For each l ∈ L, let inv ′(l) = inv(l), and let inv ′(l
) = true. Fi-
nally, we let L′(l
) = a, and L(l) = ∅ for all l ∈ L. Then P2C

C,(s,c) |= ¬P<1(Fa) if

and only if P1C
C,(s,c) |= ¬P<1(F=ca). The EXPTIME-hardness of the latter problem has

been shown in the proof of Theorem 3, and hence checking qualitative probabilistic
reachability properties such as ¬P<1(Fa) on 2C-PTA is EXPTIME-hard. ��

Corollary 2. The PCTL, PTCTL0/1[≤, ≥], PTCTL0/1, PTCTL[≤, ≥] and PTCTL model-
checking problems for 2C-PTA are EXPTIME-complete.

References

1. P. A. Abdulla, J. Deneux, J. Ouaknine, and J. Worrell. Decidability and complexity results
for timed automata via channel machines. In Proc. of the 32nd Int. Coll. on Aut., Lang. and
Progr. (ICALP’05), volume 3580 of LNCS, pages 1089–1101. Springer, 2005.

2. R. Alur, C. Courcoubetis, and D. L. Dill. Model-checking for probabilistic real-time systems.
In Proc. of the 18th Int. Coll. on Aut., Lang. and Progr. (ICALP’91), volume 510 of LNCS,
pages 115–136. Springer, 1991.

3. R. Alur, C. Courcoubetis, and D. L. Dill. Model-checking in dense real-time. Inf. and Comp.,
104(1):2–34, 1993.

4. R. Alur and D. L. Dill. A theory of timed automata. Theo. Comp. Sci., 126(2):183–235,
1994.

5. C. Baier, B. Haverkort, H. Hermanns, and J.-P. Katoen. Model-checking algorithms for
continuous-time Markov chains. IEEE Trans. on Soft. Enginee., 29(6):524–541, 2003.

6. C. Baier and M. Kwiatkowska. Model checking for a probabilistic branching time logic with
fairness. Distributed Computing, 11(3):125–155, 1998.

7. A. Bianco and L. de Alfaro. Model checking of probabilistic and nondeterministic sys-
tems. In Proc. of the 15th Conf. on Found. of Software Technol. and Theor. Comp. Sci.
(FSTTCS’95), volume 1026 of LNCS, pages 499–513. Springer, 1995.

8. E. M. Clarke, O. Grumberg, and D. Peled. Model checking. MIT Press, 1999.
9. C. Courcoubetis and M. Yannakakis. The complexity of probabilistic verification. Journal

of the ACM, 42(4):857–907, 1995.

184 M. Jurdziński, F. Laroussinie, and J. Sproston

10. L. de Alfaro. Formal verification of probabilistic systems. PhD thesis, Stanford University,
Department of Computer Science, 1997.

11. L. de Alfaro. Temporal logics for the specification of performance and reliability. In Proc.
of the 14th An. Symp. on Theor. Aspects of Comp. Sci. (STACS’97), volume 1200 of LNCS,
pages 165–176. Springer, 1997.

12. H. A. Hansson and B. Jonsson. A logic for reasoning about time and reliability. Formal
Aspects of Computing, 6(5):512–535, 1994.

13. H. E. Jensen. Model checking probabilistic real time systems. In Proc. of the 7th Nordic
Work. on Progr. Theory, pages 247–261. Chalmers Institute of Technology, 1996.

14. M. Kwiatkowska, G. Norman, D. Parker, and J. Sproston. Performance analysis of proba-
bilistic timed automata using digital clocks. Formal Meth. in Syst. Design, 29:33–78, 2006.

15. M. Kwiatkowska, G. Norman, R. Segala, and J. Sproston. Automatic verification of real-time
systems with discrete probability distributions. Theo. Comp. Sci., 286:101–150, 2002.

16. F. Laroussinie, N. Markey, and G. Oreiby. Model checking timed ATL for durational con-
current game structures. In Proc. of the 4th Int. Conf. on Formal Modelling and Analysis of
Timed Systems (FORMATS’06), volume 4202 of LNCS, pages 245–259. Springer, 2006.

17. F. Laroussinie, N. Markey, and P. Schnoebelen. Model checking timed automata with one or
two clocks. In Proc. of the 15th Int. Conf. on Concurrency Theory (CONCUR’04), volume
3170 of LNCS, pages 387–401. Springer, 2004.

18. F. Laroussinie, N. Markey, and P. Schnoebelen. Efficient timed model checking for discrete-
time systems. Theo. Comp. Sci., 353(1–3):249–271, 2005.

19. F. Laroussinie and J. Sproston. Model checking durational probabilistic systems. In Proc.
of the 8th Int. Conf. on Foundations of Software Science and Computation Structures (FoS-
SaCS’05), volume 3441 of LNCS, pages 140–154. Springer, 2005.

20. F. Laroussinie and J. Sproston. State explosion in almost-sure probabilistic reachability. To
appear in IPL, 2007.

21. S. Lasota and I. Walukiewicz. Alternating timed automata. In Proc. of the 8th Int. Conf. on
Foundations of Software Science and Computation Structures (FoSSaCS’05), volume 3441
of LNCS, pages 299–314. Springer, 2005.

22. C. Papadimitriou and J. Tsitsiklis. The complexity of Markov decision processes. Mathe-
matics of Operations Research, 12(3):441–450, 1987.

23. M. Stoelinga. Alea Jacta est: Verification of probabilistic, real-time and parametric systems.
PhD thesis, Institute for Computing and Information Sciences, University of Nijmegen, 2002.

24. S. Tripakis, S. Yovine, and A. Bouajjani. Checking timed Büchi automata emptiness effi-
ciently. Formal Meth. in Syst. Design, 26(3):267–292, 2005.

25. M. Y. Vardi. Automatic verification of probabilistic concurrent finite-state programs. In Proc.
of the 16th An. Symp. on Foundations of Computer Science (FOCS’85), pages 327–338. IEEE
Computer Society Press, 1985.

Adaptor Synthesis for Real-Time Components�

Massimo Tivoli1, Pascal Fradet2, Alain Girault2, and Gregor Goessler2

1 University of L’Aquila��

Dip. Informatica, via Vetoio 1, 67100 L’Aquila, Italy
tivoli@di.univaq.it

2 INRIA Rhône-Alpes - POP ART project
655 avenue de l’Europe, 38330 Montbonnot, France

{Pascal.Fradet,Alain.Girault,Gregor.Goessler}@inrialpes.fr

Abstract. Building a real-time system from reusable or COTS compo-
nents introduces several problems, mainly related to compatibility, com-
munication, and QoS issues. We propose an approach to automatically
derive adaptors in order to solve black-box integration anomalies, when
possible. We consider black-box components equipped with an expres-
sive interface that specifies the interaction behavior with the expected
environment, the component clock, as well as latency, duration, and con-
trollability of the component’s actions. The principle of adaptor synthesis
is to coordinate the interaction behavior of the components in order to
avoid possible mismatches, such as deadlocks. Each adaptor models the
correct assembly code for a set of components. Our approach is based on
labeled transition systems and Petri nets, and is implemented in a tool
called SynthesisRT. We illustrate it through a case study concerning a
remote medical care system.

1 Introduction

Due to their increasing complexity, control systems are nowadays often designed
in a modular approach by means of libraries of building blocks. This has lead
to a need of a component-based approach for building real-time systems out
of a set of already implemented components. Building a real-time system from
reusable or Commercial-Off-The-Shelf (COTS) components introduces several
problems, mainly related to compatibility, communication, and quality of service
(QoS) issues [2,10,11,12,18]. Indeed, incompatibilities between the components
may arise and make their composition impossible.

In this paper, we show how to deal with these problems within a lightweight
component model where components follow a data-flow interaction model. Each
component declares input and output ports which are the points of interaction
with other components and/or the execution environment. Input (resp., output)
ports of a component are connected to output (resp., input) ports of a different

� This work has been partially funded by the Alidecs project and the Artist II
European network of excellence.

�� This work has been done while the first author was a postdoctoral fellow in the
Pop Art project team at INRIA Rhône-Alpes.

O. Grumberg and M. Huth (Eds.): TACAS 2007, LNCS 4424, pp. 185–200, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

186 M. Tivoli et al.

component through synchronous links. In our framework, a component interface
includes a formal description of the interaction protocol of the component with
its expected environment in terms of sequences of writing and reading actions to
and from ports. The interface language is expressive enough to specify QoS con-
straints such as writing and reading latency, duration, and controllability, as well
as the component’s clock (i.e., its activation frequency). In order to deal with
incompatible components (e.g., clock inconsistency, read/write latency/duration
inconsistency, mismatching interaction protocols, etc.) we synthesize component
adaptors interposed between two or more interacting components. An adaptor
is a component that mediates the interaction between the components it super-
vises, in order to harmonize their communication. Each adaptor is automatically
derived by taking into account the interface specification of the components it
supervises. The adaptor synthesis allows the developer to automatically and in-
crementally build correct-by-construction systems from third-party components,
hence reducing time-to-market and improving reusability. The space complexity
of the synthesis algorithm is exponential in the number of states of the automa-
ton modeling the interaction protocol of each component. Thus, incrementality
is crucial to manage the complexity of real systems.

We have formalized the adaptor synthesis algorithm by using Petri nets [16]
theory, and we address its correctness in a companion paper [19]. Moreover, in
order to realize the whole approach, we have implemented a tool, called Synthesis
Real Time (SynthesisRT) [19], which we have used on a case study concerning
a remote medical care system (RMCS).

The remainder of the paper is organized as follows. Section 2 introduces the
notions of latency, duration, controllability, and local/global time/clock. Sec-
tion 3 provides an informal overview of our method. Section 4 presents our com-
ponent specification formalism and its semantics in terms of Labeled Transition
Systems (LTSs). Section 5 formalizes the technical core of adaptor synthesis. Sec-
tion 6 describes our method at work on the RMCS case study. Finally, Section 7
summarizes our work and presents related work and future extensions.

2 Background

In this section, we introduce the background notions used by our framework.

2.1 Context

We want to build component-based real-time systems by assembling third-party
black-box components. Black-box means that the component source code is not
available to the system designer. Each component is equipped with a rich inter-
face that describes its behavior as well as real-time properties. According to the
“design by contract” approach [18], such an interface specification is given by
the component developer, who is aware of the information needed. An interface
includes:

Adaptor Synthesis for Real-Time Components 187

– A behavioral interface specification. This specification is given in terms of a
Labeled Transition System (LTS) that models the sequences of actions that
the component performs when it interacts with its environment. As it is
explained below, this LTS contains also timing information.

– A periodic clock that, for reuse purposes, is instantiated at assembly-time.
It specifies a sequence of instants by an infinite stream of boolean values: 1
denotes an instant where the component is enabled (it can perform an action
or let the time elapse) and 0 denotes an instant where then component is dis-
abled. A periodic clock can be finitely represented by its periodic sub-stream
(e.g., the clock (10)ω represents the infinite stream 10101010101010 . . .). The
global time is defined by the clock (1)ω that is called the base clock. The clock
of each component defines a time that is local to the component. It char-
acterizes the component speed and can be seen as a sub-clock of the base
clock. For hierarchies of components, the local clock of each component is a
sub-clock of the clock of its super-component. We refer the reader to [5] for
a comprehensive presentation of the periodic clock concept.

– A latency (a natural number) for each action. It specifies the number of global
time units that can pass before the action is performed. In other words, the
component may choose to synchronize with its environment to perform the
corresponding action any time before the latency is elapsed.

– A duration (an interval of natural numbers) for each action. It specifies the
local time units needed for the action execution. For instance, a duration
[1, 2] indicates that the action may require one or two instants where the
component is enabled to complete. Contrary to the latency, the precise du-
ration cannot be chosen. The component must synchronize correctly with its
environment for every possible execution time specified by its duration.

– A controllability tag for each action. An uncontrollable action (i.e., tagged
with u) cannot be disabled. For example, inputs coming from a sensor are
often considered as uncontrollable since they must be accepted and treated
by the component. In contrast, controllable actions (without a tag) can be
safely disabled (e.g., by a supervisor or an adaptor), for instance to prevent
a deadlock.

2.2 Architectural Model

In this section, we provide an overview of our architectural model using a small
example. Figure 1 shows the architectural specification of a black-box component
C1, with a clock port w1, which interacts with its environment through the input
port a and the output port b.

C1
a b

W1

Fig. 1. Architectural schema of component C1

188 M. Tivoli et al.

In general, a component can have several input and output ports. Components
are connected to each other through their ports and interact synchronously. An
input port of a component can be connected to an output port of a different
component. Input (resp., output) ports support a reading (resp., writing) oper-
ation. Synchronous communication implies that reading and writing operations
among connected ports are blocking actions. In other words, connected compo-
nents are forced to synchronize on complementary read/write operations. E.g.,
let the input port p1 and the output port p2 be connected: a reading from p1 has
to synchronize with a writing to p2. This style of communication is not a limita-
tion because it is well known that, with the introduction of a buffer component,
we can always simulate an asynchronous system by a synchronous one [13].

The clock port of a component can be seen as a special input port whose cur-
rent value (either 1 or 0) depends on the periodic clock that has been assigned to
the component and on the current instant of the global time. It is not connected
to other ports since it serves only to assign a periodic clock to the component
at assembly-time.

3 Overview

In this section, we informally describe the main steps of our method as illustrated
in Figure 2. Although we took inspiration from [3], our synthesis algorithm is
very different from theirs as it is discussed in Section 7.

We take as input the architectural specification of the network of components
to be composed and the component interface specifications. The behavioral mod-
els of the components are generated in form of LTSs that make the elapsing of

Fig. 2. Main steps of adaptor synthesis for real-time components

Adaptor Synthesis for Real-Time Components 189

time explicit (step 1). Connected ports with different names are renamed such
that complementary actions have the same label in the component LTSs (see
actions a and d in Figure 2). Possible mismatches/deadlocks are checked by
looking for possible sink states into the parallel composition of the LTSs. The
adaptor synthesis process starts only if such deadlocks are detected.

The synthesis first proceeds by constructing a Petri net (PN) representation
of the environment expected from a component in order to avoid deadlocks
(step 2). It consists in complementing the actions in the component LTSs that are
performed on connected ports, considering the actions performed on unconnected
ports as internal actions. A buffer storing read and written values is modeled as
a place in the environment PN for each IO action. Each such PN represents a
partial view of the adaptor to be built. It is partial since it reflects the expectation
of a single component. In particular, a write (resp. read) action gives rise to a
place (buffer) without outgoing (resp. incoming) arcs.

The partial views of the adaptor are composed together by building causal de-
pendencies between the reading/writing actions and by unifying time-elapsing
transitions (step 3). Furthermore, the places representing the same buffer are
merged in one single place. This Unification PN desynchronizes emission from
reception using buffers. However, the unification PN may include behaviors that
deadlock and/or require unbounded buffers. In order to obtain the most permis-
sive and correct adaptor, we generate an extended version of the graph usually
known in PNs theory as the coverability graph [8] (step 4).

Our method automatically restricts the behavior of the adaptor modeled by
the extended coverability graph in order to keep only the behaviors that are
deadlock-free and that use finite buffers (i.e., bounded interactions). This is
done by automatically constructing, if possible, an “instrumented” version of our
extended coverability graph, called the Controlled Coverability Graph (CCG).
The CCG is obtained by pruning from the extended coverability graph both the
sinking paths and the unbounded paths, by controller synthesis [17] (step 5).
This process also performs a backwards propagation in order to correctly take
into account the case of sinking and unbounded paths originating from the firing
of uncontrollable transitions.

If it exists, the maximal CCG generated is the LTS modeling the behavior
of the correct (i.e., deadlock-free and bounded) adaptor. This adaptor models
the correct-by-construction assembly code for the components in the specified
network. If it does not exist, a correct adaptor assembling the components given
as input to our method cannot be derived, and hence our method does not
provide any assembly code for those components.

4 The Interface Specification and Its Translation

In this section, we present the interface specification language by continuing the
small example introduced before (the component C1 described in Section 2.2).
We have defined a higher-level language, called DLiPA [19], based on process

190 M. Tivoli et al.

a1
[1,2]

b2

(A)C1 (B) <C1,(10) >

<s0,0>

a
u<s1,0> <s4,0><s3,1>

<s8,0>

<s7,1>

u
<s5,1> <s6,0>

u
ub

b

b

Fig. 3. (A) Behavioral interface of C1 and (B) its semantic model with respect to (10)ω

algebra. In this paper, we start from an LTS, a form that DLiPA processes can
be easily translated into.

Our source LTSs are labeled with actions of the form x
{u} [i,j]
l where x denotes

the action (read or write), l its allowed latency, [i, j] its duration, and u, if
present, the uncontrollability of the action.

Figure 3.(A) gives the interface specification of the component C1 as an LTS.
From its initial state (denoted by an incoming arrow without source state), C1
performs an action a (i.e., it reads from port a) followed by an action b (i.e., it
writes to port b) that returns to the initial state. All C1 actions are controllable
(no u tag). The action a has latency 1, i.e., its execution can be delayed by
one global time unit at most. Moreover, a has duration [1, 2] meaning that its
execution can take either one or two local time units. Similarly, the execution of
b can be delayed by two global time units at most and takes no time.

Figure 3.(B) presents the semantic model of C1 that has been derived by tak-
ing into account the interface specification of Figure 3.(A) and a periodic clock,
here (10)ω, which has been assigned to C1. This semantics is noted 〈C1, (10)ω〉.
It is an LTS modeling the interaction behavior of C1 with its expected envi-
ronment and making time elapsing explicit. The clock (10)ω has been assigned
by the designer of the system to be assembled and it represents the required
component activation frequency. The LTS of 〈C1, (10)ω〉 is produced by compil-
ing latency and duration information into abstract actions ε representing time
elapsing. Each state of the LTS is named by a pair made of a label (e.g., s0) and
a global time instant (e.g., 0). These instants refer to the finite representation
of the assigned periodic clock, i.e., they are the instants 0, . . . , l − 1 where l is
the length of the clock’s period. In our example, where the clock is (10)ω, the
instant 0 represents instants where C1 is enabled (i.e., it can perform some ac-
tion or let the time elapse) whereas the instant 1 represents instants where C1
is disabled (i.e., it can only let the time elapse).

A transition labeled by a concrete action (e.g., a) is instantaneous: it repre-
sents the starting point for the execution of the action. For example, the tran-
sition 〈s0, 0〉 a−→ 〈s1, 0〉 in Figure 3.(B) means that C1 starts to read from port
a. A transition labeled by an abstract action ε or εu lets the time elapse: it
represents a tick of the global clock (e.g., 〈s1, 0〉 εu

−→ 〈s3, 1〉 in Figure 3.(B)).
Latency is translated using the controllable action ε. For instance an action

x with latency 1 is translated into two sequences of transitions: one sequence

Adaptor Synthesis for Real-Time Components 191

performing x immediately and another sequence performing x after an ε-
transition. If one branch leads to a deadlock, the environment (i.e., the adaptor
to be synthesized) may choose the other one by synchronizing only with it.

Duration is translated using the uncontrollable action εu. For instance, as-
suming the clock (1)ω, an action x with duration [1, 2] is translated into the
transition x followed by the branching between one or two εu-transitions. The
uncontrollability enforces the composition with the environment to be compati-
ble with both time-elapsing possibilities. Note that, since duration refers to local
time and the semantics refers to the global time, the previous example with a
clock (10)ω would be translated into the transition x followed by the branching
between two or four εu-transitions depending on the clock instant (assuming the
action x is enabled initially).

In the LTS of Figure 3.(B) (i.e., 〈C1, (10)ω〉), a duration unit is represented by
two εu-transitions. Note also that the local clock influences the actual latency.
For instance, according to clock (10)ω, C1 either executes b immediately (from
the time it is enabled) or waits exactly two global time units to execute it: a one
time unit wait leads to a state where the component is disabled and b cannot be
performed. Analogously, in order to represent the latency of a, an ε-transition
should be produced from the initial state. However, this transition is pruned
since it is controllable and leads to a sink state (only a read from a is permitted
but it is disabled).

To define the semantics of a system (i.e., a network of components), we put in
parallel the semantic models of the components by forcing the synchronization
on complementary concrete actions and on abstract actions. Components syn-
chronize pairwise on complementary concrete actions by producing, for each syn-
chronizing pair b/b, a τ -transition at the level of the composed system, where τ
denotes an internal action. Components synchronize, altogether, on time-elapsing
transitions by producing a time-elapsing transition at the level of the system.
Whenever two or more components have a mismatching interaction due to some
behavioral inconsistency, a deadlock occurs in the composed system (i.e., a sink
state is produced in the LTS of the system). This is precisely what we avoid
thanks to our adaptor synthesis method, presented in the next section. We refer
to [19] for further details.

5 Adaptor Synthesis

In this section, we illustrate our method using another small example and for-
malize part of it. For space reasons, we focus only on the formalization of the
Unification PN (see Definition 1) and we omit other formal details that will be
illustrated through the explanatory example.

5.1 Unification PN Generation

Let us suppose that the designer wants to build an assembly S formed by two
components C1 and C2 whose semantic models are shown in Figure 4.

192 M. Tivoli et al.

(A)

c

<s0,0>

<s1,0> <s2,1> <s3,0>

<s4,0>

a
u u

b

b

(B)
<v0,0>

<v1,0> <v2,1> <v3,0>b
u u

a

<v4,0> <v5,1> <v6,0>

u uc

a

Fig. 4. After step 1: (A) 〈C1, (11)
ω〉; (B) 〈C2, (10)

ω〉

Note that the periodic clocks of C1 and C2 have the same length. This is
required in order to perform the generation of the Unification PN. This require-
ment is not a limitation since, although the designer can specify clocks with
different length, they can be always rewritten in such a way that they have
the same length by taking the least common multiple of the different lengths. In
Figures 5.(A) and 5.(B) we show respectively the PNs modeling the environment
expected from 〈C1, (11)ω〉 and 〈C2, (10)ω〉 in order not to block.

s0

s1 s2

s3

s4
a1

pb

pc

u
1,2

c1
pa

(A)

v0

v1 v2

v3 v4

b2

pa

pc

u
2,1

pb

(B)
v5 v6

b1

a2

u
1,1

b1

a2

u
2,2

u
2,3

u
2,4

c2

Fig. 5. After step 2: Component PNs - (A) PN1; (B) PN2

For technical reasons, the actions have been relabeled. Since, now, all the
latencies and durations have been made explicit through ε-transitions, the in-
dexing that has been used for the action labels must not be confused with the
one used above to specify the latency. We recall that each environment PN is a
partial view of the adaptor to be built since it reflects the expectation of only
one component. In particular, for each state in the component LTS, there is
a place in the environment PN. The initial marking puts a token in the place
corresponding to the initial state. For each transition labeled with a concrete
action in the component LTS, there is a transition labeled with the complemen-
tary action in the environment PN. The transition label is such that it contains
the information concerning which component has performed the corresponding
action (through a suitable indexing: e.g., subscript 1 for C1 and 2 for C2).

Adaptor Synthesis for Real-Time Components 193

For each component writing action to an output port x, a place px is produced
and an arc from the corresponding transition to px is added. It corresponds to
the fact that, in order to synchronize with a component, the adaptor reads and
stores values into an internal buffer. A stored value will be written as output as
soon as the adaptor synchronizes with a component that expects to read this
value. Component reading actions are handled in a complementary way. In this
way, the adaptor desynchronizes the received events from their emission, hence
solving mismatches arising from the fact that different components perform com-
plementary actions at different instants.

For a time-elapsing transition in the component LTS, the corresponding tran-
sitions, places, and arcs are generated in the environment PN as it is shown in
Figure 5. That is, a correct environment for a component has to let the time
elapse whenever the component lets the time elapse as well.

Actions that do not force the component to synchronize with the environment
can be freely performed; the adaptor must not preempt them and produces an
internal action whenever they occur (there is no such action in our example).
We refer the reader to [19] for a formal definition of environment PN.

After the partial views of the adaptor have been built, they are composed
in order to obtain the Unification PN. In Figure 6 we show the Unification
PN (i.e., PN1,2) that has been obtained after the unification of PN1 and PN2.
The Unification PN PN1,2 is automatically derived from the union of PN1 and
PN2 plus a unification operation of their time-elapsing transitions. Informally,
casual dependencies between the reading and writing of data are generated by
performing the union of the sets of places, arcs, and transitions, except for the
arcs and transitions concerning the elapsing of time. Time-elapsing transitions
are composed using the synchronous product. Figure 6 shows the obtained time-
elapsing transitions as dashed and grey arrows. For readability issues, we have

s0

s1 s2

s3

s4
a1

pb

pc

c1

b1

b1

v0

v1 v2

v3 v4

b2

pa

u
1,1

u
2,2

c2

a2
(v6,v0)

a2

v5 v6u
1,3

u
2,4

Fig. 6. After step 3: PN1,2: the Unification PN for PN1 and PN2

194 M. Tivoli et al.

drawn only the fireable transitions. For example, the first time-elapsing transition
of PN1 composed with the first time-elapsing transition of PN2 is fireable. Note
that the first time-elapsing transition of PN1 composed with the third time-
elapsing transition of PN2 is fireable as well (after PN1 has performed one
loop). The step to derive the unification PN is formalized by Definition 1:

Definition 1 (Unification PN). Let PNi = (Pi, Ti, Fi, M
i
0) (where i =

1, . . . , n, Pi is the set of places, Ti is the set of transitions, Fi is the set of arcs,
and M i

0 is the initial marking) be the PN modeling the environment expected from
the component Ci. The Unification PN is the Petri Net UPN = (P, T, F, M0),
where:

– P =
⋃n

i=1 Pi;
– T =

⋃n
i=1 T ′

i ∪ {εu
k1,...,kn

| ∀i = 1, ..., n . εx
i,ki

∈ Ti ∧ ∃i . εu
i,ki

∈ Ti} ∪
{εk1,...,kn | ∀i = 1, ..., n . εi,ki ∈ Ti}, where T ′

i is Ti without time-elapsing
transitions and the superscript x is either equal to ‘u’ or is empty;

– F =
⋃n

i=1 F ′
i ∪

⋃
i{(p, εu

k1,...,kn
), (εu

k1,...,kn
, p′) | p, p′ ∈ Pi ∧ (p, εx

i,ki
) ∈ Fi ∧

(εx
i,ki

, p′) ∈ Fi ∧ εu
k1,...,kn

∈ T } ∪ {(p, εk1,...,kn), (εk1,...,kn , p′) | p, p′ ∈ Pi ∧
(p, εi,ki) ∈ Fi ∧ (εi,ki , p

′) ∈ Fi ∧ εk1,...,kn ∈ T }, where F ′
i is Fi without arcs

to or from time-elapsing transitions, and the superscript x is either equal to
‘u’ or is empty;

– for each p ∈ P if ∃i.M i
0(p) = 1 then M0(p) = 1, otherwise M0(p) = 0.

The following is an upper-bound estimation of the size of the Unification PN in
terms of its number of places and transitions:

|P | =
∑n

i=1 |Pi|
|T | =

∑n
i=1 |T ′

i | +
∏n

i=1 |T te
i | where T te

i is the set of time-elapsing transitions
of PNi

Note that the number of places and immediate (i.e., non time-elapsing) tran-
sitions of the Unification PN grows up linearly with respect to the number of
places and immediate transitions of the component PNs; whereas the number
of time-elapsing transitions is exponential with respect to the number of time-
elapsing transitions of the component PNs.

5.2 Controlled Coverability Graph Synthesis (CCG)

After the Unification PN has been generated, its maximal CCG is automatically
derived, if it exists. We first generate the extended coverability graph of the
Unification PN. Given a PN (P, T, F, M0), we construct the marking graph in
the standard way. From M0, we obtain as many markings as the number of the
enabled transitions. From each new marking, we can again reach more markings.
This process results in a graph representation of the markings. Nodes represent
markings generated from M0 (the initial node) and its successors, and each arc
represents a transition firing, which transforms one marking into another. How-
ever, the above representation will grow infinitely large if the PN is unbounded.
To keep it finite, we introduce a special symbol ω to indicate a possibly infinite

Adaptor Synthesis for Real-Time Components 195

number of tokens in some place. ω can be thought of as “infinity”. It has the
properties that for each integer n, ω > n, ω±n = ω, and ω ≥ ω. Given markings
M and M ′ such that: (1) M ′ is reachable from M , and (2) ∀p, M ′(p) ≥ M(p)
(i.e., M is coverable by M ′), then, for each place q such that M ′(q) > M(q) ≥ 1,
we replace M ′(q) by ω in the extended coverability graph. This is the same crite-
rion as the termination criterion used by Cortadella et al. to identify irrelevant
markings [6]. They conjecture that this criterion is complete [6], meaning that
if a bounded and non-blocking execution exists, it will be represented in the
extended coverability graph.

Fig. 7. After step 4: (A) extended coverability graph of PN1,2; After step 5: (B)
its controlled version

By continuing our example, we partially show the extended coverability graph
of PN1,2 in Figure 7.(A). The cloud-nodes are portions of the coverability graph
made only of paths whose nodes are either dead or contain unbounded markings.
Informally, a dead (resp., unbounded) marking is a node without successors
(resp., that represents a marking in which some place has stored a potentially
infinite number of tokens) or whose successors always lead to dead (resp., un-
bounded) markings. We refer to [19] for a formal definition of dead and un-
bounded markings, and of CCG.

In Figure 7.(B), we show the maximal CCG of PN1,2. The maximal CCG
is the most permissive one among all possible CCGs. Informally, it is obtained
from Figure 7.(A) by pruning the transitions that lead inevitably to cloud-nodes
and that are controllable. The pruning of controllable transitions, as well as the
“most permissive” notion, is borrowed from Discrete Controller Synthesis [17].

6 Case Study: A Remote Medical Care System

We now apply our approach to a case study, borrowed with minor modifications
from [4]: a RemoteMedical Care System (RMCS). The RMCS provides monitoring

196 M. Tivoli et al.

and assistance to disabled people. A typical service is to send relevant information
to a local phone-center so that medical or technical assistance can be timely noti-
fied of critical circumstances. The RMCS can be built from eight COTS compo-
nents (Alarm, Line, Control, RAlarm, etc.) assembled into three composite com-
ponents: User, Router, and Server (see Figure 8). Using our adaptor synthesis
method and its associated tool (SynthesisRT), it has been possible to incremen-
tally and automatically assemble a correct by construction RMCS.

ALARM

CONTROL

LINE

USER

alarm

ack

(10)

ackRU

c

r

r

ra

a

a

RALARM

RCONTROL

SLINE

ROUTER

aRS

ackSR

nofunc

sr

sr

srsa

sa

sa

SALARM

SCONTROL

SERVER

aUR

ackRU

c

aRS

ackSR

nofunc

aUR

(10)

(10)

(10)

(1)

(10)

(10)

(1)

Fig. 8. The software architecture of the RMCS

When a patient needs help (i.e., the uncontrollable signal alarm is emitted),
User sends either an alarm (aUR) or a check message (c) to Router. After
sending an alarm, User waits for an acknowledgment (ackRU) and indicates
the conclusion of the alarm dispatching to the patient (ack). Router waits for
check or alarm messages from User (c or aUR). It forwards alarm messages to
Server (aRS) and checks the state of User through the check message (c). Server
dispatches the alarm requests (aRS).

a1
2

r
(A)

r end

a c1(B)
r

alarm(C) a aUR1 ackRU1

1 1 1

acku

u

Fig. 9. Behavioral specification of (A) Line, (B) Control, and (C) Alarm

Router and Server are connected through a dedicated line (modeled by the
component SLine) that is always available. Conversely, User and Router are
connected through a usual phone line (modeled by the component Line) that
can be busy.

For space reasons, we only show the part of the case study that concerns
the assembly of the correct-by-construction version of User. We refer to [19] for
a complete description of both the case study and our SynthesisRT tool. User
models the logic of the control device provided to patients in order to dispatch

Adaptor Synthesis for Real-Time Components 197

alarms. It is an assembly of the three components Control, Alarm, and Line.
Figure 9 provides the interface specifications of these components. From these
behavioral specifications, SynthesisRT automatically derives the corresponding
LTSs. Then, the CADP toolbox [9] is used to derive the LTS representing User1.
CADP allows us to detect possible deadlocks and to exhibit deadlocking traces.
For instance, in User, an alarm request can deadlock whenever Alarm receives
an alarm request from the patient and Control gets the Line to send a check
message to Router. Figure 10 represents a deadlocking trace where, after an
alarm request, Control and Line synchronize (producing a τ) and let time elapse
(i.e., perform a and c) whereas Alarm is still waiting on action a that should be
performed immediately (no latency).

alarm cu

Fig. 10. A deadlocking trace of User

An adaptor is therefore required to avoid deadlocks in User. SynthesisRT
automatically derives the environment PNs of Line, Control, and Alarm, as well
as their Unification PN. The Unification PN is encoded in a file that can be
fed to the TINA tool [1]. TINA is used to automatically derive the extended
coverability graph of the generated Unification PN. The coverability graph is
generated in 0.061 seconds on a Macbook Pro; it is unbounded and has 348 states,
763 transitions, 197 unbounded markings/states and no dead marking/state.
This means that the message reordering has been sufficient to solve the detected
deadlock, but it can still lead to some buffer overflows.

At this point, SynthesisRT is used again to automatically derive, from the
uncontrolled coverability graph, its corresponding maximal CCG that prevents
the reaching of the unbounded states. The maximal CCG is the LTS of the
synthesized adaptor (Aduser) that allows one to correctly assemble User. In our
example, the adaptor is generated in 0.127 seconds but it is too large to be
presented here; it has 116 states and 242 transitions. The deadlock is solved by
Aduser using message buffering and reordering. More precisely, when Line and
Control perform a and c, Aduser synchronizes with Alarm on the line request
a. It stores the received request in a buffer in order to forward it when the line
is released by Control. Then, the execution of Alarm can proceed and reach a
point where it can let the time elapse, as required by Control and Line.

So, by putting Aduser in parallel with Line, Control, and Alarm, we ob-
tain the correct-by-construction version of the composite component User. We
have also used SynthesisRT to derive three other adaptors: Adrouter (inter-
posed between RAlarm, SLine, and RControl), Adrs (interposed between the
adapted router and Server) and Adrmcs (interposed between the adapted com-
posite router/server component and the adapted user component). Through the

1 Referring to Figure 2, steps 1, 3, and 5 are performed with SynthesisRT, step 2 with
CADP, and step 4 with TINA.

198 M. Tivoli et al.

synthesis of these four adaptors, we have incrementally and automatically built
a correct-by-construction RMCS.

7 Conclusion

In this paper, we have described an adaptor-based approach to assemble cor-
rect by construction real-time components that take into account interaction
protocols, timing information, and QoS constraints. Our approach focuses on
detection, correction, and prevention of deadlocks and unbounded buffers due
to mismatching protocols. The main idea is to build a model of the environment
of the component and to extract a controlled version (an adaptor) preventing
deadlocks and unbounded buffers. In the general case, the space complexity of
the synthesis algorithm is exponential in the number of states of the component
LTSs. We have validated the approach by means of a case study.

Our work is related to several techniques in different research areas. In control
theory, a related technique is discrete controller synthesis [17]. The objective is to
restrict the system behavior so that it satisfies a specification. This is achieved by
automatically synthesizing a suitable controller w.r.t. the specification. Beyond
restricting the system behavior, our approach also extends it to resolve possible
mismatches. For instance, while the approach in [17] performs only deadlock
prevention, our approach performs also deadlock correction.

Another related work in synchronous programming is the synchronizing of
different clocks. In [5], each input and output port is associated with a periodic
clock. Adaptation is performed at the level of each connection between ports
using finite buffers. It is sufficient to look at the clocks of two connected ports
and to introduce a delay by interposing a node buffer between the two ports.
In our context, adaptation must be performed at the component level by taking
into account several dimensions of the specification: the component clock, the
interaction protocol, the latency, duration, and controllability of each action.
For this reason, introducing delays is not sufficient and, e.g., the reordering or
inhibition of actions may be necessary.

Related work in interface automata theory [7] also uses LTSs to model the
input/output behavior of components. When composing two LTSs, they derive a
constraint on their environment such that deadlocks are avoided, but they do not
produce an adaptor to solve the incompatibilities between the two components.

Related work in component adaptation [3] and component interface com-
patibility [15] has shown how to automatically generate the behavioral model
of an adaptor from: (i) a partial specification of the interaction behavior of
the components and (ii) an abstract specification of the adaptor. In contrast
with our work, they do not deal with real-time attributes. Although we took
inspiration from [3] with respect to the PN encoding into the TINA tool and the
use of CADP, our synthesis algorithm is very different from theirs since they do
not have to take into account time-elapsing actions. Moreover, both techniques
in [3] and [15] consider all component actions to be controllable, and neither

Adaptor Synthesis for Real-Time Components 199

considers the problem of synthesizing an adaptor model that ensures to always
have bounded buffers.

Our approach focuses only on the automatic generation of the behavioral
model of the correct adaptor. Future work shall consider the generation of the
adaptor’s actual code using, e.g., synchronous languages such as Signal, Lustre,
or Esterel. So far, the clocks are fixed before synthesizing the adaptor. Changing
a component clock means re-executing the synthesis algorithm. An interesting
extension would be to automatically derive clock-independent adaptors. A com-
ponent clock would become a function of the adaptor clock. When the adaptor
clock is instantiated, the component clocks will be instantiated as well to obtain
a correct-by-construction assembly. Another possible future work is to study
and formalize component architectures for which incremental adaptor synthesis
is equivalent to a centralized adaptor synthesis.

References

1. B. Berthomieu, P. Ribet, and F. Vernadat. Construction of abstract state spaces
for Petri nets and time Petri nets. International Journal of Production Research,
42(14), 2004. TINA web page: http://www.laas.fr/tina/.

2. B. Boehm and C. Abts. COTS integration: Plug and pray? IEEE Computer, 32(1),
1999.

3. C. Canal, P. Poizat, and G. Salaün. Synchronizing behavioural mismatch in soft-
ware composition. In FMOODS, volume 4037 of LNCS, 2006.

4. M. Cioffi and F. Corradini. Specification and analysis of timed and functional
TRMCS behaviors. In Proc. of the 10th IWSSD, 2000.

5. A. Cohen, M. Duranton, C. Eisenbeis, C. Pagetti, F. Plateau, and M. Pouzet.
Synchronization of periodic clocks. In Proc. of the 5th EMSOFT, 2005.

6. J. Cortadella, A. Kondratyev, L. Lavagno, C. Passerone, and Y. Wanatabe. Quasi-
static scheduling of independant tasks for reactive systems. IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems, 24(10):1492–1514, Oct.
2005.

7. L. de Alfaro and T. Henzinger. Interface automata. In Annual Symposium on
Foundations of Software Engineering, FSE’01, pages 109–120. ACM, 2001.

8. A. Finkel. The minimal coverability graph for Petri nets. In Proc. of the 12th
APN, volume 674 of LNCS, 1993.

9. H. Garavel, F. Lang, and R. Mateescu. An overview of CADP 2001. EASST
Newsletter, 4, 2002. http://www.inrialpes.fr/vasy/cadp.

10. D. Garlan, R. Allen, and J. Ockerbloom. Architectural mismatch: Why reuse is so
hard. IEEE Software, 12(6), 1995.

11. P. Inverardi, D. Yankelevich, and A. Wolf. Static checking of system behaviors
using derived component assumptions. ACM TOSEM, 9(3), 2000.

12. N. Kaveh and W. Emmerich. Object system. 8th FSE/ESEC, 2001.
13. R. Milner. Communication and Concurrency. Prentice Hall, 1989.
14. T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the

IEEE, 77(4), 1989.
15. R. Passerone, L. de Alfaro, T. Henzinger, and A. Sangiovanni-Vincentelli. Convert-

ibility verification and converter synthesis: Two faces of the same coin. In ICCAD,
2002.

http://www.laas.fr/tina/
http://www.inrialpes.fr/vasy/cadp

200 M. Tivoli et al.

16. C. Petri. Kommunikation mit Automaten. PhD thesis, University of Bonn, 1962.
17. P. Ramadge and W. Wonham. The control of discrete event systems. Proceedings

of the IEEE, 1(77), 1989.
18. C. Szyperski. Component Software. Beyond Object Oriented Programming.

Addison Wesley, 1998.
19. M. Tivoli, P. Fradet, A. Girault, and G. Gössler. Adaptor synthesis for real-time

components. Research report, INRIA, 2007, to appear.

Deciding an Interval Logic

with Accumulated Durations�

Martin Fränzle1 and Michael R. Hansen2,��

1 Dpt. Informatik, C. v. Ossietzky Universität Oldenburg, Germany
fraenzle@informatik.uni-oldenburg.de

2 Informatics and Math. Modelling, Technical University of Denmark
mrh@imm.dtu.dk

Abstract. A decidability result and a model-checking procedure for a
rich subset of Duration Calculus (DC) [19] is obtained through reductions
to first-order logic over the real-closed field and to Multi-Priced Timed
Automata (MPTA) [13]. In contrast to other reductions of fragments
of DC to reachability problems in timed automata, the reductions do
also cover constraints on positive linear combinations of accumulated
durations. By being able to handle accumulated durations under chop as
well as in arbitrary positive Boolean contexts, the procedures extend the
results of Zhou et al. [22] on decidability of linear duration invariants to
a much wider fragment of DC.

Keywords: Real-time systems, metric-time temporal logic, decidability,
model-checking, multi-priced timed automata.

1 Introduction

The Duration Calculi (DC) are a family of metric-time temporal logics facilitat-
ing reasoning about embedded real-time systems at a high level of abstraction
from operational detail [21,19]. Its major ingredients permitting such abstract-
ness are, on one hand, that it is an interval-based [10] rather than a situation-
based temporal logic [14] and, on the other hand, the notion of an accumulated
duration of a predicate being true over some observation interval. While the
former permits a less state-based style of specification, the latter supports ab-
straction from the fine-granular distribution of interesting or critical situations
along the time line. An example is the accumulated runtime of some task in a
multitasking environment, where the time instants where the task actually is
run are of minor importance, provided the accumulated duration of running it
before its deadline is sufficient for its completion.
� This work has been supported by the German Research Council (DFG) as part of the

Transregional Collaborative Research Center “Automatic Verification and Analysis
of Complex Systems” (SFB/TR 14 AVACS, www.avacs.org) and by Velux Fonden,
Søborg, Denmark, through the Velux Visiting Professors Programme.

�� This work has been partially funded by The Danish Council for Strategic Research
under project MoDES.

O. Grumberg and M. Huth (Eds.): TACAS 2007, LNCS 4424, pp. 201–215, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

202 M. Fränzle and M.R. Hansen

While the abstractness supported by DC is desirable for system specification
and analysis, it proved to be a burden for automatic verification support. Both
the satisfiability problem and the model-checking problem wrt. timed automata
of most non-trivial fragments of DC are known to be undecidable [20,19]. In the
dense-time setting with finitely variable models as interpretation, decidability
has in general only been obtained by either dropping metric time altogether [20]
or by dropping accumulated durations and, furthermore, seriously restricting
the use of negation or chop (DC’s only modality) [5,12,8,6]. The only notable
exception is [22], where a conjunction of linear duration invariants is automati-
cally checked on the possible runs of a timed transition table, where transition
occurrences are constrained by upper and lower bounds on the residence time
in the source state. Linear duration invariants are, however, an extremely small
fragment of DC: They are formulae c0 ≤ � ⇒

∑n
i=1 ci

∫
Pi ≤ cn+1 expressing that

the weighted sum
∑n

i=1 ci

∫
Pi of the accumulated durations

∫
Pi of some mutu-

ally exclusive state properties Pi is always less than cn+1, provided the length
of the observation interval exceeds c0. Furthermore, the automaton model dealt
with is very restrictive: by only featuring timing bounds on the residence time
in the source state of a transition, it is considerably less expressive than timed
transition systems with clocks [1,4]. In particular, it is not closed under, e.g.,
parallel composition.

Within this paper, we do complement the aforementioned decidability results
by procedures that are able to

1. check satisfiability of formulae featuring multiple different accumulated du-
rations within subformulae which, furthermore, may occur under arbitrarily
nested chop and within complex Boolean contexts, provided the chop modal-
ities occur in positive context, and to

2. check whether every run of a timed automaton A satisfies ¬φ, where φ is a
formula as described under point (1). This model-checking problem is usually
written A |= ¬φ, and in this special form φ is a specification of an undesired
situation, and A |= ¬φ asserts that no run of A exist which exhibits the
undesired situation. This idea is, for example, pursued in [15,11], where φ
can have the restricted form of a DC implementable [16], thus abandoning
accumulated durations and replacing chop by more restricted, operationally
inspired operators. We extend their work by allowing formulae featuring
accumulated durations and arbitrary positive chop.

For the decidability results concerning satisfiability of formulae, our construc-
tion builds on a small model property permitting the reduction of model con-
struction for DC to satisfiability of first-order logic over the reals with addition
FOL(R, +, ≤). The model-checking results are obtained through a reduction to
Multi-Priced Timed Automata (MPTA) [13], where weighted sums of accumu-
lated durations are encoded by prices. The syntactic structure of the formula to
be checked reflects in the structure of the MPTA generated, where conjunction
and disjunction map to the corresponding operations on automata, while the
chop modality yields concatenation.

Deciding an Interval Logic with Accumulated Durations 203

Structure of the paper: In Sect. 2, we introduce Duration Calculus and the
relevant notions of satisfiability and satisfiability over length-bounded models.
Section 3 provides the decidability result concerning satisfiability, while Sect. 5
provides the corresponding result for the model-checking problem. In between,
Sect. 4 reviews multi-priced timed automata, as defined by Rasmussen and
Larsen in [13]. Section 6, finally, discusses how close these results are to the
decidability borderline.

2 Duration Calculus

Duration Calculus (abbreviated DC in the remainder) is a real-time logic that is
developed for reasoning about durational constraints on time-dependent
Boolean-valued states. Since its introduction in [21], many variants of DC have
been defined [19]. In this paper we aim at a subset involving durational con-
straints, which can be supported by automated reasoning.

2.1 Syntax

The syntax of DC used in this paper is defined below. We shall define two
syntax categories: state expressions, ranged over by S, S1, S2, . . ., and formulae,
ranged over by φ, φ1, ψ, ψ1, State expressions are Boolean combinations of
state variables, and they describe combined states of a system at a given point
in time. Formulae can be considered as truth-valued functions on time intervals,
i.e. for a given time interval, a formula is either true or false.

The abstract syntax for state expressions and formulae is defined by:

S ::= 0 | 1 | P | ¬S | S1 ∨ S2
φ ::= � �� k | ��S�� |

∑m
i=1 ci

∫
Si �� k | ¬φ | φ ∨ ψ | φ ∧ ψ | φ � ψ ,

where � is a special symbol denoting the interval length, P ranges over state
variables, k, m, ci ∈ N, and �� ∈ {<, ≤, =, ≥, >}.

In the remainder, we will call any formula built according to the above syntax
a DC formula. The subset of DC formulae where the chop modality “�” do only
occur under a positive number of negations is denoted DCpos. DC\¬ will name
the set of all negation-free (at formula level) DC formulae. Finally, DCub contains
all DC\¬ formulae which contain only upper bound constraints on durations,
i.e. where �� ∈ {<, ≤}, and where exactly one duration constraint is a strict
inequality.

2.2 Semantics

An interpretation I associates a function PI : R≥0 → {0, 1} with every state
variable P , where R≥0 models the dense time line such that interpretations yield
time-dependent, Boolean-valued valuations of state variables. We impose the
finite variability restriction that PI has at most a finite number of discontinuity
points in any interval [a, b].

204 M. Fränzle and M.R. Hansen

The semantics of a state expression S, given an interpretation I, is a function:
I[[S]] : R≥0 → {0, 1}, which is defined inductively as follows:

I[[0]](t) = 0 I[[¬S]](t) =
{

0 if I[[S]](t) = 1
1 if I[[S]](t) = 0

I[[1]](t) = 1

I[[P]](t) = PI(t) I[[S1 ∨ S2]](t) =
{

0 if I[[S1]](t) = I[[S2]](t) = 0
1 otherwise.

We shall use the abbreviation SI
df= I[[S]].

Satisfaction of formulae φ is defined over pairs (I, [a, b]) of an interpretation
I and a time interval [a, b] with a, b ∈ R≥0. Such a pair (I, [a, b]) is called an
observation. The satisfaction relation I, [a, b] |= φ is defined recursively, where
I is an interpretation, [a, b] is an interval, and φ is a formula:

I, [a, b] |= � �� k iff b − a �� k

I, [a, b] |= ��S�� iff a < b and
∫ b

a
SI(t)dt = b − a

I, [a, b] |=
∑m

i=1 ci

∫
Si �� k iff

∑m
i=1 ci

∫ b

a SiI(t)dt �� k
I, [a, b] |= ¬φ iff I, [a, b] �|= φ
I, [a, b] |= φ ∨ ψ iff I, [a, b] |= φ or I, [a, b] |= ψ
I, [a, b] |= φ ∧ ψ iff I, [a, b] |= φ and I, [a, b] |= ψ
I, [a, b] |= φ � ψ iff I, [a, m] |= φ and I, [m, b] |= ψ,

for some m ∈ [a, b].

Whenever I, [a, b] |= φ holds we say that φ is true in [a, b] wrt. I. A formula
φ is said to be valid (written |= φ) if I, [a, b] |= φ holds for all interpretations I
and all intervals [a, b]. Furthermore, a formula φ is satisfiable if I, [a, b] |= φ for
some observation (I, [a, b]). Given k ∈ N, we say that φ is k-bounded satisfiable if
there is an interpretation I with at most k discontinuity points1 and an interval
[a, b] such that I, [a, b] |= φ. In this case, we say that observation (I, [a, b]) is a
k-bounded model of φ.

Since every occurrence of a state variable is within the scope of an integral, we
can form equivalence classes of interpretations, where no formula can distinguish
between interpretations belonging to the same class. This leads to the following
definition and lemma:

Definition 1. Two interpretations I, I ′ are called equivalent in [a, b], written
I ≈[a,b] I ′, if PI and PI′ disagree on at most a finite number of points in [a, b],
for every state variable P .

Lemma 1. For any formula φ, interpretations I, I ′ and interval [a, b]:

If I ≈[a,b] I ′, then I, [a, b] |= φ iff I ′, [a, b] |= φ.

1 Formally speaking, I is a vector of functions PI and has no discontinuity
points itself. By the discontinuity points of I we mean the set {t ∈ R |
P is state variable, PI has a discontinuity point in t} of all discontinuity points of
the individual PI .

Deciding an Interval Logic with Accumulated Durations 205

3 Decidability of the Satisfiability Problem

It has been observed previously, e.g. by Guelev (personal communication, 1997)
and by Hoenicke [11], that for fixed k ∈ N, the k-bounded satisfiability problem
for Duration Calculus (as defined in Sect. 2) is decidable via a reduction to
first-order logic over the reals with addition FOL(R, +, <), whose decidability is
classical [18].

Lemma 2. Let k ∈ N and φ a DC formula.

1. It is decidable whether φ is k-bounded satisfiable.
2. If φ is k-bounded satisfiable then φ is satisfiable.
3. If φ is satisfiable then there exists l ∈ N such that φ is l-bounded satisfiable.
4. There is no algorithm which, given a satisfiable formula φ, computes the

bound l from item 3.

Proof. A proof of (1) can be found in [11, p.24ff]. (2) and (3) are obvious from the
definitions. (4) is a consequence of the general undecidability results of Duration
Calculus (e.g., [20,19]) and the decidability result stated in (1). �

Item 4 of Lemma 2 shows that k-bounded satisfiability is much more limited
than satisfiability in general and that, consequently, the corresponding decid-
ability results are of limited value. For full DC, they do only provide a semi-
decision procedure for (unbounded) satisfiability, based on testing increasing k
in Lemma 2 (1) and exploiting the correspondences from Lemma 2 (2 and 3).

We shall show below that formulae of DCpos have a small-model property
permitting effective computation of a bound on the length of minimal models of
satisfiable formulae. According to Lemma 2 (1), this implies decidability of the
satisfiability problem. The main idea behind this result is that the truth value
of a formula φ ∈ DCpos for an observation (I, [a, b]) is invariant to reshuffling of
certain segments of I in [a, b].

To explain this, let (I1, [a1, b1]) and (I2, [a2, b2]) be observations. Then obser-
vation concatenation a : (I1, [a1, b1]) � (I2, [a2, b2]) denotes the (set of)2 obser-
vations (I ′, [a, a + b1 − a1 + b2 − a2]) with I ′ for all state variables P satisfying
∀t ∈ [0, b1 − a1).PI1(a1 + t) = PI′(a + t) and ∀t ∈ (0, b2 − a2].PI2(a2 + t) =
PI′(a + b1 − a1 + t). We shall omit repeated a : in repeated concatenations
a : (a : I1 � I2) � I3.

Lemma 3. Let φ be a chop-free formula and (I, [a, b]) = a : O1 � O2 � · · · �

Ok be a concatenation of observations Oi. Then

a : (O1 � O2 � · · · � Ok), [a, b] |= φ iff a : (Oi1
� Oi2

� · · · � Oik
), [a, b] |= φ ,

for any permutation i1, i2, . . . ik of 1, 2, . . . , k.

2 Note that interpretation outside the observation interval is irrelevant to the semantics
of DC such that the fact that concatenation actually yields a set is irrelevant in
practice.

206 M. Fränzle and M.R. Hansen

Proof. The proof is by induction on the structure of φ. The base case � ∼ k
is simple, since the truth value depends on the interval [a, b] only. The other
two base cases: ��S�� and

∑m
i=1 ci

∫
Si �� k, are simple since their truth values

are defined in terms of integrals of state expressions, and such integrals are
invariant to the reshuffling. The inductive steps for the propositional connectives
are straightforward. �
This lemma provides a small-model property for any chop-free formula φ.
Suppose that φ contains n state variables, and that (I, [a, b]) is a model of φ.
There are 2n different truth assignments to n Boolean variables, and the above
lemma allows us to reshuffle the segments of I in [a, b] to arrive at a 2n-bounded
model of φ.

Corollary 1. If a chop-free formula φ is satisfiable then it has a 2n-bounded
model, where n is the number of state variables occurring in φ

To show the small model property for DCpos, we first introduce another operator
to DC: In a timed chop φ �c ψ, where c ∈ R≥0, the chop point is confined to
occur exactly at time c:

I, [a, b] |= φ �c ψ iff a ≤ c ≤ b and I, [a, c] |= φ and I, [c, b] |= ψ.

It is obvious that a DC formula φ ∈ DCpos is satisfiable iff there is some satisfiable
formula ψ which is syntactically equal to ψ except that all chops have been
replaced by timed chops. For such a ψ, we can now show that ψ, if satisfiable,
has a model of length linear in the number of (timed) chops in ψ.

Lemma 4. If ψ does not contain an untimed chop and is satisfiable then ψ is
2n(m+1)-bounded satisfiable, where m is the number of (timed) chops in ψ and
n is the number of state variables occurring in ψ.

Proof. sketch: Between chop points —which are now fixed to constant occurrence
times and thus cannot permute—, one can reshuffle the segments in I arbitrarily,
thus ending up with at most 2n segments between each two chops according to
Corollary 1. Since there are m chop points, there are m + 1 such segments. �
As chop is a relaxation of timed chop, all models of ψ are also models of φ.
Therefore, the above result generalizes to DC formulae with untimed chop:

Corollary 2. If a formula φ ∈ DCpos is satisfiable then it has a 2n(m + 1)-
bounded model, where m is the number of chops in φ and n is the number of
state variables occurring in φ.

Proof. As DCpos contains the duals of all operators except chop,3 we can rewrite
φ to negation-free form φ′ ∈ DC\¬. If φ′ is satisfiable then it has at least one
satisfiable counterpart ψ containing only timed chops. According to the previous
Lemma, ψ has a 2n(m + 1)-bounded model. As satisfaction of timed chop im-
plies satisfaction of chop, and due to monotonicity of all other operators in the
negation-free fragment DC\¬, this model is also a model of φ′ and thus φ. �
3 For ��S��, we have the duality ��S�� = ¬(� = 0 ∨

∫
¬S > 0). All other dualities are the

classical ones from predicate logics.

Deciding an Interval Logic with Accumulated Durations 207

As a consequence, we obtain decidability of the satisfiability problem of DC:

Theorem 1. It is decidable whether a formula φ ∈ DCpos is satisfiable.

Proof. According to Corollary 2, in order to check for satisfiability of φ it suffices
to check whether φ has a 2n(m + 1)-bounded model, where m is the number of
chops in φ and n is the number of state variables occurring in φ. Lemma 2 (1)
shows decidability of 2n(m + 1)-bounded satisfiability. �

As –after rewriting to negation-free form DC\¬— there are no negations in our
fragment of DC, the FOL(R, +, <) formula constructed turns out to be in the
existential fragment of FOL(R, +, <)4. Its size is linear in |φ| and in the bound
k = 2n(m + 1) of model construction. For a fixed number n of state variables,
it is thus worst-case quadratic in |φ|. As deciding the existential fragment of
FOL(R, +, <) is NP-complete, this implies that satisfiability of DC formulae
with a fixed number of state variables is in NP. Without a bound on the number
of variables, it obviously is singly exponential.

4 Priced Timed Automata

In this section, we review the definition of Linearly Multi-Priced Timed Automata
(MPTA) together with the theorems that we shall use in order to establish our
decidability result for DC. The presentation of MPTA is based on [13]. MPTA
are an extension of timed automata [1,4], where prices are associated with edges
and locations. The cost of taking an edge is the price of that edge, and the cost
of staying in a location is given by the product of the cost-rate for that location
and the time spent in the location.

Let C be a finite set of clocks. An atomic constraint is a formula of the form:
x �� n, where x ∈ C, ��∈ {≤, =, ≥, <, >}, and n ∈ N. A clock constraint over C is
a conjunction of atomic constraints. Let B(C) denote the set of clock constraints
over C and let B(C)∗ denote the set of clock constraints over C involving only
upper bounds, i.e. ≤ or <. Furthermore, let 2C denote the power set of C.

A clock valuation v : C → R≥0 is a function assigning a non-negative real
number with each clock. The valuation v satisfies a clock constraint g ∈ B(C),
if each conjunct of g is true in v. In this case we write v ∈ g. Let R

C

≥0 denote
the set of all clock valuations.

Definition 2 (cf. [13]). A multi-priced timed automaton A over clocks C is a
tuple (L, l0, E, I, P), where L is a finite set of locations, l0 is the initial location,
E ⊆ L × B(C) × 2C × L is the set of edges, where an edge contains a source, a
guard, a set of clocks to be reset, and a target. I : L → B(C)∗ assigns invariants
to locations, and P : (L ∪ E) → N

m assigns a vector of prices to both locations
and edges. In the case of (l, g, r, l′) ∈ E, we write l

g,r−→ l′.

In order to give semantics to linearly multi-priced timed automata, the notion of
a multi-priced transition system is introduced. A multi-priced transition system
4 Also known as “LinSAT”, featuring powerful tool support, e.g. [3,9].

208 M. Fränzle and M.R. Hansen

is a structure T = (S, s0, Σ, −→), where S is a, possibly infinite, set of states,
s0 ∈ S is the initial state, Σ is a finite set of labels, and −→ is a partial function
from S×Σ×S to R

m
≥0, defining the possible transitions and their associated costs.

The notation s
a−→p s′ means that −→ (s, a, s′) is defined and equal to p. An

execution of T is a finite sequence α = s0
a1−→p1 s1

a2−→p2 s2 · · · sn−1
an−→pn sn,

and the associated cost of α is cost(α) =
∑n

i=1 pi.
For a given state s and a vector u = (u1, . . . , um−1) ∈ R

m−1
≥0 , let mincostT,u(s)

denote the minimum cost wrt. the last component of the price vector of reaching
s while respecting the upper bound constraints to the other prices which are
given by u. This is defined as the infimum of the cost of all executions ending
in s and respecting price constraint u, i.e.

mincostT,u(s) = inf
{

cost(α)m

∣
∣
∣
∣
α an execution of T ending in s,
∀i ∈ N<m.cost(α)i ≤ ui

}

.

Furthermore, for a set of states G ⊆ S, let mincostT,u(G) denote the minimal
cost of reaching some state in G while respecting the upper price bounds u.

The semantics of a linearly multi-priced timed automaton A = (L, l0, E, I, P)
is a multi-priced transition system TA = (S, s0, Σ, −→), where

– S = L × R

C

≥0,
– s0 = (l0, v0), where v0 is the (clock) valuation assigning 0 to every clock,
– Σ = E ∪ {δ}, where δ indicates a delay and e ∈ E the edge taken, and
– the partial transition function −→ is defined as follows:

• (l, v) δ−→p (l, v + d) if ∀e.0 ≤ e ≤ d : v + e ∈ I(l), and p = d · P (l),
• (l, v) e−→p (l′, v′) if (l, g, r, l′) ∈ E, v ∈ g, v′ = v[r �→ 0] and p = P (e),

where v + d means the clock valuation where the value of x is v(x) + d, for
x ∈ C, d ∈ R≥0, and v[r �→ 0] is the valuation which is as v except that
clocks in r are mapped to 0.

In case TA performs a δ step (l, v) δ−→p (l, v + d), we say that the duration of
the step is d. All other steps, i.e. those labelled e ∈ E, have duration 0.

The main results that we shall exploit concerning linearly multi-priced timed
automata is that the minimum cost of reaching some target location is com-
putable for any (set of) target location(s) and any upper bound on the remain-
ing prices: Given an MPTA A = (L, l0, E, I, P), a target G ⊂ L, and some
cost constraint u ∈ R

m−1
≥0 , we define the minimum cost mincostA,u(G) to be

mincostTA,u(G × R

C

≥0).

Theorem 2 ([13]). For any MPTA A = (L, l0, E, I, P), any set G ⊂ L, and
any cost constraint u ∈ R

m−1
≥0 , the minimum cost mincostA,u(G) is computable.

5 Encoding of DCub Formulae by MPTA

Within this section, we will provide an encoding of DCub formulae φ by MPTA
representing their models. The encoding will be such that each model of φ

Deciding an Interval Logic with Accumulated Durations 209

corresponds to a run of the corresponding MPTA with the associated costs repre-
senting and satisfying the duration constraints in φ. In detail, we shall represent
each formula φ by a tuple (L, s, E, I, P, f, Λ) denoted Aφ, where (L, s, E, I, P) is
a multi-priced timed automaton, f is a special final location to be reached, and Λ
is a function associating a DC state-expression S with every location. The con-
struction will be such that the automaton will not be allowed to spend positive
time in the final location, and the intuition is that the satisfying observations of
φ are represented by the set of executions of Aφ ending in f . Subformulae of the
form

∑m
i=1 ci

∫
Si �� k will, however, receive a special treatment. The intuition

about the automaton for such a formula is that its executions ending in f can
generate all possible interpretations to the state variables and that the value
of the expression

∑m
i=1 ci

∫
Si is the cost of the execution, and a bounding of

the cost or an analysis of the minimal cost of executions can be used to decide
satisfaction of

∑m
i=1 ci

∫
Si �� k.

5.1 The Construction

In the construction we shall use the following conventions:

– the cost of an edge is always 0,
– the cost-rate of a location is 0 unless otherwise stated,
– the invariant of a location is true unless otherwise stated,
– the mark of a location l is the state expression 1, i.e. Λ(l) = 1, unless

otherwise stated.

In the following we assume that the formula φ under consideration contains
n distinct state variables P1, . . . , Pn and m subformulae

∑mj

i=1 ci,j

∫
Si,j ��j kj ,

where ��m=< and ��j=≤ for every j < m. We shall give a recursive construction
of an automaton which follows the structure of the formula. The base cases are
� �� k, ��S�� and

∑mj

i=1 ci

∫
Si ��j kj .

The case φ = � �� k. Let Aφ = (L, s, E, I, P, f, Λ), where

– L = {s, f},
– E = {(s, x �� k, {x}, f)}, and
– I(f) = x ≤ 0.

This automaton is depicted in Fig. 1(a).

The case φ = ��S��. Let Aφ = (L, s, E, I, P, f, Λ), where

– L = {s, l1, f},
– E = {e1, e2, e3}, where e1 = (s, true, {}, l1), e2 = (l1, y > 0, {y}, s), and

e3 = (l1, x > 0, {x}, f),
– I(s) = y ≤ 0 and I(f) = x ≤ 0, and
– Λ(l1) = S.

This automaton is depicted in Fig. 1(b).

210 M. Fränzle and M.R. Hansen

(a) (b)

1

f

x ≤ 0

x �� k/
x := 0

1

s
y ≤ 0

S

l1

x := 0
x > 0/

y := 0
y > 0/

s

1

true/

1

x ≤ 0

f

(c)

Q ∧ R
Pj = c + d Pj = c + d

x := 0
true/

1

f

x ≤ 0

s

1

x ≤ 0 true/

(0, 0) (0, 1)

(1, 1)

Pj = d

(1, 0)

¬Q ∧ ¬R ¬Q ∧ R

Q ∧ ¬R

Fig. 1. MPTA encoding of atomic formulae: (a) � �� k, (b) ��S��, (c) c
∫
Q+d

∫
Q ∨ R �� k.

State decorations above the dashed line denote invariants and cost assignments (both
omitted if trivial), while those below the dashed line denote the labeling function Λ.

The case φ =
∑mj

i=1 ci,j

∫
Si,j ��j kj. Let Aφ = (L, s, E, I, P, f, Λ), where L =

{s, f} ∪ {0, 1}n and E, I, P and Λ are defined below. Each n-tuple in {0, 1}n is
a bit-vector b = (b1, . . . , bn) and the idea with this is that bi = 1 iff the value of
Pi is 1 in that state.

The set of edges E = E1 ∪E2 ∪E3 is defined as the union of three sets, where

– E1 = {(s, true, ∅, b) | b ∈ {0, 1}n},
– E2 = {(b, true, ∅, b′) | b, b′ ∈ {0, 1}n ∧ b �= b′}, and
– E3 = {(b, true, {x}, f) | b ∈ {0, 1}n}.

For b ∈ {0, 1}n, we define two sets: b+ = {l ∈ N | 1 ≤ l ≤ n ∧ bl = 1} and
b− = {l ∈ N | 1 ≤ l ≤ n ∧ bl = 0}. Let F (b) denote the state expression:

∧

l∈b−

¬Pl ∧
∧

l∈b+

Pl .

For each state expression Si,j occurring in the summation
∑mj

i=1 ci,j

∫
Si,j , we

define the cost rate as follows:

C(b)(Si,j) =

{
ci,j , if F (b) ⇒ Si,j ,

C(b)(Si,j) = 0 otherwise.

The invariants of locations are as follows: I(s) = x ≤ 0, I(f) = x ≤ 0, and for
all other locations the invariant is true.

The cost assignment P : L ∪ E → N

m is defined as follows:

P (l)k =
{

0 if l = s or l = f or k �= j or l ∈ E∑mj

i=1 C(l)(Si,j) otherwise.

Deciding an Interval Logic with Accumulated Durations 211

The definition of the labelling function Λ is Λ(l) = 1 iff l = s or l = f and F (l)
otherwise. An example of this automaton construction is shown in Fig. 1(c).

We now consider the recursive cases: φ ∨ ψ, φ ∧ ψ and φ�ψ. In these cases,
we will assume that the automata Aφ = (L1, s1, E1, I1, P1, f1, Λ1) and Aψ =
(L2, s2, E2, I2, P2, f2, Λ2), have disjoint sets of locations and clocks, respectively.

The case φ∨ψ. Assume that s and f are two new locations and that x is a new
clock. Let Aφ∨ψ = (L, s, E, I, P, f, Λ), where

– L = {s, f} ∪ L1 ∪ L2,
– E = {e1, e2, e3, e4}∪E1∪E2, where e1 = (s, true, {}, s1), e2 = (s, true, {}, s2),

e3 = (f1, true, {x}, f), and e4 = (f2, true, {x}, f).
– I(s) = I(f) = x ≤ 0, I(l) = I1(l), for l ∈ L1, and I(l) = I2(l), for l ∈ L2,
– P (l) = P1(l), for l ∈ L1, and P (l) = P2(l), for l ∈ L2, and
– Λ(l) = Λ1(l), for l ∈ L1, and Λ(l) = Λ2(l), for l ∈ L2.

The case: φ ∧ ψ. Let Aφ∧ψ = (L, (s1, s2), E, I, P, (f1, f2), Λ), where

– L = {(l1, l2) ∈ L1 × L2 | Λ1(l1) ∧ Λ2(l2) is satisfiable},

– E =

⎧
⎨

⎩
((l1, l2), g1 ∧ g2, r1 ∪ r2, (l′1, l

′
2))

∣
∣
∣
∣
∣
∣

(l1, l2), (l′1, l′2) ∈ L
∧ (l1, g1, r1, l

′
1) ∈ E1

∧ (l2, g2, r2, l
′
2) ∈ E2

⎫
⎬

⎭
∪

{((l1, l2), g1, r1, (l′1, l2)) | (l1, l2), (l′1, l2) ∈ L ∧ (l1, g1, r1, l
′
1) ∈ E1 } ∪

{((l1, l2), g1, r1, (l1, l′2)) | (l1, l2), (l1, l′2) ∈ L ∧ (l2, g2, r2, l
′
2) ∈ E2 }

– I(l1, l2) = I1(l1) ∧ I2(l2), for (l1, l2) ∈ L,
– P (l1, l2)k = P1(l1)k + P2(l2)k, for (l1, l2) ∈ L and 1 ≤ k ≤ m and
– Λ(l1, l2) = Λ1(l1) ∧ Λ2(l2), for (l1, l2) ∈ L.

The case: φ � ψ. Let Aφ�ψ = (L1 ∪ L2, s1, E, I, P, f2, Λ), where

– E = {(f1, true, C2, s2)} ∪ E1 ∪ E2, where C2 is the set of clocks used by Aψ ,
– I(l) = I1(l), for l ∈ L1, and I(l) = I2(l), for l ∈ L2,
– P (l) = P1(l), for l ∈ L1, and P (l) = P2(l), for l ∈ L2.
– Λ(l) = Λ1(l), for l ∈ L1, and Λ(l) = Λ2(l), for l ∈ L2.

Note that the transition from f1 to s2 has to be taken immediately when f1 is
reached, as the clock constraints imposed in I1(f1) does not permit durational
stays in f1.

5.2 Correspondence Between Interpretations of Formulae and Runs
of Corresponding MPTA

The above construction yields a correspondence between satisfiability of the
encoded DC formula and existence of runs in Aφ featuring adequate prices. In
order to show this, we shall first establish a connection between DC observations
and the runs of automata.

Let A = (L, s, E, I, P, f, Λ) and α = s0
a1−→p1 s1

a2−→p2 s2 · · · sn−1
an−→pn

sn

be a run of (L, s, E, I, P). The duration of α, written Δ(α), is the sum of all

212 M. Fränzle and M.R. Hansen

the durations of steps in α. We shall below define the set of DC observations
generated by run α as a set of interpretations observed over the interval [0, Δ(α)].
We first define anchored concatenation (I1, [0, e1]) � (I2, [0, e2]) of observations
(I1, [0, e1]) and (I2, [0, e2]) as the set of observations 0 : (I1, [0, e1]) � (I2, [0, e2]),
as defined on page 205. This definition extends to sets of observations: S1 � S2 =⋃

O1∈S1,O2∈S2
O1 � O2.

Based on this, we will now define Intp(α) in two steps: First, we define Intp(si)
for each step in α = s0

a1−→p1 s1 Then, we concatenate these observations. For
each step si in α, the set Intp(si) of interpretations over that state is defined by:

Intp(si) = {(I, [0, 0]) | I an arbitary interpretation}
if i = 0 or if si is reached via an edge e ∈ E in α,

Intp(si) = {(I, [0, d]) | I, [0, d] |= ��Λ(li)��}
if si is reached by a delay transition of duration d in α.

The set of observations Intp(α) corresponding to α is then defined as the con-
catenation of the individual Intp(si):

Intp(α) = Intp(s0) � Intp(s1) � · · · � Intp(sn) .

With the above correspondence between runs and interpretations, we can
now formalize the correspondence between DC formulae and the corresponding
multi-priced timed automata.

Lemma 5. Let φ be a DC\¬ formula and Aφ = (L, s, E, I, P, f, Λ) be the corre-
sponding multi-priced timed automaton.Then I, [0, e] |= φ iff there exists a run
α of Aφ with (I, [0, e]) ∈ Intp(α) and cost(α)j ��j kj for 1 ≤ j ≤ m.

Proof. By induction over the structure of φ. �

As a consequence, we obtain a correspondence between satisfiability of the en-
coded DC formula and existence of runs in Aφ featuring adequate prices.

Theorem 3. Let φ be a formula in DCub, let Aφ = (L, s, E, I, P, f, Λ) be the
corresponding multi-priced timed automaton, and let u = (k1, . . . , km−1). Then
mincost(L,s,E,I,P),u(f) < km iff φ is satisfiable.

Proof. By the previous lemma, I, [0, b] |= φ iff there is a run α of Aφ such that
(I, [0, b]) ∈ Intp(α) and cost(α)j ��j kj for 1 ≤ j ≤ m. As Intp is a total function,
this implies that φ is satisfiable iff Aφ has run α with cost(α)j ��j kj . By ��j=≤,
for 1 ≤ j < m, and ��m=<, this is the case iff mincostT,u(s) < km. �

The above construction can also be used for model-checking timed automata wrt.
negations of DC formulae. The cornerstone is to exploit an appropriate automata
product between timed automata and priced timed automata to establish an
automata-based verification procedure. The model-checking problem considered
here has the form A |= ¬φ, where A = (L1, s1, E1, I1, Λ1) is an arbitrary timed
automaton (L1, s1, E1, I1), extended by a labeling Λ1 : L1 → S of locations with

Deciding an Interval Logic with Accumulated Durations 213

state expressions. We say that A |= ¬φ holds iff for each run α of A, the set5 of
all corresponding DC interpretations Intp(α) satisfies ¬φ.

Theorem 4. Let A = (L1, s1, E1, I1, Λ1) be a timed automaton (L1, s1, E1, I1)
extended by a location labelling Λ1 : L1 → S, let φ be a DCub formula, let
Aφ = (L2, s2, E2, I2, P2, f2, Λ2), and let u = (k1, . . . , km−1). Then A |= ¬φ iff
mincost(L,s,E,I,P),u(f × L1) ≥ km, where

– B = (L1, s1, E1, I1, P0, s, Λ1) is A converted to an MPTA by extension with
the trivial cost function P0 ≡ 0 and an irrelevant terminal state s ∈ L1,

– (L, s, E, I, P, f, P) = Aφ⊗B is the multi-priced automaton product from case
φ ∧ ψ.

Proof. Similar to the previous theorem it can be shown that for each run α of
A and each model (I, [0, b]) of φ with (I, [0, b]) ∈ Intp(α) it is the case that α
is a run of Aφ ⊗ B with cost(α)j ��j kj for 1 ≤ j ≤ m. I.e., A has a run α with
Intp(α) |= φ iff mincost(L,s,E,I,P),u(f × L1) < km. Consequently, all runs of A
satisfy ¬φ iff mincost(L,s,E,I,P),u(f × L1) ≥ km. �

Model-checking timed automata against DCub formulae is thus possible.

6 Conclusion

Within this paper, two new decision procedures for rich subsets of Duration
Calculus have been devised:

1. We have shown that satisfiability of DC formulas with linear combinations of
accumulated durations, yet chop confined to occur in positive context only,
is decidable.

2. A model-checking procedure for timed automata against DC formula with
only upper bound duration constraints and only a single, outermost negation
has been established based on a reduction to multi-priced timed automata.

Both procedures do considerably extend the scope of automatic procedures
for DC beyond the previous state of the art: These procedures are the first to
combine reasoning over accumulated durations and over chop within automated
decision procedures. Furthermore, (2.) extends model-checking procedures for
timed transition systems against accumulated duration properties, as pioneered
in [22], from timed transition tables with per-transition delays to timed automata
with clocks.

For the first of the two procedures, it is clear that the positive decidability
results marks the frontier to undecidability, as admitting chop in negative context
leads to undecidability [20]. The correspondence of DC without accumulated
durations to timed regular expressions [2] shown in [8], together with the lacking
closure of timed regular languages under negation [1], shows that decidability is
5 Note that the labeling Λ1 may permit multiple different valuations within a single

location l ∈ L1.

214 M. Fränzle and M.R. Hansen

even lost without nesting of chop under different polarity; negative chop itself
leads to undecidability. Accordingly, the encodings of two-counter machines by
DC formulas used in [20] or of stop-watch automata used in [7, App. A] to
demonstrate undecidability of DC do only use negative chop.

With respect to the model-checking result, the exact borderline to undecid-
ability is open. While one might well expect that lower bounds on accumulated
durations should also be decidable, e.g. through replacing minimum price reach-
ability in priced timed automata by maximum price reachability, the current
notion of maximum price reachability in priced timed automata does not permit
an adequate reduction. Being inspired by scheduling problems, the theory of
priced timed automata does define the maximum price to be infinite as soon as
path length in the automaton is unbounded. This does interfere with the notion
of accumulated duration, as an accumulated duration may well be bounded even
though the number of state changes in the run is not a priori bounded, as can
be seen from the formula φ = (� < 2∧

∫
P > 2). This formula is unsatisfiable, yet

the automaton construction from Sect. 5 yields an automaton with unbounded
path length (cf. Fig. 1(c)) such that maximum cost reachability would consider
the cost P to be infinite, suggesting

∫
P > 2 to hold.

Another open question is whether the more restricted notion of chop used in
Interval Duration Logic (IDL) [17] facilitates model-checking of larger formula
classes. It is obvious that all the procedures detailed in this paper do also work
on IDL with the appropriate minor modifications.

References

1. R. Alur and D. L. Dill. A theory of timed automata. Theoretical Comput. Sci.,
126(2):183–235, 1994.

2. E. Asarin, P. Caspi, and O. Maler. A Kleene theorem for timed automata. In
G. Winskel, editor, 12th Annual IEEE Symposium on Logic in Computer Science
(LICS’97). IEEE Computer Society Press, 1997.

3. G. Audemard, P. Bertoli, A. Cimatti, A. Kornilowics, and R. Sebastiani. A SAT-
based approach for solving formulas over boolean and linear mathematical propo-
sitions. In A. Voronkov, editor, Automated Deduction — CADE-18, volume 2392
of Lecture Notes in Computer Science, pages 193–208. Springer-Verlag, 2002.

4. J. Bengtsson, K. Larsen, F. Larsson, P. Pettersson, and W. Yi. Uppaal – a tool
suite for automatic verification of real-time systems. In R. Alur, T. Henzinger, and
E. Sonntag, editors, Hybrid Systems III – Verification and Control, volume 1066
of Lecture Notes in Computer Science, pages 232–243. Springer-Verlag, 1997.

5. A. Bouajjani, Y. Lakhnech, and R. Robbana. From duration calculus to linear
hybrid automata. In P. Wolper, editor, Computer Aided Verification (CAV ‘95),
volume 939 of Lecture Notes in Computer Science. Springer-Verlag, 1995.

6. H. Dierks. Synthesizing controllers from real-time specifications. In Tenth Interna-
tional Symposium on System Synthesis (ISSS ‘97), pages 126–133. IEEE Computer
Society Press, 1997.

7. M. Fränzle. Controller Design from Temporal Logic: Undecidability need not mat-
ter. Dissertation, Technische Fakultät der Chr.-Albrechts-Universität Kiel, Ger-
many, 1997.

Deciding an Interval Logic with Accumulated Durations 215

8. M. Fränzle. Model-checking dense-time duration calculus. Formal Aspects of Com-
puting, 16(2):121–139, 2004.

9. M. Fränzle and C. Herde. Efficient proof engines for bounded model checking of
hybrid systems. In J. Bicarregui, A. Butterfield, and A. Arenas, editors, Proceedings
Ninth International Workshop on Formal Methods for Industrial Critical Systems
(FMICS 04), volume 133 of Electronic Notes in Theoretical Computer Science,
pages 119–137. Elsevier Science B.V., 2005.

10. J. Halpern, B. Moszkowski, and Z. Manna. A hardware semantics based on tempo-
ral intervals. In J. Diaz, editor, International Colloquium on Automata, Languages,
and Programming (ICALP‘83), volume 154 of Lecture Notes in Computer Science,
pages 278–291. Springer-Verlag, 1983.

11. J. Hoenicke. Combination of Processes, Data and Time. Dissertation, Carl von
Ossietzky Universität, Oldenburg, Germany, 2006.

12. Y. Laknech. Specification and Verification of Hybrid and Real-Time Systems. Dis-
sertation, Technische Fakultät der Chr.-Albrechts-Universität Kiel, Germany, 1996.

13. K. G. Larsen and J. I. Rasmussen. Optimal conditional reachability for multi-
priced timed automata. In V. Sassone, editor, Foundations of Software Science
and Computation Structures (FOSSACS ’05), volume 3441 of Lecture Notes in
Computer Science, pages 230–244. Springer-Verlag, 2005.

14. Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems,
volume 1. Springer-Verlag, 1992.

15. E.-R. Olderog and H. Dierks. Decomposing real-time specifications. In H. Lang-
maack, W. de Roever, and A. Pnueli, editors, Compositionality: The Significant
Difference, Lecture Notes in Computer Science. Springer-Verlag, 1998.

16. A. P. Ravn. Design of Embedded Real-Time Computing Systems. Doctoral dis-
sertation, Department of Computer Science, Danish Technical University, Lyngby,
DK, Oct. 1995. Available as technical report ID-TR: 1995-170.

17. P. Sharma, P. K. Pandya, and S. Chakraborty. Bounded validity checking of in-
terval duration logic. In TACAS 2005, volume 3440 of Lecture Notes in Computer
Science. Springer-Verlag, 2005.

18. A. Tarski. A decision method for elementary algebra and geometry. RAND Cor-
poration, Santa Monica, Calif., 1948.

19. Zhou Chaochen and M. R. Hansen. Duration Calculus — A Formal Approach
to Real-Time Systems. EATCS monographs on theoretical computer science.
Springer-Verlag, 2004.

20. Zhou Chaochen, M. R. Hansen, and P. Sestoft. Decidability and undecidability
results for duration calculus. In P. Enjalbert, A. Finkel, and K. W. Wagner, editors,
Symposium on Theoretical Aspects of Computer Science (STACS 93), volume 665
of Lecture Notes in Computer Science, pages 58–68. Springer-Verlag, 1993.

21. Zhou Chaochen, C. A. R. Hoare, and A. P. Ravn. A calculus of durations. Infor-
mation Processing Letters, 40(5):269–276, 1991.

22. Zhou Chaochen, Zhang Jingzhong, Yang Lu, and Li Xiaoshan. Linear duration
invariants. In H. Langmaack, W.-P. de Roever, and J. Vytopil, editors, Formal
Techniques in Real-Time and Fault-Tolerant Systems (FTRTFT ‘94), volume 863
of Lecture Notes in Computer Science, pages 86–109. Springer-Verlag, 1994.

From Time Petri Nets to Timed Automata:
An Untimed Approach�

Davide D’Aprile1, Susanna Donatelli1, Arnaud Sangnier2, and Jeremy Sproston1

1 Dipartimento di Informatica, Università di Torino, 10149 Torino, Italy
2 Lab. Spécification & Verification, ENS Cachan – CNRS UMR 8643, France

{daprile,susi,sproston}@di.unito.it,
sangnier@lsv.ens-cachan.fr

Abstract. Time Petri Nets (TPN) and Timed Automata (TA) are widely-used for-
malisms for the modeling and analysis of timed systems. A recently-developed
approach for the analysis of TPNs concerns their translation to TAs, at which
point efficient analysis tools for TAs can then be applied. One feature of much of
this previous work has been the use of timed reachability analysis on the TPN in
order to construct the TA. In this paper we present a method for the translation
from TPNs to TAs which bypasses the timed reachability analysis step. Instead,
our method relies on the reachability graph of the underlying untimed Petri net.
We show that our approach is competitive for the translation of a wide class of
TPNs to TAs in comparison with previous approaches, both with regard to the
time required to perform the translation, and with regard to the number of loca-
tions and clocks of the produced TA.

1 Introduction

As real-time systems become ever more complex and diffuse, it becomes increasingly
important to develop methods for reasoning about such systems in a formal way. Two
widely-used formalisms for the modeling and analysis of real-time systems are Time
Petri Nets (TPNs) [15] and Timed Automata (TA) [3]. TPNs and TA are dense-time
formalisms, which implies that their underlying state space is infinite, and therefore
verification techniques which enumerate exhaustively the state space cannot be applied.
In general, this difficulty is addressed by applying symbolic methods or by partitioning
the infinite state-space. With regard to TA, the well-known region graph [3] or zone-
based graph [2] techniques are two such methods, the latter of which forms the basis of
the techniques implemented in tools such as UPPAAL [4,18] and KRONOS [19,12]. With
regard to TPNs, in [5,14] an approach based on the so-called state class graph (SCG)
construction is presented. In the SCG the nodes are sets of states, represented by a pair
comprising a marking and a firing domain, where the firing domain represents the set of
times at which a transition can be fired. The SCG construction allows the verification
of untimed reachability and LTL properties [5,14], while variants of this method allow
the verification of CTL, and a subset of TCTL [1] properties [6,17].

A different approach to allow TCTL model checking of TPNs is to produce from
a TPN a timed bisimilar TA which maintains TCTL properties, and then verify it by

� Supported in part by Miur project Firb-Perf and EEC project Crutial.

O. Grumberg and M. Huth (Eds.): TACAS 2007, LNCS 4424, pp. 216–230, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

From Time Petri Nets to Timed Automata: An Untimed Approach 217

means of model-checking tools (for example, the above cited UPPAAL and KRONOS).
In the literature there are two different techniques for the translation of TPNs to TA.
The first is based on the Petri net (PN) structure [8], and is generally characterized by
a potentially high number of clocks in the produced TA; the second is based on ex-
ploration of the timed state space, for example in [13], in which a method based on an
extended version of the SCG is used to compute the so-called state class timed automa-
ton (SCTA), and in [10], where zone-based timed reachability analysis (see [2]) allows
the construction of the so-called marking timed automaton, that in the following we will
call the zone-based marking timed automaton (ZBMTA). The ZBMTA always has no
more locations and edges than the SCTA, while the latter has no more clocks than the
former. Finally, it should be noticed that, in [10,13], the reachability techniques for the
generation of a TA are generally employed again subsequently to analyze the produced
TA; this fact could increase the total verification time of the TPN under investigation.

In this paper we present a different technique for the translation of a TPN into a
(strong) timed bisimilar TA, by using the reachability graph of the underlying untimed
Petri Net to build what we have called the marking class timed automaton (MCTA).
We will show that the SCTA, obtained by applying [13], and the MCTA, obtained by
applying our approach, are incomparable in the number of locations and edges, while
the MCTA produces a greater or equal number of locations and edges with respect to
the ZBMTA approach, obtained by applying [10]; finally, the number of clocks may
be equal to that of the SCTA, and less or equal to that of the ZBMTA. From these
considerations it may be deduced that our approach represents a competitive choice
for a number of classes of systems, especially when a trade-off is needed between the
number of the produced locations and clocks; we will present experimental evidence to
show this. The main disadvantage of our method is the requirement of boundedness of
the underlying untimed PN, while [10,13] require only TPN boundedness. In order to
address this problem, we give some suggestions to partially bound specific PN subnets
of the TPN under investigation. In addition, because our method may explore some
paths in the untimed Petri net which are unreachable in the TPN, resulting in a greater
number of locations, we consider an adjustment to the MCTA construction algorithm
which, for some TPNs, can alleviate this problem.

This paper is organized as follows: Section 2 provides some background, while Sec-
tion 3 explains our approach to verify TPNs by translation to TA, and makes a com-
parison with the SCTA and ZBMTA approaches. Section 4 presents some optimization
techniques: a simple method to partially resolve the above cited unreachable path prob-
lem, a variant for reducing the number of locations of the produced TA, and some
ideas to address the boundedness requirements of our approach. Section 5 describes
our tool, GREATSPN2TA, for the translation of TPNs to TA in the input language of
the KRONOS model checker, and reports some experimental results, obtained on a set of
case studies, also comparing them against the results of the tool ROMEO [9,16], which
implements the SCTA and ZBMTA approaches. Section 6 concludes the paper.

2 Preliminaries

Timed Transition Systems. Let Σ be a finite set of events, and let R≥0 be the set of
non-negative real numbers. A timed transition system (TTS) S is a tuple 〈Q,q0,Σ,→〉

218 D. D’Aprile et al.

where Q is the set of the states, q0 ∈ Q is the initial state, and →⊆ Q× (Σ∪R≥0)× Q
is the set of edges. We use q

a→ q′ to denote (q,a,q′) ∈→, which indicates that when the
state of the system is q, it can change to q′ upon label a ∈ Σ∪R≥0. The edges labeled
with an event of Σ are called discrete edges and the edges labeled with a non-negative
real number are called continuous edges. A path is a finite or infinite sequence of edges
q0

a0→ q1
a1→ ··· . A set of states Q′ ⊆ Q is reachable from a state q if there exists a finite

path q0
a0→ q1

a1→ ··· an−1→ qn, such that q0 = q and qn ∈ Q′.

Timed Automata. Timed Automata (TA) [3] are automata extended with clocks, which
are real-valued variables, and which increase at the same rate as real-time. Let X be a
set of clocks, and Φ(X) be the set of the clock constraints over X , which are defined by
the following grammar: ϕ := x ≤ c|x ≥ c|x < c|x > c|ϕ1 ∧ϕ2, where x ∈ X and c ∈ Q≥0

is a non-negative rational number. A timed automaton A is a tuple 〈L, l0,Σ,X , I,E〉
where L is a finite set of locations, l0 ∈ L is an initial location, I is a (total) function
L → Φ(X) that associates to each location an invariant condition (i.e. a clock con-
straint), and E ⊆ L × Σ × Φ(X)× 2X × 2X2 × L represents the set of the switches. The
switch (l,σ,ϕ,λ,ρ, l′) ∈ E represents a switch from l to l′ on the event σ, with the guard
ϕ (a clock constraint) describing the set of clock values that can enable the switch, the
set λ ⊆ X describing the clocks that are set to 0 by the switch, and ρ ⊆ X2 describing
how clocks should be renamed when the switch is taken. The semantics of TA is de-
fined by means of a TTS, and its definition is standard (in particular, see [7,13] for the
semantics of the variant of TA with clock renaming); we omit it for reasons of space.
In [3], the problems and the possible solutions regarding the infinite number of states
and transitions of such a TTS are also illustrated. This leads to the use of abstraction
methods, for example the region graph and the zone graph.

Time Petri Nets. A Time Petri Net (TPN) T [5,15] is a tuple 〈P,T,W−,W +,M0,(α,β)〉
where P = {p1, ..., pm} is a finite set of places, T = {t1, ...,tn} is a finite set of transi-

tions, W− : (NP)T is the backward incidence function, W+ : (NP)T is the forward inci-
dence function, M0 ∈ N

P is the initial marking, and α ∈ (Q≥0)T and β ∈ (Q≥0 ∪{∞})T

are the earliest and latest firing time functions.
The semantics of a TPN T can be represented by a TTS ST . Before introducing

the semantics we define the following notation. A marking M is an element of N

P. In
the following, we use standard notation for markings, such as M ≥ M′ if and only if
M(p) ≥ M′(p) for all p ∈ P, and M − M′ where M − M′(p) = M(p) − M′(p) for all
p ∈ P. A valuation is a vector v ∈ (R≥0)n such that each value vi represents the elapsed
time since the last time transition ti was enabled, or since the launching of the system if ti
was never enabled. The initial valuation 0 ∈ (R≥0)n is defined by 0i = 0, for all 1 ≤ i ≤ n.
A transition t is said to be enabled for a marking M if and only if M ≥ W −(t). For all
(tk,M,ti) ∈ T × N

P × T , let ↑enabled(tk,M,ti) = (M −W−(ti) +W+(ti) ≥ W −(tk))∧
((M −W−(ti) < W−(tk))∨ (tk = ti)). Intuitively, ↑enabled(tk,M, ti) = true if and only
if tk is newly enabled after the firing of ti in M, where a transition tk is said to be
newly enabled after the firing of a transition ti in M if tk is not enabled for the marking
M −W−(t) (or if ti = tk) and it is enabled for the marking M′ = M −W−(t)+W+(t).

From Time Petri Nets to Timed Automata: An Untimed Approach 219

The TTS ST = 〈Q,q0,T,→〉 associated to a TPN T = 〈P,T,W−,W +,M0,(α,β)〉 is
defined by Q = N

P × (R≥0)n, q0 = (M0,0), and →∈ Q × (T ∪ R≥0)× Q is the set of
edges defined by:

1. The discrete edges are defined by, for all ti ∈ T :

(M,v)
ti→ (M′,v′) ⇔

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

M ≥ W−(ti)∧M′ = M −W−(ti)+W+(ti)
α(ti) ≤ vi ≤ β(ti)

v′
k =

{
0 if ↑enabled(tk,M, ti)
vk otherwise.

2. The continuous edges are defined by, for all δ ∈ R≥0:

(M,v) δ→ (M,v′) ⇔ v′ = v + δ, and ∀k ∈ {1, · · · ,n} ,(M ≥ W−(tk) ⇒ v′
k ≤ β(tk)) .

The last condition on continuous transitions ensures that the time that elapses in a mark-
ing cannot increase to a value which would disable transitions that are enabled by the
marking. For TPNs, as for TA, it is not possible to work directly on the TTS which
represents the behavior of the TPN, because this TTS has infinitely many states (and
infinitely many labels). Again, the use of abstraction methods permit the construction of
a transition system where the labels expressing the passing of time are eliminated and
where states are regrouped into classes on which the reachability analysis can be done.
The state class graph [5] and the zone graph [10] are examples of such an approach.
However these methods do not always give a result because, as pointed out in [5], for a
TPN the problems of reachability and of boundedness are undecidable.

3 From Time Petri Nets to Timed Automata

We now describe our approach for translating a TPN model into a TA, called the
marking class timed automaton (MCTA), in order to subsequently perform analysis
on MCTA. Section 3.1 is devoted to this technique, also providing a proof that the TTS
of the TPN and of the MCTA are timed bisimilar, while in Section 3.2 our approach is
compared with those based on the SCTA and the ZBMTA [13,10].

3.1 MCTA of a TPN

In this section we present the MCTA construction, where the constructed TA has
an equivalent (timed bisimilar) behavior to that of a TPN. Consider the TPN T =
〈P,T,W−,W+,M0,(α,β)〉. We will “untime” the TPN T (that is, remove the timing
functions (α,β)) in order to obtain a Place/Transition PN P = 〈P,T,W−,W +,M0〉.
We denote by Ru(M0) ⊆ N

P the reachability set of P (the set of markings that P
can reach from its initial marking M0). When bounded (i.e. (∃k ∈ N)(∀p ∈ P)(∀M ∈
Ru(M0))(M(p) ≤ k)), the behavior of this PN can be represented by the reachabil-
ity graph (RG), which is an untimed finite-state transition system 〈Q,q0,T,→〉 where
Q = Ru(M0), q0 = M0, and the edge relation → is defined by classical 1-step reachabil-
ity in untimed PN: for all M,M′ ∈ Ru(M0), for all t ∈ T :

220 D. D’Aprile et al.

M
t→ M′ ⇔ M ≥ W−(t) and M′ = M +W+(t)−W−(t) .

The MCG construction. We now present the algorithm which builds the marking class
graph (MCG) Γ(T) of the TPN T , which is a transition system Γ(T) = 〈C ,C0,T,
→mc〉. The states C of Γ(T) are called marking classes. Each marking class is a triple
of the form 〈M,χ, trans〉, comprising a marking M of T , a set χ of clocks, and a function
trans : χ → 2T associating a set of transitions to each clock in χ. The initial marking
class C0 = 〈M0,{x0}, trans0〉 is such that M0 is the initial marking of T , the set of clocks
of C0 is composed of a single clock x0, and trans0 is defined by trans0(x0) = {t ∈ T |
t is enabled for M0}. To build the graph, we also need the notion of clock similarity
(adapted from [13]), in order to group certain marking classes together. Two marking
classes C = 〈M,χ, trans〉 and C′ = 〈M′,χ′, trans′〉 are clock similar, denoted C ≈ C′, if
and only if they have the same markings, the same number of clocks and their clocks
are mapped to the same transitions, written formally as:

C ≈ C′ ⇔ M = M′, |χ| = |χ′| and ∀x ∈ χ,∃x′ ∈ χ′, trans(x) = trans(x′) .

The MCG construction is shown in Algorithm 1, and is a classical breadth-first graph
generation algorithm which starts from the initial unexplored marking class C0. At each
step an unexplored marking class C is marked as explored, all marking classes C′ reach-
able in one step (firing of a transition) from C are added to the set of unexplored classes,
unless an equivalent one (according to clock similarity) has already been considered be-
fore. The algorithm terminates when all unexplored markings have been considered. In
lines 1.6 to 1.13, the set of clocks χ′ and the function trans′, which associates clocks
to enabled transitions, are computed. We note that the construction of this graph can
be done by following the different paths in the reachability graph of the underlying PN
adding a clock set χ′ and a relation trans′, and possibly “unlooping” some loops of
the reachability graph when a marking is reached many times with associated marking
classes which are not clock-similar.

The MCTA Construction. From the MCG defined above, it is possible to build a TA
A(T) which has the same behavior as the TPN T , as we will show in the next section.
Let T = 〈P,T,W−,W +,M0,(α,β)〉 be a TPN and Γ(T) = 〈C ,C0,T,→mc〉 its associated
marking class graph. The marking class timed automaton (MCTA) A(T) associated to
T is the TA 〈L, l0,Σ,X , I,E〉 defined by:

– L = C is the set of the marking classes;
– l0 = C0, where C0 is the initial marking class (C0 = 〈M0,{x0}, trans0〉);
– X =

�
〈M,χ,trans〉∈C χ;

– Σ = T ;
– E is the set of switches defined by:

∀Ci = 〈Mi,χi, transi〉 ∈ C ,∀Cj = 〈Mj,χ j, transj〉 ∈ C
∃Ci

ti→mc Cj ⇔ ∃(li,a,φ,λ,ρ, l j) ∈ E such that⎧
⎪⎨

⎪⎩

li = Ci, l j = Cj,a = ti,

φ = (trans−1
i (ti,) ≥ α(ti)), λ = {trans−1

j (tk)| ↑ enabled(tk,Mi, ti) = true},

∀x ∈ χi,∀x′ ∈ χ j, such that transj(x′) ⊆ transi(x),x′ �∈ λ,ρ(x′) = x ;

– ∀Ci = 〈Mi,χi, transi〉 ∈ C , I(Ci) =
�

x∈χi,t∈transi(x)(x ≤ β(t)).

From Time Petri Nets to Timed Automata: An Untimed Approach 221

input : The initial marking class C0 of a TPN T
output: The MCG of T

MCG := /0; New := C0;1.1

while New is not empty do1.2

C := remove(New); (where C = 〈M,χ, trans〉)1.3

Fireable(C) := {t | t is enabled for M};1.4

for all transitions t ∈ Fireable(C) do1.5

M′ := M +W +(t)−W −(t);1.6

For each clock x ∈ χ, remove from trans(x) all the transitions tk such that tk is1.7

enabled in M and is not in M −W −(t), to obtain a relation trans′;
The clocks whose image by trans′ is empty are removed from χ, to obtain a set1.8

of clocks χ′;
for all transitions tk which verify ↑enabled(tk,M,t) = true do1.9

if a clock x has already been created for the computation of C′ then1.10

tk is added to trans′(x);1.11

else1.12

a new clock xn is created; n is the smallest available index among the1.13

clocks of χ′ and trans′(xn) = tk;
end1.14

end1.15

C′ := 〈M′,χ′, trans′〉;1.16

if there is a marking class C′′ in MCG such that C′ ≈ C′′ then1.17

MCG := MCG∪{C
t→mc C′′};1.18

else1.19

MCG := MCG∪{C
t→mc C′} and add(New,C′);1.20

end1.21

end1.22

end1.23

Algorithm 1. MCG construction

In order to build the MCTA of a TPN, the number of marking classes has to be
bounded, otherwise the construction of the MCG will not terminate. Note that the MCG
has a bounded number of marking classes if and only if the underlying untimed PN is
bounded. We recall that in contrast to the case of the boundedness of TPN [5], the
boundedness of a PN is decidable. We will return to boundedness issues in Section 4.3.

Bisimulation. We now define an equivalence relation between the states of the TPN T
and the states of its associated MCTA, and we will prove that this relation is a timed
bisimulation. Our results are analogous to those in the context of the SCTA [13] and
the ZBMTA [10].

First, we recall the definition of timed bisimulation (see, for example, [8,13,10]). Let
S1 = 〈Q1,q0

1,Σ1,→1〉 and S2 = 〈Q2,q0
2,Σ2,→2〉 be two TTSs. The equivalence relation

≈⊆ Q1 × Q2 on Q1 and Q2 is a timed bisimulation if and only if, for all a ∈ Σ∪R≥0:

– if s1 ≈ s2 and s1
a→ s′

1 then there exists s2
a→ s′

2 such that s′
1 ≈ s′

2;
– if s1 ≈ s2 and s2

a→ s′
2 then there exists s1

a→ s′
1 such that s′

1 ≈ s′
2.

222 D. D’Aprile et al.

Let T = 〈P,T,W−,W+,M0,(α,β)〉 be a TPN and A(T) its associated MCTA. We
consider QT the set of reachable states of T and QA the set of states of A(T). We
define the relation �mc⊆ QT ×QA by the following rule. For all s = (M,νT) ∈ QT , for
all r = (Cr,vA) ∈ QA (with Cr = 〈Mr,χr, transr〉):

s �mc r ⇔

⎧
⎪⎨

⎪⎩

M = Mr and

∀t ∈ T such that t is enabled in M,

νT (t) = vA(x) with x ∈ χr such that t ∈ transr(x) .

Theorem 1. The binary relation �mc⊂ QT × QA is a timed bisimulation.

If we consider a TPN T = 〈P,T,W−,W+,M0,(α,β)〉 and its associated MCTA A(T),
because we have by construction (M0,0) �mc (C0,0), we conclude that a marking M
is reachable from M0 in T if and only if there exists a state of A(T) whose associated
marking (within the state’s marking class) is M. The timed bisimulation property also
allows us to obtain the set of states of T which satisfy a TCTL property: the TCTL

property can be verified on A(T), and the resulting set of states of T satisfying the
property can be obtained using �mc.

Example. We now consider the application of our procedure to the TPN of Figure 1.
The corresponding MCTA is given in Figure 2. The structure (locations, represented
by nodes, and switches, represented by arcs) of the MCTA is derived from the MCG,
which provides also the following information:

– for every location, information regarding the corresponding marking of the consid-
ered (PN underlying the) TPN, as well as information about which clock is linked
to the currently enabled transitions in the corresponding state of the original model;

– for every arc, the transition which fires in the TPN.

The MCTA construction step labels the locations with invariants, while guards, clock
resets and clock renaming functions are added to the arcs. Guards are written above the
line labeling each arc, whereas resets and clock renaming are indicated below. Starting
from the initial location C0, we have two newly enabled transitions, t1 and t2, to which an
unique clock, named x, is assigned; the corresponding invariants and guards, indicated
on the corresponding outgoing arcs, are defined with respect to the timing intervals in
the TPN under translation. When the outgoing arc labeled t1 is taken from location C0

to location C1 (between time 4 and 5), the transition named t2 is still enabled, so the
clock x remains assigned to t2, and must not be reset before entering C1. In location C1

the automaton cycles forever, taking the arc labeled t2 every 1 time unit, and always
resetting the clock x before entering the same location, because t2 is always newly
enabled after each firing. When the outgoing arc labeled t2 is taken from location C0

to location C2 (after exactly 1 time unit), the transition named t1 is still enabled, so the
clock x remains assigned to it (and x is not reset), while the fired transition t2 is newly
enabled, and so is assigned to a new clock, y, which must be reset before entering
C2. In location C2 the automaton can cycle every 1 time unit, resetting the clock y on
every cycle, because t2 is always newly enabled after each firing. When the outgoing
arc labeled t1 is taken from location C2 to location C1 (after between 4 and 5 time units
since t1 was enabled), the transition named t2 is still enabled, but in C1 the transition t2

From Time Petri Nets to Timed Automata: An Untimed Approach 223

[4,5] [1,1]
t1 t2

p0p1

Fig. 1. A TPN model T

C0 C1

C2

t2

t2

t1

t1

t2

x ≤ 1∧ x ≤ 5 x ≤ 1

y ≤ 1∧ x ≤ 5

x≥1
y

y≥1
y

x≥4
/0

x≥4
x;ρ(y)=x

x≥1
x

C M trans

C0 p0 + p1 x ← 〈t1,t2〉
C1 p0 x ← 〈t2〉
C2 p0 + p1 x ← 〈t1〉

y ← 〈t2〉

Fig. 2. The MCTA corresponding to TPN T in Figure 1

is already assigned to a clock named x; this implies that the clock y must be renamed to
x while taking the arc. Note that the guard on the arc between C0 and C1 is never true,
due to the invariant associated with C0, but that C1 is reachable via C2.

3.2 Comparing the MCG, ESCG, and ZBMCG Approaches

In this section we compare the ESCG, MCG, and ZBMCG approaches, taking into
account the cardinality of locations and edges, as well as the number of clocks of the
produced TA. We recall that, with respect to the MCG, the ESCG nodes are enriched by
the firing domain constraints [13], while in the ZBMCG nodes the available information
regards only the reached markings [10].

We first observe that the MCG and the ESCG approaches are incomparable with
respect to the number of generated locations. We provide two examples to substantiate
this remark. Let |MCG|T and |ESCG|T be the cardinality of locations of the MCG
and ESCG, respectively, of the TPN T of Figure 1. The fact that |MCG|T = 3 can be
derived from the TA shown in Figure 2, while the ESCG construction for T leads to
|ESCG|T = 9. The TA corresponding to the ESCG is shown in Figure 3. The table
of Figure 3 defines, for each extended class ESC, the net marking M, the association
trans of transitions to clocks, and the firing domains D of transitions. It is clear that, in
this net, the ESCG construction distinguishes more than the MCG one. This happens
because, in the ESCG, for each reachable marking there may be a number of associated
firing domains. Figure 4, instead, give us an example of a TPN T for which |MCG|T ≥
|ESCG|T , as shown in Figures 5 and 6. In this case, the MCG algorithm, being unable
to identify unreachable paths, produces an higher number of locations, two of which

224 D. D’Aprile et al.

ESC0 ESC1 ESC2

ESC3ESC4

ESC5

ESC6

ESC7ESC8

t2 t2

t2

t1

t2

t2

t1

t2

t1 t2

t2

x ≤ 1∧ x ≤ 5 y ≤ 1∧ x ≤ 4 y ≤ 1∧ x ≤ 3

y ≤ 1∧ x ≤ 2y ≤ 0

y ≤ 1∧ x ≤ 1

y ≤ 1

y ≤ 1y ≤ 1∧ x ≤ 0

y≥1∧x≥4
y

y≥1∧x≥3
y y≥1∧x≥2

y

x≥1∧y≥1
x,y y≥1∧x≥1

y

y≥0
y

x≥0∧y≥1
x

y≥1∧x≥0
y,x

x≥0∧y≥1
x

y≥0
y

y≥1
y

ESC M D trans

ESC0 p0 + p1 4 ≤ t1 ≤ 5 x ← 〈t1,t2〉
1 ≤ t2 ≤ 1

3 ≤ t1 − t2 ≤ 4
ESC1 p0 + p1 3 ≤ t1 ≤ 4 x ← 〈t1〉

1 ≤ t2 ≤ 1 y ← 〈t2〉
2 ≤ t1 − t2 ≤ 3

ESC2 p0 + p1 2 ≤ t1 ≤ 3 x ← 〈t1〉
1 ≤ t2 ≤ 1 y ← 〈t2〉

1 ≤ t1 − t2 ≤ 2
ESC3 p0 + p1 1 ≤ t1 ≤ 2 x ← 〈t1〉

1 ≤ t2 ≤ 1 y ← 〈t2〉
0 ≤ t1 − t2 ≤ 1

ESC4 p0 0 ≤ t2 ≤ 0 y ← 〈t2〉
−1 ≤ t1 − t2 ≤ −1

ESC5 p0 + p1 0 ≤ t1 ≤ 1 x ← 〈t1〉
1 ≤ t2 ≤ 1 y ← 〈t2〉

−1 ≤ t1 − t2 ≤ 0
ESC6 p0 1 ≤ t2 ≤ 1 y ← 〈t2〉
ESC7 p0 0 ≤ t2 ≤ 1 y ← 〈t2〉
ESC8 p0 + p1 0 ≤ t1 ≤ 0 x ← 〈t1〉

1 ≤ t2 ≤ 1 y ← 〈t2〉
t1 − t2 = −1

Fig. 3. The SCTA corresponding to TPN T in Figure 1

[1,1] [2,2] [4,4]
t1 t2 t3

p0

p1 p2 p3

Fig. 4. A TPN model T , with |MCG|T ≥ |ESCG|T

are unreachable in the MCTA. In fact, the ESCG construction process, thanks to the
firing domain computation, correctly “cuts off” the untakeable t2 and t3 transitions, and
so the C2 and C3 locations are not reached, while this does not happen with the MCG.

Next, we observe that the ZBMCG approach results in no more locations and
switches than the MCG and ESCG approaches. The ZBMCG method generates only
those markings that are reachable in the TPN, whereas our MCG approach generates
markings that are reachable in the underlying untimed PN. For this reason alone, it
is easy to show an example in which the number of locations and switches produced
by the ZBMCG method is less than or equal to the number of locations and switches
produced by our MCG method. Now note that each location produced by the ZBMCG
method corresponds to a set of locations produced by the ESCG method: the markings
corresponding to the locations will be the same, but, in the case of the ESCG method,
the locations are enriched with firing domains. A similar argument can be used for the
switches. Taking again the TPN as in Figure 1, in Figure 7 we give the TA obtained by
applying the ZBMCG technique.

From Time Petri Nets to Timed Automata: An Untimed Approach 225

ESC0

ESC1
t1x ≤ 1

x ≤ 2
x ≤ 4 x≥1

/0

ESC M D trans

ESC0 p0 t1 = 1 t2 = 2 t3 = 4 x ← 〈t1,t2,t3〉
t2 − t1 = 1
t3 − t2 = 2
t3 − t1 = 3

ESC1 p1 /0 /0

Fig. 5. The SCTA corresponding to TPN T in Figure 4

C0

C1 C2 C3

t1 t2 t3

x ≤ 1
x ≤ 2
x ≤ 4

x≥1
/0

x≥2
/0

x≥4
/0

C M trans

C0 p0 x ← 〈t1,t2,t3〉
C1 p1 /0
C2 p2 /0
C3 p3 /0

Fig. 6. The MCTA corresponding to TPN T in Figure 4

Despite the fact that the ESCG and the ZBMCG can result in smaller TA in terms
of locations and switches or clocks than the MCG, we show in Section 5 that, when ap-
plied to a number of examples from the literature, the proposed MCG-based translation
can be competitive in size and execution time.

4 Improving the Effectiveness of the MCG Approach

In this section we present some modifications of the MCG algorithm, in order to im-
prove the effectiveness and applicability of our proposed solution.

4.1 Reducing the Number of Unreachable Locations

The first modification allows to “cut off” paths that could obviously not be taken, such
as the firing of t1 in C0 of the example in Figures 1 and 2. As observed before in the
TPN of Figure 1, when t1 and t2 are newly enabled only t2 can fire. Cutting off the edge
from C0 to C1 does not change |MCG|T in this case, but it does for the TPN of Figure 4,
because it discards the possibility of firing t2 and t3. Line 1.4 of the algorithm can be
changed to check the earliest and latest firing time of the newly enabled transitions, and
to remove from consideration transitions that are not firable:

Fireable(C) := {t | t is enabled for MC}\
{t | ∃t ′ ∈ T.∃x ∈ χC such that t, t ′ ∈ transC(x) and α(t) > β(t ′)};

Observe that this modification takes timing information into account, as ESCGs and
ZBMCGs do, but with the difference that the check does not consider the elapsed en-
abling time (which is encoded in the state class domains in ESCGs, and in zones in
ZBMCGs). The TPN on the left part of Figure 8 illustrates an effective case of the

226 D. D’Aprile et al.

zbMC0 zbMC1t1

t2t2

y ≤ 1
x ≤ 5

y ≤ 1x≥4
/0

y≥1
y

y≥1
y

Fig. 7. The ZBMTA corresponding to TPN T in Figure 1

[4,5] [2,3]

t1 t2p0
C0 C1 C2

t2

t1 t1

. . .

. . . C M trans

C0 /0 x ← 〈t1〉
C1 p0 x ← 〈t1,t2〉
C2 2p0 x ← 〈t2〉

y ← 〈t1〉

Fig. 8. A TPN model T , for which the application of the local optimization is useful

modification of the algorithm: the original MCG is infinite (since Ru is unbounded),
but the modified algorithm stops because, as shown on the central and right part of
Figure 8, the firing of t1 in C1 is not considered.

4.2 Trading Clocks for Locations and Speed

Our second modification increases the number of clocks, but decreases the number
of locations and the computation time. This variant to the MCTA generation proce-
dure consists of the assignment of a unique clock for every enabled transition, and not
a unique clock for every set of newly enabled transitions: indeed, unless two transi-
tions are always enabled at the same time, it is better to associate to them two separate
clocks. As a consequence the expensive check of clock similarity can be removed from
the algorithm. We call MCTAclock the automata obtained with such a procedure. The
construction of the MCTAclock of the TPN of Figure 1 results in the same TA as that
corresponding to the ZBMTA and is shown in Figure 7: assigning two different clocks,
x and y, to the newly enabled transitions t1 and t2 in location C0 let us merge C0 and C2

into a unique location, decreasing from 3 to 2 the number of required locations.

4.3 Dealing with Unboundedness

Consider the TPN on the left part of Figure 9, illustrating a producers-consumers sys-
tem model distributed with the ROMEO package. The set Ru of this net is unbounded,
but the TPN itself has a bounded behavior because the consumers (top part of the net)
are always faster than the producers, so that tokens never accumulate unboundedly in
place P3. Observe that in TPN models whose boundedness depends of time, even the
smallest change in the definition of the timing constraints may cause non-termination of
the ESCG and ZBMCG algorithms; on the other hand such models may be of interest
in many application fields. The method we propose here, inspired by similar techniques
for performance evaluation of unbounded stochastic Petri Nets, is to artificially bound

From Time Petri Nets to Timed Automata: An Untimed Approach 227

P5 P6 P9 P12 P15 P18

P3

P23

P22P19

P20

P16

P17

P13

P14P11

P10

P8

P7

P1

P2

[10,10] [15,15] [10,10] [15,15] [10,10] [15,15]

[0,0]

[6,9]

[0,0]

[2,5]

[0,0]

[6,7]

[0,0]

[1,6]

[0,0]

[4,9]

[0,0]

[5,8][2,4]

[0,0]

P5 P6 P9 P12 P15 P18

P3

P23

P22P19

P20

P16

P17

P13

P14P11

P10

P8

P7

P1

P2

P4

[10,10] [15,15] [10,10] [15,15] [10,10] [15,15]

[0,0]

[6,9]

[0,0]

[2,5]

[0,0]

[6,7]

[0,0]

[1,6]

[0,0]

[4,9]

[0,0]

[5,8][2,4]

[0,0]

Fig. 9. An unbounded TPN (left), and the same model after the bounding procedure (right)

the net, using an initial, random guess for this bound, and then to check on the corre-
sponding TA whether the bound is too low. We proceed as follows:

1. Compute the P-semiflows of the untimed PN.
2. If all places are covered by at least one P-semiflow, then the net is bounded and we

can apply the MCG algorithm in the standard way; otherwise, for all places pi not
covered by a P-semiflow, build the complementary places p̄i, and set M0(p̄i) to a
guessed value (we use P̄ to denote the set of complementary places).

3. Build the MCTA using Algorithm 1.
4. Finally, check on the MCTA whether there is a reachable state of the TA of mark-

ing M, in which the complementary place is actually limiting the original timed
behavior (formally, ∃t: ∀p ∈ P,M(p) ≥ W−(p, t)∧ ∃p ∈ P̄,M(p) < W−(p, t)); if
such a state exists, increase the initial guess for M0(p̄) and repeat.

Note that, if the TPN is unbounded, then the number of iterations is unbounded and
the algorithm does not terminate (the ESCG and ZBMCG computations also do not
terminate). P-semiflow and complementary places are standard PN concepts, and we do
not recall them here. We only show how the net on the left part of Figure 9 is modified to
obtain the net on the right part of the same figure. P-semiflow analysis reveals that place
P3 is unbounded and the complementary place P4 is inserted. Choosing M0(P4) = 6
bounds also P3 to a maximum of 6 tokens. The check on the MCTA reveals that this
was a good choice, and we can safely use the MCTA built from the net on the right
part of Figure 9, rather than the TPN on the left part of the figure (the underlying PN
of which is unbounded), because they have the same behavior over reachable states.

5 The GREATSPN2TA Tool

In this section we present the tool GREATSPN2TA for the computation of the MCTA
(or MCTAclock) of a given TPN. The underlying PN is described with the tool
GREATSPN [11], which is a software package for the modeling, validation and per-
formance evaluation of distributed systems using models based on stochastic Petri nets.
The produced MCTA (or MCTAclock) is described in the input format of KRONOS [12],
a model-checking tool for TA. In the following, we compare GREATSPN2TA to
ROMEO. The software ROMEO [9] permits the state space computation of TPN, on-
the-fly TCTL model-checking and the translation from TPN to TA with equivalent

228 D. D’Aprile et al.

behavior. ROMEO incorporates two tools of interest in our context, namely GPN and
MERCUTIO. Both tools transform a given TPN to the UPPAAL or KRONOS input for-
mat: the tool GPN exploits the SCTA computation, whereas MERCUTIO is based on
the ZBMTA construction.

We ran MERCUTIO, GPN, and GREATSPN2TA (using also the variant
GREATSPN2TAclock, which implements the MCTAclock construction), on a number
of different models. Our experiments were executed on a 1.60 GHz Pentium 4 PC
with 512 MB of RAM, running Linux. Table 1 lists, for every model, the number
of locations and clocks of the TA, and the elapsed time to compute the TA. We
considered two classical PN models: the dining philosophers (with 4 philosophers,
Philo4), the slotted ring with 4 devices (SR4), and three models taken from the ROMEO

package: a producer-consumer with 6 producers and 7 consumers (P6C7), and a set
of parallel sequences (Oex15), which we have also modified so that each sequence
cycles (Oex15cycle). For Philo4 and Oex15cycle a number of different timings of the
TPN were considered: in the Philo4 case, we have forced one of the four philoso-
phers to be 10, 100, or 1000 times slower during the thinking activity (so obtaining
the Timing1slw−10, Timing1slw−100, and Timing1slw−1000 variants, respectively); in the
Oex15cycle case, the time intervals describing the different activities were considered
totally disjoint (Timingdisj), partially overlapping (Timingoverlapping), or having the same
latest firing times (Timingcontained−LFT). The results, shown in Table 1, provide exam-
ples of the various trade-off that the four methods offer. Due to the different char-
acteristics of the four algorithms, we compare the tools by pairs: GREATSPN2TA
with GREATSPN2TAclock, GPN with MERCUTIO, GPN with GREATSPN2TA and
MERCUTIO with GREATSPN2TAclock.

GREATSPN2TA and GREATSPN2TAclock. GREATSPN2TA always produces
a greater number of locations and a smaller number of clocks than the
GREATSPN2TAclock variant: the smaller number of clocks is nevertheless
paid for in terms of execution time, especially for models in which, in each
state, there is an high number of enabled transitions (indeed the execution of
GREATSPN2TA on P6C7 did not terminate even after 5 minutes). The greater
number of locations can be explained by recalling the discussion of Section 4.2. As
expected, execution times do not change when changing the timing of transitions.

GPN and MERCUTIO. As already observed, GPN optimizes clocks and MERCUTIO

optimizes locations: there is not a definitive winner in terms of execution times,
although they are both sensitive to timings (most notably in the Philo4 case).

GPN and GREATSPN2TA. For the examples considered, the two tools generate the
same number of clocks. In the P6C7 case the MCTA computation explodes while
computing clock similarity, due to the high number of transitions enabled in each
state. In all other cases, the execution time is smaller for GREATSPN2TA.

MERCUTIO and GREATSPN2TAclock. MERCUTIO assigns statically one clock per
transition and leaves to the TA tool (UPPAAL or KRONOS) the task of minimizing
the number of clocks, while GREATSPN2TAclock assigns a different clock
to each enabled transition: this explains the smaller number of clocks in the
GREATSPN2TAclock column. As expected, the number of locations is smaller in

From Time Petri Nets to Timed Automata: An Untimed Approach 229

Table 1. Experiments results for GPN, MERCUTIO, GREATSPN2TA, and GREATSPN2TAclock

Model GPN MERCUTIO GREATSPN2TA GREATSPN2TA clock

SR4 22907 loc 5136 loc 7327 loc 5136 loc
4 clocks 33 clocks 4 clocks 8 clocks
4.30 s 3.86 s 2.63 s 2.08 s

Philo4 4406 loc 322 loc 1161 loc 322 loc
6 clocks 17 clocks 6 clocks 8 clocks
1.50 s 0.16 s 0.11 s 0.07 s

Timing1slw−10 6.7 s 6.2 s 0.11 s 0.07 s
Timing1slw−100 > 300 s > 300 s 0.11 s 0.07 s
Timing1slw−1000 > 300 s > 300 s 0.11 s 0.07 s
P6C7 11490 loc 449 loc n.a. 896 loc

3 clocks 21 clocks n.a. 13 clocks
3.44 s 4.70 s > 300 s 1.24 s

Oex15 1048 loc 360 loc 625 loc 625 loc
4 clocks 17 clocks 4 clocks 4 clocks
0.36 s 0.63 s 0.12 s 0.11 s

Oex15cycle 3510 loc 256 loc 369 loc 256 loc
4 clocks 17 clocks 4 clocks 4 clocks
3.10 s 7.9 s 0.07 s 0.06 s

Timingdisjoint 7.8 s 32.5 s 0.07 s 0.06 s
Timingoverlapping 4.7 s 32.7 s 0.07 s 0.06 s
Timingcontained−LFT 4.8 s 25.9 s 0.07 s 0.06 s

MERCUTIO (which is optimal in this respect), but its execution times can be much
worse, especially when changing transition timings.

6 Conclusions

In this paper we have presented a method to translate a TPN to a TA by exploiting
reachability of the underlying untimed PN of the TPN. This technique has a disadvan-
tage that the untimed PN can be unbounded, even if the TPN is bounded; to address
this issue, we have described an empirical method for bounding the PN using com-
plementary places, and then checking if this bound is too restrictive. The experimental
results show that the computation time used by our method is competitive for a number
of classes of system, and the produced TA generally offer a good compromise between
the number of locations and the number of clocks. In future work, we plan to address
methods for obtaining information about bounds on the number of tokens in places of
the TPN, which can then be used in our approach based on complementary places. We
also intend to implement a translation to UPPAAL TA (which requires a translation of
the MCTA, which has clock renaming, to an equivalent TA without renaming [7]), and
to consider the use of clock reduction, as implemented in model-checking tools for TA,
in the context of our technique.

References

1. R. Alur, C. Courcoubetis, and D. L. Dill. Model-checking in dense real-time. Information
and Computation, 104(1):2–34, 1993.

2. R. Alur and D. Dill. Automata-theoretic verification of real-time systems. Formal Methods
for Real-Time Computing, pages 55–82, 1996.

230 D. D’Aprile et al.

3. R. Alur and D. L. Dill. A theory of timed automata. Theor. Comput. Sci., 126(2):183–235,
1994.

4. G. Behrmann, A. David, K. G. Larsen, J. Håkansson, P. Pettersson, W. Yi, and M. Hendriks.
UPPAAL 4.0. In Proceedings of the 3rd International Conference on Quantitative Evaluation
of Systems (QEST 2006), pages 125–126. IEEE Computer Society Press, 2006.

5. B. Berthomieu and M. Diaz. Modeling and verification of time dependent systems using
time Petri nets. IEEE Transactions on Software Engineering, 17(3):259–273, Mar. 1991.

6. B. Berthomieu and F. Vernadat. State class constructions for branching analysis of time Petri
nets. In Proceedings of the 9th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS 2003), volume 2619 of LNCS, pages 442–
457. Springer, 2003.

7. P. Bouyer, C. Dufourd, E. Fleury, and A. Petit. Updatable timed automata. Theoretical
Computer Science, 321(2-3):291–345, 2004.

8. F. Cassez and O. H. Roux. Structural translation from time Petri nets to timed automata.
Journal of Systems and Software, 79(10):1456–1468, 2006.

9. G. Gardey, D. Lime, M. Magnin, and O. H. Roux. Romeo: A tool for analyzing time Petri
nets. In Proceedings of the 17th International Conference on Computer Aided Verification
(CAV 2005), volume 3576 of LNCS, pages 418–423. Springer, 2005.

10. G. Gardey, O. H. Roux, and O. F. Roux. State space computation and analysis of time Petri
nets. Theory and Practice of Logic Programming (TPLP). Special Issue on Specification
Analysis and Verification of Reactive Systems, 6(3):301–320, 2006.

11. GREATSPN web site. http://www.di.unito.it/∼greatspn.
12. KRONOS web site. http://www-verimag.imag.fr/TEMPORISE/kronos/.
13. D. Lime and O. H. Roux. Model checking of time Petri nets using the state class timed

automaton. Journal of Discrete Events Dynamic Systems - Theory and Applications (DEDS),
16(2):179–205, 2006.

14. M. Menasche and B. Berthomieu. Time Petri nets for analyzing and verifying time dependent
protocols. Protocol Specification, Testing and Verification III, pages 161–172, 1983.

15. P. M. Merlin and D. J. Farber. Recoverability of communication protocols: Implications of a
theoretical study. IEEE Trans. Comm., 24(9):1036–1043, Sept. 1976.

16. ROMEO web site. http://romeo.rts-software.org/.
17. J. Toussaint, F. Simonot-Lion, and J.-P. Thomesse. Time constraints verification method

based on time Petri nets. In Proceedings of the 6th IEEE Computer Society Workshop on Fu-
ture Trends of Distributed Computing Systems (FTDCS’97), pages 262–267. IEEE Computer
Society Press, 1997.

18. UPPAAL web site. http://www.uppaal.com.
19. S. Yovine. Kronos: A verification tool for real-time systems. International Journal of Soft-

ware Tools for Technology Transfer, 1(1/2):123–133, 1997.

Complexity in Simplicity: Flexible Agent-Based

State Space Exploration

Jacob I. Rasmussen, Gerd Behrmann, and Kim G. Larsen

Department of Computer Science, Aalborg University, Denmark
{illum,behrmann,kgl}@cs.aau.dk

Abstract. In this paper, we describe a new flexible framework for state
space exploration based on cooperating agents. The idea is to let various
agents with different search patterns explore the state space individu-
ally and communicate information about fruitful subpaths of the search
tree to each other. That way very complex global search behavior is
achieved with very simple local behavior. As an example agent behavior,
we propose a novel anytime randomized search strategy called frustration
search. The effectiveness of the framework is illustrated in the setting of
priced timed automata on a number of case studies.

1 Introduction

Efficient exploration of large state spaces given as graphs is highly relevant in a
number of areas, e.g. verification, model checking, planning, scheduling, etc.

For many applications we are interested in placing guarantees on systems.
For verification this could be guaranteeing deadlock freedom or guaranteeing
optimality in scheduling and planning. Such guarantees often require exhaustive
search of the state space and algorithms for doing this are expensive in terms
of time and memory usage. The high memory usage is required to keep track
of all states that have been explored. Algorithms in this category often have
breadth-first characteristics, such as e.g. A∗, [12].

However, covering the entire state space is sometimes unnecessary or even
infeasible. Many real application domains prefer algorithms to find solutions
fast and then gradually improve the solution instead of guaranteeing optimality.
Algorithms with such characteristics are called anytime algorithms and include
genetic algorithms, [14], simulated annealing, [16], beam-stack search (a complete
variant of beam search), [20], tabu search, [9,10], and others.

Other algorithms rely on heuristic information for states such as estimated
distance to the goal. Such heuristic algorithms include beam search and best-first
search (e.g. A∗). Alternately, randomized or stochastic algorithms like Monte
Carlo methods can be used when optimality does not have to be guaranteed.
For a good introduction to many type of algorithms for optimization purposes,
we refer the reader to [15]. For an interesting approach to LTL model checking
using Monte Carlo methods, we refer the reader to [11].

When searching for solutions to optimization problems, the famous
“no-free-lunch” theorem, [19], states that all optimization algorithms perform

O. Grumberg and M. Huth (Eds.): TACAS 2007, LNCS 4424, pp. 231–245, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

232 J.I. Rasmussen, G. Behrmann, and K.G. Larsen

indistinguishably when averaged over all optimization problems. The theorem
implies the importance of tailoring solutions to different problems as there is no
single best algorithm for all problems. However, there is also the important im-
plication that general purpose exploration engines cannot rely on a single search
strategy, but need to offer a wide variety algorithms.

One way to let an exploration engine use multiple search algorithms is to
run the search algorithms as co-routines in simulated parallelism. This can be a
very efficient approach to searching because of the wide range of strong search
algorithms that have been published. However, a weak point with this approach
is that no algorithm utilizes the strength of the other algorithms, e.g. a depth-
first approach could be searching a fruitful part of the state space, but might
not find a good solution in reasonable time due to the search strategy, whereas
a beam search performed in the same part of the state space might find good
solutions immediately. In turn, beam search might never get to explore that part
of the state space due to poor heuristics and/or very expensive transitions to
reach that part of the state space.

Alternatively, if the algorithms are able to detect fruitful parts1 of the state
space and employ other algorithms to assist in the exploration, very complex
search behaviors can be achieved using just simple and well-known algorithms.

This is exactly the approach we advocate in this paper. We propose an agent
framework where individual agents use basic search algorithms (e.g. (random)
depth-first search, beam search) and execute as co-routines using a given ex-
ploration engine. The agents are connected to a pool of tasks where each agent
can put new tasks and get tasks. Tasks in this setting are sub-paths of the state
space indicating interesting areas to search. This way an agent with a fixed
search strategy that detects a potentially interesting part of the state space can
put a number of tasks to the task pool and let other agents with different search
strategies pick the tasks and aid in the search of the given part of the state
space.

We apply our framework in the setting of priced timed automata (PTA),
[17,3], an extension of timed automata, [2], that address the optimal reachability
problem. PTA have proven useful for a wide range of different search problems
such as model checking, [7], and scheduling, [1,5,18]. The diversity of applications
and generality of the modelling language of PTA suggests that no single search
algorithm is superior and, thus, could benefit from an agent-based approach to
search. The framework has been applied to a number of case studies from PTA
with promising results.

The rest of the paper is structured as follows: Section 2 describes the agent
framework and the constituents hereof. Section 3 proposes a novel search al-
gorithm termed frustration search and describes its incorporation in the agent
framework. In Section 4, we describe the instantiation of our framework for
priced timed automata and its application to a number of case studies. We fi-
nally conclude in Section 5 and indicate directions of future work.

1 E.g., estimated cost of finding a solution is lower than the current best solution, or
parts of the search space where deadlocks a rarely encountered.

Complexity in Simplicity: Flexible Agent-Based State Space Exploration 233

2 Agent Framework

In this section, we propose a highly flexible agent-based framework for state
space exploration. The framework has been implemented in the setting of priced
timed automata, which is evaluated in Section 4.

An overview of the framework is depicted in Fig. 1. Subsequently, we describe
the three components of our framework - exploration engine, agents and task store.
Exploration Engine. The framework we propose is constructed to be indepen-
dent of the type of state space that is being explored. We require a front-end
to the state space in terms of an exploration engine that can take states and
return their successors plus meta information such as traditional heuristics (e.g.
remaining costs) if the state space supports it. We assume that the given explo-
ration engine offers a single interface function getSuccessors(s) that, as input,
takes a state and, as output, returns a collection of successors.
Task Store. The task store is a pool of tasks available to the agents. The task
store offers an interface to access the pool of tasks by means of putting (adding)
new tasks to the store and getting (removing) existing tasks from the store. A
task is an entry into the state space either in terms of a sub-path from the initial
state or simply a reachable state. The task store is considered to have an infinite
number of the initial state.

There are several choices involved in managing the store with respect to states
that are added and removed. Different design considerations include:

– When agents perform a get call, tasks can be removed in e.g. FIFO, LIFO,
most promising first, random, or some other order.

– The initial state can be returned only when there are no other tasks in the
store or by some probability.

– The task store can be implemented with a fixed size where the oldest tasks
are removed when the size limit is reached. This makes sense when searching
for optimality since old tasks might relate to parts of the search space that
are no longer promising as new better solutions might have been found since
the tasks was added to the store.

Agents. The framework defines a fixed number of agents which are co-routines
running in simulated parallel interacting with the exploration engine and, in-
directly, with each other through the task store. The agents are simply search
algorithms employing some search strategy, e.g. variants of depth-first search,
beam search, etc. The configuration of agents can be either static (the collection
of agents remains unchanged throughout the search) or dynamic (agents might
be replaced by other types of agents depending on how they perform). Each
agent Ai has a personal configuration Ci necessary to perform the given search
strategy. The configuration holds information about which state to explore next
and possibly a list of states waiting to be explored.

There are two aspects to bounding the overall memory consumption of the
agent framework. First, each agent should have a reasonably bounded memory
consumption such as some constant times the largest depth of the state space.

234 J.I. Rasmussen, G. Behrmann, and K.G. Larsen

A1

C1

A2

C2

An

Cn

· · ·

Exploration
Engine

Task Store

getSuccessor(s)

put(s) get()
put(s) get()

put(s) get()

Fig. 1. The three part agent framework consisting of an exploration engine, a set of
agents and a task store

This is very applicable for a large number of search algorithms such a different
variants of depth-first search (e.g. random, best) and beam search.

Second, there can be no central store of states that have already been ex-
plored. This is obviously a trade-off as agents in the framework might explore
states that have already been explored by itself or other agents2. However, to-
gether with the memory limit requirement of the agents, the main benefit is that
the search framework can search indefinitely, constantly improving solutions for
optimization problems.

Obviously, the behavior of a given agent setup can be described in terms of
a single anytime search algorithm, however, that behavior would be inherently
complex to describe and very inflexible if changes needed to be made. On the
other hand, the agent framework is highly flexible to changes and agents can be
added or removed to fit a certain application area.

Furthermore, the agent framework is easily distributed to a multiple processor
architecture (in either a cluster, grid, or single PC) by having a number of agents
running on each processor sharing a single or multiple task stores.

Note that the agent framework generalizes all of search algorithms, as any one
algorithm can be implemented in a framework using a single agent.

3 Frustration Search

In this section we introduce a novel search strategy termed frustration search.
Frustration search is an incomplete, randomized anytime algorithm build around
2 Obviously, for cycle detection, an agent will not explore state already found on its

current search path.

Complexity in Simplicity: Flexible Agent-Based State Space Exploration 235

random depth-first search and will be discussed in detail and analyzed for time
and memory usage. Furthermore, incorporation of the algorithm into the agent
framework will be discussed.

Prior to describing the frustration search algorithm, we need to establish some
notation to be used in this and the following section.

Preliminaries. We consider state spaces given as a weighted, potentially cyclic,
digraph 〈V, s0, G, E, Cost〉, where V is a finite set of vertices, s0 the root vertex,
G ⊆ V the set of goal vertices, E ⊆ V × V the set of directed edges, and
Cost : E → IN a weight assignment to edges. As a shorthand notation, we write
s → s′ to denote (s, s′) ∈ E. The set of all vertices reachable from a vertex s by
means of a single transition is denoted by Succ(s), i.e.,

Succ(s) = {s′ | s → s′}.

A path in a search space 〈V, s0, G, E, Cost〉 is a sequence of states:

σ = s1, s2, ..., sn

such that s1 = s0 and for 1 ≤ i < n, si → si+1. If si ∈ V appears in σ, we
write si ∈ σ; otherwise si /∈ σ. tail(σ) and head(σ) denote the first (leftmost)
and last (rightmost) vertex in a path, respectively. The empty path is denoted
by ε. The binary operator ’·’ denotes concatenation of paths. I.e., for two paths
σ1 = si, ...sj and σ2 = sk, ..., sl, the concatenation σ1 · σ2 is given by:

σ1 · σ2 = si, ..., sj , sk, ..., sl,

and is only valid when (sj , sk) ∈ E. Furthermore, for any path σ, σ ·ε = ε ·σ = σ.
The cost of the path σ is the sum of costs of the edges, i.e.,

Cost(σ) =
n−1∑

i=1

Cost(si, si+1).

A path σ = s1, ..., sn is a solution if s1 = s0 and sn ∈ G. The optimization
problem associated with a state space is to find the solution with minimal cost.

Some heuristic search algorithms assume for every state an under-approximated
cost of reaching the goal. We define such a heuristic as a function rem : V → IN
satisfying,

∀s ∈ V . ∀σ = s, ..., s′ . s′ ∈ G =⇒ rem(s) ≤ Cost(σ). (1)

In other words, rem is a valid admissible heuristic. Having no such a priori
information of the state space corresponds to rem(s) = 0 for all states s ∈ V .

Now, we progress to describing the frustration search algorithm that is de-
picted in Algorithm 1. Frustration search explores different areas of the state
space in a randomized fashion identically to random depth-first search, however,
the extent to which a given part of the state space is explored depends on the

236 J.I. Rasmussen, G. Behrmann, and K.G. Larsen

“attractiveness” of the given part. Unattractive parts of the state space are ar-
eas with many deadlocks or states that have rem values that cannot improve the
current best solution.

Intuitively, frustration search explores the state space while keeping track of
its own frustration level. The frustration level increases when encountering dead-
locked states or states that can only reach the goal with a cost much higher than
current best solution. The frustration level decreases when finding goals with
costs close to or better than the current best solution. Whenever the frustration
level exceeds a given threshold the current part of the search space is discarded
and another part is explored. How much the frustration level decreases depends
on how much of the path to the current state is maintained.

The formal structure of frustration search is given in Algorithm 1, which we
describe in detail below.

Lines 1-4 initialize the algorithm stating that the best found cost is infinite,
the best path is not found, the frustration level is zero (empty path), and the
waiting list contains only the path consisting of the initial state. The main (while)
loop of the algorithm terminates when the Waiting stack is empty.

At each iteration, a path is selected from Waiting (line 6). How we proceed
depends on whether the state at the head of the path is a goal state or not. In
case it is, the path can fall in one of three categories compared to the current
best solution: Better than, reasonably close to (say, within 10 percent), or far
from (say, by more than 10 percent). In the former case, we update the current
best solution to the current path, update the best cost and reset the frustration
level to zero. Resetting the frustration level guarantees that the current part of
the search space is searched more thoroughly. In the middle case, the frustration
level is decreased slightly to search the current part of the state space more
thoroughly. In the latter case, the frustration level is increased.

In case the head of the path is not a goal state, we need to compute the
successors of the state at the head of the path. At line 18, we select only those
successors that are neither on the path already nor unable to reach the goal
within an acceptable margin of the current best solution. If the computed set
of successors is empty, we increase the frustion level accordingly. Otherwise, we
add the successors to the Waiting list in random order.

Lines 27 through 31 are executed regardsless of whether the head of the cur-
rent path is a goal state or not. Here, the frustration level is tested against a
predefined frustration threshold. If the threshold has not been exceeded, we do
nothing. Otherwise, we compute a random number between zero and the size of
Waiting plus one. This value determines the number of states that should be
removed from the top of the Waiting list (line 30). Furthermore, the frustration
level is decreased proportionally to the number of states that has been removed
from Waiting.

Finally, when the Waiting list is empty the algorithm returns to line 4 and
reinserts the initial state into Waiting to re-search the state space. The ran-
domization of the algorithm guarantees a diminishingly small chance of two runs
being identical.

Complexity in Simplicity: Flexible Agent-Based State Space Exploration 237

Algorithm 1. Frustration search
proc FrustSearch ≡
1: Cost ← ∞
2: Best ← ε
3: Frust ← 0
4: Waiting ← {ε · s0}
5: while Waiting �= ∅ do
6: σ ← pop(Waiting)
7: if head(σ) ∈ G then
8: if Cost(σ) < Cost then
9: Cost ← Cost(σ)

10: Best ← σ
11: Frust ← 0
12: else if Cost(σ) ≤ Cost×1.10 then
13: Frust← dec(Frust)
14: else
15: Frust← inc(Frust)
16: end if
17: else
18: Succ ← {s′ | s′ ∈ Succ(head(σ)), s′ /∈ σ, Cost(σ · s′) + rem(s′) ≤ Cost×1.10}
19: if Succ �= ∅ then
20: for all s′ ∈ Succ do
21: push(Waiting, σ · s′)
22: end for
23: else
24: Frust ← Inc(Frust)
25: end if
26: end if
27: if Frust ≥ MaxFrust then
28: Rand ← (rand mod |Waiting|+1)

29: Frust ← Frust × |Waiting|−Rand
|Waiting|

30: pop(Waiting, Rand)
31: end if
32: end while
33: goto 4

MaxFrust and how much the frustration level is incremented or decremented
can be adjusted to specific applications, e.g., how often are deadlocked states
expected or how often should the algorithm start over etc.

Since frustration search restarts after each termination, it only makes sense to
talk about time and memory usage for each iteration (the while-loop). The worst
case time behavior of frustration search ocurs when no states are ever removed
from the Waiting list due to frustration. In this case, the behavior is identi-
cal to random depth-first search. Thus, the worst-case execution time is O(|V |)
as with random depth-first search. The memory usage depends on the size of
the Waiting list and will - like depth-first search - never exceed O(MaxDepth ·

238 J.I. Rasmussen, G. Behrmann, and K.G. Larsen

MaxOut), where MaxDepth is the maximum depth of any path of the state
space3 and MaxOut is the maximum number of successors of any state.
Variants of Frustration Search. The behavior of the frustration search al-
gorithm is easily changed into different variants by changing the order in which
states are added to the Waiting list. Using either the rem heuristic or other user
defined guides, frustration search can be tailored to different kinds of problems.
E.g., in Section 4, we use a variant of frustration search that sorts the successors
according to the current cost plus the remaining estimate. That way, the states
are searched in a best first manner with randomization as a tiebreaker. Variants
of this type have no impact on the worst-case time or memory usage.
Relating to the Agent Framework. To implement frustration search in the
agent framework defined in Section 2, the state inserted into the Waiting list
can be taken from the task store instead of the initial state. Furthermore, tasks
can be added to the task store whenever a promising goal location is found.
Subpaths of this solution can be added to the task store for further investigation
by other agents.

4 Framework Instantiation

In this section, we discuss ways of utilizing the agent-based architecture in
scheduling using priced timed automata. We explore only static agent setups
and leave dynamic setups as future work.

Timed Automata. Timed automata were first introduced by Alur and Dill
in [2] as a model for describing reactive real-time systems. The benefit of using
timed automata over the more expressive hybrid automata is that the model
checking problem for timed automata - unlike for hybrid automata - is decidable.
Decidability is achieved because the infinite state space for timed automata has
a finite quotient. The finite quotient allows algorithms to reason about sets of
states (a symbolic state) with equivalent behavior.

Because timed automata analysis requires representing sets of states, a sym-
bolic state of most timed automata exploration engines has the form (l, Z) where
l is discrete state information and Z is a convex polyhedron representing dense
timing information. For priced timed automata (PTA), the state representation
is similar except that we associate an affine cost function with the polyhedron.
In minimum-cost reachability analysis we need to compute the minimum of the
cost function using linear programming.

A symbolic A∗ algorithm for minimum-cost reachability of priced timed au-
tomata has been implemented as an extension to the symbolic state space ex-
ploration engine of the real-time verification tool Uppaal. The result is the
optimization tool Uppaal Cora, which has been successfully applied to a num-
ber of benchmarks and industrial scheduling problems, [6]. This A∗ algorithm is
depicted in Algorithm 2.

3 A path ends whenever it encounters a state already on the path or has no successors.

Complexity in Simplicity: Flexible Agent-Based State Space Exploration 239

Algorithm 2. Reachability algorithms used by Uppaal Cora

1: Waiting = {ε · s0}
2: Passed = ∅
3: Cost = ∞
4: while Waiting �= ∅ do
5: σ ← pop(Waiting)
6: if head(σ) ∈ G then
7: if Cost (σ) < Cost then
8: Cost = Cost (σ)
9: end if

10: else
11: Succ ← {s′ | s′ ∈ Succ(head(σ)), s′ /∈ Passed, s′ /∈ Waiting, Cost (σ · s′)

flanflanflan +rem(s′) < Cost}
12: for all s ∈ Succ do
13: push(Waiting, σ · s)
14: sort(MinCostRem, Waiting)
15: end for
16: add(Passed, σ)
17: end if
18: end while
19: return Cost

The algorithm is a classical A∗ search algorithm with a Waiting list sorted
according to the cost plus remaining estimate for each state. The algorithm
further keeps a Passed list of states that have been explored. The successor
computation on line 11 involves manipulation of symbolic states that are up to
cubic in the number of variables used in Z. Furthermore, inclusion checking and
computation of symbolic state costs involve solving linear programs.

Given the computational complexity of manipulating symbolic states, most
of the work done for optimizations of (priced) timed automata involves finding
better representations of Z assuming that the algorithm is fixed. In this sec-
tion, we focus solely on the algorithm to explore whether an incomplete search
framework like that agent framework is competitive to existing methods.

4.1 Applications

The implementation of the agent framework applied in this section uses the
following search agents, referred to as ’Mix’:

– Depth-first search (DFS): Deterministic search where states are added to the
waiting list in the order provided by the exploration engine.

– Best depth-first search (BDFS): A variant of DFS that sorts the successors
according to their expected cost (current cost plus remaining estimate). Ran-
domization is used for tie-breaking states with equal cost.

– Random depth-first search (RDFS): Successors are shuffled before adding
them to the waiting list.

– Beam search (BS): Classical beam search with a fixed beam width of 100.

240 J.I. Rasmussen, G. Behrmann, and K.G. Larsen

– Frustration search (Frust): Successors are shuffled before added to the wait-
ing list. Frustration decrement is set to 0.5 and increments to 1 with a
MaxFrust set to 1000.

– Best frustration search (BestFrust): Like Frust, but successors are sorted
according to their cost plus remaining estimate.

The framework uses one agent of every type and creates ten copies of every
job in the task store to increase the chance that every agent has a chance to
explore every job.

Lacquer Scheduling. This case studies has been provided by Axxom4 - a
German company that provides scheduling software for the lacquer production
industry. The scheduling problem involves fulfilling a number of orders (with
deadlines) for lacquer of different colors. The lacquer production process requires
the use of a number of different machines, which have to be cleaned in-between
usage for lacquer of different colors. Each type of lacquer has a special recipe
describing which machines to use. Costs are incurred during machine use, clean-
ing and storage (if recipes are fulfilled before the deadline). The Axxom case has
been studied for schedulability with timed automata in [5] and for optimization
in [13]. For a thorough introduction to the Axxom case study, we refer the reader
to either of the two papers.

The lacquer production scheduling problem is of a size that inhibits explo-
ration of the entire state space, and schedules used rely on suboptimal solutions.
Axxom uses custom-made software for scheduling, but [13] reports that the solu-
tion found with Uppaal Cora are comparable to those of the custom scheduling
software. Thus, every advancement of the solutions found by Uppaal Cora only
make the PTA approach more competitive.

The purpose of the following experiments is twofold: First, to compare co-
operating agents in a scheduling framework where guaranteeing optimality is
unrealistic to other single search algorithm methods. Second, to determine how
well the heuristic used in frustration search for skipping parts of the state space
is to an uninformed approach. The algorithm used in [13] is ideal for such a com-
parison as the algorithm is a best depth-first algorithm with (random) restarting
(BDFS-RR) based on a stochastic choice. We will test two agent setups with a
single agent using the default variant of frustration search and a single agent
using the best frustration search approach. The test setup we have used is the
following:

– Hardware: 3.2GHz PC with 4GB RAM running Linux/Debian 3.1.
– Models: We have chosen the two models used in [13]. Both models have 29

orders, but the first model (6) has no costs associate with storage of lacquer
whereas the second model (7) has. Model 6 has two variants depending on
how machine availability is modelled. Model 6a models the availability as a
fraction of the overall times where model 6b models availability according

4 The case study was provided as a test bed for algorithms in the European Community
Project IST-2001-35304 Ametist.

Complexity in Simplicity: Flexible Agent-Based State Space Exploration 241

to the work shifts provided by Axxom. The models use the guiding rem
estimates defined in [13].

– Instances: For each variant of model 6, we vary the number of orders that
can be active simultaneously. This heuristic was used in [13] where the limit
was set to five orders, but we include 15 and 29 as well. Model 7 is the most
accurate model of the case study, and we use no variant hereof even though
the model is reported to be very difficult in [13].

– Algorithms: We use four different algorithms in our test setup: BDFS-RR,
Frust, BestFrust, and Mix.

– Duration: For model 6, we run experiments for 10 minutes each in accordance
with the tests of [13]. In that paper, problems were reported for executing
model 7 for longer than 10 seconds, however, we have not experienced such
problems and have performed test for 10 minutes and 2 minutes to investigate
how fast solutions are found, and how much they are improved over time.

– Repetition: Each test is executed 10 times for every algorithm.

For the experiments with model 6(a and b) in Table 1, Mix is clearly the
best algorithm for finding schedules, it is only outperformed once by BestFrust
on model 6b with 15 active orders. For all other cases Mix is superior both
for the best solution, worst solution and average solution. BestFrust is clearly
better than BDFS-RR for all instances supporting the idea of using a more
informed heuristics for skipping parts of the state space. For all instances, but
one, BestFrust also outperforms Frust showing that some guiding is important
for model 6. This is further supported by the fact that Frust only outperforms
BDFS-RR on two instances.

Even though Mix is the superior approach, the experiments suggests that the
benefits of having a mix of agents to a single BestFrust agent are negligible, but
the following experiments show that this is not the case.

Table 1. Results for two versions of Axxom model 6 from [13] showing the costs of
the best solutions found within 10 minutes of search

Axxom model 6a

Agent Mix BestFrust Frust BDFS-RR

Active orders: 29 15 5 29 15 5 29 15 5 29 15 5

Best (106) 2.08 1.98 1.73 2.28 2.36 1.81 3.16 2.10 2.46 - 2.61 2.03

Worst (106) 4.91 2.59 2.07 6.09 2.69 2.12 11.77 2.47 6.02 - 3.89 11.1

Average (106) 2.89 2.18 1.90 3.76 2.54 1.97 8.61 2.26 4.59 - 2.91 4.33

Axxom model 6b

Agent Mix BestFrust Frust BDFS-RR

Active orders: 29 15 5 29 15 5 29 15 5 29 15 5

Best (106) 6.97 7.03 6.46 7.25 6.87 6.98 7.61 8.02 7.52 7.18 7.44 7.21

Worst (106) 7.88 8.56 7.82 7.75 7.73 7.59 8.91 8.85 8.82 8.32 8.55 9.8

Average (106) 7.41 7.58 7.34 7.50 7.37 7.46 8.33 8.31 8.11 7.86 7.93 8.2

242 J.I. Rasmussen, G. Behrmann, and K.G. Larsen

Table 2. Results for Axxom model 7 from [13] showing the best costs after 10 and 2
minutes of search

Axxom model 7

Agent Setup Mix BestFrust Frust BDFS-RR

Time 10min 2min 10min 2min 10min 2min 10min 2min

Best (106) 2.09 2.11 10.21 11.6 4.21 2.44 69.85 64.87

Worst (106) 6.32 14.93 17.50 25.21 10.01 15.37 87.83 94.49

Average (106) 3.12 6.55 13.36 18.77 8.15 8.60 79.60 88.10
Found solution 100% 100% 100% 100% 100% 100% 50% 30%

The experiments for model 7 in Table 2 show that the algorithm used in [13]
was unable to find even a single solution for a significant fraction of the instances,
whereas all agent setups found solution for all experiments. The solutions BDFS-
RR actually found are significantly inferior to any solution found by the agent
setup. For this model, Frust clearly outperforms BestFrust for both best, worst
and average solutions. However, neither algorithm alone is competitive to the
cooperating agent framework, which consequently finds the best solutions.

All of the experiments above support that using the agent framework for
search has significant benefits for general purpose search. Furthermore, variying
the search intensity in different areas of the search space with frustration search
seems very fruitful.
Aircraft Landing Problem. The aircraft landing problem involves scheduling
landing times for a number of aircraft onto a fixed number of runways. Each
aircraft has an earliest, target, and latest landing time given by physical con-
straints on aircraft speed and fuel capacity. Costs are incurred for each plane
deviating from the target landing time. For more information see [4,17,8].

The aircraft landing problem was first discussed in [4] where a mixed integer
linear programming solution was given. In [17], the problem was solved using
priced timed automata and the results obtained were highly competitive to those
of [4]. The case was reused in [18] with optimizations of the algorithm used for
minimum-cost reachability for PTA, and with the optimized algorithm PTA were
faster than [4] at solving the case for almost every instance.

The purpose of the following experiment is to determine how efficient the
agent framework (and frustration search) is at finding optimal schedules in state
spaces that are small enough to be searched exhaustively. And further, how well
the performance competes with a powerful complete search strategy, A∗. The
test setup we have used is the following:

– Hardware: 3.2GHz PC with 4GB RAM running Linux/Debian 3.1.
– Models: We have chosen the seven models used in [4,17,8]. The model uses

no form of guiding with rem estimates.
– Instances: The instances for the models involves varying the number of run-

ways until all planes can land with a total cost overhead of zero.
– Algorithms: We use mix of agents described in the beginning of this section

together with the default A∗ search algorithm used in Uppaal Cora.

Complexity in Simplicity: Flexible Agent-Based State Space Exploration 243

Table 3. Aircraft landing problem. ∗: 50% of the tests completed within the time limit
of 20 minutes, and the average is computed among these.

Instance
1 2 3 4 5 6 7

Runways Algorithm

1

Cora 0.04s 0.17s 0.11s 0.50s 1.10s 0.05s 0.07s

Agents
Best 0.16s 2.24s 3.77s 6.01s 4.77s 0.05s 6.68s

Worst 0.22s 3.15s 4.75s >1200s 8.97s 0.06s 7.70s
Average 0.18s 2.64s 4.34s 58.01s∗ 5.88s 0.06s 7.34s

2

Cora 0.15s 0.29s 0.25s 3.56s 4.98s 0.14s 0.35s

Agents
Best 0.09s 0.28s 5.65s 6.14s 9.69s 2.96s 2.25s

Worst 0.59s 4.23s 6.12s 7.23s 162.37s 13.87s 13.19s
Average 0.19s 3.00s 5.83s 6.90s 37.33s 8.86s 4.85s

3

Cora 0.16s 0.22s 0.33s 91.43s 71.95s 0.15s

Agents
Best 0.67s 1.66s 7.01s 6.71s 7.12s 0.06s

Worst 3.06s 5.97s 7.70s 19.94s 18.43s 0.07s
Average 1.94s 5.27s 7.45s 9.44s 9.76s 0.07s

4

Cora 7.60s 3.14s

Agents
Best 9.13s 8.48s

Worst 26.48s 20.93s
Average 12.59s 11.79s

– Duration: A maximum of 20 minutes were allowed for each instance.
– Repetition: The agent setup was executed 10 times and the Uppaal Cora

algorithm only once as it is deterministic.

The results in Table 3 clearly indicate that for most instances the A∗ algorithm
outperforms the agent framework. However, it is interesting to note that for the
most difficult instances - 4 and 5 - the A∗ algorithm shows exponential growth
in running time until all aircraft can be scheduled with zero cost (4 runways).
However, the agent framework does not have this issue, as there appears to be
no correlation between the number of runways and the time to find the optimal
solution. On instances 4 and 5 with 3 runways, the agent framework clearly
outperforms the A∗ algorithm in finding the optimal solution. On instance 5
with 2 runways, the agent framework performs significantly worse on average,
but reasonably for the best case. Only for one instance - 4 with 1 runway - was
the agent framework unable to find the optimal solution with the time limit. The
optimum was found for 50 percent of the executions, however, all executions -
even the ones that never found the optimum within the time limit - found a
solution deviating only 1 percent from the optimal within 6 seconds!

Another interesting observation of the agent framework is that for the major-
ity (∼80%) of the executions, the optimum was found by agents searching sub-
paths created by other agents that found reasonable solutions. In many cases,
the beam search agent was able to find a close to optimal solution, but did not
find the optimum, and some frustration agent found the optimal solution using

244 J.I. Rasmussen, G. Behrmann, and K.G. Larsen

subpaths of the suboptimal solution. This supports the use of interacting agents
to achieve complex global search behavior through simple local behavior.

5 Conclusions and Future Work

In this paper, we have investigated using sets of cooperating agents to explore
large state spaces. We have tested the agent framework against complete and
incomplete single algorithm methods. The results show that for state spaces that
are too large to be searched exhaustively, the agent framework consistently finds
good solutions that are superior to any single algorithm tested. For smaller search
spaces where exhaustive search is possible, the A∗ algorithm performs better,
however, unlike A∗, the agent framework does not perform exponentially worse
as the state space grows. For the most difficult problems, the agent framework
performed significantly better than A∗.

We also introduced frustration search as an anytime algorithm for large state
spaces. The heuristic to skip parts of the state space based on frustration was
shown to be superior to an uninformed stochastic heuristic. Furthermore, for
the Axxom case study, frustration search alone proved competitive to the agent
framework for a number of instances. Thus, frustration search seems a promising
algorithm for general purpose search when exhaustive search is infeasible.

As future work, we need to explore the agent setup for a larger number of
cases and compare to other frameworks for general purpose search. Furthermore,
a distributed version of the agent framework needs to be implemented to take
advantage of multi-processor architectures. Also, we need to investigate a more
dynamic strategy for assigning agents to search problem, e.g., by adjusting the
number of agents of different kinds by keeping track of how well the agents
perform in the given search space.

References

1. Yasmina Abdeddaim, Abdelkarim Kerbaa, and Oded Maler. Task graph scheduling
using timed automata. Proc. of the International Parallel and Distributed Process-
ing Symposium (IPDPS), 2003.

2. R. Alur and D. Dill. Automata for modelling real-time systems. In Proc. of Int.
Colloquium on Algorithms, Languages and Programming, volume 443 of Lectur
Notes in Computer Science, pages 322–335. Springer-Verlag, July 1990.

3. Rajeev Alur, Salvatore La Torre, and George J. Pappas. Optimal paths in weighted
timed automata. In Proc. of Hybrid Systems: Computation and Control, volume
2034 of Lecture Notes in Computer Science, pages 49–62. Springer-Verlag, 2001.

4. J. E. Beasley, M. Krishnamoorthy, Y. M. Sharaiha, and D. Abramson. Scheduling
aircraft landings - the static case. Transportation Science, 34(2):pp. 180–197, 2000.

5. G. Behrmann, E. Brinksma, M. Hendriks, and A. Mader. Scheduling lacquer pro-
duction by reachability analysis – a case study. In Workshop on Parallel and
Distributed Real-Time Systems 2005, pages 140–. IEEE Computer Society, 2005.

6. Gerd Behrmann, Kim G. Larsen, and Jacob I. Rasmussen. Optimal scheduling
using priced timed automata. SIGMETRICS Perform. Eval. Rev., 32(4):34–40,
2005.

Complexity in Simplicity: Flexible Agent-Based State Space Exploration 245

7. Thomas Brihaye, Véronique Bruyère, and Jean-François Raskin. Model-checking
weighted timed automata. In Proc. of Formal Modelling and Analysis of Timed Sys-
tems, volume 3253 of Lecture Notes in Computer Science, pages 277–292. Springer-
Verlag, 2004.

8. Ansgar Fehnker. Citius, Vilius, Melius - Guiding and Cost-Optimality in Model
Checking of Timed and Hybrid Systems. IPA Dissertation Series, University of
Nijmegen, 2002.

9. Fred Glover. Tabu search-part I. ORSA Jour. on Computing, 1(3):190–206, 1989.
10. Fred Glover. Tabu search-part II. ORSA Jour. on Computing, 2(1):4–32, 1990.
11. R. Grosu and S. A. Smolka. Monte carlo model checking. In Proc. of Tools and Al-

gorithms for the Construction and Analysis of Systems, Lecture Notes in Computer
Science, pages 271–286. Springer-Verlag, 2005.

12. P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic de-
termination of minimum cost paths. IEEE Transactions on Systems Science and
Cybernetics, 4(2):100–107, 1968.

13. Martijn Hendriks. Model Checking Timed Automata - Techniques and Applications.
IPA Dissertation Series, University of Nijmegen, 2006.

14. John H. Holland. Adaptation in Natural and Artificial Systems. University of
Michigan Press, Ann Arbor, 1975.

15. Juraj Hromkovic and Waldyr M. Oliva. Algorithmics for Hard Problems. Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 2002.

16. S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated anneal-
ing. Science, Number 4598, 13 May 1983, 220(4598):671–680, 1983.

17. Kim Larsen, Gerd Behrmann, Ed Brinksma, Ansgar Fehnker, Thomas Hune, Paul
Pettersson, and Judi Romijn. As cheap as possible: Efficient cost-optimal reacha-
bility for priced timed automata. In Proc. of Computer Aided Verification, volume
2102 of Lecture Notes in Computer Science, pages 493+. Springer-Verlag, 2001.

18. J. Rasmussen, K. Larsen, and K. Subramani. Resource-optimal scheduling using
priced timed automata. In Proc. of Tools and Algorithms for the Construction and
Analysis of Systems, volume 2988 of Lecture Notes in Computer Science, pages
pages 220–235. Springer Verlag, 2004.

19. David H. Wolpert and William G. Macready. No free lunch theorems for search.
Technical Report SFI-TR-95-02-010, Santa Fe Institute, Santa Fe, NM, 1995.

20. Rong Zhou and Eric A. Hansen. Beam-stack search: Integrating backtracking with
beam search. In Proc. of International Conference on Automated Planning and
Scheduling, pages 90–98. AAAI, 2005.

On Sampling Abstraction of Continuous Time

Logic with Durations

Paritosh K. Pandya1,�, Shankara Narayanan Krishna2, and Kuntal Loya2

1 Tata Institute of Fundamental Research, India
pandya@tifr.res.in

2 Indian Institute of Technology, Bombay, India
{krishnas,kloya}@cse.iitb.ac.in

Abstract. Duration Calculus (DC) is a real-time logic with measure-
ment of duration of propositions in observation intervals. It is a highly
expressive logic with continuous time behaviours (also called signals) as
its models. Validity checking of DC is undecidable. We propose a method
for validity checking of Duration Calculus by reduction to a sampled
time version of this logic called Well Sampled Interval Duration Logic
(WSIDL). This reduction relies on representing a continuous time be-
haviour by a well-sampled behaviour with 1-oversampling. We provide
weak and strong reductions (abstractions) of logic DC to logic WSIDL
which respectively preserve the validity and the counter models. By com-
bining these reductions with previous work on deciding IDL, we have
implemented a tool for validity checking of Duration Calculus. This pro-
vides a partial but practical method for validity checking of Duration
Calculus. We present some preliminary experimental results to measure
the success of this approach.

1 Introduction

Timed behaviours capture how the system state evolves with time. Temporal log-
ics specify properties of such behaviours. Real-time logics deal with quantitative
timing properties of timed behaviours.

Timed logics can make use of various notions of time: continuous, sampled
(with precise clocks) or discrete. Continuous time, where observable propositions
are boolean functions of real-valued time (also called signals), corresponds most
naturally to our intuitive notion of timed behaviour. Discrete time, where the set
of time points is natural numbered can be appropriate when describing clocked
systems such as synchronous circuits. There are other intermediate notions such
as timed words [1] which take a sampled view of timed behaviour. The behaviour
is given as a sequence of states where each state has a real-valued time stamp.

Real-time logics can be interpreted over these various notions of time and
their properties such as expressiveness and decidability also vary accordingly.
For example, the well known Metric Temporal Logic (MTL) has been shown

� This work was partially supported by General Motors India Science Lab sponsored
project “Advanced Research on Formal Analysis of Hybrid Systems”.

O. Grumberg and M. Huth (Eds.): TACAS 2007, LNCS 4424, pp. 246–260, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

On Sampling Abstraction of Continuous Time Logic with Durations 247

to be undecidable for continuous time where as it is decidable for sampled time
(for finite behaviours) [11]. Unfortunately, using notions such as sampled time
can also lead to counter intuitive behaviour. For example, the Duration Calculus
formula � = 3 ∧ ��P � states that P holds invariantly for 3 time units. (This can
be written in MTL as �≤3P .) The DC formula (� = 1 ∧ ��P �) �(� = 2 ∧ ��P �)
states that P holds invariantly for 1 time unit and this followed by P holding
invariantly for 2 more time units. (This can be written in MTL as �≤1(P ∧
(�≤2P)).) Although intuitively the two properties are the same, unfortunately
the two formulae are not equivalent in sampled view of time as intermediate
sampling point at time 1 may not be available. With this in mind, Rabinovich
and Hirschfeld [8] have argued that continuous time logics should be preferred
for real-time requirements. On the other hand, sampled time logics are closer to
automata theoretic models and they may have better decidability properties.

In this paper, we consider the abstraction of continuous time properties by
sampled time properties while preserving validity or counter-examples. Further
abstraction of sampled time properties by discrete time properties has already
been considered in literature using notions such as digitization [7,3,10].

We cast our work in context of Duration Calculus [16] which was one of the
early real-time logics in computer science to make use of continuous time (or
signals). It is an interval temporal logic incorporating the measurement of ac-
cumulated duration for which a proposition holds in a time interval. Duration
Calculus constitutes a convenient and highly expressive notation for real-time
requirements. But this has also made its validity undecidable in general and hard
to check in practice. Availability of effective automatic validity and model check-
ing tools for the continuous time Duration Calculus has been a long standing
quest. We provide a partial solution to this problem.

There have been many past attempts at deciding Duration Calculus (DC).
A discrete time version of DC called DDC (and its extension with state quan-
tification called QDDC) were shown to be decidable using a finite automata
theoretic decision procedure [12]. A validity and model checking tool called DC-
VALID has been built for this logic [12,13]. Pandya proposed a sampled time
version of DC, called Interval Duration Logic (IDL) [14]. It was argued that
this logic, although undecidable in general, is more amenable to automatic valid-
ity checking. Amongst the (partial) approaches which are available for validity
checking of IDL are bounded validity checking using SMT solvers [15] and ab-
straction to discrete duration calculus using digitization [3,15]. Both approaches
seem effective on many examples of interest. For continuous time Duration Cal-
culus, various decidable subsets have been considered [4,2,17]. But these have
not found way into credible tools.

In this paper, we propose a generic version of Duration Calculus GDC[M]
whose behaviours are continuous time (signals) but the behaviour is parame-
trized by a set of admissible time intervals M . By appropriately choosing M ,
we show that we can define as GDC[M] most variants of DC including DC,
IDL, DDC as well as a version of continuous DC without point intervals called
PLDC, and a special case of IDL called Well Sampled IDL with

248 P.K. Pandya, S.N. Krishna, and K. Loya

1-Oversampling (WSIDL). The behaviours of WSIDL are obtained by sam-
pling continuous time behaviours at all change points, all integer valued points
and they are oversampled by adding one more point between two consecutive
aforementioned points. Logic WSIDL will play a special role in our work here.

As our main result, we show that we can give reductions (abstractions) α+ and
α− from PLDC to WSIDL which respectively preserve validity and counterex-
amples. Moreover, we show that logics PLDC and DC have the same expressive
power and that there are effective translations between them. Thus, we can an-
alyze continuous time DC properties by reduction to the sampled time logic
WSIDL. The digitization and bounded validity checking approaches to decid-
ing original IDL easily extend to its variant WSIDL. Using these, we have
constructed a tool which reduces continuous DC formulae to DDC formulae
preserving validity/counter examples. The discrete time validity checking tool
DCVALID [12,13] can analyze the resulting formulae. This provides a partial but
practical approach for automatically checking the validity of continuous time Du-
ration Calculus formulae. To our knowledge this constitutes amongst the first
tools for validity checking a continuous time real-time logic. We give some pre-
liminary experimental results to evaluate the effectiveness of our approach. The
results indicate that interesting examples from the Duration Calculus literature
can be automatically verified.

The rest of the paper is organized as follows. Section 2 introduces the logic
GDC[M] and various Duration Calculi as its instances. The reductions from
pointless DC (PLDC) to WSIDL is given in Section 3. Section 4 establishes
the equivalence of full DC and pointless DC. Section 5 gives a brief overview
of past work on reducing (Well-sampled) IDL to Discrete Duration Calculus.
Combining all these steps, a partial method for validity checking continuous
time DC is formulated in Section 6. Section 7 describes the experimental results
obtained by applying the proposed method to some problems of interest.

2 A Variety of Duration Calculi

Duration Calculus is a real-time logic which was originally defined for continuous
time finitely variable behaviours [16]. Variants of DC having other forms of time
(sampled time, discrete time etc) have also been investigated [14,13].

In this section, we formulate a generic Duration Calculus, GDC, whose be-
haviours are parametrized by a set of admissible observation intervals I. This
allows us to give a uniform treatment of a variety of Duration Calculi which can
all be obtained by suitably choosing I.

Let (�0, <) be the set of non-negative real-numbers with usual order. Let Pvar
be the set of observable propositions. A behaviour θ ∈ Pvar → �0 → {0, 1}.
A behaviour θ is finitely variable if any proposition changes value only finitely
often within any finite time interval. A finitely variable behaviour is called right
continuous if the value of a proposition P at any time point is same as the value
in its small right neighborhood. We omit this obvious definition. We shall restrict

On Sampling Abstraction of Continuous Time Logic with Durations 249

ourselves to finitely variable and right continuous behaviours, and denote the set
of all such behaviours by BEH .

Duration calculus is an interval temporal logic with measurements over time
intervals. Let RINTV = {[b, e] | b, e ∈ �0, b ≤ e} the set of all intervals over
reals. Note that these include point intervals of the form [b, b]. The measurement
terms mt of GDC have the form

∫
P or �. The measurement term � denotes

the time length of an interval [b, e]. The measurement term
∫
P denotes the

accumulated duration for which P is true in θ in an interval [b, e]. Formally, the
value of measurement term mt is defined as follows: Eval(�)(θ, [b, e]) = e − b
and Eval(

∫
P)(θ, [b, e]) =

∫e

b
θ(P)dt.

Syntax of GDC. Let P range over Prop, c over natural numbers, op over
comparison operators {≤, <, =, >, ≥, >} and mt over measurement terms. Let
D range over GDC formulae with
 denoting the formula “true”. The abstract
syntax of GDC is given by:

 | ��P � | � � | �P �0 | mt op c | D1
�D2 | D1 ∧ D2 | ¬D1

Semantics For a given behaviour θ, the semantics of formulae is parameterized
by a set I of admissible intervals, where I ⊆ RINTV . Let the pair (I, θ) be called
a segmented behaviour or s-behaviour. Let M be a specified set of s-behaviours.
We parametrize the semantics of logic GDC by M and denote this by GDC[M].
A triple I, θ, [b, e] where (I, θ) ∈ M and [b, e] ∈ I is called an M -model.

For D ∈ GDC[M] and M -model I, θ, [b, e] let I, θ, [b, e] |= D denote that
formula D evaluates to true in model I, θ, [b, e]. Omitting the usual boolean
cases, this is inductively defined below. For a proposition P and a time point
t ∈ �0, let θ, t |= P denote that the proposition P has value 1 at time point t in
behaviour θ. We omit this straightforward definition.

I, θ, [b, e] |= �P �0 iff b = e and θ, b |= P
I, θ, [b, e] |= � � iff b = e
I, θ, [b, e] |= ��P � iff b < e and for all t : b ≤ t < e. θ, t |= P
I, θ, [b, e] |= mt op c iff Eval(mt)(θ, [b, e]) op c
I, θ, [b, e] |= D1

�D2 iff for some z : b ≤ z ≤ e. [b, z] ∈ I and [z, e] ∈ I
and I, θ, [b, z] |= D1 and I, θ, [z, e] |= D2

Note that in the definition of �, an interval [b, e] ∈ I must be chopped into
admissible sub-intervals [b, z], [z, e] ∈ I.

Derived operators

– �D
def= true �D �true holds provided D holds for some admissible subin-

terval.
– �D

def= ¬�¬D holds provided D holds for all admissible subintervals.
– Let ext

def= ¬� �. Define Unit
def= ext ∧ ¬(ext �ext). Formula Unit holds for

admissible extended intervals which cannot be chopped further into smaller
admissible intervals. Let ⊥ def= ¬
.

250 P.K. Pandya, S.N. Krishna, and K. Loya

Prefix Validity A prefix model of D ∈ GDC[M] is an M -model of the form
I, θ, [0, r] such that I, θ, [0, r] |= D. Thus, in prefix models the interval begins at
initial time point 0. Also, let (I, θ) |= D iff for all [0, r] ∈ I, (I, θ, [0, r]) |= D.
Finally, D ∈ GDC[M] is prefix-valid denoted |= D iff I, θ, [0, r] |= D for all
prefix M -models I, θ, [0, r].

2.1 Duration Calculi

A variety of duration calculi available in the literature can be defined as special
cases of GDC[M] by appropriately choosing the set of s-behaviors M , and by
syntactically restricting the constructs available in the logic.

Continuous Time Duration Calculus (DC). This is the original Duration Cal-
culus investigated by Zhou, Hoare and Hansen [16]. Duration calculus DC can
be defined as GDC[Mdc] where Mdc = {RINTV } × BEH , i.e. in each DC
model (I, θ, [b, e]) the set of admissible intervals I is fixed to RINTV , the set
of all intervals. Because of this, we shall abbreviate RINTV, θ, [b, e] |= D by
θ, [b, e] |=dc D.

Moreover, in the original DC, the atomic formulae of the form �P �0 are dis-
allowed although a more restricted atomic formula � � which holds for all point
intervals is allowed. Thus, syntactically DC ⊂ GDC. It is given by the abstract
syntax: ��P � | � � | mt op c | D1

�D2 | D1 ∧ D2 | ¬D1.

Example 1. [Gas burner] Consider the following safety conditions for a gas burner
(see [16]) in DC. Let Des1 def= �(��Leak� ⇒ � ≤ maxleak) and Des2 def=
�(��Leak� ���¬Leak� ���Leak� ⇒ � > minsep). The desired requirement is
Concl

def= �(� ≤ winlen ⇒
∫
Leak ≤ leakbound). Then, the validity of the

formula G(maxleak, minsep, winlen, leakbound) def= Des1 ∧ Des2 ⇒ Concl
establishes that the requirement follows from the two safety conditions. ��

Pointless Duration Calculus (PLDC). This is a variant of DC without point
intervals. Let EXTINTV = {[b, e] ∈ RINTV | b < e} be the set of ex-
tended intervals. Then, PLDC = GDC[Mpl] with Mpl = {EXTINTV }×BEH ,
i.e. in each PLDC model (I, θ, [b, e]) the set of admissible intervals I is fixed
as EXTINTV , the set of all non-point intervals. We abbreviate EXTINTV ,
θ, [b, e] |= D by θ, [b, e] |=pl D. Syntactically PLDC ⊂ GDC[Mpl] given by the
abstract syntax

��P � | mt op c | D1
�D2 | D1 ∧ D2 | ¬D1.

Example 2. Recall that �D
def=
 �D �
. In PLDC formula �D holds for an

interval [b, e] if some proper subinterval [b′, e′] with b < b′ < e′ < e satisfies D.
However, in DC, the formula �D holds for an interval [b, e] if some subinterval
[b′, e′] with b ≤ b′ ≤ e′ ≤ e satisfies D. ��

On Sampling Abstraction of Continuous Time Logic with Durations 251

Interval Duration Logic (IDL). This logic was proposed by Pandya [14] as a
variant of DC with sampled time. It was argued that IDL is more amenable
to validity checking. While validity of IDL is also undecidable in general, sev-
eral effective techniques and tools have been developed as partial methods for
validity checking of IDL. These include Bounded Model Checking [15] as well
as reduction to the decidable Discrete-time Duration Calculus using digitization
[3,15].

Given a behaviour θ, let C(θ) be the set of time points where the behaviour
changes state (including the initial point 0). Let Sθ be such that C(θ) ⊆ Sθ where
S is a countably infinite set of sampling points which is time-divergent. Such an
Sθ gives a set of sampling points such that the behaviour is over-sampled.

Let INTV (Sθ) = {[b, e] | b, e ∈ Sθ, b ≤ e} be the set of intervals spanning
sampling points. Define Midl = {(INTV (Sθ), θ) | θ ∈ BEH}. Then, we can
define IDL = GDC[Midl]. The syntax of IDL is same as the syntax of GDC.
We will abbreviate INTV (Sθ), θ, [b, e] |= D by Sθ, θ, [b, e] |=id D.

It should be noted that the original IDL [14] was formulated using finite
timed-state sequences as models. Here, we reformulate this as continuous behav-
iour with admissible intervals spanning the sampling points. It can be shown
that the two formulations are equivalent.

Well Sampled Interval Duration Logic (WSIDL). This is a special case of IDL
where continuous time behaviour is sampled at every change point and at every
integer valued point. Moreover the behaviour is also 1-oversampled by including
the midpoint between every consecutive pair of above sampling points.

Formally, define C(θ) as a set of time points where the behaviour changes
state in θ and let ℵ be the set of non-negative integer valued points. Now define
S′(θ) = ℵ ∪ C(θ). Also, let Mid contain the midpoints of all consecutive pairs
of points in S′(θ). Define WS(θ) = S′ ∪ Mid. The set WS(θ) is called the set
of well-sampling points with 1-oversampling. Here, 1-oversampling refers to the
fact that we add one additional point between every pair of consecutive elements
of S′(θ).

Define WSIntv(θ) = INTV (WS(θ)), the set of intervals spanning elements of
WS(θ). Let, Mwsidl = { (WSIntv(θ), θ) }. Define WSIDL = GDC[Mwsidl].
The syntax of WSIDL is same as the syntax of GDC. Note that the set WS(θ) is
uniquely defined by θ. Hence, in a WSIDL model I, θ, [b, e], the set of intervals
I is uniquely determined by θ as I = WSIntv(θ). Because of this, we shall
abbreviate WSIntv(θ), θ, [b, e] |= D by θ, [b, e] |=ws D.

Discrete Duration Calculus (DDC). This is a special case of IDL where the
formulae are interpreted only over the behaviours where C(θ) ⊆ ℵ, i.e. the
behaviours where state changes occur only at integer valued points. Moreover,
the set of sampling points are precisely the set of non-negative integers, i.e.
S(θ) = ℵ. Let Mdd be the subset of s-behaviours of Midl satisfying the above
condition. Then, DDC = GDC[Mdd]. We abbreviate INTV (S(θ)), θ, [b, e] |= D
by θ, [b, e] |=dd D.

252 P.K. Pandya, S.N. Krishna, and K. Loya

Consider a DC behaviour θ over an interval [1,5] as follows: The points marked Mid
are the newly added points which lie in between either 2 change points or a change
point and an integer point. The change points are marked with C, and integer points
with I .

Mid

I I

1.25

II

1.51 2 2.9 3 3.4 4 4.3

4.4

4.5

4.7

4.9

4.95

5

C C C C C C C

1 1.5 2.9 3.4 4.3 4.5 4.9 5

1.75 2.45 2.95 3.2 3.7 4.15

I : Integer points, C: change points, Mid : oversampling points

Fig. 1. A DC Behavior θ and the corresponding sampling points in WS(θ)

The prefix validity of DDC (as well as its extension QDDC) is decidable and
the logic admits a finite-automata theoretic decision procedure [12]. Based on
this, a tool DCVALID has been constructed for validity and model checking of
DDC formulae [12,13,9].

Example 3. Some essential features of various notions of time, can be specified
by some characteristic properties.

– Let Ax1 def= ���
�. This states that every interval is extended. Clearly,
�|=dc Ax1 but |=pl Ax1.

– Consider the density property Ax2 def= �(ext ⇒ ext �ext). It states that
any non-point interval can be chopped into two non-point intervals. Then
|=dc Ax2. However, none of the sampled logics IDL, WSIDL, DDC satisfy
this formula, e.g. �|=ws Ax2.

– The following property characterizes sampled time. Let Ax3 def= �(ext ⇒
((Unit �
)∧(
 �Unit)). Then, all the sampled logics IDL, WSIDL, DDC
have this axiom as valid. However, �|=dc Ax3.

– Let Ax4 def= �(Unit ⇒ � < 1). It states that each atomic extended interval
is of length less than 1. This is characteristic of well sampled models with 1
oversampling. Thus, |=ws Ax4 but �|=id Ax4.

– Discrete time logic DDC is characterized by validity of the following formula.
Ax5 def= �(� = 1 ⇔ Unit). It states that every atomic extended interval is
of unit length. Then, |=dd Ax6 but �|=ws Ax6. ��

3 PLDC to WSIDL

In this section, we investigate validity/counterexample preserving reduction (ab-
straction) from the pointless fragment of DC, i.e. PLDC to the sampled time
logic with 1-oversampling, WSIDL. This involves reduction of both the models
and the formulae.

On Sampling Abstraction of Continuous Time Logic with Durations 253

Sampling Approximation of DC Models

Consider a PLDC model (EXTINTV, θ, [b, e]). The s-behaviour (EXTINTV, θ)
can be represented by a WSIDL s-behaviour (WSIntv(θ), θ) as explained earlier
(see Figure 1).

Definition 1 (1-Sampling). Given PLDC model θ define a map f : �0 →

WS(θ) as follows. Let f(b) =
{

b if b ∈ S′,
bm otherwise.

}

where bm is the midpoint of the

smallest number larger than b in S′ and the largest number smaller than b in S′.

Then, f approximates every time point in θ to a sampling point in WS(θ). In
Figure 1, f(2.3) = f(2.88) = 2.45.

Proposition 1. We list some elementary properties of the onto map f .

– f is weakly monotonic, i.e. b ≤ e ⇒ f(b) ≤ f(e). However, it is not strictly
monotonic, i.e. b < e does not ensure that f(b) < f(e).

– −0.5 < f(b) − b < 0.5. This holds since f(b) is either b or the midpoint of
two points (on either side of b) at maximum distance 1,

– For any θ and any time point b, the state remains constant in the closed
intervals [f(b), b] and [b, f(b)]. ��

Now we consider a PLDC interval [b, e]. This is mapped to its sampling approx-
imation [f(b), f(e)]. The above proposition shows that an extended interval [b, e]
can be mapped into a point interval [f(b), f(e)] with f(b) = f(e).

Proposition 2. The effect of sampling on measurements is as follows.

– −1 < [eval(�)(θ, [b, e]) − eval(�)(θ, [f(b), f(e)])] < 1. Also,
– −1 < [eval(

∫
P)(θ, [b, e]) − eval(

∫
P)(θ, [f(b), f(e)])] < 1

Proof. We prove the first part. The proof of the second part is analogous. Let
l = e − b and l′ = f(e) − f(b). Let �e =| f(e) − e |. If e ∈ S′, then �e = 0
else 0 ≤ �e < 0.5. Similarly we have 0 ≤ �b < 0.5. Thus length for the IDL
interval [f(b), f(e)] will be
l′ = f(e) − f(b) ⇒ l′ = e ± �e − (b ± �b) ⇒ l′ = l ± �e ± �b
Since | �e + �b |< 1, | l′ − l |< 1 ⇒ There will be less than ±1 error in the
length. ��

Approximating PLDC Formulae in WSIDL

We define a strong transformation α+ : PLDC → WSIDL and a weak trans-
formation α− : PLDC → WSIDL as follows. Both these transformations can
be computed in linear time.

254 P.K. Pandya, S.N. Krishna, and K. Loya

PLDC formula D Weak IDL formula α−(D) Strong IDL formula α+(D)
��P � ��P � ∨ �P �0 ��P � ∨ �P �0

l = k k − 1 < l < k + 1 k − 1 ≥ l ∧ l ≥ k + 1 , i.e. ⊥
l < k l < k + 1 l ≤ k − 1
l ≤ k l < k + 1 l ≤ k − 1
l > k l > k − 1 l ≥ k + 1
l ≥ k l > k − 1 l ≥ k + 1∫
P = k k − 1 <

∫
P < k + 1 k − 1 ≥

∫
P ∧

∫
P ≥ k + 1 , i.e. ⊥∫

P < k
∫

P < k + 1
∫

P ≤ k − 1∫
P ≤ k

∫
P < k + 1

∫
P ≤ k − 1∫

P > k
∫

P > k − 1
∫

P ≥ k + 1∫
P ≥ k

∫
P > k − 1

∫
P ≥ k + 1

D1 ∧ D2 α−(D1) ∧ α−(D2) α+(D1) ∧ α+(D2)
D1

�D2 α−(D1) �α−(D2) α+(D1) �α+(D2)
¬D1 ¬α+(D1) ¬α−(D1)

One noteworthy aspect of above abstraction is that a PLDC formula mt = k can
only be strongly approximated (using α+) by WSIDL formula ⊥. Unfortunately,
sampling does not preserve exact measurements.

Theorem 1. For any PLDC formula D and interval [b, e] ∈ EXTINTV , we
have

1. θ, [b, e] |=pl D ⇐ θ, [f(b), f(e)] |=ws α+(D)
2. θ, [b, e] |=pl D ⇒ θ, [f(b), f(e)] |=ws α−(D)

Proof. The proof is by induction on the structure of the formula D. We give
some of the cases. The complete proof may be found in the full paper.

1. Let D = � op k.
We first prove part (2), i.e. θ, [b, e] |=pl l op k ⇒ θ, [f(b), f(e)] |=ws α−(l op k).
Let l = e−b and l′ = f(e)−f(b). From Proposition 2, we know that | l−l′ |< 1
which implies l′ − 1 < l < l′ + 1. Then,
l = k ⇒ k − 1 < l′ < k + 1, l < k ⇒ l′ < k + 1,
l ≤ k ⇒ l′ < k + 1, l > k ⇒ l′ > k − 1
l ≥ k ⇒ l′ > k − 1. In each case RHS is α−(LHS).
We now prove part (1), i.e. θ, [b, e] |=pl l op k ⇐ θ, [f(b), f(e)] |=ws α+(l op k).
Let l = e − b and l′ = f(e) − f(b). From Proposition 2, we know that
| l − l′ |< 1 which implies l − 1 < l′ < l + 1. Then, l < k ⇐ l′ ≤ k − 1 and
l > k ⇐ l′ ≥ k + 1.
We have already proved that (l > k ⇒ l′ > k − 1) ⇔ (¬(l > k) ⇐
¬(l′ > k − 1)) ⇔ (l ≤ k ⇐ l′ ≤ k − 1). Similarly we have proved that
(l < k ⇒ l′ < k + 1) ⇔ (¬(l < k) ⇐ ¬(l′ < k + 1)) ⇔ (l ≥ k ⇐ l′ ≥ k + 1),
l = k ⇐ l ≤ k ∧ l ≥ k ⇐ l′ ≤ k − 1 ∧ l′ ≥ k + 1. In each case RHS is
α+(LHS).

On Sampling Abstraction of Continuous Time Logic with Durations 255

2. Let D = ¬D1. We prove only the part (1).
θ, [f(b), f(e)] |=ws α+(¬D1) ⇐⇒ {Defn. α+, Semantics}
θ, [f(b), f(e)] �|=ws α−(D1) =⇒ {Induction Hyp.}
θ, [b, e] �|=pl D1 ⇐⇒ {Semantics}
θ, [b, e] |=pl ¬D1

3. Let D = D1
�D2. We prove only part (1).

θ, [f(b), f(e)] |=ws α+(D1
�D2) ⇐⇒ {Defn. α+}

θ, [f(b), f(e)] |=ws α+(D1) �α+(D2) ⇐⇒ {Semantics.}
∃m ∈ WS(θ) s.t. f(b) ≤ m ≤ f(e) and
θ, [f(b), m] |=ws α+(D1) and θ, [m, f(e)] |=ws α+(D2) ⇐⇒

{f is Onto and monotonic}
∃m′ ∈ �0 s.t. b ≤ m′ ≤ e and f(m′) = m and
θ, [f(b), f(m′)] |=ws α+(D1) and θ, [f(m′), f(e)] |=ws α+(D2) =⇒

{Induction Hyp.}
∃m′ ∈ �0 s.t. b ≤ m′ ≤ e and θ, [b, m′] |=pl D1 and θ, [m′, e] |=pl D2 ⇐⇒

{Semantics of PLDC}
∃m′ ∈ �0 s.t. b < m′ < e and
θ, [b, m′] |=pl D1 and θ, [m′, e] |=pl D2 ⇐⇒

{Semantics of PLDC}
θ, [b, e] |=pl D1

�D2.
��

Corollary 1. For any D ∈ WSIDL,

1. |=ws α+(D) ⇒ |=pl D
2. θ, [b, e] �|=ws α−(D) ⇒ θ, [b′, e′] �|=pl D for all b′ ∈ f−1(b), e′ ∈ f−1(e).

In particular, b ∈ f−1(b), e ∈ f−1(e). Hence, for any [b, e] ∈ EXTINTV
θ, [b, e] �|=ws α−(D) ⇒ θ, [b, e] �|=pl D. ��

Optimality of 1-Oversampling We now show that as far as preserving valid-
ity/counter examples of PLDC formulae is concerned, increasing the oversam-
pling from 1 mid-point to say n intermediate points does not help in making
approximations α+ and α− more precise. However, later in the paper we con-
sider a scaling of both model and formulae which can improve the precision of
the abstractions α+, α−.

We consider here a case with n − 1 oversampling points, where n is a natural
number, greater than 1. In this general case, f(b) is the oversampling point
closest to b. Consider a PLDC behaviour with change points at 0, 2, 2.2, 4.
Thus, we will have (0, s0), (1, s0), (2, s1), (2.2, s2), (3, s2), (4, s3). If we decide to
have n − 1 sample points in between, then we will have the points

(0, s0), (1
n , s0), . . . , ((n−1)∗ 1

n , s0), (1, s0), (1+ 1
n , s0), . . . , (1+(n−1)∗ 1

n , s0), (2, s1),

(2+ 0.2
n , s1), . . . , (2+(n−1)∗ 0.2

n , s1), (2.2, s2), . . . , (2.2+(n−1)∗ 0.8
n , s2), (3, s2), (3+

1
n , s2), . . . , (3 + n−1

n , s2), (4, s3).
Now, consider the PLDC interval [b, e] = [1 + n−0.7

n , 2.2 + (n−2)∗0.8+0.6
n].

The length of this interval in PLDC is (2.2 − 1) + (n−2)∗0.8+0.6−(n−0.7)
n , which

is equal to 1 + −0.3
n , which is less than 1.

256 P.K. Pandya, S.N. Krishna, and K. Loya

The corresponding approximated WSIDL interval is [f(b), f(e)] = [1+ n−1
n , 2.2

+ (n−1)∗0.8
n] = [1 + n−1

n , 2 + n−0.8
n]. The length of this interval is 2 − 1 +

(n−0.8)−(n−1)
n which simplifies to 1 + 0.2

n .
Hence, for the given interval θ, [b, e] |=pl � < 1 where as θ, [f(b), f(e)] |=ws

� > 1. This shows that the closest approximation of � < 1 in logic WSIDL
which preserves models is α−(� < 1) = � < 1 + 1. This holds for all possible
n-samplings with n > 1.

4 DC to PLDC

Theorem 1 allows us to abstract PLDC formulae to WSIDL formulae. We
now show that DC and PLDC have the same expressive power (modulo point
intervals). We give a translations δ : DC → PLDC and show that it preserves
models.

While logic DC has point intervals, the following proposition shows that DC
cannot say anything meaningful about the states at these points. It can be proved
by induction on the structure of D.

Proposition 3. If θ, [b, b] |=dc D then for all b′ ∈ �0 and all θ′ ∈ BEH we
have θ′, [b′, b′] |=dc D.

We first define whether a formula D is satisfiable by a point interval and denote
this by Pointsat(D).

Definition 2. Pointsat : DC → {
, ⊥} is inductively defined as follows.

Pointsat(
) =
, Pointsat(��P �) = ⊥
Pointsat(mt op c) =
 iff (0 op c)
Pointsat(¬D) = ¬Pointsat(D),
Pointsat(D1 ∧ D2) = Pointsat(D1) ∧ Pointsat(D2)
Pointsat(D1

�D2) = Pointsat(D1) ∧ Pointsat(D2)

For example, by clause 3 we get that pointsat(� <= 3) = (0 ≤ 3) =
.

Proposition 4. Pointsat(D) iff θ, [b, b] |=dc D for some θ, [b, b].

Using the above we can embed DC in PLDC as follows.

Definition 3. Let δ : DC → PLDC be inductively defined as follows. Note that
size of the output of δ can be exponential in the size of input. The computation
time is proportional to the output size.

δ(� �) = ⊥
δ(X) = X, for X ∈ {
, ��P �, � op c,

∫
P op c},

δ(¬D) = ¬δ(D), δ(D1 ∧ D2) = δ(D1) ∧ δ(D2),

δ(D1
�D2) = δ(D1) �δ(D2)

∨ δ(D1) ∧ Pointsat(D2)
∨ δ(D2) ∧ Pointsat(D1)

On Sampling Abstraction of Continuous Time Logic with Durations 257

Theorem 2. For all θ ∈ Beh and [b, e] ∈ EXTINTV , we have

θ, [b, e] |=dc D iff θ, [b, e] |=pl δ(D)

Proof The proof is by induction on the structure of D. We prove only the case
of chop here, the whole proof can be found in the full paper.

– D = D1
�D2. θ, [b, e] |=dc D1

�D2 iff ∃m, b ≤ m ≤ e : θ, [b, m] |=dc D1 and
θ, [m, e] |=dc D2.
Case 1: b < m < e.
Then, θ, [b, m] |=dc D1 and θ, [m, e] |=dc D2. As [b, m], [m, e] ∈ EXTINTV ,
by the inductive hypothesis, θ, [b, m] |=pl δ(D1) and θ, [m, e] |=pl δ(D2).
Thus, θ, [b, e] |=pl δ(D1) �δ(D2). Conversely, if we assume that θ, [b, e] |=pl

δ(D1) �δ(D2), then ∃m, b < m < e such that θ, [b, m] |=pl δ(D1) and
θ, [m, e] |=pl δ(D2). By inductive hypothesis, this implies that θ, [b, m] |=dc

D1 and θ, [m, e] |=dc D2.
Case 2: b < m = e.
Then, θ, [b, e] |=dc D1 and θ, [e, e] |=dc D2. Then Pointsat(D2), and by induc-
tive hypothesis, we have θ, [b, e] |=pl δ(D1). Conversely, if θ, [b, e] |=pl δ(D1),
then by inductive hypothesis, θ, [b, e] |=dc D1 ⇒ θ, [b, e] |= D1

�D2, for
Pointsat(D2).
Case 3: b = m < e. Here, Pointsat(D1). Similar to Case 2, we have θ, [b, e]
|=dc D1

�D2 iff θ, [b, e] |=pl δ(D2).
Case 4: b = m = e. This case cannot arise as [b, e] ∈ EXTINTV . ��

Corollary 2. For any D ∈ DC,

1. |=dc D iff |=pl δ(D) and Pointsat(D).
2. ¬Pointsat(D) then θ, [b, b] �|=dc D for any θ, [b, b]
3. θ, [b, e] �|=pl δ(D) ⇒ θ, [b, e] �|=dc D, for any [b, e] ∈ EXTINTV .

Derived Modalities. Applying the translation δ to derived modality we get:

1. If Pointsat(D) then

δ(�D) = ¬(
 �¬δ(D) �
)
∧ ¬(¬δ(D) �
) ∧ ¬(
 �¬δ(D)) ∧ ¬δ(D)

δ(�D) = true

2. If ¬Pointsat(D) then

δ(�D) = false

δ(�D) = (
 �δ(D) �
)
∨ (δ(D) �
) ∨ (
 �δ(D)) ∨ δ(D)

The reverse translation of PLDC into DC can be found in the full paper.

258 P.K. Pandya, S.N. Krishna, and K. Loya

5 WSIDL to DDC

Validity of sampled time logics WSIDL as well as IDL are undecidable [14]
where as validity of discrete time logic DDC is decidable [12,13]. As a par-
tial technique, Chakravorty and Pandya [3,15] have proposed strong and weak
translations (abstractions) ST and WT from logic IDL to logic DDC which
respectively preserve the validity and the counter examples. These reductions
make use of the digitization technique [7,10]. By a small variant of this tech-
nique, we can also propose similar reductions from WSIDL to DDC. We omit
the details and refer the reader to the original paper [3] for details.

Theorem 3. We can define linear time computable translations ST : WSIDL
→ DDC and WT : WSIDL → DDC, and a linear time computable model
transformation r from DDC models to WSIDL models such that for any for-
mula D ∈ WSIDL, the following holds.

1. |=ws D ⇐ |=dd ST (D)
2. θ, [b, e] �|=dd WT (D) ⇒ r(θ, [b, e]) �|=ws D.

6 Validity Checking DC

In order to check the validity of a DC formula D first compute if Pointsat(D) =
⊥. In this case the formula D is not valid by Corollary 2(2). Otherwise, compute
the PLDC formula δ(D) and proceed as follows:

1. Compute D′ = ST (α+(δ(D)) obtained by applying strong translations of
PLDC to WSIDL and then strong translation of WSIDL to DDC. A tool
dc2qddcstrong has been implemented to compute D′ from D.

2. Check the validity of D′ using the tool DCVALID.
3. If D′ is valid, then by Theorem 3, α+(δ(D)) is a valid WSIDL formula and

by Corollary 1, δ(D) is a valid PLDC formula. Finally Corollary 2 implies
that D is a valid DC formula.

4. If D′ is not valid (i.e. DCVALID generates a counter example) then compute
D′′ = WT (α−(δ(D)) obtained by first applying the weak translation from
PLDC to WSIDL and then applying the weak translation from WSIDL
to DDC. A tool dc2qddcweak implements translation from D to D′′.

5. Validity check D′′ using DCVALID. If a counter example θ, [b, e] is generated
for D′′ then by Theorem 3, we can infer that α−(δ(D)) has a counter example
r(θ, [b, e]). Then, Corollary 1 implies that r(θ, [b, e]) is a counter example of
δ(D). Corollary 2 tells us that D also has the counter example r(θ, [b, e]).

6. In case D′′ is found to be valid (and earlier D′ was found invalid), the method
fails to conclude anything about the validity of D. However, using the well-
known result on the linearity of behaviours [5], we can attempt to infer the
validity of D by checking the validity of Dk obtained by suitably scaling up
the constants in D by an integer k > 1. Theorem 4 below states that the
validity of D is preserved by such transformation. The above steps must be
iterated for Dk with different values of k.

On Sampling Abstraction of Continuous Time Logic with Durations 259

Theorem 4. Let θ, [b, e] |=dc D and let k ∈ �>0. Then θ′, [b · k, e · k] |=dc Dk

where Dk is the DC formula obtained from D by replacing each occurrence of∫
P op c by

∫
P op c · k and l op c by l op c · k and θ′ is a behaviour satisfying

θ′(t) = θ(t
k) for all t ∈ �0. ��

7 Experimental Results

We first illustrate the DC validity checking method of the previous section by a
simple example.

Example 4. Let D
def= (� �∨(��P � �true)∨(��¬P � �true)). Formula Ax7 def= �D

is stated as an axiom of DC [16], i.e. |=dc Ax7. We verify its validity using the
method of previous section. We have, Pointsat(D) and δ(D) = (((��P � �
) ∨
��P �) ∨ ((��¬P � �
) ∨ ��¬P �)). Taking strong translation to WSIDL we ob-
tain that D′ = α+(δ(D)) is (((�P �0 ∨ ��P �) �
) ∨ (�P �0 ∨ ��P �)) ∨ (((�¬P �0 ∨
��¬P �) �
) ∨ ((�¬P �0 ∨ ��¬P �))). Then, Ax7′ = α+(δ(Ax7)) is obtained as
¬(
 �¬D′ �
) ∧ ¬(
 �¬D′) ∧ ¬(¬D′ �
) ∧ D′. This is a valid WSIDL for-
mula. We do not give the translation Ax7′′ of this into DDC which can be found
in the full paper. Our tool dc2qddcstrong was used to compute the full trans-
lation and resulting DDC formula was shown valid using the DCVALID tool
taking a total time of 0.05 sec. ��

A benchmark example of DC formula, the Gas burner problem was presented
earlier in Example 1. We have checked the validity of the gas burner formula
G(maxleak, minsep, winlen, leakbound) for several instances of the parameters
using the validity checking method of the previous section. The times taken for
translating the formula into DDC as well as the validity checking time taken by
the tool DCVALID are given in Table 1. The modal strength reduction technique
[9] was used to optimize the performance of the DCVALID tool. The experiments
were run on a 1GHz i686 PC with 1GB RAM running RedHat Linux 9.0. Both
valid and invalid instances were tried. For the instance G(2, 6, 15, 7) the method
failed to give any result as the strong translation to DDC was invalid but the

Table 1. Results for Gas Burner

Parameters dc2qddc DCVALID Parameters dc2qddc DCVALID DCVALID
Strong (hh:mm:ss) Strong/ strong weak

Weak (hh:mm:ss) (hh:mm:ss)

Gas Burner: Valid Cases Gas Burner: Cases with counter examples

(4,8,30,18) .3s 02.91s (2,4,99,6) .3s 1.25s 1m 22s

(20,40,120,50) .3s 2m 28.43s (3,3,150,36) .3s 18m 37s 19m 31.53s

(1,4,20,12) .3s 1.50s (20,40,200,75) .3s 33m 29.54s 6m 27.55s

(1,4,60,32) .3s 14.95s (2,4,500,15) .3s 2h 5m 3.75s 2h 4m 8.91s

(2,4,100,53) .3s 1m 1.62s (5,5,350,25) .3s 2h 13m 53s 2h 14m 12s

(2,4,300,250) .3s 20m 39.22s (7, 3, 175, 27) .3s 33m 37.47s 32m 57s

260 P.K. Pandya, S.N. Krishna, and K. Loya

weak translation gave valid formula. However, using Theorem 4, and scaling the
values of constants by 2, we obtained the instance G(4, 12, 30, 14), for which the
strong translation resulted into a valid DDC formula, thereby confirming the
validity of the original DC formula G(2, 6, 15, 7).

References

1. R. Alur and D.L. Dill, Automata for modeling real-time systems, Proc. of 17th
ICALP, LNCS 443, (1990), Springer-Verlag, pp 332-335.

2. A. Bouajjani, Y. Lakhnech and R. Robbana, From Duration Calculus to Linear
Hybrid Automata, Proc.of 7th CAV, LNCS 939, (1995), Springer-Verlag, pp 196-
210.

3. G. Chakravorty and P.K. Pandya, Digitizing Interval Duration Logic, Proc. of 15th
CAV, LNCS 2725, (2003), Springer-Verlag, pp 167-179.

4. M. Fränzle, Model-Checking Dense-Time Duration Calculus, in M.R. Hansen
(ed.), Duration Calculus: A Logical Approach to Real-Time Systems Workshop
proceedings of ESSLLI X, 1998.

5. M. Fränzle, Take it NP-easy: Bounded Model Construction for Duration Calculus.
Proc. 7th FTRTFT, LNCS 2469, (2002), Springer-Verlag, pp 245-264.

6. Dang Van Hung and P. H. Giang, Sampling Semantics of Duration Calculus, Proc.
4th FTRTFT, LNCS 1135, (1996), Springer-Verlag, pp 188-207.

7. T. A. Henzinger, Z. Manna, and A. Pnueli, What good are digital clocks?, Proc.
19th ICALP, LNCS 623, (1992), Springer-Verlag, pp. 545-558.

8. Y. Hirshfeld and A. Rabinovich, Logics for Real-time: Decidability and Complexity,
Fundamenta Informaticae, 62(1), (2004), pp 1-28.

9. S. N. Krishna and P. K. Pandya, Modal Strength reduction in QDDC, Proc. 25th
FST & TCS, LNCS 3821, (2005), Springer-Verlag, pp 444-456.

10. J. Ouaknine and J. Worrell, Revisiting Digitization, Robustness and Decidability
for Timed Automata, Proc. 18th IEEE Symposium on LICS, (2003), pp 198-207.

11. J. Ouaknine and J. Worrell, On Decidability of Metric Temporal Logic, Proc. 20th
IEEE Symposium on LICS, (2005), pp 188-197.

12. P.K. Pandya, Specifying and Deciding Quantified Discrete-time Duration Calcu-
lus Formulae using DCVALID: An Automata Theoretic Approach, in Proc. RT-
TOOLS’2001, (2001).

13. P.K. Pandya, Model checking CTL*[DC], Proc. 7th TACAS, LNCS 2031, (2001),
Springer-Verlag, pp 559-573.

14. P.K. Pandya, Interval duration logic: expressiveness and decidability, Proc. TPTS,
ENTCS 65(6), (2002), pp 1-19.

15. B. Sharma, P.K. Pandya and S. Chakraborty, Bounded Validity Checking of Inter-
val Duration Logic, Proc. 11th TACAS, LNCS 3440, (2005), Springer-Verlag, pp
301-316.

16. Zhou Chaochen, C.A.R. Hoare and A.P. Ravn, A Calculus of Durations, Info. Proc.
Letters, 40(5), 1991.

17. Zhou Chaochen, Zhang Jingzhong, Yang Lu and Li Xiaoshan, Linear duration
invariants. in Proc. 3rd FTRTFT, LNCS 863, (1994), Springer Verlag, pp 86-109.

Assume-Guarantee Synthesis�

Krishnendu Chatterjee1 and Thomas A. Henzinger1,2

1 University of California, Berkeley, USA
2 EPFL, Switzerland

{c krish,tah}@eecs.berkeley.edu

Abstract. The classical synthesis problem for reactive systems asks,
given a proponent process A and an opponent process B, to refine A so
that the closed-loop system A||B satisfies a given specification Φ. The
solution of this problem requires the computation of a winning strategy
for proponent A in a game against opponent B. We define and study
the co-synthesis problem, where the proponent A consists itself of two
independent processes, A = A1||A2, with specifications Φ1 and Φ2, and
the goal is to refine both A1 and A2 so that A1||A2||B satisfies Φ1 ∧ Φ2.
For example, if the opponent B is a fair scheduler for the two processes
A1 and A2, and Φi specifies the requirements of mutual exclusion for Ai

(e.g., starvation freedom), then the co-synthesis problem asks for the
automatic synthesis of a mutual-exclusion protocol.

We show that co-synthesis defined classically, with the processes A1

and A2 either collaborating or competing, does not capture desirable
solutions. Instead, the proper formulation of co-synthesis is the one where
process A1 competes with A2 but not at the price of violating Φ1, and
vice versa. We call this assume-guarantee synthesis and show that it can
be solved by computing secure-equilibrium strategies. In particular, from
mutual-exclusion requirements the assume-guarantee synthesis algorithm
automatically computes Peterson’s protocol.

1 Introduction

The algorithmic synthesis (or control) of reactive systems is based on solving
2-player zero-sum games on graphs [11,12]. Player 1 (representing the system or
controller to be synthesized) attempts to satisfy a specification Φ; player 2 (rep-
resenting the environment or plant) tries to violate the specification. Synthesis is
successful if a strategy for player 1 can be found which ensures that Φ is satisfied
no matter what player 2 does. These games are zero-sum, because the objective
of player 2 is ¬Φ, the negation of player 1’s objective. In other words, synthesis
assumes the worst-case scenario that player 2 is as obstructive as possible.

In many game situations in economics, the two players do not have strictly
complementary objectives. Then the appropriate notion of rational behavior
is that of a Nash equilibrium. One also encounters non-zero-sum situations in
� This research was supported in part by the Swiss National Science Foundation and

by the NSF grants CCR-0225610 and CCR-0234690.

O. Grumberg and M. Huth (Eds.): TACAS 2007, LNCS 4424, pp. 261–275, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

262 K. Chatterjee and T.A. Henzinger

computer science applications [10]. In this paper, we demonstrate that non-zero-
sum situations arise in the co-synthesis problem. In co-synthesis, we are not
asked to synthesize a single reactive process, but a system composed of several
processes Pi, each with its own specification Φi. For instance, the design of a
mutual-exclusion protocol is a co-synthesis question: each one of two processes
P1 and P2 is supposed to satisfy certain requirements, such as mutual exclusion,
bounded overtaking, and starvation freedom. In such a situation, the processes
are neither collaborating nor are they strictly competitive: they are not collabo-
rating because process P1 cannot assume that P2 will help establishing Φ1; they
are not strictly competitive because process P2 will not obstruct Φ1 at all costs,
but only if doing so does not endanger Φ2. In other words, the two processes are
conditionally competitive: process P1 can assume that P2 will primarily try to
satisfy Φ2, and only secondarily try to violate Φ1, and vice versa. This situation
can be captured by 2-player games with lexicographic objectives, and Nash equi-
libria for such lexicographic objectives are called secure equilibria [4]. Formally,
a pair of strategies for the two players is winning and secure if (1) both players
satisfy their objectives by playing the strategies, and (2) if one player deviates
from her strategy in order to harm the other player, then the other player can
retaliate by violating the first player’s objective. We refer to the resulting payoff
profile, with both players winning, as a winning secure equilibrium.

We formally define the co-synthesis problem, using the automatic synthesis
of a mutual-exclusion protocol as a guiding example. More precisely, we wish
to synthesize two processes P1 and P2 so that the composite system P1||P2||R,
where R is a scheduler that arbitrarily but fairly interleaves the actions of P1
and P2, satisfies the requirements of mutual exclusion and starvation freedom for
each process. We show that traditional zero-sum game-theoretic formulations,
where P1 and P2 either collaborate against R, or unconditionally compete, do
not lead to acceptable solutions. We then show that for the non-zero-sum game-
theoretic formulation, where the two processes compete conditionally, there ex-
ists an unique winning secure-equilibrium solution, which corresponds exactly to
Peterson’s mutual-exclusion protocol. In other words, Peterson’s protocol can be
synthesized automatically as the winning secure strategies of two players whose
objectives are the mutual-exclusion requirements. This is to our knowledge the
first application of non-zero-sum games in the synthesis of reactive processes. It
is also, to our knowledge, the first application of Nash equilibria —in particular,
the special kind called “secure”— in system design.

The new formulation of co-synthesis, with the two processes competing con-
ditionally, is called assume-guarantee synthesis, because similar to assume-
guarantee verification (e.g., [1]), in attempting to satisfy her specification, each
process makes the assumption that the other process does not violate her own
specification. The solution of the assume-guarantee synthesis problem can be ob-
tained by computing secure equilibria in 3-player games, with the three players
P1, P2, and R. Previously, meaningful (i.e., unique maximal) secure equilibria
were known to exist only for 2-player games [4], and there it was also shown that
in general such meaningful equilibria need not exist for three players. Here we

Assume-Guarantee Synthesis 263

do
{
flag[1]:=true; turn:=2;

| while(flag[1]) nop;
| while(flag[2]) nop;
| while(turn=1) nop;
| while(turn=2) nop;
| while(flag[1] & turn=2) nop;
| while(flag[1] & turn=1) nop;
| while(flag[2] & turn=1) nop;
| while(flag[2] & turn=2) nop;

Cr1:=true; fin_wait; Cr1:=false;
flag[1]:=false;

wait[1]:=1;
while(wait[1]=1)
| nop;
| wait[1]:=0;

} while(true)

do
{
flag[2]:=true; turn:=1;

| while(flag[1]) nop; (C1)
| while(flag[2]) nop; (C2)
| while(turn=1) nop; (C3)
| while(turn=2) nop; (C4)
| while(flag[1] & turn=2) nop; (C5)
| while(flag[1] & turn=1) nop; (C6)
| while(flag[2] & turn=1) nop; (C7)
| while(flag[2] & turn=2) nop; (C8)

Cr2:=true; fin_wait; Cr2:=false;
flag[2]:=false;

wait[2]:=1;
while(wait[2]=1)
| nop; (C9)
| wait[2]:=0; (C10)

} while(true)

Fig. 1. Mutual-exclusion protocol synthesis

extend the theoretical results of [4] in two ways, in order to solve the assume-
guarantee synthesis problem. First, we prove the existence of meaningful secure
equilibria in the special case of 3-player games where the third player can win
unconditionally. This special case arises in assume-guarantee synthesis, because
the winning condition of the third player (i.e., the scheduler) is fairness. Second,
we give an algorithm for answering the existence of a winning secure equilibrium
(Theorem 2), and for computing the corresponding strategies (Theorem 3). These
algorithms extend those of [4] from two to three players.

On large state spaces, assume-guarantee synthesis, like all algorithmic meth-
ods, can be impractical. In Section 4, we provide an abstraction methodology for
assume-guarantee synthesis. We show how a game structure can be abstracted,
independently for player 1 and player 2, so that from certain winning strategies
on the two abstract games, we can infer winning secure strategies on the concrete
game. To our knowledge, this is the first abstraction methodology that works
with two independent abstractions of a single game structure. Single-player ab-
stractions suffice for zero-sum games (the abstraction weakens one player and
strengthens the other). However, for non-zero-sum games, the two-abstractions
methodology suggests itself, because each abstraction focuses on the objective of
a different player and may thus omit different details. In this way, both abstrac-
tions may have smaller state spaces than a combined abstraction would. Specifi-
cally, we provide proof rules for inferring winning secure strategies on a concrete
3-player non-zero-sum game from classical winning strategies on two abstract
2-player zero-sum games, for the cases of safety and Büchi objectives. In fact, in
the safety case, our proof rule corresponds closely to the assume-guarantee rule

264 K. Chatterjee and T.A. Henzinger

of [1]. In the Büchi case, our rule provides a novel assume-guarantee rule for the
verification of specifications under weak fairness.
Related work. We use non-zero-sum games in a perfect-information setting to
restrict the power of an adversary in the synthesis of reactive systems. Another
way to restrict the power of the adversary is to allow the adversary only a partial
view of the state space. The resulting class of imperfect-information games [3,13],
and more generally, distributed games [8,9], have been studied extensively in the
literature, but only with zero-sum (strictly competitive) objectives. The compu-
tational complexity of imperfect-information games is typically much higher than
of the perfect-information analogues, and several problems become undecidable
in the distributed setting. As illustrated with the mutual-exclusion example, we
believe that non-zero-sum games have their place in system synthesis, for syn-
thesizing components with different specifications. They restrict the behaviors
of the players in a natural way, by focusing on non-zero-sum objectives, without
the exponential (or worse) cost of limiting information.

2 Co-synthesis

In this section we define processes, refinement, schedulers, and specifications. We
consider the traditional co-operative [5] and strictly competitive [11,12] versions
of the co-synthesis problem; we refer to them as weak co-synthesis and classical
co-synthesis, respectively. We show the drawbacks of these formulations and then
present a new formulation of co-synthesis, namely, assume-guarantee synthesis.

Variables, valuations, and traces. Let X be a finite set of variables such that
each variable x ∈ X has a finite domain Dx. A valuation v on X is a function
v : X →

⋃
x∈X Dx that assigns to each variable x ∈ X a value v(x) ∈ Dx. We

write V for the set of valuations on X . A trace on X is an infinite sequence
(v0, v1, v2, . . .) ∈ V ω of valuations on X . Given a valuation v ∈ V and a subset
Y ⊆ X of the variables, we denote by v � Y the restriction of the valuation v
to the variables in Y . Similarly, for a trace τ = (v0, v1, v2, . . .) on X , we write
τ � Y = (v0 � Y, v1 � Y, v2 � Y, . . .) for the restriction of τ to the variables in Y .
The restriction operator is lifted to sets of valuations, and to sets of traces.

Processes and refinement. For i ∈ {1, 2}, a process Pi = (Xi, δi) consists of a
finite set Xi of variables and a nondeterministic transition function δi : Vi →
2Vi \ ∅, where Vi is the set of valuations on Xi. The transition function maps a
present valuation to a nonempty set of possible successor valuations. We write
X = X1 ∪X2 for the set of variables of both processes; note that some variables
may be shared by both processes. A refinement of process Pi = (Xi, δi) is a
process P ′

i = (X ′
i, δ

′
i) such that (1) Xi ⊆ X ′

i, and (2) for all valuations v′ on X ′
i,

we have δ′i(v
′) � Xi ⊆ δi(v′ � Xi). In other words, the refined process P ′

i has
possibly more variables than the original process Pi, and every possible update
of the variables in Xi by P ′

i is a possible update by Pi. We write P ′
i � Pi to

denote that P ′
i is a refinement of Pi. Given two refinements P ′

1 of P1 and P ′
2 of

P2, we write X ′ = X ′
1 ∪ X ′

2 for the set of variables of both refinements, and we
denote the set of valuations on X ′ by V ′.

Assume-Guarantee Synthesis 265

Schedulers. Given two processes P1 and P2, a scheduler R for P1 and P2 chooses
at each computatiuon step whether it is process P1’s turn or process P2’s turn
to update its variables. Formally, the scheduler R is a function R : V ∗ → {1, 2}
that maps every finite sequence of global valuations (representing the history
of a computation) to i ∈ {1, 2}, signaling that process Pi is next to update its
variables. The scheduler R is fair if it assigns turns to both P1 and P2 infinitely
often; i.e., for all traces (v0, v1, v2, . . .) ∈ V ω, there exist infinitely many j ≥ 0 and
infinitely many k ≥ 0 such that R(v0, . . . , vj) = 1 and R(v0, . . . , vk) = 2. Given
two processes P1 = (X1, δ1) and P2 = (X2, δ2), a scheduler R for P1 and P2,
and a start valuation v0 ∈ V , the set of possible traces is [[(P1 || P2 || R)(v0)]] =
{(v0, v1, v2, . . .) ∈ V ω | ∀j ≥ 0. R(v0, . . . , vj) = i and vj+1 � (X \ Xi) = vj �
(X \Xi) and vj+1 � Xi ∈ δi(vj � Xi)}. Note that during turns of one process Pi,
the values of the private variables X \Xi of the other process remain unchanged.

Specifications. A specification Φi for processs Pi is a set of traces on X ; that
is, Φi ⊆ V ω. We consider only ω-regular specifications [14]. We define boolean
operations on specifications using logical operators such as ∧ (conjunction) and
→ (implication).

Weak co-synthesis. In all formulations of the co-synthesis problem that we
consider, the input to the problem is given as follows: two processes P1 = (X1, δ1)
and P2 = (X2, δ2), two specifications Φ1 for process 1 and Φ2 for process 2, and
a start valuation v0 ∈ V . The weak co-synthesis problem is defined as follows:
do there exist two processes P ′

1 = (X ′
1, δ

′
1) and P ′

2 = (X ′
2, δ

′
2), and a valuation

v′0 ∈ V ′, such that (1) P ′
1 � P1 and P ′

2 � P2 and v′0 � X = v0, and (2) for all fair
schedulers R for P ′

1 and P ′
2, we have [[(P ′

1 || P ′
2 || R)(v′0)]] � X ⊆ (Φ1 ∧ Φ2).

Example 1 (Mutual-exclusion protocol synthesis). Consider the two processes
shown in Fig. 1. Process P1 (on the left) places a request to enter its critical
section by setting flag[1]:=true, and the entry of P1 into the critical section
is signaled by Cr1:=true; and similarly for process P2 (on the right). The two
variables flag[1] and flag[2] are boolean, and in addition, both processes may
use a shared variable turn that takes two values 1 and 2. There are 8 possible
conditions C1–C8 for a process to guard the entry into its critical section.1 The
figure shows all 8 × 8 alternatives for the two processes; any refinement without
additional variables will choose a subset of these. Process P1 may stay in its crit-
ical section for an arbitrary finite amount of time (indicated by fin wait), and
then exit by setting Cr1:=false; and similarly for process P2. The while loop
with the two alternatives C9 and C10 expresses the fact that a process may wait
arbitrarily long (possibly infinitely long) before a subsequent request to enter its
critical section.

We use the notations � and � to denote always (safety) and eventually (reach-
ability) specifications, respectively. The specification for process P1 consists of
two parts: a safety part Φmutex

1 = �¬(Cr1 = true ∧ Cr2 = true) and a liveness

1 Since a guard may check any subset of the three 2-valued variables, there are 256
possible guards; but all except 8 can be discharged immediately as not useful.

266 K. Chatterjee and T.A. Henzinger

do
{
flag[1]:=true; turn:=2;

while (flag[2] & turn=1) nop;

Cr1:=true; fin_wait; Cr1:=false;
flag[1]:=false;

wait[1]:=1;
while(wait[1]=1)
| nop;
| wait[1]:=0;

} while(true)

do
{
flag[2]:=true; turn:=1;

while (flag[1] & turn=2) nop; (C8+C5)

Cr2:=true; fin_wait; Cr2:=false;
flag[2]:=false;

wait[2]:=1;
while(wait[2]=1)
| nop; (C9)
| wait[2]:=0; (C10)

} while(true)

Fig. 2. Peterson’s mutual-exclusion protocol

part Φ
prog
1 = �(flag[1] = true → �(Cr1 = true)). The first part Φmutex

1 speci-
fies that both processes are not in their critical sections simultaneously (mutual
exclusion); the second part Φprog

1 specifies that if process P1 wishes to enter its
critical section, then it will eventually enter (starvation freedom). The specifica-
tion Φ1 for process P1 is the conjunction of Φmutex

1 and Φprog
1 . The specification

Φ2 for process P2 is symmetric.

The answer to the weak co-synthesis problem for Example 1 is “Yes.” A solution
of the weak co-synthesis formulation are two refinements P ′

1 and P ′
2 of the two

given processes P1 and P2, such that the composition of the two refinements
satisfies the specifications Φ1 and Φ2 for every fair scheduler. One possible so-
lution is as follows: in P ′

1, the alternatives C4 and C10 are chosen, and in P ′
2,

the alternatives C3 and C10 are chosen. This solution is not satisfactory, because
process P1’s starvation freedom depends on the fact that process P2 requests to
enter its critical section infinitely often. If P2 were to make only a single request
to enter its critical section, then the progress part of Φ1 would be violated.

Classical co-synthesis. The classical co-synthesis problem is defined as follows:
do there exist two processes P ′

1 = (X ′
1, δ

′
1) and P ′

2 = (X ′
2, δ

′
2), and a valuation

v′0 ∈ V ′, such that (1) P ′
1 � P1 and P ′

2 � P2 and v′0 � X = v0, and (2) for all
fair schedulers R for P ′

1 and P ′
2, we have (a) [[(P ′

1 || P2 || R)(v′0)]] � X ⊆ Φ1 and
(b) [[(P1 || P ′

2 || R)(v′0)]] � X ⊆ Φ2.
The answer to the classical co-synthesis problem for Example 1 is “No.” We

will argue later (in Example 2) why this is the case.

Assume-guarantee synthesis. We now present a new formulation of the co-
synthesis problem. The main idea is derived from the notion of secure equi-
libria [4]. We refer to this new formulation as the assume-guarantee synthesis
problem; it is defined as follows: do there exist two refiements P ′

1 = (X ′
1, δ

′
1) and

P ′
2 = (X ′

2, δ
′
2), and a valuation v′0 ∈ V ′, such that (1) P ′

1 � P1 and P ′
2 � P2

and v′0 � X = v0, and (2) for all fair schedulers R for P ′
1 and P ′

2, we have

Assume-Guarantee Synthesis 267

(a) [[(P ′
1 || P2 || R)(v′0)]] � X ⊆ (Φ2 → Φ1) and (b) [[(P1 || P ′

2 || R)(v′0)]] � X ⊆
(Φ1 → Φ2) and (c) [[(P ′

1 || P ′
2 || R)(v′0)]] � X ⊆ (Φ1 ∧ Φ2).

The answer to the assume-guarantee synthesis problem for Example 1 is “Yes.”
A solution P ′

1 and P ′
2 is shown in Fig. 2. We will argue the correctness of this so-

lution later (in Example 3). The two refined processes P ′
1 and P ′

2 present exactly
Peterson’s solution to the mutual-exclusion problem. In other words, Peterson’s
protocol can be derived automatically as an answer to the assume-guarantee syn-
thesis problem for the requirements of mutual exclusion and starvation freedom.
The success of assume-guarantee synthesis for the mutual-exclusion problem,
together with the failure of the classical co-synthesis, suggests that the classical
formulation of co-synthesis is too strong.

3 Game Algorithms for Co-synthesis

We reduce the three formulations of the co-synthesis problem to problems about
games played on graphs with three players.

Game graphs. A 3-player game graph G = ((S, E), (S1, S2, S3)) consists of a
directed graph (S, E) with a finite set S of states and a set E ⊆ S2 of edges,
and a partition (S1, S2, S3) of the state space S into three sets. The states in Si

are player-i states, for i ∈ {1, 2, 3}. For a state s ∈ S, we write E(s) = {t ∈ S |
(s, t) ∈ E} for the set of successor states of s. We assume that every state has
at least one outgoing edge; i.e., E(s) is nonempty for all states s ∈ S. Beginning
from a start state, the three players move a token along the edges of the game
graph. If the token is on a player-i state s ∈ Si, then player i moves the token
along one of the edges going out of s. The result is an infinite path in the game
graph; we refer to such infinite paths as plays. Formally, a play is an infinite
sequence (s0, s1, s2, . . .) of states such that (sk, sk+1) ∈ E for all k ≥ 0. We write
Ω for the set of plays.

Strategies. A strategy for a player is a recipe that specifies how to extend plays.
Formally, a strategy σi for player i is a function σi : S∗ · Si → S that, given a
finite sequence of states (representing the history of the play so far) which ends
in a player-i state, chooses the next state. The strategy must choose an available
successor state; i.e., for all w ∈ S∗ and s ∈ Si, if σi(w · s) = t, then t ∈ E(s).
We write Σi for the set of strategies for player i. Strategies in general require
memory to remember some facts about the history of a play. An equivalent
definition of strategies is as follows. Let M be a set called memory. A strategy
σ = (σu, σn) can be specified as a pair of functions: (1) a memory-update function
σu : S × M → M that, given the memory and the current state, updates the
memory; and (2) a next-state function σn : S × M → S that, given the memory
and the current state, determines the successor state. The strategy σ is finite-
memory if the memory M is finite. The strategy σ is memoryless if the memory
M is a singleton set. Memoryless strategies do not depend on the history of a
play, but only on the current state. A memoryless strategy for player i can be
specified as a function σi : Si → S such that σi(s) ∈ E(s) for all s ∈ Si. Given a

268 K. Chatterjee and T.A. Henzinger

start state s ∈ S and three strategies σi ∈ Σi, one for each of the three players
i ∈ {1, 2, 3}, there is an unique play, denoted ω(s, σ1, σ2, σ3) = (s0, s1, s2, . . .),
such that s0 = s and for all k ≥ 0, if sk ∈ Si, then σi(s0, s1, . . . , sk) = sk+1; this
play is the outcome of the game starting at s given the three strategies σ1, σ2,
and σ3.

Winning. An objective Ψ is a set of plays; i.e., Ψ ⊆ Ω. The following notation is
derived from ATL [2]. For an objective Ψ , the set of winning states for player 1
in the game graph G is 〈〈1〉〉G(Ψ) = {s ∈ S | ∃σ1 ∈ Σ1. ∀σ2 ∈ Σ2. ∀σ3 ∈
Σ3. ω(s, σ1, σ2, σ3) ∈ Ψ}; a witness strategy σ1 for player 1 for the existential
quantifier is referred to as a winning strategy. The winning sets 〈〈2〉〉G(Ψ) and
〈〈3〉〉G(Ψ) for players 2 and 3 are defined analogously. The set of winning states
for the team consisting of player 1 and player 2, playing against player 3, is
〈〈1, 2〉〉G(Ψ) = {s ∈ S | ∃σ1 ∈ Σ1. ∃σ2 ∈ Σ2. ∀σ3 ∈ Σ3. ω(s, σ1, σ2, σ3) ∈ Ψ}. The
winning sets 〈〈I〉〉G(Ψ) for other teams I ⊆ {1, 2, 3} are defined similarly. The
following determinacy result follows from [6].

Theorem 1 (Finite-memory determinacy [6]). Let Ψ be an ω-regular ob-
jective, let G be a 3-player game graph, and let I ⊆ {1, 2, 3} be a set of the
players. Let J = {1, 2, 3} \ I. Then (1) 〈〈I〉〉G(Ψ) = S \ 〈〈J〉〉G(¬Ψ), and (2) there
exist finite-memory strategies for the players in I such that against all strategies
for the players in J , for all states in s ∈ 〈〈I〉〉G(Ψ), the play starting at s given
the strategies lies in Ψ .

Game solutions to weak and classical co-synthesis. Given two processes
P1 = (X1, δ1) and P2 = (X2, δ2), we define the 3-player game graph Ĝ =
((S, E), (S1, S2, S3)) as follows: let S = V × {1, 2, 3}; let Si = V × {i} for
i ∈ {1, 2, 3}; and let E contain (1) all edges of the form ((v, 3), (v, 1)) for
v ∈ V , (2) all edges of the form ((v, 3), (v, 2)) for v ∈ V , and (3) all edges
of the form ((v, i), (u, 3)) for i ∈ {1, 2} and u � Xi ∈ δi(v � Xi) and
u � (X \ Xi) = v � (X \ Xi). In other words, player 1 represents process P1,
player 2 represents process P2, and player 3 represents the scheduler. Given a
play of the form ω = ((v0, 3), (v0, i0), (v1, 3), (v1, i1), (v2, 3), . . .), where ij ∈ {1, 2}
for all j ≥ 0, we write [ω]1,2 for the sequence of valuations (v0, v1, v2, . . .) in ω
(ignoring the intermediate valuations at player-3 states). A specification Φ ⊆ V ω

defines the objective [[Φ]] = {ω ∈ Ω | [ω]1,2 ∈ Φ}. In this way, the specifications
Φ1 and Φ2 for the processes P1 and P2 provide the objectives Ψ1 = [[Φ1]] and
Ψ2 = [[Φ2]] for players 1 and 2, respectively. The objective for player 3 (the
scheduler) is the fairness objective Ψ3 = Fair that both S1 and S2 are visited
infinitely often; i.e., Fair contains all plays (s0, s1, s2, . . .) ∈ Ω such that sj ∈ S1
for infinitely many j ≥ 0, and sk ∈ S2 for infinitely many k ≥ 0.

Proposition 1. Given two processes P1 = (X1, δ1) and P2 = (X2, δ2), two
specifications Φ1 for P1 and Φ2 for P2, and a start valuation v0 ∈ V , the answer
to the weak co-synthesis problem is “Yes” iff (v0, 3) ∈ 〈〈1, 2〉〉

�G(Fair → ([[Φ1]] ∧
[[Φ2]])); and the answer to the classical co-synthesis problem is “Yes” iff both
(v0, 3) ∈ 〈〈1〉〉

�G(Fair → [[Φ1]]) and (v0, 3) ∈ 〈〈2〉〉
�G(Fair → [[Φ2]]).

Assume-Guarantee Synthesis 269

Example 2 (Failure of classical co-synthesis). We now demonstrate the failure of
classical co-synthesis for Example 1. We show that for every strategy for process
P1, there exist spoiling strategies for process P2 and the scheduler such that
(1) the scheduler is fair and (2) the specification Φ1 of process P1 is violated. With
any fair scheduler, process P1 will eventually set flag[1]:=true. Whenever
process P1 enters its critical section (setting Cr1:=true), the scheduler assigns a
finite sequence of turns to process P2. During this sequence, process P2 enters its
critical section: it may first choose the alternative C10 to return to the beginning
of the the main loop, then set flag[2]:=true; turn:=1; then pass the guard
C4: (since (turn �= 2)), and enter the critical section (setting Cr2:=true). This
violates the mutual-exclusion requirement Φmutex

1 of process P1. On the other
hand, if process P1 never enters its critical section, this violates the starvation-
freedom requirement Φ

prog
1 of process P1. Thus the answer to the classical

co-synthesis problem is “No.”

Game solution to assume-guarantee synthesis. We extend the notion of
secure equilibria [4] from 2-player games to 3-player games where player 3 can
win unconditionally; i.e., 〈〈3〉〉G(Ψ3) = S for the objective Ψ3 for player 3. In
the setting of two processes and a scheduler (player 3) with a fairness objective,
the restriction that 〈〈3〉〉G(Ψ3) = S means that the scheduler has a fair strategy
from all states; this is clearly the case for Ψ3 = Fair. (Alternatively, the scheduler
may not required to be fair; then Ψ3 is the set of all plays, and the restriction is
satisfied trivially.) The concept of secure equilibria is based on a lexicographic
preference ordering of payoff profiles, which can be extended naturally from two
to three players under the restriction that player 3 can win unconditionally. We
first present the definition of secure equilibria and then characterize the winning
secure equilibrium states as the winning states of certain subgames with zero-
sum objectives (Theorem 2); this result is a non-trivial generalization of [4] from
two to three players. We then establish the existence of finite-memory winning
secure strategies (Theorem 3). This will allow us to solve the assume-guarantee
synthesis problem by computing winning secure equilibria (Theorem 4).

Payoffs. In the following, we fix a 3-player game graph G and objectives Ψ1,
Ψ2, and Ψ3 for the three players such that 〈〈3〉〉G(Ψ3) = S. Given strategies σi

for the three players i ∈ {1, 2, 3}, and a state s ∈ S, the payoff pi(s, σ1, σ2, σ3)
for player i is 1 if ω(s, σ1, σ2, σ3) ∈ Ψi, and 0 otherwise. The payoff profile
(p1(s, σ1, σ2, σ3), p2(s, σ1, σ2, σ3), p3(s, σ1, σ2, σ3)) consists of the payoff for each
player. Since 〈〈3〉〉G(Ψ3) = S, any equilibrium payoff profile will assign payoff 1
to player 3. Hence we focus on payoff profiles whose third component is 1.

Payoff-profile ordering. The preference order ≺i for player i on payoff profiles
is defined by (p1, p2, p3) ≺i (p′

1, p
′
2, p

′
3) iff either (1) pi < p′

i, or (2) pi = p′
i and

pj+pk > p′
j+p′

k for j, k ∈ {1, 2, 3}\{i} with j �= k. In the case where the payoff for
player 3 is 1, the player-1 preference order ≺1 on payoff profiles is lexicographic:
(p1, p2, 1) ≺1 (p′

1, p
′
2, 1) iff either (1) p1 < p′

1, or (2) p1 = p′
1 and p2 > p′

2; that is,
player 1 prefers a payoff profile that gives her greater payoff, and if two payoff
profiles match in the first component, then she prefers the payoff profile in which

270 K. Chatterjee and T.A. Henzinger

player 2’s payoff is smaller. The preference order for player 2 is symmetric. The
preference order for player 3 is such that (p1, p2, 1) ≺3 (p′

1, p
′
2, 1) iff p1+p2 > p′

1+
p′
2. Given two payoff profiles (p1, p2, p3) and (p′

1, p′
2, p′

3), we write (p1, p2, p3) =
(p′

1, p
′
2, p

′
3) iff pi = p′

i for all i ∈ {1, 2, 3}, and we write (p1, p2, p3) �i (p′
1, p

′
2, p

′
3)

iff (p1, p2, p3) ≺i (p′
1, p

′
2, p

′
3) or (p1, p2, p3) = (p′

1, p
′
2, p

′
3).

Secure equilibria. A strategy profile (σ1, σ2, σ3) is a secure equilibrium at a state
s ∈ S iff the following three conditions hold:

∀σ′
1 ∈ Σ1. (p1(s, σ′

1, σ2, σ3), p2(s, σ′
1, σ2, σ3), p3(s, σ′

1, σ2, σ3)) �1 p;
∀σ′

2 ∈ Σ2. (p1(s, σ1, σ
′
2, σ3), p2(s, σ1, σ

′
2, σ3), p3(s, σ1, σ

′
2, σ3)) �2 p;

∀σ′
3 ∈ Σ3. (p1(s, σ1, σ2, σ

′
3), p2(s, σ1, σ2, σ

′
3), p3(s, σ1, σ2, σ

′
3)) �3 p;

where p = (p1(s, σ1, σ2, σ3), p2(s, σ1, σ2, σ3), p3(s, σ1, σ2, σ3)). In other words,
(σ1, σ2, σ3) is a Nash equilibrium with respect to the payoff-profile orderings �i

for the three players i ∈ {1, 2, 3}. For u, w ∈ {0, 1}, we write Suw1 ⊆ S for the
set of states s such that a secure equilibrium with the payoff profile (u, w, 1)
exists at s; that is, s ∈ Suw1 iff there is a secure equilibrium (σ1, σ2, σ3) at s
such that (p1(s, σ1, σ2, σ3), p2(s, σ1, σ2, σ3), p3(s, σ1, σ2, σ3)) = (u, w, 1). More-
over, we write MSuw1(G) ⊆ Suw1 for the set of states s such that the pay-
off profile (u, w, 1) is a maximal secure equilibrium payoff profile at s; that is,
s ∈ MSuw1(G) iff (1) s ∈ Suw1, and (2) for all u′, w′ ∈ {0, 1}, if s ∈ Su′w′1, then
both (u′, w′, 1) �1 (u, w, 1) and (u′, w′, 1) �2 (u, w, 1). The states in MS111(G)
are referred to as winning secure equilibrium states, and the witnessing secure
equilibrium strategies as winning secure strategies.

Theorem 2. Let G be a 3-player game graph G with the objectives Ψ1, Ψ2, and
Ψ3 for the three players such that 〈〈3〉〉G(Ψ3) = S. Let

U1 = 〈〈1〉〉G(Ψ3 → Ψ1);
U2 = 〈〈2〉〉G(Ψ3 → Ψ2);
Z1 = 〈〈1, 3〉〉G�U1(Ψ1 ∧ Ψ3 ∧ ¬Ψ2);
Z2 = 〈〈2, 3〉〉G�U2(Ψ2 ∧ Ψ3 ∧ ¬Ψ1);
W = 〈〈1, 2〉〉G�(S\(Z1∪Z2))(Ψ3 → (Ψ1 ∧ Ψ2)).

Then the following assertions hold: (1) at all states in Z1 the only secure equilib-
rium payoff profile is (1, 0, 1); (2) at all states in Z2 the only secure equilibrium
payoff profile is (0, 1, 1); and (3) W = MS111(G).

Proof. We prove parts (1) and (3); the proof of part (2) is similar to part (1).

Part (1). Since 〈〈3〉〉G(Ψ3) = S and Z1 ⊆ U1 = 〈〈1〉〉G(Ψ3 → Ψ1), it follows that
any secure equilibrium profile in Z1 has payoff profile of the form (1, , 1). Since
(1, 1, 1) ≺1 (1, 0, 1) and (1, 1, 1) ≺3 (1, 0, 1), to prove uniqueness it suffices to
show that player 1 and player 3 can fix strategies to ensure secure equilibrium
payoff profile (1, 0, 1). Since Z1 = 〈〈1, 3〉〉G�U1(Ψ1∧Ψ3∧¬Ψ2), consider the strategy
pair (σ1, σ3) such that against all player 2 strategies σ2 and for all states s ∈ Z1,
we have ω(s, σ1, σ2, σ3) ∈ (Ψ1 ∧ Ψ3 ∧ ¬Ψ2). The secure equilibrium strategy pair
(σ∗

1 , σ∗
3) for player 1 and player 3 (along with any strategy σ2 for player 2) is

constructed as follows.

Assume-Guarantee Synthesis 271

1. The strategy σ∗
1 is as follows: player 1 plays σ1 and if player 3 deviates from

σ3, then player 1 switches to a winning strategy for Ψ3 → Ψ1. Such a strategy
exists since Z1 ⊆ U1 = 〈〈1〉〉G(Ψ3 → Ψ1).

2. The strategy σ∗
3 is as follows: player 3 plays σ3 and if player 1 deviates from

σ1, then player 3 switches to a winning strategy for Ψ3. Such a strategy exists
since 〈〈3〉〉G(Ψ3) = S.

Hence objective of player 1 is always satisfied, given objective of player 3 is
satisfied. Thus player 3 has no incentive to deviate. Similarly, player 1 also has
no incentive to deviate. The result follows.

Part (3). By Theorem 1 we have S \W = 〈〈3〉〉G(Ψ3 ∧ (¬Ψ1 ∨¬Ψ2)) and there is a
player 3 strategy σ3 that satisfies Ψ3∧(¬Ψ1∨¬Ψ2) against all strategies of player 1
and player 2. Hence the equilibrium (1, 1, 1) cannot exist in the complement set
of W , i.e., MS111(G) ⊆ W . We now show that in W there is a secure equilibrium
with payoff profile (1, 1, 1). The following construction completes the proof.

1. In W ∩ U1, player 1 plays a winning strategy for objective Ψ3 → Ψ1, and
player 2 plays a winning strategy for objective (Ψ3 ∧Ψ1) → Ψ2. Observe that
S \ Z1 = 〈〈2〉〉G(¬Ψ1 ∨ ¬Ψ3 ∨ Ψ2), and hence such a winning strategy exists
for player 2.

2. In W ∩ (U2 \ U1), player 2 plays a winning strategy for objective Ψ3 → Ψ2,
and player 1 plays a winning strategy for objective (Ψ2 ∧ Ψ3) → Ψ1. Observe
that S \ Z2 = 〈〈1〉〉G(¬Ψ2 ∨ ¬Ψ3 ∨ Ψ1), and hence such a winning strategy
exists for player 1.

3. By Theorem 1 we have W \ U1 = 〈〈2, 3〉〉G(¬Ψ1 ∧ Ψ3) and W \ U2 =
〈〈1, 3〉〉G(¬Ψ2 ∧ Ψ3). The strategy construction in W \ (U1 ∪ U2) is as fol-
lows: player 1 and player 2 play a strategy (σ1, σ2) to satisfy Ψ1 ∧Ψ2 against
all strategies of player 3, and player 3 plays a winning strategy for Ψ3; if
player 1 deviates, then player 2 and player 3 switches to a strategy (σ2, σ3)
such that against all strategies for player 1 the objective Ψ3∧¬Ψ1 is satisfied;
and if player 2 deviates, then player 1 and player 3 switches to a strategy
(σ1, σ3) such that against all strategies for player 2 the objective Ψ3 ∧ ¬Ψ2
is satisfied. Hence neither player 1 and nor player 2 has any incentive to
deviate according to the preference order �1 and �2, respectively.

Alternative characterization of winning secure equilibria. In order to obtain a
characterization of the set MS111(G) in terms of strategies, we define retaliation
strategies following [4]. Given objectives Ψ1, Ψ2, and Ψ3 for the three players,
and a state s ∈ S, the sets of retaliation strategies for players 1 and 2 at s are

Re1(s)={σ1 ∈ Σ1 | ∀σ2 ∈ Σ2. ∀σ3 ∈ Σ3. ω(s, σ1, σ2, σ3)∈((Ψ3 ∧ Ψ2) → Ψ1)};
Re2(s)={σ2 ∈ Σ2 | ∀σ1 ∈ Σ1. ∀σ3 ∈ Σ3. ω(s, σ1, σ2, σ3)∈((Ψ3 ∧ Ψ1) → Ψ2)}.

Theorem 3. Let G be a 3-player game graph G with the objectives Ψ1, Ψ2, and
Ψ3 for the three players such that 〈〈3〉〉G(Ψ3) = S. Let U = {s ∈ S | ∃σ1 ∈
Re1(s). ∃σ2 ∈ Re2(s). ∀σ3 ∈ Σ3. ω(s, σ1, σ2, σ3) ∈ (Ψ3 → (Ψ1 ∧ Ψ2))}. Then
U = MS111(G).

272 K. Chatterjee and T.A. Henzinger

Proof. We first show that U ⊆ MS111(G). For a state s ∈ U , choose σ1 ∈ Re1(s)
and σ2 ∈ Re2(s) such that for all σ3 ∈ Σ3, we have ω(s, σ1, σ2, σ3) ∈ (Ψ3 → (Ψ1∧
Ψ2)). Fixing the strategies σ1 and σ2 for players 1 and 2, and a winning strategy
for player 3, we obtain the secure equilibrium payoff profile (1, 1, 1). We now show
that MS111(G) ⊆ U . This follows from the proof of Theorem 2. In Theorem 2 we
proved that for all states s ∈ (S \ (Z1 ∪Z2)), we have Re1(s) �= ∅ and Re2(s) �= ∅;
and the winning secure strategies constructed for the set W = MS111(G) are
witness strategies to prove that MS111(G) ⊆ U .

Observe that for ω-regular objectives, the winning secure strategies of
Theorem 3 are finite-memory strategies. The existence of finite-memory win-
ning secure strategies establishes the following theorem.

Theorem 4 (Game solution of assume-guarantee synthesis). Given two
processes P1 = (X1, δ1) and P2 = (X2, δ2), two specifications Φ1 for P1 and
Φ2 for P2, and a start valuation v0 ∈ V , the answer to the assume-guarantee
synthesis problem is “Yes” iff (v0, 3) ∈ MS111(Ĝ) for the 3-player game graph Ĝ
with the objectives Ψ1 = [[Φ1]], Ψ2 = [[Φ2]], and Ψ3 = Fair.

Example 3 (Assume-guarantee synthesis of mutual-exclusion protocol). We con-
sider the 8 alternatives C1–C8 of process P1, and the corresponding spoiling
strategies for process P2 and the scheduler to violate P1’s specification. We de-
note by [→] a switch between the two processes (decided by the scheduler).

C1 The spoiling strategies for process P2 and the scheduler cause the following
sequence of updates:

P1: flag[1]:=true; turn:=2; [→];
P2: flag[2]:=true; turn:=1;
P2: enters the critical section by passing the guard C8: (since

(turn �= 2)). After exiting its critical section, process P2 chooses
the alternative C10 to enter the beginning of the main loop, sets
flag[2]:=true; turn:=1; and then the scheduler assigns the
turn to process P1, which cannot enter its critical section. The
scheduler then assigns turn to P2 and then P2 enters the critical
section by passing guard C8 and this sequence is repeated forever.

The same spoiling strategies work for choices C2, C3, C6 and C7.
C4 The spoiling strategies cause the following sequence of updates:

P2: flag[2]:=true; turn:=1; [→];
P1: flag[1]:=true; turn:=2; [→];
P2: enters the critical section by passing the guard C3: (since

(turn �= 1)). After exiting its critical section, process P2 continues
to choose the alternative C9 forever, and the scheduler alternates
turn between P1 and P2; and process P1 cannot enter its critical
section.

The same spoiling strategies work for the choice C5.
C8 The spoiling strategies cause the following sequence of updates:

Assume-Guarantee Synthesis 273

P2: flag[2]:=true; turn:=1; [→];
P1: flag[1]:=true; turn:=2; [→];
P2: while(flag[2]) nop;

Then process P2 does not enter its critical section, and neither can process
P1 enter. In this case P2 cannot violate P1’s specification without violating
her own specification.

It follows from this case analysis that no alternatives except C8 for process P1
can witness a solution to the assume-guarantee synthesis problem. The alterna-
tive C8 for process P1 and the symmetric alternative C6 for process P2 provide
winning secure strategies for both processes. In this example, we considered
refinements without additional variables; but in general refinements can have
additional variables.

4 Abstraction-Based Co-synthesis

In Section 3 we provided game-based algorithms for the three formulations of
the co-synthesis problem. However, the state space of the game graph can be
very large, making an algorithmic analysis often impractical. In this section we
present sound proof rules (i.e., sufficient conditions) for deriving solutions to
the three co-synthesis problems from the analysis of simpler game graphs, which
abstracts the original game graph. We first review the appropriate notion of
game abstraction and the corresponding proof rules for the weak and classical
versions of co-synthesis. We then give proof rules for assume-guarantee synthesis
in the two special but common cases where the processes have safety and Büchi
objectives. In particular, we show that the solution of zero-sum games on simpler,
abstract game graphs is sufficient for solving a given assume-guarantee synthesis
problem: the winning strategies of two different abstract zero-sum games provide
winning secure strategies for the original non-zero-sum game.

Abstraction of game graphs. Let I ⊆ {1, 2, 3} be a set of players, and let J =
{1, 2, 3}\I. An I-abstraction for a 3-player game graph G = ((S, E), (S1, S2, S3))
consists of a 3-player game graph GA = ((SA, EA), (SA

1 , SA
2 , SA

3)) and a con-
cretization function γ : SA → 2S \ ∅ such that the following conditions hold.

1. The abstraction preserves the player structure: for all i ∈ {1, 2, 3} and a ∈
SA

i , we have γ(a) ⊆ Si.
2. The abstraction partitions the concrete state space:

⋃
a∈SA γ(a) = S, and

for every s ∈ S there is a unique a ∈ SA such that s ∈ γ(a).
3. The edges for players in I are abstracted universally, and the edges for players

in J are abstracted existentially:

EA = {(a, b) | ∃i ∈ I. a ∈ SA
i ∧ ∀s ∈ γ(a). ∃t ∈ γ(b). (s, t) ∈ E}

∪ {(a, b) | ∃i ∈ J. a ∈ SA
i ∧ ∃s ∈ γ(a). ∃t ∈ γ(b). (s, t) ∈ E}.

The abstraction function α : S → SA is defined such that s ∈ γ(α(s)) for
all states s ∈ S. For a play ω = (s0, s1, s2, . . .) in G, the abstraction α(ω) =
(α(s0), α(s1), α(s2), . . .) is a play in GA.

274 K. Chatterjee and T.A. Henzinger

Abstraction of objectives. Given an objective Ψ on the concrete game graph G,
we define the following two objectives on the abstract game graph GA:

–existential abstraction: α(Ψ) = {α(ω) | ω ∈ Ψ};
–universal abstraction: β(Ψ) = {τ | ∀ω ∈ Sω. if τ = α(ω) then ω ∈ Ψ}.

For the players in I, the abstract objectives are obtained by universal abstraction,
and for the players in J , by existential abstraction.

Proof rules for weak and classical co-synthesis. The following proposition
states the basic principle behind proof rules for weak and classical co-synthesis.

Proposition 2. [7] Given a 3-player game graph G, a set I ⊆ {1, 2, 3} of play-
ers, an I-abstraction (GA, γ), and an objective Ψ , let A = 〈〈I〉〉GA(β(Ψ)). Then
γ(A) ⊆ 〈〈I〉〉G(Ψ).

Proof rules for assume-guarantee synthesis. We present proof rules for
assume-guarantee synthesis in two cases: for safety objectives, and for Büchi
objectives (which include reachability objectives as a special case).

Safety objectives. Given a set F ⊆ S of states, the safety objective �F requires
that the set F is never left. Formally, the safety objective �F contains all plays
(s0, s1, s2, . . .) such that sj ∈ F for all j ≥ 0. Given safety objectives for players
1 and 2, it is immaterial whether the scheduler (player 3) is fair or not, because
if a safety objective is violated, then it is violated by a finite prefix of a play.
Hence, for simplicity, we assume that the objective of player 3 is trivial (i.e., the
set of all plays). The following theorem states that winning secure equilibrium
states in a game graph G can be derived from winning secure equilibrium states
in two simpler graphs, a {1}-abstraction GA

1 and a {2}-abstraction GA
2 . The

winning secure strategies on the concrete graph can likewise be derived from the
winning secure strategies on the two abstract graphs.

Theorem 5. Let G be a 3-player game graph with two safety objectives Ψ1 and
Ψ2 for players 1 and 2, respectively. Let (GA

1 , γ1) be a {1}-abstraction, and let
(GA

2 , γ2) be a {2}-abstraction. Let the objective for player 1 in GA
1 and GA

2 be
β1(Ψ1) and α2(Ψ1), respectively. Let the objective for player 2 in GA

1 and GA
2

be α1(Ψ2) and β2(Ψ2), respectively. Let the objective for player 3 in G, GA
1 , and

GA
2 be the set of all plays. Let A1 = MS111(GA

1) and A2 = MS111(GA
2). Then

(γ1(A1) ∩ γ2(A2)) ⊆ MS111(G).

The classical assume-guarantee rule for safety specifications [1] can be obtained
as a special case of Theorem 5 where all states are player-3 states (in this case,
player 3 is not only a scheduler, but also resolves all nondeterminism in the two
processes P1 and P2).

Büchi objectives. Given a set B ⊆ S of states, the Büchi objective ��B requires
that the set B is visited infinitely often. Formally, the Büchi objective ��B
contains all plays (s0, s1, s2, . . .) such that sj ∈ B for infinitely many j ≥ 0.
The following theorem states that winning secure equilibrium states (and the

Assume-Guarantee Synthesis 275

corresponding winning secure strategies) in a game graph G can be derived
from a zero-sum analysis of three simpler graphs, a {1}-abstraction GA

1 , a {2}-
abstraction GA

2 , and a {1, 2}-abstraction GA
1,2.

Theorem 6. Let G be a 3-player game graph with two Büchi objectives Ψ1 and
Ψ2 for player 1 and player 2, respectively, and the objective Fair for player 3.
Let (GA

1 , γ1) be a {1}-abstraction, let (GA
2 , γ2) be a {2}-abstraction, and let

(GA
1,2, γ1,2) be a {1, 2}-abstraction. Let

A1 = 〈〈1〉〉GA
1
((α1(Fair) ∧ α1(Ψ2)) → β1(Ψ1));

A2 = 〈〈2〉〉GA
2
((α2(Fair) ∧ α2(Ψ1)) → β2(Ψ2));

A3 = 〈〈1, 2〉〉GA
1,2

(α1,2(Fair) → (β1,2(Ψ ′
1) ∧ β1,2(Ψ ′

2)));

where Ψ ′
1 = (Ψ1∧�γ1(A1)) and Ψ ′

2 = (Ψ2∧�γ2(A2)). Then γ1,2(A3) ⊆ MS111(G).

References

1. R. Alur and T.A. Henzinger. Reactive modules. In Formal Methods in System
Design, 15:7–48, 1999.

2. R. Alur, T.A. Henzinger, O. Kupferman. Alternating-time temporal logic. Journal
of the ACM, 49:672–713, 2002.

3. K. Chatterjee and T.A. Henzinger. Semiperfect-information games. In FSTTCS’05,
LNCS 3821, pages 1–18. Springer, 2005.

4. K. Chatterjee, T.A. Henzinger, M. Jurdziński. Games with secure equilibria. In
LICS’04, pages 160–169. IEEE, 2004.

5. E.M. Clarke and E.A. Emerson. Design and synthesis of synchronization skeletons
using branching-time temporal logic. In Logic of Programs’81, LNCS 131, pages
52–71. Spinger, 1982.

6. Y. Gurevich and L. Harrington. Trees, automata, and games. In STOC’82, pages
60–65. ACM, 1982.

7. T.A. Henzinger, R. Majumdar, F.Y.C. Mang, J.-F. Raskin. Abstract interpretation
of game properties. In SAS’00, LNCS 1824, pages 220–239. Springer, 2000.

8. P. Madhususan and P.S. Thiagarajan. Distributed controller synthesis for local
specifications. In ICALP’01, LNCS 2076, pages 396–407. Springer, 2001.

9. S. Mohalik and I. Walukiewicz. Distributed games. In FSTTCS’03, LNCS 2914,
pages 338–351. Springer, 2003.

10. C.H. Papadimitriou. Algorithms, games, and the internet. In STOC’01, pages
749–753. ACM, 2001.

11. A. Pnueli and R. Rosner. On the synthesis of a reactive module. In POPL’89,
pages 179–190. ACM, 1989.

12. P.J. Ramadge and W.M. Wonham. Supervisory control of a class of discrete-event
processes. SIAM Journal of Control and Optimization, 25:206–230, 1987.

13. J.H. Reif. The complexity of 2-player games of incomplete information. Journal
of Computer and System Sciences, 29:274–301, 1984.

14. W. Thomas. Languages, automata, and logic. In Handbook of Formal Languages,
volume 3, pages 389–455. Springer, 1997.

Optimized L*-Based Assume-Guarantee

Reasoning�

Sagar Chaki1 and Ofer Strichman2

1 Software Engineering Institute, Pittsburgh, USA
chaki@sei.cmu.edu

2 Information Systems Engineering, IE, Technion, Israel
ofers@ie.technion.ac.il

Abstract. In this paper, we suggest three optimizations to the L*-based
automated Assume-Guarantee reasoning algorithm for the compositional
verification of concurrent systems. First, we use each counterexample
from the model checker to supply multiple strings to L*, saving candi-
date queries. Second, we observe that in existing instances of this para-
digm, the learning algorithm is coupled weakly with the teacher. Thus,
the learner ignores completely the details about the internal structure of
the system and specification being verified, which are available already
to the teacher. We suggest an optimization that uses this information
in order to avoid many unnecessary – and expensive, since they involve
model checking – membership and candidate queries. Finally, and most
importantly, we develop a method for minimizing the alphabet used by
the assumption, which reduces the size of the assumption and the num-
ber of queries required to construct it. We present these three optimiza-
tions in the context of verifying trace containment for concurrent systems
composed of finite state machines. We have implemented our approach
and experimented with real-life examples. Our results exhibit an average
speedup of over 12 times due to the proposed improvements.

1 Introduction

Formal reasoning about concurrent programs is particularly hard due to the
number of reachable states in the overall system. In particular, the number
of such states can grow exponentially with each added component. Assume-
Guarantee (AG) is a method for compositional reasoning that can be helpful in
such cases. Consider a system with two components M1 and M2 that need to
synchronize on a given set of shared actions, and a property ϕ that the system
should be verified against. In its simplest form, AG requires checking one of the
components, say M1, separately, while making some assumption on the behaviors
permitted by M2. The assumption should then be discharged when checking M2
in order to conclude the conformance of the product machine with the property.
This idea is formalized with the following AG rule:

� This research was supported by the Predictable Assembly from Certifiable Compo-
nents (PACC) initiative at the Software Engineering Institute, Pittsburgh, USA.

O. Grumberg and M. Huth (Eds.): TACAS 2007, LNCS 4424, pp. 276–291, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Optimized L*-Based Assume-Guarantee Reasoning 277

A × M1 � ϕ
M2 � A

M1 × M2 � ϕ
(AG-NC) (1)

where � stands for some conformance relation1. For trace containment, simula-
tion and some other known relations, AG-NC is a sound and complete rule. In
this paper, we consider the case in which M1, M2 and ϕ are non-deterministic
finite automata, and interpret � as the trace containment (i.e., language inclu-
sion) relation.

Recently, Cobleigh et al. proposed [1] a completely automatic method for find-
ing the assumption A, using Angluin’s L* algorithm [2]. L* constructs a minimal
Deterministic Finite Automaton (DFA) that accepts an unknown regular lan-
guage U . L* interacts iteratively with a Minimally Adequate Teacher (MAT).
In each iteration, L* queries the MAT about membership of strings in U and
whether the language of a specific candidate DFA is equal to U . The MAT is
expected to supply a “Yes/No” answer to both types of questions. It is also ex-
pected to provide a counterexample along with a negative answer to a question
of the latter type. L* then uses the counterexample to refine its candidate DFA
while enlarging it by at least one state. L* is guaranteed to terminate within no
more than n iterations, where n is the size of the minimal DFA accepting U .

In this paper we suggest three improvements to the automated AG procedure.
The first improvement is based on the observation that counterexamples can
sometimes be reused in the refinement process, which saves candidate queries.

The second improvement is based on the observation that the core L* al-
gorithm is completely unaware of the internal details of M1, M2 and ϕ. With
a simple analysis of these automata, most queries to the MAT can in fact be
avoided. Indeed, we suggest to allow the core L* procedure access to the inter-
nal structure of M1, M2 and ϕ. This leads to a tighter coupling between the L*
procedure and the MAT, and enables L* to make queries to the MAT in a more
intelligent manner. Since each MAT query incurs an expensive model checking
run, overall performance is improved considerably.

The last and most important improvement is based on the observation that
the alphabet of the assumption A is fixed conservatively to be the entire interface
alphabet between M1 and ϕ on the one hand, and M2 on the other. While the
full interface alphabet is always sufficient, it is often possible to complete the ver-
ification successfully with a much smaller assumption alphabet. Since the overall
complexity of the procedure depends on the alphabet size, a smaller alphabet
can improve the overall performance. In other words, while L* guarantees the
minimality of the learned assumption DFA with respect to a given alphabet, our
improvement reduces the size of the alphabet itself, and hence also the size of
the learned DFA. The technique we present is based on an automated abstrac-
tion/refinement procedure: we start with the empty alphabet and keep refining it
based on an analysis of the counterexamples, using a pseudo-Boolean solver. The
procedure is guaranteed to terminate with a minimal assumption alphabet that

1 Clearly, for this rule to be effective, A×M1 must be easier to compute than M1×M2.

278 S. Chaki and O. Strichman

suffices to complete the overall verification. This technique effectively combines
the two paradigms of automated AG reasoning and abstraction-refinement.

Although our optimizations are presented in the context of a non-circular AG
rule, they are applicable for circular AG rules as well, although for lack of space
we do not cover this topic in this paper. We implemented our approach in the
ComFoRT [3] reasoning framework and experimented with a set of benchmarks
derived from real-life source code. The improvements reduce the overall number
of queries to the MAT and the size of the learned automaton. While individual
speedup factors exceeded 23, an average speedup of a factor of over 12 was
observed, as reported in Section 6.

Related Work. The L* algorithm was developed originally by Angluin [2]. Most
learning-based AG implementations, including ours, use a more sophisticated
version of L* proposed by Rivest and Schapire [4]. Machine learning techniques
have been used in several contexts related to verification [5,6,7,8,9]. The use of
L* for AG reasoning was first proposed by Cobleigh et al. [1]. A symbolic ver-
sion of this framework has also been developed by Alur et al. [10]. The use of
learning for automated AG reasoning has also been investigated in the context of
simulation checking [11] and deadlock detection [12]. The basic idea behind the
automated AG reasoning paradigm is to learn an assumption [13], using L*, that
satisfies the two premises of AG-NC. The AG paradigm was proposed originally
by Pnueli [14] and has since been explored (in manual/semi-automated forms)
widely. The third optimization we propose amounts to a form of counterexample-
guided abstraction refinement (CEGAR). The core ideas behind CEGAR were
proposed originally by Kurshan [15], and CEGAR has since been used success-
fully for automated hardware [16] and software [17] verification. An approach
similar to our third optimization was proposed independently by Gheorghiu et.
al [18]. However, they use polynomial (greedy) heuristics aimed at minimizing
the alphabet size, whereas we find the optimal value, and hence we solve an
NP-hard problem.

2 Preliminaries

Let λ and · denote the empty string and the concatenation operator respectively.
We use lower letters (α, β, etc.) to denote actions, and higher letters (σ, π, etc.)
to denote strings.

Definition 1 (Finite Automaton). A finite automaton (FA) is a 5-tuple
(S, Init, Σ, T, F) where (i) S is a finite set of states, (ii) Init ⊆ S is the set
of initial states, (iii) Σ is a finite alphabet of actions, (iv) T ⊆ S × Σ × S is the
transition relation, and (v) F ⊆ S is a set of accepting states.

For any FA M = (S, Init, Σ, T, F), we write s
α→ s′ to mean (s, α, s′) ∈ T . Then

the function δ is defined as follows: ∀α ∈ Σ � ∀s ∈ S � δ(α, s) = {s′|s α→ s′}. We
extend δ to operate on strings and sets of states in the natural manner. Thus,
for any σ ∈ Σ∗ and S′ ⊆ S, δ(σ, S′) denotes the set of states of M reached

Optimized L*-Based Assume-Guarantee Reasoning 279

by simulating σ on M starting from any s ∈ S′. The language accepted by M ,
denoted L(M), is defined as follows: L(M) = {σ ∈ Σ∗ | δ(σ, Init) ∩ F �= ∅}.

Determinism. An FA M = (S, Init, Σ, T, F) is said to be a deterministic FA,
or DFA, if |Init| = 1 and ∀α ∈ Σ � ∀s ∈ S � |δ(α, s)| ≤ 1. Also, M is said to be
complete if ∀α ∈ Σ�∀s ∈ S� |δ(α, s)| ≥ 1. Thus, for a complete DFA, we have the
following: ∀α ∈ Σ � ∀s ∈ S � |δ(α, s)| = 1. Unless otherwise mentioned, all DFA
we consider in the rest of this paper are also complete. It is well-known that a
language is regular iff it is accepted by some FA (or DFA, since FA and DFA
have the same accepting power). Also, every regular language is accepted by a
unique (up to isomorphism) minimal DFA.

Complementation. For any regular language L, over the alphabet Σ, we write
L to mean the language Σ∗ − L. If L is regular, then so is L. For any FA M we
write M to mean the (unique) minimal DFA accepting L(M).

Projection. The projection of any string σ over an alphabet Σ is denoted by
σ�Σ and defined inductively on the structure of σ as follows: (i) λ�Σ= λ, and
(ii) (α · σ′)�Σ= α · (σ′�Σ) if α ∈ Σ and σ′�Σ otherwise. The projection of any
regular language L on an alphabet Σ is defined as: L�Σ= {σ�Σ| σ ∈ L}. If L is
regular, so is L�Σ. Finally, the projection M�Σ of any FA M on an alphabet Σ
is the (unique) minimal DFA accepting the language L(M)�Σ.

For the purpose of modeling systems with components that need to synchro-
nize, it is convenient to distinguish between local and global actions. Specifically,
local actions belong to the alphabet of a single component, while global actions
are shared between multiple components. As defined formally below, components
synchronize on global actions, and execute asynchronously on local actions.

Definition 2 (Parallel Composition). Given two finite automata M1 =
(S1, Init1, Σ1, T1, F1) and M2 = (S2, Init2, Σ2, T2, F2), their parallel composi-
tion M1 × M2 is the FA (S1 × S2, Init1 × Init2, Σ1 ∪ Σ2, T, F1 × F2) such
that ∀s1, s

′
1 ∈ S1 � ∀s2, s

′
2 ∈ S2, (s1, s2)

α→ (s′1, s′2) iff for i ∈ {1, 2} either
α �∈ Σi ∧ si = s′i or si

α→ s′i.

Trace Containment. For any FA M1 and M2, we write M1 � M2 to mean
L(M1 × M2) = ∅. A counterexample to M1 � M2 is a string σ ∈ L(M1 × M2).

3 The L* Algorithm

The L* algorithm for learning DFAs was developed by Angluin [2] and later
improved by Rivest and Schapire [4]. In essence, L* learns an unknown regular
language U , over an alphabet Σ, by generating the minimal DFA that accepts
U . In order to learn U , L* requires “Yes/No” answers to two types of queries:

1. Membership query: for a string σ ∈ Σ∗, ‘is σ ∈ U ?’
2. Candidate query: for a DFA C, ‘is L(C) = U ?’

280 S. Chaki and O. Strichman

If the answer to a candidate query is “No”, L* expects a counterexample string
σ such that σ ∈ U − L(C) or σ ∈ L(C) − U . In the first case, we call σ a
positive counterexample, because it should be added to L(C). In the second
case, we call σ a negative counterexample since it should be removed from L(C).
As mentioned before, L* uses the MAT to obtain answers to these queries.

Observation Table. L* builds an observation table (S, E, T) where: (i) S ⊆ Σ∗

is the set of rows, (ii) E ⊆ Σ∗ is the set of columns (or experiments), and (iii)
T : (S ∪ S · Σ) × E → {0, 1} is a function defined as follows:

∀s ∈ (S ∪ S · Σ)� ∀e ∈ E � T (s, e) =
{

1 s · e ∈ U
0 otherwise (2)

Consistency and Closure. For any s1, s2 ∈ (S∪S ·Σ), s1 and s2 are equivalent
(denoted as s1 ≡ s2) if ∀e ∈ E � T (s1, e) = T (s2, e). A table is consistent if
∀s1, s2 ∈ S � s1 �= s2 ⇒ s1 �≡ s2. L* always maintains a consistent table. In
addition, a table is closed if ∀s ∈ S � ∀α ∈ Σ � ∃s′ ∈ S � s′ ≡ s · α.

Candidate Construction. Given a closed and consistent table (S, E, T), L*
constructs a candidate DFA C = (S, {λ}, Σ, Δ, F) such that: (i) F = {s ∈ S |
T (s, λ) = 1}, and (ii) Δ = {(s, α, s′) | s′ ≡ s · α}. Note that C is deterministic
and complete since (S, E, T) is consistent and closed. Since a row corresponds
to a state of C, we use the terms “row” and “candidate state” synonymously.

E

λ e2 e3

S
λ 0 1 0
α 1 1 0

S · Σ
β 0 1 0

αα 1 1 0
αβ 0 1 0

λ α

αβ

β

α

Fig. 1. An Observation Table and the Corresponding Candidate DFA

Example 1. Consider Figure 1. On the left is an observation table with the entries
being the T values. Let Σ = {α, β}. From this table we see that {e2, α, α · e2, β ·
e2, αα, . . .} ∈ U . On the right is the corresponding candidate DFA. ��

L* Step-By-Step. We now describe L* in more detail, using line numbers
from its algorithmic description in Figure 2. This conventional version of L* is
used currently in the context of automated AG reasoning. We also point out the
specific issues that are addressed by the improvements we propose later on in
this paper. Recall that λ denotes the empty string. After the initialization at
Line 1, the table has one cell corresponding to (λ, λ). In the top-level loop, the
table entries are first computed (at Line 2) using membership queries.

Optimized L*-Based Assume-Guarantee Reasoning 281

Next, L* closes the table by trying to find (at Line 3) for each s ∈ S, some
uncovered action α ∈ Σ such that ∀s′ ∈ S� s′ �≡ s ·α. If such an uncovered action
α is found for some s ∈ S, L* adds s · α to S at Line 4 and continues with the
closure process. Otherwise, it proceeds to the next Step. Note that each α ∈ Σ
is considered when attempting to find an uncovered action.

(1) let S = E = {λ}
loop {

(2) Update T using queries
while (S, E, T) is not closed {

(3) Find (s, α) ∈ S × Σ such that ∀s′ ∈ S � s′ �≡ s · α
(4) Add s · α to S

}
(5) Construct candidate DFA C from (S, E, T)
(6) Make the conjecture C
(7) if C is correct return C
(8) else Add e ∈ Σ∗ that witnesses the counterexample to E

}

Fig. 2. The L* algorithm for learning an unknown regular language

Once the table is closed, L* constructs (at Line 5) a candidate DFA C us-
ing the procedure described previously. Next, at Line 6, L* conjectures that
L(C) = U via a candidate query. If the conjecture is wrong L* extracts from the
counterexample CE (returned by the MAT) a suffix e that, when added to E,
causes the table to cease being closed. The process of extracting the feedback
e has been presented elsewhere [4] and we do not describe it here. Once e has
been obtained, L* adds e to E and iterates the top-level loop by returning to
line 2. Note that since the table is no longer closed, the subsequent process of
closing it strictly increases the size of S. It can also be shown that the size of S
cannot exceed n, where n is number of states of the minimal DFA accepting U .
Therefore, the top-level loop of L* executes no more than n times.

Non-uniform Refinement. It is interesting to note that the feedback from
CE does not refine the candidate in the abstraction/refinement sense: refine-
ment here does not necessarily add/eliminate a positive/negative CE ; this oc-
curs eventually, but not necessarily in one step. Indeed, the first improvement
we propose leverages this observation to reduce the number of candidate queries.
It is also interesting to note that the refinement does not work in one direction:
it may remove strings that are in U or add strings that are not in U . The only
guarantee that we have is that in each step at least one state is added to the
candidate and that eventually L* learns U itself.

Complexity. Overall, the number of membership queries made by L* is O(kn2+
n log m), where k = |Σ| is the size of the alphabet of U , and m is the length of
the longest counterexample to a candidate query returned by the MAT [4]. The

282 S. Chaki and O. Strichman

dominating fragment of this complexity is kn2 which varies directly with the
size of Σ. As noted before, the Σ used in the literature is sufficient, but often
unnecessarily large. The third improvement we propose is aimed at reducing the
number of membership queries by minimizing the size of Σ.

4 AG Reasoning with L*

In this section, we describe the key ideas behind the automated AG procedure
proposed by Cobleigh et al. [1]. We begin with a fact that we use later on.

Fact 1. For any FA M1 and M2 with alphabets Σ1 and Σ2, L(M1 × M2) �= ∅
iff ∃σ ∈ L(M1)� σ�(Σ1∩Σ2)∈ L(M2)�(Σ1∩Σ2).

Let us now restate AG-NC to reflect our implementation more accurately:

A × (M1×ϕ̄) � ⊥
M2 � A

(M1×ϕ̄) × M2 � ⊥ (3)

where ⊥ denotes a DFA accepting the empty language. The unknown language
to be learned is

U = L((M1×ϕ̄)�Σ) (4)

over the alphabet Σ = (Σ1 ∪ Σϕ) ∩ Σ2 where Σ1, Σ2 and Σϕ are the alphabets
of M1, M2 and ϕ respectively2. The choice of U and Σ is significant because,
by Fact 1, the consequence of Eq. 3 does not hold iff the intersection between
U = L((M1×ϕ̄)�Σ) and L(M2 �Σ) is non-empty. This situation is depicted in
Fig. 3(a). Hence, if A is the DFA computed by L* such that L(A) = U , any
counterexample to the second premise M2 � A is guaranteed to be a real one.
However, in practice, the process terminates after learning U itself only in the
worst case. As we shall see, it usually terminates earlier by finding either a
counterexample to M1 × M2 � ϕ, or an assumption A that satisfies the two
premises of Eq. 3. This later case is depicted in Fig. 3(b).

MAT Implementation. The answer to a membership query with a string σ is
“Yes” iff σ cannot be simulated on M1×ϕ̄ (see Eq. 4). A candidate query with
some candidate A, on the other hand, is more complicated, and is described
step-wise as follows (for brevity, we omit a diagram and refer the reader to the
non-dashed portion of Figure 4):

Step 1. Use model checking to verify that A satisfies the first premise of Eq. 3.
If the verification of the first premise fails, obtain a counterexample trace π ∈
L(A × M1×ϕ̄) and proceed to Step 2. Otherwise, go to Step 3.

2 Note that we do not compute U directly because complementing M1, a non-
deterministic automaton, is typically intractable.

Optimized L*-Based Assume-Guarantee Reasoning 283

L(M1×ϕ̄)
L(M2)

L(M2)
L(M1×ϕ̄)(f)

(c)

L(M2)
L(M1×ϕ̄)(e)

L(M2)

A

(a) (b)

A = U

L(M1×ϕ̄)(d)

π
L(M1×ϕ̄) L(M2) L(M1×ϕ̄)

A
π

π

L(M2)

A

π

A

A

π

Fig. 3. Different L* scenarios. The gray area represents the candidate assumption A.

Step 2. Denote π�Σ by π′. Check via simulation if π′ ∈ L(M2�Σ). If so, then by
Fact 1, L(M1×ϕ̄ × M2) �= ∅ (i.e., M1 × M2 �� ϕ) and the algorithm terminates.
This situation is depicted in Fig. 3(c). Otherwise π′ ∈ L(A) − U is a negative
counterexample, as depicted in Fig. 3(d). Control is returned to L* with π′.

Step 3. At this point A is known to satisfy the first premise. Proceed to model
check the second premise. If M2 � A holds as well, then by Eq. 3 conclude that
M1 × M2 � ϕ and terminate. This possibility was already shown in Fig. 3(b).
Otherwise obtain a counterexample π ∈ L(M2 × A) and proceed to Step 4.

Step 4. Once again denote π �Σ by π′. Check if π′ ∈ L((M1×ϕ̄) �Σ). If so,
then by Fact 1, L(M1 × ϕ̄ × M2) �= ∅ (i.e., M1 × M2 �� ϕ) and the algorithm
terminates. This scenario is depicted in Fig. 3(e). Otherwise π′ ∈ U − L(A) is a
positive counterexample, as depicted in Fig. 3(f) and we return to L* with π′.

Note that Steps 2 and 4 above are duals obtained by interchanging M1 × ϕ̄
with M2 and U with L(A). Also, note that Fact 1 could be applied in Steps 2
and 4 above only because Σ = (Σ1 ∪ Σϕ) ∩ Σ2. In the next section, we propose

284 S. Chaki and O. Strichman

an improvement that allows Σ to be varied. Consequently, we also modify the pro-
cedure for answering candidate queries so that Fact 1 is used only in a valid manner.

5 Optimized L*-Based AG Reasoning

In this section we list three improvements to the algorithm described in Section 4.
The first two improvements reduce the number of candidate and membership
queries respectively. The third improvement is aimed at completing the verifica-
tion process using an assumption alphabet that is smaller than (Σ1 ∪ Σϕ) ∩ Σ2.

5.1 Reusing Counterexamples

Recall from Section 3 that every candidate query counterexample π returned to
L* is used to find a suffix that makes the table not closed, and hence adds at least
one state (row) to the current candidate C (observation table). Let C′ denote
the new candidate constructed in the next iteration of the top-level loop (see
Figure 2). We say that C′ is obtained by refining C on π. However, the refine-
ment process does not guarantee the addition/elimination of a positive/negative
counterexample from C′. Thus, a negative counterexample π ∈ L(C) − U may
still be accepted by C′, and a positive counterexample π ∈ U − L(C) may still
be rejected by C′. This leads naturally to the idea of reusing counterexamples.
Specifically, for every candidate C′ obtained by refining on a negative counterex-
ample π, we check, via simulation, whether π ∈ L(C′). If this is the case, we
repeat the refinement process on C′ using π instead of performing a candidate
query with C′. The same idea is applied to positive counterexamples as well.
Thus, if we find that π �∈ L(C′) for a positive counterexample π, then π is used
to further refine C′. This optimization reduces the number of candidate queries.

5.2 Selective Membership Queries

Recall the operation of closing the table (see Lines 3 and 4 of Figure 2) in L*.
For every row s added to S, L* must compute T for every possible extension of
s by a single action. Thus L* must decide if s · α · e ∈ U for each α ∈ Σ and
e ∈ E — a total of |Σ| · |E| membership queries. To see how a membership query
is answered, for any σ ∈ Σ∗, let Sim(σ) be the set of states of M1×ϕ̄ reached
by simulating σ from an initial state of M1×ϕ̄ and by treating actions not in Σ
as ε (i.e., ε-transitions are allowed where the actions are local to M1×ϕ̄). Then,
σ ∈ U iff Sim(σ) does not contain an accepting state of M1×ϕ̄.

Let us return to the problem of deciding if s · α · e ∈ U . Let En(s) = {α′ ∈
Σ | δ(α′, Sim(s)) �= ∅} be the set of enabled actions from Sim(s) in M1 × ϕ̄.
Now, for any α �∈ En(s), Sim(s · α · e) = ∅ and hence s · α · e is guaranteed to
belong to U . This observation leads to our second improvement. Specifically, for
every s added to S, we first compute En(s). Note that En(s) is computed by
simulating s�Σ1 on M1 and s�Σϕ on ϕ separately, without composing M1 and
ϕ. We then make membership queries with s · α · e, but only for α ∈ En(s). For
all α �∈ En(s) we directly set T (s · α, e) = 1 since we know that in this case

Optimized L*-Based Assume-Guarantee Reasoning 285

s · α · e ∈ U . The motivation behind this optimization is that En(s) is usually
much smaller that Σ for any s. The actual improvement in performance due to
this tactic depends on the relative sizes of En(s) and Σ for the different s ∈ S.

5.3 Minimizing the Assumption Alphabet

As mentioned before, existing automated AG procedures use a constant assump-
tion alphabet Σ = (Σ1 ∪ Σϕ) ∩ Σ2. There may exist, however, an assumption A
over a smaller alphabet Σc ⊂ Σ that satisfies the two premises of Eq. 3. Since
Eq. 3 is sound, the existence of such an A would still imply that M1 × M2 � ϕ.
However, recall that the number of L* membership queries varies directly with
the alphabet size. Therefore, the benefit, in the context of learning A, is that a
smaller alphabet leads to fewer membership queries.

In this section, we propose an abstraction-refinement scheme for building an
assumption over a minimal alphabet. During our experiments, this improvement
led to a 6 times reduction in the size of the assumption alphabet. The main prob-
lem with changing Σ is of course that AG-NC is no longer complete. Specifically,
if ΣC ⊂ Σ, then there might not exist any assumption A over ΣC that satisfies
the two premises of AG-NC even though the conclusion of AG-NC holds. The
following theorem characterizes this phenomenon precisely.

Theorem 1 (Incompleteness of AG-NC). Suppose there exists a string π and
an alphabet ΣC such that: (inc) π�ΣC ∈ L((M1×ϕ̄)�ΣC) and π�ΣC ∈ L(M2�ΣC).
Then no assumption A over ΣC satisfies the two premises of AG-NC.

Proof. Suppose there exists a π satisfying inc and an A over ΣC satisfying the
two premises of AG-NC. This leads to a contradiction as follows:

– Case 1: π�ΣC ∈ L(A). Since A satisfies the first premise of AG-NC, we have
π�ΣC �∈ L((M1×ϕ̄)�ΣC), a contradiction with inc.

– Case 2: π �ΣC �∈ L(A). Hence π �ΣC∈ L(A). Since A satisfies the second
premise of AG-NC, we have π�ΣC �∈ L(M2�ΣC), again contradicting inc. ��

We say that an alphabet ΣC is incomplete if ΣC �= Σ and there exists a trace
π satisfying condition inc above. Therefore, whenever we come across a trace π
that satisfies inc, unless ΣC = Σ, we know that the current ΣC is incomplete
and must be refined. We now describe our overall procedure which incorporates
testing ΣC for incompleteness and refining an incomplete ΣC appropriately.

Detecting Incompleteness. Our optimized automated AG procedure is de-
picted in Fig. 4. Initially Σc = ∅3. Let us write π′ and π′′ to mean π�ΣC and π�Σ

respectively. The process continues as in Section 4, until one of the following two
scenarios occur while answering a candidate query:

– Scenario 1: We reach Step 2 with a trace π ∈ L(A × M1×ϕ̄). Note that this
implies π′ ∈ L((M1×ϕ̄)�ΣC). Now we first check if π′ ∈ L(M2�ΣC). If not,

3 We could also start with Σc = Σϕ since it is very unlikely that ϕ can be proven or
disproven without controlling the actions that define it.

286 S. Chaki and O. Strichman

L* A

M2 � A π � M1×ϕ̄�ΣC

π′ � M2�ΣC

N

N

Y

Y

M1 × M2 � ϕ

N

N
A × M1 � ϕ

π

π

with Σ for ΣC

Repeat checkY

Y

M1 × M2 �� ϕ

N

Refinement :
Update Σc

Positive counterexample: π ∈ U − L(A)

Negative counterexample: π ∈ L(A) − U

and π′′ for π′

Fig. 4. Generalized AG with L*, with an abstraction-refinement loop (added with
dashed lines) based on the assumption alphabet Σc ⊆ Σ. Strings π′ and π′′ denote
π�ΣC and π�Σ respectively.

we return π′ as a negative counterexample to L* exactly as in Section 4.
However, if π′ ∈ L(M2�ΣC), then π satisfies the condition inc of Theorem 1,
and hence ΣC is incomplete. Instead of refining ΣC at this point, we first
check if π′′ ∈ L(M2�Σ). If so, then as in Section 4, by a valid application
of Fact 1, M1 × M2 �� ϕ and the algorithm terminates. Otherwise, if π′′ �∈
L(M2�Σ), we refine ΣC .

– Scenario 2: We reach Step 4 with π ∈ L(M2 × A). Note that this implies
π′ ∈ L(M2 �ΣC). We first check if π′ ∈ L((M1×ϕ̄)�ΣC). If not, we return
π′ as a positive counterexample to L* exactly as in Section 4. However,
if π′ ∈ L((M1×ϕ̄) �ΣC), then π satisfies inc, and hence by Theorem 1,
ΣC is incomplete. Instead of refining ΣC at this point, we first check if
π′′ ∈ L((M1×ϕ̄)�Σ). If so, then as in Section 4, by a valid application of
Fact 1, M1 × M2 �� ϕ and we terminate. Otherwise, if π′′ �∈ L((M1×ϕ̄)�Σ),
we refine ΣC .

Note that the checks involving π′′ in the two scenarios above correspond to
the concretization attempts in a standard CEGAR loop. Also, Scenarios 1 and 2
are duals (as in the case of Steps 2 and 4 in Section 4) obtained by interchanging
M1×ϕ̄ with M2 and U with L(A). In essence, while solving a candidate query, an
incomplete ΣC results in a trace (specifically, π above) that satisfies inc and leads
neither to an actual counterexample of M1×M2 � ϕ, nor to a counterexample to
the candidate query being solved. In accordance with the CEGAR terminology,
we refer to such traces as spurious counterexamples and use them collectively to
refine ΣC as described next. In the rest of this section, all counterexamples we
mention are spurious unless otherwise specified.

Optimized L*-Based Assume-Guarantee Reasoning 287

Refining the Assumption Alphabet. A counterexample arising from Sce-
nario 1 above is said to be negative. Otherwise, it arises from Scenario 2 and is
said to be positive. Our description that follows unifies the treatment of these
two types of counterexamples, with the help of a common notation for M1×ϕ̄
and M2. Specifically, let

M (π) =
{

M1×ϕ̄ π is positive
M2 π is negative

We say that an alphabet Σ′ eliminates a counterexample π, and denote this with
Elim(π, Σ′), if π�Σ′ �∈ L(M (π)�Σ′). Therefore, any counterexample π is eliminated
if we choose ΣC such that Elim(π, ΣC) holds since π no longer satisfies the
condition inc. Our goal, however, is to find a minimal alphabet ΣC with this
property. It turns out that finding such an alphabet is computationally hard.

Theorem 2. Finding a minimal eliminating alphabet is NP-hard in |Σ|.

Proof. The proof relies on a reduction from the minimal hitting set problem.

Minimal Hitting Set. A Minimal Hitting Set (MHS) problem is a pair (U, T)
where U is a finite set and T ⊆ 2U is a finite set of subsets of U . A solution to
(U, T) is a minimal X ⊆ U such that ∀T ′ ∈ T � X ∩ T ′ �= ∅. It is well-known that
MHS is NP-complete in |U |.

Now we reduce MHS to finding a minimal eliminating alphabet. Let (U, T)
be any MHS problem and let < be a strict order imposed on the elements of
U . Consider the following problem P of finding a minimal eliminating alphabet.
First, let Σ = U . Next, for each T ′ ∈ T we introduce a counterexample π(T ′)
obtained by arranging the elements of U according to <, repeating each element
of T ′ twice and the remaining elements of U just once. For example suppose
U = {a, b, c, d, e} such that a < b < c < d < e. Then for T ′ = {b, d, e} we
introduce the counterexample π(T ′) = a · b · b · c · d · d · e · e. Also, for each
counterexample π(T ′) introduced, let M(π(T ′)) accept a single string obtained
by arranging the elements of U according to <, repeating each element of U
just once. Thus, for the example U above, M(π(T ′)) accepts the single string
a · b · c · d · e.

Let us first show the following result: for any T ′ ∈ T and any X ⊆ U , X∩T ′ �=
∅ iff Elim(π(T ′), X). In other words, X ∩ T ′ �= ∅ iff π(T ′)�X �∈ L(M(π(T ′))�X).
Indeed suppose that some α ∈ X ∩ T ′. Then π(T ′)�X contains two consecutive
occurrences of α and hence cannot be accepted by M(π(T ′))�X . By the converse
implication, if M(π(T ′))�X does not accept π(T ′)�X , then π(T ′)�X must contain
two consecutive occurrences of some action α. But then α ∈ X ∩ T ′ and hence
X ∩T ′ �= ∅. The above result implies immediately that any solution to the MHS
problem (U, T) is also a minimal eliminating alphabet for P . Also, the reduction
from (U, T) to P described above can be performed using logarithmic space in
|U | + |T |. Finally, |Σ| = |U |, which completes our proof. ��

As we just proved, finding the minimal eliminating alphabet is NP-hard in |Σ|.
Yet, since |Σ| is relatively small, this problem can still be feasible in practice (as

288 S. Chaki and O. Strichman

our experiments have shown: see Section 6). We propose a solution based on a
reduction to Pseudo-Boolean constraints. Pseudo-Boolean constraints have the
same modeling power as 0-1 ILP, but solvers for this logic are typically based on
adapting SAT engines for linear constraints over Boolean variables, and geared
towards problems with relatively few linear constraints (and a linear objective
function) and constraints in CNF.

Optimal Refinement. Let Π be the set of all (positive and negative) counterex-
amples seen so far. We wish to find a minimal ΣC such that: ∀π ∈ Π�Elim(π, ΣC).
To this end, we formulate and solve a Pseudo-Boolean constraint problem with
an objective function stating that we seek a solution which minimizes the cho-
sen set of actions. The set of constraints of the problem is Φ =

⋃
π∈Π Φ(π). In

essence, if M [π] is the minimal DFA accepting {π}, then Φ(π) represents sym-
bolically the states reachable in M [π] × M (π), taking into account all possible
values of ΣC . Henceforth, we continue to use square brackets when referring to
elements of M [π], and regular parenthesis when referring to elements of M (π).

We now define Φ(π) formally. Let M [π] = (S[π], Init[π], Σ[π], T [π], F [π]) and
M (π) = (S(π), Init(π), Σ(π), T (π), F (π)). Let δ[π] and δ(π) be the δ functions of
M [π] and M (π) respectively. We define a state variable of the form (s, t) for
each s ∈ S[π] and t ∈ S(π). Intuitively, the variable (s, t) indicates whether the
product state (s, t) is reachable in M [π] × M (π). We also define a choice variable
s(α) for each action α ∈ Σ, indicating whether α is selected to be included in
ΣC . Now, Φ(π) consists of the following clauses:

Initialization and Acceptance: Every initial and no accepting state is reachable:

∀s ∈ Init[π] � ∀t ∈ Init(π) � (s, t) ∀s ∈ F [π] � ∀t ∈ F (π) � ¬(s, t)

Shared Actions : Successors depend on whether an action is selected or not:

∀α ∈ Σ � ∀s ∈ S[π] � ∀s′ ∈ δ[π](α, s) � ∀t ∈ S(π) � ∀t′ ∈ δ(π)(α, t) � (s, t) ⇒ (s′, t′)
∀α ∈ Σ � ∀s ∈ S[π] � ∀s′ ∈ δ[π](α, s) � ∀t ∈ S(π) � ¬s(α) ∧ (s, t) ⇒ (s′, t)
∀α ∈ Σ � ∀s ∈ S[π] � ∀t ∈ S(π) � ∀t′ ∈ δ(π)(α, t) � ¬s(α) ∧ (s, t) ⇒ (s, t′)

Local Actions : Asynchronous interleaving:

∀α ∈ Σ[π] − Σ � ∀s ∈ S[π] � ∀s′ ∈ δ[π](α, s) � ∀t ∈ S(π) � (s, t) ⇒ (s′, t)
∀α ∈ Σ(π) − Σ � ∀s ∈ S[π] � ∀t ∈ S(π) � ∀t′ ∈ δ(π)(α, t) � (s, t) ⇒ (s, t′)

As mentioned before, the global set of constraints Φ is obtained by collecting
together the constraints in each Φ(π). Observe that any solution ν to Φ has
the following property. Let ΣC = {α | ν(s(α)) = 1}. Then we have ∀π ∈
Π�L((M [π]�ΣC)×(M (π)�ΣC)) = ∅. But since L(M [π]) = {π}, the above statement
is equivalent to ∀π ∈ Π � (π�ΣC) �∈ L(M (π)�ΣC), which is further equivalent to
∀π ∈ Π � Elim(π, ΣC). Thus, ΣC eliminates all counterexamples. Finally, since
we want the minimal such ΣC , we minimize the number of chosen actions via
the following objective function: min

∑
α∈Σ s(α).

Optimized L*-Based Assume-Guarantee Reasoning 289

s1π s2

t2t0 t1

s0

αβ

βα

M1×ϕ̄

Fig. 5. A positive counterexample π and M (π) = M1×ϕ̄

Example 2. Consider Fig. 5, in which there is one counterexample π, and an FA
M (π) = M1×ϕ̄ on which π can be simulated if Σc = ∅. The state variables are
(si, tj) for i, j ∈ [0..2] and the choice variables are s(α), s(β). The constraints
are:

Initialization : (s0, t0) Acceptance : ¬(s2, t2)
SharedActions : (s0, t1) → (s1, t2) (s1, t0) → (s2, t1)

(s0, t0) ∧ ¬s(α) → (s1, t0) (s1, t0) ∧ ¬s(β) → (s2, t0)
(s0, t1) ∧ ¬s(α) → (s1, t1) (s1, t1) ∧ ¬s(β) → (s2, t1)
(s0, t2) ∧ ¬s(α) → (s1, t2) (s1, t2) ∧ ¬s(β) → (s2, t2)
(s0, t0) ∧ ¬s(β) → (s0, t1) (s0, t1) ∧ ¬s(α) → (s0, t2)
(s1, t0) ∧ ¬s(β) → (s1, t1) (s1, t1) ∧ ¬s(α) → (s1, t2)
(s2, t0) ∧ ¬s(β) → (s2, t1) (s2, t1) ∧ ¬s(α) → (s2, t2)

Since there are no local actions, these are all the constraints. The objective is to
minimize s(α) + s(β). The optimal solution is s(α) = s(β) = 1, corresponding
to the fact that both actions need to be in ΣC in order to eliminate π. ��

6 Experiments

We implemented our technique in ComFoRT and experimented with a set of
benchmarks derived from real-life source code. All our experiments were carried
out on quad 2.4 GHz machine with 4 GB RAM running RedHat Linux 9. We
used PBS version 2.14 to solve the Pseudo-Boolean constraints. The benchmarks
were derived from the source code of OpenSSL version 0.9.6c. Specifically, we
used the code that implements the handshake between a client and a server
at the beginning of an SSL session. We designed a suite of 10 examples, each
aiming a specific property (involving a sequence of message-passing events) that
a correct handshake should exhibit. For instance, the first example (SSL-1) was
aimed at verifying that a handshake is always initiated by a client and never by
a server.

The experiments were aimed at evaluating our proposed improvements sepa-
rately, and in conjunction with each other in the context of AG-NC. The results
are described in Figure 6. The columns labeled MemQ and CandQ contain the
total number of membership and candidate queries respectively. The columns
labeled with Ti and ¬Ti contain results with/without the ith improvement for

4 http://www.eecs.umich.edu/∼faloul/Tools/pbs

290 S. Chaki and O. Strichman

Name CandQ MemQ Alph Time ¬T1 Time T1

¬T2 T2 ¬T2 T2

¬T1 T1 ¬T2 T2 ¬T3 T3 ¬T3 T3 ¬T3 T3 ¬T3 T3 ¬T3 T3

SSL-1 2.2 2.0 37.5 4.5 12 1 25.4 19.7 12.3 20.0 23.8 20.1 10.5 20.5

SSL-2 5.0 5.2 101.5 11.5 12 4 31.5 40.0 12.6 30.0 32.4 44.6 13.7 30.2

SSL-3 8.5 7.5 163.0 28.0 12 4 43.8 49.1 14.5 35.3 45.6 48.9 15.6 35.5

SSL-4 13.0 10.5 248.0 56.5 12 4 63.0 67.5 17.4 58.1 61.5 67.7 18.6 48.4

SSL-5 3.2 3.0 73.0 9.5 12 1 33.8 22.3 13.6 24.1 36.2 22.2 13.8 22.2

SSL-6 6.8 7.2 252.0 36.5 12 2 102.8 30.6 24.2 29.0 102.2 43.3 23.1 29.8

SSL-7 9.8 8.0 328.8 52.5 12 2 139.9 44.4 27.8 43.9 138.2 38.6 28.2 40.6

SSL-8 15.0 13.0 443.0 77.5 12 3 183.3 73.6 37.1 67.9 184.0 73.2 35.8 64.2

SSL-9 23.5 18.2 568.0 109.5 12 3 234.1 120.5 44.1 133.7 236.2 133.4 41.0 109.3

SSL-10 25.5 22.0 689.5 128.5 12 3 293.9 188.6 48.4 168.1 297.0 179.9 45.9 169.7

Avg. 10.8 9.2 290.0 51.0 12 2 115.1 65.6 25.2 61.0 115.7 67.2 24.6 57.1

Fig. 6. Experimental Results for Non-Circular Rule AG-NC

i ∈ {1, 2, 3}. The row labeled “Avg.” contains the arithmetic mean for the rest
of the column. Best figures are highlighted. Note that entries under MemQ and
CandQ are fractional since they represent the average over the four possible val-
ues of the remaining two improvements. Specifically, these are improvements 2
and 3 for CandQ, and improvements 1 and 3 for MemQ.

We observe that the improvements lead to the expected results in terms of
reducing the number of queries and the size of assumption alphabets. The second
and third improvements also lead to significant reductions in overall verification
time, by a factor of over 12 on an average. Finally, even though the first im-
provement entails fewer candidate queries, it is practically ineffective for reducing
overall verification time.

References

1. Cobleigh, J.M., Giannakopoulou, D., Păsăreanu, C.S.: Learning assumptions for
compositional verification. In: Proc. of TACAS. (2003)

2. Angluin, D.: Learning Regular Sets from Queries and Counterexamples. Informa-
tion and Computation (2) (1987)

3. Chaki, S., Ivers, J., Sharygina, N., Wallnau, K.: The ComFoRT Reasoning Frame-
work. In: Proc. of CAV. (2005)

4. Rivest, R.L., Schapire, R.E.: Inference of Finite Automata Using Homing Se-
quences. Information and Computation (2) (1993)

5. Peled, D., Vardi, M., Yannakakis, M.: Black box checking. In: Proc. of FORTE.
(1999)

6. Groce, A., Peled, D., Yannakakis, M.: Adaptive Model Checking. In: Proc. of
TACAS. (2002)

7. Alur, R., Cerny, P., Gupta, G., Madhusudan, P., Nam, W., Srivastava, A.: Synthesis
of Interface Specifications for Java Classes. In: POPL. (2005)

8. Habermehl, P., Vojnar, T.: Regular model checking using inference of regular
languages. In: Proc. of INFINITY. (2005)

Optimized L*-Based Assume-Guarantee Reasoning 291

9. Ernst, M., Cockrell, J., Griswold, W., Notkin, D.: Dynamically Discovering Likely
Program Invariants to Support Program Evolution. In: Proc. of ICSE. (1999)

10. Alur, R., Madhusudan, P., Nam, W.: Symbolic compositional verification by learn-
ing assumptions. In: Proc. of CAV. (2005)

11. Chaki, S., Clarke, E., Sinha, N., Thati, P.: Automated Assume-Guarantee Rea-
soning for Simulation Conformance. In: Proc. of CAV. (2005)

12. Chaki, S., Sinha, N.: Assume-guarantee reasoning for deadlock. In: Proc. of FM-
CAD. (2006)

13. Giannakopoulou, D., Păsăreanu, C., Barringer, H.: Assumption Generation for
Software Component Verification. In: Proc. of ASE. (2002)

14. Pnueli, A.: In Transition from Global to Modular Temporal Reasoning About
Programs. Logics and Models of Concurrent Systems (1985)

15. Kurshan, R.: Computer-Aided Verification of Coordinating Processes: The
Automata-Theoretic Approach. Princeton University Press (1994)

16. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-Guided Ab-
straction Refinement for Symbolic Model Checking. Journal of the ACM (JACM)
(5) (2003)

17. Ball, T., Rajamani, S.: Generating Abstract Explanations of Spurious Counterex-
amples in C Programs. Technical Report MSR-TR-2002-09, Microsoft (2002)

18. Gheorghiu, M., Giannakopoulou, D., Păsăreanu, C.: Refining Interface Alphabets
for Compositional Verification. In: Proc. of TACAS. (2007)

Refining Interface Alphabets for Compositional
Verification

Mihaela Gheorghiu1, Dimitra Giannakopoulou2, and Corina S. Păsăreanu2

1 Department of Computer Science, University of Toronto,
Toronto, ON M5S 3G4, Canada

mg@cs.toronto.edu
2 RIACS and QSS, NASA Ames Research Center,

Moffett Field, CA 94035, USA
{dimitra,pcorina}@email.arc.nasa.gov

Abstract. Techniques for learning automata have been adapted to automatically
infer assumptions in assume-guarantee compositional verification. Learning, in
this context, produces assumptions and modifies them using counterexamples
obtained by model checking components separately. In this process, the inter-
face alphabets between components, that constitute the alphabets of the assump-
tion automata, are fixed: they include all actions through which the components
communicate. This paper introduces alphabet refinement, a novel technique that
extends the assumption learning process to also infer interface alphabets. The
technique starts with only a subset of the interface alphabet and adds actions to it
as necessary until a given property is shown to hold or to be violated in the sys-
tem. Actions to be added are discovered by counterexample analysis. We show
experimentally that alphabet refinement improves the current learning algorithms
and makes compositional verification by learning assumptions more scalable than
non-compositional verification.

1 Introduction

Model checking is an effective technique for finding subtle errors in concurrent soft-
ware. Given a finite model of a system and of a required property, model checking
determines automatically whether the property is satisfied by the system. The limita-
tion of this approach, known as the “state-explosion” problem [9], is that it needs to
explore all the system states, which may be intractable for realistic systems.

Compositional verification addresses state explosion by a “divide and conquer” ap-
proach: properties of the system are decomposed into properties of its components and
each component is then checked separately. In checking components individually, one
needs to incorporate some knowledge of the contexts in which the components are ex-
pected to operate correctly. Assume-guarantee reasoning [18,23] addresses this issue
by introducing assumptions that capture the expectations of a component from its envi-
ronment. Assumptions have traditionally been defined manually, which has limited the
practical impact of assume-guarantee reasoning.

Recent work [12,5] has proposed a framework based on learning that fully auto-
mates assume-guarantee model checking of safety properties. Since then, several sim-
ilar frameworks have been presented [3,21,25]. To check that a system consisting of

O. Grumberg and M. Huth (Eds.): TACAS 2007, LNCS 4424, pp. 292–307, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Refining Interface Alphabets for Compositional Verification 293

components M1 and M2 satisfies a safety property P , the framework automatically
guesses and refines assumptions for one of the components to satisfy P , which it then
tries to discharge on the other component. The approach is guaranteed to terminate, sta-
ting that the property holds for the system, or returning a counterexample if the property
is violated.

Compositional techniques have been shown particularly effective for well-structured
systems that have small interfaces between components [7,15]. Interfaces consist of all
communication points through which the components may influence each other’s be-
havior. In the learning framework of [12] the alphabet of the assumption automata being
built includes all the actions in the component interface. However, in a case study pre-
sented in [22], we observed that a smaller alphabet was sufficient to prove the property.
This smaller alphabet was determined through manual inspection and with it, assume-
guarantee reasoning achieves orders of magnitude improvement over monolithic (i.e.,
non-compositional) model checking [22].

Motivated by the successful use of a smaller assumption alphabet in learning, we
investigate here whether we can automate the process of discovering a smaller alphabet
that is sufficient for checking the desired properties. Smaller alphabet means smaller
interface between components, which may lead to smaller assumptions, and hence to
smaller verification problems. We propose a novel technique called alphabet refinement
that extends the learning framework to start with a small subset of the interface alphabet
and to add actions into it as necessary until a required property is shown to hold or to
be violated in the system. Actions to be added are discovered by analysis of the coun-
terexamples obtained from model checking the components. We study the properties of
alphabet refinement and show experimentally that it leads to time and memory savings
as compared to the original learning framework [12] and monolithic model checking.
The algorithm has been implemented within the LTSA model checking tool [20].

The algorithm is applicable to and may benefit any of the previous learning-based
approaches [3,21,25]; it may also benefit other compositional analysis techniques. Com-
positional Reachability Analysis (CRA), for example, computes abstractions of com-
ponent behaviors based on their interfaces. In the context of property checking [7,19],
smaller interfaces may result in more compact abstractions, leading to smaller state
spaces when components are put together.

The rest of the paper is organized as follows. Sec. 3 presents a motivating exam-
ple. Sec. 4 summarizes the original learning framework from [12]. Sec. 5 presents the
main algorithm for interface alphabet refinement. Sec. 6 discusses properties and Sec. 7
provides an experimental evaluation of the proposed algorithm. Sec. 8 surveys some
related work and Sec. 9 concludes the paper. In the next section we review the main
ingredients of the LTSA tool and the L* learning algorithm.

2 Background

Labeled Transition Systems (LTSs). LTSA is an explicit-state model checker that an-
alyzes finite-state systems modeled as labeled transition systems (LTSs). Let A be the
universal set of observable actions and let τ denote a special action that is unobservable.

294 M. Gheorghiu, D. Giannakopoulou, and C.S. Păsăreanu

0 0 1 21
clienti.
useResource2

clienti.request clienti.grant

clienti.cancel

Clienti:

clienti.deny client1.cancel

client2.cancel

client1.grant

client2.grant
P :

Fig. 1. Example LTS for a client (left) and a mutual exclusion property (right)

An LTS M is a tuple 〈Q, αM, δ, q0〉, where: Q is a finite non-empty set of states;
αM ⊆ A is a set of observable actions called the alphabet of M ; δ ⊆ Q×(αM∪{τ})×
Q is a transition relation, and q0 is the initial state. An LTS M is non-deterministic
if it contains τ -transitions or if ∃(q, a, q′), (q, a, q′′) ∈ δ such that q′ �= q′′. Other-
wise, M is deterministic. We use π to denote a special error state that has no out-
going transitions, and Π to denote the LTS 〈{π}, A, ∅, π〉. Let M = 〈Q, αM, δ, q0〉
and M ′ = 〈Q′, αM ′, δ′, q′0〉. We say that M transits into M ′ with action a, denoted
M

a→ M ′, if and only if (q0, a, q′0) ∈ δ and either Q = Q′, αM = αM ′, and δ = δ′

for q′0 �= π, or, in the special case where q′0 = π, M ′ = Π .
Consider a simple client-server application (from [22]). It consists of a server com-

ponent and two identical client components that communicate through shared actions.
Each client sends requests for reservations to use a common resource, waits for the
server to grant the reservation, uses the resource, and then cancels the reservation. For
example, the LTS of a client is shown in Fig. 1 (left), where i = 1, 2. The server can
grant or deny a request, ensuring that the resource is used only by one client at a time
(the LTS of the server is shown in [14]).

Parallel Composition. Parallel composition “‖” is a commutative and associative op-
erator such that: given LTSs M1 = 〈Q1, αM1, δ

1, q1
0〉 and M2 = 〈Q2, αM2, δ

2, q2
0〉,

M1 ‖ M2 is Π if either one of M1, M2 is Π . Otherwise, M1 ‖ M2 is an LTS
M = 〈Q, αM, δ, q0〉 where Q = Q1 × Q2, q0 = (q1

0 , q2
0), αM = αM1 ∪ αM2, and δ

is defined as follows (the symmetric version also applies):

M1
a→ M ′

1, a /∈ αM2

M1 ‖ M2
a→ M ′

1 ‖ M2

M1
a→ M ′

1, M2
a→ M ′

2, a �= τ

M1 ‖ M2
a→ M ′

1 ‖ M ′
2

Traces. A trace t of an LTS M is a sequence of observable actions starting from the
initial state and obeying the transition relation. The set of all traces of M is called the
language of M , denoted L(M). Any trace t may also be viewed as an LTS, which
we call a trace LTS; its language consists of t and its prefixes. We denote by t both a
trace and its trace LTS; the meaning should be clear from the context. For Σ ⊆ A, we
denote by t↓Σ the trace obtained by removing from t all occurrences of actions a /∈ Σ.
Similarly, M↓Σ is defined to be an LTS over alphabet Σ which is obtained from M by
renaming to τ all the transitions labeled with actions that are not in Σ. Let t, t′ be two
traces. Let A, A′ be the sets of actions occurring in t, t′, respectively. By the symmetric
difference of t and t′ we mean the symmetric difference of sets A and A′.

Safety properties. We call a deterministic LTS not containing π a safety LTS (any non-
deterministic LTS can be made deterministic with the standard algorithm for automata).

Refining Interface Alphabets for Compositional Verification 295

1 20
client1.cancel
client2.cancel

client1.grant

client1.cancel

client2.cancel
client1.grant

Server

request

grant

deny

cancel

Clients

A: client2.grant

client2.cancel
client1.cancel

client2.grant

Fig. 2. Client-Server Example: complete interface (left) and derived assumption with alphabet
smaller than complete interface alphabet (right).

A safety property P is specified as a safety LTS whose language L(P) defines the set
of acceptable behaviors over αP . For example, the mutual exclusion property in Fig. 1
(right) captures the desired behaviour of the client-server application discussed earlier.

An LTS M satisfies P , denoted M |= P , iff ∀σ ∈ M : σ↓αP ∈ L(P). For checking
a property P , its safety LTS is completed by adding error state π and transitions on all
the missing outgoing actions from all states into π; the resulting LTS is denoted by Perr.
LTSA checks M |= P by computing M ‖ Perr and checking if π is reachable in the
resulting LTS.

Assume-guarantee reasoning. In the assume-guarantee paradigm a formula is a triple
〈A〉M〈P 〉, where M is a component, P is a property, and A is an assumption about M ’s
environment. The formula is true if whenever M is part of a system satisfying A, then
the system must also guarantee P . In LTSA, checking 〈A〉M〈P 〉 reduces to checking
A ‖ M |= P . The simplest assume-guarantee proof rule shows that if 〈A〉M1〈P 〉 and
〈true〉M2〈A〉 hold, then 〈true〉M1 ‖ M2〈P 〉 also holds:

(Premise 1) 〈A〉M1〈P 〉
(Premise 2) 〈true〉M2〈A〉

〈true〉M1 ‖ M2〈P 〉

Coming up with appropriate assumptions used to be a difficult, manual process. Re-
cent work has proposed an off-the-shelf learning algorithm, L*, to derive appropriate
assumptions automatically [12].

The L* learning algorithm. L* was developed by Angluin [4] and later improved by
Rivest and Schapire [24]. L* learns an unknown regular language U over alphabet Σ
and produces a deterministic finite state automaton (DFA) that accepts it. L* interacts
with a Minimally Adequate Teacher that answers two types of questions from L*. The
first type is a membership query asking whether a string s ∈ Σ∗ is in U . For the second
type, the learning algorithm generates a conjecture A and asks whether L(A) = U . If
L(A) �= U the Teacher returns a counterexample, which is a string s in the symmetric
difference of L(A) and U . L* is guaranteed to terminate with a minimal automaton A
for U . If A has n states, L* makes at most n − 1 incorrect conjectures. The number
of membership queries made by L* is O(kn2 + n log m), where k is the size of Σ, n
is the number of states in the minimal DFA for U , and m is the length of the longest
counterexample returned when a conjecture is made.

296 M. Gheorghiu, D. Giannakopoulou, and C.S. Păsăreanu

3 Assume-Guarantee Reasoning and Small Interface Alphabets

We illustrate the benefits of smaller interface alphabets for assume guarantee reason-
ing through the client-server example of Sec. 2. To check the property in a compo-
sitional way, assume that we break up the system into: M1 = Client1 ‖ Client2
and M2 = Server. The complete alphabet of the interface between M1 ‖ P and
M2 (see Fig. 2 (left)) is: {client1.cancel, client1.grant, client1.deny, client1.request,
client2.cancel, client2.grant, client2.deny, client2.request}.

Using this alphabet and the learning method of [12] yields an assumption with 8
states (see [14]). However, a (much) smaller assumption is sufficient for proving the mu-
tual exclusion property (see Fig. 2 (right)). The assumption alphabet is {client1.cancel,
client1.grant, client2.cancel, client2.grant}, which is a strict subset of the complete in-
terface alphabet (and is, in fact, the alphabet of the property). This assumption has just 3
states, and enables more efficient verification than the 8-state assumption obtained with
the complete alphabet. In the following sections, we present techniques to infer smaller
interface alphabets (and the corresponding assumptions) automatically.

4 Learning for Assume-Guarantee Reasoning

We briefly present here the assume-guarantee framework from [12]. The framework
uses L* to infer assumptions for compositional verification. A central notion of the
framework is that of the weakest assumption [15], defined formally here.

Definition 1 (Weakest Assumption for Σ). Let M1 be an LTS for a component, P be
a safety LTS for a property required of M1, and Σ be the interface of the component
to the environment. The weakest assumption Aw,Σ of M1 for Σ and for property P is
a deterministic LTS such that: 1) αAw,Σ = Σ, and 2) for any component M2, M1 ‖
(M2↓Σ) |= P iff M2 |= Aw,Σ

The notion of a weakest assumption depends on the interface between the component
and its environment. Accordingly, projection of M2 to Σ forces M2 to communicate
with our module only through Σ (second condition above). In [15] we showed that the
weakest assumptions exist for components expressed as LTSs and safety properties and
provided an algorithm for computing these assumptions.

The definition above refers to any environment component M2 that interacts with
component M1 via an alphabet Σ. When M2 is given, there is a natural notion of the
complete interface between M1 and its environment M2, when property P is checked.

Definition 2 (Interface Alphabet). Let M1 and M2 be component LTSs, and P be a
safety LTS. The interface alphabet ΣI of M1 is defined as: ΣI = (αM1 ∪αP) ∩ αM2.

Definition 3 (Weakest Assumption). Given M1, M2 and P as above, the weakest
assumption Aw is defined as Aw,ΣI .

Note that, to deal with any system-level property, we allow properties in definition 2
to include actions that are not in αM1 but are in αM2. These actions need to be in the

Refining Interface Alphabets for Compositional Verification 297

conjecture: A

counterex t false

Teacher

L*

add counterex

〈s〉M1〈P 〉
true

false

false

true

Oracle 2:
true

Counterexample
Analysis

Inputs: M1, M2, P, Σ

〈true〉M2〈A〉

〈t↓Σ〉M1〈P〉LTSA:

Oracle 1: 〈A〉M1〈P〉

Output: M1||M2 |= P

(assumption A)

Output: M1||M2 �|= P

(counterex c)

falsetruet↓Σ

remove counterex

query: string s

Fig. 3. Learning framework

interface since they are controllable by M2. Moreover from the above definitions, it
follows that M1 ‖ M2 |= P iff M2 |= Aw.

Learning framework. The original learning framework from [12] is illustrated in
Fig. 3. The framework checks M1 ‖ M2 |= P by checking the two premises of the
assume-guarantee rule separately, and using the conjectures A from L* as assumptions.
The alphabet given to the learner is fixed to Σ = ΣI . The automaton A output by L*
is, in the worst case, the weakest assumption Aw.

The Teacher is implemented using model checking. For membership queries on
string s, the Teacher uses LTSA to check 〈s〉M1〈P 〉. If true, then s ∈ L(Aw), so
the Teacher returns true. Otherwise, the answer to the query is false. The conjectures
returned by L* are intermediate assumptions A. The Teacher implements two oracles:
Oracle 1 guides L* towards a conjecture that makes 〈A〉M1〈P 〉 true. Once this is ac-
complished, Oracle 2 is invoked to discharge A on M2. If this is true, then the assume
guarantee rule guarantees that P holds on M1 ‖ M2. The Teacher then returns true and
the computed assumption A. Note that A is not necessarily Aw, it can be stronger than
Aw, i.e., L(A) ⊆ L(Aw), but the computed assumption is good enough to prove that
the property holds or is violated. If model checking returns a counterexample, further
analysis is needed to determine if P is indeed violated in M1 ‖ M2 or if A is imprecise
due to learning, in which case A needs to be modified.

Counterexample analysis. Trace t is the counterexample from Oracle 2 obtained by
model checking 〈true〉M2〈A〉. To determine if t is a real counterexample, i.e., if it leads
to error in M1 ‖ M2 ‖ Perr, the Teacher analyzes t on M1 ‖ Perr. In doing so, the
Teacher needs to first project t onto the assumption alphabet Σ, that is the interface
of M2 to M1 ‖ Perr. Then the Teacher uses LTSA to check 〈t↓Σ〉M1〈P 〉. If the er-
ror state is not reached during the model checking, t is not a real counterexample, and
t↓Σ is returned to the learner L* to modify its conjecture. If the error state is reached,
the model checker returns a counterexample c that witnesses the violation of P on M1
in the context of t↓Σ . With the assumption alphabet Σ = ΣI , c is guaranteed to be a real

298 M. Gheorghiu, D. Giannakopoulou, and C.S. Păsăreanu

error trace on M1 ‖ M2 ‖ Perr [12]. However, as we shall see in the next section, if
Σ ⊂ ΣI , c is not necessarily a real counterexample and further analysis is needed.

5 Learning with Alphabet Refinement

Let M1 and M2 be components, P be a property, ΣI be the interface alphabet, and Σ
be an alphabet such that Σ ⊂ ΣI . Assume that we use the learning framework of the
previous section, but we now set this smaller Σ to be the alphabet of the assumption
that the framework learns. From the correctness of the assume-guarantee rule, if the
framework reports true, M1 ‖ M2 |= P . When it reports false, it is because it finds a
trace t in M2 that falsifies 〈t↓Σ〉M1〈P 〉. This, however, does not necessarily mean that
M1 ‖ M2 �|= P . Real violations are discovered by our original framework only when
the alphabet is ΣI , and are traces t′ of M2 that falsify 〈t′↓ΣI 〉M1〈P 〉1.

Consider again the client-server example. Assume Σ = {client1.cancel, client1.grant,
client2.grant}, which is smaller than ΣI = {client1.cancel, client1.grant, client1.deny,
client1.request, client2.cancel, client2.grant, client2.deny, client2.request}. Learning
with Σ produces trace: t=〈client2.request, client2.grant, client2.cancel, client1.request,
client1.grant〉. Projected to Σ, this becomes t↓Σ= 〈client2.grant, client1.grant〉. In the
context of t↓Σ , M1 = Clients violates the property since Client1 ‖ Client2 ‖ Perr con-
tains the following behavior (see Fig. 2):

(0, 0, 0)
client1.request−→ (1, 0, 0)

client2.request−→ (1, 1, 0)
client2.grant−→ (1, 2, 2)

client1.grant−→ (2, 2, error).

Learning therefore reports false. This behavior is not feasible, however, in the context
of t↓ΣI= 〈client2.request, client2.grant, client2.cancel, client1.request, client1.grant〉.
This trace requires a client2.cancel to occur before the client1.grant. Thus, in the con-
text of ΣI the above violating behavior would be infeasible. We conclude that when
applying the learning framework with alphabets smaller than ΣI , if true is reported
then the property holds in the system, but violations reported may be spurious.

5.1 Algorithm

We propose a technique called alphabet refinement, which extends the learning frame-
work from [12] to deal with smaller alphabets than ΣI while avoiding spurious coun-
terexamples. The steps of the algorithm are as follows (see Fig. 4 (a)):

1. Initialize Σ to a set S such that S ⊆ ΣI .
2. Use the classic learning framework for Σ. If the framework returns true, then report

true and go to step 4 (END). If the framework returns false with counterexamples
c and t, go to the next step.

3. Perform extended counterexample analysis for c. If c is a real counterexample,
then report false and go to step 4 (END). If c is spurious, then refine Σ, which
consists of adding to Σ actions from ΣI . Go to step 2.

4. END of algorithm.

1 In the assume guarantee triples: t↓Σ , t′↓ΣI are trace LTSs with alphabets Σ, ΣI respectively.

Refining Interface Alphabets for Compositional Verification 299

(a) (b)

Learning
Framework

Output: M1||M2 |= P

Extended
Counterex
Analysiscounterex

c and t

update Σ; restart

Output:

counterex counterex
c t

Extended Counterex

LTSA: false

Refiner: compare

true

t↓ΣI
, c↓ΣI

different
actions

update Σ

restart

M1||M2 �|= P

Analysis

real error〈t↓ΣI
〉M1〈P 〉

Fig. 4. Learning with alphabet refinement (a) and additional counterexample analysis (b)

When spurious counterexamples are detected, the refiner extends the alphabet with
actions in the alphabet of the weakest assumption and the learning of assumptions is
restarted. In the worst case, ΣI is reached, and as proved in our previous work, learning
then only reports real counterexamples. In the above high-level algorithm, the high-
lighted steps are further specified in the following.

Alphabet initialization. The correctness of our algorithm is insensitive to the initial
alphabet. We implement two options: 1) we set the initial alphabet to the empty set to
allow the algorithm to only take into account actions that it discovers, and 2) we set the
initial alphabet to those actions in the alphabet of the property that are also in ΣI ,i.e.,
αP ∩ ΣI (in the experiments from Sec. 7 we used the second option). The intuition for
the latter option is that these interface actions are likely to be significant in proving the
property, since they are involved in its definition. A good initial guess of the alphabet
may achieve big savings in terms of time since it results in fewer refinement iterations.

Extended counterexample analysis. An additional counterexample analysis is ap-
pended to the original learning framework as illustrated in Fig. 4(a). The steps of this
analysis are shown in Fig. 4(b). The extension takes as inputs both the counterexample
t returned by Oracle 2, and the counterexample c that is returned by the original coun-
terexample analysis. We modified the “classic” learning framework (Fig. 3) to return
both c and t to be used in alphabet refinement (as explained below). As discussed, c is
obtained because 〈t↓Σ〉M1〈P 〉 does not hold. The next step is to check whether in fact
t uncovers a real violation in the system. As illustrated by the client-server example,
the results of checking M1 ‖ Perr in the context of t projected to different alphabets
may be different. The correct (non-spurious) results are obtained by projecting t on the
alphabet ΣI of the weakest assumption. Counterexample analysis therefore calls LTSA
to check 〈t↓ΣI 〉M1〈P 〉. If LTSA finds an error, the resulting counterexample c is real.
If error is not reached, then the counterexample is spurious and the alphabet Σ needs to
be refined. Refinement proceeds as described next.

Alphabet refinement. When spurious counterexamples are detected, we need to en-
rich the current alphabet Σ so that these counterexamples are eventually eliminated.

300 M. Gheorghiu, D. Giannakopoulou, and C.S. Păsăreanu

A counterexample c is spurious if in the context of t↓ΣI it would not be obtained. Our
refinement heuristics are therefore based on comparing c and t↓ΣI to discover actions
in ΣI to be added to the learning alphabet (for this reason c is also projected on ΣI in
the refinement process). We have currently implemented the following heuristics:

AllDiff: adds all the actions in the symmetric difference of t↓ΣI and c↓ΣI ; a potential
problem is that it may add too many actions too soon, but if it happens to add useful
actions, it may terminate after fewer iterations;

Forward: scans the traces in parallel from beginning to end looking for the first index
i where they disagree; if such an i is found, both actions t↓ΣI (i), c↓ΣI (i) are
added to the alphabet;

Backward: same as Forward but scans from the end of the traces to the beginning.

5.2 Extension to n Modules

So far, we have discussed our algorithm for two components. We have extended al-
phabet refinement to n modules M1, M2, . . . Mn, for any n ≥ 2. Previous work has
extended learning (without refinement) to n components [12,22]. To check if system
M1 ‖ M2 ‖ . . . ‖ Mn satisfies P , we decompose it into: M1 and M ′

2 = M2 ‖ ... ‖ Mn

and the learning algorithm (without refinement) is invoked recursively for checking the
second premise of the assume-guarantee rule.

Learning with alphabet refinement uses recursion in a similar way. At each recursive
invocation for Mj , we solve the following problem: find assumption Aj and alphabet
ΣAj such that the rule premises hold, i.e.

Oracle 1: Mj ‖ Aj |= Aj−1 and
Oracle 2: Mj+1 ‖ Mj+2 ‖ ... ‖ Mn |= Aj .

Here Aj−1 is the assumption for Mj−1 and plays the role of the property for the current
recursive call. Thus, the alphabet of the weakest assumption for this recursive invocation
is Σj

I = (αMj ∪ αAj−1) ∩ (αMj+1 ∪ αMj+2 ∪ . . . ∪ αMn). If Oracle 2 returns
a counterexample, then the counterexample analysis and alphabet refinement proceed
exactly as in the 2 component case. At a new recursive call for Mj with a new Aj−1,
the alphabet of the weakest assumption is recomputed.

6 Properties of Learning with Refinement

In this section, we discuss properties of the proposed algorithm. We present here the
main results (proofs are given in [14]) We first re-state the correctness and termination
of learning without refinement proven in [12].

Theorem 1 (Termination and correctness of learning without refinement). Given
components M1 and M2, and property P , the learning framework in [12] terminates
and it returns true if M1||M2 |= P and false otherwise.

For correctness and termination of learning with alphabet refinement, we first show
progress of refinement, meaning that at each refinement stage, new actions are discov-
ered to be added to Σ.

Refining Interface Alphabets for Compositional Verification 301

Proposition 1 (Progress of alphabet refinement). Let Σ ⊂ ΣI be the alphabet of the
assumption at the current alphabet refinement stage. Let t be a trace of M2||Aerr such
that t↓Σ leads to error on M1||Perr by an error trace c, but t↓ΣI does not lead to error
on M1||Perr. Then t↓ΣI �= c↓ΣI and there exists an action in their symmetric difference
that is not in Σ.

Theorem 2 (Termination and correctness of learning with alphabet refinement –
2 components). Given components M1 and M2, and property P , the algorithm with
alphabet refinement terminates and returns true if M1||M2 |= P and false otherwise.

Theorem 3 (Termination and correctness of learning with alphabet refinement –
n components). Given components M1, M2, ... Mn and property P , the recursive al-
gorithm with alphabet refinement terminates and returns true if M1||M2||...||Mn |= P
and false otherwise.

Correctness for two (and n) components follows from the assume guarantee rule and
the extended counterexample analysis. Termination follows from termination of the
original framework, from the progress property and also from the finiteness of ΣI and
of n. Moreover, progress implies that the refinement algorithm for two components has
at most |ΣI | iterations.

We also note a property of weakest assumptions, namely that by adding actions to
an alphabet Σ, the corresponding weakest assumption becomes weaker, i.e., it contains
more behaviors.

Proposition 2. Assume components M1 and M2, property P and the corresponding
interface alphabet ΣI . Let Σ, Σ′ be sets of actions such that: Σ ⊂ Σ′ ⊂ ΣI . Then:
L(Aw,Σ) ⊆ L(Aw,Σ′) ⊆ L(Aw,ΣI).

With alphabet refinement, our framework adds actions to the alphabet, which trans-
lates into adding more behaviors to the weakest assumption that L* tries to prove. This
means that at each refinement stage i, when the learner is started with a new alphabet
Σi such that Σi−1 ⊂ Σi, it will try to learn a weaker assumption Aw,Σi than Aw,Σi−1 ,
which was its goal in the previous stage. Moreover, all these assumptions are under-
approximations of the weakest assumption Aw,ΣI that is necessary and sufficient to
prove the desired property. Note that at each refinement stage the learner might stop
earlier, i.e., before computing the corresponding weakest assumption. The above prop-
erty allows re-use of learning results across refinement stages (see Sec. 9).

7 Experiments

We implemented learning with alphabet refinement in LTSA and we evaluated it on
checking safety properties for the concurrent systems described below. The goal of the
evaluation is to assess the effect of alphabet refinement on learning, and to compare
compositional with non-compositional verification.

Models and properties. We used the following case studies. Gas Station [11] describes
a self-serve gas station consisting of k customers, two pumps, and an operator. For

302 M. Gheorghiu, D. Giannakopoulou, and C.S. Păsăreanu

Table 1. Comparison of learning for 2-way decompositions with and without alphabet refinement

Case
k No refinement Refinement + bwd Refinement + fwd Refinement + allDiff

|A| Mem. Time |A| Mem. Time |A| Mem. Time |A| Mem. Time

Gas Station 3 177 4.34 – 8 3.29 2.70 37 6.47 36.52 18 4.58 7.76
4 195 100.21 – 8 24.06 19.58 37 46.95 256.82 18 36.06 52.72
5 53 263.38 – 8 248.17 183.70 20 414.19 – 18 360.04 530.71

Chiron, 2 9 1.30 1.23 8 1.22 3.53 8 1.22 1.86 8 1.22 1.90
Property 1 3 21 5.70 5.71 20 6.10 23.82 20 6.06 7.40 20 6.06 7.77

4 39 27.10 28.00 38 44.20 154.00 38 44.20 33.13 38 44.20 35.32
5 111 569.24 607.72 110 – 300 110 – 300 110 – 300

Chiron, 2 9 116 110 3 1.05 0.73 3 1.05 0.73 3 1.05 0.74
Property 2 3 25 4.45 6.39 3 2.20 0.93 3 2.20 0.92 3 2.20 0.92

4 45 25.49 32.18 3 8.13 1.69 3 8.13 1.67 3 8.13 1.67
5 122 131.49 246.84 3 163.85 18.08 3 163.85 18.05 3 163.85 17.99

MER 2 40 6.57 7.84 6 1.78 1.01 6 1.78 1.02 6 1.78 1.01
3 377 158.97 – 8 10.56 11.86 8 10.56 11.86 8 10.56 11.85
4 38 391.24 – 10 514.41 1193.53 10 514.41 1225.95 10 514.41 1226.80

Rover Exec. 2 11 2.65 1.82 4 2.37 2.53 11 2.67 4.17 11 2.54 2.88

k = 3, 4, 5, we checked that the operator correctly gives change to a customer for the
pump that he/she used. Chiron [11] models a graphical user interface consisting of k
artists, a wrapper, a manager, a client initialization module, a dispatcher, and two event
dispatchers. For k = 2 . . . 5, we checked two properties: “the dispatcher notifies artists
of an event before receiving a next event”, and “the dispatcher only notifies artists of
an event after it receives that event”. MER [22] models the flight software component
for JPL’s Mars Exploration Rovers. It contains k users competing for resources man-
aged by an arbiter. For k = 2 . . . 6, we checked that communication and driving cannot
happen at the same time as they share common resources. Rover Executive [12] mod-
els a subsystem of the Ames K9 Rover. The models consists of a main ‘Executive’
and an ‘ExecCondChecker’ component responsible for monitoring state conditions. We
checked that for a specific shared variable, if the Executive reads its value, then the
ExecCondChecker should not read it before the Executive clears it.

Note that the Gas Station and Chiron were analyzed before, in [11], using learning
based assume guarantee reasoning (with no alphabet refinement). Four properties of
Gas Station and nine properties of Chiron were checked to study how various 2-way
model decompositions (i.e. grouping the modules of each analyzed system into two
“super-components”) affect the performance of learning. For most of these properties,
learning performs better than non-compositional verification and produces small (one-
state) assumptions. For some other properties, learning does not perform that well, and
produces much larger assumptions. To stress-test our approach, we selected the latter,
more challenging properties for our study here.

Experimental set-up and results. We performed two sets of experiments. First, we
compared learning with different alphabet refinement heuristics to learning without
alphabet refinement for 2-way decompositions. Second, we compared the recursive im-
plementation of the refinement algorithm with monolithic (non-compositional) verifi-
cation, for increasing number of components. All the experiments were performed on a
Dell PC with a 2.8 GHz Intel Pentium 4 CPU and a 1.0 GB RAM, running Linux Fedora

Refining Interface Alphabets for Compositional Verification 303

Table 2. Comparison of recursive learning with and without alphabet refinement and monolithic
verification

Case
k

No refinement Refinement + bwd Monolithic
|A| Mem. Time |A| Mem. Time Mem. Time

Gas Station 3 299 238.27 – 25 2.42 14.65 1.42 0.034
4 289 298.22 – 25 3.43 23.60 2.11 0.126
5 313 321.72 – 25 5.29 49.72 6.47 0.791

Chiron, 2 344 118.80 – 4 0.96 2.51 0.88 0.030
Property 1 3 182 114.57 – 4 1.12 2.97 1.53 0.067

4 182 117.93 – 4 2.21 4.59 2.42 0.157
5 182 115.10 – 4 7.77 6.97 13.39 1.22

Chiron, 2 229 134.85 – 11 1.68 40.75 1.21 0.035
Property 2 3 344 99.12 – 114 28.94 2250.23 1.63 0.068

4 295 86.03 – 114 35.65 – 2.93 0.174
5 295 90.57 – 114 40.49 – 15.73 1.53

MER 2 40 8.66 24.95 6 1.85 1.94 1.04 0.024
3 440 200.55 – 8 3.12 3.58 4.22 0.107
4 273 107.73 – 10 9.61 9.62 14.28 1.46
5 200 83.07 – 12 18.95 23.55 143.11 27.84
6 162 84.96 – 14 47.60 93.77 – 900

Core 4 and using Sun’s Java SDK version 1.5. For the first set of experiments, for Gas
Station and Chiron we used the best 2-way decompositions described in [11]. For Gas
Station, the operator and the first pump are one component, and the rest of the modules
are the other. For Chiron, the event dispatchers are one component, and the rest of the
modules are the other. For MER, half of the users are in one component, and the other
half with the arbiter in the other. For the Rover we used the two components described
in [12]. For the second set of experiments, we used an additional heuristic to compute
the ordering of the modules in the sequence M1, . . . , Mn for the recursive learning
with refinement so as to minimize the sizes of the interface alphabets Σ1

I , . . . Σn
I . We

generated offline all possible orders with their associated interface alphabets and then
chose the order that minimizes the sum

∑
j=1..n |Σj

I |.
The experimental results shown in Tables 1 and 2 are for running the learning frame-

work with ‘No refinement’, and for refinement with backward (‘+bwd’), forward (‘+
fwd’) and ‘+allDiff’ heuristics. For each run, we report |A| (the maximum assump-
tion size reached during learning), ‘Mem.’ (the maximum memory used by LTSA to
check assume-guarantee triples, measured in MB) and ‘Time’ (total CPU running time,
measured in seconds). Column ‘Monolithic’ reports the memory and run-time of non-
compositional model checking. We set a limit of 30 minutes for each run. The exception
is Chiron, Property 2, in our second study (Table 2) where the limit was 60 minutes (this
was a challenging property and we increased the time limit in order to collect final re-
sults for our approach). The sign ‘–’ indicates that the limit of 1GB of memory or the
time limit has been exceeded. For these cases, the data is reported as it was when the
limit was reached.

Discussion. The results overall show that alphabet refinement improves upon learning.
Table 1 shows that alphabet refinement improved the assumption size in all cases, and in
a few, up to two orders of magnitude (see Gas Station with k = 2, 3, Chiron, Property 3,
with k = 5, MER with k = 3). It improved memory consumption in 10 out of 15 cases,

304 M. Gheorghiu, D. Giannakopoulou, and C.S. Păsăreanu

and also improved running time, as for Gas Station and for MER with k = 3, 4 learning
without refinement did not finish within the time limit, whereas with refinement it did.
The benefit of alphabet refinement is even more obvious in Table 2: ‘No refinement’
exceeded the time limit in all but one case, whereas refinement completed in 14 of 16
cases, producing smaller assumptions and using less memory in all the cases, and up
to two orders of magnitude in a few. Table 1 also indicates that the performance of
the ‘bwd’ strategy is (slightly) better than the other refinement strategies. Therefore we
used this strategy for the experiments reported in Table 2.

Table 2 indicates that learning with refinement scales better than without refinement
for increasing number of components. As k increases, the memory and time consump-
tion for ‘Refinement’ grows slower than that of ‘Monolithic’. For Gas Station, Chiron
(Property 1), and MER, for small values of k, ‘Refinement’ consumes more memory
than ‘Monolithic’, but as k increases the gap is narrowing, and for the largest k ‘Refine-
ment’ becomes better than ‘Monolithic’. This leads to cases such as MER with k = 6
where, for a large enough parameter value, ‘Monolithic’ runs out of memory, whereas
‘Refinement’ succeeds.

Chiron (Property 2) was particularly challenging for learning with (or without) al-
phabet refinement. At a closer inspection of the models, we noticed that several mod-
ules do not influence Property 2. However, these modules do communicate with the
rest of the system through actions that appear in the counterexamples reported in our
framework. As a result, alphabet refinement introduces ‘un-necessary’ actions. If we
eliminate these modules, the property still holds in the remaining system, and the per-
formance of learning with refinement is greatly improved, e.g., for k = 3, the size of
the largest assumption is 13 and is better than monolithic. In the future, we plan to
investigate slicing techniques to eliminate modules that do not affect a given property.

8 Related Work

Several frameworks have been proposed to support assume guarantee reasoning
[18,23,10,16]. For example, the Calvin tool [13] uses assume-guarantee reasoning for
the analysis of Java programs, while Mocha [2] supports modular verification of com-
ponents with requirements specified based in the Alternating-time Temporal logic. The
practical impact of these previous approaches has been limited because they require
non-trivial human input in defining appropriate assumptions.

Previous work [15,12] proposed to use L* to automate assume-guarantee reasoning.
Since then, several other frameworks that use L* for learning assumptions have been de-
veloped – [3] presents a symbolic BDD implementation using NuSMV. This symbolic
version was extended in [21] with algorithms that decompose models using hypergraph
partitioning, to optimize the performance of learning on resulting decompositions. Dif-
ferent decompositions are also studied in [11] where the best two-way decompositions
are computed for model-checking with the LTSA and FLAVERS tools. We follow a
direction orthogonal to the latter two approaches and try to improve learning not by
automating and optimizing decompositions, but rather by discovering small interface
alphabets. Our approach can be combined with the decomposition approaches, by ap-
plying interface alphabet refinement in the context of the discovered decompositions.

Refining Interface Alphabets for Compositional Verification 305

L* has also been used in [1] to synthesize interfaces for Java classes, and in [25] to
check component compatibility after component updates.

Our approach is similar in spirit to counterexample-guided abstraction refinement
(CEGAR) [8]. CEGAR computes and analyzes abstractions of programs (usually using
a set of abstraction predicates) and refines them based on spurious counter-examples.
However, there are some important differences between CEGAR and our algorithm. Al-
phabet refinement works on actions rather than predicates, it is applied compositionally
in an assume-guarantee style and it computes under-approximations (of assumptions)
rather than behavioral over-approximations (as it happens in CEGAR). In the future,
we plan to investigate more the relationship between CEGAR and our algorithm. The
work of [17] proposes a CEGAR approach to interface synthesis for C libraries. This
work does not use learning, nor does it address the use of the resulting interfaces in
assume-guarantee verification.

A similar idea to our alphabet refinement for L* in the context of assume guarantee
verification has been developed independently in [6]. In that work, L* is started with
an empty alphabet, and, similarly to ours, the assumption alphabet is refined when a
spurious counterexample is obtained. At each refinement stage, a new minimal alphabet
is computed that eliminates all spurious counterexamples seen so far. The computation
of such a minimal alphabet is shown to be NP-hard. In contrast, we use much cheaper
heuristics, but do not guarantee that the computed alphabet is minimal.

The approach by [6] focuses on assume-guarantee problems involving two com-
ponents and it is not clear how it extends to reasoning about n components. The ex-
periments in [6] report on the speed-up obtained with alphabet refinement. In all the
reported cases, the alphabet needed for verification is very small. It is not clear if the
same speed-up would be obtained for more challenging problems with bigger alphabets
that would require many stages of refinement. In our experience, the memory savings
obtained by smaller assumption sizes is the most significant gain. More experimentation
is needed to fully assess the benefits of alphabet refinement and the relative strengths
and weaknesses of the two approaches.

9 Conclusions and Future Work

We have introduced a novel technique for automatic and incremental refinement of in-
terface alphabets in compositional model checking. Our approach extends an existing
framework for learning assumption automata in assume-guarantee reasoning. The ex-
tension consists of using interface alphabets smaller than the ones previously used in
learning, and using counterexamples obtained from model checking the components to
add actions to these alphabets as needed. We have studied the properties of the new
learning algorithm and have experimented with various refinement heuristics. Our ex-
periments show improvement with respect to previous learning approaches in terms of
the sizes of resulting assumptions and memory and time consumption, and with respect
to non-compositional model checking, as the sizes of the checked models increase.

In future work we will address further algorithmic optimizations. Currently, after one
refinement stage we restart the learning process from scratch. The property formulated
in Proposition 2 in Sec. 6 facilitates reuse of query answers obtained during learning.

306 M. Gheorghiu, D. Giannakopoulou, and C.S. Păsăreanu

A query asks whether a trace projected on the current assumption alphabet leads to
error on M1 ‖ Perr. If the answer is ‘no’, by Proposition 2 the same trace will not
lead to error when the alphabet is refined. Thus, we could cache these query answers.
Another feasible direction is to reuse the learning table as described in [25]. We also
plan to use multiple counterexamples for refinement. This may enable faster discovery
of relevant interface actions and smaller alphabets. Finally we plan to perform more
experiments to fully evaluate our technique.

Acknowledgements. We thank Jamie Cobleigh for providing the models Gas station
and Chiron and their decompositions. Mihaela Gheorghiu acknowledges the financial
support from MCT/Nasa Ames for a Summer Research Internship, and a Graduate
Award from the University of Toronto.

References

1. R. Alur, P. Cerny, P. Madhusudan, and W. Nam. “Synthesis of interface specifications for
Java classes”. In Proceedings of POPL’05, pages 98–109, 2005.

2. R. Alur, T. Henzinger, F. Mang, S. Qadeer, S. Rajamani, and S. Tasiran. “MOCHA: Modular-
ity in Model Checking”. In Proceedings of CAV’98, volume 1427 of LNCS, pages 521–525,
1998.

3. R. Alur, P. Madhusudan, and Wonhong Nam. “Symbolic Compositional Verification by
Learning Assumptions”. In Proceedings of CAV05, pages 548–562, 2005.

4. D. Angluin. “Learning regular sets from queries and counterexamples”. Information and
Computation, 75(2):87–106, November 1987.

5. H. Barringer, D. Giannakopoulou, and C. S. Păsăreanu. “Proof Rules for Automated Compo-
sitional Verification through Learning”. In Proceedings of SAVCBS’03, pages 14–21, 2003.

6. S. Chaki and O. Strichman. “Optimized L*-based Assume-guarantee Reasoning”. In Pro-
ceedings of TACAS’07 (to appear), 2007.

7. S.C. Cheung and J. Kramer. Checking safety properties using compositional reachability
analysis. ACM Transactions on Software Engineering and Methodology, 8(1):49–78, 1999.

8. E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. “Counterexample-Guided Abstrac-
tion Refinement”. In Proceedings of CAV’00, volume 1855 of LNCS, pages 154–169, 2000.

9. E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 2000.
10. E. M. Clarke, D. E. Long, and K. L. McMillan. “Compositional Model Checking”. In

Proceedings of LICS’89, pages 353–362, 1989.
11. J. M. Cobleigh, G. S. Avrunin, and L. A. Clarke. “Breaking Up is Hard to Do: An Investi-

gation of Decomposition for Assume-Guarantee Reasoning”. In Proceedings of ISSTA’06,
pages 97–108. ACM Press, 2006.

12. J. M. Cobleigh, D. Giannakopoulou, and C. S. Păsăreanu. “Learning Assumptions for Com-
positional Verification”. In Proceedings of TACAS’03, volume 2619 of LNCS, pages 331–
346, 2003.

13. C. Flanagan, S. N. Freund, and S. Qadeer. “Thread-Modular Verification for Shared-Memory
Programs”. In Proceedings of ESOP’02, pages 262–277, 2002.

14. M. Gheorghiu, D. Giannakopoulou, and C. S. Păsăreanu. “Refining Interface Alphabets for
Compositional Verification”. RIACS Technical Report, 2006.

15. D. Giannakopoulou, C. S. Pasareanu, and H. Barringer. “Assumption Generation for Soft-
ware Component Verification”. In Proceedings of ASE’02, pages 3–12. IEEE Computer
Society, 2002.

Refining Interface Alphabets for Compositional Verification 307

16. O. Grumberg and D. E. Long. “Model Checking and Modular Verification”. In Proceedings
of CONCUR’91, pages 250–265, 1991.

17. T. A. Henzinger, R. Jhala, and R. Majumdar. “Permissive Interfaces”. In Proceedings of
ESEC/SIGSOFT FSE’05, pages 31–40, 2005.

18. C. B. Jones. “Specification and Design of (Parallel) Programs”. In Information Processing
83: Proceedings of the IFIP 9th World Congress, pages 321–332. IFIP: North Holland, 1983.

19. J.-P. Krimm and L. Mounier. “Compositional State Space Generation from Lotos Programs”.
In Proceedings of TACAS’97, pages 239–258, 1997.

20. J. Magee and J. Kramer. Concurrency: State Models & Java Programs. John Wiley & Sons,
1999.

21. W. Nam and R. Alur. “Learning-Based Symbolic Assume-Guarantee Reasoning with Auto-
matic Decomposition”. In Proceedings of ATVA’06, volume 4218 of LNCS, 2006.

22. C. S. Păsăreanu and D. Giannakopoulou. “Towards a Compositional SPIN”. In Proceedings
of SPIN’06, volume 3925 of LNCS, pages 234–251, 2006.

23. A. Pnueli. “In Transition from Global to Modular Temporal Reasoning about Programs”. In
Logic and Models of Concurrent Systems, volume 13, pages 123–144, 1984.

24. R. L. Rivest and R. E. Shapire. “Inference of finite automata using homing sequences”.
Information and Computation, 103(2):299–347, April 1993.

25. N. Sharygina, S. Chaki, E. Clarke, and N. Sinha. “Dynamic Component Substitutability
Analysis”. In Proceedings of FM’05, volume 3582 of LNCS, pages 512–528, 2005.

MAVEN: Modular Aspect Verification

Max Goldman and Shmuel Katz

Technion — Israel Institute of Technology
{mgoldman,katz}@cs.technion.ac.il

Abstract. Aspects are program modules that include descriptions of
key events (called joinpoints) and code segments (called advice) to be
executed at those key events when the aspect is bound (woven) to an
underlying system. The MAVEN tool verifies the correctness of an aspect
relative to its specification, independently of any specific underlying sys-
tem to which it may be woven. The specification includes assumptions
about properties of the underlying system, and guaranteed properties
of any system after the aspect is woven into it. The approach is based
on model checking of a single state machine constructed using the linear
temporal logic (LTL) description of the assumptions, a description of the
joinpoints, and the state machine of the aspect advice. The tableau of
the LTL assumption is used in a unique way, as a representative of any
underlying system satisfying the assumptions. This is the first technique
for once-and-for-all verification of an aspect relative to its specification,
thereby increasing the modularity of proofs for systems with aspects.

1 Introduction

1.1 Aspect-Oriented Programming

The aspect-oriented approach to software development is one in which concerns
that cut across many parts of the system are encapsulated in separate modules
called aspects. The approach was first presented in the AspectJ [1] extension
of Java, and has been generalized to a variety of languages and aspect-oriented
software development techniques (see, for example, [2]). When a concern such
as security or logging is encapsulated in an aspect, this aspect contains both the
code associated with the concern, called advice, and a description of when this
advice should run, called a pointcut descriptor. The pointcut descriptor identifies
those points in the execution of a program at which the advice should be invoked,
called joinpoints. The combination of some base program with an aspect (or in
general, a collection of aspects), is termed an augmented program.

Aspects are of particular interest as a software construct because the pointcuts
that govern the execution of their advice are evaluated dynamically. When a
pointcut identifies joinpoints, these joinpoints are not static locations in the
code; rather, in the most popular and expressive joinpoint models used by aspect-
oriented programming languages, joinpoints are well-defined points during the
execution of a program. Depending on the runtime context of a particular point,
such as the methods on the program’s stack, or the values currently in certain

O. Grumberg and M. Huth (Eds.): TACAS 2007, LNCS 4424, pp. 308–322, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

MAVEN: Modular Aspect Verification 309

data fields, the same static code location might match a pointcut at one time,
but fail to match it at another. To give the programmer access to these dynamic
data, a pointcut may also expose values of program variables to the advice.

1.2 Modular Aspectual Verification

In this work we are concerned with generic formal verification of aspects rel-
ative to a specification. The specification of an aspect consists of assumptions
about any base program to which the aspect can reasonably be woven, and de-
sired properties intended to hold for the augmented program (this terminology is
applied to aspects in [3]). We view both base programs and aspect code as non-
deterministic finite state machines, in which computations are infinite sequences
of states within the machine. For both assumptions and desired properties to be
verified we consider formulas in linear temporal logic (LTL).

Clearly, given a base program, a collection of aspects with their pointcut
descriptors and advice, and a system for weaving together these components
to produce a stand-alone augmented program, we can verify properties of this
augmented system using the usual model checking techniques. Such weaving
involves adding edges from joinpoint states of the base program to the initial
states of the advice, and from the states at the end of an advice segment to
states back in the base program. It would be preferable, however, if we could
employ a modular technique in which the aspect can be considered separately
from the base program. Instead of examining a particular augmented program,
using a generic model of augmented program behavior will allow us to:

– obtain verification results that hold for a particular aspect with any base
program from some class of programs, rather than for only one base program
in particular;

– use the results to reason about the application of aspects to base programs
with multiple evolving state machines describing changing configurations
during execution, or to other systems not amenable to model checking; and

– avoid model checking augmented systems, which may be significantly larger
than either their base systems or aspects, and whose unknown behavior may
resist abstraction.

The second point above relates to object-oriented programs that create new
instances of classes (objects) with associated state machine components. Often,
the assumption of an aspect about the key properties of those base state ma-
chines to which it may be woven can indeed be shown to hold for every possible
machine that corresponds to an object configuration of a program. For exam-
ple, it may involve a so-called class invariant, provable by reasoning directly on
class declarations, as in [4]. More details on the connections between code-based
aspects (as in AspectJ) and the state machine versions are discussed in Sect. 5.

This problem of creating a single generic model that can represent any possible
augmented program for an aspect woven over some class of base programs is
especially difficult because of the aspect-oriented notion of obliviousness: base
programs are generally unaware of aspects advising them, and have no control

310 M. Goldman and S. Katz

over when or how they are advised. There are no explicit markers for the transfer
of control from base to advice code, nor are there guarantees about if or where
advice will return control to the base program.

1.3 Results

In this paper we show how to verify once-and-for-all that for any base state ma-
chine satisfying the assumptions of an aspect, and for a weaving that adds the
aspect advice as indicated in the joinpoint description, the resulting augmented
state machine is guaranteed to satisfy the desired properties given in the specifi-
cation. The verification algorithm is implemented in a prototype called maven.
A single generic state machine is constructed from the tableau of the assump-
tion, the pointcut descriptor, and the advice state machine, and verified for the
desired properties. Then, when a particular base program is to be woven with
the aspect, it is sufficient to establish that the base state machine satisfies the as-
sumptions. Thus the entire augmented program never has to be model checked,
achieving true modularity and genericity in the proof. This approach is espe-
cially appropriate for aspects intended to be reused over many base programs,
such as those in libraries or middleware components.

LTL model checking is based on creating a tableau state machine automaton
that accepts exactly those computations that satisfy the property to be verified.
Usually, the negation of this machine is then composed as a cross-product with
the model to be checked. Here we use the tableau of the assumption in a unique
way, as the basis of the generic model to be checked for the desired property. It
represents any base machine satisfying the assumption, because the execution
sequences of these base programs can be abstracted by sequences in the tableau.

The aspects treated are assumed to be weakly invasive, as defined in [5].
This means that when advice has completed executing, the system continues
from a state that was already reachable in the original base program (perhaps
for different inputs or actions of the environment). Many aspects fall into this
category, including spectative aspects that never modify the state of the base
system (logging is a good example), and regulative aspects that only restrict the
reachable state space (for example, aspects implementing security checks). Also
weakly invasive would be an aspect to enforce transactional requirements, which
might roll back a series of changes so that the system returns to the state it was
in before they were made. Even a ‘discount policy’ aspect that reduces the price
on certain items in a retail system is weakly invasive, since the original price
given as input could have been the discounted one.

Additionally, we assume that any executions of an augmented program that
infinitely often include states resulting from aspect advice will be fair (and thus
must be considered for correctness purposes). The version here does not treat
multiple aspects or joinpoints influenced by the introduction of advice, although
the approach can be expanded to treat such cases as well.

In the following section, needed terms and constructs are defined. Section 3
presents the algorithm, and outlines a proof of soundness in the weakly invasive
aspect case. This section also uses an abstract example to illustrate the approach.

MAVEN: Modular Aspect Verification 311

The maven implementation is described in Section 4, along with descriptions
of some typical aspect verifications. Section 5 details works related to the result
here, and is followed by the conclusion.

2 Definitions

2.1 LTL Tableaux

Intuitively, the tableau of an LTL formula f is a state machine whose fair infinite
paths are exactly all those paths which satisfy the formula f . This intuition will
be realized formally in Theorem 1 below.

We define Tf , the tableau for LTL path formula f (equivalently, state formula
A f), as given in the chapter of [6] on “Symbolic LTL Model Checking,” with
clarifications described in [7]. We denote Tf = (ST , ST

0 , RT , LT , FT), where ST

is the set of states; ST
0 is the set of initial states, RT is the transition relation,

LT is the labeling function, and FT is the set of fair state sets.
If APf is the set of atomic propositions in f , then LT : S → P(APf) —

that is, the labels of the states in the tableau will include sets of the atomic
propositions appearing in f . A state in any machine is given a particular label
if and only if that atomic proposition is true in that state. We also need:

Definition 1. For path π, let label(π) be the sequence of labels (subsets of AP)
of the states of π. For such a sequence l = l0, l1, . . . and set Q, let l|Q =
m0, m1, . . . where for each i ≥ 0, mi = li ∩ Q.

Theorem 1. (from [6], 6.7, Theorems 4 & 5) Given Tf , for any Kripke structure
M , for all fair paths π′ in M , if M, π′ |= f then there exists fair path π in Tf

such that π starts in ST
0 and label(π′)|APf

= label(π).

That is, for any possible computation of M satisfying formula f , there is a path
in the tableau of f which matches the labels within APf along the states of that
computation.

In the algorithm of Sect. 3, we restrict the tableau to its reachable component.
Such restriction does not affect the result of this theorem, since all reachable
paths are preserved, but is necessary in order to achieve useful results. This
follows from the observation that the tableau for the negation of a formula has
precisely the same states and transition relation, but the complementary set of
initial states. Thus, any unreachable portion of the tableau is liable to contain
exactly those behaviors which violate the formula of interest.

2.2 Aspects

Advice. An aspect machine A = (SA, SA
0 , SA

ret , RA, LA) over atomic proposi-
tions AP is defined as usual for a state machine with no fairness constraint, with
the following addition:

Definition 2. SA
ret is the set of return states of A, where SA

ret ⊆ SA and for
any state s ∈ SA

ret , s has no outgoing edges.

312 M. Goldman and S. Katz

Pointcuts. Recall that a pointcut identifies the states at which an aspect’s ad-
vice should be activated, and can include conditions on the present state and
execution history. We do not give a prescriptive definition for pointcut descrip-
tors; in practice they might take a number of forms, e.g., as in [8] or using
variants of regular expressions. Another choice for describing pointcuts might be
LTL path formulas containing only past temporal operators. For example, the
descriptor ρ1 = a∧ Y b∧ Y Y b would match sequences ending with a state where
a is true, preceded by b, preceded by another b (operator Y is the past analogue
of X). However expressed, we require that descriptors operate as follows:

Definition 3. Given a pointcut descriptor ρ over atomic propositions AP and
a finite sequence l of labels (subsets of AP), we can ask whether or not the end
of l is matched by ρ.

We define l |≡ ρ to mean that finite label sequence l is matched by pointcut
descriptor ρ in this way.

Specifications. In addition to its advice, in state machine A, and pointcut,
described by ρ, an aspect has two pieces of formal specification:

– Formula ψ expresses the assumptions made by the aspect about any base
machine to which it will be woven. This ψ is thus a requirement to be met
by any such machine.

– Formula φ expresses the desired result to be satisfied by any augmented
machine built by weaving this aspect with a conforming base machine. In
other words, φ is the guarantee of the aspect.

2.3 Weaving

Weaving is the process of combining a base machine with some aspect according
to a particular pointcut descriptor; the result is an augmented machine that
includes the advice of the aspect.

The weaving algorithm has the following inputs:

– aspect machine A = (SA, SA
0 , SA

ret , RA, LA) over AP ,
– pointcut ρ over AP , and
– base machine B = (SB, SB

0 , RB, LB, FB) over APB ⊇ AP .

And it produces as output:

– augmented machine B̃ = (SB̃, SB̃
0 , RB̃, LB̃, FB̃).

Set AP can be thought of as the ‘visible’ labels of B with which the aspect is
concerned; labels local to the aspect are not included.

The weaving is performed in two steps. First we construct from the base
machine B a new state machine Bρ which is pointcut-ready for ρ, wherein each
state either definitely is or is not matched by ρ. Then we use Bρ and A to build
the final augmented machine B̃.

MAVEN: Modular Aspect Verification 313

a b

M Mρ

a b

b
a

 pointcut

Fig. 1. Constructing a pointcut-ready machine Mρ for the given M and LTL past
formula pointcut descriptor ρ = a ∧ Y b ∧ Y Y b

Constructing a Pointcut-Ready Machine. Pointcut-ready machine Bρ =
(SBρ , SBρ

0 , RBρ , LBρ , FBρ) is a machine in which unwinding of certain paths has
been performed, so that we can separate paths which match pointcut descriptor
ρ from those that do not. The pointcut-ready machine contains states with a
new label, pointcut, that indicates exactly those states where the descriptor has
been matched.

This machine must meet the following requirements:

– SBρ ⊇ SB

– LBρ is a function from SBρ to P (APB ∪ {pointcut})
– For all finite-length paths π = s0, . . . , sk in Bρ such that s0 ∈ SBρ

0 , we have
label(π) |≡ρ ⇔ sk |= pointcut .

– For all infinite sequences of labels l = (P(APB))ω , there is a fair path πBρ

in Bρ where label(πBρ)|APB = l if and only if there is a fair path πB in B
where label(πB) = l.

Note that since B and Bρ have the same paths (over AP , ignoring the added
pointcut label), they must satisfy exactly the same LTL formulas over AP .

Figure 1 shows a simple example of this construction. Note that in state
diagrams, the absence of an atomic proposition indicates that the proposition
does not hold, not that the value is unknown or irrelevant. This is in contrast to
a formula, where unmentioned propositions are not restricted.

Finally, note that for a pointcut descriptor that examines only the current
state, the splitting and unwinding is unnecessary, and pointcut can be added
directly to the states in which the pointcut descriptor is matched.

Constructing an Augmented Machine. We construct the components of
augmented machine B̃ = (SB̃, SB̃

0 , RB̃, LB̃, FB̃) as follows:

– SB̃ = SBρ ∪ SA

– SB̃
0 = SBρ

0

– (s, t) ∈ RB̃ ⇔

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(s, t) ∈ RBρ ∧ s �|= pointcut if s, t ∈ SBρ

(s, t) ∈ RA if s, t ∈ SA

s |= pointcut ∧ t ∈ SA
0

∧ LBρ(s)|AP = LA(t) if s ∈ SBρ , t ∈ SA

s ∈ SA
ret ∧ LA(s) = LBρ(t)|AP if s ∈ SA, t ∈ SBρ

314 M. Goldman and S. Katz

Note that this relationship is ‘if and only if.’ In words, the path relation contains
precisely all the edges from the pointcut-ready base machine Bρ and from aspect
machine A, except that pointcut states in Bρ have edges only to matching start
states in A, and aspect return states have edges to all matching base states.

– LB̃(s) =
{

LBρ(s) if s ∈ SBρ

LA(s) if s ∈ SA

– FB̃ = {Fi ∪ SA | Fi ∈ FBρ}

From the definition of FB̃, a path is fair in B̃ if it either satisfies the original
fairness constraint of the pointcut-ready machine, or if it visits some aspect state
infinitely many times. A weaving is considered successful if every reachable node
in SB̃ has a successor according to RB̃.

2.4 Weakly Invasive Aspects

As mentioned above, we show our result for the broad class of aspects which,
when they return from advice, do so to a reachable state in the base machine.
Without this restriction, the aspect may return to unreachable parts of the base
machine whose behavior is not bound by assumption formula ψ. In this case, the
augmented system contains portions with unknown behavior, and is difficult to
reason about in a modular way.

Definition 4. An aspect A and pointcut ρ are said to be weakly invasive for a
base machine B if, for all states in SBρ that are reachable by following a fair
path in B̃, those states were reachable by following a fair path in Bρ.

In particular, this means that all states to which the aspect returns are reachable
in the pointcut-ready base machine. This could of course be checked directly, but
would require construction of the augmented machine — precisely the operation
we would like to avoid. In many cases (see [5]), the aspect can be shown weakly
invasive for any base machine satisfying its assumption ψ, by using local model
checking, additional information (our reasoning in the discount price example
from Sect. 1.3 uses such information), or static analysis (both spectative and
regulative aspects can be identified in this way).

3 Algorithm

The modular verification algorithm builds a tableau from base requirement ψ
and weaves A with this tableau according to pointcut descriptor ρ, then performs
model checking on the augmented tableau to verify desired result φ.

Algorithm. Given:

– set of atomic propositions AP ;
– assumption ψ for base systems, an LTL formula over AP ;
– desired result φ for augmented systems, an LTL formula over AP ; and
– aspect machine A and pointcut descriptor ρ over AP .

MAVEN: Modular Aspect Verification 315

Perform the following steps:

0. For all a ∈ AP , if ψ does not include a, augment ψ with a clause of the form
· · ·∧(a∨¬a), so that ψ contains every a ∈ AP , without altering its meaning.

1. Construct Tψ, the tableau for ψ. Since ψ contains every AP , the result of
Theorem 1 will hold when all labels in AP are considered.

2. Restrict Tψ to only those states reachable via a fair path.
3. Weave A into Tψ according to ρ, obtaining T̃ψ.
4. Perform model checking in the usual way to determine if T̃ψ |= φ.

This algorithm gives us a sound proof method provided that whenever the
model check of the constructed augmented tableau (in step 4 above) succeeds,
then for any base system satisfying ψ, applying aspect A according to pointcut
descriptor ρ will yield an augmented system satisfying φ. This is expressed below:

Theorem 2. Given AP , ψ, φ, A, and ρ as defined, if T̃ψ |= φ, then for any
base program M over a superset of AP such that A and ρ are weakly invasive
for M , if M |= ψ then M̃ |= φ.

The proof is omitted for reasons of space; it can be found in [7]. It involves an
inductive analysis of the paths in the augmented system M̃ over an arbitrary
base system M that satisfies the assumptions ψ. Each such path is shown to
correspond to a path in the augmented tableau T̃ψ. If the model check in the
algorithm succeeded, then all these paths satisfy φ, as required.

Although we make use of the entire reachable part of tableau Tψ, it does not
serve as the mechanism for performing LTL model checking, but rather forms
(part of) the system to be checked. The tableau for even a complex assumption
formula is likely to be much smaller than models of concrete bases systems that
satisfy such assumptions. Of course, during the model checking step of the algo-
rithm, which dominates the time and space complexity, any sound optimizations
may be employed to reduce the complexity.

As a first abstract example, suppose we have an aspect with base system
assumption ψ = A G ((¬a ∧ b) → F a) — that is, any state satisfying ¬a ∧ b
is eventually followed by a state satisfying a. We would like to prove that the
application of our aspect to any base system satisfying ψ will give an augmented
system satisfying result φ = A G ((a ∧ b) → X F a) — that is, any state satisfy-
ing a ∧ b will eventually be followed by a later state satisfying a.

Figure 2(a) shows the reachable portion of the tableau for the assumption ψ.
In the diagram, shaded states are those contained in the only fairness set. The
notation Xg, not formally part of the state label, designates states in the tableau
which satisfy Xg for subformula g = F a (this labeling serves only to differentiate
states; other labels of this form have been omitted for clarity, and all such labels
become invalid after weaving). For the example pointcut descriptor ρ = (a ∧ b),
this tableau machine is also pointcut-ready for ρ (since ρ references only the
current state), simply by adding pointcut to the labels of s3 and s5.

Figure 2(b) shows the state machine A for the advice of our aspect. This advice
will be applied at the states matched by ρ, and Fig. 2(c) gives the weaving of

316 M. Goldman and S. Katz

a a b

a Xg
a b

Xg

b XgXg

s0 s1

s2 s3

s4 s5

s6

(a) The reachable portion of tableau Tψ for ψ =
A G ((¬a ∧ b) → F a)

a b b

(b) A simple aspect machine A.

a a b

a Xg
a b

Xg

b XgXg

s0 s1

s2 s3

s4 s5

s6

a b

b

(c) Augmented tableau T̃ψ, satisfying φ =
A G ((a ∧ b) → X F a).

Fig. 2. Example augmented tableau

MAVEN: Modular Aspect Verification 317

b

a b c

a c

c

s0

s1

b

(a) One particular base machine M .

a b b

b

a b c

a c

c

b

s0

s1

(b) M̃ : M woven with A according to ρ.

Fig. 3. Example weaving where M |= ψ and M̃ |= φ

A with Tψ according to ρ. Model checking this augmented tableau will indeed
establish that it satisfies the desired property φ. This result follows neither from
the aspect nor base machine behavior directly, but from their combined behavior
mediated by ρ. And since T̃ψ |= φ, any M |= ψ will yield M̃ |= φ.

Figure 3(a) depicts a particular base machine M satisfying ψ, as could be
verified by model checking. Again, the shaded states are those in the only fairness
set. Although this M is small, it does contain atomic proposition c not ‘visible’
to the aspect, and it has a disconnected structure very unlike the tableau.

From Fig. 3(b), one sees it is indeed the case that the augmented machine M̃
satisfies φ — but there is no need to prove this directly by model checking. This
holds true even though the addition of the aspect has made a number of invasive
changes to M : state s1 is no longer reachable, because its only incoming edge has
been replaced by an advice edge; a new loop through s0 has been added, while in
M there was no path visiting s0 more than once; there is a new path connecting
the previously separated left-hand component to the right-hand; and so forth.
In more realistic examples, the difference in size between the augmented tableau
(involving only ψ, ρ, and A) and a concrete augmented system with advice over
a full base machine would be substantial.

4 MAVEN

The verification algorithm defined in the previous section has been implemented
in a prototype system called maven, for “Modular Aspect VerificatioN.” In
maven, aspects are specified directly as state machines, albeit using a more
convenient and expressive language than direct definition of the machine states
and transitions. maven operates on the level of textual input to and output from
components of the NuSMV model checker [9]. NuSMV is a CTL (branching-
time logic) and LTL model checker that accepts its input as textual definitions of
state machine systems and their specifications. We have extended the NuSMV
finite state machine language to create FSMA, for “finite state machine aspects,”

318 M. Goldman and S. Katz

which describes aspects and their specifications. The language is based closely
on the usual input language of NuSMV, with some added restrictions, and with
a collection of new keywords used for aspect-specific declarations:

VAR – – BASE. Following this directive, one or more definitions of base ma-
chine variables can appear. NuSMV allows the user to specify variables
which take their value from a symbolic set or numerical range, in addition
to booleans.

VAR – – ASPECT. Following this directive, one or more definitions of aspect
machine variables can appear.

POINTCUT. Describes the aspect’s pointcut. Only current-state expressions
are valid; (past) LTL syntax is not permitted. The complete pointcut is
taken to be the disjunction of all POINTCUT directives; this allows the user
to specify multiple logical pointcuts for the aspect.

INIT. Describes the initial states of the aspect machine.
TRANS. Gives a restriction on the set of valid transitions within the aspect

machine. As in NuSMV, the conjunction of all TRANS directives forms
the complete restriction. Unlike in NuSMV, TRANS is the only directive
available for specifying state machine transitions in FSMA.

RETURN. Describes the return states of the aspect machine. Return states have
no outgoing transitions, even if TRANS would indicate otherwise.

LTLSPEC – – BASE. Defines an expression which must hold as part of the base
system requirement (and is used to build the tableau).

LTLSPEC – – AUGMENTED. Defines an expression which must hold as part
of the augmented system result (and will be model checked).

From the definition of the POINTCUT directive, one limitation of maven is
immediately clear: only pointcuts which are restricted to examining the current
state are permitted. That is, this prototype does not include the step of creating
pointcut-ready machines during its weaving. However, many pointcut languages
and specific applications indeed examine only the current state.

Tableau construction in maven is performed by ltl2smv, an independent com-
ponent of NuSMV. The ltl2smv program takes as input an LTL formula in the
syntax used by NuSMV, and outputs the corresponding tableau state machine.
We weave the tableau with the aspect according to the pointcut by modifying
this textual representation; the result is a valid NuSMV input file representing
the woven tableau and the augmented system results that must hold in it, which
can be given directly to the model checker for verification.

The aspects verified while developing and testing maven have not been chal-
lenging for the model checker because aspect advice typically contains only rela-
tively short code segments. For all the correctly-specified models verified hereto-
fore, runtime has been measured in seconds, and the number of states generated
has been no more than the low thousands.

The maven tool, usage instructions, and a few implemented examples, are
available for download at the website noted in [7]. The examples were selected
for their ability, in a simple and highly abstract way, to demonstrate real-world
situations in which the verification technique is applicable and effective.

MAVEN: Modular Aspect Verification 319

In one, the abstract example given earlier is rephrased to describe a more
realistic situation: prospective base systems are known to have the property
that, whenever a request for a status display is made when the display is not
active at the same time, eventually the display will be shown. We wish to use
an aspect to guarantee the new behavior that, when the request comes while the
display is already active, a later status display will still occur, presumably with
updated information. This becomes the formal specification below, which has
the same structure as the example:

ψ = A G ((¬display ∧ request) → F display)
φ = A G ((display ∧ request) → X F display)

The construction and model check clearly succeed.
Another example involves the notion of a retail store discount policy aspect,

discussed at length in [10]. In the introduction, we noted that such an aspect,
when correctly implemented, is in fact weakly invasive, even though it is altering
the prices of items. We verified a concrete discount aspect whose specified goal
is to implement a “50% Off the Entire Store” policy at the point of purchase. In
particular, we showed both a “healthiness constraint” that assuming all prices
in the underlying system are nonzero, the same is true of the augmented one,
and that the new augmented system has a ceiling on its prices that is half of
the previous ceiling. If the aspect code is incorrect, and zero prices can result,
maven reports that the aspect is not weakly invasive for the given base, be-
cause an aspect return state (one with zero price) differs from all base states,
and it displays one such state, provided by NuSMV as its verification failure
counterexample.

The use of such counterexamples is further investigated in an example aspect
designed to alert users about the occurrence of errors, using an assumption
about an existing message delivery system in the base system. By reasoning
about the circumstances presented in a counterexample produced from model
checking the augmented tableau, we can improve one or more of the specification,
pointcut, or advice of our aspect. In general, the need to refine the specification
indicates either that our original base system assumption was not strong enough,
or possibly that our augmented result was too strong to prove (note that no
assumptions are made about the relationship between the formulas, and we
can vary them independently). Refining the pointcut can be necessary when
the counterexample reveals a situation where the aspect fails to execute advice
when it is needed, or activates advice in an inappropriate situation. The advice
may need to be altered if the counterexample reveals circumstances under which
our original implementation is inadequate; in the case where the advice model
has been derived via abstraction from source code, the counterexample could
indicate a place where our abstraction needs refinement.

The example fails to verify at first because the assumption is too weak, al-
lowing multiple announcements for the same message; a revision to correct this
fails due to situations with overlapping announcements. Correction now requires
changing the advice, and ultimately leads to a version that passes verification.
The important point is that by using the modular verification method, we were

320 M. Goldman and S. Katz

able to reason about the aspect’s correctness independent of any particular base
machine. Furthermore, the method has forced us to think carefully and precisely
about what the aspect will assume, do, and guarantee; precision and certainty
being the goal of formal analysis.

5 Related Work

The first work to separately model check the aspect state machine segments that
correspond to advice is [11], where the verification is modular in the sense that
base and aspect machines are considered separately. The verification method
also allows for joinpoints within advice to be matched by a pointcut and them-
selves advised. However, the treatment there is for a particular aspect woven
directly to a particular base program. Additionally, it shows only how to extend
properties which hold for that base program to the augmented program (using
branching-time logic CTL). A key assumption of their method is that after the
aspect machine completes, the continuation is always to the state following the
joinpoint in the original base program. This requirement is much stronger than
the assumption used here of a weakly invasive aspect.

In [12], model checking tasks are automatically generated for the augmented
system that results from each weaving of an aspect. That approach has the
disadvantage of having to treat the augmented system, but offers the benefit
that needed annotations and set-up need only be prepared once. That work takes
advantage of the Bandera [13] system that generates input to model checking
tools directly from Java code, and can be extended to, for example, the aspect-
oriented AspectJ language. Bandera and other systems like Java Pathfinder [14]
that generate state machine representations from code can be used to connect
common high-level aspect languages to the state machines used here.

In [5] a semantic model based on state machines is given, and the treatment of
code-level aspects and joinpoints defined in terms of transitions, as in AspectJ,
is described. The variations needed to express in a state machine weaving the
meaning of before, after, and around with proceed advice are briefly outlined.

The notion of reasoning about systems composed from two or more state
machines is not new, and the most prevalent method for doing so is the assume-
guarantee paradigm, which forms the basis of this work. In [15] and [16], among
others, an assume-guarantee structure for aspect specification is suggested, sim-
ilar to the specifications here, but model checking is not used. In [15], proof
rules are developed to reason in a modular way about aspect-oriented programs
modeled as alternating transition systems; the treatment is for a particular base
program in combination with an aspect. And in [16], aspects are examined as
transition system transformers, but a verification technique is not introduced.

In most model checking works based on assume-guarantee, the notion of com-
positionality is one in which two machines are composed in parallel. Composing
machine M with M ′ yields a machine in which composed states are pairs of
original states that agree on atomic propositions shared by the two machines.
The work of [17] introduced tableaux to modular verification. Under the parallel

MAVEN: Modular Aspect Verification 321

composition model, no issue analogous to aspect invasiveness arises, because the
machines are combined according to jointly-available states.

An alternative mode of verification for composed systems is seen in [18], treat-
ing feature-oriented programs built from collections of state machines that im-
plement different features within a system. Consequently, that framework uses a
weaving-like process of adding edges between initial and return states of individ-
ual machines, but those feature machines explicitly receive and release control
over the global state, unlike the oblivious base machines here. Work on extending
properties modularly for features is presented in [19].

6 Conclusion

By reusing the notion of a tableau containing all behaviors that satisfy a partic-
ular formula, we can achieve a modular verification for aspects. The approach is
based on augmenting this tableau with the advice according to a pointcut de-
scriptor and examining the result. In order to do so we must restrict our view to
aspects which are weakly invasive and always return to states which were reach-
able in the original base system. Any computation that infinitely often visits an
aspect state is considered fair, to guarantee that it is checked.

A number of directions for future work present themselves. While the current
technique only addresses a single aspect and pointcut descriptor, in principle
it can be extended to work for multiple aspects, given proper definitions of
the weaving mechanics. Further development of how weaving is formulated will
also allow treatment of aspects with advice whose addition changes the set of
joinpoints. Furthermore, the entire discussion here is given in terms of states
and state machines, while, as noted earlier, the usual basic vocabulary of aspect-
oriented programming languages refers to events. Problems of real object systems
still must be fully expressed in the state-based model checking used here.

Nevertheless, the generic method in this paper allows us for the first time to
model check aspects independently of a concrete base program, and already the
maven modular aspect verifier can provide useful results. This technique is a
significant step toward the truly modular verification of aspects.

References

1. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An
overview of AspectJ. In: Proceedings ECOOP 2001. LNCS 2072 (2001) 327–353
http://aspectj.org.

2. Filman, R.E., Elrad, T., Clarke, S., Akşit, M., eds.: Aspect-Oriented Software
Development. Addison-Wesley, Boston (2005)

3. Sihman, M., Katz, S.: Superimposition and aspect-oriented programming. BCS
Computer Journal 46(5) (2003) 529–541

4. Abraham, E., de Boer, F., de Roever, W.P., Steffen, M.: An assertion-based proof
system for multithreaded java. Theoretical Computer Science 331(2-3) (2005)
251–290

322 M. Goldman and S. Katz

5. Katz, S.: Aspect categories and classes of temporal properties. In: Transactions on
Aspect Oriented Software Development, Volume 1, LNCS 3880. (2006) 106–134

6. Clarke, Jr., E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cam-
bridge, MA (1999)

7. Goldman, M.: Modular verification of aspects. MSc thesis,
Technion — Israel Institute of Technology (2006) Available at
http://www.cs.technion.ac.il/Labs/ssdl/thesis/finished/2006/max.

8. Sereni, D., de Moor, O.: Static analysis of aspects. In: AOSD’03: Proc. 2nd Intl.
Conf. on Aspect-oriented Software Development, ACM Press (2003) 30–39

9. NuSMV. (http://nusmv.irst.itc.it/)
10. Douence, R., Südholt, M.: A model and a tool for Event-based Aspect-Oriented

Programming (EAOP). TR 02/11/INFO, Ecole des Mines de Nantes (2002)
11. Krishnamurthi, S., Fisler, K., Greenberg, M.: Verifying aspect advice modularly.

In: Proc. SIGSOFT Conference on Foundations of Software Engineering, FSE’04,
ACM (2004) 137–146

12. Katz, S., Sihman, M.: Aspect validation using model checking. In: Proc. of Inter-
national Symposium on Verification. LNCS 2772 (2003) 389–411

13. Hatcliff, J., Dwyer, M.: Using the Bandera Tool Set to model-check properties of
concurrent Java software. In Larsen, K.G., Nielsen, M., eds.: Proc. 12th Int. Conf.
on Concurrency Theory, CONCUR’01. Volume 2154 of LNCS., Springer-Verlag
(2001) 39–58

14. Havelund, K., Pressburger, T.: Model checking Java programs using Java
PathFinder. International Journal on Software Tools for Technology Transfer
(STTT) 2(4) (2000)

15. Devereux, B.: Compositional reasoning about aspects using alternating-time logic.
In: Proc. of Foundations of Aspect Languages Workshop (FOAL03). (2003)

16. Sipma, H.: A formal model for cross-cutting modular transition systems. In: Proc.
of Foundations of Aspect Languages Workshop (FOAL03). (2003)

17. Grumberg, O., Long, D.E.: Model checking and modular verification. ACM Trans-
actions on Programming Languages and Systems 16(3) (1994) 843–871

18. Blundell, C., Fisler, K., Krishnamurthi, S., Hentenryck, P.V.: Parameterized inter-
faces for open system verification of product lines. In: Proc. 19th IEEE Interna-
tional Conference on Automated Software Engineering, ASE’04, Washington, DC,
IEEE Computer Society (2004) 258–267

19. Guelev, D.P., Ryan, M.D., Schobbens, P.Y.: Model-checking the preservation of
temporal properties upon feature integration. In: Proc. 4th Intl. Workshop on Au-
tomated Verification of Critical Systems (AVoCS). Electronic Notes in Theoretical
Computer Science 128(6) (2004) 311–324

Model Checking Liveness Properties of Genetic

Regulatory Networks

Grégory Batt1, Calin Belta1, and Ron Weiss2

1 Center for Information and Systems Engineering and Center for BioDynamics,
Boston University, Brookline, MA, USA

2 Department of Electrical Engineering and Department of Molecular Biology,
Princeton University, Princeton, NJ, USA

batt@bu.edu, cbelta@bu.edu, rweiss@princeton.edu

Abstract. Recent studies have demonstrated the possibility to build ge-
netic regulatory networks that confer a desired behavior to a living organ-
ism. However, the design of these networks is difficult, notably because
of uncertainties on parameter values. In previous work, we proposed an
approach to analyze genetic regulatory networks with parameter uncer-
tainties. In this approach, the models are based on piecewise-multiaffine
(PMA) differential equations, the specifications are expressed in tem-
poral logic, and uncertain parameters are given by intervals. Abstrac-
tions are used to obtain finite discrete representations of the dynamics
of the system, amenable to model checking. However, the abstraction
process creates spurious behaviors along which time does not progress,
called time-converging behaviors. Consequently, the verification of live-
ness properties, expressing that something will eventually happen, and
implicitly assuming progress of time, often fails. In this work, we extend
our previous approach to enforce progress of time. More precisely, we
define transient regions as subsets of the state space left in finite time by
every solution trajectory, show how they can be used to rule out time-
converging behaviors, and provide sufficient conditions for their identi-
fication in PMA systems. This approach is implemented in RoVerGeNe
and applied to the analysis of a network built in the bacterium E. coli.

1 Introduction

The main goal of the nascent field of synthetic biology is to design and construct
biological systems that present a desired behavior. The construction of networks
of interregulating genes, so-called genetic regulatory networks, has demonstrated
the feasibility of this approach [1]. However, most of the newly-created networks
are non-functioning and need subsequent tuning [1]. One important reason is that
large uncertainties on parameter values hamper the design of the networks. These
uncertainties are caused by current limitations of experimental techniques but
also by the fact that parameter values themselves vary with the ever-fluctuating
extra- and intracellular environmental conditions.

In previous work [2,3], we have developed a method for the verification of dy-
namical properties of genetic regulatory networks with parameter uncertainty.

O. Grumberg and M. Huth (Eds.): TACAS 2007, LNCS 4424, pp. 323–338, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

324 G. Batt, C. Belta, and R. Weiss

In this approach, models are based on piecewise-multiaffine (PMA) differential
equations, dynamical properties are specified in temporal logic, and uncertain
parameters are given by intervals. Following an approach widely-used in hybrid
systems theory [4], we use a time-abstracting embedding transition system in
combination with discrete abstractions to obtain finite discrete representations
of the dynamics of the system in state and parameter spaces, amenable to algo-
rithmic verification by model checking [5].

In the context of gene network design, liveness properties, expressing that
something will eventually happen [6], are commonly-encountered. When prov-
ing liveness properties of a dynamical system, the implicit requirement that
along every behavior time progresses without upper bound plays a key role [7,8].
However, spurious, time-converging behaviors created by the abstraction process
often cause the verification on the abstract system of liveness properties to fail.
This problem was early recognized but is still largely unsolved for continuous
and hybrid systems [7,9].

In this work, we address the above problem by enforcing progress of time in
the abstract systems. First, we define transient regions as subsets of the state
space that are left in finite time by every solution trajectory. Then, the simple
observation that if the system remains in a transient region, the correspond-
ing behavior is necessarily time-converging, provides us with a means to rule
out time-converging behaviors in abstract systems. Finally, we propose sufficient
conditions for the identification of transient regions of PMA systems. This ap-
proach has been implemented in a tool for Robust Verification of Gene Networks
(RoVerGeNe), and applied to the verification of a non-trivial liveness property of
a transcriptional cascade built in the bacterium E. coli. This case study demon-
strates the practical applicability of the proposed approach.

The remainder of this paper is organized as follows. In Section 3, the biological
problem is illustrated by means of an example: the analysis of the robustness of a
transcriptional cascade. In Section 4, we present PMA models and briefly review
the approach described in [2,3] for their analysis under parameter uncertainty.
Our contribution to the verification of liveness properties is detailed in Section 5
and 6. More precisely, we show in Section 5 how transient regions can be used to
rule out time-converging behaviors in discrete abstractions, and in Section 6 how
transient regions can be computed for uncertain PMA systems. In Section 7, we
apply the proposed approach to the analysis of the transcriptional cascade. The
final section discusses the proposed approach in the context of related work.

2 Preliminaries

All the notions and notations presented here are described at length in [2]. We
consider Kripke structures, also called transition systems, T = (S, →, Π, |=),
where S is a finite or infinite set of states, →⊆ S × S is a total transition
relation, Π is a finite set of propositions, and |=⊆ S × Π is a satisfaction re-
lation [5]. An execution of T is an infinite sequence e = (s0, s1, . . .) such that
for every i ≥ 0, si ∈ S and (si, si+1) ∈→. An equivalence relation ∼⊆ S ×S

Model Checking Liveness Properties of Genetic Regulatory Networks 325

is proposition- preserving if ∀s, s′ ∈ S and π ∈ Π , if s ∼ s′ and s |= π, then
s′ |= π. The quotient transition system of T =(S, →, Π, |=) given a proposition-
preserving equivalence relation ∼⊆ S ×S is T/∼ = (S/∼, →∼, Π, |=∼), where
S/∼ is the set of all equivalence classes R of S, →∼⊆ S/∼×S/∼ is such that
R→∼R′ iff there exist s ∈ R, s′ ∈ R′ such that s→s′, and |=∼⊆ S/∼×Π is such
that R |=∼ π iff there exists s ∈ R such that s |= π. The strongly connected
components of a transition system T = (S, →, Π, |=) are the maximal strongly
connected subgraphs of the graph (S, →). We refer to [5] for the syntax and
semantics of LTL formulas interpreted over executions. A transition system T
satisfies an LTL formula φ, denoted T |= φ, iff every execution of T satisfies φ.

Let S ⊆ R

n. S denotes its closure in R

n, and hull(S), its convex hull. A
polytope P in R

n is a bounded intersection of a finite number of open or closed
halfspaces. P is hyperrectangular if P = P1×. . .×Pn where Pi ={xi ∈ R | x =
(x1, . . . , xn) ∈ P}, i ∈ {1, . . . , n}. The set of points v1, . . . , vp ∈ R

n satisfying
P = hull({v1, . . . , vp}) and vi /∈ hull({v1, . . . , vi−1, vi+1, . . . , vp}), i ∈ {1, . . . , p},
is the set VP of vertices of P . A facet of a full-dimensional polytope P is the
intersection of P with one of its supporting hyperplanes. An affine function f :
R

n→R

m is a polynomial of degree at most 1. A multiaffine function f :Rn→R

m

is a polynomial in which the degree of f in any of its variables is at most 1.
Stated differently, non-linearities are restricted to product of distinct variables.

Theorem 1. [10] Let f : R

n → R

m be an affine function and P be a polytope
in R

n. Then, f(P) = hull({f(v) | v ∈ VP }).

Theorem 2. [11] Let f : R

n → R

m be a multiaffine function and P be a hyper-
rectangular polytope in R

n. Then, f(P) ⊆ hull({f(v) | v ∈ VP }).

3 A Motivating Example: Tuning a Transcriptional
Cascade

We consider the genetic regulatory network built in E. coli [12] and represented
in Figure 1(a). It consists of 4 genes forming a cascade of transcriptional inhi-
bitions. The network is controlled by the addition or removal of aTc that serves
as controllable input. The output is the fluorescence intensity of the system,
due to the fluorescent protein EYFP. The cascade is ultrasensitive: at steady-
state, the output undergoes a dramatic change for a moderate change of the
input in a narrow interval. The cascade is expected to present at least a 1000-
fold increase of the output value for a two-fold increase of the input value, but
the actual network does not meet its specifications (Figure 1(b)).

In [2,3], we investigated the possibility to tune the network by modifying some
of its parameters. To do so, we built a model of the system (Figure 2(a)), iden-
tified parameter values using experimental data available in [12], specified the
expected behavior in LTL (Figure 2(b)), and searched for and found parameter
values for which the system satisfies its specifications (Figure 1(b)). It is im-
portant that the network presents a robust behavior, since it should behave as
expected despite environmental fluctuations. So, before actually experimentally

326 G. Batt, C. Belta, and R. Weiss

(a)
TetR LacI EYFPCI

tetR cI eyfp

aTc

lacI

(b)

10
1

10
2

10
3

10
4

10
3

10
4

10
5

10
6

[ATC] (copies per cell)

[E
Y

F
P

] (
co

pi
es

 p
er

 c
el

l)

Input/Output behavior of transcriptional cascade at steady state

x

X

Inhibition

from gene x
Synthesis of protein X

Fig. 1. (a) Synthetic transcriptional cascade. The genes tetR, lacI , cI , and eyfp code for
the proteins TetR, LacI, CI, and EYFP, respectively. When a gene is expressed, the cor-
responding protein is produced, which inhibits the expression of a gene downstream.
The input molecule, aTc, relieves the inhibition of lacI by TetR. (b) Steady-state I/O
behavior of the cascade: measured (red dots), expected (region delimited by black
dashed lines), and predicted, before (red dashed line) and after (blue solid line) tuning.

tuning the network as suggested, we would like to use our model to evaluate the
robustness of the tuned system. More specifically, we would like to verify that
the tuned cascade satisfies its specification for all production and degradation
rate parameters varying in ±10% intervals centered at their reference values.

4 Model Checking Genetic Regulatory Networks with
Parameter Uncertainty

4.1 PMA Models and LTL Specifications

We first present a formalism for modeling gene networks. The notations and
terminology are adapted from [13]. We consider a network consisting of n genes.
The state of the network is given by the vector x = (x1, . . . , xn), where xi

is the concentration of the protein encoded by gene i. The state space X is
a hyperrectangular subset of R

n: X =
∏n

i=1[0,maxxi], where maxxi denotes
a maximal concentration of the protein encoded by gene i. Some parameters
may be uncertain: p = (p1, . . . , pm) is the vector of uncertain parameters, with
values in the parameter space P =

∏m
j=1[minpj ,max pj], where minpj and maxpj

denotes a minimal and maximal value for pj .
The dynamics of the network is given by a set of differential equations:

ẋi = fi(x, p) =
∑

j∈Pi

κj
i rj

i (x) −
∑

j∈Di

γj
i rj

i (x) xi, i ∈ {1, . . . , n}, (1)

where Pi and Di are sets of indices, κj
i > 0 and γj

i > 0 are (possibly uncertain)
production and degradation rate parameters, and rj

i : X → [0, 1] are continuous,

Model Checking Liveness Properties of Genetic Regulatory Networks 327

(a)

ẋtetR = κtetR − γtetR xtetR, (1′)
ẋlacI = κ0

lacI + κlacI (1 − r+(xtetR, θ1
tetR, θ2

tetR) r−(uaTc , θ
1
aTc , θ

2
aTc)) − γlacI xlacI , (2′)

ẋcI = κ0
cI + κcI r−(xlacI , θ

1
lacI , θ

2
lacI) − γcI xcI , (3′)

ẋeyfp = κ0
eyfp + κeyfp r−(xcI , θ

1
cI , θ

2
cI) − γeyfp xeyfp , (4′)

(θ1
aTc , θ

2
aTc)=(80, 4000); (κtetR, γtetR, θ1

tetR, θ2
tetR)=(260, 0.013, 4500, 5500);

(κ0
lacI , κlacI , γlacI , θ

1
lacI , θ

2
lacI)=(2.4, 875.6, 0.013, 500, 4500); (κ0

cI , κcI , γcI , θ
1
cI , θ

2
cI)=

(3.9, 386, 0.013, 600, 23000); (κ0
eyfp , κeyfp , γeyfp)=(4.58, 4048, 0.013)

(b)

θi

r+(xi, θi, θ
′
i)

xiθ′
i0 0 θi

r−(xi, θi, θ
′
i)

θ′
i

1

xi

1

(c)
φ1 = uaTc < 100 → FG(xeyfp > 2.5 102 ∧ xeyfp < 5 102)

∧ 100 < uaTc < 200 → FG(xeyfp > 2.5 102 ∧ xeyfp < 106)
∧ uaTc > 200 → FG(xeyfp > 5 105 ∧ xeyfp < 106).

Fig. 2. (a) Model of the cascade. xtetR, xlacI , xcI , xeyfp denote protein concentrations,
uaTc , input molecule concentration, θ’s, threshold parameters, κ’s, production rate
parameters, and γ’s, degradation rate parameters. r+ and r− are ramp functions rep-
resented in (b). The product of ramp functions in Eq. (2’) captures the assumption
that the expression of lacI is repressed when TetR is present and aTc absent, and
causes the model to be piecewise-multiaffine. Parameter values are indicated. Tuned
parameters are: κlacI = 2591, κcI = 550, and κeyfp = 8000. (b) Increasing (r+) and
decreasing (r−) ramp functions. (c) LTL specification of the expected behavior of the
cascade represented in Figure 1(b). FGp (“eventually, p will be always true”) is used
to express that the property p holds at steady state. φ1 is a liveness property.

piecewise-multiaffine (PMA) functions, called regulation functions. As seen in
our example, PMA functions arise from products of ramp functions r+ and
r− used for representing complex gene regulations or protein degradations (see
Figure 2(a) Eq. (2’) and Ref. [2]). The components of p are production or degra-
dation rate parameters. With the additional assumption that rj

i does not depend
on xi for j ∈ Di,1 it holds that f = (f1, . . . , fn) : X ×P → R

n is a (non-smooth)
continuous function of x and p, a piecewise-multiaffine function of x, and an
affine function of p. Note that production and degradation rate parameters may
be uncertain, but regulation functions (with their threshold parameters) must be
known precisely. Finally, Equation (1) is easily extended to account for constant
inputs u by considering u as a new variable satisfying u̇ = 0.

A number of dynamical properties of gene networks can be specified in tem-
poral logic by LTL formulas over atomic propositions of type xi < λ or xi > λ,
where λ ∈ R≥0 is a constant. We denote by Π the set of all such atomic

1 This assumption requires that a protein does not regulate its own degradation. In
practice, this assumption is generally satisfied.

328 G. Batt, C. Belta, and R. Weiss

propositions. A PMA system Σ is then defined by a piecewise-multiaffine func-
tion f defined as above and a set of atomic propositions Π : Σ = (f, Π).

PMA models of gene networks were proposed in [14] (see [15] for a related,
piecewise-continuous formalism). The models considered here are also related to
the piecewise-affine (PA) models proposed in [16] (see also [13]). However, con-
trary to the step functions used in PA models, ramp functions capture the graded
response of gene expression to continuous changes in effector concentrations.

4.2 Embedding Transition Systems and Discrete Abstractions

The specific form of the PMA function f suggests a division of the state space X
into hyperrectangular regions (see Figure 3 for our example network). Let Λi =
{λj

i}j∈{1,...,li} be the ordered set of all threshold constants in f , and of all atomic
proposition constants in Π , associated with gene i, together with 0 and maxxi ,
i ∈ {1, . . . , n}. The cardinality of Λi is li. Then, we define R as the following set
of n-dimensional hyperrectangular polytopes R ⊆ X , called rectangles :

R = {Rc | c = (c1, . . . , cn) and ∀i ∈ {1, . . . , n} : ci ∈ {1, . . . , li − 1}},

where
Rc = {x ∈ X | ∀i ∈ {1, . . . , n} : λci

i < xi < λci+1
i }.

The union of all rectangles in X is denoted by XR: XR = ∪R∈RR. Note that
XR
= X . Notably, threshold hyperplanes are not included in XR. rect : XR → R
maps every point x in XR to the rectangle R such that x ∈ R. Two rectangles
R and R′, are said adjacent, denoted R � R′, if they share a facet. Figure 3(a)
shows 9 rectangles in a 2-D slice of the state space of our example network. R1

and R2 are adjacent (i.e. R1 �R2), whereas R1 and R5 are not.

θ2
tetRθ1

tetR

R1

R4

R7 R8

R9

R6

R2

R3

R5

θ1
lacI

θ2
lacI

4500 5500

500

4500

0

xlacI

max xlacI

xtetR

max xtetR

R1

R4

R7

R2

R8

R9

R6

R3

R5

|=R= {(Ri, π1)1≤i≤9,
(Ri, π4)1≤i≤9,
(Ri, π6)1≤i≤9,
. . .}

with Π ={π1, . . . , π6},
π1: uaTc <100
π2: uaTc >200
π3: xeyfp >2.5 102

π4: xeyfp <5 102

π5: xeyfp >5 105

π6: xeyfp <106

(a) (b) (c)

Fig. 3. Transcriptional cascade. (a) Schematic representation of the flow (arrows) in
a 2-D slice of the state space. Other variables satisfy: 0 < uaTc < 100, 0 < xcI < 600,
and 0 < xeyfp < 250. (b) and (c) Discrete abstraction TR(p): subgraph of (R, →R,p)
corresponding to the region represented in (a), and satisfaction relation |=R. Dots
denote self transitions.

Model Checking Liveness Properties of Genetic Regulatory Networks 329

Formally, we define the semantics of a PMA system Σ by means of a time-
abstracting embedding transition system [4,8].

Definition 1. Let p ∈ P. The embedding transition system associated with the
PMA system Σ = (f, Π) is TX (p) = (XR, →X ,p, Π, |=X) defined such that:

– →X ,p⊆ XR × XR is the transition relation defined by (x, x′) ∈→X ,p iff there
exist a solution ξ of (1) and τ ∈ R>0 such that ξ(0) = x, ξ(τ) = x′, ∀t ∈ [0, τ],
ξ(t) ∈ rect(x) ∪ rect(x′), and either rect(x) = rect(x′) or rect(x) � rect(x′),

– |=X⊆ XR × Π is the satisfaction relation defined by (x, π) ∈ |=X iff x =
(x1, . . . , xn) satisfies the proposition π (of type xi < λ or xi > λ) with the
usual semantics.

In TX (p), a transition between two points corresponds to an evolution of the
system during some time. Quantitative aspects of time are abstracted away:
some time elapses, but we don’t know how much. Also note that not all solution
trajectories of (1) are guaranteed to be represented by our embedding. However,
one can show that our embedding describes almost all solution trajectories of
(1), which is satisfying for all practical purposes [2].

A PMA system Σ satisfies an LTL formula φ for a given parameter p ∈ P if
TX (p) |= φ, that is, if every execution of TX (p) satisfies φ.

We use discrete abstractions [4] to obtain finite transition systems preserving
dynamical properties of TX (p) and amenable to algorithmic verification [5]. Let
∼R⊆ XR × XR be the (proposition-preserving) equivalence relation defined by
the map rect : x ∼R x′ iff rect(x) = rect(x′). R is the set of equivalence classes.
Then, the discrete abstraction of TX (p) is the quotient of TX (p) given ∼R.

Definition 2. Let p ∈ P. The discrete abstraction of TX (p) is the quotient of
TX (p) given ∼R, denoted by TR(p) = (R, →R,p, Π, |=R).

For the cascade, the discrete transition system TR(p) is partially represented in
Figure 3(b) and (c), with p denoting the tuned parameter values (Section 3). As
suggested by the sketch of the flow in Figure 3(a), there exist solution trajectories
reaching R2 from R1 without leaving R

1 ∪ R
2
. Consequently, there is a discrete

transition from R1 to R2. Also, for example, rectangle R1 satisfies the atomic
proposition π1 : uaTc <100, that is, (R1, π1) ∈ |=R.

4.3 Model Checking Uncertain PMA Systems

Because parameter values are often uncertain, we would like to be able to test
whether a PMA system Σ satisfies an LTL formula φ for every parameter in a
set P ⊆ P . This problem is defined as robustness analysis in [2,3]. Note that the
problem given in Section 3 is precisely an instance of this problem.

To describe the behavior of a network for sets of parameters P ⊆ P , we define
the transition systems T ∃

R(P) and T ∀
R(P) as follows.

330 G. Batt, C. Belta, and R. Weiss

Definition 3. Let P ⊆ P. Then T ∃
R(P) = (R, →∃

R,P , Π, |=R) and T ∀
R(P) =

(R, →∀
R,P , Π, |=R), where

– (R, R′) ∈→∃
R,P iff ∃p ∈ P such that (R, R′) ∈→R,p in TR(p), and

– (R, R′) ∈→∀
R,P iff ∀p ∈ P, (R, R′) ∈→R,p in TR(p).

In words, T ∃
R(P) contains all the transitions present in at least one transition

system TR(p), and T ∀
R(P) contains only the transitions present in all the transi-

tion systems TR(p), p ∈ P . Informally, T ∃
R(P) and T ∀

R(P) can be considered as
over- and under-approximations of TR(p) when p varies, respectively.

In [2,3], we have shown the following property.

if T ∃
R(P) |= φ, then for every p ∈ P, TX (p) |= φ,

that is, the PMA system Σ satisfies property φ for every parameter in P . This
property is instrumental for proving robust properties of gene networks. However,
note that T ∃

R(P)
|= φ does not imply that for some, nor for every parameter, the
property is false. P might still contain parameters for which the property is true,
called valid parameters. So we proposed an iterative procedure that partitions P
and that tests whether T ∃

R(P ′) |= φ for each full-dimensional subset P ′. Clearly,
this approach becomes very inefficient when P does not contain valid parame-
ters, since we keep on partitioning P . This situation can be detected by means of
T ∀
R(P). We have shown in [2,3] that if T ∀

R(P)
|= φ, then we should stop partition-
ing P . So T ∃

R(P) and T ∀
R(P) are respectively used for proving robust properties of

the system and for preserving the efficiency of the approach. Finally, we showed
that T ∃

R(P) and T ∀
R(P) can be computed for polyhedral parameter sets using

standard polyhedral operations. The robustness of a number of dynamical prop-
erties can be tested this way. However, because model checking results are almost
always negative, this approach fails when applied to the verification of liveness
properties. As we will see in the next section, this problem is due to the presence
of spurious, time-converging executions in the abstract transition systems.

5 Transient Regions and Liveness Checking

The analysis of counter-examples returned by model-checkers reveals why the
verification of liveness properties generally fails. For example, the execution
eR1 = (R1, R1, R1, . . .) of TR(p) (Figure 3(b)), is a counter-example of the live-
ness property φ1 given in Figure 2(c). However, from the sketch of the flow
in Figure 3(a), it is intuitively clear that the system leaves R1 in finite time.
Consequently, the execution eR1 that describes a system remaining always in
R1 conflicts with the requirement that time progresses without upper bound.
Such executions are called time-converging [7,9]2. Because they do not rep-
resent genuine behaviors of the system, these executions should be excluded
when checking the properties of the system.
2 Time-converging executions are sometimes called Zeno executions [7,9]. However, we

prefer the former term since the latter is also used in a more restricted sense [17].

Model Checking Liveness Properties of Genetic Regulatory Networks 331

5.1 Time-Diverging Executions and Transient Regions

Definition 4. Let p ∈ P.
An execution eX = (x0, x1, . . .) of TX (p) is time-diverging iff there exists a

solution ξ of (1) and a sequence of time instants τ = (τ0, τ1, . . .) such that
ξ(τi) = xi, for all i ≥ 0, and limi→∞ τi = ∞.

An execution eR = (R0, R1, . . .) of TR(p) is time-diverging iff there exists a time-
diverging execution eX = (x0, x1, . . .) of TX (p) such that xi ∈ Ri, for all i ≥ 0.

Intuitively, an execution of the embedding transition system TX (p) is time-
diverging if it represents at least one solution on the time interval [0, ∞). Also,
an execution of the discrete transition system TR(p) is time-diverging if it is
the abstraction of at least one time-diverging execution of TX (p). Here, we iden-
tify two causes for the absence of progress in the abstract system TR(p). The
first one is due to the time-abstracting semantics used. The time-elapse cor-
responding to a transition in TX (p) can be infinitesimal such that the sum of
all time-elapses of the transitions of an execution of TX (p) can be finite. The
second one is due to the discrete abstraction, since the abstraction process intro-
duces the possibility to iterate infinitely on discrete states of TR(p). While the
first problem appears only for dense-time systems, the second problem is also
present in untimed systems and has been studied in the model checking com-
munity [18,19]. Examples of time-converging executions of TR(p) for our exam-
ple network include eR1 = (R1, R1, R1, . . .), and eR2 = (R2, R5, R2, R5, R2, . . .)
(Figure 3(a) and (b)).

The notion of time-diverging executions can be extended to T ∃
R(P) and T ∀

R(P)
as follows.

Definition 5. Let P ⊆ P.
An execution eR of T ∃

R(P) is time-diverging, if for some p ∈ P , eR is an
execution of TR(p) and is time-diverging.

An execution eR of T ∀
R(P) is time-diverging, if for all p ∈ P , eR is a time-

diverging execution of TR(p).

Finally, we define transient regions as subsets of the state space X that are left in
finite time by every solution. For a reason that will become clear later, we focus on
regions corresponding to unions of rectangles. As suggested by the sketch of the
flow in Figure 3(a) and proved later, R1 and ∪j∈{2,5,8}Rj are transient regions.

Definition 6. Let p ∈ P and U ⊆ X be a union of rectangles R ∈ R. U is
transient for parameter p if for every solution ξ of (1) such that ξ(0) ∈ U , there
exists τ > 0 such that ξ(τ) /∈ U .

5.2 Ruling Out Time-Converging Executions

From the maximality of strongly connected components (SCCs), it follows that
an infinite execution of a finite transition system remains eventually always in
a unique SCC. With TR being either TR(p), T ∃

R(P), or T ∀
R(P), and eR being

an execution of TR, we denote by SCC(eR) ⊆ X the union of the rectangles of

332 G. Batt, C. Belta, and R. Weiss

the strongly connected component of TR in which eR remains eventually always.
Then, it is clear that if an execution eR of TR(p) is time-diverging, that is, repre-
sents at least a solution trajectory on a time interval [0, ∞) (Definition 4), then
SCC(eR) can not be a transient region. Proposition 1 captures this intuition
and establishes a link between time-diverging executions and transient regions.

Proposition 1. Let p ∈ P. If an execution eR of TR(p) is time-diverging, then
SCC(eR) is not transient for p.

Proof. Let p ∈ P and eR = (R0, R1, . . .) be a time-diverging execution of
TR(p). By definition of SCC(eR), there exists i ≥ 0 such that for every j ≥ i,
Rj ⊆ SCC(eR). Let e′R = (Ri, Ri+1, . . .) be a suffix of eR and U = ∪j≥iRj ⊆
SCC(eR). It holds that e′R is a time-diverging execution of TR(p). By Defini-
tion 4, there exists a time-diverging execution e′X = (x0, x1, . . .) of TX (p) such
that for all j ≥ 0, xj ∈ Ri+j ⊆ U . Then by Definition 4, this implies the ex-
istence of a solution ξ of (1) such that ∀t ≥ 0, ∃τ ≥ t such that ξ(τ) ∈ U .
Also, ∀t ≥ 0, ξ(t) ∈ U because every rectangle visited by ξ(t) is necessarily in
U (Definitions 1 and 2). Consequently U is not transient for p (Definition 6).
Because U ⊆ SCC(eR), the same necessarily holds for SCC(eR).

Consider again the executions eR1 = (R1, R1, R1, . . .) and eR2 = (R2, R5, R2,
R5, R2, . . .) of TR(p) (Figure 3(b)). Then, as mentioned earlier, SCC(eR1) =
R1 and SCC(eR2) = ∪j∈{2,5,8}Rj are transient regions for parameter p. By
Proposition 1, eR1 and eR2 are consequently time-converging for p.

The following property is a generalization of Proposition 1.

Proposition 2. Let P ⊆ P.
(a) If an execution eR of T ∃

R(P) is time-diverging, then for some p ∈ P ,
SCC(eR) is not transient for p.

(b) If an execution eR of T ∀
R(P) is time-diverging, then for all p ∈ P , SCC(eR)

is not transient for p.

Proof. First note that we can not use directly Proposition 1, since by definition,
SCC(eR) differs depending on whether eR is an execution of T ∃

R(P), T ∀
R(P)

or TR(p), p ∈ P . However, with eR an execution of T ∃
R(P) (resp. of T ∀

R(P)),
we can show exactly as in the proof of Proposition 1, the existence of a set U
included in SCC(eR) and non-transient for some (resp. every) parameter p∈P .
The conclusion follows immediately.

To summarize, let us denote by TR either TR(p), T ∃
R(P) or T ∀

R(P) and inter-
pret“transient” as transient for p, for every p ∈ P or for some p ∈ P , respectively.
Then, using the contrapositive of Proposition 1 or 2, we obtain that given a
strongly connected component of TR, if the corresponding region U ⊆ X is tran-
sient then every execution of TR remaining in U (i.e. being eventually always in
U) is time-converging and should not be taken into account when checking the
properties of the system. Provided that transient regions can be identified, this
suggests a method to rule out time-converging executions. To do so, we define

Model Checking Liveness Properties of Genetic Regulatory Networks 333

a new atomic proposition π = ‘transient’ in Π and label as ‘transient’ all and
only rectangles R in transient SCCs. Then, instead of testing whether

TR |= φ,

we test whether

TR |= φ′, with φ′ = ¬FG(‘transient’) → φ.

The executions of TR satisfying FG(‘transient’) necessarily remain in a tran-
sient SCC, and are consequently time-converging (Proposition 1 or 2). So, only
time-converging executions are ruled out this way. However, because Proposi-
tions 1 and 2 give only necessary conditions for an execution to be time-diverging,
not all time-converging executions are guaranteed to be ruled out.

Consider again our example network. As said earlier, R1 is a transient region.
Because R1 forms a (single-state) SCC, it is labeled ‘transient’ in TR(p). Then,
the execution eR1 = (R1, R1, R1, . . .), satisfying FG(‘transient’), is not a counter-
example of φ′

1, and will not cause the property to be falsely invalidated anymore.

6 Transient Region Computation for PMA Systems

The approach presented in the previous section is rather general in the sense that
it solely requires the capacity to characterize transient regions. In this section,
we provide sufficient conditions for their identification in PMA systems. More
precisely, we provide conditions for proving that regions corresponding to SCCs
in the discrete abstractions are transient for a given parameter (Proposition 3),
for some parameter (Proposition 5), or for all parameters in a polyhedral set
(Proposition 4). Using sufficient conditions, not all transient regions are guar-
anteed to be identified. However, only time-converging executions will be ruled
out using the approach presented in Section 5. More precisely, Propositions 3,
4 and 5 are used in combination with (the contrapositive of) Propositions 1,
2(a) and 2(b), respectively. These properties rely on the fact that in a rectangle
R the function f is multiaffine and hence is a convex combination of its value
at the vertices of R (Theorem 2). Our focus on PMA systems is motivated by
biological applications. However, Theorem 1 for affine functions on polytopes
is similar to, and in fact stronger than Theorem 2 for multiaffine functions on
rectangles, such that the results in this section also hold for similarly-defined
continuous, piecewise-affine systems on polytopes.

Proposition 3. Let p ∈ P and U ⊆ X be a union of rectangles R ∈ R. If

0 /∈ hull({f(v, p) | v ∈ VR, R ⊆ U}),

then U is transient for parameter p.

Proof. Let p ∈ P and U ⊆ X be a union of rectangles R ∈ R. Assume 0 /∈
hull({f(v, p) | v ∈ VR, R ⊆ U}). Using the separating hyperplane theorem, there
exists α ∈ R

n such that for all z ∈ hull({f(v, p) | v ∈ VR, R ⊆ U}), αT z > 0. For

334 G. Batt, C. Belta, and R. Weiss

every rectangle R ⊆ U , f(x, p) is a multiaffine function of x on R, so it holds
that for every x ∈ R, f(x, p) ∈ hull({f(v, p) | v ∈ VR}) (Theorem 2). Then,
for every x ∈ U , f(x, p) ∈ ∪R⊆U hull({f(v, p) | v ∈ VR}), which is included
in hull({f(v, p) | v ∈ VR, R ⊆ U}). Consequently αT f(x, p) > 0. Since U is
compact (union of compact sets R) and f is continuous, αT f(U, p) is compact,
which implies that there exists c > 0 such that the velocity in the direction of
αT is always larger than c. Consequently, U is left in finite time.

The conditions of the above property are satisfied by R1 and ∪j∈{2,5,8}Rj, which
proves that these regions are transient, as hypothesized earlier. Propositions 4
and 5 are generalizations of Proposition 3 to polyhedral parameter sets.

Proposition 4. Let P ⊆ P be a polytope and U ⊆ X be a union of rectangles
R ∈ R. If 0 /∈ hull({f(v, w) | v ∈ VR, R ⊆ U, w ∈ VP }), then U is transient for
all parameters p ∈ P .

Proof. Using Proposition 3 we only have to prove that if 0 /∈ hull({f(v, w) | v ∈
VR, R ⊆ U, w ∈ VP }) then ∀p ∈ P , 0 /∈ hull({f(v, p) | v ∈ VR, R ⊆ U}). We prove
its contrapositive. Let p ∈ P be such that 0 ∈ hull({f(v, p) | v ∈ VR, R ⊆ U}).
Then since f is affine in p, by Theorem 1 it holds that 0 ∈ hull({hull({f(v, w) |
w ∈ VP }) | v ∈ VR, R ⊆ U}), or more simply 0 ∈ hull({f(v, w) | v ∈ VR, R ⊆
U, w ∈ VP }).

Proposition 5. Let P ⊆ P be a polytope and U ⊆ X be a union of rectangles
R ∈ R. If for some w ∈ VP , 0 /∈ hull({f(v, w) | v ∈ VR, R ⊆ U}), then U is
transient for some parameters p ∈ P .

By Proposition 3, Proposition 5 is obviously sufficient for proving that a region
is transient for some parameter in a polyhedral set. However, it may seem very
conservative to test whether 0 /∈ hull({f(v, w) | v ∈ VR, R ⊆ U}) is true only at
the vertices of P instead of testing whether this is true for every parameter in
P . The following proposition states that this is in fact equivalent.

Proposition 6. Let P ⊆ P be a polytope and U ⊆ X be a union of rectangles
R ∈ R. ∃p ∈ P such that 0 /∈ hull({f(v, p) | v ∈ VR, R ⊆ U}) iff ∃w ∈ VP such
that 0 /∈ hull({f(v, w) | v ∈ VR, R ⊆ U}).

Proof. The necessity is trivial. We prove sufficiency by contradiction. Let p ∈ P
and let I and J be two sets of indices labeling the vertices in ∪R⊆UVR and VP :
∪R⊆UVR = {vi}i∈I and VP = {wj}j∈J . Then, there exists {μj}j∈J such that∑

j∈J μjwj = p, with μj ≥ 0, ∀j∈J , and
∑

j∈J μj = 1. Also, it holds that

hull({f(vi, p)}i∈I) = hull({
�

j∈J μjf(vi, wj)}i∈I) //f is affine in p

=
�

j∈J hull({μjf(vi, wj)}i∈I) //Minkowski sum of convex hulls

Then, for every wj ∈ VP , 0 ∈ hull({f(vi, wj)}i∈I) implies that 0 ∈ hull({μjf(vi,
wj)}i∈I). So, by definition of Minkowski sum, we have 0 /∈ hull({f(vi, p)}i∈I).
Contradiction.

Model Checking Liveness Properties of Genetic Regulatory Networks 335

computational number of uncertain parameters

time (in minutes) 0 2 5 8 11

number of 3 0.03 0.04 0.07 - -

continuous 4 0.20 0.27 0.59 2.66 -

variables 5 2.60 3.28 6.46 29.11 207.76

Fig. 4. Computational time for the verification of a liveness property as a function of
the number of variables and uncertain parameters. The 3- and 4-dimensional systems
correspond to similar but shorter transcriptional cascades (see [12]).

From a computational point of view, it is important to note that the conditions in
Propositions 3, 4 and 5, can be simply evaluated by solving a linear optimization
problem. The implementation of the approach described in Sections 5 and 6 re-
sulted in a new version of a publicly-available tool for Robust Verification of Gene
Networks (RoVerGeNe) (http://iasi.bu.edu/∼batt/rovergene/rovergene.htm).
RoVerGeNe is written in Matlab and uses MPT (polyhedral operations and linear
optimization), MatlabBGL (SCC computation) and NuSMV (model-checking).

7 Analysis of the Tuned Transcriptional Cascade

As explained in Section 3, in previous work we have predicted a way to tune
the transcriptional cascade such that it satisfies its specifications, using a PMA
model of the system. Before tuning the cascade experimentally, it is important
to evaluate its robustness. To do so, we have tested whether the system satisfies
the liveness property φ1 (Figure 2(c)) for all of the 11 production and degra-
dation rate parameters varying in ±10% intervals centered at their reference
values. Because the network has no feedback loops, it is not difficult to show
that oscillatory behaviors are not possible. Consequently, every (time-diverging)
execution necessarily eventually remains in a single (non-transient) rectangle,
instead of SCC in the general case (see Proposition 2). We have consequently
applied Propositions 4 and 5 to rectangles only, to obtain tighter predictions.

Using RoVerGeNe, we have been able to prove this property in <4 hours (PC,
3.4GHz processor, 1Gb RAM). Given that the problem was to prove that a non-
trivial property holds for every initial condition in a 5-dimensional state space
(1 input and 4 state variables) and for every parameter in an 11-dimensional
parameter set, this example illustrates the applicability of the proposed approach
to the analysis of networks of realistic size and complexity. Computational times
for smaller instances of this problem are given in Figure 4.

The same test has been performed for ±20% parameter variations and a nega-
tive answer has been obtained (<4 hours). We recall that from negative answers,
one can not conclude that the property is false for some parameters in the set.
Nevertheless, the analysis of the counter-example given by the model checker has
revealed that the system can remain in a (non-transient) rectangle in which the
concentration of EYFP is below the minimal value allowed by the specifications
(5 105), when the production rate constants κ0

eyfp and κeyfp are minimal and the

336 G. Batt, C. Belta, and R. Weiss

degradation rate constant γeyfp is maximal, in the ±20% intervals. As a conse-
quence, the property is not robustly satisfied by the system for ±20% parameter
variations. This analysis illustrates that relevant constraints on parameters are
identified by this approach.

8 Discussion

This work addresses the problem of the verification of liveness properties of ge-
netic regulatory networks modeled as PMA systems. It extends previous work on
the verification of PMA systems with parameter uncertainty [2,3]. Abstractions
are used to obtain discrete representations of the dynamics of the system in state
and parameter spaces, amenable to model checking. However, the abstractions
introduce spurious behaviors along which time does not progress, called time-
converging behaviors. The presence of these behaviors in the abstract systems
generally causes the verification of liveness properties, expressing that something
will eventually happen, to fail.

In this work, we proposed an approach to identify and rule out these behav-
iors, thus enforcing the progress of time in the abstract systems. We introduce
the notion of transient regions as subsets of the state space that are eventu-
ally left by every solution trajectory, and established a simple relation between
time-converging executions and regions corresponding to SCCs of the abstract
discrete transition systems: executions that remain in a transient SCC are neces-
sarily time-converging. Then, we provide sufficient conditions for characterizing
transient regions in PMA systems. The approach is described for fixed parame-
ters and systematically extended to deal with (polyhedral) sets of parameters.
This approach is implemented in a tool called RoVerGeNe. Its capacity to pro-
vide meaningful results for non-trivial problems on networks of biological interest
is illustrated on the analysis of a transcriptional cascade.

The use of model checking for the analysis of biological networks has attracted
much attention [20,21,22,23,24]. The verification of true (i.e. unbounded) live-
ness properties is not possible when the semantics is based on a set of necessarily
time-bounded solution trajectories obtained by numerical simulation of ordinary
differential equation models [20,23]. For discrete [22,23] or hybrid [21] models,
fairness properties can be added in an ad hoc manner for the system at hand.
So, although liveness properties are commonly encountered in biological appli-
cations, no systematic approach has been proposed yet for their verification.

More generally, this work addresses the problem of the verification of liveness
properties of continuous or hybrid systems having dense-time semantics. In com-
parison with the amount of work done for the verification of safety properties
of these systems, not much work has been done for liveness properties [9]. It
has been proposed that the difficulty to enforce progress of time in dense-time
systems makes liveness properties comparatively more difficult to analyze [9].
Tools supporting the verification of true (i.e. unbounded) liveness properties of
dense-time systems are Uppaal [25], TReX [18] and RED [9]. However, their ap-
plicability is limited to timed automata, which have very restricted continuous

Model Checking Liveness Properties of Genetic Regulatory Networks 337

dynamics. In contrast, our approach applies to any discrete abstraction provided
that transient regions can be characterized. As mentioned in Section 5, a similar
problem arise in untimed systems for the verification of liveness properties when
abstractions are used [18,19]. Progress of the abstract system is then enforced by
the addition of fairness constraints, expressing that the system can not always
remain in a given set of states. Because ¬FG(‘transient’) (= GF(¬‘transient’),
Section 5) is a fairness constraint, our approach precisely amounts to deduce fair-
ness constraints from the computation of transient regions. Consequently, our
work can be regarded as an extension of an approach previously proposed for
untimed systems and as a first step in the direction of the verification of liveness
properties for general classes of continuous or hybrid systems. We envision that
the notion of transient set can play for liveness properties a role symmetrical to
the well-established role of positive invariant sets for safety properties.

Acknowledgements. We would like to thank Boyan Yordanov for contributions
to model development and acknowledge financial support by NSF 0432070.

References

1. Andrianantoandro, E., Basu, S., Karig, D., Weiss, R.: Synthetic biology: New
engineering rules for an emerging discipline. Mol. Syst. Biol. (2006)

2. Batt, G., Belta, C.: Model checking genetic regulatory networks with applications
to synthetic biology. CISE Tech. Rep. 2006-IR-0030, Boston University (2006)

3. Batt, G., Belta, C., Weiss, R.: Model checking genetic regulatory networks with
parameter uncertainty. To appear in Bemporad, A., Bicchi, A., Buttazzo, G.,
eds.:Proc. HSCC’07. LNCS, Springer (2007)

4. Alur, R., Henzinger, T.A., Lafferriere, G.J., Pappas, G.: Discrete abstractions of
hybrid systems. Proc. IEEE 88(7) (2000) 971–984

5. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press (1999)
6. Alpern, B., Schneider, F.B.: Recognizing safety and liveness. Distrib. Comput.

2(3) (1986) 117–126
7. Henzinger, T.A., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic model checking for

real-time systems. Inform. and Comput. 111 (1994) 193–244
8. Tripakis, S., Yovine, S.: Analysis of timed systems using time-abstracting bisimu-

lations. Formal Methods System Design 18(1) (2001) 25–68
9. Wang, F., Huang, G.D., Yu, F.: TCTL inevitability analysis of dense-time systems:

From theory to engineering. IEEE Trans. Softw. Eng. (2006) In press.
10. Habets, L.C.G.J.M., Collins, P.J., van Schuppen, J.H.: Reachability and control

synthesis for piecewise-affine hybrid systems on simplices. IEEE Trans. Aut. Con-
trol 51(6) (2006) 938–948

11. Belta, C., Habets, L.C.G.J.M.: Controlling a class of nonlinear systems on rectan-
gles. IEEE Trans. Aut. Control 51(11) (2006) 1749–1759

12. Hooshangi, S., Thiberge, S., Weiss, R.: Ultrasensitivity and noise propagation in
a synthetic transcriptional cascade. Proc. Natl. Acad. Sci. USA 102(10) (2005)
3581–3586

13. de Jong, H., Gouzé, J.L., Hernandez, C., Page, M., Sari, T., Geiselmann, J.: Qual-
itative simulation of genetic regulatory networks using piecewise-linear models.
Bull. Math. Biol. 66(2) (2004) 301–340

338 G. Batt, C. Belta, and R. Weiss

14. Belta, C., Habets, L.C.G.J.M., Kumar, V.: Control of multi-affine systems on rec-
tangles with applications to hybrid biomolecular networks. In: Proc. CDC’02. (2002)

15. Mestl, T., Plahte, E., Omholt, S.: A mathematical framework for describing and
analysing gene regulatory networks. J. Theor. Biol. 176 (1995) 291–300

16. Glass, L., Kauffman, S.A.: The logical analysis of continuous non-linear biochemical
control networks. J. Theor. Biol. 39(1) (1973) 103–129

17. Lygeros, J., Johansson, K.H., Simic̀, S.N., Zhang, J., Sastry, S.S.: Dynamical prop-
erties of hybrid automata. IEEE Trans. Aut. Control 48(1) (2003) 2–17

18. Bouajjani, A., Collomb-Annichini, A., Lacknech, Y., Sighireanu, M.: Analysis of
fair parametric extended automata. In Cousot, P., ed.: Proc. SAS’01. LNCS 2126,
Springer (2001) 335–355

19. Dams, D., Gerth, R., Grumberg, O.: A heuristic for the automatic generation of
ranking functions. In: Proc. WAVe’00. (2000) 1–8

20. Antoniotti, M., Piazza, C., Policriti, A., Simeoni, M., Mishra, B.: Taming the
complexity of biochemical models through bisimulation and collapsing: Theory
and practice. Theor. Comput. Sci. 325(1) (2004) 45–67

21. Batt, G., Ropers, D., de Jong, H., Geiselmann, J., Mateescu, R., Page, M., Schnei-
der, D.: Validation of qualitative models of genetic regulatory networks by model
checking : Analysis of the nutritional stress response in E. coli. Bioinformatics
21(Suppl.1) (2005) i19–i28

22. Bernot, G., Comet, J.P., Richard, A., Guespin, J.: Application of formal methods to
biological regulatory networks: Extending Thomas’ asynchronous logical approach
with temporal logic. J. Theor. Biol. 229(3) (2004) 339–347

23. Calzone, L., Chabrier-Rivier, N., Fages, F., Soliman, S.: Machine learning bio-
chemical networks from temporal logic properties. In Priami, C., Plotkin, G., eds:
Trans. Comput. Syst. Biol. VI. LNBI 4220, Springer (2006) 68–94

24. Eker, S., Knapp, M., Laderoute, K., Lincoln, P., Talcott, C.L.: Pathway logic:
Executable models of biological networks. In Gadducci, F., Montanari, U., eds.:
Proc. WRLA’02. ENTCS 71, Elsevier (2002)

25. Bengtsson, J., Larsen, K.G., Larsson, F., Pettersson, P., Wang, Y., Weise, C.: New
generation of uppaal. In: Proc. STTT’98. (1998)

Checking Pedigree Consistency with PCS�

Panagiotis Manolios, Marc Galceran Oms, and Sergi Oliva Valls

College of Computing
Georgia Institute of Technology

Atlanta, Georgia 30332-0280 USA
{manolios,mgalceran3,soliva3}@gatech.edu

Abstract. Many important problems in bioinformatics and genetics
require analyses that are NP-complete. For example, one of the basic
problems facing researchers that analyze pedigrees—data that repre-
sents relationships and genetic traits of a set of individuals—is evaluating
whether they are consistent with the Mendelian laws of inheritance. This
problem is NP-complete and several specialized algorithms have been de-
vised to solve the types of problems occurring in practice efficiently. In
this paper, we present PCS, a tool based on Boolean Satisfiability (SAT)
that is orders of magnitude faster than existing algorithms, and more
general. In fact, PCS can solve real pedigree checking problems that
cannot be solved with any other existing tool.

Keywords: Boolean satisfiability, SAT, Pedigree Consistency checking,
bioinformatics, genetics, computational biology.

1 Introduction

Computational methods have become increasingly important in the fields of
biology and genetics. In fact, the computational needs of these fields have led
to grand challenge problems in computing, such as solving the protein folding
problem, one of the main motivations behind IBM’s Blue Gene project. Many
of the problems in these domains turn out to be NP-complete, and therefore
reducible to Boolean satisfiability (SAT). Given the recent improvements in SAT-
solving technology, a natural question is whether SAT-based methods can be
used to solve important problems arising in biology and genetics. In this paper,
we provide evidence that this is in fact likely.

We focus on the pedigree consistency checking problem, a well studied and
important problem. Pedigrees describe genotype information about a collection
of related individuals. When we say that a pedigree is consistent, we mean that
it is consistent with the laws of Mendelian inheritance. Pedigree checking is
important for numerous reasons. For example, it turns out that inconsistent
pedigree data can adversely affect linkage analysis, the process by which human
genes are linked to traits such as the predisposition to various diseases [10, 1].

� This research was funded in part by NSF grants CCF-0429924, IIS-0417413, and
CCF-0438871.

O. Grumberg and M. Huth (Eds.): TACAS 2007, LNCS 4424, pp. 339–342, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

340 P. Manolios, M.G. Oms, and S.O. Valls

The consistency checking problem for pedigrees is NP-complete [1] and has
been tackled in essentially two different ways. The first approach is based on
specialized algorithms. This includes algorithms for dealing with the simpler
“non-looping” pedigrees, e.g., by K. Lange and T. Goradia [3] and algorithms
for loop-breaking, which reduce the problem to the simpler non-looping case.1

The Pedcheck tool, developed by J. O’Connell and E. Weeks, is the best known
example of this approach [8, 9]. Secondly, there is another, very recent approach
by de Givry et al. that is based on the use of weighted constraint satisfaction
techniques. MendelSoft is a tool implementing this approach [2].

In this paper, we describe PCS, a SAT-based tool that leads to orders of
magnitude performance improvements over existing tools for checking pedigrees.

2 Pedigree Consistency

A pedigree represents family relationships among a set of individuals, as well
as genotype information on the individuals. The genotype information consists
of a pair of alleles, DNA codings appearing in given positions on chromosomes.
Alleles are DNA stands that correspond to a gene, the basic unit of heredity. The
pedigree is consistent, with the Mendelian laws of inheritance, if every individual
inherits exactly one allele from each of its parents.

Existing systems require that all individuals in pedigrees have either two or
no parents and, similarly, two or no alleles. In PCS, we can also handle pedi-
grees containing partial information, e.g., individuals with one unknown parent
and/or one undefined allele are allowed. These extensions were easy to implement
due to the flexibility of our approach, which involves translating the pedigree
consistency checking problem to a satisfiability problem.

3 Tool Description

In this section, we give a brief overview of the internals of PCS [4] and also de-
scribe how PCS is used. PCS can be downloaded from http://www.cc.gatech.
edu/∼manolios/pcs/. The input to PCS is linkage-format data given in the for-
mats describe at http://linkage.rockefeller.edu/soft/linkage/. In brief,
the information for a member of the pedigree appears on one line as a sequence
of integers. These integers indicate the family identifier, the member identifier,
the father identifier, the mother identifier, the sex (1 for male and 2 for female),
the first allele number, and the second allele number.

The pedigree data is preprocessed to rule out simple errors, e.g., we check
that every member’s father is a male and every member’s mother is a female.
We also check that in case the data is declared to be sex-linked, all males are
homozygots, which means that all males have only one allele.

1 Loops in pedigrees arise when there is a loop in the graph of mates, a graph whose
nodes are individuals and whose edges encode the mating relationship. For example,
marriage loops are formed when one individual mates with two siblings.

Checking Pedigree Consistency with PCS 341

The main phase of PCS is the translation of the consistency problem into a
SAT problem. We cannot describe the details of this translation here, but we note
that we make essential use of the BAT tool [6, 5]. BAT implements a decision
procedure for the BAT language, a powerful hardware description language. This
allows us to express the consistency problem in a high-level language and to leave
the details of generating reasonable CNF to BAT.

The generated CNF file can then be given to any standard SAT solver. If a
satisfying assignment is found, then the problem is consistent. If the formula
is unsatisfiable, then there are incompatibilities in the pedigree. In this case, it
is absolutely necessary to determine the problem and to communicate it to the
user. We do this by extracting an unsatisfiable core, an unsatisfiable subset of the
clauses that will become satisfiable if any of its clauses are removed. In the worst
case, this includes the set of all clauses, but in practice this is highly unlikely. By
extracting an unsatisfiable core, we can determine which set of members have
inconsistent genomic information and why. Instead of reporting one such error at
a time, PCS iteratively generates unsatisfiable cores and removes the genotype
information of the individuals involved until we reach a fixed point. When the
fixed point is reached, we have a satisfiable problem and PCS generates a report
outlining all of the inconsistencies found.

4 Results

We compare the performance of our approach with Pedcheck, the most widely
used program for Pedigree Checking [8, 9] and with MendelSoft [2], a tool that is
based on a new approach involving weighted constraint satisfaction techniques.

We use the zchaff SAT-solver [7] for satisfiability testing and for extracting un-
satisfiable cores [11]. All experiments were run on an Intel 3.06GHz Xeon machine,
with 512 KB of L2 cache running on a GNU/Linux OS with kernel version 2.6.9.

We used both randomly generated benchmarks and actual pedigree problems
from various domains. PCS detected the same errors as Pedcheck and Mendel-
Soft, but it was two to three orders of magnitude faster than Pedcheck and one
to two orders of magnitude faster than MendelSoft.

One of the most complicated examples we used consisted of actual pedigree
data from sheep. This data was obtained from a repository provided by the
authors of the MendelSoft system [2]. After some preprocessing, this data set
consists of 8,920 members. The data could not be handled directly by neither
MendelSoft nor PedCheck. Therefore, it was partitioned into four smaller prob-
lems, entitled sheep4r 4 0, . . ., sheep4r 4 3. PedCheck took over 10 hours to solve
the subproblems and MendelSoft tool over an hour. PCS was able to solve all
four problems in under 20 seconds. This includes the total time required by BAT,
the SAT solver, and the unsatisfiable core generator. In addition, PCS can deal
with the whole pedigree, sheep4r directly, without having to partition the prob-
lem into subproblems (which was done by removing parent child relationships,
something that can mask inconsistencies). PCS was able to correctly solve this
problem, which was not solvable by any other existing tool, in under a minute.

342 P. Manolios, M.G. Oms, and S.O. Valls

5 Conclusions

We introduced PCS, a SAT-based tool for checking the consistency of pedigrees.
PCS is orders of magnitude faster than the most efficient existing algorithms.
It is also more general and it is capable of easily solving real pedigree checking
problems that cannot be solved with existing tools. Our work benefited greatly
from the use of BAT’s high-level language and the BAT decision procedure. The
high-level language allowed us to think and operate at a much higher level than
CNF without sacrificing efficiency, as the BAT decision procedure was able to
quickly generate compact CNF optimized for current SAT solvers. Encouraged
by our results, we believe that SAT-based methods should be applied to other
hard problems in computational biology.

References

[1] L. Aceto, J. A. Hansen, A. Ingólfsdóttir, J. Johnsen, and J. Knudsen. The com-
plexity of checking consistency of pedigree information and related problems. In
Proceedings of the Eighth Italian Conference on Theoretical Computer Science
(ICTCS’03), pages 174–187, 2003.

[2] S. de Givry, I. Palhiere, Z. Vitezica, and T. Schiex. Mendelian error detection in
complex pedigree using weighted constraint satisfaction techniques. In ICLP-05
workshop on Constraint Based Methods for Bioinformatics, Sitges, Spain, 2005.

[3] K. Lange and T. Goradia. An algorithm for automatic genotype elimination.
American Journal of Human Genetics, 40(3):250–256, 1987.

[4] P. Manolios, M. G. Oms, and S. O. Valls. PCS: Pedigree Checking with SAT.
2007. Available from http://www.cc.gatech.edu/∼manolios/pcs/.

[5] P. Manolios, S. K. Srinivasan, and D. Vroon. Automatic memory reductions
for RTL-level verification. In ACM-IEEE International Conference on Computer
Aided Design (ICCAD 2006), November 2006.

[6] P. Manolios, S. K. Srinivasan, and D. Vroon. BAT: The Bit-level Analysis Tool.
2006. Available from http://www.cc.gatech.edu/∼manolios/bat/.

[7] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff:
Engineering an efficient SAT solver. In Design Automation Conference (DAC’01),
pages 530–535, 2001.

[8] J. R. O’Connell and D. E. Weeks. Pedcheck: A program for identification of geno-
type incompatibilities in linkage analysis. American Journal of Human Genetics,
63(1):259–266, 1998.

[9] J. R. O’Connell and D. E. Weeks. An optimal algorithm for automatic genotype
elimination. American Journal of Human Genetics, 65(6):1733–1740, 1999.

[10] E. Sobel, J. C. Papp, and K. Lange. Detection and integration of genotyping
errors in statistical genetics. American Journal of Human Genetics, 70:496–508,
2002.

[11] L. Zhang and S. Malik. Validating SAT solvers using an independent resolution-
based checker: Practical implementations and other applications. In Proceedings
of the Design and Test in Europe Conference, pages 10880–10885, March 2003.

“Don’t Care” Modeling: A Logical Framework

for Developing Predictive System Models�

Hillel Kugler1, Amir Pnueli1,2, Michael J. Stern3, and E. Jane Albert Hubbard1

1 New York University, New York, NY, USA
{kugler,amir}@cs.nyu.edu, jane.hubbard@nyu.edu
2 The Weizmann Institute of Science, Rehovot, Israel

3 Yale University, New Haven, CT, USA
Michael.Stern@yale.edu

Abstract. Analysis of biological data often requires an understanding of
components of pathways and/or networks and their mutual dependency
relationships. Such systems are often analyzed and understood from
datasets made up of the states of the relevant components and a set of dis-
crete outcomes or results. The analysis of these systems can be assisted by
models that are consistent with the available data while being maximally
predictive for untested conditions. Here, we present a method to construct
such models for these types of systems. To maximize predictive capabil-
ity, we introduce a set of “don’t care” (dc) Boolean variables that must
be assigned values in order to obtain a concrete model. When a dc vari-
able is set to 1, this indicates that the information from the corresponding
component does not contribute to the observed result. Intuitively, more
dc variables that are set to 1 maximizes both the potential predictive ca-
pability as well as the possibility of obtaining an inconsistent model. We
thus formulate our problem as maximizing the number of dc variables that
are set to 1, while retaining a model solution that is consistent and can
explain all the given known data. This amounts to solving a quantified
Boolean formula (QBF) with three levels of quantifier alternations, with
a maximization goal for the dc variables. We have developed a prototype
implementation to support our new modeling approach and are applying
our method to part of a classical system in developmental biology describ-
ing fate specification of vulval precursor cells in the C. elegans nematode.
Our work indicates that biological instances can serve as challenging and
complex benchmarks for the formal-methods research community.

1 Introduction

Understanding a given complex system whose behavior can be observed, but
whose behavioral program is not directly available, is an important yet diffi-
cult task. Examples of such systems include complex web services, software for
which only the executable binary code is available, and legacy systems where
the code is available but may be written in a language that is rarely used nowa-
days or lacking sufficient documentation and support from the original system
� This research was supported in part by NIH grant R24-GM066969.

O. Grumberg and M. Huth (Eds.): TACAS 2007, LNCS 4424, pp. 343–357, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

344 H. Kugler et al.

developers. Our current work was motivated by a project that uses methods
from software and system design to model and analyze biological systems. The
behaviors of biological systems can be observed; however, the workings of their
underlying behavioral programs are not directly available, and their elucidation
is the subject of much biological research.

Analysis of biological data often requires an understanding of components of
pathways and/or networks and their mutual dependency relationships. Such sys-
tems are often analyzed and understood from datasets made up of the states of
the relevant components and a set of discrete outcomes or results. One type of
biological example of such a system relates a “genotype” (the states of a set of
genes, that can be either mutated or normal) and a resulting character trait (a
“phenotype”). The understanding of the behavior of these systems is often con-
strained by the limited set of available condition-result data. The analysis of these
types of systems can be assisted by models that are consistent with the available
data while being maximally predictive for untested conditions. Here, we present
a method to construct such models for these types of systems. Furthermore, our
approach allows identifying those additional condition-result data that can most
effectively constrain the set of possible models to those that match the behavior
of the system. Our approach handles models with discrete variables, thus if the
actual system variables are continuous, we assume that the domain has been dis-
cretized either manually or using other computational methods.

To maximize predictive capability, we introduce a set of “don’t care” (dc)
Boolean variables that must be assigned values in order to obtain a concrete
model. When a dc variable is set to 1, this indicates that the information from the
corresponding component does not contribute to the observed result. Thus the
value of 1 denotes flexibility while the value of 0 denotes inflexibility. Intuitively,
increasing the number of dc variables that are set to 1 increases both the potential
predictive capability as well as the possibility of obtaining an inconsistent model.
We thus formulate our problem as maximizing the number of dc variables that
are set to 1, while retaining a model solution that is consistent and can explain
all the given data. This amounts to solving a quantified Boolean formula (QBF)
with three levels of quantifier alternations, with a maximization goal for the dc
variables. We first show how our problem can be solved using QBF solvers, and
later demonstrate how the special structure of our QBF instances can be used
to reduce the problem and allow a more efficient solution.

We are applying our method to part of a classical system in developmental biol-
ogydescribing fate specificationofvulvalprecursor cells in theC.elegansnematode.
This is a well-characterized system that provides sufficient complexity to serve as
a test case for our studies. Our work indicates that biological instances can serve as
challenging and complex benchmarks for the formal-methods research community.

2 Example

This section introduces the problem statement, logical representation and pos-
sible solutions through a very simple example. For ease of presentation we make

A Logical Framework for Developing Predictive System Models 345

some simplifying assumptions in this section 1; the more general case can be
treated by adjusting this framework.

Let Boolean variable x denote a possible genetic locus:

x =
{

1 if mutated
0 if wild-type

In this simple example we consider three possible genetic loci with corresponding
variables x1, x2, x3. We assume three possible phenotypic outcomes, denoted by
variable y ∈ {1, 2, 3}. The possible phenotypic outcomes are assumed to be
disjoint, thus it is not possible to measure for example both y = 1 and y = 2.

We assume two experiments were performed and show the direct logical rep-
resentation:

Experiment 1. x1 is mutated and all others are wild-type. The phenotype
obtained was y = 1. The logical representation is:

x1 = 1 ∧ x2 = 0 ∧ x3 = 0 → y = 1

Experiment 2. x2 is mutated and all others are wild-type. The phenotype
obtained was y = 2. The logical representation is:

x1 = 0 ∧ x2 = 1 ∧ x3 = 0 → y = 2

We are interested in representing and understanding the connection between
genotype and phenotype. For this purpose we would like to construct a model
that explains experimental results, and can make predictions about new experi-
ments.

Considering our simple example, a first attempt for a model is:

(x1 = 1 ∧ x2 = 0 ∧ x3 = 0 → y = 1) ∧ (x1 = 0 ∧ x2 = 1 ∧ x3 = 0 → y = 2)

The above model, being a conjunction of the two formulas representing the
experimental results, is consistent with the respective experimental results, but
does not provide any additional predictions about new experiments. For example,
considering the experiment in which x2 and x3 are mutated while x1 remains
wild-type, the model predicts nothing about the phenotype y. Formally, given
the assignment x1 = 0, x2 = 1, x3 = 1 the model formula evaluates to true
for any assignments of the phenotype y, which can be assigned to values in the
range {1, 2, 3}. The meaning is that any phenotypic outcome is possible, which
amounts to no prediction.

To enable prediction the model should allow generalization from the experi-
mental results. Our second attempt for constructing a model is:

(x1 = 1 → y = 1) ∧ (x2 = 1 → y = 2)

1 Simplifying assumptions include single variable for phenotype representation instead
of cross product using several variables, single value for phenotype measurement
instead of disjunction of possible outcomes.

346 H. Kugler et al.

The idea here is to generalize by recording explicitly only the information about
the mutations, omitting the wild-type background. The problem is that this
model is inconsistent. Specifically, for the experimental setup in which both x1
and x2 are mutated, obtained by assigning x1 = 1, x2 = 1 to the formula, no
assignment to y can satisfy it since it implies both y = 1 and y = 2. Variable
y denotes a phenotype output, which we assume has disjoint values, thus it is
not possible to have two phenotypic outcomes simultaneously, and hence the
inconsistency.

A third and final attempt is to generalize as much as possible, but avoid incon-
sistent models. For this goal, we add dc variables, which are Boolean variables
of the form d ∈ {0, 1}. When d = 1 the phenotype of the system is unaffected by
this specific mutation in a given genetic background (we “don’t care” whether
it is mutated or not in this situation). When d = 0, the mutation is important
in this context.

In this formulation we construct for our example a general model as follows:

(x1 =1∧x2 <= d2
1∧x3 <= d3

1 → y = 1)∧(x1 <= d1
2∧x2 = 1∧x3 <= d3

2 → y = 2)

Let us explain the formula in some more detail. Here dj
i denotes the dc vari-

able for locus j in experiment i. A concrete model is obtained by assigning
values to all the dc variables dj

i . The expression xj <= dj
i allows the flexi-

bility to determine whether or not it is important to keep variable xj in it’s
“normal” restrictive setting (xj = 0) for obtaining the outcome measured in
experiment i. If we set the dc variable dj

i to 1, then the expression xj <= dj
i

evaluates to xj <= 1 which is equivalent to true, since xj is a Boolean variable
and the expression holds for values 0 (since 0 <= 1) and 1 (since 1 <= 1). In
this case, the value of xj in experiment i does not affect the phenotypic out-
come. If, on the other hand, we set dj

i to 0, the expression xj <= dj
i evaluates

to xj <= 0 which, for Boolean variable xj , is equivalent to xj = 0, meaning
that the value of variable xj in experiment i is important to the phenotypic
outcome.

Our first two attempts for constructing models are special cases in this for-
mulation. If all dc variables are set to 0, this corresponds to our first model,
which is not predictive, while assigning 1 to all dc variables corresponds to
the second model which is inconsistent 2 . To maximize the predictiveness of
consistent models, we would like to be able to maximize the number of dc vari-
ables that are set to 1, while maintaining the requirement that the model is
still consistent. A model is consistent if for any assignment to the variables
x1, x2, x3 there exists an assignment to the phenotype variable y such that the
formula evaluates to true. Intuitively, this corresponds to the fact that for any
experimental setup that can be prepared in the lab some phenotype will be
measured.

2 In general, assigning 1 to all the dc variables gives an inconsistent model, except
for the degenerate case in which there are no two experiments that differ on their
phenotypic outcome.

A Logical Framework for Developing Predictive System Models 347

In our example we have four dc variables : d2
1, d

3
1, d

1
2, d

3
2 (two experimental

setups, each having two genetic loci that potentially can be mutated without
affecting the phenotypic outcome). The maximal number of dc variables that
can be assigned 1 while remaining with a consistent model is 3, since assigning
all 4 dc variables to 1 results in an inconsistent model. A possible solution with
3 dc variables set to 1 is d2

1 = 1, d3
1 = 1, d3

2 = 1 and d1
2 = 0. Assigning these

values for the dc variables we obtain :

(x1 = 1 ∧ x2 <= 1 ∧ x3 <= 1 → y = 1)∧ (x1 <= 0 ∧ x2 = 1 ∧ x3 <= 1 → y = 2)

= (x1 = 1 → y = 1) ∧ (x1 = 0 ∧ x2 = 1 → y = 2)

Unlike the first attempted model that was consistent but not predictive, this
model is consistent and allows some predictions, for example for genotype x1 = 0,
x2 = 1, x3 = 1 the predicted phenotype is y = 2. The maximal number of dc
variables that can be assigned 1 while keeping the model consistent does not in
general determine a unique solution. In our example another maximal solution
is d1

2 = 1, d3
1 = 1, d3

2 = 1 and d2
1 = 0.

3 Problem Formulation

This section formalizes the concepts of logical representation and model con-
struction that were intuitively explained through the example in Section 2. It
defines the mathematical problem we are interested in and then shows how we
go about solving it.

We are interested in understanding the observable behavioral outcome of a
system (defined by output variables) as a function of the experimental setup
(defined by input variables) . The experimental setup for the system is controlled
by binary input variables x1, x2, · · · xn. The “normal” value of an input variable
is 0, and a change to the value (for example by a genetic mutation) is specified
by assigning 1 to the variable.

The outcome is represented by an output variable y, that can assume a discrete
and finite 3 set of values. In the general case, the phenotypic output specified by
variable y can be a result of measuring several orthogonal phenotypic outputs,
designated by variables y1, y2, · · · ym. In this case the value of the output behavior
y can be viewed as a cross product of the values of each of the orthogonal
phenotypes, y = y1 × y2 · · · × ym.

Given a dataset consisting of the values for the input variables and a discrete
outcome result for the output variable we construct a formula of the form:

((x1 = 1 ∧ x2 <= d2
1 ∧ x3 <= d3

1 · · · ∧ xn <= dn
1) → y = p1)∧ (1)

3 This is a simplifying assumption. If the outcomes are continuous values we assume
that the domain has been discretized according to some biological criteria either
manually or using other computational methods.

348 H. Kugler et al.

((x1 <= d1
2 ∧ x2 = 1 ∧ x3 <= d3

2 · · · ∧ xn <= dn
2) → y = p2) ∧

...
((x1 <= d1

s · · · ∧ xq = 1 · · · ∧ xr = 1 · · · ∧ xn <= dn
s) → y = ps) ∧

...
((x1 <= d1

l ∧ x2 <= d2
l ∧ x3 = d3

l · · · ∧ xn = 1) → y = pl)

Let us now explain in detail how we construct a concrete formula of the same
form as Formula 1 above from the experimental datasets that are available. Each
line in the formula corresponds to an experiment, composed of an experimental
setup and the phenotypic outcome measured. Each line is written as a logi-
cal implication, where the left-hand side of the implication corresponds to the
experimental setup defined by the input variables, while the right-hand side cor-
responds to the phenotypic output defined by the output variables. For a given
experiment, if the input variable xj was changed from its “normal” setting, the
left-hand side will contain the conjunct xj = 1, while for an input variable that
was set to its “normal” value xj = 0, we will introduce a new dc variable and
add the conjunct xj <= dj

i . Here dj
i denotes the dc variable corresponding to

input variable j in experiment i. For experiment i, if the phenotype measured
was pi, then the right-hand side of the corresponding implication will contain
the expression y = pi. The notation here can handle the more general case where
y is determined by the cross product of the orthogonal phenotypic outputs of
variables y1, y2, · · · ym, in which case pi = (pi,1, pi,2 · · · pi,m) where pi,k is the
phenotypic output for variable yk.

Consider for example the first line from the formula. It was constructed based
on an experiment in which variable x1 was perturbed, while all the other input
variables assumed their “normal” value, and the phenotypic outcome y = p1
was measured. Thus the corresponding logical representation we obtain for this
experiment is:

((x1 = 1 ∧ x2 <= d2
1 ∧ x3 <= d3

1 · · · ∧ xn <= dn
1) → y = p1)

Formula 1 describes the results of l different experiments. Each experiment
is not necessarily restricted to single variable changes, for example, experiment
s in the above formula shows a case were both input variables xq and xr were
changed, while the other input variables remain “normal”, as shown in the cor-
responding logical representation for the experiment:

((x1 <= d1
s · · · ∧ xq = 1 · · · ∧ xr = 1 · · · ∧ xn <= dn

s) → y = ps)

Our approach thus allows encoding experiments with any number of input
variables changes, including double, triple and higher degrees of variable changes.
It is also not necessary that all results for single variable changes appear in
the formula; the formula will just encode all the information that is available
in the experimental dataset. Another point worth noting is that our approach
can accommodate systems where the outcome may be nondeterministic. If an

A Logical Framework for Developing Predictive System Models 349

experiment is repeated several times with the same experimental setup and
different phenotypic outputs are observed, then the right-hand side for the corre-
sponding experiment in the formula will be a disjunction of the observed pheno-
types. Thus the notation y = pi can stand for a set of possible outcomes, where
pi = p1

i ∨ p2
i · · · ∨ pk

i if k different outcomes were observed when the experiment
was repeated. Our current work does not consider a probabilistic distribution
related to the number of times each outcome is measured when repeating the
experiment, only the set of observed outcomes.

We call a formula of the type appearing in Formula 1 a generic model
formula, since a concrete model is obtained from it by assigning values to all the
dc variables.

Definition 1. A model is a formula obtained from a generic model formula by
assigning values 0 or 1 to all the dc variables.

When assigning values to all the dc variables to obtain a model, the formula can
be simplified as follows. For each dc variable that is assigned the value 0 the
expression xj <= dj

i is replaced by xj = 0, while for each dc variable that is
assigned the value 1 the expression xj <= dj

i is replaced by true, which is then
used to further simplify the formula.

Definition 2. The prediction that model φ gives about a certain experimental
setup, is obtained by assigning the values of all input variables according to the
experimental setup resulting in a formula φ′ and then finding all the assignments
to the output variables that satisfy formula φ′.

Definition 3. A model is consistent if for any assignment to the input vari-
ables x1, x2, · · · xn there exists an assignment to the output variables y1, y2, · · · ym

such that the formula evaluates to true.

Definition 4. A model with k dc variables set to 1 is maximally predictive
if it is consistent and any model with more than k dc variables set to 1 is incon-
sistent.

We are interested in developing efficient algorithms for finding a maximally pre-
dictive model, a topic that is studied in the next section.

4 Solutions

According to Definition 3 checking the consistency of a model φ amounts to
checking the satisfiability of the following quantified Boolean formula:

∀x1, x2, · · ·xn∃y1, y2 · · · ymφ

The intuition behind these definitions is that we require that the xi variables
are universally quantified since they are input variables representing an experi-
mental setup that in principle can be set to any possible combination, while the
existential quantification of the yj output variables represents the fact that for
any experiment that is done there will be some phenotypic output measured in
the biological system.

350 H. Kugler et al.

Proposition 1. For any given generic model formula, if there are no consistent
models with exactly k dc variables set to 1, then a maximally predictive model
has less than k dc variables set to 1.

Proof. Omitted from this version of the paper due to space limitations.

Given a generic model formula, the existence of a consistent model can be for-
mulated as a quantified Boolean formula as follows:

∃d1, d2 · · · dp∀x1, x2, · · ·xn∃y1, y2 · · · ymφ

This is a quantified Boolean formula with three levels of quantifier alternations.
The outermost existential quantification over the dc variables corresponds to fix-
ing a concrete model, the universal quantification over the input variables and
existential quantification over the output variables corresponds to the require-
ment that the fixed model is consistent.

If we encode in the formula χ(k) the requirement that exactly k dc variables
are assigned to 1, then the question of the existence of a consistent model with
exactly k dc variables set to 1 is reduced to the satisfiability of the formula:

∃d1, d2 · · ·dp∀x1, x2, · · · xn∃y1, y2 · · · ymφ ∧ χ(k)

Given an algorithm for checking the satisfiability of such a formula, we can use
the result in Proposition 1, and perform a binary search on k, the number of dc
variables set to 1, to find the maximal k for which a consistent model exists, and
obtain a maximally predictive model.

4.1 Implementing the Basic Algorithm

As shown above our problem amounts to solving a quantified Boolean formula
with three levels of quantifier alternations, with a maximization goal for the dc
variables. We next provide some information on a direct implementation to solve
our problem, using two tools, one based on a binary decision diagrams (BDDs)
[1] as implemented in the TLV tool [13], the other directly on a QBF solver
using the Quaffle tool [20]. As will be shown later, the special structure of our
QBF instances can be used to reduce the problem and allow a more efficient
solution. We still explain the direct implementation for presentation purposes;
it also may be the case that for various extensions of the problem the direct
solution is required.

BDD Solver. TLV [13] is a symbolic model checker that uses binary decision
diagrams as the basic underlying data structure. One of the strong aspects of
TLV is that it provides a high-level scripting language called TLV-basic, which
is especially convenient for experimenting with the design and implementation
of new verification algorithms.

We have implemented in TLV the direct algorithm based on performing a
binary search on the value of k, the number of dc variables set to 1. Each
iteration solves the QBF formula described above with the constraint on the

A Logical Framework for Developing Predictive System Models 351

value of k. Universal and existential quantification are supported as existing
functions in TLV (forall, exists) and are based on direct manipulation of the
BDDs. The encoding of the generic model formula in TLV is straightforward as
all logical operators are directly supported. At the end of each iteration we get a
BDD that represents the (possibly empty) set of all consistent models with the
current value of dc variables set to 1. This turns out to be useful since at the end
of the algorithm we obtain the set of all maximally predictive models. The main
disadvantage of using TLV is in terms of performance. Solving QBF formulas
using BDD technology is not efficient, and for this reason we have experimented
with applying a QBF solver to our problem.

QBF Solver. To allow applying a QBF solver to our problem we have to encode
it in one of the standard formats accepted by these tools. QBF solvers typically
accept only Boolean variables, thus the output variables in our problem that
are not necessarily Boolean must be encoded using several Boolean variables.
The input variables and the dc variables are originally Boolean so they can
be accommodated directly. Another requirement of standard formats is that
the propositional part of the QBF formula is written as a CNF formula, which
requires some modifications to the generic model formula. To add the constraints
on the parameter k, the number of dc variables assigned to 1, we created a circuit
for performing the addition of dc variables and translated the circuit to CNF
using a canonical translation. We have experimented with the QBF solver Quaffle
[20] on some instances we have generated manually. We are currently working
on developing a program that will handle all the translations automatically,
and given a generic model formula in the high level representation as that of
Formula 1 and a value for the parameter k will generate an instance in the
standard QBF format. This will allow a much more effective use of the QBF
solvers, in fact our plan is to make these instances publicly available, since they
can serve as interesting benchmarks in QBF evaluations and libraries [6].

4.2 Improved Algorithm

We now show for deterministic systems4 how to find a maximally predictive
model in a more efficient way, by reducing the original problem to that of solving
a set of inequalities involving only the dc variables dj

i where each inequality is
of the form

∑
dj

i < C for an integer constant C. We start with a generic model
formula of the form of Formula 1 and construct the set of inequalities over the
dc variables. A generic model formula is of the following form:

((x1 = 1 ∧ x2 <= d2
1 ∧ x3 <= d3

1 · · · ∧ xn <= dn
1) → y = p1)∧

4 We have also extended the algorithm to deal with the general case of nondeterministic
systems, allowing several phenotypic outputs for the same experimental setup. Due
to space limitations and to allow a simpler presentation this extension is omitted
from this version of the paper.

352 H. Kugler et al.

((x1 <= d1
2 ∧ x2 = 1 ∧ x3 <= d3

2 · · · ∧ xn <= dn
2) → y = p2) ∧

...
((x1 <= d1

l ∧ x2 <= d2
l ∧ x3 = d3

l · · · ∧ xn = 1) → y = pl)

The formula is a conjunction of implications, each one appears in a separate line
in the formula above, each line corresponds to an experimental setup and phe-
notypic outcome measured. For each pair of lines i, j if the phenotypic outputs
are different, we add the following constraint:

∑

xq=1 in line j
dq

i +
∑

xq=1 in line i
dq

j < Ci,j (2)

Here Ci,j is the number of dc variables appearing in the sums of the left-hand
side of the inequality. This is equal to the number of input variables set to 1 in
experiment i plus the number of input variables set to 1 in experiment j minus
twice the number of input variables that are set to 1 in both experiments i and j.
We subtract this number since if an input variable is set to 1 in both experiments
i and j it was counted in the first two terms but there are no corresponding dc
variables in the generic model formula since they are added only when an input
variable is set to 0 in a given experiment.

Following this construction we obtain a set of inequalities on the dc variables.
The input variables and output variables do not appear in these inequalities.
The number of equations is at most quadratic in the number of experiments,
or equivalently in the number of lines in the generic model formula. We will
next prove that to find a maximally predictive model it is sufficient to solve the
obtained set of inequalities under the maximization goal for the number of dc
variables set to 1. Before stating and proving the relevant theorem we illustrate
its application to the simple example described in Section 2.

The generic model formula we have for this example is:

((x1 = 1 ∧ x2 <= d2
1 ∧ x3 <= d3

1) → y = 1)
∧((x1 <= d1

2 ∧ x2 = 1 ∧ x3 <= d3
2) → y = 2)

It was derived from two experiments that have different phenotypic outputs,
y = 1 and y = 2. We therefore add the following inequality:

d2
1 + d1

2 < 2

We ask what is the maximal k that satisfies the inequality and

d2
1 + d3

1 + d1
2 + d3

2 = k

The maximal solution is k = 3, and there are indeed solutions for the original
formula with 3 dc variables set to 1 and no solutions with all 4 dc variables set
to 1 as shown in 2.

A Logical Framework for Developing Predictive System Models 353

Theorem 1. For a given generic model formula, a model φ defined by an assign-
ment D to the dc variables is consistent iff D satisfies the set of all inequalities
defined in Formula 2.

Proof. (⇒) Assume that the model φ defined by assignment D is consistent. By
Definition 3 this holds if the following formula is satisfiable:

∀x1, x2, · · ·xn∃y1, y2 · · · ymφ

We need to show that D satisfies the set of inequalities. Assume towards con-
tradiction that there is an inequality constructed from the pair of experiments
i, j that does not hold:

∑

xq=1 in line j
dq

i +
∑

xq=1 in line i
dq

j < Ci,j

This inequality does not hold if:
∑

xq=1 in line j
dq

i +
∑

xq=1 in line i
dq

j = Ci,j

We get this equation only in the case that D assigns 1 to all the dc variables
appearing in the left-hand side of the equation, since only then the sum of
these dc variables is equal to the number of these dc variables. Consider an
experimental setup that assigns the value 1 to the union of all input variables
that are assigned 1 in either experiment i or experiment j (or both). All the other
input variables are set to 0. This experimental setup satisfies the left-hand side of
the implications for both lines i and j in the formula φ and thus both phenotypes
defined by the right-hand side must occur, but the two original experiments i, j
have different phenotypic outcomes, since only in this case we constructed the
inequality. As a result for this new experimental setup no phenotype can satisfy
the model φ, in contradiction to the assumption that φ is a consistent model.
Thus assignment D satisfies all the inequalities defined in Formula 2.

(⇐)
Assume that assignment D satisfies the set of all inequalities defined in For-

mula 2. We need to show that the model φ defined by assignment D is consistent.
Assume towards contradiction that the model φ is not consistent, thus according
to Definition 3 the following formula is not satisfiable:

∀x1, x2, · · ·xn∃y1, y2 · · · ymφ

If the formula is not satisfiable there exists an assignment for the input variables
x1, x2, · · · xn such that for any assignment of the output variables y1, y2 · · · ym

the formula evaluates to false. The formula φ is composed of a conjunction
of implications. Consider the assignment to the input variables x1, x2, · · · xn in
which for any assignment to the output variables the formula evaluates to false.
For this to occur there are at least two lines for which the left-hand side of the
implication is satisfied and the phenotypic outcomes are different. Otherwise

354 H. Kugler et al.

assigning the output variables to the unique fate defined by the left-hand side
expressions that are true, will satisfy the formula. Considering these two lines,
for their left-hand side expressions to hold, the dc variables for the union of
input variables that are set to 1 in each of the experiments, must be set to 1 in
the assignment D. Thus denoting these two lines i and j the following equation
is satisfied. ∑

xq=1 in line j
dq

i +
∑

xq=1 in line i
dq

j = Ci,j

And this is a direct violation of one of the inequalities defined in Formula 2:
∑

xq=1 in line j
dq

i +
∑

xq=1 in line i
dq

j < Ci,j

In contradiction to our assumption that D satisfies all inequalities defined in
Formula 2, therefor the model φ is consistent.

5 Biological Application

A great deal of biological research currently focuses on the analysis of molec-
ular and cellular pathways and networks. An understanding of components of
pathways and/or networks and their interdependencies is an important aspect
of these studies. For example, a set of genes that affect a similar process (either
positively or negatively) may be characterized by the effect of specific mutations
of these genes on the outcome of the process. Data describing the outcome of
combinations of such mutations may add additional information. Of particular
interest in constructing pathways and networks is information that distinguishes
between conditions in which the genotype of one genetic component in the path-
way (or activity of a gene or protein component) is or is not relevant to the
final outcome. Genetic epistasis analysis and analysis of modifier effects have
been used to great advantage to parse many pathways [9]. With the advent of
large-scale molecular-genetic data collection, the data space of genetic interac-
tions is becoming increasingly unwieldy, even for relatively simple processes. It
is, therefore, advantageous to identify methods by which dependency relation-
ships between pathway components can be analyzed and modeled. Models of
a subset of the data serve two general purposes: they may be used to predict
the outcome of genetic combinations that have not been tested, and they may
provide a means to readily identify the key combinatorial experiments that can
be performed to distinguish between two or more equally viable models.

We are applying our method to part of a classical system in developmental bi-
ology describing fate specification of cells in the C. elegans nematode. C. elegans
is widely studied in many labs worldwide where it serves as a model organism.
Various fundamental biological phenomena that also exist in higher-level organ-
isms can be studied in effective ways in C. elegans. The field has taken particular
advantage of the genetic approach to investigating biological processes whereby
a process is perturbed by genetic mutation and the genes involved in the normal

A Logical Framework for Developing Predictive System Models 355

process are thereby identified. In addition, because the animals are relatively
simple and the entire cell lineage is known, cell ablation experiments (in which
particular cells are removed from an intact animal using a laser) have also been
instrumental in discovering cell-cell interactions. The combinatorial effects of
various mutations on the process that they perturb individually and the effects
of combinations of mutations with cell ablations has generated a large body of
complex data. Further, the molecular nature and biochemical roles of many of
the gene products involved in developmental processes link the functional per-
turbation data to particular biochemical pathways and networks [19].

Our application focused on the process of fate specification of vulval precur-
sor cells. The vulva is a structure through which eggs are laid. This structure
derives from three cells within a set of six cells with an equivalent set of multiple
developmental potentials. Due to their potential to participate in the formation
of the vulva, they are known as vulval precursor cells (VPCs). Each cell has
the potential to acquire either a non-vulval fate (a 3◦ fate) or one of two vulval
cell fates (a 1◦ or 2◦ fate). The fate, 1◦, 2◦ or 3◦ is expressed by the number of
divisions the cells undergoes and the axis of the divisions. The fate of the VPCs
is influenced by cell-cell signalling — signaling between neighboring VPCs, from
the gonadal anchor cell (AC), and from the hypodermis. Vulval development
was one of the first areas to which considerable effort was applied to achieve a
molecular understanding of how cells acquire their particular fates. The system,
though limited in cell number, provides sufficient complexity to serve as a test
case for our studies [16].

The VPC system has been one of the motivations for developing the current
work, after it has been modeled in a relatively detailed manner in [10,5,7]. While
there are many advantages in modeling efforts such as those mentioned, in terms
of the insights that are gained, one of the remaining challenges is to integrate
effects of different genetic components.

As part of our initial effort to test our “don’t care” modeling approach, we
have encoded the results of a small subset of the experimental results on VPC
fate specification as reported in one of the key publications [18] on this topic.
Our output variables are of the form yi ∈ {1, 2, 3}, we have six such output
variable corresponding to the fates of each of the VPCs. An experiment consists
of recording the results of the pattern of fate specification among the 6 VPCs
after perturbations such as genetic mutations or cell ablations. In our initial
evaluation we used 8 input variables corresponding to gonad ablation (x0 = 1 if
gonad ablated, x0 = 0 if gonad intact), and the mutations lin-12(0), lin-12(d),
lin-15, lin-7, lin-3, lin-2 and lin-10, measured by input variables x1, x2, · · · x7
respectively. We have entered experimental data from [18] about set-ups when
only one of the input variables was perturbed, and then using our basic algorithm
implementation solved for the maximal number of dc variables that can be set to
1 and found a maximally predictive model. We then compared the predictions
of the model for experiments involving perturbations to 2 or 3 of the input
variables with the actual data reported in [18]. The initial results, which seem
encouraging in terms of predictive capabilities and runtime performance, should

356 H. Kugler et al.

be interpreted very carefully, due to the limited size of the dataset. We are in
the process of evaluating the results taking into account more experiments from
[18], and also experiments reported in [17,15].

6 Related Work

How to form a general description of a class of objects given a set of examples is
a basic problem in machine learning and has been studied in the artificial intel-
ligence community [12,11]. This problem is termed Generalization or Inductive
Learning and is viewed as a search through the hypothesis space. The general
framework considers both positive and negative training examples, while our
work currently is restricted to positive examples. Our method uses the ‘techno-
logical’ advances made in the formal methods community using tools like BDDs
[1], QBF [14] and SAT solvers based on the DPLL method [3,2] to search the hy-
pothesis space efficiently. The connection between machine learning and circuit
design is explored in [8,4] demonstrating that logic-synthesis methods can be
applied effectively to certain learning problems and can compete with standard
machine learning programs.

Acknowledgements. We would like to thank Dennis Shasha for helpful discus-
sions. This research was supported in part by NIH grant R24-GM066969.

References

1. R.E. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE
Transactions on Computers, C-35(12):1035–1044, 1986.

2. M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-
proving. Comm. ACM, 5(7):394–397, 1962.

3. M. Davis and H. Putnam. A Computing Procedure for Quantification Theory. J.
ACM, 7(3):201–215, 1960.

4. C.M. Files and M.A. Perkowski. Multi-Valued Functional Decomposition as a Ma-
chine Learning Method. In Proc. 28th IEEE International Symposium on Multiple-
Valued Logic (ISMVL’98), pages 173–179, Fukuoka, Japan, May 1998. IEEE Com-
puter Society.

5. J. Fisher, N. Piterman, E.J.A. Hubbard, M.J. Stern, and D. Harel. Computational
Insights into C. elegans Vulval Development. Proceedings of the National Academy
of Sciences, 102(6):1951–1956, 2005.

6. E. Giunchiglia, M. Narizzano, and A. Tacchella. Quantified boolean formulas sat-
isfiability library (qbflib), 2001. http://www.qbflib.org.

7. C.A. Giurumescu, P.W. Sternberg, and A.R. Asthagiri. Intercellular coupling am-
plifies fate segregation during Caenorhabditis elegans vulval development. Proceed-
ings of the National Academy of Sciences, 103(5):1331–1336, 2006.

8. J. A. Goldman and M. L. Axtell. On Using Logic Synthesis for Supervised Classi-
fication Learning. In Proc. 7th Int. Conference on Tools with Artificial Intelligence
(ICTAI95’), pages 198–205. IEEE Computer Society, 1995.

A Logical Framework for Developing Predictive System Models 357

9. L.S. Huand and P.W. Sternberg. Genetic dissection of developmental
pathways. The C. elegans Research Community, ed. WormBook, 2006.
http://www.wormbook.org.

10. N. Kam, D. Harel, H. Kugler, R. Marelly, A. Pnueli, E.J.A. Hubbard, and M.J.
Stern. Formal Modeling of C. elegans Development: A Scenario-Based Approach. In
Corrado Priami, editor, Proc. Int. Workshop on Computational Methods in Systems
Biology (CMSB 2003), volume 2602 of Lect. Notes in Comp. Sci., pages 4–20.
Springer-Verlag, 2003.

11. R. S. Michalski. A Theory and Methodology of Inductive Learning. Artificial
Intelligence, 20(2):111–161, 1983.

12. T. M. Mitchell. Generalization as Search. Artificial Intelligence, 18(2):203–226,
1982.

13. A. Pnueli and E. Shahar. A platform for combining deductive with algorithmic
verification. In R. Alur and T. Henzinger, editors, R. Alur and T. Henzinger, edi-
tors, Proc. 8th Intl. Conference on Computer Aided Verification (CAV’96), volume
1102 of Lect. Notes in Comp. Sci., Springer-Verlag, pages 184–195, 1996.

14. D. P. Ranjan, D. Tang, and S. Malik. A Comparative Study of 2QBF Algorithms.
In Proc. 7th Int. Conference on Theory and Applications of Satisfiability Testing,
2004.

15. P.W. Sternberg. Lateral inhibition during vulval induction in Caenorhabditis ele-
gans. Nature, 335:551–554, 1989.

16. P.W. Sternberg. Vulval development. The C. elegans Research Community, ed.
WormBook, 2005. http://www.wormbook.org.

17. P.W. Sternberg and H.R. Horvitz. Pattern formation during vulval development
in C. elegans. Cell, 44:761–772, 1986.

18. P.W. Sternberg and H.R. Horvitz. The combined action of two intercellular signal-
ing pathways specifies three cell fates during vulval induction in C. elegans. Cell,
58:679–693, 1989.

19. The C. elegans Research Community, ed. WormBook, 2006. www.wormbook.org.
20. L. Zhang and S. Malik. Conflict Driven Learning in a Quantified Boolean Sat-

isfiability Solver. In Proc. of the 2002 IEEE/ACM International Conference on
Computer-aided Design (ICCAD’02), pages 442–449. ACM, November 2002.

Deciding Bit-Vector Arithmetic with

Abstraction�

Randal E. Bryant1, Daniel Kroening2, Joël Ouaknine3, Sanjit A. Seshia4,
Ofer Strichman5, and Bryan Brady4

1 Carnegie Mellon University, Pittsburgh
2 ETH Zürich

3 Oxford University Computing Laboratory
4 University of California, Berkeley

5 The Technion, Haifa

Abstract. We present a new decision procedure for finite-precision bit-
vector arithmetic with arbitrary bit-vector operations. Our procedure
alternates between generating under- and over-approximations of the
original bit-vector formula. An under-approximation is obtained by a
translation to propositional logic in which some bit-vector variables are
encoded with fewer Boolean variables than their width. If the under-
approximation is unsatisfiable, we use the unsatisfiable core to derive an
over-approximation based on the subset of predicates that participated
in the proof of unsatisfiability. If this over-approximation is satisfiable,
the satisfying assignment guides the refinement of the previous under-
approximation by increasing, for some bit-vector variables, the number
of Boolean variables that encode them. We present experimental results
that suggest that this abstraction-based approach can be considerably
more efficient than directly invoking the SAT solver on the original for-
mula as well as other competing decision procedures.

1 Introduction

Decision procedures for quantifier-free fragments of first-order logic find wide-
spread use in hardware and software verification. Current uses of decision pro-
cedures fall into one of two extremes. At one end, a Boolean satisfiability solver
is directly employed as the decision procedure, with systems modeled at the
bit-level. Sample applications of this kind include bounded model checking [1,2]
and SAT-based program analysis [3]. At the other extreme, verifiers use deci-
sion procedures that reason over arbitrary-precision abstract types such as the
integers and reals (Z and R).

In reality, system descriptions are best modeled with a level of precision that
is somewhere in between. System descriptions are usually at the word-level; i.e.,
they use finite-precision arithmetic and bit-wise operations on bit-vectors. The
direct use of a SAT solver as cited earlier (also known as “bit-blasting”) is the
� B. Brady, R. E. Bryant, and S. A. Seshia were supported in part by SRC contract

1355.001 and by the MARCO Gigascale Systems Research Center.

O. Grumberg and M. Huth (Eds.): TACAS 2007, LNCS 4424, pp. 358–372, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Deciding Bit-Vector Arithmetic with Abstraction 359

conceptually simplest way to implement a bit-vector decision procedure even
though it ignores higher-level structure present in the original decision problem.

However, the bit-blasting approach can be too computationally expensive in
practice (see, for example, [4]). There is therefore a pressing need for better
decision procedures for bit-vector arithmetic.

Contribution. We present a decision procedure for quantifier-free bit-vector
arithmetic that uses automatic abstraction-refinement. This procedure is now
implemented in the verification system uclid, and we shall call it by this name
from hereon. Given an input bit-vector formula φ, uclid first builds an under-
approximation φ from φ by restricting the number of Boolean variables used
to encode each bit-vector variable (see details of this encoding in Section 3.1).
The reduced formula is typically much smaller and easier to solve. If φ is sat-
isfiable, so is φ, and the algorithm terminates. In case the Boolean formula is
found to be unsatisfiable, the SAT solver is able to output a resolution proof of
this fact, from which the unsatisfiable core used in this proof can be extracted.
Using this core, an over-approximation φ is built. This over-approximation uses
the full set of bits of the original vectors, but only a subset of the constraints.
This subset is determined by examining the unsatisfiable core of φ. If φ is un-
satisfiable, so is φ, and uclid terminates. Otherwise, the algorithm refines the
under-approximation φ by increasing, for at least one bit-vector variable, the
number of Boolean variables encoding it. Specifically, the new size is implied by
the value of this variable in the satisfying assignment to φ. This process is re-
peated until the original formula is shown to be either satisfiable or unsatisfiable.
The algorithm is trivially guaranteed to terminate due to the finite domain.

This approach has the potential of being efficient in one of the following two
scenarios:

1. The bit-vector formula is satisfiable, and a solution can be represented with
a small number of bits.

2. The bit-vector formula is unsatisfiable, and a relatively small number of
terms in this formula participate in the proof (i.e., the proof still holds after
replacing the other terms with inputs).

Whether this potential is fulfilled depends on one’s ability to find such small
solutions and small unsatisfiable cores1 efficiently: For the former, we search for
gradually increasing solutions in terms of the number of bits that are needed
in order to represent them, and hence are guaranteed to find a small one if it
exists; For the latter, modern SAT solvers are quite apt at finding small cores
when they exist. In practice, as our experiments show, one of these conditions
frequently holds and we are able to detect it with our tool faster than analyzing
the formula head-on without any approximations.

Our approach can be seen as an adaptation to bit-vector formulas of our previ-
ous work [5] on abstraction-refinement of quantifier-free Presburger Arithmetic,
1 A small unsatisfiable core of the CNF encoding of a formula does not necessarily

imply that a small number of terms from the original formula are necessary for the
proof, but obviously the two measures are correlated.

360 R.E. Bryant et al.

which, in turn, was inspired by the proof-based abstraction-refinement approach
to model checking proposed by McMillan and Amla [6]. Other than the differ-
ent problem domain (bit-vectors vs. Presburger formulas), we also extend the
theoretical framework to operate on an arbitrary circuit representation of the
formula, rather than on a CNF representation. We also employ optimizations
specific to bit-vector arithmetic. On the applied side, we report experimental
results on a set of benchmarks generated in both hardware and software veri-
fication. Our experiments suggest that our approach can be considerably more
efficient than directly invoking the SAT solver on the original formula as well as
other state-of-the-art decision procedures.

Related Work. Current decision procedures for bit-vector arithmetic fall into one
of three categories:

1) Bit-blasting and its variants: Many current decision procedures are based
on bit-blasting the input formula to SAT, with a view of handling arbitrary
bit-vector operations. The Cogent [7] procedure mentioned earlier belongs to
this category. The most current version of CVC-Lite [8] pre-processes the input
formula using a normalization step followed by equality rewrites before finally
bit-blasting to SAT. Wedler et al. [9] have a similar approach wherein they
normalize bit-vector formulas in order to simplify the generated SAT instance.
STP [10] is the successor to the CVC-Lite system; it performs several array
optimizations, as well as arithmetic and Boolean simplifications on the bit-vector
formula before bit-blasting to MiniSat. Yices [11] applies bit-blasting to all bit-
vector operators except for equality.
2) Canonizer-based procedures: Earlier work on deciding bit-vector arithmetic
centered on using a Shostak-like approach of using a canonizer and solver for
that theory. The work by Cyrluk et al. [12] and by Barrett et al. on the Stanford
Validity Checker [13] fall into this category; the latter differs from the former
in the choice of a canonical representation. These approaches are very elegant,
but are restricted to a subset of bit-vector arithmetic comprising concatenation,
extraction, and linear equations (not inequalities) over bit-vectors.
3) Procedures for modular and bounded arithmetic: The third category of sys-
tems focuses on techniques to handle (linear and non-linear) modular arithmetic.
The most recent work in this area is by Babić and Musuvathi [14], who encode
non-linear operations as non-linear congruences and make novel use of Newton’s
p-adic method for solving them. However, this approach does not treat some
of the operations that we handle such as integer division, and seems harder to
extend to new operations. Brinkmann and Drechsler [15] use an encoding of
linear bit-vector arithmetic into integer linear programming with bounded vari-
ables in order to decide properties of RTL descriptions of circuit data-paths,
but do not handle any Boolean operations. Parthasarathy et al. [16] build on
this approach by using a lazy encoding with a modified DPLL search, but non-
linear bit-vector arithmetic is not supported. Huang and Cheng [17] give an
approach to solving bit-vector arithmetic based on combining ATPG with a
solver for linear modular arithmetic. This approach is limited in its treatment of

Deciding Bit-Vector Arithmetic with Abstraction 361

non-linear operations which it handles by heuristically rewriting them as linear
modular arithmetic constraints.

McMillan and Amla [6] use a technique related to ours in order to accelerate
model checking algorithms over finite Kripke structures. Specifically, they invoke
a bounded model checker to decide which state variables should be made visible
in order to generate a ‘good’ abstraction for the next iteration of model checking.
Gupta et al. [18] propose a similar model-checking framework, which among
others makes greater use of counterexamples and uses abstract models for both
validation and falsification attempts. Our approach differs from both of these in
the following respects: we use a bit-vector decision procedure instead of a model
checker, and we seek to eliminate constraints rather than variables (or gates or
latches, as the case may be).

Lahiri et al. [19] present an algorithm for deciding satisfiability of quantifier-
free Presburger arithmetic that is based on alternating between an under- and
an over-approximation. The under-approximation is constructed as in [5]. The
over-approximation uses a Craig Interpolant.

2 Preliminaries

Boolean Satisfiability. We assume the reader is familiar with the basic termi-
nology of propositional logic such as resolution, Conjunctive Normal Form and
Tseitin encoding [20] (the linear procedure for converting an arbitrary proposi-
tional formulas to CNF based on the introduction of a new variable in each node
in the DAG representation of the formula).

We remind the reader that SAT solvers can be seen as progressing by perform-
ing resolution steps. If the input formula is unsatisfiable, modern SAT solvers
such as zChaff [21] and MiniSat [22] can output a proof of unsatisfiability [23,6]
based on resolution. The leafs of such proofs (the assumptions) constitute an
unsatisfiable core, i.e., an unsatisfiable subset of the clauses. In practice, SAT
solvers tend to find small unsatisfiable cores if they exist. Indeed, in most cases
in practice, formulas contain a large amount of redundant constraints.

Bit-Vector Arithmetic. While we are not aware of a standard definition of
bit-vector arithmetic (it varies according to needs and tools), the fragment we
consider here includes finite-precision integer arithmetic with linear and non-
linear operators, as well as standard bit-wise operators, such as left shift, logical
and arithmetic right shifts, extraction, concatenation, and so forth. In fact, the
approach we use in this paper is orthogonal to the the set of operators, since it
only relies on a given finite width for each variable, as well as on the existence
of a propositional encoding of the formula.

At present, uclid supports the subset of bit-vector arithmetic with the fol-
lowing operators: arbitrary Boolean connectives, relational operators, bitwise
Boolean operators, extraction, concatenation, shifts, addition, subtraction, mul-
tiplication, division, and modulo.

Each bit-vector expression is associated with a type. The type is the width of
the expression in bits and whether it is signed (two’s complement encoding) or

362 R.E. Bryant et al.

unsigned (binary encoding). Assigning semantics to this language is straightfor-
ward, e.g., as done in [15].

Note that all arithmetic operators (addition: +, subtraction: −, multiplication:
∗, division: ÷, modulo: %) are all finite-precision, and come with an associated
operator width.

Example 1. The following formula is valid when interpreted over the integers:

(x − y > 0) ⇐⇒ (x > y) (1)

However, if x and y are interpreted as bit-vectors, this equivalence no longer
holds, due to possible overflow on the subtraction operation. ��
Note also that the relational operators >, <, ≤, ≥, the non-linear arithmetic op-
erators (∗, ÷, %) and the right-shift depend on whether an unsigned, binary
encoding is used or a two’s complement encoding is used. We assume that the
type of the expression is clear from the context.

This paper addresses the satisfiability problem for bit-vector formulas: given
a bit-vector formula φ, is there an assignment to the bits in φ under which φ
evaluates to True? It is easy to see that this problem is NP-complete.

Notation: We henceforth denote formulas in bit-vector arithmetic as φ, φ′, φ1,
φ2, . . ., and Boolean formulas as β, β1, β2,

3 The Decision Procedure

We now present the main contribution of this paper, a SAT-based decision pro-
cedure that operates by generating increasingly precise abstractions of bit-vector
formulas. The input to the decision procedure is a bit-vector arithmetic formulaφ.
Let there be n bit-vector variables appearing in φ, denoted by v1, v2, v3, . . . , vn.
Each variable vi has an associated bit-width wi.

3.1 Overview

We first give a broad overview of our decision procedure, which is illustrated in
Figure 1. Details of design decisions are described later in this section.

The decision procedure performs the following steps:

1. Initialization: For each variable vi, we select a corresponding number si of
Boolean variables to encode it with, where 0 ≤ si ≤ wi.
We will call si the encoding size of bit-vector variable vi.

2. Generate Under-Approximation and Encode to SAT: An under-approxima-
tion, denoted φ, is generated by restricting the values of each vi to range
over a set of cardinality 2si . Thus, the Boolean encoding of vi will comprise
si Boolean variables; note, however, that the length of the vector of Boolean
variables replacing vi remains wi.

There are several ways to generate such an under-approximation and its
Boolean encoding. One option is to encode vi using Boolean variables on its

Deciding Bit-Vector Arithmetic with Abstraction 363

Under−approx.

Potential
calls to SAT solver

YES NO

YES

NO

Bit-Vec Formula φ

Satisfiable
Bit-Vec Formula φ

Unsatisfiable

Generate

Encode to
SAT

Generate
Abstraction

Abstraction
Is

Satisfiable?

Proof
SAT

Instance is
Satisfiable?

Input bit-Vec

Formula φ

Increase bit-vector encoding sizes to cover satisfying solutionSelect small
bit-vector

encoding sizes

Fig. 1. Abstraction-based approach to solving bit-vector arithmetic

si low order bits and then zero-extend it to be of length wi. The other is
to “sign-extend” it instead. For example, if si = 2 and wi = 4, the latter
would generate the Boolean vector [vi1, vi1, vi1, vi0] (where vij are Boolean
variables). Our implementation currently uses the latter encoding, as it en-
ables searching for solutions at both ends of the ranges of bit-vector values.
Further exploration of this aspect is left to future work.

A Boolean formula β is then computed from φ using standard circuit
encodings for bit-vector arithmetic operators. The width of the operators is
left unchanged. The formula β is handed to an off-the-shelf SAT solver. The
only feature required of this SAT solver is that its response on unsatisfiable
formulas should be accompanied by an unsatisfiable core.
If the SAT solver reports that β is satisfiable, then the satisfying assignment
is an assignment to the original formula φ, and the procedure terminates.
However, if β is unsatisfiable, we continue on to the next step.

3. Generate Over-Approximation from Unsatisfiable Core: The SAT solver ex-
tracts an unsatisfiable core C from the proof of unsatisfiability of β. We use
C to generate an over-approximating abstraction φ of φ. The formula φ is
also a bit-vector formula, but typically much smaller than φ.

The algorithm that generates φ is described in Section 3.2. The key prop-
erty of φ is that its translation into SAT, using the same sizes si as those
that were used for φ, would also result in an unsatisfiable Boolean formula.
The satisfiability of φ is then checked using a sound and complete decision
procedure P for bit-vector arithmetic, e.g., a bit-blasting approach.

If φ is unsatisfiable, we can conclude that so is φ. On the other hand, if φ is
satisfiable, it must be the case that at least one variable vi is assigned a value
that is not representable with si Boolean variables (recall the key property
enjoyed by φ cited earlier). This larger satisfying assignment indicates the
necessary increase in the encoding size si for vi. Proceeding thus, we increase
si for all relevant i, and go back to Step 2.
Remark 1. Note that in this step it would be permissible to merely use a
sound, but not necessarily complete, bit-vector arithmetic decision procedure
P . In other words, we require that the outcome of P be correct whenever

364 R.E. Bryant et al.

this outcome is ‘Unsat’, but we can tolerate spurious purported satisfying
assignments. Indeed, in cases where P provides a satisfying assignment that
is not a satisfying assignment for φ, we can simply increase si by 1 for each
i such that si < wi, and go back to Step 2. Of course, bit-blasting is both
sound and complete.

Since si increases for at least one i in each iteration of this loop, this procedure
is guaranteed to terminate in O(n ·wmax) iterations, where wmax = maxi wi. Of
course, each iteration involves a call to a SAT solver and a decision procedure
for bit-vector arithmetic.

One of the main theoretical advances we make over the earlier work on Pres-
burger arithmetic [5] is a different method for generating the abstraction. We
describe this in the following section.

3.2 Generating an Over-Approximating Abstraction

The earlier work assumed that φ was in conjunctive normal form (CNF), whereas
our procedure works with an arbitrary directed acyclic graph (DAG) or circuit-
based representation, which is the format in which the input problems are gener-
ated. While φ can be transformed to CNF (in two different ways, listed below),
we argue below that neither of those approaches is desirable, primarily due to
the presence of if-then-else (ITE) expressions at arbitrary locations in φ.

1) Eliminating ITE using new variables: By giving each ITE expression in the
formula a fresh bit-vector variable name, we can eliminate all ITEs with just a
linear blow-up in the formula size. However, this also introduces a number of
new bit-vector variables that is linear in the size of the formula.
Note that the number of input bit-vector variables (vi’s) is usually a few orders
of magnitude smaller than the size of the formula φ. As a result, when treating
the new variables as inputs, the SAT solver’s performance has been observed to
suffer dramatically.

Of course, the values of these new variables are dependent on those of the
vi’s, and we can therefore attempt to restrict the SAT solver from case-splitting
on the bit-encodings of the new ITE variables. However, such restrictions have
also been found to severely adversely affect the run-time of current SAT engines.
(It amounts to changing the decision heuristic.)

2) Direct elimination of ITE: Another way of eliminating ITEs is to expand out
the cases without introducing new variables. However, this leads to a worst-case
exponential blow-up in formula size, which is commonly witnessed in practice.
We have therefore devised an abstraction-generation algorithm A that operates
directly on the DAG representation of φ, denoted Dφ. The inputs to A are Dφ,
the root node, and the unsatisfiable core C. The output is a DAG Dφ representing

φ, which is an over-approximation of φ. Let Nφ and Nφ be the set of nodes in
Dφ and Dφ, respectively.

Before describing the algorithm, we need to describe the process of transform-
ing the Boolean encodings of φ and φ into CNF. It can be seen as a generalization

Deciding Bit-Vector Arithmetic with Abstraction 365

of Tseitin’s encoding (which introduces fresh variables for internal nodes) to the
case of bit-vector formulas. Each internal node n ∈ Nφ is annotated with a set of
CNF clauses c(n) that relate the output of that node o(n) to its inputs, accord-
ing to the operator in the node. These output variables then appear as input to
the parent nodes of n. Then a conjunction of the clauses in {c(n)|n ∈ Nφ} and
one more unit clause with the variable encoding the top node, is the CNF rep-
resentation of φ. A subset of these clauses constitutes the UNSAT core C. These
definitions and notations also apply to Dφ, and we will use them for both DAGs
when the meaning is clear from the context. For a formula (or equivalently a set
of clauses) C we denote by vars(C) the set of variables that appear in C.

Procedure A (see Algorithm 1) recurses down the structure of Dφ and creates
Dφ. It replaces a Boolean node n with a new variable and backtracks, if and
only if none of the variables in vars(c(n)) are present in C2. It uses the functions
left-child(Dφ, n) and right-child(Dφ, n) to return the left and right child of n on
Dφ, respectively.

Algorithm 1. An algorithm for abstracting an NNF formula φ such that only
subformulas that do not contribute to the UNSAT core C are replaced with a
new variable.

procedure A(DAG Dφ, node n, unsat-core C)
if n is a leaf then return ;
end if
if n is Boolean and vars(c(n)) ∩ vars(C) = ∅ then

Replace n in Dφ with a new Boolean variable;
return ;

end if
A(Dφ, left-child(Dφ, n), C);
A(Dφ, right-child(Dφ, n), C);

end procedure

The replacement of Boolean nodes with new variables can be further optimized
using the “pure-literal rule”: if nφ is a Boolean-valued node and only appears
unnegated, replace it by True; likewise, if nφ only appears negated, replace it by
False. In other words, in such cases no new Boolean variable is needed.

Note that the resulting DAG Dφ can be embedded into Dφ. For each node
n ∈ Nφ we will denote by n̄ its counterpart in Dφ before the abstraction process
begins (after the abstraction some of them can be eliminated by simplifications).

The correctness of our abstraction technique is formalized by the following
two theorems:

Theorem 1. φ is an over-approximating abstraction of φ.

2 The same replacement criterion can be applied to bit-vector-valued nodes, which
can then be replaced with fresh bit-vector variables. Our implementation ignores
this option, however, and we shall therefore also ignore this possibility in the proof.

366 R.E. Bryant et al.

Proof. Let α be a satisfying assignment of φ. We show how to construct ᾱ, a
satisfying assignment for φ. First, for each variable v ∈ vars(φ) such that the
(leaf) node representing v is still present in Dφ, define ᾱ(v) = α(v). Second,
for each Boolean variable b ∈ {vars(φ) \ vars(φ)} (i.e., the new abstracting
variables) represented by node n ∈ Dφ, define ᾱ(b) to be equal to the Boolean
value of the corresponding node in Dφ, as implied by α. For example, if α(b1) =
True, α(b2) = False and the node b1 ∨ b2 was replaced with a new variable b,
then ᾱ(b) = True ∨ False = True. Clearly, ᾱ satisfies φ, since every node in Dφ

is evaluated the same as its counterpart in Dφ. Hence, if φ is satisfiable, then so
is φ, which implies the correctness of the Theorem. ��

Next, we have to prove termination. Termination is implied if we can show that
any satisfying assignment to φ requires width larger than the current one si (i.e.,
the width with which the unsatisfiable core C was derived), or, equivalently:

Theorem 2. The SAT encoding of φ with encoding sizes si is unsatisfiable.

Proof. We will prove that the CNF encoding of φ with sizes si contains the
clauses of the UNSAT core C.

Three observations about this encoding are important for our proof:

1. First, for an internal node n that represents a Boolean operator, each clause
in c(n) contains the output variable of its node. For example, the CNF of
an ‘and’ node o = a ∧ b is (o ∨ ¬a ∨ ¬b), (¬o ∨ a), (¬o ∨ b), and indeed o, the
output variable of this node, is present in all three clauses. The same applies
to the other Boolean operators. Hence, we can write o(cl) for a clause cl to
mean the output variable of the node that cl annotates (hence, o(cl) ∈ cl).

2. Second, the same observation applies to predicates over bit-vectors. For sim-
plicity, we concentrate only on the bit-vector equality predicate. In such a
node, each clause contains either the output variable or an auxiliary variable
present only in this node. For example, the CNF of the node o = (v1 = v2)
for 2-bit bit-vectors v1 and v2, is the following (the first four clauses encode
x = (v1[0] = v2[0]), the other clauses encode o = x ∧ (v1[1] = v2[1]) where
x is the local auxiliary variable):

(x ∨ v1[0] ∨ v2[0]), (x ∨ ¬v1[0] ∨ ¬v2[0]),
(¬x ∨ v1[0] ∨ ¬v2[0]), (¬x ∨ ¬v1[0] ∨ v2[0]),
(o ∨ ¬x ∨ ¬v1[1] ∨ ¬v2[1]), (o ∨ ¬x ∨ v1[1] ∨ v2[1]),
(¬o ∨ v1[1] ∨ ¬v2[1]), (¬o ∨ ¬v1[1] ∨ v2[1]), (¬o ∨ x)

3. Finally, observe that resolution among clauses that relate the output and
input of a node using the output variable as the resolution variable, results
in a tautology. For example, recall the CNF representation of the ‘and’ node
above: Resolving on the output variable o of that node results in a tautol-
ogy. The same observation applies to other Boolean operators and equality
between bit-vectors.

Deciding Bit-Vector Arithmetic with Abstraction 367

We use these observations for analyzing the three possible cases for a node n
in Dφ: either it is retained in Dφ, replaced with a new variable, or eliminated.
Our goal, recall, is to show that despite the abstraction implied by these changes
to the DAG, the set of clauses that encode the new DAG Dφ still contains the
UNSAT core C of φ.

– Claim: for each node n ∈ Nφ for which the corresponding n̄ ∈ Nφ is retained
in the abstraction process, c(n) ∩ C = c(n̄) ∩ C.

Proof. Since n and n̄ encode the same operator and receive the same type of
input (e.g., if n and n̄ represent a bit-vector operator, then their respective
inputs are bit-vectors of the same width), then c(n) and c(n̄) are equivalent
up to renaming of variables. Such a renaming can occur if the abstraction
process replaced one of the inputs (or both) with a new variable. But this
means that none of these inputs are in C, hence those clauses in c(n̄) that
contain renamed literals, are not in C. Hence, c(n) ∩ C = c(n̄) ∩ C.

– Claim: for each node n ∈ Nφ that was replaced with a new variable in Nφ,
c(n) ∩ C = ∅.

Proof. This is trivial by the construction of the abstraction: if any of the
clauses in c(n) were in C, then this node would not be replaced with a new
variable.

– Claim: For each node n ∈ Nφ whose corresponding node n̄ ∈ Nφ was elimi-
nated (i.e., the paths of this node to the root were all ‘cut’ by the abstrac-
tion), c(n) ∩ C = ∅.

Proof. On each path from n to the root node, there exists one or more nodes
other than n that were replaced with free variables. For simplicity of the
proof, we will consider one such path and denote the closest node to n that
was replaced with a new variable by nc.

We will now prove the claim by induction on the distance (in terms of
number of DAG operators) from n to nc. In the base case n is a direct child
of nc. Falsely assume that there exists a clause cl ∈ c(n) such that cl ∈ C.
c(nc) contain o(n), the output variable of n, and cl also contains o(n) (see
observations 1 and 2 above). Hence, if cl ∈ C, then o(n) ∈ vars(C) which
contradicts the condition for abstracting nc with a new variable.

For the induction step falsely assume that there exists a clause cl ∈ c(n)
such that cl ∈ C. By the induction hypothesis, none of the clauses in the
parent node of n are in C. Hence, only clauses from c(n) can contain the
output variable of cl in C. This means that o(cl) can only be resolved-on
among c(n) clauses. By noting that that this kind of resolution can only
result in a tautology (see observation 3 above), this resolution step cannot
be on the path to the empty clause in the resolution proof. This contradicts,
however, the requirement that any variable in every clause that participates
in a proof of the empty clause must be resolved on in order to eliminate it.

Thus, the set of clauses annotating Dφ contains C and hence φ is unsatisfiable.

368 R.E. Bryant et al.

In comparison with our previous CNF-based abstraction scheme [5], we note
that, for ITE-free formulas, that approach can generate more compact abstrac-
tions, as they do not introduce new variables. However, for real-world bench-
marks from both hardware and software verification, such as those discussed
in the following section, we found that elimination of ITEs leads to significant
space and time overheads. The approach of this paper allows us to extend the
abstraction-based approach to operate on arbitrary DAG-like formulas. More-
over, we have found that the Boolean structure in the original bit-vector formula
is not usually the primary source of difficulty; it is the bit-vector constraints that
are the problem.

3.3 Another Step of Abstraction

It is well-known that certain bit-vector arithmetic operators, such as integer
multiplication of two variables (of adequately large width), are extremely hard
for a procedure based on bit blasting. However, for many problems involving
these operators, it is unnecessary to reason about all of the operators’ properties
in order to decide the formula. Instead, using a set of rules (based on well-
known rewrite rules) allows us to perform fine-grained abstractions of functions,
which often suffices. Such (incomplete) abstractions can be used in the over-
approximation phase of our procedure, while maintaining the overall procedure
sound and complete (see Remark 1 in §3.1). This is a major advantage, because
these rules can be very powerful in simplifying the formula.

Therefore, uclid invokes a preprocessing step before calling Algorithm A. In
this step, it replaces a subset of “hard” operators by lambda expressions that
partially interpret those operators. The resulting formula is then bit blasted to
SAT.

For example, uclid replaces the multiplication operator ∗w of width w (for
w > 4, chosen according to the capacity of current SAT engines) by the follow-
ing lambda expression involving the freshly introduced uninterpreted function
symbol mulw:

λx.λy.ITE(x = 0 ∨ y = 0, 0, ITE(x = 1, y, ITE(y = 1, x, mulw(x, y))))

This expression can be seen as partially interpreting multiplication, as it models
precisely the behavior of this operator when one of the arguments is 0 or 1, but
is uninterpreted otherwise.

4 Experimental Results

The new procedure is now incorporated within the uclid verification system [24],
which is implemented in Moscow ML [25] (a dialect of Standard ML). Min-
iSat [22] was used as the SAT solver to solve over-approximations, while Boole-
force (written by Armin Biere) was used as a proof-generating SAT solver for
under-approximations. The initial value of si is set to min(4, wi) for benchmarks
not involving hard operators (like multiplication) while it is set to min(2, wi)
otherwise.

Deciding Bit-Vector Arithmetic with Abstraction 369

Table 1. Comparison of run-time of abstraction-based approach (uclid) with
bit-blasting, STP, Yices. The best run-time is highlighted in bold font. A “TO”
indicates a timeout of 3600 seconds was reached. An ”err” indicates that the solver
could not handle bit-vectors of width as wide as those in the benchmark or quit with
an exception. Bit-blasting used MiniSat. uclid used Booleforce for proof generation
and MiniSat on the abstraction. STP is based on MiniSat. “Ans” indicates whether the
formula was satisfiable (SAT) or not (UNSAT). “Enc” indicates time for translation to
SAT, and “SAT” indicates the time taken by the SAT solver (both calls).

Bit-Blasting uclid

Formula Ans. Run-time (sec.) Run-time (sec.) STP Yices
Enc. SAT Total Enc. SAT Total (sec.) (sec.)

Y86-std UNSAT 17.91 TO TO 23.51 987.91 1011.42 2083.73 TO
Y86-btnft UNSAT 17.79 TO TO 26.15 1164.07 1190.22 err TO
s-40-50 SAT 6.00 33.46 39.46 106.32 10.45 116.77 12.96 65.51
BBB-32 SAT 37.09 29.98 67.07 19.91 1.74 21.65 38.45 183.30

rfunit flat-64 SAT 121.99 32.16 154.15 19.52 1.68 21.20 873.67 1312.00
C1-P1 SAT 2.68 45.19 47.87 2.61 0.58 3.19 err err
C1-P2 UNSAT 0.44 TO TO 2.24 2.12 4.36 TO TO

C3-OP80 SAT 14.96 TO TO 14.54 349.41 363.95 TO 3242.43
egt-5212 UNSAT 0.064 0.003 0.067 0.163 0.001 0.164 0.018 0.009

Table 1 shows experimental results obtained on a set of bit-vector formulas.
We compare the run-time of uclid against bit blasting to MiniSat, and the
STP [10] and Yices [11] decision procedures. (The latter two procedures jointly
won the bit-vector division of the recent SMT-COMP’06 competition, and we
compare against the versions that were entered in the competition.) All results
were obtained on a system with a 2.8 GHz Xeon processor and 2 GB RAM. The
benchmarks are drawn from a wide range of sources, arising from verification
and testing of both hardware and software:3

– Verification of word-level versions of an x86-like processor model [26] (Y86-
std, Y86-btnft);

– Detection of format-string vulnerabilities in C programs [27] (s-40-50);
– Hardware verification benchmarks obtained from Intel, slightly modified

(BBB-32, rfunit flat-64);
– Word-level combinational equivalence checking benchmarks obtained from a

CAD company4 (C1-P1, C1-P2, C3-OP80); and
– Directed random testing of programs [10] (egt-5212). This represents the

set of benchmarks used in SMT-COMP’06, which are easily solved within a
fraction of a second. (As the run-times on this benchmark was so small, we
state them to three decimal places, unlike the others.)

3 All benchmarks that we have permission to make publicly available are online at
http://www.cs.cmu.edu/~uclid/tacas07-examples.tgz

4 Name withheld on their request.

370 R.E. Bryant et al.

Table 2. Statistics on the abstraction-based approach (uclid). “maxi si” indi-
cates the maximum value of si generated in the entire run.“Num. Iter” indicates the
number of iterations of the abstraction-refinement loop where an iteration is counted
if at least one of the SAT solver calls is made. The second to last column compares the
size of the largest abstraction φ created as a fraction of the size of the original formula
φ, where sizes are measured as the number of nodes in the DAG representations of the
formulas. “Speedup” indicates the factor by which the abstraction-based approach is
faster than its nearest competitor, or slower than the best solver.

Formula Ans. maxi si maxi wi Num. Iter
max

|φ|
|φ|

Speedup

Y86-std UNSAT 4 32 1 0.18 2.06
Y86-btnft UNSAT 4 32 1 0.20 > 3.01
s-40-50 SAT 32 32 8 0.12 0.11
BBB-32 SAT 4 32 1 – 1.78

rfunit flat-64 SAT 4 64 1 – 7.27
C1-P1 SAT 2 65 1 – 15.00
C1-P2 UNSAT 2 14 1 1.00 > 825.69

C3-OP80 SAT 2 9 1 – 8.91
egt-5212 UNSAT 8 8 1 0.13 0.06

The first three sets of benchmarks involve only (finite-precision) linear arith-
metic. The combinational equivalence checking benchmarks involve finite-pre-
cision multiplication with large widths (e.g., C1-P1 and C1-P2 involve 65-bit,
49-bit, and 30-bit multiplication), apart from bitwise operations including ex-
traction and concatenation. The last set includes linear arithmetic and bitwise
operations.

An analysis of uclid’s performance on the benchmarks is given in Table 2. We
observe the following: 1) Only very few iterations of the abstraction-refinement
loop are required, just 1 in most cases; 2) The abstractions generated are small in
most cases; and 3) uclid yields a speed-up in all but one case when the number
of iterations is 1. In the 2 other cases, where some si reached the maximum wi,
it performs worse.

We look more closely at two benchmarks. uclid’s performance is orders of
magnitude better than the other solvers on the C1-P2 benchmark: this involves
multiplication as noted earlier, and the abstraction described in Section 3.3 was
particularly effective. However, on the benchmark s-40-50, it is 10 times worse
than STP, with most of the time spent in encoding. This problem is mainly
due to re-generation of the SAT instance in each step, which an incremental
implementation can fix.

The results indicate a complementarity amongst the solvers with respect to
this set of benchmarks: either bit-blasting (with rewrites as explained in §3.3)
is effective, or the problem is unsatisfiable with a small UNSAT core, or there
is a satisfying solution within a small range at the high and low ends of the bit-
vector’s value domain. In the latter two cases, our abstraction-based approach is
effective.

Deciding Bit-Vector Arithmetic with Abstraction 371

5 Conclusion

We have demonstrated the utility of an abstraction-based approach for deciding
the satisfiability of finite-precision bit-vector arithmetic. The speed-ups we have
obtained, especially on benchmarks involving non-linear arithmetic operations,
indicate the promise of the proposed approach. The algorithm is applicable in
many areas in formal verification (e.g., word-level bounded model checking) and
can be extended to handle floating-point arithmetic. Ongoing and future work
includes generalizing the form of over- and under-approximations beyond those
we have proposed herein, and making the encoding to SAT incremental.

References

1. Biere, A., Cimatti, A., Clarke, E., Yhu, Y.: Symbolic model checking without
BDDs. In: TACAS. (1999) 193–207

2. Clarke, E., Kroening, D.: Hardware verification using ANSI-C programs as a ref-
erence. In: Proceedings of ASP-DAC 2003, IEEE Computer Society Press (2003)
308–311

3. Xie, Y., Aiken, A.: Scalable error detection using Boolean satisfiability. In: Proc.
32nd ACM Symposium on Principles of Programming Languages (POPL). (2005)
351–363

4. Arons, T., Elster, E., Fix, L., Mador-Haim, S., Mishaeli, M., Shalev, J., Singerman,
E., Tiemeyer, A., Vardi, M.Y., Zuck, L.D.: Formal verification of backward com-
patibility of microcode. In: Proc. Computer-Aided Verification (CAV’05). LNCS
2404 (2005) 185–198

5. Kroening, D., Ouaknine, J., Seshia, S.A., Strichman, O.: Abstraction-based satis-
fiability solving of Presburger arithmetic. In: Proc. CAV. Volume 3114 of LNCS.
(2004) 308–320

6. McMillan, K., Amla, N.: Automatic abstraction without counterexamples. In:
Proceedings of TACAS 03. Volume 2619., Springer LNCS (2003) 2–17

7. Cook, B., Kroening, D., Sharygina, N.: Cogent: Accurate theorem proving for
program verification. In: Proceedings of CAV 2005, Springer (2005) 296–300

8. Berezin, S., Ganesh, V., Dill, D.: A decision procedure for fixed-width bit-vectors.
Technical report, Computer Science Department, Stanford University (2005)

9. Wedler, M., Stoffel, D., Kunz, W.: Normalization at the arithmetic bit level. In:
Proc. DAC, ACM Press (2005) 457–462

10. Cadar, C., Ganesh, V., Pawlowski, P.M., Dill, D.L., Engler, D.R.: EXE: Auto-
matically generating inputs of death. In: 13th ACM Conference on Computer and
Communications Security (CCS ’06), ACM (2006) 322–335

11. Dutertre, B., de Moura, L.: The Yices SMT solver. Available at
http://yices.csl.sri.com/tool-paper.pdf (2006)

12. Cyrluk, D., Möller, M.O., Rueß, H.: An efficient decision procedure for the theory
of fixed-sized bit-vectors. In: Computer-Aided Verification (CAV ’97). (1997) 60–71

13. Barrett, C.W., Dill, D.L., Levitt, J.R.: A decision procedure for bit-vector arith-
metic. In: Proceedings of DAC’98, ACM Press (1998) 522–527

14. Babić, D., Musuvathi, M.: Modular Arithmetic Decision Procedure. Technical
report, Microsoft Research, Redmond (2005)

15. Brinkmann, R., Drechsler, R.: RTL-datapath verification using integer linear pro-
gramming. In: Proceedings of VLSI Design. (2002) 741–746

372 R.E. Bryant et al.

16. Parthasarathy, G., Iyer, M.K., Cheng, K.T., Wang, L.C.: An efficient finite-domain
constraint solver for circuits. In: Design Automation Conference (DAC). (2004)
212–217

17. Huang, C.Y., Cheng, K.T.: Assertion checking by combined word-level ATPG and
modular arithmetic constraint-solving techniques. In: Proc. DAC. (2000) 118–123

18. Gupta, A., Ganai, M., Yang, Z., Ashar, P.: Iterative abstraction using SAT-based
BMC with proof analysis. In: ICCAD. (2003)

19. Lahiri, S., Mehra, K.: Interpolant based decision procedure for quantifier-free
Presburger arithmetic. Technical Report 2005-121, Microsoft Research (2005)

20. Tseitin, G.: On the complexity of proofs in poropositional logics. In Siekmann, J.,
Wrightson, G., eds.: Automation of Reasoning: Classical Papers in Computational
Logic 1967–1970. Volume 2., Springer-Verlag (1983) Originally published 1970.

21. zChaff. http://www.ee.princeton.edu/~chaff/zchaff.php.
22. MiniSat. http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat/.
23. Zhang, L., Malik, S.: Extracting small unsatisfiable cores from unsatisfiable

Boolean formulas. In: Proceedings of SAT 03. (2003)
24. UCLID verification system. http://www.cs.cmu.edu/~uclid.
25. Moscow ML. http://www.dina.dk/~sestoft/mosml.html.
26. Bryant, R.E.: Term-level verification of a pipelined CISC microprocessor. Tech-

nical Report CMU-CS-05-195, Computer Science Department, Carnegie Mellon
University (2005)

27. Wisconsin Safety Analyzer Project. http://www.cs.wisc.edu/wisa.

Abstraction Refinement of Linear Programs

with Arrays

Alessandro Armando1, Massimo Benerecetti2, and Jacopo Mantovani1

1 AI-Lab, DIST, Università di Genova, Italy
2 Dip. di Scienze Fisiche, Università di Napoli “Federico II”, Italy

Abstract. In previous work we presented a model checking procedure
for linear programs, i.e. programs in which variables range over a numeric
domain and expressions involve linear combinations of the variables. In
this paper we lift our model checking procedure for linear programs to
deal with arrays via iterative abstraction refinement. While most ap-
proaches are based on predicate abstraction and therefore the abstrac-
tion is relative to sets of predicates, in our approach the abstraction is
relative to sets of variables and array indexes, and the abstract program
can express complex correlations between program variables and array
elements. Thus, while arrays are problematic for most of the approaches
based on predicate abstraction, our approach treats them in a precise
way. This is an important feature as arrays are ubiquitous in program-
ming. We provide a detailed account of both the abstraction and the
refinement processes, discuss their implementation in the eureka tool,
and present experimental results that confirm the effectiveness of our
approach on a number of programs of interest.

1 Introduction

We present an abstraction refinement procedure for linear programs with arrays,
i.e. programs in which variables and array elements range over a numeric domain
and expressions involve linear combinations of variables and array elements. Un-
like the approaches based on predicate abstraction in which the abstraction is
relative to sets of predicates, in our approach the abstraction is relative to sets
of program variables and array indexes. Thus while predicate abstraction uses
Boolean programs as the target of the abstraction, in our approach we use linear
programs for the same purpose. This is particularly attractive as linear programs
can directly and concisely represent complex correlations among program vari-
ables and a small number of iterations of the abstraction refinement loop usually
suffice to either prove or disprove that the original program enjoys the desired
properties.

In previous work [1] we proposed a model checking procedure for linear pro-
grams. In [2] we extended our procedure to deal with undefined values and con-
ditional expressions, thereby paving the way to the model checking procedure
for linear programs with arrays described in this paper.

The ability to analyse linear programs with arrays is particularly important
as arithmetic and arrays are ubiquitous in programming and many real-world

O. Grumberg and M. Huth (Eds.): TACAS 2007, LNCS 4424, pp. 373–388, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

374 A. Armando, M. Benerecetti, and J. Mantovani

programs belong to this class. Moreover, most predicate abstraction techniques
suffer from a severe lack of precision when dealing with arrays. For instance,
SLAM [3] and BLAST [4] treat all the elements of an array as they were a single
element and this makes their analysis grossly inaccurate for all programs that
access or manipulate arrays even in a trivial way. In addition, as the theory of ar-
rays does not offer suitable interpolants, the approaches in which the refinement
step is based on interpolation (see, e.g., [5,6]) have difficulties in the discovery of
useful predicates when traces involve arrays. On the other hand, the procedure
described in this paper efficiently handles linear programs with arrays in a sound
and precise way.

We have implemented our procedure in the eureka tool and carried out sev-
eral experiments using a number of linear programs of interest including string
manipulation and sorting algorithms. We compared the results of our experi-
ments with two state-of-the-art tools that adopt predicate abstraction, namely
BLAST and SATABS [7]. On all problems considered BLAST detects spurious
errors, and our procedure scales better than SATABS as the size of the arrays
handled by the programs increases. We also compared eureka with CBMC [8],
a well-known bounded model checker for C programs, with largely favourable
results.

In the next section we present our procedure through a worked out example. In
Section 3 we define the syntax and the semantics of linear programs with arrays.
In Section 4 we define our abstraction and state its fundamental properties. In
Section 5 we discuss how spurious error traces are detected. In Section 6 we
present the refinement process. In Section 7 we describe the implementation of
our ideas in eureka and discuss the results of our experiments.

2 Model Checking Linear Programs with Arrays

Our approach to model checking linear programs with arrays is based on the
idea of abstracting away all program variables and array elements from the
initial program, and then incrementally refining the abstract program obtained
in this way by including program variables and array elements as suggested by
the refinement process.

Let P be the linear program with arrays in the leftmost column of Table 1. We
start by abstracting P into program P̂0 by replacing every occurrence of array
expressions with the symbol u (denoting an arbitrary value of numeric type)
and by replacing every assignment to array elements with a skip statement (;).
(For the sake of simplicity in our example we do not abstract away the program
variable i which therefore occurs in P̂0.)

By applying a model checker for linear programs to P̂0 we get the execution
trace 1, 2, 3, 4, 5, 3, 4, 5, 3, 6, 0 witnessing the violation of the assertion at line
6, where 0 is an additional node which is reached if and only if an assertion fails.
This trace corresponds to the execution of two iterations of the while loop (lines
3–5) which leaves variable i with value 2 and therefore leads to a violation of
the assertion at line 6.

Abstraction Refinement of Linear Programs with Arrays 375

Table 1. A simple program (P), the initial abstraction (�P0) and its refinement (�P1)

Line P �P0 �P1

[1]
[2]
[3]
[4]
[5]
[6]

void main() {
int i, a[30];
a[1] = 9;
i = 0;
while(a[i]!=9) {
a[i] = 2*i;
i = i+1; }
assert(i<=1); }

void main() {
int i;
;
i = 0;
while(u!=9) {
;
i = i+1; }

assert(i<=1); }

void main() {
int i, a1;
a1 = (1==1)?9:a1;
i = 0;
while(((i==1)?a1:u)!=9) {
a1 = (i==1)?2*i:a1;
i = i+1; }

assert(i<=1); }

The feasibility check of the above trace w.r.t. P is done by generating a set of
quantifier-free formulae whose satisfying valuations correspond to all possible exe-
cutions of the sequence of statements of P corresponding to the trace under consid-
eration. This is done by first putting the trace in Single Assignment Form [9] and
then by generating quantifier-free formulæ encoding the behaviour of the state-
ments. Table 2 shows the sequence of the original statements, the trace in Single
Assignment Form, and the associated formulæ for the above trace.

Table 2. Checking the trace for feasibility

Step Line Original Statement Renamed Statement Formula

1 [1] a[1] = 9; a1[1] = 9; a1 = store(a0, 1, 9)
2 [2] i = 0; i1 = 0; i1 = 0
3 [3] assume(a[i] != 9); assume(a1[i1] != 9); select(a1, i1) �= 9
4 [4] a[i] = 2 * i; a2[i1] = 2 * i1; a2 = store(a1, i1, 2 ∗ i1)
5 [5] i = i + 1; i2 = i1 + 1; i2 = i1 + 1
6 [3] assume(a[i] != 9); assume(a2[i2] != 9); select(a2, i2) �= 9
7 [4] a[i] = 2 * i; a3[i2] = 2 * i2; a3 = store(a2, i2, 2 ∗ i2)
8 [5] i = i + 1; i3 = i2 + 1; i3 = i2 + 1
9 [3] assume(!(a[i] != 9)); assume(!(a3[i3] != 9)); ¬(select(a3, i3) �= 9)

10 [6] assume(!(i<= 1)); assume(!(i3 <= 1)); ¬(i3 ≤ 1)

The resulting set of formulæ is then fed to a theorem prover. If it is found
unsatisfiable (w.r.t. a suitably defined background theory) then the trace is not
executable in P , whereas if it is found satisfiable then we can conclude that the
trace is also executable in P . In our example the set of formulæ (see rightmost
column in Table 2) is found to be unsatisfiable. The formulæ that contributed
to the proof of unsatisfiability are those associated with steps 1, 2, 4, 5, and
6. Moreover, the only term of the form select(a, e) occurring in these formulæ
is select(a2, i2) (with i2 = 1 given by the context). As we will see later in the
paper, this suffice to conclude that in order to rule out the above trace we must
refine P̂0 by including the element of a at position 1. The resulting program, P̂1,
is obtained by replacing every expression of the form a[e] with the conditional

376 A. Armando, M. Benerecetti, and J. Mantovani

expression (e == 1 ? a1 : u) and every assignment of the form a[e1] = e2; with the
assignment

a1 = (e1 == 1 ? e2 : a1);

where a1 is a new variable of numeric type corresponding to the array element
of index 1. The application of the model checking procedure for linear programs
to P̂1 reveals that the error state cannot be reached in P̂1 and from this it is
possible to conclude that the error state is not reachable in P .

In the sequel, if P is a linear program with arrays, then by VP and AP we
denote the set of numeric and array variables (resp.) of P . Moreover we assume
that each array a ∈ AP is equipped with a positive integer dim(a) indicating the
size of the array. Finally by RP we denote the function mapping each a ∈ AP

into the set {0, . . . , dim(a) − 1}.
A complete account of our abstraction refinement procedure for linear pro-

grams with arrays is given in Figure 1. The procedure takes as input a linear

procedure AR(P ,V ,R)

1. �P ← abstract(P, V, R);

2. Trace ← model-check(�P);
3. if Trace = none then return SAFE;
4. if (V = VP and R = RP) then return Trace;
5. Formula ← encode(Trace, P);
6. Result ← decide(Formula);
7. if SAT?(Result) then return Trace;

/* Result contains a proof of the unsatisfiability of Formula */
8. 〈V ′, R′〉 ← refine(Trace,Result, V, R);
9. return AR(P ,V ′,R′);

Fig. 1. Abstraction refinement of linear programs with arrays

program with arrays P , a subset V ⊆ VP and a function R mapping each array
a ∈ AP into a subset of RP (a). Initially V is set to the empty set and R is
set to the function that maps every a ∈ AP into the empty set. The procedure
starts by abstracting P w.r.t. V and R. The resulting abstract program P̂ is
then fed to the model checker for linear programs at line 2. If no execution trace
violating an assertion is found in P̂ , then the procedure halts at line 3 reporting
that the original program is safe. Otherwise (i.e. if Trace contains an execution
trace of P̂ that violates an assertion), the procedure checks at line 4 whether
further refinement is possible. If this is not the case (this happens when V = VP

and R = RP), the procedure halts and returns Trace as an execution trace of P
witnessing an assertion violation. Otherwise (i.e. if further refinement is possi-
ble) the procedure builds at line 5 a quantifier-free formula whose unsatisfiability
implies the infeasibility of Trace w.r.t. P . The formula is then fed to a theorem
prover at line 6. If the formula is found to be satisfiable by the theorem prover,
then the procedure halts and returns Trace as an execution trace of P witnessing
an assertion violation. Otherwise Result contains a proof of the unsatisfiability
of the formula and the refinement procedure is invoked at line 8 with the task of

Abstraction Refinement of Linear Programs with Arrays 377

extending the set of program variables and the sets of array indexes to be used
for the construction of a new, refined abstraction of the original program. This
is done by the recursive call to the AR procedure at line 9.

3 Linear Programs and Linear Programs with Arrays

A linear program with arrays is a program with the usual control-flow constructs
(if, while, assert) procedural abstraction with call-by-value parameter pass-
ing and recursion, plus an additional assume statement. Variables and array
elements range over a numerical domain D, e.g. R, Z, or Zn (i.e. the integers
modulo n) for n ∈ N; moreover, conditions and assignments to variables and
array elements involve linear expressions with arrays. The sets E of generalised
linear expressions with arrays (henceforth, simply linear expression with arrays)
and the set B of Boolean linear expressions with arrays are defined by the fol-
lowing BNF production rules:

E ::= u | Z | VP | Z *E | E +E | (B ?E :E) | AP [E] B ::= (E op E)

where op ∈ {>=, <=, <, >, ==, !=} and u is a symbol representing an undefined
value.

The definition of generalised (Boolean, resp.) linear expression without arrays
((Boolean, resp.) linear expression, for short) and of linear programs without
arrays are subsumed by the above.

In the followingwe will consider only linear programswith arrayswith no nested
occurrences of arrays. This is without loss of generality, as nested occurrences of
arrays can always be eliminated by introducing fresh variables. Moreover, we as-
sume that the program is decorated with assertions in such a way to ensure that
possible out-of-bounds array accesses always lead to an assertion violation.

For the sake of space, in the following we only present the semantics of linear
programs with arrays without procedure calls and returns. We refer the reader
to [2] for a complete account of the semantics that includes (recursive) procedures.

The control flow graph (CFG) of a program P is a directed graph GP =
(NP , SuccP), where NP = {0, 1, . . . , n} is the set of vertexes1 and SuccP :
NP → 2NP maps each vertex in the set of its successors. For every vertex i such
that 1 ≤ i ≤ n, si denotes the program statement corresponding to i. If si is
if(e), while(e), or assert(e); then SuccP (i) = {TsuccP (i), FsuccP (i)}, where
TsuccP (i) (FsuccP (i)) denotes the successor of i when e evaluates to true (false,
resp.). If si is assert(e);, then FsuccP (i) = 0, while if si is assume(e);, then
SuccP (i) = {TsuccP (i)}. Finally, if SuccP (i1) = {i2}, we define sSuccP (i1) = i2.

Given a program P , GlobalsP denotes the set of global variables of P and,
for every i ∈ NP , LocalsP (i) is the set of the local variables in scope at vertex i.
Moreover, we define InScopeP (i) = GlobalsP ∪LocalsP (i).

Let WP = VP ∪ AP be the set of program variables of P , a valuation ω
over WP is a total function mapping VP into D and each a ∈ AP into a finite
1 Vertexes from 1 to n are associated with program statements and vertex 0 models

the failure of assert statements.

378 A. Armando, M. Benerecetti, and J. Mantovani

ω(e) =

��������������������
�������������������

{e} if e ∈ Z

{ω(e)} if e ∈ V
{d ∈ ω(a)(d1) : d1 ∈ ω(e1)} if e = a[e1]

and ω(e1) ⊆ {0, . . . , dim(a) − 1}
{c · d1 : d1 ∈ ω(e1)} if e = c * e1

{d1 op d2 : d1 ∈ ω(e1) and d2 ∈ ω(e2)} if e = e1 op e2

with op ∈ {>=, <=, <, >, ==, !=, +}
ω(e1) ∪ ω(e2) if e =(b ? e1 : e2) and {0, d} ⊆ ω(b)

for some d �= 0
ω(e1) if e = (b ? e1 : e2) and 0 �∈ ω(b)
ω(e2) if e = (b ? e1 : e2) and ω(b) = {0}
D otherwise

Fig. 2. Semantics of linear expressions

mapping from {0, . . . , dim(a)−1} into D. A state of a linear program with arrays
P is a pair 〈i, ω〉, where i is a vertex of the control flow graph of P and ω is a
valuation over WP ∩ InScopeP (i). Thus, ω is a total function over InScopeP (i).
The definition of state of a linear program is subsumed by the above.

We lift ω to a total function ω : E −→ 2D over linear expressions with arrays
defined as reported in Figure 2. The intuition is that ω(e) collects the set of all
the values of e which are compatible with the valuation ω. All the occurrences
of the u symbol, as well as those corresponding to an out-of-range access to an
array, within an expression e are modelled by non-deterministically assigning an
arbitrary element in D to the corresponding sub-expression. ω is extended to
k–tuples e of expressions in the obvious way.

State transitions in P are denoted by 〈i1, ω1〉−→P 〈i2, ω2〉, where the valuation
ωk is such that ωk : InScopeP (ik) → D, for k = 1, 2. We use bold letters such
as x to denote vectors of variables, elements or expressions. We also allow for
parallel assignments, denoted by x = e;. Moreover, let c = 〈c1, c2, . . . , cn〉 and
d = 〈d1, d2, . . . , dn〉 be n–tuples of values in a set X and in D respectively; for any
function f : X → D by f [d/c] we denote the function f ′ such that f ′(ck) = dk

for all k = 1, 2, . . . , n, and f ′(c) = f(c) for all c
= ck and k = 1, 2, . . . , n. State
transitions of a program P are defined as follows:

– if si1 is a skip (;), then 〈i1, ω1〉−→P 〈sSuccP (i1), ω1〉;
– if si1 is a parallel assignment y = e; then 〈i1, ω1〉−→P 〈sSuccP (i1), ω1[d/y]〉,

for d ∈ ω1(e);
– if si1 is an assignment a[e1] = e2; then 〈i1, ω1〉−→P 〈sSuccP (i1), ω1[(ω(a)[d2/d1]) /a]〉,

for d1 ∈ ω1(e1) and d2 ∈ ω1(e2);
– if i1 corresponds to assume(e);, then 〈i1, ω1〉−→P 〈i2, ω1〉, where i2 = sSuccP (i1)

if d ∈ ω1(e) for some d
= 0;
– if si1 is a statement of the form if(e), while(e), or assert(e);, then

〈i1, ω1〉−→P 〈i2, ω1〉, where i2 = FsuccP (i1) if 0 ∈ ω1(e) and i2 = TsuccP (i1)
if d ∈ ω1(e) for some d
= 0.

Abstraction Refinement of Linear Programs with Arrays 379

Let −→∗
P denote the reflexive and transitive closure of −→P . A state 〈i, ω〉 is

reachable if and only if there exists a valuation ω0 such that 〈1, ω0〉−→∗
P 〈i, ω〉.

A vertex i ∈ NP is reachable if and only if there exist two valuations ω0 and ω
such that 〈1, ω0〉−→∗

P 〈i, ω〉. A trace of P is a sequence of nodes i0i1 · · · in such
that 〈1, ω0〉−→P 〈i1, ω1〉−→P · · · −→P 〈in, ωn〉 for some valuations ω0, ω1, . . . , ωn.
By traces(P) we denote the set of traces of P . An error trace of P is any trace
of P ending with vertex 0.

In [1] we proposed a symbolic model checking procedure for linear programs
based on the tabulation algorithm defined in [10]. In [2] we extended our pro-
cedure to support the analysis of linear programs with the u symbol and condi-
tional expressions. The resulting procedure can be used to implement the model
checker (model-check) invoked by the AR procedure of Figure 1. For the purpose
of this paper it suffices to know that model-check(P0) is capable to detect and
return an error trace (if any) of the linear program P0 given as input.

It is worth pointing out that the framework described in this paper is inde-
pendent from the domain of computation. On the other hand, the decidability
of the model checking problem clearly depends on it: if D = R or D = Z, then
the problem is undecidable, whereas if D = Zn (for n ≥ 0), then the problem is
decidable.

4 Abstracting Linear Programs with Arrays into Linear
Programs

Let R be a function mapping each array a ∈ AP into a subset of RP (a),
and let V ⊆ VP . The set of abstractions of P w.r.t. R and V , in symbols
abstract(P, V, R), is the set of linear programs defined as follows. The set of
program variables of P̂ ∈ abstract(P, V, R) is V̂ = V ∪ {ak : a ∈ AP , k ∈ R(a)}.
Intuitively, ak is a new variable representing in P̂ the (k+1)-th element of the ar-
ray a. Given any linear expression e in P , an abstract version ê is obtained from
e by replacing (i) every occurrence of the variables not in V with the undefined
symbol u, (ii) every expression of the form a[e] with abs(a[e], [k1, . . . , kn]),
where [k1, . . . , kn] is some permutation of R(a) and:

abs(a[e], []) = u
abs(a[e], [k1, k2, . . . , kn]) = (ê == k1 ? ak1 : abs(a[e], [k2, . . . , kn])),

and (iii) every conditional expression of the form e′ ? u : u, possibly occurring in
the expression resulting from step (i), with the equivalent expression u.

Fixed a permutation of R(a) for each a ∈ AP , the linear program P̂ ∈
abstract(P, V, R) is then obtained from P by replacing all the expressions e
occurring in P with ê, and then by replacing each assignment of the form x = e;
with the skip statement (;) if x
∈ V , with x = ê; otherwise, and by replacing
each assignment of the form a[i] = e; with the (parallel) assignment

ak1 , . . . , akn =(̂i == k1 ? ê : ak1), . . . , (̂i == kn ? ê : akn);

380 A. Armando, M. Benerecetti, and J. Mantovani

that we abbreviate with a[i] =̂ e;. If n = 0 (i.e. if R(a) = ∅), the assignment
above reduces to a skip (;) statement.

If θ and θ′ are two permutations of R(a),then ω(abs(a[e],θ))=ω(abs(a[e],θ′)).
From this it readily follows that all programs in abstract(P, V, R) are semanti-
cally equivalent.

It is worth noticing that computing an abstraction of a program P w.r.t. V
and R can be done in time linear in the size of P and the cardinality of R, where
by cardinality of a mapping R we mean the cardinality of the set

⋃
a∈AP

R(a).
This contrasts with approaches based on predicate abstraction, where theorem
provers [3] or SAT solvers [7] are needed to compute abstractions.

We now show that the abstraction defined above is conservative (i.e. sound),
namely that every node reachable in the concrete program P is also reachable
in the abstract program P̂ . The abstraction of ω w.r.t. R and V is the valuation
ω̂ over V̂ such that ω̂(v) = ω(v) for all v ∈ V and ω̂(ak) = ω(a)(k) for all
a ∈ AP and k ∈ R(a). The following result states the relation between abstract
and concrete valuations on linear and Boolean expressions.

Lemma 1. The following facts hold:

1. if ω is a valuation over VP and AP , then ω(e) ⊆ ω̂(ê), for every expression
e;

2. if ω is a valuation over VP and AP and ω̂ is a valuation over VP ∪ {ak : a ∈
AP , k ∈ RP (a)}, then ω(e) = ω̂(ê), for every expression e.

The first statement of the lemma ensures that when a concrete expression e is
abstracted to its corresponding abstract expression ê all concrete values com-
patible with the concrete valuations are preserved by the abstract ones. This
is the key property in order to prove that the abstraction is conservative. The
second statement of the lemma guarantees the equivalence of the concrete and
abstract semantics when the abstraction is relative to all the variables VP and
all the array indexes RP of the concrete program.

Let SP be the set of states of program P . The abstraction of valuations is
lifted to abstraction of states by means of the function h : SP → S

�P such that
h(〈i, ω〉) = 〈i, ω̂〉 for all 〈i, ω〉 ∈ SP .

Let S ⊆ SP , we define the abstraction α[h](S) = {h(s) : s ∈ S}; conversely,
for all Ŝ ⊆ S

�P , the concretisation is defined by γ[h](Ŝ) = {s ∈ SP : h(s) ∈ Ŝ}.
It can be proved that the pair 〈α[h], γ[h]〉 forms a Galois connection.

We define R ⊆ R′ if and only if R(a) ⊆ R′(a) for all a ∈ AP . We define
〈V, R〉 〈V ′, R′〉 if and only if V ⊆ V ′ and R ⊆ R′. Moreover we define 〈V, R〉 ≺
〈V ′, R′〉 if and only if 〈V, R〉 〈V ′, R′〉, and V ′
= V or R′
= R. If P and P ′

are programs with the same control-flow graph, then we define P ′ � P if and
only if traces(P ′) ⊆ traces(P), P ′ � P if and only if traces(P ′) ⊂ traces(P), and
P ′ ≡ P if and only if P ′ � P and P � P ′, i.e. traces(P ′) = traces(P).

Let S be a set of states S of a program P . We define post∗P (S) = {s′ :
s−→∗

P s′ and s ∈ S}, i.e. the set of states reachable from S. We can now state
the soundness of the abstraction.

Abstraction Refinement of Linear Programs with Arrays 381

Theorem 1 (Soundness). Let 〈V, R〉 〈VP , RP 〉 and P̂ ∈ abstract(P, V, R).
Then, post∗P⊆(γ[h] ◦post∗

�P
◦ α[h])andP � P̂ .Moreover if P̂ ∈ abstract(P, VP , RP)

then post∗P =(γ[h] ◦ post∗
�P

◦ α[h]) and P ≡ P̂ .

The following result is key to prove the completeness of the AR procedure.

Theorem 2. Let P̂ ∈abstract(P, V, R) and P̂ ′ ∈ abstract(P, V ′, R′). If 〈V, R〉
〈V ′, R′〉, then P̂ ′ � P̂ .

5 Checking Trace Feasibility

We now turn our attention to the problem of determining whether a trace
τ = i0 · · · in of the abstract program P̂ is also a trace of the corresponding
concrete program P . We show how this problem can be reduced to the problem
of determining the satisfiability of a set of quantifier-free formulae (henceforth
called trace formulae) in the decidable theory resulting from the combination
of Linear Arithmetic and the theory of arrays. By Linear Arithmetic we mean
standard arithmetic (over D) with addition (i.e. +) and the usual relational op-
erators (e.g. =, <, ≤, >, ≥) but without multiplication. (Multiplication by a
constant, say n ∗ x where n is a numeral, is usually allowed but it is just a nota-
tional shorthand for the (linear) expression x+ · · ·+x with n occurrences of the
variable x.). The theory of arrays we consider models arrays as data structures
representing arbitrary associations of elements to a set of indexes. Unlike arrays
available in standard programming languages, the arrays modelled by the the-
ory of arrays need not have finite size. Let index, elem and array be sorts for
indexes, elements, and arrays (resp.), and select : array × index → elem and
store : array × index × elem → array be function symbols. We also assume
that the language of the theory of arrays includes a conditional term constructor
that allows for terms of the form (w ? t1 : t2), for every formula w and terms t1
and t2. Then the following is a concise presentation of the theory of arrays:

∀a, i, j, e. select(store(a, i, e), j) = (j = i ? e : select(a, j)) (1)

In the sequel we will denote Linear Arithmetic with T0 and the union of Linear
Arithmetic with the theory of arrays with T1.

Let si1 · · · sin the sequence of statements associated with τ = i0 · · · in. The
sequence of statements is put in Single Assignment Form [9], i.e. the program
variables are renamed in such a way that each variable is assigned exactly once
in the resulting program. This is done in the following way. Let v be a program
variable and i a program location. We define α(v, i) to be the number of as-
signments made to v prior to location i. Let e be a program expression. With
�(e) we denote the expression obtained from e by substituting every variable
v in e with vα(v,i). Every assignment to a variable x at a given location i, say
x = e;, is replaced by xα(x,i)+1 = �(e);. Every assignment to an array element,
say a[e1] = e2;, is replaced by aα(a,i)+1[�(e1)] = �(e2);. Every condition c (also
called guard) is replaced by �(c).

382 A. Armando, M. Benerecetti, and J. Mantovani

The set of trace formulae for τ w.r.t. P is the set of quantifier-free formulae
Φ(τ, P) =

⋃n
k=1 φ(sik

), where φ(sik
) is defined in Table 3. We define ΦTi(τ, P) =

Ti ∪ Φ(τ, P) for i = 0, 1. The following theorem holds:

Table 3. Encoding

sik φ(sik) condition

if(c), assert(c);, while(c); {c} if ik+1 = TsuccP (ik)
if(c), assert(c);, while(c); {¬c} if ik+1 = FsuccP (ik)
vj+1 = e; {vj+1 = e′}
aj+1[e1] = e2; {aj+1 = store(aj , e

′
1, e

′
2)}

; ∅

Theorem 3. Let P0 be a linear program and let P1 be a linear program with
arrays, then τ ∈ traces(Pi) if and only if ΦTi(τ, Pi) is satisfiable, for i = 0, 1.

In the AR procedure of Figure 1 the task of checking whether the trace for P̂
found by the model-checker is also a trace for P is jointly carried out by the
functions encode and decide. If the variable Trace is set to τ , then the function
call encode(Trace, P) at line 5 computes and returns the set of trace formulae
Φ(τ, P). If the variable Formula is set to the set of trace formulae Φ(τ, P), then
the function call decide(Formula) at line 6 checks the satisfiability of ΦT1(τ, P).

If ΦT1(τ, P) is unsatisfiable, then decide(Formula) returns a proof of this fact
in a sequent calculus for first order logic with equality, i.e. it returns a proof of
the sequent ΦT1(τ, P) � ⊥, namely a tree whose root is labelled by the sequent
ΦT1(τ, P) � ⊥ and whose leaves are labelled by sequents of the form ΦT1(τ, P) �
ϕ with ϕ ∈ ΦT1(τ, P).

6 Refinement

Let P̂ ∈ abstract(P, V, R) with V ⊆ VP and R ⊆ RP , let τ be a trace of P̂
such that ΦT1(τ, P) is unsatisfiable and let Π be a proof of ΦT1(τ, P) � ⊥. The
procedure refine(τ, Π, V, R) computes V ′ and R′ such that 〈V, R〉 ≺ 〈V ′, R′〉 and
τ
∈ traces(P̂ ′) for all P̂ ′ ∈ abstract(P, V ′, R′). From this is it is easy to conclude
that P̂ ′ � P̂ . This fact, which is formally stated and proved below, is key to
establish the completeness of the AR procedure of Figure 1.

The definition of the procedure refine(τ, Π, V, R) is given in Figure 3. The
procedure exploits the fact that every term of the form select(a, e) occurring in
Π has a corresponding representation in the abstract program P̂ ′ only if e = k for
k ∈ R′(a). The set V ′ is obtained by extending V with all the program variables
occurring in Π . The computation of R′ is based on the idea of turning Π into a
proof of the unsatisfiability of ΦT0(τ, P̂ ′). This is done in step 1 by adding to the
premises of each leaf sequent ΦT1(τ, P) � ϕ of Π a formula Q(e, a) for each term
of the form select(ak, e) occurring in ϕ. Informally a formula of the form Q(e, a) is
a placeholder for the formula

∨
k∈R′(a) e = k. However, since R′(a) is unknown

Abstraction Refinement of Linear Programs with Arrays 383

procedure refine(τ, Π,V, R)
1. V ′ ← V ∪ {x ∈ VP : xj occurs in Π for some j ≥ 0};
2. Π ′ ← the sequent tree obtained from Π by

(a) replacing every leaf sequent ΦT1(τ, P) ϕ with
ΦT1(τ, P), {Q(e, a) : select(a, e) occurs in ϕ} ϕ,
where Q is a newly introduced binary predicate symbol
added to the signature of T1 and

(b) updating the sequents associated with the non-leaves
nodes of the proof by re-applying all the inference rules.

3. Let ΦT1(τ, P),Q(e′
1, a), . . . , Q(e′

q, a) ⊥ be the root node
of Π ′. Choose an R′ such that R ⊆ R′ and

ΦT0(τ, �P ′) |=
�

k∈R′(a)

e′
j = k (2)

for all �P ′ = abstract(P, V ′, R′) and j = 1, . . . , q.
4. return 〈V ′, R′〉

Fig. 3. The refinement procedure

at this stage, we use Q(e, a) in place of its expanded version
∨

k∈R′(a) e = k.
The sequent tree obtained in this way is then updated by re-applying all the
inference rules of Π on the new leaf sequents. This leaves us with a sequent tree
Π ′ whose root sequent is of the form ΦT1(τ, P), Q(e′1, ak1), . . . , Q(e′q, akq) � ⊥,
where aki ∈ AP for i = 1, . . . , q. We are then left with the problem of defining R′

in such a way that (2) holds. This is the task of step 2 of the procedure. Notice
that (2) always admits R′ = RP as (trivial) solution. However, as the size of P̂ ′

grows (linearly) with the cardinality of R′, we are interested in finding a solution
R′ with the smallest possible cardinality. Since this problem is intractable in the
general case, an alternative approach which works well in practice is to choose
R′ in such a way that R′(aj) = R(aj)∪{e′i : ki = j and i = 1, . . . , q} if e′1, . . . , e′q
are all numerals and R′ = RP otherwise.

The following result states that if V ′ and R′ are computed as described above,
then the sequent tree Π ′ can be turned into a proof of the unsatisfiability of
ΦT0(τ, P̂ ′). From this it readily follows the unsatisfiability of ΦT0(τ, P̂ ′).

Lemma 2. The sequent tree Π ′ computed at step 2 of the refine(τ, Π, V, R)
procedure of Figure 3 can be transformed into a proof of the unsatisfiability of
ΦT0(τ, P̂ ′) for all P̂ ′ ∈ abstract(P, V ′, R′). Hence ΦT0(τ, P̂ ′) is unsatisfiable for
all P̂ ′ ∈ abstract(P, V ′, R′).

Example 1. If τ is the trace of Table 2 relative to the program P of Table 1, then
ΦT1(τ, P) comprises the set of formulae in the rightmost column of Table 2. The
sequent tree corresponding to a proof of the unsatisfiability of ΦT1(τ, P) after
applying step 2 of the refine procedure and omitting the formulae ΦT1(τ, P) in
the left hand sides of the sequents is as follows:

384 A. Armando, M. Benerecetti, and J. Mantovani

Q(i2, a) select(a2, i2) �= 9 i2 = i1 + 1

Q(i1 + 1, a) select(a2, i1 + 1) �= 9 a2 = store(a1, i1, 2 ∗ i1)

Q(i1 + 1, a) select(store(a1, i1, 2 ∗ i1), i1 + 1) �= 9 (1)

Q(i1 + 1, a) (i1 + 1 = i1 ? 2 ∗ i1 : select(a1, i1 + 1)) �= 9

Q(i1 + 1, a) select(a1, i1 + 1) �= 9 i1 = 0

Q(1, a) select(a1, 1) �= 9 a1 = store(a0, 1, 9)

Q(1, a) select(store(a0, 1, 9), 1) �= 9 (1)

Q(1, a) (1 = 1 ? 9 : select(a0, 1)) �= 9

Q(1, a) ⊥

In this case—as we anticipated in Section 2—it thus suffices to refine the program
using an R′ such that R′(a) = {1}.

The following result states the key properties of the refinement process: if
P̂ ′ ∈ abstract(P, V ′, R′), where V ′ and R′ are the sets of variables returned
by the procedure refine(τ, Π, V, R), then P̂ ′ is a refinement of P̂ and 〈V, R〉 ≺
〈V ′, R′〉 〈VP , RP 〉.

Theorem 4. Let P̂ ∈ abstract(P, V, R), τ ∈ traces(P̂) such that ΦT1(τ, P) is
unsatisfiable, Π be a proof of ΦT1(τ, P) � ⊥ and P̂ ′ ∈ abstract(P, V ′, R′), where
V ′ and R′ are the sets of variables returned by the procedure refine(τ, Π, V, R).
Then P̂ ′ � P̂ and 〈V, R〉 ≺ 〈V ′, R′〉 〈VP , RP 〉.

We are now in a position to prove the soundness and (relative) completeness of
the AR procedure.

Corollary 1 (Soundness). Let V ⊆ VP and R ⊆ RP . If AR(P, V, R) returns
SAFE, then P has no error trace.

Corollary 2 (Relative Completeness). Let V ⊆ VP and R ⊆ RP . If P has
no error trace and all the calls to the model-check procedure terminate, then
AR(P, V, R) terminates and returns SAFE.

7 Implementation and Experimental Results

We have developed a prototype implementation of the techniques described in
this paper in the eureka tool [1,2]. The eureka tool itself has been completely
re-engineered: now it features (i) a new implementation of our model checking
procedure for linear programs based on the Parma Polyhedra Library [11] for
handling linear arithmetic constraints in an efficient way and (ii) a tight interface
with CVC Lite [12] which is used as a decision procedure for the combination of
linear arithmetic and the theory of arrays.

We have tested the abstraction refinement procedure described in this paper
by running eureka against a variety of C programs featuring a non trivial inter-
play between array manipulation and arithmetic.2 The programs we considered
are implementations of well-known algorithms for string manipulation such as
2 The current version of our tool checks for reachability properties and/or assertion

violations.

Abstraction Refinement of Linear Programs with Arrays 385

string-copy, for coding (i.e. the (n, k)-Gray code, a generalisation of the binary
Gray code [13]), and sorting (namely bubble sort, selection sort, and the parti-
tioning phase of the quick sort). The string copy algorithm copies an array of
char into another and checks that the ’\0’ character is eventually reached in
the source array. The (n, k)-Gray code algorithm is a significantly more com-
plex benchmark as it involves the simultaneous manipulation of four arrays and
four loops, two of which are nested. The (n, k)-Gray code encodes integers using
n different values and k digits (the length of the code). Adjacent elements of a
(n, k)-Gray code differ in only one digit and the difference is either +1 or −1. (An
assertion in the source code verifies this property.) The partitioning of the quick
sort involves a single array and four loops, two of which—as in the Gray code
algorithm—are nested. Finally, both sorting algorithms we considered involve
a single array, two nested loops, and a third loop that checks the correctness
through a sequence of assertions.

For each algorithm considered we have automatically generated a family of
programs parametric in a positive integer N such that the size of the arrays
occurring in the programs and/or the number of iterations carried out by the
loops increase as N increases. Thus the higher is the value of N , the bigger is
the search space to be analysed. This has allowed us to assess quantitatively the
scalability of the tools we experimented with.

Besides eureka we have also run BLAST, SATABS, and CBMC on our
benchmark programs. All the experiments have been carried out by using a
2.4GHz Pentium IV, running Linux with memory limit set to 800MB and time
limit set to 30 minutes. The results of our experiments are summarised in Table 4.
eureka performs very well on the string copy program: it scales up smoothly
to program instances with arrays comprising hundreds of elements, the reason
lying in that only a single element of the arrays out of the 2N is introduced by
the refinement step (namely the one involved by the property, that is, the ’\0’
character). eureka is also able to analyse all the instances of the Gray code

Table 4. A summary of the results of our experiments. Every element of the table
shows the greatest instance the tools are able to analyse and, in brackets, the time in
seconds. The eureka column also shows the number of array elements found during
the refinement and the sum of the sizes of the arrays involved in the programs. Num-
bers with ∗ indicate that the tool can analyse greater instances than the one shown.
Numbers with 1 and 2 are obtained by enabling interpolants with option -craig 1
(that eliminates variables not in scope) and -craig 2 (that applies a precise analysis)
respectively. The choices were made in order to obtain the best results from the tool.

Benchmark eureka BLAST SATABS CBMC

Inst. (Time)
refined/total

array elements Inst. (Time) Inst. (Time) Inst. (Time)

String copy 1000∗ (153.78) 1/2N Incorrect2 10 (144.69) 221 (32.5)
Gray code 25 (230.26) 16/28 Incorrect2 Inconclusive 48 (83.65)
Partition 40 (178.02) 1/N Incorrect2 Inconclusive 7 (157.14)
Bubble sort 8 (91.92) N/N Incorrect1 2 (30.42) 12 (1213.18)
Selection sort 6 (104.42) N/N Incorrect2 2 (115.86) 6 (432.60)

386 A. Armando, M. Benerecetti, and J. Mantovani

algorithm and of the partitioning algorithm up to N = 25 and N = 40 respec-
tively. For the Gray code 16 out of the 28 elements of the arrays are introduced
by the refinement step, whereas for the partitioning only 1 out of the N array
elements suffices. The bubble sort and the selection sort algorithms proved more
challenging as the largest instances eureka succeeded to analyse are with N = 8
and N = 6 respectively. This is due to the fact that all the N array elements are
introduced by the refinement step. As a matter of fact, the assertions in the code
check that every pair of adjacent elements is sorted. Therefore, every element of
the array counts and needs to be modelled. In general, in the refinement step
eureka introduces as many new array variables as the number of array elements
required by the property to check. When all arrays are fully expanded then the
abstraction is the most precise in the sense that the linear program is an exact
approximation of the linear program with arrays.

BLAST has been used with all the recommended3 optimisations (option
-predH 7) and Craig interpolation [5] (options -craig 1 and -craig 2) en-
abled. BLAST wrongly returns error traces on all benchmarks. This is due to
its lack of precision in handling arrays: all the elements of an array are indistin-
guishable for BLAST [14].

SATABS has been used with Cadence SMV as symbolic model checker. While
the default maximum number of iterations of the abstraction refinement loop is
set to 50, we increased this number to 100 (option --iterations 100) as this
was necessary in most cases for the tool to succeed.4 SATABS handles arrays with
more precision than BLAST and thus it never returns a wrong answer. However,
our experiments indicate that it scales poorly on all benchmarks considered.

CBMC generates a boolean formula that encodes all the computation paths
of bounded length. It therefore explicitly represents all the elements of the ar-
rays occurring in the input program. Being a bounded model checker, CBMC
may return incomplete results. By default CBMC adopts so-called unwinding
assertions in order to try to automatically determine the minimum bound for a
complete analysis of the input program. However, this is an undecidable prob-
lem, as shown by the fact that on three families of benchmarks out of five the
tool was not able to compute the proper bound and the analysis diverged. The
minimum bound had to be set by hand on the string copy, the Gray code and
the partitioning benchmarks (option --unwind). That said, CBMC shows good
scalability results wrt. BLAST and SATABS, and compares favourably with
eureka.

In order to overcome the limitations of BLAST in handling arrays, we gener-
ated a new set of benchmarks obtained by abstracting the programs of Table 4
w.r.t. all array indexes. These are linear programs having a distinguished variable
for each array element in the corresponding original programs. Since in this case
the input programs do not contain arrays anymore, BLAST performs slightly

3 In BLAST’s user manual, http://mtc.epfl.ch/software-tools/blast/doc
4 SATABS also features an option for the detection of looping counterexamples from

the abstract model. This option, when enabled, heavily affected the performance of
SATABS on all benchmarks, and hence we disabled it.

Abstraction Refinement of Linear Programs with Arrays 387

better by returning correct results on some benchmarks (e.g. in the string copy
and in the partitioning benchmarks), but it still suffers from scalability issues as
it handles very small instances (e.g. it already fails for N = 14 and N = 15 of
the string copy and the partitioning algorithms resp.). We also run CBMC and
SATABS on these new problems. CBMC exhibits a varied behaviour: for exam-
ple, while the largest instance of the original string copy it analyses is N = 221
in 32.5 s. (cf. Table 4), in this case the largest instance is N = 47 in 241, 46 s..
On the other hand, CBMC analyses the Bubble sort algorithm up to N = 38,
while in the original version it fails for N = 13. The reason of this behaviour
needs to be further investigated. SATABS fails on most benchmarks (e.g. the
string copy, the bubble sort, the Gray coding, and the partitioning), reporting
the inability of discovering new predicates.

In conclusion, our experiments indicate the potential of eureka in handling
a variety of linear programs with arrays. At the same time they confirm the diffi-
culties that the approaches based on predicate abstraction have in handling this
important class of programs. The experiments also confirm that the effectiveness
of our procedure does not depend on the size of the arrays manipulated by the
input programs, but it depends on the number of elements introduced by the
refinement step.

8 Conclusions

Most of the procedures based on predicate abstraction refinement show difficul-
ties when dealing with arrays: either the abstractions built are too coarse, or the
refinements fail to determine suitable predicates for building a new, more precise
abstract version of the program. In this paper we have proposed a novel abstrac-
tion refinement scheme for software analysis that employs sets of variables and
array indexes instead of predicates as done traditionally. We have showed that
our approach allows for a precise and efficient analysis of a wide class of pro-
grams. Moreover, we presented a number of experimental results that indicate
that a prototype implementation of our ideas compares favourably with—and on
a number of programs of interest outperforms—state-of-the-art software model
checkers based on predicate abstraction refinement.

References

1. Armando, A., Castellini, C., Mantovani, J.: Software model checking using linear
constraints. In: ICFEM’04. Volume 3308 of LNCS., Springer (2004)

2. Armando, A., Benerecetti, M., Mantovani, J.: Model checking linear programs with
arrays. In: SoftMC’05. Volume 144 of ENTCS., Elsevier (2005)

3. Ball, T., Rajamani, S.K.: Automatically validating temporal safety properties of
interfaces. In: Proc. of SPIN’01, Springer New York, Inc. (2001) 103–122

4. Henzinger, T., Jhala, R., Majumdar, R., Sutre, G.: Software Verification with
Blast. In: Proc. of SPIN ’03. Volume 2648 of LNCS., Springer (2003) 235–239

5. Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from
proofs. In: POPL’04, New York, NY, USA, ACM Press (2004) 232–244

388 A. Armando, M. Benerecetti, and J. Mantovani

6. Jhala, R., McMillan, K.L.: A practical and complete approach to predicate re-
finement. In Hermanns, H., Palsberg, J., eds.: TACAS. Volume 3920 of LNCS.,
Springer (2006) 459–473

7. Clarke, E., Kroening, D., Sharygina, N., Yorav, K.: SATABS: SAT-based predicate
abstraction for ANSI-C. In: TACAS’05. Volume 3440 of LNCS., Springer (2005)
570–4

8. Kroening, D., Clarke, E., Yorav, K.: Behavioral consistency of C and Verilog
programs using bounded model checking. In: Proc. of DAC 2003, ACM Press
(2003) 368–371

9. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques, and Tools.
Addison-Wesley, Reading, MA (1986)

10. Reps, T., Horwitz, S., Sagiv, M.: Precise interprocedural dataflow analysis via
graph reachability. In: Proc. of POPL ’95, ACM Press (1995) 49–61

11. Bagnara, R., Ricci, E., Zaffanella, E., Hill, P.M.: Possibly not closed convex poly-
hedra and the Parma Polyhedra Library. In Hermenegildo, M.V., Puebla, G., eds.:
SAS’02. Volume 2477 of LNCS., Madrid, Spain, Springer (2002) 213–229

12. Barrett, C., Berezin, S.: CVC Lite: A new implementation of the cooperating
validity checker. In: CAV. (2004) 515–518

13. Black, P.E.: Gray code, in dictionary of algorithms and data structures. See
http://www.nist.gov/dads/HTML/graycode.html (2005)

14. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: POPL
2002. (2002) 58–70

http://www.nist.gov/dads/HTML/graycode.html

Property-Driven Partitioning for
Abstraction Refinement

Roberto Sebastiani1,�, Stefano Tonetta2, and Moshe Y. Vardi3,��

1 DIT, Università di Trento, Italy
rseba@dit.unitn.it

2 University of Lugano, Switzerland
tonettas@lu.unisi.ch

3 Dept. of Computer Science, Rice University, USA
vardi@cs.rice.edu

Abstract. Partitioning and abstraction have been studied extensively both in
hardware and in software verification. The abstraction is typically partitioned
according to the system design in the case of hardware or the control graph in
the case of software. In this work we build on previous work on Property-Driven
Partitioning (PDP), a hybrid Symbolic Model-Checking (SMC) technique for ω-
regular properties in which the state space is partitioned according to the states
of the property automaton. We investigate a new paradigm for abstraction refine-
ment in SMC, which combines abstraction and PDP: each PDP partition may
contain a different abstraction, so that it can be refined independently from the
others; in case of a spurious counterexample π, the system is refined only in
those partitions that are necessary to rule out π. We performed a preliminary ex-
perimental evaluation comparing standard Counterexample-Guided Abstraction
Refinement (CEGAR) with its partitioned counterpart, which confirmed that the
partitioned technique always allows for using coarser abstractions. While earlier
work has shown that PDP almost always improves the performance of SMC, our
experiments here show that this is not always the case for partitioned abstraction
refinement, as in some cases the overhead due to the localization of the abstrac-
tion is too high.

1 Introduction

Verifying properties of finite-state machines is a fundamental problem in formal de-
sign verification. Symbolic Model Checking (SMC) [2] has been successful at verifying
temporal specifications. In particular, LTL model checking is solved by building an au-
tomaton A with the complementary language of the property, computing the product of
A with the system M and checking for emptiness [17]. Typically, the product is rep-
resented either explicitly, by enumerating its elements, or symbolically, by means of
propositional formulas. The main obstacle to model checking is the state-space explo-
sion, that is, the state-space is often too large to be handled.

� Supported in part by ORCHID, a project sponsored by Provincia Autonoma di Trento, and by
a grant from Intel Corporation.

�� Supported in part by NSF grants CCR-9988322, CCR-0124077, CCR-0311326, and ANI-
0216467, by BSF grant 9800096, and by Texas ATP grant 003604-0058-2003.

O. Grumberg and M. Huth (Eds.): TACAS 2007, LNCS 4424, pp. 389–404, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

390 R. Sebastiani, S. Tonetta, and M.Y. Vardi

One of the most efficient technique to reduce the state-space in SMC is abstraction
[6]. An abstract system is simply an approximation of the original one. A conservative
abstraction preserves all the behaviors of the concrete system. This way, if a universal
property is satisfied by an abstract model, then the property is correct also in the con-
crete model. On the contrary, false negatives may be produced. An abstract counterex-
ample that does not correspond to any concrete behavior is called spurious. When such
a counterexample is found, the abstraction is refined, i.e., we add enough information
to the system in order to rule out the spurious counterexample. This process is repeated
until the property is proved correct or a concrete counterexample is found. Such a loop
is known as Counterexample-Guided Abstraction Refinement (CEGAR) [5].

Partitioning and abstraction have been extensively studied both in hardware and in
software verification. For hardware, the abstraction is typically partitioned according
to the design that usually is composed of submodules (see, e.g., [3,14]). For software,
the partitioning is guided by the control-flow graph of the program. In particular, Lazy
Abstraction (LA) [11] produces different levels of precision in different parts of the
program. The abstraction can be refined locally to some control paths [11] or to some
control locations [10].

In [15,16], motivated by previous work on Generalized Symbolic Trajectory Eval-
uation (GSTE) [20], Property-Driven Partitioning (PDP) has been proposed as a new
hybrid approach to LTL model checking. In this approach, the property automaton A
is constructed explicitly, but its product with the system is represented in a partitioned
fashion. If the state space of the system is S and that of the property automaton is B , then
PDP maintains a subset Q ⊆ S × B of the product space as a collection {Qb : b ∈ B}
of sets, where each Qb = {s ∈ S | (s,b) ∈ Q} is represented symbolically. Thus, PDP
maintains an array of BDDs instead of a single BDD to represent a subset of the product
space. Based on extensive experimentation, it has been shown that the hybrid approach
of PDP is superior to pure symbolic model checking.

In GSTE, this partitioning technique is embedded into a quaternary-abstraction frame-
work. Each partition stores a quaternary assignment (or a set of quaternary assignments,
if we use symbolic indexing [19]). Quaternary abstraction, also known as Cartesian ab-
straction, is a powerful mechanism that merges a set of states into an abstract state: the
value “unknown” is used for variables that have different assignments in the set. The use
of this “unknown” value gives different levels of approximation. By combining PDP with
quaternary abstraction, GSTE has a different abstraction precision for each partition.

Building on the ideas of LA and GSTE, we explore in this paper the combination
of PDP with predicate abstraction. We investigate a localized-abstraction framework,
called partitioned abstraction, where each partition of PDP may contain a different ab-
straction. This way, we allow a flexible abstraction where every partition can be refined
independently from the others. Intuitively, the state of the automaton corresponds to a
particular phase of the operation of the circuit, and we expect that different partitions
contain the appropriate abstractions for different phases.

We adapted the CEGAR loop to this framework. In PDP, a counterexample is a se-
quence of state-partition pairs. When the counterexample is spurious, the failure of the
concretization must happen in some partition. Thus, we tuned the refinement in order

Property-Driven Partitioning for Abstraction Refinement 391

to refine the system only in those partitions that are necessary to rule out the spurious
counterexample.

Although partitioned abstraction is independent of any specific abstraction tech-
nique, we implemented it in NUSMV [4] in combination with localization reduction
and the score-based refinement heuristic of [18]. We performed an experimental eval-
uation providing a comparison between the standard non-partitioned refinement loop
with its partitioned counterpart. We evaluated the trade-off between the disadvantages
of dealing with several abstractions at the same moment and the advantages of using
coarser abstractions when possible. Our testing shows that this technique can be very ef-
ficient and can solve model-checking problems where the non-partitioned version fails.
Unlike SMC, however, where partitioning always improved the performance of verifica-
tion, here, partitioning the abstraction may involve high overhead. These experiments,
for the first time1 , compare an abstraction-localization technique with a uniform one.
The results show that abstraction partitioning is successful at allowing verification with
coarser abstractions. In some cases this may lead to an order-of-magnitude improve-
ment in running time. Nevertheless, in many cases the improvement in the coarseness
of the abstractions does not compensate for the overhead of having to compute many
abstractions. Overall, abstraction partitioning, in spite of its initial promise, does not
lead to a consistent improvement in running time.

2 Background

2.1 Symbolic Model Checking

Given a system M and a property ϕ, the model checking problem consists of checking
if M is a model of ϕ. The semantics of M and ϕ are based on a shared set PROP of
atomic propositions. Both the system and the property define languages over finite or
infinite words. The alphabet of such languages is Σ = 2PROP.

The system M is described with a set V of state variables. We use V ′ to denote the
set of next state variables {v′}v∈V , where v′ represents the next value of v. We represent
the system M as a symbolic finite-state machine (FSM), i.e., a tuple 〈V , I,T,L〉, where
V is a set of state variables, I(V) is a formula that represents the initial condition,
T (V ,V ′) is a formula that represents the transition relation, L = {La(V)}a∈PROP is a
set of formulas that associate the atomic propositions with states.

The set SV of states is given by all truth assignments to the variables V . Given a state
s, we use s′ to denote the corresponding truth assignment to the next state variables, i.e.
s′ = s[V ′/V]. A state s is labeled with the atomic proposition a iff s |= La(V). A state
s is initial iff s |= I(V). Given two states s1 and s2, there exists a transition between s1

and s2 iff s1,s′
2 |= T (V ,V ′).

A finite (resp., infinite) path of the FSM is a finite (resp. infinite) sequence of states
π = s1, ...,sk (resp. π = s1,s2, ...) such that s1 is an initial state and, for 1 ≤ i < k (resp.

1 Henzinger et al. [10] compared BLAST with and without the technique of predicate localiza-
tion and showed that it led to a running-time improvement in one case out of six. Since BLAST
itself uses lazy abstraction, which can be viewed as a weak form of abstraction localization, it
is hard to draw conclusions from that work about the advantage of abstraction localization.

392 R. Sebastiani, S. Tonetta, and M.Y. Vardi

i ≥ 1), there exists a transition between si and si+1. A lasso-shape path is a finite path
π with a point l, 1 ≤ l < |π| (called loop-back point), such that sl = s|π|. Thus, a lasso-
shape path represents an infinite path (though, not all infinite paths are lasso shaped).

An infinite word w ∈ Σω is accepted by the FSM M if there exists a path π of M such
that π(i) |= Lw(i)(V), for all i ≥ 1. The language LM of M is defined as the set of all
infinite words accepted by M. Given the language Lϕ of the property ϕ, we say that the
system M satisfies the property ϕ (M |= ϕ) iff LM ⊆ Lϕ. In other words, all paths of the
system must correspond to a word accepted by the property.

LTL model checking. A Büchi automaton (BA) is a tuple 〈B ,b0,Σ,δ,F〉, where B
is a set of states, b0 ∈ B is the initial state, δ ∈ B × Σ × B is the transition relation,
and F ⊆ B is the fairness condition. A fair run of a BA A over the infinite word w =
l1, l2, ... ∈ Σω is an infinite sequence of states π = b1,b2, ... such that b1 = b0 and, for
i ≥ 1, (bi, li,bi+1) ∈ δ, and π(i) ∈ F for infinitely many i. The word w belongs to the
language LA of A iff there exists a fair run over w.

If ϕ is an LTL property, the model checking problem is usually solved by building a
BA A¬ϕ with the complementary language of the property, computing its product with
the system, and then checking for emptiness [17]. Extant model checkers use either a
pure explicit-state approach, e.g., in SPIN [12], or a pure symbolic approach, e.g., in
NuSMV [4]. To check language containment, a symbolic model checker implements
a fixpoint algorithm [2]. Sets of states are manipulated by using basic set operations
such as intersection, union, complementation, and the preimage and postimage opera-
tions. Since sets are represented by predicates on Boolean variables, intersection, union
and complementation are translated into ∧, ∨ and ¬ respectively. The preimage and
postimage operations are translated into the following formulas:

preimage(Q) = ∃V ′((Q[V ′/V])(V ′)∧T (V ,V ′)),
postimage(Q) = (∃V (Q(V)∧T (V ,V ′)))[V /V ′].

2.2 Abstraction

Given two systems M = 〈V , I,T,{La}a∈PROP〉 and M̂ = 〈V̂ , Î, T̂ ,{L̂a}a∈PROP〉, a rela-
tion H(V ,V̂) is a simulation relation iff the following conditions hold:

– every initial state of M corresponds to an initial state of M̂; namely, if s |= I(V),
then there exists a state ŝ of M̂ such that ŝ |= Î(V̂) and s, ŝ |= H(V ,V̂);

– every transition of M corresponds to a transition of M̂; namely, if s1, ŝ1 |= H(V ,V̂),
and s1,s′

2 |= T (V ,V ′), then there exists a state ŝ2 of M̂ such that s2, ŝ2 |= H(V ,V̂)
and ŝ1, ŝ′

2 |= T̂ (V ,V ′) ;
– if two states are related by H, they must have the same labels; namely, if s, ŝ |=

H(V ,V̂) then s |= La(V) iff ŝ |= L̂a(V̂), for all a ∈ PROP.

If such relation exists, we say that M̂ is an abstraction of M, or M refines M̂ (M H M̂).
Intuitively, every path π of M is “simulated” by some path π̂ of M̂ that accepts the
same infinite word. In terms of languages, if M H M̂, then LM ⊆ LM̂ . Thus, simulation
preserves properties, so that if M H M̂ and M̂ |= ϕ then M |= ϕ (though, in general, the
reverse does not hold).

Property-Driven Partitioning for Abstraction Refinement 393

Given the relation H, we define the abstraction function αH : SV → 2SV̂ and the
concretization function γH : SV̂ → 2SV as follows:

– αH(s) = {ŝ ∈ SV̂ | s, ŝ |= H(s, ŝ)},
– γH(ŝ) = {s ∈ SV | s, ŝ |= H(s, ŝ)}.

We extend these functions to paths: if π̂ = ŝ1, ŝ2, ... is a path of M̂ then γH(π̂) is a set
of paths of M such that π ∈ γH(π̂) iff π = s1,s2, ... is a path of M and si ∈ γH(ŝi) for
1 ≤ i ≤ |π̂| (similarly for αH).

In predicate abstraction [9], the abstract state-space is described with a set of predi-
cates; each predicate is represented by an abstract variable. Given an FSM M, we select
a set P of predicates, such that each predicate P is a formula over the variables V that
characterizes relevant facts of the system. For every P ∈ P, we introduce a new abstract
variable vP. H is defined as follows: H(V ,VP) =

�
P∈P vP ↔ P(V), i.e., for every con-

crete state s, the corresponding abstract state ŝ assigns vP to true iff s |= P(V). In the
minimal (or most accurate) abstraction (wrt. P), every abstract transition corresponds to
at least one concrete transition. This involves a quantification of the concrete variables
that may be computationally expensive. The usual technique to get an approximation
of the minimal abstraction is early quantification [6]: the existential quantifications are
pushed inside conjunctions; in this way, we simplify the expressions by losing precision.

Localization reduction. A particular case of abstraction uses the localization reduction
technique [13]: suppose the system is defined functionally, i.e., M = 〈V , I,T,L〉, where

– I(V) = ∃W (
�

v∈V v = f I
v (W)) for some functions f I

v and input variables W ,
– T (V ,V ′) = ∃W (

�
v∈V v′ = f T

v (V ,W)) for some functions f T
v and input vari-

ables W .

Localization reduction consists in choosing a set of state variables, removing the
corresponding constraints, and considering them as input variables. Let V̂ ⊆ V , and
W̆ = V \V̂ . We can build the abstraction M̂ = 〈V̂ , Î, T̂ , L̂〉 where:

– Î(V̂) = ∃W (
�

v∈V̂ v = f I
v (W)),

– T̂ (V̂ ,V̂ ′) = ∃W̆ ∃W (
�

v∈V̂ v′ = f T
v (V̂ ,W̆ ,W)),

– L̂ = {L̂a}a∈PROP, where L̂a(V̂) = ∃W̆ (La(V̂ ,W̆)).

We call W̆ invisible variables (also known as abstracted or freed variables).

Remark 1. Note that localization reduction is a particular case of predicate abstraction
with early quantification, where the set of predicates is given by the visible variables
themselves, namely P = {v}

v∈V̂ .

2.3 Counterexample-Guided Abstraction Refinement

Counterexample-guided Abstraction Refinement (CEGAR) is an iterative abstraction
refinement methodology that starts from a very coarse abstraction and incrementally
refine it until a result is yielded [5]. Every iteration corresponds to a false negative
(spurious counterexample), which is removed from the abstract system by refining the
abstraction. Given an FSM M and a property ϕ, the CEGAR method is based on the
following steps:

394 R. Sebastiani, S. Tonetta, and M.Y. Vardi

¬v1

v1

¬vi−1

¬vi−1

vi

vi−1

vi−1

¬vi

¬vN−1

¬vN−1

¬vN

vN

vN−1

vN−1

.

Fig. 1. N-bit counter

¬vN

¬vN

b0

b1

Fig. 2. BA for !GFvN

1. [Initial Abstraction] build an initial abstraction M̂ (M H M̂);
2. [Model Checking] check if M̂ |= ϕ: if it does, conclude that M |= ϕ; otherwise,

produce a counterexample π;
3. [Concretization] check if the counterexample is concretizable (namely, γH(π) �=

/0): if it does, conclude that M �|= ϕ; otherwise, call it spurious;
4. [Refinement] build a new abstraction M̃ that refines M̂ (namely, M H̃ M̃ H̆ M̂)

and rules out π (γH̆(π) = /0); turn M̂ into M̃ and go to step 2

Numerous techniques have been conceived for the refinement of the abstract FSM.
Typically, they analyze the reason why a spurious counterexample cannot be con-
cretized, and they find a set of variables that may be used to eliminate it.

The purpose of the following example is twofold: on the one hand, we show how
standard refinement works; on the other hand, we present a major limitation of this
approach.

Example 1. Consider a system with N symbolic variables, which represents a N-bit
counter (Fig. 1). The system can be thought of as the composition of N modules, one
for every variable. (The labels on the arcs represent values triggering the transition.) A
property of the system is that the most significant bit vN becomes true infinitely often.
The BA A, corresponding to the negation of the property, is shown in Fig. 2.

Since only the most significant bit vN occurs in the property, the initial abstract sys-
tem contains only one module (the rightmost module of Fig. 1); all the other variables
are considered as inputs. The model checking procedure will produce a counterexample
in which the abstract system eventually loops on the abstract state ¬vN . This counterex-
ample is spurious because it does not correspond to any concrete path. In order to refine
the abstraction and kill the spurious counterexample, we need to add vN−1, because vN

becomes true only when vN−1 is true. Similarly we have to add vN−2 and so on. This
way, standard refinement techniques end up into the concrete system. More generally,
notice that, in the context of localization reduction, it is not possible to prove the prop-
erty, if even one of the variable is made invisible.

Property-Driven Partitioning for Abstraction Refinement 395

Product states Product states

b1

b0

s1

s0

s0

b0

b1

Fig. 3. Preimage in PDP

3 Property-Driven Partitioning for Abstraction Refinement

Property-driven partitioning. In property-driven partitioning (PDP), the property au-
tomaton, whose state space is often quite manageable, is represented explicitly, while
the system, whose state space is typically exceedingly large, is represented symboli-
cally. PDP partitions the symbolic state space according to an explicitly compiled prop-
erty automaton.

Let M = 〈V , I,T,{La}a∈PROP〉 be the FSM to be verified and A = 〈B ,b0,Σ,δ,F〉
the BA for the complemented property. The product between M and a A is the BA
〈P ,P0,Σ,δP ,FP 〉, where

– P = SV × B ,
– p ∈ P0 iff p = (s,b0) and s |= I(V),
– (p1, l, p2) ∈ δP iff p1 = (s1,b1), p2 = (s2,b2), s1,s′

2 |= T (V ,V ′), (b1,a,b2) ∈ δ,
and s1 |= La(V) for every a ∈ l,

– FP = {SV × F}.

We consider the partitioning of the product state space P : {Pb}b∈B , where Pb = {p ∈
P : p = (s,b)}. Thus, a subset Q of P can be represented by the following set of states
of M: {Qb}b∈B , where Qb = {s : (s,b) ∈ Q}. If Q1 = {Q1

b}b∈B and Q2 = {Q2
b}b∈B , we

translate the set operations used in symbolic algorithms into:

Q1 ∧Q2 := {Q1
b ∧Q2

b}b∈B ,
Q1 ∨Q2 := {Q1

b ∨Q2
b}b∈B ,

¬Q := {¬Qb}b∈B ,
preimage(Q) := {�(b,a,b′)∈δ preimage(Qb′)∧a}b∈B ,

postimage(Q) := {�(b′,a,b)∈δ postimage(Qb′ ∧a)}b∈B .

Example 2. Consider the model checking problem of Example 1. The property automa-
ton A has two states, which yield two partitions in PDP. We use si to denote the state of
M where the counter has value i. Consider the product of state s1 with the state b1 of A.
Suppose we want to compute the preimage of such a state. First, we compute the preim-
age of s1 in M, which yields {s0}. Then, we propagate this state to the other partitions.
The result is shown in Fig. 3.

396 R. Sebastiani, S. Tonetta, and M.Y. Vardi

!v2

!v2

b0

b1

s0 s1 s2 s3

Fig. 4. Example of partitioned abstraction

All symbolic model-checking algorithms that operate on the product can be parti-
tioned according to the property automaton, operating on a BDD array rather than on a
single BDD (see [15,16]).

3.1 Combining PDP with Abstraction

Given an FSM M = 〈V , I,T,L〉 and a BA A = 〈B ,b0,Σ,δ,F〉, we define the abstract
partitioned product P between M and A as a collection of FSMs {Mb}b∈B , one for
every state b of the automaton A, with M Hb Mb. We use 〈Vb, Ib,Tb,{La

b}a∈PROP〉 to
denote the abstraction Mb. A state of P is a pair (s,b) where the state s of M is in the
partition corresponding to state b of A (namely, s ∈ SVb

). A state (s,b) is initial if b = b0

and s |= Ib(Vb). There exists a transition between two states (s1,b1) and (s2,b2) iff

1) there exists l ∈ Σ such that (b1, l,b2) ∈ δ, and s |= La
b1

(Vb1) for all a ∈ l, and
2) there exists s3 ∈ SVb1

such that s1,s′
3 |= Tb1(Vb1 ,V

′
b1

) and s2 ∈ αHb2
(γHb1

(s3)).

Intuitively, given two partitions b1 and b2, there is a mapping (αHb2
◦ γHb1

) between the
abstract states of the partition b1 and the abstract states of the partition b2: the transitions
from states of the partition b1 to states of the partition b2 are given by the composition
of Tb1 with the mapping αHb2

◦ γHb1
. Finally, a state (s,b) is fair iff b is fair.

Note that the combination of partitioning with abstraction is independent of the par-
ticular abstraction technique used. In fact, in principle, you may use different abstraction
techniques in different partitions.

Example 3. Consider the model checking problem of Example 1 with N = 2. We drew
a possible abstract partitioned product in Fig. 4: we used the abstract system described
in the Example 1 in the partition corresponding to b0, while the partition b1 contains
the concrete system.

Theorem 1. If L(P) = /0, then L(M)∩L(A) = /0.

Proof. Suppose L(M) ∩ L(A) �= /0 and w ∈ L(M) ∩ L(A). Then, there exists a path
πM = s1,s2, ... of M and a fair path πA = b1,b2, ... of A over some word w = l1, l2,
For every state b of A, M Mb so that there exists a path πb

M ∈ αHb(πM) and πb
M accepts

Property-Driven Partitioning for Abstraction Refinement 397

Product states Product states

b1

b0 �

s0

¬v1

v1

¬vi−1

¬vi−1

vi

vi−1

vi−1

¬vi

¬vN−1

¬vN−1

¬vN

vN

vN−1

vN−1
.

¬vN−1

¬vN−1

¬vN

vN

vN−1

vN−1

s1

b0

b1

Fig. 5. Preimage in partitioned abstraction

w. Let πb
M = sb

1,s
b
2, ... for every state b of A. Consider the sequence πP of states of P

where πP (i) = (sbi
i ,bi). It is sufficient to prove that πP is a fair path of P . First, πP (1)

is initial since b1 = b0 and sb1
1 |= Ib1(Vb1). Second, for all i ≥ 1, (πP (i),πP (i+1)) is a

transition. In fact, 1) (bi, li,bi+1) ∈ δ, and sbi
i |= La

bi
(Vbi), for all a ∈ li, and 2) sbi

i ,sbi
i+1

′ |=
Tbi(Vbi ,V

′
bi
), and sbi+1

i+1 ∈ αHbi+1
(γHbi

(sbi
i+1)). Finally, πP is fair since πA is fair.

Notice that, if Mb = M for every b ∈ B , P is the hybrid structure we use in PDP. In this
case, indeed, the opposite direction of Theorem 1 holds too.

We generalize the preimage and postimage computation defined for PDP as follows:

preimage(Q) := {�(b,a,b′)∈δ preimageTb(αHb(γHb′ (Qb′)))∧a}b∈B
postimage(Q) := {�(b′,a,b)∈δ postimageTb(αHb (γHb′ (Qb′ ∧a)))}b∈B .

Example 4. Consider the partitioned preimage computation of Example 2. Now, we re-
computed the same preimage with a partitioned abstraction product: we will use the
abstract system described in the Example 1 in the partition corresponding to b0, while
the partition b1 will contain the concrete system. In this case, before computing the
component b0 of the preimage, we have to map the state s1 of partition b1 to the ab-
straction of partition b0. s1 corresponds to the abstract state ¬vN , whose preimage (in
the abstract system) yields the whole abstract state-space (denoted with �). The result
is shown in Fig. 5.

3.2 Property-Driven Partitioned Refinement

We investigated a new technique that combines refinement with PDP. We call such
technique Property-driven Partitioned Refinement (PDPR). The idea is that, instead of
refining the abstraction globally, we localize the refinement to some partition. This way,
at every iteration of the CEGAR loop, we refine the abstraction trying to keep it coarser
than standard refinement.

First, we adapted the standard refinement loop to LTL model checking (see Fig. 6).
The LTL formula ¬ϕ (the negation of the property) is translated into a BA A (line 1).

398 R. Sebastiani, S. Tonetta, and M.Y. Vardi

Check(M,ϕ)
1: A := LTL2BA(¬ϕ);
2: M̂ := InitialAbsctraction(M,ϕ)
3: P := Product(M̂,A);
4: loop
5: result := EmptyLanguage(P);
6: if result = T RUE then return M |= ϕ
7: end if
8: π := GenerateCounterexample(P);
9: result := Concretizable(π,M);

10: if result = T RUE then return M �|= ϕ
11: end if
12: Re f ineAbstraction(P ,π);
13: end loop

Fig. 6. The procedure for checking if M |= ϕ

The system is abstracted so that M̂ contains all the information related to the variables
that occur in the property. The product P between M̂ and A is built (line 3). The empti-
ness of P is checked with the Emerson-Lei algorithm [8] (line 5). If a counterexample
is found, we check if it corresponds to a concrete path (line 9) with Bounded Model
Checking (BMC) [1], as proposed by [7]. Since the counterexample may be infinite,
we consider lasso-shape paths. This way, if the counterexample is given by the abstract
states ŝ1, ..., ŝk with ŝl = ŝk, we then generate the BMC formula

I(V0)∧
�

1≤i<k

T (Vi,Vi+1)∧
�

1≤i≤k

Si(Vi)∧
�

v∈V

vl = vk

where the predicates Si identify the abstract states ŝi. If the formula is not satisfiable,
we refine the abstraction (line 12). Note that this concretization step is sound but not
complete: we are fixing a specific lasso shape, so it may happen that the above formula is
not satisfiable, but the counterexample is concretizable. The completeness of the whole
algorithm is guaranteed by the fact that the refinement procedure is monotone, since at
every iteration we add some information; eventually, the concrete counterexample will
be found.

PDPR follows the same schema, though the product is handled differently. The main
difference between the standard framework and PDPR consists of the refinement proce-
dure, which refines the abstract system only in some partitions. The refinement depends
on the type of abstraction we are considering. In the following, we adopt the framework
of localization reduction.

The refinement (Fig. 7) consists in computing the score of each invisible variable
(line 5). We pick the best scored variable (line 7) and we add it to the system (line 8). We
repeat the procedure until the refined abstraction rules out the spurious counterexample.
This is checked with a symbolic fix-point simulation (line 12). In the case of PDPR, the
refinement is similar (Fig. 8). The only difference is that we score pairs of variables and
partitions (line 8): if (v,b) is the best scored pair, we add v to the system of partition b
(line 13).

Property-Driven Partitioning for Abstraction Refinement 399

Re f ineAbstraction(P ,π)
// P is the product of M̂ and A

1: repeat
2: Ṽ := /0;
3: while |Ṽ | < threshold do
4: for all v ∈ V̆ do
5: ComputeScore(v,M̂,π);
6: end for
7: v := BestVar;
8: Ṽ := Ṽ ∪{v};
9: end while

10: M̂ := Abstract(M̂, Ṽ);
11: P := Product(M̂,A);
12: result := Simulate(P ,π);
13: until result = FALSE

Fig. 7. Refinement function

Re f ineAbstraction(P ,π)
// P is the partitioned product
of {M̂b}b∈B and A

1: repeat
2: for all b ∈ B do
3: Ṽb := /0;
4: end for
5: while |∪b∈B Ṽb| < threshold do
6: for all b ∈ B do
7: for all v ∈ V̆b do
8: ComputeScore(v,b,M̂,π);
9: end for

10: end for
11: v := BestVar;
12: b := BestPartition;
13: Ṽb := Ṽb ∪{v};
14: end while
15: for all b ∈ B do
16: M̂b := Abstract(M̂b, Ṽb);
17: end for
18: P := PartitionedProduct({M̂b}b∈B ,A);
19: result := Simulate(P ,π);
20: until result = FALSE

Fig. 8. Partitioned version of the refinement function

Example 5. Consider the model checking problem of Example 1. PDPR starts with
two identical systems, which is the system containing only the constraints of vN . Thus,
PDPR will produce the same spurious counterexample described in the Example 1,
which was obtained with the standard abstraction. The refinement heuristic finds that
we have to add vN−1 in the partition b1, in order to force vN to become true. Similarly,
we have to add vN−2 and all the other variables to partition b1. PDPR ends the refine-
ment loop with the concrete system in partition b1. Though, the abstract system of par-
tition b0 is never touched. In the subsequent emptiness checking, we use the partitioned
abstraction described in Example 4. This abstraction is coarser than the concrete system
(necessary for a standard refinement), but it is sufficiently fine to prove the property.

4 Experimental Results

We now evaluate the efficiency of PDPR in practice by testing it over some scalable ver-
ification models. The purpose of this experimental evaluation is to provide a compari-
son between the standard non-partitioned refinement approach and PDPR. Thus, we fix
an abstraction refinement setting, in which we use PDP as representation of the prod-
uct, and we compare the partitioned versus the non-partitioned refinement loop. Our
tests do not provide a direct comparison with the numerous state-of-the-art refinement
techniques because the partitioned abstraction is orthogonal to them. Rather, we try to

400 R. Sebastiani, S. Tonetta, and M.Y. Vardi

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 10 15 20 25 30 35 40

non-partitioned
partitioned with order dec-trans
partitioned with order inc-vars
partitioned with order dec-vars

 0.1

 1

 10

 100

 1000

 10000

 100000

 10 15 20 25 30 35 40

non-partitioned
partitioned with order dec-trans
partitioned with order inc-vars
partitioned with order dec-vars

Fig. 9. Experiments on the N-bit-counter example. X axis: N. Y axis: Left plot: average number
of invisible variables; Right plot: CPU time (secs).

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 2 2.5 3 3.5 4 4.5 5 5.5 6

non-partitioned
partitioned with order dec-trans
partitioned with order inc-vars
partitioned with order dec-vars

 0.1

 1

 10

 100

 1000

 10000

 100000

 2 2.5 3 3.5 4 4.5 5 5.5 6

non-partitioned
partitioned with order dec-trans
partitioned with order inc-vars
partitioned with order dec-vars

Fig. 10. Experiments on the memory example. X axis: number of bits for memory addresses. Y
axis: Left plot: average number of invisible variables; Right plot: CPU time (secs).

 14

 16

 18

 20

 22

 24

 26

 28

 30

 10 10.5 11 11.5 12 12.5 13 13.5 14

non partitioned
partitioned with order dec-trans
partitioned with order inc-vars
partitioned with order dec-vars

 1

 10

 100

 1000

 10000

 10 10.5 11 11.5 12 12.5 13 13.5 14

non-partitioned
partitioned with order dec-trans
partitioned with order inc-vars
partitioned with order dec-vars

Fig. 11. Experiments on the stack example. X axis: stack’s capacity. Y axis: Left plot: average
number of invisible variables; Right plot: CPU time (secs).

evaluate the trade-off between the disadvantages of dealing with several abstractions at
the same moment and the advantages of using coarser abstractions when possible.

NUSMVPDP is an extension of NUSMV [4] that uses a PDP representation to per-
form the emptiness checking of the product. We have enhanced NUSMVPDP with
an abstraction refinement technique that implements localization abstraction with the

Property-Driven Partitioning for Abstraction Refinement 401

 20

 30

 40

 50

 60

 70

 80

 10 10.5 11 11.5 12 12.5 13 13.5 14

non partitioned
partitioned with order dec-trans
partitioned with order inc-vars
partitioned with order inc-vars

 100

 1000

 10000

 100000

 10 10.5 11 11.5 12 12.5 13 13.5 14

non-partitioned
partitioned with order dec-trans
partitioned with order inc-vars
partitioned with order dec-vars

Fig. 12. Experiments on the gas-station example. X axis: number of customers. Y axis: Left plot:
average number of invisible variables; Right plot: CPU time (secs).

 0

 50

 100

 150

 200

 250

 300

 350

 10 15 20 25 30 35 40 45 50 55 60

non-partitioned
partitioned with order dec-trans
partitioned with order inc-vars
partitioned with order dec-vars

 1

 10

 100

 1000

 10000

 100000

 1e+06

 10 15 20 25 30 35 40 45 50 55 60

non-partitioned
partitioned with order dec-trans
partitioned with order inc-vars
partitioned with order dec-vars

Fig. 13. Experiments on the mutual-exclusion example. X axis: number of processes. Y axis:
Left plot: average number of invisible variables; Right plot: CPU time (secs).

refinement heuristic of [18]2. In these settings, at every refinement iteration, a new
abstract system is computed and composed with the property automaton; then, a PDP-
based search checks the emptiness of the product.

We tested this standard abstraction refinement technique against its partitioned coun-
terpart. In the partitioned refinement, we fixed an ordering of the partitions. This gives a
priority to the partition to be refined when two invisible variables of different partitions
get the same score. We selected three relevant orderings:

– [inc-vars] an increasing ordering according to the number of invisible variables in
each partitions; this way, we prefer refining the abstraction in those partitions that
had already been refined (thus, previously guilty of other spurious counterexample);

– [dec-vars] a decreasing ordering according to the number of invisible variables in
each partitions; this way, we prefer refining the coarsest abstraction;

– [dec-trans] a decreasing ordering according to the number of outgoing transitions
in the property automaton; this tries to alleviate the cost of the mapping between
abstractions: every time we have to traverse backwardly a transition that starts from
b, we have to quantify over the invisible variables of the partition b.

2 Unlike [18], we use one counterexample per refinement iteration.

402 R. Sebastiani, S. Tonetta, and M.Y. Vardi

We performed our tests on the Rice Terascale Cluster (RTC)3, a TeraFLOP Linux
cluster based on Intel Itanium 2 Processors. We run NUSMV with a static variable or-
dering so that, when the abstraction is the same, the non-partitioned and the partitioned
version perform equally and the efficiency is not biased by a dynamic variable reorder-
ing. We first run both the non-partitioned and the partitioned version of abstraction
refinement on the N-bit-counter system of Example 1. Then, we tested the algorithm
over other scalable systems: namely, memory, stack, mutual-exclusion example, and
gas station. In each system we scale up a parameter N so that the number of symbolic
variables used to describe the system is linear in N (apart from the memory example
where the number of variables is exponential in N).

– The memory example implements standard read and write functionalities. In order
to be able to scale up the verification, we use just one bit for the data so that we
can write and read only two values. We scale up the number N of bits used for
the memory addresses. We verify that if we write a value on a particular address,
next time we read from it we obtain the same value, unless another write operation
was performed in the meanwhile. Inspired by the work on GSTE of [20], we ex-
press the property by enumerating each address case so that the property automaton
contains different subgraph for each case. The partitioned abstraction should take
benefit from this, by keeping in each subgraph only the information regarding that
particular memory address.

– In the stack example, we have the standard pop and push functions. In this case,
scalability is given by the maximum size N of the stack. The property says that
whenever we push an element on the stack, and later the stack results empty, there
must be a pop call in the middle

– In the mutual-exclusion example, N processes non-deterministically try to access
the critical session. The access is controlled by the main module, which guarantees
that a process does not wait forever. The property says that, if a process is the only
one that is waiting, then it accesses the critical session in one step.

– In the gas-station example, there are N customers who want to use one pump.
They have to prepay an operator who then activates the pump. When the pump
has charged, the operator give the change to the customer. The property says the if
a customer pays before another one, then she must be server first.

We verified many other properties, but the initial abstraction was fine enough to
prove the property; in one case the final abstraction coincided (with both techniques)
with the concrete system. We reported only the other cases, where the refinement had
been effectively useful to prove the property.4 The results are shown in Figures 9, 11,
12, and 13. In every plot, we scale up the size of the system. The plots on the left of each
figure present the number of invisible variables (the average in the case of partitioned
abstraction) of the final abstraction. The plots on the right show the time in seconds
plotted in log scale.

These results show that partitioned abstraction is successful at allowing verification
with significantly coarser abstractions. The coarsest abstraction is obtained when the

3 http://rcsg.rice.edu/rtc/
4 All data available at www.inf.unisi.ch/postdoc/tonetta/TACAS07-PDP

Property-Driven Partitioning for Abstraction Refinement 403

states of the property automaton correspond to particular phases of the circuit, like in
the case of the memory example (Fig. 10). In some cases (Figs. 9 and 12), this leads to
an order-of-magnitude improvement in running time. Nevertheless, in some cases (Figs.
10, 11 and 13), the coarser abstractions do not compensate for the overhead of having to
refine several abstractions. It is interesting to note that no single refinement order dom-
inates in our experiments; the best refinement order seems model and property specific.
For lack of space we did not show the plots with space performances but they present
the same pattern of time plots. The only exception is the memory example, which is
particularly interesting because the number of invisible variables grows exponentially
(hiding an exponential amount of design with an order of magnitude improvement in
space), but the verification time degrades by an order of magnitude.

5 Conclusions

We investigated a new approach for abstraction refinement, in which the abstraction is
not uniform; rather, like in [10], the abstraction is localized and presents different pre-
cisions in different parts of the state space. We combined this idea with property-driven
partitioning, which partitions the product state space for efficient LTL model checking.
We presented a new refinement algorithm that exploits this approach by refining the ab-
straction only in those partitions where it is necessary. This way, as our tests confirmed,
we can prove the correctness of a system with a higher level of abstraction, leading, in
some cases, to dramatic performance improvement. Unlike, however, in SMC, where
the partitioning almost always speeds up the verification time, here the use of partition-
ing is less compelling, as the overhead of having to refine multiple abstractions is in
some cases too high, leading to performance degradation. This conclusion is consistent
with the results in [10], where predicate localization improves performance only in a
small number of test cases.

We note that most of time is spent in the refinment step, meaning that, the coarser
abstractions do not compensate for the overhead of having to refine several abstractions.
Since the partitioned abstractions are much coarser, we conjecture that we could afford
to use less accurate but faster refinement techniques in order to speed up the overall
verification time. This is left for future research.

References

1. A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic Model Checking without BDDs.
In Proceedings of TACAS’99, pages 193–207, 1999.

2. J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic Model Check-
ing: 1020 States and Beyond. Information and Computation, 98(2):142–170, 1992.

3. H. Cho, G.D. Hachtel, E. Macii, M. Poncino, and F. Somenzi. Automatic state space decom-
position for approximate FSM traversal based on circuit analysis. IEEE Trans. on CAD of
Integrated Circuits and Systems, 15(12):1451–1464, 1996.

4. A. Cimatti, E.M. Clarke, F. Giunchiglia, and M. Roveri. NUSMV: a new Symbolic Model
Verifier. In Proceedings of CAV’99, pages 495 - 499, 1999.

5. E.M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-Guided Abstraction
Refinement. In Proceedings of CAV’00, pages 154 - 169, 2000.

404 R. Sebastiani, S. Tonetta, and M.Y. Vardi

6. E.M. Clarke, O. Grumberg, and D.E. Long. Model Checking and Abstraction. ACM Trans.
Program. Lang. Syst., 16(5):1512–1542, 1994.

7. E.M. Clarke, A. Gupta, J.H. Kukula, and O. Strichman. SAT Based Abstraction-Refinement
Using ILP and Machine Learning Techniques. In Proceedings of CAV’02, pages 265–279,
2002.

8. E.A. Emerson and C.L. Lei. Efficient Model Checking in Fragments of the Propositional
µ-Calculus. In Proceedings of the LICS’86, pages 267 - 278, 1986.

9. S. Graf and H. Saı̈di. Construction of Abstract State Graphs with PVS. In Proceedings of
CAV’97, pages 72 - 83, 1997.

10. T.A. Henzinger, R. Jhala, R. Majumdar, and K.L. McMillan. Abstractions from proofs. In
Proceedings of POPL’04, pages 232 - 244, 2004.

11. T.A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. In Proceedings of
POPL’02, pages 58 - 70, 2002.

12. G.J. Holzmann. The SPIN model checker: Primer and reference manual. Addison Wesley,
2003.

13. R.P. Kurshan. Computer Aided Verification of Coordinating Processes. Princeton University
Press, 1994.

14. M.D. Nguyen, D. Stoffel, M. Wedler, and W. Kunz. Transition-by-Transition FSM Traversal
for Reachability Analysis in Bounded Model Checking. In Proceedings of ICCAD’05, 2005.

15. R. Sebastiani, E. Singerman, S. Tonetta, and M. Y. Vardi. GSTE is Partitioned Model Check-
ing. In Proceedings of CAV’04, pages 229 - 241, 2004.

16. R. Sebastiani, S. Tonetta, and M.Y. Vardi. Symbolic Systems, Explicit Properties: On Hybrid
Approaches for LTL Symbolic Model Checking. In Proceedings of CAV’05, pages 350 - 363,
2005.

17. M.Y. Vardi and P. Wolper. An Automata-Theoretic Approach to Automatic Program Verifi-
cation. In Proceedings of LICS’86, pages 332 - 344. IEEE Computer Society, 1986.

18. C. Wang, B. Li, H.S. Jin, G.D. Hachtel, and F. Somenzi. Improving Ariadne’s Bundle by
Following Multiple Threads in Abstraction Refinement. In Proceedings of ICCAD’03, pages
408 - 415, 2003.

19. J. Yang and C.-J. H. Seger. Introduction to Generalized Symbolic Trajectory Evaluation.
IEEE Transactions on Very Large Scale Integration Systems, 11(3), 2003.

20. J. Yang and C.-J.H. Seger. Generalized Symbolic Trajectory Evaluation - Abstraction in
Action. In Proceedings of FMCAD’02, pages 70 - 87, 2002.

Combining Abstraction Refinement and

SAT-Based Model Checking

Nina Amla and Kenneth L. McMillan

Cadence Design Systems

Abstract. Unbounded model checking methods based on Boolean satis-
fiability (SAT) solvers are proving to be a viable alternative to BDD-based
model checking. These methods include, for example, interpolation based
and sequential ATPG-based approaches. In this paper, we explore the im-
plications of using abstraction refinement in conjunction with
interpolation-based model checking. Based on experiments using a large
industrial benchmark set, we conclude that when using interpolation-
based model checking, measures must be taken to prevent the overhead
of abstraction refinement from dominating runtime. We present two new
approaches to this problem. One is a hybrid approach that decides heuris-
tically when to apply abstraction. The other is a very coarse but inexpen-
sive abstraction method based on ideas from ATPG. This approach can
produce order-of-magnitude reductions in memory usage, allowing signif-
icantly larger designs to be verified.

1 Introduction

Model checking [9,26,7], which is a widely used formal verification technique,
is traditionally implemented with Binary Decision Diagrams (BDDs) [6]. Due
to recent advances in tools that solve the Boolean satisfiability problem (SAT),
formal reasoning based on SAT is proving to be an effective alternative to BDDs.
At the core of these algorithms is Bounded Model Checking (BMC) [5], where
a system is unfolded k times and encoded as a SAT problem to be solved by a
SAT solver. A satisfying assignment returned by the SAT solver corresponds to
a counterexample of length k. If the problem is determined to be unsatisfiable,
the SAT solver produces a proof of the fact that there are no counterexamples
of length k. BMC, while successful in finding errors, is incomplete: there is no
efficient way to decide that a property is true.

Nonetheless, there are many Unbounded Model Checking (UMC) techniques
that make use of SAT-based BMC in some way (see [25] for a comprehensive
survey). Two methods, proof-based [23] and interpolation [22], were found to be
the most robust in a recent experimental study [1] that compared many SAT-
based UMC techniques. The proof-based algorithm is an iterative abstraction
refinement method that typically uses a traditional BDD-based model checker
to prove properties of the abstract models. It starts with a short BMC run
and if the problem is satisfiable then an error has been found. However, if the
problem is unsatisfiable, the resulting proof of unsatisfiability is used to guide

O. Grumberg and M. Huth (Eds.): TACAS 2007, LNCS 4424, pp. 405–419, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

406 N. Amla and K.L. McMillan

the formation of a new conservative abstraction. The algorithm terminates if the
BDD-based model checker proves the property on the abstraction; otherwise the
length of the counterexample generated by the model checker is used as the next
BMC length.

The interpolation-based model checking algorithm is a purely SAT-based un-
bounded model checking method that does not rely on abstraction refinement,
though like abstraction methods, it tends to work well on properties that are lo-
calizable, and is fairly insensitive to the addition of irrelevant logic. This method
uses BMC to find failures and proves properties by doing a SAT-based approxi-
mate reachability analysis. The results in [1] show that the proof-based method
does better on problems where BDDs are particularly effective. On the other
hand the interpolation method has the advantage on larger problems. That pa-
per also shows that model checking algorithms based on sequential Automatic
Test Pattern Generation (ATPG) [15,16] are competitive with BDD UMC. These
findings suggest that combining the strengths of these different techniques may
yield more general and robust methods.

This paper explores experimentally the issue of whether abstraction can be
fruitfully combined with SAT-based UMC methods. In particular, we consider
the question of how best to combine abstraction with interpolation-based UMC.
Since the latter is already fairly insensitive to the inclusion of irrelevant logic,
a näıve approach to localization abstraction spends more time in the refine-
ment phase than is gained in the UMC phase. We report on two approaches to
solve this problem. The first is to judiciously apply proof-based abstraction with
BDDs only when it is likely to improve performance. The second is to apply a
very coarse but inexpensive refinement method based on ideas from ATPG. The
latter approach avoids the concretization phase that applies BMC to the con-
crete model, and thus results in an order-of-magnitude savings of space, though
the abstractions obtained are far from optimal.

There is a fair amount of related work on integrating BDDs and various SAT-
based techniques. In [12], conflict clauses that were learned from BDDs are used
to improve the performance of SAT BMC. The method proposed in [8] uses
BDDs to compute an over-approximation of the reachable states and applies
these constraints to the SAT BMC problem. The technique described in [3] uses
BDD-based reachability analysis to compute lower bounds on reachable states to
accelerate SAT-based induction. Proof-based and counterexample-based abstrac-
tion methods have been combined in different phases of an iterative abstraction
refinement process in [13]. The hybrid method in [2] use a single abstraction
phase that is intermediate between the proof-based and counterexample-based
abstraction refinement. Abstraction refinement has also been used with BMC
[14] to find failures more effectively. A recent technique [18], that is closest to
our work, combines abstraction refinement and interpolation in a manner which
is similar to using interpolation as the UMC in a proof-based technique. The
differences between this approach and the ones presented in this paper will be
discussed in detail in Section 3.

Combining Abstraction Refinement and SAT-Based Model Checking 407

The paper is organized as follows: Section 2 gives a brief overview of the algo-
rithms, Section 3 describes the two new interpolation-based techniques, Section 4
briefly describes the experimental framework, and discusses the experimental re-
sults and Section 5 summarizes our findings.

2 Overview of the Algorithms

2.1 Preliminaries

A model M = (S, I, T, L) has a set of states S, a set of initial states I ⊆ S, a
transition relation T ⊆ S × S, and a labeling function L : S → 2A where A is a
set of atomic propositions. For the purposes of this paper, we consider properties
specified in the logic LTL. The construction given in [17] can be used to reduce
model checking of safety properties to checking invariant properties. We use the
liveness to safety construction in [4] for methods, like interpolation based model
checking, which do not support liveness checks. The syntax and semantics of
LTL and other temporal logics is not given here but can be found in [10].

Given a finite state model M and a safety property p, the model checking
algorithm checks that M satisfies p, written M |= p. The forward reachability
algorithm starts at the initial states and computes the image, which is the set of
states reachable in one step. This procedure is continued until either the property
is falsified in some state or no new states are encountered (a fixed point). The
backward reachability algorithm works similarly but starts from the states where
the property is false and computes the preimage, which is the set of states that
can reach the current states in one step. The representation and manipulation
of the sets of states can be done explicitly or with BDDs.

2.2 DPLL-Style SAT Solvers

The Boolean satisfiability problem (SAT) determines if a given Boolean formula
has a satisfying assignment. This is generally done by converting the formula into
a satisfiability-equivalent formula in Conjunctive Normal Form (CNF), which
can be solved by a SAT solver. A key operation used in SAT solvers is reso-
lution, where two clauses (a ∨ b) and (¬a ∨ c) can be resolved to give a new
clause (b ∨ c). Modern DPLL-style SAT solvers [21,24,11] make assignments to
variables, called decisions, and generate an implication graph that records the
decisions and the effects of Boolean constraint propagation. When all the vari-
ables are assigned, the SAT solver terminates with the satisfying assignment.
But if there is a conflict, which is a clause where the negation of every literal
already appears in the implication graph, a conflict clause is generated through
resolution. This conflict clause is added to the formula to avoid making those
assignments again. The SAT solver then backtracks to undo some of the conflict-
ing assignments. The SAT solver terminates with an unsatisfiable answer when it
derives the empty clause, ruling out out all possible assignments. The resolution
steps used in generating the empty clause can now be used to produce a proof
of unsatisfiability.

408 N. Amla and K.L. McMillan

2.3 SAT-Based Bounded Model Checking

Bounded Model Checking (BMC) [5] is a restricted form of model checking,
where one searches for a counterexample (cex) in executions bounded by some
length k. In this approach the model is unfolded k times, conjoined with the nega-
tion of the property, and then encoded as a propositional satisfiability formula.
Given a model M and an invariant property p, the BMC problem is encoded as
follows:

BMC(M, p, k) = I(s0) ∧
k−1∧

i=0

T (si, si+1) ∧
k∨

i=0

¬p(si)

The formula can be converted into CNF and solved by a SAT solver. If the
formula is satisfiable, then the property is false, and the SAT solver has found
a satisfying assignment that corresponds to a counterexample of length k. In
the unsatisfiable case, there is no counterexample of length k and a proof of
unsatisfiability can be obtained from the SAT solver.

2.4 Proof-Based Abstraction Refinement

The proof-based abstraction refinement algorithm in [23] iterates through SAT-
based BMC and BDD-based MC. It starts with a short BMC run, and if the
problem is satisfiable, an error has been found. If the problem is unsatisfiable,
the proof of unsatisfiability is used to guide the formation of a new conservative
abstraction on which BDD-based MC is run. In the case that the BDD-based
model checker proves the property then the algorithm terminates; otherwise the
length of the counterexample generated by the model checker is used as the
next BMC length. This procedure, shown in Figure 1, is continued until either a
failure is found in the BMC phase or the property is proved in the BDD-based
MC phase.

2.5 Interpolation-Based Model Checking

An interpolant I for an unsatisfiable formula A ∧ B is a formula such that: (1)
A ⇒ I (2) I ∧B is unsatisfiable and (3) I refers only to the common variables of

procedure PbaBdd(M ,p)
1. initialize k
2. while true do
3. if Bmc(M, p, k) is SAT then return cex
4. M ′ = new abstraction derived from proof
5. if BddMc(M ′, p) holds then return true
6. let k = length of abstract cex
7. end while
end

Fig. 1. Proof-based procedure

Combining Abstraction Refinement and SAT-Based Model Checking 409

procedure Interpolation(M, p, k)
1. while true do
2. if Bmc(M, p, k) is SAT then return cex
3. if Arc(M, p, k) then return true
4. increase k
5. end while
end

Fig. 2. Interpolation procedure

A and B. Intuitively, I is the set of facts that the SAT solver considers relevant
in proving the unsatisfiability of A ∧ B.

The interpolation-based algorithm [22] uses interpolants to derive an over-
approximation of the reachable states with respect to the property. This is done
as follows (Figures 2 and 3). The BMC problem BMC (M , p, k) is solved for
an initial depth k. If the problem is satisfiable, a counterexample is returned,
and the algorithm terminates. If BMC (M , p, k) is unsatisfiable, the formula rep-
resenting the problem is partitioned into Pref (M , p, k) ∧ Suff (M , p, k), where
Pref (M , p, k) is the conjunction of the initial condition and the first transition,
and Suff (M , p, k) is the conjunction of the rest of the transitions and the final
condition. The interpolant I of Pref (M , p, k) and Suff (M , p, k) is computed.
Since Pref (M , p, k) ⇒ I, it follows that I is true in all states reachable from
I(s0) in one step. This means that I is an over-approximation of the set of states
reachable from I(s0) in one step. Also, since I ∧Suff (M , p, k) is unsatisfiable, it
also follows that no state satisfying I can reach an error in k − 1 steps. If I con-
tains no new states, that is, I ⇒ I(s0), then a fixed point of the reachable set of
states has been reached, thus the property holds. If I has new states then R′ rep-
resents an over-approximation of the states reached so far. The algorithm then
uses R′ to replace the initial set I, and iterates the process of solving the BMC
problem at depth k and generating the interpolant as the over-approximation
of the set of states reachable in the next step. The property is determined to
be true when the BMC problem with R′ as the initial condition is unsatisfiable,

procedure Arc(M, p, k)
1. R = I , steps = 0
2. while true do
3. M ′ = (S, R, T, L)
4. let C = Pref (M ′, p, k) ∧ Suff (M ′, p, k)
5. if C is SAT then return false
6. compute interpolant I of C
7. R′ = I
8. if R ⇒ R′ then return true
9. R = R′ ∨ R
10. steps = steps + 1;
11. end while

Fig. 3. Approximate Reachable states Computation

410 N. Amla and K.L. McMillan

and its interpolant leads to a fixed point of reachable states. However, if the
BMC problem is satisfiable, the counterexample may be spurious since R′ is an
over-approximation of the reachable set of states. In this case, the value of k is
increased, and the procedure is continued. We use the optimization in [20] that
sets the new value of k to be old value of k plus the number of approximate
image steps done in Arc.

3 Combining Interpolation and Abstraction Refinement

3.1 Using Proof-Based Abstraction in Interpolation

On certain problems BddMc can be far more effective than the interpolation-
based algorithm. In particular, on problems where one needs to go deep to find
proofs or failures, BddMc can be significantly faster. This is the motivation for
using proof-based abstraction (lines 4-5 in Figure 1) in the interpolation method
as shown in Figure 4.

This method works just like the Interpolation procedure if condition is
set to false. However, when condition is true then a proof-based abstraction is
constructed and BddMc is done on this abstraction. Thus this hybrid technique
makes a choice between two possible UMC methods for proving properties with
the aim of using the more efficient UMC method more often than not. The
key idea being that if the Interpolation procedure was doing poorly, which
typically happens at larger depths, then one would use proof-based abstraction
with BddMc. However, the inability to predict when BDDs will do poorly could
cause BddMc to be the bottleneck on problems that can be proved fairly easily
with just interpolation. An optimization that worked well in avoiding wasted
effort was setting an effort limit on the BddMc phase. We found that setting
the limit based on the effort taken by the Arc procedure in the previous iteration
was adequate. Note that there is no effort limit for the Arc procedure.

Clearly choosing the appropriate condition in Figure 4 is crucial. We use a
simple progress measure for BddMc that is based on the number of image steps
completed divided by the effort needed by the BddMc procedure. A similar
measure can be computed for the Arc procedure that uses the number of ap-
proximate image steps and effort. The InterpHybrid algorithm starts with
basic interpolation and the first time that k is greater than some predetermined
limit, a proof-based abstraction is created and BddMc is run on this abstraction
with an effort limit. At the end of BddMc step, if we detect that reachability
analysis did not start within the effort limit then BddMc is never used again.
If BddMc does reachability, whether it completes or not, the number of image
steps is used to compute the progress measure. If the progress of the Arc pro-
cedure becomes much slower than the progress of previous BddMc run, then
BddMc is tried again. Thus the heuristic attempts to use the UMC technique
which is doing better at that point and in the worst case, when the BDDs are
blowing up, we do only one BddMc run with a low effort bound.

Combining abstraction refinement with interpolation has been explored in
[18]. This approach is similar to using interpolation instead of BddMc as the

Combining Abstraction Refinement and SAT-Based Model Checking 411

procedure InterpHybrid(M,p)
1. initialize k
2. while true do
3. if Bmc(M, p, k) is SAT then return cex
4. if condition then
5. derive abstraction M ′ from proof
6. if BddMc(M ′, p) then return true
7. k = length of abstract cex
8. else
9. if Arc(M, p, k) then return true
10. increase k
11. end if
12. update condition
13. end while
end

Fig. 4. Hybrid Interpolation and BDD-based PBA procedure

UMC procedure in the proof-based method. However there are a number of dif-
ferences between this framework [19,18] and the one in Figure 1. In proof-based
abstraction (Figure 1), a new abstraction is derived from the proof of unsatisfia-
bility in each iteration, while the method in [19] starts with an initial abstraction
and refines this abstraction in each iteration. Another difference is the way the
counterexample is concretized. In proof-based abstraction, BMC at the depth
of the abstract counterexample is done on the concrete model to check if the
counterexample is real. In contrast, the method in [19] takes an incremental ap-
proach that attempts to concretize the counterexample on abstract models and
successively refines the abstraction until either the counterexample is eliminated
or is determined to be real on the concrete model. In [18], they find that combin-
ing abstraction refinement with interpolation results in performance gains over
the basic interpolation method, but they also observe the technique was not an
effective way to improve the performance of interpolation without optimizations,
like refinement prediction and minimization, that are focused on reducing the
size of the abstraction.

3.2 Incremental Interpolation

Unlike BDD-based model checking, the interpolation-based method is fairly ro-
bust with respect to the addition of irrelevant state variables. For this reason, we
can use fairly coarse and inexpensive methods of abstraction refinement. In par-
ticular, if the model is large (with greater that a few thousand state variables) it
may not be practical to concretize abstract counterexamples using a SAT solver
because of the space requirement of the BMC unfolding. Here, we will consider
one method that avoids this concretization step, by borrowing some ideas from
ATPG methods. Sequential ATPG methods search for input sequences to a cir-
cuit that test for the presence of a given fault.

412 N. Amla and K.L. McMillan

On obtaining an abstract counterexample, we will attempt to produce a min-
imal justification of the abstract counterexample by assigning Boolean values to
a subset of the free variables (that is, the primary inputs and the hidden state
variables). A justification is a partial assignment that is sufficient to imply that
the property is false in the abstraction M̂ . The set of hidden state variables
H that are assigned in this justification at any time frame will be called the
justification frontier.

Refinement consists of choosing some subset of the justification frontier and
adding these state variables to the abstraction. Heuristically, these variables
are more likely to be useful in eliminating the abstract counterexample, since
those not occurring in the justification frontier are not relevant to the falsehood
of the property in the cex. There is no guarantee, however, that the set of
variables we choose is sufficient to eliminate the counterexample. Moreover, we
may add many irrelevant variables in this way. We rely on the fact that adding
irrelevant variables does not greatly effect the performance of the interpolation-
based model checking method, so long as there is sufficient space to build the
BMC unfolding.

Thus, the main intent of this approach is to prevent failure due to lack of space.
If, for example, for a model with 100,000 state variables, we select 5000 state
variables, out of which only 100 are actually necessary to prove the property,
then we may succeed in preventing memory exhaustion and successfully prove
the property, even though concretization is not feasible in such a large model.

Moreover, if at some point the justification frontier contains no hidden vari-
ables, then we have obtained a concrete counterexample, since the abstract coun-
terexample fully justifies the falsehood of the property in the concrete model.
This makes it possible to find concrete counterexamples without unfolding the
concrete model, and in fact we will see cases where concrete counterexamples
are obtained, but a BMC unfolding is infeasible due to lack of space.

The overall refinement procedure is outlined in Figure 5. We begin with an
empty abstraction, and check the abstract model. If an abstract counterexample

procedure InterpInc(M,p, k)

1. choose initial abstraction M̂
2. while true do

3. if Arc(M̂ , p, k) return true
4. let C be the abstract cex
5. let J = JustifyCex(C, M̂, p, k)

6. let H = {r | r is hidden in M̂}
7. let JF = {r ∈ H | ri ∈ dom(J), for some i ∈ 0..k}
8. if JF = ∅ then return cex C
9. choose a non-empty subset of JF

10. add these variables to M̂
11. end while
end

Fig. 5. Incremental Interpolation procedure

Combining Abstraction Refinement and SAT-Based Model Checking 413

is obtained, we produce a justification. This is a subset of the assignments in
the abstract counterexample that is sufficient to imply falsehood of the property.
That is, if C is the abstract counterexample, then a justification J ⊆ C is an
assignment to the free variables over time, such that

J ∧ Bmc(M̂, p, k) ⇒
∨

i∈0...k

¬p(si)

Procedure JustifyCex computes a justification by a simple greedy approach
that traverses the circuit unfolding depth-first from the property, justifying the
output of each gate by choosing a sufficient subset of its inputs. We first apply all
assignments to the primary inputs, and propagate the implications of these as-
signments in the unfolding. Then we complete the justification by traversing the
unfolding in a depth-first manner from its output (the property node), justifying
the output of each gate by choosing a sufficient subset of its inputs. We have
also modified the SAT solver to terminate with a partial assignment when the
truth of the formula is justified. More sophisticated methods of finding a small
justification are possible [27], though this may or may not provide a performance
benefit.

The procedure then computes the justification frontier, and picks a subset
of the state variables on the frontier to add to the abstraction. We choose a
fixed number N of variables that have the highest aggregate VSIDS score in the
SAT solver [24] for the BMC run that produced the abstract counterexample.
Again, more sophisticated heuristics may be possible here. If the justification
frontier is empty, we have a concrete counterexample, and we terminate. Note
this procedure is terminating, since it adds at least one variable at each iteration.

The InterpInc procedure can be more expensive than the Interpolation
procedure on the smaller problems hence we chose to be conservative in applying
this method. This can be done within the Interpolation procedure by checking
the size of the unfolding each time k is increased and switching to InterpInc
only when a predetermined threshold limit is reached. By setting a very large
threshold limit we invoke this procedure only if the size of the model or the value
of k is large.

4 Experimental Analysis

In order to measure the relative performance of the algorithms described in the
previous sections, we used the same BDD-based model checker and SAT solver.
The SAT solver is incremental [28], in the sense that it is possible to add/delete
clauses and restart the solver, while maintaining all previously inferred conflict
clauses that were not derived from deleted clauses.

The benchmark set used has 1205 problems that were derived from 85 hard-
ware designs which ranged in size from a few hundred to more than 100,000
lines of HDL code. Each design in our benchmark set contained from one up
to a few hundred properties to check. The set contained some liveness proper-
ties but about 98% of properties were safety checks. There were 799 passing

414 N. Amla and K.L. McMillan

properties, 312 failures and 94 problems with unknown results. We partitioned
the problems into three sets (BM1-BM3) based on size and difficulty of the prob-
lem. The set MOUT contains problems from BM1-BM3 where some algorithm
ran out of memory. Table 1 characterizes the types of problems in each set. The
Table shows the number of problems and the time limit used in each set. The
average size of the problems in terms of the number of state variables, combina-
tional variables and inputs is also given. For our experiments we used identical
Redhat Enterprise Linux machines, each with an AMD Opteron CPU at 2GHZ
and 2.6GB of available memory.

Table 1. Characterization of the benchmark sets

Benchmark # Probs. Time Limit Avg. Size
(seconds) State Comb. Inputs

BM1 394 100 78 989 154

BM2 494 1000 307 2364 198

BM3 317 3600 2210 19363 1067

MOUT 29 10000 19055 151557 8018

We ran each problem with the specified time limit and measured the number
of problems solved by each method. For all the tables and plots in the sequel, the
time reported for any unresolved problem is the time limit for that problem even
if the method ran out of memory in far less time. The tables present data for the
five algorithms: the original proof-based method with BddMc (PbaBdd), the
proof-based method in Figure 1 with Arc(M ′, p, k) instead of BddMc(M ′, p)
(PbaInterp), the interpolation method (Interpolation), the hybrid method
that combines interpolation with BDD-based proof-based abstraction (Inter-
pHybrid) and the new incremental interpolation method (InterpInc). Table 2
reports the number of problems resolved (fin) and average time taken per prob-
lem (Av time) for benchmark sets BM1-BM3. For the entire set of problems
(ALL), we also report the geometric mean (Gmean) of the run time. Table 3
presents results for the entire set partitioned into passes and failures. Table 3
report the average terminal BMC depth, and the number of “wins” with respect
to time, where a win is attributed to a particular algorithm if it does better than
all others with respect to runtime. In the case of a tie, which we defined to be
two runs where the difference was less than 5% of the run time, we award a win
for both methods.

Table 2 shows Interpolation by itself is more robust overall than either
PbaBdd or PbaInterp. The fact that PbaInterp performs worse than In-
terpolation can be explained by observing in Table 3 that the terminal BMC
depth for the PbaBdd and PbaInterp methods is on average longer than
Interpolation. This is consistent with the observation in [18] that just re-
placing Interpolation as the UMC in a proof-based abstraction framework
does not necessarily improve the performance of interpolation. The fact that,
within the proof-based abstraction framework, BddMc is more effective overall
than Interpolation is somewhat surprising since in general Interpolation

Combining Abstraction Refinement and SAT-Based Model Checking 415

Table 2. Results for benchmark sets (BM1-BM3)

Algorithm ALL BM1 BM2 BM3
fin Av time Gmean # fin Av time # fin Av time # fin Av time

PbaBdd 1010 345.2 29.2 393 14.6 398 220.3 219 950.6

PbaInterp 951 486.1 40.7 360 26.8 389 252.2 202 1421.7

Interpolation 1032 339.5 24.2 389 16.3 399 227.2 244 916.2

InterpHybrid 1068 272.1 21.4 394 14.6 411 203.9 263 698.4

InterpInc 1047 324.7 24.6 389 17.0 401 224.8 257 863.0

dominates BddMc[1]. One possible reason is that BDDs do well on most small
models and the abstractions derived in the proof-based method tend to be small.
A second reason, which is the argument made in [23], is that SAT solvers do bet-
ter when the number of relevant variables is small in comparison to the total
number of variables. Since the abstractions are derived from proof generated by
the SAT solver, the number of relevant variables is likely to be higher than usual,
which could cause Interpolation to be less effective.

As we can see in Table 2 the InterpHybrid is the most robust method on all
three benchmarks and more so on the larger examples. On the 138 problems that
could not be resolved by the Interpolation method, the InterpHybrid pro-
cedure resolved 26% of these problems and the InterpInc procedure resolved
12% of them. On the 766 problems that were verified by InterpHybrid, ap-
proximately 20% were resolved using BddMC while the rest were resolved with
Arc procedure. Table 4 presents the same data as Table 3 but partitions the
problems into two sets: one with problems that were resolved by all five methods
(All resolved) and the other with problems that were unresolved by some method
(Some unresolved). As shown in Table 4, the InterpHybrid method is faster
than the Interpolation on both sets. It appears that the simple heuristic in
InterpHybrid is fairly effective in choosing the appropriate UMC, and we find
that the overhead of using BddMc is minimal. This leads us to conclude that
since BddMc works better as the UMC for Pba, it is better to add PbaBdd
to Interpolation rather than use Interpolation within the proof-based ab-
straction refinement method.

The InterpInc procedure has the same performance on BM1 and BM2
but is slightly more robust on the harder problems in BM3. The incremental

Table 3. Results partitioned into passes and failures

Algorithm Passes Failures
fin # wins depth Av. time # fin # wins depth Av. time

PbaBdd 720 129 27 213.1 290 121 25 236.0

PbaInterp 671 49 21 386.9 280 70 20 335.6

Interpolation 735 153 13 211.7 297 14 20 217.9

InterpHybrid 766 341 17 132.7 302 85 24 159.7

InterpInc 746 112 13 192.3 301 13 20 210.3

416 N. Amla and K.L. McMillan

Table 4. Summary table for resolved problems

Algorithm All Resolved Some Unresolved
fin # wins depth Av. time # fin # wins depth Av. time

PbaBdd 887 138 14 28.5 123 61 96 266.8

PbaInterp 887 57 14 52.5 64 6 56 386.8

Interpolation 887 132 8 27.5 145 35 47 236.6

InterpHybrid 887 376 8 21.3 181 60 95 218.4

InterpInc 887 87 8 28.7 160 38 75 352.9

interpolation method, however, was intended to be efficient with respect to space.
Therefore we consider the results for the 29 problems where some algorithm ran
out of memory in Table 5. The Table presents the number of problems that
passed, failed, exceeded the time limit (TO), ran out of memory (MO), the aver-
age time and the number of state variables in the last abstraction (Abs. size). We
increased the time limit for these problems to 10000 seconds to gauge whether
the incremental algorithm could solve additional problems with more time. The
data indicates that the incremental interpolation approach is very effective in
resolving these problems. The average memory usage of the InterpInc proce-
dure on these problems is 623 Megabytes which indicates that the method is
highly efficient with respect to memory usage. Table 5 shows that although the
InterpInc method yields larger abstractions, it is still more efficient in terms
of performance than PbaInterp. This demonstrates that a very coarse but fast
abstraction refinement heuristic can be effective with interpolation. Our ATPG-
style heuristic gives a small overall improvement in robustness of interpolation
with a large improvement in space.

Table 5. Results for the 29 Memory Intensive Examples (MOUT)

Algorithm # Pass # Fail TO MO Avg. Time Abs. size

PbaBdd 0 0 5 24 10000.0 38

PbaInterp 0 0 11 18 10000.0 70

Interpolation 1 1 13 14 9349.4 -

InterpHybrid 1 2 5 21 9013.1 -

InterpInc 8 6 13 2 6527.0 999

Figures 6 and 7 contain scatter plots of runtime in seconds. We see in Figure 6
that Interpolation and its two variants, InterpHybrid and InterpInc, are
highly correlated but both variants have an advantage on problems that are hard
for Interpolation to solve. Figure 7 is interesting since it shows that, but for a
few cases, PbaInterp does far worse than Interpolation. The right plot in 7)
shows the run time of PbaInterp versus a parallel run of Interpolation and
Pba (i.e. the best result of both methods). We see that PbaInterp is slower in
general but does resolve some problems that the parallel runs could not.

Combining Abstraction Refinement and SAT-Based Model Checking 417

 0.1

 1

 10

 100

 1000

 10000

 0.1 1 10 100 1000 10000

In
te

rp
H

yb
rid

 ti
m

e

Interpolation time

 0.1

 1

 10

 100

 1000

 10000

 0.1 1 10 100 1000 10000

In
te

rp
In

c
tim

e

Interpolation time

Fig. 6. Plot of time in seconds. Left: X-axis is Interpolation and Y-axis is InterpHybrid.
Right: X-axis is Interpolation and Y-axis is InterpInc.

 0.1

 1

 10

 100

 1000

 10000

 0.1 1 10 100 1000 10000

P
ba

In
te

rp
 ti

m
e

Interpolation time

 0.1

 1

 10

 100

 1000

 10000

 0.1 1 10 100 1000 10000

pa
ra

lle
l t

im
e

interpolation-pba time

Fig. 7. Plot of time in seconds. Left: X-axis is Interpolation and Y-axis is PbaInterp.
Right: X-axis is InterpHybrid and Y-axis is a parallel run of Interpolation and Proof-
based abstraction.

5 Conclusions

This paper focused on combining abstraction refinement with interpolation-
based UMC, with the goal of making this method more general and robust.
First, we added a proof-based abstraction step to interpolation in order to use
BDDs when they prove to be effective. This method was found to be very efficient
on the problems in our benchmark set. Next, we describe a new incremental in-
terpolation method that is designed to be memory efficient. This technique uses
ATPG style justification in the concretization step which is generally the bottle-
neck with respect to space. A conservative application of this method was very
effective on memory intensive problems and competitive with the interpolation
method in general. Our findings can be summarized as follows.

1. The basic interpolation method is more robust overall than proof-based ab-
straction, with either interpolation or BDDs as the UMC.

2. Simple proof-based abstraction is not an effective way to improve the per-
formance of interpolation as observed in [18]. We found that the terminal

418 N. Amla and K.L. McMillan

BMC depth for PbaInterp is on average longer than interpolation which
in part explains the performance differences.

3. Since the data shows that BddMc is more effective as the UMC in Pba,
one can conclude that adding PbaBdd to the interpolation method is better
than using interpolation as the UMC in Pba.

4. A very coarse but fast abstraction refinement heuristic can be effective with
interpolation. Our ATPG-style heuristic gives a small overall improvement
in robustness of interpolation with a large improvement in space.

References

1. N. Amla, X. Du, A. Kuehlmann, R. Kurshan, and K. McMillan. An analysis of
SAT-based model checking techniques in an industrial environment. In CHARME,
2005.

2. N. Amla and K. McMillan. A hybrid of counterexample-based and proof-based
abstraction. In FMCAD, 2004.

3. M. Awedh and F. Somenzi. Increasing the robustness of bounded model checking
by computing lower bounds on the reachable states. In FMCAD, 2004.

4. A. Biere, C. Artho, and V. Schuppan. Liveness checking as safety checking. Elec-
tronic Notes in Theoretical Computer Science, 66(2), 2002.

5. A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking without
BDDs. In TACAS, 1999.

6. R. E. Bryant. Graph-based algorithms for boolean function manipulations. IEEE
Transactions on Computers, 1986.

7. J. R. Burch, E. M. Clarke, K. L. McMillan, D.L. Dill, and J. Hwang. Symbolic
model checking: 1020 states and beyond. In LICS, 1990.

8. G. Cabodi, S. Nocco, and S. Quer. Improving SAT-based bounded model checking
by means of bdd-based approximate traversals. In DATE, 2003.

9. E.M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons
using branching time temporal logic. In Workshop on Logics of Programs, 1981.

10. E. A. Emerson. Temporal and modal logic. In Handbook of Theoretical Computer
Science, Volume B: Formal Models and Sematics, 1990.

11. E. Goldberg and Y. Novikov. BerkMin: A fast and robust SAT-solver. In DATE,
2002.

12. A. Gupta, M. Ganai, C. Wang, Z. Yang, and P. Ashar. Learning from BDDs in
SAT-based bounded model checking. In DAC, 2003.

13. A. Gupta, M. Ganai, Z. Yang, and P. Ashar. Iterative abstraction using SAT-based
BMC with proof analysis. In ICCAD, 2003.

14. A. Gupta and O. Strichman. Abstraction refinement for bounded model checking.
In CAV, 2005.

15. C.Y. Huang, B. Yang, H.C. Tsai, and K.T. Cheng. Static property checking using
atpg versus bdd techniques. In ITC, 2000.

16. M. Iyer, G. Parthasarathy, and K.T. Cheng. SATORI- an efficient sequential SAT
solver for circuits. In ICCAD, 2003.

17. O. Kupferman and M. Vardi. Model checking of safety properties. In Formal
Methods in System Design, 2001.

18. B. Li and F. Somenzi. Efficient abstraction refinement in interpolation-based un-
bounded model checking. In TACAS, 2006.

Combining Abstraction Refinement and SAT-Based Model Checking 419

19. B. Li, C. Wang, and F. Somenzi. Abstraction refinement in symbolic model check-
ing using satisfiability as the only decision procedure. In STTT, 2005.

20. J. Marques-Silva. Improvements to the implementation of interpolant-based model
checking. In CHARME, 2005.

21. J. Marques-Silva and K. Sakallah. GRASP: A search algorithm for propositional
satisfiability. IEEETC: IEEE Transactions on Computers, 48, 1999.

22. K. McMillan. Interpolation and SAT-based model checking. In CAV, 2003.
23. K. McMillan and N. Amla. Automatic abstraction without counterexamples. In

TACAS, 2003.
24. M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engi-

neering an Efficient SAT Solver. In DAC, 2001.
25. M. Prasad, A. Biere, and A. Gupta. A survey of recent advances in SAT-based

formal verification. In STTT, 2005.
26. J.P. Queille and J. Sifakis. Specification and verification of concurrent systems in

CESAR. In Proc. of the 5th International Symposium on Programming, 1982.
27. K. Ravi and F. Somenzi. Minimal assignments for bounded model checking. In

TACAS, 2004.
28. J. Whittemore, J. Kim, and K. Sakallah. SATIRE: A new incremental satisfiability

engine. In DAC, 2001.

Detecting Races in Ensembles of Message Sequence
Charts

Edith Elkind1, Blaise Genest2, and Doron Peled3

1 Department of Computer Science, University of Liverpool
Liverpool L69 3BX, United Kingdom

2 CNRS & IRISA, Campus de Beaulieu, 35042 Rennes Cedex, France
3 Department of Computer Science, Bar Ilan University, Ramat Gan 52900, Israel

Abstract. The analysis of message sequence charts (MSCs) is highly impor-
tant in preventing common problems in communication protocols. Detecting race
conditions, i.e., possible discrepancies in event order, was studied for a single
MSC and for MSC graphs (a graph where each node consists of a single MSC,
also called HMSC). For the former case, this problem can be solved in quadratic
time, while for the latter case it was shown to be undecidable. However, the pre-
vailing real-life situation is that a collection of MSCs, called here an ensemble,
describing the different possible scenarios of the system behavior, is provided,
rather than a single MSC or an MSC graph. For an ensemble of MSCs, a poten-
tial race condition in one of its MSCs can be compensated by another MSC in
which the events occur in a different order. We provide a polynomial algorithm
for detecting races in an ensemble. On the other hand, we show that in order
to prevent races, the size of an ensemble may have to grow exponentially with
the number of messages. Also, we initiate the formal study of the standard MSC
coregion construct, which is used to relax the order among events of a process.
We show that by using this construct, we can provide more compact race-free
ensembles; however, detecting races becomes NP-complete.

1 Introduction

Software verification is an inherently difficult task. It is well known that it is undecid-
able for general domains. Moreover, even for finite domains many problems in this area
are computationally intractable. In particular, this is often the case for problems that
deal with concurrent processes. Another difficulty in applying verification methods for
software is the technology transfer, i.e., providing the users (which are programmers
and software engineers) with an easy-to-use and intuitive notation. It is thus beneficial
to be able to analyze a notation that is already in use by software developers.

Message sequence charts (MSCs) is a formalism that is widely used in software
engineering community and is formally described in [8]. This standard specification
formalism consists of a textual notation, and a corresponding graphical notation. One
MSC represents the relative order between message send and receive events (and some-
times also local events). A collection of charts represents alternative executions, which
can also be organized into a graph, where each node is an MSC. The latter construction
is called an MSC graph, or a High-level MSC (HMSC).

In recent years, several algorithms for analyzing MSCs and HMSCs have been sug-
gested [4,6,10,11,12,13]. Perhaps the first problem to be analyzed was that of detecting

O. Grumberg and M. Huth (Eds.): TACAS 2007, LNCS 4424, pp. 420–434, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Detecting Races in Ensembles of MSCs 421

race conditions [2]. This problem arises because in the MSC notation, the events of each
process must be totally ordered. On the other hand, because of limited control on speed
of message propagation, messages do not always arrive in the order specified by the
MSC. In other words, there are two partial orders associated with each MSC: the visual
order, which corresponds to the graphical description of the MSC, and the causal order,
i.e., the order that is under the control of the programmer (e.g., sending a message after
receiving another one, but on the other hand, not the order between two messages re-
ceived from different processes). A race condition is defined as a discrepancy between
the two orders.

A polynomial-time transitive closure-based algorithm for race detection was pro-
posed in [2]. This algorithm is used in various tools, in particular in Bell Labs’ uBET
tool [7]. In [15], the authors generalize this problem to HMSCs and show that in this set-
ting, it becomes undecidable. This is also the case for many other problems for HMSCs,
such as HMSC intersection and LTL model checking of HMSCs [3,14]. Intuitively,
these undecidability results follow from the fact that the HMSC notation describes a
system with no bound on the number of messages in transit. This complication can
be avoided either by fixing a bound on the process queues, or by imposing various
structural restrictions. The latter approach is taken by [3,14]; their proofs proceed by
bounding the size of the queues as a function of the HMSC.

Alur et al. [1] analyze several decision problems for a set of MSCs, rather than for a
single MSC or an HMSC. In particular, they consider the problem of deciding whether
a combination of behaviors for different processes specified by different MSCs is cov-
ered in the MSC collection. This is a very natural setting, as in many cases, the actual
objects that software engineers have to deal with are collection of scenarios (described
as MSCs), rather than a single MSC or an HMSC (one reason for this is that the seman-
tics of HMSCs is not quite clear due to different ways of defining the concatenation of
MSCs [15,5]).

In this paper, we consider the problem of detecting race conditions in an ensemble
of MSCs, i.e., a collection of MSCs over the same set of events. In this setting, even
if in one of the MSCs the messages arrive in an order different from the one specified,
another MSC in the collection may capture this alternative order. Thus, avoiding race
conditions corresponds to covering alternative orders of events for one MSC by other
MSCs in the collection. More precisely, race conditions can be defined in terms of the
sets of linearizations (completions to total orders) of both orders associated with each
MSC. Namely, for each MSC the visual order and the causal order typically produce
different sets of linearizations (with the latter set including the former set). We say that
an ensemble of MSCs contains a race if there is a linearization of the causal order of
some MSC that is not a linearization of the visual order of any MSC in the ensemble.

We describe an efficient algorithm for finding race conditions, which extends the
one of [2] for a single MSC. The running time of our algorithm is cubic in the repre-
sentation size of the problem, i.e, the number of MSCs in the collection and the size of
each MSC. However, in many cases one would need a large number of MSCs to avoid
races: we describe some natural scenarios such that in any race-free collection that rep-
resents them the number of MSCs in the collection is exponential in the number of mes-
sages. Sometimes this problem can be alleviated by using coregions, which can be used
to bundle together events in a single MSC. To the best of our knowledge, this paper

422 E. Elkind, B. Genest, and D. Peled

provides the first formal study of the complexity and succinctness of this notational
primitive, though it was already defined in [9] (see also [5,16] for coregions in LSCs
and in TMSCs). Intuitively, it removes restrictions on the relative order of events that
appear in it. We provide examples in which using coregions results in an exponentially
smaller race-free collection. However, the more compact representation comes at a cost,
as the problem of detecting races becomes NP-complete, even for the most restrictive
definition of a coregion.

2 Preliminaries

In this section, we formally define message sequence charts (MSCs) as well as two
partial orders that are associated with them. Intuitively, a message sequence chart can
be graphically represented as a collection of process lines, where messages are depicted
as arcs that link the sending process with the receiving process. This representation
implies an ordering over all events that belong to the same process, as well as between
send and receive events that correspond to the same message.

Definition 1. A message sequence chart (MSC) M = (E, <M , P , �, S, R, r) is given
by a set of events E, a partial order <M on E, a set P of processes, and a mapping
� : E �→ P that associates each event in E with a process. For each process P , the
set �−1(P) is totally ordered by <P =<M |P . The event set is partitioned as E =
S∪R, where S and R are the sets of send and receive events, respectively. Furthermore,
r : S �→ R is a bijective mapping that relates each send with a unique receive. We
assume that a process cannot send a message to itself, i.e., for any e ∈ S we have
�(e) �= �(r(e)).

Set e <c f for every e, f such that r(e) = f . It is required that <M is equal to the
transitive closure of <c ∪

⋃
P∈P <P . The relation <M is called the visual order of the

message sequence chart M .

In practical systems, there is often no way to ensure that two messages from different
processes arrive in the same order. This means that the visual order may provide more
ordering over events that is achievable in practice. This issue can be tackled by intro-
ducing a weaker partial order, which only orders two events if they necessarily happen
in that order in any execution. There are three classes of such events. First, it is clear
that each send occurs before the corresponding receive. Second, a process can condition
sending a message on sending or receiving some other messages. This means that each
send event always happens after all send and receive events of the same process that
precede it in the visual order. Finally, we assume that processes communicate through
a fifo channel, which guarantees that any two messages sent by one process to another
always arrive in the correct order. This set of requirements can be formalized as follows.

Definition 2. Given a message sequence chart M = (E, <, P , �, S, R, r), its causal
order ≺M is a transitive closure of the precedence relation ≺M

0 , where for two events
e, f ∈ E we have e ≺M

0 f if one of the following conditions holds:

– e and f are a matching send-receive pair, i.e., r(e) = f ;
– �(e) = �(f) = P , e <P f , and f ∈ S;

Detecting Races in Ensembles of MSCs 423

– �(e) = �(f) = P , e, f ∈ R, r−1(e) = e′, r−1(f) = f ′, �(e′) = �(f ′) = P ′, and
e′ <P ′ f ′.

Let L(X) be the set of all linearizations (i.e., completions to total order) of a partial or-
der X . Clearly, for any message sequence chart M , e ≺M f implies e <M f ; however,
the converse does not hold. In other words, we have L(<M) ⊆ L(≺M). To simplify
notation, we write L<(M) instead of L(<M) and L≺(M) instead of L(≺M).

Definition 3. We say that a message sequence chart M contains a race condition if
there are two events e, f ∈ E such that e <M f , but e, f are unordered by ≺M .

Intuitively, a race condition means that the causal order allows more executions than the
visual order, i.e., by restricting our attention to scenarios prescribed by the visual order,
we may miss some (unexpected) executions. This situation is illustrated in Figure 1: in
each MSC, the order of the two receive events of the second process is specified by the
visual order, but not by the causal order. Hence, it is desirable to have an algorithm that
detects races.

P1 P2 P3

1e

e3

e2

e4

e4

P1 P2 P3

1e e2

e3

M1 M2

Fig. 1. Each of M1, M2 admits a race. In M1, we have e3 <M1 e4, but e3 and e4 are unordered
by ≺M1 . In M2, we have e4 <M2 e3, but e3 and e4 are unordered by ≺M2 . However, taken
together, M1 and M2 cover all possible executions.

An equivalent definition of a race is to say that the set of all linearizations of <M is
strictly contained in the set of all linearizations of ≺M . As we have L<(M) ⊆ L≺(M)
for any M , it follows that M contains a race if and only if L≺(M) �= L<(M). The
advantage of this definition is that it is easier to generalize it to collections of MSCs,
defined below.

3 Race Detection in Multiple MSCs

We start by introducing the notion of an ensemble of message sequence charts. In-
tuitively, it is a collection of several message sequence charts describing acceptable
behaviors of the system. Consequently, the message sequence charts in an ensemble
describe different partial orders (both visual and causal) on the same set of events.

Definition 4. An ensemble of MSCs is a set M = {M1, . . . , Mm} such that

– E1 = · · · = Em = E;
– P1 = · · · = Pm = P;

424 E. Elkind, B. Genest, and D. Peled

– for any e ∈ E, it holds that �1(e) = · · · = �m(e) = �(e);
– S1 = · · · = Sm = S, R1 = · · · = Rm = R;
– for any e ∈ S, it holds that r1(e) = · · · = rm(e) = r(e).

Remark 1. Note that in general the admissible executions may not share the same set
(and type) of events, i.e., the MSCs given in the input do not necessarily form an en-
semble. However, in this case one can easily decompose the input into a collection of
ensembles. Therefore, checking ensembles rather than arbitrary collections of MSCs
does not lead to a loss of generality.

For an ensemble M = {M1, . . . , Mm} of message sequence charts, we define L<(M)=
∪i=1,...,mL<(Mi), L≺(M) = ∪i=1,...,mL≺(Mi). Similarly to the case of a single mes-
sage chart, we have L<(M) ⊆ L≺(M). We say that there is a race if L<(M) �= L≺(M).
It may be the case that each MSC in M is not race-free, but M is: for example, the two
MSCs of Figure 1 form a race-free ensemble.

In the remainder of this section, we describe an algorithm that detect races in time
polynomial in the total size of the message sequence charts in M. Our approach is
based on the following idea. Consider a graph G whose vertices are all permutations of
events in E, and there is an edge between two vertices if the respective permutations can
be obtained from each other by reversing the order of two adjacent events. Clearly, if
|E| = N , then G has N ! vertices. Our algorithm does not construct this graph explicitly;
however, it will be useful in proving correctness of our algorithm. It easy to see that each
of the sets L≺(Mi), L<(Mi), i = 1, . . . , m, forms a connected subgraph of this graph.
Note also that L<(Mi) ⊆ L≺(Mi) for all i = 1, . . . , m. Moreover, if Mi �= Mj , then
the sets L<(Mi) and L<(Mj) are disjoint. To see this, note that the visual orders <Mi

and <Mj differ if and only if they have different projections on some process line Pk,
i.e., some events ex and ey with �(ex) = �(ey) = Pk are ordered differently by <Mi

and <Mj . This means that for any Li ∈ L<(Mi) and Lj ∈ L<(Mj) the events ex and
ey will be ordered differently in Li and Lj as well, i.e., L<(Mi) ∩ L<(Mj) = ∅.

Proposition 1. The ensemble M contains a race if and only if for some i, j∈{1, . . . , m}
and a permutation L1 the following conditions hold: (1) L1 ∈ L≺(Mi); (2) L1 is
adjacent in G to some permutation L2 ∈ L<(Mj); (3) L1 �∈ L<(M).

Proof. Clearly, if M does not contain a race, no such i, j and L1 can exist, as any
permutation in L≺(Mi) will be contained in L<(M).

For the opposite direction, suppose that M contains a race, that is, for some i ∈
{1, . . . , m} there is a permutation L such that L ∈ L≺(Mi), L �∈ L<(M). Consider
the subgraph of G induced by L<(M), and let L̂ be the maximal connected component
of this subgraph that contains L<(Mi). Clearly, we have L �∈ L̂. On the other hand,
as L<(Mi) ⊆ L≺(Mi), there is another permutation L′ ∈ L≺(Mi) such that L′ ∈
L<(Mi) ⊆ L̂. Since the set L≺(Mi) is connected, there is a path in G that stays within
L≺(Mi) and leads from L to L′. The last vertex on this path is in L̂, while the first
one is not. Therefore, there exist two adjacent vertices (i.e., permutations) L1 and L2
on this path such that (i) both L1 and L2 are in L≺(Mi) and (ii) L2 is in L̂, while L1

is not. Moreover, we have L2 ∈ L<(Mj) ⊆ L̂ for some j ∈ {1, . . . , m}. It remains to
show that L1 �∈ L<(Mk) for any k = 1, . . . , m. For any k such that L<(Mk) ⊆ L̂, this

Detecting Races in Ensembles of MSCs 425

holds since L1 �∈ L̂. Now, suppose L1 ∈ L<(Mk) for some k such that L<(Mk) �⊆ L̂.
Then L<(Mk) contains an element (i.e., L1) that is adjacent to L̂. This means that
the set L̂ ∪ L<(Mk) is connected. However, L̂ was defined as the largest connected
component of L<(M) that contains L<(Mi), a contradiction.

Hence, to check for races, it is sufficient to verify if the condition of Proposition 1
holds. The straightforward approach of checking this condition for each linearization
requires superpolynomial time. However, it turns out that we can partition candidate
linearizations in a polynomial number of classes that correspond to certain partial or-
ders, and check all linearizations in the same class simultaneously. Namely, consider
the following algorithm DetectRace(M).

DetectRace(M);
forall M = M1, . . . , Mm do

forall P = P1, . . . , Pn do
K := |�−1(P)|;
for j = 1, . . . , K − 1 do

<′
P = Swap(M, P, j);

<′M=<c ∪
⋃

P ′ �=P <P ′ ∪ <′
P;

if PO(<′M) and Disjoint(<′M) then
forall N = M1, . . . , Mm do

if PO(<′M ∪ ≺N) return true;
return false;

The function Swap(M, P, j) returns the total order obtained from the order of the
events that belong to process P in message sequence chart M by switching the order
of the jth and the (j + 1)st event. The function PO(X) checks if its input relation X is
a partial order, i.e., contains no cycles. The function Disjoint(<′M) checks that the
set of linearizations of <′M is disjoint from L<(M); its implementation is given below.
All other functions are straightforward to implement.

Disjoint(<′M);
forall N = M1, . . . , Mm do

forall P = P1, . . . , Pn do
if <′M

P �=<N
P break;

return false;
return true;

In words, for each message sequence chart M ∈ {M1, . . . , Mm}, we consider the
visual orders of all MSCs that can be obtained from M by switching the order of two
consecutive events of some process. For each MSC obtained in this way, we check if
it is valid, i.e., contains no cycles, using the function PO. If this is indeed the case, we
check whether the linearizations of this MSC are not contained in L<(M) (function
Disjoint), and whether the union of the visual order of this MSC with the causal
order of some other MSC in M is a partial order. If both of these conditions hold, our
algorithm returns true, which means that M contains a race.

The correctness of our algorithm is proved via a sequence of lemmas.

426 E. Elkind, B. Genest, and D. Peled

Lemma 1. For any i, j = 1, . . . , m and any L ∈ L≺(Mi), if L is adjacent to some
L′ ∈ L<(Mj) in G, then L can be obtained as a linearization of one of the partial
orders <′Mj constructed by DetectRace.

Proof. Consider a linearization L ∈ L≺(Mi) \ L<(Mj) that is adjacent to some L′ ∈
L<(Mj). Let ex and ey be the two events that are ordered differently in L and L′;
assume without loss of generality that ex precedes ey in L′. If ex and ey are not ordered
by <Mj , then changing their order will result in another linearization of <Mj . Hence,
we assume that ex <Mj ey.

By construction of the graph G, ex and ey have to be adjacent events in L′. Recall
that in <Mj the event ex has at most two immediate successors: et = r(ex) if ex ∈ S,
and the event ez that immediately follows ex on the same process line. Hence, ey ∈
{ez, et}. If ey = et, i.e., ex and ey are a matching send–receive pair, then ex ≺Mi ey;
as L ∈ L≺(Mi), ey cannot precede ex in L. Hence, ex and ey are consecutive events
of some process. Consequently, L ∈ L(<′M) for M = Mj , P = �(ex) = �(ey) and j
equal to the position of ex in <P .

Lemma 2. For any j = 1, . . . , m and any partial order <′Mj constructed by the algo-
rithm DetectRace such that PO(<′Mj) = true, either the set of all linearizations of
<′Mj is disjoint from L(M) or <′Mj =<Mi for some i = 1, . . . , m.

Proof. The partial order <′Mj is obtained from <Mj by changing the order of two
consecutive events of the same process. Hence, <′Mj also provides a total ordering on
the events of each process. If some other Mi ∈ M has the same projections on all
process lines, then by definition we have <′Mj =<Mi . Otherwise, for each Mi ∈ M

there is a pair of events ordered differently by <′Mj and <Mi . In this case, the sets
L(<′Mj) and L<(Mi) are disjoint.

Lemma 3. For any two partial orders X and Y on the same set of events, we have
L(X) ∩ L(Y) �= ∅ if and only if X ∪ Y is a partial order.

Proof. If X∪Y is a partial order, we have L(X∪Y) �= ∅. As L(X∪Y) ⊆ L(X)∩L(Y),
we have L(X) ∩ L(Y) �= ∅.

Conversely, if X ∪Y is not acyclic, assume for the sake of contradiction that L(X)∩
L(Y) �= ∅ and let L be a linearization in L(X) ∩ L(Y). Consider some cycle C =
{(e1, e2), . . . , (et−1, et), (et, e1)} in X ∪ Y ; there are two events e and f such that
(e, f) ∈ C, but f precedes e in L. Clearly, either (e, f) ∈ X , in which case L �∈ L(X),
or (e, f) ∈ Y , in which case L �∈ L(Y). Hence, L �∈ L(X) ∩ L(Y), a contradiction.

Theorem 1. The algorithm DetectRace(M) returns true if and only if M admits a
race. Moreover, DetectRace(M) runs in time O(m2|E|3), where |E| is the number
of events in any MSC in M and m is the number of message sequence charts in M.

Proof. By Proposition 1, detecting a race is equivalent to finding a permutation that
satisfies conditions (1)–(3) in the statement of Proposition 1. By Lemma 1, for each
j = 1, . . . , m, the algorithm DetectRace(M) considers all linearizations that lie
in the 1-neighborhood of L<(M j). By Lemma 2, the function Disjoint correctly
decides if any of these linearizations is not covered by L(M). Finally, by Lemma 3,
the last loop correctly determines if any of them can be a linearization of some causal

Detecting Races in Ensembles of MSCs 427

order ≺Mi , i = 1, . . . , m. Hence, our algorithm never fails to detect a race. Conversely,
DetectRace(M) returns true only if it finds a linearization that lies in some ≺Mi ,
i = 1, . . . , m, but is not contained in L<(M).

It remains to analyze the running time of our algorithm. For each triple M, P, j, we
call PO once to check if <′M is acyclic, call Disjoint to compare <′M with all MSCs
in M, and then for each MSC in M compute a union of two partial orders and use PO
again to check if it is acyclic. The function PO is based on computing the transitive
closure. As each event has at most two immediate successors, the transitive closure
computation can be done in time O(|E|2) [2]. Comparing the visual orders of two
MSCs can be done in time |E|. Hence, we use O(m|E|2) operations for each triple
M, P, j. As our algorithm only attempts to permute events that are adjacent on some
process line for some MSC, we only consider m|E| such triples. Hence, the running
time of DetectRace is O(m2|E|3), i.e., cubic in the size of the input.

4 Number of MSCs Needed for Closedness

In the previous section, we give an algorithm that checks whether an ensemble of mes-
sage sequence charts contains a race. Our algorithm is polynomial in the representation
size of the ensemble, that is, the number of events and the number of MSCs in the
ensemble. In this section, we investigate the relationship between these two parameters.

Two processes. Consider a message sequence chart M2 given in Figure 2. It consists
of two processes P1 and P2 and n = 4k events e1, . . . , en, and describes the scenario
when each process sends k messages to the other one, independently of the information
it receives. Clearly, the causal order of M2 induces a total order on all send events of
each process. Because of the fifo assumption it also induces a total order on all receive
events of the same process. However, the sends and receives of each process can be
interleaved in an arbitrary way.

Theorem 2. For any ensemble M that contains M2, if M is race-free, then M contains
2Ω(n) message sequence charts.

Proof. Recall that for any linearization L of ≺M2 , its projection onto P1 is a total
order on the events e1, . . . , ek, e2k+1, . . . , e3k. Consider a collection of indices I =

ek+1e
e

e
e

e

e

e

e

e
e

e

1

2

k

k+2

2k+1

2k+2

3k

2k

3k+1

3k+1

4k

Fig. 2. An MSC with 2 pro-
cesses whose causal order
corresponds to 2Ω(n) visual
orders

e1
e

e

e
e

e

e

e
e

e

e

e

2

k k+1

k+2

2k

2k+1

2k+2

3k

3k+1

3k+2

4k

Fig. 3. An MSC with 3 pro-
cesses whose causal order
corresponds to 2Ω(n) visual
orders

e1
e

e

e
e

e

e

e
e

e

e

e

2

k k+1

k+2

2k

2k+1

2k+2

3k

3k+1

3k+2

4k

Fig. 4. A race-free MSC with
a coregion of type 2

428 E. Elkind, B. Genest, and D. Peled

{i1, . . . , ik}, where 1 ≤ i1 < · · · < ik ≤ 2k. We claim that for any such I , there exists
a linearization LI of ≺M2 such that its projection onto P1 has the jth receive event of
P1, i.e., e2k+j , in the ij th position. Indeed, we can construct LI by putting all send
events of P2 first, followed by all events of P1, where the jth receive event of P1 is in
the position k + ij , followed by all receive events of P2. Formally, it can be described
as a permutation LI = (e′1, . . . , e′4k) of the events in E such that for i = 1, . . . , k we
have e′i = ek+i, e′3k+i = e3k+i, and for i, . . . , 2k we have e′k+i = e2k+j if and only if
i = ij ∈ I , and the remaining events in {e′k+1, . . . , e

′
3k} are events from {e1, . . . , ek},

ordered so that ei precedes ej whenever 1 ≤ i < j ≤ k.
Now, consider any ensemble M that contains M2. The visual order of any MSC in M

provides a total order on the events of P1. Hence, for M to be race-free, for each set I
of the form described above, it has to contain an MSC whose visual order of the events
in P1 is the same as the one given by LI : otherwise, LI is not contained in L<(M).
There are

(2k
k

)
= Θ(22k/

√
k) ways to choose the set I . Hence, to be race-free, M has

to contain at least Θ(22k/
√

k) = 2Ω(n) message sequence charts.

The proof of Theorem 2 depends on a subtle property of our definition of causal order.
Namely, for two events x ∈ R, y ∈ S, �(x) = �(y) = P , we assume that if x precedes
y in the visual order, then the same is true for the causal order. However, if x follows y
in the visual order, we do not require that they are ordered in the causal order (they may
still be ordered, of course, because of their causal relationships with other events). An
alternative definition of causal order requires that two events are ordered in the causal
order whenever they belong to the same process and at least one of them is a send event.
In other words, two x, y ∈ E such that �(x) = �(y) may be unordered by the causal
order only if x, y ∈ R. Of course, we still require the other properties of the causal
order, i.e., ordering a send and the corresponding receive, and fifo. It is easy to see
that under this definition of causal order, the argument of Theorem 2 no longer applies.
Moreover, it turns out that in this case, any message sequence chart with at most two
processes is race-free.

Proposition 2. For any message sequence chart M that contains exactly two processes
P1 and P2, we have <M≡≺′M , where ≺′ is the variation of causal order defined above.

Proof. Consider two events ei and ej of P1 (the argument for P2 is identical). If one
of them is a send event, then, by definition, they are ordered in ≺′M . Now, suppose
that both of them are receive events and ei precedes ej in the visual order <M . Then
they both correspond to messages sent by P2, i.e., r−1(ei) = ei′ , r−1(ej) = ej′ , and
�(ei′) = �(ej′) = P2. The visual order has to obey the fifo property, i.e., we have
ei′ <P2 ej′ . As both ei′ and ej′ are send events, they are also ordered in the causal
order ≺′M . Finally, by applying the fifo property to ≺′M , we conclude that r(ei′) = ei

and e(ej′) = ej are ordered in ≺′M .
We have shown that ≺′M imposes an order on any two events that belong to the same

process. Also, we have e ≺′M r(e) for an e ∈ S. It follows that ≺′M and <M order
exactly the same events, i.e., <M≡≺′M .

Three processes. We will now show that with three processes we may need an ex-
ponential number of message sequence charts to avoid race conditions, even for the
modified definition of causal order ≺′.

Detecting Races in Ensembles of MSCs 429

Theorem 3. For any ensemble M that contains the MSC M3 given in Figure 3, if M is
race-free, then M contains 2Ω(n) message sequence charts.

The proof of this theorem is similar to that of Theorem 2 and is omitted. It relies on
the number of possible orderings of the events of the second process. As all of them are
receive events, it does not depend on which version of the causal order we use.

5 MSCs with Coregions

One can represent admissible orderings of events more compactly using coregions. A
coregion is a notational primitive that covers two or more events. To the best of our
knowledge, this paper is the first attempt to provide a formal analysis of the succintness
of this notation. Intuitively, by putting events in a coregion we say that they can happen
in any order. There are several ways to formalize this intuition, depending on what
classes of events are allowed to appear in the same coregion.

Coregions that do not affect the causal order. The most restrictive approach is to
only allow events not ordered by the causal order within a coregion.

Definition 5. Given a MSC M on a set of processes P = {P1, . . . , Pn}, a core-
gion of type 1 for M is a set of events C = {e1, . . . , ek} such that e1, . . . , ek are
consecutive events of some process Pi ∈ P and no two events in C are ordered by
≺M . The causal order ≺(M,C) of the pair (M, C) is the same as the causal order of
M . To describe the visual order <(M,C) of the pair (M, C), we define the relation
<′

Pi
=<Pi \{(ex, ey) | ex, ey ∈ C} and let <(M,C) be the partial order induced by the

relation <c ∪
⋃

j �=i <Pj ∪ <′
Pi

.

This definition can be extended to a message sequence chart with several coregions
C1, . . . , Ct in an obvious way. Namely, each coregion is required to consist of consec-
utive events of some process, and the visual order of the resulting message sequence
chart is obtained from the original one by deleting all pairs (ex, ey) such that both ex

and ey appear in the same coregion. We do not require that all coregions of a particular
MSC are disjoint. We will sometimes abuse notation and use M to denote an MSC with
one or more coregions. Also, we may refer to an MSC with coregions simply as an
MSC. The exact meaning will always be clear from the context.

It is easy to see that this construction can be used to decrease the number of MSCs
needed to avoid a race by exponential factor. An obvious example is provided by an
MSC with n + 1 processes P0, P1, . . . , Pn, in which each of P1, . . . , Pn sends a single
message to P0. In the absence of coregions, the visual order of P0 imposes a total order
on all n receive events, while the causal order allows for any ordering of them. Hence,
we need n! message sequence charts to avoid races, one for each possible permutation of
the receive events. On the other hand, if we are allowed to use coregions, we can simply
put all receive events inside a coregion, thus covering all linearizations admitted by the
causal order. The savings are not limited to MSCs with unbounded number of processes:
one can construct an example in which using coregions leads to an exponentially more
compact race-free ensemble for three processes.

Unfortunately, the more compact representation has a computational cost. Namely, in
Section 6 we show that for ensembles of MSCs with coregions detecting races becomes

430 E. Elkind, B. Genest, and D. Peled

NP-hard. This result holds even if in all MSCs in the ensemble each process has at most
two coregions, all coregions are of type 1, and coregions of any process do not overlap.

Coregions that may affect the causal order. In some settings, the requirement that
all events in a coregion are not ordered by the causal order can be too restrictive. To
increase the expressive power, we can use coregions to also express indifference about
the causal order of certain events. For example, we may want to say that given two
messages m1 and m2 from P1 to P2 and P1 to P3, respectively, it does not matter in
which order they are sent. To capture this meaning, we eliminate the restriction that all
events in a coregion must be independent with respect to ≺.

Definition 6. Given a MSC M on a set of processes P = {P1, . . . , Pn}, a coregion of
type 2 for M is a set of events C = {e1, . . . , ek} such that e1, . . . , ek are consecutive
events of some Pi ∈ P .

However, it turns out that for this definition of coregion, we cannot describe the set of
all linearizations implied by an MSC by a single partial order.

Example 1. Consider an MSC that corresponds to one process sending two messages
to another one. Formally, we set M = (E, <M , P , �, S, R, r), where S = {s1, s2},
R = {r1, r2}, E = S ∪ R, P = {P1, P2}, �(s1) = �(s2) = P1, �(r1) = �(r2) =
P2. Suppose that we would like to use coregions to express that the messages can be
sent in any order. A natural way to do this is to set <P1= (s1, s2), <P2= (r1, r2),
C1 = {s1, s2}, C2 = {r1, r2}. Because of the fifo rule, the set L of all linearizations
that correspond to the causal order of this MSC consists of 4 elements, namely L1 =
(s1, s2, r1, r2), L2 = (s1, r1, s2, r2), L3 = (s2, s1, r2, r1), and L4 = (s2, r2, s1, r1).
We will now show that this set of linearizations cannot correspond to a single partial
order. For the sake of contradiction, suppose that there is a partial order X with this
set of linearizations. Clearly, if for some e, f ∈ E, e precedes f in some Li ∈ L, then
(f, e) �∈ X . This allows us to derive (si, sj) �∈ X , (ri, rj) �∈ X , (ri, sj) �∈ X for any
i, j = 1, 2, and also (s2, r1) �∈ X , (s1, r2) �∈ X . Hence, X can contain at most two
elements, namely, (s1, r1) and (s2, r2). But then (s1, s2, r2, r1) would be a linearization
of X , which is a contradiction.

Note also that, in contrast to the case of MSCs with coregions of type 1, the set L is
not connected.

Consequently, the definition of the set of all linearizations of an MSC with coregions of
type 2 is more complicated than that for a simple MSC.

Definition 7. Given a message sequence chart M and a collection C1, . . . , Ct of core-
gions of type 2 for M , let M be the ensemble of all valid message sequence charts
that can be obtained from M by permuting the events in each of the coregions arbi-
trarily. Let L≺(M, C1, . . . , Ct) denote the set of all linearizations of the causal or-
der of (M, C1, . . . , Ct), and let L<(M, C1, . . . , Ct) denote the set of all lineariza-
tions of the visual order of (M, C1, . . . , Ct). We define L≺(M, C1, . . . , Ct) = L≺(M),
L<(M, C1, . . . , Ct) = L<(M).

One can verify that the informal argument in Example 1 is consistent with Definition 7,
i.e., the set L = {L1, L2, L3, L4} is exactly the set of all linearizations that correspond
to L≺(M, C1, C2). Moreover, for an MSC that only contains coregions of type 1, the

Detecting Races in Ensembles of MSCs 431

two definitions result in the same set of linearizations, both for causal and for visual
order. We will say that an MSC M with coregions C1, . . . , Ct captures an ordinary
MSC M ′ if M ′ ∈ M, where M is the ensemble of message sequence charts constructed
from M as in Definition 7.

By generalizing Example 1 to the case when P1 sends n messages to P2, we can see
that, compared to MSCs with coregions of type 1, using coregions of type 2 may result
in exponentially smaller race-free ensembles. Indeed, one can represent this scenario
by a single race-free MSC and two coregions of type 2: one for all send events, and one
for all receive events. On the other hand, an ensemble of MSCs with coregions of type
1 needs n! MSCs to be race-free. Another example is given by MSC in Figure 4, which
is obtained from the MSC in Theorem 3 by putting all events of P2 in a coregion. This
MSC is race-free; however, some of the events inside the coregion are ordered because
of the fifo rule, so we cannot use a coregion of type 1. Nevertheless, the worst-case
complexity of race detection is the same in both cases: in the next section, we show that
race detection is NP-complete for ensembles of MSCs with coregions of both types.

6 Hardness Results

Formally, an instance of the problem of race detection is given by an ensemble M

whose elements are MSCs with coregions, i.e., each element of M is a list of the form
(M, C1, . . . , Ct), where M is a message sequence chart, and each Ci, i = 1, . . . , t, is a
coregion for M . We say that M is a “yes”-instance if and only if it admits a race.

Theorem 4. The problem of race detection in ensembles of MSCs with coregions is NP-
complete, even if each MSC in the ensemble only has coregions of type 1, each process
has at most two coregions, and no two coregions can overlap.

Proof. It is easy to see that this problem is in NP for coregions of both types: given
an ensemble M, a candidate linearization L and an MSC Mi ∈ M, we can check that
L ∈ L≺(Mi) and L �∈ L<(Mj) for all Mj ∈ M.

For the opposite direction, the proof is by reduction from HAMILTONIAN PATH prob-
lem. Recall that an instance of HAMILTONIAN PATH is given by a graph G = (V, E),
|V | = n. It is considered to be a “yes”-instance if and only if it contains a simple path
of length n − 1, i.e., there is an ordering vi1 , . . . , vin of the elements of V such that
(vij , vij+1) ∈ E for all j = 1, . . . , n − 1.

Given an instance G = (V, E) of HAMILTONIAN PATH, we construct an ensem-
ble M of MSCs that corresponds to it. Consider an MSC M0 that contains 2n + 1
processes, which are partitioned into two sets P1 = {P0, . . . , Pn} and P2 = {Pv |
v ∈ V }. Intuitively, M0 describes the scenario where each of the processes in P1
sends a single message to each process in P2. Formally, we set S = {sv

i }i=0,...,n,v∈V ,
R = {rv

i }i=0,...,n,v∈V , P = P1 ∪ P2. Also, for all i = 0, . . . , n, v ∈ V we define
r(sv

i) = rv
i , �(sv

i) = Pi, �(rv
i) = Pv . Fix an ordering <V on the vertices of V . In M0,

all events of each process are ordered lexicographically, i.e., for any Pi ∈ P1 we have
su

i <Pi sv
i if and only if u <V v and for any Pv ∈ P2 we have rv

i <Pv rv
j if and only

if i < j. We will now construct an ensemble M that contains M0. By definition, each
M ∈ M has the same set of processes, the same sets of send and receive events, and
the same mappings r and � as M0. We will also require that all M ∈ M order events in

432 E. Elkind, B. Genest, and D. Peled

S in exactly the same way as M0. Hence, to fully specify each M ∈ M, we will only
have to describe the order of the receive events for each process. Note that the causal
order of M0 imposes no restrictions on the relative order of the receives of any process.
Hence, for M to be race-free, the linearizations of the visual orders of MSCs in M must
cover all possible permutations of the receives.

To simplify notation, when describing the ordering of events on Pv , we will write i
instead of rv

i for i = 1, . . . , n and # instead of rv
0 . Consider a MSC MHP that satisfies

the following three conditions:

(1) for any Pv ∈ P2, there exists some i ∈ {1, . . . , n} such that the ordering of the
receives on Pv is (1, . . . , i,#, i + 1, . . . , n). This value of i is denoted by i(v);

(2) for all v �= w ∈ V , i(v) �= i(w);
(3) for any v ∈ V such that i(v) �= n, there exists an edge (v, w) ∈ E such that

i(w) = i(v) + 1.

Intuitively, MHP describes a Hamiltonian path ρ in G: a vertex v is the ith vertex on
ρ if i(v) = i. As |V | = n, conditions (1) and (2) imply that for any i ≤ n, there exists
a unique vertex vi such that i(vi) = i, and condition (3) means that for every i < n,
(vi, vi+1) is an edge. Hence, ρ = v1 · · · vn is a Hamiltonian path. Therefore, if MHP

exists, then G has a Hamiltonian path; clearly, the converse is also true. We will now
construct a polynomial ensemble M

′ of MSCs with coregions that captures all MSCs
that violate at least one of the conditions (1), (2), or (3). Set M = M

′ ∪ {M0}; a race
condition in M is equivalent to the existence of an MSC MHP satisfying (1), (2) and
(3), and hence to the existence of a Hamiltonian path in G.

The ensemble M

′ consists of three classes of MSCs with coregions: bad order MSCs
(ones that capture MSCs that violate condition (1)), no path MSCs (ones that capture
MSCs that violate condition (2)), and bad path MSCs (ones that capture MSCs that
violate condition (3)).

Consider a message sequence chart that violates condition (1) for some Pv. If the
first event of Pv is #, then this MSC can be captured by a message sequence chart
Mv,#. In this MSC Pv starts with #, followed by a coregion containing all other events
of Pv in arbitrary order. For each Pw, w �= v, the events of Pw are ordered arbitrarily,
and there is a coregion that covers all of them. If Pv does not start with #, let k be
the first position in which the visual order of Pv deviates from the form prescribed by
condition (1). As all events j, j < k, appear in their prescribed positions, the event in
the position k must be l, l > k. We consider two cases, namely, k ≤ i(v) and k > i(v).

All MSCs that violate condition (1) for Pv with k ≤ i(v) and event l in the kth
position are captured by a message sequence chart M−

(v,k,l) defined as follows. For
all Pw, w �= v, the events of Pw are ordered arbitrarily, and there is a coregion that
covers all of them. Moreover, the ordering of the first k events of Pv is (1, . . . , k−1, l),
followed by all other events (including #) in arbitrary order, and there is a coregion that
consists of all events that appear after l.

Similarly, all MSCs that violate condition (1) for Pv with k > i(v) and event l in
the kth position are captured by a message sequence chart M+

(v,k,l) defined as follows.
For all Pw, w �= v, the events of Pw are ordered arbitrarily, and there is a coregion
that covers all of them. The ordering of the first k + 1 events of Pv is (1, . . . , k −
1, #, l), followed by all other events in arbitrary order. Also, there are two coregions

Detecting Races in Ensembles of MSCs 433

for Pv: one that consists of all events that appear before l (including #), and another
one that consists of all events that appear after l. Observe that M+

(v,k,l) may also capture
some MSCs where the first violation of condition (1) happens before k; nevertheless,
all MSCs covered by M+

(v,k,l) violate condition (1) for Pv in position k.
Now, consider an MSC that satisfies condition (1), but violates condition (2). This

happens if there are two vertices u and w such that # appears in the same posi-
tion k in Pu and Pv . Hence, all such MSCs can be captured by n3 no path MSCs
(M(u,v,k))u�=v∈V,k≤n, defined as follows. In any M(u,v,k), for all Pw, w �= u, v, the
events of Pw are ordered arbitrarily, and there is a coregion that covers all of them.
Furthermore, the events of Pu and Pv are ordered as (1, . . . , k,#, k + 1, . . . , n).

Finally, we need to cover all MSCs that satisfy conditions (1) and (2), but violate
condition (3). This happens if there is a pair of vertices u, v ∈ V such that (u, v) �∈ E,
i(u) = k, i(v) = k + 1. All such MSCs can be captured by at most n3 bad path
MSCs (N(u,v,k))(u,v)/∈E,k<n, defined as follows. In any N(u,v,k), for all Pw, w �= u, v,
the events of Pw are ordered arbitrarily, and there is a coregion that covers all of them.
Furthermore, the events of Pu are ordered as (1, . . . , k,#, k+1, · · · , n), and the events
of Pv are ordered as (1, . . . , k, k + 1, #, k + 2, · · · , n). Set

M

′ =
⋃

v∈V

Mv,# ∪
⋃

v∈V

k �=l≤n

M−
(v,k,l) ∪

⋃

v∈V

k �=l≤n

M+
(v,k,l) ∪

⋃

u�=v∈V

k≤n

M(u,v,k) ∪
⋃

(u,v)�∈E

k<n

N(u,v,k).

Recall that M = M

′ ∪ {M0}, and observe that M0 violates condition (1). The causal
order of any M ∈ M is ≺M0 , i.e., it puts no restrictions on the relative ordering of
different receive events. For any MSCs M whose visual order violates (1), (2), or (3),
there is an MSC M ′ in M (with or without coregions) such that L<(M) ⊆ L<(M ′).
On the other hand, any M ∈ M violates at least one of the conditions (1), (2), and (3).

Now, suppose that G contains a Hamiltonian path. Then there exists an MSC MHP

described above, which satisfies all three conditions. The set L<(MHP) is not covered
by L<(M), i.e., there is a race. Conversely, suppose that G contains no Hamiltonian
path, and let L be an arbitrary linearization of ≺M0 . Consider the MSC ML that is
obtained by projecting L onto processes in P . This MSC violates one of the conditions
(1), (2), or (3), so we have L<(ML) ⊆ L<(M). As L ∈ L<(ML), the result follows.

7 Conclusions

The MSC notation is important in describing scenarios of protocols. Its analysis allows
one to detect common design errors. One of the most basic problems in MSCs is that of
race conditions; the occurrence of events in an order that is different from the order of
their appearance in the MSC. Race conditions are defined for a single MSC as the dis-
crepancies between the visual order between events as they appear in the MSC, and the
causal order, which takes into account only the order that is under the control of the sys-
tem (e.g., excluding the order between receives from different processes). Equivalently,
this can be defined as the discrepancy between the corresponding sets of linearizations.
This relationship between partial orders and linearizations allows us to extend the prob-
lem beyond checking a single MSC. The classical algorithm for MSCs was described

434 E. Elkind, B. Genest, and D. Peled

in [2] and was implemented in the uBET system. For a graph of MSCs (HMSC), this
problem was shown to be undecidable [15].

In this paper we studied MSC ensembles, i.e., collections of MSCs for the same set
of messages. In this case, a race in a single MSC of the ensemble may be compensated
by another MSC with a different order of events. We describe a polynomial algorithm
for race detection, which extends the algorithm of [2]. On the other hand, the existence
of a polynomial algorithm can be attributed to the fact that a race-free ensemble of
MSCs may need to have an exponential (in the number of events) number of MSCs.

We also studied the coregion construct, a part of the standard which has not been
formally treated before. It allows encapsulating events (sends, receives) of a process
within a box, denoting the lack of any particular order between the events in the box.
We showed that by using this construct, one may achieve an exponential reduction in
the size of race-free ensembles; however, race detection becomes NP-complete.

References

1. R. Alur, K. Etessami, and M. Yannakakis, Inference of message sequence charts. IEEE
Transactions on Software Engineering, July 2003, Volume 29, 623–633

2. R. Alur, G. Holzmann, and D. Peled, An analyzer for message sequence charts. In Software
Concepts and Tools, 17(2):70–77, 1996

3. R. Alur and M. Yannakakis, Model checking of message sequence charts. In Proc. of CON-
CUR’99, LNCS 1664, Springer, 114–129, 1999

4. H. Ben-Abdulla and S. Leue, Symbolic detection of process divergence and non-local choice
in message sequence charts. In Proc. of TACAS’97, LNCS 1217, Springer, 259–274, 1997

5. W. Damm, D. Harel, LSCs: breathing life into message sequence charts. Formal Methods in
System Design, Volume 19, July 2001, 45–80

6. L. Hélouët and C. Jard, Conditions for synthesis of communicating automata from HMSCs.
In 5th International Workshop on Formal Methods for Industrial Critical Systems, 2000

7. G. Holzmann, D. Peled, M. Redberg, Design tools for requirements engineering. Bell Labs
Technical Journal, volume 2, 86–95, 1997

8. ITU-T Recommendation Z.120, Message Sequence Chart (MSC), Geneva, 1996
9. I. Krueger, Distributed system design with message sequence charts. Ph.D. Thesis, TU

Munchen, 2000.
10. D. Kuske, Regular sets of infinite message sequence charts. Information and Computation,

(187):80–109, 2003
11. M. Lohrey. Safe realizability of high-level message sequence charts. In Proc. of CON-

CUR’02, LNCS 2421, Springer-Verlag, 177–192, 2002
12. P. Madhusudan, Reasoning about sequential and branching behaviours of message sequence

graphs. In Proc. of ICALP’01, LNCS 2076, Springer-Verlag, 809–820, 2001
13. M. Mukund, K. Narayan Kumar, and M. Sohoni, Synthesizing distributed finite-state systems

from MSCs. In Proc. of CONCUR’00, LNCS 1877, Springer-Verlag, 521–535, 2000
14. A. Muscholl and D. Peled, Message sequence graphs and decision problems on Mazur-

kiewicz traces. In Proc. of MFCS’99, LNCS 1672, Springer-Verlag, 81–91, 1999
15. A. Muscholl, D. Peled, and Z. Su, Deciding properties of message sequence charts. In

Proc. of FoSSaCS’98, LNCS 1378, Springer-Verlag, 226–242, 1998
16. B. Sengupta and R. Cleaveland, Triggered message sequence charts. TSE , IEEE, 2006.

Replaying Play In and Play Out:
Synthesis of Design Models from Scenarios by Learning

Benedikt Bollig1, Joost-Pieter Katoen2, Carsten Kern2, and Martin Leucker3

1 LSV, CNRS UMR 8643 & ENS de Cachan, France
2 Software Modeling and Verification Group, RWTH Aachen University, Germany

3 Institut für Informatik, TU München, Germany

Abstract. This paper is concerned with bridging the gap between requirements,
provided as a set of scenarios, and conforming design models. The novel aspect of
our approach is to exploit learning for the synthesis of design models. In particu-
lar, we present a procedure that infers a message-passing automaton (MPA) from
a given set of positive and negative scenarios of the system’s behavior provided
as message sequence charts (MSCs). The paper investigates which classes of reg-
ular MSC languages and corresponding MPA can (not) be learned, and presents a
dedicated tool based on the learning library LearnLib that supports our approach.

1 Introduction

The elicitation of requirements is the main initial phase in the typical software engineer-
ing development cycle. A plethora of elicitation techniques for requirement engineering
exist. Popular requirement engineering methods, such as the Inquiry Cycle and CREWS
[26], exploit use cases and scenarios to specify the system’s requirements. Sequence di-
agrams are also at the heart of the UML. A scenario is a partial fragment of the system’s
behavior, describing the system components, their message exchange and concurrency.
Their intuitive yet formal nature has resulted in a broad acceptance. Scenarios can be
positive or negative, indicating a desired or unwanted system behavior, respectively.
Different scenarios together form a more complete description of the system behavior.

The following design phase in software engineering is a major challenge as it is con-
cerned with a paradigm shift between the requirement specification—a partial, overlap-
ping and possibly inconsistent description of the system’s behavior—and a conforming
design model, a complete behavioral description of the system (at a high level of ab-
straction). During the synthesis of design models, usually automata-based models that
are focused on intra-agent communication, conflicting requirements will be detected
and need to be resolved. Typical resulting changes to requirements specifications in-
clude adding or deleting scenarios, and fixing errors that are found by a thorough analy-
sis (e.g., model checking) of the design model. Obtaining a complete and consistent set
of requirements together with a related design model is thus a highly iterative process.

This paper proposes a novel technique that is aimed to be an important stepping
stone towards bridging the gap between scenario-based requirement specifications and
design models. The novel aspect of our approach is to exploit learning algorithms for
the synthesis of distributed design models from scenario-based specifications. Since

O. Grumberg and M. Huth (Eds.): TACAS 2007, LNCS 4424, pp. 435–450, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

436 B. Bollig et al.

message-passing automata (MPA, for short) [10] are a commonly used model to realize
the behavior as described by scenarios, we adopt MPA as design model. We present
a procedure that interactively infers an MPA from a given set of positive and negative
scenarios of the system’s behavior provided as message sequence charts (MSCs). This
is achieved by generalizing Angluin’s learning algorithm for deterministic finite-state
automata (DFA) [4] towards specific classes of bounded MPA, i.e., MPA that can be
used to realize MSCs with channels of finite capacity. An important distinctive aspect of
our approach is that it naturally supports the incremental generation of design models.
Learning of initial sets of scenarios is feasible. On adding or deletion of scenarios, MPA
are adapted accordingly in an automated manner. Thus, synthesis phases and analysis
phases, supported by simulation or analysis tools such as MSCan [7], complement each
other in a natural fashion. Furthermore, on establishing the inconsistency of a set of
scenarios, our approach mechanically provides diagnostic feedback (in the form of a
counterexample) that can guide the engineer to evolve his requirements. This paper
investigates which classes of regular MSC languages and corresponding MPA can (not)
be learned, and presents Smyle, a dedicated tool based on the learning library LearnLib
[27] that supports our approach.

Generating automata-based models from scenarios has received a lot of attention.
These works include algorithms to generate statechart models from MSCs [19], formal-
ization and undecidability results for the synthesis for a simple variant of live sequence
charts (LSCs) [9], and Harel’s play-in, play-out approach for LSCs [11,12]. Another
approach is proposed by Alur et al. in [2,3]. Uchitel et al. [29] present an algorithm for
synthesizing transition systems from high-level MSCs. An executable variant of LSCs,
triggered MSCs, are presented in [28]. All approaches are based on a rather complete,
well-elaborated specification of the system to be, such as MSCs with loops or condi-
tions, high-level MSCs, triggered MSCs, or LSCs, whereas for our synthesis approach
only simple MSCs have to be provided as examples, simplifying the requirements
specification task.

Applying learning yields an incremental approach, and facilitates the generation of
diagnostic feedback. An alternative approach to using learning for inferring design
models from UML sequence diagrams has been proposed in [23]. This approach fo-
cuses on learning DFA (from words) representing the global system and only considers
synchronous communication. The use of learning for model-based testing in [18] has
similar characteristics. Using our technique, collections of MSCs (in fact, partial or-
ders or words with partial commutation) are learned and yield an MPA that explicitly
reflects the composite structure of the system together with the asynchronous message
exchange between the individual components.

After an introduction into MSCs and MPA (Sections 2 and 3), we formally define
the general learning setting and describe the extension of Angluin’s learning algorithm,
cf. Section 4. We then consider existentially and universally bounded MPA, i.e., MPA
for which some (all) possible event orderings can be realized with finite channels. It
is shown (in Section 5) that universally bounded MPA and safe product MPA, as well
as existentially bounded MPA with an a priori fixed channel capacity are learnable.
Section 6 presents the basic functionality of our tool and some initial case study results.

Synthesis of Design Models from Scenarios by Learning 437

2 Message Sequence Charts

Let Σ∗ denote the set of finite words over a finite alphabet Σ. A Σ-labeled partial order
is a triple P = (E, ≤, �) where E is a finite set, ≤ is a partial-order relation on E, i.e.,
it is reflexive, transitive, and antisymmetric, and � : E → Σ is a labeling function. A
linearization of P is an extension (E, ≤′, �) of P = (E, ≤, �) such that ≤′ ⊇ ≤ is a total
order. As we will consider partial orders up to isomorphism, the set of linearizations of
P, denoted Lin(P), is a subset of Σ∗.

We fix a finite set Proc of at least two processes, which exchange messages from
a finite set Msg by executing communication actions. Let Ch denote the set {(p, q) |
p, q ∈ Proc, p �= q} of reliable FIFO channels. For p ∈ Proc, Actp denotes the set of
actions of p, i.e., {!(p, q, a) | (p, q) ∈ Ch and a ∈ Msg} ∪ {?(p, q, a) | (p, q) ∈ Ch
and a ∈ Msg}. The action !(p, q, a) is to be read as “p sends the message a to q”, while
?(q, p, a) is the complementary action of receiving a sent from p to q (which is thus
executed by q). Moreover, let Act =

⋃
p∈Proc Actp.

Definition 1 (Message Sequence Chart (MSC)). An MSC (over Proc and Msg) is a
structure (E, {≤p}p∈Proc, <msg, �) with:

– E is a finite set of events,
– � : E → Act is a labeling function,
– for any p ∈ Proc, ≤p is a total order on Ep = �−1(Actp),
– <msg ⊆ E × E such that, for any e ∈ E, e <msg e′ or e′ <msg e for some e′ ∈ E,

and, for any (e1, e
′
1) ∈ <msg, there are p, q ∈ Proc and a ∈ Msg satisfying:

• �(e1) = !(p, q, a) and �(e′1) = ?(q, p, a),
• for any (e2, e

′
2) ∈ <msg with �(e2) = !(p, q, b) for some b ∈ Msg: e1 ≤p e2 iff

e′1 ≤q e′2 (which guarantees FIFO behavior), and
• ≤ = (<msg ∪

⋃
p∈Proc ≤p)∗ is a partial-order relation on E.

Let M = (E, {≤p}p∈Proc, <msg, �) be an MSC. A prefix of M is a structure (E′, {≤′
p

}p∈Proc, <
′
msg, �

′) such that E′ ⊆ E with e ∈ E′ and e′ ≤ e implies e′ ∈ E′, ≤′
p =

≤p ∩ (E′ × E′) for any p ∈ Proc, <′
msg = <msg ∩ (E′ × E′), and �′ is the restriction

of � to E′. We write P
 M if P is a prefix of the MSC M .
The set of MSCs is denoted by ���. A set of MSCs, L ⊆ ���, is called an MSC

language. For L ⊆ ���, we let Pref (L) denote {P | P
 M for some M ∈ L} (a
similar notation will be used in the context of words). Note that ��� ⊆ Pref (���).

Let M = (E, {≤p}p∈Proc, <msg, �) ∈ ���. We set Lin(M) to be Lin((E, ≤, �))
(canonically extended for prefixes of M); the linearizations of L ⊆ ��� are defined
by Lin(L) =

⋃
M∈L Lin(M). Note that L ⊆ ��� is uniquely determined by Lin(L),

i.e., for any L, L′ ⊆ ���, Lin(L) = Lin(L′) implies L = L′. A word w ∈ Act∗ is an
MSC word if w ∈ Lin(M) for some M ∈ ���; for B ∈ IN, w is B-bounded if, for any
prefix v of w and any (p, q) ∈ Ch ,

∑
a∈Msg |v|!(p,q,a) −

∑
a∈Msg |v|?(q,p,a) ≤ B where

|v|σ denotes the number of occurrences of σ in v. For B ∈ IN, let LinB(M) denote
{w ∈ Lin(M) | w is B-bounded}, and LinB(L) =

⋃
M∈L LinB(M) for L ⊆ ���.

Definition 2 (Boundedness). Let M ∈ ���. We call M universally B-bounded (i.e.,
∀B-bounded) if Lin(M) = LinB(M). We call it existentially B-bounded (i.e., ∃B-
bounded) if Lin(M) ∩ LinB(M) �= ∅.

438 B. Bollig et al.

The sets of ∀B-bounded MSCs and ∃B-bounded MSCs are denoted by ���∀B and
���∃B , respectively. In an ∃B-bounded MSC, the events can be scheduled such that,
during its execution, any channel contains at most B messages. In a ∀B-bounded MSC,
any scheduling is within the channel bound B. A set L ⊆ ��� is ∀B-bounded if
L ⊆ ���∀B, and ∃B-bounded if L ⊆ ���∃B . It is is ∀-/∃-bounded if it is ∀B-/∃B-
bounded for some B ∈ IN, respectively.

Example 1. The MSC word w = !(1, 2, req) (!(1, 2, req) ?(2, 1, req))4 ?(2, 1, req) is in
Lin(M) with M the MSC from Fig. 1c. Note that w is 2-bounded, but not 1-bounded.
But M has a 1-bounded linearization, and Lin1(M) = {(!(1, 2, req) ?(2, 1, req))5}. In
fact, M is ∃1-bounded and ∀B-bounded for B ≥ 5. The MSC in Fig. 1a is ∀4-bounded
and thus ∃4- bounded. It is even ∃2-bounded, but not ∃1-bounded. The MSC in Fig. 1b
is ∀3-and ∃1-bounded, but not ∀2-bounded. Finally, we note that the set of MSCs where
arbitrarily many messages are sent from 1 to 2 is ∃1-bounded, but not ∀-bounded.

3 Message-Passing Automata

An MPA [10] is a collection of finite automata (called processes) that share a single
global initial state and a set of global final states. Bilateral communication between
the processes takes place via unbounded reliable FIFO buffers. Process transitions are
labeled with send or receive actions. Action !(p, q, a) puts the message a at the end of
the channel from p to q. Receive actions are enabled only if the requested message is
found at the head of the channel. The expressive power of MPA is extended by allowing
components to exchange synchronization messages.

Definition 3 (Message-passing automaton (MPA)). An MPA is a tuple ((Ap)p∈Proc ,
Sync, sin , F) with:

– Sync is a nonempty finite set of synchronization messages,
– for each p ∈ Proc, Ap is a pair (Sp, Δp) where Sp is a finite set of local states and

Δp ⊆ Sp × Actp × Sync × Sp is a set of local transitions,
– sin ∈ SA =

∏
p∈Proc Sp is the global initial state, and

– F ⊆ SA is a set of global final states.

As in [17,24], we consider the linearizations of MSCs that are obtained from the global
automaton induced by an MPA. For an MPA A = ((Ap)p∈Proc,Sync, sin , F), where
Ap = (Sp, Δp), this global automaton is defined as follows. The set of configurations
of A, denoted by ConfA, consists of pairs (s, χ) with s ∈ SA and χ : Ch → (Msg ×
Sync)∗, indicating the channel contents. The global transition relation of A, =⇒A ⊆
ConfA × Act × Sync × ConfA, is defined by the following two inference rules (s[p]
refers to the p-component of a global state s ∈ SA):

(s[p], !(p, q, a), m, s′[p]) ∈ Δp ∧ for all r �= p, s[r] = s′[r]
((s, χ), !(p, q, a), m, (s′, χ′)) ∈ =⇒A

where χ′ = χ[(p, q) := (a, m) · χ((p, q))], i.e., χ′ maps (p, q) to the concatenation of
(a, m) and χ((p, q)); for all other channels, it coincides with χ.

(s[p], ?(p, q, a), m, s′[p]) ∈ Δp ∧ for all r �= p, s[r] = s′[r]
((s, χ), ?(p, q, a), m, (s′, χ′)) ∈ =⇒A

Synthesis of Design Models from Scenarios by Learning 439

1 2

req

req

req

req

req

req

req

req

ack

ack

ack

ack

(a)

1 2

req

req

req

ack

ack

(b)

1 2

req

req

req

req

req

(c)

Fig. 1. Example message sequence charts

!(req), m1

?(req), m2

?(ack), m1

!(ack), m1!(req), m2 ?(ack), m1

?(req), m1 !(ack), m1

A1: A2:

(a)

!(req)

?(req)!(req) ?(ack)

?(req) !(ack)

A1: A2:

(b)

!(req) ?(req)

A1: A2:

(c)

Fig. 2. Example message-passing automata

where χ((q, p)) = w · (a, m) and χ′ = χ[(q, p) := w]. The initial and final configura-
tions of the global automaton are (sin , χε) and F × {χε}, respectively, where χε maps
each channel onto the empty word.

Now MPA A defines the word language L(A) ⊆ Act∗, i.e., the set of words ac-
cepted by the global automaton of A while ignoring synchronization messages. The
MSC language of A, denoted by L(A), is the (unique) set L of MSCs such that we
have Lin(L) = L(A). The notions of boundedness on MSCs carry over to MPA in a
natural way, e.g., MPA A is ∀-bounded if its MSC language is ∀-bounded. The set of
∀-bounded and ∃B-bounded MPA is denoted by MPA∀ and MPA∃B, respectively.

Example 2. Fig. 2a shows a not ∃-bounded MPA with set of synchronization messages
{m1, m2} (and simplified action alphabet). Its only global final state is indicated by a
dashed line. Its MSC language, which contains MSCs such as in Fig. 1a, cannot be
recognized with less than two synchronization messages. For the MPA in Fig. 2b, spec-
ifying a part of the alternating-bit protocol (ABP), a single synchronization message
suffices (which is therefore omitted). It is ∀3-bounded (cf. Fig. 1b). The MPA in Fig. 2c
has no synchronization messages either. Its accepted MSCs are as in Fig. 1c and form
an ∃1-bounded MSC language that, however, is not ∀-bounded.

An MPA A = ((Ap)p∈Proc ,Sync, sin , F), with Ap = (Sp, Δp), is a product MPA
if |Sync| = 1 and F =

∏
p∈Proc Fp for some Fp ⊆ Sp, p ∈ Proc. The acceptance

440 B. Bollig et al.

condition is thus local, i.e., any process autonomously decides to halt. Moreover, prod-
uct MPA cannot distinguish between synchronization messages. MSC languages of
product MPA are referred to as realizable [24,21]. The MPA in Figs. 2b and 2c are
product MPA, whereas the MPA in Fig. 2a is not, as it employs two synchronization
messages. Actually, the latter has no equivalent product MPA. As for ordinary MPA,
the notions of boundedness carry over to product MPA; let MPAp

∀ and MPAp
∃B denote

the set of ∀-bounded product and ∃B-bounded product MPA, respectively. The MPA in
Fig. 2b is in MPAp

∀ , whereas the MPA in Fig. 2c is in MPAp
∃1, but not in MPAp

∀.
An MPA is called deadlock-free or safe if, from any configuration that is reach-

able from the initial configuration, one can reach a final configuration. The MPA from
Figs. 2b and 2c are safe, whereas the MPA depicted in Fig. 2a is not safe. The class of
∀-bounded safe product MPA is denoted by MPAsp

∀ .

4 An Extension of Angluin’s Algorithm

Angluin’s algorithm L∗ [4] is a well-known algorithm for learning deterministic finite
state automata (DFA). In this section, we recall the algorithm and extend it towards
learning objects that can be represented by DFA in a way made precise shortly. This
extension allows us to learn various classes of MPA, as described below.

Let us first recall some basic definitions. Let Σ be an alphabet. A deterministic finite
automaton (DFA) over Σ is a tuple A = (Q, q0, δ, F), where Q is its finite set of states,
q0 ∈ Q is the initial state, δ : Q × Σ → Q is its transition function, and F ⊆ Q is the
set of final states. The language of A is defined as usual and denoted by L(A).

4.1 The Basic Algorithm

A Learner , who initially knows nothing about a given DFA A, is trying to learn A by
asking queries to a Teacher , who knows A. There are two kinds of queries:

– A membership query consists in asking whether a string w ∈ Σ∗ is in L(A).
– An equivalence query consists in asking whether a hypothesized DFA H is correct,

i.e., whether L(H) = L(A). The Teacher will answer yes if H is correct, or else
supply a counterexample w, either in L(A) \ L(H) or in L(H) \ L(A).

The Learner maintains a prefix-closed set U ⊆ Σ∗ of prefixes, which are candidates
for identifying states, and a suffix-closed set V ⊆ Σ∗ of suffixes, which are used to
distinguish such states. The sets U and V are increased when needed during the al-
gorithm. The Learner makes membership queries for all words in (U ∪ UΣ)V , and
organizes the results into a table T which maps each u ∈ (U ∪ UΣ) to a mapping
T (u) : V → {+, −} where + represents accepted and − not accepted. In [4], each
function T (u) is called a row. When T is

– closed: for any u ∈ U and a ∈ Σ, there is a u′ ∈ U with T (ua) = T (u′), and
– consistent: for any u, u′ ∈ U and a ∈ Σ, T (u) = T (u′) implies T (ua) = T (u′a),

the Learner constructs a hypothesized DFA H = (Q, q0, δ, Q
+), where Q = {T (u) |

u ∈ U} is the set of distinct rows, q0 is the row T (ε) (with ε denoting the empty word),

Synthesis of Design Models from Scenarios by Learning 441

δ is defined by δ(T (u), a) = T (ua), and Q+ = {T (u) | u ∈ U and T (u)(ε) =
+}. After that, the Learner submits H in an equivalence query. If the answer is yes,
the learning procedure is completed, otherwise the returned counterexample is used to
extend U and V , and subsequent membership queries are performed until arriving at a
new hypothesized DFA.

4.2 Learning Objects Represented by Subclasses of Regular Word Languages

Our goal is to learn MPA from examples given as MSCs. To avail Angluin’s algorithm,
we need to establish a correspondence between MPA and regular word languages. As
we will consider several classes of MPA with corresponding representations in the next
section, let us first elaborate on general properties of representations for learning objects
of a fixed arbitrary set of objects O. These objects might be classified into equivalence
classes of an equivalence relation ∼ ⊆ O × O. In our setting, the objects will be MPA,
and two MPA are considered to be equivalent if they recognize the same MSC language.

We now have to represent elements from O (or, rather, their equivalence classes)
by regular word languages, say over an alphabet Σ. For MPA A, we might consider
regular languages L over Act such that L corresponds to the set Lin(L(A)). But not
every regular word language over Act gives rise to an MPA. In particular, it might
contain words that are not MSC words, i.e., do not correspond to some MSC. Thus, in
general, it is necessary to work within a subset D of Σ∗, i.e., we learn regular subsets
of D. For learning MPA, e.g., it is reasonable to set D = Lin(���).

It is not always sufficient to restrict to D in order to obtain a precise correspondence
between O and regular word languages. Often, regular word languages are required to
be closed under some equivalence relation and/or inference rule. E.g., an MPA always
gives rise to an MSC word language that contains either any linearization of some given
MSC, or none. Similarly, languages of product MPA are closed under inference (to be
made precise later) imposing similar requirements on the representing language. So let
us consider an equivalence relation ≈ ⊆ D×D and, moreover, a relation � ⊆ 2D×2Σ∗

where L1 � L2 intuitively means that L1 still requires at least one element from L2.

Regular Languages Objects

D

D

u ≈ u′

w′′

w ≈ w′

obj

∼

Fig. 3. Representing objects by regular lan-
guages

We say that L ⊆ D is ≈-closed (or,
closed under ≈) if, for any w, w′ ∈ D with
w ≈ w′, we have w ∈ L iff w′ ∈ L. More-
over, L is said to be �-closed (or, closed
under �) if, for any (L1, L2) ∈ �, we have
that L1 ⊆ L implies L ∩ L2 �= ∅.1 Con-
sider Fig. 3. The larger ellipse is closed
under ≈ (w ≈ w′) and under � (assum-
ing {w, w′} � {w′′}), whereas the smaller
circle is not.

Naturally, D, ≈, and � determine a par-
ticular class RminDFA(Σ, D, ≈, �) = {L ⊆
D | L is regular and closed under both ≈

1 Technically, ≈ and � could be encoded as a single relation. As they will serve a different
purpose, we separate them in the general framework, to simplify the forthcoming explanations.

442 B. Bollig et al.

and �} of regular word languages over Σ (where any language is understood to be
given by its minimal DFA). Suppose a language of this class RminDFA(Σ, D, ≈, �) can
be learned in some sense that will be made precise. For learning elements of O, we
still need to derive an object from a language in RminDFA(Σ, D, ≈, �). To this aim, we
suppose a computable bijective mapping obj : RminDFA(Σ, D, ≈, �) → [O]∼ = {[o]∼ |
o ∈ O} (where [o]∼ = {o′ ∈ O | o′ ∼ o}). Again, Fig. 3 illustrates a typical situation.

As Angluin’s algorithm works within the class of arbitrary DFA over Σ, its Learner
might propose DFA whose languages are neither a subset of D nor satisfy the closure
properties for ≈ and �. To rule out and fix such hypotheses, the language inclusion
problem and the closure properties in question are required to be constructively decid-
able, meaning that they are decidable and if the property fails, a reason of its failure can
be computed. Now, let us formally define what we understand by a learning setup:

Definition 4. Let O be a set of objects and ∼ ⊆ O × O be an equivalence relation. A
learning setup for (O, ∼) is a quintuple (Σ, D, ≈, �, obj) where

– Σ is an alphabet,
– D ⊆ Σ∗ is the domain,
– ≈ ⊆ D × D is an equivalence relation such that, for any w ∈ D, [w]≈ is finite,
– � ⊆ 2D × 2Σ∗

such that, for any (L1, L2) ∈ �, L1 is both finite and ≈-closed, and
L2 is a nonempty decidable language,

– obj : RminDFA(Σ, D, ≈, �) → [O]∼ is a bijective effective mapping in the sense
that, for L ∈ RminDFA(Σ, D, ≈, �), a representative of obj (L) can be computed.

Furthermore, we require that the following hold for DFA A over Σ:

(D1) The problem whether L(A) ⊆ D is decidable. If, moreover, L(A) �⊆ D, one
can compute w ∈ L(A) \ D. We then say that INCLUSION(Σ, D) is constructively
decidable.

(D2) If L(A) ⊆ D, it is decidable whether L(A) is ≈-closed. If not, one can compute
w, w′ ∈ D such that w ≈ w′, w ∈ L(A), and w′ �∈ L(A). We then say that the
problem EQCLOSURE(Σ, D, ≈) is constructively decidable.

(D3) If L(A) ⊆ D is closed under ≈, it is decidable whether L(A) is �-closed. If not,
we can compute (L1, L2) ∈ � (hereby, L2 shall be given in terms of a decision
algorithm that checks a word for membership) such that L1 ⊆ L(A) and L(A) ∩
L2 = ∅. We then say that INFCLOSURE(Σ, D, ≈, �) is constructively decidable.

Let us generalize Angluin’s algorithm to cope with the extended setting, and let (Σ,D,
≈, �, obj) be a learning setup for (O, ∼). The main changes concern the processing of
membership queries and the treatment of hypothesized DFA:

– Once a membership query has been processed for a word w ∈ D, queries w′ ∈
[w]≈ must be answered equivalently. They are thus not forwarded to the Teacher
anymore. We might think of an Assistant in between the Learner and the Teacher
that checks if an equivalent query has already been performed. Queries for w �∈ D
are not forwarded to the Teacher either but answered negatively by the Assistant .

– When the table T is both closed and consistent, the hypothesized DFA H is com-
puted as usual. After this, we proceed as follows:

Synthesis of Design Models from Scenarios by Learning 443

1. If L(H) �⊆ D, compute a word w ∈ L(H) \ D, declare it a counterexample,
and modify the table T accordingly (possibly involving further membership
queries).

2. If L(H) ⊆ D but L(H) is not ≈-closed, then compute w, w′ ∈ D such that
w ≈ w′, w ∈ L(H), and w′ �∈ L(H); perform membership queries for [w]≈.

3. If L(H) is the union of ≈-equivalence classes but not �-closed, then compute
(L1, L2) ∈ � such that L1 ⊆ L(H) and L(H) ∩ L2 = ∅; perform membership
queries for any word from L1; if all these membership queries are answered
positively, the Teacher is asked to specify a word w from L2, which will be
declared “positive”.

Actually, a hypothesized DFA H undergoes an equivalence test only if L(H) ⊆ D
and L(H) is both ≈- and �-closed. I.e., if, in the context of the extended learning
algorithm, we speak of a hypothesized DFA, we actually act on the assumption that
L(H) is the union of ≈-equivalence classes and closed under �.

Let the extension of Angluin’s algorithm wrt. a learning setup as sketched above be
called EXTENDEDANGLUIN (its pseudo code can be found in [6]). A careful analysis
shows:

Theorem 1. Let (Σ, D, ≈, �, obj) be a learning setup for (O, ∼). If o ∈ O has to be
learned, then invoking EXTENDEDANGLUIN((O, ∼), (Σ, D, ≈, �, obj)) returns, after
finitely many steps2, an object o′ ∈ O such that o′ ∼ o.

The theorem suggests the following definition:

Definition 5. Let O be a set of objects and ∼ ⊆ O ×O be an equivalence relation. We
say that (O, ∼) is learnable if there is some learning setup for (O, ∼).

5 Learning Message-Passing Automata

This section identifies some learnable classes of MPA, i.e, regular word languages that
can be learned and generated by an MPA. It seems unlikely to find a reasonable learn-
ing approach for arbitrary MPA, which is suggested by negative results from [8]. We
therefore propose to consider ∃- and ∀-regular MSC languages and study learnability
for the class of MPA and product MPA.

5.1 Regular MSC Languages and Product MSC Languages

A word language is said to represent an MSC language L whenever it contains a lin-
earization for each M ∈ L, and no linearizations for M ′ �∈ L. Formally:

Definition 6 (Representative). L ⊆ Act∗ is a representative for L ⊆ ��� if L ⊆
Lin(L) and, for any MSC M , M ∈ L iff Lin(M) ∩ L �= ∅.

2 When learning a DFA over Σ with n states, the number of membership queries in the worst
case is O(|Σ| · n3).

444 B. Bollig et al.

1 2
a

M1:

1 2
a

a

M2:

1 2 3 4
a a

M3:

3 4
a

M4:

Fig. 4. Some MSCs

Example 3. Let M1 ·M2 denote the concatenation of MSCs M1 and M2, i.e., the unique
MSC M such that {w1w2 | w1 ∈ Lin(M1), w2 ∈ Lin(M2)} ⊆ Lin(M). {M}∗
denotes the Kleene closure of ·. The MSC language {M1}∗ for MSC M1 in Fig. 4
is not regular in the sense of [17], as Lin({M1}∗) is not a regular word language.
However, {M1}∗ can be represented by the regular word language Lin1({M1}∗) =
{(!(1, 2, a) ?(2, 1, a))n | n ∈ IN}. Considering the MSC M2 in Fig. 4, we even have
that Lin({M2}∗) is a regular representative for {M2}∗.

The interesting case occurs when representatives are regular. But some MSC languages
cannot be generated by MPA as their regular representatives require infinite channels.

Example 4. The ∃1-bounded MSC language {M3}∗ for MSC M3 in Fig. 4 has the
regular representative {(!(1, 2, a) ?(2, 1, a) !(3, 4, a) ?(4, 3, a))n | n ∈ IN}, but there
is no B ∈ IN such that LinB({M3}∗) is a regular representative for {M3}∗. Thus,
according to results from [16], it cannot be the language of some MPA.

Definition 7 (∀- and ∃-regular). L ⊆ ��� is ∀-regular if Lin(L) ⊆ Act∗ is regular.
L is ∃-regular if, for some B ∈ IN, LinB(L) is a regular representative for L.

Any ∀-regular MSC language is ∀-bounded and any ∃-regular MSC language is ∃-
bounded. Moreover, any ∀-regular MSC language is ∃-regular. An MPA is called ∀-
regular, ∃-regular, etc., if so is its MSC language.

Example 5. The MPA in Fig. 2a is not ∃-regular, whereas the MPA in Fig. 2b is ∀-
regular. In particular, only finitely many global configurations are reachable from the
initial configuration. The MPA in Fig. 2c is ∃-regular, but not ∀-regular.

Regular MSC languages are of interest as they are realizable by MPA.

Theorem 2 ([16,17,20]). Regular MSC languages versus bounded MPA:

(a) For any ∃-regular MSC language L (given as a regular representative), one can
effectively compute an MPA A such that L(A) = L. If L is ∀-regular, then A can
be assumed to be deterministic.

(b) Let B ∈ IN. For A ∈ MPA∃B , LinB(L(A)) is a regular representative for L(A)
and L(A) is ∃-regular. For A ∈ MPA∀, Lin(L(A)) is a regular representative for
L(A) and L(A) is ∀-regular.

A realization of {M1, M4} (cf. Fig. 4) also infers M3 provided the bilateral interaction
between the processes is completely independent. A set of MSCs that is closed under
such an inference is a product MSC language (it is called weakly realizable in [2]). For
M = (E, {≤p}p∈Proc, <msg, �) ∈ Pref (���), the behavior of M can be split into its

Synthesis of Design Models from Scenarios by Learning 445

components M � p = (Ep, ≤p, �|Ep
), p ∈ Proc, each of which represents the behavior

of a single agent, which can be seen as a word over Actp. For finite set L ⊆ ���

and M ∈ ���, let L �p
MSC M if, for any p ∈ Proc, there is M ′ ∈ L such that

M ′ �p = M �p.

Definition 8 (Product MSC language [2]). L ⊆ ��� is a product MSC language if,
for any M ∈ ��� and any finite L′ ⊆ L, L′ �p

MSC M implies M ∈ L.

For practical applications, it is desirable to consider so-called safe product languages.
Those languages are implementable in terms of a safe product MPA, thus one that is
deadlock-free. For a finite set L ⊆ ��� and P ∈ Pref (���), we write L �s

MSC P if,
for any p ∈ Proc, there is M ∈ L such that P � p is a prefix of M � p.

Definition 9 (Safe product MSC language [2]). A product MSC language L ⊆ ���

is called safe if, for any finite L′ ⊆ L and any P ∈ Pref (���), L′ �s
MSC P implies

P
 M for some M ∈ L.

Lemma 1 ([21], cf. [2,3]). L ⊆ ��� is a ∀-regular safe product MSC language (given
in terms of Lin(L)) iff it is accepted by some A ∈ MPAsp

∀ . Both directions are effective.

5.2 Learning ∀-Bounded Message-Passing Automata

Towards a learning setup for ∀-bounded MPA, we let

– ∼∀ = {(A, A′) ∈ MPA∀ × MPA∀ | L(A) = L(A′)},
– ≈MW = {(w, w′) ∈ Lin(M) × Lin(M) | M ∈ ���}, and
– obj ∀ : RminDFA(Act ,Lin(���), ≈MW, ∅) → [MPA∀]∼∀ be an effective bijective

mapping whose existence is stated by Theorem 2 (a).

To prove that (Act ,Lin(���), ≈MW, ∅, obj ∀) is indeed a learning setup for the pair
(MPA∀, ∼∀), we need to establish the corresponding decidability results.

Proposition 1. INCLUSION(Act ,Lin(���)) and EQCLOSURE(Act ,Lin(���),≈MW)
are constructively decidable.

The decidability part stems from [17, Prop. 2.4] (see also [25]). The corresponding
decision algorithm runs in time linear in the size of the transition function of the DFA.
Counterexamples can be computed in linear time as well. For a detailed description,
please consult [6]. Note that the question if the ≈MW-closure of a regular set of MSC
words is a regular language, too, is undecidable. For our learning approach, however,
this problem does not play any role. For arbitrary finite automata A over Act with
L(A) ⊆ Lin(���) (which are not necessarily deterministic), it was shown in [25]
(for Büchi automata) that deciding if L(A) is ≈MW-closed is PSPACE complete. In our
context of minimal DFA, however, the problem becomes much simpler.

Proposition 2. (Act ,Lin(���), ≈MW, ∅, obj ∀) is a learning setup for (MPA∀, ∼∀).

Theorem 3. (MPA∀, ∼∀) is learnable.

446 B. Bollig et al.

5.3 Learning ∃-Bounded Message-Passing Automata

In this subsection, we are aiming at a learning setup for ∃-bounded MPA. As stated in
Def. 7, we now have to provide a channel bound. So let B ∈ IN and set

– ∼∃B = {(A, A′) ∈ MPA∃B × MPA∃B | L(A) = L(A′)},
– ≈∃B = {(w, w′) ∈ LinB(M) × LinB(M) | M ∈ ���}, and
– obj ∃B : RminDFA(Act ,LinB(���), ≈∃B, ∅) → [MPA∃B]∼∃B

to be an effective
bijective mapping whose existence is stated by Theorem 2.

In the following, we will see that (Act ,LinB(���), ≈∃B, ∅, obj ∃B) is indeed a learn-
ing setup for (MPA∃B, ∼∃B). Adapting Prop. 1, we can establish the corresponding
decidability result (see [6] for the proof):

Proposition 3. For any B ∈ IN, the problems INCLUSION(Act ,LinB(���)) and
EQCLOSURE(Act ,LinB(���), ≈∃B) are constructively decidable.

Proposition 4. For any B ∈ IN, (Act ,LinB(���), ≈∃B, ∅, obj ∃B) is a learning setup
for (MPA∃B, ∼∃B).

Theorem 4. For any B ∈ IN, (MPA∃B, ∼∃B) is learnable.

5.4 Learning ∀-Bounded Safe Product Message-Passing Automata

Let us set the scene for learning ∀-bounded safe product MPA. In this case, we have to
create an inference rule � �= ∅ (cf. Definitions 8 and 9). We first define relations �p

MW
and �s

MW for word languages, which correspond to �p
MSC and �s

MSC, respectively:

– �p
MW = {(Lin(L), {w}) | L ⊆ ��� is finite and ∃ M ∈ ���: L �p

MSC M ∧
w ∈ Lin(M)}

– �s
MW = {(Lin(L), L2) | L ⊆ ��� is finite and ∃P ∈ Pref (���) and u ∈

Lin(P) such that L �s
MSC P and L2 = {w ∈ Lin(���) | w = uv for some

v ∈ Act∗}} (note that L2 is a decidable language).

Given these relations, we can define our learning setup as follows:

– ∼sp
∀ = {(A, A′) ∈ MPAsp

∀ × MPAsp
∀ | L(A) = L(A′)},

– ≈MW = {(w, w′) ∈ Lin(M) × Lin(M) | M ∈ ���} (as before),
– �sp

MW = �p
MW ∪ �s

MW,
– obj sp

∀ : RminDFA(Act ,Lin(���), ≈MW, �sp
MW) → [MPAsp

∀]∼sp
∀

be an effective bijec-
tive mapping, as guaranteed by Lemma 1.

Proposition 5. INFCLOSURE(Act ,Lin(���),≈MW,�sp
MW) is constructively decidable.

Proof. Decidability of INFCLOSURE(Act ,Lin(���), ≈MW, �sp
MW) has been shown in

[3, Theorem 3], where an EXPSPACE-algorithm for bounded high-level MSCs is given,
which reduces the problem to finite automata with a ≈MW-closed language. From such
a ≈MW-closed DFA H, we compute a (componentwise) minimal, reduced (i.e., without
local sink states), and deterministic product MPA A, by simply taking the projections
of H onto Actp for any p ∈ Proc, minimizing and determinizing them. Then, the MSC

Synthesis of Design Models from Scenarios by Learning 447

language L associated with H is a safe product language iff A is a safe product MPA
realizing L. From H, we can moreover compute a bound B such that any run of A
exceeding the buffer size B cannot correspond to a prefix of some MSC word in L(H).
Thus, a run through A (in terms of a prefix of an MSC word) that either

– exceeds the buffer size B (i.e., it is not B-bounded), or
– does not exceed the buffer size B, but results in a deadlock configuration

gives rise to a prefix u (of an MSC word) that is implied by H wrt. �s
MW, i.e., L(H)

must actually contain a completion uv ∈ Lin(���) of u. Obviously, one can decide if a
word is such a completion of u. The completions of u form one possible L2. It remains
to specify a corresponding set L1 for u. By means of H, we can, for any p ∈ Proc,
compute a word wp ∈ L(H) such that the projection of u onto Actp is a prefix of the
projection of wp onto Actp. Observe that wp can be computed in polynomial time. We
set L1 =

⋃
p∈Proc[wp]≈MW .

Finally, suppose that, in A, we could neither find a prefix exceeding the buffer size
B nor a reachable deadlock configuration in the B-bounded fragment. Then, we still
have to check if A recognizes L. If not, one can compute a (B-bounded) MSC word
w ∈ L(A) \ L(H) whose MSC is implied by L wrt. �p

MSC. Setting L2 = {w}, a
corresponding set L1 can be specified as the union of sets [wp]≈MW , as above. �
Together with Prop. 1, we obtain the following two results:

Proposition 6. The quintuple (Act ,Lin(���), ≈MW, �sp
MW, obj sp

∀) is a learning setup
for (MPAsp

∀ , ∼sp
∀).

Theorem 5. (MPAsp
∀ , ∼sp

∀) is learnable.

5.5 Learning ∀-Bounded Product Message-Passing Automata

Finally, we study the problem of learning ∀-bounded product MPA. Unfortunately, we
are in the situation that the canonical definition of a learning setup does not work:

Proposition 7 ([3]). INFCLOSURE(Act ,Lin(���), ≈MW, �p
MW) is not constructively

decidable. More specifically, it is undecidable if the language of a ≈MW-closed DFA
over Act is closed under �p

MW.

Similar decision problems were considered in [24,2,3,21]. Most of them are, however,
concerned with translating a high-level MSC into a product MPA.

6 Tool Description and Future Work

We have implemented the learning approach presented in the preceding sections in the
tool Smyle (Synthesizing Models bY Learning from Examples), which can be freely
downloaded at http://smyle.in.tum.de. It is written in Java and makes use of
the LearnLib library [27], which implements Angluin’s algorithm, and the libraries
Grappa [5] and JGraph [22] for visualization purposes. For computing linearizations
of MSCs we use the algorithm given in [30] running in O(n ·e(P)) time, where n is the
number of elements of the partial order P and e(P) = |E(P)| is the number of linear
extensions of P. The tool is capable of learning universally regular and existentially
regular MSC languages. The framework contains the following three main components:

448 B. Bollig et al.

– the Teacher, representing the interface between the GUI (user) and the Assistant
– the Learner, containing the LearnLib part
– the Assistant, keeping track of membership queries that were not yet asked, check-

ing for B-boundedness as well as the language type (∃/∀)

The learning chain: Initially, the user is asked to specify the learning setup. After hav-
ing selected a language type (existentially/universally) and a channel bound B, the user
provides a set of MSCs. These MSC specifications must then be divided into positive
(i.e., MSCs contained in the language to learn) and negative (i.e., MSCs not contained
in the language to learn). After submitting these examples, all linearizations are checked
for consistency with respect to the properties of the learning setup. Violating lineariza-
tions are stored as negative examples. Now the learning algorithm starts. The Learner
continuously communicates with the Assistant in order to gain answers to membership
queries. This procedure halts as soon as a query cannot be answered by the Assistant. In
this case, the Assistant forwards the inquiry to the user, displaying the MSC in question
on the screen. The user must classify the MSC as positive or negative (cf. Fig. 5 (1)).

The Assistant checks the classification for validity wrt. the learning setup. Depend-
ing on the outcome of this check, the linearizations of the current MSC are assigned
to the positive or negative set of future queries. Moreover, the user’s answer is passed
to the Learner, which then continues his question-and-answer game with the Assis-
tant. If the LearnLib proposes a possible automaton, the Assistant checks whether

Fig. 5. Smyle screenshot

the learned model is consistent
with all queries that have been cat-
egorized but not yet been asked. If
he encounters a counter-example,
he presents it to the learning al-
gorithm which, in turn, continues
the learning procedure until the
next possible solution is found. In
case there is no further evidence
for contradicting samples, a new
frame appears (cf. Fig. 5 (2,3)).
Among others, it visualizes the
currently learned DFA (2,4) and
a panel for displaying MSCs (3)
of runs of the system described by
the automaton. The user is then
asked if he agrees with the solu-

tion and may either stop or introduce a new counter-example proceeding with the learn-
ing procedure.

Case studies: We applied Smyle to the simple negotiation protocol from [13], the
continuous update protocol from [14], a protocol being part of USB 1.1 mentioned
in [15], and a variant of the ABP. For the first one, Smyle was provided with 6 pos-
itive MSCs and performed 9675 membership and 65 user-queries. It resulted in an
automaton consisting of 9 states. The second protocol (giving 4 sample MSCs as in-
put) was learned after 5235 membership and 43 user queries resulting in an automaton

Synthesis of Design Models from Scenarios by Learning 449

containing 8 states. The third protocol was learned after 1373 membership and 12
user-queries, providing it with 4 sample MSCs. The inferred automaton was composed
of 9 states. The ABP was realized by an automaton with 15 states after 19276 member-
ship and 105 user queries, providing 4+1 positive examples. For further details such as
the input MSCs and inferred automata, we refer to [6] and the webpage of our tool.

Future work: There are other interesting classes of learnable MPA, and our setting
applies to the causal closure by Adsul et al. [1]. We plan to provide high-level MSCs as
a means to predefine patterns of positive or negative examples. Moreover, MSCan [7]
will be integrated into Smyle to support formal analysis of a suggested model.

Smyle is freely available for exploration at http://smyle.in.tum.de.

References

1. B. Adsul, M. Mukund, K. N. Kumar, and V. Narayanan. Causal closure for MSC languages.
In FSTTCS 2005, volume 3821 of LNCS, pages 335–347. Springer, 2005.

2. R. Alur, K. Etessami, and M. Yannakakis. Inference of message sequence charts. IEEE
Trans. Softw. Eng., 29(7):623–633, 2003.

3. R. Alur, K. Etessami, and M. Yannakakis. Realizability and verification of MSC graphs. Th.
Comp. Sc., 331(1):97–114, 2005.

4. D. Angluin. Learning regular sets from queries and counterexamples. Inf. Comput.,
75(2):87–106, 1987.

5. AT&T. Grappa - A Java Graph Package. http://www.research.att.com/ john/Grappa/.
6. B. Bollig, J.-P. Katoen, C. Kern, and M. Leucker. Replaying play in and play out: Synthesis of

design models from scenarios by learning. Research Report AIB-2006-12, RWTH Aachen,
2006.

7. B. Bollig, C. Kern, M. Schlütter, and V. Stolz. MSCan: A tool for analyzing MSC specifica-
tions. In TACAS 2006, volume 3920 of LNCS, pages 455–458. Springer, 2006.

8. B. Bollig and M. Leucker. Message-passing automata are expressively equivalent to EMSO
logic. Th. Comp. Sc., 358(2-3):150–172, 2006.

9. Y. Bontemps, P. Heymand, and P.-Y. Schobbens. From live sequence charts to state machines
and back: a guided tour. IEEE Trans. Softw. Eng., 31(12):999–1014, 2005.

10. D. Brand and P. Zafiropulo. On communicating finite-state machines. J. of the ACM,
30(2):323–342, 1983.

11. W. Damm and D. Harel. LSCs: Breathing life into message sequence charts. Formal Methods
in System Design, 19:1:45–80., 2001.

12. D.Harel and R. Marelly. Come, Let’s Play: Scenario-Based Programming Using LSCs and
the Play-Engine. Springer, 2003.

13. U. Endriss, N. Maudet, F. Sadri, and F. Toni. Logic-based agent communication protocols.
In Workshop on Agent Communication Languages, pages 91–107, 2003.

14. U. Endriss, N. Maudet, F. Sadri, and F. Toni. Protocol conformance for logic-based agents.
In IJCAI 2003, pages 679–684, 2003.

15. B. Genest. Compositional message sequence charts (CMSCs) are better to implement than
MSCs. In TACAS 2005, volume 3440 of LNCS, pages 429–444. Springer, 2005.

16. B. Genest, D. Kuske, and A. Muscholl. A Kleene theorem and model checking algorithms
for existentially bounded communicating automata. Inf. Comput., 204(6):920–956, 2006.

17. J. G. Henriksen, M. Mukund, K. N. Kumar, M. Sohoni, and P. S. Thiagarajan. A theory of
regular MSC languages. Inf. and Comput., 202(1):1–38, 2005.

450 B. Bollig et al.

18. H. Hungar, O. Niese, and B. Steffen. Domain-specific optimization in automata learning. In
CAV 2003, volume 2725 of LNCS, pages 315–327. Springer, 2003.

19. I. Krüger, R. Grosu, P. Scholz, and M. Broy. From MSCs to statecharts. In DIPES 1998,
volume 155 of IFIP Conf. Proc., pages 61–72. Kluwer, 1998.

20. D. Kuske. Regular sets of infinite message sequence charts. Inf. Comput., 187:80–109, 2003.
21. M. Lohrey. Realizability of high-level message sequence charts: closing the gaps. Th. Comp.

Sc., 309(1-3):529–554, 2003.
22. J. Ltd. JGraph - Java Graph Visualization and Layout. http://www.jgraph.com/.
23. E. Mäkinen and T. Systä. MAS – An interactive synthesizer to support behavioral modeling

in UML. In ICSE 2001, pages 15–24. IEEE Computer Society, 2001.
24. R. Morin. Recognizable sets of message sequence charts. In STACS 2002, volume 2285 of

LNCS, pages 523–534. Springer, 2002.
25. A. Muscholl and D. Peled. From finite state communication protocols to high-level message

sequence charts. In ICALP 2001, volume 2076 of LNCS, pages 720–731. Springer, 2001.
26. B. Nuseibeh and S. Easterbrook. Requirements engineering: a roadmap. In ICSE 2000, pages

35–46. ACM, 2000.
27. H. Raffelt and B. Steffen. LearnLib: A library for automata learning and experimentation. In

FASE 2006, volume 3922 of LNCS, pages 377–380, 2006.
28. B. Sengupta and R. Cleaveland. Triggered message sequence charts. IEEE Trans. Softw.

Eng., 32(8):587–607, 2006.
29. S. Uchitel, J. Kramer, and J. Magee. Synthesis of behavioral models from scenarios. IEEE

Trans. Softw. Eng., 29(2):99–115, 2003.
30. Y. L. Varol and D. Rotem. An algorithm to generate all topological sorting arrangements.

Comput. J., 24(1):83–84, 1981.

Improved Algorithms for the Automata-Based
Approach to Model-Checking�

Laurent Doyen1 and Jean-François Raskin2

1 I&C, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland
2 CS, Université Libre de Bruxelles (ULB), Belgium

Abstract. We propose and evaluate new algorithms to support the automata-
based approach to model-checking: algorithms to solve the universality and lan-
guage inclusion problems for nondeterministic Büchi automata. To obtain those
new algorithms, we establish the existence of pre-orders that can be exploited to
efficiently evaluate fixed points on the automata defined during the complemen-
tation step (that we keep implicit in our approach). We evaluate the performance
of our new algorithm to check for universality of Büchi automata experimentally
using the random automaton model recently proposed by Tabakov and Vardi.
We show that on the difficult instances of this probabilistic model, our algorithm
outperforms the standard ones by several orders of magnitude. This work is an
extension to the infinite words case of new algorithms for the finite words case
that we and co-authors have presented in a recent paper [DDHR06].

1 Introduction

In the automata-based approach to model-checking [VW86, VW94], programs and
properties are modeled by finite automata. Let A be a finite automaton that models
a program and let B be a finite automaton that models a specification that the program
should satisfy: all the traces of the program (executions) should be traces of the speci-
fication, that is L(A) ⊆ L(B). To solve the inclusion problem, the classical automata-
theoretic solution consists in complementing the language of the automaton B and then
to check that L(A)∩Lc(B) is empty (the later intersection being computed as a product).

In the finite case, the program and the specification are finite automata over finite
words (NFA) and the construction for the complementation is conceptually simple: it
is achieved by a classical subset construction. In the case of infinite words, the pro-
gram and (or at least) the specification are nondeterministic Büchi automata (NBW).
The NBW are also complementable; this was first proved by Büchi in the late six-
ties [BL69]. However, the result is much harder to obtain than in the case of NFA. The
orginal construction of Büchi has a O(22n

) worst case complexity (where n is the size of
the automaton to complement) which is not optimal. In the late eighties Safra in [Saf88],
and later Kupferman and Vardi in [KV97], have given optimal complementation pro-
cedures that have O(2n log n) complexity (see [Mic88] for the lower bound). While
for finite words, the classical algorithm has been implemented and shown practically
usable, for infinite words, the theoretically optimal solution is difficult to implement

� Supported by the FRFC project “Centre Fédéré en Vérification” funded by the Belgian Na-
tional Science Foundation (FNRS) under grant nr 2.4530.02.

O. Grumberg and M. Huth (Eds.): TACAS 2007, LNCS 4424, pp. 451–465, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

452 L. Doyen and J.-F. Raskin

and very few results are known about their practical behavior. The actual attemps to
implement them have shown very limited in the size of the specifications that can be
handled: automata with more than around ten states are intractable [Tab06, GKSV03].
Such sizes are clearly not sufficient in pratcice. As a consequence, tools like SPIN

[RH04] that implement the automata-theoretic approach to model-checking ask either
that the complement of the specification is explicitly given or they limit the specification
to properties that are expressible in LTL.

In this paper, we propose a new approach to check L(A) ⊆ L(B) that can handle
much larger Büchi automata. In a recent paper, we have shown that the classical subset
construction can be avoided and kept implicit for checking language inclusion and lan-
guage universality for NFA and their alternating extensions [DDHR06]. Here, we adapt
and extend that technique to the more intricate automata on infinite words.

To present the intuition behind our new techniques, let us consider a simpler setting
of the problem. Assume that we are given a NBW B and we want to check if Σω ⊆
L(B), that is to check if L(B) is universal. First, remember that L(B) is universal
when Lc(B) is empty. The classical algorithm first complements B and then checks
for emptiness. The language of a NBW is nonempty if there exists an infinite run of
the automaton that visits accepting locations infinitely often. The existence of such
a run can be established in polynomial time by computing the following fixed point
F ≡ νy · μx · (Pre(x) ∪ (Pre(y) ∩ α)) where Pre is the predecessor operator of the
automaton (given a set L of locations it returns the set of locations that can reach L in
one step) and α is the set of accepting locations of the automaton. The automaton is
non-empty if and only if its initial location is a member of the fixed point F . This well-
known algorithm is quadratic in the size of the automaton. Unfortunately, the automaton
that accepts the language Lc(B) is usally huge and the evaluation of the fixed point is
unfeasable for all but the smallest specifications B. To overcome this difficulty, we
make the following observation: if � is a simulation pre-order on the locations of Bc

(�1 � �2 means �1 can simulate �2) which is compatible with the accepting condition (if
�1 � �2 and �2 ∈ α then �1 ∈ α), then the sets that are computed during the evaluation
of F are all �-closed (if an element � is in the set then all �′ � � are also in the set).
Then �-closed sets can be represented by their �-maximal elements and if operations
on such sets can be computed directly on their representation, we have the ingredients
to evaluate the fixed point in a more efficient way. For an automaton B over finite words,
set inclusion would be a typical example of a simulation relation for Bc [DDHR06].

We show that the classical constructions for Büchi automata that are used in the
automata-theoretic approach to model-checking are all equipped with a simulation pre-
order that exists by construction and does not need to be computed. On that basis we
propose new algorithms to check universality of NBW, language inclusion for NBW,
and emptiness of alternating Büchi automata (ABW).

We evaluate an implementation of our new algorithm for the universality problem
of NBW and on a randomized model recently proposed by Tabakov and Vardi. We
show that the performance of the new algorithm on this randomized model outperforms
by several order of magnitude the existing implementations of the Kupferman-Vardi
algorithm [Tab06, GKSV03]. When the classical solution is limited to automata of size
8 for some parameter values of the randomized model, we are able to handle automata

Improved Algorithms for the Automata-Based Approach to Model-Checking 453

with more than one hundred locations for the same parameter values. We have identified
the hardest instances of the randomized model for our algorithms and show that we can
still handle problems with several dozens of locations for those instances.

Structure of the paper In Section 2, we recall the Vardi-Kupferman and Miyano-
Hayashi constructions that are used for complementation of NBW. In Section 3, we
recall the notion of simulation pre-order for a Büchi automaton and prove that the fixed
point needed to establish emptiness of nondeterministic Büchi automata handles only
closed sets for such pre-orders. We use this observation in Section 4 to define a new
algorithm to decide emptiness of ABW. In Section 5, we adapt the technique for the
universality problem of NBW. In Section 6, we report on the performances of the new
algorithm for universality. In Section 7, we extend those ideas to obtain a new algorithm
for language inclusion of NBW. The omitted technical proofs can be found in [DR06].

2 Büchi Automata and Classical Algorithms

An alternating Büchi automaton (ABW) is a tuple A = 〈Loc, ι, Σ, δ, α〉 where:

– Loc is a finite set of states (or locations). The size of A is |A| = |Loc|;
– ι ∈ Loc is the initial state;
– Σ is a finite alphabet;
– δ : Loc × Σ → B+(Loc) is the transition function where B+(Loc) is the set of

positive boolean formulas over Loc, i.e. formulas built from elements in Loc ∪
{true, false} using the boolean connectives ∧ and ∨;

– α ⊆ Loc is the acceptance condition.

We say that a set X ⊆ Loc satisfies a formula ϕ ∈ B+(Loc) (noted X |= ϕ) iff the truth
assignment that assigns true to the members of X and assigns false to the members of
Loc\X satisfies ϕ.

A run of A on an infinite word w = σ0 · σ1 . . . is a DAG Tw = 〈V, vι, →〉 where:

– V = Loc × N is the set of nodes. A node (�, i) represents the state � after the first i
letters of the word w have been read by A. Nodes of the form (�, i) with � ∈ α are
called α-nodes;

– vι = (ι, 0) is the root of the DAG;
– and → ⊆ V ×V is such that (i) if (�, i) → (�′, i′) then i′ = i+1 and (ii) for every

(�, i) ∈ V , the set {�′ | (�, i) → (�′, i + 1)} satisfies the formula δ(�, σi).
We say that (�′, i + 1) is a successor of (�, i) if (�, i) → (�′, i + 1), and we say that
(�′, i′) is reachable from (�, i) if (�, i) →∗ (�′, i′).

A run Tw = 〈V, vι, →〉 of A on an infinite word w is accepting iff all its infinite paths
π rooted at vι (thus π ∈ Locω) visit α-nodes infinitely often. An infinite word w ∈ Σω

is accepted by A iff there exists an accepting run on it. We denote by L(A) the set
of infinite words accepted by A, and by Lc(A) the set of infinite words that are not
accepted by A.

A nondeterministic Büchi automaton (NBW) is an ABW whose transition function
is restricted to disjunctions over Loc. Runs of NBW reduce to (linear) traces. The tran-
sition function of NBW is often seen as a function [Q × Σ → 2Q] and we write

454 L. Doyen and J.-F. Raskin

δ(�, σ) = {�1, . . . , �n} instead of δ(�, σ) = �1 ∨ �2 ∨ · · · ∨ �n. We note by PreAσ (L) the
set of predecessors by σ of the set L: PreAσ (L) = {� ∈ Loc | ∃�′ ∈ L : �′ ∈ δ(�, σ)}.
Let PreA(L) = {� ∈ Loc | ∃σ ∈ Σ : � ∈ PreAσ (L)}.

Problems. The emptiness problem for NBW is to decide, given an NBW A, whether
L(A) = ∅. This problem is solvable in polynomial time. The symbolic approach
through fixed point computation is quadratic in the size of A.

The universality problem for NBW is to decide, given an NBW A over the alphabet
Σ whether L(A) = Σω where Σω is the set of all infinite words on Σ. This problem
is PSPACE-complete [SVW87]. The classical algorithm to decide universality is to first
complement the NBW and then to check emptiness of the complement. The difficult
step is the complementation as it may cause an exponential blow-up in the size of the
automaton. There exists two types of construction, one is based on a determinization
of the automaton [Saf88] and the other uses ABW as an intermediate step [KV97]. We
review the second construction below.

The language inclusion problem for NBW is to decide, given two NBW A and B,
whether L(A) ⊆ L(B). This problem is central in model-checking and it is PSPACE-
complete in the size of B. The classical solution consists in checking the emptiness of
L(A) ∩ Lc(B), which again requires the expensive complementation of B.

The emptiness problem for ABW is to decide, given an ABW A, whether L(A) = ∅.
This problem is also PSPACE-complete and it can be solved using a translation from
ABW to NBW that preserves the language of the automaton [MH84]. Again, this con-
struction involves an exponential blow-up that makes straight implementations feasi-
ble only for automata limited to around ten states. However, the emptiness problem for
ABW is very important in practice for LTL model-checking as there exist efficient poly-
nomial translations from LTL formulas to ABW [GO01]. The classical construction is
presented below.

Kupferman-Vardi construction. Complementation of ABW is straightforward by du-
alizing the transition function (by swapping ∧ and ∨, and swapping true and false in
each formulas) and interpreting the accepting condition α as a co-Büchi condition, i.e.
a run Tw is accepted if all its infinite paths have a suffix that contains no α-nodes.

The result is an alternating co-Büchi automaton (ACW). The accepting runs of ACW
have a layered structure that has been studied in [KV97], where the notion of ranks is
defined. The rank is a positive number associated to each node of a run Tw of an ACW
on a word w. Let G0 = Tw. Nodes of rank 0 are those nodes from which only finitely
many nodes are reachable in G0. Let G1 be the run Tw from which all nodes of rank
0 have been removed. Then, nodes of rank 1 are those nodes of G1 from which no α-
node is reachable in G1. For i ≥ 1, let Gi be the run Tw from which all nodes of rank
0, . . . , i − 1 have been removed. Then, nodes of rank 2i are those nodes of G2i from
which only finitely many nodes are reachable in G2i, and nodes of rank 2i+1 are those
nodes of G2i+1 from which no α-node is reachable in G2i+1. Intuitively, the rank of a
node (�, i) hints how difficult it is to prove that all the paths of Tw that start in (�, i) visit
α-nodes only finitely many times. It can be shown that every node has a rank between
0 and 2(|Loc| − |α|), and all α-nodes have an even rank [GKSV03].

The layered structure of the runs of ACW induces a construction to complement
ABW [KV97]. We present this construction directly for NBW. Given a NBW A =

Improved Algorithms for the Automata-Based Approach to Model-Checking 455

〈Loc, ι, Σ, δ, α〉 and an even number k ∈ N, let KV(A, k) = 〈Loc′, ι′, Σ, δ′, α′〉 be an
ABW such that:

– Loc′ = Loc× [k] where [k] = {0, 1, . . . , k}. Intuitively, the automaton KV(A, k) is
in state (�, n) after the first i letters of the input word w have been read if it guesses
that the rank of the node (�, i) in a run of A on w is at most n;

– ι′ = (ι, k);
– δ′((�, i), σ)= false if � ∈ α and i is odd, and otherwise δ′((�, i), σ)=

∨
i′≤i(�1, i

′)∧∨
i′≤i(�2, i

′) ∧ · · · ∧
∨

i′≤i(�n, i′) if δ(�, σ) = �1 ∨ �2 ∨ · · · ∨ �n; For example, if
δ(�, σ) = �1∨�2 then δ′((�, 2), σ) = ((�1, 2)∨(�1, 1)∨(�1, 0))∧((�2, 2)∨(�2, 1)∨
(�2, 0)).

– α′ = Loc × [k]odd where [k]odd is the set of odd numbers in [k].

The ABW that the Kupferman-Vardi construction specifies accepts the complement
language and its size is quadratic in the size of the original automaton.

Theorem 1 ([KV97]). For all NBW A = 〈Loc, ι, Σ, δ, α〉, for all 0 ≤ k′ ≤ k, we have
L(KV(A, k′)) ⊆ L(KV(A, k)) and for k = 2(|Loc| − |α|), we have L(KV(A, k)) =
Lc(A).

Miyano-Hayashi construction. Classically, to check emptiness of ABW, a variant of
the subset construction is applied that transforms the ABW into a NBW that accepts the
same language [MH84]. Intuitively, the NBW maintains a set s of states of the ABW
that corresponds to a whole level of a guessed run DAG of the ABW. In addition, the
NBW maintains a set o of states that “owe” a visit to an accepting state. Whenever the
set o gets empty, meaning that every path of the guessed run has visited at least one
accepting state, the set o is initiated with the current level of the guessed run. It is asked
that o gets empty infinitely often in order to ensure that every path of the run DAG visits
accepting states infinitely often. The construction is as follows.

Given an ABW A = 〈Loc, ι, Σ, δ, α〉, let MH(A) = 〈2Loc ×2Loc, ({ι}, ∅), Σ, δ′, α′〉
be a NBW where α′ = 2Loc × {∅} and δ′ is defined, for all 〈s, o〉 ∈ 2Loc × 2Loc and
σ ∈ Σ, as follows:

– If o �= ∅, then δ′(〈s, o〉, σ) = {〈s′, o′ \ α〉 | o′ ⊆ s′, s′ |=
∧

�∈s δ(�, σ) and
o′ |=

∧
�∈o δ(�, σ)};

– If o = ∅, then δ′(〈s, o〉, σ) = {〈s′, s′ \ α〉 | s′ |=
∧

�∈s δ(�, σ)}.

The size of the Miyano-Hayashi construction is exponential in the size of the original
automaton.

Theorem 2 ([MH84]). For all ABW A, we have L(MH(A)) = L(A).

The size of the automaton obtained after the Kupferman-Vardi and the Miyano-Hayashi
construction is an obstacle to the straight implementation of the method. In Section 3,
we propose a new approach that circumvents this problem.

Direct complementation. In our solution, we implicitly use the two constructions to
complement Büchi automata but, as we will see, we do not construct the automata. For
the sake of clarity, we give below the specification of the automaton that would result

456 L. Doyen and J.-F. Raskin

from the composition of the two constructions. In the definition of the state space, we
omit the states (�, i) for � ∈ α and i odd, as those states have no successor in the
Kupferman-Vardi construction.

Definition 3. Given a NBW A = 〈Loc, ι, Σ, δ, α〉 and an even number k ∈ N, let
KVMH(A, k) = 〈Qk × Qk, qι, Σ, δ′, α′〉 be a NBW such that:

– Qk = 2(Loc×[k])\(α×N
odd) where N

odd is the set of odd natural numbers;
– qι = ({(ι, k)}, ∅);
– Let odd = Loc × [k]odd; δ′ is defined for all s, o ∈ Qk and σ ∈ Σ, as follows:

• If o �= ∅, then δ′(〈s, o〉, σ) is the set of pairs 〈s′, o′ \ odd〉 such that:
(i) o′ ⊆ s′;

(ii) ∀(�, n) ∈ s · ∀�′ ∈ δ(�, σ) · ∃(�′, n′) ∈ s′ : n′ ≤ n;
(iii) ∀(�, n) ∈ o · ∀�′ ∈ δ(�, σ) · ∃(�′, n′) ∈ o′ : n′ ≤ n.

• If o = ∅, then δ′(〈s, o〉, σ) is the set of pairs 〈s′, s′ \ odd〉 such that:
∀(�, n) ∈ s · ∀�′ ∈ δ(�, σ) · ∃(�′, n′) ∈ s′ : n′ ≤ n.

– α′ = 2Loc×[k] × {∅};

We write 〈s, o〉 σ−→δ′ 〈s′, o′〉 to denote 〈s′, o′〉 ∈ δ′(〈s, o〉, σ).

Theorem 4 ([KV97, MH84]). For all NBW A = 〈Loc, ι, Σ, δ, α〉, for all 0 ≤ k′ ≤ k,
we have L(KVMH(A, k′)) ⊆ L(KVMH(A, k)) and for k = 2(|Loc| − |α|), we have
L(KVMH(A, k)) = Lc(A).

3 Simulation Pre-orders and Fixed Points

Let A = 〈Loc, ι, Σ, δ, α〉 be a NBW. Let 〈2Loc, ⊆, ∪, ∩, ∅, Loc〉 be the powerset lattice
of locations. The fixed point FA ≡ νy · μx · (PreA(x) ∪ (PreA(y)∩ α)) can be used to
check emptiness of A as we have L(A) �= ∅ iff ι ∈ FA.

Let �⊆ Loc × Loc be a pre-order and let �1 ≺ �2 iff �1 � �2 and �2 �� �1.

Definition 5. A pre-order � is a simulation1 for A iff the following properties hold:

– for all �1, �2, �3 ∈ Loc, for all σ ∈ Σ, if �3 � �1 and �2 ∈ δ(�1, σ) then there exists
�4 ∈ Loc such that �4 � �2 and �4 ∈ δ(�3, σ);

– for all � ∈ α, for all �′ ∈ Loc, if �′ � � then �′ ∈ α.

A set L ⊆ Loc is �-closed iff for all �1, �2 ∈ Loc, if �1 � �2 and �2 ∈ L then �1 ∈ L.
The �-closure of L, is the set ↓ L = {� ∈ Loc | ∃�′ ∈ L : � � �′}. We denote
by Max(L) the set of �-maximal elements of L: Max(L) = {� ∈ L | ��′ ∈ L :
� ≺ �′}. When the context is ambiguous, we sometimes write ↓� and Max� with the
intended pre-order in subscript. For any �-closed set L ⊆ Loc, we have L =↓Max(L).
Furthermore, if � is a partial order, then Max(L) is an antichain of elements and it is
a canonical representation of L. The following lemma states interesting properties of
�-closed sets of locations.

1 Several notions of simulation pre-orders have been defined for Büchi automata, see [EWS05]
for a survey.

Improved Algorithms for the Automata-Based Approach to Model-Checking 457

Lemma 6. For all NBW A = 〈Loc, ι, Σ, δ, α〉, for all simulations � for A, the follow-
ing properties hold:

1. for all �-closed set L ⊆ Loc, for all σ ∈ Σ, PreAσ (L) is �-closed;
2. for all �-closed sets L1, L2 ⊆ Loc, L1 ∪ L2 and L1 ∩ L2 are �-closed;
3. the set α is �-closed.

We can take advantage of Lemma 6 to compute the fixed point FA more efficiently
in terms of space consumption and execution time. First, we represent �-closed sets by
their maximal elements. This way, the size of the sets is usually drastically reduced. As
we will see later, this can potentially save an exponential factor. Second, the union of �-
closed sets can be computed efficiently using this representation as we have Max(L1 ∪
L2) = Max(Max(L1) ∪ Max(L2)). Third, we will see that the NBW that we have
to analyze in the automata-based approach to model-checking are all equipped with a
simulation pre-order that can be exploited to compute efficiently the intersection and
the predecessors of �-closed sets of locations.

Intuitively, when computing the sequence of approximations for FA, we can concen-
trate on maximal elements for a simulation pre-order as those locations are such that if
they have an accepting run in A, then all the locations that are smaller for the pre-order
also have an accepting run in A.

4 Emptiness of ABW

We now show how to apply Lemma 6 to check more efficiently the emptiness of ABW.
Let A1 = 〈Loc1, ι1, Σ, δ1, α1〉 be an ABW for which we want to decide whether
L(A1) = ∅. We know that the (exponential) Miyano-Hayashi construction gives a
NBW A2 = MH(A1) such that L(A2) = L(A1). We show that the emptiness of A1
(or equivalently of A2) can be decided more efficiently by computing the fixed point
FA2 and without constructing explicitly A2. To do so, we show that there exists a sim-
ulation for A2 for which we can compute ∪, ∩ and Pre by manipulating only maximal
elements of closed sets of locations.

Let MH(A1) = 〈Loc2, ι2, Σ, δ2, α2〉. Remember that Loc2 = 2Loc1 × 2Loc1 . De-
fine the pre-order �alt⊆ Loc2 × Loc2 such that for all 〈s, o〉, 〈s′, o′〉 ∈ Loc2, we
have 〈s, o〉 �alt 〈s′, o′〉 iff (i) s ⊆ s′, (ii) o ⊆ o′, and (iii) o = ∅ iff o′ = ∅.
Note that this pre-order is a partial order. As a consequence, given a set of pairs L =
{〈s1, o1〉, 〈s2, o2〉, . . . , 〈sn, on〉}, the set Max(L) is an antichain and identifies L.

Lemma 7. For all ABW A1, the partial order �alt is a simulation for MH(A1).

Proof. Let A1 = 〈Loc1, ι1, Σ, δ1, α1〉 and MH(A1) = 〈Loc2, ι2, Σ, δ2, α2〉. First, let
σ ∈ Σ and 〈s1, o1〉, 〈s2, o2〉, 〈s3, o3〉 ∈ Loc2 be such that 〈s1, o1〉 σ−→δ2 〈s2, o2〉 and
〈s3, o3〉 �alt 〈s1, o1〉. We show that there exists 〈s4, o4〉 ∈ Loc2 such that 〈s3, o3〉 σ−→δ2

〈s4, o4〉 and 〈s4, o4〉 �alt 〈s2, o2〉. First, let us consider the case where o1 = ∅. In
this case, we have o3 = ∅ by definition of �alt and δ2(〈s1, o1〉, σ) = {〈s′, s′ \ α1〉 |
s′ |=

∧
l∈s1

δ1(l, σ)}, this set being contained in δ2(〈s3, o3〉, σ) = {〈s′, s′ \ α1〉 | s′ |=∧
l∈s3

δ1(l, σ)} as s3 puts less constraints than s1 since s3 ⊆ s1. A similar reasoning

458 L. Doyen and J.-F. Raskin

Algorithm 1. Algorithm for Prealt(·).
Data : An ABW A1 = 〈Loc1, ι1, Σ, δ1, α1〉, σ ∈ Σ and 〈s′, o′〉 ∈ 2Loc1 × 2Loc1

such that o′ ⊆ s′.

Result : The �alt-antichain Prealt
σ (〈s′, o′〉).

begin

1 LPre ← ∅;
2 o ← {� ∈ Loc1 | o′ ∪ (s′ ∩ α1) |= δ1(�, σ)} ;
3 if o′ �⊆ α1 ∨ o′ = ∅ then

4 LPre ← {〈o, ∅〉} ;

5 if o �= ∅ then

6 s ← {� ∈ Loc1 | s′ |= δ1(�, σ)} ;
7 LPre ← LPre ∪ {〈s, o〉} ;

8 return LPre;
end

holds if o1 �= ∅. Second, let 〈s1, o1〉 ∈ α2 and let 〈s2, o2〉 �alt 〈s1, o1〉. By definition of
α2, we know that o2 = ∅, and by definition of �alt we have o2 = ∅ and so 〈s2, o2〉 ∈ α2.

�
So, we know according to Lemma 6 that all the sets that we compute to evaluate FA2

are �alt-closed. So, we explain now how to compute intersections and pre-operations by
manipulating maximal elements only. Given 〈s1, o1〉, 〈s2, o2〉, we can compute 〈s, o〉
such that ↓ 〈s, o〉 =↓ 〈s1, o1〉∩ ↓ 〈s2, o2〉 as follows. If o1 ∩ o2 �= ∅ then 〈s, o〉 =
〈s1 ∩ s2, o1 ∩ o2〉, and if o1 = o2 = ∅ then 〈s, o〉 = 〈s1 ∩ s2, ∅〉; otherwise the
intersection is empty. Algorithm 1 computes the predecessors of a �alt-closed set by
just manipulating its maximal elements. It runs in time O(|Loc1| · ‖δ1‖) where ‖δ1‖ is
the size of the transition relation, defined as the maximal number of boolean connectives
in a formula δ1(�, σ).

Theorem 8. Given an ABW A1 = 〈Loc1, ι1, Σ, δ1, α1〉, σ ∈ Σ and 〈s′, o′〉 ∈ 2Loc1 ×
2Loc1 such that o′ ⊆ s′, the set LPre = Prealt

σ (〈s, o〉) computed by Algorithm 1 is an
�alt-antichain such that ↓LPre = PreA2

σ (↓{〈s′, o′〉}) where A2 = MH(A1).

Proof. Let A2 = MH(A1) = 〈Loc2, ι2, Σ, δ2, α2〉. We show that (1) LPre ⊆ PreA2
σ (↓

{〈s′, o′〉}) and (2) for all 〈s1, o1〉 ∈ PreA2
σ (↓{〈s′, o′〉}), there exists 〈s, o〉 ∈ LPre such

that 〈s1, o1〉 �alt 〈s, o〉. This entails that ↓LPre = PreA2
σ (↓{〈s′, o′〉}).

To prove (1), we first show that 〈s, o〉 σ−→δ2 〈s′, o′〉 where 〈s, o〉 is added to LPre at
line 7 of Algorithm 1. By the test of line 5, we have o �= ∅. According to the definition
of MH(·) (see Section 2), we have to check that there exists a set o′′ ⊆ s′ such that
o′ = o′′ \ α1 (we take o′′ = o′ ∪ (s′ ∩ α1)), and the following conditions hold:
(i) s′ |=

∧
�∈s δ1(�, σ) since we have s′ |= δ1(�, σ) for all � ∈ s by line 6 of Alg. 1.

(ii) o′′ |=
∧

�∈o δ1(�, σ) since we have o′′ |= δ1(�, σ) for all � ∈ o by line 2 of Alg. 1.

Second, we show that 〈o, ∅〉 σ−→δ2 〈s′′, o′′〉 for some 〈s′′, o′′〉 �alt 〈s′, o′〉 where
〈o, ∅〉 is added to LPre at line 4 of Algorithm 1.

Improved Algorithms for the Automata-Based Approach to Model-Checking 459

We take s′′ = o′ ∪ (s′ ∩ α1) and o′′ = s′′ \ α1. Since o′ ⊆ s′, we have (a) s′′ ⊆ s′,
and we have (b) o′′ = o′ \ α1 ⊆ o′. Let us establish that (c) o′ = ∅ iff o′′ = ∅. If
o′ = ∅ then o′′ = ∅ since o′′ ⊆ o′. If o′ �= ∅ then by the test of line 3, we have o′ �⊆ α1
and thus o′′ = o′ \ α1 �= ∅. Hence we have 〈s′′, o′′〉 �alt 〈s′, o′〉, and by line 2 of the
algorithm, we have s′′ |= δ1(�, σ) for all � ∈ o, and thus s′′ |=

∧
�∈o δ1(�, σ). Therefore

〈o, ∅〉 σ−→δ2 〈s′′, o′′〉.
To prove (2), assume that there exist 〈s1, o1〉 and 〈s′1, o′1〉 such that 〈s1, o1〉 σ−→δ2

〈s′1, o′1〉 and 〈s′1, o′1〉 �alt 〈s′, o′〉. We have to show that there exists 〈s, o〉 ∈ LPre such
that 〈s1, o1〉 �alt 〈s, o〉.

First, assume that o1 �= ∅. Since 〈s1, o1〉 σ−→δ2 〈s′1, o′1〉, we have:

(i) for all � ∈ s1, s′1 |= δ1(�, σ) and since s′1 ⊆ s′ also s′ |= δ1(�, σ). Let s be the
set defined at line 6 of Algorithm 1. For all � ∈ Loc, if s′ |= δ1(�, σ) then � ∈ s.
Hence, s1 ⊆ s.

(ii) for all � ∈ o1, o′′1 |= δ1(�, σ) for some o′′1 ⊆ s′1 such that o′1 = o′′1 \ α1. Hence
necessarily o′′1 ⊆ o′1 ∪ (s′1 ∩ α1) ⊆ o′ ∪ (s′ ∩α1) and thus for all � ∈ o1, o′ ∪ (s′ ∩
α1) |= δ1(�, σ). Let o be the set defined at line 2 of Algorithm 1. For all � ∈ Loc,
if o′ ∪ (s′ ∩ α1) |= δ1(�, σ) then � ∈ o. Hence, o1 ⊆ o and o �= ∅.

Hence, 〈s, o〉 which is added to LPre by Alg. 1 at line 7 satisfies 〈s1, o1〉 �alt 〈s, o〉.
Second, assume that o1 = ∅. Since 〈s1, o1〉 σ−→δ′ 〈s′1, o′1〉 and o1 = ∅, we know that

for all � ∈ s1, s′1 |= δ1(�, σ) and o′1 = s′1 \ α1. Let s′′ = o′ ∪ (s′ ∩ α1) so we have
(a) s′1 ∩ α1 ⊆ s′ ∩ α1 ⊆ s′′ and (b) s′1 \ α1 = o′1 ⊆ o′ ⊆ s′′. Hence, s′1 ⊆ s′′ and
thus for all � ∈ s1, s′′ |= δ1(�, σ). Let o be the set defined at line 2 of Algorithm 1. For
all � ∈ Loc, if s′′ |= δ1(�, σ) then � ∈ o. Hence, s1 ⊆ o and 〈s1, ∅〉 �alt 〈o, ∅〉 where
〈o, ∅〉 is added to LPre by Algorithm 1 at line 4. Notice that the test at line 3 is satisfied
because o′1 = s′1 \ α1 implies that o′1 �⊆ α1 ∨ o′1 = ∅ and since 〈s′1, o′1〉 �alt 〈s′, o′〉, we
have o′ �⊆ α1 ∨ o′ = ∅. �

5 Universality of NBW

Given the NBW A = 〈Loc, ι, Σ, δ, α〉, we define the pre-order �univ⊆ (2Loc×N ×
2Loc×N)×(2Loc×N×2Loc×N) as follows: for s, s′, o, o′ ⊆ Loc×N, let 〈s, o〉 �univ 〈s′, o′〉
iff the following conditions hold:

– for all (�, n) ∈ s, there exists (�, n′) ∈ s′ such that n′ ≤ n;
– for all (�, n) ∈ o, there exists (�, n′) ∈ o′ such that n′ ≤ n;
– o = ∅ iff o′ = ∅.

This relation formalizes the intuition that it is easier to accept a word in KVMH(A, k)
from a given location with a high rank than with a low rank. This is because the rank
is always decreasing along every path of the runs of KV(A, k), and so a rank is always
simulated by a greater rank. Hence essentially the minimal rank of s and o is relevant
to define the pre-order �univ. The third condition requires that only accepting states
simulate accepting states.

The relation �univ is a simulation for the NBW KVMH(A, k) (with state space Qk ×
Qk) defined in Section 2.

460 L. Doyen and J.-F. Raskin

Lemma 9. For all NBW A, for all even numbers k ∈ N, the restriction of �univ to
(Qk × Qk) × (Qk × Qk) is a simulation for the NBW KVMH(A, k) of Definition 3.

According to Lemma 6, all the intermediate sets that are computed by the fixed point
FAc to check emptiness of Ac = KVMH(A, k) for k = 2(|Loc| − |α|) (and thus
universality of A) are �univ-closed.

Before computing ∪, ∩ and Pre for �univ-closed sets, we make the following useful
observation. Given a set s ∈ Qk, define its characteristic function fs : Loc → N∪{∞}
such that fs(�) = inf{n | (�, n) ∈ s} with the usual convention that inf ∅ = ∞.

Lemma 10. For all sets s, s′, o, o′ ∈ Qk, if fs = fs′ and fo = fo′ , then 〈s, o〉 �univ

〈s′, o′〉 and 〈s′, o′〉 �univ 〈s, o〉.
Let f, g, f ′, g′ be characteristic functions. We write f ≤ f ′ iff for all � ∈ Loc, f(�) ≤
f ′(�) and we write 〈f, g〉 ≤ 〈f ′, g′〉 iff f ≤ f ′ and g ≤ g′. Let max(f, f ′) be the
function f ′′ such that f ′′(�) = max{f(�), f ′(�)} for all � ∈ Loc. We write f∅ for the
function such that f∅(�) = ∞ for all � ∈ Loc. Given an even number k ∈ N, define the
set [[f]]k= {s ∈ Qk | fs = f} and the set [[〈f, g〉]]k= {〈s, o〉 | s ∈ [[f]]k ∧o ∈ [[g]]k ∧o ⊆
s}. Observe that f ≤ f ′ iff [[f ′]]k⊆[[f]]k. We extend the operator [[·]]k to sets of pairs
of characteristic functions as expected. According to Lemma 10, the set [[〈f, g〉]]k is an
equivalence class for the equivalence relation induced by �univ, and a �univ-closed set
(as well as its �univ-maximal elements) is a union of equivalence classes, so it can be
equivalently seen as a union of pairs of characteristic functions.

Now, we show how to compute efficiently ∪, ∩ and Pre for �univ-closed sets that
are represented by characteristic functions. Let L1, L2 be two sets of pairs of char-
acteristic functions, let L∪ be the set of ≤-minimal elements of L1 ∪ L2, and let
L∩ = {〈max(fs, fs′), max(fo, fo′)〉 | 〈fs, fo〉 ∈ L1∧〈fs′ , fo′〉 ∈ L2∧max(fo, fo′) �=
f∅} ∪ {〈max(fs, fs′), f∅〉 | 〈fs, f∅〉 ∈ L1 ∧ 〈fs′ , f∅〉 ∈ L2}. Then, we have [[L∪]]k=
Max(↓[[L1]]k ∪ ↓[[L2]]k) and [[L∩]]k= Max(↓[[L1]]k ∩ ↓[[L2]]k).

To compute Preσ(·) of a single pair of characteristic functions, we propose Algo-
rithm 2 whose correctness is established by Theorem 11. Computing the predecessors
of a set of characteristic functions is then straightforward using the algorithm for union
of sets of pairs of characteristic functions since

PreKVMH(A,k)(L) =
⋃

σ∈Σ

⋃

�∈L

PreKVMH(A,k)
σ (�)

Theorem 11. Given a NBW A = 〈Loc, ι, Σ, δ, α〉, σ ∈ Σ, an even number k, and a
pair of characteristic functions 〈fs′ , fo′〉 such that fs′ ≤fo′ , the set LPre = Preuniv

σ (〈fs′ ,

fo′〉) computed by Algorithm 2 is such that ↓ [[LPre]]k= PreKVMH(A,k)
σ (↓ [[〈fs′ , fo′〉]]k)

and ∀〈fs, fo〉 ∈ LPre : fs ≤ fo.

In Algorithm 2, we represent ∞ by any number strictly greater than k, and we adapt the
definition of ≤ as follows: f ≤ f ′ iff for all � ∈ Loc, either f(�) ≤ f ′(�) or f ′(�) > k.
In the algorithm, we use the notations �n�odd for the least odd number n′ such that
n′ ≥ n, and �n�even for the least even number n′ such that n′ ≥ n.

The structure of Algorithm 2 is similar to Algorithm 1, but the computations are
expressed in terms of characteristic functions, thus in terms of ranks. For example,

Improved Algorithms for the Automata-Based Approach to Model-Checking 461

Algorithm 2. Algorithm for Preuniv
σ (·).

Data : A NBW A = 〈Loc, ι, Σ, δ, α〉, σ ∈ Σ, an even number k and a pair 〈fs′ , fo′〉
of characteristic functions.

Result : The set Preuniv
σ (〈fs′ , fo′〉).

begin

1 foreach � ∈ Loc do

2 fo(�) ← 0 ;
3 foreach �′ ∈ δ(�, σ) do

4 if �′ ∈ α then fo(�) ← max{fo(�), fo′(�′)} ;
5 else fo(�) ← max{fo(�),min{fo′(�′), fs′(�′)�odd}} ;

6 if � ∈ α then fo(�) ← fo(�)�even ;

7 LPre ← {〈fo, f∅〉} ;
8 if ∃� : fo(�) ≤ k (i.e. o �= ∅) then

9 foreach � ∈ Loc do

10 fs(�) ← max{fs′ (�′) | �′ ∈ δ(�, σ)} ;
11 if � ∈ α then fs(�) ← fs(�)�even ;

12 LPre ← LPre ∪ {〈fs, fo〉} ;

13 return LPre;
end

lines 4-5 compute the equivalent of line 2 in Algorithm 1, where α1 corresponds here
to the set of odd-ranked locations, and thus contains no α-nodes. Details are given
in the proof of Theorem 11. Algorithm 2 runs in time O(|Loc|2), which is no more
computationally expensive than the classical Pre. However, there is often an exponential
factor between the number of elements in the argument of Pre in the two approaches.
For example, the set α′ = 2Loc×[k] × {∅} with an exponential number of elements is
represented by the unique pair 〈fs, f∅〉 where fs(�) = 0 for all � ∈ Loc, which makes
the new approach much more efficient in practice.

6 Implementation and Practical Evaluation

The randomized model. To evaluate our new algorithm for universality of NBW
and compare with the existing implementations of the Kupferman-Vardi and Miyano-
Hayashi constructions, we use a random model to generate NBW. This model was
first proposed by Tabakov and Vardi to compare the efficiency of some algorithms
for automata in the context of finite words automata [TV05] and more recently in
the context of infinite words automata [Tab06]. In the model, the input alphabet is
fixed to Σ = {0, 1}, and for each letter σ ∈ Σ, a number kσ of different state pairs
(�, �′) ∈ Loc × Loc are chosen uniformly at random before the corresponding transi-
tions (�, σ, �′) are added to the automaton. The ratio rσ = kσ

|Loc| is called the transition
density for σ. This ratio represents the average outdegree of each state for σ. In all

462 L. Doyen and J.-F. Raskin

Median Time (s)

12

8

4

0

f - acc
eptin

g density

0.1

0.3

0.5

0.7

0.9
r - transition density

1.4
1.8

2.2
2.6

Median execution time

Fig. 1. Median time to check universality of
100 automata of size 30 for each sample point

Fig. 2. Automata size for which the median exe-
cution time to check universality is less than 20
seconds (log scale)

experiments, we choose r0 = r1, and denote the transition density by r. The model
contains a second parameter: the density f of accepting states. There is only one initial
state, and the number m of accepting states is linear in the total number of states, as
determined by f = m

|Loc| . The accepting states themselves are chosen uniformly at ran-
dom. Observe that since the transition relation is not always total, automata with f = 1
are not necessarily universal.

Tabakov and Vardi have studied the space of parameter values for this model and
argue that “interesting” automata are generated by the model as the two parameters r
and f vary. They also study the density of universal automata in [Tab06].

Performance comparison. We have implemented our algorithm to check the univer-
sality of randomly generated NBW. The code is written in C with an explicit representa-
tion for characteristic functions, as arrays of integers. All the experiments are conducted
on a biprocessor Linux station (two 3.06Ghz Intel Xeons with 4GB of RAM).

Fig. 1 shows as a function of r (transition density) and f (density of accepting
states) the median execution times for testing universality of 100 random automata with
|Loc| = 30. It shows that the universality test was the most difficult for r = 1.8 and
f = 0.1 with a median time of 11 seconds. The times for r ≤ 1 and r ≥ 2.8 are not
plotted because they were always less than 250ms. A similar shape and maximal me-
dian time is reported by Tabakov for automata of size 6, that is for automata that are five
times smaller [Tab06]. Another previous work reports prohibitive execution times for
complementing NBW of size 6, showing that explicitly constructing the complement is
not a reasonable approach [GKSV03].

To evaluate the scalability of our algorithm, we have ran the following experiment.
For a set of parameter values, we have evaluated the maximal size of automata (mea-
sured in term of number of locations) for which our algorithm could analyze 50 over
100 instances in less than 20 seconds. We have tried automata sizes from 10 to 1500,
with a fine granularity for small sizes (from 10 to 100 with an increment of 10, from
100 to 200 with an increment of 20, and from 200 to 500 with an increment of 30) and
a rougher granularity for large sizes (from 500 to 1000 with an increment of 50, and
from 1000 to 1500 with an increment of 100).

The results are shown in Fig. 2, and the corresponding values are given in Table 1.
The vertical scale is logarithmic. For example, for r = 2 and f = 0.5, our algorithm

Improved Algorithms for the Automata-Based Approach to Model-Checking 463

Table 1. Automata size for which the median execution time for checking universality is less
than 20 seconds. The symbol ∝ means more than 1500.

f
r 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

0.1 ∝ ∝ ∝ 550 200 120 60 40 30 40 50 50 70 90 100
0.3 ∝ ∝ ∝ 500 200 100 40 30 40 70 100 120 160 180 200
0.5 ∝ ∝ ∝ 500 200 120 60 60 90 120 120 120 140 260 500
0.7 ∝ ∝ ∝ 500 200 120 70 80 100 200 440 1000 ∝ ∝ ∝
0.9 ∝ ∝ ∝ 500 180 100 80 200 600 ∝ ∝ ∝ ∝ ∝ ∝

r=2, f=0.7
r=2, f=0.5
r=2, f=0.3

Scalability analysis

Automata size

M
ed

ia
n

ex
ec

ut
io

n
ti

m
e

(s
)

1601501401301201101009080706050403020100

100

10

1

0.1

0.01

Fig. 3. Median time to check universality (of
100 automata for each sample point)

Not Universal
Universal

f=2.2, r=0.5

Execution time (s)

10.10.01

Fig. 4. Execution time to check universality
of 100 automata, 57 of which were universal

was able to handle at least 50 automata of size 120 in less than 20 seconds and was not
able to do so for automata of size 140. In comparison, Tabakov and Vardi have studied
the behavior of Kupferman-Vardi and Miyano-Hayashi constructions for different im-
plementation schemes. We compare with the performances of their symbolic approach
which is the most efficient. For the same parameter values (r = 2 and f = 0.5), they
report that their implementation can handle NBW with at most 8 states in less than 20
seconds [Tab06].

In Fig. 3, we show the median execution time to check universality for relatively
difficult instances (r = 2 and f vary from 0.3 to 0.7). The vertical scale is logarithmic,
so the behavior is roughly exponential in the size of the automata. Similar analyzes are
reported in [Tab06] but for sizes below 10.

Finally, we give in Fig. 4 the distribution of execution times for 100 automata of size
50 with r = 2.2 and f = 0.5, so that roughly half of the instances are universal. Each
point represents one automaton, and one point lies outside the figure with an execution
time of 675s for a non universal automaton. The existence of very few instances that
are very hard was often encountered in the experiments, and this is why we use the
median for the execution times. If we except this hard instance, Fig. 4 shows that uni-
versal automata (average time 350ms) are slightly easier to analyze than non-universal
automata (average time 490ms). This probably comes from the fact that we stop the
computation of the (greatest) fixed point whenever the initial state is no more �univ-less
than the successive approximations. Indeed, in such case, since the approximations are

464 L. Doyen and J.-F. Raskin

�univ-decreasing, we know that the initial state would also not lie in the fixed point. Of
course, this optimization applies only for universal automata.

7 Language Inclusion for Büchi Automata

Let A1 = 〈Loc1, ι1, Σ, δ1, α1〉 and A2 be two NBW defined on the same alphabet Σ for
which we want to check language inclusion: L(A1) ⊆? L(A2). To solve this problem,
we check emptiness of L(A1) ∩ Lc(A2). As we have seen, we can use the Kupferman-
Vardi and Miyano-Hayashi construction to specify a NBW Ac

2 = 〈Loc2, ι2, Σ, δ2, α2〉
that accepts the complement of the language of A2.

Using the classical product construction, let B be a finite automaton with set of lo-
cations LocB = Loc1 × Loc2, initial state ιB = (ι1, ι2), and tranition function δB
such that δB((�1, �2), σ) = δ1(�1, σ) × δ2(�2, σ). We equip B with the generalized
Büchi condition {β1, β2} = {α1 × Loc2, Loc1 × α2}, thus asking for a run of B to
be accepting that it visits β1 and β2 infinitely often. It is routine to show that we have
L(B) = L(A1) ∩ L(Ac

2). The following fixed point

F ′
B ≡ νy ·

(
μx1 ·

[
PreB(x1) ∪ (PreB(y) ∩ β1)

]
∩ μx2 ·

[
PreB(x2) ∪ (PreB(y) ∩ β2)

])

can be used to check emptiness of B as we have L(B) �= ∅ iff ιB ∈ F ′
B. We now

define the pre-order �inc over the locations of B: for all (�1, �2), (�′1, �
′
2) ∈ LocB, let

(�1, �2) �inc (�′1, �
′
2) iff �1 = �′1 and �2 �univ �′2.

Lemma 12. The relation �inc is a simulation for B.

As a consequence of the last lemma, we know that all the sets that we have to manipulate
to solve the language inclusion problem using the fixed point F ′

B are �inc-closed. The
operators ∪, ∩ and Pre can be thus computed efficiently, using the same algorithms
and data structures as for universality. In particular, let Preinc

σ (�′1, �
′
2) = PreA1

σ (�′1) ×
Preuniv

σ (�′2) where Preuniv
σ is computed by Algorithm 2 (with input A2). It is easy to

show as a corollary of Theorem 11 that ↓Preinc
σ (�′1, �′2) = PreBσ (↓{(�′1, �′2)}).

8 Conclusion

We have shown that the expensive complementation constructions for nondeterministic
Büchi automata can be avoided for solving classical problems like universality and lan-
guage inclusion. Our approach is based on fixed points computation and the existence
of simulation relations for the (exponential) constructions used in complementation of
Büchi automata. Those simulations are used to dramatically reduce the amount of com-
putations needed to decide classical problems. Their definition relies on the structure of
the original automaton and do not require explicit complementation.

The resulting algorithms evaluate a fixed point formula and avoid redundant compu-
tations by maintaining sets of maximal elements according to the simulation relation. In
practice, the computation of the predecessor operator, which is the key of the approach,
is efficient because it is done on antichain of elements only. Eventhough the classical
approaches (as well as ours) have the same worst case complexity, our prototype imple-
mentation outperforms those approaches where complementation is explicit. The huge

Improved Algorithms for the Automata-Based Approach to Model-Checking 465

gap of performances holds over the entire parameter space of the randomized model
proposed by Tabakov and Vardi.

Applications of this paper go beyond universality and language inclusion for NBW,
as we have shown that the methodology applies to alternating Büchi automata for which
efficient translations from LTL formula are known [GO01]. The hope rises then that
significant improvements can be brought to the model-checking problem of LTL.

References

[BL69] J. Richard Büchi and Lawrence H. Landweber. Definability in the monadic
second-order theory of successor. J. Symb. Log., 34(2):166–170, 1969.

[DDHR06] M. De Wulf, L. Doyen, T. A. Henzinger, and J.-F. Raskin. Antichains: A new
algorithm for checking universality of finite automata. In Proceedings of CAV
2006, LNCS 4144, pp. 17–30. Springer.

[DR06] L. Doyen and J.-F. Raskin. Improved Algorithms for the Automata-Based Ap-
proach to Model-Checking (extended version) Tech. Rep. 76, U.L.B. – Federated
Center in Verification, 2006. http://www.ulb.ac.be/di/ssd/cfv/publications.html.

[EWS05] K. Etessami, T. Wilke, and R. A. Schuller. Fair simulation relations, parity games,
and state space reduction for bu”chi automata. SIAM J. Comput., 34(5):1159–
1175, 2005.

[GKSV03] S. Gurumurthy, O. Kupferman, F. Somenzi, and M. Y. Vardi. On complementing
nondeterministic büchi automata. In Proc. of CHARME 2003, LNCS 2860, pp.
96–110. Springer.

[GO01] P. Gastin and D. Oddoux. Fast LTL to Büchi automata translation. In Proc. of
CAV 2001, LNCS 2102, pp. 53–65. Springer.

[KV97] O. Kupferman and M. Y. Vardi. Weak alternating automata are not that weak. In
Proceedings of ISTCS’97, pp. 147–158. IEEE Computer Society Press.

[MH84] Satoru Miyano and Takeshi Hayashi. Alternating finite automata on omega-words.
In CAAP, pages 195–210, 1984.

[Mic88] Max Michel. Complementation is more difficult with automata on infinite words.
CNET, Paris, 1988.

[RH04] Theo C. Ruys and Gerard J. Holzmann. Advanced spin tutorial. In SPIN, LNCS
2989, pp. 304–305. Springer, 2004.

[Saf88] Shmuel Safra. On the complexity of ω-automata. In Proc. of FOCS: Foundations
of Computer Science, pages 319–327. IEEE, 1988.

[SVW87] A. P. Sistla, M. Y. Vardi and P. Wolper. The Complementation Problem for Büchi
Automata with Applications to Temporal Logic. Theor. Comput. Sci., 49:217–237,
1987.

[Tab06] D. Tabakov. Experimental evaluation of explicit and symbolic approaches to com-
plementation of non-deterministic buechi automata. Talk at “Games and Verifica-
tion” workshop, Newton Institute for Math. Sciences. July 2006.

[TV05] D. Tabakov and M. Y. Vardi. Experimental evaluation of classical automata con-
structions. In LPAR 2005, LNCS 3835, pp. 396–411. Springer.

[VW86] M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program
verification (prelim. report). In LICS 1986, pp. 332–344. IEEE.

[VW94] Moshe Y. Vardi and Pierre Wolper. Reasoning about infinite computations. Inf.
Comput., 115(1):1–37, 1994.

GOAL: A Graphical Tool for Manipulating

Büchi Automata and Temporal Formulae�

Yih-Kuen Tsay, Yu-Fang Chen, Ming-Hsien Tsai, Kang-Nien Wu,
and Wen-Chin Chan

Department of Information Management, National Taiwan University, Taiwan

1 Introduction

In this paper, we present a tool named GOAL (an acronym derived from
“Graphical Tool for Omega-Automata and Logics”) whose main functions in-
clude (1) drawing and testing Büchi automata, (2) checking the language equiv-
alence between two Büchi automata, (3) translating quantified propositional
linear temporal logic (QPTL) formulae into equivalent Büchi automata, and
(4) exporting Büchi automata as Promela code. The GOAL tool, available at
http://goal.im.ntu.edu.tw, can be used for educational purposes, helping the
user get a better understanding of how Büchi automata work and how they are
related to linear temporal logics. It may also be used, as we shall explain below,
to construct correct and smaller specification automata, supplementing model
checkers that adopt the automata-theoretic approach, such as SPIN [5].

The automata-theoretic approach [11,1] to linear temporal logic model check-
ing works as follows. Suppose A is the Büchi automaton modeling the system
and B the Büchi automaton specifying a desired property. The problem of model
checking translates into that of testing language containment L(A) ⊆ L(B),
which is equivalent to L(A)∩L(B) = ∅. As Büchi automata are closed under com-
plementation and intersection, this reduces to testing if L(A×B) = ∅, namely the
emptiness problem of Büchi automata. Because of the difficulty and high com-
plexity in complementing a Büchi automaton, in practice, an automata-theoretic
model checker typically assumes that the specification is given as a propositional
linear temporal logic (PTL) formula. The model checker first negates a specifi-
cation formula ϕ and then translates it into an automaton B¬ϕ that represents
all behaviors disallowed by ϕ, i.e., L(B¬ϕ) = L(Bϕ) (where Bϕ is a Büchi au-
tomaton equivalent to formula ϕ). Checking if L(A) ∩ L(Bϕ) = L(A × Bϕ) = ∅
is therefore the same as checking if L(A × B¬ϕ) = ∅, where one only needs
to construct the intersection (product) of A and B¬ϕ, and complementation is
avoided.

Assuming that the specification is given as a PTL formula has two disadvan-
tages. First, it limits the type of properties that can be specified and checked. An
ideal automata-theoretic model checker would support some extension of PTL
such as QPTL that is expressively equivalent to Büchi automata. The SPIN
� This work was supported in part by the National Science Council of Taiwan (R.O.C.)

under grants NSC95-2221-E-002-127 and NSC95-3114-P-001-001-Y02 (iCAST).

O. Grumberg and M. Huth (Eds.): TACAS 2007, LNCS 4424, pp. 466–471, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Graphical Tool for Manipulating Buchi Automata and Temporal Formulae 467

model checker offers the user instead the possibility of directly defining B¬ϕ in
Promela. However, it provides no assist for the user to check the “correctness”
of the defined automaton, i.e., if the automaton describes what is intended.
Büchi automata are in general harder to get right than temporal formulae. Sec-
ond, the machine-translated automaton B¬ϕ may be larger than an optimal and
equivalent one. Many algorithms exist for translating a PTL formula into an
equivalent Büchi automaton, e.g., [3,4], but none of them guarantee optimality.
As the emptiness checking of A × B¬ϕ requires time proportional to the size
of the system automaton A and to that of the specification automaton B¬ϕ, a
larger B¬ϕ would mean a longer verification time. To reduce verification time,
it may be worthwhile to construct a smaller B¬ϕ manually. But again, a way for
checking the correctness of a user-defined B¬ϕ is needed.

This is one typical situation where the GOAL tool can be useful. First of all,
GOAL is graphical, making a user-defined automaton easier for human inspec-
tion. More importantly, the correctness of a user-defined specification automaton
can be checked against an easier-to-understand QPTL formula, by translating
the specification formula into an equivalent automaton and testing the equiva-
lence between the user-defined and the machine-translated automata. QPTL is
expressively equivalent to Büchi automata [9]. GOAL also supports past tempo-
ral operators which make some specifications easier to write. In addition, GOAL
provides a repository that contains common patterns of temporal formulae and
their corresponding optimized and machine-checked Büchi automata. Once the
specification automaton of an ideal size has been successfully constructed and
checked, it can be exported as Promela code which can then be fed into the
SPIN model checker.

GOAL was originally designed for learning/teaching Büchi automata and lin-
ear temporal logics. Despite the possibility of mechanical translation, a temporal
formula and its equivalent Büchi automaton are two very different artifacts and
their correspondence is not easy to grasp. Temporal formulae describe temporal
dependency without explicit references to time points and are in general more
abstract and easier to understand, while Büchi automata “localize” temporal de-
pendency to relations between states and tend to be of lower level and harder to
understand. Nonetheless, Büchi automata and their relation with linear tempo-
ral logics can be better understood by going through some translation algorithm
with different input temporal formulae or simply by examining more examples of
temporal formulae and their equivalent Büchi automata. This learning process,
unfortunately, is tedious and prone to mistakes for the students, while preparing
the material is very time-consuming for the instructor. Tool support is needed.

An earlier version of GOAL has been introduced and suggested for educational
purposes in [10]. However, its inability in handling quantified temporal formulae
limited the kind of Büchi automata that could be explored. It also lacked the
exporting function that allows its use in combination with an automata-theoretic
model checker. To the best of our knowledge, GOAL is the first graphical in-
teractive tool for manipulating Büchi automata and temporal formulae that
supports past temporal operators and quantification over propositions. There

468 Y.-K. Tsay et al.

are other tools that provide translation of temporal formulae into Büchi au-
tomata, e.g., LTL2BA [3]. However, none of them provide facilities for visually
manipulating automata and the temporal logics they support are less expressive.
The operations and tests on Büchi automata provided by GOAL are also more
comprehensive than those by other tools.

2 Main Functions

Below is a brief description of the main functions of GOAL, followed by some
implementation highlights.

– Drawing and Testing Büchi Automata: The user can easily point-and-
click and drag-and-drop to create a Büchi automaton and test it. To get
a feel of what kind of inputs the automaton accepts, the user can run it
through some input words. More interestingly, an automaton can be tested
for emptiness and two automata can be tested for language containment and
equivalence, as well as simulation equivalence.

– Checking the Language Equivalence between Two Büchi Automata:
This is a particularly useful test function. The equivalence test between two
Büchi automata is built on top of the language containment test which in turns
relies on the intersection and complementation operations and the emptiness
test. If two automata are not equivalent, an infinite word which is contained
in the difference of the two automata will be displayed as a counter example.

– Translating QPTL Formulae into Equivalent Büchi Automata: The
user can type in a QPTL formula and ask GOAL to translate it into an
equivalent Büchi automaton, as shown in Figure 1(a). Currently, GOAL
imposes a restriction that a quantifier must not fall in the scope of a temporal
operator. This restriction does not sacrifice expressiveness, as QPTL with
the restriction is as expressive as the original unrestricted QPTL, which
is expressively equivalent to Büchi automata [9]. Machine-translated Büchi
automata are usually not optimal in terms of size, yet they are useful for
verifying the correctness of user-defined automata (by the equivalence test).
GOAL also supports past temporal operators which make some specifications
easier to write, helping the user convey his intuition without much hacking.

– The Automata Repository: This repository contains a collection of fre-
quently used QPTL formulae and their corresponding equivalent Büchi au-
tomata, which have been optimized by hand and checked by GOAL; see
Figure 1(b) for an example.

– Exporting Büchi Automata as Promela Code: Once an automaton
has been defined and tested, the user can export it in the Promela syntax
on the screen or as a file, as shown in Figure 1(b). This makes it possible to
use GOAL as a graphical specification definition frontend to an automata-
theoretic model checker like SPIN.

GOAL is implemented in Java for the ease of installation. Its automata and
graph modules were adapted from those of JFLAP [7], a tool for classic the-
ory of computation. The most complicated algorithms in GOAL are those for

A Graphical Tool for Manipulating Buchi Automata and Temporal Formulae 469

Fig. 1. Two equivalent Büchi automata that describe the property “p is true at every
even position”, which can also be expressed as a QPTL formula

translating temporal formulae into automata and for complementing automata.
Our translation algorithm combines an adaptation of the tableau construction
described in Manna and Pnueli’s book [6] and the approach described in [9] for
handling quantification. For automata complementation, we adopted the algo-
rithm by Safra [8]. From inputs of a moderate size, these algorithms may produce
very large automata, which are difficult to display and usually impossible to un-
derstand intuitively. However, this is not a serious problem, as on the one hand
we intend GOAL to be used for educational purposes or for specification def-
inition, where the input temporal formulae or automata tend to be small. On
the other hand, the machine-generated automata are often used for equivalence
tests, not for human inspection. Nonetheless, we did implement several methods
for state reduction, for example, removing redundant states detected by simula-
tion [2]. We have planned to include implementations of other translation and
complementation algorithms, which would be useful for comparative studies.

3 Use Cases

We describe a number of use cases that illustrate how the GOAL functions
may be combined and used in particular as a tool for learning/teaching Büchi
automata and linear temporal logics or for specification development:

– Checking correctness of a hand-drawn Büchi automaton: Under-
standing a Büchi automaton is in general harder than understanding an
equivalent temporal formula. Consequently, defining or drawing a Büchi au-
tomaton that conveys one’s intention is also harder than writing a temporal
formula for the same purpose. Whether a hand-drawn automaton is correct,
i.e., if it conveys the specifier’s intention, can be verified using GOAL by
following these steps: (1) Write a QPTL (or PTL if it suffices) formula that
specifies the same thing. (2) Translate the formula into an equivalent Büchi
automaton. (3) Test the equivalence between the machine-translated and the
hand-drawn automata. If the equivalence test is positive, then one can be
assured that the hand-drawn Büchi automaton is indeed what is intended.

470 Y.-K. Tsay et al.

– Manual optimization of a specification Büchi automaton: In prin-
ciple, a smaller specification automaton makes a model checker run faster.
GOAL may be used to manually optimize a Büchi automaton by repeatedly
merging or removing its states or transitions and checking if the resulting
automaton is equivalent to a previous correct automaton. Though this is
essentially a trial-and-error process, the equivalence test provided by GOAL
will greatly ease the pain.

– Understanding why PTL is strictly less expressive than Büchi
automata: The property “p is true at every even position” (an infinite word
or sequence starts with position 0), or “Even p” for short, is a typical ex-
ample for showing that PTL is strictly less expressive than Büchi automata.
A plausible PTL formula for “Even p” would be “p ∧ �(p → ©©p)”. Using
GOAL, one can translate the formula into a Büchi automaton and compare
it with the one for “Even p” from the repository. An equivalence test will
show that the two automata are not equivalent and display a counter exam-
ple. Indeed, the formula p ∧ �(p → ©©p) is overly restrictive. Once p holds
at some odd position, this formula forces p to hold at all subsequent odd
positions, which is not required by “Even p”. The property can, however, be
expressed by a QPTL formula, e.g., ∃t : t ∧ �(t ↔ ©¬t) ∧ �(t → p).

– Combining GOAL with SPIN: In the SPIN model checker, the speci-
fication can either be given as a PTL formula (without past operators) or
directly as a Büchi automaton in Promela code. For a property that is not
expressible in PTL, defining a suitable Büchi automaton becomes necessary.
In this case, GOAL supplements SPIN by providing a convenient graphical
interface for drawing and manipulating Büchi automata. Once the (negative)
specification automaton of an ideal size has been successfully constructed and
checked, it can be exported as Promela code. One can then copy-and-paste
the Promela code to SPIN’s model file as the “never claim” and continue
the model checking procedure as usual.

4 Concluding Remarks

The GOAL tool will continue to be improved and extended. As the source of
the acronym “GOAL” suggests, our long-term goal is for the tool to handle the
common variants of omega-automata and the logics that are expressively equiv-
alent to these automata. Currently, as by-products of Safra’s complementation
construction, GOAL already inlcudes Büchi to Rabin and Streett to Büchi trans-
lations. Although these variants of omega-automata do not necessarily have a
direct impact on model-checking efficiency, they are powerful intermediaries for
automata-based algorithms development. A tool that can visually manipulate
these variants and perform their translations will be helpful in such develop-
ments. It is also of educational value, which should not be overlooked.

Acknowledgment. We thank Susan H. Rodger, the creator of JFLAP, at Duke
University for granting us the permission to use and modify the JFLAP source
code.

A Graphical Tool for Manipulating Buchi Automata and Temporal Formulae 471

References

1. E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. The MIT Press,
1999.

2. K. Etessami and G. Holzmann. Optimizing Büchi automata. In Proceedings of the
11th International Conference on Concurrency Theory (CONCUR 2000), LNCS
1877, pages 153–167. Springer, 2000.

3. P. Gastin and D. Oddoux. Fast LTL to Büchi automata translation. In Proceedings
of the 13th International Conference on Computer-Aided Verification (CAV 2001),
LNCS 2102, pages 53–65. Springer, 2001.

4. R. Gerth, D. Peled, M.Y. Vardi, and P. Wolper. Simple on-the-fly automatic verifi-
cation of linear temporal logic. In Protocol Specification, Testing, and Verification,
pages 3–18. Chapman & Hall, 1995.

5. G.J. Holzmann. The SPIN Model Checker: Primer and Reference Manual.
Addison-Wesley, 2003.

6. Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems: Safty.
Springer, 1995.

7. S. Rodger and T. Finley. JFLAP. http://www.jflap.org/.
8. S. Safra. On the complexity of ω-automta. In Proceedings of the 29th Annual

IEEE Symposium on Foundations of Computer Science (FOCS 1988), pages 319–
327, 1988.

9. A.P. Sistla, M. Vardi, and P. Wolper. The complementation problem for Büchi au-
tomata with applications to temporal logic. Theoretical Computer Science, 49:217–
237, 1987.

10. Y.-K. Tsay, Y.-F. Chen, and K.-N. Wu. Tool support for learning Büchi automata
and linear temporal logic. Presented at the Formal Methods in the Teaching Lab
Workshop, Hamilton, Canada, August 2006.

11. M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic pro-
gram verification. In Proceedings of the 1st Annual IEEE Symposium on Logic in
Computer Science (LICS 1986), pages 332–344, 1986.

Faster Algorithms for Finitary Games�

Florian Horn

Liafa, Université Paris 7, Case 7014, 2 place Jussieu, F-75251 Paris 5, France
horn@liafa.jussieu.fr

Abstract. The theory of games is a prominent tool in the controller
synthesis problem. The class of ω-regular games, in particular, offers
a clear and robust model of specifications, and present an alternative
vision of several logic-related problems. Each ω-regular condition can be
expressed by a combination of safety and liveness conditions. An issue
with the classical definition of liveness specifications is that there is no
control over the time spent between two successive occurrences of the
desired events. Finitary logics were defined to handle this problem, and
recently, Chatterjee and Henzinger introduced games based on a finitary
notion of liveness. They defined and studied finitary parity and Streett
winning conditions. We present here faster algorithms for these games,
as well as an improved upper bound on the memory needed by Eve in
the Streett case.

1 Introduction

Games are one of the most practical tools to study the controller synthesis prob-
lem in open systems. The setting of the problem is translated into an arena,
while the controller and the environment are the players that make decisions
based on the current state of the system and the former actions of their op-
ponent. The desired behaviour of the system is given as a constraint over the
sequence of system states, usually in the form of an ω-regular condition [MP92].
The study of these ω-regular games is the subject of a very large part of the
games theory (two out of many, [Tho95, AHK02]). These games also present the
advantage of giving alternate tools to solve problems of model-checking and ver-
ification. However, they present some weaknesses when they are used in actual
synthesis of controllers. Each ω-regular condition can be expressed by a combi-
nation of liveness and safety conditions. Safety specifications are sound in terms
of controller synthesis: they ask for the controller to prevent the occurrence of
undesirable events, as long as some other condition does not change. Liveness
specifications, however, are not as satisfying. The classical definition asks only
for the desired event to happen eventually, without any constraints on the num-
ber of transitions it may take. This allows more robust specifications, in the
sense that they do not depend on the way a system is represented. In one-shot
liveness (reachability), this is perfectly natural: the actual number of transitions
� Work supported by the EU-TMR network GAMES. Some of this work was done in

RWTH, Aachen.

O. Grumberg and M. Huth (Eds.): TACAS 2007, LNCS 4424, pp. 472–484, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Faster Algorithms for Finitary Games 473

depends more on the particular representation we use than on the actual prop-
erties of the system studied. But as soon as we consider Büchi conditions, there
exists behaviours compatible with these specifications in which the number of
transitions between two visits to the target set is unbounded. On finite graphs,
one can always take shortcuts to avoid these cases. When we consider parity
conditions in open systems, however, there are cases where there is no bounded
solution. Finitary conditions, in which the unbounded behaviours are forbidden
were introduced in [AH94]. More recently, [BC06] proposed a logic based on a
variant of the notion of ω-regularity that introduced bounds on the size of the
set of states considered. A fragment of this logic, where the bounds concerns
only the distance between events, express the finitary conditions.

In [CH06], Chatterjee and Henzinger introduced finitary games and studied
the cases of parity and Streett specifications. They proved that both games
were determined and provided algorithms computing the winning regions. The
finitary parity problem was also proved to be in NP ∩ co-NP. We present here
faster algorithms for both games, using Turing reductions to other variations
on these games. The finitary parity game problem is proved to be in P, with
a time complexity of m · n2, where n is the number of states in the arena and
m is the number of edges. In comparison, the original algorithm of [CH06] had
a time complexity of O(n2c−3 · c · m) (c is the number of colors in the parity
condition). The finitary Streett algorithm is faster than the original reduction
to finitary parity with a complexity of O(4k · k2 · m2 · n), where n and m still
denotes the numbers of states and edges, and k is the number of pairs in the
Streett condition. The algorithm of [CH06], based on a reduction to finitary
parity games, had a complexity of O((n · k! · k2)2k−3 · m · k! · k3)). In addition,
our algorithm yields a strategy for Eve that uses 2k · k memory states, instead
of k! · k2 in the strategy derived from the reduction.

Outline of the Paper. Section 2 defines the general notions on games we use
in all the paper. Sections 3 defines several variants of parity games, including
finitary ones, and gives algorithms that solve them. Section 4 does the same for
Streett games. Finally, section 5 summarizes the results and presents some ideas
about future work in this domain.

2 Definitions

A 2-player game is a tuple (V, E,Win) consisting of a graph (V, E) containing
a token, and a winning condition Win ⊆ V ω. The token is always in one of the
states and can only move along the edges. The set of states V is partitioned into
Eve’s states (VE , represented by circles) and Adam’s states (VA, represented by
squares). The owner of the state containing the token chooses the next state. An
infinite play ρ = q1, q2, . . . is a sequence of states visited by the token, respecting
the edge relation: (qi, qi+1) ∈ E for all i > 0. We consider only infinite plays, by

474 F. Horn

assuming that every state has at least one successor. A play in Win is winning
for Eve. Otherwise, it is winning for Adam. For complexity computations, we
will always denote by n the total number of states, and by m the total number
of edges.

Fig. 1. A game graph

In this paper, we will only consider
games on finite graphs. Most of the
notions presented in this section also
exist on infinite graphs, but our al-
gorithms are not adapted to those.
We will now introduce several defin-
itions and tools used to solve games.
See [Tho95, Zie98] for more detailed
proofs.

Definition 1. A subgame of a game
G = (V, E,Win) is a game defined on
a subset V ′ of V such that each state
in V ′ has a successor in V ′. The edges
and the wining set are restrictions of E and Win to V ′.

The arena of a game is the graph (V, E), including the partition between VA

and VE . A sub-arena of an arena is the arena of a subgame. Many notions about
games depend only on the arena of the game, and this allows us to export them
from a game to another, as long as they are played on the same arena. The
central notion of play, in particular, depends only of the arena.

A strategy for Eve (resp. Adam) is a function σ from V ∗VE (resp. V ∗VA) to
V such that for any finite prefix w and any state q, there is an edge between
q and σ(w.q). Informally, a strategy for player P is a method of extending any
finite prefix ending in a state of P . A strategy is positional if σ depends only on
the current state. It has a finite memory if it can be realized by a finite-state
transducer. A play is consistent with a strategy σ for P if ∀i ∈ N, ρi ∈ VP ⇒
ρi+1 = σ(ρ1..i). All these notions depend only on the arena of the game.

A strategy for P is winning for P from a state q if each play starting in q and
consistent with it is won by P . The winning region of a player P in a game G,
denoted by WinP (G), is the set of states from where P has a winning strategy.

The attractor of W for player P in the game G, denoted AttrG
P (W), is the set

of states from which P can ensure that the token will reach the set W in a finite
number of moves. It is computed inductively as usual:

W0 = W
Wn+1 = Wn

∪{q ∈ VP | ∃q′ ∈ Wn, (q, q′) ∈ E}
∪{q ∈ V | ∀q′, (q, q′) ∈ E ⇒ q′ ∈ Wn}

The attractor strategy for player P is positional, and consists in always going
from a state of Wn to a state in Wn−1, thus getting closer to W . The complexity
of the computation of either the attractor set or the attractor strategy is O(m).

Faster Algorithms for Finitary Games 475

A trap is the dual of an attractor, and hence is a set from which one of the
players cannot escape: A trap T ⊆ V for player P is a region such that each
state belonging to the other player has a successor in T , and each state in VP

has all its successors in T . Note that the complement of an attractor is a trap for
the same player, and that a trap is always a sub-arena. Once again, the notions
of attractor and trap depend only on the arena of the game.

In this paper, we will study the relations between several winning conditions
defined on the same arena.

3 Parity Games

3.1 Parity Conditions

A parity coloring p is a function that associates an integer to each state of an
arena A. A parity arena is an arena equipped with a parity coloring. All the
parity games that we define depend only on the parity arena they are played on.
It is thus legitimate to talk about the weak parity game on the arena Ap without
further precision. In complexity computations, we will denote the number of
colors in a parity arena by c.

The study of parity games is usually concerns one of the two following kind:
Weak parity games: A play is winning for Eve if the least color appearing in

the play is even.
(Classical) parity games: A play is winning if the least color appearing infi-

nitely often in the play is even.
In this paper, we will study another kind of parity games, called finitary

parity. These games were introduced by Chatterjee and Henzinger in [CH06].
Intuitively, a play is winning for Eve in finitary parity if for each odd color that
occurs infinitely often, a smaller even color occurs infinitely often, as in classical
parity, with the added constraint that the delay between an occurrence of an
odd color and the next smaller even color must be ultimately bounded.

The formal definition uses the notion of delay sequence of a play:

Definition 2. The delay sequence d(ρ) of a play ρ on a parity arena Ap is
defined as follows:

– If p(ρi) is even, then d(ρ)i = 0.
– If p(ρi) is odd, then d(ρ)i is the smallest j such that p(ρi+j) is even and

p((ρ)i+j) < p(ρi). Note that if there is no such j, d(ρ)i = ∞.

A play ρ on a parity arena Ap is winning for Eve in the finitary parity game if
and only if d(ρ) is ultimately bounded. Note that, as the delay function can take
infinite values, ultimately bounded is a weaker property than simply bounded.

Figure 2 gives some examples of how these games work. In arena 2(a), Adam
can control the time between occurrences of 1, but an occurrence of 0 always
comes immediately after. The delay sequence is made only of 0’s and 1’s. Thus
Eve wins in the finitary parity game. In arena 2(b), Adam can control the time

476 F. Horn

fp �= cp rp �= wp

Fig. 2. Examples of parity games

spent between the first 1 and the next 0, or even choose to never go to 0. The first
element of the sequence can thus be as high as Adam wants, or even infinite. But
all following values will be equal to 0, so Eve wins in the finitary parity game.
In the weak-parity game, Adam would have won if the play had begun in the
state 1. In arena 2(c), however, Adam can delay the time between a 1 and the
next 0 as long as he wants before allowing the loop to go on. Thus he can make
the delay function unbounded and win the finitary game. Notice that he would
not win in the classical parity game.

In [CH06], Chatterjee and Henzinger proved the following results about fini-
tary parity games:

– Finitary parity games are determined (Winfp
A (A) ∪ Winfp

E (A) = A).
– In her winning region, Eve has a positional winning strategy.
– Adam may need strategies with infinite memory in order to win.
– Winning regions can be computed in time O(n2c−3 · c · m).
– Deciding the winner in a given state is in NP ∩ co-NP.

Our algorithm for finitary games uses yet another kind of parity games, that
we call repeating parity game. These games are also defined in terms of delay
sequence: A play ρ is winning if the associated delay sequence only takes finite
values. Intuitively, it means that for each occurrence of an odd color, there is
later an occurrence of a smaller even color.

These games are different from the other parity games we defined. In
figure 2(b), Adam will win if the play starts in state 1, by blocking the to-
ken in state 2, while Eve would have won a finitary or classical game. In figure
2(d), he wins again, even if the play starts in state 0, while Eve would have
won a weak game. The definition does not supposes that the delay function is
bounded. On finite arenas, however, it is easy to see that Eve can bound the
delay function to n in her winning region : If she can reach a smaller even color,
then she can reach it in less than n moves.

Faster Algorithms for Finitary Games 477

3.2 Algorithms

Another way of thinking about repeating parity games is to consider them as
weak-parity games where Adam can reset the set of visited states whenever he
wants, but will lose if he does so infinitely often. This intuition is formalized in
the lemma 3.

Lemma 3. α : The winning region of Adam in the weak-parity game on an
arena Ap is also winning for him in the repeating parity game on the same
arena. The attractor of this region is also winning for him in this game.

β : If Eve wins everywhere in the weak-parity game on an arena Ap, then she
wins everywhere in the repeating parity game on the same arena.

Before we give the proof for this lemma, a short review of how the winning
regions are computed in a weak-parity game is in order. The full algorithm comes
from [LT00]. It works by removing attractors for each players alternatively. We
consider that the smallest color is 01. The region labeled by 0 is immediately
winning for Eve, as any play starting from this region will have 0 as smallest
occurring color. For the same reason, any state in Eve’s attractor to this region
will be winning for her. All these states are winning for Eve, and can now be
removed from the game in order to compute the winning regions in the rest of
the game: Eve cannot go to these states, and Adam will never want to go there,
as Eve could force the token to visit a state labeled 0. The remainder of the
arena is a (parity) sub-arena, as it is a trap, and its size is strictly smaller. We
can thus use the same algorithm to get the winning regions of both players in
this new game.

An illustration of how this algorithm works is given in figure 3(a). Notice that
all the attractors and regions are relative to earlier computation: there could
be 1’s in the region AttrE(0), for example. However, there cannot be a 0 in the
region AttrA(1), as it would belong to AttrE(0) which was defined earlier. In
the same way, the attractors are computed relatively to the subgames. AttrA(1),
for example, is the region where Adam can force the token to a state labeled 1
without crossing AttrE(0). Figure 3(b) shows the special case where Eve wins
everywhere. It is computed in the same way, but the odd regions and attractor
happens to be empty (which is fitting, since they are regions winning for Adam).
Obviously, there could be odd colors in the arena, but each belongs to attractors
of smaller even colors.

A naïve study of this algorithm leads to a worst-case time complexity of
O(c · m). However, a careful use of data structures reduces this time to O(m)
[Cha06].

We will now give the proof of lemma 3.

Proof. α : A play is winning for Adam in the weak parity game if the smallest
color visited is odd. Obviously, a smaller even color cannot occur later. Thus

1 If this is not the case, just replace 0 by the smallest color present in the arena, and
Eve by Adam this color is odd

478 F. Horn

E(0)
A(1) E(2)

A(3) E(0)
A(2) E(4)

A(6)

Fig. 3. An arena where Eve wins everywhere in weak-parity

Winwp
A (A) ⊆ Winrp

A (A). The case of the attractor is solved by the following
observation: If a play ρ is winning for Adam in the repeating parity game,
then each play of the form w · ρ is also winning for him in this game. Thus
AttrA(Winwp

A (A)) ⊆ Winrp
A (A).
�

β : An arena where Eve wins everywhere in the weak-parity game looks like
figure 3(b). In this game, Eve needs only to play according to the attractors’
strategies whenever the token is not in one of the top-most regions. This
guarantees that the token will get to an even state in the top-most regions
without crossing a smaller odd color. Thus Eve also wins everywhere in the
repeating parity game. On a finite arena with n states, using this strategy
also guarantees that the delay between an odd color and the next smaller
even color is at most n.
�

This lemma leads directly to algorithm 12.

Algorithm 1. Algorithm computing the winning regions of Adam and Eve for
the repeating parity game
Require: Algorithm for computing the winning regions in a weak-parity game

input A, p
B ← A
repeat

B ← B \ AttrA(Winwp
A (B, p))

until Winwp
A (B, p) = ∅

return A \ B, B

The termination of the algorithm 1 is guaranteed by the fact that in each
repeat loop, B loses at least one state. This limits the number of times the loop
can be repeated to n. As weak-parity games are solved in time O(m), the global
complexity of our algorithm is O(m · n).
2 In this algorithm, as in the others, the first component returned is Adam’s winning

region, while the second is Eve’s winning region.

Faster Algorithms for Finitary Games 479

The validity of this algorithm derives directly from lemma 3.
We will now solve finitary games using the same kind of construction. Lemma 4

relates the winning regions of repeating parity and finitary parity, in a way very
similar to lemma 3.

Lemma 4. α : The winning region of Eve in the repeating parity game on an
arena Ap is also winning for her in the finitary parity game on the same
arena. The attractor of this region is also winning for her in this game.

β : If Adam wins everywhere in the repeating parity game on an arena Ap, then
he wins everywhere in the finitary parity game on the same arena.

Proof. α : Eve’s winning region in the repeating parity game is the region
from where she can guarantee that the delay function remains finite. On
this region, she can use the strategy described in the proof of lemma 3
which guarantees that the delay function will be bounded by n. The fini-
tary parity game asks only for this function to be ultimately bounded. Thus
Winrp

E (Ap) ⊆ Winfp
E (Ap). As the finitary parity condition is prefix indepen-

dent, we can conclude that AttrE(Winrp
E (Ap)) ⊆ Winfp

E (Ap)
�
β : The second part of the proof is more complex. Adam has a strategy π that

is winning everywhere in repeating parity. From it, we derive the following
strategy π′:
1. Set b to 1.
2. Play the strategy π with initial memory from the state where the token

is now until there is a sequence with an odd priority followed by b moves
without seeing a smaller even priority.

3. Increment b.
4. Go back to step 2.

It is immediate that if a play consistent with this strategy behaves in a way
such that Adam goes infinitely often through the loop, then it is winning for
Adam in the finitary parity game. The only point that could cause trouble
is to get out of step 2. But a play that would get stuck in this state would
be a play consistent with π where for each occurrence of an odd color, there
is an occurrence of a smaller even color in the next b moves. This would be a
contradiction to the hypothesis that π is winning for Adam in the repeating
parity game. Thus π′ is winning for Adam in the finitary parity game.
�

As we did for repeating parity, we use this lemma to build Algorithm 2, com-
puting the winning regions in finitary parity games.

As in Algorithm 1, the termination and complexity are guaranteed by the fact
that the repeat loop removes one state from B. Likewise, the complexity is n
times the complexity of the former algorithm, or O(m · n2). This complete the
proof of the following theorem:

Theorem 5. Deciding the winner of a state in a finitary parity game can be
done in polynomial time. In particular, Algorithm 2 computes the winning regions
of a game with n states and m edges in time O(m · n2).

To give a comparison, the algorithm of [CH06] was running in time O(n2c−3·c·m).
Chaterjee and Henzinger also proved that the problem was in NP ∩ co-NP.

480 F. Horn

Algorithm 2. Algorithm computing the winning regions of Adam and Eve for
the finitary parity game
Require: Algorithm for computing the winning regions in a repeating parity game

input A, p
B ← A
repeat

B ← B \ AttrE(Winrp
E (B, p))

until Winrp
E (B, p) = ∅

return B, A \ B

4 Streett Games

4.1 Streett Conditions

A Streett coloring s over an arena A is a set of pairs of sets of states of A. The
first element of a pair is usually called a request, and the second element is the
corresponding response. A Streett arena As is an arena equipped with a Streett
coloring. The rank of a Streett arena is the number of pairs that constitute
the Streett coloring. The rank of a Streett game is the rank of its arena. In
complexity computation, the rank of the Streett condition will be denoted by k.
As was the case for parity games, all the variants of Streett games that we will
define depend only on the Streett arena they are played on. Again, there are two
classical versions of the Streett games:

Weak Streett games: A play is winning for Eve if for each request that occurs
in the play, the corresponding response also occurs.

(Classical) Streett games: A play is winning for Eve if for each request occur-
ring infinitely often in the play, the corresponding response also occurs infinitely
often.

Chatterjee and Henzinger also introduced a finitary version of the Streett
games in [CH06]. Intuitively, a play is winning for Eve in finitary Streett if
for each request that occurs infinitely often, the corresponding response occurs
infinitely often, as in classical Streett, with the added constraint that the delay
between an occurrence of a request and the next corresponding response must
be ultimately bounded.

The formal definition also uses a notion of delay sequence derived from a play:

Definition 6. The delay sequence d(ρ) of a play ρ on a Streett arena Ap is
defined as follows:

– If ρi does not belong to a request, then d(ρ)i = 0.
– If ρi belongs to the request of only one pair, then d(ρ)i is the smallest j such

that ρi+j belong to the corresponding response. Note that if there are no such
j, d(ρ)i = ∞.

– If ρi belong to several requests, then d(ρ)i is the maximum of the values
computed with the method above for each request.

Faster Algorithms for Finitary Games 481

A play ρ on a Streett arena Ap is winning for Eve in the finitary Streett game
if and only if d(ρ) is ultimately bounded.

In [CH06], Chatterjee and Henzinger proved the following results about fini-
tary Streett games:

– Finitary Streett games are determined. (Winfs
A (A) ∪ Winfs

E (A) = A)
– In her winning region, Eve has a strategy that uses no more than k! · k2

memory states.
– Adam may need strategies with infinite memory in order to win.
– Winning regions can be computed in time O((n · k! · k2)2k−3 · m · k! · k3).

As for parity games, we will use another kind of Streett games in our algo-
rithm, called request-response games. These games will have the same place in
the Streett algorithm than repeating parity had in the parity algorithm. How-
ever, there are two significant differences: there is no relation3 between these
games and weak-parity games, and they were defined and studied by Wallmeier,
Thomas and Hutten in [WHT03]. Even if these games do not bear the name
Streett, they are defined by a Streett arena:

A play is winning in a request-response game if its delay sequence takes only
finite values, i.e. if for each occurrence of a request, there is later an occurrence
of a corresponding response.

Wallmeier et al. present an algorithm to solve request-response games in
[WHT03]. It is based on a reduction to generalized Büchi games. The time
complexity of their algorithm is O(4k · k2 · m2). The strategy for Eve that is
derived from this algorithm has the property that in each play consistent with
it, each request is matched by a corresponding response in the next k · n moves.

The following lemma relates finitary Streett games and request-response games:

Lemma 7. α : The winning region of Eve in the request-response game on an
arena As is also winning for her in the finitary Streett game on the same
arena. The attractor of this region is also winning for her in this game.

β : If Adam wins everywhere in the request-response game on an arena As,
then he wins everywhere in the finitary Streett game on the same arena.

Proof. α : In the winning region of Eve in the request-response game, she
can use the strategy derived from [WHT03]. It guarantees that each re-
quest is matched by a corresponding response in the next k · n moves, and
thus that the delay sequence is bounded. Thus Winrr

E (As)) ⊆ Winfs
E (Ap).

As the finitary condition is prefix-independent, we get AttrE(Winrr
E (As)) ⊆

Winfs
E (Ap).
�

β : The construction of a winning strategy for Adam for finitary Streett from a
strategy winning everywhere for him in request-response is similar to the one
used to build a winning strategy for him in finitary parity. If π is a winning
strategy for Adam in the request-response game, the strategy π′ is defined by:

3 At least, none that we were able to find.

482 F. Horn

1. Set b to 1.
2. Play the strategy π with initial memory from the state where the token is

now until there is a sequence with a request followed by b moves without
seeing the corresponding response.

3. Increment b.
4. Go back to step 2.

Once again a play that does not get stuck in step 2 is clearly winning for
Adam. And a play that would get stuck in the step 2 would be a play con-
sistent with π where each request is followed by a response, in contradiction
with the fact that π is winning in request-response. Thus π′ is winning for
Adam everywhere in As.
�

From this lemma we derive Algorithm 3.

Algorithm 3. Algorithm computing the winning regions of Adam and Eve for
the finitary Streett game
Require: Algorithm computing the winning regions in a request-response game

input A, p
B ← A
repeat

B ← B \ AttrE(Winrr
E (B, p))

until Winrr
E (B, p) = ∅

return B, A \ B

As in the other algorithms, the number of times the loop is repeated is
bounded by the number of states in the arena. The complexity is thus n times
the complexity of the algorithm for request-response games, or O(4k ·k2 ·m2 ·n).
This complete the proof of the following theorem:

Theorem 8. Computing the winning regions in a finitary Streett game can be
done in time O(4k · k2 · m2 · n).

In comparison, the reduction to a finitary parity game showed in [CH06] was
running in time O((n · k! · k2)2k−3 · m · k! · k3). This reduction was based on the
indexes of appearance records from [BLV96]. It also implies that the winning
strategy of Eve in her region could use up to k! · k2 memory states. This makes
the following corollary to our algorithm interesting:

Corollary 9. There are winning strategies for Eve in her winning region that
use no more than k · 2k memory states.

Proof. The strategy for Eve that derives from our algorithm is a combination
of request-response strategies and attractors strategies. The request-response
strategies use at most k · 2k, while the attractors strategies are memoryless.
Furthermore, these strategies are combined in a spatial fashion: when the token
goes from a region to another, the memory can be reseted. Thus Eve needs only
as much memory as she needs to win the request-response games, i.e. k · 2k.
�

Faster Algorithms for Finitary Games 483

Interestingly, the weak-Streett strategies for Eve need less memory, with 2k

memory states [NSW02], while classical Streett games need k! memory states
[DJW97, Hor05].

5 Conclusion and Developments

We gave algorithms that solve finitary parity and Streett games. They are much
faster than their counterpart in the original paper by Chatterjee and Henzinger.
The finitary parity problem, in particular, was proved to be in P, improving the
former result of NP ∩ co-NP. The algorithm for Streett games represents a good
improvement in time complexity, and yields more compact strategies for Eve.
We had hoped to solve finitary Streett games with a Turing-reduction starting
from weak-Streett games, which may have made the solution a PSPACE problem.
However, if there is such a reduction, it eluded us so far.

Our next interests in this field of research are an extension of the notion of
finitary games to Muller conditions, and the study of links between these games
and a fragment of the ωBS-regular logic of Bojanczyk and Colcombet.

Acknowledgments. I wish to thank Olivier Serre for introducing me to finitary
games and then helping me in the construction of the algorithms. Also, special
thanks to Claire David, whithout whom I would never have met the deadline.

References

[AH94] R. Alur and T.A. Henzinger. Finitary Fairness In proceedings of Logic In
Computer Science, LICS’94, p. 52–61. IEEE Computer Society, 1994.

[AHK02] R. Alur, T.A. Henzinger and O. Kupferman. Alternating-time temporal
logic. In Journal of the ACM, volume 49, p.672–713. 2002.

[BC06] M. Bojanczyk and T. Colcombet. Bounds in ω-regularity In proceedings of
Logic In Computer Science, LICS’06, p. 285–296, IEEE Computer Society,
2006.

[BLV96] N. Buhrke, H. Lescow and J. Vöge. Strategy Construction in Infinite Games
with Streett and Rabin Chain Winning Conditions. In proceedings of Tools
and Algorithms for Construction and Analysis of Systems, volume 1055 of
Lecture Notes in Computer Science, TACAS’96, p. 207–224, Springer, 1996.

[CH06] K. Chatterjee and T.A. Henzinger. Finitary Winning in omega-Regular
Games. In proceedings of Tools and Algorithms for the Construction and
Analysis of Systems, volume 3920 of Lecture Notes in Computer Science,
TACAS’06, p. 257–271, Springer, 2006.

[Cha06] K. Chatterjee. Linear Time Algorithm for Weak Parity Games Techni-
cal Report No. UCB/EECS-2006-153. University of California at Berkeley,
2006.

[DJW97] S. Dziembowski, M. Jurdziński and I. Walukiewicz. How Much Memory
Is Needed to Win Infinite Games ? In proceedings of Logic In Computer
Science, LICS’97, p. 99–110, IEEE Computer Society, 1997.

484 F. Horn

[Jur00] M. Jurdziński Small Progress Measures for Solving Parity Games. In
proceedings of Symposium on Theoretical Aspects of Computer Science,
STACS’00, volume 1770 of Lecture Notes in Computer Science, p. 290–301,
Springer, 2000

[Hor05] F. Horn. Streett Games on Finite Graphs. Games in Design and Verifica-
tion, Workshop collocated with Computer Aided Verfication, 2005

[LT00] C. Löding and W. Thomas. Alternating Automata and Logics over Infinite
Words. In proceedings of the IFIP International Conference on Theoretical
Computer Science, IFIP TCS’00, volume 1872 of Lecture Notes in Computer
Science, p. 521–535. Springer, 2000.

[MP92] Z. Manna and A. Pnueli. The Temporal Logic of Concurrent and Reactive
System Springer, 2002.

[NSW02] J. Neumann, A. Szepietowski and I. Walukiewicz. Complexity of weak
acceptance conditions in tree automata. In Information Processing Letters,
volume 84, p181–187, Elsevier, 2002.

[Tho95] W. Thomas. On the Synthesis of Strategies in Infinite Games. In proceed-
ings of Symposium on Theoretical Aspects of Computer Science, STACS’95,
volume 900 of Lecture Notes in Computer Science, p. 1–13, Springer, 1995.

[VJ00] J. Vöge and M. Jurdziński. A Discrete Strategy Improvement Algorithm
for Solving Parity Games. In proceedings of Computer Aided Verfication,
CAV’00, volume 1855 of Lecture Notes in Computer Science, p. 202–215,
Springer, 2000.

[WHT03] N. Wallmeier, P. Hutten and W. Thomas. Symbolic Synthesis of Finite-
State Controllers for Request-Response Specifications. In proceedings of
Conference on Implementation and Application of Automata, CIAA’03, vol-
ume 2759 of Lecture Notes in Computer Science, p. 11–22, Springer, 2003.

[Zie98] W. Zielonka. Infinite Games on Finitely Coloured Graphs with Applications
to Automata on Infinite Trees. In Theoretical Computer Science, volume
200(1-2), p. 135–183, 1998

Planned and Traversable Play-Out:

A Flexible Method for Executing
Scenario-Based Programs�,��

David Harel and Itai Segall

The Weizmann Institute of Science, Rehovot, Israel
{david.harel,itai.segall}@weizmann.ac.il

Abstract. We introduce a novel approach to the smart execution of
scenario-based models of reactive systems, such as those resulting from
the multi-modal inter-object language of live sequence charts (LSCs).
Our approach finds multiple execution paths from a given state of the
system, and allows the user to interactively traverse them. The method
is based on translating the problem of finding a superstep of execution
into a problem in the AI planning domain, and issuing a known planning
algorithm, which we have had to modify and strengthen for our purposes.

1 Introduction

Scenario-based modeling appears to be a promising approach to system and soft-
ware design and development, and has resulted in intensive research efforts in
the last few years. One of the most widely used languages for capturing inter-
object scenario-based specifications is that of message sequence charts (MSCs)
proposed by the ITU [21], or its UML variant, sequence diagrams [28]. Recently,
an extension of MSCs has been proposed, called live sequence charts (LSCs)
[4]. LSCs are multi-modal charts that distinguish between behaviors that may
happen (existential, cold) and those that must happen (universal, hot).1 The
language is highly expressive and can also specify negative behavior, and more,
and it has been extended to include, among other things, time, forbidden ele-
ments, and symbolic instances (i.e., the ability to talk also about classes, rather
than only object instances) [14]. An LSC is divided into two parts, a prechart
and a main chart. A prechart is a precondition for the main chart, i.e., if the
prechart of an LSC is satisfied, then its main chart must be satisfied as well.

In [15,14], the play-in/play-out approach is introduced, in which the user spec-
ifies scenarios by playing them in directly from a graphical user interface of the
system to be developed. When a scenario is played in, the Play-Engine tool

� This research was supported by the John von Neumann Minerva Center for the
Development of Reactive Systems at the Weizmann Institute of Science.

�� This is a somewhat shortened conference version of the paper. The full version [16]
can be obtained by emailing one of the authors.

1 A variant of LSCs has also been defined, called modal sequence diagrams, or MSDs,
which adheres to the UML 2.0 standard; see [12].

O. Grumberg and M. Huth (Eds.): TACAS 2007, LNCS 4424, pp. 485–499, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

486 D. Harel and I. Segall

translates it on the fly into an LSC. Play-out is the complementary idea, in
which the Play-Engine uses the operational semantics of the language in order
to execute a set of LSCs. In this stage, the user again interacts directly with the
GUI, and the system responds to each user action with a superstep, which is a
set of actions, steps, that are dictated by the LSC specification as the result of
the action.

Here now is a simple example of an LSC specification for a three-story elevator,
as shown in Figure 1. LSC Check1, shown in Figure 1(a), states that if the user
presses the Close-Doors button then the elevator sends the message Check1
to itself. The specification includes three such LSCs, with messages Check1,
Check2, Check3. LSC Goto1, shown in Figure 1(b), states that if the elevator
sends Check1 to itself, then the system checks whether the elevator is not on floor
1 and the Floor1 button is pressed. If so, the elevator closes its doors, moves to
floors 2 and 1 and then opens its doors. The Floor1 button is turned off as well.
According to the LSC semantics, partial order is defined only among locations
in the same lifeline (denoted by vertical lines). Therefore, in this example, there
is no explicit order between turning off Floor1 and the other four actions. At
the bottom of the figure, two forbidden elements are specified, which state that
the elevator may not send the message Check2 or Check3 to itself, as long as the
main chart is active. Similar charts exist in the system specifying movement to
floors 2 and 3. Finally, the LSC TestCase of Figure 1(c) is a test case, stating
that if the elevator visits floors 3, 2 and 1, in that order, then the Floor2 button
is enabled.

The play-out mechanism described in [14] is näıve, in the sense that at each
given point the system selects a single action that is enabled at that point and
executes it. This approach might lead to violations in the future, which could
have been avoided by selecting the action more wisely from the set of enabled
actions. In our example, assume the elevator has visited floors 3 and 2, and is
now moving to floor 1 according to the LSC Goto1 of Figure 1(b). Once the set
Floor(1) message is sent from the elevator to itself, the TestCase LSC in Figure
1(c) becomes active too. Note that the elevator doors are closed at that point in
time. Now the system has two options: either open the doors as specified in the
Goto1 chart, or enable the Floor2 button as specified in the TestCase chart. If
the system chooses to open the doors first, and only then enables the button,
a violation will occur, since TestCase states that after enabling the button the
doors must be closed, but the doors are already open and should not be closed
again. Had the system chosen to enable the button first, this problem would
have been avoided.

One way to tackle this problem is by using smart play-out [10,11], in which
play-out is translated into a model-checking problem. A model-checker is then
handed the claim “no legal superstep exists”, and if it delivers a counter-example,
which is really a legal superstep, it is then fed into the Play-Engine for execution.

Often it is useful to know more than a single legal superstep, but model
checkers are usually unable to provide more than one counter-example. In [14],
this issue is addressed in a rather crude way. The first-found superstep is turned

Planned and Traversable Play-Out 487

by the Play-Engine into a negative (forbidden) scenario. The resulting LSC is
then added to the specification and smart play-out is rerun. A different superstep
will then be found, if one exists. In this approach, the model-checker must be
employed repeatedly for each new superstep to be found, and the specification
keeps growing with another chart at each such run.2

In this paper we describe a new approach to the play-out problem, termed
planned play-out, which uses AI planning algorithms and finds many legal su-
persteps in a single run. As we show, this approach can also be used to support
interactive play-out, where the user is allowed to backtrack, and to choose be-
tween possible steps, in the quest for an acceptable superstep.

Technically, finding a legal superstep is translated into a planning problem,
and a planner is employed in order to solve it. The resulting plans are then
translated back into supersteps. We have chosen to use the IPP planner [25,20],
an iterative Graphplan-like algorithm. Graphplan planners use a data structure
called a planning graph, which is a polynomial-sized graph that represents some
of the constraints in the planning problem, and which is used to reduce the search
for a legal plan. The resulting plan is a partial-order, in the sense that it is divided
into timesteps such that two actions in the same timestep are unordered in time.
Planning problems, Graphplan and IPP are all discussed in Section 3.

2 LSCs

A more detailed description of the LSC language is omitted from this version of
the paper; see [16].

3 Planning

Planning is a field of research central to AI, in which algorithms are designed to
generate a list of actions that lead to a predefined goal. Planning is appropriate
whenever a number of actions must be performed in a coherent manner to achieve
a goal — for example, a robot trying to reach a destination without bumping into
walls or getting into dead ends. The algorithms usually consider in advance the
consequences of their actions, and decide on the entire plan before performing it.

A planning problem typically consists of three inputs: (1) a description of
the current state of the world — the initial conditions, (2) a description of the
desired state after performing the plan — the goals, and (3) a set of possible
actions — the domain theory. An action typically has a precondition, describing
when it is allowed, and an effect, describing the consequence of performing it.
An output plan is then a multiset of actions from the domain theory, with a
partial (or total) order, such that if performed in a manner consistent with the
order, starting in a state consistent with the initial conditions, the goals will be
achieved.
2 In addition, the new superstep might be very similar to those already found, as the

only requirement is for it not to be identical to them.

488 D. Harel and I. Segall

(a) The Check1 LSC, stating that if
the user presses the Close-Doors but-
ton, the elevator sends the message
Check1 to itself.

(b) The Goto1 LSC, describing how
the elevator moves to floor 1.

(c) The TestCase LSC, stating that if
the elevator goes to floors 3, 2 and 1,
in that order, then the button for floor
2 is pressed.

Fig. 1. Sample LSCs from the three-story elevator example

There is a wide range of languages for representing the initial conditions, the
goals and the possible actions. We shall focus on the classic STRIPS representa-
tion [7], and its extension, ADL [27]. The propositional STRIPS representation
describes initial conditions and goals as a conjunction of positive boolean pred-
icates. Actions consist of conjunctive preconditions, add effects (predicates that
are true after performing the action) and delete effects (predicates that become
false).

An example is given in Figure 2. It is similar to the rocket domain introduced
in [29], and involves two objects, A and B, and a bag. The purpose is to move the
objects from room R1 to R2, but only the bag can be moved directly between

Planned and Traversable Play-Out 489

Initial conditions: At(A, R1) ∧ At(B, R1) ∧ At(Bag, R1)
Goal: At(A, R2) ∧ At(B, R2)
Actions:

Insert(object, room):
Precondition: At(object, room) ∧ At(Bag, room)
Effects: In(object) ∧ ¬At(object, room)

Remove(object, room):
Precondition: In(object) ∧ At(Bag, room)
Effects: ¬In(object) ∧ At(object, room)

Move(from, to):
Precondition: At(Bag, from)
effects: ¬At(Bag, from) ∧ At(Bag, to)

Fig. 2. A STRIPS problem example

the rooms. The initial conditions are that both objects and the bag are in room
R1, and the goal is to have both the objects in room R2. The insert action
represents inserting an object into the bag; its preconditions are that the object
and the bag are in the same room, and the effect is that the object is in the bag
and no longer in the room. Similarly, the remove action removes an object from
the bag. Finally, the move action moves the bag from one room to the other;
its precondition is the bag being in the from room, and its effect is removing
it from the from room, and placing it in the to room. A simple legal plan in
this example is to insert both objects into the bag, then move the bag, and then
remove both objects.

The ADL [27] language is an extension of STRIPS [7], in which conditional
and universally quantified effects are added, as well as negative goals. Our main
interest in ADL, as we explain later, is in the conditional effects and negative
goals.

3.1 Main Approaches to Planning

There are three main approaches to solving planning problems in the STRIPS
representation: (1) translation into a different problem, e.g., a formula in proposi-
tional logic, which is then solved by an external black-box algorithm, e.g., a SAT
solver [5,22,23], (2) heuristic-based state-space search [3,?], and (3) Graphplan
and its descendants.

Tha Graphplan approach [2], which we will use, calls for constructing a
polynomial-sized graph in a way that encodes many of the inherent constraints
of the problem. This graph and the constraints that arise from it are used in
order to significantly reduce the amount of search needed.

Graphplan’s main data structure is a planning graph, a polynomial-sized graph
that represents some of the constraints in the planning problem. Nodes in the
planning graph represent either propositions or actions, and are divided into
levels depicting timesteps. Two actions in the same timestep have no order be-
tween them, but all actions in a specific timestep must occur before those in the
following one.

490 D. Harel and I. Segall

An important part of the graph analysis is detecting pairs of actions that can
never appear in a plan in the same timestep, and propositions that can never
be true together in the same timestep, and mark them as mutual exclusions
(mutexes).

3.2 Planning Graphs

For lack of space, we omit from this version of the paper the more detailed de-
scription of the planning graph, its construction, and its usage in plan extraction;
see [16].

3.3 IPP

An important feature that ADL adds to STRIPS is the notion of conditional
effects. This allows actions to have different effects according to the state in
which they are performed. One of the algorithms that support this feature in a
Graphplan-like fashion is IPP [25,20]. Negative goals and negative preconditions
are also supported by IPP.

4 Translating Play-Out into Planning

Our approach to finding legal supersteps is to represent play-out as a planning
problem and to solve it using the IPP planner [25,20]. The domain theory is
derived from the LSC specification, whereas the initial conditions are derived
from the current system state. The goals are independent of the specification,
and call simply for finishing the superstep safely. We have enhanced the IPP
algorithm so that multiple plans are generated in a single run. These plans are
then translated back into supersteps and are fed into the Play-Engine.

Even though we describe here the usage of the IPP planner, the problem is
represented in the ADL language, and cen be fed to any planner that supports
the relevant subset of ADL. The translation of play-out into planning is done
so that a plan exists if and only if a legal superstep exists, and plans can be
translated back into supersteps.

Each LSC is represented by an object, and its state is captured by various
predicates. An LSC can be either active or not (i.e., its main chart is active
or not) — a property represented by the predicate active. Each location in the
LSC can be enabled or disabled (according to the cut at any given moment),
represented by enabled loc X, for each location X in the LSC.

We assume that only a single copy of each LSC can be active at any given
moment, hence a single object per LSC is sufficient. In the future, we plan (no
pun intended. . .) to support multiple running copies by creating multiple objects
of the same class, where the class represents the LSC.

4.1 Initial Conditions

The initial conditions of the planning problem are derived directly from the ini-
tial LSC state. Similarly to the smart play-out mechanism of [10], our translation

Planned and Traversable Play-Out 491

is invoked after an external event has occurred, in a state in which some LSCs
are active. The initial values of all the predicates are therefore determined ac-
cording to the set of active LSCs and their enabled locations in the given initial
configuration.

In the elevator example, suppose the superstep starts in a state where the but-
tons for floors 1 and 3 are on, the elevator is on floor 2, and the Close-Doors but-
ton is pressed. This causes charts Check1, Check2 and Check3 to be activated and
the superstep to start. The initial condition will therefore be active(Check1) ∧
active(Check2) ∧ active(Check3) and the enabled predicates corresponding to
the location of the cut are true as well (any predicate not explicitly true is as-
sumed to be false). In addition, the predicates representing the light in button
floors 1 and 3 being on are both true.

4.2 The Goal

A legal superstep is a sequence of actions that the LSCs take, after which all
LSCs are inactive. Hence the goal is:
(¬active(o1)) ∧ · · · ∧ (¬active(on)).
This is similar to the way it is done for smart play-out [10].

4.3 Actions

Actions represent the possible transitions of the LSC system. Each action stands
for a possible step in a superstep, e.g., sending a message, advancing a condition,
etc. For each action we formulate its precondition and effect.

There are two types of steps, local and global. Global steps are message send-
ing and receiving, and are global in the sense that many charts must be consid-
ered when deciding to perform them. Other steps, such as conditions, are local,
in the sense that only a single chart is relevant to them.

Conditions. We now describe the translation of conditions. Other constructs,
such as if-then-else and unbounded loops are translated in a similar fashion.

Both hot and cold conditions have an action for advancing them, and cold
conditions have an additional action for violation. A condition in an LSC is
synchronized with one or more lifelines, for each of which there is one location
that is relevant to the condition, and which must be active in order for the
condition to be advanced. Therefore, the precondition for the action of advancing
a condition is that all the relevant locations are enabled and that the condition
holds. The effect of this action is that the previous locations become disabled
and those subsequent to the condition become enabled.

For example, the action representing the hot condition of the doors being
closed in the TestCase LSC (which is at location 4 in the Floor2Btn lifeline, and
at location 6 in the Elevator lifeline) is:
Action advance condition 1 TestCase (TestCase, Elevator)

Precondition: enabled loc F loor2Btn 4(TestCase)∧
enabled loc Elevator 6(TestCase)∧
Doors Closed(Elevator)

492 D. Harel and I. Segall

Effect: (¬enabled loc F loor2Btn 4(TestCase))∧
(¬enabled loc Elevator 6(TestCase))∧
enabled loc F loor2Btn 5(TestCase)∧
enabled loc Elevator 7(TestCase)

One slightly more delicate case is that in which the condition appears at the
end of the main chart or the prechart, respectively. In this case, the effect is
conditional: (1) if all other lifelines are already in their final location, terminate
the LSC or enable the main chart, respectively, and (2) otherwise advance the
locations as described above.

As mentioned earlier, cold conditions have an additional action for violation.
It has similar preconditions, but if the condition does not hold then if it is in
a subchart the effect is to move to locations subsequent to the subchart and
otherwise the chart is deactivated and all locations are restarted.

Messages. Messages are not local: when one formalizes the action of sending a
message (both its precondition and its effect), many charts must be considered.
For simplicity, assume each message appears at most once in each LSC, and that
the message is synchronous. Asynchronous messages are also supported, but are
not described in this version of the paper.

In our translation, each message is transformed into an action. According to
the LSC semantics, a message must be triggered, i.e., there must be at least
one universal chart that causes it to be sent. Therefore, the precondition for the
action of sending a message is that at least one of the charts that contain the
message in their main chart is active, and that the message is enabled in it.

Upon sending a message that is enabled in an LSC, the cut is advanced past
it. If the sent message appears in an LSC but is not enabled in it, the LSC
is assumed to have a cold violation, so it is deactivated and the cut is reset
to its initial location. Thus, for each LSC containing the message, there are two
conditional effects: one stating that if the message is enabled the cut is forwarded,
and the second stating that if the message is not enabled the chart is inactivated
and the cut is reset to its initial location. Similarly to the case of conditions, if
the message is, or can be, the last action in the main chart (or the prechart),
the first effect must be divided into two different conditional effects, according
to the locations of the other lifelines.

Note that the only difference between prechart and main chart messages is in
the precondition: only main chart locations are considered in the precondition
(that is, only they affect the decision of sending a message).

For example, the message Set floor(2) sent from the elevator to itself ap-
pears in the main charts of Goto1, Goto2 and Goto3 (in all of them at location
7 of lifeline Elevator) and in the prechart of TestCase (though it will never be
the last message in that prechart). Its translation is as follows (and similarly for
charts Goto2, Goto3 and TestCase):3

3 This translation can be made more efficient. For example, when violating a chart,
it is sufficient to disable only main chart locations if the chart is necessarily active.
These optimizations are not discussed in this version of the paper.

Planned and Traversable Play-Out 493

Action send Floor2 Elevator Elevator(Goto1, Goto2, Goto3, TestCase)
Precondition: enabled loc Elevator 7(Goto1)∨

enabled loc Elevator 7(Goto2)∨
enabled loc Elevator 7(Goto3)

Effect: when (enabled loc Elevator 7(Goto1) :
¬enabled loc Elevator 7(Goto1)∧
enabled loc Elevator 8(Goto1)

when ¬(enabled loc Elevator 7(Goto1) :
enabled loc Elevator 3(Goto1)
¬enabled loc Elevator 4(Goto1)∧¬enabled loc Elevator 5(Goto1)∧
¬enabled loc Elevator 6(Goto1)∧¬enabled loc Elevator 7(Goto1)∧
¬enabled loc Elevator 8(Goto1)∧¬enabled loc Elevator 9(Goto1)∧
¬enabled loc Elevator 10(Goto1)∧
enabled loc F loor2Btn 2(Goto1)∧
¬enabled loc F loor2Btn 3(Goto1)∧¬enabled loc F loor2Btn 4(Goto1)∧
¬enabled loc F loor2Btn 5(Goto1)

A slightly simpler translation can be made if the user chooses not to allow
messages to violate main charts (which is sufficient in many cases). In this case,
the precondition of the action is that each LSC that contains the message in its
main chart is either inactive or else the message is enabled in it. Moreover, the
conditional effect that violates the main chart can be skipped.

4.4 More Formally

The formal definition of the translation is omitted in this version of the paper;
see [16].

5 Extending IPP

5.1 Forced Mutexes

In some cases, especially when conditional effects are used, not all mutexes in-
herent in the problem arise from IPP’s planning graph. We introduce the notion
of forced mutexes into the ADL language. These are facts that the user knows
should always be mutex, and he/she can therefore explicitly specify them in the
problem description, adding them to those discovered by the standard IPP al-
gorithm. We have used this feature to specify that every two locations on the
same lifeline should always be mutex. Surprisingly, this small addition results
in huge performance improvements, causing problems that caused devastating
performance issues in an earlier implementation of our algorithm to be solved
within seconds. Further performance issues are discussed in section 6.3.

Mutexes in IPP are implemented using the efficient bit-vector idea introduced
in [26]. We adopt these ideas in the implementation of forced mutexes as well.
The result of this efficient implementation is that checking whether two facts are
mutex is performed in constant time, which does not depend on the number of
forced mutexes.

494 D. Harel and I. Segall

5.2 Finding Many Plans

IPP is a Graphplan-based planner that supports conditional effects, negative
preconditions and negative goals. Like most Graphplan-based planners, IPP is
an iterative process that halts once a solution is found. In order to be able to find
multiple supersteps we have enhanced the IPP planner to find multiple plans in
a single run. This is achieved by changing the halting condition and by adding
memoization of positive results.

The new halting condition is as follows. The user states in advance the number
of timesteps he/she wishes to continue calculating beyond the shortest plan. IPP
will then find the shortest plan as before, but will keep iterating until all plans
bounded by the specified length are found.

In order to keep the running time feasible, one must memoize positive results.
IPP introduces an efficient memoization mechanism, as described in [17]. This
mechanism is used for memoizing negative results (i.e., unachievable subgoals in
the backtracking stage), in order to avoid re-checking them. Now that the process
is not halted upon finding the first plan, positive results (i.e., achievable subgoals
and subplans achieving them) must be memoized as well, since they could be
useful for other plans. We have implemented this using the same mechanism as
in the original IPP planner, with the addition that subgoals are augmented with
all subplans that achieve them.

The output of the extended IPP algorithm is a leveled DAG representing
multiple plans that achieve the goals. In it, nodes on level i represent states
achievable in i timesteps and edges represent the actions that drive the system
from one state to another. If an edge is labeled with more than one action, there
is no explicit order between them.

A snippet of the DAG generated in our example can be seen in Figure 3.

6 Results

6.1 Traversable Play-Out

Once the play-out problem has been translated into a planning one and multiple
plans have been found, this information can be used for what we call traversable
play-out (TPO). In the TPO mode, play-out is performed interactively: at each
step, a list of possible actions is given to the user, who is then allowed to choose
his/her preferred action. The user can also undo previous steps and explore other
paths of execution. Note that only “smart” steps are allowed, i.e., only those that
can lead to a successful superstep. If a certain action is enabled at some given
time, yet performing it will cause all future runs to fail (i.e., there is no legal
way to finish all the LSCs), then the action will not be presented as a possible
valid action at that time.

In the TPO mode the user can explore various possibilities, find new super-
steps not considered earlier, and get a general feeling for all the options the
LSC system provides. We feel that these abilities are one of the most significant
advantages of our method.

Planned and Traversable Play-Out 495

Fig. 3. Part of the DAG generated for the elevator example. In the first timestep,
the elevator sends Check1, Check2 or Check3 to itself. If Check3 was sent, then the
condition in the Goto3 chart is advanced, and then the doors close and the floor3
button turns off (with no explicit order between the last two).

Figure 4 demonstrates the dialog box for TPO with the valid steps at the
beginning of the example. A video demonstrating the traversable play-out mode
can be downloaded from [19].

6.2 Cut-Queries

Another feature that is part of our method is that of cut-queries, which query
for locations of cuts during the run. The user can, for example, state that he/she
wishes to see runs in which either a specific case in a switch-case statement is
chosen, or two specific locations in an LSC are simultaneously enabled. Note
that in general such queries cannot be described by simply adding an LSC to
the specification, since one cannot directly describe by an LSC the requirement
that a specific location should be enabled in another LSC.

Each such query can be described as an AND/OR combination of a set of
atomic queries (those describing simultaneous locations of a cut). The query is
then translated into the planning domain along with the play-out problem in
a way that ensures that only compliant supersteps are found. For each atomic
query, a predicate is added, together with an action. The precondition is that
the cut is at the correct locations, and the effect is to enable the predicate. The
AND/OR combination of the atomic queries can then be added to the goals as
a similar combination of the corresponding predicates.

6.3 Performance

Planning is known to be NP-complete or worse under most reasonable assump-
tions [6]. Moreover, Graphplan-based planners usually do not scale up to large

496 D. Harel and I. Segall

Fig. 4. Valid options for the first step in the superstep of the elevator example

domains and large plans. Unfortunately (but not surprisingly), we inherit these
limitations.

Still, for the very simple elevator example discussed here, all supersteps (19
timesteps) were found in 300 milliseconds on a standard PC. A different elevator
example, in which the “Goto” LSCs are more than twice the size of the ones
described in this paper (and all the GUI buttons are takein into account), where
44 timesteps are needed for all plans, the full execution takes about 4 seconds.
These results raise the hope that finding all supersteps in much larger specifica-
tions will also become eventually feasible. But, of course, the jury is not in on
this yet.

It is important to note that finding all supersteps is usually not expected to
be a run-time feature, but rather a design-time tool. Therefore, a running time
on the scale of a few minutes for a large specification is quite satisfactory.

7 Future Work

We have described a framework in which supersteps of LSC specifications are
calculated in advance using planning techniques, thus allowing users to interact
with the system during play-out. The system lets the user choose steps during
the run, but in a way that guarantees completion of the superstep: whatever the
user chooses is legal and will lead to a successful completion of all LSCs. We
also introduced cut-queries that allow the user to define in advance which of the
supersteps are of interest.

A subset of the full LSC language of [14] is currently supported in our im-
plementation of planned and traversable play-out, including synchronous and
asynchronous messages, hot and cold conditions, switch-cases, infinite loops and
main chart-scoped forbidden elements. Thus, for example, we do not yet support
time and symbolic instances.

There are two main issues to be resolved in the context of finding all su-
persteps: supporting the full LSC language and finding a representation of all
supersteps.

Planned and Traversable Play-Out 497

As mentioned above, only a subset of the features of the LSC language is cur-
rently supported, and we have described some assumptions made along the way.
This subset should be extended to support the full language, and the assump-
tions should be removed. In our opinion, some of the constructs will turn out to
be easier to support than others. For example, we feel that symbolic instances
will not pose a serious problem. A predicate can determine to which object the
instance is bound and this predicate should be checked in each relevant action.
Similarly, multiple running copies of an LSC can be represented by multiple ob-
jects, all derived from the same LSC class. On the other hand, constructs that
have a numeric essence, like time, numeric variables, and bounded loops, might
be more difficult. This can perhaps be solved using planning with resources (see,
e.g., [24]), but then the Graphplan solution might not be a good approach.

Our implementation finds many supersteps in a single run, but usually not
all of them. In general, there can be infinitely many different supersteps, but
these often have a finite representation. For example, a loop that can be iterated
any number of times is often an adequate finite representation of infinitely many
different supersteps. Future research should address this issue.

8 Related Work

In [30], a symbolic simulation engine for LSC specifications is described. It uses
constraint logic programming, which in turn uses a form of backtracking in order
to find a solution, and can be used to find many supersteps. It is noteworthy that
this approach finds full-order supersteps only, hence the backtracking stage will
be slower when trying to find interestingly-different supersteps (i.e., ones that
differ not only in the order of the steps). Moreover, the approach is used mainly
for simulation and finding violations in specifications, whereas our approach is
intended for execution and finding many valid supersteps.

There has been an attempt, carried out recently in our group, of representing
partial orders derived from LSCs as digraphs [8]. These digraphs were then
merged in a way that represented all possible supersteps appropriate for a set
of LSCs. The approach, however, was never implemented in the Play-Engine or
extended to support more than messages.

In another piece of recent work in our group, LSC specifications are compiled
into AspectJ code [13]. This code can then be compiled using any AspectJ Java
compiler into a stand-alone application. The current compilation implements
näıve play-out, yet stronger and more sophisticated play-out mechanisms can
probably be adopted too.

In several projects, model checkers have been augmented to produce multiple
counter-examples. In [1], a heuristic BDD-based algorithm for finding multiple
behavior paths is introduced, in order to explore and debug hardware design. In
[9], a model checker is used iteratively in order to refine an abstracted model.

Acknowledgments. We’d like to thank Orna Kupferman for suggesting to us
the possible relevance of planning and AI, and Ron Merom for the idea of the
elevator example.

498 D. Harel and I. Segall

References

1. S. Barner, S. Ben-David, A. Gringauze, B. Sterin and Y. Wolfsthal, “An Algorith-
mic Approach to Design Exploration”, Proc. International Symposium of Formal
Methods Europe on Formal Methods - Getting IT Right (FME’02), 2002, pp. 146-
162.

2. A. Blum and M. Furst, “Fast Planning Through Planning Graph Analysis”, Proc.
14th Intl. Joint Conf. on Artificial Intelligence (IJCAI’95), 1995, pp. 1636-1642
(Extended version appears in Artificial Intelligence, 90(1-2), 1997, pp. 281-300)

3. B. Bonet and H. Geffner, “HSP: Heuristic Search Planner”, Proc. 4th Intl. Conf.
on Artificial Intelligence Planning Systems (AIPS’98) Planning Competition, Pitts-
burgh, 1998.

4. W. Damm and D. Harel, “LSCs: Breathing life into message sequence charts”,
Formal Methods in System Design, 19(1):45/22680, 2001. Preliminary version
appeared in Proc. 3rd IFIP Int. Conf. on Formal Methods for Open Object-Based
Distributed Systems (FMOODS’99).

5. M. Ernst, T. Millstein and D. Weld, “Automatic SAT-Compilation of Planning
Problems”, Proc. 15th Intl. Joint Conf. on Artificial Intelligence (IJCAI’97), 1997,
pp. 1169-1176.

6. K. Erol, D. S. Nau and V. S. Subrahmanian, “Complexity, Decidability and Unde-
cidability Results for Domain-Independent Planning”, Artificial Intelligence, 76(1-
2), July 1995, pp. 75-88.

7. R. Fikes and N. Nilsson, “STRIPS: A New Approach to the Application of Theorem
Proving to Problem Solving”, Journal of Artificial Intelligence, 2(3/4), 1971, pp.
189-208.

8. Amos Gilboa, MSC Thesis, The Weizmann Institute of Science, 2003, “Finding all
Possible Supersteps in LSCs”.

9. M. Glusman, G. Kamhi, S. Mador-Haim, R. Fraer and M. Y. Vardi, “Multiple-
Counterexample guided Iterative Abstraction Refinement: An Industrial Evalua-
tion”, 9th Intl. Conf. on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS’03), 2003, pp. 176-191.

10. D. Harel, H. Kugler, R. Marelly and A. Pnueli, “Smart Play-Out of Behavioral
Requirements”, Proc. 4th Int. Conf. on Formal Methods in Computer-Aided Design
(FMCAD’02), November 2002, pp. 378-398.

11. D. Harel, H. Kugler and A. Pnueli, “Smart Play-Out Extended: Time and Forbid-
den Elements”, Proc. 4th Int. Conf. on Quality Software (QSIC’04), IEEE Com-
puter Society Press, 2004, pp. 2-10.

12. D. Harel and S. Maoz, “Assert and Negate Revisited: Modal Semantics for UML
Sequence Diagrams”, Proc. 5th Int. Workshop on Scenarios and State Machines:
Models, Algorithms and Tools (SCESM’06), 2006, pp. 13-20.

13. D. Harel and S. Maoz, “From Multi-Modal Scenarios to Code: Compiling LSCs into
AspectJ”, 14th ACM SIGSOFT Symp. on Foundations of Software Engineering
(FSE’14), Portland, November 2006.

14. D. Harel and R. Marelly, Come, Let’s Play: Scenario-Based Programming Using
LSCs and the Play-Engine, Springer-Verlag, 2003.

15. D. Harel and R. Marelly, “Specifying and Executing Behavioral Requirements: The
Play-In/Play-Out Approach”, Software and Systems Modeling (SoSyM) 2, 2003,
pp. 82-107.

16. D. Harel and I. Segall, “Planned and Traversable Play-Out: A Flexible Method for
Executing Scenario-Based Programs”, Technical Report MCS07-01, The Weizmann
Institute of Science, 2007.

Planned and Traversable Play-Out 499

17. J. Hoffmann and J. Koehler, “A new Method to Query and Index Sets”, Proc. 16th
Intl. Joint Conf. on Artificial Intelligence (IJCAI’99), 1999, pp. 462-467.

18. J. Hoffmann and B. Nebel, “The FF Planning System: Fast Plan Generation
Through Heuristic Search”, J. Artificial Intelligence Research, 14, 2001, pp. 253-
302.

19. http://www.wisdom.weizmann.ac.il/~itais/video/TPO-Example.avi
20. IPP website, http://www.informatik.uni-freiburg.de/~koehler/ipp.html.
21. ITU-TS Recommendation Z.120: “Message Sequence Chart (MSC)”. ITU-TS,

Geneva, 1996.
22. H. Kautz and B. Selman, “Pushing the Envelope: Planning, Propositional Logic,

and Stochastic Search”, Proc. 13th National Conf. on Artificial Intelligence
(AAAI’96), Portland, 1996, pp. 1194-1201.

23. H. Kautz and B. Selman, “Blackbox: A New Approach to the Application of Theo-
rem Proving to Problem Solving”, Workshop on Planning as Combinatorial Search,
Artificial Intelligence Planning Systems (AIPS’98), June 1998, pp. 58-60.

24. J. Koehler, “Planning under Resource Constraints”, 13th biennial European Conf.
on Artificial Intelligence (ECAI’98), 1998, pp. 489-493.

25. J. Koehler, B. Nebel, J. Hoffmann and Y. Dimopoulos, “Extending Planning
Graphs to an ADL Subset”, Proc. 4th European Conf. on Planning (ECP’97),
Springer LNAI, 1348, 1997, pp. 273-285.

26. D. Long and M. Fox, “Efficient Implementation of the Plan Graph in STAN”,
Journal of Artificial Intelligence Research, 10(1999), pp. 87-115.

27. E. P. D. Pednault, ”ADL: Exploring the Middle Ground Between STRIPS and the
Situation Calculus,” Proc. 1st Intl. Conf. on Principles of Knowledge Representa-
tion and Reasoning, Toronto, 1989, pp. 324-332.

28. UML. Documentation of the unified modeling language (UML). Available from the
Object Management Group (OMG), http://www.omg.org.

29. M. M. Veloso, “Nonlinear problem solving using intelligent casual-commitment”,
Technical Report CMU-CS-89-210, School of Computer Science, Carnegie Mellon
University, 1989.

30. T. Wang, A. Roychoudhury, R.H.C. Yap and S.C. Choudhary, “Symbolic Execu-
tion of Behavioral Requirements”, Proc. 6th Intl. Symp. on Practical Aspects of
Declarative Languages (PADL’04), 2004, pp. 178-192.

motor: The modest Tool Environment

Henrik Bohnenkamp1, Holger Hermanns2,
and Joost-Pieter Katoen1,3

1 Software Modeling and Verfication Group, Informatik 2
RWTH Aachen University, 52056 Aachen, Germany

2 Department of Computer Science
Saarland University, D-66123 Saarbrücken, Germany

3 Formal Methods and Tools Group, Department of Computer Science
University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands

Abstract. The modest Tool Environment (motor) is a tool to fa-
cilitate the transformation, analysis and validation of modest models.
modest is a modelling language to describe stochastic real-time sys-
tems. motor implements the formal semantics of modest and is de-
signed to transform and abstract modest specifications such that anal-
ysis can be carried out by third-party tools. For the time being, a frag-
ment of modest can be model-checked using Cadp. The main analytical
workhorse behind motor is discrete-event simulation, which is provided
by the Möbius performance evaluation environment. We are experiment-
ing with prototypical connections to the real-time model checker Up-
paal.

1 The modest Approach

The Modeling and Description Language for Stochastic and Timed Systems
(modest) [2] is a specification formalism for describing stochastic real-time sys-
tems. The language is rooted in classical process algebra, i.e. the specification of
models is compositional. Basic activities are expressed with atomic actions, more
complex behaviour with constructs for sequential composition, nondetermin-
istic choice, parallel composition with CSP-style synchronisation, looping and
exception handling. A special construct exists to describe probabilistic choice.
Clocks, variables and random variables are used to describe stochastic real-time
aspects. All constructs and language concepts have a pleasant syntax, inspired
by Promela, LOTOS, FSP, and Java. The screen shot in Fig. 2 gives an impres-
sion of the language syntax. modest is equipped with a structural operational
semantics mapping on so-called stochastic timed automata (STA). The modest
semantics is described in full detail in [2]. modest allows one to describe a very
large spectrum of models, including: ordinary labelled transition systems, timed
automata, probabilistic automata, stochastic automata [8], Markov decision pro-
cesses, and various combinations thereof (cf. [2]). Remarkably, the language is
designed in a way that all these models correspond to syntactic subsets of the
language, and can thus be identified while parsing a modest specification.

With modest, we take a single-formalism, multi-solution approach, similar
to [1]. Our view is to have a single specification that addresses various aspects

O. Grumberg and M. Huth (Eds.): TACAS 2007, LNCS 4424, pp. 500–504, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

motor: The modest Tool Environment 501

of the system under consideration. This is contrary to the more common ap-
proach to construct different models to describe different aspects of a system
and then analyse these models. Generally, no guarantee of consistency between
these models can be given, be it for lack of a rigorous semantics or because
a proper relation between the different model classes is not known. Thus, the
validity of results w.r.t. the original system under study is often questionable.

Instead, with modest we advocate an approach to describe a system with
one model and analyse it by extracting simpler models that are tailored to the
specific properties of interest. For instance, for checking reachability properties,
a possible strategy is to distill an automaton from the modest specification and
feed it, e.g., into an existing model checker. For carrying out an evaluation of the
stochastic process underlying a modest specification, a discrete-event simulator
can be used. This approach has the advantage that the modelling itself takes less
time, since only one model has to be specified. Moreover, if the abstractions used
to derive sub-models are sound, the multi-solution approach can ensure validity
of the respective analysis results and thus significance for the modelled system.

2 motor

Satellite Modules

Satellite Modules

modest core module

External tools

External tools

modest spec
(ASCII file)

AST API

FSNS
API

Fig. 1. The motor architecture [4]

In order to facilitate the analysis of
the different models, tool support is
essential. The modest Tool Envi-
ronment (motor) is a software tool
that implements the modest se-
mantics and is the central vehicle in
the multi-solution analysis of mod-
est models. The fundamental idea
behind motor is to simplify speci-
fying modest models (e.g. by pro-
viding a macro-preprocessor), and
to translate or adapt the models in
a way such that the actual analy-
sis work can be carried out by third-
party state-of-the-art tools, such as Prism [12], Uppaal [13], or Cadp [10].

motor is designed to facilitate easy access to all language features of mod-
est, and thus to allow easy extraction of all imaginable model classes from a
specification. The design allows straightforward extensibility of the tool. To re-
alise this, motor provides two programming interfaces, see Fig. 1: the AST API,
which gives the programmer access to the abstract syntactic representation of
the modest specification, and the FSNS API, which allows a programmer ac-
cess to a first-state/next-state interface, and which allows convenient state-space
exploration of the modest-specification. It provides the access to the STA de-
fined by the modest semantics. The kernel of the tool is thus quite small: it
comprises a parser and the implementation of the functionality behind the two
interfaces. These two APIs enable modular design and extendability of motor,

502 H. Bohnenkamp, H. Hermanns, and J.-P. Katoen

the former for translation-oriented transformations, the latter for state-oriented
approaches. This particular tool architecture is described in [4], and has since
been actively developed. A prototype connection to the Cadp tool box exists,
which allows model-checking of untimed, non-probabilistic modest models. We
are currently experimenting with another prototypical connection targeting at
the Uppaal model-checker for timed automata. The most interesting tool we
connected motor to is the Möbius performance evaluation environment [7].

3 motor and Möbius

The by now most mature connection of motor is the link with the Möbius per-
formability evaluation environment. Möbius has been developed independently
from modest and motor at the University of Illinois at Urbana-Champaign [7].
Möbius is designed as an integrated tool environment for the analysis of per-
formability and dependability models. It allows specification of models in differ-
ent formalisms, based on, for instance, Petri net-like formalisms or Markovian
process algebra. The tool provides efficient discrete-event simulation capabilities
and numerical solvers, such as Markov chain solvers.

The integration of motor into the Möbius framework is established by a di-
rect mapping from modest-constructs onto the programming interface available
for Möbius, closely following the STA semantics as implemented in the FSNS
API [4]. More concretely, a modest specification is interpreted as a so-called
atomic model, the most basic model within Möbius, which is made up of state
variables that hold information about the state of a model and actions that are
used for changing model state.

From a user perspective, the motor/Möbius tandem enables one to perform
simulation of modest models, and to gather performability results. A complete
simulation model in Möbius consists, in addition to the atomic model, of two
more sub-models. The reward model defines which performance measures (such
as means, variances, distributions etc.) are to be estimated with the simulation.
These rewards are based on the global variables of the atomic modest model.
The study model defines intervals or sets of values as parameters for which the
modest model is to be simulated. Experiment parameters are declared inside
modest as special external constants. For each set of parameters an experiment,
i.e. simulation process is started (in parallel or sequentially, depending on the
configuration and number of available processors), where the external constants
of the modest model are preset with the respective values defined in the study
model.

Atomic modest models are entered in a dedicated Möbius text-editor. mo-
tor is called from Möbius to translate the model into a C++ program, which
is then compiled and linked together with an implementation of the modest
semantics and the simulator libraries of Möbius. Fig. 2 shows a screen shot of
the different Möbius editors, the modest editor in the center.

The reason to choose simulation as the prime analysis method of modest
models to integrate into motor is that simulation covers the largest language

motor: The modest Tool Environment 503

Fig. 2. Möbius with modest editor

fragment of modest: the only concept that can not be supported by simula-
tion is nondeterminism, in particular of delay durations and non-deterministic
choice between actions. We exclude the former by assuming maximal-progress
with respect to delays. We do not restrict action nondeterminism, since it is a
convenient modelling instrument. However, no mechanisms, like a well-specified-
check [9], is implemented yet to ensure validity of the simulation statistics when
action nondeterminism is present.

Given that discrete-event simulation (DES) is supported by many tools, one
may question what the benefits are of using modest. The main difference with
existing simulation notations is that modest has a formal semantics. Conse-
quently, the underlying stochastic model for simulation is well-defined and ob-
tained simulation results—given that DES is a well-understood technique—is
trustworthy. In commercially available simulation tools it is often unclear how
simulation models are obtained from the modelling language. This is recently
witnessed in e.g.,. [6] by obtaining significant different results from models that
were fed into different simulators.

4 Status and Availability

motor and its connection to Möbius is mature and has been tested in a number
of non-trivial case studies. In [11], it has been used for reliability analysis of the

504 H. Bohnenkamp, H. Hermanns, and J.-P. Katoen

upcoming European Train Control System standard. In [3], it has been applied
to the analysis of an innovative plug-and-play communication protocol, which
has led to a patent application of our industrial partner. In [5], motor has been
used for the optimisation of production schedules, in combination with timed
automata-based schedule synthesis with Uppaal.

motor is available as source code from http://www.purl.org/net/motor
under the GPL license. Möbius is freely available for educational and research
purposes from http://www.mobius.uiuc.edu/. motor can be installed as an
add-on package into the Möbius installation directory.

References

1. M. Bernardo, W.R. Cleaveland, S.T. Sims, and W.J. Stewart. TwoTowers: A tool
integrating functional and performance analysis of concurrent systems. In Proc.
FORTE/PSTV 1998, pages 457–467. Kluwer, 1998.

2. H. Bohnenkamp, P.R. D’Argenio, H. Hermanns, and J.-P. Katoen. Modest: A
compositional modeling formalism for real-time and stochastic systems. IEEE
Trans. Soft. Eng., 32(10):812–830, 2006.

3. H. Bohnenkamp, J. Gorter, J. Guidi, and J.-P. Katoen. Are you still there? —
A lightweight algorithm to monitor node presence in self-configuring networks. In
Proc. DSN 2005, pages 704–709. IEEE CS Press, June 2005.

4. H. Bohnenkamp, H. Hermanns, J.-P. Katoen, and J. Klaren. The MoDeST mod-
eling tool and its implementation. In Proc. TOOLS 2003, LNCS 2794. Springer,
2003.

5. H. Bohnenkamp, H. Hermanns, J. Klaren, A. Mader, and Y. Usenko. Synthesis
and stochastic assessment of schedules for lacquer production. In Proc. QEST ’04.
IEEE CS Press, 2004.

6. D. Cavin, Y. Sasson, and A. Schiper. On the accuracy of MANET simulators. In
ACM Workshop On Principles Of Mobile Computing, pages 38–43, 2002.

7. D. Daly, D. D. Deavours, J. M. Doyle, P. G. Webster, and W. H. Sanders. Möbius:
An extensible tool for performance and dependability modeling. In Proc. TOOLS
2000, LNCS 1786. Springer, 2000.

8. P. R. D’Argenio and J.-P. Katoen. A theory of stochastic systems. Part I. Stochastic
automata. Inf. & Comp., 203:1–38, 2005.

9. D. D. Deavours and W. H. Sanders. An efficient well-specified check. In Proceedings
PNPM ’99, pages 124–133. IEEE Computer Society, 1999.

10. H. Garavel. Open/Cæsar: An open software architecture for verification, simula-
tion, and testing. In Proc. TACAS ’98, volume 1384 of LNCS, 1998.

11. H. Hermanns, D. N. Jansen, and Y. S. Usenko. From StoCharts to MoDeST: a
comparative reliability analysis of train radio communications. In Proc. WOSP ’05.
ACM Press, 2005.

12. M. Kwiatkowska, G. Norman, and D. Parker. Probabilistic symbolic model check-
ing with PRISM. In Proc. TACAS ’02, LNCS 2280. Springer, 2002.

13. Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal in a Nutshell. Int. Journal
on Software Tools for Technology Transfer, 1(1–2):134–152, October 1997.

http://www.purl.org/net/motor
http://www.mobius.uiuc.edu/

Syntactic Optimizations for PSL Verification

Alessandro Cimatti1, Marco Roveri1, and Stefano Tonetta2

1 ITC-irst Trento, Italy
{cimatti,roveri}@itc.it

2 University of Lugano, Lugano, Switzerland
tonettas@lu.unisi.ch

Abstract. The IEEE standard Property Specification Language (PSL) allows to
express all ω-regular properties mixing Linear Temporal Logic (LTL) with Se-
quential Extended Regular Expressions (SEREs), and is increasingly used in
many phases of the hardware design cycle, from specification to verification.

In recent works, we propose a modular and symbolic PSL compilation that is
extremely fast in conversion time and outperforms by several orders of magni-
tude translators based on the explicit construction and minimization of automata.
Unfortunately, our approach creates rather redundant automata, which result in a
penalty in verification time.

In this paper, we propose a set of syntactic simplifications that enable to signif-
icantly improve the verification time without paying the price of automata sim-
plifications. A thorough experimental analysis over large sets of paradigmatic
properties shows that our approach drastically reduces the overall verification
time.

1 Introduction

The IEEE standard Property Specification Language PSL [1] is increasingly used in
several phases of the design flows: it is a means to describe behavioral requirements,
such as assumptions about the environment in which the design is expected to operate,
internal behavioral requirements, and further constraints that arise during the design
process from specification to verification.

The most important fragment of PSL combines Linear Temporal Logic (LTL) [2]
with Sequential Extended Regular Expressions (SERE), a variant of classical regular
expressions [1]. This combination results in ω-regular expressiveness, and enables to
express many properties of practical interest in a compact and readable way.

The conversion from PSL to Nondeterministic Büchi Automata (NBAs) is an en-
abling factor for the the adaptation of standard verification tools, and has been recently
investigated in several works (e.g. [3,4,5,6,7]).

[3] describes a classical approach based on Alternating Büchi Automata (ABA): the
SEREs occurring in the PSL formula are first translated into minimum Nondeterministic
Finite Automata (NFA); the NFAs are then combined bottom up and the overall PSL
formula is translated into an ABA; the ABA is finally translated into an NBA by means
of the Miyano-Hayashi (MH) construction [8]. [4] specializes this approach to SAT-
based bounded model checking, exploiting the fact that alternating automata are weak.
In [5], a symbolic encoding, based on MH, of the NBA corresponding to the ABA of

O. Grumberg and M. Huth (Eds.): TACAS 2007, LNCS 4424, pp. 505–518, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

506 A. Cimatti, M. Roveri, and S. Tonetta

the PSL property is proposed. Both approaches try to limit the encoding size (delaying
the explosion until search time), but are based on a library that tries to carry out some
optimizations in order to minimize the ABA. However, the minimization of ABA is very
expensive these approaches are often unable to carry out the conversion in acceptable
time, even for PSL specifications of moderate size.

The works in [7] and in [6] independently propose direct encodings of PSL into sym-
bolically represented NBA. Both approaches are compositional, and neither requires
the generation of ABA. The former is based on the notion of transducer, while the lat-
ter proposes a reduction to Suffix Operator Normal Form (SONF). The experimental
evaluation in [6] shows that the SONF construction is extremely fast in the construction
of the NBA, thus enabling the verification in cases where the automaton construction
blows up.

The results in [6], however, show that the verification times are often in favor of the
approaches in [5] and [4]. In fact, the semantic simplifications implemented in the ABA
library, though costly, are often able to construct optimized automata, that can then be
verified more effectively. This is similar to what happens in LTL model checking, where
semantic simplifications on the automaton recognizing the violation, though costly, can
often pay off in overall verification time [9].

We notice that some specifications contain obvious forms of redundancy, since de-
signers heavily rely on syntactic sugaring, and redundant specifications may enable
reusability. A typical example is length matching between a fixed-length expression,
and an expression containing stars. Thus, it is an important practical problem to devise
means to deal with redundant specifications, without paying a price in performance. In
principle, redundancies can be removed with automata minimization techniques; how-
ever, such reductions can be expensive and produce large intermediate automata.

In this paper, we propose a syntactic approach to improving PSL verification: rather
than simplifying the automaton at a semantic level, we propose a number of syntactic
rewriting rules on the formula. After the preprocessing, the SONF-based method result
in more compact NBA, which in turn results in much faster verification. The rewrite
rules are based on the following ideas. First, we try to minimize the size of the argu-
ments to the SERE language intersection operators, given that they are associated with
an exponential blow up. Second, whenever possible we convert the SEREs into LTL,
in order to limit as much as possible Suffix operators, and to enable the use of special-
ized algorithms for LTL. Third, some Suffix Operator Subformulas resulting from the
conversion into SONF can be eliminated by taking into account their structure. Finally,
we also apply syntactic simplifications to the LTL component of the formula resulting
from the conversion into SONF.

We experimentally evaluate our method on the test cases proposed in [6] on a large
test suite with formulas identified and classified in [10] to be of practical relevance. The
experiments show that the simplifications are computationally cheap, and substantially
pay off in terms of verification time. The result is that overall the new method is vastly
superior to [6] and to [5]. A final remark in favor of the proposed approach is that it is
open and customizable with respect to typical patterns in the application at hand.

The paper is structured as follows. In Section 2 we present the syntax and semantics
of PSL. In Section 3 we overview the approaches to PSL conversions into NBA, and

Syntactic Optimizations for PSL Verification 507

discuss the performance issues. In Sections 4 we describe the various classes of rewrit-
ing rules. In Section 5 we experimentally evaluate the impact of our optimizations.
Finally, in Section 6 we draw some conclusions and discuss directions for future re-
search.

2 The Property Specification Language PSL

PSL is a very rich language [1]. We consider the subset of PSL that combines Linear
Temporal Logic [2] (LTL) and Sequential Extended Regular Expressions (SERE), a
variant of classical regular expressions [1]. This subset provides ω-regular expressive-
ness [11], it is the mostly used in practice and constitutes the core of the PSL temporal
layer [1]. We will not deal with PSL “clocked” expressions that are not part of the core
since any clocked expression can be rewritten into an equivalent un-clocked one [1].
The same applies for the PSL “abort” operator that can be efficiently rewritten into pure
LTL as shown in [12].

In the following, we assume as given a set A of atomic propositions. Let Σ := 2A . We
denote a letter over the alphabet Σ by �, a word from Σ by v or w, and the concatenation
of v and w by vw. We denote with |w| the length of word w. A finite word w = �0�1 . . . �n

has length n + 1, an infinite word has length ω. If w = �0�1 . . . , for 0 ≤ i < |w| , we use
wi to denote the letter �i, and we denote with wi.. the suffix of w starting at wi. When
i ≤ j ≤ |w| , we denote with wi.. j the finite sequence of letters starting from wi and
ending in wj (wi.. j := wiwi+1 . . .wj).

SEREs are the PSL version of regular expressions. In particular, they extend the
standard regular expressions with language intersection. This allows for a greater suc-
cinctness, but it implies a possible exponential blow-up in the conversion to automata.
Moreover, the atoms of SEREs are Boolean expressions enabling efficient determiniza-
tion of automata. Formally,

Definition 1 (SEREs syntax)

– if b is Boolean expression, then b is a SERE;
– if r is a SERE, then r[*] is a SERE;
– if r1 and r2 are SEREs, then the following are SEREs

r1 ; r2 r1 : r2 r1 ||| r2 r1 & r2 r1 && r2.

SEREs can be concatenated with the operators ; and : , the former for the consecutive
concatenation of two sequences, the latter for one-state overlapping concatenation. The
conjunction operators & and && can be used to specify overlapping sequences, the
latter for length-matching sequences. Disjunction can be specified using the ||| operator.
The [*] operator specifies finite consecutive repetitions. We use r[*n] as an abbreviation
of r ; r ; ... ; r, where r is repeated n times.

The semantics of SEREs is formally defined over finite words using, as the base case,
the semantics of Boolean expressions over letters in Σ, denoted with |=B hereafter.

Definition 2 (SEREs semantics). Given a Boolean expression b, a SERE r, and a finite
word w, we define the satisfaction relation w |≡r as follows:

508 A. Cimatti, M. Roveri, and S. Tonetta

– w |≡b iff |w| = 1 and w0 |=B b;
– w |≡r1 ; r2 iff ∃w1,w2 s.t. w = w1w2, w1 |≡r1, w2 |≡r2;
– w |≡r1 : r2 iff ∃w1,w2, � s.t. w = w1�w2, w1� |≡r1, �w2 |≡r2;
– w |≡r1 ||| r2 iff w |≡r1 or w |≡r2;
– w |≡r1 & r2 iff w |≡r1 and ∃w1,w2 s.t. w = w1w2, w1 |≡r2,

or w |≡r2 and ∃w1,w2 s.t. w = w1w2, w1 |≡r1;
– w |≡r1 && r2 iff ∃w1,w2 s.t. w = w1w2, w1 |≡r1,w1 |≡r2;
– w |≡r[*] iff |w| = 0 or ∃w1,w2 s.t. |w1| �= 0,w = w1w2, w1 |≡r, w2 |≡r[*].

In the definition of the PSL syntax, for technical reasons, we introduce the “releases”
operator (that is the dual of the “until” operator), and also we introduce the “suffix
conjunction” connective as a dual of the suffix implication. Moreover, we consider only
the strong version of the temporal operators (the weak operators can be rewritten in
terms of the strong ones [1]) and the strong version of the SEREs (though our approach
can be easily extended to deal also with the weak semantics).

Definition 3 (PSL syntax). We define the PSL formulas over A , as follows:

– if p ∈ A , p is a PSL formula;
– if φ1 and φ2 are PSL formulas, then ¬¬¬φ1, φ1 ∧∧∧φ2, φ1 ∨∨∨φ2 are PSL formulas;
– if φ1 and φ2 are PSL formulas, then X φ1, φ1 U φ2, φ1 R φ2 are PSL formulas;
– if r is a SERE and φ is a PSL formulas, then r ♦→♦→♦→ φ and r |→|→|→ φ are PSL formulas;
– if r is a SERE, then r is a PSL formula.

The X (“next-time”), the U (“until”), and the R (“releases”) operators are called tem-
poral operators. We call the ♦→♦→♦→ (“suffix conjunction”), and the |→|→|→ (“suffix impli-
cation”), suffix operators. Notice that, the r not occurring in the left side of a suffix
operator is the strong version of a SERE (r! in the PSL notation). In the following,
we will consider such r as an abbreviation for r ♦→♦→♦→ True [1,3]. We also use G φ as
an abbreviation for False R φ. LTL can be seen as a subset of PSL in which the suffix
operators and the SEREs are suppressed.

We interpret PSL expressions over infinite words:

Definition 4 (PSL semantics). Let w ∈ Σω.

– w |= p iff w0 |=B p;
– w |= ¬¬¬φ iff w �|= φ;
– w |= φ∧∧∧ψ iff w |= φ and w |= ψ;
– w |= φ∨∨∨ψ iff either w |= φ or w |= ψ;
– w |= X φ iff |w| > 1 and w1.. |= φ;
– w |= φ U ψ iff, for some j ≥ 0, w j.. |= ψ and, for all 0 ≤ k < j, wk.. |= φ;
– w |= φ R ψ iff, for all j ≥ 0, either wj.. |= ψ or,for some 0 ≤ k < j, wk.. |= φ;
– w |= r ♦→♦→♦→ φ iff, for some j ≥ 0, w0.. j |≡r and wj.. |= φ;
– w |= r |→|→|→ φ iff, for all j ≥ 0, if w0.. j |≡r, then wj.. |= φ.

Notice that we can build Boolean expressions by means of atomic formulas and
Boolean connectives. The language of a PSL formula φ over the alphabet Σ is defined
as the set L(φ) := {w ∈ Σω | w |= φ}.

Example 1. Consider the PSL formula G ({{a ; b[*] ; c} && {d[*] ; e}} |→|→|→ { f ; g}).
It encodes the property for which every sequence that matches both regular expressions
{a ; b[*] ; c} and {d[*] ; e} must be followed by { f ; g}.

Syntactic Optimizations for PSL Verification 509

3 From PSL to NBA: Previous Approaches

In this section, we overview recent approaches to dealing with PSL verification. In the
monolithic approaches, the first step is the conversion from PSL in a monolithic al-
ternating Büchi automaton; during the conversion, semantic simplification steps (such
as the elimination of unreachable states, and restricted forms of minimization by ob-
servational equivalence) are applied. The ABA is then converted into a symbolically
represented NBA. In [5], this is done by means of a symbolic encoding of MH, and can
be applied both to BDD-based and SAT-based verification. In [4], an encoding of the
ABA that is specialized for bounded model checking is proposed.

The conversion proposed in [6] is based on the so called Suffix Operator Normal
Form (SONF). The idea is to partition the translation, by first converting a PSL formula
φ into an equisatisfiable formula in SONF, structured as follows

ΨLT L
︷︸︸︷∧

i

φi∧∧∧

ΨPSL
︷ ︸︸ ︷∧

j

G (p j
I →→→ (r j �→�→�→ p j

F))

where φi are LTL formulas, r j are SEREs, p j
I and p j

F are propositional atoms, and
�→�→�→ is either |→|→|→ or ♦→♦→♦→ . Formulae of the form G (p j

I →→→ (r j �→�→�→ p j
F) are called Suffix

Operator Subformulas (SOS’s).
The translation first converts the formula in NNF, and then “lifts out” the occurrences

of suffix operators, by introducing fresh variables (intuitively, the p j in the formula
above), together with the corresponding SOS. For lack of space, we omit the details
regarding the conversion of SOS into NBA. We only mention that the translation is
specialized to exploit the structure of SOS (see [6] for details).

Example 2. The SONF of the PSL formula of Example 1 is G p1 ∧ G (p1 →
{{a ; b[*] ; c} && {d[*] ; e}} |→|→|→ p2)∧ G (p2 → { f ; g}♦→♦→♦→ p3).

In [6], a substantial experimental evaluation is carried out, both on PSL satisfiability
problems (denoted with LE for language emptiness) and on Model Checking (MC)
problems. The modular approach results in dramatic improvements in PSL compilation
time. However, on those problems where the ABA library is able to build an automaton
within the time limit, the search time is typically in favor of the monolithic approach.
This is mainly due to the fact that in certain examples the semantic simplifications are
extremely effective. We notice that, the loss of efficiency in search is often compensated
by the much faster compilation; yet, in the rest of the paper we show how to enhance
our approach even further, by proposing a similar simplification mechanism.

4 Syntactic Optimizations for PSL

In this section, we describe an optimized approach, which extends the SONF-based
conversion with the integration of the following simplifications. Before the SONF con-
version, we apply two steps: (i) we simplify the SEREs in order to reduce the sub-
formulas in the scope of SERE conjunction operators; (ii) we simplify occurrences of

510 A. Cimatti, M. Roveri, and S. Tonetta

r && (r1 ||| r2) ⇒ (r && r1) ||| (r && r2)
b1 && b2 ⇒ b1 ∧b2

b && {r1 && r2} ⇒ {b && r1} && r2

b && {r1 ; r2} ⇒

⎧
⎪⎪⎨

⎪⎪⎩

False if ε �∈ L (r1),ε �∈ L (r2)
b && r1 if ε �∈ L (r1),ε ∈ L (r2)
b && r2 if ε ∈ L (r1),ε �∈ L (r2)
b && r1 ||| b && r2 otherwise

b && {r1 : r2} ⇒ {b && r1} && r2
b && r[*] ⇒ b && r

b[*] && {r1 ; r2} ⇒ {b[*] && r1} ; {b[*] && r2}
b[*] && {r1 : r2} ⇒ {b[*] && r1} : {b[*] && r2}

b[*] && r[*] ⇒ {b[*] && r}[*]
{b1 ; r1} && {b2 ; r2} ⇒ {b1 ∧b2} ; {r1 && r2}
{b1 : r1} && {b2 : r2} ⇒ {b1 ∧b2} : {r1 && r2}
{r1 ; b1} && {r2 ; b2} ⇒ {r1 && r2} ; {b1 ∧b2}
{r1 : b1} && {r2 : b2} ⇒ {r1 && r2} : {b1 ∧b2}

{b1[*] ; r1} && {b2 ; r2} ⇒
{r1 && {b2 ; r2}} ||| {{b1 ∧b2} ; {{b1[*] ; r1} && r2}}

{b1[*] ; r1} && {b2[*] ; r2} ⇒
{b1 ∧b2}[*] ; {{r1 && {b2[*] ; r2}} ||| {{b1[*] ; r1} && r2}}

r1[*] && r2[*] ⇒∗ {r1[*n2] && r2[*n1]}[*]
*) where r1 and r2 have “fixed length”, n1 and n2 are the least integers
such that n = (|r1| ·n2) = (|r2| ·n1).

Fig. 1. Rules for &&

suffix operators by converting as much as possible the regexps to which they are ap-
plied to into LTL. Then, after the conversion in SONF, we apply two other steps: (iii)
we simplify the Suffix Operator Subformulas by means of rules that strengthen the ones
in (ii) by exploiting the specific structure of SOSs; (iv) the LTL component is rewritten
in order to minimize the overall automaton and reduce the number of resulting fairness
constraints. In the rest of this section we describe the first three sets of rewriting rules,
which regard SEREs and PSL formulas and are an original contributions of this paper.
For lack of space, we do not report a detailed description of the LTL simplification
rules, which follow [13,14].

In the following, we write b,b1,b2, . . . for boolean formulas, and r,r1,r2, . . . for
SEREs. We notice that we can check if the empty word ε belongs to the language of r
by parsing: if r = [*0], then True; if r = b, then False; if r = r1 ; r2, then True if both
r1 and r1 accept ε, False otherwise; if r = r1 : r2, then False; if r = r1[*], then True;
if r = r1 && r2 or r = r1 & r2, then True if both r1 and r2 accept ε, False otherwise; if
r = r1 ||| r2, then True if either r1 or r2 accept ε, False otherwise.

(i) Simplifying Regular Expressions. Step (i) of our simplification flow is implemented
by the rules of Figures 1 and 2. For lack of space, Figure 2 only contains some of the
rules for & ; other rules based on the commutativity and associativity of the operators
are also omitted.

Syntactic Optimizations for PSL Verification 511

r & (r1 ||| r2) ⇒ (r & r1) ||| (r & r2)
b1 & b2 ⇒ b1 ∧b2

b & {r1 & r2} ⇒ {b & r1} & r2

b & {r1 ; r2} ⇒

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

b : {r1 ; r2} if ε �∈ L (r1),ε �∈ L (r2)
b : {r1 ; r2} ||| b && r1

if ε �∈ L (r1),ε ∈ L (r2)
b : {r1 ; r2} ||| b && r2

if ε ∈ L (r1),ε �∈ L (r2)
b : {r1 ; r2} ||| b otherwise

b & {r1 : r2} ⇒ b : {r1 : r2}
b & r[*] ⇒ b ||| {b : r[*]}
b[*] & r ⇒ r ||| {b[*] && r} ; b[*]

r1[*] & r2 ⇒ r2 ||| r1[*] && {r2 ; �[*]}
{b1 ; r1} & {b2 ; r2} ⇒ {b1 ∧b2} ; {r1 & r2}
{b1 : r1} & {b2 : r2} ⇒ {b1 ∧b2} : {r1 & r2}
{r1 ; b1} & {r2 ; b2} ⇒ {r1 & r2} ; {b1 ∧b2}
{r1 : b1} & {r2 : b2} ⇒ {r1 & r2} : {b1 ∧b2}

r1[*] & r2[*] ⇒ r1[*] ||| r2[*]

Fig. 2. Rules for &

Example 3. The rewriting rules of Figure 1 apply to the SERE in the PSL formula of
Example 1, as follows:

{a ; b[*] ; c} && {d[*] ; e} ⇒ {{a ; b[*]} && d[*]} ; c ∧ e
⇒ {a && d[*]} ; {b[*] && d[*]} ; c ∧ e
⇒ {a && d} ; {b[*] && d}[*] ; c ∧ e
⇒ a ∧d ; {b && d}[*] ; c ∧ e
⇒ a ∧d ; {b ∧d}[*] ; c ∧ e.

(ii) Simplifying Suffix Operations In order to reduce a PSL formula to LTL “as much
as possible”, we define the rules in Figure 3. The rewritings are mostly effective on
those expressions where iterations are applied to boolean expressions, as shown in the
following example.

Example 4. Consider the formula of Example 1. After applying the rules of Figure 1 as
in the Example 3, the formula becomes G ({a∧d ; {b∧d}[*] ; c∧e} |→|→|→ { f ; g}). The
rewriting rules of Figure 3 apply as follows:

G ({a ∧d ; {b ∧d}[*] ; c ∧ e} |→|→|→ { f ; g}) ⇒
G ((a ∧d) → {{b ∧d}[*] ; c ∧ e} |→|→|→ (f ∧X {g}) ⇒
G ((a ∧d) → (¬(b ∧d) R ({c ∧ e} |→|→|→ (f ∧X g)) ⇒
G ((a ∧d) → (¬(b ∧d) R ((c ∧ e) → (f ∧X g)).

(iii) Rewriting Suffix Operator Subformulas After the simplifications described in pre-
vious sections, the SONF conversion is carried out [6], so that the occurrences of suffix
operators have the fixed structure of SOS, and can be further rewritten. The aim is to

512 A. Cimatti, M. Roveri, and S. Tonetta

({[*0]}♦→♦→♦→ φ) ⇒ False
({b}♦→♦→♦→ φ) ⇒ b∧φ

{r1 : r2}♦→♦→♦→ φ ⇒ {r1}♦→♦→♦→ ({r2}♦→♦→♦→ φ)
{r1 ; r2}♦→♦→♦→ φ ⇒∗ {r1}♦→♦→♦→ X ({r2}♦→♦→♦→ φ)

({r1 ||| r2}♦→♦→♦→ φ) ⇒ ({r1}♦→♦→♦→ φ)∨ ({r2}♦→♦→♦→ φ)
({r ; b[*]}♦→♦→♦→ φ) ⇒∗∗ {r}♦→♦→♦→ ((X b) U φ)
({b[*] ; r}♦→♦→♦→ φ) ⇒∗∗ b U ({r}♦→♦→♦→ φ)

({[*0]} |→|→|→ φ) ⇒ True
({b} |→|→|→ φ) ⇒ b → φ

{r1 : r2} |→|→|→ φ ⇒ {r1} |→|→|→ ({r2} |→|→|→ φ)
{r1 ; r2} |→|→|→ φ ⇒∗ {r1} |→|→|→ X ({r2} |→|→|→ φ)

({r1 ||| r2} |→|→|→ φ) ⇒ ({r1} |→|→|→ φ)∧ ({r2} |→|→|→ φ)
({b[*] ; r} |→|→|→ φ) ⇒∗∗ ¬b R ({r} |→|→|→ φ)
({r ; b[*]} |→|→|→ φ) ⇒∗∗ {r} |→|→|→ ((X ¬b) R φ)

*) if ε �∈ L (r1) and ε �∈ L (r2)
**) if ε �∈ L (r)

Fig. 3. Rules for suffix operators

G (P → ({r[*]} |→|→|→ P′)) ⇒∗ G (P → ({r} |→|→|→ (P′ ∧X P)))
*) if ε �∈ L (r)

Fig. 4. Rules for SOS

apply the suffix operators to smaller SERE. This way, we partition further the automa-
ton representation, and we enable the sharing of subformulas representations. The rule
in Figure 4 push the occurrences of suffix implication inside the SEREs, while keeping
the overall formula in SONF. Note that, in general, the transformation is not correct: it
preserves the satisfiability only if the global formula is the result of the SONF-ization
process described in [6] so that there is a fixed structure for SOS. Unfortunately, no
similar transformation is possible for suffix conjunction.

5 Experimental Evaluation

The rewrite rules have been implemented within the NUSMV model checker [15]. We
compared their effectiveness with the same experimental setting as [6]. 1 We compare
three methods: MONO [5], FMCAD06 [6], and TACAS07 (the method presented in
this paper). We preliminarly compare the methods in encoding. We use the test suite of
1000 properties proposed in [6]. The set of properties has been obtained by filling in,
with randomly generated SEREs, typical patterns extracted from industrial case stud-
ies [10]. Then, we used both Boolean combinations and single and double implications

1 All the experiments and files to reproduce the experimental analysis described in this paper
can be downloaded from the url: http://sra.itc.it/people/roveri/tacas07/
tacas07.tar.gz .

http://sra.itc.it/people/roveri/tacas07/tacas07.tar.gz
http://sra.itc.it/people/roveri/tacas07/tacas07.tar.gz

Syntactic Optimizations for PSL Verification 513

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 100 200 300 400 500 600 700 800 900 1000

T
ot

al
 C

P
U

 T
im

e
(s

ec
s)

of formulas solved

TACAS07
FMCAD06

MONO

Fig. 5. Problem encoding on 1000 properties

between big conjunctions of typical properties. The latter cases model problems arising
in requirements engineering setting, i.e. refinement and equivalence among specifica-
tions. For each of the methods (MONO, FMCAD06 and TACAS07), we report the time
needed to construct the corresponding representation. All experiments were run on a
3GHz Intel CPU equipped with 4GB of memory running Linux; for each run, we used
a timeout of 900 seconds and a memory limit of 1GB. Figure 5 reports the plot of the
number of problems generated in a given amount of time (the samples are ordered by
increasing computation time). The comparison between FMCAD06 and MONO, just
as stated in [6], shows that the monolithic approach has a much harder time than FM-
CAD06 in completing the generation. The plots also show that the TACAS07 rewriting,
in addition to causing negligible overhead in the simple cases, seems to pay off in the
harder cases. There are several samples where the construction time is substantially re-
duced, and (by looking carefully at the data) we see that TACAS07 completes the 884
samples that FMCAD06 can solve one order of magnitude faster; in addition, we see
that TACAS07 can solve 36 hard problems where FMCAD06 times out. The speed up
typically occurs in examples where SERE automata have to be determinized both in
MONO and FMCAD06, while for TACAS07 the rules manage to generate smaller
SERE.

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0 50 100 150 200 250 300 350 400

T
ot

al
 C

P
U

 T
im

e
(s

ec
s)

of formulas solved

TACAS07
FMCAD06

MONO
 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 50 100 150 200 250 300 350 400

T
ot

al
 C

P
U

 T
im

e
(s

ec
s)

of formulas solved

TACAS07
FMCAD06

MONO

search time overall total time

Fig. 6. Language emptiness using SBMC on 400 formulas

514 A. Cimatti, M. Roveri, and S. Tonetta

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0.001 0.01 0.1 1 10 100 1000

T
A

C
A

S

MONO

LE SBMC total unsat

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0.001 0.01 0.1 1 10 100 1000

T
A

C
A

S

MONO

LE SBMC search unsat

 0.1

 1

 10

 100

 0.1 1 10 100

T
A

C
A

S

MONO

LE SBMC iterations unsat

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0.001 0.01 0.1 1 10 100 1000

T
A

C
A

S

MONO

LE SBMC total sat

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0.001 0.01 0.1 1 10 100 1000

T
A

C
A

S

MONO

LE SBMC search sat

 0.1

 1

 10

 100

 0.1 1 10 100

T
A

C
A

S

MONO

LE SBMC iterations sat

total time search time # of steps for SBMC

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0.001 0.01 0.1 1 10 100 1000

T
A

C
A

S

MONO

LE BUILD

Build time

Fig. 7. LE — Experimental evaluation results on 400 formulas: MONO vs TACAS07

We then focus on the effect of the rewriting on the search, by considering, as in [6],
a test suite of 400 selected problems for which the ABA library is able to complete
the generation within the time limit. The test suite contains two kinds of problems, fair
cycle detection (LE, for language emptiness), and model checking (MC). For LE, the
problems are a subset of the 1000 problems used to test generation; for MC, the same
PSL properties are applied to the Gigamax model taken from the standard NUSMV
distribution. For each problem, each method takes in input a PSL formula (and, if MC,
a model), and generates a file in NUSMV language, containing an LTL formula and
possibly a model. Each file is solved with the SAT-based approach of Simple Bounded
Model Checking (SBMC) [16], fixing a maximum length of 200 steps and enabling the
check for completeness. For each method we compare solution time, and total time.

The overall results for language emptiness are collected in Figures 6, 7 and 8. Fig-
ure 6 plots the number of problem solved in a given amount of time, considering only
the search time (on the left) and the search time plus the problem construction time (on

Syntactic Optimizations for PSL Verification 515

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0.001 0.01 0.1 1 10 100 1000

T
A

C
A

S

FMCAD

LE SBMC total unsat

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0.001 0.01 0.1 1 10 100 1000

T
A

C
A

S

FMCAD

LE SBMC search unsat

 0.1

 1

 10

 100

 0.1 1 10 100

T
A

C
A

S

FMCAD

LE SBMC iterations unsat

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0.001 0.01 0.1 1 10 100 1000

T
A

C
A

S

FMCAD

LE SBMC total sat

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0.001 0.01 0.1 1 10 100 1000

T
A

C
A

S

FMCAD

LE SBMC search sat

 0.1

 1

 10

 100

 0.1 1 10 100

T
A

C
A

S

FMCAD

LE SBMC iterations sat

total time search time # of steps for SBMC

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0.001 0.01 0.1 1 10 100 1000

T
A

C
A

S

FMCAD

LE BUILD

Build time

Fig. 8. LE — Experimental evaluation results on 400 formulas: FMCAD06 vs TACAS07

the right). We remark that, TACAS07 plot is under the MONO plot. The plot clearly
shows that the search time for MONO and TACAS07 are comparable, i.e. the rewriting
proposed in this paper are as effective as the semantic ones of MONO; the improvement
with respect to FMCAD06 in terms of search time is also evident. When considering
the total time, we notice that these advantages come without paying the price of the se-
mantic simplification. In fact, this price is often so high that also FMCAD06 is superior
to MONO. These claims are also confirmed by the scatter plots reported in Figure 7
(comparing MONO with TACAS07) and in Figure 8, where it is clear that TACAS07
is almost uniformly superior to FMCAD06. It is also interesting to notice that while
MONO and TACAS07 have overall similar performance, they are not simplifying in
the same way, and sometimes the semantic simplifications are unable to achieve as
much reduction as rewriting.

The overall results for model checking are collected in Figures 9, 10 and 11. Fig-
ure 9 plots the number of model checking problems solved in a given amount of time,
considering only the search time (on the left) and the search time plus the problem
construction time (on the right). The plot of search time shows that the three methods,

516 A. Cimatti, M. Roveri, and S. Tonetta

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0 50 100 150 200 250 300 350 400

T
ot

al
 C

P
U

 T
im

e
(s

ec
s)

of formulas solved

TACAS07
FMCAD06

MONO
 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 50 100 150 200 250 300 350 400

T
ot

al
 C

P
U

 T
im

e
(s

ec
s)

of formulas solved

TACAS07
FMCAD06

MONO

search time overall total time

Fig. 9. Model checking using SBMC on 400 formulas

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0.001 0.01 0.1 1 10 100 1000

T
A

C
A

S

MONO

MC SBMC total unsat

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0.001 0.01 0.1 1 10 100 1000

T
A

C
A

S

MONO

MC SBMC search unsat

 0.1

 1

 10

 100

 0.1 1 10 100

T
A

C
A

S

MONO

MC SBMC iterations unsat

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0.001 0.01 0.1 1 10 100 1000

T
A

C
A

S

MONO

MC SBMC total sat

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0.001 0.01 0.1 1 10 100 1000

T
A

C
A

S

MONO

MC SBMC search sat

 0.1

 1

 10

 100

 0.1 1 10 100

T
A

C
A

S

MONO

MC SBMC iterations sat

total time search time # of steps for SBMC

Fig. 10. MC — Experimental evaluation results on 400 formulas: MONO vs TACAS07

while tackling these model checking problems, are almost comparable; this is probably
due to the presence of the model that here is predominant. However, if the total time
is taken into account, it appears that MONO is outperformed by both FMCAD06 and
TACAS07, and that TACAS07 is better than FMCAD06 as in the language emptiness
case (again, here the difference is less evident because of the presence of the model).
Also in this case the scatter plots in Figure 10 (comparing MONO with TACAS07)
and in Figure 11 (comparing FMCAD06 with TACAS07) confirm that for the search
TACAS07 is able to achieve substantial simplifications, although not exactly the same
as MONO. The cost of semantic simplification is however substantial.

We restricted our experimental evaluation only to SBMC, even though in [6] the
same experiments where carried out also using BDDs. Preliminary experiments showed

Syntactic Optimizations for PSL Verification 517

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0.001 0.01 0.1 1 10 100 1000

T
A

C
A

S

FMCAD

MC SBMC total unsat

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0.001 0.01 0.1 1 10 100 1000

T
A

C
A

S

FMCAD

MC SBMC search unsat

 0.1

 1

 10

 100

 0.1 1 10 100

T
A

C
A

S

FMCAD

MC SBMC iterations unsat

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0.001 0.01 0.1 1 10 100 1000

T
A

C
A

S

FMCAD

MC SBMC total sat

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0.001 0.01 0.1 1 10 100 1000

T
A

C
A

S

FMCAD

MC SBMC search sat

 0.1

 1

 10

 100

 0.1 1 10 100

T
A

C
A

S

FMCAD

MC SBMC iterations sat

total time search time # of steps for SBMC

Fig. 11. MC — Experimental evaluation results on 400 formulas: FMCAD06 vs TACAS07

us that FMCAD06 and TACAS07 with the BDD engine are incomparable. The reason
is that the optimizations we proposed produce a large number of fairness constraints so
that the results are highly influenced by several factors (BDD variable ordering, order
in which the fairness conditions are considered, algorithms for language emptiness). A
fair comparison requires an improvement of language emptiness with multiple fairness
conditions and a deep tuning of possible options. We plan to carry out this analysis later
on to better support the new proposed approach.

Another relevant approach is the one by Heljanko et al. [4], in the following referred
to as CAV06: basically, it takes in input an ABA and instead of using a symbolic MH for
generating an NBA, a partitioning of the ABA is carried out by exploiting the fact that
PSL will result in weak ABAs [3]. Given that the approach is substantially different, it
would be worth to carry out a comparison with it. Since [4] implements its own format
for reading in ABA, and we do not yet have a complete translator available, we leave
the comparison to future work. We expect that the results would be biased by the fact
that the approach implemented in [4] is not complete, so that we have to disable the
completeness check. Since CAV06 must rely on the ABA library of MONO, it is easy
to predict that it will inherit the same bottleneck in construction.

6 Conclusions and Future Work

In this paper, we proposed an approach based on syntactic rewriting to improve the ver-
ification times for PSL specifications. The approach improves on [6], greatly reducing
the redundancies of the generated automata. Although the optimizations have negligible
run-times, the benefit in verification and overall time is substantial.

518 A. Cimatti, M. Roveri, and S. Tonetta

In the future we plan to work on the problem of the analysis of requirements, trying
to scale up on large sets of PSL formulas. In particular, we will concentrate on the
definition of optimized algorithms for language emptiness, based on the structure of the
modular automaton, on the definition of specialized BDD-based language emptiness
algorithms. We also plan to investigate rewriting as a tool for better understanding the
meaning of specifications.

References

1. IEEE: IEEE standard 1850 – Property Specification Language (PSL) (2005)
2. Pnueli, A.: The temporal logic of programs. In: Proceedings of 18th IEEE Symp. on Foun-

dation of Computer Science. (1977) 46–57
3. Ben-David, S., Bloem, R., Fisman, D., Griesmayer, A., Pill, I., Ruah, S.: Automata Construc-

tion Algorithms Optimized for PSL. http://www.prosyd.org (2005) PROSYD deliverable
D 3.2/4.

4. Heljanko, K., Junttila, T., Keinänen, M., Lange, M., Latvala, T.: Bounded Model Checking
for Weak Alternating Büchi Automata. In: Proc. of the 18th Int. Conf. on Computer Aided
Verification, CAV’06. Volume 4144 of LNCS., Seattle (USA) (2006) 95–108

5. Bloem, R., Cimatti, A., Pill, I., Roveri, M., Semprini, S.: Symbolic Implementation of Alter-
nating Automata. In: Proc. of 11th International Conference on Implementation and Appli-
cation of Automata (CIAA06). Volume 4094 of LNCS. (2006) 208–218

6. Cimatti, A., Roveri, M., Semprini, S., Tonetta, S.: From PSL to NBA: a Modular Symbolic
Encoding. In: Procs. of FMCAD06. (2006)

7. Pnueli, A., Zaks, A.: PSL Model Checking and Run-time Verification via Testers. In: Proc.
of 14th International Symposium on Formal Methods (FM’06). Volume 4085 of LNCS.,
Hamilton, Ontario, Canada (2006) 573–586

8. Miyano, S., Hayashi, T.: Alternating finite automata on omega-words. Theor. Comput. Sci.
32 (1984) 321–330

9. Sebastiani, R., Tonetta, S., Vardi, M.: Symbolic Systems, Explicit Properties: On Hybrid
Approaches for LTL Symbolic Model Checking. In: Proceedings of the 16th International
Conference on Computer-Aided Verification (CAV’05). (2005) 350–363

10. David, S.B., Orni, A.: Property-by-Example guide: a handbook of PSL/Sugar examples.
http://www.prosyd.org (2005) PROSYD deliverable D 1.1/3.

11. Beer, I., Ben-David, S., Eisner, C., Fisman, D., Gringauze, A., Rodeh, Y.: The temporal
logic sugar. In Berry, G., Comon, H., Finkel, A., eds.: Computer Aided Verification, 13th
International Conference (CAV 2001). Volume 2102 of LNCS., Springer (2001) 363–367

12. Armoni, R., Bustan, D., Kupferman, O., Vardi, M.Y.: Resets vs. aborts in linear temporal
logic. In: TACAS. (2003)

13. Somenzi, F., Bloem, R.: Efficient Büchi Automata from LTL Formulae. In: Proceedings of
the 12th International Conference on Computer-Aided Verification. Volume 1855 of LNCS.,
Springer-Verlag (2000) 247–263

14. Etessami, K., Holtzmann, G.: Optimizing Büchi Automata. In: Proceedings of CON-
CUR’2000. Volume 1877 of LNCS. (2000) Springer.

15. Cimatti, A., Clarke, E., Giunchiglia, F., Roveri, M.: NUSMV: a new Symbolic Model Veri-
fier. In: Proc. of the 11th International Conference on Computer-Aided Verification. Volume
1633 of LNCS., Springer-Verlag (1999) 495 – 499

16. Heljanko, K., Junttila, T.A., Latvala, T.: Incremental and complete bounded model checking
for full PLTL. In: Proc. of the 17th Int. Conf. on Computer Aided Verification (CAV’05).
Volume 3576 of LNCS., Springer (2005) 98–111

The Heterogeneous Tool Set, HETS �

Till Mossakowski1, Christian Maeder1, and Klaus Lüttich2

1 DFKI Lab Bremen and Department of Computer Science, University of Bremen, Germany
2 SFB/TR 8 and Department of Computer Science, University of Bremen, Germany

1 Introduction

Structure Data Process

Fig. 1. Multiple viewpoints

Heterogeneous specification becomes more and more
important because complex systems are often spec-
ified using multiple viewpoints, involving multiple
formalisms (see Fig. 1). Moreover, a formal software
development process may lead to a change of formal-
ism during the development.

Some of the current heterogeneous approaches de-
liberately stay informal, like UML. Current formal in-
tegration approaches have the drawback that they are uni-lateral in the sense that typi-
cally there is one logic (and one theorem prover) which serves as the central integration
device, even if this central logic may not be needed or desired in particular applications.

By contrast, the heterogeneous tool set is a both flexible, multi-lateral and formal (i.e.
based on a mathematical semantics) integration tool, providing parsing, static analy-
sis and proof management for heterogeneous multi-logic specifications by combining
various tools for individual specification languages. Unlike other tools, it treats logic
translations (e.g. codings between logics) as first-class citizens. The architecture of the
heterogeneous tool set is shown in Fig. 2. In the sequel, we will explain the details of
this figure.

2 Logics in Hets

The notion of institution [2] captures in a very abstract and flexible way the essence of
a logical system. Institution morphisms or comorphisms relate institutions.

In HETS, each logic (institution) is realized in the programming language Haskell
[7] by a list of types (e.g. for signatures, signature morphisms, sentences) and functions
(e.g. for parsing, static analysis and theorem proving, see the left column of Fig. 2).
In Haskell jargon, the interface is called a multiparameter type class with functional
dependencies.

The following logics have been integrated in HETS so far, with varying degree of
support (see the middle column of Fig. 2 and [4,1] for more details and references).

CASL [1] extends many sorted first-order logic with partial functions and subsorting.
It also provides induction sentences, expressing the (free) generation of datatypes.

� This work has been supported by the Deutsche Forschungsgemeinschaft unders grants KR
1191/5-2 and KR 1191/7-2 and in the project I4-SPIN in the SFB/TR8 “Spatial Cognition”.
We thank Stefan Wölfl for providing the first heterogeneous verification example.

O. Grumberg and M. Huth (Eds.): TACAS 2007, LNCS 4424, pp. 519–522, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

520 T. Mossakowski, C. Maeder, and K. Lüttich

Architecture of the heterogeneous tool set Hets

Text

Parser

Abstract syntax

Static Analysis

(Signature, Sentences)

XML, Aterm

Interfaces

Tools for specific logics

Conservativity and

Model checkers

Tools for heterogeneous
specifications

Text

Parser

Abstract syntax

Static Analysis

Global Environment

XML, Aterms

Interfaces

Heterogeneous
development graphs

Heterogeneous proof trees

Logic graph

Grothendieck logic

(Flattened logic graph)

WWW, GUI

Heterogeneous inference engine
Decomposition of proof obligations
Management of proofs & change

Theorem provers

Rewriters

HasCASL

OWL-DL

SoftFOL

CASL-DL

CASL

Haskell

ModalCASL

Isabelle

CoCASL

Fig. 2. Architecture of the heterogeneous tool set

CoCASL is a coalgebraic extension of CASL, suited for the specification of process
types and reactive systems. The central proof method is coinduction.

ModalCASL is an extension of CASL with multi-modalities and term modalities. It
allows the specification of modal systems with Kripke’s possible worlds semantics.

HasCASL is a higher order extension of CASL allowing polymorphic datatypes and
functions, closely related to the programming language Haskell.

Haskell [7] is a modern, pure and strongly typed functional programming language.
OWL DL is the Web Ontology Language (OWL) recommended by the World Wide

Web Consortium (W3C, http://www.w3c.org). It is used for knowledge rep-
resentation and the Semantic Web.

CASL-DL is an extension of a restriction of CASL, realizing a strongly typed variant
of OWL DL in CASL syntax.

SoftFOL [3] offers three automated theorem proving systems (ATP) for first-order logic
with equality: (1) SPASS [9]; (2) Vampire [8]; and (3) MathServe Broker [10]. These
together comprise some of the most advanced theorem provers for first-order logic.

Isabelle [6] is an interactive theorem prover for higher-order logic, and (jointly with
others) marks the frontier of current research in interactive higher-order provers.

3 Heterogeneous Specification

Heterogeneous specification is parameterized over some arbitrary graph of logics (insti-
tutions) and logic translations (comorphisms). The graph of currently supported logics

The Heterogeneous Tool Set, HETS 521

is shown in Fig. 2. However, this graph is just a parameter: indeed, the HETS modules
implementing the logic graph can be compiled independently of the HETS modules im-
plementing heterogeneous specification, and this separation of concerns is essential to
keep the tool manageable from a software engineering point of view.

Heterogeneous CASL (HETCASL; see [4]) includes the structuring constructs of
CASL, such as union and translation. A key feature of CASL is that syntax and se-
mantics of these constructs are formulated over an arbitrary institution (i.e. also for
institutions that are possibly completely different from first-order logic resp. the CASL

institution). HETCASL extends this with constructs for choosing the current logic and
translating specifications along logic translations (i.e. comorphisms).

4 Proof Management

The central device for structured theorem proving and proof management in HETS is
the formalism of heterogeneous development graphs [5,4]. Development graphs have
been used for large industrial-scale applications with hundreds of specifications. They
also support management of change. The graph structure provides a direct visualization
of the structure of specifications and the open proof obligations.

The proof calculus for development graphs [5,4] is given by rules that allow for
decomposing proof obligations into simpler ones, until they can be proved by turning
them into local proof goals. The latter can be discharged using a logic-specific theo-
rem prover. This can be done using a graphical user interface (GUI), which allows for
selecting the prover and the subset of axioms that is sent to the prover. Also, provers

Fig. 3. A sample HETS session

522 T. Mossakowski, C. Maeder, and K. Lüttich

for other logics than that of the current theory may be used, if there is a comorphism
linking the two logics. In this way, theorem provers can be borrowed for other logics
(e.g. a first-order prover can be also used for modal first-order logic). A typical session
with HETS is shown in Fig. 3.

5 Conclusion

The Heterogeneous Tool Set (HETS) is available at http://www.cofi.info/
Tools. A sample heterogeneous proof concerns the correctness of the composition
table of a qualitative spatial calculus. This involves two different provers and logics: an
automated first-order prover solving the vast majority of the goals, and an interactive
higher-order prover used to prove a few bridge lemmas. The corresponding heteroge-
neous specification is found under Calculi/Space/RCCVerification.het in
the repository available at http://www.cofi.info/Libraries.

It may appear that HETS just provides a combination of some first-order provers and
Isabelle. But already now, HETS provides proof support for modal logic (via the trans-
lation to CASL, and then further to either SPASS or Isabelle), as well as for COCASL.
Hence, it is quite easy to provide proof support for new logics by just implementing
logic translations, which is at least an order of magnitude simpler than integrating a
theorem prover. Future work will integrate more logics (such as CSP-CASL and other
process calculi) and interface more existing theorem proving tools (such as CSP-Prover)
with specific institutions in HETS, and provide more sample applications.

References

1. CoFI (The Common Framework Initiative). CASL Reference Manual. LNCS 2960 (IFIP
Series). Springer, 2004.

2. J. A. Goguen and R. M. Burstall. Institutions: Abstract model theory for specification and
programming. Journal of the Association for Computing Machinery, 39:95–146, 1992.

3. K. Lüttich and T. Mossakowski. Reasoning Support for CASL with Automated Theorem
Proving Systems. WADT 2006, Springer LNCS, to appear.

4. T. Mossakowski. Heterogeneous specification and the heterogeneous tool set. Habilitation
thesis, University of Bremen, 2005.

5. T. Mossakowski, S. Autexier, and D. Hutter. Development graphs – proof management for
structured specifications. Journal of Logic and Algebraic Programming, 67(1-2):114–145,
2006.

6. T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for Higher-
Order Logic. Springer Verlag, 2002.

7. S. Peyton-Jones, editor. Haskell 98 Language and Libraries — The Revised Report. Cam-
bridge, 2003. also: J. Funct. Programming 13 (2003).

8. A. Riazanov and A. Voronkov. The design and implementation of VAMPIRE. AI Communi-
cations, 15(2-3):91–110, 2002.

9. C. Weidenbach, U. Brahm, T. Hillenbrand, E. Keen, C. Theobalt, and D. Topic. SPASS
version 2.0. In Andrei Voronkov, editor, Automated Deduction – CADE-18, LNCS 2392,
pages 275–279. Springer-Verlag, 2002.

10. J. Zimmer and S. Autexier. The MathServe System for Semantic Web Reasoning Services.
In U. Furbach and N. Shankar, editors, 3rd IJCAR, LNCS 4130. Springer, 2006.

http://www.cofi.info/Tools
http://www.cofi.info/Tools
Calculi/Space/RCCVerification.het
http://www.cofi.info/Libraries

Searching for Shapes in Cryptographic

Protocols�

Shaddin F. Doghmi, Joshua D. Guttman, and F. Javier Thayer

The MITRE Corporation
shaddin@stanford.edu,

{guttman,jt}@mitre.org

Abstract. We describe a method for enumerating all essentially differ-
ent executions possible for a cryptographic protocol. We call them the
shapes of the protocol. Naturally occurring protocols have only finitely
many, indeed very few shapes. Authentication and secrecy properties are
easy to determine from them, as are attacks. cpsa, our Cryptographic
Protocol Shape Analyzer, implements the method.

In searching for shapes, cpsa starts with some initial behavior, and
discovers what shapes are compatible with it. Normally, the initial be-
havior is the point of view of one participant. The analysis reveals what
the other principals must have done, given this participant’s view.

1 Introduction

The executions of cryptographic protocols frequently have very few essentially
different forms, which we call shapes. By enumerating these shapes, we may
ascertain whether they all satisfy a security condition such as an authentication
or confidentiality property. We may also find other anomalies, which are not
necessarily counterexamples to the security goals, such as involving unexpected
participants, or involving more local runs than expected.

In this paper, we describe a complete method for enumerating the shapes of a
protocol within a pure Dolev-Yao model [7]. If the protocol has only finitely many
essentially different shapes, the enumeration will terminate. From the shapes,
we can then read off the answers to secrecy and authentication questions and
observe other anomalies. Our software implementation of this method is called
a Cryptographic Protocol Shapes Analyzer (cpsa).

We use the strand space theory [10]. A skeleton represents regular (non-
penetrator) behavior that might make up part of an execution, and a homo-
morphism is an information-preserving map between skeletons. Skeletons are
partially-ordered structures, like fragments of Lamport diagrams [13] or frag-
ments of message sequence charts [12]. A skeleton is realized if it is nonfragmen-
tary, i.e. it contains exactly the regular behavior of some execution. A realized
skeleton is a shape if it is minimal in a sense we will make precise. We search

� Supported by the National Security Agency and by MITRE-Sponsored Research.

O. Grumberg and M. Huth (Eds.): TACAS 2007, LNCS 4424, pp. 523–537, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

524 S.F. Doghmi, J.D. Guttman, and F.J. Thayer

for shapes using the authentication tests [10] to find new strands to add when a
skeleton is not large enough to be realized.

The main technical result underlying cpsa is completeness, in the sense that—
for any protocol—our authentication test search eventually discovers every shape
for that protocol. It cannot terminate for every protocol [8]. It does, however,
terminate for reasonably inclusive classes [4,19].

The type-and-effect system for spi calculus [9] is related to the authentica-
tion tests, but differs from our work in two ways. First, we do not use the
syntactically-driven form of a type system, but instead a direct analysis of behav-
iors. Second, type-and-effect systems aim at a sound approximation, whereas our
work provides actual counterexamples when a security goal is not met. Blanchet’s
ProVerif [1] is also based on a sound approximation, and may thus refuse to cer-
tify a protocol even though there are no counterexamples.

cpsa’s search is related to the second version of Athena [18], which adopted
the authentication tests from [10]. However, cpsa differs from Athena in several
ways. First, it involves the regular behaviors alone; we never represent adversary
activity within a shape. Second, the notion of shape defines a criterion for which
possible executions should be considered, among the infinitely many executions
(of unbounded size) of any protocol. Third, we introduce strong versions of the
authentication tests, for which completeness is true.

The shapes describe protocol executions of all sizes; we do not follow the
widely practiced bounded protocol analysis (e.g. [2,15]).

Structure of this paper. We develop the cpsa search strategy from exam-
ples, leaving precise definitions, theorems, and proofs to an extended version [6].
Section 2 shows a protocol and its shapes, and introduces terminology. Section 3
introduces the Yahalom protocol [17], a more substantial example. The search
for shapes is guided by the authentication test principles (Section 4), which we
apply to analyze Yahalom’s protocol in Section 5. This analysis illustrates al-
most every aspect of the cpsa search method. In Section 6, we define the search’s
control structure. The cpsa implementation is the subject of Section 7.

2 Shapes: The Core Idea

In practice, protocols have remarkably few shapes. The Needham-Schoeder-
Lowe [16,14] protocol has only one. A responder B, asking what global behavior
must have occurred when B has had a local run of the protocol, finds the initia-
tor A must have had a matching run. An initiator A knows that B must have
had a matching run, although the last message may not have been received.

Uniqueness of shape is unsurprising for so strong a protocol. However, even
a flawed protocol such as the original Needham-Schroeder may have a unique
shape, shown in Fig. 1.

Terminology. Newly introduced terminology is in boldface.
B’s local behavior is represented by the right-hand column in Fig. 1, consisting
of nodes connected by double arrows • ⇒ •. A’s local behavior is represented

Searching for Shapes in Cryptographic Protocols 525

A
{|Na ˆA|}pubk(C)� {|Na ˆA|}pubk(B)� B

•
�

�{|Na ˆNb|}pubk(A) � � {|Na ˆNb|}pubk(A) •
�

•
� {|Nb|}pubk(C) � ≺

{|Nb|}pubk(B) � •
�

Fig. 1. Needham-Schroeder Shape for B (privk(A) uncompromised, Nb fresh)

by the left-hand column. We call such a column a strand. The nodes represent
message transmission or reception events, and the double arrows represent suc-
cession within a single linearly ordered local activity. The message transmitted
or received on a node n is written msg(n). A regular strand is a strand that
represents a principal executing a single local session of a protocol; it is called a
regular strand because the behavior follows the protocol rules. A local behavior
as used so far refers to a regular strand.

We use {|t|}K to refer to the encryption of t with key K, and tˆt′ means the
pair of messages t and t′. Messages are constructed freely from atomic values
such as principal names A, nonces Na, keys K, etc., via these two operations.

The subterm relation is the least reflexive, transitive relation such that t is a
subterm of {|t|}K , t is a subterm of tˆt′, and t is a subterm of t′ˆt (for all K, t′).
We write t � t′ if t is a subterm of t′. Thus, K �� {|t|}K unless (anomalously)
K � t. Instead, K contributed to how {|t|}K was produced. This terminology has
an advantage: Uncompromised long-term keys are never subterms of messages
transmitted in a protocol; they are used by regular principals to encrypt, decrypt,
or sign messages, but are never transmitted. A value a originates at a node n
if (1) n is a transmission node; (2) a � msg(n); and (3) if m is any earlier node
on the same strand, then a �� msg(m).

Adversary behavior is represented by strands too. Penetrator strands cod-
ify the basic abilities that make up the Dolev-Yao model. They include trans-
mitting an atomic value such as a nonce or a key; transmitting an encrypted
message after receiving its plaintext and key; and transmitting a plaintext after
receiving ciphertext and decryption key. The adversary can pair two messages,
or separate the pieces of a paired message. Since a penetrator strand that en-
crypts or decrypts must receive the key as one of its inputs, keys used by the
adversary—compromised keys—have always been transmitted by some partici-
pant. The penetrator strands are independent of the protocol under analysis.

Let B be a finite, directed acyclic graph whose nodes lie on regular and pene-
trator strands, and whose edges are either (a) strand succession edges n0 ⇒ n1,
or else (b) message transmission edges n → m where msg(n) = msg(m), n is a
transmission node, and m is a reception node. B is a bundle if (1) if n0 ⇒ n1
and n1 ∈ B, then n0 ∈ B, and (2) for every reception node m ∈ B, there is a
unique transmission node n ∈ B such that the edge n → m is in B. The condi-
tions (1,2) ensure that B is causally well founded. A global behavior or execution,
as used so far, refers to a bundle.

526 S.F. Doghmi, J.D. Guttman, and F.J. Thayer

The NS Shape. Suppose B’s nonce Nb has been freshly chosen, and A’s private
key privk(A) is uncompromised. In this protocol, privk(A), privk(B) are used only
to destructure incoming messages, never to construct messages. Given that—on
a particular occasion—B received and sent the messages in the strand shown at
the right in Fig. 1, what must have occurred elsewhere in the network?

A must have had a partially matching strand, with the messages sent and
received in the order indicated by the arrows of both kinds and the connecting
symbols ≺. These symbols mean that the endpoints are ordered, but that other
behavior may intervene, whether adversary strands or regular strands. A’s strand
is only partially matching, because the principal A meant to contact is some C
which may or may not equal B. There is no alternative: Any diagram containing
the responder strand of Fig. 1 must contain at least an instance of the initiator
strand, with the events ordered as shown, or it cannot have happened.

Such a diagram is a shape. A shape consists of the regular strands of some
bundle, forming a minimal set containing initial regular strands (in this case,
the right-hand column). Possible bundles may freely add adversary behavior.

Each shape is relative to assumptions about keys and freshness, in this case
that privk(A) is uncompromised and Nb freshly chosen. Nothing useful would
follow without any such assumptions.

Although there is a single shape, there are two ways that this shape may be
realized in bundles. Either (1) C’s private key may be compromised, in which
case we may complete this diagram with adversary activity to obtain the Lowe
attack [14]; or else (2) C = B, leading to the intended run.

Some protocols have more than one shape, Otway-Rees, e.g., having four. In
searching for shapes, one starts from some initial set of strands. Typically, the
initial set is a singleton, which we refer to as the “point of view” of the analysis.

Skeletons, Homomorphisms, Shapes. A skeleton A is (1) a finite set of
regular nodes, equipped with additional information. The additional information
consists of (2) a partial order �A on the nodes indicating causal precedence; (3)
a set of keys nonA; and (4) a set of atomic values uniqueA. Values in nonA must
originate nowhere in A, whereas those in uniqueA originate at most once in A.1

A is realized if it has precisely the regular behavior of some bundle B. Every
message received by a regular participant either should have been sent previously,
or should be constructable by the adversary using messages sent previously.
Fig. 1 shows a skeleton Ans , indeed a realized one.

A homomorphism is a map H from A0 to A1, written H : A0 	→ A1. We
represent it as a pair of maps (φ, α), where φ maps the nodes of A0 into those
of A1, and α is a replacement mapping atoms to atoms. We write t · α for
the result of applying a replacement α to all the atoms mentioned in a message
t. H = (φ, α) is a homomorphism iff: (1) φ respects strand structure, and for
all n ∈ A0, msg(n) · α = msg(φ(n)); (2) m �A0 n implies φ(m) �A1 φ(n); (3)
nonA0 · α ⊆ nonA1 ; and (4) uniqueA0

· α ⊆ uniqueA1
.

Homomorphisms are information-preserving transformations. Each skeleton
A0 describes the realized skeletons reachable from A0 by homomorphisms. Since
1 When n ⇒∗ n′ and n′ ∈ A, we require n ∈ A and n �A n′.

Searching for Shapes in Cryptographic Protocols 527

homomorphisms compose, if H : A0 	→ A1 then any realized skeleton accessible
from A1 is accessible from A0. Thus, A1 preserves the information in A0: A1
describes a subset of the realized skeletons described by A0.

A homomorphism may supplement the strands of A0 with additional behavior
in A1; it may affect atomic parameter values; and it may identify different nodes
together, if their strands are compatible in messages sent and positions in the
partial ordering. For instance, consider the map Hns embedding a single strand
of Fig. 1 (e.g. Ab containing only B’s strand on the right side) into Ans . This is
a homomorphism Hns : Ab 	→ Ans . Likewise if we embed the first two nodes of
B’s strand (rather than all of Ab) into Ans . Another homomorphism Hi rewrites
each occurrence of C in Ans to B, hence each occurrence of pubk(C) to pubk(B).
It yields the Needham-Schroeder intended run Ansi .

A homomorphism H = (φ, α) is nodewise injective if the function φ on
nodes is injective. The nodewise injective homomorphisms determine a partial
order on homomorphisms: If for some nodewise injective H1, H1 ◦ H = H ′, we
write H ≤n H ′. If H ≤n H ′ ≤n H , then H and H ′ are isomorphic.

A homomorphism H : A0 	→ A1 is a shape iff (a) A1 is realized and (b) H
is ≤n -minimal among homomorphisms from A0 to realized skeletons. If H is a
shape, and we can factor H into A0

H0	→ A

′ H1	→ A1, where A

′ is realized, then
A

′ cannot contain fewer nodes than A1, or identify fewer atomic values. A1 is as
small and as general as possible.

We call a skeleton A1 a shape when the homomorphism H (usually an embed-
ding) is understood. In this looser sense, Fig. 1 shows the shape Ans . Strictly,
the embedding Hns : Ab 	→ Ans is the shape. The embedding Hnsi : Ab 	→ Ansi ,
with target the Needham-Schroeder intended run Ansi , is not a shape. Ans iden-
tifies fewer atoms, and the map replacing C with B is a nodewise injective
Hi : Ans 	→ Ansi , so Hns ≤n Hi ◦ Hns = Hnsi .

Shapes exist below realized skeletons: If H : A0 	→ A1 with A1 realized, then
the set of shapes H1 with H1 ≤n H is finite and non-empty.

3 The Yahalom Protocol Definition

The Yahalom protocol (Fig. 2 [17]) provides a session key K to principals sharing
long-term symmetric keys with a key server. We let ltk(·) map each principal A
to its long term shared key ltk(A). We assume that all participants agree on the
server, which does not also participate as a client.

The protocol contains three roles, the initiator, the responder, and the server.
Each is described by one strand in Fig. 2, and each role is parametrized by
A, B, Na, Nb, K. The parameters are atomic values, and the instances of each
role are constructed by replacing them with other atomic values. The behavior
Init of the initiator consists in transmitting AˆNa followed by receiving some
message of the form {|BˆK ˆNaˆNb|}ltk(A) and finally transmitting {|Nb|}K . The
other roles are also self-explanatory. The key server is trusted to generate a fresh,
uniquely originating session key K in each run. By this, we mean that if a skeleton
A contains a server strand with session key K, then K ∈ uniqueA.

528 S.F. Doghmi, J.D. Guttman, and F.J. Thayer

Init
AˆNa � AˆNa � Resp

�Bˆ{|AˆNa ˆNb|}ltk(B) •
�

•
�

�����

� {|BˆK ˆNaˆNb|}ltk(A)

{|AˆK|}ltk(B) � •
�

�����

•
�

�����

{|Nb|}K � {|Nb|}K � •
�

Serv �Bˆ{|AˆNa ˆNb|}ltk(B)

�{|BˆK ˆNaˆNb|}ltk(A) •
�

•
� {|AˆK|}ltk(B) �

Fig. 2. Yahalom protocol (forwarding removed)

4 Search Steps

The authentication tests are the basic steps leading from a particular initial
skeleton to its shapes. The Yahalom protocol requires both types of step, and
relies on the strong outgoing test we give here. The older form [10] does not
suffice.

Terminology. A protocol is a finite set of regular strands, called the roles.
For instance, the Yahalom roles include the three strands shown in Fig. 2. Roles
have atoms as parameters, namely A, B, Na, Nb, K for each role of Fig. 2. A
parameter may be distinguished by the assumption that it is always uniquely
originating, like the session key K in the Yahalom server role. The instances of
roles under replacements are regular strands.

We assume that each protocol also includes listener strand roles, by which
we mean a regular strand with a single node receiving an atomic message. We
write Lsn[a] for the strand a→ • that receives the atom a. If A containing Lsn[a] is
realized, then a is available without protection in A, i.e. a is compromised. We
use listener strands to test whether atoms are safe secrets. Suppose a skeleton
A

′ is the result of adding Lsn[a] to A, and there is no homomorphism mapping
A

′ to any realized A

′′. Then A is safe in A, as no execution described by A is
compatible with a being compromised. Listener strands, lacking transmission
nodes, need never precede anything else; we always let them be maximal in �A.

If A, A′ are both realized, and differ only in which listener strands they contain,
then we regard them as similar and write A ∼L A

′. In this case, the skeleton A

′′

that contains all listener strands from both A, A′ is also realized, and A

′′ ∼L

A ∼L A

′. We will ignore differences between homomorphisms H : A0 	→ A and
H ′ : A0 	→ A

′ that agree but have distinct, similar targets. Each may be extended
by an embedding to yield the same homomorphism H ′′ : A0 	→ A

′′.

Searching for Shapes in Cryptographic Protocols 529

A homomorphism is a contraction if it identifies at least one pair of atoms
and is surjective on nodes. A contraction replaces C with B in Fig. 1 to produce
the Needham-Schroeder intended run.

Suppose that S is a set of encrypted messages and the atom a ∈ uniqueA

originates at n0. The pair of nodes n0, n1, where n1 is a reception node, form
an outgoing test pair for a and S iff all a’s occurrences in msg(n0) are within
messages in set S, but a has at least one occurrence in n1 outside the messages
in S.2 The second and fourth nodes on the responder strand, for instance, form
an outgoing test pair for Nb and S0 = {{|AˆNaˆNb|}ltk(B)}, or for any S′

0 ⊇
S0. The set of keys used for outermost encryptions in any S is called used(S),
i.e. used(S) = {K : ∃t . {|t|}K ∈ S}. So used(S0) = {ltk(B)}.

The nodes m0, m1, with m1 a transmission node, are an outgoing trans-
forming edge for a, S if (1) they lie on the same regular strand . . . ⇒∗ m0 ⇒+

m1 ⇒∗ . . .; (2) a occurs in msg(m0) but no earlier node; (3) a occurs outside
S in msg(m1) but not in any earlier node. In the Yahalom protocol, the second
and third nodes of the server role are an outgoing transforming edge for Nb, S0,
although not for the larger set S′

0 = {{|AˆNaˆNb|}ltk(B), {|BˆK ˆNaˆNb|}ltk(A)}.
However, the second and third nodes of the initiator role are an outgoing trans-
forming edge for Nb, S

′
0.

Types of Search Step. There are two types of search steps, outgoing steps
and incoming steps. The outgoing step states that each outgoing test pair n0, n1
must be solved, either by contracting atoms, or else by adding an outgoing
transforming edge or a listener strand.

Outgoing test principle. Let H : A0 	→ A1 with A1 realized, and let n0, n1 ∈ A0
be an outgoing test pair for a and S. If A0 contains no outgoing transforming
edge for a, S that precedes n1, then, for some H ′′, H = H ′′ ◦ H ′ where either:

1. H ′ is a contraction; or
2. H ′ : A0 	→ A

′ is an embedding adding m0 ⇒+ m1, an outgoing transforming
edge for a, S, where n0 �A′ m0 and m1 �A′ n1; or

3. H ′ is an embedding adding Lsn[K−1], for some K ∈ used(S).

Clause 1 is used when H(n0), H(n1) is no longer an outgoing test pair for H(S).
It is also sometimes needed to prepare for an application of Clause 2, if (n0, n1) is
more general than some transforming edge in a protocol role. Then the contrac-
tion H unifies a member of S with a subterm of a role. Clause 1 is needed only
in these two cases. Clause 3 uses the inverse K−1 because in public-key (asym-
metric) algorithms, the adversary would use the inverse key K−1 to extract a
from an occurrence within a message {|t|}K ∈ S. We regard pubk(A), privk(A) as
inverses; symmetric keys are self-inverse.

2 A message t0 occurs only within S in t1 if, in the abstract syntax tree for t1, every
path to an occurrence of t0 as a subterm traverses some member of S. A message t0
occurs outside S in t1 if t0 � t1 and t0 does not occur only within S in t1 [6]. In our
terminology (Section 2), the K in {|t|}K is not an occurrence as a subterm.

530 S.F. Doghmi, J.D. Guttman, and F.J. Thayer

The older outgoing test [10] lacked the set parameter S and applied (in effect)
only to singleton S. The Yahalom analysis requires a non-singleton S. Only
finitely many homomorphisms (to within isomorphism) can satisfy an instance
of Clauses 1–3, because only finitely many atoms are mentioned in A0 and only
finitely many transforming edges exist in one protocol. In particular, there is a
finite set of most general homomorphisms. A set of homomorphisms {Hk}k≤j is
an outgoing cohort if, for some instance of Clauses 1–3, each Hk satisfies a
clause, and for every H ′ satisfying one of those clauses, there is some k ≤ j and
some H ′′ such that H ′ = H ′′ ◦ Hk.

In a simple though not quite complete version, the incoming step states that
if {|t|}K is received, either Kis compromised or a regular strand transmitted it.

Incoming test principle. Let H : A0 	→ A1 with A1 realized, and let n1 ∈ A0
receive message {|t|}K. If A0 contains (preceding n1) no m1 transmitting {|t|}K,
then, for some H ′′, H = H ′′ ◦ H ′ where either:

1. H ′ is a contraction; or
2. H ′ : A0 	→ A

′ is an embedding adding an m1 �A′ n1 transmitting {|t|}K ; or
3. H ′ is an embedding adding Lsn[K].

We use Clause 1 only to prepare for an application of Clause 2, when n1 is more
general than a node in a role of the protocol. Again, there are finite sets {Hk}k≤j

that satisfy Clauses 1–3 in a most general way; we call them incoming cohorts.
We call the skeletons {Ak}k≤j a cohort if each Hk : A 	→ Ak for some outgoing
or incoming cohort {Hk}k≤j . In practice, for protocols that occur naturally, the
size of the cohorts is very small, no more than four in the Yahalom protocol.

5 Yahalom: Shapes for the Responder

Suppose an execution contains a local run sr of the responder’s role as in the
upper right column of Fig. 2. We assume the long term keys ltk(A), ltk(B) are
uncompromised, as no authentication can be achieved otherwise. Similarly, we
assume the responder’s nonce Nb to be fresh and unguessable.

So let the initial skeleton A0 consist of sr, with nonA0 = {ltk(A), ltk(B)} and
uniqueA0

= {Nb}. What skeletons are shapes for A0? Or more precisely, for what
realized skeletons A is there a shape H : A0 	→ A?

We will find only one possibility, the skeleton A4 (Fig. 5). Any realized A

containing any responder strand s′r—with uncompromised long-term keys and
a fresh nonce—has a subskeleton A

′ containing s′r, with J : A4 	→ A

′. J is both
nodewise injective and surjective, i.e. an isomorphism on nodes, although it may
identify atoms. The portion of A containing s′r resembles A4.

Transforming the Nonce. B chooses a fresh nonce Nb in node n0 (see Fig. 3),
and transmits it within the encrypted unit {|AˆNaˆNb|}ltk(B). In B’s node n2,
it is received outside that unit, in the form {|Nb|}K . So n0, n2 is an outgoing test
pair for Nb, S1 whereS1 =

{{|AˆNaˆNb|}ltk(B)} ∪ {{|BˆK ′ˆNaˆNb|}ltk(A) : K ′ a key}.

Searching for Shapes in Cryptographic Protocols 531

1. The only outgoing transforming edges for Nb, S1 lie on initiator strands.
Unifying node 2 of the role with messages in S1 shows that the parameters
must be A, B, Na, Nb, and some K ′. We ask later whether K ′ = K.

2. Alternatively some decryption key may be compromised. Since used(S1) =
{ltk(A), ltk(B)} contains symmetric (self-inverse) keys, this means we con-
sider adding Lsn[ltk(A)] or Lsn[ltk(B)].

No contraction is relevant. Thus, these three embeddings—adding to A0 an ini-
tiator strand si, a listener strand Lsn[ltk(A)], or one of the form Lsn[ltk(B)]—form
an outgoing cohort. When adding si, we know that n0 ≺ (si ↓ 2) ⇒ (si ↓ 3) ≺ n2.

A : si B : sr

S : s<3
s

�............................ n0

�
�

•
�

��������

�.................................. m1

�
�

?

�
�

n1

�

��������

•
�

��������

...� n2

�
�

A,B, Na, Nb, K
′ A,B, Na, Nb, K

′ A,B, Na, Nb, K

Fig. 3. Skeleton A1, with nonA1 = {ltk(A), ltk(B)} and unique
A1

= {Nb, K
′}

Since nonA0 = {ltk(A), ltk(B)}, we also know that A0 ∪ Lsn[ltk(A)] and A0 ∪
Lsn[ltk(B)] are unrealizable. No bundle B can ever contain a listener strand for
a value that originates nowhere. Thus, the embeddings of Case 2 are dead in the
sense that no homomorphism from A0 to a realized skeleton can begin this way.
Thus, every homomorphism from A0 to a realized skeleton factors through the
embedding A0 	→ A0 ∪ {si}.

We again have an outgoing test edge between n0 and si ↓ 2, for Nb, S2 where

S2 = {{|AˆNaˆNb|}ltk(B)} ∪ {{|BˆK ′′ˆNaˆNb|}ltk(A) : K ′′ �= K ′}.

Nb originates only at n0, where it occurs only within S2; however, in msg(si ↓ 2),
Nb occurs outside S2 in the form {|BˆK ′ˆNaˆNb|}ltk(A).

3. The only outgoing transforming edges for Nb, S2 lie on server strands ss.
Unifying node 1 of the role with messages in S2 shows that the parameters
must be A, B, Na, Nb, and some K ′′. Since Nb must occur outside S2 in
ss ↓ 2, we have K ′′ = K ′; so that the last parameter is K ′. The last node
ss ↓ 3 may not be included; we will write s<3

s for the initial segment of ss.
4. Alternatively a decryption key in used(S1) = {ltk(A), ltk(B)} may be com-

promised. However, neither listener strand produces a live skeleton.

532 S.F. Doghmi, J.D. Guttman, and F.J. Thayer

Thus, any homomorphism from A0 to a realized skeleton must factor through
the embedding A0 	→ A0 ∪ sr ∪ s<3

s . We call this skeleton A1, shown in Fig 3,
which also shows how the ordering relation extends. Since the server always
provides a fresh session key, we also have K ′ ∈ uniqueA1

.

Does K′ = K?. The server generated K ′ on strand ss and delivers it to A on
si ↓ 2. B receives K on n1, and on n2 finds K also used to encrypt the nonce
Nb. Must the keys K ′, K be the same, or could they be distinct?

Nodes n0, n2 form an outgoing test pair for Nb and the set

S3 = { {|AˆNaˆNb|}ltk(B), {|BˆK ′ˆNaˆNb|}ltk(A), {|Nb|}K′ }.

The resulting outgoing cohort consists of Cases 5–7:

5. Another server strand s′s could receive Nb in its original form and transmit
Nb and a new session key K ′′ as {|BˆK ′′ˆNaˆNb|}ltk(A).

6. Under the contraction β that maps K ′ 	→ K and is elsewhere the identity,
no new edge is needed, as {|Nb|}K′ · β = {|Nb|}K · β.

7. used(S3) = {ltk(A), ltk(B), K ′}. Although adding Lsn[ltk(A)] and Lsn[ltk(B)]
lead to dead skeletons, perhaps adding Lsn[K ′] does not, i.e. K ′ may become
compromised.

However, we can prune Case 5, because K ′′ is not usefully different from K ′. The
adversary cannot use messages transmitted by s′s differently from the messages
transmitted by the existing ss. Discarding Case 5, there are two live possibilities:
either K ′ = K or else K ′ becomes compromised. We consider Case 7 next.

Case 7: K ′ becomes compromised. Consider the skeleton A1 ∪ Lsn[K ′]. K ′ orig-
inates uniquely at m1, so m1, (Lsn[K ′] ↓ 1) is an outgoing transformed pair for
K ′ and S4 = { {|BˆK ′ˆNaˆNb|}ltk(A), {|AˆK ′|}ltk(B) }. Thus, some case in the
cohort 8–9 must hold:

8. Some role Init, Resp, Serv provides a transforming edge for K ′, S4. However,
no Yahalom role retransmits it as a subterm of any new message. The initia-
tor uses K ′ to encrypt a message, but in our model, this discloses nothing.
For finer models, see e.g. [3,5].

9. One of the keys that protects K ′ in S4, i.e. a key K0 ∈ used(S4), becomes
compromised; but used(S4) = { ltk(A), ltk(B) }.

So neither Case 8 nor Case 9 is possible. We discard Case 7, as the whole co-
hort 8–9 is unrealizable or “dead.”

Hence, all homomorphisms to realized skeletons must factor through Case 6.
Let A2 = A1 · β be the result of replacing K ′ by K wherever mentioned in A1.
If any homomorphism H : A0 	→ A

′ has A

′ realized, then H factors through the
embedding A0 	→ A2.

B’s Source for K. The responder B receives {|AˆK|}ltk(B) on node n1. We
apply the Incoming Test Principle, with cohort:

Searching for Shapes in Cryptographic Protocols 533

A : si B : sr

S : s<3
s

�........................... n0

�
�
�

S : s′
s

•
�

���������

�................................. m1

�
��

m′
1

�
�

?

�
��

n1

�

����������

�................................ m′
2

�
�

•
�

����������

...� n2

�
�
�

A, B, Na, Nb, K A, B, Na, Nb, K A, B, Na, Nb, K A, B, N ′
a, N ′

b, K

Fig. 4. A3, with nonA3 = {ltk(A), ltk(B)} and unique
A3

= {Nb, K}

10. A server strand s′s, with parameters A, B, K, transmits {|AˆK|}ltk(B); possi-
bly different nonces appear in s′s. The embedding yields A3 in Fig. 4.

11. Alternatively, ltk(B) has been compromised and {|AˆK|}ltk(B) is generated
by the adversary. However, ltk(B) ∈ nonA2 , excluding this case.

A3 is not a skeleton because of an anomaly, however. K ∈ uniqueA3
is intended to

originate at just one node, but in fact originates at both m1 and m′
1. Therefore,

in any skeleton obtained by a homomorphism H = [φ, α] jointly from the union
A2 ∪ {s′s} = A3, necessarily φ(m1) = φ(m′

1), equating the strands ss and s′s. H
must then factor through skeleton A4 (Fig. 5), where consequently Na ·α = N ′

a ·α
and Nb · α = N ′

b · α, and the height of φ(ss) is 3.
Skeleton A4 is realized : every message received is sent, even without adversary

activity. Moreover, A4 is a shape. First, if we leave out any nodes, then either B’s
original strand is no longer embedded in the result, or else the result is no longer
realized. Second, we cannot make it more general: If two different strands share
a parameter, and we alter that parameter in one of the strands, then the result
is no longer realized. For instance, the diagram would no longer be realized if

A : si B : sr

S : ss
�............................. n0

�
�

•
�

��������

�................................. m1

�
�

m2

�
�

................................� n1

�

��������

•
�

��������

...� n2

�
�

A, B, Na, Nb, K A,B, Na, Nb, K A, B, Na, Nb, K

Fig. 5. Skeleton A4, with nonA4 = {ltk(A), ltk(B)} and unique
A4

= {Nb, K}

534 S.F. Doghmi, J.D. Guttman, and F.J. Thayer

A’s parameter Nb were altered to some N ′
b. Since all homomorphisms from A0

to realized skeletons factor through A4, it is the only shape for A0.

6 Search Strategy

The goal of cpsa is defined using the following terms:

step(A, C), which holds if the finite set C of skeletons is an outgoing or incom-
ing cohort for A. Any homomorphism from A to a realized skeleton passes
through some Ak ∈ C. The principles of Section 4 imply that the tests and
their cohorts may be used in any order, while still finding all shapes.

realized(A), which holds if A is realized; we can determine this directly.
min realA0(A′), which is defined if A

′ is realized. Its value is the finite, non-empty
set of shapes A such that (1) there is a homomorphism from A0 to A; (2)
A is realized; (3) there is a nodewise injective homomorphism from A to A

′;
and (4) A is ≤n -minimal among skeletons satisfying (1–3).

We say child(A, A′) if for some C, step(A, C) and A

′ ∈ C. Let descendent be
the reflexive, transitive closure of child. The goal of the search, given a starting
skeleton A0, is to determine the set

shapes(A0) = {A2 : ∃A1 . descendent(A0, A1) ∧ A2 ∈ min realA0(A1)}.

To do so, we use the search algorithm in Fig 6. We also need some auxiliaries:

dead(A) means A cannot be realized, i.e. there is no realized A

′ with H : A 	→ A

′.
Dead(A) follows from any of the following: (1) A contains Lsn[a] where a ∈
nonA; (2) dead(A0) and H : A0 	→ A; or (3) step(A, C) where C consists of
dead skeletons. Condition (1) was used repeatedly and condition (3) was
used to discard Case 7, as the cohort 8–9 led only to dead skeletons.

F := {A0}; shapes found := ∅; seen := F ;
while F 	= ∅ begin

A := select(F); F := F \ {A};
if realized(A)

then shapes found := shapes found ∪ min realA0(A)
else if redundant strand(A) then skip
else if step applies(A) then begin

let new = targets(apply step(A)) \ seen in
F := F ∪ new; F := F \ (filter dead F);
seen := seen ∪ new
end

else fail “Impossible.”
end;

return shapes found

Fig. 6. cpsa Search Algorithm

Searching for Shapes in Cryptographic Protocols 535

redundant strand(A) tests whether A contains a redundant strand that can be
identified with some other strand by a homomorphism from A to a proper
subskeleton. We discarded a redundant strand in Case 5.

step applies(A) tests if an unsolved outgoing or incoming step exists in A.
apply step(A) selects an unsolved step, finds a cohort, updates the step relation,

and then returns the cohort (assuming step applies(A) is true).
targets(H) = {Ak : k ≤ j}, if H is a set of j homomorphisms Hk : A 	→ Ak.

We assume select S selects a member of S if it is non-empty; and filter p S takes
the subset of S satisfying p. The failure marked “Impossible” in Fig. 6 cannot
be reached, because completeness [6] ensures that when A is not realized, then
some authentication test step applies.

7 Implementing CPSA

We discuss here three aspects of the cpsa implementation. They are: finding
candidate transforming edges in protocols, and using unification in applying
them; choosing sets S for outgoing tests, and representing the sets; and a few
items for future work.

Finding transforming edges. When cpsa reads a protocol description in its
input format, it identifies all the potential transforming edges. For the outgoing
tests, it locates all candidate pairs of a reception node m0 and a transmission
node m1 later on the same role such that a key or nonce is received in one or
more encrypted forms on m0 and retransmitted outside these forms in m1. For
incoming tests, cpsa notes all transmission nodes m1 that send encrypted units.

To find outgoing transforming edges for a ∈ uniqueA and a set S, cpsa con-
siders each candidate edge m0 ⇒+ m1. Suppose an encrypted sub-message t
of msg(m0) unifies with a member of S using a replacement α. If a · α occurs
in msg(m0) · α, but only within S · α, then we check msg(m1) · α. If it occurs
outside S · α in msg(m1) · α, then m0 ⇒+ m1 is a successful candidate. If α
contracts atoms, then we apply the Outgoing Test Principle twice, once to apply
this contraction, and once to add the instance of m0 ⇒+ m1.3 We also check
whether a contraction eliminates the outgoing test edge entirely, as in Case 6.

For incoming tests, we do a unification on the candidate nodes m1.

Selecting sets S for outgoing tests. To select sets S in the outgoing test
principle, we use a trick we call the “forwards-then-backwards” technique. cpsa
plans a sequence of applications of the outgoing test until no further transforming
edge is found, as in Yahalom cases 3 and 1. It follows the transmission of the
uniquely originating value—Nb in that case—forwards. Newly introduced atoms
like K ′ are implicitly universal. Originally, Nb occurs only in {|AˆNaˆNb|}ltk(B);
after a server strand it also occurs in {|BˆK ′ˆNaˆNb|}ltk(A). After an initiator
strand, no other transforming edges can succeed.
3 This is the only aspect of the authentication test search that does not occur in the

Yahalom analysis.

536 S.F. Doghmi, J.D. Guttman, and F.J. Thayer

Protocol Point of view Runtime Shapes

iso reject responder 0.193s 2
Kerberos client 1.443s 1
Needham-Schroeder responder 0.055s 1
Needham-Schroeder-Lowe responder 0.124s 1
Yahalom responder 2.709s 1

Fig. 7. Protocols with cpsa runtimes

cpsa uses the sets in the opposite order. The set S1 = {{|AˆNaˆNb|}ltk(B)}∪
{{|BˆK ′ˆNaˆNb|}ltk(A) : K ′ a key} is used first to introduce the initiator trans-
forming edge. Then the smaller set {{|AˆNaˆNb|}ltk(B)} is used to introduce the
(earlier) server transforming edge.4

The forwards-then-backwards technique suggested cpsa’s representation for
the sets S. These sets are not necessarily finite; S1 e.g. is not. The family is closed
under union and set difference. The primitive members are singletons {t0} and
sets that represent all the instances of a term t1 as some of t1’s parameters vary.
Thus, we can represent all candidate sets are as finite unions and differences
of values of the form λv . t, where the vector v binds 0 or more atoms in t.
Completeness requires only sets S representable in this form.

This representation fits also nicely with our use of unification to provide an
extremely focused search, leading to good runtimes on a variety of protocols.
Samples run on a Thinkpad X31, with a 1.4 GHz Pentium M processor and 1
GB store, under Linux, are shown in Fig. 7. cpsa is implemented in OCaml.

Future work. The soundness of the search algorithm does not require the bare-
bones Dolev-Yao model used here. One can augment cpsa with Diffie-Hellman
operations, as studied in [11]. One can also allow keys to be complex messages,
typically the result of hashing. In our current framework, replacements map
atoms to other atoms only, but it should be possible to map atoms to terms
in general, at the cost of using more sophisticated methods to check whether
skeletons are realized (e.g. [15]). The skeletons-and-homomorphisms approach
may remain useful in a cryptographic, asymptotic probabilistic context.

Acknowledgments. We thank Lenore Zuck and John D. Ramsdell for their
comments. Larry Paulson suggested the Yahalom protocol as a challenge.

References

1. Mart́ın Abadi and Bruno Blanchet. Analyzing security protocols with secrecy types
and logic programs. Journal of the ACM, 52(1):102–146, January 2005.

2. Roberto M. Amadio and Denis Lugiez. On the reachability problem in crypto-
graphic protocols. In Concur, number 1877 in LNCS, pages 380–394, 2000.

4 The cleverer set S2 we used in Case 3 is an optimization. To ensure that the server
and initiator agree on the session key, cpsa uses instead a cohort similar to Cases 5–7.

Searching for Shapes in Cryptographic Protocols 537

3. Michael Backes and Birgit Pfitzmann. Relating cryptographic and symbolic key
secrecy. In Proceedings, 26th IEEE Symposium on Security and Privacy, May 2005.
Extended version, http://eprint.iacr.org/2004/300.

4. Bruno Blanchet and Andreas Podelski. Verification of cryptographic protocols:
Tagging enforces termination. In Foundations of Software Science and Computa-
tion Structures, LNCS, pages 136–152, April 2003.

5. Ran Canetti and Jonathan Herzog. Universally composable symbolic analysis of
mutual authentication and key exchange protocols. In Proceedings, Theory of Cryp-
tography Conference (TCC), March 2006.

6. Shaddin F. Doghmi, Joshua D. Guttman, and F. Javier Thayer.
Searching for shapes in cryptographic protocols (extended version).
URL:http://eprint.iacr.org/2006/435, November 2006.

7. Daniel Dolev and Andrew Yao. On the security of public-key protocols. IEEE
Transactions on Information Theory, 29:198–208, 1983.

8. Nancy Durgin, Patrick Lincoln, John Mitchell, and Andre Scedrov. Multiset rewrit-
ing and the complexity of bounded security protocols. Journal of Computer Secu-
rity, 12(2):247–311, 2004.

9. Andrew D. Gordon and Alan Jeffrey. Types and effects for asymmetric crypto-
graphic protocols. Journal of Computer Security, 12(3/4):435–484, 2003.

10. Joshua D. Guttman and F. Javier Thayer. Authentication tests and the structure
of bundles. Theoretical Computer Science, 283(2):333–380, June 2002. Conference
version appeared in IEEE Symposium on Security and Privacy, May 2000.

11. Jonathan C. Herzog. The Diffie-Hellman key-agreement scheme in the strand-
space model. In 16th Computer Security Foundations Workshop, pages 234–247,
Asilomar, CA, June 2003. IEEE CS Press.

12. ITU. Message sequence chart (MSC). Recommendation Z.120, 1999.
13. Leslie Lamport. Time, clocks and the ordering of events in a distributed system.

CACM, 21(7):558–565, 1978.
14. Gavin Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using

FDR. In Proceeedings of tacas, volume 1055 of Lecture Notes in Computer Science,
pages 147–166. Springer Verlag, 1996.

15. Jonathan K. Millen and Vitaly Shmatikov. Constraint solving for bounded-process
cryptographic protocol analysis. In 8th ACM Conference on Computer and Com-
munications Security (CCS ’01), pages 166–175. ACM, 2001.

16. Roger Needham and Michael Schroeder. Using encryption for authentication in
large networks of computers. Communications of the ACM, 21(12), 1978.

17. Lawrence C. Paulson. Relations between secrets: Two formal analyses of the Ya-
halom protocol. Journal of Computer Security, 2001.

18. Adrian Perrig and Dawn Xiaodong Song. Looking for diamonds in the desert:
Extending automatic protocol generation to three-party authentication and key
agreement protocols. In Proceedings of the 13th IEEE Computer Security Founda-
tions Workshop. IEEE Computer Society Press, July 2000.

19. R. Ramanujam and S. P. Suresh. Decidability of context-explicit security protocols.
Journal of Computer Security, 13(1):135–166, 2005. Preliminary version appeared
in WITS ’03, Workshop on Issues in the Theory of Security, Warsaw, April 2003.

http://eprint.iacr.org/2004/300
URL:http://eprint.iacr.org/2006/435

Automatic Analysis of the Security
of XOR-Based Key Management Schemes

Véronique Cortier1,�, Gavin Keighren2, and Graham Steel2,��

1 Loria UMR 7503 & CNRS & INRIA Lorraine projet Cassis, France
Veronique.Cortier@loria.fr

http://www.loria.fr/∼cortier
2 School of Informatics, University of Edinburgh, Scotland

Graham.Steel@ed.ac.uk
http://homepages.inf.ed.ac.uk/gsteel

Abstract. We describe a new algorithm for analysing security protocols that use
XOR, such as key-management APIs. As a case study, we consider the IBM 4758
CCA API, which is widely used in the ATM (cash machine) network. Earlier ver-
sions of the CCA API were shown to have serious flaws, and the fixes introduced
by IBM in version 2.41 had not previously been formally analysed. We first in-
vestigate IBM’s proposals using a model checker for security protocol analysis,
uncovering some important issues about their implementation. Having identified
configurations we believed to be safe, we describe the formal verification of their
security. We first define a new class of protocols, containing in particular all the
versions of the CCA API. We then show that secrecy after an unbounded num-
ber of sessions is decidable for this class. Implementing the decision procedure
requires some improvements, since the procedure is exponential. We describe a
change of representation that leads to an implementation able to verify a configu-
ration of the API in a few seconds. As a consequence, we obtain the first security
proof of the fixed IBM 4758 CCA API with unbounded sessions.

1 Introduction

Security protocols are small programs that aim to secure communications over a pub-
lic network like the Internet. The design of such protocols is notoriously difficult and
error-prone. Formal methods have proved their usefulness in the rigorous analysis of
security protocols. Methods developed for security protocol analysis can also be useful
for analysing other security-critical designs: for example, the security APIs of hardware
security modules (HSMs). HSMs are essentially cryptographic co-processors encased
in tamper-proof enclosures, and are widely used in security critical systems such as
electronic payment and automated teller machine (ATM) networks. Use of the HSM
is governed by the API, which can be thought of as a set of two-party security pro-
tocols, each describing an exchange between the HSM and the user, which may be

� This work has been partially supported by the ACI-SI project SATIN and the RNTL project
POSE.

�� Supported by EPSRC Grant number GR/S98139/01, ‘Automated Analysis of Security Critical
Systems’.

O. Grumberg and M. Huth (Eds.): TACAS 2007, LNCS 4424, pp. 538–552, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

http://www.loria.fr/~cortier
http://homepages.inf.ed.ac.uk/gsteel

Automatic Analysis of the Security of XOR-Based Key Management Schemes 539

used in any order. The IBM 4758 CCA1 is an important example of such an API.
In 2001, Bond discovered flaws in the CCA key management scheme that allowed
an intruder to obtain access to PINs [2, §5.1]. The attack requires the intruder to ex-
ploit the algebraic properties of the XOR operation, which is used extensively in the
CCA. Bond proposed changes to the API, which have been shown to be secure, [8],
but these changes would not have been backward-compatible. IBM made changes of
their own in version 2.41 of the API, and provided several procedural recommenda-
tions to prevent the attack. Though previous formal work has been able to rediscover
the flaws in the old version [12,15], the new version of the API had not been formally
analysed before.

In this paper, we propose a thorough analysis of the security of the revised IBM
protocol, combining a case study with the development of a new tool for analysing
protocols with XOR. Our first main contribution is the analysis of the IBM recommen-
dations using the CL-AtSe protocol analysis tool [13], during which we discovered a
possible attack, that we reported to IBM (see §2.3). For all the other versions, CL-AtSe
concludes that the IBM protocol is safe. However, CL-AtSe only checks security for a
finite number of sessions, or runs of the protocol. Furthermore, because the complexity
of the API is greater than a standard key-exchange protocol, the number of sessions
checked is often very small, usually only three. This means that there is no guarantee
of security if the protocol is executed more than three times. In addition, the IBM CCA
API lies outside both the existing classes of protocols using XOR which have been
previously shown to be decidable [5,14] for an unbounded number of sessions. Other
decidable classes of protocols with XOR have been proposed [6,4] but they only model
a finite number of sessions.

To address this problem, our second main contribution is the development of a new
class of protocols, called WFX-class, that includes the IBM CCA API. We show this
class to be decidable. Our proof is considerably simpler that the corresponding proofs
for the two previously treated classes, but the resulting decision procedure still has an
exponential complexity. For example, in our application, our decision procedure may
require us to compute about 226 terms. We describe a change of representation that leads
to an implementation able to verify a configuration of the API in a few seconds. As a
consequence, we obtain the first security proof of the fixed IBM 4758 CCA API with
unbounded sessions. To the best of our knowledge, this implementation is the first tool
for automatically verifying protocols with XOR, for an unbounded number of sessions,
albeit for a particular class of protocols.

The paper is organised as follows: in §2, we analyse each of IBM’s recommendations
for patching the CCA key management protocol, using CL-AtSe (thus for a bounded
number of sessions). In §3, we define our class of well-formed protocols, and prove the
decidability of security of protocols in the class for an unbounded number of sessions.
We explain how to implement our procedure in §4, and provide our results for the CCA
key management scheme. Concluding remarks can be found in §5. A longer version of
the paper, containing full proofs and more details of the CCA command modelling, has
been issued as a technical report [7].

1 CCA stands for ‘Common Cryptographic Architecture’, while 4758 is the model number of the
HSM. See http://www-3.ibm.com/security/cryptocards/pcicc.shtml

http://www-3.ibm.com/security/cryptocards/pcicc.shtml

540 V. Cortier, G. Keighren, and G. Steel

2 Analysing the IBM Recommendations Using CL-AtSe

HSMs typically consist of a cryptoprocessor and a small amount of memory inside a
tamper-proof enclosure. They are designed so that should an intruder open the casing
or insert probes to try to read the memory, it will auto-erase in a matter of nanoseconds.
In a typical ATM network application, HSMs are used, for example, to decrypt, encrypt
and verify PINs. Many different keys may are used for these operations. IBM’s Com-
mon Cryptographic Architecture (CCA) API [3] supports various key types, such as
data keys, key encryption keys, import keys and export keys. Each type is represented
by a public ‘control vector’ which is XOR-ed with the security module’s master key
(which is stored inside the HSM), before being used to encrypt the particular key. For
example, a data key would be encrypted under KM⊕DATA.2 Keys encrypted in this man-
ner are known as working keys and are stored outside of the security module. They can
then only be used by sending them back into the HSM under the desired API command.
Only particular types of keys will be accepted by the HSM for particular operations.
For example, data keys can be used to encrypt arbitrary messages, but so-called ‘PIN
Derivation Keys’ (PDKs, with control vector PIN) cannot, which is critical for security:
a customer’s PIN is just his account number encrypted under a PIN derivation key. In
Bond’s attack, the intruder uses API commands to change the type of a key, exploiting
the algebraic properties of XOR. This allows a PIN derivation key to be converted into
a data key, which can then be used to encrypt data. Hence the attack allows a criminal
to generate a PIN for any account number. For more details of Bond’s ‘Chosen Key
Difference’ attack, see [2, §5.1].

2.1 CCA Key Management Commands

Following previous work [15,12], our experiments consider a number of key manage-
ment commands from the CCA API. We ignore commands which do not generate key
material and commands that are subsumed by more general ones. A full list of com-
mands, including the ones not modelled and our justification for leaving them out, can
be found in [7]. The modelled rules of the IBM 4758 CCA API are represented in Fig-
ure 1. For each command, the terms on the left of the arrow represent the user’s input
to the HSM, and the term on the right represents the HSM’s output. For example, we
have seen that data keys should be encrypted under KM⊕DATA. Thus the Encipher rule
corresponds to a data encryption command which allows data keys to be used to en-
crypt any given plaintext. Decipher allows data keys to be used for decryption. Key
Import allows a key from another 4758 module, encrypted for transport under a ‘key
encrypting key’ (KEK), to be made into a working key for this HSM. Key Export
is used to encrypt a working key under a key encrypting key for transport to another
HSM. Note the division of types of KEK: IMP for import and EXP for export. In order
to transport encrypted keys to a new HSM, an importer KEK must first be established
as a working key at the destination HSM. In order to do this without giving away the
value of the KEK, which would be a considerable security risk, the KEK is decomposed
into three parts, which XOR together to give the final KEK. The three Key Part Import

2 ⊕ represents bitwise XOR.

Automatic Analysis of the Security of XOR-Based Key Management Schemes 541

x , {|xkey|}KM⊕DATA → {|x|}xkey Encipher

{|x|}xkey , {|xkey|}KM⊕DATA → x Decipher

{|xkey|}xkek⊕xtype , xtype , {|xkek|}
KM⊕IMP

→ {|xkey|}
KM⊕xtype Key Import

{|xkey|}KM⊕xtype , xtype , {|xkek|}KM⊕EXP → {|xkey|}xkek⊕xtype Key Export

xkpNew , xtype → {|xkpNew|}KM⊕xtype⊕KPART Key Part Import 1

xkpNew , xtype , {|xkpOld|}
KM⊕xtype⊕KPART

→ {|xkpNew⊕xkpOld|}
KM⊕xtype⊕KPART

Key Part Import 2

xkpNew , xtype , {|xkpOld|}KM⊕xtype⊕KPART → {|xkpNew⊕xkpOld|}KM⊕xtype

Key Part Import 3

{|xkey|}xkek1⊕xtype , xtype , {|xkek1|}KM⊕IMP , {|xkek2|}KM⊕EXP → {|xkey|}xkek2⊕xtype

Key Translate

Variables are prefixed by x. The term {|m|}k represents the message m encrypted with the key k
(using symmetric encryption).

Fig. 1. Modelled rules of the IBM 4758 CCA API

commands can then be used one after the other, by three different security officers, each
in possession of one key part, to create the working import key. It is this process that
is subverted in Bond’s attack to change the type of a key. Key Translate is used to
translate a key from encryption under one KEK (of import type) to encryption under
another (of export type). For a full description of all these rules, see [10].

2.2 Modelling the API

We chose to use CL-AtSe [13] to check the API since unlike most protocol analysis
tools, it has built-in support for the XOR operator. CL-AtSe is a ‘Dolev-Yao’3 style
protocol analyser, part of the AVISPA tool set [16]. It accepts models written in a
special-purpose protocol specification language called HLPSL [17], and implements a
variant of the Baader-Schulz unification algorithm [1], optimised for XOR. The HLPSL
is initially converted into a transition relation, which CL-AtSe uses to generate a set of
constraints describing the protocol. Each protocol step is modelled by constraints on
the intruder’s knowledge, with the execution of such steps simulated by adding new
constraints to the system and by reducing or eliminating existing constraints. Security
properties are checked against the system state at each step. See [17, §3.2.1] for more
details of the operation of CL-AtSe.

Each of the commands were modelled as a separate ‘role’ containing exactly one
transition. The intruder’s initial knowledge includes an unknown working key of each

3 This refers to the nature of the intruder being modelled, who may decompose and re-assemble
message parts, but not perform any cryptanalytic attacks.

542 V. Cortier, G. Keighren, and G. Steel

type, to reflect that fact that even if he does not already have such keys, he can always
‘conjure’ one by repeatedly trying random values against a command, [2, §3.4]. In ad-
dition, he is given all the initial knowledge assumed by Bond in his attacks, [2], which
includes a key part K3, a partially completed importer key {|KEK⊕K3|}

KM⊕KP⊕IMP
, a PIN

derivation key PDK encrypted under transport key KEK, and a customer’s account num-
ber PAN. For standard security protocols, we would be interested in model checking
properties such as the secrecy of a newly agreed session key, i.e. that a term represent-
ing the session key is unknown to the intruder. In the case of security APIs, we are
interested in the secrecy of the cleartext value of the sensitive keys managed by the
HSM. Additionally, we assume that the intruder knows a customer’s account number,
since these are not kept secret in the system. We can now also check the secrecy of the
customer’s PIN, i.e. the account number encrypted under the PIN derivation key, that is
a message of the form {|PAN|}

PDK
. This accounts for attacks where the intruder is able

to encrypt arbitrary data under the PDK, without learning the key’s cleartext value, as
is the case in several of Bond’s attacks.

Full details of the CL-AtSe modelling can be found in [10]. Having established that
CL-AtSe can very quickly re-discover Bond’s attack on the original API, we proceeded
to investigate IBM’s recommendations for preventing it.

2.3 Analysing IBM’s Recommendations

In response to Bond’s attacks [2, §5.1], IBM released a set of three recommendations
designed to prevent it [9], covering command usage, the access control system, and gen-
eral procedural safeguards. However, it was unclear which of the recommendations are
necessary, or sufficient, to prevent the attack. We investigated all the recommendations
using our CL-AtSe model.

Recommendation 1 – Use Public Key Techniques. Instead of transferring the initial
key encryption key (KEK) using key parts in clear, IBM recommend that it is transferred
encrypted under the destination HSM’s public key. This ensures that the KEK is never
present in clear, and thus cannot be modified. Using this method, the KEK is wrapped
in a key block which is subsequently encrypted and provided as input to the PKA
Symmetric Key Import command, defined as follows:

{|xkey.xtype|}
PK

→ {|xkey|}
KM⊕xtype

PKA Symmetric Key Import

However, the format and encryption procedure for the key block is given in the man-
ual, and it is therefore possible for a block containing an arbitrary key to be created,
thus allowing a known key to be introduced into the security module. CL-AtSe quickly
discovered that an attacker could introduce a known exporter key k,4 and obtain the
transported PIN derivation key encrypted under this key (see Figure 2). We reported
this vulnerability to IBM. They conceded that the attack was possible, and intend to
change the documentation to reflect this. They argue the attack would have to be car-
ried out by an insider, and that the vulnerability is intrinsic to public key schemes. We

4 Our experiments found that, even if the PKA Symmetric Key Import command does not
accept export-type KEKs, it is still possible to obtain such a key (see [10] for details).

Automatic Analysis of the Security of XOR-Based Key Management Schemes 543

{|kek.IMP|}PK → {|kek|}KM⊕IMP PKA Symmetric Key Import

{|k.EXP|}
PK

→ {|k|}
KM⊕EXP

PKA Symmetric Key Import

{|pdk|}kek⊕PIN , PIN , {|kek|}KM⊕IMP → {|pdk|}KM⊕PIN Key Import

{|pdk|}KM⊕PIN , PIN , {|k|}KM⊕EXP → {|pdk|}k⊕PIN Key Export

Fig. 2. A known-exporter attack. The attacker first imports the import-type KEK as intended, then
imports an export-type key k which he knows. Then, he imports the PDK as intended, but then
can export it under k⊕PIN, and since PIN is a public value, he can decrypt this packet and obtain
the PDK.

suggest that access control should be used to restrict any single insider from having ac-
cess to both the PKA Symmetric Key Import and Key Import commands. We created
two models, each one allowing access to only one of these functions, and checked them
with CL-AtSe, which discovered no further attacks, up to the bounds shown in the table
below:

Available Analysed Reachable
Command

Bound*
States States

Run-Time (s)

Key Import 10# 76 10 0.08

PKA Symmetric
Key Import

3 8751 1749 514.27

This bound could be set much higher, but informal analysis showed that the intruder was never
able to obtain any useful new terms.

* Bound on the number of sessions.

Recommendation 2 – Use the Access Control System. Users of IBM’s 4758 HSM are
assigned to roles that determine which commands they are allowed to execute. The goal
is to prevent one single individual from having access to all the commands required to
mount Bond’s attack. This is enforced using access controls. IBM provide an example
of the KEK transfer process involving five roles (A – E) such that no single role is able
to mount the attack (see Figure 3).

In the original attack, the intruder played the roles C and E together. Note that roles
A and D do not have any access privileges at the destination security module. IBM
state in their recommendation that roles A and B could actually be played by the same
individual. This does not hold since that person has access to all the key parts, and thus
the completed KEK, so she could decrypt the key in transit, and obtain its clear value.

In our experimental model, the intruder was actually given a greater range of API
commands than as suggested by IBM, with still the restriction that at least one of the
three requirements for the attack were missing. That is, none of them gave the intruder
access to a Key Part Import command, the Key Import command, and the key be-
ing transferred. The reason for this was that we were trying to discover the minimum

544 V. Cortier, G. Keighren, and G. Steel

Person Responsibilities Commands

A
Generates and distributes the clear key parts, as well
as the key verification pattern (KVP) for the complete
KEK.

N/A

B Enters the first key part into the destination security
module.

Key Part Import 1

C
Enters the second key part, and verifies that the com-
pleted KEK is correct by checking the KVP.

Key Part Import 3
Key Test

D Distributes the PIN derivation key (PDK) encrypted un-
der KEK.

N/A

E Verifies that the KEK is correct, then imports the PDK. Key Test
Key Import

Fig. 3. Roles described by IBM in their 2nd recommendation

restrictions that are sufficient to prevent the attack. CL-AtSe reported no attacks up to
the bounds shown below:

Person Bound Analysed States Reachable States Run-Time (s)

B 6 34 6 333.02

C 3 413 68 58.22

E 10* 54 10 0.03

* This bound could be set much higher, but informal analysis showed that the intruder was
never able to obtain any useful new terms.

Recommendation 3 – Use Procedural Controls. IBM’s third recommendation is to
ensure that no single individual involved in the key transfer process has the opportunity
to modify the KEK used. If the KEK is not modified, then the type of the key being
transferred cannot be altered when it is imported. With respect to the API commands,
this translates to restricting the Key Import command to only accept the unmodified
KEK. CL-AtSe found no attack on this version of the API:

Bound Analysed States Reachable States Run-Time (s)

3 13133 2625 2827.35

The large number of reachable states reflects the fact that the intruder is still able to
generate a large number of modified KEKs, even though they cannot be used to import
the PDK. IBM now seem to intend that Recommendation 3 is always followed, in ad-
dition to any of the other recommendations, in order to ensure a high level of security.
The points outlined by the recommendation have since been expanded and included in
the current version of the CCA Manual [3, Appendix H] as general principles for secure
operation.

Automatic Analysis of the Security of XOR-Based Key Management Schemes 545

All the model files used in our experiments are available from http://home
pages.inf.ed.ac.uk/gsteel/CCA-experiments/. The CL-AtSe tool may
be downloaded from http://www.avispa-project.org/.

3 Theoretical Results for XOR-Based Key-Management APIs

Having investigated IBM’s recommendations with a model checker, and adjusting them
where necessary to produce what seemed to be secure configurations, we proceed to-
wards verifying them secure. As we have seen, both protocols and intruder behaviours
can be modelled symbolically using rules over terms with variables. We observe that
the IBM 4758 CCA API can actually be modelled using what we call well-formed rules.
We then show that reachability of a term is decidable for any set of well-formed rules.

3.1 Definitions

Cryptographic primitives are represented by functional symbols. More specifically, we
consider the signature Σ containing an infinite number of constants including some
special constant 0 and two non constant symbols {| |} and ⊕ of arity 2. We also assume
an infinite set of variables V . The set of terms or messages is defined inductively by

T ::= terms
| x variable x
| f(T1, . . . , Tk) application of symbol f ∈ Σ of arity k ≥ 1
| c constant c ∈ Σ

A term is ground if it has no variable.
As in §2, the term {| m |}k is intended to represent the message m encrypted with

the key k (using symmetric encryption). The term m1 ⊕ m2 represents the message
m1 XORed with the message m2. The constants may represent agent identities, nonces
or keys for example. Substitutions are written σ = {x1 = t1, . . . , xn = tn} with
dom(σ) = {x1, . . . , xn}. σ is ground iff all of the ti are ground. The application of a
substitution σ to a term t is written σ(t) = tσ. The size of a term t, denoted by |t|, is
defined as usual by the total number of symbols used in t. More formally, |a| = 1 if a
is a constant or a variable and |f(t1, . . . , tn)| = 1 +

∑n
i=1 |t| if f is of arity k ≥ 1. The

size of a set of terms S is the sum of the size of the terms in S.
We equip the signature with an equational theory E that models the algebraic prop-

erties of the XOR operator:

x ⊕ (y ⊕ z) = (x ⊕ y) ⊕ z x ⊕ y = y ⊕ x
x ⊕ x = 0 x ⊕ 0 = x

It defines an equivalence relation that is closed under substitutions of terms for variables
and under application of contexts. In particular, we say that two terms t1 and t2 are
equal, denoted by t1 = t2 if they are equal modulo the equational theory E. If two
terms are equal using only the equations of the first line, we say that they are equal
modulo Associativity and Commutativity (AC).

Intruder capabilities and the protocol behaviour are described using rules of the form
t1, . . . , tn → tn+1 where the ti are terms.

http://homepages.inf.ed.ac.uk/gsteel/CCA-experiments/
http://homepages.inf.ed.ac.uk/gsteel/CCA-experiments/
http://www.avispa-project.org/

546 V. Cortier, G. Keighren, and G. Steel

Example 1. The intruder capabilities are represented by the following set of three rules:

x, y → {|x|}y encryption
{|x|}y , y → x decryption

x, y → x ⊕ y xoring

The set of deducible terms is the reflexive and transitive closure of the rewrite rules.

Definition 1. Let R be a set of rules. Let S be a set of ground terms. The term u is
one-step deducible from S if there exists a rule t1, . . . , tn → t ∈ R and a ground
substitution θ such that tiθ ∈ S and u = tθ.

A term u is deducible from S, denoted by S �R u, if u ∈ S or there exist ground
terms u1, . . . , un such that un = u and ui is one-step deducible from S∪{u1, . . . , ui−1}
for every 1 ≤ i ≤ n. The sequence u1, . . . , un is a proof that S �R u.

We write � instead of �R when R is clear from the context.

Example 2. Let R be the set of rules described in Example 1. Let S =
{{| n |}a, a ⊕ b, b}. Then n is deducible from S and {| n |}a, a ⊕ b, b, a is a proof of
S � n. Indeed a is one-step deducible from {a ⊕ b, b} using the rule x, y → x ⊕ y and
the fact that (a ⊕ b) ⊕ b = a and n is one-step deducible from {{|n|}a, a} using the rule
{|x|}y , y → x.

3.2 Well-Formed Protocols

Rather than restricting the use of variables in protocol rules, we take advantage of the
form of API-like protocols, noticing that they only perform simple operations.

Definition 2. A term t is an XOR term if t =
⊕n

i=1 ui, n ≥ 1 where each ui is a
variable or a constant.

A term t is an encryption term if t = {|u|}v where u and v are XOR terms.
A term t is a well-formed term if it is either an encryption term or an XOR term. In

particular, a well formed term contains no nested encryption.
A rule t1, . . . , tn → tn+1 is well formed if

– each ti is a well-formed term.
– V ar(tn+1) ⊆

⋃n
i=1 V ar(ti) (no variable is introduced in the right-hand-side of a

rule).

A proof is well-formed if it only uses well-formed terms.

Definition 3. The WFX-class protocol consists of a pair (R, S), where R is a finite set
of well-formed rules, and S is a finite set of ground, well-formed terms.

Intuitively, the rules in R represent the commands of the API and the intruder capabil-
ities, and the ground terms S the initial knowledge of the intruder. We call our class
WFX since these are well-formed protocols using the XOR operator. In particular, the
rules representing the intruder capabilities (defined in Example 1) and the rules repre-
senting the 4758 CCA API protocol (introduced in §2 are all well-formed.

Automatic Analysis of the Security of XOR-Based Key Management Schemes 547

The remaining of the section is devoted to the decidability of deducibility of a term,
which can be used to encode secrecy preservation of a protocol. To the best of our
knowledge, there exist only two decidable classes [5,14] for secrecy preservation for
protocols with XOR, for an unbounded number of sessions. In both cases, the main
difference with our class is that we make restrictions on the combination of functional
symbols rather than on the occurrences of variables. As a consequence, our class is
incomparable to the two existing ones. A more detailed discussion may be found in [7].

3.3 Proof of Decidability

The key idea of our decidability result is to show that only well-formed terms need to
be considered when checking for the deducibility of a (well-formed) term. In particular,
there is no need to consider nested encryption. This allows us to consider only a finite
number of terms: we have a finite number of atoms in the initial set of rules which can
only be combined by encryption and XORing, and XORing identical atoms results in
cancellation. At the end of the proof, we comment on the complexity of the resulting
decision procedure.

We first prove that whenever an encryption occurs in a deducible term, the encryption
is itself deducible.

Proposition 1. Let R be a set of well-formed rules. Let S be a set of ground well-
formed terms (intuitively the initial knowledge). Let u be a term such that S � u and let
{|u1|}u2 be a subterm of u. Then S � {|u1|}u2 .

The proof is by induction on the number of steps needed to obtain u. The full proof is
in [7].

Our main result states that only well-formed terms need to be considered when
checking for deducibility.

Proposition 2. Let R be a set of well-formed rules and S be a set of ground well-
formed terms such that

– R contains the rule x, y → x ⊕ y;
– S contains 0 (the null element for XOR should always be known to an intruder).

Let u be a ground well formed term deducible from S. Then there exists a well-formed
proof of S � u.

We briefly sketch the proof of this key proposition (the full proof appears in [7]). Taking
advantage of the form of the rules, the main idea is to show that, considering a proof of a
well-formed term u and removing all inside encrypted terms, we obtain a (well-formed)
proof of u. We define a function t
→ t that removes inside encryption. For example, we
have {|a ⊕ {|a|}b|}c ⊕ {|c|}b = {|a|}c ⊕{|c|}b. Roughly, we show by induction on the length
of the proof that whenever u1, . . . , un is a proof then u1, . . . , un is a proof. Assume
u1, . . . , un, un+1 is a proof and t1, . . . , tk → t is the last rule been applied. There is a
substitution θ such that tθ = un+1 and tiθ = uji . Since t is a well-formed term, any
inside encryption e of un+1 must appear under a variable x in t thus e also appears
in some uji . Intuitively, there is a case analysis depending on whether x also appears

548 V. Cortier, G. Keighren, and G. Steel

under an encryption in ti. If x does not appear under an encryption, that is t = x ⊕ t′,
we use the fact that (Proposition 1) e is deducible thus uji ⊕ e is also deducible and we
could have chosen xθ′ = xθ ⊕ e, removing the encryption from un+1.

Using Proposition 2, we can now easily conclude the decidability of deducibility.

Theorem 1. The following problem

– Given a finite set of well-formed rules R containing the rule x, y → x ⊕ y, a finite
set S of ground well-formed terms containing 0 and a ground well-formed term u,

– Does S �R u ?

is decidable in exponential time in the size of R, S and u.

Let a1, . . . , an be the constants that occur in R, S or u. Let k be the maximal number
of terms in the left-hand side of a rule in R. For any t1, . . . , tl → t ∈ R, we have l ≤ k.
We show that S �R u can be decided in O(2(k+1)(2n+1)).

The decision procedure is as follows: we saturate S by adding any well-formed de-
ducible terms. We obtain a set S∗. By Proposition 2, S �R u if and only if u ∈ S∗. In
S∗ there are at most

– 2n XOR terms
– and 2n × 2n = 22n encryption terms

thus |S∗| ≤ 22n+1. Note that we consider here terms modulo AC which means that
we only consider one concrete representation for each class of terms equal modulo AC.
This can be done for example by fixing an arbitrary order on the constants and using it
to normalise terms.

Now, at each iteration, For each rule t1, . . . , tl → t ∈ R we consider any tuple of
terms (u1, . . . , ul) with ui in the set that is being saturated and compute the set M of
most general unifiers of (u1, . . . , ul) = (t1, . . . , tl) (which can be done in polynomial
time for well-formed terms, see [7]). Then we add any well-formed instance of tσ for
any σ ∈ M. We consider at most |S∗|k ≤ 2k(2n+1) tuples at each iteration. All together,
we need at most O(2(k+1)(2n+1)) operations to compute S∗.

4 Implementation and Results

Our efforts to implement the decision procedure using existing tools such as theorem
provers (Vampire and E) and model finders (Paradox and Darwin) were unsuccessful.
The combinatorial complexity caused by the XOR operation prevents any of the tools
from finding a saturation. Since our models have a finite Herbrand universe, and hence
are effectively propositional, we considered a manual encoding as a Boolean satisfiabil-
ity problem, for use with a SAT solver. Unfortunately, for n atoms (our models typically
have n = 13), we will need 2n (possible XOR terms) + 2n × 2n (possible encryption
terms) propositional variables to represent the intruder’s knowledge. Additionally, writ-
ing out ground versions of the 8 well formed rules in the API will result is an enor-
mous problem, far too large for any SAT solver. In the end, we solved the problem by
making a change of representation, and writing an ad-hoc decision procedure for that
representation.

Automatic Analysis of the Security of XOR-Based Key Management Schemes 549

4.1 Representation of XOR Terms

The representation consists of encoding an XOR term as a binary string, accomplished
by assigning an (arbitrary) order to the finite set of atoms (or base terms). For example,
if we have the ordered set of base terms KM, KP, KEK, IMP, EXP, DATA, PIN, we would
represent KEK⊕PIN⊕DATA as

KM KP KEK IMP EXP DATA PIN

KEK⊕PIN⊕DATA → 0 0 1 0 0 1 1
↓
19

Hence KEK⊕PIN⊕DATA is represented by the decimal integer 19. Notice the order of the
atoms in the term does not matter - we still get the same integer - so our representation
effectively normalises the term with respect to the properties of XOR. Notice further
that if we have two terms x1 and x2, that are represented by integers l and m, then the
integer representing x1 ⊕ x2 is just l ⊕ m. So, we represent XOR using XOR, which is
an attractive feature of the representation. For example, we can write the intruder rule

x1, x2 → x1 ⊕ x2

as
l, m → l ⊕ m

For encryption terms, which consist of one XOR term encrypted by another, we simply
shift the bits of the integer representing the message term n places to the left (where
n is the number of base terms), and add the integer representing the key. We obtain a
unique number in the range 0 . . . 22n for each encryption term. For example, the term
{|KEK⊕PIN⊕DATA|}KM⊕DATA is represented by

KM KP KEK IMP EXP DATA PIN KM KP KEK IMP EXP DATA PIN

0 0 1 0 0 1 1 1 0 0 0 0 1 0
↓

2498

4.2 The Implemented Procedure

Our decision procedure starts by allocating enough space in memory for 22n + 2n inte-
gers, and setting all these memory locations to 0. Then, all locations corresponding to the
intruder’s initial knowledge S are set to 1, indicating that the intruder can obtain these
terms. For each rule ri in R, with k terms on the left hand side, encode the operation as
a partial function fi : N

k → N. As a simple example, for the ‘Encipher’ rule:

x , {|xkey|}
KM⊕DATA

→ {|x|}
xkey

Encipher

Assuming KM⊕DATA is represented by the integer value p, we write

f : x, [xkey |p], → [x|xkey]

550 V. Cortier, G. Keighren, and G. Steel

where the braces [|] denote composition of the two n-long bitstrings into a single 2n-
long bitstring. A more complicated example is the Key Import command:

{|xkey|}
xkek⊕xtype

, xtype , {|xkek|}
KM⊕IMP

→ {|xkey|}
KM⊕xtype

Key Import

Assuming KM⊕IMP is represented by the integer q, and KM is represented by r, we write

f : [xkey |x], xtype, [xkek |q] → [xkey |q ⊕ xtype] IF x = xkek ⊕ xtype

It will always be possible to write WFX class API rules as integer functions in this
way provided the rules are executable, that is provided the HSM itself can work out
the values of the bitstrings it needs to carry out the XORing or encryption/decryption
required by the command. This leads directly to the integer formula required.

To obtain the fixpoint of the intruder’s knowledge, we apply each rule exhaustively,
looking for combinations of k suitable integers that the intruder already knows, and
setting to 1 any location that we can now reach using these rules. We do this for all the
rules in an iterative manner until no more rules apply. We check to see if any of the
secret terms are now set to 1. If so, we have found an attack. If not, we have verified
the API secure. Note that in the case where we find an attack, we cannot immediately
return the trace of steps required to obtain the secret term, as CL-AtSe can. It would be
possible to extend our procedure to keep track of the operations required to obtain each
term, for example by outputting a list of terms obtained and post-processing the list to
obtain the trace for the attack.

At each iteration of our decision procedure, it is possible to obtain terms we have al-
ready deduced, by repeating the original command application which returned the term
in the first place. To avoid rediscovering existing terms, we mark the freshly obtained
terms at each iteration, and require that a rule is applied only if it makes use of at least
one fresh term. One final feature of our procedure is that is allows us to treat the value
of the DATA control vector as zero, since this is its actual value, a fact which is exploited
in an attack on the unrevised API presented by IBM themselves [9].

The full source code for our decision procedure, together with documentation and the
files used for the experiments below, can be downloaded from http://homepages.
inf.ed.ac.uk/gsteel/CCA-experiments/.

4.3 Results

Our WFX class does not account for public key encryption, nor the concatenation of
key and type required by the PKA Symmetric Key Import command. So we modelled
recommendation 1 by effectively pre-processing this command. We observe that the
encrypted key blocks which it imports can either be legitimate (i.e. the intended KEK),
or generated by the intruder from known unencrypted terms. Since the only operation
the intruder can perform on the legitimate block is to execute PKA Symmetric Key
Import on it, we provide him with the result of this, {| xKey |}KM⊕xType , in his initial
knowledge. This means that the PKA Symmetric Key Import command can be mod-
elled such that it will only consider ways in which the intruder could use it to import
self-generated encrypted blocks. Such blocks consist of a known unencrypted term and

http://homepages.inf.ed.ac.uk/gsteel/CCA-experiments/
http://homepages.inf.ed.ac.uk/gsteel/CCA-experiments/

Automatic Analysis of the Security of XOR-Based Key Management Schemes 551

Table 1. Results using our decision procedure to verify the recommendations

Model Base Terms Iterations Terms Derived Run-Time

Recommendation1 KeyImp 13 3 17015 0.23
Recommendation1 SymKeyImp 11 3 13045 3.04
Recommendation2 PersonB 14 2 4473 8.09
Recommendation2 PersonC 14 3 4413 12.10
Recommendation2 PersonE 13 2 1089 2.02
Recommendation3 14 3 83317 1.16

a key type control vector, so the command just becomes a way to turn a known unen-
crypted term into a working key of any type, i.e. the rule:

xkey, xtype → {|xkey|}
KM⊕xtype

Pre-Processed PKA Symmetric Key Import

Apart from this change, all our models have the same initial knowledge and security
goals as the CL-AtSe models. Table 1 summarises our results. We conclude that after
our modifications described in §2.3 have been made, any one of the three recommenda-
tions is sufficient to secure the scheme against Dolev-Yao intruder attacks.

5 Conclusion

We have obtained a new decidable class of security protocols with XOR, for an un-
bounded number of sessions. The decision procedure has been implemented, yielding
the first tool for automatically analysing a protocol with XOR and an unbounded num-
ber of sessions. As a case study, we have formally analysed the revised IBM 4758 CCA
API protocol. We first discovered possible attacks using CL-AtSe, and refined IBM’s
recommendations to produce safe configurations. Our decision procedure then verified
these configurations.

Related work includes that of Courant, who verified Bond’s own suggestions for
fixing the API in the interactive theorem prover Coq, [8]. His proof used normalisation
functions to deal with XOR, and most of the proof effort was in showing these functions
to be sound. Other work has looked at rediscovering Bond’s attacks on the old API,
[12,15], the latter work using (without proof) a heuristic that splits intruder knowledge
into an encrypted and unencrypted part. We believe that our theoretical results show
that their heuristic preserves attack-completeness.

In future we intend to try to extend our theoretical results to deal with asymmetric
cryptography and pairing, so that we can analyse public-key management schemes, and
to establish a formal theory that deals with so-called ‘key-conjuring’, [2, §3.4].

References

1. F. Baader and K. Schulz. Unification in the Union of Disjoint Equational Theories: Combin-
ing Decision Procedures. In D. Kapur, editor, CADE-11: Eleventh International Conference
on Automated Deduction, volume 607, pages 50–65, June 1992.

2. M. Bond. Attacks on cryptoprocessor transaction sets. In Ç. K. KoÇ, D. Naccache, and
C. Paar, editors, Cryptographic Hardware and Embedded Systems - CHES 2001, volume
2162 of Lecture Notes in Computer Science, pages 220–234. Springer, 2001.

552 V. Cortier, G. Keighren, and G. Steel

3. CCA Basic Services Reference and Guide, October 2006. Available online at
http://www-03.ibm.com/security/cryptocards/pdfs/bs327.pdf.

4. Y. Chevalier, R. Küsters, M. Rusinowitch, and M. Turuani. An NP decision procedure for
protocol insecurity with XOR. In Proc. of 18th Annual IEEE Symposium on Logic in Com-
puter Science (LICS ’03), pages 261–270, 2003.

5. H. Comon-Lundh and V. Cortier. New decidability results for fragments of first-order logic
and application to cryptographic protocols. In Proceedings of the 14th International Confer-
ence on Rewriting Techniques and Applications (RTA’2003), volume 2706 of LNCS, pages
148–164, Valencia, Spain, June 2003. Springer-Verlag.

6. H. Comon-Lundh and V. Shmatikov. Intruder deductions, constraint solving and insecurity
decision in presence of exclusive or. In Proc. of 18th Annual IEEE Symposium on Logic in
Computer Science (LICS ’03), pages 271–280, 2003.

7. V. Cortier, G. Keighren, and G. Steel. Automatic analysis of the security of XOR-based key
management schemes. Inf. Research Report EDI-INF-RR-0863, U. of Edinburgh, 2006.

8. J. Courant and J.-F. Monin. Defending the bank with a proof assistant. In Proceedings of
Workshop on Issues in the Theory of Security (WITS ’06), Vienna, March 2006.

9. IBM Comment on “A Chosen Key Difference Attack on Control Vectors”, January 2001.
Available from http://www.cl.cam.ac.uk/˜mkb23/research.html.

10. G. Keighren. Model checking IBM’s common cryptographic architecture API. Informatics
Research Report EDI-INF-RR-0862, University of Edinburgh, 2006.

11. R. Nieuwenhuis, editor. Automated Deduction - CADE-20, 20th International Conference
on Automated Deduction, Tallinn, Estonia, July 22-27, 2005, Proceedings, volume 3632 of
Lecture Notes in Computer Science. Springer, 2005.

12. G. Steel. Deduction with XOR constraints in security API modelling. In Nieuwenhuis [11],
pages 322–336.

13. M. Turuani. The CL-Atse Protocol Analyser. In Proceedings of the 17th International
Conference on Rewriting Techniques and Applications (RTA’06), volume 4098 of Lecture
Notes in Computer Science, pages 277–286, Seattle, WA, USA, 2006.

14. K. N. Verma, H. Seidl, and T. Schwentick. On the complexity of equational Horn clauses. In
Nieuwenhuis [11], pages 337–352.

15. P. Youn, B. Adida, M. Bond, J. Clulow, J. Herzog, A. Lin, R. Rivest, and R. Anderson.
Robbing the bank with a theorem prover. Technical Report UCAM-CL-TR-644, University
of Cambridge, August 2005.

16. AVISPA Tool Set. Available from http://www.avispa-project.org/.
17. AVISPA User Manual, version 1.1, June 2006. Available online at

http://www.avispa-project.org/package/user-manual.pdf.

State of the Union:

Type Inference Via Craig Interpolation�

Ranjit Jhala1, Rupak Majumdar2, and Ru-Gang Xu2

1 UC San Diego
2 UC Los Angeles

Abstract. The ad-hoc use of unions to encode disjoint sum types in
C programs and the inability of C’s type system to check the safe use
of these unions is a long standing source of subtle bugs. We present
a dependent type system that rigorously captures the ad-hoc protocols
that programmers use to encode disjoint sums, and introduce a novel
technique for automatically inferring, via Craig Interpolation, those de-
pendent types and thus those protocols. In addition to checking the safe
use of unions, the dependent type information inferred by interpolation
gives programmers looking to modify or extend legacy code a precise un-
derstanding of the conditions under which some fields may safely be ac-
cessed. We present an empirical evaluation of our technique on 350KLOC
of open source C code. In 80 out of 90 predicated edges (corresponding
to 1472 out of 1684 union accesses), our type system is able to infer
the correct dependent types. This demonstrates that our type system
captures and explicates programmers’ informal reasoning about unions,
without requiring manual annotation or rewriting.

1 Introduction

We present a type system and inference algorithm for statically checking the
safety of downcasts in imperative programs. Our type system is motivated by
the problem of checking the safety of union accesses in C programs. C pro-
grammers extensively use unions to encode disjoint sum types in an ad-hoc
manner. The programmer uses the value of a tag field to determine which ele-
ment of the union an instance actually corresponds to. For example, Figure 1
shows networking code that manipulates packets represented as a C structure
(packet) which contains an union (icmp hun) representing different types of
packets. The packet is interpreted as a parameter message (field ih gwaddr)
when the field icmp type = 12, as a redirect message (field ih pptr) when the
field icmp type = 5, and as an unreachable message (field ih pmtu) when the
field icmp type = 3. This ad-hoc protocol determining the mapping between tag
values and the union elements is informally documented in the protocol descrip-
tion, but not enforced by the type system. The absence of static checking for the
correctness of these accesses can be a source of subtle bugs.
� This research was funded in part by the grants NSF-CCF-0427202 and NSF-CCF-

0546170.

O. Grumberg and M. Huth (Eds.): TACAS 2007, LNCS 4424, pp. 553–567, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

554 R. Jhala, R. Majumdar, and R.-G. Xu

The problem of checking the safety of union accesses is an instance of the more
general problem of checking the safety of downcasts in a language with subtyping
—consider each possible “completion” of a structure with the different elements
of the union as subtypes of that structure, and view union accesses as down-
casts to the appropriate completion. At run-time, each instance of a supertype
corresponds to an instance of one of its immediate subtypes. To ensure safety,
programmers typically associate with each subtype, a guard predicate over some
tag fields. The predicates for the different subtypes are pairwise inconsistent.
Before performing a downcast (i.e., accessing the union), the programmer tests
the tag fields to ensure that the corresponding subtype’s guard predicate holds,
and similarly before performing an upcast (i.e., constructing the union), the
programmer sets the tag field to ensure the guard predicate holds.

We formalize this idiom in a type system comprising two ingredients. The first
ingredient is a type hierarchy corresponding to a directed tree of types, where the
nodes correspond to types, and children to immediate subtypes. The second is a
predicated refinement of the hierarchy, where the edges of the type hierarchy tree
are labeled with edge predicates that hold when a supertype can be safely downcast
to the subtype corresponding to the target of the edge, and conversely, must be es-
tablished when the subtype is upcast to the supertype. By requiring that the edge
predicates for the different children of a supertype be pairwise inconsistent, we en-
sure that there is a single subtype of which the supertype is an instance at runtime.

Given a predicated refinement for the subtype hierarchy of the program, we
can statically type check the program by verifying that at each occurrence of an
upcast or downcast, the edge predicate for the cast holds. Instead of a general
invariant generator, we present a simple syntax-directed system that is scalable,
captures the idiomatic ways in which programmers test fields, and concisely
specifies the set of programs that are accepted by our type system. The technique
converts the programs to SSA form, and then conjoins the statements dominating
each cast location to obtain a access predicate that is an invariant at the cast
location. Our type checking algorithm verifies that at each cast location the edge
predicate corresponding to the cast holds by using a decision procedure to check
that the access predicate implies the edge predicate.

We eliminate the burden of explicitly providing the predicated type refinement
by devising a technique to infer types via interpolation. Our inference algorithm
generates a system of predicate constraints with variables representing the un-
known edge predicates. These constraints force the solutions for the variables to
have the following key properties: (1) they are over the fields of the structure,
(2) the edge predicates for the subtypes are pairwise inconsistent, and, (3) the
edge predicates hold at each cast point, i.e., at each (up- or down-) cast point,
the cast predicate implies the edge predicate. We use pairwise Craig interpola-
tion, a variant of Craig interpolation [3,16], to solve these constraints. We show
that a predicated refinement exists if for each type, the cast predicates for its
subtypes are pairwise inconsistent. Thus, to solve the predicate constraints and
infer the predicated refinement, we compute the edge predicates for the subtypes
of each type as pairwise interpolants of the corresponding cast predicates.

State of the Union: Type Inference Via Craig Interpolation 555

Fig. 1. (a) ICMP Example (b) (Union) Subtype Hierarchy and its Predicated
Refinement

We have implemented the predicated subtype inference algorithm for C, and
used it to infer the edge predicates for subtype hierarchies obtained from unions,
for a variety of open source C programs totaling 350K lines of code. We empir-
ically show that our inference algorithm is effective. In 80 out of 90 predicated
edges (corresponding to 1472 out of 1684 union access points), our algorithm
finds the correct predicate guards (which we then manually verified).

2 Language and Type System

We formalize our approach with a core imperative language with simple types.
We first describe the language, then define our type system. Our core language
capture C programs such as Figure 1(a). In the converted program, union fields
are accessed after casting the lvalue down to the subtype containing the field.
Thus, the problem of checking the correct use of unions is reduced to that of
checking the safety of downcasts.

2.1 Syntax and Semantics

Types. Figure 2(b) shows the types in our language. The set of types include
base types bool and int, and structure types where each structure is defined
by a list of fields that are pairs of a label l and a type t. We write void as an
abbreviation for the type s{}. The set of types is equipped with a partial order:
we say t′ � t, or t′ is a subtype of t, if both t, t′ are structures and fields of t are
a prefix of the fields of t′. Note that every structure type is a subtype of void.
Syntax. Figure 2(a) shows the grammar for expressions and statements in our
imperative language. An lvalue lv is either an integer, structure or a field access,

556 R. Jhala, R. Majumdar, and R.-G. Xu

Fig. 2. Syntax and Types. (a) Expressions and Statements (b) Types and Declarations.
n is an integer constant, v a variable, l a string label, ∼∈ {<, >, ≤, ≥, =, �=}.

together with an explicit type cast. The new(t) statement is used to allocate
a structure of type t. For ease of exposition, in our language every lvalue lv
includes a type-cast (t) which specifies how lv is interpreted. This captures ex-
plicit upcasts, downcasts and the trivial cast to the statically declared type of
lv. Arithmetic expressions are constructed from constants and integer lvalues
using arithmetic operations. Boolean expressions comprise arithmetic compar-
isons. Statements are skip (or no-op), assignments, sequential composition, con-
ditionals, and while loops. A program P is a tuple (T, Γ0, s) where T is a set
of types, Γ0 is a map from the program lvalues to their declared types, and s
is a statement corresponding to the body of the program. While we present the
intraprocedural, pointer-free case, our implementation, described in Section 5,
handles both procedures and pointers.
Static Single Assignment Form. For convenience in describing the type
checking and type inference rules, we shall assume that the programs are con-
verted to static single assignment (SSA) form [4], where each variable in the pro-
gram is written exactly once. Programs in SSA form have special Φ-assignment
operations of the form lv := Φ(lv1, . . . , lv�) that capture the effect of control flow
joins. A Φ-assignment lv := Φ(lv1, . . . , lvn) for lvalues lv, lv1, . . . , lvn at a node n
implies: (1) n has exactly n predecessors in the control flow graph, (2) if control
arrives at n from its jth predecessor, then lv has the value lvj at the beginning
of n. Formally, we extend the syntax with Φ-assignments:

Statements s ::= . . . | lv := Φ(lv1, . . . , lvn)

We assume that the program has first been transformed into SSA form. We
describe type checking and inference on programs in this form.
Semantics. We define the operational semantics of the language using a store
and a memory in the standard way but additionally taking into account the run-
time type information [15]. We assume a store Σ mapping variables to values, a
partial mapping memory M from addresses to values, and a partial mapping run-
time type information (RTTI) W from variables and addresses to types. When a
structure is created during execution using the new(t) operation, it is tagged with
the (leaf) type t that remains with it during the remainder of the execution. This
value can be cast up or down along the path from the leaf t to the root type void,
and any attempt to downcast it to a type not along this path leads the program
into a “stuck” state. The (small step) operational semantics is defined using a

State of the Union: Type Inference Via Craig Interpolation 557

relation (Σ, M, W ; s) → (Σ′, M ′, W ′; s′). The rules take into account the RTTI
W , and execution gets “stuck” if a bad cast is made (i.e., an lvalue is cast to a
type incompatible with its RTTI). We write →∗ for the reflexive transitive closure
of →. For store Σ, memory M , RTTI W , and statement s, we say (Σ, M, W ; s)
diverges if there is an infinite sequence (Σ, M, W ; s) → (Σ1, M1, W1; s1) →
. . .. We say (Σ, M, W ; s) is stuck if (1) s is not skip, and (2) there is no
(Σ′, M ′, W ′; s′) such that (Σ, M, W ; s) → (Σ′, M ′, W ′; s′).

2.2 Predicated Refinements of Subtype Hierarchies

Programs in our language are type checked by the standard typing rules dealing
with booleans, integers and structures. However, we also want to show that each
runtime downcast executes safely. To do so, we assume we are given a predicated
refinement of the subtype hierarchy of the program.

Subtype Hierarchy. A Subtype Hierarchy is a forest (T, E) where nodes cor-
respond to a set of types T , and edges E ⊆ T × T are such that (t, t′) ∈ E if t′

is the immediate subtype of t, i.e., t′ � t and there is no t′′ such that t′ � t′′

and t′′ � t. Consider the structure definition of the program in Figure 1(a). We
can “unroll” the union definition to obtain three subtypes of the type packet,
namely redirect, parameter and unreachable, which correspond, respectively
to instances of packet where the union field is a ih gwaddr, ih pptr or ih pmtu.
Thus, as shown in Figure 1(b), each of the subtypes is a structure containing all
the fields of the supertype packet together with the extra field from the union.
In this setting, t′ � t if the fields of t form a prefix of the fields of t′.

Therefore, we reduce the problem of checking the safety of union accesses
to checking the safety of downcasts in our system by converting each union
access into a downcast to the subtype containing the particular union field being
accessed, followed by a standard field access on the subtype. Next, we see how
to refine the subtype hierarchy to enable the static checking of the safety of
downcasts and thus, union accesses.

Predicated Refinement and Tags. We say that (T, E, φ) is a predicated (re-
finement of the) subtype hierarchy (T, E) if φ is a map from the edges E to
first-order edge predicates such that:

R1. For each edge (t, t′) ∈ E, the edge predicate φ(t, t′) has one free variable
this that refers to a structure of type t, i.e., all variables are fields of the
structure of type t.

R2. For each node t ∈ T , for each pair of its children t′, t′′ the predicates φ(t, t′)
and φ(t, t′′) are inconsistent, i.e., φ(t, t′) ∧ φ(t, t′′) is unsatisfiable.

The tag fields of a type t are the fields that occur in the edge predicates for any
edge in the subtree rooted at t in the subtype hierarchy. Formally, the tag fields
of t ∈ T are defined as tag(t, φ) ≡ {l | ∃t′ � t : this.l occurs in φ(·, t′)}.

We use the predicate refinement to statically check the safety of downcasts
and thus, union accesses. A predicated refinement captures the intuition that
the programmer performs a downcast from t to t′ only when a certain “tag”

558 R. Jhala, R. Majumdar, and R.-G. Xu

condition on the fields of t is met, and this tag condition is disjoint from the
conditions under which downcasts are made from t to subtypes other than t′.
Our type system checks that the first time a leaf type structure is upcast, the
edge predicate for the structure holds, and that subsequently, the fields occurring
in the edge predicate are not modified. As this is done for all structures, and the
edge predicates for different downcasts are disjoint, we can statically deduce that
if the edge predicate for that subtype holds at the downcast point, the downcast
is safe. In Figure 1(b) each edge of the subtype hierarchy is labeled with its
edge predicate. For example, ih gwaddr field can be safely accessed only after
the packet structure has been downcast to redirect, which is permissible only
when the icmp type field equals 5.

3 Type Checking

Informally, a program is type safe when all structures of type t (created by
new(t)) are accessed only as the type t or a supertype of t. Given a predicated
subtype hierarchy (T, E, φ), a program is type safe if the hierarchy meets re-
quirements R1, R2, and at each point in the program where an expression e of
type t is cast to the type t′, we have: (1) either t′ is a supertype of t, i.e., we
have an upcast, or (2) t′ is a subtype of t, i.e., we have a downcast. In either
case, the predicate obtained by substituting this with the variable e in the edge
predicate φ(t, t′) holds at that point. Thus, to type check the program, the edge
predicates must satisfy:

R3. The edge predicate φ(t, t′) with this substituted with e must hold at each
program location where an expression e is downcast from a type t to a
subtype t′, or upcast from t′ to t.

R4. The tag fields of the structure t are not modified.

Our type checking algorithm proceeds in three steps. First, we use standard type
checking to verify that each field access is to a field in the type of the expression,
and that each cast conforms to the subtype hierarchy, i.e., is either an upcast to
a supertype or a downcast to a subtype. Second, we use a decision procedure to
check that the edge predicates satisfy requirements R1, R2. Third, we perform
a flow sensitive analysis to check that the edge predicates hold at each upcast
or downcast. We now describe the last step in detail.
Judgments. A judgment in the type system for a statement s is of the form
Γ, φ, I 	 s � I ′. The judgment states: using the edge predicate map φ from the
predicated subtype hierarchy (T, E, φ), we can deduce that if the program begins
execution from a state satisfying the type environment Γ and the precondition
I, the execution of a statement s proceeds without getting stuck (cast errors)
and results in a state satisfying postcondition I ′.

Our syntax-directed derivation rules for inferring type judgments are shown in
Figure 3. At each cast point, the rules check, using a decision procedure, that the
invariants imply the corresponding edge predicate. A typing rule transforms the
invariant by adding the effect of the current statement on the invariant. Since our

State of the Union: Type Inference Via Craig Interpolation 559

program is in SSA form, we have an invariant by taking the conjunction of the
predicate representing the current statement with the previous derived invariant
[12,6]. Assignments are represented by equality as shown in rules Var-Assign and
Field-Assign in Figure 3). The latter rule also stipulates that tag fields should
not be assigned to, once the structure has been upcast. The rule permits the
usual C idiom of appropriately “initializing” the structure by setting the data
and tag fields before casting up to the supertype, as the tag field only appears
on the parent edge of the subtype, and not in the edges of the subtree rooted
at the subtype. Conditionals on some predicate p are represented by p on then
branch and ¬p on the else branch (rule If in Figure 3).

Example 1. In Figure 1, consider the implicit cast (at the union access) from
packet (t) to the redirect message (t′) at line 05. The statement 05 is dominated
by the then branch at 04 and the assignment 03, and so the invariant at 05 is:

(icp.icmp type = type) ∧ (type = 5) (1)

Similarly, the invariants at 09 and 11 are respectively:

(icp.icmp type = type) ∧ (type �= 5) ∧ (type = 12), and,

(icp.icmp type = type) ∧ (type �= 5) ∧ (type �= 12) ∧ (type = 3)

Thus, for each statement s where a downcast or upcast occurs, we compute,
using the constraints generated by the type checking rules, the invariant at s.
Checking using Access Predicates. From the invariant, we construct an
access predicate ψs(t, t′) by syntactically renaming all local variables in the in-
variant to fresh names, and renaming the cast expression with this. By replacing
icp with this and type with a fresh, subscripted version, we have the access
predicate ψ05(packet, redirect):

this.icmp type = type1 ∧ type1 = 5 (2)

To ensure that condition R3 is met, we use a decision procedure[5] to check
that at each downcast s of t to a subtype t′, or upcast of t′ to t, the access
predicate ψs(t, t′) implies the edge predicate φ(t, t′) (Rules Var-Up, Var-Down in
Figure 3). So, for the downcast of icp from packet to redirect at line 05, we use
a decision procedure to check the validity of the implication: this.icmp type =
type1 ∧ type1 = 5 ⇒ (this.icmp type = 5). In the given code snippet, at
each downcast statement (there are no upcasts), the access predicate implies the
corresponding edge predicate and so we conclude that the program is type safe.

Intuitively, the soundness of our type system follows from the following ob-
servations. First, we ensure that every new structure is a “leaf” of the type
hierarchy. Thus, at run time, any instance that is ever downcast, must have
been upcast to at some point in the past. Second, our type system ensures that
the tag fields are not altered, and therefore, any edge predicate that held at the
upcast in the past, will continue to hold till the downcast. Thus, by checking
the edge predicates at upcasts, and by requiring that edge predicates for sibling

560 R. Jhala, R. Majumdar, and R.-G. Xu

Γ (x) = t t′ � t I [this/x] ⇒ φ(t, t′)

Γ, φ, I
l (t′)x : t′ Var-Down

Γ (x) = t′ t′ � t I [this/x] ⇒ φ(t, t′)

Γ, φ, I
l (t)x : t
Var-Up

Γ, φ, I
e e : t Γ, φ, I
l (t)x : t

Γ, φ, I
 (t)x := e � I ∧ (lv = e)
Var-Assign

Γ, φ, I
e e : t
Γ, φ, I
e (t)lv.l : t Γ ′, φ, I
l lv : t′ l �∈ tag(t′, φ)

Γ, φ, I
 (t)lv.l := e � I ∧ (lv.l = e)
Field-Assign

Γ, φ, I
l lvi : t for all i Γ, φ, I
l lv : t

Γ, φ, I
 lv := Φ(lv1, . . . , lvn) � I
Assign-Φ

Γ, φ, I
e p : bool Γ, φ, I ∧ p
 s � I ′ Γ, φ, I ∧ ¬p
 s′
� I ′′

Γ, φ, I
 if p then s else s′
� I

If

Γ, φ, I
e p : bool Γ, φ, I ∧ p
 s � I ′

Γ, φ, I
 while p do s � I ∧ ¬p
While

Fig. 3. Relevant type checking rules. Hypotheses in boxes correspond to queries to
the decision procedure made in the checking phase, or the predicate constraints in the
inference phase. A complete set of rules is in [11].

edges be pairwise inconsistent, our type system ensures there is an unique sub-
type that each supertype value is an instance of (and therefore, can be safely
downcast to), namely the subtype whose edge predicate holds at the downcast
point.

4 Type Inference Via Interpolation

In the previous section, we assumed that we were given a predicated refinement
of the subtype hierarchy with which the program could be type checked to en-
sure statically that all casts were safe. In practice, these annotations are not
available. We now present an algorithm that given a program and the subtype
hierarchy, automatically infers a predicated refinement of the hierarchy such that
the program type checks, if indeed the program is type safe. In other words, given
a program (T, Γ0, s), the inference algorithm computes an edge predicate map
φ that satisfies conditions R1-R4 or reports that no such map exists, i.e., the
program is not type safe.

State of the Union: Type Inference Via Craig Interpolation 561

To find the predicate map φ, we introduce, for each edge (t, t′) induced by
�, a predicate variable πt,t′ . Next, using the syntax-directed type checking rules,
we generate a set of predicate constraints on the predicate variables, such that
a solution for the constraints will give us edge predicates that satisfy R1-R4.
Finally, we describe how to solve the constraints and thus infer φ.

4.1 Generating Predicate Constraints

We use the syntax-directed typing rules of Figure 3 to generate the predicate
constraints. The constraint generation is done in two phases.

In the first phase, we make a syntax-directed pass over the program to com-
pute the set of fields that cannot be tag fields because they are modified after
an upcast. This information is captured by computing a map tag(t) from types
t to the sets of fields that cannot be used in the edge predicates for edges (t, ·).

In the second phase, we use type checking rules to compute the invariants at
each access point. For a predicate I and a set of field names F , and a location
s, define rename(I, F, s) as the predicate where all occurrences of free variables
x other than this are substituted with a fresh name xs and all occurrences
of field names l ∈ F are substituted with a fresh name ls. At each downcast
and upcast location s, i.e., where one of the rules Var-Down, Var-Up (Figure 3)
applies, instead of checking that the access predicate I[this/lv] implies the edge
predicate for the cast, we introduce a predicate constraint:

rename(I[this/lv], tag(t), s) ⇒ πt,t′

We call the LHS of the constraint above the renamed access predicate at location
s. The renaming does not get in the way of inferring appropriate φ as the fields
in tag(t) cannot appear in φ(t, t′). Instead, it will force the inferred predicates
to not contain the fields in tag(t), thus yielding a φ that suffices to type check
the program, if one exists. Given a program P ≡ (T, Γ0, s), let Cons(P) be the
set of predicate constraints generated by the algorithm described above.

We can always make the only upcasts and downcasts in the program be be-
tween immediate subtypes. Thus, the constraint generation introduces predicate
constraints for πt,t′ for edges (t, t′) ∈ E.

Example 2. The downcast on line 05 in Figure 1(a) generates the constraint:

(type05 = this.icmp type ∧ type05 = 5) ⇒ πpacket,redirect

Similarly, the downcasts on line 09 and 12 generate constraints:

(type09=this.icmp type ∧ type09 �= 5 ∧ type09 = 12) ⇒ πpacket,parameter

(type12 =this.icmp type ∧ type12 �= 5 ∧ type12 �= 12 ∧ type12 = 3) ⇒ πpacket,unreachable

Notice that the substitution renames icp to this and the variable type in each
constraint.
Solutions. A solution to a set of constraints Cons(P) is a mapping Π from each
predicate variable πt,t′ to a predicate such that:

562 R. Jhala, R. Majumdar, and R.-G. Xu

S1. For each predicate variable πt,t′ , the predicate Π(πt,t′) has a single free
variable this.

S2. For each triple t, t′, t′′, the predicates Π(πt,t′) and Π(πt,t′′) are inconsistent.
S3. For each constraint ψs ⇒ πt,t′ in Cons(P), the implication ψs ⇒ Π(πt,t′) is

valid.
S4. For each t, t′, the predicate Π(πt,t′) should not contain any field name in

tag(t).

Every solution Π for the set of constraints Cons(P), yields a predicated subtype
hierarchy for P with which we can prove the safety of P .

Theorem 1 [Soundness of Constraint Generation]. For every program
P ≡ (T, Γ0, s), if Π is a solution for the constraints Cons(P) then φ ≡
λ(t, t′).Π(πt,t′) is such that: Γ0, φ, true 	 s � ·.

4.2 Solving Predicate Constraints

We now give an algorithm to find a solution to a set of constraints Cons(P) if
one exists. We define for each edge (t, t′) ∈ E a cast predicate ψ(t, t′) as:

ψ(t, t′) ≡
∨

ψs⇒πt,t′∈Cons(P)

ψs

The cast predicate for an edge is the disjunction over all the renamed access
predicates ψs for the locations where a t is downcast to t′ or a t′ is upcast to
t. Note that by the properties of disjunction and implication, a map Π from
the type variables to predicates is a solution for the constraints Cons(P) iff it
satisfies conditions S1, S2 and S4, and in addition

S3’ For each (t, t′) we have ψ(t, t′) ⇒ Π(πt,t′).

For each ψs ⇒ πt,t′ we have ψs ⇒ ψ(t, t′) as the RHS cast predicate is the
disjunction of all the corresponding access predicates ψs. Thus, by the properties
of disjunction and implication, any solution Π satisfies requirement S3’ iff it
satisfies S3.
Existence of a Solution. A solution can only exist if for each triple t, t′, t′′, the
conjunction ψ(t, t′)∧ψ(t, t′′) is unsatisfiable. If not, i.e., if there are t, t′, t′′ such
that: ψ(t, t′) ∧ ψ(t, t′′) is satisfiable, then for any candidate solution such that
ψ(t, t′) ⇒ Π(πt,t′) and ψ(t, t′′) ⇒ Π(πt,t′′), the conjunction Π(πt,t′)∧Π(πt,t′′) is
satisfiable, thus violating S2. Intuitively, if the conjunction of the cast predicates
for t′, t′′ is satisfiable, it means that there is some condition under which the
program casts to (or from) type t′ as well as to (or from) t′′ thus one of those
casts may be unsafe, or depends on a modified field i.e., a field in tag(t). In
this case, the type inference fails with an error message declaring a conflict and
pointing out the two conflicting casts.
Constraint Solving Via Interpolation. Dually, we show that if for each
triple t, t′, t′′ the cast predicates ψ(t, t′) and ψ(t, t′′) are inconsistent, then

State of the Union: Type Inference Via Craig Interpolation 563

Algorithm 1. PredTypeInference
Input: Program P = (T, Γ0, s)
Output: Refinement (T, E, φ) or Error
E = edges induced by � on T ; C = Cons(P)
for all (t, t′) ∈ E do ψ(t, t′) = ∨{ψs | ψs ⇒ πt,t′ ∈ C}
for all t ∈ T with immediate subtypes t1, . . . , tn do

if ψ(t, t1) ∧ . . . ∧ ψ(t, tn) is unsatisfiable then
φ(t, t1), . . . , φ(t, tn) := ITP(ψ(t, t1), . . . , ψ(t, tn))

else return Error
return (T, E, φ)

through Craig interpolation [3] we can infer a solution to the constraints, and
thus a predicated subtype hierarchy that suffices to type check the program.
Given a sequence of predicates A1, . . . , An such that for all i, j, the predicate
Ai ∧ Aj is unsatisfiable, a pairwise interpolant for the sequence is the sequence
Â1, . . . , Ân ≡ ITP(A1, . . . , An) such that (I1) For each i, the variables of Âi

occur in each of A1, . . . , An, (I2) for each pair i, j, the predicate Âi ∧ Âj is un-
satisfiable, and (I3) for each i, the implication Ai ⇒ Âi is valid. For predicates
over theories of equality and arithmetic, pairwise interpolants can be computed
from the proof of unsatisfiability of conjunctions of two predicates [16].

For each node t ∈ T with immediate subtypes t1, . . . , tn, we define:

Π(t, t1), . . . , Π(t, tn) ≡ ITP(ψ(t, t1), . . . , ψ(t, tn))

The properties of pairwise interpolants suffice to show that Π is indeed a solution
to the constraints Cons(P). The only variable common to ψ(t, t1), . . . , ψ(t, tn) is
this and hence, by I1 each Π(t, t′) contains the sole free variable this, thus
enforcing requirement S1. In addition, as we renamed all the fields in tag(t),
there is no field name in tag(t) that is in any ψ(t, t′) and thus Π meets condition
S4. Property I2 of interpolants ensure requirement S2. Finally, property I3 of
interpolants ensures requirement S3’ and hence, S3.

By Theorem 1, we have inferred an edge map φ and thus, a predicated subtype
hierarchy that suffices to show that all casts are safe. The inference algorithm
runs in time linear in the number of constraints, and thus, the program, and
makes linear (in the size of T) calls to an interpolating decision procedure.

We summarize the predicated type inference algorithm PredTypeInference in
Algorithm 1. The correctness of the algorithm is stated in the following theorem.

Theorem 2 [Correctness of Type Inference]. For every program P ≡
(T, Γ0, s), PredTypeInference(P) terminates. If PredTypeInference(P) returns
(T, E, φ) then Γ0, φ, true 	 s � ·. If PredTypeInference(P) returns Error then
there is no φ such that Γ0, φ, true 	 s � ·.
Example 3. For the constraints from Example 2, we get the cast predicates:

ψ(packet, redirect) type05 = this.icmp type ∧ type05 = 5
ψ(packet, unreachable) type09 = this.icmp type ∧ type09 �= 5 ∧ type09 = 12
ψ(packet, parameter) type12 =this.icmp type ∧ type12 �= 5 ∧type12 �=12 ∧ type12=3

564 R. Jhala, R. Majumdar, and R.-G. Xu

Fig. 4. Predicate subtype hierarchy for (a)gdkevent (b)lua

The only common names are this and the allowed fields. The pairwise in-
terpolant of these predicates yields the edge predicates: this.type = 5,
this.type = 12 and this.type = 3.

5 Implementation and Experiences

Implementation. We have implemented the predicated type inference algo-
rithm for C. We use CIL [17] to parse and manipulate the C program, the struc-
tural invariant package [12] to generate constraints, and the theorem prover Foci
[16] to generate interpolants and check implications at cast locations. We first
use physical subtyping [20] to get subtyping hierarchy based on structural pre-
fixes. Next we model union accesses as casts. We add types representing each
field in an union. If a structure t contains a union t.u with fields fi, we create
a immediate subtype t′i representing the same structure t but only allowing ac-
cess to t.u.fi. In the implementation, access to the union field t.u.fi is the same
as a downcast from t to t′i. We extend the invariants generation algorithm as
described previously with pointers and functions using the techniques in [12].

Experimental Results. We summarize our experimental results on nine open
source programs in Table 1. Our algorithm identified 1,684 downcasts requir-
ing predicate guards. These accesses were determined by a predicated subtyping
hierarchy of 90 edges. We were able to infer 77 predicate edges corresponding
to union fields correctly. We also correctly inferred the 3 predicate edges corre-
sponding to explicit C type casts in moapsource. Our tool can derive complex
predicated subtyping hierarchies. Figure 4 shows partially the two predicated
subtyping hierarchies for gdkevent and lua. Some subtypes are dropped be-
cause of space. Note that predicate edges are not simply single tag assignments
but rather more complex predicates involving ranges.
Conflicts and Bugs. There are two sources of conflicts: casts on edges for
which the predicated access idiom is not followed, and casts on edges where a
predicate was inferred but where the generated access predicate was not strong
enough to establish the edge predicate.

State of the Union: Type Inference Via Craig Interpolation 565

Table 1. Experimental Results: LOC is lines of code. Time is the number of sec-
onds spent on inference. Predicate Edges is the number of predicated edges in the
predicated subtype hierarchy. Inferred is the number such edges for which our tool
inferred an edge predicate, and Actual is the number of edges constructed by manual
inspection of the code. Accesses is the number of predicated cast points. Experiments
were run on a Dell PowerEdge 1800 with two 3.6GHz processors and 5GB memory.

Predicate Edges
Program Description LOC Inferred Actual Accesses Time
ip icmp FreeBSD ICMP 7K 7 7 15 1s
xl SPEC Lisp interpreter 12K 8 8 428 875s
moapsource Emstar packet processor 14K 3 3 5 1s
gdkevent GDK events 16K 12 13 90 38s
lua Lua compiler 18K 13 15 274 151s
snort Intrusion detector 42K 7 7 26 12s
sendmail Mail server 106K 17 24 406 995s
ssh Secure shell 35K 0 0 0 12s
bash Bourne again shell 101K 13 13 440 1157s

Total 351K 80 90 1684 3242s

For the first case, we use the following heuristic to determine which edges have
no predicates. Given a type node, if all cast instances of an outgoing predicate
edge conflict with all cast instance of any other outgoing predicate edge, then we
conclude that type node has no guards. An example of this is the memset macro
which uses a union to access different bytes in memory. Our heuristic correctly
distinguishes all such accesses from predicated casts.

For the second case, when the access predicate was not strong enough to
imply the edge predicate, the downcast instance typically conflicted with many
other downcast instances. Here either our generated invariant was too weak, the
predicate guard used variables that were not allowed, or there was a bug. For the
cases where our invariants are too weak, more precise invariant generators (e.g.,
Blast [10]) can be used to statically verify that the edge predicates hold at the
cast points, or alternatively, dynamic checking can be inserted to ensure type-
safety at runtime [18,7,15]. One bug is when the programmer forget to check
the predicate before the access, leaving the possibility of an unsafe access. For
example, there are 23 cases in Lua where two different variables are assumed to
have the same predicate hold. An union field in one of those variables is accessed
after the appropriate predicate is checked. However, the same union field in the
other variable is also accessed without checking if the appropriate predicate holds
as well. That is, there is an unchecked assumption that two different variables
always satisfy the same predicate.

6 Related Work

Language support. Functional programming languages like ML and Haskell
provide disjoint sum types within the language. The Cyclone language [13]

566 R. Jhala, R. Majumdar, and R.-G. Xu

provides mechanisms such as sum types and subtyping within C, allowing safer
programs to be written within a C-like language. Our goal on the other hand
is to check for safe usage in a large body of legacy code written in C or in low
level code where bytes “off the wire” must be cast to proper data types (as in
networking code).

Static analysis. There is a large body of recent work on statically proving mem-
ory safety of C programs (augmented with adding runtime checks) to make them
execute safely [15,18,2]. CCured [18] performs a pointer-kind inference and adds
runtime checks to make C programs memory safe. However, CCured leaves open
the question of statically checking proper usage of unions or downcasts of point-
ers: either putting in additional tags or removing unions altogether and replacing
them with structures. The former technique ignores checks the programmer al-
ready has in place, the latter technique may not work for applications such as
network packet processors where the data layout cannot be changed. Runtime
type information has been used for bug finding and providing debugging infor-
mation for bad casts or union access [15], but the inference problem was not
studied. Identifying correct use of datatypes in the presence of memory layout
and casts has been studied in [2,20]. However, these type systems do not correlate
guards to ensure correctness of downcasts.

Dependent types. There is substantial previous work in dependent types
[22,9,21]. The predicate subtyping scheme of PVS [19] is more general than our
system. All these systems require interactive theorem proving as the type sys-
tems are undecidable. By restricting our target properties and proof strategies,
we provide an automatic mechanism. Closer to our work, [9] provides dependent
record types to encode safety properties such as array bound checks and null
pointer dereferences. The type system of [8] infers dependent types for repre-
senting ML values passed to C programs through the foreign language interface.
Unlike our algorithm, they fix a set of dataflow facts for the guards.

Our type system is closest to the type systems in [1] and [14]. The type system
in [1] only tracks the evaluation of ML-style pattern-matching statements. Our
type system tracks all assignments and conditionals dominating the access. In
[14], the authors consider the problem of identifying record types and guarded
disjoint unions in COBOL programs. However, both approaches infer types by
using a dataflow analysis to track equalities between variables and constants
appearing in branch statements. In many of our experiments we have found that
this simple language of guards is insufficient (because, for example, programmers
use guards of the form tag ≥ 5). Further, the problem of identifying guards in
terms of the in scope fields is not considered.

Acknowledgments. We thank Todd Millstein and Pat Rondon for carefully
reading drafts and providing valuable feedback.

State of the Union: Type Inference Via Craig Interpolation 567

References

1. A. Aiken, E. Wimmers, and T.K. Lakshman. Soft typing with conditional types.
In POPL 94, pages 163–173. ACM, 1994.

2. S. Chandra and T. Reps. Physical type checking for c. In PASTE 99, pages 66–75.
ACM, 1999.

3. W. Craig. Linear reasoning. J. Symbolic Logic, 22:250–268, 1957.
4. R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadek. Efficiently

computing static single assignment form and the program dependence graph. ACM
TOPLAS, 13:451–490, 1991.

5. D. Detlefs, G. Nelson, and J.B. Saxe. Simplify: a theorem prover for program
checking. J. ACM, 52(3):365–473, 2005.

6. Y. Fang. Translation validation of optimizing compilers. PhD thesis, New York
University, 2005.

7. C. Flanagan. Hybrid type checking. In POPL 06, pages 245–256. ACM, 2006.
8. M. Furr and J. Foster. Checking type safety of foreign function calls. In PLDI 05,

pages 62–72. ACM, 2005.
9. M. Harren and G.C. Necula. Using dependent types to certify the safety of assembly

code. In SAS 05, LNCS 3672, pages 155–170. Springer, 2005.
10. T.A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. In POPL

02, pages 58–70. ACM, 2002.
11. R. Jhala, R. Majumdar, and R. Xu. Type inference using Craig interpolation.

Technical Report. UCLA Computer Science Department, 2007.
12. R. Jhala, R. Majumdar, and R. Xu. Structural invariants. In SAS 06, LNCS 4134,

pages 71–87. Springer, 2006.
13. T. Jim, J.G. Morrisett, D. Grossman, M.W. Hicks, J. Cheney, and Y. Wang. Cy-

clone: A safe dialect of C. In Usenix Tech. Conf., pages 257–288. 2002.
14. R. Komondoor, G. Ramalingam, S. Chandra, and J. Fields. Dependent types for

program understanding. In TACAS 05, LNCS 3440, pages 157–173. Springer, 2005.
15. A. Loginov, S. Yong, S. Horwitz, and T. Reps. Debugging via run-time type

checking. In FASE 01, LNCS 2029, pages 217–232. Springer, 2001.
16. K.L. McMillan. An interpolating theorem prover. TCS, 345:101–121, 2005.
17. G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. CIL: Intermediate language

and tools for analysis and transformation of C programs. In CC 02, LNCS 2304,
pages 213–228. Springer, 2002.

18. G.C. Necula, J. Condit, M. Harren, S. McPeak, and W. Weimer. CCured: type-safe
retrofitting of legacy software. ACM TOPLAS, 27(3):477–526, 2005.

19. J.M. Rushby, S. Owre, and N. Shankar. Subtypes for specifications: Predicate
subtyping in PVS. IEEE Trans. Software Eng., 24(9):709–720, 1998.

20. M. Siff, S. Chandra, T. Ball, K. Kunchithapadam, and T. Reps. Coping with type
casts in C. In ESEC/FSE 99, pages 180–198. ACM, 1999.

21. H. Xi and R. Harper. A dependently typed assembly language. In ICFP 01, pages
169–180. ACM, 2001.

22. H. Xi and F. Pfenning. Dependent types in practical programming. In POPL 99,
pages 214–227. ACM, 1999.

Hoare Logic for Realistically Modelled

Machine Code

Magnus O. Myreen and Michael J.C. Gordon

Computer Laboratory, University of Cambridge, Cambridge, UK

Abstract. This paper presents a mechanised Hoare-style programming
logic framework for assembly level programs. The framework has been
designed to fit on top of operational semantics of realistically modelled
machine code. Many ad hoc restrictions and features present in real
machine-code are handled, including finite memory, data and code in
the same memory space, the behavior of status registers and hazards
of corrupting special purpose registers (e.g. the program counter, proce-
dure return register and stack pointer). Despite accurately modeling such
low level details, the approach yields concise specifications for machine-
code programs without using common simplifying assumptions (like an
unbounded state space). The framework is based on a flexible state repre-
sentation in which functional and resource usage specifications are writ-
ten in a style inspired by separation logic. The presented work has been
formalised in higher-order logic, mechanised in the HOL4 system and is
currently being used to verify ARM machine-code implementations of
arithmetic and cryptographic operations.

1 Introduction

Computer programs execute on machines where stacks have limits, integers are
bounded and programs are stored in the same memory as data. However, ver-
ification of computer programs is almost without exception done using highly
simplified models, where stacks and memory are unbounded, integers are arbi-
trarily large and the compilers are trusted to keep code and data apart. Proving
properties of programs with respect to realistic models is generally avoided, since
it is tedious as many of the common simplifying assumptions made by high-level
programming logics tend to fit badly with realities of accurate low-level models.
In this paper we present a programming logic that has been designed to fit on
top of accurate models of machine languages.

We present a Hoare logic that has been carefully designed to accommodate
many of the ad hoc restrictions and features of machine code: finite memory, data
and code in the same memory space, the behaviour of status register, hazards
of corrupting special purpose registers and some details that arise from hard-
ware implementations. As an example of a restriction imposed by the underlying
hardware, consider the following two seemingly equivalent implementations of
the factorial program in ARM assembly. The example uses the ARM instruc-
tions "MOV b, #1" (set register b to 1), "MUL c, a, b" (put the product of

O. Grumberg and M. Huth (Eds.): TACAS 2007, LNCS 4424, pp. 568–582, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Hoare Logic for Realistically Modelled Machine Code 569

the contents of registers a and b into register c, but see restrictions discussed
shortly), "SUBS a, a, #1" (subtract 1 from register a and update status bits so
that status bit Z is assigned the boolean expression a-1=0) and "BNE L" (jump
to L if status bit Z is 0).

MOV b, #1 MOV b, #1
L: MUL b, a, b L: MUL b, b, a

SUBS a, a, #1 SUBS a, a, #1
BNE L BNE L

The first implementation terminates with the factorial of a (modulo 232) in b,
while the other one has an unpredictable outcome, "MUL b, b, a" is specified as
‘unpredictable’ for ARM in order to accommodate hardware optimisations [15].
Thus "MUL c, a, b" cannot be modelled as c := a× b without a side condition.

The judgments of our framework are total-correctness specifications that state
the functional behaviour and resource usage of machine-code programs. We use
a separating conjunction, similar to that of separation logic [13], in order to write
concise specifications about resource usage as well as to avoid unwanted aliasing
between special purpose registers (and normal registers as motivated above).
Our specifications allow multiple code segments and use positioning functions
to enable reasoning about mixtures of position independent code and position
dependent code. As a result, procedures and procedural recursion is readily han-
dled (without assuming an unbounded stack).

The Hoare triples described in this paper have been defined in higher-order
logic. Rules for reasoning about them have been derived from the formal defini-
tions of the Hoare triples, using the HOL4 system [6] (thus the rules are sound).
We can reason about ARM machine code by instantiation of our framework’s
Hoare triples to a high-fidelity model of the ARM machine language. The spe-
cialisation of our framework to ARM machine code is presented in a companion
paper [10]. Here we concentrate on the core ideas of our approach.

This paper is not the first to address the problem of verifying realistically
modelled machine code. Some early work was done by Maurer [9], Clutterbuck
and Carré [5] and Bevier [3]. Boyer and Yu [4] did impressive pioneering work
on verifying machine code written for a commercial processor: they verified pro-
grams using the bare operational semantics of a model of the Motorola MC68020.
Projects on proof-carrying code (PCC) [11] and particularly foundation PCC [1]
have ignited new interest in verification of low-level code. Of work on PCC, Tan
and Appel’s work [16] is particularly relevant to this paper: they use a Hoare
logic to reason about a detailed model of the Sparc machine language. As for
most work on PCC, their aim is to address safety properties that can be proved
automatically (e.g. type safety). Tan and Appel’s approach is hampered by the
requirement of an extensive soundness proof. Hardin, Smith and Young [7] verify
machine code for Rockwell Collins AAMP7G using a form of symbolic simula-
tion. Work by Klein, Tuch and Norrish [8] has similar goal as ours, but they
reason at a higher level about realistically modelled C programs.

The remainder of this paper is organised as follows. Section 2 gives an overview
of how our specifications relate to those of standard Hoare-triples and motivates

570 M.O. Myreen and M.J.C. Gordon

our design decisions. Section 3 contains the bulk of the material: it defines a
Hoare triple for machine code, presents an example and shows how rules can
be derived for procedures and procedure calls. Section 4 demonstrates how the
framework can be instantiated to a given operational semantics of a machine
language. Section 5 concludes with a summary.

2 Approach

This section motivates some key design decisions informally and gives an over-
view of the main ideas. The detailed definitions are given in the next section.

2.1 Basic Specifications

Our framework supports code specifications with multiple entries, multiple exits
and multiple code segments, but for simplicity we start by considering specifica-
tions having single entry, single exit and single code segment. The full generality
is described in Section 3.

Consider the ARM implementation of the factorial function given in the in-
troduction. In classical Hoare logic, its specification could be written as follows
with a side-condition:

{(a = x) ∧ (x �= 0)}
FACTORIAL

{(a = 0) ∧ (b = x!)}

Side condition:
The registers associated with
a and b are distinct.

This specification is not satisfactory because it leaves many aspects unspecified.
For example, it does not say whether the code modifies the status bits or what
happens to the program counter.

We require specifications to mention each component of the state that might
be altered during execution. That way we can easily see what is changed and
what is not. Our approach is similar to that of separation logic [13,12], which
assigns a memory footprint to each assertion. We make a stricter requirement:
every state component (e.g. register, memory location, status bit) must appear
in the footprint of an assertion. In our framework, the factorial program has the
following specification where, for now, informally read R a x as “register a has
value x”, S b as “the status bits have value b”, underscore () as “some value”
and P ∗ Q, following separation logic, as “P and Q are true for disjoint parts of
the state” (precise definitions of these concepts are given later).

{R a x ∗ R b ∗ S ∗ 〈x �= 0〉}
FACTORIAL

+4{R a 0 ∗ R b x! ∗ S }+4

The superscript +4 specifies that FACTORIAL increments the program counter
by 4. The separating conjunction ∗ avoids the need for the side-condition, since
the side condition is implied by the occurrence of ∗ between R a x and R b in
the precondition.

Hoare Logic for Realistically Modelled Machine Code 571

2.2 Heterogeneous Specifications

Machine-code programs depend on a variety of different resources. Even in a
simple setting we encounter registers, special registers, memory locations and
various status bits. For this reason we treat all types of resources uniformly.
Consider for instance the specification of the instructions str (store) and dstr
(decrement-and-store). Read M x y as “memory location x has value y”.

{R a x ∗ R b y ∗ M y }
str b a

{R a x ∗ R b y ∗ M y x}+1

{R a x ∗ R b y ∗ M (y−1) }
dstr b a

{R a x ∗ R b (y−1) ∗ M (y−1) x}+1

These specifications have a similar form to that of the factorial program, even
though they specify the behavior of different types of resources.

Hoare-style reasoning can be applied to specifications. For example, dstr
given above can implement a stack push for a descending stack. We can state
this with a specification stack(sp, xs, n) defined to assert that the stack pointer
(taken to be register 13) has value sp, that xs is on the stack and that there are
n unused slots on top of the stack. We will use the HOL list notation [x0; . . . ; xm]
and the cons function defined by cons x0 [x1; . . . ; xm] = [x0; x1; . . . ; xm]. In or-
der to define stack(sp, xs, n), recursively define ms(a, [x0; x1; . . . ; xm]) to mean
“M a x0 ∗ M (a+1) x1 ∗ · · · ∗ M (a+m) xm” and similarly blank(a, n) to mean
“M a ∗ M (a−1) ∗ · · · ∗ M (a−(n−1)) ”. The specification stack(sp, xs, n)
is then defined to be R 13 sp ∗ ms(sp, xs) ∗ blank(sp−1, n).

Using this specification of a stack segment we are able to derive a specification
for stack push from the specification of dstr:

{R a x ∗ stack(sp, xs, n+1)}
dstr b a

{R a x ∗ stack(sp−1, cons x xs, n)}+1

2.3 Positioning Functions

We use positioning functions to make our Hoare triple general. These functions
are written as superscripts in our notation: {P}f cs g {Q}h. We omit superscripts
that are the identity function (λx.x). The positioning functions specify entry
points, exit points and code placement with respect to a variable base address.
More concretely, {P}f cs g {Q}h states the following: for any address p, if the
program counter points at address f(p), the code sequence cs is stored at address
g(p) and P holds, then some time later the program counter will reach address
h(p) in a state where Q holds.

The positioning functions can be used to make position-independent specifica-
tions, position dependent specifications and mixtures of the two. A specification
is position independent if the positioning functions describe offsets: we use +n to
abbreviate λx.x+n, −k to abbreviate λx.x−k and write nothing to mean a null
offset, i.e. λx.x. A specification is position dependent if it ignores its argument:
e.g. λx.5 and λx.y.

572 M.O. Myreen and M.J.C. Gordon

sum: CMP a,#0 ; test: a = 0
MOVEQ r15,r14 ; return, if a = 0
STR a,[r13,#-4]! ; push a
STR r14,[r13,#-4]! ; push link-register
LDR r14,[a] ; temp := node value
ADD s,s,r14 ; s := s + temp
LDR a,[a,#4] ; a := address of left
BL sum ; s := s + sum of a
LDR a,[r13,#4] ; a := initial a
LDR a,[a,#8] ; a := address of right
BL sum ; s := s + sum of a
LDR r15,[r13],#8 ; pop two and return

Fig. 1. BINARY SUM: ARM code to sum the values at the nodes of a binary tree

These positioning functions are useful as they can capture some of the non-
trivial control structures used in machine-code. For example, the control struc-
ture of a procedure is easy to define: procedures are given a return address to
which they must jump on completion. If we suppose that register 14 holds the
return address, then we have the following format for procedure specifications:

{P ∗ R 14 y} cs {Q ∗ R 14 }λx.y

The superscript λx.y specifies that the value of the program counter is y on exit
from cs no matter what it was on entry to cs. Section 3.6 presents a derivation
of a call rule that evaluates the effect of a call to such a procedure.

The call rule and stack assertion, from above, have been used in the verification
of recursive procedures in ARM code. An example of such a procedure is the
code called BINARY SUM shown in Figure 1. BINARY SUM calculates the sum of
values attached to the nodes of a binary tree. The trees we consider have nodes
consisting of a value and addresses of two subtrees. Address 0 refers to the empty
subtree. A predicate stating that tree t is stored with root at address x:

tree(x, Leaf) = 〈x = 0〉
tree(x, Node(z, l, r)) = ∃x1 x2. M x z ∗ M (x+1) x1 ∗ M (x+2) x2 ∗

tree(x1, l) ∗ tree(x2, r) ∗ 〈x �= 0〉

The specification of BINARY SUM states that BINARY SUM adds to register s the
sum of the nodes of a tree that is addressed by register a. The specification also
states that no more than 2 × depth(t) words of stack space is required during
execution. ([] is the empty list and stack(sp, [], n) = R 13 sp ∗ blank(sp − 1, n)).

{R a x ∗ R s z ∗ S ∗
tree(x, t) ∗ stack(sp, [], 2 × depth(t)) ∗ R 14 y}

BINARY SUM
{R a ∗ R s (z + sum(t)) ∗ S ∗
tree(x, t) ∗ stack(sp, [], 2 × depth(t)) ∗ R 14 }λx.y

Hoare Logic for Realistically Modelled Machine Code 573

The formal ARM specification of BINARY SUM requires some of the entities to be
aligned addresses. Such details appear as slight variations of predicates M and
R, for details see the companion paper [10].

2.4 Excessive Separation

The separating conjunction ∗ is set up in such a way that an occurrence of
R a x ∗ R b y in a precondition will always imply a �= b. This is both a weakness
and a strength of our approach. It is a weakness since we will need many spec-
ifications for what seems to be special cases of a single operation. For instance,
binary operators are given 5 different specifications.

{R a x ∗ R b y ∗ R c }
mul c a b

{R a x ∗ R b y ∗ R c (x × y)}+1

{R a x}
mul a a a

{R a (x × x)}+1

{R a x ∗ R b y}
mul b a b

{R a x ∗ R b (x × y)}+1

{R a x ∗ R b }
mul b a a

{R a x ∗ R b (x × x)}+1

{R a x ∗ R b y}
mul b b a

{R a x ∗ R b (y × x)}+1

What appears to be an excessive use of ∗ is actually often a benefit. As mentioned
earlier, not all the specifications above are true in every case. Furthermore,
and particularly important, the separating conjunction makes the mechanisation
significantly easier, as technicalities concerning register name aliasing diminish.

3 Hoare Triple for Machine Code

This section defines a Hoare triple for machine code and formalises what was
informally presented in the previous section. This section ends with an example
of how proof rules can be derived for procedure calls.

3.1 State Representation

We assume that a state is represented as one large set of basic state elements,
where each element is an assertion specifying the state of a particular resource.
State sets are required to enumerate all the resources of the observable state. In
this presentation concrete states are enumerations of the following form:

{ Reg 0 820 , Reg 1 540 , Reg 2 412 , · · · , Reg 15 512 ,
Mem 0 34 , Mem 1 82 , Mem 2 11 , · · · , Mem (232 − 1) 40 ,
Status F }

Such sets contain 16 register elements Reg r x (register r holds value x), 232

memory elements Mem a y (memory address a holds value y) and one status bit
Status b (the status bit is b). No state is allowed to duplicate a basic state element,
e.g. register 3 must not occur, in any state, as both Reg 3 34 and Reg 3 45 . We
will denote the set of all well-formed states by Σ, thus members of Σ represent
states. Issues regarding restrictions on Σ are discussed further in Section 4.

574 M.O. Myreen and M.J.C. Gordon

The basic assertions described informally in the previous section can now be
defined as predicates on states.

R r x = λs. (s = {Reg r x})
M a y = λs. (s = {Mem a y})

S b = λs. (s = {Status b})

Let split s (u, v) mean that the pair of sets (u, v) partitions the set s, i.e.
split s (u, v) = (u ∪ v = s) ∧ (u ∩ v = ∅). Separating conjunction (∗) and the
notion of “some value” (written as a postfixed operator) are then defined by:

P ∗ Q = λs. ∃u v. split s (u, v) ∧ P u ∧ Q v

P = λs. ∃x. P x s

3.2 Execution Predicate

The judgments of our Hoare logic are based on assertions about processor execu-
tions. We define the execution assertion P � Q to mean that execution starting
from any state which has a part satisfying P , will reach a state where only
the part initially satisfying P has been changed and satisfies Q. Note that this
incorporates a ‘frame assumption’. The formal definition assumes a next-state
function next : Σ → Σ and then uses run(s, n) to denote the state reached
after n steps starting from s (i.e. run is defined recursively by run(s, 0) = s and
run(s, n+1) = run(next(s), n)).

P � Q = ∀s ∈ Σ. ∀F. (P ∗ F) s ⇒ ∃k. (Q ∗ F) (run(s, k))

The following frame-rule, similar to that of separation logic, easily follows.

P � Q

∀F. (P ∗ F) � (Q ∗ F)

3.3 Code Assertion

The basic execution predicate determines how the underlying processor executes
on a bare state. In order to specify how code executes we need first to specify
how code is located in memory and what the value of the program counter has.

Asserting the value of the program-counter is generally simple, say R 15 p
if register 15 is the program counter. Let pc(p) be such an assertion. Making a
general assertion about the code in memory is more difficult. The idea is to use
a kind of assertion we call a code-pool , which asserts that a union of possibly
overlapping code sequences are part of the memory. Our approach is similar to
that of Saabas and Uustalu [14] and Tan and Appel [16].

The definition of code-pool assertions uses a set-based separating conjunction
operator � expressing the ∗-combination of the elements of an arbitrary set. In-
formally: � {P1, · · · , Pn} = P1∗· · ·∗Pn (when P1 · · · Pn are distinct). The formal

Hoare Logic for Realistically Modelled Machine Code 575

definition is based on a partial bijection between predicates Pi and partitions
of the state set. The definition is straightforward, but has a few subtle details
which are not particularly interesting. It is omitted due to lack of space.

A code pool is an assertion obtained by applying � to the union of sets of basic
instruction assertions M p c, where M p c specifies that instruction c is executed
if the program counter has value p (this is a special case of the notion of basic
instruction assertion that we actually use). If cs is a sequence of instructions,
then Mset(p, cs) denotes the set of assertions stating that the sequence starts
at position p and runs consecutively from there.

Mset(p, cs) = { M (p + k) (cs[k]) | k < length(cs) }

A pair (cs, f) is a code sequence cs together with a specification f of where
to position it relative to a base address (see Section 2.3 for a discussion of
positioning functions). We use C to range over sets of such pairs, and then define:

mpool(p, C) = � (
⋃

{ Mset(f(p), cs) | (cs, f) ∈ C })

The intuition is that mpool(p, {(cs1, f1), · · · , (csn, fn)}) is the same as the ex-
pansion of ms(f1(p), cs1) ∗ · · · ∗ms(fn(p), csn) with the duplicated M -assertions
removed by the set union. The benefit of using such a code pool is that it allows
code sequences to overlap and builds into the representation the removal of du-
plicate sequences. This benefit is particularly apparent in the rule for procedural
recursion, Section 3.6.

At the end of a verification of concrete code one can of course not have distinct
sequences of code that overlap. Such an arrangement makes the precondition(s)
of the machine-code Hoare-triple (defined in the next section) false and hence
the specification trivially true. The following two equivalences simplify a code-
pool into a simple sequence assertion.1 Note that in the equation below and later,
+length(cs) denotes the function that adds the length of cs, thus +length(cs)◦f
is the function λn. length(cs) + f(n).

mpool(p, {(cs, f)}) = ms(f(p), cs)
mpool(p, {(cs, f), (cs′, +length(cs) ◦ f)} ∪ C) = mpool(p, {(cs; cs′, f)} ∪ C)

3.4 Hoare Triple

In Section 2 we discussed a Hoare triple {P}f cs g {Q}h. We will shortly gen-
eralise this to have sets of preconditions, sets of code sequences and sets of
postconditions, but first we give a formal semantics of the simple case.

{P}f cs g {Q}h = ∀p. (P ∗ ms(g(p), cs) ∗ pc(f(p))) �

(Q ∗ ms(g(p), cs) ∗ pc(h(p)))

We can read {P}f cs g {Q}h as asserting that if the processor is started from
a state satisfying P and (for any p) if f(p) is in the program counter and the
1 The first of these equalities is only true under the assumption that the length of cs

does not exceed the length of the address space.

576 M.O. Myreen and M.J.C. Gordon

code cs stored as a sequence from address g(p) onwards, then it will reach a
state satisfying Q. The specification also guarantees termination with the code
unchanged and the program counter updated to h(p). The functions f and g are
frequently the identity function, in which case the program counter points at the
first instruction in the sequence of instructions cs. Notice that the meaning of ∗
ensures that the precondition P ∗ms(g(p), cs)∗pc(f(p)) only holds when P does
not mention the program counter or any memory location where cs is stored.

We generalise the simple case to multiple preconditions, code segments and
postconditions, each with positioning functions fi, gi and hi, respectively:

{P1}f1 · · · {Pn}fn cs g1
1 · · · cs gm

m {Q1}h1 · · · {Qk}hk

The intuition is the following: if all the code segments are present in memory,
then whenever one of the preconditions {Pi}fi is true, some time later (at least)
one of the postconditions {Qj}hj will be true.

For the definition of the general Hoare-triple collect the preconditions, code
segments and postconditions into respective sets P = {(P1, f1), · · · , (Pn, fn)},
C = {(cs1, g1), · · · , (csm, gm)} and Q = {(Q1, h1), · · · , (Qk, hk)}. The machine-
code Hoare-triple, which is written here as P | C | Q , is defined using disjunction
over as set of predicates

∨
(formally:

∨
X = λs. ∃P ∈ X . P s).

P | C | Q = ∀p. (
∨

{ P ∗ mpool(p, C) ∗ pc(f(p)) | (P, f) ∈ P }) �

(
∨

{ Q ∗ mpool(p, C) ∗ pc(f(p)) | (Q, f) ∈ Q })

A variety of rules have been derived from this definition of Hoare triple. Some of
the rules are presented in Figure 2. The rules for frame, shift and compose are
used when joining specifications (as illustrated in the next section). Strengthen,
weaken and merge are used when specifications are simplified. Contraction, ex-
tension and loop elimination add/remove entry points, exit points and code
segments. The rule for loop elimination removes any number of interconnected
exit points that match some set of entry point for a decreasing variant. The
equivalences are mainly used in derivations of new rules.

3.5 Example: Composition

The rule for composition given in Figure 2 is quite abstract. We demonstrate
its use by composing a specification of a decrement instruction and a branch
instruction (c.f. the instructions of the factorial program). The branch instruction
has two exit points, thus two postconditions. We illustrate the three possible
compositions below.

{R a x ∗ S }
subs a a 1

+1{R a (x−1) ∗ S (x−1 = 0)}+1

{S b}
bne k

+1{S T ∗ 〈b〉}+1

+k{S F ∗ 〈¬b〉}+k

Composition is commonly done in three stages: first the scope of the specifica-
tions is extended so that the footprints match, then the positioning functions

Hoare Logic for Realistically Modelled Machine Code 577

Let “:” denote insertion into a set and “≺” denote any well-found relation.
Let P ∗̄ F = { (P ∗ F, f) | (P, f) ∈ P } and P ◦̄ g = { (P, f ◦ g) | (P, f) ∈ P }.
Let 〈b〉 = λs. (s = ∅) ∧ b.

Frame, shift and compose.

P | C | Q
∀F. P ∗̄ F | C | Q ∗̄F

P | C | Q
∀g. P ◦̄ g | C ◦̄ g | Q ◦̄ g

P | C | Q ∪ M M ∪ P ′ | C′ | Q′

P ∪ P ′ | C ∪ C′ | Q ∪ Q′

Contract, extend, strengthen and weaken.

P ∪ P ′ | C | Q
P | C | Q

P | C | Q
P | C ∪ C′ | Q

P | C | Q
P | C | Q ∪ Q′

P ′ ⇒ P (P, f) : P | C | Q
(P ′, f) : P | C | Q

Q ⇒ Q′ P | C | (Q, f) : Q
P | C | (Q′, f) : Q

Merge rules.

(P, f) : (P ′, f) : P | C | Q
(P ∨ P ′, f) : P | C | Q

P | C | (Q, f) : (Q′, f) : Q
P | C | (Q ∨ Q′, f) : Q

P | (cs, f) : (cs′, +length(cs) ◦ f) : C | Q
P | (cs ++ cs′, f) : C | Q

Loop elimination.

∀v. I(v) ∪ P | C | Q ∪ { i | i ∈ I(v′) ∧ v′ ≺ v }
∀v. I(v) ∪ P | C | Q

Various equivalences.

P | C | (∃x. Q(x) ∗ 〈b(x)〉, f) : Q = P | C | Q ∪ { (Q(x), f) | b(x) }

(∃x. P (x) ∗ 〈b(x)〉, f) : P | C | Q = { (P (x), f) | b(x) } ∪ P | C | Q

P | C | Q = ∀p. P ◦̄ (λx.p) | C ◦̄ (λx.p) | Q ◦̄ (λx.p)

Fig. 2. Rules for the machine-code Hoare triple

578 M.O. Myreen and M.J.C. Gordon

are made to match by a shift and finally the composition rule is applied followed
by an application of a code merge if applicable.

We start by constructing a specification for “ subs a a 1; bne k”. The frame
rule is used to extend the specification of bne and b is instantiated:

{R a (x−1) ∗ S (x−1 = 0)}
bne k

+1{R a (x−1) ∗ S T ∗ 〈x−1 = 0〉}+1

+k{R a (x−1) ∗ S F ∗ 〈x−1 �= 0〉}+k

A shift by +1 makes the precondition of bne match the postcondition of subs:
+1{R a (x−1) ∗ S (x−1 = 0)}+1

bne k +1

+2{R a (x−1) ∗ S T ∗ 〈x−1 = 0〉}+2

+(k+1){R a (x−1) ∗ S F ∗ 〈x−1 �= 0〉}+(k+1)

An application of the composition rule followed by a code merge yields:

{R a x ∗ S }
subs a a 1; bne k

+2{R a (x−1) ∗ S T ∗ 〈x−1 = 0〉}+2

+(k+1){R a (x−1) ∗ S F ∗ 〈x−1 �= 0〉}+(k+1)

Alternatively, the specification for subs can be tacked onto either branch of bne.
The compositions are done with shifts +1 and +k, respectively. The composition
with shift +k results in a specification with two code segments.

{R a x ∗ S b}
bne k; subs a a 1

{R a (x−1) ∗ S (x−1 = 0) ∗ 〈b〉}+2

{R a x ∗ S F ∗ 〈¬b〉}+k

{R a x ∗ S b}
subs a a 1 +k bne k
{R a x ∗ S T ∗ 〈b〉}+1

{R a (x−1) ∗ S (x−1 = 0) ∗ 〈¬b〉}+(k+1)

3.6 Example: Procedures and Procedural Recursion

This section illustrates how specifications for procedures and procedure calls fit
into our framework. We define the control-flow contract of a procedure and a
procedure call, derive a rule stating the effect of a procedure call and finally
present a rule that we have found useful when proving recursive procedures.

The standard contract of a procedure can be captured easily within our frame-
work. Commonly a procedure is given a return address to which it must jump
upon completion. Given a resource, say, lr that holds the return address we can
specify a reasonably general contract as follows:

proc(f, P, C, Q) = ∀p. {P ∗ lr p }f C {Q ∗ lr }λx.p

Specifying a general procedure call is slightly more involved in our framework.
We define a call to be a jump that starts with the program counter set to h(p),
for any p, stores the address g(p) in lr and jumps to address f(p).

call(f, C, h, g) = ∀p. {lr }λx.h(p) (C ◦̄ (λx.p)) {lr(g(p))}λx.f(p)

Hoare Logic for Realistically Modelled Machine Code 579

call(f, C, h, g)

∀p. {(lr , λx.h(p))} | C ◦̄ (λx.p) | {(lr(g(p)), λx.f(p))}
{(lr , λx.h(p))} | C ◦̄ (λx.p) | {(lr(g(p)), λx.f(p))}

{(P ∗ lr , λx.h(p))} | C ◦̄ (λx.p) | {(P ∗ lr(g(p)), λx.f(p))} (1)

proc(f, P, C′, Q)

∀p. {(P ∗ lr(p), f)} | C′ | {(Q ∗ lr , λx.p)}
{(P ∗ lr(g(p)), f)} | C′ | {(Q ∗ lr , λx.g(p))}

{(P ∗ lr(g(p)), f ◦ λx.p)} | C′ ◦̄ (λx.p) | {(Q ∗ lr , λx.g(p) ◦ λx.p)}
{(P ∗ lr(g(p)), λx.f(p))} | C′ ◦̄ (λx.p) | {(Q ∗ lr , λx.g(p))} (2)

(1) (2)

{(P ∗ lr , λx.h(p))} | (C ◦̄ (λx.p)) ∪ (C′ ◦̄ (λx.p)) | {(Q ∗ lr , λx.g(p))}
{(P ∗ lr , h)} ◦̄ (λx.p) | (C ∪ C′) ◦̄ (λx.p) | {(Q ∗ lr , g)} ◦̄ (λx.p)

∀p. {(P ∗ lr , h)} ◦̄ (λx.p) | (C ∪ C′) ◦̄ (λx.p) | {(Q ∗ lr , g)} ◦̄ (λx.p)

{(P ∗ lr , h)} | C ∪ C′ | {(Q ∗ lr , g)}

Fig. 3. A derivation of the call rule

The ARM instruction for branch-and-link BL satisfies a specification that is
essentially the same as call(+k, {(BL k, +0)}, +0, +1).

The effect of executing a call call(f, C, h, g) to a procedure proc(f, P, C′, Q)
is described by the call rule, derived in Figure 3.

call(f, C, h, g) proc(f, P, C′, Q)
{P ∗ lr }h C ∪ C′ {Q ∗ lr }g

The call rule is quite general. It does not restrict the procedure body or the call
statement to be position dependent or independent. This was achieved by the
inclusion of positioning functions h, g and f . Of these functions f has an artificial
role when the procedure is position independent. Why should the procedure
specification have a positioning function in common with the call specification,
if the procedure specification is position independent?

In order to remove this oddity a special rule can be proved for calls to proce-
dures that have the positioning function set to λx.x.

proc(λx.x, P, C′, Q)
∀p. {(P ∗ lr(p), λx.x)} | C′ | {(Q ∗ lr , λx.p)}

∀p. {(P ∗ lr(p), (λx.x) ◦ f)} | C′ ◦̄ f | {(Q ∗ lr , (λx.p) ◦ f)}
∀p. {(P ∗ lr(p), f)} | C′ ◦̄ f | {(Q ∗ lr , λx.p)}

proc(f, P, C′ ◦̄ f, Q)
(3)

call(f, C, h, g) (3)
{P ∗ lr }h C ∪ (C′ ◦̄ f) {Q ∗ lr }g

Informally this rule can be understood as follows: A call with jump function
f executes a position-independent procedure with code C′, if code C′ is placed
using function f .

580 M.O. Myreen and M.J.C. Gordon

Procedural recursion of one or more procedures is proved by induction over
a bounded variant function that decreases strictly on each recursive call. The
observation that each recursive call pushes at least one value (the return address)
onto the stack2, suggests that induction over the natural number is sufficient.
The remaining stack space3 is a natural number that decreases for each recursive
call. We have found the following induction rule useful in proofs of recursive
procedures. Let v be some variant function, < be less-than over the natural
numbers and ψ be any boolean-valued function.

∀x C′. (∀y. v(y) < v(x) ⇒ ψ(y, C′)) ⇒ ψ(x, C ∪ C′)
∀x. ψ(x, C)

The parameter C is intended to hold a set of code segments. Notice that C does
not occur in the assumption of the premise. The absence of C makes the rule
easier to use, as one does not need to assume the code one is constructing.

The definitions and theorems of this section were used in the verification of
BINARY SUM, Section 3.6. The verification of BINARY SUM was done as a case
analysis over the structure of the tree. The case of a leaf was trivial as it exits
on the second instruction. The case of a branch required more work. For it we
assumed that there is some code C′ that performs the desired function for the
subtrees. We used the second version of the call rule to extract specifications
for the BL instructions that perform the recursive calls. The specifications for
all twelve instructions were then composed and the cases (leaf and branch) were
merged. The induction rule, from above, was specialised to trees by setting v to
depth (depth of a binary tree) and then used to eliminate the assumed speci-
fications and imaginary code C′. The same induction was also used in proving
a variant of BINARY SUM that has the last call replaced by a tail-recursive call.
The details of both proofs are given in [10].

4 Formalisation and Specialisation

Section 3.1 made restrictions on the format of the sets that are members of the
set of valid states Σ. Restrictions are needed in order to ensure the intended
meaning of separation for separating conjunction ∗. This section describes how
we avoid such issues in our formalisation of the general case and also how we
address them when the general theory is specialised and used.

The general theory, which consists of the definition of the machine-code Hoare
triple and its rules, can be proved without any restrictions on the structure of
the state sets4. The machine-code Hoare triple can be defined and all its rules
proved for any set of state sets Σ, given a next-state function next : Σ → Σ 5,

2 We consider tail-recursive-call as a loop, not as a call.
3 We will not assume an infinite stack as we do not assume an infinite state space.
4 In the HOL mechanisation the type of a state element is parametrised by a type

variable. The type of a state set is “α set”.
5 Alternatively, one can use a next-state relation next : Σ × Σ, for this redefine �.

Hoare Logic for Realistically Modelled Machine Code 581

a program-counter assertion pc : α → Σ → B and a basic instruction assertion
inst : α × β → Σ → B, for some set α of instruction addresses and some set β
of instructions. These abstractions ease the proof effort. All the definitions and
rules are parametrised by a 6-tuple (Σ, α, β, next, pc, inst).

When the general theory is instantiated and one wants to prove basic speci-
fications for the elementary operations of a specific language (examples of basic
specification: Section 2.2, 2.4 and 3.5), then one has to restrict the shape of Σ
so that ∗ has its intended meaning. We have found that a practical method for
restricting the shape of the state sets is to have them produced by a function.
We define Σ to be the range of a function tr, i.e. Σ = { tr(x) | any x }, for some
function tr that produces state sets of a specific form.

The function tr can be a translation function from a different state represen-
tation. If this is the case and the translation is accurate enough to also have
an inverse t̄r (i.e. ∀x. t̄r(tr(x)) = x), then one can define the next-state func-
tion for the set-based representation (next) using a next-state function over
the other state representation (say nextsem): next(s) = tr(nextsem(t̄r(s))). The
benefit of defining next according to a next-state function over a different state-
representation is a practical one. The detailed semantics of a machine-code lan-
guage might be more readily defined using a state-representation different from
the set-based representation that our approach requires. This is the case in the
application of our framework to the ARM processor: we generate members of Σ
formally from the representations of states used by the ARM model.

5 Summary

This paper has presented a Hoare logic that has been carefully designed to fit on
top of accurately modelled operational semantics of machine languages. Specifi-
cations are built on a separating conjunction, that allows concise resource usage
specifications and also helps avoid unwanted aliasing. Multiple code segments
and positioning functions make our specifications support control flow that al-
lows specifications of procedures and procedure calls, as well as general control
flow between position independent and position dependent code. We build on
previous work on separation logic [13] and unstructured control-flow [2,16].

Our framework has been fully formalised in higher-order logic, mechanised
using the HOL4 system and has been applied to ARM machine-code using an
existing high-fidelity model of the ARM processor [10]. We have not yet applied
our framework to other architectures nor large case studies, but we think we
have a methodology and implemented tools that will scale. Demonstrating this
is the next phase of our research.

Acknowledgments. We would like to thank Anthony Fox, Joe Hurd, Kon-
rad Slind, Thomas Tuerk, Matthew Parkinson, Josh Berdine, Nick Benton and
Richard Bornat for research discussions, comments and substantial constructive
criticism. The first author is funded by Osk.Huttusen Säätiö and EPSRC.

582 M.O. Myreen and M.J.C. Gordon

References

1. Andrew W. Appel. Foundational proof-carrying code. In Proc. 16th IEEE Sympo-
sium on Logic in Computer Science (LICS). IEEE Computer Society, 2001.

2. Michael A. Arbib and Suad Alagic. Proof rules for gotos. Acta Informatica, 11:139–
148, 1979.

3. William R. Bevier. A verified operating system kernel. PhD thesis, University of
Texas at Austin, 1987.

4. Robert S. Boyer and Yuan Yu. Automated proofs of object code for a widely used
microprocessor. J. ACM, 43(1):166–192, 1996.

5. D. L. Clutterbuck and B. A. Carré. The verification of low-level code. Software
Engineering Journal, 3:97–111, 1988.

6. The HOL4 System (Description). http://hol.sourceforge.net/documentation.html.
7. David S. Hardin, Eric W. Smith, and William D. Young. A robust machine

code proof framework for highly secure applications. In Panagiotis Manolios and
Matthew Wilding, editors, Sixth International Workshop on the ACL2 Theorem
Prover and Its Applications, 2006.

8. Gerwin Klein, Harvey Tuch, and Michael Norrish. Types, bytes, and separation
logic. To appear in Martin Hofmann and Matthias Felleisen, editors, Proceedings
of the 34th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL). Springer, 2007.

9. W. D. Maurer. Proving the correctness of a flight-director program for an airborne
minicomputer. In Proceedings of the ACM SIGMINI/SIGPLAN interface meeting
on Programming systems in the small processor environment. ACM Press, 1976.

10. Magnus O. Myreen, Anthony C. J. Fox, and Michael J. C. Gordon. Hoare logic for
ARM machine code. To appear in Proceedings of the IPM International Symposium
on Fundamentals of Software Engineering (FSEN). Springer, 2007.

11. George C. Necula. Proof-carrying code. In Proceedings of the 28th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL), 1997.

12. Peter O’Hearn, John Reynolds, and Hongseok Yang. Local reasoning about pro-
grams that alter data structures. In Proceedings of Computer Science Logic, 2001.

13. John Reynolds. Separation logic: A logic for shared mutable data structures. In
Proceedings of 17th IEEE Symposium on Logic in Computer Science (LICS), 2002.

14. Ando Saabas and Tarmo Uustalu. A compositional natural semantics and hoare
logic for low-level languages. Electronic Notes in Theoretical Computer Science,
156(1):151–168, 2006.

15. David Seal. ARM Architecture Reference Manual. Addison-Wesley, 2000.
16. Gang Tan and Andrew W. Appel. A compositional logic for control flow. In

Proceedings of Verification, Model Checking and Abstract Interpretation (VMCAI),
volume 3855 of Lecture Notes in Computer Science. Springer, 2006.

VCEGAR: Verilog CounterExample Guided

Abstraction Refinement�

Himanshu Jain1, Daniel Kroening2, Natasha Sharygina1,3,
and Edmund Clarke1

1 Carnegie Mellon University, School of Computer Science
2 ETH Zuerich, Switzerland

3 Informatics Department, University of Lugano

Abstract. As first step, most model checkers used in the hardware in-
dustry convert a high-level register transfer language (RTL) design into
a netlist. However, algorithms that operate at the netlist level are unable
to exploit the structure of the higher abstraction levels, and thus, are less
scalable. The RTL level of a hardware description language such as Verilog
is similar to a software program with special features for hardware design
such as bit-vector arithmetic and concurrency. We describe a hardware
model checking tool, VCEGAR, which performs verification at the RTL
level using software verification techniques. It implements predicate ab-
straction and a refinement loop as used in software verification. The novel
aspects are the generation of new word-level predicates, an efficient pred-
icate image computation in presence of a large number of predicates, and
precise modeling of the bit-vector semantics of hardware designs.

1 Introduction

Most new hardware designs are implemented at a high level of abstraction, e.g.,
using register transfer language (RTL), or even at the system-level. The RTL
level of a hardware description language such as Verilog is very similar to a
software program in ANSI-C, and offers special features for hardware designers
such as bit-vector arithmetic and concurrency. However, most model checkers
used in hardware industry still operate on a low-level design representation called
a netlist. This is due to lack of automated verification techniques at the RTL
level. Converting a high-level RTL design into a netlist results in a significant
loss of structure present at the RTL level. This makes verification at the netlist
level inherently more difficult and less scalable.

VCEGAR, the tool presented in this paper, is a hardware model checker
that performs verification at the RTL level directly. In order to reduce the state
space explosion problem during model checking, VCEGAR performs abstrac-
tion. Abstraction techniques reduce the state space by mapping the set of states
� This research was sponsored by the Gigascale Systems Research Center (GSRC),

Semiconductor Research Corporation (SRC), the National Science Foundation
(NSF), the Office of Naval Research (ONR), the Naval Research Laboratory (NRL),
the Defense Advanced Research Projects Agency, the Army Research Office (ARO),
and the General Motors Collaborative Research Lab at CMU.

O. Grumberg and M. Huth (Eds.): TACAS 2007, LNCS 4424, pp. 583–586, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

584 H. Jain et al.

of the actual, concrete system to an abstract, and smaller, set of states in a way
that preserves the relevant behaviors of the system. Since high-level hardware
designs are similar to concurrent software, it implements abstraction algorithms
that have been devised for software verification. VCEGAR employs predicate
abstraction [1], a key technique used in the SLAM software verification project
[2]. Predicate abstraction removes data by only keeping track of certain pred-
icates on the data. Each predicate is represented by a Boolean variable in the
abstract model, while the original data paths are eliminated.

The abstract model is computed as a conservative over-approximation of the
original circuit. This implies that if the abstraction satisfies the property, the
property also holds on the original circuit. The drawback of the conservative
abstraction is that when model checking of the abstraction fails, it may produce
a counterexample that does not correspond to any concrete counterexample.
This is usually called a spurious counterexample. The basic idea of abstraction
refinement techniques [3,4,2] is to create a new abstract model that contains
more detail in order to prevent the spurious counterexample. This process is
iterated until the property is either proved or disproved. It is known as the
Counterexample Guided Abstraction Refinement framework [4].

VCEGAR is geared towards application by hardware designers. It accepts
Verilog, a popular hardware description language, as input. VCEGAR checks
safety properties of the hardware designs.

Related Work. In the hardware domain, the most commonly used abstraction
technique is localization reduction [3]. The abstract model is created from a
given netlist level circuit by removing a large number of latches together with
the logic required to compute their next state. During refinement, some of the
removed latches may be added back to make the abstract model more precise.
While localization reduction is a special case of predicate abstraction, predicate
abstraction can result in a much smaller abstract model. As an example, assume
a circuit contains two sets of latches, each encoding a number. Predicate ab-
straction can keep track of a numerical relation between the two numbers using
a single predicate, and thus, using a single state bit in the abstract model. Lo-
calization reduction typically turns all bits of the two words into visible latches,
and thus, the abstraction is identical to the original model.

Clarke et al. introduce a SAT-based technique for predicate abstraction of cir-
cuits given in Verilog [5]. The first step is to obtain predicates from the control
flow guards in the Verilog file. The circuit is then synthesized into netlist level.
Any refinement steps are carried out at the netlist level, new word-level pred-
icates are never introduced. VCEGAR operates at the RTL level also during
refinement and uses weakest pre-conditions to derive new word-level predicates.

2 Word-Level Circuit Verification with VCEGAR

This section provides a short overview of ideas implemented in VCEGAR. For
more information, we refer the reader to [6,7]. The abstraction step in VCEGAR
is performed by computing a predicate image. Two problems arise when applying

Verilog CounterExample Guided Abstraction Refinement 585

predicate abstraction to RTL level circuits: 1) The computation of the abstract
model is hard in presence of large number of predicates, and 2) discovery of
suitable word-level predicates for abstraction refinement.

In order to address the first problem, the tool divides the set of predicates
into clusters of related predicates. The abstraction is computed separately with
respect to the predicates in each cluster. Since each cluster contains only a small
number of predicates, the computation of the abstraction becomes more efficient.
We refer to this technique as predicate clustering. We do not require the clusters
to be disjoint, that is, they can have common predicates.

Example: Let x, y denote the current state and x′, y′ denote the next state of a
hardware design. Let the transition relation R(x, y, x′, y′) be x′ = y∧y′ = x. Let
the set of predicates be {x = 1, y = 1, x′ = 1, y′ = 1}. The value of the predicate
y′ = 1 is affected by the value of x (as y′ equals x). Note that the value of y′ = 1
is not affected by the value of y. Thus, we keep x = 1 and y′ = 1 together in a
cluster C1. Similarly, the other cluster C2 := {y = 1, x′ = 1} is obtained.

The tool provides various options for predicate clustering. These options con-
trol the precision of the abstraction and the time required to compute the ab-
straction. The tool uses a SAT solver to compute the abstract model [8].

Due to predicate clustering, additional spurious counterexamples are intro-
duced, which have to be removed during the refinement phase. When a spurious
counterexample is encountered, we first check whether each transition in the
counterexample can be simulated on the original program. This is done by cre-
ating a SAT instance for the simulation of each abstract transition. If the SAT
instance for an abstract transition is unsatisfiable, then the abstract transition
is spurious. In this case, we refine the abstraction by adding constraints on the
abstract transition relation, which eliminate the spurious transition. We make
use of the unsatisfiable core of the SAT instance to identify a small subset of
the existing predicates that are causing the transition to be spurious. The fewer
predicates are found, the more spurious transitions are eliminated in one step.

When all SAT instances for the simulation of abstract transitions are sat-
isfiable, it means that none of the abstract transitions is spurious due to the
predicate clustering. The immediate conclusion is that the spurious counterex-
ample is caused by a lack of appropriate predicates. For this case, VCEGAR
uses a refinement technique employed in software verification tools. It first de-
termines a set of predicates that causes the simulation to fail. Subsequently, it
computes the weakest precondition of these predicates with respect to the tran-
sition function given by the circuit in order to obtain new word-level predicates.
Example: Let the property be x < 3, and the next state function for the register
x be ((x < 5)?(x + 2) : x), where ? denotes a conditional operator. Suppose we
obtain a spurious counterexample of length equal to 1. The weakest precondition
wp of x < 3 is given as (((x < 5) ? (x+2) : x) < 3). Refinement corresponds to
adding the Boolean expressions occurring in wp to the existing set of predicates.

In case of a long spurious counterexample, the weakest precondition computa-
tion may become expensive due to a blowup in the size of weakest pre-conditions.
We address this problem by applying a syntactic simplification to the weakest

586 H. Jain et al.

preconditions at each step. The simplification uses data from the abstract error
trace. We exploit the fact that many of the control flow guards in the Verilog file
are also present in the current set of predicates. The abstract trace assigns truth
values to these predicates in each abstract state. In order to simplify the weakest
preconditions, we substitute the guards in the weakest preconditions with their
truth values. Furthermore, we only add the atomic predicates in the simplified
weakest precondition as the new predicates (more details in [6]).

Example: Suppose the guard x < 5 is present in the current set of predicates.
Let the value of x < 5 in an abstract state s̄ be true. The weakest precondition
given as (((x < 5) ? (x + 2) : x) < 3) can be simplified in s̄ by substituting
the value of x < 5. This results in a new atomic predicate x + 2 < 3 (or x < 1).

VCEGAR was used to check safety properties of Instruction Cache Unit and
Instruction Cache RAM (ICRAM) of Sun PicoJava II microprocessor in [7]. It
has also been applied to examples from the opencores (www.opencores.org),
and the Texas97 and VIS benchmark suites.

3 Conclusion

This paper describes a hardware model checker, VCEGAR, that implements
counterexample guided abstraction and a refinement loop for RTL Verilog de-
signs. It uses the idea of predicate abstraction from software verification tools.
VCEGAR provides various options for balancing the precision of abstraction
and the time required for abstraction computation. For abstraction-refinement
new word-level predicates are discovered by computing syntactic weakest pre-
conditions of predicates with respect to Verilog statements. This technique has
not been applied to RTL circuits before. A user of the tool needs to provide the
input program, property to check, and a few options. Given these inputs, the
tool performs all the steps of the CEGAR loop automatically.

References

1. Graf, S., Säıdi, H.: Construction of abstract state graphs with PVS. In: CAV.
Volume 1254 of LNCS., Springer (1997) 72–83

2. Ball, T., Rajamani, S.: Boolean programs: A model and process for software analysis.
Technical Report 2000-14, Microsoft Research (2000)

3. Kurshan, R.: Computer-Aided Verification of Coordinating Processes. Princeton
University Press, Princeton (1995)

4. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: CAV. (2000) 154–169

5. Clarke, E., Talupur, M., Wang, D.: SAT based predicate abstraction for hardware
verification. In: SAT. (2003)

6. Clarke, E., Jain, H., Kroening, D.: Predicate Abstraction and Refinement Tech-
niques for Verifying Verilog. Technical Report CMU-CS-04-139 (2004)

7. Jain, H., Kroening, D., Sharygina, N., Clarke, E.M.: Word level predicate abstrac-
tion and refinement for verifying RTL In: DAC. (2005) 445–450

8. Clarke, E., Kroening, D., Sharygina, N., Yorav, K.: Predicate abstraction of ANSI–C
programs using SAT. Formal Methods in System Design:25 (2004) 105–127

Alloy Analyzer+PVS in the Analysis and

Verification of Alloy Specifications

Marcelo F. Frias�, Carlos G. Lopez Pombo, and Mariano M. Moscato

Department of Computer Science, FCEyN,
Universidad de Buenos Aires and CONICET

{mfrias,clpombo,mmoscato}@dc.uba.ar

Abstract. This article contains two main contributions. On the the-
oretical side, it presents a novel complete proof calculus for Alloy. On
the applied side we present Dynamite, a tool that combines the semi-
automatic theorem prover PVS with the Alloy Analyzer. Dynamite al-
lows one to prove an Alloy assertion from an Alloy specification using
PVS, while using the Alloy Analyzer for the automated analysis of hy-
potheses introduced during the proof process. As a means to assess the
usability of the tool, we present a complex case-study based on Zave’s
Alloy model of addressing for interoperating networks.

1 Introduction

Alloy [7] is a formal modeling language with a simple syntax based on notations
ubiquitous in object orientation, and semantics based on relations. Part of its
appeal comes from the existence of the Alloy Analyzer, which allows one to
analyze Alloy specifications in a fully automatic way. The analysis process relies
on a translation of Alloy specifications (where domains are bounded to finite
sizes) to a propositional formula, which is then analyzed using off-the-shelf SAT-
solvers. Bounding the size of domains has a direct impact on the conclusions we
can draw from the analysis process. If a counterexample for a given assertion is
found, then the model is for sure flawed. On the other hand, if no counterexample
is found, we can only conclude that no counterexamples exist when domain sizes
are constrained to the given bounds. Choosing larger bounds may show the
existence of previously unforeseen errors. This limited analyzability offered by
the Alloy Analyzer is essential in order to analyze Alloy models and get rid of
most errors introduced in the modeling process. At the same time, models for
critical applications can also benefit from usage of the Alloy Analyzer, but one
cannot entirely rely on that.

Lightweight formal methods with the limitations of the Alloy Analyzer cannot
be entirely trusted when dealing with critical models. An alternative is the use
of heavyweight formal methods, as for instance semi-automatic theorem provers,

� A preliminary version of this paper has been published in the ACM Digital Library
as part of the proceedings of the First Alloy Workshop, colocated with 14th ACM
Symposium on Foundations of Software Engineering, 2006 [6].

O. Grumberg and M. Huth (Eds.): TACAS 2007, LNCS 4424, pp. 587–601, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

588 M.F. Frias, C.G. Lopez Pombo, and M.M. Moscato

and among these, PVS [10]. Theorem provers have limitations too. First, they
require an expertise from the user that many times discourages their use. Also,
theorem provers use their own languages which are seldom close to lightweight
modeling languages. This detracts from their usability by lightweight users, and
is also a source of errors in case lightweight models have to be translated. Equally
important, minor errors in a model may require to redo proofs that were using
wrong hypotheses. Much the same as errors overlooked during software require-
ment elicitation have a greater impact the more advanced the development stage,
model errors have greater impact the more auxiliary lemmas have been proved.
Therefore, getting rid of as many errors as possible from the model before start-
ing the theorem proving process is a must.

The previous paragraphs show that a marriage between simple automatically
analyzable formal modeling languages and semiautomatic theorem provers is in
fact necessary when analyzing critical models. The goal of this paper is to present
Dynamite, a tool that marries Alloy and PVS.

Dynamite is an extension of PVS that incorporates the following features:

1. Sound automatic translation of Alloy models to PVS, preventing the intro-
duction of errors in the translation process.

2. Novel complete proof calculus for Alloy. Therefore, valid Alloy properties
can be proved (although this requires interaction with the user).

3. Modified PVS pretty-printer that shows proof steps in Alloy language (thus
bridging the gap between Alloy and PVS).

4. Fluid automatic interaction with the Alloy Analyzer in order to automati-
cally analyze hypotheses introduced during the theorem proving process.

The contributions of this paper are the following:

1. We present a novel complete calculus for Alloy by interpreting Alloy theories
to fork algebra [3] theories.

2. We present Dynamite, the tool that incorporates the previously enumerated
features.

3. We give a brief description of a case study where we prove several assertions
introduced in Zave’s Alloy model of addressing for interoperating networks
[12], and present some conclusions regarding the usability and limitations of
Dynamite.

The article is organized as follows. In Section 2 we present the Alloy modeling
language by means of an example, as well as its supporting tool, the Alloy
Analyzer. In Section 3 we present the complete calculus for Alloy. In Section 4
we describe our tool, Dynamite. In Section 5 we discuss a complex case-study.
Finally, in Section 6 we discuss related work, conclusions about the contributions
of this article, and some proposals for further work.

2 Alloy and the Alloy Analyzer

In this section we introduce the Alloy modeling language by means of an ex-
ample. In [12] Zave presents a formal model of addressing for interoperating

Alloy Analyzer+PVS in the Analysis and Verification 589

networks. These networks connect agents (which might be hardware devices or
other software systems). Agents can be divided between client agents (users
of the networking infrastructure), or server agents (part of the infrastructure).
Agents can use resources from domains, to which they must be attached. In order
to be able to reach clients from domains, pairs 〈address , domain〉 are assigned
to clients. Different sorts of objects can be distinguished in the previous descrip-
tion. Signatures (akin to classes in object orientation), are the means to declare
object domains. Figure 1 presents a (simplified1 description of the signatures for
this model.

sig Address{ }
sig Agent{ attachments: set Domain }
sig Server extends Agent { }
sig Client extends Agent { knownAt: Address -> Domain }
sig Domain{ space: set Address, map: space -> Agent }

Fig. 1. Simplified model for addresses, agents and domains

Signature Address denotes a unary relation (set) whose objects are atomic.
According to Alloy’s formal semantics, signature Agent declares a set of ob-
jects Agent , and field attachments denotes a binary relation attachments ⊆
Agent ×Domain (where Domain is the set denoted by signature Domain). Notice
that without the modifier set in the declaration of field attachments, relation
attachments would instead be a total function. Signature extension allows us
to model single inheritance between signatures. Signature Server singles out
some agents as servers. Signature Client, besides distinguishing some agents
as clients, introduces a new field. Field knownAt allows us to retrieve the pairs
〈address , domain〉 mentioned above. Following Alloy’s semantics, field knownAt
denotes a ternary relation knownAt ⊆ Client × Address × Domain .

Axioms are included in a model under the form of facts. Recalling that dot (.)
stands for composition of relations (called navigation in Alloy), an axiom saying
that “whenever an agent appears in the range of the map attribute it is because
the agent is attached to that domain”, is written in Alloy as:

fact { all d: Domain, g: Agent |
g in Address.(d.map) => d in g.attachments }

Besides navigation, the relational logic underlying Alloy [7] includes operations
for union of relations (+), intersection (&), difference (−), transposition (which
flips pairs 〈x, y〉 of a binary relation to 〈y, x〉 and is denoted by ∼) and reflexive-
transitive closure (∗). Also, iden denotes the binary identity relation, and univ
denotes the unary universal relation (the set holding the union of all the domains
from the model).

1 The complete Alloy model can be obtained from http://www.research.att.
com/∼pamela/svcrte.html

protect protect protect edef OT1{OT1}let enc@update elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmr/m/n/6 {OT1/cmr/m/n/9 }OT1/cmr/m/n/6 size@update enc@update ignorespaces elax protect elax protect edef cmr{cmtt}protect xdef OT1/cmr/m/n/6 {OT1/cmr/m/n/9 }OT1/cmr/m/n/6 size@update enc@update http://www.research.att.com/$sim $pamela/svcrte.html
protect protect protect edef OT1{OT1}let enc@update elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update ignorespaces elax protect elax protect edef cmr{cmtt}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update http://www.research.att.com/$sim $pamela/svcrte.html

590 M.F. Frias, C.G. Lopez Pombo, and M.M. Moscato

Once a model has been provided, it can be analyzed by looking for counterex-
amples of properties that are expected to hold in the model. These properties
are called assertions. For instance, the (not necessarily valid) assertion that the
map field targets only client agents, is written in Alloy as:

assert mapTargetsClients { all d:Domain, s:d.space |
s.(d.map) in Client }

Command check mapTargetsClients for 5 allows one to search for coun-
terexamples in which domains have up to 5 elements, using the Alloy Analyzer.
The Alloy Analyzer translates the model and the negation of the assertion to a
propositional formula. Of course, the translation heavily depends on the bounds
declared in the check command. Once a propositional formula has been obtained,
the Alloy Analyzer employs off-the-shelf SAT-solvers, and in case a model of the
formula is obtained, it is translated back to a counterexample of the source model
and presented to the user using different visualization algorithms.

3 A Novel Complete Calculus for Alloy

Among the extensions of PVS included in Dynamite, an essential one is the
inclusion of a complete calculus for Alloy. The calculus is obtained by translating
Alloy theories (specifications) to fork algebraic theories (to be introduced in
Section 3.1). Since:

1. the translation is semantics-preserving, and
2. there is a complete calculus for the fork algebras we will use in this article,

we will prove a theorem stating that an assertion α (semantically) follows from
an Alloy specification Σ if (and only if) its translation T (α) can be proved from
the translation of the theory using the complete calculus for fork algebras. In
symbols, Σ |= α ⇐⇒ {T (σ) : σ ∈ Σ }
 T (α). This kind of theorems relating
two logics are often called interpretation theorems.

The following question is now likely to arise:

Is the fork algebra language substantially different from the Alloy lan-
guage (therefore reducing the usability of the proposed calculus by current
Alloy users)?

This section is then structured as follows. In Section 3.1 we introduce the class
of point-dense omega closure fork algebras (also noted as PDOCFA), as well as
their complete calculus. In Section 3.2 we present the translation from Alloy
formulas to formulas in the language of PDOCFA, and provide a proof sketch of
the interpretation theorem. Since we aim at defining a translation that yields
algebraic formulas as close to Alloy formulas as possible, in Section 3.3 we give
an answer to the previous question and analyze the similarities and differences
between the Alloy language and the fork algebraic language.

Alloy Analyzer+PVS in the Analysis and Verification 591

3.1 Point-Dense Omega Closure Fork Algebras

Proper Point-Dense Omega Closure Fork Algebras. These algebras are
structures whose domain is a set of binary relations built on top of a base set B.
We denote by Pw (A) the powerset of set A. If we call R the domain of such an
algebra (notice that R ⊆ Pw (B × B)), R has to be closed under the following
operations for sets: union (+), intersection (&), complement (denoted, for a
binary relation r, by r), the empty binary relation (∅), and the universal binary
relation, (usually B × B, and denoted by 1).

Besides the previous operations for sets, R has to be closed under the following
operations for binary relations: transposition (∼), navigation (.), and reflexive–
transitive closure (∗). The identity relation (on B), is denoted by iden .

A binary operation called fork (∇) is included, which requires set B to be
closed under an injective function �. This means that there are elements x in B
that are the result of applying the function � to elements y and z (i.e., x = y�z).
Since � is injective, x can be seen as an encoding of the pair 〈y, z〉. Those elements
that do not encode pairs, are called urelements. Operation fork is defined by:

r∇s = { 〈a, b � c〉 : 〈a, b〉 ∈ r and 〈a, c〉 ∈ s } .

Finally, we require set R to be point-dense. A point is a relation of the form
{ 〈a, a〉 }. Point-density requires set R to have plenty of these relations. More
formally speaking, for each nonempty relation I contained in the identity relation
there must be a point p ∈ R satisfying p ⊆ I.

A Complete Calculus for Point-Dense Omega Closure Fork Agebras.
Introducing a calculus requires presenting its axioms and inference rules. Before
doing so, we introduce some notation. In a proper PDOCFA the relations π
and ρ defined by π =∼ (iden∇1) and ρ =∼ (1∇iden) behave as projections
with respect to the encoding of pairs induced by the injective function �. Their
semantics in a proper PDOCFA A whose binary relations range over a set B, is
given by π = { 〈a � b, a〉 : a, b ∈ B }, ρ = { 〈a � b, b〉 : a, b ∈ B }.

The operation cross (⊗) performs a parallel product. Its set-theoretical def-
inition is given by r⊗s = { 〈a � c, b � d〉 : 〈a, b〉 ∈ r and 〈c, d〉 ∈ s }. In algebraic
terms, operation cross is defined by r⊗s = (π.r) ∇ (ρ.s).

We can characterize points as nonempty relations that satisfy the property
x.1 .x ⊆ iden . If we denote the inclusion relation by “in” (as in Alloy), the pred-
icate “Point” defined by “Point(p) ⇐⇒ p != ∅ && p.1 .p in iden” determines
those relations that are points. The axioms and inference rules for the calculus
are then:

1. Axioms for Boolean algebras defining the meaning of +, &, –, ∅ and 1.
2. Formulas defining composition of binary relations, transposition, reflexive–

transitive closure and the identity relation:
x. (y .z) = (x.y) .z,
x.iden = iden .x = x,
(x.y)&z = ∅ iff (z . ∼ y)&x = ∅ iff (∼ x.z)&y = ∅,
∗x = iden + (x. ∗ x) ,
∗x.y .1 in (y .1) +

(
∗x.(y .1 & (x.y .1))

)
.

592 M.F. Frias, C.G. Lopez Pombo, and M.M. Moscato

3. Formulas defining the operator ∇:
x∇y = (x. ∼ π)& (y . ∼ ρ) ,
(x∇y) . ∼ (w∇z) = (x. ∼ w) & (y . ∼ z) ,
π∇ρ in iden .

4. A formula enforcing point-density:
all x | (x != ∅ && x in iden) => (some p | Point(p) && p in x) ,

5. Term 1 . (1∇1) & iden (to be abbreviated as idenU) defines a partial identity
on the set of urelements. Then, the following formula forces the existence of
a nonempty set of urelements:
1 .idenU .1 = 1

The inference rules for the closure fork calculus are those for classical first-order
logic (choose you favorite ones), plus the following equational (but infinitary)
proof rule for reflexive-transitive closure. Given i > 0, by xi we denote the
relation inductively defined as follows: x1 = x, and xi+1 = x.xi.

 iden in y xi in y
 xi+1 in y (Ω Rule)

 ∗x in y

The axioms and rules given above define a class of models. Proper PDOCFA
satisfy the axioms [4], and therefore belong to this class. It could be the case
that there are models for the axioms that are not proper PDOCFA. Fortunately,
the following theorem (which follows from [4], [3, Thm. 4.2], [9, Thm. 52]), states
that if a model is not a proper PDOCFA then it is isomorphic to one.

Theorem 1. Every PDOCFA A is isomorphic to a proper PDOCFA B. More-
over, there exist relations { 〈a0, a0〉 } , . . . , { 〈ai, ai〉 } . . . (possibly infinitely many
of them) that belong to B, such that iden = { 〈a0, a0〉 , . . . , 〈ai, ai〉 , . . . }.

Constraining Quantifiers to Atoms. Alloy quantifiers range over relations
of the form { a }, i.e., over unary singletons. On the other hand, relational quan-
tifiers range over the elements of a PDOCFA, which are not even required to be
relations (recall that PDOCFAs are just models of a set of axioms). But, since
PDOCFAs are all isomorphic to proper ones, a relational quantifier can always
be seen as ranging over all binary relations from a proper PDOCFA. Still a big
distance remains between unary singletons and arbitrary binary relations. It is
at least obvious that there are many more of the latter, than there are of the
former. Point-density, by forcing the existence of all singletons, allows us to es-
tablish a one-one correspondence between { a } and { 〈a, a〉 }. Therefore, we will
mimic the behavior of Alloy quantifiers by constraining relational quantifiers to
range over points. Notice that some points hold urelements, but others do not.
In this case, since Alloy atoms do not have structure (the structure is modeled
through fields), we will employ points holding urelements.

We will now consider the restricted part of the first-order language of
PDOCFAs defined by the following grammar:

F ::= Equation | !F | F1 || F2 | F1 && F2 |
::= all p / (Point(p) && p in idenU) implies F

Alloy Analyzer+PVS in the Analysis and Verification 593

Actually, in a PDOCFA we will have different sub relations of idenU, namely
iden1, . . . , idenk, representing each one a different Alloy signature sig1, . . . , sigk.
We will then use the following abbreviated notation for formulas. The formula
“all p | (Point(p) && p in iden i) implies F” is denoted as “all p : sigi | F”.
Similar abbreviations are used for the “some” quantifier.

3.2 A Complete Calculus for Alloy

In this section we introduce a mapping from Alloy formulas to formulas in the
language defined in Section 3.1. The mapping keeps the structure of Alloy for-
mulas almost unchanged, thus simplifying the understanding of the resulting
formulas by casual Alloy users. Since PDOCFAs only contain binary relations,
we will show how to model relations of arbitrary rank as binary ones, with the
aid of fork. We then prove that the resulting calculus is complete for Alloy.

Handling Relations of Rank Greater Than Two. Recall that due to the
fork operator, the underlying domain of a proper PDOCFA is closed under an
injective operation �. Given a n-ary relation R ⊆ A1 ×· · ·×An, we will represent
it by the binary relation

{ 〈a1, a2 � · · · � an〉 : 〈a1, . . . , an〉 ∈ R } .

This will be an invariant in the representation of n-ary relations by binary ones.
For instance, ternary relation knownAt is encoded as a binary relation knownAt
whose elements are pairs of the form 〈c, a � d〉 for c : Client , a : Address and
d : Domain . We will in general denote the encoding of a relation C as a binary
relation, by C. Given a point c : Client , the navigation of the relation knownAt
through c should result in a binary relation contained in Address × Domain .
Given a point a : t and a binary relation R encoding a relation of rank higher
than 2, we define the navigation operation • by

a • R =∼ π.Ran (a.R) .ρ . (1)

Operation Ran in (1) returns the range of a relation as a partial identity. It is
defined by Ran (x) = (x.1)&iden . Its semantics in terms of binary relations is
given by Ran (R) = { 〈a, a〉 : some b | 〈b, a〉 ∈ R }.

For a binary relation R representing a relation of rank less than or equal to
2, navigation is easier. Given a point a : t, we define

a • R = Ran (a.R) .

It still remains to define navigation whenever the relation on the left-hand side
is not a point, i.e., it has rank greater than 1. The definition is as follows:

R • S =

{
R. (iden⊗ (iden⊗ (· · · ⊗ ((iden⊗S) .π)))) if rank(S) = 1
R. (iden⊗ (iden⊗ (· · · ⊗ (iden⊗S)))) if rank(S) > 1

Going back to our example about agents, it is easy to check that for a point
c′ : Client such that c′ = { 〈c, c〉 },

c′ • knownAt = {〈a, d〉 : a ∈ Address , d ∈ Domain and 〈c, a � d〉 ∈ knownAt} .

594 M.F. Frias, C.G. Lopez Pombo, and M.M. Moscato

Translating Alloy Formulas to Relational Formulas. In this section we
present a translation of Alloy formulas to formulas in the language of PDOCFAs.
Prior to that, it is necessary to translate Alloy terms to fork-algebra terms.

T (C) = C, T (r+s) = T (r) + T (s),
T (xi) = Xi, (Xi variable ranging over points) T (r&s) = T (r)&T (s),
T (∼ r) = ∼ T (r), T (r − s) = T (r)&T (s),
T (∗r) = ∗T (r), T (r.s) = T (r) • T (s)

We are now in the right conditions for translating formulas. The translation
differs from the one previously presented in [5] in that the target of the transla-
tion is a first-order language rather than an equational language, and therefore
it is no longer necessary to encode quantified variables because these are kept
explicit. This will greatly improve the understandability of the translation by a
casual Alloy user.

F (t1 in t2) = T (t1) in T (t2), F (α && β) = F (α) && F (β),
F (!α) = !F (α), F (all x : S | α) = all x : S | F (α),
F (α || β) = F (α) || F (β), F (some x : S | α) = some x : S | F (α).

Recall that quantifications in the right-hand side are abbreviations for formulas
where quantifiers range over points of the appropriate signature. Notice that
formulas are undistinguishable from Alloy formulas.

Completeness of the Alloy Calculus. Formal semantics of Alloy assigns
semantics to expressions and formulas in a given environment. An environment
is a function that assigns sets to signatures, adequate relations to relational
constants (those arising from signature fields), and values to variables over indi-
viduals. From an Alloy environment e we build a PDOCFA Fe and a relational
environment e′ as follows:

– Let sig1, . . . , sigk be the Alloy signatures. Let A =
⋃

1≤i≤k e (sigi). Let T(A)
be the set of finite binary trees with information in the leaves, and whose
information are elements from A.

– Let Fe be the omega closure fork algebra with universe Pw (T(A) × T(A)). If
we denote the tree constructors by: leaf : A → T(A) and bin : T(A)×T(A) →
T(A), the fork operation is defined by

R∇S = { 〈a, bin(b, c)〉 : 〈a, b〉 ∈ R ∧ 〈a, c〉 ∈ S } .

Notice that the remaining operations have their meaning fixed once the
domain Pw (T(A) × T(A)) is fixed.

– Let e′ be the environment satisfying:
• e′(sigi) =

{
p ∈ Fe : Point(p) ∧ p ≤ idene(sigi)

}
,

• e′(R) = R (the binary encoding of relation e(R)),
• e′(vi) = { 〈e(vi), e(vi)〉 }.

Alloy Analyzer+PVS in the Analysis and Verification 595

Similarly, given a proper PDOCFA, and a relational environment e, we define an
Alloy environment e′ as follows:

– e′(sigi) =
{

a : 〈a, a〉 ∈ iden sigi

}
,

– e′(R) = { 〈a1, . . . , an〉 : 〈a1, a2 � · · · � an〉 ∈ e(R) },
– e′(vi) = a such that e(vi) = { 〈a, a〉 }.

From the previous definitions, the following lemmata can be proved by induction
on the structure of Alloy formulas. The proofs are not included due to the lack of
space, but follow the lines of previous interpretability results by the authors [3,5].

Lemma 1. Given an Alloy environment e, |= ϕ[e] ⇐⇒ Fe |= F (ϕ)[e′].

Lemma 2. Given a PDOCFA F and a relational environment e, there exists an
Alloy environment e′ such that for every Alloy formula ϕ, F |= F (ϕ)[e] ⇐⇒ |=
ϕ[e′].

We then prove the following completeness theorem. The turnstile symbol

stands for derivability in the calculus for PDOCFAs.

Theorem 2. Let Σ ∪ {ϕ } be a set of Alloy formulas. Then,

Σ |= ϕ ⇐⇒ { F (σ) : σ ∈ Σ }
 F (ϕ).

Proof. =⇒) If {F (σ) : σ ∈ Σ } � F (ϕ), then there exists a PDOCFA F such that
F |= {F (σ) : σ ∈ Σ } and F �|= F (ϕ). From Thm. 1 there exists a proper PDOCFA
F′ isomorphic to F. Clearly, F′ |= { F (σ) : σ ∈ Σ } and F′ �|= F (ϕ). Then, there is
a relational environment e such that F′ |= { F (σ) : σ ∈ Σ } [e] and F′ �|= F (ϕ)[e].
From Lemma 2, there exists an Alloy environment e′ such that |= Σ[e′] and
�|= ϕ[e′]. Thus, Σ �|= ϕ.
⇐=) If Σ �|= ϕ, then there exists an Alloy environment e such that |= Σ[e]
and �|= ϕ[e]. From Lemma 1 there exist a proper PDOCFA Fe and a relational
environment e′ such that Fe |= {F (σ) : σ ∈ Σ } [e′] and Fe �|= F (ϕ)[e′]. Then,
{F (σ) : σ ∈ Σ } � F (ϕ).

3.3 Comparing the Source and Target Formalisms

If the calculus introduced in Section 3.2 is to be used by Alloy users, then the
language should be as close as possible to Alloy. The translation of formulas
shows that the formulas result of applying the translation (we are not discussing
terms yet) are indeed Alloy formulas. It is clear that Alloy operations have a
direct algebraic counterpart. Thus, from a syntactical point of view, terms result
of the translation are also Alloy terms. There are a few points that need to be
addressed, though. Namely:

1. Atoms (which in Alloy are modeled as unary singletons { a }) are modeled
in the algebraic setting as singleton binary relations { 〈a, a〉 }.

2. More generally, relations that may have rank greater than 2 in Alloy, are
modeled in the algebraic setting as binary relations.

596 M.F. Frias, C.G. Lopez Pombo, and M.M. Moscato

In our experience it is seldom the case that two relations having rank greater
than 2 are composed. The most common situation arises when an atom is com-
posed with a relation of higher rank (a.R). We provide in Dynamite a theory for
fork algebras that includes proofs of the usual properties of composition, as for
instance

all R, S, T | R in S implies (R • T in S • T) && (T • R in T • S)monotonicity
all R, S, T | !Set(S) implies (R • S) • T = R • (S • T) associativity

Proving these properties requires using the full power of the calculus, including
quantifications over relations, which cannot even be expressed in Alloy. These are
part of the infrastructure provided by Dynamite. A user can prove particular in-
stances of (for example) monotonicity with respect to fields F1, F2, F3 (provided
by the Alloy model) by instantiating the previous properties. She can also prove
the property from scratch for the particular instances using Dynamite.

4 The Dynamite Tool

PVS [10] interacts with its users through the highly customizable text editor
EMACS. Dynamite is a tool developed by customizing both EMACS and PVS. In
Sections 4.1 and 4.2 we describe these customizations. In Section 4.3 we describe
the proof process a user would go through, showing how these adaptations make
the proof process more amenable.

4.1 Customizations Made on EMACS

EMACS is a highly customizable text editor. It is possible to run other appli-
cations from within EMACS. It is now possible to run the Alloy Analyzer on
a specific model in order to analyze a provided assertion. While the standard
scope for domains is 3, it is also possible for the user to choose new scopes. This
is extremely useful when adding lemmas whose proof has not yet been devel-
oped, to a theory. The new lemma can be checked within the theory both for
counterexamples and consistency with the aid of the Alloy Analyzer. Once PVS
has been started, it is possible to choose an Alloy model (a .als file) and an
extension of EMACS allows one to translate the Alloy model to an appropriate
PVS theory.

4.2 Customizations Made on PVS

PVS reads theories and shows proofs in its specific syntax. Even properties
written in Alloy, if one wants to prove them with the support of PVS, have to
be rewritten using the syntax PVS recognizes. We have modified the PVS pretty
printer in order to exhibit formulas using Alloy syntax. This will be shown with
an example in Section 5.

The PVS rule “case”, which allows one to introduce new hypotheses along
a proof, has also been modified. According to [10], if the current sequent is of
the form Γ
 Δ , then the rule “(case A)” generates the subgoals A, Γ
 Δ and

Alloy Analyzer+PVS in the Analysis and Verification 597

Γ
 A, Δ. The rule allows to use formula A as an extra hypothesis along the proof
of Δ, which has to be discharged later through a proof. Executing the modified
rule “case”, besides performing its regular duty of generating the appropriate
subgoals, also automatically analyzes formula A using the Alloy Analyzer.

4.3 A Proof Scenario

A development team has built an Alloy model for a critical domain, and has
already debugged it by automatically analyzing (using the Alloy Analyzer) some
appropriate assertions. Since the model will serve as a basis for the development
of a critical system, bounded analysis is not enough. The team then faces the
need to prove a given property about their model. Upon starting Dynamite, they
choose to upload the Alloy model. This generates (although they do not need
to know about it), the corresponding PVS theory, and the user can choose an
assertion to prove. Facts from the model are now available as axioms to be used
in proofs.

The proof then proceeds until a new hypothesis has to be introduced using
the PVS command “case”, in whose case the Alloy Analyzer is launched in the
background in order to check the hypothesis for counterexamples and consis-
tency. If a new lemma has to be added to the theory, then the Alloy Analyzer
can be used from within the framework in order to check for the existence of
counterexamples and for consistency, too.

5 A Case Study: A Formal Model of Addressing for
Interoperating Networks

In her paper [12], Zave presents a formal model of addressing for interoperating
networks. Part of the model is presented in Fig. 1. Domains can create persistent
connections between agents. Such connections are called hops. Besides the domain
that created it, a hop contains information about the initiator and acceptor agents
taking part in the connection, and also source and target addresses. A fact forces
these addresses to correspond to the agents (according to the domain map).

sig Hop{ domain: Domain,
initiator, acceptor: Agent,
source, target: Address }

Multi-hop connections are enabled by the servers. These connections are called
links. Links contain information about the server enabling the connection, and
about the connected hops.
abstract sig End { }
one sig Init, Accept extends End { }
sig Link{ agent:Server, oneHop,anotherHop:Hop, oneEnd,anotherEnd:End }
{ oneHop != anotherHop

oneEnd in Init => agent=oneHop.initiator
oneEnd in Accept => agent=oneHop.acceptor
anotherEnd in Init => agent=anotherHop.initiator
anotherEnd in Accept => agent=anotherHop.acceptor }

598 M.F. Frias, C.G. Lopez Pombo, and M.M. Moscato

The reflexive-transitive closure of the accessibility relation determined by links
is kept by an object “Connections”, which also keeps the relation established by
the links.

one sig Connections{ atomConnected, connected: Hop -> Hop }

Interoperation is considered a feature of networks. Features are installed in do-
mains and have a set of servers from that domain that implement them. Among
the facts related to features, we find that each feature has at least one server,
and that each server implements exactly one feature.

abstract sig Feature { domain: Domain, servers: set Server }

Interoperation features are then characterized as follows:

sig InteropFeature extends Feature{
toDomain: Domain,
exported, imported, remote, local: set Address,
interTrans: exported some -> some imported }

{ domain != toDomain
exported in domain.space && remote in exported
imported in toDomain.space && local in imported
remote.interTrans = local }

An interoperation feature translates addresses (through relation interTrans) be-
tween different domains. This is necessary because whenever a client from the
feature’s domain wishes to connect to a client attached to a different domain,
it must have a target address it can use in its own domain space. Of course,
the target client must have an address in each domain from which it is to be
reached. Different facts are introduced in [12] in order to fully understand an
interoperation feature behavior, and the following assertions are singled out:

– ConnectedIsEquivalence, asserting that field connected is indeed an equiv-
alence relation (reflexive, symmetric and transitive).

– UnidirectionalChains, asserting that two hops are connected through a
link in an ordered manner (one can be identified as initiator and the other
one as acceptor).

– Reachability, asserting that whenever a client c publishes an address a in
a domain d (〈a, d〉 ∈ c.knownAt), clients c′ from domain d can effectively
connect to c.

– Returnability, asserting that if a client c accepted a connection from an-
other client c′, then a hop from c can be extended to a complete connection
to client c′.

We proved these properties from the Alloy model using Dynamite. Without using
the modified pretty printer from PVS, the PVS specification of the returnability
predicate looks like this:

Alloy Analyzer+PVS in the Analysis and Verification 599

[!t]

FAL_Returnability :

|-------
{1} FORALL (hDm: (hop_domain), fDm: (feature_domain),

tDm: (toDomain), tar: (target), rem: (remote),
aCn: (atomConnected), con: (connected), oHp: (oneHop),
aHp: (anotherHop), rBy: (reachedBy), map: (map),
acc: (acceptor), srv: (servers), exp: (exported),
imp: (imported), loc: (local), iTr: (interTrans),
spc: (space), agn: (agent), oEd: (oneEnd),
aEd: (anotherEnd), ini: (initiator),
att: (attachments), src: (source)):

FORALL (g1, g2: (Client), h1, h2, h3: (Hop)):
Navigation_2(h1, ini)=g1 AND Navigation_2(h2, acc)=g2
AND Leq(composition(composition(h1, one), h2),

Navigation(cConnections, con))
AND Navigation_2(h3, ini)=g2
AND Navigation_2(h3, hDm)=Navigation_2(h2, hDm)
AND Navigation_2(h3, tar)=Navigation_2(h2, src)
IMPLIES
(EXISTS (h4: (Hop)):

Navigation_2(h4, acc)=g1 AND
Leq(composition(composition(h3, one), h4),

Navigation(cConnections, con)))

The modified pretty printer displays the same predicate to the user as follows:

FAL_Returnability :

|-------
{1} all g1,g2: Client, h1,h2,h3: Hop |

(h1.ini)=g1 AND (h2.acc)=g2 AND
(h1->h2) in (cConnections.con) AND
(h3.ini)=g2 AND (h3.hDm)=(h2.hDm) AND (h3.tar)=(h2.src)
IMPLIES
(some h4: Hop |

(h4.acc)=g1 AND (h3->h4) in (cConnections.con))

Notice that the pretty printed version closely resembles the Alloy definition.
Furthermore, it can even be compiled with the Alloy Analyzer.

We have shown that it is possible to make proofs within the presented calculus
with the aid of Dynamite. We now present some empirical data that will allow
readers to have a better understanding of the usability of the tool.

The proofs were carried on by a student who had just graduated, and had no
previous experience neither with Alloy, nor with PVS. The estimated time he
spent in order to master the proof process is the following. 5 days to learn Alloy’s
syntax and semantics. 15 days to learn PVS, including the understanding of the
proof rules. 40 days to prove all the assertions contained in the Alloy model. 15
days to prove the non trivial required lemmas about PDOCFAs. These lemmas
can be considered as infrastructure lemmas, that will be reused in future proofs.

Recall that relations of rank greater than 2 are encoded as binary ones. There-
fore, it may be necessary to prove properties that deal with the representation.
These are the only proofs that would not be completely natural to an Alloy user.
The proof of all the assertions in the model comprises 285 lemmas, of which only
12 use this kind of properties. Moreover, the 12 lemmas use actually 8 different
properties of the representation because 3 properties are used at least twice.

600 M.F. Frias, C.G. Lopez Pombo, and M.M. Moscato

Table 1. Distribution of the workload

Assertion Total Model Algebra Time
Lemmas Lemmas Lemmas (days)

ConnectedIsEquivalence 79 4 75 10
UnidirectionalChains 52 28 24 5
Reachability 121 62 59 23
Returnability 113 66 47 17

Table 1 shows some numerical information about the proofs of the specific
assertions. Notice that the sum of the total of lemmas amounts to 365. Therefore,
365 − 285 = 80 lemmas were re-used in the proof of different assertions.

6 Discussion

Abstracting from Alloy and PVS, our work can be described as a combination of a
counterexample extractor with a semi-automatic theorem prover. This topic has
been addressed by several researchers. Among the most relevant contributions we
cite [8]. In [8], rather than focusing on providing theorem-proving capabilities
to a lightweight formal method, the authors use model checking in order to
look for counterexamples before (and during) the theorem proving process. This
covers part (but not all) of our intentions when combining Alloy and PVS. In
[11], alternative and more ambitious ways of combining model checking and
theorem proving are presented. Model checkers and theorem provers interact
using the latter for local deductions and propagation of known properties, while
the former are employed in order to calculate new properties from reachability
predicates or their approximations. Being Alloy models static, it is not clear how
to employ these techniques, but it is clearly a road that we will explore in the
near future. There are two approaches that we are aware of in what respects
to theorem proving of Alloy assertions. One is the theorem prover Prioni [2].
Prioni translates Alloy specifications to first-order formulas characterizing their
first-order semantics, and then the first-order logic theorem prover Athena [1] is
used in order to prove the resulting theorem. While the procedure is sound, it
is not completely amenable to Alloy users. Switching from a relational to a non
relational language poses an overhead on the user. The other theorem prover
is the one presented in [5]. This theorem prover translates Alloy specifications
to a close relational language based on binary relations (the calculus for omega
closure fork algebras [3]). Since the resulting framework is an equational calculus,
quantifiers were removed from Alloy formulas in the translation process. This
lead to very complicated equations, far from what an Alloy user would expect.

References

1. Arkoudas K., Type-ω DPLs, MIT AI Memo 2001-27, 2001.
2. Arkoudas K., Khurshid S., Marinov D. and Rinard M., Integrating Model Check-

ing and Theorem Proving for Relational Reasoning, in Proceedings of RelMiCS’03
(Relational Methods in Computer Science), LNCS, Springer, 2003.

Alloy Analyzer+PVS in the Analysis and Verification 601

3. Frias M., Fork Algebras in Algebra, Logic and Computer Science, World Scientific
Publishing Co., Series Advances on Logic, 2002.

4. Frias, M. F., Haeberer, A. M. and Veloso, P. A. S., A Finite Axiomatization for
Fork Algebras, Logic Journal of the IGPL, Vol. 5, No. 3, 311–319, 1997.

5. Frias M.F., López Pombo C.G. and Aguirre N., A Complete Equational Calculus for
Alloy, in Proceedings of Internacional Conference on Formal Engineering Methods
(ICFEM’04), Seattle, USA, November 2004, Lecture Notes in Computer Science
3308, Springer-Verlag, 2004, pp. 162–175.

6. Frias M.F., López Pombo C.G. and Moscato M.M., Dynamite: Alloy Ana-
lyzer+PVS in the Analysis and Verification of Alloy Specifications, in Proceedings
of the First Alloy Workshop (Daniel Jackson and Pamela Zave Eds.), colocated
with 14th ACM Symposium on Foundations of Software Engineering, 2006, to
appear.

7. Jackson, D., Shlyakhter, I., and Sridharan, M., A Micromodularity Mechanism.
Proc. ACM SIGSOFT Conf. Foundations of Software Engineering/European Soft-
ware Engineering Conference (FSE/ESEC ’01), Vienna, September 2001.

8. Kong W., Ogata K., , Seino T., and Futatsugi K., A Lightweight Integration of The-
orem Proving and Model Checking for System Verification, in Proc. of APSEC’05,
IEEE.

9. Maddux, R. D., Pair-Dense Relation Algebras, Transactions of the AMS, Vol. 328,
N. 1, 1991.

10. Shankar N., Owre S., Rushby J. M., and Stringer-Calvert D. W. J., PVS Prover
Guide. Computer Science Laboratory, SRI International, Menlo Park, CA, Sep-
tember 1999.

11. Shankar N., Combining Theorem Proving and Model Checking through Symbolic
Analysis, in Proc. of CONCUR 2000, LNCS, Springer, 2000.

12. Zave, P., A Formal Model of Addressing for Interoperating Networks, in Proceedings
of the Thirteenth International Symposium of Formal Methods Europe, Springer-
Verlag LNCS 3582, pages 318-333, 2005.

Combined Satisfiability

Modulo Parametric Theories

Sava Krstić1, Amit Goel1, Jim Grundy1, and Cesare Tinelli2

1 Strategic CAD Labs, Intel Corporation
2 Department of Computer Science, The University of Iowa

Abstract. We give a fresh theoretical foundation for designing com-
prehensive SMT solvers, generalizing in a practically motivated direc-
tion. We define parametric theories that most appropriately express the
“logic” of common data types. Our main result is a combination theorem
for decision procedures for disjoint theories of this kind. Virtually all of
the deeply nested data structures (lists of arrays of sets of . . .) that arise
in verification work are covered.

1 Introduction

Formal methods for hardware or software development require checking valid-
ity (or, dually, satisfiability) of formulas in logical theories modeling relevant
datatypes. Satisfiability procedures have been devised for the basic ones—reals,
integers, arrays, lists, tuples, queues, and so on—especially when restricted to
formulas in some some quantifier-free fragment of first-order logic. Thanks to a
seminal result by Nelson and Oppen [11], these basic procedures can often be
modularly combined to cover formulas that mingle several datatypes.

Most research on Satisfiability Modulo Theories (SMT) has traditionally used
classical first-order logic as a foundation for defining the language of satisfiability
procedures, or SMT solvers, and reasoning about their correctness. However, the
untypedness of this most familiar logic is a major limitation. It unnecessarily
complicates correctness arguments for combination methods and restricts the
applicability of sufficient conditions for their completeness. Thus, researchers
have recently begun to frame SMT problems directly in terms of richer typed
logics and to develop combination results for these logics [21,4,24,15,3,6]. Ahead
of the theory, solvers supporting the PVS system [19], solvers of the CVC family
[2], and some others adopted a typed setting early on.

The SMT-LIB initiative, an international effort aimed at developing common
standards for the SMT field, proposes a version of many-sorted first-order logic
as an initial underlying logic for SMT [16]. We see this as a step in the right
direction, but only the first one, because the many-sorted logic’s rudimentary
type system is still inadequate for describing and working with typical cases of
combined theories and their solvers. For example, in this logic one can define a
generic theory of lists using a sort List for the lists and the sort E for the list
elements. Then, a theory of integer lists can be defined formally as the union

O. Grumberg and M. Huth (Eds.): TACAS 2007, LNCS 4424, pp. 602–617, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Combined Satisfiability Modulo Parametric Theories 603

of the list theory with the integer theory, modulo the identification of the sort
E with the integer sort of the second theory. This combination mechanism gets
quickly out of hand if we want to reason about, say, lists of arrays of lists of
integers, and it cannot be used at all to specify arbitrarily nested lists. Because
of the frequent occurrence of such combined datatypes in verification practice,
this is a serious shortcoming.

Fortunately, virtually all structured datatypes arising in formal methods are
parametric, the way arrays or lists are. Combined datatypes like those mentioned
above are constructed simply by parameter instantiation. For this reason, we
believe that any logic for SMT should directly support parametric types and,
consequently, parametric polymorphism. The goal of this paper is to provide a
Nelson-Oppen-style framework and results for theories combinable by parameter
instantiation.

The key concept of parametric theory can likely be defined in various logics
with polymorphic types. We adopt the higher-order logic of the theorem provers
HOL [7], HOL Light [9], and Isabelle/HOL [14]. It is well studied and widely
used, and has an elegant syntax and intuitive set-theoretic semantics.

Integration of SMT solvers with other reasoning tools, in particular with in-
teractive provers, is a topic of independent interest [5,1] with a host of issues,
including language compatibility [8]. This paper contributes a solid theoretical
foundation for the design of HOL-friendly SMT solvers.

Finally, a striking outcome of this work is that in practically oriented (that is,
dealing with common datatypes) SMT research, the vexatious stable infiniteness
condition of the traditional Nelson-Oppen approach does not need to be men-
tioned. Its role is played by a milder flexibility condition that, by our results, is
automatically satisfied for all fully parametric theories.

Related Work. Observations that the congruence closure algorithm of [12] effec-
tively translates a first-order goal into HOL via currying, and that the solver for
algebraic datatypes of [3] actually works for lists of lists and the like, were key
to the unveiling of parametric HOL theories.

Like all other work on combining SMT solvers for disjoint theories, from [11]
on, our approach is based on inter-solver propagation of constraints over a com-
mon language. Similarly to [22], the constraints also involve cardinalities, so our
method can manage both infinite and finite datatypes. The purification proce-
dure that transforms the input query in the mixed language of several solvers into
pure parts is more involved here than anywhere else because of the complexity
brought by the rich type system.

We give model-theretical correctness arguments, analogous to those used in
other modern treatments of Nelson-Oppen combination, from [18,20] to the re-
cent work [6] which also tackles some non-disjoint combinations. However, in
the completeness proof, we rely on the parametricity of the types modeled by
the component theories, not on the theories’ stable infiniteness. This difference
has important practical consequences. While our results do not subsume exist-
ing results nor are subsumed by them, they apply more widely because most of
the datatypes relevant in applications are described by theories that satisfy our

604 S. Krstić et al.

parametricity requirements without necessarily satisfying the stable infiniteness
requirements of other combination methods.

In this, our approach is closely related to the recent work of Ranise et al. [15].
They present an extension of the Nelson-Oppen method in which a many-sorted
theory S modeling a data structure like lists or arrays can be combined with
an arbitrary theory T modeling the elements of the data structure. The the-
ory S is required to satisfy a technical condition (“politeness”) for each element
sort. This corresponds to our requiring that the data structure be a parametric
type with flexibility conditions. (More specifically, the “smoothness” and “finite
witnessability” parts of politeness correspond to our up-flexibility and down-
flexibility, the latter being significantly weaker than its counterpart in [15].) The
results in [15] can be extended in principle to more than two theories by incre-
mental pairwise combinations. However, as we argued, many-sorted logic is not
well-suited for working with elaborate combinations of theories, while in a logic
with parametric types such combinations are straightforward. In particular, our
main result about combination of multiple pairwise disjoint parametric theories,
would be difficult even to state in the language of [15]. Yet, the important insight
that it is parametricity and not stable infiniteness that justifies Nelson-Oppen
cooperation of common solvers is already in [15]; we have given it full expression.

Outline. In Section 2, reviewing the standard HOL material, we define the
syntactic concept of signatures, and their semantic counterpart, structures. In
Section 3, we introduce the crucial (fully) parametric structures, which are es-
sentially collections of polymorphic constants with uniform behavior specified
by relational parametricity. In Section 4, we discuss satisfiability in parametric
structures and a process that corresponds to the familiar reduction of satisfi-
ability of arbitrary quantifier-free formulas to sets of literals. In Section 5, we
describe the algorithm for combining solvers and identify conditions under which
it is complete. All proofs, omitted for lack of space, can be found in the accom-
panying technical report [10].

2 Syntax and Semantics of Higher Order Logic

We give a brief account of the standard syntax and semantics of higher-order
logic, similar to that given by Pitts for the logic of the HOL theorem prover [7].
Much of it has been formalized by Harrison in a “HOL in HOL” fashion [9].

2.1 Syntax of HOL Types and Terms

The syntactic world of HOL types is built using type operators and type
variables. Each type operator has a non-negative arity. Given a set O of type
operators, the set TypeO is the smallest set containing all type variables and
expressions of the form F (σ1, . . . , σn), where F ∈ O has arity n and σi ∈ TypeO.
The set of type variables occurring in σ will be denoted tyvar(σ).

A type instantiation is a finite map from type variables to types. The nota-
tion [σ1/α1, . . . , σn/αn] is for the finite map that takes α1, . . . , αn to σ1, . . . , σn.

Combined Satisfiability Modulo Parametric Theories 605

For any type σ and type instantiation θ, θ(σ) denotes the simultaneous substi-
tution of every occurrence of αi in σ with σi. We say that τ is an instance of
σ and write τ � σ if there is some θ such that τ = θ(σ). Clearly, θ(σ) = θ′(σ)
holds if and only if θ and θ′ agree on tyvar(σ). Thus, if τ � σ, then there is a
unique minimal type instantiation that maps σ to τ ; its domain is tyvar(σ) and
it will be denoted [τ//σ].

A HOL signature Σ = 〈O | K〉 consists of a set O of type operators and a
set K of typed constants. Each constant kσ ∈ K is a pair of a symbol k and
a type σ ∈ TypeO, with no two constants sharing the same symbol. Let K+ be
the set of all pairs (also called constants) kτ where kσ ∈ K and τ � σ.

The standard boolean connectives and equality make up the signature ΣEq:1

ΣEq = 〈Bool, ⇒ | =α2⇒Bool, trueBool, falseBool, ¬Bool⇒Bool, ∧Bool2⇒Bool, . . .〉
The constants of ΣEq will be called logical. From now on we will assume that
every signature we consider includes ΣEq. When—as in the following examples—
we write a concrete signature Σ = 〈O | K〉, we will tacitly assume that the
ΣEq-part is there, even if it is not explicitly shown.

Example 1. Here are some familiar signatures.

ΣInt = 〈Int | 0Int, 1Int, (−1)Int, . . . ,+Int2⇒Int,−Int2⇒Int, ×Int2⇒Int,≤Int2⇒Bool, . . .〉
ΣArray = 〈Array | mk arrβ⇒Array(α,β), read[Array(α,β),α]⇒β , write[Array(α,β),α,β]⇒Array(α,β)〉
ΣList = 〈List | cons[α,List(α)]⇒List(α), nilList(α), headList(α)⇒α, tailList(α)⇒List(α)〉
ΣMonoid = 〈Monoid | 1Monoid, ∗Monoid2⇒Monoid〉

The arity of a constant kσ ∈ K is the number m from the unique expression of
σ in the form [σ1, . . . , σm] ⇒ τ , where τ is not a function type. If all σi are non-
function types too, we will say that the constant is algebraic. All signatures
in Example 1 are algebraic in the sense that all their constants are such.

The set TermΣ of HOL terms over a signature Σ is defined by the rules in
Figure 1. The four rules classify terms into variables, constants, applica-
tions, and abstractions. The rules actually define the set of term-type pairs
M : σ, which we read as “term M has type σ”. By structural induction, every
term has a unique type. Non-typeable expressions like vσuσ are not considered
to be terms at all.

Each occurrence of a variable in a term is free or bound, by the usual
inductive definition. We regard two terms M and N as equal if they are equal
up to renaming of bound variables. The set of free variables occurring in M is
denoted var(M). We define tyvar(M) to be the set of type variables occurring
in the type of any variable or constant subterm of M .

2.2 Semantics of Types

Type operators of arity n are interpreted as n-ary set operations—functions
Un → U , where U is a suitably large universe of sets. Fixing such an
1 By convention, [α2, β] ⇒ γ is α ⇒ α ⇒ β ⇒ γ, and ⇒ associates to the right.

606 S. Krstić et al.

vσ : σ

kτ ∈ K+

kτ : τ

M : σ ⇒ τ N : σ

M N : τ

M : τ

λvσ. M : σ ⇒ τ

Fig. 1. Typing rules for HOL terms

interpretation that associates with every F ∈ O a set operation [F], we define the
interpretation of σ ∈ TypeO in Figure 2. The interpretation of a type σ in
a type environment ι—a finite map from type variables to U —is a set �σ� ι,
“the meaning of σ in ι”. The set �σ� ι is defined when tyvar(σ) ⊆ dom(ι) and
will be unchanged if ι is replaced with ι′ as long as ι and ι′ agree on tyvar(σ).
(Here and in what follows, dom is used to denote the domain of a finite map.)

�α� ι = ι(α) for every α ∈ dom(ι)

�F (σ1, . . . , σn)� ι = [F]
�
�σ1� ι, . . . , �σn� ι

�

Fig. 2. Interpretation of HOL types

Common type operators usually come with a unique intended interpretation,
so it becomes awkward to make a notational distinction between F and [F]. But,
for the sake of clarity, we will distinguish syntax from the semantics. For constant
types (0-ary type operators) Unit, Bool and Int we will use [Unit] = � = {∗},
[Bool] = � = {true, false} and [Int] = �. The symbols ⇒ and ⇒⇒⇒⇒⇒⇒⇒⇒⇒ will be used for
the syntactic type operator and the full function space set operation it represents;
that is, we have [⇒] = ⇒⇒⇒⇒⇒⇒⇒⇒⇒. Similar convention holds for the Cartesian product
and disjoint sum operators × and +, and operations ×××××××××, +++++++++. The unary type
operator List is interpreted as the set operation ListListList, where ListListList(A) is the set of
finite lists with elements in the set A.

The meaning of an instantiated type in some environment is the same as
that of the original type in an appropriately updated environment. Precisely,
if τ = θ(σ), then �τ� ι = �σ� ι′, where ι′ is defined by ι′(α) = �θ(α)� ι. The
environment ι′ will be denoted θ·ι. (See Figure 3 for its use.) For example, if
σ = (α ⇒ β), τ = (γ ⇒ γ ⇒ Bool), and ι = [X/γ], then ι′ = [X/α, (X ⇒⇒⇒⇒⇒⇒⇒⇒⇒ �)/β].

2.3 Semantics of Terms

Suppose now an interpretation �σ� for σ ∈ TypeO is given as in Section 2.2.
We define an indexed element of �σ� to be a family of elements a ι indexed
by type environments ι whose domains contain tyvar(σ); the requirements are
that a ι ∈ �σ� ι and and that a ι = a ι′ when ι and ι′ agree on tyvar(σ). For
example, the list length function len is an indexed element of �List(α) ⇒ Int�;
for every ι with ι(α) = A, len ι is the concrete length function lenA, an element
of ListListList(A)⇒⇒⇒⇒⇒⇒⇒⇒⇒�. Similarly, the identity function is an indexed element of �α ⇒ α�,
but note that there are no “natural” indexed elements of �α ⇒ β�.

Combined Satisfiability Modulo Parametric Theories 607

Given an arbitrary signature Σ = 〈O | K〉, a Σ-structure S consists of

– an arity-respecting assignment Stypeop that maps every F in O to a set op-
eration [F], as in Section 2.2;

– an assignment Sconst of an indexed element [kσ] of �σ� to every kσ in K.2

We stipulate that the type operators Bool and ⇒, as well as boolean connec-
tives and the equality predicate be always assigned their standard meanings.
For example, [∧Bool2⇒Bool] ι is the conjunction operation on booleans for all type
environments ι. Also, [=α2⇒Bool] ι is always the identity relation on the set ι(α).
In other words, there is only one ΣEq-structure we care about, and it is “part
of” all Σ-structures that include it.

Example 2. For signatures associated with datatypes, we normally associate a
unique structure. Referring to Example 1, this is clear for ΣInt. For ΣArray, we
define [Array](X, Y) to be the set of functions from X to Y that give the same
result for all but finitely many arguments; the interpretation of the constants is
obvious. For ΣList there is an issue with partiality of head and tail, which can be
resolved, for example, by defining [headList(α)⇒α] ι to be an arbitrary element of
ι(α). (See Example 5 below for better solutions.) Unlike these examples, there
are multiple ΣMonoid-structures of interest; every monoid gives us one.

Interpretation of terms requires two environments: one for type variables and
one for the free term variables. For example, the meaning of the ΣEq-term
λuα⇒β . uα⇒βvα in the pair of environments 〈[�/α,�/β], [0/vα]〉 is the func-
tion that maps its argument f ∈ (�⇒⇒⇒⇒⇒⇒⇒⇒⇒ �) to f(0). To make this precise, define
first, for a given type environment ι, a term environment over ι to be any
finite map that associates to each variable vσ in its domain an element of the set
�σ� ι. Then, for any term M , an environment for M is a pair 〈ι, ρ〉, where ι is
a type environment such that tyvar(M) ⊆ dom(ι) and ρ is a term environment
over ι such that var(M) ⊆ dom(ρ).

Given a Σ-structure, a Σ-term M of type σ, and an environment 〈ι, ρ〉 for
M , the interpretation of M is an element �M�〈ι, ρ〉 of the set �σ� ι defined
inductively by the equations in Figure 3. The interpretation of a variable vτ is
found by consulting the term environment ρ. To interpret a constant kτ , which
must be an instance of a unique kσ ∈ K, we transform ι from a type environment
for τ to the type environment [τ//σ]·ι for σ (see the last paragraph of Section 2.2),
whereupon we can find the interpretation for kτ using the function [kσ] supplied
by the Σ-structure. The interpretations of applications and abstractions are
straightforward. The notation ρ[vσ �→x] is for the environment that maps vσ to
x, and is otherwise equal to ρ. It is easy to check that �M�〈ι, ρ〉 is determined
by the restriction of ι and ρ to tyvar(M) and var(M) respectively.

2 The proper notation would be [F]S , [kσ]S , �σ�S , but the structure S will always be
understood from the context.

608 S. Krstić et al.

�vτ�〈ι, ρ〉 = ρ(vτ) �M N�〈ι, ρ〉 =
�
�M�〈ι, ρ〉

��
�N�〈ι, ρ〉

�

�kτ �〈ι, ρ〉 = [kσ]([τ//σ]·ι) �λvσ. M�〈ι, ρ〉 = λλλλλλλλλx ∈ �σ� ι. �M�〈ι, ρ[vσ �→x]〉

Fig. 3. Interpretation of HOL terms

3 Parametric Structures

The uniformity exhibited by commonly used polymorphic type operators and
constants is not captured by the semantics in Section 2, but has been formalized
by the notion of relational parametricity [17,23]. It leads us to the concept of fully
parametric structures and gives us powerful techniques, based on the Abstraction
Theorem [17] to reason about them. See [10] for full statements and proofs of
results needed in this paper.

3.1 Relational Semantics

A parametric set operation is a pair consisting of a set operation G and
an operation G� on relations such that if R1 : A1 ↔ B1, . . . , Rn : An ↔ Bn, then
G�(R1, . . . , Rn) : G(A1, . . . , An) ↔ G(B1, . . . , Bn). It is also required that G� be
functorial on bijections: G�(R1, . . . , Rn) must be a bijection if the Ri are all bijec-
tions, and the identities G�(R1, . . . , Rn) ◦ G�(S1, . . . , Sn) = G�(R1 ◦ S1, . . . , Rn ◦
Sn) and G�(idA1 , . . . , idAn) = idG(A1,...,An) must hold, where Ri : Ai ↔ Bi and
Si : Bi ↔ Ci are arbitrary bijections and idA denotes the identity relation on A.
Note that the conditions are meaningful when n = 0: every set G together with
G� = idG is a parametric 0-ary set operation.

Informally, we will say that a set operation G is parametric if there is a G�

such that (G, G�) is a parametric set operation.

Example 3. ListListList is parametric: for a given relation R : A ↔ B, the relation
ListListList�(R) : ListListList(A) ↔ ListListList(B) is the generalization of the familiar map func-
tion. The binary set operations ××××××××× and ⇒⇒⇒⇒⇒⇒⇒⇒⇒ are also parametric: given relations
R1 : A1 ↔ B1 and R2 : A2 ↔ B2, the relation R1 ×××××××××� R2 : A1 ××××××××× A2 ↔ B1 ××××××××× B2
relates 〈x1, x2〉 with 〈y1, y2〉 iff 〈x1, y1〉 ∈ R1 and 〈x2, y2〉 ∈ R2; the rela-
tion R1 ⇒⇒⇒⇒⇒⇒⇒⇒⇒� R2 : (A1 ⇒⇒⇒⇒⇒⇒⇒⇒⇒ B1) ↔ (A2 ⇒⇒⇒⇒⇒⇒⇒⇒⇒ B2) relates f1 with f2 iff for every x1, x2,
〈x1, x2〉 ∈ R1 implies 〈f1(x1), f2(x2)〉 ∈ R2.

Let ι1 and ι2 be two type environments with equal domains. An environment
relation R : ι1 ↔ ι2 is a collection of relations R(α) : ι1(α) ↔ ι2(α), for each
α in the domain of ι1 and ι2. The identity relation id ι : ι ↔ ι is defined by
id ι(α) = id ι(α).

Suppose O is a set of type operators, and that for each F ∈ O the set op-
eration [F] is parametric, with the relational part denoted [F]�. Then for any
type σ and a relation R : ι1 ↔ ι2 between type environments whose domain
contains tyvar(σ), there is an induced relation �σ�� R : �σ� ι1 ↔ �σ� ι2, defined
in Figure 4. It is easy to prove that �σ�� id ι = id �σ� ι holds for every σ, the result
known as Identity Extension Lemma [17].

Combined Satisfiability Modulo Parametric Theories 609

�α�� R = R(α)

�F (σ1, . . . , σn)�� R = [F]�(�σ1�
� R, . . . , �σn�� R)

Fig. 4. Relational type semantics

An indexed element a of �σ� is called parametric if

〈a ι1, a ι2〉 ∈ �σ�� R for every relation R : ι1 ↔ ι2. (1)

Example 4. Let us check that len is a parametric indexed element of �List(α) ⇒
Int�. Pick a relation R : [A/α] ↔ [B/α] between type environments, i.e., R(α) is
some relation r : A ↔ B. By definition len [A/α] is the concrete length function
lenA ∈ ListListList(A)⇒⇒⇒⇒⇒⇒⇒⇒⇒�; and similarly len [B/α] = lenB . To verify the condition (1),
we need to check that 〈lenA, lenB〉 ∈ �List(α) ⇒ Int�� R. By the equations in
Figure 4, the relation on the right is equal to map(r)⇒⇒⇒⇒⇒⇒⇒⇒⇒� id�. By the definition of
⇒⇒⇒⇒⇒⇒⇒⇒⇒�, we need to check that for every x ∈ ListListList(A), y ∈ ListListList(B) such that 〈x, y〉 ∈
map(r) one must have lenA(x) = lenB(y)—which is true.

Example 5. Standard interpretations of constants in ΣList and ΣArray are para-
metric, except for the partiality of head and tail. This can be fixed by giving
head the type Listα ⇒ α + Unit or Listα ⇒ α ⇒ Bool, and similarly for tail.

3.2 Fully Parametric Structures

Polymorphic equality is not parametric! Indeed, given R : A ↔ B, condition (1)
says: if 〈x, y〉, 〈x′, y′〉 ∈ R, then (x =A x′) ⇔ (y =B y′) [23]. This condition
is not true in general, but holds if and only if R is a partial bijection. To ac-
count for this limited parametricity of equality, we define a set operation G to
be fully parametric if G� is functorial on partial bijections. We also define
an indexed element a to be fully parametric if (1) holds for all partial bi-
jections R. (Thus, to specify a fully parametric set operation G, one need define
G�(R1, . . . , Rn) only for the case where all the Ri are partial bijections.)

Note that the “Reynolds parametricity” defined in Section 3.1 and full para-
metricity are incomparable: to get from the former to the latter, we strengthened
the functoriality condition and weakened the condition (1) on elements.

The following definition is crucial. An 〈O | K〉-structure S is fully paramet-
ric if Stypeop(F) is a fully parametric set operation for every F ∈ O − {⇒} and
Sconst(kσ) is a fully parametric indexed element for every kσ ∈ K.

The function space operation ⇒⇒⇒⇒⇒⇒⇒⇒⇒ is not fully parametric; for example, if
R : A → A′ is an injection, then R⇒⇒⇒⇒⇒⇒⇒⇒⇒� idB : (A ⇒⇒⇒⇒⇒⇒⇒⇒⇒ B) ↔ (A′ ⇒⇒⇒⇒⇒⇒⇒⇒⇒ B) is not a
partial bijection. Fortunately, this is an exception.

Lemma 1. The structures corresponding to the following datatypes are fully
parametric: datatypes with 0-ary type constructors (such as Bool, Int, etc.); all
algebraic datatypes (including sums, products, lists); arrays; sets; and multisets.

610 S. Krstić et al.

In Section 5, we will see that full parametricity legitimizes structures’ participa-
tion in the Nelson-Oppen combination algorithm.

4 HOL Theories and Satisfiability

In HOL, formulas are simply terms of type Bool. If φ is a Σ-formula, S is
a Σ-structure, and e = 〈ι, ρ〉 is an environment for φ, we write e |= φ as an
abbreviation for �φ� e = true. We say that φ is S-satisfiable if e |= φ for some
e, in which case we also say that the environment e is a model for φ. When Φ
is a set of formulas (for which we will use the term query), we write e |= Φ to
mean that e |= φ holds for all φ ∈ Φ.

We will need to discuss satisfiability in models with specified cardinality, so
let the “equality” σ

.= n denote a cardinality constraint: by 〈ι, ρ〉 |= σ
.= n

we mean that the set �σ� ι has n elements.
Similarly, we will consider type constraints of the form α

.= σ and vari-
able constraints of the form uσ .= vτ . By definition, 〈ι, ρ〉 |= α

.= σ holds iff
ι(α) = �σ� ι, and 〈ι, ρ〉 |= uσ .= vτ holds iff �σ� ι = �τ� ι and ρ(uσ) = ρ(vτ).

Example 6. Consider the SEq-queries {f(f(f x)) = x, f(f x) = x, f x �= x} and
{f x = g x, g x = h x, f �= g, g �= h, h �= f}, where f, g, h are variables of type
α ⇒ α and x is one of type α. The first query is unsatisfiable. The second query
is satisfiable, but is not simultaneously satisfiable with the cardinality constraint
α

.= 2. (E.g., there are only two functions � → � that map true to false .)

A Σ-theory is a set of Σ-structures. If T is a Σ-theory, we say that a formula
φ is T -satisfiable if it is S-satisfiable for some S ∈ T .

The theories TInt, TList, TArray (Examples 1 and 2) are each the theory of a
single structure: SInt, SList, SArray respectively. On the other hand, TMonoid is the
theory of all monoids. From now on, we assume that every theory is defined by
a single algebraic structure, since such theories are of greatest practical interest.

By a solver we will mean a sound and complete satisfiability procedure for
Σ-queries whose formulas belong to a specified subset (fragment) of TermΣ .
For example, integer linear arithmetic is the ΣInt-fragment consisting of boolean
combinations of linear equalities and inequalites, and the integer linear program-
ming algorithms can be seen as solvers for this fragment. Solvers that can check
satisfiability with cardinality constraints will be called strong.

We will concern ourselves only with subfragments of the applicative frag-
ment of theories, where a Σ-term is called applicative if it contains no subterms
that are abstractions and all occurrences of constants are fully applied. The lat-
ter means that every occurrence of a constant kτ is part of a subterm of the
form kτ M1 · · · Mm, where m is the constant’s arity. Define also the algebraic
fragment to consist of all applicative terms that do not contain any occurrences
of subterms of the form xN , where x is a variable (“uninterpreted function”).

In the rest of this section we will narrow down the applicative fragment to
a subfragment whose queries have a particularly simple form. First, we mini-
mize the size of the formulas occurring in the query at the price of increasing

Combined Satisfiability Modulo Parametric Theories 611

the number of formulas in the query. Second, we do away with the proposi-
tional complexity of the query by case splitting over boolean variables. Finally,
with a substitution, we remove equalities between variables from the query. This
reduction will further ease our reasoning, and will incur no cost in generality.

Lemma 2. Every applicative query over 〈O | K〉 is equisatisfiable with a query
all of whose formulas are atomic, i.e. have one of the following forms:

(A) x0 = k x1 . . . xn, where k ∈ K+ has arity n

(B) x0 = x1 x2

where the xi are variables. Also, an algebraic query is equisatisfiable with a query
whose formulas all have the form (A).

Transforming an applicative formula into a set of atomic formulas is done sim-
ply by introducing proxy variables for subterms, a process often called vari-
able abstraction. For example, (f x 1 ≥ 1) ∨ (x = 1) is equisatisfiable with: (A)
y = 1, p = (z ≥ y), q = (x = y), r = p ∨ q, r = true; (B) g = f x, z = g y.

An arrangement is a query determined by a set V of variables of the same
type and an equivalence relation ∼ on V . For every x, y ∈ V , the arrangement
contains either x = y or x �= y, depending on whether x ∼ y holds or not. The
arrangement that forces all variables in V to be distinct will be denoted Dist(V).

Suppose now Φ is a set of atomic formulas and let Xσ be the set of variables
of type σ that occur in Φ. Let Eσ be the subset of Φ consisting of formulas of
the form z = (x = y), where x, y ∈ Xσ. We can assume that EBool is empty
by using the alternative way z = (x ⇔ y) of writing z = (x = y). We can also
assume that for every σ �= Bool and every x, y ∈ Xσ there exists z such that
z = (x = y) occurs in Eσ; just add this equality with a fresh z if necessary.

There are finitely many substitutions ξ : XBool → {true, false} and Φ is satis-
fiable iff some ξ(Φ) is. Let Φ0 be the subset of Φ consisting of formulas (A) in
which k is a boolean connective. Note that for any ξ, the query ξ(Eσ) is either
unsatisfiable, or equivalent to an arrangement on Xσ. Searching for a model for
Φ, we can enumerate all ξ such that ξ(Φ0) is satisfiable, and every ξ(Eσ) is an
arrangement. Thus, we will have a solver for all applicative T -queries as soon as
we have a solver for almost-reduced queries that consist of

– arrangements Δσ for every type σ �= Bool that occurs in the query
– the set ΔBool containing x = true or x = false for every x ∈ XBool

– non-logical atomic formulas (where constants k in (A) are not logical)

Observe finally that for every almost-reduced query there is an equisatisfiable
reduced query in which (1) Δσ = Dist(Xσ) for every σ �= Bool and (2) there are
only two variables of type Bool—say � and �—and two equations in ΔBool, namely
� = true and � = false. Indeed, we can bring a given almost-reduced query to
this simpler form by choosing a representative for each class of the arrangements
Δσ and then replacing every occurrence of x ∈ Xσ with its representative.

612 S. Krstić et al.

Example 7. Let T = T1 + T2, where T1 = TInt and T2 = T× is the simple para-
metric theory of pairs over the signature

Σ× = 〈× | 〈-, -〉[α,β]⇒α×β
, fstα×β⇒α, sndα×β⇒β〉.

Consider the query Φ = {x2 = 〈snd(snd x3), x1 x2〉, fst(snd x3) > 0} whose vari-
ables are typed as follows: x1 : ω × Bool ⇒ Bool; x2 : ω × Bool; x3 : ω × (Int × ω),
where ω is a type variable. The types of instances of fst and snd can be in-
ferred, so we leave them implicit. Variable abstraction produces Φ′ = {x4 =
x1 x2, x5 = snd x3, x6 = sndx5, x2 = 〈x6, x4〉, x7 = fst x5, x8 = 0, x9 =
(x7 > x8), x9 = true}. Proxy variables have the following types: x4, x9 : Bool;
x7, x8 : Int; x5 : Int × ω; x6 : ω. The assignment ξ = [false/x4, true/x9] to propo-
sitional variables and the arrangement Dist{x7, x8} produce the reduced query
Φ′′ = ΔBool ∪ Dist{x7, x8} ∪ Φ0 ∪ Φ1 ∪ Φ2, where Φ0 = {� = x1 x2}, Φ1 = {x8 =
0, � = (x7 > x8)}, Φ2 = {x5 = sndx3, x6 = sndx5, x2 = 〈x6, �〉, x7 = fst x5}.

5 Nelson-Oppen Cooperation

The signatures Σ1 = 〈O1 | K1〉, . . . , Σn = 〈ON | KN〉 are disjoint if each prop-
erly contains ΣEq and the only constants and type operators that any two have
in common are those of ΣEq. Their sum signature is Σ = Σ1 + · · · + ΣN =
〈O1 ∪ · · · ∪ ON | K1 ∪ · · · ∪ KN 〉. If each Ti is a Σi-theory determined by
the structure Si, the sum theory T is defined by the sum Σ-structure
S = S1 + · · · + SN that interprets every F ∈ Oi and every kσ ∈ Ki the same
way the structure Si does it.

Our main result is the construction of a strong solver for the applicative frag-
ment of T , assuming the existence of strong solvers for the applicative fragment
of TEq and the algebraic fragment of every Ti. The construction follows the orig-
inal Nelson-Oppen approach [11], as revised by Tinelli and Harandi [20]. The
completeness proof, however, is radically different and relies essentially on the
parametricity of the component structures Si.

5.1 The Combined Solver

Let Σ and T be a sum signature and sum theory as above; for convenience, from
now on, Σ0 will stand for ΣEq. Given an input applicative Σ-query Φin and a
set of cardinality constraints Γ , the combined solver proceeds as follows.

1. Create, as described in Section 4, a set F of reduced queries such that Φin, Γ
is T -satisfiable iff Φ, Γ is T -satisfiable for some Φ ∈ F .3

2. Processing a Φ ∈ F , partition it into subqueries ΔBool = {� = true, � = false},
Dist(Xσ) for all σ �= Bool, and Φ0, Φ1,. . . ,ΦN , where Φ0 is a set of atomic
formulas of the form (B), and Φi is a set of non-logical atomic formulas of
the form (A) with the constant k taken from K+

i . (See Example 7.)
3 The terrible inefficiency of enumerating propositional assignments and arrangements

can be alleviated with techniques involving the use of a SAT solver, but is not our
concern here. See, e.g., [13].

Combined Satisfiability Modulo Parametric Theories 613

3. Purify each Φi into a reduced Σi-query Ψi, algebraic for i > 0, and a set of
constraints Γi that are all together T -equisatisfiable with Φ, Γ . (See Exam-
ple 8 below.)

4. Use strong solvers for Ti to check the joint Ti-satisfiability of Ψi and the
cardinality constraints in Γi. Return “Φ, Γ satisfiable” iff all solvers return
“satisfiable”.

Purification in 3. is a four-step procedure:
1. Proxying types. Let T be the set of types containing the types of all subterms

of formulas in Φ, and all types that occur as subexpressions of these. Partition
T into the set of type variables T var, the set T0 of function types, and the sets
Ti (i = 1, , , . , N) of types of the form F (σ1, . . . , σn) where F ∈ Oi − {⇒}. For
every σ ∈ Ti, let ασ be a fresh (proxy) type variable, and let σ◦ be the type
obtained from σ by replacing each maximal alien (i.e., element of Tj for j �= i)
type τ that occurs as a subexpression in σ with the proxy ατ .

2. Proxying variables. Partition the set X of variables occurring in Φ into
{�, �}, Xvar, X0, . . . , XN , where x ∈ Xvar iff the type of x is in T var, and x ∈ Xi

iff the type of x is in Ti. For convenience, let us assume that the elements
of X are x1, x2, Introduce sets of fresh variables Yi = {yj | xj ∈ Xi} and
Zi = {zj | xj ∈ Xi}. By definition, the type of each yj is σ◦, and the type of zj is
ασ, where σ is the type of xj . Let Y σ = {yj | xj ∈ Xσ} and Zσ = {zj | xj ∈ Xσ}.
Let Y be the union of all the Yi and Z be the union of the Zi. Finally, let
Δi = ΔBool +

⋃
σ/∈Ti

Dist(Y σ) +
⋃

σ∈Ti
Dist(Zσ)—a union of arrangements.

3. Generating constraints. Let Γ card
i be the union of Γ and cardinality con-

straints ασ
.= n, where σ ∈ Tj, j �= i, and σ

.= n is implied by Γ . Let also Γ type
i

be the set of type constraints ασ
.= σ◦, where σ is an i-type. Note that these

type constraints imply ασ
.= σ for every non-variable type σ. Let Γ var

i be the
set of variable constraints zj

.= yj, where xj ∈ Xi. Finally, let Γi be the union
of Γ card

i , Γ type
i , and Γ var

i .
4. Purifying atomic formulas. For every x ∈ X and i = 0, . . . , N define

x
[i]
j =

⎧
⎨

⎩

xj if xj ∈ {�, �} ∪ Xvar

yj if xj ∈ Xi

zj if xj ∈ Xi′ and i′ �= i

and then (with k′ and k in (3) being appropriately typed instances of the same
constant in Ki)

Ψ0 = Δ0 ∪ {u
[0]
0 = u

[0]
1 u

[0]
2 | (u0 = u1 u2) ∈ Φ0} (2)

Ψi = Δi ∪ {u
[i]
0 = k′ u[i]

1 . . . u[i]
n | (u0 = k u1 . . . un) ∈ Φi} (i > 0) (3)

Lemma 3 (Purification). Every Ψi is a well-defined Σi-query and Γi is a set
of Σi-constraints. The union of all the Ψi and Γi is T -equisatisfiable with Φ, Γ .

614 S. Krstić et al.

Example 8. Continuing with Example 7, purification of Φ0 ∪ Φ1 ∪ Φ2 produces:

Ψ0 = ΔBool ∪ {� = y1 z2} Γ0 = {αω×Bool⇒Bool
.= αω×Bool ⇒ Bool, z1

.= y1}
Ψ1 = ΔBool ∪ {y7 �= y8; y8 = 0, � = (y7 > y8)} Γ1 = {αInt

.= Int, z7
.= y7, z8

.= y8}
Ψ2 = ΔBool ∪ {y5 = snd y3, x6 = snd y5, z7 = fst y5, y2 = 〈x6, �〉}
Γ2 = {αω×Bool

.= ω × Bool, z2
.= y2; αω×(Int×ω)

.= ω × (αInt × ω), z3
.= y3;

αInt×ω
.= αInt × ω, z5

.= y5}

where each type constraint ασ
.= σ◦ in Γi is followed by variable constraints

zj
.= yj with zj : ασ and yj : σ◦.

5.2 The Combination Theorem

Lemma 3 implies that the combined solver is sound: the input Φin, Γ is unsatis-
fiable if the solver says so. Completeness is less clear because it requires that a
T -model be assembled from a collection of Ti-models. When the theories satisfy
a flexibility condition à la Löwenheim-Skolem, completeness follows immediately
from the following theorem.

Theorem 1. Assume the notation is as in the previous section and that the
theories T1, . . . , Tn are flexible for reduced algebraic queries. Then: Φ, Γ is T -
satisfiable if and only if Ψi, Γ

card
i is Ti-satisfiable for every i = 0, . . . , N .

Here are the requisite definitions. An environment 〈ι, ρ〉 is separating if ρ maps
all variables of the same type to distinct elements. A theory is flexible for a
fragment F if for every separating model 〈ι, ρ〉 for an F -query Ψ and every
α ∈ dom(ι), there exist separating models 〈ιup(κ), ρup(κ)〉 and 〈ιdown, ρdown〉 for
Ψ such that ιup(κ)(β) = ι(β) = ιdown(β) for every β �= α, and

1. [up-flexibility] ιup(κ)(α) has any prescribed cardinality κ greater than
the cardinality of ι(α)

2. [down-flexibility] ιdown(α) is countable

Lemma 4. Every fully parametric structure is up-flexible for reduced algebraic
queries. It is also down-flexible for this fragment if it satisfies the following con-
dition: for every type operator F and every element a ∈ [F](A1, . . . , An), there
exist countable subsets A′

i of Ai such that a ∈ [F](A′
1, . . . , A

′
n).

We have proved that TEq is flexible for reduced queries [10]. Also, by Lemma 4,
the theories of common datatypes mentioned in Lemma 1 all qualify for com-
plete Nelson-Oppen cooperation. The mild condition in Lemma 4 required for
down-flexibility is probably unnecessary. We conjecture (but are unable to prove
without informal reference to the downward Löwenheim-Skolem Theorem) that
down-flexibility for algebraic queries holds for all fully parametric theories.

The lemma below follows from parametricity theorems [10] and is central for
the proof of Theorem 1. We use it to incrementally modify the members of a given
family of Ti-models so that at each step they agree more on the intersections of
their domains; at the end, a T -model is obtained by amalgamating the modified
Ti-models.

Combined Satisfiability Modulo Parametric Theories 615

Lemma 5 (Remodeling). Suppose 〈ι, ρ〉 is a separating model for an algebraic
query Ψ in a fully parametric structure, and f : ι(α) → ι(α) is a bijection for
some α ∈ dom(ι). Then there exists a separating model 〈ι, ρ′〉 for Ψ such that

(a) ρ′(x) = f(ρ(x)) for every variable x ∈ dom(ρ) of type α
(b) ρ′(y) = ρ(y) for every y ∈ dom(ρ) whose type does not depend on α

Example 9. To illustrate the proof of Theorem 1, let us continue with Example 8.
Starting with Ti-models 〈ιi, ρi〉 for Ψi (i = 0, 1, 2), we build a model 〈ι, ρ〉 for
the union of the Ψi and Γi. Let us order the types in T with respect to their
complexity as in the first row of the table below. Let ι be a type environment
that maps the original type variable ω and the proxy type variables ασ for
σ ∈ T to sets in the second row of the table. Here � = {�, †, ‡, . . .} is an arbitrary
infinite set. Using the up- or down-flexibility of Ti and a simple consequence of
parametricity (“permutational invariance”), we first modify the given models to
achieve ι0 = ι1 = ι2 = ι; this will satisfy all type constraints too. Then we modify
the environments ρi in six steps, corresponding to the six types in T , so that
after the step related to σ ∈ T , the ρi agree on their variables associated with σ
and all types preceding σ. (For each xm ∈ Xσ, one of the ρi has ym in its domain,
while the others have zm.) These changes are possible by Lemma 5. The top half
of the table shows the ρi’s after the second step, where we have agreement on
variables associated with ω and ω ×Bool (the shaded area). Turning to the type
Int, the pivot values 4, 0 (underlined) are picked from the “owner” model ρ1, and
ρ0, ρ2 adjust to it, with appropriate changes at “higher” types. The table also
shows the pivot value 〈4, †〉 for the next step .

σ ω ω × Bool Int Int × ω ω × (Int × ω) ω × Bool ⇒ Bool

�σ� ι � �××××××××× � � �××××××××× � �××××××××× (�××××××××× �) �××××××××× �⇒⇒⇒⇒⇒⇒⇒⇒⇒ �

x6 y2 or z2 y7 or z7 y8 or z8 y5 or z5 y3 or z3 y1 or z1

ρ0 † 〈†, false〉 1 5 〈10, ‡〉 〈†, 〈11, �〉〉 λλλλλλλλλu. false

ρ1 † 〈†, false〉 4 0 〈12, �〉 〈�, 〈13, †〉〉 λλλλλλλλλu. true

ρ2 † 〈†, false〉 3 7 〈3, †〉 〈‡, 〈3, †〉〉 λλλλλλλλλu. true

ρ′
0 † 〈†, false〉 4 0 〈10, ‡〉 〈†, 〈11, �〉〉 λλλλλλλλλu. false

ρ′
1 † 〈†, false〉 4 0 〈12, �〉 〈�, 〈13, †〉〉 λλλλλλλλλu. true

ρ′
2 † 〈†, false〉 4 0 〈4, †〉 〈‡, 〈4, †〉〉 λλλλλλλλλu. true

6 Conclusion and Future Work

We contend that the base logic for SMT should have parametric types and
polymorphic functions. These features make it possible to easily model typical
datatypes by single parametric structures and to model (unbounded) combina-
tions of several datatypes by simple parameter instantiation. of several datatypes
by simple parameter instantiation.

616 S. Krstić et al.

Our revision of the Nelson-Oppen method relies just on the parametricity of
the datatypes modeled by the component theories and on the existence of strong
solvers for them. Parametricity requirements hold for virtually all datatypes of
interest, so to make our method widely applicable it remains to enhance the
existing satisfiability procedures into efficient strong solvers. This can likely be
done in ways similar to [15], and is the subject of future work.

Acknowledgments. Thanks to John O’Leary for discussions on HOL seman-
tics, and to Levent Erkök, John Harrison, John Matthews, Albert Oliveras, and
Mark Tuttle for reading parts of the manuscript and commenting on it.

References

1. N. Ayache and J.-C. Filliâtre. Combining the Coq proof assistant with first-order
decision procedures. (unpublished), 2006.

2. C. Barrett and S. Berezin. CVC Lite: A new implementation of the cooperating
validity checker. In Computer Aided Verification (CAV), vol. 3114 of LNCS , pp.
515–518. 2004.

3. C. Barrett, I. Shikanian, and C. Tinelli. An abstract decision procedure for satisfi-
ability in the theory of recursive data types. In Pragmatics of Decision Procedures
in Automated Deduction (PDPAR), 2006.

4. P. Fontaine and E. P. Gribomont. Combining non-stably infinite, non-first order
theories. In Pragmatics of Decision Procedures in Automated Deduction, 2004.

5. P. Fontaine et al. Expressiveness + automation + soundness: Towards combining
SMT solvers and interactive proof assistants. In Tools and Algorithms for the
Construction and Analysis of Systems), vol. 3920 of LNCS, pp. 167–181. 2006.

6. S. Ghilardi, E. Nicolini, and D. Zucchelli. A comprehensive combination framework.
ACM Transactions on Computational Logic, 2007. (to appear).

7. M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL: A Theorem
Proving Environment for Higher Order Logic. Cambridge University Press, 1993.

8. J. Grundy et al. Tool building requirements for an API to first-order solvers.
ENTCS, 144(2):15–26, 2006.

9. J. Harrison. Towards self-verification in HOL Light. In Automated Reasoning
(IJCAR), vol. 4130 of LNAI. 2006.

10. S. Krstić et al. Combined satisfiability modulo parametric theories. Tech. report,
Oct. 2006. (ftp://ftp.cs.uiowa.edu/pub/tinelli/papers/KrsGGT-RR-06.pdf).

11. G. Nelson and D. C. Oppen. Simplification by cooperating decision procedures.
ACM Transactions on Programming Languages and Systems, 1(2):245–257, 1979.

12. R. Nieuwenhuis and A. Oliveras. Congruence closure with integer offsets. In Logic
for Programming, AI and Reasoning (LPAR), vol. 2850 of LNCS, pp. 78–90. 2003.

13. R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving SAT and SAT Modulo Theo-
ries: From an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T).
Journal of the ACM, 2006. (to appear).

14. T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL: A Proof Assistant for
Higher-Order Logic, vol. 2283 of LNCS. 2002.

15. S. Ranise, C. Ringeissen, and C. G. Zarba. Combining data structures with non-
stably infinite theories using many-sorted logic. In Frontiers of Combining Systems
(FroCoS), vol. 3717 of LNCS, pp. 48–64. 2005.

Combined Satisfiability Modulo Parametric Theories 617

16. S. Ranise and C. Tinelli. The SMT-LIB standard: Version 1.2. Technical report.
17. J. C. Reynolds. Types, abstraction and parametric polymorphism. In Information

Processing: 9th World Computer Congress, pp. 513–523. North-Holland, 1983.
18. C. Ringeissen. Cooperation of decision procedures for the satisfiability problem.

In Frontiers of Combining Systems (FroCoS), vol. 3 of Applied Logic, pp. 121–140.
19. N. Shankar. Using decision procedures with a higher-order logic. In Theorem

Proving in Higher Order Logics (TPHOLS), vol. 2152 of LNCS, pp. 5–26, 2001.
20. C. Tinelli and M. Harandi. A new correctness proof of the Nelson-Oppen combi-

nation procedure. In Frontiers of Combining Systems (FroCoS), vol. 3 of Applied
Logic, pp. 103–120. Kluwer, 1996.

21. C. Tinelli and C. Zarba. Combining decision procedures for sorted theories. In
Logic in Artificial Intelligence (JELIA), vol. 3229 of LNAI, pp. 641–653. 2004.

22. C. Tinelli and C. Zarba. Combining nonstably infinite theories. Journal of Auto-
mated Reasoning, 34(3):209–238, 2005.

23. P. Wadler. Theorems for free! In Functional Programming Languages and Computer
Architecture (FPCA), pp. 347–359. ACM Press, 1989.

24. C. G. Zarba. Combining sets with elements. In Verification: Theory and Practice,
vol. 2772 of LNCS, pp. 762–782. 2004.

A Gröbner Basis Approach to
CNF-Formulae Preprocessing�

Christopher Condrat and Priyank Kalla

Department of Electrical and Computer Engineering
University of Utah, Salt Lake City, UT, USA

chris@g6net.com, kalla@eng.utah.edu

Abstract. This paper presents a CNF SAT-formulae transformation technique
employing Gröbner bases as a means to analyze the problem structure. Gröbner-
bases have been applied in the past for SAT; however, their use was primarily
restricted to analyzing entire problems for proof-refutation. In contrast, this tech-
nique analyzes limited subsets of problems, and uses the derived Gröbner bases
to yield new constraint-information. This information is then used to reduce prob-
lem structure, provide additional information about the problem itself, or aid other
preprocessing techniques. Contrary to the precepts of contemporary techniques,
the transformation often increases the problem size. However, experimental re-
sults demonstrate that our approach often improves SAT-search efficiency in a
number of areas, including: solve time, conflicts, number of decisions, etc.

1 Introduction

The Boolean Satisfiability Problem (SAT) is formulated as finding solutions satisfying
a set of Boolean equations, or to show that no such solutions exist (UNSAT). Such
problems are often represented in Conjunctive Normal Form (CNF), whereby sets of
literal-disjunctions (clauses) must be simultaneously satisfied through some variable
assignment.

Solving for SAT-problems involves SAT-solvers. Most are based on the Davis-
Putnam [1] and Davis-Logemann-Loveland [2] procedures (DPLL), which performs
recursive branching and unit propagation over clauses. This technique is aided by con-
cepts such as constraint-propagation [3], conflict analysis [4], and learning [5], which
enable non-chronological backtracking [4] [6] [7], pruning the search space and reduc-
ing overall search time.

The SAT solving-time is not, however, merely a function of the variables and con-
straints that form the core SAT problem. Problem-representation, especially in CNF, can
affect how SAT-solving performs. This is especially true when SAT-instances are trans-
formed from system designs, for validation purposes. In automated conversion, utilities
can produce “unoptimized” instances for CNF—those with constraints and variables
that do not provide useful information. As a result, time and resources are wasted.

A recent area of research has therefore formed around CNF-formula transforma-
tion and simplification. This approach diverges from, or should be said, complements

� This work is supported, in part, by a Faculty Early Career Development (CAREER) grant from
the US National Science Foundation, contract No. CCF-546859.

O. Grumberg and M. Huth (Eds.): TACAS 2007, LNCS 4424, pp. 618–631, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Gröbner Basis Approach to CNF-Formulae Preprocessing 619

“classical” approaches to SAT-solving, those based on DPLL-solving [2] [4] [6] [7],
by attacking the SAT problem at its source: the constraints. Algorithms and techniques
such as [8] [9] [10] simplify and transform CNF-constraints through methods such as
clause subsumption, hyper-resolution, and variable elimination. The applicability of
such approaches varies between problems; however, most problems can benefit from at
least some level of CNF preprocessing.

The goal of the preprocessor is to make the problem easier to solve, not necessarily
reduce the problem size. A smaller problem implies, at the very least, that there is less
the SAT-solver needs to process. However, this does not necessarily imply it is easier
to solve. Indeed, some of the hardest problems, are those which have no “redundant”
information present in the problem [11]. Additional information may also help clue the
solver into the actual purpose of the structures in the problem represent, especially in
Hybrid solvers [12]. Even the abilities of rewrite-rule-based CNF-preprocessors can be
affected if constraints do not fit their simplification templates.

Preprocessing approaches have traditionally concentrated on reducing the overhead—
the time needed to consider constraint information—of SAT problems prior to perform-
ing the SAT search. This “overhead” comes in the form of constraints and variables
that can be represented in simpler forms, or eliminated altogether. Techniques such as
Hypre [8], NiVER [9], and SatELite [10] reduce this overhead through resolution-based
preprocessing.

1.1 Contemporary Preprocessing Approaches

HyPre [8] employs a form of binary reasoning, called “hyper-binary resolution,” in ad-
dition to the techniques found in previous preprocessors such as 2-Simplify [13]. Hyper-
binary resolution performs a resolution step involving more than two input clauses. A
single size-n clause and (n − 1)-binary clauses are resolved to a form that aids in SAT-
search. HyPre’s ability to resolve sets of clauses to simpler forms has been relatively
successful, but at the same time it can be slow.

NiVER and SatELite use resolution to eliminate variables from a SAT-instance. Vari-
able elimination, the older cousin to DPLL, finds itself on the other end of SAT solving
from DPLL, where space, as opposed to time, increases exponentially.

Given a variable x, and two clauses, containing the variable and its negation respec-
tively, performing resolution on x represents the following:

(x ∨ a1 ∨ . . . ∨ an)
⊗

(x′ ∨ b1 ∨ . . . ∨ bm) = (a1 ∨ . . . ∨ an ∨ b1 ∨ . . . ∨ bm) (1)

where
⊗

is the resolution operator. Variable elimination is performed by resolving
for a variable on all clauses that contain it as follows (for variable v):

Cv = ClausesContainingLiteral(v)
Cv′ = ClausesContainingLiteral(v′)

Cv

⊗
v Cv′ = {c1

⊗
c2 | c1 ∈ Cv, c2 ∈ Cv′}

(2)

The variable is eliminated, but at the cost of more constraints than the original set,
increasing the problem size in the general case.

620 C. Condrat and P. Kalla

NiVER [9] stands for “Non-Increasing Variable Elimination Resolution.” This tech-
nique attempts to overcome the size-explosion problem associated with variable elimi-
nation by only eliminating variables in a way that does not increase problem size. Some
constraint-sets resulting from variable elimination contain tautologies, which may be
removed, resulting in a constraint set equal to or smaller than the original—hence “non-
increasing” variable elimination.

SatELite [10] improves on NiVER by combining binary clause resolution simplifi-
cation with non-increasing variable-elimination, adding new resolution rules for clause
subsumption. Clause subsumption proves to be useful for simplifying clauses resulting
from variable elimination, enabling an efficient clause-variable simplification procedure
which can be repeated until no more reductions are possible.

2 Gröbner Bases for CNF-Transformation

This paper presents a new CNF-formula transformation approach, exploiting the power
of polynomial ring algebra, particularly Gröbner bases, to transform CNF-constraints.
Gröbner bases provide a computational means to derive reduced bases of sets of polyno-
mials. The resulting polynomials better represent the solution-set and while this process
can introduce new constraints and new variables, but the problem itself is simplified—
easier to solve. We show that deriving extra constraint information during preprocessing
may actually improve performance.

The application of Gröbner bases for SAT is nothing new. Proof-systems, such as the
Nullstellensatz [14] and Gröbner/Polynomial Calculus [15] proof-systems, introduced
in the mid-90s, used Gröbner bases as a means to derive proof-refutations, by generating
a unit ideal from the polynomials representing the problem [16]. However, refuting an
entire problem using Gröbner bases can be a time consuming, and often infeasible, task.
Despite the many improvements to computation algorithms, Gröbner bases systems still
have potential exponential time and space complexity, especially when analyzing large
problems.

Analogous to the techniques forming the foundation of Hypre, NiVER, and SatELite,
a single, partial application of Gröbner bases to a SAT instance may improve solving
and problem performance. By only transforming parts of the CNF-structure, the prob-
lem, as a whole, can benefit from the reduction capabilities of Gröbner bases, while
leaving alone parts which are computationally infeasible. This overall strategy fits well
into a CNF-SAT transformation framework, through assisting dedicated SAT-solving
tools, much as contemporary CNF-preprocessors do.

2.1 Methodology

Our CNF-transformation process is divided into phases: 1) the problem structure is
first analyzed, and partitions identified; 2) CNF clauses are converted into polynomials
over Z2; 3) the polynomials are then transformed using a Gröbner basis engine using
a suitable monomial ordering derived from the partition information; 4) finally, the
transformed polynomials are converted back into CNF to be used in SAT-solving. To
evaluate the performance of the approach, we compare the SAT-solving results for the
untransformed instances with those of the transformed versions.

A Gröbner Basis Approach to CNF-Formulae Preprocessing 621

A detailed explanation of the process and the concepts introduced above is the sub-
ject of the following sections.

3 Preliminaries

Boolean algebra is isomorphic to polynomial ring algebra over Z2. Therefore, a one-to-
one mapping of operators between the two algebras is defined as follows:

f : B → Z2 : (3)

¬n → n + 1
a ∨ b → a + b + a · b

a ∧ b → a · b
a ⊕ b → a + b

Addition and multiplication operations are performed mod 2 so no coefficients greater
than 1 will be present. The property of idempotency (x2 = x) is also present, ensuring
that the polynomials will remain multi-linear.

Given a set of CNF-clauses C = {C0, . . . , Cn} we can transform these clauses into
a set of polynomials over Z2 using (Func.3):

C′ = {C′
0 = 1, . . . , C′

n = 1} (4)

which is equivalent to the following polynomial equations over Z2:

C′ = {C′
0 + 1 = 0, . . . , C′

n + 1 = 0} (5)

The latter form will be used throughout this paper, and for notational purposes, we will
assume and omit the zero-equality (= 0) for the equations.

The polynomial-set generates an ideal—the set of all linear combinations of the
polynomials—and therefore is called a generating set for the ideal. The individual
polynomials are referred to as generators. In commutative algebra/algebraic geometry
the set of all solutions for a set of equations is referred to as a variety.

What is interesting to note, is that the variety is defined, not so much by a set of
polynomial equations, but rather by the ideal spanned by them. The effect of this is that
different sets of generators can represent the same ideal, and therefore the same variety.
Furthermore, some generating sets may be “better” than the original, in the sense that
they are simpler or easier to solve—a better representation of the ideal. Techniques exist
to find such representations. For linear equations, the well-known Gaussian Elimination
technique is one such method to reduce sets of polynomials into a form which is easier
to solve. However, for non-linear systems of polynomials, a generalization of this type
of reduction procedure is necessary. The solution is: Gröbner bases.

3.1 Gröbner Bases

Introduced by Bruno Buchberger in 1965 [17], the theory of Gröbner bases provides a
computational framework for deriving a special kind of generating subset of an ideal,
where dividing any polynomial in the ideal by the Gröbner basis gives zero. While there
are many equivalent definitions of a Gröbner basis, we choose this one as most suitable:

622 C. Condrat and P. Kalla

Definition 1. [Gröbner Basis] (From Def.1.6.1 of [18]): For a set monomial order-
ing >, a set of of non-zero polynomials, G = {g1, . . . , gt}, contained in an ideal I , is
called a Gröbner basis for I if and only if for all f ∈ I such that f �= 0, there exists
i ∈ {1, . . . , t} such that lp(gi) (lp = leading power-product) divides lp(f).

G = GröbnerBasis(I) ⇐⇒ ∀f ∈ I : f �= 0, ∃gi ∈ G : lp(gi)|lp(f) (6)

This definition of a Gröbner basis allows the basis to be derived through relatively
efficient computational methods akin to deriving the greatest-common-divisor for a set
of multi-variate polynomials.

Deriving a Gröbner basis generally relies on a variant of the Buchberger algorithm
[17], the precise details of which can be found in [18]. The Gröbner basis begins as the
initial set of polynomials to be reduced. A monomial ordering is fixed to ensure that
polynomials are represented in a consistent manner (detailed in subsequent sections).
Buchberger’s algorithm then takes pairs of the polynomials in the basis and combines
them into “S-polynomials” to cancel leading terms. An S-polynomial is defined as:

S(f, g) = L
lt(f) · f − L

lt(g) · g where L = lcm(lt(f), lt(g)) (7)

The lt(p) is the leading term of p, and lcm(f, g) is the least common multiple of f and
g. For example, consider a set of polynomials F :

F =
{

f1 = abcf + abc f3 = bf + f,
f2 = af + f, f4 = cf + f

}

(8)

Deriving the S-polynomial for polynomials f1 and f2 results in:

lcm(f1, f2) = abcf

S(abcf + abc, af + f) = abcf
abcf (abcf + abc) − abcf

af (af + f)
= abc + bcf

(9)

The S-polynomial is then reduced by all elements in F to a remainder r. Reduction of

a polynomial p, by a single element fi ∈ F , is denoted p
fi−→ r, and reduction by the

entire set F is denoted p
F−→+ r. The method for reduction is multivariate polynomial

division. Reducing the S-polynomial in (Eqn.9) by elements of F is shown below:

S(f1, f2)
bf+f−→ h1 h1

cf+f−→ h2

c

bf + f
)

abc +bcf

− bcf +cf

abc +cf = h1

1
cf + f

)
abc +cf

− cf +f

abc +f = h2

(10)

No other members of F can reduce h2 further, therefore S(f1, f2)
F−→+ (abc + f). As

a non-zero polynomial, abc + f is then added to the basis F as a new element. The
Buchberger algorithm has therefore discovered a new element of the Gröbner basis.

A Gröbner Basis Approach to CNF-Formulae Preprocessing 623

This process is repeated for all unique pairs of polynomials (including those created by
newly added elements), constructing the Gröbner basis. A Gröbner basis is considered
reduced or minimal if no leading terms of differing polynomials in the set divide each
other and the leading-term coefficient is 1. For example, a Gröbner basis

G =

⎧
⎨

⎩

f1 = abcf + abc f4 = bf + f,
f2 = af + f, f5 = cf + f
f3 = abc + f,

⎫
⎬

⎭
(11)

is not a reduced Gröbner basis, as f1 contains a leading term that is divisible by the lead-
ing term of other polynomials. Unreduced Gröbner bases contain redundant elements,
and therefore this transformation approach only works with reduced Gröbner bases.

The result of the computation is a set of polynomials that should be easier to solve
than the original set, while representing the same ideal. This improved set of polyno-
mials can then be translated to CNF form, aiding SAT-solving. This forms the basic
premise of the CNF-transformation approach presented. How this is effectively imple-
mented is the subject of the next section.

4 Transformation Process

Computing a Gröbner basis using a Buchberger-variant algorithm can exhibit exponen-
tial worst-case time and computational complexity [19], and for this reason that many
different techniques have been developed [15] [18] [20] [21] [22] for improving the al-
gorithm, often for specific applications. However, while these techniques deal with the
inner-workings of algorithm itself, outside the algorithm there is less control. What con-
trol there is comes in the form of polynomial selection (i.e. partitioning) and monomial
ordering. For this reason, these two aspects of the computation process are an important
part of the transformation process.

4.1 Partitioning

The generators of an ideal may be separated, manipulated, and then remerged with
the original set in the same manner as clauses in a CNF-instance. This can be used for
parallelizing Gröbner basis computations [23] or, in this case, operating only on specific
subsets of the problem.

The first stage of partitioning involves removing sets of clauses that are too com-
putationally intensive for a Gröbner basis engine to operate on. The multi-linear form
of clauses may have up to (2n − 1) monomials for n literals. Therefore large clauses
are avoided. In addition, sets of small clauses, taken together, may form into very large
polynomials during the process of reduction. Finally, these large and small clauses may
actually be components of constraint structures represented in CNF, such as large con-
junctions (logical AND)—the form of which is depicted below:

f =
n−1∧

i=0

xi ⇐⇒
(

f ∨
n−1∨

i=0

¬xi

)

∧
n−1∧

i=0

(xi ∨ ¬f) (12)

624 C. Condrat and P. Kalla

An example is:

f = a ∧ b ∧ c ⇐⇒ (a ∨ ¬f) ∧ (b ∨ ¬f) ∧ (c ∨ ¬f) ∧ (¬a ∨ ¬b ∨ ¬c ∨ f) (13)

Directly computing for such structures can cause a large intermediate expression swell
[24], and because the final form is known and easily extracted, there is no point in direct
computation.

Structures such as conjunctions can be quickly isolated and removed prior to trans-
formation. For this implementation, only conjunction-like structures were targeted (dis-
junctions being of similar form). Conveniently, what often remains after conjunction-
removal is the “glue” that connects the conjunctions—clusters of 3-literal clauses with
relatively well-connected variables, which are good candidates for transformation. These
clusters of clauses can be partitioned easily by collecting all clauses associated with a
single variable. This works well for industrial-type SAT-instances. However, in cases
where this approach may yield clusters which are too small, repeatedly collecting all
clauses which are connected to a group of clauses by two or more variables also works.
This ensures that clauses are connected to the group by at least two variables, while not
requiring an overly high level of connectivity which could limit applicability. This also
prevents, to a great extent, random CNF structures from being clustered, which are hard
for polynomial calculus [25].

4.2 Generating the Gröbner Basis

A wide variety of Gröbner basis computation-engines are available due to widespread
interest in their use. Our transformation engine uses CoCoA [26], specifically its C++
library, for performing Gröbner basis reductions. The output is a reduced Gröbner basis.

The CNF-clauses are converted into polynomials using (Func.3), and converted to
the form found in (Eqn.5). These polynomials form the initial generating set from which
a Gröbner bases will be derived. However, if the Gröbner basis is computed directly,
unexpected results may appear. Take for example a set of polynomials in Z2, and its
corresponding Gröbner basis on the right:

⎧
⎨

⎩

abc + ac + bc + c + 1
bcd + bd + cd + d + 1
acd + ad + cd + d + 1

⎫
⎬

⎭
−→

⎧
⎪⎪⎨

⎪⎪⎩

a + b
b2d + b + 1
bc + cd + c + d
cd2 + bd + d2 + d + 1

⎫
⎪⎪⎬

⎪⎪⎭

(14)

The second and fourth Gröbner-basis polynomials contain powered terms which should
not appear due to the Boolean-ring property of idempotency. Furthermore, the mono-
mials d2 + d maps to zero, and should not appear in the fourth equation at all.

To account for idempotency we use Fermat’s Little Theorem, generalized in [27] as:

Theorem 1. [Fermat’s Little Theorem] If p is a prime number, and x is an integer,
the following holds:

xp ≡ x (mod p) (15)

A Gröbner Basis Approach to CNF-Formulae Preprocessing 625

The above equation can be rearranged in the following manner:

xp − x ≡ 0 (mod p) (16)

x2 + x ≡ 0 (mod 2) (17)

The above are the forms of a vanishing polynomial in the ring Zp[x] and Z2[x] re-
spectively. The set of all such polynomial equations generates the ideal of all vanish-
ing polynomials in their corresponding rings. When present during a Gröbner bases
derivation, the basis elements that map to this ideal are eliminated during the reduction
process.

Therefore, when using Gröbner bases for transformation, the generating set must
contain a polynomial equation of form (Eqn.17) for every variable found in the gener-
ating set. The result is such that any polynomial in the resulting Gröbner basis will be
in multi-linear form. Furthermore, no element of the basis will contain a redundant (i.e.
zero) term.

4.3 Monomial Ordering

In the actual creation of a Gröbner basis, the results may be unimpressive: a set of
polynomial equations larger than the original set, often with more monomials. While a
larger basis may yield useful information, finding a smaller basis reduces the number
of constraints that must be satisfied, affecting performance. One way to reduce the size
of a Gröbner basis is through an efficient monomial ordering.

Monomial orders determine how the Gröbner basis is generated by affecting how
leading terms—which the basis is formed upon—are ordered. The ordering-
methodologies are explained in standard textbooks such as [18]. There are three general-
purpose orderings: pure lexicographic (lex), degree-lexicographic (deglex), taking into
account the degree of the polynomial, and a degree-reverse-lexicographic (revdeglex), a
reversed-lexicographically ordered version of the deglex ordering. Our transformation
approach uses a deglex ordering.

The lex / deglex / revdeglex orderings only affect the global monomial ordering.
However, these orderings can be further refined at a local level by taking into account
the properties of the constraint set over which the transformation is applied, notably
its variables. Variables in many SAT-instances are often localized, and as a result a
global variable ordering may be sub-optimal. Therefore, a variable-ordering is gener-
ated specifically for each constraint set.

During initial experiments, it was observed that the later in the variable-order a high-
activity variable appeared, the smaller the Gröbner basis (activity being how often a
variable appears in a set of clauses). Compared to ordering such variables first, the
difference in size was often orders-of-magnitude smaller. For example, consider the
following set of clauses where a is the most highly active variable:

(a′ ∨ b′ ∨ c) ∧ (a ∨ b′ ∨ c′) ∧ (a′ ∨ d′ ∨ e) ∧ (a ∨ d′ ∨ e′) (18)

Using an lex ordering a ≺ e ≺ c ≺ d ≺ b the resulting Gröbner basis is formed of three
polynomials (omitting the Fermat x2 + x form elements):

ab + cb, ad + ed, edb + cdb (19)

626 C. Condrat and P. Kalla

However, if the ordering is reversed, b ≺ d ≺ c ≺ e ≺ a, a different Gröbner basis is
computed, one with only two polynomials:

de + da, bc + ba (20)

For larger sets of polynomials, the variable-ordering can have pronounced effects on
the size of the resulting Gröbner bases—often by orders-of-magnitude. Our transfor-
mation approach therefore seeks to minimize the size of the Gröbner bases through an
effective lexicographic ordering.

To understand how a variable order affects Gröbner bases the concepts of an elimi-
nation ideal and an elimination theorem for Gröbner basis are necessary. The conse-
quences of these two will be described later.

Definition 2. [Elimination Ideal] From [28]: Given I=〈f1, . . . , fs〉⊂k[x1, . . . , xn],
the ith elimination ideal Ii is the ideal of k[xi+1, . . . , xn] defined by

Ii = I ∩ k[xi+1, . . . , xn] (21)

A ith elimination ideal does not contain variables x1, . . . , xi, and neither does the basis
that generates it. The basis of an elimination ideal can be a Gröbner basis by using the
elimination theorem:

Theorem 2. [Elimination Theorem] From [28]: Let I ⊂ k[x1, . . . , xn] be an ideal
and let G be a Gröbner basis of I with respect to a lex ordering where x1 ≺ x2 ≺
· · · ≺ xn. Then for every 0 ≤ i ≤ n, the set

Gi = G ∩ k[xi+1, . . . , xn] (22)

is a Gröbner basis of the ith elimination ideal Ii.

The proof for (Thm.2) can be found in [28].
When a Gröbner basis G in variables x1, . . . , xn is generated using an lex order, the

resulting Gröbner basis contains, as subsets, all Gröbner bases G0, . . . , Gn for elim-
ination ideals I0, . . . , In. As variables are progressively eliminated, the subsequent
Gröbner bases containing the uneliminated variables must generate ideals in the ab-
sence of those variables. This can cause many additional elements to be generated. The
Gröbner basis G can therefore have exponential size-complexity [29].

The more frequent a variable appears in a set of polynomials, and the earlier it is elim-
inated, the larger the Gröbner basis generally is. However, ordering higher-activity vari-
ables later in the order (accending activity) allows the variables to remain present in more
elements of the Gröbner basis. The result is that it is not necessary to represent those
variables—in their absence—with additional polynomials, producing a smaller basis.

Therefore, our transformation approach orders variables, on a per-set basis, by ac-
cending variable-activity. Despite the fact that a deglex monomial ordering is not an
elimination order by nature, the Gröbner basis it generates is still reduced in overall
size through this variable ordering. The computation is also fast, and the overall size of
the transformed set is smaller.

The effects of variable-elimination in Gröbner bases parallels variable-elimination
using resolution. In the example (Ex.18), the last polynomial in (Eqns.19) represents

A Gröbner Basis Approach to CNF-Formulae Preprocessing 627

the SAT-instance in the absence of the variable a. Using the resolution on (Eqns.18) to
eliminate a results in:

Ca

⊗
Ca′ =

����
���

(a′ ∨ b′ ∨ c)
�

(a ∨ b′ ∨ c′) = (b′ ∨ c ∨ c′) = T,
(a′ ∨ d′ ∨ e)

�
(a ∨ b′ ∨ c′) = (b′ ∨ d′ ∨ c′ ∨ e),

(a′ ∨ b′ ∨ c)
�

(a ∨ d′ ∨ e′) = (b′ ∨ c ∨ d′ ∨ e′),
(a′ ∨ d′ ∨ e)

�
(a ∨ d′ ∨ e′) = (d′ ∨ e ∨ e′) = T

����
���

= (b′ ∨ c′ ∨ d′ ∨ e) ∧ (b′ ∨ c ∨ d′ ∨ e′)

(23)

which is exactly equivalent to the constraints implied by the third polynomial of
(Eqns.19):

edb + cdb = 0 (24)

NiVER and SatELite use resolution to perform variable-elimination, while seeking
to avoid the size-complexity problems associated with it. Avoiding the complexity prob-
lems associated with variable-elimination is also the goal of this approach. Our variable-
ordering reduces this effect to a great degree.

4.4 Transforming Polynomials into CNF Clauses

After reduction by the Gröbner basis engine, the polynomials are converted back into
CNF form using for use in SAT solving using the reverse function of (Func.3). Prior to
conversion, “1” is added to each polynomial to convert the polynomials back into the
form in (Eqn.4).

Final Recombination — After transforming the polynomials into CNF, the trans-
formed clauses are merged with the original problem. The SAT-instance is then ready
for solving by a SAT solver.

5 Results

The transformation technique was applied to various SAT-benchmarks. The testbench
system for SAT-solving was an AMD Athlon 64 2800+ (1.6Mhz) processor with 2GB
of memory, running Ubuntu Linux 6.06 x86-64. zChaff version 2004.11.15 Simplified
was designated as the standard solving tool for all problems. No other preprocessing
was applied for the initial set of benchmarks.

5.1 Categories of SAT-Instances

The SAT-instances used for transforming and solving were, for the most part, from
industrial-category benchmarks. In other words, the benchmarks were converted from
EDA designs, or other sources, into CNF for validation purposes. Proving UNSAT
for such instances validates the design, whereas variants with bugs will have a SAT
solution. A mix of the both SAT and UNSAT benchmarks were used. Other bench-
marks include instances generated using a Bounded Model Checker [30], specifically
the 12-12-barrel and longmult15 benchmarks, and a coloring benchmark.

By and large, the industrial SAT-instances dominate the results table. This is be-
cause the structure of such problems lend themselves to meaningful partitioning, where

628 C. Condrat and P. Kalla

clauses can be partitioned into well-connected sets. Furthermore, some classes of SAT
instances simply do not perform well using a transformation approach which relies on
reducing polynomials with each other. Random SAT instances are a good example. The
paper [25] showed that random CNFs are hard for Polynomial Calculus, and though
this research was carried out over non-Boolean rings, in experiments, this appears to be
true for Boolean rings as well.

The problems below reflect the types of problems that can be effectively processed
by the Gröbner basis transformation engine. All times are measured in seconds.

Benchmark S Variables Clauses N PPT Solve Time
Orig Trans Orig Trans Orig Trans

12-12-barrel U 20114 0 83619 +34752 192576 123 545 488
engine 4 nd U 7000 +2111 67586 +6787 1269 4.09 611 574
longmult15 U 7807 +2026 24351 +8531 180 4.54 364 218
9dlx vliw at b iq1 U 24604 +2665 261473 +8675 1536 2.88 410 326
manol-pipe-c10b U 43517 +4967 129265 +19661 453 71.38 668 621
manol-pipe-c6id U 82022 +12873 242044 +49707 3820 236 513 504
6pipe.sat03-414 U 15800 +1266 394739 +4724 680 17.61 142 138
7pipe q0 k U 26512 +2174 536414 +6648 1460 3.19 235 222
8pipe q0 k U 39434 +2707 887706 +8324 1812 4.55 672 634
9pipe q0 k U 55996 +1830 1468197 +6736 1246 29.44 872 838
12pipe bug1 q0 S 138917 +25836 4678756 +83529 15190 502 2507 1696
color-10-3-1483 S 300 +371 6475 +1593 388 4.18 115 11.86
2dlx cc ex bp f bug1 S 171648 +43490 2614355 +139196 26094 74.83 809 367
grieu-vmpc-s05-05s S 625 +16046 76775 +54185 6981 8.06 1010 881
grieu-vmpc-s05-27r S 729 +34364 96849 +110258 21498 39.72 480 167

S = SAT/UNSAT; N = number of clauses processed; PPT = Preprocessing time.

Benchmark Decisions Net Conflicts Implications
Orig Trans Orig Trans Orig Trans

12pipe bug1 q0 2,959,248 1,883,240 59,419 39,077 1,666,102,113 1,100,747,357
2dlx cc ex bp f bug1 924,583 317,972 25,512 22,580 874,876,875 301,397,803
grieu-vmpc-s05-27r 264,743 69,240 152,700 34,193 32,565,075 78,017,191
color-10-3-1483 436,772 92,283 182,689 45,396 9,734,635 3,237,651

Some results have more clauses processed than are present in the original problem.
In such cases, clause sets were partitioned by their connection to variables. As some
clauses may have simultaneously belonged to multiple sets, this represented a form
of clause “cross-fertilization” [31]. Also, the lack of additional variables in the 12-12-
barrel was a result of variable elimination from polynomial equations of form:

a + b = 0 or a + b + 1 = 0 (25)

which imply a = b and a = ¬b, respectively.

5.2 Combining SAT Preprocessors

In addition to applying the Gröbner basis transformation technique alone, the tech-
nique was combined with another preprocessor SatELite 1.13 [10] to test how two

A Gröbner Basis Approach to CNF-Formulae Preprocessing 629

transformation engines complemented each other’s abilities. With SatELite’s ability
to simplify CNF files at the clause-level, much of the overhead “clutter”created by
the Gröbner basis transformations could be reduced. However, “cleanup” was not the
only purpose of using SatELite: the additional constraint-information produced by the
Gröbner basis transformation could be used to improve SatELite performance.

Benchmark S Processing Time Solve Time
SatEL GBT Comb Orig SatEL GBT Comb

7pipe U 41.70 3.28 45.17 333 411 382 305
9pipe q0 k U 70.85 29.44 113 872 594 838 539
2dlx cc ex bp f bug1 S 194 74.83 316 809 594 367 117
SatEL = SatELite; GBT = Gröbner Basis Transformation; Comb = Combined

In all cases, the Gröbner basis engine was applied first, and then SatELite. Some
benchmarks, such as the above, were able to derive benefits from a combination of
preprocessors. In one instance, the solve time of the transformed problem was only less
when both techniques were combined.

5.3 Interpreting the Results

The results are mixed. On many, the benefits obtained are far outweighed by the time
spent during preprocessing. Furthermore, the processing varied greatly, with some prob-
lems benefiting from large numbers of clauses processed, and others very few. Also
the time saved during solving varied from only marginal improvement to significant
savings.

The purpose, however, is not to present a comprehensive solution, but to show the
potential that lies in this approach. One stand-out result is that, despite the number of
additional constraints and variables produced, in many cases the SAT solver could still
find solutions in less time. Such results are encouraging, and can lead to a more refined
approach, overcoming inefficiencies such as those caused by the polynomial-to-CNF
translation.

6 Conclusion

We have presented a polynomial ring algebra approach to CNF-formulae transforma-
tion, using Gröbner bases as the core technique to transform polynomials. By applying
this approach in an effective manner, sets of constraints, represented as polynomials
can be simplified, making the problem easier to solve. We have shown that when a SAT
instance is properly partitioned, and a partition-specific monomial ordering derived,
this approach can perform relatively well. Also, despite the large number of clauses
and variables added to the problem, extra constraint information, provided as a result
of processing, can actually improve SAT solving. This technique is not fully refined;
however, it shows promise and has a firm grounding in commutative ring algebra. We
conclude that SAT-solving can benefit from this alternative approach to CNF-formulae
transformation for preprocessing and, with additional improvements, may prove to be a
viable technique for SAT preprocessing.

630 C. Condrat and P. Kalla

References

1. M. Davis and H. Putnam, “A Computing Procedure for Quantification Theory”, Journal of
the ACM, vol. 7, pp. 201–215, 1960.

2. M. Davis, G. Logemann, and D. Loveland, “A machine program for theorem proving”, in
Communications of the ACM, 5:394-397, 1962.

3. R. Zabih and D. A. McAllester, “A Rearrangement Search Strategy for Determining Propo-
sitional Satisfiability”, in Proc. Natl. Conf. on AI, 1988.

4. J. Marques-Silva and K. A. Sakallah, “GRASP - A New Search Algorithm for Satisfiability”,
in International Conference on Computer Aided Design (ICCAD), pp. 220–227, Nov. 1996.

5. W. Kunz and D.K. Pradhan, “Recursive Learning: A New Implication Technique for Efficient
Solutions to CAD Problems – Test, Verification and Optimization”, IEEE Tr. on CAD, vol.
13, pp. 1143–1158, Sep. 1994.

6. M. Moskewicz, C. Madigan, L. Zhao, and S. Malik, “CHAFF: Engineering an Efficient SAT
Solver”, in In Proc. Design Automation Conference, pp. 530–535, June 2001.

7. E. Goldberg and Y. Novikov, “BerkMin: A Fast and Robust Sat-Solver”, in Design, Automa-
tion and Test in Europe (DATE), pp 142-149, 2002.

8. F. Bacchus and J. Winter, “Effective Preprocessing with Hyper-Resoluton and Equality Re-
duction”, in Proc. Intl Colloquium Automata, Languages, and Programming, June 2003.

9. S. Subbarayan and D. Pradhan, “NiVER: Non Increasing Variable Elimination Resolution
for Preprocessing SAT instances”, in International Conference on Theory and Applications
of Satisfiability Testing (SAT2004), May 2004.

10. N. Eén and A. Biere, “Effective Preprocessing in SAT through Variable and Clause Elimina-
tion”, in International Conference on Theory and Applications of Satisfiability Testing, June
2005.

11. E.A. Hirsch, “Random generator hgen8 of unsatisfiable formulas in CNF - SAT
2003 benchmark competition winner”, http://logic.pdmi.ras.ru/˜hirsch/
benchmarks/hgen8.html

12. J. P. Warners and H. V. Maaren, “A Two Phase Algorithm for Solving a Class of Hard
Satisfiability Problems”, in 90, p. 10. Centrum voor Wiskunde en Informatica (CWI), ISSN
1386-369X, 30 1998.

13. R. I. Brafman, “A Simplifier for Propositional Formulas with Many Binary Clauses”, in
Proceedings of the International Joint Conferences on Artificial Intelligence (IJCAI), pp.
515–522, 2001.

14. P. Beame, R. Impagliazzo, J. Kraj’icek, T. Pitassi, and P. Pudl’ak, “Lower bounds on Hilbert’s
Nullstellensatz and propositional proofs”, in Proceedings of the London Mathematical Soci-
ety, pp. 73:1–26, 1996.

15. M. Clegg, J. Edmonds, and R. Impagliazzo, “Using the Gröbner basis algorithm to find
proofs of unsatisfiability”, in Proc. 28th ACM Symposium on Theory of Computing, pp.
174–183, 1996.

16. J. Buresh-Oppenheim, M. Clegg, R. Impagliazzo, and T. Pitassi, “Homogenization and the
Polynomial Calculus”, Comput. Complex., vol. 11, pp. 91–108, 2003.

17. B. Buchberger, Ein Algorithmus zum Aunden der Basiselemente des Restklassenringes nach
einem Nulldimensionalen Polynomideal, PhD thesis, Institute of Mathematics. University of
Innsbruck, Austria, 1965.

18. W. Adams and P Loustaunau, An Introduction to Gröbner Bases, American Mathematical
Society, 1994.

19. D. Bayer and D. Mumford, “What can be computed in algebraic geometry”, in Computa-
tional Algebraic Geometry and Commutative Algebra, Cambridge University Press, 1993,
pp. 1–48, Symposia Mathematica XXXIV., 1993.

http://logic.pdmi.ras.ru/~hirsch/benchmarks/hgen8.html
http://logic.pdmi.ras.ru/~hirsch/benchmarks/hgen8.html

A Gröbner Basis Approach to CNF-Formulae Preprocessing 631

20. O. Bachmann and H. Schönemann, “Monomial representations for Gröbner bases compu-
tations”, in ISSAC ’98: Proceedings of the 1998 international symposium on Symbolic and
algebraic computation, pp. 309–316, New York, NY, USA, 1998. ACM Press.

21. A. Giovini, T. Mora, G. Niesi, L. Robbiano, and C. Traverso, “”One sugar cube, please” or
Selection Strategies in the Buchberger Algorithm”, in ISSAC ’91: Proceedings of the 1991
international symposium on Symbolic and algebraic computation, pp. 49–54, New York, NY,
USA, 1991. ACM Press.

22. M. Caboara, “A dynamic algorithm for Gröbner basis computation”, in ISSAC ’93: Pro-
ceedings of the 1993 international symposium on Symbolic and algebraic computation, pp.
275–283, New York, NY, USA, 1993. ACM Press.

23. H. Shah and j. Fortes, “Tree Structured Gröbner Basis Computation on Parallel Machines”,
ECE Technical Reports, Purdue Libraries, vol. TR-EE 94-30, October 1994.

24. J. Moses, “Algebraic simplification a guide for the perplexed”, in SYMSAC ’71: Proceedings
of the second ACM symposium on Symbolic and algebraic manipulation, pp. 282–304, New
York, NY, USA, 1971. ACM Press.

25. E. Ben-Sasson and R. Impagliazzo, “Random CNF’s are Hard for the Polynomial Calcu-
lus”, in FOCS ’99: Proceedings of the 40th Annual Symposium on Foundations of Computer
Science, p. 415, Washington, DC, USA, 1999. IEEE Computer Society.

26. CoCoATeam, “CoCoA: a system for doing Computations in Commutative Algebra”, Avail-
able at http://cocoa.dima.unige.it.

27. I. Niven and J. L. Warren, “A Generalization of Fermat’s Theorem”, Proceedings of Ameri-
can Mathematical Society, vol. 8, pp. 306–313, 1957.

28. D. Cox, J. Little, and D. O’Shea, Ideals, Varieties, and Algorithms : An Introduction to Com-
putational Algebraic Geometry and Commutative Algebra (Undergraduate Texts in Mathe-
matics), Springer, July 2005.

29. D. Castro, M. Giusti, J. Heintz, G. Matera, and L. Pardo, “The hardness of polynomial
equation solving”, in Found. Comput. Mathematics, 2003., 2003.

30. A. Biere, A. Cimatti, E.M. Clarke, and Y. Zhu, “Symbolic Model Checking without BDDs”,
in TACAS ’99: Proceedings of the 5th International Conference on Tools and Algorithms for
Construction and Analysis of Systems, pp. 193–207, London, UK, 1999. Springer-Verlag.

31. N. Dershowitz, J. Hsiang, G-S. Huang, and D. Kaiss, “Boolean Ring Satisfiability”, in
International Conference on Theory and Applications of Satisfiability Testing (SAT 2004),
May 2004.

Kodkod: A Relational Model Finder

Emina Torlak and Daniel Jackson

MIT Computer Science and Artificial Intelligence Laboratory
{emina,dnj}@mit.edu

Abstract. The key design challenges in the construction of a SAT-based
relational model finder are described, and novel techniques are proposed
to address them. An efficient model finder must have a mechanism for
specifying partial solutions, an effective symmetry detection and break-
ing scheme, and an economical translation from relational to boolean
logic. These desiderata are addressed with three new techniques: a sym-
metry detection algorithm that works in the presence of partial solutions,
a sparse-matrix representation of relations, and a compact representation
of boolean formulas inspired by boolean expression diagrams and reduced
boolean circuits. The presented techniques have been implemented and
evaluated, with promising results.

1 Introduction

Many computational problems can be expressed declaratively as collections of
constraints, and then solved using a constraint-solving engine. A variety of such
engines have been developed, each tailored for a particular language: resolution
engines for Prolog, Simplex for linear inequalities, SAT solvers for boolean for-
mulas, etc. This paper concerns the design of a general purpose relational engine:
that is, a model finder for a constraint language that combines first order logic
with relational algebra and transitive closure.

A relational engine is well-suited to solving a wide range of problems. For
example,

• Design analysis. A software design, modeled as a state machine over struc-
tured states (expressed as relations), can be checked, within finite bounds, for
preservation of invariants by presenting the engine with a constraint of the
form S ∧¬P , whose solutions are counterexamples satisfying the description
of the system (S) but violating the expected property (P).

• Code analysis. A procedure can be checked against a declarative specification
using the same method, by translating its code to a relational constraint.

• Test case generation. Unit tests for modules implementing intricate data-
types, such as red-black trees, with complex representation invariants, can
be generated by a relational engine from the invariants.

• Scheduling and planning. For example, given the overall requirements and
prerequisite dependences of a degree program, information about which
terms particular courses are offered in, and a set of courses already taken, a
relational engine can plan a student’s course schedule.

O. Grumberg and M. Huth (Eds.): TACAS 2007, LNCS 4424, pp. 632–647, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Kodkod: A Relational Model Finder 633

We have established the feasibility of using a relational engine for design analysis
[1], code analysis [2,3] and test case generation [4] in earlier work. The prototype
tool that we describe in this paper has been applied to design analysis, code
analysis [5], and course scheduling [6]; it is also a mean Sudoku player.

Our earlier work involved the development of the Alloy modeling language
[1] and its analyzer. The Alloy Analyzer was designed for the analysis of soft-
ware models, and attempts to use it as a generic relational engine have been
hampered by its lack of a mechanism for exploiting a priori knowledge about a
problem’s solution. The user provides only a constraint to be solved, and if a
partial solution—or, a partial instance—is available which the obtained solution
should extend, it can be provided only in the form of additional constraints.
Because the solver must essentially rediscover the partial instance from the con-
straints, this strategy does not scale well.

Kodkod is a new tool that, unlike the Alloy Analyzer, is suitable as a generic
relational engine. Kodkod outperforms the Analyzer dramatically on problems
involving partial instances, and, due to improvements in the core technology
that we describe, outperforms Alloy even on the problems for which Alloy was
designed. It also outperforms other SAT-based logic engines (such as Paradox
[7] and MACE [8]) on a variety of TPTP [9] benchmarks.

The underlying technology involves translation from relational to boolean
logic, and the application of an off-the-shelf SAT solver on the resulting boolean
formula. The contributions of this paper are:

• A new symmetry-breaking scheme that works in the presence of partial in-
stances; the inability of Alloy’s scheme to accommodate partial instances
was a key reason for not supporting them.

• A new sparse-matrix representation of relations that is both simpler to im-
plement and better performing than the ‘atomization’ used in Alloy [10].

• A new scheme for detecting opportunities for sharing in the constraint ab-
stract syntax tree inspired by boolean expression diagrams [11] and reduced
boolean circuits [12].

Another major difference between the new tool and Alloy is its implementation
as an API rather than as a standalone application. Alloy can in fact be accessed
as an API, but the interface is string-based and awkward to use. The new tool is
designed to be a plugin component that can easily be incorporated as a backend
of another tool. These considerations, however, while crucial motivations of the
project [13], are not the topic of the present paper.

2 Related Work

A variety of tools have been developed for finding finite models of first order logic
(FOL) formulas [7,8,14,15,16,17,18,19]. Several of these [16,17,18,19] implement
specialized search algorithms for exploring the space of possible interpretations
of a formula. The rest [7,8,14,15] are essentially compilers. Given a FOL formula
and a finite universe of uninterpreted atoms, they construct an equivalent propo-
sitional satisfiability problem and delegate the task of solving it to a SAT solver.

634 E. Torlak and D. Jackson

Most research on model finding has focused on producing high-performance
tools for group-theoretic investigations. LDPP [14], MACE [8], FALCON [18],
and SEM [19] have all been used to solve open problems in abstract algebra. For-
mulation of group-theoretic problems requires only a minimal logic. SEM and
FINDER, for example, work on a quantifier-free many-sorted logic of uninter-
preted functions. MACE and Paradox [7] support quantifiers, but none of these
tools handle relational operators directly, which are indispensable for succinct
description of systems whose state has a graph-like shape (such as networks or
file systems) or for modeling programs with graph-like data structures (such
as red-black trees or binomial heaps). Furthermore, lack of a closure operator,
which cannot be encoded using first order constructs, makes it impossible to
express common reachability constraints.

Nitpick [16] was the first model finder to handle binary relations and transitive
closure in addition to quantifier-free FOL. This made it an attractive choice for
analyzing small problems that involve structured state [20,21]. The usefulness
of Nitpick was, however, limited by its poor scalability and lack of support for
quantifiers and higher-arity relations.

TheAlloylanguageanditsanalyzer[15]addressedboththescalabilityandexpres-
siveness limitationsofNitpick.Theunderlying logic supportsfirstorderquantifiers,
connectives, arbitrary-arity relations, andtransitive closure.Alloyhasbeenapplied
to a wide variety of problems, including the design of an intentional naming scheme
[22], the safety properties of the beam scheduler for a proton therapy machine [23],
code analysis [2,3], test-case generation [4], and network configuration [24].

Alloy’s main deficiency as a general-purpose problem description language
is its lack of support for partial instances. Logic programming languages such
as Prolog [25] and Oz [26] provide mechanisms for taking advantage of partial
knowledge to speed up constraint solving, but they lack quantifiers, relational
operators, and transitive closure. The logic presented in this paper is a superset
of the Alloy language that provides a mechanism for specifying partial instances.
Its accompanying model finder, Kodkod, takes advantage of known information,
scaling much better than the Alloy Analyzer in the presence of partial instances.
Kodkod outperforms the Alloy Analyzer even on the problems without partial
solutions, due to the new translation to propositional satisfiability based on
sparse matrices and a new data structure, Compact Boolean Circuits (CBCs).

Compact Boolean Circuits, described in Section 4.3, are a hybrid between Re-
duced Boolean Circuits (RBCs) [12] and Boolean Expression Diagrams (BEDs)
[11]. Like RBCs, CBCs are a representational form for a quantifier-free logic, and
they restrict variable vertices to the leaves of the graph. Like BEDs, CBCs use
a more extensive set of operators and rules than RBCs to maximize subformula
sharing. CBCs differ from both RBCs and BEDs in that their sharing detection
algorithm is parameterized by a user-controlled variable. In particular, the user
controls the trade-off between the speed of circuit construction and the size of
the resulting circuit by determining the depth d to which syntactically distinct
sub-circuits are checked for semantic equivalence. All three circuit representa-
tions can be straightforwardly converted one to another.

Kodkod: A Relational Model Finder 635

3 Model Finding Basics

A formula in relational logic is a sentence over an alphabet of relational variables.
A model, or an instance, of a formula is a binding of the formula’s free variables
to relational constants which makes the formula true. A relational constant is
a set of tuples drawn from a universe of uninterpreted atoms. An engine that
searches for models of a formula in a finite universe is called a finite model finder
or, simply, a model finder.

3.1 Abstract Syntax

A Kodkod problem (Fig. 1) consists of a universe declaration, a set of relation
declarations, and a formula in which the declared relations appear as free vari-
ables. Each relation declaration specifies the arity of a relational variable and
bounds on its value. The lower bound contains the tuples which the variable’s
value must include in an instance of the formula; the union of all relations’ lower
bounds forms a problem’s partial instance. The upper bound holds the tuples
which the variable’s value may include in an instance. The elements of the tuples
in a constant are drawn from the problem’s universe.

To illustrate, consider the following formulation of the pigeonhole principle—
n pigeons cannot be placed into n − 1 holes with each pigeon having a hole to
itself—for the case of 3 pigeons and 2 holes:

{P1, P2, P3, H1, H2}
Pigeon :1 [{〈P1〉〈P2〉〈P3〉}, {〈P1〉〈P2〉〈P3〉}]
Hole :1 [{〈H1〉〈H2〉}, {〈H1〉〈H2〉}]
nest :2 [{}, {〈P1, H1〉〈P1, H2〉〈P2, H1〉〈P2, H2〉〈P3, H1〉〈P3, H2〉}]
(all p : Pigeon | one p.nest) and
(all h : Hole | one nest.h or no nest.h)

The first line declares a universe of five uninterpreted atoms. We arbitrarily
chose the first three of them to represent pigeons and the last two to represent
holes. Because formulas cannot contain constants, a relational variable v :k [C, C]
with the same upper and lower bound is declared for each k-arity constant C
that needs to be accessed in a problem’s formula. The variables Pigeon and
Hole, for example, serve as handles to the unary constants {〈P1〉〈P2〉〈P3〉} and
{〈H1〉〈H2〉}, which represent the sets of all pigeons and holes respectively. The
variable nest ⊆ Pigeon × Hole encodes the placement of pigeons into holes. Its
value is constrained to be an injection by the problem’s formula.

The syntactic productions other than the universe and relation declarations
define a standard relational logic with transitive closure, first order quantifiers,
and connectives. The closure (̂) and transpose (̃) operators can only be applied
to binary expressions. Mixed and zero arity expressions are not allowed. The
arity of a relation variable and its declared bounds must match. The arity of the
empty set constant, {}, is polymorphic, making it a valid bound in the context
of any declaration.

636 E. Torlak and D. Jackson

problem := univDecl relDecl∗ formula

univDecl := { atom[, atom]∗ }
relDecl := rel :arity [constant, constant]
varDecl := var : expr

constant := {tuple∗}
tuple := 〈atom[, atom]∗〉

arity := 1 | 2 | 3 | 4 | . . .
atom := identifier
rel := identifier
var := identifier

expr := rel | var | unary | binary | comprehension
unary := unop expr
unop :=˜|ˆ
binary := expr binop expr
binop := + | & | - | . | –>
comprehension := {varDecl || formula}

formula := elementary | composite | quantified
elementary := expr in expr | mult expr
mult := some | no | one
composite := not formula | formula logop formula
logop := and | or
quantified := quantifier varDecl || formula
quantifier := all | some

Fig. 1. Abstract syntax

P : problem → binding → boolean
R : relDecl → binding → boolean
M : formula → binding → boolean
X : expr → binding → constant
binding : (var ∪ rel) → constant

P[[A d1 ... dn F]]b =
R[[d1]]b ∧ ... ∧ R[[dn]]b ∧ M[[F]]b

R[[r : [cL, cU]]]b = cL ⊆ b(r) ⊆ cU

M[[p in q]]b = X[[p]]b ⊆ X[[q]]b
M[[some p]]b = X[[p]]b ⊃ ∅
M[[one p]]b = |X[[p]]b| = 1
M[[no p]]b = X[[p]]b ⊆ ∅
M[[not F]]b = ¬ M[[F]]b
M[[F and G]]b = M[[F]]b ∧ M[[G]]b
M[[F or G]]b = M[[F]]b ∨ M[[G]]b

M[[all v: p || F]]b =
�

(M[[F]](b⊕v�→X[[p]]b))
M[[some v: p || F]]b =

�
(M[[F]](b⊕v�→X[[p]]b))

X[[p + q]]b = X[[p]]b ∪ X[[q]]b
X[[p & q]]b = X[[p]]b ∩ X[[q]]b
X[[p - q]]b = X[[p]]b \ X[[q]]b
X[[p . q]]b = {〈p1,..., pn−1, q2,..., qm〉 |

〈p1,..., pn〉 ∈ X[[p]]b ∧ 〈q1,..., qm〉 ∈ X[[q]]b
∧ pn = q1}

X[[p –> q]]b = {〈p1,..., pn, q1,..., qm〉 |
〈p1,..., pn〉 ∈ X[[p]]b ∧ 〈q1,..., qm〉 ∈ X[[q]]b}

X[[˜p]]b = {〈p2, p1〉 | 〈p1, p2〉 ∈ X[[p]]b}
X[[ˆp]]b = {〈x, y〉 | ∃ p1,..., pn |

〈x, p1〉, 〈p1, p2〉,..., 〈pn, y〉 ∈ X[[p]]b}
X[[{v: p || F}]]b = {〈x〉 : (X[[p]]b) |

M[[F]](b⊕(v�→x))}
X[[r]]b = b(r)
X[[v]]b = b(v)

Fig. 2. Semantics

3.2 Semantics

The meaning of a problem (Fig. 2) is determined by recursive application of four
meaning functions: P , R, M and X . The functions R and M evaluate relation
declarations and formulas with respect to a binding of variables to constants.
The function P deems a problem true with respect to a given binding if and
only if its declarations and formula are true under that binding. The function
X interprets expressions as sets of tuples. Atoms, tuples, and constants have
their standard set-theoretic interpretations. That is, the meaning of an atom is
its name, the meaning of a tuple is a sequence of atoms, and the meaning of a
constant is a set of tuples.

Kodkod: A Relational Model Finder 637

4 Analysis

The analysis of a Kodkod problem P involves four steps:

1. Detecting P ’s symmetries.
2. Translating P into a Compact Boolean Circuit, CBC(P).
3. Computing SBP(P), a symmetry breaking predicate [27,28] for P .
4. Transforming CBC(P) ∧ SBP(P) into conjunctive normal form, CNF(P).
5. Applying a SAT solver to CNF(P), and, if CNF(P) is satisfiable, interpreting

its model as an instance of P .

The first two steps are the focus of this section. The third step is done in a
standard way (e.g. [28]), by computing a simple lex-leader symmetry breaking
predicate for the symmetry classes detected in the first step. The fourth step
is performed using the standard translation from boolean logic to conjunctive
normal form (see, for example, [29]). The last step is delegated to an off-the-shelf
SAT solver, such as zchaff [30] or MiniSat [31].

4.1 Symmetry Detection

Many problems exhibit symmetries. For example, the pigeons in the pigeonhole
problem are symmetric, as are the pigeonholes; if there were a solution with a
particular assignment of pigeons to holes, exchanging two pigeons or two holes
would yield another solution. More formally, we define the symmetries of a prob-
lem as follows.

Definition 1. Let A={a0,. . . ,an} be a universe, D a set of declarations over
A, and F a formula over D. Let l : A → A be a permutation, and define l(t)
to be 〈l(ai0), . . . , l(aik)〉 for all tuples t=〈ai0,...,aik 〉, l(c) to be {l(t)|t ∈ c}
for all constants c ⊆ Ak, etc. The permutation l is a symmetry of the problem
P = (A, D, F) if and only if, for all bindings B, the binding l(B) : rel → constant
is a model of P , written l(B) |= P , whenever B |= P , and l(B) �|= P whenever
B �|= P . The bindings B and l(B) are said to be isomorphic.

The set of symmetries of P , denoted by Sym(P), induces an equivalence relation
on the bindings that map the variables declared in D to sets of tuples drawn from
A. Two bindings B and B′ are equivalent if B′ = l(B) for some l ∈ Sym(P).
Because each l ∈ Sym(P) maps bindings that are models of P to other models
of P and bindings that do not satisfy P to other non-models, it is sufficient to
test one binding in each equivalence class induced by Sym(P) to find a model of
P . Isomorph elimination (a.k.a. symmetry breaking), using either a symmetry-
aware model finder on P [18,19,16] or a SAT solver on CNF(P ∧SBP(P)) [7,32],
typically speeds up the model search by orders of magnitude. Many interesting
problems are intractable without symmetry breaking [27,33].

In the case of a standard typed logic such as the Alloy language or SEM’s logic,
symmetry detection in a universe of uninterpreted atoms is straightforward:
Sym(P) is the set of all permutations that map an atom of A to itself or to
another atom of the same type. Atoms of the same type are interchangeable

638 E. Torlak and D. Jackson

because neither logic provides a means of referring to individual atoms. The
Kodkod logic does, however, so even if it were typed, atoms of the same type
would not necessarily be interchangeable.

Here, for example, is a toy specification of a traffic lights system showing a case
where the conceptual typing of atoms does not partitionA into equivalence classes:

{N, E, G, Y, R}
Green :1 [{〈G〉}, {〈G〉}]
Light :1 [{〈N〉〈E〉}, {〈N〉〈E〉}]
display :2 [{}, {〈N, G〉〈N, Y〉〈N, R〉〈E, G〉〈E, Y〉〈E, R〉}]
(all light: Light | one light.display) and
(one Light.display & Green or no Light.display & Green)

The traffic-system universe consists of five atoms that are conceptually parti-
tioned into two ‘types’: the atoms representing the stop lights at an intersection
(north-south and east-west) and the atoms representing the colors green, yel-
low, and red. The formula constrains each light to display a color and requires
that at most one of the displayed colors be Green. The stop-light atoms form an
equivalence class, but the color atoms do not. In particular, only Y and R are
interchangeable. To see why, consider the following model of the problem:

B = {Green �→{〈G〉}, Light �→{〈N〉〈E〉}, display �→{〈N, Y〉〈E, G〉}}.

Applying the permutations l1 = (N E)(Y R) and l2 = (G Y R)1 to B, we get

l1(B) ={Green �→{〈G〉}, Light �→{〈E〉〈N〉}, display �→{〈E, R〉〈N, G〉}},
l2(B) ={Green �→{〈Y〉}, Light �→{〈N〉〈E〉}, display �→{〈N, R〉〈E, Y〉}}.

The binding l1(B) is a model of the problem, but l2(B) is not because it violates
the constraint {〈G〉} ⊆ Green ⊆ {〈G〉} imposed by the declaration of Green.

The traffic lights example reveals two important properties of declarations
and formulas.2 First, a permutation l is a symmetry of a set of declarations D
if it fixes the constants in D, i.e. if l(c) = c for each c occurring in D. The
permutation l1, for example, is a symmetry of the traffic-lights declarations.
Second, any permutation is a symmetry of a formula. The binding l2(B) is a
model of the traffic-lights formula even though it is not a model of the problem.

These observations lead to a simple criterion for deciding whether a permu-
tation l is a symmetry of a problem: l ∈ Sym(P) for all P = (A, D, F) if and
only if l maps each constant that occurs in D to itself.

Theorem 1 (Symmetry Criterion). Let A be the universe of discourse and
D = {r1 :k1 [c1, c2], r2 :k2 [c3, c4], . . . , rm :km [c2m−1, c2m]} a set of declarations
over A. The permutation l : A → A is a symmetry for all problems P and
formulas F such that P = (A, D, F) if and only if l fixes c1, c2, . . . , c2m.
1 Recall that cycle notation for permutations [34] indicates that each element in a pair

of parenthesis is mapped to the one following it, with the last element being mapped
to the first. The elements that are fixed under a permutation are not mentioned, i.e.
(N E)(Y R)=(N E)(Y R)(G).

2 The proofs of all assertions and theorems stated in this section can be found in the
technical report on Kodkod [35], available at http://hdl.handle.net/1721.1/34218.

Kodkod: A Relational Model Finder 639

Because every relational constant is isomorphic to a graph, Thm. 1 equates the
task of finding Sym(P) to that of computing the automorphisms of the graphs
that correspond to the constants in D—a problem with no known polynomial
time solution [36]. So, we use the algorithm in Fig. 3 to find a polynomially com-
putable subset of Sym(P) that is equal to Sym(P) for many problems, including
the pigeonhole, traffic lights, and all problems in Section 5.

base(A: univDecl, D: relDecl∗)

1 S ← {A}
2 for all r :k [cL, cU] ∈ D do
3 S ← part(cL, S)
4 S ← part(cU , S)
5 return S

part(c: constant, S: set of sets)

6 S′ ← {}
7 k ← arity(c)
8 C ← {a1 | 〈a1, . . . , ak〉 ∈ c}
9 for all s ∈ S do

10 if s ⊆ C or s ∩ C = ∅
11 thenS′ ← S′ ∪ {s}
12 else S′ ← S′∪{s ∩ C}∪{s\C}
13 if k > 1 then
14 C ← {〈a2, . . . , ak〉 | 〈a1, a2, . . . , ak〉 ∈ c}
15 P ← {s | s ∈ S′ ∧ s ∩ C �= ∅}
16 P ← {}
17 for all p ∈ P do
18 S′ ← S′ \ p

19 while p �= ∅ do
20 x ← choose(p) � pick an atom from p

21 X ← {〈a2, . . . , ak〉 | 〈x, a2, . . . , ak〉 ∈ c}
22 X ← {a | a ∈ p ∧ (〈a〉 × C) ∩ c = X}
23 p ← p \X
24 S′ ← S′ ∪ {X}
25 P ← P ∪ {X}
26 for all p̄ ∈ P do
27 S′ ← part(p̄, S′)

28 return S′

base({b,c,d,e}, g:2[{},{〈b,c〉〈b,d〉〈e,e〉}])
S = {{b,c,d,e}}
� r = g:2[{},{〈b,c〉〈b,d〉〈e,e〉}]
S part({}, {{b,c,d,e}}) = {{b,c,d,e}}
S part({〈b,c〉〈b,d〉〈e,e〉}, {{b,c,d,e}})
...
part({〈b,c〉〈b,d〉〈e,e〉}, {{b, c, d, e}})

S′ = {}
k = 2
C = {b, e}
� s = {b,c,d,e}

S′ {{b,e}, {c,d}}

C = {〈c〉〈d〉〈e〉}
P = {{b, e}}
P = {}
� p = {b,e}
S′ {{c,d}}

� 1st 2nd

x b e
X {〈c〉〈d〉} {〈e〉}
X {b} {e}
p {e} {}
S′ {{b},{c,d}} {{b},{c,d},{e}}
P {{〈c〉〈d〉}} {{〈c〉〈d〉},{〈e〉}}

� p̄={〈c〉〈d〉} p̄={〈e〉}
S′ {{b},{c,d},{e}} {{b},{c,d},{e}}
return {{b},{c,d},{e}}

Fig. 3. Symmetry detection algorithm and a sample trace. Trace events are horizontally
aligned with the pseudocode. Loops are shown as tables, with a column per iteration.

The intuition behind the algorithm is the observation that constants in most
problem declarations are expressible as unions of products of ‘types’ with zero
or more ‘distinguished’ atoms. For example, the bounds on the variables in the
traffic lights problem can be expressed as Green = T{G}, Light = Tlight, and
display ⊆ Tlight×T{R,Y}∪Tlight×T{G}, where the ‘types’ are Tlight = {N, E} with no
distinguished atoms and Tcolor = T{R,Y} ∪ T{G} = {G, Y, R} with the distinguished
atom G. We call the sets {R, Y}, {G} and {N, E} a base partitioning of the traffic-
lights universe with respect to the problem’s declarations.

640 E. Torlak and D. Jackson

Definition 2. Let A be a universe, c a constant over A, and S = {S1, . . . , Sn}
a set of sets that partition A. S is a base partitioning of A with respect to
c if c can be expressed as a union of products of elements in S ∪ {∅}, i.e.:
∃x ≥ 1 | ∃s1, . . . , sxk ∈ S ∪ {∅} | c =

⋃x−1
j=0 (sjk+1×. . .×sjk+k), where k=arity(c).

The algorithm base finds the coarsest base partitioning for a given universe A
and declarations D. It works by minimally refining the unpartitioned universe,
S = {A}, until each constant in D can be expressed as a union of products of
the computed partitions (lines ??-??). The correctness and local optimality of
base follow by induction from Theorems 2 and 3:

Theorem 2 (Soundness). Let D = {r1 :k1 [c1, c2], . . . , rm :km [c2m−1, c2m]}
be a set of declarations over A and S = {S1, . . . , Sn} a base partitioning of A
with respect to the constants c1, . . . , c2m. If a permutation l : A → A fixes all
Si ∈ S, then it also fixes c1, . . . , c2m.

Theorem 3 (Local Optimality). Let A be the universe of discourse, c a con-
stant over A, and S = {S1, . . . Sn} a set of sets that partition A. Applying part
to c and S will subdivide S into the coarsest S′ = {S′

1, . . . , S
′
m} that is a base

partitioning of A with respect to c.

The former tells us that the set of permutations induced by a base partitioning
for D satisfies the symmetry criterion (Thm. 1), and the latter that each call
to part generates the coarsest base partitioning of A with respect to a given
constant in D. It is also not difficult to see that the worst case running time
of the algorithm is polynomial in the size of D, where |D| = O(K|A|K) with
K = max(k1, . . . , km). In practice, the proportion of time spent on symmetry
detection during analysis is negligible because K is usually small (< 5), and
the algorithm works on a compact, interval tree representation of constants [35],
which reduces the memory overhead exponentially for most problems.

4.2 Sparse-Matrix Translation to Boolean Logic

We translate a Kodkod problem P = (A, D, F) to an equisatisfiable boolean
formula using the same basic idea employed by the Alloy Analyzer—that a rela-
tional expression can be represented as a matrix of boolean values [15]. Given a
relation declaration r :k [cL, cU] over a universe A = {a0, . . . , an−1}, we encode
r as a k-dimensional boolean matrix m with

m[i1, . . . , ik] =

⎧
⎨

⎩

true ⇔ 〈ai1 , . . . , aik
〉 ∈ cL

freshVar() ⇔ 〈ai1 , . . . , aik
〉 ∈ cU −cL

false otherwise

where i1, . . . , ik ∈ [0 . . n) and freshVar() returns a fresh boolean variable. Ex-
pressions are then translated using matrix operations, and formulas become con-
straints over matrix entries (Fig. 4). For example, the join of two expressions,
p.q, is translated as the matrix product of the translations of p and q, and the
non-emptiness formula, some p, is translated as the disjunction of the entries in
the matrix translation of p.

Kodkod: A Relational Model Finder 641

TP: problem → bool
TR: relDecl → univDecl → matrix
TM: formula → env → bool
TX: expr → env → matrix
env: (quantVar ∪ relVar) → matrix
freshVar: boolVar
bool := true | false | boolVar |
¬ bool | bool ∧ bool | bool ∨ bool

boolVar := identifier

−→x , −→y , 〈i1, ..., ik〉 � vectors
� �: matrix→〈int〉 � minimum index
� �: matrix→〈int〉 � maximum index
||: matrix→dim � dimensions

M: dim→(〈int〉→bool)→matrix � constructor
M(sd, f) = {m | |m|=sd ∧
∀−→x ∈ {0, ..., s−1}d, m[−→x]=f(−→x)}

M: dim→〈int〉→matrix � constructor
M(sd, −→x) = M(sd,
λ−→y . if −→y =−→x then true else false)

TP[A d1 ... dn F] =
TM[F](

Sm
i=1(ri �→TR[di]A))

TR[r :k [cL, cU]]A = M(|A|k, λ[i1,..., ik].
if 〈ai1 , ..., aik

〉 ∈ cL then true
else if 〈ai1 , ..., aik

〉 ∈ cu−cL then freshVar()
else false)

TM[p in q]e =
V

(¬TX[p]e ∨ TX[q]e)

TM[some p]e =
W

(TX[p]e)

TM[one p]e = let (m = TX[p]e) in
W�m�

−→x =�m� (
V

(¬M(|m|, −→x)⊕m))

TM[no p]e =
V

(¬TX[p]e)

TM[!F]e = ¬ TM[F]e

TM[F && G]e = TM[F]e ∧ TM[G]e

TM[F || G]e = TM[F]e ∨ TM[G]e

TM[all v: p || F]e = let (m = TX[p]e) in
V�m�

−→x =�m�(¬m[−→x] ∨ TM[F](e:v �→M(|m|, −→x)))

TM[some v: p || F]e = let (m = TX[p]e) in
W�m�

−→x =�m�(m[−→x] ∧ TM[F](e:v �→M(|m|, −→x)))

TX[p + q]e = TX[p]e ∨ TX[q]e

TX[p & q]e = TX[p]e ∧ TX[q]e

TX[p - q]e = TX[p]e ∧ ¬TX[q]e

TX[p . q]e = TX[p]e · TX[q]e

TX[p–>q]e = TX[p]e × TX[q]e

TX[˜p]e = (TX[p]e)T

TX[ˆp]e = iterative-square(TX[p]e)

TX[{v: p || F}]e = let (m = TX[p]e) in
M(|m|, λ−→x . m[x]∧TM[F](e:v �→M(|m|, −→x))}

Fig. 4. Translation rules

A key difference between the Kodkod and Alloy [15] translation algorithms
is that the latter is based on types. The Alloy Analyzer encodes a k-arity re-
lation r of type T1 → . . . → Tk as a boolean matrix with dimensions |T1| ×
. . . × |Tk|. Since operands of many matrix operators must have particular di-
mensions, the operands of their corresponding relational operators are forced to
have specific types. For example, in a world with three women and three men,
the Alloy Analyzer would reject the perfectly reasonable attempt to form the
maternalGrandmother relation by joining the relation mother: Person → Woman with
itself, because a 6 × 3 matrix cannot be multiplied by itself. There are two ways
to remedy this problem: (1) force the type of mother up to Person → Person, dou-
bling the size of its boolean representation, or (2) atomize mother into two pieces,
motherw: Woman → Woman and motherm: Man → Woman, and split the expres-
sion mother.mother into motherw.motherw + motherm.motherw before handing it to
the translator [10]. AA takes the latter approach which has not worked well in
practice because of its awkward handling of transitive closure expressions [10].

We avoid the problems of a type-based translation by encoding all k-arity rela-
tions over A as k-dimensional sparse matrices |A|×. . .×|A|. A sparse translation
matrix is represented as a sorted map from flat indices [35] to boolean formu-
las. Each k-tuple, and its corresponding matrix index, is encoded as an integer
in the range [0 . . . |A|k). A sparse matrix maps a tuple’s integer representation

642 E. Torlak and D. Jackson

only if it is non-false. For example, the sparse matrix representation of the dis-

play relation from the traffic-lights problem maps the flat indices of the upper
bound tuples {〈N, G〉〈N, Y〉〈N, R〉〈E, G〉〈E, Y〉〈E, R〉} to boolean variables, and leaves
the indices of the remaining tuples in A × A unmapped (i.e. false). Consecutive
indices that map to true are encoded using a run-length encoding, enabling a
compact representation of lower bounds.

4.3 Sharing Detection with Compact Boolean Circuits

Formal specifications make frequent use of quantified formulas whose ground
form contains many identical subcomponents. Detection and exploitation of this
and other kinds of structural redundancy can greatly reduce the size of a prob-
lem’s boolean encoding, leading to a more scalable analysis. Equivalent sub-
formulas can be detected either at the problem level or at the boolean level.
The Alloy Analyzer takes the former approach [37]. Our implementation uses
Compact Boolean Circuits to detect sharing at the boolean level.

A Compact Boolean Circuit (CBC) is a partially canonical, directed, acyclic
graph (V, E, d). The set V is partitioned into operator vertices Vop = Vand ∪
Vor ∪ Vnot and leaves Vleaf = Vvar ∪ {T, F}. An and or an or vertex has two
children, and a not vertex has one child. The degree of canonicity is determined
by an equivalence relation on vertices (which embodies standard properties of
the logical operators, such as commutativity, associativity, etc.) and the circuit’s
compaction depth d ≥ 1. In particular, no vertex v ∈ V can be transformed into
another vertex w ∈ V by applying an equivalence transformation to the top
d ≥ 1 levels of the subgraph rooted at v.

An example of a non-compact boolean circuit and its compact equivalents is
shown in Fig. 5. Fig. 5(a) contains the formula (x∧y∧z) ⇔ (v∧w) encoded using
the operators {and, or, not} as (¬((x∧y)∧z)∨(v∧w))∧(¬(v∧w)∨(x∧(y∧z))).
Fig. 5(b) shows an equivalent CBC with the minimal compaction depth of d = 1,
which enforces partial canonicity at the level of inner nodes’ children. That is,
the depth of d = 1 ensures that all nodes in the circuit are syntactically distinct,
forcing the subformula (v ∧ w) to be shared. Fig. 5(c) shows the original circuit
represented as a CBC with the compaction depth of d = 2, which enforces partial
canonicity at the level of nodes’ grandchildren. The law of associativity applies to
the subformulas ((x ∧ y) ∧ z) and (x ∧ (y ∧ z)), forcing ((x ∧ y) ∧ z) to be shared.

The partial canonicity of CBCs is maintained in our implementation by a
factory data structure which synthesizes and caches CBCs. The factory cre-
ates a new circuit from given components only if it does not find an equivalent
(up to depth d) one in its cache. This ensures that all syntactically equivalent
ground formulas and expressions are translated into the same circuit. Semanti-
cally equivalent nodes are encoded using the same circuit if their equivalence can
be established by looking at the top d ≥ 1 levels of their subgraphs. CBCs also
end up catching structural redundancies in the boolean representation itself that
could not be detected at the problem level. The net result is a tighter encoding
than can be generated using a problem-level detection mechanism.

Kodkod: A Relational Model Finder 643

z

x y

v w

v w

x

zy

¬ ¬

(a) Original circuit

y zx

¬
¬

v w

(b) CBC, d = 1

¬
¬

v w

z

x y

(c) CBC, d = 2

Fig. 5. A non-compact boolean circuit and its compact equivalents

5 Results

We have compared the performance of Kodkod to that of three other tools, the
Alloy Analyzer (version 3), MACE (version 4), and Paradox (version 1.3)3 on
two sets of problems:

• Symmetric problems include the pigeonhole problem and the ‘Ceilings
and Floors’ problem from the Alloy 3 distribution. Like the pigeonhole prob-
lem, ‘Ceilings and Floors’ is unsatisfiable and highly symmetric.

• TPTP problems consist of twelve TPTP [9] benchmarks from various prob-
lem domains. Because the TPTP problems had to be translated to our logic
by hand (in the obvious way, by translating predicates and functions as re-
lations, predicate application as membership testing, function application
as join, etc.), the overriding criterion for benchmark selection was syntactic
succinctness. Other selection criteria were a high difficulty rating (> 0.6),
complex relationships between predicates and functions (geo, med, and set
problems), prevalence of unit equalities (alg212 and num374), and presence
of partial instances (alg195 and num378).

The results are given in Fig. 6. The table shows each problem’s rating, if any, the
size of its universe (|A|), and the model finders’ performance on it. For symmetric
problems, we use two different universe sizes to demonstrate how changing search
bounds impacts model finders’ performance. For TPTP problems, the shown
universe size is the largest universe for which at least three of the model finders
produced a result in five minutes. The performance data for Alloy 3, Kodkod,
and Paradox includes the analysis time, rounded to the nearest second, and the
size of the generated CNF, given as the total number of variables and clauses.
MACE4 does not report CNF statistics. All analyses were performed on a 3.6
GHz Pentium 4 with 3 GB RAM. Alloy 3, Kodkod and Paradox were configured
with MiniSat [31] as their SAT engine; MACE4 uses its own internal SAT solver.
Kodkod’s sharing detection parameter d was set to 3. Analyses that did not

3 Paradox 2.0b, the latest version, does not perform as well as 1.3 on our benchmarks.

644 E. Torlak and D. Jackson

alloy analyzer 3 kodkod paradox 1.3 ma
ce4

problem rat-
ing |A| sec vars clauses sec vars clauses sec vars clauses sec

sy
m
m
e
t
r
ic

p
r
o
b
l
e
m
s

ceil
12 1 2,723 11,704 0 1,749 3,289 0 299 1,373 4
20 16 9,987 46,740 14 6,477 12,449 – 695 4,850 –

pigeon
39 2 15,703 76,994 0 6,953 12,648 – 1,041 9,889 0
99 33 92,191 576,554 5 82,613 156,843 – 5,901 143,344 0

t
p
t
p

p
r
o
b
l
e
m
s

alg195 0.89 14 31 195,408 834,508 3 77,240 254,239 22 30,771 982,467 –
alg212 1.00 7 277 395,297 6,432,170 64 301,725 1,012,808 1 20,747 135,588 14
com008 0.67 11 6 15,384 77,378 6 8,565 14,624 94 6,467 31,275 –
geo091 1.00 8 72 81,267 587,728 16 33,463 73,292 84 19,146 145,373 –
geo158 1.00 6 8 29,831 185,038 2 12,574 26,552 9 8,262 49,955 –
med007 0.67 15 10 19,052 108,454 2 15,072 31,476 36 7,981 48,449 –
med009 0.67 17 12 25,177 144,968 3 20,198 42,263 28 11,850 66,758 –
num374 1.00 5 50 70,229 291,573 55 63,661 200,238 3 6,763 52,671 9
num378 1.00 21 – – – 1 0 0 193 74,736 1,692,990 1
set943 1.00 7 159 25,124 101,040 20 18,883 43,694 11 8,648 46,977 –
set948 1.00 7 7 40,776 159,735 1 24,970 60,787 61 16,226 86,932 –
top020 1.00 9 – – – 48 1,378,863 2,343,728 54 96,232 1,545,950 6

Fig. 6. Results for symmetric and TPTP problems. Gray shading indicates the fastest
time(s) for each problem; dashes indicate timeouts.

complete within five minutes are indicated by dashes. The fastest analysis time
for each problem is highlighted with gray shading.

The data on symmetric problems demonstrates the effectiveness of our sym-
metry detection algorithm compared to that of Alloy 3, which derives optimal
symmetry information from Alloy’s type system, and Paradox, which employs a
sort inference algorithm to find symmetry classes. MACE4 performs no symme-
try breaking, but, interestingly, its internal simplifications allow it to determine
that the pigeonhole problem is unsatisfiable apparently without performing any
search. The TPTP data shows that Kodkod’s performance is competitive with
Paradox’s and MACE4’s on a variety of classical logic problems. Kodkod out-
performs MACE4 and Paradox on problems describing complex relationships
between predicates and functions (e.g. geo091 or set948) and on problems with
partial instances (alg195 and num378). MACE4 and Paradox, however, are su-
perior on problems that contain many unit equalities or deeply nested universal
quantifiers, such as alg212 and num374. These results are consistent with our
overall experience using Alloy 3, Kodkod, MACE4 and Paradox.

The above problems were chosen to compare Kodkod to other SAT-based
model finders, but they are in fact not representative of the class of problems for
which Kodkod and Alloy were developed. Software design problems, in contrast
to these mathematical problems, tend to have less regular structure, despite the
grounding out of quantifiers. We compared Kodkod to Alloy 3 on three design
problems: Dijkstra’s mutual exclusion scheme [38], leader election in a ring [39],
and the transfer protocol of the Mondex smart card [40].

The results are shown in Fig. 7. For the mutual exclusion and leader election
problems, we use two different universe sizes; for the Mondex problem, we check

Kodkod: A Relational Model Finder 645

alloy analyzer 3 kodkod

problem |A| vars clauses
fol
→
cnf

berk
min

mini
sat

zch
aff vars clauses

fol
→
cnf

berk
min

mini
sat

zch
aff

exclusion
30 74,818 722,236 20 7 1 10 20,080 120,097 3 0 0 1
45 357,253 4,874,911 142 150 9 – 67,695 543,597 19 13 5 10

election
15 14,272 78,031 2 1 1 1 8,665 29,590 1 0 0 0
24 91,594 662,188 16 143 109 – 45,136 183,484 3 62 76 –

m
on

de
x A241 51 50,926 416,744 10 27 90 52 35,791 86,402 1 4 87 9

OpTotal 51 43,256 381,458 7 3 2 1 0 0 0 0 0 0
IgnoreInv 51 43,413 386,812 6 7 4 4 28,243 57,604 1 2 22 2

TransferInv 51 50,902 419,094 7 174 – 173 35,761 83,172 1 46 – 53

Fig. 7. Results for design problems. Gray shading indicates the fastest SAT solving
time(s) for each problem; dashes indicate timeouts.

a variety of assertions in the same universe. The performance data includes the
size of the generated CNF and the time, in seconds, taken to generate and solve
it using various SAT engines [41,31,30]. In all cases, Kodkod produces smaller
formulas, which are solved faster by BerkMin [41] and zChaff [30]. Interestingly,
on the Mondex problem (and a few others we encountered), MiniSat actually
performs worse on Kodkod’s formulas than on Alloy 3’s larger formulas. Note
that translation time is dramatically lower in Kodkod than in Alloy 3; the trans-
lation scheme in Alloy 3 used a more complicated (and apparently less effective)
template mechanism for detecting sharing.

References

1. Jackson, D., Shlyakhter, I., Sridharan, M.: A micromodularity mechanism. In:
ESEC / SIGSOFT FSE. (2001) 62–73

2. Vaziri, M., Jackson, D.: Checking properties of heap-manipulating procedures with
a constraint solver. In: TACAS. (2003) 505–520

3. Taghdiri, M.: Inferring specifications to detect errors in code. In: ASE. (2004)
144–153

4. Khurshid, S., Marinov, D.: TestEra: Specification-based testing of java programs
using sat. ASE 11(4) (2004) 403–434

5. Dennis, G., Chang, F., Jackson, D.: Modular verification of code. In: ISSTA,
Portland, Maine (2006)

6. Yeung, V.: Declarative configuration applied to course scheduling. Master’s thesis,
Massachusetts Institute of Technology, Cambridge, MA (2006)

7. Claessen, K., Sörensson, N.: New techniques that improve MACE-style finite model
finding. In: CADE-19 Workshop on Model Computation, Miami, FL (2003)

8. McCune, W.: A Davis-Putnam program and its application to finite first-order
model search: quasigroup existence problem. Technical report, ANL (1994)

9. Sutcliffe, G., Suttner, C.: The TPTP Problem Library: CNF Release v1.2.1. Jour-
nal of Automated Reasoning 21(2) (1998) 177–203

10. Edwards, J., Jackson, D., Torlak, E., Yeung, V.: Faster constraint solving with
subtypes. In: ISSTA ’04, New York, NY, USA, ACM Press (2004) 232–242

11. Andersen, H.R., Hulgaard, H.: Boolean expression diagrams. In: LICS, Warsaw,
Poland (1997)

646 E. Torlak and D. Jackson

12. Abdulla, P.A., Bjesse, P., Eén, N.: Symbolic reachability analysis based on sat-
solvers. In: TACAS ’00, London, UK, Springer-Verlag (2000) 411–425

13. Torlak, E., Dennis, G.: Kodkod for Alloy users. In: First ACM Alloy Workshop,
Portland, Oregon (2006)

14. Fujita, M., Slaney, J., Bennett, F.: Automating generation of some results in finite
algebra. In: 13th IJCAI, Chambéry, France (1993)

15. Jackson, D.: Automating first order relational logic. In: FSE, San Diego, CA (2000)
16. Jackson, D., Jha, S., Damon, C.A.: Isomorph-free model enumeration: a new

method for checking relational specifications. ACM TPLS 20(2) (1998) 302–343
17. Slaney, J.K.: Finder: Finite domain enumerator - system description. In: CADE-12,

London, UK, Springer-Verlag (1994) 798–801
18. Zhang, J.: The generation and application of finite models. PhD thesis, Institute

of Software, Academia Sinica, Beijing (1994)
19. Zhang, J., Zhang, H.: SEM: a system for enumerating models. In: IJCAI95,

Montreal (1995)
20. Jackson, D., Damon, C.A.: Elements of style: analyzing a software design feature

with a counterexample detector. TOSEM (1996) 484–495
21. Ng, Y.C.: A Nitpick specification of IPv6. Senior Honors thesis, Computer Science

Department, Carnegie Mellon University (1997)
22. Khurshid, S., Jackson, D.: Exploring the design of an intentional naming scheme

with an automatic constraint analyzer. In: ASE. (2000) 13–22
23. Dennis, G., Seater, R., Rayside, D., Jackson, D.: Automating commutativity analy-

sis at the design level. In: ISSTA. (2004) 165–174
24. Narain, S.: Network configuration management via model finding. In: ACM Work-

shop On Self-Managed Systems, Newport Beach, CA (2004)
25. O’Keefe, R.: The Craft of Prolog. Logic Programming. MIT Press, Cambridge,

MA (1990)
26. Van Roy, P., Haridi, S.: Concepts, Techniques, and Models of Computer Program-

ming. MIT Press (2004)
27. Crawford, J., Ginsberg, M.L., Luck, E., Roy, A.: Symmetry-breaking predicates

for search problems. In: KR’96. Morgan Kaufmann, San Francisco (1996) 148–159
28. Shlyakhter, I.: Generating effective symmetry breaking predicates for search prob-

lems. Electronic Notes in Discrete Mathematics 9 (2001)
29. Eén, N., Sörensson, N.: Translating pseudo-boolean constraints into SAT. In:

SBMC. Volume 2. (2006) 1–26
30. Mahajan, Y.S., Fu, Z., Malik, S.: zchaff2004: An efficient sat solver. In: SAT

(Selected Papers). (2004) 360–375
31. Eén, N., Sörensson, N.: An extensible SAT-solver. In: SAT’03. Volume LNCS 2919.

(2004) 502–518
32. Shlyakhter, I.: Declarative Symbolic Pure Logic Model Checking. PhD thesis,

Massachusetts Institute of Technology, Cambridge, MA (2005)
33. Sabharwal, A.: SymChaff: A structure-aware satisfiability solver. In: 20th National

Conference on Artificial Intelligence (AAAI), Pittsburgh, PA (2005) 467–474
34. Armstrong, M.A.: Groups and Symmetry. Springer-Verlag, New York (1988)
35. Torlak, E., Jackson, D.: The design of a relational engine. Technical Report MIT-

CSAIL-TR-2006-068, MIT (2006)
36. Babai, L., Kantor, W.M., Luks, E.M.: Computational complexity and the classifi-

cation of finite simple groups. In: IEEE SFCS, IEEE CSP (1983) 162–171
37. Shlyakhter, I., Sridharan, M., Seater, R., Jackson, D.: Exploiting subformula shar-

ing in automatic analysis of quantified formulas. In: SAT, Portofino, Italy (2003)

Kodkod: A Relational Model Finder 647

38. Dijkstra, E.W.: Cooperating sequential processes. In Genuys, F., ed.: Programming
Languages. Academic Press, New York (1968) 43–112

39. Chang, E.J.H., Roberts, R.: An improved algorithm for decentralized extrema-
finding in circular configurations of processes. Commun. ACM 22(5) (1979) 281–283

40. Ramananandro, T.: The Mondex case study with Alloy. http://www.eleves.ens.fr/
home/ramanana/work/mondex/ (2006)

41. Goldberg, E., Novikov, Y.: BerkMin: A fast and robust SAT solver. In: Design
Automation and Test in Europe. (2002) 142–149

Bounded Reachability Checking of
Asynchronous Systems Using Decision Diagrams�

Andy Jinqing Yu1, Gianfranco Ciardo1, and Gerald Lüttgen2

1 Department of Computer Science and Engineering, University of California,
Riverside, CA 92521, USA
{jqyu,ciardo}@cs.ucr.edu

2 Department of Computer Science, University of York, York YO10 5DD, UK
luettgen@cs.york.ac.uk

Abstract. Bounded reachability or model checking is widely believed to
work poorly when using decision diagrams instead of SAT procedures.
Recent research suggests this to be untrue with regards to synchronous
systems, particularly digital circuits. This paper shows that the belief
is also a myth for asynchronous systems, such as models specified by
Petri nets. We propose Bounded Saturation, a new algorithm to compute
bounded state spaces using Multi-way Decision Diagrams (MDDs). This
is based on the established Saturation algorithm which benefits from
a non-standard search strategy that is very different from breadth-first
search. To bound Saturation, we employ Edge-Valued MDDs and rework
its search strategy. Experimental results show that our algorithm often,
but not always, compares favorably against two SAT-based approaches
advocated in the literature for deadlock checking in Petri nets.

1 Introduction

Bounded model checking is a well-established technique to reason about reactive
systems [3]. Unlike conventional model checking based on explicit or symbolic
representations of state spaces [13], bounded model checking takes a system,
a bound B, and a safety property φ, unwinds the system’s transition relation
B times, and derives a propositional formula which is satisfiable if and only if
there exists a path through the system of length at most B that demonstrates
the violation of φ. Due to the impressive technology advances in SAT solving
(see, e.g., [24]), such satisfiability problems can often be decided efficiently.

BDDs vs. SAT. Bounded model checking is an incomplete verification tech-
nique unless the bound exceeds the state space diameter. However, as many faults
involve relatively short counterexamples in practice, the technique has proved
itself an efficient debugging aid, and bounded model checkers are now used to
verify digital circuits [12], Petri nets [17,25], and software [20,26]. Several studies

� Research supported by the NSF under grants CNS-0501747 and CNS-0501748 and
by the EPSRC under grant GR/S86211/01.

O. Grumberg and M. Huth (Eds.): TACAS 2007, LNCS 4424, pp. 648–663, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Bounded Reachability Checking of Asynchronous Systems 649

have found such tools beneficial in industrial settings, especially when compared
to symbolic model checkers using decision diagrams [14].

It is often believed that SAT methods are key to the performance of bounded
model checkers. Recent research by Cabodi et al. [5], however, counters this
suggestion. Their work proposes enhancements to standard techniques based on
Binary Decision Diagrams (BDDs), making BDD-based bounded model check-
ing competitive with SAT-based approaches. These results were obtained in the
context of debugging synchronous systems and digital circuits, for which BDDs
are known to work well. It has remained an open question whether the afore-
mentioned belief is also a myth with regards to asynchronous systems governed
by interleaving semantics, such as distributed algorithms expressed in Petri nets.

This paper. Our aim is to prove that decision diagrams are competitive with
SAT solvers for the bounded model checking of asynchronous systems. To this
end we propose a new approach for bounded reachability checking using decision
diagrams based on Saturation [7], an established symbolic algorithm for gener-
ating the state space of asynchronous systems. By taking into account event
locality and interleaving semantics and by using Multi-way Decision Diagrams
(MDDs) instead of BDDs, Saturation is often orders of magnitude more efficient
than breadth-first search algorithms implemented in popular model checkers [11].

The difficulty in adapting Saturation to bounded reachability checking lies
in its non-standard search strategy that is completely different from breadth-
first search. We then cope by storing not only the reachable states but also the
distance of each state from the initial state(s), using the edge-valued decision
diagrams of [9]. These extend EVBDDs [22] just as MDDs extend BDDs, and
use a more general reduction rule. Each state stored in such a decision diagram
corresponds to a path from the root to the only terminal node, whereas the
distance of a state is the sum of the weights of the edges along that path.

The resulting Bounded Saturation algorithm comes in two variants. The first
one computes all reachable states at distance no more than a user-provided
bound B. The second one finds additional states at distance greater than B but
at most K·B, where K is the number of “components” of the underlying asynchro-
nous system. Just as ordinary breadth-first search, both can find minimal-length
counterexamples. However, the second variant is usually more efficient in terms
of runtime and memory, even if it discovers more states. Such behavior, while
counterintuitive at first, is not uncommon with decision diagrams.

Experiments and results. We evaluate Bounded Saturation against two SAT-
based approaches for bounded reachability checking proposed by Heljanko [17]
and Ogata, Tsuchiya, and Kikuno [25], both aimed at finding deadlocks in asyn-
chronous systems specified by Petri nets. We implemented our algorithm in
SmArT [6], and ran it on the suite of examples used in both [17] and [25], first
proposed by Corbett in [15], and on two models from the SmArT release. The
static variable ordering used in our algorithm was computed via a heuristic [27].

Our experiments show that Bounded Saturation performs better or at par
with competing SAT-based algorithms, and is less efficient in only few cases.

650 A.J. Yu, G. Ciardo, and G. Lüttgen

Thus, it is a myth that decision diagrams are uncompetitive w.r.t. SAT solvers
for bounded model checking; just as the roles of bounded and unbounded model
checking are complementary, so are the use of SAT solving and decision diagrams.

2 Background

We consider a discrete-state model M = (Ŝ, Sinit, R), where Ŝ is a (finite) set of
states, Sinit ⊆ Ŝ are the initial states, and R ⊆ Ŝ ×Ŝ is a transition relation. We
assume the global model state to be a tuple (xK , ..., x1) of K local state variables
where, for K ≥ l ≥ 1, xl ∈ Sl = {0, 1, ..., nl−1} with nl > 0, is the the lth local
state variable. Thus, Ŝ = SK ×· · ·×S1 and we write R(i[K], ..., i[1], j[K], ..., j[1]),
or R(i, j), if the model can move from current state i to next state j in one step.

Computation of the reachable state space consists of building the smallest
set of states S ⊆ Ŝ satisfying S ⊇ Sinit and S ⊇ Img(S, R), where the image
computation function Img(X , R) = {j : ∃i ∈ X , R(i, j)} describes the successors
to the set of states X . In bounded model checking, only part of this state space
is considered, the set of states within some distance bound B from Sinit.

Most symbolic approaches encode xl in bl boolean variables, where bl is either
nl or �log nl� (one-hot or binary encoding), and a set of states using a BDD with∑

K≥l≥1 bl levels. Ordered multi-way decision diagrams (MDDs) [21], instead
map xl to level l, whose nodes have nl outgoing edges. MDDs can be implemented
directly, as is done in our tool SmArT [6], or as an interface to BDDs [16].

Symbolic technique for asynchronous models. A BFS-based approach,
as used for example by NuSMV [11], computes the bounded state space with a
simple image computation iteration. Set X [0] is initialized to Sinit and, after d it-
erations, set X [d] contains the states at distance up to d from Sinit. With MDDs,
X [d] is encoded as a K-level MDD and R as a 2K-level MDD whose current and
next state variables are normally interleaved for efficiency. The transition re-
lation is often conjunctively partitioned into a set of conjuncts or disjunctively
partitioned into a set of disjuncts [4], stored as a set of MDDs with shared nodes,
instead of a single monolithic MDD. Heuristically, such partitions are known to
be effective for synchronous and asynchronous systems, respectively.

Disjunctive partitioning and chaining. Our work focuses on the important
class of systems exhibiting globally-asynchronous locally-synchronous behavior,
and assumes that the high-level model specifies a set of asynchronous events E ,
where each event α ∈ E is further specified as a set of small synchronous com-
ponents. We then write the transition relation as R ≡

∨
α∈E Dα, and further

conjunctively partition each disjunct Dα into conjuncts representing a synchro-
nous component of α, finally expressing R as R ≡

∨
α∈E Dα ≡

∨
α∈E(

∧
r Cα,r).

For example, a guarded command language model consists of a set of com-
mands of the form “guard → assignment1 ‖ assignment2 ‖ · · · ‖ assignmentm”,
with the meaning that, whenever the boolean predicate guard evaluates to true,
the m parallel atomic assignments can be executed concurrently (synchronously).

Bounded Reachability Checking of Asynchronous Systems 651

arrive wait gate in-service serve
pool

#(wait)

2

#(wait)

Fig. 1. A limited-arrival gated-service model with marking-dependent arc cardinalities

Commands are asynchronous events and, for each command, the corresponding
parallel assignments are its synchronous components. Similarly, for a Petri net,
the transitions are the asynchronous events, and the firing of a transition syn-
chronously updates all the input and output places connected to it. We use
extended Petri nets as the input formalism in SmArT [6].

Running example. Fig. 1 shows a Petri net, and its equivalent guarded com-
mand language expression, modeling a gated-service queue with a limited pool
of customers. New arrivals wait at the gate until it is opened, then all the waiting
customers enter the service queue. Customers return to the pool after service.
Each state of the model corresponds to a possible value of the integer variable
vector (p,w,i), where p stands for pool, w for wait, and i for in-service. Assuming
a pool of two customers, the model has an initial state (2,0,0) and six reachable
states: S = {(2,0,0), (1,1,0), (0,2,0), (1,0,1), (0,0,2), (0,1,1)}.

Event locality. In asynchronous models, the execution of each event usually
modifies or depends on just a small subset of all the state variables. In the
running example, for example, event gate, Dg, depends only on variable w and
modifies only variables w and i. Given an event α, we define the set of variables
• VM (α) = {xl : ∃i, j ∈ Ŝ, Dα(i, j) ∧ i[l] = j[l]} and
• VD(α) = {xl : ∃i, i′∈Ŝ, ∀k = l, i[k]= i′[k] ∧ ∃j∈Ŝ , Dα(i, j)∧ ∃j′∈Ŝ, Dα(i′, j′)}
that can be modified by α, or can disable α, respectively. Letting

Top(α) = max{l : xl ∈ VM (α)∪VD(α)},Bot(α) = min{l : xl ∈ VM (α)∪VD(α)},

we can then partition the events according to the value of Top, into the subsets
El = {α : Top(α) = l}, for K ≥ l ≥ 1. In [8] we observed that a chaining [28]
order where these subsets are applied to the MDD in bottom-up fashion results
in good speedups with respect to a strict BFS symbolic state-space generation.
The bounded version of chaining is shown in Fig. 3 and discussed in Sec. 3.

By exploiting this event locality, we can store Dα in an MDD over just the
current and next state variables with index k, for Top(α) ≥ k ≥ Bot(α); variables
outside this range undergo an identity transformation, i.e., remain unchanged.

Saturation-based symbolic fixpoint computation. The Saturation algo-
rithm for computing the reachable state spaces of asynchronous systems was
originally proposed in [7] for models in Kronecker-product form; it has since
been extended to general models [10] and applied to shortest path computations

652 A.J. Yu, G. Ciardo, and G. Lüttgen

0

0

0

0(a)

2 1
1 0 1

0 0

2 20

1 0

0

1

0
1

0
0

0

0 0 1

0(b)

0 2

1

1 2 01

0 1
0 2

1
2 0

0 1
00

1

Fig. 2. Storing total (a) and partial (b) integer functions with EDDs

and CTL model-checking [9]. Saturation has been shown to reduce memory and
runtime requirements by several orders of magnitude with respect to BFS-based
algorithms, when applied to asynchronous systems.

Saturation is unique in that it does not perform fixpoint computations over
a global decision diagram, as standard breadth-first iteration strategies do, but
recursively computes (sub-)fixpoints at each decision diagram node. This exploits
the locality of events inherent in asynchronous systems as well as the semantic
concept of interleaving. The formal algorithm of Saturation on our variant of
edge-valued decision diagrams is described in detail in Sec. 3. For details of the
original Saturation algorithm on MDDs we refer the reader to [10].

To employ Saturation for bounded reachability checking we encode not just
the reachable states, but also their distance from Sinit. This can be achieved
using either edge-valued decision diagrams (EDDs, called EV+MDDs in [9]) or
the ADDs of [2]. ADDs are a well-known variant of BDDs that can encode non-
boolean functions by having an arbitrary set of terminal nodes instead of just
the two terminal nodes corresponding to the boolean values true and false . In
our discussion, we focus instead on EDDs since they can be exponentially more
compact than ADDs; see also the results in Sec. 4.

Definition 1 (EDD [9]). An EDD on the domain Ŝ = SK × · · · × S1 is a
directed acyclic graph with labeled and weighted edges where:

– Each node p belongs to a level in {K, ..., 1, 0}, denoted p.lvl.
– Level 0 contains a single terminal node, ⊥.
– A non-terminal node p at level l > 0 has nl ≥ 2 outgoing edges, labeled from

0 to nl − 1. We write p[i] = 〈v,q〉 if the ith edge has weight v ∈ N ∪ {∞} and
points to node q. We also write p[i].val = v and p[i].node = q.

– If p[i].val = ∞, then p[i].node =⊥; otherwise, p[i].node is at level p.lvl−1.
– There is a single root node, r�, at level K, with an incoming “dangling” edge

having weight ρ ∈ Z. We write such edges as 〈ρ,r〉.
– Each non–terminal node has at least one outgoing edge labeled with 0.
– There are no duplicate nodes, i.e., if ∀i, 0 ≤ i < nl, p[i].node = q[i].node and

p[i].val = q[i].val, then p = q.

Bounded Reachability Checking of Asynchronous Systems 653

mdd BoundedBfsChain()
1 S ← Sinit;
2 for d = 1 to B do
3 for l = 1 to K do
4 foreach α ∈ El do
5 S ← Union(S , Image(S ,Dα))
6 return S ;

Fig. 3. Symbolic bounded BFS state-space generation with chaining

The function f〈v,p〉 : Sl×· · ·×S1 → Z ∪ {∞} encoded by an edge 〈v,p〉, with
p.lvl = l > 0 is f〈v,p〉(il, . . . , i1) = v + f〈p[il].val,p[il].node〉(il−1, . . . , i1), where we
let f〈x,⊥〉 = x. Thus, the function encoded by the entire EDD is f〈ρ,r〉. �

As defined, EDDs can canonically encode any function of the form Ŝ → Z∪{∞},
except the constant ∞, for which we use a special EDD with r =⊥ and ρ = ∞.
Fig. 2 shows two EDDs storing a total and partial function, respectively. Here,
“partial” means that some of its values are ∞; whenever this is the case, we omit
the corresponding value and edge from the graphical representation. We point
out that EDDs allow for efficient implementations of standard operations on the
functions they encode, including computing the EDD representing the pointwise
minimum of two functions, needed in our reachability algorithm [9].

3 Bounded Reachability Checking Using Decision
Diagrams

Given a model M and a property φ, a generic breadth-first bounded reachability
checking algorithm starts with some initial guess for the bound B, computes the
set of states SB within distance B of the initial states Sinit, and, if any state
in SB violates φ, returns Error. If no such state exists, B is increased and these
steps are repeated except that, if SB does not change between iterations, the
entire state space has been explored, so one can stop and declare φ to hold.

MDDs with BFS-style event-locality-based chaining. Before presenting
our main contribution, an algorithm for bounded reachability checking based on
Saturation and EDDs, we first show how the above algorithm can be improved
when dealing with MDD-encoded state spaces of event-based asynchronous sys-
tems, using ideas from event locality and forward chaining. This serves as one
of the reference algorithms in our experimental studies of Sec. 4. The improved
algorithm is displayed in Fig. 3.

Exploiting event locality for an event α, we can ignore MDD levels above
Top(α) and modify in-place MDD nodes at level Top(α). Indeed, the call to
Image in Fig. 3 does not even access nodes below Bot(α), only Union does. This
has been shown to significantly reduce the peak number of MDD nodes [8].

Chaining [28] compounds the effect of multiple events within a single iteration.
For example, if (i) the set of states known at iteration B is X B, (ii) j ∈ X B can be

654 A.J. Yu, G. Ciardo, and G. Lüttgen

reached from i ∈ X B by firing the sequence of events (α, β, γ), and (iii) we happen
to explore events in that exact order, then j will be included in X B+1. Thus,
X B ⊇ SB , since some states in S|E|·B \SB might be present in X B. Reducing the
number of iterations does not guarantee greater efficiency, as the MDD for X B

can be much larger than that for SB ; however, it has been shown experimentally
that chaining often reduces both time and memory requirements [28].

It is well known that the variable order for the MDD representation is essen-
tial. Furthermore, in our setting, the variable order affects also the value of Top
and Bot and the event order. In this paper we employ the heuristics reported in
[27] to automatically generate a good order.

Bounded Saturation using EDDs. In several studies, Saturation has been
shown superior to BFS-style iterations when symbolically computing least fix-
points for asynchronous models [8,9,10]. The challenge in adapting Saturation
to bounded model checking lies in the need to bound the symbolic traversal in
the nested fixpoint computations. We propose to use EDDs to encode both the
bounded state space and the distance information in the same symbolic encod-
ing. Thus, we bound the symbolic traversal during the EDD symbolic operations
by using the distance information, instead of simply limiting the number of out-
ermost iterations performed in a traditional BFS-style approach with or without
chaining. Instead of EDDs, we could have used ADDs, but this can result in a
performance penalty, as reported in Sec. 4.

Fig. 4 shows two EDD approaches differing in how they bound the sym-
bolic traversal. They are obtained by replacing the Truncate call in procedure
BoundedImage with either TruncateExact or TruncateApprox . The former com-
putes the exact bounded state space SB ; the latter computes a superset of SB

that may contain reachable states with distance at most K ·B, where K is the
number of state variables, i.e., EDD levels. Recall that the transition relations
are stored using MDDs, with 0 and 1 denoting an MDD’s terminal nodes.

Both approaches start from an EDD where states in Sinit have distance 0
and states in Ŝ \ Sinit have distance ∞ (line 1 in BoundedSaturation). Then,
procedure BoundedSaturate is called on all EDD nodes, starting from those at
level 1, to compute the bounded state space. Each EDD node p at level l encodes
a set of (sub-)states and distance information consisting of variables at level l
or below. When calling procedure BoundedSaturate on an EDD node p at level
l, a least fixpoint encoding the (sub-)state space and distance with respect to
the set El of events with top level l is computed. During the fixpoint computa-
tion of BoundedSaturate on node p at level l, each event in El is exhaustively
fired to perform bounded forward traversal, until no more new reachable (sub-)
states are found. BoundedImage performs bounded forward traversal by first
computing the forward image, followed by either an exact truncation to prune
all the (sub-)states exceeding bound B (procedure TruncateExact), or a faster
but approximate truncation to prune only (sub-)states for which the edge value in
the current EDD node would exceed B (procedure TruncateApprox). Procedures
BoundedSaturate and BoundedImage are mutually recursive: BoundedImage per-
forms a bounded forward traversal of the reachable state space, while all the

Bounded Reachability Checking of Asynchronous Systems 655

void BoundedSaturation()
1 r� ← root of the EDD encoding f(i) = 0 if i ∈ Sinit, and f(i) = ∞ otherwise
2 for l = 1 to K do foreach node p at level l do BoundedSaturate (p);

node BoundedSaturate(node p)
1 l ← p.lvl;
2 repeat
3 choose α ∈ El, i ∈ Sl, j ∈ Sl s.t. p[i].val < B and Dα[i][j] �= 0;
4 〈v,q〉 ← BoundedImage(p[i], Dα[i][j]);
5 p[j] ← Minimum(p[j],Truncate(v+1, q)); •exact or approximate
6 until p does not change;
7 return p;

edge BoundedImage(edge 〈v,q〉, mdd f)
1 if f = 0 then return 〈∞,⊥〉; if f = 1 or q =⊥ then return 〈v,q〉;
2 k ← q.lvl; •given our quasi-reduced form, f.lvl = k as well
3 s ← NewNode(k); •create EDD node at level k with edges set to 〈∞,⊥〉
4 foreach i ∈ Sk, j ∈ Sk s.t. q[i].val ≤ B and f [i][j] �= 0 do
5 〈w,o〉 ← Truncate(BoundedImage(q[i], f [i][j])); •exact or approximate
6 s[j] ← Minimum(s[j], 〈w,o〉);
7 s ← BoundedSaturate(s);
8 〈γ,s〉 ← Normalize(s);
9 return 〈γ+v,s〉;

edge Minimum(edge 〈v,p〉, edge 〈w,q〉)
1 if v = ∞ then return 〈w,q〉; if w = ∞ then return 〈v,p〉;
2 k ← p.lvl; •given our quasi-reduced form, q.lvl = k as well
3 if k = 0 then return 〈min{v, w},⊥〉; •the only node at level k = 0 is ⊥
4 s ← NewNode(k); •create EDD node at level k with edges set to 〈∞,⊥〉
5 γ ← min{v, w};
6 foreach i ∈ Sk do
7 s[i] ← Minimum(〈v−γ+p[i].val,p[i].node〉, 〈w−γ+q[i].val,q[i].node〉);
8 return 〈γ,s〉;

edge Normalize(node p)
1 v ← min{p[i].val : i ∈ Sp.lvl};
2 foreach i ∈ Sp.lvl do p[i].val ← p[i].val − v;
3 return 〈v,p〉;

edge TruncateExact (edge 〈v,p〉)
1 if v > bound then return 〈∞,⊥〉;
2 foreach i ∈ Sp.lvl do p[i] ← TruncateExact (〈v+p[i].val,p[i].node〉);
3 return 〈v,p〉;

edge TruncateApprox (edge 〈v,p〉)
1 if v > bound then return 〈∞,⊥〉; else return 〈v,p〉;

Fig. 4. Bounded Saturation for state-space exploration using EDDs

656 A.J. Yu, G. Ciardo, and G. Lüttgen

newly created nodes in the new image are saturated by BoundedSaturate (line 7
in procedure BoundedImage). Procedure Minimum computes the pointwise min-
imum of the functions encoded by its two argument EDDs, i.e., computing the
union of the state sets encoded by the arguments. Finally, procedure Normalize
takes a node p and ensures that it has at least one outgoing edge with value 0,
returning the excess in the edge value v.

We now examine the manipulation of the edge values in more detail. When
an event α is fired, the distance of the image states is the distance of the cor-
responding “from” states incremented by 1. BoundedSaturate fires α by calling
BoundedImage (line 4), which returns the root of the image, so that the “dan-
gling” edge value must be incremented by 1 to account for the firing of α (line
5). The first portion of procedure BoundedImage (lines 1–6) performs the sym-
bolic image computation of the same event α fired by BoundedSaturate, and the
distance of the new image is incremented by the distance of the “from” states at
the return statement (line 9). The distance of the image states can be greater
than the distance of their “from” states by more than one, due to saturation of
the image states (line 7). BoundedSaturate uses the test p[i].value<B (line 3),
but BoundedImage uses instead the test q[i].val ≤ B, since the increment of the
edge value by 1 is performed in the former, but not in the latter.

Comparing with BFS-style MDD approaches, our new proposed EDD ap-
proaches use Saturation, a more advanced iteration order, but at the cost of a
more expensive symbolic data structure, EDDs (or ADDs). The experimental
results of Sec. 4 show that this tradeoff is effective in both time and memory, as
the new algorithms often outperform the BFS approach in our benchmarks.

Running example of the EDD approach. Fig. 5 shows the execution of
bounded Saturation using TruncateApprox as the truncation procedure, on the
running example of Fig. 1 with bound B = 1. In Fig. 5, snapshot (a) shows
the 2K-level MDDs for the disjunctively partitioned transition relation. Da and
Dg have identity transformations for variables i and g, respectively, thus the
corresponding levels in the decision diagram are skipped to exploit event locality.
Snapshots (b)–(f) show the evolution of the bounded state space encoded by the
EDD, from the initial state to the final bounded state space, listing the key
procedure calls. For readability, edges with value ∞ are omitted. We denote the
nodes of the EDD encoding the state space with capital letters (A to E), two
specific MDD nodes in the transition relation encoding with f and h, and color
a node black once it is saturated. The algorithm starts by saturating nodes A
and B, which are saturated immediately since no events are enabled in them
(Snapshot (c)). Nodes E, D, and C are saturated in that order. The procedure
stops when the root C becomes saturated. Not all procedure calls are shown, e.g.,
BoundedImage(C[1], Ds[1][2]) is called in Snapshot (f) before node C becomes
saturated, but it is not shown since this call does not generate new nodes (states).

Bounded Saturation using ADDs. A version of Saturation using ADDs can
be obtained by extending the MDD-based Saturation algorithm of [10], so that
it uses an ADD to store the states and their distances, instead of a simple MDD.

Bounded Reachability Checking of Asynchronous Systems 657

p

w

i

p’

w’

i’

aD sD gD

2

1

0

1

1

2

1

0

1

0

0

1

1

0

2

1

1

2

2

0

0 1

2

0

0

0

1

1

2

2

1

f

h

2

0

0

B

A

Cp

w

i

0

0

0

0

1

0

0

2

1

p

w

i

B

A

C

D
0

0

0

0

0

0

0

0

10

1

p

w

i

1 2

B

A

C

D

E

0

0 0 0

0 0

0

0

0

0

10

1

p

w

i

1 2

B

A

C

D

E

0 0

0 0 1

00

0

0

0

10

1

p

w

i

B

A

C

D

E

0 0

0 0

0 1

1

0
10 2

Fig. 5. Bounded Saturation applied to our running example

The ADD has B + 1 terminal nodes corresponding to the distances of interest,
{0, 1, . . . , B,∞}. We omit this algorithm’s details due to space limitations.

4 Experimental Results

We implemented Bounded Saturation in the verification tool SmArT, which sup-
ports Petri nets as front-end. This section reports our experimental results
on a suite of asynchronous Petri net benchmarks when checking for deadlock-
freedom as an example of bounded reachability checking. For our symbolic algo-
rithms, this check simply requires us to remove the set of states enabling α, i.e.,
Img−1(Ŝ, Dα), for each event α, from the final bounded state space. We compare
the performance of several decision-diagram-based methods and the SAT-based
methods of Heljanko et al. [18,19] and Ogata et al. [25].

We conduct our experiments on a 3Ghz Pentium machine with 1GB RAM.
Benchmarks byzagr4, mmgt, dac, hs(hartstone), sentest, speed, dp, q, elevator,
key are taken from Corbett [15], and were translated into safe Petri nets by
Heljanko [17]. Benchmarks fms and kanban are deadlocked versions of non-safe
Petri net manufacturing system models in the SmArT distribution, automatically
translated into safe Petri nets by SmArT. All benchmarks have deadlocks.

BDDs and EVBDDs are natural candidates for our decision-diagram-based
approaches when models have binary variables, as is the case for safe Petri nets.

658 A.J. Yu, G. Ciardo, and G. Lüttgen

However, thanks to a heuristic to merge binary variables and exploit Petri net
invariants, we can instead use MDDs and EDDs, and achieve time and mem-
ory savings. In the following, we thus present the multi-valued version of our
algorithms and consider only one EVBDD-based approach (EVBDD-Approx),
applied to safe Petri net models, for comparison. The MDD- and EDD-based ap-
proaches apply the merging heuristic to the safe nets of Corbett’s benchmarks,
while they use the non-safe Petri nets fms and kanban as-is. Variable orders for
our experiments are automatically obtained using the heuristic in [27].

Result table. The first three columns of Table 1 show the model name and
parameters, and the number of places (#P) and events (#E). The other columns
are either “approximate” methods that use a difference definition of distance:

- MDD-Chain (BFS-style event-locality-based chaining technique of Fig. 3)
- SAT-S (circuit SAT-based method with step semantics [19])
- SAT-C (CNF SAT-based method with forward chaining [25])

Or compute a superset of the states SB within distance B:
- EDD-Approx/EVBDD-Approx (Bounded Saturation: TruncateApprox)

Or “exact” methods that limit their search to exactly SB:
- SAT-I (circuit SAT-based method with interleaving semantics [19])
- EDD-Exact/ADD-Exact (Bounded Saturation: TruncateExact).
For each approximate method, we report the smallest bound B at which either

a deadlock is found or the runtime exceeds 10 minutes. For the exact methods,
report the exact distance bound B of the deadlock, except for the cases marked
“?”, where none of the exact methods could find a deadlock within 10 minutes.
All the decision-diagram-based methods are implemented in SmArT, and their
runtime and memory consumptions are reported in the table, while for the SAT-
based tools, only the runtime is available and reported.

Corbett’s benchmarks and the SAT-I and SAT-C tools are from [18]. In our
experiments, SAT-S performs at least as well as the analogous approach using
process semantics [17] (this is also confirmed by the results in Heljanko and Junt-
tila’s recent tutorial [18]), therefore we report only the former in Table 1. With
Corbett’s benchmarks, we show different bounds for SAT-C than those reported
in [25]; this is due to using a different initial state, the same as the one considered
in [18]. For SAT-I and SAT-C both the encoding time and the bczchaff circuit
SAT-solver runtime are reported in Table 1. For a fair comparison, the runtime
of SAT-C includes the preprocessing steps for scheduling events, encoding the
safe Petri net into a boolean formula and then into a CNF formula, and querying
the zchaff SAT-solver for deadlocks.

Discussion. From Table 1 we can roughly classify benchmarks byzagr, hs, sen-
test, fms, kanban as models with “deep” deadlocks, where the smallest bounds
to detect deadlocks range from 30 to 500, and classify all the other bench-
marks as models with “shallow” deadlocks, where the smallest bounds are less
than 30. For benchmarks with “deep” deadlocks, the newly proposed EDD-
Approx method achieves the best performance. For models with “shallow” dead-
locks, it seems almost all the methods perform reasonably well, including our

Bounded Reachability Checking of Asynchronous Systems 659

T
ab

le
1.

E
xp

er
im

en
ta

lr
es

ul
ts

(T
im

e
in

se
c,

M
em

in
M

B
).

“>
60

0"
in

di
ca

te
s

th
at

ru
nt

im
e

ex
ce

ed
s

60
0

se
c

or
m

em
or

y
ex

ce
ed

s
1G

B
.

A
pp

ro
xi

m
at

e
di

st
an

ce
m

et
ho

ds
E

xa
ct

di
st

an
ce

m
et

ho
ds

E
D

D
-A

p
p
ro

x
E
V

B
D

D
-A

p
p
ro

x
M

D
D

-C
h
ai

n
S
A

T
-S

S
A

T
-C

S
A

T
-I

E
D

D
-E

xa
ct

A
D

D
-E

xa
ct

M
od

el
#

P
#

E
B

T
im

e
M

em
B

T
im

e
M

em
B

T
im

e
M

em
B

T
im

e
B

T
im

e
B

T
im

e
T

im
e

M
em

T
im

e
M

em
by
za
gr
4
(2

a)
57

9
47

3
49

2.
23

2.
41

49
9.

14
3.

43
6

7.
3

9.
24

8
0.

79
2

2.
07

?
>

60
0

>
60

0
–

>
60

0
–

m
m
gt

(3
)

12
2

17
2

9
0.

11
0.

2
8

1.
28

0.
34

5
0.

07
0.

16
7

0.
09

3
1.

04
10

1.
37

0.
32

0.
55

0.
41

0.
33

m
m
gt

(4
)

15
8

23
2

17
1.

22
1.

15
17

2.
15

1.
67

3
0.

11
0.

2
8

0.
23

4
5.

52
20

1.
24

4.
36

3.
12

12
.8

7
3.

61
da

c(
15

)
10

5
73

4
0.

01
0.

0
4

0.
03

0.
01

2
0.

01
0.

01
3

0.
01

2
0.

04
20

0.
01

0.
03

0.
05

0.
06

0.
04

hs
(7

5)
30

2
15

2
15

1
0.

01
0.

03
15

1
0.

36
0.

05
93

0.
08

0.
53

15
1

5.
84

1
0.

07
15

1
7.

94
0.

15
0.

03
0.

13
0.

34
hs

(1
00

)
40

2
20

2
20

1
0.

03
0.

04
20

1
0.

78
0.

07
11

6
0.

14
0.

78
20

1
14

.8
5

1
0.

13
20

1
20

.3
1

0.
3

0.
04

0.
23

0.
58

se
nt
es
t(

75
)

25
2

10
2

45
0.

0
0.

02
45

0.
21

0.
03

32
0.

03
0.

21
83

4.
27

3
0.

13
88

8.
51

0.
06

0.
02

0.
08

0.
14

se
nt
es
t(

10
0)

32
7

12
7

61
0.

01
0.

03
61

0.
34

0.
05

73
0.

07
0.

47
10

8
10

.7
1

4
0.

29
11

3
21

.8
5

0.
12

0.
03

0.
22

0.
25

sp
ee
d
(1

)
29

31
4

0.
01

0.
02

2
0.

24
0.

01
3

0.
01

0.
04

4
0.

01
2

0.
03

7
0.

02
0.

02
0.

04
0.

02
0.

01
dp

(1
2)

72
48

2
0.

01
0.

02
2

0.
02

0.
03

1
0.

0
0.

01
1

0.
0

1
0.

02
12

0.
06

0.
96

1.
77

0.
33

0.
12

q(
1)

16
3

19
4

9
0.

01
0.

03
8

1.
45

0.
04

7
0.

06
0.

14
9

0.
13

1
0.

07
21

0.
83

0.
08

0.
15

0.
19

0.
13

el
ev
at
or

(3
)

32
6

78
2

8
15

.0
7

9.
46

7
28

.5
9.

83
6

0.
87

0.
58

8
0.

42
2

3.
77

20
2.

74
>

60
0

–
7.

54
1.

83
ke
y(

2)
94

92
13

0.
06

0.
14

18
0.

16
0.

19
14

0.
07

0.
2

36
2.

88
2

0.
05

50
>

60
0

0.
15

0.
2

0.
22

0.
34

ke
y(

3)
12

9
13

3
17

0.
2

0.
48

17
0.

55
0.

71
14

0.
21

0.
52

37
4.

39
2

0.
10

50
>

60
0

0.
62

0.
67

2.
8

1.
64

ke
y(

4)
16

4
17

4
17

0.
69

1.
48

15
2.

4
1.

39
17

0.
67

1.
54

38
4.

21
2

0.
18

50
>

60
0

2.
02

2.
11

9.
71

3.
15

ke
y(

5)
19

9
21

5
17

2.
04

4.
15

17
5.

97
6.

66
15

1.
73

3.
37

39
8.

07
2

0.
25

50
>

60
0

16
.8

7
10

.5
2

33
.6

5
10

.0
3

fm
s(

3)
22

16
9

0.
06

0.
02

5
0.

74
0.

02
7

0.
01

0.
08

10
0.

75
3

1.
25

30
>

60
0

0.
07

0.
06

0.
05

0.
14

fm
s(

7)
22

16
19

0.
07

0.
26

11
4.

4
0.

69
15

0.
24

2.
58

18
>

60
0

6
>

60
0

70
>

60
0

0.
8

2.
2

1.
12

4.
7

fm
s(

10
)

22
16

28
0.

12
0.

99
6

>
60

0
–

21
1.

35
14

.7
5

16
>

60
0

7
>

60
0

10
0

>
60

0
5.

37
14

.3
7

5.
24

24
.1

1
ka
nb
an

(1
)

17
16

28
0.

04
0.

0
27

0.
33

0.
01

13
0.

0
0.

01
19

0.
05

5
0.

09
40

16
.5

6
0.

08
0.

0
0.

01
0.

01
ka
nb
an

(3
)

17
16

82
0.

05
0.

06
79

5.
34

0.
34

19
0.

03
0.

23
12

>
60

0
3

>
60

0
12

0
>

60
0

0.
1

0.
07

0.
27

0.
64

ka
nb
an

(1
0)

17
16

27
1

0.
84

10
.4

3
1

>
60

0
–

54
2.

83
29

.2
9

1
>

60
0

1
>

60
0

40
0

>
60

0
14

.4
10

.4
6

51
.7

6
18

7.
9

660 A.J. Yu, G. Ciardo, and G. Lüttgen

MDD-Chain method. Comparing EDD-Approx with EVBDD-Approx, we ob-
serve that the former always performs better than the latter. The comparison be-
tween EDD-Exact and ADD-Exact shows that they can complement each other.
EDD-Approx is arguably the method with the best overall performance, except
for the elevator model, where it performs much worse than the MDD-Chain
method and the SAT-S method. This might be because a very large superset of
SB is computed, and the elevator model could be a case where doing so is not
beneficial to the structure of the EDD. We also suspect that our variable order
heuristic does not perform well on this model.

We also observe that the poor performance of SAT-solvers for unsatisfiable
boolean formulas makes it hard to guess the bound B. If the guess is too large, the
boolean formula is huge, if it is too small the formula is unsatisfiable, and both
cases have severe performance penalties. For example, SAT-I finds a deadlock in
benchmark q(1) in less than 1 sec when B = 21 but, when B = 20, the formula is
unsatisfiable and the runtime exceeds 600 sec. Decision-diagram-based methods
tend instead to have “well-behaved” runtimes monotonically increasing in B.

5 Discussion and Related Work

SAT-solving for Petri nets. We first add some details to the two SAT-based
approaches to deadlock checking of safe Petri nets [17,25], against which we
compared ourselves in the previous section regarding run-time efficiency.

Heljanko’s work [17] establishes the so-called process semantics of Petri nets as
the ‘best’ net semantics for translating bounded reachability into a propositional
satisfiability problem, in the sense that the resulting SAT problem can be solved
more efficiently than for step or interleaving semantics. However, this technique
can only be safely applied for safe Petri nets, i.e., finite nets, as otherwise these
semantics may not coincide. In contrast, our technique is applicable to general
Petri nets, even if they exhibit an infinite state space.

Ogata, Tsuchiya, and Kikuno’s approach [25] focuses on the translation of
Petri nets, which must again be safe, into propositional formulas. The ordi-
nary encoding of safe nets into propositional formulas results in large formulas,
thereby degrading the performance of SAT solving and hampering scalability.
The authors suggest a more succinct encoding, albeit at the price of exploring
not only states with a distance up to the considered bound but also some states
with a larger distance. This is similar to our Bounded Saturation, for which it
is also more efficient to collect some additional states. The authors leave a com-
parison to Heljanko’s approach as future work; this comparison is now included
in the previous section, and shows that neither method is superior in all cases.

BDD vs. SAT on synchronous systems. As mentioned before, the com-
mon belief that SAT-based model checking outperforms decision-diagram-based
model checking was proved wrong by Cabodi, Nocco, and Quer [5] for a class of
digital circuits that largely exhibits synchronous behavior. The advocated ap-
proach relies on improving standard BDD-based techniques by mixing forward

Bounded Reachability Checking of Asynchronous Systems 661

and backward traversals, dovetailing approximate and exact methods, adopt-
ing guided and partitioned searches, and using conjunctive decompositions and
generalized cofactor-based BDD simplifications.

Our research complements their findings for asynchronous systems. In a nut-
shell, our improvement over standard techniques lies in the local manipulation of
decision diagrams by exploiting the event locality inherent in asynchronous sys-
tems, interleaving semantics, and disjunctive partitioning. These are the central
ideas behind Saturation [7] on which our Bounded Saturation algorithm is based.
Similar to the algorithm proposed in [5], we also achieve efficiency by including
some states with a distance larger than the given bound B; such states have a
distance of up to K ·B in our approach and up to E ·B in [5], where K and E
are the number of components and events in the studied Petri net, respectively.

Together, the results of Cabodi et al. and ours, as well as further recent re-
search [29], revise some of the claims made in the literature, especially regarding
the performance of decision-diagram-based (bounded) model checking. It must
be noted here that our results were obtained with static variable orders which
have been computed using a simple heuristic [27]. Thus, no fine-tuning of models
by hand was necessary, which was criticized in [14].

Petri net unfoldings. Both SAT-based and decision-diagram-based techniques
are established techniques for addressing the state-space explosion problem. The
Petri net community has developed another successful technique to address this
problem, first suggested in a seminal paper by McMillan [23]. The idea is to
finitely unfold a Petri net until the resulting prefix has exactly the same reachable
markings as the original net. For certain Petri nets such finite prefixes exist and
often prove to be small in practice. In contrast to bounded reachability checking,
analysis techniques based on unfoldings are thus complete, as they capture a net’s
entire behavior. However, unfoldings are often limited to finite-state Petri nets,
although recent work suggests an extension to some infinite-state systems [1].

6 Conclusions and Future Work

This paper explored the utility of decision diagrams for bounded reachability
checking of asynchronous systems. To this end, we reconsidered Saturation, a
state-space generation algorithm which is based on Multi-way Decision Diagrams
(MDDs) and exploits the event locality and interleaving semantics inherent in
asynchronous systems. As the search strategy in Saturation is unlike breadth-first
search, bounding the search required us to employ Edge-Valued MDDs, which
allow for storing states together with their distances from the initial states.

Our extensive experimental analysis of the resulting Bounded Saturation al-
gorithm showed that it often compares favorably to the competing SAT-based
approaches introduced in [17,18,25]. In many cases, Bounded Saturation could
build bounded state spaces and check for deadlocks at least as fast and frequently
faster, while using acceptable amounts of memory. Thus, decision-diagram-based
techniques can well compete with SAT-based techniques for bounded reachability

662 A.J. Yu, G. Ciardo, and G. Lüttgen

checking of asynchronous systems, and the widespread perception that decision
diagrams are not suited for bounded model checking [14] is untrue.

Future work should investigate whether an efficient version of Bounded Satu-
ration can be developed using standard decision diagrams, rather than decision
diagrams with explicit distance counters built in. We also intend to investigate
whether the event locality inherent in asynchronous systems can be exploited in
SAT-based reachability checking.

Acknowledgements. We would like to thank K. Heljanko, T. Jussila, and
T. Tsuchiya for providing their inputs and software tools used in our study.

References

1. P.Abdulla, S. Iyer, and A.Nylén. SAT-solving the coverability problem for Petri
nets. FMSD, 24(1):25–43, 2004.

2. R. I. Bahar, et. al. Algebraic decision diagrams and their applications. FMSD,
10(2/3):171–206, 1997.

3. A.Biere, A.Cimatti, E.Clarke, Y. Zhu. Symbolic model checking without BDDs.
TACAS, LNCS 1579, pp. 193–207, 1999. Springer.

4. J. R. Burch, E.M. Clarke, D.E. Long. Symbolic model checking with partitioned
transition relations. VLSI, pp. 49–58, 1991.

5. G. Cabodi, S.Nocco, S.Quer. Are BDDs still alive within sequential verification?
STTT, 7(2):129–142, 2005.

6. G. Ciardo, R. L. Jones, A. S. Miner, and R. Siminiceanu. Logical and stochastic
modeling with SMART. Perf. Eval., 63:578–608, 2006.

7. G. Ciardo, G. Lüttgen, R. Siminiceanu. Saturation: an efficient iteration strategy for
symbolic state-space generation. TACAS, LNCS 2031, pp. 328–342, 2001. Springer.

8. G. Ciardo, R.Marmorstein, R. Siminiceanu. The saturation algorithm for symbolic
state space exploration. STTT, 8(1):4–25, 2006.

9. G. Ciardo, R. Siminiceanu. Using edge-valued decision diagrams for symbolic gen-
eration of shortest paths. FMCAD, LNCS 2517, pp. 256–273, 2002. Springer.

10. G. Ciardo,A. Yu. Saturation-based symbolic reachability analysis using conjunctive
and disjunctive partitioning. CHARME, LNCS 3725, pp. 146–161, 2005. Springer

11. A.Cimatti, E.Clarke, F. Giunchiglia, M. Roveri. NuSMV: A new symbolic model
verifier. CAV, LNCS 1633, pp. 495–499, 1999. Springer.

12. E. Clarke, A.Biere, R.Raimi, Y. Zhu. Bounded model checking using satisfiability
solving. FMSD, 19(1):7–34, 2001.

13. E. Clarke, O.Grumberg, D.Peled. Model Checking. MIT, 1999.
14. F. Copty, et. al. Benefits of bounded model checking at an industrial setting. CAV,

LNCS 2102, pp. 436–453, 2001. Springer.
15. J. C. Corbett. Evaluating deadlock detection methods for concurrent software.

IEEE Trans. Softw. Eng., 22(3):161–180, 1996.
16. The VIS Group. VIS: A system for verification and synthesis. CAV, LNCS 1102,

pp. 428–432, 1996. Springer.
17. K.Heljanko. Bounded reachability checking with process semantics. CONCUR,

LNCS 2154, pp. 218–232, 2001. Springer.
18. K.Heljanko, T. Junttila. Advanced tutorial on bounded model checking,

ACSD/ICATPN, 2006. http://www.tcs.hut.fi/∼kepa/bmc-tutorial.html.

Bounded Reachability Checking of Asynchronous Systems 663

19. K.Heljanko, I. Niemelä. Answer set programming and bounded model checking.
Answer Set Programming, 2001.

20. F. Ivanc̆ić, Z.Yang, M. Ganai, A.Gupta, P.Ashar. F-Soft: Software Verification
Platform. CAV, LNCS 3576, 2005. Springer.

21. T. Kam, T. Villa, R.Brayton, A. Sangiovanni-Vincentelli. Multi-valued decision di-
agrams: Theory and applications. Multiple-Valued Logic, 4(1–2):9–62, 1998.

22. Y.-T. Lai, S. Sastry. Edge-valued binary decision diagrams for multi-level hierar-
chical verification. DAC, pp. 608–613, 1992. IEEE Press.

23. K.McMillan. A technique of state space search based on unfolding. FMSD, 6(1):45–
65, 1995.

24. M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, S.Malik. Chaff: Engineering an
efficient SAT solver. DAC, pp. 530–535, 2001. ACM Press.

25. S.Ogata, T. Tsuchiya, T.Kikuno. SAT-based verification of safe Petri nets. ATVA,
LNCS 3299, pp. 79–92, 2004. Springer.

26. I. Rabinovitz, O.Grumberg. Bounded model checking of concurrent programs.
CAV, LNCS 3576, pp. 82–97, 2005. Springer.

27. R. Siminiceanu, G. Ciardo. New metrics for static variable ordering in decision
diagrams. TACAS, LNCS 3920, pp. 90–104, 2006. Springer.

28. M. Solé, E. Pastor. Traversal techniques for concurrent systems. FMCAD, LNCS
2517, pp. 220–237, 2002. Springer.

29. R.Tzoref, M.Matusevich, E.Berger, I.Beer. An optimized symbolic bounded model
checking engine. CHARME, LNCS 2860, pp. 141–149, 2003. Springer.

Model Checking on Trees with Path

Equivalences�

Rajeev Alur, Pavol Černý, and Swarat Chaudhuri

University of Pennsylvania

Abstract. For specifying and verifying branching-time requirements, a
reactive system is traditionally modeled as a labeled tree, where a path
in the tree encodes a possible execution of the system. We propose to
enrich such tree models with “jump-edges” that capture observational
indistinguishability: for an agent a, an a-labeled edge is added between
two nodes if the observable behaviors of the agent a along the paths to
these nodes are identical. We show that it is possible to specify infor-
mation flow properties and partial information games in temporal logics
interpreted on this enriched structure. We study complexity and decid-
ability of the model checking problem for these logics. We show that it is
PSPACE-complete and EXPTIME-complete respectively for fragments
of CTL and μ-calculus-like logics. These fragments are expressive enough
to allow specifications of information flow properties such as “agent A
does not reveal x (a secret) until agent B reveals y (a password)” and of
partial information games.

1 Introduction

Temporal logics have been successfully used for specifying and verifying require-
ments of reactive systems such as distributed protocols [6,12]. In particular,
in the branching-time approach, a system is modeled as a labeled tree whose
paths correspond to executions of the system; a specification describes a set
of correct trees; and verification reduces to a membership question [10]. Typi-
cal branching-time specification languages include CTL, the μ-calculus, and tree
automata [9,7]. The theoretical foundations of this approach are now well under-
stood, and model checkers such as SMV implement highly optimized algorithms
for verifying branching-time requirements of finite-state systems [3,5].

This paper is motivated by our interest in extending model checking to reason-
ing about secrecy requirements of software systems [14]. Informally, a variable
x is not secret after an execution e of a process a if the value of x is the same
after all executions that are equivalent to e, where two executions are considered
equivalent if the “observable” behavior of the process a (such as messages sent
and received by a) is identical along the two executions. Classical tree logics
cannot relate distinct paths in the tree, and thus, secrecy is not specifiable in
logics such as the μ-calculus [1].

To be able to specify properties such as secrecy, we propose to enrich
the traditional tree model with “jump-edges” that capture observational
� This research was supported by NSF grants CPA 0541149 and CNS 0524059.

O. Grumberg and M. Huth (Eds.): TACAS 2007, LNCS 4424, pp. 664–678, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Model Checking on Trees with Path Equivalences 665

indistinguishability. More precisely, consider a tree T whose nodes are labeled
with sets of atomic propositions. For an agent a, if the set of propositions O(a)
captures the observable behavior of a, then two tree nodes are considered a-
equivalent if the paths from the root to these nodes agree on the propositions
in O(a) at every step. We convert the tree T into a graph IG(T) by adding, for
every agent a of interest, an a-labeled edge between every pair of a-equivalent
nodes. One can view IG(T) as a Kripke model, where both nodes and edges have
labels, and interpret standard tree logics over it. For an agent a, we also define
a stuttering (weak) equivalence on paths to make modeling of timing insensitive
information flow properties possible. We define a graph IGw(T) similarly.

Tree logics interpreted over tree models augmented with equivalence edges
have rich expressiveness. To specify that the agent a keeps the value of a variable
x secret, we simply have to assert that for all tree nodes, the value of x is different
from the value of x in one of the nodes connected by an a-labeled edge. One
can integrate temporal reasoning with secrecy to specify requirements such as
“agent a does not reveal x unless agent b reveals y.” These examples, as well as
the more specific examples in Section 2, lead us to conclude that a tree with path
equivalences is a useful model for reasoning about information flow properties.
The reason is that it contains just enough information so that these properties
are specifiable in logics interpreted on this model.

Games are useful for specifying requirements as well as for formulating syn-
thesis questions. In partial information games, the strategy can depend only on
the sequence of observations, rather than the complete execution of the system.
If a-labeled edges model the knowledge of player a (i.e. they connect two nodes
in the tree iff along the paths leading to these nodes the sequence of observations
of a is the same), then different versions of such partial information games are
also expressible in our framework.

In our formulation, the model checking question is to decide whether IG(TK)
satisfies a tree logic formula ϕ, where TK is the tree unfolding of a finite-state
model K. Keeping track of paths equivalent with respect to one agent requires
a subset construction leading to PSPACE complexity. We show that this con-
struction can be generalized, and the key parameter is the nesting depth of the
specification. Informally, when we need to evaluate a formula ϕ after jumping
across an a-labeled edge, then an additional layer of subset construction is re-
quired to process b-equivalence, for agents b �= a. We show that, if we restrict the
nesting depth to 1, as is the case for all our example specifications, the model
checking problem for a CTL-like logic is PSPACE-complete, and EXPTIME-
complete for a μ-calculus-like logic. When nesting depth is unbounded, model
checking for CTL≈ (the CTL-like logic) becomes nonelementary, and is unde-
cidable for μ≈-calculus (the μ-calculus-like logic).

2 Trees with Path Equivalences

Let P be a set of propositions. We consider labeled, unranked, unordered, infinite
trees of the form T = (V, E, λ, r), where V is an infinite set of nodes, E ⊆ V ×V

666 R. Alur, P. Černý, and S. Chaudhuri

u1 u1

u2u2 u3
u3

u4
u4

u5
u5

u6 u7

{p1, p2, p3}

{p1} {p1, p3}{p1, p3}

{p1, p2}

{p3}

{p2}

a
a′

. . .

(a) (b)

Fig. 1. (a) A labeled tree (b) Part of its equivalence graph

is a set of tree edges, λ : V → 2P is a map labeling each node with the set of
propositions holding there, and r ∈ V is the root of the tree. A path in T is a
sequence of nodes π = v0v1v2 . . . such that v0 = r and for all i, vi is the parent
of vi+1. Note that each node can be associated with a unique path (the path
that leads from the root to this node) and vice-versa.

Let A be a fixed set of agents, and let us have a map O : A → 2P defining
the set of observables for an agent. We use the map O to define equivalences
among paths in a tree T as follows. Let the map Obsa : V → 2P , defined as
Obsa(v) = λ(v)∩O(a) for all v, return the observables of a at a node v of T . We
lift this map to paths in T by defining Obsa(v0v1 . . .) = Obsa(v0)Obsa(v1)
Let u and v be two nodes of T and let π be a path leading from the root to u and
π′ a path leading from the root to v. Nodes u and v are a-equivalent (written as
u ≈a v) iff Obsa(π) = Obsa(π′).

We define the equivalence graph IG(T) of a tree T as the node and edge-
labeled graph where: (1) the set of nodes is the set V of nodes of T ; (2) the root
node of IG(T) is the root r of T ; (3) the node-labeling map λ is the same as in
T ; (4) there is an unlabeled edge from node u to node v (in this case, we write
u → v) iff (u, v) is an edge in T ; (5) for each agent a, there is an edge labeled
a from u to v (we write u

a→ v) iff u ≈a v. Intuitively, the structure IG(T) uses
a-labeled edges to capture equivalence and defined by the relation ≈a. We can
now view IG(T) as a Kripke structure rooted at r. It is on this structure that
we interpret our logics. Fig. 1-(a) depicts a tree T with path equivalences. We
have two agents a and a′ satisfying O(a) = {p1, p2} and O(a′) = {p2, p3}, and
the nodes u1, u2, . . . are labeled as in the figure. Now it is easy to check that,
for instance, u2 ≈a′ u3. Consequently, the edges of the equivalence graph IG(T),

part of which is shown in Fig. 1-(b), include u2
a′
→ u3 (and u3

a′
→ u2.)

The above definition of a-equivalence can be considered time sensitive in the
sense that it can model an observer who knows that a transition has occurred
even if the observation has not changed. We consider also the following time
insensitive equivalence. Let ≡w be the smallest congruence on sequences of sets
of propositions such that U ≡w UU , where U is a set of propositions. This
relation is sometimes called stuttering congruence. Once more, let u and v be
two nodes of T and let π be a path leading from the root to u and π′ a path
leading from the root to v. Nodes u and v are weakly a-equivalent (written as

Model Checking on Trees with Path Equivalences 667

u ≈w
a v) iff Obsa(π) ≡w Obsa(π′). The weak-equivalence graph IGw(T) graph is

defined similarly as IG(T), with ≈w
a replacing ≈a.

3 Branching-Time Logics on Equivalence Graphs

In this section, we interpret branching-time temporal logics on equivalence graphs
and apply this interpretation to express some natural information-flow and
partial-information requirements.

μ≈-calculus. The μ≈-calculus has modalities to reason about edges labeled
a, for any agent a, as well as unlabeled edges. For example, we have formulas
such as 〈a〉ϕ, which holds at a node u iff there is a node v satisfying ϕ such that
u

a→ v. In order to increase the expressiveness of the logic (without increasing
the complexity of model checking), we add an operator 〈ā〉 to the syntax. The
formula 〈ā〉ϕ holds at a node u if there is another node v satisfying ϕ on the
same level of IG(T) (i.e., with the same distance from the root) that is not
a-equivalent to u. See Example 4 below for an example of a property specified
using the 〈ā〉 operator. To define the semantics of this operator, we will need to
refer to nodes that are on the same level. This can be done using an agent sl
such that O(sl) = ∅. Intuitively, this agent does not observe anything, and thus
considers all the nodes at the same level to be equivalent.

Formally, let P be the set of propositions labeling our trees, and Var be a
set of variables. Formulas in the μ≈-calculus are given by the grammar: ϕ = p |
¬ϕ′ | X | ϕ1 ∨ ϕ2 | 〈 〉ϕ′ | 〈a〉ϕ′ | 〈ā〉ϕ′ | μX.ϕ′(X), if X occurs in ϕ′ only under
an even number of negations, where p ∈ P, a ∈ A and X ∈ Var .

As for semantics, consider the equivalence graph IG(T) of a tree T with
path equivalences. A formula ϕ is interpreted in an environment E that inter-
prets free variables of the formula as sets of nodes in IG(T). The set [[ϕ]]E of
nodes satisfying ϕ in environment E is defined inductively in a standard way.
We state only a few cases: (1) [[〈 〉ϕ]]E = {u : for some v, u → v and v ∈ [[ϕ]]E};
(2) [[〈a〉ϕ]]E = {u : for some v, u

a→ v and v ∈ [[ϕ]]E}, (3) [[〈ā〉ϕ]]E = {u :
for some v, u

sl→ v and ¬(u a→ v) and v ∈ [[ϕ]]E}. If ϕ is a closed formula, its sat-
isfaction by u is independent of the environment. If u satisfies ϕ in this case,
then we write u |= ϕ. If IG(T) has root r, then T satisfies ϕ (T |= ϕ) iff r |= ϕ.

μw≈-calculus. For reasoning on the model IGw(T), we use a fragment of μ≈-
calculus called μw

≈-calculus that does not contain the operator 〈ā〉, since in this
case the same level predicate is not meaningful. If the root r of IGw(T) satisfies
a closed μw

≈-calculus formula ϕ, then T satisfies ϕ (written T |= ϕ).
CTL≈ . As we shall see in Section 4, the full μ≈-calculus over equivalence

trees turns out to have an undecidable model checking problem1. Consequently,

1 One may wonder if monadic second order logic (MSO) is of any interest in this
context. It turns out that a single path equivalence relation suffices to encode the
“same-level” predicate on trees studied in the literature [11]. This implies that model
checking MSO on trees with path equivalences is undecidable even for single-agent
systems.

668 R. Alur, P. Černý, and S. Chaudhuri

we are interested in a simple fragment called CTL≈ that is very similar to CTL
interpreted on equivalence trees. Not only is this logic decidable, but it is also
expressive enough for most of our illustrative examples.

Formulas of CTL≈ are given by: ϕ = p | ϕ1 ∨ ϕ2 | ¬ϕ′ | EX ϕ′ | EIa ϕ′ |
EIā ϕ′ | ϕ1 EU ϕ2 | EGϕ′, where p ∈ P and a ∈ A as before. Following CTL
conventions, let us use the following abbreviations EF ϕ and AGϕ. We also write
AX ϕ, AIa ϕ and AIāϕ as shorthand for ¬EX ¬ϕ, ¬EIa ¬ϕ, and ¬EIā ¬ϕ. We
define the semantics of CTL≈ using a map Ψ : ϕ → ψ that rewrites a CTL≈
formula ϕ as a μ≈-calculus formula ψ. The function Ψ is defined inductively in the
standard way. We state the definition only for a few cases: Ψ(EIa ϕ′) = 〈a〉Ψ(ϕ′)
and Ψ(EIā ϕ′) = 〈ā〉Ψ(ϕ′). A tree T with path equivalences satisfies a CTL≈
formula ϕ iff it satisfies Ψ(ϕ).

CTL≈w . We also consider the logic CTL≈w for reasoning on the model with
weak path equivalences IGw(T). This logic does not contain the operator EIā,
but otherwise is same as CTL≈ . Its semantics is defined on IGw(T).

Semantics on finite Kripke structures. We use finite Kripke structures to
model finite-state systems. Formally, a Kripke structure K is a tuple (Q, →⊆
Q×Q, λ : Q → 2P , r), where Q is a finite set of states, → is a transition function,
λ : Q → 2P is a map labeling each state with the set of propositions, and r ∈ Q
is the initial state.

We want to define when a Kripke structure K satisfies a CTL≈ (CTL≈w

,μ≈,μw≈) formula ϕ. Note that it is not possible to define whether or not the
formula holds in a particular state of K. The reason is that the equivalence
relations are relations on paths in the structure, rather than on states of the
structure. Thus, given a state s, it is not possible to determine which states are
equivalent to s. This also implies that whether or not a given Kripke structure K
satisfies ϕ can be defined inductively on the structure of ϕ on the tree unrolling
of K. For a node in this tree, there is a unique path leading to it, so the set of
equivalent nodes is well-defined. Given a Kripke structure K, let TK be its tree
unrolling. TK can be seen as a tree with (weak) path equivalences (which are
determined by the set of agents A). Then we define K |= ϕ iff TK |= ϕ.

Let us now see how logics on trees with path equivalences aid specification.

Example 1. Consider the game of Battleship. In our formulation, each player
owns a grid whose cells are filled with 0’s and 1’s, and at each round, a player
asks another player about the contents of a cell. A central requirement is that
player a does not reveal information about the contents of a cell (i, j) at any
time unless the opponent asks specifically for them. To see how this property
may be unintentionally violated in an automated Battleship game, consider an
implementation where rows in a’s grid are represented as linked lists that a
iterates through to answer a query about a cell. Now, if a is asked about an
element in an empty row, it gives an answer immediately (as it has nothing
to iterate over). If the row is non-empty, it must iterate through a non-empty
list and spend more time “thinking”. Thus, a’s opponent may glean information
about whether a row in a’s board is nonempty by tracking the time a takes to
answer a query.

Model Checking on Trees with Path Equivalences 669

We can write a requirement forbidding the above scenario in CTL≈ . Let
propositions cij and ask ij be true at points in a play respectively iff cell cij

contains 1 and a receives a request to reveal the contents of cell (i, j). We
omit the full definition of a-equivalence in this version; roughly, observables
of a includes the requests a receives, the answers it gives, and a “silent propo-
sition” τ that holds when a is “thinking”. Now consider the CTL≈ property
ϕ = ¬(¬ask ij EU (AIa cij ∨ AIa ¬cij)), which asserts that there is no play with
a node such that: (1) all behaviors a-equivalent to the play till this point lead to
nodes where the content of (i, j) is the same, and (2) no explicit request for the
contents of cell (i, j) is made by the opponent prior to this point. This ensures
that the adversary cannot infer the contents of (i, j) by watching a’s observables.
On the contrary, in the case when AIaϕ holds at any reachable node of the tree
for some secret property ϕ, then an observer of a can infer the property ϕ by
watching a’s actions till that point. In other words, a leaks the secret ϕ.

Example 2. Logics on trees with path equivalences may be used to specify prop-
erties of systems where participants have partial information. Consider a Kripke
structure representing a blindfold reachability game played by an agent a. At
each round, an active node represents the current state of the game, and when a
takes an action, a child of the current active node becomes the new active node.
Because of partial information, however, a given action may cause different chil-
dren of the current node to become active. We say that a has a winning strategy
in this game if it can decide on a sequence of actions a priori, execute actions in
it in succession, and no matter what actual path in the tree is taken, end in a
node satisfying a target proposition p. Letting two paths be a-equivalent iff they
agree on the sequence of actions of a, we find that a has a winning strategy in
this game iff the tree satisfies the CTL≈ requirement EF (AIa p)).

Now consider an adaptive reachability game, where a can choose actions to
guide the game while it is in progress. Let some of the tree nodes be now labeled
with a control proposition b. At each round, a is now able to pick, along with
an action, one of the control formulas b and ¬b. At any given point, partial
information may cause different children of the current node to become active;
however, the new active node is guaranteed to satisfy the control formula chosen
at the current round. Let us define a-equivalence as before. It can be shown that
a has a strategy to reach a node satisfying a target proposition p iff the game
tree satisfies the μ≈-calculus formula ϕ = μX.(p ∨ [a][](b ∧ X) ∨ [a][](¬b ∧ X)).

Example 3. In various protocols involving multiple agents, a need for proper-
ties involving secrecy and time arises often. For example in the case of auction
protocols (studied in security literature, see e.g. [4]), the following property is
important. Agent a’s bid is not revealed before the auctioneer reveals all the
bids. In order to illustrate how such requirements can be expressed in our logic,
we present the following formula, which states that agent a does not reveal p (a
secret) before agent b reveals q: ϕ = ¬((EIb q ∧ EIb ¬q)EU (AIa p ∨ AIa ¬p)).
The formula expresses it is not the case that: b does not reveal q (EIb q∧EIb ¬q)
until a reveals p (AIa p ∨ AIa ¬p). Now let us consider agents who make only

670 R. Alur, P. Černý, and S. Chaudhuri

time-insensitive observations, i.e. ones who cannot tell that an agent has per-
formed an operation if the observables have not changed. This can be modeled
using the weak-equivalence graph. The correctness of the protocol can thus be
established by model checking the formula ϕ on IGw(T).

Example 4. Consider a system that is being observed by a low-security observer.
We define low-security (low) and high-security (high) variables, where low vari-
ables are visible to the observer and high variables are not. We now show how to
specify in CTL≈ the following requirement R: “ The sequence of valuations of
the low variables is the same along all execution paths.” Consider for example
the case when there is a secret input, i.e. an input to a high variable. If the above
requirement R is satisfied, the observer cannot infer any property of the secret
input, since there cannot be any flow of information from the high input to low
variables. (Note however that the requirement R is even stronger, it prevents
e.g. inputs to low variables.)

The values of variables are encoded by propositions from a set P . We have
one proposition for every bit of every variable. We will use only one agent a. The
subset of propositions observable by the agent is the set of all those propositions
that encode low variables. The requirement R is satisfied iff the following CTL≈
formula holds: AGAIā false . This property says that for each node, there does
not exist an a-nonequivalent node at the same level of the execution tree. This
implies that all nodes at the same level are a-equivalent, and therefore have the
same valuations of low variables. Notice that this property cannot be captured
without the AIā operator, since we need to refer to all nodes at the same level.

4 Model Checking

In this section we present a model checking algorithm for CTL≈ and the μ≈-
calculus. We are given a finite state system, such as a program or a protocol and
a CTL≈ formula ϕ. We want to check whether the system satisfies the formula.

Recall that K |= ϕ is defined in terms of an infinite state structure. However,
we can still apply model checking on a finite state system. This is because for
a given CTL≈ formula ϕ and a given Kripke structure K, we can find a finite
model FM ϕ(K) such that FM ϕ(K) |= ϕ iff TK |= ϕ. Let Aϕ be the set of agents
that appear in ϕ.

The nesting depth of a CTL≈ formula ϕ is intuitively the number of nestings
between equivalence operators EIa, EIā. The only exception is the nesting of
EIa operators for the same agent, which does not contribute to nesting depth.
For example, the nesting depth of EIa p is 1, (EIa p)EU (EIb r) is also 1, while
for EIa EIā p it is 2. On the other hand, EIa EIa p and EIa (ϕ1 EU EIa ϕ2) have
a nesting depth of 1. The nesting depth of ϕ will be denoted by nd(ϕ). Formally,
the nesting depth is defined as follows. We will use an auxiliary function that
takes two parameters: nd(ϕ, a), where a is an agent. Let c be an agent that does
not appear in ϕ. The function nd(ϕ, a) is then defined as follows: (1) nd(ϕ, a) =
0 if ϕ = p, (2) nd(ϕ, a) = nd(ϕ1) if ϕ = ¬(ϕ1), EX ϕ1, EIa ϕ1, EG ϕ1, (3)
nd(ϕ, a) = max(nd(ϕ1, a),nd(ϕ2, a)) if ϕ = ϕ1 ∨ ϕ2, ϕ1 EU ϕ2, (4) nd(ϕ, a) =

Model Checking on Trees with Path Equivalences 671

nd(ϕ1, b) + 1 if ϕ = EIb ϕ1 where b �= a, (5) nd(ϕ, a) = nd(ϕ1, c) + 1 if ϕ =
EIā ϕ1. nd(ϕ) can then be defined as nd(ϕ, c).

The complexity of model checking of a CTL≈ formula ϕ grows rapidly with
the nesting depth of ϕ. However, as we show, the nesting of EIa operators for
the same agent does not contribute to the growth in complexity of the problem.
This distinction is especially important in the case of the μ≈-calculus, where the
formulas with unbounded nesting depth are undecidable in general. However,
formulas where only 〈a〉 operators for the same agent are nested unboundedly
are in a decidable (EXPTIME-complete) fragment. This fragment allows e.g.
specification of adaptive partial-information games (see Section 3).

Finite model FM ϕ(K). We first give the intuition behind the construction
of the finite state model FM ϕ(K). The states of this model carry enough infor-
mation so that the semantics of CTL≈ formulas can be defined on these states
in such a way that FM ϕ(K) |= ϕ iff TK |= ϕ. Consider the case when ϕ is a
CTL formula. To determine whether ϕ holds at a node s of TK , we only need to
know to which state of K the node s corresponds, because if two nodes in TK

correspond to the same state of K, they satisfy the same CTL formulas. Now
consider ϕ ≡ EIa ϕ1, where ϕ1 is a CTL formula. Let S be the set of a-equivalent
nodes of TK . In order to determine whether EIaϕ1 holds at s, one needs to know
to which state of K the node s corresponds and to which states of K the nodes
in S correspond. The amount of information needed is thus finite, and can be
stored as a pair (s, U) such that s ∈ Q, U ⊆ Q, where Q is the set of states
of K. We also need to know how to update this information across transitions.
There are two key ideas: First, the transition relation (s, U) → (t, V) on these
pairs can be computed locally - the set of nodes V equivalent to t will be all
those nodes v that have the same observation as t and that have predecessors
equivalent to s, i.e. stored in U . Second, we can also define an a-transition (a→)
on these tuples locally, since the tuple stores the set of nodes that are mutually
a-equivalent. The transition is thus defined as follows: (s, U) a→ (t, U) for t ∈ U .

This construction lends itself to generalization in three ways: we can have
multiple agents, we can store information needed for ā transitions, and we can
keep enough information to allow nesting of equivalence and nonequivalence
operators. This leads to a definition of the finite-state model of FM ϕ(K). Note
that in order to allow for nesting of equivalence operators, it is not enough to
store only a set of a-equivalent nodes U for all agents a. In fact, for each node in
U , we need to store the set of its b-equivalent nodes (where b �= a), etc. We store
this information as a tree whose nodes are labeled by states of K. Formally, we
define FM ϕ(K) as follows:

States of FM ϕ(K): A state W of FM ϕ(K) is a tree of depth at most nd(ϕ).
The vertices of these trees are labeled by states of K and edges are labeled by
a or ā, where a is in Aϕ. We require that if a subtree is an a-child of its parent,
then it itself does not have a-children. For all nodes in W , we require that no
two of its a-children are isomorphic (similarly for ā-children). The state W is
labeled by the same propositions as its root in the original Kripke structure K.

672 R. Alur, P. Černý, and S. Chaudhuri

The intuition behind the definition is simple: a node s in TK corresponds to a
state W , if s is a root of W , the a-equivalent nodes of s correspond to a-children
of W and this correspondence continues to depth nd(ϕ). Such a state thus carries
enough information to allow checking whether or not ϕ of nesting depth nd(ϕ)
holds. An example of a state W is in Figure 2. It stores the information about
a node s, which has two a-equivalent nodes u and v, one a-nonequivalent node
t and one b-equivalent node x.

If a subtree rooted at u is an a-child of its parent s, it does not need to
have a-children, since the nodes that are a-equivalent to u are a-equivalent to
s., thus we do not need to replicate these nodes as children of u. In fact, we do
not replicate this information. The main reason is that for a subtree of depth
d, the a-siblings store more information (they are trees of depths (at most) d)
than would a-children - subtrees of depth (at most) d − 1. This is what allows
arbitrary nesting of EIa (or 〈a〉) operators for the same agent a.

We can bound the number of states in FM ϕ(K). To state an upper bound,
we will use the following function exp: exp(a, b, 0) = a, exp(a, b, n + 1) = a ∗ b ∗
2exp(a,b,n). Considering how a state is constructed (it does not have isomorphic
a-children), we can conclude that FM ϕ(K) has less than exp(|K|, 2∗|Aϕ|,nd(ϕ))
states.

Transition relation of FM ϕ(K): We explained above how a transition function
is determined locally for tuples of the form (s, U) representing the node and a
set of its a-equivalent nodes. The construction can be generalized to states of
FM ϕ(K). We abuse the notation slightly and use the same notation for transition
relations →, a→, ā→ as is used in TK . Given a state W , root(W) refers to its root
(a node in K). a-child of W refers to the tree rooted at a node that is an a-child
of the root of W . For a state W of depth n, transition relation → is defined
recursively on n.

– n = 0: Trees W and W ′ are of depth 0, i.e. they contain only a root without
any children. W → W ′ if root(W) → root(W ′) in the Kripke structure K.

– n = k + 1: W → W ′ iff root(W) → root(W ′) in K and
• V is an a-child of W ′ iff Obsa(root(W ′)) = Obsa(root(V)) and there

exists an a-child U of W , such that U → V

• V is an ā-child of W ′ iff either there exists an ā-child U of W , such
that U → V or there exists an a-child U ′, such that U ′ → V and
Obsa(root(W ′)) �= Obsa(root(V)).

An example of a transition W → W ′ transition in FM ϕ(K) is in Figure 2. The
figure captures the following situation: There is a transition in K from s (the
root of W) to s′, and from the a-equivalent node u to u′ and the node u′ is a-
equivalent to s′ (similarly for the b-equivalent node x). The node v is a-equivalent
to s and it has a transition to v′ in K. However, v′ is not a-equivalent to s′. The
node t is non-equivalent to s, thus its successor t′ will be nonequivalent to s′.
The subtrees Tu, Tv, Tt, Tx need to be transformed in a similar way.

We defined the structure FM ϕ(K) in order to keep information about a-
equivalent nodes locally. Now we use this information to define a-transitions

Model Checking on Trees with Path Equivalences 673

s

u v t x

Tu Tv Tt Tx

a a ā b

W

s′

u′ v′ t′ x′

T ′
u T ′

v T ′
t T ′

x

a ā ā b

W ′ such that W → W ′

u

v
s

Tu

t x

Tv T c
t T c

x

a a

ā b

W ′′ such that W
a→ W ′′

Fig. 2. States and transitions of FM ϕ(K)

(transitions of the form W
a→ W ′). The idea is that on an a-transition, we go

from a state W to a state W ′ represented by an a-child of W . In general, this
transition leads from a tree of depth n to a tree with depth n−1 (this is true for
b-children where b �= a and all (ā)-children). However, for a-children we leverage
the fact that a-children of a parent are mutually equivalent, which enables us to
construct a tree such that the depth of a-children does not decrease. Transition
relations a→,

ā→ are defined as follows:

– W
a→ W ′ iff W ′ can be constructed as follows: Let V be an a-child of W .

Let V ′ be V with other a-children of W as a-children (note that V did not
have a-children). Let V ′′ be W without all the a-children, and we remove the
leaves for all the other children (to ensure that the depth of W ′ is smaller
or equal to nd(ϕ)). Finally, let W ′ be V ′ with V ′′ as an a-child.

– W
ā→ W ′ if W ′ is a ā-child of W

An example of an a→ transition in FM ϕ(K) W
a→ W ′′ is in Figure 2. The idea

is that W ′′ will be a subtree rooted at an a-child of s, which in this case is the
subtree rooted at u. However, as explained above, we add as a-children subtrees
rooted at a-siblings of u (in this case, the subtree rooted at v) and the subtree
rooted at the parent s and its subtrees (except the a-children). We modify these
subtrees (T c

t and T c
x in the figure) by removing the leaves.

CTL≈ . We want to prove that the finite state model FM ϕ(K) is adequate for
evaluating the formula ϕ, i.e. that for each node s of TK there is a corresponding
state W in FM ϕ(K), such that ϕ holds in s iff it holds in W . In order to state
this claim, we need to define the correspondence between the states of TK and
FM ϕ(K). We will do so using a family of functions Ωn. Each Ωn is a function
that relates a node in TK to a node of FM ϕ(K). It is defined recursively as
follows:

– n = 0: Ω0(u) is a tree of depth 0, whose root is u.
– n = k + 1: Ωk+1(u) = W iff W can be constructed as follows: root(W) = u.

Consider the set S of all a-equivalent nodes of u. For every node v in this set,
compute V = Ωk(v). Let V ′ be V without a-children. Add V ′ as an a-child
to W . For every node r at the same depth as u, that is not a-equivalent to
u, add R = Ωk(r) as an ā-child to W .

674 R. Alur, P. Černý, and S. Chaudhuri

The following lemma asserts that the construction of FM ϕ(K) is correct. It im-
plies that model checking of CTL≈ formula ϕ can be performed on FM ϕ(K). It
is proven by induction on the nesting depth of the formula. However, the induc-
tive hypothesis needs to be strengthened to account for the fact that arbitrary
nesting of the EIa operator for the same agent is allowed.

Lemma 1. TK , s |= ϕ iff FM ϕ(K), Ωn(s) |= ϕ, where n = nd(ϕ)

A nesting-free formula is a formula with nesting depth at most 1. Thus it is
a formula that can refer to operators EIa, EIā for different agents, but it can
nest only the EIa operators for the same agent. All of the example properties
mentioned in Section 3 are expressed in this fragment.

Theorem 1. The model checking problem for nesting-free formulas of CTL≈ is
PSPACE-complete.

Proof. (Sketch) We show that the problem is in PSPACE using Lemma 1. The
lemma shows that it is possible to reduce CTL≈ model checking to CTL model
checking on an exponentially larger structure FM ϕ(K), whose number of states
is less than |K| ∗2∗ |A| ∗2|K|. Note however, that it is not necessary to construct
the structure ahead of time, since the transition function can be computed lo-
cally. Thus the non-deterministic model checking algorithm for CTL [10] that
uses only logarithmic space in terms of the size of the structure can be used.
Therefore the model checking problem for nesting-free formulas is in PSPACE.
The lower bound is obtained by reduction from equivalence checking of nonde-
terministic finite automata. ��

The reasoning that shows that the model checking for nesting-free formulas is
in PSPACE can be extended to obtain the following result.

Theorem 2. For a fixed CTL≈ formula ϕ such that nd(ϕ) ≥ 2, the model
checking problem is decidable in space polynomial in exp(|K|, 2 ∗ |A|,nd(ϕ)− 1).

In order to obtain a lower bound for the model checking problem for CTL≈
formulas, we can encode Shilov and Garanina’s Act-CTL-Kn [15] in CTL≈
and use the fact that model checking for Act-CTL-Kn has a nonelementary
lower bound. Act-CTL-Kn is a logic similar to CTL with actions augmented
with knowledge operators that are given the perfect-recall semantics, i.e. an
agent remembers the whole sequence of its past states. CTL with actions can
be encoded into CTL in a standard way. If we define the equivalence rela-
tion ≈a to be such that two paths (sequences of the multiagent system) are
equivalent iff the corresponding sequences of states of agent a are the same,
then the knowledge operator Ki corresponding to agent a can be encoded as
follows: Kiϕ = ¬ EIa ¬ ϕ. Therefore, defining the function Tower (n, k) as
Tower (n, 1) = n and Tower (n, k + 1) = 2Tower(n,k), we have:

Theorem 3. For every algorithm A for the model checking problem of CTL≈ ,
and each i ≥ 1, there is a Kripke structure K with n states and a CTL≈ formula
ϕ such that A runs on K and ϕ in time Ω(Tower (n, i)).

Model Checking on Trees with Path Equivalences 675

μ≈-calculus We now consider the model checking problem for μ≈-calculus
formulas on trees with path equivalences. In general, this problem is undecidable.
We can prove it by encoding Shilov and Garanina’s μ-calculus of knowledge -
(μPLKn)[15]. This logic can be encoded in μ≈-calculus over trees with path
equivalences in a similar way as as Act-CTL-Kn was encoded to CTL≈ . Since
the model checking problem for μPLKn is undecidable, we have:

Theorem 4. The model checking problem for the μ≈-calculus is undecidable.

However, we identify a decidable fragment of the μ≈-calculus as follows. Define
the set Subf (ϕ) of subformulas of a formula ϕ inductively as: (1) for ϕ = p
or ¬p, Subf (ϕ) = {ϕ}; (2) if ϕ equals ϕ1 ∨ ϕ2 or ϕ1 ∧ ϕ2, then Subf (ϕ) =
{ϕ}∪Subf (ϕ1)∪Subf (ϕ2); (3) if ϕ equals 〈〉ϕ′, []ϕ′, 〈a〉ϕ′ or [a]ϕ′, for arbitrary
a, we have Subf (ϕ) = Subf (ϕ′); and (4) for ϕ = μX.ϕ′ or νX.ϕ′, we have
Subf (ϕ) = {X} ∪ Subf (ϕ′). Now, let us only consider “well-named” formulas,
i.e., closed formulas ϕ where for each variable X appearing in ϕ, there is a unique
binding formula μX.ϕ′ or νX.ϕ′ in Subf (ϕ) such that X ∈ Subf (ϕ′). As for the
μ-calculus, every closed μ≈-calculus formula can be rewritten in a well-named
form. Now construct the graph Gϕ with node set Subf (ϕ) and edges as below:

1. for each node ϕ of the form 〈〉ϕ′, []ϕ′, 〈a〉ϕ′, [a]ϕ′, μX.ϕ′, or νX.ϕ′, add an
edge from ϕ to ϕ′.

2. for each node X , where X ∈ Var , add an edge from X to the unique sub-
formula of the form μX.ϕ′ or νX.ϕ′ that binds it.

Intuitively, Gϕ captures the operational semantics of ϕ. If there is a path from
ϕ′ to ϕ′′ in Gϕ′ , then evaluation of ϕ′ requires the evaluation of ϕ′′ (note that
to evaluate ϕ′ = X , we must recursively evaluate the formula ϕ′′ binding X).

A formula is said to be a-modal (resp. ā-modal) if it is of the form 〈a〉ϕ or [a]ϕ
(resp. 〈ā〉ϕ or [ā]ϕ). Let π = ψ1ψ2 . . . ψm be a path in Gϕ. The nesting distance
of π is k, where k is the length of the maximum subsequence π′ = ψ′

1ψ
′
2 . . . ψ′

k in
π such that: (1) each ψ′

i is an a-modal formula for some agent a; and (2) for each
i, if ψ′

i is a-modal and ψ′
i+1 is a′-modal, then a �= a′. A formula ϕ has nesting

depth k if k is the least upper bound on the nesting distance of any path in Gϕ.
Note that such a k may not exist—if it does, then ϕ is said to have a bounded
nesting depth. For instance, the formula ϕ1 = νX.([a1]〈a2〉p ∧ 〈a1〉[][a1]X) is
bounded, while ϕ2 = μX.(p ∨ 〈〉[a1]〈a2〉X) is not.

Using an argument similar to that for CTL≈ and using the same structure
FM ϕ(K) for formulas with nesting depth k, we can obtain a non-elementary
model checking procedure for the fragment of the μ≈-calculus with bounded
nesting depth. In addition, this fragment can easily encode CTL≈ , so that it is
non-elementary-hard. Then:

Theorem 5. The model checking problem for a Kripke structure K and a μ≈-
calculus formula ϕ with nesting depth k is solvable in time exp(|K|, 2 ∗ |A|, k).
Also, for every algorithm A for this problem and every i ≥ 1, there is a Kripke
structure K with n states and a formula ϕ such that A runs on K and ϕ in time
Ω(Tower (n, i)).

676 R. Alur, P. Černý, and S. Chaudhuri

Now consider the model checking problem for nesting-free formulas, i.e., formu-
las with nesting depth 1. Recall that such formulas can express all properties
involving a single agent. Now, given a Kripke structure K and a set of agents A,
construct the structure FM ϕ(K) in exponential time; we can interpret nesting-
free μ≈-calculus formulas on FM ϕ(K) using the semantics of the classical μ-
calculus. As above, we can show that K satisfies a nesting-free formula ϕ iff
FM ϕ(K) satisfies ϕ.

For a lower bound, we turn to the model of space-bounded private alternat-
ing Turing machines introduced by Reif [13]. Let PALOGSPACE be the class
of languages recognized by such machines using logarithmic space—Reif shows
that PALOGSPACE = EXPTIME. Now recall that the alternation-free modal μ-
calculus is complete for PTIME and consequently alternating LOGSPACE [10].
Augmenting this result, and encoding private tapes using the path equivalence re-
lation induced by a single agent, we can reduce recognition by a PALOGSPACE-
machine to the model checking problem for an alternation-free, single-agent μ≈-
calculus formula. The latter problem is thus EXPTIME-hard.

Theorem 6. Model checking nesting-free μ≈-calculus formulas is
EXPTIME-complete. Model checking single-agent, alternation-free μ≈-calculus
formulas is EXPTIME-hard.

Weak-equivalence graphs We now turn our attention to the model-checking prob-
lem on weak-equivalence graphs. The solution proceeds via the construction of
FM ϕ

w(K), a finite state Kripke structure analogical to FM ϕ(K). The model
checking algorithms are again based on state space exploration on the finite
state model FM ϕ

w(K). For the model checking problem for CTL≈w formulas, as
well as for μw≈ formulas, the same upper and lower bounds are obtained as those
above for CTL≈ and μ≈ formulas.

5 Related Work

In some aspects, the logics we introduced are related to logic of knowledge [8].
The main semantic difference is that logics of knowledge are concerned about
what an agent knows, whereas in the logics presented in this paper we are con-
cerned about what an agent has revealed. However, from an intuitive point of
view, it might be possible to capture what an agent a reveals by adding one “ob-
server agent”, who would observe a and record its observations (e.g. outputs and
inputs of a) and then ask about the knowledge of this observer agent. However,
in a finite state setting under the standard semantics for knowledge operators
(the semantics is defined in terms of equivalence relations on states of the Kripke
structure, not the paths), this is not possible.

The idea of introducing an observer agent would work in the case of perfect
recall semantics [8], i.e. when an agent remembers the sequence of its past states.
In this case, our equivalence operator EIaϕ can be translated as ¬KObsa

¬ϕ,
where Obsa is the agent introduced to record the observable actions of a. Note
however, that the nonequivalence operator EIāϕ cannot be expressed in logic

Model Checking on Trees with Path Equivalences 677

of knowledge with perfect recall, because this logic can express properties that
some or all equivalent nodes have and there is no way to refer to nonequivalent
nodes. In the setting of perfect recall semantics, van der Meyden and Shilov [17]
have considered model checking of LTL with knowledge operators and Shilov and
Garanina [15] consider model checking of CTL and μ-calculus with knowledge
operators. The construction of our finite-state model is similar to “k-trees” used
in these papers. However, note that the notions of nesting depths are different,
and that our notion yields better complexity bounds. (In [16], a notion of nesting
depth similar to ours is used, in a context without temporal operators). We
argue that our logics are more suitable for specifying secrecy and information
flow properties than logics of knowledge. First, we showed that it is possible to
specify information flow properties using standard tree logics (CTL, μ-calculus),
provided that we enrich the tree model with path equivalences. This approach
can be readily extended to other tree logics, such as ATL [2]. Second, we are also
able to model information flow properties directly, without the need to introduce
an observer agent for each agent in the original system. Third, some information
flow properties can be expressed naturally using the EIā operator. This is not
possible in logic of knowledge.

For μ≈-calculus, we have identified an EXPTIME-complete fragment in which
it is possible to specify partial-information adaptive games. For simplicity, we
presented our approach using Kripke structures as a basic model. However, there
are other models, such as alternating transition systems (see [2]), which are better
suited for modeling games. We believe our results can be easily lifted to ATSs.
Note that partial information games have also been studied in the context of
ATL, but were proven undecidable for multiple players.

6 Conclusion

We have introduced a branching-time logics on trees with path equivalences.
We have shown that extending the execution tree by adding equivalence (or
“jump”) edges allows us to specify partial information games and information
flow properties in tree logics (the μ≈-calculus and CTL≈). We have presented
a model checking algorithm for these logics, and identified fragments where the
problem has reasonable complexity (PSPACE for the case of the nesting-free
fragment of CTL≈).

The work presented in this paper can be extended in several directions. We
plan to investigate the extension of the logics on trees with path equivalences
with boolean edge formulas (a generalization of 〈a〉 and 〈ā〉 operators). Given
results presented in this paper, we expect that only a (small) fragment of this
generalization will be decidable. However, there are tractable fragments not ex-
plored in this paper in which one can express other information flow proper-
ties, such as noninterference and its generalizations. Another interesting direc-
tion is to investigate automata on trees with path equivalences. We would also
like to find an efficient way of implementing the model checking algorithm pre-
sented in Section 4, such as (SAT-based) bounded model checking. We plan to

678 R. Alur, P. Černý, and S. Chaudhuri

identify classes of applications where this implementation would prove useful
and where the specifications involving multiple agents, information flow, and
time are needed. Good candidates include cryptographic protocols and auction
protocols. Furthermore, we would like to investigate the possibilities of extend-
ing this work for verifying information-flow properties for infinite-state systems,
e.g. via abstractions that preserve information-flow properties.

References

1. R. Alur, P. Černý, and S. Zdancewic. Preserving secrecy under refinement. In
Proc. of ICALP ’06, pages 107–118, 2006.

2. R. Alur, T. Henzinger, and O. Kupferman. Alternating-time temporal logic. Jour-
nal of the ACM, 49(5):1–42, 2002.

3. J. Burch, E. Clarke, D. Dill, L. Hwang, and K. McMillan. Symbolic model checking:
1020 states and beyond. Information and Computation, 98(2):142–170, 1992.

4. S. Chong and A. Myers. Decentralized robustness. In Proc. of CSFW’02, pages
242–256, 2006.

5. A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Se-
bastiani, and A. Tacchella. NuSMV Version 2: An OpenSource Tool for Symbolic
Model Checking. In Proc. of CAV’02, pages 359–364, 2002.

6. E. Clarke and E. Emerson. Design and synthesis of synchronization skeletons using
branching time temporal logic. In Proc. Workshop on Logic of Programs, pages
52–71, 1981.

7. H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison,
and M. Tommasi. Tree automata techniques and applications. Available on:
http://www.grappa.univ-lille3.fr/tata, 1997.

8. R. Fagin, J. Halpern, Y. Moses, and M. Vardi. Reasoning About Knowledge. MIT
Press, Cambridge, MA, USA, 1995.

9. D. Kozen. Results on the propositional μ-calculus. Theoretical Computer Science,
27:333–354, 1983.

10. O. Kupferman, M. Vardi, and P. Wolper. An automata-theoretic approach to
branching-time model checking. Journal of the ACM, 47(2):312–360, 2000.

11. H. Lauchli and Ch. Savioz. Monadic second order definable relations on the binary
tree. J. Symb. Log., 52(1):219–226, 1987.

12. A. Pnueli. The temporal logic of programs. In Proceedings of the 18th IEEE
Symposium on Foundations of Computer Science, pages 46–77, 1977.

13. J. Reif. Universal games of incomplete information. In Proc. of STOC ’79, pages
288–308, 1979.

14. F. Schneider, editor. Trust in Cyberspace. National Academy Press, 1999.
15. N. Shilov and N. Garanina. Model checking knowledge and fixpoints. In Proc. of

FICS’02, pages 25–39, 2002.
16. R. van der Meyden. Common knowledge and update in finite environments. In-

formation and Computation, 140(2):115–157, 1998.
17. R. van der Meyden and N. Shilov. Model checking knowledge and time in systems

with perfect recall. In Proc. of FSTTCS’99, pages 432–445, 1999.

http://www.grappa.univ-lille3.fr/tata

UPPAAL/DMC – Abstraction-Based Heuristics for
Directed Model Checking

Sebastian Kupferschmid1, Klaus Dräger2, Jörg Hoffmann3, Bernd Finkbeiner2,
Henning Dierks4, Andreas Podelski1, and Gerd Behrmann5

1 University of Freiburg, Germany
{kupfersc,podelski}@informatik.uni-freiburg.de

2 Universität des Saarlandes, Saarbrücken, Germany
{draeger,finkbeiner}@cs.uni-sb.de

3 Digital Enterprise Research Institute, Innsbruck, Austria
joerg.hoffmann@deri.org

4 OFFIS, Oldenburg, Germany
dierks@offis.de

5 Aalborg University, Denmark
behrmann@cs.aau.dk

Abstract. UPPAAL/DMC is an extension of UPPAAL which provides generic
heuristics for directed model checking. In this approach, the traversal of the state
space is guided by a heuristic function which estimates the distance of a search
state to the nearest error state. Our tool combines two recent approaches to design
such estimation functions. Both are based on computing an abstraction of the
system and using the error distance in this abstraction as the heuristic value. The
abstractions, and thus the heuristic functions, are generated fully automatically
and do not need any additional user input. UPPAAL/DMC needs less time and
memory to find shorter error paths than UPPAAL’s standard search methods.

1 Introduction

UPPAAL/DMC is a tool that accelerates the detection of error states by using the di-
rected model checking approach [4,5]. Directed model checking tackles the state explo-
sion problem by using a heuristic function to influence the order in which the search
states are explored. A heuristic function h is a function that maps states to integers, esti-
mating the state’s distance to the nearest error state. The search then gives preference to
states with lower h value. There are many different ways of doing the latter, all of which
we consider the wide-spread method called greedy search [8]. There, search nodes are
explored in ascending order of their heuristic values. Our empirical results show that
this can drastically reduce memory consumption, runtime, and error path length.

Our tool combines two recent approaches to design heuristic functions. Both are
based on defining an abstraction of the problem at hand, and taking the heuristic value
to be the length of an abstract solution. It is important to note that both techniques are
fully automatic, i.e., no user intervention is needed to generate the heuristic function.
UPPAAL has a built-in heuristic mode, but the specification of the heuristic is entirely
up to the user. Inventing a useful heuristic is a tedious job: it requires expert knowledge
and a huge amount of time.

O. Grumberg and M. Huth (Eds.): TACAS 2007, LNCS 4424, pp. 679–682, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

680 S. Kupferschmid et al.

2 Heuristics

The next two sections give a brief overview of the abstractions used to build our heuris-
tics, and how heuristic values are assigned to search states.

2.1 Monotonicity Abstraction

Our first heuristic [7] adapts a technique from AI Planning, namely ignoring delete lists
[1]. The idea of this abstraction is based on the simplifying assumption that every state
variable, once it obtained a value, keeps that value forever. I.e., the value of a variable
is no longer an element, but a subset of its domain. This subset grows monotonically
over transition applications – hence the name of the abstraction.

When applying the monotonicity abstraction to a system of timed automata, then
each automaton will (potentially) be in several locations in a state. The system’s integer
variables will have several possible values in a state. So far clocks are not included in
the computation of heuristic values. If we included clocks in the obvious way, every
guard or invariant involving a clock would be immediately satisfied. The reason for this
is that clock value sets quickly subsume all possible time points.

Our heuristic hma assigns to each state encountered during search a heuristic value
by solving an abstract problem. Such an abstract problem is obtained by applying the
monotonicity abstraction to the current state. The length of a solution found in this ab-
straction is then used as the heuristic estimate for the state’s distance to the nearest error
state. In a nutshell, an abstract solution is computed by iteratively applying all enabled
transitions to the initial abstract state (the state for which we want to estimate the dis-
tance), until either the enlarged state subsumes an error state, or a fixpoint is reached.
In the former case, an abstract solution can be extracted by backtracking through the
state enlargement steps. In case of reaching a fixpoint, we can exclude this state from
further exploration: the monotonicity abstraction induces an over-approximation, i.e. so
if there is no abstract error path, then there is no real one either.

2.2 Automata-Theoretic Abstraction

The second heuristic [3] aims at a close representation of the process synchronization
required to reach the error. Each process is represented as a finite-state automaton. The
heuristic haa estimates the error distance d(s) of a system state s as the error distance
of the corresponding abstract state α(s) in an abstraction that approximates the full
product of all process automata. The approximation of the product of a set of automata
is computed incrementally by repeatedly selecting two automata from the current set
and replacing them with an abstraction of their product. To avoid state space explosion,
the size of these intermediate abstractions is limited by a preset bound N : to reach a
reduction to N states, the abstraction first merges bisimilar states and then states whose
error distance is already high in the partial product. In this way, the precision of the
heuristic is guaranteed to be high in close proximity to the error, and can, by setting
N , be fine-tuned for states further away from the error. In our experiments, fairly low
values of N , such as N = 100, already significantly speed up the search for the error,
and therefore represent a good trade-off between cost and precision.

UPPAAL/DMC – Abstraction-Based Heuristics 681

3 Results

We compare the performance of UPPAAL/DMC’s1 greedy search and UPPAAL’s ran-
domized depth first search (rDF), which is UPPAAL’s most efficient standard search
method across many examples. The results for rDF in Table 1 are averaged over 10
runs. The Ci examples stem from an industrial case study called “Single-tracked Line
Segment” [6] and the Mi examples come from another case study, namely “Mutual Ex-
clusion” [2]. An error state was made reachable by increasing an upper time bound in
each example.

The results in Table 1 clearly demonstrate the potential of our heuristics. The heuris-
tic searches consistently find the error paths much faster. Due to the reduced search
space size and memory requirements, they can solve all problems. At the same time,
they find, by orders of magnitude, much shorter error paths in all cases.

Table 1. Experimental results of UPPAAL’s rDF and UPPAAL/DMC’s greedy search with hmaand
haa . The results are computed on an Intel Xeon with 3 Ghz and 4 GB of RAM. Dashes indicate
out of memory.

runtime in s explored states memory in MB trace length
Exp rDF hma haa rDF hma haa rDF hma haa rDF hma haa

M1 0.8 0.1 0.2 29607 5656 12780 7 1 11 1072 169 74
M2 3.1 0.3 0.9 118341 30742 46337 10 11 11 3875 431 190
M3 2.8 0.2 0.8 102883 18431 42414 9 10 11 3727 231 92
M4 12.7 0.8 1.9 543238 76785 126306 22 13 14 15K 731 105

C1 0.8 0.2 0.5 25219 2339 810 7 9 11 1065 95 191
C2 1.0 0.3 1.0 65388 5090 2620 8 10 19 875 86 206
C3 1.1 0.5 1.1 85940 6681 2760 10 10 19 760 109 198
C4 8.4 2.5 1.8 892327 40147 25206 43 11 23 1644 125 297
C5 72.4 13.2 4.0 8.0e+6 237600 155669 295 21 28 2425 393 350
C6 – 10.1 14.9 – 207845 1.2e+6 – 20 67 – 309 404
C7 – 169.0 162.4 – 2.7e+7 1.3e+7 – 595 676 – 1506 672
C8 – 14.5 155.3 – 331733 1.2e+7 – 23 672 – 686 2210
C9 – 1198.0 1046.0 – 1.3e+8 3.6e+7 – 2.5G 1.6G – 18K 1020

Other heuristics, proposed by Edelkamp et al. [4,5] in the context of SPIN are based
on graph distances. The underlying abstraction of these heuristics preserves only edges
and locations of an automata system. For an automaton a let d(a) be the distance of a’s
start location to its target location. Then, the hgd

max heuristic is defined as maxa d(a).
The hgd

sumheuristic is defined as
∑

a d(a).
Note that hgd

max and hgd
sum are rather crude approximations of the systems semantics.

For example, they completely ignore variables and synchronization. In contrast, the

1 Two different versions of UPPAAL/DMC (both Linux executables) are available under
http://www.informatik.uni-freiburg.de/˜kupfersc/uppaal dmc/. One
is optimized for Intel Pentium 4 processors, the other one was compiled with default optimiza-
tion. The page also provides a short description of the used benchmarks, and all used model
and query files.

682 S. Kupferschmid et al.

hma and haa heuristics do not do this. Our approximations are more costly, i.e. one call
of hma or haa takes more runtime than one call of hgd

max or hgd
sum . The additional effort

typically pays off: for example, in the case studies shown in Table 1, greedy search with
maxa d(a) and

∑
a d(a) performs only slightly better than rDF, and much worse than

our heuristics; e.g. it cannot solve any of C6, C7, C8, and C9.

4 Outlook

The most important piece of future work is to explore the value of our tool in the abstrac-
tion refinement life cycle. The basic idea is to use heuristics to address the intermediate
iterations where (spurious) errors still exist. As our results show, this has the potential
to speed up the process and yield shorter, and thus more informative error paths. Hence,
our technique for error detection will be able to help with actual verification.

Acknowledgments

This work was partly supported by the German Research Council (DFG) as part of the
Transregional Collaborative Research Center “Automatic Verification and Analysis of
Complex Systems” (SFB/TR 14 AVACS). See http://www.avacs.org/ for more
information.

References

1. Blai Bonet and Héctor Geffner. Planning as heuristic search. Artificial Intelligence, 129
(1–2):5–33, 2001.

2. Henning Dierks. Comparing model-checking and logical reasoning for real-time systems.
Formal Aspects of Computing, 16(2):104–120, 2004.

3. Klaus Dräger, Bernd Finkbeiner, and Andreas Podelski. Directed model checking with
distance-preserving abstractions. In Proceedings of the 13th International SPIN Workshop
on Model Checking of Software, 2006.

4. Stefan Edelkamp, Alberto Lluch-Lafuente, and Stefan Leue. Directed explicit model checking
with HSF-Spin. In Proceedings of the 8th International SPIN Workshop on Model Checking
of Software, pages 57–79, 2001.

5. Stefan Edelkamp, Alberto Lluch-Lafuente, and Stefan Leue. Directed explicit-state model
checking in the validation of communication protocols. International Journal on Software
Tools for Technology Transfer, 2004.

6. Bernd Krieg-Brückner, Jan Peleska, Ernst-Rüdiger Olderog, and Alexander Baer. The Uni-
ForM Workbench, a universal development environment for formal methods. In FM’99 –
Formal Methods, volume 1709 of LNCS, pages 1186–1205. Springer, 1999.

7. Sebastian Kupferschmid, Jörg Hoffmann, Henning Dierks, and Gerd Behrmann. Adapting an
AI planning heuristic for directed model checking. In Proceedings of the 13th International
SPIN Workshop on Model Checking of Software, 2006.

8. Judea Pearl. Heuristics: Intelligent search strategies for computer problem solving. Addison-
Wesley, 1984.

Distributed Analysis with μCRL:
A Compendium of Case Studies

Stefan Blom2, Jens R. Calamé1, Bert Lisser1, Simona Orzan3, Jun Pang4,
Jaco van de Pol1,3, Mohammad Torabi Dashti1, and Anton J. Wijs1

1 CWI, Amsterdam, The Netherlands
2 Institut für Informatik, Universität Innsbruck, Austria

3 TU/e, Eindhoven, The Netherlands
4 Carl von Ossietzky Universität, Oldenburg, Germany

Stefan.Blom@uibk.ac.at, {jens.calame,bertl,vdpol,dashti,a.j.wijs}@cwi.nl,
s.m.orzan@tue.nl, jun.pang@informatik.uni-oldenburg.de

Abstract. Models in process algebra with abstract data types can
be analysed by state space generation and reduction tools. The μCRL
toolset implements a suite of distributed verification tools for clusters of
workstations. We illustrate their application to large case studies from a
wide range of application areas, such as functional analysis, scheduling,
security analysis, test case generation and game solving.

1 Introduction

The μCRL toolset (www.cwi.nl/~mcrl, [2,3]) is equipped with several tools to
analyse models of industrial systems, comparable to CADP [8], Spin [10], Up-
paal [1] and Murφ [7]. Most techniques rely on explicit state space generation.
In order to overcome memory problems of a single machine, we have constructed
distributed implementations of the μCRL tools. With this paper we illustrate
that these distributed analysis tools are essential in a wide range of application
areas. In particular, we discuss applications in functional analysis, scheduling,
test generation, security analysis, and game solving.

Before doing so, we shortly mention the distributed tools, which all run on a
cluster of workstations. First of all, there is the state space generator [11]. Be-
sides generating all possible behaviour of a μCRL-model, it can check for simple
properties, e.g. deadlock freeness. One manager and n clients perform a distrib-
uted breadth-first exploration, where a hash function is used to assign states to
the clients. This exploration is done level by level simultaneously on all clients,
whereby the clients, which have finished their part of the task, communicate
destination states to the other clients. The manager synchronises the clients,
hence enforcing the breadth-first character of the exploration.

A GUI is provided with the toolset to monitor running jobs. A running job can
be killed at any time, to be restarted later on. Some minimisation tools [4] reduce
a state space modulo strong or branching bisimulation. There is also a distributed
SCC contraction tool [12], which eliminates for instance all τ -cycles. Finally, it

O. Grumberg and M. Huth (Eds.): TACAS 2007, LNCS 4424, pp. 683–689, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

www.cwi.nl/~mcrl

684 S. Blom et al.

is possible to deal with priced reachability problems. We implemented minimal-
cost search (where the search order is determined by the costs associated with
actions), and beam search (which uses heuristics to guide the search) [14,15]. In
the latter case, state space generation is not exhaustive.

2 Applications of Distributed Analysis

Functional Analysis – A Cache Coherence Protocol. Jackal is a fine-grained
distributed shared memory implementation of the Java programming language.
It aims to implement Java’s memory model and allows multithreaded programs
to run unmodified on a distributed memory system. It employs a self-invalidation
based, multiple-writer cache coherence protocol, which allows processors to cache
a region created on another processor.

A μCRL specification of the protocol was extracted from an informal (C-
like language) description. It contains parallel processes for components such as
threads, processors, buffers, and regions. These components interact with each
other via message communications. Our analysis [13] has revealed two unan-
ticipated errors in the implementation, which were confirmed and corrected by
the developers of Jackal. The μCRL distributed state space generation tool has
played a central role for this case study. It was used to generate state spaces for
several large instances of the protocol. One of the two errors found by analysing
them with CADP can only be detected on these instances.

Test Case Generation – Common Electronic Purse Specifications. The Common
Electronic Purse Specifications (CEPS) define a protocol for electronic payment
using a chip card as a wallet. A complete electronic purse system covers three
roles: A card user, a card issuer (e.g. bank institute) and a card reader as a
connection between these two.

We generated parameterisable test cases from a μCRL model of the card ap-
plication as follows [5]: We first applied a so-called chaos abstraction to limit
the infinite behaviour due to unbounded input values. However, even the ab-
stracted version was very large. The full state space was generated on a cluster
of machines, while the minimised state space fitted in one machine. Finally, we
applied enumerative test generation with the (sequential) tool TGV.

Scheduling – Clinical Chemical Analyser. Opposed to more traditional qualita-
tive model checking, where properties are checked resulting in a “yes” or “no”
answer, in quantitative model checking, measurements are performed on a model.
Scheduling problems can be seen as priced reachability problems, where costs
are associated with actions (and states), and the goal is to find a successful
termination in a state space where the traces represent all possible schedules.

We used μCRL to model the scheduling problem of a Clinical Chemical
Analyser [15], which is used to automatically analyse patient samples, designed
by TNO Industry and TU/e. As naïve breadth-first search could not cope with
costs and large problem instances, we developed a set of distributed techniques,
incorporating minimal-cost search and several pruning techniques [14], building

Distributed Analysis with μCRL: A Compendium of Case Studies 685

on the traditional notion of beam search. We were able to find solutions for
several problem instances on-the-fly.

Security Analysis – Digital Rights Management. Digital Rights Management
(DRM) schemes have recently attracted much research because of their essential
role in enabling digital business in the entertainment market. However, sobering
experiences, such as the recent Sony-BMG case, have shown that DRM systems
are inherently complicated, hence error-prone, and if not applied with ample
scrutiny and analysis can infringe on both vendors’ and customers’ rights. We
extended an existing concept of DRM-preserving content redistribution in [9],
where users double as content distributors.

We used μCRL to formally specify a finite model of this scheme. The resulting
system is highly non-deterministic, mainly due to several fall back scenarios for
suffered parties. Particularly when an intruder is included in the model, it easily
hits the boundaries of single-machine state space generation. We therefore re-
sorted to the distributed setting for generating and minimising the corresponding
state space, to later on model check security goals of the scheme.

Game solving - Sokoban. A rather surprising application of our verification tech-
niques is in solving instances of the one-player maze puzzles of Sokoban. Squares
of a Sokoban instance may be occupied by stones, or marked as targets. A person
can walk around or push stones, in order to move them all to the target squares,
minimising the number of pushes. Walking steps are not counted.

To solve a screen, we generate its state space, and look for the shortest number
of pushes leading to the goal state. However, as walk steps don’t count, they
should be eliminated first. Due to the large number of move options at every
step, for most instances the state spaces could only be generated on a cluster
of workstations. By hiding the walking actions, we get a state space with many
τ -cycles, on which the distributed SCC elimination tool [12] was applied, and led
to a significant reduction. In the reduced state space we can simply count the
pushes in the shortest path to the success state.

3 Evaluation and Conclusion

The μCRL toolset has the capabilities to do distributed analysis on a cluster
of computers. In a number of experiments we successfully applied the toolset to
the areas, which have been described in the previous section. Thereby, the case
studies we worked on, led to large state spaces.

In general, we used a cluster of 2.2GHz AMD Athlon 64 bit single CPU
computers with 1 GB RAM each and SuSE Linux 9.3 installed. In those cases,
where the number of machines is given as n+1, we used a cluster of 1.4GHz
AMD Opteron 64 bit computers running under Debian 3.1. The first n machines
had two CPUs and 2 GB RAM each while the extra machine had four CPUs
and 16 GB main memory. As can be seen in Table 1, most problems could not
have been solved on a single machine, because computation would have taken
too long and would have consumed too much memory. Therefore, problems of
this size can only be solved by a toolset supporting distributed analysis features.

686 S. Blom et al.

Table 1. Performance Results

Case Study States Transitions Machine(s) Time (hours)
Functional Analysis 97,451,014 1,061,619,779 31 02:38:26
after minimisation 3,634,036 39,603,188 1 n/a
Test Generation 3,023,121 17,475,646 5 00:09:26
after minimisation 1,626 5,487 1 00:07:32
Scheduling 341,704,322 n/a 16 n/a
with beam search 7,408 n/a 1 00:00:08
Security Analysis 28,206,430 114,824,743 8+1 16:04:16
after minimisation 1,979 36,667 1 00:07:44
Game Solving 29,933,087 72,309,227 9+1 00:51:54
after τ -cycle elimination 2,583,703 7,167,175 10 00:02:01

References

1. G. Behrmann, T. Hune, and F.W. Vaandrager. Distributing Timed Model Checking
- How the Search Order Matters. In Proc. CAV’00, volume 1855 of LNCS, pages
216–231, 2000.

2. S.C.C. Blom, W.J. Fokkink, J.F. Groote, I. van Langevelde, B. Lisser, and J.C.
van de Pol. μCRL: A Toolset for Analysing Algebraic Specifications. In Proc.
CAV’01, volume 2102 of LNCS, pages 250–254, 2001.

3. S.C.C. Blom, J.F. Groote, I. van Langevelde, B. Lisser, and J.C. van de Pol. New
developments around the μCRL tool set. ENTCS, 80, 2003.

4. S.C.C. Blom and S.M. Orzan. A distributed algorithm for strong bisimulation
reduction of state spaces. STTT, 7(1):74–86, 2005.

5. J.R. Calamé, N. Ioustinova, and J.C. van de Pol. Towards Automatic Generation of
Parameterized Test Cases from Abstractions. Technical Report SEN-E0602, CWI,
March 2006.

6. T. Chothia, S.M. Orzan, J. Pang, and M. Torabi Dashti. A framework for auto-
matically checking anonymity with μCRL. In Proc. TGC’06, LNCS, 2007.

7. D. Dill. The Murφ Verification System. In Proc. CAV’96, volume 1102 of LNCS,
pages 390–393, 1996.

8. H. Garavel, R. Mateescu, D. Bergamini, A. Curic, N. Descoubes, C. Joubert et
al. DISTRIBUTOR and BCG_MERGE: Tools for Distr. Explicit State Space
Generation. In TACAS’06, volume 3920 of LNCS, pages 445–449, 2006.

9. H. Jonker, S. Krishnan Nair, and M. Torabi Dashti. Nuovo DRM paradiso. Tech-
nical Report SEN-R0602, CWI, Amsterdam, 2006.

10. F. Lerda and R. Sista. Distributed-Memory model checking with SPIN. In Proc.
SPIN’99, volume 1680 of LNCS, pages 22–39, 1999.

11. B. Lisser. Distributed State Space Generator (preliminary). http://www.cwi.nl/
˜mcrl/instantiators.pdf, 2006.

12. S.M. Orzan and J.C. van de Pol. Detecting strongly connected components in large
distributed state spaces. Technical Report SEN-E0501, CWI, 2005.

13. J. Pang, W. J. Fokkink, R. F.H. Hofman, and R. Veldema. Model checking a cache
coherence protocol of a Java DSM implementation. JLAP, 71:1–43, 2007.

14. A.J. Wijs and B. Lisser. Distributed Extended Beam Search for Quantitative Model
Checking. In MoChArt’06, LNAI, 2007.

15. A.J. Wijs, J.C. van de Pol, and E. Bortnik. Solving Scheduling Problems by
Untimed Model Checking. In Proc. FMICS ’05, pages 54–61. ACM Press, 2005.

http://www.cwi.nl/~{}mcrl/instantiators.pdf
http://www.cwi.nl/~{}mcrl/instantiators.pdf

Distributed Analysis with μCRL: A Compendium of Case Studies 687

A Appendix

Security Analysis - Anonymity. Anonymity is a non-standard security property,
in the sense that it is not verifiable by model checking directly, but requires
special techniques, where state space minimisation is essential [6].

The powerful distributed state space generation and minimisation tools of the
μCRL toolset allowed us to automatically check anonymity for large instances of
known protocols. For instance, the Dining Cryptographers protocol, used as case
study for many tools, has so far been verified for a maximum of 8 participants. We
succeed in verifying it for 15 participants in a few hours. Moreover, the anonymity
property of the FOO voting protocol has never before been established in an
automatic framework. Our toolset supports its verification for up to 7 voters.

For this second security analysis case study, we generated a state space of
65,282,690 states and 221,299,564 transitions. It could then be minimised to
3,676,249 states and 9,628,686 transitions. On a cluster with 16 machines as
described in Section 3, this took us 4 hours and 48 minutes.

The Toolset in Action. The toolset described in the paper is used on a regular
basis in the area of computer science research. The toolset is available in open
source from the website http://www.cwi.nl/~mcrl/tacas2007/.

The presentation of the toolset is planned as follows: First, we will give an
introduction to the toolset in general before discussing its technical aspects.
These aspects will be shown by an exemplary execution of the beam search
example. This execution will be given as an animation as follows:

1. Starting a job on the cluster (Figure 1).

Fig. 1. Starting a job

http://www.cwi.nl/~mcrl/tacas2007/

688 S. Blom et al.

Fig. 2. All processors calculating

Fig. 3. Some processors communicating

Distributed Analysis with μCRL: A Compendium of Case Studies 689

2. Starting the tool contact, a monitoring GUI for the toolset.
3. Discussion of the different states of job execution: idle (color white), busy

(color red, see Figure 2), communicating (color yellow, see Figure 3) and
finished (color green, ibid).

4. Interpretation of the results (showing output files, e.g. the state space direc-
tory, and explaining their meaning).

Afterwards, we will give a short introduction into each of the given case studies.
This introduction will contain some information about the case study itself and
about the results we achieved in the experiments.

A Generic Framework for Reasoning About
Dynamic Networks of Infinite-State Processes

Ahmed Bouajjani, Yan Jurski, and Mihaela Sighireanu

LIAFA, University of Paris 7, Case 7014, 2 place Jussieu, 75251 Paris 05, France
{abou,jurski,sighirea}@liafa.jussieu.fr

Abstract. We propose a framework for reasoning about unbounded dynamic net-
works of infinite-state processes. We propose Constrained Petri Nets (CPN) as
generic models for these networks. They can be seen as Petri nets where tokens
(representing occurrences of processes) are colored by values over some poten-
tially infinite data domain such as integers, reals, etc. Furthermore, we define
a logic, called CML (colored markings logic), for the description of CPN con-
figurations. CML is a first-order logic over tokens allowing to reason about their
locations and their colors. Both CPNs and CML are parametrized by a color logic
allowing to express constraints on the colors (data) associated with tokens.

We investigate the decidability of the satisfiability problem of CML and its ap-
plications in the verification of CPNs. We identify a fragment of CML for which
the satisfiability problem is decidable (whenever it is the case for the underlying
color logic), and which is closed under the computations of post and pre images
for CPNs. These results can be used for several kinds of analysis such as invari-
ance checking, pre-post condition reasoning, and bounded reachability analysis.

1 Introduction

The verification of software systems requires in general the consideration of infinite-
state models. The sources of infinity in software models are multiple. One of them is
the manipulation of variables and data structures ranging over infinite domains (such
as integers, reals, arrays, etc). Another source of infinity is the fact that the number
of processes running in parallel in the system can be either a parameter (fixed but ar-
bitrarily large), or it can be dynamically changing due to process creation. While the
verification of parameterized systems requires reasoning uniformly about the infinite
family of (static) networks corresponding to any possible number of processes, the ver-
ification of dynamic systems requires reasoning about the infinite number of all possible
dynamically changing network configurations.

There are many works and several approaches on the verification of infinite-state
systems taking into account either the aspects related to infinite data domains, or the
aspects related to unbounded network structures due to parameterization or dynamism.
Concerning systems with data manipulation, a lot of work has been devoted to the
verification of, for instance, finite-structure systems with unbounded counters, clocks,
stacks, queues, etc. (see, e.g., [1,11,30,7,5,27,26]). On the other hand, a lot of work has
been done for the verification of parameterized and dynamic networks of boolean (or
finite-data domain) processes, proposing either exact model-checking and reachability

O. Grumberg and M. Huth (Eds.): TACAS 2007, LNCS 4424, pp. 690–705, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Generic Framework for Reasoning About Dynamic Networks 691

analysis techniques for specific classes of systems (such as broadcast protocols, mul-
tithreaded programs, etc) [24,25,22,16,15], or generic algorithmic techniques (which
can be approximate, or not guaranteed to terminate) such as network invariants-based
approaches [31,20], and (abstract) regular model checking [13,17,3,12]. However, only
few works consider both infinite data manipulation and parametric/dynamic network
structures (see the paragraph on related work).

In this paper, we propose a generic framework for reasoning about parameterized
and dynamic networks of concurrent processes which can manipulate (local and global)
variables over infinite data domains. Our framework is parameterized by a data domain
and a first-order theory on it (e.g., Presburger arithmetics on natural numbers). It con-
sists of (1) expressive models allowing to cover a wide class of systems, and (2) a logic
allowing to specify and to reason about the configurations of these models.

The models we propose are called Constrained Petri Nets (CPN for short). They
are based on (place/transition) Petri nets where tokens are colored by data values. In-
tuitively, tokens represent different occurrences of processes, and places are associ-
ated with control locations and contain tokens corresponding to processes which are
at a same control location. Since processes can manipulate local variables, each token
(process occurrence) has several colors corresponding to the values of these variables.
Then, configurations of our models are markings where each place contains a set of
colored tokens, and transitions modify the markings as usual by removing tokens from
some places and creating new ones in some other places. Transitions are guarded by
constraints on the colors of tokens before and after firing the transition. We show that
CPNs allow to model various aspects such as unbounded dynamic creation of processes,
manipulation of local and global variables over unbounded domains such as integers,
synchronization, communication through shared variables, locks, etc.

The logic we propose for specifying configurations of CPN’s is called Colored Mark-
ings Logic (CML for short). It is a first order logic over tokens and their colors. It allows
to reason about the presence of tokens in places, and also about the relations between
the colors of these tokens. The logic CML is parametrized by a first order logic over the
color domain allowing to express constraints on tokens.

We investigate the decidability of the satisfiability problem of CML and its appli-
cations in verification of CPNs. While the logic is decidable for finite color domains
(such as booleans), we show that, unfortunately, the satisfiability problem of this logic
becomes undecidable as soon as we consider as a color domain the set of natural num-
bers with the usual ordering relation (and without any arithmetical operations). We
prove that this undecidability result holds already for the fragment ∀∗∃∗ of the logic (in
the alternation hierarchy of the quantifiers over token variables) with this color domain.

On the other hand, we prove that the satisfiability problem is decidable for the frag-
ment ∃∗∀∗ of CML whenever the underlying color logic has a decidable satisfiability
problem, e.g., Presburger arithmetics, the first-order logic of addition and multiplica-
tion over reals, etc. Moreover, we prove that the fragment ∃∗∀∗ of CML is effectively
closed under post and pre image computations (i.e., computation of immediate suc-
cessors and immediate predecessors) for CPN’s where all transition guards are also in
∃∗∀∗. We show also that the same closure results hold when we consider the fragment
∃∗ instead of ∃∗∀∗.

692 A. Bouajjani, Y. Jurski, and M. Sighireanu

These generic decidability and closure results can be applied in the verification of
CPN models following different approaches such as pre-post condition (Hoare triples
based) reasoning, bounded reachability analysis, and inductive invariant checking. More
precisely, we derive from our results mentioned above that (1) checking whether start-
ing from a ∃∗∀∗ pre-condition, a ∀∗∃∗ condition holds after the execution of a transition
is decidable, that (2) the bounded reachability problem between two ∃∗∀∗ definable sets
is decidable, and that (3) checking whether a formula defines an inductive invariant is
decidable for boolean combinations of ∃∗ formulas.

These results can be used to deal with non trivial examples of systems. Indeed, in
many cases, program invariants and the assertions needed to establish them fall in the
considered fragments of our logic. We illustrate this by carrying out in our framework
the parametric verification of a Reader-Writer lock with an arbitrarily large number of
processes. This case study was introduced in [28] where the authors provide a correct-
ness proof for the case of one reader and one writer.

For lack of space, proofs as well as the exposition of the Reader-Writer case study
are omitted in this short version of the paper. They are provided in the full paper [14].

Related work: The use of unbounded Petri nets as models for parametrized networks
of processes has been proposed in many existing works such as [29,24,22]. However,
these works consider networks of finite-state processes and do not address the issue of
manipulating infinite data domains. The extension of this idea to networks of infinite-
state processes has been addressed only in very few works [4,21,18,2]. In [4], Abdulla
and Jonsson consider the case of networks of 1-clock timed systems and show, using
the theory of well-structured systems and well quasi orderings [1,27], that the verifi-
cation problem for a class of safety properties is decidable. Their approach has been
extended in [21,18] to a particular class of multiset rewrite systems with constraints
(see also [2] for recent developments of this approach). Our modeling framework is
actually inspired by these works. However, while they address the issue of deciding the
verification problem of safety properties (by reduction to the coverability problem) for
specific classes of systems, we consider in our work a general framework, allowing to
deal in a generic way with various classes of systems, where the user can express as-
sertions about the configurations of the system, and check automatically that they hold
(using post-pre reasoning and inductive invariant checking) or that they do not hold
(using bounded reachability analysis). Our framework allows to reason automatically
about systems which are beyond the scoop of the techniques proposed in [4,21,18,2]
(such as, for instance, the parametrized Reader-Writer lock system [14]).

In a series of papers, Pnueli et al. developed an approach for the verification of pa-
rameterized systems combining abstraction and proof techniques (see, e.g., [6]). This
is probably one of the most advanced existing approaches allowing to deal with un-
bounded networks of infinite-state processes. We propose here a different framework
for reasoning about these systems. In [6], the authors consider a logic on (parametric-
bound) arrays of integers, and they identify a fragment of this logic for which the sat-
isfiability problem is decidable. In this fragment, they restrict the shape of the formula
(quantification over indices) to formulas in the fragment ∃∗∀∗ similarly to what we do,
and also the class of used arithmetical constraints on indices and on the associated val-
ues. In a recent work by Bradley and al. [19], the satisfiability problem of the logic of

A Generic Framework for Reasoning About Dynamic Networks 693

unbounded arrays with integers is investigated and the authors provide a new decidable
fragment, which is incomparable to the one defined in [6], but again which imposes
similar restrictions on the quantification alternation in the formulas, and on the kind
of constraints that can be used. In contrast with these works, we consider a logic on
multisets of elements with any kind of associated data values, provided that the used
theory on the data domain is decidable. For instance, we can use in our logic general
Presburger constraints whereas [6] and [19] allow limited classes of constraints. On the
other hand, we cannot specify faithfully unbounded arrays in our decidable fragment
because formulas of the form ∀∃ are needed to express that every non extremal element
has a successor/predecessor. Nevertheless, for the verification of safety properties and
invariant checking, expressing this fact is not necessary, and therefore, it is possible to
handle in our framework all usual examples of parametrized systems (such as mutual
exclusion protocols) considered in the works mentioned above.

Let us finally mention that there are recent works on logics (first-order logics, or
temporal logics) over finite/infinite structures (words or trees) over infinite alphabets
(which can be considered as abstract infinite data domains) [9,8,23]. The obtained pos-
itive results so far concern logics with very limited data domain (basically infinite sets
with only equality, or sometimes with an ordering relation), and are based on reduction
to complex problems such as reachability in Petri nets.

2 Colored Markings Logic

2.1 Preliminaries

Consider an enumerable set of tokens and let us identify this set with the set of natural
numbers N. Intuitively, tokens represent occurrences of (parallel) processes. We assume
that tokens may have colors corresponding for instance to data values attached to the
corresponding processes. Let C be a (potentially infinite) token color domain. Examples
of color domains are the set of natural numbers N and the set of real numbers R.

Colors are associated with tokens through coloring functions. Let Γ be a finite set of
token coloring symbols. Each element in Γ is interpreted as a mapping from N (the set
of tokens) to C (the set of colors). Then, let a valuation of the token coloring symbols
be a mapping in [Γ → (N → C)].

To express constraints on token colors, we use first-order logics over the considered
color domains. In the sequel we refer to such logics as color logics. Presburger arith-
metics PA = (N,{0,1,+},{≤}) is an example of such a logic. It is well known that the
satisfiability problem of Presburger arithmetics is decidable. An interesting sublogic of
PA is the difference logic DL = (N,{0},{≤k : k ≥ 0}) where, for every u,v,k ∈ N,
u ≤k v holds if and only if u−v ≤ k. The order logic on natural numbers is the sublogic
of DL defined by OL = (N,{0},≤). Another example of a decidable logic which can
be used as a color logic is the first-order theory of reals FOR = (R,{0,1,+,×},{≤}).

We consider that tokens can be located at places. Let P be a finite set of such places.
A marking is a mapping in [N → P∪{⊥}] which associates with each token the unique
place where it is located if it is defined, or ⊥ otherwise. A colored markingis a pair
〈M,µ〉 where M is a marking and µ is a valuation of the token coloring symbols.

694 A. Bouajjani, Y. Jurski, and M. Sighireanu

2.2 Syntax and Semantics of CML

We define hereafter the syntax of the logic colored markings logic CML(L,Γ,P) which
is parametrized with a color logic L, a finite set of token coloring symbols Γ, and a finite
set of places P. Then, let L = (C,Ω,Ξ) be the first-order logic over the color domain C

of the set of functions Ω and the set of relations Ξ. In the sequel, we omit all or some
of the parameters of CML when their specification is not necessary.

Let T be set of token variables and let C be set of color variables, and assume that
T ∩C = /0. The set of CML terms (called token color terms) is given by the grammar:

t ::= z | γ(x) | ω(t1, . . . ,tn)

where z ∈ C, γ ∈ Γ, x ∈ T , and ω ∈ Ω. Then, the set of CML formulas is given by:

ϕ ::= x = y | p(x) | ξ(t1, . . . ,tm) | ¬ϕ | ϕ∨ϕ | ∃z. ϕ | ∃x. ϕ

where x,y ∈ T , z ∈ C, p ∈ P∪{⊥}, ξ ∈ Ξ, and t1, . . . ,tm are token color terms. Boolean
connectives such as conjunction (∧) and implication (⇒), and universal quantification
(∀) can be defined in terms of ¬, ∨, and ∃. We also use ∃x ∈ p. ϕ (resp. ∀x ∈ p. ϕ) as
an abbreviation of the formula ∃x. p(x)∧ϕ (resp. ∀x. p(x) ⇒ ϕ). Notice that the set of
terms (resp. formulas) of L is included in the set of terms (resp. formulas) of CML(L).

The notions of free/bound occurrences of variables in formulas and the notions of
closed/open formulas are defined as usual in first-order logics. In the sequel, we assume
w.l.o.g. that in every formula, each variable is quantified at most once.

We define a satisfaction relation between colored markings and CML formulas. For
that, we need first to define the semantics of CML terms. Given valuations θ ∈ [T → N],
δ ∈ [C → C], and µ ∈ [Γ → (N → C)], we define a mapping 〈〈·〉〉θ,δ,µ which associates
with each color term a value in C:

〈〈z〉〉θ,δ,µ = δ(z)
〈〈γ(x)〉〉θ,δ,µ = µ(γ)(θ(x))

〈〈ω(t1, . . . ,tn)〉〉θ,δ,µ = ω(〈〈t1〉〉θ,δ,µ, . . . ,〈〈tn〉〉θ,δ,µ)

Then, we define inductively the satisfaction relation |=θ,δ between colored markings
〈M,µ〉 and CML formulas as follows:

〈M,µ〉 |=θ,δ ξ(t1, . . . ,tm) iff ξ(〈〈t1〉〉θ,δ,µ, . . . ,〈〈tm〉〉θ,δ,µ)
〈M,µ〉 |=θ,δ p(x) iff M(θ(x)) = p

〈M,µ〉 |=θ,δ x = y iff θ(x) = θ(y)
〈M,µ〉 |=θ,δ ¬ϕ iff 〈M,µ〉 �|=θ,δ ϕ

〈M,µ〉 |=θ,δ ϕ1 ∨ϕ2 iff 〈M,µ〉 |=θ,δ ϕ1 or 〈M,µ〉 |=θ,δ ϕ2

〈M,µ〉 |=θ,δ ∃x. ϕ iff ∃t ∈ T. 〈M,µ〉 |=θ[x←t],δ ϕ
〈M,µ〉 |=θ,δ ∃z. ϕ iff ∃c ∈ C. 〈M,µ〉 |=θ,δ[z←c] ϕ

For every formula ϕ, we define [[ϕ]]θ,δ the be the set of markings 〈M,µ〉 such that
〈M,µ〉 |=θ,δ ϕ. A formula ϕ is satisfiable iff there exist valuations θ and δ s.t. [[ϕ]]θ,δ �= /0.

A Generic Framework for Reasoning About Dynamic Networks 695

2.3 Syntactical Forms and Fragments

Prenex normal form: A formula is in prenex normal form (PNF) if it is of the form

Q1y1Q2y2 . . .Qmym. ϕ

where (1) Q1, . . . ,Qm are (existential or universal) quantifiers, (2) y1, . . . ,ym are vari-
ables in T ∪C, and ϕ is a quantifier-free formula. It can be proved that for every formula
ϕ in CML, there exists an equivalent formula ϕ′ in prenex normal form.

Quantifier alternation hierarchy: We consider two families {Σn}n≥0 and {Πn}n≥0 of
fragments of CML defined according to the alternation depth of existential and universal
quantifiers in their PNF:

– Let Σ0 = Π0 be the set of formulas in PNF where all quantified variables are in C,
– For n ≥ 0, let Σn+1 (resp. Πn+1) be the set of formulas Qy1 . . .ym. ϕ in PNF where

y1, . . . ,ym ∈ T ∪C, Q is the existential (resp. universal) quantifier ∃ (resp. ∀), and ϕ
is a formula in Πn (resp. Σn).

It is easy to see that, for every n ≥ 0, Σn and Πn are closed under conjunction and dis-
junction, and that the negation of a Σn formula is a Πn formula and vice versa. For every
n ≥ 0, let B(Σn) denote the set of all boolean combinations of Σn formulas. Clearly,
B(Σn) subsumes both Σn and Πn, and is included in both Σn+1 and Πn+1.

Special form: The set of formulas in special form is given by the grammar:

ϕ ::= x = y | ξ(t1, . . . ,tn) | ¬ϕ | ϕ∨ϕ | ∃z. ϕ | ∃x ∈ p. ϕ

where x,y ∈ T , z ∈ C, p ∈ P ∪ {⊥}, ξ ∈ Ξ, and t1, . . . ,tn are token color terms. It is
not difficult to see that for every closed formula ϕ in CML, there exists an equivalent
formula ϕ′ in special form. The transformation is based on the following fact: since
variables are assumed to be quantified at most once in formulas, each formula ∃x. φ can
be replaced by

�
p∈P∪{⊥}∃x ∈ p. φx,p where φx,p is obtained by substituting in φ each

occurrence of p(x) by true, and each occurrence of q(x), with p �= q, by false.

3 Satisfiability Problem

We investigate the decidability of the satisfiability problem of the logic CML(L), as-
suming that the underlying color logic L has a decidable satisfiability problem.

Let us mention that in the case of a finite color domain, for instance for the domain
of booleans with equality and usual operations, the logic CML is decidable. The result
is a direct consequence of the decidability of the class of relational monadic formulae
in first-order logic, also known as the Löwenheim class with equality [10].

Then, let us consider the case of infinite data domains. First, we prove that as soon as
we consider natural numbers with ordering, the satisfiability problem of CML is unde-
cidable already for the fragment Π2. The proof is by a reduction of the halting problem
of Turing machines. The idea is to encode a computation of a machine, seen as a se-
quence of tape configurations, using tokens with integer colors. Each token represents

696 A. Bouajjani, Y. Jurski, and M. Sighireanu

a cell in the tape of the machine at some computation step. Therefore the token has
two integer colors, its position in the tape, and the position of its configuration in the
computation (the corresponding computation step). The other informations such as the
contents of the cell, the fact that a cell corresponds to the position of the head, and the
control state, are encoded using a finite number of places. Then, using ∀∗∃∗ formulas, it
is possible to express that two consecutive configurations correspond indeed to a valid
transition of the machine. Intuitively, this is possible because these formulas allow to
relate each cell at some configuration to the corresponding cell at the next configuration.

Theorem 1. The satisfiability problem of the fragment Π2 of CML(OL) is undecidable.

Nevertheless, we can prove the following generic decidability result for the fragment
Σ2 of our logic:

Theorem 2. Let L be a colored tokens logic. If the satisfiability problem of L is decid-
able, then the fragment Σ2 of CML(L) is decidable.

The idea of the proof is to reduce the satisfiability problem of Σ2 to the satisfiabil-
ity problem of Σ0 formulas (which are formulas in the color logic L). We proceed as
follows: we prove first that the fragment Σ2 has the small model property, i.e., every
satisfiable formula ϕ in Σ2 has a model of a bounded size (where the size is the number
of tokens in each place). This bound corresponds actually to the number of existentially
quantified token variables in the formula. Notice that this fact does not lead directly to
an enumerative decision procedure for the satisfiability problem since the number of
models of a bounded size is infinite in general (due to infinite color domains). Then, we
use the fact that over a finite model, universal quantifications in ϕ can be transformed
into finite conjunctions, in order to build a formula ϕ̂ in Σ1 which is satisfiable if and
only if the original formula ϕ is satisfiable. Actually, ϕ̂ defines precisely the upward-
closure of the set of markings defined by ϕ (w.r.t. the inclusion ordering between sets
of colored markings, extended to vectors of places). Finally, it can be shown that the
Σ1 formula ϕ̂ is satisfiable if and only if the Σ0 obtained by transforming existential
quantification over token into existential quantification over colors is decidable.

4 Constrained Petri Nets

Let T be a set of token variables and C be a set of color variables such that T ∩C �= /0. A
Constrained Petri Net (CPN) is a tuple S = (P,L,Γ,Δ) where P is a finite set of places,
L = (C,Ω,Ξ) is a colored tokens logic, Γ is a finite set of token coloring symbols, and
Δ is a finite set of constrained transitions of the form:

−→x ∈ −→p ↪→ −→y ∈ −→q : ϕ(−→x ,−→y) (1)

where −→x = (x1, . . . ,xn) ∈ T n, −→y = (y1, . . . ,ym) ∈ T m, −→p = (p1, . . . , pn) ∈ P

n, −→q =
(q1, . . . ,qm) ∈ P

m, and ϕ(−→x ,−→y) is a CML(L,Γ,P) formula called the transition guard.
Given a fragment Θ of CML, we denote by CPN[Θ] the class of CPN where all

transition guards are formulas in the fragment Θ. Due to the (un)decidability results of
section 3, we focus in the sequel on the classes CPN[Σ2] and CPN[Σ1].

A Generic Framework for Reasoning About Dynamic Networks 697

Configurations of CPN’s are colored markings. Constrained transitions define trans-
formation rules of these markings. Given a CPN S, we define a transition relation
→S between colored markings as follows: For every two colored markings 〈M,µ〉 and
〈M′,µ′〉, we have 〈M,µ〉 →S 〈M′,µ′〉 iff there exists a constrained transition of the form
(1), and there exist tokens t1, . . . ,tn and t ′1, . . . ,t

′
m s.t. ∀i, j ∈ {1, . . . ,n}. i �= j ⇒ ti �= t j,

and ∀i, j ∈ {1, . . . ,m}. i �= j ⇒ t ′i �= t ′j, and

1. ∀i ∈ {1, . . . ,n}. M(ti) = pi and M′(ti) = ⊥,
2. ∀i ∈ {1, . . . ,m}. M(t ′i) = ⊥ and M′(t ′i) = qi,
3. ∀t ∈ N, if ∀i ∈ {1, . . . ,n}. t �= ti and ∀ j ∈ {1, . . . ,m}. t �= t ′j, then M(t) = M′(t) and

∀γ ∈ Γ. µ(γ)(t) = µ′(γ)(t),
4. 〈M,µ∪µ′〉 |=θ,δ/0 ϕ(−→x ,−→y), where θ ∈ [T → N] is a valuation of the token variables

such that ∀i ∈ {1, . . . ,n}. θ(xi) = ti and ∀ j ∈ {1, . . . ,m}. θ(y j) = t ′j, δ/0 is the empty
domain valuation of color variables, and µ ∪ µ′ is such that: for every γ ∈ Γ, and
every token t ∈ T, if t ∈ {t1, . . . ,tn} then µ ∪ µ′(γ)(t) = µ(γ)(t), if t ∈ {t ′1, . . . ,t

′
m}

then µ ∪µ′(γ)(t) = µ′(γ)(t), and µ ∪µ′(γ)(t) = µ(γ)(t) = µ′(γ)(t) otherwise.

Intuitively, the definition above says that firing a transition means that n different
tokens t1, . . . ,tn are deleted from the places p1, . . . , pn (1), and m new different tokens
t ′1, . . . ,t

′
m are added to the places q1, . . . ,qm (2), provided that the colors of all these (old

and new) tokens satisfy the formula ϕ, which may also involve constraints on other
tokens in the whole marking M (4). Moreover, this operation does not modify the rest
of the tokens (others than t1, . . . ,tn and t ′1, . . . ,t

′
m) in the marking (3).

Given a colored marking M , let postS(M) = {M ′ : M →S M ′} be the set of its
immediate successors, and let preS(M) = {M ′ : M ′ →S M } be the set of its immediate
predecessors. These definitions can be generalized to sets of colored markings in the

obvious way. Finally, for every set of colored markings M, let p̃reS(M) = preS(M),
where (·) denotes complementation (w.r.t. the set of all colored markings).

5 Modeling Power of CPN

We show in this section how CPN can be used to model (unbounded) dynamic networks
of parallel processes. We assume w.l.o.g. that all processes are identically defined. We
consider that a process is defined by a finite control state machine supplied with vari-
ables and data structures ranging over potentially infinite domains (such as integer vari-
ables, reals, etc). Processes running in parallel can communicate and synchronize using
various kinds of mechanisms (rendez-vous, shared variables, locks, etc). Moreover, they
can dynamically spawn new (copies of) processes in the network.

Dynamic networks of processes: Let L be the set of control locations of each of the
processes. (Remember that this set is the same for all processes.) We associate with
each process control location � ∈ L a place. Then, each running process is represented
by a token, and in every marking, a place contains precisely the tokens representing
processes which are at the corresponding control location.

Assume for the moment that processes do not manipulate (infinite domain) data.
Then, a basic action � −→ �′ of a process moving its control from a location � to another

698 A. Bouajjani, Y. Jurski, and M. Sighireanu

location �′ is modeled by a transition: x ∈ � ↪→ y ∈ �′ : true. An action spawning a new

process �
spawn(�0)−−−−−−→�′ is modeled using a transition which creates a new token in the

initial control location of the new process: x ∈ � ↪→ y1 ∈ �′,y2 ∈ �0 : true.

Local variables: Consider now that each process has a vector of n local variables
−→v = (v1, . . . ,vn) over some (potentially infinite) data domain. Then, we consider a
set of coloring symbols Γ = {γ1, . . . ,γn} associating with each token n colors (in the
considered data domain) corresponding to the values of the local variables: for each
process, represented by a token t, for each local variable vi, γi(t) defines the value of vi.

A process action �
−→v :=

−→
f (−→v)−−−−−−−→�′ which (in addition of changing the control location

from � to �′) performs the assignment −→v :=
−→
f (−→v), where

−→
f is a vector of expressions

over the considered data domain, is modeled by the transition

x ∈ � ↪→ y ∈ �′ :
n�

i=1

γi(y) = fi(γ1(x), . . . ,γn(x))

For that, we use a token color logic which allows to express the effects of the actions.
For instance, in the case of processes with integer variables and linear assignments,
Presburger arithmetics (PA) can be used as colored tokens logic.

Global variables: Assume that processes share global variables −→u = {u1, . . . ,um}
(which are read and updated in a concurrent way). We associate with each global vari-
able ui a place gi containing a single token ti, and we associate with this token a color
α(ti) representing the value of ui, where α ∈ Γ is a special coloring symbol. Then,

a process action �
−→u :=

−→
f (−→u ,−→v)−−−−−−−−−→�′ (assigning to global variables values depending on

both global variables and local variables of the process) is modeled by the transition:

x ∈ �,x1 ∈ g1, . . . ,xm ∈ gm ↪→ y ∈ �′,y1 ∈ g1, . . . ,ym ∈ gm :

(n�

i=1

γi(y) = γi(x)
)
∧

m�

i=1

α(yi) = fi(α(x1), . . . ,α(xm),γ1(x), . . . ,γn(x))

In the modeling above, we consider that the execution of the process action is atomic.
When assignments are not atomic, we must transform each of assignment action into a
sequence of atomic operations: read first the global variables and assign their values to
local variables, then compute locally the new values to be assigned to global variables,
and finally assign these values to global variables.

Rendez-vous synchronization: Synchronization between a finite number of processes
can be modeled as in Petri nets. CPNs allow in addition to put constraints on the colors
(data) of the involved processes.

Priorities: Various notion of priorities, such as priorities between different classes of
processes (defined by properties of their colors), or priorities between different actions,
can be modeled in CPNs. This can be done by imposing in transition guards that tran-
sitions (performed by processes or corresponding to actions) of higher priority are not

A Generic Framework for Reasoning About Dynamic Networks 699

enabled. These constraints can be expressed using Π1 formulas. In particular, checking
that a place p is empty can be expressed by ∀x ∈ p. false. (Which shows that as soon
as universally quantified formulas are allowed in guards, our models are as powerful as
Turing machines, even for color logics over finite domains.)

Process identities: It is possible to associate with each newly created process an identity
defined by an integer number. For that, we consider a special coloring symbol Id ∈ Γ
associating to each token the identity of the process it represents. To ensure that different
processes have different identities, we express in the guard of every transition which
creates a process (i.e., adds a token to the place corresponding to its initial control
location) the fact that the identity of this process does not exist already among tokens in
places corresponding to control locations. This can easily be done using a universally

quantified (Π1) formula. Therefore, a spawn action �
spawn(�0)−−−−−−→�′ is modeled by:

x ∈ � ↪→ y1 ∈ �′,y2 ∈ �0 :

Id(x) = Id(y1)∧
(n�

i=1

γi(y1) = γi(x)
)
∧
�

loc∈L
∀t ∈ loc. ¬(Id(y2) = Id(t))

and the modeling of other actions (such as local/global variables assignments) can be
modified accordingly in order to propagate the process identity through the transition.
Notice that process identities are different from token values. Indeed, in some cases
(e.g., for modeling value passing as described below), we may use different tokens (at
some special places representing buffers for instance) corresponding to the same Id.

Locks: Locks can be simply modeled using global variables storing the identity of the
owner process, or a special value (e.g. −1) if it is free. A process who acquires the lock
must check if it is free, and then write his identity:

x1 ∈ �,x2 ∈ lock ↪→ y1 ∈ �′,y2 ∈ lock : α(x2) = −1 ∧α(y2) = Id(x1)∧ ...

To release the lock, a process assigns −1 to the lock, which can be modeled in a similar
way. Other kinds of locks, such as reader-writer locks, can also be modeled in our
framework (see [14]). The modeling of such locks when the number of readers and
writers can be arbitrarily large requires the use of universal quantification in guards.

Value passing, return values: Processes may pass/wait for values to/from other
processes with specific identities. They can use for that shared arrays of data indexed
by process identities. Such an array A can be modeled in our framework using a special
place containing for each process a token. Initially, this place is empty, and whenever
a new process is created, a token with the same identity is added to this place. Then,
to model that a process read/write on A[i], we use a transition which takes from the
place associated with A the token with Id equal to i, read/modifies the value attached
with this token, and put the token again in the same place. For instance, an assignment

action �
A[k]:=e−−−−−→�′ executed by some process is modeled by the transition:

x1 ∈ �,x2 ∈ A ↪→ y1 ∈ �′,y2 ∈ A :

700 A. Bouajjani, Y. Jurski, and M. Sighireanu

Id(x1) = Id(y1)∧
(n�

i=1

γi(x1) = γi(y1)
)
∧ Id(x2) = k ∧α(y2) = e ∧ Id(y2) = Id(x2)

Notice that, while it is possible to model using CPNs systems manipulating parametric-
size arrays (using multisets of tokens with integer colors), we cannot express in the
decidable fragment Σ2 of CML the fact that a multiset indeed encodes an array of el-
ements indexed by integers in some given interval. The reason is that, while we can
express in Π1 the fact that each token has a unique color in the interval, we need to use
Π2 formulas to say that for each color in the interval there exists a token with that color.
Nevertheless, for the verification of safety properties and checking invariants, it is not
necessary to require the latter property.

6 Computing post and pre Images

We prove hereafter closure properties of CML fragments under the computation of im-
mediate successors and predecessors for CPNs. The main result of this section is:

Theorem 3. Let S be a CPN[Σn], for n ∈ {1,2}. Then, for every closed formula ϕ in
the fragment Σn of CML, it is possible to construct two closed formulas ϕpost and ϕpre

in the same fragment Σn such that [[ϕpost]] = postS([[ϕ]]) and [[ϕpre]] = preS([[ϕ]]).

We give hereafter a sketch of the proof. Let ϕ be a closed formula, and let τ be a
transition −→x ∈ −→p ↪→ −→y ∈ −→q : ψ of the system S. W.l.o.g., we suppose that ϕ and ψ are
in special form. We define hereafter the formulas ϕpost and ϕpre for this single transition.
The generalization to the set of all transitions is straightforward.

The construction of the formulas ϕpost and ϕpre is not trivial because our logic does
not allow to use quantification over places and color mappings (associated with coloring
symbols). Intuitively, the idea is to express first the effect of deleting/adding tokens, and
then composing these operations to compute the effect of a transition.

Let us introduce two transformations � and ⊕ corresponding to deletion and creation
of tokens. These operations are inductively defined on the structure of special form
formulas in Table 1.

The operation � is parameterized by a vector −→z of token variables to be deleted, a
mapping loc associating with token variables in −→z the places from which they will be
deleted, and a mapping col associating with each coloring symbol in Γ and each token
variable in −→z a fresh color variable in C. Intuitively, � projects a formula on all vari-
ables which are not in −→z . Rule �1 substitutes in a color formula ξ(−→t) all occurences
of colored tokens in −→z by fresh color variables given by the mapping col. A formula
x = y is unchanged by the application of � is the token variables x and y are not in −→z ;
otherwise, rule �2 replaces x = y by true if it is trivially true (i.e., we have the same
variable in both sides of the equality) or by false if x or y is in −→z . Indeed, each token
variable in −→z represents (by the semantics of CPN) a different token, and since this
token is deleted by the transition rule, it cannot appear in the reached configuration.
Rules �3 and �4 are straightforward. Finally, rule �5 does a case splitting according to
the fact whether a deleted token is precisely the one referenced by the existential token
quantification or not.

A Generic Framework for Reasoning About Dynamic Networks 701

The operation ⊕ is parameterized by a vector −→z of token variables to be added and a
mapping loc associating with each variable in z ∈ −→z a place (in which it will be added).
Intuitively, ⊕ transforms a formula taking into account that the added tokens by the
transition were not present in the previous configuration (and therefore not constrained
by the original formula describing the configuration before the transition). Then, the
application of ⊕ has no effect on color formulas ξ(−→t) (rule ⊕1). When equality of
tokens is tested, rule ⊕2 takes into account that all added tokens are distinct and different
from the existing tokens. For token quantification, rule ⊕5 says that quantified tokens
of the previous configuration cannot be equal to the added tokens.

Then, we define ϕpost to be the formula:

∃−→y ∈ −→q . ∃−→c .
(
(ϕ∧ψ)� (−→x ,−→x �→ −→p ,Γ �→ (−→x �→ −→c))

)
⊕ (−→y ,−→y �→ −→q)

In the formula above, we first delete the tokens corresponding to −→x from the current
configuration ϕ intersected with the guard of the rule ψ. Then, we add tokens corre-
sponding to −→y . Finally, we close the formula by quantifying existentially the color
variables and the token variables corresponding to the added tokens.

Similarly, we define ϕpre to be the formula:

∃−→x ∈ −→p . ∃−→c .
(
(ϕ⊕ (−→x ,−→x �→ −→p))∧ψ

)
� (−→y ,−→y �→ −→q ,Γ �→ (−→y �→ −→c))

For predecessor computation, we add to the current configuration the tokens represented
by the left hand side of the rule −→x in order to obtain a configuration on which the guard
ψ can be applied. Then, we remove the tokens added by the rule using token variables
−→y . Finally, we close the formula by quantifying existentially the color variables and the
token variables corresponding to the added tokens. It is easy to see that if ϕ and ψ are
in a fragment Σn, for any n ≥ 1, then both of the formulas ϕpost and ϕpre are also in the
same fragment Σn.

Corollary 1. Let S be a CPN[Σ1]. Then, for every formula ϕ in Π1, it is possible to
construct a formula ϕp̃re also in Π1 s.t. [[ϕp̃re]] = p̃reS([[ϕ]]).

7 Applications in Verification

We show in this section how to use the results of the previous section to perform various
kinds of analysis. Let us fix for the rest of the section a colored tokens logic L with a
decidable satisfiability problem, and a CPN S defined over L and the logic CML(L).

7.1 Pre-post Condition Reasoning

Given a transition τ in S and given two formulas ϕ and ϕ′, 〈ϕ,τ,ϕ′〉 is a Hoare triple if
whenever the condition ϕ holds, the condition ϕ′ holds after the execution of τ. In other
words, we must have postτ([[ϕ]]) ⊆ [[ϕ′]], or equivalently that postτ([[ϕ]])∩ [[¬ϕ′]] = /0.
Then, by Theorem 3 and Theorem 2 we deduce the following:

Theorem 4. If S is a CPN[Σ2], then the problem whether 〈ϕ,τ,ϕ′〉 is a Hoare triple is
decidable for every transition τ of S, every formula ϕ ∈ Σ2, and every formula ϕ′ ∈ Π2.

702 A. Bouajjani, Y. Jurski, and M. Sighireanu

Table 1. Definition of the ⊕ and � operators

�1 : ξ(−→t)� (−→z ,loc,col) = ξ(−→t)[col(γ)(z)/γ(z)]γ∈Γ,z∈−→z

�2 : (x = y)� (−→z ,loc,col) =

⎧
⎨

⎩

x = y if x,y �∈ −→z
true if x ≡ y
false otherwise

�3 : (¬ϕ)� (−→z ,loc,col) = ¬(ϕ� (−→z ,loc,col))

�4 : (ϕ1 ∨ϕ2)� (−→z ,loc,col) = (ϕ1 � (−→z ,loc,col))∨ (ϕ2 � (−→z ,loc,col))

�5 : (∃x ∈ p. ϕ)� (−→z ,loc,col) = ∃x ∈ p. (ϕ� (−→z ,loc,col))∨
�

z∈−→z :loc(z)=p(ϕ[z/x])� (−→z ,loc,col)

⊕1 : ξ(−→t)⊕ (−→z ,loc) = ξ(−→t)

⊕2 : (x = y)⊕ (−→z ,loc) =

⎧
⎨

⎩

x = y if x,y �∈ −→z
true if x ≡ y
false otherwise

⊕3 : (¬ϕ)⊕ (−→z ,loc) = ¬(ϕ⊕ (−→z ,loc))

⊕4 : (ϕ1 ∨ϕ2)⊕ (−→z ,loc) = (ϕ1 ⊕ (−→z ,loc))∨ (ϕ2 ⊕ (−→z ,loc))

⊕5 : (∃x ∈ p. ϕ)⊕ (−→z ,loc) = ∃x ∈ p. (ϕ⊕ (−→z ,loc))∧�z∈−→z :loc(z)=p ¬(x = z)

7.2 Bounded Reachability Analysis

An instance of the bounded reachability analysis problem is a triple (Init,Target,k)
where Init and Target are two sets of configurations, and k is a positive integer. The
problem consists in deciding whether there exists a computation of length at most k
which starts from some configuration in Init and reaches a configuration in Target. In
other words, the problem consists in deciding whether Target ∩�0≤i≤k posti

S(Init) �= /0,
or equivalently whether Init ∩�0≤i≤k prei

S(Target) �= /0. The following result is a direct
consequence of Theorem 3 and Theorem 2.

Theorem 5. If S is a CPN[Σ2], then, for every k ∈ N, and for every two formulas
ϕI ,ϕT ∈ Σ2, the bounded reachability problem ([[ϕI]], [[ϕT]],k) is decidable.

7.3 Checking Invariance Properties

An instance of the invariance checking problem is given by a pair of sets of configura-
tions (colored markings) (Init, Inv), and consists in deciding whether starting from any
configuration in Init, every computation of S can only visit configurations in Inv, i.e.,�

k≥0 postk
S(Init) ⊆ Inv. This problem is of course undecidable in general. However, a

deductive approach using inductive invariants (provided by the user) can be adopted.
We show that our results allow to automatize the steps of this approach.

A set of configurations M is an inductive invariant if postS(M) ⊆ M, or equivalently,
if M ⊆ p̃reS(M). By Theorem 3 and Theorem 2, we have:

Theorem 6. If S is a CPN[Σ2], then for every formula ϕ in B(Σ1), the problem of check-
ing whether ϕ defines an inductive invariant is decidable.

A Generic Framework for Reasoning About Dynamic Networks 703

The deductive approach for establishing an invariance property considers the induc-
tive invariance checking problem given by a triple (Init, Inv,Aux) of sets of configura-
tions, and which consists in deciding whether (1) Init ⊆ Aux, (2) Aux ⊆ Inv, and (3) Aux
is an inductive invariant. Indeed, a (sound and) complete rule for solving an invariance
checking problem (Init, Inv) consists in finding a set of configurations Aux allowing to
solve the inductive invariance checking problem (Init, Inv,Aux). The following result
follows directly from Theorem 3, Theorem 2, and the previous theorem.

Theorem 7. If S is a CPN[Σ2], then the inductive invariance checking problem is de-
cidable for every instance ([[ϕInit]], [[ϕ]], [[ϕ′]]) where ϕInit ∈ Σ2, and ϕ,ϕ′ ∈ B(Σ1).

Of course, the difficult part in applying the deductive approach is to find useful auxiliary
inductive invariants. One approach to tackle this problem is to try to compute the largest
inductive invariant included in Inv which is the set

�
k≥0 p̃rek

S(Inv). Therefore, a method
to derive auxiliary inductive invariants is to try iteratively the sets Inv, Inv ∩ p̃reS(Inv),
Inv ∩ p̃reS(Inv)∩ p̃re2

S(Inv), etc. In many practical cases, only few strengthening steps
are needed to find an inductive invariant. (Indeed, the user is able in general to provide
accurate invariant assertions for each control point of his system.) The result below
implies that the steps of this iterative strengthening method can be automatized when
CPN[Σ1] models and Π1 invariants are considered. This result is a direct consequence
of Corollary 1.

Theorem 8. If S is a CPN[Σ1], then for every formula ϕ in Π1 and every positive integer
k, it is possible to construct a formula in Π1 defining the set

�
0≤i≤k p̃rei

S([[ϕ]]).

We show in the full paper the applicability of our framework on a nontrivial exam-
ple. We present the verification of a Reader-Writer lock for an unbounded number of
processes using the inductive invariant checking approach. This example has been con-
sidered in [28] for a fixed number of processes.

8 Conclusion

We have presented a framework for reasoning about dynamic/parametric networks of
processes manipulating data over infinite domains. We have provided generic models
for these systems and a logic allowing to specify their configurations, both being para-
metrized by a logic on the considered data domain. We have identified a fragment of this
logic having a decidable satisfiability problem and which is closed under post and pre
image computation, and we have shown the application of these results in verification.

The complexity of the decision procedure and of the post/pre computation is ex-
ponential in the size of the formula, and more precisely in the number of quantified
variables. However, formulas which appear in the analysis of systems such as para-
metrized/dynamic networks (such as assertions expressing invariants at each particular
control location) are naturally in special form (see definition in Section 2.3) where each
token variable is bound to a unique place (this allows to avoid the case splitting ac-
cording to all possible mappings between token variables and places), and moreover,
new token variables introduced by post/pre computations are of a fixed small number

704 A. Bouajjani, Y. Jurski, and M. Sighireanu

(the number of synchronized processes by the considered transition which is in general
equal to two). These facts reduce significantly the complexity in practice.

Our framework allows to deal in a uniform way with all classes of systems ma-
nipulating infinite data domains with a decidable first-order theory. In this paper, we
have considered instantiations of this framework based on logics over integers or reals
(which allows to consider systems with numerical variables). Different data domains
can be considered in order to deal with other classes of systems such as multithreaded
programs where each process (thread) has an unbounded stack (due to procedure calls).
We will address in more details the issue of applying our framework to the verification
of multithreaded programs in a forthcoming paper. Our future work includes also the
extension of our framework to other classes of systems and features such as dynamic
networks of timed processes, networks of processes with broadcast communication,
interruptions and exception handling, etc.

References

1. P. A. Abdulla, K. Cerans, B. Jonsson, and Y.-K. Tsay. General decidability theorems for
infinite-state systems. In Proc. of LICS’96, pages 313–321, 1996.

2. P. A. Abdulla and G. Delzanno. On the Coverability Problem for Constrained Multiset
Rewriting. In Proc. of AVIS’06, Satellite workshop of ETAPS’06, Vienna, Austria, 2006.

3. P. A. Abdulla, B. Jonsson, M. Nilsson, and M. Saksena. A Survey of Regular Model Check-
ing. In Proc. of CONCUR’04, volume 3170 of LNCS. Springer, 2004.

4. Parosh Aziz Abdulla and Bengt Jonsson. Verifying networks of timed processes (extended
abstract). In Bernhard Steffen, editor, Proc. of TACAS’98, volume 1384 of LNCS, pages
298–312. Springer, 1998.

5. A. Annichini, E. Asarin, and A. Bouajjani. Symbolic techniques for parametric reasoning
about counter and clock systems. In Proc. of CAV’00. LNCS 1855, 2000.

6. T. Arons, A. Pnueli, S. Ruah, J. Xu, and L.D. Zuck. Parameterized Verification with Au-
tomatically Computed Inductive Assertions. In Proc. of CAV’01, volume 2102 of LNCS.
Springer, 2001.

7. Bernard Boigelot. Symbolic Methods for Exploring Infinite State Space. PhD thesis, Faculté
des Sciences, Université de Liège, volume 189, 1999.

8. M. Bojanczyk, C. David, A. Muscholl, Th. Schwentick, and L. Segoufin. Two-variable logic
on data trees and XML reasoning. In Proc. of PODS’06. ACM, 2006.

9. M. Bojanczyk, A. Muscholl, Th. Schwentick, L. Segoufin, and C. David. Two-variable logic
on words with data. In Proc. of LICS’06. IEEE, 2006.

10. E. Börger, E. Grädel, and Y. Gurevich. The Classical Decision Problem. Perspectives of
Mathematical Logic. Springer-Verlag, 1997. Second printing (Universitext) 2001.

11. A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown automata: Appli-
cation to model-checking. In Proc. of CONCUR’97, volume 1243 of LNCS, pages 135–150.
Springer, 1997.

12. A. Bouajjani, P. Habermehl, and T. Vojnar. Abstract Regular Model Checking. In Proc. of
CAV’04, volume 3114 of LNCS. Springer, 2004.

13. A. Bouajjani, B. Jonsson, M. Nilsson, and T. Touili. Regular Model Checking. In Proc. of
CAV’00, volume 1855 of LNCS. Springer, 2000.

14. A. Bouajjani, Y. Jurski, and M. Sighireanu. A generic framework for reasoning about dy-
namic networks of infinite-state processes. Technical Report 2007-01, LIAFA lab, January
2007. Available at http://www.liafa.jussieu.fr/∼abou/publis.html.

A Generic Framework for Reasoning About Dynamic Networks 705

15. A. Bouajjani, M. Müller-Olm, and T. Touili. Regular symbolic analysis of dynamic networks
of pushdown systems. In Proc. of CONCUR’05, volume 3653 of LNCS. Springer, 2005.

16. A. Bouajjani and T. Touili. On computing reachability sets of process rewrite systems. In
Proc. of RTA’05, volume 3467 of LNCS. Springer, 2005.

17. Ahmed Bouajjani. Languages, Rewriting systems, and Verification of Infinte-State Systems.
In Proc. of ICALP’01, volume 2076 of LNCS. Springer Pub., 2001.

18. M. Bozzano and G. Delzanno. Beyond Parameterized Verification. In Proc. of TACAS’02,
volume 2280 of LNCS, Grenoble, France, 2002. Springer Pub.

19. A. R. Bradley, Z. Manna, and H. B. Sipma. What’s decidable about arrays ? In Proc. of
VMCAI’06, volume 3855 of LNCS. Springer, 2006.

20. E. M. Clarke, O. Grumberg, and S. Jha. Verifying parameterized networks. TOPLAS, 19(5),
1997.

21. G. Delzanno. An assertional language for the verification of systems parametric in several
dimensions. Electr. Notes Theor. Comput. Sci., 50(4), 2001.

22. G. Delzanno, J.-F. Raskin, and L. Van Begin. Towards the automated verification of multi-
threaded java programs. In TACAS, volume 2280 of LNCS, pages 173–187. Springer, 2002.

23. S. Demri and R. Lazic. LTL with the freeze quantifier and register automata. In Proc. of
LICS’06. IEEE, 2006.

24. E. A. Emerson and K. S. Namjoshi. On model checking for non-deterministic infinite-state
systems. In LICS’98. IEEE, 1998.

25. J. Esparza, A. Finkel, and R. Mayr. On the verification of broadcast protocols. In Proceedings
of LICS ’99, pages 352–359. IEEE Computer Society, 1999.

26. A. Finkel and J. Leroux. How to compose presburger-accelerations: Applications to broad-
cast protocols. In Proc. of FST&TCS’02, volume 2556 of LNCS. Springer, 2002.

27. A. Finkel and Ph. Schnoebelen. Well-structured transition systems everywhere! Theor. Com-
put. Sci., 256(1-2):63–92, 2001.

28. C. Flanagan, S.N. Freund, and S. Qadeer. Thread-modular verification for shared-memory
programs. In Proc. of ESOP’02, pages 262–277. LNCS 2305, 2002.

29. S. M. German and P. A. Sistla. Reasoning about systems with many processes. JACM, 39(3),
1992.

30. P. Wolper and B. Boigelot. Verifying systems with infinite but regular state spaces. In Proc.
of CAV’98, volume 1427 of LNCS. Springer, 1998.

31. P. Wolper and V. Lovinfosse. Verifying properties of large sets of processes with network
invariants. In Proc. Intern. Workshop on Automatic Verification Methods for Finite State
Systems. LNCS 407, 1989.

Unfolding Concurrent Well-Structured Transition
Systems�

Frédéric Herbreteau, Grégoire Sutre, and The Quang Tran

LaBRI, CNRS UMR 5800, Domaine Universitaire, Talence, France
{fh,sutre,tran}@labri.fr

Abstract. Our main objective is to combine partial-order methods with verifi-
cation techniques for infinite-state systems in order to obtain efficient verifica-
tion algorithms for concurrent infinite-state systems. Partial-order methods are
commonly used in the analysis of finite systems consisting of many parallel
components. In this paper we propose an extension of these methods to paral-
lel compositions of infinite-state systems. We argue that it is advantageous to
model each component by an event structure as this allows us to exhibit the con-
currency present implicitly in some infinite-state systems such as automata with
queues or counters. We generalize the notion of complete prefix from 1-safe Petri
nets to all well-structured transition systems. We give an on-the-fly unfolding al-
gorithm which given event structures representing the components produces an
event structure representing their synchronized product. A prototype implemen-
tation demonstrates the benefits of our approach.

1 Introduction

Partial-order methods [God96, Val91, Pel93] are frequently used for the verification of
programs, in particular for systems of concurrent processes. Indeed, proving that the
computations of such systems meet some requirement often results in the well-known
exponential blow-up due to interleaving of concurrent actions. Partial-order methods
tackle this problem by selecting a hopefully small set of relevant computations that
are sufficient to conclude. Selecting among the interleavings is sound because order-
ing concurrent (independent) actions is irrelevant. Hence, instead of considering to-
tally ordered computations, one analyses traces [Maz86] that stand for all equivalent
computations w.r.t. concurrency. As a consequence, the whole computation tree can
be partially rather than totally ordered resulting in event structures [NPW81, NRT95].
Efficient exploration techniques, e.g. unfolding [McM95, NRT95], exist for partially-
ordered structures.

Traditionally, partial-order methods have been applied to concurrent finite-state
processes and proved to be successful. In this paper, we apply partial-order methods
to parallel compositions of infinite-state systems such as counter machines and com-
municating finite-state machines. Verification of infinite-state systems is known to be

� This work was partially supported by the French Ministry of Research (Project PERSÉE of the
ACI Sécurité et Informatique).

O. Grumberg and M. Huth (Eds.): TACAS 2007, LNCS 4424, pp. 706–720, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Unfolding Concurrent Well-Structured Transition Systems 707

undecidable, however some classes of infinite-state systems enjoy nice decidability re-
sults. Well-Structured Transition Systems [Fin90, AČJT00, FS01] provide us with a
nice framework based on weak simulation relations that are well-preorders. Since a
well-preorder admits no infinite decreasing sequence, one can consider only a finite
prefix of the computation tree in order to decide properties like boundedness, termina-
tion or covering.

Our contribution. Our goal is to analyse synchronized products of well-structured
systems using a method similar to Petri net unfolding in order to obtain event struc-
tures. The most straightforward approach would be to consider that each component
generates an (infinite) transition system, then use an on-the-fly variant of the unfolding
method for parallel composition of finite automata. This turns out not to be satisfac-
tory: imagine that one models a counter by an (infinite) automaton then if, say, three
different processes want to increase the counter, their actions will get interleaved on the
automaton modeling the counter. As in principle those actions are independent, we lose
a good deal of concurrency present in the original system. Our solution is to model each
component by an event structure, hence taking advantage of the intrinsic concurrency
present in each component.

Our first contribution is an algorithm for constructing event structures for compo-
nents modeling counters. It results in event structures with more concurrency than
in [McM95]. We also present a general algorithm that works for all (infinite) transi-
tion systems. This is not trivial: one wants the most concurrent event structure whereas
concurrency is not explicit in transition systems. Of course, our algorithm is less effi-
cient than dedicated algorithms (e.g. for counter automata), however it exhibits a good
deal of concurrency using local independence. For instance it produces the same event
structures as those reported in [LI05] for queue automata.

Our second contribution is a generalization of the unfolding method of [ER99] to
parallel composition of potentially infinite event structures. Our algorithm is both ca-
pable of exploiting concurrency in components as well as among them. In particular
we show that modeling Petri nets as the parallel composition of its places (viewed as
counters) results in very efficient analysis using our algorithms.

Of course there is no hope to have a notion of complete prefix for a parallel compo-
sition of infinite systems. There is hope though when the components are well-structured
systems. We give a property-preserving truncation criterion for event structures of
well-structured transition systems. The resulting (complete) prefix contains enough in-
formation to decide boundedness, termination and quasi-liveness. We also show preser-
vation of well-structure under parallel composition for all variants of well-structure.
Remark that these results cannot be directly obtained from previous techniques on well-
structured systems, since the complete prefix is not a compact partial-order representa-
tion of the finite reachability tree of [FS01].

Related work. The unfolding technique [McM95] has been developed for several mod-
els of concurrency, e.g. synchronous products of transition systems [ER99], high-level
Petri nets [KK03], extended finite state machines [LI05], symmetric Petri nets [CGP01].
However, all these techniques deal with finite-state models.

In [AJKP98], the authors address the coverability problem for infinite state sys-
tems by combining partial-order reductions and symbolic backward computations. The

708 F. Herbreteau, G. Sutre, and T.Q. Tran

unfolding of unbounded Petri nets was recently considered. In [AIN00] Abdulla et
al. propose a backward unfolding technique for coverability analysis, and [DJN04]
presents an unfolding-based adaptation of Karp and Miller’s algorithm. Our method
generalizes these results: it analyses any (infinite) well-structured transition system
[FS01], offering both forward and backward approaches, hence enabling to check cov-
ering, boundedness and termination properties.

Outline. Section 2 introduces notations and definitions for transition systems and event
structures. In section 3 we prove well-structure properties for event structures. Then, in
section 4 we introduce our algorithms for unfolding systems. Finally, in section 5 we
give some experimental results showing the benefits of our approach, and we conclude
on future work. Please note that some preliminary (standard) definitions along with all
proofs had to be omitted due to space constraints. A long version of this paper can be
obtained from the authors.

2 Labeled Transition Systems and Event Structures

A binary relation R on some set U is any subset of U × U . We will sometimes view
functions as relations. Given a subset X ⊆ U , we denote by R[X] the relational image
of X through R, defined by R[X] = {y ∈ U / ∃ x ∈ X, xR y}. The inverse of R is
the binary relation R−1 on U defined by xR−1 x′ iff x′ R x. A preorder on some set
U is any reflexive and transitive relation � on U . We let x ≺ x′ denote x � x′ �� x.
Given a preorder � on U , the inverse relation �−1 is a preorder also written �. For any
subset X ⊆ U , the set �[X] (resp. �[X]) is called the upward closure (resp. downward
closure) of X with respect to �. We say that X is upward-closed (resp. downward-
closed) if X is equal to its upward closure (resp. downward closure). A partial order
on U is any antisymmetric preorder on U . Given a partial order ≤ on U , a maximal
element (resp. minimal element) of some subset X ⊆ U is any m ∈ X such that
m′ �≥ m (resp. m′ �≤ m) for all m′ �= m in X . We write Max≤(X) (resp. Min≤(X))
for the set of maximal elements (resp. minimal elements) of X with respect to ≤.

Given a set Σ, we denote by Σ∗ (resp. Σω) the set of all finite (resp. infinite) se-
quences a1, a2, . . . , ak (resp. a1, a2, . . . , ak, . . .) of elements in Σ. The empty sequence
is written ε and we denote by Σ+ the set Σ∗ \ {ε}.

2.1 Labeled Transition Systems

Definition 2.1. A labeled transition system (LTS) is a 4-tuple S = (S, s0, Σ, →) where
S is a set of states, s0 ∈ S is an initial state, Σ is a set of labels and → ⊆ S × Σ × S
is a transition relation.

A transition (s, a, s′) ∈ → is also written s
a−→ s′. We also write s

a−→ whenever there
exists s′ such that s

a−→ s′. A finite path (resp. infinite path) in S is any finite (resp.
infinite) sequence π = s1

a1−→ s′1, s2
a2−→ s′2, . . . , sk

ak−→ s′k, . . . of transitions such that
s′i−1 = si for every index i > 1 in the sequence. We shortly write π = s1

a1−→ s2
a2−→

s3 · · · sk
ak−→ sk+1 · · · and we say that π starts in s1. A finite (resp. infinite) execution

Unfolding Concurrent Well-Structured Transition Systems 709

of S is any finite (resp. infinite) path starting in the initial state s0 of S. Slightly abusing
notations, we will also write s

ε−→ s for every state s. The reachability set post∗S of S is
the set of states that are visited by some execution.

We now present the composition primitive that we use to build complex systems
from basic components: the synchronized product of labeled transitions [Arn94]. In a
synchronized product, components must behave according to so-called synchronization
vectors. Consider n labeled transition systems S1, . . . , Sn with Si = (Si, s

0
i , Σi, →i).

A synchronization vector is any n-tuple v in Σ⊗ = (Σ1 ∪ {ε}) × · · · × (Σn ∪ {ε}),
and a synchronization constraint is any subset V ⊆ Σ⊗ of synchronization vectors. In-
tuitively, a label a in a synchronization vector means that the corresponding component
must take a transition labeled by a, whereas an ε means that the component must not
move.

Definition 2.2. The synchronized product of n labeled transition systems S1, . . . , Sn

with respect to a synchronization constraint V is the labeled transition system S⊗ =
(S⊗, s0⊗, Σ⊗, →⊗) defined by: S⊗ = S1×· · ·×Sn, s0⊗ = 〈s0

1, . . . , s
0
n〉 and s

v−→⊗ s′

iff v ∈ V and s(i)
v(i)−−→ s′(i) for every 1 ≤ i ≤ n.

2.2 Labeled Event Structures

Definition 2.3. A labeled event structure (LES) is a 5-tuple E = (E, ≤, #, Σ, l) where
E is a set of events, ≤ is a partial order on E, # is a symmetric and irreflexive relation
on E, Σ is a set of labels, and l : E → Σ is a labeling function satisfying:

i) the downward closure ≥[{e}] is finite for every e ∈ E, and
ii) e#e′ and e′ ≤ e′′ implies e#e′′ for every e, e′, e′′ ∈ E.

In the previous definition, relations ≤ and # are respectively called causality and con-
flict relations. Intuitively, an event e can occur when (1) every causal event e′ with
e′ ≤ e has already occurred and (2) no conflicting event e′ with e′#e has already
occurred. Condition i) enforces that any event has finitely many causal events, and con-
dition ii) expresses a conflict inheritance property.

A subset of E is called conflict-free if it does not contain any two events that are
in conflict. A configuration is any conflict-free and downward-closed (w.r.t. causality)
subset of E. We denote by C(E) (resp. Cf (E)) the set of all configurations (resp. finite
configurations) of a labeled event structure E. For any event e ∈ E, the set ≥[{e}] is
called the local configuration of e (it is readily seen that this set is a finite configuration).
We will shortly write [e] the local configuration of e when the causality preorder is clear
from the context. An event e ∈ E is enabled at some configuration C, written C � e, if
e �∈ C and C ∪ {e} is a configuration. We say that a labeled event structure is finitely-
branching if every finite configuration has finitely many enabled events. A variant of
König’s lemma applies to finitely-branching labeled event structures.

Definition 2.4. A marking for a labeled event structure E is any function M from Cf (E)
to some set S.

710 F. Herbreteau, G. Sutre, and T.Q. Tran

A marked LES is any pair (E, M) consisting of a labeled event structure E and a marking
M for E. We denote by SM

E the labeled transition system induced by (E, M) and defined
by SM

E = (M [Cf(E)], M(∅), Σ, →) where s
a−→ s′ iff there exists a finite configuration

C and an event e enabled at C such that s = M(C), a = l(e) and s′ = M(C ∪ {e}).
Given a labeled transition system S, a marked LES for S is any marked LES (E, M) such
that SM

E coincides with the restriction of S to post∗S. Remark that (E, M) is obviously a
marked LES for SM

E .

3 Truncation for Well-Structured Transition Systems

Well-Structured Transition Systems were introduced in [Fin90, AČJT00] as an abstract
generalization of Petri nets satisfying the same monotonicity property, and hence enjoy-
ing nice decidability properties. It turns out that many classes of infinite-state systems
are well-structured [FS01].

We will see in the next section how to algorithmically construct labeled event struc-
tures. However, a labeled event structure is infinite as soon as the underlying system has
an infinite execution. Thus, we need property-preserving truncation techniques in order
to decide verification problems using only a finite prefix of an event structure. In this
section, we show how such techniques can be obtained when the underlying system is
well-structured.

For simplicity we only focus, without loss of generality, on forward analysis tech-
niques for well-structured transition systems. We show in the long version of this paper
how known backward analysis results on well-structured transition systems can be cap-
tured by this forward analysis. Moreover, we do not discuss effectivity issues (such
as whether preorders need to be decidable, whether successor states need to be com-
putable, etc.) since they are basically the same as in [FS01].

3.1 Synchronized Product of Well-Structured Transition Systems

Recall that our main objective is to verify complex systems obtained by (potentially
nested) synchronized products of basic components. Thus, we first show that well-
structure is preserved under synchronized product. Our presentation of well-structured
transition systems differs from (and generalizes) the standard (non-labeled) one as we
need to take care of labels.

Until the end of this sub-section, we assume that each set of labels Σ is partitioned
into a set Στ of local labels (for internal transitions) and a set Σγ of global labels
(for synchronizable transitions). In order to account for this separation between inter-
nal transitions and synchronizable ones, we assume (1) that every synchronization con-
straint V implicitly contains the set Vτ = {〈τ, ε, . . . , ε〉, . . . , 〈ε, . . . , ε, τ, ε, . . . , ε〉, . . . ,
〈ε, . . . , ε, τ〉 / τ ∈ Στ} of synchronization vectors, and (2) that no local label τ ∈ Στ

may appear in a synchronization vector of V \Vτ . Naturally Vτ becomes the set of local
labels of any synchronized product w.r.t. V .

A preordered LTS is any LTS S = (S, s0, Σ, →) equipped with a preorder � on S.
We say that � is compatible (resp. transitively compatible, reflexively compatible) with

Unfolding Concurrent Well-Structured Transition Systems 711

→ if for every transition s
a−→ s′ and t � s there exists t′ � s′ such that t

σ−→ t′ for
some σ ∈ Σ∗ satisfying:
{

σ ∈ Σ∗
τ if a ∈ Στ

σ ∈ Σ∗
τ a Σ∗

τ otherwise

{
σ ∈ Σ+

τ if a ∈ Στ

σ ∈ Σ∗
τ a Σ∗

τ otherwise

{
σ ∈ {ε} ∪ Στ if a ∈ Στ

σ = a otherwise

(compatibility) (transitive compatibility) (reflexive compatibility)

Moreover we also say that � is strictly compatible with → if both � and ≺ are com-
patible with → (recall that s ≺ s′ is defined by s � s′ �� s). Of course, this strictness
notion may be combined with transitive and reflexive compatibilities.

Remark 3.1. The previous definitions of compatibility coincide with the definitions
given in [FS01] when Σ = Στ is a singleton.

Any synchronized product S⊗ of n preordered LTSs (S1, �1), . . . , (Sn, �n) may be
equipped with the product preorder �⊗ defined by s �⊗ s′ iff s(i) �i s′(i) for every
1 ≤ i ≤ n. The following proposition shows that all six compatibility notions defined
above are preserved under synchronized product.

Proposition 3.2. Let Cond denote any compatibility condition among {(non-strict),
strict} × {(standard), transitive, reflexive}. Any synchronized product of preordered
LTSs with compatibility Cond also has compatibility Cond.

Recall that a well-preorder on some set U is any preorder � on U such that any infinite
sequence x1, . . . , xk, . . . of elements in U contains an increasing pair xi � xj with
i < j. A well-preordered LTS is any preordered LTS (S, �) where � is a well-preorder
on the state set S of S. Since the product preorder of any n well-preorders is also a well-
preorder (from Higman’s lemma), we obtain that well-preordering is preserved under
synchronized product.

Proposition 3.3. Any synchronized product of well-preordered LTSs is a well-preor-
dered LTS.

A well-structured LTS is any well-preordered LTS with (standard) compatibility. It fol-
lows from the two previous propositions that well-structure is preserved under synchro-
nized product.

3.2 Finite Property-Preserving Truncation of Well-Structured LES

The intuition behind well-structure is that any state may be weakly simulated by any
greater state, and thus we may forget about smaller states when performing reachability
analysis. The well-preordering condition between states guarantees termination of the
analysis [FS01]. We show in this sub-section how to extend these ideas to the partial-
order verification of well-structured labeled transition systems.

Recall that any marked LES (E, M) induces a labeled transition system SM
E . We lift

the well-structure notions defined in the previous sub-section from labeled transition
systems to labeled event structures. A preordered marked LES (resp. well-preordered
marked LES) is any marked LES (E, M) equipped with a preorder (resp. well-preorder)

712 F. Herbreteau, G. Sutre, and T.Q. Tran

� on M [Cf(E)]. Given any preordered marked LES (E, M, �), we say that (E, M, �)
has compatibility Cond ∈ {(non-strict), strict} × {(standard), transitive, reflexive}
whenever SM

E has compatibility Cond.
Consider any preordered marked LES (E, M, �) where E = (E, ≤, #, Σ, l). A cut-

off event is any ecut ∈ E such that M([ecut]) � M([e]) for some event e with e < ecut.
The truncation T(E, M, �) of (E, M, �) is the set of events having no strictly causal
cutoff event, formally T(E, M, �) = E\{e ∈ E / ∃ ecut ∈ Ecut, ecut < e} where Ecut

denotes the set of cutoff events in E. Observe that T(E, M, �) is downward-closed, and
that any minimal cutoff event (i.e. any event in Min≤(Ecut)) is a maximal event of
T(E, M, �) but the converse does not hold in general. In order to preserve termination
and boundedness properties, this truncation criterion “respects” causality, and this leads
to larger truncations than in [McM95] where the truncation only preserves reachability
properties.

We will show in the rest of this sub-section how to use the truncation to decide
several verification problems. Unfortunately the truncation may be infinite in general,
as it may be “too deep” and / or “too wide”. A well-preordering condition avoids the
first possibility, and a branching finiteness assumption eliminates the second.

Proposition 3.4. The truncation of any well-preordered finitely-branching marked LES
is finite.

Given any labeled transition system S, we say that S terminates (resp. is bounded) if S

has no infinite execution (resp. has a finite reachability set post∗S). The two following
propositions show that, assuming an adequate compatibility condition, the truncation
defined above contains enough information to decide termination and boundedness.
Remark that in these two propositions, the finiteness requirement on the truncation can
be dropped when the marked LES is finitely-branching and well-preordered.

Proposition 3.5. For any preordered finitely-branching marked LES (E, M, �) with
transitive compatibility, SM

E terminates iff T(E, M, �) is finite and contains no cutoff
event.

In order to decide boundedness, we will need “strict” cutoff events, and we will also
require a partial-order �. Formally, a strict cutoff event is any ecut ∈ E such that
M([ecut]) � M([e]) for some event e with e < ecut. Observe that any strict cutoff event
is also a cutoff event. A partially-ordered marked LES is any preordered marked LES
(E, M, �) where � is a partial order on M [Cf(E)]. Notice that the following proposition
does not hold for general preordered marked LES.

Proposition 3.6. For any partially-ordered marked LES (E, M, �) with strict compat-
ibility, SM

E is bounded iff M [{C ∈ Cf (E) / C ⊆ T(E, M, �)}] is finite and T(E, M, �)
contains no strict cutoff event.

We now turn our attention to the quasi-liveness problem which, assuming an adequate
compatibility condition, reduces to the computation of the upward closure of post∗

SM
E

.

For any labeled transition system S = (S, s0, Σ, →), we say that a given label a ∈
Σ is quasi-live if there is an execution in S containing a transition labeled with a.

Unfolding Concurrent Well-Structured Transition Systems 713

The truncation that we have used so far would be sufficient to decide quasi-liveness, but
in order to improve efficiency, we consider a refined notion of cutoff events which leads
to smaller truncations (that still contain enough information to decide quasi-liveness).
This refined notion is based on the size of configurations as in [McM95]. Formally,
given any preordered marked LES (E, M, �) where E = (E, ≤, #, Σ, l), we denote
by � the preorder on Cf (E) defined by C � C′ iff Card(C) ≤ Card(C′). Note that
C � C′ means Card(C) < Card(C′). A �-cutoff event is any ecut ∈ E such that
M([ecut]) � M([e]) for some event e with [e] � [ecut]. The �-truncation T�(E, M, �)
of (E, M, �) is the set of events having no strictly causal �-cutoff event, formally
T�(E, M, �) = E \ {e ∈ E / ∃ ecut ∈ E�

cut, ecut < e} where E�
cut denotes the set of

�-cutoff events in E.
For clarity, any (standard) cutoff event will now be called a ⊂-cutoff event, and the

(standard) truncation will now be called the ⊂-truncation and be denoted by T⊂(E, M,
�). It is readily seen that T�(E, M, �) ⊆ T⊂(E, M, �). Hence �-truncations are also
finite for well-preordered finitely-branching marked LESs. Notice that the following
proposition requires reflexive compatibility of the inverse preorder � of � (this re-
quirement was called “downward compatibility” in [FS01]).

Proposition 3.7. For any preordered marked LES (E, M, �) with reflexive compatibil-
ity, the two following assertions hold:

i) the sets M [{C ∈ Cf (E) / C ⊆ T�(E, M, �)}] and post∗
SM

E
have the same upward

closure w.r.t. �.
ii) for any global label a, a is quasi-live in SM

E iff a labels an event in T�(E, M, �).

Remark that the previous proposition also holds for the standard truncation (i.e. we
may replace T� by T⊂ in the proposition). We may even further refine the truncation
by considering a preorder on Cf (E) that refines � (i.e. a preorder that is contained in
�). However Proposition 3.7 may not hold for this refined preorder unless we assume
stronger requirements on the preordered marked LES (E, M, �). In particular, if every
label is global then Proposition 3.7 still holds for the lexicographic preorder between
configurations defined in [ERV02].

4 Compositional Unfoldings of Concurrent Systems

We now give algorithms for unfolding given systems into labeled event structures. Fig-
ure 4(a) depicts an LES Ea modeling a positive counter initialized to 1. Black (resp.
white) events represent increasing (+) events (resp. decreasing (−) events) and arrows
represent the causality relation. Since this counter is initialized to 1, both − and + are
initially enabled, however one needs to first unfold a + event before unfolding a second
−, and so on. Thus, unfolding Ea is achieved by first building the lowest two events
(initialization phase), and then extending every + event with new − and + events (ex-
tension phase).

All our unfolding algorithms rely on this principle. The following Unfold builds on-
the-fly LES for given systems:

714 F. Herbreteau, G. Sutre, and T.Q. Tran

(a) (b)

Fig. 1. LES for counters with: (a) v0 = 1 and k = 1, (b) v0 = 3 and k = 2

Unfo ld()
PE:=Init()
for (P, A) ∈ PE do

NewPE:=Extend(P, A)
PE:= (PE \ {(P, A)}) ∪ NewPE

end

Pairs (P, A) correspond to new extensions: P is the preset of the new event (e.g. the
lowest black event in Figure 4(a)) and A is the set of actions to extend with (e.g.
{+, −}). Extending creates new events using the NewEvent function that also updates
causality and conflict relations. Then Unfold computes new pending extensions. Notice
that this algorithm terminates if Extend eventually always returns an empty set, which
is the case for well-structured LESs if we do not extend cut-off events as defined in
section 3.2.

In the sequel, we detail Init and Extend functions for three types of systems. We first
consider counters for which we give dedicated functions. Ad hoc algorithms are always
more efficient and can be defined for other datatypes for instance FIFO queues [LI05].
However, it is not always possible nor wanted to have specific algorithms, hence in
section 4.2 we define functions that compute a concurrent marked LES for any given
LTS. Finally, in section 4.3, we consider the unfolding of synchronized products of
systems.

4.1 Unfolding Counters

A counter is a datatype with values ranging over the set of natural numbers N, equipped
with two operations: + and − that respectively increase and decrease its value, and
initial value v0 ∈ N. It may be viewed as an LTS Sc = (N, v0, {+, −}, →) where

n
+→ n + 1 for any n ∈ N and n

−→ n − 1 for all n > 0. Places of Petri nets are
examples of such counters.

We aim at defining Init and Extend functions that build an LES for a counter. Fig-
ure 4 depicts two different LESs Ea and Eb modeling a counter. The labeling lc as-
sociates + (resp. −) to every black (resp. white) event and the natural marking Mc

associates to every C ∈ Cf (E) the value v0 + Card({e ∈ C / lc(e) = +})− Card({e ∈
C / lc(e) = −}). Both (Ea, Mc) and (Eb, Mc) are marked LESs for Sc.

In these LESs, causality between − and + events correspond to intuitive constraints:
a counter must be increased before being decreased. However, if v0 > 0, it may be de-
creased v0 times without any increasing. Also, + events are concurrent since there is no
constraint for increasing. Hence, labeled event structures Ea and Eb differ in the degree

Unfolding Concurrent Well-Structured Transition Systems 715

of concurrency between + events. Choosing the degree k ≥ 1 of concurrency is a mat-
ter of modeling leading to more or less concurrent truncations depending on the system
that is analysed, in particular for synchronized products of LESs (see section 4.3).

Init creates v0 (∅, {−}) and k (∅, {+}) pending extensions. Then, Extend simply
follows the the principle depicted in Figures 4(a) and 4(b).

Extend(P, A)
if (− ∈ A) e−:=NewEvent(−, P)
if (+ ∈ A) for i ∈ [1; k] do e+

i :=NewEvent(+, P)
return {({e+

i }, {+, −}) / i ∈ [1; k]}

Using our algorithm, one obtains the (v0 = 1, k = 1) counter LES in Figure 4(a),
which corresponds to McMillan’s unfolding of a counter [McM95]. However, Fig-
ure 4(b) shows that our approach yields the ability to choose more or less concurrent
models using parameter k.

4.2 Unfolding Labeled Transition Systems

Defining the semantics of given systems as LESs or designing dedicated unfolding al-
gorithms for those systems is often very hard. However, most systems can easily be
described as LTSs. Hence, being able to compute a marked LES for any LTS is a solu-
tion to benefit from intrinsic concurrency in those systems.

A trivial LES for any LTS is its reachability tree, however every event in a reach-
ability tree is either in causality or in conflict with any other event. We introduce an
algorithm that computes a concurrent marked LES for any given LTS. Figure 2(b) de-
picts a prefix of the LES Ef computed by our algorithm for a FIFO queue LTS Sf over
messages {a, b}. Concurrency essentially corresponds to independence diamonds in Sf :
whenever two or more actions are commutative. Moreover, our algorithm infers local
concurrency: the same actions can be concurrent in some state of Sf and conflicting in
some other state.

Init defines initially pending extension (∅, Σ) and marking M(∅) = s0 for the given
LTS (S, s0, Σ, →). Assume that e0 in Figure 2(b) has not been extended so far: P =
{e0} and A = {?a, ?b, !a, !b}. Extending P results in creating new events {e2, e3, e4}
in causality with e0 (?b is not enabled in M({e0})). Now, extending P = {e0, e2} with
label !a does not create any event since adding e3 to P yields the expected extension.
Hence, our Extend function first looks for concurrent events that can extend P , and

!a

?a !a

?a !a

(a)
!a

e0

?ae2 !a e3

?a !a !b

!b
e4

?b !a !b

!b
e1

?b !a

?a !a !b

!b

?b !a !b

(b)

Fig. 2. LES for ∅-initialized FIFO channels with messages: (a) {a} and (b) {a, b}

716 F. Herbreteau, G. Sutre, and T.Q. Tran

then creates new events only for the labels in A \ l(X) that were not matched by this
first step.

Extend(P, A)
X:=∅
for e ∈ E s.t. l(e) ∈ A and P � e do X:=X ∪ e

for a ∈ A \ l(X) s.t. M(P)
a−→ do e:=NewEvent(a, P); X:=X ∪ {e}

for e ∈ X do C(E):=C(E) ∪ {P ∪ {e}}; M(C ∪ {e}):=→[M(P), l(e)]
return {(P ∪ {e}, Σ) / e ∈ X}

Notice that in this algorithm, P is always a configuration: Extend explores the con-
figuration space of the LES.

However, Extend is not correct so far as it does not add any conflict whereas Fig-
ure 2(b) clearly shows the need for it. Missing conflicts are detected as follows. As-
sume that Ef in Figure 2(b) only contains e0 and e1 without conflict so far. Extending
({e0}, !b) leads to configuration {e0, e1} with M({e0, e1}) = →[M({e0}), !b] = ab.
Next, extending ({e1}, !a), leads to associating e0 to {e1} which results to be impos-
sible since →[M({e1}), !a] = ba �= M({e0, e1}). Hence, conflict must be added be-
tween e0 and e1 using the CheckConflict function below when Extend detects the
problem.

CheckConf l i c t(P, PE)

for e ∈ E s.t. P � e and (M(P)
l(e)
�→ or M(P ∪ {e}) �= →[M(P), l(e)]) do

e′:=choose in Max≤(P)
E:=E \ {e′′ ∈ E / e ≤ e′′ and e′ ≤ e′′}
C(E):=C(E) \ {C ∈ C(E) / {e, e′} ∈ C}
PE:=(PE ∩ C(E)) ∪ {(P ′, Σ) / P ′ ∈ C(E), (e ∈ P ′, P ′ � e′)or (e′ ∈ P ′, P ′ � e)}
#:=# ∪ {〈e, e′〉, 〈e′, e〉}

end
return Sor t(PE)

CheckConflict updates PE since whenever one needs to add conflict between 2
events e0 and e1, every configuration in C(E) that contains both events must be dis-
carded and every configuration that contains e0 (resp. e1) has potentially mistaken ex-
tensions. Notice that pending extensions (P, A) in PE are eventually sorted w.r.t in-
creasing size of P . This is due to a natural hypothesis made by Extend: if P is to be
extended, then all the extensions of any P ′ ⊂ P are up-to-date.

Figure 2 depicts the marked LES obtained for LTS modeling FIFO queues in the
standard way (one state per queue content, and transitions w.r.t. FIFO policy) by ap-
plying our algorithm. They exactly correspond to the LES computed by the method
in [LI05].

4.3 Unfolding Synchronized Products of Components

Sections 4.1 and 4.2 present unfolding algorithms for single components. We now intro-
duce an algorithm for unfolding complex systems built from synchronized components.

Unfolding Concurrent Well-Structured Transition Systems 717

••
p1 t1 p2

•
p3 t2 p4

(a)
〈e−

0 , f+
0 , ε, ε〉 i0

〈ε, f−
0 , g−

0 , h+
0 〉 i2

〈e−
1 , f+

1 , ε, ε〉i1

〈ε, f−
1 , g−

0 , h+
1 〉i3

(b)

Fig. 3. A Petri net N (a) and a marked LES for N (b)

Consider Petri net N in Figure 3(a). In our framework, each place pi is modeled by a
counter LES and each transition tj by a synchronization vector between actions of these
counters. Since tokens in Petri nets are concurrent processes, we choose a (v0 = 2, k =
2) counter LES E1 for p1 since it initially contains 2 tokens. Similarly we choose a (1, 1)
counter LES E3 for p3. Place p2 is initially empty and can simultaneously contain 2
tokens, thus we model it by a (0, 2) counter LES E2. Finally, we choose a (0, 1) counter
LES E4 for p4. In the case of unbounded places, one can choose k as the number of
entering edges.

Let ea
i (resp. fa

i , ga
i and ha

i) denote the ith event labeled by a ∈ {+, −} in E1 (resp.
E2, E3 and E4) w.r.t. causality. The semantics of N is modeled in the synchronized
product of E1, E2, E3 and E4 by the synchronization vectors 〈−, +, ε, ε〉 for t1 and
〈ε, −, −, +〉 for t2.

Figure 3(b) depicts LES EN obtained for N using our unfolding algorithm. To each
event in EN is associated a tuple of components’ events by mapping λ : (E1 ∪ {ε}) ×
· · · × (En ∪ {ε}) → E, for instance λ(i0) = 〈e−0 , f+

0 , ε, ε〉. Conflict and causality
relations in EN are defined from components’ ones. Basically, conflict appears when
a components’ event is used by two or more global events, e.g. g−0 in i2 and i3, and
causality inherits from components, e.g. f+

0 → f−
0 entails i0 → i2. Formally, let

〈e1, . . . , en〉#〈e′1, . . . , e′n〉 iff there exists i s.t. ei = e′i or ei#ie
′
i. The global causal-

ity and conflict relations are respectively the smallest partial order ≤ and the smallest
symmetric and irreflexive relation # satisfying for every global events e, e′, e′′:

– if e#e′ and e′ ≤ e′′ then e#e′′, and
– if λ(e)#λ(e′) then e#e′, and
– if there exists i s.t. (λ(e))i ≤i (λ(e′))i and we do not have e#e′ then e ≤ e′.

As Figure 3(b) shows, unfolding a synchronized product of LESs consists in associ-
ating components’ events into global events w.r.t. synchronization vectors, conflict and
causality relations. Since components’ LES maybe infinite we use an on-the-fly algo-
rithm that proceeds as follows. Init initializes every component (in particular PEi) and
extends all their initially pending extensions (∅, Ai). This is necessary due to synchro-
nization. Next, extending (P, A) in the global LES consists, for every synchronization
vector v ∈ A, in finding all tuples 〈e1, . . . , en〉 of components’ events which are in-
stances of v that extend P . A new global event e is created for each such instance
〈e1, . . . , en〉 and each conflict-free preset ps of global events that match the presets of
every ei. Finally, every component such that ei �= ε is extended since the successors of
ei may be needed to extend further.

718 F. Herbreteau, G. Sutre, and T.Q. Tran

Extend(P, A)
NewE := ∅
if (P = ∅)

E⊗:={〈e1, . . . , en〉 / 〈l(e1), . . . , l(en)〉 ∈ A and ei ∈ Min≤i(Ei) ∪ {ε}}
else

E⊗:={〈e1, . . . , en〉 / 〈l(e1), . . . , l(en)〉 ∈ Aand∃e′ ∈ Max≤(P), ∃i, ei ∈ (λ(e′))i•}
for 〈e1, . . . , en〉 ∈ E⊗ do
for ps ∈ {E′ ∈ 2E / ∀e, e′ ∈ E′, e � #e′ and ∀i, (λ(E′))i = •ei} do

e := NewEvent(〈l(e1), . . . , l(en)〉, ps)
λ(e) := 〈e1, . . . , en〉
for i ∈ [1; n] s.t. l(ei) �= ε and ei• = ∅ do PEi :=Extendi(PEi, Σi)
NewE := NewE ∪ {e}

end
end
return {(≥[e], Σ⊗) / e ∈ NewE}

In this algorithm, we denote by •e = Max≤((≥[e]) \ {e}) the preset of e w.r.t.
causality, and by e• = Min≤((≤[e]) \ {e}) the postset of e. Σi denotes the set of
actions of component i. Notice that Extendi(PEi, Σi) is a slight abuse of notations as
PEi is a set of pending extensions.

Extend first checks that components’ events have not been extended yet before doing
so (ei• = ∅) since an event may be associated to many global events. The labeling of
global events and configurations are defined component-wise, and global conflict and
causality relations are computed as defined previously.

Using our algorithm, one can compute a marked unfolding E⊗ of a synchronized
product of components as depicted in Figure 3. Furthermore, E⊗ can itself be used as a
component, giving raise to hierarchical unfolding of systems and components.

5 Experimental Results

We have implemented the algorithms and truncation techniques presented in this paper
in a tool called ESU. This tool is implemented in Objective Caml, and permits the
verification of termination, boundedness and quasi-liveness for synchronized products
of well-structured components. Components may be counters, queues or finite-state
(control) automata. For the particular case of bounded systems such as bounded Petri
nets, ESU is also able to compute reachability set.

To our knowledge, ESU is the first tool able to analyse infinite-state systems using
forward unfolding techniques. Hence, in order to evaluate the benefits of our approach
we have compared ESU with two tools for Petri nets: the PEP environment which pro-
vides an unfolding tool for bounded Petri nets [Pep], and the tool TINA which analyzes
arbitrary Petri nets using structural analysis techniques and forward Karp-Miller reach-
ability analysis [Tin]. Petri nets are modeled in ESU by synchronized counter compo-
nents. Experiments were conducted on an Intel XEON 2.2 GHz station with 6 GB of
RAM. In the following tables, E (resp. Ecf , N , S) denotes the number of events in the
truncation (resp. of cutoff events, of nodes in TINA’s tree, of markings in TINA’s tree),
and a ‘–’ means that the analysis exhausted memory or did not finish within 10 minutes.

Unfolding Concurrent Well-Structured Transition Systems 719

The Petri net depicted below represents a concurrent Producer/Consumer Petri Net
with n independent production lines and m machines on each line. The products from
these n lines are combined into another product that is then stored in place ps. PEP’s
unfolder cannot analyze this Petri net as it is unbounded. ESU performs very well on
this example, but this is not very surprising as this Petri net is extremely concurrent.
Observe that the number of events in the truncation is approximately the number of
transitions in the Petri net.

ps

• • •

TINA ESU

m × n N T(s) E Ecf T(s)

3 × 3 49 0.01 10 4 0.01
5 × 5 4636 0.04 25 5 0.01
7 × 7 1094241 24.41 50 8 0.01
7 × 10 – – 71 8 0.03
10 × 10 – – 96 6 0.04
20 × 25 – – 491 11 1.4

We also experimented on a more challenging and well-known example: the swim-
ming pool. The swimming pool has much less explicit concurrency as most transitions
share places. We used TINA’s bounded swimming pool Petri net which is a variant of
the classical one with an additional place that limits the number of clients [Tin]. In the
following table, the size denotes the number of resources in the swimming pool.

PEP TINA ESU

Size E Ecf T(s) N S T(s) E Ecf T(s)

3 37593 18009 159.59 126 56 0.00 18 3 0.01
10 – – – 12012 3003 0.05 60 10 0.20
20 – – – 255024 53130 3.35 120 20 3.02
30 – – – 1669536 324632 44.74 180 30 20.64
40 – – – 6516048 1221759 297.19 240 40 64.04

Future work will focus on improving and extending our method to other frameworks
for the analysis of infinite state systems. In particular we plan to focus on abstraction
algorithms in order to build more compact and concurrent event structures that would
abstract away causality and conflict information that is irrelevant w.r.t. to a desired prop-
erty. We also plan to consider acceleration techniques as a tool for truncating unfold-
ings, hence enforcing the termination of our algorithms while preserving reachability
properties.

Acknowledgements. The authors wish to thank Igor Walukiewicz for insightful com-
ments and suggestions on a preliminary version of this paper.

References

[AČJT00] P. A. Abdulla, K. Čerāns, B. Jonsson, and Y. K. Tsay. Algorithmic analysis of
programs with well quasi-ordered domains. Information and Computation, 160(1–
2):109–127, 2000.

720 F. Herbreteau, G. Sutre, and T.Q. Tran

[AIN00] P. A. Abdulla, S. P. Iyer, and A. Nylén. Unfoldings of unbounded petri nets. In Proc.
of 12th Int. Conf. on Computer Aided Verification (CAV’00), volume 1855 of Lecture
Notes in Computer Science, pages 495–507. Springer, 2000.

[AJKP98] P. A. Abdulla, B. Jonsson, M. Kindahl, and D. Peled. A general approach to partial
order reductions in symbolic verification (extended abstract). In Proc. of 10th Int.
Conf. on Computer Aided Verification (CAV ’98), volume 1427 of Lecture Notes in
Computer Science, pages 379–390. Springer, 1998.

[Arn94] A. Arnold. Finite Transition Systems. Semantics of Communicating Systems. Pren-
tice Hall Int., 1994.

[CGP01] J-M. Couvreur, S. Grivet, and D. Poitrenaud. Unfolding of products of symmet-
rical petri nets. In Proc. 22nd Int. Conf. on Application and Theory of Petri Nets
(ICATPN’01), volume 2075 of Lecture Notes in Computer Science, pages 121–143.
Springer, 2001.

[DJN04] J. Desel, G. Juhás, and C. Neumair. Finite unfoldings of unbounded petri nets. In
Proc. 25th Int. Conf. on Applications and Theory of Petri Nets (ICATPN’04), volume
3099 of Lecture Notes in Computer Science, pages 157–176. Springer, 2004.

[ER99] J. Esparza and S. Römer. An unfolding algorithm for synchronous products of tran-
sition systems. In 10th Int. Conf. on Concurrency Theory (CONCUR’99), volume
1664 of Lecture Notes in Computer Science, pages 2–20. Springer, 1999.

[ERV02] J. Esparza, S. Römer, and W. Vogler. An improvement of McMillan’s unfolding
algorithm. Formal Methods in System Design, 20(3):285–310, 2002.

[Fin90] A. Finkel. Reduction and covering of infinite reachability trees. Information and
Computation, 89(2):144–179, 1990.

[FS01] A. Finkel and P. Schnoebelen. Well-structured transition systems everywhere! The-
oretical Computer Science, 256(1–2):63–92, 2001.

[God96] P. Godefroid. Partial-order methods for the verification of concurrent systems: An
approach to the state-explosion problem, volume 1032 of Lecture Notes in Computer
Science. Springer, New York, NY, USA, 1996.

[KK03] V. Khomenko and M. Koutny. Branching processes of high-level petri nets. In Proc.
9th Int. Conf. on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’03), volume 2619 of Lecture Notes in Computer Science, pages 458–472.
Springer, 2003.

[LI05] Y. Lei and S. P. Iyer. An approach to unfolding asynchronous communication proto-
cols. In Proc. 13th Int. Symp. on Formal Methods (FM’05), volume 3582 of Lecture
Notes in Computer Science, pages 334–349. Springer, 2005.

[Maz86] A. W. Mazurkiewicz. Trace theory. In Advances in Petri Nets, volume 255 of Lecture
Notes in Computer Science, pages 279–324. Springer, 1986.

[McM95] K. L. McMillan. A technique of state space search based on unfolding. Formal
Methods in System Design, 6(1):45–45, 1995.

[NPW81] M. Nielsen, G. Plotkin, and G. Winskel. Petri nets, event structures and domains,
part I. Theoretical Computer Science, 13:85–108, 1981.

[NRT95] M. Nielsen, G. Rozenberg, and P. S. Thiagarajan. Transition systems, event struc-
tures and unfoldings. Information and Computation, 118(2):191–207, 1995.

[Pel93] D. Peled. All from one, one for all: on model checking using representatives. In
Proc. of the 5th Int. Conf. on Computer Aided Verification (CAV’93), volume 697 of
Lecture Notes in Computer Science, pages 409–423. Springer, 1993.

[Pep] PEP tool. Homepage: http://peptool.sourceforge.net/.
[Tin] TINA tool. Homepage: http://www.laas.fr/tina/.
[Val91] A. Valmari. Stubborn sets for reduced state space generation. In Proc. of 10th Int.

Conf. on Applications and Theory of Petri Nets (ICATPN’90), number 483 in Lecture
Notes in Computer Science. Springer, 1991.

Regular Model Checking Without Transducers

(On Efficient Verification of Parameterized
Systems)

Parosh Aziz Abdulla,1 Giorgio Delzanno,2 Noomene Ben Henda,1

and Ahmed Rezine1

1 Uppsala University,
Sweden

parosh@it.uu.se, Noomene.BenHenda@it.uu.se, Rezine.Ahmed@it.uu.se
2 Università di Genova, Italy
giorgio@disi.unige.it

Abstract. We give a simple and efficient method to prove safety prop-
erties for parameterized systems with linear topologies. A process in the
system is a finite-state automaton, where the transitions are guarded by
both local and global conditions. Processes may communicate via broad-
cast, rendez-vous and shared variables. The method derives an over-
approximation of the induced transition system, which allows the use of
a simple class of regular expressions as a symbolic representation. Com-
pared to traditional regular model checking methods, the analysis does
not require the manipulation of transducers, and hence its simplicity and
efficiency. We have implemented a prototype which works well on several
mutual exclusion algorithms and cache coherence protocols.

1 Introduction

In this paper, we consider analysis of safety properties for parameterized systems.
Typically, a parameterized system consists of an arbitrary number of finite-
state processes organized in a linear array. The task is to verify correctness of
the system regardless of the number of processes inside the system. Examples
of parameterized systems include mutual exclusion algorithms, bus protocols,
telecommunication protocols, and cache coherence protocols.

One important technique which has been used for verification of parameter-
ized systems is that of regular model checking [19,3,6]. In regular model check-
ing, states are represented by words, sets of states by regular expressions, and
transitions by finite automata operating on pairs of states, so called finite-state
transducers. Safety properties can be checked through performing reachability
analysis, which amounts to applying the transducer relation iteratively to the
set of initial states. The main problem with transducer-based techniques is that
they are very heavy and usually rely on several layers of computationally ex-
pensive automata-theoretic constructions; in many cases severely limiting their
applicability. In this paper, we propose a much more light-weight and efficient

O. Grumberg and M. Huth (Eds.): TACAS 2007, LNCS 4424, pp. 721–736, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

722 P.A. Abdulla et al.

approach to regular model checking, and describe its application in the context
of parameterized systems.

In our framework, a process is modeled as a finite-state automaton which
operates on a set of local variables ranging over finite domains. The transitions of
the automaton are conditioned by the local state of the process, values of the local
variables, and by global conditions. A global condition is either universally or
existentially quantified. An example of a universal condition is that all processes
to the left of a given process i should satisfy a property θ. Process i is allowed
to perform the transition only in the case where all processes with indices j < i
satisfy θ. In an existential condition we require that some (rather than all)
processes satisfy θ. In addition, processes may communicate through broadcast,
rendez-vous, and shared variables. Finally, processes may dynamically be created
and deleted during the execution of the system.

The main idea of our method is to consider a transition relation which is an
over-approximation of the one induced by the parameterized system. To do that,
we modify the semantics of universal quantifiers by eliminating the processes
which violate the given condition. For instance in the above example, process i is
always allowed to take the transition. However, when performing the transition,
we eliminate all processes which have indices j < i and which violate the condi-
tion θ. The approximate transition system obtained in this manner is monotonic
with respect to the subword relation on configurations (larger configurations are
able to simulate smaller ones). In fact, it turns out that universal quantification
is the only operation which does not preserve monotonicity and hence it is the
only source of approximation in the model. Since the approximate transition
relation is monotonic, it can be analyzed using symbolic backward reachability
algorithm based on a generic method introduced in [1]. An attractive feature
of this algorithm is that it operates on sets of configurations which are upward
closed with respect to the subword relation. In particular, reachability analysis
can be performed by computing predecessors of upward closed sets, which is
much simpler and more efficient than applying transducer relations on general
regular languages. Also, as a side effect, the analysis of the approximate model
is always guaranteed to terminate. This follows from the fact that the subword
relation on configurations is a well quasi-ordering. The whole verification process
is fully automatic since both the approximation and the reachability analysis are
carried out without user intervention. Observe that if the approximate transition
system satisfies a safety property then we can safely conclude that the original
system satisfies the property, too.

To simplify the presentation, we introduce the class of systems we consider
in a stepwise manner. First, we consider a basic model where we only allow
Boolean local variables together with local and global conditions. We describe
how to derive the approximate transition relation and how to analyze safety
properties for the basic model. Then, we introduce the additional features one
by one. This includes using general finite domains, shared variables, broadcast
and rendez-vous communication, dynamic creation and deletion of processes,

Regular Model Checking Without Transducers 723

and counters. For each new feature, we describe how to extend the approximate
transition relation and the reachability algorithm in a corresponding manner.

Based on the method, we have implemented a prototype which works well on
several mutual exclusion algorithms and cache coherence protocols, such as the
Bakery and Szymanski algorithms, the Java Meta-locking protocol, the Future-
bus+ protocol, German’s directory-based protocol, etc.

Related work. Several recent works have been devoted to develop regular
model checking, e.g., [19,9]; and in particular augmenting regular model checking
with techniques such as widening [6,27], abstraction [7], and acceleration [3].
All these works rely on computing the transitive closure of transducers or on
iterating them on regular languages.

A technique of particular interest for parameterized systems is that of counter
abstraction. The idea is to keep track of the number of processes which satisfy
a certain property. In [15] the technique generates an abstract system which is
essentially a Petri net. Counter abstracted models with broadcast communica-
tion are proved to be well-structured in [14]. In [10,11] symbolic model checking
based on real arithmetics is used to verify counter abstracted models of cache
coherence protocols enriched with global conditions. The method works without
guarantee of termination. The paper [24] refines the counter abstraction idea
by truncating the counters at the value of 2, and thus obtains a finite-state ab-
stract system. The method may require manual insertion of auxiliary program
variables for programs that exploit knowledge of process identifiers (examples of
such programs are the mutual exclusion protocols we consider in this paper). In
general, counter abstraction is designed for systems with unstructured or clique
architectures. Our method can cope with this kind of systems, since unstructured
architectures can be viewed as a special case of linear arrays where the ordering
of the processes is not relevant. In [18] and [26], the authors present a tool for
the analysis and the verification of linear parameterized hardware systems using
the monadic second-order logic on strings.

Other parameterized verification methods are based on reductions to finite-
state models. Among these, the invisible invariants method [4,23] exploits cut-off
properties to check invariants for mutual exclusion protocols like the Bakery al-
gorithm and German’s protocol. The success of the method depends on the
heuristic used in the generation of the candidate invariant. This method some-
times (e.g. for German’s protocol) requires insertion of auxiliary program vari-
ables for completing the proof. In [5] finite-state abstractions for verification of
systems specified in WS1S are computed on-the-fly by using the weakest precon-
dition operator. The method requires the user to provide a set of predicates on
which to compute the abstract model. Heuristics to discover indexed predicates
are proposed in [20] and applied to German’s protocol as well as to the Bakery
algorithm. In contrast to these approaches, we provide a uniform approximation
scheme which is independent on the analyzed system. Environment abstraction
[8] combines predicate abstraction with the counter abstraction. The technique
is applied to the Bakery and Szymanski algorithms. The model of [8] contains a
more restricted form of global conditions than ours, and also does not include

724 P.A. Abdulla et al.

features such as broadcast communication, rendez-vous communication, and dy-
namic behaviour. Other approaches tailored to snoopy cache protocols mod-
eled with broadcast communication are presented in [13,21]. In [12] German’s
directory-based protocol is verified via a manual transformation into a snoopy
protocol. It is important to remark that frameworks for finite-state abstractions
[8] and those based on cutoff properties [4,23] can be applied to parameterized
systems where each component itself contains counters and other unbounded
data structures. This allows for instance to deal with a model of the Bakery
algorithm which is more concrete (precise) than ours.

Finally, in [25] a parameterized version of the Java Meta-locking algorithm is
verified by means of an induction-based proof technique which requires manual
strengthening of the mutual exclusion invariant.

In summary, our method provides a uniform simple abstraction which allows
fully automatic verification of a wide class of systems. We have been able to verify
all benchmarks available to us from the literature (with the exception of the
Bakery protocol, where we can only model an abstraction of the protocol). The
benchmarks include some programs, e.g. the German protocol and Java Meta-
locking algorithm, which (to our knowledge) have previously not been possible
to verify without user interaction or specialized heuristics. On the negative side,
the current method only allows the verification of safety properties, while most
regular model checking and abstraction-based techniques can also handle liveness
properties.

Outline. In the next Section we give some preliminaries and define a basic model
for parameterized systems. Section 3 describes the induced transition system
and introduces the coverability (safety) problem. In Section 4 we define the
over-approximated transition system on which we run our technique. Section 5
presents a generic scheme for deciding coverability. In Section 6 we instantiate the
scheme on the approximate transition system. Section 7 explains how we extend
the basic model to cover features such as shared variables, broadcast and binary
communications, and dynamic creation and deletion of processes. In Section 8 we
report the results of our prototype on a number of mutual exclusion and cache
coherence examples. Finally, in Section 9, we give conclusions and directions for
future work. A detailed description of the case studies can be found in [2].

2 Preliminaries

In this section, we define a basic model of parameterized systems. This model
will be enriched by additional features in Section 7.

For a natural number n, let n denote the set {1, . . . , n}. We use B to denote
the set {true, false} of Boolean values. For a finite set A, we let B(A) denote
the set of formulas which have members of A as atomic formulas, and which are
closed under the Boolean connectives ¬, ∧, ∨. A quantifier is either universal or
existential. A universal quantifier is of one of the forms ∀LR, ∀L, ∀R. An existential
quantifier is of one of the forms ∃L, ∃R, or ∃LR. The subscripts L, R, and LR

Regular Model Checking Without Transducers 725

stand for Left, Right, and Left-Right respectively. A global condition over A is of
the form �θ where � is a quantifier and θ ∈ B(A). A global condition is said to
be universal (resp. existential) if its quantifier is universal (resp. existential). We
use G(A) to denote the set of global conditions over A.

Parameterized Systems. A parameterized system consists of an arbitrary
(but finite) number of identical processes, arranged in a linear array. Each process
is a finite-state automaton which operates on a finite number of Boolean local
variables. The transitions of the automaton are conditioned by the values of the
local variables and by global conditions in which the process checks, for instance,
the local states and variables of all processes to its left or to its right. A transition
may change the value of any local variable inside the process. A parameterized
system induces an infinite family of finite-state systems, namely one for each size
of the array. The aim is to verify correctness of the systems for the whole family
(regardless of the number of processes inside the system).

A parameterized system P is a triple (Q, X, T), where Q is a set of local states,
X is a set of local variables, and T is a set of transition rules. A transition rule
t is of the form

t :

⎡

⎣
q

grd → stmt
q′

⎤

⎦ (1)

where q, q′ ∈ Q and grd → stmt is a guarded command. Below we give the
definition of a guarded command. A guard is a formula grd ∈ B(X)∪G(X∪Q). In
other words, the guard grd constraints either the values of local variables inside
the process (if grd ∈ B(X)); or the local states and the values of local variables
of other processes (if grd ∈ G(X ∪ Q)). A statement is a set of assignments of
the form x1 = e1; . . . ; xn = en, where xi ∈ X , ei ∈ B, and xi 	= xj if i 	= j. A
guarded command is of the form grd → stmt, where grd is a guard and stmt is
a statement.

Remark. We can extend the definition of the transition rule in (1) so that the
grd is a conjunction of formulas in B(X) ∪ G(X ∪ Q). All the definitions and
algorithms which are later presented in this paper can easily be extended to the
more general form. However, for simplicity of presentation, we only deal with
the current form.

3 Transition System

In this section, we first describe the transition system induced by a parameterized
system. Then we introduce the coverability problem.

Transition System. A transition system T is a pair (D, =⇒), where D is an
(infinite) set of configurations and =⇒ is a binary relation on D. We use ∗=⇒ to

726 P.A. Abdulla et al.

denote the reflexive transitive closure of =⇒. We will consider several transition
systems in this paper.

First, a parameterized system P = (Q, X, T) induces a transition system
T (P) = (C, −→) as follows. A configuration is defined by the local states of
the processes, and by the values of the local variables. Formally, a local variable
state v is a mapping from X to B. For a local variable state v, and a formula
θ ∈ B(X), we evaluate v |= θ using the standard interpretation of the Boolean
connectives. A process state u is a pair (q, v) where q ∈ Q and v is a local
variable state. Sometimes, abusing notation, we view a process state (q, v) as
a mapping u : X ∪ Q �→ B, where u(x) = v(x) for each x ∈ X , u(q) = true,
and u(q′) = false for each q′ ∈ Q − {q}. The process state thus agrees with v
on the values of local variables, and maps all elements of Q, except q, to false .
For a formula θ ∈ B(X ∪ Q) and a process state u, the relation u |= θ is then
well-defined. This is true in particular if θ ∈ B(X) .

A configuration c ∈ C is a sequence u1 · · · un of process states. Intuitively, the
above configuration corresponds to an instance of the system with n processes.
Each pair ui = (qi, vi) gives the local state and the values of local variables of
process i. Notice that if c1 and c2 are configurations then their concatenation
c1 • c2 is also a configuration.

Next, we define the transition relation −→ on the set of configurations as fol-
lows. We will define the semantics of global conditions in terms of two quantifiers
∀ and ∃. For a configuration c = u1 · · ·un and a formula θ ∈ B(X ∪ Q), we write
c |= ∀θ if ui |= θ for each i : 1 ≤ i ≤ n; and write c |= ∃θ if ui |= θ for some
i : 1 ≤ i ≤ n. For a statement stmt and a local variable state v, we use stmt(v)
to denote the local variable state v′ such that v′(x) = v(x) if x does not occur
in stmt; and v′(x) = e if x = e occurs in stmt. Let t be a transition rule of the
form of (1). Consider two configurations c = c1 •u• c2 and c′ = c1 •u′ • c2, where
u = (q, v) and u′ = (q′, v′). We write c t−→ c′ to denote that the following three
conditions are satisfied:

1. If grd ∈ B(X) then v |= grd, i.e., the local variables of the process in
transition should satisfy grd.

2. If grd = �θ ∈ G(X ∪ Q) then one of the following conditions is satisfied:
– � = ∀L and c1 |= ∀θ.
– � = ∀R and c2 |= ∀θ.
– � = ∀LR and c1 |= ∀θ and c2 |= ∀θ.
– � = ∃L and c1 |= ∃θ.
– � = ∃R and c2 |= ∃θ.
– � = ∃LR and either c1 |= ∃θ or c2 |= ∃θ.

In other words, if grd is a global condition then the rest of the processes
should satisfy θ (in a manner which depends on the type of the quantifier).

3. v′ = stmt(v).

We use c −→ c′ to denote that c t−→ c′ for some t ∈ T .

Safety Properties. In order to analyze safety properties, we study the cov-
erability problem defined below. Given a parameterized system P = (Q, X, T),

Regular Model Checking Without Transducers 727

we assume that, prior to starting the execution of the system, each process is in
an (identical) initial process state uinit = (qinit , vinit). In the induced transition
system T (P) = (C, −→), we use Init to denote the set of initial configurations,
i.e., configurations of the form uinit · · · uinit (all processes are in their initial
states). Notice that this set is infinite.

We define an ordering on configurations as follows. Given two configurations,
c = u1 · · · um and c′ = u′

1 · · · u′
n, we write c c′ to denote the existance of

a strictly monotonic1 injection h from m to n such that ui = u′
h(i) for each

i : 1 ≤ i ≤ m. A set of configurations D ⊆ C is upward closed (with respect to
) if c ∈ D and c c′ implies c′ ∈ D. For sets of configurations D, D′ ⊆ C we
use D −→ D′ to denote that there are c ∈ D and c′ ∈ D′ with c −→ c′. The
coverability problem for parameterized systems is defined as follows:

PAR-COV
Instance
– A parameterized system P = (Q, X, T).
– An upward closed set CF of configurations.

Question Init ∗−→ CF ?

It can be shown, using standard techniques (see e.g. [28,16]), that checking safety
properties (expressed as regular languages) can be translated into instances of the
coverability problem. Therefore, checking safety properties amounts to solving
PAR-COV(i.e., to the reachability of upward closed sets).

4 Approximation

In this section, we introduce an over-approximation of the transition relation of
a parameterized system.

In Section 3, we mentioned that each parameterized system P = (Q, X, T)
induces a transition system T (P) = (C, −→). A parameterized system P also
induces an approximate transition system A(P) = (C, �), where the set C of
configurations is identical to the one in T (P). We define �= (−→ ∪ �1), where
−→ is the transition relation defined in Section 3, and �1, which reflects the
approximation of universal quantifiers, is defined as follows. For a configuration
c, and a formula θ ∈ B(X ∪Q), we use c�θ to denote the maximal configuration
c′ (with respect to) such that c′ c and c′ |= ∀θ. In other words, we derive
c′ from c by deleting all process states which do not satisfy θ. Consider two
configurations c = c1•u•c2 and c′ = c′1•u′•c′2, where u = (q, v) and u′ = (q′, v′).
Let t be a transition rule of the form of (1), such that grd = �θ is a universal
global condition. We write c t

�1 c′ to denote that the following conditions are
satisfied:

1. if � = ∀L, then c′1 = c1 � θ and c′2 = c2.
2. if � = ∀R, then c′1 = c1 and c′2 = c2 � θ.

1 h : m → n strictly monotonic means: i < j ⇒ h(i) < h(j) for all i, j : 1 ≤ i < j ≤ m.

728 P.A. Abdulla et al.

3. if � = ∀LR, then c′1 = c1 � θ and c′2 = c2 � θ.
4. v′ = stmt(v).

We use c � c′ to denote that c t
� c′ for some t ∈ T . We define the coverability

problem for the approximate system as follows:

APRX-PAR-COV
Instance
– A parameterized system P = (Q, X, T).
– An upward closed set CF of configurations.

Question Init ∗
� CF ?

Since −→⊆�, a negative answer to APRX-PAR-COV implies a negative
answer to PAR-COV.

5 Generic Scheme

In this section, we recall a generic scheme from [1] for performing symbolic
backward reachability analysis.

Assume a transition system (D, =⇒) with a set Init of initial states. We
will work with a set of constraints defined over D. A constraint φ denotes a
potentially infinite set of configurations (i.e. [[φ]] ⊆ D). For a finite set Φ of
constraints, we let [[Φ]] =

⋃
φ∈Φ [[φ]].

We define an entailment relation � on constraints, where φ1 � φ2 iff [[φ2]] ⊆
[[φ1]]. For sets Φ1, Φ2 of constraints, abusing notation, we let Φ1 � Φ2 denote
that for each φ2 ∈ Φ2 there is a φ1 ∈ Φ1 with φ1 � φ2. Notice that Φ1 � Φ2
implies that [[Φ2]] ⊆ [[Φ1]] (although the converse is not true in general).

For a constraint φ, we let Pre(φ) be a finite set of constraints, such that
[[Pre(φ)]] = {c| ∃c′ ∈ [[φ]] . c =⇒ c′}. In other words Pre(φ) characterizes the set
of configurations from which we can reach a configuration in φ through the
application of a single transition rule. For our class of systems, we will show that
such a set always exists and is in fact computable. For a set Φ of constraints, we
let Pre(Φ) =

⋃
φ∈Φ Pre(φ). Below we present a scheme for a symbolic algorithm

which, given a finite set ΦF of constraints, checks whether Init ∗=⇒ [[ΦF]].
In the scheme, we perform a backward reachability analysis, generating a

sequence Φ0 � Φ1 � Φ2 � · · · of finite sets of constraints such that Φ0 = ΦF , and
Φj+1 = Φj ∪ Pre(Φj). Since [[Φ0]] ⊆ [[Φ1]] ⊆ [[Φ2]] ⊆ · · · , the procedure terminates
when we reach a point j where Φj � Φj+1. Notice that the termination condition
implies that [[Φj]] = (

⋃
0≤i≤j [[Φi]]). Consequently, Φj characterizes the set of all

predecessors of [[ΦF]]. This means that Init ∗=⇒ [[ΦF]] iff (Init
⋂

[[Φj]]) 	= ∅.
Observe that, in order to implement the scheme (i.e., transform it into an

algorithm), we need to be able to (i) compute Pre; (ii) check for entailment
between constraints; and (iii) check for emptiness of Init

⋂
[[φ]] for a given con-

straint φ. A constraint system satisfying these three conditions is said to be
effective. Moreover, in [1], it is shown that termination is guaranteed in case

Regular Model Checking Without Transducers 729

the constraint system is well quasi-ordered (WQO) with respect to �, i.e., for
each infinite sequence φ0, φ1, φ2, . . . of constraints, there are i < j with φi � φj .

6 Algorithm

In this section, we instantiate the scheme of Section 5 to derive an algorithm
for solving APRX-PAR-COV. We do that by introducing an effective and well
quasi-ordered constraint system.

Throughout this section, we assume a parameterized system P = (Q, X, T)
and the induced approximate transition system A(P) = (C, �). We define a
constraint to be a finite sequence θ1 · · · θm where θi ∈ B(X ∪ Q). Observe that
for any constraints φ1 and φ2, their concatenation φ1 • φ2 is also a constraint.
For a constraint φ = θ1 · · · θm and a configuration c = u1 · · · un, we write c |=
φ to denote that there is a strictly monotonic injection h from m to n such
that uh(i) |= θi for each i : 1 ≤ i ≤ m. Given a constraint φ, we let [[φ]] =
{c ∈ C| c |= φ}. Notice that if φ = θ1 · · · θm and some θi is unsatisfiable then [[φ]]
is empty. Such a constraint can therefore be safely discarded in the algorithm.

An aspect of our constraint system is that each constraint characterizes a
set of configurations which is upward closed with respect to . Conversely (by
Higman’s Lemma [17]), any upward closed set CF of configurations can be char-
acterized as [[ΦF]] where ΦF is a finite set of constraints. In this manner, APRX-
PAR-COV is reduced to checking the reachability of a finite set of constraints.

Below we show effectiveness and well quasi-ordering of our constraint system,
meaning that we obtain an algorithm for solving APRX-PAR-COV.

Pre. For a constraint φ′, we define Pre(φ′) =
⋃

t∈T Pret (φ′), i.e., we compute
the set of predecessor constraints with respect to each transition rule t ∈ T .
In the following, assume t to be a transition rule of the form (1). To compute
Pret (φ′), we define first the function [t] on X ∪ Q as follows: for each x ∈ X ,
[t](x) = stmt(x) if x occurs in stmt and [t](x) = x otherwise. For each q′′ ∈ Q,
[t](q′′) = true if q′′ = q′, and false otherwise. For θ ∈ B(X ∪ Q), we use θ[t] to
denote the formula obtained from θ by substituting all occurrences of elements
in θ by their corresponding [t]-images.

Now, we define two operators, ⊗ and ⊕, which we use to capture the effects of
universal and existential quantifiers when computing Pre. We use ⊗ to handle
universal quantifiers. For a constraint φ = θ1 · · · θm and a θ ∈ B(X ∪ Q), we
define φ ⊗ θ to be the constraint (θ1 ∧ θ) · · · (θm ∧ θ). We use ⊕ to deal with
existential quantifiers. For a constraint φ = θ1 · · · θm and a θ ∈ B(X ∪ Q), we
define φ ⊕ θ to be the set of constraints which are of one of the following forms:

– θ1 · · · θi−1(θi ∧ θ)θi+1 · · · θm where 1 ≤ i ≤ m; or
– (θ1 ∧ ¬θ) · · · (θi ∧ ¬θ)θ(θi+1 ∧ ¬θ) · · · (θm ∧ ¬θ) where 0 ≤ i ≤ m + 1.

In the first case, the constraint implies that there is at least one process satisfy-
ing θ. In the the second case, the constraint does not imply the existence of such
a process, and therefore the formula θ is added explicitly to the representation

730 P.A. Abdulla et al.

of the constraint. Notice that in the second case the length of the resulting con-
straint is larger (by one) than the length of φ. This means that the lengths of the
constraints which arise during the analysis are not a priori fixed. Nevertheless,
termination is still guaranteed by well quasi-ordering of the constraints.

For a constraint φ′ and a rule t of the form (1), we define Pret (φ′) to be the
set of all constraints φ such that φ (resp. φ′) is of the form φ1 • θ • φ2 (resp.
φ′

1 • θ′ • φ′
2) and the following conditions are satisfied:

– If grd ∈ B(X) (i.e. grd is a local condition), then θ = θ′[t]∧ grd ∧ q, φ1 = φ′
1

and φ2 = φ′
2;

– If grd = �grd′, where grd′ ∈ B(X ∪ Q), then θ = θ′[t] ∧ q and depending on
� the following conditions hold:

• If � = ∀L then φ1 = φ′
1 ⊗ grd′ and φ2 = φ′

2.
• If � = ∀R then φ1 = φ′

1 and φ2 = φ′
2 ⊗ grd′.

• If � = ∀LR then φ1 = φ′
1 ⊗ grd′ and φ2 = φ′

2 ⊗ grd′.
• If � = ∃L then φ1 ∈ φ′

1 ⊕ grd′ and φ2 = φ′
2.

• If � = ∃R then φ1 = φ′
1 and φ2 ∈ φ′

2 ⊕ grd′.
• If � = ∃LR then either φ1 ∈ φ′

1 ⊕ grd′ and φ2 = φ′
2; or φ1 = φ′

1 and
φ2 ∈ φ′

2 ⊕ grd′.

Entailment. The following Lemma gives a syntactic characterization which
allows computing of the entailment relation.

Lemma 1. For constraints φ = θ1 . . . θm and φ′ = θ′1 . . . θ′n, we have φ � φ′ iff
there exists a strictly monotonic injection h : m → n such that θ′h(i) ⇒ θi for
each i ∈ m.

Proof. (⇒) Assume there is no such injection. We derive a configuration c such
that c ∈ [[φ′]] and c 	∈ [[φ]]. To do that, we define the function g on n as follows:
g(1) = 1, g(i + 1) = g(i) if θ′i 	⇒ θg(i), and g(i + 1) = g(i) + 1 if θ′i ⇒ θg(i).
Observe that, since the above mentioned injection does not exist, we have either
g(n) < m, or g(n) = m and θ′n 	⇒ θm. We choose c = u1 · · · un, where ui is defined
as follows: (i) if θ′i 	⇒ θg(i) let ui be any process state such that ui |= ¬θg(i) ∧ θ′i;
and (ii) if θ′i ⇒ θg(i) let ui be any process state such that ui |= θ′i.

(⇐) Assume there exists a strictly monotonic injection h : m → n such that
θ′h(i) ⇒ θi for each i ∈ m. Let c = u1 . . . up be a configuration in [[φ′]]. It follows
that there exists a strictly monotonic injection h′ : n → p such that uh′(i) |= θ′i
for each i ∈ n. By assumption, for each j ∈ m, we have θ′h(j) ⇒ θj . Therefore, for
each j ∈ m, uh′◦h(j) |= θj . It is straightforward to check that h′ ◦ h is a strictly
monotonic injection from m to p. It follows that c ∈ [[φ]].

Intersection with Initial States. For a constraint φ = θ1 . . . θn, we have
(Init

⋂
[[φ]]) = ∅ iff uinit � θi for some i ∈ n.

Termination. We show that the constraint system is well quasi-ordered (WQO)
with respect to �. (A,) is obviously a WQO for any finite set A and any quasi-
order on A. Let A∗ be the set of words over A, and ∗ be the subword relation.

Regular Model Checking Without Transducers 731

Higman’s Lemma [17] states that (A∗, ∗) is also a WQO. Take A to be the
quotient sets of B(X∪Q) under the equivalence relation. Let be the implication
relation on formulas in B(X ∪ Q). By lemma 1, the relation � coincides with
∗. We conclude that the constraint system is a WQO.

7 Extensions

In this section, we add a number of features to the model of Section 2. For each
additional feature, we show how to modify the constraint system of Section 6 in
a corresponding manner.

Shared Variables. We assume the presence of a finite set S of Boolean shared
variables that can be read and written by all processes in the system. A guard
may constraint the values of both the shared and the local variables, and a
statement may assign values to the shared variables (together with the local
variables). It is straightforward to extend the definitions of the induced transition
system and the symbolic algorithm to deal with shared variables.

Variables over Finite Domains. Instead of Boolean variables, we can use
variables which range over arbitrary finite domains. Below we describe an ex-
ample of such an extension. Let Y be a finite set of variables which range over
{0, 1, . . . , k}, for some natural number k. Let N(A) be the set of formulas of the
form x ∼ y where ∼∈ {<, ≤, =, 	=, >, ≥} and x, y ∈ Y ∪ {0, 1, . . . , k}. A guard is
a formula grd ∈ B(X ∪N(Y))∪G(X ∪Q∪N(Y)). In other words, the guard grd
may also constraint the values of the variables in Y . Similarly, a statement may
assign values in {0, 1, . . . , k} to variables in Y . A local variable state is a mapping
from X ∪ Y to B ∪ {0, 1, . . . , k} respecting the types of the variables. The def-
initions of configurations, the transition relation, and constraints are extended
in the obvious manner. Well quasi-ordering of the constraint system follows in a
similar manner to Section 6, using the fact that variables in Y range over finite
domains.

Broadcast. In a broadcast transition, an arbitrary number of processes change
states simultaneously. A broadcast rule is a sequence of transition rules of the
following form
�
�

q0

grd0 → stmt0
q′
0

�
�
�
�

q1

grd1 → stmt1
q′
1

�
�

∗ �
�

q2

grd2 → stmt2
q′
2

�
�

∗

· · ·

�
�

qm

grdm → stmtm

q′
m

�
�

∗

(2)

where grdi ∈ B(X) for each i : 0 ≤ i ≤ m. Below, we use ti to refer to the
ith rule in the above sequence. The broadcast rule is deterministic in the sense
that either grdi ∧ grdj is not satisfiable or qi 	= qj for each i, j : 1 ≤ i 	=
j ≤ m. The broadcast is initiated by a process, called the initiator, which is
represented by t0 (i.e., the leftmost transition rule). This transition rule has
the same interpretation as in Section 2. That is, in order for the broadcast

732 P.A. Abdulla et al.

transition to take place, the initiator should be in local state q0 and its local
variables should satisfy the guard grd0. After the completion of the broadcast,
the initiator has changed state to q′0 and updated its local variables according
to stmt0. Together with the initiator, an arbitrary number of processes, called
the receptors, change state simultaneously. The receptors are modeled by the
transition rules t1, . . . , tm (each rule being marked by a * to emphasize that an
arbitrary number of receptors may execute that rule). More precisely, if the local
state of a process is qi and its local variables satisfy grdi, then the process changes
its local state to q′i and updates its local variables according to stmti. Notice that
since the broadcast rule is deterministic, a receptor satisfies the precondition of at
most one of the transition rules. Processes which do not satisfy the precondition
of any of the transition rules remain passive during the broadcast. We define a
transition relation −→B to reflect broadcast transitions. The definition of −→B

can be derived in a straightforward manner from the above informal description.
We extend the transition relation −→ defined in Section 3, by taking its union
with −→B. In a similar manner, we extend the approximate transition relation
� (defined in Section 4) by taking its union with −→B. This means that the
introduction of broadcast transitions are interpreted exactly, and thus they do
not add any additional approximation to � .

We use the same constraint system as the one defined for systems without
broadcast; consequently checking entailment, checking intersection with initial
states, and proving termination are identical to Section 6. Below we show how
to compute Pre. Consider a constraint φ′ = θ′1 · · · θ′n and a broadcast rule b of
the above form. We define Preb(φ′) to be the set of all constraints of the form
θ1 · · · θn such that there is i : 1 ≤ i ≤ n and the following properties are satisfied:

– θi = θ′i[t0] ∧ grd0 ∧ q0. This represents the predecessor state of the initiator.
– For each j : 1 ≤ j 	= i ≤ n, one of the following properties is satisfied:

• θj = θ′j ∧¬((q1 ∧ grd1)∨ (q2 ∧ grd2)∨ · · · ∨ (qm ∧ grdm)). This represents
a passive process (a process other than the initiator, is allowed to be
passive if it does not satisfy the preconditions of any of the rules).

• θj = θ′j [tk]∧grdk∧qk, for some k : 1 ≤ k ≤ m. This represents a receptor.

Binary Communication. In binary communication two processes perform a
rendez-vous changing states simultaneously. A rendez-vous rule consists of two
transition rules of the from

⎡

⎣
q1

grd1 → stmt1
q′1

⎤

⎦

⎡

⎣
q2

grd2 → stmt2
q′2

⎤

⎦ (3)

where grd1, grd2 ∈ B(X). Binary communication can be treated in a similar
manner to broadcast transitions (here there is exactly one receptor). The model
definition and the symbolic algorithm can be extended in a corresponding way.

Regular Model Checking Without Transducers 733

Dynamic Creation and Deletion. We allow dynamic creation and deletion
of processes. A process creation rule is of the form

⎡

⎣
·

grd → ·
q′

⎤

⎦ (4)

where q′ ∈ Q and grd ∈ B(X). The rule creates a new process whose local state
is q′ and whose local variables satisfy grd. The newly created processes may be
placed anywhere inside the array of processes.

We define a transition relation −→D to reflect process creation transitions as
follows. For configurations c and c′, and a process creation rule d of the form
of (4), we define c d−→D c′ to denote that c′ is of the form c′1 • u′ • c′2 where
c = c′1 • c′2, u′ = (q′, v′) and v′ |= grd. We use the same constraint system as the
one defined for systems without process creation and deletion. We show how to
compute Pre. Consider a constraint φ′ and a creation rule d of the form of (4).
We define Pred (φ′) to be the set of all constraints φ such that φ′ (resp. φ) is of
the form φ′

1 • θ′ • φ′
2 (resp. φ′

1 • φ′
2) and θ′[t] ∧ grd is satisfiable. Notice that θ′[t]

does not change the values of the local variables in θ′.
A process deletion rule is of the form

⎡

⎣
q

grd → ·
·

⎤

⎦ (5)

where q ∈ Q and grd ∈ B(X). The rule deletes a single process whose local state
is q provided that the guard grd is satisfied. The definitions of the transition
system and the symbolic algorithm can be extended in a similarly to the case
with process creation rules. We omit the details here due to shortage of space.

Counters. Using deletion, creation, and universal conditions we can simulate
counters, i.e., global unbounded variables which range over the natural numbers.
For each counter c, we use a special local state qc, such that the value of c is
encoded by the number of occurrences of qc in the configuration. Increment and
decrement operations can be simulated using creation and deletion of processes
in local state qc. Zero-testing can be simulated through universal conditions.
More precisely, c = 0 is equivalent to the condition that there is no process in
state qc. This gives a model which is as powerful as Petri nets with inhibitor arcs
(or equivalently counter machines). Observe that the approximation introduced
by the universal condition means that we replace zero-testing (in the original
model) by resetting the counter value to zero (in the approximate model). Thus,
we are essentially approximating the counter machine by the corresponding lossy
counter machine (see [22] for a description of lossy counter machines). In fact, we
can equivalently add counters as a separate feature (without simulation through
universal conditions), and approximate zero-testing by resetting as described
above.

734 P.A. Abdulla et al.

8 Experimental Results

Based on our method, we have implemented a prototype tool and run it on a
collection of mutual exclusion and cache coherence protocols. The results, using
a Pentium M 1.6 Ghz with 1G of memory, are summarized in Tables 1 and 2. For
each of the mutual exclusion protocols, we consider two variants; namely one with
dynamic creation and deletion of processes (marked with a * in Table 1), and
one without. Full details of the examples can be found in [2]. For each example,

Table 1. Mutual exclusion algorithms

iter # constr t(ms)

Bakery 2 2 4
Bakery* 2 2 4
Burns 14 71 230
Burns* 9 21 32
Java M-lock 5 24 30
Java M-lock* 5 17 30
Dijkstra 13 150 1700
Dijkstra* 8 57 168
Szymanski 17 334 3880
Szymanski* 17 334 4080

Table 2. Cache coherence protocols

iter # constr t(ms)

Synapse 3 3 4
Berkeley 2 6 8
Mesi 3 8 8
Moesi 1 12 12
Dec Firefly 3 11 16
Xerox P.D 3 20 52
Illinois 5 33 80
Futurebus 7 153 300
German 44 14475 3h45mn

we give the number of iterations performed by the reachability algorithm, the
largest number of constraints maintained at any point during the execution of
the algorithm, and the time (in milliseconds). The computation for each example
required less than 15MB of memory.

9 Conclusion and Future Work

We have presented a method for verification of parameterized systems where the
components are organized in a linear array. We derive an over-approximation
of the transition relation which allows the use of symbolic reachability analysis
defined on upward closed sets of configurations. Based on the method, we have
implemented a prototype which performs favorably compared to existing tools
on several protocols which implement cache coherence and mutual exclusion.

One direction for future research is to apply the method to other types of
topologies than linear arrays. For instance, in the cache coherence protocols we
consider, the actual ordering on the processes inside the protocol has no rele-
vance. These protocols fall therefore into a special case of our model where the
system can be viewed as set of processes (without structure) rather than as a
linear array. This indicates that the verification algorithm can be optimized even
further for such systems. Furthermore, since our algorithm relies on a small set
of properties of words which are shared by other data structures, we believe
that our approach can be lifted to a more general setting. In particular we aim

Regular Model Checking Without Transducers 735

to develop similar algorithms for systems whose behaviours are captured by
relations on trees and on general forms of graphs.

References

1. P. A. Abdulla, K. Čerāns, B. Jonsson, and T. Yih-Kuen. General decidability
theorems for infinite-state systems. In Proc. LICS ’96, pages 313–321, 1996.

2. P. A. Abdulla, N. B. Henda, G. Delzanno, and A. Rezine. Regular model checking
without transducers. Technical Report 2006-052, Uppsala University, Dec. 2006.

3. P. A. Abdulla, B. Jonsson, M. Nilsson, and J. d’Orso. Regular model checking
made simple and efficient. In Proc. CONCUR ’02, pages 116–130, 2002.

4. T. Arons, A. Pnueli, S. Ruah, J. Xu, and L. Zuck. Parameterized verification with
automatically computed inductive assertions. In CAV ’01, pages 221–234, 2001.

5. K. Baukus, Y. Lakhnech, and K. Stahl. Parameterized verification of a cache
coherence protocol: Safety and liveness. In VMCAI ’02, pages 317–330, 2002.

6. B. Boigelot, A. Legay, and P. Wolper. Iterating transducers in the large. In Proc.
CAV ’03, volume 2725 of LNCS, pages 223–235, 2003.

7. A. Bouajjani, P. Habermehl, and T. Vojnar. Abstract regular model checking. In
Proc. CAV ’04, LNCS, pages 372–386, Boston, July 2004.

8. E. Clarke, M. Talupur, and H. Veith. Environment abstraction for parameterized
verification. In Proc. VMCAI ’06, volume 3855 of LNCS, pages 126–141, 2006.

9. D. Dams, Y. Lakhnech, and M. Steffen. Iterating transducers. In Proc. CAV’ 01,
volume 2102 of LNCS, 2001.

10. G. Delzanno. Automatic verification of cache coherence protocols. In Emerson and
Sistla, editors, Proc. CAV ’00, volume 1855 of LNCS, pages 53–68, 2000.

11. G. Delzanno. Verification of consistency protocols via infinite-state symbolic model
checking. In Proc. FORTE/PSTV 2000, pages 171–186, 2000.

12. E. Emerson and V. Kahlon. Exact and efficient verification of parameterized cache
coherence protocols. In CHARME 2003, pages 247–262, 2003.

13. E. Emerson and V. Kahlon. Model checking guarded protocols. In Proc. LICS ’03,
pages 361–370, 2003.

14. J. Esparza, A. Finkel, and R. Mayr. On the verification of broadcast protocols. In
Proc. LICS ’99, pages 352–359, 1999.

15. S. M. German and A. P. Sistla. Reasoning about systems with many processes.
Journal of the ACM, 39(3):675–735, 1992.

16. P. Godefroid and P. Wolper. Using partial orders for the efficient verification of
deadlock freedom and safety properties. FMSD, 2(2):149–164, 1993.

17. G. Higman. Ordering by divisibility in abstract algebras. Proc. London Math. Soc.,
2:326–336, 1952.

18. P. Kelb, T. Margaria, M. Mendler, and C. Gsottberger. MOSEL: A flexible toolset
for monadic second-order logic. In Proc. TACAS ’97, pages 183–202, 1997.

19. Y. Kesten, O. Maler, M. Marcus, A. Pnueli, and E. Shahar. Symbolic model
checking with rich assertional languages. TCS, Volume 256, pages 93–112, 2001.

20. S. K. Lahiri and R. E. Bryant. Indexed predicate discovery for unbounded system
verification. In CAV 2004, pages 135–147, 2004.

21. M. Maidl. A unifying model checking approach for safety properties of parameter-
ized systems. In Proc. CAV ’01, pages 324–336, 2001.

22. R. Mayr. Undecidable problems in unreliable computations. Theoretical Computer
Science, Volume 297, pages 337–354, 2003.

736 P.A. Abdulla et al.

23. A. Pnueli, S. Ruah, and L. Zuck. Automatic deductive verification with invisible
invariants. In Proc. TACAS ’01, pages 82–97, 2001.

24. A. Pnueli, J. Xu, and L. Zuck. Liveness with (0,1,infinity)-counter abstraction. In
Proc. CAV ’02, volume 2404 of LNCS, 2002.

25. A. Roychoudhury and I. Ramakrishnan. Automated inductive verification of pa-
rameterized protocols. In Proc. CAV ’01, pages 25–37, 2001.

26. C. Topnik, E. Wilhelm, T. Margaria, and B. Steffen. jMosel: A Stand-Alone Tool
and jABC Plugin for M2L(Str). In Model Checking Software: 13th International
SPIN Workshop, volume 3925 of LNCS, pages 293–298, 2006.

27. T. Touili. Regular Model Checking using Widening Techniques. ETCS, 50(4),
2001. Proc. VEPAS’01.

28. M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program
verification. In Proc. LICS ’86, pages 332–344, June 1986.

Author Index

Abdulla, Parosh Aziz 721
Alur, Rajeev 664
Amla, Nina 405
Anand, Saswat 117 134
Armando, Alessandro 373

Batt, Grégory 323
Behrmann, Gerd 231 679
Belta, Calin 323
Benerecetti, Massimo 373
Berdine, J. 3
Blom, Stefan 683
Bohnenkamp, Henrik 500
Bollig, Benedikt 435
Bouajjani, Ahmed 690
Brady, Bryan 358
Bryant, Randal E. 358

Calamé, Jens R. 683
Černý, Pavol 664
Chaki, Sagar 276
Chan, Wen-Chin 466
Chatterjee, Krishnendu 261
Chatterjee, Shaunak 19
Chaudhuri, Swarat 664
Chen, Yu-Fang 466
Ciardo, Gianfranco 648
Cimatti, Alessandro 505
Clarke, Edmund 583
Cleaveland, Rance 1
Condrat, Christopher 618
Cook, B. 3
Cortier, Véronique 538

D’Aprile, Davide 216
Dashti, Mohammad Torabi 683
Delzanno, Giorgio 721
Derisavi, Salem 139
Dierks, Henning 679
Doghmi, Shaddin F. 523
Donatelli, Susanna 216
Doyen, Laurent 451
Dräger, Klaus 679

Eisenbrand, Friedrich 155
Elkind, Edith 420
Etessami, Kousha 50, 66

Farzan, Azadeh 102
Finkbeiner, Bernd 679
Fradet, Pascal 185
Fränzle, Martin 201
Frias, Marcelo F. 587

Genest, Blaise 420
Gheorghiu, Mihaela 292
Giannakopoulou, Dimitra 292
Girault, Alain 185
Goel, Amit 602
Goessler, Gregor 185
Goldman, Max 308
Gordon, Michael J.C. 568
Grundy, Jim 602
Guttman, Joshua D. 523

Han, Tingting 72
Hansen, Michael R. 201
Harel, David 485
Harrold, Mary Jean 117
Henda, Noomene Ben 721
Henzinger, Thomas A. 261
Herbreteau, Frédéric 706
Hermanns, Holger 155, 500
Hoffmann, Jörg 679
Horn, Florian 472
Hubbard, E. Jane Albert 343

Jackson, Daniel 632
Jain, Himanshu 583
Jansen, David N. 87, 155
Jhala, Ranjit 553
Jurdziński, Marcin 170
Jurski, Yan 690

Kalla, Priyank 618
Katoen, Joost-Pieter 72, 87, 435, 500
Katz, Shmuel 308
Keighren, Gavin 538
Kemna, Tim 87
Kern, Carsten 435

738 Author Index

Khurshid, Sarfraz 34
Krishna, Shankara Narayanan 246
Kroening, Daniel 358, 583
Krstić, Sava 602
Kugler, Hillel 343
Kupferschmid, Sebastian 679
Kwiatkowska, M. 50

Lahiri, Shuvendu K. 19
Laroussinie, François 170
Larsen, Kim G. 231
Leino, K. Rustan M. 2
Leucker, Martin 435
Lisser, Bert 683
Lopez Pombo, Carlos G. 587
Loya, Kuntal 246
Lüttgen, Gerald 648
Lüttich, Klaus 519

Madhusudan, P. 102
Maeder, Christian 519
Majumdar, Rupak 553
Malik, Muhammad Zubair 34
Manevich, R. 3
Manolios, Panagiotis 339
Mantovani, Jacopo 373
McMillan, Kenneth L. 405
Moscato, Mariano M. 587
Mossakowski, Till 519
Myreen, Magnus O. 568

Oms, Marc Galceran 339
Orso, Alessandro 117
Orzan, Simona 683
Ouaknine, Joël 358

Pandya, Paritosh K. 246
Pang, Jun 683
Păsăreanu, Corina S. 134, 292
Peled, Doron 420
Pervaiz, Aman 34
Pnueli, Amir 343
Podelski, Andreas 679

Qadeer, Shaz 19

Rakamarić, Zvonimir 19
Ramalingam, G. 3
Raskin, Jean-François 451
Rasmussen, Jacob I. 231
Rezine, Ahmed 721
Roveri, Marco 505

Sagiv, M. 3
Sangnier, Arnaud 216
Sebastiani, Roberto 389
Segall, Itai 485
Seshia, Sanjit A. 358
Sharygina, Natasha 583
Sighireanu, Mihaela 690
Sproston, Jeremy 170, 216
Steel, Graham 538
Stern, Michael J. 343
Strichman, Ofer 276, 358
Sutre, Grégoire 706

Thayer, F. Javier 523
Tinelli, Cesare 602
Tivoli, Massimo 185
Tonetta, Stefano 389, 505
Torlak, Emina 632
Tran, The Quang 706
Tsai, Ming-Hsien 466
Tsay, Yih-Kuen 466

Valls, Sergi Oliva 339
van de Pol, Jaco 683
Vardi, Moshe Y. 50, 389
Visser, Willem 134

Weiss, Ron 323
Wijs, Anton J. 683
Wojtczak, Dominik 66
Wu, Kang-Nien 466

Xu, Ru-Gang 553

Yannakakis, M. 50
Yu, Andy Jinqing 648

Zapreev, Ivan 87
Zhang, Lijun 155

	Title
	Foreword
	Preface
	Organization
	Table of Contents
	THERE AND BACK AGAIN: Lessons Learned on the Way to the Market
	Verifying Object-Oriented Software: Lessons and Challenges
	Shape Analysis by Graph Decomposition
	Introduction
	Overview
	A Full Heap Abstraction for Lists
	Abstracting List Segments

	A Graph Decomposition Abstraction for Lists
	The Abstract Domain of Shape Subgraphs
	Abstraction by Graph Decomposition
	Concretization by Composition of Shape Subgraphs

	Developing Efficient Abstract Transformersfor the Graph Decomposition Abstraction
	The Most Precise Abstract Transformer
	Sound and Efficient Transformers
	An Incremental Transformer

	Prototype Implementation and Empirical Results
	Related Work

	A Reachability Predicate for Analyzing Low-Level Software
	Introduction
	Related Work

	Motivation
	Example

	Operational Semantics of C
	Reachability and Pointer Arithmetic
	Annotation Language
	Implementation
	Proving Verification Conditions

	Evaluation
	Conclusions and Future Work

	Generating Representation Invariants of Structurally Complex Data
	Introduction
	Example
	Deryaft
	Program Heap as an Edge-Labeled Graph
	Core and Derived Fields
	Properties of Interest
	Algorithm
	Illustration: Binary Tree Representation of Heaps

	Experiments
	Discussion
	Related Work
	Conclusions

	Multi-objective Model Checking of Markov Decision Processes
	Introduction
	Basics and Background
	Multi-objective Reachability
	Qualitative Multi-objective Model Checking
	Quantitative Multi-objective Model Checking
	Concluding Remarks

	PReMo: An Analyzer for Probabilistic Recursive Models
	Introduction
	Experimental Results
	Future Work

	Counterexamples in Probabilistic Model Checking
	Introduction
	Preliminaries
	Strongest Evidences and Counterexamples
	From a DTMC to a Weighted Digraph
	Finding Strongest Evidences
	Finding Smallest Counterexamples
	Lower Bounds on Probabilities
	Conclusion

	Bisimulation Minimisation Mostly Speeds Up Probabilistic Model Checking
	Introduction
	Preliminaries
	Bisimulation
	Experiments
	Discrete Time
	Continuous Time
	Rewards

	Concluding Remarks

	Causal Dataflow Analysis for Concurrent Programs
	Introduction
	Preliminaries
	The Control Net of a Program
	Causal Concurrent Dataflow Framework
	Meet over All Traces Solution
	Formulation of Specific Problems in the CCD Framework

	Solving the Distributive CCD Problem
	Experiments
	Conclusions

	Type-Dependence Analysis and Program Transformation for Symbolic Execution
	Introduction
	Type-Dependence Analysis
	Building the TDG
	Performing CFL-Reachability on the TDG

	Program Transformation
	Source and Target Languages
	Transformation

	Empirical Studies
	Results and Discussion

	Related Work
	Conclusion
	Type-Dependence Analysis for Fields and Entities of Array-Types
	Transformation Rules

	JPF–SE: A Symbolic Execution Extension to Java PathFinder
	Introduction
	JPF--SE Overview
	Conclusion and Future Work

	A Symbolic Algorithm for Optimal Markov Chain Lumping
	Introduction
	Background
	Notation, CTMC, and Lumpability
	Explicit State-Level Lumping Algorithm
	Multi-Terminal Binary Decision Diagram

	Transforming the Algorithm from Explicit to Symbolic
	Symbolic Representation of Partitions
	Replacing Explicit L by Symbolic \prt
	Symbolic Procedures: SymComputeKeys and SymSplit

	Improving the Symbolic Algorithm Running Time
	T1: Computing \textsc{GetClass}$(\bddset(\prt),j+1)$ from
 \textsc{GetClass}$(\bddset(\prt),j)$
	T2: Fast Detection and Skipping of Stable Classes

	Performance Study
	Implementation and Example Models
	Results

	Conclusion and Future Work

	Flow Faster: Efficient Decision Algorithms for Probabilistic Simulations
	Introduction
	Preliminaries
	Algorithms for Deciding Strong Simulation
	Algorithms for Deciding Weak Simulation
	Conclusions

	Model Checking Probabilistic Timed Automata with One or Two Clocks
	Introduction
	Probabilistic Timed Automata
	Probabilistic Timed Temporal Logic
	Model Checking One Clock Probabilistic Timed Automata
	Model Checking \sptctlq on 1C-PTA
	Model Checking \ptctlz\ on 1C-PTA

	Model Checking Two Clocks Probabilistic Timed Automata

	Adaptor Synthesis for Real-Time Components
	Introduction
	Background
	Context
	Architectural Model

	Overview
	The Interface Specification and Its Translation
	Adaptor Synthesis
	Unification PN Generation
	Controlled Coverability Graph Synthesis (CCG)

	Case Study: A Remote Medical Care System
	Conclusion

	Deciding an Interval Logic with Accumulated Durations
	Introduction
	Duration Calculus
	Syntax
	Semantics

	Decidability of the Satisfiability Problem
	Priced Timed Automata
	Encoding of DCub Formulae by MPTA
	The Construction
	Correspondence Between Interpretations of Formulae and Runs of Corresponding MPTA

	Conclusion

	From Time Petri Nets to Timed Automata: An Untimed Approach
	Introduction
	Preliminaries
	From Time Petri Nets to Timed Automata
	MCTA of a TPN
	Comparing the MCG, ESCG, and zbMCG Approaches

	Improving the Effectiveness of the MCG Approach
	Reducing the Number of Unreachable Locations
	Trading Clocks for Locations and Speed
	Dealing with Unboundedness

	The GreatSPN2TA Tool
	Conclusions

	Complexity in Simplicity: Flexible Agent-Based State Space Exploration
	Introduction
	Agent Framework
	Frustration Search
	Framework Instantiation
	Applications

	Conclusions and Future Work

	On Sampling Abstraction of Continuous Time Logic with Durations
	Introduction
	A Variety of Duration Calculi
	Duration Calculi

	PLDC to WSIDL
	DC to PLDC
	WSIDL to DDC
	Validity Checking DC
	Experimental Results

	Assume-Guarantee Synthesis
	Introduction
	Co-synthesis
	Game Algorithms for Co-synthesis
	Abstraction-Based Co-synthesis

	Optimized L*-Based Assume-Guarantee Reasoning
	Introduction
	Preliminaries
	The L* Algorithm
	AG Reasoning with L*
	Optimized L*-Based AG Reasoning
	Reusing Counterexamples
	Selective Membership Queries
	Minimizing the Assumption Alphabet

	Experiments

	Refining Interface Alphabets for Compositional Verification
	Introduction
	Background
	Assume-Guarantee Reasoning and Small Interface Alphabets
	Learning for Assume-Guarantee Reasoning
	Learning with Alphabet Refinement
	Algorithm
	Extension to n Modules

	Properties of Learning with Refinement
	Experiments
	Related Work
	Conclusions and Future Work

	MAVEN: Modular Aspect Verification
	Introduction
	Aspect-Oriented Programming
	Modular Aspectual Verification
	Results

	Definitions
	LTL Tableaux
	Aspects
	Weaving
	Weakly Invasive Aspects

	Algorithm
	MAVEN
	Related Work
	Conclusion

	Model Checking Liveness Properties of Genetic Regulatory Networks
	Introduction
	Preliminaries
	A Motivating Example: Tuning a Transcriptional Cascade
	Model Checking Genetic Regulatory Networks with Parameter Uncertainty
	PMA Models and LTL Specifications
	Embedding Transition Systems and Discrete Abstractions
	Model Checking Uncertain PMA Systems

	Transient Regions and Liveness Checking
	Time-Diverging Executions and Transient Regions
	Ruling Out Time-Converging Executions

	Transient Region Computation for PMA Systems
	Analysis of the Tuned Transcriptional Cascade
	Discussion

	Checking Pedigree Consistency with PCS
	Introduction
	Pedigree Consistency
	Tool Description
	Results
	Conclusions

	“Don’t Care” Modeling: A Logical Framework for Developing Predictive System Models
	Introduction
	Example
	Problem Formulation
	Solutions
	Implementing the Basic Algorithm
	Improved Algorithm

	Biological Application
	Related Work

	Deciding Bit-Vector Arithmetic with Abstraction
	Introduction
	Preliminaries
	The Decision Procedure
	Overview
	Generating an Over-Approximating Abstraction
	Another Step of Abstraction

	Experimental Results
	Conclusion

	Abstraction Refinement of Linear Programs with Arrays
	Introduction
	Model Checking Linear Programs with Arrays
	Linear Programs and Linear Programs with Arrays
	Abstracting Linear Programs with Arrays into Linear Programs
	Checking Trace Feasibility
	Refinement
	Implementation and Experimental Results
	Conclusions

	Property-Driven Partitioning for Abstraction Refinement
	Introduction
	Background
	Symbolic Model Checking
	Abstraction
	Counterexample-Guided Abstraction Refinement

	Property-Driven Partitioning for Abstraction Refinement
	Combining PDP with Abstraction
	Property-Driven Partitioned Refinement

	Experimental Results
	Conclusions

	Combining Abstraction Refinement and SAT-Based Model Checking
	Introduction
	Overview of the Algorithms
	Preliminaries
	DPLL-Style SAT Solvers
	SAT-Based Bounded Model Checking
	Proof-Based Abstraction Refinement
	Interpolation-Based Model Checking

	Combining Interpolation and Abstraction Refinement
	Using Proof-Based Abstraction in Interpolation
	Incremental Interpolation

	Experimental Analysis
	Conclusions

	Detecting Races in Ensembles of Message Sequence Charts
	Introduction
	Preliminaries
	Race Detection in Multiple MSCs
	Number of MSCs Needed for Closedness
	MSCs with Coregions
	Hardness Results
	Conclusions

	Replaying Play In and Play Out: Synthesis of Design Models from Scenarios by Learning
	Introduction
	Message Sequence Charts
	Message-Passing Automata
	An Extension of Angluin's Algorithm
	The Basic Algorithm
	Learning Objects Represented by Subclasses of Regular Word Languages

	Learning Message-Passing Automata
	Regular MSC Languages and Product MSC Languages
	Learning \forall -Bounded Message-Passing Automata
	Learning \exists -Bounded Message-Passing Automata
	Learning \forall -Bounded Safe Product Message-Passing Automata
	Learning \forall -Bounded Product Message-Passing Automata

	Tool Description and Future Work

	Improved Algorithms for the Automata-Based Approach to Model-Checking
	Introduction
	Büchi Automata and Classical Algorithms
	Simulation Pre-orders and Fixed Points
	Emptiness of ABW
	Universality of NBW
	Implementation and Practical Evaluation
	Language Inclusion for Büchi Automata
	Conclusion

	GOAL: A Graphical Tool for Manipulating B¨uchi Automata and Temporal Formulae
	Introduction
	Main Functions
	Use Cases
	Concluding Remarks

	Faster Algorithms for Finitary Games
	Introduction
	Definitions
	Parity Games
	Parity Conditions
	Algorithms

	Streett Games
	Streett Conditions

	Conclusion and Developments

	Planned and Traversable Play-Out: A Flexible Method for Executing Scenario-Based Programs
	Introduction
	LSCs
	Planning
	Main Approaches to Planning
	Planning Graphs
	IPP

	Translating Play-Out into Planning
	Initial Conditions
	The Goal
	Actions
	More Formally

	Extending IPP
	Forced Mutexes
	Finding Many Plans

	Results
	Traversable Play-Out
	Cut-Queries
	Performance

	Future Work
	Related Work

	$MOTOR$: The $MODEST$ Tool Environment
	The $MODEST$ Approach
	motor
	motor and Möbius
	Status and Availability

	Syntactic Optimizations for PSL Verification
	Introduction
	The Property Specification Language PSL
	From PSL to NBA: Previous Approaches
	Syntactic Optimizations for PSL
	Experimental Evaluation
	Conclusions and Future Work

	The Heterogeneous Tool Set, HETS
	Introduction
	Logics in Hets
	Heterogeneous Specification
	Proof Management
	Conclusion

	Searching for Shapes in Cryptographic Protocols
	Introduction
	Shapes: The Core Idea
	The Yahalom Protocol Definition
	Search Steps
	Yahalom: Shapes for the Responder
	Search Strategy
	Implementing CPSA

	Automatic Analysis of the Security of XOR-Based Key Management Schemes
	Introduction
	Analysing the IBM Recommendations Using CL-AtSe
	CCA Key Management Commands
	Modelling the API
	Analysing IBM's Recommendations

	Theoretical Results for XOR-Based Key-Management APIs
	Definitions
	Well-Formed Protocols
	Proof of Decidability

	Implementation and Results
	Representation of XOR Terms
	The Implemented Procedure
	Results

	Conclusion

	State of the Union: Type Inference Via Craig Interpolation
	Introduction
	Language and Type System
	Syntax and Semantics
	Predicated Refinements of Subtype Hierarchies

	Type Checking
	Type Inference Via Interpolation
	Generating Predicate Constraints
	Solving Predicate Constraints

	Implementation and Experiences
	Related Work

	Hoare Logic for Realistically Modelled Machine Code
	Introduction
	Approach
	Basic Specifications
	Heterogeneous Specifications
	Positioning Functions
	Excessive Separation

	Hoare Triple for Machine Code
	State Representation
	Execution Predicate
	Code Assertion
	Hoare Triple
	Example: Composition
	Example: Procedures and Procedural Recursion

	Formalisation and Specialisation
	Summary

	VCEGAR: Verilog CounterExample Guided Abstraction Refinement
	Introduction
	Word-Level Circuit Verification with VCEGAR
	Conclusion

	Alloy Analyzer+PVS in the Analysis and Verification of Alloy Specifications
	Introduction
	Alloy and the Alloy Analyzer
	A Novel Complete Calculus for Alloy
	Point-Dense Omega Closure Fork Algebras
	A Complete Calculus for Alloy
	Comparing the Source and Target Formalisms

	The Dynamite Tool
	Customizations Made on EMACS
	Customizations Made on PVS
	A Proof Scenario

	A Case Study: A Formal Model of Addressing for Interoperating Networks
	Discussion

	Combined Satisfiability Modulo Parametric Theories
	Introduction
	Syntax and Semantics of Higher Order Logic
	Syntax of HOL Types and Terms
	Semantics of Types
	Semantics of Terms

	Parametric Structures
	Relational Semantics
	Fully Parametric Structures

	HOL Theories and Satisfiability
	Nelson-Oppen Cooperation
	The Combined Solver
	The Combination Theorem

	Conclusion and Future Work

	A Gr¨obner Basis Approach to CNF-Formulae Preprocessing
	Introduction
	Contemporary Preprocessing Approaches

	Gröbner Bases for CNF-Transformation
	Methodology

	Preliminaries
	Gröbner Bases

	Transformation Process
	Partitioning
	Generating the Gröbner Basis
	Monomial Ordering
	Transforming Polynomials into CNF Clauses

	Results
	Categories of SAT-Instances
	Combining SAT Preprocessors
	Interpreting the Results

	Conclusion

	Kodkod: A Relational Model Finder
	Introduction
	Related Work
	Model Finding Basics
	Abstract Syntax
	Semantics

	Analysis
	Symmetry Detection
	Sparse-Matrix Translation to Boolean Logic
	Sharing Detection with Compact Boolean Circuits

	Results

	Bounded Reachability Checking of Asynchronous Systems Using Decision Diagrams
	Introduction
	Background
	Bounded Reachability Checking Using Decision Diagrams
	Experimental Results
	Discussion and Related Work
	Conclusions and Future Work

	Model Checking on Trees with Path Equivalences
	Introduction
	Trees with Path Equivalences
	Branching-Time Logics on Equivalence Graphs
	Model Checking
	Related Work
	Conclusion

	UPPAAL/DMC – Abstraction-Based Heuristics for Directed Model Checking
	Introduction
	Heuristics
	Monotonicity Abstraction
	Automata-Theoretic Abstraction

	Results
	Outlook

	Distributed Analysis with μCRL: A Compendium of Case Studies
	Introduction
	Applications of Distributed Analysis
	Evaluation and Conclusion
	Appendix

	A Generic Framework for Reasoning About Dynamic Networks of Infinite-State Processes
	Introduction
	Colored Markings Logic
	Preliminaries
	Syntax and Semantics of CML
	Syntactical Forms and Fragments

	Satisfiability Problem
	Constrained Petri Nets
	Modeling Power of CPN
	Computing post and pre Images
	Applications in Verification
	Pre-post Condition Reasoning
	Bounded Reachability Analysis
	Checking Invariance Properties

	Conclusion

	Unfolding Concurrent Well-Structured Transition Systems
	Introduction
	Labeled Transition Systems and Event Structures
	Labeled Transition Systems
	Labeled Event Structures

	Truncation for Well-Structured Transition Systems
	Synchronized Product of Well-Structured Transition Systems
	Finite Property-Preserving Truncation of Well-Structured LES

	Compositional Unfoldings of Concurrent Systems
	Unfolding Counters
	Unfolding Labeled Transition Systems
	Unfolding Synchronized Products of Components

	Experimental Results

	Regular Model Checking Without Transducers (On Efficient Verification of Parameterized Systems)
	Introduction
	Preliminaries
	Transition System
	Approximation
	Generic Scheme
	Algorithm
	Extensions
	Experimental Results
	Conclusion and Future Work

	Author Index

