
On Partial Covers, Reducts and Decision Rules
with Weights

Mikhail Ju. Moshkov1, Marcin Piliszczuk2, and Beata Zielosko3

1 Institute of Computer Science, University of Silesia
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39, Bȩdzińska St., Sosnowiec, 41-200, Poland
zielosko@us.edu.pl
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1 Introduction

The paper is devoted to consideration of partial decision-relative reducts (we
will omit often words ”decision-relative”) and partial decision rules for decision
tables on the basis of partial cover investigation.

Rough set theory [11,17] often deals with decision tables containing noisy
data. In this case exact reducts and rules can be ”overlearned” i.e. depend es-
sentially on noise. If we see constructed reducts and rules as a way of knowledge
representation [16] then instead of large exact reducts and rules it is more appro-
priate to work with relatively small partial ones. In [12] Zdzis�law Pawlak wrote
that ”the idea of an approximate reduct can be useful in cases when a smaller
number of condition attributes is preferred over accuracy of classification”.

Last years in rough set theory partial reducts, partial decision rules and partial
covers are studied intensively [6,7,8,9,10,13,19,20,21,22,23,24,27]. Approximate
reducts are investigated also in extensions of rough set model such as VPRS
(variable precision rough sets) [26] and α-RST (alpha rough set theory) [14].

We study the case where each subset, used for covering, has its own weight,
and we must minimize the total weight of subsets in partial cover. The same
situation is with partial reducts and decision rules: each conditional attribute
has its own weight, and we must minimize the total weight of attributes in partial
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reduct or decision rule. If weight of each attribute characterizes time complexity
of attribute value computation then we try to minimize total time complexity of
computation of attributes from partial reduct or partial decision rule. If weight
characterizes a risk of attribute value computation (as in medical or technical
diagnosis) then we try to minimize total risk, etc.

In rough set theory various problems can be represented as set cover problems
with weights:

– problem of construction of a reduct [16] or partial reduct with minimal total
weight of attributes for an information system;

– problem of construction of a decision-relative reduct [16] or partial decision-
relative reduct with minimal total weight of attributes for a decision table;

– problem of construction of a decision rule or partial decision rule with min-
imal total weight of attributes for a row of a decision table (note that this
problem is closely connected with the problem of construction of a local
reduct [16] or partial local reduct with minimal total weight of attributes);

– problem of construction of a subsystem of a given system of decision rules
which ”covers” the same set of rows and has minimal total weight of rules
(in the capacity of a rule weight we can consider its length).

So the study of covers and partial covers is of some interest for rough set
theory. In this paper we list some known results on set cover problems which
can be useful in applications and obtain certain new results.

From results obtained in [20,22] it follows that the problem of construction
of partial cover with minimal weight is NP -hard. Therefore we must consider
polynomial approximate algorithms for minimization of weight of partial covers.

In [18] a greedy algorithm with weights for partial cover construction was
investigated. This algorithm is a generalization of well known greedy algorithm
with weights for exact cover construction [2]. The algorithm from [18] is a greedy
algorithm with one threshold which gives the exactness of constructed partial
cover.

Using results from [9] (based on results from [3,15] and technique created in
[20,22]) on precision of polynomial approximate algorithms for construction of
partial cover with minimal cardinality and results from [18] on precision of greedy
algorithm with one threshold we show that under some natural assumptions on
the class NP the greedy algorithm with one threshold is close to best polynomial
approximate algorithms for construction of partial cover with minimal weight.
However we can try to improve results of the work of greedy algorithm with one
threshold for some part of set cover problems with weight.

We generalize greedy algorithm with one threshold [18], and consider greedy
algorithm with two thresholds. First threshold gives the exactness of constructed
partial cover, and the second one is an interior parameter of the considered
algorithm. We prove that for the most part of set cover problems there exist a
weight function and values of thresholds such that the weight of partial cover
constructed by greedy algorithm with two thresholds is less than the weight of
partial cover constructed by greedy algorithm with one threshold.
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We describe two polynomial algorithms which always construct partial cov-
ers that are not worse than the one constructed by greedy algorithm with one
threshold, and for the most part of set cover problems there exists a weight
function and a value of first threshold such that the weight of partial covers
constructed by the considered two algorithms is less than the weight of partial
cover constructed by greedy algorithm with one threshold.

Information on greedy algorithm work can be used for obtaining lower bounds
on minimal cardinality of partial covers [9]. We fix some kind of information on
greedy algorithm work, and find unimprovable lower bound on minimal weight
of partial cover depending on this information. Obtained results show that this
bound is not trivial and can be useful for investigation of set cover problems.

There exist bounds on precision of greedy algorithm without weights for par-
tial cover construction which do not depend on the cardinality of covered set
[1,6,7,8]. We obtain similar bound for the case of weight.

The most part of the results obtained for partial covers is generalized on the
case of partial decision-relative reducts and partial decision rules for decision
tables which, in general case, are inconsistent (a decision table is inconsistent if
it has equal rows with different decisions). In particular, we show that

– Under some natural assumptions on the class NP greedy algorithms with
weights are close to best polynomial approximate algorithms for minimiza-
tion of total weight of attributes in partial reducts and partial decision rules.

– Based on information receiving during greedy algorithm work it is possible
to obtain nontrivial lower bounds on minimal total weight of attributes in
partial reducts and partial decision rules.

– There exist polynomial modifications of greedy algorithms which for a part
of decision tables give better results than usual greedy algorithms.

Obtained results will further to more wide use of greedy algorithms with
weighs and their modifications in rough set theory and applications.

This paper is, in some sense, an extension of [9] on the case of weights which
are not equal to 1. However, problems considered in this paper (and proofs of
results) are more complicated than the ones considered in [9]. Bounds obtained
in this paper are sometimes more weak than the corresponding bounds from [9].
We must note also that even if all weights are equal to 1 then results of the work
of greedy algorithms considered in this paper can be different from the results of
the work of greedy algorithms considered in [9]. For example, for case of reducts
the number of chosen attributes is the same, but last attributes can differ.

The paper consists of five sections. In Sect. 2 partial covers are studied. In
Sect. 3 partial tests (partial superreducts) and partial reducts are investigated.
In Sect. 4 partial decision rules are considered. Sect. 5 contains short conclusions.

2 Partial Covers

2.1 Main Notions

Let A = {a1, . . . , an} be a nonempty finite set. Elements of A are enumerated by
numbers 1, . . . , n (in fact we fix a linear order on A). Let S = {Bi}i∈{1,...,m} =
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{B1, . . . , Bm} be a family of subsets of A such that B1 ∪ . . . ∪ Bm = A. We will
assume that S can contain equal subsets of A. The pair (A, S) will be called a
set cover problem. Let w be a weight function which corresponds to each Bi ∈ S
a natural number w(Bi). The triple (A, S, w) will be called a set cover problem
with weights. Note that in fact weight function w is given on the set of indexes
{1, . . . , m}. But, for simplicity, we are writing w(Bi) instead of w(i).

Let I be a subset of {1, . . . , m}. The family P = {Bi}i∈I will be called a
subfamily of S. The number |P | = |I| will be called the cardinality of P . Let
P = {Bi}i∈I and Q = {Bi}i∈J be subfamilies of S. The notation P ⊆ Q will
mean that I ⊆ J . Let us denote P ∪ Q = {Bi}i∈I∪J , P ∩ Q = {Bi}i∈I∩J , and
P \ Q = {Bi}i∈I\J .

A subfamily Q = {Bi1 , . . . , Bit} of the family S will be called a partial cover
for (A, S). Let α be a real number such that 0 ≤ α < 1. The subfamily Q will
be called an α-cover for (A, S) if |Bi1 ∪ . . . ∪ Bit | ≥ (1 − α)|A|. For example,
0.01-cover means that we must cover at least 99% of elements from A. Note that
a 0-cover is usual (exact) cover. The number w(Q) =

∑t
j=1 w(Bij ) will be called

the weight of the partial cover Q. Let us denote by Cmin(α) = Cmin(α, A, S, w)
the minimal weight of α-cover for (A, S).

Let α and γ be real numbers such that 0 ≤ γ ≤ α < 1. Let us describe a
greedy algorithm with two thresholds α and γ.

Let us denote N = �|A|(1 − γ)	 and M = �|A|(1 − α)	. Let we make i ≥ 0
steps and choose subsets Bj1 , . . . , Bji . Let us describe the step number i + 1.

Let us denote D = Bj1 ∪ . . . ∪ Bji (if i = 0 then D = ∅). If |D| ≥ M then we
finish the work of the algorithm. The family {Bj1 , . . . , Bji} is the constructed
α-cover. Let |D| < M . Then we choose a subset Bji+1 from S with minimal
number ji+1 for which Bji+1 \ D �= ∅ and the value

w(Bji+1 )
min{|Bji+1 \ D|, N − |D|}

is minimal. Pass to the step number i + 2.
Let us denote by Cγ

greedy(α) = Cγ
greedy(α, A, S, w) the weight of α-cover con-

structed by the considered algorithm for the set cover problem with weights
(A, S, w).

Note that greedy algorithm with two thresholds α and α coincides with the
greedy algorithm with one threshold α considered in [18].

2.2 Some Known Results

In this subsection we assume that the weight function has values from the set of
positive real numbers.

For natural m denote H(m) = 1 + . . . + 1/m. It is known that

ln m ≤ H(m) ≤ ln m + 1 .



On Partial Covers, Reducts and Decision Rules with Weights 215

Consider some results for the case of exact covers where α = 0. In this case
γ = 0. First results belong to Chvátal.

Theorem 1. (Chvátal [2]) For any set cover problem with weights (A, S, w) the
inequality C0

greedy(0) ≤ Cmin(0)H(|A|) holds.

Theorem 2. (Chvátal [2]) For any set cover problem with weights (A, S, w) the
inequality C0

greedy(0) ≤ Cmin(0)H (maxBi∈S |Bi|) holds.

Chvátal proved in [2] that the bounds from Theorems 1 and 2 are almost unim-
provable.

Consider now some results for the case where α ≥ 0 and γ = α. First upper
bound on Cα

greedy(α) was obtained by Kearns.

Theorem 3. (Kearns [5]) For any set cover problem with weights (A, S, w) and
any α, 0 ≤ α < 1, the inequality Cα

greedy(α) ≤ Cmin(α)(2H(|A|) + 3) holds.

This bound was improved by Slav́ık.

Theorem 4. (Slav́ık [18]) For any set cover problem with weights (A, S, w) and
any α, 0 ≤ α < 1, the inequality Cα

greedy(α) ≤ Cmin(α)H (�(1 − α)|A|	) holds.

Theorem 5. (Slav́ık [18])) For any set cover problem with weights (A, S, w) and
any α, 0 ≤ α < 1, the inequality Cα

greedy(α) ≤ Cmin(α)H (maxBi∈S |Bi|) holds.

Slav́ık proved in [18] that the bounds from Theorems 4 and 5 are unimprovable.

2.3 On Polynomial Approximate Algorithms for Minimization of
Partial Cover Weight

In this subsection we consider three theorems which follow immediately from
Theorems 13–15 [9].

Let 0 ≤ α < 1. Consider the following problem: for given set cover problem
with weights (A, S, w) it is required to find an α-cover for (A, S) with minimal
weight.

Theorem 6. Let 0 ≤ α < 1. Then the problem of construction of α-cover with
minimal weight is NP -hard.

From this theorem it follows that we must consider polynomial approximate
algorithms for minimization of α-cover weight.

Theorem 7. Let α ∈ IR and 0 ≤ α < 1. If NP �⊆ DTIME(nO(log log n)) then
for any ε, 0 < ε < 1, there is no polynomial algorithm that for a given set cover
problem with weights (A, S, w) constructs an α-cover for (A, S) which weight is
at most (1 − ε)Cmin(α, A, S, w) ln |A|.

Theorem 8. Let α be a real number such that 0 ≤ α < 1. If P �= NP then
there exists δ > 0 such that there is no polynomial algorithm that for a given
set cover problem with weights (A, S, w) constructs an α-cover for (A, S) which
weight is at most δCmin(α, A, S, w) ln |A|.
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From Theorem 4 it follows that Cα
greedy(α) ≤ Cmin(α)(1 + ln |A|). From this

inequality and from Theorem 7 it follows that under the assumption NP �⊆
DTIME(nO(log log n)) greedy algorithm with two thresholds α and α (in fact
greedy algorithm with one threshold α from [18]) is close to best polynomial
approximate algorithms for minimization of partial cover weight. From the con-
sidered inequality and from Theorem 8 it follows that under the assumption
P �= NP greedy algorithm with two thresholds α and α is not far from best
polynomial approximate algorithms for minimization of partial cover weight.

However we can try to improve the results of the work of greedy algorithm
with two thresholds α and α for some part of set cover problems with weights.

2.4 Comparison of Greedy Algorithms with One and Two
Thresholds

The following example shows that if for greedy algorithm with two thresholds
α and γ we will use γ such that γ < α we can obtain sometimes better results
than in the case γ = α.

Example 1. Consider a set cover problem (A, S, w) such that A = {1, 2, 3, 4, 5,
6}, S = {B1, B2}, B1 = {1}, B2 = {2, 3, 4, 5, 6}, w(B1) = 1 and w(B2) = 4.
Let α = 0.5. It means that we must cover at least M = �(1 − α)|A|	 = 3
elements from A. If γ = α = 0.5 then the result of the work of greedy algorithm
with thresholds α and γ is the 0.5-cover {B1, B2} which weight is equal to 5. If
γ = 0 < α then the result of the work of greedy algorithm with thresholds α
and γ is the 0.5-cover {B2} which weight is equal to 4.

In this subsection we show that under some assumptions on |A| and |S| for
the most part of set cover problems (A, S) there exist a weight function w
and real numbers α, γ such that 0 ≤ γ < α < 1 and Cγ

greedy(α, A, S, w) <
Cα

greedy(α, A, S, w). First, we consider criterion of existence of such w, α and γ
(see Theorem 9). First part of the proof of this criterion is based on a construc-
tion similar to considered in Example 1.

Let A be a finite nonempty set and S = {B1, . . . , Bm} be a family of subsets
of A. We will say that the family S is 1-uniform if there exists a natural number
k such that |Bi| = k or |Bi| = k+1 for any nonempty subset Bi from S. We will
say that S is strongly 1-uniform if S is 1-uniform and for any subsets Bl1 , . . . , Blt

from S the family {B1 \ U, . . . , Bm \ U} is 1-uniform where U = Bl1 ∪ . . . ∪ Blt .

Theorem 9. Let (A, S) be a set cover problem. Then the following two state-
ments are equivalent:

1. The family S is not strongly 1-uniform.
2. There exist a weight function w and real numbers α and γ such that 0 ≤ γ <

α < 1 and Cγ
greedy(α, A, S, w) < Cα

greedy(α, A, S, w).

Proof. Let S = {B1, . . . , Bm}. Let the family S be not strongly 1-uniform. Let us
choose minimal number of subsets Bl1 , . . . , Blt from the family S (it is possible
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that t = 0) such that the family {B1 \ U, . . . , Bm \ U} is not 1-uniform where
U = Bl1 ∪ . . . ∪ Blt (if t = 0 then U = ∅). Since {B1 \ U, . . . , Bm \ U} is not
1-uniform, there exist two subsets Bi and Bj from S such that |Bi \ U | > 0 and
|Bj \U | ≥ |Bi \U |+2. Let us choose real α and γ such that M = �|A|(1 − α)	 =
|U |+|Bi\U |+1 and N = �|A|(1 − γ)	 = |U |+|Bi\U |+2. It is clear that 0 ≤ γ <
α < 1. Let us define a weight function w as follows: w(Bl1) = . . . = w(Blt) = 1,
w(Bi) = |A| ·2|Bi \U |, w(Bj) = |A|(2|Bi \U |+3) and w(Br) = |A|(3|Bi \U |+6)
for any Br from S such that r /∈ {i, j, l1, . . . , lt}.

Let us consider the work of greedy algorithm with two thresholds α and α.
One can show that during first t steps the greedy algorithm will choose subsets
Bl1 , . . . , Blt (may be in an another order). It is clear that |U | < M . Therefore
the greedy algorithm must make the step number t + 1. During this step the
greedy algorithm will choose a subset Bk from S with minimal number k for
which Bk \U �= ∅ and the value p(k) = w(Bk)

min{|Bk\U|,M−|U|} = w(Bk)
min{|Bk\U|,|Bi\U|+1}

is minimal.
It is clear that p(i) = 2|A|, p(j) = (2 + 1

|Bi\U|+1 )|A| and p(k) > 3|A| for
any subset Bk from S such that Bk \ U �= ∅ and k /∈ {i, j, l1, . . . , lt}. Therefore
during the step number t + 1 the greedy algorithm will choose the subset Bi.
Since |U | + |Bi \ U | = M − 1, the greedy algorithm will make the step number
t+2 and will choose a subset from S which is different from Bl1 , . . . , Blt , Bi. As
the result we obtain Cα

greedy(α, A, S, w) ≥ t + |A| · 2|Bi \ U | + |A|(2|Bi \ U | + 3).
Let us consider the work of greedy algorithm with two thresholds α and γ.

One can show that during first t steps the greedy algorithm will choose subsets
Bl1 , . . . , Blt (may be in an another order). It is clear that |U | < M . Therefore
the greedy algorithm must make the step number t + 1. During this step the
greedy algorithm will choose a subset Bk from S with minimal number k for
which Bk \ U �= ∅ and the value q(k) = w(Bk)

min{|Bk\U|,N−|U|} = w(Bk)
min{|Bk\U|,|Bi\U|+2}

is minimal.
It is clear that q(i) = 2|A|, q(j) = (2 − 1

|Bi\U|+2 )|A| and q(k) ≥ 3|A| for
any subset Bk from S such that Bk \ U �= ∅ and k /∈ {i, j, l1, . . . , lt}. Therefore
during the step number t + 1 the greedy algorithm will choose the subset Bj .
Since |U | + |Bj \ U | > M , the α-cover constructed by greedy algorithm will
be equal to {Bl1 , . . . , Blt , Bj}. As the result we obtain Cγ

greedy(α, A, S, w) =
t+|A|(2|Bi\U |+3). Since Cα

greedy(α, A, S, w) ≥ t+|A|·2|Bi\U |+|A|(2|Bi\U |+3)
and |Bi \ U | > 0, we conclude that Cα

greedy(α, A, S, w) > Cγ
greedy(α, A, S, w).

Let the family S be strongly 1-uniform. Consider arbitrary weight function
w for S and real numbers α and γ such that 0 ≤ γ < α < 1. Let us show that
Cγ

greedy(α, A, S, w) ≥ Cα
greedy(α, A, S, w). Let us denote M = �|A|(1 − α)	 and

N = �|A|(1 − γ)	. If M = N then Cγ
greedy(α, A, S, w) = Cα

greedy(α, A, S, w). Let
N > M .

Let us apply the greedy algorithm with thresholds α and α to the set cover
problem with weights (A, S, w). Let during the construction of α-cover this
algorithm choose sequentially subsets Bg1 , . . . , Bgt . Let us apply now the greedy
algorithm with thresholds α and γ to the set cover problem with weights (A, S, w).
If during the construction of α-cover this algorithm chooses sequentially subsets
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Bg1 , . . . , Bgt then Cγ
greedy(α, A, S, w) = Cα

greedy(α, A, S, w). Let there exist a non-
negative integer r, 0 ≤ r ≤ t − 1, such that during first r steps the considered
algorithm chooses subsets Bg1 , . . . , Bgr , but at the step number r + 1 the al-
gorithm chooses a subset Bk such that k �= gr+1. Let us denote Bg0 = ∅, D =
Bg0∪. . .∪Bgr and J = {i : i ∈ {1, . . . , m}, Bi\D �= ∅}. It is clear that gr+1, k ∈ J .
For any i ∈ J denote p(i) = w(Bi)

min{|Bi\D|,M−|D|} , q(i) = w(Bi)
min{|Bi\D|,N−|D|} .

Since k �= gr+1, we conclude that there exists i ∈ J such that p(i) �= q(i).
Therefore |Bi \ D| > M − |D|. Since S is strongly 1-uniform family, we have
|Bj \ D| ≥ M − |D| for any j ∈ J . From here it follows, in particular, that
r + 1 = t, and {Bg1 , . . . , Bgt−1 , Bk} is an α-cover for (A, S).

It is clear that p(gt) ≤ p(k). Since |Bk \D| ≥ M −|D| and |Bgt \D| ≥ M −|D|,
we have p(k) = w(Bk)

M−|D| , p(gt) = w(Bgt )
M−|D| . Therefore w(Bgt) ≤ w(Bk).

Taking into account that Cγ
greedy(α, A, S, w) = w(Bg1 ) + . . . + w(Bgt−1 ) +

w(Bk) and Cα
greedy(α, A, S, w) = w(Bg1) + . . . + w(Bgt−1 ) + w(Bgt) we obtain

Cγ
greedy(α, A, S, w) ≥ Cα

greedy(α, A, S, w). �

Let us show that under some assumptions on |A| and |S| the most part of set
cover problems (A, S) is not 1-uniform, and therefore is not strongly 1-uniform.

There is one-to-one correspondence between set cover problems and tables
filled by numbers from {0, 1} and having no rows filled by 0 only. Let A =
{a1, . . . , an} and S = {B1, . . . , Bm}. Then the problem (A, S) corresponds to
the table with n rows and m columns which for i = 1, . . . , n and j = 1, . . . , m
has 1 at the intersection of i-th row and j-th column if and only if ai ∈ Bj .

A table filled by numbers from {0, 1} will be called SC-table if this table has
no rows filled by 0 only. For completeness of the presentation we consider here
a statement from [9] with proof.

Lemma 1. The number of SC-tables with n rows and m columns is at least

2mn − 2mn−m+log2 n .

Proof. Let i ∈ {1, . . . , n}. The number of tables in which the i-th row is filled
by 0 only is equal to 2mn−m. Therefore the number of tables which are not SC-
tables is at most n2mn−m = 2mn−m+log2 n. Thus, the number of SC-tables is at
least 2mn − 2mn−m+log2 n. �

Lemma 2. Let n ∈ IN, n ≥ 4 and k ∈ {0, . . . , n}. Then Ck
n ≤ C

�n/2�
n < 2n√

n
.

Proof. It is well known (see, for example, [25], p. 178) that Ck
n ≤ C

�n/2�
n . Let n

be even and n ≥ 4. It is known (see [4], p. 278) that C
�n/2�
n ≤ 2n√

3n
2 +1

< 2n√
n
.

Let n be odd and n ≥ 5. Using well known equality C
�n/2�
n = C

�n/2�
n−1 +C

�n/2�−1
n−1

and the fact, that C
�(n−1)/2�
n−1 ≥ Ck

n−1 for any k ∈ {0, . . . , n − 1}, we obtain
C

�n/2�
n ≤ 2C

�(n−1)/2�
n−1 . Thus, C

�n/2�
n ≤ 2n�

3(n−1)
2 +1

< 2n�
3(n−1)

3 +1
= 2n√

n
. Therefore

for any n ≥ 4 the inequality C
�n/2�
n < 2n√

n
holds. �
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Theorem 10. Consider set cover problems (A, S) such that A = {a1, . . . , an}
and S = {B1, . . . , Bm}. Let n ≥ 4 and m ≥ log2 n + 1. Then the fraction of set
cover problems which are not 1-uniform is at least 1 − 9

m
2 +1

n
m
2 −1 .

Proof. The considered fraction is at least q−p
q where q is the number of SC-tables

with n rows and m columns, and p is the number of tables with n rows and m
columns filled by 0 and 1 for each of which there exists k ∈ {1, . . . , n − 1} such
that the number of units in each column belongs to the set {0, k, k + 1}.

From Lemma 1 it follows that q ≥ 2mn − 2mn−m+log2 n. It is clear that p ≤
∑n−1

k=1 (Ck
n + Ck+1

n + 1)m. From Lemma 2 it follows that C
�n/2�
n ≥ Ck

n for any

k ∈ {1, . . . , n}. Therefore p ≤ (n − 1)
(
3C

�n/2�
n

)m

. Using Lemma 2 we conclude

that 3C
�n/2�
n < 2n√

n
9

for any n ≥ 4. Therefore p < (n−1)2mn

(n
9 )m/2 . Thus, q−p

q = 1− p
q >

1− (n−1)2mn

(n
9 )m/2(2mn−2mn−m+log2 n)

. Taking into account that m ≥ log2 n+1 we obtain

q−p
q > 1 − 2(n−1)

(n
9 )m/2 > 1 − 9

m
2 +1

n
m
2 −1 . �

So if n is large enough and m ≥ log2 n + 1 then the most part of set cover
problems (A, S) with |A| = n and |S| = m is not 1-uniform.

For example, the fraction of set cover problems (A, S) with |A| = 81 and
|S| = 20 which are not 1-uniform is at least 1 − 1

97 = 1 − 1
4782969 .

2.5 Two Modifications of Greedy Algorithm

Results obtained in the previous subsection show that the greedy algorithm with
two thresholds is of some interest. In this subsection we consider two polyno-
mial modifications of greedy algorithm which allow to use advantages of greedy
algorithm with two thresholds.

Let (A, S, w) be a set cover problem with weights and α be a real number
such that 0 ≤ α < 1.

1. Of course, it is impossible to consider effectively all γ such that 0 ≤ γ ≤ α.
Instead of this we can consider all natural N such that M ≤ N ≤ |A|
where M = �|A|(1 − α)	 (see the description of greedy algorithm with two
thresholds). For each N ∈ {M, . . . , |A|} we apply greedy algorithm with
parameters M and N to set cover problem with weights (A, S, w) and after
that choose an α-cover with minimal weight among constructed α-covers.

2. There exists also an another way to construct an α-cover which is not worse
than the one obtained under consideration of all N such that M ≤ N ≤ |A|.
Let us apply greedy algorithm with thresholds α and α to set cover prob-
lem with weights (A, S, w). Let the algorithm choose sequentially subsets
Bg1 , . . . , Bgt . For each i ∈ {0, . . . , t − 1} we find (if it is possible) a subset
Bli from S with minimal weight w(Bli) such that |Bg1 ∪ . . . ∪ Bgi ∪ Bli | ≥
M , and form an α-cover {Bg1 , . . . , Bgi , Bli} (if i = 0 then it will be the
family {Bl0}). After that among constructed α-covers {Bg1 , . . . , Bgt}, ...,
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{Bg1 , . . . , Bgi , Bli}, ... we choose an α-cover with minimal weight. From
Proposition 1 it follows that the constructed α-cover is not worse than the
one constructed under consideration of all γ, 0 ≤ γ ≤ α, or (which is the
same) all N , M ≤ N ≤ |A|.

Proposition 1. Let (A, S, w) be a set cover problem with weights and α, γ be real
numbers such that 0 ≤ γ < α < 1. Let the greedy algorithm with two thresholds α
and α, which is applied to (A, S, w), choose sequentially subsets Bg1 , . . . , Bgt . Let
the greedy algorithm with two thresholds α and γ, which is applied to (A, S, w),
choose sequentially subsets Bl1 , . . . , Blk . Then either k = t and (l1, . . . , lk) =
(g1, . . . , gt) or k ≤ t, (l1, . . . , lk−1) = (g1, . . . , gk−1) and lk �= gk.

Proof. Let S = {B1, . . . , Bm}. Let us denote M = �|A|(1 − α)	 and N =
�|A|(1 − γ)	.

Let (l1, . . . , lk) �= (g1, . . . , gt). Since {Bg1 , . . . , Bgt−1} is not an α-cover for
(A, S), it is impossible that k < t and (l1, . . . , lk) = (g1, . . . , gk). Since {Bg1 , . . . ,
Bgt} is an α-cover for (A, S), it is impossible that k > t and (l1, . . . , lt) =
(g1, . . . , gt). Therefore there exists i ∈ {0, . . . , t−1} such that during first i steps
algorithm with thresholds α and α and algorithm with thresholds α and γ choose
the same subsets from S, but during the step number i + 1 the algorithm with
threshold α and γ chooses a subset Bli+1 such that li+1 �= gi+1.

Let us denote Bg0 = ∅, D = Bg0 ∪ . . . ∪ Bgi and J = {j : j ∈ {1, . . . , m}, Bj \
D �= ∅}. It is clear that gi+1, li+1 ∈ J . For any j ∈ J let p(j) = w(Bj)

min{|Bj\D|,M−|D|}
and q(j) = w(Bj)

min{|Bj\D|,N−|D|} . Since N ≥ M , we have p(j) ≥ q(j) for any j ∈ J .
Consider two cases.

Let gi+1 < li+1. In this case we have p(gi+1) ≤ p(li+1) and q(gi+1) > q(li+1).
Using inequality p(gi+1) ≥ q(gi+1) we obtain p(gi+1) > q(li+1) and p(li+1) >
q(li+1). From last inequality it follows that |Bli+1 \ D| > M − |D|.

Let gi+1 > li+1. In this case we have p(gi+1) < p(li+1) and q(gi+1) ≥ q(li+1).
Using inequality p(gi+1) ≥ q(gi+1) we obtain p(gi+1) ≥ q(li+1) and p(li+1) >
q(li+1). From last inequality it follows that |Bli+1 \ D| > M − |D|.

So in any case we have |Bli+1 \ D| > M − |D|. From this inequality it follows
that after the step number i+1 the algorithm with thresholds α and γ must finish
the work. Thus, k = i + 1, k ≤ t, (l1, . . . , lk−1) = (g1, . . . , gk−1) and lk �= gk. �

2.6 Lower Bound on Cmin(α)

In this subsection we fix some information about the work of greedy algorithm
with two thresholds and find the best lower bound on the value Cmin(α) depend-
ing on this information.

Let (A, S, w) be a set cover problem with weights and α, γ be real numbers
such that 0 ≤ γ ≤ α < 1. Let us apply the greedy algorithm with thresholds α
and γ to the set cover problem with weights (A, S, w). Let during the construction
of α-cover the greedy algorithm choose sequentially subsets Bg1 , . . . , Bgt .

Let us denote Bg0 = ∅ and δ0 = 0. For i = 1, . . . , t denote δi = |Bgi \ (Bg0 ∪
. . . ∪ Bgi−1)| and wi = w(Bgi ).
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As information on the greedy algorithm work we will use numbers MC =
MC(α, γ, A, S, w) = �|A|(1 − α)	 and NC = NC(α, γ, A, S, w) = �|A|(1 − γ)	,
and tuples ΔC = ΔC(α, γ, A, S, w) = (δ1, . . . , δt) and WC = WC(α, γ, A, S, w) =
(w1, . . . , wt).

For i = 0, . . . , t − 1 denote

ρi =
⌈

wi+1(MC − (δ0 + . . . + δi))
min{δi+1, NC − (δ0 + . . . + δi)}

⌉

.

Let us define parameter ρC(α, γ) = ρC(α, γ, A, S, w) as follows:

ρC(α, γ) = max {ρi : i = 0, . . . , t − 1} .

We will prove that ρC(α, γ) is the best lower bound on Cmin(α) depending
on MC , NC , ΔC and WC . This lower bound is based on a generalization of
the following simple reasoning: if we must cover M elements and the maximal
cardinality of a subset from S is δ then we must use at least

⌈
M
δ

⌉
subsets.

Theorem 11. For any set cover problem with weights (A, S, w) and any real
numbers α, γ, 0 ≤ γ ≤ α < 1, the inequality Cmin(α, A, S, w) ≥ ρC(α, γ, A, S, w)
holds, and there exists a set cover problem with weights (A′, S′, w′) such that

MC(α, γ, A′, S′, w′) = MC(α, γ, A, S, w), NC(α, γ, A′, S′, w′) = NC(α, γ, A, S, w)
ΔC(α, γ, A′, S′, w′) = ΔC(α, γ, A, S, w), WC(α, γ, A′, S′, w′) = WC(α, γ, A, S, w)
ρC(α, γ, A′, S′, w′) = ρC(α, γ, A, S, w), Cmin(α, A′, S′, w′) = ρC(α, γ, A′, S′, w′) .

Proof. Let (A, S, w) be a set cover problem with weights, S = {B1, . . . , Bm},
and α, γ be real numbers such that 0 ≤ γ ≤ α < 1. Let us denote M =
MC(α, γ, A, S, w) = �|A|(1 − α)	 and N = NC(α, γ, A, S, w) = �|A|(1 − γ)	. Let
{Bl1 , . . . , Blk} be an optimal α-cover for (A, S, w), i.e. w(Bl1) + . . . + w(Blk) =
Cmin(α, A, S, w) = Cmin(α) and |Bl1 ∪ . . . ∪ Blk | ≥ M .

Let us apply the greedy algorithm with thresholds α and γ to (A, S, w). Let
during the construction of α-cover the greedy algorithm choose sequentially sub-
sets Bg1 , . . . , Bgt . Let us denote Bg0 = ∅.

Let i ∈ {0, . . . , t−1}. Let us denote D = Bg0 ∪ . . .∪Bgi . It is clear that after i
steps of greedy algorithm work in the set Bl1 ∪ . . .∪Blk at least |Bl1 ∪ . . .∪Blk |−
|Bg0 ∪ . . . ∪ Bgi | ≥ M − |D| > 0 elements remained uncovered. After i-th step
p1 = |Bl1 \D| elements remained uncovered in the set Bl1 , ..., and pk = |Blk \D|
elements remained uncovered in the set Blk . We know that p1 + . . . + pk ≥
M − |D| > 0. Let, for the definiteness, p1 > 0, . . . , pr > 0, pr+1 = . . . = pk = 0.
For j = 1, . . . , r denote qj = min{pj, N −|D|}. It is clear that N −|D| ≥ M −|D|.
Therefore q1 + . . . + qr ≥ M − |D|. Let us consider numbers w(Bl1)

q1
, . . . ,

w(Blr )
qr

.

Let us show that at least one of these numbers is at most β = w(Bl1 )+...+w(Blr )
q1+...+qr

.

Assume the contrary. Then w(Bl1) + . . . + w(Blr ) = w(Bl1)q1

q1
+ . . . + w(Blr )qr

qr
>

(q1 + . . . + qr)β = w(Bl1 ) + . . . + w(Blr ) which is impossible.
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We know that q1 + . . . + qr ≥ M − |D| and w(Bl1 ) + . . . + w(Blr ) ≤ Cmin(α).
Therefore β ≤ Cmin(α)

M−|D| , and there exists j ∈ {1, . . . , k} such that Blj \ D �= ∅

and
w(Blj

)
min{|Blj

\D|,N−|D|} ≤ β. Hence
w(Bgi+1)

min{|Bgi+1\D|,N−|D|} ≤ β ≤ Cmin(α)
M−|D| and

Cmin(α) ≥ w(Bgi+1)(M−|D|)
min{|Bgi+1\D|,N−|D|} .

Taking into account that Cmin(α) is a natural number we obtain Cmin(α) ≥⌈
w(Bgi+1)(M−|D|)

min{|Bgi+1\D|,N−|D|}
⌉

= ρi. Since last inequality holds for any i ∈ {0, . . . , t−1}
and ρC(α, γ) = ρC(α, γ, A, S, w) = max {ρi : i = 0, . . . , t − 1}, we conclude that
Cmin(α) ≥ ρC(α, γ).

Let us show that this bound is unimprovable depending on MC , NC , ΔC

and WC . Let us consider a set cover problem with weights (A′, S′, w′) where
A′ = A, S′ = {B1, . . . , Bm, Bm+1}, |Bm+1| = M , Bg1 ∪ . . . ∪ Bgt−1 ⊆ Bm+1 ⊆
Bg1 ∪ . . . ∪ Bgt , w′(B1) = w(B1), . . . , w′(Bm) = w(Bm) and w′(Bm+1) =
ρC(α, γ). It is clear that MC(α, γ, A′, S′, w′) = MC(α, γ, A, S, w) = M and
NC(α, γ, A′, S′, w′) = NC(α, γ, A, S, w) = N . We show ΔC(α, γ, A′, S′, w′) =
ΔC(α, γ, A, S, w) and WC(α, γ, A′, S′, w′) = WC(α, γ, A, S, w).

Let us show by induction on i ∈ {1, . . . , t} that for the set cover problem
with weights (A′, S′, w′) at the step number i the greedy algorithm with two
thresholds α and γ will choose the subset Bgi . Let us consider the first step.
Let us denote D = ∅. It is clear that w′(Bm+1)

min{|Bm+1\D|,N−|D|} = ρC(α,γ)
M−|D| . From the

definition of ρC(α, γ) it follows that w′(Bg1 )
min{|Bg1\D|,N−|D|} = w(Bg1 )

min{|Bg1\D|,N−|D|} ≤
ρC(α,γ)
M−|D| . Using this fact and the inequality g1 < m + 1 it is not difficult to prove
that at the first step greedy algorithm will choose the subset Bg1 .

Let i ∈ {1, . . . , t − 1}. Let us assume that the greedy algorithm made i steps
for (A′, S′, w′) and chose subsets Bg1 , . . . , Bgi . Let us show that at the step
i + 1 the subset Bgi+1 will be chosen. Let us denote D = Bg1 ∪ . . . ∪ Bgi . Since
Bg1 ∪ . . . ∪ Bgi ⊆ Bm+1 and |Bm+1| = M , we have |Bm+1 \ D| = M − |D|.
Therefore w′(Bm+1)

min{|Bm+1\D|,N−|D|} = ρC(α,γ)
M−|D| . From the definition of the parameter

ρC(α, γ) it follows that
w′(Bgi+1 )

min{|Bgi+1\D|,N−|D|} =
w(Bgi+1)

min{|Bgi+1\D|,N−|D|} ≤ ρC(α,γ)
M−|D| .

Using this fact and the inequality gi+1 < m + 1 it is not difficult to prove that
at the step number i + 1 greedy algorithm will choose the subset Bgi+1 .

Thus, ΔC(α, γ, A′, S′, w′) = ΔC(α, γ, A, S, w) and WC(α, γ, A′, S′, w′) =
WC(α, γ, A, S, w). Therefore ρC(α, γ, A′, S′, w′) = ρC(α, γ, A, S, w) = ρC(α, γ).
From been proven it follows that Cmin(α, A′, S′, w′) ≥ ρC(α, γ, A′, S′, w′). It is
clear that {Bm+1} is an α-cover for (A′, S′) and the weight of {Bm+1} is equal
to ρC(α, γ, A′, S′, w′). Hence Cmin(α, A′, S′, w′) = ρC(α, γ, A′, S′, w′). �

Let us consider a property of the parameter ρC(α, γ) which is important for
practical use of the bound from Theorem 11.

Proposition 2. Let (A, S, w) be a set cover problem with weights and α, γ be real
numbers such that 0 ≤ γ ≤ α < 1. Then ρC(α, α, A, S, w) ≥ ρC(α, γ, A, S, w).



On Partial Covers, Reducts and Decision Rules with Weights 223

Proof. Let S = {B1, . . . , Bm}, M = �|A|(1 − α)	, N = �|A|(1 − γ)	, ρC(α, α) =
ρC(α, α, A, S, w) and ρC(α, γ) = ρC(α, γ, A, S, w).

Let us apply the greedy algorithm with thresholds α and α to (A, S, w).
Let during the construction of α-cover this algorithm choose sequentially sub-
sets Bg1 , . . . , Bgt . Let us denote Bg0 = ∅. For j = 0, . . . , t − 1 denote Dj =

Bg0 ∪ . . . ∪ Bgj and ρC(α, α, j) =
⌈

w(Bgj+1 )(M−|Dj |)
min{|Bgj+1\Dj |,M−|Dj |}

⌉
. Then ρC(α, α) =

max{ρC(α, α, j) : j = 0, . . . , t − 1}.
Apply the greedy algorithm with thresholds α and γ to (A, S, w). Let during

the construction of α-cover this algorithm choose sequentially subsets Bl1 , . . . ,
Blk . From Proposition 1 it follows that either k = t and (l1, . . . , lk) = (g1, . . . , gt)
or k ≤ t, (l1, . . . , lk−1) = (g1, . . . , gk−1) and lk �= gk. Let us consider these two
cases separately. Let k = t and (l1, . . . , lk) = (g1, . . . , gt). For j = 0, . . . , t− 1 de-

note ρC(α, γ, j) =
⌈

w(Bgj+1 )(M−|Dj |)
min{|Bgj+1\Dj |,N−|Dj|}

⌉
. Then ρC(α, γ) = max{ρC(α, γ, j) :

j = 0, . . . , t − 1}. Since N ≥ M , we have ρC(α, γ, j) ≤ ρC(α, α, j) for j =
0, . . . , t−1. Hence ρC(α, γ) ≤ ρC(α, α). Let k ≤ t, (l1, . . . , lk−1) = (g1, . . . , gk−1)
and lk �= gk. Let us denote ρC(α, γ, k − 1) =

⌈
w(Blk

)(M−|Dk−1|)
min{|Blk

\Dk−1|,N−|Dk−1|}
⌉

and

ρC(α, γ, j) =
⌈

w(Bgj+1 )(M−|Dj |)
min{|Bgj+1\Dj |,N−|Dj |}

⌉
for j = 0, . . . , k − 2. Then ρC(α, γ) =

max{ρC(α, γ, j) : j = 0, . . . , k − 1}. Since N ≥ M , we have ρC(α, γ, j) ≤
ρC(α, α, j) for j = 0, . . . , k − 2. It is clear that w(Blk

)
min{|Blk

\Dk−1|,N−|Dk−1|} ≤
w(Bgk

)
min{|Bgk

\Dk−1|,N−|Dk−1|} ≤ w(Bgk
)

min{|Bgk
\Dk−1|,M−|Dk−1|} . Thus, ρC(α, γ, k − 1) ≤

ρC(α, α, k − 1) and ρC(α, γ) ≤ ρC(α, α). �

2.7 Upper Bounds on Cγ
greedy(α)

In this subsection we study some properties of parameter ρC(α, γ) and obtain
two upper bounds on the value Cγ

greedy(α) which do not depend directly on
cardinality of the set A and cardinalities of subsets Bi from S.

Theorem 12. Let (A, S, w) be a set cover problem with weights and α, γ be real
numbers such that 0 ≤ γ < α < 1. Then

Cγ
greedy(α, A, S, w) < ρC(γ, γ, A, S, w)

(

ln
(

1 − γ

α − γ

)

+ 1
)

.

Proof. Let S = {B1, . . . , Bm}. Let us denote M = �|A|(1 − α)	 and N =
�|A|(1 − γ)	.

Let us apply the greedy algorithm with thresholds γ and γ to (A, S, w).
Let during the construction of γ-cover the greedy algorithm choose sequen-
tially subsets Bg1 , . . . , Bgt . Let us denote Bg0 = ∅, for i = 0, . . . , t − 1 denote
Di = Bg0 ∪ . . . ∪ Bgi , and denote ρ = ρC(γ, γ, A, S, w). Immediately from the
definition of the parameter ρ it follows that for i = 0, . . . , t − 1

w(Bgi+1 )
min{|Bgi+1 \ Di|, N − |Di|}

≤ ρ

N − |Di|
. (1)
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Note that min{|Bgi+1 \ Di|, N − |Di|} = |Bgi+1 \ Di| for i = 0, . . . , t − 2 since
{Bg0 , . . . , Bgi+1} is not a γ-cover for (A, S). Therefore for i = 0, . . . , t − 2 we

have
w(Bgi+1 )
|Bgi+1\Di| ≤ ρ

N−|Di| and N−|Di|
ρ ≤ |Bgi+1\Di|

w(Bgi+1) . Thus, for i = 1, . . . , t − 1

during the step number i the greedy algorithm covers at least N−|Di−1|
ρ elements

on each unit of weight. From (1) it follows that that for i = 0, . . . , t − 1

w(Bgi+1) ≤
ρ min{|Bgi+1 \ Di|, N − |Di|}

N − |Di|
≤ ρ . (2)

Assume that ρ = 1. Using (2) we obtain w(Bg1 ) = 1. From this equality and
(1) it follows that |Bg1 | ≥ N . Therefore {Bg1} is an α-cover for (A, S), and

Cγ
greedy(α) = 1. It is clear that ln

(
1−γ
α−γ

)
+1 > 1. Therefore the statement of the

theorem holds if ρ = 1.
Assume now that ρ ≥ 2. Let |Bg1 | ≥ M . Then {Bg1} is an α-cover for (A, S).

Using (2) we obtain Cγ
greedy(α) ≤ ρ. Since ln

(
1−γ
α−γ

)
+1 > 1, we conclude that the

statement of the theorem holds if |Bg1 | ≥ M . Let |Bg1 | < M . Then there exists
q ∈ {1, . . . , t − 1} such that |Bg1 ∪ . . . ∪ Bgq | < M and |Bg1 ∪ . . . ∪ Bgq+1 | ≥ M .

Taking into account that for i = 1, . . . , q during the step number i the greedy
algorithm covers at least N−|Di−1|

ρ elements on each unit of weight we obtain

N −|Bg1 ∪ . . .∪Bgq | ≤ N
(
1 − 1

ρ

)w(Bg1)+...+w(Bgq )
. Let us denote k = w(Bg1 )+

. . . + w(Bgq ). Then N − N
(
1 − 1

ρ

)k

≤ |Bg1 ∪ . . . ∪ Bgq | ≤ M − 1. Therefore

|A|(1 − γ) − |A|(1 − γ)
(
1 − 1

ρ

)k

< |A|(1 − α), 1 − γ − 1 + α < (1 − γ)
(

ρ−1
ρ

)k

,
(

ρ
ρ−1

)k

< 1−γ
α−γ ,

(
1 + 1

ρ−1

)k

< 1−γ
α−γ , and k

ρ < ln
(

1−γ
α−γ

)
. To obtain last inequality

we use known inequality ln
(
1 + 1

r

)
> 1

r+1 which holds for any natural r. It is
clear that Cγ

greedy(α) = k + w(Bq+1). Using (2) we conclude that w(Bq+1) ≤ ρ.

Therefore Cγ
greedy(α) < ρ ln

(
1−γ
α−γ

)
+ ρ. �

Corollary 1. Let ε be a real number, and 0 < ε < 1. Then for any α such that
ε ≤ α < 1 the following inequalities hold:

ρC(α, α) ≤ Cmin(α) ≤ Cα−ε
greedy(α) < ρC(α − ε, α − ε)

(

ln
1
ε

+ 1
)

.

For example, if ε = 0.01 and 0.01 ≤ α < 1 then ρC(α, α) ≤ Cmin(α) ≤
Cα−0.01

greedy (α) < 5.61ρC(α − 0.01, α − 0.01), and if ε = 0.1 and 0.1 ≤ α < 1
then ρC(α, α) ≤ Cmin(α) ≤ Cα−0.1

greedy(α) < 3.31ρC(α − 0.1, α − 0.1).
The obtained results show that the lower bound Cmin(α) ≥ ρC(α, α) is non-

trivial.

Theorem 13. Let (A, S, w) be a set cover problem with weights and α, γ be real
numbers such that 0 ≤ γ < α < 1. Then

Cγ
greedy(α, A, S, w) < Cmin(γ, A, S, w)

(

ln
(

1 − γ

α − γ

)

+ 1
)

.
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Proof. From Theorem 12 it follows that Cγ
greedy(α, A, S, w) < ρC(γ, γ, A, S, w) ·

(
ln

(
1−γ
α−γ

)
+ 1

)
. The inequality ρC(γ, γ, A, S, w) ≤ Cmin(γ, A, S, w) follows from

Theorem 11. �

Corollary 2. C0
greedy(0.001) < 7.91Cmin(0), C0.001

greedy(0.01) < 5.71Cmin(0.001),
C0.1

greedy(0.2) < 3.20Cmin(0.1), C0.3
greedy(0.5) < 2.26Cmin(0.3).

Corollary 3. Let 0 < α < 1. Then C0
greedy(α) < Cmin(0)

(
ln 1

α + 1
)
.

Corollary 4. Let ε be a real number, and 0 < ε < 1. Then for any α such that
ε ≤ α < 1 the inequalities Cmin(α) ≤ Cα−ε

greedy(α) < Cmin(α − ε)
(
ln 1

ε + 1
)

hold.

3 Partial Tests and Reducts

3.1 Main Notions

Let T be a table with n rows labeled by nonnegative integers (decisions) and
m columns labeled by attributes (names of attributes) f1, . . . , fm. This table
is filled by nonnegative integers (values of attributes). The table T is called
a decision table. Let w be a weight function for T which corresponds to each
attribute fi a natural number w(fi).

Let us denote by P (T ) the set of unordered pairs of different rows of T with
different decisions. We will say that an attribute fi separates a pair of rows
(r1, r2) ∈ P (T ) if rows r1 and r2 have different numbers at the intersection with
the column fi. For i = 1, . . . , m denote by P (T, fj) the set of pairs from P (T )
which the attribute fi separates.

Let α be a real number such that 0 ≤ α < 1. A set of attributes Q ⊆
{f1, . . . , fm} will be called an α-test for T if attributes from Q separate at least
(1 − α)|P (T )| pairs from the set P (T ). An α-test is called an α-reduct if each
proper subset of the considered α-test is not α-test. If P (T ) = ∅ then each subset
of {f1, . . . , fm} is an α-test, and only empty set is an α-reduct.

For example, 0.01-test means that we must separate at least 99% of pairs
from P (T ).

Note that 0-reduct is usual (exact) reduct. It must be noted also that each
α-test contains at least one α-reduct as a subset.

The number w(Q) =
∑

fi∈Q w(fi) will be called the weight of the set Q. If
Q = ∅ then w(Q) = 0.

Let us denote by Rmin(α) = Rmin(α, T, w) the minimal weight of α-reduct
for T . It is clear that Rmin(α, T, w) coincides with the minimal weight of α-test
for T .

Let α, γ be real numbers such that 0 ≤ γ ≤ α < 1. Let us describe a greedy
algorithm with thresholds α and γ which constructs an α-test for given decision
table T and weight function w.

If P (T ) = ∅ then the constructed α-test is empty set. Let P (T ) �= ∅. Let
us denote M = �|P (T )|(1 − α)	 and N = �|P (T )|(1 − γ)	. Let we make i ≥ 0
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steps and construct a set Q containing i attributes (if i = 0 then Q = ∅). Let us
describe the step number i + 1.

Let us denote by D the set of pairs from P (T ) separated by attributes from
Q (if i = 0 then D = ∅). If |D| ≥ M then we finish the work of the algorithm.
The set of attributes Q is the constructed α-test. Let |D| < M . Then we choose
an attribute fj with minimal number j for which P (T, fj)\D �= ∅ and the value

w(fj)
min{|P (T, fj) \ D|, N − |D|}

is minimal. Add the attribute fj to the set Q. Pass to the step number i + 2.
Let us denote by Rγ

greedy(α) = Rγ
greedy(α, T, w) the weight of α-test con-

structed by greedy algorithm with thresholds α and γ for given decision table T
and weight function w.

3.2 Relationships Between Partial Covers and Partial Tests

Let (A, S, w) be a set cover problem with weights and α, γ be real numbers
such that 0 ≤ γ ≤ α < 1. Let us apply the greedy algorithm with thresholds
α and γ to (A, S, w). Let during the construction of α-cover the greedy algo-
rithm choose sequentially subsets Bj1 , . . . , Bjt from the family S. Let us denote
OC(α, γ, A, S, w) = (j1, . . . , jt).

Let T be a decision table with m columns labeled by attributes f1, . . . , fm,
and with a nonempty set P (T ). Let w be a weight function for T . We cor-
respond a set cover problem with weights (A(T ), S(T ), uw) to the considered
decision table T and weight function w in the following way: A(T ) = P (T ),
S(T ) = {B1(T ), . . . , Bm(T )} where B1(T ) = P (T, f1), . . . , Bm(T ) = P (T, fm),
uw(B1(T )) = w(f1), . . . , uw(Bm(T )) = w(fm).

Let α, γ be real numbers such that 0 ≤ γ ≤ α < 1. Let us apply the greedy
algorithm with thresholds α and γ to decision table T and weight function w.
Let during the construction of α-test the greedy algorithm choose sequentially
attributes fj1 , . . . , fjt . Let us denote OR(α, γ, T, w) = (j1, . . . , jt).

Let us denote P (T, fj0) = ∅. For i = 1, . . . , t denote wi = w(fji) and

δi = |P (T, fji) \ (P (T, fj0) ∪ . . . ∪ P (T, fji−1))| .

Let us denote MR(α, γ, T, w) = �|P (T )|(1−α)	, NR(α, γ, T, w) = �|P (T )|(1−
γ)	, ΔR(α, γ, T, w) = (δ1, . . . , δt) and WR(α, γ, T, w) = (w1, . . . , wt).

It is not difficult to prove the following statement.

Proposition 3. Let T be a decision table with m columns labeled by attributes
f1, . . . , fm, P (T ) �= ∅, w be a weight function for T , and α, γ be real numbers
such that 0 ≤ γ ≤ α < 1. Then

|P (T )| = |A(T )| ,

|P (T, fi)| = |Bi(T )|, i = 1, . . . , m ,

OR(α, γ, T, w) = OC(α, γ, A(T ), S(T ), uw) ,
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MR(α, γ, T, w) = MC(α, γ, A(T ), S(T ), uw) ,

NR(α, γ, T, w) = NC(α, γ, A(T ), S(T ), uw) ,

ΔR(α, γ, T, w) = ΔC(α, γ, A(T ), S(T ), uw) ,

WR(α, γ, T, w) = WC(α, γ, A(T ), S(T ), uw) ,

Rmin(α, T, w) = Cmin(α, A(T ), S(T ), uw) ,

Rγ
greedy(α, T, w) = Cγ

greedy(α, A(T ), S(T ), uw) .

Let (A, S, w) be a set cover problem with weights where A = {a1, . . . , an} and
S = {B1, . . . , Bm}. We correspond a decision table T (A, S) and a weight function
vw for T (A, S) to the set cover problem with weights (A, S, w) in the following
way. The table T (A, S) contains m columns labeled by attributes f1, . . . , fm and
n+1 rows filled by numbers from {0, 1}. For i = 1, . . . , n and j = 1, . . . , m at the
intersection of i-th row and j-th column the number 1 stays if and only if ai ∈ Bj .
The row number n + 1 is filled by 0. First n rows are labeled by the decision 0.
Last row is labeled by the decision 1. Let vw(f1) = w(B1), . . . , vw(fm) = w(Bm).

For i = {1, . . . , n + 1} denote by ri the i-th row. It is not difficult to see that
P (T (A, S)) = {(r1, rn+1), . . . , (rn, rn+1)}. Let i ∈ {1, . . . , n} and j ∈ {1, . . . , m}.
One can show that the attribute fj separates the pair (ri, rn+1) if and only if
ai ∈ Bj .

It is not difficult to prove the following statement.

Proposition 4. Let (A, S, w) be a set cover problem with weights and α, γ be
real numbers such that 0 ≤ γ ≤ α < 1. Then

|P (T (A, S))| = |A| ,

OR(α, γ, T (A, S), vw) = OC(α, γ, A, S, w) ,

MR(α, γ, T (A, S), vw) = MC(α, γ, A, S, w) ,

NR(α, γ, T (A, S), vw) = NC(α, γ, A, S, w) ,

ΔR(α, γ, T (A, S), vw) = ΔC(α, γ, A, S, w) ,

WR(α, γ, T (A, S), vw) = WC(α, γ, A, S, w) ,

Rmin(α, T (A, S), vw) = Cmin(α, A, S, w) ,

Rγ
greedy(α, T (A, S), vw) = Cγ

greedy(α, A, S, w) .

3.3 On Precision of Greedy Algorithm with Thresholds α and α

The following two statements are simple corollaries of results of Slav́ık (see The-
orems 4 and 5) and Proposition 3.

Theorem 14. Let T be a decision table, P (T ) �= ∅, w be a weight function for
T , α ∈ IR and 0 ≤ α < 1. Then Rα

greedy(α) ≤ Rmin(α)H (�(1 − α)|P (T )|	).

Theorem 15. Let T be a decision table with m columns labeled by attributes
f1, . . . , fm, P (T ) �= ∅, w be a weight function for T , and α be a real number
such that 0 ≤ α < 1. Then Rα

greedy(α) ≤ Rmin(α)H
(
maxi∈{1,...,m} |P (T, fi)|

)
.
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3.4 On Polynomial Approximate Algorithms

In this subsection we consider three theorems which follows immediately from
Theorems 26–28 [9].

Let 0 ≤ α < 1. Let us consider the following problem: for given decision table
T and weight function w for T it is required to find an α-test (α-reduct) for T
with minimal weight.

Theorem 16. Let 0 ≤ α < 1. Then the problem of construction of α-test (α-
reduct) with minimal weight is NP -hard.

So we must consider polynomial approximate algorithms for minimization of
α-test (α-reduct) weight.

Theorem 17. Let α ∈ IR and 0 ≤ α < 1. If NP �⊆ DTIME(nO(log log n)) then
for any ε, 0 < ε < 1, there is no polynomial algorithm that for given decision
table T with P (T ) �= ∅ and weight function w for T constructs an α-test for T
which weight is at most (1 − ε)Rmin(α, T, w) ln |P (T )|.

Theorem 18. Let α be a real number such that 0 ≤ α < 1. If P �= NP then
there exists δ > 0 such that there is no polynomial algorithm that for given
decision table T with P (T ) �= ∅ and weight function w for T constructs an α-
test for T which weight is at most δRmin(α, T, w) ln |P (T )|.

From Theorem 14 it follows that Rα
greedy(α) ≤ Rmin(α)(1+ ln |P (T )|). From this

inequality and from Theorem 17 it follows that under the assumption NP �⊆
DTIME(nO(log log n)) greedy algorithm with two thresholds α and α is close to
best polynomial approximate algorithms for minimization of partial test weight.
From the considered inequality and from Theorem 18 it follows that under the
assumption P �= NP greedy algorithm with two thresholds α and α is not far
from best polynomial approximate algorithms for minimization of partial test
weight.

However we can try to improve the results of the work of greedy algorithm
with two thresholds α and α for some part of decision tables.

3.5 Two Modifications of Greedy Algorithm

First, we consider binary diagnostic decision tables and prove that under some
assumptions on the number of attributes and rows for the most part of tables
there exist weight function w and numbers α, γ such that the weight of α-test
constructed by greedy algorithm with thresholds α and γ is less than the weight
of α-test constructed by greedy algorithm with thresholds α and α.

Binary means that the table is filled by numbers from the set {0, 1} (all
attributes have values from {0, 1}). Diagnostic means that rows of the table are
labeled by pairwise different numbers (decisions). Let T be a binary diagnostic
decision table with m columns labeled by attributes f1, . . . , fm and with n rows.
We will assume that rows of T with numbers 1, . . . , n are labeled by decisions
1, . . . , n respectively. Therefore the number of considered tables is equal to 2mn.
Decision table will be called simple if it has no equal rows.
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Theorem 19. Let us consider binary diagnostic decision tables with m columns
labeled by attributes f1, . . . , fm and n ≥ 4 rows labeled by decisions 1, . . . , n. The
fraction of decision tables T for each of which there exist a weight function w and
numbers α, γ such that 0 ≤ γ < α < 1 and Rγ

greedy(α, T, w) < Rα
greedy(α, T, w) is

at least 1 − 3m

n
m
2 −1 − n2

2m .

Proof. We will say that a decision table T is not 1-uniform if there exist two
attributes fi and fj of T such that |P (T, fi)| > 0 and |P (T, fj)| ≥ |P (T, fi)|+2.
Otherwise, we will say that T is 1-uniform. Using Theorem 9 and Proposition 3
we conclude that if T is not 1-uniform then there exist a weight function w and
numbers α, γ such that 0 ≤ γ < α < 1 and Rγ

greedy(α, T, w) < Rα
greedy(α, T, w).

We evaluate the number of simple decision tables which are 1-uniform.
Let us consider a simple decision table T which is 1-uniform. Let fi be an

attribute of T . It is clear that |P (T, fi)| = 0 if and only if the number of units
in the column fi is equal to 0 or n. Let k, l be natural numbers such that
k, k + l ∈ {1, . . . , n − 1}, and i, j ∈ {1, . . . , m}, i �= j. Let the decision table T
have k units in the column fi and k+ l units in the column fj. Then |P (T, fi)| =
k(n − k) = kn − k2 and |P (T, fj)| = (k + l)(n − k − l) = kn − k2 + l(n − 2k − l).
Since T is 1-uniform, we have l(n − 2k − l) ∈ {0, 1, −1}.

Let l(n − 2k − l) = 0. Then n − 2k − l = 0 and l = n − 2k. Since l is a natural
number, we have k < n/2.

Let l(n − 2k − l) = 1. Since l, n and k are natural numbers, we have l = 1
and n − 2k − 1 = 1. Therefore k = n

2 − 1. Since k is a natural number, we have
n is even.

Let l(n − 2k − l) = −1. Since l, n and k are natural numbers, we have l = 1
and n − 2k − 1 = −1. Therefore k = n

2 . Since k is a natural number, we have n
is even.

Let n be odd. Then there exists natural k such that 1 ≤ k < n
2 and the number

of units in each column of T belongs to the set {0, n, k, n − k}. Therefore the
number of considered tables is at most

∑�n/2�
k=1 (Ck

n + Cn−k
n + 2)m. Since n ≥ 4,

we have 2 ≤ C
�n/2�
n . Using Lemma 2 we conclude that the number of 1-uniform

simple tables is at most
∑�n/2�

k=1

(
3C

�n/2�
n

)m

< n
(

3·2n√
n

)m

.
Let n be even. Then there exists natural k such that 1 ≤ k < n

2 − 1 and
the number of units in each column of T belongs to the set {0, n, k, n − k}, or
the number of units in each column belongs to the set {0, n, n

2 − 1, n
2 , n

2 + 1}.
Therefore the number of considered tables is at most

∑�n/2�−2
k=1 (Ck

n + Cn−k
n +

2)m + (Cn/2−1
n + C

n/2
n + C

n/2+1
n + 2)m. It is well known (see, for example, [25],

page 178) that Cr
n < C

n/2
n for any r ∈ {1, . . . , n} \ {n/2}. Therefore the number

of 1-uniform tables is at most n
(
3C

n/2
n

)m

. Using Lemma 2 we conclude that
(as in the case of odd n) the number of 1-uniform simple tables is less than

n
(

3·2n√
n

)m

= 2mn3m

n
m
2 −1 . The number of tables which are not simple is at most

n22mn−m. Therefore the number of tables which are not 1-uniform is at least
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2mn − 2mn3m

n
m
2 −1 −n22mn−m. Thus, the fraction, considered in the statement of the

theorem, is at least 1 − 3m

n
m
2 −1 − n2

2m . �

So if m ≥ 4 and n, 2m

n2 are large enough then for the most part of binary
diagnostic decision tables there exist weight function w and numbers α, γ such
that the weight of α-test constructed by greedy algorithm with thresholds α
and γ is less than the weight of α-test constructed by greedy algorithm with
thresholds α and α.

The obtained results show that the greedy algorithm with two thresholds α
and γ is of some interest. Now we consider two polynomial modifications of
greedy algorithm which allow to use advantages of greedy algorithm with two
thresholds α and γ.

Let T be a decision table, P (T ) �= ∅, w be a weight function for T and α be
a real number such that 0 ≤ α < 1.

1. It is impossible to consider effectively all γ such that 0 ≤ γ ≤ α. Instead
of this we can consider all natural N such that M ≤ N ≤ |P (T )| where
M = �|P (T )|(1 − α)	 (see the description of greedy algorithm with two
thresholds). For each N ∈ {M, . . . , |P (T )|} we apply greedy algorithm with
parameters M and N to T and w and after that choose an α-test with
minimal weight among constructed α-tests.

2. There exists also an another way to construct an α-test which is not worse
than the one obtained under consideration of all N such that M ≤ N ≤
|P (T )|. Let us apply greedy algorithm with thresholds α and α to T and
w. Let the algorithm choose sequentially attributes fj1 , . . . , fjt . For each
i ∈ {0, . . . , t − 1} we find (if it is possible) an attribute fli of T with min-
imal weight w(fli) such that the set {fj1 , . . . , fji , fli} is an α-test for T (if
i = 0 then it will be the set {fl0}). After that among constructed α-tests
{fj1 , . . . , fjt}, ..., {fj1 , . . . , fji , fli}, ... we choose an α-test with minimal
weight. From Proposition 5 it follows that the constructed α-test is not
worse than the one constructed under consideration of all γ, 0 ≤ γ ≤ α, or
(which is the same) all N , M ≤ N ≤ |P (T )|.

Next statement follows immediately from Propositions 1 and 3.

Proposition 5. Let T be a decision table, P (T ) �= ∅, w be a weight function for
T and α, γ be real numbers such that 0 ≤ γ < α < 1. Let the greedy algorithm
with two thresholds α and α, which is applied to T and w, choose sequentially at-
tributes fg1 , . . . , fgt . Let the greedy algorithm with two thresholds α and γ, which
is applied to T and w, choose sequentially attributes fl1 , . . . , flk . Then either
k = t and (l1, . . . , lk) = (g1, . . . , gt) or k ≤ t, (l1, . . . , lk−1) = (g1, . . . , gk−1) and
lk �= gk.

3.6 Bounds on Rmin(α) and Rγ
greedy(α)

First, we fix some information about the work of greedy algorithm with two
thresholds and find the best lower bound on the value Rmin(α) depending on
this information.
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Let T be a decision table such that P (T ) �= ∅, w be a weight function for T ,
and α, γ be real numbers such that 0 ≤ γ ≤ α < 1. Let us apply the greedy
algorithm with thresholds α and γ to the decision table T and the weight function
w. Let during the construction of α-test the greedy algorithm choose sequentially
attributes fg1 , . . . , fgt .

Let us denote P (T, fg0) = ∅ and δ0 = 0. For i = 1, . . . , t denote δi =
|P (T, fgi) \ (P (T, fg0) ∪ . . . ∪ P (T, fgi−1))| and wi = w(fgi ).

As information on the greedy algorithm work we will use numbers MR =
MR(α, γ, T, w) = �|P (T )|(1 − α)	 and NR = NR(α, γ, T, w) = �|P (T )|(1 − γ)	,
and tuples ΔR = ΔR(α, γ, T, w) = (δ1, . . . , δt) and WR = WR(α, γ, T, w) =
(w1, . . . , wt).

For i = 0, . . . , t − 1 denote

ρi =
⌈

wi+1(MR − (δ0 + . . . + δi))
min{δi+1, NR − (δ0 + . . . + δi)}

⌉

.

Let us define parameter ρR(α, γ) = ρR(α, γ, T, w) as follows:

ρR(α, γ) = max {ρi : i = 0, . . . , t − 1} .

We will show that ρR(α, γ) is the best lower bound on Rmin(α) depending on
MR, NR, ΔR and WR. Next statement follows from Theorem 11 and Propositions
3 and 4.

Theorem 20. For any decision table T with P (T ) �= ∅, any weight function w
for T , and any real numbers α, γ, 0 ≤ γ ≤ α < 1, the inequality Rmin(α, T, w) ≥
ρR(α, γ, T, w) holds, and there exist a decision table T ′ and a weight function w′

for T ′ such that

MR(α, γ, T ′, w′) = MR(α, γ, T, w), NR(α, γ, T ′, w′) = NR(α, γ, T, w) ,

ΔR(α, γ, T ′, w′) = ΔR(α, γ, T, w), WR(α, γ, T ′, w′) = WR(α, γ, T, w) ,

ρR(α, γ, T ′, w′) = ρR(α, γ, T, w), Rmin(α, T ′, w′) = ρR(α, γ, T ′, w′) .

Let us consider a property of the parameter ρR(α, γ) which is important for
practical use of the bound from Theorem 20. Next statement follows from Propo-
sitions 2 and 3.

Proposition 6. Let T be a decision table with P (T ) �= ∅, w be a weight function
for T , α, γ ∈ IR and 0 ≤ γ ≤ α < 1. Then ρR(α, α, T, w) ≥ ρR(α, γ, T, w).

Now we study some properties of parameter ρR(α, γ) and obtain two upper
bounds on the value Rγ

greedy(α) which do not depend directly on cardinality of
the set P (T ) and cardinalities of subsets P (T, fi).

Next statement follows from Theorem 12 and Proposition 3.

Theorem 21. Let T be a decision table with P (T ) �= ∅, w be a weight function
for T and α, γ be real numbers such that 0 ≤ γ < α < 1. Then

Rγ
greedy(α, T, w) < ρR(γ, γ, T, w)

(

ln
(

1 − γ

α − γ

)

+ 1
)

.
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Corollary 5. Let ε ∈ IR and 0 < ε < 1. Then for any α, ε ≤ α < 1, the
inequalities ρC(α, α) ≤ Rmin(α) ≤ Rα−ε

greedy(α) < ρR(α − ε, α − ε)
(
ln 1

ε + 1
)

hold.

For example,
(
ln 1

0.01 + 1
)

< 5.61 and
(
ln 1

0.1 + 1
)

< 3.31. The obtained results
show that the lower bound Rmin(α) ≥ ρR(α, α) is nontrivial.

Next statement follows from Theorem 13 and Proposition 3.

Theorem 22. Let T be a decision table with P (T ) �= ∅, w be a weight function
for T and α, γ be real numbers such that 0 ≤ γ < α < 1. Then

Rγ
greedy(α, T, w) < Rmin(γ, T, w)

(

ln
(

1 − γ

α − γ

)

+ 1
)

.

Corollary 6. R0
greedy(0.001) < 7.91Rmin(0), R0.001

greedy(0.01) < 5.71Rmin(0.001),
R0.1

greedy(0.2) < 3.20Cmin(0.1), R0.3
greedy(0.5) < 2.26Rmin(0.3).

Corollary 7. Let 0 < α < 1. Then R0
greedy(α) < Rmin(0)

(
ln 1

α + 1
)
.

Corollary 8. Let ε be a real number, and 0 < ε < 1. Then for any α such that
ε ≤ α < 1 the inequalities Rmin(α) ≤ Rα−ε

greedy(α) < Rmin(α − ε)
(
ln 1

ε + 1
)

hold.

3.7 Results of Experiments for α-Tests and α-Reducts

In this subsection we will consider only binary decision tables with binary deci-
sion attributes.

First Group of Experiments. First group of experiments is connected with
study of quality of greedy algorithm with one threshold (where γ = α or,
which is the same, N = M), and comparison of quality of greedy algorithm
with one threshold and first modification of greedy algorithm (where for each
N ∈ {M, . . . , |P (T )|} we apply greedy algorithm with parameters M and N to
decision table and weight function and after that choose an α-test with minimal
weight among constructed α-tests).

We generate randomly 1000 decision tables T and weight functions w such that
T contains 10 rows and 10 conditional attributes f1, . . . , f10, and 1 ≤ w(fi) ≤
1000 for i = 1, . . . , 10.

For each α ∈ {0.0, 0.1, . . . , 0.9} we find the number of pairs (T, w) for which
greedy algorithm with one threshold constructs an α-test with minimal weight
(an optimal α-test), i.e. Rα

greedy(α, T, w) = Rmin(α, T, w). This number is con-
tained in the row of Table 1 labeled by ”Opt”.

We find the number of pairs (T, w) for which first modification of greedy
algorithm constructs an α-test which weight is less than the weight of α-test
constructed by greedy algorithm with one threshold, i.e. there exists γ such that
0 ≤ γ < α and Rγ

greedy(α, T, w) < Rα
greedy(α, T, w). This number is contained in

the row of Table 1 labeled by ”Impr”.
Also we find the number of pairs (T, w) for which first modification of greedy

algorithm constructs an optimal α-test which weight is less than the weight of
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α-test constructed by greedy algorithm with one threshold, i.e. there exists γ
such that 0 ≤ γ < α and Rγ

greedy(α, T, w) = Rmin(α, T, w) < Rα
greedy(α, T, w).

This number is contained in the row of Table 1 labeled by ”Opt+”.

Table 1. Results of first group of experiments with α-tests

α 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Opt 409 575 625 826 808 818 950 981 992 1000
Impr 0 42 47 33 24 8 6 5 2 0
Opt+ 0 22 28 24 22 5 6 5 2 0

The obtained results show that the percentage of pairs for which greedy al-
gorithm with one threshold finds an optimal α-test grows almost monotonically
(with local minimum near to 0.4–0.5) from 40.9% up to 100%. The percentage of
problems for which first modification of greedy algorithm can improve the result
of the work of greedy algorithm with one threshold is less than 5%. However,
sometimes (for example, if α = 0.3 or α = 0.7) the considered improvement is
noticeable.

Second Group of Experiments. Second group of experiments is connected
with comparison of quality of greedy algorithm with one threshold and first
modification of greedy algorithm.

We make 25 experiments (row ”Nr” in Table 2 contains the number of ex-
periment). Each experiment includes the work with three randomly generated
families of pairs (T, w) (1000 pairs in each family) such that T contains n rows
and m conditional attributes, and w has values from the set {1, . . . , v}.

If the column ”n” contains one number, for example ”40”, it means that
n = 40. If this row contains two numbers, for example ”30–120”, it means that for
each of 1000 pairs we choose the number n randomly from the set {30, . . . , 120}.
The same situation is for the column ”m”.

If the column ”α” contains one number, for example ”0.1”, it means that
α = 0.1. If this column contains two numbers, for example ”0.2–0.4”, it means
that we choose randomly the value of α such that 0.2 ≤ α ≤ 0.4.

For each of the considered pairs (T, w) and number α we apply greedy al-
gorithm with one threshold and first modification of greedy algorithm. Column
”#i”, i = 1, 2, 3, contains the number of pairs (T, w) from the family number
i for each of which the weight of α-test, constructed by first modification of
greedy algorithm, is less than the weight of α-test constructed by greedy algo-
rithm with one threshold. In other words, in column ”#i” we have the number
of pairs (T, w) from the family number i such that there exists γ for which
0 ≤ γ < α and Rγ

greedy(α, T, w) < Rα
greedy(α, T, w). The column ”avg” contains

the number #1+#2+#3
3 .

In experiments 1–3 we consider the case where the parameter v increases. In
experiments 4–8 the parameter α increases. In experiments 9–12 the parameter
m increases. In experiments 13–16 the parameter n increases. In experiments
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Table 2. Results of second group of experiments with α-tests

Nr n m v α #1 #2 #3 avg
1 1–50 1–50 1–10 0–1 1 2 3 2.00
2 1–50 1–50 1–100 0–1 5 6 13 8.00
3 1–50 1–50 1–1000 0–1 10 8 11 9.67
4 1–50 1–50 1–1000 0–0.2 16 20 32 22.67
5 1–50 1–50 1–1000 0.2–0.4 23 8 12 14.33
6 1–50 1–50 1–1000 0.4–0.6 7 6 5 6.00
7 1–50 1–50 1–1000 0.6–0.8 3 5 3 3.67
8 1–50 1–50 1–1000 0.8–1 1 0 0 0.33
9 50 1–20 1–1000 0–0.2 19 11 22 17.33
10 50 20–40 1–1000 0–0.2 26 24 24 24.67
11 50 40–60 1–1000 0–0.2 21 18 23 20.67
12 50 60–80 1–1000 0–0.2 13 18 22 17.67
13 1–20 30 1–1000 0–0.2 27 26 39 30.67
14 20–40 30 1–1000 0–0.2 34 37 35 35.33
15 40–60 30 1–1000 0–0.2 22 26 23 23.67
16 60–80 30 1–1000 0–0.2 19 14 14 15.67
17 10 10 1–1000 0.1 36 42 50 42.67
18 10 10 1–1000 0.2 33 53 46 44.00
19 10 10 1–1000 0.3 43 25 45 37.67
20 10 10 1–1000 0.4 30 18 19 22.33
21 10 10 1–1000 0.5 10 10 13 11.00
22 10 10 1–1000 0.6 12 13 7 10.67
23 10 10 1–1000 0.7 3 13 6 7.33
24 10 10 1–1000 0.8 5 2 6 4.33
25 10 10 1–1000 0.9 0 0 0 0

17–25 the parameter α increases. The results of experiments show that the value
of #i can change from 0 to 53. It means that the percentage of pairs for which
first modification of greedy algorithm is better than the greedy algorithm with
one threshold can change from 0% to 5.3%.

Third Group of Experiments. Third group of experiments is connected with
investigation of quality of lower bound Rmin(α) ≥ ρR(α, α).

We choose natural n, m, v and real α, 0 ≤ α < 1. For each chosen tuple
(n, m, v, α) we generate randomly 30 pairs (T, w) such that T contains n rows
and m conditional attributes, and w has values from the set {1, ..., v}. After
that we find values of Rα

greedy(α, T, w) and ρR(α, α, T, w) for each of generated
30 pairs. Note that ρR(α, α, T, w) ≤ Rmin(α, T, w) ≤ Rα

greedy(α, T, w). Finally,
we find mean values of Rα

greedy(α, T, w) and ρR(α, α, T, w) for generated 30 pairs.
Results of experiments can be found in Figs. 1 and 2. In these figures mean

values of ρR(α, α, T, w) are called ”average lower bound” and mean values of
Rα

greedy(α, T, w) are called ”average upper bound”.
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In Fig. 1 (left-hand side) one can see the case when n ∈ {1000, 2000, . . . , 5000},
m = 30, v = 1000 and α = 0.01.

In Fig. 1 (right-hand side) one can see the case when n = 1000, m∈{10, 20, . . . ,
100}, v = 1000 and α = 0.01.
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Fig. 1. Results of third group of experiments with α-tests (n and m are changing)
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Fig. 2. Results of third group of experiments with α-tests (v and α are changing)

In Fig. 2 (left-hand side) one can see the case when n = 1000, m = 30,
v ∈ {100, 200, . . . , 1000} and α = 0.01.

In Fig. 2 (right-hand side) one can see the case when n = 1000, m = 30,
v = 1000 and α ∈ {0.0, 0.1, . . . , 0.9}.

Results of experiments show that the considered lower bound is nontrivial and
can be useful in investigations.

4 Partial Decision Rules

In this section we omit reasoning on relationships between partial covers and
partial decision rules including reductions of one problem to another (descrip-
tion of such reductions can be found in [9]) and two propositions similar to
Propositions 3 and 4.
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4.1 Main Notions

Let T be a table with n rows labeled by nonnegative integers (decisions) and
m columns labeled by attributes (names of attributes) f1, . . . , fm. This table
is filled by nonnegative integers (values of attributes). The table T is called
a decision table. Let w be a weight function for T which corresponds to each
attribute fi a natural number w(fi). Let r = (b1, . . . , bm) be a row of T labeled
by a decision d.

Let us denote by U(T, r) the set of rows from T which are different from r
and are labeled by decisions different from d. We will say that an attribute fi

separates rows r and r′ ∈ U(T, r) if rows r and r′ have different numbers at the
intersection with the column fi. For i = 1, . . . , m denote by U(T, r, fi) the set of
rows from U(T, r) which attribute fi separates from the row r.

Let α be a real number such that 0 ≤ α < 1. A decision rule

fi1 = bi1 ∧ . . . ∧ fit = bit → d (3)

is called an α-decision rule for T and r if attributes fi1 , . . . , fit separate from r
at least (1 − α)|U(T, r)| rows from U(T, r). The number

∑t
j=1 w(fij ) is called

the weight of the considered decision rule.
If U(T, r) = ∅ then for any fi1 , . . . , fit ∈ {f1, . . . , fm} the rule (3) is an α-

decision rule for T and r. Also, the rule (3) with empty left-hand side (when
t = 0) is an α-decision rule for T and r. The weight of this rule is equal to 0.

For example, 0.01-decision rule means that we must separate from r at least
99% of rows from U(T, r). Note that 0-rule is usual (exact) rule. Let us denote
by Lmin(α) = Lmin(α, T, r, w) the minimal weight of α-decision rule for T and r.

Let α, γ be real numbers such that 0 ≤ γ ≤ α < 0. Let us describe a greedy
algorithm with thresholds α and γ which constructs an α-decision rule for given
T , r and weight function w. Let r = (b1, . . . , bm), and r be labeled by the
decision d.

The right-hand side of constructed α-decision rule is equal to d. If U(T, r) = ∅
then the left-hand side of constructed α-decision rule is empty. Let U(T, r) �= ∅.
Let us denote M = �|U(T, r)|(1 − α)	 and N = �|U(T, r)|(1 − γ)	. Let we make
i ≥ 0 steps and construct a decision rule R with i conditions (if i = 0 then the
left-hand side of R is empty). Let us describe the step number i + 1.

Let us denote by D the set of rows from U(T, r) separated from r by attributes
belonging to R (if i = 0 then D = ∅). If |D| ≥ M then we finish the work of
the algorithm, and R is the constructed α-decision rule. Let |D| < M . Then we
choose an attribute fj with minimal number j for which U(T, r, fj) \ D �= ∅ and
the value

w(fj)
min{|U(T, r, fj) \ D|, N − |D|}

is minimal. Add the condition fj = bj to R. Pass to the step number i + 2.
Let us denote by Lγ

greedy(α) = Lγ
greedy(α, T, r, w) the weight of α-decision rule

constructed by the considered algorithm for given table T , row r and weight
function w.
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4.2 On Precision of Greedy Algorithm with Thresholds α and α

The following two statements are simple corollaries of results of Slav́ık (see The-
orems 4 and 5).

Theorem 23. Let T be a decision table, r be a row of T , U(T, r) �= ∅, w be
a weight function for T , and α be a real number such that 0 ≤ α < 1. Then
Lα

greedy(α) ≤ Lmin(α)H (�(1 − α)|U(T, r)|	).

Theorem 24. Let T be a decision table with m columns labeled by attributes
f1, . . . , fm, r be a row of T , U(T, r) �= ∅, w be a weight function for T , α ∈ IR
and 0 ≤ α < 1. Then Lα

greedy(α) ≤ Lmin(α)H
(
maxi∈{1,...,m} |U(T, r, fi)|

)
.

4.3 On Polynomial Approximate Algorithms

In this subsection we consider three theorems which follow immediately from
Theorems 39–41 [9].

Let 0 ≤ α < 1. Let us consider the following problem: for given decision table
T , row r of T and weight function w for T it is required to find an α-decision
rule for T and r with minimal weight.

Theorem 25. Let 0 ≤ α < 1. Then the problem of construction of α-decision
rule with minimal weight is NP -hard.

So we must consider polynomial approximate algorithms for minimization of
α-decision rule weight.

Theorem 26. Let α ∈ IR and 0 ≤ α < 1. If NP �⊆ DTIME(nO(log log n)) then
for any ε, 0 < ε < 1, there is no polynomial algorithm that for given decision
table T , row r of T with U(T, r) �= ∅ and weight function w for T constructs α-de-
cision rule for T and r which weight is at most (1−ε)Lmin(α, T, r, w) ln |U(T, r)|.

Theorem 27. Let α be a real number such that 0 ≤ α < 1. If P �= NP then
there exists δ > 0 such that there is no polynomial algorithm that for given deci-
sion table T , row r of T with U(T, r) �= ∅ and weight function w for T constructs
α-decision rule for T and r which weight is at most δLmin(α, T, r, w) ln |U(T, r)|.

From Theorem 23 it follows that Lα
greedy(α) ≤ Lmin(α)(1 + ln |U(T, r)|). From

this inequality and from Theorem 26 it follows that under the assumption NP �⊆
DTIME(nO(log log n)) greedy algorithm with two thresholds α and α is close to
best polynomial approximate algorithms for minimization of partial decision
rule weight. From the considered inequality and from Theorem 27 it follows that
under the assumption P �= NP greedy algorithm with two thresholds α and α is
not far from best polynomial approximate algorithms for minimization of partial
decision rule weight.
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However we can try to improve the results of the work of greedy algorithm
with two thresholds α and α for some part of decision tables.

4.4 Two Modifications of Greedy Algorithm

First, we consider binary diagnostic decision tables and prove that under some
assumptions on the number of attributes and rows for the most part of tables for
each row there exist weight function w and numbers α, γ such that the weight
of α-decision rule constructed by greedy algorithm with thresholds α and γ is
less than the weight of α-decision rule constructed by greedy algorithm with
thresholds α and α.

Binary means that the table is filled by numbers from the set {0, 1} (all
attributes have values from {0, 1}). Diagnostic means that rows of the table are
labeled by pairwise different numbers (decisions). Let T be a binary diagnostic
decision table with m columns labeled by attributes f1, . . . , fm and with n rows.
We will assume that rows of T with numbers 1, . . . , n are labeled by decisions
1, . . . , n respectively. Therefore the number of considered tables is equal to 2mn.
Decision table will be called simple if it has no equal rows.

Theorem 28. Let us consider binary diagnostic decision tables with m columns
labeled by attributes f1, . . . , fm and n ≥ 5 rows labeled by decisions 1, . . . , n.
The fraction of decision tables T for each of which for each row r of T there
exist a weight function w and numbers α, γ such that 0 ≤ γ < α < 1 and
Lγ

greedy(α, T, r, w) < Lα
greedy(α, T, r, w) is at least

1 − n3m

(n − 1)
m
2 −1 − n2

2m
.

Proof. Let T be a decision table and r be a row of T with number s ∈ {1, . . . , n}.
We will say that a decision table T is 1-uniform relatively r if there exists

natural p such that for any attribute fi of T if |U(T, r, fi)| > 0 then |U(T, r, fi)| ∈
{p, p+1}. Using reasoning similar to the proof of Theorem 9 one can show that if
T is not 1-uniform relatively r then there exist a weight function w and numbers
α, γ such that 0 ≤ γ < α < 1 and Lγ

greedy(α, T, r, w) < Lα
greedy(α, T, r, w).

We evaluate the number of decision tables which are not 1-uniform relatively
each row. Let (δ1, . . . , δm) ∈ {0, 1}m. First, we evaluate the number of simple
decision tables for which r = (δ1, . . . , δm) and which are 1-uniform relatively
r. Let us consider such a decision table T . It is clear that there exists p ∈
{1, . . . , n − 2} such that for i = 1, . . . , m the column fi contains exactly 0 or
p or p + 1 numbers ¬δi. Therefore the number of considered decision tables
is at most

∑n−2
p=1

(
Cp

n−1 + Cp+1
n−1 + 1

)m

. Using Lemma 2 we conclude that this

number is at most (n − 2)
(
3C

�(n−1)/2�
n−1

)m

< (n − 1)
(

3·2n−1√
n−1

)m

= 2mn−m3m

(n−1)
m
2 −1 .

There are 2m variants for the choice of the tuple (δ1, . . . , δm) and n variants for
the choice of the number s of row r. Therefore the number of simple decision
tables which are 1-uniform relatively at least one row is at most n2m 2mn−m3m

(n−1)
m
2 −1 =
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n2mn3m

(n−1)
m
2 −1 . The number of tables which are not simple is at most n22mn−m.

Hence the number of tables which are not 1-uniform for each row is at least
2mn − n2mn3m

(n−1)
m
2 −1 − n22mn−m. Thus, the fraction, considered in the statement of

the theorem, is at least 1 − n3m

(n−1)
m
2 −1 − n2

2m . �

So if m ≥ 6 and n, 2m

n2 are large enough then for the most part of binary
diagnostic decision tables for each row there exist weight function w and numbers
α, γ such that the weight of α-decision rule constructed by greedy algorithm
with thresholds α and γ is less than the weight of α-decision rule constructed
by greedy algorithm with thresholds α and α.

The obtained results show that the greedy algorithm with two thresholds α
and γ is of some interest. Now we consider two polynomial modifications of
greedy algorithm which allow to use advantages of greedy algorithm with two
thresholds α and γ.

Let T be a decision table with m columns labeled by attributes f1, . . . , fm,
r = (b1, . . . , bm) be a row of T labeled by decision d, U(T, r) �= ∅, w be a weight
function for T and α be a real number such that 0 ≤ α < 1.

1. It is impossible to consider effectively all γ such that 0 ≤ γ ≤ α. Instead
of this we can consider all natural N such that M ≤ N ≤ |U(T, r)| where
M = �|U(T, r)|(1 − α)	 (see the description of greedy algorithm with two
thresholds). For each N ∈ {M, . . . , |U(T, r)|} we apply greedy algorithm with
parameters M and N to T , r and w and after that choose an α-decision rule
with minimal weight among constructed α-decision rules.

2. There exists also an another way to construct an α-decision rule which is not
worse than the one obtained under consideration of all N such that M ≤
N ≤ |U(T, r)|. Let us apply greedy algorithm with thresholds α and α to T , r
and w. Let the algorithm choose sequentially attributes fj1 , . . . , fjt . For each
i ∈ {0, . . . , t−1} we find (if it is possible) an attribute fli of T with minimal
weight w(fli) such that the rule fj1 = bj1 ∧ . . .∧fji = bji ∧fli = bli → d is an
α-decision rule for T and r (if i = 0 then it will be the rule fl0 = bl0 → d).
After that among constructed α-decision rules fj1 = bj1 ∧ . . .∧fjt = bjt → d,
..., fj1 = bj1 ∧ . . . ∧ fji = bji ∧ fli = bli → d, ... we choose an α-decision
rule with minimal weight. From Proposition 7 it follows that the constructed
α-decision rule is not worse than the one constructed under consideration of
all γ, 0 ≤ γ ≤ α, or (which is the same) all N , M ≤ N ≤ |U(T, r)|.

Using Propositions 1 one can prove the following statement.

Proposition 7. Let T be a decision table, r be a row of T , U(T, r) �= ∅, w be
a weight function for T and α, γ be real numbers such that 0 ≤ γ < α < 1.
Let the greedy algorithm with two thresholds α and α, which is applied to T , r
and w, choose sequentially attributes fg1 , . . . , fgt. Let the greedy algorithm with
two thresholds α and γ, which is applied to T , r and w, choose sequentially
attributes fl1 , . . . , flk . Then either k = t and (l1, . . . , lk) = (g1, . . . , gt) or k ≤ t,
(l1, . . . , lk−1) = (g1, . . . , gk−1) and lk �= gk.
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4.5 Bounds on Lmin(α) and Lγ
greedy(α)

First, we fix some information about the work of greedy algorithm with two
thresholds and find the best lower bound on the value Lmin(α) depending on
this information.

Let T be a decision table, r be a row of T such that U(T, r) �= ∅, w be a
weight function for T , and α, γ be real numbers such that 0 ≤ γ ≤ α < 1. Let
us apply the greedy algorithm with thresholds α and γ to the decision table T ,
row r and the weight function w. Let during the construction of α-decision rule
the greedy algorithm choose sequentially attributes fg1 , . . . , fgt .

Let us denote U(T, r, fg0) = ∅ and δ0 = 0. For i = 1, . . . , t denote δi =
|U(T, r, fgi)\(U(T, r, fg0)∪ . . .∪U(T, r, fgi−1))| and wi = w(fgi). As information
on the greedy algorithm work we will use numbers ML = ML(α, γ, T, r, w) =
�|U(T, r)|(1 − α)	, NL = NL(α, γ, T, r, w) = �|U(T, r)|(1 − γ)	 and tuples ΔL =
ΔL(α, γ, T, r, w) = (δ1, . . . , δt), WL = WL(α, γ, T, r, w) = (w1, . . . , wt).

For i = 0, . . . , t − 1 denote

ρi =
⌈

wi+1(ML − (δ0 + . . . + δi))
min{δi+1, NL − (δ0 + . . . + δi)}

⌉

.

Let us define parameter ρL(α, γ) = ρL(α, γ, T, r, w) as follows:

ρL(α, γ) = max {ρi : i = 0, . . . , t − 1} .

We will show that ρL(α, γ) is the best lower bound on Lmin(α) depending on
ML, NL, ΔL and WL. Using Theorem 11 one can prove the following statement.

Theorem 29. For any decision table T , any row r of T with U(T, r) �= ∅, any
weight function w for T , and any real numbers α, γ, 0 ≤ γ ≤ α < 1, the inequality
Lmin(α, T, r, w) ≥ ρL(α, γ, T, r, w) holds, and there exist a decision table T ′, a
row r′ of T ′ and a weight function w′ for T ′ such that

ML(α, γ, T ′, r′, w′) = ML(α, γ, T, r, w), NL(α, γ, T ′, r′, w′) = NL(α, γ, T, r, w) ,

ΔL(α, γ, T ′, r′, w′) = ΔL(α, γ, T, r, w), WL(α, γ, T ′, r′, w′) = WL(α, γ, T, r, w) ,

ρL(α, γ, T ′, r′, w′) = ρL(α, γ, T, r, w), Lmin(α, T ′, r′, w′) = ρL(α, γ, T ′, r′, w′) .

Let us consider a property of the parameter ρL(α, γ) which is important for
practical use of the bound from Theorem 29. Using Proposition 2 one can prove
the following statement.

Proposition 8. Let T be a decision table, r be a row of T with U(T, r) �= ∅, w
be a weight function for T , and α, γ be real numbers such that 0 ≤ γ ≤ α < 1.
Then ρL(α, α, T, r, w) ≥ ρL(α, γ, T, r, w).

Now we study some properties of parameter ρL(α, γ) and obtain two upper
bounds on the value Lγ

greedy(α) which do not depend directly on cardinality of
the set U(T, r) and cardinalities of subsets U(T, r, fi).

Using Theorem 12 one can prove the following statement.
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Theorem 30. Let T be a decision table, r be a row of T with U(T, r) �= ∅, w be
a weight function for T , α, γ ∈ IR and 0 ≤ γ < α < 1. Then Lγ

greedy(α, T, r, w) <

ρL(γ, γ, T, r, w)
(
ln

(
1−γ
α−γ

)
+ 1

)
.

Corollary 9. Let ε ∈ IR and 0 < ε < 1. Then for any α, ε ≤ α < 1, the
inequalities ρL(α, α) ≤ Lmin(α) ≤ Lα−ε

greedy(α) < ρL(α − ε, α − ε)
(
ln 1

ε + 1
)

hold.

For example,
(
ln 1

0.01 + 1
)

< 5.61 and
(
ln 1

0.1 + 1
)

< 3.31. The obtained results
show that the lower bound Lmin(α) ≥ ρL(α, α) is nontrivial.

Using Theorem 13 one can prove the following statement.

Theorem 31. Let T be a decision table, r be a row of T with U(T, r) �= ∅, w be
a weight function for T , α, γ ∈ IR and 0 ≤ γ < α < 1. Then Lγ

greedy(α, T, r, w) <

Lmin(γ, T, r, w)
(
ln

(
1−γ
α−γ

)
+ 1

)
.

Corollary 10. L0
greedy(0.001) < 7.91Lmin(0), L0.001

greedy(0.01) < 5.71Lmin(0.001),
L0.1

greedy(0.2) < 3.20Lmin(0.1), L0.3
greedy(0.5) < 2.26Lmin(0.3).

Corollary 11. Let 0 < α < 1. Then L0
greedy(α) < Lmin(0)

(
ln 1

α + 1
)
.

Corollary 12. Let ε be a real number, and 0 < ε < 1. Then for any α such that
ε ≤ α < 1 the inequalities Lmin(α) ≤ Lα−ε

greedy(α) < Lmin(α − ε)
(
ln 1

ε + 1
)

hold.

4.6 Results of Experiments for α-Decision Rules

In this subsection we will consider only binary decision tables T with binary
decision attributes.

First Group of Experiments. First group of experiments is connected with
study of quality of greedy algorithm with one threshold (where γ = α or, which
is the same, N = M), and comparison of quality of greedy algorithm with
one threshold and first modification of greedy algorithm (where for each N ∈
{M, . . . , |U(T, r)|} we apply greedy algorithm with parameters M and N to
decision table, row and weight function and after that choose an α-decision rule
with minimal weight among constructed α-decision rules).

We generate randomly 1000 decision tables T , rows r and weight functions w
such that T contains 40 rows and 10 conditional attributes f1, . . . , f10, r is the
first row of T , and 1 ≤ w(fi) ≤ 1000 for i = 1, . . . , 10.

For each α ∈ {0.1, . . . , 0.9} we find the number of triples (T, r, w) for which
greedy algorithm with one threshold constructs an α-decision rule with minimal
weight (an optimal α-decision rule), i.e. Lα

greedy(α, T, r, w) = Lmin(α, T, r, w).
This number is contained in the row of Table 3 labeled by ”Opt”.

We find the number of triples (T, r, w) for which first modification of greedy
algorithm constructs an α-decision rule which weight is less than the weight of
α-decision rule constructed by greedy algorithm with one threshold, i.e. there
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exists γ such that 0 ≤ γ < α and Lγ
greedy(α, T, r, w) < Lα

greedy(α, T, r, w). This
number is contained in the row of Table 3 labeled by ”Impr”.

Also we find the number of triples (T, r, w) for which first modification of
greedy algorithm constructs an optimal α-decision rule which weight is less than
the weight of α-decision rule constructed by greedy algorithm with one threshold,
i.e. there exists γ such that 0 ≤ γ < α and Lγ

greedy(α, T, r, w) = Lmin(α, T, r, w) <
Lα

greedy(α, T, r, w). This number is contained in the row of Table 3 labeled by
”Opt+”.

Table 3. Results of first group of experiments with α-decision rules

α 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Opt 434 559 672 800 751 733 866 966 998 1000
Impr 0 31 51 36 22 27 30 17 1 0
Opt+ 0 16 35 28 17 26 25 13 1 0

The obtained results show that the percentage of triples for which greedy
algorithm with one threshold finds an optimal α-decision rule grows almost
monotonically (with local minimum near to 0.4–0.5) from 43.4% up to 100%.
The percentage of problems for which first modification of greedy algorithm can
improve the result of the work of greedy algorithm with one threshold is less
than 6%. However, sometimes (for example, if α = 0.3, α = 0.6 or α = 0.7) the
considered improvement is noticeable.

Second Group of Experiments. Second group of experiments is connected
with comparison of quality of greedy algorithm with one threshold and first
modification of greedy algorithm.

We make 25 experiments (row ”Nr” in Table 4 contains the number of ex-
periment). Each experiment includes the work with three randomly generated
families of triples (T, r, w) (1000 triples in each family) such that T contains n
rows and m conditional attributes, r is the first row of T , and w has values from
the set {1, . . . , v}.

If the column ”n” contains one number, for example ”40”, it means that
n = 40. If this row contains two numbers, for example ”30–120”, it means
that for each of 1000 triples we choose the number n randomly from the set
{30, . . . , 120}. The same situation is for the column ”m”.

If the column ”α” contains one number, for example ”0.1”, it means that
α = 0.1. If this column contains two numbers, for example ”0.2–0.4”, it means
that we choose randomly the value of α such that 0.2 ≤ α ≤ 0.4.

For each of the considered triples (T, r, w) and number α we apply greedy
algorithm with one threshold and first modification of greedy algorithm. Column
”#i”, i = 1, 2, 3, contains the number of triples (T, r, w) from the family number i
for each of which the weight of α-decision rule, constructed by first modification
of greedy algorithm, is less than the weight of α-decision rule constructed by
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Table 4. Results of second group of experiments with α-decision rules

Nr n m v α #1 #2 #3 avg
1 1–100 1–100 1–10 0–1 4 2 4 3.33
2 1–100 1–100 1–100 0–1 7 14 13 11.33
3 1–100 1–100 1–1000 0–1 19 13 15 15.67
4 1–100 1–100 1–1000 0–0.2 20 39 22 27.00
5 1–100 1–100 1–1000 0.2–0.4 28 29 28 28.33
6 1–100 1–100 1–1000 0.4–0.6 22 23 34 26.33
7 1–100 1–100 1–1000 0.6–0.8 7 6 4 5.67
8 1–100 1–100 1–1000 0.8–1 0 1 0 0.33
9 100 1–30 1–1000 0–0.2 35 38 28 33.67
10 100 30–60 1–1000 0–0.2 47 43 31 40.33
11 100 60–90 1–1000 0–0.2 45 51 36 44.00
12 100 90–120 1–1000 0–0.2 37 40 55 44.00
13 1–30 30 1–1000 0–0.2 11 8 9 9.33
14 30–60 30 1–1000 0–0.2 20 22 35 25.67
15 60–90 30 1–1000 0–0.2 30 33 34 32.33
16 90–120 30 1–1000 0–0.2 40 48 38 42.00
17 40 10 1–1000 0.1 31 39 34 34.67
18 40 10 1–1000 0.2 37 39 47 41.00
19 40 10 1–1000 0.3 35 30 37 34.00
20 40 10 1–1000 0.4 27 20 27 24.67
21 40 10 1–1000 0.5 32 32 36 33.33
22 40 10 1–1000 0.6 28 26 24 26.00
23 40 10 1–1000 0.7 10 12 10 10.67
24 40 10 1–1000 0.8 0 2 0 0.67
25 40 10 1–1000 0.9 0 0 0 0

greedy algorithm with one threshold. In other words, in column ”#i” we have
the number of triples (T, r, w) from the family number i such that there exists
γ for which 0 ≤ γ < α and Lγ

greedy(α, T, r, w) < Lα
greedy(α, T, r, w). The column

”avg” contains the number #1+#2+#3
3 .

In experiments 1–3 we consider the case where the parameter v increases. In
experiments 4–8 the parameter α increases. In experiments 9–12 the parameter
m increases. In experiments 13–16 the parameter n increases. In experiments
17–25 the parameter α increases. The results of experiments show that the value
of #i can change from 0 to 55. It means that the percentage of triples for which
the first modification of greedy algorithm is better than the greedy algorithm
with one threshold can change from 0% to 5.5%.

Third Group of Experiments. Third group of experiments is connected with
investigation of quality of lower bound Lmin(α) ≥ ρL(α, α).

We choose natural n, m, v and real α, 0 ≤ α < 1. For each chosen tu-
ple (n, m, v, α) we generate randomly 30 triples (T, r, w) such that T contains
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Fig. 3. Results of third group of experiments with rules (n and m are changing)
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Fig. 4. Results of third group of experiments with rules (v and α are changing)

n rows and m conditional attributes, r is the first row of T , and w has val-
ues from the set {1, ..., v}. After that we find values of Lα

greedy(α, T, r, w) and
ρL(α, α, T, r, w) for each of generated 30 triples. Note that ρL(α, α, T, r, w) ≤
Lmin(α, T, r, w) ≤ Lα

greedy(α, T, r, w). Finally, for generated 30 triples we find
mean values of Lα

greedy(α, T, r, w) and ρL(α, α, T, r, w).
Results of experiments can be found in Figs. 3 and 4. In these figures mean

values of ρL(α, α, T, r, w) are called ”average lower bound” and mean values of
Lα

greedy(α, T, r, w) are called ”average upper bound”.
In Fig. 3 (left-hand side) one can see the case when n ∈ {1000, 2000, . . . , 5000},

m = 30, v = 1000 and α = 0.01.
In Fig. 3 (right-hand side) one can see the case when n = 1000, m∈{10, 20, . . . ,

100}, v = 1000 and α = 0.01.
In Fig. 4 (left-hand side) one can see the case when n = 1000, m = 30,

v ∈ {100, 200, . . . , 1000} and α = 0.01.
In Fig. 4 (right-hand side) one can see the case when n = 1000, m = 30,

v = 1000 and α ∈ {0.0, 0.1, . . . , 0.9}.
Results of experiments show that the considered lower bound is nontrivial and

can be useful in investigations.
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5 Conclusions

The paper is devoted (mainly) to theoretical and experimental analysis of greedy
algorithms with weights and their modifications for partial cover, reduct and
decision rule construction. Obtained results will further to more wide use of
such algorithms in rough set theory and its applications.

In the further investigations we are planning to generalize the obtained re-
sults to the case of decision tables which can contain missing values, continuous
attributes, and discrete attributes with large number of values.
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