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Abstract. This paper proposes an approach to representation and analy-
sis of information systems with fuzzy attributes, which combines the vari-
able precision fuzzy rough set (VPFRS) model with the fuzzy flow graph
method. An idea of parameterized approximation of crisp and fuzzy sets
is presented. A single ε-approximation, which is based on the notion
of fuzzy rough inclusion function, can be used to express the crisp ap-
proximations in the rough set and variable precision rough set (VPRS)
model. A unified form of the ε-approximation is particularly important
for defining a consistent VPFRS model. The introduced fuzzy flow graph
method enables alternative description of decision tables with fuzzy at-
tributes. The generalized VPFRS model and fuzzy flow graphs, taken
together, can be applied to determining a system of fuzzy decision rules
from process data.

1 Introduction

Two important paradigms, developed in the recent decades, can be successfully
used for modelling and analyzing decision processes performed by a human op-
erator: the rough set theory introduced by Pawlak [19] and the theory of fuzzy
sets proposed by Zadeh [34].

The idea of combining fuzzy sets with rough sets was realized by two indepen-
dent approaches. The method given by Nakamura [18] consists in application of
the classical rough set theory to a crisp representation of fuzzy sets. In contrast
to that, Dubois and Prade [6] introduced a novel concept of fuzzy rough sets,
suitable for expressing vagueness represented in fuzzy sets, and coarseness char-
acteristic of rough sets. The concept of Dubois and Prade has been widely used
and developed, see, e.g., [8,12,25].

A significant parameterized extension of the crisp rough set theory is the
variable precision rough set (VPRS) model proposed by Ziarko [35]. It bases
on the idea of relaxation of strong inclusion requirements. The VPRS model
helps to overcome problems caused by errors and noise, which are present in
data obtained from real decision processes. More recently, a probabilistic inter-
pretation of the VPRS model was developed, see e.g., [11,29,36]. The original
VPRS model and many other extensions of crisp rough sets can be expressed in
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the framework of a generalized theory. The rough mereology of Polkowski and
Skowron [24] presents an alternative generalized approach to rough sets, which is
based on the mereology of Leśniewski. The idea of relaxation of strong inclusion
requirements was also applied to fuzzy rough sets [7,33].

Another useful method, introduced and studied by Pawlak [20,21,22], is a
hybrid approach to decision algorithms, which combines the idea of flow graphs
with the crisp rough set model. It was shown [9] that every decision algorithm
can be associated with a flow graph.

We emphasize the problem of obtaining a set of relevant fuzzy decision rules
from recorded process data and decision examples. This is a crucial step in
applications of fuzzy inference systems [14,32]. The used data can be represented
in the form of a decision table with fuzzy attributes. To analyze efficiently this
kind of decision table, we adapt and combine all three approaches mentioned
above: fuzzy rough sets, variable precision rough set model and flow graphs.

First of all, we present a generalized version of our variable precision fuzzy
rough set (VPFRS) model [16,17], which was introduced with the aim to en-
able analysis of fuzzy decision tables obtained from dynamic processes. There
are many ways of performing basic operations on fuzzy sets. In order to get a
consistent VPFRS model, we propose a unified parameterized approach to ap-
proximation of crisp and fuzzy sets. Basing on the notion of rough and fuzzy
rough inclusion function, a definition of a single ε-approximation is given.

Secondly, we propose a fuzzy flow graph approach, which is suitable for repre-
senting and analyzing fuzzy decision systems. The connection of the flow graph
approach with fuzzy inference systems is discussed, The problem of a correct
choice of fuzzy connectives, with the aim to retain the flow conservation equa-
tions, is considered. Furthermore, we give new definitions of the path’s certainty
and strength, by respecting only the relevant part of the flow and disregarding
the flow components which come from other paths.

Finally, we show that the VPFRS model can be effectively used for a simpler
representation and easier selection of fuzzy decision rules with the help of fuzzy
flow graphs.

We start with a formal description of fuzzy information systems.

2 Fuzzy Information Systems

In the classical concept of (crisp) sets with sharp boundaries, any element x of an
universe U belongs or does not belong to a given subset of U . In contrast to that,
the notion of fuzzy sets admits of partial membership. Any fuzzy set F can be
defined by assigning to every element x ∈ U a membership degree μF (x) ∈ [0, 1]
in the set F . Thus, we get a membership function μF which describes the fuzzy
set F .

In a crisp information system, a set of attributes Q is used to characterize
the elements of an universe U . Each element x of the universe U is described by
a combination of attributes values. Only one attribute value of each attribute
q ∈ Q can be assigned to a given element x ∈ U .
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In order to generalize the notion of information system, we use a set of fuzzy
attributes with linguistic values expressed by membership functions. Several lin-
guistic values of every attribute q ∈ Q can be assigned to an element x ∈ U .
In other words, an element x can belong, to a non-zero membership degree, to
many fuzzy sets representing linguistic values of an attribute q. We introduce a
formal definition of a fuzzy information system.

Definition 1. A fuzzy information system is the 4-tuple S = 〈X, Q, L, f〉, where

U – is a nonempty set, called the universe,
Q – is a finite set of fuzzy attributes,
L – is a set of fuzzy (linguistic) values of attributes, L =

⋃
q∈Q Lq,

Lq is the set of linguistic values of an attribute q ∈ Q,
f – is an information function, f : U × L → [0, 1],

f(x, l) ∈ [0, 1] for every l ∈ L and every x ∈ U .

In practice, we use fuzzy decision tables, which constitute a special form of
fuzzy information systems with two disjoint groups of condition and decision
attributes, respectively.

To give a formal description of decision tables, we assume a finite universe U
with N elements: U = {x1, x2, . . . , xN}. Attributes are divided into a subset of n
condition attributes: C = {c1, c2, . . . , cn}, and a subset of m decision attributes:
D = {d1, d2, . . . , dm}.

Every fuzzy attribute is associated with a set of linguistic values. We denote by
Vi = {Vi1, Vi2, . . . , Vini} the family of linguistic values of a condition attribute ci,
and by Wj = {Wj1, Wj2, . . . , Wjmj } the family of linguistic values of a decision
attribute dj , where ni and mj , is the number of the linguistic values of the i-
th condition and the j-th decision attribute, respectively, i = 1, 2, . . . , n, and
j = 1, 2, . . . , m.

For any element x ∈ U , its membership degrees in all linguistic values of the
condition attribute ci (or decision attribute dj) should be determined. This is
performed in the process called fuzzification, using the recorded crisp value of a
particular attribute of the element x. The fuzzy value of an attribute, for a given
element x, is a fuzzy set on the domain of all linguistic values of that attribute.

We denote by Vi(x) the fuzzy value of the condition attribute ci for any x ∈ U ,
as a fuzzy set on the domain of the linguistic values of ci

Vi(x) = {μVi1(x)/Vi1, μVi2(x)/Vi2, . . . , μVini
(x)/Vini} . (1)

Wj(x) denotes the fuzzy value of the decision attribute dj for any x ∈ U , as
a fuzzy set on the domain of the linguistic values of dj

Wj(x) = {μWj1 (x)/Wj1, μWj2 (x)/Wj2, . . . , μWjmj
(x)/Wjmj } . (2)

When the linguistic values of all attributes have the form of singletons or
disjoint intervals on the original domain of attributes, we get a classical crisp
decision table. In such a case, only one linguistic value can be assigned to each
condition and decision attribute of an element x ∈ U .
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Furthermore, we assume, for any element x ∈ U , that all linguistic values
Vi(x) and Wj(x) (i = 1, 2, . . . , n , j = 1, 2, . . .m) satisfy the requirements

power(Vi(x)) =
ni∑

k=1

μVik
(x) = 1 , power(Wj(x)) =

mj∑

k=1

μWjk
(x) = 1 . (3)

The requirements (3) will be used in section 4 for introducing a generalized flow
graph approach, which can be applied to analysis of fuzzy information systems.

3 Variable Precision Fuzzy Rough Set Model

3.1 Parameterized Crisp Rough Sets

The rough set theory, proposed by Pawlak [19], is based on the observation
that any crisp subset of an universe U can be characterized with respect to an
indiscernibility (equivalence) relation R ⊆ U × U . Those classes of indiscernible
elements x ∈ U , which are “completely in accordance” with a given set A ⊆ U ,
form the lower approximation of A. Indiscernibility classes, which are “partially
in accordance” with A, form the upper approximation of A. A set is called exact,
if its lower and upper approximations are equal to each other, otherwise the set
is called rough.

The lower approximation R(A) and upper approximation R(A) of a crisp set
A are defined formally as follows

R(A) = {x ∈ U : [x]R ⊆ A} , (4)

R(A) = {x ∈ U : [x]R ∩ A �= ∅} , (5)

where [x]R denotes an indiscernibility class which contains the element x ∈ U .
Observe that the above definitions are constructed using two operations on

sets: inclusion and intersection. Let us define the lower and upper approxima-
tions, utilizing only the notion of set inclusion.

Definition 2. Given an indiscernibility relation R, the lower approximation
R(A) and upper approximation R(A) of a crisp set A are defined as follows

R(A) = {x ∈ U : ∀ S ⊆ [x]R ∧ S �= ∅ , S ⊆ A} , (6)

R(A) = {x ∈ U : ∃ S ⊆ [x]R ∧ S �= ∅ , S ⊆ A} . (7)

The definitions (6) and (7) emphasize two extreme (ideal) cases of approximation
obtained by applying the indiscernibility relation R.

The need for defining the lower and upper approximations in a unified way
becomes clearer, when we consider the approximation of fuzzy sets. This is be-
cause there is no single method of performing basic operations on fuzzy sets.
Using only one fuzzy connective is especially important for creating a consistent
variable precision fuzzy rough set (VPFRS) model.
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Now, let us recall the concept of crisp variable precision rough set (VPRS)
model, introduced by Ziarko [35]. In order to cope with inconsistency of infor-
mation systems, caused by noise and errors in data, it is necessary to admit of
some level of misclassification, especially in the case of large information sys-
tems. This can be done by relaxing strong inclusion requirements, basing on a
modified relation of set inclusion. We explain the VPRS concept using the notion
of inclusion degree, incl(A, B), of a nonempty (crisp) set A in a (crisp) set B,
defined as follows

incl(A, B) =
card(A ∩ B)

card(A)
. (8)

The inclusion degree should be constrained by applying a lower limit l and an
upper limit u, introduced in the extended version of VPRS [13], which satisfy
the requirement

0 ≤ l < u ≤ 1 . (9)

We assume a non-probabilistic interpretation of the VPRS model. The prob-
abilistic rough set approach [27,36], introduced recently, is a generalization of
the VPRS model, which bases on conditional probability of inclusion.

Using the limits l and u, which satisfy the constraint (9), one can introduce
the notions of u-lower and l-upper approximation of any subset A of the universe
U by an indiscernibility relation R.

The u-lower approximation of A by R is a set defined as follows

Ru(A) = {x ∈ U : incl([x]R, A) ≥ u} , (10)

where [x]R denotes an indiscernibility class of R containing the element x.
The l-upper approximation of A by R is a set defined as follows

Rl(A) = {x ∈ U : incl([x]R, A) > l} . (11)

Observe that the definitions (10) and (11) use the same notion of inclusion
degree and can be interpreted as a weakened form of (6) and (7).

To extend the crisp VPRS model to a parameterized rough set and fuzzy
rough set model, we only apply the degree of set inclusion as the basic notion.
For a general treatment of the problem, we adapt the idea of rough inclusion
function, given by Skowron and Stepaniuk [26], which is defined on the Cartesian
product of the powersets P(U) of the universe U

ν : P(U) × P(U) → [0, 1] . (12)

We assume that the first parameter represents a nonempty set, and the rough
inclusion function should be monotonic with respect to the second parameter

ν(X, Y ) ≤ ν(X, Z) for any Y ⊆ Z, where X, Y, Z ⊆ U .

The inclusion degree (8) is an example of rough inclusion function (12).
Using the rough inclusion function ν, the lower and upper approximations of

a crisp set A can be defined by

R(A) = {x ∈ U : ν([x]R, A) = 1} , (13)
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R(A) = {x ∈ U : ν([x]R, A) > 0} . (14)

We want to go beyond the standard rough set perspective and introduce a
parameterized single form of approximation of crisp sets.

Definition 3. Given an indiscernibility relation R, the ε-approximation Rε(A)
of a crisp set A is defined as follows

Rε(A) = {x ∈ U : ν([x]R, A) ≥ ε} , (15)

where ε ∈ (0, 1].

The ε-approximation Rε can be used for expressing any kind of approximation,
due to the following properties:

(P1) Rε(A) = R(A) for ε = 1 ,

(P2) Rε(A) = R(A) for ε = 0+ ,

(P3) Rε(A) = Ru(A) for ε = u ,

(P4) Rε(A) = Rl(A) for ε = l+ .

Although, we have a single notion of ε-approximation, we are still able to
determine a pair of approximations, by using a pair of appropriate values of the
ε parameter. However, we are mainly interested in determining the consistent
part of an analyzed information system. Hence, the lower approximation is the
most important notion used for reasoning about data.

The concept of VPRS has turned out to be efficient in applications of the
rough set theory to real decision processes [16], e.g. when analyzing the control
of dynamic systems, characterized by large decision tables. In such a case the
determination of the u-lower approximation (10) should be repeated for different
(decreasing) values of the parameter u.

When considering a series of n ε-approximations of a set A, the following
property is satisfied due to monotonicity of the inclusion function

(P5) Rε1(A) ⊆ Rε2(A) ⊆ . . . ⊆ Rεn(A) for ε1 ≥ ε2 ≥ . . . ≥ εn .

3.2 Parameterized Fuzzy Rough Sets

Our goal is to propose a unified approach to parameterized approximation of
fuzzy sets. To this end, we generalize the notion of crisp ε-approximation and
adapt the widely used concept of fuzzy rough sets of Dubois and Prade. In
consequence, a consistent form of variable precision fuzzy rough set model will
be obtained, suitable for analysis of large fuzzy information systems.

Let us recall the definition of fuzzy rough set, introduced by Dubois and Prade
[6]. For a given fuzzy set A and a fuzzy partition Φ = {F1, F2, . . . , Fn} on the
universe U , the membership functions of the lower and upper approximations of
A by Φ are defined as follows

μΦ(A)(Fi) = inf
x∈U

I(μFi(x), μA(x)) , (16)
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μΦ(A)(Fi) = sup
x∈U

T(μFi(x), μA(x)) , (17)

where T and I denote a T-norm operator and an implicator, respectively.
The pair of sets (ΦF, ΦF ) is called a fuzzy rough set.
In order to extend the approach given in previous subsection, we need to con-

sider the problem of determining the degree of inclusion of one fuzzy set into
another. This problem has been often discussed (see, e.g., [1,2,5,7,15]). Many
different measures of fuzzy set inclusion were considered. Among many propos-
als, implication operators were applied to determination of set inclusion. Sinha-
Dougherty [4] proposed an axiomatic approach, which can be formulated using
the generalized Łukasiewicz implicators.

We propose a different idea of set inclusion in comparison with various solu-
tions given in the literature. It consists in determination of inclusion with respect
to particular elements of sets. This leads to a detailed description of inclusion. In
consequence, we get a fuzzy set rather than a number. This method is particulary
useful for elaborating an effective variable precision fuzzy rough set model.

A fuzzy set, which describes the inclusion of a fuzzy set A in a fuzzy set B,
determined with respect to particular elements of the set A, constitutes the basic
notion of our VPFRS model. The obtained fuzzy set will be called the inclusion
set of A in B, and denoted by INCL(A, B).

There are many possibilities of defining the inclusion set. We apply to this
end an implication operator denoted by I.

Definition 4. The implication-based inclusion set INCL(A, B) of a nonempty
fuzzy set A in a fuzzy set B is defined as follows

μINCL(A,B)(x) =
{

I(μA(x), μB(x)) if μA(x) > 0 ,
0 otherwise .

(18)

By assuming that μIncl(A,B)(x) = 0, for μA(x) = 0, we take into account only the
support of the set A. For the sake of simplicity of the computational algorithm,
it is not necessary to consider inclusion for all elements of the universe.

Furthermore, we can require that the degree of inclusion with respect to x
should be equal to 1, if the inequality μA(x) ≤ μB(x) for that x is satisfied

I(μA(x), μB(x)) = 1, if μA(x) ≤ μB(x) . (19)

The requirement (19) is always satisfied by residual implicators.
In order to define a suitable fuzzy counterpart of the rough inclusion function

(12), we apply the notions of α-cut, power (cardinality) and support of a fuzzy
set. Given a fuzzy subset A of the universe U , the α-cut of A, denoted by Aα, is
a crisp set defined as follows

Aα = {x ∈ U : μA(x) ≥ α} for α ∈ [0, 1] . (20)

For a finite fuzzy set A with n elements, power(A) and support(A) are given by

power(A) =
n∑

i=1

μA(xi) , support(A) = {x : μA(xi) > 0} . (21)



198 A. Mieszkowicz-Rolka and L. Rolka

Using the above notions, we define the fuzzy rough inclusion function on the
Cartesian product of the families F(U) of all fuzzy subsets of the universe U

να : F(U) × F(U) → [0, 1] . (22)

Definition 5. The fuzzy rough α-inclusion function να(A, B) of any nonempty
fuzzy set A in a fuzzy set B is defined as follows, for any α ∈ (0, 1]

να(A, B) =
power(A ∩ INCL(A, B)α)

power(A)
, (23)

The value να(A, B) expresses how many elements of the nonempty fuzzy set
A belong, at least to the degree α, to the fuzzy set B.

First, we prove monotonicity of the proposed fuzzy rough inclusion function.

Theorem 1. Implication-based fuzzy rough inclusion function να is monotonic
with respect to the second parameter, for any α ∈ (0, 1]

να(X, Y ) ≤ να(X, Z) for any Y ⊆ Z, where X, Y, Z ⊆ F(U) .

Proof. According to the definition of a fuzzy subset [14], for Y ⊆ Z, we have
μY (x) ≤ μZ(x), ∀ x ∈ U . Since every R-implicator, S-implicator and QL-impli-
cator is right monotonic [25], it holds that: μI(X,Y )(x) ≤ μI(X,Z)(x), ∀ x ∈ U .
Thus, using the definition (18), we get

μINCL(X,Y )(x) ≤ μINCL(X,Z)(x), ∀ x ∈ U .

Finally, for any α ∈ (0, 1], we can easy show that

power(X ∩ INCL(X, Y )α)
power(X)

≤ power(X ∩ INCL(X, Z)α)
power(X)

.

Hence να(X, Y ) ≤ να(X, Z). ��

Furthermore, we can show that the rough inclusion function used in formulae
(10) and (11) is a special case of the fuzzy rough inclusion function (23), when
we use the implication-based inclusion set.

Theorem 2. For any nonempty crisp set A, any crisp set B, and for α ∈ (0, 1],
the implication-based inclusion function να(A, B) is equal to the inclusion degree
incl(A, B).

Proof. We show that for any crisp sets A and B, the inclusion set Incl(A, B) is
equal to the crisp intersection A ∩ B. The membership function of any crisp set
X is given by

μX(x) =
{

1 for x ∈ X
0 for x /∈ X .

(24)

Every implicator I satisfies the conditions: I(1, 1) = I(0, 1) = I(0, 0) = 1,
and I(1, 0) = 0.
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Thus, applying the definition (18), we get

μIncl(A,B)(x) = μA∩B(x) =
{

1 if x ∈ A and x ∈ B
0 otherwise .

(25)

For any finite crisp set X , and any α ∈ (0, 1], by formulae and (20), (21) and
(24) we get: power(X) = card(X), and Xα = X .

Consequently, applying (25), we finally have

power(A ∩ Incl(A, B)α)
power(A)

=
card(A ∩ B)

card(A)
.

Hence, we proved that να(A, B) = incl(A, B), for any α ∈ (0, 1]. ��

We want to formulate the fuzzy rough approximation in a general way. Therefore,
we introduce a function called res, defined on the Cartesian product P(U)×F(U),
where P(U) denotes the powerset of the universe U , and F(U) the family of all
fuzzy subsets of the universe U , respectively

res : P(U) × F(U) → [0, 1] . (26)

We require that

res(∅, Y ) = 0 ,
res(X, Y ) ∈ {0, 1}, if Y is a crisp set ,
res(X, Y ) ≤ res(X, Z) for any Y ⊆ Z, where X ∈ P(U), and Y, Z ∈ F(U) .

The form of the function res can be chosen depending on requirements of a
considered application. For a given crisp set X and fuzzy set Y , the value of
function res(X, Y ) should express the resulting membership degree in the set Y ,
taking into account not all elements of the universe, but only the elements of
the set X . When we apply the limit-based approach, according to Dubois and
Prade, we obtain the following form of the function res

res(X, Y ) = inf
x∈X

μY (x) . (27)

In the definition (27) of the function res, only one (limit) value of membership
degree of elements in the set Y is taken into account. However, this means that we
disregard the character (shape) of the membership function. Basing on a single
value of membership degree is not always acceptable, especially in the case of
large information systems. Hence, we can use the opportunity of giving another
definitions of res, in which many values of membership degree are considered.

Now, we introduce the notion of generalized fuzzy rough ε-approximation.

Definition 6. For ε ∈ (0, 1], the ε-approximation Φε(A) of a fuzzy set A, by
a fuzzy partition Φ = {F1, F2, . . . , Fn}, is a fuzzy set on the domain Φ with
membership function expressed as

μΦε(A)(Fi) = res(Sε(Fi, A), INCL(Fi, A)) , (28)
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where
Sε(Fi, A) = support(Fi ∩ INCL(Fi, A)αε) ,

αε = sup{α ∈ [0, 1] : να(Fi, A) ≥ ε} .

The set Sε(Fi, A) is equal to support of the intersection of the class Fi with the
part of INCL(Fi, A), which contains those elements of the approximating class
Fi which are included in A at least to the degree αε. The resulting membership
μΦε(A)(Fi) is determined using only the elements from Sε(Fi, A) instead of the
whole class Fi. This is accomplished by applying the function res.

It can be easy shown that applying the definition (27) of the function res
leads to a simple form of the ε-approximation (28)

μΦε(A)(Fi) = sup{α ∈ [0, 1] : να(Fi, A) ≥ ε} . (29)

In contrast to the approximations (16) and (17), which use two different fuzzy
connectives, we have a single unified definition of fuzzy rough approximation. In
this way we obtain a consistent variable precision fuzzy rough set model. Thus,
we are able to compare approximations determined for various values of the
parameter ε.

3.3 Analysis of Fuzzy Decision Tables

In the analysis of fuzzy decision tables, two fuzzy partitions are generated with
the help of a suitable similarity relation. The partition obtained with respect to
condition attributes is used for approximation of fuzzy similarity classes obtained
with respect to decision attributes. It is necessary to address the problem of
comparing objects described by fuzzy sets. This issue has been widely studied
in the literature, see, for example, [3,7,8]. In our considerations, we apply a
symmetric T-transitive fuzzy similarity relation [3], which is defined by means
of the distance between the compared elements. In the following, we only give
formulae for condition attributes. We apply the notation given in section 2.

If we need to compare any two elements x and y of the universe U with respect
to the condition attribute ci, i = 1, 2, . . . , n, then the similarity between x and
y could be expressed using a T-similarity relation based on the Łukasiewicz
T-norm [7].

Sci(x, y) = 1 − max
k=1,ni

|μVik
(x) − μVik

(y)| . (30)

In order to evaluate the similarity SC(x, y), with respect to all condition
attributes C, we must aggregate the results obtained for particular attributes ci,
i = 1, 2, . . . , n. This can be done by using the T-norm operator min as follows

SC(x, y) = min
i=1,n

Sci(x, y) = min
i=1,n

(1 − max
k=1,ni

|μVik
(x) − μVik

(y)|) . (31)

By calculating the similarity for all pairs of elements of the universe U , we obtain
a symmetric similarity matrix. If the value of similarity between the elements x
and y is equal to 1, they belong to the same similarity class. In that case two rows
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of the similarity matrix should be merged into one fuzzy set with membership
degrees equal to 1 for x and y. In consequence, we get a family of fuzzy similarity
classes C̃ = {C1, C2, . . . , C�n}, for condition attributes C and a family of fuzzy
similarity classes D̃ = {D1, D2, . . . , D�m}, for decision attributes D.

In the next step, we determine fuzzy rough approximations of elements of the
family D̃ by the family C̃, using the parameterized fuzzy rough set model.

To determine the consistency of fuzzy decision tables and significance of at-
tributes, we apply a generalized measure of ε-approximation quality [17]. For
the family D̃ = {D1, D2, . . . , D�m} and the family C̃ = {C1, C2, . . . , C�n} the
ε-approximation quality of D̃ by C̃ is defined as follows

γ
�Cε

(D̃) =
power(Pos

�Cε
(D̃))

card(U)
, (32)

where
Pos

�Cε
(D̃) =

⋃

Dj∈ �D

ω(C̃ε(Dj)) ∩ Dj .

The fuzzy extension ω denotes a mapping from the domain C̃ into the domain
of the universe U , which is expressed for any fuzzy set X by

μω(X)(x) = μX(Ci), if μCi(x) = 1 . (33)

The definition (32) is based on the generalized notion of positive region. For any
fuzzy set X and a similarity relation R, the positive region of X is defined as
follows

PosRε(X) = X ∩ ω(Rε(X)) . (34)

In the definition of the positive region (34), we take into account only those
elements of the ε-approximation, for which there is no contradiction between the
set X and the approximating similarity classes.

4 Fuzzy Flow Graphs

In addition to the VPFRS model, we want to introduce fuzzy flow graphs as
a second tool for analysis of fuzzy information systems. The idea of applying
flow graphs in the framework of crisp rough sets, for discovering the statistical
properties of decision algorithms, was proposed by Pawlak [20,21,22]. We should
start with recalling the basic notions of the crisp flow graph approach.

A flow graph is given in the form of directed acyclic final graph G = (N , B, ϕ),
where N is a set of nodes, B ⊆ N × N is a set of directed branches, ϕ: B → R+

is a flow function with values in the set of non-negative reals R+.
For any (X, Y ) ∈ B, X is an input of Y and Y is an output of X . The quantity

ϕ(X, Y ) is called the throughflow from X to Y .
I(X) and O(X) denote an input and an output of X , respectively. The input

I(G) and output O(G) of a graph G are defined by

I(G) = {X ∈ N : I(X) = ∅} , O(G) = {X ∈ N : O(X) = ∅} . (35)
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Every node X ∈ N of a flow graph G is characterized by its inflow

ϕ+(X) =
∑

Y ∈I(X)

ϕ(Y, X) , (36)

and by its outflow
ϕ−(X) =

∑

Y ∈O(X)

ϕ(X, Y ) . (37)

For any internal node X , the equality ϕ+(X) = ϕ−(X) = ϕ(X) is satisfied. The
quantity ϕ(X) is called the flow of the node X .

The flow for the whole graph G is defined by

ϕ(G) =
∑

x∈I(G)

ϕ−(X) =
∑

x∈O(G)

ϕ+(X) . (38)

By using the flow ϕ(G), the normalized throughflow σ(X, Y ) and the normal-
ized flow σ(X) are determined as follows

σ(X, Y ) =
ϕ(X, Y )
ϕ(G)

, σ(X) =
ϕ(X)
ϕ(G)

. (39)

For every branch of a flow graph G the certainty factor is defined by

cer(X, Y ) =
σ(X, Y )
σ(X)

. (40)

The coverage factor for every branch of a flow graph G is defined by

cov(X, Y ) =
σ(X, Y )
σ(Y )

. (41)

The certainty and coverage factors satisfy the following properties
∑

Y ∈O(X)

cer(X, Y ) = 1 ,
∑

X∈I(Y )

cov(X, Y ) = 1 . (42)

The measures of certainty (40) and coverage (41) are useful for analysis of
decision algorithms [10].

Now, we consider the issue of applying flow graphs to representation and
analysis of fuzzy decision algorithms. We use decision tables with fuzzy values of
attributes, presented in section 2. All possible decision rules, generated by the
Cartesian product of sets of linguistic values of the attributes, will be examined.
According to notation used in section 2, we obtain r =

∏n
i=1 ni

∏m
j=1 mj possible

rules. The k-th decision rule, denoted by Rk, is expressed as follows

Rk: IF c1 is V k
1 AND c2 is V k

2 . . . AND cn is V k
n

THEN d1 is W k
1 AND d2 is W k

2 . . . AND dm is W k
m

(43)

where k = 1, 2, . . . , r , V k
i ∈ Vi , i = 1, 2, . . . n , W k

j ∈ Wj , j = 1, 2, . . . , m.
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When we use the fuzzy Cartesian products Ck = V k
1 × V k

2 × . . . × V k
n and

Dk = W k
1 ×W k

2 × . . .×W k
m , the k-th decision rule can be expressed in the form

of a fuzzy implication, denoted here by Ck → Dk.
It is necessary to select a subset of decision rules which are relevant to the

considered decision process. This can be done by determining to what degree
any element x ∈ U , corresponding to a single row of the decision table, confirms
particular decision rules. We calculate the truth value of the decision rule’s an-
tecedent and the truth value of the decision rule’s consequent, by determining
the conjunction of the respective membership degrees of x in the linguistic values
of attributes.

If we take a decision table with crisp attributes, a decision rule can be con-
firmed for some x, if the result of conjunction is equal to 1, both for the rule’s
premise and the rule’s conclusion. Otherwise, the element x does not confirm the
considered decision rule. The set of elements x ∈ U , which confirm a decision
rule, is called the support of the decision rule.

To determine the confirmation degree of fuzzy decision rules, a T-norm oper-
ator need to be applied. By cd(x, k), we denote the confirmation degree of the
k-th decision rule by the element x ∈ U

cd(x, k) = T(cda(x, k), cdc(x, k)) , (44)

where cda(x, k) denotes the confirmation degree of the decision rule’s antecedent

cda(x, k) = T(μV k
1

(x), μV k
2

(x), . . . , μV k
n
(x)) , (45)

and cdc(x, k) the confirmation degree of the decision rule’s consequent

cdc(x, k) = T(μW k
1
(x), μW k

2
(x), . . . , μW k

m
(x)) . (46)

Through determining the confirmation degrees (45), (46) and (44), we gener-
ate the following fuzzy sets on the domain U :

the support of the decision rule’s antecedent

support(cda(x, k)) = {cda(x1, k)/x1, cda(x2, k)/x2, . . . , cda(xN , k)/xN},
(47)

the support of the decision rule’s consequent

support(cdc(x, k)) = {cdc(x1, k)/x1, cdc(x2, k)/x2, . . . , cda(xN , k)/xN} ,
(48)

and the support of the decision rule Rk, respectively

support(Rk) = {cd(x1, k)/x1, cd(x2, k)/x2, . . . , cd(xN , k)/xN} . (49)

The introduced notions (47), (48) and (49) will be used for defining strength,
certainty, and coverage factors of a decision rule.

Now, let us explain the way of constructing fuzzy flow graphs on the basis of
a decision table with fuzzy attributes.
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Every fuzzy attribute is represented by a layer of nodes. The nodes of a layer
correspond to linguistic values of a given attribute.

We denote by X̃ a fuzzy set on the universe U , which describes membership
degree of particular elements x ∈ U in the linguistic value represented by X . The
membership degrees of all x in the set X̃ can be found in a respective column of
the considered decision table.

Let us pick out such two attributes, which are represented by two consecutive
layers of the flow graph. We denote by X a linguistic value of the first attribute,
and by Y a linguistic value of the second attribute. In the case of crisp flow
graphs, the flow between nodes X and Y is equal to the number of elements of
the universe U , which are characterized by the combination of attribute values
X and Y . In consequence, a particular element x ∈ U can only be assigned to
a unique path in the flow graph. In a fuzzy information system, however, every
element of the universe can belong to several linguistic values, and it can be
assigned to several paths in the flow graph.

It is possible to determine the flow distribution in the crisp flow graph by using
the operations of set intersection and set cardinality. To obtain the flow ϕ(X, Y )
for the branch (X, Y ) of a fuzzy flow graph, we have to calculate power of the in-
tersection of fuzzy sets X̃ and Ỹ . Many definitions of fuzzy intersection (T-norm
operator) are known. In order to satisfy the flow conservation equations, it is nec-
essary to use the T-norm operator prod for determining the intersection of sets.
Furthermore, we should assume that the linguistic values of attributes satisfy the
requirement (3). We conclude the above discussion with the following theorem.

Theorem 3. Let S be a fuzzy information systems with the linguistic values of
attributes satisfying the requirement (3), and let ∩ denote a fuzzy intersection
operator based on the T-norm prod. The following properties are satisfied for the
flow graph, which represents the information system S :

(G1) the inflow for any output or internal layer node X is given by

ϕ+(X) = power(X̃) =
∑

Y ∈I(X)

ϕ(Y, X) =
∑

Y ∈I(X)

power(X̃ ∩ Ỹ ) , (50)

(G2) the outflow for any input or internal layer node X is given by

ϕ−(X) = power(X̃) =
∑

Y ∈O(X)

ϕ(X, Y ) =
∑

Y ∈O(X)

power(X̃ ∩ Ỹ ) , (51)

(G3) for any internal layer node X, it holds that

ϕ+(X) = ϕ−(X) . (52)

The properties (G1), (G2) and (G3) do not hold in general, if we use another T-
norm operator, e.g. min. In the special case of crisp decision tables, the formulae
(50) and (51) become equivalent to (36) and (37).

The layers corresponding to condition attributes can be merged into a single
layer, which contains nodes representing all possible combinations of linguistic
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values of the condition attributes. We can also merge all the layers corresponding
to decision attributes. Let us denote by X∗, a node of the resulting layer obtained
for condition attributes and by Y ∗, a node of the resulting layer obtained for
decision attributes. The node X∗ corresponds to antecedent of some decision
rule Rk. Support of the antecedent of the decision rule Rk is determined with
the help of formula (47).

The decision rule Rk is represented by the branch (X∗, Y ∗). Power of the
support of the rule Rk is equal to the flow between the nodes X∗ and Y ∗, which
is obtained using formula (49)

ϕ(X∗, Y ∗) = power(support(Rk)) . (53)

By applying the formulae (47), (48) and (49), we can determine, for every de-
cision rule Rk, the certainty factor cer(X∗, Y ∗), the coverage factor cov(X∗, Y ∗),
and the strength of the rule σ(X∗, Y ∗)

cer(X∗, Y ∗) = cer(Rk) =
power(support(Rk))

power(support(cda(x, k)))
, (54)

cov(X∗, Y ∗) = cov(Rk) =
power(support(Rk))

power(support(cdc(x, k)))
, (55)

σ(X∗, Y ∗) = strength(Rk) =
power(support(Rk))

card(U)
. (56)

It is possible to represent any decision rule by a sequence of nodes [X1 . . . Xn],
namely by a path from the 1-th to the n-th layer of the flow graph G. For a given
path [X1 . . . Xn], the resulting certainty and strength can be defined. In contrast
to the definitions presented in [20,21,22], in which the statistical properties of
flow are taken into account, we propose a different form of the path’s certainty
and strength

cer[X1 . . . Xn] =
n−1∏

i=1

cer(X1 . . . Xi, Xi+1) , (57)

σ[X1 . . . Xn] = σ(X1) cer[X1 . . .Xn] , (58)

where

cer(X1 . . . Xi, Xi+1) =
power(X̃1 ∩ X̃2 ∩ . . . ∩ X̃i+1)

power(X̃1 ∩ X̃2 ∩ . . . ∩ X̃i)
. (59)

The resulting certainty (57) of the path [X1 . . . Xn], expresses what part of
the flow of the starting node X1 reaches the final node Xn, passing through all
nodes of the path.

5 Examples

Let us analyze a fuzzy decision table (Table 1) with condition attributes c1 and
c2 and one decision attribute d. All attributes have three linguistic values.
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Table 1. Decision table with fuzzy attributes

c1 c2 d

V11 V12 V13 V21 V22 V23 W11 W12 W13

x1 0.1 0.9 0.0 0.0 0.9 0.1 0.0 1.0 0.0
x2 0.8 0.2 0.0 1.0 0.0 0.0 0.0 0.1 0.9
x3 0.0 0.2 0.8 0.0 0.2 0.8 0.9 0.1 0.0
x4 0.1 0.9 0.0 0.0 0.9 0.1 0.0 1.0 0.0
x5 0.0 0.8 0.2 0.8 0.2 0.0 0.0 0.1 0.9
x6 0.8 0.2 0.0 0.0 0.2 0.8 1.0 0.0 0.0
x7 0.1 0.9 0.0 0.0 0.9 0.1 0.1 0.9 0.0
x8 0.0 0.1 0.9 0.8 0.2 0.0 0.0 0.0 1.0
x9 0.0 0.2 0.8 0.0 0.2 0.8 0.9 0.1 0.0
x10 0.1 0.9 0.0 0.1 0.9 0.0 0.0 0.9 0.1

First, we apply the variable precision fuzzy rough set approach. Using simi-
larity relation in the form (31), we determine similarity matrices with respect
to condition and decision attributes. By merging identical rows of the similar-
ity matrix, we get 9 condition similarity classes and and 6 decision similarity
classes. We calculate ε-approximation quality using the Łukasiewicz implication
operator. The results are presented in table 2.

Table 2. ε-approximation quality for different values of parameter ε

γ
�Cε

( �D)Method Removed
attribute ε = 1 ε = 0.9 ε = 0.85 ε = 0.8

none 0.830 0.900 0.900 0.910
Ł-inf c1 0.820 0.880 0.880 0.910

c2 0.250 0.250 0.410 0.450

We can state that the considered information system has a high consistency.
The condition attribute c1 can be omitted from the decision table without a
significant decrease of the ε-approximation quality.

In the next step, the flow graph method will be applied. We use the same labels
for both the linguistic values of the attributes and the corresponding nodes of
the flow graph. As stated in previous section, the T-norm operator prod should
be used in our calculations. The obtained fuzzy flow graph has a very simple
form, because there is only one condition attribute c2 and one decision attribute
d. Values of the normalized flow between nodes of the condition layer and nodes
of the decision layer are given in Table 3.



On Representation and Analysis of Crisp and Fuzzy Information Systems 207

Table 3. Normalized flow between nodes of condition and decision layers

σ(V2i, W1j)

W11 W12 W13 Σ

V21 0.000 0.027 0.243 0.270
V22 0.065 0.348 0.047 0.460
V23 0.225 0.045 0.000 0.270
Σ 0.290 0.420 0.290 1.000

We see that the flow conservation equations (50) and (51), are satisfied, for
example,

σ−(V21) =
power(Ṽ21)
card(U)

=
3∑

i=1

σ(V21, W1i) = 0.270 ,

σ+(W11) =
power(W̃11)

card(U)
=

3∑

i=1

σ(V2i, W11) = 0.290 .

Let us determine the certainty and coverage factors for branches between the
layers according to formulae (54), (55). The results are given in Tables 4 and 5.

Table 4. Certainty factor for branches between condition and decision layers

cer(V2i, W1j)

W11 W12 W13 Σ

V21 0.0000 0.1000 0.9000 1.0000
V22 0.1413 0.7565 0.1022 1.0000
V23 0.8333 0.1667 0.0000 1.0000

Table 5. Coverage factor for branches between condition and decision layers

cov(V2i, W1j)

W11 W12 W13

V21 0.0000 0.0643 0.8379
V22 0.2241 0.8286 0.1621
V23 0.7759 0.1071 0.0000
Σ 1.0000 1.0000 1.0000

Fuzzy decision rules with the largest values of certainty factor (Table 6) can
be included in the final fuzzy inference system. The respective values of coverage
factor are useful for explaining the selected decision rules. Only 3 decision rules
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Table 6. Decision rules with the largest value of certainty factor

decision rule certainty coverage strength [%]

V21 → W13 0.9000 0.8379 24.30
V22 → W12 0.7565 0.8286 34.80
V23 → W11 0.8333 0.7759 22.50

could be generated from our decision table. Owing to the application of the
VPFRS approach, we got a simple fuzzy flow graph.

Let us construct a flow graph without a prior reduction of attributes. We
merge the layers corresponding to condition attributes c1 and c2 to a result-
ing layer, which represents all possible linguistic values in the antecedences of
decision rules.

We determine the degrees of satisfaction of the rules’ antecedences for partic-
ular elements x ∈ U . For the antecedence represented by V12V22, we get:

Ṽ12V22 = Ṽ12 ∩ Ṽ22 ={ 0.81/x1, 0.00/x2, 0.04/x3, 0.81/x4, 0.16/x5, 0.04/x6,
0.81/x7, 0.02/x8, 0.04/x9, 0.81/x10},

ϕ(V12, V22) = power(Ṽ12V22) = 3.54, σ(V12, V22) = ϕ(V12,V22)
cardU = 0.354.

Table 7. Decision rules with the largest certainty factor (full information system)

decision rule certainty coverage strength [%]

V11V21 → W13 0.8901 0.2486 7.21
V11V23 → W11 0.9567 0.2210 6.41
V12V21 → W13 0.8366 0.2914 8.45
V12V22 → W12 0.8763 0.7386 31.02
V13V21 → W13 0.9818 0.2979 8.64
V13V23 → W11 0.9000 0.3972 11.52

Finally, we determine the normalized throughflow, certainty and coverage fac-
tors for branches between of the resulting condition and decision layers. Decision
rules with the largest value of certainty factor are given in Table 7. We can ob-
serve that the attribute c1 is superfluous in the obtained decision rules.

6 Conclusions

Information systems with crisp and fuzzy attributes can be effectively analyzed
by a hybrid approach which combines the variable precision fuzzy rough set
(VPFRS) model with fuzzy flow graphs. The VPFRS model can be defined in a
unified way with the help of a single notion of ε-approximation. This allows to
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avoid the inconsistency of the VPFRS model caused by different forms of fuzzy
connectives. The proposed fuzzy flow graph method is suitable for representing
and analyzing decision tables with fuzzy attributes. Every fuzzy attribute can be
represented by a layer of a flow graph. All nodes of a layer correspond to linguistic
values of an attribute. A fuzzy decision table can be reduced by applying the
VPFRS approach prior to using the fuzzy flow graph method for determining a
system of fuzzy decision rules.
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