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Preface

Volume VI of the Transactions on Rough Sets (TRS) commemorates the life and
work of Zdzis�law Pawlak (1926-2006)1. His legacy is rich and varied. Professor
Pawlak’s research contributions have had far-reaching implications inasmuch as
his works are fundamental in establishing new perspectives for scientific research
in a wide spectrum of fields.

From a very early age, Zdzis�law Pawlak devoted his life to scientific research.
The pioneering work by Prof. Pawlak included research on the design of com-
puters, information retrieval, modeling conflict analysis and negotiation, genetic
grammars, and molecular computing. His research led to the introduction of
knowledge representation systems during the early 1970s and the discovery of
rough sets during the early 1980s. Added to that was Prof. Pawlak’s lifelong
interest in painting, photography, and poetry. During his lifetime, he nurtured
worldwide interest in approximation, approximate reasoning, and rough set the-
ory and its applications2. Evidence of the influence of Prof. Pawlak’s work can
be seen in the growth in the rough-set literature that now includes over 4000
publications by more than 1600 authors in the rough set database3 as well as
the growth and maturity of the International Rough Set Society4. Numerous
biographies of Zdzis�law Pawlak have been published5.

This volume of the TRS presents papers that reflect the profound influence
of a number of research initiatives by Zdzis�law Pawlak. In particular, this vol-
ume introduces a number of new advances in the foundations and applications
of artificial intelligence, engineering, logic, mathematics, and science. These ad-
vances have significant implications in a number of research areas such as the
foundations of rough sets, approximate reasoning, bioinformatics, computational
intelligence, cognitive science, data mining, information systems, intelligent sys-
tems, machine intelligence, and security. In addition, it is evident from the papers
included in this volume that rough set theory and its application form a very
active research area worldwide. A total of 41 researchers from 8 countries are
represented in this volume, namely, Canada, India, France, Norway, Poland, P.R.

1 Prof. Pawlak passed away on 7 April 2006.
2 See, e.g., Pawlak, Z., Skowron, A.: Rudiments of rough sets, Information Sciences

177 (2007) 3-27; Pawlak, Z., Skowron, A.: Rough sets: Some extensions, Informa-
tion Sciences 177 (2007) 28-40; Pawlak, Z., Skowron, A.: Rough sets and Boolean
reasoning, Information Sciences 177 (2007) 41-73.

3 http://rsds.wsiz.rzeszow.pl/rsds.php
4 http://roughsets.home.pl/www/
5 See, e.g., Peters, J.F. and Skowron, A., Zdzis�law Pawlak: Life and Work. Transac-

tions on Rough Sets V, LNCS 4100 (2006) 1-24. See, also, R. S�lowiński, Obituary,
Prof. Zdzis�law Pawlak (1926-2006), Fuzzy Sets and Systems 157 (2006) 2419-2422.
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VI Preface

China, Sweden, Russia, Thailand, and the USA. Evidence of the vigor, breadth
and depth of research in the theory and applications of rough sets can be found
in the articles in this volume.

Most of the contributions of this commemorative volume of the TRS are
on an invitational basis and every paper has been refereed in the usual way.
This special issue of the TRS contains 23 papers and extended abstracts that
explore a number of research streams that are either directly or indirectly re-
lated to research initiatives by Zdzis�law Pawlak. These research streams are
represented by papers on propositional logics (Mohua Banerjee and Md. Aquil
Khan), intuitionistic rough sets for database applications (Theresa Beaubouef
and Fred Petry), missing attribute value problem (Jerzy W. Grzyma�la-Busse
and Witold J. Grzyma�la-Busse), Zdzis�law Pawlak’s contributions to the study
of vagueness (Mihir Chakraborty), data mining (Alicja Wakulicz-Deja and Grze-
gorz Ilczuk), approximation of concepts (Anna Gomolińska), intelligent sys-
tems (Andrzej Jankowski and Andrzej Skowron), acoustics (Bozena Kostek),
rule evaluation (Jiye Li, Puntip Pattaraintakorn, and Nick Cercone), rough sets
in China (Qing Liu and Hui Sun), four-valued logic (Jan Ma�luszyński, An-
drzej Sza�las and Aida Vitória), crisp and fuzzy information systems (Alicja
Mieszkowicz-Rolka and Leszek Rolka), artificial intelligence and rough sets (Tosi-
haru Munakata), topology and information systems (Piero Pagliani and Mihir
K. Chakraborty), conjugate information systems (Maria Semeniuk-Polkowska),
incomplete transactional databases (Grzegorz Protaziuk and Henryk Rybin-
ski), classifiers, rule induction and rough sets (Jerzy Stefanowski), approxima-
tion spaces (Jaros�law Stepaniuk), relevant attributes in high-dimensional data
(Julio J. Valdés and Alan J. Barton), knowledge discovery in databases (Anita
Wasilewska, Ernestina Menasalvas, Christelle Scharff), information quanta and
approximation operators (Marcin Wolski), lattice theory for rough sets (Jouni
Järvinen).

The editors of this volume extend their hearty thanks to reviewers of papers
that have been submitted to the TRS during the past 12 months: Manuel Ojeda-
Aciego, Mohua Banerjee, Jan Bazan, Mihir Chakraborty, Anna Gomolińska,
Etienne Kerre, Pawan Lingras, Victor Marek, Piero Pagliani, Sheela Ramanna,
Dominik Ślȩzak, Jerzy Stefanowski, Jaros�law Stepaniuk, Piotr Synak, Piotr
Wasilewski and Yiyu Yao.

This issue of the TRS has been made possible thanks to the laudable
efforts of a great many generous persons and organizations. The editors and
authors of this volume also extend an expression of gratitude to Alfred Hof-
mann, Ursula Barth, Christine Günther and the LNCS staff at Springer for
their support in making this volume of the TRS possible. In addition, the
editors extend their thanks to Marcin Szczuka for his consummate skill and
care in the compilation of this volume. The editors have been supported by
the State Committee for Scientific Research of the Republic of Poland (KBN),
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Preface VII

research grant No. 3T11C00226, and the Natural Sciences and Engineering Re-
search Council of Canada (NSERC) research grant 185986.

December 2006 Ivo Düntsch
Jerzy W. Grzyma�la-Busse

Ewa Or�lowska
James F. Peters
Lech Polkowski

Andrzej Skowron
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This journal subline has as its principal aim the fostering of professional ex-
changes between scientists and practitioners who are interested in the founda-
tions and applications of rough sets. Topics include foundations and applications
of rough sets as well as foundations and applications of hybrid methods combin-
ing rough sets with other approaches important for the development of intelligent
systems.

The journal includes high-quality research articles accepted for publication
on the basis of thorough peer reviews. Dissertations and monographs up to 250
pages that include new research results can also be considered as regular papers.
Extended and revised versions of selected papers from conferences can also be
included in regular or special issues of the journal.
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Propositional Logics from Rough Set Theory

Mohua Banerjee� and Md. Aquil Khan

Department of Mathematics and Statistics,
Indian Institute of Technology,

Kanpur 208 016, India
{mohua,mdaquil}@iitk.ac.in

Abstract. The article focusses on propositional logics with semantics
based on rough sets. Many approaches to rough sets (including gener-
alizations) have come to the fore since the inception of the theory, and
resulted in different “rough logics” as well. The essential idea behind
these logics is, quite naturally, to interpret well-formed formulae as rough
sets in (generalized) approximation spaces. The syntax, in most cases,
consists of modal operators along with the standard Boolean connec-
tives, in order to reflect the concepts of lower and upper approximations.
Non-Boolean operators make appearances in some cases too.

Information systems (“complete” and “incomplete”) have always been
the “practical” source for approximation spaces. Characterization theo-
rems have established that a rough set semantics based on these “in-
duced” spaces, is no different from the one mentioned above. We also
outline some other logics related to rough sets, e.g. logics of information
systems – which, in particular, feature expressions corresponding to at-
tributes in their language. These systems address various issues, such as
the temporal aspect of information, multiagent systems, rough relations.

An attempt is made here to place this gamut of work, spread over the
last 20 years, in one platform. We present the various relationships that
emerge and indicate questions that surface.

1 Introduction

A “logic of rough sets” would, in the natural sense, represent a formal system,
statements in the language of which would be interpreted as rough sets in some
approximation space. Thus “models” in the semantics of such a system would
be approximation spaces, equipped with a meaning function that assigns rough
sets to well-formed formulae (wffs) of the language.

Rough sets have been defined in more than one way for a Pawlak approxima-
tion space (X, R) – [1] lists five definitions, all of which are equivalent to each
other. One of these is most commonly used:

(*) a rough set in (X, R), is the pair (A, A), for each A ⊆ X ,

where A, A denote the lower and upper approximations of A respectively. An-
other is a definition given by Pawlak in [2], and of interest to us in this paper:
� The author acknowledges the support of the Department of Computer Science, Uni-

versity of Regina, Canada, during a visit to which the paper was finalized.

J.F. Peters et al. (Eds.): Transactions on Rough Sets VI, LNCS 4374, pp. 1–25, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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2 M. Banerjee and Md.A. Khan

(**) A ⊆ X is a rough set in (X, R), provided the boundary of A, BnA �= ∅.
For generality’s sake, we could remove the restriction in (**) and consider de-
finable sets (i.e. subsets with empty boundary) as special cases of rough sets.

Thus, in the semantics based on approximation spaces, the meaning function
defining models, assigns to wffs either subsets of the domain, or pairs of subsets
in accordance with (*) [3,4,5,6,7,8,9,10]. This is true even for semantics based
on generalized approximation spaces, where different relations (may be more
than one in number, with operations on them) are considered [6,11]. The logics
invariably involve modalities to express the concepts of lower and upper approx-
imations – some are simply known normal modal logics, or have non-Boolean
connectives (and no modalities) in the language, but there are translations into
modal logics. We make a study of this group of systems in Section 2. It may be
remarked that the “rough logic” proposed by Pawlak [3] (the first system to be
called so) makes an appearance here (cf. Section 2.6).

The “practical” source of Pawlak approximation spaces are complete / deter-
ministic information systems. These have the form S ≡ (U, A, V al, f), where U
is a set of objects, A a set of attributes, V al a set of values for the attributes,
and f a function from U × A to V al. An equivalence relation RS is induced on
U (thus giving the approximation space (U, RS)), as

x RS y in U , if and only if f(x, a) = f(y, a), for all a ∈ A.

The converse also holds: given any approximation space (U, R), one can define
an information system S ≡ (U, A, V al, f) such that the induced equivalence RS
is just the relation R. So, in effect, a semantics based on approximation spaces
induced by complete information systems, is identical to the one discussed above.

Generalized information systems, termed incomplete/nondeterministic, are
those where f is a function from U × A to P(V al), and yields different kinds of
binary relations (e.g. similarity, inclusion – cf. Section 3.1) apart from equiva-
lences, on U . Thus any information system (complete or incomplete) on a domain
U , induces a relational system or a (generalized) approximation space on U , i.e.
the (non-empty) set U together with a set of binary relations. This is called a
standard structure on U [12,13,14]. For example, for the complete information
system (U, A, V al, f) above, (U, RS) is a standard structure on U . In Section 3.1,
(U, simS , inS) is a standard structure for the incomplete information system
S ≡ (U, A, V al, f), with similarity and inclusion relations simS , inS . (Different
sets of relations can give different standard structures on the same set U .)

The induced relations in the standard structure may be characterized by a
set of properties. As we know, equivalences are characterized by the properties
of reflexivity, symmetry and transitivity. The similarity and inclusion relations
considered in Section 3.1 are characterized by the properties (S1), (S2), (S4) −
(S6) given there. By a general structure on U [12,13,14], one means any relational
system comprising a non-empty set, along with binary relations that satisfy the
set of properties characterizing the induced relations in the standard structure.
Again, for the complete information system (U, A, V al, f) above, any Pawlak
approximation space (U, R) is a general structure. A general structure for S of

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Propositional Logics from Rough Set Theory 3

Section 3.1, would be of the form (U, sim, in), where sim, in are binary relations
on U satisfying (S1), (S2), (S4) − (S6).

One finds logics with semantics defined on incomplete information systems,
for instance, in [15], or with semantics defined on general structures [16]. How-
ever, Vakarelov [12,13,14,17] has established a series of characterization results,
enabling an identification of semantics based on general and standard structures
(as in case of the Pawlak approximation space and complete information sys-
tem above). In case of [15] too, we demonstrate here that the logic in question
is equivalent to a normal modal logic with certain generalized approximation
spaces defining models. These systems are discussed in Section 3.

In another line, there are “logics of information systems”, which accom-
modate in their language, expressions corresponding to objects and attributes
[18,19,4,20]. Amongst these is a system that addresses the temporal aspect of
information (cf. [4]), while [20] presents a logic for multiagent systems. There are
also treatises on “rough relations” – a logic has been proposed [21] on the one
hand, and on the other, we have the proposal of a logic programming language in
“rough datalog” [22]. In Section 4, we briefly sketch these and other approaches,
such as rough mereology [23]. It will be seen that, some of the logics [4,16,20]
have atomic propositions as (or built from) descriptors, the key feature of deci-
sion logic [2]. Decision logic is well-known, and not presented in this article.

One should mention that a few of the logics described here, have also been
used as a base to express various concepts involving rough sets. For instance, Yao
and Lin [6] have defined graded and probabilistic rough sets, using graded and
probabilistic modal operators in the language of normal modal systems. Com-
mon and distributed knowledge operators have been interpreted in generalized
approximation spaces by Wong [24]. In [25], another modal system (inspired by
[3]) has been used to propose postulates for rough belief change.

A comparative study of the presented logics is made in Section 5. The paper
concludes by indicating possible future directions of investigation in Section 6.

2 Logics with Semantics Based on Approximation Spaces

In this section, we take a look at logics with approximation spaces defining
models. We find six kinds of systems.

For a logic L, “α is a theorem of L” shall be indicated by the notation �L α.

2.1 Normal Modal Systems

The modal nature of the lower and upper approximations of rough sets was
evident from the start. Hence, it is no surprise that normal modal systems were
focussed upon, during investigations on logics for rough sets. In particular, in
case of Pawlak rough sets, the two approximations considered as operators clearly
obey all the S5 laws. The formal connection between the syntax of S5 and its
semantics in terms of rough sets is given as follows [26].

According to the Kripke semantics for S5, a wff α is interpreted by a function
π as a subset in a non-empty domain U , the subset representing the extension

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



4 M. Banerjee and Md.A. Khan

of the formula – i.e. the collection of situations/objects/worlds where the wff
holds. Moreover, in an S5-model M ≡ (U, R, v) (say), the accessibility relation
R is an equivalence on U . Further, if �, ♦ denote the necessity and possibility
operators respectively then for any wff α, v(�α) = v(α) and v(♦α) = v(α).

A wff α is true in M, if v(α) = U . Now it can easily be seen that all the S5
theorems involving � and ♦ translate into valid properties of lower and upper
approximations.

Taking a cue from this connection, similar links have been pointed out (e.g. in
[6,27]) between “rough sets” on generalized approximation spaces, and different
normal modal systems. The basic idea is to define generalized approximation
operators corresponding to any binary relation R on the domain U – this has
been done by many (e.g. for tolerance relations in [28] and others – cf. [29]).
More explicitly, a map r : U → P(U) is defined as r(x) ≡ {y ∈ U : xRy}. Then
the operators apr, apr : P(U) → P(U) are given by

apr(A) ≡ {x : r(x) ⊆ A}, and apr(A) ≡ {x : r(x) ∩ A �= ∅}.

The rough set operators then satisfy various properties, depending upon the
nature of R. Now let L denote a normal modal language, and M ≡ (U, R, v)
be a model for L. v, as before, interprets a wff as a subset in U . Then it is
straightforward to observe that for any wff α of L,

v(�α) = apr(v(α)), and dually, v(♦α) = apr(v(α)).

By the above interpretation, the modal logics like KB, KT, K4, S5 etc. could
be said to capture the properties of rough sets in generalized approximation
spaces based on different R (symmetric, reflexive, transitive, equivalence etc.).

As remarked in the Introduction, this link has been made use of further. Con-
sidering graded and probabilistic modal operators on the above systems, graded
and probabilistic rough sets have been defined in [6]. Wong [24] has interpreted
common and distributed knowledge operators (as defined in logic of knowledge)
in generalized approximation spaces with an indexed set of indiscernibility rela-
tions (corresponding to the knowledge operator of each agent).

2.2 DAL

[11] considers generalized approximation spaces containing a family of equiva-
lence relations instead of just one. The logic DAL that is defined in [11], has
models based on these spaces. Further, the set of equivalence relations is assumed
to be closed with respect to the operations of intersection and transitive closure
of union of relations.

The language of DAL, expectedly, includes a family of modal operators in-
tended to correspond to the indiscernibility relations on the domains of the mod-
els. Formally, this is done by having a set R (say) of relational variables apart
from the set P of propositional ones. There are binary operations ∩, 
, and a col-
lection REL of relational expressions is built inductively out of the members of
R with these operations. Apart from the classical Boolean connectives, a modal
connective [R] is then introduced in the language for each R ∈ REL.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Propositional Logics from Rough Set Theory 5

A DAL-model is a structure U ≡ (U, {ρR}R∈REL, m), where, (i) for any
R ∈ REL, ρR is an equivalence relation in the set U ; (ii) ρR∩S is the great-
est equivalence relation in U included in both ρR and ρS ; (iii) ρR�S is the least
equivalence relation including both ρR and ρS ; and (iv) m is the meaning func-
tion from P ∪ R to P(U) ∪ {ρR}R∈REL such that m(p) ⊆ U , for p ∈ P , and
m(R) ≡ ρR, for R ∈ REL.

For evaluating truth of wffs in DAL-models, one defines a function v that is
determined by the meaning function m:

v(p) ≡ m(p), for p ∈ P ,

v([R]α) ≡ {x ∈ U : y ∈ v(α), for all y such that x m(R) y},

the Boolean cases being defined in the standard way.
Definitions of truth and validity then are as usual: α is true in U , provided

v(α) = U , and valid if it is true in all DAL-models.
DAL has been axiomatized as follows. The connective 〈〉 is the dual of [].

A1. All classical tautologies,
A2. [R](α → β) → ([R]α → [R]β),
A3. [R]α → α,

A5. 〈R〉α → [R]〈R〉α,

A5. [R 
 S]α → [R]α ∧ [S]α,

A6. (([P ]α → [R]α) ∧ ([P ]α → [S]α)) → ([P ]α → [R 
 S]α),
A7. [R]α ∨ [S]α → [R ∧ S]α,

A8. (([R]α → [P ]α) ∧ ([S]α → [P ]α)) → ([R ∧ S]α → [P ]α).

The only rules of inference are Modus Ponens and Necessitation (correspond-
ing to the connective [R] for each R ∈ REL).

The axiomatization yields a completeness result with respect to the afore-
mentioned semantics.

Theorem 1. For any DAL-wff α, �DAL α, if and only if α is valid.

2.3 Pre-rough Logic

Following in the footsteps of Rasiowa, the algebra of rough sets was investigated
in [7] in order to arrive at a logic for the theory. An algebraic structure called
pre-rough algebra was proposed – this is a quasi Boolean algebra [30] along with
a topological operator satisfying all the properties of an interior, and more. A
corresponding logic PRL was framed, and observed to be sound and complete
with respect to a semantics based on rough sets.

The language of PRL has the primitive logical symbols ¬, �, �. �, ♦ are duals
of �, �, while ⇒ is defined as:

α ⇒ β ≡ (¬�α � �β) � (¬♦α � ♦β),

for any wffs α, β of PRL.
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As in the case of S5, a model for PRL is of the form M ≡ (U, R, v), where the
departure from the S5-semantics lies in the definition of the meaning function
v with respect to the connectives of conjunction � and implication ⇒. For any
α, β in PRL, S, T ⊆ U ,

v(α � β) ≡ v(α) � v(β), and
v(α ⇒ β) ≡ v((¬�α � �β) � (¬♦α � ♦β)), where

S � T ≡ (S ∩ T ) ∪ (S ∩ T ∩ (S ∩ T )
c
) (c denoting complementation).

Definition of truth of a wff α in M remains the same: this is if and only if
v(α) = U . It may then be noticed that ⇒ reflects rough inclusion: a wff α ⇒ β
is true in (U, R, v) provided v(α) is roughly included in v(β). Further, � / � are
operations that reduce to ordinary set intersection / union only when working
on definable sets.

α is valid (written |=RS α), if and only if α is true in every PRL-model.
Following are the axiom schemes for PRL:

1. α ⇒ α
2a. ¬¬α ⇒ α 2b. α ⇒ ¬¬α
3. α � β ⇒ α 4. α � β ⇒ β � α
5a. α � (β � γ) ⇒ (α � β) � (α � γ) 5b. (α � β) � (α � γ) ⇒ α � (β � γ)
6. �α ⇒ α
7a. �(α � β) ⇒ �(α) � �(β) 7b. �(α) � �(β) ⇒ �(α � β)
8. �α ⇒ ��α 9. ♦�α ⇒ �α
10a. �(α � β) ⇒ �α � �β 10b. �α � �β ⇒ �(α � β)

Rules of inference :

1. α 2. α ⇒ β
α ⇒ β β ⇒ γ

β α ⇒ γ
modus ponens hypothetical syllogism

3. α 4. α ⇒ β

β ⇒ α ¬β ⇒ ¬α

5. α ⇒ β 6. α ⇒ β, β ⇒ α
α ⇒ γ γ ⇒ δ, δ ⇒ γ

α ⇒ β � γ (α ⇒ γ) ⇒ (β ⇒ δ)

7. α ⇒ β 8. α

�α ⇒ �β �α

9. �α ⇒ �β
♦α ⇒ ♦β

α ⇒ β

One can then prove, for any PRL-wff α,
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Theorem 2. �PRL α, if and only if |=RS α.

We shall meet this logic and its semantics again in the coming sections.

2.4 3-Valued �Lukasiewicz Logic L3

The connection of rough sets with 3-valuedness, also came up in the context of
algebraic investigations. For example, in [31,32,33], an equivalence of 3-valued
�Lukasiewicz (Moisil) algebras with rough set structures was observed. In terms
of logic, the way we can set up a formal link between the intensely studied L3
and a rough set semantics – in fact, the semantics just outlined in Section 2.3,
is as follows.

Let us recall Wajsberg’s axiomatization of L3 (cf. [34]). The logical symbols
¬, → are taken to be primitive.

Axiom schemes:

1. α → (β → α).
2. (α → β) → ((β → γ) → (α → γ)).
3. ((α → ¬α) → α) → α.
4. (¬α → ¬β) → (β → α).

The only rule of inference is Modus Ponens.
L3 is known to be sound and complete with respect to the class of 3-valued

�Lukasiewicz (Moisil) algebras, as well as with respect to the semantics on 3 ≡
{0, 1/2, 1}, with �Lukasiewicz negation and implication [34].

Now a logic L1 is said to be embeddable into a logic L2, provided there is a
translation � of wffs of L1 into L2, such that �L1 α if and only if �L2 α� for
any wff α of L1. We use the denotation L1 ⇀ L2. L1 � L2 denotes existence of
embeddings both ways.

[31] establishes the following. There are translations ◦ from L3 into PRL and
∗ from PRL into L3 given by

(¬α)◦ ≡ ¬α◦,
(α → β)◦ ≡ (♦¬α◦ � β◦) � (♦β◦ � ¬α◦);
(¬α)∗ ≡ ¬α∗,
(α � β)∗ ≡ (α∗ → β∗) → β∗,
(α � β)∗ ≡ ¬(¬α∗ � ¬β∗),
(♦α)∗ ≡ ¬α∗ → α∗.

(One may notice that for any α, (α◦)∗ and (α∗)◦ are logically equivalent to α in
the respective systems.)

It is then shown that L3 � PRL. Thus

Theorem 3
(a) �L3 α, if and only if |=RS α◦, for an L3-wff α and
(b) �L3 α∗, if and only if |=RS α, for a PRL-wff α.
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2.5 Logic for Regular Double Stone Algebras

Another line of algebraic investigation has resulted in linking rough set structures
with the class of regular double Stone algebras [35]. A double Stone algebra (DSA)
is a structure (L, �, �,∗ ,+ , 0, 1) such that

(L, �, �, 0, 1) is a bounded distributive lattice,
y ≤ x∗ if and only if y � x = 0,
y ≥ x+ if and only if y � x = 1 and
x∗ � x∗∗ = 1, x+ � x++ = 0.

The operations ∗,+, as evident, are two kinds of complementation on the domain.
The DSA is regular if, in addition to the above, for all x ∈ L,

x � x+ ≤ x � x∗

holds. This is equivalent to requiring that x∗ = y∗, x+ = y+ imply x = y, for
all x, y ∈ L.

Considering the definition (*) of rough sets (cf. Introduction), one finds that
the collection RS of rough sets (X, X) over an approximation space (U, R) can
be made into a regular DSA. The zero of the structure is the element (∅, ∅),
while the unit is (U, U). The operations �, �,∗ ,+ are defined as

(X, X) � (Y , Y ) ≡ (X ∪ Y , X ∪ Y ),
(X, X) � (Y , Y ) ≡ (X ∩ Y , X ∩ Y ),
(X, X)∗ ≡ (X

c
, X

c
),

(X, X)+ ≡ (Xc, Xc).

For the converse, Comer shows that any regular DSA is isomorphic to a sub-
algebra of RS for some approximation space (U, R).

Using these facts, a logic LD for rough sets is defined by Düntsch [8] as follows.
The language of LD has two unary connectives ∗,+ (for two kinds of negation),

apart from the binary connectives ∨, ∧ and constant symbol �. We write α∗, α+

instead of ∗α,+ α, just to keep parity with the algebraic notation used above.
A model of LD is a pair (W, v), where W is a (non-empty) set and v is the

meaning function assigning to propositional variables, pairs in P(W ) × P(W )
such that if v(p) = (A, B) then A ⊆ B. v(p) = (A, B) is to express that “p holds
at all states of A and does not hold at any state outside B”. For �, we have
v(�) ≡ (W, W ).
v is extended to the set of all wffs recursively:

if v(α) = (A, B) and v(β) = (C, D) then
v(α ∨ β) ≡ (A ∪ C, B ∪ D),
v(α ∧ β) ≡ (A ∩ C, B ∩ D),
v(α∗) ≡ (Bc, Bc),
v(α+) ≡ (Ac, Ac).

A wff α is true in a model (W, v), provided v(α) = (W, W ).
We would now like to make explicit, how v interprets the wffs of LD as rough

sets over some approximation space. One refers to [8], and [35].
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Consider the range ran(v) of the map v in P(W ) × P(W ). It can be shown
that it forms a regular DSA through the operations �, �,∗ ,+:

v(α) � v(β) ≡ v(α ∨ β),
v(α) � v(β) ≡ v(α ∧ β),
v(α)∗ ≡ v(α∗),
v(α)+ ≡ v(α+).

v(�∗) (or v(�+)) is the zero ((∅, ∅)) of the algebra, while v(�) = (W, W ) is the
unit.

In fact, the variety of regular DSA’s is just the one generated by regular DSA’s
of the kind ran(v), where v ranges over all meaning functions for all models.

Using the correspondence between classes of algebras and logic [36], [8] con-
cludes, amongst other properties of LD, that

Theorem 4. LD has a finitely complete and strongly sound Hilbert style axiom
system.

Through Comer’s representation result, ran(v) corresponding to any model
(W, v) of LD, is isomorphic to a subcollection of RS for some approximation
space (U, R). We can now say that v(α) for a wff α, can be identified with a
rough set over some (U, R) in precisely the following manner.

Let U consist of all the join irreducible elements of ran(v), i.e. v(α) ∈ U ,
if and only if v(α) �= (∅, ∅), and for all wffs β, γ, if v(α) = v(β) � v(γ) then
either v(α) = v(β) or v(α) = v(γ). An equivalence relation R on U can then be
obtained, where R is given by:

v(α) R v(β) if and only if v(α∗∗) = v(β∗∗),

i.e. if and only if B = D, where v(α) = (A, B) and v(β) = (C, D).
Now define f : ran(v) → P(U) such that for v(α) = (A, B),

f(A, B) ≡ {v(β) = (C, D) ∈ U : C ⊆ A, D ⊆ B}.
Finally, define the map g : ran(v) → P(U) × P(U) as:

g(A, B) ≡ (f(A, A), f(B, B)), where v(α) = (A, B).

(Note that (A, A), (B, B) ∈ U , as v(α++) = (A, A), and v(α∗∗) = (B, B).)
It can then be shown that (a) g is injective, and (b) g preserves �, �,∗ ,+.
Moreover, if v(α) = (A, B),

g(v(α)) = ( f(A, B), f(A, B) ),

a rough set in the approximation space (U, R).

[8] does not present an explicit proof method for the logic LD – the only com-
ment on the matter is vide Theorem 4. Recently, Dai [9] has presented a sequent
calculus for a logic (denoted RDSL) with a semantics based on the regular DSAs
formed by collections of rough sets of the kind RS over some approximation space
(U, R) (defined earlier in the section). The language of RDSL is the same as that
of LD, except that the constant symbol ⊥ (dual for �) is included amongst the
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primitive symbols. Models are of the form (RS, v), where v, the meaning function,
is a map from the set of propositional variables to RS. Thus v(p), for a proposi-
tional variable p, is a pair (X, X) in the approximation space (U, R). v is extended
to the set of all wffs in the same way as for models of LD.

We note that an RDSL-model (RS, v) may be identified with the LD-model
(U, v). On the other hand, due to Comer’s representation result, given any
LD-model (W, v), there is an isomorphism f from ran(v) to a subalgebra
(S, say) of RS on some approximation space. One can thus find an RDSL-
model (RS, v′) such that ran(v′) is S, i.e. v′(p) ≡ f(v(p)), for every proposi-
tional variable p. So, in this sense, the classes of models of the two logics are
identifiable.

As in classical sequent calculus, for finite sequences of wffs Γ ≡ (p1, p2, . . . pm)
and Δ ≡ (q1, q2, . . . qn) in RDSL, the sequent Γ ⇒ Δ is said to be valid in a
model (RS, v) if and only if

v(p1) � . . . � v(pm) ≤ v(q1) � . . . � v(qn).

�, � are the operations in the regular DSA (RS, �, �,∗ ,+ , < ∅, ∅ >, < U, U >).
Γ ⇒ Δ is said to be valid (in notation, |=RDSA Γ ⇒ Δ) if and only if Γ ⇒ Δ

is valid in every RDSL-model.
The standard classical axiom p ⇒ p and rules for the connectives ∧, ∨ and

constant symbols �, ⊥ are considered to define derivability (�RDSL). In addition,
the axioms and rules for the two negations ∗,+ are as follows.

1. p ⇒ p∗∗.
2. p∗ ⇒ p∗∗∗.
3. p ⇒ p++.
4. p+ ⇒ p+++.

(R∗) Γ ⇒ Δ (R+) Γ ⇒ Δ

Δ∗ ⇒ Γ ∗ Δ+ ⇒ Γ+

Soundness and completeness are then proved, with respect to the semantics
sketched.

Theorem 5. �RDSL Γ ⇒ Δ, if and only if |=RDSA Γ ⇒ Δ.

2.6 Logic for Rough Truth or of Rough Consequence

In [3], a logic Rl (the first in literature to be called “rough logic”) was proposed,
along with a very appealing notion of rough truth. The language of Rl consists
of the standard Boolean connectives, and models M ≡ (U, R, v) are based on
approximation spaces. v assigns subsets of the domain U to wffs in the usual
manner. Five logical values of “truth”, “falsity”, “rough truth”, “rough falsity”
and “rough inconsistency” are considered in this work, with truth and falsity
representing the limit of our partial knowledge.

As we know, a wff α is true in M, if v(α) = U . α is said to be surely/possibly
true on x ∈ U , if x ∈ v(α) (v(α)) respectively. α is roughly true in M, if it
is possibly true on every x in U , i.e. v(α) = U , or in other words, v(α) is
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externally indiscernible [37] in (U, R). On the other hand, α is roughly false,
when v(α) = ∅ (v(α) is internally indiscernible), and α is roughly inconsistent,
if it is both roughly true and false (v(α) is totally indiscernible).

Let us consider the modal system S5. Note that models of S5 and Rl are iden-
tical. We can then effect a translation of the above concepts into S5. In(U, R, v),
a wff α can be termed roughly true if v(α) = v(♦α) = U , roughly false if
v(α) = v(�α) = ∅, and roughly inconsistent if both hold.

In [10], a logic Lr having the same models as above was proposed, with the
speciality that the syntax-semantics relationships are explored with rough truth
replacing truth and rough validity replacing validity. The notion of consistency
is replaced by one of rough consistency too. The consequence relation defining
the logic is also non-standard. These ideas were first mooted in [5,26], and Lr is
a modified version of the formal system discussed there.

Lr has a normal modal language. A model M ≡ (U, R, v) is a rough model
of Γ , if and only if for every γ ∈ Γ , v(♦γ) = U , i.e. γ is roughly true in M. α
is a rough semantic consequence of Γ (denoted Γ |≈α) if and only if every rough
model of Γ is a rough model of α. If Γ is empty, α is said to be roughly valid,
written |≈α.

There are two rules of inference:

R1. α R2. ♦α
β ♦β

if �S5 ♦α → ♦β ♦α ∧ ♦β

The consequence relation is defined as follows. Let Γ be any set of wffs and
α any wff in Lr.

α is a rough consequence of Γ (denoted Γ |∼α) if and only if there is a sequence
α1, ..., αn (≡ α) such that each αi (i = 1, ..., n) is either (i) a theorem of S5, or
(ii) a member of Γ , or (iii) derived from some of α1, ..., αi−1 by R1 or R2.
If Γ is empty, α is said to be a rough theorem, written |∼α.

A kind of “rough Modus Ponens” is then derivable, in the form: if Γ |∼α,
�S5 α′ → β with �S5 α ≈ α′ then β. Here ≈ reflects the notion of “rough
equality”, α ≈ β ≡ (�α ↔ �β) ∧ (♦α ↔ ♦β). One also obtains soundness of Lr

with respect to the above semantics: if Γ |∼α then Γ |≈α.
It is clear that in the face of an incomplete description of a concept p, p and

“not” p (in the classical sense) may not always represent conflicting situations.
To accommodate this possibility, a set Γ of wffs is termed roughly consistent if
and only if the set ♦Γ ≡ {♦γ : γ ∈ Γ} is S5-consistent.

With the help of this notion, one obtains

Theorem 6. (Completeness)
(a) Γ is roughly consistent if and only if it has a rough model.
(b) For any Lr-wff α, if Γ |≈α then Γ |∼α.

Thus, Lr appears as another system that is able to address rough sets and related
notions. We shall remark on its relationship with other well-known systems in
Section 5. It may be mentioned that Lr has been used as the base logic for a
proposal of rough belief change in [25].
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3 Logics with Semantics Based on Information Systems

We now present logics, the models of which are defined on approximation spaces
induced by information systems. We find one pioneering system NIL that has
inspired the proposal of many others in the same line. The section also includes
a logic by Nakamura, the models of which are directly defined on information
systems.

3.1 NIL

Recall that an incomplete information system is of the form S ≡ (U, A, V al, f),
where U is a set of objects, A a set of attributes, V al a set of values for the
attributes, and f a function from U × A to P(V al).

The logic NIL proposed by Or�lowska and Pawlak [16] works on incomplete
information systems, in which the function f satisfies an additional condition:

(�) f(x, a) �= ∅, for all x ∈ U, a ∈ A.
One observes that, given S ≡ (U, A, V al, f), two particular kinds of binary

relations on the domain U are induced – these dictate the formulation of NIL.
Let x, y ∈ U .
Similarity (simS): x simS y if and only if f(x, a) ∩ f(y, a) �= ∅, for all a ∈ A.
Inclusion (inS): x inS y if and only if f(x, a) ⊆ f(y, a), for all a ∈ A.
It can be shown that for every incomplete information system S ≡ (U, A, V al, f)
and x, y, z ∈ U , the following hold.

(S1) x inS x.
(S2) if x inS y and y inS z then x inS z.
(S3) if x simS y for some y, then x simS x.
(S4) if x simS y then y simS x.
(S5) if x simS y, x inS u, y inS v then u simS v.

Further, if the condition (�) is satisfied by f then sim satisfies
(S6) x simS x.

Thus a standard structure (cf. Introduction) corresponding to an incompletein-
formation system S ≡ (U, A, V al, f) with condition (�), would be (U, simS , inS).
On the other hand, a general structure for S would be of the form (U, sim, in),
where sim, in are binary relations on U satisfying (S1), (S2), (S4) − (S6). For
brevity, we refer to these as standard and general NIL-structures respectively.

NIL could be termed as a modal version of decision logic introduced by
Pawlak [2], an association similar to that of rough logic [3] and S5 (cf. Section
2.6). The atomic propositions of NIL are the descriptors of decision logic – of
the form (a, v), where a is an “attribute constant”, and v a constant representing
“value of attribute”.

Apart from the standard Boolean connectives ¬, ∨, the language contains
modal connectives �, �1, �2 corresponding to sim, in and the inverse in−1 of in
respectively. Wffs are built, as usual, out of the atomic propositions (descriptors)
and the connectives. Note that there are no operations on the attribute or value
constants.
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A NIL-model M ≡ (U, sim, in, m) consists of a general structure (U, sim, in)
as above, along with a meaning function m from the set of all descriptors to the
set P(U).

m is extended recursively to the set of all NIL-wffs in the usual manner. In
particular,

m(�α) ≡ {x ∈ U : y ∈ m(α) for all y such that x sim y}.
Similarly one defines m(�1α), and m(�2α).
α is true in the model M, if m(α) = U.

The following deductive system for NIL was proposed in [16].
Axiom schemes:

A1. All classical tautologies,
A2. �2(α → β) → (�2α → �2β),
A3. �1(α → β) → (�1α → �1β),
A4. �(α → β) → (�α → �β),
A5. α → �1¬�2¬α,

A6. α → �2¬�1¬α,

A7. �2α → α,

A8. �1α → α,

A9. �α → α,

A10. �2α → �2�2α,

A11. �1α → �1�1α,

A12. α → �¬�¬α,

A13. �α → �2��1α.

Rules of inference:
(R1) α, α → β (R2) α

β �2α

(R3) α (R4) α
�1α �α

It has been proved that

Theorem 7. For any NIL-wff α, �NIL α if and only if α is true in all NIL-
models.

3.2 Logics by Vakarelov

Vakarelov addresses the issue of completeness of various logics, the models of
which are based on standard structures corresponding to some information sys-
tem. For instance, in the case of NIL, the question would be about a com-
pleteness theorem with respect to the class of NIL-models defined on standard
NIL-structures (cf. Section 3.1). In [12], such a theorem is proved, via a key
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characterization result. In fact, this result set the ground for a series of similar
observations when the binary relations involved are changed.

Proposition 1. (Characterization) Let (U, sim, in) be a general NIL-structure.
Then there exists an information system S ≡ (U, A, V al, f) with f satisfying (�),
such that simS = sim and inS = in.

In other words, the classes of NIL-models based on standard and general NIL-
structures are identical. Hence one obtains the required completeness theorem.

The condition (�), viz. f(x, a) �= ∅ for all x ∈ U, a ∈ A, is a restrictive
one. However, it is observed by Vakarelov that even if this condition is dropped,
a characterization result similar to Proposition 1 can be obtained. Instead of
reflexivity of sim (cf. property (S6), Section 3.1), we now have just the condition
of quasireflexivity – cf. property (S3): if x sim y for some y, then x sim x. The
corresponding logic can be obtained from NIL by replacing the axiom A9 by

¬�(p ∧ ¬p) → (�α → α).

Following this approach, one handles the cases of incomplete information sys-
tems inducing different binary relations. For example, [14,13,17] consider these
relations amongst others, for S ≡ (U, A, V al, f):
Indiscernibility (indS): x indS y if and only if f(x, a) = f(y, a), for all a ∈ A,
Weak indiscernibility (indw

S ): x indw
S y if and only if f(x, a) = f(y, a), for some

a ∈ A,
Weak similarity (simw

S ): x simw
S y if and only if f(x, a) ∩ f(y, a) �= ∅, for some

a ∈ A.
Complementarity (com): x com y if and only if f(x, a) = (V ALa \ f(y, a)), for
all a ∈ A, where V ala is the value set for the particular attribute a, and V al ≡
∪{V ala : a ∈ A}.

The characterization result for each has been obtained, the corresponding
logical system is defined and the completeness theorem with respect to models
on the intended standard structures is proved.

3.3 Logic by Nakamura

[15] discusses a logic with models on incomplete information systems. We recall
(cf. Introduction) that given a complete information system S ≡ (U, A, V al, f),
one can define the equivalence relation RS . The lower approximation of X(⊆ U)
under this relation is denoted as XS , and its upper approximation as XS .

Nakamura defines a completation S0 of an incomplete information system S
as a complete information system that can be constructed from S by selecting
any one value from f(x, a)(⊆ V al), for each x ∈ U, a ∈ A. If f(x, a) = ∅, one
selects a special symbol ε. The relationship of S0 and S is expressed as S0 ≥ S.

Now the “lower” and “upper approximations” X, X of X ⊆ U in an incom-
plete information system S ≡ (U, A, V al, f) are defined as follows:

(∗) X ≡ ∩S0≥SXS0
, X ≡ ∪S0≥SXS0 .
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With this background, a logic INCRL is proposed, having the standard Boolean
connectives, and two modal operators [], 〈〉 (corresponding to “surely” and “pos-
sibly” respectively).

An INCRL-model is an incomplete information system S ≡ (U, A, V al, f)
along with a meaning function vS from the set of propositional variables of
the language to P(U). vS is extended as usual for the wffs involving Boolean
connectives. For wffs with modal operators, one makes use of completations S0 of
S and the preceding definitions of lower and upper approximations given in (∗).

vS([ ]α) ≡ ∩S0≥SvS(α)S0
= vS(α),

vS(〈〉α) ≡ ∪S0≥SvS(α)S0
= vS(α).

Truth and validity of wffs are defined again as for most of the previous systems.
Nakamura points out relationships of INCRL with the modal system KTB, in
particular that all theorems of KTB are valid wffs of INCRL. We shall take a
further look at the two logics in Section 5.

4 Other Approaches

This section outlines a few proposals of logics related to rough sets, the models
of which are based on structures that are even more generalized than the ones
already presented. As we shall see, these logics have dimensions not accounted
for in the systems presented so far.

4.1 Temporal Approach

Or�lowska (cf. [4]), defines a logic LT with models on dynamic information sys-
tems, in order to deal with the temporal aspect of information. A set T of
moments of time, and a suitable relation R on the set T are considered along
with the set U of objects and A of attributes. Formally, a dynamic information
system is a tuple S ≡ (U, A, V al, T, R, f), where V al ≡ ∪{V ala : a ∈ A},
(V ala, as in Section 3.2, being the value set for the particular attribute a) and
the information function f : U × T × A → V al satisfies the condition that
f(x, t, a) ∈ V ALa, for any x ∈ U, t ∈ T, a ∈ A.

In the language of LT , atomic statements are descriptors of decision logic,
together with an object constant x – so these are triples (x, a, v), and are intended
to express: “object x assumes value v for attribute a”. There are modal operators
to reflect the relations R and R−1. The truth of all statements of the language
is evaluated in a model based on a dynamic information system, with respect to
moments of time, i.e. members of the set T .

An LT -model is a tuple M ≡ (S, m) where S is a dynamic information
system, and m a meaning function which assigns objects, attributes and values
from U, A, V al to the respective constants.

The satisfiability of a formula α in a model M at a moment t(∈ T ) of time is
defined inductively as follows:

M, t |= (x, a, v) if and only if f(m(x), t, m(a)) = m(v).
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For the Boolean cases, we have the usual definitions. For the modal case,

M, t |= [R]α if and only if for all t′ ∈ T , if (t, t′) ∈ R then M, t |= α.

A wff is true in M, provided it is satisfied in M at every t ∈ T . LT is complete
with respect to this class of models, for the axioms of linear time temporal logic,
and an axiom which says that the values of attributes are uniquely assigned to
objects.

4.2 Multiagent Systems

[20] describes a logic, that takes into account a (finite) collection of agents and
their knowledge bases. We denote the logic as LMA. The language of LMA has
“agent constants” along with two special constants 0,1. Binary operations +,.

are provided to build the set T of terms from these constants. Wffs of one kind
are obtained from terms, and are of the form s ⇒ t, s, t ∈ T , where ⇒ is a
binary relational symbol. s ⇒ t is to reflect that “the classification ability of
agent t is at least as good as that of agent s”.

Furthermore, there are attribute as well as attribute-value constants. Descrip-
tors formed by these constants constitute atomic propositions, and using con-
nectives ∧, ¬ and modal operators It, t ∈ T (representing “partial knowledge”
of each agent), give wffs of another kind.

LMA-models are not approximation spaces, but what could be called “par-
tition spaces” on information systems. Informally put, a model consists of an
information system S ≡ (U, A, V al, f), and a family of partitions {Et}t∈T on
the domain U – each corresponding to the knowledge base of an agent. The
family is shown to have a lattice structure, and the ordering involved gives the
interpretation of the relational symbol ⇒. Wffs built out of descriptors are inter-
preted in the standard way, in the information system S. The partial knowledge
operator It for a term t reflects the lower approximation operator with respect to
the partition Et on U . An axiomatization of LMA is presented, to give soundness
and completeness results.

In the context of multiagent systems, it is worth mentioning the approach
followed in [38], even though a formal logic based on it has not been defined
yet. Property systems (P -systems) are defined as triples of the form (U, A, |=),
where U is a set of objects, A a set of properties, and |= a “fulfilment” relation
between U and A. For each P -system P , a collection Pop of interior and closure
operators satisfying specific properties are considered. These operators could
be regarded as generalizations of lower and upper approximations. Now given a
family {Pk}k∈K of P -systems (each for an agent, say) over some index set K and
over the same set U of objects, one obtains a multiagent pre-topological approxi-
mation space as a structure (U, {Pop

k }k∈K). It is to be seen if such a generalized
structure could form the basis of a semantics of some formal logical framework.

4.3 Rough Relations

Discussion about relations on approximation spaces, started from [39]. We find
two directions of work on this topic.
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Logic of Rough Relations: [40] considers another generalization of the notion
of an approximation space – taking systems of the form AS ≡ (U, I, v), where
U is a non-empty set of objects, I : U → P(U) an uncertainty function, and
v : P(U) × P(U) → [0, 1] is a rough inclusion function satisfying the following
conditions:

v(X, X) = 1 for any X ⊆ U ,
v(X, Y ) = 1 implies v(Z, Y ) ≥ v(Z, X) for any X, Y, Z ⊆ U,
v(∅, X) = 1 for any X ⊆ U .

For any subset X of U , we then have the lower and upper approximations:
L(AS, X) ≡ {x ∈ U : v(I(x), X) = 1},
U(AS, X) ≡ {x ∈ U : v(I(x), X) > 0}.

A ‘rough set’ in AS is the pair (L(AS, X), U(AS, X)).

The above is motivated from the fact that any Pawlak approximation space
(U, R) is an instance of a generalized space as just defined. Indeed, we consider
the function I that assigns to every object its equivalence class under R, and
the inclusion function v as:

v(S, R) ≡
{

card(S∩R)
card(S) if S �= ∅

1 if S = ∅
For an approximation space AS ≡ (U, I, v) with U = U1 × U2 and v as in the

special case above, [21] discusses relations R ⊆ U1 × U2. The lower and upper
approximation of R in AS are taken, and a rough relation is just a rough set in AS.

A decidable multimodal logic is proposed – for reasoning about properties of
rough relations. The modal operators correspond to a set of relations on the
domain of the above generalized approximation spaces, as well as the lower and
upper approximations of these relations. An axiomatization for the logic is given,
and completeness is proved with respect to a Kripke-style semantics.

Rough Datalog: Just as decision tables [2] are (complete) information systems
with special attributes, viz. the decision attributes, [22] considers a decision sys-
tem (U, A ∪ {d}) – but with a difference. Each attribute a in A is a partial map
from U to a value set Va, and d, the decision attribute, is a partial map from
U to {0, 1}. It is possible that for some x ∈ U , all attribute values (including
the value of d) are undefined. A ‘rough set’ X is taken to be a pair (X+, X−),
where X+ is the set of elements of U that may belong to X , while X− contains
those elements of U that may not belong to X . d indicates the information about
membership of an object of U in X .

Formally, let A ≡ {a1, ..., an}, A(x) ≡ (a1(x), ..., an(x)) for each x ∈ U , and
A−1(t) ≡ {x ∈ U : A(x) = t}, for t ∈ Va1 × ... × Van . (Note that for some x ∈ U ,
A(x) could be undefined). Then

X+ ≡ {x ∈ U : A is defined for x, and d(x′) = 1, for some x′ ∈ A−1(A(x))},
and
X− ≡ {x ∈ U : A is defined for x, and d(x′) = 0, for some x′ ∈ A−1(A(x))}.
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This definition implies that X+ and X− may not be disjoint, allowing for the
presence of conflicting (contradictory) decisions in the decision table. On the
other hand, X+ and X− may not cover U either, allowing for the possibility
that there is no available information about membership in X .

With these definitions, ‘rough relations’ are considered in [22]. Standard rela-
tional data base techniques, such as relational algebraic operations (e.g. union,
complement, Cartesian product, projection) on crisp relations, are extended to
the case of rough relations. A declarative language for defining and querying
these relations is introduced - pointing to a link of rough sets (as just defined)
with logic programming.

4.4 Logics with Attribute Expressions

As we have seen, LT and LMA (cf. Sections 4.1 and 4.2 respectively) have
attribute expressions in the language that are interpreted in information systems.
NIL (cf. Section 3.1), also has attribute constants in the language. But unlike
the models of LT and LMA, the standard or general NIL-structures defining
NIL-models do not accommodate attributes, and the wffs (which are built using
the attribute constants) point to collections of objects of the domain.

A class of logics with attribute expressions are also defined in [18,19]. Models
are based on structures of the form (U, A, {ind(P )}P⊆A), where the “indiscerni-
bility” relation ind(P ) for each subset P of the attribute set A, has to satisfy
certain conditions. For the models of one of the logics, for example, the following
conditions are stipulated for ind(P ):

(U1) ind(P ) is an equivalence relation on U ,
(U2) ind(P ∪ Q) = ind(P ) ∩ ind(Q),
(U3) if P ⊆ Q then ind(Q) ⊆ ind(P ), and
(U4) ind(∅) = U × U .

Other logics may be obtained by changing some of (U1)− (U4). The language
of the logics has a set of variables each representing a set of attributes, as well as
constants to represent all one element sets of attributes. Further, the language
can express the result of (set-theoretic) operations on sets of attributes. The
logics are multimodal – there is a modal operator to reflect the indiscernibility
relation for each set of attributes as above. A usual Kripke-style semantics is
given, and a number of valid wffs presented. However, as remarked in [19], we
do not know of a complete axiomatization for such logics.

4.5 Rough Mereology

This is an approach inspired by the theory of mereology due to Leśniewski (1916).
Leśniewski propounds a theory of sets that has containment as the primitive re-
lation, rather than membership. Drawing from this classical theory, rough mere-
ology has been proposed [23], providing a useful notion of rough containment, of
“being a part, in a degree”.

Formally, this can be defined as a real binary function μ on the domain with
values in [0,1], satisfying certain conditions (abstracted from the properties of
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classical containment). A given information system (U, A, V al, f), a partition of
A into, say A1, ..., An and a set of weights {w1, ..., wn}, can generate μ(x, y),
x, y ∈ U . It is assumed that wi ∈ [0, 1], i = 1, ..., n, and

∑n
i=1 wi = 1.

A pre-rough inclusion μo is first defined:

μo(x, y) ≡
∑n

i=1 wi.(|indi(x, y)|/|Ai|),
where indi(x, y) ≡ {a ∈ Ai : f(x, a) = f(y, a)}. μo can then be extended to
rough inclusion μ over P(U) by using t-norms and t-conorms. Rough inclusion
can be used, for instance, in specifying approximate decision rules.

It may be remarked that predicate logics corresponding to rough inclusions
have been proposed recently in [41].

5 Comparative Study

We now discuss some relationships between the logics presented in Sections 2
and 3.

5.1 Embeddings

Let us recall the notion of an embedding of logics – cf. Section 2.4. We consider
the logics PRL, L3, LD, RDSL presented in Sections 2.3, 2.4 and 2.5 respec-
tively, and point out interrelationships, as well as relations with other known
logics.

(1) L3 � PRL: This has already been seen in Section 2.4.

(2) L3 � LD: As summarized in [1] and observed by Düntsch and Pagliani,
regular double Stone algebras and 3-valued �Lukasiewicz algebras are equivalent
to each other via suitable transformations. Passing on to the respective logics,
we would thus find embeddings both ways, between LD and L3.

(3) LD � RDSL: We can define, in RDSL, that a wff α is a theorem (valid),
if and only if the sequent � ⇒ α is derivable (valid). Using the formal argument
made in Section 2.5 to show that the classes of models of the logics LD and
RDSL are identifiable and Theorems 4, 5, one gets the result with the identity
embedding.

(4) L3 � LSN : LSN denotes constructive logic with strong negation [30].
We note that semi-simple Nelson algebras are the algebraic counterparts for
LSN . The equivalence of semi-simple Nelson algebras and 3-valued �Lukasiewicz
algebras through suitable translations has also been observed e.g. by Pagliani.
Hence the stated embedding.

(5) PRL ⇀ S5: One observes [31] a translation � of wffs of PRL into S5
that assigns the operations of negation ¬ and necessity � in PRL those same
operations of S5. Further, � is translated in terms of the conjunction ∧ and
disjunction ∨ of S5 as:
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(α � β)� ≡ (α� ∧ β�) ∨ (α� ∧ Mβ� ∧ ¬M(α� ∧ β�)).

Then it can be shown that �PRL α if and only if � α�, for any wff α of PRL.

(6) S5 � Lr: The logic Lr for rough truth is able to capture, as the class
of its theorems, exactly the “♦-image” of the class of S5-theorems, i.e. �S5 ♦α
if and only if |∼α [5,10]. Note that the languages of Lr and S5 are the same.
We translate α in S5 to α∗ ≡ Lα. Then � α if and only if |∼α∗. For the other
direction, we consider the translation α◦ ≡ Mα.

(7) J � Lr: In 1948, Jaśkowski proposed a “discussive” logic – he wanted
a formalism to represent reasoning during a discourse. Each thesis, a discussive
assertion of the system, is supposed either to reflect the opinion of a participant
in the discourse, or to hold for a certain “admissible” meaning of the terms used
in it. Formally, any thesis α is actually interpreted as “it is possible that α”, and
the modal operator ♦ is used for the expression. The logic J (cf. [42]) is such a
system. The J-consequence, defined over S5, is such that:

�J α if and only if �S5 ♦α.

Because of the relationship between Lr and S5 noted in (6) above, we have
J � Lr with the identity embedding. In the whole process, one has obtained an
alternative formulation of the paraconsistent logic J (proposed in a different con-
text altogether), and established a link between Pawlak’s and Jaśkowski’s ideas.

5.2 KTB and Nakamura’s Logic INCRL

We refer to Section 3.3, and present a connection between INCRL, and the
normal modal system KTB. KTB, as we know, is sound and complete with
respect to the class of reflexive and symmetric Kripke frames.

Let S ≡ (U, A, V al, f) be an incomplete information system, and let us con-
sider the relation � on U defined as follows:

x � y if and only if there exists a completation S0 of S such that x RS0 y.
Clearly � is reflexive and symmetric, but not transitive. From the definitions of
vS([ ]α) and vS(〈〉α), we see that
x ∈ vS([ ]α) if and only if, for all y ∈ U such that x � y, y ∈ vS(α), and
x ∈ vS(〈〉α) if and only if, there exists y ∈ U such that x � y and y ∈ vS(α).

So all provable wffs of the modal logic KTB are valid in INCRL. What
about the converse – are all valid wffs of INCRL provable in KTB? [15] makes
a cryptic comment about this, we establish the converse here.

KTB provides an axiomatization for INCRL: We show that if α is not
provable in KTB then it is not valid in INCRL. It suffices then, to construct
an incomplete information system S ≡ (U, A, {V ala}a∈A, f) for any given KTB-
frame (W, R), such that � is identical with R.
Let g be a function from R (⊆ W × W ) to some set C of constants, satisfying
the following conditions:
(i) g(x, y) = g(y, x), (ii) g(x, y) = g(t, z) implies that either x = t and y = z, or
x = z and y = t.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Propositional Logics from Rough Set Theory 21

(g essentially assigns, upto symmetry, a unique constant from C to every pair
in R.)
Now consider U ≡ W, A ≡ {a}, where a is a new symbol. Further, define
f(x, a) ≡ {g(x, y) : y ∈ U and (x, y) ∈ R}, so that V ala ⊆ C.

We claim that xRy if and only if x � y. Suppose xRy. Then g(x, y) ∈ f(x, a)∩
f(y, a) and hence x � y. Conversely, if x � y, there exists d ∈ f(x, a) ∩ f(y, a).
Now d ∈ f(x, a) implies that d = g(x, z), for some z ∈ U such that (x, z) ∈ R,
and d ∈ f(y, a) implies that d = g(y, t), for some t ∈ U such that (y, t) ∈ R. From
the property of g, it follows that either x = y or x = t, whence by reflexivity
and symmetry of R, we get xRy.

The proof above, in fact, yields a characterization theorem, viz. given any
reflexive, symmetric frame (W, R), there exists an incomplete information system
S ≡ (U, A, {V ala}a∈A, f) satisfying the condition (�) (cf. Section 3.1) such that
R = � = simS .

5.3 Normal Modal Systems and Vakarelov’s Logics

Vakarelov has proved the characterization theorem for incomplete information
systems with respect to different sets of relations [12,14,13,17]. As we have re-
marked in the Introduction, a special case would be obtained with respect to
the indiscernibility relation on the Pawlak approximation space. One finds that
if we restrict the logics presented in [14,13,17] to take a modal operator corre-
sponding only to the indiscernibility relation, the resulting system would be just
the modal logic S5.

As noted at the end of Section 5.2, if an incomplete information system satis-
fies the condition (�), then the similarity relation simS is the same as the relation
�. So it follows that if we restrict the logic NIL to take only the modality �
in the language then the corresponding logic will be just INCRL, or, in other
words, KTB.

5.4 DAL Again

Observing Vakarelov’s strain of work, it may be tempting to look for a kind of
characterization result in the case of DAL (cf. Section 2.2) as well. Consider a
general DAL-structure U ≡ (U, {Ri}i∈I), where the family {Ri}i∈I of equiva-
lence relations is closed under intersection and transitive closure of union. Can
one find an incomplete information system S ≡ (U, A, V al, f) such that the
standard structure for S is just U? Let us assume that the standard structure
is obtained “naturally” from S, viz. that the equivalence relations in it are the
ones induced by the subsets of A. As it turns out, this is a hard question.

However, we can find an information system, such that the standard structure
obtained from it in the above manner cannot be a general DAL-structure.

Suppose for some incomplete information system S ≡ (U, A, V al, f), R and
P are the equivalence relations induced by subsets R′, P ′ of A respectively –
we denote this as ind(R′) = R and ind(P ′) = P . For the equivalence relation

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



22 M. Banerjee and Md.A. Khan

R ∩ P , R′ ∪P ′ ⊆ A is such that ind(R′ ∪ P ′) = R ∩ P . But in the case of R 
 P ,
there may not be any Q ⊆ A such that ind(Q) = R 
 P. Consider the following
example [11].

Example 1. U ≡ {o1, o2, o3, o4, o5, o6, o7}, where each oi consists of circles and
squares. Let A ≡ {number of circles (©), number of squares (�)}. The informa-
tion function is given by the following table:
————————————————————–

© �
————————————————————–

o1 1 1
o2 1 2
o3 2 1
o4 2 2
o5 3 3
o6 3 4
o7 3 4

—————————————————————
Equivalence classes of indiscernibility relations ind(©) and ind(�) are:

ind(©) : {o1, o2}, {o3, o4}, {o5, o6, o7},
ind(�) : {o1, o3}, {o2, o4}, {o5}, {o6, o7}.

The transitive closure of these relations gives the following equivalence classes:
ind(©) 
 ind(�) : {o1, o2, o3, o4}, {o5, o6, o7}.

Clearly there is no Q ⊆ A such that ind(Q) = ind(©) 
 ind(�).

6 Summary and Questions

We have tried to present the various proposals of logics with semantics based
on rough sets, including some generalizations. Two main approaches emerge,
discussed in Sections 2 and 3. One of these considers logics, the models of which
are approximation spaces, while the other considers approximation spaces, but
those induced by information systems. However, it is found through characteri-
zation results, that both lines of study converge, in that the two semantics for
a particular system are identical. This actually reflects on the apt description of
the properties of the relations defining the approximation spaces.

The only exception is the logic DAL of the first category. As remarked in
Section 5.4, given a general DAL-structure U ≡ (U, {Ri}i∈I), it does not seem
easy to construct an information system “naturally” to obtain U back as its
standard structure. In case of the logics with attributes as expressions (cf. Sec-
tion 4.4), one encounters a problem even earlier. The models here are based on
structures of the form (U, A, {ind(P )}P⊆A), and there does not appear easily
a corresponding “general” structure of the kind U ≡ (U, {Ri}i∈I), with appro-
priate closure conditions on {Ri}i∈I . These logics have not been axiomatized,
though the language can express a lot about attributes – that few of the other
systems are able to do.
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An interesting picture is obtained from the logics of Section 2, leaving out
DAL and other systems with models based on generalized spaces. Most of the
logics are embeddable into each other (cf. Section 5). We have

LD � L3 � PRL ⇀ S5 � Lr � J . (1)
In one sense then, the embeddings in (1) establish that no ‘new’ logic surfaces

with the kind of rough set semantics defined. But in another sense, well-known
systems have been imparted a rough set interpretation. It should be noted that
though the embeddings are defined with respect to theoremhood, the relationships
would hold in some cases (e.g. L3−PRL and Lr −J) if derivability of wffs from
non-empty premise sets is considered [31,10]. One could attempt to settle the
question for the rest. (1) indicates another interesting future line of work, viz.
an investigation for logics and interrelations, that may result on replacing S5 by
other non-modal systems (as in [6]).

All the systems presented other than LT (cf. Section 4.1), deal with static
information. The semantics of LT essentially gives rise to a family of approxi-
mation spaces on the same domain, the indiscernibility relations changing with
moments of time. One could further enquire about the behaviour of rough sets
in such a dynamic information system.

As remarked in Section 4.2, another open direction relates to a study of logics
that may be obtained from the generalized approach in [38].

Overall, one may say that it has been a remarkable journey in the explo-
ration of logics, beginning with a deceptively simple proposal of “rough sets”.
We have seen the introduction of novel concepts – e.g. of “rough truth”, “rough
modus ponens”, “rough consistency”, “rough mereology”. The journey has, by
no means, ended. Pawlak’s theory has just opened up the horizon before us, to
reveal a number of yet unexplored directions in the study of “rough logics”.
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1 Introduction

We introduce the intuitionistic rough set and intuitionistic rough relational and
object oriented database models. The intuitionistic rough set database models
draw benefits from both the rough set and intuitionistic techniques, providing
greater management of uncertainty for databases applications in a less than
certain world. We provide the foundation for the integration of intuitionistic
rough sets into modeling of uncertainty in databases. This builds upon some of
our previous research [2,3] with integrating fuzzy and rough set techniques for
uncertainty management in databases.

2 Intuitionistic Rough Sets

An intuitionistic set [1] (intuitionistic fuzzy set) is a generalization of the tra-
ditional fuzzy set. Let set X be fixed. An intuitionistic set A is defined by the
following:

A = {〈x, μA(x), νA(x)〉 : x ∈ X}
where μA(x) �→ [0, 1], and νA(x) �→ [0, 1]. The degree of membership of element
x ∈ X to the set A is denoted by μA(x), and the degree of nonmembership of
element x ∈ X to the set A is denoted by νA(x). A is a subset of X . For all
x ∈ X , 0 ≤ μA(x)+νA(x) ≤ 1. A hesitation margin, πA(x) = 1−(μA(x)+νA(x)),
expresses a degree of uncertainty about whether x belongs to X or not, or
uncertainty about the membership degree. This hesitancy may cater toward
membership or nonmembership.

We next define the intuitionistic rough set, which incorporates the beneficial
properties of both rough set [5] and intuitionistic set techniques. Intuitionistic
rough sets are generalizations of fuzzy rough sets that give more information
about the uncertain, or boundary region. They follow the definitions for par-
titioning of the universe into equivalence classes as in rough sets, but instead
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of having a simple boundary region, there are basically two boundaries formed
from the membership and nonmembership functions. Let U be a universe, Y a
rough set in U , defined on a partitioning of U into equivalence classes.

Definition 1. An intuitionistic rough set Y in U is 〈Y, μY (x), νY (x)〉, where
μY (x) is a membership function which associates a grade of membership from the
interval [0,1] with every element (equivalence class) of U , and νY (x) associates a
degree of non membership from the interval [0,1] with every element (equivalence
class) of U , where 0 ≤ μY (x)+ νY (x) ≤ 1, where x denotes the equivalence class
containing x. A hesitation margin is πY (x) = 1 − (μY (x) + νY (x)).

Consider the following special cases 〈μ, ν〉 for some element of Y :

〈1, 0〉 denotes total membership. This correspond to elements found
in RY .

〈0, 1〉 denotes elements that do not belong to Y . Same as U − RY .
〈0.5, 0.5〉 corresponds to traditional rough set boundary region.
〈p, 1 − p〉 corresponds to fuzzy rough set in that there is a single bound-

ary. In this case we assume that any degree of membership has
a corresponding complementary degree of non membership.

〈p, 0〉 corresponds to fuzzy rough set.
〈0, q〉 This case can not be modeled by fuzzy rough sets. It denotes

things that are not a member of RY or RY . It falls somewhere
in the region U − RY .

〈p, q〉 Intuitionistic set general case , has membership and nonmem-
bership.

Let Y ′ denote the complement of Y . Then the intuitionistic set having 〈μY (x),
μY ′(x)〉 is the same as fuzzy rough set. The last two cases above, 〈0, q〉 and 〈p, q〉,
cannot be represented by fuzzy sets, rough sets, or fuzzy rough sets. These are the
situations which show that intuitionistic rough sets provide greater uncertainty
management than the others alone. Note, however, that with the intuitionistic
set we do not lose the information about uncertainty provided by other set
theories, since from the first few cases we see that they are special cases of the
intuitionistic rough set. Although there are several various way of combining
rough and fuzzy sets, we focus on those fuzzy rough sets as defined in [2,3] and
used for fuzzy rough databases, since our intuitionistic rough relational database
model follows from this. The intuitionistic rough relational database model will
have an advantage over the rough and fuzzy rough database models in that the
non membership uncertainty of intuitionistic set theory will also play a role,
providing even greater uncertainty management than the original models.

3 Intuitionistic Rough Relational Database Model

The intuitionistic rough relational database, as in the ordinary relational data-
base, represents data as a collection of relations containing tuples. Because a
relation is considered a set having the tuples as its members, the tuples are

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



28 T. Beaubouef and F.E. Petry

unordered. In addition, there can be no duplicate tuples in a relation. A tu-
ple ti takes the form (di1, di2, . . . , dim, diμ, diν), where dij is a domain value of
a particular domain set Dj and diμ ∈ Dμ, where Dμ is the interval [0,1], the
domain for intuitionistic membership values, and Dv is the interval [0,1], the
domain for intuitionistic nonmembership values. In the ordinary relational data-
base, dij ∈ Dj . In the intuitionistic rough relational database, except for the
intuitionistic membership and nonmembership values, however, dij ∈ Dj , and
although dij is not restricted to be a singleton, dij �= ∅. Let P (Di) denote any
non-null member of the powerset of Di.

Definition 2. A intuitionistic rough relation R is a subset of the set cross prod-
uct P (D1)×P (D2)× . . .×P (Dm)×Dμ ×Dnu. An intuitionistic rough tuple t is
any member of R. If ti is some arbitrary tuple, then ti = (di1, di2, . . . , dim, diμ,
diν) where dij ∈ Dj and diμ ∈ Dμ, diν ∈ Dν .

Let [dxy] denote the equivalence class to which dxy belongs. When dxy is a set of
values, the equivalence class is formed by taking the union of equivalence classes
of members of the set; if dxy = {c1, c2, ..., cn}, then [dxy] = [c1]× [c2]× . . .× [cn].

Definition 3. Tuples ti = (di1, di2, . . . , din, diμ, diν) and tk = (dk1, dk2, . . . ,
dkn, dkμ, dkν) are redundant if [dij ] = [dkj ] for all j = 1, . . . , n.

In [3], we defined several operators for the rough relational algebra, and in [2]
demonstrated the expressive power of the fuzzy rough versions of these operators
in the fuzzy rough relational database model. In an extension of this work we
do the same for the rough intuitionistic database.

4 Intuitionistic Rough Object-Oriented Database
(IROODB) Model

We next develop the intuitionistic rough object-oriented database model. We
follow the formal framework and type definitions for generalized object-oriented
databases proposed by [4] and extended for rough sets in [3]. We extend this
framework, however, to allow for intuitionistic rough set indiscernibility and
approximation regions for the representation of uncertainty as we have previ-
ously done for relational databases [2,3]. The intuitionistic rough object database
scheme is formally defined by the following type system and constraints.

The type system, TS = [T, P, f type
impl], where T can be a literal type Tliteral,

which can be a base type, a collection literal type, or a structured literal type.
It also contains Tobject, which specifies object types, Treference, the set of speci-
fications for reference types, and a void type. In the type system, each domain
domts ∈ Dts, the set of domains. This domain set, along with a set of operators
Ots and a set of axioms Ats, capture the semantics of the type specification.
The type system is then defined based on these type specifications, the set of all
programs P , and the implementation function mapping each type specification
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for a domain onto a subset of ρ(P ) – the powerset of P that contains all the
implementations for the type system:

f type
impl : T �→ ρ(P ) giving ts �→ {p1, p2, . . . pn}.

We are particularly interested in object types, and specify a class t of object types
as Class id(id1 : s1; . . . ; idn : sn) or Class id : id1, . . . , idn(id1 : s1; . . . ; idn : sn)
where id, an identifier, names an object type, {idi : 1 ≤ i ≤ m} is a finite set of
identifiers denoting parent types of t, and {idi : si : 1 ≤ i ≤ n} is the finite set
of characteristics specified for object type t within its syntax. This set includes
all the attributes, relationships and method signatures for the object type. The
identifier for a characteristic is idi and the specification is si for each of the
idi : si. See [4] for details of how rough set concepts are integrated in this OO
model, and how changing the granularity of the partitioning affects query results.
In that paper the OO model is extended for fuzzy and rough set uncertainty.

If we extend the rough OODB further to allow for intuitionistic types, the
type specifications T can be generalized to a set Ť as in [4], so that the defi-
nitions of the domains are generalized to intuitionistic sets. For every ts ∈ T ,
having domain ts being domts, the type system ts ∈ T is generalized to ts ∈ Ť ,
where domain of ts is denoted by domts and is defined as the set ρ(domts) of
intuitionistic sets on domts, and Ots is generalized to Ots, which contains the
generalized version of the operators.

The generalized type system then is a triple GTS = [Ť , P, f
type

impl], where Ť

is the generalized type system, P is the set of all programs, and f
type

impl maps
each ts ∈ Ť onto that subset of P that contains the implementation for ts. An
instance of this GTS is a generalized type t = [ts, f

type

impl(ts)], ts ∈ Ť .
A generalized object belonging to this class is defined by o = [oid, N, t,

f
type

impl(ts), ν], where ν draws values from the generalized domain that allows
an object to contain intuitionistic membership and nonmembership values as
part of the state of the object. Both intuitionistic and rough set uncertainty
management can be used in this generalized OODB model.

We extended a formal framework of object-oriented databases to allow for
modeling of various types of imprecision, vagueness, and uncertainty that typ-
ically occur in spatial data. The model is based on a formal type system and
specified constraints, thus preserving integrity of the database, while at the same
time allowing an OODB to be generalized in such a way as to include both intu-
itionistic and rough set uncertainty, both well-developed methods of uncertainty
management. Incorporation of intuitionistic and rough set uncertainty into the
OODB model is essential for representing imprecision and uncertainty in spatial
data entities and in their interrelationships.

5 Conclusion

We introduced the intuitionistic rough set, then discussed how the intuitio-
nistic rough set generalizes each of traditional rough, fuzzy, fuzzy-rough, and
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intuitionistic sets. The intuitionistic rough relational database model was intro-
duced. This model allows for both rough and intuitionistic modeling of uncer-
tainty. Because real world applications involve uncertainty, this model can more
accurately represent data and relationships than traditional relational databases.
We have also introduced our model for intuitionistic object-oriented databases
and shown the significance of both rough sets and intuitionistic sets for uncer-
tainty management.

References

1. Atanassov, K.: Intuitionistic Fuzzy Sets. Fuzzy Sets and Systems 20 (1986) 87–96
2. Beaubouef T., Petry F.: Fuzzy Rough Set Techniques for Uncertainty Processing

in a Relational Database. International Journal of Intelligent Systems 15(5) (2000)
389–424

3. Beaubouef, T., Petry, F., Buckles, B.: Extension of the Relational Database and
its Algebra with Rough Set Techniques. Computational Intelligence 11(2) (1995)
233–245
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Abstract. In this paper we present results of experiments conducted
to compare three types of missing attribute values: lost values, ”do not
care” conditions and attribute-concept values. For our experiments we
selected six well known data sets. For every data set we created 30 new
data sets replacing specified values by three different types of missing at-
tribute values, starting from 10%, ending with 100%, with increment of
10%. For all concepts of every data set concept lower and upper approx-
imations were computed. Error rates were evaluated using ten-fold cross
validation. Overall, interpreting missing attribute values as lost provides
the best result for most incomplete data sets.

Keywords: missing attribute values, incomplete data sets, concept ap-
proximations, LERS data mining system, MLEM2 algorithm.

1 Introduction

Real-life data are frequently incomplete, i.e., values for some attributes are miss-
ing. Appropriate handling of missing attribute values is one of the most impor-
tant tasks of data mining.

In this paper we assume that missing attribute values have three different
interpretations. The first possibility is that missing attribute values are lost.
Such values are interpreted as originally specified, but currently unavailable since
these values were incidentally erased, forgotten to be recorded, etc. A rough set
approach to incomplete data sets in which all attribute values were lost was
presented for the first time in [12], where two algorithms for rule induction,
modified to handle lost attribute values, were introduced.

The next possibility are ”do not care” conditions. Such missing attribute val-
ues were irrelevant during collection of data. Simply, an expert decided that the
attribute value was irrelevant for a classification or diagnosis of the case. For ex-
ample, a data set describing flu patients may contain, among other attributes, an
attribute Color of hair. Though some scrupulous patients may fill in this value,
other patients may assume that this attribute is irrelevant for the flu diagnosis
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and leave it unspecified. If we suspect that this attribute does matter, the best
interpretation for missing attribute values is replacing them by all possible exist-
ing attribute values. A rough set approach to incomplete data sets in which all
attribute values were ”do not care” conditions was presented for the first time
in [4], where a method for rule induction was introduced in which each missing
attribute value was replaced by all values from the domain of the attribute.

The third possibility is a missing attribute value interpreted as an attribute-
concept value. It is a similar case to a ”do not care” condition, however, it is
restricted to a specific concept. A concept (class) is a set of all cases classified
(or diagnosed) the same way. Using this interpretation, we will replace a missing
attribute value by all values of the same attribute typical for the concept to
which the case belongs. Let us consider a patient, sick with flu, from the flu
data set, with a missing attribute value for Color of hair. Other patients, sick
with flu, filled in values brown and grey for this attribute. On the other hand,
healthy patients characterized the color of their hair as blond and brown. Using
attribute-concept value interpretation, this missing attribute value is replaced
by brown and grey. If we would use ”do not care” condition interpretation, the
same missing attribute value should be replaced by blond, brown, and grey. This
approach was introduced in [10].

In general, incomplete decision tables are described by characteristic relations,
in a similar way as complete decision tables are described by indiscernibility re-
lations [7,8,9].

In rough set theory, one of the basic notions is the idea of lower and upper
approximations. For complete decision tables, once the indiscernibility relation
is fixed and the concept (a set of cases) is given, the lower and upper approxi-
mations are unique.

For incomplete decision tables, for a given characteristic relation and concept,
there are three important and different possibilities to define lower and upper
approximations, called singleton, subset, and concept approximations [7]. Single-
ton lower and upper approximations were studied in [14,15,19,21,22]. Note that
similar definitions of lower and upper approximations, though not for incomplete
decision tables, were studied in [16,24,25].

Note that some other rough-set approaches to missing attribute values were
presented in [4,11,13,23] as well.

2 Blocks of Attribute-Value Pairs—Complete Data

We assume that the input data sets are presented in the form of a decision
table. An example of a decision table is shown in Table 1. Rows of the deci-
sion table represent cases, while columns are labeled by variables. The set of all
cases will be denoted by U . In Table 1, U = {1, 2, ..., 6}. Independent vari-
ables are called attributes and a dependent variable is called a decision and is
denoted by d. The set of all attributes will be denoted by A. In Table 1, A =
{Temperature, Headache, Cough}. Any decision table defines a function ρ that
maps the direct product of U and A into the set of all values. For example, in
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Table 1. A complete decision table

Attributes Decision

Case Temperature Headache Cough Flu

1 high yes yes yes

2 very high yes no yes

3 high no no no

4 high yes yes yes

5 normal yes no no

6 normal no yes no

Table 1, ρ(1, T emperature) = high. A decision table with completely specified
function ρ will be called completely specified, or, for the sake of simplicity, com-
plete. In practice, input data for data mining are frequently affected by missing
attribute values. In other words, the corresponding function ρ is incompletely
specified (partial). A decision table with an incompletely specified function ρ
will be called incomplete. Function ρ describing Table 1 is completely specified.

An important tool to analyze complete decision tables is a block of the
attribute-value pair. Let a be an attribute, i.e., a ∈ A and let v be a value
of a for some case. For complete decision tables if t = (a, v) is an attribute-value
pair then a block of t, denoted [t], is a set of all cases from U that for attribute
a have value v.

Rough set theory [17], [18] is based on the idea of an indiscernibility relation,
defined for complete decision tables. Let B be a nonempty subset of the set A of
all attributes. The indiscernibility relation IND(B) is a relation on U defined
for x, y ∈ U as follows

(x , y) ∈ IND(B) if and only if ρ(x , a) = ρ(y, a) for all a ∈ B .

The indiscernibility relation IND(B) is an equivalence relation. Equivalence
classes of IND(B) are called elementary sets of B and are denoted by [x]B . For
example, for Table 1, elementary sets of IND(A) are {1, 4}, {2}, {3}, {5}, {6}.
Additionally, IND(B) = {(1, 1), (1, 4), (2, 2), (3, 3), (4, 1), (4, 4), (5, 5), (6, 6)}.
The indiscernibility relation IND(B) may be computed using the idea of blocks
of attribute-value pairs. Let a be an attribute, i.e., a ∈ A and let v be a value of
a for some case. For complete decision tables if t = (a, v) is an attribute-value
pair then a block of t, denoted [t], is a set of all cases from U that for attribute
a have value v. For Table 1,

[(Temperature, high)] = {1, 3, 4},
[(Temperature, very high)] = {2},
[(Temperature, normal)] = {5, 6},
[(Headache, yes)] = {1, 2, 4, 5},
[(Headache, no)] = {3, 6},
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[(Cough, yes)] = {1, 4, 6},
[(Cough, no)] = {2, 3, 5}.

The indiscernibility relation IND(B) is known when all elementary blocks
of IND(B) are known. Such elementary blocks of B are intersections of the
corresponding attribute-value pairs, i.e., for any case x ∈ U ,

[x]B = ∩{[(a, v)] | a ∈ B, ρ(x, a) = v}.

We will illustrate the idea how to compute elementary sets of B for Table 1
and B = A.

[1]A = [4]A = {1, 3, 4} ∩ {1, 2, 4, 5} ∩ {1, 4, 6} = {1, 4},
[2]A = {2} ∩ {1, 2, 4, 5} ∩ {2, 3, 5} = {2},
[3]A = {1, 3, 4} ∩ {3, 6} ∩ {2, 3, 5} = {3},
[5]A = {5, 6} ∩ {1, 2, 4, 5} ∩ {2, 3, 5} = {5},
[6]A = {5, 6} ∩ {3, 6} ∩ {1, 4, 6} = {6},

For completely specified decision tables lower and upper approximations are
defined using the indiscernibility relation. Any finite union of elementary sets,
associated with B, will be called a B-definable set. Let X be any subset of the
set U of all cases. The set X is called a concept and is usually defined as the
set of all cases defined by a specific value of the decision. In general, X is not a
B-definable set. However, set X may be approximated by two B-definable sets,
the first one is called a B-lower approximation of X , denoted by BX and defined
as follows

∪{[x]B | x ∈ U, [x]B ⊆ X},

The second set is called a B-upper approximation of X , denoted by BX and
defined as follows

∪{[x]B | x ∈ U, [x]B ∩ X �= ∅).

Data set presented in Table 1 is consistent (the lower approximation is equal
to the upper approximation for every concept), hence the certain rule set and the
possible rule set are identical. Rules in the LERS format (every rule is equipped
with three numbers, the total number of attribute-value pairs on the left-hand
side of the rule, the total number of examples correctly classified by the rule
during training, and the total number of training cases matching the left-hand
side of the rule) [6] are:

2, 2, 2
(Temperature, high) & (Headache, yes) -> (Flu, yes)
1, 1, 1
(Temperature, very high) -> (Flu, yes)
1, 2, 2
(Temperature, normal) -> (Flu, no)
1, 2, 2
(Headache, no) -> (Flu, no)
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Note that the above rules were induced by the MLEM2 (Modified Learning
from Examples Module, version 2) option of the LERS (Learning from Examples
based on Rough Sets) data mining system [2,5,6].

3 Blocks of Attribute-Value Pairs—Incomplete Data

For the rest of the paper we will assume that all decision values are specified,
i.e., they are not missing. Additionally, we will assume that lost values will be
denoted by ”?”, ”do not care” conditions by ”*”, and attribute-concept values
by ”−”. Additionally, we will assume that for each case at least one attribute
value is specified.

Table 2 is Table 1 with eight attribute values missing. All of these missing
attribute values are lost.

Table 2. An incomplete decision table (all missing attribute values are lost values)

Attributes Decision

Case Temperature Headache Cough Flu

1 high ? yes yes

2 ? yes ? yes

3 ? no ? no

4 high ? yes yes

5 ? yes no no

6 normal no ? no

For incomplete decision tables, a block of an attribute-value pair must be
modified in the following way:

– If for an attribute a there exists a case x such that ρ(x, a) = ?, i.e., the
corresponding value is lost, then the case x should not be included in any
blocks [(a, v)] for all values v of attribute a,

– If for an attribute a there exists a case x such that the corresponding value
is a ”do not care” condition, i.e., ρ(x, a) = ∗, then the case x should be
included in blocks [(a, v)] for all specified values v of attribute a.

– If for an attribute a there exists a case x such that the corresponding value
is an attribute-concept value, i.e., ρ(x, a) = −, then the corresponding case
x should be included in blocks [(a, v)] for all specified values v ∈ V (x, a) of
attribute a, where

V (x , a) = {ρ(y, a) | ρ(y, a) is specified , y ∈ U, ρ(y, d) = ρ(x, d)}.
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Thus, for Table 2,

[(Temperature, high)] = {1, 4},
[(Temperature, normal)] = {6},
[(Headache, yes)] = {2, 5},
[(Headache, no)] = {3, 6},
[(Cough, yes)] = {1, 4},
[(Cough, no)] = {5}.

For incomplete data sets the idea of the elementary block is extended to a
characteristic set. For a case x ∈ U the characteristic set KB(x) is defined as the
intersection of the sets K(x, a), for all a ∈ B, where the set K(x, a) is defined in
the following way:

– If ρ(x, a) is specified, then K(x, a) is the block [(a, ρ(x, a)] of attribute a and
its value ρ(x, a),

– If ρ(x, a) = ? or ρ(x, a) = ∗ then the set K(x, a) = U ,
– If ρ(x, a) = −, then the corresponding set K(x, a) is equal to the union

of all blocks of attribute-value pairs (a, v), where v ∈ V (x, a) if V (x, a) is
nonempty. If V (x, a) is empty, K(x, a) = U .

Thus, for Table 2

KA(1) = {1, 4} ∩ U ∩ {1, 4} = {1, 4},
KA(2) = U ∩ {2, 5} ∩ U = {2, 5},
KA(3) = U ∩ {3, 6} ∩ U = {3, 6},
KA(4) = {1, 4} ∩ U ∩ {1, 4} = {1, 4},
KA(5) = U ∩ {2, 5} ∩ {5} = {5},
KA(6) = {6} ∩ {3, 6} ∩ U = {6},

Characteristic set KB(x) may be interpreted as the set of cases that are indis-
tinguishable from x using all attributes from B and using a given interpretation
of missing attribute values. Thus, KA(x) is the set of all cases that cannot be
distinguished from x using all attributes. In [24] KA(x) was called a successor
neighborhood of x, see also [16,19,24,25].

Obviously, when a data set is complete, for given B ⊆ A, all characteristic
sets KB(x) are identical with elementary blocks [x]B .

The characteristic relation R(B) is a relation on U defined for x, y ∈ U as
follows

(x , y) ∈ R(B) if and only if y ∈ KB (x ).

The characteristic relation R(B) is reflexive but—in general—does not need to
be symmetric or transitive. Also, the characteristic relation R(B) is known if we
know characteristic sets KB(x) for all x ∈ U . In our example, R(A) = {(1, 1),
(1, 4), (2, 2), (2, 5), (3, 3), (3, 6), (4, 1), (4, 5), (5, 5), (6, 6)}. The most convenient
way to define the characteristic relation is through the characteristic sets.

For decision tables, in which all missing attribute values are lost, a special
characteristic relation was defined in [21], see also, e.g., [20,22].

For incompletely specified decision tables lower and upper approximations
may be defined in a few different ways. First, the definition of definability should
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Fig. 1. Bankruptcy data—certain rule sets

be modified. A union of some intersections of attribute-value pair blocks, in any
such intersection all attributes should be different and attributes are members
of B, will be called B-locally definable sets. A union of characteristic sets KB(x),
where x ∈ X ⊆ U will be called a B-globally definable set. Any set X that is
B -globally definable is B -locally definable, the converse is not true. In this paper
we quote three different definitions of lower and upper approximations [7,8,9].

Let X be a concept, let B be a subset of the set A of all attributes, and
let R(B) be the characteristic relation of the incomplete decision table with
characteristic sets K(x), where x ∈ U . Our first definition uses a similar idea as
in the previous articles on incompletely specified decision tables [14,15,20,21,22],
i.e., lower and upper approximations are sets of singletons from the universe U
satisfying some properties. Thus, lower and upper approximations are defined
by constructing both sets from singletons. We will call these approximations
singleton. Namely, a singleton B-lower approximation of X is defined as follows:

BX = {x ∈ U | KB(x) ⊆ X}.

A singleton B-upper approximation of X is

BX = {x ∈ U | KB(x) ∩ X �= ∅}.

In our example of the decision table presented in Table 2 let us say that
B = A. Then the singleton A-lower and A-upper approximations of the two
concepts: {1, 2, 4} and {3, 5, 6} are:

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



38 J.W. Grzymala-Busse and W.J. Grzymala-Busse

Fig. 2. Bankruptcy data—possible rule sets

A{1, 2, 4} = {1, 4},

A{3, 5, 6} = {3, 5, 6},

A{1, 2, 4} = {1, 2, 4},

A{3, 5, 6} = {2, 3, 5, 6}.

Note that the set A{1, 2, 4} is not even A-locally definable. Hence, as it was
previously argued in [7,8,9], singleton approximations should not be used for
rule induction. Obviously, if a set is not B-locally definable then it cannot be
expressed by rule sets using attributes from B.

We may define lower and upper approximations for incomplete decision tables
by using characteristic sets instead of elementary sets. There are two ways to
do this. Using the first way, a subset B-lower approximation of X is defined as
follows:

BX = ∪{KB(x) | x ∈ U, KB(x) ⊆ X}.

A subset B-upper approximation of X is

BX = ∪{KB(x) | x ∈ U, KB(x) ∩ X �= ∅}.
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Fig. 3. Breast cancer (Slovenia) data—certain rule sets

Since any characteristic relation R(B) is reflexive, for any concept X , singleton
B-lower and B-upper approximations of X are subsets of the subset B-lower
and B-upper approximations of X , respectively [9]. For the same decision table,
presented in Table 2, the subset A-lower and A-upper approximations are

A{1, 2, 4} = {1, 4},

A{3, 5, 6} = {3, 5, 6},

A{1, 2, 4} = {1, 2, 4, 5},

A{3, 5, 6} = {2, 3, 5, 6}.

The second possibility is to modify the subset definition of lower and up-
per approximation by replacing the universe U from the subset definition by a
concept X . A concept B-lower approximation of the concept X is defined as
follows:

BX = ∪{KB(x) | x ∈ X, KB(x) ⊆ X}.

Obviously, the subset B-lower approximation of X is the same set as the
concept B-lower approximation of X [7]. A concept B-upper approximation of
the concept X is defined as follows:
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Fig. 4. Breast cancer (Slovenia) data—possible rule sets

BX = ∪{KB(x) | x ∈ X, KB(x) ∩ X �= ∅} = ∪{KB(x) | x ∈ X}.

The concept B-upper approximation of X is a subset of the subset B-upper
approximation of X [7]. For the decision table presented in Table 2, the concept
A-lower and A-upper approximations are

A{1, 2, 4} = {1, 4},

A{3, 5, 6} = {3, 5, 6},

A{1, 2, 4} = {1, 2, 4, 5},

A{3, 5, 6} = {2, 3, 5, 6}.

Note that for complete decision tables, all three definitions of lower approxi-
mations, singleton, subset and concept, coalesce to the same definition. Also, for
complete decision tables, all three definitions of upper approximations coalesce
to the same definition. This is not true for incomplete decision tables, as our
example shows.

For Table 2, certain rules [3], induced from the concept lower approximations
are
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Fig. 5. Breast cancer (Wisconsin) data—certain rule sets

1, 2, 2
(Temperature, high) -> (Flu, yes)
1, 2, 2
(Headache, no) -> (Flu, no)
1, 1, 1
(Cough, no) -> (Flu, no)

and possible rules [3], induced from the concept upper approximations, are

1, 2, 2
(Temperature, high) -> (Flu, yes)
1, 2, 2
(Headache, yes) -> (Flu, yes)
1, 2, 2
(Headache, no) -> (Flu, no)
1, 1, 1
(Cough, no) -> (Flu, no)

Table 3 shows a modification of Table 2, where all lost values are replaced by
”do not care” conditions. For decision tables where all missing attribute values
are ”do not care” conditions a special characteristic relation was defined in [14],
see also, e.g., [15]. Blocks of attribute-value pairs are

[(Temperature, high)] = {1, 2, 3, 4, 5},
[(Temperature, normal)] = {2, 3, 5, 6},

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



42 J.W. Grzymala-Busse and W.J. Grzymala-Busse

Table 3. An incomplete decision table (all missing attribute values are lost values)

Attributes Decision

Case Temperature Headache Cough Flu

1 high * yes yes

2 * yes * yes

3 * no * no

4 high * yes yes

5 * yes no no

6 normal no * no

Fig. 6. Breast cancer (Wisconsin) data—possible rule sets

[(Headache, yes)] = {1, 2, 4, 5},
[(Headache, no)] = {1, 3, 4, 6},
[(Cough, yes)] = {1, 2, 3, 4, 6},
[(Cough, no)] = {2, 3, 5, 6}.

Characteristic sets are

KA(1) = {1, 2, 3, 4, 5} ∩ U ∩ {1, 2, 3, 4, 6} = {1, 2, 3, 4},
KA(2) = U ∩ {1, 2, 4, 5} ∩ U = {1, 2, 4, 5},
KA(3) = U ∩ {1, 3, 4, 6} ∩ U = {1, 3, 4, 6},
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KA(4) = {1, 2, 3, 4, 5} ∩ U ∩ {1, 2, 3, 4, 6} = {1, 2, 3, 4},
KA(5) = U ∩ {1, 2, 4, 5} ∩ {2, 3, 5, 6} = {2, 5},
KA(6) = {2, 3, 5, 6} ∩ {1, 3, 4, 6} ∩ U = {3, 6},

For the decision table presented in Table 3, the concept A-lower and A-upper
approximations are

A{1, 2, 4} = ∅,

A{3, 5, 6} = {3, 6},

A{1, 2, 4} = {1, 2, 3, 4, 5},

A{3, 5, 6} = U.

In our example, the concept A-lower approximation of {1, 2, 4} is the empty
set. With large percentage of missing attribute values interpreted as ”do not
care” conditions, empty lower approximations cause large increases of error rates
during ten-fold cross validation.

For Table 3, the only certain rule, induced from the concept lower approxi-
mation, is

Fig. 7. Image segmentation data—certain rule sets
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Fig. 8. Image segmentation data—possible rule sets

2, 2, 2
(Temperature, normal) & (Headache, no) -> (Flu, no)

and possible rules, induced from the concept upper approximations, are

1, 3, 5
(Temperature, high) -> (Flu, yes)
1, 2, 5
(Temperature, high) -> (Flu, no)
1, 3, 4
(Temperature, normal) -> (Flu, no)

Table 4 is another modification of Table 2, where all lost values are replaced
by attribute-concept values. Blocks of attribute-value pairs are

[(Temperature, high)] = {1, 2, 4},
[(Temperature, normal)] = {3, 5, 6},
[(Headache, yes)] = {1, 2, 4, 5},
[(Headache, no)] = {3, 6},
[(Cough, yes)] = {1, 2, 4},
[(Cough, no)] = {3, 5, 6}.

Characteristic sets are

KA(1) = {1, 2, 4} ∩ {1, 2, 4, 5} ∩ {1, 2, 4} = {1, 2, 4},
KA(2) = {1, 2, 4} ∩ {1, 2, 4, 5} ∩ {1, 2, 4} = {1, 2, 4},
KA(3) = {3, 5, 6} ∩ {3, 6} ∩ {3, 5, 6} = {3, 6},
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Table 4. An incomplete decision table (all missing attribute values are lost values)

Attributes Decision

Case Temperature Headache Cough Flu

1 high – yes yes

2 – yes – yes

3 – no – no

4 high – yes yes

5 – yes no no

6 normal no – no

Fig. 9. Iris data—certain rule sets

KA(4) = {1, 2, 4} ∩ {1, 2, 4, 5} ∩ {1, 2, 4} = {1, 2, 4},
KA(5) = {3, 5, 6} ∩ {1, 2, 4, 5} ∩ {3, 5, 6} = {5},
KA(6) = {3, 5, 6} ∩ {3, 6} ∩ {3, 5, 6} = {3, 6},

For the decision table presented in Table 4, the concept A-lower and A-upper
approximations are

A{1, 2, 4} = {1, 2, 4},

A{3, 5, 6} = {3, 5, 6},
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Fig. 10. Iris data—possible rule sets

A{1, 2, 4} = {1, 2, 4},

A{3, 5, 6} = {3, 5, 6}.

For Table 4, certain rules, induced from the concept lower approximations,
are identical with possible rules, induced from concept upper approximations

1, 3, 3
(Temperature, high) -> (Flu, yes)
1, 3, 3
(Temperature, normal) -> (Flu, no)

4 Experiments

For our experiments six typical data sets were used, see Table 5. These data sets
were complete (all attribute values were completely specified), with the exception
of breast cancer (Slovenia) data set, which originally contained 11 cases (out of
286) with missing attribute values. These 11 cases were removed.

In two data sets: bankruptcy and iris all attributes were numerical. These
data sets were processed as numerical (i.e., discretization was done during rule
induction by MLEM2). The image segmentation data set was converted into
symbolic using a discretization method based on agglomerative cluster analysis
(this method was described, e.g., in [1]).
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Table 5. Data sets used for experiments

Data set Number of

cases attributes concepts

Bankruptcy 66 5 2

Breast cancer (Slovenia) 277 9 2

Breast cancer (Wisconsin) 625 9 9

Image segmentation 210 19 7

Iris 150 4 3

Lymphography 148 18 4

Fig. 11. Lymphography data—certain rule sets

To each data set we conducted a series of three experiments, adding incre-
mentally (with 10% increment) missing attribute values of three different types.
Thus, we started each series of experiments with no missing attribute values,
then we added 10% of missing attribute values of given type, then we added
additional 10% of missing attribute values of the same type, etc., until reaching
a level of 100% missing attribute values. For each data set and a specific type of
missing attribute values ten additional data sets were created.

Furthermore, for each data set with some percentage of missing attribute
values, experiments were conducted separately for certain and possible rule
sets, using concept lower and upper approximations, respectively. Ten-fold cross
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Fig. 12. Lymphography data—possible rule sets

validation was used to compute an error rate. Rule sets were induced by the
MLEM2 option of the LERS data mining system [2,5,6]. Results of our experi-
ments are presented in Figures 1–12. In all 12 figures, lost values, ”do not care”
conditions, and attribute-concept values denote percentage of error rate for ex-
periments with missing attribute values interpreted as lost values, ”do not care”
conditions, and attribute-concept values, respectively.

5 Conclusions

During all series of experiments the error rate was affected by large variance.
Moreover, for some data sets (e.g., breast cancer (Wisconsin)), adding a small
amount of missing attribute values resulted in a decreased error rate. Most likely,
in these data sets, attributes affected by missing attribute values were not im-
portant. In effect, the induced rule sets were more general and better.

It is clear that inducing certain rule sets while using a ”do not care” condition
approach to missing attribute values was the worst approach. This was caused
by the fact that lower approximations of concepts, with large number of missing
attribute values, were empty.

Another surprising conclusion is that for some data sets (breast cancer (Slove-
nia) and breast cancer (Wisconsin)) adding a large number of missing attribute
values does not affect the error rate seriously—the error rate was almost the
same for larger and larger number of missing attribute values.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



An Experimental Comparison of Three Rough Set Approaches 49

Overall, it seems that the interpretation of missing attribute values as lost is
the best approach among our three types of missing attribute value interpreta-
tions. Taking into account a large variance, the difference between error rates
for certain and possible rule sets is negligible.
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Abstract. This paper reviews, rather non-technically, Pawlak’s appr-
oach to vagueness through rough sets and looks for a foundation of rough
sets in an early work of Obtu�lowicz. An extension of Obtu�lowicz’s pro-
posal is suggested that in turn, hints at a unified approach to rough sets
and fuzzy sets.

1 Introduction

The concluding decades of the past century have added several outstanding,
significant and elegant contributions to human knowledge of which Rough Set
Theory is one. Zdzis�law Pawlak, a Professor of Computer Science from Poland,
first proposed this theory in 1982 through his publication entitled ‘Rough Sets’
[20]. Surprisingly, this is again a contribution to humanity from one belonging
to the field of computer science – during the same period, the same community
gifted several other elegant creations, like Fuzzy Set Theory by Lotfi Zadeh in
1965. It is also interesting to note that both the theories address basically the
same issue, viz. ‘vagueness’ and this fact is not merely a coincidence.

‘Vagueness’ had been an outstanding issue. Great minds of the antiquity, both
of the East and the West delved into the notion exhibited in various forms. (The-
seuses’ ship [43,17], the Sorites [43,13], or the tetra-lemma (Catuskoti) [35,32],
for example). Following Enlightenment, with the rise of modern rationality, em-
bodied in the methods of physical sciences, more specifically physics, ‘vagueness’
had been gradually pushed aside to the fringes like the indigenous population in
Australia or in America and other places. Use of imprecise terms were not only
marginalized, but virtually banished from all serious discourses as expressed by
the rationalist, humanist Bertrand Russell in the lines (in, Our Knowledge of Ex-
ternal World as a Field of Scientific Method in Philosophy) (cf. Hao Wang [42]):

“The study of logic becomes the central study in philosophy: it gives the
method of research in philosophy, just as mathematics gives the method in
physics;”

� I would like to express my sincere thanks to Smita Sirker, Dept. of Philosophy, Ja-
davpur University, for kindly reading the first draft and making valuable comments,
particularly on the main philosophy of this article viz. the relationship between the
existence of an object in a concept and indiscernibility.
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and further from his article ‘Vagueness’ (Australian Journal of Philosophy)[37]:
“Logical words, like the rest, when used by human beings, share the vagueness

of all other words. There is however, less vagueness about logical words than
about the words of daily life.”

However, in spite of the great tide of modern rationality all over the world,
a sense of understanding that there exists an essential role of vagueness in hu-
man knowledge system as well as life, was not totally wiped out from Eastern
thoughts. Ironically, the most advanced technology – computer science, the most
recent gift of modernity, has ushered the study of vagueness spectacularly from
the disrespectful margin straightaway to centre-stage.

That ‘vagueness’ in general is different from ‘probability’ has somewhat been
accepted nowadays after the long, fierce debates that took place during the years
immediately following the advent of fuzzy set theory in 1965. So Pawlak did not
have to fight that battle. Yet he had to utter this warning which is an excellent
distinctive criterion viz. “Vagueness is the property of sets... whereas uncertainty
is the property of an element”[28]. Uncertainty leads to probabilistic studies. It
is often said of course, that vagueness is uncertainty too but not of probabilistic
kind. However, right from the beginning Pawlak wanted to point at the distinc-
tion between Rough Set theory and Fuzzy Set theory. In the introduction to his
short communication [23] he declares “we compare this concept with that of the
fuzzy set and we show that these two concepts are different.” Different in what
sense? Early Pawlak (during the 80s) was firm in his belief that Rough Set is
properly addressing vagueness since it talks about ‘boundaries’ of a set and the
property ‘rough’ is ascribed to a set. On the other hand, although the qualifier
‘fuzzy’ has been ascribed to sets too, in reality the theory deals with degree
of membership of an object in a ‘set’ and hence is dealing with some kind of
uncertainty of belongingness of objects. So according to the above quoted norm,
fuzzy set theory is not addressing vagueness proper. However, in later Pawlak,
perhaps a change in opinion is observed as reflected in the following categorical
remark “Both fuzzy and rough set theory represent two different approaches
to vagueness. Fuzzy set theory addresses gradualness of knowledge, expressed
by the fuzzy membership - whereas rough set theory addresses granularity of
knowledge expressed by indiscernibility relation” [22].

We shall discuss the role of indiscernibility to some length in the foundations
of fuzzy set theory as well as rough set theory and thus in vagueness. But it
needs to be mentioned that the relationship between the two theories had quite
naturally been a favourite topic of study in those turbulent decades. For ex-
ample, Wygralak in the 1985 BUSEFAL Conference presented a paper [44] in
which he established that basic operations on rough sets (i.e. union and intersec-
tion) can be expressed as some special operations as their membership functions.
Pawlak already talked about the distinction and the irreducibility of rough sets
to fuzzy sets. This point needs a little clarification since rough sets approxima-
tions are not distributive with respect to all set theoretic operations. Pawlak in
[23] checked for the natural candidate for representation of rough sets by the
3-valued membership function
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X(x) =

⎧⎨
⎩

1 if x belongs to the lower approximation
.5 if x belongs to the boundary region
0 otherwise.

With such functions representing rough sets X and Y , the membership func-
tion of X ∪ Y can not be represented by max(X(x), Y (x)) as is done in fuzzy
set theory, since it has to coincide with the function

X ∪ Y (x) =

⎧⎨
⎩

1 if x belongs to the lower approximation of X ∪ Y
.5 if x belongs to the boundary region
0 otherwise,

but which fails.
Similarly, X ∩ Y can not be represented by the function min(X(x), Y (x)).

However if the membership function is modified as below the desired result is
obtained. Wygralak proposed to define � and � of two rough sets X, Y , by

X � Y (x) =
{

min(1, X(x) + Y (x)) if X(x) = Y (x) = .5 and [x] ⊆ X ∪ Y
max(X(x), Y (x)) otherwise.

and

X�Y (x)=
{

max(0, X(x) + Y (x) − 1) if X(x)=Y (x)= .5 and [x] ∩ X ∩ Y �= ∅
min(X(x), Y (x)) otherwise.

X � Y is roughly equal to X ∪ Y and
X � Y is roughly equal to X ∩ Y .
In spite of this claim of Wygralak, one may doubt about the acceptability or

otherwise of such functions as operators for conjunction and disjunction because
they might miss some important properties - but it requires detailed investiga-
tions to make a final comment.

In Moscow Conference, 1988, Dubois and Prade argue that “fuzzy sets and
rough sets aim to different purposes and that it is more natural to try to combine
the two models of uncertainty (vagueness for fuzzy sets and coarseness for rough
sets) in order to get a more accurate account of imperfect information.” They
proposed interesting mathematical constructs known as rough-fuzzy sets and
fuzzy-rough sets [9].

In the opinion of the present author, there is an essential indiscernibility
underlying in all kinds of vagueness - indiscernibility giving rise to both granu-
larity and gradualness. But indiscernibles may be of various types though one
can probe into some essential features of this elusive notion. These investigations
had also been a favourite topic in the 80s and 90s [1,34,41,12,14,10].

2 Indiscernibilities

One major difference in the approaches to indiscernibility lies in assuming it as a
‘yes’/‘no’ type crisp concept or a graded concept. In the first approach, objects
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x and y are either indiscernible or not - this approach is adopted in Rough
Set theory by Pawlak. Several generalizations, of course, have taken place. The
general feature of these is that starting from some knowledge or data, different
components (or clusters) are computed and rough sets are construed out of these
components. We shall, however, restrict this study to Pawlak-rough sets only.
It would be interesting to investigate if the present ‘unified’ approach can be
extended to generalized rough sets as well. The second approach, as pursued in
Fuzzy Set theory, presumes that x and y may be indiscernible to a degree - that
is, it is a graded notion. Another very important difference rests in assuming or
not assuming or weakening the transitivity property of indiscernibility. In the
first case we get standard equivalence relation on the universe of discourse, as
is the base of Pawlak-rough sets. The second case generates tolerance relation
(reflexive-symmetric) as base – rough set theory on this base is also pursued. In
the third case, we have fuzzy transitivity, viz.

Ind(x, y) & Ind(y, z) ≤ Ind(x, z),

where Ind(x, y) represents the indiscernibility degree between x and y, and & is
an algebraic operation (a t-norm, perhaps) on a suitable truth set. This graded
relation without being reduced to tolerance, relaxes the notion of hard transi-
tivity and elegantly, takes care of the gradualness aspect by using an interactive
conjunction operator as follows.
Let x1, x2, x3, x4, ... be a sequence of objects such that Ind(xi, xi+1) = .5, for all
i. Now let us take the product (×) as the operator for &. Since
Ind(x1, x2) & Ind(x2, x3) ≤ Ind(x1, x3), we get Ind(x1, x3) ≥ .5 × .5 = .25.
If the least value .25 is taken then

Ind(x1, x4) may be taken as Ind(x1, x3) & Ind(x3, x4) = .25 × .5 = .125.

Thus indiscernibility degree gradually diminishes. It means that the indiscerni-
bility between x1 and x4 is less than that between x1 and x3, and this is further
less than the indiscernibility between x1 and x2 – a feature quite intuitively ac-
ceptable. Symmetry is naturally expected of indiscernibility. In the fuzzy case
it means that Ind(x, y) = Ind(y, x). We shall discuss about reflexivity prop-
erty later. Before that let us examine the relationship between indiscernibility
relation and a concept.

A concept induces an indiscernibility relation in a universe of discourse. For
example, the concept A gives rise to IndA given by

IndA(x, y) =
{

1 if x, y ∈ A or x, y ∈ Ac

0 otherwise.

Concepts A, B, and C similarly give rise to the relation

IndA,B,C(x, y) =
{

1 if x ∈ X if and only if y ∈ X, X = A, B, C
0 otherwise.

An instance of this latter case is depicted in the following diagram with fifteen
objects, x1 to x15.
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We could also show IndA,B,C by constructing the following approximation
space or information system.

A B C
x1 Y N N
x2 Y Y N
x3 Y Y N
x4 N Y N
x5 Y Y Y
x6 N Y Y
x7 N N Y
x8 N N Y
x9 Y N Y
x10 Y Y Y
x11 N N N
x12 N N N
x13 Y N N
x14 Y N N
x15 N Y N

Y stands for ‘yes, belongs to’ and N for ‘no, does not belong to’. So IndA,B,C(x, y)
= 1, if and only if the rows corresponding to x and y are identical.

Thus a set of concepts generates a partition of the universe and hence equiv-
alently gives an approximation space.

Can we retrieve A (in the first example) or A, B, C (in the second exam-
ple) from the indiscernibility relations IndA or IndA,B,C? The two values 0 and
1 of the indiscernibility relation are not sufficient for this purpose. Only from the
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information about indiscernibility one cannot separate A from its complement
Ac since IndA(x, x) = 1 whether x ∈ A or x ∈ Ac. So, let us take a third value
2 and stipulate.

Ind∗A(x, x) =
{

2 if x ∈ A
1 if x ∈ Ac

and

Ind∗A(x, y) =
{

1 if x �= y, x, y ∈ A or x, y ∈ Ac

0 if x �= y, x ∈ A and y ∈ Ac, or x ∈ Ac and y ∈ A.

It is obvious that IndA(x, y) = 1 if and only if Ind∗A(x, y) ≥ 1 and
IndA(x, y) = 0 if and only if Ind∗A(x, y) = 0.

The two functions IndA and Ind∗A coincide on (x, y), x �= y, but while the
first one cannot make a distinction between A and its complement, Ind∗A can do
this.

Similarly, in order to retrieve A ∪ B ∪ C in the second case, we need the
definition

Ind∗A,B,C(x, x) =
{

2 if x ∈ A ∪ B ∪ C
1 if x �∈ A ∪ B ∪ C

and

Ind∗A,B,C(x, y) =

⎧⎨
⎩

1 if x �= y and the rows of x and y in the information
system coincide

0 otherwise.

One point to be observed here is that although while Ind∗X(x, y) ≥ 1 implies
that x and y are indiscernible in terms of the basic concepts, Ind∗X(x, x), i.e. the
indiscernibility of x with itself is not of the same category for all x. Also to be
noted that this representation may be applied to any subset (not only A∪B∪C)
of U obtained by unions of intersections of A, B and C, in other words unions of
the indiscernibility classes or blocks in U determined by them. The procedure,
however, is to define Ind∗A,B,C(x, x), so that only specified unions of blocks are
obtained in the backward process.

We shall summarize and axiomatize such properties of Ind∗X later. At this
stage we only raise an issue. Could we not think that degree of belongingness
of an object to a concept is determined by and is the same as the degree of
indiscernibility of the object with itself relative to the same concept? Looking
from this angle, indiscernibility becomes more a primitive notion and plays a
key role in the process of learning as well as of categorization. A category is
created depending on the similarity of its members. Based on the degree of
indiscernibility of an object, its belongingness to a set/category/class is decided.
x belongs to A to the extent 2 = Ind∗A(x, x), means x is within A, x belongs to
A to the extent 1 = Ind∗A(x, x) means x is in Ac. That we are interested in A
and not in its complement is also represented in the assignment of a lower degree
of indiscernibility to elements of the complement with themselves. The idea shall
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play a key role in what follows and is a basis for enquiries into vagueness. Even
in the case of crisp concepts, we have noticed, while retrieving A from Ind∗A the
elements of A have grade 2, and elements of Ac have grade 1, and a third value
0 is also needed to construct the partition.

If, however, the concepts are vague, that is, admit borderline cases, it is nec-
essary to introduce a fourth value and the indiscernibility generated may be
defined as above with certain additional conditions. These ideas were published
long back in Obtu�lowicz’s paper [18] based on a firm category-theoretic basis
proposed by Higgs [12], but probably escaped attention of the researchers in
this field. We re-present from his work the main definitions and representation
theorems below with little notational changes to fit in the present context.

Let U be a universe and L(4) be the ordered set {0 ≤ 1 ≤ 2 ≤ 3} which is a
complete distributive lattice (or complete Heyting algebra).

Let Ind∗ : U ×U → L(4) be an indiscernibility relation that satisfies conditions.

H1 : Ind∗(x, y) = Ind∗(y, x) (Symmetry)
H2 : Ind∗(x, y) ∧ Ind∗(y, z) ≤ Ind∗(x, z) (Transitivity)

and the following roughness conditions

R1 : 1 ≤ Ind∗(x, x) for x ∈ U
R2 : if 2 ≤ Ind∗(x, y), then x = y
R3 : if Ind∗(x, y) = 1, then Ind∗(x, x) = Ind∗(y, y)
R4 : if Ind∗(x, x) = 2, then there exists y such that Ind∗(x, y) = 1

The significance of roughness conditions shall be clear from Proposition 2
below. The following two propositions establish that (U, Ind∗) is a representation
of any Pawlak-rough set in U .

Proposition 1. Let (U, Ind∗) be given. Then the relation R defined by xRy if
and only if Ind∗(x, y) ≥ 1 is an equivalence relation, and the pair (I, B) defined
by I = {x : Ind∗(x, x) = 3}, B = {x : Ind∗(x, x) = 2} constitute the interior
and boundary of a rough set in (U, R).

Proposition 2. Let (U, R) be an approximation space in which (I, B), the in-
terior and boundary pair determines a rough set. Consider the mapping Ind∗ :
U × U → L(4) given by

Ind∗(x, x) =

⎧⎨
⎩

3 if x ∈ I
2 if x ∈ B
1 if x ∈ U \ (I ∪ B)

and

Ind∗(x, y) =
{

1 if x �= y, xRy holds
0 if x �= y, xRy does not hold.

Then Ind∗ satisfies the conditions H1, H2, R1, R2, R3, R4.

The following important feature is also observed in the two constructions by
Propositions 1 and 2.
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(U, Ind∗)
Prop1−→ (U, R, I, B)

Prop2−→ (U, Ind∗)
Prop1−→ (U, R, I, B).

Thus an indiscernibility satisfying the roughness conditions gives rise to a rough
set in an approximation space and vice versa.

One can see that the above representation does not amount to the 3-valued
semantics where an object falls under a concept with three grades viz. 3 (when
it is in the definite region), 2 (when it is in the boundary), and 1 (outside the
boundary). We have noticed difficulties with such representation (by Pawlak
or Wygralak) in the beginning of this article. The membership function of
Obtu�lowicz also says that

Ind∗(x, x) & Ind∗(x, y) ≤ Ind∗(y, y), i.e.
the degree of belongingness of x to a concept & the degree of indiscernibility

of x with y ≤ the degree of belongingness of y to the concept.
This criterion is the so-called ‘saturatedness’ condition that has been elabo-

rately discussed in [5]. In Leibniz’s terms, this is the version of the doctrine of
Identity of Indiscernibles, viz. if an object x has a property P and an object y
is indiscernible from x, then y has the property P . In the fuzzy context, a more
general condition is taken viz.

α(x) & Ind(x, y) ≤ α(y),
where α(x) denotes the degree of belongingness of x to the fuzzy set α.

The only addition here is the conceptual indulgence to the assumption that
belongingness degree of x to a fuzzy set is the same as Ind∗(x, x).

It is also significant to notice that the fuzzy set theoretic operators ‘max’ and
‘min’ are now applicable to obtain the union and intersection.
A summary of what has been said so far is the following:

– The underlying indiscernibility relation for any vague concept in U is a
relation Ind∗ satisfying the conditions H1, H2, R1, R2, R3, R4.

– Such a relation, which is a particular kind of fuzzy equivalence relation de-
termines uniquely a rough set in the approximation space (U, R) where R is
virtually the underlying indiscernibility and conditions R1, R2, R3, R4 deter-
mine the interior and boundary of the rough set.

– Conversely, any rough set in (U, R) given by the interior and boundary can be
generated by an indiscernibility relations satisfying H1, H2, R1, R2, R3, R4.

– This representation is one-to-one.
– In the special case when the boundary region is empty, the condition R4 is

dropped. We need a three-element complete Heyting algebra and Proposi-
tions 1 and 2 may be written accordingly. Earlier examples with the concept
A, and concepts A, B, C are instances of such representation.

One interesting extension of Obtu�lowicz’s representation of rough sets suggests
itself, but has never been taken up.

Formally, one can add more categories other than 0, 1, 2 and 3. For instance,
let us take one more viz. 4. All the roughness conditions remain the same except
that the condition R4 shall now be read as
R′4: for each x, Ind(x, x) = 2 or 3 implies that there exists y such that

Ind(x, y) = 1.
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The rough set is now extended to (U, R, I, B1, B2), where there are two layers
in the boundary, elements of I have grade 4, while those of B1 and B2 have
grades 3 and 2 respectively. The representation theorems now take the following
shapes.

Proposition 3. Let Ind∗ : U × U → L(5)(≡ {0 ≤ 1 ≤ 2 ≤ 3 ≤ 4} be an indis-
cernibility relation satisfying conditions H1, H2, R1, R2, R3, R

′
4. Then R defined

by xRy if and only if Ind∗(x, y) ≥ 1 is an equivalence relation, and the triple
(I, B1, B2) defined by I = {x : Ind∗(x, x) = 4}, B1 = {x : Ind∗(x, x) = 3},
B2 = {x : Ind∗(x, x) = 2} constitute the interior and the two layers of bound-
aries of a rough set in (U, R).

Proposition 4. Let (U, R) be an approximation space in which (I, B1, B2) de-
termines a rough set. Then the mapping Ind∗ : U × U → L(5) given by

Ind∗(x, x) =

⎧⎪⎪⎨
⎪⎪⎩

4 if x ∈ I
3 if x ∈ B1

2 if x ∈ B2

1 if x ∈ U \ (I ∪ B1 ∪ B2)

and

Ind∗(x, y) =
{

1 if x �= y, xRy holds
0 if x �= y, xRy does not hold.

Then Ind∗ satisfies the conditions H1, H2, R1, R2, R3, R
′
4.

Layers of the boundary may be enhanced arbitrarily, but finitely. The interpreta-
tion of these layers is zones of objects of gradually weaker possibilities of falling
under the concept that render gradualness along with granularity. One can also
see the possibility of interpreting membership values under rough membership
function [22] as values of the lattice (after normalization, of course). Elements of
a block with lower rough membership may be placed in the weaker layer of the
boundary. Element of beyond-possible zone should be given the value 1 instead
of 0 which should be retained to denote the discernibility of x, y, x �= y and to
determine the partition of the Universe. In finite situations there should not be
any difficulty. The definitions of union intersection and complementation may
be suitably defined by using max, min and reversal of grades.

There shall be a departure in this approach from that of Pawlak. ‘Roughness’
should no longer be considered as an adjective to an ordinary set in an approxi-
mation space but as a pair (I, B) of unions of blocks of the space, I being called
the interior and B the boundary. This approach is equivalent to that taken by
us in [2]. It is also in conformity with the philosophy of rough sets viz. “we ‘see’
elements of the universe through available informations” and hence “some ele-
ments may be ‘seen’ identical” and “this is to mean that if we see a set through
informations, only, the approximations (lower and upper) can be observed.” And
further “a vague property determines not only a single set of elements falling
under the property but a family of sets which can be identified with this prop-
erty up to indiscernibility.” All the above lines within quotation marks are from
Pawlak’s writings glued together. So the present approach, though a departure,
draws the support from his own feelings too.
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3 Conclusions

Like fuzzy sets, rough sets also have wide usages for example, in artificial intelli-
gence, cognitive sciences, knowledge discovery from database, machine learning,
expert system, inductive reasoning and pattern recognition. As in the case of
any successful theory, it has to look back at one point of time. “The rough set
theory has reached such a state that some kind of summary of its theoretical
foundation is a must” [28] - this realization of Pawlak is quite justifiable. As it
appears from the preceding discussions, the approach of Obtu�lowicz may serve
as quite a reasonable foundation. This approach also suggests a kind of unifica-
tion of fuzzy sets and rough sets. Starting with some sort of indiscernibility in
the Universe which is at the base of any vague concept and which arises out of
data (concrete or subjective), objects of the Universe are categorized. In such
a categorization, some tokens (not necessarily numbers) with varying algebraic
structures play a role. A mathematical entity emerges representing the vague
concept. In this representation, the following philosophy is adopted:

“The degree of existence of an object in a concept is the degree to which the
object is indiscernible with itself relative to the underlying the concept.”

The mathematical entity is sometimes a fuzzy set and sometimes a rough set.
Divergence occurs because of the nature of the indiscernibility (crisp or fuzzy)
and the choice of categories (how many?) and their structures. Incorporation of
layers in the boundary as proposed in the paper for the first time brings rough
sets closer to fuzzy sets.

We think that this approach could help in erasing Pawlak’s persistent feeling
of a sort of ‘supremacy’ of classical set theory over fuzzy set theory or rough set
theory. This feeling is expressed in statements like “fuzzy set involves more ad-
vanced mathematical concepts real numbers and functions - whereas in classical
set theory the notion of set is used as a fundamental notion of whole mathemat-
ics and is used to derive any other mathematical concept e.g. numbers and func-
tions. Consequently, fuzzy set theory cannot replace classical set theory, because,
in fact, the theory is needed to define fuzzy sets.” [21] Again, “in a manner similar
to fuzzy set theory, rough set theory is not an alternative to classical set theory
but it is embedded in it.”[22] Pawlak’s concern about the foundational problems
of classical set theory and interest in the alternatives like, multisets, multi-fuzzy
sets, Blizard sets, general sets, Mereology (Lesniewski), Alternative set theory
(Vopenka), Penumbral set theory (Apostoli and Kanda) are well known [21,25].
In the proposal of Obtu�lowicz, what would, in fact, be needed at the beginning is
a Universe, a collection of tokens with some structures including order (in partic-
ular the numbers) and the notion of indiscernibility which needs only an under-
standing of ‘pair’ and ‘correspondence’. These may constitute a nice, intuitively
acceptable beginning. If one casts an oblique eye, we can take refuge to categor-
ical foundation (Higgs [12], Banerjee and Chakraborty [3], and others). At this
point we would like to draw the attention of readers to a paper of Goguen pub-
lished in 1974. He claims “Ideally, we would like a foundation for fuzzy sets which
justifies the intuitive identification of fuzzy sets with (inexact) concepts, and in
which the familiar set operations are uniquely and inevitably determined. These
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desires are clearly though not explicitly expressed in Zadeh (1965), and they are
all satisfied by the system given in this paper.” He used as paradigm Lawvere’s
“relatively unknown axiomatization of sets in the language of category theory”. In
one of our papers [3] Higgs’ and Goguen’s categories are discussed and compared.
But category-theoretic approach is still not popular among practitioners. If toiled
and fuzzy as well as rough sets are found soundly based on categorical grounds,
the gains appear to be enormous - reinstatement of ‘vagueness’ within the dis-
courses of mathematics, logic and thus by sciences. A recent work by Skowron
[39] once again brings to focus the importance of the study of vagueness and the
role of rough set theoretic methods in such studies. He introduces two operations
viz. inductive extension and granulation of approximation spaces and emphasizes
on “important consequences of the paper for research on approximation of vague
concepts and reasoning about them in the framework of adoptive learning.” He
thinks that “this (adoptive learning) requires developing a new approach to vague
concepts going beyond the traditional rough or fuzzy approaches.” This paper
extends the notion of approximation space by incorporating rough inclusion or
graded inclusion. It would be an interesting project to investigate if Obtu�lowicz’s
proposal may be extended to this generalized context also.

We engage not only into crisp (two-valued) talks about vagueness, but into
multi-valued talks too (theory of graded consequence [6,7]) or we also talk
‘roughly’ (theory of rough consequence [5]). The underlying motivation to define
graded consequence or rough consequence is to allow room for vagueness in the
metalogical concepts like consistency, consequence, tautologihood, completeness,
etc. This latter notion viz. rough consequence has its origin in Pawlak’s insightful
work on rough truth [24] where he states “the rough (approximate) truth and
falsity represent our partial knowledge about the world and with the increase
of our knowledge the roughly true (or false) formulas tend to be more true (or
false) and approach the truth and falsity closer and closer.” One is bound to
recall Zadeh when he claims that the notion of truth itself is fuzzy. It would not
be out of place to mention that the first recorded works on rough logics are by
Or�lowska and Pawlak [19] and Rasiowa and Skowron [36]. With the advent of
graded and rough consequences, the scenario of mathematics should change, in
that there may be some mathematical predicates, truth of sentences relative to
which may be partial and derivations involving which may not be of full strength.

Professor Pawlak was an artist. His favourite example of vagueness was a
‘beautiful’ painting [22]. He was fond of landscaping. His work on rough sets is
also a beautiful landscape-installation - to which we offer this humble bouquet of
ours that might develop roots striving to become an integral part of this scenario.
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Abstract. In this article, we compare mappings of Pawlak’s lower and
upper approximations of concepts with those proposed by Skowron and
Stepaniuk. It is known that both approaches coincide for the standard
rough inclusion, so we consider the case of an arbitrary rough inclusion
function. Even if the approximation space investigated is based on an
arbitrary non-empty binary relation, the lower approximation mappings
are equal in both approaches. Nevertheless, the upper approximation
mappings are different in general.

In view of many generalizations and extensions of rough set theory
some kind of unification of the basic theory seems to be badly needed.

(Z. Pawlak [1], p. 10)

1 Introduction

Nowadays, the Pawlak rough approximation of concepts [2,3,4,5] has become a
classical research topic. Lower and upper rough approximations have been in-
vestigated by many researchers in the rough set community, to mention [6,7,8]
by way of example. Skowron and Stepaniuk’s proposal regarding rough approx-
imation of concepts [9,10] is well-known, yet less popular among researchers as
a subject of study. A possible reason may be the fact that both approaches co-
incide for the standard rough inclusion, whereas this very function is the most
known among rough inclusions.

The aim of this paper is to study and to compare both Pawlak’s and Skowron–
Stepaniuk’s approaches to approximation of concepts in the rough-set frame-
work. To this end, we relax the usual assumptions about the approximation
space considered. We start with an approximation space, understood as a struc-
ture M = (U, �, κ), where U (the universe) is a non-empty set of objects, � is a
non-empty binary relation on U , and κ is a mapping on the set of pairs of sets
of objects called a rough inclusion function. Step by step, we consider spaces
� The research was supported by the grant 3T11C00226 from the Ministry of Science

of the Republic of Poland.
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based on serial relations, reflexive relations, transitive relations, symmetric (and
in particular, tolerance) relations, and equivalence relations. By definition, κ is
assumed to satisfy two postulates only which are in accordance with the axioms
of rough mereology. However, we also investigate cases, where κ fulfills additional
conditions.

In the paper, we examine two pairs of approximation mappings in line with
Pawlak’s approach and two pairs of approximation mappings in line with
Skowron–Stepaniuk’s proposal. Each pair consists of a lower approximation map-
ping and an upper approximation mapping. Both in the Pawlak case as well as
in the Skowron–Stepaniuk case, approximation mappings constituting one pair
are viewed as basic, whereas mappings forming the remaining pair are “defin-
able” versions of the basic mappings. As regarding the results, the basic lower
approximation mappings are equal in both approaches, and similarly for their
“definable” variants. Basic upper approximation mappings (and similarly for
their “definable” counterparts) are different in general and may be compared
only under special conditions put on κ. Therefore, we mainly try to compare
these mappings indirectly via their properties. Apart from that, we aim at a
uniform presentation of facts about lower and upper approximation mappings.
Some of the facts are new, others are only recalled. We try to answer such ques-
tions as: What are the results of application of a given approximation mapping
to the empty set and to the whole universe? What are the relationships among
various forms of approximation? For instance, how is the lower approximation
related to the upper one? Moreover, how are approximations of a concept re-
lated to the concept itself? Are the approximation mappings under investigation
monotone, and if it is the case, what are the consequences? Last but not least,
what a mapping may be obtained by various compositions of the approximation
mappings? As we shall see, the mappings investigated can lack some essential
properties attributed to an approximation mapping if the relation �, underlying
a given approximation space M , is not reflexive. For example, a lower approx-
imation of a concept may not be included in that concept. However, slightly
abusing the terminology, we shall use the names ‘lower approximation’ and ‘up-
per approximation’ for the sake of uniformity.

Basic terminology and notation is introduced in Sect. 2. In Sect. 3, we present
the notion of a rough approximation space and the mappings of Pawlak’s as well
as Skowron–Stepaniuk’s lower and upper rough approximation of concepts. In
Sect. 4, properties of these mappings are studied in the case of an approximation
space based on an arbitrary non-empty binary relation �. In Sect. 5, we examine
the approximation mappings for special cases of approximation spaces, where �
and/or its converse relation �−1 are serial and where � is, in turn, a reflexive
relation, a transitive relation, a symmetric relation, and an equivalence relation.
The results are summarized briefly in the last section.

2 Preliminaries

Let X, Y be any sets. Throughout the paper, the power set of X , the cardinality
of X , the Cartesian product X × X , the identity mapping on X , and the set
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of all mappings f : X �→ Y will be denoted by ℘X , #X , X2, idX , and Y X ,
respectively.

Consider (partially) ordered sets (X, ≤) and (Y, �). A mapping f : X �→ Y is
referred to as monotone, written f ∈ MON, if for any x, y ∈ X , x ≤ y implies
fx � fy. The operation of composition of relations will be denoted by ◦. In the
case of mappings, the composition of f : X �→ Y with g : Y �→ Z is a mapping
g ◦ f : X �→ Z such that for any x ∈ X , (g ◦ f)x = g(fx). For any sets X, Y ,
define a relation � on (℘Y )℘X and operations 	, 
 on ((℘Y )℘X)2 such that for
any mappings f, g : ℘X �→ ℘Y and any Z ⊆ X ,

f � g
def⇔ ∀Z ⊆ X.fZ ⊆ gZ,

(f 	 g)Z def= fZ ∩ gZ & (f 
 g)Z def= fZ ∪ gZ. (1)

By assumption, ◦ will take the precedence of the operations just defined, whereas
the logical connectives of conjunction and disjunction will take the precedence
of implication and double implication.

Proposition 1. For any mappings f, g, h : ℘X �→ ℘Y , we have:

(a) f � f

(b) f � g & g � f ⇒ f = g

(c) f � g & g � h ⇒ f � h

(d) f � g ⇒ f ◦ h � g ◦ h

(e) h ∈ MON & f � g ⇒ h ◦ f � h ◦ g

(f) f 
 g � h ⇔ f � h & g � h

(g) f � g 	 h ⇔ f � g & f � h

The proof is easy and, hence, omitted. Let us only note that � is a partial
ordering on (℘Y )℘X in virtue of (a)–(c).

3 Rough Approximation Spaces

The notion of a rough approximation space was obtained by Prof. Pawlak in the
early 80’s of the 20th century as one of the results of investigations on approxi-
mation of vague concepts in information systems [2,3,4,5]. This basic notion was
next refined and generalized in several directions (see, e.g., [11,12,13,14,15]), yet
we shall only focus upon the extension proposed by Skowron and Stepaniuk in
[9,10], and elaborated in a series of research articles [16,17,18].

In [19,20]1, Polkowski and Skowron introduced and characterized axiomati-
cally the formal notion of a rough inclusion. Although this notion is unnecessary
when discussing Pawlak’s classical approach, it is fundamental for Skowron–
Stepaniuk’s one. Consider a non-empty set U of entities called objects. In com-

1 See also more recent papers.
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pliance with rough mereology, by a rough inclusion function (RIF for short)
upon U we understand any mapping κ : (℘U)2 �→ [0, 1] satisfying rif1 and rif2
below:

rif1(κ) def⇔ ∀X, Y.(κ(X, Y ) = 1 ⇔ X ⊆ Y )

rif2(κ) def⇔ ∀X, Y, Z.(Y ⊆ Z ⇒ κ(X, Y ) ≤ κ(X, Z))

RIFs are intended as mappings measuring the degrees of inclusion of sets of
objects in sets of objects. Apart from the above postulates, one may consider
other conditions, for instance,

rif3(κ) def⇔ ∀X �= ∅.κ(X, ∅) = 0,

rif4(κ) def⇔ ∀X �= ∅.∀Y.(κ(X, Y ) = 0 ⇒ X ∩ Y = ∅),

rif4∗(κ) def⇔ ∀X �= ∅.∀Y.(X ∩ Y = ∅ ⇒ κ(X, Y ) = 0),

rif5(κ) def⇔ ∀X �= ∅.∀Y.(κ(X, Y ) = 0 ⇔ X ∩ Y = ∅).

One can easily see that rif4∗(κ) implies rif3(κ), whereas rif5(κ) if and only if
rif4(κ) and rif4∗(κ). The most famous RIF is the standard one, defined for the
finite universe and denoted by κ£ here, which goes back to �Lukasiewicz [21] and
is based on the frequency count. κ£ is given by

κ£(X, Y ) =

{
#(X∩Y )

#X if X �= ∅
1 otherwise

(2)

and fulfills not only rif1, rif2 but also rif5 and some other conditions.
By a rough approximation space we mean a triple M = (U, �, κ), where U —

the universe of M — is a non-empty set of objects as earlier, � is a non-empty
binary relation on U , and κ is a RIF upon U . Objects will be denoted by u
with sub/superscripts if needed. Sets of objects of U are viewed as concepts of
M . With every object u, there are associated two basic concepts: the image and
the co-image of {u}, �→{u} and �←{u}, defined along the standard lines and
called elementary granules of information2 drawn to u. It is worth recalling that
�→{u} = �−1←{u} and �←{u} = �−1→{u}.

Let us note that � induces mappings Γ�, Γ
∗
� : U �→ ℘U , called uncertainty

mappings in line with Skowron–Stepaniuk’s approach, such that for every object
u ∈ U ,

Γ�u = �←{u} & Γ ∗� u = �→{u}. (3)

Thus, elementary granules of information are simply values of Γ, Γ ∗. Clearly,
Γ ∗� = Γ�−1 , and u′ ∈ Γ ∗� u if and only if (u, u′) ∈ �, i.e., if and only if u ∈ Γ�u

′.
Moreover, Γ ∗� = Γ� if � is symmetric. On the other hand, every mapping Γ :
U �→ ℘U induces a relation �Γ on U such that for any objects u, u′ ∈ U ,

(u, u′) ∈ �Γ ⇔ u ∈ Γu′. (4)
2 The term ‘information granule’ was proposed by Zadeh [22] to denote a clump of

objects drawn together on the basis of indiscernibility, similarity or functionality.
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Since Γ�Γ = Γ and �Γ� = �, structures (U, �, κ) and (U, Γ�, κ) are interdefinable,
and similarly for (U, Γ, κ) and (U, �Γ , κ).

In the classical Pawlak approach, a rough approximation space is a pair (U, �),
where U is a finite non-empty set and � is an equivalence relation understood as
a relation of indiscernibility of objects. Then, elementary granules of information
are equivalence classes, i.e. sets of objects indiscernible from one another. Clearly,
a natural augmentation of (U, �) with a RIF κ, results in an approximation space
(U, �, κ) in line with our approach.

Keeping with the recent state-of-art, one can say that Skowron–Stepaniuk’s
approximation spaces, introduced in [9,10], are of the form N = (U, Γ$, κ$),
where Γ$ is an uncertainty mapping such that for every object u, u ∈ Γ$u, κ$

is a RIF, and $ is a list of tuning parameters to obtain a satisfactory quality
of approximation of concepts. For the latter, such spaces are called parameter-
ized approximation spaces as well. Henceforth, the parameters $ will be dropped
for simplicity. One can easily see that N is based on a reflexive relation3, e.g.
�Γ$ . Due to our earlier observations on interdefinability of approximation spaces
and the corresponding structures based on uncertainty mappings, and slightly
abusing the original terminology, we shall think of Skowron–Stepaniuk’s approx-
imation spaces as structures of the form (U, �, κ), where � is a reflexive relation
on U .

In the sequel, a concept X is referred to as �-definable (resp., �−1-definable)
if it is a set-theoretical union of elementary granules of the form Γ�u (resp.,
Γ ∗� u). Henceforth, references to � will be omitted whenever possible. For in-
stance, we shall write Γ and Γ ∗ instead of Γ� and Γ ∗� , respectively. Where �
is symmetric, both forms of definability coincide, so we may simply speak of
definable or undefinable concepts. The main idea underlying the Pawlak rough
approximation of concepts is that even if a concept is not definable in a given
space, it can be approximated from the inside and the outside by definable con-
cepts. In this way, the Pawlak lower and upper rough approximation mappings,
low∪, upp∪ ∈ (℘U)℘U , respectively, are obtained such that for any concept X ,

low∪X def=
⋃

{Γu | Γu ⊆ X} & upp∪X def=
⋃

{Γu | Γu ∩ X �= ∅}. (5)

The lower approximation of X , low∪X , is the largest �-definable concept in-
cluded in X , whereas the upper approximation of X , upp∪X , is the least �-
definable concept containing X provided that � is serial. The difference

bnd∪X def= upp∪X − low∪X (6)

is called the boundary region of X . When this region is empty, X is referred to
as exact ; otherwise it is rough. In Pawlak’s approximation spaces, it turns out
that a concept is exact if and only if it is definable. Apart from low∪, upp∪, we
shall also refer to the mappings low, upp ∈ (℘U)℘U given below as the Pawlak
lower and upper rough approximation mappings, respectively:
3 Primarily, parameterized approximation spaces were based on reflexive and symmet-

ric (i.e., tolerance) relations.
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lowX
def= {u | Γu ⊆ X} & uppX

def= {u | Γu ∩ X �= ∅} (7)

As a matter of fact, low∪ = low and upp∪ = upp for the Pawlak approximation
spaces. In a general case, however, low, upp differ from their �-definable versions
low∪, upp∪, respectively. The lower approximation of X , lowX , may be viewed as
the set consisting of all objects u which surely belong to X since their elementary
granules Γu are included in X . On the other hand, the upper approximation of
X , uppX , may be perceived as the set consisting of all objects u which possibly
belong to X since their elementary granules Γu overlap with X .

The Skowron–Stepaniuk lower and upper rough approximation mappings, lowS,
uppS ∈ (℘U)℘U , respectively, are defined by the following conditions, for any
concept X ,

lowSX
def= {u | κ(Γu, X) = 1} & uppSX

def= {u | κ(Γu, X) > 0}. (8)

That is, the lower approximation of X , lowSX , consists of all objects u that
their elementary granules Γu are included in X to the highest degree 1. On the
other hand, the upper approximation of X , uppSX , is the set of all objects u
that their elementary granules Γu are included in X to some positive degree.
The boundary region of X is defined as the set

bndSX
def= {u | 0 < κ(Γu, X) < 1}. (9)

Mappings lowS∪, uppS∪, being �-definable versions of lowS, uppS, are also re-
ferred to as the Skowron–Stepaniuk lower and upper rough approximation map-
pings, respectively. They are given by the following equalities:

lowS∪X
def=

⋃
{Γu | κ(Γu, X) = 1}

uppS∪X
def=

⋃
{Γu | κ(Γu, X) > 0} (10)

Obviously, we can repeat the construction of approximation mappings for �−1

what can be useful if � is not symmetric. As a result, mappings low∗, upp∗, lowS∗,
and uppS∗ may be derived (as well as their �−1-definable versions which will not
be presented here), where for any concept X ,

low∗X def= {u | Γ ∗u ⊆ X} & upp∗X def= {u | Γ ∗u ∩ X �= ∅},

lowS∗X
def= {u | κ(Γ ∗u, X) = 1} & uppS∗X

def= {u | κ(Γ ∗u, X) > 0}. (11)

The mapping upp∗ is particularly important for our purposes. It turns out that
for any concept X ,

⋃
{Γu | u ∈ X} = upp∗X . Mappings low, upp, lowS, and

uppS will be viewed as basic. Thus, for every basic mapping f ,

f∪ = upp∗ ◦ f. (12)

Example 1. For the sake of illustration of the approximation mappings, consider
a set U = {3, . . . , 10} consisting of 8 objects denoted by 3, . . . , 10, and a binary
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relation � on U generating the uncertainty mappings4 Γ, Γ ∗ shown in Table 1.
� is reflexive, so it is a similarity relation (but even not a tolerance relation).
Let κ be any RIF as earlier and κ1, κ2 be such RIFs that for any concepts X, Y
where X �= ∅,

κ1(X, Y ) = 0 ⇔ X ∩ upp∗Y = ∅,

κ2(X, Y ) = 0 ⇔ uppX ∩ upp∗Y = ∅. (13)

Both κ1 and κ2 satisfy rif4 since κ2(X, Y ) = 0 implies κ1(X, Y ) = 0, and the
latter implies X ∩ Y = ∅. Indeed, X ⊆ uppX and Y ⊆ upp∗Y due to reflexivity
of �. It is easy to see that κ1(X, Y ) > 0 if and only if there exist u ∈ X and
u′ ∈ Y such that (u, u′) ∈ �. Furthermore, κ2(X, Y ) > 0 if and only if there
exist u ∈ X and u′ ∈ Y such that (u, u′) ∈ � ◦ �. Let uppS

1 and uppS
2 denote

the Skowron–Stepaniuk upper approximation mappings based on κ1 and κ2,
respectively, i.e., for any concept X and i = 1, 2,

uppS
i X = {u | κi(Γu, X) > 0}. (14)

That is, u ∈ uppS
1X if and only if Γu ∩ upp∗X �= ∅, and u ∈ uppS

2X if and only
if (upp ◦Γ )u∩upp∗X �= ∅. Values of upp ◦Γ are given in Table 1. One can show
that

upp � uppS
1 � uppS

2 , (15)

yet the converse inclusions may not hold in general. To see this, consider X =
{3, 4}. Note that lowX = {4}, low∗X = ∅, uppX = {3, 4, 5}, upp∗X = {3, 4, 6},
uppS

1X = {3, 4, 5, 6}, and uppS
2X = {3, 4, 5, 6, 10}.

Table 1. Values of Γ , Γ ∗, and upp ◦ Γ

u Γu Γ ∗u upp(Γu)

3 {3,4,6} {3,4,5} {3,4,5,6}
4 {3,4} {3,4,5} {3,4,5}
5 {3,4,5,6} {5} {3,4,5,6}
6 {6,10} {3,5,6} {3,5,6,10}
7 {7,8,9} {7,8} {7,8,9,10}
8 {7,8} {7,8,9} {7,8,9}
9 {8,9} {7,9,10} {7,8,9,10}

10 {9,10} {6,10} {6,7,9,10}

4 Properties of Approximation Mappings

We first investigate properties of the basic mappings low, upp, lowS, and uppS,
where � is an arbitrary non-empty relation on U . Henceforth, f will denote low,
upp or uppS.
4 We drop references to � for simplicity.
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Proposition 2. Let X, Y be any concepts. Then, we have:

(a) low = lowS � uppS

(b) rif4(κ) ⇒ upp � uppS

(c) upp∅ = ∅ & lowU = uppSU = U

(d) {u | Γu = ∅} ⊆ lowX = U − upp(U − X)
(e) X ⊆ Y ⇒ fX ⊆ fY

(f) f(X ∩ Y ) ⊆ fX ∩ fY ⊆ fX ∪ fY ⊆ f(X ∪ Y )

Proof. We prove (b), (d), and (e) only. To this end, consider any concepts X, Y
and any object u.

For (b) assume that rif4(κ) holds. Consider u ∈ uppX . By the definition
of upp, (b1) Γu ∩ X �= ∅. Hence, Γu �= ∅. As a consequence, κ(Γu, X) > 0
by the assumption and (b1). By the definition of uppS, u ∈ uppSX . Thus,
uppX ⊆ uppSX . Immediately, upp � uppS by the definition of �.

In case (d), first suppose that Γu = ∅. Hence, κ(Γu, X) = 1 in virtue of rif1(κ),
i.e., u ∈ lowX by the definition of low. In the sequel, u ∈ lowX if and only if
(by the definition of low) Γu ⊆ X if and only if Γu ∩ (U − X) = ∅ if and only if
(by the definition of upp) u �∈ upp(U − X) if and only if u ∈ U − upp(U − X).

For (e) assume (e1) X ⊆ Y . First, let f = low and suppose that u ∈ lowX . By
the definition of low, Γu ⊆ X . Hence, Γu ⊆ Y by (e1). Again by the definition
of low, u ∈ lowY . Thus, lowX ⊆ lowY . Next, let f = upp and u ∈ uppX . By
the definition of upp, Γu∩ X �= ∅. Hence, Γu∩ Y �= ∅ by (e1). By the definition
of upp, u ∈ uppY . Thus, uppX ⊆ uppY . Finally, where f = uppS, assume that
u ∈ uppSX . By the definition of uppS, (e2) κ(Γu, X) > 0. In virtue of (e1) and
rif2(κ), κ(Γu, X) ≤ κ(Γu, Y ). Hence, κ(Γu, Y ) > 0 by (e2). By the definition of
uppS, u ∈ uppSY . Thus, uppSX ⊆ uppSY . 	


Let us comment upon the properties. In virtue of property (a), Pawlak’s and
Skowron–Stepaniuk’s approaches coincide as regarding the lower approximation.
In the latter approach, the lower approximation of a concept is always included
in the upper one. The Pawlak upper approximation is, in general, incompara-
ble with the Skowron–Stepaniuk upper approximation unless some additional
assumptions like rif4(κ) are made. Due to (b), the Pawlak upper approximation
of a concept is included in the Skowron–Stepaniuk one if rif4(κ) is assumed. As
we shall see later on, rif4∗(κ) will guarantee that the Skowron–Stepaniuk upper
approximation of a concept is included in the Pawlak one provided that �−1 is
serial (see Proposition 6g). By (c), the Pawlak upper approximation of the empty
set is empty as well. On the other hand, both the lower approximation of the
universe as well as the Skowron–Stepaniuk upper approximation of the universe
are equal to the whole universe. According to (d), the Pawlak lower and upper
approximations are dual to each other. Moreover, all objects u with empty ele-
mentary granules Γu belong to the lower approximation of any concept. By (e),
the lower and upper approximation mappings are monotone. Property (f), being
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a direct consequence of (e), may be strengthened for the Pawlak approximation
mappings as follows:

low(X ∩ Y ) = lowX ∩ lowY & upp(X ∪ Y ) = uppX ∪ uppY (16)

We show the 1st property. “⊆” holds by Proposition 2f. For “⊇” assume that u ∈
lowX ∩ lowY . Hence, u ∈ lowX and u ∈ lowY . By the definition of low, Γu ⊆ X
and Γu ⊆ Y . Thus, Γu ⊆ X ∩ Y . By the definition of low, u ∈ low(X ∩ Y ).

Below, we collect several facts about compositions of the approximation map-
pings examined.

Proposition 3. In cases (d)–(f), assume rif4(κ). The following may be ob-
tained:

(a) low ◦ low � uppS ◦ low � uppS ◦ uppS

(b) low ◦ low � low ◦ uppS � uppS ◦ uppS

(c) upp ◦ low � upp ◦ uppS & low ◦ upp � uppS ◦ upp
(d) upp ◦ low � uppS ◦ low & low ◦ upp � low ◦ uppS

(e) upp ◦ upp � uppS ◦ upp � uppS ◦ uppS

(f) upp ◦ upp � upp ◦ uppS � uppS ◦ uppS

Proof. We prove (a), (e) only. In case (a), low ◦ low � uppS ◦ low by Proposi-
tion 2a and Proposition 1d. Next, uppS ◦ low � uppS ◦ uppS by Proposition 2a,
monotonicity of uppS, and Proposition 1e.

In case (e), assume rif4(κ). By Proposition 2b, upp � uppS. Hence, upp◦upp �
uppS◦upp by Proposition 1d, whereas uppS◦upp � uppS◦uppS by monotonicity
of uppS and Proposition 1e. 	


Clearly, properties analogous to Proposition 2, Proposition 3, and (16) hold for
the ∗-versions of the basic mappings5. Now, we can formulate several properties
of the �-definable versions of low, lowS, upp, and uppS.

Proposition 4. For any concepts X, Y , we can prove that:

(a) low∪ = lowS∪ � uppS∪ 	 upp∪ 	 id℘U

(b) rif4(κ) ⇒ upp∪ � uppS∪

(c) upp∪∅ = ∅
(d) X ⊆ Y ⇒ f∪X ⊆ f∪Y

(e) f∪(X ∩ Y ) ⊆ f∪X ∩ f∪Y ⊆ f∪X ∪ f∪Y ⊆ f∪(X ∪ Y )

Proof. We prove (a) only. To this end, let X be any concept and u be any
object. First, low∪ = lowS∪ directly by (12) and Proposition 2a. In virtue of
5 To safe space, we do not formulate them explicitly. When referring to them, we

shall attach ∗ to the name of a property as a superscript. For instance, we shall
refer to ∀X, Y.(X ⊆ Y ⇒ f∗X ⊆ f∗Y ), being the counterpart of Proposition 2e, as
Proposition 2e∗.
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Proposition 1g, it remains to show that (a1) low∪ � uppS∪, (a2) low∪ � upp∪,
and (a3) low∪ � id℘U . (a1) holds by Proposition 2a and Proposition 2e∗ for
f = upp∗. For (a2) it suffices to prove low∪X ⊆ upp∪X . To this end, assume
u ∈ low∪X . By (12), u ∈ upp∗(lowX), i.e., there is u′ such that (a4) u ∈ Γu′

and u′ ∈ lowX . Hence, Γu′ ⊆ X by the definition of low. Note that Γu′∩X �= ∅
since Γu′ �= ∅ in virtue of (a4). Hence, u′ ∈ uppX by the definition of upp. As
a consequence, u ∈ upp∗(uppX) = upp∪X due to (a4) and (12). For (a3) we
prove that low∪X ⊆ X . To this end, let u ∈ low∪X . By arguments as earlier,
there is u′ such that u ∈ Γu′ ⊆ X . Immediately, u ∈ X . 	


In the case of the �-definable versions of approximation mappings, the Pawlak
lower approximation and the Skowron–Stepaniuk lower approximation are equal.
The novelty is that the lower approximation of a concept is included not only
in the Skowron–Stepaniuk upper approximation of that concept but also in the
concept itself and in the Pawlak upper approximation of that concept. Obviously,
(b) is a counterpart of Proposition 2b, whereas (c) corresponds to the 1st part of
Proposition 2c. The remaining two properties are counterparts of Proposition 2e
and Proposition 2f, respectively. For example, (d) says that the mappings of
lower and upper approximations are monotone. Additionally, we can derive the
counterpart of (16) for the Pawlak upper approximation:

upp∪(X ∪ Y ) = upp∪X ∪ upp∪Y. (17)

Several observations upon compositions of the �-definable versions of the basic
approximation mappings are presented below.

Proposition 5. In cases (e)–(g), assume rif4(κ). The following can be derived:

(a) low∪ ◦ low∪ = low∪ � upp∪ ◦ low∪ � low∪ ◦ upp∪ = upp∪ � upp∪ ◦ upp∪

(b) low∪ ◦ low∪ � uppS∪ ◦ low∪ � low∪ ◦ uppS∪ = uppS∪ � uppS∪ ◦ uppS∪

(c) (upp∪ ◦ low∪) 
 uppS∪ � upp∪ ◦ uppS∪

(d) (uppS∪ ◦ low∪) 
 upp∪ � uppS∪ ◦ upp∪

(e) upp∪ � upp∪ ◦ uppS∪ & upp∪ ◦ low∪ � uppS∪ ◦ low∪

(f) upp∪ ◦ upp∪ � uppS∪ ◦ upp∪ � uppS∪ ◦ uppS∪

(g) upp∪ ◦ upp∪ � upp∪ ◦ uppS∪ � uppS∪ ◦ uppS∪

Proof. We prove (a), (b) only. In case (a), first note that low∪ ◦ low∪ � low∪,
low∪ ◦ low∪ � upp∪ ◦ low∪, low∪ ◦upp∪ � upp∪ ◦upp∪, and low∪ ◦upp∪ � upp∪

by Proposition 4a and Proposition 1d. Subsequently, upp∪ ◦ low∪ � upp∪ holds
by Proposition 4a, monotonicity of upp∪, and Proposition 1e.

Now, we prove that low∪ � low∪ ◦ low∪. To this end, it suffices to show
low � low ◦ low∪. Then, by monotonicity of upp∗ and Proposition 1e, we obtain
upp∗ ◦ low � upp∗ ◦ (low ◦ low∪) = (upp∗ ◦ low) ◦ low∪ which finally results in
low∪ � low∪◦low∪ by (12). Thus, consider a concept X and an object u such that
u ∈ lowX . Hence, (a1) Γu ⊆ X by the definition of low. Then, for every u′ ∈ Γu,
u′ ∈ low∪X by (a1) and the definition of low∪. In other words, Γu ⊆ low∪X .
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By the definition of low, u ∈ low(low∪X) = (low ◦ low∪)X . In this way, we have
proved that lowX ⊆ (low ◦ low∪)X . Hence, immediately, low � low ◦ low∪ by
the definition of �.

Finally, we show that upp∪ � low∪◦upp∪. As in the preceding case, it suffices
to prove upp � low ◦ upp∪ and, then, to apply Proposition 2e∗, Proposition 1e,
and (12). Thus, consider a concept X and an object u such that u ∈ uppX .
Immediately, (a2) Γu ∩ X �= ∅ by the definition of upp. As earlier, for every
u′ ∈ Γu, u′ ∈ upp∪X by (a2) and the definition of upp∪. As a consequence,
Γu ⊆ upp∪X . Hence, u ∈ low(upp∪X) = (low ◦ upp∪)X by the definition of
low. We have shown that uppX ⊆ (low ◦ upp∪)X . Finally, upp � low ◦ upp∪ by
the definition of �.

In case (b), note that low∪ ◦ low∪ � uppS∪ ◦ low∪, low∪ ◦ uppS∪ � uppS∪ ◦
uppS∪, and low∪◦uppS∪ � uppS∪ follow from Proposition 4a and Proposition 1d.
Moreover, uppS∪ ◦ low∪ � uppS∪ by Proposition 4a, monotonicity of uppS∪, and
Proposition 1e. It remains to show that uppS∪ � low∪◦uppS∪. It suffices to prove
uppS � low◦uppS∪ and, then, to apply Proposition 2e∗, Proposition 1e, and (12).
To this end, consider a concept X and an object u such that u ∈ uppSX .
Hence, (b1) κ(Γu, X) > 0 by the definition of uppS. Then, for every u′ ∈ Γu,
u′ ∈ uppS∪X by (b1) and the definition of uppS∪. Thus, Γu ⊆ uppS∪X . Hence,
u ∈ low(uppS∪X) = (low ◦ uppS∪)X by the definition of low. That is, we have
proved uppSX ⊆ (low ◦ uppS∪)X . Immediately, uppS � low ◦ uppS∪ by the
definition of �. 	


In comparison to Proposition 3, more and stronger relationships may be noted
than in the basic case. It is due to Proposition 4a and to the fact that if an object
u belongs to the �-definable lower or upper approximation of a concept (in either
of the senses considered), then its elementary granule Γ ∗u is non-empty. By way
of example, the composition of the lower approximation mapping with itself
equals to the lower approximation mapping, whereas the compositions of the
upper approximation mappings with the lower approximation mapping equal to
the former mappings in virtue of (a), (b). Such results cannot be obtained for
the basic approximation mappings without extra assumptions about �.

5 Properties of Approximation Mappings II

In this section, we present and discuss properties of approximation mappings
for special cases of approximation spaces. In detail, we consider approximation
spaces which, in turn, are based on serial relations, reflexive relations, transitive
relations, symmetric relations (and, in particular, tolerance relations), and —
last but not least — equivalence relations6.
6 A technical remark can be handy here. Except for a few cases, in a given subsection,

we only present these properties which can be derived for the kind of approximation
space investigated, yet were not obtained under weaker assumptions. For instance,
when discussing approximation spaces based on reflexive relations, we do not re-
call the properties obtained for spaces based on serial relations and, the more, for
arbitrary spaces.
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5.1 The Case of Serial Relations

In this section, we discuss two independent cases, viz., the case where �−1 is
serial and the case where � is serial. Let SER(U) denote the set of all serial
relations on U .

First, let �−1 ∈ SER(U). That is, for every u ∈ U , there exists u′ ∈ U such
that (u′, u) ∈ � (in other words, �←{u} �= ∅ or Γu �= ∅).

Proposition 6. Let X be any concept. Then, we have:

(a) uppU = U & low∅ = low∪∅ = ∅
(b) rif3(κ) ⇒ uppS∅ = uppS∪∅ = ∅
(c) low � upp
(d) low ◦ low � upp ◦ low � upp ◦ upp
(e) low ◦ low � low ◦ upp � upp ◦ upp
(f) uppS ◦ low � uppS ◦ upp & low ◦ uppS � upp ◦ uppS

(g) rif4∗(κ) ⇒ uppS � upp & uppS∪ � upp∪

(h) rif5(κ) ⇒ uppS = upp & uppS∪ = upp∪

Proof. We prove (a), (b) only. Consider any object u.
For (a) note that Γu ∩ U �= ∅ by seriality of �−1. Hence, u ∈ uppU by

the definition of upp. Thus, U ⊆ uppU and, finally, uppU = U . Moreover, it
can never be Γu ⊆ ∅. Immediately, low∅ = ∅ by the definition of low. Hence,
low∪∅ = (upp∗ ◦ low)∅ = upp∗(low∅) = upp∗∅ = ∅ by (12) and Proposition 2c∗.

For (b) assume that κ satisfies rif3. By seriality of �−1, Γu �= ∅. Then,
(b1) κ(Γu, ∅) = 0 in virtue of rif3(κ). Hence, (b2) uppS∅ = ∅ by the defini-
tion of uppS. Next, uppS∪∅ = (upp∗ ◦ uppS)∅ = upp∗(uppS∅) = upp∗∅ = ∅ by
(b2), (12), and Proposition 2c∗. 	

Let us briefly comment upon the results. Seriality of �−1 guarantees that ele-
mentary granules of the form Γu are non-empty. Thanks to that, the Pawlak
upper approximation of the universe is the universe itself and the lower approx-
imations of the empty set are empty by (a). Moreover, in virtue of (b), if rif3 is
satisfied by κ, then the Skowron–Stepaniuk upper approximations of the empty
set are empty. By (c), the lower approximation of a concept is included in the
Pawlak upper approximation of that concept. The next three properties, being
consequences of (c), augment Proposition 3 by new facts on compositions of
approximation mappings. If rif4∗ is satisfied by κ, then the Skowron–Stepaniuk
upper approximations of a concept are included in the corresponding Pawlak
upper approximations of that concept by (g). Moreover, if rif5(κ) holds, then
the Pawlak upper approximations and the Skowron–Stepaniuk upper approxi-
mations coincide due to (h).

We now consider the case, where � ∈ SER(U). Then, for every u ∈ U , there
exists u′ ∈ U such that (u, u′) ∈ � (in other words, �→{u} �= ∅ or Γ ∗u �= ∅).
First, observe that properties analogous to Proposition 6 can be obtained for
the ∗-versions of the basic approximation mappings. In particular, upp∗U = U .
Furthermore, we can prove the following properties.
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Proposition 7. Let X be any concept. Then, it holds:

(a) uppS∪U = U & (�−1 ∈ SER(U) ⇒ upp∪U = U)
(b) upp∪X ∪ low∪(U − X) = U

(c) id℘U � upp∪ & (rif4(κ) ⇒ id℘U � uppS∪)
(d) uppS∪ � uppS∪ ◦ upp∪

Proof. We show (a), (b) only. To this end, consider any concept X .
For the 1st part of (a) note that uppS∪U = (upp∗◦uppS)U = upp∗(uppSU) =

upp∗U = U by (12), seriality of �, Proposition 2c, and Proposition 6a∗. Now,
assume additionally that �−1 is serial. Hence, upp∪U = (upp∗ ◦ upp)U =
upp∗(uppU) = upp∗U = U by (12), Proposition 6a, seriality of �, and Proposi-
tion 6a∗.

In case (b), upp∪X ∪ low∪(U − X) = (upp∗ ◦upp)X ∪ (upp∗ ◦ low)(U − X) =
upp∗(uppX) ∪ upp∗(low(U − X)) = upp∗(uppX ∪ low(U − X)) = upp∗U = U
by (12), (16∗), Proposition 2d, seriality of �, and Proposition 6a∗. 	


Most of the properties above strongly depend on Proposition 6a∗ (a counterpart
of Proposition 6a) which is a consequence of seriality of �. By (a), the Skowron–
Stepaniuk upper approximation of the universe is the whole universe, whereas
the Pawlak upper approximation of the universe is the universe if both �, �−1

are serial. According to (b), every object belongs to the Pawlak upper approx-
imation of a concept and/or to the lower approximation of the complement of
that concept. (c) states that every concept is included in its Pawlak upper ap-
proximation, and similarly for the Skowron–Stepaniuk upper approximation if κ
satisfies rif4. Finally, the Skowron–Stepaniuk upper approximation of a concept
is included in the Skowron–Stepaniuk upper approximation of the Pawlak upper
approximation of that concept due to (d).

5.2 The Case of Reflexive Relations

Assume that � is reflexive. Then, for every u ∈ U , (u, u) ∈ �. Immediately,
(u, u) ∈ �−1, so �−1 is reflexive as well. Thus, u ∈ Γu ∩ Γ ∗u. Clearly, every
reflexive relation is serial as well. In the context of approximation spaces, reflexive
relations are referred to as similarity relations. The set of all reflexive relations
on U will be denoted by RF(U).

Proposition 8. We can prove that:

(a) low � id℘U � upp & (rif4(κ) ⇒ id℘U � uppS)
(b) f � f∪

(c) low ◦ low � low � upp ◦ low � upp � upp ◦ upp
(d) low � low ◦ upp � upp
(e) uppS ◦ low 
 low ◦ uppS � uppS � uppS ◦ upp 	 upp ◦ uppS
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Proof. We prove (e) only. First, uppS ◦ low � uppS, uppS � uppS ◦ upp by (a),
monotonicity of uppS, and Proposition 1e. Next, low ◦ uppS � uppS, uppS �
upp ◦ uppS by (a) and Proposition 1d. 	


If � is reflexive, then Proposition 6c may be strengthened to the property (a)
above. In detail, the lower approximation of a concept is included in that concept
and, on the other hand, every concept is included in its Pawlak upper approxi-
mation. The same holds for the Skowron–Stepaniuk approximation if rif4(κ) is
satisfied. By (b), the lower (resp., upper) approximation of a concept is included
in the �-definable version of the lower (upper) approximation of that concept.
Moreover, the list of properties of compositions of approximation mappings can
be extended with several new dependencies given by (c)–(e).

5.3 The Case of Transitive Relations

Now, suppose that � is transitive, i.e., for every u, u′, u′′ ∈ U , (u, u′) ∈ � and
(u′, u′′) ∈ � imply (u, u′′) ∈ �. Either both �, �−1 are transitive or both of them
are not transitive. We denote the set of all transitive relations on U by TR(U).

Proposition 9. The following dependencies can be proved:

(a) low∪ � low
(b) low � low ◦ low & upp ◦ upp � upp
(c) � ∈ RF(U) ⇒ low ◦ low = low = low∪ & upp ◦ upp = upp

Proof. We prove (a), (b) only. Consider any concept X and any object u.
In case (a), we show that low∪X ⊆ lowX which results in low∪ � low by the

definition of �. To this end, assume that u ∈ low∪X . By the definition of low∪,
there is u′ such that u ∈ Γu′, i.e., (a1) (u, u′) ∈ �, and (a2) u′ ∈ lowX . Next,
(a3) Γu′ ⊆ X by (a2) and the definition of low. Consider any u′′ ∈ Γu (i.e.,
(u′′, u) ∈ �). Hence, (u′′, u′) ∈ � in virtue of (a1) and transitivity of �. In other
words, u′′ ∈ Γu′. Hence, immediately, u′′ ∈ X by (a3). Thus, Γu ⊆ X . Hence,
u ∈ lowX by the definition of low.

For the 1st part of (b) it suffices to prove that lowX ⊆ (low ◦ low)X , i.e.,
lowX ⊆ low(lowX), and to apply the definition of �. To this end, assume
that u ∈ lowX . By the definition of low, (b1) Γu ⊆ X . We need to prove
that u ∈ low(lowX), i.e., Γu ⊆ lowX in virtue of the definition of low. Thus,
consider any u′ ∈ Γu (i.e., (b2) (u′, u) ∈ �). It remains to show that u′ ∈ lowX ,
i.e., Γu′ ⊆ X . Let u′′ ∈ Γu′, i.e., (u′′, u′) ∈ �. Hence, (u′′, u) ∈ � by (b2) and
transitivity of �. That is, u′′ ∈ Γu. In virtue of (b1), u′′ ∈ X which ends the
proof of this part of (b).

For the remaining part of (b) it suffices to show that (upp ◦ upp)X ⊆ uppX ,
i.e., upp(uppX) ⊆ uppX , and to apply the definition of �. To this end, let
u ∈ upp(uppX). By the definition of upp, Γu ∩ uppX �= ∅. Hence, there is
(b3) u′ ∈ Γu such that u′ ∈ uppX . By the definition of upp, Γu′ ∩ X �= ∅.
Hence, there is (b4) u′′ ∈ Γu′ such that (b5) u′′ ∈ X . Note that (u′, u) ∈ �
and (u′′, u′) ∈ � by (b3) and (b4), respectively. Hence, by transitivity of �,
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(u′′, u) ∈ � as well. That is, u′′ ∈ Γu. As a consequence, Γu ∩ X �= ∅ by (b5).
By the definition of upp, u ∈ uppX . 	


Some comments can be useful. Due to transitivity of �, the �-definable version of
the lower approximation of a concept is included in the lower approximation of
that concept by (a). Moreover, the lower approximation of a concept is included
in the lower approximation of the lower approximation of that concept, whereas
the Pawlak upper approximation of the same form of the upper approximation of
a concept is included in the Pawlak upper approximation of that concept by (b).
Unfortunately, a similar result does not seem to hold for the Skowron–Stepaniuk
upper approximation. In the sequel, assuming reflexivity and transitivity of �, the
number of different compositions of approximation mappings may substantially
be reduced thanks to (c) since, then, both versions of the lower approximation
are equal to the composition of the lower approximation with itself, and the
Pawlak upper approximation is equal to the composition of the very form of the
upper approximation with itself.

5.4 The Case of Symmetric Relations

In this section, we examine the case, where � is symmetric. Then, for every
u, u′ ∈ U , (u, u′) ∈ � implies (u′, u) ∈ �. Immediately, � = �−1 and Γ = Γ ∗.
Relations which are both reflexive and symmetric are called tolerance relations.
Obviously, every tolerance relation is also a similarity relation7. The sets of all
symmetric relations and all tolerance relations on U will be denoted by SYM(U)
and TL(U), respectively.

Proposition 10. The following properties hold:

(a) f = f∗ & f∪ = upp ◦ f

(b) upp ◦ low � low ◦ upp
(c) � ∈ TR(U) ⇒ upp ◦ low � low & upp∪ � upp � low ◦ upp

& upp∪ ◦ f∪ � f∪

Proof. We show (b), (c) only. Consider any concept X and any object u.
In case (b), assume that u ∈ upp(lowX). By the definition of upp, Γu∩lowX �=

∅. Hence, there is u′ such that (b1) u′ ∈ Γu and u′ ∈ lowX . From the latter,
(b2) Γu′ ⊆ X by the definition of low. In virtue of (b1), (u′, u) ∈ �. Hence, by
symmetry of �, (u, u′) ∈ �. That is, u ∈ Γu′. Hence, (b3) u ∈ X due to (b2).
We need to show that u ∈ low(uppX), i.e., Γu ⊆ uppX by the definition of low.
To this end, consider u′′ ∈ Γu (i.e., (u′′, u) ∈ �). By symmetry of �, (u, u′′) ∈ �
as well, i.e., u ∈ Γu′′. Hence, Γu′′ ∩ X �= ∅ by (b3). By the definition of upp,
u′′ ∈ uppX as required. Thus, we have proved that upp(lowX) ⊆ low(uppX),
i.e., (upp ◦ low)X ⊆ (low ◦ upp)X . Immediately, upp ◦ low � low ◦ upp by the
definition of �.
7 Tolerance relations will not be a subject to a separate study in this article. To list

their properties, it suffices to merge the proposition below with the facts presented
in Sect. 5.2.
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In case (c), assume additionally that � is transitive. First, upp ◦ low � low by
the assumption, the 2nd part of (a), and Proposition 9a. Next, upp∪ � upp by
the assumption, the 2nd part of (a), and Proposition 9b. In the sequel, we show
that uppX ⊆ (low ◦ upp)X , i.e., uppX ⊆ low(uppX). Then, upp � low ◦ upp
by the definition of �. To this end, suppose that u ∈ uppX . By the definition
of upp, Γu ∩ X �= ∅. Hence, there is u′ such that (c1) u′ ∈ X and u′ ∈ Γu
(i.e., (c2) (u′, u) ∈ �). Consider any u′′ ∈ Γu (i.e., (u′′, u) ∈ �). By symmetry
of �, (u, u′′) ∈ �. Hence, (u′, u′′) ∈ � by (c2) and transitivity of �. In other
words, u′ ∈ Γu′′. Hence, Γu′′ ∩ X �= ∅ in virtue of (c1). By the definition of
upp, u′′ ∈ uppX . Thus, we have proved that Γu ⊆ uppX , i.e., u ∈ low(uppX)
by the definition of low. For the remaining part of (c) note that upp∪ ◦ f∪ =
(upp◦upp)◦ (upp◦f) � upp◦ (upp◦f) = (upp◦upp)◦f � upp◦f = f∪ by (a),
transitivity of �, Proposition 9b, and Proposition 1d. 	


Thus, whenever symmetry of � is assumed, the ∗-versions of the basic approx-
imation mappings coincide with the very mappings in virtue of (a). As a con-
sequence, the �-definable versions of the basic mappings are compositions of
these mappings with the Pawlak upper approximation mapping. Due to (b), the
Pawlak upper approximation of the lower approximation of a concept is included
in the lower approximation of the Pawlak upper approximation of that concept.
In virtue of (c), if � is both symmetric and transitive, then — among others
— the Pawlak upper approximation of the lower approximation of a concept
is included in the lower approximation of that concept, the �-definable version
of the Pawlak upper approximation of a concept is included in the Pawlak up-
per approximation of that concept, and the latter one is included in the lower
approximation of the Pawlak upper approximation of the very concept.

5.5 The Case of Equivalence Relations

Finally, we consider the case, where � is an equivalence relation. In the context of
Pawlak’s information systems and approximation spaces, equivalence relations
on the set of objects are understood as indiscernibility relations. By definition, an
equivalence relation is simultaneously reflexive, symmetric, and transitive, i.e.,
it is a transitive tolerance relation. Let EQ(U) denote the set of all equivalence
relations on U . Thus, EQ(U) = TL(U)∩ TR(U). Note that EQ(U) = SER(U)∩
SYM(U) ∩ TR(U) as well. In the sequel, Γu is called an equivalence class of u
and it may be denoted by [u]� (or simply, by [u] if � is understood) along the
standard lines. Note that

∀u, u′ ∈ U.(u′ ∈ Γu ⇔ Γu′ = Γu). (18)

Proposition 11. It holds that:

(a) f∪ = f

(b) low = low ◦ low = upp ◦ low � low ◦ upp = upp ◦ upp = upp
(c) low � uppS ◦ low � low ◦ uppS = uppS = upp ◦ uppS � uppS ◦ upp

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



80 A. Gomolińska

Proof. We show (a) only. Note that “�” holds by reflexivity of � and Propo-
sition 8b. In the sequel, low∪ � low by transitivity of � and Proposition 9a.
Moreover, upp∪ � upp by symmetry and transitivity of �, and Proposition 10c.
Now, consider any concept X and any object u. To prove uppS∪ � uppS, it suf-
fices to show that uppS∪X ⊆ uppSX . Thus, suppose that u ∈ uppS∪X . Hence,
there is u′ such that (a1) u ∈ Γu′ and u′ ∈ uppSX by the definition of uppS∪.
It follows from the latter that κ(Γu′, X) > 0 by the definition of uppS. By (18)
and (a1), κ(Γu, X) > 0. Finally, u ∈ uppSX by the definition of uppS. 	


Thus, whenever � is an equivalence relation, the �-definable versions of the ba-
sic approximation mappings coincide with the mappings by (a), respectively. As
regarding the reduction in the number of different compositions of the mappings
considered, both the composition of the lower approximation mapping with itself
and the composition of the lower approximation mapping with the Pawlak upper
approximation mapping are equal (and hence, may be reduced) to the lower ap-
proximation mapping. Furthermore, both the composition of the Pawlak upper
approximation mapping with the lower approximation mapping and the compo-
sition of the Pawlak upper approximation mapping with itself are equal to the
Pawlak upper approximation mapping thanks to (b). Moreover by (c), both the
composition of the Skowron–Stepaniuk upper approximation mapping with the
lower approximation mapping and the composition of the Skowron–Stepaniuk
upper approximation mapping with the Pawlak upper approximation mapping
are equal to the Skowron–Stepaniuk upper approximation mapping. Finally, the
lower approximation of a concept is included in the Skowron–Stepaniuk upper
approximation of the lower approximation of that concept, the latter set is in-
cluded in the Skowron–Stepaniuk upper approximation of the concept, and the
very upper approximation of a concept is included in the Skowron–Stepaniuk
upper approximation of the Pawlak upper approximation of that concept.

Last but not least, observe that the upper approximation mappings uppS
1 ,

uppS
2 investigated in Example 1 are equal to upp if � is an equivalence relation.

Indeed, upp ◦ Γ = Γ then, and for any object u and any concept X , u ∈ uppS
2X

if and only if Γu ∩ upp∗X �= ∅ if and only if Γu ∩ uppX �= ∅ if and only if
u ∈ upp(uppX) if and only if u ∈ uppX .

6 Summary

In this article, we studied and compared Pawlak’s rough approximation of con-
cepts with Skowron–Stepaniuk’s approach within a general framework of ap-
proximation spaces of the form (U, �, κ), where U is a non-empty set of objects,
� is a non-empty binary relation on U , and κ is a RIF satisfying rif1 and rif2.
The lower approximation mappings are the same in both approaches unlike the
upper approximation ones8. The latter mappings cannot be compared directly
without additional assumptions made about κ. For the sake of illustration, we
8 The fact that Pawlak’s and Skowron–Stepaniuk’s upper approximations coincide for

the standard RIF was known earlier.
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considered two special cases of κ and two corresponding Skowron–Stepaniuk
upper approximation mappings in Example 1. In general, these two kinds of
mappings are different from each other and from Pawlak’s upper approxima-
tion mapping. However — as turned out — the three cases coincide if � is an
equivalence relation.

In the paper presented, we compared Pawlak’s and Skowron–Stepaniuk’s up-
per approximation mappings indirectly by investigation of their properties. It is
difficult to say which mappings are totally better. While Pawlak’s approximation
seems to be more suitable in some aspects, it is the Skowron–Stepaniuk approach
which seems to provide more interesting results in other cases. As a side-effect,
we have obtained a fairly exhaustive list of basic mathematical properties of the
mappings investigated, to be used in the future research and applications.
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Abstract. Data preparation is a very important but also a time con-
suming part of a Data Mining process. In this paper we describe a hierar-
chical method of text classification based on regular expressions. We use
the presented method in our data mining system during a pre-processing
stage to transform Latin free-text medical reports into a decision table.
Such decision tables are used as an input for rough sets based rule induc-
tion subsystem. In this study we also compare accuracy and scalability
of our method with a standard approach based on dictionary phrases.

Keywords: rough sets, data preparation, regular expression.

1 Introduction

Preparation of data takes about 60% of a time needed for the whole Data Mining
process and it is also defined by Pyle as the most important part of a Data
Exploration Process which leads to success [1]. This estimation is also valid in
case of our Data Exploration system, where the entry stage of data processing is
a key element for the further analysis. The mentioned Data Exploration system
will be used in medicine (especially in cardiology) as a complete solution suitable
for improving medical care and clinical work flow through revealing new patterns
and relations among data. Functional blocks of the system are:

– Import subsystem-responsible for importing data from medical information
systems into our storage subsystem

– Data recognition subsystem-during this stage we use algorithms and methods
described in this paper to transform the raw data to a form suitable for
further Data Exploration

– Data preprocessing-based on the statistical analysis of the transformed in-
formation noise and redundant data are removed [9]

– Feature selection-this stage utilizes a few attribute reduction methods such
as CFS (Correlation-based Feature Selection), Quickreduct and conjunction
of these methods to select an optimal set of attributes for a further analysis

J.F. Peters et al. (Eds.): Transactions on Rough Sets VI, LNCS 4374, pp. 83–93, 2007.
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– Rule induction subsystem based on Rough Set Theory [6,7,11]. Early re-
search on this area was described in [8,12]

– Visualization of the knowledge discovery in a form easily understandable by
humans for validating and extending of the collected knowledge [13]

Most medical information useful for Data Mining is still written in form of free-
text Latin reports. These reports are mostly used to extend a lapidary diagnosis
written with statistical ICD-10 codes. There are some challenges to solve dur-
ing analyzing such reports such as: different descriptions for the same disease,
non-standard abbreviations, misspelled words and a floating structure of such
reports. In our first solution of these problems we had used a phrase dictionary
to map information from a report to an attribute. The main disadvantage of
this approach was a lack of scalability and a difficult maintenance. These facts
leaded us to develop a different approach. The proposed method and results
achieved with it are presented in this study. Described in this paper technique
is used in our Data Exploration system as a preprocessing step, which prepares
data for rule induction. For generation of decision rules an own implementation
of MLEM2 algorithm is used.

2 Rough Sets: Basic Notions and Medical Appliance

Developed by Pawlak and presented in 1982 Rough Sets theory is a mathematical
approach to handle imprecision and uncertainty [4]. The main goal of rough set
analysis is to synthesize approximation of concepts from the acquired data. Some
basic definitions are presented below.

Information system [4] is a pair A = (U, A) where U is a non-empty, finite set
called the universe and A is a non-empty, finite set of attributes, i.e. a : U → Va

for a ∈ A, where Va is called the value set of attribute a. Elements of U are
called objects.

The special case of information systems called decision system is defined as
A = (U, A ∪ {d}), where d �∈ A is a distinguished attribute called decision and
elements of A are called conditions.

A decision rule is defined as r = (ai1 = v1) ∧ . . . ∧ (aim = vm) ⇒ (d = k)
where 1 ≤ i1 < . . . < im ≤ |A|, vi ∈ Vai. We say an object matches a rule if
its attributes satisfy all atomic formulas (aij = vj) of the rule. A rule is called
minimal consistent with A when any decision rule r′ created from r by removing
one of atomic formula of r is not consistent with A.

In our Data Exploration system we use a modified version of LEM2 algoritm
- MLEM2 to generate decision rules. LEM2 (Learning from Examples Module,
version 2) algorithm was firstly presented in [14,15] and then implemented in
[16]. LEM2 induces a rule set by exploring the space of blocks of attribute-
value pairs to generate a local covering. Afterwards the found local covering is
converted into the rule set. Following definitions must be quoted prior to define
a local covering [11].

For a variable (attribute or decision) x and its value v, a block [(x, v)] of a
variable-value pair (x, v) is the set of all cases for which variable x has value v.
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Let B be a nonempty lower or upper approximation of a concept represented
by a decision-value pair (d, w). Set B depends on a set T of attribute-value pairs
(a, v) if and only if

∅ �= [T ] =
⋂

(a,v)∈T

[(a, v)] ⊆ B. (1)

Set T is a minimal complex of B if and only if B depends on T and no proper
subset T , of T exists such that B depends on T ,. Let T be a nonempty collection
of nonempty sets of attribute-value pairs. Then T is a local covering of B if and
only if the following conditions are satisfied:

– each member T of T is a minimal complex of B,
–

⋃
T∈T[T ] = B, and

– T is minimal, i.e., T has the smallest possible number of members.

Modified LEM2 (MLEM2) proposed by Grzymala-Busse in [11] in compare to
LEM2 allows inducing rules from data containing numerical attributes without a
need of a separate discretization step. Our implementation of MLEM2 algorithm
induces decision rules from both lower approximation (certain rules) and upper
approximation (possible rules). This technique allows us reasoning from ”real”
data, which contains uncertain, noisy and redundant information. Decision rules
are used in our system to present the extracted knowledge from medical data.
This approach in medical domain has several advantages over other data mining
techniques:

– Decision rules are easy to understand and verify
– Decision rules can be easily validated with existing knowledge
– Gathered decision rules can be modified and extended with a new knowledge
– If decision rules are used for classification it is easy to explain the choice
– Simple structure of decision rules allows several ways of visualization

These advantages lead to a rapid growth of interest in appliance of rough set
theory in medical domain. Many interesting case studies reported a successful
appliance of rough set software systems. Some of them were:

– Treatment of duodental ulcer by HSV described by Slowinski in [21,23]
– Multistage analysis in progressive encephalopathy presented by Paszek in

[20,22]
– Preterm birth prediction researched by Grzymala-Busse [19]
– Analysis of medical databases (headaches, CVD) [24]
– Acute abdominal pain in childhood (MET system applied in Children’s Hos-

pital of Eastern Ontario) [18]
– Cardiac Tests analysis [25]

More successful studies, not only from medical domain, are described in [17].
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3 Regular Expression

The origins of, belonging to automata and formal language theory, regular ex-
pressions lie in 1940, when McCulloch and Pitts described a nervous system as
a neurons in a small automata [3]. These models were then described by Kleene
and Kozen using regular expression (regular set) notation [2].

Regular expressions consist of constants and operators that denote sets of
strings and operations over these sets, respectively. Given a finite alphabet Σ
the following constants are defined:

– empty set ∅ denoting the set ∅
– empty string ε denoting the set {ε}
– literal character α in Σ denoting the set {α}

Following operations are defined:

– concatenation RS denoting the set {αβ|α in R and β in S}. For example
{”ab”, ”c”}{”d”, ”ef”} = {”abd”, ”abef”, ”cd”, ”cef”}.

– alternation R|S denoting the set union of R and S.
– Kleene star R∗ denoting the smallest superset of R that contains ε and is

closed under string concatenation. This is the set of all strings that can be
made by concatenating zero or more strings in R. For example, {”ab”,”c”}∗=
{ε, ”ab”, ”c”, ”abab”, ”abc”, ”cab”, ”cc”, ”ababab”, ...}.

To avoid brackets it is assumed that the Kleene star has the highest priority,
then concatenation and then set union. If there is no ambiguity then brackets
may be omitted. For example, (ab)c is written as abc and a|(b(c∗)) can be written
as a|bc∗.

4 Methods

In our research of analyzing medical data we would like to extend and comple-
ment information collected from clinical information systems in form of ICD-10
codes with additional information stored in free-text descriptions. A typical ex-
ample of a such description is shown below:

Status post implantationem pacemakeri VVI (1981, 1997) ppt.
diss. A-V gr. III.Exhaustio pacemakeri. Morbus ischaemicus
cordis. Insufficientia coronaria chronica CCS I.
Myocardiopathia ischaemica in stadio comp. circulatoriae.
Fibrillatio atriorum continua. Pacemaker dependent.

A method suitable for our needs should therefore fulfill the following require-
ments:

– it shall recognize misspelled and abbreviated words
– it shall interpretable whole sentences
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– it shall provide a back tracing so that an expert can always validate an
assigned mapping

– all mappings must done based 100% on information from an original text
– it shall be easily maintainable and extendible

With these requirements in mind we have developed a method which bases on
a fixed number of user defined records each containing following three attributes:
a level value (shown at figure 1 as ’LEVEL’), a mask coded using regular expres-
sions for searching a phrase of text (’FIND TEXT’) and a string of text which
will be used for replacing if the searched phrase is found (’REPLACE FOUND
TEXT’). Defined records are sorted incrementally based on their level value,
so that, when the algorithm starts a group of records having the lowest value
can be firstly selected. During the next step for each record from the group the
algorithm tries to replace a found text with a specified string. When all records
are processed then a next group of records with a next higher level value is se-
lected and the process of searching/replacing text repeats. This algorithm ends
when the last record from the group with the highest level value is processed. A
simplified, but based on a real implementation, example is shown at figure 1.

Fig. 1. Sample of records used by the algorithm

From this figure it can be seen that the lowest level value is 10, so that the
algorithm begins to select a group of records having this level value. In our case
it is only one record which replace all found Roman numbers with the following
schema ’<’+number+’>’ for example a number ’II’ will be replaced to <2> and
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’IV’ results in <4>. After this processing a next higher level value is selected (50)
together with a group of records having the same value of their level attribute.
In the shown example there are only one such record. But it is possible and
common that, there are a lot of records which have the same level value and
thus can be processed in parallel. It is important to note that a definition of a
mask used for searching (field ’FIND TEXT’) contains not only a correct version
of a phrase but also several misspelled combinations stored using the alternation
operation of regular expressions for example (pectoralis|pectoris|...). If a phase
is found then it will be replaced with a specified replace string independently
if it was written correctly or incorrectly. This allows to correct a simple type
errors and focus on sentence analysis. As an example records with their level
value 100 and 110 can be used. These two records search for a combination of
symbolic replacements previously replaced by records with the level value 50,
so that these two records can correctly assign an ’<END I20 0> code not only
to a properly written ’angina pectoris’ diagnose but also to a whole bunch of
misspelled combinations of these two words as for example ’angin pectoralis’.

The described algorithm has following advantages:

– it allows filtering of redundant and noisy information at entry processing
stage

– it correctly recognizes misspelled diagnoses
– the process of interpreting whole sentences is simplified because only con-

nections between symbolic phrases must be analyzed and not all possible
combinations which can be found in an input text

– it is possible to stop the algorithm at stage and analyze or eventually correct
the replacing process

– in our implementation we only use already found in input text combinations
of words what decreases a possibility of false positive recognitions

In the next section we will compare the recognition accuracy and scalability of
the described algorithm with our previous dictionary based algorithm.

5 Dataset Preparation and Experimental Environment

Data used in our research was obtained from the Cardiology Department of
Silesian Medical Academy in Katowice - the leading Electrocardiology Depart-
ment in Poland specializing in hospitalization of severe heart diseases. For our
experiments we took a data set of 4000 patients hospitalized in this Department
between 2003 and 2005. This data were imported into a PostgreSQL database
and then divided in eight groups (G-C1, ..., G-C8), where G-C1 contained first
500 records from the database and each next group had 500 more records then
the previous group, so that the last group G-C8 contained all 4000 records. Each
record in a group contained a single free-text report which was then analyzed of
the presence of one of the following diseases:

– Essential (primary) hypertension - if found mapped to I10 code
– Old myocardial infarction - if found mapped to I25-2 code
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– Atrioventricular block, first degree - if found mapped to I44-0 code
– Atrioventricular block, second degree - if found mapped to I44-1 code
– Atrioventricular block, complete - if found mapped to I44-2 code
– Sick sinus syndrome - if found mapped to I49-5 code

We implemented the presented algorithm in Java version 1.5. and used the
Java implementation of regular expressions from the ’java.util.regex.Pattern’
class.

6 Results

Results presented the table 1 show an absolute number of cases recognized by
the described in this paper method within each of the tested group. These results
are additionally compared with the dictionary method and this comparison is
shown as a number in brackets, where a positive number means a number of
cases additionally recognized by the method based on regular expressions. Vi-
sualization of these numbers is shown at figure 2, where it can be seen that the
proposed method recognized more cases then the dictionary method but with a
different, depending on a selected disease, characteristic. For hypertension and
old myocardial infarction a number of additionally recognized cases is rather
low what can be attributable to the fact, that the most diagnosis variants are
already covered by the dictionary method. Recognition of atrioventricular block
poses a bigger challenge, so that a difference in a number of recognized cases for
all three types of this disease oscillates between 20-40% additional cases iden-
tified by the proposed method. The most spectacular results were achieved for
recognizing Sick sinus syndrome what can be assignable with a huge number of
possible combinations used to specify this diagnosis. These combinations were
better covered by regular expressions and a difference to the dictionary method
was almost 42%.

It can be also seen, that a number of identified cases, shown at figure 3,
increased for all tested diseases almost linearly. This satisfactory result shows a
good ability of the presented method to recognize new records with a relatively
small number of definitions (500 regular expressions compared to more then 4800
dictionary phrases).

We had also randomly selected a set of 100 records and with a help from
domain experts from the Cardiology Department manually identified them for
three diseases. These numbers were then compared with a results achieved by
both the regular expression and the dictionary method. This comparison is shown
in the table 2. From this table it can be seen that for a relatively small group of
records the method based on regular expression recognized all hypertension and
atrioventricular block (first degree) cases. Of course it will be only a matter of
additional time effort needed to extend the recognition accuracy of the dictionary
method but this is exactly the advantage of the proposed algorithm, which with
a significant smaller number of records presents better scalability and in case of
new data also a better update ability.
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Table 1. Number of recognized cases by the proposed method

Group Number of I10 I25-2 I44-0 I44-1 I44-2 I49-5
records

G-C1 500 325 (1) 91 (-15) 45 (0) 82 (3) 135 (-4) 220 (72)
G-C2 1000 636 (3) 190 (-13) 95 (12) 161 (31) 245 (17) 414 (150)
G-C3 1500 978 (12) 276 (3) 134 (36) 248 (99) 354 (68) 618 (241)
G-C4 2000 1314 (21) 368 (25) 183 (61) 329 (158) 483 (131) 824 (338)
G-C5 2500 1645 (30) 442 (30) 236 (96) 410 (220) 604 (192) 1029 (441)
G-C6 3000 1959 (38) 524 (44) 305 (120) 502 (258) 728 (238) 1265 (550)
G-C7 3500 2275 (41) 600 (40) 373 (125) 590 (267) 863 (237) 1493 (640)
G-C8 4000 2616 (41) 704 (43) 427 (131) 678 (276) 1007 (233) 1693 (714)

Table 2. Recognition accuracy comparison between methods

Disease Number of Regular
exp.

Regular
exp.

Dictionary Dictionary

cases found
cases

accuracy
[%]

found
cases

accuracy
[%]

I10 61 61 100.0 61 100.0
I44-0 11 11 100.0 9 81.9
I44-1 15 14 93.3 10 66.7

7 Conclusions

In this paper we presented an algorithm for recognition of free-text Latin medical
reports which is based on hierarchically organized records. These records use
regular expressions to find a specified phrase in an input text and replace it
with a user defined text. The hierarchically organized records convert an input
text step by step replacing firstly simple words into symbolic phrases then these
symbolic phrases into more complicated expressions and at the end the whole
sentences are mapped to user defined codes. Such codes can be then easily used
to construct a decision table used by next data mining algorithms.

Our experiments shown that the presented method achieves better recognition
accuracy then the method based on fixed dictionary phrases and this result can
be achieved with a significant smaller number of records used for definition. This
small number of easily modifiable and very flexible records is truly an advantage
of the described method.

Our idea to reduce the complexity of recognizing Latin diagnosis through
defining a short parts of the whole sentence using regular expressions and then
to join hierarchically such pieces of information together allowed us to cover
with a finite, small number of records a huge number of possible combinations.
This advantage and the fact that the presented method fulfill all the specified
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requirements it is used in our data exploration system during a preprocessing
stage for processing not only Latin free-text reports but also laboratory, electro-
cardiogram (ECG) and cardiovascular ultrasound descriptions.
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If controversies were to arise, there would be no

more need of disputation between two philosophers

than between two accountants. For it would suffice to

take their pencils in their hands, and say to each other:

‘Let us calculate’.

– Gottfried Wilhelm Leibniz,

Dissertio de Arte Combinatoria (Leipzig, 1666).

... Languages are the best mirror of the human mind,

and that a precise analysis of the signification of words

would tell us more than anything else about the operations

of the understanding.

– Gottfried Wilhelm Leibniz,

New Essays on Human Understanding (1705)

Translated and edited by

Peter Remnant and Jonathan Bennett

Cambridge: Cambridge UP, 1982

Abstract. The problem considered in this article is how does one go
about discovering and designing intelligent systems. The solution to this
problem is considered in the context of what is known as wisdom tech-
nology (wistech), an important computing and reasoning paradigm for
intelligent systems. A rough-granular approach to wistech is proposed
for developing one of its possible foundations. The proposed approach is,
in a sense, the result of the evolution of computation models developed
in the Rasiowa–Pawlak school. We also present a long-term program for
implementation of what is known as a wisdom engine. The program is
defined in the framework of cooperation of many Research & Develop-
ment (R & D) institutions and is based on a wistech network (WN)
organization.

Keywords: wisdom technology, adaptive rough-granular computing,
rough sets, wisdom engine, open innovation, wisdom network.
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1 Introduction

Huge technological changes occurred during the second half of the 20th century
affecting every one of us. These changes affect practically all objects manufac-
tured by man such as spoons, clothing, books, and space rockets. There are
many indications that we are currently witnessing the onset of an era of radical
changes. These radical changes depend on the further advancement of technology
to acquire, represent, store, process, discover, communicate and learn wisdom.
In this paper, we call this technology wisdom technology (or wistech, for short).
The term wisdom commonly means “judging rightly” [50]. This common notion
can be refined. By wisdom, we understand an adaptive ability to make judge-
ments correctly to a satisfactory degree (in particular, correct decisions) having
in mind real-life constraints.

One of the basic objectives of the paper is to indicate the potential directions
for the design and implementation of wistech computation models. An important
aspect of wistech is that the complexity and uncertainty of real-life constraints
mean that in practise we must reconcile ourselves to the fact that our judge-
ments are based on non-crisp concepts and also do not take into account all the
knowledge accumulated and available to us. This is why consequences of our
judgements are usually imperfect. But as a consolation, we also learn to improve
the quality of our judgements via observation and analysis of our experience dur-
ing interaction with the environment. Satisfactory decision-making levels can be
achieved as a result of improved judgements.

The intuitive nature of wisdom understood in this way can be expressed
metaphorically as shown in (1).

wisdom = KSN + AJ + IP, (1)

where KSN, AJ, IP denote knowledge sources network, adaptive judgement, and
interactive processes, respectively. The combination of the technologies repre-
sented in (1) offers an intuitive starting point for a variety of approaches to
designing and implementing computational models for wistech. In this paper,
(1) is called the wisdom equation. There are many ways to build wistech com-
putational models. In this paper, the focus is on an adaptive rough-granular
approach.

The issues discussed in this article are relevant for the current research direc-
tions (see, e.g., [16,15,31,38,51,90,108] and the literature cited in these articles).

This paper is organized as follows.

2 Wisdom Technology

This section briefly introduces the wistech paradigm.

2.1 What Do We Mean by Wistech?

On the one hand, the idea expressed by (1) (the wisdom equation paradigm) is
a step in the direction of a new philosophy for the use of computing machines
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in our daily life, referred to as ubiquitous computing (see [66]). This paradigm
is strongly connected with various applications of autonomic computing [64].
On the other hand, it should be emphasized that the idea of integrating many
basic AI concepts (e.g., interaction, knowledge, network, adaptation, assessment,
pattern recognition, learning, network, simulation of behavior in an uncertain
environment, planning and problem solving) is as old as the history of AI itself.
Many examples of such an approach adopted by researchers in the middle of the
20th century can be found in [27]. This research was intensively continued in
the second half of the 20th century. For example, the abstracts of thousands of
interesting reports from the years 1954 -1985 can be found in [91,92].

This paper contains the conclusions of the authors’ experiences during nu-
merous practical projects implementing wistech technologies in specific applica-
tions, e.g., fraud detection (MERIX – a prototype system for Bank of Amer-
ica), dialogue based search engine (EXCAVIO – intelligent search engine), UAV
control (WITAS project), Intelligent marketing (data mining and optimization
system for Ford Motor Company, General Motors), robotics, EVOLUTIONARY
CHECKERS (adaptive checker R&D program at the University of North Car-
olina at Charlotte) and many other applications. These experiences are summa-
rized by the authors in the metaphoric wisdom equation (1). This equation can
also be illustrated using the following diagram presented in Figure 1.

In Figure 1 the term ‘data’ is understood as a stream of symbols without any
interpretation of their meaning.

From the perspective of the metaphor expressed in the wisdom equation (1),
wistech can be perceived as the integration of three technologies (corresponding
to three components in the wisdom equation (1)). At the current stage two of
them seem to be conceptually relatively clear, namely

1. knowledge sources network – by knowledge we traditionally understand every
organized set of information along with the inference rules; in this context
one can easily imagine the following examples illustrating the concept of
knowledge sources network:
– representation of states of reality perceived by our senses (or observed

by the “receptors” of another observer) are integrated as a whole in our
minds in a network of sources of knowledge and then stored in some part
of our additional memory,

– a network of knowledge levels represented by agents in some multi-agent
system and the level of knowledge about the environment registered by
means of receptors;

2. interactive processes – interaction understood as a sequence of stimuli and
reactions over time; examples are:
– the dialogue of two people,
– a sequence of actions and reactions between an unmanned aircraft and

the environment in which the flight takes place, or
– a sequence of movements during some multi-player game.

Far more difficult conceptually seems to be the concept of adaptive judgement
distinguishing wisdom from the general concept of problem solving. Intuitions
behind this concept can be expressed as follows:
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Fig. 1. Wisdom equation context

1. adaptive judgement – understood here as arriving at decisions resulting from
the evaluation of patterns observed in sample objects. This form of judge-
ment is made possible by mechanisms in a metalanguage (meta-reasoning)
which on the basis of selection of available sources of knowledge and on the
basis of understanding of history of interactive processes and their current
status enable us to perform the following activities under real-life constraints:

– identification and judgement of importance (for future judgement) of
sample phenomena, available for observation, in the surrounding envi-
ronment;
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– planning current priorities for actions to be taken (in particular, on the
basis of understanding of history of interactive processes and their cur-
rent status) toward making optimal judgements;

– selection of fragments of ordered knowledge (hierarchies of information
and judgement strategies) satisfactory for making a decision at the
planned time (a decision here is understood as a commencing interaction
with the environment or as selecting the future course to make judge-
ments);

– prediction of important consequences of the planned interaction of
processes;

– adaptive learning and, in particular, reaching conclusions deduced from
patterns observed in sample objects leading to adaptive improvement in
the adaptive judgement process.

One of the main barriers hindering an acceleration in the development of wis-
tech applications lies in developing satisfactory computation models implement-
ing the functioning of “adaptive judgement”. This difficulty primarily consists
in overcoming the complexity of the process of integrating the local assimilation
and processing of changing non-crisp and incomplete concepts necessary to make
correct judgements. In other words, we are only able to model tested phenomena
using local (subjective) models and interactions between them. In practical ap-
plications, usually, we are not able to give global models of analyzed phenomena
(see, e.g., [110,62,64,45,25,21]). However, we can only approximate global mod-
els by integrating the various incomplete perspectives of problem perception.
One of the potential computation models for “adaptive judgement” might be
the rough-granular approach.

2.2 Main Differences Between Wisdom and Inference Engine

In natural language, the concept of wisdom is used in various semantic contexts.
In particular, it is frequently semantically associated with such concepts as infer-
ence, reasoning, deduction, problem solving, judging rightly as a result of pattern
recognition, common sense reasoning, reasoning by analogy, and others. As a con-
sequence this semantic proximity may lead to misunderstandings. For example,
one could begin to wonder what the difference is between the widely known and
applied concept in AI of “inference engine” and the concept of “wisdom engine”
defined in this paper? In order to avoid this type of misunderstanding it is worth
explaining the basic difference between the understanding of wisdom and such
concepts as inference, reasoning, deduction and others.

Above all, let as start with explaining how we understand the difference be-
tween problem solving and wisdom. The widespread concept of problem solving
is described as some slight modification of this notion defined in the context of
solving mathematical problems by George Pólya in [84]. The concept of problem
solving is understood in [84] as the following set of activities:

1. First, you have to understand the problem.
2. After understanding, then make a plan.
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3. Carry out the plan.
4. Look back on your work. How could it be better?

An attempt at explaining the concept of wisdom can be taken using the con-
cept of problem solving in the following manner: wisdom is the ability to identify
important problems, search for sufficiently correct solutions to them, having in
mind real life, available knowledge sources, personal experience, constraints, etc.
Having in mind this understanding of wisdom we get at once the first important
difference. Namely, in the problem solving process we do not have the following
important wisdom factor in the above sequence (1-4) of activities:

0. Learning to recognize patterns that identify important problems and problem
solution constraints.
Certainly, this is not the only difference. Therefore, one can illustrate the general
difference between the concept of problem solving and wisdom as the difference
between the concept of flying in an artificially controlled environment (e.g., using
a flying simulator and problem solving procedures) and the concept of flying
Boeing 767 aeroplane in real-life dangerous environment (wisdom in a particular
domain).

One can therefore think that wisdom is very similar to the ability of problem
solving in a particular domain of application, which in the context of the world
of computing machines is frequently understood as an inference engine. The
commonly accepted definition of the concept of inference engine can be found
for example in Wikipedia
(http://en.wikipedia.org/wiki/Inference engine). It refers to understanding of
“problem solving” in the spirit of the book [84]. It reads as follows:

An inference engine is a computer program that tries to derive answers from
a knowledge base. It is the “brain” that expert systems use to reason about the
information in the knowledge base, for the ultimate purpose of formulating new
conclusions.

An inference engine has three main elements. They are:

1. An interpreter. The interpreter executes the chosen agenda items by applying
the corresponding base rules.

2. A scheduler. The scheduler maintains control over the agenda by estimating
the effects of applying inference rules in light of item priorities or other
criteria on the agenda.

3. A consistency enforcer. The consistency enforcer attempts to maintain a
consistent representation of the emerging solution.

In other words, the concept of inference engine relates to generating strategies
for the inference planning from potentially varied sources of knowledge which are
in interaction together. So this concept is conceptually related to the following
two elements of the wisdom equation:

1. knowledge sources network,
2. interactive processes.
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However, it should be remembered that wisdom in our understanding is not
only some general concept of inference. The basic characteristic of wisdom, dis-
tinguishing this concept from the general understanding of inference, is adaptive
ability to make correct judgements having in mind real-life constraints. The sig-
nificant characteristic differentiating wisdom from the general understanding of
such concepts as problem solving or inference engine is adaptive judgement.

In analogy to what we did in the case of problem solving, we can now attempt
to explain the concept of wisdom based on the notion of an inference engine
in the following manner: Wisdom is an inference engine interacting with a real-
life environment, which is able to identify important problems and to find for
them sufficiently correct solutions having in mind real-life constraints, available
knowledge sources and personal experience. In this case, one can also illustrate
the difference between the concept of inference engine and the concept of wisdom
using the metaphor of flying a plane.

One could ask the question of which is the more general concept: wisdom or
problem solving? Wisdom is a concept carrying a certain additional structure
of adaptive judgement which in a continuously improving manner assists us in
identifying the most important problem to resolve in a given set of constraints
and what an acceptable compromise between the quality of the solution and the
possibility of achieving a better solution is. Therefore, the question of what the
more general concept is closely resembles the question from mathematics: What
is the more general concept in mathematics: the concept of a field (problem
solving), or the concept of the vector space over a field (wisdom understood as
problem solving + adaptive judgement)? The vector space is a richer mathe-
matical structure due to the action on vectors. Analogously to wisdom it is a
richer process (it includes adaptive judgement - a kind of meta-judgement that
encompasses recognition of patterns common to a set of sample objects that
leads to judgements relating to problem solving). On the other hand, research
into single-dimensional space can be treated as the research of fields. In this
sense, the concept of vector space over a field is more general than the concept
of a field.

2.3 Why Does Wistech Seem to Be One of the Most Important
Future Technologies?

Nobody today doubts that technologies based on computing machines are among
the most important technology groups of the 20th century, and, to a considerable
degree, have been instrumental in the progress of other technologies. Analyzing
the stages in the development of computing machines, one can quite clearly
distinguish the following three stages in their development in the 20th century:

1. Database Technology (gathering and processing of transaction data).
2. Information Technology (understood as adding to the database technology

the ability to automate analysis, processing and visualization of information).
3. Knowledge Management Technology (understood as systems supporting or-

ganization of large data sets and the automatic support for knowledge
processing and discovery (see, e.g., [59,18])).
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The three stages of development in computing machine technology show us the
trends for the further development in applications of these technologies. These
trends can be easily imagined using the further advancement of complexity of
information processing (Shannon Dimension) and advancement of complexity of
dialogue intelligence (Turing Dimension), viz.,

– Shannon Dimension level of information processing complexity (representa-
tion, search, use);

– Turing Dimension the complexity of queries that a machine is capable of
understanding and answering correctly. One of the objectives of AI is for
computing machines to reach the point in Turing Dimension that is well-
known Turing Test (see [114]).

In this framework, the development trends in the application of computing
machines technology can be illustrated in Figure 2.

Technology Additional 

attributes 

Shannon 

Dimensions 

Turing 

Dimensions 

Database 

Technology 

data is the 

most basic 

level 

How to 

represent  

information? 

SQL  

Information 

Technology 

information = 

data + 

interpretation 

Where to find 

information? 

Who? What? 

When? Where? 

How much? 

Knowledge 

Management 

Technology 

knowledge =  

information + 

information 

relationships + 

inference rules 

How to use 

information? 

 

 

How? Why?  

What if? 

Fig. 2. Computing machines technology

Immediately from the beginning of the new millennium one can see more and
more clearly the following new application of computing machine technology,
viz., wisdom technology (wistech) which put simply can be presented in table
(see Figure 3, being an extension of the table presented in Figure 2).

In other words, the trends in the development of technology of computing
machines can be presented using the so-called DIKW hierarchy (i.e., Data, In-
formation, Knowledge, Wisdom). Intuitively speaking, each level of the DIKW
hierarchy adds certain attributes over and above the previous one. The hierarchy
is presented graphically in Figure 4.
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Fig. 3. Computing machine technology (continued)

DIKW hierarchy can be traced back to the well-known poem by T. S. Eliot,
“The Rock”, written in 1932. He wrote:

Where is the life we have lost in living?
Where is the wisdom we have lost in knowledge?
Where is the knowledge we have lost in information?

It is a truism to state that the effects of any activity depend to a decisive
degree on the wisdom of the decisions taken, both in the start, during the im-
plementation, improvement and completion of the activity. The main objective
of wistech is to automate support for the process leading to wise actions. These
activities cover all areas of man’s activities, from the economy, through medicine,
education, research, development, etc.

In this context, one can clearly see how important role may have the wistech
development in the future. The following comment from G.W. Leibniz on the
idea to automate the processing of concepts representing thoughts should not
surprise us either:

No one else, I believe, has noticed this, because if they had ... they would have
dropped everything in order to deal with it; because there is nothing greater that
man could do.

2.4 A General Approach to Wistech Computation Model

In order to create general Wistech computational models let us start an analysis
of the concept of adaptive judgement.

For better familiarization of adaptive judgement we shall use the visualization
of processes based on the IDEFO standard. Put simply, this means of visualisa-
tion is described in the diagram presented in Figure 5.

An intrinsic part of the concept of judgement is relating it to the entity im-
plementing the judgement. Intuitively this can be a person, animal, machine,
abstract agent, society of agents, etc. In general, we shall call the entity making
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Fig. 4. DIKW hierarchy
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a judgement the judge. We shall also assume that knowledge sources network is
divided into external sources, i.e., sources of knowledge that are also available
to other judges, internal sources, which are only available to the specific judge
in question.
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The first level of the model is presented in Figure 6. Of course, successive
levels of the model are more complex. Its details may depend on the assumed
paradigms for the implementation of adaptive judgement. However, these details
should include such elements as:

1. Learning of the External Communication Language understood as a lan-
guage based on concepts used to communicate and process knowledge with
a network of external sources of knowledge;

2. Learning of the Internal Communication Language understood as a hier-
archy of meta-languages based on concepts used to process and improve
External Communication Language and a language based on concepts used
to communicate and process knowledge with a network of internal sources
of knowledge;

3. Receiving in memory signals from signal receptors and interactive processes
and expressing their significance in the External Communication Language
and the Internal Communication Language;

4. Planning the current priorities for internal actions (mainly related to the
processing of wisdom) on the basis of an assessment in relation to the hier-
archy of values controlling the adaptive judgement process;

5. Selection of fragments of ordered knowledge (hierarchies of information and
judgement strategies) sufficient to take a decision at the planned time (a
decision here is understood as commencing interaction with the environment
or selecting the future course to resolve the problem);
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6. Output wisdom communication messages to external knowledge sources net-
work, in particular, knowledge messages and proposals of modifications of
the External Communication Language (e.g., new communication rules, new
concepts, names);

7. External actions in order to implement the desired interactive processes.

All elements occurring in the above list are very complex and important but
the following two problems are particularly important for adaptive judgement
computational models:

1. Concept learning and integration - this is the problem of computational mod-
els for implementation of learning concepts important for the representation,
processing and communicating of wisdom and, in particular, this relates to
learning of concepts improving the quality of approximation of the integra-
tion of incomplete local perceptions of a problem (arising during local assim-
ilation and processing of vague and incomplete concepts (see, e.g., [78,79])).

2. Judge hierarchy of habit habits controls - this is the problem of computational
models for implementation of process of the functioning of a hierarchy of
habit controls by a judge controlling the judgement process in an adaptive
way.

Now, we sketch the idea of a framework for solution of the problem of imple-
mentation of judge hierarchy of habit controls. In this paper, we treat a concept
of habit as an elementary and repeatable part of behavioral pattern. In this
context, the meaning of elementary should be considered by comparison to the
required reasoning (knowledge usage) complexity necessary for the behavioral
pattern implementation. In other words, by a habit we mean any regularly re-
peated behavioral pattern that requires little or no reasoning effort (knowledge
usage). In general, any behavioral pattern could be treated as a sequence of
habits and other activities which use knowledge intensively. Among such ac-
tivities those leading to new habits are especially important. We assume that
such habit processing is controlled by so-called habit controls which support the
following aspects of adaptive judgement process for a considered situation by a
judge:

1. Continuous habit prioritization to be used in a particular situation after
identification of habits. This is a prioritization from the point of view of the
following three criteria:
– The predicted consequences of the phenomena observed in a considered

situation;
– Knowledge available to a judge;
– The actual plans of a judge’s action.

2. Knowledge prioritization is used if we do not identify any habit to be used
in a considered situation, then we have to make prioritization of pieces of
available knowledge which could be used to choose the best habit or for a
construction of a new habit for the considered situation.

3. Habit control assessment for continuous improvement of adaptive judgement
process and for construction of new habits and habit controls.
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Fig. 7. Judge diagram

As it can be seen from the above considerations, one of the key components of
wistech, judge hierarchy of habit control, is essential for optimal decision making
and is closely correlated with the knowledge held and interactions with the en-
vironment. Judge hierarchy also means the desire of the judge to satisfy his/her
needs in interactions with his/her environment. Put very simply, the judge re-
ceives and sends out signals according to the diagram presented in Figure 7.

The interior of the box is the place for the judge to process signals and to take
an action. By the judge environment adaptation we understand the interaction
of the following two adaptive processes:

1. adaptation of the environment, in which the judge lives to the needs and
objectives of the judge so as to best fit the needs and objectives of the envi-
ronment,

2. adaptation of the internal processes taking place in a judge in such a way as
to best realize his/her needs and objectives based on the resources available
in the environment.

The judge environment adaptation is the basis for computational models of
judge learning. The key part of this is the evolution of judge hierarchy of habit
controls. The judge hierarchy of habits controls constitutes a catalyst for evo-
lutionary processes in the environment, and also constitutes an approach to
expressing various paradigms of computation models to be used in the machine
implementation of this concept. For example, these paradigms can be based
on the metaphorically understood principle of Newtonian dynamics (e.g., ac-
tion = reaction), thermodynamics (e.g., increase in entropy of information),
quantum mechanics (the principle of it being impossible to determine location
and speed simultaneously) and quantum computational models [44], psychology
(e.g., based on metaphorical understanding of Maslow’s hierarchy of needs; see
also [53,80,40]). Particularly worthy of attention in relation to wistech is the
metaphoric approach to Maslow’s hierarchy of needs in reference to the ab-
stractly understood community of agents. Put simply, this hierarchy looks as in
Figure 8. It could be used for direct constructions of computational models of
judge hierarchy of habit controls.
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Fig. 8. The Maslow Hierarchy of human needs (about 1934) as an example of judge
hierarchy of habit controls

2.5 A Rough-Granular Computing Approach to Wistech
Computation Models

In this section, we outline basic ideas for the rough-granular approach to wisdom.

2.5.1 Evolution of Reasoning Computation Models in the
Rasiowa–Pawlak School

By the Rasiowa–Pawlak school we mean a continuation of approaches to com-
putational models of approximate reasoning developed by Rasiowa [86], Pawlak
[74,87], and their students. In some sense, it is a continuation of ideas initiated
by Leibniz, Boole and currently continued in a variety of forms over the world.
Of course, the Rasiowa–Pawlak school is also some kind of continuation of the
Polish School of Mathematics and Logics. The achievements of this school led
to the development of the modern understanding of the basic computational as-
pects of logic, epistemology, ontology, foundations of mathematics and natural
deduction (S. Banach, S. Eilenberg, R. Ingarden, S. Jaśkowski, K. Kuratowski,
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S. Leśniewski, A. Lindenbaum, J. �Lukasiewicz, S. Mazur, A. Mostowski, H. Ra-
siowa, R. Sikorski, W. Sierpiński, A. Tarski, S. Ulam, and many others). Two
fundamental tools of the Rasiowa–Pawlak school are the following:

– Computation models of a logical concept (especially of such concepts as de-
duction or algebraic many-valued models for classical, modal, and construc-
tive mathematics).

The Rasiowa–Pawlak approach is based on the method of treating the sets
of logically equivalent statements (or formulas) as abstract algebras known
as the Lindenbaum–Tarski algebras.

– Computation models of vague concept.
�Lukasiewicz originally has proposed to treat uncertainty (or vague con-

cepts) in logic as concepts of many-valued logic. However, software developed
for today’s computers is based on two-valued Boolean algebra. Therefore it
is more practical to treat uncertainty and vagueness using the classical logic
concept based on two-valued Boolean algebra. The concept of a rough set
introduced by Pawlak [74] and developed in the Rasiowa–Pawlak school is
based on the classical two-valued logic and, hence, the rough set approach is
important and suitable for the applications mentioned above. The rough set
approach intended to deal with uncertainty and vagueness has been devel-
oped to deal with uncertainty and vagueness. The rough set approach makes
it possible to reason precisely about approximations of vague concepts. These
approximations are tentative, subjective, and varying accordingly to changes
in the environment [75,76,77,8].

Both the above mentioned fundamental tools can be applied in many contexts.
It is interesting to illustrate evolution of the both above fundamental tools from
the Rasiowa–Pawlak school perspective (see Figure 9 and Figure 10).

2.5.2 Rough-Granular Computing (RGC)
Solving complex problems by multi-agent systems in distributed environments
requires approximate reasoning methods based on new computing paradigms.
One such emerging recently computing paradigm is RGC. Computations in RGC
are performed on information granules representing often vague, partially speci-
fied, and compound concepts delivered by agents engaged in tasks such as knowl-
edge representation, communication with other agents, and reasoning.

We discuss the rough-granular approach for modeling computations in com-
plex adaptive systems and multiagent systems.

Information granules are any objects constructed when modeling of compu-
tations, and in approximating compound concepts, and approximate reasoning
about these concepts. Information granules are constructed in an optimization
process based on the minimal length principle. This process is aiming at con-
structing approximations of concepts satisfying some (vague and/or uncertain)
constraints. Examples of information granules are information systems and de-
cision systems, elementary information granules defined by indiscernibility neigh-
borhoods, families of elementary granules (e.g., partitions and coverings),
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Fig. 9. Evolution of computational models of logical concepts from the
Rasiowa–Pawlak school perspective (the last column is hypothetical for a further
research)

relational structures obtained by granulation of objects or classes of relational
structures (representing structured objects and their classes), elementary and
compound patterns (e.g., clusters of already defined patterns, hierarchical or
behavioral patterns, protocols of cooperation), decision rules on different levels,
interaction patterns, sets of decision rules, strategies of searching for relevant fea-
tures, rough inclusions, approximation spaces, fusion operations on information
granules, negotiation and conflict resolution strategies, classifiers constructed
for compound and vague concepts. We discuss some aspects of rough set-based
foundations for information granule calculi and methods for inducing relevant
information granule constructions from data and background knowledge.

RGC has been applied for solving complex problems in areas such as identifica-
tion of objects or behavioral patterns by autonomous systems, web mining, and
sensor fusion (see, e.g., [3,5,6,7,8,22,68,69,93,94,95,98,99,100,101,102,105,106]).

2.5.3 Vague Concept Approximation
The RGC methods should make it possible to construct vague concept approxi-
mation and to perform approximate reasoning about such concepts. There is a
long debate in philosophy on vague concepts [54]. Nowadays, computer scientists
are also interested in vague (imprecise) concepts, e.g., many intelligent systems
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Fig. 10. Evolution of computational models of vagueness from the Rasiowa–Pawlak
school perspective

should satisfy some constraints specified by vague concepts. Hence, the problem
of vague concept approximation as well as preserving vague dependencies (espe-
cially in dynamically changing environments) is important for such systems.

Lotfi Zadeh [120] introduced a very successful approach to vagueness. In this
approach, sets are defined by partial membership in contrast to crisp membership
used in the classical definition of a set.
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Rough set theory [74] expresses vagueness not by means of membership but by
employing the boundary region of a set. If the boundary region of a set is empty it
means that a particular set is crisp, otherwise the set is rough (inexact). The non-
empty boundary region of the set means that our knowledge about the set is not
sufficient to define the set precisely. Inductive extensions of approximation spaces
and adaptive concept learning yield better understanding of vague concepts [8].
A discussion on vagueness in the context of fuzzy sets and rough sets can be
found in [88].

The central role of the rough set approach in RGC comes from the necessity of
modeling different interactions between agents. These interactions are operations
on information granules. Different agents use different languages to describe in-
formation granules. Information granules expressed in one language often cannot
be expressed precisely in another language. Hence, there is the need for develop-
ing methods which could be used by judges in approximation of (vague) concepts
(partially) specified by other judges. Initially, the approximation spaces, which
can be treated as information granules, were introduced for decision tables (sam-
ples of objects). The assumption was made that the partial information about
objects is given by values of attributes and that the approximations of subsets
of objects from the universe restricted to sample have been defined on the basis
of such information about objects [74]. Starting at least from the early 1990s,
many researchers have been using the rough set approach for constructing classi-
fication algorithms (classifiers) defined over extensions of samples. This is based
on the assumption that available information about concepts is partial.

In recent years, there have been reported methods based on approximation
spaces and operations on approximation spaces to develop for approximation of
concepts over the extensions of samples (see, e.g., [8,102]). Among the basic op-
erations on extension of samples related to concept approximation are inductive
extensions of approximation spaces (see, e.g., [8,102]). Neighborhoods of objects
are the basic components of approximation spaces. They are defined by the
available information about objects and rough inclusion functions between sets
of objects. Observe that searching for relevant (to approximation of concepts)
extensions of approximation spaces requires tuning more parameters than in
the case of approximation of concepts on samples. The important conclusion is
that the inductive extensions defining classification algorithms (classifiers) are
defined by arguments “for” and “against” the concepts. Each argument is de-
fined by a tuple consisting of a degree of inclusion of objects into a pattern
and a degree of inclusion of the pattern into the concepts. In the case of rule-
based classifiers, patterns can be interpreted as the left-hand sides of decision
rules. The arguments are discovered from available data and can be treated as
the basic information granules used in the concept approximation process. For
any new object, it is possible to check the satisfiability of arguments and to
select the arguments which are satisfied (at least to a satisfactory degree). Such
selected arguments are fused by conflict resolution strategies for obtaining the
classification decision.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



112 A. Jankowski and A. Skowron

Searching for relevant approximation spaces in the case of approximations over
extensions of samples requires discovery of many parameters and patterns includ-
ing selection of relevant attributes defining information about objects, discovery
of relevant patterns for approximated concepts, selection of measures (similarity
or closeness) of objects into the discovered patterns for concepts, the structure
and parameters of conflict resolution strategy. This causes infeasibility of the
searching process in the case of more compound concepts the searching process
becomes infeasible (see, e.g., [12,32,81,116]).

We have proposed to use additional domain knowledge as hints in search-
ing for relevant approximation spaces for compound concepts. This additional
knowledge is represented by a concept ontology [3,5,6,7,8] including concepts
expressed in natural language and some dependencies between them. We as-
sume that the ontology of concepts has a hierarchical structure. Moreover, we
assume that for each concept from the ontology a labeled set of examples of
objects is given. The labels reflect the degree of membership of objects rela-
tive to the approximated concepts. The aim is to discover relevant conditional
attributes for concepts on different levels of the hierarchy. Such attributes can
be constructed using the so-called production rules, productions, and approx-
imate reasoning schemes (AR schemes, for short) discovered from data (see,
e.g. [3,5,6,7,8,100,101,102,105,106]). Searching for relevant arguments “for” and
“against” for more compound concepts can be simplified because it can be or-
ganized along the derivations over the ontology using the domain knowledge.

It should be mentioned that the searching process for relevant approxima-
tion spaces is driven by some selected quality measures. While in some learning
problems such measures can be selected in a relatively easy way and remain
unchanged during learning, in other learning processes they can only be approx-
imated on the basis of a partial information about such measures received, e.g.,
as the result of interaction with the environment. This applies to, e.g., adaptive
learning. We present an example illustrating the complexity of the searching
process for relevant approximation spaces in different tasks of adaptive learning
[21]. In our recent projects, we develop methods for adaptation of observation to
an agent’s scheme, incremental learning, reinforcement learning, and adaptive
planning.

Our discussion is presented within the framework of MAS. The main con-
clusion is that the approximation of concepts in adaptive learning requires new
advanced methods for modeling of computations based on information granules.
Among them are those which, in particular, will make it possible to approximate
the quality measures together with approximation of concepts.

In adaptive learning, the approximation of concepts is constructed gradually
and the tentative approximations change dynamically in the learning process
where we try to achieve the approximation of the desired quality. In particu-
lar, this changes boundary conditions during the learning process in which we
attempt to find the relevant approximation of the boundary regions of vague con-
cepts. This is consistent with the requirement of the higher-order vagueness [54]
stating that the borderline cases of vague concepts are not crisp sets. This paper
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is a continuation of our research (see, e.g., [3,5,6,7,8,68,69], [93,94,95,98,99],
[100,101,102,105,106]) on approximation spaces and vague concept approxima-
tion processes conducted for several years.

In this paper, we concentrate on some issues of RGC relevant to adaptive
processes [8,21,62,64]. In particular, we present some basic schemes relevant for
adaptive concept learning. The aim is to illustrate the complexity of spaces in
which RGC should enable us to construct relevant information granules and to
develop searching methods for many compound kinds of relevant information
granules. These information granules should make it possible to construct high
quality approximation of concepts and to reason efficiently about performed com-
putations. In such granular computations many compound information granules
are involved.

Let us consider an example of the measure of approximation quality. When
searching for relevant approximation of the compound concepts, methods for
constructing appropriate measures are necessary. At a given step of the learning
process, only partial information about such a measure is available. On the basis
of such information we construct approximation of the measure and we use it
for inducing approximation spaces relevant for concept approximation. However,
at the next stages of the learning process, it may happen that after receiving
new information from the environment, it will be necessary to reconstruct the
approximation of the quality measure, and in this way we obtain a new “driving
force” in searching for relevant approximation spaces during the learning process.
Adaptive learning strategies create information granules of higher level. Evolu-
tionary techniques for modeling computations on such information granules to
synthesize relevant learning strategies (toward achieving the given goals) are
critical for many applications. In the next two sections, we outline some basic
concepts related to agents and their interactions. The agents are called judges
to emphasize that among tasks they perform are judgements. We discuss two
more examples.

2.5.4 Basic Concepts Relative to Judges
In this section, we discuss basic components of agents (called judges here) which
perform their tasks. In particular, they interact with other agents in the envi-
ronment, approximate vague concepts and have the ability of reasoning about
concepts. Each judge can also be treated as an information granule. The basic
concepts relative to the judge J are the following:

– Information granules accessible by J . N is the set of information granules
accessible by J (e.g., neighborhoods of objects, sets defined by the left-hand
sides of decision rules, sets defined by classifiers together with the classifiers,
granules accessible by J through interaction with other judges, e.g., repre-
senting other sources of knowledge). Information granules are all constructive
objects definable (accessible, generated) by the judge J which are used by
J for representing knowledge, approximate reasoning, and interaction with
other judges and/or the environment.
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– Goals (Targets) of J . There are some goals (targets) by the judge J to
be achieved, e.g., preservation of some constraints with some priorities or
achievement of a state with a given property. G denotes the granule rep-
resenting goals for J . In particular, constraints and targets are defined by
means of information granules.

– Environment of J . ENVJ denotes the set of all judges interacting with J
(directly or indirectly).

– Information Function of J . Inf : States(ENVJ) −→ N is the information
function about states of the environment from the set

States(ENVJ)

perceived by J . By NInf we denote the set Inf(States(ENVJ)).
– Judgemental Strategies of J . S is the set of judgemental strategies of J . Some

examples of judgemental strategies are listed below. First let us introduce
some notation. |=+

deg, |=−deg are binary relations in N × N , called the rough
inclusions of J , with the following intended meaning: u |=+

deg u′ if and only
if the granule u matches the granule u′ to a degree at least deg; u |=−deg u′

if and only if the granule u matches the granule u′ to a degree at most deg.
For simplicity of reasoning we assume that deg ∈ [0, 1]. Assume that a set
D of information granules (e.g., the set of decision classes for a rule-based
classifier) is given. Let t+, t− be two thresholds from the interval [0, 1] and
let

N+(u) = {u′ ∈ D : ∃deg > t+(u |=+
deg u′)}

for u ∈ NInf . Granule u votes “for” granules from N+(u) (relative to t+)
(see [46]). Let us assume

N−(u) = {u′ ∈ D : ∃deg < t−(u |=−deg u′)}

for u ∈ NInf . Then granule u votes “against” granules from N−(u) (rela-
tive to t−). We assume that B is a distinguished set of information granules
called behavioral patterns of J (e.g., decisions, actions, plans [34,115]) and
Lab : D −→ B is the (partial) labeling function assigning the behavioral
patterns to (some) information granules from D.

• S is one of the judgemental strategies of J making it possible to select a
particular behavioral pattern as a reaction to the perceived information
about the environment. In particular, S uses granules from Lab(N+(u))
and Lab(N−(u)), where u = Inf(x) and x is the current state of the
environment, and the labeling of these sets of granules by behavioral
patterns. Observe that the strategy S should resolve conflicts arising due
to the fact that information granules should satisfy some constraints. For
example, some information granules cannot be matched by one informa-
tion granule to a degree higher than a given threshold t+.

• Quality strategy of J . Q is the quality strategy of J for estimation of
the closeness (similarity) between granules. The closeness estimation is
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based on arguments “for” and “against” the satisfiability of the com-
pound concept of “closeness” represented by Q. In this judgement J
uses relevant granules from available granules representing knowledge
accessible for J , often distributed among other judges, as well as the
relationships between granules represented by matching degrees.

• Adaptation strategy of J . Adap is the adaptation strategy transforming
a tuple

(N, G, Inf, B, Lab, |=+
deg, |=

−
deg, S, Q)

into a new such tuple. Observe that judgements performed by J dur-
ing adaptation can, in particular, lead to construction of new granules
(e.g., through cooperation with other judges [2]), changing some strate-
gies such as the matching strategy, the labeling strategy, the selection
strategy for relevant behavioral patterns, and the strategy for estimation
of closeness of granules. Adap can also be changed, e.g., by tuning some
of its parameters.

2.5.5 Basic Cycle of Judge
Each judge realizes some goals using behavioral patterns. The basic cycle of each
judge J is the following:

1. Step 1: Initialization.
(N, G, Inf, B, Lab, |=+

deg, |=
−
deg, S, Q) :=

(N0, G0, Inf0, B0, Lab0, |=+
deg,0, |=

−
deg,0, S0, Q0).

2. Step 2: Perception granule construction by J representing the current state.

u := Inf(x);

where u is the granule representing perception by J of the current environ-
ment state x.

3. Step 3: J selects the relevant granules from N+(u), N−(u) and performs
judgements to select (construct) the relevant behavior b toward achieving the
current goal (target). During selection of b the judge J is also predicting the
information Infpred(b, x) returned from ENVJ as a reaction to the behavior
b applied to the current state x of ENVJ . This is realized by another special
judgemental strategy of J . By applying S to Lab(N+(u)) and Lab(N−(u))
J searches for a relevant behavior b.

4. Step 4: Estimation of the closeness.
The judge J uses the quality measure Q for estimation of the closeness
(similarity) of Infpred(b, x) and Infreal(b, x) by

Q(Infpred(b, x), Infreal(b, x)),

where Infreal(b, x) is information about the real reaction of the environment
in state x to the behavior b.
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5. Step 5: J uses a special judgemental strategy in testing whether the closeness
is satisfactory.

If the closeness is satisfactory, then J continues from Step2; otherwise J
goes to the next step.

6. Step 6: Adaptation step.
(N, G, Inf, B, Lab, |=+

deg, |=
−
deg, S, Q) :=

Adapt(N, G, Inf, B, Lab, |=+
deg, |=

−
deg, S, Q).

7. Step 7: Go to Step 2.

All constructive objects involved in computations realized by means of the
above judgement schemes are information granules.

2.5.6 Remark on Task Solving by Systems of Judges
The above examples illustrate the complexity and richness of the information
granule spaces we deal with when modeling adaptive processes and reasoning
about such processes. Systems of judges solve tasks by searching in the informa-
tion granule spaces for information granules satisfying the task specification to a
satisfactory degree (not necessarily exactly), i.e., matching information granules
representing the task specification to a satisfactory degree. The requirement of
“matching to a degree” used instead of “matching exactly” often makes searching
for solutions feasible in information granule spaces [122].

In a number of papers (see, e.g., [99,105,106]), we have developed methods
for construction of information granules (satisfying a given specification to a
satisfactory degree) by means of operations on information systems called con-
strained sums. In particular, this approach proved to be general enough for mod-
eling compound spatio-temporal information granules (e.g., information granules
representing processes or behavioral patterns specified by vague concepts) and
interactions between them.

3 Wistech Network (WN)

In this section, we discuss shortly the organization of cooperation for the projects
based on wistech.

3.1 What We Mean by Wistech Network

The huge complexity of the problem of designing effective wistech computa-
tion models means that wistech progress significantly depends on forming effec-
tive and systematic cooperation between the numerous interdisciplinary teams
verifying the Wistech calculation models developed in practical experiments.
Moreover, in order to make a really essential progress in wistech it is impor-
tant to involve the best possible specialists for making it possible to combine
in wistech based projects knowledge of such areas as: psychology, sociology,
ethics and domain dependent knowledge, e.g., neuroscience, medicine, economics,
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security, law, robotics, telecommunications, banking. This research, like all other
research, requires a significant effort in other fundamental sciences, such as logic,
epistemology, ontology, mathematics, computer science, philosophy and others.
Of course such activity is very expensive. Moreover, in general, research of this
type does not translate directly into economic results. No private company can
afford to implement such extensive research by itself. It is also unlikely that there
would be any significant commitment by government agencies in the coordina-
tion and development of research on such a wide scale. Unfortunately, current
attempts at extending the international coordination of such type of research
are not effective.

A dilemma therefore arises whether to develop wistech within the framework
of expensive and highly risky closed research programs, or to support open pro-
grams in which the costs and risk are spread among many entities? It is our
opinion that both directions are equally important and the key to the success is
an environment for creating and developing harmony mechanisms between open
and closed research (see [19]). In [19], among others, the contrasting principles
of closed and open innovation are clarified (see Figure 11).

At the current stage of building an environment for creating and developing
harmony mechanisms between open and closed research it is very important
to develop a powerful framework for effective Open Innovation Wistech R&D
network. The current stage of development in wistech above all requires the de-
velopment of coordinated interdisciplinary basic research with a well-coordinated
and easily accessible environment for experiments. Such activities are not possi-
ble in hermetically sealed companies, which are paralyzed by security procedures
and guided by the criterion of rapid economic return. This is also why it is pro-
posed to start up mechanisms for the systematized and relatively coordinated
cooperation of centers interested in developing Wistech under a Wistech Net-
work (WN) cooperating with one another in accordance with jointly perfected
open principles based on Open Innovation Principles. It is worth stressing that
organizations preferring Closed Innovation Principles may also draw great ben-
efits from active participation in WN. This participation gives the possibility of
testing solutions that have little chance of giving rapid market results, and also
in the case of the appearance of such opportunities they can be translated into
economic results in accordance with the principles accepted. At the same time,
in the case of basic research, which in general does not translate directly into
market effects, the understanding of progress in basic research gives greater op-
portunities for developing new market applications of one’s own. A further great
benefit of active participation in WN should be the possibility of comparing the
various paradigms for building calculation models for Wistech. The times have
long since gone when people believed that there is only one perfect paradigm in
AI. Hybrid solutions adapted to the specific nature of the sphere of application
dominate in applications. Hybrid applications themselves also use a variety of
construction paradigms in a platform for integrating various approaches. Simi-
larly we are also assuming that the WN environment would be represented in
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Contrasting Principles of Closed and Open Innovation 

Closed Innovation Principles Open Innovation Principles 

The smart people in our field work 

for us. 

Not all smart people work for us. 

We need to work with smart people 

inside and outside of our company. 

To profit from R&D, we must 

discover it, develop it, and ship 

it ourselves. 

External R&D can create significant 

value; internal R&D in needed to 

claim some portion of that value. 

If we discover it ourselves, we 

will get it to the market first. 

We don’t have to originate the 

research to profit from it. 

The company that gets an innovation 

to the market first will win. 

Building a better business model is 

better than getting to the market 

first. 

If we create the most and the best 

ideas in the industry, we will win. 

If we make the best use of internal 

and external ideas, we will win. 

We should control our intellectual 

properties (IP), so that our 

competitors don’t profit from our 

ideas. 

We should profit from others’ use 

of our IP, and we should buy 

others’ IP whenever it advances our 

own business model. 

Fig. 11. Contrasting principles of closed and open innovation [19]

the form of a sub-network with various paradigms for the construction of an in-
tegration platform. WN would provide the data and criteria to assess the results
of experiments used for the assessment of various paradigms. In the remainder of
this work we present, among others, a proposal to start up a sub-network based
on a paradigm for the integration of various technologies based on an adaptive
rough-granular computing approach (RGC).

3.2 A Potential Example Scenario of WN Establishment

3.2.1 WN Long-Term Vision and Role
The basic objectives of WN are supporting open innovation and the development
of wistech and its applications through:

1. creating new paradigms and trends in Wistech and its applications,
2. creating a platform (e.g. intranet, symposia, training programs, e-learning,

etc.) for communication and the exchange of knowledge and experience on
the practical applications and achievements of basic research,

3. preparing educational and research programs,
4. starting up projects for specific practical applications, as well as for basic

research,
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5. establishing the conditions and criteria used to compare the quality of various
approaches to Wistech (especially having in mind applications in medicine,
economy, agriculture, energy and forex market),

6. popularization of Wistech.

3.2.2 WN Organization and Financial Support
We assume that participation in WN is absolutely voluntary in nature, and WN
itself also does not assume any additional financial fees or obligatory partici-
pation in conferences. The organization is open in nature and any person or
organization can take part in it. The form of organization is based on communi-
ties cooperating together, which jointly use and develop open software (see, e.g.,
http://www.opensource.org/).

At the same time we assume that at some stage WN may take part in commer-
cial projects. The project participants will mutually agree upon the principles
for cooperation in every such case. It is expected that in the long-term some
products or components created by WN will function according to the principles
of open software (e.g. similar to the principles of http://www.opensource.org/).
We continue to assume the organization of working groups in the network which
would deal with jointly agreed packets of problems and projects.

It is expected in our exemplary scenario that WN will develop in accordance
with the stages for development of a mature organization modeled on the ideas of
Carnegie Mellon Capability Maturity Model (http://www.sei.cmu.edu/cmm/).
This model consists of the six stages presented in Figure 12 and Figure 13.

The basic assumption to WN is the realization of projects financed by WN
participants who cover the costs and risk of their own activities in the network.
It is also assumed that in WN there will be several specialist centers which
will coordinate the activities in individual areas (competency centers), e.g. the
multi-agent approach, the rough mereology approach. The coordination work
of these centers would be financed from voluntary financial contributions from
participants of the group in question. It follows from this that the intensity and
quality of work in a given group will to a large degree depend on the level of
financial support from participants in the group.

4 Wisdom Engine

We discuss some exemplary projects proposed as pilot projects in development
of wistech.

4.1 Wisdom Engine Concept

By wisdom engine we understand a machine system which implements the con-
cept of wisdom. In other words, the basic functions of the wisdom engine would
be acquiring, processing, discovering, learning and communicating wisdom. One
of the main first objectives of WN can be to create an open international R&D en-
vironment for the design and implementation of the concept of universal domain-
independent wisdom engine. A universal wisdom engine implementation should
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Name of stage Organization Content 
ESTABLISHMENT Starting up the first 

projects in the network and 
defining the principles for 
the cooperation of the 
first group of participants 
who confirm their 
participation in WN. 
Starting up the first forms 
of communication. 

Developing the initial 
catalogue of paradigms for 
approaches to development 
of wistech (e.g., multi-
agents, evolution, symbolic 
processing, neural nets, 
statistics, adaptive rough 
granular approach, formal 
concepts, ontology 
engineering, information 
semiotics, cognitive and 
epistemological approach, 
etc., and their 
combinations). 

INITIAL 
 

Developing a common 
language to describe the 
concepts relating to 
starting up, implementing 
and closing projects in WN. 
 

The preliminary allocation 
of categorized paradigms 
for approaches to wistech 
to their respective 
competency centers. 
Allocating a paradigm to a 
competency center, e.g. 
multi-agent approach, 
adaptive rough granular 
approach, etc. This does 
not mean that at a given 
competency center only and 
exclusively this method 
will be developed. On the 
contrary, it is assumed 
that every competency 
center will develop hybrid 
solutions combining various 
approaches. At the same 
time, a competency center 
will particularly strongly 
develop aspects relating to 
the paradigms allocated to 
this center.  

Fig. 12. Six stages of the Carnegie Mellon Capability Maturity Model

be independent of any specific application domain. At the same time, function-
ality of the universal wisdom engine should enable the configuration and tuning
of modules for it in the form of a series of products dependent on specific appli-
cation domains such as, e.g., medicine, economics, stock market, forex market,
security, law, tourism, telecommunications, banking, job market. In particular
universal wisdom engine should be able to learn domain knowledge by reading,
discussing with experts and gathering wisdom from experience. Of course, the
design and implementation of a universal wisdom engine is an extremely difficult
task and probably unrealistic today in a short term. First of all, we have to do
some experiments with several application domains and several different para-
digms for wistech implementation. Based on an analysis of the results of such
experiments we can create a more general wistech ontology which should provide
a better formal framework for the implementation of a universal wisdom engine.
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REPEATABLE 

 

Establishing the principles for 

selecting good practices 

specific for the implementation 

of a project in wistech, 

designed to repeat the 

successes of projects realized 

in similar conditions and to 

avoid failures. Establishing 

the list of first conditions 

and criteria used to compare 

the quality of various 

approaches to wistech. 

 

Establishing the mutually tied 

objectives to achieve at the 

individual competency centers 

in order to verify the 

effectiveness and 

possibilities of developing 

various approaches. 

DEFINED 

 

Putting in writing and the 

effective implementation of a 

list of joint standards for 

organization and management of 

projects specific to wistech, 

that will be binding for the 

WTN community. 

Starting up the first projects 

realized in the common 

standards by a variety of 

centers within the WN 

MEASURABLE 

 

Enhancing the standards arising 

at the previous stage to 

include sets of measurable 

indices used to verify and 

optimize the benefits to costs 

of wistech projects. 

 

Starting up mechanisms for 

competitiveness between 

communities working on various 

approaches to wistech in the 

network.  

CONTINUOUS 

IMPROVEMENT 

 

Enhancing the standards and 

indices defined at the 

MEASURABLE stage to set out in 

writing and effectively 

implement procedures for 

continuously improving the 

functioning of WN. 

 

Developing the optimum methods 

for harmonious co-operation 

between WN and commercial 

companies.  

Fig. 13. Six stages of the Carnegie Mellon Capability Maturity Model (continued)

Thus, it is assumed that in parallel with the work on a universal concept of a
wisdom engine, work would also be conducted on utilizing the wisdom engine
in selected areas of application, e.g., medicine, economics, stock market, forex
market, security, law, tourism, telecommunications, banking, or job market. The
long-term vision is as follows: “wisdom engineers” will receive the task to create
the configuration for the wisdom engine for applications in a specific field of life,
and then, after having carried out the necessary analytical and design work, to
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configure the wisdom engine and to enter the necessary initial data. The wis-
dom engine should have properties for self-growth and adaptation to changing
conditions of its environment, as well as advances in wisdom in the fields of
application. This is why one should strongly emphasize the planned property of
automatic adaptation of the system – a feature not taken into account in the
construction of the numerous systems in the past that were intended to per-
form similar tasks. A classic example here is the long-standing MYCIN project
implemented by Stanford University.

The implementation of the idea expressed by the wisdom equation is very
difficult and it would be unreasonable to expect its full implementation in a
short period of time. We assume that the creativity cycle for the first prod-
uct prototypes implementing this concept would take several years of intensive
work with cooperation of product managers, scientists, engineers, programmers
and domain experts. On the other hand, it is not desirable to implement such
long projects without any clear interim effects. This is why we assume that the
wisdom engine implementation project would go through several phases. For ex-
ample, initially we assume they will go through five phases in the implementation
of the wisdom engine. We propose a route, to achieving the target wisdom en-
gine products through continuously improving intermediary products that meet
successive expansions in functionality. The five phases are called as follows:

1. Summary,
2. Spider,
3. Conceptual Clustering and Integration,
4. Wisdom Extraction,
5. Wisdom Assistant.

The effect of each of these phases will be a prototype product that after
acceptance would be interesting for the WN community.

Stated in simple terms the functional effects of the individual phases would
be as presented in Figure 14.

4.2 Examples of Wisdom Engine Domain-Dependent Product Lines

The above five phases (i.e., Summary, Spider, Conceptual Clustering and In-
tegration, Wisdom Extraction, and Wisdom Assistant) should be applied to
several directions for potential product lines which would be developed in the
WN. Of course, it can theoretically be any product relating to applications in
robotics, unmanned aircraft, space rockets, etc. However, if we wish to have as
many people as possible cooperating in the WN, then the product lines must be
chosen so that experimenting with them does not prove expensive. On the other
hand, these product lines must be sufficiently attractive so as to interest as many
people as possible. We propose that these product lines relate to applications
in such areas as medicine, economics, the stock market, forex market, security,
law, tourism, telecommunications, banking, job market and others.

The list of products that could be expanded in accordance with the above
scheme is potentially unlimited. The proposals for the descriptions of specific
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Phase Summary Spider Conceptual 
Clustering 
and 
Integration 

Adaptive Wisdom 
Extraction 

Adaptive 
Wisdom 
Assistant 

Key 
functions 

key 
concept 
extraction 

document 
searching 
related to 
key concept 
and indexing 
documents 

document 
clustering 
based on key 
concept and 
Integration 

extracting data 
structures, information 
structures,  knowledge 
structures and adaptive 
wisdom structures from 
documents, in 
particular generating 
thesauruses, conceptual 
hierarchies and 
constraints to 
acceptable solutions 

user query / 
answering 
processing 
in order to 
support 
users in 
solving 
their 
problems as 
effectively 
as possible 

Fig. 14. Functional effects of the individual phases

Phase/Product Summary Spider Conceptual 
Clustering 

Wisdom 
Extraction 

Wisdom 
Assistant 

Document 
Manager 

Document 
Summary 

Document 
Spider 

Document 
Conceptual 
Clustering 

Document 
adaptive 
wisdom 
Extraction 

Document 
adaptive wisdom 
Assistant 

Job Market Job Market 
Summary 

Job Market 
Spider 

Job Market 
Conceptual 
Clustering 

Job Market 
adaptive 
wisdom 
Extraction 

Job Market 
adaptive wisdom 
Assistant 

Brand 
Monitoring 

Brand 
Monitoring 
Summary 

Brand 
Monitoring 
Spider 

Brand 
Monitoring 
Conceptual 
Clustering 

Brand 
Monitoring 
adaptive 
wisdom 
Extraction 

Brand 
Monitoring 
adaptive wisdom 
Assistant 

World 
Communication 

World 
Communication 
Summary 

World 
Communication 
Spider 

World 
Communication 
Conceptual 
Clustering 

World 
Communication 
adaptive 
wisdom 
Extraction 

World 
Communication 
adaptive wisdom 
Assistant 

World Forex World Forex 
Summary 

World Forex 
Spider 

World Forex 
Conceptual 
Clustering 

World Forex 
adaptive 
wisdom 
Extraction 

World Forex 
adaptive wisdom 
Assistant 

World Stock 
Market 

World Stock 
Market 
Summary 

World Stock 
Market Spider 

World Stock 
Market 
Conceptual 
Clustering 

World Stock 
Market 
adaptive 
wisdom 
Extraction 

World Stock 
Market adaptive 
wisdom 
Assistant 

World Tourist World Tourist 
Summary 

World Tourist 
Spider 

World Tourist 
Conceptual 
Clustering 

World Tourist 
adaptive 
wisdom 
Extraction 

World Tourist 
adaptive wisdom 
Assistant 

Physician Physician 
Summary 

Physician 
Spider 

Physician 
Conceptual 
Clustering 

Physician 
adaptive 
wisdom 
Extraction 

Physician 
adaptive wisdom 
Assistant 

Lawyer Lawyer 
Summary 

Lawyer Spider Lawyer 
Conceptual 
Clustering 

Lawyer 
adaptive 
wisdom 
Extraction 

Lawyer adaptive 
wisdom 
Assistant 

Economy 
Monitoring 

Economy 
Monitoring 
Summary 

Economy 
Monitoring 
Spider 

Economy 
Monitoring 
Conceptual 
Clustering 

Economy 
Monitoring 
adaptive 
wisdom 
Extraction 

Economy 
Monitoring 
adaptive wisdom 
Assistant 

Fig. 15. Proposed products

products, included in the later part of this report, should be treated as flexible
and primarily constitute material for discussion, and not a final decision. On the
other hand, the list of products described is not entirely accidental in nature.
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/
 

 
P
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Summary Spider Conceptual 
Clustering 

Adaptive Wisdom 
Extraction 

Adaptive Wisdom 
Assistant 

 
 
 
 
 
 
 
 
 
D
o
c
u
m
e
n
t
 
M
a
n
a
g
e
r
 

automatic 
summarizing 
of a document 
and groups of 
documents, 
the contents 
of which are 
not connected 
with any 
specific 
field 

automatic 
searching and 
downloading 
of any 
documents 

conceptual 
clustering of 
documents on 
any subject  

extracting data 
structures, 
information 
structures,  
knowledge 
structures and 
adaptive wisdom 
structures from 
documents, in 
particular 
generating 
thesauruses, 
conceptual 
hierarchies and 
constraints to 
acceptable 
solutions in 
any domain 

general user 
query / 
answering 
processing in 
order to 
support users 
in solving 
their problems 
as effectively 
as possible 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
J
o
b
 
M
a
r
k
e
t
 

automatic 
summarizing 
of a document 
and groups of 
documents 
relating to 
job market, 
carried out 
from the 
perspective 
of the 
following 
groups of 
users: 
potential 
employers and 
potential 
employees  

automatic 
searching and 
downloading 
of documents 
relating to 
job market, 
carried out 
with 
particular 
emphasis on 
the needs of 
the following 
groups of 
users: 
potential 
employers and 
potential 
employees 

conceptual 
clustering of 
documents 
relating to 
job market 
with 
particular 
emphasis on 
the specific 
nature of 
queries 
submitted by 
the following 
types of 
users:  
potential 
employers and 
potential 
employees 

extracting data 
structures, 
information 
structures,  
knowledge 
structures and 
adaptive wisdom 
structures from 
documents, in 
particular 
generating 
thesauruses, 
conceptual 
hierarchies and 
constraints to 
acceptable 
solutions in  
job market 
domain  

job market 
related to user 
query / 
answering  
processing in 
order to 
support users 
in solving 
their problems 
as effectively 
as possible 
 

Fig. 16. Functionality of individual products

This is because they form a certain logical continuity, connected both with the
degree of difficulty in successive products and current preferences resulting from
the previous experiences of the human resources that would be engaged to carry
out the work on individual products. The initial selection of product lines is as
follows:

– Document Manager,
– Job Market,
– Brand Monitoring,
– World Communication,
– World Forex,
– World Stock Market,
– World Tourist,
– Physician,
– Lawyer,
– Economy Monitoring.
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Summary Spider Conceptual 
Clustering 

Adaptive Wisdom 
Extraction 
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Assistant 

 
 
 
 
 
 
 
 
 
 
 
 
 
B
r
a
n
d
 
M
o
n
i
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n
g
 

automatic 
summarizing 
of a document 
and groups of 
documents 
relating to 
brand, 
carried out 
from the 
perspective 
of the 
following 
groups of 
users: brand 
owners,  
detectives 
looking for 
frauds, 
buyers  

automatic 
searching and 
downloading 
of documents 
relating to 
brand, 
carried out 
with 
particular 
emphasis on 
the needs of 
the following 
groups of 
users: brand 
owners,  
detectives 
looking for 
frauds, 
buyers 

conceptual 
clustering of 
documents 
relating to 
brand with 
particular 
emphasis on 
the specific 
nature of 
queries 
submitted by 
the following 
types of 
users: brand 
owners,  
detectives 
looking for 
frauds, 
buyers 

extracting data 
structures, 
information 
structures,  
knowledge 
structures and 
adaptive wisdom 
structures from 
documents, in 
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Fig. 17. Functionality of individual products (continued)

This initial selection for the product list generates several dozen of products
that would be the effect of work on the individual phases of implementing each of
the products, i.e., Summary, Spider, Conceptual Clustering, Wisdom Extraction,
Wisdom Assistant. We present the proposed products in Figure 15.

The scope of the program described in this paper should be considered as
dynamic and more as a basis for further discussion than a final version of the
specific definitions of the projects. This is why the innovative ideas presented
and the vision for their implementation do not contain any detailed cost benefits
analysis. It will only be possible to specify revenues, costs and cash flow forecasts
with any accuracy after the planned scope of work and the role of the WN has
stabilized. As there are as yet no final decisions on the scope of operations
or role of the WN, this means that at the current stage it is impossible to
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precisely estimate the planned requirements for human resources. This is why in
this document we present only the general human resources requirements and a
description of the general mechanisms for acquiring these resources to implement
WN.

Each of these products would have their own individual functionality which
would result from adapting the wisdom engine to the specific characteristics of
their specialist fields. Figure 16 and Figure 17 show the functionality of the
individual products.

5 Conclusions

We have discussed the main features of wistech and its importance for further
progress in the development of intelligent systems. The proposed approach is
based on Rough Granular Computing (RGC).

One of the central problems of science today is to develop methods for approx-
imation of compound vague concepts and approximate reasoning about them
[32,81].

Today, we do not have yet satisfactory tools for discovery of relevant pat-
terns for approximation of compound concepts directly from sample objects.
However, we have developed methods for compound concept approximation us-
ing sample objects and domain knowledge acquired from experts (this is the
approach pioneered by Zdzis�law Pawlak in [73]). The performed experiments
based on approximation of concept ontology (see, e.g., [3,5,6,7,8,22,68,69,70],
[78,79,93,94,95,98,99], [100,101,102,105,106]) showed that domain knowledge en-
ables to discover relevant patterns in sample objects for compound concept
approximation. Our approach to compound concept approximation and ap-
proximate reasoning about compound concepts is based on the rough-granular
approach.

One of the RGC challenges is to develop approximate reasoning techniques
for reasoning about dynamics of distributed systems of judges. These techniques
should be based on systems of evolving local perception logics rather than on
a global logic [94,95]. Approximate reasoning about global behavior of judges’
system is infeasible without methods for approximation of compound vague con-
cepts and approximate reasoning about them. One can observe here an analogy
to phenomena related to the emergent patters in complex adaptive systems [21].

Let us observe that judges can be organized into a hierarchical structure, i.e.,
one judge can represent a coalition of judges in interaction with other agents ex-
isting in the environment [2,56,62]. Such judges representing coalitions play an
important role in hierarchical reasoning about behavior of judges’ populations.
Strategies for coalition formation and cooperation [2,62,64] are of critical impor-
tance in designing systems of judges with dynamics satisfying to a satisfactory
degree a given specification. Developing strategies for discovery of information
granules representing relevant (for the given specification) coalitions and coop-
eration protocols is another challenge for RGC.
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RGC will become more and more important for analysis and synthesis of the
discussed compound adaptive processes.The impact of RGC on real-life applica-
tions will be determined by techniques based on the rough-granular approach to
modeling of relevant computations on compound information granules and meth-
ods for approximate reasoning about complex adaptive processes over such in-
formation granules. RGC techniques for modeling of complex processes will also
have impact on the development of new non-conventional computation models.
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Abstract. This research study presents rough set-based decision sys-
tems applications to the acoustical domain. Two areas are reviewed for
this purpose, namely music information classification and retrieval and
noise control. The main aim of this paper is to show results of both mea-
surements of the acoustic climate and a survey on noise threat, conducted
in schools and students’ music clubs. The measurements of the acoustic
climate employ multimedia noise monitoring system engineered at the
Multimedia Systems Department of the Gdansk University of Technol-
ogy. Physiological effects of noise exposure are measured using pure tone
audiometry and otoacoustic emission tests. All data are gathered in de-
cision tables in order to explore the significance of attributes related
to hearing loss occurence and subjective factors that attribute to the
noise annoyance. Future direction of experiments are shortly outlined in
Summary.

1 Opening Thoughts

Before introducing the particular topic of research presented in the paper, I
would like to share a few thoughts. This Section is devoted to some personal
aspects of the research carried out by the author for many years. It concerns
the fascination of the rough set methodology and the philosophy that lies be-
hind it, and also (or rather in the first place) the fascination of the rough set
method creator, Professor Zdzislaw Pawlak [34,37]. His personality stands out
very clearly amongst other researchers. It happened that his plenary talk I’ve
listened to on the occasion of the 2nd International Conference on Rough Sets
in Banff guided me toward new interests, namely the applications of decisions
rule-based systems which are formidably fitted for uncertainty so often found
in acoustics and its analysis. From this time on, we have met many times
on various occasions, and I was always inspired by his presentations that led
me into new directions and horizons. Professor Pawlak was a mentor to me
and I benefited greatly because he was very kind to write Foreword for my
two books showing his interest in the research carried out by me and my col-
leagues. These books perhaps would not happen without his wise patronage.
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This is very valuable to me and I will be always grateful to him. Altogether
within the rough set society, a clear interest appeared to pursue the rough
set-acoustic applications [7,21,22], especially the domain of music evoked many
research studies [2,3,8,9,12,13,16,17,18,21,22,23,24,25,29,30,31,40,41,42,43]. For
some years now, many researches have published in the joint area of rough
sets and acoustic/music, thus some of these names being recalled in References.
Lately, also Chinese and Korean contributors to this domain appeared. As a
result of the interest in this area a new domain of applications emerged, which
focuses on interests such as musical instrument recognition based on timbre
descriptors, musical phrase classification based on its parameters or contour,
melody classification (e.g. query-by-humming systems), rhythm retrieval (differ-
ent approaches), high-level-based music retrieval such as looking for emotions
in music or differences in expressiveness, music search based on listeners’ pref-
erences, and others. One may also find research studies which try to correlate
low-level descriptor analysis to high-level human perception.

The semantic description is becoming a basis of the next web generation, i.e.,
the Semantic Web. Several important concepts have been introduced recently
by the researchers associated with the rough set community with regard to se-
mantic data processing including techniques for computing with words [20,33].
Moreover, Zdzislaw Pawlak in his papers [35,36] promoted his new mathematical
model of flow networks which can be applied to mining knowledge in databases.
Such topics are reflected also in papers that followed Prof. Pawlak’s original idea
on flow graphs [9,26].

Studies performed on the verge of two domains: soft computing (and partic-
ularly rough sets) and acoustics enabled the author to apply for many research
grants and many of these projects have been successfully awarded. Once again,
the current research is also a good example of the need for employing decision
systems to the area which at first glance seems far away from the soft computing
interests.

2 Introduction

This paper deals with a particular topic which is noise threat-related. As indi-
cated in numerous reports, noise threats occur very frequently nowadays. Occu-
pational exposure limits (OELs) for noise are typically given as the maximum
duration of exposure permitted for various noise levels. Environmental noise
regulations usually specify a maximum outdoor level of 60 to 65 dB(A), while
occupational safety organizations recommend that the maximum exposure to
noise is 40 hours per week at 85 to 90 dB(A). For every additional 3 dB(A), the
maximum exposure time is reduced by a factor of 2, e.g. 20 hours per week at 88
dB(A). Sometimes, a factor of 2 per additional 5 dB(A) is used. However, these
occupational regulations are recognized by the health literature as inadequate
to protect against hearing loss and other health effects, especially for sensitive
individuals, adverse subjective effects might be expected to appear earlier than
for others [4,5,38].
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The background of this study is the fact that younger and younger people
experience a noticeable loss in hearing. In previous decades a procedure was
established within the audiology field, that a group of young males of the age
between 18-21 could constitute a reference group for hearing measurements.
However, during the last decade numerous studies have shown that this state-
ment is no longer valid. Also, hearing characteristics of students measured during
psychoacoustic laboratory sessions at the Multimedia Systems Department have
shown that students of this age typically have a threshold shift at 6 kHz. On
average, this accounts to 20 dB HL (hearing loss), which is for this age rather
unexpected taking into account that students that have any history of ear ill-
nesses were excluded from the experiments. That is why the starting point is to
look for the causes of loss in hearing in younger groups of population.

The study aimed at showing results of a survey on noise threat which was
conducted in schools and students’ music clubs. Noise has an enormous impact
on health and life quality of human beings. Noise pollution in Poland is greater
than in others UE countries, moreover recently it has been reported to be on the
increase [14]. Taking into account the European 2002/49/WE directive related to
the control and assessment of environmental noise, monitoring of these threats
becomes a necessity [38]. That is why a thorough study on many aspects of
noise was envisioned and is carried out for some time at the Multimedia Systems
Department [6,10,27,28].

First of all, measurements of the acoustic climate that employed telemetry
stations for continuous noise monitoring engineered at the Multimedia Systems
Department were conducted. Also, physiological effects of noise were measured
among pupils and students. Hearing tests were performed twice, before and after
the exposure to noise. For this purpose a so-called distortion product otoacoustic
emission method (DPOAE) was utilized. As derived from numerous studies,
otoacoustic emission is treated as an early indicator of the occurrence of hear-
ing loss for which reason this method was chosen. The obtained results of noise
measurements revealed that an unfavorable noise climate was found in examined
schools and music clubs. This was also confirmed by the results of a subjective
examination. For the latter purpose students and pupils filled in a questionnaire
expressing their feelings as to noise presence and its annoyance. The noise dose
analysis based on average time spent by pupils in schools was also calculated. It
revealed that noise in schools did not constitute a risk to the pupils’ hearing sys-
tem, however, it may be considered as an essential source of annoyance. On the
other hand, noise in music clubs surpassed all permitted noise limits, thus could
be treated as dangerous to hearing. Hearing tests revealed changes in the cochlea
activity of examined students, also the Tinnitus (ringing in the ear) effect was
experienced temporarily. In addition, noise annoyance and noise threat criteria
and analysis were proposed and verified based on the acquired and analyzed data.

All factors recognized in the study constitute the basis of two types of decision
tables that were created. The first one consists of the attributes derived from
the measurements and calculation of the noise dose, also the presence or absence
of the Tinnitus (ringing in the ear) effect is included in this table. The second
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decision table gathers data from the survey on noise annoyance. The conditional
attributes are subject-driven in this case. Examples of the questions included in
this survey are shown in the following sections. The paper aims at showing that a
complex and thorough study may lead to better understanding of noise threats
and the correlation between the measurement data and the survey responses
concerning noise annoyance. Another aim is to show that current regulations are
not adequate to predict PTS (Permanent Threshold Shift) early. Finally the data
dependency is analyzed, in the reduced database, to find the minimal subset of
attributes called reduct. The analysis of collected data is done by employing the
rough set decision system.

3 Multimedia Noise Monitoring System

The MNMS (Multimedia Noise Monitoring System), developed at the Multi-
media Systems Department of the Gdansk University of Technology enables to
proceed with the environmental noise measurements in cities on an unparalleled
scale now. In general, the MNMS consists of a central database which serves
as a repository of measurement results, and numerous equipment tools which
execute noise meter functions. One of the proposed devices is a mobile noise
monitoring station. The station realizes all measuring functions typical for a
sound level meter. It also includes special solutions for long-term measurements
and introduces a new type of noise indicators. The application of wireless data
transmission technology enables to send data to the server and to remotely con-
trol the performance of the station. Since this subject was already published [6],
thus its main features are only outlined above.

4 Noise and Hearing Measurements

The noise measurement results, obtained by means of the MNMS, are presented
below. The measurements were done in selected schools, musical clubs, and dur-
ing a musical band rehearsals. Participation in music bands concerts and staying
in students’ clubs are a common way of entertainment amongst students. This
is why the investigation was carried out also in these locations. The acquired
data were utilized to perform the noise dose analysis. This is done to determine
the noise exposure of a person staying in the considered places. In selected cases
(i.e. schools and musical clubs), the noise dose analysis was expanded by the as-
sessment of hearing. To achieve this, a so-called distortion product otoacoustic
emission (DPOAE) measurement and pure tone audiometry were applied. Hear-
ing was examined twice. First, directly before the exposure to noise of a given
type, and then immediately after. The performed analysis combined the obtained
noise and hearing measurement results.

Hearing examinations employed the DPOAE method using GSI 60 DPOAE
system. The following parameters of the stimuli were used during tests: L1 equals
65 dB, L2 equals 55 dB, f2/f1 = 1.2, DP frequency (geometric mean): 1062, 1312,
1562, 1812, 2187, 2625, 3062, 3687, 4375, 5187, 6187, 7375 Hz. A DP signal level
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and a noise floor for every stimuli were registered. The test result was accepted
if the difference between the evoked otoacoustic emission signals and the noise
floor was not less than 10 dB. For pure tone audiometry only selected frequencies
were examined: 1000, 1500, 2000, 3000, 4000, 6000, 8000 Hz. The stimuli for each
frequency were presented starting from the minimal loudness. The reason of such
a selection of parameters was because the noise impact on the hearing system is
the strongest for middle and high frequencies. The test was carried out in rooms
specially adapted for this purpose. Some measurements performed in schools
were interfered with sounds coming from adjoining rooms.

Typical response to stimuli is shown in Figure 1. The DP otoacoustic response
was found at 3187 Hz, and because the difference between the noise level and
DP signal is larger than 10 dB, thus this measurement is accepted.

Fig. 1. Example of the DPOAE analysis

The following noise parameters LAFmin, LAeq, LAmax (see the Equation and
definitions below) were measured independently over broadband and in one-third
octave bands. A histogram of time history of LAF instantaneous levels was also
calculated. A measuring microphone was located 1.9 m above the floor level for
every measurement. For all measuring series, a place where people gather most
often was selected. This was to determine correctly a real noise dose to which
they were exposed.

Leq = 10 log
1
N

N∑
i=1

100.1·LAdBi (1)

where:
Leq– A-weighted equivalent continuous noise level,
N –number of LAdBi values,
LAdBi – A-weighted instantaneous sound levels,
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On the other hand, LAFmin, LAFmax denote the lowest and highest
A-weighted sound levels for fast time weighting that occurred during the mea-
surement.

4.1 Noise Dose Analysis

The evaluation of both the occupational noise exposure and the risk of developing
a permanent hearing loss that may result from the noise exposure are shown in
Fig. 2.

Fig. 2. Evaluation of the occupational noise exposure (LEX,8h(D) – daily noise expo-
sure level, LAmax – maximum sound level in working conditions, LCpeak – peak sound
level)

The presented evaluation of the occupational noise exposure and the risk
of developing a permanent hearing loss is based on noise regulations [4]. The
regulations recommend a limit for occupational noise exposure of 85 decibels,
A-weighted, as an 8-hour time-weighted average [85 dBA as an 8-hr TWA]).
This enables to evaluate whether occupational noise may cause hearing loss,
and (or) whether personal a hearing protector (i.e. earmuffs, formable earplugs,
earplugs, etc.) is required. The A filter is a weighting curve which approximates
equal loudness perception characteristics of the human hearing for pure tones
with reference to 40 dB SPL at 1 KHz. It is worth noticing that this curve was
established for pure tones, and a potential noise is typically broadband, which
means that A-weighting may not provide the best estimate of potential noise-
induced hearing loss. The formal definition of the noise dose defines the dose as
the amount of actual exposure relative to the amount of allowable exposure, and
for which 100% and above represents exposures that are hazardous. The noise
dose is calculated according to the following formula:
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D = [C1/T1 + C2/T2 + ... + Cn/Tn]100% (2)

where D is a dose in the allowable percent, Cn refers to the total time of exposure
at a specified noise level, and Tn denotes the exposure time at which noise for
this level becomes hazardous. This definition allows to calculate a TWA (Time-
weighted average) from a Noise Dose:

TWA = 90 + 16.61log(D/100) (3)

where TWA is the 8-hour time-weighted average noise exposure, and D denotes
the dose.

Unfortunately, the definition given above is arguable since other formulas of
the TWA are also known.

The above regulations are recalled before the noise dose calculated for this
study is presented, because it is to show that the norms may not provide the
best estimate of the potential occurrence of the permanent hearing loss. One
may find also such conclusions in many research studies [1,15,11,32,39].

Time of the noise exposure for the presented activities is much longer in real
conditions than in a time-controlled experiment. A simple survey that included
questions about how long pupils/students stay in clubs, play or listen to loud
music, stay in school, etc. was also carried out. On the basis of the answers, an
average time of the exposure for different type of activities was specified. The
total time of the noise exposure in schools, clubs and rehearsing musicians’ is
respectively equal to 3600 s, 13500 s, and 5400 s. Based on the assumption that
in the indicated places the noise climate is the same, it is possible to obtain the
noise dose for people staying in these places. The noise dose for school amounts
to not more than 26%, for rehearsing in a musical band to 673%, for club No.1
- 506% and for club No. 2 - 1191% of the daily dose.

4.2 Noise Investigation Results

The obtained noise measurement results are presented in Table 1. Noise inves-
tigation was performed in three different schools. They differed from each other
in the age of the pupils. The youngest pupils attended a primary school (school
No. 1). The second school was for children between the age of 13 and 15. The
third school was a high school attended by the youth aged from 16 to 19. The
biggest noise occurred at the primary school. This is because small children are
the main source of noise in schools. They behave extremely vigorously at this
age. This entailed a very high noise level. In this school, additional source of
noise was loud music played from loudspeakers. In high school No. 3 the noise
was produced by loud conversations. It should also be mentioned that in all in-
vestigated schools there was no sufficient absorption materials covering walls and
ceilings, which fact further increased sound level. The fourth measuring series
was done during a rehearsal of a small students’ music band. The band consisted
of a drummer, a bass player and a keyboard player. This measurement revealed
high dynamics of noise level. This is because the musicians often paused and
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Table 1. Noise measurement results. Time of noise exposure is expressed in seconds,
noise levels in dB and noise dose in per cent of allowed daily noise dose.

Measurem. No. Exposure LAF min LAeq LAF max Exposure Time Noise Dose

1 School No. 1 67.4 89.0 105.5 600 5.2

2 School No. 2 67.2 85.5 106.8 900 3.5

3 School No. 3 72.0 83.6 97.4 600 1.5

4 Music band 52.5 100.5 114.4 4058 506.1
5 Club No. 1 76.2 95.3 108.2 4529 169.9

6 Club No. 2 68.9 99.0 114.2 5330 470.0

Fig. 3. LAF histogram measured during lessons

Fig. 4. LAF histogram measured during breaks

consulted each. The 5th and 6th measurement series were carried out in two
students’ clubs. They differed in the type of music. In the first club a pop music
was dominating, while in the second only rock was played. The results of the
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noise dose analysis for the measured time exposures are presented in Table 1.
Figures 3 and 4 show histograms measured during lessons and breaks in schools.

The breaks were 15 minutes long. The results of noise measurements during
two breaks were similar (see Fig. 4). Leq for the breaks was approx. 85dB. Sounds
louder than 90 dB appeared at 3-4% of measured time span, however a noise level
of 122 dB was also registered. On the other hand, noise during lessons turned
out to be less annoying, Leq equaled to 62 dB. In all examined places, a very
high noise level was observed. Staying for a long time in places such as music
clubs, discotheques, etc. where noise level reaches the values shown in Table 1,
can be hazardous to hearing (i.e. may produce a permanent threshold shift).

4.3 Hearing Measurement Results

Several dozens of persons took part in the presented hearing tests. The total
number of people examined for different types of exposure is presented in Table 2.
Table 2 also includes the results of average changes of a hearing threshold (pure
tone audiometry), and the results of the DPOAE tests. The average changes of a
hearing threshold after the exposure to noise for individual frequencies obtained
for pure tone audiometry are presented in Table 3. Two different aspects were
taken into consideration while analyzing the DPOAE results. First, the number

Table 2. Results of hearing testing (in [%])

Pure tone audiometry DPOAE test results

Measurem.
No.

No. of
persons

Decrease of
threshold

Increase of
threshold

No
change

No. of
persons

+Pass -Pass No
change

1 - - - - 10 11.0 13.6 75.4

2 - - - - 5 10.0 19.2 70.8

3 - - - - 5 3.3 12.5 84.2

4 9 21.4 37.3 41.3 9 5.1 11.6 83.3

5 10 14.3 62.9 22.8 11 3.4 10.6 86.0

6 12 12.5 75.0 12.5 12 4.5 20.5 75.0

Table 3. The average changes of hearing threshold for pure tone audiometry (in [dB])

Type of noise exposure 1000 1500 2000 3000 4000 6000 8000

Music band

L 2.8 0.0 2.2 2.2 3.3 1.7 1.1
R 0.0 -1.1 1.1 0.6 2.2 3.3 0.5
AVG 1.4 -0.6 1.7 1.4 2.8 2.5 0.8

Club No. 1

L 2.5 6.5 7.5 10.5 11.5 5 1
R -1.5 3 7 10.5 10.5 5.5 3.5
AVG 0.5 4.75 7.25 10.5 11.0 5.25 2.25

Club No. 2

L 2.9 6.7 8.8 10.4 15.9 12.1 -1.7
R 3.8 6.7 10.0 12.1 12.9 10.8 0.8
AVG 3.3 6.7 9.4 11.3 14.4 11.5 -0.4
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Table 4. The average changes of DP signal level for particular types of exposures (in
[%])

Measurement No. 1 2 3 4 5 6
Increase 30.3 27.5 36.7 25.0 27.3 16.3

Decrease 28.1 30.0 34.2 44.4 45.4 53.5
No change 41.6 42.5 29.1 30.6 27.3 30.2

of “passed” and “failed” tests for the DPOAE examination were determined. The
result of the first examination served as reference. The symbol “+Pass” indicates
that a pupil failed the first examination and passed the second one. The symbol
“–Pass” signifies a reverse situation (a test passed in the first examination and
failed after the exposure to noise). The results are presented in Table 2, in the
“DPOAE test results” column. The second kind of analysis determined how the
DP signal level changed under the influence of the exposure to noise. The results
of this analysis are presented in Table 4.

As seen from the tables, in most cases the hearing threshold was increased.
It means that almost every person had a TTS after noise exposure. Also some
people reported the perception of the Tinnitus effect as well. The most signifi-
cant TTS occurred for 4000 Hz. The data obtained from DPOAE tests confirm
negative after-effects of the noise exposure analysis acquired by means of pure
tone audiometry.

5 Psychophysiological Noise Dosimeter

Methods of the estimation of noise-induced hearing loss presented in this paper
are based mainly on the equal energy hypothesis [5]. This approach focuses on
an assessment of the quantity of energy which affects the hearing system. The
time characteristics of noise is neglected, and the main emphasis is placed on the

Fig. 5. General scheme of the psychophysiological noise dosimeter
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assessment of the equivalent sound level value. However, in many cases this ap-
proach could be insufficient. The analysis of numerous literature data, including
testing of the exposure to noise from different sources, provides a knowledge that
time characteristics and noise spectrum have an essential significance in gener-
ating loss in hearing [1,11,15]. Taking these data into consideration, a method
of estimating the risk of hearing impairment has been proposed by J. Kotus,
the author’s Ph.D. student. The proposed model is based on a modified John-
ston’s psychoacoustical model [19], which provides a global distribution of a
basilar membrane deflection within critical bands. In Figure 5, a scheme of the
psychophysiological noise dosimeter is presented.

The model is based on the analysis of a basilar membrane’s answer to noise in
critical bands. First, the power spectrum of noise is determined. Afterwards, it is
corrected by taking into account the transition from the outer to the inner ear.
Subsequently, particular spectrum coefficients are grouped into critical bands,
according to the bark scale. Then the noise level in particular critical bands is
calculated. The result let us assess the extent to which the basilar membrane is
stimulated. Its answer is determined by the multiplication of the instate stimula-
tion level value by the characteristics of hearing filters for the particular critical
band. A basilar membrane displacement value obtained in this way is expo-
nentially averaged. This action reflects the inertia of the processes occurring in
the inner ear. The obtained averaged values are used for the assessment of the
asymptotic hearing threshold shift. Finally, these values are subjected to expo-
nential averaging, that reflects a process of the hearing threshold shift. Therefore
this model enables to assess TTS in critical bands and the recovery time of a
hearing threshold to its initial value. The model enables to determine the hearing
threshold shift for a given noise during the exposure.

The initial simulation for two selected noise exposures was done (series 4 and
6). A theoretical time series of noise was created based on the histogram of
the LAF levels. The obtained TTS levels for a particular measurement series
amounted to: TTS = 13.5 dB (measurement No. 4), and TTS = 18.5 dB (mea-
surement No. 6). A comparison of the noise exposure for series 4 and 6 has shown
that the time characteristic of noise influences the occurrence and level of the
TTS. The results obtained through the use of the presented model, confirmed a
greater TTS for the 6th exposition (club No. 2). Overall, this confirms harmful
effects of noise.

6 Survey on Noise Annoyance

An objective noise measurement was extended by a subjective measurement
by means of a dedicated survey. The survey consisted of three parts. The first
part involved getting information such as age, sex, class, school. The second
part included questions about noise in places of residence and exposure to noise
related to musical preferences. The last part concentrated on noise climates in
schools in typical circumstances (lessons, breaks, etc.). In the following Figures
(Figs. 6-10) some sample results are shown.
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Fig. 6. Main type of noise sources in the neighborhood during day and night

Fig. 7. Subjective evaluation of noise annoyance during day (CL – comfortable)

Fig. 8. Subjective evaluation of noise annoyance during night

Main type of noise sources in the neighborhood
As seen in Figure 6 the main sources of noise during day and night are commu-
nication and the neighborhood. They constitute 60% of all noise sources. On the
other hand, industrial noise does not present a threat to the place of living.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



The Domain of Acoustics Seen from the Rough Sets Perspective 145

Subjective evaluation of noise annoyance
Overall, 8 % of asked pupils evaluated their place of living as quiet, 40% said
that the neighborhood is either too loud or loud. On the other hand, during the
night most places were evaluated as quiet, apart from special events occurring
during the night. It should be mentioned that 70% of our responders live in
towns or in close proximity to towns.

Subjective evaluation of noise annoyance in schools
Almost 70% of pupils evaluate noise as too loud during breaks, and the remaining
30% as loud. As to noise evaluation during lessons pupils differ in their opinions.

Fig. 9. Subjective evaluation of noise annoyance during breaks

Fig. 10. Subjective evaluation of noise annoyance during lessons

Evaluation of noise sources related to personal way of living
In addition, pupils were asked how often they listen to music and how loud this
music is, and also how often they use personal music players and listen to music
via headphones. It occurs that on average younger groups of pupils do not often
listen to loud music, contrarily to older pupils and students. The latter group
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also attends musical events very frequently. As a result, one may notice problems
with speech understanding when noise is present, which in students’ subjective
opinions occurred in 50% of situations.

7 Data Analysis Employing Rough Sest

Regulations and gathered data enabled to define attributes that may provide
ways to assess the risk of developing PTS (Permanent Threshold Shift) and
noise annoyance.

Conditional attributes from the decision table (Table 5) are derived from
objective measurements and noise dose calculation. One of the attributes driven
more subjectively, namely the absence and presence of the Tinnitus effect after
the exposure to noise, is also taken into consideration. As mentioned before,
otoacoustic emission is treated as an early indicator of hearing loss, that is why
the DPOAE analysis should be included in the decision table. In a way the
decision table follows results included in Tables 1 and 2.

Another decision table (Table 6) includes answers gathered at schools based
on a questionnaire form published in the Internet (MNMS service [7]). The deci-
sion attribute are in this case noise annoyance/nuisance or noise threat. A legal
definition of a nuisance says that this is the noise that offends or upsets the
receiver because it is occurring at the wrong time, in the wrong place, or is of a
character that annoys due to excessive tonal components or impulses.

When looking at the table, one may expect that sensitivity to noise is more
frequent among children and increases with age. This could be explained by the
fact that small children get easily tired in noisy conditions, and on the other
hand, people active professionally prefer some rest after work, the same as older
people. This means that the age of the survey respondents’ should be taken into
consideration. Also, it is quite obvious that females are less noisy than males
while entertaining. When analyzing other attributes from Table 5 the relation
between them and the decision attribute is not always that clear, and since this
is a subjectively-driven questionnaire many contradictions may occur in the ac-
quired data. A good example of such a confusing attribute is ‘hearing’. Hearing
impairments of the inner ear are characterized by the so-called recruitment phe-
nomenon, thus people with the inner-ear hearing loss may suffer more in noisy
conditions. This means that they do not hear soft sounds, and perceive loud
sounds as too loud. This phenomenon is due to an abnormally rapid rise of the
loudness sensation with only a small increase in sound stimulus intensity.

In this early study, the survey did not include questions related to for example
social class, since it was directed at specific groups (pupils attending schools and
students). The observations and earlier researches on noise annoyance indicate
that these factors should also be taken into account.

All these factors constitute huge data, especially as the survey will be pro-
gressively filled in by the Internet respondents. This enables to consolidate data
on noise annoyance on a very large scale. The only way to analyze subjectively-
driven data is to use a soft computing approach, and particularly the rough set
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method which seems to be most suitable for this problem. The rough set-based
analysis of the decision tables enables to derive rules in which attributes and
their values support a claim that noise dose analysis based on average daily
exposure is not only insufficient to assess noise annoyance, but also to predict
the risk of permanent threshold shift early enough. There are a lot of data in
which we see noise events recalled by the survey respondents even if they live in
a quiet neighborhood with no evident source of noise during the day and night.
This means that they evaluate the noise annoyance or nuisance as high because
of noise events that happen sporadically and were of short duration. In such a
case, factors derived from the noise dose analysis will not exceed any norm or
regulations, but still these noise events may be highly stressful and harmful.

Table 5. Decision table based on measurements and calculation according to noise
regulations (denotation same as before, in addition: Ts denotes absence or presence of
the Tinnitus effect)

No. LAF min Leq LAF max Exposure Time . . . D DPOAE TTS Ts PTS
1 67.4 89 105.5 600 5.2 . . . YES YES NO
2 52.5 100.5 114.4 4058 506.1 . . . YES YES YES
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 6. Decision table based on survey (denotations: StoN – sensitivity to noise, H
– hearing, SC – social class, WP/S – type of work performed/school, SR/D – Survey
results/neighborhood day, SR/N – Survey results/neighborhood night, SR/NS – Survey
results/noise source, NE/AdNS – Noise events/additional noise sources, NA/N – noise
annoyance/nuissance)

No. Age Sex StoN H SC WP/S SR/D SSR/N SR/NS . . . NE/AdNS NA/N
1 41-50 M high good high educat. quiet quiet no . . . dogs HIGH
2 10-15 F high good NO high

school
noisy quiet road

traffic
. . . ambul.

siren
HIGH

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A rule prototype derived from the rough set-based analysis is presented below:

(attribute 1) = (val 1) ∧ ... ∧ (attribute k) = (val k) => (PTSY ES/NO) (4)

It should be mentioned that some of the numerical attributes require quanti-
zation, however in the case of the noise-related attributes the quantization should
be based on norms and standards. This means a process of replacing the original
values of the input data with for example the number of an interval to which a se-
lected parameter value belongs should be performed taking into account specific
constraints. For example, it is well-known that values of LAFmax, Leq, Exposure
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Time exceeding the limits for which these values start to be harmful constitute
the cut-points. It is obvious that after rule derivation not all attributes are to be
retained and some of the rules are not longer valid. Most important attributes
are to be found in reducts. Preliminary experiments show that amongst the most
significant attributes resulting from measurements one may find: LAFmax, Leq,
Exposure Time and TTS, though some of these parameters are interrelated, and
are eliminated in the rough set-based analysis, reducing the number of the cor-
related attributes. On the other hand, looking into the Decision Table based on
survey results, one may find that such attributes as: age of a person, specific
type of noise events, duration of these events, neighborhood noise background
are present in the evaluation of noise annoyance/nuissance.

Having the rough set analysis performed and rules derived based on both
approaches (objective and subjective), this may constitute a scientific basis of
an advertising campaign against noise pollution and its adverse consequences,
which in addition may contribute to better regulations on noise. This is why
noise monitoring stations should be installed in all agglomerations larger than
250,000 inhabitants in the coming year, thus both measurement quantities shown
in a form of noise maps and subjective opinions would be available for the same
place, in future. However, it is worth noticing that without changing our habits,
regulations may still be ineffective as seen from the survey.

8 Summary

To sum up, on the basis of the investigations, it was confirmed that noise climates
in schools is adverse to pupils’ and teachers’ health. The main reasons of the
high noise level in schools are: the behavior of pupils, loudspeaker systems and
low sound absorption of the classrooms and corridors. The data analysis of the
hearing measurements at schools does not confirm negative influence of noise on
the hearing system. Especially because the time of exposure to noise is too short
to produce measurable changes in the activity of the inner ear.

Noise measured during of the students’ music band rehearsals and in clubs
reaches very high levels and exceeds all related norms. Measurements of the hear-
ing characteristics of people working or entertaining in these places confirmed
harmful effects of noise. A significant TTS and the reduction of the DP level
were observed. A comparison of the noise exposure for series 4 and 6 has shown
that the time characteristic of noise influences the occurrence of the TTS. The
results obtained through the use of the presented model, confirmed a greater
TTS for the 6th exposition (club No. 2). In addition, the Tinnitus effect was
perceived by some students.

The data presented are very complex, interrelated, and in some cases contra-
dictory, thus for an adequate analysis they require the use of a decision system.
For this particular problem, it is thought that the rough set method is the most
suitable solution for the analysis, since it allows to derive rules/reduct capable
of identifying the most significant attributes. It is then possible to determine
the weights that should be taken into consideration when constructing a feature
vector.
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On the basis of the survey, it may be said that even if norms are not exceeded,
noise can be still perceived as annoying, stressful and in consequence harmful.
The analysis of the acquired data has shown that all measurement quantities
should first be included as conditional attributes in the constructed decision
tables along with subjective factors. At the moment, two types of decision tables
have been proposed. The first one provides indications as to the significance
of some attributes in relation to the PTS occurrence (decision attribute). The
second gathers results of the survey, and relates subjective factors to the noise
annoyance. The results of this analysis may provide the basis for an adequate
campaign against noise pollution and lead to better regulations.

Acknowledgment. This work was supported by the Polish Ministry of Science
and Education within the projects No. 3T11E02829 and No. R0201001. The
author wishes to acknowledge her Ph.D. student J. Kotus for his valuable input
to the presented research.

References

1. Borg, E., Engstrom, B.: Noise level, inner hair cell damage, audiometric features
and equal-energy hypothesis, J Acoust. Soc. Am. 86 (5) (1989) 1776–1782

2. Budzynska, L., Jelonek, J., Lukasik, E., Slowinski, R.,: Supporting Experts in
Ranking Generic Audio and Visual Objects, Proc. IEEE Workshop ”Signal Process-
ing’2004”, Poznan (2004) 81–86.

3. Budzynska, L., Jelonek, J., Lukasik, E., Susmaga, R., Slowinski R.: Multistimulus
ranking versus pairwise comparison in assessing quality of musical instruments
sounds, 118 AES Convention Paper, 6482, Barcelona (2005)

4. Criteria for a recommended standard, Occupational Noise Exposure, U.S. Depart-
ment of Health and Human Services (1998)

5. http://www.cdc.gov/niosh/98-126.html (CRITERIA FOR A RECOMMENDED
STANDARD)

6. Czyzewski, A., Kostek, B., Skarzynski, H.: Intelligent System for Environmental
Noise Monitoring, in Monitoring, Security, and Rescue Techniques in Multiagent
Systems, Series: Advances in Soft Computing, Dunin-Keplicz, B.; Jankowski, A.;
Skowron, A.; Szczuka, M.(eds.), chapter, 397–410 , XII, Springer Verlag, Heidel-
berg, New Yorkc(2005)

7. Czyzewski, A., Kostek, B., Skarzynski, H.: IT applications for the remote testing
of communication senses” chapter in INFORMATION TECHNOLOGY SOLU-
TIONS FOR HEALTH CARE, Spinger-Verlag (2006)

8. Czyzewski, A., Szczerba M., Kostek B.: Musical Phrase Representation and Recog-
nition by Means of Neural Networks and Rough Sets, Rough Set Theory and Ap-
plications (RSTA), vol. 1, 259-284, Advances in Rough Sets, Subseries of Springer-
Verlag Lecture Notes in Computer Sciences, LNCS 3100, Transactions on Rough
Sets, Grzymala-Busse, J.W., Kostek, B., Swiniarski, R.W., Szczuka M. (eds.)
(2004)

9. Czyzewski A., Kostek B.: Musical Metadata Retrieval with Flow Graphs, in Rough
Sets and Current Trends in Computing, RSCTC, Uppsala, Sweden, Lecture Notes
in Atificial Intelligence, LNAI 3066, Springer Verlag, Berlin, Heidelberg, New York
(2004) 691–698

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



150 B. Kostek

10. Czyzewski, A., Kotus, J., Kostek, B.,: Comparing Noise Levels and Audiometric
Testing Results Employing IT Based Diagnostic Systems, The 33rd International
Congress and Exposition on Noise Control Engineering INTERNOISE’2004, Au-
gust 22-24, Prague (2004)

11. Dunn, D.E., Davis, R.R., Merry, C.J., Franks, J.R.: Hearing loss in the chinchilla
from impact and continuous noise exposure, J Acoust. Soc. Am. 90 (4) (1991)
1979–1985

12. Dziubinski, M., Dalka, P., Kostek, B.: Estimation of Musical Sound Separation
Algorithm Effectiveness Employing Neural Networks, J. Intelligent Information
Systems, Special Issue on Intelligent Multimedia Applications, 24, 2(2005) 133–
157

13. Dziubinski, M., Kostek, B.: Octave Error Immune and Instantaneous Pitch Detec-
tion Algorithm, J. of New Music Research, vol. 34, 292-273, Sept. 2005.

14. Engel, Z.W., Sadowski J., et al.: Noise protection in Poland in European Legisla-
tion, The Committee on Acoustics of the Polish Academy of Science & CIOP-PIB,
Warsaw, (2005) (in Polish)

15. Henderson, D., Hamernik, R.P.: Impulse noise: Critical review, J Acoust. Soc. Am.
80(2) (1986) 569–584

16. Hippe, M.P.: Towards the Classification of Musical Works: A Rough Set Approach
Third International Conference, RSCTC 2002, Malvern, PA, USA, October 14-16,
2002. Proceedings Editors: J.J. Alpigini, J.F. Peters, A. Skowron, N. Zhong (eds.)
(2002) 546-553

17. Jelonek, J., Lukasik, E., Naganowski, A., Slowinski, R.: Inferring Decision Rules
from Jurys’ Ranking of Competing Violins, Proc. Stockholm Music Acoustic Con-
ference, KTH, Stockholm (2003) 75–78

18. Jelonek, J., Lukasik, E., Naganowski, A., Slowinski, R.: Inducing jury’s preferences
in terms of acoustic features of violin sounds, Lecture Notes in Computer Science,
LNCS 3070, Springer (2004) 492–497

19. Johnston, J.D.: Transform Coding of Audio Signals Using Perceptual Noise Crite-
ria. IEEE Journal on Selected Areas in Communications, vol. 6(2) (1988) 314–323

20. Komorowski, J, Pawlak, Z, Polkowski, L, Skowron, A. Rough Sets: A Tuto-rial. In:
Pal SK, Skowron A (eds) Rough Fuzzy Hybridization: A New Trend in Decision-
Making. Springer-Verlag (1998), 3–98

21. Kostek, B.: Soft Computing in Acoustics, Applications of Neural Networks, Fuzzy
Logic and Rough Sets to Musical Acoustics, Physica Verlag, Heidelberg, New York
(1999)

22. Kostek, B.: Perception-Based Data Processing in Acoustics. Applications to Music
Information Retrieval and Psychophysiology of Hearing, Springer Verlag, Series on
Cognitive Technologies, Berlin, Heidelberg, New York (2005)

23. Kostek, B.: Musical Instrument Classification and Duet Analysis Employing Music
Information Retrieval Techniques, Proc. of the IEEE, 92, 4 (2004) 712–729

24. Kostek, B.: Intelligent Multimedia Applications - Scanning the Issue, J. Intelligent
Information Systems, Special Issue on Intelligent Multimedia Applications, 24, 2
(2005) 95–97 (Guest Editor)

25. Kostek, B., Wojcik, J.: Machine Learning System for Estimating the Rhythmic
Salience of Sounds, International J. of Knowledge-based and Intelligent Engineering
Systems, 9 (2005), 1–10

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



The Domain of Acoustics Seen from the Rough Sets Perspective 151

26. Kostek, B., Czyzewski, A.: Processing of Musical Metadata Employing Pawlak’s
Flow Graphs, Rough Set Theory and Applications (RSTA), vol. 1, 285–305, Ad-
vances in Rough Sets, Subseries of Springer-Verlag Lecture Notes in Computer Sci-
ences, LNCS 3100, Transactions on Rough Sets, Grzymala-Busse, J.W., Kostek,
B., Swiniarski, R.W., Szczuka, M., (eds.) (2004)

27. Kotus, J., Kostek, B.: Investigation of Noise Threats and Their Impact on Hearing
in Selected Schools, OSA’ 2006, Archives of Acoustics (2006) (in print).

28. Kotus, J.: Evaluation of Noise Threats and Their Impact on Hearing by Employing
Teleinformatic Systems, (Kostek, B., supervisor) (2007) (in preparation).

29. Lukasik, E.: AMATI-Multimedia Database of Violin Sounds. In: Proc Stockholm
Music Acoustics Conference, KTH Stockholm (2003a) 79–82

30. Lukasik, E.: Timbre Dissimilarity of Violins: Specific Case of Musical Instruments
Identification. Digital Media Processing for Multimedia Interactive Services, World
Scientific, Singapore (2003b) 324–327

31. Lukasik, E., Susmaga, R.: Unsupervised Machine Learning Methods in Timbral Vi-
olin Characteristics Visualization. In: Proc Stockholm Music Acoustics Conference,
KTH Stockholm (2003) 83–86

32. Melnick, W.: Human temporary threshold shift (TTS) and damage risk, J Acoust.
Soc. Am. 90(1) (1991) 147–154

33. Pal, S.K., Polkowski, L., Skowron, A. Rough-Neural Computing. Techniques for
Computing with Words. Springer Verlag, Berlin Heidelberg New York (2004)

34. Pawlak, Z.: Rough Sets. International J Computer and Information Sciences (1982)
35. Pawlak, Z.: Probability, Truth and Flow Graph. Electronic Notes in Theoretical

Computer Science 82, International Workshop on Rough Sets in Knowledge Discov-
ery and Soft Computing, Satellite event of ETAPS 2003, Elsevier, Warsaw (2003)

36. Pawlak, Z.: Elementary Rough Set Granules: Towards a Rough Set Processor. In:
Pal SK, Polkowski L, Skowron A (eds) Rough-Neural Computing. Techniques for
Computing with Words. Springer Verlag, Berlin Heidelberg New York, 5–13(2004)

37. Pawlak, Z.: A Treatise on Rough Sets. Transactions on Rough Sets IV, Peters,
J.F., Skowron, A. (Eds) 1–17 (2005)

38. Polish Standard PN-N-01307 (1994), Permissible sound level values in work-places
and general requirements concerning taking measurements (in Polish).

39. Seixas, N., et al.: Alternative Metrics for Noise Exposure Among Construction
Workers, Ann Occup Hyg. 49 (2005) 493–502

40. A. Wieczorkowska, P. Synak, R. Lewis, Z. W. Ras, Creating Reliable Database for
Experiments on Extracting Emotions from Music. In: M. A. Klopotek, S. Wierz-
chon, K. Trojanowski (eds.), Intelligent Information Processing and Web Mining,
Proceedings of the International IIS: IIPWM’05 Conference, Gdansk, Poland Ad-
vances in Soft Computing, Springer (2005), 395-402

41. Wieczorkowska, A., Synak, P., Lewis, R., Ras, Z.W.: Extracting Emotions from
Music Data, in: M.-S. Hacid, Murray, N.V., Ras Z.W., Tsumoto, S. (eds.), Founda-
tions of Intelligent Systems, 15th International Symposium, ISMIS 2005, Saratoga
Springs, NY, USA, 2005, Proceedings; LNAI 3488, Springer, 456-465

42. Wieczorkowska, A., Ras, Z.W.: Do We Need Automatic Indexing of Musical Instru-
ments?, in: Warsaw IMTCI, International Workshop on Intelligent Media Technol-
ogy for Communicative Intelligence, Warsaw, Poland, September 13–14, Proceed-
ings, PJIIT - Publishing House (2004), 43–38

43. Wieczorkowska, A.: Towards Extracting Emotions from Music. In: Warsaw IMTCI,
International Workshop on Intelligent Media Technology for Communicative Intel-
ligence, Warsaw, Poland, September 13–14, Proceedings, PJIIT - Publishing House
(2004) 181–183

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Rule Evaluations, Attributes, and Rough Sets:

Extension and a Case Study

Jiye Li1, Puntip Pattaraintakorn2, and Nick Cercone3

1 David R. Cheriton School of Computer Science, University of Waterloo
200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1

j27li@uwaterloo.ca
2 Department of Mathematics and Computer Science, Faculty of Science

King Mongkut’s Institute of Technology Ladkrabang, Thailand
kppuntip@kmitl.ac.th

3 Faculty of Science and Engineering, York University
4700 Keele Street, North York, Ontario, Canada M3J 1P3

ncercone@yorku.ca

Abstract. Manually evaluating important and interesting rules gener-
ated from data is generally infeasible due to the large number of rules ex-
tracted. Different approaches such as rule interestingness measures and
rule quality measures have been proposed and explored previously to
extract interesting and high quality association rules and classification
rules. Rough sets theory was originally presented as an approach to ap-
proximate concepts under uncertainty. In this paper, we explore rough
sets based rule evaluation approaches in knowledge discovery. We demon-
strate rule evaluation approaches through a real-world geriatric care data
set from Dalhousie Medical School. Rough set based rule evaluation ap-
proaches can be used in a straightforward way to rank the importance
of the rules. One interesting system developed along these lies in HYRIS
(HYbrid Rough sets Intelligent System). We introduce HYRIS through
a case study on survival analysis using the geriatric care data set.

1 Introduction

The general models of knowledge discovery in databases (KDD) contains
processes including data preprocessing, knowledge discovery algorithms, rule
generations and evaluations. Rule evaluation is a significant process in KDD.
How to automatically extract important, representative rules to the human be-
ings instead of selecting those useful rules manually are the main problems.
Specific difficulties make the research of rule evaluation very challenging.

One of the difficulties is that real-world large data sets normally contain miss-
ing attribute values. They may come from the collecting process, or redundant
scientific tests, change of the experimental design, privacy concerns, ethnic is-
sues, unknown data and so on. Discarding all the data containing the missing
attribute values cannot fully preserve the characteristics of the original data, and
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wastes part of the data collecting effort. Knowledge generated from missing data
may not fully represent the original data set, thus the discovery may not be as
sufficient. Understanding and utilizing of original context and background knowl-
edge to assign the missing values seem to be an optimal approach for handling
missing attribute values. In reality, it is difficult to know the original meaning for
missing data from certain application domains. Another difficulty is that huge
amount of rules are generated during the knowledge discovery process, and it is
infeasible for humans to manually select useful and interesting knowledge from
such rule sets.

Rough sets theory, originally proposed in the 1980’s by Pawlak [1], was pre-
sented as an approach to approximate concepts under uncertainty. The theory
has been widely used for attribute selection, data reduction, rule discovery and
many knowledge discovery applications in the areas such as data mining, ma-
chine learning and medical diagnoses.

We are interested in tackling difficult problems in knowledge discovery
from a rough sets perspective. In this paper, we introduce how rough sets based
rule evaluations are utilized in knowledge discovery systems. Three representa-
tive approaches based on rough sets theory are introduced. The first approach
is to provide a rank of how important is each rule by rule importance measure
(RIM) [2]. The second approach is to extract representative rules by consider-
ing rules as condition attributes in a decision table [3]. The third approach is
applied to data containing missing values. This approach provides a prediction
for all the missing values using frequent itemsets as a knowledge base. Rules
generated from the complete data sets contain more useful information. The
third approach can be used at the data preprocessing process, combining with
the first or second approach at the rule evaluation process to enhance extract-
ing more important rules. It can also be used alone as preprocessing of missing
attribute values. An interesting system based on this rule-enhanced knowledge
discovery system, HYRIS (HYbrid Rough sets Intelligent System) [4], is devel-
oped. Case studies on using HYRIS on survival analysis are further demon-
strated.

We address particular problems from real-world data sets, using recent miss-
ing attribute value techniques and rule evaluations based on rough sets theory
to facilitate the tasks of knowledge discovery. The rule discovery algorithm fo-
cuses on association rule algorithms, although it can be classification algorithm,
decision tree algorithm and other rule discovery algorithms from data mining
and machine learning. We demonstrate the rule evaluation approaches using a
real-world geriatric care medical data set.

We discuss related work on rough sets theory, current knowledge discovery
system based on rough sets, and rule evaluations in Section 2. Section 3 presents
three rough sets based rule evaluations methods. We show experiments on the
geriatric care data set in Section 4. Section 5 contains a case study of HYRIS sys-
tem developed based on the proposed approaches, and experiments on survival
analysis are demonstrated. Section 6 gives the concluding remarks.
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2 Related Work

We introduce related work to this paper including rough sets theory, knowl-
edge discovery systems based on rough sets theory and existing rule evaluations
approaches.

2.1 Rough Sets Theory

Rough sets theory, proposed in the 1980’s by Pawlak [1], has been used for
attribute selection, rule discovery and many knowledge discovery applications in
the areas such as data mining, machine learning and medical diagnoses.

We briefly introduce rough sets theory [1] as follows. U is the set of objects
we are interested in, where U �= φ.

Definition 1. Equivalence Relation. Let R be an equivalence relation over
U , then the family of all equivalence classes of R is represented by U/R. [x]R
means a category in R containing an element x ∈ U . Suppose P ⊆ R, and P �= φ,
IND(P ) is an equivalence relation over U . For any x ∈ U , the equivalence class
of x of the relation IND(P ) is denoted as [x]P .

Definition 2. Lower Approximation and Upper Approximation. X is a
subset of U , R is an equivalence relation, the lower approximation of X and the
upper approximation of X is defined as:

RX = ∪{x ∈ U |[x]R ⊆ X} (1)

RX = ∪{x ∈ U |[x]R ∩ X �= φ} (2)

respectively.

From the original definitions [1], reduct and core are defined as follows. R is an
equivalence relation and let S ∈ R. We say, S is dispensable in R, if IND(R) =
IND(R − {S}); S is indispensable in R if IND(R) �= IND(R − {S}). We say
R is independent if each S ∈ R is indispensable in R.

Definition 3. Reduct. Q is a reduct of P if Q is independent, Q ⊆ P , and
IND(Q) = IND(P ).

An equivalence relation over a knowledge base can have many reducts.

Definition 4. Core. The intersection of all the reducts of an equivalence rela-
tion P is defined to be the Core, where

Core(P ) = ∩All Reducts of P.

Reduct and core are among the most important concepts in this theory. A reduct
contains a subset of condition attributes that are sufficient enough to represent
the whole data set. The reducts can be used in attribute selection process. There
may exist more than one reduct for each decision table. Finding all the reduct
sets for a data set is NP-hard [5]. Approximation algorithms are used to obtain
reduct sets [6]. The intersection of all the possible reducts is called the core.
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The core is contained in all the reduct sets, and it is the essential of the whole
data. Any reduct generated from the original data set cannot exclude the core
attributes.

Reduct Generations. There are several reduct generation approaches, such
as ROSETTA [7], RSES [8], ROSE2 [9], QuickReduct algorithm [10] and Hu et
al. [11]’s reduct generation combining the relational algebra with the traditional
rough sets theory. ROSETTA rough set system GUI version 1.4.41 [7] provides
Genetic reducer, Johnson reducer, Holte1R reducer, Manual reducer, Dynamic
reducer, RSES Exhaustive reducer and so on. Genetic reducer is an approxi-
mation algorithm based on genetic algorithm for multiple reducts generation.
Johnson reducer generates only a single reduct with minimum length. In this
research, we use both genetic and Johnson’s reduct generations to develop rule
evaluations approaches.

Core Generation. Hu et al. [11] introduced a core generation algorithm based
on rough sets theory and efficient database operations, without generating
reducts. The algorithm is shown in Algorithm 1, where C is the set of con-
dition attributes, and D is the set of decision attributes. Card denotes the count
operation in databases, and Π denotes the projection operation in databases.

Algorithm 1. Hu’s Core Generating Algorithm [11]
input : Decision table T (C, D), C is the condition attributes set; D is the

decision attribute set.
output: Core, Core attributes set.

Core ← φ;
for each condition attribute A ∈ C do

if Card(Π(C − A + D)) �= Card(Π(C − A)) then
Core = Core ∪ A;

end
end
return Core;

This algorithm is developed to consider the effect of each condition attribute
on the decision attribute. The intuition is that, if the core attribute is removed
from the decision table, the rest of the attributes will bring different information
to the decision making. Theoretical proof of this algorithm is provided in [11].
The algorithm takes advantage of efficient database operations such as count
and projection. This algorithm requires no inconsistency in the data set.

2.2 Rough Sets Based KDD Systems

We briefly survey current rough sets based knowledge discovery systems. We
discuss the individual functions of each system based on general characteristics,
such as the input data sets, the preprocessing tasks, the related rough sets tasks,
the rule generations and so on.
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1. ROSETTA. ROSETTA [7] software is a general purpose rough set toolkit
for analyzing the tabular data, and is freely distributed. The downloadable
versions for both the Windows and Linux operating systems are available.
The software supports the complete data mining process, from data pre-
processing, including processing incomplete data, data discretization, gener-
ating reduct sets which contain essential attributes for the given data set,
to classification, rule generation, and cross validation evaluation. Some dis-
cretization and reducts generation packages are from RSES library [8].

2. RSES2.2. RSES [8] stands for Rough Set Exploration System. There are
downloadable versions for both the Windows and Linux operating systems.
It is still maintained and being developed. The system supports data pre-
processing, handling incomplete data, discretization, data decomposition
into parts that share the same properties, reducts generation, classification,
and cross validations and so on.

3. ROSE2. ROSE [9] stands for Rough Sets Data Explorer. This software is
designed to process data with large boundary regions. The software supports
data preprocessing, data discretization, handling missing values, core and
reducts generation, classifications and rule generation, as well as evaluations.
This software provides not only the classical rough set model, but also the
variable precision model, which is not provided by [7] and [8].

4. LERS. LERS [12] stands for Learning from Examples based on Rough Sets.
It is not publicly available. The system was designed especially to process
missing values of attributes and inconsistency in the data set. Certain rules
and possible rules are both extracted based on the lower and upper approx-
imations.

In addition to the rough sets based systems mentioned above, there are other
available knowledge discovery systems based on the methodologies of rough sets
such as GROBIAN [13] and DBROUGH [14].

2.3 Current Research on Rule Evaluations

Rule generation often brings a large amount of rules to analyze. However, only
part of these rules are distinct, useful and interesting. How to select only useful,
interesting rules among all the available rules to help people understand the
knowledge in the data effectively has drawn the attention of many researchers.
Research on designing effective measures to evaluate rules comes from statistic,
machine learning, data mining and other fields. These measures fall into two
categories of evaluation measures.

Rule Interestingness Measures. One category of evaluating rules is to rank
the rules by rule interestingness measures. Rules with higher interestingness mea-
sures are considered more interesting. The rule interestingness measures, origi-
nated from a variety of sources, have been widely used to extract interesting rules.
Different applications may have different interestingness measures emphasizing
on different aspect of the applications. Hilderman provided an extensive survey
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on the current interestingness measures [15] for different data mining tasks. For
example, support and confidence are the most common interestingness measures
to evaluate the association rules.

Not all the interestingness measures generate the same rank of interestingness
for the same set of rules. Depending on different application purpose, appropriate
rule interestingness measures should be selected to extract proper rules. More
than one measure can be applied together to evaluate and explain the rules. Tan
et. al. [16] evaluate twenty one measures in their comparative experiments and
suggest different usage domains for these measures. They provide several prop-
erties of the interestingness measures so that one can choose a proper measure
for certain applications. Their experiments also imply that not all the variables
perform equally good at capturing the dependencies among the variables. Fur-
thermore, there is no measure that can perform constantly better than the oth-
ers in all application domains. Different measure is designed towards different
domains.

Rule Quality Measures. The concept of rule quality measures was first pro-
posed by Bruha [17]. The motivation for exploring this measure is that decision
rules are different with different predicting abilities, different degrees to which
people trust the rules and so on. Measures evaluating these different characteris-
tics should be used to help people understand and use the rules more effectively.
These measures have been known as rule quality measures.

The rule quality measures are often applied in the post-pruning step during
the rule extraction procedure [18]. For example, some measures are used to
evaluate whether the rules overfit the data. When removing an attribute-value
pair, the quality measure does not decrease in value, this pair is considered to
be redundant and will be pruned. As one of the applications, rule generation
system uses rule quality measures to determine the stopping criteria for the rule
generations and extract high quality rules. In [19] twelve different rule quality
measures were studied and compared through the ELEM2 [18] system on their
classification accuracies. The measures include empirical measures, statistical
measures and measures from information theory.

3 Rule Evaluation on Knowledge Discovery

In this section, we first examine a current rough set knowledge discovery sys-
tem, and suggest the importance of rule evaluations. We propose rule evaluation
approaches and their functions in knowledge discovery systems.

3.1 Analyzing RSES – Rough Set Exploration System

We take the RSES [8] system as an example system, and study in more detail
of the role of rule evaluations. We show that current systems are limited with
regard to rule evaluation, and we emphasize the importance of rule evaluation
in current knowledge discovery systems.
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RSES (Rough Set Exploration System) is a well developed knowledge discov-
ery system focusing on data analysis and classification tasks, which is currently
under development. Figure 1 shows a use of the system on a heart disease data
set for classification rule generation.

Fig. 1. Using Rough Set Exploration System on heart data

The data input to RSES is in the form of decision table T = (C, D), where C
is the condition attribute set and D is the decision attribute set. Preprocessing
is conducted once the data is imported to the system, during which stage the
missing attribute values are handled and discretization is performed if necessary
as well. Reducts are then generated, classification rules based on the reducts are
extracted.

RSES provides four approaches on processing missing attribute values, such as
removing data records with missing values, assigning the most common values
of the missing attribute within the same decision class and without the same
decision class, and considering missing attribute values as a special value of the
attribute [8]. These approaches are used during the data preprocessing stage in
the system. Although these approaches are fast and can be directly applied in
the data, they lack the ability of preserving the semantic meanings of the original
data set. Missing values may be assigned, however, the filled values may not be
able to fully represent what is missing in the data.

RSES provides rule postprocessing, which are “rule filter”, “rule shorten” and
“rule generalize”. “Rule filter” removes from the rule set rules that do not sat-
isfy certain support. “Rule shorten” shortens the length of the rules according
to certain parameters [8]. “Rule generalization” generalizes rules according to
a system provided parameter on the precision level. Although these rule post-
processing approaches provide an easier presentation of all the rule sets, these
approaches do not provide ways to evaluate which rules are more interesting,
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and which rules have higher quality. These functions cannot provide a rank of
rules according to a rule’s significance to the users.

3.2 Enhanced Knowledge Discovery System Based on Rough Sets

We present a rough set based knowledge discovery system, as shown in Figure 2.

Preprocessing

Original Data

ItemRSFit on
predicting

missing values

Processed
Data

Knowledge

Rule
Generation

Rule Evaluation

Attribute
Selection

(Rough Sets)

Defining
Rule Template

Knowledge
Representation

visualization

Reduct
Rules

Rule
Importance
Measures

Fig. 2. The Knowledge Discovery Based on Rough Sets Theory

In this general purpose knowledge discovery system, data from different ap-
plication domains are first imported into the system. Preprocessings including
missing attribute values processing, discretization, are conducted in this stage.
After the data is preprocessed attribute selections are conducted. Depending on
the output, different attribute selection approaches can be applied here. Rule
generation algorithms extract rules. After the rule sets are obtained, the im-
portant postprocessing - rule evaluations are performed in this stage. Rules are
finally represented, possibly visualized in a certain format, as knowledge to the
end users.

We introduce three approaches integrated into this general purpose KDD sys-
tem as shown in Figure 2. The first approach ItemRSFit is used in the data
preprocessing stage. The second approach, rule importance measure is used to
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rank rules during the rule evaluation process. The third approach of extracting
reduct rules is also used during the rule evaluation stage. We will elaborate these
approaches in the following.

I. Predicting missing attribute values based on Frequent Itemset.
ItemRSFit approach is a recently developed approach on predicting missing at-
tribute values based on association rules algorithm and rough sets theory. It has
been shown on both large scale real world data set and UCI machine learning
data sets on the improved prediction accuracies.

ItemRSFit approach is an integration of two other approaches from associa-
tion rule algorithm and rough sets theory. Priori to the association rule genera-
tion, frequent itemsets are generated based on the item-item relations from the
large data set according to a certain support. Thus the frequent itemsets of a
data set represent strong correlations between different items, and the itemsets
represent probabilities for one or more items existing together in the current
transaction. When considering a certain data set as a transaction data set, the
implications from frequent itemsets can be used to find to which attribute value
the missing attribute is strongly connected. Thus the frequent itemset can be
used for predicting the missing values. We call this approach “itemset-approach”
for prediction. The larger the frequent itemsets used for the prediction, the more
information from the data set itself will be available for prediction, hence the
higher the accuracy will be obtained. However, generating frequent itemset for
large data set is time-consuming. Although itemsets with higher support need
less computation time, they restrict item-item relationships, therefore not all the
missing values can be predicted. In order to balance the tradeoff between com-
putation time and the percentage of the applicable prediction, another approach
must be taken into consideration.

A reduct contains a subset of condition attributes that are sufficient enough
to represent the whole data set. The intersection of all the possible reduct is the
core. Therefore the attributes contained in the reduct or core are more impor-
tant and representative than the rest of the attributes. Thus by examining only
attributes within the same core or reduct to find the similar attribute value pairs
for the data instance containing the missing attribute values, we can assign the
most relevant value for the missing attribute. Since this method only considers
a subset of the data set, which is either the core or the reduct, the prediction is
quite fast. This approach “RSFit” is recently proposed in [20], and it is an alter-
native approach designed for fast prediction. It can be used to predict missing
attributes that cannot be predicted by the frequent itemset.

We integrate the prediction based on frequent itemset and RSFit approach
into a new approach ItemRSFit to predict missing attribute values. Frequent
itemsets are used to predict missing values first, and RSFit approach is used to
predict the rest of the missing values that cannot be predicted by the frequent
itemsets. This integrated approach can predict missing values from the data
itself, therefore less noise is brought into the original data. The details on the
ItemRSFit approach is presented in [21].
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Properly processed data can improve the quality of the generated knowledge.
Therefore the ItemRSFit approach is used in this system at the preprocessing
stage. It helps to preserve the qualities of the original input data to this system,
thus facilitate the rule evaluation process.

II. Rule Importance Measures. Rule importance measure [2] is developed
to provide a diverse rank of how important the association rules are, although
this approach can also be applied to rules generated by other rule discovery
algorithms.

Association rules algorithm can be applied on this transaction data set to gen-
erate rules, which have condition attributes on the antecedent part and decision
attributes on the consequent part of the rules. Rules generated from different
reduct sets can contain different representative information. If only one reduct
set is being considered to generate rules, other important information might be
omitted. Using multiple reducts, some rules will be generated more frequently
than other rules. We consider the rules that are generated more frequently more
important.

The Rule Importance is defined to be important by the following definition.

Definition 5. If a rule is generated more frequently across different rule sets,
we say this rule is more important than rules generated less frequently across
those same rule sets.

Rule importance measure is defined as follows,

Definition 6

Rule Importance Measure =

Number of times a rule appears in all
the generated rules from the reduct sets

Number of reduct sets
.

The definition of the rule importance measure can be elaborated by Eq. 3.
Let n be the number of reducts generated from the decision table T (C, D).
Let RuleSets be the n rule sets generated based on the n reducts. rulesetj ∈
RuleSets (1 ≤ j ≤ n) denotes individual rule sets containing rules generated
based on reducts. rulei (1 ≤ i ≤ m) denotes the individual rule from RuleSets.
RIMi represents the rule importance measure for the individual rule. Thus the
rule importance measures can be computed by the following

RIMi =
|{rulesetj ∈ RuleSets|rulei ∈ rulesetj}|

n
. (3)

The details of how to use rule importance measures can be found in [2].
Rule importance measure can be integrated into the current rough sets based
knowledge discovery system to be used during the rule evaluation process. A list
of ranked important rules can therefore be presented with their rule importance
measures to facilitate the understanding of the extracted knowledge.
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III. Extracting Reduct Rules. In [3] a method of discovering and ranking
important rules by considering rules as attributes was introduced. The motiva-
tion comes from the concept of reduct. A reduct of a decision table contains
attributes that can fully represent the original knowledge. If a reduct is given,
rules extracted based on this reduct are representative of the original decision
table. Can we take advantage of the concept of a reduct to discover important
rules?

We construct a new decision table Am×(n+1), where each record from the
original decision table u0, u1, ..., um−1 are the rows, and the columns of this new
table consists of Rule0, Rule1, ..., Rulen−1 and the decision attribute. We say
a rule can be applied to a record in the decision table if both the antecedent
and the consequent of the rule appear together in the record. For each Rulej

(j ∈ [0, ..., n−1]), we assign 1 to cell A[i, j] (i ∈ [0, ..., m−1]) if the rule Rulej can
be applied to the record ui. We set 0 to A[i, j] otherwise. The decision attribute
A[i, n] (i ∈ [0, ..., m − 1]) remains the same as the original values of the decision
attribute in the original decision table. Eq. 4 shows the conditions for the value
assignments of the new decision table.

A[i, j] =

⎧⎨
⎩

1, if j < n and Rulej can be applied to ui

0, if j < n and Rulej cannot be applied to ui

di, if j = n and di is the corresponding decision attributes for ui

(4)
where i ∈ [0, ..., m − 1], j ∈ [0, ..., n − 1].

We further define Reduct Rule Set and Core Rule Set.

Definition 7. Reduct Rule Set. We define a reduct generated from the new
decision table A as Reduct Rule Set. A Reduct Rule Set contains Reduct
Rules.

The Reduct Rules are representative rules that can fully describe the decision
attribute.

Definition 8. Core Rule Set. We define the intersection of all the Reduct
Rule Sets generated from this new decision table A as Core Rule Set. A Core
Rule Set contains Core Rules.

The Core Rules are contained in every Reduct Rule Set.
By considering rules as attributes, reducts generated from the new decision

table contain all the important attributes, which represent the important rules
generated from the original data set; and it excludes the less important at-
tributes. Core attributes from the new decision table A contain the most impor-
tant attributes, which represent the most important rules.

Other Enhancements. The three approaches discussed in our research have
shown to effectively evaluate rules. There are other techniques that can be used
along with these approaches in Figure 2. For example, during the rule generation
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process, properly defined rule templates can not only reduce the computation
of rule generations, but it also ensures high quality rules, or interesting rules
generated according to the application purposes. Important attributes, such as
probe attributes (discussed in Section 5) can be defined in the data preprocessing
stage for generating rules containing such attributes for generating expected
rules.

Our motivation is, proposing approaches to enhance the current knowledge
discovery system, to facilitate the knowledge discovery process on discovering
more interesting and higher quality rules.

4 Experiments

We demonstrate, through a series of experiments, that systems improved by the
proposed rule evaluation approaches can help humans discover and understand
more important rules.

4.1 Specifying Rule Templates

Apriori association rules algorithm is used to generate rules. Because our interest
is to make decisions or recommendations based on the condition attributes,
we are looking for rules with only decision attributes on the consequent part.
Therefore, we specify the following 2 rule templates to extract rules we want as
shown by Template 5, and to subsume rules as shown by Template 6.

〈Attribute1, Attribute2, . . . , Attributen〉 → 〈DecisionAttribute〉 (5)

Template 5 specifies only decision attributes can be on the consequent part
of a rule, and Attribute1, Attribute2, . . . , Attributen lead to a decision of
DecisionAttribute.

We specify the rules to be removed or subsumed using Template 6. For ex-
ample, given rule

〈Attribute1, Attribute2〉 → 〈DecisionAttribute〉 (6)

the following rules

〈Attribute1, Attribute2, Attribute3〉 → 〈DecisionAttribute〉 (7)

〈Attribute1, Attribute2, Attribute6〉 → 〈DecisionAttribute〉 (8)

can be removed because they are subsumed by Template 6. Take the geriatric
care data in Table 1 as an example, in the rule set, a rule shown as Eq. 9 exists

SeriousChestProblem → Death (9)

the following rule is removed because it is subsumed.

SeriousChestProblem, TakeMedicineProblem → Death (10)
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4.2 Geriatric Care Data Set

We perform experiments on a geriatric care data set as shown in Table 1. This
data set is an actual data set from Dalhousie University Faculty of Medicine
to determine the survival status of a patient giving all the symptoms he or she
shows. The data set contains 8, 547 patient records with 44 symptoms and their
survival status (dead or alive). We use survival status as the decision attribute,
and the 44 symptoms of a patient as condition attributes, which includes educa-
tion level, the eyesight, hearing, be able to walk, be able to manage his/her own
meals, live alone, cough, high blood pressure, heart problem, cough, gender, the
age of the patient at investigation and so on.1 There is no missing value in this
data set. There are 12 inconsistent data entries in the medical data set. After
removing these instances, the data contains 8, 535 records. 2

Table 1. Geriatric Care Data Set

edulevel eyesight hearing health trouble livealone cough hbp heart stroke . . . sex livedead

0.6364 0.25 0.50 0.25 0.00 0.00 0.00 0.00 0.00 0.00 . . . 1 0
0.7273 0.50 0.25 0.25 0.50 0.00 0.00 0.00 0.00 0.00 . . . 2 0
0.9091 0.25 0.50 0.00 0.00 0.00 0.00 1.00 1.00 0.00 . . . 1 0
0.5455 0.25 0.25 0.50 0.00 1.00 1.00 0.00 0.00 0.00 . . . 2 0
0.4545 0.25 0.25 0.25 0.00 1.00 0.00 1.00 0.00 0.00 . . . 2 0
0.2727 0.00 0.00 0.25 0.50 1.00 0.00 1.00 0.00 0.00 . . . 2 0
0.0000 0.25 0.25 0.25 0.00 0.00 0.00 0.00 1.00 0.00 . . . 1 0
0.8182 0.00 0.50 0.00 0.00 0.00 0.00 1.00 0.00 0.00 . . . 2 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The ItemRSFit approach is implemented by Perl and the experiments are
conducted on Sun Fire V880, four 900Mhz UltraSPARC III processors. We use
apriori frequent itemset generation [23] to generate frequent 5-itemset. The core
generation in RSFit approach is implemented with Perl combining the SQL
queries accessing MySQL (version 4.0.12). ROSETTA software [7] is used for
reduct generation.

4.3 Experiments on Predicting Missing Attribute Values

In order to show the ItemRSFit approach obtains better prediction accuracy than
the existing approach (i.e., RSFit), we perform the experiments on the geriatric
care data set by randomly selecting 150 missing values from the original data. We
then apply both RSFit approach and ItemRSFit approach on predicting missing
values, and compare the accuracy of the prediction. Figure 3 demonstrates the
comparison predicting abilities between RSFit and ItemRSFit approaches. We
can see from the figure that the smaller the support is, the more accurate the
1 Refer to [22] for details about this data set.
2 Notice from our previous experiments that core generation algorithm cannot return

correct core attributes when the data set contains inconsistent data entries.
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Fig. 3. Accuracy Comparisons for Geriatric Care Data with 150 Missing Attribute
Values

prediction of the missing attribute values for the ItemRSFit approach obtains;
whereas for the RSFit approach, the accuracy remains the same as the value
of support gets smaller; and the accuracy obtained by RSFit is always lower
than the ItemRSFit approach. This result demonstrates that frequent itemsets
as knowledge base can be effectively applied for predicting missing attribute
values.

4.4 Experiments on Rule Importance Measure

In our experiment, we use the genetic algorithm to generate multiple reduct sets
with the option of full discernibility. The apriori algorithm [23] for large item
sets generation.

The core attributes for this data set are eartrouble, livealone, heart, high-
bloodpressure, eyetrouble, hearing, sex, health, educationlevel, chest, housework,
diabetes, dental, studyage.

Table 2. Reduct Sets for the Geriatric Care Data Set after Preprocessing

No. Reduct Sets

1 {edulevel,eyesight,hearing,shopping,housewk,health,trouble,livealone,
cough,sneeze,hbp,heart,arthriti,eyetroub,eartroub,dental,
chest,kidney,diabetes,feet,nerves,skin,studyage,sex}

2 {edulevel,eyesight,hearing,phoneuse,meal,housewk,health,trouble,livealon,
cough,sneeze,hbp,heart,arthriti,evetroub,eartroub,dental,
chest,bladder,diabetes,feet,nerves,skin,studyage,sex}

. . . . . .
86 {edulevel,eyesight,hearing,shopping,meal,housewk,takemed,health,

trouble,livealone,cough,tired,sneeze,hbp,heart,stroke,arthriti,
eyetroub,eartroub,dental,chest,stomach,kidney,bladder,diabetes,
feet,fracture,studyage,sex}
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Table 3. Rule Importance for the Geriatric Care Data

No. Selected Rules Rule Importance

0 SeriousHeartProblem → Death 100%
1 SeriousChestProblem → Death 100%
2 SeriousHearingProblem, HavingDiabetes → Death 100%
3 SeriousEarTrouble → Death 100%
4 SeriousEyeTrouble → Death 100%
5 Sex Female → Death 100%

. . . . . . . . .
10 Livealone, HavingDiabetes, NerveProblem → Death 95.35%
. . . . . . . . .
216 SeriousHearingProblem, ProblemUsePhone → Death 1.16%
217 TakeMedicineProblem, NerveProblem → Death 1.16%

Table 2 shows selected reduct sets among the 86 reducts generated by
ROSETTA. All of these reducts contain the core attributes. For each reduct
set, association rules are generated with support = 30%, confidence = 80%. 3

218 unique rules are generated over these 86 reducts. These rules as well as their
rule importance are shown in Table 3. Among these 218 rules, 87 rules have rule
importance of no less than 50% , 8 of which have rule importance of 100%. All
the rules with rule importance of 100% contain only core attributes.

4.5 Experiments on Generating Reduct Rules

The new decision table A8535×219 is constructed by using the 218 rules 4 as con-
dition attributes, and the original decision attribute as the decision attribute.
Note that after reconstructing the decision table, we must check for incon-
sistency again before generating reduct rules for this table. After removing
the inconsistent data records, there are 5709 records left in the new decision
table. The core rule set is empty. We use Johnson’s reduct generation algo-
rithm on this table A′5709×219 and the reduct rule set is {Rule0, Rule1, Rule3,
Rule5, Rule19, Rule173}. We show these rules in Table 4. From Table 4 we can
see that the reduct rule sets contain 6 rules. There are 4 rules judged to be the
most important. The rule importance for Rule0, Rule1, Rule3 and Rule5 are
all 100%. The Rule19 has the importance of 82.56%, which is more important
among the 218 rules.

3 Note that the value of support and confidence can be adjusted to generate as many
or as few rules as required.

4 There are 1615 rules generated by apriori algorithm from the original data set with
support = 30%, confidence = 80%, after applying the rule template. We can cir-
cumvent problems inherent in considering all 1615 generated rules using the 218
unique rules that are derived from the 86 reducts obtained by ROSETTA’s genetic
algorithm.
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Table 4. Reduct Rules for the Geriatric Care Data

No. in Reduct Rules Rule
Table 3 Importance

0 SeriousHeartProblem → Death 100%
1 SeriousChestProblem → Death 100%
3 SeriousEarTrouble → Death 100%
5 Sex Female → Death 100%
19 Livealon, OftenSneeze, DentalProblems, HavingDiabetes → Death 82.56%
173 ProblemHandleYourOwnMoney → Death 27.91%

5 A Case Study: Survival Analysis in HYRIS

This section provides a case study to illustrate how a rough sets based KDD sys-
tem provides a useful mechanism for analyzing and distilling essential attributes
and rules from survival data, and evaluates the generated rules in postprocessing
for survival analysis.

Use of medical survival data challenges researchers because of the size of data
sets and vagaries of their structures. Among prognostic modeling techniques that
induce models from medical data, survival analysis warrants special treatment
in the type of data required and its modeling. Data required for medical analysis
includes demographic, symptoms, laboratory tests and treatment information.
Special features for survival data are the events of interest, censoring, follow-
up time and survival time specific for each type of disease. Such data demands
powerful analytical models for survival analysis. The studies applying rough sets
to survival analysis related to our work are [24][25]. They illustrated rough sets
contribution to a medical expert system for throat cancer patients successfully.
Rough sets and decision trees have been used to study kidney dialysis patients’
survival [26].

HYRIS (HYbrid Rough sets Intelligent System) [27][28] is designed specifically
to consider survival analysis with several statistical approaches. HYRIS uses the
CDispro algorithm from a previous study [4]. HYRIS successively derives dis-
pensable, probe attribute, reduct and probe reduct together with life time table
and Kaplan-Meier survival curves [27]. In addition to survival analysis, HYRIS
provides a general data analysis and decision rule generation and evaluation [27]
as well.

HYRIS Case Study I. HYRIS is able to analyze censor variable and survival
time attributes that are a speciality for survival analysis. Given the survival
data set, the system can identify the covariant levels of particular attributes
according to rough sets and several statistical approaches. The Kaplan-Meier
method, hazard function, hypothesis testing, log-rank, Brewslow, Tarone-Ware
tests, p-value and CDispro [4]. incorporate the rough sets framework to generate
core, dispensable attributes, probe attribute, reducts, and probe reducts which
are the informative attributes. Consequently, the rules are derived and validated
with ELEM2 [18].
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We demonstrate the utility of HYRIS by investigating a particular problem
using both actual and benchmark medical data sets: geriatric data, melanoma
data [29], pneumonia data [30] and primary biliary cirrhosis data (PBC) [31].
For the geriatric care data set, time lived in months are used as the survival time
target function. Inconsistent records are removed. Data is discretized according
to percentile groups. The age is used as probe attribute, the reducts and probe
reducts are generated successfully. The rules generated for geriatric data care
are the decision rules for predicting survival time. Note that in Section 4 the
experimental results showing important rules are used to predict the survival
status, not the survival time.

Two sample survival prediction rules out of 1,600 rules of geriatric care data
set (when considering the probe attribute {ExperienceDiabetes}) generated from
HYRIS are provided as follows:

Rule 1: UnHealthy, SevereHearingDamage, NerveProblem, FootProblem, Seri-
ousHeartProblem, DentalDisease, StomachDisease, HighBloodPressure, Experi-
enceDiabetes → SurvivalTime = 7-18 months.

Rule2:FemalePatient, LowEducationLevel,EyesightProblemLowToSeriousType,
HealthProblemFromLowToSeriousType, HearQuiteWell, DoNotHaveDiabetesEx-
perience, EasilyTired, FootProblem, → SurvivalTime = 56-73 months.

When comparing the accuracy of rules that were generated from original at-
tributes and those generated from reducts, the accuracy of all data sets range
between 83.7851%–90.5686%. Rule performance outcomes are improved signifi-
cantly as reported in [4].

HYRIS Case Study II. HYRIS can accomplish preprocessing, learning and
model construction and broaden further to use in rule evaluation and post-
processing. We continue a series of studies in [28]. In this case study, we propose
an alternative approach for decision rule learning with rough sets theory in the
postprocessing step called ROSERULE - Rough Sets Rule Reducts Learning Al-
gorithm. ROSERULE learned and analyzed from the rule set to generate rule
reducts which can be used to reduce the number of the rules. Results imply
a reduced number of rules that successfully preserve the original classification.
The rule numbers of geriatric data set reduced from 1,600 to 1,150, melanoma
data set reduced from 16 to 15, pneumonia data set reduced from 606 to 42 and
PBC data set reduced from 83 to 72. At the same time, the prediction accuracy
is preserved for all data sets.

6 Conclusion

We study the work of rough sets based rule evaluations on knowledge discov-
ery system. We propose solutions to the challenging problems brought by large
real world data sets, such as the existence of missing values and analyzing huge
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amount of generated rules manually. Three rough set based approaches to en-
hance the current KDD systems on rule evaluations are introduced. The ItemRS-
Fit approach is used to predict missing attribute values using frequent itemset
as a knowledge base. Complete data can be obtained using this approach. The
rule importance measure provides a ranking of how important is a rule. Finally,
the reduct rules are extracted using the concept of reduct by considering rules
as condition attributes in a decision table. Experimental results on a real world
geriatric care data set demonstrate the utilities of applying rough sets based rule
evaluations to enhance current KDD systems. A case study of a recent knowl-
edge discovery system shows the applications of approaches which have been
incorporated into HYRIS with an emphasis on survival analysis.
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This article is dedicated to the creative genius Zdzis�law Pawlak for his con-
tribution to the theoretical development of science and technology in China.
His distinguished discovery of Rough Set Theory is a formal theory which is
well suited for uncertainty computing to analyze imprecise, uncertain or incom-
plete information of data. Inspired by his work scientists and engineers in China
has developed many theories and applications in various science and technology
fields. For instance, J.H.Dai studied the theories of Rough Algebras and Axiom
Problem of Rough 3-Valued Algebras [1, 2]. G.L.Liu studied the Rough Sets over
Fuzzy Lattices [3, 4]. D.W.Pei studied the Generalized Model of Fuzzy Rough
Sets [5]. W.Z.Wu Studied the On Random Rough Sets [6]. D.Q.Miao studied
the Rough Group and Their Properties [7]. These are part of their recent re-
search results related to rough set theory. As a matter of fact, there are still
many researchers working in the field of rough sets in China, who have proposed
many creative results for last few years. These results are not listed one by one
in this short commemorative article. We will try to review all the ”Rough Set”
researchers and their research results in the appeared next article.

In this article, we present only a recent partial research results of the authors.
Based on Rough Logic and Decision Logic defined by Pawlak [8, 9], first author
Liu has proposed a rough logic in a given information system [10]. Influenced by
the concept of granular language proposed by Skowron [11], the granular logic
defined by Polkowski [12], and the work of Lin, Yao in [13, 14], we also have
defined a granular logic by applying the semantics of rough logical formulas in
a given information system, and have created the deductive systems as well as
have discussed many properties in [15, 16]. The proposed granular logic is a set
which consists of granular formulas of form m(F ), where F is the rough logical
formula in the given information system. It is used as individual variable of
semantic function symbol m, so, we call it a paradigm of higher order logic.
Truth values of granular formula of form m(F ) in the logic have two types. One
is the function value, which is the meaning of rough logical formula, a subset
in U; Another is the truth value of a degree, which is equal to a degree of
meaning of the formula to close to universe U of objects. Pawlak introduced the
concept of rough truth in 1987, assuming that a formula is roughly true in a
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given information system if and only if the upper approximation of meaning of
the formula is equal to the whole universe. So, our approach extends Pawlak’s
approach [9]. Skolem clause form, resolution principles, λ-resolution strategies
and deductive reasoning of the granular logic are also discussed in the next
article. These logic systems should be an extension of Rough Logic proposed by
Pawlak in 1987 [9]. The practicability of the higher order logic will offer the new
idea for studying classical logic. It could also be a theoretical tool for studying
granular computing. Based on reference [23], we further propose to use rough set
theory to find out minimal approximate solution set in the approximate solution
space of differential equations and functional variation problems in mechanics.
This could be a new studying style in rough set applications.

The significance and future development direction of the proposed Rough Sets
are described. Any undefinable subset on the universe of a given information sys-
tem is constructed into precise definable lower and upper approximations via in-
discernibility relation. Hence, complex and difficult problems on undefinable sets
are resolved or transformed into precise definable lower and upper approxima-
tions [8, 17]. This is one of a great contribution of Pawlak’s Rough Sets Theory.
Successful applications of rough sets in many fields offer a lot of new idea of
studying granular computing, which also promote the development of granular
computing.

Founder of predicate logic, G. Frege proposed the vague boundary in 1904,
that is, how to compute the number of elements on vague boundary [18, 19].
Many mathematicians and computer scientists have made hard efforts on the
question.

L. A. Zadeh proposed the Fuzzy Sets (FS) in 1965. He attempted to solve
the computability of Frege’s vague boundary by Fuzzy Set concept [20]. Unfor-
tunately, Fuzzy Sets are not mechanically computable, that is, the formula of
exact describing for the fuzzy concept hasn’t been given. Therefore, the number
of elements on the vague boundary could not be computed by exact formula.
For example, the membership μ in Fuzzy Sets and fuzzy operator λ in operator
fuzzy logic [21], could not be computed exactly.

Z.Pawlak proposed the Rough Sets (RS) in 1982 for computing Frege’s vague
boundary [8, 17], and the number of elements on the vague boundary could be
exactly computed by it.

Rough Set Theory is a new tool to deal with incomplete and uncertainty prob-
lems. In the field of computer applications nowadays, this theory is no doubt a
challenge to other uncertainty theories. Since rough set theory is one of the most
important, newest theories and with the rapid development, it is also very im-
portant in artificial intelligence and cognitive science. Especially methods,which
are based on rough set theory alone or are in combination with other approaches,
have been used over a wide range of applications in many areas. More and more
people in the region of China are attracted by them.

In this article, we also present state of art of RS in China. Since May, 2001
Professor Pawlak being invited to China made his keynote speech in a conference
and gave many invited talks among universities, the research of RS have been
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rapidly developed in China. Rough Set Theory has been used for important
applications in human life, such as, data reduction, approximate classification
of data, management systems of business information, computing the average
value and the standard deviation in quality test of products of statistics and
so on.

We developed successfully the Business Information Management Systems
with rough set approach, which is a management for price of houses of some
region [22].

We defined an indiscernibility relation on numerical interval [a, b] by using
ancient mathematical Golden Cut method and created rough sets by the defined
relation. Based on the rough set approach, we developed a ”Diagnosis Software
of Blood Viscosity Syndrome on Hemorheology”, which is used to test Blood
Viscosity chroma of patients. The systems has been applied in the clinic for many
years. The medicine experts review that the diagnosis software is precursive,
creative, scientific and practical [24].

In this article, we present the state of art of primary rough set research results
and their applications in practice in China during last few years. Especially, in
2001, Pawlak was invited to China, his keynote speech had made a big influence
on the development of science and technology of China.

We would like to thank Pawlak for his fundamental and significant contri-
bution to the development of rough set research in China. We would like to
thank the editor-in-chief Professor James F. Peters, Professor Andrej Skowron
and Professor Ewa Orlowska for their kindness to let us publish article in this
historical event to commemorate the great scientist Zdzis�law Pawlak for his con-
tribution to the science and technology world. Thanks are also to the support
of Natural Science Fund of China (NSFC-60173054). At last we would like to
thank Dr. James Kuodo Huang (who is a IEEE member and have taught in the
universities of USA for over 20 years) for his kind suggestions of English in this
article. Still we would like to take the whole responsibility for any further errors
made in this article.
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Abstract. This paper extends the basic rough set formalism introduced by
Pawlak [1] to a rule-based knowledge representation language, called Rough Dat-
alog, where rough sets are represented by predicates and described by finite sets
of rules. The rules allow us to express background knowledge involving rough
concepts and to reason in such a knowledge base. The semantics of the new lan-
guage is based on a four-valued logic, where in addition to the usual values TRUE

and FALSE, we also have the values BOUNDARY, representing uncertainty, and
UNKNOWN corresponding to the lack of information. The semantics of our lan-
guage is based on a truth ordering different from the one used in the well-known
Belnap logic [2, 3] and we show why Belnap logic does not properly reflect nat-
ural intuitions related to our approach. The declarative semantics and operational
semantics of the language are described. Finally, the paper outlines a query lan-
guage for reasoning about rough concepts.

1 Introduction

The seminal ideas of Pawlak [1, 4, 5, 6] on the treatment of imprecise and incomplete
data opened a new area of research, where the notion of rough sets is used in theoretical
studies as well as practical applications.

Rough sets are constructed by means of approximations obtained by using elemen-
tary sets which partition a universe of considered objects. The assumption as to parti-
tioning of the universe has been relaxed in many papers (see, e.g., [7,8,9,10,11,12,13,
14, 15]), however the Pawlak’s idea of approximations has remained the same.

This paper extends the basic rough set formalism to a rule-based language, where
rough sets are represented by predicates and are described by finite sets of rules. The
rules allow one to express background knowledge concerning rough concepts and to
reason in such a knowledge base. The new language is different from that proposed
in [14, 15], where the rules described rough sets by combining their regions (lower
approximation, upper approximation and boundary region). In contrast to the language
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described in this paper, the rules expressed in the language presented in [14, 15] refer
explicitly to different regions of a rough set.

Lifting the level of description makes the definitions easier to understand, also for
the people not familiar with the technicalities of rough sets. The semantics of the new
language is based on a four-valued logic, where in addition to the usual values TRUE and
FALSE we have the values BOUNDARY representing uncertain/inconsistent information
and UNKNOWN corresponding to the lack of information. As discussed in Section 3.2,
the well-known four-valued Belnap logic [3, 2] does not properly reflect the natural
intuitions related to our approach. We propose instead a slightly different truth ordering
and use it, together with the standard knowledge ordering, for defining a declarative
semantics of our language.

By using the four-valued logic we propose, we are then able to deal with some
important issues.

First of all, we are able to provide a natural semantics for Datalog-like rules where
negation can be used freely, both in the bodies and in the heads of rules. This, in pre-
vious approaches to various variants of negation, has always been problematic either
due to the high computational complexity of queries or to a nonstandard semantics
of negation, often leading to counterintuitive results (for an overview of different ap-
proaches to negation see, e.g., [16]). Our semantics reflects intuitions of fusing infor-
mation from various independent sources. If all sources claim that a given fact is true
(respectively, false) then we have an agreement and attach TRUE (respectively FALSE)
to that fact. If information sources disagree in judgement of a fact, we attach to it the
value BOUNDARY. If no source provides an information about a given fact, we then
make it UNKNOWN.

Second, we are able to import knowledge systems based on the classical logic with-
out any changes and make them work directly within the rough framework. In such
cases these systems would act as single information sources providing answers TRUE,
FALSE, when queried about facts. Possible conflicting claims of different systems
would then be solved by the same, uniform four-valued approach we propose. This
might be useful in combining low level data sources, like classifiers as well as higher
level expert systems.

Third, one can import rough set-based systems, or systems supporting approximate
reasoning, like for example, those described in [14, 15], or [17, 18]. In the latter three-
valued logics are used (identifying BOUNDARY and UNKNOWN).

The paper is structured as follows. First, in Section 2, we recall basic definitions re-
lated to rough sets and approximations. Next, in Section 3, we discuss our choice of
four-valued logic. In Section 4 we introduce Rough Datalog and provide its semantics.
Section 5 outlines a query language and discusses its implementation in logic program-
ming. Finally, Section 6 concludes the paper.

2 Rough Sets

According to Pawlak’s definition (see, e.g., [19]), a rough set S over a universe U is
characterized by two subsets of U :
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Table 1. Test results considered in Example 1

car station safe
a s1 yes
a s2 no
b s2 no
c s1 yes
d s1 yes

– the set S, of all objects which can be certainly classified as belonging to S, called
the lower approximation of S, and

– the set S, of all objects which can be possibly classified as belonging to S, called
the upper approximation of S.

The set difference between the upper approximation and the lower approximation, de-
noted by S, is called the boundary region.

In practice, in order to describe a given reality, one chooses a set of attributes and the
elements of the underlying universe are described by tuples of attribute values. Rough
sets are then defined by decision tables associating membership decisions with attribute
values. The decisions are not exclusive: a given tuple of attribute values may be associ-
ated with the decision “yes”, with the decision “no”, with both or with none, if the tuple
does not appear.

Example 1. Consider a universe consisting of cars. If a car passed a test then it may be
classified as safe (and as not safe, if it failed the test). Tests may be done independently
at two test stations. The upper approximation of the rough set of safe cars would then
include cars which passed at least one test. The lower approximation of the set would
include the cars which passed all tests (and therefore, they did not fail at any test). The
boundary region consists of the cars which passed one test and failed at one test. Notice
that there are two other categories of cars, namely those which were not tested and those
which failed all tests.

As an example consider the situation described in Table 1, where the first column
consists of cars, the second column consists of test stations and the third one contains
test results. Denote by “Safe” the set of safe cars. Then:

– the upper approximation of Safe consists of cars for which there is a decision “yes”,
i.e., Safe = {a, c, d}

– the lower approximation of Safe consists of cars for which all decisions are “yes”,
i.e., Safe = {c, d}

– the boundary region of Safe consists of cars for which there are both decisions
“yes” and “no”, i.e., Safe = {a}. �

A decision table, representing a concept t, may be represented as a finite set of literals
of the form t(y) or ¬t(x), where y ranges over the tuples of attribute values associated
with the decision “yes” and x ranges over the tuples of attribute values associated with
the decision “no”.
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Example 2. For the Example 1 with the universe of cars {a, b, c, d, e} and with two test
stations, we may have the decision table, shown in Table 1, encoded as

{safe(a), ¬safe(a), ¬safe(b),safe(c),safe(d)} .

Notice that the literal safe(a) indicates that car a has passed a safety test in one of the
stations while literal ¬safe(a) states that the same car as failed a safety test in another
test station.

In this case the rough set Safe has the approximations

Safe = {a, c, d} and Safe = {c, d}.

The rough set ¬Safe, describing those cars that have failed some test, has the approxi-
mations ¬Safe = {a, b} and ¬Safe = {b}.

Note that it is totally unknown what is the status of car e. �

We notice that a decision table T of this kind defines two rough sets, T and ¬T , with a
common boundary region which is the intersection of the upper approximations of both
sets, i.e. T ∩ ¬T . As rough sets are usually defined by decision tables, we then adopt
the following definition (used also in [20, 14, 15]).

Definition 1. A rough set S over a universe U is a pair 〈S, ¬S〉 of subsets of U . �

Intuitively, the rough set S describes those elements of U having certain property. The
set S is the upper approximation of S, and consists of the elements of U for which there
is an indication of having the given property. On the other hand, the set ¬S consists of
the elements for which there is an indication of not having the property. In Example 2,
Safe = {a, c, d} and ¬Safe = {a, b}.

Remark 1

1. Observe that Definition 1 differs from the understanding of rough sets as defined
by Pawlak. In fact, the definition of Pawlak requires the underlying elementary sets
used in approximations to be based on equivalence relations, while Definition 1
relaxes this requirement. Such differences are examined and discussed in depth
in [12].

2. Since relations are sets of tuples, we further on also use the term rough relation to
mean a rough set of tuples. �

3 A Four-Valued Logic for Rough Sets

3.1 The Truth Values for Rough Membership

Our objective is to define a logical language for rough set reasoning. The vocabulary
of the language includes predicates to be interpreted as rough relations and constants
to be used for representing attribute values. Consider an atomic formula of the form
p(t1, · · · , tn), where p is a predicate, denoting a rough set P , and t1, . . . , tn (with
n > 0) are constants. We now want to define the truth value represented by an atom
p(t1, · · · , tn). Let v = 〈t1, . . . , tn〉 and “−” denote the set difference operation. Then,
the following cases are possible:
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– v ∈ P − ¬P : intuitively, we only have evidence that the element of the universe
described by the attributes v has property P . Thus, the truth value of p(v) is defined
to be TRUE.

– v ∈ ¬P − P : intuitively, we only have evidence that the element of the universe
described by the attributes v does not have property P . Thus, the truth value of p(v)
is defined to be FALSE.

– v ∈ P ∩ ¬P : in this case, we have contradictory evidences, i.e. an evidence that
an element of the universe described by the attributes v has property P and an
evidence that it does not have the property P . This is an uncertain information and
we use the additional truth value BOUNDARY to denote it.

– v �∈ P ∪¬P : in this case, we have no evidence whether the element of the universe
described by the attributes v has property P . We then use another truth value called
UNKNOWN.

3.2 Is Belnap Logic Suitable for Rough Reasoning?

The truth values emerging from our discussion have been studied in the literature out-
side of the rough set context for defining four-valued logic. A standard reference is
the well-known Belnap’s logic [2]. We now recall its basic principles and we discuss
whether it is suitable for rough set reasoning.

The Belnap logic is defined by considering a distributive bilattice of truth values and
introducing logical connectives corresponding to the operations in the bilattice.

Bilattices have been introduced in [21, 22]. They generalize the notion of Kripke
structures (see, e.g., [23]). A bilattice is a structure B = 〈U, ≤t, ≤k〉 such that U is a
non-empty set, ≤t and ≤k are partial orderings each making set U a lattice. Moreover,
there is usually a useful connection between both orderings.

We follow the usual convention that ∧t and ∨t stand respectively for the meet and
join, with respect to ≤t. The symbols ∧k and ∨k stand respectively for the meet and
join, with respect ≤k. Operations ∧t and ∨t are also called the conjunction and dis-
junction, and ∧k and ∨k are often designated as the consensus and accept all operators,
respectively.

The bilattice used in Belnap’s logic is shown in Fig 1. In the knowledge order-
ing, ≤k, UNKNOWN is the least value, reflecting total lack of knowledge. Each of
the values TRUE and FALSE provide more information than UNKNOWN. Finally, the
INCONSISTENT value corresponds to the situation when there is evidence for both
TRUE and FALSE.1 The truth ordering ≤t (see Fig 1) has TRUE as its largest element,
and FALSE as its smallest element.

Example 3. Assume that a family owns two cars: a and e. We want to check if the
family has a safe car. This corresponds to the logical value of the expression

safe(a) ∨t safe(e) . (1)

1 Observe that INCONSISTENT is replaced in our approach by BOUNDARY, which is closer to
intuitions from rough set theory.
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�

� ≤t

≤k

UNKNOWN

INCONSISTENT

FALSE TRUE

Fig. 1. The bilattice corresponding to Belnap’s logic

The truth values of safe(a) and safe(e) are determined by the results of the tests,
as specified in Example 2. Thus safe(a) has the value BOUNDARY and safe(e) has
the value UNKNOWN. If the join operation ∨t is defined by Belnap’s logic, as shown in
Fig 1, then

INCONSISTENT ∨t UNKNOWN = TRUE .

This contradicts our intuitions. We know that the safety of car a is unclear, since the
results of both safety tests are contradictory, and we know nothing about safety of
car e.

Asking instead if all cars of the family are safe,

safe(a) ∧t safe(e) , (2)

would in Belnap’s logic result in the answer FALSE. However, we really do not know
whether both cars are safe because we do not have any information about the safety of
car e. In contrast to the answer obtained in the Belnap’s logic, UNKNOWN seems to be
a more intuitive answer in this case. �

The example above shows that the truth ordering of Fig 1, and consequently Belnap’s
logic are not suitable for rough set-based reasoning. On the other hand, the knowl-
edge ordering of Fig. 1 is adequate for our purposes. Indeed, the values TRUE and
FALSE show that only one kind of evidence, either positive or negative, is known while
the value BOUNDARY indicates existence of contradictory evidence, both positive and
negative.

3.3 A Four-Valued Logic for Rough Set Reasoning

We now define a four-valued logic suitable for rough set-based reasoning by modify-
ing the bilattice of Fig.1. As discussed in Section 3.2, only the truth ordering is to be
changed. We will use the new truth ordering to define conjunction (∧t) as the great-
est lower bound in this ordering. The ordering should preserve the usual meaning of
conjunction for the truth values TRUE and FALSE. Intuitively, the value UNKNOWN

represents the lack of information. Thus, the result of its conjunction with any other
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182 J. Małuszyński, A. Szałas, and A. Vitória

truth value is accepted here to be UNKNOWN. A new information may arrive, replac-
ing UNKNOWN by either TRUE, or FALSE, or BOUNDARY, providing in each case
a different result. On the other hand, BOUNDARY represents existence of contradictory
information. Its conjunction with TRUE would not remove this contradiction. Thus, we
define the result of such a conjunction to be BOUNDARY. It also seems natural, that the
conjunction of FALSE with TRUE or BOUNDARY gives FALSE. Consequently the truth
ordering, ≤t, is redefined in our framework as

UNKNOWN ≤t FALSE ≤t BOUNDARY ≤t TRUE . (3)

The new structure R = 〈U, ≤t, ≤k〉, where U is the universe of objects of interest, ≤t

is the truth ordering defined in (3), and ≤k is the knowledge ordering as in the Belnap’s
logic, gives the meaning of the logical connectives and is used in our approach.

Example 4. Referring to Example 3, we then compute the logical values associated
with the queries (1) and (2) by considering the new truth ordering above.

The first query, (1) of Example 3,

BOUNDARY ∨t UNKNOWN ,

returns the logical BOUNDARY which better corresponds to the intuitions.
For the second query, (2) of Example 3, we have that

BOUNDARY ∧t UNKNOWN = UNKNOWN .

In contrast to Belnap’s logic, it is not excluded that some cars of the family of Example 3
are safe, but to be sure we need to obtain some information about the safety of car e.
So, the answer UNKNOWN adequately reflects our intuitions. �

The proposition below shows that there is a connection between the knowledge ordering
and the truth ordering. In this sense, the structure R can then be seen as a bilattice.

Proposition 1. Consider the bilattice R = 〈U, ≤t, ≤k〉 and that x, y ∈ U . The oper-
ation ∧t is monotonic with respect to ≤k on both arguments, i.e. if x ≤k y then, for
every z ∈ U , we have (z ∧t x) ≤k (z ∧t y) and (x ∧t z) ≤k (y ∧t z).

Proof. Table 2 shows the result. Operation ∧t is obviously commutative. �

We now define formally the logic underlying our work, called Rough Logic.

Definition 2. Consider the following negation operation ¬.

¬TRUE
def= FALSE, ¬FALSE

def= TRUE,

¬BOUNDARY
def= BOUNDARY, ¬UNKNOWN

def= UNKNOWN.

The propositional four-valued logic defined by the bilattice R together with negation ¬
is called the Rough Logic. �
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Table 2. The table considered in the proof of Proposition 1

z x y z ∧t x z ∧t y
BOUNDARY UNKNOWN TRUE UNKNOWN BOUNDARY

BOUNDARY UNKNOWN FALSE UNKNOWN FALSE

BOUNDARY FALSE BOUNDARY FALSE BOUNDARY

BOUNDARY TRUE BOUNDARY BOUNDARY BOUNDARY

BOUNDARY UNKNOWN BOUNDARY UNKNOWN BOUNDARY

z x y z ∧t x z ∧t y
FALSE UNKNOWN TRUE UNKNOWN FALSE

FALSE UNKNOWN FALSE UNKNOWN FALSE

FALSE FALSE BOUNDARY FALSE FALSE

FALSE TRUE BOUNDARY FALSE FALSE

FALSE UNKNOWN BOUNDARY UNKNOWN FALSE

z x y z ∧t x z ∧t y
TRUE UNKNOWN TRUE UNKNOWN TRUE

TRUE UNKNOWN FALSE UNKNOWN FALSE

TRUE FALSE BOUNDARY FALSE BOUNDARY

TRUE TRUE BOUNDARY TRUE BOUNDARY

TRUE UNKNOWN BOUNDARY UNKNOWN BOUNDARY

z x y z ∧t x z ∧t y
UNKNOWN UNKNOWN TRUE UNKNOWN UNKNOWN

UNKNOWN UNKNOWN FALSE UNKNOWN UNKNOWN

UNKNOWN FALSE BOUNDARY UNKNOWN UNKNOWN

UNKNOWN TRUE BOUNDARY UNKNOWN UNKNOWN

UNKNOWN UNKNOWN BOUNDARY UNKNOWN UNKNOWN

4 Rough Datalog Language

We now define a rule language, called Rough Datalog, such that its semantics is based
on the Rough Logic. Intuitively, Rough Datalog corresponds to the usual logic pro-
gramming language Datalog. While predicates in the latter denote crisp relations, in
Rough Datalog a predicate p denotes a rough relation P . Thus, Rough Datalog caters
for uncertainty in the knowledge.

A rough literal is any expression of the form p(t1, . . . , tn) or ¬p(t1, . . . , tn). In
Rough Datalog, knowledge is represented in the form of rough clauses,

H:- B1, . . . , Bn.

where H and every Bi (0 ≤ i ≤ n) is a rough literal. A rough clause with the empty
body (i.e. n = 0) is called a rough fact. A rough program P is a finite set of rough
clauses.

Rough clauses are used to specify rough relations as explained next. Intuitively,
a rough clause is to be understood as the knowledge inequality ≤k stating that the
truth value of the body is less than or equal to the truth value of the head. The comma
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symbol “,” is interpreted as the meet in the truth ordering ≤t. Notice that the arguments
of ≤k are the truth values UNKNOWN, BOUNDARY, TRUE, or FALSE but the logical
value associated with a rough clause is either TRUE or FALSE. Information obtained
from different rough clauses with heads referring to the same rough relation P (i.e. p or
¬p occurs in the head) is combined using the knowledge join operation ∨k .

Example 5. The following rough clauses belong to an exemplary rough program P .

(1) ¬useful(a) :- red(a), squared(a).
“Object a is not useful if it is red and squared.”

(2) squared(a) :- useful(a). —“Object a is squared if it is useful.”
(3) ¬squared(a). —“Object a is not squared.” �

4.1 Semantics of Rough Datalog Programs

We now define notions of four-valued interpretation and model, extend the knowledge
ordering to interpretations and show that each rough program has the least model in this
ordering.

Let P be a rough program and L be the set of all constant symbols occurring in P .
Then, the Herbrand base HP is the set of all literals whose predicate symbols occur in
P and whose arguments belong to L.

A four-valued interpretation I of a rough program P associates with each atom a
occurring in P a logical value

I(a) ∈ {UNKNOWN, TRUE, FALSE, BOUNDARY}

and ¬I(a) = I(¬a).
The notion of interpretation extends naturally to conjunction (disjunction) of literals.

Let l1, . . . , ln, with n > 0, be rough literals.

I(l1 ∧t · · · ∧t ln) = I(l1) ∧t · · · ∧t I(ln) .

Definition 3. An interpretation I of a rough program P is any subset of the Herbrand
base HP . Moreover, the rough relation I(p) is defined as

I(p) = 〈I(p), ¬I(p)〉 = 〈{t | p(t) ∈ I}, {t | ¬p(t) ∈ I}〉 . �

Intuitively, an interpretation associates each predicate p occurring in a program P with
a rough set. Notice that ¬I(p) = I(¬p). Moreover, we have that

– I(p(t)) = UNKNOWN, if t �∈ I(p) ∪ ¬I(p).
– I(p(t)) = FALSE, if t ∈ ¬I(p).
– I(p(t)) = TRUE, if t ∈ I(p).

– I(p(t)) = BOUNDARY, if t ∈ I(p).

Notice that we only consider variable-free rough programs. However, the results pre-
sented below can be also extended to rough programs with variables.
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An interpretation I of a rough program P satisfies a rough clause H:- B. ∈ P if
I(B) ≤k I(H). A model M of P is any interpretation that satisfies every rough clause
belonging to P .

Notice also that the Herbrand base HP is a model of any rough program P . In this
model the truth value of every literal is BOUNDARY. However, usually a program has
more models. For comparing them we introduce a partial order on interpretations based
on the knowledge ordering relation, ≤k.

Definition 4. Let I1 ⊆ HP and I2 ⊆ HP be two interpretations. Then, I1 ≤k I2, if
and only if I1(l) ≤k I2(l), for every literal l ∈ HP . �

It can be checked that the knowledge ordering on interpretations corresponds to set
inclusion.

Proposition 2. I1 ≤k I2 if and only if I1 ⊆ I2. �

We show now that there is the least model for every rough program.

Proposition 3. Let P be a rough program. Then, P has the least model with respect
to ≤k.

Proof. To prove that P has a least model with respect to ≤k, we show that the intersec-
tion of all models of P is also a model of P .

Let M =
⋂n

i Mi, where {M1, . . . , Mn} (n ≥ 1) is the set of all models of P . Notice
that, by Proposition 2, M ≤k Mi, with Mi ∈ {M1, . . . , Mn}. We prove that M is
a model of P . For this we have to show that, for any clause H :- B. ∈ P , we have
M(H) ≥k M(B). We prove this by cases, considering possible truth values of the
body of a clause.

(a) If M(B) = UNKNOWN then M satisfies the rough clause, since UNKNOWN is the
least element in the knowledge ordering.

(b) If M(B) = TRUE then W (B) ≥t BOUNDARY, for every model W of P . Hence,
W (H) ≥k TRUE, for every model W of P . Consequently, M(H) ≥k TRUE

because the literal occurring in the head belongs to every model W . We conclude
then that M satisfies the rough clause.

(c) If M(B) = FALSE then B includes a literal l that is FALSE in some model of P
and l is either FALSE or BOUNDARY in the other models. Obviously, no literal
occurring in B can be UNKNOWN in any model. Consequently, M(H) ≥k FALSE

because ¬H belongs to every model W . We conclude then that M satisfies the
rough clause.

(d) If M(B) = BOUNDARY then W (B) = BOUNDARY, for every model W of P .
Notice that if I(B) = BOUNDARY, for some interpretation I of P , then we have
that either I(l) = TRUE or I(l) = BOUNDARY, for every literal l in the body B.
Hence, W (H) = BOUNDARY, for every model W of P . Consequently, M(H) =
BOUNDARY because {H, ¬H} ⊆ W , for every model W . We conclude then that
M satisfies the rough clause. �

The semantics of a rough program P is captured by its least model, with respect
to ≤k.
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Example 6. Consider again the rough program of Example 5. Its least model is M =
{¬squared(a)}. Hence, useful(a) and red(a) are UNKNOWN, while squared(a)
is FALSE. �

4.2 A Fixpoint Characterization of the Least Model

We now give a fixpoint characterization of the least model which makes it possible to
compute the semantics of a program. We define an operator on interpretations, con-
sidered as sets of literals. We show that the operator is monotonic with respect to set
inclusion. Thus, it has the least fixpoint (with respect to set inclusion) which can be
obtained by iterations of the operator starting with the empty interpretation. We also
show that the least fixpoint is a model. Taking into account Proposition 2, we can then
conclude that the least fixpoint is also the least model of the program with respect to
knowledge ordering. In the following definition if l is a negative literal of the form ¬a,
then ¬l denotes a.

Definition 5. Let P be a rough program. A total function TP mapping interpretations
into interpretations is defined as follows:

TP(I) = {l | l:- B. ∈ P and I(B) = TRUE} ∪
{¬l | l:- B. ∈ P and I(B) = FALSE} ∪
{l, ¬l | l:- B. ∈ P and I(B) = BOUNDARY} . �

Thus, the set TP(I) consists of the heads of the rough clauses whose bodies are TRUE

or BOUNDARY in I and, the negated heads of the rules whose bodies are FALSE or
BOUNDARY in I. Such a way to gather heads of rules corresponds to defining the result
by the disjunction of heads w.r.t. knowledge ordering ≤k.

Proposition 4. Given a rough program P , the operator TP is monotonic with respect
to set inclusion.

Proof. The bodies of the program clauses are conjunctions of atoms. By Proposition 1
the conjunction is monotonic with respect to knowledge ordering. Hence by Proposi-
tion 2, it is also monotonic with respect to set inclusion of the interpretations. Thus,
I ⊆ TP(I), for every interpretation I. �

The proposition above guarantees that TP has a least fixpoint (with respect to set inclu-
sion), denoted as LFP(TP).

Proposition 5. Given a rough program P , the LFP(TP) coincides with the least model
of P .

Proof. It is easy to see that the interpretation I = LFP(TP) is a model of P . Assume
the contrary. Then, there exists a clause H :- B. such that I(H) <k I(B). The possible
cases are as follows.

– I(B) = TRUE and I(H) ≤k FALSE.
– I(B) = FALSE and I(H) ≤k TRUE.
– I(B) = BOUNDARY and I(H) <k BOUNDARY.
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In the first two cases, we immediately obtain the contradiction with the assumption
I = LFP(TP), since TP(I) would then include, respectively, the literal H ( ¬H).
A similar contradiction is obtained for the third case, since I(B) = BOUNDARY means
that TP(I) would then include both literals H and ¬H . In any case, we conclude that
I is not a fixpoint of TP .

It remains to prove that the model LFP(TP) is the least model in the knowledge
ordering. This follows directly from Proposition 2. �

Proposition 5 shows that the least model of a program P can be computed by apply-
ing iteratively operator TP , starting from the empty interpretation until the fixpoint is
reached. Notice that in the empty interpretation, all literals of the Herbrand base have
the truth value UNKNOWN.

We show below a simple example of a rough program, based on a classical exam-
ple from logic programming, and it illustrates the use of TP for computation of its
semantics.

Example 7. Consider the rough program consisting of the following rough clauses.
(1) fly(tweety) :- bird(tweety).
(2) bird(tweety) :- penguin(tweety).
(3) ¬fly(tweety) :- penguin(tweety).
(4) ¬dangerous(tweety) :- red(tweety), fly(tweety).
(5) penguin(tweety).
(6) red(tweety).

Application of TP to the empty interpretation gives

I1 = penguin(tweety), red(tweety).

Further iterations of TP give

I2 = I1 ∪ {bird(tweety), ¬fly(tweety)} ,
I3 = I2 ∪ {fly(tweety)} ,
I4 = I1 ∪ {dangerous(tweety), ¬dangerous(tweety)} ,
I5 = I4 .

Thus, we conclude that tweety belongs to the lower approximations of the rough
relations Bird, Penguin and Red and it belongs to the boundary region of rough relations
Fly and Dangerous. �

5 A Query Language and Its Implementation

In this section we describe a query language for rough programs. We start by defin-
ing the notions of rough query and answer. Then, we briefly describe how the query
language can be implemented in a logic programming as queries to a definite logic pro-
gram. Existing systems like Prolog [24], XSB [25], or SModels [26, 27] can then be
used to compute the answers. We assume that the reader is familiar with the basics of
logic programming [28].
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Definition 6. A rough query is a pair 〈:- l1, . . . , ln , P〉, with n ≥ 1, where P is
a rough program and each li is a (variable-free) rough literal. �

We need now to define the notion of answer to a rough query.

Definition 7. Let 〈:- l1, . . . , ln , P〉 be a rough query. The answer to the rough query
is defined as the logical value of LFP(TP)(l1 ∧t · · · ∧t ln). �

Example 8. Consider the rough program of Example 7. The answer to the rough query

〈:- bird(tweety), P〉

is TRUE, while the answer to the rough query

〈:- fly(tweety),penguin(tweety) , P〉

is BOUNDARY. �

Rough programs can be compiled to definite logic programs as described below. A def-
inite logic program is a non-empty set of clauses H :- A1, · · · , An., where each Ai is an
atom, (0 ≤ i ≤ n). Clauses can informally be understood as implications: if every atom
Ai is true then H must also be true. Therefore, the comma symbol “,” is interpreted as
conjunction. Notice that predicates in a logic program denote crisp relations and each
atom is either TRUE or FALSE.

Any fact (a clause of the form H :- .) remains unchanged.
Let C ≡ H :- l1, · · · , ln., where n ≥ 1, be a rough clause and ϕ be a function

transforming C into a non-empty set of clauses such that ϕ(C) = {C} ∪ φ(C), where

φ(C) = {¬H :- l′1, · · · , l′n. | (∀1 ≤ i ≤ n : l′i ∈ {li, ¬li}) and
H :- l′1, · · · , l′n. �≡ C} .

(4)

Hence, a rough program is compiled to a definite logic program by applying function
ϕ to each rough clause, i.e. ϕ(P) =

⋃
C∈P ϕ(C). We assume that, in the compiled

programs, ¬p is treated as a new predicate symbol and ¬¬p is replaced with p, for any
symbol p.

Informally, the main idea underlying the compilation of rough programs is that the
body of a rough clause is associated with TRUE, if all literals occurring in it are TRUE.
The body of a rough clause is associated with FALSE, if ¬l is TRUE, for at least one
literal l occurring in the body, and all other literals in the body are provable. The body
of a rough clause is associated with BOUNDARY, if we can prove that it is TRUE and
FALSE. If for some literal l in the body, it is neither possible to prove l nor ¬l then the
body of a rough clause is associated with UNKNOWN. It can be easily seen that the least
model of P coincides with the least model of the definite logic program ϕ(P).

Remark 2. The transformation expressed by formula (4) results in the exponential blow
up of the number of clauses. Namely, if a body of a rule consists of n literals then
we have 2n resulting clauses. However, in practice n is rather small. Moreover, the
transformation we have provided is the simplest one and we only intend to show that
the required compilation can be done. �
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Definite logic programs can also be queried. A query for a definite logic program has
the same syntax as a rough query. However in logic programming, queries are answered
YES or NO depending whether the query is provable or not. A rough query 〈Q, P〉 can
be compiled to several queries to ϕ(P). Thus,

– If the query 〈Q, ϕ(P)〉 is answered YES and all queries 〈Q′, ϕ(P)〉 are answered
NO, with Q′ ∈ φ(Q), then the answer to the rough query 〈Q, P〉 is TRUE.

– If the query 〈Q, ϕ(P)〉 is answered NO and some query 〈Q′, ϕ(P)〉 is answered
YES, with Q′ ∈ φ(Q), then the answer to the rough query 〈Q, P〉 is FALSE.

– If the query 〈Q, ϕ(P)〉 is answered YES and some query 〈Q′, ϕ(P)〉 is also an-
swered YES, with Q′ ∈ φ(Q), then the answer to the rough query 〈Q, P〉 is
BOUNDARY.

– Otherwise, the answer to the rough query 〈Q, P〉 is UNKNOWN.

6 Conclusions

In the paper we have presented a four-valued logic which we found adequate for ap-
proximate reasoning based on Pawlak’s ideas of approximations. The four-valued ap-
proach reflects intuitions of fusing information from various, possibly independent data
sources.

We have proposed a database language involving approximate concepts and pro-
vided its formal semantics. Lifting the level of description from approximations to
sets/relations themselves facilitates the use of the language as well as the import of
rules from other databases, including those based on two-valued and three-valued log-
ics. A corresponding query language and its implementation have also been discussed.

As noticed in Remark 2, the transformation defined by formula (4) is rather ineffi-
cient. We plan to address its improvement in our future work.
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Abstract. This paper proposes an approach to representation and analy-
sis of information systems with fuzzy attributes, which combines the vari-
able precision fuzzy rough set (VPFRS) model with the fuzzy flow graph
method. An idea of parameterized approximation of crisp and fuzzy sets
is presented. A single ε-approximation, which is based on the notion
of fuzzy rough inclusion function, can be used to express the crisp ap-
proximations in the rough set and variable precision rough set (VPRS)
model. A unified form of the ε-approximation is particularly important
for defining a consistent VPFRS model. The introduced fuzzy flow graph
method enables alternative description of decision tables with fuzzy at-
tributes. The generalized VPFRS model and fuzzy flow graphs, taken
together, can be applied to determining a system of fuzzy decision rules
from process data.

1 Introduction

Two important paradigms, developed in the recent decades, can be successfully
used for modelling and analyzing decision processes performed by a human op-
erator: the rough set theory introduced by Pawlak [19] and the theory of fuzzy
sets proposed by Zadeh [34].

The idea of combining fuzzy sets with rough sets was realized by two indepen-
dent approaches. The method given by Nakamura [18] consists in application of
the classical rough set theory to a crisp representation of fuzzy sets. In contrast
to that, Dubois and Prade [6] introduced a novel concept of fuzzy rough sets,
suitable for expressing vagueness represented in fuzzy sets, and coarseness char-
acteristic of rough sets. The concept of Dubois and Prade has been widely used
and developed, see, e.g., [8,12,25].

A significant parameterized extension of the crisp rough set theory is the
variable precision rough set (VPRS) model proposed by Ziarko [35]. It bases
on the idea of relaxation of strong inclusion requirements. The VPRS model
helps to overcome problems caused by errors and noise, which are present in
data obtained from real decision processes. More recently, a probabilistic inter-
pretation of the VPRS model was developed, see e.g., [11,29,36]. The original
VPRS model and many other extensions of crisp rough sets can be expressed in
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the framework of a generalized theory. The rough mereology of Polkowski and
Skowron [24] presents an alternative generalized approach to rough sets, which is
based on the mereology of Leśniewski. The idea of relaxation of strong inclusion
requirements was also applied to fuzzy rough sets [7,33].

Another useful method, introduced and studied by Pawlak [20,21,22], is a
hybrid approach to decision algorithms, which combines the idea of flow graphs
with the crisp rough set model. It was shown [9] that every decision algorithm
can be associated with a flow graph.

We emphasize the problem of obtaining a set of relevant fuzzy decision rules
from recorded process data and decision examples. This is a crucial step in
applications of fuzzy inference systems [14,32]. The used data can be represented
in the form of a decision table with fuzzy attributes. To analyze efficiently this
kind of decision table, we adapt and combine all three approaches mentioned
above: fuzzy rough sets, variable precision rough set model and flow graphs.

First of all, we present a generalized version of our variable precision fuzzy
rough set (VPFRS) model [16,17], which was introduced with the aim to en-
able analysis of fuzzy decision tables obtained from dynamic processes. There
are many ways of performing basic operations on fuzzy sets. In order to get a
consistent VPFRS model, we propose a unified parameterized approach to ap-
proximation of crisp and fuzzy sets. Basing on the notion of rough and fuzzy
rough inclusion function, a definition of a single ε-approximation is given.

Secondly, we propose a fuzzy flow graph approach, which is suitable for repre-
senting and analyzing fuzzy decision systems. The connection of the flow graph
approach with fuzzy inference systems is discussed, The problem of a correct
choice of fuzzy connectives, with the aim to retain the flow conservation equa-
tions, is considered. Furthermore, we give new definitions of the path’s certainty
and strength, by respecting only the relevant part of the flow and disregarding
the flow components which come from other paths.

Finally, we show that the VPFRS model can be effectively used for a simpler
representation and easier selection of fuzzy decision rules with the help of fuzzy
flow graphs.

We start with a formal description of fuzzy information systems.

2 Fuzzy Information Systems

In the classical concept of (crisp) sets with sharp boundaries, any element x of an
universe U belongs or does not belong to a given subset of U . In contrast to that,
the notion of fuzzy sets admits of partial membership. Any fuzzy set F can be
defined by assigning to every element x ∈ U a membership degree μF (x) ∈ [0, 1]
in the set F . Thus, we get a membership function μF which describes the fuzzy
set F .

In a crisp information system, a set of attributes Q is used to characterize
the elements of an universe U . Each element x of the universe U is described by
a combination of attributes values. Only one attribute value of each attribute
q ∈ Q can be assigned to a given element x ∈ U .
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In order to generalize the notion of information system, we use a set of fuzzy
attributes with linguistic values expressed by membership functions. Several lin-
guistic values of every attribute q ∈ Q can be assigned to an element x ∈ U .
In other words, an element x can belong, to a non-zero membership degree, to
many fuzzy sets representing linguistic values of an attribute q. We introduce a
formal definition of a fuzzy information system.

Definition 1. A fuzzy information system is the 4-tuple S = 〈X, Q, L, f〉, where

U – is a nonempty set, called the universe,
Q – is a finite set of fuzzy attributes,
L – is a set of fuzzy (linguistic) values of attributes, L =

⋃
q∈Q Lq,

Lq is the set of linguistic values of an attribute q ∈ Q,
f – is an information function, f : U × L → [0, 1],

f(x, l) ∈ [0, 1] for every l ∈ L and every x ∈ U .

In practice, we use fuzzy decision tables, which constitute a special form of
fuzzy information systems with two disjoint groups of condition and decision
attributes, respectively.

To give a formal description of decision tables, we assume a finite universe U
with N elements: U = {x1, x2, . . . , xN}. Attributes are divided into a subset of n
condition attributes: C = {c1, c2, . . . , cn}, and a subset of m decision attributes:
D = {d1, d2, . . . , dm}.

Every fuzzy attribute is associated with a set of linguistic values. We denote by
Vi = {Vi1, Vi2, . . . , Vini} the family of linguistic values of a condition attribute ci,
and by Wj = {Wj1, Wj2, . . . , Wjmj } the family of linguistic values of a decision
attribute dj , where ni and mj , is the number of the linguistic values of the i-
th condition and the j-th decision attribute, respectively, i = 1, 2, . . . , n, and
j = 1, 2, . . . , m.

For any element x ∈ U , its membership degrees in all linguistic values of the
condition attribute ci (or decision attribute dj) should be determined. This is
performed in the process called fuzzification, using the recorded crisp value of a
particular attribute of the element x. The fuzzy value of an attribute, for a given
element x, is a fuzzy set on the domain of all linguistic values of that attribute.

We denote by Vi(x) the fuzzy value of the condition attribute ci for any x ∈ U ,
as a fuzzy set on the domain of the linguistic values of ci

Vi(x) = {μVi1(x)/Vi1, μVi2(x)/Vi2, . . . , μVini
(x)/Vini} . (1)

Wj(x) denotes the fuzzy value of the decision attribute dj for any x ∈ U , as
a fuzzy set on the domain of the linguistic values of dj

Wj(x) = {μWj1 (x)/Wj1, μWj2 (x)/Wj2, . . . , μWjmj
(x)/Wjmj } . (2)

When the linguistic values of all attributes have the form of singletons or
disjoint intervals on the original domain of attributes, we get a classical crisp
decision table. In such a case, only one linguistic value can be assigned to each
condition and decision attribute of an element x ∈ U .
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Furthermore, we assume, for any element x ∈ U , that all linguistic values
Vi(x) and Wj(x) (i = 1, 2, . . . , n , j = 1, 2, . . .m) satisfy the requirements

power(Vi(x)) =
ni∑

k=1

μVik
(x) = 1 , power(Wj(x)) =

mj∑
k=1

μWjk
(x) = 1 . (3)

The requirements (3) will be used in section 4 for introducing a generalized flow
graph approach, which can be applied to analysis of fuzzy information systems.

3 Variable Precision Fuzzy Rough Set Model

3.1 Parameterized Crisp Rough Sets

The rough set theory, proposed by Pawlak [19], is based on the observation
that any crisp subset of an universe U can be characterized with respect to an
indiscernibility (equivalence) relation R ⊆ U × U . Those classes of indiscernible
elements x ∈ U , which are “completely in accordance” with a given set A ⊆ U ,
form the lower approximation of A. Indiscernibility classes, which are “partially
in accordance” with A, form the upper approximation of A. A set is called exact,
if its lower and upper approximations are equal to each other, otherwise the set
is called rough.

The lower approximation R(A) and upper approximation R(A) of a crisp set
A are defined formally as follows

R(A) = {x ∈ U : [x]R ⊆ A} , (4)

R(A) = {x ∈ U : [x]R ∩ A �= ∅} , (5)

where [x]R denotes an indiscernibility class which contains the element x ∈ U .
Observe that the above definitions are constructed using two operations on

sets: inclusion and intersection. Let us define the lower and upper approxima-
tions, utilizing only the notion of set inclusion.

Definition 2. Given an indiscernibility relation R, the lower approximation
R(A) and upper approximation R(A) of a crisp set A are defined as follows

R(A) = {x ∈ U : ∀ S ⊆ [x]R ∧ S �= ∅ , S ⊆ A} , (6)

R(A) = {x ∈ U : ∃ S ⊆ [x]R ∧ S �= ∅ , S ⊆ A} . (7)

The definitions (6) and (7) emphasize two extreme (ideal) cases of approximation
obtained by applying the indiscernibility relation R.

The need for defining the lower and upper approximations in a unified way
becomes clearer, when we consider the approximation of fuzzy sets. This is be-
cause there is no single method of performing basic operations on fuzzy sets.
Using only one fuzzy connective is especially important for creating a consistent
variable precision fuzzy rough set (VPFRS) model.
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Now, let us recall the concept of crisp variable precision rough set (VPRS)
model, introduced by Ziarko [35]. In order to cope with inconsistency of infor-
mation systems, caused by noise and errors in data, it is necessary to admit of
some level of misclassification, especially in the case of large information sys-
tems. This can be done by relaxing strong inclusion requirements, basing on a
modified relation of set inclusion. We explain the VPRS concept using the notion
of inclusion degree, incl(A, B), of a nonempty (crisp) set A in a (crisp) set B,
defined as follows

incl(A, B) =
card(A ∩ B)

card(A)
. (8)

The inclusion degree should be constrained by applying a lower limit l and an
upper limit u, introduced in the extended version of VPRS [13], which satisfy
the requirement

0 ≤ l < u ≤ 1 . (9)

We assume a non-probabilistic interpretation of the VPRS model. The prob-
abilistic rough set approach [27,36], introduced recently, is a generalization of
the VPRS model, which bases on conditional probability of inclusion.

Using the limits l and u, which satisfy the constraint (9), one can introduce
the notions of u-lower and l-upper approximation of any subset A of the universe
U by an indiscernibility relation R.

The u-lower approximation of A by R is a set defined as follows

Ru(A) = {x ∈ U : incl([x]R, A) ≥ u} , (10)

where [x]R denotes an indiscernibility class of R containing the element x.
The l-upper approximation of A by R is a set defined as follows

Rl(A) = {x ∈ U : incl([x]R, A) > l} . (11)

Observe that the definitions (10) and (11) use the same notion of inclusion
degree and can be interpreted as a weakened form of (6) and (7).

To extend the crisp VPRS model to a parameterized rough set and fuzzy
rough set model, we only apply the degree of set inclusion as the basic notion.
For a general treatment of the problem, we adapt the idea of rough inclusion
function, given by Skowron and Stepaniuk [26], which is defined on the Cartesian
product of the powersets P(U) of the universe U

ν : P(U) × P(U) → [0, 1] . (12)

We assume that the first parameter represents a nonempty set, and the rough
inclusion function should be monotonic with respect to the second parameter

ν(X, Y ) ≤ ν(X, Z) for any Y ⊆ Z, where X, Y, Z ⊆ U .

The inclusion degree (8) is an example of rough inclusion function (12).
Using the rough inclusion function ν, the lower and upper approximations of

a crisp set A can be defined by

R(A) = {x ∈ U : ν([x]R, A) = 1} , (13)
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R(A) = {x ∈ U : ν([x]R, A) > 0} . (14)

We want to go beyond the standard rough set perspective and introduce a
parameterized single form of approximation of crisp sets.

Definition 3. Given an indiscernibility relation R, the ε-approximation Rε(A)
of a crisp set A is defined as follows

Rε(A) = {x ∈ U : ν([x]R, A) ≥ ε} , (15)

where ε ∈ (0, 1].

The ε-approximation Rε can be used for expressing any kind of approximation,
due to the following properties:

(P1) Rε(A) = R(A) for ε = 1 ,

(P2) Rε(A) = R(A) for ε = 0+ ,

(P3) Rε(A) = Ru(A) for ε = u ,

(P4) Rε(A) = Rl(A) for ε = l+ .

Although, we have a single notion of ε-approximation, we are still able to
determine a pair of approximations, by using a pair of appropriate values of the
ε parameter. However, we are mainly interested in determining the consistent
part of an analyzed information system. Hence, the lower approximation is the
most important notion used for reasoning about data.

The concept of VPRS has turned out to be efficient in applications of the
rough set theory to real decision processes [16], e.g. when analyzing the control
of dynamic systems, characterized by large decision tables. In such a case the
determination of the u-lower approximation (10) should be repeated for different
(decreasing) values of the parameter u.

When considering a series of n ε-approximations of a set A, the following
property is satisfied due to monotonicity of the inclusion function

(P5) Rε1(A) ⊆ Rε2(A) ⊆ . . . ⊆ Rεn(A) for ε1 ≥ ε2 ≥ . . . ≥ εn .

3.2 Parameterized Fuzzy Rough Sets

Our goal is to propose a unified approach to parameterized approximation of
fuzzy sets. To this end, we generalize the notion of crisp ε-approximation and
adapt the widely used concept of fuzzy rough sets of Dubois and Prade. In
consequence, a consistent form of variable precision fuzzy rough set model will
be obtained, suitable for analysis of large fuzzy information systems.

Let us recall the definition of fuzzy rough set, introduced by Dubois and Prade
[6]. For a given fuzzy set A and a fuzzy partition Φ = {F1, F2, . . . , Fn} on the
universe U , the membership functions of the lower and upper approximations of
A by Φ are defined as follows

μΦ(A)(Fi) = inf
x∈U

I(μFi(x), μA(x)) , (16)
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μΦ(A)(Fi) = sup
x∈U

T(μFi(x), μA(x)) , (17)

where T and I denote a T-norm operator and an implicator, respectively.
The pair of sets (ΦF, ΦF ) is called a fuzzy rough set.
In order to extend the approach given in previous subsection, we need to con-

sider the problem of determining the degree of inclusion of one fuzzy set into
another. This problem has been often discussed (see, e.g., [1,2,5,7,15]). Many
different measures of fuzzy set inclusion were considered. Among many propos-
als, implication operators were applied to determination of set inclusion. Sinha-
Dougherty [4] proposed an axiomatic approach, which can be formulated using
the generalized Łukasiewicz implicators.

We propose a different idea of set inclusion in comparison with various solu-
tions given in the literature. It consists in determination of inclusion with respect
to particular elements of sets. This leads to a detailed description of inclusion. In
consequence, we get a fuzzy set rather than a number. This method is particulary
useful for elaborating an effective variable precision fuzzy rough set model.

A fuzzy set, which describes the inclusion of a fuzzy set A in a fuzzy set B,
determined with respect to particular elements of the set A, constitutes the basic
notion of our VPFRS model. The obtained fuzzy set will be called the inclusion
set of A in B, and denoted by INCL(A, B).

There are many possibilities of defining the inclusion set. We apply to this
end an implication operator denoted by I.

Definition 4. The implication-based inclusion set INCL(A, B) of a nonempty
fuzzy set A in a fuzzy set B is defined as follows

μINCL(A,B)(x) =
{

I(μA(x), μB(x)) if μA(x) > 0 ,
0 otherwise .

(18)

By assuming that μIncl(A,B)(x) = 0, for μA(x) = 0, we take into account only the
support of the set A. For the sake of simplicity of the computational algorithm,
it is not necessary to consider inclusion for all elements of the universe.

Furthermore, we can require that the degree of inclusion with respect to x
should be equal to 1, if the inequality μA(x) ≤ μB(x) for that x is satisfied

I(μA(x), μB(x)) = 1, if μA(x) ≤ μB(x) . (19)

The requirement (19) is always satisfied by residual implicators.
In order to define a suitable fuzzy counterpart of the rough inclusion function

(12), we apply the notions of α-cut, power (cardinality) and support of a fuzzy
set. Given a fuzzy subset A of the universe U , the α-cut of A, denoted by Aα, is
a crisp set defined as follows

Aα = {x ∈ U : μA(x) ≥ α} for α ∈ [0, 1] . (20)

For a finite fuzzy set A with n elements, power(A) and support(A) are given by

power(A) =
n∑

i=1

μA(xi) , support(A) = {x : μA(xi) > 0} . (21)
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Using the above notions, we define the fuzzy rough inclusion function on the
Cartesian product of the families F(U) of all fuzzy subsets of the universe U

να : F(U) × F(U) → [0, 1] . (22)

Definition 5. The fuzzy rough α-inclusion function να(A, B) of any nonempty
fuzzy set A in a fuzzy set B is defined as follows, for any α ∈ (0, 1]

να(A, B) =
power(A ∩ INCL(A, B)α)

power(A)
, (23)

The value να(A, B) expresses how many elements of the nonempty fuzzy set
A belong, at least to the degree α, to the fuzzy set B.

First, we prove monotonicity of the proposed fuzzy rough inclusion function.

Theorem 1. Implication-based fuzzy rough inclusion function να is monotonic
with respect to the second parameter, for any α ∈ (0, 1]

να(X, Y ) ≤ να(X, Z) for any Y ⊆ Z, where X, Y, Z ⊆ F(U) .

Proof. According to the definition of a fuzzy subset [14], for Y ⊆ Z, we have
μY (x) ≤ μZ(x), ∀ x ∈ U . Since every R-implicator, S-implicator and QL-impli-
cator is right monotonic [25], it holds that: μI(X,Y )(x) ≤ μI(X,Z)(x), ∀ x ∈ U .
Thus, using the definition (18), we get

μINCL(X,Y )(x) ≤ μINCL(X,Z)(x), ∀ x ∈ U .

Finally, for any α ∈ (0, 1], we can easy show that

power(X ∩ INCL(X, Y )α)
power(X)

≤ power(X ∩ INCL(X, Z)α)
power(X)

.

Hence να(X, Y ) ≤ να(X, Z). ��

Furthermore, we can show that the rough inclusion function used in formulae
(10) and (11) is a special case of the fuzzy rough inclusion function (23), when
we use the implication-based inclusion set.

Theorem 2. For any nonempty crisp set A, any crisp set B, and for α ∈ (0, 1],
the implication-based inclusion function να(A, B) is equal to the inclusion degree
incl(A, B).

Proof. We show that for any crisp sets A and B, the inclusion set Incl(A, B) is
equal to the crisp intersection A ∩ B. The membership function of any crisp set
X is given by

μX(x) =
{

1 for x ∈ X
0 for x /∈ X .

(24)

Every implicator I satisfies the conditions: I(1, 1) = I(0, 1) = I(0, 0) = 1,
and I(1, 0) = 0.
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Thus, applying the definition (18), we get

μIncl(A,B)(x) = μA∩B(x) =
{

1 if x ∈ A and x ∈ B
0 otherwise .

(25)

For any finite crisp set X , and any α ∈ (0, 1], by formulae and (20), (21) and
(24) we get: power(X) = card(X), and Xα = X .

Consequently, applying (25), we finally have

power(A ∩ Incl(A, B)α)
power(A)

=
card(A ∩ B)

card(A)
.

Hence, we proved that να(A, B) = incl(A, B), for any α ∈ (0, 1]. ��

We want to formulate the fuzzy rough approximation in a general way. Therefore,
we introduce a function called res, defined on the Cartesian product P(U)×F(U),
where P(U) denotes the powerset of the universe U , and F(U) the family of all
fuzzy subsets of the universe U , respectively

res : P(U) × F(U) → [0, 1] . (26)

We require that

res(∅, Y ) = 0 ,
res(X, Y ) ∈ {0, 1}, if Y is a crisp set ,
res(X, Y ) ≤ res(X, Z) for any Y ⊆ Z, where X ∈ P(U), and Y, Z ∈ F(U) .

The form of the function res can be chosen depending on requirements of a
considered application. For a given crisp set X and fuzzy set Y , the value of
function res(X, Y ) should express the resulting membership degree in the set Y ,
taking into account not all elements of the universe, but only the elements of
the set X . When we apply the limit-based approach, according to Dubois and
Prade, we obtain the following form of the function res

res(X, Y ) = inf
x∈X

μY (x) . (27)

In the definition (27) of the function res, only one (limit) value of membership
degree of elements in the set Y is taken into account. However, this means that we
disregard the character (shape) of the membership function. Basing on a single
value of membership degree is not always acceptable, especially in the case of
large information systems. Hence, we can use the opportunity of giving another
definitions of res, in which many values of membership degree are considered.

Now, we introduce the notion of generalized fuzzy rough ε-approximation.

Definition 6. For ε ∈ (0, 1], the ε-approximation Φε(A) of a fuzzy set A, by
a fuzzy partition Φ = {F1, F2, . . . , Fn}, is a fuzzy set on the domain Φ with
membership function expressed as

μΦε(A)(Fi) = res(Sε(Fi, A), INCL(Fi, A)) , (28)
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where
Sε(Fi, A) = support(Fi ∩ INCL(Fi, A)αε) ,

αε = sup{α ∈ [0, 1] : να(Fi, A) ≥ ε} .

The set Sε(Fi, A) is equal to support of the intersection of the class Fi with the
part of INCL(Fi, A), which contains those elements of the approximating class
Fi which are included in A at least to the degree αε. The resulting membership
μΦε(A)(Fi) is determined using only the elements from Sε(Fi, A) instead of the
whole class Fi. This is accomplished by applying the function res.

It can be easy shown that applying the definition (27) of the function res
leads to a simple form of the ε-approximation (28)

μΦε(A)(Fi) = sup{α ∈ [0, 1] : να(Fi, A) ≥ ε} . (29)

In contrast to the approximations (16) and (17), which use two different fuzzy
connectives, we have a single unified definition of fuzzy rough approximation. In
this way we obtain a consistent variable precision fuzzy rough set model. Thus,
we are able to compare approximations determined for various values of the
parameter ε.

3.3 Analysis of Fuzzy Decision Tables

In the analysis of fuzzy decision tables, two fuzzy partitions are generated with
the help of a suitable similarity relation. The partition obtained with respect to
condition attributes is used for approximation of fuzzy similarity classes obtained
with respect to decision attributes. It is necessary to address the problem of
comparing objects described by fuzzy sets. This issue has been widely studied
in the literature, see, for example, [3,7,8]. In our considerations, we apply a
symmetric T-transitive fuzzy similarity relation [3], which is defined by means
of the distance between the compared elements. In the following, we only give
formulae for condition attributes. We apply the notation given in section 2.

If we need to compare any two elements x and y of the universe U with respect
to the condition attribute ci, i = 1, 2, . . . , n, then the similarity between x and
y could be expressed using a T-similarity relation based on the Łukasiewicz
T-norm [7].

Sci(x, y) = 1 − max
k=1,ni

|μVik
(x) − μVik

(y)| . (30)

In order to evaluate the similarity SC(x, y), with respect to all condition
attributes C, we must aggregate the results obtained for particular attributes ci,
i = 1, 2, . . . , n. This can be done by using the T-norm operator min as follows

SC(x, y) = min
i=1,n

Sci(x, y) = min
i=1,n

(1 − max
k=1,ni

|μVik
(x) − μVik

(y)|) . (31)

By calculating the similarity for all pairs of elements of the universe U , we obtain
a symmetric similarity matrix. If the value of similarity between the elements x
and y is equal to 1, they belong to the same similarity class. In that case two rows
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of the similarity matrix should be merged into one fuzzy set with membership
degrees equal to 1 for x and y. In consequence, we get a family of fuzzy similarity
classes C̃ = {C1, C2, . . . , C�n}, for condition attributes C and a family of fuzzy
similarity classes D̃ = {D1, D2, . . . , D�m}, for decision attributes D.

In the next step, we determine fuzzy rough approximations of elements of the
family D̃ by the family C̃, using the parameterized fuzzy rough set model.

To determine the consistency of fuzzy decision tables and significance of at-
tributes, we apply a generalized measure of ε-approximation quality [17]. For
the family D̃ = {D1, D2, . . . , D�m} and the family C̃ = {C1, C2, . . . , C�n} the
ε-approximation quality of D̃ by C̃ is defined as follows

γ
�Cε

(D̃) =
power(Pos

�Cε
(D̃))

card(U)
, (32)

where
Pos

�Cε
(D̃) =

⋃
Dj∈ �D

ω(C̃ε(Dj)) ∩ Dj .

The fuzzy extension ω denotes a mapping from the domain C̃ into the domain
of the universe U , which is expressed for any fuzzy set X by

μω(X)(x) = μX(Ci), if μCi(x) = 1 . (33)

The definition (32) is based on the generalized notion of positive region. For any
fuzzy set X and a similarity relation R, the positive region of X is defined as
follows

PosRε(X) = X ∩ ω(Rε(X)) . (34)

In the definition of the positive region (34), we take into account only those
elements of the ε-approximation, for which there is no contradiction between the
set X and the approximating similarity classes.

4 Fuzzy Flow Graphs

In addition to the VPFRS model, we want to introduce fuzzy flow graphs as
a second tool for analysis of fuzzy information systems. The idea of applying
flow graphs in the framework of crisp rough sets, for discovering the statistical
properties of decision algorithms, was proposed by Pawlak [20,21,22]. We should
start with recalling the basic notions of the crisp flow graph approach.

A flow graph is given in the form of directed acyclic final graph G = (N , B, ϕ),
where N is a set of nodes, B ⊆ N × N is a set of directed branches, ϕ: B → R+

is a flow function with values in the set of non-negative reals R+.
For any (X, Y ) ∈ B, X is an input of Y and Y is an output of X . The quantity

ϕ(X, Y ) is called the throughflow from X to Y .
I(X) and O(X) denote an input and an output of X , respectively. The input

I(G) and output O(G) of a graph G are defined by

I(G) = {X ∈ N : I(X) = ∅} , O(G) = {X ∈ N : O(X) = ∅} . (35)
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Every node X ∈ N of a flow graph G is characterized by its inflow

ϕ+(X) =
∑

Y ∈I(X)

ϕ(Y, X) , (36)

and by its outflow
ϕ−(X) =

∑
Y ∈O(X)

ϕ(X, Y ) . (37)

For any internal node X , the equality ϕ+(X) = ϕ−(X) = ϕ(X) is satisfied. The
quantity ϕ(X) is called the flow of the node X .

The flow for the whole graph G is defined by

ϕ(G) =
∑

x∈I(G)

ϕ−(X) =
∑

x∈O(G)

ϕ+(X) . (38)

By using the flow ϕ(G), the normalized throughflow σ(X, Y ) and the normal-
ized flow σ(X) are determined as follows

σ(X, Y ) =
ϕ(X, Y )
ϕ(G)

, σ(X) =
ϕ(X)
ϕ(G)

. (39)

For every branch of a flow graph G the certainty factor is defined by

cer(X, Y ) =
σ(X, Y )
σ(X)

. (40)

The coverage factor for every branch of a flow graph G is defined by

cov(X, Y ) =
σ(X, Y )
σ(Y )

. (41)

The certainty and coverage factors satisfy the following properties∑
Y ∈O(X)

cer(X, Y ) = 1 ,
∑

X∈I(Y )

cov(X, Y ) = 1 . (42)

The measures of certainty (40) and coverage (41) are useful for analysis of
decision algorithms [10].

Now, we consider the issue of applying flow graphs to representation and
analysis of fuzzy decision algorithms. We use decision tables with fuzzy values of
attributes, presented in section 2. All possible decision rules, generated by the
Cartesian product of sets of linguistic values of the attributes, will be examined.
According to notation used in section 2, we obtain r =

∏n
i=1 ni

∏m
j=1 mj possible

rules. The k-th decision rule, denoted by Rk, is expressed as follows

Rk: IF c1 is V k
1 AND c2 is V k

2 . . . AND cn is V k
n

THEN d1 is W k
1 AND d2 is W k

2 . . . AND dm is W k
m

(43)

where k = 1, 2, . . . , r , V k
i ∈ Vi , i = 1, 2, . . . n , W k

j ∈ Wj , j = 1, 2, . . . , m.
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When we use the fuzzy Cartesian products Ck = V k
1 × V k

2 × . . . × V k
n and

Dk = W k
1 ×W k

2 × . . .×W k
m , the k-th decision rule can be expressed in the form

of a fuzzy implication, denoted here by Ck → Dk.
It is necessary to select a subset of decision rules which are relevant to the

considered decision process. This can be done by determining to what degree
any element x ∈ U , corresponding to a single row of the decision table, confirms
particular decision rules. We calculate the truth value of the decision rule’s an-
tecedent and the truth value of the decision rule’s consequent, by determining
the conjunction of the respective membership degrees of x in the linguistic values
of attributes.

If we take a decision table with crisp attributes, a decision rule can be con-
firmed for some x, if the result of conjunction is equal to 1, both for the rule’s
premise and the rule’s conclusion. Otherwise, the element x does not confirm the
considered decision rule. The set of elements x ∈ U , which confirm a decision
rule, is called the support of the decision rule.

To determine the confirmation degree of fuzzy decision rules, a T-norm oper-
ator need to be applied. By cd(x, k), we denote the confirmation degree of the
k-th decision rule by the element x ∈ U

cd(x, k) = T(cda(x, k), cdc(x, k)) , (44)

where cda(x, k) denotes the confirmation degree of the decision rule’s antecedent

cda(x, k) = T(μV k
1

(x), μV k
2

(x), . . . , μV k
n
(x)) , (45)

and cdc(x, k) the confirmation degree of the decision rule’s consequent

cdc(x, k) = T(μW k
1
(x), μW k

2
(x), . . . , μW k

m
(x)) . (46)

Through determining the confirmation degrees (45), (46) and (44), we gener-
ate the following fuzzy sets on the domain U :

the support of the decision rule’s antecedent

support(cda(x, k)) = {cda(x1, k)/x1, cda(x2, k)/x2, . . . , cda(xN , k)/xN},
(47)

the support of the decision rule’s consequent

support(cdc(x, k)) = {cdc(x1, k)/x1, cdc(x2, k)/x2, . . . , cda(xN , k)/xN} ,
(48)

and the support of the decision rule Rk, respectively

support(Rk) = {cd(x1, k)/x1, cd(x2, k)/x2, . . . , cd(xN , k)/xN} . (49)

The introduced notions (47), (48) and (49) will be used for defining strength,
certainty, and coverage factors of a decision rule.

Now, let us explain the way of constructing fuzzy flow graphs on the basis of
a decision table with fuzzy attributes.
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Every fuzzy attribute is represented by a layer of nodes. The nodes of a layer
correspond to linguistic values of a given attribute.

We denote by X̃ a fuzzy set on the universe U , which describes membership
degree of particular elements x ∈ U in the linguistic value represented by X . The
membership degrees of all x in the set X̃ can be found in a respective column of
the considered decision table.

Let us pick out such two attributes, which are represented by two consecutive
layers of the flow graph. We denote by X a linguistic value of the first attribute,
and by Y a linguistic value of the second attribute. In the case of crisp flow
graphs, the flow between nodes X and Y is equal to the number of elements of
the universe U , which are characterized by the combination of attribute values
X and Y . In consequence, a particular element x ∈ U can only be assigned to
a unique path in the flow graph. In a fuzzy information system, however, every
element of the universe can belong to several linguistic values, and it can be
assigned to several paths in the flow graph.

It is possible to determine the flow distribution in the crisp flow graph by using
the operations of set intersection and set cardinality. To obtain the flow ϕ(X, Y )
for the branch (X, Y ) of a fuzzy flow graph, we have to calculate power of the in-
tersection of fuzzy sets X̃ and Ỹ . Many definitions of fuzzy intersection (T-norm
operator) are known. In order to satisfy the flow conservation equations, it is nec-
essary to use the T-norm operator prod for determining the intersection of sets.
Furthermore, we should assume that the linguistic values of attributes satisfy the
requirement (3). We conclude the above discussion with the following theorem.

Theorem 3. Let S be a fuzzy information systems with the linguistic values of
attributes satisfying the requirement (3), and let ∩ denote a fuzzy intersection
operator based on the T-norm prod. The following properties are satisfied for the
flow graph, which represents the information system S :

(G1) the inflow for any output or internal layer node X is given by

ϕ+(X) = power(X̃) =
∑

Y ∈I(X)

ϕ(Y, X) =
∑

Y ∈I(X)

power(X̃ ∩ Ỹ ) , (50)

(G2) the outflow for any input or internal layer node X is given by

ϕ−(X) = power(X̃) =
∑

Y ∈O(X)

ϕ(X, Y ) =
∑

Y ∈O(X)

power(X̃ ∩ Ỹ ) , (51)

(G3) for any internal layer node X, it holds that

ϕ+(X) = ϕ−(X) . (52)

The properties (G1), (G2) and (G3) do not hold in general, if we use another T-
norm operator, e.g. min. In the special case of crisp decision tables, the formulae
(50) and (51) become equivalent to (36) and (37).

The layers corresponding to condition attributes can be merged into a single
layer, which contains nodes representing all possible combinations of linguistic
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values of the condition attributes. We can also merge all the layers corresponding
to decision attributes. Let us denote by X∗, a node of the resulting layer obtained
for condition attributes and by Y ∗, a node of the resulting layer obtained for
decision attributes. The node X∗ corresponds to antecedent of some decision
rule Rk. Support of the antecedent of the decision rule Rk is determined with
the help of formula (47).

The decision rule Rk is represented by the branch (X∗, Y ∗). Power of the
support of the rule Rk is equal to the flow between the nodes X∗ and Y ∗, which
is obtained using formula (49)

ϕ(X∗, Y ∗) = power(support(Rk)) . (53)

By applying the formulae (47), (48) and (49), we can determine, for every de-
cision rule Rk, the certainty factor cer(X∗, Y ∗), the coverage factor cov(X∗, Y ∗),
and the strength of the rule σ(X∗, Y ∗)

cer(X∗, Y ∗) = cer(Rk) =
power(support(Rk))

power(support(cda(x, k)))
, (54)

cov(X∗, Y ∗) = cov(Rk) =
power(support(Rk))

power(support(cdc(x, k)))
, (55)

σ(X∗, Y ∗) = strength(Rk) =
power(support(Rk))

card(U)
. (56)

It is possible to represent any decision rule by a sequence of nodes [X1 . . . Xn],
namely by a path from the 1-th to the n-th layer of the flow graph G. For a given
path [X1 . . . Xn], the resulting certainty and strength can be defined. In contrast
to the definitions presented in [20,21,22], in which the statistical properties of
flow are taken into account, we propose a different form of the path’s certainty
and strength

cer[X1 . . . Xn] =
n−1∏
i=1

cer(X1 . . . Xi, Xi+1) , (57)

σ[X1 . . . Xn] = σ(X1) cer[X1 . . .Xn] , (58)

where

cer(X1 . . . Xi, Xi+1) =
power(X̃1 ∩ X̃2 ∩ . . . ∩ X̃i+1)

power(X̃1 ∩ X̃2 ∩ . . . ∩ X̃i)
. (59)

The resulting certainty (57) of the path [X1 . . . Xn], expresses what part of
the flow of the starting node X1 reaches the final node Xn, passing through all
nodes of the path.

5 Examples

Let us analyze a fuzzy decision table (Table 1) with condition attributes c1 and
c2 and one decision attribute d. All attributes have three linguistic values.
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Table 1. Decision table with fuzzy attributes

c1 c2 d

V11 V12 V13 V21 V22 V23 W11 W12 W13

x1 0.1 0.9 0.0 0.0 0.9 0.1 0.0 1.0 0.0
x2 0.8 0.2 0.0 1.0 0.0 0.0 0.0 0.1 0.9
x3 0.0 0.2 0.8 0.0 0.2 0.8 0.9 0.1 0.0
x4 0.1 0.9 0.0 0.0 0.9 0.1 0.0 1.0 0.0
x5 0.0 0.8 0.2 0.8 0.2 0.0 0.0 0.1 0.9
x6 0.8 0.2 0.0 0.0 0.2 0.8 1.0 0.0 0.0
x7 0.1 0.9 0.0 0.0 0.9 0.1 0.1 0.9 0.0
x8 0.0 0.1 0.9 0.8 0.2 0.0 0.0 0.0 1.0
x9 0.0 0.2 0.8 0.0 0.2 0.8 0.9 0.1 0.0
x10 0.1 0.9 0.0 0.1 0.9 0.0 0.0 0.9 0.1

First, we apply the variable precision fuzzy rough set approach. Using simi-
larity relation in the form (31), we determine similarity matrices with respect
to condition and decision attributes. By merging identical rows of the similar-
ity matrix, we get 9 condition similarity classes and and 6 decision similarity
classes. We calculate ε-approximation quality using the Łukasiewicz implication
operator. The results are presented in table 2.

Table 2. ε-approximation quality for different values of parameter ε

γ
�Cε

( �D)Method Removed
attribute ε = 1 ε = 0.9 ε = 0.85 ε = 0.8

none 0.830 0.900 0.900 0.910
Ł-inf c1 0.820 0.880 0.880 0.910

c2 0.250 0.250 0.410 0.450

We can state that the considered information system has a high consistency.
The condition attribute c1 can be omitted from the decision table without a
significant decrease of the ε-approximation quality.

In the next step, the flow graph method will be applied. We use the same labels
for both the linguistic values of the attributes and the corresponding nodes of
the flow graph. As stated in previous section, the T-norm operator prod should
be used in our calculations. The obtained fuzzy flow graph has a very simple
form, because there is only one condition attribute c2 and one decision attribute
d. Values of the normalized flow between nodes of the condition layer and nodes
of the decision layer are given in Table 3.
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Table 3. Normalized flow between nodes of condition and decision layers

σ(V2i, W1j)

W11 W12 W13 Σ

V21 0.000 0.027 0.243 0.270
V22 0.065 0.348 0.047 0.460
V23 0.225 0.045 0.000 0.270
Σ 0.290 0.420 0.290 1.000

We see that the flow conservation equations (50) and (51), are satisfied, for
example,

σ−(V21) =
power(Ṽ21)
card(U)

=
3∑

i=1

σ(V21, W1i) = 0.270 ,

σ+(W11) =
power(W̃11)

card(U)
=

3∑
i=1

σ(V2i, W11) = 0.290 .

Let us determine the certainty and coverage factors for branches between the
layers according to formulae (54), (55). The results are given in Tables 4 and 5.

Table 4. Certainty factor for branches between condition and decision layers

cer(V2i, W1j)

W11 W12 W13 Σ

V21 0.0000 0.1000 0.9000 1.0000
V22 0.1413 0.7565 0.1022 1.0000
V23 0.8333 0.1667 0.0000 1.0000

Table 5. Coverage factor for branches between condition and decision layers

cov(V2i, W1j)

W11 W12 W13

V21 0.0000 0.0643 0.8379
V22 0.2241 0.8286 0.1621
V23 0.7759 0.1071 0.0000
Σ 1.0000 1.0000 1.0000

Fuzzy decision rules with the largest values of certainty factor (Table 6) can
be included in the final fuzzy inference system. The respective values of coverage
factor are useful for explaining the selected decision rules. Only 3 decision rules
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Table 6. Decision rules with the largest value of certainty factor

decision rule certainty coverage strength [%]

V21 → W13 0.9000 0.8379 24.30
V22 → W12 0.7565 0.8286 34.80
V23 → W11 0.8333 0.7759 22.50

could be generated from our decision table. Owing to the application of the
VPFRS approach, we got a simple fuzzy flow graph.

Let us construct a flow graph without a prior reduction of attributes. We
merge the layers corresponding to condition attributes c1 and c2 to a result-
ing layer, which represents all possible linguistic values in the antecedences of
decision rules.

We determine the degrees of satisfaction of the rules’ antecedences for partic-
ular elements x ∈ U . For the antecedence represented by V12V22, we get:

Ṽ12V22 = Ṽ12 ∩ Ṽ22 ={ 0.81/x1, 0.00/x2, 0.04/x3, 0.81/x4, 0.16/x5, 0.04/x6,
0.81/x7, 0.02/x8, 0.04/x9, 0.81/x10},

ϕ(V12, V22) = power(Ṽ12V22) = 3.54, σ(V12, V22) = ϕ(V12,V22)
cardU = 0.354.

Table 7. Decision rules with the largest certainty factor (full information system)

decision rule certainty coverage strength [%]

V11V21 → W13 0.8901 0.2486 7.21
V11V23 → W11 0.9567 0.2210 6.41
V12V21 → W13 0.8366 0.2914 8.45
V12V22 → W12 0.8763 0.7386 31.02
V13V21 → W13 0.9818 0.2979 8.64
V13V23 → W11 0.9000 0.3972 11.52

Finally, we determine the normalized throughflow, certainty and coverage fac-
tors for branches between of the resulting condition and decision layers. Decision
rules with the largest value of certainty factor are given in Table 7. We can ob-
serve that the attribute c1 is superfluous in the obtained decision rules.

6 Conclusions

Information systems with crisp and fuzzy attributes can be effectively analyzed
by a hybrid approach which combines the variable precision fuzzy rough set
(VPFRS) model with fuzzy flow graphs. The VPFRS model can be defined in a
unified way with the help of a single notion of ε-approximation. This allows to
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avoid the inconsistency of the VPFRS model caused by different forms of fuzzy
connectives. The proposed fuzzy flow graph method is suitable for representing
and analyzing decision tables with fuzzy attributes. Every fuzzy attribute can be
represented by a layer of a flow graph. All nodes of a layer correspond to linguistic
values of an attribute. A fuzzy decision table can be reduced by applying the
VPFRS approach prior to using the fuzzy flow graph method for determining a
system of fuzzy decision rules.
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Abstract. In the paper the accuracy of greedy algorithms with weights
for construction of partial covers, reducts and decision rules is considered.
Bounds on minimal weight of partial covers, reducts and decision rules
based on an information on greedy algorithm work are studied. Results
of experiments with software implementation of greedy algorithms are
described.

Keywords: partial covers, partial reducts, partial decision rules,
weights, greedy algorithms.

1 Introduction

The paper is devoted to consideration of partial decision-relative reducts (we
will omit often words ”decision-relative”) and partial decision rules for decision
tables on the basis of partial cover investigation.

Rough set theory [11,17] often deals with decision tables containing noisy
data. In this case exact reducts and rules can be ”overlearned” i.e. depend es-
sentially on noise. If we see constructed reducts and rules as a way of knowledge
representation [16] then instead of large exact reducts and rules it is more appro-
priate to work with relatively small partial ones. In [12] Zdzis�law Pawlak wrote
that ”the idea of an approximate reduct can be useful in cases when a smaller
number of condition attributes is preferred over accuracy of classification”.

Last years in rough set theory partial reducts, partial decision rules and partial
covers are studied intensively [6,7,8,9,10,13,19,20,21,22,23,24,27]. Approximate
reducts are investigated also in extensions of rough set model such as VPRS
(variable precision rough sets) [26] and α-RST (alpha rough set theory) [14].

We study the case where each subset, used for covering, has its own weight,
and we must minimize the total weight of subsets in partial cover. The same
situation is with partial reducts and decision rules: each conditional attribute
has its own weight, and we must minimize the total weight of attributes in partial

J.F. Peters et al. (Eds.): Transactions on Rough Sets VI, LNCS 4374, pp. 211–246, 2007.
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reduct or decision rule. If weight of each attribute characterizes time complexity
of attribute value computation then we try to minimize total time complexity of
computation of attributes from partial reduct or partial decision rule. If weight
characterizes a risk of attribute value computation (as in medical or technical
diagnosis) then we try to minimize total risk, etc.

In rough set theory various problems can be represented as set cover problems
with weights:

– problem of construction of a reduct [16] or partial reduct with minimal total
weight of attributes for an information system;

– problem of construction of a decision-relative reduct [16] or partial decision-
relative reduct with minimal total weight of attributes for a decision table;

– problem of construction of a decision rule or partial decision rule with min-
imal total weight of attributes for a row of a decision table (note that this
problem is closely connected with the problem of construction of a local
reduct [16] or partial local reduct with minimal total weight of attributes);

– problem of construction of a subsystem of a given system of decision rules
which ”covers” the same set of rows and has minimal total weight of rules
(in the capacity of a rule weight we can consider its length).

So the study of covers and partial covers is of some interest for rough set
theory. In this paper we list some known results on set cover problems which
can be useful in applications and obtain certain new results.

From results obtained in [20,22] it follows that the problem of construction
of partial cover with minimal weight is NP -hard. Therefore we must consider
polynomial approximate algorithms for minimization of weight of partial covers.

In [18] a greedy algorithm with weights for partial cover construction was
investigated. This algorithm is a generalization of well known greedy algorithm
with weights for exact cover construction [2]. The algorithm from [18] is a greedy
algorithm with one threshold which gives the exactness of constructed partial
cover.

Using results from [9] (based on results from [3,15] and technique created in
[20,22]) on precision of polynomial approximate algorithms for construction of
partial cover with minimal cardinality and results from [18] on precision of greedy
algorithm with one threshold we show that under some natural assumptions on
the class NP the greedy algorithm with one threshold is close to best polynomial
approximate algorithms for construction of partial cover with minimal weight.
However we can try to improve results of the work of greedy algorithm with one
threshold for some part of set cover problems with weight.

We generalize greedy algorithm with one threshold [18], and consider greedy
algorithm with two thresholds. First threshold gives the exactness of constructed
partial cover, and the second one is an interior parameter of the considered
algorithm. We prove that for the most part of set cover problems there exist a
weight function and values of thresholds such that the weight of partial cover
constructed by greedy algorithm with two thresholds is less than the weight of
partial cover constructed by greedy algorithm with one threshold.
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We describe two polynomial algorithms which always construct partial cov-
ers that are not worse than the one constructed by greedy algorithm with one
threshold, and for the most part of set cover problems there exists a weight
function and a value of first threshold such that the weight of partial covers
constructed by the considered two algorithms is less than the weight of partial
cover constructed by greedy algorithm with one threshold.

Information on greedy algorithm work can be used for obtaining lower bounds
on minimal cardinality of partial covers [9]. We fix some kind of information on
greedy algorithm work, and find unimprovable lower bound on minimal weight
of partial cover depending on this information. Obtained results show that this
bound is not trivial and can be useful for investigation of set cover problems.

There exist bounds on precision of greedy algorithm without weights for par-
tial cover construction which do not depend on the cardinality of covered set
[1,6,7,8]. We obtain similar bound for the case of weight.

The most part of the results obtained for partial covers is generalized on the
case of partial decision-relative reducts and partial decision rules for decision
tables which, in general case, are inconsistent (a decision table is inconsistent if
it has equal rows with different decisions). In particular, we show that

– Under some natural assumptions on the class NP greedy algorithms with
weights are close to best polynomial approximate algorithms for minimiza-
tion of total weight of attributes in partial reducts and partial decision rules.

– Based on information receiving during greedy algorithm work it is possible
to obtain nontrivial lower bounds on minimal total weight of attributes in
partial reducts and partial decision rules.

– There exist polynomial modifications of greedy algorithms which for a part
of decision tables give better results than usual greedy algorithms.

Obtained results will further to more wide use of greedy algorithms with
weighs and their modifications in rough set theory and applications.

This paper is, in some sense, an extension of [9] on the case of weights which
are not equal to 1. However, problems considered in this paper (and proofs of
results) are more complicated than the ones considered in [9]. Bounds obtained
in this paper are sometimes more weak than the corresponding bounds from [9].
We must note also that even if all weights are equal to 1 then results of the work
of greedy algorithms considered in this paper can be different from the results of
the work of greedy algorithms considered in [9]. For example, for case of reducts
the number of chosen attributes is the same, but last attributes can differ.

The paper consists of five sections. In Sect. 2 partial covers are studied. In
Sect. 3 partial tests (partial superreducts) and partial reducts are investigated.
In Sect. 4 partial decision rules are considered. Sect. 5 contains short conclusions.

2 Partial Covers

2.1 Main Notions

Let A = {a1, . . . , an} be a nonempty finite set. Elements of A are enumerated by
numbers 1, . . . , n (in fact we fix a linear order on A). Let S = {Bi}i∈{1,...,m} =
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{B1, . . . , Bm} be a family of subsets of A such that B1 ∪ . . . ∪ Bm = A. We will
assume that S can contain equal subsets of A. The pair (A, S) will be called a
set cover problem. Let w be a weight function which corresponds to each Bi ∈ S
a natural number w(Bi). The triple (A, S, w) will be called a set cover problem
with weights. Note that in fact weight function w is given on the set of indexes
{1, . . . , m}. But, for simplicity, we are writing w(Bi) instead of w(i).

Let I be a subset of {1, . . . , m}. The family P = {Bi}i∈I will be called a
subfamily of S. The number |P | = |I| will be called the cardinality of P . Let
P = {Bi}i∈I and Q = {Bi}i∈J be subfamilies of S. The notation P ⊆ Q will
mean that I ⊆ J . Let us denote P ∪ Q = {Bi}i∈I∪J , P ∩ Q = {Bi}i∈I∩J , and
P \ Q = {Bi}i∈I\J .

A subfamily Q = {Bi1 , . . . , Bit} of the family S will be called a partial cover
for (A, S). Let α be a real number such that 0 ≤ α < 1. The subfamily Q will
be called an α-cover for (A, S) if |Bi1 ∪ . . . ∪ Bit | ≥ (1 − α)|A|. For example,
0.01-cover means that we must cover at least 99% of elements from A. Note that
a 0-cover is usual (exact) cover. The number w(Q) =

∑t
j=1 w(Bij ) will be called

the weight of the partial cover Q. Let us denote by Cmin(α) = Cmin(α, A, S, w)
the minimal weight of α-cover for (A, S).

Let α and γ be real numbers such that 0 ≤ γ ≤ α < 1. Let us describe a
greedy algorithm with two thresholds α and γ.

Let us denote N = �|A|(1 − γ)	 and M = �|A|(1 − α)	. Let we make i ≥ 0
steps and choose subsets Bj1 , . . . , Bji . Let us describe the step number i + 1.

Let us denote D = Bj1 ∪ . . . ∪ Bji (if i = 0 then D = ∅). If |D| ≥ M then we
finish the work of the algorithm. The family {Bj1 , . . . , Bji} is the constructed
α-cover. Let |D| < M . Then we choose a subset Bji+1 from S with minimal
number ji+1 for which Bji+1 \ D �= ∅ and the value

w(Bji+1 )
min{|Bji+1 \ D|, N − |D|}

is minimal. Pass to the step number i + 2.
Let us denote by Cγ

greedy(α) = Cγ
greedy(α, A, S, w) the weight of α-cover con-

structed by the considered algorithm for the set cover problem with weights
(A, S, w).

Note that greedy algorithm with two thresholds α and α coincides with the
greedy algorithm with one threshold α considered in [18].

2.2 Some Known Results

In this subsection we assume that the weight function has values from the set of
positive real numbers.

For natural m denote H(m) = 1 + . . . + 1/m. It is known that

ln m ≤ H(m) ≤ ln m + 1 .

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



On Partial Covers, Reducts and Decision Rules with Weights 215

Consider some results for the case of exact covers where α = 0. In this case
γ = 0. First results belong to Chvátal.

Theorem 1. (Chvátal [2]) For any set cover problem with weights (A, S, w) the
inequality C0

greedy(0) ≤ Cmin(0)H(|A|) holds.

Theorem 2. (Chvátal [2]) For any set cover problem with weights (A, S, w) the
inequality C0

greedy(0) ≤ Cmin(0)H (maxBi∈S |Bi|) holds.

Chvátal proved in [2] that the bounds from Theorems 1 and 2 are almost unim-
provable.

Consider now some results for the case where α ≥ 0 and γ = α. First upper
bound on Cα

greedy(α) was obtained by Kearns.

Theorem 3. (Kearns [5]) For any set cover problem with weights (A, S, w) and
any α, 0 ≤ α < 1, the inequality Cα

greedy(α) ≤ Cmin(α)(2H(|A|) + 3) holds.

This bound was improved by Slav́ık.

Theorem 4. (Slav́ık [18]) For any set cover problem with weights (A, S, w) and
any α, 0 ≤ α < 1, the inequality Cα

greedy(α) ≤ Cmin(α)H (�(1 − α)|A|	) holds.

Theorem 5. (Slav́ık [18])) For any set cover problem with weights (A, S, w) and
any α, 0 ≤ α < 1, the inequality Cα

greedy(α) ≤ Cmin(α)H (maxBi∈S |Bi|) holds.

Slav́ık proved in [18] that the bounds from Theorems 4 and 5 are unimprovable.

2.3 On Polynomial Approximate Algorithms for Minimization of
Partial Cover Weight

In this subsection we consider three theorems which follow immediately from
Theorems 13–15 [9].

Let 0 ≤ α < 1. Consider the following problem: for given set cover problem
with weights (A, S, w) it is required to find an α-cover for (A, S) with minimal
weight.

Theorem 6. Let 0 ≤ α < 1. Then the problem of construction of α-cover with
minimal weight is NP -hard.

From this theorem it follows that we must consider polynomial approximate
algorithms for minimization of α-cover weight.

Theorem 7. Let α ∈ IR and 0 ≤ α < 1. If NP �⊆ DTIME(nO(log log n)) then
for any ε, 0 < ε < 1, there is no polynomial algorithm that for a given set cover
problem with weights (A, S, w) constructs an α-cover for (A, S) which weight is
at most (1 − ε)Cmin(α, A, S, w) ln |A|.

Theorem 8. Let α be a real number such that 0 ≤ α < 1. If P �= NP then
there exists δ > 0 such that there is no polynomial algorithm that for a given
set cover problem with weights (A, S, w) constructs an α-cover for (A, S) which
weight is at most δCmin(α, A, S, w) ln |A|.
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From Theorem 4 it follows that Cα
greedy(α) ≤ Cmin(α)(1 + ln |A|). From this

inequality and from Theorem 7 it follows that under the assumption NP �⊆
DTIME(nO(log log n)) greedy algorithm with two thresholds α and α (in fact
greedy algorithm with one threshold α from [18]) is close to best polynomial
approximate algorithms for minimization of partial cover weight. From the con-
sidered inequality and from Theorem 8 it follows that under the assumption
P �= NP greedy algorithm with two thresholds α and α is not far from best
polynomial approximate algorithms for minimization of partial cover weight.

However we can try to improve the results of the work of greedy algorithm
with two thresholds α and α for some part of set cover problems with weights.

2.4 Comparison of Greedy Algorithms with One and Two
Thresholds

The following example shows that if for greedy algorithm with two thresholds
α and γ we will use γ such that γ < α we can obtain sometimes better results
than in the case γ = α.

Example 1. Consider a set cover problem (A, S, w) such that A = {1, 2, 3, 4, 5,
6}, S = {B1, B2}, B1 = {1}, B2 = {2, 3, 4, 5, 6}, w(B1) = 1 and w(B2) = 4.
Let α = 0.5. It means that we must cover at least M = �(1 − α)|A|	 = 3
elements from A. If γ = α = 0.5 then the result of the work of greedy algorithm
with thresholds α and γ is the 0.5-cover {B1, B2} which weight is equal to 5. If
γ = 0 < α then the result of the work of greedy algorithm with thresholds α
and γ is the 0.5-cover {B2} which weight is equal to 4.

In this subsection we show that under some assumptions on |A| and |S| for
the most part of set cover problems (A, S) there exist a weight function w
and real numbers α, γ such that 0 ≤ γ < α < 1 and Cγ

greedy(α, A, S, w) <
Cα

greedy(α, A, S, w). First, we consider criterion of existence of such w, α and γ
(see Theorem 9). First part of the proof of this criterion is based on a construc-
tion similar to considered in Example 1.

Let A be a finite nonempty set and S = {B1, . . . , Bm} be a family of subsets
of A. We will say that the family S is 1-uniform if there exists a natural number
k such that |Bi| = k or |Bi| = k+1 for any nonempty subset Bi from S. We will
say that S is strongly 1-uniform if S is 1-uniform and for any subsets Bl1 , . . . , Blt

from S the family {B1 \ U, . . . , Bm \ U} is 1-uniform where U = Bl1 ∪ . . . ∪ Blt .

Theorem 9. Let (A, S) be a set cover problem. Then the following two state-
ments are equivalent:

1. The family S is not strongly 1-uniform.
2. There exist a weight function w and real numbers α and γ such that 0 ≤ γ <

α < 1 and Cγ
greedy(α, A, S, w) < Cα

greedy(α, A, S, w).

Proof. Let S = {B1, . . . , Bm}. Let the family S be not strongly 1-uniform. Let us
choose minimal number of subsets Bl1 , . . . , Blt from the family S (it is possible
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that t = 0) such that the family {B1 \ U, . . . , Bm \ U} is not 1-uniform where
U = Bl1 ∪ . . . ∪ Blt (if t = 0 then U = ∅). Since {B1 \ U, . . . , Bm \ U} is not
1-uniform, there exist two subsets Bi and Bj from S such that |Bi \ U | > 0 and
|Bj \U | ≥ |Bi \U |+2. Let us choose real α and γ such that M = �|A|(1 − α)	 =
|U |+|Bi\U |+1 and N = �|A|(1 − γ)	 = |U |+|Bi\U |+2. It is clear that 0 ≤ γ <
α < 1. Let us define a weight function w as follows: w(Bl1) = . . . = w(Blt) = 1,
w(Bi) = |A| ·2|Bi \U |, w(Bj) = |A|(2|Bi \U |+3) and w(Br) = |A|(3|Bi \U |+6)
for any Br from S such that r /∈ {i, j, l1, . . . , lt}.

Let us consider the work of greedy algorithm with two thresholds α and α.
One can show that during first t steps the greedy algorithm will choose subsets
Bl1 , . . . , Blt (may be in an another order). It is clear that |U | < M . Therefore
the greedy algorithm must make the step number t + 1. During this step the
greedy algorithm will choose a subset Bk from S with minimal number k for
which Bk \U �= ∅ and the value p(k) = w(Bk)

min{|Bk\U|,M−|U|} = w(Bk)
min{|Bk\U|,|Bi\U|+1}

is minimal.
It is clear that p(i) = 2|A|, p(j) = (2 + 1

|Bi\U|+1 )|A| and p(k) > 3|A| for
any subset Bk from S such that Bk \ U �= ∅ and k /∈ {i, j, l1, . . . , lt}. Therefore
during the step number t + 1 the greedy algorithm will choose the subset Bi.
Since |U | + |Bi \ U | = M − 1, the greedy algorithm will make the step number
t+2 and will choose a subset from S which is different from Bl1 , . . . , Blt , Bi. As
the result we obtain Cα

greedy(α, A, S, w) ≥ t + |A| · 2|Bi \ U | + |A|(2|Bi \ U | + 3).
Let us consider the work of greedy algorithm with two thresholds α and γ.

One can show that during first t steps the greedy algorithm will choose subsets
Bl1 , . . . , Blt (may be in an another order). It is clear that |U | < M . Therefore
the greedy algorithm must make the step number t + 1. During this step the
greedy algorithm will choose a subset Bk from S with minimal number k for
which Bk \ U �= ∅ and the value q(k) = w(Bk)

min{|Bk\U|,N−|U|} = w(Bk)
min{|Bk\U|,|Bi\U|+2}

is minimal.
It is clear that q(i) = 2|A|, q(j) = (2 − 1

|Bi\U|+2 )|A| and q(k) ≥ 3|A| for
any subset Bk from S such that Bk \ U �= ∅ and k /∈ {i, j, l1, . . . , lt}. Therefore
during the step number t + 1 the greedy algorithm will choose the subset Bj .
Since |U | + |Bj \ U | > M , the α-cover constructed by greedy algorithm will
be equal to {Bl1 , . . . , Blt , Bj}. As the result we obtain Cγ

greedy(α, A, S, w) =
t+|A|(2|Bi\U |+3). Since Cα

greedy(α, A, S, w) ≥ t+|A|·2|Bi\U |+|A|(2|Bi\U |+3)
and |Bi \ U | > 0, we conclude that Cα

greedy(α, A, S, w) > Cγ
greedy(α, A, S, w).

Let the family S be strongly 1-uniform. Consider arbitrary weight function
w for S and real numbers α and γ such that 0 ≤ γ < α < 1. Let us show that
Cγ

greedy(α, A, S, w) ≥ Cα
greedy(α, A, S, w). Let us denote M = �|A|(1 − α)	 and

N = �|A|(1 − γ)	. If M = N then Cγ
greedy(α, A, S, w) = Cα

greedy(α, A, S, w). Let
N > M .

Let us apply the greedy algorithm with thresholds α and α to the set cover
problem with weights (A, S, w). Let during the construction of α-cover this
algorithm choose sequentially subsets Bg1 , . . . , Bgt . Let us apply now the greedy
algorithm with thresholds α and γ to the set cover problem with weights (A, S, w).
If during the construction of α-cover this algorithm chooses sequentially subsets
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Bg1 , . . . , Bgt then Cγ
greedy(α, A, S, w) = Cα

greedy(α, A, S, w). Let there exist a non-
negative integer r, 0 ≤ r ≤ t − 1, such that during first r steps the considered
algorithm chooses subsets Bg1 , . . . , Bgr , but at the step number r + 1 the al-
gorithm chooses a subset Bk such that k �= gr+1. Let us denote Bg0 = ∅, D =
Bg0∪. . .∪Bgr and J = {i : i ∈ {1, . . . , m}, Bi\D �= ∅}. It is clear that gr+1, k ∈ J .
For any i ∈ J denote p(i) = w(Bi)

min{|Bi\D|,M−|D|} , q(i) = w(Bi)
min{|Bi\D|,N−|D|} .

Since k �= gr+1, we conclude that there exists i ∈ J such that p(i) �= q(i).
Therefore |Bi \ D| > M − |D|. Since S is strongly 1-uniform family, we have
|Bj \ D| ≥ M − |D| for any j ∈ J . From here it follows, in particular, that
r + 1 = t, and {Bg1 , . . . , Bgt−1 , Bk} is an α-cover for (A, S).

It is clear that p(gt) ≤ p(k). Since |Bk \D| ≥ M −|D| and |Bgt \D| ≥ M −|D|,
we have p(k) = w(Bk)

M−|D| , p(gt) = w(Bgt )

M−|D| . Therefore w(Bgt) ≤ w(Bk).
Taking into account that Cγ

greedy(α, A, S, w) = w(Bg1 ) + . . . + w(Bgt−1 ) +
w(Bk) and Cα

greedy(α, A, S, w) = w(Bg1) + . . . + w(Bgt−1 ) + w(Bgt) we obtain
Cγ

greedy(α, A, S, w) ≥ Cα
greedy(α, A, S, w). �

Let us show that under some assumptions on |A| and |S| the most part of set
cover problems (A, S) is not 1-uniform, and therefore is not strongly 1-uniform.

There is one-to-one correspondence between set cover problems and tables
filled by numbers from {0, 1} and having no rows filled by 0 only. Let A =
{a1, . . . , an} and S = {B1, . . . , Bm}. Then the problem (A, S) corresponds to
the table with n rows and m columns which for i = 1, . . . , n and j = 1, . . . , m
has 1 at the intersection of i-th row and j-th column if and only if ai ∈ Bj .

A table filled by numbers from {0, 1} will be called SC-table if this table has
no rows filled by 0 only. For completeness of the presentation we consider here
a statement from [9] with proof.

Lemma 1. The number of SC-tables with n rows and m columns is at least

2mn − 2mn−m+log2 n .

Proof. Let i ∈ {1, . . . , n}. The number of tables in which the i-th row is filled
by 0 only is equal to 2mn−m. Therefore the number of tables which are not SC-
tables is at most n2mn−m = 2mn−m+log2 n. Thus, the number of SC-tables is at
least 2mn − 2mn−m+log2 n. �

Lemma 2. Let n ∈ IN, n ≥ 4 and k ∈ {0, . . . , n}. Then Ck
n ≤ C

�n/2�
n < 2n

√
n
.

Proof. It is well known (see, for example, [25], p. 178) that Ck
n ≤ C

�n/2�
n . Let n

be even and n ≥ 4. It is known (see [4], p. 278) that C
�n/2�
n ≤ 2n√

3n
2 +1

< 2n
√

n
.

Let n be odd and n ≥ 5. Using well known equality C
�n/2�
n = C

�n/2�
n−1 +C

�n/2�−1
n−1

and the fact, that C
�(n−1)/2�
n−1 ≥ Ck

n−1 for any k ∈ {0, . . . , n − 1}, we obtain
C
�n/2�
n ≤ 2C

�(n−1)/2�
n−1 . Thus, C

�n/2�
n ≤ 2n�

3(n−1)
2 +1

< 2n�
3(n−1)

3 +1
= 2n
√

n
. Therefore

for any n ≥ 4 the inequality C
�n/2�
n < 2n

√
n

holds. �
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Theorem 10. Consider set cover problems (A, S) such that A = {a1, . . . , an}
and S = {B1, . . . , Bm}. Let n ≥ 4 and m ≥ log2 n + 1. Then the fraction of set
cover problems which are not 1-uniform is at least 1 − 9

m
2 +1

n
m
2 −1 .

Proof. The considered fraction is at least q−p
q where q is the number of SC-tables

with n rows and m columns, and p is the number of tables with n rows and m
columns filled by 0 and 1 for each of which there exists k ∈ {1, . . . , n − 1} such
that the number of units in each column belongs to the set {0, k, k + 1}.

From Lemma 1 it follows that q ≥ 2mn − 2mn−m+log2 n. It is clear that p ≤∑n−1
k=1 (Ck

n + Ck+1
n + 1)m. From Lemma 2 it follows that C

�n/2�
n ≥ Ck

n for any

k ∈ {1, . . . , n}. Therefore p ≤ (n − 1)
(
3C
�n/2�
n

)m

. Using Lemma 2 we conclude

that 3C
�n/2�
n < 2n√

n
9

for any n ≥ 4. Therefore p < (n−1)2mn

(n
9 )m/2 . Thus, q−p

q = 1− p
q >

1− (n−1)2mn

(n
9 )m/2(2mn−2mn−m+log2 n)

. Taking into account that m ≥ log2 n+1 we obtain

q−p
q > 1 − 2(n−1)

(n
9 )m/2 > 1 − 9

m
2 +1

n
m
2 −1 . �

So if n is large enough and m ≥ log2 n + 1 then the most part of set cover
problems (A, S) with |A| = n and |S| = m is not 1-uniform.

For example, the fraction of set cover problems (A, S) with |A| = 81 and
|S| = 20 which are not 1-uniform is at least 1 − 1

97 = 1 − 1
4782969 .

2.5 Two Modifications of Greedy Algorithm

Results obtained in the previous subsection show that the greedy algorithm with
two thresholds is of some interest. In this subsection we consider two polyno-
mial modifications of greedy algorithm which allow to use advantages of greedy
algorithm with two thresholds.

Let (A, S, w) be a set cover problem with weights and α be a real number
such that 0 ≤ α < 1.

1. Of course, it is impossible to consider effectively all γ such that 0 ≤ γ ≤ α.
Instead of this we can consider all natural N such that M ≤ N ≤ |A|
where M = �|A|(1 − α)	 (see the description of greedy algorithm with two
thresholds). For each N ∈ {M, . . . , |A|} we apply greedy algorithm with
parameters M and N to set cover problem with weights (A, S, w) and after
that choose an α-cover with minimal weight among constructed α-covers.

2. There exists also an another way to construct an α-cover which is not worse
than the one obtained under consideration of all N such that M ≤ N ≤ |A|.
Let us apply greedy algorithm with thresholds α and α to set cover prob-
lem with weights (A, S, w). Let the algorithm choose sequentially subsets
Bg1 , . . . , Bgt . For each i ∈ {0, . . . , t − 1} we find (if it is possible) a subset
Bli from S with minimal weight w(Bli) such that |Bg1 ∪ . . . ∪ Bgi ∪ Bli | ≥
M , and form an α-cover {Bg1 , . . . , Bgi , Bli} (if i = 0 then it will be the
family {Bl0}). After that among constructed α-covers {Bg1 , . . . , Bgt}, ...,
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{Bg1 , . . . , Bgi , Bli}, ... we choose an α-cover with minimal weight. From
Proposition 1 it follows that the constructed α-cover is not worse than the
one constructed under consideration of all γ, 0 ≤ γ ≤ α, or (which is the
same) all N , M ≤ N ≤ |A|.

Proposition 1. Let (A, S, w) be a set cover problem with weights and α, γ be real
numbers such that 0 ≤ γ < α < 1. Let the greedy algorithm with two thresholds α
and α, which is applied to (A, S, w), choose sequentially subsets Bg1 , . . . , Bgt . Let
the greedy algorithm with two thresholds α and γ, which is applied to (A, S, w),
choose sequentially subsets Bl1 , . . . , Blk . Then either k = t and (l1, . . . , lk) =
(g1, . . . , gt) or k ≤ t, (l1, . . . , lk−1) = (g1, . . . , gk−1) and lk �= gk.

Proof. Let S = {B1, . . . , Bm}. Let us denote M = �|A|(1 − α)	 and N =
�|A|(1 − γ)	.

Let (l1, . . . , lk) �= (g1, . . . , gt). Since {Bg1 , . . . , Bgt−1} is not an α-cover for
(A, S), it is impossible that k < t and (l1, . . . , lk) = (g1, . . . , gk). Since {Bg1 , . . . ,
Bgt} is an α-cover for (A, S), it is impossible that k > t and (l1, . . . , lt) =
(g1, . . . , gt). Therefore there exists i ∈ {0, . . . , t−1} such that during first i steps
algorithm with thresholds α and α and algorithm with thresholds α and γ choose
the same subsets from S, but during the step number i + 1 the algorithm with
threshold α and γ chooses a subset Bli+1 such that li+1 �= gi+1.

Let us denote Bg0 = ∅, D = Bg0 ∪ . . . ∪ Bgi and J = {j : j ∈ {1, . . . , m}, Bj \
D �= ∅}. It is clear that gi+1, li+1 ∈ J . For any j ∈ J let p(j) = w(Bj)

min{|Bj\D|,M−|D|}

and q(j) = w(Bj)
min{|Bj\D|,N−|D|} . Since N ≥ M , we have p(j) ≥ q(j) for any j ∈ J .

Consider two cases.
Let gi+1 < li+1. In this case we have p(gi+1) ≤ p(li+1) and q(gi+1) > q(li+1).

Using inequality p(gi+1) ≥ q(gi+1) we obtain p(gi+1) > q(li+1) and p(li+1) >
q(li+1). From last inequality it follows that |Bli+1 \ D| > M − |D|.

Let gi+1 > li+1. In this case we have p(gi+1) < p(li+1) and q(gi+1) ≥ q(li+1).
Using inequality p(gi+1) ≥ q(gi+1) we obtain p(gi+1) ≥ q(li+1) and p(li+1) >
q(li+1). From last inequality it follows that |Bli+1 \ D| > M − |D|.

So in any case we have |Bli+1 \ D| > M − |D|. From this inequality it follows
that after the step number i+1 the algorithm with thresholds α and γ must finish
the work. Thus, k = i + 1, k ≤ t, (l1, . . . , lk−1) = (g1, . . . , gk−1) and lk �= gk. �

2.6 Lower Bound on Cmin(α)

In this subsection we fix some information about the work of greedy algorithm
with two thresholds and find the best lower bound on the value Cmin(α) depend-
ing on this information.

Let (A, S, w) be a set cover problem with weights and α, γ be real numbers
such that 0 ≤ γ ≤ α < 1. Let us apply the greedy algorithm with thresholds α
and γ to the set cover problem with weights (A, S, w). Let during the construction
of α-cover the greedy algorithm choose sequentially subsets Bg1 , . . . , Bgt .

Let us denote Bg0 = ∅ and δ0 = 0. For i = 1, . . . , t denote δi = |Bgi \ (Bg0 ∪
. . . ∪ Bgi−1)| and wi = w(Bgi ).
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As information on the greedy algorithm work we will use numbers MC =
MC(α, γ, A, S, w) = �|A|(1 − α)	 and NC = NC(α, γ, A, S, w) = �|A|(1 − γ)	,
and tuples ΔC = ΔC(α, γ, A, S, w) = (δ1, . . . , δt) and WC = WC(α, γ, A, S, w) =
(w1, . . . , wt).

For i = 0, . . . , t − 1 denote

ρi =
⌈

wi+1(MC − (δ0 + . . . + δi))
min{δi+1, NC − (δ0 + . . . + δi)}

⌉
.

Let us define parameter ρC(α, γ) = ρC(α, γ, A, S, w) as follows:

ρC(α, γ) = max {ρi : i = 0, . . . , t − 1} .

We will prove that ρC(α, γ) is the best lower bound on Cmin(α) depending
on MC , NC , ΔC and WC . This lower bound is based on a generalization of
the following simple reasoning: if we must cover M elements and the maximal
cardinality of a subset from S is δ then we must use at least

⌈
M
δ

⌉
subsets.

Theorem 11. For any set cover problem with weights (A, S, w) and any real
numbers α, γ, 0 ≤ γ ≤ α < 1, the inequality Cmin(α, A, S, w) ≥ ρC(α, γ, A, S, w)
holds, and there exists a set cover problem with weights (A′, S′, w′) such that

MC(α, γ, A′, S′, w′) = MC(α, γ, A, S, w), NC(α, γ, A′, S′, w′) = NC(α, γ, A, S, w)
ΔC(α, γ, A′, S′, w′) = ΔC(α, γ, A, S, w), WC(α, γ, A′, S′, w′) = WC(α, γ, A, S, w)
ρC(α, γ, A′, S′, w′) = ρC(α, γ, A, S, w), Cmin(α, A′, S′, w′) = ρC(α, γ, A′, S′, w′) .

Proof. Let (A, S, w) be a set cover problem with weights, S = {B1, . . . , Bm},
and α, γ be real numbers such that 0 ≤ γ ≤ α < 1. Let us denote M =
MC(α, γ, A, S, w) = �|A|(1 − α)	 and N = NC(α, γ, A, S, w) = �|A|(1 − γ)	. Let
{Bl1 , . . . , Blk} be an optimal α-cover for (A, S, w), i.e. w(Bl1) + . . . + w(Blk) =
Cmin(α, A, S, w) = Cmin(α) and |Bl1 ∪ . . . ∪ Blk | ≥ M .

Let us apply the greedy algorithm with thresholds α and γ to (A, S, w). Let
during the construction of α-cover the greedy algorithm choose sequentially sub-
sets Bg1 , . . . , Bgt . Let us denote Bg0 = ∅.

Let i ∈ {0, . . . , t−1}. Let us denote D = Bg0 ∪ . . .∪Bgi . It is clear that after i
steps of greedy algorithm work in the set Bl1 ∪ . . .∪Blk at least |Bl1 ∪ . . .∪Blk |−
|Bg0 ∪ . . . ∪ Bgi | ≥ M − |D| > 0 elements remained uncovered. After i-th step
p1 = |Bl1 \D| elements remained uncovered in the set Bl1 , ..., and pk = |Blk \D|
elements remained uncovered in the set Blk . We know that p1 + . . . + pk ≥
M − |D| > 0. Let, for the definiteness, p1 > 0, . . . , pr > 0, pr+1 = . . . = pk = 0.
For j = 1, . . . , r denote qj = min{pj, N −|D|}. It is clear that N −|D| ≥ M −|D|.
Therefore q1 + . . . + qr ≥ M − |D|. Let us consider numbers w(Bl1)

q1
, . . . ,

w(Blr )
qr

.

Let us show that at least one of these numbers is at most β = w(Bl1 )+...+w(Blr )

q1+...+qr
.

Assume the contrary. Then w(Bl1) + . . . + w(Blr ) = w(Bl1)q1

q1
+ . . . + w(Blr )qr

qr
>

(q1 + . . . + qr)β = w(Bl1 ) + . . . + w(Blr ) which is impossible.
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We know that q1 + . . . + qr ≥ M − |D| and w(Bl1 ) + . . . + w(Blr ) ≤ Cmin(α).
Therefore β ≤ Cmin(α)

M−|D| , and there exists j ∈ {1, . . . , k} such that Blj \ D �= ∅

and
w(Blj

)

min{|Blj
\D|,N−|D|} ≤ β. Hence

w(Bgi+1)

min{|Bgi+1\D|,N−|D|}
≤ β ≤ Cmin(α)

M−|D| and

Cmin(α) ≥ w(Bgi+1)(M−|D|)
min{|Bgi+1\D|,N−|D|}

.

Taking into account that Cmin(α) is a natural number we obtain Cmin(α) ≥⌈
w(Bgi+1)(M−|D|)

min{|Bgi+1\D|,N−|D|}

⌉
= ρi. Since last inequality holds for any i ∈ {0, . . . , t−1}

and ρC(α, γ) = ρC(α, γ, A, S, w) = max {ρi : i = 0, . . . , t − 1}, we conclude that
Cmin(α) ≥ ρC(α, γ).

Let us show that this bound is unimprovable depending on MC , NC , ΔC

and WC . Let us consider a set cover problem with weights (A′, S′, w′) where
A′ = A, S′ = {B1, . . . , Bm, Bm+1}, |Bm+1| = M , Bg1 ∪ . . . ∪ Bgt−1 ⊆ Bm+1 ⊆
Bg1 ∪ . . . ∪ Bgt , w′(B1) = w(B1), . . . , w′(Bm) = w(Bm) and w′(Bm+1) =
ρC(α, γ). It is clear that MC(α, γ, A′, S′, w′) = MC(α, γ, A, S, w) = M and
NC(α, γ, A′, S′, w′) = NC(α, γ, A, S, w) = N . We show ΔC(α, γ, A′, S′, w′) =
ΔC(α, γ, A, S, w) and WC(α, γ, A′, S′, w′) = WC(α, γ, A, S, w).

Let us show by induction on i ∈ {1, . . . , t} that for the set cover problem
with weights (A′, S′, w′) at the step number i the greedy algorithm with two
thresholds α and γ will choose the subset Bgi . Let us consider the first step.
Let us denote D = ∅. It is clear that w′(Bm+1)

min{|Bm+1\D|,N−|D|} = ρC(α,γ)
M−|D| . From the

definition of ρC(α, γ) it follows that w′(Bg1 )

min{|Bg1\D|,N−|D|}
= w(Bg1 )

min{|Bg1\D|,N−|D|}
≤

ρC(α,γ)
M−|D| . Using this fact and the inequality g1 < m + 1 it is not difficult to prove
that at the first step greedy algorithm will choose the subset Bg1 .

Let i ∈ {1, . . . , t − 1}. Let us assume that the greedy algorithm made i steps
for (A′, S′, w′) and chose subsets Bg1 , . . . , Bgi . Let us show that at the step
i + 1 the subset Bgi+1 will be chosen. Let us denote D = Bg1 ∪ . . . ∪ Bgi . Since
Bg1 ∪ . . . ∪ Bgi ⊆ Bm+1 and |Bm+1| = M , we have |Bm+1 \ D| = M − |D|.
Therefore w′(Bm+1)

min{|Bm+1\D|,N−|D|} = ρC(α,γ)
M−|D| . From the definition of the parameter

ρC(α, γ) it follows that
w′(Bgi+1 )

min{|Bgi+1\D|,N−|D|}
=

w(Bgi+1)

min{|Bgi+1\D|,N−|D|}
≤ ρC(α,γ)

M−|D| .
Using this fact and the inequality gi+1 < m + 1 it is not difficult to prove that
at the step number i + 1 greedy algorithm will choose the subset Bgi+1 .

Thus, ΔC(α, γ, A′, S′, w′) = ΔC(α, γ, A, S, w) and WC(α, γ, A′, S′, w′) =
WC(α, γ, A, S, w). Therefore ρC(α, γ, A′, S′, w′) = ρC(α, γ, A, S, w) = ρC(α, γ).
From been proven it follows that Cmin(α, A′, S′, w′) ≥ ρC(α, γ, A′, S′, w′). It is
clear that {Bm+1} is an α-cover for (A′, S′) and the weight of {Bm+1} is equal
to ρC(α, γ, A′, S′, w′). Hence Cmin(α, A′, S′, w′) = ρC(α, γ, A′, S′, w′). �

Let us consider a property of the parameter ρC(α, γ) which is important for
practical use of the bound from Theorem 11.

Proposition 2. Let (A, S, w) be a set cover problem with weights and α, γ be real
numbers such that 0 ≤ γ ≤ α < 1. Then ρC(α, α, A, S, w) ≥ ρC(α, γ, A, S, w).
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Proof. Let S = {B1, . . . , Bm}, M = �|A|(1 − α)	, N = �|A|(1 − γ)	, ρC(α, α) =
ρC(α, α, A, S, w) and ρC(α, γ) = ρC(α, γ, A, S, w).

Let us apply the greedy algorithm with thresholds α and α to (A, S, w).
Let during the construction of α-cover this algorithm choose sequentially sub-
sets Bg1 , . . . , Bgt . Let us denote Bg0 = ∅. For j = 0, . . . , t − 1 denote Dj =

Bg0 ∪ . . . ∪ Bgj and ρC(α, α, j) =
⌈

w(Bgj+1 )(M−|Dj |)
min{|Bgj+1\Dj |,M−|Dj |}

⌉
. Then ρC(α, α) =

max{ρC(α, α, j) : j = 0, . . . , t − 1}.
Apply the greedy algorithm with thresholds α and γ to (A, S, w). Let during

the construction of α-cover this algorithm choose sequentially subsets Bl1 , . . . ,
Blk . From Proposition 1 it follows that either k = t and (l1, . . . , lk) = (g1, . . . , gt)
or k ≤ t, (l1, . . . , lk−1) = (g1, . . . , gk−1) and lk �= gk. Let us consider these two
cases separately. Let k = t and (l1, . . . , lk) = (g1, . . . , gt). For j = 0, . . . , t− 1 de-

note ρC(α, γ, j) =
⌈

w(Bgj+1 )(M−|Dj |)
min{|Bgj+1\Dj |,N−|Dj|}

⌉
. Then ρC(α, γ) = max{ρC(α, γ, j) :

j = 0, . . . , t − 1}. Since N ≥ M , we have ρC(α, γ, j) ≤ ρC(α, α, j) for j =
0, . . . , t−1. Hence ρC(α, γ) ≤ ρC(α, α). Let k ≤ t, (l1, . . . , lk−1) = (g1, . . . , gk−1)
and lk �= gk. Let us denote ρC(α, γ, k − 1) =

⌈
w(Blk

)(M−|Dk−1|)
min{|Blk

\Dk−1|,N−|Dk−1|}

⌉
and

ρC(α, γ, j) =
⌈

w(Bgj+1 )(M−|Dj |)
min{|Bgj+1\Dj |,N−|Dj |}

⌉
for j = 0, . . . , k − 2. Then ρC(α, γ) =

max{ρC(α, γ, j) : j = 0, . . . , k − 1}. Since N ≥ M , we have ρC(α, γ, j) ≤
ρC(α, α, j) for j = 0, . . . , k − 2. It is clear that w(Blk

)

min{|Blk
\Dk−1|,N−|Dk−1|} ≤

w(Bgk
)

min{|Bgk
\Dk−1|,N−|Dk−1|} ≤ w(Bgk

)

min{|Bgk
\Dk−1|,M−|Dk−1|} . Thus, ρC(α, γ, k − 1) ≤

ρC(α, α, k − 1) and ρC(α, γ) ≤ ρC(α, α). �

2.7 Upper Bounds on Cγ
greedy(α)

In this subsection we study some properties of parameter ρC(α, γ) and obtain
two upper bounds on the value Cγ

greedy(α) which do not depend directly on
cardinality of the set A and cardinalities of subsets Bi from S.

Theorem 12. Let (A, S, w) be a set cover problem with weights and α, γ be real
numbers such that 0 ≤ γ < α < 1. Then

Cγ
greedy(α, A, S, w) < ρC(γ, γ, A, S, w)

(
ln

(
1 − γ

α − γ

)
+ 1

)
.

Proof. Let S = {B1, . . . , Bm}. Let us denote M = �|A|(1 − α)	 and N =
�|A|(1 − γ)	.

Let us apply the greedy algorithm with thresholds γ and γ to (A, S, w).
Let during the construction of γ-cover the greedy algorithm choose sequen-
tially subsets Bg1 , . . . , Bgt . Let us denote Bg0 = ∅, for i = 0, . . . , t − 1 denote
Di = Bg0 ∪ . . . ∪ Bgi , and denote ρ = ρC(γ, γ, A, S, w). Immediately from the
definition of the parameter ρ it follows that for i = 0, . . . , t − 1

w(Bgi+1 )
min{|Bgi+1 \ Di|, N − |Di|}

≤ ρ

N − |Di|
. (1)
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Note that min{|Bgi+1 \ Di|, N − |Di|} = |Bgi+1 \ Di| for i = 0, . . . , t − 2 since
{Bg0 , . . . , Bgi+1} is not a γ-cover for (A, S). Therefore for i = 0, . . . , t − 2 we

have
w(Bgi+1 )

|Bgi+1\Di| ≤ ρ
N−|Di| and N−|Di|

ρ ≤ |Bgi+1\Di|
w(Bgi+1) . Thus, for i = 1, . . . , t − 1

during the step number i the greedy algorithm covers at least N−|Di−1|
ρ elements

on each unit of weight. From (1) it follows that that for i = 0, . . . , t − 1

w(Bgi+1) ≤
ρ min{|Bgi+1 \ Di|, N − |Di|}

N − |Di|
≤ ρ . (2)

Assume that ρ = 1. Using (2) we obtain w(Bg1 ) = 1. From this equality and
(1) it follows that |Bg1 | ≥ N . Therefore {Bg1} is an α-cover for (A, S), and

Cγ
greedy(α) = 1. It is clear that ln

(
1−γ
α−γ

)
+1 > 1. Therefore the statement of the

theorem holds if ρ = 1.
Assume now that ρ ≥ 2. Let |Bg1 | ≥ M . Then {Bg1} is an α-cover for (A, S).

Using (2) we obtain Cγ
greedy(α) ≤ ρ. Since ln

(
1−γ
α−γ

)
+1 > 1, we conclude that the

statement of the theorem holds if |Bg1 | ≥ M . Let |Bg1 | < M . Then there exists
q ∈ {1, . . . , t − 1} such that |Bg1 ∪ . . . ∪ Bgq | < M and |Bg1 ∪ . . . ∪ Bgq+1 | ≥ M .

Taking into account that for i = 1, . . . , q during the step number i the greedy
algorithm covers at least N−|Di−1|

ρ elements on each unit of weight we obtain

N −|Bg1 ∪ . . .∪Bgq | ≤ N
(
1 − 1

ρ

)w(Bg1)+...+w(Bgq )

. Let us denote k = w(Bg1 )+

. . . + w(Bgq ). Then N − N
(
1 − 1

ρ

)k

≤ |Bg1 ∪ . . . ∪ Bgq | ≤ M − 1. Therefore

|A|(1 − γ) − |A|(1 − γ)
(
1 − 1

ρ

)k

< |A|(1 − α), 1 − γ − 1 + α < (1 − γ)
(

ρ−1
ρ

)k

,(
ρ

ρ−1

)k

< 1−γ
α−γ ,

(
1 + 1

ρ−1

)k

< 1−γ
α−γ , and k

ρ < ln
(

1−γ
α−γ

)
. To obtain last inequality

we use known inequality ln
(
1 + 1

r

)
> 1

r+1 which holds for any natural r. It is
clear that Cγ

greedy(α) = k + w(Bq+1). Using (2) we conclude that w(Bq+1) ≤ ρ.

Therefore Cγ
greedy(α) < ρ ln

(
1−γ
α−γ

)
+ ρ. �

Corollary 1. Let ε be a real number, and 0 < ε < 1. Then for any α such that
ε ≤ α < 1 the following inequalities hold:

ρC(α, α) ≤ Cmin(α) ≤ Cα−ε
greedy(α) < ρC(α − ε, α − ε)

(
ln

1
ε

+ 1
)

.

For example, if ε = 0.01 and 0.01 ≤ α < 1 then ρC(α, α) ≤ Cmin(α) ≤
Cα−0.01

greedy (α) < 5.61ρC(α − 0.01, α − 0.01), and if ε = 0.1 and 0.1 ≤ α < 1
then ρC(α, α) ≤ Cmin(α) ≤ Cα−0.1

greedy(α) < 3.31ρC(α − 0.1, α − 0.1).
The obtained results show that the lower bound Cmin(α) ≥ ρC(α, α) is non-

trivial.

Theorem 13. Let (A, S, w) be a set cover problem with weights and α, γ be real
numbers such that 0 ≤ γ < α < 1. Then

Cγ
greedy(α, A, S, w) < Cmin(γ, A, S, w)

(
ln

(
1 − γ

α − γ

)
+ 1

)
.
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Proof. From Theorem 12 it follows that Cγ
greedy(α, A, S, w) < ρC(γ, γ, A, S, w) ·(

ln
(

1−γ
α−γ

)
+ 1

)
. The inequality ρC(γ, γ, A, S, w) ≤ Cmin(γ, A, S, w) follows from

Theorem 11. �

Corollary 2. C0
greedy(0.001) < 7.91Cmin(0), C0.001

greedy(0.01) < 5.71Cmin(0.001),
C0.1

greedy(0.2) < 3.20Cmin(0.1), C0.3
greedy(0.5) < 2.26Cmin(0.3).

Corollary 3. Let 0 < α < 1. Then C0
greedy(α) < Cmin(0)

(
ln 1

α + 1
)
.

Corollary 4. Let ε be a real number, and 0 < ε < 1. Then for any α such that
ε ≤ α < 1 the inequalities Cmin(α) ≤ Cα−ε

greedy(α) < Cmin(α − ε)
(
ln 1

ε + 1
)

hold.

3 Partial Tests and Reducts

3.1 Main Notions

Let T be a table with n rows labeled by nonnegative integers (decisions) and
m columns labeled by attributes (names of attributes) f1, . . . , fm. This table
is filled by nonnegative integers (values of attributes). The table T is called
a decision table. Let w be a weight function for T which corresponds to each
attribute fi a natural number w(fi).

Let us denote by P (T ) the set of unordered pairs of different rows of T with
different decisions. We will say that an attribute fi separates a pair of rows
(r1, r2) ∈ P (T ) if rows r1 and r2 have different numbers at the intersection with
the column fi. For i = 1, . . . , m denote by P (T, fj) the set of pairs from P (T )
which the attribute fi separates.

Let α be a real number such that 0 ≤ α < 1. A set of attributes Q ⊆
{f1, . . . , fm} will be called an α-test for T if attributes from Q separate at least
(1 − α)|P (T )| pairs from the set P (T ). An α-test is called an α-reduct if each
proper subset of the considered α-test is not α-test. If P (T ) = ∅ then each subset
of {f1, . . . , fm} is an α-test, and only empty set is an α-reduct.

For example, 0.01-test means that we must separate at least 99% of pairs
from P (T ).

Note that 0-reduct is usual (exact) reduct. It must be noted also that each
α-test contains at least one α-reduct as a subset.

The number w(Q) =
∑

fi∈Q w(fi) will be called the weight of the set Q. If
Q = ∅ then w(Q) = 0.

Let us denote by Rmin(α) = Rmin(α, T, w) the minimal weight of α-reduct
for T . It is clear that Rmin(α, T, w) coincides with the minimal weight of α-test
for T .

Let α, γ be real numbers such that 0 ≤ γ ≤ α < 1. Let us describe a greedy
algorithm with thresholds α and γ which constructs an α-test for given decision
table T and weight function w.

If P (T ) = ∅ then the constructed α-test is empty set. Let P (T ) �= ∅. Let
us denote M = �|P (T )|(1 − α)	 and N = �|P (T )|(1 − γ)	. Let we make i ≥ 0
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steps and construct a set Q containing i attributes (if i = 0 then Q = ∅). Let us
describe the step number i + 1.

Let us denote by D the set of pairs from P (T ) separated by attributes from
Q (if i = 0 then D = ∅). If |D| ≥ M then we finish the work of the algorithm.
The set of attributes Q is the constructed α-test. Let |D| < M . Then we choose
an attribute fj with minimal number j for which P (T, fj)\D �= ∅ and the value

w(fj)
min{|P (T, fj) \ D|, N − |D|}

is minimal. Add the attribute fj to the set Q. Pass to the step number i + 2.
Let us denote by Rγ

greedy(α) = Rγ
greedy(α, T, w) the weight of α-test con-

structed by greedy algorithm with thresholds α and γ for given decision table T
and weight function w.

3.2 Relationships Between Partial Covers and Partial Tests

Let (A, S, w) be a set cover problem with weights and α, γ be real numbers
such that 0 ≤ γ ≤ α < 1. Let us apply the greedy algorithm with thresholds
α and γ to (A, S, w). Let during the construction of α-cover the greedy algo-
rithm choose sequentially subsets Bj1 , . . . , Bjt from the family S. Let us denote
OC(α, γ, A, S, w) = (j1, . . . , jt).

Let T be a decision table with m columns labeled by attributes f1, . . . , fm,
and with a nonempty set P (T ). Let w be a weight function for T . We cor-
respond a set cover problem with weights (A(T ), S(T ), uw) to the considered
decision table T and weight function w in the following way: A(T ) = P (T ),
S(T ) = {B1(T ), . . . , Bm(T )} where B1(T ) = P (T, f1), . . . , Bm(T ) = P (T, fm),
uw(B1(T )) = w(f1), . . . , uw(Bm(T )) = w(fm).

Let α, γ be real numbers such that 0 ≤ γ ≤ α < 1. Let us apply the greedy
algorithm with thresholds α and γ to decision table T and weight function w.
Let during the construction of α-test the greedy algorithm choose sequentially
attributes fj1 , . . . , fjt . Let us denote OR(α, γ, T, w) = (j1, . . . , jt).

Let us denote P (T, fj0) = ∅. For i = 1, . . . , t denote wi = w(fji) and

δi = |P (T, fji) \ (P (T, fj0) ∪ . . . ∪ P (T, fji−1))| .

Let us denote MR(α, γ, T, w) = �|P (T )|(1−α)	, NR(α, γ, T, w) = �|P (T )|(1−
γ)	, ΔR(α, γ, T, w) = (δ1, . . . , δt) and WR(α, γ, T, w) = (w1, . . . , wt).

It is not difficult to prove the following statement.

Proposition 3. Let T be a decision table with m columns labeled by attributes
f1, . . . , fm, P (T ) �= ∅, w be a weight function for T , and α, γ be real numbers
such that 0 ≤ γ ≤ α < 1. Then

|P (T )| = |A(T )| ,

|P (T, fi)| = |Bi(T )|, i = 1, . . . , m ,

OR(α, γ, T, w) = OC(α, γ, A(T ), S(T ), uw) ,
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MR(α, γ, T, w) = MC(α, γ, A(T ), S(T ), uw) ,

NR(α, γ, T, w) = NC(α, γ, A(T ), S(T ), uw) ,

ΔR(α, γ, T, w) = ΔC(α, γ, A(T ), S(T ), uw) ,

WR(α, γ, T, w) = WC(α, γ, A(T ), S(T ), uw) ,

Rmin(α, T, w) = Cmin(α, A(T ), S(T ), uw) ,

Rγ
greedy(α, T, w) = Cγ

greedy(α, A(T ), S(T ), uw) .

Let (A, S, w) be a set cover problem with weights where A = {a1, . . . , an} and
S = {B1, . . . , Bm}. We correspond a decision table T (A, S) and a weight function
vw for T (A, S) to the set cover problem with weights (A, S, w) in the following
way. The table T (A, S) contains m columns labeled by attributes f1, . . . , fm and
n+1 rows filled by numbers from {0, 1}. For i = 1, . . . , n and j = 1, . . . , m at the
intersection of i-th row and j-th column the number 1 stays if and only if ai ∈ Bj .
The row number n + 1 is filled by 0. First n rows are labeled by the decision 0.
Last row is labeled by the decision 1. Let vw(f1) = w(B1), . . . , vw(fm) = w(Bm).

For i = {1, . . . , n + 1} denote by ri the i-th row. It is not difficult to see that
P (T (A, S)) = {(r1, rn+1), . . . , (rn, rn+1)}. Let i ∈ {1, . . . , n} and j ∈ {1, . . . , m}.
One can show that the attribute fj separates the pair (ri, rn+1) if and only if
ai ∈ Bj .

It is not difficult to prove the following statement.

Proposition 4. Let (A, S, w) be a set cover problem with weights and α, γ be
real numbers such that 0 ≤ γ ≤ α < 1. Then

|P (T (A, S))| = |A| ,

OR(α, γ, T (A, S), vw) = OC(α, γ, A, S, w) ,

MR(α, γ, T (A, S), vw) = MC(α, γ, A, S, w) ,

NR(α, γ, T (A, S), vw) = NC(α, γ, A, S, w) ,

ΔR(α, γ, T (A, S), vw) = ΔC(α, γ, A, S, w) ,

WR(α, γ, T (A, S), vw) = WC(α, γ, A, S, w) ,

Rmin(α, T (A, S), vw) = Cmin(α, A, S, w) ,

Rγ
greedy(α, T (A, S), vw) = Cγ

greedy(α, A, S, w) .

3.3 On Precision of Greedy Algorithm with Thresholds α and α

The following two statements are simple corollaries of results of Slav́ık (see The-
orems 4 and 5) and Proposition 3.

Theorem 14. Let T be a decision table, P (T ) �= ∅, w be a weight function for
T , α ∈ IR and 0 ≤ α < 1. Then Rα

greedy(α) ≤ Rmin(α)H (�(1 − α)|P (T )|	).

Theorem 15. Let T be a decision table with m columns labeled by attributes
f1, . . . , fm, P (T ) �= ∅, w be a weight function for T , and α be a real number
such that 0 ≤ α < 1. Then Rα

greedy(α) ≤ Rmin(α)H
(
maxi∈{1,...,m} |P (T, fi)|

)
.
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3.4 On Polynomial Approximate Algorithms

In this subsection we consider three theorems which follows immediately from
Theorems 26–28 [9].

Let 0 ≤ α < 1. Let us consider the following problem: for given decision table
T and weight function w for T it is required to find an α-test (α-reduct) for T
with minimal weight.

Theorem 16. Let 0 ≤ α < 1. Then the problem of construction of α-test (α-
reduct) with minimal weight is NP -hard.

So we must consider polynomial approximate algorithms for minimization of
α-test (α-reduct) weight.

Theorem 17. Let α ∈ IR and 0 ≤ α < 1. If NP �⊆ DTIME(nO(log log n)) then
for any ε, 0 < ε < 1, there is no polynomial algorithm that for given decision
table T with P (T ) �= ∅ and weight function w for T constructs an α-test for T
which weight is at most (1 − ε)Rmin(α, T, w) ln |P (T )|.

Theorem 18. Let α be a real number such that 0 ≤ α < 1. If P �= NP then
there exists δ > 0 such that there is no polynomial algorithm that for given
decision table T with P (T ) �= ∅ and weight function w for T constructs an α-
test for T which weight is at most δRmin(α, T, w) ln |P (T )|.

From Theorem 14 it follows that Rα
greedy(α) ≤ Rmin(α)(1+ ln |P (T )|). From this

inequality and from Theorem 17 it follows that under the assumption NP �⊆
DTIME(nO(log log n)) greedy algorithm with two thresholds α and α is close to
best polynomial approximate algorithms for minimization of partial test weight.
From the considered inequality and from Theorem 18 it follows that under the
assumption P �= NP greedy algorithm with two thresholds α and α is not far
from best polynomial approximate algorithms for minimization of partial test
weight.

However we can try to improve the results of the work of greedy algorithm
with two thresholds α and α for some part of decision tables.

3.5 Two Modifications of Greedy Algorithm

First, we consider binary diagnostic decision tables and prove that under some
assumptions on the number of attributes and rows for the most part of tables
there exist weight function w and numbers α, γ such that the weight of α-test
constructed by greedy algorithm with thresholds α and γ is less than the weight
of α-test constructed by greedy algorithm with thresholds α and α.

Binary means that the table is filled by numbers from the set {0, 1} (all
attributes have values from {0, 1}). Diagnostic means that rows of the table are
labeled by pairwise different numbers (decisions). Let T be a binary diagnostic
decision table with m columns labeled by attributes f1, . . . , fm and with n rows.
We will assume that rows of T with numbers 1, . . . , n are labeled by decisions
1, . . . , n respectively. Therefore the number of considered tables is equal to 2mn.
Decision table will be called simple if it has no equal rows.
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Theorem 19. Let us consider binary diagnostic decision tables with m columns
labeled by attributes f1, . . . , fm and n ≥ 4 rows labeled by decisions 1, . . . , n. The
fraction of decision tables T for each of which there exist a weight function w and
numbers α, γ such that 0 ≤ γ < α < 1 and Rγ

greedy(α, T, w) < Rα
greedy(α, T, w) is

at least 1 − 3m

n
m
2 −1 − n2

2m .

Proof. We will say that a decision table T is not 1-uniform if there exist two
attributes fi and fj of T such that |P (T, fi)| > 0 and |P (T, fj)| ≥ |P (T, fi)|+2.
Otherwise, we will say that T is 1-uniform. Using Theorem 9 and Proposition 3
we conclude that if T is not 1-uniform then there exist a weight function w and
numbers α, γ such that 0 ≤ γ < α < 1 and Rγ

greedy(α, T, w) < Rα
greedy(α, T, w).

We evaluate the number of simple decision tables which are 1-uniform.
Let us consider a simple decision table T which is 1-uniform. Let fi be an

attribute of T . It is clear that |P (T, fi)| = 0 if and only if the number of units
in the column fi is equal to 0 or n. Let k, l be natural numbers such that
k, k + l ∈ {1, . . . , n − 1}, and i, j ∈ {1, . . . , m}, i �= j. Let the decision table T
have k units in the column fi and k+ l units in the column fj. Then |P (T, fi)| =
k(n − k) = kn − k2 and |P (T, fj)| = (k + l)(n − k − l) = kn − k2 + l(n − 2k − l).
Since T is 1-uniform, we have l(n − 2k − l) ∈ {0, 1, −1}.

Let l(n − 2k − l) = 0. Then n − 2k − l = 0 and l = n − 2k. Since l is a natural
number, we have k < n/2.

Let l(n − 2k − l) = 1. Since l, n and k are natural numbers, we have l = 1
and n − 2k − 1 = 1. Therefore k = n

2 − 1. Since k is a natural number, we have
n is even.

Let l(n − 2k − l) = −1. Since l, n and k are natural numbers, we have l = 1
and n − 2k − 1 = −1. Therefore k = n

2 . Since k is a natural number, we have n
is even.

Let n be odd. Then there exists natural k such that 1 ≤ k < n
2 and the number

of units in each column of T belongs to the set {0, n, k, n − k}. Therefore the
number of considered tables is at most

∑�n/2�
k=1 (Ck

n + Cn−k
n + 2)m. Since n ≥ 4,

we have 2 ≤ C
�n/2�
n . Using Lemma 2 we conclude that the number of 1-uniform

simple tables is at most
∑�n/2�

k=1

(
3C
�n/2�
n

)m

< n
(

3·2n
√

n

)m

.
Let n be even. Then there exists natural k such that 1 ≤ k < n

2 − 1 and
the number of units in each column of T belongs to the set {0, n, k, n − k}, or
the number of units in each column belongs to the set {0, n, n

2 − 1, n
2 , n

2 + 1}.
Therefore the number of considered tables is at most

∑�n/2�−2
k=1 (Ck

n + Cn−k
n +

2)m + (Cn/2−1
n + C

n/2
n + C

n/2+1
n + 2)m. It is well known (see, for example, [25],

page 178) that Cr
n < C

n/2
n for any r ∈ {1, . . . , n} \ {n/2}. Therefore the number

of 1-uniform tables is at most n
(
3C

n/2
n

)m

. Using Lemma 2 we conclude that
(as in the case of odd n) the number of 1-uniform simple tables is less than

n
(

3·2n
√

n

)m

= 2mn3m

n
m
2 −1 . The number of tables which are not simple is at most

n22mn−m. Therefore the number of tables which are not 1-uniform is at least
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2mn − 2mn3m

n
m
2 −1 −n22mn−m. Thus, the fraction, considered in the statement of the

theorem, is at least 1 − 3m

n
m
2 −1 − n2

2m . �

So if m ≥ 4 and n, 2m

n2 are large enough then for the most part of binary
diagnostic decision tables there exist weight function w and numbers α, γ such
that the weight of α-test constructed by greedy algorithm with thresholds α
and γ is less than the weight of α-test constructed by greedy algorithm with
thresholds α and α.

The obtained results show that the greedy algorithm with two thresholds α
and γ is of some interest. Now we consider two polynomial modifications of
greedy algorithm which allow to use advantages of greedy algorithm with two
thresholds α and γ.

Let T be a decision table, P (T ) �= ∅, w be a weight function for T and α be
a real number such that 0 ≤ α < 1.

1. It is impossible to consider effectively all γ such that 0 ≤ γ ≤ α. Instead
of this we can consider all natural N such that M ≤ N ≤ |P (T )| where
M = �|P (T )|(1 − α)	 (see the description of greedy algorithm with two
thresholds). For each N ∈ {M, . . . , |P (T )|} we apply greedy algorithm with
parameters M and N to T and w and after that choose an α-test with
minimal weight among constructed α-tests.

2. There exists also an another way to construct an α-test which is not worse
than the one obtained under consideration of all N such that M ≤ N ≤
|P (T )|. Let us apply greedy algorithm with thresholds α and α to T and
w. Let the algorithm choose sequentially attributes fj1 , . . . , fjt . For each
i ∈ {0, . . . , t − 1} we find (if it is possible) an attribute fli of T with min-
imal weight w(fli) such that the set {fj1 , . . . , fji , fli} is an α-test for T (if
i = 0 then it will be the set {fl0}). After that among constructed α-tests
{fj1 , . . . , fjt}, ..., {fj1 , . . . , fji , fli}, ... we choose an α-test with minimal
weight. From Proposition 5 it follows that the constructed α-test is not
worse than the one constructed under consideration of all γ, 0 ≤ γ ≤ α, or
(which is the same) all N , M ≤ N ≤ |P (T )|.

Next statement follows immediately from Propositions 1 and 3.

Proposition 5. Let T be a decision table, P (T ) �= ∅, w be a weight function for
T and α, γ be real numbers such that 0 ≤ γ < α < 1. Let the greedy algorithm
with two thresholds α and α, which is applied to T and w, choose sequentially at-
tributes fg1 , . . . , fgt . Let the greedy algorithm with two thresholds α and γ, which
is applied to T and w, choose sequentially attributes fl1 , . . . , flk . Then either
k = t and (l1, . . . , lk) = (g1, . . . , gt) or k ≤ t, (l1, . . . , lk−1) = (g1, . . . , gk−1) and
lk �= gk.

3.6 Bounds on Rmin(α) and Rγ
greedy(α)

First, we fix some information about the work of greedy algorithm with two
thresholds and find the best lower bound on the value Rmin(α) depending on
this information.
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Let T be a decision table such that P (T ) �= ∅, w be a weight function for T ,
and α, γ be real numbers such that 0 ≤ γ ≤ α < 1. Let us apply the greedy
algorithm with thresholds α and γ to the decision table T and the weight function
w. Let during the construction of α-test the greedy algorithm choose sequentially
attributes fg1 , . . . , fgt .

Let us denote P (T, fg0) = ∅ and δ0 = 0. For i = 1, . . . , t denote δi =
|P (T, fgi) \ (P (T, fg0) ∪ . . . ∪ P (T, fgi−1))| and wi = w(fgi ).

As information on the greedy algorithm work we will use numbers MR =
MR(α, γ, T, w) = �|P (T )|(1 − α)	 and NR = NR(α, γ, T, w) = �|P (T )|(1 − γ)	,
and tuples ΔR = ΔR(α, γ, T, w) = (δ1, . . . , δt) and WR = WR(α, γ, T, w) =
(w1, . . . , wt).

For i = 0, . . . , t − 1 denote

ρi =
⌈

wi+1(MR − (δ0 + . . . + δi))
min{δi+1, NR − (δ0 + . . . + δi)}

⌉
.

Let us define parameter ρR(α, γ) = ρR(α, γ, T, w) as follows:

ρR(α, γ) = max {ρi : i = 0, . . . , t − 1} .

We will show that ρR(α, γ) is the best lower bound on Rmin(α) depending on
MR, NR, ΔR and WR. Next statement follows from Theorem 11 and Propositions
3 and 4.

Theorem 20. For any decision table T with P (T ) �= ∅, any weight function w
for T , and any real numbers α, γ, 0 ≤ γ ≤ α < 1, the inequality Rmin(α, T, w) ≥
ρR(α, γ, T, w) holds, and there exist a decision table T ′ and a weight function w′

for T ′ such that

MR(α, γ, T ′, w′) = MR(α, γ, T, w), NR(α, γ, T ′, w′) = NR(α, γ, T, w) ,

ΔR(α, γ, T ′, w′) = ΔR(α, γ, T, w), WR(α, γ, T ′, w′) = WR(α, γ, T, w) ,

ρR(α, γ, T ′, w′) = ρR(α, γ, T, w), Rmin(α, T ′, w′) = ρR(α, γ, T ′, w′) .

Let us consider a property of the parameter ρR(α, γ) which is important for
practical use of the bound from Theorem 20. Next statement follows from Propo-
sitions 2 and 3.

Proposition 6. Let T be a decision table with P (T ) �= ∅, w be a weight function
for T , α, γ ∈ IR and 0 ≤ γ ≤ α < 1. Then ρR(α, α, T, w) ≥ ρR(α, γ, T, w).

Now we study some properties of parameter ρR(α, γ) and obtain two upper
bounds on the value Rγ

greedy(α) which do not depend directly on cardinality of
the set P (T ) and cardinalities of subsets P (T, fi).

Next statement follows from Theorem 12 and Proposition 3.

Theorem 21. Let T be a decision table with P (T ) �= ∅, w be a weight function
for T and α, γ be real numbers such that 0 ≤ γ < α < 1. Then

Rγ
greedy(α, T, w) < ρR(γ, γ, T, w)

(
ln

(
1 − γ

α − γ

)
+ 1

)
.
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Corollary 5. Let ε ∈ IR and 0 < ε < 1. Then for any α, ε ≤ α < 1, the
inequalities ρC(α, α) ≤ Rmin(α) ≤ Rα−ε

greedy(α) < ρR(α − ε, α − ε)
(
ln 1

ε + 1
)

hold.

For example,
(
ln 1

0.01 + 1
)

< 5.61 and
(
ln 1

0.1 + 1
)

< 3.31. The obtained results
show that the lower bound Rmin(α) ≥ ρR(α, α) is nontrivial.

Next statement follows from Theorem 13 and Proposition 3.

Theorem 22. Let T be a decision table with P (T ) �= ∅, w be a weight function
for T and α, γ be real numbers such that 0 ≤ γ < α < 1. Then

Rγ
greedy(α, T, w) < Rmin(γ, T, w)

(
ln

(
1 − γ

α − γ

)
+ 1

)
.

Corollary 6. R0
greedy(0.001) < 7.91Rmin(0), R0.001

greedy(0.01) < 5.71Rmin(0.001),
R0.1

greedy(0.2) < 3.20Cmin(0.1), R0.3
greedy(0.5) < 2.26Rmin(0.3).

Corollary 7. Let 0 < α < 1. Then R0
greedy(α) < Rmin(0)

(
ln 1

α + 1
)
.

Corollary 8. Let ε be a real number, and 0 < ε < 1. Then for any α such that
ε ≤ α < 1 the inequalities Rmin(α) ≤ Rα−ε

greedy(α) < Rmin(α − ε)
(
ln 1

ε + 1
)

hold.

3.7 Results of Experiments for α-Tests and α-Reducts

In this subsection we will consider only binary decision tables with binary deci-
sion attributes.

First Group of Experiments. First group of experiments is connected with
study of quality of greedy algorithm with one threshold (where γ = α or,
which is the same, N = M), and comparison of quality of greedy algorithm
with one threshold and first modification of greedy algorithm (where for each
N ∈ {M, . . . , |P (T )|} we apply greedy algorithm with parameters M and N to
decision table and weight function and after that choose an α-test with minimal
weight among constructed α-tests).

We generate randomly 1000 decision tables T and weight functions w such that
T contains 10 rows and 10 conditional attributes f1, . . . , f10, and 1 ≤ w(fi) ≤
1000 for i = 1, . . . , 10.

For each α ∈ {0.0, 0.1, . . . , 0.9} we find the number of pairs (T, w) for which
greedy algorithm with one threshold constructs an α-test with minimal weight
(an optimal α-test), i.e. Rα

greedy(α, T, w) = Rmin(α, T, w). This number is con-
tained in the row of Table 1 labeled by ”Opt”.

We find the number of pairs (T, w) for which first modification of greedy
algorithm constructs an α-test which weight is less than the weight of α-test
constructed by greedy algorithm with one threshold, i.e. there exists γ such that
0 ≤ γ < α and Rγ

greedy(α, T, w) < Rα
greedy(α, T, w). This number is contained in

the row of Table 1 labeled by ”Impr”.
Also we find the number of pairs (T, w) for which first modification of greedy

algorithm constructs an optimal α-test which weight is less than the weight of

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



On Partial Covers, Reducts and Decision Rules with Weights 233

α-test constructed by greedy algorithm with one threshold, i.e. there exists γ
such that 0 ≤ γ < α and Rγ

greedy(α, T, w) = Rmin(α, T, w) < Rα
greedy(α, T, w).

This number is contained in the row of Table 1 labeled by ”Opt+”.

Table 1. Results of first group of experiments with α-tests

α 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Opt 409 575 625 826 808 818 950 981 992 1000

Impr 0 42 47 33 24 8 6 5 2 0

Opt+ 0 22 28 24 22 5 6 5 2 0

The obtained results show that the percentage of pairs for which greedy al-
gorithm with one threshold finds an optimal α-test grows almost monotonically
(with local minimum near to 0.4–0.5) from 40.9% up to 100%. The percentage of
problems for which first modification of greedy algorithm can improve the result
of the work of greedy algorithm with one threshold is less than 5%. However,
sometimes (for example, if α = 0.3 or α = 0.7) the considered improvement is
noticeable.

Second Group of Experiments. Second group of experiments is connected
with comparison of quality of greedy algorithm with one threshold and first
modification of greedy algorithm.

We make 25 experiments (row ”Nr” in Table 2 contains the number of ex-
periment). Each experiment includes the work with three randomly generated
families of pairs (T, w) (1000 pairs in each family) such that T contains n rows
and m conditional attributes, and w has values from the set {1, . . . , v}.

If the column ”n” contains one number, for example ”40”, it means that
n = 40. If this row contains two numbers, for example ”30–120”, it means that for
each of 1000 pairs we choose the number n randomly from the set {30, . . . , 120}.
The same situation is for the column ”m”.

If the column ”α” contains one number, for example ”0.1”, it means that
α = 0.1. If this column contains two numbers, for example ”0.2–0.4”, it means
that we choose randomly the value of α such that 0.2 ≤ α ≤ 0.4.

For each of the considered pairs (T, w) and number α we apply greedy al-
gorithm with one threshold and first modification of greedy algorithm. Column
”#i”, i = 1, 2, 3, contains the number of pairs (T, w) from the family number
i for each of which the weight of α-test, constructed by first modification of
greedy algorithm, is less than the weight of α-test constructed by greedy algo-
rithm with one threshold. In other words, in column ”#i” we have the number
of pairs (T, w) from the family number i such that there exists γ for which
0 ≤ γ < α and Rγ

greedy(α, T, w) < Rα
greedy(α, T, w). The column ”avg” contains

the number #1+#2+#3
3 .

In experiments 1–3 we consider the case where the parameter v increases. In
experiments 4–8 the parameter α increases. In experiments 9–12 the parameter
m increases. In experiments 13–16 the parameter n increases. In experiments
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Table 2. Results of second group of experiments with α-tests

Nr n m v α #1 #2 #3 avg

1 1–50 1–50 1–10 0–1 1 2 3 2.00

2 1–50 1–50 1–100 0–1 5 6 13 8.00

3 1–50 1–50 1–1000 0–1 10 8 11 9.67

4 1–50 1–50 1–1000 0–0.2 16 20 32 22.67

5 1–50 1–50 1–1000 0.2–0.4 23 8 12 14.33

6 1–50 1–50 1–1000 0.4–0.6 7 6 5 6.00

7 1–50 1–50 1–1000 0.6–0.8 3 5 3 3.67

8 1–50 1–50 1–1000 0.8–1 1 0 0 0.33

9 50 1–20 1–1000 0–0.2 19 11 22 17.33

10 50 20–40 1–1000 0–0.2 26 24 24 24.67

11 50 40–60 1–1000 0–0.2 21 18 23 20.67

12 50 60–80 1–1000 0–0.2 13 18 22 17.67

13 1–20 30 1–1000 0–0.2 27 26 39 30.67

14 20–40 30 1–1000 0–0.2 34 37 35 35.33

15 40–60 30 1–1000 0–0.2 22 26 23 23.67

16 60–80 30 1–1000 0–0.2 19 14 14 15.67

17 10 10 1–1000 0.1 36 42 50 42.67

18 10 10 1–1000 0.2 33 53 46 44.00

19 10 10 1–1000 0.3 43 25 45 37.67

20 10 10 1–1000 0.4 30 18 19 22.33

21 10 10 1–1000 0.5 10 10 13 11.00

22 10 10 1–1000 0.6 12 13 7 10.67

23 10 10 1–1000 0.7 3 13 6 7.33

24 10 10 1–1000 0.8 5 2 6 4.33

25 10 10 1–1000 0.9 0 0 0 0

17–25 the parameter α increases. The results of experiments show that the value
of #i can change from 0 to 53. It means that the percentage of pairs for which
first modification of greedy algorithm is better than the greedy algorithm with
one threshold can change from 0% to 5.3%.

Third Group of Experiments. Third group of experiments is connected with
investigation of quality of lower bound Rmin(α) ≥ ρR(α, α).

We choose natural n, m, v and real α, 0 ≤ α < 1. For each chosen tuple
(n, m, v, α) we generate randomly 30 pairs (T, w) such that T contains n rows
and m conditional attributes, and w has values from the set {1, ..., v}. After
that we find values of Rα

greedy(α, T, w) and ρR(α, α, T, w) for each of generated
30 pairs. Note that ρR(α, α, T, w) ≤ Rmin(α, T, w) ≤ Rα

greedy(α, T, w). Finally,
we find mean values of Rα

greedy(α, T, w) and ρR(α, α, T, w) for generated 30 pairs.
Results of experiments can be found in Figs. 1 and 2. In these figures mean

values of ρR(α, α, T, w) are called ”average lower bound” and mean values of
Rα

greedy(α, T, w) are called ”average upper bound”.
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In Fig. 1 (left-hand side) one can see the case when n ∈ {1000, 2000, . . . , 5000},
m = 30, v = 1000 and α = 0.01.

In Fig. 1 (right-hand side) one can see the case when n = 1000, m∈{10, 20, . . . ,
100}, v = 1000 and α = 0.01.
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Fig. 1. Results of third group of experiments with α-tests (n and m are changing)
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Fig. 2. Results of third group of experiments with α-tests (v and α are changing)

In Fig. 2 (left-hand side) one can see the case when n = 1000, m = 30,
v ∈ {100, 200, . . . , 1000} and α = 0.01.

In Fig. 2 (right-hand side) one can see the case when n = 1000, m = 30,
v = 1000 and α ∈ {0.0, 0.1, . . . , 0.9}.

Results of experiments show that the considered lower bound is nontrivial and
can be useful in investigations.

4 Partial Decision Rules

In this section we omit reasoning on relationships between partial covers and
partial decision rules including reductions of one problem to another (descrip-
tion of such reductions can be found in [9]) and two propositions similar to
Propositions 3 and 4.
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4.1 Main Notions

Let T be a table with n rows labeled by nonnegative integers (decisions) and
m columns labeled by attributes (names of attributes) f1, . . . , fm. This table
is filled by nonnegative integers (values of attributes). The table T is called
a decision table. Let w be a weight function for T which corresponds to each
attribute fi a natural number w(fi). Let r = (b1, . . . , bm) be a row of T labeled
by a decision d.

Let us denote by U(T, r) the set of rows from T which are different from r
and are labeled by decisions different from d. We will say that an attribute fi

separates rows r and r′ ∈ U(T, r) if rows r and r′ have different numbers at the
intersection with the column fi. For i = 1, . . . , m denote by U(T, r, fi) the set of
rows from U(T, r) which attribute fi separates from the row r.

Let α be a real number such that 0 ≤ α < 1. A decision rule

fi1 = bi1 ∧ . . . ∧ fit = bit → d (3)

is called an α-decision rule for T and r if attributes fi1 , . . . , fit separate from r
at least (1 − α)|U(T, r)| rows from U(T, r). The number

∑t
j=1 w(fij ) is called

the weight of the considered decision rule.
If U(T, r) = ∅ then for any fi1 , . . . , fit ∈ {f1, . . . , fm} the rule (3) is an α-

decision rule for T and r. Also, the rule (3) with empty left-hand side (when
t = 0) is an α-decision rule for T and r. The weight of this rule is equal to 0.

For example, 0.01-decision rule means that we must separate from r at least
99% of rows from U(T, r). Note that 0-rule is usual (exact) rule. Let us denote
by Lmin(α) = Lmin(α, T, r, w) the minimal weight of α-decision rule for T and r.

Let α, γ be real numbers such that 0 ≤ γ ≤ α < 0. Let us describe a greedy
algorithm with thresholds α and γ which constructs an α-decision rule for given
T , r and weight function w. Let r = (b1, . . . , bm), and r be labeled by the
decision d.

The right-hand side of constructed α-decision rule is equal to d. If U(T, r) = ∅
then the left-hand side of constructed α-decision rule is empty. Let U(T, r) �= ∅.
Let us denote M = �|U(T, r)|(1 − α)	 and N = �|U(T, r)|(1 − γ)	. Let we make
i ≥ 0 steps and construct a decision rule R with i conditions (if i = 0 then the
left-hand side of R is empty). Let us describe the step number i + 1.

Let us denote by D the set of rows from U(T, r) separated from r by attributes
belonging to R (if i = 0 then D = ∅). If |D| ≥ M then we finish the work of
the algorithm, and R is the constructed α-decision rule. Let |D| < M . Then we
choose an attribute fj with minimal number j for which U(T, r, fj) \ D �= ∅ and
the value

w(fj)
min{|U(T, r, fj) \ D|, N − |D|}

is minimal. Add the condition fj = bj to R. Pass to the step number i + 2.
Let us denote by Lγ

greedy(α) = Lγ
greedy(α, T, r, w) the weight of α-decision rule

constructed by the considered algorithm for given table T , row r and weight
function w.
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4.2 On Precision of Greedy Algorithm with Thresholds α and α

The following two statements are simple corollaries of results of Slav́ık (see The-
orems 4 and 5).

Theorem 23. Let T be a decision table, r be a row of T , U(T, r) �= ∅, w be
a weight function for T , and α be a real number such that 0 ≤ α < 1. Then
Lα

greedy(α) ≤ Lmin(α)H (�(1 − α)|U(T, r)|	).

Theorem 24. Let T be a decision table with m columns labeled by attributes
f1, . . . , fm, r be a row of T , U(T, r) �= ∅, w be a weight function for T , α ∈ IR
and 0 ≤ α < 1. Then Lα

greedy(α) ≤ Lmin(α)H
(
maxi∈{1,...,m} |U(T, r, fi)|

)
.

4.3 On Polynomial Approximate Algorithms

In this subsection we consider three theorems which follow immediately from
Theorems 39–41 [9].

Let 0 ≤ α < 1. Let us consider the following problem: for given decision table
T , row r of T and weight function w for T it is required to find an α-decision
rule for T and r with minimal weight.

Theorem 25. Let 0 ≤ α < 1. Then the problem of construction of α-decision
rule with minimal weight is NP -hard.

So we must consider polynomial approximate algorithms for minimization of
α-decision rule weight.

Theorem 26. Let α ∈ IR and 0 ≤ α < 1. If NP �⊆ DTIME(nO(log log n)) then
for any ε, 0 < ε < 1, there is no polynomial algorithm that for given decision
table T , row r of T with U(T, r) �= ∅ and weight function w for T constructs α-de-
cision rule for T and r which weight is at most (1−ε)Lmin(α, T, r, w) ln |U(T, r)|.

Theorem 27. Let α be a real number such that 0 ≤ α < 1. If P �= NP then
there exists δ > 0 such that there is no polynomial algorithm that for given deci-
sion table T , row r of T with U(T, r) �= ∅ and weight function w for T constructs
α-decision rule for T and r which weight is at most δLmin(α, T, r, w) ln |U(T, r)|.

From Theorem 23 it follows that Lα
greedy(α) ≤ Lmin(α)(1 + ln |U(T, r)|). From

this inequality and from Theorem 26 it follows that under the assumption NP �⊆
DTIME(nO(log log n)) greedy algorithm with two thresholds α and α is close to
best polynomial approximate algorithms for minimization of partial decision
rule weight. From the considered inequality and from Theorem 27 it follows that
under the assumption P �= NP greedy algorithm with two thresholds α and α is
not far from best polynomial approximate algorithms for minimization of partial
decision rule weight.
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However we can try to improve the results of the work of greedy algorithm
with two thresholds α and α for some part of decision tables.

4.4 Two Modifications of Greedy Algorithm

First, we consider binary diagnostic decision tables and prove that under some
assumptions on the number of attributes and rows for the most part of tables for
each row there exist weight function w and numbers α, γ such that the weight
of α-decision rule constructed by greedy algorithm with thresholds α and γ is
less than the weight of α-decision rule constructed by greedy algorithm with
thresholds α and α.

Binary means that the table is filled by numbers from the set {0, 1} (all
attributes have values from {0, 1}). Diagnostic means that rows of the table are
labeled by pairwise different numbers (decisions). Let T be a binary diagnostic
decision table with m columns labeled by attributes f1, . . . , fm and with n rows.
We will assume that rows of T with numbers 1, . . . , n are labeled by decisions
1, . . . , n respectively. Therefore the number of considered tables is equal to 2mn.
Decision table will be called simple if it has no equal rows.

Theorem 28. Let us consider binary diagnostic decision tables with m columns
labeled by attributes f1, . . . , fm and n ≥ 5 rows labeled by decisions 1, . . . , n.
The fraction of decision tables T for each of which for each row r of T there
exist a weight function w and numbers α, γ such that 0 ≤ γ < α < 1 and
Lγ

greedy(α, T, r, w) < Lα
greedy(α, T, r, w) is at least

1 − n3m

(n − 1)
m
2 −1

− n2

2m
.

Proof. Let T be a decision table and r be a row of T with number s ∈ {1, . . . , n}.
We will say that a decision table T is 1-uniform relatively r if there exists

natural p such that for any attribute fi of T if |U(T, r, fi)| > 0 then |U(T, r, fi)| ∈
{p, p+1}. Using reasoning similar to the proof of Theorem 9 one can show that if
T is not 1-uniform relatively r then there exist a weight function w and numbers
α, γ such that 0 ≤ γ < α < 1 and Lγ

greedy(α, T, r, w) < Lα
greedy(α, T, r, w).

We evaluate the number of decision tables which are not 1-uniform relatively
each row. Let (δ1, . . . , δm) ∈ {0, 1}m. First, we evaluate the number of simple
decision tables for which r = (δ1, . . . , δm) and which are 1-uniform relatively
r. Let us consider such a decision table T . It is clear that there exists p ∈
{1, . . . , n − 2} such that for i = 1, . . . , m the column fi contains exactly 0 or
p or p + 1 numbers ¬δi. Therefore the number of considered decision tables
is at most

∑n−2
p=1

(
Cp

n−1 + Cp+1
n−1 + 1

)m

. Using Lemma 2 we conclude that this

number is at most (n − 2)
(
3C
�(n−1)/2�
n−1

)m

< (n − 1)
(

3·2n−1
√

n−1

)m

= 2mn−m3m

(n−1)
m
2 −1 .

There are 2m variants for the choice of the tuple (δ1, . . . , δm) and n variants for
the choice of the number s of row r. Therefore the number of simple decision
tables which are 1-uniform relatively at least one row is at most n2m 2mn−m3m

(n−1)
m
2 −1 =
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n2mn3m

(n−1)
m
2 −1 . The number of tables which are not simple is at most n22mn−m.

Hence the number of tables which are not 1-uniform for each row is at least
2mn − n2mn3m

(n−1)
m
2 −1 − n22mn−m. Thus, the fraction, considered in the statement of

the theorem, is at least 1 − n3m

(n−1)
m
2 −1 − n2

2m . �

So if m ≥ 6 and n, 2m

n2 are large enough then for the most part of binary
diagnostic decision tables for each row there exist weight function w and numbers
α, γ such that the weight of α-decision rule constructed by greedy algorithm
with thresholds α and γ is less than the weight of α-decision rule constructed
by greedy algorithm with thresholds α and α.

The obtained results show that the greedy algorithm with two thresholds α
and γ is of some interest. Now we consider two polynomial modifications of
greedy algorithm which allow to use advantages of greedy algorithm with two
thresholds α and γ.

Let T be a decision table with m columns labeled by attributes f1, . . . , fm,
r = (b1, . . . , bm) be a row of T labeled by decision d, U(T, r) �= ∅, w be a weight
function for T and α be a real number such that 0 ≤ α < 1.

1. It is impossible to consider effectively all γ such that 0 ≤ γ ≤ α. Instead
of this we can consider all natural N such that M ≤ N ≤ |U(T, r)| where
M = �|U(T, r)|(1 − α)	 (see the description of greedy algorithm with two
thresholds). For each N ∈ {M, . . . , |U(T, r)|} we apply greedy algorithm with
parameters M and N to T , r and w and after that choose an α-decision rule
with minimal weight among constructed α-decision rules.

2. There exists also an another way to construct an α-decision rule which is not
worse than the one obtained under consideration of all N such that M ≤
N ≤ |U(T, r)|. Let us apply greedy algorithm with thresholds α and α to T , r
and w. Let the algorithm choose sequentially attributes fj1 , . . . , fjt . For each
i ∈ {0, . . . , t−1} we find (if it is possible) an attribute fli of T with minimal
weight w(fli) such that the rule fj1 = bj1 ∧ . . .∧fji = bji ∧fli = bli → d is an
α-decision rule for T and r (if i = 0 then it will be the rule fl0 = bl0 → d).
After that among constructed α-decision rules fj1 = bj1 ∧ . . .∧fjt = bjt → d,
..., fj1 = bj1 ∧ . . . ∧ fji = bji ∧ fli = bli → d, ... we choose an α-decision
rule with minimal weight. From Proposition 7 it follows that the constructed
α-decision rule is not worse than the one constructed under consideration of
all γ, 0 ≤ γ ≤ α, or (which is the same) all N , M ≤ N ≤ |U(T, r)|.

Using Propositions 1 one can prove the following statement.

Proposition 7. Let T be a decision table, r be a row of T , U(T, r) �= ∅, w be
a weight function for T and α, γ be real numbers such that 0 ≤ γ < α < 1.
Let the greedy algorithm with two thresholds α and α, which is applied to T , r
and w, choose sequentially attributes fg1 , . . . , fgt. Let the greedy algorithm with
two thresholds α and γ, which is applied to T , r and w, choose sequentially
attributes fl1 , . . . , flk . Then either k = t and (l1, . . . , lk) = (g1, . . . , gt) or k ≤ t,
(l1, . . . , lk−1) = (g1, . . . , gk−1) and lk �= gk.
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4.5 Bounds on Lmin(α) and Lγ
greedy(α)

First, we fix some information about the work of greedy algorithm with two
thresholds and find the best lower bound on the value Lmin(α) depending on
this information.

Let T be a decision table, r be a row of T such that U(T, r) �= ∅, w be a
weight function for T , and α, γ be real numbers such that 0 ≤ γ ≤ α < 1. Let
us apply the greedy algorithm with thresholds α and γ to the decision table T ,
row r and the weight function w. Let during the construction of α-decision rule
the greedy algorithm choose sequentially attributes fg1 , . . . , fgt .

Let us denote U(T, r, fg0) = ∅ and δ0 = 0. For i = 1, . . . , t denote δi =
|U(T, r, fgi)\(U(T, r, fg0)∪ . . .∪U(T, r, fgi−1))| and wi = w(fgi). As information
on the greedy algorithm work we will use numbers ML = ML(α, γ, T, r, w) =
�|U(T, r)|(1 − α)	, NL = NL(α, γ, T, r, w) = �|U(T, r)|(1 − γ)	 and tuples ΔL =
ΔL(α, γ, T, r, w) = (δ1, . . . , δt), WL = WL(α, γ, T, r, w) = (w1, . . . , wt).

For i = 0, . . . , t − 1 denote

ρi =
⌈

wi+1(ML − (δ0 + . . . + δi))
min{δi+1, NL − (δ0 + . . . + δi)}

⌉
.

Let us define parameter ρL(α, γ) = ρL(α, γ, T, r, w) as follows:

ρL(α, γ) = max {ρi : i = 0, . . . , t − 1} .

We will show that ρL(α, γ) is the best lower bound on Lmin(α) depending on
ML, NL, ΔL and WL. Using Theorem 11 one can prove the following statement.

Theorem 29. For any decision table T , any row r of T with U(T, r) �= ∅, any
weight function w for T , and any real numbers α, γ, 0 ≤ γ ≤ α < 1, the inequality
Lmin(α, T, r, w) ≥ ρL(α, γ, T, r, w) holds, and there exist a decision table T ′, a
row r′ of T ′ and a weight function w′ for T ′ such that

ML(α, γ, T ′, r′, w′) = ML(α, γ, T, r, w), NL(α, γ, T ′, r′, w′) = NL(α, γ, T, r, w) ,

ΔL(α, γ, T ′, r′, w′) = ΔL(α, γ, T, r, w), WL(α, γ, T ′, r′, w′) = WL(α, γ, T, r, w) ,

ρL(α, γ, T ′, r′, w′) = ρL(α, γ, T, r, w), Lmin(α, T ′, r′, w′) = ρL(α, γ, T ′, r′, w′) .

Let us consider a property of the parameter ρL(α, γ) which is important for
practical use of the bound from Theorem 29. Using Proposition 2 one can prove
the following statement.

Proposition 8. Let T be a decision table, r be a row of T with U(T, r) �= ∅, w
be a weight function for T , and α, γ be real numbers such that 0 ≤ γ ≤ α < 1.
Then ρL(α, α, T, r, w) ≥ ρL(α, γ, T, r, w).

Now we study some properties of parameter ρL(α, γ) and obtain two upper
bounds on the value Lγ

greedy(α) which do not depend directly on cardinality of
the set U(T, r) and cardinalities of subsets U(T, r, fi).

Using Theorem 12 one can prove the following statement.
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Theorem 30. Let T be a decision table, r be a row of T with U(T, r) �= ∅, w be
a weight function for T , α, γ ∈ IR and 0 ≤ γ < α < 1. Then Lγ

greedy(α, T, r, w) <

ρL(γ, γ, T, r, w)
(
ln

(
1−γ
α−γ

)
+ 1

)
.

Corollary 9. Let ε ∈ IR and 0 < ε < 1. Then for any α, ε ≤ α < 1, the
inequalities ρL(α, α) ≤ Lmin(α) ≤ Lα−ε

greedy(α) < ρL(α − ε, α − ε)
(
ln 1

ε + 1
)

hold.

For example,
(
ln 1

0.01 + 1
)

< 5.61 and
(
ln 1

0.1 + 1
)

< 3.31. The obtained results
show that the lower bound Lmin(α) ≥ ρL(α, α) is nontrivial.

Using Theorem 13 one can prove the following statement.

Theorem 31. Let T be a decision table, r be a row of T with U(T, r) �= ∅, w be
a weight function for T , α, γ ∈ IR and 0 ≤ γ < α < 1. Then Lγ

greedy(α, T, r, w) <

Lmin(γ, T, r, w)
(
ln

(
1−γ
α−γ

)
+ 1

)
.

Corollary 10. L0
greedy(0.001) < 7.91Lmin(0), L0.001

greedy(0.01) < 5.71Lmin(0.001),
L0.1

greedy(0.2) < 3.20Lmin(0.1), L0.3
greedy(0.5) < 2.26Lmin(0.3).

Corollary 11. Let 0 < α < 1. Then L0
greedy(α) < Lmin(0)

(
ln 1

α + 1
)
.

Corollary 12. Let ε be a real number, and 0 < ε < 1. Then for any α such that
ε ≤ α < 1 the inequalities Lmin(α) ≤ Lα−ε

greedy(α) < Lmin(α − ε)
(
ln 1

ε + 1
)

hold.

4.6 Results of Experiments for α-Decision Rules

In this subsection we will consider only binary decision tables T with binary
decision attributes.

First Group of Experiments. First group of experiments is connected with
study of quality of greedy algorithm with one threshold (where γ = α or, which
is the same, N = M), and comparison of quality of greedy algorithm with
one threshold and first modification of greedy algorithm (where for each N ∈
{M, . . . , |U(T, r)|} we apply greedy algorithm with parameters M and N to
decision table, row and weight function and after that choose an α-decision rule
with minimal weight among constructed α-decision rules).

We generate randomly 1000 decision tables T , rows r and weight functions w
such that T contains 40 rows and 10 conditional attributes f1, . . . , f10, r is the
first row of T , and 1 ≤ w(fi) ≤ 1000 for i = 1, . . . , 10.

For each α ∈ {0.1, . . . , 0.9} we find the number of triples (T, r, w) for which
greedy algorithm with one threshold constructs an α-decision rule with minimal
weight (an optimal α-decision rule), i.e. Lα

greedy(α, T, r, w) = Lmin(α, T, r, w).
This number is contained in the row of Table 3 labeled by ”Opt”.

We find the number of triples (T, r, w) for which first modification of greedy
algorithm constructs an α-decision rule which weight is less than the weight of
α-decision rule constructed by greedy algorithm with one threshold, i.e. there
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exists γ such that 0 ≤ γ < α and Lγ
greedy(α, T, r, w) < Lα

greedy(α, T, r, w). This
number is contained in the row of Table 3 labeled by ”Impr”.

Also we find the number of triples (T, r, w) for which first modification of
greedy algorithm constructs an optimal α-decision rule which weight is less than
the weight of α-decision rule constructed by greedy algorithm with one threshold,
i.e. there exists γ such that 0 ≤ γ < α and Lγ

greedy(α, T, r, w) = Lmin(α, T, r, w) <
Lα

greedy(α, T, r, w). This number is contained in the row of Table 3 labeled by
”Opt+”.

Table 3. Results of first group of experiments with α-decision rules

α 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Opt 434 559 672 800 751 733 866 966 998 1000

Impr 0 31 51 36 22 27 30 17 1 0

Opt+ 0 16 35 28 17 26 25 13 1 0

The obtained results show that the percentage of triples for which greedy
algorithm with one threshold finds an optimal α-decision rule grows almost
monotonically (with local minimum near to 0.4–0.5) from 43.4% up to 100%.
The percentage of problems for which first modification of greedy algorithm can
improve the result of the work of greedy algorithm with one threshold is less
than 6%. However, sometimes (for example, if α = 0.3, α = 0.6 or α = 0.7) the
considered improvement is noticeable.

Second Group of Experiments. Second group of experiments is connected
with comparison of quality of greedy algorithm with one threshold and first
modification of greedy algorithm.

We make 25 experiments (row ”Nr” in Table 4 contains the number of ex-
periment). Each experiment includes the work with three randomly generated
families of triples (T, r, w) (1000 triples in each family) such that T contains n
rows and m conditional attributes, r is the first row of T , and w has values from
the set {1, . . . , v}.

If the column ”n” contains one number, for example ”40”, it means that
n = 40. If this row contains two numbers, for example ”30–120”, it means
that for each of 1000 triples we choose the number n randomly from the set
{30, . . . , 120}. The same situation is for the column ”m”.

If the column ”α” contains one number, for example ”0.1”, it means that
α = 0.1. If this column contains two numbers, for example ”0.2–0.4”, it means
that we choose randomly the value of α such that 0.2 ≤ α ≤ 0.4.

For each of the considered triples (T, r, w) and number α we apply greedy
algorithm with one threshold and first modification of greedy algorithm. Column
”#i”, i = 1, 2, 3, contains the number of triples (T, r, w) from the family number i
for each of which the weight of α-decision rule, constructed by first modification
of greedy algorithm, is less than the weight of α-decision rule constructed by
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Table 4. Results of second group of experiments with α-decision rules

Nr n m v α #1 #2 #3 avg

1 1–100 1–100 1–10 0–1 4 2 4 3.33

2 1–100 1–100 1–100 0–1 7 14 13 11.33

3 1–100 1–100 1–1000 0–1 19 13 15 15.67

4 1–100 1–100 1–1000 0–0.2 20 39 22 27.00

5 1–100 1–100 1–1000 0.2–0.4 28 29 28 28.33

6 1–100 1–100 1–1000 0.4–0.6 22 23 34 26.33

7 1–100 1–100 1–1000 0.6–0.8 7 6 4 5.67

8 1–100 1–100 1–1000 0.8–1 0 1 0 0.33

9 100 1–30 1–1000 0–0.2 35 38 28 33.67

10 100 30–60 1–1000 0–0.2 47 43 31 40.33

11 100 60–90 1–1000 0–0.2 45 51 36 44.00

12 100 90–120 1–1000 0–0.2 37 40 55 44.00

13 1–30 30 1–1000 0–0.2 11 8 9 9.33

14 30–60 30 1–1000 0–0.2 20 22 35 25.67

15 60–90 30 1–1000 0–0.2 30 33 34 32.33

16 90–120 30 1–1000 0–0.2 40 48 38 42.00

17 40 10 1–1000 0.1 31 39 34 34.67

18 40 10 1–1000 0.2 37 39 47 41.00

19 40 10 1–1000 0.3 35 30 37 34.00

20 40 10 1–1000 0.4 27 20 27 24.67

21 40 10 1–1000 0.5 32 32 36 33.33

22 40 10 1–1000 0.6 28 26 24 26.00

23 40 10 1–1000 0.7 10 12 10 10.67

24 40 10 1–1000 0.8 0 2 0 0.67

25 40 10 1–1000 0.9 0 0 0 0

greedy algorithm with one threshold. In other words, in column ”#i” we have
the number of triples (T, r, w) from the family number i such that there exists
γ for which 0 ≤ γ < α and Lγ

greedy(α, T, r, w) < Lα
greedy(α, T, r, w). The column

”avg” contains the number #1+#2+#3
3 .

In experiments 1–3 we consider the case where the parameter v increases. In
experiments 4–8 the parameter α increases. In experiments 9–12 the parameter
m increases. In experiments 13–16 the parameter n increases. In experiments
17–25 the parameter α increases. The results of experiments show that the value
of #i can change from 0 to 55. It means that the percentage of triples for which
the first modification of greedy algorithm is better than the greedy algorithm
with one threshold can change from 0% to 5.5%.

Third Group of Experiments. Third group of experiments is connected with
investigation of quality of lower bound Lmin(α) ≥ ρL(α, α).

We choose natural n, m, v and real α, 0 ≤ α < 1. For each chosen tu-
ple (n, m, v, α) we generate randomly 30 triples (T, r, w) such that T contains
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Fig. 4. Results of third group of experiments with rules (v and α are changing)

n rows and m conditional attributes, r is the first row of T , and w has val-
ues from the set {1, ..., v}. After that we find values of Lα

greedy(α, T, r, w) and
ρL(α, α, T, r, w) for each of generated 30 triples. Note that ρL(α, α, T, r, w) ≤
Lmin(α, T, r, w) ≤ Lα

greedy(α, T, r, w). Finally, for generated 30 triples we find
mean values of Lα

greedy(α, T, r, w) and ρL(α, α, T, r, w).
Results of experiments can be found in Figs. 3 and 4. In these figures mean

values of ρL(α, α, T, r, w) are called ”average lower bound” and mean values of
Lα

greedy(α, T, r, w) are called ”average upper bound”.
In Fig. 3 (left-hand side) one can see the case when n ∈ {1000, 2000, . . . , 5000},

m = 30, v = 1000 and α = 0.01.
In Fig. 3 (right-hand side) one can see the case when n = 1000, m∈{10, 20, . . . ,

100}, v = 1000 and α = 0.01.
In Fig. 4 (left-hand side) one can see the case when n = 1000, m = 30,

v ∈ {100, 200, . . . , 1000} and α = 0.01.
In Fig. 4 (right-hand side) one can see the case when n = 1000, m = 30,

v = 1000 and α ∈ {0.0, 0.1, . . . , 0.9}.
Results of experiments show that the considered lower bound is nontrivial and

can be useful in investigations.
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5 Conclusions

The paper is devoted (mainly) to theoretical and experimental analysis of greedy
algorithms with weights and their modifications for partial cover, reduct and
decision rule construction. Obtained results will further to more wide use of
such algorithms in rough set theory and its applications.

In the further investigations we are planning to generalize the obtained re-
sults to the case of decision tables which can contain missing values, continuous
attributes, and discrete attributes with large number of values.
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It is an honor to contribute my short article to this special issue commemorat-
ing the life and work of Professor Zdzis�law Pawlak. In this article I would like
to discuss my encounters with the field of artificial intelligence (AI) in general,
and how I see rough set theory and Professor Zdzis�law Pawlak in this context. I
have been fortunate to know some of the greatest scholars in the AI field. There
are many of them, but if I had to choose the three I admire most, they are:
Professors Zdzis�law Pawlak, Lotfi Zadeh and Herbert A. Simon. There are com-
mon characteristics among all of them. Although they are the most prominent of
scholars, all are frank and easy and pleasant to talk with. All are professionally
active at ages where ordinary people would have long since retired.

I became interested in the field of AI in the mid 70s. I have observed many
ups and downs of the field in terms of the popularity since then - a common
phenomena in any field. The AAAI (American Association for Artificial Intelli-
gence) was inaugurated and the first issue of the AI Magazine was published in
the spring 1980. The timing of the birth of rough set theory was soon after this
event. At this time many people in the world were becoming interested in the
field of AI, while there were only a handful researchers when the field started in
the 1950s. In the spring of 1986, the first issue of the IEEE Expert (now IEEE
Intelligent Systems) was inaugurated. I served as an Associate Editor of this
magazine for two terms from 1987 to 1991. In terms of public popularity AI was
flourishing in this eras.

During many years of the 70s and 80s, I observed that despite media hype and
claims for break-thorough technologies, most AI techniques were not practical.
Here “practical” means “having real-world commercial and industrial applica-
tions on an everyday basis.” For example, I could not find cases where machine
learning techniques discussed in textbooks such as “learning from examples” and
“learning from analogy” were actually employed at industrial plants or commer-
cial banks. The same were true for other AI techniques such as blackboard and
neural networks. After Minsky’s pessimistic view on the field, the U.S. govern-
ment funding ceased, and only a handful researchers remained active in the field.
The field revived in the mid to late 80s, and became quite popular. However, I
could not find a single case where neural networks were actually used every day
for commercial and industrial applications. For all of these observations I could
be wrong because there could have been exceptions I was not aware of, but I
was certain that these exceptions were few, if any.
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This situation of impracticality of most AI techniques appeared to start to
change around 1990. That is, many AI techniques were becoming truly practical
and their application domains much broader. Of course, there were practical
AI techniques before 1990. Robotics was one. The first major industrial fuzzy
control was implemented in Denmark in 1982, followed by the famous Hitachi’s
Sendai subway control in 1986. There had been practical expert systems in the
80s. However, the repertories of AI techniques and their application domains
were becoming much more extensive around 1990.

With this background, in March 1993 I made a proposal to the Communi-
cations of the ACM (CACM ) for a Special Issue entitled “Commercial and In-
dustrial AI.” The CACM was a primary computer science magazine subscribed
by some 85,000 professionals worldwide at that time. Its readers went far be-
yond the computer science discipline including fields such as engineering, social
science and education. The proposal was accepted and I selected the most prac-
tical or promising AI areas with the help of many experts. The Special Issue
was published in March 1994 [3] and was divided into four major sections with
11 articles. They are: I. “Knowledge Engineering Systems” with two articles –
an article on general expert systems and an article on case-based reasoning. II.
“Perception, Understanding, and Action” with three articles on vision, speech
and robotics. III. “Fuzzy Systems” with two articles – an overview and a soft
computing article by Professor Zadeh. IV. “Models of the Brain and Evolu-
tion” with four articles - two articles by Rumelhart, Widrow, et al., an article
on neural networks in Japan, and an article on genetic algorithms. There were
many behind-the-scene stories and one of them was that my original plan was to
have only one article by Rumelhart, et al. After much delay, they had an article
twice as long as originally planned, and I suggested splitting the manuscript into
two parts.

In the Guest Editors Introduction, I wrote:

The practical application of artificial intelligence (AI) has been the center of
controversy for many years. Certainly, if we mean AI to be a realization of
real human intelligence in the machine, its current state may be considered
primitive. In this sense, the name artificial ”intelligence” can be misleading.
However, when AI is looked at as ”advanced computing,” it can be seen as
much more. In the past few years, the repertory of AI techniques has evolved
and expanded, and applications have been made in everyday commercial and
industrial domains. AI applications today span the realms of manufacturing,
consumer products, finance, management, and medicine. Implementation of the
correct AI technique in an application is often a must to stay competitive. Truly
profitable AI techniques are even kept secret.

Many of the statements I wrote here are still basically true today. This Special
Issue turned out to be a big hit. The ACM printed 1,000 extra copies of this
issue for back orders, but they sold out less than a month. A person from a
Japanese company wanted to purchase a box of fifty copies of this issue, but it
was too late. The issue became one of the most cited CACM, for not only within
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computer science but also some unexpected places such as Scientific American,
the Berkeley Law School, the Stanford Philosophy Department, etc. The US Air
Force has issued interesting predictions in the past. Around 1947, the Air Force
predicted likely technologies for the next 50 years. They included jet rather than
propeller powered, and supersonic airplanes. They became the reality by 1997. In
1997, they issued predictions for the next 50 years, i.e., by 2047. Between these
major predictions, they published future perspectives for shorter time ranges.
My Special Issue was cited in a document within a report entitled “Air Force
2025” that describes 30-year predictions by the US Air Force [1].

When I was preparing my first CACM Special Issue, I knew there were other
AI areas that were not covered. As soon as the first issue was nearly complete, I
started working on a follow-up Special Issue entitled “New Horizons in Commer-
cial and Industrial AI.” In the “Editorial Pointers” in the first issue, Executive
Editor Diane Crawford wrote: “He has assembled some of the foremost minds
in AI to author and/or review the 11 articles presented here. If that weren’t
enough, he’s already digging into another proposed issue for Communications to
appear early next year, where he hopes to address new horizons and applications
in other AI-related fields.”

For the first Special Issue I received many responses. One of them was a letter
from Professor Herbert A. Simon of Carnegie-Mellon University, a prominent
scholar in AI with a Turing Award and a Nobel Prize in economics. Basically, he
stated: “The first issue was well done, although if I were the Guest Editor I would
have had less emphasis on neural networks and included an article on machine
learning.” He suggested placing an article on machine learning in the second
issue. I replied to him saying I had already planned that and asked him to write
one, and subsequently he co-authored an article. I was lucky to be able to have
close contact with Professor Simon. When IBM’s Deep Blue defeated the human
chess champion Garry Kasparov in 1997, he and I co-authored a commentary
article on the significance of this event on AI [14]. He was a pleasant person to
talk with. He was a fulltime professor and active until two weeks before his death
in 2001 at age 84. For the second Special Issue I had planned to include certain
topics from a very early stage. They included symbolic machine learning, natural
language processing (e.g., machine translation) and logic programming. Also, I
wanted to include articles addressing the commonsense problem, although I did
not expect that this area would have many commercial or industrial applications
in the near term.

At a later stage of preparation of the second issue, I searched for additional
areas appropriate for the issue, and found rough set theory. I was not famil-
iar with this area, but from what I found I thought it was a promising tech-
nique, appropriate for the second issue. Perhaps it could complement other AI
techniques. I contacted Professor Pawlak and asked him whether he was in-
terested in contributing an article to such a CACM Special Issue. These were
my first encounters with rough set theory and Professor Pawlak. He kindly ac-
cepted my invitation and contributed an article co-authored with Professors
Jerzy GrzymalaBusse, Roman Slowinski and Wojciech Ziarko [8]. This was my
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first acquaintance with the rough set community. As said earlier, CACM has a
large number of audience worldwide and its impact is high. I don’t know how
much the appearance of this article has influenced the promotion of this theory,
but I think at least it helped to introduce the term “rough sets” worldwide.

Incidentally, when I studied practically successful symbolic machine learning
techniques for the first time, such as ID3, I was a bit disappointed. From the term
“learning,” I expected some elements of human-like learning. For example, given
a specific experience the machine would abstract it, generalize it and be able
to use it for similar circumstances in the future. I did not see such human-like
learning in ID3. Rather, it simply classifies data based on entropy in information
theory. The characteristics of the target data seemed to be too simple. Perhaps
the term “learning” was misleading, and probably I expected too much on what
we could do from this kind of data. Both ID3 and rough sets can learn from data,
but probably ID3 had attracted more attention than rough sets in the scientific
community, at least during the 80s and 90s. Why? One reason might be that ID3
appears to have been in the main stream in the machine learning community,
and had received more support from its early introduction. Professor Simon was
one of it’s supporters, and he was a great scientist as well as a good salesman
to promote his beliefs. For example, he called a software system he developed a
“general problem solver,” which implied, with a bit of exaggeration, the system
would solve every problem on earth. He was also an optimist. In the late 1950s
he predicted that a computer would defeat a human chess champion within 10
years. We waited 10 years, another 10 years, and so forth for the next 40 years.
In contrast, Professor Pawlak was a humble and modest scientist and perhaps
not particularly a good salesman. In my opinion, rough set theory was not as
widely recognized in the AI and CS fields as it should have been.

After my first encounter with the rough set community through my CACM
second special issue, I have been fortunate to be able to work in this field together
with these people. I attended several rough set related conferences after my
first encounter [4, 5, 6]. To promote rough sets, I could think of two among
many possibilities. One was to have promotional articles in journals of large
audience like the CACM. Another area was to have a rough set application with
a high social impact. For the latter, rough control might be a good candidate, I
thought. Fuzzy set theory became a hot topic after Hitachi successfully applied
fuzzy logic to Sendai subway control. I tried to push rough control, and I was
Chair of the rough control interest group. The basic idea of rough control is to
employ rough sets to automatically generate input-to-output control rules [7, 9].
The idea was not particularly new, but breakthrough applications would place
rough set theory in the spotlight. A long time rough set activist Professor T.Y.
Lin financially supported me for this endeavor. Although we have not observed a
major breakthrough yet, I think possibilities are still there. In the communication
with Professor Pawlak, he suggested presenting a co-authored conference paper
[13]. When I published an AI book from Springer, I included a chapter for rough
sets [10]. When I served as Guest Editor for third time for CACM Special Section
on knowledge discovery [11], I asked Professor Ziarko to contribute an article.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



A Personal View on AI, Rough Set Theory and Professor Pawlak 251

When a young colleague approached me to work on a data mining article, I
suggested employing rough sets [2]. I am currently working on another article
on a rough set application with a young assistant professor.

Although we all saddened by the recent death of Professor Pawlak, I think
he was fortunate to observe that his theory has been widely recognized in the
scientific community worldwide. This was not necessarily the case for many great
scholars in the past. During my sabbatical in the fall of 2002, I traveled to
Poland, visiting Professors Slowinski, Skowron and Pawlak, and received a warm
welcome. This was the last time I saw Professor Pawlak.

What are the future prospects of rough sets? No one knows, but the following
is my speculation. Despite it’s founder’s death, the community will grow – there
will be more researchers worldwide and more theoretical and application devel-
opments. But, growth in the field may level out eventually, unless we achieve
major breakthroughs. As in the case of other machine learning techniques and
AI in general, we don’t know what, when or if such breakthroughs may come.
Targeting to extremely large volumes of data (e.g., terabytes) and/or massively
parallel computing alone do not look very promising, as we have observed similar
attempts such as the Cyc and the Connection Machine. For knowledge discovery
techniques such as rough sets, there may be a limit when we deal only with
decision tables. Perhaps we should also look at other formats of data as well as
other types of data, for example, non-text, comprehensive types of information,
such as symbolic, visual, audio, etc. Also, the use of huge background knowl-
edge, in a manner similar to human thought, would be necessary and effective.
Human-computer interactions would also enhance the discovery processes. Other
totally different domains are non-silicon based new computing paradigms. I am
currently working on my fourth Special Section for the Communications of the
ACM as a guest editor on this subject [12]. These approaches may lead to a
new dimension of information processing in a wide range of application domains
including rough sets. As with other scientific developments in history, such as
alchemy and the first airplane, a breakthrough may come in a totally unexpected
form.
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Abstract. Rough Set Theory may be considered as a formal interpre-
tation of observation of phenomena. On one side we have objects and on
the other side we have properties. This is what we call a Property Sys-
tem. Observing is then the act of perceiving and then interpreting the
binary relation (of satisfaction) between the two sides. Of course, the set
of properties can be given a particular structure. However, from a pure
”phenomenological” point of view, a structure is given by the satisfaction
relation we observe. So it is a result and not a precondition. Phenomena,
in general, do not give rise to topological systems but to pre-topological
systems. In particular, ”interior” and ”closure” operators are not con-
tinuous with respect to joins, so that they can ”miss” information. To
obtain continuous operators we have to lift the abstraction level of Prop-
erty Systems by synthesizing relations between objects and properties
into systems of relations between objects and objects. Such relations are
based on the notion of a minimal amount of information that is carried
by an item. This way we can also account for Attribute Systems, that is,
systems in which we have attributes instead of properties and items are
evaluated by means of attribute values. But in order to apply our mathe-
matical machinery to Attribute Systems we have to transform them into
Property Systems in an appropriate manner.

Keywords: approximation spaces, formal topology, Galois adjunctions,
rough sets, information quanta, information systems, pointless topology,
pretopology.

1 Introduction

Rough Sets arise from information systems in which items are evaluated against
a set of attributes or properties.

In Computer Science properties are often interpreted as ”open subsets” of
some topological space. M. Smyth pioneered this interpretation in 1983 when he
observed that semi-decidable properties are analogous to open sets in a topolog-
ical space (cf. [28]). This intuition was developed by distinguished scholars such
as D. Scott who introduced Domain Theory and the so-called Scott Topology to
study continuous approximating maps between structures of information called
domains.

J.F. Peters et al. (Eds.): Transactions on Rough Sets VI, LNCS 4374, pp. 253–297, 2007.
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This research is paralleled, in a sense, by logical studies such as Cohen’s
forcing and Kripke models, where the notion of approximable sets of properties
(or approximable information) is the core of the construction.

W. Lawvere showed that these constructions can be synthesized into the no-
tion of a topos as the abstract form of continuously variable sets.

S. Vickers combined the logical and the Computer Science approach. In [33], a
prominent role is played by topological systems where just the formal properties
of open sets are considered, without mentioning points (pointless topology).

Indeed, this approach originates in Stone’s and Birkhoff’s representation the-
orems where the notion of an abstract point is de facto, introduced. And an
abstract point is nothing else but a bunch of properties (once we interpret the
elements of a lattice as properties).

Influenced by P. Martin-Löf’s Intuitionistic Type Theory, G. Sambin under-
took his own way to deal with pointless topology, and specifically pointless pre-
topology, as related to Logic (namely Linear Logic), which led to the notion of
a Formal Topology (see [25]) which later on has been presented as a result of
a construction arising from binary relations between the concrete side (points)
and the abstract side (properties) of an observational system called a Basic Pair
(cf. [26]). As a matter of fact, the interrelations between concrete points and
abstract properties is considered by Vickers, too. However in Formal Topology
one does not impose any pre-established structure on the set of properties, not
even that suggested by ”Observation Logic” in Vicker’s approach, which makes
a system of observations into a frame1.

In [18] it was noted that the properties of the operators of Formal Topology
may be deduced from the fact that they are based on constructors which enjoy
adjointness relations. The pretopological approach was applied to account for
approximation operators arising from families of Property Systems in [19] and,
finally, to generalize approximation operators arising from single Property Sys-
tems ([21] and [22]). Moreover, this machinery was applied to Attribute Systems
too, by transforming them into Property Systems (cf. [20]).

The latter researches were, in turn, influenced by A. Skowron, J. Stepaniuk
and T. Y. Lin’s pioneering investigations which have shown that neighborhood
systems may account for natural organizations of information systems (for this
topic and its applications the reader is referred to [11] and [29]).

Moreover, it must be noticed that neighborhood systems give rise to pre-
topological operators which turn into topological operators just under particular
conditions. Therefore, we claim that pre-topology is a most natural setting for
approximation operators as induced by information systems. Also, this claim fits
with recent suggestions on the role of ”true borders” (hence non topological) to
account for a more dynamic approach to data analysis and granular computing
(see, for instance [19] and for ”rough topologies” see [24]).

Specifically, the present investigation is induced by the observation that, from
a very general point of view, Rough Set Theory arises from a sort of ”phenom-
enological” approach to data analysis with two peculiar characteristics:

1 A frame is a lattice with finite meets distributing over arbitrary joins.
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– data is analyzed statically at a given point in time of a possibly evolving
observation activity;

– as a consequence, the analyzed data provides us only with an approximated
picture of the domain of interest.

We shall see that the status of an observation system at a certain point in
time is essentially a triple P = 〈G, M, �〉, that we call a Property system were G
is a set of objects (also called ”points”), M a set of properties (also called ”for-
mal neighborhoods”) and �⊆ G×M is intended as a fulfillment relation2. From
the concept of an ”observation” we shall define a family of basic ”perception
constructors” mapping sets of objects into sets of properties, called intensional
constructors, and sets of properties into sets of objects, called extensional con-
structors. We show that some pairs of constructors from opposite sides, fulfill
adjunction properties. That is, one behaves in a particular way with respect to
properties if and only if the other behaves in a mirror way with respect to ob-
jects. Hence, adjunction properties state a sort of ”dialectic” relationship, or
mutual relationship, between perception constructors, which is exactly what we
require in view of a ”phenomenological” approach.

Adjunction properties make some combinations of these basic constructors
into generalized closure and generalized interior operators. Particularly, some
combinations happen to be pre-topological operators in the sense of Sambin’s
Formal Topology. Actually, we shall see that they are generalizations of the
approximation operators provided by Rough Set Theory.

However, for they are pretopological and not topological, these approximation
operators are not continuous, that is, they exhibit ”jumps” in the presence of
set-theoretical operations. Therefore we synthesize the structuring properties
of a Property system, P, into a second level informational structure 〈G, G, RP〉,
called an Information Quantum Relational System - IQRS, where RP is a relation
between objects - hence no longer between objects and properties - embedding
the relevant informational patterns of P. In IQRSs adjointness makes second
level approximation operators fulfill nice properties. Also, this way we shall be
able to account for Attribute systems after appropriately transforming them into
Property Systems3.

This study aims at presenting the state-of-the-art of a conception of Rough
Set Theory as a convergence of different approaches and different techniques,
such as Formal Topology, duality and representation theory, Quantum Logic,
adjoint functors and so on, as sketched in the following figure:

2 Property Systems may be also regarded as ”Chu Spaces” ([37]). However Chu Spaces
have additional features, namely a pair of covariant and contravariant functors,
which links spaces together. For Chu Spaces, see the WWW site edited by V. Pratt,
http://boole.stanford.edu/chuguide.html.

3 The term ”Quantum” refers to the fact that a basic information grains is given by
the minimal amount of information which is organised by RP around an item what,
technically, is linked to the notion of a quantum of information at a location once
one substitute ”item” for ”location” - cf. [4].
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Fig. 1. A Rough Set connection

More precisely, in the present paper we shall deal with the boxed topics along
the flow displayed by bold lines. Dotted arrows display the relationships be-
tween logical systems and some topics connected to Rough Sets Theory. Dotted
lines show some interesting links between some techniques used in the present
paper and topics connected with data and information analysis. Bold arrows
display some well-established links between logico-algebraic systems and Rough
Set systems, while the dotted arrow marked with ”?” suggests links between the
modal-style approach applied in the paper and logico-algebraic interpretations
to be explored4.

2 Formal Relationships Between ”Objects” and
”Observables”

Observation is a dynamic process aimed at getting more and more informa-
tion about a domain. The larger the information, the finer the picture that we
have about the elements of the domain. Using topological terms, an observa-
tion process makes it possible to move from a trivial topology on the domain, in

4 We have proved that Rough Set Systems are semi-simple Nelson algebras (or equiva-
lently, three-valued �Lukasiewicz algebras) (cf. [14] and [15]). What algebraic systems
arise from this generalisation has to be studied yet. Brouwer-Zadeh Lattices, Bilat-
tices and Semi-Post algebras may provide some hints.
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which everything is indistinguishable to a topology in which any single element
is sharply separable from all the other elements (say a discrete topology or a
Hausdorff space). In this case we can ”name” each single element of the domain
by means of its characteristic properties.

However, in this respect, observation is an asymptotic process. What usually
happens is that at a certain point in time we stop our observation process, at
least temporarily, and analyse the stock of pieces of information we have collected
so far. In a sense we consider a ”flat slice” of the observation process.

Fig. 2. A process of differentiation via observations

Therefore, our slice is basically composed by:

(a) a set G of ’objects’; (b) a set M of ’observable properties’; (c) a relation
between G and M , denoted with the symbol �. Given g ∈ G and m ∈ M we shall
say that if g � m, then g enjoys property m, or that g induces the observable
property m.

We have also to assume that � is defined for all the elements of G and M
because we consider immaterial any property which cannot help making any
distinction among objects and, symmetrically, if an object g does not manifest
any property, then it is a ”non-object” from a phenomenological point of view5.
We encode everything in the following definition:

Definition 1. A triple 〈G, M, �〉 where G and M are finite sets, �⊆ G × M
is a relation such that for all g ∈ G there is m ∈ M such that g � m, and for
all m ∈ M there is g ∈ G such that g � m, is called a property system or a
P-system.

Among P-systems we distinguish:

a) Functional systems, or FP-systems, where � is functional in the sense that
for any element g ∈ G, g � m and g � m′ implies m = m′.

5 The symbols ”G” and ”M” are after the German terms ”Gegenstände” (”objects”)
and, respectively, ”Merkmale (”properties”). A ”Gegenstand” is what stays in front
of a subject, while the German term ”Object” means an interpreted ”Gegenstand”.
These are the terms used in Formal Concept Analysis and we adopt them for their
philosophical meaning.
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b) Dichotomic systems or DP-systems, if for all p ∈ M there is p ∈ M such
that for all g ∈ G, g � p if and only if g �� p.

Functional and dichotomic systems enjoy particular classification properties6.
Moreover we shall also consider Deterministic attribute systems:

Definition 2. A structure of the form 〈G, At, {Va}a∈At, 〉, where G, At and Va

are sets (of objects, attributes and, respectively, attribute-values) and for each
a ∈ At, a : G �−→ Ata, is called a deterministic Attribute System or an A-
system7.

From now on we assume that P always denotes a Property System 〈G, M, �〉
and that A denotes an Attribute System 〈G, At, {Va}a∈At, 〉. Moreover, we shall
use the following notation:

If f : A �−→ B and g : B �−→ C are functions, then:

(a) with (f◦g)(x) or, equivalently, g(f(x)) we denote the composition of g after f ;
(b) f→ :℘(A) �−→ ℘(B); f→(X)={f(a) :a ∈ X} - denotes the image of X via f ;
(c) f← : ℘(B) �−→ ℘(A); f←(Y ) = {a : f(a) ∈ Y } - denotes the pre-image of Y
via f ;
(d) the set f→(A) is denoted with Imf ; 1A, denotes the identity function on A;
(e) the map fo : A �−→ Imf ; fo(a) = f(a) denotes the corestriction of f to Imf

and the map fo : Imf �−→ B; fo(b) = b denotes the inclusion of Imf into B;
(f) the equivalence relation kf = {〈a, a′〉 : f(a) = f(a′)} is called the kernel of f
or the fibred product A ×B A obtained by pulling back f along itself.

2.1 Ideal Observation Situations

If 〈G, M, �〉 is an FP-system, we are in a privileged position for classifying ob-
jects, for the reasons we are going to explain.

The ”best” case is when � is an injective function. Indeed in this case the
converse relation �� (or, also, �−1) is a function, too, and we are able to
distinguish, sharply, each object. In mathematical words we can compute the
retraction of �.

Definition 3. Let f : A �−→ B be a function. Then a morphism r : B �−→ A is
called a retraction of f , if f ◦ r = 1A.

But, first of all, this is an unusual situation, from a practical point of view.
Further, ”observation” and ”interpretation” is a modeling activity. Thus, from
an epistemological point of view we may wonder if the best model of a horse is
really a horse.

Actually, ”modeling” means ”abstracting” and ”abstracting” means ”losing
something”, some quality or characteristic. Thus the situation depicted in
Figures 3 and 4 cannot be but the result of some reduction process.

6 Indeed FP-systems and DP-systems are closely linked together, as we shall see.
7 The traditional term in Rough Set Theory is ”Information System”.
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Fig. 3. An ideal situation: the existence of retractions

Fig. 4. Is a horse the best model of a horse?

A second optimal situation is when � is a surjective function (what always
happens of FP-systems). Indeed, by reading back � we obtain an equivalence
relation E�, so that any element of G will belong to one and just one equivalence
class modulo E�, without ambiguity and borderline situations, what is a perfect
case of a classification. Indeed, E� is the kernel of � and it induces a classifi-
cation of the elements of G through properties in M . This is tantamount to the
construction of stalk spaces, or espace etalé, through fibers (or stalks, sorts). This
means that � has a section or a co-retraction.

Definition 4. Let f : A �−→ B be a function. Then a morphism s : B �−→ A is
called a section or co-retraction of f , if s ◦ f = 1B.

We can interpret f as a way to list or parametrise (some of) the elements of B,
through the elements of A.

In turn the notions of a section and a retraction are special cases of a more
fundamental concept: a divisor.
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Definition 5. Let f : A �−→ B, g : B �−→ C and h : A �−→ C be three functions.
Then, g is called a right divisor of h by f and f is called a left divisor of h by
g if h = f ◦ g, that is, if the following diagram commutes:

B

�
�

�
�

�
f

� �
�

�
�

�

g

�
A

h
� C

From the above definitions, we immediately deduce that if s is a section of f ,
then f is a retraction of s; and vice-versa. Moreover, it is not difficult to verify
that f does not have any section if it is not surjective on B (otherwise, how
would it be possible to obtain 1B?). Intuitively if there is a b ∈ B that is not
f -image of any a ∈ A, then b would be associated with a void sort. Vice-versa,
a function f does not have any retraction if f is not injective in B. In fact, if
f(a) = f(a′) = b, for a �= a′, then any morphism from B to A either maps b
onto a and forgets a′, or it maps b onto a′ and forgets a, because of unicity of
the image, and we could not obtain 1A (thus, for any function f : A �−→ A, fo

is a section with retraction fo).

Fig. 5. An almost ideal situation: the existence of co-retractions

If r : A �−→ B is a retraction of a function h : B �−→ A, then r◦h is an idempotent
endomorphism of A: (r ◦ h) ◦ (r ◦ h) = r ◦ (h ◦ r) ◦ h = r ◦ 1B ◦ h = r ◦ h.

It follows that if s : B �−→ A is a section of f : A �−→ B, then f ◦ s is an
idempotent endomorphism in A, provided s is onto, because f is a retraction of
s (see above). Clearly, if a = s(b), then s(f(a)) = s(f(s(b))) = s(1B(b)) = s(b) =
a. Hence, any image of the section s is a fixed point of the endomorphism f ◦ s.
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Thus sections, retractions and kernels of a function f make it possible to
organise the domain of f into sharp classification categories (groups) and to
single out representatives of such categories.

3 Categorizing Through Relational P-systems

On the contrary, if we deal with generic relational P-systems, not necessarily
functional, it hardly happens to obtain sharp classifications, at least without a
proper manipulation of the given P-system that, in turn, may be or may not be
an appropriate maneuver. It follows that the identity relation in the definition
of left and right divisors must be weakened to an inequality relation ”≥” or
”≤”. Therefore, to deal with generic cases we need a more subtle mathematical
machinery.

Such a machinery is based on the notion of an ”approximation”. However, this
notion depends on another one. Indeed, we cannot speak of ”approximation”
without comparing a result with a goal and this comparison depends on the
granularity of the target and of the instruments to get it. For instance, in a
document search system, in general we face a situation in which queries refer
to a set of possible answers and not to single objects. Otherwise we would not
have ”queries” but ”selections” (the realm of sections and retractions). In other
words, objects constitute, in principle, a finer domain than those obtained by
any modeling or interpretation activity.

So we can distinguish an extensional granulation, related to objects, and an
intensional granulation, related to properties, and assume that the extensional
granulation is finer than the intensional one. Thus, when we have to determine
a point on the extensional scale by means of the intensional ruler, we hardly
will be able to get a precise determination. We can approximate it. But in order
to be able to have ”best approximations” the intensional granulation and its
relationships with the extensional granulation must fulfill non trivial properties.
First of all we need an order. Suppose X is a set of candidate results of a query.
Then we generally do not have a selection criterion to single out elements of
X . But if the elements of X are ordered in some way, we can use this order to
choose, for instance, the least or the largest element in X , if any.

Fig. 6. A usual P-system needs a scale
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But this is not enough. In fact dealing with functions (either surjective or
injective) is, in a sense, a lucky event in this business which happens only if
we are able to completely reduce a structure to a simpler one. This means that
generally we cannot have sections and retractions, so that we cannot directly
manipulate pre-images of single elements of the codomain or images of single
elements of the domain of some ”connecting” function. On the contrary we have
to manipulate some kinds of subsets of the domain and co-domain which, we
hope, embed enough ordering features to compute approximations.

Having this picture in mind, we underline what follows. From an observational
point of view the only relationships between objects are induced by the fulfill-
ment relation � and they are grouping relationships so that we can compare
subsets of objects (or properties) but not, directly, objects (or properties). In
other words in this paper we assume that there is no relation (hence any order)
either between objects or between properties. Hence the result of an approxi-
mation activity is, generally, a ”type” not a ”token”8. It follows that we shall
move from the level of pure P-systems 〈G, M, �〉 to that of Perception systems
〈℘(G), ℘(M), {φi}i∈I〉 where φi is a map from ℘(G) to ℘(M) or from ℘(M) to
℘(G).

Fig. 7. Approximation deals with types, not with tokens

4 Concrete and Formal Observation Spaces

Given a P-system, the first, and obliged, step we have to do is ”observing”, in
the elementary sense of ”perceiving” the manifested properties. Thus if P is a
P-system let us define an ’observation function’ obs : G �→ ℘(M), by setting

m ∈ obs(g) ⇔ g � m. (1)

Technically, obs is what is called a constructor for it builds-up a set from a point.
Indeed, for each point g, obs(g) = {m ∈ M : g � m}. We shall call obs(g) the
’intension of g’. In fact, any element g appears through the series of its observable
properties, so that obs(g) is actually the intensional description of g. The inten-
sion of a point g is, therefore, its description through the observable properties
listed in M . We shall also say that if g � m (i. e. if m ∈ obs(g)), then m is an
observable property connected with g and that g belongs to the field of m.

8 By the way, note that in [3], classification is achieved at ”type” level.
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Symmetrically we can introduce a ”substance function” sub : M �→ ℘(G)
defined by setting

g ∈ sub(m) ⇔ g � m. (2)

This symmetry reflects the intuition that a point can be intensionally con-
ceived as the set of properties it is connected with, just as a property may be
extensionally conceived as the set of points belonging to its field. Dually to obs,
given a property m ∈ M , sub(m) = {g ∈ G : g � m}, so that sub(m) is the
’extension’, or the field, of m.

The link between these two functions is the relation �:

g ∈ sub(m) ⇔ m ∈ obs(g) ⇔ g � m, ∀g ∈ G, ∀m ∈ M (3)

Fig. 8. A first level perception process

We now notice that since the set M is given and fixed, any P − system will
provide only partial observations of the members of G so that a single point x
possibly fails to be uniquely described by its intension obs(x).

We shall also say that obs(x) is an intensional approximation of a ’partially
describable’ member x of G and claim that if obs(x) = obs(y), then x and y
cannot be discerned by means of the observable approximating properties (or
”partial descriptions”) at hand, so that x and y will be said to be indiscernible
in the given P-system. If x and y are indiscernible they will collapse into the
same intentional description.

Indeed, if obs fails to be injective then we know that it cannot have a retraction
and this means that the identity 1℘(G) cannot be determined by means of the
properties at our disposal (that is, the subsets of M mapped by obs), so that a
”loss of identity” literally happens.

However, we can define, by means of obs and sub some approximation operators.

4.1 The Basic Perception Constructors

The second step after observing, is an initial interpretation of what we have
observed.

Thus we shall introduce the ”perception constructors” that are induced by a
P-system.
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These constructors will make it possible to define different kinds of structures
over ℘(G) and ℘(M). Since such structures are defined as extensions of the
two functions obs and sub and since, in turn, these two functions are linked by
the relation (3), it is clear that any structurization on points will have a dual
structurization on observables, and vice-versa.

Definition 6 (Basic contructors). Let P = 〈G, M, �〉 be a P-system. Then:

– 〈e〉 : ℘(M) �−→ ℘(G); 〈e〉(Y ) = {g ∈ G : ∃m(m ∈ Y & g ∈ sub(m))};
– [e] : ℘(M) �−→ ℘(G); [e](Y ) = {g ∈ G : ∀m(g ∈ sub(m) =⇒ m ∈ Y )};
– [[e]] : ℘(M) �−→ ℘(G); [[e]](Y ) = {g ∈ G : ∀m(m ∈ Y =⇒ g ∈ sub(m))};
– 〈i〉 : ℘(G) �−→ ℘(M); 〈i〉(X) = {m ∈ M : ∃g(g ∈ X & m ∈ obs(g))}
– [i] : ℘(G) �−→ ℘(M); [i](X) = {m ∈ M : ∀g(m ∈ obs(g) =⇒ g ∈ X)};
– [[i]] : ℘(G) �−→ ℘(M); [[i]](X) = {m ∈ M : ∀g(g ∈ X =⇒ m ∈ obs(g))}.

Fig. 9. Basic constructors derived from a basic pair

An intuitive interpretation of the above functions is in order. As for the con-
structors decorated with ’e’ (because the result of the function is an extent), we
notice that if we want to extend function sub from elements to subsets of M ,
we have essentially two choices: a ”disjunctive” or ”existential” extension and a
”conjunctive” or ”universal” extension. The former is 〈e〉 while the latter is [[e]].
Obviously, 〈e〉 = sub→ = obs←. It is not difficult to see that [e] is the dual of 〈e〉,
hence it is the ”co-existential extension” of sub (the dual of [[e]] is not discussed
in this paper).

Given Y ⊆ B, the set [[e]](Y ) collects the points that fulfill at least all the
properties from Y (and, possibly, others), while 〈e〉(Y ) gives the set of points
which fulfill at least one property from Y . Finally, [e](Y ) collects the points which
fulfill at most all the properties from Y (but possibly not all the properties in Y ).
The same considerations apply symmetrically to the operators decorated with ’i’
(because the result of these functions is an intent). Indeed 〈i〉 and [[i]] are the dis-
junctive and, respectively, conjunctive extensions to subsets of G of the function
obs and 〈i〉 = obs→ = sub←. More precisely, 〈i〉(X) collects the set of properties
that are fulfilled at least by one point of X , while [[i]](X) collects the set of prop-
erties that are fulfilled at least by all the points of X , that is, the properties com-

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Formal Topology and Information Systems 265

mon at least to all the points of X . Finally, [i](X), the ”co-existential extension”
of obs, gives the set of properties that are fulfilled at most by all of the points in
X . In particular, [i]({x}) is the set of properties which uniquely characterize x.

We summarize these remarks in the following table:

... property/ies in Y ... point/s in X

at least one ... 〈e〉(Y ) 〈i〉(X)
at least all ... [[e]](Y ) [[i]](X)
at most all ... [e](Y ) [i](X)

If one of the above or following operators on sets, say Op, is applied to a singleton
{x} we shall also write Op(x) instead of the correct Op({x}), if there is no risk
of confusion.

4.2 A Modal Reading of the Basic Constructors

At this point a modal reading of the basic constructors is in order. This will
be formalized in Section 6. Indeed, we can read these constructors by means of
operators taken from extended forms of modal logic, namely, possibility, necessity
and sufficiency.

Operator x ∈ X b ∈ B Example reading

〈i〉(X) = B
if x ∈ X then

it is possible that
x enjoys elements in B

b is enjoyed by
some element
collected in X

there are examples
of elements in X

that enjoy b

[i](X) = B
to enjoy elements in B

it is necessary
to be in X

b is enjoyed by
at most all the
element of X

there are not
examples of elements
enjoying b that are

not in X

[[i]](X) = B
to enjoy elements in B

it is sufficient
to be in X

b is enjoyed by
at least all the
elements of X

there are not
examples of elements

of X that do not
enjoy b

Remarks: Sufficiency was introduced in modal logic by [10]. Recently it was
discussed in [8] and in [16] from an informational point of view. Sufficiency
happens to be the fundamental operator to define Formal Concepts, which are
pairs of the form 〈[[e]][[i]](X), [[i]](X)〉, for X ⊆ G (see [34]). From the point of
view of pointless topology, the operators [i], 〈i〉, [e] and 〈e〉 have been studied by
[26], (where the notation ”�”, ”♦”, ”rest” and, respectively, ”ext” is used) and
in [19]. From an informational point of view they have been investigated in [8],
[7], [36], [21] and [22]. It is worth noticing that variations of concept lattices have
been introduced by means of these operators, namely ”object oriented concepts”
of the form (〈e〉[i](X), [i](X)〉 (by Y. Y. Yao) and ”property oriented concepts”
of the form 〈[e]〈i〉(X), 〈i〉(X)〉 (by Düntsch and Gegida). From Proposition 2 and
Corollary 3 below one can easily deduce some of the properties discussed in the
quoted papers.

A pictorial description of the above modal reading follows:
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Fig. 10. Possibility, Necessity, Sufficiency

The above functions are linked by some structural relationships.
First, recall that our operators are defined on Boolean algebras of type 〈℘(A),

∩, ∪, A, −, ∅〉, where A is either G or M , so that negation coincides with set-
theoretical complementation.

We say that if an operator Opo is obtained by negating all of the defining
subformulas in an operator Op, and by further applying the contraposition law
according to negations (or, equivalently, by first putting the definition in dis-
junctive normal form), then Opo and Op are called opposite or orthogonal (to
each other), or ”o” in symbols9. If Opd(X) =∼ Op(∼ X) then Opd is called the
dual of Op and we denote the relation of duality with ”d”. Furthermore we can
easily observe that functions decorated with e and functions decorated with i are
symmetric with respect to the relation �, and we denote this fact with ”s”. The
following table summarizes these relationships between basic operators (some of
these connections are well known in literature: cf. [26], [7] and [8] - but see also
the literature about Galois connections):

〈e〉 〈i〉 [e] [i] [[e]] [[i]]
〈e〉 = s d sd od ods
〈i〉 s = sd d ods od
[e] d sd = s o os
[i] sd d s = os o
[[e]] od ods o os = s
[[i]] ods od os o s =

Obviously, symmetric functions fulfill the same formal properties, opposite
functions fulfill opposite properties, while dual and symmetric-dual operators
fulfill dual properties.

5 Fundamental Properties of the Basic Constructors

Let us investigate the fundamental properties of basic constructors. We carry on
this job in a more general dimension concerning binary relations at large.
9 So, for instance, if α =⇒ β appears in a defining formula, of Op, then in Opo we

have ∼ β =⇒∼ α.
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Definition 7. Let R ⊆ A × B and Q ⊆ C × D be binary relations, X ⊆ A,
Y ⊆ B, x ∈ A, y ∈ B. Then we define10:

1. R� = {〈y, x〉 : 〈x, y〉 ∈ R} - the inverse relation of R.
2. 〈R�〉(X) = {y ∈ B : ∃x ∈ X(〈x, y〉 ∈ R)} - the left Peirce product of R and

X. We shall also call 〈R�〉(X) the R- neighborhood of X. In particular, if X
is a singleton {x}, then we shall usually write 〈R�〉(x) instead of 〈R�〉({x}).

3. 〈R〉(Y ) = {x ∈ A : ∃y ∈ Y (〈x, y〉 ∈ R)} - the left Pierce product of R� and
Y . Clearly, 〈R〉(Y ) is the R�-neighborhood of Y .

4. [R�](X) = {y ∈ B : ∀x(〈x, y〉 ∈ R =⇒ x ∈ X)} - the right residual of R
and X.

5. [R](Y ) = {x ∈ A : ∀y(〈x, y〉 ∈ R =⇒ y ∈ Y )} - the right residual of R� and
X.

6. [[R�]](X) = {y ∈ B : ∀x(x ∈ X =⇒ 〈x, y〉 ∈ R)} - the left residual of X
and R�.

7. [[R]](Y ) = {x ∈ A : ∀y(y ∈ Y =⇒ 〈x, y〉 ∈ R)} - the left residual of X and
R.

8. R⊗Q = {〈a, d〉 : ∃z ∈ B∩C(〈a, z〉 ∈ R & 〈z, d〉 ∈ Q)} - the right composition
of R with Q or the left composition of Q with R. If defined, R⊗Q ⊆ A×D.

Lemma 1. Let R ⊆ A × B. Then for any X ⊆ A, Y ⊆ B, a ∈ A, b ∈ B:

1. (a) b ∈ [R�] (X) iff 〈R〉(b) ⊆ X; (b) a ∈ [R] (Y ) iff 〈R�〉(a) ⊆ Y ;
2. (a) a ∈ [[R]] (Y ) iff Y ⊆ 〈R�〉(a); (b) b ∈ [[R�]] (X) iff X ⊆ 〈R〉(b);
3. (a) [[R]](∅) = A, (b) [[R�]](∅) = B, (c) 〈R�〉(∅) = 〈R〉(∅) = ∅,

(d) [R�](A) = B. (e) If R is onto then 〈R�〉(A) = B and [R�](∅) = ∅;
(f) [R](B) = A. (g) If R� is onto then 〈R〉(B) = A and [R](∅) = ∅.

4. If X and Y are singletons, then (a) 〈R�〉(X) = [[R�]] (X); (b) 〈R〉(Y ) =
[[R]] (Y );

5. (a) If R is onto, [R�](X) ⊆ 〈R�〉(X); (b) If R� is onto [R](Y ) ⊆ 〈R〉(Y );
6. If R is a functional relation then [R](Y ) = 〈R〉(Y );
7. If R� is a functional relation then [R�](X) = 〈R�〉(X).

Proof. (1) (a) By definition b ∈ [R�] (X) iff ∀a(〈a, b〉 ∈ R =⇒ a ∈ X) iff
〈R〉(b) ⊆ X .(b) By symmetry. (2) from (1) by swapping the position of the

10 As the reader will probably note, the operations we denote with 〈R�〉(X) and 〈R〉(Y )
are often denoted with R(X) and, respectively, R�(Y ). Moreover, the left composi-
tion of R with Q is usually denoted with R; Q in mathematical literature. However,
there are several reasons which suggest to adopt the following symbols, mostly de-
pending on both logic and relational algebra. In particular logical reasons are related
to Kripke models for Modal Logics and, as to the left composition, to Linear Logic.
Apart from symbols, 〈R〉(Y ) coincides with what in [26] is called the ”extension” of
Y along R� and [R](Y ) the ”restriction” of Y along R�. In Formal Concept Analy-
sis [[R]](Y ) is the ”(derived) extent” of Y , while [[R�]](X) is called the ”(derived)
intent” of X. The terminology used here is that of Relation Algebra and connected
topics, (strictly speaking, residuals are defined provided X and Y are right ideal
elements - see for instance [16]).
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relations ∈ and R. (3) (a), (b) and (c) are obvious. (d) For any b ∈ B, either
〈a, b〉 ∈ R for some a ∈ A or the premise of the implication defining the operator
[R�] is false. (e) If R is surjective then for all a ∈ A there is a b ∈ B such
that 〈a, b〉 ∈ R. Moreover, in [R�](∅) the consequence is always false. Similar
proofs for (f) and (g). (4) Applied on singletons the definitions of [[α]] and 〈α〉
operators trivially coincide, for α = R or α = R�. (5) For all b ∈ B, b ∈ [R�](X)
iff 〈R〉(b) ⊆ X iff (for isotonicity of 〈R�〉) 〈R�〉(〈R〉(b)) ⊆ 〈R�〉(X). But
b ∈ 〈R�〉(〈R〉(b)). Hence b ∈ 〈R〉(X). Symmetrically for [R] and 〈R〉. (6) If R
is a functional relation, by definition R� is onto, thus from point (5) [R](Y ) ⊆
〈R〉(Y ) for any Y ⊆ B. Suppose x ∈ 〈R〉(Y ) and x /∈ [R](Y ). Then there is
y ∈ Y such that 〈x, y〉 ∈ R and there is a y′ /∈ Y such that 〈x, y〉 ∈ R and
〈x, y′〉 ∈ R. Hence R is not functional. (7) It is an instance of (6).

5.1 Solving the Divisor Inequalities

Now we come back for a while to the divisor diagram of Definition 5. Our instance
of this diagram reads as in Figure 3. Thus we have to understand under what
conditions we can have ”best approximating” maps.

Therefore, suppose in general φ is a function which maps subsets of a set A
into subsets of a set B (possibly in dependence on how the elements of A are
related via a binary relation R ⊆ A × B with the members of B). If φ(X) ⊇ Y
we can say that X approximates Y from above via φ. The smallest of these X
can therefore be thought of as a ”best approximation from above” via φ, for its
image is the closest to Y .

In order to get such a best approximation, if any, we should take
⋂

φ←(↑ Y ),
where ↑ Y = {Y ′ ⊆ B : Y ′ ⊇ Y }. In fact

⋂
φ←(↑ Y ) =

⋂
{X : φ(X) ⊇ Y }.

Dually, if we take
⋃

φ←(↓ Y ), where ↓ Y = {Y ′ ⊆ B : Y ′ ⊆ Y }, we should
obtain a ”best approximation from below” of Y , if any, via φ, because

⋃
φ←1(↓

Y ) =
⋃

{X : φ(X) ⊆ Y }.
To be sure, this approach is successful if φ(

⋂
φ←(↑ Y )) ⊇ Y and, dually,

φ(
⋃

φ←(↓ Y )) ⊆ Y . So we now shall examine, in an abstract setting, the condi-
tions under which the above operations are admissible and behave as expected.

Indeed, we have a mathematical result which states rigorously these informal
intuitions11.

11 We remind that in a preordered set O:
(a) ↑ X = {y : ∃x(x ∈ X & x � y)} = 〈��〉(X) is called the order filter generated
by X. In particular ∀p ∈ A, ↑ p =↑ {p} is called the principal order filter generated
by p. If O is partially ordered p = min(↑ p), where, given a set X, min(X) is the
minimum element of X.
(b) ↓ X = {y : ∃x(x ∈ X & y � x)} = 〈�〉(X) is called the order ideal generated
by X. In particular, ∀p ∈ A, ↓ p =↓ {p} is called the principal order ideal generated
by p. If O is partially ordered p = max(↓ p), where, given a set X, max(X) is the
maximum element of X.

From now on O = 〈A, ≤〉 and O′ = 〈A′, ≤′〉 will denote preordered or partial
ordered sets. Furthermore, with L and L′ we shall denote two arbitrary complete
and bounded lattices L = 〈L, ∨, ∧, 0, 1〉 and, respectively, L′ = 〈L′, ∨′, ∧′, 0′, 1′〉.
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Proposition 1. Let A and B be partially ordered sets, φ a functor (i. e. an
isotone map) between A and B. Then, the following conditions are equivalent:

1. (a) there exists a functor ψ : B �−→ A such that φ◦ψ ≥A 1A and ψ◦φ ≤B 1B;
(a’) for all b ∈ B, φ←(↓ b) is a principal order ideal of A.

2. (b) there exists a functor ϑ : A �−→ B such that ϑ◦φ ≥B 1B and φ◦ϑ ≤A 1A;
(b’) for all a ∈ A, ϑ←(↑ a) is a principal filter of B.

The proof can be found in [5].

5.2 Galois Adjunctions and Galois Connections

The conditions stated in Proposition 1 define a basic mathematical notion which
is at the core of our construction (NOTE: the following materials are known and
we have included them to render completeness to this paper).

Definition 8. Let σ : O �−→ O′ and ι : O′ �−→ O be two maps between par-
tial ordered sets. Then we say that ι and σ fulfill an adjointness relation if the
following holds:

∀p ∈ O, ∀p′ ∈ O′, ι(p′) ≤ p if and only if p′ ≤′ σ(p) (4)

If the above conditions hold, then σ is called the upper adjoint of ι and ι is
called the lower adjoint of σ. This fact is denoted by

O′ �ι,σ O (5)

and we shall say that the two maps form an adjunction between O and O′. If
the two preorders are understood we shall denote it with ι � σ, too12.

When an adjointness relationship holds between two preordered structures we
say that the pair 〈σ, ι〉 forms a Galois adjunction or an axiality. This name is
after the notion of a Galois connection which is defined by means of a similar
but covariant condition where, indeed, ι and σ are antitone:

∀p ∈ O, ∀p′ ∈ O′, ι(p) ≥′ p′ if and only if p ≤ σ(p′) (6)

We read this fact by saying that the pair 〈σ, ι〉 forms a Galois connection or a
polarity. Clearly, a Galois connection is a Galois adjoint with the right category
O turned into its opposite Oop. In other words, 〈σ, ι〉 is a polarity if and only if
O′ �ι,σ Oop.
12 Sometimes in mathematical literature, the lower adjoint is called ”left adjoint” and

the upper adjoint is called ”right adjoint”. However, the reader must take care of
the fact that we have two levels of duality. The first swaps the partial order (≤ into
≥ and vice-versa). The second swaps the order of application of the functors (ι ◦ σ
into σ ◦ ι, and the other way around) and the position of the two structures (by the
way, we notice that in usual literature given a map φ, the upper residual is denoted
with φ∗ and the lower residual is denoted with φ∗).
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We now state without proof a number of properties fulfilled by adjoint maps.

Proposition 2. Let σ : O �−→ O′ and ι : O′ �−→ O be mappings, p ∈ O and
p′ ∈ O′. Then,
(a) the following statements are equivalent:

(a.1) O′ �ι,σ O;
(a.2) σι(p′) ≥′ p′ and ισ(p) ≤ p, and both ι and σ are isotone;
(a.3) σ is isotone and ι(p′) = min(σ←(↑ p′));
(a.4) ι is isotone and σ(p) = max(ι←(↓ p));

If O′ �ι,σ O, then:
(b) σ preserves all the existing infs and ι preserves all the existing sups;
(c) ι = ισι, σ = σισ;
(d) σι and ισ are idempotent.
(e) σ is surjective iff ι(p′) = min(σ←({p′})) iff σι(p′) = p′ iff ι is injective;
(f) σ is injective iff σ(p) = max(ι←({p})) iff ισ(p) = p iff ι is surjective.

Notice that (e) and (f) are the reader’s digest of the story about retraction and
coretraction we told in Section 2.1.

Now we have a good stock of results in order to ”implement” a sufficiently
large body of useful operators, actually those operators which will constitute the
backbone of all the present story.

Definition 9. Let φ : O �→ O be an operator on a partially ordered set and
ϑ : L �→ L′ be an operator between two lattices. Then,
(1) φ is a projection operator on O iff it is isotone and idempotent;
(2) a projection operator is a closure operator iff it is increasing;
(3) a projection operator is an interior operator iff it is decreasing;
(4) ϑ is a modal operator iff it is normal (i. e. ϑ(0) = 0′) and additive;
(5) a closure operator ϑ on a lattice is topological iff it is modal;
(6) ϑ is a co-modal operator iff it is co-normal (i. e. ϑ(1) = 1′) and multiplicative;
(7) an interior operator ϑ on a lattice is topological iff it is co-modal;
(8) ϑ is an anti-modal operator iff it is anti-normal (i. e. ϑ(0) = 1′) and anti-
additive (i. e. ϑ(x ∨ y) = ϑ(x) ∧′ ϑ(y)).

Notice that in our definition of modal operators we do not require L = L′.
Then from Proposition 2 we immediately obtain:

Corollary 1. Let O′ �ι,σ O and O′ �ε,ς Oop hold (hence the latter is a Galois
connection between O and O′). Then,

1. (a) σι is a closure operator on O′; (b) ισ is an interior operator on O.
2. (a) ςε is a closure operator on O′; (b) ες is a closure operator on O.

It is worth underlining that none of these operators needs to be topological.
Moreover given the above adjointness situations we can underline what

follows:
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(m1) σ is half of a co-modal operator: it lacks co-normality;
(m2) ι is half of a modal operator: it lacks normality;
(m3) ε and ς are half of an anti-modal operator: they lack anti-normality.

The lack of properties concerning preservation of operations may be partially
amended when we restrict domains to the families of fixed points of the operators
σι, ισ, ες and ςε.

To this end the following two results are fundamental:

Lemma 2. Let φ : O �−→ O be a map. Then,
(a) if φ is closure then O �φo,φo Imφ; (b) if φ is interior then Imφ �φo,φo

O.

Corollary 2. Let φ : L �−→ L be a map. Then,

1. if φ is closure then φo is additive, φo(Imφ) is closed under infs, and
Satφ(L) = 〈Imφ, ∧, �, 1〉, where for all x, y ∈ Imφ, x � y = φ(x ∨ y), is a
lattice;

2. if φ is interior then φo is multiplicative, φo(Imφ) is closed under sups, and
Satφ(L) = 〈Imφ, �, ∨, 0〉, where for all x, y ∈ Imφ, x � y = φ(x ∧ y), is a
lattice.

We want to point out that if φ is closure then sups in L and sups in Imφ

may differ. Hence, although for all x ∈ L, φ(x) = φo(x) and φo is additive,
nonetheless φ in general is not sup-preserving so that φo(Imφ) is not closed
under sups (dually if φ is interior).

These results give the following proposition (where we have just to notice
that turning Lop upside-down interiors turns into closures, sups into infs and
viceversa):

Proposition 3. Let L′ �ι,σ L and L′ �ε,ς Lop hold. Then:

1. Satισ(L) = 〈Imισ, �, ∨, 0〉, where for all x, y ∈ Imισ, x � y = ισ(x ∧ y), is
a lattice;

2. Satσι(L′) = 〈Imσι, ∧′, �, 1′〉, where for all x, y ∈ Imσι, x � y = σι(x ∨′ y),
is a lattice;

3. Satςε(L′) = 〈Imςε, ∧′, �, 1′〉, where for all x, y ∈ Imςε, x � y = ςε(x ∨′ y),
is a lattice;

4. Satες(L) = 〈Imες , ∧, �, 1〉, where for all x, y ∈ Imες , x � y = ες(x ∨ y), is a
lattice.

6 Formal Operators on Points and on Observables

Now let us come back to our basic constructors.

Proposition 4 (Fundamental relationships). Let A and B be two sets, X ⊆
A, Y ⊆ B, R ⊆ A×B a relation and f̂ ⊆ A×B a functional relation. Then the
following holds:

1. (a) 〈R〉(Y ) ⊆ X iff Y ⊆ [R�](X); (b) 〈R�〉(X) ⊆ Y iff X ⊆ [R](Y ) .
2. Y ⊆ [[R�]](X) iff X ⊆ [[R]](Y );
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3. 〈f̂�〉(X) ⊆ Y iff X ⊆ 〈f̂〉(Y );
4. The operators 〈R〉, 〈R�〉, [R] and [R�] are isotone; [[R]] and [[R�]] are

antitone.

Proof. (1) (a) 〈R〉(Y ) ⊆ X iff R�(y) ⊆ X, ∀y ∈ Y iff (from Lemma 1.(1))
Y ⊆ [R�](X). (b) By symmetry. (2) X ⊆ [[R]](Y ) iff ∀x ∈ X(Y ⊆ R(x))
(from Lemma 1.(2)), iff ∀x ∈ X, ∀y ∈ Y (y ∈ R(x)) iff ∀y ∈ Y (X ⊆ R�(y))
iff ∀y ∈ Y (y ∈ [[R�]](X)) iff Y ⊆ [[R�]](X) (in view of Lemma 1.(1).(b)).
(3) Directly from Proposition 1. (4) Easily from the position of the subformula
”y ∈ Y ” and ”x ∈ X” in the definitions.

From the above discussion we trivially have:

〈��〉 = 〈i〉 〈�〉 = 〈e〉 [��] = [i] [�] = [e] [[��]] = [[i]] [[�]] = [[e]]

Therefore it is clear that if given a P-system, P, we set M = 〈℘(M), ⊆〉 and
G = 〈℘(G), ⊆〉, in view of Proposition 4 the following adjointness properties
hold:

(a) M �〈e〉,[i] G; (b) G �〈i〉,[e] M; (c) M �[[e]],[[i]] Gop; (d) G �[[i]],[[e]] Mop.

The lack of properties involving top and bottom elements, such as ”normality”
and ”co-normality”, for generic adjoint functions, is quite obvious since they de-
pend on the adjoint structures. But in the case of the basic constructors Lemma
1.(3) and Proposition 2 immediately prove that 〈e〉 and 〈i〉 are modal opera-
tors, [e] and [i] are co-modal operators and, finally, [[e]] and [[i]] are anti-modal
operators.

Moreover, in view of these adjunction properties, some sequences of construc-
tors with alternate decorations provide a number of useful operators on ℘(G)
and ℘(M). Indeed axiality says that if one operator lowers an element then its
conjugate operator lifts it, and vice-versa, so that by combining them either we
obtain the maximum of the lowering elements or the minimum of the lifting
elements of a given argument.

Definition 10. Let 〈G, M, �〉 be a P -system. Then:

– int : ℘(G) �−→ ℘(G); int(X) = 〈e〉([i] (X)).
– cl : ℘(G) �−→ ℘(G); cl(X) = [e] (〈i〉(X)).
– est : ℘(G) �−→ ℘(G); est(X) = [[e]] ([[i]] (X)).
– A : ℘(M) �−→ ℘(M); A(Y ) = [i] (〈e〉(Y )).
– C : ℘(M) �−→ ℘(M); C(Y ) = 〈i〉([e] (Y )).
– IT S : ℘(M) �−→ ℘(M); IT S(Y ) = [[i]] ([[e]] (Y )).

The above operators inherit ’d’, ’o’, ’s’, ’sd’, ’os’, ’od’ and ’ods’ reciprocal rela-
tionships from the outermost constructors which define them.

Proposition 5. In any P-system 〈G, M, �〉, for any X ⊆ G, Y ⊆ M , g ∈ G,
m ∈ M :

1. (a) m ∈ A(Y ) iff 〈e〉(m) ⊆ 〈e〉(Y ), (b) g ∈ cl(X) iff 〈i〉(g) ⊆ 〈i〉(X);
2. (a) g ∈ int(X) iff 〈i〉(g) ∩ [i] (X) �= ∅, (b) m ∈ C(Y ) iff 〈e〉(m) ∩ [e] (Y ) �= ∅;
3. (a) g ∈ est(X) iff [[i]](X) ⊆ 〈i〉(g), (b) m ∈ IT S(Y ) iff [[e]](Y ) ⊆ 〈e〉(m).
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Proof. (1) (a) By definition m ∈ A(Y ) iff m ∈ [i] (〈e〉(Y )). Hence from Lemma
1.(1), m ∈ A(Y ) iff 〈e〉(m) ⊆ 〈e〉(Y ). (b) By symmetry. (2) (a) g ∈ int(X) iff
g ∈ 〈e〉([i] (X)) iff g ∈ 〈e〉({m : 〈e〉(m) ⊆ X}), iff 〈i〉(g) ∩{m : 〈e〉(m) ⊆ X} �= ∅,
iff 〈i〉(g) ∩ [i] (X) �= ∅. (b) By symmetry. (3) (a) Directly from Lemma 1.(2) and
the definition of ”est”. (b) By symmetry13.

Therefore, g ∈ est(X) if and only if g fulfills at least all the properties that are
shared by all the elements of X . In this sense est(X) is the extent of the set of
properties that characterises X as a whole. Symmetrically, m ∈ IT S(Y ) if and
only if m is fulfilled by at least all the objects that enjoy all the properties from
Y . In this sense IT S(Y ) is the intent of the set of objects that are characterised
by Y as a whole.

In order to understand the meaning of the other operators, let us notice that
the elements of M can be interpreted as ”formal neighborhoods”14. In fact, in
topological terms a neighborhood of a point x is a collection of points that
are linked with x by means of some nearness relation. For a member m of M
is associated, via 〈e〉 with a subset X of G, m may be intended as a ’proxy’
of X itself. Thus if X is a concrete neighborhood of a point x, then m may
be intended as a formal neighborhood of x, on the basis of the observation
that the nearness relation represented by X states that two points are close to
each other if they both fulfill property m15. It follows that obs(g) is the family
of formal neighborhoods of g (symmetrically for sub(m) we have the concrete
neighborhoods of m). This is the intuitive content of the following gift of the
adjointness relationships between basic constructors:

Interior operators int, C
Closure operators cl, A, est, IT S

In view of the observation after Corollary 1 one easily notices that none of the
above operators needs to be topological.

6.1 Fundamental Properties of the Formal Perception Operators

Definition 11. Let P be any P-system. Then we define the following families
of fixpoints of the operators induced by P:

1. Ωint(P) = {X ⊆ G : int(X) = X}; Γcl(P) = {X ⊆ G : cl(X) = X};
2. Γest(P) = {X ⊆ G : est(X) = X}; ΩA(P) = {Y ⊆ M : A(Y ) = Y };
3. ΓC(P) = {Y ⊆ M : C(Y ) = Y }; ΓIT S(P) = {Y ⊆ M : IT S(Y ) = Y }.

13 Moreover, [[i]](X) = {m : X ⊆ 〈e〉(m)} = {m : ∀x ∈ X(x � m)}. Henceforth
[[i]](X) ⊆ 〈i〉(g) iff g � m for all m such that x � m, for any member x of X, that
is, iff ∀m ∈ M((∀x ∈ X(x � m)) =⇒ g � m).

14 Indeed, this is the framework in which the operators cl, int, A and C are introduced,
although not by means of adjointness properties, by the Padua School of Formal
Topology (see [26]).

15 This interpretation is close to the approach of [11].
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It is understood that the partial order between saturated subsets is inherited
from the category they are derived from. Thus, for instance, we shall have
〈ΓC(M), ⊆〉.

Proposition 6. Let P be a P-system. Then the following are complete lattices:

1. Satint(P) = 〈Ωint(P), ∪, ∧, ∅, G〉, where
∧

i∈I Xi = int(
⋂

i∈I Xi);
2. SatA(P) = 〈ΩA(P), ∨, ∩, ∅, M〉, where

∨
i∈I Yi = A(

⋃
i∈I Yi);

3. Satcl(P) = 〈Γcl(P), ∨, ∩, ∅, G〉, where
∨

i∈I Xi = cl(
⋃

i∈I Xi);
4. SatC(P) = 〈ΓC(P), ∪, ∧, ∅, M〉, where

∧
i∈I Yi = C(

⋂
i∈I Yi);

5. Satest(P) = 〈Γest(P), ∩, ∨, est(∅), G〉, where
∨

i∈I Xi = est(
⋃

i∈I Xi);
6. SatIT S(P) = 〈ΓIT S(P), ∩, ∨, IT S(∅), M〉, where

∨
i∈I Yi = IT S(

⋃
i∈I Yi).

Proof. Much work has already been done in Proposition 3. We just need to
justify the choice of top and bottom elements. To this end, remember that in
any P-system both � and �� are onto. Hence in view of Lemma 1.(3). int(G) =
〈e〉[i](G) = 〈�〉[��](G) = 〈�〉(M) = G, and analogously for the other operators.
The only difference is for IT S and est because [[�]](∅) = G but [[��]](G) =
{m : 〈�〉(m) = G} ⊇ ∅, dually for [[�]][[��]](∅).

Lemma 3. Let P be a P-system. Then for all X ⊆ G, Y ⊆ M ,

X ∈ Ωint(P) iff X = 〈e〉(Y ′) X ∈ Γcl(P) iff X = [e](Y ′) X ∈ Γest(P) iff X = [[e]](Y ′)

Y ∈ ΩA(P) iff Y = [i](X ′) Y ∈ ΓC(P) iff Y = 〈i〉(X ′) Y ∈ ΓIT S(P) iff Y = [[i]](X ′)

for some Y ′ ⊆ M, X ′ ⊆ G.

Proof. If X = 〈e〉(Y ′) then X = 〈e〉[i]〈e〉(Y ′), from Proposition 2.(c). Therefore,
by definition of int, X = int(〈e〉(Y ′)) = int(X). Vice-versa, if X = int(X), then
X = 〈e〉[i](X). Hence, X = 〈e〉(Y ′) for Y ′ = [i](X). The other cases are proved
in the same way, by exploiting the appropriate equations of Proposition 2.(c).

Corollary 3. Let P be a P-system. Then the following are isomorphisms:

1. (a) 〈e〉 : SatA(P) �−→ Satint(P); (b) [i] : Satint(P) �−→ SatA(P);
2. (a) [e] : SatC(P) �−→ Satcl(P); (b) 〈i〉 : Satcl(P) �−→ SatC(P);
3. The following are anti-isomorphisms (where − is the set-theoretical comple-

mentation):
(a) [[i]] : Satest(P) �−→ SatIT S(P); [[e]] : SatIT S(P) �−→ Satest(P);
(b) − : Satcl(P) �−→ Satint(P); − : SatC(P) �−→ SatA(P).

Proof. Let us notice, at once, that the proof for an operator requires the proof
for its adjoint operator. Then, let us prove (1).(a) and (b) together: First,
let us prove bijection for 〈e〉 and [i]. From Lemma 3 the codomain of 〈e〉 is
Ωint(P) and the codomain of [i] is ΩA(P). Moreover, for all X ∈ Ωint(P), X =
〈e〉[i](X) and for all Y ∈ ΩA(P), Y = [i]〈e〉(Y ). From the adjointness properties
we have:
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(i) 〈e〉 is surjective on Ωint(P) and (ii) [i] is injective from Ωint(P).
(iii) 〈e〉 is injective from ΩA(P) and (iv) [i] is surjective onto ΩA(P).

Moreover, if [i] is restricted to Ωint(P), then its codomain is the set H = {Y :
Y = [i](X) & X ∈ Ωint(P)}. Clearly, H ⊆ ΩA(P). In turn, if 〈e〉 is restricted
to ΩA(P), then its codomain is the set K = {X : X = 〈e〉(Y ) & Y ∈ ΩA(P)}.
Clearly K ⊆ Ωint(G). Therefore, (i) and (iii) give that 〈e〉 is bijective if restricted
to ΩA(P), while (ii) and (iv) give that [i] is a bijection whenever restricted to
Ωint(P)16.

Now we have to show that 〈e〉 and [i] preserve joins and meets. For 〈e〉 we pro-
ceed as follows: (v) 〈e〉(

∨
i∈I(A(Yi))) =def 〈e〉(A(

⋃
i∈I(A(Yi))). But 〈e〉A = 〈e〉,

from Proposition 2.(c). Moreover, 〈e〉 distributes over unions. Hence the right side
of (v) equals to

⋃
i∈I〈e〉(A(Yi)). But in view of Proposition 6, the union of exten-

sional open subsets is concrete open and from Lemma 3 〈e〉(A(Yi)) belongs indeed
to ∈ Ωint(P), so that the right side of (v) turns into int(

⋃
i∈I〈e〉(A(Yi))) =def∨

i∈I〈e〉(A(Yi)).
(vi) 〈e〉(

∧
i∈I A(Yi)) = 〈e〉(

⋂
i∈I [i]〈e〉(Yi)). Since [i] distributes over intersec-

tions, the right side of (vi) turns into 〈e〉[i](
⋂

i∈I〈e〉(Yi)) = int(
⋂

i∈I〈e〉(Yi)).
But 〈e〉 = 〈e〉A, so that the last term is exactly

∧
i∈I〈e〉(A(Yi)). Since [i] is the

inverse of 〈e〉, qua isomorphism, we have that [i] preserves meets and joins, too.
As to (2) the results come by symmetry.

(3) (a) As in the above proof by noticing that in polarities the right
structure is reversed upside-down (we can optimize a passage by noticing that
[[e]] and [[i]] are both upper and lower adjoints). (b) By duality between the
operators.

6.2 Pre-topological Approximation Spaces

Now we are in position to show how the above mathematical machinery may
be used to generalise the upper and lower approximation operators provided by
Rough Set Theory.

Given X ⊆ G we know that [e]〈i〉(X) ⊇ X and 〈e〉[i](X) ⊆ X .
We can interpret these relationships by saying that

– cl is an upper approximation of the identity map on ℘(G);
– int is a lower approximation of the identity map on ℘(G).

More precisely, 〈i〉(X) = min([e]←(↑ X)) = min{X ′ ⊆ G : [e](X ′) ⊇ X}, it
follows that [e]〈i〉(X) (i. e. cl) is the best approximation from above to X via
function [e].

Dually, [i](X) = max(〈e〉←(↓ X)) = max{X ′ ⊆ G : 〈e〉(X ′) ⊆ X}. Hence,
〈e〉[i](X) (i. e. int) is the best approximation from below to X , via function 〈e〉. Of
course, if 〈i〉 is injective (or, equivalently, [e] is surjective), then we can exactly

16 As side results, we have: (i) ΩA(P) = H and (ii) Ωint(P) = K. This is not surprising,
because if Y ∈ ΩA(P) then Y = [i]〈e〉(Z) for some Z ⊆ M and 〈e〉(Z) ∈ Ωint(P),
any Z ⊆ M . Vice-versa, if X ∈ Ωint(P), then X = 〈e〉(Z). Hence [i](X) = [i]〈e〉(Z)
belongs to ΩA(P). Symmetrically for (ii).
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reach X from above by means of [e]. The element that must be mapped is,
indeed, 〈i〉(X). Dually, if [i] is injective (or 〈e〉 is surjective), then we can exactly
reach X from below by means of 〈e〉 applied to [i](X).

7 Information, Concepts and Formal Operators

So far we have discussed a number of instruments that act on either abstraction
sides we are dealing with, that is, points and properties. Indeed, the introduced
operators are based on well-defined mathematical properties, such as adjointness,
and feature proper informational and conceptual interpretations.

Also, the use of the terms ”open” and ”closed” is not an abuse because, on the
contrary, these operators translate the usual topological definitions of an interior
and, respectively, a closure of a set X ⊆ G, into the language of observation
systems, provided the elements of M are interpreted as formal neighborhoods.

For instance, the usual definition tells us that for any subset X of G, a point a
belongs to the interior of X if and only if there is a neighbourhood of a included
in X . If the elements of the set M are intended as formal neighbourhoods, then
the relation a � b (hence, a ∈ 〈e〉(b)) says that b is a formal neighborhood of a
and 〈e〉(b) ⊆ X says that the extension of this neighbourhood b is included in X .
But this is precisely a reading of a ∈ 〈e〉[i](X), because in view of the adjunction
properties, 〈e〉(b) ⊆ X if and only if b ∈ [i] (X).

Thus we have made a further step beyond M. Smyth’s seminal observation
that semi-decidable properties are analogous to open sets in a topological space,
with the aid of the interpretation of basic constructors elaborated by the Padua
School on Formal Topology17.

Moreover, we have seen that int and cl provide us with lower and upper
approximations of any set X ⊆ G.

But are we really happy with this machinery? The answer is ”yes and no”.
Yes, for we have found a mathematically sound way to deal with approxima-
tions which enjoy a reliable intuitive interpretation. No, for both int and cl are
discontinuous (non topological) operators because int is not multiplicative and
cl is not additive, so that we have to face ”jumps” which can be too wide and
make us miss information.

EXAMPLE 1
Here we give an example of a P-system and its induced operators:

� b b1 b2 b3

a 1 1 0 0
a1 0 1 0 1
a2 0 1 1 1
a3 0 0 0 1

17 See for instance [25] and [27].
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Let us try and compute some instances of basic formal operators on system P:

1) Extensional operators:
int({a, a1}) = 〈e〉[i]({a, a1}) = 〈e〉({b}) = {a}; int({a2}) = 〈e〉({b2}) = {a2}.
cl({a, a1})=[e]〈i〉({a, a1})=[e]({b, b1, b3})={a, a1, a3}; cl({a, a2})=[e](M)=G.
est({b1, b2}) = [[i]][[e]]({b1, b2}) = [[i]]({a2}) = {b1, b2, b3}.
int(int({a, a1})) = int({a}) = 〈e〉[i]({a}) = 〈e〉({b}) = {a}.
cl(cl({a, a1}))= cl({a, a1, a3})= [e]〈i〉({a, a1, a3})= [e]({b, b1, b3})= {a, a1, a3}.
est(est({b1, b2}))=est({b1, b2, b3})=[[i]][[e]]({b1, b2, b3})=[[i]]({a2})={b1, b2, b3}.
Thus, this is also an example of the fact that int is decreasing while cl and
est are increasing and all of them are idempotent. Moreover, one can see
that int({a, a1}) ∪ int({a2}) = {a, a2} ⊆ {a, a1, a2} = int({a, a1} ∪ {a2}) and
cl({a, a1}) ∩ cl({a, a2}) = {a, a1, a2} ⊇ {a} = cl({a, a1} ∩ {a, a2}).

2) Intensional operators:
A({b, b1}) = [i]〈e〉({b, b2}) = [i]({a, a1, a2}) = {b, b1, b2}.
C({b2, b3}) = 〈i〉[e]({b2, b3}) = 〈i〉({a3}) = {b3}.
ITS({b1, b2}) = [[i]][[e]]({b1, b2}) = [[i]]({a2}) = {b1, b2, b3}.
A(A({b, b1})) = A({b, b1, b2}) = [i]〈e〉({b, b1, b2}) = [i]({a, a1, a2}) = {b, b1, b2}.
C(C({b2, b3})) = C({b3}) = 〈i〉[e]({b3}) = 〈i〉({a3}) = {b3}.
ITS(ITS({b1, b2}))=ITS({b3})=[[i]][[e]]({b1, b2, b3})=[[i]]({a2})={b1, b2, b3}.
Thus, this is also an example of the fact that C is decreasing while A and ITS
are increasing and all of them are idempotent.

Let us now visualise the lattices of saturated sets:

Satint(P) Satcl(P)

G G

�� �� �� ��
{a1, a2, a3} {a, a1, a2} {a1, a2, a3} {a, a1, a3}

������

�� �� �� ������
{a, a2} {a1, a3}

�� �� ��
{a2} {a} {a3} {a}

�� �� �� ��
∅ ∅

SatA(P) SatC(P)

M M

�� �� �� ��
{b2, b3} {b, b1, b2} {b1, b2, b3} {b, b1, b3}

������

�� �� �� ������
{b, b2} {b1, b3}

�� �� ��
{b2} {b} {b3} {b, b1}

�� �� �� ��
∅ ∅
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SatIT S(P) Satest(P)

G G

�� �� �� ��
{b, b1} {b1, b2, b3} {a1, a2, a3} {a, a1, a2}

������

�� �� �� ������
{b1, b3} {a1, a2}

�� �� ��
{b1} {b3} {a2} {a}

�� �� �� ��
∅ ∅

Pay attention that SatIT S(P) and SatA(P) have the same shape just by chance
(idem for Satest(P) and Satcl(P)).

The non topological nature of these operators is openly visible in the above
pictures. For instance in Satint(P) we do not have the intersection of {a1, a2, a3}
and {a, a1, a2}. Hence int does not distribute over intersections. in Satcl(P) we
lack the union of {a3} and {a}, so that cl does not distribute over unions.

However we have a few results which will be useful.

Proposition 7. Let θ and φ be two dual basic operators. Then,
(a) θ is a closure operator if and only if φ is an interior operator;
(b) θ is topological if and only if φ is topological.

Proof. (a) Trivially, since complementation reverses the order. (b) Suppose θ is
additive, then φ(X∩Y ) = −θ−(X∩Y ) = −θ(−X∪−Y ) = −(θ(−X)∪θ(−Y )) =
−θ(−X) ∩ −θ(−Y ) = φ(X) ∩ φ(Y ). Dually for the opposite implication.

In order to try and solve the above issue, we must notice that any answer and
solution depends on the nature of the P-system at hand. Generally, the nature of
points is not really important. More important is the nature of properties. And,
even more important is the nature of the operator supposed to better represent
the basic perception act.

7.1 Choosing the Initial Perception Act

We have assumed that our first act of knowledge is a grouping act, a sort of
”data abstraction”. However, we can basically perform this act in two opposite
ways: either collect around an object g the elements which fulfills at least all
the properties (or attribute-values) of g, or the elements fulfilling at most all the
properties (or attribute-values) of g. Otherwise stated, in the first case we collect
the objects which are characterised at least as g by the properties (attributes)
at hand, while in the second case we collect the objects which are characterised
at most as g. However if we consider attribute-values the two conditions collapse
(see later on).

Moreover notice that the grouping rule just asserted does not imply any form
of symmetry. Indeed, g′ could manifest all the properties of g but also additional
properties that are not manifested by g. To put it another way, we are claiming
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that our basic grouping act is not based on the notion ”to manifest exactly
the same properties”, but on the notion ”to manifest at least (or at most) the
same properties”. Indeed, the set of properties which are manifested by g, is
the attracting phenomenon around which we form our perception. Thus from
an analytical point of view we have just to focus on these properties and not to
take into account additional properties. In the present paragraph we shall see
that the former notion is subsumed by the latter. That is, if we define this way
the basic ”cells” of our categorisation process, we shall be able to cover a wider
range of cases.

Let 〈G, At, {Va}a∈At〉 be an Attribute System. Then for all g ∈ G define:
Qg = {g′ : ∀a ∈ At, ∀x ∈ Va((a(g) = x) =⇒ (a(g′) = x))}

Let 〈G, M, �〉 be a Property System. Then for all g ∈ G define:
Qg = {g′ : ∀p ∈ M(p ∈ 〈i〉(g) =⇒ p ∈ 〈i〉(g′))}

Qg will be called the quantum of information at g.

In view of the previous discussion we adopt quanta of information because they
reflect the idea ”g is perceived together g′ whenever it manifests at least the
same properties as g”.

Therefore, given (the properties manifested by) an object g the perception cell
organised around g should be Qg which should be referred to as the ”minimum
perceptibilium at location g”, for it is not possible to perceive g without per-
ceiving (the manifestations of) the other members of that ”perception parcel”.
Therefore, we call such perception parcel a quantum of perception or a quan-
tum of information at g. This terminology drew its inspiration from [4] and this
term expresses a sort of programme that may be epitomized by the slogan ”any
information is a quantum of information”.

As to quanta of information from a Property System, we can elaborate a little
further (we shall resume Attribute Systems later on).

Proposition 8. Let 〈G, M, �〉 be a P-system and g, g′ ∈ G. Then,

1. Qg = est(g); g′ ∈ Qg iff 〈i〉(g) ⊆ 〈i〉(g′)
2. g′ ∈ Qg iff for all X ∈ Γest, g ∈ X =⇒ g′ ∈ X;
3. g′ ∈ Qg iff for all p ∈ M, g ∈ 〈e〉(p) =⇒ g′ ∈ 〈e〉(p);
4. g′ ∈ Qg iff g ∈ cl(g′).

Proof. (1) Indeed, g′ ∈ est(g) iff 〈i〉(g′) ⊇ [[i]](g). But [[i]](g) = 〈i〉(g), whence
g′ ∈ est(g) if and only if p ∈ 〈i〉(g) =⇒ p ∈ 〈i〉(g′) if and only if g′ ∈ Qg if and
only if 〈i〉(g) ⊆ 〈i〉(g′).
(2) (�) Suppose X ∈ Γest and g ∈ X =⇒ g′ ∈ X . Then 〈i〉(g) ⊇ [[i]](X)
implies 〈i〉(g′) ⊇ [[i]](X). Since this happens for all est-saturated X , it happens
for [[i]](g) too and we trivially obtain 〈i〉(g′) ⊇ 〈i〉(g), so that g′ ∈ Qg. (�)
If g′ ∈ Qg then 〈i〉(g′) ⊇ 〈i〉(g). If, moreover, g ∈ X , for X = est(X), then
〈i〉(g) ⊇ [[i]](X). By transitivity, 〈i〉(g′) ⊇ [[i]](X), whence g′ ∈ X too. (3)
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Indeed, g ∈ 〈e〉(x) if and only if g � x if and only if x ∈ 〈i〉(g). Hence for all
p ∈ M, g ∈ 〈e〉(p) =⇒ g′ ∈ 〈e〉(p) if and only if for all p ∈ M, p ∈ 〈i〉(g) =⇒ p ∈
〈i〉(g′). (4) So, g′ ∈ Qg if and only if 〈i〉(g) ⊆ 〈i〉(g′) if and only if g ∈ cl(g′).

Indeed, these results, trivial consequences of Lemma 1 and Proposition 4, for-
mally state that g′ is perceived together with g if and only if it fulfills at least
all the properties fulfilled by g. Moreover, a quantum of perception at location g
is the universal extension of function sub to the set of properties � (g) fulfilled
by g. In turn, since we start from a singleton {g}, � (g) is both a universal and
an existential extension of function obs.

When we have to move from grouping maneuvers around a single object to
grouping maneuvers around two or more objects we have essentially two kinds
of choice: universal extensions from singletons to a generic set X and existential
extensions. The existential extension is defined as

Q∪X =
⋃

x∈X

Qx (7)

This is not the sole choice, but for the very reasons discussed so far, we shall
adopt it. Moreover, it makes a uniform treatment of both P-systems and A-
systems possible.

As for universal extensions we briefly discuss only the following alternative:

Q⊗X = [[e]][[i]](X) = est(X). (8)

The superscript ⊗ underlines the fact that in est(X) we consider the properties
which glue the elements of X together. Otherwise stated, we extract from 〈i〉(X)
those properties P ′ which are shared by all the elements of X . Then we make
exactly the same thing with respect to P ′. Thus, according to this universal
extension, an object g belongs to Q⊗X if g fulfills all the properties fulfilled by all
the elements of X .

Whenever we need to distinguish the system inducing a quantum of infor-
mation, we shall use the name of the system as an exponent. The same for
any operator (for instance we shall write QP

g and intP if needed). Moreover, if
O = 〈X, R〉, we set −O = 〈X, −R〉 and O� = 〈X, R�〉.

7.2 Information Quantum Relational Systems

Now that we have chosen the basic mechanisms (basis and step) leading from
atomic perception (or ”elementary perception cells”) to complex perception, let
us analyse what kinds of a relation arise between elements of G from these
grouping maneuvers.

Let us then set the following definition:

Definition 12 (Information Quantum Relational System). Let S be an
A-system or a P-system over a set of points G. Let R be a binary relation on G.
We say that R is induced by S whenever the following holds, for all g, g′ ∈ G:

〈g, g′〉 ∈ R iff g′ ∈ Qg.
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We call R the information quantum relation - or i-quantum relation or quantum
relation in short - induced by S and it will be denoted as RS. Moreover, Q(S)
will denote the relational system 〈G, RS〉, called the Informational Quantum Re-
lational System - IQRS, or Quantum Relational System in short, induced by S.
Finally we set ΩQ(S) = {RS(X) : X ⊆ G}18.

Since g ∈ Qg′ says that g fulfills at least all the properties fulfilled by g′, then
〈g′, g〉 ∈ RS has the same meaning.

Clearly the properties of i-quantum relations depend on the patterns of ob-
jects induced by the given systems. However, they uniformly fulfill some basic
properties.

In view of the additivity property of generalised quanta, we can confine our
attention to i-quanta at a location.

Lemma 4. In any A-system S over a set G, for all g, g′, g′′ ∈ G:

1. (a) g ∈ Qg (q-reflexivity); (b) g′′ ∈ Qg′ & g′ ∈ Qg =⇒ g′′ ∈ Qg (q-
transitivity).

2. If S is an A-system, a functional or a dichotomic P-system then g′ ∈ Qg

implies g ∈ Qg′ (AFD-q-symmetry).

Proof. The first two statements are obvious consequences of transitivity and
reflexivity of the relation ⊆. Notice that antisymmetry does not hold because
of the obvious fact that g′ ∈ Qg and g ∈ Q′g does not imply g′ = g. Now, let
S be an A-system. Suppose g′ ∈ Qg and a(g) �= x, then a(g) = x′ for some
x′ �= x so that a(g′) = x′, because g′ ∈ Qg, whence a(g′) �= x too. Therefore,
g′ ∈ Qg implies g ∈ Qg′ , so that the induced relation is also symmetric. If S is a
functional P-system then we trivially obtain the proof from definitions and the
fact that 〈i〉(g) is a singleton. Finally, if S is dichotomic and g′ ∈ Qg, then g′

fulfills at least the same properties as g. Now, if g′ � p while g �� p, then g � p,
where p is a complementary copy of p. But g′ �� p, since it fulfills p. Hence we
cannot have 〈i〉(g) ⊆ 〈i〉(g′), whence g′ �∈ Qg. Contradiction.

So notice that in A-systems the universal quantification over attribute-values
hides a bi-implication because the set of attribute-values of g′ and that of g
must coincide in order to have g′ ∈ Qg.

As an immediate consequence of the above result we have:

Proposition 9. Let S be an A-system or a P-system. Then:

1. The i-quantum relation RS induced by S is a preorder;
2. If S is an A-system or an FP or DP system, then RS is an equivalence

relation;
3. If S is an FP-system then RS =� ⊗ �� and g′ ∈ Qg iff g′ ∈ [g]k� .

18 I-quanta and i-quantum relations from A-systems were introduced in [13], with dif-
ferent names. If the entire set M is considered as a multi-valued property, then
i-quantum relations coincide with the so-called ”forward inclusion relations” intro-
duced in [12].
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Proof. We just have to prove statement (3). In view of Proposition 8.(4) we just
need to show that if � is a map then for all x ∈ G, cl({x}) = [x]κ� . From
Proposition 7.1, a ∈ cl({a′}) if and only if 〈i〉({a}) ⊆ 〈i〉({a′}). Therefore, if �
happens to be a map, we have that a ∈ cl({a′}) if and only if 〈i〉({a}) = 〈i〉({a′}),
since exactly one value is admitted. We can conclude that for all x ∈ G, cl({x}) =
{x′ : 〈i〉(x′) = 〈i〉(x)} = 〈e〉〈i〉({x}) = [x]k� (that is, the kernel of �).

EXAMPLE 2
Consider the P-system P of EXAMPLE 1. Let us compute some quanta of infor-
mation of P: Qa = {a}, Qa′ ={a′, a′′}, Qa′′ ={a′′}, Qa′′′ ={a′, a′′, a′′′}, Q{a,a′} =
{a, a′, a′′} and so on addictively. Thus 〈a′, a′′〉 ∈ RS because a′′ ∈ Qa′ but the
opposite does not hold.
Here below the i-quantum relations RP and RQ(P) are displayed:

RP a a′ a′′ a′′′ RQ(P) a a′ a′′ a′′′

a 1 0 0 0 a 1 0 0 0
a′ 0 1 1 0 a′ 0 1 0 1
a′′ 0 0 1 0 a′′ 0 1 1 1
a′′′ 0 1 1 1 a′′′ 0 0 0 1

It is easy to verify that both of the above relations are reflexive and transitive,
and R�

P = RQ(P). Moreover one can see that, for instance, Q
Q(P)
a′ = {a′, a′′′}

or Q
Q(P)
a′′ = {a′, a′′, a′′′}. Indeed we have that a′ ∈ Qa′′′ and a′′′ ∈ Q

Q(P)
a′ , or

a′′ ∈ Qa′ whereas a′ ∈ Q
Q(P)
a′′ , and so on.

Now consider the A-system A = 〈G = {a, a1, a2, a3}, At = {A, B, C}, {VA =
{0, 1, 3}, VB = {b, c, f}, VC = {α, δ}}〉 such that A(a) = A(a2) = 1, A(a1) =
0, A(a3) = 3, B(a) = B(a2) = b, B(a1) = c, B(a3) = f, C(a) = C(a1) = C(a2) =
α, C(a3) = δ. We have: QA

a = QA
a2

= {a, a2}, QA
a1

= {a1}, QA
a3

= {a3}.
The resulting i-quantum relation RA = {〈a, a2〉, 〈a2, a〉, 〈a, a〉, 〈a2, a2〉, 〈a1, a1〉,
〈a3, a3〉} is an equivalence relation.

From the above results we obtain immediately some interesting consequences
about functional P-systems:

Corollary 4. Let P be an FP-system. Then,

(a) cl is a topological closure operator; (b) int is a topological interior operator.

Proof. From Proposition 8.(4) and Proposition 9.(3) we have that cl(x) = [x]k� .
But k� is the kernel of � and the kernel of a function is a congruence. It follows
by induction that cl(X) ∪ cl(Y ) = [X ]k� ∪ [Y ]k� = [X ∪ Y ]k� = cl(X ∪ Y ).
Hence cl is additive. Since int is dual of cl we immediately obtain that int is
multiplicative.

We now list some results in terms of IQRSs. Since i-quantum relations are pre-
orders, it is useful to prove some general facts about this kind of relations:
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Proposition 10. Let O = 〈X, R〉 be any preordered set. Then for any x, y ∈ X
the following are equivalent:

(1) y ∈ 〈R�〉(x); (2) 〈R�〉(y) ⊆ 〈R�〉(x); (3) x ∈ QO
y ; (4) x ∈ 〈R〉(y); (5)

y ∈ QO�

x .

Proof. (1 �� 2) y ∈ R(x) iff 〈x, y〉 ∈ R. Suppose 〈y, y′〉 ∈ R. Since R is
transitive, for all y′ ∈ X , 〈y, y′〉 ∈ R =⇒ 〈x, y′〉 ∈ R so that 〈R�〉(x) ⊇ 〈R�〉(y).
Conversely, since R is reflexive, y ∈ 〈R〉(y) holds. Thus if 〈R�〉(x) ⊇ 〈R�〉(y)
then y ∈ 〈R�〉(x). All the other equivalences are obvious consequences or even
just definitions.

Corollary 5. Let S be an A-system or a P-system over a set G. Then,

g′ ∈ QS
g iff g′ ∈ 〈R�

S 〉(g) iff g ∈ Q
Q(S)
g′ iff g′ ∈ Q

Q(Q(S))
g iff g ∈ 〈RS〉(g′) iff

g ∈ Q−S
g′ .

Proof. The first equivalence is just a definition. Now, g′ ∈ 〈R�
S 〉(g) iff 〈R�

S 〉(g′) ⊆
〈R�

S 〉(g) iff g ∈ Q
Q(S)
g′ iff g ∈ 〈R�

Q(S)〉(g′) iff 〈R�
Q(S)〉(g) ⊆ 〈R�

Q(S)〉(g′) iff

g′ ∈ Q
Q(Q(S))
g . From this we have that Q

Q(S)
g = 〈RS〉(g) so that in view of

trivial set-theoretic considerations, (X ⊆ Y iff −Y ⊆ −X) we obtain the last
two equivalences.

These equivalences show that IQRSs of level higher than 1 do not provide any
further information.

Corollary 6. If S is an A-system, an FP-system or a DP-system over a set
G, then for all g, g′ ∈ G, X ⊆ G, (a) g′ ∈ QS

g iff g′ ∈ Q
Q(S)
g ; (b) 〈R�

S 〉(X) =
〈R�

Q(S)〉(X).

Moreover, since a P-system is a generic relational system we have that all facts
valid for P-systems are valid for any relational system.

The notion of a quantum of information is asymmetric for P-systems, because
if g′ fulfills strictly more properties than g, we have g′ ∈ Qg but g �∈ Qg′ . On the
contrary it is symmetric in the case of A-systems and dichotomic or functional
P-systems.

8 Higher Level Operators

Let S be an A-system and let Q(S) = 〈G, G, RS〉 be its induced IQRS.
What kinds of patterns of data can we collect by applying our operators to these
derivative systems?

First of all, since in IQRSs there is no longer the distinction between objects
and properties and intension or extension, it is better we change once more our
symbols and notation:
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The operator defined as turns into
〈i〉 〈i〉(X) = {g : ∃g′(g′ ∈ X & 〈g′, g〉 ∈ RS)} 〈R�

S 〉
〈e〉 〈e〉(X) = {g : 〈R�

S 〉(g) ∩ X �= ∅} 〈RS〉
[i] [i](X) = {g : 〈RS〉(g) ⊆ X} [R�

S ]
[e] [e](X) = {g : 〈R�

S 〉(g) ⊆ X} [RS]

Let us call the above operators decorated with RS ”quantum operators” (notice
that in this context [[RS]] and [[R�

S ]] are not quantum operators).
Quantum operators behave in a very particular way, because, we remind, they

fulfill adjoint properties. Namely 〈RS〉 � [R�
S ] and 〈R�

S 〉 � [RS].
Actually, the following results apply to any preorder.

Proposition 11. Let Q(S) = 〈G, G, RS〉 be a IQRS. Let Oi and Oj be any two
adjoint quantum operators from the set {〈R�

S 〉, 〈RS〉, [R�
S ], [RS]}. Then

(a) OiOj = Oj; (b) OjOj = Oj ; (c) the fixpoints of Oi and Oj coincide.

Proof. (a) (i) In view of Proposition 5, for all g ∈ G and X ⊆ G, g ∈ [RS]〈R�
S 〉

(X) iff 〈R�
S 〉(g) ⊆ 〈R�

S 〉(X), iff (from Proposition 10) g ∈ 〈R�
S 〉(X).

One can prove g ∈ [R�
S ]〈RS〉(X) iff g ∈ 〈RS〉(X) similarly.

(ii) In view again of Proposition 5, a ∈ 〈RS〉[R�
S ](X) iff 〈R�

S 〉(a)∩ [R�
S ](X) �= ∅,

iff there is a′ such that a ∈ 〈RS〉(a′) and a′ ∈ [R�
S ](X). But a′ ∈ [R�

S ](X) iff
〈RS〉(a′) ⊆ X iff 〈RS〉(a) ⊆ X . Hence, a ∈ 〈RS〉[R�

S ](X) iff a ∈ [R�
S ](X).

(b) From point (a) and Proposition 6.3, OjOj = OiOjOiOj = OiOj = Oj .
(c) Let X = Oj(X). Then from point (a) Oi(X) = OiOj(X) = Oj(X) = X .

Definition 13. Let S be an A-system or a P-system. With ΩQ(S) we shall
denote the family {QS

X : X ⊆ G}. With Qn(S) we denote the n-nested application
of the functor Q to S.

In view of these results we can prove a number of properties.

Lemma 5. For any P-system P, (a) Ωint(P) ⊆ ΩQ(P); (b) Γcl(P) ⊆ Ωint

(Q(P)).

Proof. (a) Assume X � QX . Thus we must have some x such that x /∈ X
but x ∈ QX . Thus there is g ∈ X such that � (x) ⊇� (g), so that for all
m ∈ M such that g � m surely �� (m) � X . It follows that g /∈ intP(X)
and, hence, intP(X) �= X . (b) We remind that x ∈ clP(X) iff 〈i〉(x) ⊆ 〈i〉(X)
iff �� (x) ⊆�� (X). Moreover, if x ∈ X, 〈i〉(x) ⊆ 〈i〉(X). Now suppose X �=
intQ(P)(X). Then there is x ∈ X such that RP(x) � X . Hence {y : x ∈ QP

y } �

X . Thus {y : 〈i〉(y) ⊆ 〈i〉(x)} � X . This means that there is g /∈ X such that
〈i〉(g) ⊆ 〈i〉(x) ⊆ 〈i〉(X) so that �� 〈i〉(g) ⊆�� 〈i〉(x) ⊆�� 〈i〉(X). It follows
that X � clP(X).

Corollary 7. Let Q(S) be an IQRS. Then,

(a) QS
(...) = 〈R�

S 〉 = cl; (b) Q
Q(S)
(...) = 〈RS〉 = A; (c) [R�

S ] = int; (d) [RS] = C.

where the operators cl, int, C, A are intended over Q(S).
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Corollary 8. Let S be an A-system or a P-system and A, B ⊆ G. Then,

1. QS
(...), Q

Q(S)
(...) , 〈RS〉 and 〈R�

S 〉 are topological closure operators and their im-
ages are closed under intersections.

2. [RS] and [R�
S ] are topological interior operators and their images are closed

under unions.

Proof. (1) From Corollary 7, we have that QS
(...), Q

Q(S)
(...) , 〈RS〉 and 〈R�

S 〉 are clo-
sure operators. Moreover, since they are lower adjoints in the category 〈℘(G), ⊆〉
they preserve unions. Finally, from Proposition 7.2 they are normal and their
images are closed under intersections. (2) From Corollary 7, [RS] and [R�

S ] are
interior operators. Moreover as they are lower adjoints in the category 〈℘(G), ⊆〉
they preserve intersections. Finally from Proposition 7.2 they are conormal and
their images are closed under unions.

Corollary 9 (I-quantum systems). Let S be an A-system or a P-system.
Then,

1. SatQ(S) = 〈ΩQ(S), ∪, ∩, ∅, G〉 is a distributive lattice, called the I-quantum
system - IQS induced by S.

2. SatQ(Q(S)) = 〈ΩQ(Q(S)), ∪, ∩, ∅, G〉 is a distributive lattice, called the co-
I-quantum system - co-IQS induced by S.

3. The set theoretical complement is an antisomorphism between SatQ(S) and
SatQ(Q(S)).

4. Satint(Q(S)),Satcl(Q(S)),SatA(Q(S)) and SatC(Q(S)), equipped with the
set-theoretical operations, are distributive lattices.

5. 〈G, ΩQ(S)〉 and 〈G, ΩQ(Q(S))〉 are topological spaces, where the interior op-
erators are intQ2(S) and, respectively, intQ1(S).

Proof. (1) We know that the operator Q(...) is additive. Thus ΩQ(S) is closed
under unions. From Corollary 8 it is closed under intersections too. Moreover,
for ΩQ(S) is a (finite) lattice of sets Sat(S) inherits distributivity from the
corresponding property of unions and intersections. (2) Since Q(S) is a P-system
the above considerations apply to this structure. (3) From Corollary 5 we know
that −RS = R�

S , so that we obtain immediately the thesis. (4) From Proposition
7.2 and Corollary 8. (5) Any family of open sets of a topological space enjoys
distributivity of arbitrary unions over finite intersections and of intersection over
arbitrary unions. Moreover, from Proposition 11 and Corollary 7 we obtain that,
ΩQ(S) = Γcl(Q(S)) = Ωint(Q2(S)) and ΩQ(Q(S)) = ΩA(Q(S)) = Ωint(Q(S)).

Now by means of the above mathematical machinery we prove a key statement
in the theory of Approximation Space and Rough Sets, namely the well-known
fact that the family of definable sets can be made into a Boolean algebra.

Proposition 12 (Quantum relations and Boolean algebras). Let S be an
Information system. If RS is an equivalence relation, then SatQ(S) is a Boolean
algebra.
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Proof. We show that if RS is an equivalence relation then any element QX of
ΩQ(S) is complemented by QX =

⋃
z �∈QX

Qz. First, let us prove that QX ∪QX =
G. In fact for all g ∈ G if g �∈ QX then g ∈ QX because g ∈ Qg (q-reflexivity).
Now we prove that QX ∩ QX = ∅. Assume z �∈ QX . We have just to prove that
if z′ ∈ Qz then z′ �∈ QX . So let z′ ∈ Qz. For q-symmetry z ∈ Qz′ . So, if there
is an x ∈ X such that z′ ∈ Qx we have z ∈ Qx too (for q-transitivity), hence
z ∈ QX . Contradiction.19

Corollary 10. Let S be an Information system. Then, if S is an A-system, a
dichotomic or a functional P-system, then SatQ(S) is a Boolean algebra.

About the family of co-prime elements of SatQ(S) we have:

Lemma 6. Let S be an A-system or a P-system. Then for any X ∈ J (SatQ
(S)), X = Qg for some g ∈ X.

Proof. Trivial from the very additive definition of the operator Q and its in-
creasing property.

Lemma 7. Let P be a P-system and g ∈ G. Then Qg =
⋂

{〈e〉(m) : m ∈ 〈i〉(g)}

Proof. Indeed, x ∈ Qg iff 〈i〉(x) ⊇ 〈i〉(g) iff x ∈ 〈e〉(m), ∀m ∈ 〈i〉(g).

Proposition 13. Let P be a P-system such that cl (int) is topological. Then
SatQ(P) = Satint(P).

Proof. We have seen in Lemma 5 that Ωint(P) ⊆ ΩQ(P). Now we need just
to show that if X ∈ J (SatQ(P)) then X = int(X). The proof is immediate.
Indeed, the family {〈e〉(m) : 〈e〉(m) ⊆ X} is a base of Ωint(S). Moreover, if int
is topological then it is multiplicative and since for all m ∈ M , int(〈e〉(m)) =
〈e〉(m) (from Lemma 3), in view of the above Lemma 7 we have the result.

Corollary 11. Let F be an FP-system. Then ΩQ(Qn(F)) = Ωint(Qn(F)),
n ≥ 0.

Proof. From Corollary 4 and an inductive extension of Proposition 13.

Hence we can note that P-systems such that int and cl are topological behave
like functional systems.

Corollary 12. If S is a preordered set (that is, G = M and R ⊆ G × G is a
preorder), then ΩQ(S) = Ωint(S).

19 There is another way to obtain this result. In fact, J. L. Bell proved that if T =
〈A,T 〉 is a relational structure with T a tolerance relation (that is, reflexive and
symmetric) then the family ΩQL(T) of all unions of principal order filters ↑T x
(i. e. 〈T �〉(x) i. e., for symmetry of T , 〈T 〉(x)) can be made into an ortholattice.
But if RS is an equivalence relation then it is a tolerance relation too and for any
x ∈ A, ↑RS x =↓RS x = cl(x) = Qx so that SatQ(S) can be made into a distributive
ortholattice, that is, a Boolean algebra.
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Proof. From Corollary 11 and Corollary 9 (3).

At this point we can end this subsection with an analogue of the duality between
distributive lattices and preorders in the context of i-quantum relations and P-
systems.

Proposition 14 (Duality between preorders and P-systems)

1. Let O = 〈G, R〉 be a preorder, then there is a P-system I(O) over G such
that RI(O) = R (hence, Q(I(O)) ∼=I O).

2. Let S be an A-system or a P-system. Then I(Q(S)) ∼=I S.

Proof. (1) Let F(O) be the set of order filters of O. Thus F(O) = ΩQ(Q(O))
(i. e. ΩQ(O�))), so that we know that F(O) can be made into the distributive
lattice SatQ(Q(O)). Then let J (SatQ(Q(O))) be the set of co-prime elements of
SatQ(Q(O)). Notice that co-prime elements have the form ↑R x, i. e. 〈R�〉(x),
for some element x ∈ G and that they may be understood as properties fulfilled
by the elements of G such that g � x only if 〈x, g〉 ∈ R. Let us then define
I(O) as 〈G, J (SatQ(Q(O))), �〉. Thus, 〈g, g′〉 ∈ RI(O) iff g′ ∈ Q

I(O)
g , iff 〈i〉(g) ⊆

〈i〉(g′), iff g ∈ 〈R�〉(x) =⇒ g′ ∈ 〈R�〉(x) for all 〈R�〉(x) ∈ J (SatQ(Q(O))).
In particular, since R is reflexive, g ∈ 〈R�〉(g) so that g′ ∈ 〈R�〉(g) holds, i. e.
〈g, g′〉 ∈ R. Conversely, if 〈g, g′〉 ∈ R and 〈x, g〉 ∈ R, for transitivity 〈x, g′〉 ∈ R
too. It follows that g ∈ 〈R�〉(x) � g′ ∈ 〈R�〉(x), all x ∈ G. (2) For Q(S) is a
preorder, from the previous point we have Q(I(Q(S))) ∼=I Q(S) so that trivially
I(Q(S)) ∼=I S.

EXAMPLE 3
Consider the P-system P and the A-system A of Example 2. Here below we
display the lattices SatQ(P) and SatQ(A):

SatQ(P) SatQ(A)

G

��� ���
G

{a1, a2, a3} {a, a1, a2}
���� ���

��� ��� ���
{a, a1, a2} {a, a2, a3} {a1, a2}

{a1, a2} {a, a2} �������

�������
��� ��� ���

{a, a2} {a1} {a3}

{a2} {a} ��� ����

��� ��� ∅

∅

It is easy to verify that both of them are distributive lattices and that, more-
over, SatQ(A) is a Boolean algebra. Indeed, for instance, the element QA

{a,a1} =
{a, a1, a2} is complemented by the element

⋃
z /∈QA

{a,a1}
QA

z = QA
{a3} = {a3}.
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We can straightforwardly verify that Satcl(Q(P)) is Satint(P) plus some
missed elements which are the difference between SatQ(P) and Satint(P). In-
deed, the missed element is {a1, a2} which equals clQ(P)({a1, a2}). On the con-
trary, intP({a1, a2}) = ∅.

9 Generalised Topological Approximation Operators

In view of the duality between Information Systems and preorders, we can de-
velop the rest of the theory from a more abstract point of view. Thus, from now
on we shall deal with preordered structures and assume, intuitively, that they
represent some information quantum relation system.

Corollary 13. Let O = 〈G, G, R〉 be a preordered set. Let X ⊆ G. Then:

The application is the least fixpoint of including X

〈R〉(X) 〈R〉 [R�] A int

〈R�〉(X) 〈R�〉 [R] cl C
The application is the largest fixpoint of included in X

[R](X) [R] 〈R�〉 C cl

[R�](X) [R�] 〈R〉 int A

Proof. First notice that from Proposition 11 the listed fixpoints collapse. None-
theless it is worthwhile proving the first two cases by means of two different
approaches.
(a) Obviously 〈R〉(X) ⊇ X and for idempotence 〈R〉(X) is a fixed point of
〈R〉. Suppose Z is a fixed point of 〈R〉 such that X ⊆ Z. From monotonicity
〈R〉(X) ⊆ 〈R〉(Z) = Z. Hence 〈R〉(X) is the least fixpoint of 〈R〉 including X .
(b) From Proposition 6.3 [R]〈R�〉(X) is the smallest image of [R] greater than or
equal to X . Since [R] is idempotent it is the least fixpoint of [R] which includes
X and from Proposition 11, it is also the least fixpoint of 〈R�〉(X) including X .
The remaining cases are proved analogously.

Corollary 14. Let O = 〈G, G, R〉 be a preordered set. Then for all X ⊆ G,
(i) 〈R〉(X) =

⋂
{Z : Z ∈ ΩA(O) & Z ⊇ X}; (ii) [R](X) =

⋃
{Z : Z ∈ ΓC(O) &

Z ⊆ X};
(iii) 〈R�〉(X) =

⋂
{Z : Z ∈ Γcl(O) & Z ⊇ X}; (iv) [R�](X) =

⋃
{Z : Z ∈

Ωint(O) & Z ⊆ X}.

Henceforth, for obvious reasons we shall adopt the following terminology:

〈R〉(X) direct upper R-approximation of X , also denoted with (uR)(X)
〈R�〉(X) inverse upper R-approximation of X , also denoted with (uR�)(X)
[R](X) direct lower R-approximation of X , also denoted with (lR)(X)

[R�](X) inverse lower R-approximation of X , also denoted with (lR�)(X)
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The information-oriented reading of the above operators is:

〈R〉(X) Set of the elements specialised by some member of X
(or, which approximate some member of X)

〈R�〉(X) Set of the elements approximated by some member of X
(or, which specialise some member of X)

[R](X) Set of the elements specialised only by members of X
(or, which approximate only members of X)

[R�](X) Set of elements approximated only by members of X
(or, which specialise only elements of X)

Particularly we can give an information-oriented interpretation to some combi-
nations of operators:

Set of the elements which are specialised just by elements

[R]〈R〉(X) specialised by some member of X (x ∈ [R]〈R〉(X) only if each element

which specialises x is specialised by some member of X)

Set of the elements which are approximated just by elements

[R�]〈R�〉(X) approximated by some member of X (x ∈ [R�]〈R�
〉(X) only if each

element which approximates x is approximated by some member of X)

Besides these operators we add also the interpretation of [[R]] and [[R�]]:

[[R]](X) Set of the elements specialised by all the members of X
(or, which approximate all the members of X)

[[R�]](X) Set of the elements approximated by all the members of X
(or, which specialise all the members of X)

9.1 Topological Approximation Spaces

Eventually we define some interesting examples of topological Approximation
Spaces.

Definition 14. Let Q(S) = 〈G, G, RS〉 be an IQRS. Then,

1. 〈G, [RS], 〈RS〉〉 - will be called a Direct Intuitionistic Approximation Space.
2. 〈G, [R�

S ], 〈R�
S 〉〉 - will be called an Inverse Intuitionistic Approximation Space.

3. 〈G, [R�
S ], 〈RS〉〉 - will be called a Galois Intuitionistic Approximation Space.

4. 〈G, [RS], 〈R�
S 〉〉 - will be called a co-Galois Intuitionistic Approximation Space.

Definition 15. Let 〈G, G, E〉 be a relational structure such that E is an equiva-
lence relation. Let I and C be the interior and, respectively, topological operators
of the topological space induced by taking {[x]E : x ∈ G} as a subbasis. Then
〈G, I, C〉 is called a Pawlak Approximation Space

From the above discussion the following statement is obvious:

Proposition 15. Let E = 〈G, G, E〉 be a relational structure such that E is an
equivalence relation. Then 〈G, intE, clE〉 is a Pawlak Approximation Space.
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But we can prove a further fact. To this end we introduce the notion of an
Approximation Equivalence, or a-equivalence between (pre) topological Approx-
imation Spaces:

Definition 16. Let A = 〈G, α, β〉 and A′ = 〈G, γ, δ〉 two topological or pre-
topological Approximation Spaces. Then we say that A and A′ are a-equivalent,
in symbols, A ∼=a A′ if and only if Ωα(G) = Ωγ(G) and Γβ(G) = Γδ(G).

Clearly, by duality one equality implies the other. We use this definition in the
following statement:

Proposition 16. Let S be an A-system or FP-system or DP-system. Let us
set ♦ = 〈RS〉 and � = [RS]. Then ♦ = 〈R�

S 〉, � = [R�
S ] and 〈G, �, ♦〉 is a

Pawlak Approximation Space. Moreover, if S is an FP-system then 〈G, �, ♦〉 ∼=a

〈G, intS, clS〉.

Proof. Immediate, from the fact, proved in Proposition 9.(3), that RS in this
case is an equivalence relation. For the last part it is sufficient to use in addi-
tion Proposition 4.(3) together with Proposition 7, or the latter Proposition and
Proposition 9.(3) which together with Proposition 8.(4) states that clS(g) = [g]kf

,
any g ∈ G.

Note that the former system of the previous Proposition is, actually, 〈G, G, �, ♦〉
while the latter is 〈G, M, intS, clS〉. Therefore, we cannot put 〈G, �, ♦〉 = 〈G,
intS, clS〉. However, if S is an FP-system, then Single-agent (pre)topological Ap-
proximation Spaces, and Pawlak Approximation Spaces induce the same family
of fixed points.

10 Comparing Information Systems

The notion of an i-quantum makes it possible to compare Information Systems.
First of all we should ask whether it is possible to compare two quanta of in-
formation Qg and Qg′ . At first sight we would say that Qg is finer than Qg′ if
Qg ⊆ Qg′ . However, this intuition works for P-systems, but not for A-systems
because from Proposition 9.(2) if Qg ⊆ Qg′ then Qg′ ⊆ Qg. Thus non trivial
comparisons of quanta of information in A-systems require a specialised notion
of an i-quantum, which, in any case, is useful for P-systems too.

Definition 17 (Relativised quanta of information)

– Let A be an A-system. The quantum of information of g relative to a subset
A ⊆ At is defined as: Qg � A = {g′ ∈ G : ∀a ∈ A, ∀x ∈ Va((a(g) = x) =⇒
(a(g′) = x))}.

– Let P be a P-system. The quantum of information of g relative to a subset
A ⊆ M is defined as: Qg � A = {g′ ∈ G : ∀a ∈ A(g � a =⇒ g′ � a)}.

Definition 18 (I-quantum dependence)
Let S be an A-system or a P-system. Let A, A′ ⊆ At (or A, A′ ⊆ M), g ∈ G.
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1. We say that A′ functionally depends on A at g, in symbols A �→g A′, if for
all g′ ∈ G, g′ ∈ Qg � A =⇒ g′ ∈ Qg � A′ (that is, if Qg � A ⊆ Qg � A′).

2. We say that A′ functionally depends on A, in symbols A �→ A′, if for all
g ∈ G, A �→g A′.

3. If A �→ A′ and A′ �→ A, we say that A and A′ are informationally equivalent,
A ∼=I A′ (thus, A ∼=I A′ if for all g ∈ G, Qg � A = Qg � A′).

So, a set of attributes (properties) A′ functionally depends on a set of attributes
(properties) A if A has a higher discriminatory capability than A′.

Clearly, if S is an A-system then the notion of an i-quantum dependence
relation turns into the usual notion of a functional dependence.

From now on, if �� X denotes the relation � with co-domain restricted to X
then with S � X we shall denote the subsystem 〈G, X, �� X〉. If S is an A-system
and X ⊆ At, with S � X we shall denote the subsystem 〈G, X, {Va}a∈X〉.

The following statement formalises the above intuitions with respect to i-
quantum relations:

Proposition 17. Let S be an A-system or a P-system. Let A, A′ ⊆ At (A, A′ ⊆
M) such that A �→ A′. Then R(A�A) ⊆ R(A�A′).

Proof. The proof is immediate. Suppose A �→ A′. Then for all g ∈ G, Qg � A ⊆
Qg � A′, so that 〈g, g′〉 ∈ R(A�A) implies 〈g, g′〉 ∈ R(A�A′).

It follows that we can naturally extend the notion of a functional dependence in
order to compare two sets X and X ′ of properties or attributes from two distinct
(property or attribute) systems S and S′ over the same set of points G. Thus,
we can extend the notion of ”informational equivalence” to entire systems:

Definition 19. Let S and S′ be A-systems or P-systems over the same set of
points G. Let S and S′ be the sets of attributes (properties) of S and, respectively,
S′. We say that S and S′ are informationally equivalent, in symbols S ∼=I S′, if
and only if for any g ∈ G, Qg � S = Qg � S′, that is, if and only if QS

g = QS′

g .

Informational equivalence tells something about the behaviour of cl and int:

Proposition 18. Let P and P′ be P-systems and P ∼=I P′. Then for all x ∈ G,
clP(x) = clP

′
(x). If both clP and clP

′
are topological, then clP(X) = clP

′
(X)

and intP(X) = intP
′
(X), for any X ⊆ G.

Proof. Suppose clP(x) �= clP
′
(x). Then there is g ∈ G such that, say, g ∈ clP(x)

and g /∈ clP
′
(x). It follows that 〈��〉(g) ⊆ 〈��〉(x) but 〈�′�〉(g) � 〈�′�〉(x).

Thus x ∈ QP(g) and x /∈ QP′
(g), so that P �∼=I P′. If both closure operators

are additive, then by easy induction we obtain that clP(X) = clP
′
(X) for any

X ⊆ G. Moreover, suppose intP(X) �= intP
′
(X). Then −intP(X) �= −intP

′
(X),

so that clP(−X) �= clP
′
(−X) - contradiction.

Notice that if either clP or clP
′
is not topological then the equality between clP

and clP
′

is guaranteed just for singletons so that clP(−X) �= clP
′
(−X) is not
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a contradiction. Moreover, we can have P and P′ such that intP(x) �= intP
′
(x)

but still P ∼=I P′. Therefore, the relation ∼=I is far to be considered the ”best”
way to compare P-systems, though very useful for our purposes.

Now we want to stress the fact that we can compare not only the informa-
tional behaviour of the same point g with respect two different sets of properties
(attributes) X and X ′, but we can also compare the behaviours of two different
points g and g′ with respect to the same set of properties (attributes) P .

Definition 20. Let S be an A-system or a P-system, X ⊆ M (or X ⊆ At) and
g, g′ ∈ G.

1. We say that g is an X-specialisation of g′ (or that g′ is an X-approximation
of g), in symbols g′ �X g, if and only if the following condition holds:

∀x ∈ G(g′ ∈ Qx � X =⇒ g ∈ Qx � X).

2. We say that g is a specialisation of g′, g′ � g, if and only if g′ �M g.

Since for q-reflexivity x ∈ Qx, any x ∈ G, if g′ �X g then g ∈ Qg′ � X , so that
g′ �X g says that g fulfills at least all the properties from X that are fulfilled
by g′. Therefore, g′ � g implies 〈g′, g〉 ∈ RS. Conversely, if 〈g′, g〉 ∈ RS then
g ∈ Qg′ . Hence g′ ∈ Qx implies g ∈ Qx, any x ∈ G, from transitivity of RS.
It follows that the two relations � and RS coincide. In fact they are the same
instance of the usual topological notion of a specialisation preorder. In view of
Proposition 9.(1) we can construct a topological space 〈G, ImQ〉 on G whose
specialisation preorder is indeed � (that is, RS).

11 Transforming Perception Systems

Now we are equipped with a sufficient machinery in order to compare trans-
formed systems.

Let A be an A-system. To get a P-system out of A, the basic step derives
from the observation that any attribute a is actually a set of properties, namely
the possible attribute values for a. Thus we start associating each attribute a
with the family N (a) = {av}v∈Va . We set N (At) =

⋃
a∈At N (a). For each value

v, av is the property ”taking value v for attribute a”. This transform is usually
called a ”scale nominalisation”. Now let us set a relation �N as:

g �N av if and only if a(g) = v, all g ∈ G, a ∈ At, v ∈ Va.

We call the resulting system, N (A) = 〈G, N (At), �N 〉, the ”nominalisation of
A”. N (A) will be called a nominal A-system or NA-system.

Proposition 19. Let A be an A-system. Then: (a) N (A) is a P-system; (b)
N (A) ∼=I A.

Proof. (a) is obvious. (b) Let us prove that for any g ∈ G, Qg � At = Qg � N (At).
Indeed, if g′ ∈ Qg � At, then a(g) = x if and only if a(g′) = x, all a ∈ At.
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Therefore for any x ∈ N (a), g � ax if and only if g′ � ax, whence g′ ∈ Qg � N (a).
Finally, g′ �� ax′ for any other x′ �= x, so we have the reverse implication.

Moreover, if we formally consider P-systems as binary A-systems, we can also
nominalise P-systems. But in this case we have a further property:

Proposition 20. Let P be a P-system. Then N (P) is a dichotomic system.

Proof. This is obvious, because for any property p, the nominalisation N (p) =
{p1, p0} forms a pair of complementary properties, since for all g ∈ G, g �N p1

if and only if g � p and g �N p0 if and only if g �� p.

Nominalisation of dichotomic or functional systems does not give rise to any
further result.

Proposition 21. If P is a DP system or an FP system, then N (P) ∼=I P.

Proof. If P is dichotomic let 〈p, p〉 be a pair of complementary properties. After
nominalisation we shall obtain two pairs N (p) = {p1, p0} and N (p) = {p1, p0}.
Clearly, for any g ∈ G, g � p in P if and only if g �N p1 in N (P). But g �N p1

if and only if g ��N p0 if and only if g �N p0. Conversely, g � p if and only if
g �N p0 if and only if g ��N p1 if and only if g �N p1. If P is functional and
g′ ∈ Qg � M then g � m if and only if g′ � m, since 〈��〉(g) = 〈��〉(g′) = m.
Thus the proof runs as in Proposition 19.(b).

For N (A) is not only a P-system but it is still an A-system with At = {0, 1},
we obtain the following corollary:

Corollary 15. Let S be an A-system or a P-system. Then N (S) ∼=I N (N (S)).

Proof. If S is a P-system then N (S) is a dichotomic systems so that from Propo-
sition 21 N (N (S)) ∼=I N (S). If S is an A-system then N (S) is a binary A-system
and from Proposition 19.(b) N (S) ∼=I N (N (S)).

Corollary 16. If A is an A-system then there is a dichotomic system D such
that D ∼=I A.

Proof. Since N (A) is a P-system, from Proposition 20 N (N (A)) is dichotomic.
But from Proposition 19.(b) and Corollary 15 A ∼=I N (A) ∼=I N (N (A)).

As a side result we again obtain Proposition 9.(2). Notice that this Proposition,
as well as Corollary 15, relies on the fact that we are dealing with deterministic
A-systems so that either two objects converge on the same attribute-value, or
they diverge, but not both.

EXAMPLE 4
Here are some examples: a P-system P=〈G, M, �〉, an FP-system F=〈G, M ′, f̂〉
and an A-system A = 〈G, At, V 〉 over the same set G:
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� b b′ b′′ b′′′ f̂ m m′ m′′ A A′ A′′

a 1 1 0 0 a 1 0 0 a 1 b α
a′ 0 1 0 1 a′ 0 1 0 a′ 0 c α
a′′ 0 1 1 1 a′′ 1 0 0 a′′ 1 b α
a′′′ 0 0 0 1 a′′′ 0 0 1 a′′′ 3 f δ

Considering the system P let A = {b, b′} and B = {b′′, b′′′}. Then Qa′′ � A =
{a, a′, a′′} while Qa′′ � B = {a′′}. It follows that B �→a′′ A. On the contrary,
Qa′ � A = {a, a′, a′′} and Qa′ � B = {a′, a′′, a′′′} are not comparable. Hence
B �→ A does not hold. If we compare the above systems we notice what follows:
a) A �∼=I P because QA

a = {a, a′′} while QP
a = {a}. Neither P �→ A because

QP
a′ = {a′, a′′} while QA

a′ = {a′}. b) F ∼=I A, because for all g ∈ G, QA
g = QF

g .
Let us now nominalise the systems A and P:

�N
A A0 A1 A3 A′

b A′
d A′

f A′′
α A′′

δ �N
P b1 b0 b′

1 b′
0 b′′

1 b′′
0 b′′′

1 b′′′
0

a 0 1 0 1 0 0 1 0 a 1 0 1 0 0 1 0 1
a′ 1 0 0 0 1 0 1 0 a′ 0 1 1 0 0 1 1 0
a′′ 0 1 0 1 0 0 1 0 a′′ 0 1 1 0 1 0 1 0
a′′′ 0 0 1 0 0 1 0 1 a′′′ 0 1 0 1 0 1 1 0

Thus N (A) = {A0, A1, A3}, N (b) = {b1, b0} and so on. It is evident that, for
instance, a ∈ Q

N (A)
a′′ and a′′ ∈ Q

N (A)
a . But the same happens already in A.

Indeed, QA
a = {a, a′′} = QA

a′′ . On the contrary, QP
a′ = {a′, a′′} but Q

N (P)
a′ = {a′}.

In fact a′′ ∈ QP
a′ because it fulfills all the properties fulfilled by a′ (i. e. b′

and b′′′) plus the additional property b′′. But in N (P) this latter fact prevents
a′′′ from belonging to Q

N (P)
a′ , because property b′′ splits into the pair 〈b′′0 , b′′1〉

and a′ �NP b′′0 while a′′ �NP b′′1 , what are mutually exclusive possibilities. If we
further nominalise N (P) and split, for instance, 〈b′′0 , b′′1〉 into 〈b′′01

, b′′00
, b′′11

, b′′10
〉,

it is obvious that the pairs 〈b′′01
, b′′10

〉 and 〈b′′00
, b′′11

〉 give the same information as
b′′0 and, respectively, b′′1 . It is not difficult to verify that RN (A) = RA so that
N (A) ∼=I Q(A).

11.1 Dichotomic, Functional and Nominal Systems

First notice that the reverse of Proposition 9.(2) does not hold. For instance, if
P′ is such that G = {1, 2, 3, 4}, M = {A, B, C} and � (1) = {A, B}, � (2) =
{A, B}, � (3) = {B, C} and � (4) = {B, C}, Qg is an equivalence class, any
g ∈ G though P′ is neither dichotomic nor functional. Also, if A is an A-system,
then N (A) is not necessarily dichotomic. However N (A) ∼=I N (N (A)) which is
dichotomic (see Corollary 15). Indeed, notice that N (N (A)) is informationally
equivalent to the system defined as follows:

1) For each av in N (A), if Va is not a singleton set ¬av = {av′}v′ �=v,v′∈Va , while
if Va = {v} then set ¬av = {av′}. We set P = {av}v∈Va ∪ {¬av}v∈Va .
2) For each g ∈ G set g �∗ ¬av if and only if g �� av and g �∗ av if and only if
g � av. Clearly ¬av is the complementary copy of av. Thus, 3) set S = 〈G, P, �∗〉.
We can easily verify that S is a dichotomic system and that S ∼=I N (A).
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In reversal, since for any P-system P, N (P) induces an equivalence relation,
we can ask whether N (P) itself ”is”, in some form, an A-system. Indeed it is
trivially an A-system with set of attributes values V = {0, 1} and such that
m1(g) = 1 iff g � m1 iff g �� m0 iff m0(g) = 0 and m1(g) = 0 iff g � m0 iff
g �� m1 iff m0(g) = 1, all m ∈ M and by trivial inspection one can verify that
〈G, N (M), {0, 1}〉 ∼=I N (P).

Finally we discuss another natural equivalence. We know that if S is an A-
system, or a DP or a FP system then RS is an equivalence relation (see Propo-
sition 9). Thus a question arises as how to define a functional system F (S)
informationally equivalent to a given A or DP system S. The answer is simple. If
S is a P-system consider it as an A-system. Any tuple t ∈

∏
a∈At Va is a combi-

nation of attribute-values and has the form 〈a1m , . . . , ajn〉. We set g �∗ t only if
a1(g) = aim for any ai ∈ At and aim ∈ t. The resulting system 〈G,

∏
a∈At Va, �∗〉

is the required F (S). Indeed �∗ is a map because no g ∈ G can satisfy different
tuples. Thus RF (S) is an equivalence relation such that 〈g, g′〉 ∈ RF (S) only if
a(g) = a(g′) for all a ∈ At (or in M). It follows that N (S) ∼=I F (S) so that if S
is dichotomic or it is an A-system then RS = RF (S) and S ∼=I F (S).

12 Conclusions

We have seen how modal operators naturally arise from the satisfaction relation
which links points and properties in a Property System. Combinations of two
modal operators which fulfill a adjunction relations define pre-topological interior
and closure operators, as studied in Formal Topology. Thus we have shown that
approaching approximation problems by means of the mathematical machinery
provided by Formal Topology and Galois Adjunction theory makes it possible to
define well-founded generalization of the classical upper and lower approximation
operators.

Moreover Galois Adjunction theory provides a set of results that can be im-
mediately applied to these operators, so that we have a good understanding of
the structure of the system of their fixed points (i. e. exact sets).

We have also seen how to define higher order information systems, namely In-
formation Quantum Relation Systems, from property systems in order to define
topological (that is, continuous) approximation operators, through the notion of
a ”quantum of information”. And we have shown when these operators coincide
with the lower and upper approximations defined in classical Rough Set Theory.

Eventually, we have seen how we can make different kinds of information
systems, property systems and attribute systems, into a uniform theoretical
framework, and control these manipulations by means of a particular notion
of an ”informational equivalence” induced by the concept of quanta of informa-
tion. This has practical consequences too. Indeed, the relational modal or/and
topological operators that we have defined over P-systems may be directly trans-
lated into extremely simple constructs of functional languages such as LISP
or APL (see [16]), thus providing a sound implementation. Therefore, this ap-
proach directly links the logical interpretation of approximation operators to
the manipulation of concrete data structures for it coherently embeds the con-
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crete operations on Boolean matrices into a very general logical framework (the
same relational interpretation of a modal operator applies to any sort of binary
Kripke frame).
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Abstract. Rough sets, the notion introduced by Zdzis�law Pawlak in
early 80’s and developed subsequently by many researchers, have proved
their usefulness in many problems of Approximate Reasoning, Data Min-
ing, Decision Making. Inducing knowledge from data tables with data in
either symbolic or numeric form, rests on computations of dependencies
among groups of attributes, and it is a well–developed part of the rough
set theory.

Recently, some works have been devoted to problems of concept learn-
ing in humane sciences via rough sets. This problem is distinct as to its
nature from learning from data, as it does involve a dialogue between
the teacher and the pupil in order to explain the meaning of a concept
whose meaning is subjective, vague and often initially obscure, through a
series of interchanges, corrections of inappropriate choices, explanations
of reasons for corrections, finally reaching a point, where the pupil has
mastered enough knowledge of the subject to be able in future to solve
related problems fairly satisfactorily.

We propose here an approach to the problem of learning concepts in
humane sciences based on the notion of a conjugate system; it is a family
of information systems, organized by means of certain requirements in
order to allow a group of students and a teacher to analyze a common
universe ofobjects and to correct faulty choices of attribute value in order
to reach a more correct understanding of the concept.

Keywords: learning of cognitive concepts, rough sets, information sys-
tems, conjugate information systems.

1 Introduction

In addition to a constant flux of research papers on inducing knowledge from
data expressed in either symbolic or numerical form, there are recently papers
on learning cognitive concepts by means of the rough set theory, see, e.g., [2],
[12], [13], [14], [15].

We propose in this work an approach to the problem of learning/teaching
of concepts in humane sciences that stems from an analysis of the process of
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learning in humane sciences, and of learning approach in library sciences, in
particular, that has been worked out during our seminars at Warsaw University,
[12], [13], [14], [15].

In the process of learning of humane concepts, in general, a teacher, a tutor,
is directing the pupil, the student, toward understanding of the problem, and
toward its correct solutions, by means of a dialogue that involves expositions,
responses, corrections, explanations etc., etc., aimed at developing a satisfactory
understanding of the concept meaning by the student.

In order to formally render this mechanism and to study this problem, we
recall here a notion of a conjugate information system introduced in [14] (under
the name of SP–systems), and discussed shortly in [12].

The main idea underlying this approach can be introduced as follows:

1. Both the tutor and the student are equipped with information/decision sys-
tems (see Sect. 2, for all relevant notions of the rough set theory) that possess
identical sets of attributes and the same universe of objects, and they dif-
fer from each other only in value assignment to attributes; the assumption
is, that the values of attributes are correctly assigned in the tutor system
whereas the student can initially assign those values incorrectly, which re-
sults in a faulty classification of objects to decision classes, and those values
are gradually corrected during the interchange of messages with the tutor;

2. In order to learn a correct assignment of values to attributes, the student
has also in his disposal a family of auxiliary decision systems, one for each
attribute. Attributes in those decision systems are for simplicity (and, ac-
tually, in conformity with the practice of learning in many parts of humane
sciences) assumed to be Boolean; this means that the value of an attribute
on an object is selected on the basis of whether the object has/has not given
Boolean features (for instance, when deciding whether romance books should
be acquired for a library, one may look at the feature: majority/minority in
a poll opted for romance books in the library).

In what follows, we present a formal framework for conjugate information
systems. We refrain from discussing here the interface between the tutor and
the pupil, being satisfied with presenting the formal apparatus of conjugate
information systems.

Our methodology presented in what follows was tested in our courses given
to the students in the Department of Library and Information Sciences at the
University of Warsaw. The author does express gratitude to her students to
whom she is indebted for many works on applying the ideas presented in this
paper.

2 Auxiliary Notions of Rough Set Theory

All basic notions relevant to rough sets may be found in [5], [9], or in [3].
We recall here, for the reader’s convenience, some basic notions that are used

in the sequel.
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2.1 Information Systems

An information system A is defined as a triple (U, A, h) where:

1. U is a finite set of objects;
2. A is a finite set of conditional attributes. In the sequel, we will use the term

attribute instead of the term conditional attribute. Attributes act on objects,
to each pair of the form (a, u), where a is an attribute and u is an object, a
value a(u) is assigned. In our setting, we wish to work with systems where
U and A are fixed, but value assignments are distinct, hence the need for
the component h, representing the value assignment in a given information
system;

3. A mapping h : U × A → V , with h(u, a) = a(u), is an A–value assignment,
where V =

⋃
{Va : a ∈ A} is the attribute value set.

2.2 Decision Systems

Decision systems are a variant of information systems in which a new attribute
d /∈ A, called the decision, is introduced; formally, a decision system is a quadru-
ple (U, A, d, h) where U, A are as in sect. 2.1, d : U → Vd is the decision with
values in the decision value set Vd, and the value assignment h does encompass
d, i.e., h : U × (A ∪ {d}) → V ∪ Vd with the obvious proviso that values of h on
pairs of the form (d, u) belong in Vd.

2.3 Indiscernibility and Its Extensions

The crucial notion on which the idea of rough sets does hinge is that of the
indiscernibility relation [5], [6]. For an information system I = (U, A, h), the
indiscernibility relation INDI(B), induced by a set B ⊆ A of attributes, is
defined as follows,

INDI(B) = {(u, v) : h(a, u) = h(a, v) for a ∈ B}, (1)

and equivalence classes of INDI(B) generate by means of the set–theoretical
operation of the union of sets the family of B–exact sets (or, concepts); concepts
that are not B–exact are called B–rough. Rough set theory deals with constructs
that are invariant with respect to indiscernibility relations hence they can be
expressed in terms of indiscernibility classes.

Indiscernibility classes may be generalized to μ–granules, where μ is a rough
inclusion [11]. Rough inclusions are relations of the form μ(u, v, r) read as: ”u is a
part of v to degree at least r”. Examples of rough inclusions and deeper applica-
tions can be found, e.g., in [10]; let us quote from there an example of the rough
inclusion μL induced from the �Lukasiewicz t–norm tL(x, y) = max{0, x+y−1} by
means of the formula μL(u, v, r) ⇔ g( |DIS(u,v)|

|A| ) ≥ r in which DIS(u, v) = {a ∈
A : h(a, u) �= h(a, v)}, |A| stands for the cardinality of A, and g is a function from
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the reals into [0, 1] that figures in the representation : tL(x, y) = g(f(x) + f(y)
(see,e.g., [7]). As g(x) = 1 − x, the formula for μL is finally:

μL(u, v, r) iff
|IND(u, v)|

|A| ≥ r. (2)

In case r = 1, one obtains from (2) indiscernibility classes as sets (granules) of
the form g(u)1 = {v : μ(u, v, 1)}; for r < 1, one obtains a collection of granules
being unions of indiscernibility classes with respect to various sets of attributes.

2.4 Approximations to Rough Concepts

One more crucial notion due to Zdzis�law Pawlak is the notion of an approxi-
mation. In the classical case, any set (concept) X ⊆ U is approximated with
indiscernibility classes [u]B of the relation INDI(B), where B ⊆ A, from below
(the lower approximation) and from above (the upper approximation):

BX =
⋃

{[u]B : [u]B ⊆ X}, (3)

BX =
⋃

{[u]B : [u]B ∩ X �= ∅}. (4)

More generally, one can replace in above definitions classes [u]B with the
μ–granules g(u)r of a fixed or subject to some conditions radius r.

3 Conjugate Information Systems

The notion of a conjugate information system reflects the mechanism of learning
in the interaction between the tutor and the student (or, students). In this
process, the correct evaluation scheme is transferred from the tutor to students,
who initially may have incorrect evaluation schemes and gradually learn better
evaluations in order to finally come up with schemes satisfactorily close to the
correct one.

3.1 On Conjugate Information Systems

By a conjugate information system, we understand a triple,

C = ({Ai = (Ui, Ai, hi) : i ∈ I}, {F d
a,i : a ∈ A, i ∈ I}, i0), (5)

where I is a set of participants in the learning process, with i0 denoting the tutor
and i ∈ I \ {i0} denoting students, consisting of:

1. a family of information systems {Ai = (Ui, Ai, hi) : i ∈ I} such that for
some finite sets U, A we have Ui = U, Ai = A for i ∈ I;

2. a family of decision systems {F d
a,i : a ∈ A and i ∈ I}. Thus the difference

between information systems Ai, Aj with i �= j, i, j ∈ I is in functional
assignments hi, hj . The information system corresponding to i0 is said to be
the tutor system;
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3. for each pair (a, i), a ∈ A, i ∈ I, the decision system F d
a,i is a decision system

(U, Feata, a, ha,i), where U is the C–universe, Feata is the set of a–features,
each f ∈ Feata being a binary attribute, a is the decision attribute of the
system F d

a,i, and ha,i is the value assignment.
The system F d

a,i0
will be regarded as the system belonging to the tutor,

while its realization by an agent i ∈ I, i �= i0 will be the system F d
a,i of the

student i for the evaluation of the attribute a ∈ A.

An Assumption. We assume that each system F d
a,i is reduced in the sense

that for each value va of the attribute a, there exists at most one object u with
the property that ha,i(u, a) = va. In the case when such an object u exists (and
then, by our assumption, it is unique) we will denote by h←a,i(va) the information
vector (f(u) : f ∈ Feata), i.e.,

h←a,i(va) = (f(u) : f ∈ Feata). (6)

The symbol (h←a,i(va))f will denote the f −th coordinate of the vector h←a,i(va).
We deliberately omit the communication aspect of the process; formally, its

presence could be marked with some mappings between the corresponding sys-
tems. However, we deem it unnecessarily complicating the picture for the purpose
of this paper.

3.2 A Metric on Conjugate Systems

It is now important to introduce some means for organizing the unordered as of
now set of participants in the learning process; to this end, we exploit the idea
in [12] of some distance function on a conjugate system.

We introduce a distance function dist on the conjugate system C. To this end,
we first introduce for an object u ∈ U the set,

DISi,j(u) = {a ∈ A : hi(a, u) �= hj(a, u)}, (7)

of attributes discerning on u between systems Ai and Aj . Thus, DISi,j(u) col-
lects attributes which are assigned distinct values on the object u by students
i �= j.

Now, we let,
dist(Ai, Aj) = maxu|DISi,j(u)|. (8)

The function dist(Ai, Aj) is a pseudo–metric, i.e., it has all properties of a
metric (see, e.g., [1]) except for the fact that its value may be 0 whereas the
arguments may be formally distinct as discerned by distinct indices i and j;
we offer a simple argument showing that dist(., .) is a pseudo–metric. Only the
triangle inequality may need a proof.

Thus, assume that information systems Ai, Aj , and Ap are given. If hi(a, u) =
hj(a, u) and hj(a, u) = hp(a, u) then hi(a, u) = hp(a, u); thus, hi(a, u) �= hp(a, u)
implies that either hi(a, u) �= hj(a, u) or hj(a, u) �= hp(a, u).
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In consequence,

DISi,p(u) ⊆ DISi,j(u) ∪ DISj,p(u), (9)

and from (9) one gets that,

maxu|DISi,p(u)| ≤ maxu|DISi,j(u)| + maxu|DISj,p(u)|. (10)

The formula (10) is the required triangle equality.
Learning starts with the pupil(s) closest to the tutor, and continues in the

decreasing order of the distance.

3.3 Basic Parameters for Learning

At the learning stage, each agent Aj (represented by the corresponding infor-
mation system) learns to assign values of attributes in its set A from features in
decision systems {F d

a,j : a ∈ A}.

Parameters for Learning Feature Values and Attribute Values. First, at
the training stage, each agent student learns to assign correct values to features
in sets Feata = {fk,a : k = 1, 2, ..., na} for each attribute a ∈ A.

We assume that values at the tutor system are already established as correct.
The measure of learning quality is the assurance–level–function mj(k, a); for

each triple (j, k, a), where j ∈ I \{i0}, k ≤ na, and a ∈ A, it is defined as follows:

mj(k, a) =
pos(j, k, a)
ex(j, k, a)

, (11)

where ex(j, k, a) is the number of examples for learning fk,a and pos(j, k, a) is
the number of positively classified examples in the set U by the agent Aj.

The process of learning, as mentioned above, proceeds in a dialogue between
the tutor and the student, aimed at explaining the meaning of the attribute
a, and its dependence on features in the set Feata; after that discussion, the
j − th student proceeds with assigning values to features for objects from the
universe U , in the training sample. The assignment is evaluated by the tutor
and on the basis of that evaluation, assurance levels are calculated, to judge the
understanding of the pupil.

We order features in F d
a,j according to decreasing value of mj(k, a); the re-

sulting linear order is denoted ρa
j , and the system F d

a,j with values assigned by
the agent Aj is denoted with the symbol F d

a,j(ρ).

Metrics on Value Sets of Attributes. We set a distance function φj
a(v, w)

on values of the attribute a for each a ∈ A, v, w ∈ Va, and j ∈ I, estimated in
the system F d

a,j by letting,
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φj
a(v, w) = |DISa,j(v, w)|, (12)

where,
DISa,j(v, w) = {f ∈ Feata : (h←a,j(v))f �= (h←a,j(w))f}. (13)

This definitions are possible, due to our assumption about systems F d
a,j in

Sect.3.1.
Thus, φj

a(v, w) does express the distance at the pair v, w of values of the
attribute a measured as the number of differently classified features in the row
defined by v, w, respectively.

4 Learning of Attribute Values

We now address the problem of learning from the tutor of the correct evaluation
of attribute values. Objects u ∈ U are sent to each agent Ai for i ∈ I one–by–one.

Step 1. Assignment of attribute values based on training examples. At that
stage the values dist(i, i0) of distances from agents Ai to the tutor Ai0 are
calculated.

Step 2. The feedback information passed from the tutor to the agent Ai is the
following:

Infi = (r, Error−set−i = {ai1 , ...aipr
}, Error−vector−i = [si1 , ..., sipr

]), (14)

where:

1. r is the value of the distance dist (Ai0 , Ai) from the student i to the tutor
i0;

2. pr is the number of misclassified attributes in A between agents i, i0. Clearly,
p(r) ≤ |U | · r, depends on r;

3. aij is the jth misclassified attribute;
4. for j ∈ {1, .., pr}, the value sij is the distance φaij

(vj , wj) where vj is the
correct (tutor) value of the attribute aij and wj is the value assigned to aij

by the agent Ai.

Step 3. The given agent Ai begins with the attribute a = ai
Error−seti

for
which the value of the assurance-level-function is maximal (eventually selected
at random from attributes with this property).

For the attribute a, the value s = sa is given, meaning that s×100 percent of
features has been assigned incorrect values by Ai in the process of determining
the value of a.

Step 4. Features in Feata are now ordered into a set F d
a,i(ρ) according to de-

creasing values of the assurance–level–function mi(k, a) i.e. by ρa
i : star-

ting with the feature f = f i,a
Feata

giving the minimal value of the function
mi(k, a), the agent i goes along the ordered set changing the value at subsequent
nodes. If the value of φ remains unchanged after the change at the node, the er-
ror counter remains unchanged, otherwise its value is decremented/incremented
by one.
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Step 5. When the error counter reaches the value 0, stop and go to the next
feature.

Step 6. Go to the next attribute in the set A.

5 An Example

Our example is a simple case that concerns grading essays written by students
in French, taken from [13], [12].

Grading is done on the basis of three attributes: a1: grammar, a2: structure,
and a3: creativity. We present below tables showing the tutor decision systems
Fa for a = a1, a2, a3.

Example 1. Decision systems Fa1 , Fa2 , Fa3

Table 1. Decision systems Fa1 , Fa2 , Fa3

f1
a1 f2

a1 f3
a1 a1 f1

a2 f2
a2 f3

a2 a2 f1
a3 f2

a3 f3
a3 a3

+ + + 3 - - + 3 - - - 3
- - + 2 - + - 2 + + - 2
- - - 1 + - - 1 + + + 1

where f1
a1

takes value +/- when the percent of declination errors is ≥ /< 20 ; f2
a1

is +/- when the percent of conjugation errors is ≥ / < 20, and f3
a1

is +/- when
the percent of syntax errors is ≥ / < 20; f1

a2
takes value +/- when the structure

is judged rich/not rich, f2
a2

is +/- when the structure is judged medium/not
medium, and f3

a2
is +/- when the structure is judged to be weak/ not weak. f1

a3

takes value +/- when the lexicon is judged rich/not rich, f2
a3

is +/- when the
source usage is judged extensive/not extensive, and f3

a3
is +/- when the analysis

is judged to be deep/ not deep.
Consider a pupil A1 and a testing information system with U = {t1, t2, t3},

A = {a1, a2, a3} which is completed with the following value assignments.

Example 2. Information systems A0 of the tutor and A1 of the pupil.

Table 2. Decision systems Fa1 , Fa2 , Fa3

t a1 a2 a3 t a1 a2 a3

t1 1 2 1 t1 1 2 2
t2 1 1 1 t2 1 1 2
t3 3 2 3 t3 3 2 3

The distance dist(A0, A1) is equal to 1 as DIS0,1(t1) = {a3} = DIS0,1(t2);
DIS0,1(t3) = ∅.
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Thus, the pupil misclassified the attribute a3 due to a faulty selection of
feature values: in case of t1, the selection by the tutor is +,+,+ and by the
pupil: +,+,-. The distance φa3,1 is equal to 1 and the information sent to the
pupil in case of t1 is Inf1 = (1, {a3}, (1)).

Assuming the values of assurance–level–function m(1, k, a3) are such that
f3,a3 = f3

a3
, the pupil starts with f3

a3
and error–counter =1 and changing the

value at that node reduces the error to 0. This procedure is repeated with t2 etc.

6 Conclusion

We have presented a skeleton on which the mechanism of learning cognitive
concepts can be developed. It has been the principal aim in this paper to show
that the notion of a conjugate information system may be helpful in fulfilling
this task as a model of dependence between the tutor and the student.
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Abstract. The problem of incomplete data in the data mining is well
known. In the literature many solutions to deal with missing values in
various knowledge discovery tasks were presented and discussed. In the
area of association rules the problem was presented mainly in the context
of relational data. However, the methods proposed for incomplete rela-
tional database can not be easily adapted to incomplete transactional
data. In this paper we introduce postulates of a statistically justified
approach to discovering rules from incomplete transactional data and
present the new approach to this problem, satisfying the postulates.

Keywords: association rules, frequent itemsets, incompleteness, trans-
actional data.

1 Introduction

Very often one of the main restrictions in using data mining methodology is
imperfection of data, which is a common fact in real-life databases, especially
those exploited for a long period. Imperfection can be divided into several dif-
ferent categories: inconsistency, vagueness, uncertainty, imprecision and incom-
pleteness [19]. In the paper we consider the problem of discovering knowledge
from incomplete database. Within the knowledge discovery process the incom-
pleteness of data can be taken into consideration at two stages, namely (1) at
the preprocessing step, and (2) at the data mining step. The objective of (1)
is to fill missing values in order to pass to the next steps of the process and
process data as they were complete. Here, one can use simple approaches, such
as replacing unknown values by special ones (e.g. average or dominant value),
as well as more advanced methods, such as e.g. completing data methods based
on classifiers or sets of rules [8]. In the case of (2), missing or unknown values
are subject of processing by the data mining algorithms.

In the literature many such approaches for different data mining tasks were
introduced. In particular, the problem of classifying incomplete objects has been
addressed in the context the rough set theory [20,21]. The main idea of the
approach is based on the indiscernibility relation and lower and upper approxi-
mation of a given set X . Originally proposed for complete information system,
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the approach was successfully extended to deal with incomplete data. Various
modifications have been proposed and discussed in the papers [10,16,28,29,30].
Yet another group of data mining algorithms dealing with incomplete data can
be distinguished, the algorithms from this group are based on the methods for
building decision tree. The modification of the C4.5 algorithm was introduced
in [25]. In the CART algorithm [6] the surrogate tests are used for dealing with
missing values. Different aspects of using decision trees for working with incom-
plete data have been presented in [9,17,32].

In the paper we concentrate on the algorithms discovering association rules
from incomplete data sets. In [12] a notion of legitimate approach has been de-
fined. It consists in satisfying a set of postulates resulting from statistical prop-
erties of the support and confidence parameters and being necessary conditions.
We claim that any method dealing with incompleteness should satisfy the postu-
lates of the approach in order to properly asses expected support and confidence.
The original definition of the postulates referred to the relational database. Here
we generalize it, so that it also covers discovering association rules from transac-
tional data. In addition we define a novel data mining algorithm (DARIT), very
well suited for discovering rules from transactional databases and satisfying the
postulates of the statistically justified approach.

The rest of the paper is organized in the following manner. Section 2 formally
defines association rules and their properties. Section 3 reviews the methods
of discovering association rules from incomplete data. Section 4 presents the
concept of support and confidence under incompleteness. In Section 5 we dis-
cuss details of the presented DARIT algorithm. The results of experiments are
presented in Section 6, whereas Section 7 concludes this paper.

2 Association Rules and Their Properties

Below we introduce basic notions necessary for analyzing the process of discov-
ering rules from incomplete data. We consider two types of databases, namely
transactional and relational ones. A transactional database, denoted as DT , con-
sists of finite set of transactions, DT = {t1, t2, t3, . . . , tn}. Each transaction has a
unique identifier and a non empty set of elements (items). Each element belongs
to the finite set of items I = {elem1, elem2, . . . , elemm}. A relational database,
denoted by DR, is a finite set of records DR = {r1, r2, . . . , rk}. Each record
consists of n scalar values, belonging to the domains of n attributes respectively.
The set of attributes is further denoted by A. By k-itemset we denote a set of
k items from the database. In the sequel, if we do not distinguish between rela-
tional and transactional database, we denote it by D. Association rules are one
of the simplest and the most comprehensive forms for representing discovered
knowledge. The problem of discovering association rules was first defined in [1],
in the context of market basket data with the goal to identify customers’ buying
habits. An exemplary association rule would state that 70% customers who buy
bread also buy milk.
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The basic property of an itemset is its support. It is defined as percentage of
those transactions in the database D, which contain given itemset. It is referred
to as a relative support, and is formally defined as:

support(X) =| {t ∈ D | X ⊆ t}|/ | D | . (1)

where X – itemset, t – transaction or record.
Sometimes the notion of absolute support of an itemset is used, which is defined

as a number of the transactions supporting given itemset.
If a given transaction (record) includes an itemset X we say that the transac-

tion (record) supports the itemset. Frequent itemset is an itemset with support
not less than a given minimal level called minimal support and denoted by
minSup. Association rule is an expression in the form: X → Y , where X, Y
are itemsets over I and X �= ∅, Y �= ∅ and X ∩ Y = ∅. X is called an an-
tecedent of the rule, Y is called a consequent of the rule. The support of the rule
X → Y is equal to support(X ∪ Y ). Confidence of the rule X → Y , denoted by
confidence(X → Y ), is defined as:

confidence(X → Y ) = support(X → Y )/support(X). (2)

The parameter minConf is defined by the user and indicates minimal confidence
that the discovered rules should satisfy.

The basic task concerning association rules is to find all such rules which
satisfy the minimal support and minimal confidence requirements.

3 Related Works

The most known algorithm for discovering all association rules is the Apriori
algorithm, proposed in [2]. In the algorithm candidate sets (potentially frequent
itemsets) of the length k are generated from frequent itemsets of the length k−1.
Another approach proposed in [11] is based on the special data structure called
FP-tree (frequent pattern tree).

Various aspects of discovering association rules are widely presented and dis-
cussed in the literature. In [3,15,24,27,31] the problem of generating only in-
teresting rules with respect to additional measure is considered. In [4,5,23] the
methods for discovering rules from dense data were introduced. The lossless con-
cise representations of frequent patterns were proposed in [7,14,22]. However, the
problem of discovering association rules from incomplete data is discussed rel-
atively rarely, especially with respect to transactional data sets. In the case of
missing values the fundamental problem is evaluating the real support of a given
itemset, so that one can determine if the given itemset is frequent or not.

In [26] the new definitions of support and confidence of the rule were intro-
duced for the relational databases with missing values. In the definitions, the
notions of disabled data and valid database are used. A record r is disabled for
a given set X if, it includes at least one unknown value for the attributes, for
which there are elements in X . A set of disabled records for X is denoted by
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Dis(X). A valid database vdb for the set X consists only of those records from
DR which are not disabled for X :

vdb = DR\Dis(X).

Given these notions the authors define support as: support(X) = |DX |/|vdb(X)|,
where DX stands for a set of records containing the set X . The confidence was
defined as follows: confidence(X → Y ) = |DXY |/|DX | − |Dis(Y ) ∩ DX |). It is
worth mentioning that the proposed definition of support may give rise to the
situations in which a multielement set has greater support than its subsets.

This drawback has been eliminated in [13], where the probabilistic approach
was presented. The approach is dedicated to relational databases. It is based on
the assumption that the missing values of an attribute do not depend on the
values of other attributes. Given an attribute a, unknown values in all records
are assigned a probability distribution over all known values from the domain
of the attribute. Each value v has assigned a probability, denoted by prob(v, a),
which is equal to its frequency of occurring in all records having known values for
the considered attribute. The main idea of the approach is based of the notion of
probable support. Probable support, denoted by probSupr, is calculated for the
element elem(v, a) of the value v from the domain of the attribute a for single
record in the following manner:

probSupr(elem(v, a)) =
1 if r.a = v
prob(v, a) if r.a is unknown
0 otherwise

(3)

where r.a stands for the value for the attribute a in the record r.
The support probSupr of a set X ={elem(v1, a1), elem(v2, a2), . . . , elem(vk, ak)}
is computed by the following formula:

probSupr(X) = probSupr(elem(v1, a1)) ∗ probSupr(elem(v2, a2)) ∗ . . . ∗ (4)
probSupr(elem(vk, ak))

A similar approach has been applied for transactional databases in [18] where
the algorithm ∼AR has been proposed. The algorithm is a modification of the
well known Apriori algorithm. Also here the main idea is based on partial sup-
port of itemsets, in this case by transactions. The following way of calculating
support of itemsets for single transaction was introduced: given k-itemset Zk,
each element included in a transaction t and the set Zk contributes in 1/k to
total value of support of the Zk set calculated for the transaction t. The total
value of support of the Zk set is computed by summing up all values contributed
by elements included in the transaction. If the set Zk is contained in the trans-
action t then the value of support of the set calculated for the transaction is
equal to k ∗ (1/k) = 1.

The ∼AR algorithm starts from replacing each unknown element u elem in
the transactions by all known items k elem corresponding to the unknown ones
in other transactions. Each element k elem replaces the u elem with the proba-
bility evaluated based on its frequency of occurring in the transaction, of which
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the k elem elements come form. The authors assumed that such replacing is
possible because of presence of names of classes of elements or unified ordering
of items in the transactions. A value contributed by a single k elem to the total
value of support of the Zk set calculated for the transaction t is additionally
multiplied by the probability of its occurring.

4 Discovering of Association Rules Under Incompleteness

Incompleteness of data creates problem in interpreting minimal support and
minimal confidence thresholds given by the user. In the case of missing or un-
known values it is not possible to calculate exact values of the support and
confidence measures. Instead, we can provide the estimation of these values and
the range, limited by optimistic and pessimistic support (confidence), in which
the true value is placed.

4.1 Support and Confidence Under Incompleteness

In the order to express the properties of data incompleteness we will apply the
following notions:

• by minSet(X) we denote the maximal set of records (transactions) which
certainly support the itemset X .

• by maxSet(X) we denote the maximal set of records (transactions) which
possibly support the itemset X .

• by nkD we denote the maximal set of records (transactions) which are in-
complete (i.e. include at least one item with unknown or missing value).

• by kmD we denote the maximal set of records (transactions) which include
only items with known values.

Definition 1. Minimal (pessimistic) support of an itemset X , denoted further
as pSup(X), is defined as the number of records (transactions) which certainly
support the itemset X , i.e. pSup(X) = |minSet(X)|.

Definition 2. Maximal (optimistic) support of an itemset X , denoted further
as oSup(X), is defined as the number of records (transactions) which possibly
support the itemset X : oSup(X) = |maxSet(X)|.
The estimated (probable) support of an itemset X is denoted further as
probSup(X).

Definition 3. Minimal (pessimistic) confidence of a rule X → Y , denoted fur-
ther as pConf(X → Y ), is defined as:

pConf(X → Y ) = |minSet(X ∪ Y )|/|maxSet(X)|.

Definition 4. Maximal (optimistic) confidence of a rule X → Y , denoted further
as oConf(X → Y ), is defined as:

oConf(X→Y )=|maxSet(X∪Y )|/(|maxSet(X∪Y )|+|minSet(X)\minSet(Y )|).
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Definition 5. Estimated (probable) confidence of a ruleX → Y , denoted further
as probConf(X → Y ), is defined as:
probConf(X → Y ) = probSup(X ∪ Y )/probSup(X).

4.2 Support Calculation for Single Record or Transaction

The standard method of calculating support for a complete record can be ex-
pressed by the formula:

Supr(X) = 1 if X is present in a record r
0 otherwise (5)

where Supr(X) denotes support of the itemset X calculated for the record r,
r ∈ DR. Instead, in the case of incomplete records we estimate probable support,
for which we can use a generalization of (5) in the form:

probSupr(X) = prob(sat(X, r)) if X may be present in a record r (6)

where prob(sat(X, r)) denotes probability that the itemset X is present in the
record r. Obviously if X is certainly present in a record r (all needed values
in r are present) then probSupr(X) = 1. If X cannot be present in r then
probSupr(X) = 0.

For transactional data the method of calculating support in a single transac-
tion is analogous.

4.3 Postulates for Relational Data

The simplest approach to the calculation of support and confidence based on
optimistic or pessimistic estimation does not promise good results, especially if
the incompleteness of data is significant and cannot be neglected. To obtain result
of a higher quality more advanced techniques for the support and confidence
estimation should be used. In the literature some proposals in this direction have
been published. As mentioned above, we claim that any such method should
satisfy the postulates defined in [12], in order to properly asses statistically
justified expected support and confidence. The original postulates refer to the
relational database. Let us recall them:

(P1) probSup(X) ∈ [pSup(X), oSup(X)]
(P2) probSup(X) ≥ probSup(Y ) for X ⊂ Y

(P3) probConf(X → Y ) = probSup(X ∪ Y )/probSup(X)
(P4) probConf(X) ∈ [pConf(X → Y ), oConf(X → Y )]
(P5)

∑
XInstances(A) probSup(X) = 1 for any A ⊆ AT

where X, Y are itemsets, and Instances(A) is the set of all possible tuples over
the set of attributes A.

Postulate P1 assures the natural limitation of estimated support – it can not
be greater than optimistic support and less than pessimistic support. The second
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postulate says that an itemset can not be present in database more often than
its proper subset. The postulate 3 introduces the standard way for confidence
calculation. The fourth one is analogous to P1 but refers to confidence. The
last one states that for freely chosen set of attributes the sum of support of all
itemsets consisting of items which belong to a domain of selected attributes is
equal to the number of records included in a database. In the [16] it is shown
that P4 is redundant.

With the satisfied condition of P2 the estimated support is consistent with
the fact that any superset of an itemset X does not occur more often than
X . However, satisfying these criteria does not necessary means that the sum of
support of supersets of an itemset X , specified on the same set of attributes, is
not greater than support of X .

Example: For the record r8 from the base DR n1 (Table 1) the probabilities
Pr o of occurrences are defined for the following sets: Pr w(z1 = {atr3 = a}) =
2/3, Pr w(z2 = {atr3 = a1}) = 1/3, Prw(z3 = {atr4 = b}) = 1/2, Prw(z4 =
{atr4 = c}) = 1/2, Prw(z5 = {atr3 = a, atr4 = b}) = 1/2, Prw(z6 = {atr3 = a,
atr4 = c}) = 1/2.

The support of an itemset Y calculated for the record r8 is as follows:

probSup(Y ) =
Pr w(zN) if Y = zN ∪ r8.knowni

1 if Y ⊂ r8.known
0 Otherwise

where: zN – is one of the sets zi defined above, r8.known – is a set of all sets
which can be generated from known values included in the record r8, r8.knowni

– one of sets included in the r8.known set.
The support defined in this way satisfies all the postulates, however after

counting supports of the following set [Y 1={atr2 = x, atr3 = a}, probSup(Y 1) =
42/3], [Y 2 = {atr2 = x, atr3 = a, atr4 = b}, probSup(Y 2) = 2/1], [Y 3 =
{atr2 = x, atr3 = a, atr4 = c}, probSup(Y 3) = 2/1] one can conclude that the
sets Y 2 and Y 3 occur in the database more often than the set Y 1, which of
course is not possible.

Table 1. Relational database DR n1

id atr2 atr3 atr4 atr5 atr6

r1 x A b Y v1

r2 x A b Y v2

r3 x A c Y v3

r4 x A c Y v4

r5 x a1 b1 Z v1

r6 x a1 c1 P v3

r7 k a2 b2 P v3

r8 x ∗ ∗ Y v2

* – the missing value
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To exclude such situations the postulate P2 has to be modified. Below the
new version of the postulate is presented.

(P2n) : probSup(X) =
∑

Z∈Instances(A)

probSup(X ∪ Z) for any A ⊆ AT. (7)

where X �= ∅, Z �= ∅ and X ∩ Z = ∅ for any set Z.

Rationale: Support of a set X can be counted by testing values in records only
for those attributes over which the set X is defined. If we consider larger set
of attributes then of course the support of the set X does not change. In this
case we can say that we examine whether in a given record the set X is present
along with an additional set Z defined over attributes out of those in X . If in
place of Z consecutively all the sets defined over the additional attributes will
be considered then finally we will obtain valid value of the support of X .

4.4 Postulates for Transactional Data

For transactional data the postulates from [12] can be used directly, except for
P2n and P5. In the definitions below we use the following notations:

• superset(X, k) is a set of all supersets of X which include k more elements
than X .

• tmax is a maximal transaction i.e. transaction belonging to the given DT
which has the most known elements.

• |t| is the length of transaction t – number of elements included in this trans-
action

• DTk – set of transaction which include at least k elements
• sets(Ik) denotes sets of k-itemsets
• ti denotes the ith transaction.

The postulate 2 for transactional data is defined as follows:

probSup(X) ≥
tmax|−|X|∑

k=1

(−1)(k+1)
∑

Y ∈superset(X,k)

probSup(Y ). (8)

The inequality in the formula results from taking into consideration the different
lengths of transactions.
The postulate 5 for transactional data is defined as follows:∑

X∈sets(Ik) probSup(X)∑|Dk|(Ck
|ti|ti ∈ DTk

= 1 (9)

where Ck
|t| is a number of all combinations of k items from t.

In the definition of the postulate the absolute support is used.

Rationale for Postulate 2: Calculation of a support of an itemset X can
be done by summing number of transactions which contain only all elements
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included in X with the number of transactions that include the set X and at least
one more element i.e. which contain a set z = {X∪{y}|{y}∩X = ∅, y−an item}.
There are up to n such sets z, where n is a number of items y, which occur in the
database but not in X . A number of transaction in which at least one of the sets
z occurs as the percentage of the number of all transaction can be calculated by
adopting the following formula (the probability of the sum of events):

P(A1 ∪ A2 ∪ . . . ∪ An) =
P(A1) + P(A2) + . . . + P(An) − P(A1 ∩ A2) − P(A1 ∩ A3) − . . . −
P(An−1 ∩ An) + P(A1 ∩ A2 ∩ A3) + P(A1 ∩ A2 ∩ A4) + . . . + (10)
P(An−2 ∩ An−1 ∩ An) + . . . + (−1)n−1P(A1 ∩ . . . ∩ An).

Assuming that an event Ai represents occurrence of sets z1
i in a transaction

(where z1
i is an ith set composed from item yi and elements included in X) we

can write the following equation:

P (Z1) =
n∑

k=1

(−1)k+1
∑

zk
i ∈Zk

P (zk
i ) (11)

where Zk = superset(X, k), and P(Z1) is the probability that the transaction
t contains X and at least one additional item. If we replace the probability by
frequencies, and express the frequencies by relative support of the sets we obtain
the following formula:

ptobSup(Z1) =
n∑

k=1

(−1)(k+1)
∑

zk
i ∈Zk

probSub(zk
i ) (12)

As we are interested in calculating support of itemsets, we should consider only
such zk sets for which k+ |X | ≤ |tmax|. All the more numerous sets have support
equal to 0. Hence, we can rewrite our formula in the following manner:

probSup(Z1) =
|tmax|−|X|∑

(−1)(k+1)
∑

zk
1∈Zk

probSup(zk
i ). (13)

To calculate support of the set X we have to sum the values: (i) resulting from
the formula (13) and (ii) support of X for the transaction with exactly the same
items as in X . This leads us finally to the formula (8) above.

Rationale for postulate 5: Each transaction supports n k-itemsets, where
k ≤ |t| and n is the number of all different k-elements sets which can be cre-
ated from the items belonging to the transaction. Hence for each transaction
t:

∑
X∈sets(Ik) probSupt(X) = Ck

|t|, where probSupt(X) denotes the support of
the itemset X counted for the transaction t.

The fulfillment of the postulate 5 requires estimation of support for each pos-
sible itemset, even if the given itemset is certainly infrequent. In the tasks of dis-
covering association rules only frequent sets are interested, so there is no need to
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take into consideration infrequent itemsets. In our opinion the postulate 5 can be
weaken by replacing the equality relation (=) by the relation ≤ in the formula (9).
This modification preserves natural definition of the postulate and makes it more
practical.

The modified postulates will be denoted as SJATD (Statistically Justified
Approach for Transactional Data).

4.5 Postulate for Single Record or a Transaction

The postulates SJATD presented above provide conditions for the support calcu-
lated for the entire database. On the other hand they say nothing about required
properties of support counted for a single record or transaction. For the methods
that estimate support of an itemset X by summing its support calculated for
single record it seems that more practical is to define conditions that should
be fulfilled by support calculated for single record or transaction rather than
calculated for entire database. Below we present such requirements.

Postulates for single record
(P1r) probSupR(X) ∈ [0, 1]
(P2r) probSupR(X) ≥ probSupR(Y ) for X ⊂ Y
(P3r) probSupR(X) ≥

∑
Z∈sets(At) probSupR(X∪Y )X �= ∅, Z �= ∅ and X∩Z = ∅

for any set Z
(P4r)

∑
X∈set(At), probSupR(X) = 1 for each set of attributes At ⊆ A.

For transactional data the postulates: (P3r) and (P4r) have to be redefined. The
appropriate formulas are given below.

Postulate P3r for transactional data:

probSupT (X) ≥
|T |−|X|∑

k=1

(−1)(k+1)
∑

Y ∈superset(X,k)

probSupT (Y ) (14)

Postulate P4r for transactional data∑
X∈sets(Ik) probSupT (X)

Ck
|T |

= 1 (15)

where probSupT (X) is a support of an itemsets X counted for transaction T .

5 Algorithm DARIT

In this section we present the new algorithm for discovering association rules
from incomplete transactional data, called in the sequel DARIT (Discovering
Association Rules in Incomplete Transactions). In our approach we allow that
incomplete transaction may have any number of missing element. We start
from the description of the data structure, called mT-tree, which is used in the
algorithm.
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5.1 The mT-Tree

The tree-like mT-tree structure is used for storing information concerning sets
tested by DARIT. Each node of this tree has assigned level, (the root is at level
1). Data associated with itemsets (supports, items) are stored in a node in a
table of elements, denoted further as tblElem. Each field of the tblElem table
in a node at level l may have pointer to another node at level l + 1. With each
element stored in the tblElem table there are three values associated: val pSup,
val probSup, val oSup, which are used for calculating pessimistic, estimated and
optimistic supports respectively. On Figure 1 a simplified structure of mT-tree
is presented. In the tables are only shown elements and name of a val pSup
parameter with itemsets to which this parameter concerns. Items belonging to
a path in the mT-tree, beginning from the root and composed of the fields of
the tblElem tables, form a frequent or potentially frequent itemset. The items
stored in the root of the mT-tree are frequent 1 itemsets. For instance, the set
{a, b, c, d} is represented by the path (n1[a], n2[b], n5[c], n8[d]) on Figure 1,
where nN[x] stands for the field in tblElem where the item x is stored in a node
of number N .

n2 - level 2. 
val_pSup{a,b} 

b 
val_pSup{a,c} 

c 
val_pSup{a,d} 

d 

n1 - level 1. ( root of tree ) 
val_pSup{a} 

a 
val_pSup{b} 

b 
val_pSup{c} 

c 
val_pSup{d} 

d 

n4 - level 2. 
val_pSup{c,d} 

d 

n5 - level 3. 
val_pSup{a,b,c} 

c 
val_pSup{a,b,d} 

d 

n6 - level 3. 
val_pSup{a,c,d} 

d 
n7 - level 3. 
val_pSup{b,c,d} 

d 

n8 - level 4. 
val_pSup{a,b,c,d} 

d 

n3 level 2.  
val_pSup{b,c} 

c 
val_pSup{b,d} 

d 

Fig. 1. mT-tree - simplified schema

5.2 Algorithm DARIT

The pseudo code of the algorithm DARIT is presented below.
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Algorithm DARIT
1) mTd: mT-tree;
2) Apriori Adapt(kmD, nkD, mTd)
3) for each transaction t ∈ nkD
4) begin
5) Generate Set NZ(t, mTd);
6) mTd.Modify probSup(t,t.NZ);
7) end
8) Generate Rules(mTd);

At the beginning the set of potentially frequent itemsets is generated (line 2)
by calling the Apriori Adapt procedure. In the procedure for determining po-
tentially frequent itemsets the pessimistic support and minimal pessimistic sup-
ports thresholds are used. The minimal pessimistic support, denoted further as
min minSup, is an additional parameter of the algorithm. This parameter defines
threshold which should be exceeded by the pessimistic support of each itemset
in order to consider the itemset as potentially frequent. It allows for appropriate
limitation of number of sets taken into consideration during execution of the
procedure Apriori Adapt, especially in the case of significant data incomplete-
ness. In the next step of the DARIT algorithm for each incomplete transaction
t, based on the sets stored in the mT-tree a set t.NZ is generated; it consists of
the sets which may occur in place of the special element null, which indicates
missing elements in the transactions (line 5). For each element of the t.NZ set
the probability of occurring in the considered transaction is assigned. Based on
the results obtained in this step, the values of the probSup support of itemsets
represented in the mT-tree are modified (line 6). At the end of the algorithm the
procedure Generate Rules is called – it produces the association rules from the
mT-tree using values of estimated support of itemsets.

Procedure Apriori Adapt
Procedure Apriori Adapt(Set of transaction kmD,nkD; mT-tree mTd)
1) Add Frequent Items(kmD, nkD, mTd)
2) p=2;
3) while(Generate Candidates(p, mTd)> 0)
4) begin
5) for each transaction t ∈ kmD
6) Calculate Support(t, mTd);
7) for each transaction t ∈ nkD
8) Calculate Support Incomplete(t, mTd);
9) mTd.Remove NotFrequent( minSup, min minSup);
10) p=p+1;
11) end

The procedure Apriori Adapt starts from adding 1-itemset potentially frequent
to the root of the mT-tree (line 1). The function Generate Candidates creates

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



320 G. Protaziuk and H. Rybinski

candidate sets and returns their number. Candidate sets in a node n at level
p are generated by creating child nodes at level p + 1, for each field in the ta-
ble tblElem, except for the last one. In the child node cn created for the jth

field, the table of elements consists of all those elements from the table tblElem
of the parent node, which are stored in the fields of the index greater than
j. The procedure Calculate Support increases value of the optimistic support
and of the pessimistic support for those of the candidate sets which are sup-
ported by a complete transaction t. The procedure Calculate Support Incomplete
(line 8) differs from the procedure Calculate Support in that it increases values of
the optimistic support for each candidate set. The method Remove NotFrequent
removes the candidate sets which certainly will not be frequent, and for the re-
maining candidate itemsets it sets value of probSup support to the value of the
pessimistic support.

Procedure Generate SetNZ
Procedure Generate Set NZ(transaction t, mT-tree mTd)
1) k = min(mTd.max length set −1, t.nb known items)
2) while(Stop condition = false and k > 0)
3) begin
4) t.NZ= t.NZ ∪ mTd.Find set nZ(t.knownk);
5) k = k − 1;
6) Stop condidtion = Check stop condition();
7) end
8) Calculate Probability(mTd);

At the beginning of procedure Generate Set NZ the initial value of k is defined.
It is calculated as a minimum of the 2 values (i) number of known items in the
transaction t, and (ii) the number of elements in the most numerous potentially
frequent set stored in mT-tree. Next, in the method Find set nZ for each incom-
plete transaction t the (k + j)-itemsets, (denoted as zpc) are looked for in the
mT-tree. Formally, zpc = {nZ ∪ t.knownk

i } and t.knownk
i is a set consisting of k

known elements from the transaction t. First, 1-item nZ sets are found, and then
the mT-tree is traversed deeper in order to find more numerous nZ sets. The
nZ set is added to the t.NZ set if it does not include known elements from the
transaction t. With each set nZ the parmProb parameter is associated. Further
on, the parameter is used to estimate probability of occurrence of the given set
nZ instead of the special element null in the transaction, thus to estimate the
value of the probSup support. The value of the parmProb is equal to the value of
minSup(zpc) of the currently examined set zpc, or if the given nZ set is already
in the t.NZ set, the value of the parameter is increased by minSup(zpc). This
procedure is repeated for k = k − 1 down to k = 0, or until the stop condition is
met. The stop condition is fulfilled when the sum of the parmProb parameters
of 1-item nZ sets included in the t.NZ set exceeds the following value:

max nb unknown = max len trans − t.nb known elem (16)
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where max len trans is the maximal number of the potentially frequent items
included in the single transaction, and t.nb known elem is the number of known
items contained in the transaction t.

The Calculate Probability procedure
The way in which the value of the parameter parmProb of the nZ sets is com-
puted causes that it can not be directly used as probability of occurrence of the
given nZ set in a transaction. Generally, we have to deal with the following basic
problems:

1) A value of the parameter for a single set or a sum of values for group of sets
exceeds thresholds. In the former case it is 1 – the maximal value of probabil-
ity, in the latter the threshold is associated with number of items included in a
transaction, for instance, the sum of probabilities of occurrences of single items
in a given transaction cannot be greater than the maximal length of the trans-
action. This condition may be expressed as:

∑
i=1..n prob(itemi, t) ≤ max(|t|),

where prob(itemi, t) is the probability of occurring of ith item in the transaction
t, max(|t|) is the maximal length of the transaction t, n is the number of items
potentially frequent. The solution of this problem is a simple normalization of
values to the required level.
2) Values of the parameter are very small. In this case the results obtained by
applying the DARIT algorithm is comparable with the results obtained by us-
ing the methods in which the incompleteness of data is neglected (pessimistic
support is used), but with much greater computational cost. To solve the prob-
lem these values are multiplied by certain ratio, which is calculated based of
most probable number of items which should be present in the transaction in
the place of the element null. The ratio is computed in such a way that the sum
of probabilities of occurring of single items in a given transaction is not greater
than the possible maximal length of the transaction.

The Modify probSup method
The Modify probSup method increases the value of the probSup support for
each such zpc set stored in the mT-tree, that zpc = {nZ∪zZ}, where nZ ∈ t.NZ
and zZ ∈ t.known. Note that the set zZ may be empty. The value of the probSup
support is increased by the value of the parmProb for the given nZ set.

The Generate Rules procedure
The Generate Rules procedure generates association rules from the sets stored in
the mT-tree in the following way: for each set cZ for which the minimal support
requirements are fulfilled, all its supersets nZc are found, such that the value
probSup(nZc)/probSup(cZ) is not less than the minimal confidence threshold.
Next, the rule cZ → {nZc\cZ} is generated with support equal to probSup(nZc)
and confidence equal to probSup(nZc)/probSup(cZ).

5.3 The SJATD Postulates

Theorem: DARIT satisfies the SJATD postulates.
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Proof:
Postulate 1. Value of the probSup support for each set is of course not less than
0. The way of calculating probSup applied in the Calculate Probabilty procedure
ensures that the value of probSup support never exceeds 1.
Postulate 2. The method of computing the values of the parmSup parameters
- summing the values of pessimistic support, ensures that the value of the pa-
rameter parmSup for any set will be not less than parmSup for its supersets.
Multiplication of these values by the same factor does not influence this rela-
tion. Additionally, the way of adding the sets nZ to the set t.NZ by traversing
mT-tree in depth, and adding more and more numerous sets guarantees that for
any given set all its subsets have been taken into consideration.
Postulate 3. Fulfilling this postulate follows from the method of computing the
probSup support described in the proof for Postulate 2 and from the fact that
the pessimistic support meets this postulate.
Postulate 5 (weakened). The postulate says that sum of the support of n-
itemsets calculated for a single transaction cannot be greater than the number
of k-elements sets which can be created from the items included in the transac-
tion. According to the definition for an incomplete transaction, support of the
set dowZ is equal to:

• 1, if dowZ ∈ t.known,
• nZ.parmSup, if dowZ = nZ or dowZ = nZ∪zZ, nZ ∈ t.NZ, zZ ∈ t.known,
• 0 otherwise

where t.known contains all the sets which can be formed from the known ele-
ments included in the transaction t.
Assuming that the number of elements nb elem t in the transaction t is equal
to max(|t.NZk|)+ t.nb known, where t.nb known denotes the number of known
elements in the transaction t and t.NZk denotes k − itemsets from the set
t.NZ, then number on n-elements sets, created from the items included in the
transaction t is equal to Cn

nb elem t. The sum Sm of the support of n-itemsets
counted for the transaction t can be split into tree parts:

Sm = Sknown + Sunknown + Sjoined (17)

Of course, not all parts occur in all cases. The partial sums in the equation above
means, respectively:

• Sknown — the sum of the support of the sets dowZ ∈ t.known. The sum
is equal to the number of n-elements sets created from the known items
included in the transaction t.

• Sunknown — the sum of supports of the sets dowZ ∈ t.NZ. In this case the
sum is less than the number of the sets created from max(|t.NZk|) elements.
It is ensured by the way of computing the normalization ratio in the method
Calculate Probability.

• Sjoined — the sum of supports of the sets dowZ = nZ ∪ zZ, nZ ∈ t.NZ,
zZ ∈ t.known, nZ �= ∅, zZ �= ∅. The sum is smaller than the number of
n-element sets created by joining the i-itemsets created from t.nb known
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elements and j-itemsets created from the max(|t.NZk|) elements for j, i > 0
and j + i = k. The number of such sets can be computed from the following
equation:

i=min(n−1,t.nb known)∑
i=1

Ct.nb known
i ∗ Cmax(t.NZk)

n−1 (18)

for i ≤ t.nb known and n − i ≤ max(|t.NZk|).
During the calculation of the sum Sjoined the second factor is replaced by the

sum of supports of the sets nZ ∈ t.NZn−i, which as it follows from explanation
presented for Sunknown is smaller than the value of this factor in the original
formula.

6 Experiments

The objective of the performed experiments was to evaluate the practical value
of the proposed approach. In order to evaluate the quality of the results ob-
tained by executing the DARIT algorithm the following procedure was applied.
First, the sets of association rules and frequent itemsets, further denoted as the
referential sets, were generated from a complete transactional database. Next,
the incomplete database was created by random removing some elements from
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Fig. 2. Percent difference of supports of sets
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Fig. 3. Percent of non-discovered sets
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Fig. 4. Erroneous sets as percentage of the size of the referential set
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Fig. 5. Percent difference of supports of association rules
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Fig. 6. Percent difference of confidences of association rules

some transactions. The number of incomplete transactions and the number of
unknown elements in a single transaction vary in the experiments. The last step
in the procedure was to use the DARIT algorithm to discover association rules
in the incomplete data. The evaluation of quality of the results was based on the
difference between the referential sets of association rules or frequent sets and
the sets obtained from analyzing incomplete data. The difference was described
by the following measures:

– percent difference between the supports of rules and frequent itemsets and
between the confidence measures
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Fig. 7. Percent of non-discovered association rules
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Fig. 8. Erroneous rules as a percentage of the size of the referential set

– percentage of the sets (rules) presented in the referential set that have not
been discovered from incomplete data

– number of additional sets (rules) discovered from incomplete data but not
present in the referential set, expressed as a percentage of the referential set.

The results obtained from DARIT were also compared with the results obtained
from the other data mining algorithms, where the pessimistic support estimation
is used. In the experiments the synthetic data were used. The set consisted of
592 transactions, the average length of the transactions was 20 elements. It was
1116 different items in the database. The test databases were incomplete in the
degree between 10% up to 90% of transactions. For each case four situations
with different number of missing elements in a single transaction were analyzed,
namely the situation in which 1, 2, 5, or 10 elements in a single transaction were
missing. In all experiments the minimal support threshold was set to 0.06 and
the minimal confidence threshold was set 0.9. The tests were carried out for four
values of minimal pessimistic support threshold calculated as a percentage of the
minimal support value, namely 10%, 20%, 50%, 80% of this value. On the charts
for Figure 2 to Figure 8 the average results for the minimal pessimistic support
are presented. On the legend d denotes the results obtained from DARIT, ign
stands for the ignore method, and the index at d or ign indicates the number of
missing elements in a single transaction.

The results concerning frequent itemsets are presented on the figures 2, 3
and 4. The proposed approach is generally much better than the ignore method.
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On Figure 4 the error of the algorithms DARIT and ignore is presented in the
form of the sum of numbers of missing and erroneously discovered sets. Such
a sum better presents differences between results obtained by the considered
methods, since the ignore method does not produce erroneous sets. The results
coming from those two methods are comparable only in the situations where the
incompleteness of data is small. The presented results show that by applying
the DARIT algorithm one can achieve good results also in the case of quite high
incompleteness of data (up to 50% of incomplete transactions).

On Figures 5 – 8 we present the results concerning comparisons of the sets
of discovered association rules. Also with respect to association rules DARIT
is much better than the ignore method, though here the difference is smaller.
The obtained results are generally worse than the results obtained for the fre-
quent sets. The errors in estimating support rather cumulate then eliminate. In
the case of association rules only the best configurations concerning the minimal
pessimistic support thresholds allow to obtain good results when the incomplete-
ness of data is higher.

7 Conclusions

In the paper we extended some postulates of legitimate approach to discovering
association rules, as defined in [12], so that they may be applied also to trans-
actional data. We have presented in detail a new approach for discovering asso-
ciation rules from incomplete transactional databases. In the presented DARIT
algorithm we do not use any knowledge that is external to the dataset, but ex-
ploit only relations discovered in the investigated database. We have shown that
the approach satisfies all the postulates of SJATD. We presented a number of
experimental results using synthetic data. The performed experiments show that
the proposed algorithm well foresees real values of the support and outperform
the methods based on ignoring unknown values.
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8. Dardzińska-G�lȩbocka A., Chase Method Based on Dynamic Knowledge Discovery
for Prediction Values in Incomplete Information Systems, PhD thesis, Warsaw,
2004.

9. Friedman H. F., Kohavi R., Yun Y., Lazy decision trees, Proceedings of the 13th
National Conference on Artificial Intelligence, Portland, Oregon, (1996)

10. Grzymala-Busse J. W.: Characteristic Relations for Incomplete Data: A General-
ization of the Indiscernibility Relation, Proceedings Rough Sets and Current Trends
in Computing, 4th International Conference, Uppsala, (2004).

11. Han J., Pei J., Yin Y.: Mining Frequent Patterns without Candidate Generation.
In: Proc. Of the 2000 ACM SIGMOD International Conference on Management of
Data, Dallas, Texas, USA, 2000. SIGMOD Record, Vol. 29, No. 2 (2000) 1–12

12. Kryszkiewicz M., Rybinski H.: Legitimate Approach to Association Rules under
Incompleteness. In: Foundations of Intelligent Systems. Proc. of 12th International
Symposium (ISMIS), Charlotte, USA, 2000. Lecture Notes in Artificial Intelligence,
Vol. 1932. Springer-Verlag (2000) 505–514

13. Kryszkiewicz M.: Probabilistic Approach to Association Rules in Incomplete
Databases, Proceedings of Web-Age Information Management, First International
Conference, WAIM 2000, Shanghai, (2000).

14. Kryszkiewicz M.: Concise Representation of Frequent Patterns based on
Disjunction-Free Generators. In: Proc. of the 2001 IEEE International Confer-
ence on Data Mining (ICDM), San Jose, California, USA, 2001. IEEE Computer
Society (2001) 305–312

15. Kryszkiewicz M.: Representative Association Rules. In: Research and Development
in Knowledge Discovery and Data Mining. Proc. of Second Pacific-Asia Conference
(PAKDD). Melbourne, Australia, 1998. Lecture Notes in Computer Science, Vol.
1394. Springer (1998) 198–209

16. Kryszkiewicz M.: Concise Representations of Frequent Patterns and Association
Rules Habilitation Thesis, Warsaw University of Technology, (2002)

17. Liu W. Z., White A. P.: Thompson S. G., Bramer M. A.: Techniques for Dealing
with Missing Values in Classification, Proceedings of Advances in Intelligent Data
Analysis, Reasoning about Data, Second International Symposium, London, (1997)

18. Nayak J. R., Cook D. J.: Approximate Association Rule Mining, Proceedings of
the Fourteenth International Artificial Intelligence Research Society Conference,
Key West, Florida, (2001)

19. Parsons S.: Current Approach to Handling Imperfect Information in Data and
Knowledge Bases, IEEE Transaction on knowledge and data engineering Vol. 8,
(1996)

20. Pawlak Z.: Rough Sets. International Journal of Information and Computer Sci-
ences No. 11 (1982) 341–356

21. Pawlak Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer
Academic Publishers, Vol. 9 (1991)

22. Pasquier N., Bastide Y., Taouil R., Lakhal L.: Discovering Frequent Closed Item-
sets for Association Rules. In: Proc. of Database Theory - ICDT ’99. Proc. of
7th International Conference (ICDT), Jerusalem, Israel, 1999. Lecture Notes in
Computer Science, Vol. 1540. Springer (1999) 398–416

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



328 G. Protaziuk and H. Rybinski

23. Protaziuk G., Sodacki P., Gancarz ., Discovering interesting rules in dense data,
The Eleventh International Symposium on Intelligent Information Systems, Sopot,
(2002).

24. Bastide Y., Pasquier N., Taouil R., Stumme G., Lakhal L.: Mining Minimal Non-
redundant Association Rules Using Frequent Closed Itemsets. Comp. Logic (2000)
972–986

25. Quinlan J. R., C4.5 Programs for Machine Learning, San Mateo, California, (1993)
26. Ragel A., Cremilleux B.: Treatment of Missing Values for Association Rules. In:

Research and Development in Knowledge Discovery and Data Mining. Proc. of
Second Pacific-Asia Conference (PAKDD). Melbourne, Australia, 1998. Lecture
Notes in Computer Science, Vol. 1394. Springer (1998) 258–270

27. Srikant R., Vu Q., Agrawal R.: Mining Association Rules with Item Constraints.
In: Proc. Of the Third International Conference on Knowledge Discovery and Data
Mining (KDD). Newport Beach, California, USA, 1997. AAAI Press (1997) 67–73

28. Stefanowski J., Tsoukias A.: Incomplete Information Tables and Rough Classifica-
tion. Int. Journal of Computational Intelligence, Vol. 17, No 3 (2001) 545–566

29. Stefanowski J.: Algorytmy indukcji regu decyzyjnych w odkrywaniu wiedzy (Algo-
rithms of Rule Induction for Knowledge Discovery). Habilitation Thesis, Poznan
University of Technology, No. 361 (2001)

30. Wang G.: Extension of Rough Set under Incomplete Information Systems, Pro-
ceedings of the 2002 IEEE International Conf. on Fuzzy Systems, Honolulu, (2002)

31. Zaki M.J.: Generating Non-Redundant Association Rules. In Proc. of 6th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
Boston, MA, 2000. ACM Press (2000) 34–43

32. Zhang J., Honavar V.: Learning Decision Tree Classifiers from Attribute Value Tax-
onomies and Partially Specified Data, Proceedings of the Twentieth International
Conference (ICML 2003), Washington, DC, (2003)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



On Combined Classifiers, Rule Induction and

Rough Sets

Jerzy Stefanowski

Institute of Computing Science
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Abstract. Problems of using elements of rough sets theory and rule
induction to create efficient classifiers are discussed. In the last decade
many researches attempted to increase a classification accuracy by com-
bining several classifiers into integrated systems. The main aim of this
paper is to summarize the author’s own experience with applying one
of his rule induction algorithm, called MODLEM, in the framework of
different combined classifiers, namely, the bagging, n2–classifier and the
combiner aggregation. We also discuss how rough approximations are
applied in rule induction. The results of carried out experiments have
shown that the MODLEM algorithm can be efficiently used within the
framework of considered combined classifiers.

1 Introduction

Rough sets theory has been introduced by Professor Zdzis�law Pawlak to analyse
granular information [25,26]. It is based on an observation that given information
about objects described by attributes, a basic relation between objects could be
established. In the original Pawlak’s proposal [25] objects described by the same
attribute values are considered to be indiscernible. Due to limitations of available
information, its natural granulation or vagueness of a representation language
some elementary classes of this relation may be inconsistent, i.e. objects having
the same descriptions are assigned to different categories. As a consequence
of the above inconsistency it is not possible, in general, to precisely specify a
set of objects in terms of elementary sets of indiscernible objects. Therefore,
Professor Zdzis�law Pawlak introduced the concept of the rough set which is a
set characterized by a pair of precise concepts – lower and upper approximations
constructed from elementary sets of objects.

This quite simple, but smart, idea is the essence of the Pawlak’s theory. It
is a starting point to other problems, see e.g. [27,20,26,9]. In particular many
research efforts have concerned classification of objects represented in data ta-
bles. Studying relationships between elementary sets and categories of objects (in
other terms, target concepts or decision classes in the data table) leads to, e.g.,
evaluating dependency between attributes and objects classification, determin-
ing the level of this dependency, calculating importance of attributes for objects
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classification, reducing the set of attributes or generating decision rules from
data. It is also said that the aim is to synthesize reduced, approximate models of
concepts from data [20]. The transparency and explainability of such models to
human is an important property. Up to now rough sets based approaches were
applied to many practical problems in different domains – see, e.g., their list
presented in [20].

Besides ”classical” rough sets, based on the indiscernibility relation, several
generalizations have been introduced. Such data properties as, e.g., imprecise
attribute values, incompleteness, preference orders, are handled by means of
tolerance, similarity, fuzzy valued or dominance relations [9,20,37].

Looking into the previous research on rough sets theory and its applications,
we could distinguish two main perspectives: descriptive and predictive ones.

The descriptive perspective includes extraction information patterns or regu-
larities, which characterize some properties hidden in available data. Such pat-
terns could facilitate understanding dependencies between data elements, ex-
plaining circumstances of previous decisions and generally gain insight into the
structure of the acquired knowledge. In this context presentation of results in a
human readable form allowing an interpretation is a crucial issue.

The other perspective concerns predicting unknown values of some attributes
on the basis of an analysis of previous examples. In particular, it is a prediction of
classes for new object. In this context rough sets and rules are used to construct
a classifier that has to classify new objects. So, the main evaluation criterion is
a predictive classification accuracy. Let us remind that the predictive classifica-
tion has been intensively studied since many decades in such fields as machine
learning, statistical learning, pattern recognition. Several efficient methods for
creating classifiers have been introduced; for their review see, e.g., [16,19,23].
These classifiers are often constructed with using a search strategy optimizing
criteria strongly related to predictive performance (which is not directly present
in the original rough sets theory formulation). Requirements concerning inter-
pretability are often neglected in favor of producing complex transformations of
input data – an example is an idea of support vector machines.

Although in both perspectives we could use the same knowledge representa-
tion – rules, since motivation and objectives are distinct, algorithmic strategies
as well as criteria for evaluating a set of rules are quite different. For instance,
the prediction perspective directs an interest to classification ability of the com-
plete rules, while in the descriptive perspective each rule is treated individually
as a possible representative of an ‘interesting’ pattern evaluated by measures as
confidence, support or coverage - for a more exhaustive discussion see, e.g., [42].

In my opinion, basic concepts of the rough sets theory have been rather con-
sidered in the way similar to a descriptive analysis of data tables. Nevertheless,
several authors have developed their original approaches to construct decision
rules from rough approximations of decision classes which joined together with
classification strategies led to good classifiers, see e.g. [1,11,20,34,37]. It seems
to me that many authors moved their interest to this direction in the 90’s be-
cause of at least two reasons: (1) a research interest to verify whether knowledge
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derived from ”closed world” of the data table could be efficiently applied to new
objects coming from the ”open world” – not seen in the analysed data table; (2)
as a result of working with real life applications.

Let us also notice that the majority of research has been focused on developing
single classifiers – i.e. based on the single set of rules. However, both empirical
observations and theoretical works confirm that one cannot expect to find one
single approach leading to the best results on overall problems [6]. Each learning
algorithm has its own area of superiority and it may outperform others for a
specific subset of classification problems while being worse for others. In the
last decade many researches attempted to increase classification accuracy by
combining several single classifiers into an integrated system. These are sets of
learned classifiers, whose individual predictions are combined to produce the final
decision. Such systems are known under names: multiple classifiers, ensembles or
committees [6,45]. Experimental evaluations shown that these classifiers are quite
effective techniques for improving classification accuracy. Such classifiers can be
constructed in many ways, e.g., by changing the distributions of examples in the
learning set, manipulating the input features, using different learning algorithms
to the same data, see e.g. reviews [6,45,36]. Construction of integrated classifiers
has also attracted the interest of some rough sets researchers, see e.g. [2,8,24]. The
author and his co-operators have also carried out research, first on developing
various rule induction algorithms and classification strategies (a review is given
in [37]), and then on multiple classifiers [18,36,38,40,41].

The main aim of this paper is to summarize the author’s experience with
applying one of his rule induction algorithm, called MODLEM [35], in the
framework of different multiple classifiers: the popular bagging approach [4], the
n2-classifier [18] – a specialized approach to solve multiple class learning prob-
lems, and the combiner approach to merge predictions of heterogeneous classifiers
including also MODLEM [5]. The second aim is to briefly discuss the MODLEM
rule induction algorithm and its experimental evaluation.

This paper is organized as follows. In the next section we shortly discuss rule
induction using the rough sets theory. Section 3 is devoted to the MODLEM al-
gorithm. In section 4 we briefly present different approaches to construct multiple
classifiers. Then, in the successive three sections we summarize the experience of
using rule classifiers induced by MODLEM in the framework of three different
multiple classifiers. Conclusions are grouped in section 8.

2 Rules Generation and Rough Sets

2.1 Notation

Let us assume that objects – learning examples for rule generation – are repre-
sented in decision table DT = (U, A∪{d}), where U is a set of objects, A is a set
of condition attributes describing objects. The set Va is a domain of a. Let fa(x)
denotes the value of attribute a ∈ A taken by x ∈ U ; d /∈ A is a decision attribute
that partitions examples into a set of decision classes {Kj : j = 1, . . . , k}.
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The indiscernibility relation is the basis of Pawlak’s concept of the rough set
theory. It is associated with every non-empty subset of attributes C ⊆ A and
∀x, y ∈ U is defined as xICy ⇔ {(x, y) ∈ U × U fa(x) = fa(y) ∀a ∈ C }.

The family of all equivalence classes of relation I(C) is denoted by U/I(C).
These classes are called elementary sets. An elementary equivalence class con-
taining element x is denoted by IC(x).

If C ⊆ A is a subset of attributes and X ⊆ U is a subset of objects then the
sets: {x ∈ U : IC(x) ⊆ X}, {x ∈ U : IC(x) ∩ X �= ∅} are called C-lower and
C-upper approximations of X , denoted by CX and CX , respectively. The set
BNC(X) = CX − CX is called the C-boundary of X .

A decision rule r describing class Kj is represented in the following form:

if P then Q,

where P = w1 ∧w2 ∧ . . . wp is a condition part of the rule and Q is decision part
of the rule indicating that example satisfying P should be assigned to class Kj .
The elementary condition of the rule r is defined as (ai(x) rel vai), where rel is
a relational operator from the set {=, <, ≤, >, ≥} and vai is a constant being a
value of attribute ai.

Let us present some definitions of basic rule properties. [P ] is a cover of the
condition part of rule r in DT , i.e. it is a set of examples, which description sat-
isfy elementary conditions in P . Let B be a set of examples belonging to decision
concept (class Kj or its appropriate rough approximation in case of inconsisten-
cies). The rule r is discriminant if it distinguishes positive examples of B from
its negative examples, i.e. [P ] =

⋂
[wi] ⊆ B. P should be a minimal conjunction

of elementary conditions satisfying this requirement. The set of decision rules R
completely describes examples of class Kj, if each example is covered by at least
one decision rules.

Discriminant rules are typically considered in the rough sets literature. How-
ever, we can also construct partially discriminant rules that besides positive
examples could cover a limited number of negative ones. Such rules are charac-
terized by the accuracy measure being a ratio covered positive examples to all
examples covered by the rule, i.e. [P ∩ B]/[P ].

2.2 Rule Generation

If decision tables contain inconsistent examples, decision rules could be gener-
ated from rough approximations of decision classes. This special way of treating
inconsistencies in the input data is the main point where the concept of the
rough sets theory is used in the rules induction phase. As a consequence of using
the approximations, induced decision rules are categorized into certain (discrim-
inant in the sense of the previous definition) and possible ones, depending on the
used lower and upper approximations, respectively.

Moreover, let us mention other rough sets approaches that use information
on class distribution inside boundary and assign to lower approximation these
inconsistent elementary sets where the majority of examples belong to the given
class. This is handled in the Variable Precision Model introduced by Ziarko
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[47] or Variable Consistency Model proposed by Greco et al. [10] – both are a
subject of many extensions, see e.g. [31]. Rules induced from such variable lower
approximations are not certain but partly discriminant ones.

A number of various algorithms have been already proposed to induce decision
rules – for some reviews see e.g. [1,11,14,20,28,34,37]. In fact, there is no unique
”rough set approach” to rule induction as elements of rough sets can be used
on different stages of the process of induction and data pre-processing. In gen-
eral, we can distinguish approaches producing minimal set of rules (i.e. covering
input objects using the minimum number of necessary rules) and approaches
generating more extensive rule sets.

A good example for the first category is LEM2, MODLEM and similar al-
gorithms [11,35]. The second approaches are nicely exemplified by Boolean rea-
soning [28,29,1]. There are also specific algorithms inducing the set of decision
rules which satisfy user’s requirements given a priori, e.g. the threshold value for
a minimum number of examples covered by a rule or its accuracy. An example
of such algorithms is Explore described in [42]. Let us comment that this algo-
rithm could be further extended to handle imbalanced data (i.e. data set where
one class – being particularly important – is under-represented comparing to
cardinalities of other classes), see e.g. studies in [15,43].

3 Exemplary Rule Classifier

In our study we will use the algorithm, called MODLEM, introduced by Ste-
fanowski in [35]. We have chosen it because of several reasons. First of all, the
union of rules induced by this algorithm with a classification strategy proved
to provide efficient single classifiers, [14,41,37]. Next, it is designed to handle
various data properties not included in the classical rough sets approach, as e.g.
numerical attributes without its pre-discretization. Finally, it produces the set
of rules with reasonable computational costs – what is important property for
using it as a component inside combined classifiers.

3.1 MODLEM Algorithm

The general schema of the MODLEM algorithm is briefly presented below. More
detailed description could be found in [14,35,37]. This algorithm is based on the
idea of a sequential covering and it generates a minimal set of decision rules for
every decision concept (decision class or its rough approximation in case of in-
consistent examples). Such a minimal set of rules (also called local covering [11])
attempts to cover all positive examples of the given decision concept, further
denoted as B, and not to cover any negative examples (i.e. U \ B). The main
procedure for rule induction scheme starts from creating a first rule by choosing
sequentially the ‘best’ elementary conditions according to chosen criteria (see
the function Find best condition). When the rule is stored, all learning posi-
tive examples that match this rule are removed from consideration. The process
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is repeated while some positive examples of the decision concept remain still
uncovered. Then, the procedure is sequentially repeated for each set of examples
from a succeeding decision concept.

In the MODLEM algorithm numerical attributes are handled during rule in-
duction while elementary conditions of rules are created. These conditions are
represented as either (a < va) or (a ≥ va), where a denotes an attribute and va

is its value. If the same attribute is chosen twice while building a single rule, one
may also obtain the condition (a = [v1, v2)) that results from an intersection of
two conditions (a < v2) and (a ≥ v1) such that v1 < v2. For nominal attributes,
these conditions are (a = va) or could be extended to the set of values.

Procedure MODLEM
(input B - a set of positive examples from a given decision concept;

criterion - an evaluation measure;
output T – single local covering of B, treated here as rule condition parts)
begin

G := B; {A temporary set of rules covered by generated rules}
T := ∅;
while G �= ∅ do {look for rules until some examples remain uncovered}
begin

T := ∅; {a candidate for a rule condition part}
S := U ; {a set of objects currently covered by T}
while (T = ∅) or (not([T ] ⊆ B)) do {stop condition for accepting a rule}
begin

t := ∅; {a candidate for an elementary condition}
for each attribute q ∈ C do {looking for the best elementary condition}
begin

new t :=Find best condition(q, S);
if Better(new t, t, criterion) then t := new t;
{evaluate if a new condition is better than previous one
according to the chosen evaluation measure}

end;
T := T ∪ {t}; {add the best condition to the candidate rule}
S := S ∩ [t]; {focus on examples covered by the candidate}

end; { while not([T ] ⊆ B }
for each elementary condition t ∈ T do

if [T − t] ⊆ B then T := T − {t}; {test a rule minimality}
T := T ∪ {T}; {store a rule}
G := B −

�
T∈T [T ] ; {remove already covered examples}

end; { while G �= ∅ }
for each T ∈ T do

if
�

T ′∈T −T [T ′] = B then T := T − T {test minimality of the rule set}
end {procedure}

function Find best condition
(input c - given attribute; S - set of examples; output best t - bestcondition)
begin

best t := ∅;
if c is a numerical attribute then
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begin
H :=list of sorted values for attribute c and objects from S;
{ H(i) - ith unique value in the list }
for i:=1 to length(H)-1 do
if object class assignments for H(i) and H(i + 1) are different then
begin

v := (H(i) + H(i + 1))/2;
create a new t as either (c < v) or (c ≥ v);
if Better(new t, best t, criterion) then best t := new t ;

end
end
else { attribute is nominal }
begin

for each value v of attribute c do
if Better((c = v), best t, criterion) then best t := (c = v) ;

end
end {function}.

For the evaluation measure (i.e. a function Better) indicating the best condition,
one can use either class entropy measure or Laplacian accuracy. For their defin-
itions see [14] or [23]. It is also possible to consider a lexicographic order of two
criteria measuring the rule positive cover and, then, its conditional probability
(originally considered by Grzymala in his LEM2 algorithm or its last, quite in-
teresting modification called MLEM). In all experiments, presented further in
this paper, we will use the entropy as an evaluation measure. Having the best
cut-point we choose a condition (a < v) or (a ≥ v) that covers more positive
examples from the concept B.

In a case of nominal attributes it is also possible to use another option of
Find best condition function, where a single attribute value in the elementary
condition (a = vi) is extended to a multi-valued set (a ∈ Wa), where Wa is a
subset of values from the attribute domain. This set is constructed in the similar
way as in techniques for inducing binary classification trees. Moreover, the author
created MODLEM version with another version of rule stop condition. Let us
notice that in the above schema the candidate T is accepted to become a rule if
[T ] ⊆ B, i.e. a rule should cover learning examples belonging to an appropriate
approximation of the given class Kj. For some data sets – in particular noisy
ones – using this stop condition may produce too specific rules (i.e. containing
many elementary conditions and covering too few examples). In such situations
the user may accept partially discriminating rules with high enough accuracy
– this could be done by applying another stop condition ([T ∩ B]/[T ] ≥ α. An
alternative is to induce all, even too specific rules and to post-process them –
which is somehow similar to pruning of decision trees.

Finally we can illustrate the use of MODLEM by a simple example. The
data table contains examples of 17 decision concerning classification of some
customers into three classes coded as d, p, r. All examples are described by 5
qualitative and numerical attributes.
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Table 1. A data table containing examples of customer classification

Age Job Period Income Purpose Decision

m u 0 500 K r
sr p 2 1400 S r
m p 4 2600 M d
st p 16 2300 D d
sr p 14 1600 M p
m u 0 700 W r
sr b 0 600 D r
m p 3 1400 D p
sr p 11 1600 W d
st e 0 1100 D p
m u 0 1500 D p
m b 0 1000 M r
sr p 17 2500 S p
m b 0 700 D r
st p 21 5000 S d
m p 5 3700 M d
m b 0 800 K r

This data table is consistent, so lower and upper approximations are the same.
The use of MODLEM results in the following set of certain rules (square brackets
contain the number of learning examples covered by the rule):

rule 1. if (Income < 1050) then (Dec = r) [6]
rule 2. if (Age = sr) ∧ (Period < 2.5) then (Dec = r) [2]
rule 3. if (Period ∈ [3.5, 12.5)) then (Dec = d) [2]
rule 4. if (Age = st) ∧ (Job = p) then (Dec = d) [3]
rule 5. if (Age = m) ∧ (Income ∈ [1050, 2550)) then (Dec = p) [2]
rule 6. if (Job = e) then (Dec = p) [1]
rule 7. if (Age = sr) ∧ (Period ≥ 12.5) then (Dec = p) [2]

Due to the purpose and page limits of this paper we do not show details of
MODLEM working steps while looking for a single rule - the reader is referred
to the earlier author’s papers devoted to this topic only.

3.2 Classification Strategies

Using rule sets to predict class assignment for an unseen object is based on
matching the object description to condition parts of decision rules. This may
result in unique matching to rules from the single class. However two other
ambiguous cases are possible: matching to more rules indicating different classes
or the object description does not match any of the rules. In these cases, it
is necessary to apply proper strategies to solve these conflict cases. Review of
different strategies is given in [37]
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In this paper we employ two classification strategies. The first was introduced
by Grzymala in LERS [12]. The decision to which class an object belongs to is
made on the basis of the following factors: strength and support. The Strength
is the total number of learning examples correctly classified by the rule during
training. The support is defined as the sum of scores of all matching rules from
the class. The class Kj for which the support, i.e., the following expression∑

matching rules R describing Ki

Strength factor(R)

is the largest is the winner and the object is assigned to Kj.
If complete matching is impossible, all partially matching rules are identified.

These are rules with at least one elementary condition matching the correspond-
ing object description. For any partially matching rule R, the factor, called
Matching factor (R), defined as a ratio of matching conditions to all conditions
in the rule, is computed. In partial matching, the concept Kj for which the
following expression is the largest∑

partially matching rules R

Matching factor(R) ∗ Strength factor(R)

is the winner and the object is classified as being a member of Kj.
The other strategy was introduced in [32]. The main difference is in solving

no matching case. It is proposed to consider, so called, nearest rules instead of
partially matched ones. These are rules nearest to the object description in the
sense of chosen distance measure. In [32] a weighted heterogeneous metric DR
is used which aggregates a normalized distance measure for numerical attributes
and {0;1} differences for nominal attributes. Let r be a nearest matched rule, e
denotes a classified object. Then DR(r, e) is defined as:

Dr(r, e) =
1
m

(
∑
a∈P

dp
a)1/p

where p is a coefficient equal to 1 or 2, m is the number of elementary conditions
in P – a condition part of rule r. A distance da for numerical attributes is equal
to |a(e) − vai|/|va−max − va−min|, where vai is the threshold value occurring in
this elementary condition and va−max, va−min are maximal and minimal values
in the domain of this attribute. For nominal attributes present in the elemen-
tary condition, distance da is equal to 0 if the description of the classified object
e satisfies this condition or 1 otherwise. The coefficient expressing rule similarity
(complement of the calculated distance, i.e. 1−DR(r, e)) is used instead of match-
ing factor in the above formula and again the strongest decision Kj wins. While
computing this formula we can use also heuristic of choosing the first k nearest
rules only. More details on this strategy the reader can find in papers [32,33,37].

Let us consider a simple example of classifying two objects e1 = {(Age =
m), (Job = p), (Period = 6), (Income = 3000), (Purpose = K)} and e2 =
{(Age = m), (Job = p), (Period = 2), (Income = 2600), (Purpose = M)}. The
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first object is completely matched by to one rule no. 3. So, this object is be
assigned to class d. The other object does not satisfy condition part of any rules.
If we use the first strategy for solving no matching case, we can notice that
object e2 is partially matched to rules no. 2, 4 and 5. The support for class r is
equal to 0.5·2 = 1. The support for class d is equal to 0.5·2 + 0.5·2 = 2. So, the
object is assigned to class d.

3.3 Summarizing Experience with Single MODLEM Classifiers

Let us shortly summarize the results of studies, where we evaluated the classi-
fication performance of the single rule classifier induced by MODLEM. There
are some options of using this algorithm. First of all one can choose as decision
concepts either lower or upper approximations. We have carried out several ex-
perimental studies on benchmark data sets from ML Irvine repository [3]. Due
to the limited size of this paper, we do not give precise tables but conclude that
generally none of approximations was better. The differences of classification ac-
curacies were usually not significant or depended on the particular data at hand.
This observation is consistent with previous experiments on using certain or pos-
sible rules in the framework of LEM2 algorithm [13]. We also noticed that using
classification strategies while solving ambiguous matching was necessary for all
data sets. Again the difference of applied strategies in case of non-matching (ei-
ther Grzymala’s proposal or nearest rules) were not significant. Moreover, in [14]
we performed a comparative study of using MODLEM and LEM2 algorithms
on numerical data. LEM2 was used with preprocessing phase with the good
discretization algorithm. The results showed that MODLEM can achieved good
classification accuracy comparable to best pre-discretization and LEM2 rules.

Here, we could comment that elements of rough sets are mainly used in MOD-
LEM as a kind of preprocessing, i.e. approximations are decision concepts. Then,
the main procedure of this algorithm follows rather the general inductive prin-
ciple which is common aspect with many machine learning algorithms – see e.g.
a discussion of rule induction presented in [23]. Moreover, the idea of handling
numerical attributes is somehow consistent with solutions also already present
in classification tree generation. In this sense, other rule generation algorithms
popular in rough sets community, as e.g. based on Boolean reasoning, are more
connected with rough sets theory.

It is natural to compare performance of MODLEM induced rules against
standard machine learning systems. Such a comparative study was carried out
in [37,41] and showed that generally the results obtained by MODLEM (with
nearest rules strategies) were very similar to ones obtained by C4.5 decision tree.

4 Combined Classifiers – General Issues

In the next sections we will study the use of MOLDEM in the framework of
the combined classifiers. Previous theoretical research (see, e.g., their summary
in [6,45]) indicated that combining several classifiers is effective only if there is
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a substantial level of disagreement among them, i.e. if they make errors inde-
pendently with respect to one another. In other words, if they make errors for
a given object they should indicate different class assignments. Diversified base
classifiers can be generated in many ways, for some review see, e.g. [6,36,45]. In
general, either homogeneous or heterogeneous classifiers are constructed.

In the first category, the same learning algorithm is used over different samples
of the data set. The best-known examples are either bagging and boosting tech-
niques which manipulate set of examples by including or weighting particular
examples, or methods that manipulate set of attributes, e.g. randomly choos-
ing several attribute subsets. Moreover, multiple classifiers could be trained over
different samples or partitions of data sets.

In the second category, different learning algorithms are applied to the same
data set, and the diversity of results comes from heterogeneous knowledge rep-
resentations or different evaluation criteria used to construct them. The stacked
generalization or meta-learning belong to this category. In section 7 we study
the combiner as one of these methods.

Combining classification predictions from single classifiers is usually done by
group or specialized decision making. In the first method all base classifiers are
consulted to classify a new object while the other method chooses only these clas-
sifiers whose are expertised for this object. Voting is the most common method
used to combine single classifiers. The vote of each classifier may be weighted,
e.g., by an evaluation of its classification performance.

Moreover, looking into the rough sets literature one can notice a growing re-
search interest in constructing more complex classification system. First works
concerned rather an intelligent integration of different algorithms into hybrid sys-
tem. For instance, some researchers tried to refine rule classifiers by analysing
relationships with neural networks [44]. More related works included an inte-
gration of k - nearest neighbor with rough sets rule generation, see e.g. RIONA
system, which offered good classification performance [8]. Yet another approach
comprises two level knowledge representation: rules induced by Explore rep-
resenting general patterns in data and case base representing exceptions [36],
which worked quite well for the difficult task of credit risk prediction [43]. Re-
cently Skowron and his co-operators have been developing hierarchical classifiers
which attempt at approximating more complex concepts [2]. Classifiers on dif-
ferent hierarchy level correspond to different levels of pattern generalization and
seems to be a specific combination of multiple models, which could be obtained
in various ways, e.g. using a special lattice theory [46] or leveled rule generation.
Nguyen et al. described in [24] an application concerning detecting sunspots
where hierarchical classifier is constructed with a domain knowledge containing
an ontology of considered concepts.

5 Using MODLEM Inside the Bagging

Firstly, we consider the use of MODLEM induced classifier inside the most pop-
ular homogeneous multiple classifiers [38].
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This approach was originally introduced by Breiman [4]. It aggregates classi-
fiers generated from different bootstrap samples. The bootstrap sample is
obtained by uniformly sampling with replacement objects from the training set.
Each sample has the same size as the original set, however, some examples do
not appear in it, while others may appear more than once. For a training set
with m examples, the probability of an example being selected at least once is
1−(1−1/m)m. For a large m, this is about 1 - 1/e. Given the parameter R which
is the number of repetitions, R bootstrap samples S1, S2, . . . , SR are generated.
From each sample Si a classifier Ci is induced by the same learning algorithm
and the final classifier C∗ is formed by aggregating these R classifiers. A final
classification of object x is built by a uniform voting scheme on C1, C2, . . . , CR,
i.e. is assigned to the class predicted most often by these sub-classifiers, with ties
broken arbitrarily. For more details and theoretical justification see e.g. [4].

Table 2. Comparison of classification accuracies [%] obtained by the single MOD-
LEM based classifier and the bagging approach; R denotes the number of component
classifiers inside bagging

Name of Single Bagging R
data set classifier

bank 93.81 ± 0.94 95.22 ± 1.02 7
buses 97.20 ± 0.94 99.54 ± 1.09 5
zoo 94.64 ± 0.67 93.89* ± 0.71 7
hepatitis 78.62 ± 0.93 84.05 ± 1.1 5
hsv 54.52 ± 1.05 64.78 ± 0.57 7
iris 94.93 ± 0.5 95.06* ± 0.53 5
automobile 85.23 ± 1.1 83.00 ±0.99 5
segmentation 85.71 ± 0.71 87.62 ± 0.55 7
glass 72.41 ± 1.23 76.09 ± 0.68 10
bricks 90.32* ± 0.82 91.21* ± 0.48 7
vote 92.67 ± 0.38 96.01 ± 0.29 10
bupa 65.77 ± 0.6 76.28 ± 0.44 5
election 88.96± 0.54 91.66 ± 0.34 7
urology 63.80 ± 0.73 67.40 ± 0.46 7
german 72.16 ± 0.27 76.2 ± 0.34 5
crx 84.64 ± 0.35 89.42 ± 0.44 10
pima 73.57 ± 0.67 77.87 ± 0.39 7

In this paper we shortly summarize main results obtained in the extensive
computational study [38]. The MODLEM algorithm was applied to generate base
classifiers in the bagging combined classifier. In table 2 we present the comparison
of the classification accuracy obtained for the best variant of the bagging against
the single rule classifier (also induced by MODLEM). The experiments were
carried out on several data sets coming mainly from ML Irvine repository [3]. For
each data set, we show the classification accuracy obtained by a single classifier
over the 10 cross-validation loops. A standard deviation is also given. An asterisk
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indicates that the difference for these compared classifiers and a given data
set is not statistically significant (according to two-paired t-Student test with
α=0.05). The last column presents the number of R component classifiers inside
the bagging - more details on tuning this value are described in [38].

We conclude that results of this experiment showed that the bagging signif-
icantly outperformed the single classifier on 14 data sets out of total 18 ones.
The difference between classifiers were non-significant on 3 data sets (those which
were rather easy to learn as, e.g. iris and bricks - which were characterized by a
linear separation between classes). Moreover, we noticed the slightly worse per-
formance of the bagging for quite small data (e.g. buses, zoo - which seemed
to be too small for sampling), and significantly better for data sets containing
a higher number of examples. For some of these data sets we observed an sub-
stantial increase of predictive accuracy, e.g. for hsv – over 10%, bupa – around
10% and hepatitis – 5.43%.

However, we should admit that this good performance was expected as we
know that there are many previous reports on successful use of decision trees in
bagging or boosting.

6 On Solving Multiclass Problems with the n2-Classifier

One can say the bagging experiment has been just a variant of a standard ap-
proach. Now we will move to more original approach, called the n2-classifier,
which was introduced by Jelonek and author in [18,36]. This kind of a multiple
classifier is a specialized approach to solve multiple class learning problems.

The n2-classifier is composed of (n2 − n)/2 base binary classifiers (where n is
a number of decision classes; n > 2). The main idea is to discriminate each pair
of the classes: (i, j), i, j ∈ [1..n], i �= j , by an independent binary classifier Cij .
Each base binary classifier Cij corresponds to a pair of two classes i and j only.
Therefore, the specificity of the training of each base classifier Cij consists in
presenting to it a subset of the entire learning set that contains only examples
coming from classes i and j. The classifier Cij yields a binary classification
indicating whether a new example x belongs to class i or to class j. Let us
denote by Cij(x) the classification of an example x by the base classifier Cij .

The complementary classifiers: Cij and Cji (where i, j ∈ < 1 . . . n >; i �=
j) solve the same classification problem – a discrimination between class i-th
and j-th. So, they are equivalent (Cij ≡ Cji) and it is sufficient to use only
(n2 - n)/2 classifiers Cij(i < j), which correspond to all combinations of pairs
of n classes.

An algorithm providing the final classification assumes that a new example x
is applied to all base classifiers Cij . As a result, their binary predictions Cij(x)
are computed. The final classification is obtained by an aggregation rule, which
is based on finding a class that wins the most pairwise comparisons. The more
sophisticated approach includes a weighted majority voting rules, where the vote
of each classifier is modified by its credibility, which is calculated as its classifi-
cation performance during learning phase; more details in [18].
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We have to remark that the similar approach was independently studied by
Friedman [7] and by Hastie and Tibshirani [17] – they called it classification by
pairwise coupling. The experimental studies, e.g. [7,17,18], have shown that such
multiple classifiers performed usually better than the standard classifiers. Pre-
viously the author and J.Jelonek have also examined the influence of a learning
algorithm on the classification performance of the n2-classifier.

Table 3. Comparison of classification accuracies [%] and computation times [s] for
the single MODLEM based classifier and the n2-classifier also based on decision rules
induced by MODLEM algorithm

Accuracy of Accuracy of Time of Time of
Name of single n2

MODLEM comput. comput.
data set MODLEM (%) (%) MODLEM n2

MODLEM

automobile 85.25 ± 1.3 87.96 ± 1.5 15.88 ± 0.4 5.22 ± 0.3

cooc 55.57 ± 2.0 59.30 ± 1.4 4148,7 ± 48.8 431.51 ± 1.6

ecoli 79.63 ± 0.8 81.34 ± 1.7 27.53 ± 0.5 11.25 ± 0.7

glass 72.07 ± 1.2 74.82 ± 1.4 45.29 ± 1.1 13.88 ± 0.4

hist 69.36 ± 1.1 73.10 ± 1.4 3563.79 ± 116.1 333.96 ± 0.8

meta-data 47.2 ± 1.3 49.83 ± 1.9 252.59 ± 78.9 276.71 ± 5.21

iris 94.2 ± 0.6 95.53* ± 1.2 0.71 ± 0.04 0.39 ± 0.04

soybean-large 91.09 ± 0.9 91.99* ± 0.8 26.38 ± 0.3 107.5 ± 5.7

vowel 81.81 ± 0.5 83.79 ± 1.2 3750.57 ± 30.4 250.63 ± 0.7

yeast 54.12 ± 0.7 55.74 ± 0.9 1544.3 ± 13.2 673.82 ± 9.4

zoo 94.64 ± 0.5 94.46* ± 0.8 0.30 ± 0.02 0.34 ± 0.12

Here, we summarize these of our previous results, where the MODLEM was
applied to generate base classifiers inside the n2-classifier [38]. In table 3 we
present classification accuracies obtained by the n2-classifier and compare them
against the single rule classifier induced by MODLEM on 11 data sets, all con-
cerning multiple-class learning problems, with a number of classes varied from
3 up to 14. The second and third columns are presented in a similar way as in
Table 2. These results showed that the n2-classifier significantly (again in the
sense of paired t test with a significance level α = 0.05) outperformed the single
classifier on 7 out of 11 problems, e.g. for hist – over 3.7%, glass – around 2.7%,
automobile – 2.5% and meta-data – 2.6%. These improvements were not so high
as in the bagging but still they occurred for many difficult multi-class problems.
Again, the multiple classifier was not useful for easier problems (e.g. iris). More-
over, we noticed that its performance was better for data sets with a higher
number of examples. Coming back to our previous results for the n2-classifier
[18] we can again remark that the comparable classification improvements were
observed for the case of using decision trees.

Then, let us focus our attention on interesting phenomena concerning compu-
tation costs of using the MODLEM in a construction of the n2-classifier. Table 3
(two last columns) contains computation times (in seconds calculated as average
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values over 10 folds with standard deviations). We can notice that generally con-
structing a combined classifiers does not increase the computation time. What is
even more astonishing, for some data sets constructing the n2-classifier requires
even less time than training the standard single classifier. Here, we have to stress
that in our previous works [18,37] we noticed that the increase of classification
accuracy (for other learning algorithms as e.g. decision trees, k-nearest neigh-
bor or neural networks) was burden with increasing the computational costs
(sometimes quite high). In [38] we attempted to explain the good performance
of MODLEM inside the n2-classifier. Shortly speaking, the n2-classifier should
be rather applied to solving difficult (”complex”) classification tasks, where ex-
amples of decision classes are separated by non-linear decision borders – these
are often difficult concepts to be learned by standard classifiers, while pairwise
decision boundaries between each pair of classes may be simpler and easier to be
learned with using a smaller number of attributes. Here, MODLEM could gain
its performance thanks to his sequential covering and greedy heuristic search.
It generates rules distinguishing smaller number of learning examples (from two
classes only) than in the multiple class case and, above all, testing a smaller
number of elementary conditions. To verify hypothesis we inspect syntax of rule
sets induced by the single classifier and the n2-classifier. Rules for binary clas-
sifiers were using less attributes and covered more learning example on average
than rules from the single set generated in the standard way [38].

7 Combining Predictions of Heterogeneous Classifiers

In two previous sections we described the use of MODLEM based classifiers
inside the architecture of homogeneous classifiers. In these solutions, the MOD-
LEM was the only algorithm applied to create base classifiers inside multiple
classifiers and could directly influence their final performance. Diversification of
base classifiers is one of the conditions for improving classification performance
of the final system. Let us repeat that in previously considered solutions it was
achieved by changing the distribution of examples in the input data.

Another method to obtain component classifier diversity is constructing, so
called, heterogeneous classifiers. They are generated from the same input data
by different learning algorithms which use different representation language and
search strategies. These base classifiers could be put inside a layered architec-
ture. At the first level base classifiers receive the original data as input. Their
predictions are then aggregated at the second level into the final prediction of
the system. This could be done in various ways. In one of our studies we used a
solution coming from Chan & Stolfo [5], called a combiner.

The combiner is based on an idea of merging predictions of base classifiers
by an additional classifier, called meta-classifier. This is constructed in an extra
meta-learning step, i.e. first base classifiers are learned, then their predictions
made on a set of extra validation examples, together with correct decision labels,
form a meta-level training set. An extra learning algorithm is applied to this set
to discover how to merge base classifier predictions into a final decision.
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Table 4. Classification accuracies [%] for different multiple classifiers

Data set Bagging n2-classifier Combiner

Automobile 83.00 87.90 84.90
Bank 95.22 – 95.45
Bupa 76.28 – 69.12
Ecoli 85.70 81.34 85.42
Glass 74.82 74.82 71.50
HSV 64.75 – 59.02
Meta-data 48.11 49.80 51.33
Pima 75.78 – 74.78
Voting 93.33 – 94.67
Yeast 58.18 55.74 58.36
Zoo 93.89 94.46 95.05

In [41] we performed a comparative study of using a combiner approach
against the single classifiers learned by these algorithms which were applied
to create its component classifiers. In this study base classifiers were induced by
k-NN, C4.5 and MODLEM. The meta-classifier was a Naive Bayes. This com-
parative study was performed on 15 data sets. However, the obtained results
showed that the combiner did not improve classification accuracy in so many
cases as previously studied homogeneous classifiers. Only in 33% data we ob-
served a significant improvement comparing against single classifiers. In table 4
we present only some of these results concerning the final evaluation of the com-
biner compared also against the previous multiple classifiers. However, while
comparing these classifiers we should be cautious as the number of the results
on common data sets was limited. Moreover, MODLEM is only one of three
component classifiers inside the combiner that influences the final result.

We could also ask a question about other elements of the architecture of
heterogeneous classifier, e.g. number of component classifiers or the aggregation
techniques. In recent experiments we focus our interest on testing two other
techniques instead of the meta-combiner:

– a simple aggregation performed by means of a majority voting rule (denoted
as MV in table 4),

– using a quite sophisticated approach – SCANN; It was introduced by Merz
[22] and uses a mechanism of the correspondence analysis to discover hidden
relationships between the learning examples and the classification done by
the component classifiers.

Results from ongoing experiments are given in Table 5. There is also a differ-
ence to previous architecture, i.e. adding an additional, forth component classi-
fiers Naive Bayesian at the first level. We can remark that the more advanced
aggregation technique could slightly increase the classification accuracy compar-
ing to simpler one. On the other hand they are much time consuming.
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Table 5. Comparison of different methods producing the final decision inside the
heterogeneous classifiers - classification accuracies [%]

Data set MV SCANN Combiner

credit-a 86.2 ± 0.6 87 ± 0.7 86.6 ± 0.4

glass 68.5 ± 0.3 70.1 ± 0.2 70.5 ± 0.6

ecoli 86.1 ± 0.9 81.5 ± 0.8 84.5 ± 0.5

zoo 95 ± 0.9 92.2 ± 0.7 95.1 ± 0.4

8 Discussion of Results and Final Remarks

As Professor Zdzis�law Pawlak wrote in the introductory chapter of his book on
rough sets [26] knowledge of human beings and other species is strictly connected
with their ability to classify objects. Finding classification patterns of sensor
signals or data form fundamental mechanisms for very living being. In his point
of view it was then connected with a partition (classification) operation leading to
basic blocks for constructing knowledge. Many researchers followed the Pawlak’s
idea. One of the main research directions includes constructing approximations of
knowledge from tables containing examples of decisions on object classification.
Rules were often induced as the most popular knowledge representation. They
could be used either to describe the characteristics of available data or as the
basis for supporting classification decisions concerning new objects. Up to now
several efficient rule classifiers have been introduced.

In this study we have attempted to briefly describe the current experience
with using the author’s rule induction algorithm MODLEM, which induces either
certain or possible rules from appropriate rough approximations. This is the main
point where elements of the rough sets theory is applied in this algorithm. Given
as an input learning examples from approximations, the rule generation phase
follows the general idea of sequential covering, which is somehow in common
with machine learning paradigms. The MODLEM produces a minimal set of
rules covering examples from rough approximations. This rule sets should be
joined with classification strategies for solving ambiguous matching of the new
object description to condition parts of rules. An extra property of this algorithm
is it ability to handle directly numerical attributes without prior discretization.
The current experience with comparative studies on benchmark data sets and
real life applications showed that the classification performance of this approach
was comparable to other symbolic classifiers, in particular to decision trees.

Although the MODLEM classifier and other machine learning approaches are
efficient for many classification problems, they do not always lead to satisfac-
tory classification accuracy for more complex and difficult problems. This is
our motivation to consider new approaches for increasing classification accuracy
by combining several classifiers into an integrated system. Several proposals of
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constructing such multiple classifiers are already proposed. Most of them are
general approaches, where many different algorithms could be applied to induce
the component classifiers.

Thus, our main research interest in this study is to summarize our exper-
iments with using MODLEM induced rule classifiers inside the framework of
three different multiple classifiers, namely the bagging, the n2-classifier and the
combiner. A classification accuracy for the multiple classifier has been compared
against the standard classifiers – also induced by MODLEM. These results and
their detailed discussion has been given in the previous sections.

Firstly we could notice that using MODLEM inside the bagging was quite
effective. However, it was a kind of standard approach and we could expect such
good performance as MODLEM performs similarly to decision trees (which have
been extensively studied in the bagging) and could be seen as unstable learn-
ing algorithm - i.e. an algorithm whose output classifier undergoes changes in
response to small changes in the training data. This kind of algorithm may pro-
duce base classifiers diversified enough (but not too much, see e.g. discussion
of experimental study by Kuncheva and Whitaker [21]) which is a necessary
condition for their effective aggregation. Following the same arguments we also
suspect that MODLEM should nicely work inside the boosting classifier. Further
on, we could hypothesize that slightly worse improvements of the classification
accuracy in the combiner approach may result from insufficient diversification
of component heterogeneous classifiers. This has been verified by analysing dis-
tributions of wrong decisions for base classifiers, presented in [41]. It showed
the correlation of errors for some data sets, where finally we did not notice the
improvement of the classification accuracy.

The most original methodological approach is Jelonek and author’s proposal
of the n2-classifier which is in fact a specialized approach to learning multiple
class problems. The n2-classifier is particularly well suited for multiple class
data where exist ”simpler” pairwise decision boundaries between pair of classes.
MODLEM seems to be a good choice to be used inside this framework as it
leads to an improvement of classification performance and does not increase
computational costs - reasons for this have been discussed in section 7. Let us
notice that using other learning algorithms inside the n2-classifier and applying
MODLEM in two other multiple classifier requires an extra computation efforts
comparing to learning the single, standard classifier [38].

Comparing results of all together multiple classifiers ”head to head” we should
be cautious as we had a limited number of common data sets. It seems that
the n2-classifier is slightly better for these data. While the standard multiple
classifiers, as bagging or combiner, are quite efficient for simpler data and are
easier to be implemented.

To sum up, the results of our experiments have shown that the MODLEM
algorithm can be efficiently used within the framework of three multiple classi-
fiers for data sets concerning more ”complex” decision concepts. However, the
relative merits of these new approaches depends on the specifies of particular
problems and a training sample size.
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Let us notice that there is a disadvantage of the multiple classifiers - loosing a
simple and easy interpretable structure of knowledge represented in a form deci-
sion rules. These are ensembles of diversified rule sets specialized for predictive
aims not one set of rules in a form for a human inspection.

As to future research directions we could consider yet another way of obtain-
ing diversified data – i.e. selecting different subsets of attributes for each compo-
nent classifiers. The author has already started research on extending bootstrap
samples inside the bagging by applying additionally attribute selection [39,40].
In this way each bootstrap is replicated few times, each of them using different
subset of attributes. We have considered the use of different selection techniques
and observed that besides random choice or wrapper model, techniques which
use either entropy based measures or correlation merits are quite useful. The
results of comparative experiments carried out in [40] have showed that the clas-
sification accuracy of such a new extended bagging is higher than for standard
one. In this context one could come back to the classical rough sets topic of
reducts, which relates to finding an ensemble of few attribute subsets covering
different data properties and constructing in this way a set of diversified exam-
ples for an integrated system. However, we are not limited to ”classical” meaning
of pure rough sets reducts but rather to approximate ones, where the entropy
measure is also considered [30].
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Abstract. Pawlak introduced approximation spaces in his seminal work
on rough sets more than two decades ago. In this paper, we show that
approximation spaces are basic structures for knowledge discovery from
multi-relational data. The utility of approximation spaces as fundamen-
tal objects constructed for concept approximation is emphasized. Ex-
amples of basic concepts are given throughout this paper to illustrate
how approximation spaces can be beneficially used in many settings.
The contribution of this paper is the presentation of an approximation
space-based framework for doing research in various forms of knowledge
discovery in multi relational data.

Keywords: rough sets, approximation spaces, multi-relational data min-
ing, rough inclusion, uncertainty function.

1 Introduction

Approximation spaces are fundamental structures for the rough set approach
[7,8,10]. In this paper we present a generalization of the original approximation
space model. Using such approximation spaces we show how the rough set ap-
proach can be used for approximation of concepts assuming that only partial
information on approximation spaces is available. Hence, searching for concept
approximation, i.e., the basic task in machine learning and pattern recognition
can be formulated as searching for relevant approximation spaces.

Rough set approach has been used in a lot of applications aimed at descrip-
tion of concepts. In most cases, only approximate descriptions of concepts can be
constructed because of incomplete information about them. In learning approxi-
mations of concepts, there is a need to choose a description language. This choice
may limit the domains to which a given algorithm can be applied. There are at
least two basic types of objects: structured and unstructured. An unstructured
object is usually described by attribute-value pairs. For objects having an inter-
nal structure first order logic language is often used. Attribute-value languages
have the expressive power of propositional logic. These languages sometimes do
not allow for proper representation of complex structured objects and relations
among objects or their components. The background knowledge that can be

J.F. Peters et al. (Eds.): Transactions on Rough Sets VI, LNCS 4374, pp. 351–365, 2007.
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used in the discovery process is of a restricted form and other relations from
the database cannot be used in the discovery process. Using first-order logic (or
FOL for short) has some advantages over propositional logic [1,2,4]. First order
logic provides a uniform and very expressive means of representation. The back-
ground knowledge and the examples, as well as the induced patterns, can all be
represented as formulas in a first order language. Unlike propositional learning
systems, the first order approaches do not require that the relevant data be com-
posed into a single relation but, rather they can take into account data organized
in several database relations with various connections existing among them.

The paper is organized as follows. In Section 2 we recall the definition of
approximation spaces. Next, we describe a constructive approach for computing
values of uncertainty and rough inclusion functions. These functions are the basic
components of approximation spaces. Parameters of the uncertainty and rough
inclusion functions are tuned in searching for relevant approximation spaces.
Among such parameters we distinguish sensory environments and their exten-
sions. These parameters are used for constructive definition of uncertainty and
rough inclusion functions. In Section 3 we discuss notions of relational learning.
In Sections 4 and 5 we consider application of rough set methods to discovery of
interesting patterns expressed in a first order language. In Section 4 rough set
methodology is used in the process of translating first–order data into attribute–
value data. Some properties of this algorithm were presented in [13]. In Section 5
rough set methodology is used in the process of selecting literals which may be
a part of a rule. The criterion of selecting a literal is as follows: only such a
literal is selected which added to the rule makes the rule discerning most of the
examples which were indiscernible so far. Some properties of this algorithm were
presented in [14,15].

2 Approximation Spaces

In this section we recall the definition of an approximation space from [10,13,11].

Definition 1. A parameterized approximation space is a system
AS#,$ = (U, I#, ν$), where
– U is a non-empty set of objects,
– I# : U → P (U) is an uncertainty function, where P (U) denotes the power

set of U ,
– ν$ : P (U) × P (U) → [0, 1] is a rough inclusion function,

and #, $ denote vectors of parameters (the indexes #, $ will be omitted if it does
not lead to misunderstanding).

2.1 Uncertainty Function

The uncertainty function defines for every object x, a set of objects described
similarly to x. The set I(x) is called the neighborhood of x (see, e.g., [8,10]).
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We assume that the values of the uncertainty function are defined using a
sensory environment [11], i.e., a pair (Σ, ‖ · ‖U ), where Σ is a set of formulas,
called the sensory formulas, and ‖·‖U : Σ −→ P (U) is the sensory semantics. We
assume that for any sensory formula α and any object x ∈ U the information
whether x ∈ ‖α‖U holds is available. The set {α : x ∈ ‖α‖U} is called the
signature of x in AS and is denoted by InfAS(x). For any x ∈ U, the set NAS(x)
of neighborhoods of x in AS is defined by {‖α‖U : x ∈ ‖α‖U} and from this set
the neighborhood I(x) is constructed. For example, I(x) is defined by selecting
an element from the set {‖α‖U : x ∈ ‖α‖U} or by I(x) =

⋂
NAS(x). Observe

that any sensory environment (Σ, ‖·‖U ) can be treated as a parameter of I from
the vector # (see Definition 1).

Let us consider two examples. Any decision table DT = (U, A, d) [8] defines
an approximation space ASDT = (U, IA, νSRI), where, as we will see, IA(x) =
{y ∈ U : a(y) = a(x) for all a ∈ A}. Any sensory formula is a descriptor, i.e., a
formula of the form a = v where a ∈ A and v ∈ Va with the standard semantics
‖a = v‖U = {x ∈ U : a(x) = v}. Then, for any x ∈ U its signature InfASDT (x) is
equal to {a = a(x) : a ∈ A} and the neighborhood IA(x) is equal to

⋂
NASDT (x).

Another example can be obtained assuming that for any a ∈ A there is given
a tolerance relation τa ⊆ Va × Va (see, e.g., [10]). Let τ = {τa}a∈A. Then,
one can consider a tolerance decision table DTτ = (U, A, d, τ) with tolerance
descriptors a =τa v and their semantics ‖a =τa v‖U = {x ∈ U : vτaa(x)}.
Any such tolerance decision table DTτ = (U, A, d, τ) defines the approximation
space ASDTτ with the signature InfASDTτ

(x) = {a =τa a(x) : a ∈ A} and the
neighborhood IA(x) =

⋂
NASDTτ

(x) for any x ∈ U .
The fusion of NASDTτ

(x) for computing the neighborhood of x can have many
different forms, the intersection is only an example. For example, to compute the
value of I(x) some subfamilies of NAS(x) may first be selected and the family
consisting of intersection of each such a subfamily is next taken as the value
of I(x).

2.2 Rough Inclusion Function

One can consider general constraints which the rough inclusion functions should
satisfy. Searching for such constraints initiated investigations resulting in cre-
ation and development of rough mereology (see, the bibliography in [9]). In this
subsection, we present some examples of rough inclusion functions only.

The rough inclusion function ν$ : P (U) × P (U) → [0, 1] defines the degree of
inclusion of X in Y , where X, Y ⊆ U .

In the simplest case it can be defined by (see, e.g., [10,8]):

νSRI (X, Y ) =

{
card(X∩Y )

card(X) if X �= ∅
1 if X = ∅.

This measure is widely used by the data mining and rough set communities. It
is worth mentioning that Jan �Lukasiewicz [3] was the first one who used this idea
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to estimate the probability of implications. However, rough inclusion can have a
much more general form than inclusion of sets to a degree (see, e.g., [9]).

Another example of rough inclusion is used for relation approximation [12]
and in the variable precision rough set approach [16].

2.3 Lower and Upper Approximations

The lower and the upper approximations of subsets of U are defined as follows.

Definition 2. For any approximation space AS#,$ = (U, I#, ν$) and any subset
X ⊆ U , the lower and upper approximations are defined by

LOW
(
AS#,$, X

)
= {x ∈ U : ν$ (I# (x) , X) = 1} ,

UPP
(
AS#,$, X

)
= {x ∈ U : ν$ (I# (x) , X) > 0}, respectively.

The lower approximation of a set X with respect to the approximation space
AS#,$ is the set of all objects, which can be classified with certainty as objects
of X with respect to AS#,$. The upper approximation of a set X with respect
to the approximation space AS#,$ is the set of all objects which can possibly be
classified as objects of X with respect to AS#,$.

Several known approaches to concept approximation can be covered using the
approximation spaces discussed here, e.g., the approach given in [8] or tolerance
(similarity) rough set approximations (see, e.g., references in [10]).

We recall the notions of the positive region and the quality of approximation
of classification in the case of generalized approximation spaces [13].

Definition 3. Let AS#,$ = (U, I#, ν$) be an approximation space and let r > 1
be a given natural number and let {X1, . . . , Xr} be a classification of objects (i.e.
X1, . . . , Xr ⊆ U ,

⋃r
i=1 Xi = U and Xi ∩ Xj = ∅ for i �= j, where i, j = 1, . . . , r).

1. The positive region of the classification {X1, . . . , Xr} with respect to the ap-
proximation space AS#,$ is defined by
POS

(
AS#,$, {X1, . . . , Xr}

)
=

⋃r
i=1 LOW

(
AS#,$, Xi

)
.

2. The quality of approximation of the classification {X1, . . . , Xr} in the ap-
proximation space AS#,$ is defined by

γ
(
AS#,$, {X1, . . . , Xr}

)
=

card(POS(AS#,$,{X1,...,Xr}))
card(U) .

The quality of approximation of the classification coefficient expresses the ratio
of the number of all AS#,$-correctly classified objects to the number of all objects
in the data table.

3 Relational Data Mining

Knowledge discovery is the process of discovering particular patterns over data.
In this context data is typically stored in a database. Approaches using first
order logic (FOL, for short) languages for the description of such patterns offer
data mining the opportunity of discovering more complex regularities which may
be out of reach for attribute-value languages.
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3.1 Didactic Example

In this section we present an example inspired by [2].

Example 1. There are two information systems:

ISCustomer = (UCustomer , ACustomer)

where the set of objects UCustomer = {x1, . . . , x7}, and the set of attributes
ACustomer = {Name, Gender, Income, BigSpender} (see Table 1) and

ISMarriedTo = (UMarriedTo, AMarriedTo)

where UMarriedTo = {y1, y2, y3}, and AMarriedTo = {Spouse1, Spouse2} (see
Table 2).

Table 1. An Information System ISCustomer

UCustomer Name Gender Income BigSpender

x1 Mary Female 70000 yes

x2 Eve Female 120000 yes

x3 Kate Female 80000 no

x4 Meg Female 80000 yes

x5 Jim Male 100000 yes

x6 Tom Male 100000 yes

x7 Henry Male 60000 no

Table 2. An Information System ISMarriedTo

UMarriedTo Spouse1 Spouse2

y1 Mary Jim

y2 Meg Tom

y3 Kate Henry

Using attribute–value language we obtain for example the following decision
rules:

if Income ≥ 100000 then BigSpender = yes
if Income ≤ 75000 then BigSpender = yes (May be this rule is not intuitive.)
if Name = Meg then BigSpender = yes (This rule is generally not applica-

ble to new objects.)
Using first order language one can obtain the following two rules:

BigSpender(var1, var2, var3) ← var3 ≥ 100000
BigSpender(var1, var3, var3) ← MarriedTo(var1, var′1) and

Customer(var′1, var′2, var′3, var′4) and var′3 ≥ 100000

which involve the predicates Customer and MarriedTo. It predicts a person to
be a big spender if the person is married to somebody with high income (com-
pare this to the rule that states a person is a big spender if he/she has high
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income, listed above the relational rules). Note that the two persons var1 and
var′1 are connected through the relation MarriedTo. Relational patterns are typ-
ically expressed in subsets of first-order logic (also called predicate or relational
logic). Essentials of predicate logic include predicates (MarriedTo) and vari-
ables (var1, var′1), which are not present in propositional logic (attribute–value
language). Relational patterns are thus more expressive than the propositional
ones.

Knowledge discovery based on FOL has other advantages as well. Complex back-
ground knowledge provided by experts can be encoded as first order formulas
and be used in the discovery task. The expressiveness of FOL enables the dis-
covered patterns to be described in a concise way, which in most cases increases
readability of the output. Multiple relations can be naturally handled without
explicit (and expensive) joins.

3.2 Relational Learning

Before moving on to the algorithm for learning of a set of rules, let us introduce
some basic terminology from relational learning.

Relational learning algorithms learn classification rules for a concept [2] (for
relational methods and their applications in computer science see also [5]). The
program typically receives a large collection of positive and negative examples
from real-world databases as well as background knowledge in the form of re-
lations. Let p be a target predicate of arity m and r1, . . . , rl be background
predicates, where m, l > 0 are given natural numbers. We denote the constants
by con1, . . . , conn, where n > 0. A term is either a variable or a constant. An
atomic formula is of the form p (t1, . . . , tm) or ri (t1, . . .) where the t′s are terms
and i = 1, . . . , l. A literal is an atomic formula or its negation. If a literal con-
tains a negation symbol (¬), we call it a negative literal, otherwise it is a positive
literal. A clause is any disjunction of literals, where all variables are assumed to
be universally quantified. The learning task for relational learning systems is as
follows:

Input
a set X+

target of positive and a set X−target of negative training examples (ex-
pressed by literals without variables) for the target relation, background knowl-
edge (or BK for short) expressed by literals without variables and not including
the target predicate.

Output
a set of ξ ← λ rules, where ξ is an atomic formula of the form p (varp

1 , . . . , varp
m)

with the target predicate p and λ is a conjunction of literals over background
predicates r1, . . . , rl, such that the set of rules satisfies the positive examples
relatively to background knowledge.

Example 2. Let us consider the data set related to document understanding.
The learning task involves identifying the purposes served by components of
single-page letters such as that in Figure 1.
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Background predicates describe properties of components such as their width
and height, and relationships such as horizontal and vertical alignment with
other components. Target predicates describe whether a block is one of the five
predetermined types: sender, receiver, logo, reference, and date. For example,
for letter presented in Figure 1, we obtain the following predicate data:

date (c8), logo (c3), receiver (c21), on top (c8, c21), on top (c21, c14),
on top (c5, c24), on top (c3, c5), aligned only left col (c1, c3),

aligned only right col (c5, c21), . . .

We consider generation of rules of the form:
sender (var1) ← on top (var1, var2) and logo (var2).

We will adopt the lower and the upper approximations for subsets of the set of
target examples. First, we define the coverage of a rule.

Definition 4. The coverage of Rule, written Coverage(Rule), is the set of ex-
amples such that there exists a substitution giving values to all variables appear-
ing in the rule and all literals of the rule are satisfied for this substitution.

The set of the positive (negative) examples covered by Rule is denoted by
Coverage+(Rule), Coverage−(Rule), respectively.

Remark 1. For any literal L, we obtain

Coverage(h ← b) = Coverage(h ← b ∧ L) ∪ Coverage(h ← b ∧ ¬L).

Let U = X+
target ∪ X−target and Rule Set = {Rule1, . . . , Rulen}.

Definition 5. For the set of rules Rule Set and any example x ∈ U the uncer-
tainty function is defined by

IRule Set(x) = {x} ∪
n⋃

i=1

{Coverage(Rulei) : x ∈ Coverage(Rulei)} .

The lower and upper approximations may be defined as earlier but in this case
they are equal to the forms presented in Remark 2.

Remark 2. For an approximation space ASRule Set = (U, IRule Set, νSRI) and
any subset X ⊆ U the lower and the upper approximations are defined by

LOW (ASRule Set, X) = {x ∈ U : IRule Set(x) ⊆ X} ,

UPP (ASRule Set, X) = {x ∈ U : IRule Set(x) ∩ X �= ∅} ,

respectively.
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c1 (sender)

c21 (receiver)

c3 (logo)

c8 (date)

c5

c14 (reference)

c24

c7

Fig. 1. Sample Letter Showing Components

4 Translating First–Order Data into Attribute–Value
Form

In this section we discuss the approach based on two steps. First, the data is
transformed from first-order logic into decision table format by the iterative
checking whether a new attribute adds any relevant information to the decision
table. Next, the reducts and rules from reducts [8,10,13] are computed from the
decision table obtained.

Data represented as a set of formulas can be transformed into attribute–
value form. The idea of translation was inspired by LINUS and DINUS systems
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(see, e.g., [2]). We start with a decision table directly derived from the posi-
tive and negative examples of the target relation. Assuming that we have m-
ary target predicate, the set U of objects in the decision table is a subset of
{con1, . . . , conn}m . Decision attribute dp : U → {+, −} is defined by the target
predicate with possible values ” + ” or ” − ”. All positive and negative examples
of the target predicate are now put into the decision table. Each example forms a
separate row in the table. Then background knowledge is applied to the decision
table. We determine all the possible applications of the background predicates
to the arguments of the target relation. Each such application introduces a new
Boolean attribute.

To analyze the complexity of the obtained data table, let us consider the
number of condition attributes. Let Ari be a set of attributes constructed for
every predicate symbol ri, where i = 1, . . . , l. The number of condition attributes
in constructed data table is equal to

∑l
i=1 card (Ari) resulting from the possible

applications of the l background predicates on the variables of the target relation.
The cardinality of Ari depends on the number of arguments of target predicate
p (denoted by m) and the arity of ri. Namely, card (Ari) is equal to mar(ri),
where ar (ri) is the arity of the predicate ri. The number of condition attributes
in obtained data table is polynomial in the arity m of the target predicate p and
the number l of background knowledge predicates, but its size is usually so large
that its processing is unfeasible. Therefore, one can check interactively if a new
attribute is relevant, i.e., if it adds any information to the decision table and,
next we add to the decision table only relevant attributes.

Two conditions for testing if a new attribute a is relevant are proposed:

1. γ
(
ASB∪{a}, {X+, X−}

)
> γ (ASB, {X+, X−}) ,

where X+ and X− denote the decision classes corresponding to the target
concept. An attribute a is added to the decision table if this results in a gro-
wth of the positive region with respect to the attributes selected previously.

2. QDIS(a) = νSRI (X+ × X−, {(x, y) ∈ X+ × X− : a (x) �= a (y)}) ≥ θ,
where θ ∈ [0, 1] is a given real number. An attribute a is added to the
decision table if it introduces some discernibility between objects belonging
to different non-empty classes X+ and X−.

Each of these conditions can be applied to a single attribute before it is
introduced to the decision table. If this attribute does not meet a condition,
it should not be included into the decision table. The received data table is
then analyzed by a rough set based systems. First, reducts are computed. Next,
decision rules are generated.

Example 3. The problem with three binary predicates r1, r3, p and one unary
predicate r2 can be used to demonstrate the transformation of relational learning
problem into attribute–value form. Suppose that there are the following positive
and negative examples of a target predicate p :

X+
target = {p(1, 2), p(4, 1), p(4, 2)}, X−target = {¬p(6, 2), ¬p(3, 5), ¬p(1, 4)}.
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Consider the background knowledge about relations, r1, r2, and r3 :

r1(5, 1), r1(1, 2), r1(1, 4), r1(4, 1), r1(3, 1), r1(2, 6), r1(3, 5), r1(4, 2),
r2(1), r2(2), r2(3), r2(4), r2(6), r3(2, 1), r3(1, 4), r3(2, 4),
r3(2, 5), r3(3, 2), r3(3, 5), r3(5, 1), r3(5, 3), r3(2, 6), r3(4, 2).

We then transform the data into attribute–value form (decision table). In
Table 3, a quality index QDIS of potential attributes is presented.

Table 3. Quality QDIS of Potential Attributes

Symbol Attribute QDIS(•)

a1 r2(var1) 0

a2 r2(var2) 0.33

a3 r1(var1, var1) 0

a4 r1(var1, var2) 0.33

a5 r1(var2, var1) 0.56

a6 r1(var2, var2) 0

a7 r3(var1, var1) 0

a8 r3(var1, var2) 0.56

a9 r3(var2, var1) 0.33

a10 r3(var2, var2) 0

Using conditions introduced in this section some attributes will not be in-
cluded in the resulting decision table. For example, the second condition with
QDIS(•) ≥ θ = 0.3 would permit the following attribute set into the decision
table: A0.3 = {a2, a4, a5, a8, a9}.

Therefore, DT0.3 = (U, A0.3 ∪ {d}) finally. We obtain two decision classes:
X+ = {(1, 2) , (4, 1) , (4, 2)} and X− = {(6, 2) , (3, 5) , (1, 4)} . For the obtained
decision table we construct an approximation space ASA0.3 = (U, IA0.3 , νSRI)
such that the uncertainty function and the rough inclusion are defined in Table 4.
Then, we can compute reducts and decision rules.

5 The Rough Set Relational Learning Algorithm

In this section we introduce and investigate the RSRL (Rough Set Relational
Learning) algorithm. Some preliminary versions of this algorithm were presented
in [14,15].

5.1 RSRL Algorithm

To select the most promising literal from the candidates generated at each step,
RSRL considers the performance of the rule over the training data. The eval-
uation function card(R(L, NewRule)) used by RSRL to estimate the utility of
adding a new literal is based on the numbers of discernible positive and negative
examples before and after adding the new literal (see, Figure 2).
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Table 4. Resulting Decision Table DT0.3, Uncertainty Function and Rough Inclusion

(var1, var2) a2 a4 a5 a8 a9 dp IA0.3 (•) νSRI (•, X+) νSRI (•, X−)

(1, 2) true true false false true + {(1, 2)} 1 0

(4, 1) true true true false true + {(4, 1)} 1 0

(4, 2) true true false true true + {(4, 2)} 1 0

(6, 2) true false true false true - {(6, 2)} 0 1

(3, 5) false true false true true - {(3, 5)} 0 1

(1, 4) true true true true false - {(1, 4)} 0 1

Some modification of the algorithm RSRL were presented in [15]. The modi-
fied algorithm generates rules as the original RSRL but its complexity is lower
because it performs operations on the cardinalities of sets without computing
the sets.

5.2 Illustrative Example

Let us illustrate the RSRL algorithm on a simple problem of learning a relation.

Example 4. The task is to define the target relation p(var1, var2) in terms of the
background knowledge relations r1 and r3. Let BK = {r1(1, 2), r1(1, 3), r1(2, 4),
r3(5, 2), r3(5, 3), r3(4, 6), r3(4, 7)}. There are two positive and three negative ex-
amples of the target relation:

X+
target = {e1, e2} and X−target = {e3, e4, e5}, where

e1 = p(1, 4), e2 = p(2, 6), e3 = ¬p(5, 4), e4 = ¬p(5, 3) and e5 = ¬p(1, 2).

Let us see how the algorithm generates rules for h = p(var1, var2), app =
lower. The successive steps of the algorithm:

Pos = {e1, e2}, Learned rules = ∅.
Pos �= ∅.
R = {(e1, e3), (e1, e4), (e1, e5), (e2, e3), (e2, e4), (e2, e5)}.
R �= ∅.
We obtain the following candidates:

ri(var1, var1), ri(var1, var2), ri(var1, var3), ri(var2, var1), ri(var2, var2),
ri(var2, var3), ri(var3, var1), ri(var3, var2), where i = 1, 3.

For ever1. candidate, we compute R(L, NewRule) and we obtain the best
result for r3(var1, var3).

In the first step, every example is covered either by the rule
p(var1, var2) ← r3(var1, var3) or by p(var1, var2) ← ¬r3(var1, var3).

We obtain: e1, e2, e5 ∈ Coverage+(h ← ¬Best literal) ∪ Coverage−(h ←
¬Best literal),

e3, e4 ∈ Coverage+(h ← Best literal) ∪ Coverage−(h ← Best literal).
From the intersection of R and the set
(Coverage+(h ← Best literal) × Coverage−(h ← ¬Best literal))∪
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( )LbhCoverage ¬∧←
+ ( )LbhCoverage ∧←

+

( )LbhCoverage ¬∧←
−

( )LbhCoverage ∧←
−

Fig. 2. The set R(L, h ← b) is equal to the union of two Cartesian products

(Coverage+(h ← ¬Best literal) × Coverage−(h ← Best literal)),
we obtain
R(Best literal, NewRule) = {(e1, e3), (e1, e4), (e2, e3), (e2, e4)} �= ∅.
Since the value of the coverage of p(var1, var2) ← ¬r3(var1, var3)
is greater than the value of the coverage of p(var1, var2) ← r3(var1, var3),
Best literal = ¬r3(var1, var3).
app �= upper.
b = ¬r3(var1, var3).
Coverage−(NewRule) �= ∅.
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We find new R considering a general case:
b = b1 = ¬r3(var1, var3), L1 = ¬r3(var1, var3).
R1 = Coverage+(h ← b1) × Coverage−(h ← b1) ∪ S1.
Coverage+(h ← b1) = {e1, e2}, Coverage−(h ← b1) = {e5},
Coverage+(h ← b0 ∧ ¬L1) = ∅, Coverage−(h ← b0 ∧ ¬L1) = {e3, e4},
S1 = Coverage+(h ← b0 ∧ ¬L1) × Coverage−(h ← b0 ∧ ¬L1) = ∅.
Hence, we obtain R = R1 = {(e1, e5), (e2, e5)}.
The second step in the second loop:
R �= ∅.

Algorithm 1. RSRL Algorithm
input : Target predicate,BK, X+

target ∪ X−
target, app //where Target predicate

is a target predicate with a set X+
target of positive examples and a set

X−
target of negative examples, BK is a background knowledge, app is a

type of approximation (app ∈ {lower, upper}).
output: Learned rules //where Learned rules is a set of rules for ”positive

decision class”.
Pos ←− X+

target;
Learned rules ←− ∅;
while Pos �= ∅ do

Learn a NewRule;
NewRule ←− most general rule possible;
R ←− Pos × X−

target;
while R �= ∅ do

Candidate literals ←− generated candidates; // RSRL generates
candidate specializations of NewRule by considering a new literal L that
fits one of the following forms:
– r(var1, . . . , vars), where at least one of the variable vari in the created

literal must already exist in the positive literals of the rule;
– the negation of the above form of literal;

Best literal ←− arg max L∈Candidate literalscard(R(L,NewRule)); //
(the explanation of R(L, Rule) is in Figure 2 given)
if R(Best literal, NewRule) = ∅ or (app = upper and (NewRule �= most
general rule possible)
and Coverage+(NewRule) �= Coverage+(NewRule ∧ Best literal))
then

exit while;
end
Add Best literal to NewRule preconditions; //Add a new literal to
specialize NewRule;
if Coverage−(NewRule) = ∅ then

exit while;
end
R := R \ R(Best literal,NewRule);

end
Learned rules ←− Learned rules ∪ {NewRule} ;
Pos ←− Pos \ Coverage+(NewRule);

end
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We generate new candidates. We obtain the best result for the candidate
r1(var1, var2) thus Best literal = r1(var1, var2).

Now b = b2 = ¬r3(var1, var3) ∧ r1(var1, var2), L2 = r1(var1, var2).
We compute the following sets:
Coverage+(h ← b2) = ∅, Coverage−(h ← b2) = {e5},
Coverage+(h ← b1 ∧ ¬L2) = {e1, e2}, Coverage−(h ← b1 ∧ ¬L2) = ∅.
Coverage+(h ← b2) × Coverage−(h ← b1 ∧ ¬L2)∪
Coverage+(h ← b1 ∧ ¬L2) × Coverage−(h ← b2) = {(e1, e5), (e2, e5)}.
We obtain R(Best literal, NewRule) = {(e1, e5), (e2, e5)} �= ∅.
Since the value of the coverage of
p(var1, var2) ← ¬r3(var1, var3) ∧ ¬r1(var1, var2)
is greater than the value of the coverage of
p(var1, var2) ← ¬r3(var1, var3) ∧ r1(var1, var2)
then Best literal = ¬r1(var1, var2).
app �= upper.
b = ¬r3(var1, var3) ∧ ¬r1(var1, var2).
Coverage−(NewRule) = ∅. The end of the second loop.
Learned rules = {p(var1, var2) ← ¬r3(var1, var3) ∧ ¬r1(var1, var2)}.
Coverage+(p(var1, var2) ← ¬r3(var1, var3) ∧ ¬r1(var1, var2)) =

{e1, e2} = Pos, hence Pos = Pos \ Coverage+(NewRule) = ∅.
The end of the algorithm proceeding.
In each step of the algorithm we obtain Coverage+(NewRule) =

Coverage+(NewRule∧Best literal). Hence, if app = upper then we obtain the
same rules as for app = lower. Hence, the lower and the upper approximations
of X+

target are equal in our example. Let us compute the above sets to compare
them. We have Rule Set = {p(var1, var2) ← ¬r3(var1, var3) ∧ r1(var1, var2),
p(var1, var2) ← ¬r3(var1, var3) ∧ ¬r1(var1, var2)} and X+

target = {e1, e2}.
We obtain the uncertainty function IRule Set(e1) = IRule Set(e2) = {e1, e2},
IRule Set(e3) = {e3}, IRule Set(e4) = {e4} and IRule Set(e5) = {e5}.
Hence, LOW

(
ASRule Set, X

+
target

)
= {e1, e2} = UPP

(
ASRule Set, X

+
target

)
.

6 Conclusions

The first approach presented in this paper transforms input first-order logic
formulas into decision table form, then uses reducts to select only meaningful
data. The second approach is based on the algorithm RSRL for the first order
rules generation. We showed that approximation spaces are basic structures for
knowledge discovery from multi-relational data. Furthermore, our approach can
be treated as a step towards the understanding of rough set methods in the first
order rules generation.
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14. Stepaniuk, J., Góralczuk, L.: An Algorithm Generating First Order Rules Based on
Rough Set Methods, (ed.) J. Stepaniuk, Zeszyty Naukowe Politechniki Bia�lostockiej
Informatyka nr 1, 2002, 235–250. [in Polish]

15. Stepaniuk, J., Honko, P.: Learning First–Order Rules: A Rough Set Approach
Fundamenta Informaticae, 61(2), 2004, 139–157.

16. Ziarko, W., Variable precision rough set model, Journal of Computer and System
Sciences 46, 1993, 39–59.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Finding Relevant Attributes in High Dimensional Data:
A Distributed Computing Hybrid Data Mining Strategy

Julio J. Valdés and Alan J. Barton

National Research Council Canada, M50, 1200 Montreal Rd., Ottawa, ON K1A 0R6
julio.valdes@nrc-cnrc.gc.ca,
alan.barton@nrc-cnrc.gc.ca

http://iit-iti.nrc-cnrc.gc.ca

Abstract. In many domains the data objects are described in terms of a large
number of features (e.g. microarray experiments, or spectral characterizations of
organic and inorganic samples). A pipelined approach using two clustering algo-
rithms in combination with Rough Sets is investigated for the purpose of discov-
ering important combinations of attributes in high dimensional data. The Leader
and several k-means algorithms are used as fast procedures for attribute set sim-
plification of the information systems presented to the rough sets algorithms. The
data described in terms of these fewer features are then discretized with respect
to the decision attribute according to different rough set based schemes. From
them, the reducts and their derived rules are extracted, which are applied to test
data in order to evaluate the resulting classification accuracy in crossvalidation
experiments. The data mining process is implemented within a high throughput
distributed computing environment. Nonlinear transformation of attribute subsets
preserving the similarity structure of the data were also investigated. Their classi-
fication ability, and that of subsets of attributes obtained after the mining process
were described in terms of analytic functions obtained by genetic programming
(gene expression programming), and simplified using computer algebra systems.
Visual data mining techniques using virtual reality were used for inspecting re-
sults. An exploration of this approach (using Leukemia, Colon cancer and Breast
cancer gene expression data) was conducted in a series of experiments. They led
to small subsets of genes with high discrimination power.

1 Introduction

As a consequence of the information explosion and the development of sensor and ob-
servation technologies, it is now common in many domains to have data objects char-
acterized by an increasingly larger number of attributes, leading to high dimensional
databases in terms of the set of fields. A typical example is a gene expression experi-
ment, where the genetic content of samples of tissues are obtained with high throughput
technologies (microchips). Usually, thousands of genes are investigated in such experi-
ments. In other bio-medical research contexts, the samples are characterized by infrared,
ultraviolet, and other kinds of spectra, where the absorption properties, with respect to
a large number of wavelengths, are investigated. The same situation occurs in other
domains, and the common denominator is to have a set of data objects of a very high
dimensional nature.

J.F. Peters et al. (Eds.): Transactions on Rough Sets VI, LNCS 4374, pp. 366–396, 2007.
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This paper investigates one, of the possibly many approaches to the problem of find-
ing relevant attributes in high dimensional datasets. The approach is based on a combi-
nation of clustering and rough sets techniques in a high throughput distributed comput-
ing environment, with low dimensional virtual reality data representations aiding data
analysis understanding. The goals are:

i) to investigate the behavior of the combination of these techniques in a knowledge
discovery process

ii) to perform preliminary comparisons of the experimental results from the point of
view of the discovered relevant attributes, applied to the example problem of finding
relevant genes

2 Datasets

In this study publicly available datasets were considered. They result from gene ex-
pression experiments in genomics, and appear in numerous studies about data mining
and machine learning in bioinformatics. All of them share a feature typical of that kind
of information: the data consist of a relatively small number of samples, described in
terms of a large collection of attributes. Besides genomics, this situation is found in
other fields as well, like experimental physics and astronomy. When infrared, ultravi-
olet or other spectral properties are used to describe the sampled objects, hundreds or
thousands of energy intensity values for radiation emission or absorption at different
wavelengths are used as sample attributes. The techniques investigated here are of a
general nature, that is, not specific or tailored to any particular domain. The datasets
considered for this study were:

– Leukemia ALL/AML dataset: (72 samples described in terms of 7129 genes [15]).
– Breast Cancer (24 samples described in terms of 12, 625 genes [7]).
– Colon Cancer: (62 samples described in terms of 2000 genes [1]).

The Leukemia dataset is that of [15], and consists of 7129 genes, where patients
are separated into i) a training set containing 38 bone marrow samples: 27 acute lym-
phoblastic leukemia (ALL) and 11 acute myeloid leukemia (AML), obtained from pa-
tients at the time of diagnosis, and ii) a testing set containing 34 samples (24 bone
marrow and 10 peripheral blood samples), where 20 are ALL and 14 AML. The test
set contains a much broader range of biological samples, including those from periph-
eral blood rather than bone marrow, from childhood AML patients, and from different
reference laboratories that used different sample preparation protocols. In the present
study, however, the dataset will not be divided into training and test samples, because
crossvalidation is used, as explained below.

The breast cancer data selected [7] was that provided by the Gene Expression
Omnibus (GEO) (See www.ncbi.nlm.nih.gov/projects/geo/gds/
gds browse.cgi?gds=360). It consists of 24 core biopsies taken from patients
found to be resistant (greater than 25% residual tumor volume, of which there are
14) or sensitive (less than 25% residual tumor volume, of which there are 10) to
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docetaxel treatment. The number of genes (probes) placed onto (and measured from)
the microarray is 12, 625, and two classes are recognized: resistant and sensitive.

The Colon cancer data correspond to tumor and normal colon tissues probed by
oligonucleotide arrays [1].

3 Foundational Concepts

3.1 Clustering Methods

Clustering with classical partition methods constructs crisp (non overlapping) subpop-
ulations of objects or attributes. Two such classical algorithms were used in this study:
the Leader algorithm [17], and several variants of k-means [2].

Leader Algorithm. The leader algorithm operates with a dissimilarity or similarity
measure and a preset threshold. A single pass is made through the data objects, assign-
ing each object to the first cluster whose leader (i.e. representative) is close enough (or
similar enough) to the current object w.r.t. the specified measure and threshold. If no
such matching leader is found, then the algorithm will set the current object to be a
new leader; forming a new cluster. This technique is very fast; however, it has several
negative properties:

i) the first data object always defines a cluster and therefore, appears as a leader.
ii) the partition formed is not invariant under a permutation of the data objects.
iii) the algorithm is biased, as the first clusters tend to be larger than the later ones since

they get first chance at “absorbing” each object as it is allocated.

Variants of this algorithm with the purpose of reducing bias include:

a) reversing the order of presentation of a data object to the list of currently formed
leaders.

b) selecting the absolute best leader found (thus making the object presentation order
irrelevant).

The highest quality is obtained using b), but at a higher computational cost because
the set of leaders (whose cardinality increases as the process progresses), has to be
completely explored for every data object. Nevertheless, even with this extra computa-
tional overhead, the technique is still very fast, and large datasets can be clustered very
quickly. Usually the partitions generated by this method are used as initial approxima-
tions to more elaborated methods.

K-Means. The k-means algorithm is actually a family of techniques based on the con-
cept of data reallocation. A dissimilarity or similarity measure is supplied, together
with an initial partition of the data, and the goal is to alter cluster membership so as to
obtain a better partition w.r.t. the chosen measure. The modification of membership is
performed by reallocating the data objects to a different group w.r.t. the one in which
it was a member. Different variants very often give different partition results. However,
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in papers dealing with gene expression analysis, very seldom are the specificities of
the k-means algorithm described. For the purposes of this study, the following k-means
variants were used: Forgy’s, Jancey’s, convergent, and MacQueen’s [13], [20], [24], [2].

Let nc be the number of clusters desired. The definition of an initial partition follows
basically two schemes: i) direct specification of a set of nc initial centroids (seed points),
or ii) specification of nc initial disjoint groups such that they cover the entire dataset,
and compute from them initial centroids to start the process. There are many variations
of these two schemes, and the following variants for defining an initial partition were
considered in this paper:

1. Select nc data objects and use them as initial centroids.
2. Divide the total number of objects into nc consecutive clusters, compute the cen-

troid of each, and use them as initial centroids.
3. Arbitrary nc centroids are given externally.
4. Take the first nc data objects and use them as initial centroids.

The classical k-means clustering is a simple algorithm with the following sequence
of steps.

1. Allocate each data unit to the cluster with the nearest seed point (if a dissimilarity
measure is used), or to the cluster with the most similar seed point (if a similarity
measure is used).

2. Compute new seed points as the centroids of the newly formed clusters
3. If (termination criteria = true) then stop else goto 2

Several termination criteria (or a combination of them) can be established, which
provide better control on the conditions under which a k-means process concludes.
Among them are the folowing:

1. A preset number of object reallocations have been performed.
2. A preset number of iterations has been reached.
3. A partition quality measure has been reached.
4. The partition quality measure does not change in subsequent steps.

There are several variants of the general k-means scheme. That is why it is necessary
to specify explicitly the specific variant applied. In this paper, several of them were used.

K-Means: Forgy’s Variant. The classical Forgy’s k-means algorithm [13] consists of
the following steps:

i) Begin with any desired initial configuration. Go to (ii) if beginning with a set of
seed objects, or go to (iii) if beginning with a partition of the dataset.

ii) Allocate each object to the cluster with the nearest (most similar) seed object (cen-
troid). The seed objects remain fixed for a full cycle through the entire dataset.

iii) Compute new centroids of the clusters.
iv) Alternate (ii) and (iii) until the process converges (that is, until no objects change

their cluster membership).
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K-Means: Jancey’s Variant. In Jancey’s variant [20], the process is similar to Forgy’s,
but the first set of cluster seed objects is either given, or computed as the centroids of
clusters in the initial partition. Then, at all succeeding stages, each new seed point is
found by reflecting the old one through the new centroid for the cluster (a heuristic
which tries to approximate the direction of the gradient of the error function).

K-Means: MacQueen’s Variant. MacQueen’s method [24] is another popular mem-
ber of the k-means family, and is composed of the following steps:
i) Take the first k data units as clusters of one member each.
ii) Assign each of the remaining objects to the cluster with the nearest (most similar)

centroid. After each assignment, recompute the centroid of the gaining cluster.
iii) After all objects have been assigned in step ii), take the existing cluster centroids as

fixed points and make one more pass through the dataset assigning each object to
the nearest (most similar) seed object.

K-Means: Convergent Variant. The so called convergent k-means [2] is a variant
defined by the following steps:

i) Begin with an initial partition like in Forgy’s and Jancey’s methods (or the output
of MacQueen’s method).

ii) Take each object in sequence and compute the distances (similarities) to all cluster
centroids; if the nearest (most similar) is not that of the object’s parent cluster,
reassign the object and update the centroids of the losing and gaining clusters.

iii) Repeat steps ii) and iii) until convergence is achieved (that is, until there is no
change in cluster membership).

Similarity Measure. The Leader and the k-means algorithms were used with a simi-
larity measure rather than with a distance. In particular Gower’s general coefficient was
used [16], where the similarity between objects i and j is given by Eq-1:

Sij =
p∑

k=1

sijk/

p∑
k=1

wijk , (1)

where the weight of the attribute (wijk) is set equal to 0 or 1 depending on whether the
comparison is considered valid for attribute k. If vk(i), vk(j) are the values of attribute
k for objects i and j respectively, an invalid comparison occurs when at least one them
is missing. In this situation wijk is set to 0.

For quantitative attributes (like the ones in the datasets used in this paper), the scores
sijk are assigned as in Eq-2:

sijk = 1 − |Xik − Xjk|/Rk , (2)

where Xik is the value of attribute k for object i (similarly for object j), and Rk is the
range of attribute k.

For symbolic attributes (nominal), the scores sijk are assigned as in Eq-3

sijk =
{

1 if Xik = Xjk

0 otherwise .
(3)
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3.2 Rough Sets

The Rough Set Theory [31] bears on the assumption that in order to define a set, some
knowledge about the elements of the dataset is needed. This is in contrast to the classical
approach where a set is uniquely defined by its elements. In the Rough Set Theory, some
elements may be indiscernible from the point of view of the available information and it
turns out that vagueness and uncertainty are strongly related to indiscernibility. Within
this theory, knowledge is understood to be the ability of characterizing all classes of the
classification. More specifically, an information system is a pair A = (U, A) where U
is a non-empty finite set called the universe and A is a non-empty finite set of attributes
such that a : U → Va for every a ∈ A . The set Va is called the value set of a. For
example, a decision table is any information system of the form A = (U, A ∪ {d}),
where d ∈ A is the decision attribute and the elements of A are the condition attributes.

Implicants. It has been described [28] that an m-variable function f : Bm → B is
called a Boolean function if and only if it can be expressed by a Boolean formula. An
implicant of a Boolean function f is a term p such that p � f , where � is a partial order
called the inclusion relation. A prime implicant is an implicant of f that ceases to be so
if any of its literals are removed. An implicant p of f is a prime implicant of f in case,
for any term q, the implication of Eq-4 holds.

p � q � f ⇒ p = q . (4)

General Boolean Reasoning Solution Scheme. It has been described [28] that follow-
ing the presentation of earlier work, the general scheme of applying Boolean reasoning
to solve a problem P can be formulated as follows:

1. Encode problem P as a system of simultaneously-asserted Boolean equations as in
Eq-5, where the gi and hi are Boolean functions on B.

P =

⎧⎪⎨
⎪⎩

g1 = h1

...
gk = hk

. (5)

2. Reduce the system to a single Boolean equation (e.g. fp = 0) as in Eq-6.

fp =
k∑

i=1

(
g

′

i · hi + gi · h
′

i

)
. (6)

3. Compute Blake’s Canonical Form (BCF (fp)), the prime implicants of fp.
4. Solutions to P are then obtained by interpreting the prime implicants of fp.

Discernibility Matrices. An information system A defines a matrix MA called a dis-
cernibility matrix. Each entry MA(x, y) ⊆ A consists of the set of attributes that can be
used to discern between objects x, y ∈ U according to Eq-7.

MA (x, y) = {a ∈ A : discerns (a, x, y)} . (7)

Where, discerns (a, x, y) may be tailored to the application at hand.
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Indiscernibility Relations and Graphs. A discernibility matrix MA defines a binary
relation RA ⊆ U2. The relation RA is called an indiscernibility relation [28] (See Eq-8)
with respect to A, and expresses which pairs of objects that we cannot discern between.

xRAy ⇔ MA (x, y) = ∅ . (8)

An alternative way to represent RA is via an indiscernibility graph (IDG), which is
a graph GA = (U, RA) with vertex set U and edge set RA. It has been stated [28] that
GA is normally only interesting to consider when RA is a tolerance relation, in which
case GA may be used for the purpose of clustering or unsupervised learning.

Discernibility Functions. A discernibility function [28] is a function that expresses
how an object or a set of objects can be discerned from a certain subset of the full uni-
verse of objects. It can be constructed relative to an object x ∈ U from a discernibility
matrix MA according to Eq-9.

fA (x) =
∏
y∈U

{∑
a∗ : a ∈MA (x, y) and MA (x, y) 	= ∅

}
. (9)

The function fA(x) contains |A| Boolean variables, where variable a∗ corresponds to
attribute a. Each conjunction of fA(x) stems from an object y ∈ U from which x can
be discerned and each term within that conjunction represents an attribute that discerns
between those objects. The prime implicants of fA(x) reveal the minimal subsets of
A that are needed to discern object x from the objects in U that are not members of
RA(x).

In addition to defining discernibility relative to a particular object, discernibility can
also be defined for the information system A as a whole. The full discernibility function
gA(U) (See Eq-10) expresses how all objects in U can be discerned from each other.
The prime implicants of gA(U) reveal the minimal subsets of A we need to discern all
distinct objects in U from each other.

gA (U) =
∏
x∈U

fA (x) . (10)

Reducts. If an attribute subset B ⊆ A preserves the indiscernibility relation RA then
the attributes A\B are said to be dispensable. An information system may have many
such attribute subsets B. All such subsets that are minimal (i.e. that do not contain any
dispensable attributes) are called reducts. The set of all reducts of an information system
A is denoted RED(A).

In particular, minimum reducts (those with a small number of attributes), are ex-
tremely important, as decision rules can be constructed from them [4]. However, the
problem of reduct computation is NP-hard, and several heuristics have been proposed
[43].

Rough Clustering. Based on the concept of a rough set, modifications to the classi-
cal family of k-means algorithms have been introduced in [22] and [23] observing that
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in data mining it is not possible to provide an exact representation of each class in the
partition. For example, an approximation image classification method has been reported
in [32]. Rough sets enable such representation using upper and lower bounds. In the
case of rough k-means clustering, the centroids of the clusters have to be modified to
include the effects of lower and upper bounds. The modified centroid calculations for a
distance-based clustering would be as shown in Eq-11 [23]:

x =

⎧⎨
⎩wlower ×

�
ν∈A(x) vj

|A(x)| + wupper ×
�

ν∈(A(x)−A(x)) vj

|A(x)−A(x)| ifA(x) − A(x) 	= φ

wlower ×
�

ν∈A(x) vj

|A(x)| otherwise
,

(11)
where 1 ≤ j ≤ m (the number of clusters). The parameters wlower and wupper control
the importance of the lower and upper bonds. Equation 11 generalizes the correspond-
ing k-means centroids update. If the lower and upper bounds are equal, conventional
crisp clusters would be obtained (the boundary region A(x) − A(x) is empty). The
object membership w.r.t. the lower or upper bound of a cluster is determined in the
following way: Let v be an object and xi, xj the centroids of clusters Xi, Xj respec-
tively, where xi is the closest centroid to object v, and xj an arbitrary other centroid.
Let d(v, xi), d(v, xj) be the distances from object v to the corresponding centroids, and
let T be a threshold value. If d(v, xi) − d(v, xj) ≤ T , then v ∈ A(xi), and v ∈ A(xj)
(i.e. v is not part of any lower bound). Otherwise, v ∈ A(xi) and clearly v ∈ A(xi).
This algorithm depends on three parameters wlower , wupper , and T .

3.3 Virtual Reality Representation of Relational Structures

The role of visualization techniques in the knowledge discovery process is well known.
Several reasons make Virtual Reality (VR) a suitable paradigm: Virtual Reality is flex-
ible, in the sense that it allows the choice of different representation models to better
accommodate different human perception preferences. In other words, allows the con-
struction of different virtual worlds representing the same underlying information, but
with a different look and feel. Thus, the user can choose the particular representation
that is most appealing. VR allows immersion. VR creates a living experience. The user
is not merely a passive observer or an outsider, but an actor in the world. VR is broad
and deep. The user may see the VR world as a whole, and/or concentrate the focus of
attention on specific details of the world. Of no less importance is the fact that in or-
der to interact with a Virtual World, no mathematical knowledge is required, but only
minimal computer skills.

A virtual reality based visual data mining technique, extending the concept
of 3D modeling to relational structures, was introduced [40], [41] (see also
http://www.hybridstrategies.com). It is oriented to the understanding of
large heterogeneous, incomplete and imprecise data, as well as symbolic knowledge.
The notion of data is not restricted to databases, but includes logical relations and
other forms of both structured and non-structured knowledge. In this approach,
the data objects are considered as tuples from a heterogeneous space [39]. Different
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information sources are associated with the attributes, relations and functions, and these
sources are associated with the nature of what is observed (e.g. point measurements,
signals, documents, images, directed graphs, etc). They are described by mathematical
sets of the appropriate kind called source sets (Ψi), constructed according to the nature
of the information source to represent. Source sets also account for incomplete infor-
mation. A heterogeneous domain is a Cartesian product of a collection of source sets:
Ĥn = Ψ1 × · · · × Ψn , where n > 0 is the number of information sources.

A virtual reality space is the tuple Υ =< O, G, B,�m, go, l, gr, b, r >, where O is
a relational structure (O =< O, Γ v > , the O is a finite set of objects, and Γ v is a
set of relations), G is a non-empty set of geometries representing the different objects
and relations. B is a non-empty set of behaviors of the objects in the virtual world. �
is the set of real numbers and �m ⊂ R

m is a metric space of dimension m (Euclidean
or not) which will be the actual virtual reality geometric space. The other elements are
mappings: go : O → G, l : O → �m, gr : Γ v → G, b : O → B.

Of particular importance is the mapping l. If the objects are in a heterogeneous space,
l : Ĥn → �m. Several desiderata can be considered for building a VR-space. One may
be to preserve one or more properties from the original space as much as possible (for
example, the similarity structure of the data [6]). From an unsupervised perspective, the
role of l could be to maximize some metric/non-metric structure preservation criteria
[5], or to minimize some measure of information loss. From a supervised point of view
l could be chosen as to emphasize some measure of class separability over the objects
in O [41]. Hybrid requirements are also possible.

For example, if δij is a dissimilarity measure between any two i, j ∈ U (i, j ∈
[1, N ], where n is the number of objects), and ζivjv is another dissimilarity measure
defined on objects iv, jv ∈ O from Υ (iv = ξ(i), jv = ξ(j), they are in one-to-one
correspondence). An error measure frequently used is shown in Eq-12 [35]:

Sammon error =
1∑

i<j δij

∑
i<j (δij − ζij)2

δij
. (12)

Typically, classical algorithms have been used for directly optimizing measures of this
type, like Steepest descent, Conjugate gradient, Fletcher-Reeves, Powell, Levenberg-
Marquardt, and others. The l mappings within this paper were obtained using the method
of Fletcher-Reeves [33]. The new nonlinear features are a form of dimensionality reduc-
tion and new attribute creation.

3.4 Gene Expression Programming

Pattern matching and function approximation are very important operations within data
mining and data analysis. Typical examples of general function approximators are neu-
ral networks and fuzzy systems. While their performance is unquestioned, their inter-
pretation is still awkward, sometimes extremely difficult in human terms. In the case of
a neural network, the understanding of its performance is obscured by the intricacies of
its architecture and its weights, some times very many. In the case of a fuzzy system,
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the set of fuzzy rules might be large in number and complexity. Moreover, the number
of linguistic variables required and the collection of membership functions, might be
large as well. Therefore, either a neural network or a fuzzy model may have an excel-
lent performance, but interpretability issues might make a human user reluctant to use
them. Analytic functions, have a relation with physical systems in general, which has a
long history in science. They are easier to understand by humans, the preferred build-
ing blocks of modeling, and a highly condensed form of knowledge. Regression is an
example where the family of functions is restricted to a few (typically just one), and the
problem reduces to finding a set of parameters or coefficients which makes the function
fulfill some desirable approximation property (for example, minimizing a least square
error or other model quality measure). However, direct discovery of general analytic
functions poses enormous challenges because of the (in principle) infinite size of the
search space.

This important knowledge discovery problem can be approached from a computa-
tional intelligence perspective via evolutionary computation, and the solutions obtained
are relevant to a large number of disciplines and domains. In particular genetic program-
ming techniques aim at evolving computer programs, which ultimately are functions.
Among this subfield of evolutionary computation, gene expression programming (GEP)
is appealing [12]. Gene expression programming (GEP), like genetic algorithms (GAs),
evolution strategies (ES) and genetic programming (GP), is an evolutionary algorithm
as it uses populations of individuals, selects them according to fitness, and introduces
genetic variation using one or more genetic operators. The fundamental difference be-
tween these techniques resides in the nature of the individuals. Different from GA, ES
and GP, GEP individuals are nonlinear entities of different sizes and shapes (expression
trees) encoded as strings of fixed length. For the interplay of the GEP chromosomes
and the expression trees (ET), GEP uses a translation system to transfer the chromo-
somes into expression trees and vice versa [12]. The set of operators applied to GEP
chromosomes always produces valid ETs.

The chromosomes in GEP itself are composed of genes structurally organized into
a head and a tail [11]. The head contains symbols that represent both functions (from
a function set F) and terminals (from a terminal set T), whereas the tail contains only
terminals. Two different alphabets occur at different regions within a gene. For each
problem, the length of the head h is chosen, whereas the length of the tail t is a function
of h and the number of arguments of the function with the largest arity.

As an example, consider a gene composed of the function set F={Q, +, −, ∗, /},
where Q represents the square root function, and the terminal set T={a, b}.
Such a gene (the tail is shown in bold) is: *Q-b++a/-bbaabaaabaab,
and encodes the ET which corresponds to the mathematical equation
f (a, b) =

√
b ·

((
a + b

a

)
− ((a − b) + b)

)
, which simplifies to f (a, b) = b·

√
b

a .
GEP chromosomes are usually composed of more than one gene of equal length. For

each problem the number of genes as well as the length of the head has to be chosen.
Each gene encodes a sub-ET and the sub-ETs interact with one another forming more
complex multi-subunit ETs through a connection function. To evaluate GEP chromo-
somes, different fitness functions can be used.
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3.5 Distributed Computing and the Grid

Distributed computing can be defined in different ways, and there is no universally ac-
cepted formulation of the concept. It can be understood as an environment where idle
CPU cycles and storage space of tens, hundreds, or thousands of networked systems
can be harnessed to work together on a particular processing-intensive problem. The
growth of such processing models has been limited, however, due to a lack of com-
pelling applications and by bandwidth bottlenecks, combined with significant security,
management, and standardization challenges. However, in the last years the interest has
grown to the extent of making the technology an emergent fact. Increasing desktop CPU
power and communications bandwidth have also helped to make distributed computing
a more practical approach. The numbers of real applications are still somewhat limited,
and the challenges (particularly standardization) are significant.

Grid computing is a form of distributed computing that involves coordinating and
sharing computing, application, data, storage, or network resources across dynamic
and geographically dispersed organizations. As previously stated, there is no univer-
sally accepted definition, but a consensus exists in that a Grid is a type of parallel and
distributed system that enables the sharing, selection, and aggregation of geographi-
cally distributed “autonomous” resources dynamically at runtime depending on their
availability, capability, performance, cost, and users’ quality-of-service requirements.
Grid technologies promise to change the way complex computational problems are ap-
proached and solved. However, the vision of large scale resource sharing is not yet a
reality in many areas. Grid computing is an evolving area of computing, where stan-
dards and technology are still being developed to enable this new paradigm.

The grid computing concept aims to promote the development and advancement
of technologies that provide seamless and scalable access to wide-area distributed re-
sources. Computational Grids enable the sharing, selection, and aggregation of a wide
variety of geographically distributed computational resources (such as supercomputers,
compute clusters, storage systems, data sources, instruments, people) and presents them
as a single, unified resource for solving large-scale compute and data intensive comput-
ing applications (e.g, molecular modelling for drug design, brain activity analysis, and
high energy physics). The idea is analogous to electric power networks (grids) where
power generators are distributed, but the users are able to access electric power without
bothering about the source of energy and its location. Grids aim at exploiting synergies
that result from cooperation–ablity to share and agreegrate distributed computational
capabilities and deliver them as service. The use of grid technologies for data mining
is an obvious choice for many exploratory data analysis tasks within the knowledge
discovery process.

The identification of the research issues and their potential priorities for the years
2003-2010, as well as the formulation of proposal of suitable means for implementation,
has been addressed by several groups of experts [14], [3].

Among distributed computing systems for delivering high throughput computing,
the Condor system stands out [9], [36], [37], [38],(http://www.cs.wisc.edu/
condor/). Condor is a specialized workload management system for compute-
intensive jobs in a distributed computing environment, developed by the Condor
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Research Project at the University of Wisconsin-Madison (UW-Madison). Like other
full-featured batch systems, Condor provides a job queueing mechanism, scheduling
policy, priority scheme, resource monitoring, and resource management. Users submit
their serial or parallel jobs to Condor, Condor places them into a queue, chooses when
and where to run the jobs based upon a policy, carefully monitors their progress, and
ultimately informs the user upon completion.

While providing functionality similar to that of a more traditional batch queueing
system, Condor’s novel architecture allows it to succeed in areas where traditional
scheduling systems fail. Condor can be used to manage a cluster of dedicated com-
pute nodes (such as a “Beowulf” cluster), possibly mixed with individual nodes. In
addition, unique mechanisms enable Condor to effectively harness wasted CPU power
from otherwise idle desktop workstations. For instance, Condor can be configured to
only use desktop machines where the keyboard and mouse are idle. Should Condor
detect that a machine is no longer available (such as a key press detected), in many cir-
cumstances Condor is able to transparently produce a checkpoint and migrate a job to a
different machine which would otherwise be idle. Condor does not require a shared file
system across machines - if no shared file system is available, Condor can transfer the
job’s data files on behalf of the user, or Condor may be able to transparently redi-
rect all of the job’s I/O requests back to the submit machine. As a result, Condor can
be used to seamlessly combine all of an organization’s computational power into one
resource.

3.6 Implementation

A detailed perspective of data mining procedures provides insight into additional im-
portant issues to consider (e.g. storage/memory/communication/management/time/etc)
when evaluating a computational methodology consisting of combined techniques. This
study presents one possible implementation, from which more software development
may occur in order to integrate better and/or different tools. In addition, all of these
issues become even more pronounced when, as in this study, a complex problem is
investigated.

The implementation of the distributed pipeline is shown in Alg.1. It consists of two
pieces; a sequential portion, and a distributed portion. For the sequential portion, a
specific machine (usually the local host) is used to perform some preliminary processing
on the data (as it only needs to be performed once) and then distributes the data via a
specific distribution mechanism to a set of waiting computing nodes, which may include
the distributing machine. Once all of the computations have completed, the sequential
portion of the pipeline may then proceed to collect the results from all of the files that
have been placed onto the distributing machine (again via the distribution mechanism,
but this time from compute node (e.g. remote host) to distributing host). The resultant
databases may then be queried for the purpose of analysis.

The specific distribution mechanism used, is a high throughput pipeline (Fig. 2) con-
sisting of many co-operating programs. Such a pipeline structure is generated automat-
ically in order to ease the proper configuration of each participating program within the
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Algorithm 1. Abstract Conceptualization of the Distributed Pipeline

Input : A Data Matrix, DInput

Output: A Set of Relevant Attributes.
From a Specific Host, Sequentially do

GenerateAndConfigurePipeline() ;
DRandom ←− ShuffleObjects(i)(Opt(i), DInput) ;
DistributeToComputeNodes(j)(Opt(j), DRandom) ;
StartPipelineExecution() ;
BlockedWaitForResults() ; // Monitor Each Job’s Progress
// Store All Completed Job Results Locally

ResultsRules ←− ReformatAndCollectRules(k)() ;
ResultsStatistics ←− ReformatAndCollectStats(l)() ;
AnalyzeResults(DRandom, ResultsRules, ResultsStatistics) ;

end
On Each Compute Node Run A Job And do

DLeaders ←− ConstructLeaders(m)(Opt(m), DRandom) ;
DSubsets ←− SubsetSelection(n)(Opt(n), DLeaders ) ;
// e.g. create DSubsets by 10-fold cross-validation

forall
�
(DTr

i , DTe
i ) ∈ DSubsets

�
do

(DTr
i,discr , CutsTr

i ) ←− Discretize(o)(OptTr
(o), DTr

i ) ;

ReductsTr
i ←− FormReducts(p)(OptTr

(p), DTr
i,discr) ;

RulesTr
i ←− GenerateRules(q)(OptTr

(q), ReductsTr
i ) ;

DTe
i,discr ←− Discretize(o)(OptTe

(o), DTe
i , CutsTr

i ) ;
RuleSetMeriti ←− Classify(r)(Opt(r), DTe

i,discr) ;
Record(RuleSetMeriti)

end
end

pipeline. In this paper, the automatically generated pipeline was facilitated via i) a file
generation program (written in Python and running on the local host) and ii) the Condor
tool described in section 3.5.

The initial preprocessing stage of the pipeline, occurring on the distributing host after
generation of files, involves shuffling the input data records as described previously and
in Fig.1. The shuffled data is stored on the distributing host’s disk, in order to provide the
same randomized data to the next stage of processing, which occurs on the computing
hosts (Fig.2).

A Condor submission program, which was also automatically generated, is used to
specify all of the data and configuration files for the programs that will execute on the
remote host. The submission process enables Condor to:

i) schedule jobs for execution
ii) check point them (put a job on hold)
iii) transfer all data to the remote host
iv) transfer all generated data back to the local host (submitting machine)
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Fig. 1. Data processing strategy combining clustering, Rough Sets analysis and crossvalidation

The final postprocessing stage of the pipeline involves collecting all of the results
(parsing the files) and reporting them in a database.

4 Experimental Methodology

The datasets consist of information systems with an attribute set composed of ratio and
interval variables, and a nominal or ordinal decision attribute. More general information
systems have been described in [39]. The general idea is to construct subsets of relatively
similar attributes, such that a simplified representation of the data objects is obtained
by using the corresponding attribute subset representatives. The attributes of these sim-
plified information systems are explored from the point of view of their reducts. From
them, rules are learned and applied systematically to testing data subsets not involved
in the learning process (Fig.1). The whole procedure can be seen as a pipeline.

In a first step, the objects in the dataset are shuffled using a randomized approach
in order to reduce the possible biases introduced within the learning process by data
chunks sharing the same decision attribute. Then, the attributes of the shuffled dataset
are clustered using the two families of fast clustering algorithms described in previ-
ous sections (the leader, and k-means). Each of the formed clusters of attributes is
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Fig. 2. Automatically generated high throughput pipeline oriented towards the Condor distributed
computing environment

represented by exactly one of the original data attributes. By the nature of the leader
algorithm, the representative is the leader (called an l-leader), whereas for a k-means
algorithm, a cluster is represented by the most similar object w.r.t. the centroid of the
corresponding cluster (called a k-leader). This operation can be seen as a filtering of the
attribute set of the original information system. As a next step, the filtered information
system undergoes a segmentation with the purpose of learning classification rules, and
testing their generalization ability in a cross-validation framework. N-folds are used as
training sets; where the numeric attributes present are converted into nominal attributes
via a discretization process (many possibilities exist), and from them, reducts are con-
structed. Finally, classification rules are built from the reducts, and applied to a dis-
cretized version of the test fold (according to the cuts obtained previously), from which
the generalization ability of the generated rules can be evaluated. Cross-validation is
used in order to create a statistically meaningful estimate of the classification accuracy
of the rules generated from the reducts for a particular experiment. The final database
of experimental results was then sorted by minimum mean classification accuracy. The
best mean accuracy experiments were then selected in order to extract the attributes
from within the computed reducts for further analysis.

Besides the numeric descriptors associated with the application of classification rules
to data, use of visual data mining techniques, like the virtual reality representation (sec-
tion 3.3), enables structural understanding of the data described in terms of the selected
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subset of attributes and/or the rules learned from them. This technique can be applied at
a pre- and/or post-processing stage. In this paper, all of the applications were made in
the unsupervised mode. That is, the existing class information was not used during the
process, and is incorporated within the resulting visualization only to enable thecom-
parison between the data structure provided by the predictor variables with the class
distribution that is known to exist. Each stage of the process feeds its results to the next
stage of processing, yielding a pipelined data analysis stream, with partial outputs that
can be used for other kinds of analysis.

4.1 ROSETTA

The ROSETTA Software [28], [30] was used within this study with the algorithms that
are described within the following sections.

Discretization: NaiveScaler. The heuristic implemented by Rosetta [29] was used
and was described under the assumption that all condition attributes A are numerical.
For each condition attribute a, sort its value set Va to obtain the ordering indicated by
Eq-13.

v1
a < · · · vi

a < · · · < v|Va|
a . (13)

Then let Ca denote the set of all cuts for attribute a generated in a naive fashion accord-
ing to equations Eq-14, Eq-15, and Eq-16.

X i
a =

{
x ∈ U : a (x) = vi

a

}
, (14)

Δi
a =

{
v ∈ Vd : ∃x ∈ X i

a such that d (x) = v
}

, and (15)

Ca =
{

vi
a + vi+1

a

2
:
∣∣Δi

a

∣∣ > 1 or
∣∣Δi+1

a

∣∣ > 1 or Δi
a 	= Δi+1

a

}
. (16)

The set Ca consists of all cuts midway between two observed attribute values, except
for the cuts that are clearly not needed due to the fact that the objects have the same
decision value. Hence, such a cut would not discern the objects. If no cuts are found
for an attribute, NaiveScaler leaves the attribute unprocessed. Missing values are
ignored in the search for cuts. In the worst case, each observed value is assigned its
own interval.

Discretization: SemiNaiveScaler. The discretization algorithm as implemented
within Rosetta [29] is similar to the NaiveScaler but has more logic to handle the
case where value-neighboring objects belong to different decision classes. This algo-
rithm typically results in fewer cuts than the simpler NaiveScaler, but may still
produce more cuts than are desired. In Eq-17, the set Di

a collects the dominating deci-
sion values for the objects in X i

a. If there are no ties, Di
a is a singleton. The rationale

used within Rosetta for not adding a cut if the sets of dominating decisions define an in-
clusion is that it is hoped (although it is stated that the implementation does not check)
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that a cut will be added for another attribute (different from a) such that the objects in
X i

a and X i+1
a can be discerned.

Di
a =

{
v ∈ Vd : v = argmax

v′

∣∣{x ∈ X i
a : d (x) = v′

}∣∣} . (17)

Ca =
{

vi
a + vi+1

a

2
: Di

a � Di+1
a and Di+1

a � Di
a

}
. (18)

Discretization: RSESOrthogonalScaler. This algorithm is an efficient imple-
mentation [25] of the Boolean reasoning algorithm [27] within the Rough Set Explo-
ration System (RSES) (See http://logic.mimuw.edu.pl/˜rses/). It is men-
tioned [29] that this algorithm is functionally similar to BROrthogonalScaler but
much faster. Approximate solutions are not supported. If a(x) is missing, object x is
not excluded from consideration when processing attribute a, but is instead treated as
an infinitely large positive value. If no cuts are found for an attribute, all entries for that
attribute are set to 0.

Discretization: BROrthogonalScaler. The Rosetta implementation [29] of a pre-
viously outlined algorithm [27] was used, which is based on the combination of the
NaiveScaler algorithm previously presented and a Boolean reasoning procedure for
discarding all but a small subset of the generated cuts. Construct set of candidate cuts
Ca according to Eq-16. Then construct a boolean function f from the set of candidate
cuts according to Eq-19.

f =
∏
(x,y)

∑
a

{∑
c∗ : c ∈Ca and a (x) < c < a (y) and ∂A (x) 	= ∂A (y)

}
. (19)

Then compute the prime implicant of f using a greedy algorithm [21] (see
JohnsonReducer). This Boolean reasoning approach to discretization may result
in no cuts being deemed necessary (because they do not aid discernibility) for some
attributes. The Rosetta implementation does not alter such attributes.

Discretization: EntropyScaler. The Rosetta implementation [29] of the algorithm
[8] is based on recursively partitioning the value set of each attribute so that a local
measure of entropy is optimized. The minimum description length principle defines a
stopping criterion for the partitioning process. Rosetta ignores missing values in the
search for cuts and Rosetta does not alter attributes for which no cuts were found.

Reduct Computation: RSESExhaustiveReducer. The RSES algorithm included
within Rosetta [29] computes all reducts by brute force. Computing reducts is NP-hard,
so information systems of moderate size are suggested to be used within Rosetta.

Reduct Computation: Holte1RReducer. Rosetta’s [29] algorithm creates all sin-
gleton attribute sets, which was inspired by a paper in Machine Learning [18]. The set
of all 1R rules, (i.e. univariate decision rules) are thus directly constructed from the
attribute sets.
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Reduct Computation: RSESJohnsonReducer. Rosetta [29] invokes the RSES im-
plementation of the greedy algorithm [21] for reduct computation. No support is pro-
vided for IDGs, boundary region thinning or approximate solutions.

Reduct Computation: JohnsonReducer. Rosetta [29] invokes a variation of a
greedy algorithm to compute a single reduct [21]. The algorithm (See Alg.2) has a
natural bias towards finding a single prime implicant of minimal length. The reduct R
is found by executing the following algorithm, where

∑
w(X) denotes a weight for set

X ∈ S that is computed from the data. Support for computing approximate solutions is
provided by aborting the loop when enough sets have been removed from S, instead of
requiring that S has to be fully emptied.

Algorithm 2. Johnson Reducer

Input : A Data Matrix, DInput

Output: One Reduct
R ← ∅ ; // Reduct has no attributes within it
S ← {S1, S2, . . . , Sn} ;
repeat

// A contains all attributes that maximizes
�

w(X),
// where the sum is taken over all sets X ∈ S that
// contain a.
A ← {a : maximal {

�

{X∈S:a∈X}
w(X)}} ;

// The Rosetta implementation resolves ties arbitrarily
a ← RandomElementFromSet (A) ;
R ← R ∪ {a} ; // Add attribute to growing reduct
S ← {X ∈ S : a /∈ X} ; // Stop considering sets containing a

until S = ∅ ; // No more attributes left for consideration
return R ;

Rule Generation: RSESRuleGenerator. Rosetta [29] invokes the RSES imple-
mentation of an algorithm to generate rules from a set of reducts. Conceptually per-
formed by overlaying each reduct in the reduct set over the reduct set’s parent decision
table and reading off the values.

5 Results

5.1 Leukemia Gene Expression Data

The example high dimensional dataset selected is that of [15], and consists of 7129
genes where patients are separated into i) a training set containing 38 bone marrow sam-
ples: 27 acute lymphoblastic leukemia (ALL) and 11 acute myeloid leukemia (AML),
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obtained from patients at the time of diagnosis, and ii) a testing set containing 34 sam-
ples (24 bone marrow and 10 peripheral blood samples), where 20 are ALL and 14
AML. The test set contains a much broader range of biological samples, including those
from peripheral blood rather than bone marrow, from childhood AML patients,and from
different reference laboratories that used different sample preparation protocols. Fur-
ther, the dataset is known to have two types of ALL, namely B-cell and T-cell. For the
purposes of investigation, only the AML and ALL distinction was made. The dataset
distributed by [15] contains preprocessed intensity values, which were obtained by re-
scaling such that overall intensities for each chip are equivalent (A linear regression
model using all genes was fit to the data). In this paper no explicit preprocessing of the
data was performed, in order to not introduce bias and to be able to expose the behavior
of the data processing strategy, the methods used, and their robustness. That is, no back-
ground subtraction, deletions, filtering, or averaging of samples/genes were applied, as
is typically done in gene expression experiments.

In a preprocessing stage, a virtual reality representation of the opriginal dataset in a
3-dimensional space as described in section 3.3 was computed. Gower similarity was
used for the original space, and normalized Euclidean distance for the target space.
Steepest descent was used for optimizing Sammon’s error. The purpose was to appreci-
ate the relationship of the structure of the existing classes and the collection of original
attributes. As shown in (Fig.3, the two Leukemia classes appear completely mixed, as
approximated with the original set of attributes. Noisy attributes do not allow a resolu-
tion of the classes.

The pipeline (Fig.1) was investigated through the generation of 480 k-leader and 160
l-leader for a total of 640 experiments (Table-1). The discretization, reduct computation
and rule generation algorithms are those included in the Rosetta system [30]. This ap-
proach leads to the generation of 74 files per experiment, with 10-fold cross-validation.
From the experiments completed so far, one was chosen which illustrates the kind of
results obtained with the explored methodology. It corresponds to a leader clustering
algorithm with a similarity threshold of 0.99 (leading to 766 l-leader attributes), used as
input to the data processing pipeline containing 38 samples. The results of the best 10
fold cross-validated experiment has a mean accuracy of 0.925 and a standard deviation

Table 1. The set of parameters and values used in the experiments using the distributed pipeline
environment

Algorithm/Parameter Values

Leader ReverseSearch, ClosestSearch
Leader Similarity Threshold 0.7, 0.8, 0.9, 0.95, 0.99,

0.999, 0.9999, 0.99999
K-Means Forgy, Jancey, Convergent, MacQueen

Cross-validation 10 folds
Discretization BROrthogonalScaler, EntropyScaler,

NaiveScaler, SemiNaiveScaler
Reduct Computation JohnsonReducer, Holte1RReducer

Rule Generation RSESRuleGenerator
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Fig. 3. Snapshot of the Virtual Reality representation of the original Leukemia data (training set
with 38 samples + test set with 34, both with 7129 genes). Dark objects= ALL class, Light
objects=AML class. Spheres = training, Cubes = test. Representation error = 0.143, Sammon
error = 3.56e − 6.

of 0.168. This experiment led to 766 reducts (all of them singleton attributes), which
was consistent across each of the 10 folds. The obtained classification accuracy repre-
sents a slight improvement over those results reported in [42] (0.912). It was conjectured
in that study that the introduction of a cross-validated methodology could improve the
obtained classification accuracies, which is indeed the case. It is interesting to observe
that all of the 7 relevant attributes (genes) reported in [42] are contained (subsumed)
within the single experiment mentioned above. Moreover, they were collectively found
using both the leader and k-means algorithms, with different dissimilarity thresholds
and number of clusters, whereas with the present approach, a single leader clustering
input was required to get the better result. Among the relevant attributes (genes) ob-
tained, many coincide with those reported by [15], [10], and [42].

At a post-processing stage, a virtual reality space representation of the above men-
tioned experiment is shown in Fig.4. Due to the limitations of representing an interactive
virtual world on static media, a snapshot from an appropriate perspective is presented.
Sammon’s error [35] was used as criteria for computing the virtual reality space, and
Gower’s similarity was used for characterizing the data in the space of the 766 selected
genes. After 200 iterations a satisfactory error level of 0.0998 was obtained. It is inter-
esting to see that the ALL and AML classes can be clearly differentiated.
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Fig. 4. Snapshot of the Virtual Reality representation of the union of all of the reducts obtained
from 10 fold cross-validation input (38 samples with 766 genes) for the Leukemia data. The
leader clustering algorithm was used with a similarity threshold of 0.99. The ALL and the AML
classes are perfectly separated. Representation error = 0.0998.

5.2 Breast Cancer Data

A visual representation of the original data in terms of the 12, 625 genes obtained using
Gower similarity in the original space, Sammon error, and steepest descent optimization
[34] is shown in Fig.5. The sensitive and resistant classes are shown for comparison,
and semi-transparent convex hulls wrap the objects from the corresponding classes.
There is a little overlap between the two sets, indicating the classification potential
of the whole set of attributes, but complete class resolution is not obtained with the
nonlinear coordinates of the VR space.

Rough k-means [23] was used to cluster the 24 samples into 2 groups using the
whole set of original attributes (genes) in order to illustrate the difficulties involved in
using all of the original attributes. The particular algorithm parameters (wlower = 0.9,
wupper = 0.1, distanceThreshold = 1). The rough k-means result for the 24 samples
using the 12, 625 original attributes, and requesting 2 classes is shown in Fig.6. In the
VR space, 2 classes are clearly well differentiated, but one of them contains 5 objects
and the other contains the rest. Moreover, when the smaller class is investigated, it
contains a mixture of samples from the resistant and sensitive class. Therefore, even
the more elaborated rough k-means clustering can not resolve the two known classes
from the point of view of all of the original attributes used at the same time. It is also
interesting, that for this dataset that no boundary cases were obtained with the clustering
parameters used.
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Fig. 5. Visual representation of 24 breast cancer samples with 12, 625 genes. Convex hulls wrap
the resistant(size= 14) and sensitive(size= 10) classes. Absolute Error = 7.33 · 10−2. Relative
Mapping Error = 1.22 · 10−4.

The experimental settings used in the investigation of breast cancer data with the
distributed pipeline are reported in Table 2. For each experiment, the discretization,
reduct computation and rule generation algorithms are those included in the Rosetta
system [30]. The leader algorithm variants were described in section 3.1. This approach
leads to the generation of 84 files per experiment, with 10-fold cross-validation.

From the series of l-leader Breast Cancer experiments performed, 4 experiments
(Exp-81, Exp-82, Exp-145, Exp-146) were found to be equivalent when analyzing the
mean (0.73), median (0.67), standard deviation (0.25), minimum (0.5) and maximum
(1.0) of the 10-fold cross validated classification accuracy of the produced rules. For the
l-leader algorithm a similarity threshold of 0.7 was used by all experiments, with Exp-
81 and Exp-145 using closest placement criteria and Exp-82 and Exp-146 using reverse
search criteria. The discretization algorithm as provided by the Rosetta system was the
RSESOrthogonalScaler for Exp-81 and Exp-82 and the BROrthogonalScaler for Exp-
145 and Exp-146. The reduct algorithm (RSESExhaustiveReducer) was the same for all
4 experiments with full discernibility and all selection. The rule generation algorithm
(RSESRuleGenerator), was also the same for all 4 experiments.

In a postprocessing stage, the gene expression programming was applied to selected
pipeline results. The idea was to try a simple function set (F = {+, −, ∗}) without the
use of numeric constants, in order to reduce the complexity of the assembled functions
as much as possible. In particular, experiments 81, 82, 145 and 146 all found a subset
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Fig. 6. Visual representation of 24 breast cancer samples with 12, 625 genes. Convex hulls wrap
the RC1(size= 19) and RC2(size= 5) classes built by rough set based k-means. Absolute Error
= 7.06 ·10−2 . Relative Mapping Error = 5.21 ·10−5 . RC1, RC2 stand for the two rough clusters
obtained.

of only 3 l-leader attributes with a mean crossvalidation error of 0.73. The subset of at-
tributes was {2, 139, 222}, corresponding to genes {31307 at, 31444 s at, 31527 at}.
They represent {12359, 27, 239} data objects respectively. Accordingly, the terminal
set defined by the attributes found by the pipeline was set to T = {v2, v139, v222}. The
resulting class membership function emerging from the GEP process is as shown in
Eq-20:

f(v2, v139, v222) = ((v222 + v139) + v139) + (20)

(((v222 − v139) ∗ (v2 ∗ v2)) ∗ ((v139 + v139) − v139)) +
(v222 − (((v2 − v222) ∗ (v139 − v2)) ∗ ((v222 + v139) + v2))) .

This analytic expression was simplified with the Yacas computer algebra system
http://www.xs4all.nl/˜apinkus/yacas.html which resulted in the ex-
pression in Eq-21:

f(v2, v139, v222) = v2
222 ∗ v139 − v2

222 ∗ v2 + v222 ∗ v2
139 +

v222 ∗ v139 ∗ v2
2 − v222 ∗ v139 ∗ v2 + 2 ∗ v222 +

2 ∗ v139 − (v2
139 ∗ v2 + v2

139 ∗ v2
2) + v3

2 . (21)
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Table 2. The set of parameters and values used in the experiments with the Breast Cancer dataset
using the distributed pipeline environment

Algorithm/Parameter Values

Leader ReverseSearch, ClosestSearch
Leader Similarity Threshold 0.7, 0.8, 0.9, 0.95, 0.99,

0.999, 0.9999, 0.99999
Cross-validation 10 folds

Discretization BROrthogonalScaler, EntropyScaler,
NaiveScaler, RSESOrthogonalScaler, SemiNaiveScaler

Reduct Computation RSESExhaustiveReducer, RSESJohnsonReducer
Rule Generation RSESRuleGenerator

The classification rule associated with Eq-21 is shown in Eq-22. The classification
accuracy on the original dataset was 91.67%, and it should be noted that only 3 genes out
of the 12, 625 original ones are used. Moreover, the resulting model is relatively simple.

IF f(v2, v139, v222) ≥ 0.5) −→ class = sensitive (22)

otherwise −→ class = resistant .

5.3 Colon Cancer Data

A virtual reality space representation of the dataset in terms of the original 2000 at-
tributes was computed for an initial assesment of the structure of the data. Sammon er-
ror was used as structure measure, with normalized Euclidean distance as dissimilarity,
and Powell’s method for error optimization [34]. In 50 iterations an extremely low map-
ping error obtained (1.067x10−6) is shown in Fig.7.

Fig. 7. Visual representation (3 dimensions) of 62 colon cancer samples with 2000 genes. Darker
objects belong to the tumor class, and lighter objects to the normal class. After 50 iterations:
Absolute Error = 1.067 · 10−6. Relative Mapping Error = 0.0488.
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Table 3. Two Breast Cancer dataset experiments and their associated reducts for each of the 10
cross-validated folds. The GEP encodings are also reported.

Experiment Fold Reducts GEP Encoding

1 {31307 at, 31444 s at, 31527 at} {v2, v139, v222}
2 {31307 at, 31527 at} {v2, v222}
3 {31307 at, 31527 at} {v2, v222}
4 {31307 at, 31444 s at, 31527 at} {v2, v139, v222}

81 5 {31307 at, 31444 s at, 31527 at} {v2, v139, v222}
6 {31307 at, 31444 s at, 31527 at} {v2, v139, v222}
7 {31307 at, 31444 s at, 31527 at} {v2, v139, v222}
8 {31307 at, 31444 s at, 31527 at} {v2, v139, v222}
9 {31307 at, 31444 s at, 31527 at} {v2, v139, v222}
10 {31307 at, 31527 at} {v2, v222}
1 {31307 at, 31444 s at, 31527 at} {v2, v139, v222}
2 {31444 s at, 31527 at} {v139, v222}
3 {31307 at, 31527 at} {v2, v222}
4 {31307 at, 31444 s at, 31527 at} {v2, v139, v222}

82 5 {31307 at, 31444 s at, 31527 at} {v2, v139, v222}
6 {31307 at, 31444 s at, 31527 at} {v2, v139, v222}
7 {31307 at, 31527 at} {v2, v222}
8 {31307 at, 31444 s at, 31527 at} {v2, v139, v222}
9 {31307 at, 31527 at} {v2, v222}
10 {31307 at, 31527 at} {v2, v222}

Such a small mapping error indicates that the VR space is a very accurate portrait
of the 2000 dimensional original space. The most interesting feature in the VR space
is the existence of an intrinsic unidimensionality in the data from the point of view of
preserving the distance structure. Although the right hand side of the projected data
line in Fig.7 predominantly contains objects of the tumor class, and the left half ob-
jects of the normal classes, they are mixed, and therefore, the space does not resolve
the classes. Nevertheless, this result is an indication about the potential of finding rel-
atively small subsets of attributes with reasonable classification power and about the
large redundancy within the original attributes.

The experimental settings used in the investigation of colon cancer data with the dis-
tributed pipeline are reported in Table 4.For each experiment, the discretization, reduct
computation and rule generation algorithms are those included in the Rosetta system
[30]. The leader algorithm variants were described in section 3.1. This approach leads
to the generation of 84 files per experiment, with 10-fold cross-validation. From the se-
ries of 320 l-leader Colon Cancer experiments, 5 are selected for illustration: Exp-113,
Exp-304, Exp-195, Exp-180, and Exp-178. They were found to be equivalent when
analyzing the mean (0.73), median (0.67), standard deviation (0.25), minimum (0.5),
and maximum (1.0) of the 10-fold cross validated classification accuracy.From the se-
ries of l-leader experiments, 2 were selected for illustrating the number of created rules
per fold. The i) rules and their respective reducts from which they were generated are
shown in Table 6 and ii) the original attribute names as well as related genes as found
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Table 4. The set of parameters and values used in the experiments with the Colon Cancer dataset
using the distributed pipeline environment

Algorithm/Parameter Values

Leader ReverseSearch, ClosestSearch
Leader Similarity Threshold 0.7, 0.8, 0.9, 0.95, 0.99,

0.999, 0.9999, 0.99999
Cross-validation 10 folds

Discretization BROrthogonalScaler, EntropyScaler,
NaiveScaler, RSESOrthogonalScaler, SemiNaiveScaler

Reduct Computation JohnsonReducer, Holte1RReducer,
RSESExhaustiveReducer, RSESJohnsonReducer

Rule Generation RSESRuleGenerator

Table 5. Selected l-leader Colon Cancer experiments sorted by minimum 10-fold cross-validated
classification accuracy. The last column shows the resultant number of pipeline selected attributes
(from 2, 000) for each experiment.

Experiment Mean Median Standard Deviation Min. Max. Sim. No. Attr.

178 0.562 0.500 0.261 0.167 1.0 0.7 3
180 0.629 0.646 0.219 0.333 1.0 0.8 9

within the source reference [1] are shown in Table 7. In these cases, all reducts were
composed of singleton attributes found from the original 2000. They are presented due
to their cross-validated minimum and maximum accuracies of [0.167-1.0] and [0.333-
1.0] respectively. Experiment 178 contains the same 3 singleton reducts in each of the
10 folds, from which [59−73] rules were obtained. Whereas, Experiment 180 contains
9 singleton reducts in each of the 10 folds, from which [209−241] rules were obtained.

For the found l-leaders in these experiments, it can be seen that perfect classification
has been made for some of the folds which is a sign of interestingness.

In a postprocessing stage, gene expression programming was applied to selected
pipeline results. The idea was to try a simple function set (F = {+, −, ∗, sin, cos, log})
in order to reduce the complexity of the assembled nonlinear functions as much as pos-
sible. In particular, experiment 178 found a subset of only 3 l-leader attributes. The sub-
set of attributes was {1, 2, 12}, corresponding to genes {H55933, R39465, H86060}.
They represent {1, 11, 1988} data objects respectively. Accordingly, the terminal set de-
fined by the attributes found by the pipeline was set to T = {v1, v2, v12}. The resulting
class membership function emerging from the GEP process is shown in Eq-23:

f(v1, v2, v12) = ((v1 ∗ (v1 ∗ cos((v12 ∗ v12)))) − v2) +
(v1 ∗ (cos(log(v1)) ∗ v2)) +
((v2 ∗ (cos((v2 + v2)) ∗ v2)) + v1) . (23)
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When Eq-23 is simplified, the resultant equation is that as shown in Eq-24:

f(v1, v2, v12) = cos(v2
12) ∗ v2

1 + v1 ∗ v2 ∗ cos(log(v1)) +
v1 + v2

2 ∗ cos(2 ∗ v2) − v2 . (24)

The classification rule associated to Eq-24 is shown in Eq-25, which has a classification
accuracy on the original dataset of 88.7%, and it should be noted that only 3 genes out
of the 2000 original ones were used.

IF (f(v1, v2, v12) ≥ 0.5) −→ class = normal (25)

otherwise −→ class = tumor .

In a second application of the gene expression programming method, the attributes
found by experiment 180 {1, 2, 4, 5, 6, 22, 27, 119, 878} were used (again l-leaders).
The terminal set was allowed to have numeric constants. The resulting class member-
ship function emerging from the GEP process is as shown in Eq-26:

f(v1, v2, v4 , v5, v6, v22, v27, v119, v878) =
(((((v878 − v22) ∗ v5) ∗ (v4 ∗ v878)) ∗ ((v6 + v5) + v5)) + v1) +
(((((v119 − v878) ∗ v119) ∗ v1) ∗ ((v27 + v878) ∗ (v1 + v22))) + v1) +
(v27 − (v5 ∗ (k1 − (v119 + ((v119 + v1) + v5))))) +
(k2 ∗ (((v1 − (v878 + v5)) + v4) ∗ v6)) , (26)

where k1 = 3.55777, k2 = −7.828919. After simplification, the resulting function is
as shown in Eq-27:

f(v1,v2, v4, v5, v6 , v22, v27, v119, v878) =
2 ∗ v2

878 ∗ v2
5 ∗ v4 +

v2
878 ∗ v5 ∗ v4 ∗ v6 − v2

878 ∗ v2
1 ∗ v119 − v2

878 ∗ v22 ∗ v1 ∗ v119 +
(−2) ∗ v878 ∗ v22 ∗ v2

5 ∗ v4 − v878 ∗ v22 ∗ v5 ∗ v4 ∗ v6 +
v878 ∗ v22 ∗ v1 ∗ v2

119 − v878 ∗ v22 ∗ v1 ∗ v119 ∗ v27 +
v878 ∗ v2

1 ∗ v2
119 − v878 ∗ v2

1 ∗ v119 ∗ v27 − v878 ∗ v6 ∗ k2 +
v22 ∗ v1 ∗ v2

119 ∗ v27 +
v2
5 +

v5 ∗ v1 +
2 ∗ v5 ∗ v119 − v5 ∗ k1 − v5 ∗ v6 ∗ k2 +
v4 ∗ v6 ∗ k2 +
v6 ∗ v1 ∗ k2 +
v2
1 ∗ v2

119 ∗ v27 +
2 ∗ v1 +
v27 . (27)
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The classification rule associated to Eq-27 is as shown in Eq-28:

IF (f(v1, v4, v5, v6, v22, v27, v119, v878) ≥ 0.5) −→ class = normal

otherwise −→ class = tumor , (28)

Table 6. Two Colon Cancer dataset experiments. Exp. 178 has 3 reducts that are the same in all
10 folds. Exp. 180 has 9 reducts that are the same in all 10 folds.

Cross Validation Fold 1 2 3 4 5 6 7 8 9 10
No. Rules in Exp. 178 67 72 73 72 68 59 66 72 68 68
No. Rules in Exp. 180 230 236 233 234 227 209 216 241 228 227

Table 7. Discovered attributes for 2 Colon Cancer dataset experiments. Exp. 180 found one at-
tribute (v6 =R02593) that was also previously reported.

Exp. 178 Encoding: v1 v2 v12

Original: H55933 R39465 H86060
Encoding: v1 v2 v22 v27 v119

Original: H55933 R39465 J02763 H86060 T72175
Exp. 180 Encoding v4 v5 v6 v878

Original: R85482 U14973 R02593 M87789
Compared to [1]: (R85464) (U14971) (Same)

and has a classification accuracy on the original dataset of 91.9%. From the point of
view of classification accuracy, it is only slightly better than the one obtained with only
3 attributes. On the other hand, despite the fact that most of the individual terms are rel-
atively simple (addition is the root of the expression tree), the expression as a whole is
very complex, and certainly much more than the previous model. Likely such an expres-
sion is not an arguable replacement for a neural network or a set of fuzzy relations in
terms of simplicity or understandability, and moreover, the situation can be even worse
if the function set is extended with other nonlinear functions like ex, ln(x), transcenden-
tal functions, numeric constants, etc., as is required in complex function approximation
tasks. However, despite these difficulties, genetic programming, and particularly GEP
allows an explicit assessment of the role of predictor variables. It also provides an-
alytic means to perform sensitivity analysis directly, through the study of the partial
derivatives and the multidimensional gradient of the generated functions. The approach
is promising, and new developments in genetic programming including meta-function
approximation and the incorporation of more intelligent techniques may overcome the
above mentioned difficulties.

It is interesting to observe that gene 2 is not found in Eq-28, indicating that it was
irrelevant (boldfaced in Eq-27). However, despite the increased complexity, this inde-
pendent technique showed that the set of genes suggested by the data mining pipeline
has an important classification power.
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6 Conclusions

Good results were obtained with the proposed high throughput pipeline based on the
combination of clustering and rough sets techniques for the discovery of relevant at-
tributes in high dimensional data. The use of several clustering and rough set analysis
techniques, and their combination as a virtual data mining machine implemented in
a grid and high throughput computing environment, proved to be a promising way to
address complex knowledge discovery tasks. In particular, the introduction of a fast at-
tribute reduction procedure aided rough set reduct discovery in terms of computational
time, of which the former is further improvable via its amenability for parallel and
distributed computing. Cross-validated experiments using three different sets of gene
expression data demonstrate the possibilities of the proposed approach. With the hybrid
methodology presented, in all cases it was possible to find subsets of attributes of size
much smaller than the original set, retaining a high classification accuracy.

The pre- and post-processing stages of visual data mining using multidimensional
space mappings and genetic programming techniques like gene expression program-
ming (in combination with computer algebra systems), are effective elements within
the data processing strategy proposed. The analytic functional models obtained for
evaluating class memberships and ultimately for classification via gene expression pro-
gramming, allowed a better understanding of the role of the different attributes in the
classification process, as well as an explicit explanation of their influence.

More thorough studies are required to correctly evaluate the impact of the experimen-
tal settings on the data mining effectiveness, and further experiments with this approach
are necessary.
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Extended Abstract

Data Mining, as defined in 1996 by Piatetsky-Shapiro ([1]) is a step (crucial, but
a step nevertheless) in a KDD (Knowledge Discovery in Data Bases) process.
The Piatetsky-Shapiro’s definition states that the KDD process consists of the
following steps: developing an understanding of the application domain, creating
a target data set, choosing the data mining task i.e. deciding whether the goal
of the KDD process is classification, regression, clustering, etc..., choosing the
data mining algorithm(s), data preprocessing, data mining (DM), interpreting
mined patterns, deciding if a re-iteration is needed, and consolidating discovered
knowledge.

Since then the Data Mining (DM) term has evolved to become a name for
all of the KDD process, or some parts of it, or even to be used as a name of an
application of a data mining (or learning) algorithm.

For example, in 1997 a Cross-Industry Standard Process for Data Mining
(CRISP-DM) was proposed ([5]) to establish a standard for what they called,
and others adopted, a data mining process. CRISP-DM standard was developed
for business purposes and it included all of KDD process steps plus some extra
steps such as a business understanding, business goal understanding followed by
the KDD standard steps. Hence the KDD process became Data Mining process
for industrial applications and was and is more and more often called just by
the name of Data Mining.

To clarify these naming confusions we follow the standard terminology devel-
oped by data mining researches in which we understand by Data Mining (DM) a
KDD process in which its original data mining phase is now called data mining
proper phase. For short we say that

Data Mining (DM) is a process that includes between the others the following
phases: creating the target data, data preprocessing, data mining proper, pattern
evaluation, and knowledge presentation.

We present here formal models DP and DMP for two essential phases of
the Data Mining: preprocessing and data mining proper. They are defined in
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such a way that put together they form a Process Model PM for the sequence of
preprocessing and data mining proper processes, and hence for the most essential
part of the KDD (Data Mining) process.

The main components of our models are: a Data Mining System DMS and
preprocessing and data mining proper operators that form together a set of all
process operators of our PM model.

The process operators reflect some ideas presented in [6] and [7], where some
operators, called generalization operators were defined. The generalization op-
erators were very abstract in nature and their definitions reflected the author’s
efforts to find a formal model for Data Mining viewed as the process of in-
formation generalization. The process operators defined here do not address the
generalization issue and are specifically defined, one by one, and in a great detail
in an effort to cover all known preprocessing and data mining proper techniques.
We discuss the relationship of our new operators and the generalization operators
of [6], [7] in the last section of the paper.

The Data Mining System DMS is a crucial component of all of our models
and is defined as an extension of Pawlak’s Information System ( [3]).

Following the Rough Set tradition stated in the statement: knowledge is an
ability to classify objects ( [3], [4]) we observe that this is what not only Rough
Sets algorithms do, but it is (as it should be) a common property of all of data
mining algorithms, methods, models. We hence model here the data mining
proper process as a process of grouping objects (records) into sets of objects. To
be able to do so we need to define an extension of the notion of the information
system where the information function acts on the sets of objects. We call such
function, in the definition 1 of our data mining system DMS a a knowledge
function. The name reflects the fact we are modelling data mining process as a
transformation of an information (set of records as described by the information
function) into a higher level knowledge. This knowledge obtained in the process
(by algorithms, methods, models) comes in two forms: semantic and syntactic.
The syntactic knowledge is always defined in terms of attributes and values of
attributes of the initial data table, i.e. initial information system. It has different
forms, depending on the goal of the data mining process and methods used. While
modelling the semantic knowledge, i.e. the grouping objects (records) into sets
of objects we want to model as well its syntactic descriptions. We want, at the
end of the process be able to characterize these groups of sets (semantics) in
terms of attributes and values of attributes of the initial data base (syntax) and
moreover, do do so, as it often happens in terms of some accuracy parameters.
Our extension of the notion of the information system accommodates all these
demands and is defined formally as follows.

Definition 1. A Data Mining System DMS based on I = (U, A, VA, f)
is a system

KI = (P(U), A, E, VA, VE , g)

where:

E is a finite set of knowledge attributes (k-attributes) such that A ∩ E = ∅;
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VE is a finite set of values of k- attributes;
g is a partial function called a knowledge function (k-function)

g : P(U) × (A ∪ E) −→ (VA ∪ VE)

such that:
(i) g | (

⋃
x∈U{x} × A) = f ;

(ii) ∀S ∈ P(U), ∀a ∈ A ((S, a) ∈ dom(g) ⇒ g(S, a) ∈ VA);
(iii) ∀S ∈ P(U), ∀e ∈ E ((S, e) ∈ dom(g) ⇒ g(S, e) ∈ VE);

The models presented here generalize many ideas developed during years of
investigations. First they appeared as a part of development of Rough Sets The-
ory (to include only few recent publications) [3], [10], [11], [2]; then in building
Rough Sets inspired foundations of information generalization and Foundations
of Data Mining in [6], [7], [9], [8].
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Abstract. This work focuses on lattice-theoretical foundations of rough
set theory. It consist of the following sections: 1: Introduction 2: Basic
Notions and Notation, 3: Orders and Lattices, 4: Distributive, Boolean,
and Stone Lattices, 5: Closure Systems and Topologies, 6: Fixpoints and
Closure Operators on Ordered Sets, 7: Galois Connections and Their
Fixpoints, 8: Information Systems, 9: Rough Set Approximations, and
10: Lattices of Rough Sets. At the end of each section, brief bibliographic
remarks are presented.

1 Introduction

The present work is written for readers interested in the lattice-theoretical back-
ground of rough sets. It contains the necessary part of lattice theory and shows
how to formulate in an elegant way various concepts and facts about rough sets
and Pawlak’s information systems. Prerequisites are minimal and the work is
self-contained.

Rough set theory consists of two key notions which both are introduced by
Zdzis�law Pawlak: rough set approximations and information systems. Rough set
approximations are defined by means of indiscernibility relations which are equiv-
alences interpreted so that two objects are equivalent if we cannot distinguish
them by using our information. This means that our ability to discern objects
is limited – we cannot observe individual objects, only their equivalence classes.
Since we perceive just blocks of objects, three kinds of situations will occur: an
equivalence class may be included in a given set, it may intersect with the set,
or it can entirely lie outside the set in question. A consequence of this is that
characteristic functions of sets become three-valued – the third value represents
the possibility of belonging to a set. In an information system an indiscernibility
relation arises naturally when one considers a given set of attributes: two objects
are equivalent when their values of all attributes in the set are the same.

Lattices are relatively simple structures since the basic concepts of the the-
ory include only orders, least upper bounds, and greatest lower bounds. Lattice
theory has turned to be very useful in dealing with different structures in the-
oretical computer science. In this work particularly Galois connections are in a
central role. They are pairs of maps which enable us to move back and forth
between two ordered sets. Galois connections tie different structures firmly and
when a Galois connection is found between two structures, we immediately know
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that they have much in common. We will find out that the pair of upper and
lower approximation mappings forms a Galois connection and several proper-
ties of rough approximations follow from this observation. It is also interesting
to notice that in information systems the map attaching to each attribute set
its indiscernibility relation has an adjoint and therefore it determines a Galois
connection. We will show how Galois connections between complete lattices de-
fine dependency relations and this lets us to obtain the essential properties of
dependencies easily. In particular, fixpoints of Galois connections are important
because definable sets may be viewed as fixed points of the rough approximation
mappings.

Section 2 presents the elemental notions and facts of sets, relations, and func-
tions. In Section 3, the fundamental theory of lattices is developed. Section 4
is devoted to distributive, Boolean, and Stone lattices. It will turn out that
topologies have an important role in the study of definable sets, and in Sec-
tion 5 we deal with closure operators and topological spaces. In Section 6 we
study closure operators in a more general setting of ordered sets. Since fixpoints
of functions are closely related to closure operators, basic facts about fixpoints
are presented here. Fixpoints of Galois connections deserve a special attention
and the seventh section considers them. Section 8 begins with introducing Arm-
strong systems which are closed sets of dependencies and we show how Galois
connections induce Armstrong systems. Pawlak’s model for information systems
is presented here and we examine in information systems their Galois connec-
tions, dependencies, and attribute reduction. Section 9 is devoted to rough set
approximations and definable sets. The section begins with approximations de-
termined by equivalences, but also approximations of other types of relations are
studied. In the final section we investigate the lattice structures of the ordered
set of all rough sets determined by different kinds of indiscernibility relations.

2 Basic Notions and Notation

In this section we consider the following preliminary subjects:

2.1 Sets
2.2 Relations
2.3 Functions

2.1 Sets

A set can be viewed as a collection of distinguishable objects, called its members
or elements . If an object x is a member of a set A, we write x ∈ A; the notation
x /∈ A denotes that x is not in A. The set which has no elements is called the
empty set and is denoted by ∅.

If there are n distinct elements in a set A, where n ∈ N = {0, 1, 2, 3, . . .}, we
say that A is a finite set . The number n is the cardinality of A and it is denoted
by |A|. When |A| = n it is often convenient to put A = {a1, . . . , an}. A set is
infinite if it is not finite.
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Two sets A and B are equal , denoted by A = B, if they contain the same
elements. A set A is said to be a subset of B if every element of A is also an
element of B. We write A ⊆ B to indicate that A is a subset of B. A set A is a
proper subset of B if A ⊆ B, but A �= B; this is denoted by A ⊂ B.

We can form new sets from existing ones by applying the following set opera-
tions . The intersection of A and B is A∩B = {x | x ∈ A and x ∈ B}, the union
of A and B is A∪B = {x | x ∈ A or x ∈ B}, and the set-theoretical difference of
A and B (or relative complement of B in A) is A − B = {x | x ∈ A and x /∈ B}.
Given a universe U , we define the complement of A ⊆ U as Ac = U − A. The
set of all subsets of A is denoted by ℘(A) and is called the power set of A.

A set of which elements are sets is called a family of sets. For a family of
sets F , we may define its union and intersection by generalizing the notions of
the union and the intersection of two sets. The intersection of F is

⋂
F = {x |

x ∈ A for all A ∈ F} and the union of F is
⋃

F = {x | x ∈ A for some A ∈ F}.
It is usually assumed that we consider subsets of some given universe U , and

in such a case it is natural to define
⋂

∅ = U and
⋃

∅ = ∅. The equality
⋂

∅ = U
can be interpreted so that every element of U belongs to all sets in ∅ because the
empty family ∅ contains no sets. The equality

⋃
∅ = ∅ is more obvious since ∅

has no elements. An indexed family of sets is F = {Ai | i ∈ I}, where I is a set,
referred to as the index set . Note that we may also denote the indexed family of
sets F simply by {Ai}i∈I .

In our first proposition, we present some essential properties of set operations.

Proposition 1. Let A, B, C be subsets of a universe U .

(a) A ∪ A = A ∩ A = A;
(b) A ∪ B = B ∪ A and A ∩ B = B ∩ A;
(c) A ∪ (B ∪ C) = (A ∪ B) ∪ C and A ∩ (B ∩ C) = (A ∩ B) ∩ C;
(d) A ∪ (A ∩ B) = A and A ∩ (A ∪ B) = A;
(e) A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) and A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C);
(f) A ∪ Ac = U and A ∩ Ac = ∅;
(g) (A ∪ B)c = Ac ∩ Bc and (A ∩ B)c = Ac ∪ Bc;
(h) A ∪ B = B ⇐⇒ A ⊆ B ⇐⇒ A ∩ B = A;
(i) A ⊆ B ⇐⇒ Bc ⊆ Ac.

Proof. We prove the first part of (e) as an example. Now, x ∈ A ∪ (B ∩ C) ⇐⇒
x ∈ A or x ∈ (B ∩ C) ⇐⇒ x ∈ A or (x ∈ B and x ∈ C) ⇐⇒ (x ∈ A or x ∈
B) and (x ∈ A or x ∈ C) ⇐⇒ x ∈ (A ∪ B) and x ∈ (A ∪ C) ⇐⇒ x ∈
(A ∪ B) ∩ (A ∪ C). ��

2.2 Relations

An ordered pair of elements a and b is a pair (a, b) arranged in a fixed order. For
two sets A and B, the Cartesian product A×B of A and B is the set of all ordered
pairs (a, b), where a ∈ A and b ∈ B, that is, A×B = {(a, b) | a ∈ A and b ∈ B}.

A binary relation R from A to B is a subset of A×B. If R is a binary relation
from A to B, then an element a ∈ A is said to be related to b ∈ B, when
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(a, b) ∈ R. We often write a R b for (a, b) ∈ R. For any binary relation R, we
denote by R−1 = {(b, a) | a R b} the inverse relation of R. A binary relation on
A is a relation from A to A. We denote by Rel(A) the set of all binary relations
on A.

Example 2. Binary relations on a set can be represented by diagrams such that
the elements of the set are represented with circles, and if an element x is related
to an element y, there is an arrow from the circle representing x to the circle
representing y.

For example, if A = {a, b, c, d} and a binary relation R on A consists of the
pairs (a, a), (a, b), (a, c), (b, d), (c, b), (c, d), and (d, c), then R can be repre-
sented by Fig 1. Clearly, we obtain the diagram of the inverse relation simply
by reversing the arrows.

a

c d

b

Fig. 1.

If R and S are binary relations from A to B, we can form new relations R ∪ S,
R ∩ S, R − S, and Rc by the usual set-theoretical operations. Further, if R is
a relation from A to B and S is a relation from B to C, then the composition
R ◦ S is the relation from A to C defined by (x, z) ∈ R ◦ S if and only if there
exists y ∈ B such that (x, y) ∈ R and (y, z) ∈ S.

In the following we introduce some properties of binary relations. Let R be a
binary relation on a set A. The relation R is

(a) connected , if for all x ∈ A, there exists y ∈ A such that xR y;
(b) reflexive, if xR x for all x ∈ A;
(c) symmetric, if xR y implies y R x for all x, y ∈ A;
(d) antisymmetric, if xRy and y R x imply x = y for all x, y ∈ A;
(e) transitive, if xR y and y R z imply xR z for all x, y, z ∈ A.

Note that every reflexive relation is connected, and that a relation R is antisym-
metric if and only if (x, y) ∈ R and x �= y imply (y, x) /∈ R for all x, y ∈ A.

If a relation is reflexive and symmetric, it is called a tolerance relation, and
if a relation is reflexive and transitive, it is called a preorder (or a quasi-order).
A relation which is both a tolerance and a preorder is an equivalence relation.
Notice that if a relation is connected, symmetric, and transitive, it is necessarily
an equivalence.
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Two elements that are related by an equivalence relation E are said to be
equivalent . The set of all elements that are related to an element x ∈ A is called
the equivalence class of x and is denoted by [x]E = {y ∈ A | xE y}. The quotient
set of A modulo E is the family of the equivalence classes A/E = { [x]E | x ∈ A}.

Two sets are called disjoint if their intersection equals the empty set. A par-
tition Π of a set A is a family of nonempty subsets of A such that each element
of A belongs to one, and only one, set of Π . It is thus obvious that the sets of a
partition are disjoint.

Proposition 3. The equivalence classes of an equivalence relation E on a set
A forms a partition A/E of A, and for any partition Π of A, there exists an
equivalence relation on A of which quotient set is Π.

Proof. First we will show that A/E is a partition. Because E is reflexive, a ∈
[a]E , and so the equivalence classes are nonempty and each element belongs to at
least one equivalence class. We have to show that equivalence classes are disjoint.
If equivalence classes [a]E and [b]E have a common element c, then a E c and
b E c, imply a E b by symmetry and transitivity. This gives [a]E = [b]E and thus
each element can belong to only one equivalence class.

Let us define for a partition Π an equivalence E such that a E b if and only
if there exists a set X in Π such that a, b ∈ X . The relation E is reflexive, since
each element belongs to one set of Π . The relation E is also symmetric, because
a E b means that a and b are in the same set, and hence b E a. The transitivity
holds, because if a E b and b E c, then a, b, and c are necessarily in the same
set, and thus a E c holds. Clearly, the equivalence classes of E consist of the sets
in Π . ��

Example 4. For representing equivalences by diagrams, we may agree on two
simplifications. Since equivalences are reflexive, there should be an arrow from
each circle to the circle itself. Such loops can be omitted. Furthermore, if there
is an arrow from x to y, there must be also an arrow from y to x by symmetry.
Therefore, the situation that x and y are equivalent can be represented just by
a line connecting x and y.

ba c

d f

hg i

e

Fig. 2.

Let us consider the equivalence depicted in Fig. 2. The corresponding partition
consists of the equivalence classes {a, b, d}, {c, e}, {f, i}, and {g, h}.
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2.3 Functions

A function f from a set A to a set B, denoted by f : A → B, is a relation
from A to B such that for each a ∈ A, there exists exactly one b ∈ B with
(a, b) ∈ f , in which case we write f(a) = b or f : a �→ b. The terms map and
mapping are often used instead of function. The set of all functions from A
to B is denoted by BA. For a function f : A → B, we write for all S ⊆ A,
f(S) = {f(x) | x ∈ S}. The set f(A) is called the range of f . The preimage set
of Y ⊆ B is f−1(Y ) = {x ∈ A | f(x) ∈ Y }.

The map f : A → B is injective (or one-to-one) if f(a1) = f(a2) implies
a1 = a2, and f is surjective (or onto) if for every b ∈ B, there exists an element
a ∈ A with f(a) = b; that is, f(A) = B. Furthermore, f is bijective if it is both
injective and surjective. A map f from a set A to the same set A is called a
self-map. A self-map f : A → A is idempotent if f(f(a)) = f(a) for all a ∈ A.

For two maps f : A → B and g: B → C, let g ◦ f : A → C be the map defined
by (g ◦ f)(a) = g(f(a)). The map g ◦ f is called the composition (or product) of
f and g. The map 1A: A → A, a �→ a, is called the identity map of A. A map
g: B → A is the inverse map of f : A → B if g ◦ f = 1A and f ◦ g = 1B.

Lemma 5. A function f : A → B has an inverse map if and only if f is a
bijection.

Proof. If f : A → B is a bijection, then for each y ∈ B there exists exactly one
x ∈ A such that f(x) = y. The rule g(y) = x defines a function B → A which is
the inverse of f .

Conversely, suppose that f has the inverse f−1. Given y ∈ B, we know that
f(f−1(y)) = y, and by setting x = f−1(y) we obtain f(x) = y. Thus, f is a
surjection. If f(x) = f(y), then x = f−1(f(x)) = f−1(f(y)) = y, that is, f is
injective. ��

The inverse of a bijection f is denoted by f−1. It is clear that if functions are
considered as relations, f−1 is the inverse relation of f . Note that for any function
f : A → B we can form the preimage set f−1(Y ) of every Y ⊆ B even though f
is not a bijection.

Example 6. Let us consider Fig. 3.

(iv)(iii)(i) (ii)

Fig. 3.
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The relation in part (i) is not a function because one element is related to
two elements and there is also an element which is not related to anyone. The
mapping (ii) is not an injection, because two elements have the same image.
The map in (iii) is not a surjection since there exists an element which is not an
image. The function in part (iv) is a bijection.

Notice that for a bijection, we can get the diagram of its inverse just by
reversing the arrows.

Bibliographical Notes

Basic notions and notation concerning sets, relations and functions can be found
in almost any elementary mathematical textbook. For instance, the books [5,16]
provide introductions to discrete mathematics.

3 Orders and Lattices

This section consists of the following two subsections:

3.1 Orders
3.2 Lattices and Complete Lattices

3.1 Orders

Let P be a set. An order ≤ on P is a reflexive, antisymmetric, and transitive
binary relation, that is, for all a, b, c ∈ P ,

(a) a ≤ a,
(b) a ≤ b and b ≤ a imply a = b, and
(c) a ≤ b and b ≤ c imply a ≤ c.

An ordered set (P, ≤) consists of a nonempty set P and an order ≤ on P .
The relation ≤ is read as usual: ‘is less than or equal to’. Many authors use

the term partially ordered set – and even the shorthand poset – for an ordered
set. We denote by ≥ the inverse relation of ≤. Usually we say simply that ‘P
is an ordered set’. Where it is necessary to specify the order relation, we write
(P, ≤). An order ≤ gives rise to relation < of strict order : a < b if and only if
a ≤ b and a �= b.

Let P be an ordered set and let a, b ∈ P . We say that a is covered by b (or
b covers a) and write a −< b, if a < b and there is no element c in P with
a < c < b.

Every finite ordered set (P, ≤) can be represented by a Hasse diagram that is
determined by the covering relation. As before, the elements of P are represented
with circles, and the circles representing two elements a and b are connected by
a straight line if a −< b or b −< a. Moreover, if a is covered by b, the circle
representing a is lower than the circle representing b. It is also clear that the
Hasse diagram of a finite ordered set determines uniquely the partial ordering:
a ≤ b if and only if a = b or the circle representing b can be reached from the
circle representing a by moving upward along the lines.
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Example 7. For any set A, the pair (℘(A), ⊆) is an ordered set. For A = {a, b, c},
the ordered set (℘(A), ⊆) is depicted in Fig. 4.

A

{a, b} {a, c} {b, c}

∅

{b} {c}{a}

Fig. 4.

Next we consider some structure-preserving mappings. Let P and Q be two
ordered sets. A map f : P → Q is

(a) order-preserving, if a ≤ b in P implies f(a) ≤ f(b) in Q;
(b) order-reversing, if a ≤ b in P implies f(a) ≥ f(b) in Q;
(c) an order-embedding, if a ≤ b in P is equivalent to f(a) ≤ f(b) in Q;
(d) an order-isomorphism between P and Q if f is an order-embedding onto Q.

When there exists an order-isomorphism between P and Q, we say that P
and Q are order-isomorphic and write P ∼= Q. Notice that an order-embedding
is always an injection, and that two finite ordered sets are order-isomorphic if
and only if they can be represented by a same Hasse diagram.

Example 8. Let us consider Fig 5.

(i) (ii)

Fig. 5.
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The mapping in (i) is a bijective order-preserving map, but it is not an embed-
ding. The ordered set of part (ii) is order-isomorphic to the powerset in Fig. 4.

For an ordered set P , we can form a new ordered set P op by defining x ≤ y
to hold in P op if and only if y ≤ x holds in P . The ordered set P op is called
the dual (or the opposite) of P . The Hasse diagram of the dual P op of a poset
P is obtained from that of P by turning the Hasse diagram of P upside down.
Trivially, P = (P op)op.

If two ordered sets P and Q satisfy P ∼= Qop, we say that P and Q are
dually order-isomorphic. Many ordered sets are dually order-isomorphic with
themselves, that is, P ∼= P op. In such a case we say that P is a self-dual .

Example 9. Let A be a set. Then the ordered set (℘(A), ⊆) is a self-dual. The
map φ: X �→ Xc is onto ℘(A), because φ(Xc) = (Xc)c = X for all X ⊆ A,
and φ is an order-embedding since by Proposition 1, X ⊆ Y if and only if
φ(Y ) = Y c ⊆ Xc = φ(X).

If Φ is a statement about ordered sets, we get its dual statement Φop by replacing
every occurrence of ≤ by ≥ and vice versa. We may now present the following
‘meta-theorem’, which in many cases can save a lot of work. Its proof is obvious,
because if a statement Φ is true for an ordered set P , the dual statement Φop is
true for P op.

Duality Principle. If a statement Φ is true in all ordered sets, then its dual
Φop is also true in all ordered sets.

Let P be an ordered set and let S ⊆ P . Then x ∈ S is a maximal element of S,
if x ≤ a ∈ S implies a = x. Further, x ∈ S is the greatest element of S, if x ≥ a
for all a ∈ S. A minimal element of S and the least element of S are defined
dually. Notice that if S has a greatest element, it is unique by the antisymmetry
of ≤. Similarly, the least element of S is unique.

The greatest element of P , if such exists, is called the top element of P and
it is denoted by �. Similarly, the least element of P , if it exists, is called the
bottom element and is denoted by ⊥. For example, the set N does not have a
greatest element.

Lemma 10. Any finite nonempty subset of an ordered set has maximal and
minimal elements.

Proof. Suppose that S = {x1, x2, . . . , xn}. Let us define elements m1, m2, . . . , mn

inductively in such a way that m1 = x1 and

mk =
{

xk if xk < mk−1

mk−1 otherwise.

Then mn will be minimal in S. Similarly, S has a maximal element. ��
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3.2 Lattices and Complete Lattices

Let P be an ordered set and let S ⊆ P . An element x ∈ P is an upper bound of
S if a ≤ x for all a ∈ S. A lower bound of S is defined dually. If there is a least
element in the set of all upper bounds of S, it is called the supremum of S and
is denoted by sup S or

∨
S; dually a greatest lower bound is called infimum and

written inf S or
∧

S. We also write a ∨ b for sup{a, b} and a ∧ b for inf{a, b}.
Supremum and infimum are frequently called join and meet .

It is sometimes necessary to indicate that a join or a meet is being found in a
certain ordered set P . In such cases we write

∨
P S or

∧
P S. If I is an index set

and S = {xi | i ∈ I} is a subset of P , instead of
∨

S we also write
∨

i∈I xi and
in place of

∧
S we write

∧
i∈I xi.

It is clear that if S = ∅, then P is the set of upper bounds of S. This means
that

∨
∅ exists in P if and only if P has a least element ⊥, and then

∨
∅ = ⊥.

By duality,
∧

∅ = � whenever P has a greatest element �. Furthermore, if P
has a greatest element �, then the set of upper bounds of P is {�}, and thus∨

P = �. By duality,
∧

P = ⊥ whenever P has a least element ⊥. It is also
obvious that if P has a greatest element �, then x ∨ � = � and x ∧ � = x for
all x ∈ P . Similarly, if P has a least element ⊥, then for all x ∈ P , x ∨ ⊥ = x
and x ∧ ⊥ = ⊥.

Example 11. Let us consider the ordered set of Fig. 6. The pair of elements
marked with filled circles does not have a supremum. These elements have two
mutual minimal upper bounds, but not a least one.

Fig. 6.

In the next lemma is given some simple but useful properties of joins and meets.

Lemma 12. Let P be an ordered set and assume that S and T are subsets of P
such that their joins and meets in P exist.

(a) If a ∈ S, then
∧

S ≤ a ≤
∨

S.
(b) If x ∈ P , then x ≤

∧
S if and only if x ≤ a for all a ∈ S.

(c) If x ∈ P , then x ≥
∨

S if and only if x ≥ a for all a ∈ S.
(d) If S ⊆ T , then

∨
S ≤

∨
T and

∧
S ≥

∧
T .
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Proof. Claim (a) is obvious by the definition of
∨

S and
∧

S.
(b) If x ≤

∧
S, then x ≤

∧
S ≤ a for all a ∈ S. If x ≤ a for all a ∈ S, then

x is a lower bound of S, which yields x ≤
∧

S. Claim (c) can be proved in a
similar way.

(d) If S ⊆ T , then b ≤
∨

T for all b ∈ T . Because S ⊆ T , a ≤
∨

T holds also
for all a ∈ S. This implies

∨
S ≤

∨
T . The other part can be proved dually. ��

Let P be a nonempty ordered set. If x∨y and x∧y exist for all x, y ∈ P , then P
is called a lattice. If

∨
S and

∧
S exist for all S ⊆ P , then P is called a complete

lattice. By the Duality Principle, if L is a lattice or a complete lattice, so is its
dual Lop in which joins and meets determined in L are mutually interchanged.

Lemma 13. Every finite lattice is complete.

Proof. As will be shown in the proof of Proposition 19, it is possible to write∨
{a, b, c} = a ∨ b ∨ c without parenthesis. If ∅ �= S = {a1, a2, . . . , an}, then by

simple induction
∨

S = a1 ∨a2 ∨· · ·∨an, and by duality
∧

S = a1 ∧a2 ∧· · ·∧an.
��

In many cases, the following theorem makes it much easier to show that certain
ordered set is a complete lattice.

Theorem 14. If P is an ordered set such that
∧

S exists for all S ⊆ P , then
P is a complete lattice in which∨

S =
∧

{x ∈ P | (∀a ∈ S) a ≤ x}.

Proof. Any element of S is a lower bound of {x ∈ P | (∀a ∈ S) a ≤ x} and thus∧
{x ∈ P | (∀a ∈ S) a ≤ x} is an upper bound of S. If z is an upper bound of S,

then necessarily
∧

{x ∈ P | (∀a ∈ S) a ≤ x} ≤ z. ��

Example 15. (a) An ordered set P is a chain if, for all x, y ∈ P , either x ≤ y
or y ≤ x. Every chain is a lattice in which a ∨ b = min {a, b} and a ∧ b =
max {a, b}, that is, the minimum and maximum of a and b, respectively.
In particular, the set of natural numbers N is a chain and a lattice under
its usual order. Note that N is not a complete lattice since it lacks a top
element.

(b) Let A be a set. Then (℘(A), ⊆) is a lattice such that X ∨ Y = X ∪ Y for all
X, Y ⊆ A. Trivially, X, Y ⊆ X ∪ Y and if Z is an upper bound of X and Y ,
then X ∪ Y ⊆ Z. Similarly, we can show that X ∧ Y = X ∩ Y .

(c) For any set A, the ordered set (℘(A), ⊆) is also a complete lattice in which∨
H =

⋃
H and

∧
H =

⋂
H for any H ⊆ ℘(A).

(d) Let ∅ �= L ⊆ ℘(A). Then L is a ring of sets if it is closed under finite unions
and intersections, and a complete ring of sets if it is closed under arbitrary
unions and intersections. If L is a ring of sets, then (L, ⊆) is a lattice such
that A∨B = A∪B and A∧B = A∩B. Similarly, if L is a complete ring of
sets, then (L, ⊆) is a complete lattice with join given by set union and meet
given by set intersection.
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Let x be an element of and ordered set P . The set

(x] = {a ∈ P | a ≤ x}

is called the principal ideal of x and

[x) = {a ∈ P | a ≥ x}

is called the principal filter of x. If P is a complete lattice, also (x] and [x) are
complete lattices.

In the following lemma we will show that each ordered set can be embedded
into a complete ring of sets. In general, for any set P and a complete lattice L,
we say that L is a completion of P , if P can be embedded into L. Let P be an
ordered set and Q ⊆ P . Then Q is a down-set if for all x ∈ Q and y ∈ P , x ≥ y
implies y ∈ Q. The family of all down-sets is denoted by O(P ).

Lemma 16. Let P be an ordered set.

(a) O(P ) is a complete ring of sets.
(b) P can be embedded into O(P ).

Proof. (a) Suppose H is a subfamily of O(P ). If x ∈
⋂

H and x ≥ y, then y ∈ X
for all X ∈ H because each X is a down-set. Hence, y ∈

⋂
H and

⋂
H ∈ O(P ).

That
⋃

H is in O(P ) can be shown in a similar way.
(b) We show that x �→ (x] is an order-embedding. Clearly, (x] is a down-set. If

x ≤ y, then a ∈ (x] implies a ≤ x ≤ y and a ∈ (y], that is, (x] ⊆ (y]. Conversely,
if (x] ⊆ (y], then x ≤ x implies x ∈ (y], that is, x ≤ y. ��

Example 17. In Fig. 7 is depicted the order-embedding x �→ (x] from P to O(P ).

The next lemma presents connections between the order ≤ and the ‘operations’
∨ and ∧.

Lemma 18. If L is a lattice and a, b, x ∈ L, then

(a) a ≤ b if and only if a ∧ b = a if and only if a ∨ b = b;
(b) a ≤ b implies a ∨ x ≤ b ∨ x and a ∧ x ≤ b ∧ x.

Proof. (a) If a ≤ b, then a is a lower bound of a and b. If z is a lower bound of
a and b, then trivially z ≤ a, which means that a = a ∧ b. On the other hand, if
a = a ∧ b, then a = a ∧ b ≤ b. We may prove the rest analogously.

(b) If a ≤ b, then obviously a ≤ b ≤ b∨x and x ≤ b∨x. This gives a∨x ≤ b∨x.
The other part can be proved in a similar manner. ��

Next we give some important properties of ∨ and ∧.

Proposition 19. If L is a lattice, then for all a, b, c ∈ L,

(L1) a ∨ a = a and a ∧ a = a;
(L2) a ∨ b = b ∨ a and a ∧ b = b ∧ a;
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O(P )P

c

ba
{b}

{a, b}

{a, b, c}

∅

{a}

Fig. 7.

(L3) a ∨ (b ∨ c) = (a ∨ b) ∨ c and a ∧ (b ∧ c) = (a ∧ b) ∧ c;
(L4) a ∨ (a ∧ b) = a and a ∧ (a ∨ b) = a.

Proof. Claims (L1) and (L2) are obvious properties of ∨ and ∧. For (L3) and (L4)
we prove only the first claims, the rest follows then from the Duality Principle.

(L3) We prove
∨

{a, b, c} = ((a ∨ b) ∨ c) which by (L2) is in fact enough to
prove the claim. Let d = a ∨ b and e = c ∨ d. Clearly, a ≤ d, b ≤ d, c ≤ e, and
d ≤ e. By transitivity, a, b, c ≤ e. If f is an upper bound of {a, b, c}, then a ≤ f ,
b ≤ f , and c ≤ f , which implies d = a ∨ b ≤ f and e = c ∨ d ≤ f . This gives∨

{a, b, c} = e = ((a ∨ b) ∨ c).
(L4) Since a ≤ a∨b and a∧b ≤ a, we obtain a∧(a∨b) = a and a∨(a∧b) = a.

��
Proposition 19 presents the characteristic properties of the operations ∨ and ∧
as we see in the following theorem.

Theorem 20. Let L be a non-empty set equipped with two binary operations ∨
and ∧ that satisfy (L1)–(L4) of Proposition 19. If we define ≤ on L by a ≤ b
if and only if a ∨ b = b, then (L, ≤) is a lattice in which the original operations
agree with the induced ones, that is, for all a, b ∈ L,

a ∨ b = sup {a, b} and a ∧ b = inf {a, b} .

Proof. First we show that ≤ is an order. By (L1), a ∨ a = a which gives a ≤ a
for all a ∈ L. The relation ≤ is antisymmetric since a ≤ b and b ≤ a mean that
a ∨ b = b and b ∨ a = a. This implies a = b ∨ a = a ∨ b = b by (L2). If a ≤ b and
b ≤ c, then a∨b = b and b∨c = c. Thus, a∨c = a∨(b∨c) = (a∨b)∨c = b∨c = c
by (L3), and so a ≤ c. This means that ≤ is also transitive.

Next we show that a ∨ b = sup {a, b}; the proof for meets is similar. Now,
a ≤ a ∨ b, since

a ∨ (a ∨ b) = (a ∨ a) ∨ b = a ∨ b.
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Similarly, a∨ b is an upper bound of b. Let c be an upper bound for {a, b}. Then
a ∨ c = c and b ∨ c = c. This gives

(a ∨ b) ∨ c = a ∨ (b ∨ c) = a ∨ c = c,

and thus a ∨ b = sup {a, b}. ��

Theorem 20 reveals the elegant feature letting lattices be regarded either as
ordered sets (L, ≤) or as algebras (L, ∨, ∧). We may thus say ‘let L be a lattice’
and replace L by (L, ≤) or by (L, ∨, ∧). Notice that the powerset ℘(A) of any set
A is a lattice also because the ‘powerset algebra’ (℘(A), ∪, ∩) satisfies conditions
(a)–(d) of Proposition 1.

Next we consider how we can obtain new ordered sets and lattices from given
ones. Let L and K be ordered sets. Let us order L×K coordinatewise by setting

(x1, y1) ≤ (x2, y2) ⇐⇒ x1 ≤ x2 and y1 ≤ y2.

If L and K are complete lattices, then L × K is a complete lattice such that∨
i∈I

(xi, yi) = (
∨
i∈I

xi,
∨
i∈I

yi) and
∧
i∈I

(xi, yi) = (
∧
i∈I

xi,
∧
i∈I

yi),

because clearly (
∨

i∈I xi,
∨

i∈I yi) is an upper bound of {(xi, yi) | i ∈ I}, and if
(u, v) is an upper bound of {(xi, yi) | i ∈ I}, then xi ≤ u and yi ≤ v for all i ∈ I,
which implies

∨
i∈I xi ≤ u and

∨
i∈I yi ≤ v, that is, (

∨
i∈I xi,

∨
i∈I yi) ≤ (u, v).

Similar observations hold also for meets. It is also clear that if L and K are
lattices, then L × K is a lattice.

If X is any set and P is an ordered set, we may order the set PX of all maps
from X to P by the pointwise order :

f ≤ g in PX if and only if for all x ∈ X , f(x) ≤ g(x) in P .

If L if a complete lattice, then LX is a complete lattice in which for all
{fi}i∈I ⊆ LX and x ∈ X ,

(∨
i∈I

fi

)
(x) =

∨
i∈I

fi(x) and
(∧

i∈I

fi

)
(x) =

∧
i∈I

fi(x).

This is easy to see since obviously
∨

i∈I fi is an upper bound of {fi}i∈I and if g
is an upper bound of {fi}i∈I , then for all x ∈ X , fi(x) ≤ g(x) and

∨
i∈I fi(x) ≤

g(x). The equality for meets can be shown analogously. Further, it is clear that if
L is a lattice, then LX is a lattice in which joins and meets are formed pointwise.

Let L be a lattice and ∅ �= H ⊆ L. Then H is a sublattice of L if

a, b ∈ H implies a ∨ b ∈ H and a ∧ b ∈ H .

Similarly, if L is a complete lattice and ∅ �= H ⊆ L, then H is a complete
sublattice of L if

S ⊆ H implies
∨

S ∈ H and
∧

S ∈ H .
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We may also define join-sublattices , meet-sublattices , complete join-sublattices,
and complete meet-sublattices in a similar manner.

Let P and Q be two ordered sets. A map f : P → Q is

(a) a join-morphism if whenever a, b ∈ P and a ∨ b exists in P , then f(a)∨ f(b)
exists in Q and f(a ∨ b) = f(a) ∨ f(b).

(b) a complete join-morphism if whenever S ⊆ P and
∨

S exists in P , then∨
f(S) exists in Q and f(

∨
S) =

∨
f(S).

The notions of a meet-morphism and a complete meet-morphism are defined
dually. Further, a map is called a morphism if it is a join-morphism and a
meet-morphism. Complete morphisms are defined analogously. If P and Q are
bounded, then f : P → Q is bottom-preserving if f(⊥P ) = ⊥Q, and it is top-
preserving if f(�P ) = �Q. Notice that between bounded ordered sets, any com-
plete join-morphism is bottom-preserving and every complete meet-morphism is
top-preserving.

Every order-isomorphism is a complete morphism, and every complete join-
morphism, as well as every complete meet-morphism, is order-preserving. In
case both P and Q are (complete) lattices and f is a (complete) join-morphism,
f(P ) is a (complete) join-sublattice of Q. Analogous observations hold for meet-
morphisms.

Example 21. The map f Fig. 8 is a complete morphism between L and K.

f

KL

Fig. 8.

The next lemma states that to show that two lattices are isomorphic it suffices
to find a bijective join-morphism – sometimes called a join-isomorphism – be-
tween them. This means that either the join or the meet operation completely
determines lattice’s ordering structure.
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Lemma 22. If L and K are lattices and f : L → K is a bijection, then the
following assertions are equivalent:

(a) f is an order-isomorphism;
(b) f is a join-morphism;
(c) f is a meet-morphism.

Proof. Suppose that (a) holds and let a, b ∈ L. Then f(a) ∨ f(b) ≤ f(a ∨ b),
because f is order-preserving. Assume x is an upper bound of f(a) and f(b).
Because f is a bijection, x = f(c) for some c ∈ L, and we must have a, b ≤ c.
This means a ∨ b ≤ c and f(a ∨ b) ≤ f(c) = x. Hence, f(a ∨ b) = f(a) ∨ f(b),
and (a) implies (b).

If (b) holds, then a ≤ b implies trivially f(a) ≤ f(b). On the other hand, if
f(a) ≤ f(b), then f(a ∨ b) = f(a)∨ f(b) = f(b), which gives a ∨ b = b and a ≤ b.
Thus, also (b) implies (a).

We have now shown that (a) and (b) are equivalent. The equivalence of (a)
and (c) can be proved dually. ��

We end this section by considering dense sets, which are subsets capable of
‘generating’ ordered sets and lattices. Let P be an ordered set and let S ⊆ P .
Then S is called join-dense in P if for every element a ∈ P , there exists a subset
A of S such that a =

∨
A. The dual of join-dense is meet-dense.

Lemma 23. Let L be a complete lattice. If S ⊆ L is join-dense, then for any
x ∈ L,

x =
∨

{a ∈ S | a ≤ x} .

Proof. If S is join-dense, then there exists A ⊆ S such that x =
∨

A. For
all a ∈ A, a ≤ x holds. Thus, A ⊆ {a ∈ S | a ≤ x} and hence x =

∨
A ≤∨

{a ∈ S | a ≤ x} ≤ x. ��

Let L be a lattice. An element x ∈ L is join-irreducible if

(a) x �= 0 (in case L has a least element);
(b) x = a ∨ b implies x = a or x = b for all a, b ∈ L.

A meet-irreducible element is defined dually. We denote the set of join-irreducible
elements of L by J (L) and the set of meet-irreducible elements by M(L).

In a finite lattice L, an element is clearly join-irreducible if and only if it covers
precisely one element. Dually, an element is meet-irreducible if and only if it is
covered by exactly one element. Notice also that in N, each nonzero element is
join-irreducible.

For finite lattices we can write the following lemma.

Lemma 24. Let L be a finite lattice.

(a) Suppose that x, y ∈ L and x �≤ y. Then there exists a ∈ J (L) such that
a ≤ x and a �≤ y.

(b) For all x ∈ L, x =
∨

{a ∈ J (L) | a ≤ x}.
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Proof. (a) Let x �≤ y and S = {a ∈ L | a ≤ x and a �≤ y}. Let a be a minimal
element of S. Note that S �= ∅ since x ∈ S and S is finite by assumption. This
implies by Lemma 10 that S has at least one minimal element. We claim that a
is join-irreducible. Suppose that a = b ∨ c for some b < a and c < a. Since a is
minimal in S, b /∈ S and c /∈ S. However, b ≤ x and c ≤ x imply b ≤ y and c ≤ y
because b, c /∈ S. Hence, a = b ∨ c ≤ y, a contradiction!

(b) Let x ∈ L and S = {a ∈ J (L) | a ≤ x}. Obviously, x is an upper bound
of S. Let y ∈ L be an upper bound of S and assume that x �≤ y. Then, by (a),
there exists a ∈ J (L) such that a ≤ x and a �≤ y. This gives a ∈ S, and hence
a ≤ y because y is an upper bound of S, a contradiction! Therefore, x ≤ y and
x =

∨
S. ��

The next simple proposition characterizes join-dense sets for finite lattices.

Proposition 25. Let L be a finite lattice. Then S ⊆ L is join-dense in L if and
only if J (L) ⊆ S.

Proof. By Lemma 24(b), J (L) is join-dense. Trivially, any superset S ⊆ L of
J (L) is also join-dense.

Conversely, let S ⊆ L be join-dense. Assume that a ∈ J (L). Because S is
join-dense, there exists a subset A of S such that a =

∨
A. Since A is finite and

a is join-irreducible, we must have a ∈ A ⊆ S. Thus, J (L) ⊆ S. ��

Example 26. In the lattice depicted in Fig. 9 the join-irreducible elements are
marked with filled circles. Clearly, each element of the lattice can be represented
as a join of some (or none) of marked elements.

Fig. 9.

For complete rings of sets we may present stronger results. Let L be any complete
lattice. An element x ∈ L is completely join-irreducible if for every subset S of
L, x =

∨
S implies that x ∈ S. Note that completely join-irreducible elements

must be nonzero, because 0 =
∨

∅ and 0 ∈ ∅ cannot hold. Furthermore, every
completely join-irreducible element is trivially join-irreducible.
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Let F ⊆ ℘(U) be a complete ring of sets. For any x ∈ U , we denote

NF (x) =
⋂

{X ∈ F | x ∈ X} .

Clearly, x ∈ NF (x) ∈ F for any x ∈ U .

Proposition 27. Let F ⊆ ℘(U) be a complete ring of sets.

(a) The family of completely join-irreducible elements of F is {NF(x) | x ∈ U}.
(b) The family {NF(x) | x ∈ U} is the smallest join-dense set in F .

Proof. (a) Let x ∈ U . If NF(x) =
⋃

H for some H ⊆ F , then x ∈ X for some
X ∈ H. This implies NF(x) ⊆ X . The inclusion X ⊆ NF(x) is trivial. Hence,
NF(x) = X ∈ H and NF(x) is completely join-irreducible. Assume that X ∈ F
is completely join-irreducible. It is easy to see that X =

⋃
{NF (x) | x ∈ X},

because for all x ∈ X , x ∈ NF (x) ⊆ X . Since X is completely join-irreducible,
X = NF(x) for some, or in fact, all x ∈ X .

By the proof of (a), the set {NF (x) | x ∈ U} is join-dense in F . Assume that
H is join-dense and x ∈ U . Then there exists S ⊆ H such that

⋃
S = NF (x),

which implies NF(x) ∈ S ⊆ H because NF(x) is completely join-irreducible. ��

Bibliographical Notes

Most lattice-theoretical notions and results presented in this section can be found
in [3,7,11,21]. It should be noted that completely join-irreducible elements were
originally introduced in [48] by defining that an element x is completely join-
irreducible if for every subset S of L, x ≤

∨
S implies that there exists y ∈ S

such that x ≤ y.

4 Distributive, Boolean, and Stone Lattices

As the title of the section suggests, we consider here the following topics:

4.1 Distributive Lattices
4.2 Boolean Lattices
4.3 Stone Lattices

4.1 Distributive Lattices

A nice property of unions and intersections is that they distribute over each
other. Therefore, it is natural to consider lattices for which joins and meets have
analogous properties.

A distributive lattice is a lattice L satisfying the distributive laws

(D1) (∀x, y, z ∈ L) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ y);
(D2) (∀x, y, z ∈ L) x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z).

By the above definition, the dual Lop is distributive whenever L is.
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Lemma 28. A lattice L satisfies (D1) if and only if it satisfies (D2).

Proof. Suppose that (D1) holds. Let x, y, z ∈ L and let us denote a = x ∨ y,
b = x, and c = z. Then

(x ∨ y) ∧ (x ∨ z) = a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)

and

(a ∧ b) ∨ (a ∧ c) = ((x ∨ y) ∧ x) ∨ ((x ∨ y) ∧ z)
= x ∨ ((x ∨ y) ∧ z)
= x ∨ ((x ∧ z) ∨ (y ∧ z))
= (x ∨ (x ∧ z)) ∨ (y ∧ z)
= x ∨ (y ∧ z).

Thus, (D1) implies (D2). By duality, (D2) implies (D1), too. ��

The previous lemma means that to show that a lattice is distributive, we have
to prove only (D1) or (D2). Also a ‘part’ of (D1) and (D2) is always true, as we
see in the following lemma.

Lemma 29. If L is a lattice, then for all a, b, c ∈ L,

(a) a ∧ (b ∨ c) ≥ (a ∧ b) ∨ (a ∧ c);
(b) a ∨ (b ∧ c) ≤ (a ∨ b) ∧ (a ∨ c).

Proof. (a) Since a ∧ (b ∨ c) ≥ a ∧ b and a ∧ (b ∨ c) ≥ a ∧ c by Lemma 18, we have
that a ∧ (b ∨ c) ≥ (a ∧ b) ∨ (a ∧ c). Claim (b) can be proved dually. ��

By combining Lemmas 28 and 29 it suffices to check either of the inequalities

a ∧ (b ∨ c) ≤ (a ∧ b) ∨ (a ∧ c)

or
a ∨ (b ∧ c) ≥ (a ∨ b) ∧ (a ∨ c)

to show that a lattice is distributive.

Example 30. Next we consider some examples of distributive lattices.

(a) Any ring of sets is a distributive lattice, since for all sets X , Y , and Z,
X ∩ (Y ∪Z) = (X ∩Y )∪ (X ∩Z) by Proposition 1. In particular, the lattice
(℘(A), ⊆) is distributive for every A.

(b) By Lemma 16, O(P ) is a ring of set for any ordered set P . This gives that
each ordered set can be embedded into a distributive lattice.

(c) Every chain is a distributive lattice. To verify (D1), we need only consider
the three cases: (i) x ≤ y ≤ z, (ii) y ≤ x ≤ z, and (iii) y ≤ z ≤ x. For
instance in case (ii),

x ∧ (y ∨ z) = x ∧ z = x

and
(x ∧ y) ∨ (x ∧ z) = y ∨ x = x.
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Fig. 10.

The two usually mentioned non-distributive lattices are N5 and M3, whose Hasse
diagrams are presented in Fig. 10. The lattice N5 is usually called the pentagon
and M3 is commonly referred to as the diamond .

It is easy to verify that N5 is not distributive, because

p ∨ (q ∧ r) = p ∨ 0 = p and (p ∨ q) ∧ (p ∨ r) = q ∨ 1 = q.

Similarly, M3 is not distributive, since

p ∨ (q ∧ r) = p ∨ 0 = p and (p ∨ q) ∧ (p ∨ r) = 1 ∨ 1 = 1.

We have seen that new lattices can be obtained by forming sublattices or
products of lattices, as well as taking all functions from a set to a lattice. These
constructions preserve distributivity.

Lemma 31. Let L and K be distributive lattices.

(a) Any sublattice of L is distributive.
(b) The product L × K is distributive.
(c) For any set X, LX is distributive.

Proof. Claim (a) is trivial and (b) holds because joins and meets are defined in
L × K coordinatewise. Similarly, in LX operations are defined pointwise, which
implies, for example, that

(ϕ1 ∧ (ϕ2 ∨ ϕ3))(x) = ϕ1(x) ∧ (ϕ2 ∨ ϕ3)(x)
= ϕ1(x) ∧ (ϕ2(x) ∨ ϕ3(x))
= (ϕ1(x) ∧ ϕ2(x)) ∨ (ϕ1(x) ∧ ϕ3(x))
= (ϕ1 ∧ ϕ2)(x) ∨ (ϕ1 ∧ ϕ3)(x)
= ((ϕ1 ∧ ϕ2) ∨ (ϕ1 ∧ ϕ3))(x)

for all x ∈ X . ��

By the previous lemma, if a lattice has a sublattice isomorphic to N5 or M3, it
cannot be distributive. In fact, we could also prove the converse stating that if
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a lattice does not have a sublattice isomorphic to N5 or M3, it is distributive.
However, the proof is too long to be presented here and it can be found in almost
any introductory book on lattice theory.

Example 32. By Lemma 31(c), the set of mappings nX from a X to the n-
element chain n is distributive.

4.2 Boolean Lattices

Let L be a bounded lattice with a least element 0 and a greatest element 1. For
an element a ∈ L, we say that an element b ∈ L is a complement of a if

a ∨ b = 1 and a ∧ b = 0.

If the element a has a unique complement, we denote it by a′.
If a bounded lattice is not distributive, it is possible that some elements have

several complements. For example, consider the lattices N5 and M3 of Fig. 10.

Lemma 33. In a bounded distributive lattice any element can have at most one
complement.

Proof. Let L be a bounded distributive lattice and a ∈ L. If a has complements
b1 and b2, then

b1 = b1 ∧ 1 = b1 ∧ (a ∨ b2) = (b1 ∧ a) ∨ (b1 ∧ b2) = 0 ∨ (b1 ∧ b2) = b1 ∧ b2.

This implies that b1 ≤ b2. By symmetry, b2 ≤ b1, and hence b1 = b2. ��
A lattice L is a Boolean lattice if it is distributive, bounded, and its every element
a has a unique complement a′ ∈ L. The next lemma gives some useful properties
of complements in Boolean lattices.

Lemma 34. Let B be a Boolean lattice and a, b, c ∈ B.

(a) 0′ = 1 and 1′ = 0;
(b) a′′ = a;
(c) (a ∨ b)′ = a′ ∧ b′ and (a ∧ b)′ = a′ ∨ b′;
(d) a ∧ b = 0 ⇐⇒ a ≤ b′;
(e) a ≤ b =⇒ b′ ≤ a′.

Proof. Claims (a) and (b) follow directly from the definition of complements.
(c) By the distributive laws,

(a ∨ b) ∨ (a′ ∧ b′) = ((a ∨ b) ∨ a′) ∧ ((a ∨ b) ∨ b′) = 1 ∧ 1 = 1

and
(a ∨ b) ∧ (a′ ∧ b′) = (a ∧ (a′ ∧ b′)) ∨ (b ∧ (a′ ∧ b′)) = 0 ∨ 0 = 0.

The other equality follows by duality.
(d) If a ∧ b = 0, then

a = a ∧ (b ∨ b′) = (a ∧ b) ∨ (a ∧ b′) = a ∧ b′,

that is, a ≤ b′. On the other hand, a ≤ b′ implies a ∧ b ≤ b′ ∧ b = 0.
(e) If a ≤ b, then a ∧ b′ = 0 and b′ ∧ a = 0 by (d). This gives b′ ≤ a′. ��
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Example 35. (a) By Proposition 1, the powerset ℘(A) of A forms with respect
to the inclusion relation ⊆ a Boolean lattice such that the complement of
any X ⊆ A is Xc = A − X .

(b) The lattice depicted in Fig. 11(i) is a Boolean lattice such that 0′ = 1, a′ = b,
b′ = a and 1′ = 0.

(c) Let us consider the 2-element chain 2 = {0, 1}. For any X , the distributive
lattice 2X is a complete Boolean lattice. Recall that joins and meets are
defined pointwise, and similarly the complement f ′ of a map f : X → 2 is
defined by

f ′(x) =
{

1 if f(x) = 0
0 if f(x) = 1,

that is, f ′(x) = f(x)′. If X is a finite set with n elements, 2X can be identified
with the set of all ordered n-tuples {(x1, . . . , xn) | xi ∈ 2}. The diagram of
the ordered set 23 is in Fig. 11(ii).

Lemma 36. For any set A, ℘(A) ∼= 2A.

Proof. We define for any X ⊆ A the so-called characteristic function μX : A → 2
of X by setting

μX(x) =
{

1 if x ∈ A
0 if x /∈ A.

The map ϕ: X �→ μX is clearly from ℘(A) onto 2A. Further, for all X, Y ⊆ A,

X ⊆ Y ⇐⇒ (∀a ∈ A) a ∈ X =⇒ a ∈ Y

⇐⇒ (∀a ∈ A)μX(a) = 1 =⇒ μY (a) = 1
⇐⇒ μX ≤ μY . ��

Let L be a lattice with a least element 0. Then a ∈ L is called an atom of L, if
0 −< a. The set of atoms of L is denoted by A(L). In Boolean lattices the atoms
are exactly the join-irreducible elements, as we see in the next lemma. Note that
in Fig. 11 the atoms are marked with filled circles.

(ii)(i)

(1, 0, 0)(0, 0, 1)
(0, 1, 0)

(0, 1, 1) (1, 1, 0)
(1, 0, 1)

(0, 0, 0)

(1, 1, 1)

ba

1

0

Fig. 11.
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Lemma 37. Let L be a lattice with a least element 0.

(a) Then A(L) ⊆ J (L).
(b) If L is Boolean lattice, then A(L) = J (L).

Proof. (a) Suppose that 0 −< x and x = a ∨ b with a < x and b < x. Because
0 −< x, we have a = b = 0, from which we get x = 0, a contradiction!

(b) Let L be a Boolean lattice. Assume that x ∈ J (L). If 0 ≤ y < x, then

x = x ∨ y = (x ∨ y) ∧ (y′ ∨ y) = (x ∧ y′) ∨ y.

Because x is join-irreducible and y < x, we must have x = x ∧ y′. This implies
x ≤ y′ and thus y = x ∧ y ≤ y′ ∧ y = 0. So, x is an atom and J (L) ⊆ A(L). ��

The lattice L is atomic if every element x of L is the supremum of the atoms
below it, that is, x =

∨
{a ∈ A(L) | a ≤ x}. If L is an atomic lattice, then

for all x �= 0, there exists an atom a ∈ A(L) such that a ≤ x. Namely, if
{a ∈ A(L) | a ≤ x} = ∅, then x =

∨
{a ∈ A(L) | a ≤ x} =

∨
∅ = 0.

Lemma 38. Any finite Boolean lattice is atomic.

Proof. By Lemma 37, A(B) = J (B) for a Boolean lattice B. Since B is finite,

x =
∨

{a ∈ J (B) | a ≤ x} =
∨

{a ∈ A(B) | a ≤ x}

for all x ∈ B by Lemma 24(b). ��

Example 39. (a) For any set U , ℘(U) is a complete atomic Boolean lattice in
which the set of atoms is {{x} | x ∈ U}.

(b) The Cartesian product ℘(U) × ℘(U) ordered with coordinatewise order is
an atomic complete Boolean lattice in which the complement of an element
(X, Y ) is (Xc, Y c) and the atoms are the pairs ({a} , ∅) and (∅, {a}).

(c) In general, if B is a complete atomic Boolean lattice, then B×B is a complete
atomic Boolean lattice, in which joins and meets are defined coordinatewise.
The lattice is distributive by Lemma 31, (0, 0) and (1, 1) are the least and
the greatest elements, and the complement of (x, y) is (x′, y′). The atoms
are the pairs (0, a) and (a, 0), where a is any atom of B.

A ring of sets F ⊆ ℘(U) is called a field of sets , if X ∈ F implies Xc ∈ F . A
complete ring of sets which is also a field of sets is called a complete field of sets .

Example 40. (a) For any set U , the power set ℘(U) of U is complete field of
sets. Furthermore, the set Rel(U) of all binary relations on U is a complete
field of sets, because Rel(U) is equal to ℘(U × U).

(b) In Example 9 we showed that (℘(U), ⊆) is self-dual. Here we note that every
complete field of sets F ⊆ ℘(U) is self-dual with respect to the set-inclusion
relation. The map φ: X �→ Xc is clearly the required dual order-isomorphism.
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Proposition 41. Every complete field of sets F ⊆ ℘(U) is a complete atomic
Boolean lattice with respect to the set-inclusion relation such that the set of atoms
is {NF (x) | x ∈ U}.
Proof. Clearly, (F , ⊆) is a complete Boolean lattice such that

∧
H =

⋂
H and∨

H =
⋃

H for all H ⊆ F , and Xc is the complement of any X ∈ F . We have
to still show that F is atomic.

We know by Proposition 27 that for each X ∈ F ,

X =
⋃

{NF(x) | x ∈ X} .

It is enough to prove that {NF(x) | x ∈ X} is the set of atoms. Let x ∈ U . Since
x ∈ NF (x), ∅ ⊂ NF (x). Assume that ∅ ⊂ X ⊆ NF(x). If x /∈ X , then x ∈ Xc

and ∅ �= X ⊆ NF(x) ⊆ Xc, a contradiction! This implies x ∈ X and NF (x) ⊆ X .
Hence, each NF(x) is an atom. It is also obvious that atoms must be of the form
NF(x), because for any X ⊆ U , x ∈ X implies NF(x) ⊆ X . ��

4.3 Pseudocomplements and Stone Lattices

Here we introduce a weaker type of complement which may exists in lattices
that are not complemented in the usual sense.

Suppose that L is a lattice with a least element 0. An element x∗ is a pseudo-
complement of x ∈ L, if x ∧ x∗ = 0 and for all a ∈ L, x ∧ a = 0 implies a ≤ x∗.
An element can have at most one pseudocomplement. A lattice is pseudocom-
plemented if each element has a pseudocomplement.

Lemma 42. If L is a pseudocomplemented lattice, then for all a, b ∈ L,

(a) a ≤ a∗∗;
(b) a ≤ b implies a∗ ≥ b∗;
(c) a∗ = a∗∗∗.

Proof. (a) By definition, a ∧ a∗ = 0 and thus a ≤ a∗∗.
(b) If a ≤ b, then a ∧ b∗ ≤ b ∧ b∗ = 0 and hence b∗ ≤ a∗.
(c) By (a) and (b), a ≤ a∗∗ and a∗ ≥ a∗∗∗. Further, a∗ ≤ a∗∗∗ by (a). ��
Example 43. (a) Every Boolean lattice is a pseudocomplemented lattice in

which the pseudocomplements are the usual complements.
(b) Every finite distributive lattice L is pseudocomplemented. Obviously, L is

bounded. Let us define for any x ∈ L,

x∗ =
∨

{y ∈ L | x ∧ y = 0} .

Let {y ∈ L | x ∧ y = 0} = {y1, y2, . . . , yn}. Then

x ∧ x∗ = x ∧ (y1 ∨ y2 ∨ · · · ∨ yn)
= (x ∧ y1) ∨ (x ∧ y2) ∨ · · · ∨ (x ∧ yn)
= 0 ∨ 0 ∨ · · · ∨ 0
= 0.

Further, if x ∧ a = 0, then a = yi for some i, which gives a ≤ x∗.
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(c) In every pseudocomplemented lattice, 0∗ = 1 and 1∗ = 0. Trivially, 0∧1 = 0.
For any a ∈ L, 0 ∧ a = 0 and a ≤ 1. If 1 ∧ a = 0, then necessary a = 0.

A bounded pseudocomplemented distributive lattice L satisfying the identity

a∗ ∨ a∗∗ = 1

is called a Stone lattice. For a Stone lattice L, the set

S(L) = {a∗ | a ∈ L}

is called the skeleton of L.

Lemma 44. Let L be a Stone lattice.

(a) a ∈ S(L) if and only if a = a∗∗.
(b) (a ∧ b)∗ = a∗ ∨ b∗ for all a, b ∈ L.

Proof. (a) If a ∈ S(L), then a = b∗ for some b ∈ L. So, a∗∗ = b∗∗∗ = b∗ = a.
Conversely, a = a∗∗ implies trivially a ∈ S(L).

(b) We show that a∗ ∨ b∗ is the pseudocomplement of a ∧ b. For all a, b ∈ L,

(a ∧ b) ∧ (a∗ ∨ b∗) = (a ∧ b ∧ a∗) ∨ (a ∧ b ∧ b∗) = 0 ∨ 0 = 0.

If (a∧b)∧x = 0, then (b∧x)∧a = 0 and b∧x ≤ a∗. Hence b∧x∧a∗∗ ≤ a∗∧a∗∗ = 0.
Thus, x ∧ a∗∗ ≤ b∗ and

x = x ∧ 1 = x ∧ (a∗ ∨ a∗∗) = (x ∧ a∗) ∨ (x ∧ a∗∗) ≤ a∗ ∨ b∗. ��

Proposition 45. If L is a Stone lattice, then the skeleton S(L) is a sublattice
of L such that 0, 1 ∈ S(L). Further, S(L) is a Boolean lattice in which the
complement of any a ∈ S(L) is a∗.

Proof. Let a, b ∈ S(L). Then by Lemma 44, a∨b = a∗∗∨b∗∗ = (a∗∧b∗)∗ ∈ S(L).
Further, a = a∗∗ ≥ (a ∧ b)∗∗ and b = b∗∗ ≥ (a ∧ b)∗∗. Hence, a ∧ b ≥ (a ∧ b)∗∗.
By Lemma 42, a ∧ b ≤ (a ∧ b)∗∗. Thus, a ∧ b ∈ S(L).

By Example 43, 0∗ = 1 and 1∗ = 0. This gives 0∗∗ = 1∗ = 0 and 1∗∗ = 0∗ = 1.
Hence, 0, 1 ∈ S(L).

Because S(L) is a sublattice of a distributive lattice, it is distributive. Let
a ∈ S(L), then

a ∨ a∗ = a∗∗ ∨ a∗ = 1 and a ∧ a∗ = 0. ��

For a Stone lattice L, let us define the set

D(L) = {a | a∗ = 0} .

The members of D(L) are called dense. Dense elements should not be confused
with join- or meet-dense subsets of ordered sets. The set D(L) is a sublattice of
L, since for all a, b ∈ D(L), (a∨b)∗ ≤ a∗∨b∗ = 0∨0 = 0 and (a∧b)∗ = a∗∨b∗ =
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0 ∨ 0 = 0. This implies that also D(L) is distributive. It is easy to see that for
any a ∈ L,

a = a∗∗ ∧ (a ∨ a∗),

a∗∗ ∈ S(L), and a ∨ a∗ ∈ D(L). This can be interpreted so that any a ∈ L can
represented in the form

a = b ∧ c,

where b ∈ S(L) and c ∈ D(L).

Lemma 46. For any complete Boolean lattice B, the set

B[2] = {(a, b) ∈ B × B | a ≤ b}

is a complete Stone lattice, in which joins and meets are given by∨
i∈I

(ai, bi) =
(∨

i∈I

ai,
∨
i∈I

bi

)
and

∧
i∈I

(ai, bi) =
(∧

i∈I

ai,
∧
i∈I

bi

)

and (a, b)∗ = (b′, b′) for all (a, b) ∈ B[2]. Further, S(B[2]) = {(a, a) | a ∈ B} ∼= B
and D(B[2]) = {(a, 1) | a ∈ B}.

Proof. Suppose {(ai, bi)}i∈I is a subset of B[2]. Then, for all i ∈ I, ai ≤ bi which
gives ai ≤

∨
i∈I bi and hence

∨
i∈I ai ≤

∨
i∈I bi. The analogous fact holds also

for meets. So, B[2] is a sublattice of B × B.
If a ≤ b, then b′ ≤ a′. Thus, (a, b) ∧ (b′, b′) = (a ∧ b′, b ∧ b′) ≤ (a ∧ a′, b ∧ b′) =

(0, 0). Further, if (a, b) ∧ (x, y) = 0 for some x ≤ y, then b ∧ y = 0 implies
x ≤ y ≤ b′, which gives (x, y) ≤ (b′, b′). Thus, (a, b)∗ = (b′, b′).

By definition,

S(B[2]) =
{
(a, b)∗ | (a, b) ∈ B[2]

}
=
{
(b′, b′) | b ∈ B

}
= {(a, a) | a ∈ B}

and

D(B[2]) =
{
(a, b) ∈ B[2] | (a, b)∗ = (0, 0)

}
=
{
(a, b) ∈ B[2] | (b′, b′) = (0, 0)

}
= {(a, 1) | a ∈ B} . ��

Example 47. (a) Let B be the 4-element Boolean lattice in Fig 11. Then B[2] =
{(0, 0), (0, a), (0, b), (0, 1), (a, a), (a, 1), (b, b), (b, 1), (1, 1)} is the Stone lattice
depicted in Fig. 12. The set S(L) is denoted by filled circles and the elements
of D(L) are boxed.

(b) Let us consider the 3-element chain 3 = {0, u, 1}. Then clearly 3 is a Stone
lattice in which 0∗ = 1, u∗ = 0, and 1∗ = 0. Further, for any set X , 3X is a
Stone lattice in which the pseudocomplement f∗ of f is defined by

f∗(x) =
{

1 if f(x) = 0
0 otherwise,

that is, f∗(x) = f(x)∗. Notice that 3X is isomorphic to the lattice in Fig. 12
for any two-element X .
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5 Closure Systems and Topologies

This section has the following subsections:

5.1 Closure Systems and Closure Operators
5.2 Topological Spaces
5.3 Alexandrov Spaces

5.1 Closure Systems and Closure Operators

A family L of subsets of a set U is said to be a closure system if L is closed
under intersections, which means that for all H ⊆ L, we have

⋂
H ∈ L. If L is a

closure system on U , then the ordered set (L, ⊆) is a complete lattice according
to Theorem 14. The meet is just set intersection, but the join not need to be the
union. Note that U =

⋂
∅ belongs to every closure system on U .

A map C: ℘(U) → ℘(U) is a closure operator on U if, for all X, Y ⊆ U , it
satisfies the conditions:

(CO1) X ⊆ C(X) (extensive)
(CO2) X ⊆ Y implies C(X) ⊆ C(Y ) (order-preserving)
(CO3) C(C(X)) = C(X) (idempotent)

A subset X of U is closed with respect to C if C(X) = X . We denote by LC the
set of C-closed subsets of U .

Lemma 48. Let C be a closure operator on U .

(a) LC = {C(X) | X ⊆ U};
(b) C(X) =

⋂
{B ∈ LC | X ⊆ B} for all X ⊆ U .
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Proof. (a) If X ∈ LC , then X = C(X), that is, X ∈ {C(X) | X ⊆ U}. Con-
versely, if Y ∈ {C(X) | X ⊆ U}, then Y = C(Z) for some Z ⊆ U which gives
C(Y ) = C(C(Z)) = C(Z) = Y , that is, Y ∈ LC .

(b) Clearly C(X) is the least element of {B ∈ LC | X ⊆ B}. ��

The following theorem revels a bijective correspondence between closure opera-
tors and closure systems.

Theorem 49. Let U be a set.

(a) If C is a closure operator on U , then the family LC of closed subsets of U is
a closure system and so it forms a complete lattice with respect to inclusion
such that for all H ⊆ L,∧

H =
⋂

H and
∨

H = C
(⋃

H
)
.

(b) If L is a closure system on U , the formula

CL(X) =
⋂

{B ∈ L | X ⊆ B}

defines a closure operator CL on U .

Proof. (a) Assume that H ⊆ LC . Then
⋂

H ⊆ C (
⋂

H) ⊆ C(X) = X for all
X ∈ H. This means that C (

⋂
H) =

⋂
H and

⋂
H ∈ LC . Hence, LC is a

complete lattice such that
∧

H =
⋂

H. By Theorem 14,∨
H =

⋂
{B ∈ L | X ⊆ B for all X ∈ H}

=
⋂

{B ∈ L |
⋃

H ⊆ B}

= C
(⋃

H
)
.

(b) It is obvious that CL is extensive. If X ⊆ Y , then {B ∈ L | X ⊆ B} ⊇
{B ∈ L | Y ⊆ B}, which implies CL(X) =

⋂
{B ∈ L | X ⊆ B} ⊆

⋂
{B ∈ L |

Y ⊆ B} = CL(Y ), that is, CL is order-preserving. By definition, CL(CL(X)) =⋂
{B ∈ L | CL(X) ⊆ B}. Since CL(X) ∈ {B ∈ L | CL(X) ⊆ B}, we have

CL(CL(X)) ⊆ CL(X). The inclusion CL(X) ⊆ CL(CL(X)) is obvious. ��

The relationship between closure systems and closure operators is bijective. The
closure operator induced by the closure system LC is C itself, and similarly the
closure system induced by the closure operator CL is L. In symbols,

C(LC) = C and L(CL) = L.

Note that if L is a closure system on U , then in the complete lattice L,
∨

H =
CL (

⋃
H) for all H ⊆ L.

In Section 3.2 we saw that every ordered set can be embedded into a complete
lattice of sets. Here we show that closure systems are important also because
each complete lattice is isomorphic to some closure system.
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Proposition 50. Every complete lattice is isomorphic to some closure system.

Proof. Let L be a complete lattice. We define a family L of subsets of L by
setting

L = { (x] | x ∈ L} .

We know by the proof of Lemma 16 that the map x �→ (x] is an order-
isomorphism between L and L. If { (x] | x ∈ S} is a subfamily of L, then for
all a ∈ L,

a ∈
⋂
x∈S

(x] ⇐⇒ (∀x ∈ S) a ≤ x ⇐⇒ a ≤
∧

S ⇐⇒ a ∈
(∧

S
]
.

Thus, L is a closure system. ��

Notice that the previous proposition implies directly that closure systems are
not necessarily distributive lattices.

In Section 9 we will consider rough set approximations which are determined
by equivalences called indiscernibility relations. Here we consider the set of all
equivalences on a set U , which is denoted by Eq(U).

Lemma 51. If H ⊆ Eq(U), then
⋂

H is an equivalence on U .

Proof. We show that
⋂

H is transitive. The rest can be proved in an analogous
way. If (x, y) ∈

⋂
H and (y, z) ∈

⋂
H, then (x, y) ∈ E and (y, z) ∈ E for every

E ∈ H. This implies (x, z) ∈ E for all E ∈ H and hence (x, z) ∈
⋂

H. ��

By the previous lemma, the family Eq(U) of all equivalences on U is a closure
system on Rel(U). The corresponding closure operator is

E : Rel(U) → Rel(U), R �→
⋂

{E ∈ Eq(U) | R ⊆ E}.

Hence, (Eq(U), ⊆) is a complete lattice in which

∧
H =

⋂
H and

∨
H = (

⋃
H)E .

Next we determine the number of equivalence relations for a finite set. We
define the number

{
n
k

}
for any n, k ≥ 1 by setting

{
n

1

}
=
{

n

n

}
= 1 and

{
n

k

}
=
{

n − 1
k − 1

}
+ k ·

{
n − 1

k

}
,

for 2 ≤ k ≤ n − 1. The numbers
{

n
k

}
are called the Stirling’s numbers of the

second kind .

Proposition 52. If A is a set with n elements, then
{

n
k

}
is the number of

partitions of the cardinality k of A.
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Proof. There is only one partition with one block, namely A itself, and the only
partition into n parts is the family of singletons {x}.

Let x ∈ A. For every partition Π of A either (i) the singleton {x} ∈ Π or (ii)
{x} /∈ Π . When the set {x} is removed from a partition of type (i), we obtain a
partition of the n − 1-element set A− {x} into k − 1 parts, and there are

{
n−1
k−1

}
of those. Conversely, if we are given such a partition, we can restore the set {x},
so that the correspondence is a bijection.

Suppose that a partition Π of type (ii) consists of the sets X1, X2, . . . , Xk. Now
this situation determines a pair (x, Πx) such that x ∈ Xi and Πx is a partition on
the n − 1-element set A − {x} with parts X1, . . . , Xi−1, Xi − {x} , Xi+1, . . . , Xk.
There are k possible values of i and

{
n−1

k

}
possible partitions Πx, so we have

k
{

n−1
k

}
such pairs. Furthermore, if we are given such a pair, we can restore x

to the set Xi, and recover Π . Hence, this correspondence is also a bijection. ��

Note that the Stirling’s numbers of the second kind can be tabulated in much
the same way as the binomial coefficients in the well-known Pascal’s triangle.
Recall that

{
n
k

}
=
{

n−1
k−1

}
+ k ·

{
n−1

k

}
.

1
1 1

1 3 1
1 7 6 1

1 15 25 10 1
1 31 90 65 15 1

1 63 301 350 140 21 1

For example, the number of the equivalences and partitions on a 5-element set
is 1 + 15 + 25 + 10 + 1 = 52.

In the next subsection we will consider topological spaces in which closure
and interior operators have a major role. An interior operator I: ℘(U) → ℘(U)
satisfies the conditions

(IO1) I(X) ⊆ X ;
(IO2) X ⊆ Y implies I(X) ⊆ I(Y );
(IO3) I(I(X)) = I(X).

An interior system is a family of sets closed under arbitrary unions. Since interior
operator and systems are the dual notions of closure operators and systems, we
get many of their properties without any work. For example, the correspondence
between interior operators and interior systems is bijective. In particular, if I is
an interior operator U , the family N = {I(X) | X ⊆ U} is an interior system,
and then (N , ⊆) is a complete lattice in which∨

H =
⋃

H and
∧

H = I
(⋂

H
)

for all H ⊆ N .

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



430 J. Järvinen

5.2 Topological Spaces

A topological space (U, T ) consists of a set U and a family T ⊆ ℘(U) such that

(TS1) ∅ ∈ T and U ∈ T ,
(TS2) X ∩ Y ∈ T for any sets X, Y ∈ T , and
(TS3)

⋃
H ∈ T for any subfamily H ⊆ T .

The family T is called a topology on U and the members of T are open sets .
The complement of an open set is called a closed set . The family of closed sets
is denoted by

LT = {Xc | X ∈ T } .

The union of any two closed set is closed and any intersection of closed sets
is closed. Furthermore, the sets ∅ and U are closed. Clearly, all open sets form
an interior system and all closed systems form a closure system in the sense of
Section 5.1. It is also obvious that T and LT are rings of sets, and therefore they
form distributive lattices.

Let (U, T ) be a topological space. The interior IT (X) of a set X ⊆ U in T is
defined to be the greatest open set included in X . Similarly, the closure CT (X)
of a set X ⊆ U in T is defined to be the smallest closed set containing X .

Proposition 53. Let (U, T ) be a topological space.

(a) T is a pseudocomplemented lattice such that X∗ = IT (Xc) for all X ∈ T .
(b) The ordered sets (T , ⊆) and (LT , ⊆) are dually order-isomorphic.
(c) For all X ⊆ U , IT (X)c = CT (Xc).

Proof. (a) We have already noted that T is a distributive lattice in which joins
are given by set unions and meets by set intersections. Further, ∅ is the least
element of T . Let X ∈ T . Then X ∩ IT (Xc) ⊆ X ∩ Xc = ∅. If X ∩ Y = ∅ for
some Y ∈ T , then Y ⊆ Xc and hence Y ⊆ IT (Xc). Thus, X∗ = IT (Xc).

(b) We show that ϕ: T → LT , X �→ Xc is a dual order-isomorphism. If Y ∈
LT , then Y c ∈ T and ϕ(Y c) = Y , that is, Y is onto. If X, Y ∈ T , then X ⊆ Y
is equivalent to ϕ(Y ) = Y c ⊆ Xc = ϕ(X).

(c) If X ⊆ U , then

IT (X)c =
(⋃

{Y | Y ∈ T and Y ⊆ X}
)c

=
⋂

{Y c | Y ∈ T and Y ⊆ X}

=
⋂

{Y | Y ∈ LT and Y c ⊆ X}

=
⋂

{Y | Y ∈ LT and Xc ⊆ Y }
= CT (Xc). ��

Example 54. Let us consider the topology T of Fig. 13. As we have noted, T is a
pseudocomplemented distributive lattice such that X∗ = IT (Xc) for all X ∈ T .
For example, {a}∗ = IT ({a}c) = IT ({b, c}) = {c}.
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{a, b}

{a, b, c}

{a} {c}

∅

{a, c}

T

Fig. 13.

The Kuratowski closure axioms allow us to define a topology on U by means of
an operator on U . An operator C: ℘(U) → ℘(U) is a Kuratowski closure operator
if for any X, Y ⊆ U ,

(K1) X ⊆ C(X),
(K2) C(C(X)) = C(X),
(K3) C(X ∪ Y ) = C(X) ∪ C(Y ), and
(K4) C(∅) = ∅.

It is obvious that if C: ℘(U) → ℘(U) is a Kuratowski closure operator, it is a
closure operator in the sense of Section 5.1, because (K3) implies that if X ⊆ Y ,
then C(Y ) = C(X ∪ Y ) = C(X) ∪ C(Y ), that is, C(X) ⊆ C(Y ).

Proposition 55. If (U, T ) is a topological space, then the operator CT is a
Kuratowski closure operator.

Proof. Since CT is a closure operator, it satisfies conditions (K1) and (K2). CT
is also order-preserving, which gives CT (X) ∪ CT (Y ) ⊆ CT (X ∪ Y ). On the
other hand, X ∪ Y ⊆ CT (X)∪CT (Y ) ∈ LT implies CT (X ∪Y ) ⊆ CT (CT (X)∪
CT (Y )) = CT (X) ∪ CT (Y ). Hence, (K3) holds.

Because U ∈ T by definition, ∅ ∈ LT and CT (∅) = ∅. Thus, also (K4) is
satisfied. ��

By the previous lemma, each topology induces a Kuratowski closure operator.
On the other hand, let C: ℘(U) → ℘(U) be a Kuratowski closure operator. Let
us denote

TC = {C(X)c | X ⊆ U} .

Then we can write the following proposition.

Proposition 56. If C: ℘(U) → ℘(U) be a Kuratowski closure operator, then TC

is a topology on U .

Proof. Since C is a closure operator, the family {C(X) | X ⊆ Y } is closed under
arbitrary intersections. This implies that the family TC is closed under arbitrary
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unions. For all X, Y ⊆ U , C(X)c∩C(Y )c = (C(X) ∪ C(Y ))c = C(X∪Y )c ∈ TC ,
that is, TC is closed under finite intersections.

Since C(∅) = ∅ and C(U) = U , we have that ∅ = U c = C(U)c ∈ TC and
U = ∅c = C(∅)c ∈ TC . ��

It should now be obvious that the correspondence between topological spaces
and Kuratowski closure operators is bijective.

Let (U, T ) be a topological space. A family of sets B ⊆ T is called a base for T
if each member of T is the union of some members of B. Because T is a complete
lattice such that

∨
H =

⋃
H for all H ⊆ T , a base is simply a join-dense subset

of T .
If X ⊆ Y and Y ∈ T , then Y is called a neighbourhood of X . Further, any

neighbourhood of the singleton set {x} is called a neighbourhood of the point
x ∈ U .

5.3 Alexandrov Spaces

A topology T on U is called an Alexandrov topology if the intersection of every
family of open sets is also open. If T is an Alexandrov topology on U , the
pair (U, T ) is called an Alexandrov space. Clearly, Alexandrov topologies are
complete rings of sets, as usual topologies are just rings of sets closed under
arbitrary unions.

Lemma 57. If (U, T ) is an Alexandrov space, then

CT
(⋃

H
)

=
⋃

CT (H)

for all H ⊆ T .

Proof. Obviously,
⋃

{CT (X) | X ∈ H} ⊆ CT (
⋃

H) because CT is order-
preserving. On the other hand,

⋃
H ⊆

⋃
{CT (X) | X ∈ H} ∈ LT since also LT

is closed under arbitrary unions. Thus, CT (
⋃

H) ⊆ CT (
⋃

{CT (X) | X ∈ H}) =⋃
{CT (X) | X ∈ H}. ��

By the previous lemma, each Alexandrov topology T on U defines a complete
join-morphism CT : ℘(U) → ℘(U). We say that a closure operator is an Alexan-
drov closure operator if it satisfies

C
(⋃

H
)

=
⋃

C (H)

Closure operatorsInterior systems

Alexandrov closure operators

Kuratowski closure operators
Topologies

Alexandrov topologies

Fig. 14.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Lattice Theory for Rough Sets 433

for all H ⊆ T , that is, C is a complete join-morphism. Trivially, each Alexan-
drov closure operator is a Kuratowski closure operator. Further, we know by
Lemma 57 that the closure operator of an Alexandrov space is an Alexandrov
closure operator, see Fig. 14.

Also the following lemma similar to Proposition 56 holds.

Lemma 58. If C is an Alexandrov closure operator on U , then the family

TC = {C(X)c | X ⊆ U}

is an Alexandrov topology on U .

Proof. It suffices to show that TC is closed under arbitrary intersections. For all
H ⊆ ℘(U),

⋂
C(H)c =

(⋃
C(H)

)c =
(
C
(⋃

H
))c ∈ TC . ��

Because in an Alexandrov topology T , the intersection of every family of open
sets is open, each set X ⊆ U has a smallest neighbourhood, denoted by NT (X).
Clearly,

NT (X) =
⋂

{Y ∈ T | X ⊆ Y } .

It is clear that NT : ℘(U) → ℘(U) is also an Alexandrov closure operator and a
complete join-morphism, because T is closed under arbitrary intersections and
unions. Further, let us denote by NT (x) the smallest neighbourhood of the point
x ∈ U . Notice that we have already considered smallest neighbourhoods of points
in Section 3.2. It is clear by Proposition 27 that for all X ∈ T ,

X =
⋃

{NT (x) | x ∈ X} ,

and that {NT (x) | x ∈ X} is the smallest base of T .
The next lemma characterizes Alexandrov spaces by means of neighbour-

hoods.

Lemma 59. If (U, T ) is topological space, then the following assertions are
equivalent.

(a) T is an Alexandrov topology.
(b) Every point x ∈ U has a smallest neighbourhood.

Proof. We have already shown that (a) implies (b). Suppose that (b) holds
and let H ⊆ T . Then for all x ∈

⋂
H, x ∈ NT (x) ⊆

⋂
H, which im-

plies
⋂

H ⊆
⋃

{NT (x) | x ∈
⋂

H} ⊆
⋂

H, and thus
⋂

H ∈ T . So, also (b)
implies (a). ��

The following condition holds between the closures and the smallest neighbour-
hoods of singleton sets.
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Lemma 60. Let (U, T ) be an Alexandrov space. Then for all x, y ∈ U ,

x ∈ CT ({y}) ⇐⇒ y ∈ NT ({x}).

Proof. If x ∈ CT ({y}), then

x ∈
⋂

{Y | Y ∈ LT and y ∈ Y } =
⋂

{Xc | X ∈ T and y ∈ Xc} .

This is equivalent to the condition that for all X ∈ T , y ∈ Xc implies x ∈ Xc, or
equivalently, that for all X ∈ T , x ∈ X implies y ∈ X . This gives y ∈ NT ({x}).

��

Because the open sets and the closed sets in an Alexandrov space T satisfy
exactly the same axioms, they may be interchanged. So, instead of calling the
elements in T open, we may call them closed, and analogously, we can call the
elements of LT open. Therefore, we get a new Alexandrov space

T D = {Xc | X ∈ T }

which is called the dual of T . It is now trivial that

T D = LT and T = LT D .

This implies that for all X ⊆ U ,

CT (X) = NT D (X) and NT (X) = CT D (X),

that is, the closure operator of an Alexandrov topology is the neighbourhood
operator of its dual topology. Trivially, T is dually isomorphic to T D justifying
the name ‘dual topology’.

Bibliographical Notes

Closure systems and operators are studied in the books [3,7,8,11,21]. Also an
early paper by McKinsey and Tarski [39] deserves to be mentioned. Number of
partitions and equivalences are considered, for instance, in [5]. A detailed study
on topological spaces can be found in [35]. Alexandrov spaces were originally
introduced in [1], where also most of the results of Section 5.3 can be found.

6 Fixpoints and Closure Operators on Ordered Sets

The topics considered in this section are:

6.1 Fixpoint Theorems
6.2 Closure Operators on Ordered Sets
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6.1 Fixpoint Theorems

Given an ordered set P and a self-map f on P , an element x ∈ P is called a
fixpoint of f if f(x) = x. We denote by Fix(f) the set of all fixpoints of f . Recall
that if C: ℘(U) → ℘(U) is a closure operator, then the set of its fixpoints Fix(C)
is equal to the set LC of its closed elements.

Theorem 61 (Knaster–Tarski Fixpoint Theorem). If f is an order-
preserving self-map on a complete lattice L, then∨

{x ∈ L | x ≤ f(x)}

is the greatest fixpoint of f . Dually, f has a least fixpoint
∧

{x ∈ L | x ≥ f(x)}.
Proof. Let H = {x ∈ L | x ≤ f(x)} and α =

∨
H . For all x ∈ H , we have

x ≤ α and so x ≤ f(x) ≤ f(α). This means that f(α) is an upper bound of H ,
from which we get α ≤ f(α). Because f is order-preserving, f(α) ≤ f(f(α)).
This means that f(α) ∈ H and hence f(α) ≤ α. We have now shown that
f(α) ∈ Fix(f). If β is any fixpoint of f , then β ∈ H implies β ≤ α. ��
By applying the previous theorem we can get the following.

Proposition 62. If f is an order-preserving self-map on a complete lattice L,
then Fix(f) is a complete lattice with respect to the order of L.

Proof. Let X ⊆ Fix(f) and let Y be the set of the upper bounds of X in P .
Then for all x ∈ X and y ∈ Y , x = f(x) ≤ f(y) since f is order-preserving. This
implies that f(y) ∈ Y for all y ∈ Y . Let fY be the restriction of f to Y .

Clearly, Y is a complete lattice with respect to the order of L, because it is a
complete sublattice of L. Thus, fY has a least fixpoint α by the Knaster–Tarski
Fixpoint Theorem. Since α ∈ Y , α is an upper bound of X , and if β ∈ Fix(f) is
an upper bound of X , then β ∈ Y and α ≤ β. Thus,

∨
X = α in Fix(f). Since∨

X exists in Fix(f) for all X ⊆ Fix(f), Fix(f) is a complete lattice by the dual
of Theorem 14. ��

By the previous proposition, Fix(f) is always a complete lattice. Next we con-
sider some special cases.

Proposition 63. If f is an extensive and order-preserving self-map on a com-
plete lattice L, then Fix(f) is a complete meet-sublattice of L.

Proof. Let S ⊆ Fix(f). Because f is extensive,
∧

S ≤ f(
∧

S). For all x ∈ S,
we have

∧
S ≤ x and f(

∧
S) ≤ f(x) = x. Thus, also f(

∧
S) ≤

∧
S holds and∧

S ∈ Fix(f). ��
Let f be an extensive and order-preserving self-map on a complete lattice L.
Since Fix(f) is closed under arbitrary meets in L, there exists a smallest fixpoint
of f above any x ∈ L. Let us denote this element by f(x). Clearly,

f(x) =
∧

{α ∈ Fix(f) | x ≤ α} .

We will study the properties of the map f : L → L in Section 6.2.
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Proposition 64. If f : L → L is a complete join-morphism on a complete lattice
L, then Fix(f) is a complete join-sublattice of L.

Proof. Since f is a complete join-morphism, f(
∨

S) =
∨

{f(x) | x ∈ S} =∨
{x | x ∈ S} =

∨
S. Hence,

∨
S ∈ Fix(f). ��

Propositions 63 and 64 have the following corollary.

Corollary 65. If f : L → L is an extensive complete join-morphism on a com-
plete lattice L, then Fix(f) is a complete sublattice of L.

Example 66. Let C be an Alexandrov closure operator on a set U . Since C is
an extensive complete join-morphism on ℘(U), the set of closed elements LC is
a complete sublattice of ℘(U) – as we already know by Section 5.3.

Next we present a more concrete description of the smallest fixpoint of a complete
join-morphism. If f is a self-map on an ordered set P , then we define for any
integer i ≥ 0, the i-fold composition f i(x) by f0(x) = x and f i+1(x) = f(f i(x))
for all x ∈ P .

Theorem 67 (Kleene’s Fixpoint Theorem). If f : L → L is a complete join-
morphism on a complete lattice L, then∨

{f i(⊥) | i ≥ 0}

is the least fixpoint of f .

Proof. Let us denote α =
∨

{f i(⊥) | i ≥ 0}. Because f is a complete join-
morphism,

f(α) = f
(∨{

f i(⊥) | i ≥ 0
})

=
∨{

f i+1(⊥) | i ≥ 0
}

=
∨{

f i(⊥) | i ≥ 1
}

=
∨{

f i(⊥) | i ≥ 0
}

= α.

Thus, α is a fixpoint of f . If β is a fixpoint of f , then f i(⊥) ≤ f i(β) = β for all
i ≥ 0. Thus, α =

∨
{f i(⊥) | i ≥ 0} ≤ β. ��

6.2 Closure Operators on Ordered Sets

In this section we consider closure operators on ordered sets and particularly on
complete lattices. This generalizes the study carried out in Section 5.1.

For an ordered set P , a function c: P → P is called a closure operator on P ,
if for all a, b ∈ P ,

(co1) a ≤ c(a) (extensive)
(co2) c(c(a)) = c(a) (idempotent)
(co3) a ≤ b implies c(a) ≤ c(b) (order-preserving)
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An element a ∈ P is called closed if c(a) = a. Interior operators on ordered sets
are defined dually.

In the next lemma we present some basic properties of closure operators.

Lemma 68. If c: P → P is a closure operator on an ordered set P , then the
following assertions hold.

(a) The set of c-closed elements is c(P ) = {c(a) | a ∈ P}.
(b) For any x ∈ P , c(x) =

∧
P {c(a) | x ≤ a}.

(c) If S ⊆ c(P ) and
∨

S exists in P ,
∨

S exists in c(P ) and equals c(
∨

P S).
(d) If S ⊆ c(P ) and

∧
S exists in P ,

∧
S exists in c(P ) and equals

∧
P S.

Proof. (a) Assume that x is closed. Then c(x) = x and so x ∈ c(P ). On the
other hand, c(c(x)) = c(x) for all c(x) ∈ c(P ).

(b) If x ≤ a, then c(x) ≤ c(a), which shows that c(x) is a lower bound
of {c(a) | x ≤ a}. Since c(x) itself is in {c(a) | x ≤ a}, this implies that
c(x) =

∧
P {c(a) | x ≤ a}.

(c) Suppose S ⊆ c(P ) and
∨

S exists in P . For all x ∈ S, x ≤
∨

P S ≤
c(
∨

P S) ∈ c(P ). If c(y) is an upper bound of S in c(P ), then
∨

P S ≤ c(y) and
c(
∨

P S) ≤ c(c(y)) = c(y).
(d) Suppose S ⊆ c(P ) is such that

∧
S exists in P . Then for all x ∈ S,

c(
∧

P S) ≤ c(x) = x and c(
∧

P S) ≤
∧

P S. Clearly, c(
∧

P S) ≥
∧

P S. Hence,∧
P S ∈ c(P ) which implies that the infimum of S in c(P ) is

∧
P S. ��

The previous lemma has the immediate consequence that if L is a lattice, then
c(L) is a lattice in which

a ∨ b = c(a ∨L b) and a ∧ b = a ∧L b

for all a, b ∈ c(L). Similarly, if L is a complete lattice, then c(L) is a complete
lattice such that ∨

S = c
(∨

L S
)

and
∧

S =
∧

L S

for all S ⊆ c(L).
The map c is not always join-preserving. However, we can write the following.

Lemma 69. If c is a closure operator on a complete lattice L, then for all S ⊆ L,

c
(∨

S
)

= c
(∨

c(S)
)

and especially for all x, y ∈ L,

c(x ∨ y) = c(c(x) ∨ c(y)).

Proof. It is clear that c(
∨

S) ≤ c(
∨

c(S)) ≤ c(c(
∨

S)) = c(
∨

S). The proof for
the rest is analogous. ��

We have shown that in a complete lattice L, each closure operator c determines
a complete meet-sublattice c(L) of L. Also the opposite holds, as we see in the
next lemma.
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Lemma 70. Let S be a complete meet-sublattice of a complete lattice L. Then
the map

x �→
∧

{z ∈ S | x ≤ z}

is a closure operator on L such that the set of its closed elements is S.

Proof. Let us denote c(x) =
∧

{z ∈ S | x ≤ z}. It is clear that x ≤ c(x).
If x ≤ y, then {z ∈ S | x ≤ z} ⊇ {z ∈ S | y ≤ z}, which implies c(x) =∧

{z ∈ S | x ≤ z} ≤
∧

{z ∈ S | y ≤ z} = c(y). Since S is a complete meet-
sublattice of L, c(x) ∈ S. This implies c(x) =

∧
{z ∈ S | c(x) ≤ z} = c(c(x)).

If y ∈ S, then c(y) =
∧

{z ∈ S | y ≤ z} = y, that is, y is c-closed. On the
other hand, if y is c-closed, then y = c(y) =

∧
{z ∈ S | y ≤ z}. Because S is a

complete meet-sublattice of L, we have y ∈ S. ��

If P is an ordered set, then we denote by Clo(P ) the set of all closure operators
on P . Because Clo(P ) ⊆ PP , Clo(P ) has an order inherited from PP . Obviously,
x �→ x is the least element in Clo(P ), and if P has a top element �, then x �→ �
is the greatest element in Clo(P ).

Proposition 71. If L is a complete lattice, then Clo(L) is a complete lattice
with respect to the pointwise order.

Proof. Suppose Φ ⊆ Clo(L). We will show that c =
∧

LL Φ belongs to Clo(L).
For all x ∈ L and f ∈ Φ, x ≤ f(x). This implies x ≤

∧
LL {f(x) | f ∈ Φ} =

c(x), that is, c is extensive. If x ≤ y, then f(x) ≤ f(y) for all f ∈ Φ, which implies∧
{f(x) | f ∈ Φ} ≤ f(y) for all f ∈ Φ and hence c(x) =

∧
{f(x) | f ∈ Φ} ≤∧

{f(y) | f ∈ Φ} = c(y).
It is clear that c(x) ≤ c(c(x)) for all x ∈ L. Let g ∈ Φ and x ∈ L. Then c(x) =∧
{f(x) | f ∈ Φ} ≤ g(x). Because c(c(x)) =

∧
{f(c(x)) | f ∈ Φ} ≤ g(c(x)), we

get c(c(x)) ≤ g(c(x)) ≤ g(g(x)) = g(x). Hence, c(c(x)) ≤
∧

{f(x) | f ∈ Φ} =
c(x). Thus, c(c(x)) = c(x) and c is a closure operator. ��

We showed in Proposition 63 that if f is an extensive and order-preserving self-
map on a complete lattice L, then Fix(f) is closed under arbitrary meets. As
before, we denote by

f(x) =
∧

{α ∈ Fix(f) | x ≤ α}

the smallest fixpoint of f above x.

Proposition 72. If f is an extensive and order-preserving self-map on a com-
plete lattice L, then f : L → L is the smallest closure operator above f .

Proof. By Proposition 63 and Lemma 70, the map f is a closure operator. It is
clear that f is above f with respect to the pointwise order, because x ≤ f(x),
and this implies f(x) ≤ f(f(x)) = f(x) for all x ∈ L. If c is a closure operator
above f , then for all x ∈ L, c(c(x)) = c(x) and x ≤ c(x) ∈ Fix(f). This gives
f(x) ≤ c(x). ��
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In Proposition 71 we showed that if L is complete lattice, then Clo(L) is a
complete lattice in which the meets are defined pointwise. Next we will describe
joins in Clo(L). We need the following lemma.

Lemma 73. If L is a complete lattice and H ⊆ Clo(L), then
∨

LL Φ is extensive
and order-preserving for all Φ ⊆ Clo(L).

Proof. Suppose Φ ⊆ Clo(L). Let us denote c =
∨

LL Φ. For all f ∈ Φ and x ∈ L,
x ≤ f(x) ≤

∨
{f(x) | f ∈ Φ} = c(x). If x ≤ y, then for all f ∈ Φ, f(x) ≤ f(y),

which implies c(x) =
(∨

LL Φ
)
(x) ≤

(∨
LL Φ

)
(y) = c(y). ��

Because
∨

LL Φ is extensive and order-preserving, by Proposition 72 the map∨
LL Φ is the smallest closure operator above

∨
LL Φ. This implies that in the

complete lattice Clo(L), ∨
Φ =

∨
LL Φ.

Example 74. Let us consider the set N∞ = N∪{∞}, in which the order relation
≤ is defined by

n ≤ m ⇐⇒ n ≤ m holds in N or m = ∞.

It is clear that N∞ is a complete lattice in which
∨

S = maxS for finite nonempty
subsets S and

∨
S = ∞ in case S is infinite. Furthermore,

∨
∅ = 0.

The closure operators c1 and c2 are defined on N∞ by

c1(n) =

⎧⎨
⎩

n + 1 if n is odd
n if n is even
∞ if n = ∞

and

c2(n) =

⎧⎨
⎩

n + 1 if n is even
n if n is odd
∞ if n = ∞.

The pointwise join f of c1 and c2 is the map

f(n) =
{

∞ if n = ∞
n + 1 otherwise,

and f is obviously not a closure operator. In fact, the infinity ∞ is the only
fixpoint of f , and hence the map f : x �→ ∞ is the join of c1 and c2 in Clo(N∞).

In Sections 5.2 and 5.3 we considered Kuratowski and Alexandrov closure opera-
tors of topological spaces. Here we study their counterparts on complete lattices.
A closure operator c on a complete lattice L is called a Kuratowski closure oper-
ator if c(⊥) = ⊥ and c(a∨ b) = c(a)∨ c(b) for all a, b ∈ L. Further, if the closure
operator c is also a complete join-morphism, it is an Alexandrov closure operator .
Therefore, every Alexandrov closure operator is a Kuratowski closure operator.
The corresponding interior operators are defined as dual concepts canonically.

We showed in Proposition 72 that for every extensive and order-preserving
map f , there exists a smallest closure operator f above f . Next we show a similar
result for extensive and bottom-preserving join-morphisms.
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Proposition 75. If f : L → L is an extensive and bottom-preserving join-
morphism on a complete lattice L, then f is a Kuratowski closure operator
on L.

Proof. We know by Proposition 72 that f is a closure operator. It is also obvious
that if f(⊥) = ⊥, then f(⊥) = ⊥. We have to show that f(a) ∨ f(b) = f(a ∨ b).
As in the proof of Proposition 64 we can show that f(a) ∨ f(b) is a fixpoint of
f and clearly f(a) ∨ f(b) ≤ f(a ∨ b). If α is a fixpoint of f above a ∨ b, then
f(a ∨ b) ≤ f(α) = α. Especially this implies that f(a ∨ b) ≤ f(a) ∨ f(b). ��

Next we present another description of f in case f : P → P is an extensive
complete join-morphism on a complete lattice L by applying Kleene’s Fixpoint
Theorem.

Lemma 76. If f : L → L is an extensive complete join-morphism on a complete
lattice L, then

f(x) =
∨{

f i(x) | i ≥ 0
}

for all x ∈ L.

Proof. Let x ∈ L. Because f is extensive, f
(
[x)

)
⊆ [x). Clearly, [x) is also a

complete sublattice of L with x as its bottom element. If fx is the restriction of
f into [x), then fx is a complete join-morphism on [x), and the result follows
from Kleene’s Fixpoint Theorem. ��

Finally, we show that to any extensive join-morphism we may attach a smallest
Alexandrov closure operator which is above it.

Proposition 77. If f : L → L is an extensive complete join-morphism on a
complete lattice L, then f is an Alexandrov closure operator on L.

Proof. We know that the map f is a Kuratowski closure operator. Because f is
a complete join-morphism,

f
(∨

S
)

=
∨
i≥0

f i
(∨

S
)

=
∨
i≥0

(∨
f i(S)

)

for any S ⊆ L. Clearly, f i(x) ≤ f(x) ≤
∨

f(S) for all i ≥ 0 and x ∈ S. Hence,∨
f i(S) ≤

∨
f(S) for all i ≥ 0 and so f(

∨
S) ≤

∨
f(S). Because f is order-

preserving, we have
∨

f(S) ≤ f(
∨

S). ��

Example 78. Let us return to the self-map f : N∞ → N∞ of Example 74 which
is defined by

f(n) =
{

∞ if n = ∞
n + 1 otherwise.

It it easy to observe that f is not a complete join-morphism, because f is not
0-preserving. Therefore, we have to do a slight modification to the definition of
the map f . Let f be re-defined as follows
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f(n) =

⎧⎨
⎩

0 if n = 0
∞ if n = ∞
n + 1 otherwise.

Clearly, the new f is an extensive complete join-morphism.
For all i ≥ 0,

f i(n) =

⎧⎨
⎩

0 if n = 0
∞ if n = ∞
n + i otherwise.

Then,

–
∨

{f i(0) | i ≥ 0} =
∨

{0} = 0,
–
∨

{f i(∞) | i ≥ 0} =
∨

{∞} = ∞, and
–
∨

{f i(n) | i ≥ 0} =
∨

{n, n + 1, . . .} = ∞ for all n ∈ N − {0}.

Thus, the map

f(n) =
{

0 if n = 0
∞ otherwise

is the smallest closure operator above f by Lemma 76. By Proposition 77, this
map is also an Alexandrov closure operator.

The previous considerations can now be summarized as follows.

– If f is extensive and order-preserving, then f is a closure operator.
– If f is extensive and bottom-preserving join-morphism, then f is a Kura-

towski closure operator.
– If f is extensive complete join-morphism, then f is an Alexandrov closure

operator.

Bibliographical Notes

Knaster–Tarski and Kleene’s Fixpoint Theorems can be found, for instance,
in [11]. In [54] it was originally proved that the set of fixpoints of an order-
preserving map on a complete lattice forms a complete lattice. That fixpoints
of an extensive and order-preserving map form complete meet-semilattices, and
fixpoints of a complete join-morphism form complete join-sublattices originate
in [19]. The basic results concerning closure operators on ordered sets appear in
[7,8,11]. It should be noted that already in [56] it was proved that the pointwise
meet of closure operators is a closure operator. Most of the results in the last
part of Section 6.2 appear also in [25].

7 Galois Connections and Their Fixpoints

This section has the following two subsections

7.1 Galois Connections and Conjugate Functions
7.2 Fixpoints of Galois Connections
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7.1 Galois Connections and Conjugate Functions

Galois connections can be found in various settings in mathematics and theo-
retical computer science. Galois connections are pairs of maps which enable us
to move back and forth between two different structures. After an element is
mapped to the other structure and back, a certain stability is reached in such a
way that further mappings give the same results. Furthermore, the image sets
of the maps forming the Galois connection are isomorphic.

For two ordered sets P and Q, a pair (f, g) of maps f : P → Q and g: Q → P
is called a Galois connection between P and Q if for all p ∈ P and q ∈ Q,

f(p) ≤ q ⇐⇒ p ≤ g(q).

The map g is called the adjoint and f is called the co-adjoint . Moreover, if
(f, g) is a Galois connection, then we say that f has an adjoint g, and g has a
co-adjoint f .

It is clear by the definition that if (f, g) is a Galois connection between
bounded ordered sets P and Q, then f is bottom-preserving and g is top-
preserving, because ⊥P ≤ g(⊥Q) implies f(⊥P ) ≤ ⊥Q, and f(�P ) ≤ �Q

yields �P ≤ g(�Q). The following lemma gives a characterization of Galois
connections.

Lemma 79. Let f : P → Q and g: Q → P be maps between ordered sets P and
Q. The pair (f, g) is a Galois connection if and only if

(a) p ≤ g(f(p)) for all p ∈ P and f(g(q)) ≤ q for all q ∈ Q;
(b) the maps f and g are order-preserving.

Proof. Suppose (f, g) is a Galois connection between P and Q. If p ∈ P , then
f(p) ≤ f(p) implies p ≤ g(f(p)). Similarly, g(q) ≤ g(q) implies f(g(q)) ≤ q.
Thus, (a) holds. If p1 ≤ p2 in P , then p1 ≤ p2 ≤ g(f(p2)) by (a). Clearly, this is
equivalent to f(p1) ≤ f(p2), which means that f is order-preserving. The other
part of (b) can be proved analogously.

On the other hand, assume that (a) and (b) hold. Suppose that f(p) ≤ q,
where p ∈ P and q ∈ Q. This implies p ≤ g(f(p)) ≤ g(q). Similarly, if p ≤ g(q),
then f(p) ≤ f(g(q)) ≤ q. Hence, (f, g) is a Galois connection. ��

Remark 80. In the literature can be found two ways to define Galois connections
– the one adopted here, in which the maps are order-preserving, and the other,
in which they are order-reversing. Originally, Galois connections were introduced
with maps that reverse the order, but in this work we use the other form, since
it is more natural for rough approximation operators. The two definitions are
theoretically equivalent since if (f, g) is a Galois connection between P and Q
of the other sense, then (f, g) is a Galois connection between P and Qop of the
other sense.

Example 81. (a) If L is a pseudocomplemented lattice, then the pair (∗,∗) is a
Galois connection between L and its dual Lop by Lemma 42.
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(b) Section 8 is devoted to Pawlak’s information systems. They are pairs (U, A),
where U is a set of objects, called the universe, and A is a set of attributes.
For each attribute a ∈ A, a set Va consisting of values of the attribute a is
attached. Every attribute a ∈ A can be viewed as a map U → Va and the
image a(x) is the value of the attribute a for the object x. The fundamental
idea in Pawlak’s information systems is that each subset B ⊆ A of attributes
determines so-called indiscernibility relation ind(B) which is defined so that
two objects x and y of the universe U are B-indiscernible if their values
for all attributes in the set B are equal. We will show that the pair of
maps (ind, att), where ind is the map attaching to each subset of A its
indiscernibility relation on U and att is the function giving for any binary
relation R on U the greatest subset of A of which indiscernibility relation
includes R, forms a Galois connection.

(c) In Section 9 we will study rough set approximations defined by means of an
equivalence ≈ on a set U . For any subset X of U , let

X� = {x ∈ U | [x]≈ ⊆ X} and X� = {x ∈ U | X ∩ [x]≈ �= ∅}.

The sets X� and X� are called the lower and the upper approximations of
X . We will show that the pair (�,�) is a Galois connection on ℘(U).

The next proposition presents some basic properties of Galois connections.

Proposition 82. Let (f, g) be a Galois connection between two ordered sets P
and Q.

(a) The composition f ◦ g ◦ f equals f and the composition g ◦ f ◦ g equals g.
(b) The composition g ◦ f is a closure operator on P and the set of g ◦ f -closed

elements is g(Q), that is, (g ◦ f)(P ) = g(Q)
(c) The composition f ◦g is an interior operator on Q and the set of f ◦g-closed

elements is f(P ), that is, (f ◦ g)(Q) = f(P ).
(d) The image sets f(P ) and g(Q) are order-isomorphic.
(e) The map f is a complete join-morphism and g is a complete meet-morphism.
(f) The maps f and g uniquely determine each other by the equations

f(p) =
∧

{q ∈ Q | p ≤ g(q)} and g(q) =
∨

{p ∈ P | f(p) ≤ q} .

Proof. (a) This follows easily from Lemma 79. If p ∈ P , then p ≤ g(f(p)) implies
f(p) ≤ f(g(f(p))) On the other hand, f(g(f(p))) ≤ f(p). The second part can
be proved similarly.

(b) The composition g ◦ f : P → P is extensive and order-preserving by
Lemma 79. Further, (g ◦ f) ◦ (g ◦ f) = (g ◦ f ◦ g) ◦ f = g ◦ f by (a). If p ∈ g(Q),
then p = g(q) for some q ∈ Q, implying (g ◦ f)(p) = (g ◦ f ◦ g)(q) = g(q) = p.
Conversely, if p is g ◦ f -closed, then p = g(f(p)), that is, p ∈ g(Q). Claim (c)
can be proved as (b).

(d) If g(q) ∈ g(Q), then f(g(q)) ∈ f(P ) and g(f(g(q))) = g(q), that is, the
map f(p) �→ g(f(p)) is onto g(Q). If f(p1) ≤ f(p2), then trivially g(f(p1) ≤
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g(f(p2)). On the other hand, g(f(p1)) ≤ g(f(p2)) implies f(p1) = f(g(f(p1))) ≤
f(g(f(p2))) = f(p2). Thus, f(p) �→ g(f(p)) is an order-isomorphism between
f(P ) and g(Q).

(e) Suppose that S ⊆ P and
∨

S exists in P . Then for all p ∈ S, f(p) ≤ f (
∨

S)
and therefore

∨
{f(p) | p ∈ S} ≤ f (

∨
S). Further, if x ∈ Q is an upper bound

for {f(p) | p ∈ S}, then p ≤ g(f(p)) ≤ g(x) for all p ∈ S, which gives
∨

S ≤ g(x)
and f (

∨
S) ≤ f(g(x)) ≤ x. Thus, f (

∨
S) =

∨
f(S).

(f) It is clear that f(p) is a lower bound of {q ∈ Q | p ≤ g(q)} =
{q ∈ Q | f(p) ≤ q}, and since f(p) is itself in {q ∈ Q | p ≤ g(q)}, the claim is
obvious. The proof for the other part is analogous. ��

By the previous proposition, we can easily write also the following result.

Proposition 83. Let (f, g) be a Galois connection between two complete lattices
L and K.

(a) The ordered set f(L) is a complete lattice such that for all S ⊆ f(L),∨
S =

∨
K S and

∧
S = f

(
g
(∧

K S
))

= f
(∧

L g
(
S
))

.

(b) The ordered set g(K) is a complete lattice such that for all S ⊆ g(K),∨
S = g

(
f
(∨

L S
))

= g
(∨

K f
(
S
))

and
∧

S =
∧

L S.

Proof. By Proposition 82, g ◦ f is a closure operator on L such that its set of
closed elements is g(K). Then by Lemma 68,∨

S = g
(
f
(∨

L S
))

= g
(∨

K f
(
S
))

and
∧

S =
∧

L S

for all S ⊆ g(K). This proves (b), and (a) can be proved in a similar way. ��

The next result states when a map on a complete lattice induces a Galois con-
nection.

Proposition 84. Let L and K be complete lattices.

(a) A map f : L → K has an adjoint if and only if f is a complete join-morphism.
(b) A map g: K → L has a co-adjoint if and only if g is a complete meet-

morphism.

Proof. We prove (a); the proof for (b) is analogous. If f has an adjoint fa,
that is, (f, fa) is a Galois connection, then by Proposition 82, f is a complete
join-morphism.

On the other hand, if f is a complete join-morphism, then we define for all
q ∈ K,

fa(q) =
∨

{z ∈ L | f(z) ≤ q} .

Let p ∈ L and q ∈ K. If f(p) ≤ q, then trivially p ≤
∨

{z ∈ L | f(z) ≤ q} =
fa(q). Conversely, if p ≤ fa(q) =

∨
{z ∈ L | f(z) ≤ q}, we obtain f(p) ≤∨

{f(z) | f(z) ≤ q} ≤ q. Thus, (f, fa) is a Galois connection. ��
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The previous proposition shows that for each complete join-morphism f : L → K,
the pair (f, fa), where fa is defined by

fa(q) =
∨

{p ∈ L | f(p) ≤ q} ,

is a Galois connection. Similarly, for each complete meet-morphism g: K → L,
the pair (ga, g) is a Galois connection, where for any p ∈ L,

ga(p) =
∧

{q ∈ K | p ≤ g(q)} .

Thus, in a way, complete join- or meet-morphisms and Galois connections can
be regarded as the two sides of the same coin.

Example 85. The map f : L → K in Example 21 is a complete join-morphism be-
tween complete lattices. Therefore, it has an adjoint g: K → L which is depicted
in Fig. 15.

K L

g

Fig. 15.

In the following we study conjugate functions on a Boolean lattice. We show,
for example, that there is a correspondence between Galois connections and
conjugate function pairs. Let f and g be two self-maps on a complete Boolean
lattice B. We say that g is a conjugate of f , if for all x, y ∈ B, we have

x ∧ f(y) = 0 ⇐⇒ y ∧ g(x) = 0.

It is clear that if g is a conjugate of f , then f is a conjugate of g. Therefore,
in the following we shall say ‘f and g are conjugate’ instead of ‘g is a conjugate
of f ’. Furthermore, each map has at most one conjugate. In particular, if a map
f is the conjugate of itself, then we call f self-conjugate.

The next proposition characterizes self-maps on complete Boolean lattices
having a conjugate. Note that this result holds only for complete Boolean lattices,
not for complete lattices, as Proposition 84.
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Proposition 86. Let f be a self-map on a complete Boolean lattice. Then f has
a conjugate if and only if f is a complete join-morphism.

Proof. Let f be a self-map on a complete Boolean lattice. Suppose that f has
a conjugate g. We show first that f is order-preserving which implies f (

∨
S) ≥∨

f(S) for all S ⊆ B. If x ≤ y, then f(x∨y) = f(y) and thus f(x∨y)∧f(y)′ = 0.
We obtain g (f(y)′)∧(x∨y) = 0 and so g (f(y)′)∧x = 0. This gives f(x)∧f(y)′ =
0, which is equivalent to f(x) ≤ f(y). Therefore, f is order-preserving.

If S ⊆ B, then for all x ∈ S, f(x) ≤
∨

f(S). This gives f(x) ∧ (
∨

f(S))′ = 0
and g

(
(
∨

f(S))′
)

∧ x = 0 for all x ∈ S. Hence, g
(
(
∨

f(S))′
)

∧
∨

S = 0 and
f(
∨

S) ∧ (
∨

f(S))′ = 0. This means that f (
∨

S) ≤
∨

f(S).
Conversely, assume that f is a complete join-morphism. Then

g(y) =
(∨

{x | f(x) ≤ y′}
)′ = ∧

{x′ | f(x) ∧ y = 0}

defines a function g on B. Now for all x, y ∈ B, f(x) ∧ y = 0 implies g(y) ≤ x′,
that is, g(y) ∧ x = 0. On the other hand,

f (g(y)′) = f
(∨

{x | f(x) ≤ y′}
)

=
∨

{f(x) | f(x) ≤ y′} ≤ y′.

If x and y are such that g(y)∧x = 0, then x ≤ g(y)′. Thus, f(x) ≤ f (g(y)′) ≤ y′,
that is, f(x) ∧ y = 0. ��

If f is a complete join-morphism, its conjugate also is necessarily a complete join-
morphism. Next we show a natural conjugate pair for Alexandrov topologies.

Theorem 87. If T is an Alexandrov topology on U , then the closure operator
CT : ℘(U) → ℘(U) and the smallest neighbourhood operator NT : ℘(U) → ℘(U)
are conjugate.

Proof. We known that CT (X) =
⋃

x∈X CT ({x}) and NT (X) =
⋃

x∈X NT ({x}).
Further, by Lemma 60,

x ∈ CT ({y}) ⇐⇒ y ∈ NT ({x}).

This implies

X ∩ NT (Y ) �= ∅ ⇐⇒ (∃x ∈ X) (∃y ∈ Y )x ∈ NT ({y})
⇐⇒ (∃y ∈ Y ) (∃x ∈ X) y ∈ CT ({x})
⇐⇒ Y ∩ CT (X) �= ∅. ��

Let f and g be self-maps on a complete Boolean lattice B. We say that g is the
dual of f , if for any x ∈ B,

f(x′) = g(x)′.

For any function f , we denote by f∂ the dual of f . It is obvious that if g = f∂ ,
then f = g∂ . Therefore, we usually say ‘f and g are dual’ instead of ‘g is the
dual of f ’. It is also obvious that each function f on B has exactly one dual. For
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example, if T is a topology on U , then by Proposition 53, the closure operator
CT : ℘(U) → ℘(U) and the interior operator IT : ℘(U) → ℘(U) are dual.

The following lemma connects complete join-morphisms and complete meet-
morphisms with each other through the notion of duality.

Lemma 88. Let B be a complete Boolean lattice. A function f on B is a com-
plete join-morphisms if and only if f∂ is a complete meet-morphism.

Proof. Suppose that f(
∨

S) =
∨

f(S) for all S ⊆ B. Then

f∂
(∧

S
)

=
(
f
((∧

S
)′))′

=
(
f
(∨

{x′ | x ∈ S}
))′

=
(∨

{f(x′) | x ∈ S}
)′

=
∧

{f(x′)′ | x ∈ S}

=
∧

{f∂(x) | x ∈ S}.

Thus, f∂ is a complete meet-morphism. The converse holds by duality. ��

In Proposition 84 we showed that for complete lattices, each complete join-
morphism induces a Galois connection, and a similar result holds also for com-
plete meet-morphisms. By Proposition 86 we also know for complete Boolean
lattices that each complete join-morphism has a conjugate. We end this subsec-
tion by presenting the result connecting conjugate maps and Galois connections.

Proposition 89. Let B be a complete Boolean lattice.

(a) For any complete join-morphism f on B, its adjoint is the dual of the con-
jugate of f .

(b) For any complete meet-morphism g on B, its co-adjoint is the conjugate of
the dual of g.

Proof. We prove (a). Let f : B → B be a complete join-morphism. Then it has
the adjoint fa: B → B defined by fa(x) =

∨
{y | f(y) ≤ x}. On the other hand,

the conjugate g of f is defined as g(x) =
∧

{y′ | f(y) ≤ x′}. The dual of g is

g∂(x) = g(x′)′

=
(∧

{y′ | f(y) ≤ x′′}
)′

=
∨

{y′′ | f(y) ≤ x}

=
∨

{y | f(y) ≤ x}
= fa(x).

The proof for (b) is analogous. ��
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By the previous proposition, if B is a complete Boolean lattice and f : B → B is
a complete join-morphism, then f has a unique adjoint and we may define the
conjugate of f as the dual of the adjoint.

Note that if T is an Alexandrov topology on U , then by Theorem 87 the
closure operator CT : ℘(U) → ℘(U) and the smallest neighbourhood operator
NT : ℘(U) → ℘(U) are conjugate. Further, we know that CT and IT are dual.
This implies the following corollary.

Corollary 90. If T is an Alexandrov topology, then the pair (NT , IT ) is a
Galois connection.

7.2 Fixpoints of Galois Connections

In this section we study fixpoints of Galois connections. Recall that if (f, g) is
a Galois connection on an ordered set P , then f is a complete join-morphism,
g is a complete meet-morphism, and thus, both f and g are order-preserving.
Further, if P is bounded, then f(⊥) = ⊥ and g(�) = �.

Lemma 91. Let (f, g) be a Galois connection on an ordered set P . The following
are equivalent:

(a) x ≤ f(x) for all x ∈ P ;
(b) g(x) ≤ x for all x ∈ P .

Proof. If (a) holds, then g(x) ≤ f(g(x)) ≤ x for every x ∈ P . Conversely, if (b)
holds, then for any x ∈ P , x ≤ g(f(x)) ≤ f(x). ��

Proposition 92. Let (f, g) be a Galois connection on an ordered set P . If f is
extensive, then f and g have exactly the same fixpoints.

Proof. If x is a fixpoint of an extensive map f , then f(x) ≤ x implies x ≤ g(x) ≤
x. Conversely, if y is a fixpoint of g, then y ≤ g(y) and f(y) ≤ y ≤ f(y). ��

Example 93. That f is extensive is necessary for Proposition 92. Let us consider
the interval [0, 1] with its usual order. If

f(x) = min{1/2, x},

then f is clearly a complete join-morphism which is not extensive. The map

g(x) =
∨

{y ∈ [0, 1] | min{1/2, y} ≤ x}

is the adjoint of f , and we have f(1/2) = 1/2 and g(1/2) = 1. Hence, 1/2 is a
fixpoint of f , but not of g.

Corollary 94. Let (f, g) be a Galois connection on an ordered set P . If f is
extensive, then the following are equivalent:

(a) x is a fixpoint of f ;
(b) x is a fixpoint of g;
(c) f(x) = g(x).
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Proof. By Lemma 92, (a) and (b) are equivalent and they imply (c). If f(x) =
g(x) for some x ∈ P , then x ≤ f(x) = g(x) ≤ x, which means that (c) implies
both (a) and (b). ��
Lemma 95. If (f, g) is a Galois connection on an ordered set P , then the fol-
lowing are equivalent:

(a) f(f(x)) ≤ f(x) for all x ∈ P ;
(b) g(x) ≤ g(g(x)) for all x ∈ P .

Proof. Assume that (a) holds. Now f(g(x)) ≤ x implies f(f(g(x))) ≤ x, from
which we get f(g(x)) ≤ g(x) and g(x) ≤ g(g(x)). The other direction can be
proved analogously. ��
Lemmas 91 and 95 have the following obvious corollary.

Corollary 96. If (f, g) is a Galois connection on an ordered set P , then the
following are equivalent:

(a) f is a closure operator;
(b) g is an interior operator.

Notice that for a Galois connection (f, g), f is a complete join-morphism and
g is a complete meet-morphism. Therefore, f is in fact an Alexandrov closure
operator and g is an Alexandrov interior operator in Corollary 96. Note also that
Proposition 92 and Corollary 96 imply that if f is a closure operator, then for
all x ∈ P ,

g(f(x)) = f(x) and f(g(x)) = g(x).

We know that for an Alexandrov space (U, T ), the pair (NT , IT ) is a Galois
connection. Further, because NT is a closure operator, we have

IT (NT (X)) = NT (X) and NT (IT (X)) = IT (X)

for all X ⊆ U .
As before, we denote for a Galois connection (f, g) by Fix(f) the set of all

fixpoints of f . Note that if f is extensive, then Fix(f) is also the set of fixpoints
of g. In Section 6.1 we showed that if L is a complete lattice, then Fix(f) is
a complete lattice and, in fact, a complete join-sublattice of L, since f is a
complete join-morphism. Further, we know that if f is extensive, Fix(f) is a
complete sublattice of L.

In general, as the following example shows, the set Fix(f) may not be closed
under complementation even if L is a complete Boolean lattice and f is an
extensive complete join-morphism.

Example 97. Let L be the 4-element complete Boolean lattice depicted in Fig. 11,
and let the maps f and g be defined as follows:

f(0) = 0, f(a) = 1, f(b) = b, f(1) = 1,
g(0) = 0, g(a) = 0, g(b) = b, g(1) = 1.

Now f is extensive and (f, g) is a Galois connection. In this case, since Fix(f) =
{0, b, 1}, we have b ∈ Fix(f), but b′ = a /∈ Fix(f).
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Proposition 98. Let (f, g) be a Galois connection on a complete Boolean lat-
tice B. If f is extensive and self-conjugate, then Fix(f) is a complete Boolean
sublattice of B.

Proof. By Corollary 65, Fix(f) is a complete sublattice of B. Since f is self-
conjugate, its adjoint g is equal to the dual f∂ of f by Proposition 89. If x ∈
Fix(f), then x′ is a fixpoint of f∂ because f∂(x′) = f(x)′ = x′. Now, x′ ≥
f(f∂(x′)) = f(x′). Since f is extensive, also x′ ≤ f(x′) holds. So, x′ ∈ Fix(f).

��

If (f, g) is a Galois connection on a complete lattice L such that f is extensive,
then by Lemma 76,

f(x) =
∨{

f i(x) | i ≥ 0
}

is the least fixpoint of f above x. Further, f is an Alexandrov closure operator
by Proposition 77. To complete this section, let us assign

Γ = {x′ ∈ B | x ∈ Fix(f)},

where B is a complete Boolean lattice. Now Γ can be seen as the set of ‘closed
sets of an Alexandrov topology’.

Proposition 99. Let (f, g) be a Galois connection on a complete Boolean lattice
B. If f is extensive, then Γ = {x ∈ B | x = g∂(x)}, that is, Γ consists of the
fixpoints of the conjugate of f .

Proof. Γ = {x′ | x ∈ Fix(f)} = {x′ | x = g(x)} = {x | x′ = g(x′)} = {x | x′ =
g∂(x)′} = {x | x = g∂(x)}. ��

As we have noted, for an Alexandrov topology T , the pair (NT , IT ) is a Galois
connection, and CT is the conjugate of NT . Now, NT and IT have the same
fixpoints, and the fixpoints of CT , that is, the closed sets of T , are the comple-
ments of the fixpoints of NT and IT . Naturally, the fixpoints of NT and IT are
the open sets of T .

Example 100. Let us consider rough approximations introduced in Exam-
ple 81(c). As we have already noted, the pair (�,�) is a Galois connection on
℘(U). Furthermore, because � and � will be shown to be dual, the map � is self-
conjugate by Proposition 89. We will also show that � is an Alexandrov closure
operator and � is an Alexandrov interior operator. Furthermore,

X�� = X� and X�� = X�

for all X ⊆ U .
Let us denote

Def =
{
X ⊆ U | X� = X

}
,

that is, Def consists of the fixpoints of �. The sets in Def are called definable and
they are important because X� can be interpreted as a set of elements possibly
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belonging to X . Therefore, definable sets are ‘closed with respect to possibility’.
Since � is an extensive and self-dual map, Def is a complete field of sets by
Proposition 98. Further, by Corollary 94,

X = X� ⇐⇒ X = X� ⇐⇒ X� = X�

for all X ⊆ U . In Section 9 we give a more detailed study on rough approxima-
tions.

Bibliographical Notes

Many results concerning Galois connections can be found in [7,11], and [15,41]
are early papers studying Galois connections on lattices. The paper [14] provides
the rudiments of the theory of Galois connections together with many examples
and applications. The definition of the conjugate of a self-map on complete
Boolean lattices appeared in [34] and characterization of maps which have a
conjugate can be found there. Self-conjugate functions on Boolean algebras were
considered in [53]. Subsection 7.2 is based on a section of the article [31].

8 Information Systems

In this section we consider the following topics:

8.1 Armstrong Systems on Ordered Sets
8.2 Indiscernibility in Information Systems
8.3 Independent Attribute Sets and Reducts
8.4 Other Types of Information Relations

8.1 Armstrong Systems on Ordered Sets

In relational databases the notion of functional dependencies is essential. As we
will see in the sequel, dependency relations play an important role in Pawlak’s
information systems, also. A functional dependency, denoted by X → Y , be-
tween two attribute sets X and Y of, for example, a database table, specifies
that in every row the values corresponding to the attributes in Y are uniquely
determined by the values of the attributes in X . For example, the social security
number uniquely determines a name, denoted by ssn → name. Armstrong ax-
ioms are a set of rules that enable us to infer all functional dependencies that hold
on a relational database. Here we study Armstrong systems and dependencies
in a more general setting of ordered sets.

Let P be an ordered set and let F be a set of ordered pairs a → b, where
a, b ∈ P . We say that F is an Armstrong system on P if the following (modified)
Armstrong axioms hold for all x, y, z ∈ P :

(AS1) x ≥ y implies x → y ∈ F ;
(AS2) x → y ∈ F and y → z ∈ F imply x → z ∈ F ;
(AS3) the set {y | x → y ∈ F} has a greatest element x+.
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Usually, we write x → y ∈ F simply as x → y and say that y is dependent on x.
Note that x+ is just the greatest element dependent on x and

x+ =
∨

{y | x → y} .

Let P be an ordered set. We denote by Arm(P ) the set of all Armstrong
systems on P . The set Arm(P ) can be ordered with the usual set inclusion
relation. The ordered set (Arm(P ), ⊆) has {a → a | a ∈ P} as its least element
and if P has a greatest element �, then Arm(P ) has a greatest element {a →
b | a, b ∈ P}.

Proposition 101. Let P be an ordered set.

(a) If F is an Armstrong system, then the map x �→ x+ is a closure operator on
P .

(b) If c is a closure operator on P , then the set {a → b | c(a) ≥ c(b)} is an
Armstrong system on P .

Proof. Let F be an Armstrong system. We show that the map x �→ x+ satisfies
conditions (co1)–(co3). Since x ≤ x, we obtain x → x and x ≤ x+ by (AS1)
and (AS3). If y ≤ x, then x → y by (AS1). The fact y → y+ implies x → y+

by (AS2) and so y+ ≤ x+. Since x → x+ and x+ → x++, we get x → x++ and
x++ ≤ x+. Because x+ → x+, we have x+ ≤ x++. Hence, x+ = x++.

Let c be a closure operator. We show that the set {a → b | c(a) ≥ c(b)}
satisfies the Armstrong axioms (AS1)–(AS3). If x ≥ y, then c(x) ≥ c(y) by
(co3), and thus x → y. If x → y and y → z, then c(x) ≥ c(y) ≥ c(z) and x → z.
Because c(x) = c(c(x)) by (co2), we get x → c(x). If x → y, then y ≤ c(y) ≤ c(x)
by (co1). Hence, c(x) is the greatest element dependent on x. ��

We can write the following useful lemma.

Lemma 102. If F is an Armstrong system on an ordered set P , then the fol-
lowing conditions are equivalent for all x, y ∈ P :

(a) x → y;
(b) x+ ≥ y+.

Proof. If x → y, then y ≤ x+ by (AS3). Because +: P → P is a closure operator,
we have y+ ≤ x++ = x+. Thus, (a) implies (b).

If x+ ≥ y+, then y ≤ y+ ≤ x+, which implies x+ → y by (AS1). Since
x → x+, we get x → y because → is transitive by (AS2). ��

For complete lattices, we can also write the following lemma.

Lemma 103. If F is an Armstrong system on a complete lattice L, then →
is completely join-compatible, that is, if xi → yi for all i ∈ I, then

∨
i∈I xi →∨

i∈I yi.
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Proof. Suppose that xi → yi for all i ∈ I. Then yi ≤ y+
i ≤ x+

i ≤ (
∨

i∈I xi)+ and∨
i∈I yi ≤ (

∨
i∈I xi)+. This implies (

∨
i∈I yi)+ ≤ (

∨
i∈I xi)++ = (

∨
i∈I xi)+, that

is,
∨

i∈I xi →
∨

i∈I yi. ��

We know by Proposition 71 that if L is a complete lattice, then Clo(L) is a
complete lattice with respect to the pointwise order. Next we point out that for
any ordered set P , the ordered sets of Armstrong systems and closure operators
on P are isomorphic, which implies that Arm(L) is a complete lattice if L is a
complete lattice.

Proposition 104. If P is an ordered set, then Clo(P ) ∼= Arm(P ).

Proof. For a closure operator c, we denote by Fc the induced Armstrong system.
We show that c1 ≤ c2 if and only if Fc1 ⊆ Fc2 for all c1, c2 ∈ Clo(P ), and that
the map Clo(P ) → Arm(P ), c �→ Fc, is onto.

Suppose that c1 ≤ c2. If x → y ∈ Fc1 , then c1(y) ≤ c1(x). This implies
y ≤ c1(y) ≤ c1(x) ≤ c2(x) and c2(y) ≤ c2(c2(x)) = c2(x). Thus, x → y ∈ Fc2 and
so Fc1 ⊆ Fc2 . Conversely, assume that Fc1 ⊆ Fc2 . Because x → c1(x) ∈ Fc1 ⊆ Fc2

for all x ∈ P , we obtain c1(x) ≤ c2(x). Hence, c1 ≤ c2 in PP .
Let F ∈ Arm(P ). It is clear that F = F(cF ) since

x → y ∈ F ⇐⇒ cF (y) ≤ cF (x) ⇐⇒ x → y ∈ F(cF )

for all x, y ∈ P . Thus, the map c �→ Fc is onto Arm(P ). ��

We can also write the following observation.

Lemma 105. If L is a complete lattice and F ⊆ Arm(L), then
⋂

F is an
Armstrong system on L.

Proof. Let F ⊆ Arm(L). It is clear that
⋂

F satisfies condition (AS1).
If x → y and y → z are in

⋂
F , then x → y and y → z belong to F for all

F ∈ F . This implies that x → z ∈ F for all F ∈ F . Hence, x → z ∈
⋂

F and
(AS2) holds.

Let us write c =
∧

LL{cF | F ∈ F}, where cF denotes the closure operator
corresponding the Armstrong system F . Clearly, c is a closure operator. Let x ∈
L. Since c(x) ≤ cF (x) and x → cF (x) ∈ F for all F ∈ F , we get x → c(x) ∈ F
for all F ∈ F , and hence x → c(x) ∈

⋂
F . Moreover, if x → y ∈

⋂
F , then

y ≤ cF (x) for all F ∈ F . Hence, y ≤
∧

L{cF (x) | F ∈ F} = c(x). This means
that c(x) is the greatest element in the set {y | x → y ∈

⋂
F}. ��

Proposition 104 and Lemma 105 imply that if L is complete lattice, then Arm(L)
is a complete lattice in which∧

F =
⋂

F and
∨

F = Fc,

where Fc is the Armstrong system determined by c =
∨

{cF | F ∈ F} formed in
Clo(L).
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Next we show how each Galois connection (f, g) between two complete lattices
L and K induces an Armstrong system on L such that x+ = (g ◦ f)(x) for any
x ∈ L. This is done by defining a set Ff of ordered pairs of elements of L by

Ff = {x → y | f(x) ≥ f(y)}.

Theorem 106. If (f, g) is a Galois connection between two complete lattices L
and K, then Ff is an Armstrong system on L such that for all x ∈ L,

x+ = (g ◦ f)(x).

Further, L+ = g(K) ∼= f(L).

Proof. If x ≥ y, then f(x) ≥ f(y), that is, x → y ∈ Ff and (AS1) holds. If
x → y ∈ Ff and y → z ∈ Ff , then f(x) ≥ f(y) ≥ f(z), which gives x → z ∈ Ff

and also (AS2) is satisfied.
For (AS3), let us denote

x+ =
∨

{y | x → y ∈ Ff} .

We show first that x → x+ ∈ Ff . Indeed,

f(x+) = f
(∨

{y | x → y ∈ Ff}
)

= f
(∨

{y | f(x) ≥ f(y)}
)

=
∨

{f(y) | f(x) ≥ f(y)}
≤ f(x),

that is, x → x+ ∈ Ff . If x → y ∈ Ff , then trivially y ≤
∨

{y | x → y ∈ Ff} =
x+.

Let x ∈ L. Then

g(f(x)) =
∨

{y | y ≤ g(f(x))}

=
∨

{y | f(y) ≤ f(x))}

=
∨

{y | x → y ∈ Ff}

= x+.

Finally, it is known by Proposition 82 that f(L) and g(K) are order-isomorphic
and that the set of g ◦ f -closed elements is g(K). ��

We end this section by considering dense sets of Armstrong systems. Let P be
an ordered set and S ⊆ P . We define a set FS of ordered pairs of elements of P
by

FS = {x → y | (∀z ∈ S) x ≤ z =⇒ y ≤ z}.

It turns out that in complete lattices every subset determines an Armstrong
system, as we see in the following proposition.
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Proposition 107. If L is a complete lattice and S ⊆ L, then FS is an Arm-
strong system on L such that

x+ =
∧

{z ∈ S | x ≤ z} .

Proof. We will show that FS satisfies conditions (AS1)–(AS3).
(AS1) Assume that a ≥ b. Let z ∈ S. If a ≤ z, then obviously b ≤ z. Thus,

a → b ∈ FS .
(AS2) Suppose that a → b ∈ FS and b → c ∈ FS . Let z ∈ S. If a ≤ z, then

b ≤ z. But this implies that also c ≤ z holds. Hence, a → c ∈ FS .
(AS3) We show that x+ =

∧
{z ∈ S | x ≤ z}. If x ≤ z for some z ∈

S, then z ∈ {z ∈ S | x ≤ z} and
∧

{z ∈ S | x ≤ z} ≤ z. This means x →∧
{z ∈ S | x ≤ z} ∈ FS . If x → y ∈ FS , then {z ∈ S | x ≤ z} ⊆ {z ∈ S | y ≤ z}

giving
∧

{z ∈ S | x ≤ z} ≥
∧

{z ∈ S | y ≤ z} ≥ y. ��
Let F be an Armstrong system on a complete lattice L. We say that that a
subset S of L is dense for F if FS = F . It is clear that if S is dense for F , the
following conditions are equivalent for all x, y ∈ L:

(ds1) x → y;
(ds2) x+ ≥ y+;
(ds3) (∀z ∈ S)x ≤ z =⇒ y ≤ z.

The following proposition connects dense sets of Armstrong systems and
meet-dense subsets of the corresponding ordered set of +-closed elements.

Proposition 108. Let F be an Armstrong system on a complete lattice L. Then
a subset S ⊆ L is dense for F if and only if S is a meet-dense subset of L+.

Proof. Suppose that S ⊆ L is dense for F . Hence,

x+ =
∧

{z ∈ S | x ≤ z}

for all x ∈ L. Then, S is a meet-dense subset of L+.
Conversely, let S be a meet-dense subset of L+. Assume that x → y ∈ F .

If x ≤ z for some z ∈ S, then y ≤ y+ ≤ x+ ≤ z+ = z, that is, x → y ∈ FS .
On the other hand, if x → y ∈ FS , then {z ∈ S | x ≤ z} ⊆ {z ∈ S | y ≤ z}.
Clearly, for all a ∈ L and z ∈ S, a ≤ z if and only if a+ ≤ z. Thus, we get
{z ∈ S | x+ ≤ z} ⊆ {z ∈ S | y+ ≤ z}. Because S is a meet-dense subset of L+,
x+ =

∧
{z ∈ S | x+ ≤ z} ≥

∧
{z ∈ S | y+ ≤ z} = y+ by the dual of Lemma 23,

which gives x → y ∈ F by Lemma 102. ��
Notice that if (f, g) is a Galois connection between complete lattices L and K,
then g(K) is the greatest Ff -dense set.

8.2 Indiscernibility in Information Systems

In this section we study information systems introduced by Pawlak. An infor-
mation system is a pair (U, A), where U is a set of objects , called the universe,
and A is a set of attributes . Each attribute a ∈ A is a map a: U → Va, where
each Va consists of values the attribute a can have.
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Example 109. An information system (U, A) in which the sets U and A are finite
can be represented by a table. The rows of the table are labeled by the objects
and the columns by the attributes of the system. In the intersection of the row
labeled by an object x and the column labeled by an attribute a we find the
value a(x).

Let us define an information system (U, A) such that the object set U consists
of four persons, say 1, 2, 3, and 4, and the attribute set A has the attributes
gender, mother tongue, degree, and position. The corresponding value
sets are

– Vgender = {Male, Female},
– Vmother tongue = {Finnish, Swedish},
– Vdegree = {MSc, PhD},
– Vposition = {Assistant, Lecturer, Professor},

and the values of attributes are defined as in Table 1. We will return to this
information system several times.

Table 1. A simple information system

U gender mother tongue degree position

1 Male Swedish PhD Professor
2 Male Finnish MSc Assistant
3 Male Finnish PhD Assistant
4 Female Finnish PhD Lecturer

Let (U, A) be an information system. For any B ⊆ A, we can define on U the
indiscernibility relation ind(B) of B by setting:

(x, y) ∈ ind(B) ⇐⇒ (∀a ∈ B) a(x) = a(y).

If (x, y) ∈ ind(B), then objects x and y are said to be B-indiscernible. The
relation ind(B) is clearly an equivalence, and the partition corresponding to
ind(B) can be viewed as a classification of objects, in which the equivalence
classes of ind(B) consist of objects which have exactly the same B-values. It can
be seen easily from the definition that

ind(∅) = U × U

and
(∀B, C ⊆ A)B ⊆ C =⇒ ind(B) ⊇ ind(C).

In the sequel, we denote ind({a}) simply by ind(a) for any a ∈ B.

Example 110. Let us consider the information system (U, A) of Example 109. Let
us denote the attributes gender, mother tongue, degree, and position

simply by the letters a, b, c, and d, respectively. All indiscernibility relations
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determined by subsets of A are presented in Fig. 16. Notice that sets of attributes
are denoted simply by sequences of their elements.

It is easy to observe that

ind(d) = ind(ab) = ind(ad) = ind(bd) = ind(abd)

and
ind(cd) = ind(abc) = ind(acd) = ind(bcd) = ind(A).

We begin our study of properties of indiscernibility relations with the following
lemma.

Lemma 111. Let (U, A) be an information system. If {Bi}i∈I is a family of
subsets of A, then ⋂

i∈I

ind(Bi) = ind
(⋃

i∈I

Bi

)
.

Proof. Let x, y ∈ U . Then

(x, y) ∈
⋂
i∈I

ind(Bi) ⇐⇒ (∀i ∈ I) (x, y) ∈ ind(Bi)

⇐⇒ (∀i ∈ I)(∀a ∈ Bi) a(x) = a(y)

⇐⇒
(
∀a ∈

⋃
i∈I

Bi

)
a(x) = a(y)

⇐⇒ (x, y) ∈ ind
(⋃

i∈I

Bi

)
. ��

Let us denote by Rel(U)op the dual (Rel(U), ⊇) of the complete lattice
(Rel(U), ⊆). By Lemma 111, the map

ind: ℘(A) → Rel(U)op

is a complete join-morphism, because the join in Rel(U)op is the intersection
of relations. Then, by Proposition 84, the complete join-morphism ind: ℘(A) →
Rel(U)op has an adjoint denoted by

att: Rel(U)op → ℘(A).

By Proposition 82, the adjoint of ind is defined for all R ∈ Rel(U) by

att(R) =
⋃

{B ∈ ℘(A) | ind(B) ⊇ R} .

It is easy to see that the adjoint can be written also in a simpler form:

att(R) = {a ∈ A | R ⊆ ind(a)} .

It is now clear that the pair (ind, att) is a Galois connection between complete
lattices ℘(A) and Rel(U)op. For each R ∈ Rel(U), the attribute set att(R) can
be considered as the greatest set of attributes of which indiscernibility relation
contains R.
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Fig. 16.

By the properties of Galois connections, the map att: Rel(U)op → ℘(A) is a
complete meet-morphism, which means that for all {Ri}i∈I ,

att
(⋃

i∈I

Ri

)
=
⋂
i∈I

att(Bi),

Furthermore, R1 ⊆ R2 implies att(R2) ⊆ att(R1).
Because (ind, att) is a Galois connection between ℘(A) and Rel(U)op, we may,

as in Section 8.1, define a dependency relation → on ℘(A) by setting

B → C ⇐⇒ ind(B) ⊆ ind(C).

This means that if B → C and two objects have the same B-values, they then
have also the same C-values. This can be interpreted so that the values of C-
attributes of objects are determined by their values of B-attributes.

By Theorem 106, we may determine for each B ⊆ A the greatest set B+

dependent on B, which can be written in several ways:

B+ = att(ind(B))
= {a ∈ A | ind(B) ⊆ ind(a)}
= {a ∈ A | B → a} ,

where B → a means B → {a}. Theorem 106 also gives that

℘(A)+ = att(Rel(U)) ∼= ind(℘(A))op.
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Since +: ℘(A) → ℘(A) is a closure operator on A, ℘(A)+ is a closure system and
a complete lattice such that∧

H =
⋂

H and
∨

H =
(⋃

H
)+

.

Furthermore, ℘(A)+ is order-isomorphic to ind(℘(A))op and the isomorphism is
simply B+ �→ ind(B). By Proposition 83, ind(℘(A))op is a complete lattice such
that ∨

i∈I

ind(Bi) =
⋂
i∈I

ind(Bi) = ind
(⋃

i∈I

Bi

)
and∧

i∈I

ind(Bi) = ind
(
att
(⋃

i∈I

ind(Bi)
))

= ind
(⋂

i∈I

att
(
ind(Bi)

))
= ind

(⋂
i∈I

B+
i

)
.

Finally, by Proposition 82, the mapping

R �→ ind(att(R))

is an interior operator on Rel(U)op. Thus, it is a closure operator on Rel(U).
It maps every relation R to the smallest indiscernibility relation containing R
expressible by means of attributes in A. Note that R �→ ind(att(R)) is usually
not the operator E : Rel(U) → Rel(U) studied in Section 5.1.

Example 112. Let us consider the information system of Example 109. The com-
plete lattice ℘(A)+ = att(Rel(U)) is presented in Fig. 17. Note that ℘(A)+ is
isomorphic to the ordered set ind(℘(A))op depicted in Fig. 16.

�

��� �� �� ��� �� ��� ��

�

��� ������

Fig. 17.

We end this subsection by considering dense families for information systems.
Let H be family of subsets of A. We define a set of pairs FH of ordered pairs of
elements of ℘(A) by by setting

FH = {X → Y | (∀Z ∈ H)X ⊆ Z =⇒ Y ⊆ Z} .
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We say that a family H ⊆ ℘(A) is dense in (U, A) if FH is the set of dependencies
that hold in (U, A). It is clear by Proposition 108 that H is dense in (U, A) if and
only if it is

⋂
-dense subfamily of ℘(A)+. Furthermore, the following conditions

are equivalent for any dense family H:

(DS1) X → Y ;
(DS2) X+ ⊇ Y +;
(DS3) (∀Z ∈ H)X ⊆ Z =⇒ Y ⊆ Z.

Example 113. Let us consider the closure system ℘(U)+ of Fig. 17. The family
{{a, c} , {b, c} , {a, b, d}} is the smallest

⋂
-dense subset of ℘(A)+. This means

that it is also the smallest dense family in (U, A).
Now, for example, {a, b} → d, because {a, b} is included only in {a, b, d} and

also {d} ⊆ {a, b, d}.

It is clear that there exists always at least one dense family in (U, A), namely
℘(A)+. However, construction of ℘(A)+ directly from the information system
can be rather tedious. Next we present a simpler way to find dense families. For
an information system (U, A), the indiscernibility matrix m = (mxy) of (U, A)
is defined so that for all x, y ∈ U ,

mxy = {a ∈ A | a(x) = a(y)}.

Thus, the entry mxy consists of those attributes a ∈ A for which x and y are
indiscernible. The next lemma is trivial.

Lemma 114. If (U, A) is an information system and m = (mxy) is its indis-
cernibility matrix, then for all B ⊆ A and x, y ∈ U ,

(x, y) ∈ ind(B) if and only if B ⊆ mxy.

Proposition 115. If (U, A) is an information system and m = (mxy) is its
indiscernibility matrix, then the family {mxy | x, y ∈ U} is dense in (U, A).

Proof. (a) Let us denote H = {mxy | x, y ∈ U}. If B → C, then ind(B) ⊆
ind(C). This implies by Lemma 114 that if B ⊆ mxy, then (x, y) ∈ ind(B) ⊆
ind(C), which is equivalent to C ⊆ mxy. Thus, (B, C) ∈ FH.

Conversely, if (B, C) ∈ FH, then (x, y) ∈ ind(B) yields B ⊆ mxy. This is
equivalent to C ⊆ mxy and (x, y) ∈ ind(C). Thus, ind(B) ⊆ ind(C) and B → C.

��

The next example shows how we may easily obtain dense families in information
systems by applying the previous proposition.

Example 116. Let us consider the information system of Example 109. Its indis-
cernibility matrix is the 4 × 4-matrix

m =

⎛
⎜⎜⎝

A a ac c
a A abd b
ac abd A bc
c b bc A

⎞
⎟⎟⎠
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By Proposition 115, the family

H = {{a} , {b} , {c} , {a, c} , {b, c} , {a, b, d} , A}

consisting of the entries of m is dense in (U, A). This is also clear since H ⊆
℘(A)+ includes the family {{a, c} , {b, c} , {a, b, d}} which is known to be the
smallest dense set.

8.3 Independent Attribute Sets and Reducts

In this section we consider independent attribute sets and attribute reduction.
Let (U, A) be an information system. Then, a subset B of A is dependent if there
exists a ∈ B such that (B − {a}) → a, that is, the values of the attribute a for
objects in U are determined by the values of the other attributes in B. If B is
not dependent, it is independent . Obviously, every subset of an independent set
is independent and supersets of dependent sets are dependent. Note that for a
dependent set B, there always exists a proper subset C of B such that C → B.

Example 117. Let us consider the information system of Example 109. It can be
easily checked that the independent subsets of A are ∅, {a}, {b}, {c}, {d}, {a, b},
{a, c}, {b, c}, {c, d}, and {a, b, c}.

A subset C of a set B ⊆ A is called a reduct of B if C → B and C is independent.
Note that if C is a reduct of B, then ind(B) = ind(C). Reducing an attribute set
is of practical importance because one can get the same classification accuracy
with a smaller set of attributes. On the other words, the attributes not belonging
to a reduct are superfluous with respect to classification of objects of the universe.
The next proposition gives some important properties of reducts.

Proposition 118. In an information system (U, A), the following assertions
hold for all B, C ⊆ A.

(i) The set C is a reduct of B if and only if C is a minimal subset of B such
that C → B.

(ii) If C is a reduct of B, then C is a maximal independent subset of B.

Proof. (a) Let C be a reduct of B. Suppose that there exists a proper subset D
of C on which B is dependent. Then D → B and B → C, which imply D → C,
that is, C is dependent, a contradiction!

Conversely, let C be a minimal subset of B such that C → B. Assume that C
is dependent. Then there exists a proper subset D of C such that D → C. But
since → is transitive, D → B holds, a contradiction!

(b) Let C be a reduct of B. Suppose that there exists an independent set D
such that C ⊂ D ⊆ B. Then C → B and B → D imply that there exists a proper
subset C of D such that C → D. Hence, D is dependent, a contradiction! ��

Example 119. All independent subsets of A in the information system (U, A) are
listed in Example 117. Clearly, {c, d} and {a, b, c} are the maximal independent

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



462 J. Järvinen

subsets of A, which means that these two sets are the potential reducts of A by
Proposition 118.

Clearly, {c, d}+ = {a, b, c}+ = A+ = A implying {c, d} → A and {a, b, c} →
A. Hence, {c, d} and {a, b, c} really are the reducts of A.

Next we present a characterization of reducts by means of dense families.

Proposition 120. Let H be a dense family of an information system (U, A)
and B ⊆ A. Then C is a reduct of B if and only if C is a minimal set with
respect to the property of containing an element from each nonempty difference
B − Z, where Z ∈ H.

Proof. Suppose that C is a reduct of B. Then C ⊆ B, C → B, and B ⊆ Z for
all Z ∈ H such that C ⊆ Z. This means that for all Z ∈ H, B �⊆ Z implies
C �⊆ Z, which is clearly equivalent to the condition of C containing an element
from each nonempty difference B −Z, where x ∈ H. Since C is a reduct, C must
clearly be a minimal set satisfying this condition.

Conversely, let C be a minimal subset of A with respect to the property of
containing an element from each nonempty difference B − Z, Z ∈ H. First we
show that C is a subset of B. If C �⊆ B, then B∩C ⊂ C and (B∩C)∩(B−Z) =
C ∩ (B − Z) �= ∅ whenever B − Z �= ∅, a contradiction! Thus, C ⊆ B. It is clear
that C ⊆ Z implies B ⊆ Z for all Z ∈ H. Thus, C → B. It is also obvious that
C must now be a minimal set on which B is dependent, which means that C is
a reduct of B. ��

Example 121. Let us find the reducts of the set A in the information system
(U, A) of Example 109 by applying Proposition 120. As we have noted, the
family H = {{a, c} , {b, c} , {a, b, d}} is dense in (U, A). The differences A − Z,
where Z ∈ H, are

A − {a, c} = {b, d}, A − {b, c} = {a, d}, and A − {a, b, d} = {c}.
Clearly, {c, d} and {a, b, c} are the minimal sets containing an element from each
(nonempty) difference and therefore these sets are the reducts of A.

In this section we have considered independent subsets and reducts of attribute
sets, and characterized the reducts by means of dense families. However, we have
not considered the problem whether a subset has any reducts at all.

In fact, in information systems in which the universe and the attribute set are
infinite, it may happen that there exist sets that do not possess any reducts, as
the following example shows.

Example 122. Let (U, A) be an information system such that U = N and A =
{ai | i ∈ N}, where N = {0, 1, 2, . . .}. For each i ∈ N, the attribute ai is defined
by

ai(j) =
{

j if j ≤ i
i + 1 otherwise.

The equivalence classes of ind(ai) are

{0} , {1} , {2} , . . . , {i} , {i + 1, i + 2, i + 3, . . .} .
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It is easy to see that the only independent subsets of A are the singletons {ai}.
So, these set are the only potential reducts of A. Obviously, {ai} �→ A for all
i ∈ N. Thus, the set A has no reducts. In fact, it is easy to see that every infinite
subset of A has no reducts.

However, for finite universes we can write the following lemma.

Lemma 123. Let (U, A) be an information system such that U is finite. Then
for any subset B of A, there exists a finite subset F ⊆ B such that F → B.

Proof. Let us consider the family

F = {ind(F ) | F is a finite subset of B} .

Because U is finite, the family F ⊆ U × U is finite and it is nonempty since
ind(∅) ∈ F . This implies by Lemma 10 that F must with respect to inclusion have
a minimal element ind(F ) for some finite F ⊆ B. For all a ∈ B, ind(F ∪ {a}) ∈
F and trivially ind(F ∪ {a}) ⊆ ind(F ). Because ind(F ) is minimal, we have
ind(F ) = ind(F ∪ {a}) = ind(F ) ∩ ind(a) for all a ∈ B. Thus, ind(F ) ⊆ ind(a)
and F → a for all a ∈ B. Because → is completely

⋃
-compatible by Lemma 103,

we have F → B. ��

The next proposition guarantees that in information systems in which the uni-
verse or the attribute set is finite, each subset of attributes has reducts.

Proposition 124. If (U, A) is an information system such that U or A is finite,
then every subset of A has at least one reduct.

Proof. (a) By Lemma 123, if U is finite, then for every subset B of A there exists
a finite subset F of B such that F → B. Trivially, if A finite, then every subset
B of A is finite, and we may choose F = B.

Let us assume that F = {a1, a2, . . . , an}. We define inductively the sets
F0, F1, . . . , Fn as follows:

F0 = F and Fi =
{

Fi−1 − {ai} if (Fi−1 − {ai}) → ai,
Fi−1 otherwise.

Obviously, Fn ⊆ Fn−1 ⊆ · · · ⊆ F1 ⊆ F0 ⊆ B and ind(B) = ind(F0) = ind(F1) =
· · · = ind(Fn). Let us assume that Fn is dependent, that is, (Fn − {ai}) → ai

for some i such that ai ∈ Fn. Because Fn ⊆ Fi−1, we have (Fi−1 − {ai}) →
(Fn − {ai}) → ai. This implies ai /∈ Fi and thus ai /∈ Fn, a contradiction! ��

Note that even if all value sets of the attributes in the system are finite, this
does not guarantee that every subset has a reduct – consider Example 122, for
instance. There, Vai = {0, 1, 2, . . . , i, i + 1} for each i ∈ N.

Example 125. Let us consider the information system of Table 2 describing
weather conditions and suitable actions. The table can be interpreted so that
the attributes cloud amount, hard wind, temperature, and rain can be
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viewed as condition attributes and the attributes read a book and play tennis

can be considered as decision attributes . It is clear that in the table the decision
attributes are dependent on the condition attributes. Therefore, we may define
the problem of finding all minimal subsets of the condition attributes on which
the decision attributes are dependent.

Table 2. An information system describing weather conditions and suitable actions

cloud hard read play

amount wind temperature rain a book tennis

1 cloudy no warm yes yes no
2 clear no warm no no yes
3 half cloudy no hot no yes yes
4 cloudy yes cold snow yes no
5 half cloudy no warm no no yes

Next we present a proposition which characterizes in terms of dense families the
minimal subsets C of B which satisfy C → D for a dependency B → D. Note
that Proposition 120 characterizing the reducts of a set B can be obtained as a
special case of this proposition. We may obtain reducts of B simply by finding
for the dependency B → B all minimal subsets C of B such that C → B holds.

Proposition 126. Let H be a dense family of an information system (U, A). If
B → D, then C is a minimal subset of B which satisfies C → D if and only if
C is a minimal set with respect to the property of containing an element from
each difference B − Z, where Z ∈ H and satisfies D − Z �= ∅.

Proof. Suppose that B → D and let C be a minimal subset of B such that
C → D. This means that for all Z ∈ H, C ⊆ Z implies D ⊆ Z. Since C ⊆ B,
the assumption C → D gives that C ∩ (B − Z) = (C ∩ B) − Z = C − Z �= ∅ for
all Z ∈ H such that D − Z �= ∅. Assume that there exists X ⊂ C which satisfies
X ∩ (B − Z) �= ∅ for all Z ∈ H such that D − Z �= ∅. However, X ⊂ C ⊆ B
implies X − Z = X ∩ (B − Z) �= ∅ for all Z ∈ H which satisfy D − Z �= ∅. Thus
X → D, a contradiction!

Conversely, assume that B → D and let C be a minimal set containing an
element from each difference B − Z such that Z ∈ H satisfies D − Z �= ∅. If
C �⊆ B, then C ∩ B ⊂ C and (C ∩ B) ∩ (B − Z) = C ∩ (B − Z) �= ∅ for all
Z ∈ H such that D − Z �= ∅, a contradiction! Hence, C ⊆ B. This implies
C − Z = C ∩ (B − Z) �= ∅ for all Z ∈ H which satisfy D − Z �= ∅. This means
C → D. Suppose that there exists X ⊂ C such that X → D. Then X ⊂ C ⊆ B
implies X ∩ (B − Z) = X − Z �= ∅ whenever D − Z �= ∅, a contradiction! ��

Example 127. Let us return to the information system of Example 125. Let
us denote the attributes cloud amount, hard wind, temperature, rain,
read a book, and play tennis simply by the letters a, b, c, d, e, and f ,
respectively. As we have noted, {a, b, c, d} → {e, f} and our task is to find all
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minimal subsets C of {a, b, c, d} such that C → {e, f}. This can be done by
applying Proposition 126.

The indiscernibility matrix of the information system is the 5 × 5-matrix

m =

⎛
⎜⎜⎜⎜⎝

A bc be aef bc
bc A bdf ∅ bcdef
be bdf A e abdf

aef ∅ e A ∅
bc bcdef abdf ∅ A

⎞
⎟⎟⎟⎟⎠

By Proposition 115, the family

H = {∅, {e} , {b, c} , {b, e} , {a, e, f} , {b, d, f} , {a, b, d, f} , {b, c, d, e, f} , A}
consisting of the entries of m is dense in (U, A).

The differences {e, f} − Z, Z ∈ H are nonempty for Z = ∅, {e}, {b, c},
{b, e}, {b, d, f}, {a, b, d, f}. The corresponding differences {a, b, c, d} − Z are the
following:

(i) {a, b, c, d} − ∅ = {a, b, c, d};
(ii) {a, b, c, d} − {e} = {a, b, c, d};
(iii) {a, b, c, d} − {b, c} = {a, d};
(iv) {a, b, c, d} − {b, e} = {a, c, d};
(v) {a, b, c, d} − {b, d, f} = {a, c};
(vi) {a, b, c, d} − {a, b, d, f} = {c}.

Next we must find all such minimal sets that contain an element from all dif-
ferences (i)–(vi). Because {c} and {a, d} are the minimal differences, it suffices to
consider them only. Clearly, {a, c} and {c, d} are the minimal sets which contain
an element from all of these differences. So, {cloud amount,temperature}
and {temperature,rain} are the minimal subsets C of the four condition
attributes which satisfy C → {read a book, play tennis}.

Similarly, we can see that in this example {cloud amount} and {rain}
are the minimal subsets of condition attributes on which {play tennis} is
dependent.

8.4 Other Types of Information Relations

In this section we shortly deal with many-valued information systems. Formally,
a many-valued information system is a pair (U, A), where U is a set of objects
and A is a set of attributes such that each attribute is a map a: U → ℘(Va).
This means that attributes attach sets of values to objects. For example, if a is
the attribute ‘knowledge of languages’ and a person denoted by x knows English
and Finnish, then a(x) = {English, Finnish}. Notice that it is possible that some
person, say y, does not speak any of the languages belonging Va. Then, a(y) = ∅.

In many-valued information systems it is possible to define different types of
relations reflecting either indistinguishability or distinguishability of objects. In
general, these kinds of relations are referred to as information relations .

Now we may present a list of indistinguishability relations derived from an
information system (U, A). For every B ⊆ A, we define the relations:
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– indiscernibility: (x, y) ∈ ind(B) ⇐⇒ (∀a ∈ B) a(x) = a(y)
– similarity: (x, y) ∈ sim(B) ⇐⇒ (∀a ∈ B) a(x) ∩ a(y) �= ∅
– inclusion: (x, y) ∈ inc(B) ⇐⇒ (∀a ∈ B) a(x) ⊆ a(y)

If a is again the attribute ‘knowledge of languages’, then two objects x and y
are similar with respect to a if they have a common language. Further, x is
inc(a)-related to y, if y can speak any language x speaks; and possibly some
other languages as well.

The following collection of distinguishability relations may be defined in an
information system for any B ⊆ A:

– diversity: (x, y) ∈ div(B) ⇐⇒ (∀a ∈ B) a(x) �= a(y)
– orthogonality: (x, y) ∈ ort(B) ⇐⇒ (∀a ∈ B) a(x) ∩ a(y) = ∅
– negative similarity: (x, y) ∈ nsim(B) ⇐⇒ (∀a ∈ B) a(x) ∩ a(y)c �= ∅

For example, two objects are diverse by their knowledge of languages, if they
cannot speak exactly the same languages, and they are orthogonal, if they do not
share a common language. Further, they are negatively similar, if x can speak a
language that y cannot.

Information relations are similar in the sense that two objects are in a certain
relation with respect to an attribute set B if their values of the B-attributes
are in a specified relation. Next we introduce the general notions of preimage
relations and information frames allowing us to study the general properties of
information relations of many-valued information systems.

Assume that U and X are nonempty sets, A is a subset of XU of all functions
from U to X , and R is a binary relation on X . Then the quadruple (U, X, A, R)
is called an information frame. For all B ⊆ A, the R-preimage relation of B on
U is defined by setting

(x, y) ∈ preR(B) ⇐⇒ (∀f ∈ B) f(x)R f(y).

Proposition 128. If (U, X, A, R) is an information frame, then the map

preR: ℘(A) → Rel(U)op

is a complete join-morphism.

Proof. For any x, y ∈ U and {Bi}i∈I ⊆ ℘(A),

(x, y) ∈ preR

(⋃
i∈I

Bi

)
⇐⇒

(
∀f ∈

⋃
i∈I

Bi

)
f(x)R f(y)

⇐⇒ (∀i ∈ I)(∀f ∈ Bi) f(x)R f(y)
⇐⇒ (∀i ∈ I) (x, y) ∈ preR(Bi)

⇐⇒ (x, y) ∈
⋂
i∈I

preR(Bi). ��
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Because preR: ℘(A) → Rel(U)op is a complete join-morphism, we may define a
dependency relation R−→ on ℘(A) by

B
R−→ C ⇐⇒ preR(B) ⊆ preR(C)

and now B+ =
{
a ∈ A | B

R−→ a
}
. It is clear that the set of all R-preimage

relations is a complete lattice in which∨
i∈I

preR(Bi) = preR

(⋃
i∈I

Bi

)
and ∧

i∈I

preR(Bi) = preR

(⋂
i∈I

B+
i

)
.

We may also introduce matrix representations of preimage relations. Let
(U, X, A, R) be an information frame. The matrix mR = (mxy) of preimage
relations with respect to R is defined so that

mxy = {f ∈ A | f(x)R f(y)}

for all x, y ∈ U . It is clear that (x, y) ∈ preR(B) if and only if B ⊆ mxy.
Because preimage relations determine dependency relations, we may define

dense families for them as in Section 8.2. The following proposition can be proved
in a similar way than Proposition 115.

Proposition 129. Let (U, X, A, R) be an information frame. If mR = (mxy) is
the matrix of preimage relations with respect to R, the family {mxy | x, y ∈ U}
is dense for the dependency relation R−→ .

Since independent sets and reducts are defined by means of dependency relations,
we could present similar results for preimage relation as for indiscernibility re-
lations in Section 8.3. Finally, we show that information relations are preimage
relations.

Example 130. Let (U, A) be a many-valued information system. Let us set V =⋃
a∈A Va. Then every attribute can be considered as a function a: U → ℘(V ).

This means that ℘(V ) has the role of X in the previous considerations.
Let us define the following four relations on ℘(V ):

(X, Y ) ∈ R= ⇐⇒ X = Y ;
(X, Y ) ∈ R∩ ⇐⇒ X ∩ Y �= ∅;
(X, Y ) ∈ R⊆ ⇐⇒ X ⊆ Y.

Now each (U, ℘(V ), A, R), where R may be any of the above-defined relations,
is an information frame. It is easy to see that for all B ⊆ A,

ind(B) = pre(R=)(B) and div(B) = pre(R=)c(B);
sim(B) = pre(R∩)(B) and ort(B) = pre(R∩)c(B);
inc(B) = pre(R⊆)(B) and nsim(B) = pre(R⊆)c(B).
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Bibliographical Notes

Functional dependencies between sets of attributes in relational databases orig-
inate in [9]. Dependency relations can be also found, for instance, in formal
concept analysis [17]. Armstrong axioms were introduced in [2], and in [12] func-
tional dependencies in a more general setting of complete lattices are studied.
There Armstrong systems on a complete lattice L satisfy (AS1) and (AS2), and
they are complete join-sublattices of L×L. Therefore, the definition here is more
general than the one in [12] since it is applicable to any ordered set. However,
by Lemma 103, these two definitions agree in case of complete lattices. Also in
[40] an algebraic treatment of dependency is given. Several results of Section 8.1
appear in [27].

This model for information systems was introduced by Pawlak in [43], where
indiscernibility relations, independent sets, and reducts are defined. Further-
more, his book [45] on theoretical aspects of rough set theory contains more
detailed studies on these subjects. Joins and meets in the complete lattice of all
indiscernibility relations were originally described in [23], where also many of the
results of Section 8.2 appear. Preimage relations and their matrices were pre-
sented in [24] to generalize the notions of indiscernibility matrices and discerni-
bility matrices introduced [49]. Several observations of Section 8.3 are presented
in [24] for preimage relations. In addition, many results of Sections 8.2 and 8.3
appear also in [30]. Many-valued information systems are defined for the first
time in [42] and different types of information relations studied in Section 8.4
can be found in [13].

9 Rough Set Approximations

This section has three subsections:
9.1 Indiscernibility and Approximations
9.2 Generalizations of Approximations
9.3 Definable Sets

9.1 Indiscernibility and Approximations

Rough set theory is a mathematical framework for dealing with uncertainty and
to some extent overlapping fuzzy set theory. In fuzzy set theory vagueness is
expressed by a membership function. The rough set theory approach is based
on indiscernibility relations and approximations. A major advantage of rough
set theory is that it needs no preliminary or additional information about data,
such as membership functions in fuzzy set theory.

The basic idea of rough set theory is that knowledge about objects is repre-
sented by indiscernibility relations. Indiscernibility relations are usually assumed
to be equivalences interpreted so that two objects are equivalent if we cannot
distinguish them by their properties. We may observe objects only by the ac-
curacy given by an indiscernibility relation. This means that our ability to dis-
tinguish objects is blurred – we cannot distinguish individual objects, only their
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equivalence classes. As we have seen, in an information system an indiscernibility
relation arises naturally when one considers a given set of attributes: two objects
are equivalent when their values of all attributes in the set are the same.

Let us consider the situation in Fig. 18. Let ≈ be an equivalence, called in-
discernibility relation, on a universe U . The relation ≈ enables us to divide the
objects of U into three disjoint sets with respect to any given subset X ⊆ U :

(a) the objects that surely are in X ;
(b) the objects that are surely not in X ;
(c) the objects that possibly are in X .

The objects in class (a) form the lower approximation of X , and the objects
of type (a) and (c) form together its upper approximation. The boundary of X
consists of the objects in class (c).
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Fig. 18.

Next we define formally the upper and the lower approximations of an indis-
cernibility relation ≈ on U . As before, we denote for any x ∈ U , the equivalence
class of x by [x]≈ = {y ∈ U | x ≈ y}. Thus, [x]≈ consists of the elements which
cannot be discerned from x. For any subset X of U , let

X� = {x ∈ U | [x]≈ ⊆ X}

and
X� = {x ∈ U | X ∩ [x]≈ �= ∅}.

The sets X� and X� are called the lower and the upper approximation of X ,
respectively. The set B(X) = X� − X� is the boundary of X .

The above definitions mean that x ∈ X� if there is an element in X to which
x is ≈-related. Similarly, x ∈ X� if all the elements to which x is ≈-related are
in X . Furthermore, x ∈ B(X) if both in X and outside X there are elements
which cannot be discerned from x. If B(X) = ∅ for some X ⊆ U , this means
that for any object x ∈ U , we can with certainty decide whether x ∈ X just by
knowing x ‘modulo ≈’.
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Example 131. Let us consider the information system of Table 3 describing some
symptoms of persons vising a doctor’s reception on one afternoon. The attributes
fever, headache, and fatigue can be regarded as the condition attributes and
let us denote the set consisting of these three attributes by C. The attribute flu

can be considered as a decision attribute. Note that the condition attribute is
not dependent on the decision attributes, that is, C �→ flu.

Table 3. An information system describing flu symptoms

U fever headache fatigue flu

1 no yes no no
2 yes no yes yes
3 yes yes yes yes
4 no no yes no
5 yes no yes no
6 yes yes no yes
7 yes yes yes yes

Let us denote by X the set of persons that have a flu, that is,

X = {x | flu(x) = ‘yes’} = {2, 3, 6, 7} .

Further, let us denote the C-indiscernibility relation ind(C) simply by ≈. The
equivalence classes of ≈ are {1}, {2, 5}, {3, 7}, {4}, and {6}. The lower approx-
imation of X is X� = {3, 6, 7}, X ’s upper approximation is X� = {2, 3, 5, 6, 7},
and the boundary of X is {2, 5}. Thus, based on this ‘training example’, persons
indiscernible with 3, 6, or 7 have certainly a flu by their symptoms, persons
indiscernible with 2 and 5 possibly have a flu, and persons indiscernible with 1
or 4 surely not have a flu.

As we already mentioned, indiscernibility relations are commonly assumed to be
equivalences. The literature, however, contains studies in which rough approxi-
mations are defined also by other types of relations. In the following we argue
that there exist indiscernibility relations which are not reflexive, symmetric, or
transitive.

Reflexivity. It may seem reasonable to assume that every object is indiscernible
from itself. But on some occasions this is not true, since it is possible that
our information is so imprecise. For example, we may discern persons by
comparing photographs taken of them. But it may happen that we are unable
to recognize that a same person appears in two different photographs.

Symmetry. Usually it is supposed that indiscernibility relations are symmet-
ric, which means that if we cannot discern x from y, then we cannot discern
y from x either. But indiscernibility relations may be directional. For ex-
ample, if a person x speaks English and Finnish, and a person y speaks
English, Finnish, and German, then x cannot distinguish y from himself by
the property ‘knowledge of languages’ since y can communicate with x in
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any language that x speaks. On the other hand, y can distinguish x from
himself by asking a simple question in German, for example.

Transitivity. Transitivity is the least obvious of the three properties usually
associated with indiscernibility relations. For example, we may have a se-
quence x1, . . . , xn of objects such that x1 ≈ x2, x2 ≈ x3, . . . , xn−1 ≈ xn, but
x1 �≈ xn. This can be interpreted so that always two consecutive objects xi

and xi+1 are so similar that there is no way to distinguish them, but if we
take objects at the utmost ends, the objects are already distinguishable by
their properties.

9.2 Generalizations of Approximations

This section is devoted to the properties of approximations determined by ar-
bitrary binary relations. We start by defining the approximations. Let R be a
binary relation on U , and let us denote for all x ∈ U ,

R(x) = {y ∈ U | xR y}.

The upper approximation of X ⊆ U is

X� = {x ∈ U | R(x) ∩ X �= ∅}

and the lower approximation of X is

X� = {x ∈ U | R(x) ⊆ X}.

The set B(X) = X� − X� is the boundary of X .
The next proposition lists basic properties of rough approximations. Note that

in the sequel we denote

℘(U)� =
{
X� | X ⊆ U

}
and ℘(U)� =

{
X� | X ⊆ U

}
.

Proposition 132. If R is a binary relation on U , then following assertions
hold.

(a) The maps �: ℘(U) → ℘(U) and �: ℘(U) → ℘(U) are mutually dual.
(b) The boundary of any set is equal to the boundary of its complement.
(c) The map �: ℘(U) → ℘(U) is a complete meet-morphism.
(d) The map �: ℘(U) → ℘(U) is a complete join-morphism.
(e) The maps �: ℘(U) → ℘(U) and �: ℘(U) → ℘(U) are order-preserving.
(f) The family ℘(U)� is a closure system and ℘(U)� is an interior system.
(g) The complete lattices ℘(U)� and ℘(U)� are dually isomorphic.

Proof. (a) x ∈ X�c ⇐⇒ x /∈ X� ⇐⇒ R(x) �⊆ X ⇐⇒ R(x) ∩ Xc �= ∅ ⇐⇒
x ∈ Xc�. Further, X�c = Xcc�c = Xc�cc = Xc�.

(b) B(X) = X� − X� = X� ∩ X�c = Xc�c ∩ Xc� = Xc� − Xc� = B(Xc).
(c) x ∈ (

⋂
H)� ⇐⇒ R(x) ⊆

⋂
H ⇐⇒ (∀X ∈ H) R(x) ⊆ X ⇐⇒

(∀X ∈ H) x ∈ X� ⇐⇒ x ∈
⋂

H�.
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(d) x ∈ (
⋃

H)� ⇐⇒ R(x) ∩
⋃

H �= ∅ ⇐⇒ (∃X ∈ H) R(x) ∩ X �= ∅ ⇐⇒
(∃X ∈ H) x ∈ X� ⇐⇒ x ∈

⋃
H�.

(e) If X ⊆ Y , then X�∩Y � = (X∩Y )� = X� and X�∪Y � = (X∪Y )� = Y �.
Thus, X� ⊆ Y � and X� ⊆ Y �.

(f) Claim is obvious by (c) and (d).
(g) We show that the map φ: X� �→ Xc� is an order-isomorphism between

(℘(U)�, ⊆) and (℘(U)�, ⊇). Clearly, X� ⊆ Y � if and only if φ(X�) = Xc� =
X�c ⊇ Y �c = Y c� = φ(Y �). Thus, φ is an order-embedding. Further, if X� ∈
℘(U)�, then φ(Xc�) = Xcc� = X�, that is, φ is onto. ��

In the previous proposition, (a) is interpreted so that if an element does not
belong with certainty to a set, it belongs possibly to the complement of that set,
and if an element does not belong possibly to a set, then it belongs with certainty
to the complement. Assertion (b) means that if we cannot decide whether an
element belongs to a set, we cannot decide whether the element is in the set’s
complement either. Claim (c) says that elements belong possibly to the union
of some sets if they belong possibly to at least one of the sets in question. An
element belongs with certainty to the intersection of sets if it is with certainty in
all sets; this is stated in (d). Furthermore, because � is a complete join-morphism,
it is bottom-preserving, that is, ∅� = ∅. Similarly, � is top-preserving, meaning
U� = U . Concerning (f), notice that X �→ X� is not necessarily a closure
operator; the closure operator corresponding ℘(U)� is defined by

X �→
⋂{

Y � | X ⊆ Y �} .

Example 133. Let U = {a, b, c, d} and assume that R is a binary relation on U of
Fig. 19. The dually order-isomorphic complete lattices ℘(U)� and ℘(U)� are also
presented there. For simplicity, sets are denoted by sequences of their elements.
As we have noted, ℘(U)� is a closure system and ℘(U)� is an interior system.
The lattices ℘(U)� and ℘(U)� are not distributive, because they contain M3 as
a sublattice. It is also easy to observe that these lattices are not complemented.

Since �: ℘(U) → ℘(U) is a complete join-morphism, it induces a Galois connec-
tion by Proposition 84. Similarly, the complete meet-morphism �: ℘(U) → ℘(U)

U

{d}

∅

℘(U)�

c

a b

d

R ℘(U)�

∅

{a, b, c}

U

{b, d}{a, d}

{a, b} {a, c} {b, c}

{c, d}

Fig. 19.
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must determine a Galois connection. Next we will find their adjoint and co-
adjoint, respectively.

As before, we denote by R−1 the inverse relation of R and

R−1(x) = {y | y R x}.

Next we define the upper and the lower approximations of R−1 canonically. Let
R be a binary relation on U and let X ⊆ U . Then,

X� =
{
x ∈ U | R−1(x) ∩ X �= ∅

}
and

X� =
{
x ∈ U | R−1(x) ⊆ X

}
.

Notice that if R is symmetric, then R = R−1 which means that X� = X� and
X� = X� for all X ⊆ U . It is also trivial that the operators � and � have the
properties of Proposition 132.

Now we can write the following important observation.

Proposition 134. For any binary relation on U , the pairs (�,�) and (�,�) are
Galois connections on ℘(U).

Proof. We show that (�,�) is a Galois connection. The other part can be proved
analogously. The maps X �→ X� and X �→ X� are order-preserving by Propo-
sition 132. If x ∈ X��, then there exists y ∈ X� such that (x, y) ∈ R. Because
y ∈ X� and (y, x) ∈ R−1, we have x ∈ X . Hence, X�� ⊆ X . This also gives
X��c = Xc�� ⊆ Xc, that is, X ⊆ X��. Hence, by Lemma 79, (�,�) is a Galois
connection. ��

Since � is the dual of �, we can write the following corollary by Proposition 89.

Corollary 135. For any binary relation, � and � are conjugate.

Because the pairs (�,�) and (�,�) form Galois connections on ℘(U), the maps
X �→ X�� and X �→ X�� are closure operators, and X �→ X�� and X �→ X��

are interior operators. Furthermore,

X� = X���, X� = X���, X� = X���, and X� = X���

for all X ⊆ U . It also follows from the general properties of Galois connections
that the map X� �→ X�� is an order-isomorphism between (℘(U)�, ⊆) and
(℘(U)�, ⊆), and X� �→ X�� is an order-isomorphism between (℘(U)�, ⊆) and
(℘(U)�, ⊆). Thus,

(℘(U)�, ⊆) ∼= (℘(U)�, ⊆) ∼= (℘(U)�, ⊇) ∼= (℘(U)�, ⊇).

Note that if R is symmetric, then X� = X� and X� = X� for all X ⊆ U , which
yields

(℘(U)�, ⊆) = (℘(U)�, ⊆) ∼= (℘(U)�, ⊆) = (℘(U)�, ⊆).
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Hence, for a symmetric R, the ordered sets (℘(U)�, ⊆) = (℘(U)�, ⊆) and
(℘(U)�, ⊆) = (℘(U)�, ⊆) are self-dual. Furthermore, because the conjugate of �

is �, and � is equal to � for symmetric relations, we obtain that � is self-conjugate
in case R is symmetric.

It is clear that for any x ∈ U , {x}� = R−1(x) and {x}� = R(x). Hence, for
all X ⊆ U and for any arbitrary binary relation R on U ,

X� =
⋃

x∈X

R(x) and X� =
⋃

x∈X

R−1(x).

Below we show how properties of binary relations are expressed by rough
approximations, and conversely.

Proposition 136. If R is a binary relation on U , then the following assertions
are equivalent:

(a) R is connected;
(b) X� ⊆ X� for all X ⊆ U .

Proof. (a) =⇒ (b): Let x ∈ X�. Then R(x) ⊆ X , which gives R(x) ∩ X =
R(x) �= ∅, that is, x ∈ X�.
(b) =⇒ (a): Assume that R is not connected, that is, R(x) = ∅ for some x ∈ U .
This means that x ∈ X� and x /∈ X� for this particular x and for any set
X ⊆ U , a contradiction! ��

Each set is bounded by its approximations determined by a reflexive relation, as
seen in the next proposition.

Proposition 137. If R is a binary relation on U , then the following assertions
are equivalent:

(a) R is reflexive;
(b) X ⊆ X� for all X ⊆ U ;
(c) X� ⊆ X for all X ⊆ U .

Proof. (a) =⇒ (b): If x ∈ X , then x ∈ R(x) ∩ X �= ∅, that is, x ∈ X�.
(b) =⇒ (c): Obviously, Xc ⊆ Xc� = X�c, which is equivalent to X� ⊆ X .
(c) =⇒ (a): If R is not reflexive, then there exists x ∈ U such that (x, x) /∈ R.
Let us consider the set X = U − {x}. For all y ∈ U , (x, y) ∈ R implies y ∈ X .
Thus, x ∈ X� and x /∈ X , a contradiction! ��

Proposition 138. If R is a binary relation on U , then the following assertions
are equivalent:

(a) R is symmetric;
(b) (�,�) is a Galois connection on (℘(U), ⊆).

Proof. (a) =⇒ (b): If R is symmetric, then X� = X� and X� = X� for all
X ⊆ U . Thus, the implication is clear by Proposition 134.
(b) =⇒ (a): Assume that R is not symmetric. Then, for some x, y ∈ U , (x, y) ∈ R,
but (y, x) /∈ R. Let us consider the set X = {x}. For all z ∈ U , (y, z) ∈ R implies
z /∈ X . This gives y /∈ X�. Hence, x ∈ X and x /∈ X��, a contradiction! ��
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Proposition 139. If R is a binary relation on U , then the following assertions
are equivalent:

(a) R is transitive;
(b) X�� ⊆ X� for all X ⊆ U ;
(c) X� ⊆ X�� for all X ⊆ U .

Proof. (a) =⇒ (b): Let x ∈ X��. This means that there exists y ∈ X� such that
(x, y) ∈ R. Because y ∈ X�, there is z ∈ X such that (y, z) ∈ R. Now, (x, z) ∈ R
by the transitivity of R. Hence, x ∈ X�.
(b) =⇒ (c): Obviously, X��c = Xc�� ⊆ Xc� = X�c, which means X� ⊆ X��.
(c) =⇒ (a): Assume that R is not transitive. Then there exist x, y, z ∈ U such
that (x, y) ∈ R and (y, z) ∈ R, but (x, z) /∈ R. Let us consider the set X =
U − {z}. Then for all w ∈ U , (x, w) implies w ∈ X . This implies x ∈ X�.
Obviously, y /∈ X� and hence x /∈ X��, a contradiction! ��

Note also that R is reflexive if and only if R−1 is reflexive, and similar condi-
tions hold also for symmetry and transitivity. Therefore, we could state similar
correspondences between R and the operators X �→ X� and X �→ X�. However,
the connectedness of R does not imply the connectedness of R−1. Therefore,

(∀X ⊆ U)X� ⊆ X� ⇐⇒ R−1 is connected.

Propositions 137 and 139 have the following corollary:

Corollary 140. If R is a binary relation on U , then the following assertions
are then equivalent:

(a) R is a preorder;
(b) The map X �→ X� is a closure operator;
(c) The map X �→ X� is an interior operator.

In fact, since �: ℘(U) → ℘(U) is a complete join-morphism and �: ℘(U) → ℘(U)
is a complete meet-morphism, we may write that the following are equivalent:

(a) R is a preorder;
(b) The map X �→ X� is an Alexandrov closure operator;
(c) The map X �→ X� is an Alexandrov interior operator.

We end this subsection by considering how rough approximation operators
relate to fuzzy sets.

Example 141. Let ≤ be a preorder on a set L. Then the pair (L, ≤) is called a
preordered set . An L-fuzzy set ϕ on U is a mapping ϕ : U → L. We may order
the family of all L-fuzzy sets on U by the pointwise order:

ϕ ≤ ψ ⇐⇒ (∀x ∈ U) ϕ(x) ≤ ψ(x).

If L is equal to {0, 1}, then each L-fuzzy set is simply the characteristic function
of some conventional subset of U and the pointwise ordered set of all {0, 1}-sets
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on U can be identified with (℘(U), ⊆). Each L-fuzzy set ϕ: U → L determines
naturally also a preorder � on U is defined by setting for all x, y ∈ U ,

x � y ⇐⇒ ϕ(x) ≤ ϕ(y).

Note that � can be regarded as the ≤-preimage relation of ϕ.
Typically, L may consists of adjectives such as ‘good’, ‘excellent’, ‘poor’, and

‘adequate’, for example. Assume that ϕ: U → L is an L-fuzzy set describing
what is the ability of persons in U to speak Finnish. For example, there may
exist persons x and y in U such that ϕ(x) = ‘adequate’ and ϕ(y) = ‘excellent’.
Now it is clear that x � y.

For any L-fuzzy set ϕ: U → L, we may define the operators �, �, �, and �

determined by the relation � by

X� = {x ∈ U | x � y implies y ∈ X} ;
X� = {x ∈ U | there is y ∈ X such that x � y} ;
X� = {x ∈ U | x � y implies y ∈ X} ;
X� = {x ∈ U | there is y ∈ X such that x � y} .

For example, if ϕ is the L-fuzzy set describing what is the ability of persons to
speak Finnish, then x ∈ X� if all persons in U that can speak Finnish at least as
well as x are in X , and x ∈ X� if there is y ∈ X such that x can speak Finnish
as well as y.

9.3 Definable Sets

In this section we consider sets X ⊆ U such that X� = X , that is, the fixpoints
of the map X �→ X�. These are important because the set X� is interpreted
as a set of elements possibly belonging to X when objects are observed by the
accuracy given by an indiscernibility relation. A fixpoint X = X� is called
definable, because the set X and the set of elements possibly in X are equal. Let
us denote

Def =
{
X ⊆ U | X� = X

}
.

Recall that
X� = {x ∈ U | xR y for some y ∈ X} .

Thus, each definable set X = X� is such that

– Each element of X is R-related to some element of X .
– Elements outside X are not R-related to elements in X .

In fact, if X is definable, then

X =
⋃

x∈X

{x}� =
⋃

x∈X

R−1(x).
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{a, c, d}

U

{d}

{b, d, e}

∅

{a, c}

{a, b, c, e}

{b, e}

Fig. 20.

Example 142. Let ≈ be an equivalence on {a, b, c, d, e} such that its equivalence
classes are {a, c}, {b, e}, and {d}. The family Def is depicted in Fig. 20.

Because ≈ is an equivalence, the map � is self-conjugate and it can be con-
sidered as the smallest-neighborhood operator of the Alexandrov topology

Def =
{
X� | X ⊆ U

}
.

Further, by Proposition 98, Def is a complete Boolean sublattice of ℘(U). This
means that Def is a complete field of sets and thus, by Proposition 41, it is a
complete atomic Boolean lattice.

Let X ⊆ U . Since ≈ is symmetric,

X� =
⋃

x∈X

[x]≈.

Furthermore, the fact that Def is a complete field of sets gives

X� =
⋂

{Y ∈ Def | X ⊆ Y } .

By Proposition 41 we have that the atoms of Def are the ≈-equivalence classes.
Notice that if ≈ is the indiscernibility relation determined by some subset B of
the attribute set A in an information system (U, A), the definable sets can be
described by using the values of B-attributes.

The previous example shows that Def is a complete atomic Boolean lattice when-
ever indiscernibility relations are equivalences. Next we give a systematic study
on the properties of definable sets determined by arbitrary relations. We begin
with the following proposition which follows directly from Proposition 62.

Proposition 143. For any binary relation, the set Def is a complete lattice
with respect to the set-inclusion relation.

The previous proposition does not guarantee that Def is a sublattice of ℘(U).
However, we can also present the following stronger result by Proposition 64,
since � is always a complete ∪-morphism.
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Proposition 144. For any binary relation, the set Def is a closed under arbi-
trary joins.

For an arbitrary relation, Def is not closed under intersections. For example,
it may happen that an element x belonging to the intersection X ∩ Y of two
definable sets X and Y is related to only one element in X − (X ∩Y ) and to just
one element in Y − (X ∩ Y ). This means that x is not R-related to any element
is X ∩ Y , see Fig. 21.

YX

x

Fig. 21.

Next point out that for reflexive relations, the definable sets are also closed
under arbitrary intersections.

Proposition 145. For a reflexive relation, Def is a complete sublattice of ℘(U).

Proof. If R is reflexive, then by Proposition 137, X ⊆ X� for all X ⊆ U , that
is, X �→ X� is extensive. Since X �→ X� is also a complete join-morphism, the
claim is clear by Corollary 65. ��

Thus, definable sets determined by reflexive relations form an Alexandrov topol-
ogy, that is, a complete ring of sets. For a reflexive relation, we may also write
by Corollary 94 the following:

(∀X ⊆ U) X = X� ⇐⇒ X� = X ⇐⇒ X� = X�.

This means that Def consists of elements satisfying one of these conditions.
It is known that for tolerances the pair (�,�) is a Galois connection. Further,

� is self-conjugate and by Proposition 98 we can get the following fact.

Proposition 146. For a tolerance, Def is a complete field of sets.

Proposition 145 states that Def is an Alexandrov topology when the relation
R is reflexive. However, by the correspondence of Corollary 140, Def does not
equal {X� | X ⊆ U} unless the relation is reflexive and transitive. Therefore,
it is natural to ask what are the interior, closure, and smallest-neighbourhood
operators in the Alexandrov topology Def determined by a reflexive relation.
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In the following we consider approximations and definable sets determined by
reflexive indiscernibility relations. We denote

X�(i) = X

i times︷ ︸︸ ︷
��···�

for all X ⊆ U and i ≥ 0. Because � is an extensive complete join-morphism, the
map X�: ℘(U) → ℘(U) defined by

X� =
⋃{

X�(i) | i ≥ 0
}

is such that X� is the least fixpoint of � above X ⊆ U by Lemma 76. Therefore,
by Proposition 77, we can get the following.

Proposition 147. For any reflexive relation on U , the map � is the
smallest-neighbourhood operator of the Alexandrov topology Def. Furthermore,{
{x}� }

x∈X
is the smallest base of Def.

Notice that by Proposition 146, Def is a complete atomic Boolean lattice for
tolerances. Clearly,

{
{x}� }

x∈X
is the set of its atoms.

The set {Xc | X ∈ Def} of closed elements of the topology Def consists of the
fixpoints of the conjugate � of � by Lemma 99. Let us denote

X� =
⋃{

X�(i) | i ≥ 0
}

,

where

X�(i) = X

i times︷ ︸︸ ︷
��···�.

The next proposition is now obvious.

Proposition 148. For a reflexive relation on U , the map � is the Alexandrov
closure operator of Def.

Let us define the map �: ℘(U) → ℘(U) by

X� =
⋂{

X�(i) | i ≥ 0
}
,

where

X�(i) = X

i times︷ ︸︸ ︷
��···�.

It is clear that X�(i) is the dual of X�(i) for all i ≥ 0, which implies easily that
X� and X� are dual. Therefore, we can write the following proposition, since
the dual of the closure operator of a topology is the topology’s interior operator.

Proposition 149. For a reflexive relation on U , the map � is the Alexandrov
interior operator of Def.
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Let us consider approximation determined by preorders. Then it is clear that
X� = X�, X� = X�, and X� = X� for all X ⊆ U . This implies the following
proposition.

Proposition 150. For a preorder, � is the smallest-neighbourhood operator, �

is the closure operator, and � is the interior operator of Def.

The previous proposition gives that for preorders on U ,

Def = ℘(U)� = ℘(U)�.

Then for all X ⊆ U ,

X�� = X� and X�� = X�

and analogously,
X�� = X� and X�� = X�.

It is also clear that ℘(U)� = ℘(U)� and ℘(U)� = ℘(U)� are dual topologies in
the sense of Section 5.3.

Notice that for an equivalence, Def is a complete atomic Boolean lattice such
that

{
{x}� }

x∈X
is the set of its atoms, as we already mentioned in Example 142.

Furthermore,
℘(U)� = ℘(U)� = ℘(U)� = ℘(U)�.

Finally, we present an example considering definable sets of L-fuzzy sets in-
troduced in Example 141.

Example 151. If ϕ: U → L is an L-fuzzy set, then � is a preorder, and thus

Def = ℘(U)� = ℘(U)�.

Recall that

X� = {x ∈ U | there is y ∈ X such that x � y}

and
X� = {x ∈ U | x � y implies y ∈ X} .

Let X ∈ Def, that is, X = X�. If x ∈ X and x � y, then necessarily y ∈ X .
Thus, Def consists of down-sets of �. So, also for L-fuzzy sets, definability has
a nice interpretation.

Bibliographical Notes

Rough sets defined by equivalences were introduced in [44], where also the es-
sential properties of rough set approximations and definable sets were given.

In the literature can be found several papers which consider rough approxima-
tions determined by relations that are not necessarily equivalences. For instance,
rough approximations defined by tolerances are studied in [26,47,50]. The paper
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[51] considers approximations induced by reflexive binary relations and in [60]
approximations based on arbitrary binary relations are investigated. Further-
more, in [13] operators determined by frames of information relations reflecting
distinguishability or indistinguishability of objects of a many-valued informa-
tion system are examined. Additionally, motivated by the fact that R(x) can be
regarded as a neighbourhood of x, relational interpretations of neighbourhood
operators were considered in [58]. Interestingly, in [10] so-called knowledge repre-
sentation algebras are studied, where the usual powerset algebra of the universe
is equipped with an upper approximation operator.

In [28] and [31], approximations are studied in a more general setting of com-
plete atomic Boolean lattices. The fact that (�,�) and (�,�) are Galois connec-
tions appears already in [14], and in [34] it is noted that � and � are conjugate.
In [55] correspondence results for modal logic are given. Definable sets deter-
mined by preorders are studied in [32], and in [36] it is shown that definable
sets determined by reflexive relations form an Alexandrov topology. It should
be noted that already Birkhoff noticed in [6] that if R is a preorder, then � is
a closure operator in a unique Alexandrov topology. It was also shown in [52]
that the ordered sets of all Alexandrov topologies and preorders on a given set
are dually isomorphic. Note also that in [57] generalizations of Pawlak’s approx-
imation operators are reviewed from lattice-theoretical and topological point of
view.

Fuzzy sets were defined originally by Zadeh in [61] as mappings from a non-
empty set U into the unit interval [0, 1]. Goguen generalized fuzzy sets to L-fuzzy
sets in [20], where L is a ‘transitive partially ordered set’. The relational view
of fuzzy sets considered here was introduced in [37,38]. The approximations and
Alexandrov spaces determined by L-fuzzy sets are also studied in [33].

Finally, some authors have studied connections between rough sets and formal
concepts. In particular, modal-like operators are considered with respect to two
universes; see [59], where more references can be found.

10 Lattices of Rough Sets

In this final section we study the following issues:

10.1 Orders for Rough Sets
10.2 Rough Sets Determined by Equivalences
10.3 Rough Sets Determined by Arbitrary Binary Relations

10.1 Orders for Rough Sets

Let R be any binary relation on a universe U . Let us define a binary relation ≡
on the powerset ℘(U) of U by setting

X ≡ Y if and only if X� = Y � and X� = Y �.

Obviously, ≡ is an equivalence on U called rough equality relation. The equiva-
lence classes of ≡ are called rough sets . The set of all rough sets if denoted by R.
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The idea is that if subsets of U are observed within the limitation given by the
knowledge represented by R, then the sets in the same rough set look the same;
X ≡ Y means that exactly the same elements belong certainly to X and to Y ,
and that precisely the same elements are possibly in X and in Y . Therefore, ≡
can also be viewed as an indiscernibility relation, but now between subsets of
the universe.

In the sequel, we denote the ≡-class of X ⊆ U simply by [X ]. Next we study
the structure of rough sets R = { [X ] | X ⊆ U} more carefully. Let us begin with
defining the rough inclusion relation � on R by setting

[X ] � [Y ] if and only if X� ⊆ Y � and X� ⊆ Y �.

The relation is well-defined, because the ≡-classes consist of elements which have
the same lower and upper approximations.

Lemma 152. The relation � is an order on R.

Proof. We have to show that � is reflexive, antisymmetric, and transitive. It is
trivial that � is reflexive. Suppose [X ] � [Y ] and [Y ] � [X ] for some X, Y ⊆ U .
Then, X� ⊆ Y � ⊆ X� and X� ⊆ Y � ⊆ X�, which means X ≡ Y and [X ] = [Y ].
If [X ] � [Y ] and [Y ] � [Z] for some X, Y, Z ⊆ U , then X� ⊆ Y � ⊆ Z� and
X� ⊆ Y � ⊆ Z�, that is, [X ] � [Z]. ��

Next we try to find out whether R is a lattice with respect to the order �. At
first glance it seems tempting to define the operators ∨ and ∧ in R pointwise by

[X ] ∨ [Y ] = [X ∪ Y ] and [X ] ∧ [Y ] = [X ∩ Y ].

Unfortunately, this definition is not well-defined since it depends in general on the
choice of representatives of ≡-classes. For instance, let us consider the equivalence
on {a, b, c, d} which has the equivalence classes {a, d} and {b, c}. Then obviously

{a, b} ≡ {a, c} ≡ {b, d} ≡ {c, d} ,

because they all have the lower approximation ∅ and the upper approximation
{a, b, c, d}. This would imply [{a, b}]∧ [{c, d}] = [{a, b}∩{c, d}] = [∅], which is of
course senseless. However, in case of equivalences, we are able to find a uniform
well-behaving family of representatives of ≡-classes, as we will see in the sequel.

We may also define another order for R. Let R be a binary relation on U .
Then the pair (X�, X�) is called the approximation of X . Let us denote by A
the set of all approximations, that is,

A =
{
(X�, X�) | X ⊆ U

}
.

Because A ⊆ ℘(U) × ℘(U), the set A may be ordered by the same order as
℘(U) × ℘(U). A natural question is, whether A is a sublattice of ℘(U) × ℘(U)?
We will study this question in the next section. By the next, lemma the presented
two orders are essentially the same.
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Lemma 153. For any binary relation, (R, �) ∼= (A, ≤).

Proof. We show that the map [X ] �→ (X�, X�) is an order-isomorphism. For
all X, Y ⊆ U , it is trivial that [X ] ⊆ [Y ] if and only if (X�, X�) ≤ (Y �, Y �).
Further, if (X�, X�) ∈ A, then clearly it is the image of [X ], that is, the map is
onto. ��

This section is ended by a lemma showing that R ∼= Rop and A ∼= Aop.

Lemma 154. For any binary relation, R and A are self-dual.

Proof. We show that A is self-dual. Let us define a map φ: A → A by

(X�, X�) �→ (Xc�, Xc�).

The map φ is onto A, because φ(Xc�, Xc�) = (X�, X�) for all (X�, X�) ∈ A.
Clearly,

(X�, X�) ≤ (Y �, Y �) ⇐⇒ X� ⊆ Y � and X� ⊆ Y �

⇐⇒ Y �c ⊆ X�c and Y �c ⊆ X�c

⇐⇒ Y c� ⊆ Xc� and Y c� ⊆ Xc�

⇐⇒ (Y c�, Y c�) ≤ (Xc�, Xc�)
⇐⇒ φ(Y �, Y �) ≤ φ(X�, X�).

Since R is isomorphic to A, it is also self-dual. ��

In the following subsections, we study the order-theoretical properties of R and A
with respect to the properties of binary relations inducing these approximations
and rough sets.

10.2 Rough Sets Determined by Equivalences

We study here approximations and rough sets defined by equivalences. We show
that for equivalences, we can for any ≡-class pick a representative of that class
such that the family of representatives forms a complete sublattice of ℘(U). This
will imply also that R and A can be embedded into a complete lattice of sets.
We also show that they are Stone lattices. First we recall the Axiom of Choice
by Zermelo:

Axiom of Choice. Let P be any set. Then there exists a function f which
selects from each nonempty subset S ⊆ P a member f(S) of S.

Let E be an equivalence on U . We denote by U/E the set of all equivalence
classes of E. By the Axiom of Choice, there exists a function

f : U/E → U

such that f(C) ∈ C for every E-class C. Any such function f is called a choice
function for E. The range {f(C) | C ∈ U/E} of f is denoted by Rg(f).
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Let us denote for any X ⊆ U ,

X = X� ∪ (X� ∩ Rg(f)).

The definition means that X contains all equivalence classes included in X , and
from the classes intersecting X only one element is chosen.

Let us also denote
℘f (U) =

{
X | X ⊆ U

}
.

It is clear that for any definable set X , X = X because X� = X�.

Example 155. Let E be an equivalence on U = {a, b, c, d} with the equivalence
classes {a, d} and {b, c}. Further, let f : U/E → U be a choice function such that
f({a, d}) = a and f({b, c}) = b. The ordered set ℘f(U) is depicted in Fig. 22.
Clearly, ℘f(U) is order-isomorphic to 3 × 3.

{b, c}

∅

{b}

{a, b}{a, d}

{a}

U

{a, b, d} {a, b, c}

Fig. 22.

Lemma 156. Let f be a choice function for an equivalence on U .

(a) For any X ⊆ U , X ≡ X.
(b) For each X ⊆ U , the set X is the unique member of ℘f (U) in [X ].
(c) R ∼= ℘f(U).
(d) X = X.
(e) X ⊆ Y implies X ⊆ Y .

Proof. (a) By definition, X� ⊆ X. On the other hand, X − X� cannot con-
tain any complete equivalence classes, because Rg(f) contains just one element
from each class, and there cannot be any singleton classes included in X − X�.
Therefore, X� = X

�
. If x ∈ X�, then the equivalence class of x intersects with

X , but this implies that the equivalence class of x intersects also with X . Thus,
X� ⊆ X

�
. Because X ⊆ X�, X

� ⊆ X�� = X�.
(b) By (a), X is always in the same ≡-class as X . If X ≡ Y , then Y =

Y � ∪ (Y � ∩ Rg(f)) = X� ∪ (X� ∩ Rg(f)) = X.
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(c) We show that the map [X ] �→ X is an order-isomorphism. It is now obvious
that the map is onto ℘f (U). If [X ] � [Y ], then X� ⊆ Y � and X� ⊆ Y �. This
gives,

X = X� ∪ (X� ∩ Rg(f)) ⊆ Y � ∪ (Y � ∩ Rg(f)) = Y .

Conversely, if X � Y , then

X� = X
� ⊆ Y

�
= Y � and X� = X

� ⊆ Y
�

= Y �.

Claim (d) is obvious by (a) and (b). If X ⊆ Y , then X� ⊆ Y � and X� ⊆ Y �.
This gives X ⊆ Y which proves (e). ��

Note that X → X is not a closure operator, because X ⊆ X does not usually
hold. The following lemma will also be useful.

Lemma 157. Let E be an equivalence on U .

(a) If X is definable, then for all Y ⊆ U ,

(X ∪ Y )� = X� ∪ Y � and (X ∪ Y )� = X� ∩ Y �.

(b) If E(x) = {x}, then for all X ⊆ U , x ∈ X� if and only if x ∈ X�.

Proof. It is known that X�∪Y � ⊆ (X ∪Y )�. Let x ∈ (X ∪Y )�. If E(x)∩X �= ∅,
then E(x) ⊆ X and x ∈ X�, because X is definable. If E(x) ∩ X = ∅, then
E(x) ⊆ Y and x ∈ Y �. Hence, in both cases x ∈ X� ∪ Y �.

It is also clear that (X∩Y )� ⊆ X�∩Y �. Let x ∈ X�∩Y �. Then E(x)∩X �= ∅
and E(x) ∩ Y �= ∅. Since X is definable, E(x) ⊆ X , and E(x) ∩ (X ∩ Y ) =
(E(x) ∩ X) ∩ Y = E(x) ∩ Y �= ∅. Thus, x ∈ (X ∩ Y )�.

Claim (b) is obvious by the definition of approximations. ��

The following lemma presents important properties of representatives.

Lemma 158. Let f be a choice function for an equivalence on U . Then for all
families {Xi | i ∈ I} ⊆ ℘(U),(⋃

i∈I

Xi

)� =
⋃
i∈I

X�
i and

(⋂
i∈I

Xi

)� =
⋂
i∈I

X�
i .

Proof. Let us omit the subscripts i ∈ I from the unions. Then(⋃
Xi

)� =
(⋃

(X�
i ∪ (X�

i ∩ Rg(f)) )
)�

=
(⋃

X�
i ∪

⋃
(X�

i ∩ Rg(f))
)�

=
(⋃

X�
i

)� ∪
(⋃

(X�
i ∩ Rg(f))

)�
=
⋃

X�
i ∪

(⋃
X�

i ∩ Rg(f)
)�

.

Recall that
⋃

X�
i is definable. If x ∈

(⋃
X�

i ∩Rg(f)
)�, then necessarily E(x) ⊆

Rg(f) by Lemma 157, which implies E(x) = {x}. It is also clear that x ∈ X�
i
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for some i ∈ I, which implies x ∈ X�
i with any such i. So, x ∈

⋃
X�

i . Hence,(⋃
X�

i ∩ Rg(f)
)� ⊆

⋃
X�

i which implies the desired equality.
For the other part,

(⋂
Xi

)� =
(⋂

(X�
i ∪ (X�

i ∩ Rg(f)) )
)�

=
(⋂

((X�
i ∪ X�

i ) ∩ (X�
i ∪ Rg(f)) )

)�
=
(⋂

(X�
i ∩ (X�

i ∪ Rg(f)) )
)�

=
(⋂

X�
i ∩

⋂
(X�

i ∪ Rg(f))
)�

=
(⋂

X�
i

)� ∩
(⋂

(X�
i ∪ Rg(f))

)�
=
⋂

X�
i ∩

(⋂
X�

i ∪ Rg(f)
)�

=
⋂

X�
i ∩ U

=
⋂

X�
i . ��

The previous lemma has several consequences.

Proposition 159. Let f be a choice function for an equivalence on U . Then
℘f (U) is a complete ring of sets.

Proof. Let
{
Xi | i ∈ I

}
be a subfamily of ℘f (U). Then by Proposition 132 and

Lemma 158, ⋃
Xi =

⋃(
X�

i ∪ (X�
i ∩ Rg(f))

)
=
⋃

X�
i ∪

⋃(
X�

i ∩ Rg(f)
)

=
(⋃

Xi

)� ∪
(⋃

X�
i ∩ Rg(f)

)
=
(⋃

Xi

)� ∪
(⋃

Xi
� ∩ Rg(f)

)
=
(⋃

Xi

)� ∪
(
(
⋃

Xi)� ∩ Rg(f)
)

=
(⋃

Xi

)
.

Hence,
⋃

Xi ∈ ℘f(U). The other part can be proved in a similar way:
⋂

Xi =
⋂(

X�
i ∪ (X�

i ∩ Rg(f))
)

=
⋂(

(X�
i ∪ X�

i ) ∩ (X�
i ∪ Rg(f))

)
=
⋂

X�
i ∩

⋂
(X�

i ∪ Rg(f))

=
⋂

X�
i ∩

(⋂
X�

i ∪ Rg(f)
)

=
(⋂

Xi

)� ∩
(⋂

Xi
� ∪ Rg(f)

)
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=
(⋂

Xi

)� ∩
(
(
⋂

Xi)� ∪ Rg(f)
)

=
(
(
⋂

Xi)� ∩ (
⋂

Xi)�) ∪
(
(
⋂

Xi)� ∪ Rg(f)
)

=
(⋂

Xi

)� ∪
(
(
⋂

Xi)� ∪ Rg(f)
)

=
(⋂

Xi

)
. ��

Because ℘f (U) is a complete sublattice of ℘(U), and ℘f (U) ∼= R ∼= A by Lemmas
153 and 156, then also R and A are distributive lattices that can be embedded
into ℘(U). Further, since R and A are isomorphic to a complete ring of sets,
their elements can be represented as a join of some – or none – completely
join-irreducible elements.

Further, ℘f (U) is an Alexandrov topology, which means that there is a small-
est neighbourhood operator Nf : ℘(U) → ℘(U) defined by

Nf(X) =
⋂{

Y ∈ ℘f(U) | X ⊆ Y
}

.

Obviously, the set {Nf(x) | x ∈ U} is the smallest base for ℘f (U) and these
are the completely join-irreducible elements of ℘f (U) by Proposition 27. For
example, in case of Example 155,

Nf (a) = {a}, Nf (b) = {b}, Nf (c) = {b, c} and N(d) = {a, d}.

Note that the ‘representative operator’ X �→ X is not the neighbourhood oper-
ator of ℘f (U).

Example 160. Let us again consider the equivalence on the set {a, b, c, d} having
the equivalence classes {a, d} and {b, c}. The ordered set A is presented in Fig. 23.
Completely join-irreducible elements are marked with filled circles.

���� ���

��� ��

��� ���

���� ��

��� ������ ���

��� ���

�����

���� ��

Fig. 23.

It is clear that only the elements (∅, ∅), (ad, ad), (bc, bc), and (U, U) have
complements, and notice that these sets can be identified with the family of
definable sets Def.

Now we are able to answer the question stated in Section 10.1.
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Theorem 161. For any equivalence on U , A is a complete sublattice of ℘(U)×
℘(U).

Proof. Let {(X�
i , X�

i ) | i ∈ I} be a subset of A. Then by Lemmas 156 and 158,

(⋃
i∈I

X�
i ,
⋃
i∈I

X�
i

)
=
(⋃

i∈I

X�
i ,
⋃
i∈I

Xi
�)

=
((⋃

i∈I

Xi

)�
,
(⋃

i∈I

Xi

)�)
.

and (⋂
i∈I

X�
i ,
⋂
i∈I

X�
i

)
=
(⋂

i∈I

Xi
�
,
⋂
i∈I

X�
i

)
=
((⋂

i∈I

Xi

)�
,
(⋂

i∈I

Xi

)�)
.

Thus,∨
i∈I

(X�
i , X�

i ) =
(⋃

i∈I

X�
i ,
⋃
i∈I

X�
i

)
and

∧
i∈I

(X�
i , X�

i ) =
(⋂

i∈I

X�
i ,
⋂
i∈I

X�
i

)
. ��

Recall from Lemma 46 that for any complete Boolean lattice B, B[2] =
{(a, b) ∈ B × B | a ≤ b} is a complete Stone lattice such that the pseudocom-
plement is (a, b)∗ = (b′, b′). It is also known that B[2] is a complete sublattice
of B × B. Since Def is a complete Boolean lattice, Def [2] is a complete Stone
lattice in which (X, Y )∗ = (Y c, Y c).

Now for all X ⊆ U , X�, X� ∈ Def and X� ⊆ X�, which implies A ⊆ Def [2].
It is also clear that A is a complete sublattice of Def [2]. However, A is not always
equal to Def [2], because for elements x ∈ U such that E(x) = {x}, A does not
contain (∅, {x}).

Proposition 162. For any equivalence on U , A is a Stone lattice such that
(X�, X�)∗ = (X�c, X�c) for all X ⊆ U .

Proof. It is clear that for any X , (X�c, X�c) is in A, because it is the approx-
imation pair of the definable set X�c. Now, X� ∩ X�c ⊆ X� ∩ X�c = ∅, and
this gives (X�, X�) ∧ (X�c, X�c) = (X� ∩ X�c, X� ∩ X�c) = (∅, ∅). Further, if
(X�, X�) ∧ (Y �, Y �) = (X� ∩ Y �, X� ∩ Y �) = (∅, ∅), then Y � ⊆ Y � ⊆ X�c,
that is, (Y �, Y �) ≤ (X�c, X�c), which completes the proof. ��

The skeleton of the lattice A is

S(A) =
{
(X�, X�) | X ∈ Def

} ∼= Def

and the dense set is

S(A) =
{
(X�, X�) | X� = U

}
.

We shall now describe the structure of the lattices of rough sets. It turns out
that the lattices R and A are determined up to isomorphism by the number
of singleton equivalence classes and the number of non-singleton equivalence
classes.
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Proposition 163. For any equivalence E, the set of approximations A is iso-
morphic to 2I × 3J , where I is the set of singleton E-classes and J is the set of
the non-singleton E-classes.

Proof. Let us define a mapping

ϕ: A → 2I × 3J , (X�, X�) �→ (f, g),

such that f : I → {0, 1} and g: J → {0, u, 1} are defined for any [a] ∈ I and
[b] ∈ J by

f([a]) =
{

1 if a ∈ X
0 if a /∈ X

and g([b]) =

⎧⎨
⎩

1 if b ∈ X�

u if b ∈ X� − X�

0 if b /∈ X�.

First we show that ϕ is an order-embedding. Let us denote ϕ(X�, X�) = (f1, g1)
and ϕ(Y �, Y �) = (f2, g2). Assume that (X�, X�) ≤ (Y �, Y �). We will show
that this implies (f1, g1) ≤ (f2, g2), that is, f1([a]) ≤ f2([a]) and g1([b]) ≤ g2([b])
for all [a] ∈ I and [b] ∈ J . If f1([a]) = 1 for some [a] ∈ I, then a ∈ X , and since
[a] = {a}, we get a ∈ X� ⊆ Y � ⊆ Y . Hence, f2([a]) = 1 and f1 ≤ f2. Further,
if g1([b]) = 1 for some [b] ∈ J , then b ∈ X� ⊆ Y � and g2([b]) = 1. If g1([b]) = u,
then necessarily b ∈ X� ⊆ Y �, which gives g2([b]) ≥ u. Thus, also g1 ≤ g2.

Conversely, assume that (f1, g1) ≤ (f2, g2). We will show that (X�, X�) ≤
(Y �, Y �). Let x ∈ X�. If [x] ∈ I, then [x] = {x} and 1 = f1([x]) ≤ f2([x]). Thus,
we get x ∈ Y and x ∈ Y �. If [x] ∈ J , then 1 = g1([x]) ≤ g2([x]) gives x ∈ Y �.
We have shown that X� ⊆ Y �. Assume that x ∈ X�. If [x] ∈ I, then x ∈ X , and
1 ≤ f1([x]) ≤ f2([x]) gives x ∈ Y ⊆ Y �. If [x] ∈ J , then u ≤ g1([x]) ≤ g2([x])
implies x ∈ Y �. Thus, also X� ⊆ Y � and (X�, X�) ≤ (Y �, Y �).

We still have to show that ϕ is a surjection. For that we need the Axiom of
Choice. Let (f, g) ∈ 2I × 3J and let F : U/E → U be any choice function. Let

X =
⋃

{[a] ∈ I | f([a]) = 1} ∪
⋃

{[b] ∈ J | g([b]) = 1}

∪
⋃

{[c] ∩ Rg(F ) | [c] ∈ J and g([c]) = u} ,

and denote ϕ(X�, X�) = (f ′, g′). It should now be clear that (f, g) = (f ′, g′). For
example, if g([x]) = u, then X contains only one element from [x] picked by the
choice function F . This implies x ∈ X�, but since [x] has at least two elements,
we have [x] �⊆ X and x /∈ X�. This gives g′([x]) = u. Conversely, if g′([x]) = u,
then x ∈ X� − X� and [x] �⊆ X , which means g([x]) < 1. If g([x]) = 0, then [x]
cannot intersect with X , which gives x /∈ X� and g′([x]) = 0, a contradiction.
Thus, also g([x]) must be u. ��

10.3 Rough Sets Determined by Arbitrary Binary Relations

Here we study ordered sets of rough sets defined by arbitrary binary relations.
Recall that for a binary relation R on U , we denote R(x) = {y ∈ U | xRy}, and
the approximation operators are defined by
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X� = {x ∈ U | R(x) ⊆ X} and X� = {x ∈ U | R(x) ∩ X �= ∅}

for any X ⊆ U . The relation ≡ and the ordered sets A and R are defined as
before.

As shown in the previous section, the ordered set of rough sets defined by
equivalences is a complete Stone lattice. We begin our study on ordered sets of
rough sets by an example showing that for tolerances and transitive relations,
A is not always a lattice.

Example 164. (a) Let us consider the tolerance depicted in Fig. 24(i). Surpris-
ingly, if we omit the transitivity, the structure of rough sets changes quite
dramatically. The Hasse diagram of A is given in Fig. 25. For instance, the
elements (a, abc) and (∅, abcd) do not have a least upper bound. Similarly,
the elements (ab, abcd) and (a, U) do not have a greatest lower bound. This
means that A and R are not lattices.

a b c d e

(ii)(i)

a b c d e

f g h i k

Fig. 24.

(b) The set of approximations A determined the transitive relation depicted in
Fig. 24(ii) is the 22-element set

{(fghik, ∅), (fghik, ab), (fghik, abc), (fghik, bcd), (fghik, cde),
(fghik, de), (afghik, abc), (fghik, abcd), (fghik, abcde), (fghik, abde),

(fghik, bcde), (efghik, cde), (abfghik, abcd), (afghik, abcde),
(cfghik, abcde), (defghik, bcde), (abcfghik, abcde), (abfghik, abcde),

(aefghik, abcde), (defghik, abcde), (cdefghik, abcde),
(abcdefghik, abcde)}.

Note that since the relation is not connected, X� �⊆ X� for all
X ⊆ U . It is easy to see that the ordered set of all approximations
is isomorphic to the ordered set depicted in Fig. 25. Now, for exam-
ple, (abfghik, abcd) ∧ (afghik, abcde) does not exist; the set of lower
bounds of this pair is {(afghik, abc), (fghik, abcd), (fghik, abc), (fghik, ab),
(fghik, bcd), (fghik, ∅)}, which does not have a greatest element. Similarly,
(afghik, abc)∨(fghik, abcd) does not exist because this pair of elements has
two minimal upper bounds. Therefore A and R are not lattices.

Our next proposition shows that the rough sets defined by a symmetric and
transitive binary relation form a complete Stone lattice.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Lattice Theory for Rough Sets 491

�

�� �

� �

�

�

� �

��

� �

�

�

� �

�� �

�

� �

��� ������� ���

��� ��

��� ���

��� ���� ��� ����

��� �����
��� �����

��� �����

��� ���� ��� ����

���� ��������� �����

��� ��

��� ����� �� ��� ��

���� ������ ��

����� �� ���� �� ����� ��

��� ��

Fig. 25.

Proposition 165. For a symmetric and transitive binary relation R, the or-
dered set of rough sets A is a complete Stone lattice isomorphic to 2I × 3J ,
where I is the set of singleton R-classes and J is the set of R-classes that have
at least two elements.

Proof. Let R be a symmetric and transitive binary relation on a set U . Let us
denote U∗ = {x ∈ U | R(x) �= ∅}. It is obvious that R is connected, symmetric,
and transitive relation on U∗. As we noted in Section 2.2, R is therefore an
equivalence on U∗. The resulting ordered set of rough sets on U∗ is a complete
Stone lattice by Proposition 163. Further, it is isomorphic to 2I × 3J , where I
is the set of singleton R-classes and J is the set of R-classes that have at least
two elements.

Let us denote by A the set of rough sets on U , and by A∗ the set of rough
sets on U∗. We show that A∗ ∼= A. Let Σ = U − U∗ and let us define a map
ϕ: A∗ → A by setting

(X�, X�) �→ (X� ∪ Σ, X�).

Assume that x ∈ Σ. Because R(x) = ∅, R(x) ⊆ X and R(x) ∩ X = ∅ hold
for all X ⊆ U . By applying this it is easy to see that the map ϕ is an order-
isomorphism, and hence A is a complete Stone lattice. ��

Note that if R is symmetric and transitive, but not reflexive, the elements that
are not related to any element behave quite absurdly: they belong to every lower
approximation, but not in any upper approximation, as shown in the previous
proof.

Example 166. Let us consider the preorder of Fig. 26(i). The corresponding or-
dered set A is given in Fig. 26(ii).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



492 J. Järvinen

b
(∅, ac)

(b, U)

(bc, U)

(U, U)

(ab, U)

(∅, c)

(∅, ∅)

(∅, a)
a c

(ii)(i)

Fig. 26.

It is clear that we cannot find any family of representatives of ≡-classes iso-
morphic to A, because the cardinality of each ≡-class is one. However, in this
case A is a sublattice of ℘(U) × ℘(U).

In this section we have considered rough sets determined by indiscernibility
relations which are not necessarily reflexive, symmetric, or transitive. Our studies
can be summarized as follows:

– For any symmetric and transitive relation, A and R are Stone lattices (see
Propositions 162 and 165).

– For tolerances, A and R are not always lattices (see Example 164(a)).
– For transitive relations, A and R are not always lattices (see Exam-

ple 164(b)).
– Is is not known whether A and R determined by preorders are lattices (cf.

Example 166).

These observations are depicted in Fig. 27.

?

Transitive

not a
Stone

lattice

lattice
not a

lattice

Symmetric

Reflexive

Stone
lattice

lattice

not a

not a
lattice

Fig. 27.
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Bibliographical Notes

The idea of defining rough sets as equivalence classes of the equivalence ≡ ap-
pears already in [44]. In [22] it was proposed that rough sets can be ordered
coordinatewise by approximation pairs. The fact that the ordered set of approx-
imations forms a Stone lattice was proved in [46], where also was mentioned
without proof that the family of representatives is a sublattice of the powerset
of the universe. In fact, that representatives form a complete ring of sets was
proved in [25]. Finally, in [18] it was shown that this lattices has the structure
of the form 2I × 3J , where I is the set of singleton equivalence classes and J
is the set of the non-singleton equivalence classes. The work [4] provides a good
survey on lattice structures of rough sets determined by equivalences.

The result that the ordered set of rough sets determined by a tolerance does
not always form a lattice appeared in [25]. It is shown in [29] that rough sets
determined by transitive relations do not necessarily form lattices, and the fact
that for symmetric and transitive relations, A and R are Stone Lattices can be
also found there.
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