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While correcting the proofs of this volume, we received
the sad news that Frank Knight had passed away. His
deep understanding of stochastic processes, and in partic-
ular of their local times, has inspired many an author in
the Séminaire de Probabilités; his contributions stand as
models for clarity and rigor. The Séminaire has lost a very
close friend and contributor.

This volume is dedicated to his memory.

C. Donati-Martin
M. Émery

A. Rouault
C. Stricker

M. Yor

Frank Knight (1933–2007): An appreciation,
with respect and admiration

by Marc Yor

In March 2007, Frank passed away after a long illness. He is well known for
having extracted some gems in the world of diffusions, e.g., the famous Ray–
Knight theorems on local times, to mention one of his celebrated achievements.

Once started on a research topic, he was possessed by a very strong drive
to solve the problem in a rigorous way: the reader of these lines should take
the opportunity to have a look at his Impressions of P.A. Meyer as Deus Ex-
Machina [1], where most of the discussion consists in disentangling some flaws
in Frank’s paper [2], for which P.A. Meyer helped him very generously. . .



VI

Many exchanges with Frank were of this kind, as he wrote letters about
fine points of martingale time changes [3], discussed the Krein theorem in
relation with inverse local times [4], was interested in the Brownian spider [5],
developed his beloved Prediction Theory ([6], [7]), and so on.

It is a tautology to say that Frank Knight had his own way of looking
at things; see e.g., the Foreword to his Essentials of Brownian Motion and
Diffusion [8] where he explains why no stochastic integrals will be found in
the book . . .

Despite his illness, he worked until the end, as shown by his joint paper [9]
published in the volume [10] edited by D. Burkholder in memory of J. Doob.

However, a few months after P.A. Meyer’s death, when I asked him to be
part of the scientific committee for the Memorial Conference in February 2004
in Strasbourg, Frank wrote kindly that I was not being “reasonable”. . .

This was typical of Frank’s seriousness, often mingled with humor.
I feel, as many of the Séminaire’s oldies, that a great probabilist just

started off his ultimate random walk.
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Statist., 1, Birkhäuser, Boston (1981)

[5] F. Knight: A remark on Walsh’s Brownian motions. Proceedings of the Confer-
ence in Honor of Jean-Pierre Kahane (Orsay, 1993). J. Fourier Anal.
Appl. Special Issue, 317–323 (1995)

[6] F. Knight: Foundations of the prediction process. Oxford Studies in Probabil-
ity, 1. Oxford Science Publications. The Clarendon Press, Oxford
University Press, New York (1992)

[7] F. Knight: Essays on the prediction process. Institute of Mathematical Statistics
Lecture Notes-Monograph Series, 1. Institute of Mathematical Statis-
tics, Hayward, Calif. (1981)

[8] F. Knight: Essentials of Brownian motion and diffusion. Math. Surveys, 18.
American Mathematical Society (1981)

[9] F. Knight and J.L. Steichen: The probability of escaping interference. In [10],
689–699 (2006)

[10] D. Burkholder (ed): Joseph Doob: A Collection of Mathematical Articles in
His Memory. Department of Mathematics, University of Illinois at
Urbana-Champaign. Originally published as Volume 50 of the Ill. J.
Math. (2006)



Preface

Who could have predicted that the Séminaire de Probabilités would reach the
age of 40? This long life is first due to the vitality of the French probabilis-
tic school, for which the Séminaire remains one of the most specific media
of exchange. Another factor is the amount of enthusiasm, energy and time
invested year after year by the Rédacteurs: Michel Ledoux dedicated himself
to this task up to Volume XXXVIII, and Marc Yor made his name inseparable
from the Séminaire by devoting himself to it during a quarter of a century.
Browsing among the past volumes can only give a faint glimpse of how much
is owed to them; keeping up with the standard they have set is a challenge to
the new Rédaction.

In a changing world where the status of paper and ink is questioned and
where, alas, pressure for publishing is increasing, in particular among young
mathematicians, we shall try and keep the same direction. Although most
contributions are anonymously refereed, the Séminaire is not a mathemati-
cal journal; our first criterion is not mathematical depth, but usefulness to
the French and international probabilistic community. We do not insist that
everything published in these volumes should have reached its final form or
be original, and acceptance–rejection may not be decided on purely scientific
grounds. The policy set forth in volume XIII still prevails: “laisser une place
aux débutants à côté des mathématiciens déjà connus, publier des articles de
mise au point à côté des travaux originaux, et même, de temps en temps,
publier un article intéressant, mais faux.”

But the Séminaire is not gray literature either. Most of its content, from
the very beginning, is still interesting; we hope the current volumes will still be
read many years from now. The advanced courses, started in volume XXXIII,
are continued in this volume with Laure Coutin’s account of calculus for frac-
tional Brownian motion. The Séminaire also occasionally publishes a series of
contributions on some given theme; in this spirit, a few participants to a May
2004 Oberwolfach workshop on local time-space calculus are contributing to
the present volume, and the reports of their interventions give an overview on
the current state of that subject.



VIII Preface

For our 40th anniversary, Mathdoc has made us an invaluable present, for
which we are very thankful: in the framework of their NUMDAM programme,
the whole collection of Séminaires de Probabilités up to volume XXXVI has
been digitized. The result is made available on http://www.numdam.org/;
access to volumes I–XXXV is free, but, for the time being, access to volume
XXXVI in only possible for subscribers to the Springer link.

C. Donati-Martin
M. Émery
A. Rouault
C. Stricker
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An Introduction to (Stochastic) Calculus
with Respect to Fractional Brownian Motion

Laure Coutin

Laboratoire de Statistique et Probabilités, Université Paul Sabatier
118, route de Narbonne, 31062 Toulouse Cedex 4, France
e-mail: coutin@cict.fr

Summary. This survey presents three approaches to (stochastic) integration with
respect to fractional Brownian motion. The first, a completely deterministic one,
is the Young integral and its extension given by rough path theory; the second one is
the extended Stratonovich integral introduced by Russo and Vallois; the third one is
the divergence operator. For each type of integral, a change of variable formula or Itô
formula is proved. Some existence and uniqueness results for differential equations
driven by fractional Brownian motion are available except for the divergence integral.
As soon as possible, these integrals are compared.

Key words: Gaussian processes, Fractional Brownian motion, Rough path,
Stochastic calculus of variations

1 Introduction

Fractional Brownian motion was originally defined and studied by
Kolmogorov, [Kol40] within a Hilbert space framework. Fractional Brownian
motion of Hurst index H ∈ ]0, 1[ is a centered Gaussian process WH with
covariance function

E
(
WH(t)WH(s)

)
=

1
2
[
t2H + s2H − |t− s|2H

]
; (s, t � 0)

(for H = 1
2 , W

1
2 is a Brownian motion). Fractional Brownian motion has

stationary increments since

E
[(
WH(t)−WH(s)

)2]
= |t− s|2H (s, t � 0)

and is H-selfsimilar:(
1
cH

WH(ct); t � 0
)

d=
(
WH(t); t � 0

)
for any c > 0.
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The Hurst parameter H accounts not only for the sign of the correlation of
the increments, but also for the regularity of the sample paths. Indeed, for
H > 1

2 , the increments are positively correlated, and for H < 1
2 , they are

negatively correlated. Futhermore, for every β ∈ (0,H), the sample paths are
almost surely Hölder continuous with index β. Finally, for H > 1

2 , according
to Beran’s definition [BT99], it is a long memory process; the covariance of
the increments at distance u decreases as u2H−2.

These significant properties make fractional Brownian motion a natural
candidate as a model for noise in mathematical finance (see Comte and
Renault [CR96], Rogers [Rog97], Cheridito, [Che03], and Duncan, [Dun04]);
in hydrology (see Hurst, [Hur51]), in communication networks (see, for ins-
tance Leland, Taqqu, Wilson, and Willinger [WLW94]). It appears in other
fields, for instance, fractional Brownian motion with Hurst parameter 1

4 is
the limit process of the position of a particule in a one-dimensional nearest
neighbor model with a convenient renormalization, see Rost and Vares [RV85].
For more applications, the reader should look at the monograph of Doukhan
et al., [DOT03].

For H �= 1
2 , W

H is neither a semimartingale (see, e.g., Example 2 of
Section 4.9.13 of Liptser and Shiryaev [LS84]), nor a Markov process, and the
usual Itô stochastic calculus does not apply. Our aim is to present different
possible definitions of an integral∫ t

0

a(s) dWH(s) (1)

for a a suitable process and WH a fractional Brownian motion, such that:

• The link with the Riemann sums is as expected: for a regular enough,

lim
|π|→0

∑
ti∈π

a(ti)
(
WH(ti+1)−WH(ti)

)
=
∫ t

0

a(s) dWH(s)

where π = (ti)ni=0 are subdivisions of [0, 1];
• There exists a change of variable formula, that is, for suitable f,

f
(
WH(t)

)
= f(0) +

∫ t

0

f ′ (WH(s)
)
dWH(s);

• It allows to define and solve differential equations driven by a d-dimensional
fractional Brownian motion WH = (W i)i=1,...,d,

yi(t) = yi(0) +
∫ t

0

f i0
(
y(s)

)
ds+

d∑
j=1

∫ t

0

f ij
(
y(s)

)
dW j(s),
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where yi(0) ∈ R and the functions f ij are smooth enough (i = 1, . . . , n and
j = 0, . . . , d).

The dimension is important. Assume that it is equal to one, d = 1 = n, and
follow some ideas of Föllmer [Föl81]. Let f be a function, m times continuously
differentiable. The sample paths of WH are Hölder continuous of any index
strictly less than H. Then, using a Taylor expansion of order m > 1

H , the
following limit exists∫ t

0

f ′ (WH(s)
)
dWH(s) := lim

|π|→0

∑
ti∈π

m∑
k=1

f (k)
(
WH(ti)

) (
WH(ti+1)−WH(ti)

)k
k!

and
∫ t
0
f ′ (WH(s)

)
dWH(s) = f

(
WH(t)

)
. When d > 1, one can also define∫ t

0

f
(
WH(s)

)
dWH(s) :=

= lim
|π|→0

∑
ti∈π

m∑
k=1

1
k!
DkF

(
WH(ti)

)
.
(
WH(ti+1)−WH(ti)

)⊗k
if f = DF with F : Rd → R. Moreover, the ideas of Doss, [Dos77], allow to
define and solve differential equations driven by a fractional Brownian motion,
as proved in [Nou05]. This method extends to the multidimensional case when
the Lie algebra generated by f1, . . . , fd is nilpotent, see Yamato [Yam79] for
H = 1/2. This is pointed out in [BC05b].

These two arguments do not work in the multidimensional case in more
general situations. The aim of this survey is to present other integrals which
allow to work in dimension greater than one.

Recently, there have been numerous attempts to define a (stochastic)
integral with respect to fractional Brownian motion.

• The first kind of attempts are deterministic ones. They rely on the proper-
ties of the sample paths. First, the results of Young, [You36], apply to frac-
tional Brownian motion. The sample paths are Hölder continuous of any
index strictly less than H. Then, the sequences of Riemann sums converge
for any process a with sample paths α Hölder continuous with α+H > 1.
Secondly, Ciesielski et al. [CKR93] have noticed that the sample paths be-
long to some Besov–Orlicz space. They define an integral on Besov–Orlicz
using wavelet expansions. Third, Zähle, [Zäh98] uses fractional calculus
and a generalization of the integration by parts formula.
For all these integrals, the process f(WH), for suitable functions f is
integrable with respect to itself only if H > 1

2 . For H > 1
2 , there exists
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a change of variable formula. Some existence and uniqueness results for
stochastic differential equations are available, see for instance, Nualart and
Răşcanu, [NR02]. In [Lyo94], Lyons has proved that the Picard iteration
scheme converges.
Using the rough path theory of [Lyo98], these results are extended to
H > 1

4 in [CQ02].
• The second kind is related to the integral with generalized covariation

of Russo and Vallois, [RV93]. Again, for H > 1
2 , there exists a change

of variable formula. In the one-dimensional case, Nourdin, in [Nou05], has
obtained existence and uniqueness for stochastic differential equations and
an approximation scheme for all H ∈ ]0, 1[.

• The third one is related to the divergence operator of a Gaussian process
introduced by Gaveau and Trauber in [GT82]. This divergence operator
extends the Wiener integral to stochastic processes. It coincides with the
Itô integral for Brownian motion. Decreusefond and Üstünel, [DÜ99], have
studied the case of fractional Brownian motion. Alos, Mazet, and Nualart,
[AMN01] or Cheridito and Nualart, [CN05] and Biaggini, Øksendal, Sulem,
and Wallner, [BØSW04] or Carmona, Coutin, and Montseny, [CCM03],
Cheridito and Nualart [CN05] and Decreusefond [Dec05] have extended
the results of [DÜ99]. Again, the change of variable formula is obtained
in the one-dimensional case, for any H ∈ ]0, 1[, and only for H > 1

4 in
the multidimensional case. In general, the divergence approach leads to
some anticipative differential equations. For H > 1

2 , Kleptsyna et al. have
solved the case of linear equations, [KKA98]. Solving nonlinear equations
is an open problem in the multidimensional case.

Existence and uniqueness for a differential equation in the case when
H � 1

4 and d � 2 is an open problem.
All these “stochastic” or “infinitesimal” calculi extend to some Volterra

Gaussian processes, see for instance Decreusefond, [Dec05].

2 Fractional Brownian motion

This section is devoted to some properties of fractional Brownian motion and
its sample paths. We also give several representations of a fractional Brownian
motion.

2.1 First properties

Existence

According to Proposition 2.2 page 8 of [ST94], for all H ∈ ]0, 1[ the function

RH(t, s) =
1
2
[
t2H + s2H − |t− s|2H

]
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is definite positive. Then using Proposition 1.3.7 page 35 of [RY99], RH is
the covariance of a centered Gaussian process, denoted by WH and called
fractional Brownian motion with Hurst parameter H.

We now describe a few (geometrical) invariance properties of fractional
Brownian motion.

Proposition 1. Let WH be a fractional Brownian motion with Hurst para-
meter H ∈ ]0, 1[. The following properties hold:

1. (Time homogeneity): for any s > 0, the process {WH(t+s)−WH(s), t � 0}
is a fractional Brownian motion with Hurst parameter H;

2. (Symmetry): the process {−WH(t), t � 0} is a fractional Brownian mo-
tion with Hurst parameter H;

3. (Scaling): for any c > 0, the process {cHWH( tc ), t � 0} is a fractional
Brownian motion with Hurst parameter H;

4. (Time inversion): the process X defined by X(0) = 0 and X(t) =
t2HWH(1/t) for t > 0 is also a fractional Brownian motion with Hurst
parameter H.

Remark 1. If WH is a fractional Brownian motion defined on [0, 1], the process{
W̃ (t) = WH(1− t)−WH(1), t ∈ [0, 1]

}
is also a fractional Brownian motion

with Hurst parameter H.

Remark 2. The process WH is not a Markov process since its covariance is
not triangular, (see [Nev68]).

Sample paths properties of fractional Brownian motion

From the expression of its covariance, we derive some properties of the sample
paths of fractional Brownian motion.

Proposition 2. For H ∈ ]0, 1[, the sample paths of fractional Brownian
motion WH are almost surely Hölder continuous of any order α strictly less
than H. For all T ∈ ]0,+∞[ and α < H, sup0�s<t�T

|WH(t)−WH(s)|2
|t−s|2α has some

finite exponential moments.

Proof. Since the moments of a Gaussian variable are functions of its variance,
for any a > 0

E
(
|WH(s)−WH(t)|a

)
= Ca|t− s|aH , where E

(
|N (0, 1)|a

)
= Ca .

The Kolmogorov criterion implies that the Hölder seminorm of WH, namely,
sup0�s<t�T

|WH(t)−WH(s)|
|t−s|α , is almost surely finite for α < H. Since WH is a

Gaussian process, the existence of some finite exponential moments follows
from Theorem 2.4.6 page 39 of [Fer97]. ��
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Let π be a subdivision of the interval [0, t] with 0 = t0 < t1 < · · · < tn = t.
The number |π| = supi=0,...,n−1 |ti+1 − ti| is called the mesh of π. For p � 1
and X a real function defined on R+, we set

V πp,[0,t](X)p =
n−1∑
i=0

∣∣X(ti+1)−X(ti)
∣∣p.

Proposition 3. Let WH be a fractional Brownian motion with Hurst para-
meter H ∈ ]0, 1[. For all t � 0, V π1/H,[0,t](W

H)1/H converges to tE(|X|1/H)
in L2, where X ∼ N (0, 1), when |π| goes to 0.

Proof. Using the scaling property and the stationarity of the increments, we
compute

E
(
V π1/H,[0,t](W

H)1/H
)

= tE
(
|X|1/H

)
.

To prove the proposition, it suffices to show that

lim
|π|→0

E
(
V π1/H,[0,t](W

H)2/H
)

= t2 E
(
|X|1/H

)2
. (2)

Indeed, put ΔiWH = WH(ti+1) −WH(ti). The linear regression of ΔjWH

with respect to ΔiWH yields

ΔiW
H = |ti+1 − ti|HX,

ΔjW
H =

E(ΔiWHΔjW
H)

|ti+1 − ti|H
X

+

√
|ti+1 − ti|2H |tj+1 − tj |2H −E(ΔiWHΔjWH)2

|ti+1 − ti|2H
Y,

where (X,Y ) is a pair of independent standard Gaussian variables. Then one
easily computes

E
(
V π1/H,[0,t](W

H)2/H
)

=
1
2π

∫∫
R2
e−

(x2+y2)
2 FπH(x, y) dx dy

with

FπH(x, y) = |x|1/H
∑
i

∑
j

(ti+1 − ti)(tj+1 − tj)
∣∣∣y√1− d2

i,j + di,j x
∣∣∣1/H ,

where

di,j =
E(ΔiWHΔjW

H)
(ti+1 − ti)H(tj+1 − tj)H

.
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Using the Taylor expansion of the function z 	→ z1/H between y and
y
√

1− d2
i,j + di,jx and the fact that the di,j are bounded by 1, one obtains∣∣FπH(x, y)− t2 x1/Hy1/H

∣∣
� 2
H
|x|1/H

[
|x|1/H + |y|1/H

]∑
i,j

|ti+1 − ti| |tj+1 − tj | |di,j |.

The constant C may vary from one line to the next, but depends only
on H. Let ε ∈ ]0, 1].

If (i, j) is such that |ti− tj | � 4 |π|
ε ; then ti+1−ti

|ti−tj | and tj+1−tj
|ti−tj | are dominated

by ε
4 . Lemma 1 below for s = ti, t = tj , u = ti+1 − ti and v = tj+1 − tj yields

|di,j | � C ε2−2H . (3)

Using the Fubini–Tonelli theorem, we compute∑
(i,j),|ti−tj |� 4|π|

ε

(ti+1 − ti)(tj+1 − tj) � t2. (4)

If (i, j) is such that |ti − tj | < 4 |π|
ε , then |di,j | � 1 and

∑
(i,j),|ti−tj |� 4|π|

ε

(ti+1 − ti)(tj+1 − tj) � 16 t
|π|
ε
. (5)

For π such that |π| � ε2, putting together inequalities (3)–(5) gives∣∣FπH(x, y)− t2x1/Hy1/H
∣∣ � C |x|1/H

[
|x|1/H + |y|1/H

][
ε2−2Ht2 + εt

]
.

Integrating this difference with respect to the Gaussian density yields L2

convergence. ��

Lemma 1. Let WH be a fractional Brownian motion with Hurst parameter
H ∈ ]0, 1[. There exists a continuous function R on

[
− 1

4 ,
1
4

]2 and a constant
CH such that

|R(x, y)| � CH min(|x|, |y|)3 |x|−H |y|−H

and for all (s, t, u, v) ∈ R4
+ such that max

( |u|
|t− s| ,

|v|
|t− s|

)
� 1

4

E
(
[WH(s+ u)−WH(s)][WH(t+ v)−WH(t)]

)
uHvH

=

= H(1− 2H)
∣∣∣∣ u

|t− s|
v

|t− s|

∣∣∣∣1−H +R
( u

t− s
,

v

t− s

)
.
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Proof. Put

F (s, t, u, v) =
E
(
[WH(s+ u)−WH(s)][WH(t+ v)−WH(t)]

)
uHvH

.

A tedious computation gives

E
(
[WH(s+ u)−WH(s)][WH(t+ v)−WH(t)]

)
=

1
2
[
|s+ u− t|2H + |s− v − t|2H − |t− s|2H − |t+ v − s− u|2H

]
.

Set x =
u

t− s
, y =

v

t− s
; then

F (s, t, u, v) =
x−Hy−H

2
[
|1− x|2H + |1 + y|2H − 1− |1 + y − x|2H

]
.

Using the Taylor expansion of z 	→ (1 + z)2H one obtains

F (s, t, u, v) = −H(2H − 1)x1−Hy1−H +R(x, y)

where
R(x, y) = O

((
|x|2 + |y|2

) 3
2
)
. ��

Remark 3. If the subdivision πn is given by the points tj = j2−nt, where j
ranges from 0 to 2n, then the limit in Proposition 3 holds almost surely. (Es-
timate the variance of V π1/H,[0,t](W

H)1/H − tE(|X|1/H) and apply the Borel–
Cantelli Lemma.)

Using the same lines as for Brownian motion (see [RY99] Corollaries 1.2.5 and
1.2.6), we derive the following.

Corollary 1. The fractional Brownian paths a.s. have infinite variation on
any interval.

Corollary 2. For α > H, the fractional Brownian paths are a.s. nowhere
locally Hölder continuous of order α.

Proposition 2 and Corollary 2 leave open the case that α = H. The next
result shows in particular that the fractional Brownian paths with Hurst
parameter H are not Hölder continuous of order α = H. Its proof can be
derived from Theorem 1.3 in [Ben96].

Theorem 1. Let WH be a fractional Brownian motion with Hurst parameter
H ∈ ]0, 1[; then for all t > 0,

lim sup
ε→0+

WH(t+ε)−WH(t)√
2ε2H log log(1/ε)

= 1 a.s.,

lim sup
0�t,t′�1, |t−t′|=ε→0+

WH(t′)−WH(t)√
2ε2H log(1/ε)

= 1 a.s.
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Proposition 4. Liptser and Shiryaev [LS84]
A fractional Brownian motion WH with Hurst parameter H ∈ ]0, 1[, is a
semimartingale if and only if H = 1

2 .

Proof. Assume that WH is a semimartingale, then there exists a filtration
(Ft)t∈[0,1] fulfilling the usual conditions, a (Ft)t∈[0,1] continuous local martin-
gale M and an adapted process A of finite variation (Ft)t∈[0,1] such that

WH(t) = M(t) +A(t), t ∈ [0, 1].

According to Theorem 1.8 chapter IV page 111 of [RY99], V π2,[0,1](M) converges
uniformly on [0, 1] in probability to 〈M,M〉 when the mesh of the subdivision
goes to 0. Since A has finite variation, lim|π|→0 V

π
2,[0,1](W

H)2 = 〈M,M〉. For
H > 1

2 , Proposition 3 says that 〈M,M〉 = 0. Then M = 0 and WH has finite
variation, which contradicts Corollary 1.

For H < 1
2 , let τ be a (Ft)t∈[0,1] stopping time such that 〈M,M〉τ < ∞

almost surely. Then 〈M,M〉τ = lim|π|→0 V
π
2,τ

(
WH

)2 and

V π
1/H,[0,1]

(
W H

)1/H � sup
s,t∈[0,1], |t−s|<|π|

∣∣W H(t) − W H(s)
∣∣1/H−2

V π
2,[0,1]

(
W H

)2
.

According to Proposition 3 lim|π|→0 V
π
1/H,[0,1]

(
WH

)1/H is finite but not null.
Since the paths of WH are continuous,

lim
|π|→0

sup
s,t∈[0,1]|t−s|<|π|

∣∣WH(t)−WH(s)
∣∣1/H−2

= 0;

therefore lim|π|→0 V
π
2,τ

(
WH

)
= ∞, which contradicts the hypothesis on τ. ��

Proposition 5 (Cheridito 2001 [Che01]). Let WH be a fractional Brown-
ian motion with Hurst parameter H ∈ ]0, 1[, and B be an independent
Brownian motion. For ε > 0, WH + εB is a semimartingale if and only
if H > 3

4 or H = 1
2 .

We close this section with some fractal dimension of the graph of fractional
Brownian motion, following [Fal03].

Proposition 6. With probability 1, the Hausdorff and box dimensions of the
graph

(
t,WH(t)

)
t∈[0,1]

equal 2−H.

The law of the supremum of fractional Brownian motion is an open problem.
Partial results are available in Duncan et al., [DYY01] and in Lanjri Zadi and
Nualart [LZN03].
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2.2 Representations of fractional Brownian motion

In [MVN68], Mandelbrot and Van Ness show that fractional Brownian motion
is obtained by integrating a deterministic kernel with respect to a Gaussian
measure, see Section 2.2. This representation is not unique. In this section, we
present several representations of fractional Brownian motion as an integral
with respect to a Gaussian measure or a Brownian motion. None of them
seems to be universal, and choosing one of them depends on what one wants
to do. Each of them leads to the construction of new processes, even not
Gaussian by replacing the Gaussian measure with an independently scattered
measure or a Lévy measure.

A simple construction of fractional Brownian motion is given by Enriquez,
[Enr04]. It is equal to the limit of renormalized correlated random walks on Z.
It will not be presented in this survey.

Moving average representation

(See the book of Samorodnitsky and Taqqu [ST94] p 321.)
The fractional Brownian motion {WH(t), t � 0} has the integral representa-
tion

1
C1(H)

∫ +∞

−∞

[
(t− x)H− 1

2
+ − (−x)H− 1

2
+

]
M(dx); t ∈ R, (6)

where C1(H) =
√∫∞

0

[
(1 + x)H− 1

2 − xH− 1
2
]2
dx+ 1

2H , M is a Gaussian ran-
dom measure and (a)+ = a1[0,∞[(a).

Remark 4. In (6), the function (.)+ may be replaced by |.| which yields the
“well-balanced” representation given in [ST94] page 325 Section 2.7.

Remark 5. The kernel can be modified, see for instance the papers of Benassi,
Jaffard, and Roux, [BJR97] or Ayache and Lévy Véhel, [ALV99]. A stochastic
integral for these processes is introduced in [Dec05]. The Gaussian measure can
be replaced by an independently scattered measure, see for instance Benassi-
Roux, [BR03] or by a Lévy measure, see Lacaux, [Lac04].

Harmonizable representation

(See the book of Samorodnitsky and Taqqu [ST94] p 328.)
The fractional Brownian motion {WH(t), t � 0} has the integral repre-
sentation

1
C2(H)

∫ +∞

−∞

eixt − 1
ix

|x| 12−HM(dx); t ∈ R,

where C2(H) =
√

π
HΓ (2H) sinπH .
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Remark 6. Heuristically, the harmonizable representation of fractional Brown-
ian motion is deduced from the moving average representation by using the
Parseval identity. Indeed, the Fourier transform of a Gaussian random mea-
sure is again a Gaussian random measure. Notice that

(t− x)H− 1
2

+ − (−x)H− 1
2

+ =
(
H − 1

2

)∫ +∞

−∞
1[0,t](s)(s− x)H− 3

2
+ ds.

Its Fourier transform should be equal to the product of the Fourier transforms
of 1[0,t] and (.)H− 3

2
+ . Now the Fourier transform of 1[0,t](s) is x 	→ 1√

2π
eixt−1
ix .

The Fourier transform of sH− 3
2

+ does not exist, though, and up to a constant,

the Fourier transform of x 	→ (−x)H− 3
2

+ is x 	→ |x| 12−H . Then, the Fourier

transform of x 	→ (t−x)H− 1
2

+ −(−x)H− 1
2

+ is x 	→ eixt−1
ix |x| 12−H up to a suitable

constant.

Volterra representations

(See Barton and Poor, [BP98] or Decreusefond and Üstünel [DÜ99].)
The fractional Brownian motion {WH(t), t � 0} has the integral representa-
tion

WH(t) =
∫ t

0

KH(t, s) dB(s), t � 0

where

KH(t, s) =
(t− s)H− 1

2

Γ (H + 1
2 )

F

(
H − 1

2
;

1
2
−H; H +

1
2
; 1− t

s

)
, s < t, (7)

where F denotes the Gauss hypergeometric function (see Lebedev for more
details [Leb65]) and {B(t), t � 0} is a Brownian motion. According to
Lemma 2.2 formula (2.25) page 36 of [SKM93]

KH(t, s) = CH

[
tH− 1

2

sH− 1
2
(t− s)H− 1

2 −
(
H − 1

2

)∫ t

s

uH− 3
2

sH− 1
2

(u− s)H− 1
2 du

]
(8)

where

CH =

√
πH(2H − 1)

Γ (2− 2H)Γ (H + 1
2 )2 sin

(
π(H − 1

2 )
) .

It is worth pointing out that Norros, Valkeila, and Virtamo give in
[NVV99] a close representation for H > 1

2 . The Brownian motion is re-
placed by a Gaussian martingale whose variance function is t 	→ λHt

2−2H

for a suitable constant λH . The kernel KH(t, s) is replaced by the kernel∫ t
s
rH− 1

2 (r − s)H− 3
2 dr1]0,t[(s).
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As pointed out in Baudoin–Coutin, [BC05a], the Volterra representation
of fractional Brownian motion (or more generally a Volterra process X with
respect to an underlying Brownian motion B) is unique if and only if WH (or
X) and B have the same filtration.

Aggregation of Ornstein–Uhlenbeck processes

(See [CCM00].) Even if fractional Brownian motion is not a Markov process,
it may be obtained from an infinite dimensional Markov process.

Recall that

KH(t, s) = CH

[
tH− 1

2

sH− 1
2
(t− s)H− 1

2 −
(
H − 1

2

)∫ t

s

uH− 3
2

sH− 1
2

(u− s)H− 1
2 du

]
.

Observe that (t− s)H− 1
2 is nearly a Laplace transform,

(t− s)H− 1
2 =

1
Γ
(

1
2 −H

) ∫ ∞

0

x−H− 1
2 e−x(t−s) dx, H <

1
2
,

(t− s)H− 1
2 =

(
H − 1

2

)
Γ
(

3
2 −H

) ∫ +∞

0

x−H+ 1
2

∫ t

s

e−x(u−s) du dx, H >
1
2
.

Using Fubini’s stochastic theorem (see Protter [Pro04]) we obtain the following
representations.

For H > 1
2 , the fractional Brownian motion (WH(t), t � 0) has the

integral representation

WH(t) = CH

(
H − 1

2

)
Γ
(

3
2 −H

) ∫ ∞

0

x−H+ 1
2 Y H(x, t) dx, t � 0,

where

XH(t, x) =
∫ t

0

e−x(t−s)s
1
2−H dB(s) and Y H(t, x) =

∫ t

0

XH(u)uH− 1
2 du.

For H < 1
2 , the fractional Brownian motion {WH(t), t � 0} has the integral

representation

WH(t) = CH
1

Γ
(

1
2 −H

) ∫ ∞

0

x−H− 1
2 ZH(x, t) dx, t � 0

where

ZH(t, x) =
∫ t

0

[
tH− 1

2 e−x(t−s) −
(
H − 1

2

)∫ t

s

uH− 3
2 e−x(s−u)

]
s

1
2−H dB(s).

Remark 7. The processes XH , Y H , and ZH are close to Ornstein–Uhlenbeck
processes, and easy to deal with.

Remark 8. Some generalizations are available in [IT99], where Brownian mo-
tion is replaced by a Gamma process or in [BNS01], where Brownian motion
is replaced by a Lévy process.
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3 Deterministic integrals for fractional Brownian motion

In this section, we focus on Young integrals; a few words are said about Besov
and fractional integrals at the end. We made this choice, since for H < 1

2 ,
only the rough paths approach of Lyons, [Lyo98] yields results on existence
and uniqueness for solution of differential equations driven by a fractional
Brownian motion, in the multidimensional case. Rough path theory can be
seen as a generalization of Young integration.

3.1 Young integrals

We briefly recall some facts about Young integrals. The results of this para-
graph are contained in the articles by Young, [You36] and Lyons 1994 [Lyo94].

In this paragraph, x = (x1, . . . , xd) denotes a continuous function from
[0, 1] to Rd endowed with the Euclidean norm |.|.

Definition 1. For p � 1, the trajectory x is said to have finite p variation
whenever

sup
π

n−1∑
i=0

|x(ti+1)− x(ti)|p <∞,

where the supremum runs over all finite subdivision π = (ti)ni=1 of [0, 1], with
0 � t0 < · · · < tn � 1.

Notation 2 If x has finite p variation, we set

Varp,[0,1](x) :=

[
sup
π

∑
i

|x(ti+1)− x(ti)|p
] 1

p

.

Proposition 7 (Young 1936, [You36]).
Let p, q in [1,∞[ verify 1

p + 1
q > 1. Assume that x has finite p variation and

y finite q variation. The following sequence of Riemann sums converges:

kn−1∑
i=1

x (tni )
[
y
(
tni+1

)
− y (tni )

]
where πn = (tni )

kn
i=1 is any sequence of finite subdivisions of [0, 1] with mesh

going to 0.
The limit, denoted by

∫ 1

0
x(s) dy(s), does not depend upon the choice of the

sequence of subdivisions.
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This integral has good properties. The most useful one for the sequel is that
the function t 	→

∫ t
0
x(s) dy(s) :=

∫ 1

0
1[0,t](s)x(s) dy(s) defined on [0, 1] has

finite q variation and

Varq,[0,1]

(∫ .

0

x(s) dy(s)
)

� ‖x‖∞ Varq,[0,1](y).

Corollary 3. Let x be a path of finite p variation with 1 � p < 2, and f be
a continuous differentiable function on Rd with partial derivatives α Hölder
continuous for some α > p− 1. Then

f
(
x(1)

)
= f (x(0)) +

d∑
i=1

∫ 1

0

∂f

∂xi
(
x(s)

)
dxi(s),

where the integral is the one defined in Proposition 7.

Suppose x is a continuous path in Rd with finite p variation where 1 � p < 2.
Let (f i)di=0 be differentiable vector field on Rn, α Hölder continuous with
α > p − 1 and a ∈ Rn. For any path z0 with finite p variation on Rn, the
sequence of Picard iterates is (zm)m∈N where

zm+1(t) = a+
∫ t

0

f0
(
zm(s)

)
ds+

d∑
i=1

∫ t

0

f i
(
zm(s)

)
dxi(s), t ∈ [0, 1], m � 0.

Theorem 3 (Lyons 1994 [Lyo94]). Assume that f is differentiable with
partial derivatives α Hölder continuous with α > p−1. The sequence of Picard
iterates converges for the distance in p variation. The limit does not depend
on the choice of z0.

Definition 2. The limit, denoted by z, is called the solution of the differential
equation

z(t) = a+
∫ t

0

f0
(
z(s)

)
ds+

d∑
i=1

∫ t

0

f i
(
z(s)

)
dxi(s), t ∈ [0, 1].

Young integrals for fractional Brownian motion
with Hurst parameter greater than 1/2

Now, we apply the results of Section 3.1 to fractional Brownian motion with
Hurst parameter H ∈ ]1/2, 1[. The reader can also see the paper of Ruzmaik-
ina, [Ruz00].

According to Proposition 2, the sample paths of WH are almost surely α
Hölder continuous for all α < H. They have almost surely finite p variation
for all p > 1

H .
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Let Y be a continuous process with sample paths of finite q variation, with
q < 1

1−H . Let πn be a sequence of subdivisions of [0, 1] whose mesh goes to 0,
πn = (tni )

kn
i=1. The sequence of random variables

kn−1∑
i=1

Y (tni )
[
WH(tni+1)−WH(tni )

]
converges almost surely. The limit, which does not depend on the sequence of
subdivisions, is denoted by

∫ 1

0
Y (s) dWH(s).

Remark 9.

• There is no mesurability or adaptedness hypothesis on the process Y.
• At this point, nothing can be said about the expectation of∫ 1

0
Y (s) dWH(s).

• If T is a random time taking its values in [0, 1], this approach allows to
define

∫ T
0
Y (s) dWH(s) (see [Ber89]).

A d-dimensional fractional Brownian motion, WH = (W 1, . . . ,W d), with
Hurst parameter H consists of d independent copies of a fractional Brownian
motion with Hurst parameter H.

Proposition 8. Let H be greater than 1
2 and f be a differentiable function

on Rd, with partial derivatives α Hölder continuous with α > 1
H − 1. Then

f
(
WH(1)

)
= f(0) +

d∑
i=1

∫ 1

0

∂f

∂xi
(
WH(s)

)
dW i(s).

Let (f i)di=0 be differentiable vector field on Rn, α Hölder continuous with
α > 1

H − 1. For any path Z0 with finite p variation on Rn, p > 1
H , the Picard

iterates (Zm)m∈N are given by

Zm+1(t) = a+
∫ t

0

f0
(
Zm(s)

)
ds

+
d∑
i=1

∫ t

0

f i
(
Zm(s)

)
dW i(s), t ∈ [0, 1], m� 0.

Corollary 4. Let H ∈ ]1/2, 1[. Assume that f is differentiable with partial
derivatives α Hölder continuous with α > 1

H − 1. The sequence of Picard
iterates converges, and the limit does not depend on the choice of z0.

Definition 3. The limit, denoted by Z, is called the solution of the differential
equation

Z(t) = a+
∫ t

0

f0
(
Z(s)

)
ds+

d∑
i=1

∫ t

0

f i
(
Z(s)

)
dW i(s), t ∈ [0, 1] (9)

controlled by WH .
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3.2 Besov and fractional integrals

Two other proofs of Proposition 8 are available.

Besov integral for fractional Brownian motion

A proof of Proposition 8 can be found in the article by Ciesielski, Kerkyacha-
rian and Roynette, [CKR93].

Indeed, let x be in the Besov space Bαp,∞ and y be in the Besov space B1−α
p,1

with 1
p < α < 1− 1

p . The expansion of x in the Schauder basis is

x(t) = x1ϕ1 +
∑
j,k

xj,k ϕj,k,

and the expansion of y in the Haar basis

y(t) = y1ϕ1 +
∑
j,k

yj,k ξj,k.

Since the derivative of ϕj,k is ξj,k, the integral
∫ 1

0
y(s) dx(s) is∫ t

0

y(s) dx(s) =
∑

j,k,j′,k′
xj,k yj′,k′

∫ t

0

ξj,k(u) ξj′,k′(u) du.

This integral belongs to Bαp,∞ and

∥∥∥∫ .

0

y(s) dx(s)
∥∥∥
Bα

p,∞
� Cα,p ‖y‖B1−α

p,1
‖x‖Bα

p,∞
,

for a universal constant Cα,p. Notice that for α > 1
2 , Bαp,∞ ⊂ B1−α

p,1 . Therefore
Picard iteration is well defined, and for those f which define a contracting
operator on Bα/2p,∞, the differential equation controlled by x ∈ Bαp,∞

z(t) = a+
∫ t

0

f
(
z(s)

)
dx(s)

has a unique solution.
It remains to prove that the sample paths of WH belongs to B1−α

p,1 for
p > 1

2 . Using a wavelet expansion of fractional Brownian motion, the authors
have proved that almost surely, the sample paths of WH belong to the Besov
space BHp,∞ where 1

p < H < 1 − 1
p . Let Y be a process with sample paths in

B1−H/2
p,1 for 1/p < H/2. The integral

∫ 1

0
Y (s) dWH(s) is pathwise well defined.

Moreover, Proposition 8 can be recovered using again the Picard iteration
scheme.
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Fractional integral for fractional Brownian motion

Another proof of Proposition 8 can be found in the article of Nualart–Răşcanu
[NR02] which is based on the article of Zähle, [Zäh98]. Indeed, in [Zäh98],
Zähle has pointed out that almost surely, the sample paths of WH belong to
the Besov-type spaceWβ

2,∞ for 1
2 < β < H. HereWβ

2,∞ denotes the Besov-type
space of bounded measurable functions f : [0, 1] → R such that∫ 1

0

∫ 1

0

(
f(t)− f(s)

)2
|t− s|2β+1

ds dt <∞.

Moreover, we recover Proposition 8 using again the Picard iteration scheme.
Using the approach of Nualart–Răşcanu, [NR02], Nualart–Saussereau,

[NS05], and Nualart–Hu, [HN06], have shown that the solution of

X(t) = a+
n∑
i=1

∫ t

0

f ij
(
x(s)

)
dW i(s)

has a density with respect to the Lebesgue measure, under a suitable non-
degeneracy condition (ellipticity).

3.3 Conclusion

These deterministic integrals allow to write an Itô formula and to solve differ-
ential equations driven by fractional Brownian motion. Hairer, in [Hai05] has
obtained some ergodic properties of the solution. But some stochastic compu-
tations seem difficult to perform; for instance, if Z is the solution of (9), we
do not known how to deal with

E
(
f(Z1)

)
.

This may be possible by using the divergence integral, see Section 7. Now,
we will study the case H < 1/2.

4 Rough path and fractional Brownian motion

The main theorem of Lyons [Lyo98] can be summarized in the following con-
tinuity theorem: The solution of a stochastic differential equation is not a
continuous application for the uniform convergence, but is continuous for the
p variation distance. This distance is built on all iterated integrals up to order
[p], the integer part of p, where p � 1 depends on the roughness of the under-
lying paths. We refer the reader to [Lyo98], [LQ02], or [Lej03] for a detailed
presentation on the theory of rough paths and the objects we introduce now.
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4.1 Rough path

In this section, Rd is endowed with the Euclidean norm, denoted by |.|. The
tensor product (Rd)⊗n is endowed with

|ξ| =
n∑
i=1

|xi| if ξ = (x1, . . . , xn).

Let x be a continuous path with values in Rd. The path x is said to have
finite p variation if its seminorm Varp,[0,1](x) is finite where

Varp,[0,1](x) =

(
sup
π

k−1∑
i=1

∣∣x(ti+1)− x(ti)
∣∣p)1/p

,

where the supremum over π runs over all subdivisions of [0, 1], with the con-
vention that the points of π are 0 � t1 � · · · � tk � 1. For a continuous
path x with finite variation, the smooth functional of degree [p] over x is
X =

(
1,X1

s,t, . . . ,X
[p]
s,t

)
0�s�t�1

where

X1
s,t = x(t)− x(s),

X2
s,t =

∫
s�u1�u2�t

dx(u1)⊗ dx(u2),

Xi
s,t =

∫
s�u1�···�ui�t

⊗ik=1 dx(uk), i = 1, . . . , [p].

The set of smooth functionals is endowed with the p variation distance defined
by

dp(X,Y) =
[p]∑
j=1

dp
(
Xj ,Yj

)
+ sup
t∈[0,1]

|x(t)− y(t)|,

dp
(
Xj ,Yj

)
= sup

π

(
k−1∑
i=1

∣∣Xj
ti,ti+1

−Yj
ti,ti+1

∣∣p/j)j/p .
The closure of the set of the smooth functionals for the p variation distance
is called the set of geometric functionals and denoted by GΩp([0, 1],Rd).
For x a path with finite p variation, X is a geometric functional over x if
X =

(
1,X1

s,t, . . . ,X
[p]
s,t

)
0�s�t�1

belongs to GΩp
(
[0, 1],Rd

)
and

∀0 � s � t � 1, X1
s,t = x(t)− x(s).

Let f : Rd → L
(
Rd,R

)
be continuous. Here L

(
Rd,R

)
is the set of linear

applications from Rd to R. For all continuous paths of finite variation x, the
path z defined by
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z(t) :=
∫ t

0

f
(
x(s)

)
dx(s), t ∈ [0, 1]

has finite variation.
Let X =

(
1,X1

s,t, ...,X
[p]
s,t

)
0�s�t�1

respectively, Z =
(
1,Z1

s,t, ...,Z
[p]
s,t

)
0�s�t�1

be the smooth functional built on x (resp. z). In [Lyo98], Lyons proved the
following theorem.

Theorem 4. If f is [p] + 1 times differentiable and has bounded partial
derivatives up to degree [p] + 1, the application X 	→ Z is continuous for
the p variation distance. It admits a unique extension to the set of geometric
functionals GΩp

(
[0, 1],Rd

)
.

Remark 10. If f is as in Theorem 4 and x be a smooth path, then∫ t

s

f
(
x(u)

)
dx(u) = f

(
x(s)

)
.X1

s,t

+
∫
s�u1�u2�t

Df
(
x(u2)

)
.
(
dx(u1)⊗ dx(u2)

)
= f (x(s)) .X1

s,t + · · ·+D([p]−1)f (x(s)) .X[p]
s,t

+
∫
s�u1�···�u[p]+1�t

D[p]f
(
x(u[p]+1)

)
.
(
dx(u1)⊗ · · · ⊗ dx(u[p]+1)

)
.

Then, one can prove that∫ t

s

f
(
x(u)

)
dx(u) = lim

|π|→0

∑
ti∈π

[
f
(
x(ti)

)
.X1

ti,ti+1
+ · · ·

+D([p]−1)f
(
x(ti)

)
.X[p]

ti,ti+1

]
. (10)

Identity (10) remains true when x has finite p variation, X is the element of
GΩp

(
[0, 1],Rd

)
over x and∫ t

s

f
(
x(u)

)
dx(u) = Z1

s,t.

Moreover, let (xn)n∈N be a sequence of smooth functions which converges
to x. Call Xn the regular functional built over xn. Assume that Xn

n∈N con-
verges to X in GΩp

(
[0, 1],Rd

)
. Then exchanging limits is possible in∫ t

s

f
(
x(u)

)
dx(u) = lim

n→∞
lim

|π|→0

∑
ti∈π

[
f
(
xn(ti)

)
.(Xn)1ti,ti+1

+ · · ·

+D([p]−1)f
(
xn(ti)

)
.(Xn)[p]ti,ti+1

]
.
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Consider the following differential equation

dy(t) = f
(
y(t)

)
dx(t), y0 ∈ Rn, (11)

where f : Rn → Rn×d is Lipschitz continuous. For any continuous path x
with finite variation, the differential equation (11) has a unique solution y.
The application x 	→ y is called the Itô map associated to the differential
equation (11). It is well known that this Itô map is not continuous with re-
spect to the topology of the uniform convergence, see Watanabe [Wat84]. Let
X =

(
1,X1

s,t, . . . ,X
[p]
s,t

)
0�s�t�1

respectively, Y =
(
1,Y1

s,t, . . . ,Y
[p]
s,t

)
0�s�t�1

be the smooth functional built on x (respectively, y). In [Lyo98], Lyons has
proved the following theorem.

Theorem 5. If f is [p]+1 times differentiable with bounded partial derivatives
up to order [p]+1, then the map X 	→ Y is continuous for the p variation dis-
tance. It extends uniquely to the set of geometric functionals GΩp

(
[0, 1],Rd

)
.

Remark 11. Let d = 1, x be a α Hölder continuous path, α > 0. Then the
geometric rough path built on x is X =

(
1,X1

s,t, . . . ,X
[p]
s,t

)
0�s�t�1

where p � 1
α

and

Xi
s,t =

(x(t)− x(s))i

i!
, i = 1, . . . , [p], (s, t) ∈ [0, 1]2. (12)

According to Theorem 5, for f : R → R, [p] + 1 times differentiable with
bounded partial derivatives up to order [p] + 1 and for p � 1

α , the differential
equation

dy(t) = f
(
y(t)

)
dx(t), y0 ∈ R,

has a unique solution y. Moreover, the map X 	→ Y is continuous for the
p variation distance, where Yi is given by (12).

4.2 Geometric rough path over fractional Brownian motion

For H ∈ ]0, 1[, fractional Brownian motion has a modification with sample
paths Hölder continuous of any index α, α < H, thus with sample paths of
finite p variation for 1

H < p.

The case when d= 1

According to Remark 11, when d = 1 one has the following Proposition.

Proposition 9. Let WH be a fractional Brownian motion with Hurst para-
meter H ∈ ]0, 1[; let f : R → R be [p] + 1 times differentiable with bounded
partial derivatives up to order [p] + 1. For p > 1

H , the differential equation

dY (t) = f
(
Y (t)

)
dWH(t), y0 ∈ R, (13)

has a unique solution.
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If
(
WH
n

)
n∈N

is a sequence which converges to WH for the 1/p norm, then
Y is the limit of (Yn)n∈N where Yn is the solution of (13) with WH

n instead
of WH .

Some applications to waves in random media are given by Marty in [Mar05].
According to the results of [Lyo98], we restrict ourself to order [p] and dimen-
sion d > 1.

The case when H > 1
4

In order to build a geometric rough path over WH =
(
W 1, . . . ,W d

)
a

d-dimensional fractional Brownian motion, we have to consider smooth
approximations of WH . In [CQ02], the authors have chosen the dyadic linear
interpolation of WH ; other approximations may give the same result. For
m ∈ N∗, put tmk = k2−m, k = 0, . . . , 2m, and

W (m)(t) = WH(tmk−1) +Δmk W 2m (t− tmk−1), t ∈ [tmk−1, t
m
k ]

where Δmk W is the increment W (tmk )−W (tmk−1) of WH between tmk−1 and tmk .
Call W(m) =

(
1,W(m)1s,t,W(m)2s,t, . . . ,W(m)[p]s,t

)
0�s�t�1

the smooth rough
path over W (m).

Proposition 10. Theorem 2 of [CQ02]
Denote by WH a d-dimensional fractional Brownian motion with Hurst

parameter H and by W(m) =
(
1,W(m)1s,t,W(m)2s,t,W(m)3s,t

)
0�s�t�1

the
smooth rough path built on the dyadic linear interpolation of W.

If H ∈ ]14 , 1[, then for any p > 1/H,
(
W(m)

)
m∈N

converges almost surely
to a geometric rough path over WH W =

(
1,W1

s,t,W
2
s,t,W

3
s,t

)
0�s�t�1

for
the p variation distance.

Proof. Since ΩGp
(
[0, 1],Rd

)
is a complete metric space, we only have to prove

that almost surely

∞∑
m=1

dp
(
W(m),W(m+ 1)

)
<∞.

We only give some ideas to prove that almost surely

∞∑
m=1

dp
(
W(m)2,W(m+ 1)2

)
<∞.

First the distance in p variation between two geometric functionals, X and
Y, dp(X,Y), is controlled by the sum of the increments of X−Y along the
dyadic subdivision (see Lemmas 8–10 [CQ02]). For instance for the second
level path we have Lemma 2 of [LLQ02].
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Lemma 2. For any p > 2 and γ > p
2 −1, there exists a constant C depending

only on p and γ such that for all functionals X and Y in GΩ3
(
[0, 1],Rd

)
dp(X2,Y2) � C

∞∑
n=1

nγ
2n∑
k=1

∣∣∣X2
tn
k−1,t

n
k
−Y2

tn
k−1,t

n
k

∣∣∣ p
2

+C

( ∞∑
n=1

nγ
2n∑
k=1

∣∣∣X1
tn
k−1,t

n
k
−Y1

tn
k−1,t

n
k

∣∣∣p)1/2

×
( ∞∑
n=1

nγ
2n∑
k=1

|X1
tn
k−1,t

n
k
|p + |Y1

tn
k−1,t

n
k
|p
)1/2

.

Then, we have to prove that almost surely,

∞∑
m=1

∞∑
n=1

nγ
2n∑
k=1

∣∣∣W(m)2tn
k−1,t

n
k
−W(m+ 1)2tn

k−1,t
n
k

∣∣∣p/2 <∞.

Notice that W i(m), i = 1, 2, 3, is a polynomial of degree i in the variables
Δmk W, k = 1, . . . , 2m. For instance, if m � n, the second level path W2(m) is

W2(m)tn
k−1,t

n
k

=
1
2

22(m−n)Δml W
⊗2, (14)

where l is the unique natural number such that

l − 1
2m

� k − 1
2n

<
k

2n
� l

2m
.

If m > n, the second level path W2(m)−W2(m+ 1) is

W2(m+ 1)tn
k−1,t

n
k
−W2(m)tn

k−1,t
n
k

=
1
2

∑
l

(
Δm+1

2l−1W ⊗Δm+1
2l W −Δm+1

2l W ⊗Δm+1
2l−1W

)
for k = 1, . . . , 2n, where the summation over l runs from 2m−n(k − 1) + 1 to
2m−nk. Recall the results of Lemma 1: There exists a constant C such that
for all (s, t, τ) ∈ [0, 1]3, τ �= 0, verifying |t−s|

τ < 1, one has

E
(
|WH(t)−WH(s)|2

)
= d |t− s|2H ,

E
[(
WH(t)−WH(s)

) (
WH(t+τ)−WH(s+τ)

)]
� C τ2H |t−s|2

τ2 .

For s = r2−m, t = l2−m, and τ = 2−m, we obtain

∣∣E (Δml W iΔmr W
j
)∣∣ � (2H − 1) δi,j C

|k − l|2H−2

22Hm
. (15)

The following Lemma is a consequence of (15).
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Lemma 3. For i �= j and l > r,

|E
(
Δm+1

2l−1W ⊗Δm+1
2l W −Δm+1

2l W ⊗Δm+1
2l−1W

)
(
Δm+1

2r−1W ⊗Δm+1
2r W −Δm+1

2r W ⊗Δm+1
2r−1W

)∣∣ � C1

(
l − r

2m+1

)4H 1
(l − r)5

.

where C1(H) is a constant depending only on H. If l = r, then

E
( [
Δm+1

2l−1W ⊗Δm+1
2l W −Δm+1

2l W ⊗Δm+1
2l−1W

]2 )
= 2(1− 2H)2−4Hm.

The key estimate for the second level path is given in the following.

Lemma 4. Let H > 1
4 and p such that max

(
1
H , 3

)
< p � 4. There exists

a constant C depending only on d, p, and H such that for any n, m and
k = 1, . . . , 2n

E
∣∣W2(m+ 1)tn

k−1,t
n
k
−W2(m)tn

k−1,t
n
k

∣∣p/2 � C2
p
4 (m−n)2−mHp.

Proof. Since W2(m+1)tn
k−1,t

n
k
−W2(m)tn

k−1,t
n
k

belongs to the second chaos of
the fractional Brownian motion, we only have to prove the Lemma for p = 4.

For m � n, it is easily derived from (14) and from (a + b)2 � 2(a2 + b2)
that

E
∣∣W2(m+ 1)tn

k−1,t
n
k
−W2(m)tn

k−1,t
n
k

∣∣2 � 2(m−n)4−4mH−1.

For m > n, the diagonal terms of W 2(m + 1)tn
k−1,t

n
k
−W 2(m)tn

k−1,t
n
k

vanish.
Using the Hilbert–Schmidt norm on Rd × Rd,

E
∣∣W2(m+ 1)tn

k−1,t
n
k
−W2(m)tn

k−1,t
n
k

∣∣2 =
∑
i
=j

∑
l, r

E(Ai,jr Aj,il )

where l ranges from 2m−n(k − 1) + 1 to 2m−nk and r from 1 to l − 1, and

Ai,jl = Δm+1
2l−1W

i Δm+1
2l W j −Δm+1

2l W i Δm+1
2l−1W

j .

Using Lemma 3, we obtain for m > n,

E
∣∣W2(m+ 1)tn

k−1,t
n
k
−W2(m)tn

k−1,t
n
k

∣∣2 � C 2m−n2−4Hm

+ C

2m−n∑
l=2

2−4Hm
l−1∑
r=1

(l − r)4H−5

� C 2m−n2−4Hm.
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Since for H > 1
4 ,

∞∑
m=1

∞∑
n=1

nγ
2n∑
k=1

2
p
4 (m−n)2−mHp <∞,

one has

E

( ∞∑
m=1

∞∑
n=1

nγ
2n∑
k=1

∣∣∣W(m)2tn
k−1,t

n
k
−W(m+ 1)2tn

k−1,t
n
k

∣∣∣p/2) < +∞.

Almost surely the following sum is convergent

∞∑
m=1

dp
(
W(m)2,W(m+ 1)2

)
<∞.

The same convergence holds for the other levels. There exists a unique function
W.,. on {(s, t) ∈ [0, 1]2, 0 � s � t � 1}, such that dp

(
W,W(m)

)
converges

to 0, almost surely when m goes to infinity, in the p variation distance. ��

A consequence of Theorem 4 and Proposition 10 is the following Itô formula.

Corollary 5. Theorem 5 of [CQ02]
If H > 1

4 , p >
1
H , and f is C [p](Rd,R) then

f
(
WH(1)

)
= f

(
WH(0)

)
+
∫ 1

0

Df
(
WH(s)

)
dWH(s),

where∫ 1

0

Df
(
WH(s)

)
dWH(s)

= lim
m→∞

2m∑
k=1

∫ tmk

tm
k−1

Df
(
WH(tmk−1) + (t− tmk−1)Δ

m
k W

)
dt 2mΔmk W .

Following [CFV05], Df(WH) is Stratonovitch integrable with respect to W j ,
see [Nua95]. Indeed, for all t ∈ [0, 1] there exists a random variable denoted by∫ t
0
Df

(
WH(s)

)
dW j(s) such that for all sequences (πn = (tni )i=0,...,kn

)n∈N of
subdivision of [0, t] such that |πn| →n→∞ 0, the following convergence holds
in probability

lim
n→∞

kn−1∑
i=0

(
1

tni+1 − tni

∫ tni+1

tn
i

Df
(
(WH(s)

)
ds

)(
W j(tni+1)−W j(tni )

)
=
∫ t

0

Df
(
WH(s)

)
dW j(s).
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Differential equation in the case when H > 1
4

Consider the following stochastic differential equation

dyi(t) = f i0 (t, y(t)) dt+
d∑
j=1

f ij (t, y(t)) dW j(t), yi(0) = ξj , i = 1, . . . , n,

(16)

where WH is a d-dimensional fractional Brownian motion. Assume, for sim-
plicity, that all partial derivatives of f ji up to order [p] + 1 are bounded for
i = 1, . . . , n, j = 0, . . . , d. Then one has a Wong–Zakai limit theorem. Namely,
if
(
y(m)i, i = 1, . . . , d

)
is the unique solution to the ordinary equation

dy(m)i(t) = f i0
(
t, y(m)(t)

)
dt+

d∑
j=1

f ij
(
t, y(m)(t)

)
dW (m)j(t), yi(0) = ξi,

Theorem 5 and Proposition 10 imply that y(m) converges to a continuous
sample path y for the p variation distance on [0, 1] and y(0) = ξ. Of course,
the limit path y may be regarded as the strong solution to the stochastic differ-
ential (16). In fact, a stronger result holds. Call Y(m) the smooth functional{
(1,Y(m)1s,t,Y(m)2s,t,Y(m)3s,t)

}
0�s�t�1

built over y(m).

Corollary 6. Theorem 5 of [CQ02]
If H > 1

4 and p > 1
H , then when m goes to infinity Y(m) converges in

the p variation distance almost surely to some geometric functional Y =(
1,Y1

s,t,Y
2
s,t,Y

3
s,t

)
0�s�t�1

.

Following [CFV05],
{
f ij(y(0) + Y1

0,t), t ∈ [0, 1]
}
, i = 1, . . . , n, j = 1, . . . , d

is Stratonovich integrable with respect to W j , see [Nua95]. Indeed, for all
t ∈ [0, 1] there exists a random variable denoted by

∫ t
0
f ij
(
y(0) + Y1

0,s

)
dW j(s)

such that for all sequences
(
πn = (tni )i=0,...,kn

)
n∈N

of subdivisions of [0, t] such
that |πn| →n→∞ 0, the following convergence holds in probability

lim
n→∞

kn−1∑
	=0

(
1

tn	+1 − tn	

∫ tn�+1

tn
�

f ij
(
y(0) + Y1

0,s

)
ds

)(
W j(tn	+1)−W j (tn	 )

)
=
∫ t

0

f ij
(
y(0) + Y1

0,s

)
dW j(s) .

Corollary 7. Under the hypothesis of Corollary 6, the differential equation
(16) has a solution in the Stratonovich sense.

The investigation of the properties of the solution of differential equations
driven by fractional Brownian motion is pursued, using rough paths theory.
In [MSS06], Millet and Sanz prove a large deviation principle in the space of
geometric rough paths, extending classical results on Gaussian processes.
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In [BC05b], Baudoin and Coutin, using a Taylor expansion type formula,
show how it is possible to associate differential operators with stochastic dif-
ferential equations driven by a fractional Brownian motion. As an application,
they deduce that invariant measures for such SDEs satisfy an infinite dimen-
sional system of partial differential equations.

The case when H � 1
4

Proposition 11. Theorem 2 of [CQ02]
Let WH be a d-dimensional fractional Brownian motion with Hurst para-
meter H and W(m) =

(
1,W(m)1s,t,W(m)2s,t,W(m)3s,t

)
0�s�t�1

the smooth
rough path built on the dyadic linear interpolation of WH . If H � 1

4 , the sec-
ond level path W(m)2 of its dyadic linear interpolation does not converge in
L1(Ω,F ,P).

Proof. First, express W2(m)i,j0,1 as a double Wiener integral for i �= j :

W2(m)i,j0,1 =
∫∫

[0,1]2
fm(u, v) dBi(u) dBj(v).

Second, observe that (fm)m∈N converges almost surely to a function f when
m goes to 0 but f does not belong to L2([0, 1],R). Then W2(m)i,j0,1 does not
converge in probability nor in Lp(Ω,P,R).

The proof continues by extending the Volterra representation of fractional
Brownian motion given in Section 2.2 to the multidimensional case. The frac-
tional Brownian motion (WH(t), t � 0) has the integral representation

W i(t) =
∫ t

0

KH(t, s) dBi(s), t � 0,

where

KH(t, s) = CH

[
tH− 1

2

sH− 1
2
(t− s)H− 1

2 −
(
H − 1

2

)∫ t

s

uH− 3
2

sH− 1
2

(u− s)H− 1
2 du

]

and B =
(
B1, . . . , Bd

)
is a d-dimensional Brownian motion. For m ∈ N∗,

W (m) is also a Volterra process, that is

W (m)i(t) =
∫ t

0

K(m)(t, s) dBi(s), t � 0

where if tmk = k2−m, k = 0, . . . , 2m, then for t ∈
[
tmk−1, t

m
k

]
:

K(m)(t, s) = KH(tmk−1, s) + 2m(t− tmk−1)
[
KH(tmk , s)−KH(tmk−1, s)

]
,

∂K(m)
∂t

(t, s) = 2m
[
KH(tmk , s)−KH(tmk−1, s)

]
.
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The process W (m) is absolutely continuous with respect to Lebesgue measure
with derivative given by

dW (m)j

dt
(t) =

∫ 1

0

∂K(m)
∂t

(t, s) dBj(s), t � 0.

Using Fubini’s Theorem, see [Pro04], and the independence of Bi and Bj for
i �= j,

W2(m)0,1 =
∫∫

[0,1]2

[∫ 1

0

K(m)(t, u)
∂K(m)
∂t

(t, v) dt
]
dBi(u) dBj(v)

=
∫∫

[0,1]2
f(m)(u, v) dBi(u) dBj(v)

where f(m)(u, v) stands for

2m∑
k=1

K(m)(tmk , u) +K(m)(tmk+1, u)
2

[
K(m)(tmk+1, v)−K(m)(tmk , v)

]
.

Observe that t 	→ KH(t, s) is differentiable on ]s, 1], absolutely continuous on
any compact interval of ]s, 1], and its derivative is

∂tK
H(t, s) = CH

tH− 1
2

sH− 1
2

(t− s)H− 3
2 . (17)

Then, du dv almost surely on u > v, one can prove that

lim
m→∞

f(m)(u, v) =
∫ 1

u

KH(t, u) ∂tKH(t, v) dt.

On v < u an integration by parts yields

lim
m→∞

f(m)(u, v) = KH(1, u)KH(1, v)−
∫ 1

v

KH(t, v) ∂tKH(t, u) dt.

Since, for H < 1
2

∂tK
H(t, s) � CHs

1
2−H(t− s)H− 3

2 ,

and

KH(t, s) � CHs
1
2−H(t− s)H− 1

2 ,

then for H � 1
4 ,∫ 1

u

KH
(
t,max(u, v)

)
∂tK

H
(
t,min(u, v)

)
dt /∈ L2

(
[0, 1]2, du dv,R

)
.
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Indeed, for (u, v) such that 0 < u− v < 1− u,∫ 1

u

KH(t, u) ∂tKH(t, v) dt � C2
H (uv)H− 1

2

∫ 1

u

(t− u)H− 1
2 (t− v)H− 3

2 dt,

� C2
H (uv)H− 1

2

∫ 1−u

0

xH− 1
2 (x+ u− v)H− 3

2 dx,

� C2
H (uv)H− 1

2 2H− 3
2 (u− v)2H−1.

But (u− v)2H−1 does not belong to L2([0, 1]2, du dv,R) for H � 1
4 . The proof

of Proposition 11 is over. ��

Conclusion

To study properties of the solution of a differential equation driven by frac-
tional Brownian motion, even for probabilistic ones, the rough path theory is
very powerful. To go further, one has to compute the exception of the iterated
integrals built on fractional Brownian motion.

To our knowledge, the existence of the density of the solution of the dif-
ferential equation (16) when H < 1/2 is an open problem.

5 Forward, backward integral, and generalized
covariation

This section is based on the papers of Russo–Vallois, [RV93], Gradinaru et al.,
[GRV03]. Let C be the Fréchet space of continuous processes equipped with the
metric topology of uniform convergence in probability (ucp) on each compact
interval.

Definition 4. If X is continuous and if almost all paths of Y belong to
L1
loc(R,R, dx), the forward integral is∫ t

0

Y (u) d−X(u) := limucp
ε↓0

∫ t

0

Y (s)
X(s+ε)−X(s)

ε
ds;

the covariation is defined by

[X,Y ]t := limucp
ε↓0

1
ε

∫ t

0

(
X(s+ ε)−X(s)

)(
Y (s+ε)− Y (s)

)
ds;

and the symmetric-Stratonovich integral is∫ t

0

Ys d
0X(s) =

∫ t

0

Y (u) d−X(u) +
1
2
[X,Y ]t,

provided these limits exist.
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If X is such that [X,X] exists, X is a finite quadratic variation process. For
such a process, if f ∈ C2(R,R), then the following Itô formula holds:

f(Xt) = f(X0) +
∫ t

0

f ′(X(u)
)
d0X(u), ∀t ∈ [0, 1]. (18)

Remark 12.

• If X is a continuous semimartingale and Y a suitable previsible process,
then

∫ .
0
Y (u)d−X(u) is but the classical Itô integral (see [RV93]).

• If X and Y are continuous semimartingales, then
∫ .
0
Y (u) d0X(u) is the

Fisk–Stratonovich integral and [X,Y ] is the ordinary square bracket.
• For H > 1

2 , W
H has a zero quadratic variation process, so the Itô formula

(18) holds.

Since the quadratic variation of WH is infinite when H < 1
2 , the authors of

[GRV03] introduce new objects.

Definition 5. For α > 0, the α strong variation of a process X is

[X](α)
t := limucp

ε↓0

∫ t

0

∣∣X(u+ε)−X(u)
∣∣α

ε
du, ∀t ∈ [0, 1]

provided the limit exists.

Definition 6 (Errami–Russo [ER03]).
Given n � 1, the n-covariation [X1, . . . , Xn] of a vector (X1, . . . , Xn) of real
continuous processes is for t ∈ [0, 1],

[X1, . . . , Xn]t := limucp
ε↓0

∫ t

0

(
X1(u+ε)−X1(u)

)
· · ·

(
Xn(u+ε)−Xn(u)

)
ε

du,

when the limit exists.

For a process X, the vector valued process (X, . . . ,X) may have a finite n
variation even if the n strong variation of X does not exist.

Proposition 12. Proposition 3.14 [RV00].
For H ∈ ]0, 1[, the fractional Brownian motion with Hurst parameter H has
a 1/H strong variation and for 2nH > 1[

WH
](2n)

t
= μ2n t, ∀t ∈ [0, 1],

where μa = E
(
|WH

1 |
a)
.

Then, a natural extension of the symmetric-Stratonovich integral is the follow-
ing one, introduced by Revuz–Yor [RY99] (see Exercise (2.18) chapter IV). Let
ν be a probability measure on [0, 1] and mk :=

∫ 1

0
αkν(dα) its kth moment.
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Definition 7. Fix m � 1. If g : R → R is a locally bounded function, the
ν integral of order m of g(X) with respect to X is∫ t

0

g
(
X(u)

)
dν,mX(u)

:= limucp
ε↓0

1
ε

∫ t

0

(
X(s+ε)−X(s)

)m∫ 1

0

g
(
X(s) + α[X(s+ε)−X(s)]

)
ν(dα) ds

if the limit exists.

This integral with respect to X is defined only for integrands of the form
g(X). Nevertheless, g(X) may sometimes be replaced by a general Y .

Example 6

• If g=1, then, for any probability measure ν, the integral
∫ .
0
g(X(u)) dν,mX(u)

is the m variation of X (see Definition 6).
• If ν = δ0 and m = 1,

∫ .
0
g
(
X(u)

)
dν,mX(u) is the forward integral defined

in Definition 4.
• If ν = 1

2 [δ0+δ1] and m = 1,
∫ t
0
g
(
X(u)

)
dν,mX(u) is the symmetric integral

defined in Definition 4.

A probability measure ν on [0, 1] is called symmetric if it is invariant under
the transformation t 	→ 1− t of [0, 1].

Theorem 7 (see Gradinaru et al. [GRV03]). Let n ∈ N∗.
Let X be a process with strong (2n) variation and g ∈ C2n(R,R). Let ν

be a symmetric probability measure such that m2j = 1
2j+1 for j = 1, . . . , l− 1.

If all integrals involved in the Itô formula (19) but one exist, the last one exists
too and for t ∈ [0, 1]

f
(
X(t)

)
= f(X0) +

∫ t

0

f ′(X(u)
)
dν,1X(u)

+
n−1∑
j=l

kνl,j

∫ t

0

f (2j+1)
(
X(u)

)
dδ1/2,2j+1X(u) (19)

where the sum is null if l > n− 1. Here, kνl,j are some universal constants.

For fractional Brownian motion, Gradinaru et al., [GNRV05], go further.

Theorem 8.
1. For H > 1

6 and f ∈ C6(R,R), the integral
∫ .
0
f ′ (WH(u)

)
dν,1WH(u) exists

for any symmetric probability measure on [0, 1], and one has

f
(
WH(t)

)
= f(0) +

∫ t

0

f ′ (WH(u)
)
dν,1WH(u), t ∈ [0, 1].
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2. Fix r � 2. If (2r + 1)H > 1
2 and if f ∈ C4r+2(R,R) then the integral∫ .

0
f ′ (WH(u)

)
dν,1WH(u) exists for any symmetric probability measure on

[0, 1] such that m2j = 1
2j+1 for j = 1, . . . , r − 1 and

f
(
WH(t)

)
= f(0) +

∫ t

0

f ′ (WH(u)
)
dν,1WH(u), t ∈ [0, 1].

Remark 13. In [GNRV05], the authors prove that for H < 1
6 and for ν =

1
2 [δ0 + δ1], the integral

∫ t
0
f ′ (WH(u)

)
dν,1WH(u) does not exist.

Remark 14. In the one-dimensional case, Nourdin [Nou05] shows that this
integral gives a meaning to and solves stochastic differential equations, and
the Milshtein scheme, see [Tal96], converges. Moreover, Nourdin and Simon,
in [NS06] have studied the existence of the density of the solution.

6 The semimartingale approach

In this section, we present some ideas of [CCM03]. The authors of [CCM03]
have noticed that fractional Brownian motion is a limit of Gaussian semi-
martingales using the Volterra representation given in Section 2.2. Then,
using stochastic calculus of variation with respect to the underlying Brownian
motion B, they obtain a nice representation of integrals with respect to these
Gaussian semimartingales. This representation allows to exchange limits and
integral signs, and provides an integral with respect to fractional Brownian
motion.

Before coming to Volterra representations, we present results on Wiener
integrals with respect to fractional Brownian motion and their reproducing
kernels. We show that their natural filtrations are Brownian filtrations.

6.1 Wiener integral and reproducing kernel

Following the representations given in Section 2.2, the fractional Brownian
motion {WH(t), t � 0} admits the integral representation

WH(t) =
∫ t

0

KH(t, s) dB(s), t � 0

where (s, t) ∈ R2
+, K

H(t, s) is given by

CH

[
tH− 1

2

sH− 1
2
(t− s)H− 1

2 −
(
H − 1

2

)∫ t

s

uH− 3
2

sH− 1
2

(u− s)H− 1
2 du

]
1]0,t[(s)

and B is a Brownian motion. Moreover, for fixed s, the map t 	→ KH(t, s) is
differentiable on ]s, 1] with derivative

∂tK
H(t, s) = CH

tH− 1
2

sH− 1
2
(t− s)H− 3

2 .
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For 0 < s < t � 1, one has

WH(t)−WH(s) =
∫ t

s

KH(t, r) dB(r) +
∫ s

0

[
KH(t, r)−KH(s, r)

]
dB(r)

=
∫ 1

0

[
1[s,t](r)KH(1, r)

+
∫ 1

s

[
1[s,t](u)− 1[s,t](r)

]
∂1K

H(u, r) du
]
dB(r). (20)

Let a be a step function of the form

a(s) =
n∑
k=1

ak1[tk−1,tk[(s)

for a subdivision 0 � t0 � · · · � tn of [0, 1] and ak ∈ R, k = 1, . . . , n. From
(20) one has

n∑
k=1

ak
[
WH(tk)−WH(tk−1)

]
=
∫ 1

0

[
a(r)KH(1, r) +

∫ 1

s

[
a(u)− a(r)

]
∂1K

H(u, r) du
]
dB(r).

Introduce the following operator on suitable functions

IK
H

1,− (a)(s) := a(s)KH(1, s) +
∫ 1

s

[
a(u)− a(s)

]
∂1K

H(u, s) du, s ∈ [0, 1].

(21)

Proposition 13. Let a be an α Hölder continuous function with α+H > 1
2 .

The Wiener integral
∫ 1

0
a(s) dWH(s) of a with respect to WH exists and has

the following representation∫ 1

0

[
a(r)KH(1, r) +

∫ 1

s

[
a(u)− a(r)

]
∂1K

H(u, r) du
]
dB(r).

Proof. Let a(m) be the linear interpolation of a along the dyadic subdivision,
that is,

a(m)(t) = a(m)
(
tmk−1

)
+ 2m

(
t− tmk−1

) [
a(tmk )− a(tmk−1)

]
, t ∈

[
tmk−1, t

m
k

]
.

Then, for any α′ < α, a(m) is α′ Hölder continuous and converges to a in the
α′ Hölder norm. If α′ > 1

2 −H, then IK
H

1,−
(
a(m)

)
converges in L2

(
[0, 1],R, dr

)
to IK

H

1,− (a), thus proving the proposition. ��

The operator IK
H

1,− is close to a Liouville operator, see [SKM93].
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Lemma 5. For H ∈ ]0, 1[, one has the following identification: for suitable a

IK
H

1,− (a)(s) = cH s
1
2−H I

H− 1
2

1,−
[
uH− 1

2 a(u)
]
(s), s ∈ [0, 1].

Here according to [SKM93] for α ∈]0, 1[ and f ∈ Lploc(R,R, dx), s < 1,

Iα1,−(f)(s) =
1

Γ (α)

∫ 1

s

f(u)(u− s)α−1du

and for suitable f

I−α1,−(f)(s) =
1

Γ (1− α)

[
f(s)

(1− s)α
− α

∫ 1

s

f(u)− f(s)
(u− s)α+1

du

]
.

Proof. In [PT01], Pipiras and Taqqu have pointed out that

KH(t, s) = cH s
1
2−H I

H− 1
2

1,−
(
uH− 1

2 1[0,t](u)
)
(s), 0 � s < t � 1

for a suitable constant cH . So Lemma 5 is true for step functions, and con-
clusion is reached by a density argument. ��

Moreover,
(
Iα1,−

)
α�0

is a semigroup of operators and Iα1,−◦I−α1,− = Id. Then
for any t ∈ [0, 1], the equation

1[0,t](s) = IK
H

1,−
(
f(t, .)

)
(s), s ∈ [0, 1],

with unknown f(t, .) ∈ L2
(
[0, 1],R, dr

)
, has a unique solution, namely

fH(t, s) = C−1
H s

1
2−H I

1
2−H
1,−

(
uH− 1

2 1[0,t](u)
)
(s), s ∈ [0, 1].

This result was proved in Lemma 5.1 of [PT01] for H > 1
2 and is a consequence

for H < 1
2 of the definition of Iα1,−.

We recover the first part Theorem 4.8 of [DÜ99].

Proposition 14. The process B = {B(t) :=
∫ 1

0
fH(t, .) dWH(s); t ∈ [0, 1]} is

a Brownian motion whose natural filtration coincides with the natural filtration
of WH . (Here the integral is a Wiener integral.)

Recall that HH , the reproducing kernel Hilbert space of fractional Brown-
ian motion is the closure of the linear span E of the indicator functions
{1[0,t]; t ∈ [0, 1]} with respect to the scalar product 〈1[0,t],1[0,s]〉 = RH(t, s)
(see Appendix A).

We now are in a position to rewrite Theorem 3.3 of [DÜ99].

Proposition 15. For H ∈ ]0, 1[,
(
IK

H

1,−
)−1 (

L2 ([0, 1],R, dr)
)

= HH endowed
with the scalar product

〈f, g〉HH
=
〈(
IK

H

1,−
)−1(f),

(
IK

H

1,−
)−1(g)

〉
L2([0,1],R,du)

.

Remark 15. When H > 1
2 , the elements of HH may not be functions but

distributions of negative order, according to the papers [PT00] or [AN03].
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6.2 Approximation by Gaussian semimartingales

For ε > 0, put

WH,ε(t) := E
(
WH(t+ε)

∣∣ Ft) =
∫ t

0

KH(t+ε, s) dB(s), t ∈ [0, 1],

where (Ft, t ∈ [0, 1]) is the natural filtration associated to B or WH . Then
WH,ε converges to WH in C([0, 1],R) almost surely when ε goes to zero. Using
Fubini’s theorem, [Pro04], WH,ε is a semimartingale with decomposition given
by:

WH,ε(t) =
∫ t

0

KH(s+ε, s) dB(s) +
∫ t

0

du

∫ u

0

∂1K
H(u+ε, s) dB(s), t ∈ [0, 1].

6.3 Construction of the integral

In order to define the integral∫ t

0

a(s) dWH(s), t ∈ [0, 1]

for suitable processes, we extend the operator IK
H

1,− to IK
H

t,− where for a regular
enough, IK

H

t,− (a)(s) is defined as IK
H

1,−
(
a1[0,t]

)
(s) for 0 � s < t � 1, that is,

IK
H

t,− (a)(s) = KH(t, s) a(s) +
∫ t

s

[
a(u)− a(s)

]
∂1K

H(u, s) du. (22)

Let a be an adapted process belonging to D1,2
(
L2([0, 1],R, dr)

)
(see

Remark 30 in Appendix A for the definition of this space). Then for t ∈ [0, 1],∫ t

0

a(s) dWH,ε(s)

=
∫ t

0

a(s)KH(s+ε, s) dB(s) +
∫ t

0

a(u) du
∫ u

0

∂1K
H(u+ε, s) dB(s).

Then using Property P, (32) in Appendix A, we obtain∫ t

0

a(s) dWH,ε(s) =
∫ t

0

a(s)KH(s+ε, s) dB(s)

+
∫ t

0

du

∫ u

0

a(u) ∂1K
H(u+ε, s) δBB(s)

+
∫ t

0

du

∫ u

0

Dsa(u) ∂1K
H(u+ε, s) ds.
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The second integral in the right-hand side is a divergence since the process
{a(u) ∂1K

H(u+ε, s); s ∈ [0, u]} is not adapted to {B(s), s � u}. The
anticipating stochastic Fubini theorem, see Theorem 3.1 [Leó93] yields∫ t

0

a(s) dWH,ε(s) =
∫ t

0

a(s)KH(s+ε, s) dB(s)

+
∫ t

0

∫ t

s

a(u) ∂1K
H(u+ε, s) du δBB(s)

+
∫ t

0

du

∫ u

0

Dsa(u) ∂1K
H(u+ε, s) ds.

The function t 	→ KH(t, s) is not absolutely continuous when H < 1
2 , one can

set ∫ t

0

a(s) dWH,ε(s) =
∫ t

0

a(s)KH(t+ε, s) dB(s)

+
∫ t

0

∫ t

s

[a(u)− a(s)] ∂1K
H(u+ε, s) du δBB(s)

+
∫ t

0

du

∫ u

0

Dsa(u) ∂1K
H(u+ε, s) ds. (23)

Hypothesis 9 Assume that a is an adapted process belonging to the space
D1,2
B

(
L2([0, 1],R, du)

)
and that there exists α fulfilling α+H > 1

2 and p > 1/H
such that

• ‖a‖2
L1,2

B,α

:= sup
0<s<u<1

E
[
(a(u)− a(s))2 +

∫ 1

0

(
DB
r a(u)−DB

r a(s)
)2

dr
]

|u− s|2α
is finite,

• sups∈[0,1] |a(s)| belongs to Lp(Ω,R,P).

Proposition 16. Let a be a process fulfilling Hypothesis 9. For t ∈ [0, 1]

1. The process

IK
H

t,− (a) :=
{
a(s)KH(t, s) +

∫ t

s

[a(u)− a(s)] ∂1K
H(u, s) du, s ∈ [0, 1]

}
belongs to D1,2

(
L2([0, 1],R, dr)

)
.

2. The process IK
H

t,− (a) is the limit in D1,2
B

(
L2([0, 1],R, dr)

)
of the processes

IK
H,ε

t,− (a) :=
{
a(s)KH(t+ε, s) +

∫ t

s

[a(u)−a(s)] ∂1K
H(u+ε, s) du, s ∈ [0, 1]

}
.

Proof. The proof relies on the Meyer inequality (31) of Appendix A. ��
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For such a process a, (see [CCM03] for less strong hypotheses), the family
of random variables

{∫ t
0
a(s) dWH,ε(s), ε > 0

}
converges in L2(Ω,R,P) when

ε goes to 0. Each term in the right-hand side of (23) converges to the same
term where ε = 0. Then, it is “natural” to define

Definition 8. For a process a fulfilling Hypothesis 9, set∫ t

0

a(s) dWH(s) :=
∫ t

0

a(s)KH(t, s) dB(s)

+
∫ t

0

∫ t

s

[
a(u)− a(s)

]
∂1K

H(u, s) du δBB(s)

+
∫ t

0

du

∫ u

0

DB
s a(u) ∂1K

H(u, s) ds.

Remark 16.

• This approach extends to Gaussian Volterra processes, see for instance
[Dec05].

• Observe that stochastic calculus of variation appears “naturally.”
• It remains to prove that the process

{∫ t
0
a(s) dWH(s), t ∈ [0, 1]

}
has a

continuous modification, see Theorem 7.1 of [CCM03].
• When the integral using Riemann sums and the integral in Definition 8

exist, they coincide.

Proposition 17. For a process a fulfilling Hypothesis 9, the process{∫ t

0

a(s) dWH(s), t ∈ [0, 1]
}

has a continuous modification.

Proof. This integral may be represented as∫ 1

0

a(s)1[0,t](s) dWH(s) = X(t) + Y (t) + Z(t),

where

X(t) =
∫ 1

0

KH(t, s) a(s)1[0,t](s) dB(s),

Y (t) =
∫ 1

0

∫ t

s

[
a(u)1[0,t](u)− a(s)1[0,t](s)

]
∂KH(u, s) du δBB(s),

Z(t) =
∫ t

0

du

∫ u

0

DB
s a(u) ∂1K

H(u, s) ds.

The sample paths of the process Z are absolutely continuous with respect to
Lebesgue measure and then they are continuous.
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Continuity of X is established via Kolmogorov’s continuity criterion. More
precisely, for p > 1/H, there exists C = C(T, α) such that

E
[
|X(t+ τ)−X(t)|p

]
� C τ1+(pH−1). (24)

First write

X(t+ τ)−X(t) =
∫ t

0

(
KH(t+ τ, s)−KH(t, s)

)
a(s) dB(s)

+
∫ t+τ

t

KH(t+ τ, s) a(s) dB(s).

Since a is adapted, one can apply the Burkholder–Davis–Gundy inequalities
to the martingales

r 	→
∫ r

0

[
KH(t+ τ, s)−KH(t, s)

]
1[0,t](s) a(s) dB(s),

r 	→
∫ r

0

KH(t+ τ, s)1[t,t+τ ](s) a(s) dB(s)

to obtain for a constant Cp the upper bound

E
[
|X(t+τ)−X(t)|p

]
� CpE

[(∫ t

0

[
KH(t+τ, s)−KH(t, s)

]2
a(s)2 ds

) p
2
]

+CpE

[(∫ t+τ

t

KH(t+τ, s)2a(s)2 ds
) p

2
]
.

The integrability assumptions on a and the fact that∥∥KH(t+τ, .)−KH(t, .)
∥∥
L2([0,1],R,ds)

= E
([
WH(t+τ)−WH(t)

]2)
= τH

imply for p > 2,

E [|X(t+τ)−X(t)|p]1/p

� C
∥∥ sup
s∈[0,1]

|a(s)|
∥∥
Lp(ω,R,P)

∥∥KH(t+τ, .)−KH(t, .)
∥∥
L2([0,1],R,ds)

� C
∥∥ sup
s∈[0,1]

|a(s)|
∥∥
Lp(ω,R,P)

|τ |H

which is exactly (24).
One can prove that for some constant Cα∥∥∥∥∫ t+τ

.

(a(u) −a(s)) ∂KH(u, s) du1[0,t+τ ]

−
∫ t

.

(a(u)− a(s)) ∂KH(u, s) du 1[0,t]

∥∥
D1,2

B

� Cα ‖a‖L1,2
B,α
|τ |H+α.
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Then, Meyer’s inequality (31) in Appendix A yields

E
[
|Y (t+ τ)− Y (t)|2

]
� C τ1+(α+H−1),

and Y has a continuous modification. ��

Let f belong to C2(R,R) and t ∈ [0, 1]. Notice that

DB(s)f ′ (WH,ε(u)
)

= f ′′ (WH,ε(u)
)
KH(u+ε, s), 0 < s < u < 1.

Writing Itô’s formula for WH,ε in the same spirit as (23), one obtains

f
(
WH,ε(t)

)
= f

(
WH,ε(0)

)
+
∫ t

0

f ′ (WH,ε(s)
)
KH(t+ε, s) dB(s)

+
∫ t

0

∫ t

s

[
f ′ (WH,ε(u)

)
−f ′ (WH,ε(s)

)]
∂tK

H(u+ε, s) du δBB(s)

+
∫ t

0

du f ′′ (WH,ε(u)
) ∫ u

0

KH(u+ε, s) ∂1K
H(u+ε, s) ds.

Observe that∫ u

0

KH(u+ε, s) ∂1K
H(u+ε, s) ds =

1
2
dE

(
WH,ε(u)2

)
du

.

Therefore taking the limit when ε goes to 0 yields the following Itô formula.

Proposition 18. Theorem 8.2 of [CCM03] Let H > 1
4 , t ∈ [0, 1] and f belong

to C5(R,R) then IK
H

t,−
(
f ′(WH)

)
belongs to Dom δB and

f
(
WH(t)

)
= f

(
WH(0)

)
+
∫ t

0

f ′ (WH(s)
)
KH(t, s) dB(s)

+
∫ t

0

∫ t

s

[
f ′ (WH(u)

)
− f ′ (WH(s)

)]
∂1K

H(u, s) du δBB

+H

∫ t

0

f ′′ (WH(s)
)
s2H−1 ds.

Remark 17. For H > 1
6 , a more complicated formula is given in [CCM03].

6.4 Conclusion

Observe that this approach leads to anticipative stochastic differential equa-
tions. To our knowledge, solving them is an open problem. Another approach
may be to answer the following questions.
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Let WH = (W 1, . . . ,W d) be a d-dimensional fractional Brownian motion
and

W ε,i(t) := E
(
W i(t+ε)

∣∣ Ft) =
∫ t

0

KH(t+ε, s) dBi(s), i = 1, . . . , d,

where (Ft, t ∈ [0, 1]) is the natural filtration generated by WH . Let
Wε =

(
1,Wε,1,Wε,2,Wε,3

)
be the geometric functional over W ε =(

W ε,1, . . . ,W ε,d
)

defined by

Wε,1
s,t = WH,ε(t)−WH,ε(s),

Wε,2
s,t =

∫ t

s

W ε,1(s, u)⊗ ◦dWH,ε(u),

Wε,3
s,t =

∫ t

s

W ε,2(s, u)⊗ ◦dWH,ε(u),

there ◦d stands for Stratonovich integral. According to [CL05], Wε is a geo-
metric functional with finite p variation for any p > 2.

1. Does Wε converge in the p variation distance for p > 1
H ?

2. If the answer to the previous question is yes, does the limit coincide with
the limit obtained in Proposition 10?

If the answer to the first question is positive, Theorem 5 provides a way to
solve differential equations driven by fractional Brownian motion. This notion
of a solution will coincide with the notion of Corollary 6, if the answer to the
second question is positive.

7 Divergence with respect to fractional Brownian
motion

This section is devoted to divergence with respect to fractional Brownian
motion, as introduced by Decreusefond and Üstünel, [DÜ99]. For Brownian
motion, this integral coincides with the Itô integral for adapted integrand.
First, we construct the divergence integral with respect to fractional Brownian
motion and derive the Girsanov theorem. We notice that when the Hurst
parameter is smaller than 1

4 , fractional Brownian motion is not integrable
with respect to itself. We present the extensions of the divergence operator
given by Cheridito and Nualart, [CN05] and Biagini, Øksendal, Sulem and
Wallner, [BØSW04] or Decreusefond [Dec05]. We conclude with the link with
other integrals and some Itô and Tanaka formulas.

7.1 Divergence for fractional Brownian motion

In Section 6, we have shown that there always exists a Brownian motion B
such that the Volterra representation given in Section 2.2 holds. Then, one
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can construct two divergence operators: one with respect to the fractional
Brownian motion WH , denoted by δW

H

; the second one with respect to the
underlying Brownian motion B, denoted by δB .

Recall results from Propositions 15 and 14. For H ∈ ]0, 1[,(
IK

H

1,−
)−1 (

L2([0, 1],R, dr)
)

= HH endowed with the scalar product

〈f, g〉HH
=
〈(
IK

H

1,−
)−1(f),

(
IK

H

1,−
)−1(g)

〉
L2([0,1],R,du)

,

where IK
H

1,− (a) is defined by (21): for a regular enough,

IK
H

1,− (a)(s) := a(s)KH(1, s) +
∫ 1

s

[a(u)− a(s)] ∂1K
H(u, s) du, s ∈ [0, 1].

We establish the deeper relations between B and WH , as in Theorem 4.8
of [DÜ99].

Proposition 19.

1. For all t ∈ [0, 1], WH(t) = δB
(
IK

H

1,− (1[0,t])
)

= δB
(
KH(t, .)

)
.

2. D1,2
WH =

(
IK

H

1,−
)−1(

D1,2
B

)
and for F ∈ D1,2

WH , D
WH

F =
(
IK

H

1,−
)−1(DBF ).

3. Dom δW
H

=
(
IK

H

1,−
)−1(Dom δB) and for u ∈ D1,2

WH (HH)
δW

H

(u) = δB
(
IK

H

1,− (u)
)
.

Proof. Let ΛB be the isometry between L2 ([0, 1],R, dr) and the first Wiener
chaos of B (see Appendix A).

Let ΛWH be the isometry between HH and the first Wiener chaos of WH .
Proposition 14 means that for all t ∈ [0, 1], ΛB

(
1[0,t]

)
= ΛWH ◦(

IK
H

1,− )−1(1[0,t]

)
. Since E , the linear span of the indicator functions

{1[0,t]; t ∈ [0, 1]}, is dense in L2([0, 1],R, dr), one obtains

ΛB = ΛWH ◦
(
IK

H

1,−
)−1

.

Thus, for f ∈
(
IK

H

1,−
)−1 (

L2([0, 1],R, dr)
)

= HH , one has

ΛB
(
IK

H

1,− (f)
)

= ΛWH (f). (25)

Taking f = 1[0,t] yields the first point of Proposition 19.
Let F be a smooth cylindrical random variable given by

F = f
(
WH(φ1), . . . ,WH(φn)

)
where n � 1, f ∈ C∞

b (Rn,R) (f and all its derivatives with at most poly-
nomial growth, φi ∈ HH , i = 1, . . . , n). Recall that

DWH

F =
n∑
j=1

∂f

∂xj

(
WH(φ1), . . . ,WH(φn)

)
φj .
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Using identity (25),

DWH

F =
n∑
j=1

∂f

∂xj

[
B
(
IK

H

1,− (φ1)
)
, . . . , B

(
IK

H

1,− (φn)
)]

φj ,

we identify
DWH

F =
(
IK

H

1,−
)−1(

DBF
)
.

This yields point (2) of Proposition 19 since smooth variables are dense in
D1,2
WH .

Moreover, for u ∈ D1,2
WH

(
HH

)
, one has

(
IK

H

1,−
)
(u) ∈ D1,2

B and

E
[
δW

H

(u)F
]

= E
[〈
u,DWF

〉
HH

]
= E

[〈
IK

H

1,− u,DBF
〉
L2([0,1],R,dr)

]
,

which is exactly point (3) of Proposition 19. ��

At this point we can define the so-called divergence integral for frac-
tional Brownian motion:

Definition 9. For u ∈ Dom δW ,∫ 1

0

u(s) δW
H

WH(s) := δW
H

(u).

Remark 18.

• This divergence integral is the same as the one defined by Decreusefond–
Üstünel [DÜ99], or by Alos–Mazet–Nualart in [AMN01], or Alos–Nualart
[AN03] or by Cheredito–Nualart [CN05] or Decreusefond in [Dec05].

• The link with the integral obtained in [CCM03], see Section 6, is the fol-
lowing. If the divergence integral exists in the sense of the Definition 9
and if the integral is defined according to Definition 8, then the following
equality holds

∫ 1

0

a(s) dWH(s) =
∫ 1

0

a(s) δW
H

WH(s) +
∫ 1

0

du

∫ u

0

DB(s) a(u) ∂1K
H(s, u) ds.

7.2 Cameron–Martin and Girsanov Theorems

From Proposition 19, the Cameron–Martin space can easily be identified.

Proposition 20. For f ∈ C([0, 1],R), the law of

WH + f :=
{
WH(t) + f(t), t ∈ [0, 1]

}
is absolutely continuous with respect to the law of WH if and only if there
exists an element ḟ ∈ L2 ([0, 1],R, dr) , such that
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f(t) =
∫ t

0

KH(t, s) ḟ(s) ds

and in that case

dPWH+f

dPWH

= exp
[
δB(ḟ)− 1

2
‖f‖2HH

]
.

These results can be found in Theorem 4.1 of [DÜ99]. For H > 1
2 a simpler

proof is given in Theorem 4.1 of Norros–Valkeila–Virtamo [NVV99].
Before stating the Girsanov theorem, we give a characterization of the

{FWH

t , t ∈ [0, 1]} square integrable martingales following Corollary 4.2 of
[DÜ99].

Proposition 21. Every
{
FWH

t , t ∈ [0, 1]
}

square integrable martingale M

can be written as M =
{
M0 + δW

H (
u1[0,t]

)
, t ∈ [0, 1]

}
where

u(t) = E
[
DWH

M1

∣∣ FWH

t

]
.

This proposition can be seen as a consequence of Proposition 19. Now, we are
in a position to state the Girsanov theorem, see Theorem 4.9 of Decreusefond–
Üstünel [DÜ99]. It is nothing but Girsanov’s theorem with respect to B writ-
ten in terms of WH .

Theorem 10. Let u be an adapted process in L2
(
Ω,L2([0, 1],R, dr),P

)
such

that

E [Lu(1)] = 1,

where

Lu(t) = exp
(
δW

H(
(IK

H

t,− )−1(u)
)
− 1

2

∥∥∥(IKH

t,− )−1(u)
∥∥∥2

HH

)
.

Define a probability Pu by

dPu
dP

∣∣∣
FW H

t

= Lu(t), t ∈ [0, 1].

Under Pu the process{
WH(t)−

∫ t

0

KH(t, s)u(s) ds, t ∈ [0, 1]
}

is a fractional Brownian motion with Hurst parameter H.

In order to prove an Itô formula or to study the multidimensional case, we
study Dom δW

H

.
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7.3 Is W H integrable with respect to itself?

First observe that

Proposition 22. Proposition 3 of [CN05]
For 0 � a < b � 1, let u =

{
1[a,b](t)WH(t); t ∈ [0, 1]

}
; then

for H ∈ ]14 ; 1[, P
(
u ∈ HH

)
= 1;

for H ∈ ]0, 1
4 ], P

(
u ∈ HH

)
= 0.

Note that if u belongs to Dom δW
H

, then u takes its values in HH .
Proposition 23. For 0 � a < b � 1, let u =

{
1[a,b](t)WH(t); t ∈ [0, 1]

}
;

then

for H ∈ ]14 ; 1[, u ∈ Dom δW
H

;
for H ∈ ]0, 1

4 ], u �∈ Dom δW
H

.

Remark 19. As a consequence, for H ∈ ]0, 1
4 ], WH is not integrable in the

sense of Definition 8, see [CCM03].

Proof. The first point is a consequence of Theorem 8.2 of [CCM03] for the
function f(x) = x2. The second point is Proposition 3 of [CN05]. ��
According to Proposition 23, we have the following proposition.

Proposition 24. Let d = 2 and W =
(
WH

1 ,WH
2

)
be a two-dimensional frac-

tional Brownian motion.

1. For H > 1
4 , u =

(
WH

2 1[0,t], 0
)

belongs to Dom δW ,

δW (u) =
∫ t

0

IK
H

1,−
(
WH

2

)
(s) dB1(s).

2. For H � 1
4 , u =

(
WH

2 1[0,t], 0
)

does not belong to Dom δW .

As a consequence, for H ∈ ]0, 1
4 ], u is not integrable in the sense of Definition 8,

see [CCM03].

Remark 20. For H � 1/4, since WH does not belong to Dom δW
H

, several
extensions of Dom δW

H

have been proposed.

In [CN05], Cheridito and Nualart weaken the set of smooth cylindrical test
functions.

In [BØSW04], Biagini, Øksendal, Sulem, and Wallner extend Dom δW
H

to
some stochastic distribution process u.

In [BØSW04], the extension of the multidimensional case leads to state∫ 1

0

WH
1 (s) dWH

2 (s) = WH
1 (1)WH

2 (1),

where WH
1 and WH

2 are two independent fractional Brownian motions, as
pointed out in Example 6.2 of [BØSW04].
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7.4 Extension of the domain of the divergence integral

We describe the approach of [CN05].
In [CN05], Cheridito and Nualart work on R, but their approach can be

adapted to [0, 1].
Let Hn be the nth Hermite polynomial

Hn(x) = (−1)n exp
(
x2

2

)
dn

dxn

[
exp

(−x2

2

)]
.

Recall that E is the linear span of the indicator functions {1[0,t]; t ∈ [0, 1]}.
It can be shown as in Theorem 1.1.1 of [Nua95] that for all p � 1,

span
{
Hn (B(φ)) : n ∈ N, φ ∈ E , ‖φ‖L2(R) = 1

}
is dense in Lp(Ω,R,P). Following Definition 4 of Nualart and Cheridito,
[CN05] we set:
Definition 10. Let u = {u(t), t ∈ [0, 1]} be a measurable process. We say
that u ∈ Dom∗ δW

H

whenever there exists in ∪p>1L
p(Ω,R,P) a random vari-

able δW
H

(u) such that for all n ∈ N∗ and φ ∈ E verifying ‖φ‖L2(R) = 1, the
following conditions are satisfied:

1. For almost all t ∈ R, u(t)Hn−1 (B(φ)) ∈ L1(Ω,R,P),
2. E [u.Hn−1 (B(φ))] (IK

H

1,− )−1,∗φ(.) ∈ L1([0, 1]),
3. C2

H

∫ 1

0
E [u(t)Hn−1 (B(φ))] (IK

H

1,− )−1,∗(φ)(t) dt = E
[
δW

H

(u)Hn
(
B(φ)

)]
,

where
(
IK

H

1,−
)−1,∗ is the adjoint of

(
IK

H

1,−
)−1 in L2([0, 1],R, dr) and

C2
H =

Γ (H + 1/2)2∫∞
0

[
(1 + s)H−1/2 − sH−1/2

]2
ds+ 1/(2H)

.

Observe that if u ∈ Dom∗ δW
H

, then δW
H

(u) is unique, and the mapping
δ : Dom∗ δW

H → ∪p>1L
p(Ω,R,P) is linear.

Remark 21. According to the results of [CN05], Dom δW
H ⊂ Dom∗ δW

H

, and
the extended operator δW

H

defined in Definition 10 restricted to Dom δW
H

coincides with the divergence operator defined in Definition 9.

Remark 22. The extended divergence operator δW
H

is closed in the following
sense (point 2 of Remark 5 of [CN05]):

Let p ∈ (1,∞[ and q ∈ ( 1
1/2+H ,∞]. Let u ∈ Lp (Ω,Lq(R,R, dr),P) and let

{uk}k∈N be a sequence in Dom∗ δW
H ∩ Lp (Ω,Lq(R,R, dr),P) such that

lim
k→∞

uk = u in Lp
(
Ω,Lq(R,R, dr),P

)
.

If there exist a p̂ ∈ (1,∞] and an X ∈ Lp̂(Ω,R,P) such that

lim
k→∞

δ(uk) = X in Lp̂(Ω,R,P),

then u ∈ Dom∗ δW
H

, and δW
H

(u) = X.
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7.5 Link with white noise theory

In order to describe the approach used by Biagini, Øksendal, Sulem, and
Wallner in [BØSW04], we present a summary of classical white noise theory.
These authors work on R, but their approach can be adapted to [0, 1].

Let (ξn)n∈N∗ be an orthonormal basis on L2 ([0, 1],R, dr) . Let I denote
the set of multi-indices α = (α1, . . . , αl(α)) of finite length, αi ∈ N, αl(α) �= 0.
The norm of α is |α| =

∑l(α)
i=1 |αi|, its factorial is α! =

∏l(α)
i=1 αi! and the

corresponding variable is

Hα =
l(α)∏
i=1

Hαi

(
B(ξi)

)
.

The unit vectors of I are ε(k) = (0, . . . , 0, 1) with l(ε(k)) = k.

Theorem 11. Second Wiener-chaos extension theorem (Theorem 2.3 of
[BØSW04]) For any F ∈ L2(Ω,R,P) there exists a unique family (cα)α∈I in
RI such that

F (ω) =
∑
α∈I

cαHα(ω)

and

E(F 2) =
∑
α∈I

c2α α! .

Example 12 For all t ∈ [0, 1],

B(t) =
∞∑
k=1

∫ t

0

ξk(s) dsHε(k) .

In order to give a meaning to d
dtB(t) we introduce the Hida space.

Definition 11. The Hida space S∗ of stochastic distributions is the set of all
formal expansions

Φ(ω) =
∑
α∈I

cαHα(ω)

such that

∃q ∈ [1,∞[,
∑
α∈I

c2α α! (2N)−qα <∞

where (2N)γ stands for
∏l(γ)
i=1 (2i)γi .

Remark 23. It is worth observing that S∗ is not included in L0(Ω,R,P).
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Example 13 The application B is differentiable in S∗ and its differential,
called white noise, is

B(0)(t) =
∞∑
k=1

ξk(t)Hε(k) .

Definition 12. If F i(ω) =
∑
α∈I c

i
αHα(ω), i = 1, 2 are two elements of S∗,

then their Wick product F 1 � F 2 is the element of S∗

F 1 � F 2(ω) =
∑
γ∈I

∑
α+β=γ

c1α c
2
β Hγ(ω).

Theorem 14. Theorem 8 of [BØSW04]
If u ∈ Dom δB then t 	→ u(t) �B(0)(t) belongs to L1 ([0, 1],S∗, dt) and

δB(u) =
∫

[0,1]

u(t) �B(0)(t) dt.

Recall the first point of Proposition 19,

WH(t) =
〈
IK

H

1,−
(
1[0,t]

)
, B
〉
L2([0,1],R,dr)

.

The process WH admits the decomposition

WH(t) =
∞∑
k=0

〈
1[0,t],

(
IK

H

1,−
)∗(ξk)〉

L2([0,1],R,dr)
Hε(k)

where
(
IK

H

1,−
)∗ is the adjoint of IK

H

1,− in L2([0, 1],R, dr). The process WH is
differentiable in S∗ and its differential is

W (H)(t) =
∞∑
k=0

(
IK

H

1,−
)∗(

ξk(t)
)
Hε(k) .

Definition 13. Definition 3.3 of [BØSW04]
Let u be a process taking its values in S∗ such that t 	→ u(t) �W (H)(t) belongs
to L1([0, 1],S∗, dt). Then u is � integrable with respect to WH and∫ 1

0

u(t) d�WH(t) =
∫ 1

0

u(t) �W (H)(t) dt.

Example 15 (Example 3.4 of [BØSW04])
The process WH1[0,T ] is � integrable with respect to WH and∫ T

0

WH(t) d�WH(t) =
1
2
WH(T )2 − T 2H

2
.
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Proposition 25. Proposition 5.2 of [BØSW04]
If u is � integrable with respect to WH then IK

H

1,− (u) � B(0) is integrable with
respect to dt and∫ 1

0

u(t) d�WH(t) =
∫ 1

0

IK
H

1,− (u)(t) �B(0)(t) dt.

The following identification is derived from Theorem 14.

Corollary 8. Let u be a process such that IK
H

1,− (u) ∈ Dom δB . Then u is �
integrable with respect to WH and∫ 1

0

u(t) d�WH(t) = δB
(
IK

H

1,− (u)
)

= δW
H

(u).

7.6 The divergence integral as a process

The divergence integral
∫
u(s) δW

H

WH(s) or
∫
IK

H

t,− (u)(s) δBB(s) is defined
by duality, in a weak sense. We shall exhibit assumptions ensuring that the
process

{∫ t
0
u(s) δW

H

WH(s), t ∈ [0, 1]
}

or
{∫

IK
H

t,− (u)(s) δBB(s), t ∈ [0, 1]
}

has a continuous modification. There exist a lot of such conditions (see
Theorem 7.1 of [CCM03], Propositions 1 and 3 of [AMN01], [Dec05]). The
existence of a continuous modification follows from a maximal inequality,
see [MMV01] and [AN03] for H > 1/2, [Dec05] for H < 1/2. Here, we only
give the simplest conditions, not the optimal ones.

We give more details when H > 1/2, since that is the easiest case.

Case when H > 1/2

As pointed out by Mémin, Mishura, and Valkeila, [MMV01] for deterministic
integrands u, continuity follows from a maximal inequality. This maximal
inequality holds for processes u ∈ D1,p

WH (HH) which live in a subspace of HH ,
see Alos and Nualart, [AN03].

Put

|HH | :=
{
f ∈ HH ; ‖f‖|HH | :=

∫
[0,1]2

|f(u)| |f(r)| |u− r|2H−2
du dr <∞

}
.

Lemma 6. For H > 1
2 , the following continuous inclusions hold:

L1/H
(
[0, 1],R, dr

)
⊂ |HH | ⊂ HH .

Proof. The covariance function RH

RH(t, s) =
1
2
[
t2H + s2H − |t− s|2H

]
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is twice differentiable except on the diagonal and its second derivative ∂2RH

∂t∂s
belongs to L1

(
[0, 1]2,R, dr

)
for H > 1

2 . This means

RH(t, s) = H(2H − 1)
∫

[0,1]2
1[0,t](u)1[0,s](r) |u− r|2H−2 du dr.

Then, |HH | is included in HH and for f, g ∈ |HH |,

〈f, g〉HH = H(2H − 1)
∫

[0,1]2
f(u) g(r) |u− r|2H−2 du dr ;

this inclusion is continuous.
The second inclusion was proved by Mémin, Mishura, and Valkeila,

[MMV01]. Applying Hölder’s inequality with exponent q = 1
H yields

‖f‖2|HH |

� H(2H−1)‖f‖HL1/H([0,1],R,dr)

[∫ 1

0

(∫ 1

0

|f(u)| |r−u|2H−2 du

) 1
1−H

dr

]1−H

.

Up to a multiplicative constant, the second factor in the above expression is
equal to the 1

1−H norm of the left sided Liouville integral I2H−1
0,+ (|f |), where

for suitable function g and α ∈ ]0, 1]

Iα0,+(g)(t) =
1

Γ (α)

∫ t

0

(t− u)α−1g(u) du, t ∈ [0, 1].

According to Theorem 3.7 page 72 of [SKM93] for μ = 0, p = 1
H , q = 1

1−H ,

α = 2H − 1, and m = 0 the linear operator I2H−1
0,+ is continuous from

L1/H
(
[0, 1],R, dr

)
to L

1
1−H

(
[0, 1],R, dr

)
and

‖f‖2|HH | � cH ‖f‖2HL1/H([0,1],R,dr) ‖I2H−1
0,+ ‖

L1/H([0,1],R,dr),L
1

1−H ([0,1],R,dr)
. (26)

��

Now, we are in a position to state the maximal inequality, Theorem 4 of [AN03]

Theorem 16. Let p > 1/H. Let u = {u(t), t ∈ [0, 1]} be a stochastic pro-
cess in D1,p

WH

(
L

1
H −ε([0, 1],R, dr)

)
for 0 < ε < H− 1

p . The following inequality
holds

E

(
sup
t∈[0,1]

∣∣∣∣∫ t

0

u(s)δW
H

WH(s)
∣∣∣∣p
)

� CH,ε,p

×
[(∫ 1

0

|Eu(s)|
1

H−ε ds

)p(H−ε)
+E

[∫ 1

0

(∫ 1

0

|DWH

s u(r)|
1
H
dr

) H
H−ε

ds

]p(H−ε)]
.
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Proof. The proof relies on the representation of the divergence integral using
the idea of Zähle [Zäh98]. Indeed, let α = 1− 1

p−ε. Then for 1−H < α < 1− 1
p ,

using the identity cα =
∫ t
r
(t− θ)−α(θ − r)α−1dθ, one has∫ t

0

u(s)δW
H

WH(s) =
1
cα

∫ t

0

u(s)
∫ t

s

(t− r)−α(r − s)α−1 dr δW
H

WH(s).

Using the Fubini stochastic theorem (see Nualart’s book [Nua95]) one has∫ t

0

u(s)δW
H

WH(s) =
1
cα

∫ t

0

(∫ t

s

(t− r)−α(r − s)α−1u(s)δW
H

WH(s)
)
dr.

Hölder’s inequality and the condition α < 1− 1
p yield∣∣∣∣∫ t

0

u(s)δW
H

WH(s)
∣∣∣∣p � 1

cpα(1− α)p−1

∫ t

0

∣∣∣∣∫ r

0

u(s)(r − s)α−1δW
H

WH(s)
∣∣∣∣p dr.

From Lemma 6, D1,p
WH

(
L1/H([0, 1],R, dr)

)
is continuously embedded into

D1,p
WH (HH) and

E sup
t∈[0,1]

∣∣∣∣∫ t

0

u(s)δW
H

WH(s)
∣∣∣∣p

� Cα,H,p

∫ 1

0

(∫ r

0

(r − s)
α−1

H E|u(s)| 1
H ds

)pH
dr

+ Cα,H,pE
∫ 1

0

[∫ r

0

∫ 1

0

(r − s)
α−1

H

∣∣∣DWH

θ u(s)
∣∣∣ 1

H

dθ ds

]pH
dr

=: I1 + I2.

Again the first factor in the right-hand side of the above expression is equal

up to a multiplicative constant to
∥∥I α−1+H

H
0,+ (E|u.|

1
H )
∥∥pH
LpH([0,1],R,dr)

. According

to Theorem 3.7 page 72 of [SKM93] for μ = 0, p = H
H−ε , q = pH, α = α−1+H

H ,

and m = 0 the linear operator I
α−1+H

H
0,+ is continuous from L1/H

(
[0, 1],R, dr

)
to L

1
1−H

(
[0, 1],R, dr

)
and

I1 � Cα,p,H

[∫ 1

0

E
[
|u(r)|

1
H−ε

]
dr

]p(H−ε)
.

A similar trick yields

I2 � Cα,p,HE

⎡⎣∫ 1

0

(∫ 1

0

|DWH

s u(r)|
1
H ds

) H
H−ε

dr

⎤⎦p(H−ε)

,

which completes the proof. ��
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Continuity of the divergence integral is a consequence of the Garsia–
Rodemich–Rumsey Lemma [GRRJ71] and the maximal inequality.

Proposition 26. Theorem 5 of Alos–Nualart [AN03]
Assume pH > 1. Let u = {u(t); t ∈ [0, 1]} be a stochastic process in the space
D1,p
WH (|H|, such that

E
[
‖u‖p

L1/H([0,T ],R)

]
+ E

[∥∥DWH

u
∥∥p
L1/H([0,T ]2,R)

]
<∞,∫ 1

0

E [|u(r)|p] dr +
∫ 1

0

E
[∫ 1

0

∣∣DWH

θ u(r)
∣∣ 1

H
dθ

]pH
dr <∞.

The integral process X :=
{
X(t) :=

∫ t
0
u(s) δW

H

WH(s), t ∈ [0, 1]
}

has a
modification which is γ-Hölder continuous for all γ < H − 1

p .

Case when H < 1/2

Proposition 27. Suppose that u := {u(t); t ∈ [0, 1]} is λ-Hölder continuous
in the norm of the space D1,p

WH for some p � 2 and λ > 1
2 −H. Then u belongs

to the space D1,p
WH (HH) and

E|X(t)−X(s)|p � C |t− s|pH

where X(t) =
∫ t
0
u(s) δW

H

WH(s).
If p > 1

H , then X has a continuous modification.

Remark 24. This result is proved in Theorem 7.1 of [CCM03] or using Propo-
sition 1 of [AMN01] for α = 1

2 −H.

Proof. The proof is based on the Meyer inequalities (31) and uses the identi-
fication given in Proposition 19:

X(t) =
∫ 1

0

IK
H

1,− (1[0,t]u)s δBB(s). ��

7.7 Links with the deterministic and symmetric integrals

This work is done in [Dec03], [Dec05], or [CN05].

Links with the deterministic integrals

Following Decreusefond–Üstünel, [DÜ99], we have the following identity pro-
vided both sides exist:

lim
|πn|→0

∑
ti∈πn

u(ti)
[
WH(ti+1)−WH(ti)

]
=
∫ 1

0

u(s) δW
H

WH(s) +
∫ 1

0

DWH

s u(s) ds.
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Links with symmetric integrals

The following result proved by Alos–Nualart, [AN03], relates the divergence
operator with the symmetric stochastic integral introduced by Russo and
Vallois in [RV93] (see definition 4).

Proposition 28. For H > 1
2 , let u = {u(t), t ∈ [0, 1]} be a stochastic process

in the space D1,2
WH (HH). Assume that

E
[
‖u‖2|HH | + ‖DWH

u‖
2

|HH |⊗|HH |

]
<∞

and ∫ 1

0

∫ 1

0

∣∣∣DWH

s u(t)
∣∣∣ |t− s|2H−2 ds dt <∞ a.s.

Then, the symmetric integral
∫ 1

0
u(s) d0WH(s), defined as the limit in proba-

bility as ε goes to zero of

1
2ε

∫ 1

0

u(s)
[
WH

(
(s+ε) ∧ 1

)
−WH

(
(s−ε) ∨ 0

)]
ds,

exists, and one has∫ 1

0

u(t) d0WH(t) = δW
H

(u) + αH

∫ 1

0

∫ 1

0

DWH

s u(t) |t− s|2H−2 ds dt.

7.8 Itô’s and Tanaka’s formulas

The divergence integral is well suited to identify the terms of an Itô formula
as the sum of a divergence integral and a term with finite variation.

A little Itô formula

This little Itô formula is a change of variable formula for fractional Brownian
motion itself.

Proposition 29. If H ∈ ]0, 1[ and f ∈ C2
b (R,R), then

{
f ′(WH(s)

)
, s ∈ [0, 1]

}
belongs to Dom∗ δW

H

, and almost surely, for all t ∈ [0, 1],

f
(
WH(t)

)
= f(0) +

∫ t

0

f ′ (WH(s)
)
δW

H

WH(s) +H

∫ t

0

f ′′ (WH(s)
)
s2H−1 ds.

If H ∈ ]14 , 1[, then
{
f ′ (WH(s)

)
, s ∈ [0, 1]

}
belongs to Dom δW

H

.

Remark 25.

• This formula was first obtained by Decreusefond and Üstünel for H > 1
2

in [DÜ99] Theorem 5.1 and extended to all H by Privault (application
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of Corollary 2) in [Pri98]. This version is proved in Nualart–Cheridito,
[CN05].

• In general, for H ∈ ]0, 1
4 ], the process

{
f ′ (WH(s)

)
, s ∈ [0, 1]

}
does not

belong to Dom δW
H

, see Proposition 23.
• A very elegant proof is given by Biagini, Øksendal, Sulem, and

Wallner, [BØSW04]. Indeed the process
{
f ′ (WH(s)

)
, s ∈ [0, 1]

}
is

� integrable with respect to WH and
∫ 1

0
f ′ (WH(s)

)
δW

H

WH(s) =∫ 1

0
f ′ (WH(s)

)
d�WH(s).

• For H > 1
6 , in [CCM03] Proposition 8.11, Carmona, Coutin, and Montseny

have identified the term
∫ 1

0
f ′ (WH(s)

)
δW

H

WH(s) in terms of the diver-
gence integral δB . Unfortunately, this expression does not seem to easily
generalize to all H.

Proof. This proposition is proved by writing Itô formulas for a sequence of C1

or semimartingale Gaussian processes which converges to WH , and identifying
the limit of each term involved in the Itô formula for semimartingales. ��

Local time, Tanaka and Itô–Tanaka formula

It can be derived from Theorem 8.1 in Berman [Ber70], that the process{
WH(t), t ∈ [0, 1]

}
has a continuous local time.

Proposition 30. For all H ∈ ]0, 1[, there exists a two-parameter process

{ly(t), t ∈ [0, 1], y ∈ R}

such that for every bounded Borel function g : R → R,∫ t

0

g
(
WH(s)

)
ds =

∫
R

g(y) ly(t) dy. (27)

Moreover, this local time has a version which is jointly continuous in (y, t)
almost surely, and which satisfies a Hölder condition in t, uniformly in x: for
every γ < 1−H, there exist two random variables η and η′ which are almost
surely positive and finite such that

sup
y∈R

∣∣ lyt+h − lyt
∣∣ � η′ |h|γ

for all t, t+ h in [0, 1] and all |h| < η.

Following the Itô formula given in Proposition 29, we introduce the weighted
local time.

Definition 14. The weighted local time is the two-parameter process, jointly
continuous in (y, t),

{
Ly(t), t ∈ [0, 1], y ∈ R

}
where

Ly(t) := 2H t2H−1 ly(t)− 2H(2H − 1)
∫ t

0

s2H−2 ly(s) ds.
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From Proposition 30, for every continuous function g : R → R,

2H
∫ t

0

g
(
WH(s)

)
s2H−1 ds =

∫
R

g(y)Ly(t) dy.

In Proposition 2 of [CNT01], Coutin, Nualart, and Tudor give the Wiener
chaos expansion of this weighted local time.

Remark 26. An extension to the two-dimensional case is given by Nualart,
Rovira, and Tindel in [NRT03]. They define vortex filaments based on frac-
tional Brownian motion.

Applying Itô’s formula to the function fk given by

fk(x) =
∫ x

−∞

∫ v

−∞
p1/k(z − v) dz dv, x ∈ R

where pk(x) = k√
2π
e−

k2x2

2 , and taking the limit of each term when k goes to
infinity yields the Tanaka formula proved in [CNT01] for H > 1

3 .

Theorem 17. Theorem 10 of Cheridito–Nualart [CN05].
For H ∈ ]0, 1[, t ∈ [0, 1], and y ∈ R{

1]y,∞[

(
WH(t)

)
, t ∈ [0, 1]

}
∈ Dom∗ δW

H

and

δW
H (

1]y,∞[

(
WH

)
1[0,t]

)
=
(
WH(t)− y

)
+
− (WH

0 − y)+ −
1
2
Ly(t). (28)

Moreover, for H ∈ ]13 , 1[, t ∈ [0, 1], and y ∈ R,{
1]y,∞[

(
WH(t)

)
, t ∈ [0, 1]

}
∈ Dom δW

H

.

Remark 27. Using (28) for H > 1
3 , one gets

∣∣WH(t)
∣∣ =

∫ t

0

IK
H

t,−
(
sgnWH

)
(s) δBB(s) + L0

t

where

IK
H

t,−
(
sgnWH

)
(s) = KH(t, s) sgnWH(s)

+
∫ t

s

∂1K
H(u, s)

(
sgnWH(u)− sgnWH(s)

)
du.

Since the process
{ ∫ t

0
sgnWH(s) δBB(s), t ∈ [0, 1]

}
is a Brownian motion,

the process W̃H =
{
W̃H(t) :=

∫ t
0
KH(t, s) sgnWH(s) δBB(s), t ∈ [0, 1]

}
is a

fractional Brownian motion with Hurst parameter H, and
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∣∣WH(t)
∣∣ = W̃H(t) +

∫ t

0

∫ t

s

∂1K
H(u, s)

(
sgnWH(u)− sgnWH(s)

)
du δBB(s)+L0

t .

When H = 1
2∫ t

0

∫ t

s

∂1K
H(u, s)

(
sgnWH(u)− sgnWH(s)

)
du δBB(s) = 0 (29)

and the processes {L0
t , t ∈ [0, 1]} and

{
sups∈[0,t]W

1/2
s , t ∈ [0, 1]

}
have the

same law, (see Revuz–Yor, [RY99] Sect. VI. 2 for details). This is not true
for fractional Brownian motion with Hurst parameter H �= 1

2 since the term
(29) does not vanish. The law of

{
sups∈[0,t]W

H
s , t ∈ [0, 1]

}
is still an open

problem.

Remark 28. Let WH = (W 1, . . . ,W d) be a d-dimensional fractional Brownian
motion with Hurst parameter in ]0, 1[. The fractional Bessel process is the
process R defined by

R(t) =
√(

W 1(t)
)2 + · · ·+

(
W d(t)

)2
, t ∈ [0, 1].

When H = 1
2 , the Bessel process is solution of the integral equation

R(t)2 = 2
∫ t

0

R(s) dβ(s) + d t, t ∈ [0, 1],

where βt =
∑d
i=1

∫ t
0
W i(s)
R(s) dBi(s) for d � 2 is a Brownian motion.

In [HN05], Hu and Nualart prove that for H �= 1
2 , β is not a fractional

Brownian motion and R does not satisfy the following integral equation

R(t)2 = 2
∫ t

0

R(s) dβ′(s) + d t2H , t ∈ [0, 1],

where β′ is a fractional Brownian motion with Hurst parameter H.

If f is a convex function, denote by f ′
− its left-derivative and by f ′′ the

measure given by f ′′ ([y, z[) = f ′
−(z)− f ′

−(y) for ∞ < y < z <∞.

Theorem 18. Theorem 12 of Cheridito–Nualart, [CN05] and Proposition 7
of Coutin, Nualart, and Tudor, [CNT01].

For H ∈ ]0, 1[, t ∈ [0, 1] and y ∈ R, let f be a convex function such that

(i) f
(
WH(t)

)
∈ L2(Ω,R,P),

(ii) f ′
−(WH

. )1[0,t] ∈ L2(Ω × [0, 1],R,P⊗ dr).

Then
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f ′
−
(
WH(t)

)
, t ∈ [0, 1]

}
∈ Dom∗ δW

H

and

δ
(
f ′
−(WH)1[0,t]

)
= f

(
WH(t)

)
− f

(
WH(0)

)
− 1

2

∫
R

Ly(t) f ′′(dy).

Moreover, for H ∈ ]13 , 1[ and t ∈ [0, 1],{
f ′
−
(
WH(t)

)
, t ∈ [0, 1]

}
∈ Dom δW

H

.

The proof uses a classical regularization of f .

Itô formula

We present a change of variable formula for the process obtained as a diver-
gence integral.

Theorem 19. Theorem 3 of Alos-Mazet-Nualart [AMN01]
Let F be a function of class C2

b (R,R), and u = {u(t), t ∈ [0, 1]} an adapted
process in the space D2,2

WH (H), satisfying the following conditions:

• for H > 1
2 , the process u is bounded in the norm of the space D2,4

WH (H),
• for 1

2 > H > 1
3 , the process u and DWH

r u are λ-Hölder continuous in the
norm of the space D1,4

WH for some λ > 1
2 −H, and the function

γ(r) = sup
s∈[0,1]

‖DWH

r u(s)‖WH ,1,4 + sup
0�s′<s�1

‖DWH

r u(s)−DWH

r u(s′)‖WH ,1,4

|s− s′|λ

satisfies
∫ 1

0
γ(r)p dr <∞ for some p > 2

4H−1 .

Set X =
{
X(t) = δW

H

(u1[0,t]), t ∈ [0, 1]
}
. Then for each t ∈ [0, 1]

the process
{
F ′(X(s)

)
u(s)1[0,t](s), s ∈ [0, 1]

}
belongs to Dom δW

H

and the
following formula holds

F
(
X(t)

)
= F (0) + δW

H(
F ′(X.)u(.)1[0,t](.)

)
+
∫ t

0

F ′′(X(s)
)
u(s)

[∫ s

0

∂1K
H(s, r)

(∫ s

0

Dr
(
IK

H

s,− (u)
)
(θ) δBBθ

)
dr
]
ds

+
1
2

∫ t

0

F ′′(X(s)
) ∂

∂s

[∫ s

0

(
IK

H

s,− (u)(r)
)2
dr
]
ds.

7.9 Conclusion

The divergence integral is the most powerful one for computing expectations
of functionals of fractional Brownian motion. Studying differential equations
with the divergence integral seems to be more difficult. Nevertheless, some
results are available for linear differential equation in [NT06] and [BC05b].
The case of a nonlinear differential equation is still open.
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A Divergence operator of a Gaussian process

We briefly recall some elements of stochastic calculus of variations (see
Nualart’s book [Nua95] for more details). For the sake of simplicity we work
on [0, 1].

A.1 Divergence operator with respect to a real Gaussian process

Let W = {W (t); t ∈ [0, 1]} be a centered Gaussian process starting from 0
with covariance function

R(t, s) = E
(
W (t)W (s)

)
.

We assume that W is defined on a complete probability space (Ω,F ,P) where
the σ-field F is generated by W. The natural filtration generated by W is
denoted by

(
FW (t), t ∈ [0, 1]

)
.

The first Wiener chaos, H1, is the closed subspace of L2(Ω,R,P) generated
by W. The closure of E the linear span of the indicator functions with respect
to the scalar product

〈
1[0,t],1[0,s]〉 = R(t, s) is the reproducing kernel Hilbert

space, H.
The map 1[0,t] 	→ W (t) extends to an isometry between H and H1. The

image of an element φ ∈ H is denoted by W (φ).

Remark 29. It is but the classical definition of the reproducing kernel given
for instance in [Fer97] up to the isomorphism induced by

1[0,t] 	→ R(t, .).

Let S denote the set of smooth cylindrical random variables of the form

F = f
(
W (φ1), . . . ,W (φn)

)
(30)

where n � 1, f ∈ C∞
p (Rn,R) (f and all its derivative have at most polynomial

growth), φi ∈ H, i = 1, . . . , n. The derivative of a smooth cylindrical random
variable F is the H valued random variable given by

DWF =
n∑
j=1

∂f

∂xj

(
W (φ1), . . . ,W (φn)

)
φj .

The derivative DW is a closable unbounded operator from Lp(Ω,R,P) to
Lp(Ω,H,P) for each p � 1. Similarly, the iterated derivative DW,k maps
Lp(Ω,R,P) to Lp(Ω,H⊗k,P). For any positive integer k and any real p � 1,
we denote by Dk,p

W the closure of S with respect to the norm defined by

‖F‖pW,k,p = ‖F‖pLp(Ω,R,P) +
k∑
j=1

‖DW,jF‖pLp(Ω,H⊗>j),

where ‖ ‖Lp(Ω,R,P) denotes the norm in Lp(Ω,R,P).
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The adjoint of the derivative DW is denoted by δW . The domain of δW

(denoted by Dom δW ) is the set of all elements u ∈ L2(Ω,H,P) such that
there exists a constant c satisfying∣∣E〈DWF, u

〉
H
∣∣ � c‖F‖L2(Ω,R,P)

for all F ∈ S. If u ∈ Dom δW , δW (u) is the element in L2(Ω,R,P) defined by
the duality relationship

E
[
δW (u)F

]
= E〈DWF, u〉H, F ∈ D1,2

W .

Furthermore, Meyer’s inequalities imply that for all p > 1, one has

‖δW (u)‖Lp(Ω,R,P) � cp ‖u‖D1,p
W

(H), (31)

where

‖u‖D1,p
W

(H) = ‖u‖pLp(Ω,H,P) + ‖DWu‖pLp(Ω,H⊗2).

If u is a simple H valued random variable of the form u =
∑n
j=1 Fjφj for some

n � 1, Fj ∈ D1,2
W and φj ∈ H, j = 1, . . . , n, then u belongs to the domain of

δW and

δW (u) =
n∑
j=1

FjW (φj)−
〈
DWFj , φj

〉
H.

Property P (Integration by parts formula). Suppose that u ∈ DW
1,2(H).

Let F be a random variable belonging to D1,2
W such that E[F 2‖u‖2H] < ∞;

then

δW (F u) = F δW (u)− 〈DWF, u〉H (32)

in the sense that F u belongs to Dom δW if and only if the right-hand side of
(32) belongs to L2(Ω,R,P).

Remark 30. Observe that when W is a Brownian motion, the set
{u ∈ L2(Ω × [0, 1],R); u is Ft progressively measurable} is included in
Dom δW, and for such a process u, δW (u) coincides with the usual Itô inte-
gral.

Moreover D1,2
W (H) = D1,2

W

(
L2([0, 1],R, du)

)
.

Remark 31. In the general case, the divergence operator δW can also be
interpreted as a generalized stochastic integral. In fact, for all φ ∈ H,
W (φ) = δW (φ), and in particular for n ∈ N∗, ai ∈ R, i = 1, . . . , n,

δW

(
n∑
i=1

ai 1[ti−1,ti[

)
=

n∑
i=1

ai (Wti −Wti−1).
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A.2 Extension to the multidimensional case

This construction extends to the d-dimensional case. Let W̄ = (W 1, . . . ,W d)
be a centered Gaussian process, with d independent components. The covari-
ance function of W i is denoted by Ri and its reproducing kernel Hilbert space
by Hi.

Introduce H =
∏d
i=1Hi which is a Hilbert space for the scalar product

〈f, g〉H =
d∑
i=1

〈f i, gi〉Hi

if f = (f1, . . . , fd) and g = (g1, . . . , gd). The smooth and cylindrical random
variables are now of the form

F = f
(
W 1(φ1

1), . . . ,W
d(φd1), . . . ,W

1(φ1
n), . . . ,W

d(φdn)
)

(33)

where n � 1, f ∈ C∞
p (Rdn,R) (f and all its derivative have at most poly-

nomial growth), φji ∈ Hj , i = 1, . . . , n, j = 1, . . . , d. The derivative of a
smooth cylindrical random variable F is the H valued random variable given
by DW̄F =

(
DW 1

F, . . . ,DWd

F
)

where

DW i

F =
n∑
j=1

∂f

∂xi+d(j−1)

(
W 1

(
φ1

1

)
, . . . ,W d(φd1), . . . ,W

1(φ1
n), . . . ,

W d(φdn)
)
φij .

The derivative DW̄ is a closable unbounded operator from Lp(Ω,R,P) to
Lp(Ω,H,P) for any p � 1. Similary, the iterated derivative DW̄ ,k maps
Lp(Ω,R,P) to Lp(Ω,H⊗k,P). For any positive integer k and any real p � 1,
call Dk,p

W̄
the closure of S with respect to the norm defined by

‖F‖p
W̄ ,k,p

= ‖F‖pLp(Ω,R,P) +
k∑
j=1

∥∥∥DW̄ ,jF
∥∥∥p
Lp(Ω,H⊗j ,P)

.

Denote by δW̄ the adjoint of the derivative DW̄ . The domain of δW̄ (denoted
by Dom δW̄ ) is the set of all u ∈ L2(Ω,H,P) such that there exists a constant
c satisfying ∣∣∣E〈DW̄F, u

〉
H

∣∣∣ � c ‖F‖L2(Ω,R,P)

for all F ∈ S. If u ∈ Dom δW̄ , δW̄ (u) is the element in L2(Ω,R,P) defined by
the duality relationship

E
(
δW̄ (u)F

)
= E

〈
DW̄F, u

〉
H, F ∈ D1,2

W̄
. (34)
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Part II

Local Time-Space Calculus



A Change-of-Variable Formula
with Local Time on Surfaces
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Summary. Let X = (X1, . . . , Xn) be a continuous semimartingale and let b :
IRn−1 → IR be a continuous function such that the process bX = b(X1, . . . , Xn−1)
is a semimartingale. Setting C = { (x1, . . . , xn) ∈ IRn | xn < b(x1, . . . , xn−1) } and
D = {(x1, . . . , xn) ∈ IRn | xn > b(x1, . . . , xn−1)} suppose that a continuous function
F : IRn → IR is given such that F is Ci1,...,in on C̄ and F is Ci1,...,in on D̄ where
each ik equals 1 or 2 depending on whether Xk is of bounded variation or not. Then
the following change-of-variable formula holds:

F (Xt) = F (X0) +

n∑
i=1

∫ t

0

1

2

(
∂F

∂xi

(
X1

s , . . . , Xn
s +
)

+
∂F

∂xi

(
X1

s , . . . , Xn
s −
))

dXi
s

+
1

2

n∑
i,j=1

∫ t

0

1

2

(
∂2F

∂xi∂xj

(
X1

s , . . . , Xn
s +
)

+
∂2F

∂xi∂xj

(
X1

s , . . . , Xn
s −
))

d〈Xi, Xj〉s

+
1

2

∫ t

0

(
∂F

∂xn

(
X1

s , . . . , Xn
s +
)
− ∂F

∂xn

(
X1

s , . . . , Xn
s −
))

I
(
Xn

s =bX
s

)
d�b

s(X)

where �b
s(X) is the local time of X on the surface b given by:

	
b
s(X) = IP−lim

ε↓0

1

2ε

∫ s

0

I(−ε<Xn
r −bX

r <ε) d〈X
n−bX

, X
n−bX〉r

and d�b
s(X) refers to integration with respect to s �→ �b

s(X). The analogous formula
extends to general semimartingales X and bX as well. A version of the same formula
under weaker conditions on F is derived for the semimartingale ((t, Xt, St))t�0 where
(Xt)t�0 is an Itô diffusion and (St)t�0 is its running maximum.
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1 Introduction

Let (Xt)t�0 be a continuous semimartingale (see, e.g., [13]) and let
b : IR+ → IR be a continuous function of bounded variation. Setting
C = { (t, x) ∈ IR+×IR | x < b(t) } and D = { (t, x) ∈ IR+×IR | x > b(t) }
suppose that a continuous function F : IR+×IR → IR is given such that F is
C1,2 on C̄ and F is C1,2 on D̄.

Then the following change-of-variable formula is known to be valid
(cf. [11]):

F (t,Xt) = F (0, X0) +
∫ t

0

1
2

(
Ft(s,Xs+)+Ft(s,Xs−)

)
ds

+
∫ t

0

1
2

(
Fx(s,Xs+)+Fx(s,Xs−)

)
dXs

+
1
2

∫ t

0

Fxx(s,Xs) I(Xs �=b(s)) d〈X,X〉s

+
1
2

∫ t

0

(
Fx(s,Xs+)−Fx(s,Xs−)

)
I(Xs=b(s)) d�bs(X) (1.1)

where �bs(X) is the local time of X on the curve b given by:

�bs(X) = IP−lim
ε↓0

1
2ε

∫ s

0

I(b(r)−ε<Xr<b(r)+ε) d〈X,X〉r (1.2)

and d�bs(X) refers to integration with respect to the continuous increasing
function s 	→ �bs(X). A version of the same formula for an Itô diffusion X
derived under weaker conditions on F has found applications in free-boundary
problems of optimal stopping (cf. [11]).

The main aim of the present paper is to extend the change-of-variable
formula (1.1) to a multidimensional setting of continuous functions F which
are smooth above and below surfaces. Continuous semimartingales are
considered in Section 2, and semimartingales with jumps are considered
in Section 3. A version of the same formula under weaker conditions on F is
derived in Section 4 for the continuous semimartingale ((t,Xt, St))t�0 where
(Xt)t�0 is an Itô diffusion and (St)t�0 is its running maximum. This version
is useful in the study of free-boundary problems for optimal stopping of the
maximum process when the horizon is finite (for the infinite horizon case
see [10] with references).

The study of Section 4 serves as an example of what generally needs to
be done in order to relax the smoothness conditions on F from C̄ and D̄ to
C∪D. These relaxed versions of the formula are important for applications. It
is thus hoped that the programme started in Section 3 of [11] and in Section 4
of the present paper will be continued.

For related results on the local time-space calculus see [1], [5], [3], [2], [8].
Older references on the topic include [7], [14], [9], [15], [4].
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2 Continuous semimartingales

Let X = (X1, . . . , Xn) be a continuous semimartingale and let b : IRn−1 → IR
be a continuous function such that the process bX = b(X1, . . . , Xn−1) is a
semimartingale. [Note that the sufficient condition b ∈ C2 is by no means
necessary.] Setting:

C = { (x1, . . . , xn) ∈ IRn | xn < b(x1, . . . , xn−1) } (2.1)
D = { (x1, . . . , xn) ∈ IRn | xn > b(x1, . . . , xn−1) } (2.2)

suppose that a continuous function F : IRn → IR is given such that:

F is Ci1,...,in on C̄ (2.3)

F is Ci1,...,in on D̄ (2.4)

where each ij equals 1 or 2 depending on whetherXj is of bounded variation or
not. More explicitly, it means that F restricted to C coincides with a function
F1 which is Ci1,...,in on IRn, and F restricted to D coincides with a function F2

which is Ci1,...,in on IRn. [We recall that a continuous function Fk : IRn → IR
is Ci1,...,in on IRn if the partial derivatives ∂Fk/∂xj when ij = 1 as well as
∂2Fk/∂x

2
j when ij = 2 exist and are continuous as functions from IRn to IR

for all 1 � j � n where k equals 1 or 2.]
Then the natural desire arising in free-boundary problems of optimal stop-

ping (and other problems where the hitting time of D by the process X plays
a role) is to apply a change-of-variable formula to F (Xt) so to account for pos-
sible jumps of (∂F/∂xn)(x1, . . . , xn) at xn = b(x1, . . . , xn−1) being measured
by:

�bs(X) = IP−lim
ε↓0

1
2ε

∫ s

0

I
(
−ε<Xn

r −bXr <ε
)
d
〈
Xn−bX, Xn−bX

〉
r

(2.5)

which represents the local time of X on the surface b for s ∈ [0, t]. Note that
the limit in (2.5) exists (as a limit in probability) since Xn−bX is a continuous
semimartingale.

In the special case when the semimartingale equals (t,Xt) it is evident
that the previous setting reduces to the setting leading to the change-of-
variable formula (1.1) above. Further particular cases of the formula (1.1) are
reviewed in [11]. The following theorem provides a general formula of this kind
for continuous semimartingales (see also Section 3 below).

Theorem 2.1. Let X = (X1, . . . , Xn) be a continuous semimartingale, let
b : IRn−1 → IR be a continuous function such that the process bX =
b(X1, . . . , Xn−1) is a semimartingale, and let F : IRn → IR be a continuous
function satisfying (2.3) and (2.4) above.
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Then the following change-of-variable formula holds:

F (Xt) = F (X0)

+
n∑
i=1

∫ t

0

1
2

(
∂F

∂xi

(
X1
s , . . . , X

n
s +

)
+
∂F

∂xi

(
X1
s , . . . , X

n
s −

))
dXi

s

+
1
2

n∑
i,j=1

∫ t

0

1
2

(
∂2F

∂xi∂xj

(
X1
s , . . . , X

n
s +

)
+

∂2F

∂xi∂xj

(
X1
s , . . . , X

n
s −

))
× d〈Xi, Xj〉s

+
1
2

∫ t

0

(
∂F

∂xn

(
X1
s , . . . , X

n
s +

)
− ∂F

∂xn

(
X1
s , . . . , X

n
s −

))
× I(Xn

s =bXs ) d�bs(X) (2.6)

where �bs(X) is the local time of X on the surface b given in (2.5) above, and
d�bs(X) refers to integration with respect to the continuous increasing function
s 	→ �bs(X).

Proof. 1. Set Z1
t = Xn

t ∧ bXt and Z2
t = Xn

t ∨ bXt for t > 0 given and
fixed. Denoting X̂t = (X1

t , . . . , X
n−1
t , Z1

t ), X̌t = (X1
t , . . . , X

n−1
t , Z2

t ) and
X̃t = (X1

t , . . . , X
n−1
t , bXt ), we see that the following identity holds:

F (Xt) = F1(X̂t) + F2(X̌t)− F (X̃t) (2.7)

where we use that F (x)=F1(x)=F2(x) for x=(x1, . . . , xn−1, b(x1, . . . , xn−1)).
The processes (Z1

t )t�0 and (Z2
t )t�0 are continuous semimartingales admitting

the following representations:

Z1
t =

1
2
(
Xn
t +bXt −

∣∣Xn
t −bXt

∣∣) (2.8)

Z2
t =

1
2
(
Xn
t +bXt +

∣∣Xn
t −bXt

∣∣) . (2.9)

Recalling the Tanaka formula:

∣∣Xn
t −bXt

∣∣ =
∣∣Xn

0 −bX0
∣∣+ ∫ t

0

sign
(
Xn
s −bXs

)
d
(
Xn
s −bXs

)
+ �bt(X) (2.10)

where sign(0) = 0, we find that:

dZ1
t =

1
2

(
d
(
Xn
t +bXt

)
− sign

(
Xn
t −bXt

)
d
(
Xn
t −bXt

)
− d�bt(X)

)
=

1
2

((
1− sign

(
Xn
t −bXt

) )
dXn

t +
(
1 + sign

(
Xn
t −bXt

) )
dbXt − d�bt(X)

)
(2.11)
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dZ2
t =

1
2

(
d
(
Xn
t +bXt

)
+ sign

(
Xn
t −bXt

)
d
(
Xn
t −bXt

)
+ d�bt(X)

)
=

1
2

((
1 + sign(Xn

t −bXt )
)
dXn

t +
(
1− sign(Xn

t −bXt )
)
dbXt + d�bt(X)

)
.

(2.12)

In the sequel we set Di = ∂/∂xi and Dij = ∂2/∂xi∂xj as well as D2
i = ∂2/∂x2

i .
2. Applying the Itô formula to F1(X̂t) and using (2.11) we get:

F1(X̂t) = F1(X̂0) +
n∑
i=1

∫ t

0

DiF1(X̂s) dX̂i
s

+
1
2

n∑
i,j=1

∫ t

0

DijF1(X̂s) d〈X̂i, X̂j〉s

= F1(X̂0) +
n−1∑
i=1

∫ t

0

DiF1(X̂s) dXi
s

+
1
2

∫ t

0

(
1−sign

(
Xn
s −bXs

))
DnF1(X̂s) dXn

s

+
1
2

∫ t

0

(
1+sign

(
Xn
s −bXs

))
DnF1(X̂s) dbXs

− 1
2

∫ t

0

DnF1(X̂s) d�bs(X)

+
1
2

n∑
i,j=1

∫ t

0

DijF1(Xs) I
(
Xn
s <b

X
s

)
d〈Xi, Xj〉s

+
1
4

n∑
i,j=1

∫ t

0

DijF1(Xs) I
(
Xn
s =bXs

)
d〈Xi, Xj〉s

+
1
4

n∑
i,j=1

∫ t

0

DijF1(X̃s) I
(
Xn
s =bXs

)
d〈X̃i, X̃j〉s

+
1
2

n∑
i,j=1

∫ t

0

DijF1(X̃s) I
(
Xn
s >b

X
s

)
d〈X̃i, X̃j〉s (2.13)

where in the last four integrals we make use of the general fact:

I
(
Y 1
s =Y 2

s

)
d〈Y 1, Y 3〉s = I

(
Y 1
s =Y 2

s

)
d〈Y 2, Y 3〉s (2.14)

whenever Y 1, Y 2, and Y 3 are continuous (one-dimensional) semimartingales.
The identity (2.14) can easily be verified using the Kunita–Watanabe inequal-
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ity and the occupation times formula (for more details see the proof following
(3.11) below).

The right-hand side of (2.13) can further be expressed in terms of X̃ using
(2.14) as follows:

F1(X̂t) = F1(X̂0) +
n−1∑
i=1

∫ t

0

DiF1(Xs) I
(
Xn
s <b

X
s

)
dXi

s

+
1
2

n−1∑
i=1

∫ t

0

DiF1(Xs) I
(
Xn
s =bXs

)
dXi

s

+
1
2

n−1∑
i=1

∫ t

0

DiF1(X̃s) I
(
Xn
s =bXs

)
dX̃i

s

+
n−1∑
i=1

∫ t

0

DiF1(X̃s) I
(
Xn
s >b

X
s

)
dX̃i

s

+
∫ t

0

DnF1(Xs) I
(
Xn
s <b

X
s

)
dXn

s

+
1
2

∫ t

0

DnF1(Xs) I
(
Xn
s =bXs

)
dXn

s

+
∫ t

0

DnF1(X̃s) I
(
Xn
s >b

X
s

)
dX̃n

s

+
1
2

∫ t

0

DnF1(X̃s) I
(
Xn
s =bXs

)
dX̃n

s

− 1
2

∫ t

0

DnF1(Xs) I
(
Xn
s =bXs

)
d�bs(X)

+
1
2

n∑
i,j=1

∫ t

0

DijF1(Xs) I
(
Xn
s <b

X
s

)
d〈Xi, Xj〉s

+
1
4

n∑
i,j=1

∫ t

0

DijF1(Xs) I
(
Xn
s =bXs

)
d〈Xi, Xj〉s

+
1
4

n∑
i,j=1

∫ t

0

DijF1(X̃s) I
(
Xn
s =bXs

)
d〈X̃i, X̃j〉s

+
1
2

n∑
i,j=1

∫ t

0

DijF1(X̃s) I
(
Xn
s >b

X
s

)
d〈X̃i, X̃j〉s. (2.15)

By grouping the corresponding terms in (2.15) we obtain:
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F1(X̂t) = F1(X̂0) +
n∑
i=1

∫ t

0

DiF1(Xs) I
(
Xn
s <b

X
s

)
dXi

s

+
1
2

n∑
i=1

∫ t

0

DiF1(Xs) I
(
Xn
s =bXs

)
dXi

s

+
1
2

n∑
i,j=1

∫ t

0

DijF1(Xs) I
(
Xn
s <b

X
s

)
d〈Xi, Xj〉s

+
1
4

n∑
i,j=1

∫ t

0

DijF1(Xs) I
(
Xn
s =bXs

)
d〈Xi, Xj〉s

− 1
2

∫ t

0

DnF1(Xs) I
(
Xn
s =bXs

)
d�bs(X)

+
n∑
i=1

∫ t

0

DiF1(X̃s) I
(
Xn
s >b

X
s

)
dX̃i

s

+
1
2

n∑
i=1

∫ t

0

DiF1(X̃s) I
(
Xn
s =bXs

)
dX̃i

s

+
1
2

n∑
i,j=1

∫ t

0

DijF1(X̃s) I
(
Xn
s >b

X
s

)
d〈X̃i, X̃j〉s

+
1
4

n∑
i,j=1

∫ t

0

DijF1(X̃s) I
(
Xn
s =bXs

)
d〈X̃i, X̃j〉s. (2.16)

3. Applying the Itô formula to F2(X̂t) and using (2.12) we get:

F2(X̌t) = F2(X̌0) +
n∑
i=1

∫ t

0

DiF2(X̌s) dX̌i
s

+
1
2

n∑
i,j=1

∫ t

0

DijF2(X̌s) d〈X̌i, X̌j〉s

= F2(X̌0) +
n−1∑
i=1

∫ t

0

DiF2(X̌s) dXi
s

+
1
2

∫ t

0

(
1+sign

(
Xn
s −bXs

))
DnF2(X̌s) dXn

s

+
1
2

∫ t

0

(
1−sign

(
Xn
s −bXs

))
DnF2(X̌s) dbXs

+
1
2

∫ t

0

DnF2(X̌s) d�bs(X)
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+
1
2

n∑
i,j=1

∫ t

0

DijF2(Xs) I
(
Xn
s >b

X
s

)
d〈Xi, Xj〉s

+
1
4

n∑
i,j=1

∫ t

0

DijF2(Xs) I
(
Xn
s =bXs

)
d〈Xi, Xj〉s

+
1
4

n∑
i,j=1

∫ t

0

DijF2(X̃s) I
(
Xn
s =bXs

)
d〈X̃i, X̃j〉s

+
1
2

n∑
i,j=1

∫ t

0

DijF2(X̃s) I
(
Xn
s <b

X
s

)
d〈X̃i, X̃j〉s (2.17)

where in the last four integrals we make use of the general fact (2.14).
The right-hand side of (2.17) can further be expressed in terms of X̃ using

(2.14) as follows:

F2(X̌t) = F2(X̌0) +
n−1∑
i=1

∫ t

0

DiF2(Xs) I
(
Xn
s >b

X
s

)
dXi

s

+
1
2

n−1∑
i=1

∫ t

0

DiF2(Xs) I
(
Xn
s =bXs

)
dXi

s

+
1
2

n−1∑
i=1

∫ t

0

DiF2(X̃s) I
(
Xn
s =bXs

)
dX̃i

s

+
n−1∑
i=1

∫ t

0

DiF2(X̃s) I
(
Xn
s <b

X
s

)
dX̃i

s

+
∫ t

0

DnF2(Xs) I
(
Xn
s >b

X
s

)
dXn

s

+
1
2

∫ t

0

DnF2(Xs) I
(
Xn
s =bXs

)
dXn

s

+
∫ t

0

DnF2(X̃s) I
(
Xn
s <b

X
s

)
dX̃n

s

+
1
2

∫ t

0

DnF2(X̃s) I
(
Xn
s =bXs

)
dX̃n

s

+
1
2

∫ t

0

DnF2(Xs) I
(
Xn
s =bXs

)
d�bs(X)

+
1
2

n∑
i,j=1

∫ t

0

DijF2(Xs) I
(
Xn
s >b

X
s

)
d〈Xi, Xj〉s

+
1
4

n∑
i,j=1

∫ t

0

DijF2(Xs) I
(
Xn
s =bXs

)
d〈Xi, Xj〉s
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+
1
4

n∑
i,j=1

∫ t

0

DijF2(X̃s) I
(
Xn
s =bXs

)
d〈X̃i, X̃j〉s

+
1
2

n∑
i,j=1

∫ t

0

DijF2(X̃s) I
(
Xn
s <b

X
s

)
d〈X̃i, X̃j〉s. (2.18)

By grouping the corresponding terms in (2.18) we obtain:

F2(X̌t) = F2(X̌0) +
n∑
i=1

∫ t

0

DiF2(Xs) I
(
Xn
s <b

X
s

)
dXi

s

+
1
2

n∑
i=1

∫ t

0

DiF2(Xs) I
(
Xn
s =bXs

)
dXi

s

+
1
2

n∑
i,j=1

∫ t

0

DijF2(Xs) I
(
Xn
s <b

X
s

)
d〈Xi, Xj〉s

+
1
4

n∑
i,j=1

∫ t

0

DijF2(Xs) I
(
Xn
s =bXs

)
d〈Xi, Xj〉s

+
1
2

∫ t

0

DnF2(Xs) I
(
Xn
s =bXs

)
d�bs(X)

+
n∑
i=1

∫ t

0

DiF2(X̃s) I
(
Xn
s >b

X
s

)
dX̃i

s

+
1
2

n∑
i=1

∫ t

0

DiF2(X̃s) I
(
Xn
s =bXs

)
dX̃i

s

+
1
2

n∑
i,j=1

∫ t

0

DijF2(X̃s) I
(
Xn
s >b

X
s

)
d〈X̃i, X̃j〉s

+
1
4

n∑
i,j=1

∫ t

0

DijF2(X̃s) I
(
Xn
s =bXs

)
d〈X̃i, X̃j〉s. (2.19)

4. Combining the right-hand sides of (2.16) and (2.19) we conclude:

F (Xt) = F1(X̂t) + F2(X̌t)− F (X̃t) = F (X0)

+
n∑
i=1

∫ t

0

1
2

(
DiF

(
X1
s , . . . , X

n
s +

)
+DiF

(
X1
s , . . . , X

n
s −

))
dXi

s

+
1
2

n∑
i,j=1

∫ t

0

1
2

(
DijF

(
X1
s , . . . , X

n
s +

)
+DijF

(
X1
s , . . . , X

n
s −

))
d〈Xi, Xj〉s

+
1
2

∫ t

0

(
DnF

(
X1
s , . . . , X

n
s +

)
−DnF

(
X1
s , . . . , X

n
s −

))
× I

(
Xn
s =bXs

)
d�bs(X) +Rt (2.20)
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where the final term is given by:

Rt = F (X̃0) +
n∑
i=1

∫ t

0

DiF1(X̃s) I
(
Xn
s >b

X
s

)
dX̃i

s

+
1
2

n∑
i,j=1

∫ t

0

DijF1(X̃s) I
(
Xn
s >b

X
s

)
d〈X̃i, X̃j〉s

+
1
2

n∑
i=1

∫ t

0

DiF1(X̃s) I
(
Xn
s =bXs

)
dX̃i

s

+
1
4

n∑
i,j=1

∫ t

0

DijF1(X̃s) I
(
Xn
s =bXs

)
d〈X̃i, X̃j〉s

+
n∑
i=1

∫ t

0

DiF2(X̃s) I
(
Xn
s <b

X
s

)
dX̃i

s

+
1
2

n∑
i,j=1

∫ t

0

DijF2(X̃s) I
(
Xn
s <b

X
s

)
d〈X̃i, X̃j〉s

+
1
2

n∑
i=1

∫ t

0

DiF2(X̃s) I
(
Xn
s =bXs

)
dX̃i

s

+
1
4

n∑
i,j=1

∫ t

0

DijF2(X̃s) I
(
Xn
s =bXs

)
d〈X̃i, X̃j〉s − F (X̃t). (2.21)

Hence we see that (2.6) will be proved if we show that Rt = 0. Note that if
F1 = F2 then the identity Rt = 0 reduces to the Itô formula applied to F (X̃t).
In the general case we may proceed as follows.

5. Since F1(x) = F2(x) for x =
(
x1, . . . , xn−1, b(x1, . . . , xn−1)

)
, we see that

the two semimartingales F1(X̃) and F2(X̃) coincide, so that:∫ t

0

I
(
Xn
s >b

X
s

)
d
(
F1(X̃s)

)
=
∫ t

0

I
(
Xn
s >b

X
s

)
d
(
F2(X̃s)

)
(2.22)∫ t

0

I
(
Xn
s =bXs

)
d
(
F1(X̃s)

)
=
∫ t

0

I
(
Xn
s =bXs

)
d
(
F2(X̃s)

)
. (2.23)

Applying the Itô formula to F1(X̃s) and F2(X̃s) we see that (2.22) and (2.23)
become:

n∑
i=1

∫ t

0

DiF1(X̃s) I
(
Xn
s >b

X
s

)
dX̃i

s

+
1
2

n∑
i,j=1

∫ t

0

DijF1(X̃s) I
(
Xn
s >b

X
s

)
d〈X̃i, X̃j〉s

=
n∑
i=1

∫ t

0

DiF2(X̃s) I
(
Xn
s >b

X
s

)
dX̃i

s

+
1
2

n∑
i,j=1

∫ t

0

DijF2(X̃s) I
(
Xn
s >b

X
s

)
d〈X̃i, X̃j〉s (2.24)
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n∑
i=1

∫ t

0

DiF1(X̃s) I
(
Xn
s =bXs

)
dX̃i

s

+
1
2

n∑
i,j=1

∫ t

0

DijF1(X̃s) I
(
Xn
s =bXs

)
d〈X̃i, X̃j〉s

=
n∑
i=1

∫ t

0

DiF2(X̃s) I
(
Xn
s =bXs

)
dX̃i

s

+
1
2

n∑
i,j=1

∫ t

0

DijF2(X̃s) I
(
Xn
s =bXs

)
d〈X̃i, X̃j〉s. (2.25)

Making use of (2.24) and (2.25) we see that F1 in the first four integrals on
the right-hand side of (2.21) can be replaced by F2. This combined with the
remaining terms shows that the identity Rt = 0 reduces to the Itô formula
applied to F2(X̃t). This completes the proof of the theorem. ��
Remark 2.2. The change-of-variable formula (2.6) can obviously be extended
to the case when instead of one function b we are given finitely many functions
b1, b2, . . . , bm which do not intersect.

More precisely, let X = (X1, . . . , Xn) be a continuous semimartingale and
let us assume that the following conditions are satisfied:

bk : IRn−1 → IR is continuous such that bk,X = bk(X1, . . . , Xn−1) (2.26)
is a semimartingale for 1 � k � m

Fk : IRn → IR is Ci1,...,in for 1 � k � m+ 1 where each ij (2.27)
equals 1 or 2 depending on whether Xj is of bounded
variation or not

F (x) = F1(x) if xn < b1(x1, . . . , xn−1)

= Fk(x) if bk(x1, . . . , xn−1) < xn < bk+1(x1, . . . , xn−1)

for 2 � k � m

= Fm+1(x) if xn > bm+1(x1, . . . , xn−1) (2.28)

where F : IRn → IR is continuous and x = (x1, . . . , xn) belongs to IRn.

Then the change-of-variable formula (2.6) extends as follows:

F (Xt) = F (X0) +

n∑
i=1

∫ t

0

1

2

(
∂F

∂xi

(
X1

s , . . . , Xn
s +
)

+
∂F

∂xi

(
X1

s , . . . , Xn
s −
))

dXi
s

+
1

2

n∑
i,j=1

∫ t

0

1

2

(
∂2F

∂xi∂xj

(
X1

s , . . . , Xn
s +
)

+
∂2F

∂xi∂xj

(
X1

s , . . . , Xn
s −
))

d〈Xi, Xj〉s

+
1

2

m∑
k=1

∫ t

0

(
∂F

∂xn

(
X1

s , . . . , Xn
s +
)
− ∂F

∂xn

(
X1

s , . . . , Xn
s −
))

I
(
Xn

s =bk,X
s

)
d�bk

s (X)

(2.29)
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where �bk
s (X) is the local time of X on the surface bk given in (2.5) above,

and d�bk
s (X) refers to integration with respect to s 	→ �bk

s (X).
Note in particular that an open set C in IRn (such as a ball) can often be

described in terms of functions b1, b2, . . . , bm so that (2.29) becomes applicable.
Perhaps the most interesting example of a function F is obtained by looking
at τD = inf{ t > 0 | Xt ∈ D } and setting F (x) = Ex(G(XτD

)) where G is an
admissible function and X0 = x under Px for x ∈ IRn. One such example will
be studied in Section 4 below.

Remark 2.3. The change-of-variable formula (2.6) is expressed in terms of the
symmetric local time (2.5). It is evident from the proof above that one could
also use the one-sided local times defined by:

�b+s (X) = IP−lim
ε↓0

1
ε

∫ s

0

I
(
0�Xn

r −bXr <ε
)
d〈Xn−bX , Xn−bX〉r (2.30)

�b−s (X) = IP−lim
ε↓0

1
ε

∫ s

0

I
(
−ε<Xn

r −bXr �0
)
d〈Xn−bX , Xn−bX〉r. (2.31)

Then under the same conditions as in Theorem 2.1 we find that the following
two equivalent formulations of (2.6) are valid:

F (Xt) = F (X0) +
n∑
i=1

∫ t

0

∂F

∂xi

(
X1
s , . . . , X

n
s ∓

)
dXi

s

+
1
2

n∑
i,j=1

∫ t

0

∂2F

∂xi∂xj

(
X1
s , . . . , X

n
s ∓

)
d〈Xi, Xj〉s

+
1
2

∫ t

0

(
∂F

∂xn

(
X1
s , . . . , X

n
s +

)
− ∂F

∂xn

(
X1
s , . . . , X

n
s −

))
× I

(
Xn
s =bXs

)
d�b±s (X). (2.32)

Clearly (2.29) above can also be expressed in terms of one-sided local times.
Note finally that if Xn − bX is a continuous local martingale, then the three
definitions (2.5), (2.30), and (2.31) coincide.

3 Semimartingales with jumps

In this section we will extend the change-of-variable formula (2.6) first to
semimartingales with jumps of bounded variation (Theorem 3.1) and then to
general semimartingales (Theorem 3.2).

1. Let X = (X1, . . . , Xn) be a semimartingale (see, e.g., [12]). Recall that
each sample path t 	→ Xi

t is right continuous and has left limits for 1 � i � n.
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In Theorem 3.1 below we will assume that each semimartingale Xi has jumps
of bounded variation in the sense that:∑

0<s�t

∣∣ΔXi
s

∣∣ <∞ (3.1)

where ΔXi
s = Xi

s −Xi
s− for 1 � i � n. In this case each Xi can be uniquely

decomposed into:

Xi
t = Xi

0 +Xi,c
t +Xi,d

t (3.2)

where Xi,c = M i,c+Ai,c is a continuous semimartingale and Xi,d is a discrete
semimartingale (of bounded variation) given by:

Xi,d
t =

∑
0<s�t

ΔXi
s. (3.3)

Moreover, if F : IRn → IR is C2 then Itô’s formula takes any of the two
equivalent forms:

F (Xt) = F (X0)

+
n∑
i=1

∫ t

0

∂F

∂xi
(Xs−) dXi

s +
1
2

n∑
i,j=1

∫ t

0

∂2F

∂xi∂xj
(Xs−) d[Xi,c, Xj,c]s

+
∑

0<s�t

(
F (Xs)− F (Xs−)−

n∑
i=1

∂F

∂xi
(Xs−)ΔXi

s

)
= F (X0) +

n∑
i−1

∫ t

0

∂F

∂xi
(Xs−) dXi,c

s

+
1
2

n∑
i,j=1

∫ t

0

∂2F

∂xi∂xj
(Xs−)d[Xi,c, Xj,c]s +

∑
0<s�t

(
F (Xs)− F (Xs−)

)
.

(3.4)

Both of these forms will be used freely below without further mentioning.
Let b : IRn−1 → IR be a continuous function such that the process bX =

b(X1, . . . , Xn−1) is a semimartingale with jumps of bounded variation. Then
Xn − bX is a semimartingale with jumps of bounded variation and the local
time of X on the surface b is well defined as follows:

�bs(X) = IP−lim
ε↓0

1
2ε

∫ s

0

I
(
−ε<Xn

r −bXr <ε
)
d[Xn−bX, Xn−bX ]cr (3.5)

where [Xn − bX , Xn − bX ]c is the continuous (path by path) component
of [Xn − bX , Xn − bX ]. Recalling that Xn,c and bX,c are continuous semi-
martingales associated with Xn and bX as in (3.2) above, we know that
[Xn − bX , Xn − bX ]c = [Xn,c − bX,c, Xn,c − bX,c]. The following theorem
extends the change-of-variable formula (2.6) to semimartingales with jumps
of bounded variation.
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Theorem 3.1. Let X = (X1, . . . , Xn) be a semimartingale where each Xi

has jumps of bounded variation, let b : IRn−1 → IR be a continuous function
such that the process bX = b(X1, . . . , Xn−1) is a semimartingale with jumps
of bounded variation, and let F : IRn → IR be a continuous function satisfying
(2.3) and (2.4) above.

Then the following change-of-variable formula holds:

F (Xt) = F (X0) +
n∑
i=1

∫ t

0

1
2

(
∂F

∂xi

(
X1
s−, . . . , X

n
s−+

)
+
∂F

∂xi

(
X1
s−, . . . , X

n
s−−

))
dXi,c

s

+
1
2

n∑
i,j=1

∫ t

0

1
2

(
∂2F

∂xi∂xj

(
X1
s−, . . . , X

n
s−+

)
+

∂2F

∂xi∂xj

(
X1
s−, . . . , X

n
s−−

))
d[Xi,c, Xj,c]s

+
∑

0<s�t

(
F (Xs)− F (Xs−)

)
+

1
2

∫ t

0

(
∂F

∂xn

(
X1
s−, . . . , X

n
s−+

)
− ∂F

∂xn

(
X1
s−, . . . , X

n
s−−

))
× I

(
Xn
s−=bXs−, X

n
s =bXs

)
d�bs(X) (3.6)

where �bs(X) is the local time of X on the surface b given in (3.5) above, and
d�bs(X) refers to integration with respect to the continuous increasing function
s 	→ �bs(X) .

Proof. The proof can be carried out similarly to the proof of Theorem 2.1 and
we will only highlight a few novel points appearing due to the existence of
jumps. The remaining details are the same as in the proof of Theorem 2.1.

1. We begin as in the proof of Theorem 2.1 by introducing the processes
Z1, Z2, X̂, X̌, X̃ and observing that (2.7)–(2.9) carries over unchanged. Since
Xn and bX both have jumps of bounded variation, it is easily seen that so do
Z1 and Z2 as well. Thus the analogue of (2.10) which is obtained by applying
the Tanaka formula reads:∣∣Xn

t −bXt
∣∣ =

∣∣Xn
0 −bX0

∣∣+ ∫ t

0

sign
(
Xn
s−−bXs−

)
d
(
Xn,c
s −bX,cs

)
+ �bt(X)

+
∑

0<s�t

( ∣∣Xn
s −bXs

∣∣− ∣∣Xn
s−−bXs−

∣∣ ) (3.7)

where sign(0) = 0. Similarly to (2.11) and (2.12) we find that:
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dZ1,c
t =

1
2

((
1− sign

(
Xn
t−−bXt−

))
dXn,c

t

+
(
1 + sign

(
Xn
t−−bXt−

))
dbX,ct − d�bt(X)

)
(3.8)

dZ2,c
t =

1
2

((
1 + sign

(
Xn
t−−bXt−

))
dXn,c

t

+
(
1− sign

(
Xn
t−−bXt−

))
dbX,ct + d�bt(X)

)
. (3.9)

2. Applying the Itô formula to F1(X̂t) we get:

F1(X̂t) = F1(X̂0) +
n∑
i=1

∫ t

0

DiF1(X̂s−) dX̂i,c
s

+
1
2

n∑
i,j=1

∫ t

0

DijF1(X̂s−) d[X̂i,c, X̂j,c]s +
∑

0<s�t

(
F1(X̂s)−F1(X̂s−)

)
.

(3.10)

Hence using (3.8) and proceeding in the same way as in (2.13) and (2.15)
we obtain the analogue of the identity (2.16) where all Xi and X̃i in the
integrators (including those with the angle brackets) are replaced by Xi,c and
X̃i,c (now written as the square brackets).

It may be noted (as in the proof of Theorem 2.1) that in the preceding
derivation (and in the derivation following (3.12) below) we need to make use
of the general fact:

I
(
Y 1
s−=Y 2

s−
)
d[Y 1,c, Y 3,c]s = I

(
Y 1
s−=Y 2

s−
)
d[Y 2,c, Y 3,c]s (3.11)

whenever Y 1, Y 2, and Y 3 are (one-dimensional) semimartingales. To ver-
ify (3.11) note that the claim is equivalent to the fact that for two (one-
dimensional) semimartingales Y 1 and Y 2 we have I(Y 1

s−=0) d[Y 1,c, Y 2,c] = 0.
To derive the latter we may invoke the Kunita–Watanabe inequality (cf. [12,
p. 61]) according to which it is enough to show that I(Y 1

s−=0) d[Y 1,c, Y 1,c] = 0.
This identity however follows by the occupation times formula (cf. [12, p. 168])
since g = 1{0} equals zero almost everywhere with respect to Lebesgue mea-
sure on IR. This proves (3.11) in the general case (recall also (2.14) above).

3. Applying the Itô formula to F2(X̌t) we get:

F2(X̌t) = F2(X̌0) +
n∑
i=1

∫ t

0

DiF2(X̌s−) dX̌i,c
s

+
1
2

n∑
i,j=1

∫ t

0

DijF2(X̌s−) d[X̌i,c, X̌j,c]s +
∑

0<s�t

(
F2(X̌s)−F2(X̌s−)

)
.

(3.12)
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Hence using (3.9) and proceeding in the same way as in (2.17) and (2.18)
we obtain the analogue of the identity (2.19) where all Xi and X̃i in the
integrators (including those with the angle brackets) are replaced by Xi,c and
X̃i,c (now written as the square brackets).

4. Combining the right-hand sides of the resulting identities we find the
analogue of (2.20) to be:

F (Xt) = F1(X̂t) + F2(X̌t)− F (X̃t)

= F (X0) +
n∑
i=1

∫ t

0

1
2

(
DiF (X1

s−, . . . , X
n
s−+) +DiF (X1

s−, . . . , X
n
s−−)

)
dXi,c

s

+
1
2

n∑
i,j=1

∫ t

0

1
2

(
DijF (X1

s−, . . . , X
n
s−+) +DijF (X1

s−, . . . , X
n
s−−)

)
d[Xi,c, Xj,c]s

+
1
2

∫ t

0

(
DnF (X1

s−, . . . , X
n
s−+)−DnF (X1

s−, . . . , X
n
s−−)

)
d�bs(X)

+
∑

0<s�t

(
F (Xs)−F (Xs−)

)
+Rt

(3.13)
where we use that:∑
0<s�t

(
F1(X̂s)−F1(X̂s−)

)
+
∑

0<s�t

(
F2(X̌s)−F2(X̌s−)

)
−
∑

0<s�t

(
F (X̃s)−F (X̃s−)

)
=

∑
0<s�t

(
F (Xs)−F (Xs−)

)
(3.14)

and the final term in (3.13) is given by:

Rt = F (X̃0) +
n∑
i=1

∫ t

0

DiF1(X̃s−) I
(
Xn
s−>b

X
s−
)
dX̃i,c

s

+
1
2

n∑
i,j=1

∫ t

0

DijF1(X̃s−) I
(
Xn
s−>b

X
s−
)
d[X̃i,c, X̃j,c]s

+
1
2

n∑
i=1

∫ t

0

DiF1(X̃s−) I
(
Xn
s−=bXs−

)
dX̃i,c

s

+
1
4

n∑
i,j=1

∫ t

0

DijF1(X̃s−) I
(
Xn
s−=bXs−

)
d[X̃i,c, X̃j,c]s

+
n∑
i=1

∫ t

0

DiF2(X̃s−) I
(
Xn
s−<b

X
s−
)
dX̃i,c

s

+
1
2

n∑
i,j=1

∫ t

0

DijF2(X̃s−) I
(
Xn
s−<b

X
s−
)
d[X̃i,c, X̃j,c]s



A Change-of-Variable Formula 85

+
1
2

n∑
i=1

∫ t

0

DiF2(X̃s−) I
(
Xn
s−=bXs−

)
dX̃i,c

s

+
1
4

n∑
i,j=1

∫ t

0

DijF2(X̃s−) I
(
Xn
s−=bXs−

)
d[X̃i,c, X̃j,c]s − F (X̃t)c (3.15)

where F (X̃)c is the continuous semimartingale part of F (X̃). From (3.13) and
(3.15) we see that (3.6) will be proved if we show that Rt = 0.

5. The same arguments as those given in (2.22)–(2.25) show again that
F1 in the first four integrals on the right-hand side of (3.15) can be replaced by
F2. This combined with the remaining terms shows that the identity Rt = 0
reduces to applying the Itô formula to F2(X̃t) and identifying the contin-
uous part of the resulting semimartingale. This completes the proof of the
theorem. ��

2. The condition (3.1) applied to the semimartingale Xn−bX is the best
known sufficient condition for the local time of X on the surface b to be
given by means of the explicit expression (3.5) above. In the case of general
semimartingales X and bX , however, the local time of X on the surface b (i.e.,
the local time of the semimartingale Xn − bX at zero) can still be defined
by means of the Tanaka formula (3.17) retaining its role as the occupation
density relative to the random clock [Xn−bX , Xn−bX ]c (see [12, p. 168]) but
we do not have the explicit representation (3.5) anymore and the use of the
local time is somewhat less transparent.

If X = (X1, . . . , Xn) is a general semimartingale (not necessarily sat-
isfying (3.1) above) then each Xi can still be decomposed into (3.2) with
Xi,c = M i,c + Ai,c and Xi,d = M i,d + Ai,d where M i,c is a continuous local
martingale, Ai,c is a continuous process of bounded variation, M i,d is a purely
discontinuous local martingale, and Ai,d is a pure jump process of bounded
variation. Since the condition (3.1) may fail (due to the existence of many
small jumps) we know that Itô’s formula takes only the first form in (3.4)
above. It is well known (and easily verified by localization using Taylor’s the-
orem) that the first series over 0 < s � t in (3.4) is absolutely convergent
(even if (3.1) fails to hold).

The following theorem extends the change-of-variable formula (2.6) to gen-
eral semimartingales. Note that (1.1), (2.6), and (3.6) above are special cases
of the general formula (3.16) below.

Theorem 3.2. Let X = (X1, . . . , Xn) be a semimartingale, let b : IRn−1 → IR
be a continuous function such that the process bX = b(X1, . . . , Xn−1) is a
semimartingale, and let F : IRn → IR be a continuous function satisfying
(2.3) and (2.4) above.
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Then the following change-of-variable formula holds:

F (Xt) = F (X0) +
n∑
i=1

∫ t

0

1
2

(
∂F

∂xi

(
X1
s−, . . . , X

n
s−+

)
+
∂F

∂xi

(
X1
s−, . . . , X

n
s−−

))
dXi

s

+
1
2

n∑
i,j=1

∫ t

0

1
2

(
∂2F

∂xi∂xj

(
X1
s−, . . . , X

n
s−+

)
+

∂2F

∂xi∂xj

(
X1
s−, . . . , X

n
s−−

))
d[Xi,c, Xj,c]s

+
∑

0<s�t

(
F (Xs)− F (Xs−)−

n∑
i=1

1
2

(
∂F

∂xi
(X1

s−, . . . , X
n
s−+)

+
∂F

∂xi
(X1

s−, . . . , X
n
s−−)

)
ΔXi

s

)

+
1
2

∫ t

0

(
∂F

∂xn

(
X1
s−, . . . , X

n
s−+

)
− ∂F

∂xn

(
X1
s−, . . . , X

n
s−−

))
× I

(
Xn
s−=bXs−, X

n
s =bXs

)
d�bs(X) (3.16)

where �bs(X) is the local time of X on the surface b given by means of (3.17)
below and d�bs(X) refers to integration with respect to the continuous increasing
function s 	→ �bs(X).

Proof. The proof can be carried out similarly to the proof of Theorem 2.1 and
Theorem 3.1 and we will only highlight a few novel points appearing due to
the absence of the condition (3.1). The remaining details are the same as in
the proof of Theorem 2.1 and Theorem 3.1.

1. We begin as in the proof of Theorem 2.1 by introducing the processes
Z1, Z2, X̂, X̌, X̃ and observing that (2.7)–(2.9) carries over unchanged. The
analogue of (2.10) which is obtained by applying the Tanaka formula now
reads:∣∣Xn

t −bXt
∣∣ =

∣∣Xn
0 −bX0

∣∣+∫ t

0

sign
(
Xn
s−−bXs−

)
d
(
Xn
s −bXs

)
+ �bt(X)

+
∑

0<s�t

(∣∣Xn
s −bXs

∣∣− ∣∣Xn
s−−bXs−

∣∣− sign
(
Xn
s−−bXs−

)
Δ(Xn−bX)s

)
(3.17)

where sign(0) = 0. Similarly to (2.11) and (2.12) we now find that:
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dZ1
t =

1
2

( (
1− sign

(
Xn
t−−bXt−

))
dXn

t

+
(
1 + sign

(
Xn
t−−bXt−

))
dbXt − d�bt(X)− dJt(X)

)
(3.18)

dZ2
t =

1
2

( (
1 + sign

(
Xn
t−−bXt−

))
dXn

t

+
(
1− sign

(
Xn
t−−bXt−

))
dbXt + d�bt(X) + dJt(X)

)
(3.19)

where we denote:

Jt(X) =
∑

0<s�t

( ∣∣Xn
s −bXs

∣∣− ∣∣Xn
s−−bXs−

∣∣− sign
(
Xn
s−−bXs−

)
Δ
(
Xn−bX

)
s

)
.

(3.20)

2. Applying the Itô formula to F1(X̂t) we get:

F1(X̂t) = F1(X̂0) +
n∑
i=1

∫ t

0

DiF1(X̂s−) dX̂i
s

+
1
2

n∑
i,j=1

∫ t

0

DijF1(X̂s−) d[X̂i,c, X̂j,c]s

+
∑

0<s�t

(
F1(X̂s)−F1(X̂s−)−

n∑
i=1

DiF1(X̂s−)ΔXi
s

)
. (3.21)

Hence using (3.18) and proceeding in the same way as in (2.13) and (2.15),
making use of the general fact (3.11), we obtain the analogue of the identity
(2.16) where all Xi and X̃i in the integrators with the angle brackets are
replaced by Xi,c and X̃i,c now written as the square brackets, and the right-
hand side of the identity contains a new term given by:

−1
2

∫ t

0

DnF1(X̂s−) dJs(X) (3.22)

due to the appearance of −dJt(X) in (3.18).
3. Applying the Itô formula to F2(X̌t) we get:

F2(X̌t) = F2(X̌0) +
n∑
i=1

∫ t

0

DiF2(X̌s−) dX̌i
s

+
1
2

n∑
i,j=1

∫ t

0

DijF2(X̌s−) d[X̌i,c, X̌j,c]s

+
∑

0<s�t

(
F2(X̌s)−F2(X̌s−)−

n∑
i=1

DiF2(X̌s−)ΔXi
s

)
. (3.23)
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Hence using (3.19) and proceeding in the same way as in (2.17) and (2.18),
making use of the general fact (3.11), we obtain the analogue of the identity
(2.19) where all Xi and X̃i in the integrators with the angle brackets are
replaced by Xi,c and X̃i,c now written as the square brackets, and the right-
hand side of the identity contains a new term given by:

1
2

∫ t

0

DnF2(X̌s−) dJs(X) (3.24)

due to the appearance of dJt(X) in (3.19).
4. Combining the right-hand sides of the resulting identities we find the

analogue of (2.20) to be:

F (Xt) = F1(X̂t) + F2(X̌t)− F (X̃t)

= F (X0)+
n∑
i=1

∫ t

0

1
2

(
DiF

(
X1
s−, . . . , X

n
s−+

)
+DiF

(
X1
s−, . . . , X

n
s−−

))
dXi

s

+
1
2

n∑
i,j=1

∫ t

0

1
2

(
DijF

(
X1
s−, . . . , X

n
s−+

)
+DijF

(
X1
s−, . . . , X

n
s−−

) )
d[Xi,c, Xj,c]s

+
1
2

∫ t

0

(
DnF

(
X1
s−, . . . , X

n
s−+

)
−DnF

(
X1
s−, . . . , X

n
s−−

))
d�bs(X) +Rt

(3.25)

where the final term is given by:

Rt = F (X̃0) +
n∑
i=1

∫ t

0

DiF1(X̃s−) I
(
Xn
s−>b

X
s−
)
dX̃i

s

+
1
2

n∑
i,j=1

∫ t

0

DijF1(X̃s−) I
(
Xn
s−>b

X
s−
)
d[X̃i,c, X̃j,c]s

+
1
2

n∑
i=1

∫ t

0

DiF1(X̃s−) I
(
Xn
s−=bXs−

)
dX̃i

s

+
1
4

n∑
i,j=1

∫ t

0

DijF1(X̃s−) I
(
Xn
s−=bXs−

)
d[X̃i,c, X̃j,c]s

+
n∑
i=1

∫ t

0

DiF2(X̃s−) I
(
Xn
s−<b

X
s−
)
dX̃i

s

+
1
2

n∑
i,j=1

∫ t

0

DijF2(X̃s−) I
(
Xn
s−<b

X
s−
)
d[X̃i,c, X̃j,c]s
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+
1
2

n∑
i=1

∫ t

0

DiF2(X̃s−) I
(
Xn
s−=bXs−

)
dX̃i

s

+
1
4

n∑
i,j=1

∫ t

0

DijF2(X̃s−) I
(
Xn
s−=bXs−

)
d[X̃i,c, X̃j,c]s − F (X̃t)

+
∑

0<s�t

(
F1(X̂s)− F1(X̂s−)−

n∑
i=1

DiF1(X̂s−)ΔX̂i
s

)
+

∑
0<s�t

(
F2(X̌s)− F2(X̌s−)−

n∑
i=1

DiF2(X̌s−)ΔX̌i
s

)
+

1
2

∫ t

0

DnF2(X̌s−) dJs(X)− 1
2

∫ t

0

DnF1(X̂s−) dJs(X). (3.26)

5. The same arguments as those given in (2.22) and (2.23) now lead to the
following analogues of (2.24) and (2.25), respectively:

n∑
i=1

∫ t

0

DiF1(X̃s−) I
(
Xn
s−>b

X
s−
)
dX̃i

s

+
1
2

n∑
i,j=1

∫ t

0

DijF1(X̃s−) I
(
Xn
s−>b

X
s−
)

[X̃i,c, X̃j,c]s

+
∑

0<s�t
I
(
Xn
s−>b

X
s−
) (

F1(X̃s)− F1(X̃s−)−
n∑
i=1

DiF1(X̃s−)ΔX̃i
s

)
=

n∑
i=1

∫ t

0

DiF2(X̃s−) I
(
Xn
s−>b

X
s−
)
dX̃i

s

+
1
2

n∑
i,j=1

∫ t

0

DijF2(X̃s−) I
(
Xn
s−>b

X
s−
)

[X̃i,c, X̃j,c]s

+
∑

0<s�t
I
(
Xn
s−>b

X
s−
) (

F2(X̃s)− F2(X̃s−)−
n∑
i=1

DiF2(X̃s−)ΔX̃i
s

)
(3.27)

n∑
i=1

∫ t

0

DiF1(X̃s−) I
(
Xn
s−=bXs−

)
dX̃i

s

+
1
2

n∑
i,j=1

∫ t

0

DijF1(X̃s−) I
(
Xn
s−=bXs−

)
[X̃i,c, X̃j,c]s

+
∑

0<s�t
I
(
Xn
s−=bXs−

) (
F1(X̃s)− F1(X̃s−)−

n∑
i=1

DiF1(X̃s−)ΔX̃i
s

)
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=
n∑
i=1

∫ t

0

DiF2(X̃s−) I
(
Xn
s−=bXs−

)
dX̃i

s

+
1
2

n∑
i,j=1

∫ t

0

DijF2(X̃s−) I
(
Xn
s−=bXs−

)
d[X̃i,c, X̃j,c]s

+
∑

0<s�t
I
(
Xn
s−=bXs−

) (
F2(X̃s)− F2(X̃s−)−

n∑
i=1

DiF2(X̃s−)ΔX̃i
s

)
.

(3.28)

Making use of (3.27) and (3.28) we see that F1 in the first four integrals in
(3.26) can be replaced by F2 upon taking into account the four series over
0 < s � t appearing in (3.27) and (3.28). Adding and subtracting the same
series over 0 < s � t we see that the first nine terms on the right-hand
side of (3.26), together with the series added, assemble exactly the expression
obtained by applying the Itô formula to F2(X̃t). Since F (X̃t) = F2(X̃t) hence
we see that the first ten terms obtained on the right-hand side of (3.26) equals
the eleventh term which is the series subtracted. Recalling also the four series
from (3.27) and (3.28) this shows that:

Rt =
∑

0<s�t
I
(
Xn
s−>b

X
s−
) (

F2(X̃s)− F2(X̃s−)−
n∑
i=1

DiF2(X̃s−)ΔX̃i
s

)

−
∑

0<s�t
I
(
Xn
s−>b

X
s−
) (

F1(X̃s)− F1(X̃s−)−
n∑
i=1

DiF1(X̃s−)ΔX̃i
s

)

+
1
2

∑
0<s�t

I
(
Xn
s−=bXs−

) (
F2(X̃s)− F2(X̃s−)−

n∑
i=1

DiF2(X̃s−)ΔX̃i
s

)

− 1
2

∑
0<s�t

I
(
Xn
s−=bXs−

) (
F1(X̃s)− F1(X̃s−)−

n∑
i=1

DiF1(X̃s−)ΔX̃i
s

)

−
∑

0<s�t

(
F2(X̃s)− F2(X̃s−)−

n∑
i=1

DiF2(X̃s−)ΔX̃i
s

)

+
∑

0<s�t

(
F1(X̂s)− F1(X̂s−)−

n∑
i=1

DiF1(X̂s−)ΔX̂i
s

)

+
∑

0<s�t

(
F1(X̌s)− F1(X̌s−)−

n∑
i=1

DiF1(X̌s−)ΔX̌i
s

)
+

1
2

∫ t

0

DnF2(X̌s−) dJs(X)− 1
2

∫ t

0

DnF1(X̂s−) dJs(X). (3.29)
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From (3.25) we thus see that the proof of (3.16) reduces to verify the following
identity:

Rt =
∑

0<s�t

(
F (Xs)− F (Xs−)−

n∑
i=1

(
I
(
Xn
s−<b

X
s−
)
DiF1(Xs−)ΔXi

s

+ I
(
Xn
s−=bXs−

) 1
2

(
DiF1(X̃s−) +DiF2(X̃s−)

)
ΔXi

s

+ I
(
Xn
s−>b

X
s−
)
DiF2(Xs−)ΔXi

s

))
. (3.30)

To this end it is helpful to note that:

1
2

∫ t

0

DnF2(X̌s−) dJs(X)− 1
2

∫ t

0

DnF1(X̂s−) dJs(X)

=
1
2

∑
0<s�t

I
(
Xn
s >b

X
s , X

n
s−=bXs−

) (
DnF2(X̃s−)−DnF1(X̃s−)

)
(Xn

s −bXs )

+
∑

0<s�t
I(Xn

s >b
X
s , X

n
s−<b

X
s−)

(
DnF2(X̃s−)−DnF1(Xs−)

)
(Xn

s −bXs )

−
∑

0<s�t
I(Xn

s <b
X
s , X

n
s−>b

X
s−)

(
DnF2(Xs−)−DnF1(X̃s−)

)
(Xn

s −bXs )

− 1
2

∑
0<s�t

I(Xn
s <b

X
s , X

n
s−=bXs−)

(
DnF2(X̃s−)−DnF1(X̃s−)

)
(Xn

s −bXs ).

(3.31)

A lengthy but straightforward verification shows that the two sides in
(3.30) coincide, i.e., that the right-hand side of (3.29) equals the right-hand
side of (3.30). This can be done by recalling that each series over 0 < s � t in
(3.29) and (3.31) is absolutely convergent so that all eleven of them appearing
on the right-hand side of (3.29) can be combined into a single series of the
finite sum of the eleven individual terms. Multiplying the sum by each of the
indicators

I(Xn
s >b

X
s , X

n
s−=bXs−), I(Xn

s =bXs , X
n
s−=bXs−), I(Xn

s <b
X
s , X

n
s−=bXs−),

I(Xn
s �bXs , X

n
s−>b

X
s−), I(Xn

s <b
X
s , X

n
s−>b

X
s−),

I(Xn
s >b

X
s , X

n
s−<b

X
s−), I(Xn

s =bXs , X
n
s−<b

X
s−), I(Xn

s <b
X
s , X

n
s−<b

X
s−)

and comparing the result with the corresponding expression on the right-hand
side of (3.30) it is seen that all eight of them coincide. This establishes the
identity (3.30) and completes the proof of the theorem. ��

Remark 3.3. It is evident that the contents of Remark 2.2 and Remark 2.3
carry over to the setting of Theorem 3.2 (or Theorem 3.1) without major
change. By adding the corresponding jump terms to (2.29) and (2.32) one
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obtains their extension to general semimartingales (or semimartingales with
jumps of bounded variation). We will omit the explicit expressions of these
formulas.

4 The time-space maximum process

In this section we first apply the change-of-variable formula (2.6) to a three-
dimensional continuous semimartingale and then derive a version of the same
formula under weaker conditions on the function. This version is useful in the
study of free-boundary problems.

1. Let X be a diffusion process solving:

dXt = μ(t,Xt) dt+ σ(t,Xt) dBt (4.1)

in Itô’s sense. The latter more precisely means that X satisfies:

Xt = X0 +
∫ t

0

μ(r,Xr) dr +
∫ t

0

σ(r,Xr) dBr (4.2)

for all t � 0 where μ and σ are locally bounded (continuous) functions for
which the integrals in (4.2) are well defined (the second being Itô’s) so that X
itself is a continuous semimartingale (the process B is a standard Brownian
motion). To ensure that X is nondegenerate we will assume that σ > 0.

Associated with X we consider the maximum process S defined by:

St =
(

max
0�r�t

Sr

)
∨ S0. (4.3)

Then ((t,Xt, St))t�0 is a continuous semimartingale taking values in IR+×E
where we set

E={(x, s)∈IR2 | x�s}.
2. Let b : IR+×IR→ IR be a continuous function such that the process bX

defined by bXt = b(t, St) is a semimartingale. Setting:

C = { (t, x, s) ∈ IR+×E | x > b(t, s) } (4.4)
D = { (t, x, s) ∈ IR+×E | x < b(t, s) } (4.5)

suppose that a continuous function F : IR+×E → IR is given such that:

F is C1,2,1 on C̄ (4.6)

F is C1,2,1 on D̄ (4.7)

in the sense explained following (2.3) and (2.4) above. [A slight notational
change in the definition of the process ((t,Xt, St))t�0 and the sets C and D in
comparison with those given in Section 2 above is made to meet the notation
used in [10] and related papers.]
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Moreover, since σ > 0 it follows that:

P
(
Xr=bXr

)
= 0 for r ∈ 〈0, t] (4.8)

so that under (4.6) and (4.7) the change-of-variable formula (2.6) takes the
simpler form:

F (t,Xt, St) = F (0, X0, S0) +
∫ t

0

Ft(r,Xr, Sr) I
(
Xr �= bXr

)
dr

+
∫ t

0

Fx(r,Xr, Sr) I
(
Xr �= bXr

)
dXr

+
∫ t

0

Fs(r,Xr, Sr) I
(
Xr �= bXr

)
dSr

+
∫ t

0

Fxx(r,Xr, Sr) I
(
Xr �= bXr

)
d〈X,X〉r

+
1
2

∫ t

0

(
Fx(r,Xr+, Sr)− Fx(r,Xr−, Sr)

)
d�br(X) (4.9)

where �br(X) is the local time of X on the surface b given by:

�br(X) = IP−lim
ε↓0

1
2ε

∫ r

0

I
(
−ε<Xu−bXu <ε

)
d
〈
X−bX, X−bX

〉
u

(4.10)

and d�br(X) in (4.9) refers to integration with respect to the continuous
increasing function r 	→ �br(X). [The appearance of X in d�br(X) is motivated
by the fact that St is a functional of X.] Note also that using (4.1) the formula
(4.9) can be rewritten as (4.22) below.

3. It turns out, however, that similarly to the case studied in Section 3
of [11] the conditions (4.6) and (4.7) are not always readily verified. The main
example we have in mind (arising from the free-boundary problems mentioned
above) is:

F (t, x, s) = Et,x,s
(
G(t+τD, Xt+τD

, St+τD
)
)

(4.11)

where (Xt, St) = (x, s) under Pt,x,s, an admissible function G is given and
fixed, and:

τD = inf { r>0 | (t+r,Xt+r, St+r)∈D }. (4.12)

Then one directly obtains the “interior condition” (4.13) by standard means
while the “closure condition” (4.6) is harder to verify at b since (unless we
know a priori that r 	→ b(r, s) is Lipschitz continuous or even differentiable)
both Ft and Fxx may in principle diverge when b is approached from the
interior of C.
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Motivated by applications in free-boundary problems we will now present
a version of the formula (4.9) where (4.6) and (4.7) are replaced by the
conditions:

F is C1,2,1 on C (4.13)

F is C1,2,1 on D. (4.14)

The rationale behind this version is the same as in [11]. Given that one
has some basic control over Fx at b (in free-boundary problems mentioned
above such a control is provided by the principle of smooth fit) even if Ft is
formally to diverge when the boundary b is approached from the interior of
C, this deficiency is counterbalanced by a similar behaviour of Fxx through
the infinitesimal generator of X, and consequently the first integral in (4.22)
below is still well defined and finite.

4. Given a subset A of IR+×E and a function f : A→ IR we say that f is
locally bounded on A ( in IR+×E) if for each a in Ā there is an open set U in
IR+×E containing a such that f restricted to A∩U is bounded. Note that f
is locally bounded on A if and only if for each compact set K in IR+×E the
restriction of f to A ∩K �= ∅ is bounded. Given a function g : [0, t] → IR of
bounded variation we let V (g)(t) denote the total variation of g on [0, t].

To grasp the meaning of the condition (4.19) below in the case of F from
(4.11) above, letting ILX = ∂/∂t+μ∂/∂x+

(
σ2/2

)
∂2/∂x2 denote the infinites-

imal generator ofX, recall that the infinitesimal generator IL of ((t,Xt, St))t�0

can formally be described as follows (cf. [10]):

IL = ILX in x < s (4.15)
∂

∂s
= 0 at x = s. (4.16)

Denoting Cs = { (t, x) | (t, x, s) ∈ C } and Ds = { (t, x) | (t, x, s) ∈ D } hence
we see that:

ILF = 0 in Cs (4.17)

ILF = ILG in Ds. (4.18)

This shows that ILF is locally bounded on Cs ∪ Ds as soon as ILG is so on
Ds. The latter condition (in free-boundary problems) is easily verified since
G is given explicitly.

The main result of the present section may now be stated as follows (see
also Remark 4.2 below for further sufficient conditions).

Theorem 4.1. Let X be a diffusion process solving (4.1) in Itô’s sense, let
b : IR+×IR→ IR be a continuous function such that the process bX defined by
bXt = b(t, St) is a semimartingale, and let F : IR+×E → IR be a continuous
function satisfying (4.13) and (4.14) above.
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If the following conditions are satisfied:(
Ft + μFx + (σ2/2)Fxx

)
( · , · , s) is locally bounded on Cs ∪Ds (4.19)

Fx( · , b( · , s)±ε, s) → Fx( · , b( · , s)±, s) uniformly on [0, t] as ε ↓ 0
(4.20)

sup
0<ε<δ

V (F ( · , b( · , s)±ε, s))(t) <∞ for some δ > 0 (4.21)

for each s given and fixed, then the following change-of-variable formula holds:

F (t,Xt, St) = F (0, X0, S0)

+
∫ t

0

(
Ft + μFx + (σ2/2)Fxx

)
(r,Xr, Sr) I

(
Xr �=bXr

)
dr

+
∫ t

0

(σFx)(r,Xr, Sr) I
(
Xr �=bXr

)
dBr

+
∫ t

0

Fs(r,Xr, Sr) I
(
Xr �=bXr , Xr=Sr

)
dSr

+
1
2

∫ t

0

(Fx(r,Xr+, Sr)−Fx(r,Xr−, Sr)) I
(
Xr=bXr

)
d�br(X)

(4.22)

where �br(X) is the local time of X at the surface b given by (4.10) above, and
d�br(X) refers to integration with respect to the continuous increasing function
r 	→ �br(X).

Proof. The key observation is that off the diagonal x = s in E the process
(t,Xt, St) can be identified with a process (t,Xt) and the surface process
b(t, St) can be identified with a curve b(t). By slightly extending the “two-
map argument” given in Remark 4.2 of [6] the previous observation can be
embedded rigorously in a well-defined mathematical setting. In this setting the
problem becomes equivalent to the problem treated in Theorem 3.1 of [11].
Applying the same method of proof, upon making use of (2.16) and (2.19)
above, and relying upon the properties of the local time and Helly’s selection
theorem, it is seen that the conditions (3.26)–(3.28) in Theorem 3.1 of [11]
become the conditions (4.19)–(4.21) above. As this verification is lengthy, but
in principle the same, further details will be omitted (for more details see [11]).

��

Remark 4.2. It is evident that all of the number of sufficient conditions dis-
cussed in [11], which are either to imply (4.19)–(4.21) or could be used instead,
can easily be translated into the present setting. We will state explicitly only
one set of these conditions. Assume that F satisfies (4.13) and (4.14) above.
If (4.19) is satisfied and for each s given and fixed we have:
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x 	→ F (r, x, s) is convex or concave on [b(r, s)−δ, b(r, s)] and convex
(4.23)

or concave on [b(r, s), b(r, s)+δ] for each r ∈ [0, t] with some δ > 0

r 	→ Fx(r, b(r, s)±, s) is continuous on [0, t] with values in IR (4.24)

then both (4.20) and (4.21) hold. This shows that (4.23) and (4.24) imply
(4.22) when (4.19) holds. The condition (4.23) can further be relaxed to the
form where:

Fxx( · , · , s) = G1( · , · , s) +G2( · , · , s) on Cs ∪Ds (4.25)

where G1( · , · , s) is non-negative (nonpositive) and G2( · , · , s) is continuous
on C̄s and D̄s for each s given and fixed. Thus, if (4.24) and (4.25) hold, then
both (4.20) and (4.21) hold implying also (4.22) when (4.19) holds.
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[7] Itô, K.: Stochastic integral. Proc. Imp. Acad. Tokyo, 20, 519–524, (1944)
[8] Kyprianou, A.E., Surya, B.A.: A change-of-variable formula with local time on
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Summary. We establish a mild variant of the change of variable formula with local
time-space for “ripped” functions and Lévy processes of bounded variation.

1 Lévy processes of bounded variation
and local time-space

In this short note we shall establish a change of variable formula for “ripped”
time-space functions of Lévy processes of bounded variation at the cost of an
additional integral with respect to local time-space in the formula. Roughly
speaking, by a ripped function, we mean here a time-space function which
is C1,1 on both sides of a time dependent barrier and which may exhibit a
discontinuity along the barrier itself. Such functions have appeared in the the-
ory of optimal stopping problems for Markov processes of bounded variation
(cf. [1, 3, 10, 11]). Our starting point is to give a brief review of the relevant
features of Lévy processes of bounded variation and what is meant by local
time-space for these processes.

Suppose that (Ω,F ,F, P ) is a filtered probability space with filtration
F = {Ft : t � 0} satisfying the usual conditions of right continuity and com-
pletion. In this text, we take as our definition of a Lévy process on (Ω,F ,F, P ),
the strong Markov, F-adapted process X = {X(t) : t � 0} with paths
that are right continuous with left limits (càdlàg) having the properties that
P (X(0) = 0) = 1 and for each 0 � s � t, the increment X(t)−X(s) is inde-
pendent of Fs and has the same distribution as X(t− s). On each finite time
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interval, X has paths of bounded variation (or just X has bounded variation
for short) if and only if for each t � 0,

X(t) = dt+
∑

0<s�t
Δs (1)

where d ∈ R and {Δs : s � 0} is a Poisson point process on [0,∞)× (R\{0})
with (time-space) intensity measure dt×Π (dx) satisfying∫

R\{0}
(1 ∧ |x|)Π (dx) <∞.

Note that the latter integrability condition is necessary and sufficient for the
convergence of

∑
0<s�t |Δs|. The process X is further a compound Poisson

process with drift if and only if Π (R\{0}) <∞.
For any such Lévy process we say that 0 is irregular for itself if

P (T = 0) = 0

where T is the first visit of X to the origin,

T = inf{t > 0 : Xt = 0}
with the usual definition inf ∅ = ∞ being understood in the present context
as corresponding to the case that Y never visits the origin over the time
interval (0,∞). Standard theory allows us to deduce that T is a stopping time.
With the exception of a compound Poisson process, 0 is always irregular for
itself within the class of Lévy processes of bounded variation. Further, again
excluding the case of a compound Poisson process,

P (T <∞) > 0 ⇐⇒ d �= 0. (2)

We refer to [2] for a much deeper account of regularity properties of Lévy
processes. For the purpose of this text we need to extend the idea of irregu-
larity for points to irregularity of time-space curves.

Definition 1. Given a Lévy process X with finite variation, a measurable
time-space curve b : [0,∞) → R is said to be irregular for itself for X if all
∞ > T � s � 0,

P(s,b(s))(#{t ∈ (s, T ] : X(t) = b(t)} <∞) = 1

and t ∈ {s � 0 : X(s) = b(s)} if and only if lims↑t |X(s)− b(s)| = 0.

A curve b which is irregular for itself for X allows for the construction of
the almost surely finite counting measure

Lb : B[0,∞) → N

defined by
Lb[0, t] = 1 +

∑
0<s�t

δ(X(s)=b(s))(s) (3)
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where δ·(s) is the Dirac unit mass at time s. Further, Lb[0,∞) is almost surely
1 if d = 0. We call the right continuous process

Lb =
{
Lbt := L[0, t] : t � 0

}
local time-space for the curve b. Our choice of terminology here is motivated
by [9] who gave the name local time-space for an analogous object defined for
continuous semi-martingales.

Little seems to be known about local times of Lévy processes of bounded
variation (see however [7]) and hence a full classification of all such curves b
which are irregular for themselves for X remains an open question. The defi-
nition as given is not empty however as we shall now show with the following
simple examples.

Example 2. Suppose simply that b(t) = x for all t � 0 and some x ∈ R

and that X is not a compound Poisson process. In this case, the local time
process is nothing more than the number of visits to x plus one which is a
similar definition to the one given in [7]. As can be deduced from the above
introduction to Lévy processes of bounded variation, if d = 0 then Lt = 1
for all t > 0. If on the other hand d �= 0 then since X has the property that
{0} is irregular for itself for X then the number of times X hits x in each
finite time interval is almost surely finite. Further, X hits x by either creeping
upwards over it or creeping downwards below according to the respective
sign of d. (Creeping both upwards and downwards is not possible for Lévy
processes which do not possess a Gaussian component). Creeping upwards
above x occurs at first passage time T if and only if lims↑T X(s) = x. Since
the same statement is true of downward creeping and X may only creep in
at most one direction, it follows with the help of the Strong Markov Property
that t ∈ {s > 0 : X(s) = x} if and only if lims↑t |X(s)− x| = 0.

Example 3. More generally, if Π(R\{0}) = ∞ then an argument similar to
the above shows that if b, satisfying b(0+) = b(0) and |b′(0+)| < ∞, belongs
to the class C1(0,∞), then it is also irregular for itself for X. One needs to
take advantage in this case of the fact that b has locally linear behaviour.
Furthermore, one sees that points t for which b′(t) = d cannot be hit. We
have excluded Π(R\{0}) <∞ in order to avoid simple pathological examples
such as the case of the compound Poisson process and b(t) = 0 for all t � 0.

2 A generalization of the change of variable formula

In this section we state our result. The idea is to take the change of variable
formula and to weaken the assumption on the class of functions to which
it applies. For clarity, let us first state the change of variable formula in the
special form that it takes for bounded variation Lévy processes. See [13] or [12]
for details of its proof.
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Theorem 4. Suppose that the time-space function f belongs to the class
C1,1([0,∞)× R). Then for any Lévy process X of bounded variation,

f(t,X(t))− f(0, X(0)) =
∫ t

0

∂f

∂t
(s,X(s−)) ds+ d

∫ t

0

∂f

∂x
(s,X(s))ds

+
∑

0<s�t
{f(s,X(s))− f(s,X(s−))}

almost surely.

Remark 5. By inspection of the proof of the change of variable formula it is
also clear that if for some random time T , Xt ∈ D for all t < T where D is
an open set, then the change of variable formula as given above still holds on
the event {t � T} for functions f ∈ C1,1([0,∞), D).

The generalization we are interested in consists in weakening the class
C1,1([0,∞)× R) in the Change of Variable formula to the following class.

Definition 6. Suppose that b : [0,∞) → R is a measurable function.
A function f is said to be C1,1([0,∞)× R) ripped along b if

f (t, x) =

{
f (1) (t, x) x > b(t), t � 0
f (2) (t, x) x < b(t), t � 0

where f (1) and f (2) each belong to the class C1,1([0,∞)× R).

We shall prove the following theorem.

Theorem 7. Suppose that b is a measurable function which is irregular for
itself for X and f is C1,1([0,∞)×R) ripped along b. Then for any Lévy process
of bounded variation, X,

f(t,X(t))− f(0, X(0+)) =
∫ t

0

∂f

∂t
(s,X(s−))ds+ d

∫ t

0

∂f

∂x
(s,X(s−))ds

+
∑

0<s�t
{f(s,X(s))− f(s,X(s−))}

+
∫ t

0

{f(s,X(s+))− f(s,X(s−))} dLbs

almost surely.

Note, the term f(0, X(0+)) is deliberate in place of f(0, X(0)) as, in the
case that X(0) = b(0), it is possible that the process f(·, X(·)) starts with a
jump.

This result complements the recent results of [9] which concern an exten-
sion of Itô’s formula for continuous semi-martingales. Peskir accommodates
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for the case that the time-space function, f, to which Itô’s formula is applied
has a disruption in its smoothness along a continuous space time barrier of
bounded variation. In particular, on either side of the barrier, the function is
equal to a C1,2(R × [0,∞)) time-space function but, unlike the case here, it
is assumed that there is continuity in f across the barrier. The formula that
Peskir obtained has an additional integral with respect to the semi-martingale
local time at zero of the distance of the underlying semi-martingale from the
boundary (this is again a semi-martingale) which he calls local time-space. As
mentioned above, we have chosen for obvious reasons to refer to the integrator
in the additional term obtained in Theorem 7 as local time-space also. Peskir’s
results build further on those of [8] and [4] for Brownian motion and in this
sense our results now bring the discussion into the particular and somewhat
simpler class of bounded variation semi-martingales that we study here. [5,6,9]
all have further results for general and special types of semi-martingales. How-
ever, the present study is currently the only one which considers discontinuous
functions. We have introduced local time-space as a counting measure rather
than an occupation density at zero of the semi-martingale X − b as one nor-
mally sees. In the current context, the latter is in fact identically zero (cf. [12]).
Other definitions of local time-space may be possible in order to work with
more general classes of curves than those given in Definition 1 and hence the
current presentation merely scratches the surface of the problem considered.

3 Proofs

Proof (of Theorem 7). The essence of the proof is based around a telescopic
sum which we shall now describe. Define the inverse local time process τ =
{τt : t � 0} where

τt = inf{s > 0 : Lbs > t}
for each t � 0. Note the second strict inequality in the definition ensures that
τ is a càdlàg process and since Lb0 = 1 by definition, it follows that τ0 = 0. The
process τ is nothing more than a step function which increases on the integers
k = 1, 2, 3, . . . by an amount corresponding to the length of the excursion of
X from b whose right end point corresponds to the k-th crossing of b by X.
Note that even when X0 �= b(0) we count the section of the path of X until it
first meets b as an (incomplete) excursion.

The increment in {f(s,X(s)) : s � 0} between s = 0+ and s = t can
be seen as the accumulation of the increments incurred by X crossing the
boundary b, the excursions of X from b and the final increment between the
last time of contact of X with b and time t. We have
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f(t,X(t))− f(0, X(0+)) =
∫ t

0

{f(s,X(s+))− f(s,X(s−))} dLbs

+
∑
s�Lb

t

{
f(τs, Xτs

)− f(τs−, Xτs−)
}
1(|Δτs|>0)

+
{
f(t,X(t))− f

(
τLb

t
, Xτ

Lb
t
−
)}

(4)

The proof is then completed once we know that the increments in the curly
brackets of the second and third term on the right hand side of (4) observe the
same development as the change of variable formula. Indeed, taking account
of the Strong Markov Property, it would suffice to prove that under the given
assumptions on f we have that for all t ∈ (0,∞)

f(t ∧ η,X(t ∧ η))− f(0, X(0+))

=
∫ t∧η

0

∂f

∂t
(s,X(s−))ds+ d

∫ t∧η

0

∂f

∂x
(s,X(s−))ds

+
∑

0<s�t∧η
{f(s,X(s))− f(s,X(s−))} . (5)

Note that η is the first strictly positive time that X − b = 0.
The statement in (5) is intuitively appealing since up to the stopping time

η the process X does not intersect with the boundary b and hence the dis-
continuity in f should not appear in a development of the function f(·, X(·)).
The result is proved in the lemma below and thus concludes the proof of the
main result. ��

Lemma 8. Under the assumptions of Theorem 7, the identity (5) holds for
all t ∈ (0,∞).

Proof. First fix some κ > 0, define

σκ,0 = inf{t � 0 : |X(t)− b(t)| > κ}.

and Ωκ = {ω ∈ Ω : σκ,0 < η}. Next define for each j � 1 the stopping times

σκ,j = inf
{
t > σκ,j−1 : |X(t)− b(t)| < 1

2
|X (σκ,j−1)− b(σκ,j−1)|

}
where we again work with the usual definition inf ∅ = ∞. On the set
Ωκ ∩ {η <∞} we have that

lim sup
j↑∞

|X(σκ,j)− b(σκ,j)| � lim
j↑∞

(
1
2

)j
|Xσκ,0 | = 0

and hence by the definition of irregularity of b for itself for X,

lim
j↑∞

σκ,j = η (6)
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where the limit is interpreted to be infinite on the set {η =∞}. It is also clear
that, since X has right continuous paths,

lim
κ↓0

P (Ωκ) = 1. (7)

Over the time interval [σκ,j−1, σκ,j) the process X does not enter a tube
of positive, Fσκ,j−1-measurable radius around the curve b, we may appeal to
then the standard Change of Variable Formula to deduce that on Ωκ

f
(
σκ,j ∧ t,Xσκ,j∧t

)
− f

(
σκ,j−1 ∧ t,Xσκ,j−1∧t

)
=
∫ σκ,j∧t

σκ,j−1∧t

∂f

∂t
(s,X(s−))ds+ d

∫ σκ,j∧t

σκ,j−1∧t

∂f

∂x
(s,X(s−))ds

+
∑

σκ,j−1∧t<s�σκ,j∧t
{f(s,X(s))− f(s,X(s−))} . (8)

Hence on Ωκ we have

f(η ∧ t,X(η ∧ t))− f(σκ,0, X(σκ,0))

=
∑
j�1

{f (σκ,j ∧ t,X(σκ,j ∧ t))− f (σκ,j−1 ∧ t,X(σκ,j−1 ∧ t))}

=
∑
j�1

∫ η∧t

0

{
∂f

∂t
(s,X(s−))ds+ d

∂f

∂x
(s,X(s−))

}
1(σκ,j−1∧t<s�σκ,j∧t)ds

+
∑
j�1

∑
0<s�η∧t

{f(s,X(s))− f(s,X(s−))}1(σκ,j−1∧t<s�σκ,j∧t)

=
∫ η∧t

0

∂f

∂t
(s,X(s−))ds+ d

∫ η∧t

0

∂f

∂x
(s,X(s−))ds

+
∑

0<s�η∧t
{f(s,X(s))− f(s,X(s−))} .

where the final equality follows from (an almost sure version of) Fubini’s
theorem which in turn appeals to the assumption that the limits of f, ∂f/∂t
and ∂f/∂x all exist and are finite when approaching any point on the curve
b. In particular, to deal with the final term in the second equality, note that
an almost sure uniform bound of the form

|f(s,X(s))− f(s,X(s−))| � C|�X(s)|

holds (for random C) because of the assumptions on ∂f/∂x and hence the
double sum converges (as X is a process of bounded variation). Since κ may
be chosen arbitrarily small, (7) shows that (5) is true almost surely on Ω. ��
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spectrally negative Lévy processes and applications to Russian, American and
Canadized options. Ann. Appl. Probab. (2004) 14, 215–238
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Introduction

For any locally square-integrable function f , it is possible to define the
expression

∫
f(a)daLat by the following equality:∫
f(a) daLat = 2

[∫ t

0

f(Bs) dBs −
(
F (Bt)− F (B0)

)]
where F is a primitive of f , and Lat is the local time at a of a one-dimensional
Brownian motion on [0, t], denoted by (Bs)0�s�t.

More precisely, it has been proven (see Bouleau and Yor [3], Eisenbaum [4])
that if the previous definition is taken,

Φ : f →
∫
f(a) daLat

is the unique linear and continuous application from L2(R) to L2, such that
Φ
(
1]a,b]

)
= Lbt − Lat for all a, b ∈ R.

Therefore, this definition of
∫
f(a) daLat is compatible with the natural

definition for step functions f .
Moreover, if f is the primitive of a locally integrable function f ′:∫

f(a) daLat = −
∫ t

0

f ′(Bs) ds

This equality allows us to define
∫ t
0
g(Bs) ds if g is the derivative of a locally

square-integrable function, in the sense of distribution theory.
For example, we can define the previous integral if g is the principal value

of 1/x, the finite part of 1/xα+ for α < 3/2, etc. (see Biane and Yor [1], Yamada
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[10]). In this paper, we will prove that it is possible to do approximately the
same thing with the self-intersection local time.

To define this self-intersection local time, we consider a one-dimensional
Brownian motion on [0, t] (denoted by (Bs)0�s�t); there exists a.s. a contin-
uous function a→ αat such that:∫ t

0

du

∫ u

0

ds f(Bs −Bu) =
∫
f(a)αat da

for any locally integrable function f . By definition, the self-intersection local
time at a of (Bs)0�s�t is equal to αat (here, as in Rosen [8], we consider only
the one-dimensional self-intersection local time; there are a lot of papers about
intersection local times in dimensions 2 and 3, for example, see Bertoin [2],
Le Gall [5], Westwater [9], Yor [11]).

In Section 1, we show that a → γat = αat + 2ta− is derivable, and that if
δat is its derivative, it is possible to give a meaning to the expression:∫

f(a) daδat

for any locally square-integrable function.
In other words, it is possible to do the same integration for the derivative

of self-intersection local time as for the local time.
This integration will allow us to extend the definition of∫ t

0

du

∫ u

0

ds g(Bs −Bu)

to distributions g which are not necessary integrable functions.
Finally, in Section 2, we will use the results of Section 1 to study the

behaviour of: ∫ t

0

du

∫ u

0

ds h(Bs −Bu)1|Bs−Bu|>ε

where h is an odd function having some good properties.

1 Construction of the integration with respect
to self-intersection local time

In this section, we study the behaviour of the self-intersection local time. To
do that, we use a version of Fubini’s theorem, which is available for stochas-
tic integrals. More precisely, we have the following proposition (for t ∈ R+,
a, b ∈ R, a < b):

Proposition 1.1. Let (Bs)0�s�t be a Brownian motion on a probability space
(Ω,A, μ), P the predictable σ-algebra on [0, t] × Ω, and A a B([a, b]) ⊗ P-
measurable function from [a, b]× [0, t]×Ω to R, such that:
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a

dx

∫ t

0

duE
[
A(x, u)2

]
<∞

If (x, ω)→Z(x)(ω) is a B([a, b])⊗A-measurable function on [a, b]×Ω, such that
for any x, Z(x) =

∫ t
0
A(x, u) dBu, then

∫ b
a
Z(x) dx and

∫ t
0

( ∫ b
a
A(x, u) dx

)
dBu

exist and are a.s. equal.

The proof of this proposition is essentially given in Protter ( [6], Theo-
rem 46, p. 160), so we omit it.

Now, let (Bs)s�0 be a one-dimensional Brownian motion, and f a locally
integrable function. The following equality holds:∫ t

0

ds

∫ t

s

du|f(Bs −Bu)| =
∫ t

0

ds

∫
|f(a)|L−a

t (B̃(s)) da

where L−a
t

(
B̃(s)

)
is the local time at −a of the process

(
B̃

(s)
u

)
s�u�t, defined

by B̃
(s)
u = Bu −Bs.

We observe that

L−a
t

(
B̃(s)

)
= LBs−a

t (B)− LBs−a
s (B)

(with continuous local time), therefore:∫ t

0

ds

∫
|f(a)|L−a

t

(
B̃(s)

)
da �

∫ t

0

ds

∫
|f(a)|LBs−a

t da

where LBs−a
t = 0 if |a| > 2sup

u�t
|Bu|. Consequently:

∫ t

0

ds

∫
|f(a)|L−a

t

(
B̃(s)

)
da � t sup

b∈R
Lbt

∫ 2 sup |B|

−2 sup |B|
|f(x)| dx <∞

Hence, we can apply Fubini’s theorem:∫ t

0

du

∫ u

0

ds f(Bs −Bu) =
∫ t

0

ds

∫ t

s

duf(Bs −Bu)

=
∫ t

0

ds

∫
f(a)L−a

t

(
B̃(s)

)
da

=
∫
da f(a)

∫ t

0

dsL−a
t

(
B̃(s)

)
=
∫
f(a)αat da

where

αat =
∫ t

0

dsL−a
t

(
B̃(s)

)
.
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Because of the previous equality, αat is the self-intersection local time at a
of (Bs)0�s�t. Now, we have a.s.:

L−a
t

(
B̃(s)

)
= 2

[
(Bt −Bs + a)− − a− +

∫ t

s

1Bu−Bs<−a dBu

]
Therefore, by applying Proposition 1.1, we prove that for all a, the follow-

ing equality holds a.s.:

αat = 2
∫ t

0

(
(Bs −Bt − a)+ − (−a)+

)
ds+ 2

∫ t

0

dBu

∫ u

0

1Bs−Bu>a ds

If we define γ by γat = αat + 2ta−, we obtain:

γat = 2
[∫ t

0

(Bs −Bt − a)+ ds+
∫ t

0

dBu

∫ u

0

1Bs−Bu>a ds

]
Hence, for every a, b (a < b), we have a.s.:

γbt − γat = 2

[∫ t

0

(∫ b

a

(−1Bs−Bt>x) dx

)
ds+

∫ t

0

dBu

(
−
∫ b

a

Lx+Bu
u dx

)]

For all x, u, Lx+Bu
u is Fu-measurable and continuous with respect to (x, u).

On the other hand, there exists a continuous version of x→
∫ t
0
Lx+Bu
u dBu

(this is a consequence of Burkholder’s inequality and Kolmogorov’s criteria).
Moreover, for all u ∈ [0, t], x ∈ [a, b],

E
[(
Lx+Bu
u

)2]
= E

[(
L−x
u (B(u))

)2] � Cu

where B(u) : v → Bu − Bu−v is a standard Brownian motion on [0, u] and
C > 0 is a constant.

Consequently: ∫ b

a

∫ t

0

E
[
(Lx+Bu
u )2

]
du dx <∞

and we can apply Proposition 1.1 to prove that for any a, b, we have a.s:

γbt − γat = −2
∫ b

a

dx

[∫ t

0

1Bs−Bt>x ds+
∫ t

0

Lx+Bu
u dBu

]
=
∫ b

a

δxt dx

where

δxt = −2
[∫ t

0

1Bs−Bt>x ds+
∫ t

0

Lx+Bu
u dBu

]
We observe that a→ γat is continuous (because αat =

∫ t
0
dsL−a

t (B̃)).
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Consequently, it is almost sure that the previous equality (about γbt − γat )
is true for all a, b.

Therefore, a→γat is a.s. derivable on R, and its derivative is a→ δat .
Consequently, a → αat is derivable on R∗ (with derivative: a → βat =

δat + 2t1a<0), and we can resume our results by the following proposition:

Proposition 1.2. Let (Bs)0�s�t be a one-dimensional Brownian motion. Its
self-intersection local time (αat )a∈R is given by:

αat = 2
[∫ t

0

(
(Bs −Bt − a)+ − (−a)+

)
ds+

∫ t

0

dBu

∫ u

0

1Bs−Bu>a ds

]
Moreover, a→ αat + 2ta− is derivable on R, and its derivative is given by:

δat = −2
[∫ t

0

1Bs−Bt>a ds+
∫ t

0

La+Bu
u dBu

]
Remark. The derivability of a → γat is a particular case of a more general
study about derivability of self-intersection local time for stable processes
(see Rosen [8]).

We can also remark that:

δ0t = −2
[∫ t

0

1Bs>Bt
ds+

∫ t

0

LBu
u dBu

]
so δ0t is strongly related to the quantity A(t, Bt) =

∫ t
0
1Bs<Bt

ds.
In fact, it is possible to prove that t → δ0t has a 4/3-variation which is

finite and different from zero, so A(t, Bt) is not a semimartingale (see Rogers
and Walsh [7]).

Now, let us prove the following proposition:

Proposition 1.3. If f =
∑
i λi1]ai,bi] is a step function, let

∫
f(a) daδat be

defined by
∑
i λi(δ

bi
t − δai

t ).
In these conditions, there exists a unique linear and continuous application

from L2(R) to L2 which coincides with
∫
f(a) daδat if f is a step function.

Proof. For all u ∈ [0, t], s → B
(u)
s = Bu − Bu−s is a Brownian motion (from

[0, u] to R), and the following equality holds a.s. :

LA+Bu
u = L−A

u (B(u)) = 2
[
(B(u)

u +A)− −A− +
∫ u

0

1
B

(u)
s +A<0

dB(u)
s )

]
Hence, we have:
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−δAt = 2
∫ t

0

1Bs−Bt>A ds

+ 4
∫ t

0

[
(B0 −Bu −A)+ − (−A)+ +

∫ u

0

1
B

(u)
s <−A dB

(u)
s

]
dBu

= 2
∫ t

0

f(Bs −Bt) ds+ 4
∫ t

0

[∫ B0−Bu

0

f +
∫ u

0

f
(
−B(u)

s

)
dB(u)

s

]
dBu

where f = 1[A,∞[. By linearity, it is not difficult to prove that:∫
f(a)daδat = 2

∫ t

0

f(Bs −Bt) ds

+ 4
∫ t

0

[∫ B0−Bu

0

f +
∫ u

0

f
(
−B(u)

s

)
dB(u)

s

]
dBu

for any step function f , if we take a representation of the stochastic integrals
such that

u→
∫ u

0

f
(
−B(u)

s

)
dB(u)

s

is continuous.
On the other hand, for all f ∈ L2(R):

E

[(∫ t

0

f(Bs −Bt) ds
)2
]

� t

∫ t

0

E
[
f(Bs −Bt)2

]
ds

= t

∫ t

0

du√
2πu

∫
f(a)2e−a

2/2u da = Ct3/2||f ||2L2

E

[(∫ B0−Bu

0

f

)2
]

� E[|B0 −Bu|]||f ||2L2 � C
√
u||f ||2L2 � C

√
t||f ||2L2

E

[(∫ u

0

f
(
−B(u)

s

)
dB(u)

s

)2
]

�
∫ u

0

E
[
f
(
−B(u)

s

)2]
ds � C

√
t||f ||2L2

If f is a step function, we know that it is possible to define the double
stochastic integral: ∫ t

0

(∫ u

0

f
(
−B(u)

s

)
dB(u)

s

)
dBu

Now, in the general case, it is possible to take (for all n ∈ N) step func-
tions fn such that ||f − fn||L2 � 2−n. In these conditions, for all u ∈ [0, t],∫ u
0
f
(
−B

(u)
s

)
dB

(u)
s is a.s. the limit of

∫ u
0
fn
(
−B

(u)
s

)
dB

(u)
s .

Consequently, the conditions of measurability which are needed for the
existence of the double stochastic integral are true in the case of f , since
there are true for fn.
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The L2-integrability is not difficult to check, so the previous double
stochastic integral is well defined for all f ∈ L2, and we can write:

E

⎡⎣(∫ t

0

[∫ B0−Bu

0

f +
∫ u

0

f
(
−B(u)

s

)
dB(u)

s

]
dBu

)2
⎤⎦

�
∫ t

0

duE

⎡⎣(∫ B0−Bu

0

f +
∫ u

0

f
(
−B(u)

s

)
dB(u)

s

)2
⎤⎦ � Ct3/2||f ||2L2

By density of step functions in L2(R), f →
∫
f(a)daδat can be extended to a

unique linear and continuous application from L2(R) to L2, such that:∫
f(a) daδat =2

∫ t

0

f(Bs−Bt) ds+4
∫ t

0

[∫ B0−Bu

0

f +
∫ u

0

f
(
−B(u)

s

)
dB(u)

s

]
dBu

Proposition 1.3 is proven. ��

We observe that if f and g are in L2(R) and coincide on the interval [A,A′],
then

∫
f(a) daδat =

∫
g(a) daδat when Bs − Bu ∈ [A,A′] for all s, u ∈ [0, t] (it

is easy to prove this for step functions and we conclude by density).
This remark can be used to extend the definition of

∫
f(a) daδat to locally

square integrable functions f (we replace f by f1[−A,A] when sup |B| � A/2).
In good cases, it is also possible to integrate with respect to daβat : formally,

daβ
a
t = daδ

a
t + 2t d(1a<0), so if f(0) is well defined, we will take the following

definition: ∫
f(a) daβat =

∫
f(a) daδat − 2tf(0)

Therefore, we have:∫
f(a) daβat = 2

∫ t

0

(
f(Bs −Bt)− f(0)

)
ds

+ 4
∫ t

0

[∫ B0−Bu

0

f +
∫ u

0

f
(
−B(u)

s

)
dB(u)

s

]
dBu

if this expression has a meaning, and it is only possible if we know the value
of f(0) (which for example is naturally defined if a version of f is continuous
at 0).

Now, we have the following proposition:

Proposition 1.4. If f is the second primitive of a locally integrable function
(f ′′), the following equalities hold:∫

f(a) daβat =
∫
f ′′(a)αat da =

∫ t

0

du

∫ u

0

ds f ′′(Bs −Bu).
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Proof. If f ∈ C2 and f ′′ has a compact support (which implies that f ′ is
bounded), we define h by h(x) = f(−x), and we have:∫ B0−Bu

0

f +
∫ u

0

f
(
−B(u)

s

)
dB(u)

s = −
∫ B(u)

u

0

h+
∫ u

0

h
(
B(u)
s

)
dB(u)

s

= −1
2

∫ u

0

h′
(
B(u)
s

)
ds

=
1
2

∫ u

0

f ′(Bs −Bu) ds

Consequently, it is possible to write:∫
f(a) daβat = 2

[∫ t

0

(
f(Bs −Bt)− f(0)

)
ds+

∫ t

0

(∫ u

0

f ′(Bs −Bu) ds
)
dBu

]
It is not difficult to check that if there is a measurable version of s →∫ t
s
f ′(Bs −Bu) dBu, the measurability and integrability conditions of Propo-

sition 1.1 are satisfied.
Now, for all s:

f(Bs −Bt)− f(0) +
∫ t

s

f ′(Bs −Bu) dBu =
∫ t

s

f ′′(Bs −Bu) du

almost surely, so a measurable version of the previous family of stochastic
integrals exists and we have:∫

f(a) daβat = 2
∫ t

0

ds

[
f(Bs −Bt)− f(0) +

∫ t

s

f ′(Bs −Bu) dBu

]
=
∫ t

0

ds

∫ t

s

f ′′(Bs −Bu) du =
∫ t

0

du

∫ u

0

f ′′(Bs −Bu) ds

Therefore,
∫
f(a) daβat =

∫
f ′′(a)αat da for all f ∈ C2 such that f ′′ has com-

pact support; if f is affine,
∫
f(a) daβat = 0.

This remark shows that if f ′′ is an integrable function and f a second
primitive of f ′′,

∫
f(a) daβat depends only on f ′′.

So we have a linear application from L1(R) to a set of random variables:

f ′′ →
∫
f(a) daβat −

∫
f ′′(a)αat da

For the second term of this expression, we have:

E
[∣∣∣∣∫ f ′′(a)αat da

∣∣∣∣] �
∫
|f ′′| sup

a∈R
E[αat ] = Ct3/2||f ′′||L1

We can suppose that f(0) = f ′(0) = 0, hence |f(x)| � |x|||f ′′||L1 and:
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E

[∣∣∣∣ ∫ t

0

f(Bs −Bt) ds
∣∣∣∣
]

�
(∫ t

0

E[|Bs −Bt|] ds
)
||f ′′||L1 � Ct3/2||f ′′||L1

E

[(∫ B0−Bu

0

f

)2
]

� E[(B0 −Bu)4/4] ||f ′′||2L1 = Cu2||f ′′||2L1 � Ct2||f ′′||2L1

E

[(∫ u

0

f
(
−B(u)

s

)
dB(u)

s

)2
]

�
∫ u

0

dsE
[
f
(
−B(u)

s

)2
]
ds

� ||f ′′||2L1

∫ u

0

dsE[(Bs −Bu)2] � Ct2||f ′′||2L1

On the other hand, we have:∫ B0−Bu

0

f +
∫ u

0

f
(
−B(u)

s

)
dB(u)

s =
1
2

∫ u

0

ds f ′(Bs −Bu)

so the double stochastic integral is well defined. Therefore, the previous
application is continuous from L1(R) to L1.

This application is equal to zero if f ′′ is continuous; by density:∫
f(a) daβat =

∫
f ′′(a)αat da =

∫ t

0

du

∫ u

0

ds f ′′(Bs −Bu)

for all f ∈ L1.
This equality can be extended to locally integrable functions without any

difficulty; consequently, we have proven Proposition 1.4. ��

Remark. By integration with respect to the derivative of self-intersection local
time, we can give a meaning to the expression

∫ t
0
du
∫ u
0
ds g(Bs − Bu) when

g is the second derivative (in the sense of distribution theory) of a locally
square-integrable function f , if f(0) is well-defined.

For example, f can be defined by f(x) = sgn(x)
|x|α where α < 1/2.

In this case, g can be considered as the principal value of k sgn(x)
|x|β , where

β < 5/2 (k is a multiplicative constant).
f is an odd function, so it is natural to take f(0) = 0.

2 An application

Let f be a locally square-integrable function, which is odd and C2 on R∗.
We will consider the following integral (for ε > 0):

Iε =
∫ t

0

du

∫ u

0

ds h(Bs −Bu)1|Bs−Bu|>ε =
∫
hε(a)αat da
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where h = f ′′ and hε(a) = h(a)1|a|>ε. A second primitive of hε is the function
fε, such that fε(a) = ag(ε) if |a| � ε and

fε(a) = f(a) + (εg(ε)− f(ε))sgn(a)

if |a| > ε (g is the derivative of f).
This function is equal to zero at 0. On the other hand, we have fε(a) =

kε(a) + lε(a) where:

kε(a) = (ag(ε) + (f(ε)− εg(ε))sgn(a))1|a|�ε + f(a)1|a|>ε

lε(a) = (εg(ε)− f(ε))sgn(a)

fε(0) = 0 and kε, lε are locally square-integrable, so we can write:

Iε =
∫
fε(a) daδat =

∫
kε(a) daδat +

∫
lε(a) daδat

When ε tends to zero, kε(a) tends to f(a) almost everywhere.
Now, we will suppose that there exists a function φ ∈ L2 such that, if

c > 0 is small enough: |f(c)|+ c|g(c)| � inf |b|�c φ(b).
In these conditions, kε is dominated by |f |+ φ if ε is small enough. Now,

if we suppose that ε < 1, kε(a) = f(a) for any a out of [−1, 1].
Therefore, kε − f is dominated by (|f |+ φ)1[−1,1], which is in L2: it tends

to zero in L2.

Consequently, if J =
∫
f(a) daδat ,

∫
kε(a) daδat − J tends to zero in L2.

On the other hand, if A is large enough:∫
lε(a) daδat = (εg(ε)− f(ε))

(
δAt − 2δ0t + δ−At

)
= (εg(ε)− f(ε))

(
βAt − β0+

t − β0−
t + β−A

t

)
= (f(ε)− εg(ε))

(
β0+
t + β0−

t

)
(the last equality is true because a→ βat has a compact support).

Consequently, we have the following proposition:

Proposition 2.1. Let f be a locally square-integrable function, which is odd
and C2 on R∗.

We suppose that there exists a function φ ∈ L2, and a number d > 0 such
that |f(c)|+ c|f ′(c)| � φ(b) if 0 < |b| � c < d.

We denote by β+ and β− the two derivatives at 0 (right and left) of the
self-intersection local time of a Brownian motion (Bs)0�s�t.

Then, there exists a random variable J , such that:∫ t

0

du

∫ u

0

dsf ′′(Bs −Bu)1|Bs−Bu|>ε − (f(ε)− εf ′(ε))(β+ + β−)− J →
ε→0

0

in the sense of L2.
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This proposition can be applied to study the behaviour of the quantity:

Iαε =
∫ t

0

du

∫ u

0

ds|Bs −Bu|αsgn(Bs −Bu)1|Bs−Bu|>ε

If α > −2, we can take f(a) = Csgn(a)|a|α+2 and φ = 1[−1,1].
The quantity f(ε) − εf ′(ε) tends to 0 when ε tends to 0. Since β+ + β−

is in L2, we can deduce that Iαε − Jα tends to zero in L2 (for a random
variable Jα).

If α = −2, we can take f(a) = − log |a|sgn(a), φ = f1[−1,1], We can
check that we obtain:

I−2
ε − (1− log ε)(β+ + β−)− J−2 →

ε→0
0

If −5/2 < α < −2, we check that:

Iαε −
1

(−2− α)ε−2−α (β+ + β−)− Jα →
ε→0

0

(If α � −5/2, proposition 2.1 does not apply because f is not locally square-
integrable)
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1 Introduction

Extensions of Itô formula to less smooth functions are useful in studying
many problems such as partial differential equations with some singularities,
see below, and in the mathematics of finance. The first extension was obtained
for |X(t)| by Tanaka [24] with a beautiful use of local time. The generalized
Itô formula in one-dimension for time independent convex functions was
developed in [20] and for superharmonic functions in multidimensions in [5]
and for distance functions in [15]. Extensions of Itô’s formula have also been
studied by [16], [12], [21], [11]. In [11], Itô’s formula for W 1,2

loc functions was
studied using Lyons–Zheng’s backward and forward stochastic integrals [18].
In [4], Itô’s formula was extended to absolutely continuous functions with
locally bounded derivative using the integral

∫∞
−∞∇f(x) dxLs(x).
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This integral was defined through the existence of the expression f(X(t))−
f(X(0))−

∫ t
0
∂
∂xf(X(s)) dX(s); it was extended to

∫ t
0

∫∞
−∞∇f(s, x) ds,xLs(x)

for a time dependent function f(s, x) using forward and backward integrals
for Brownian motion in [6]. Recent activities in this direction have been to
look for minimal assumptions on f to make this integral well defined for
semi-martingales other than Brownian motion [7]. However, our motivation
in establishing generalized Itô formulae was to use them to describe the
asymptotics of the solution of heat equations in the presence of a caustic. Due
to the appearance of caustics, the solution of the Hamilton–Jacobi equation,
the leading term in the asymptotics, is no longer differentiable, but has a
jump in the gradient across the shock wave front of the associated Burgers’
equation. Therefore, the local time of continuous semi-martingales in a neigh-
bourhood of the shock wave front of the Burgers equation and the jump of the
derivatives of the Hamilton–Jacobi function (or equivalently the jump in the
Burgers’ velocity) appear naturally in the semi-classical representation of the
corresponding solution to the heat equation [8]. None of the earlier versions
of Itô’s formula apply directly to this situation.

In this paper, we first generalize Itô’s formula to the case of a contin-
uous semi-martingale and a left continuous and locally bounded function
f(t, x) which satisfies (1) its left derivative ∂−

∂t f(t, x) exists and is left
continuous, (2) f(t, x) = fh(t, x) + fv(t, x) with fh(t, x) being C1 in x
and ∇fh(t, x) having left continuous and locally bounded left derivative
Δ−fh(t, x), and fv having left derivative ∇−fv(t, x) which is left continuous
and of locally bounded variation in (t, x). Here we use the two-dimensional
Lebesgue–Stieltjes integral of local time with respect to ∇−f(t, x). The
main result of this paper is formula (2.24). Formula (2.26) follows from
(2.24) easily as a special case. These formulae appear to be new and in a
good form for extensions to two dimensions [9]. Moreover, in [10], Feng and
Zhao observed that the local time Lt(x) can be considered as a rough path
in x of finite 2-variation and therefore defined

∫ t
0

∫∞
−∞∇−f(s, x) ds,xLs(x)

pathwise by extending Young and Lyons’ profound idea of rough path
integration ([17], [25]) to two parameters. When this paper was nearly
completed, we received two preprints concerning a generalized Itô’s for-
mula for a continuous function f(t, x) with jump derivative ∇−f(t, x),
([22], [13]). We remark that formula (2.26) was also observed by [22] in-
dependently.

In Section 3, we consider diffusion processesX(t). We prove the generalized
Itô formula for a function f with generalized derivative ∂

∂tf in L2
loc(dtdx) and

generalized derivative ∇f(t, x) being of locally bounded variation in (t, x). We
use an inequality from Krylov [16].
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2 The continuous semimartingale case

We need the following definitions (see, e.g. [2], [19]): A two-variable function
f(s, x) is called monotonically increasing if whenever s2 � s1, x2 � x1,

f(s2, x2)− f(s2, x1)− f(s1, x2) + f(s1, x1) � 0.

It is called monotonically decreasing if −f is monotonically increasing. The
function f is called left continuous iff it is left continuous in both variables to-
gether, in other words, for any sequence (s1, x1) � (s2, x2) � · · · � (sk, xk) →
(s, x), we have f(sk, xk) → f(s, x) as k → ∞. Here (s, x) � (t, y) means
s � t and x � y. For a monotonically increasing and left continuous function
f(s, x), we can define a Lebesgue–Stieltjes measure by setting

μ([s1, s2)× [x1, x2)) = f(s2, x2)− f(s2, x1)− f(s1, x2) + f(s1, x1),

for s2 > s1 and x2 > x1. So for a measurable function g(s, x), we can define
the Lebesgue–Stieltjes integral by∫ t2

t1

∫ b

a

g(s, x) ds,xf(s, x) =
∫ t2

t1

∫ b

a

g(s, x) dμ.

Denote a partition P of [t, s] × [a, x] by t = s1 < s2 < · · · < sm = s,
a = x1 < x2 < · · · < xn = x and the variation of f associated with P by

VP(f, [t, s]× [a, x])

=
m−1∑
i=1

n−1∑
j=1

|f(si+1, xj+1)− f(si+1, xj)− f(si, xj+1) + f(si, xj)|

and the variation of f on [t, s]× [a, x] by

Vf ([t, s]× [a, x]) = sup
P

VP(f, [t, s]× [a, x]).

One can find Proposition 2.2, its proof and definition of the multi-
dimensional Lebesgue–Stieltjes integral with respect to measures generated
by functions of bounded variation in [19]. For the convenience of the reader,
we include them here briefly.

Proposition 2.1 (Additivity of variation) For s2 � s1 � t, and
a2 � a1 � a,

Vf ([t, s2]× [a, a2]) = Vf ([t, s1]× [a, a2]) + Vf ([t, s2]× [a, a1])
+ Vf ([s1, s2]× [a1, a2])− Vf ([t, s1]× [a, a1]). (2.1)

Proof. We only need to prove that for a � a1 < a2 and t � s1,

Vf ([t, s1]× [a, a2]) = Vf ([t, s1]× [a, a1]) + Vf ([t, s1]× [a1, a2]). (2.2)
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Our proof is similar to the case of one-dimension. We can always refine a
partition P of [t, s1] × [a, a2] to include a1. The refined partition is denoted
by P ′. Then

VP(f, [t, s1]× [a, a2]) � VP′(f, [t, s1]× [a, a2]).

Then (2.2) follows easily. ��
Proposition 2.2 A function f(s, x) of locally bounded variation can be
decomposed as the difference of two increasing functions f1(s, x) and f2(s, x),
in any quarter space s � t, x � a. Moreover, if f is also left continuous, then
f1 and f2 can be taken left continuous.

Proof. For any (t, x) ∈ R2, define for s � t and x � a,

2f̃1(s, x) = Vf ([t, s]× [a, x]) + f(s, x),

2f̃2(s, x) = Vf ([t, s]× [a, x])− f(s, x).

Then f(s, x) = f̃1(s, x)− f̃2(s, x). We need to prove that f̃1 and f̃2 are increas-
ing functions. For this, let s2 � s1 � t, a2 � a1 � a, then use Proposition 2.1,

2(f̃1(s2, a2)− f̃1(s1, a2)− f̃1(s2, a1) + f̃1(s1, a1))
= Vf ([t, s2]× [a, a2])− Vf ([t, s1]× [a, a2])− Vf ([t, s2]× [a, a1])

+ Vf ([t, s1]× [a, a1]) + f(s2, a2)− f(s1, a2)− f(s2, a1) + f(s1, a1)
= Vf ([s1, s2]× [a1, a2]) + f(s2, a2)− f(s1, a2)− f(s2, a1) + f(s1, a1)
� 0.

So f̃1(s, x) is an increasing function. Similarly one can prove that f̃2(s, x) is
an increasing function.

Define

fi(s, x) = lim
t↑s,y↑x

f̃i(t, y), i = 1, 2.

Then since f is left continuous, so

f(s, x) = f1(s, x)− f2(s, x), (2.3)

and f1 and f2 are as required. ��
From Proposition 2.2, the two-dimensional Lebesgue–Stieltjes integral of

a measurable function g with respect to the left continuous function f of
bounded variation can be defined by∫ t2

t1

∫ b

a

g(s, x) ds,xf(s, x) =
∫ t2

t1

∫ b

a

g(s, x) ds,xf1(s, x)

−
∫ t2

t1

∫ b

a

g(s, x) ds,xf2(s, x) for t2 � t1, b � a.

Here f1 and f2 are taken to be left continuous.
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It is worth pointing out that it is possible that a function f(s, x) is of
locally bounded variation in (s, x) but not of locally bounded variation in x
for fixed s. For instance consider f(s, x) = b(x), where b(x) is not of locally
bounded variation, then Vf = 0. However it is easy to see that when a function
f(s, x) is of locally bounded variation in (s, x) and of locally bounded variation
in x for a fixed s = s0, then it is of locally bounded variation in x for all s.
We denote by Vf(s)[a, b] the variation of f(s, x) on [a, b] as a function of x for
a fixed s.

Now we recall some well-known results of local time which will be used
later in this paper. Let X(s) be a continuous semi-martingale X(s) = X(0)+
Ms + Vs on a probability space {Ω,F , P}. Here Ms is a continuous local
martingale and Vs is a continuous process of bounded variation. Let Lt(a) be
the local time introduced by P. Lévy

Lt(a) = lim
ε↓0

1
2ε

∫ t

0

1[a,a+ε)(X(s)) d〈M,M〉s a.s., (2.4)

for each t and a. Then it is well known that for each fixed a ∈ R, Lt(a, ω) is con-
tinuous, and nondecreasing in t and right continuous with left limit (cadlag)
with respect to a ([14], [23]). Therefore we can consider the Lebesgue–Stieltjes
integral

∫∞
0
φ(s) dLs(a, ω) for each a for any Borel-measurable function φ. In

particular ∫ ∞

0

1R−{a}(X(s))dLs(a, ω) = 0 a.s. (2.5)

Furthermore if φ is in L1,1
loc(ds), i.e. φ has locally integrable generalized deriv-

ative, then we have the following integration by parts formula∫ t

0

φ(s)dLs(a, ω) = φ(t)Lt(a, ω)−
∫ t

0

φ′(s)Ls(a, ω)ds a.s. (2.6)

Moreover, if g(s, x) is Borel measurable in s and x and bounded, by the
occupation times formula (e.g. see [14], [23]),∫ t

0

g(s,X(s))d〈M,M〉s = 2
∫ ∞

−∞

∫ t

0

g(s, a)dLs(a, ω)da a.s.

If further g(s, x) is in L1,1
loc(ds) for almost all x, then using the integration by

parts formula, we have∫ t

0

g(s,X(s))d〈M,M〉s = 2
∫ ∞

−∞

∫ t

0

g(s, a)dLs(a, ω)da

= 2
∫ ∞

−∞
g(t, a)Lt(a, ω)da

−2
∫ ∞

−∞

∫ t

0

∂

∂s
g(s, a)Ls(a, ω)dsda a.s.
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We first prove a theorem with fh = 0. The result with a term fh is a trivial
generalization of Theorem 2.1.

Theorem 2.1 Assume f : [0,∞)×R→ R satisfies
(i) f is left continuous and locally bounded, with f(t, x) jointly continuous

from the right in t and left in x at each point (0, x),
(ii) the left derivatives ∂−

∂t f and ∇−f exist at all points of (0,∞)×R and
[0,∞)×R, respectively,

(iii) ∂−
∂t f and ∇−f are left continuous and locally bounded,

(iv) ∇−f is of locally bounded variation in (t, x) and ∇−f(0, x) is of locally
bounded variation in x.
Then for any continuous semi-martingale {X(t), t � 0}

f(t,X(t)) = f(0, X(0)) +
∫ t

0

∂−

∂s
f(s,X(s))ds+

∫ t

0

∇−f(s,X(s))dX(s)

+
∫ ∞

−∞
Lt(x) dx∇−f(t, x)−

∫ +∞

−∞

∫ t

0

Ls(x)ds,x∇−f(s, x) a.s.

(2.7)

Proof. By a standard localization argument we can assume that X and its
quadratic variation are bounded processes and that f , ∂

−
∂t f ,∇−f , V∇−f(t) and

V∇−f are bounded (note here V∇−f(0)<∞ and V∇−f <∞ imply V∇−f(t)<∞
for all t � 0). Note first that from (i) to (iii) the left partial derivatives
of f agree with the distributional derivatives and so (iii) implies that f is
absolutely continuous in each variable. We use standard regularizing mollifiers
(e.g. see [14]). Define

ρ(x) =
{
ce

1
(x−1)2−1 , if x ∈ (0, 2),

0, otherwise.

Here c is chosen such that
∫ 2

0
ρ(x)dx = 1. Take ρn(x) = nρ(nx) as mollifiers.

Define

fn(s, x) =
∫ +∞

−∞

∫ +∞

−∞
ρn(x− y)ρn(s− τ)f(τ, y)dτdy, n � 1, (2.8)

where we set f(τ, y) = f(−τ, y) if τ < 0. Then fn(s, x) are smooth and

fn(s, x) =
∫ 2

0

∫ 2

0

ρ(τ)ρ(z)f
(
s− τ

n
, x− z

n

)
dτdz, n � 1. (2.9)

Because of the absolutely continuity mentioned above, we can differentiate
under the integral in (2.9) to see that ∂

∂tfn(t, x), ∇fn(t, x), V∇fn(t) and V∇fn

are uniformly bounded. Moreover using Lebesgue’s dominated convergence
theorem, one can prove that as n→∞, for each (t, x) with t � 0,

fn(t, x) → f(t, x). (2.10)



Generalized Itô Formulae 123

Also

∂

∂t
fn(t, x) → ∂−

∂t
f(t, x), t > 0 (2.11)

∇fn(t, x) → ∇−f(t, x), t � 0. (2.12)

Note the convergence in (2.10), (2.11), (2.12) is also in Lploc, 1 � p <∞.
It turns out for any g(t, x) being continuous in t and C1 in x and having

a compact support, using the integration by parts formula and Lebesgue’s
dominated convergence theorem,

lim
n→+∞

∫ +∞

−∞
g(t, x)Δfn(t, x)dx = − lim

n→+∞

∫ ∞

−∞
∇g(t, x)∇fn(t, x)dx

= −
∫ ∞

−∞
∇g(t, x)∇−f(t, x)dx. (2.13)

Note ∇−f(t, x) is of bounded variation in x and ∇g(t, x) has a compact
support, so

−
∫ +∞

−∞
∇g(t, x)∇−f(t, x)dx =

∫ +∞

−∞
g(t, x) dx∇−f(t, x). (2.14)

Thus

lim
n→+∞

∫ +∞

−∞
g(t, x)Δfn(t, x)dx =

∫ ∞

−∞
g(t, x) dx∇−f(t, x). (2.15)

Similarly, one can easily see from the integration by parts formula and
Lebesgue’s dominated convergence theorem, if g(s, x) is C1 in x with
∂
∂s∇g(s, x) being continuous and has a compact support in x,

lim
n→+∞

∫ t

0

∫ +∞

−∞
g(s, x)Δ

∂

∂s
fn(s, x)dxds

= − lim
n→+∞

∫ t

0

∫ +∞

−∞
∇g(s, x)∇ ∂

∂s
fn(s, x)dxds

= − lim
n→+∞

∫ ∞

−∞
[∇g(s, x)∇fn(s, x)]t0 dx

+ lim
n→+∞

∫ t

0

∫ +∞

−∞

∂

∂s
∇g(s, x)∇fn(s, x)dxds

= −
∫ +∞

−∞

[
∇g(s, x)∇−f(s, x)

]t
0
dx

+
∫ t

0

∫ ∞

−∞

∂

∂s
∇g(s, x)∇−f(s, x)dxds. (2.16)
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Thus

lim
n→+∞

∫ t

0

∫ +∞

−∞
g(s, x)Δ

∂

∂s
fn(s, x)dxds

=
∫ t

0

∫ ∞

−∞
g(s, x)ds,x∇−f(s, x). (2.17)

Now suppose g(s, x) is continuous in s and cadlag in x jointly, and has
compact support. (In particular, g is bounded). We claim (2.15) and (2.17)
still valid. For this define

gm(t, x) =
∫ ∞

−∞
ρm(y − x)g(t, y)dy =

∫ 2

0

ρ(z)g
(
x+

z

m

)
dz.

To see (2.15), using Lebesgue’s dominated convergence theorem, note that
there is a compact set Gt ⊂ R1 such that

max
x∈Gt

|gm(t, x)− g(t, x)| → 0 as m→ +∞,

gm(t, x) = g(t, x) = 0 for x /∈ Gt.
Note∫ +∞

−∞
g(t, x)Δfn(t, x)dx =

∫ +∞

−∞
gm(t, x)Δfn(t, x)dx

+
∫ +∞

−∞
(g(t, x)− gm(t, x))Δfn(t, x)dx. (2.18)

It is easy to see from (2.15) and using Lebesgue’s dominated convergence
theorem, that

lim
m→∞

lim
n→∞

∫ +∞

−∞
gm(t, x)Δfn(t, x)dx = lim

m→∞

∫ ∞

−∞
gm(t, x) dx∇−f(t, x)

=
∫ ∞

−∞
g(t, x) dx∇−f(t, x). (2.19)

Moreover, ∣∣∣∣∫ +∞

−∞
(g(t, x)− gm(t, x))Δfn(t, x)dx

∣∣∣∣
�
∣∣∣∣∫ +∞

−∞
(g(t, x)− gm(t, x)) dx∇fn(t, x)

∣∣∣∣
� max

x∈G
|g(t, x)− gm(t, x)|V∇fn(t)(G). (2.20)

This leads easily to

lim
m→∞

lim sup
n→∞

∣∣∣∣∫ +∞

−∞
(g(t, x)− gm(t, x))Δfn(t, x)dx

∣∣∣∣ = 0. (2.21)
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Now we use (2.18), (2.19), (2.21)

lim sup
n→∞

∫ +∞

−∞
g(t, x)Δfn(t, x)dx

= lim
m→∞

lim sup
n→∞

∫ +∞

−∞
gm(t, x)Δfn(t, x)dx

+ lim
m→∞

lim sup
n→∞

∫ +∞

−∞
(g(t, x)− gm(t, x))Δfn(t, x)dx

=
∫ ∞

−∞
g(t, x)dx∇−f(t, x).

Similarly we also have

lim inf
n→∞

∫ +∞

−∞
g(t, x)Δfn(t, x)dx =

∫ ∞

−∞
g(t, x) dx∇−f(t, x).

So (2.15) holds for a cadlag function g with a compact support.
Similarly we can prove (2.17) holds for a cadlag function g with a compact

support. That is there exists a compact G ⊂ R1 such that g(s, x) = 0 for
x /∈ G and s ∈ [0, t].

To complete the proof of (2.7), use Itô’s formula for the smooth function
fn(s,X(s)), then a.s.

fn(t,X(t))− fn(0, X(0)) =
∫ t

0

∂

∂s
fn(s,X(s))ds+

∫ t

0

∇fn(s,X(s))dX(s)

+
1
2

∫ t

0

Δfn(s,X(s))d〈M,M〉s. (2.22)

As n→∞, for all t � 0,

fn(t,X(t))− fn(0, X(0)) → f(t,X(t))− f(0, X(0)) a.s.,

and ∫ t

0

∂

∂s
fn(s,X(s))ds→

∫ t

0

∂−

∂s
f(s,X(s))ds a.s.,

∫ t

0

∇fn(s,X(s))dVs →
∫ t

0

∇−f(s,X(s))dVs a.s.

and

E

∫ t

0

(
∇fn(s,X(s))

)2
d〈M,M〉s → E

∫ t

0

(
∇−f(s,X(s))

)2
d〈M,M〉s.
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Therefore in L2(Ω,P ),∫ t

0

∇fn(s,X(s))dMs →
∫ t

0

∇−f(s,X(s))dMs.

To see the convergence of the last term, we recall the well-known result that
the local time Ls(x) is jointly continuous in s and cadlag with respect to x
and has a compact support in space x for each s. As Ls(x) is an increasing
function of s for each x , so if G ⊂ R1 is the support of Lt, then Ls(x) = 0 for
all x /∈ G and s � t. Now we use the occupation times formula, the integration
by parts formula and (2.15), (2.17) for the case when g is cadlag with compact
support in x,

1
2

∫ t

0

Δfn(s,X(s))d〈M,M〉s

=
∫ +∞

−∞

∫ t

0

Δfn(s, x)dsLs(x)dx

=
∫ +∞

−∞
Δfn(t, x)Lt(x)dx−

∫ +∞

−∞

∫ t

0

d

ds
Δfn(s, x)Ls(x)dsdx

→
∫ ∞

−∞
Lt(x) dx∇−f(t, x)−

∫ +∞

−∞

∫ t

0

Ls(x)ds,x∇−f(s, x) a.s.,

as n→∞. This proves the desired formula. ��
The smoothing procedure can easily be modified to prove that if

f : R+ × R → R satisfies (i), (ii) and (iii) of Theorem 2.1, is also C1 in
x and the left derivative Δ−f(t, x) exists at all points of [0,∞) × R and is
jointly left continuous and locally bounded, then Δfn(t, x) → Δ−f(t, x) as
n→∞, t > 0. Thus

f(t,X(t)) = f(0, X(0)) +
∫ t

0

∂−

∂s
f(s,X(s))ds+

∫ t

0

∇f(s,X(s))dX(s)

+
1
2

∫ t

0

Δ−f(s,X(s))d〈X〉s a.s. (2.23)

The next theorem is an easy extension of Theorem 2.1 and formula (2.23).

Theorem 2.2 Assume f : R+×R→ R satisfies conditions (i), (ii) and (iii)
of Theorem 2.1. Further suppose

f(t, x) = fh(t, x) + fv(t, x)

where
(i) fh(t, x) is C1 in x with ∇fh(t, x) having left partial derivative

Δ−fh(t, x), (with respect to x), which is left continuous and locally bounded,
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(ii) fv(t, x) has a left continuous derivative ∇−fv(t, x) at all points (t, x)
[0,∞)×R, which is of locally bounded variation in (t, x) and of locally bounded
in x for t = 0.
Then for any continuous semi-martingale {X(t), t � 0},

f(t,X(t)) = f(0, X(0)) +
∫ t

0

∂−

∂s
f(s,X(s))ds+

∫ t

0

∇−f(s,X(s))dX(s)

+
1
2

∫ t

0

Δ−fh(s,X(s))d〈X〉s +
∫ ∞

−∞
Lt(x) dx∇−fv(t, x)

−
∫ +∞

−∞

∫ t

0

Ls(x)ds,x∇−fv(s, x) a.s. (2.24)

Proof. Mollify fh and fv, and so f , as in the proof of Theorem 2.1. Apply
Itô’s formula to the mollification of f and take the limits as in the proofs of
Theorem 2.1 and (2.23). ��

If f has discontinuity of first and second order derivatives across a curve
x = l(t), where l(t) is a continuous function of locally bounded variation, it
will be convenient to consider the continuous semi-martingale

X∗(s) = X(s)− l(s),

and let L∗
s(a) be its local time. We can prove the following version of our

main results:

Theorem 2.3 Assume f : R+×R→ R satisfies conditions (i), (ii) and (iii)
of Theorem 2.1. Moreover, suppose f(t, x) = fh(t, x)+ fv(t, x), where fh(t, x)
is C1 in x and ∇fh(t, x) has left derivative Δ−fh(t, x) which is left continuous
and locally bounded, and there exists a curve x = l(t), t � 0, a continuous
function of locally bounded variation such that ∇−fv(t, x+ l(t)) as a function
of (t, x) is of locally bounded variation in (t, x) and of locally bounded in x for
t = 0. Then

f(t,X(t)) = f(0, z) +
∫ t

0

∂

∂s
f(s,X(s))ds+

∫ t

0

∇−f(s,X(s))dX(s)

+
1
2

∫ t

0

Δ−fh(s,X(s))d〈X〉s +
∫ ∞

−∞
L∗
t (x) dx∇−fv(t, x+ l(t))

−
∫ +∞

−∞

∫ t

0

L∗
s(x)ds,x∇−fv(s, x+ l(s)) a.s. (2.25)

Proof. We only need to consider the case when fh = 0 as the general case will
follow easily. We basically follow the proof of Theorem 2.1 and apply Itô’s
formula to fn and X(s). We still have (2.22). But by the occupation times
formula, a.s.
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1
2

∫ t

0

Δfn(s,X(s))d〈M,M〉s

=
1
2

∫ t

0

Δfn(s,X∗(s) + l(s))d〈M,M〉s

=
∫ +∞

−∞

∫ t

0

Δfn(s, x+ l(s))dsL∗
s(x)dx

=
∫ +∞

−∞
Δfn(t, x+ l(t))L∗

t (x)dx−
∫ +∞

−∞

∫ t

0

d

ds
Δfn(s, x+ l(s))L∗

s(x)dsdx

→
∫ ∞

−∞
L∗
t (x) dx∇−f(t, x+ l(t))−

∫ +∞

−∞

∫ t

0

L∗
s(x)ds,x∇−f(s, x+ l(s)),

as n→∞ as in the proof of Theorem 2.1. This proves the desired formula.
��

Corollary 2.1 Assume f : R+×R→ R satisfies condition (i) of Theorem 2.1
and its left derivative ∂−

∂t f exists on (0,∞)×R and is left continuous. Further
suppose that there exists a curve x = l(t) of locally bounded variation such that
f is C1 in x off the curve with ∇f having left and right limits in x at each
point (t, x) and a left continuous and locally bounded left derivative Δ−f on
x not equal to l(t). Also assume ∇f(t, l(t) + y−) as a function of t and y is
locally bounded and jointly left continuous if y � 0, and ∇f(t, l(t) + y+) is
locally bounded and jointly left continuous in t and right continuous in y if
y � 0. Then for any continuous semi-martingale {X(t), t � 0},

f(t,X(t)) = f(0, X(0)) +
∫ t

0

∂−

∂s
f(s,X(s))ds

+
∫ t

0

∇−f(s,X(s))dX(s) +
1
2

∫ t

0

Δ−f(s,X(s))d〈X,X〉s

+
∫ t

0

(∇f(s, l(s)+)−∇f(s, l(s)−))dsL∗
s(0) a.s. (2.26)

Proof. At first we assume temporarily that (∇f(t, l(t)+)−∇f(t, l(t)−)) is of
bounded variation. This condition will be dropped later. Formula (2.26) can
be read from (2.25) by considering

fh(t, x) = f(t, x) + (∇f(t, l(t)−)−∇f(t, l(t)+))(x− l(t))+,
fv(t, x) = (∇f(t, l(t)+)−∇f(t, l(t)−))(x− l(t))+,

and integration by parts formula and noticing ∇−fv(t, x + l(t)) is of locally
bounded variation in (t, x). Let g(t, y) = f(t, y + l(t)). In terms of X∗, (2.26)
can be rewritten as
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g(t,X∗(t)) = g(0, X∗(0)) +
∫ t

0

g(ds,X∗(s)) +
∫ t

0

∇−g(s,X∗(s))dX∗(s)

+
1
2

∫ t

0

Δ−g(s,X∗(s))d〈X∗, X∗〉s

+
∫ t

0

(∇g(s, 0+)−∇g(s, 0−))dsL∗
s(0) a.s. (2.27)

Here

g(ds, y) = dsg(s, y) =
∂−

∂s
f(s, y + l(s))ds+∇−f(s, y + l(s))dl(s).

Now without assuming that (∇f(t, l(t)+) − ∇f(t, l(t)−)) is of bounded
variation, we can prove the formula by a smoothing procedure in the variable
t. To see this, let

gn(t, y) =
∫ 2

0

ρ(τ)g
(
t− τ

n
, y
)
dτ =

∫ 2

0

ρ(τ)f
(
t− τ

n
, y + l

(
t− τ

n

))
dτ,

with l(s) = l(0) if s < 0 and f(s, x) = f(−s, x) for s < 0 as usual. Then as
n→∞,∫ t

0

gn(ds,X∗(s)) =
∫ t

0

∫ 2

0

ρ(τ)
∂−

∂s
f
(
s− τ

n
,X∗(s) + l

(
s− τ

n

))
dτds

+
∫ t

0

∫ 2

0

ρ(τ)∇−f
(
s− τ

n
,X∗(s) + l

(
s− τ

n

))
× dl

(
s− τ

n

)
dτ

→
∫ t

0

∂−

∂s
f (s,X∗(s) + l(s)) ds+∇−f(s,X∗(s) + l(s))dl(s)

=
∫ t

0

g(ds,X∗(s)) a.s. (2.28)

It is easy to see that for all (t, y)

gn(t, y) → g(t, y) (2.29)

and for all y �= 0,

∇gn(t, y) → ∇g(t, y), Δ−gn(t, y) → Δ−g(t, y), (2.30)

with uniform local bounds. Moreover, we can see that as y → 0± and n→∞,

∇±gn(t, y) =
∫ 2

0

ρ(τ)∇±g
(
t− τ

n
, y
)
dτ → ∇g(t, 0±). (2.31)
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Since ∇gn(t, 0±) are smooth in t they are of locally bounded variation.
From (2.27),

gn(t,X∗(t)) = gn(0, X∗(0)) +
∫ t

0

gn(ds,X∗(s)) +
∫ t

0

∇−gn(s,X∗(s))dX∗(s)

+
1
2

∫ t

0

Δ−gn(s,X∗(s))d〈X∗, X∗〉s

+
∫ t

0

(∇gn(s, 0+)−∇gn(s, 0−))dsL∗
s(0) a.s. (2.32)

We obtain the desired formula by passing to the limits using (2.28), (2.29),
(2.30) and (2.31). ��

Remark 2.1 (i) Formula (2.26) was also observed by Peskir in [22] and [13]
independently.

(ii) From the proof of Theorem 2.1, one can take different mollifications,
e.g. one can take (2.9) as

fn(s, x) =
∫ 2

0

∫ 2

0

ρ(τ)ρ(z)f
(
s+

τ

n
, x+

z

n

)
dτdz, n � 1.

This will lead to as n→∞,

∂

∂s
fn(s, x) → ∂+

∂s
f(s, x)

instead of (2.11), if ∂+

∂s f(s, x) is jointly right continuous. Therefore we have
the following more general Itô’s formula

f(t,X(t)) = f(0, z) +
∫ t

0

∂s1

∂s
f(s,X(s))ds+

∫ t

0

∇s2f(s,X(s))dX(s)

+
1
2

∫ t

0

Δs2fh(s,X(s))d〈X〉s

+
∫ ∞

−∞
Lt(x) dx∇s2fv(t, x)−

∫ +∞

−∞

∫ t

0

Ls(x)ds,x∇s2fv(s, x) a.s.,

where s1 = ± and s2 = ±.

Formula (2.24) is in a very general form. It includes the classical Itô
formula, Tanaka’s formula, Meyer’s formula for convex functions, the formula
given by Azéma, Jeulin, Knight and Yor [3] and formula (2.26). In the
following we will give some examples for which (2.26) and some known
generalized Itô formulae do not immediately apply, but formula (2.24) can
be applied. These examples can be presented in different forms to include
local times on curves.
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Example 2.1 Consider the function

f(t, x) = (sinπx sinπt)+.

Then

∇−f(t, x) = π cosπx sinπt 1sinπx sinπt>0.

One can verify that ∇−f(t, x) is of locally bounded variation in (t, x). This
can be easily seen from Proposition 2.1 and the simple fact that

cosπx sinπt 1sinπx sinπt>0

=
{

cosπx sinπt, if i � t < i+ 1, j � x < j + 1, i+ j is even
0, otherwise .

Therefore

(sinπX(t) sinπt)+ = π

∫ t

0

cosπs sinπX(s) 1sinπX(s) sinπs>0ds

+π

∫ t

0

cosπX(s) sinπs 1sinπX(s) sinπs>0dX(s)

+π sinπt
∫ ∞

−∞
Lt(a) da(cosπa 1sinπa sinπt>0)

−π
∫ t

0

∫ ∞

−∞
Ls(a)ds,a(cosπa sinπs 1sinπa sinπs>0).

One can expand the last two integrals to see the jump of

cosπa sinπs 1sinπa sinπs>0.

Note in Example 2.1, ∇−f(t, x) has jump on the boundary of each interval
i � t < i + 1, j � x < j + 1. One can use this example as a prototype to
construct many other examples with other types of derivative jumps.

Example 2.2 Consider the function

f(t, x) = (sinπx)
1
3 (sinπx sinπt)+.

Then

∇−f(t, x) =
1
3
π cosπx(sinπx)−

2
3 (sinπx sinπt)+

+ π(sinπx)
1
3 cosπx sinπt 1sinπx sinπt>0.

One can verify that ∇−f(t, x) is of locally bounded variation in (t, x) and
continuous. In fact,
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cosπx(sinπx)−
2
3 (sinπx sinπt)+

=

⎧⎨⎩ cosπx(sinπx)
1
3 sinπt, if i � t < i+ 1,

j � x < j + 1, i+ j is even
0, otherwise

then it is easy to see that cosπx(sinπx)−
2
3 (sinπx sinπt)+ is of locally bounded

variation in (t, x) using Proposition 2.1. Similarly one can see that (sinπx)
1
3

cosπx sinπt 1sinπx sinπt>0 is of locally bounded variation in (t, x) as well.
Note Δ−f(t, x) blows up when x is near an integer value, and their left

and right limits also blow up. However one can apply our generalized Itô’s
formula (2.24) to this function so that

(sinπX(t))
1
3 (sinπX(t) sinπt)+

= π

∫ t

0

(sinπX(s))
4
3 cosπs 1sinπX(s) sinπs>0ds

+
∫ ∞

−∞
Lt(a) da

(
1
3
π cosπa(sinπa)−

2
3 (sinπa sinπt)+

+ π(sinπa)
1
3 cosπa sinπt 1sinπa sinπt>0

)
−
∫ t

0

∫ ∞

−∞
Ls(a) ds,a

(
1
3
π cosπa(sinπa)−

2
3 (sinπa sinπs)+

+ π(sinπa)
1
3 cosπa sinπs 1sinπa sinπs>0

)
.

3 The case for Itô processes

For Itô processes, we can allow some of the generalized derivatives of f to be
only in L2

loc(dtdx). Consider

X(t) = X(0) +
∫ t

0

σrdWr +
∫ t

0

brdr. (3.1)

Here Wr is a one-dimensional Brownian motion on a filtered probability space
(Ω,F , {Fr}r�0, P ) and σr and br are progressively measurable with respect
to {Fr} and satisfy the following conditions: for all t > 0∫ t

0

|σr|2dr <∞,

∫ t

0

|br|dr <∞ a.s. (3.2)

Under condition (3.2), the process (3.1) is well defined. For any N > 0, define
τN = inf{s : |X(s)| � N}. Assume there exist constants δ > 0 and K > 0
such that

σt(ω) � δ > 0, |σt(ω)|+ |bt(ω)| � K, for all (t, ω) with t � τN . (3.3)

The following inequality due to Krylov [16] plays an important role.
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Lemma 3.1 Assume condition (3.2) and (3.3). Then there exists a constant
M > 0, depending only on δ and K such that

E

∫ t∧τN

0

|f(r,X(r))|dr � M

(∫ t

0

∫ +N

−N
(f(r, x))2drdx

) 1
2

. (3.4)

Denote again by Lt(x) the local time of the diffusion process X(t) at
level x. We can prove the following theorem.

Theorem 3.1 Assume f(t, x) is continuous with generalized derivative ∂
∂tf

in L2
loc(dtdx) and generalized derivative ∇f of locally bounded variation in

(t, x) and of locally bounded variation in x for t = 0. Consider an Itô process
X(t) given by (3.1) with σ and b satisfying (3.2) and (3.3). Then a.s.

f(t,X(t)) = f(0, X(0)) +
∫ t

0

∂

∂s
f(s,X(s))ds+

∫ t

0

∇f(s,X(s))dX(s)

+
∫ ∞

−∞
Lt(x) dx∇f(t, x)−

∫ +∞

−∞

∫ t

0

Ls(x)ds,x∇f(s, x). (3.5)

Proof. Define fn by (2.8). From a well-known result on Sobolev spaces (see
Theorem 3.16, p.52 in [1]), we know that as n→∞,

fn(t, x) → f(t, x),

for all (t, x) and for any N > 0

∂

∂t
fn →

∂

∂t
f, in L2([0, t]× [−N,N ])

∇fn → ∇f, in L4([0, t]× [−N,N ]).

As in the proof of Theorem 2.1, we have the Itô formula (2.22) for
fn(t∧ τN , X(t∧ τN )). The convergence of the terms fn(t∧ τN , X(t∧ τN )), and
1
2

∫ t∧τN

0
σ2
sΔfn(s,X(s))ds is the same as before. Now by using Lemma 3.1,

E

∣∣∣∣∫ t∧τN

0

∂

∂s
fn(s,X(s))ds−

∫ t∧τN

0

∂

∂s
f(s,X(s))ds

∣∣∣∣
� E

∫ t∧τN

0

∣∣∣∣ ∂∂sfn(s,X(s))− ∂

∂s
f(s,X(s))

∣∣∣∣ ds
� M

(∫ t

0

∫ N

−N

(
∂

∂s
fn(s, x)− ∂

∂s
f(s, x)

)2

dsdx

) 1
2

→ 0
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as n→∞. Similarly one can prove∫ t∧τN

0

bs∇fn(s,X(s))ds→
∫ t∧τN

0

bs∇f(s,X(s))ds in L1(dP ).

Moreover, there exists a constant M > 0 such that

E

(∫ t∧τN

0

σs∇fn(s,X(s))dWs −
∫ t

0

σs∇f(s,X(s))dWs

)2

= E

(∫ t∧τN

0

σ2
s(∇fn(s,X(s))−∇f(s,X(s))

)2

ds

� M

(∫ t

0

∫ N

−N
(∇fn(s, x)−∇f(s, x)

)4

dsdx→ 0

as n→∞. Therefore we have proved that

f(t ∧ τN , X(t ∧ τN ))

= f(0, X(0)) +
∫ t∧τN

0

∂

∂s
f(s,X(s))ds+

∫ t∧τN

0

∇f(s,X(s))dX(s)

+
∫ ∞

−∞
Lt∧τN

(x) dx∇f(t ∧ τN , x)−
∫ +∞

−∞

∫ t∧τN

0

Ls(x)ds,x∇f(s, x).

The desired formula follows. ��

Recall the following extension of Itô’s formula due to Krylov [16]: if f :
R+×R is C1 in x and ∇f is absolutely continuous with respect to x for each
t and the generalized derivatives ∂

∂sf(s, x) and Δf are in L2
loc(dtdx), then

f(t,X(t)) = f(0, z) +
∫ t

0

∂

∂s
f(s,X(s))ds+

∫ t

0

∇f(s,X(s))dX(s)

+
1
2

∫ t

0

σ2
sΔf(s,X(s))ds a.s. (3.6)

The next theorem is an easy consequence of the method of proof of
Theorem 3.1 and of formula (3.6).

Theorem 3.2 Assume f(t, x) is continuous and its generalized derivative
∂
∂tf is in L2

loc(dtdx). Moreover f(t, x) = fh(t, x) + fv(t, x) with fh(t, x) being
C1 in x and ∇fh(t, x) having generalized derivative Δfh(t, x) in L2

loc(dtdx),
and fv having generalized derivative ∇fv(t, x) being of locally bounded varia-
tion in (t, x) and of locally bounded variation in x for t = 0. Suppose X(t) is
an Itô process given by (3.1) with σ and b satisfying (3.2) and (3.3). Then,
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f(t,X(t)) = f(0, X(0)) +
∫ t

0

∂

∂s
f(s,X(s))ds+

∫ t

0

∇f(s,X(s))dX(s)

+
1
2

∫ t

0

Δfh(s,X(s))d〈X〉s +
∫ ∞

−∞
Lt(x) dx∇fv(t, x)

−
∫ +∞

−∞

∫ t

0

Ls(x)ds,x∇fv(s, x) a.s. (3.7)
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1 Introduction

We consider here a semimartingale X satisfying the following two conditions
(H1)

∑
0�t�1 |ΔXt| <∞

(H2) the process X̂ is a semimartingale too, where X̂ is given by the
following definition.

Definition 1.1. Let (Yt, t � 0) be a random process. The process Ŷ is defined
by Ŷt = Y(1−t)− if t ∈ [0, 1) , and Ŷ1 = Y0.

Under these assumptions we construct (Section 2) a stochastic integration
over the plane of deterministic functions with respect to (Lxt , x ∈ R, 0 � t � 1)
the local time process of X. This construction is available for locally bounded
deterministic functions over the plane. This allows in particular to define
properly a local time process on any measurable curve b for X (Section 3).

Let F be a deterministic function from R×[0,∞) to R. To expand F (Xt, t)
according to the classical Itô formula, we would need to assume that F is
in C2 (see Meyer [8]). But Errami, Russo and Vallois [6] have recently es-
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tablished an Itô formula for F in C1, which, thanks to the construction of
Section 2, can be rewritten under the following form (Section 4):

F (Xt, t) = F (X0, 0) +
∫ t

0

∂F

∂t
(Xs, s) ds+

∫ t

0

∂F

∂x
(Xs−, s) dXs

+
∑

0<s�t

{
F (Xs, s)− F (Xs−, s)−

∂F

∂x
(Xs−, s)ΔXs

}
− 1

2

∫ t

0

∫
R

∂F

∂x
(x, s) dLxs . (1)

Note that each term in (1) is still well defined for a function F admitting
locally bounded first-order partial derivatives. In view of the recent works of
Elworthy, Truman and Zhao [5], Ghomrasni and Peskir [7], and Peskir [9], it
hence seems natural to conjecture that this extended Itô formula involving
local time-space stochastic integrals should remain true without assuming
continuity of the first derivatives.

2 Integration with respect to local times for reversible
semimartingales

The semimartingale X admits a local time process that we denote (Lxt , x ∈ R,
t � 0). For the existence and basic properties of this process, one can consult
[1].

Consider now an elementary function fΔ i.e. there exist a finite sequence
(xi)1�i�n of real numbers, a subdivision (sj)1�j�m of [0, 1] and a family of
real numbers {fij , 1 � i � n, 1 � j � m} such that

fΔ(x, s) =
∑

(xi,sj)∈Δ
fij1(xi,xi+1](x)1(sj ,sj+1](s)

where Δ = {(xi, sj), 1 � i � n, 1 � j � m}.
For such a function, integration with respect to L is defined by∫ 1

0

∫
R

fΔ(x, s) dLxs =
∑

(xi,sj)∈Δ
fij

(
Lxi+1
sj+1

− Lxi+1
sj

− Lxi
sj+1

+ Lxi
sj

)
The problem is to find the set of functions to which this integration could

be extended.
The semimartingale X̂ admits a local time process on the time interval

[0, 1] that we denote by (L̂xt , x ∈ R). The occupation time formula gives the
following respective characterization of the local times. For any bounded Borel
function f
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0

f(Xs) d[X]cs =
∫

R

f(x)Lxt dx∫ t

0

f(X̂s) d[X̂]cs =
∫

R

f(x)L̂xt dx

where [Y ]c denotes the continuous part of the quadratic variation process of
a process Y . Note that:

[X̂]ct = [X]c1 − [X]c1−t .

Consequently, we obtain:

Lxt = L̂x1 − L̂x1−t (2)

Consider now a bounded Borel function f and set F (x) =
∫ x
0
f(u)du.

Bouleau and Yor [2] have established the following formula

F (Xt) = F (X0) +
∫ t

0

f(Xs−) dXs −
1
2

∫
f(x) dxLxt

+
∑

0<s�t
{F (Xs)− F (Xs−)− f(Xs−)ΔXs} . (3)

Applying this formula to X̂ and using Remark (2), we immediately obtain:∫
f(x) dxLxt

=
∫ t

0

f(Xs−) dXs +
∫ 1

1−t
f(X̂s−) dX̂s +

∑
0�s�t

{f(Xs)− f(Xs−)}ΔXs .

Note that the process
(
Xt −

∑
0�s�tΔXs, 0 � t � 1

)
is a continuous

semimartingale (Mt+Vt, 0 � t � 1) where M is a continuous local martingale
and V is a continuous process with bounded variations. Note also that the
process M̂ is a continuous semimartingale with respect to the natural filtration
of X̂. Hence, we obtain:∫

f(x) dxLxt =
∫ t

0

f(Xs−) dMs +
∫ 1

1−t
f(X̂s−) dM̂s.

Choosing then f(x) = 1(−∞,a](x), we obtain the following lemma.

Lemma 2.1. The local time process (Lxt , x ∈ R, 0 � t � 1) of X satisfies

Lxt =
∫ t

0

1(Xs−�x) dMs +
∫ 1

1−t
1(X̂s−�x) dM̂s.
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Let fΔ be an elementary function. Thanks to Lemma 2.1, we have∫ t

0

∫
R

fΔ(x, s) dLxs =
∑

(xi,sj)∈Δ
fij
(
Lxi+1
sj+1

− Lxi+1
sj

− Lxi
sj+1

+ Lxi
sj

)
=

∑
(xi,sj)∈Δ

fij

{∫ sj+1

sj

1(xi,xi+1](Xs−) dMs +
∫ 1−sj

1−sj+1

1(xi,xi+1](X̂s−) dM̂s

}
=
∫ t

0

fΔ(Xs−, s) dMs +
∫ 1

1−t
fΔ(X̂s−, 1− s) dM̂s .

Let f be a bounded deterministic function. Then there exists a bounded se-
quence of elementary functions (fn, n � 0) converging simply to f . The corre-
sponding sequences

( ∫ t
0
fn(Xs−, s) dMs, n � 0

)
and

( ∫ 1

1−t fn(X̂s−, 1−s) dM̂s,

n � 0
)

are converging in probability to, respectively,
∫ t
0
f(Xs−, s) dMs and∫ 1

1−t f(X̂s−, 1−s) dM̂s. These limits do not depend on the choice of the se-

quence (fn, n � 0). Hence
( ∫ t

0

∫
R
f(x, s) dLxs , t ∈ [0, 1]

)
is well defined and

satisfies∫ t

0

∫
R

f(x, s) dLxs =
∫ t

0

f(Xs−, s) dMs +
∫ 1

1−t
f(X̂s−, 1− s) dM̂s; 0 � t � 1.

The following theorem can then be proved similarly as in [4].

Theorem 2.2. Let f be a locally bounded measurable function from R× [0, 1]
to R. Then

∫ t
0

∫ b
a
f(x, s) dLxs is well defined for any couple (a, b) and converges

in probability as a and b tend, respectively, to −∞ and +∞. We define the
integral

∫ t
0

∫
R
f(x, s) dLxs as this limit. Moreover we have:∫ t

0

∫
R

f(x, s) dLxs =
∫ t

0

f(Xs−, s) dMs +
∫ 1

1−t
f(X̂s−, 1− s) dM̂s; 0 � t � 1.

The following lemma gives simple rules to compute integrals with respect
to local times.

The covariation of two processes Y and Z on the time interval [0, t] is
defined as the following limit when it exists in probability

[Y,Z]t = lim
n→∞

n∑
i=1

(Yti+1 − Yti)(Zti+1 − Zti) ,

where the limit is taken over all sequences of the subdivisions 0 = t1 < t2 <
t3 < · · · < tn = t such that sup1�i�n |ti+1− ti| tends to 0 when n tends to ∞.

Lemma 2.3. (i) Let f be a continuous function on R× [0, 1]; then∫ t

0

∫
R

f(x, s) dLxs = −[f(X., .),M.]t .
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(ii) Let f be a function on R × [0, 1] admitting a continuous derivative ∂f
∂x ;

then ∫ 1

0

∫
R

f(x, s) dLxs

exists and ∫ 1

0

∫
R

f(x, s) dLxs = −
∫ 1

0

∂f

∂x
(Xs, s) d[X]cs .

The proof of Lemma 2.3 (i) is similar to that of Lemma 2.6 (i) [4]. The
proof of (ii) will be given in the proof of Lemma 3.1.

3 Local times on curves for reversible semimartingales

Similarly to what has been done in [4], we define for X a local time process
on any Borel curve (b(t), 0 � t � 1) as follows:

L
b(.)
t =

∫ t

0

∫
R

1(−∞,b(s))(x) dLxs .

The legitimacy of this definition is not as obvious as in the particular case of a
Lévy process. To show that for a continuous curve (b(t), 0 � t � 1) the limit of
1
2ε

∫ t
0

1(|Xs−b(s)|<ε) d[X]cs always exists in probability when ε tends to 0 and
coincides with the above expression, we first need to establish the following
lemma.

Lemma 3.1. Let b be a continuous function from [0, 1] to R. Let f be a
continuous function on R×R+, admitting a continuous derivative ∂f

∂x . Then
we have: ∫ t

0

∫
R

f(x, s)1(x�b(s)) dL
x
s

=
∫ t

0

f(b(s), s) dsLb(.)s −
∫ t

0

∂f

∂x
(Xs, s)1(Xs�b(s)) d[X]cs.

Proof. Similarly to the proof of Lemma 3.1 in [4], we can first establish that
for any a < b∫ t

0

∫
R

1[a,b](x)f(x, s) dLxs =
∫ t

0

f(b, s) dsLbs −
∫ t

0

f(a, s) dsLas

−
∫ t

0

∂f

∂x
(Xs, s)1[a,b](Xs) d[X]cs.

We note then that for a < infs∈[0,t]Xs, the right-hand term of this identity is
equal to

∫ t
0
f(b, s) dsLbs −

∫ t
0
∂f
∂x (Xs, s)1(Xs�b) d[X]cs, hence the left-hand term

of the identity converges pointwise as a tends to −∞, which leads to∫ t

0

∫
R

f(x, s)1(x�b) dL
x
s =

∫ t

0

f(b, s) dsLbs −
∫ t

0

∂f

∂x
(Xs, s)1(Xs�b) d[X]cs . (4)
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Similarly, letting b tend to +∞ one obtains∫ t

0

∫
R

f(x, s) dLxs = −
∫ t

0

∂f

∂x
(Xs, s) d[X]cs .

which establishes Lemma 2.3 (ii).
Let bΔ be the curve defined by bΔ(s)=

∑
j

(
supu∈[sj ,sj+1) b(u)

)
1[sj ,sj+1)(s),

where Δ = (sj) is a finite subdivision of [0, 1]. Using (4), we have∫ t

0

∫
R

f(x, s)1(x�bΔ(s)) dL
x
s =

∑
j

∫ sj+1

sj

∫
R

f(x, s)1(x�bΔ(sj)) dL
x
s

=
∑
j

∫ sj+1

sj

f(bΔ(sj), s) dsLbΔ(sj)
s

−
∫ sj+1

sj

∂f

∂x
(Xs, s)1(Xs�bΔ(sj)) d[X]cs.

Note that Lemma 2.1 together with Theorem 2.2 give for any Borel function h∫ t

0

∫
R

h(s)1(x�a) dL
x
s =

∫ t

0

h(s) dsLas .

Hence ∫ t

0

∫
R

f(x, s)1(x�bΔ(s)) dL
x
s =

∫ t

0

∫
R

f(bΔ(s), s)1(x�bΔ(s)) dL
x
s

−
∫ t

0

∂f

∂x
(Xs, s)1(Xs�bΔ(s)) d[X]cs.

We note that both f(x, s)1(x�bΔ(s)) and f(bΔ(s), s)1(x�bΔ(s)) converge sim-
ply as |Δ| tends to 0 to, respectively, f(x, s)1(x�b(s)) and f(b(s), s)1(x�b(s)).
Consequently letting |Δ| tend to 0 in the above identity provides∫ t

0

∫
R

f(x, s)1(x�b(s)) dL
x
s =

∫ t

0

∫
R

f(b(s), s)1(x�b(s)) dL
x
s

−
∫ t

0

∂f

∂x
(Xs, s)1(Xs�b(s)) d[X]cs . (5)

Thanks to the continuity of b, one can easily prove that∫ t

0

f(b(s), s) dsLb(.)s =
∫ t

0

∫
R

f(b(s), s)1(x�b(s)) dL
x
s ,

indeed
∫ t
0
f(b(s), s) dsL

b(.)
s is a Stieltjes integral with respect to a continuous

process. Since (f(b(s), s), s ∈ [0, 1]) is continuous,
∑
j f(b(sj), sj)1[sj ,sj+1)(s)

is bounded (uniformly in Δ) and converges pointwise to f(b(s), s) as |Δ| tends
to 0. Hence thanks to the definition of Lb(.)
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0

f(b(s), s) dsLb(.)s = lim
|Δ|→0

∑
j

f(b(sj), sj)
(
Lb(.)sj+1

− Lb(.)sj

)
= lim

|Δ|→0

∫ 1

0

∫
R

∑
j

f(b(sj), sj)1[sj ,sj+1)(s)1(−∞,b(s))(x) dLxs

=
∫ t

0

∫
R

f(b(s), s)1(x�b(s)) dL
x
s

thanks to Theorem 2.2. This together with (5) prove Lemma 3.1. ��

Lemma 3.2. Let b be a continuous function from [0, 1] to R. We then have

1
2ε

∫ t

0

1(|Xs−b(s)|<ε) d[X]cs
Probability−→

n→∞
L
b(.)
t .

Proof. Let fε be the function defined on R× [0, 1] by

fε(x, t) =
1
2ε

∫ +∞

x

1(|y−b(t)|<ε) dy.

This function is continuous and uniformly bounded by 1. It admits a con-
tinuous derivative with respect to x on {x �= b(t)}, but does not satisfy the
assumptions of Lemma 2.3. Keeping the notations of the proof of Lemma 2.3
(ii), we set

fn,ε(x, t) =
∫∫

R2
fε

(
x− y

n
, t− s

n

)
g(y)h(s) dy ds.

The sequence (fn,ε(x, t), n � 0) converges to fε(x, t), consequently thanks to
Theorem 2.2 ∫ t

0

∫
R

fn,ε(x, s) dLxs
Probability−→

n→∞

∫ t

0

∫
R

fε(x, s) dLxs .

We have thanks to Lemma 2.3 (ii)∫ t

0

∫
R

fn,ε(x, s) dLxs = −
∫ t

0

∂fn,ε
∂x

(Xs, s) d[X]cs.

But as a consequence of (5), if b is continuous andH is any continuous function
on R× [0, 1], then ∫ t

0

H(Xs, s)1(Xs=b(s)) d[X]cs = 0. (6)

The above identity is obtained by subtracting (5) for the curve b to (5) for
the curve b− ε and by letting ε decrease to 0.
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Hence:
∫ t
0

∫
R
fn,ε(x, s) dLxs = −

∫ t
0
∂fn,ε

∂x (Xs, s)1(Xs 
=b(s)) d[X]cs.
This last integral converges as n tends to∞ to−

∫ t
0
∂fε

∂x(Xs,s)1(Xs
=b(s)) d[X]cs.
Consequently:∫ t

0

∫
R

fε(x, s) dLxs = −
∫ t

0

∂fε
∂x

(Xs, s)1(Xs 
=b(s)) d[X]cs .

Now, since fε(x, s) converges pointwise to 1(b(s)>x)+ 1
21(x=b(s)) as ε tends to 0,

we have thanks to Theorem 2.2∫ t

0

∫
R

fε(x, s) dLxs
Probability−→

n→∞
L
b(.)
t +

1
2

∫ t

0

∫
R

1(x=b(s)) dL
x
s . (7)

On the one hand, we use (8) for the constant function H(x, t) = 1 to note
that

∫ t
0

1(Xs=b(s)) d[X]cs = 0. This leads to∫ t

0

∫
R

fε(x, s) dLxs =
1
2ε

∫ t

0

1(|Xs−b(s)|<ε) d[X]cs

On the other hand, applying Lemma 3.1 to the constant function f(x, t) = 1,
we obtain:

∫ t
0

∫
R

1(x�b(s)) dLxs = L
b(.)
t . Consequently,

∫ t
0

∫
R

1(x=b(s)) dL
x
s = 0,

and we have finally obtained thanks to (7)

1
2ε

∫ t

0

1(|Xs−b(s)|<ε) d[X]cs
Probability−→

n→∞
L
b(.)
t . ��

4 An Itô formula involving local time-space integrals

In the case of a semimartingale satisfying (H1) and (H2), Errami, Russo and
Vallois [6] have established the following Itô formula for a function F in C1(R2)

F (Xt, t) = F (X0, 0) +
∫ t

0

∂F

∂t
(Xs, s) ds+

∫ t

0

∂F

∂x
(Xs−, s) dXs

+
∑

0<s�t

{
F (Xs, s)− F (Xs−, s)

− 1
2

(
∂F

∂x
(Xs, s) +

∂F

∂x
(Xs−, s)

)
ΔXs

}
+

1
2

[
∂F

∂x
(X., .), X.

]
t

.
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We note that

1
2

[
∂F

∂x
(X., .),M.

]
t

=
1
2

[
∂F

∂x
(X., .), X.

]
t

− 1
2

∑
0<s�t

(
∂F

∂x
(Xs, s)−

∂F

∂x
(Xs−, s)

)
ΔXs.

Besides, thanks to Lemma 2.3 (i), we know that:[
∂F

∂x
(X., .), X.

]
t

= −
∫ t

0

∫
R

∂F

∂x
(x, s) dLxs .

Hence, we finally see that

F (Xt, t) = F (X0, 0) +
∫ t

0

∂F

∂t
(Xs, s) ds+

∫ t

0

∂F

∂x
(Xs−, s) dXs

+
∑

0<s�t

{
F (Xs, s)− F (Xs−, s)−

∂F

∂x
(Xs−, s)ΔXs

}

− 1
2

∫ t

0

∫
R

∂F

∂x
(x, s) dLxs . (8)

In [4] we could prove that in the particular case of Lévy processes (8) remains
valid for functions F such that ∂F

∂t and ∂F
∂x are only required to be locally

bounded. The problem is that in the general case X might live with positive
probability on the discontinuous points of the partial derivatives. In the special
case of a function F everywhere C2 except along a curve {x = b(t)}, one should
see the solution of that problem established by Peskir [9].
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1 Introduction

Stochastic integration via regularization is a technique of integration
developed in a series of papers by the authors starting from [46], contin-
ued in [47, 48, 49, 50, 45] and later carried out by other authors, among them
[51, 12, 13, 55, 54, 56, 58, 17, 16, 18, 19, 24]. Among some recent applications
to finance, we refer for instance to [32, 4].

This approach constitutes a counterpart of a discretization approach ini-
tiated by Föllmer [20] and continued by many authors, see for instance [2, 22,
15, 14, 11, 23].

The two theories run parallel and, at the axiomatic level, almost all the
results we obtained via regularization can essentially be translated in the
language of discretization.
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The advantage of using regularization lies in the fact that this approach
is natural and relatively simple, and easily connects to other approaches. We
now list some typical features of stochastic calculus via regularization.

• Two fundamental notions are the quadratic variation of a process, see Def-
inition 2 and the forward integral, see Definition 1. Calculus via regulariza-
tion is first of all a calculus related to finite quadratic variation processes,
see Section 4. Itô integrals with respect to continuous semimartingales can
be defined through forward integrals, see Section 3; this makes classical
stochastic calculus appear as a particular instance of calculus via regu-
larization. Let the integrator be a classical Brownian motion W and the
integrand a measurable adapted process H such that

∫ T
0
H2
t dt < ∞ a.s.,

where a.s. means almost surely. We will show in Section 3.5 that the for-
ward integral

∫ ·
0
Hd−W coincides with the Itô integral

∫ ·
0
HdW . On the

other hand, the discretization approach constitutes a sort of Riemann–
Stieltjes type integral and only allows integration of processes that are not
too irregular, see Remark 14.

• Calculus via regularization constitutes a bridge between noncausal and
causal calculus operating through substitution formula, see Section 3.6.
A precise link between forward integration and the theory of enlargement
of filtrations may be given, see [47]. Our integrals can be connected to the
well-known Skorohod type integrals, see again [47].

• With the help of symmetric integrals a calculus with respect to processes
with a variation higher than 2 may be developed. For instance fractional
Brownian motion is the prototype of such processes.

• This stochastic calculus constitutes somehow a barrier separating the
pure pathwise calculus in the sense of T. Lyons and coauthors, see e.g.,
[36, 35, 31, 28], and any stochastic calculus taking into account an under-
lying probability, see Section 6.

This paper will essentially focus on the first item.
The paper is organized as follows. First, in Section 2, we recall the basic

definitions and properties of forward, backward, symmetric integrals and cova-
riations. Justifying the related definitions and properties needs no particular
effort. A significant example is the Young integral, see [57]. In Section 3 we
redefine Itô integrals in the spirit of integrals via regularization and we prove
some typical properties. We essentially define Itô integrals as forward integrals
in a subclass and we then extend this definition through functional analysis
methods. Section 4 is devoted to finite quadratic variation processes. In par-
ticular we establish C1-stability properties and an Itô formula of C2-type.
Section 5 provides some survey material with new results related to the class
of weak Dirichlet processes introduced by [12] with later developments dis-
cussed by [24, 7]. Considerations about Itô formula under C1-conditions are
discussed as well.
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2 Stochastic integration via regularization

2.1 Definitions and fundamental properties

In this paper T will be a fixed positive real number. By convention, any real
continuous function f defined either on [0, T ] or R+ will be prolongated (with
the same name) to the real line, setting

f(t) =
{
f(0) if t � 0
f(T ) if t > T.

(1)

Let (Xt)t�0 be a continuous process and (Yt)t�0 be a process with paths

in L1
loc(R+), i.e., for any a > 0,

∫ a

0

|Yt|dt <∞ a.s.

Our generalized stochastic integrals and covariations will be defined
through a regularization procedure. More precisely, let I−(ε, Y, dX) (resp.
I+(ε, Y, dX), I0(ε, Y, dX) and C(ε, Y,X)) be the ε-forward integral (resp.
ε-backward integral, ε-symmetric integral and ε-covariation):

I−(ε, Y, dX)(t) =
∫ t

0

Y (s)
X(s+ ε)−X(s)

ε
ds; t � 0, (2)

I+(ε, Y, dX)(t) =
∫ t

0

Y (s)
X(s)−X(s− ε)

ε
ds; t � 0, (3)

I0(ε, Y, dX)(t) =
∫ t

0

Y (s)
X(s+ ε)−X(s− ε)

2ε
ds; t � 0, (4)

C(ε,X, Y )(t) =
∫ t

0

(
X(s+ ε)−X(s)

)(
Y (s+ ε)− Y (s)

)
ε

ds; t � 0. (5)

Observe that these four processes are continuous.

Definition 1.

1) A family of processes (H(ε)
t )t∈[0,T ] is said to converge to (Ht)t∈[0,T ] in the

ucp sense, if sup
0�t�T

|H(ε)
t −Ht| goes to 0 in probability, as ε→ 0.

2) Provided the corresponding limits exist in the ucp sense, we define the
following integrals and covariations by the following formula:

a) Forward integral:
∫ t

0

Y d−X = lim
ε→0+

I−(ε, Y, dX)(t).

b) Backward integral:
∫ t

0

Y d+X = lim
ε→0+

I+(ε, Y, dX)(t).

c) Symmetric integral:
∫ t

0

Y d◦X = lim
ε→0+

I◦(ε, Y, dX)(t).

d) Covariation: [X,Y ]t = lim
ε→0+

C(ε,X, Y )(t). When X = Y we often put

[X] = [X,X].
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Remark 1. Let X,X ′, Y, Y ′ be four processes with X,X ′ continuous and Y, Y ′

having paths in L1
loc(R+). � will stand for one of the three symbols −, + or ◦.

1. (X,Y ) 	→
∫ ·
0
Y d�X and (X,Y ) 	→ [X,Y ] are bilinear operations.

2. The covariation of continuous processes is a symmetric operation.
3. When it exists, [X] is an increasing process.
4. If τ is a random time, [Xτ , Xτ ]t = [X,X]t∧τ and∫ t

0

Y 1[0,τ ]d
�X =

∫ t

0

Y d�Xτ =
∫ t

0

Y τd�Xτ =
∫ t∧τ

0

Y d�X,

where Xτ is the process X stopped at time τ , defined by Xτ
t = Xt∧τ .

5. If ξ and η are two fixed r.v.,
∫ ·

0

(ξYs)d�(ηXs) = ξη

∫ ·

0

Ysd
�Xs.

6. Integrals via regularization also have the following localization property.
Suppose that Xt = X ′

t, Yt = Y ′
t ,∀t ∈ [0, T ] on some subset Ω0 of Ω. Then

1Ω0

∫ t

0

Ysd
�Xs = 1Ω0

∫ t

0

Y ′
sd
�X ′

s, t ∈ [0, T ].

7. If Y is an elementary process of the type Yt =
N∑
i=1

Ai1Ii
, where Ai are

random variables and (Ii) a family of real intervals with end-points ai < bi,
then ∫ t

0

Ysd
�Xs =

N∑
i=1

Ai(Xbi∧t −Xai∧t).

Definition 2.

1) If [X] exists, X is said to be a finite quadratic variation process and
[X] is called the quadratic variation of X.

2) If [X] = 0, X is called a zero quadratic variation process.
3) A vector (X1, . . . , Xn) of continuous processes is said to have all its

mutual covariations if [Xi, Xj ] exists for all 1 � i, j � n.
We will also use the terminology bracket instead of covariation.

Remark 2.

1) If (X1, . . . , Xn) has all its mutual covariations, then

[Xi +Xj , Xi +Xj ] = [Xi, Xi] + 2[Xi, Xj ] + [Xj , Xj ]. (6)

From the previous equality, it follows that [Xi, Xj ] is the difference of two
increasing processes, having therefore bounded variation; consequently the
bracket is a classical integrator in the Lebesgue–Stieltjes sense.

2) Relation (6) holds as soon as three brackets among the four exist. More
generally, by convention, an identity of the type I1 + · · · + In = 0 has
the following meaning: if n − 1 terms among the Ij exist, the remaining
one also makes sense and the identity holds true.
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3) We will see later, in Remark 23, that there exist processes X and Y such
that [X,Y ] exists but does not have finite variation; in particular (X,Y )
does not have all its mutual brackets.

The properties below follow elementarily from the definition of integrals
via regularization.

Proposition 1. Let X = (Xt)t�0 be a continuous process and Y = (Yt)t�0

be a process with paths in L1
loc(R+). Then

1) [X,Y ]t =
∫ t

0

Y d+X −
∫ t

0

Y d−X.

2)
∫ t

0

Y d◦X =
1
2

(∫ t

0

Y d+X +
∫ t

0

Y d−X

)
.

3) Time reversal. Set X̂t = XT−t, t ∈ [0, T ]. Then

1.
∫ t

0

Y d±X = −
∫ T

T−t
Ŷ d∓X̂, 0 � t � T ;

2.
∫ t

0

Y d◦X = −
∫ T

T−t
Ŷ d◦X̂, 0 � t � T ;

3. [X̂, Ŷ ]t = [X,Y ]T − [X,Y ]T−t, 0 � t � T .

4) Integration by parts. If Y is continuous,

XtYt = X0Y0 +
∫ t

0

Xd−Y +
∫ t

0

Y d+X

= X0Y0 +
∫ t

0

Xd−Y +
∫ t

0

Y d−X + [X,Y ]t.

5) Kunita–Watanabe inequality. If X and Y are finite quadratic variation
processes, ∣∣[X,Y ]

∣∣ �
{
[X] [Y ]

}1/2
.

6) If X is a finite quadratic variation process and Y is a zero quadratic vari-
ation process then (X,Y ) has all its mutual brackets and [X,Y ] = 0.

7) Let X be a bounded variation process and Y be a process with locally
bounded paths, and at most countably many discontinuities. Then

a)
∫ t

0

Y d+X =
∫ t

0

Y d−X =
∫ t

0

Y dX, where
∫ t

0

Y dX is a Lebesgue–

Stieltjes integral.
b) [X,Y ] = 0. In particular a bounded variation and continuous process is

a zero quadratic variation process.
8) Let X be an absolutely continuous process and Y be a process with locally

bounded paths. Then∫ t

0

Y d+X =
∫ t

0

Y d−X =
∫ t

0

Y X ′ds.
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Remark 3. If Y has uncountably many discontinuities, 7) may fail. Take for
instance Y = 1supp dV , where V is an increasing continuous function such that
V ′(t) = 0 a.e. (almost everywhere) with respect to Lebesgue measure. Then
Y = 0 Lebesgue a.e., and Y = 1, dV a.e. Consequently∫ t

0

Y dV = V (t)− V (0), I−(ε, Y, dV )(t) = 0
∫ t

0

Y d−V = 0.

Remark 4. Point 2) of Proposition 1 states that the symmetric integral is the
average of the forward and backward integrals.

Proof of Proposition 1. Points 1), 2), 3), 4) follow immediately from the de-
finition. For illustration, we only prove 3); operating a change of variable
u = T − s, we obtain∫ t

0

Ys
Xs −Xs−ε

ε
ds = −

∫ T

T−t
Ŷu
X̂u+ε − X̂u

ε
du, 0 � t � T.

Since X is continuous, one can take the limit of both members and the result
follows.

5) follows by Cauchy–Schwarz inequality which says that

1
ε

∣∣∣∣∫ t

0

(Xs+ε −Xs) (Ys+ε − Ys)ds
∣∣∣∣

�
{

1
ε

∫ t

0

(Xs+ε −Xs)2ds
1
ε

∫ t

0

(Ys+ε − Ys)2ds
} 1

2

.

6) is a consequence of 5).
7) Using Fubini, one has

1
ε

∫ t

0

Ys(Xs+ε −Xs)ds =
1
ε

∫ t

0

ds Ys

∫ s+ε

s

dXu

=
∫ t+ε

0

dXu
1
ε

∫ u∧t

u−ε
Ysds.

Since the jumps of Y are at most countable,
1
ε

∫ u

u−ε
Ysds → Yu, d|X| a.e.

where |X| denotes the total variation of X. Since t → Yt is locally bounded,

Lebesgue’s convergence theorem implies that
∫ t

0

Y d−X =
∫ t

0

Y dX.

The fact that
∫ t

0

Y d+X =
∫ t

0

Y dX follows similarly.

b) is a consequence of point 1).
8) can be reached using similar elementary integration properties. ��
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2.2 Young integral in a simplified framework

We will consider the integral defined by Young ([57]) in 1936, and implemented
in the stochastic framework by Bertoin, see [3]. Here we will restrict ourselves
to the case when integrand and integrator are Hölder continuous processes.
As a result, that integral will be shown to coincide with the forward integral,
but also with backward and symmetric ones.

Definition 3.

1. Let Cα be the set of Hölder continuous functions defined on [0, T ], with
index α > 0. Recall that f : [0, T ] 	→ R belongs to Cα if

Nα(f) := sup
0�s,t�T

|f(t)− f(s)|
|t− s|α <∞.

2. If X,Y : [0, T ] 	→ R are two functions of class C1, the Young integral of
Y with respect to X on [a, b] ⊂ [0, T ] is defined as:∫ b

a

Y d(y)X :=
∫ b

a

Y (t)X ′(t)dt, 0 � a � b � T.

To extend the Young integral to Hölder functions we need some estimate

of
∫ T

0

Y d(y)X in terms of the Hölder norms of X and Y . More precisely, let

X and Y be as in Definition 3 above; then in [15], it is proved:∣∣∣∣∣
∫ T

a

(Y − Y (a))d(y)X

∣∣∣∣∣ � CρT
1+ρNα(X)Nβ(Y ), 0 � a � T, (7)

where α, β > 0, α+ β > 1, ρ ∈]0, α+ β − 1[, and Cρ is a universal constant.

Proposition 2.

1. The map (X,Y ) ∈ C1([0, T ]) × C1([0, T ]) 	→
∫ ·

0

Y d(y)X with values in

Cα, extends to a continuous bilinear map from Cα × Cβ to Cα. The
value of this extension at point (X,Y ) ∈ Cα × Cβ will still be denoted by∫ ·

0

Y d(y)X and called the Young integral of Y with respect to X.

2. Inequality (7) is still valid for any X ∈ Cα and Y ∈ Cβ.

Proof. 1. Let X,Y be of class C1([0, T ]) and

F (t) =
∫ t

0

Y d(y)X =
∫ t

0

Y (s)X ′(s)ds, t ∈ [0, T ].
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For any a, b ∈ [0, T ], a < b, we have

F (b)− F (a) =
∫ b

a

(
Y (t)− Y (a)

)
d(y)X + Y (a)

(
X(b)−X(a)

)
.

Then (7) implies

|F (b)−F (a)| � Cρ(b−a)1+ρNα(X)Nβ(Y )+ sup
0�t�T

|Y (t)| Nα(X)(b−a)α; (8)

consequently F ∈ Cα.

Then the map (X,Y ) ∈ C1([0, T ]) × C1([0, T ]) 	→
∫ ·

0

Y d(y)X, which is

bilinear, extends to a continuous bilinear map from Cα × Cβ to Cα.
2. is a consequence of point 1. ��

Before discussing the relation between Young integrals and integrals via
regularization, here is useful technical result.

Lemma 1. Let 0 < γ′ < γ � 1, ε > 0. With Z ∈ Cγ we associate

Zε(t) =
1
ε

∫ t

0

(
Z(u+ ε)− Z(u)

)
du, t ∈ [0, T ].

Then Zε converges to Z in Cγ
′
, as ε→ 0.

Proof. For any 0 � t � T ,

Zε(t) =
1
ε

∫ t

0

(
Z(u+ ε)− Z(u)

)
du =

1
ε

∫ t+ε

t

Z(u)du− 1
ε

∫ ε

0

Z(u)du.

Setting Δε(t) = Zε(t)− Z(t), we get

Δε(t)−Δε(s) =
1
ε

∫ t+ε

t

Z(u)du− Z(t)− 1
ε

∫ s+ε

s

Z(u)du+ Z(s)

=
1
ε

∫ t+ε

t

(
Z(u)− Z(t)

)
du− 1

ε

∫ s+ε

s

(
Z(u)− Z(s)

)
du,

where 0 � s � t � T .
a) Suppose 0 � s < s+ ε < t. The above inequality implies

|Δε(t)−Δε(s)| �
1
ε

∫ t+ε

t

∣∣Z(u)− Z(t)
∣∣du+

1
ε

∫ s+ε

s

∣∣Z(u)− Z(s)
∣∣du.



Stochastic Calculus via Regularization 155

Since Z ∈ Cγ , then

|Δε(t)−Δε(s)| �
Nγ(Z)
ε

(∫ t+ε

t

(u− t)γdu+
∫ s+ε

s

(u− s)γdu
)

� 2Nγ(Z)
γ + 1

εγ .

But ε < t− s, consequently

|Δε(t)−Δε(s)| �
2Nγ(Z)
γ + 1

εγ−γ
′ |t− s|γ′

. (9)

b) We now investigate the case 0 � s < t < s + ε. The difference
Δε(t)−Δε(s) may be decomposed as follows:

Δε(t)−Δε(s) =
1
ε

∫ t+ε

s+ε

(
Z(u)− Z(s+ ε)

)
du− 1

ε

∫ t

s

(
Z(u)− Z(s)

)
du

+
t− s

ε

(
Z(s+ ε)− Z(s)

)
+ Z(s)− Z(t).

Proceeding as in the previous step and using the inequality 0 < t− s < ε, we
obtain

|Δε(t)−Δε(s)| � Nγ(Z)
(

2
γ + 1

(t− s)γ+1

ε
+
t− s

ε1−γ
+ (t− s)γ

)
� 2Nγ(Z)

γ + 2
γ + 1

εγ−γ
′ |t− s|γ′

.

At this point, the above inequality and (9) directly imply that Nγ′(Zε − Z)
� Cεγ−γ

′
and the claim is finally established. ��

In the sequel of this section X and Y will denote stochastic processes.

Remark 5. If X and Y have a.s. Hölder continuous paths, respectively, of order
α and β with α > 0, β > 0 and α + β > 1, then one can easily prove that
[X,Y ] = 0.

Proposition 3. Let X,Y be two real processes indexed by [0, T ] whose paths
are, respectively, a.s. in Cα and Cβ, with α > 0, β > 0 and α+ β > 1. Then

the three integrals
∫ ·

0

Y d+X,
∫ ·

0

Y d−X and
∫ ·

0

Y d◦X exist and coincide with

the Young integral
∫ ·

0

Y d(y)X.

Proof. We establish that the forward integral coincides with the Young
integral. The equality concerning the two other integrals is a consequence
of Proposition 1 1., 2. and Remark 5.
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By additivity we can suppose, without loss of generality, that Y (0) = 0.
Set

Δε(t) :=
∫ t

0

Y d(y)X −
∫ t

0

Y dXε,

where

Xε(t) =
1
ε

∫ t

0

(
X(u+ ε)−X(u)

)
du, t ∈ [0, T ].

Since t 	→ Xε(t) is of class C1([0, T ]), then
∫ t

0

Y dXε is equal to the Young

integral
∫ t

0

Y d(y)Xε and therefore

Δε(t) =
∫ t

0

Y d(y)
(
X −Xε

)
.

Let α′ be such that: 0 < α′ < α and α′ + β > 1. Applying inequality (7) we
obtain

sup
0�t�T

|Δε(t)| � CρT
1+ρNα′(X −Xε)Nβ(Y ), ρ ∈]0, α′+β−1[.

Lemma 1 with Z = X and γ = α directly implies that Δε(t) goes to 0,
uniformly a.s. on [0, T ], as ε→ 0, concluding the proof of the proposition. ��

3 Itô integrals and related topics

The section presents the construction of Itô integrals with respect to contin-
uous local martingales; it is based on McKean’s idea (see Section 2.1 of [37]),
which fits the spirit of calculus via regularization.

3.1 Some reminders on martingale theory

In this section, we recall basic notions related to martingale theory, essentially
without proofs, except when they help the reader. For detailed complements,
see [30], Chap. 1, in particular for definition of adapted and progressively
measurable processes.

Let (Ft)t�0 be a filtration on the probability space (Ω,F , P ) satisfying
the usual conditions, see Definition 2.25, Chap. 1 in [30].

An adapted process (Mt) of integrable random variables, i.e., verifying
E(|Mt|) <∞, ∀t � 0 is:

• An (Ft)-martingale if E(Mt|Fs) = Ms, ∀t � s
• A (Ft)-submartingale if E(Mt|Fs) � Ms, ∀t � s

In this paper, all submartingales (and therefore all martingales) will be
supposed to be continuous.
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Remark 6. It follows from the definition that if (Mt)t�0 is a martingale, then
E(Mt) = E(M0), ∀t � 0. If (Mt)t�0 is a supermartingale (respectively, sub-
martingale) then t −→ E(Mt) is decreasing (respectively, increasing).

Definition 4. A process X is said to be square integrable if E(X2
t ) < ∞

for each t � 0.

When we speak of a martingale without specifying the σ-fields, we refer
to the canonical filtration generated by the process and satisfying the usual
conditions.

Definition 5. 1. A (continuous) process (Xt)t�0, is called a (Ft)-local
martingale (resp. (Ft)-local submartingale) if there exists an increasing
sequence (τn) of stopping times such that Xτn1τn>0 is an (Ft)-martingale
(respectively, submartingale) and lim

n→∞
τn = +∞ a.s.

Remark 7.

• An (Ft)-martingale is an (Ft)-local martingale. A bounded (Ft)-local mar-
tingale is an (Ft)-martingale.

• The set of (Ft)-local martingales is a linear space.
• If M is an (Ft)-local martingale and τ a stopping time, then Mτ is again

an (Ft)-local martingale.
• If M0 is bounded, in the definition of a local martingale one can choose a

localizing sequence (τn) such that each Mτn is bounded.
• A convex function of an (Ft)-local submartingale is an (Ft)-local sub-

martingale.

Definition 6. A process S is called a (continuous) (Ft)-semimartingale if it
is the sum of an (Ft)-local martingale and an (Ft)-adapted continuous bounded
variation process.

A basic decomposition in stochastic analysis is the following.

Theorem 1 (Doob decomposition of a submartingale).
Let X be a (Ft)-local submartingale. Then, there is an (Ft)-local martin-

gale M and an adapted, continuous, and finite variation process V (such that
V0 = 0) with X = M + V . The decomposition is unique.

Definition 7. Let M be an (Ft)-local martingale. We denote by 〈M〉 the
bounded variation process featuring in the Doob decomposition of the local
submartingale M2. In particular M2 − 〈M〉 is an (Ft)-local martingale.

In Corollary 2, we will prove that 〈M〉 coincides with [M,M ], so that the skew
bracket 〈M〉 does not depend on the underlying filtration.

The following result will be needed in Section 3.2.
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Lemma 2. Let
(
Mn
t∈[0,T ]

)
be a sequence of (Ft) local martingales such that

Mn
0 = 0 and 〈Mn〉T converges to 0 in probability as n → ∞. Then Mn → 0

ucp, when n→∞.

Proof. It suffices to apply to N = Mn the following inequality stated in [30],
Problem 5.25 Chap. 1, which holds for any (Ft)-local martingale (Nt) such
that N0 = 0:

P

(
sup

0�u�t
|Nu| � λ

)
� P (〈N〉t � δ) +

1
λ2
E
[
δ ∧ 〈N〉t

]
, (10)

for any t � 0, λ, δ > 0. ��

An immediate consequence of the previous lemma is the following.

Corollary 1. Let M be an (Ft)-local martingale vanishing at zero, with
〈M〉 = 0. Then M is identically zero.

3.2 The Itô integral

Let M be an (Ft)-local martingale. We construct here the Itô integral with
respect to M using stochastic calculus via regularization. We will proceed
in two steps. First we define the Itô integral

∫ ·
0
HdM for a smooth integrand

process H as the forward integral
∫ ·
0
Hd−M . Second, we extend H 	→

∫ ·
0
HdM

via functional analytical arguments. We remark that the classical theory of Itô
integrals first defines the integral of simple step processes H, see Remark 9,
for details.

Observe first that the forward integral of a continuous process H of
bounded variation is well defined because Proposition 1 4), 7) imply that∫ t

0

Hd−M = HtMt−H0M0−
∫ t

0

Md+H = HtMt−H0M0−
∫ t

0

MsdHs. (11)

Call C the vector algebra of adapted processes whose paths are of class C0.
This linear space, equipped with the metrizable topology which governs the
ucp convergence, is an F -space. For the definition and properties of F -spaces,
see [10], Chap. 2.1. Remark that the set Mloc of continuous (Ft)-local mar-
tingales is a closed linear subspace of C, see for instance [24].

Denote by CBV the C subspace of processes whose paths are a.s. continuous
with bounded variation. The next observation is crucial.

Lemma 3. If H is an adapted process in CBV then
(∫ ·

0
Hd−M

)
is an (Ft)-

local martingale whose quadratic variation is given by〈∫ ·

0

Hd−M

〉
t

=
∫ ·

0

H2
sd〈M〉s.
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Proof. We only sketch the proof. We restrict ourselves to prove that if M is

a local martingale then Y =
∫ ·

0

Hd−M is a local martingale.

By localization, we can suppose that H, its total variation ‖H‖ and M
are bounded processes.

Let 0 � s < t. Since Ht = H0 +
∫ t
s
dHu, (11) implies

Yt = HsMt −H0M0 −
∫ s

0

MudHu +
∫ t

s

(Mt −Mu)dHu. (12)

Let (πn) be a sequence of subdivisions of [s, t], such that the mesh of (πn)
goes to zero when n→ +∞. Since M is continuous, M and ‖H‖ are bounded,

Δn :=
∑
πn

(Mt −Mui+1)(Hui+1 −Hui
),

goes to
∫ t
s
(Mt −Mu)dHu a.s. and in L1. Consequently,

E

(∫ t

s

(Mt −Mu)dHu

)
= lim
n→∞

E(Δn|Fs)

and
E(Δn|Fs) =

∑
πn

E
(
(Mt −Mui+1)(Hui+1 −Hui

)|Fs
)
.

But one has

E
(
(Mt −Mui+1)(Hui+1 −Hui

)|Fs
)

= E
(
E((Mt −Mui+1)(Hui+1 −Hui

)|Fui+1)|Fs
)

(13)

= E
(
(Hui+1 −Hui

)E(Mt −Mui+1 |Fui+1)|Fs
)

= 0, (14)

since H is adapted and M is a martingale.
Finally, taking the conditional expectation with respect to Fs in (12) yields

E
[
Yt|Fs

]
= HsMs −H0M0 −

∫ s

0

MudHu = Ys.

Similar arguments show that Y 2 −
∫ ·

0

H2d〈M〉 is a martingale. ��

The previous lemma allows to extend the map H 	→
∫ t
0
Hd−M . Let

L2(d〈M〉) denote the set of progressively measurable processes such that∫ T

0

H2d〈M〉 <∞ a.s. (15)

L2(d〈M〉) is an F -space with respect to the metrizable topology d2 defined
as follows: (Hn) converges to H when n→∞ if

∫ T
0

(Hn
s −Hs)2d〈M〉s → 0 in

probability, when n→∞.
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Remark 8. CBV is dense in L2(d〈M〉). Indeed, according to [30], Lemma 2.7
Section 3.2, simple processes are dense into L2(d〈M〉). On the other hand,
a simple process of the form Ht = ξ1]a,b], ξ being Fa measurable, can be
expressed as a limit of Hn

t = ξφn where φn are continuous functions with
bounded variation.

Let Λ : CBV →Mloc be the map defined by ΛH =
∫ ·
0
Hd−M .

Lemma 4. If CBV (respectively, Mloc) is equipped with d2 (respectively, the
ucp topology) then Λ is continuous.

Proof. Let Hk be a sequence of processes in CBV , converging to 0 for d2 when
k → ∞. Set Nk =

∫ ·
0
Hkd−M . Lemma 3 implies that 〈Nk〉T converges to 0

in probability. Finally Lemma 2 concludes the proof. ��

We can now easily define the Itô integral. Since CBV is dense in L2(d〈M〉)
for d2, Lemma 4 and standard functional analysis arguments imply that Λ
uniquely and continuously extends to L2(d〈M〉).
Definition 8. If H belongs to L2(d〈M〉), we put

∫ ·
0
HdM := ΛH and we call

this the Itô integral of H with respect to M .

Proposition 4. If H belongs to L2(d〈M〉), then (
∫ ·
0
HdM) is an (Ft)-local

martingale with bracket 〈∫ ·

0

HdM

〉
=
∫ ·

0

H2d〈M〉. (16)

Proof. Let H ∈ L2(d〈M〉). From Definition 8, (
∫ ·
0
HdM) is an (Ft)-local

martingale. It remains to prove (16).
Since H belongs to L2(d〈M〉), then there exists a sequence (Hn) of ele-

ments in CBV , such that Hn → H in L2(d〈M〉).
Introduce Nn =

∫ ·

0

HndM and N ′
n = N2

n − 〈Nn〉. According to lemma 4,

〈Nn〉 =
∫ ·

0

H2
nd〈M〉; now Nn → N , ucp, n→∞ and 〈Nn〉 goes to

∫ ·

0

H2d〈M〉
in the ucp sense, as n → ∞. Therefore N ′

n converges with respect to

the ucp topology, to the local martingale N2 −
∫ ·

0

H2d〈M〉. This actually

proves (16). ��

Remark 9.

1. Recall that whenever H ∈ CBV∫ ·

0

HdM =
∫ ·

0

Hd−M.

This property will be generalized in Proposition 6 and 10.
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2. We emphasize that Itô stochastic integration based on adapted simple
step processes and the previous construction, finally lead to the same
object. If H is of the type Y 1]a,b] where Y is an Fa measurable random
variable, it is easy to show that

∫ t
0
HdM = Y (Mt∧b −Mt∧a). Since the

class of elementary processes obtained by linear combination of previous
processes is dense in L2(d〈M〉) and the map Λ is continuous, then

∫ ·
0
HdM

equals the classical Itô integral.

In Proposition 5 below we state the chain rule property.

Proposition 5. Let (Mt, t � 0) be an (Ft)-local martingale, (Ht, t � 0) be in

L2(d〈M〉), N :=
∫ ·

0

HsdMs and (Kt, t � 0) be a (Ft)-progressively measurable

process such that
∫ T

0

(HsKs)2d〈M〉s <∞ a.s. Then

∫ t

0

KsdNs =
∫ t

0

HsKsdMs, 0 � t � T. (17)

Proof. Since the map Λ : H ∈ L2(d〈M〉) 	→
∫ ·
0
HdM is continuous, it suffices

to prove (17) for H and K continuous and with bounded variation.
For simplicity we suppose M0 = H0 = K0 = 0.
One has ∫ t

0

KdN =
∫ t

0

(Nt −Nu)dKu,

and

Nt −Nu =
∫ t

0

(Mt −Mv)dHv −
∫ u

0

(Mu −Mv)dHv

= (Mt −Mu)Hu +
∫ t

u

(Mt −Mv)dHv,

where 0 � u � t.
Using Fubini’s theorem one gets∫ t

0

KdN =
∫ t

0

(Mt −Mu)(HudKu +KudHu)

=
∫ t

0

(Mt −Mu)d(HK)u =
∫ t

0

HKdM. ��

3.3 Connections with calculus via regularizations

The next proposition will show that, under suitable conditions, the Itô integral
is a forward integral.

Proposition 6. Let X be an (Ft)-local martingale and suppose that (Ht) is
progressively measurable and locally bounded.
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1. If H has a left limit at each point then
∫ ·

0

Hsd
−Xs =

∫ ·

0

Hs−dXs.

2. If Ht = Ht−, d〈X〉t a.e. (in particular if H is càdlàg), then
∫ ·

0

Hsd
−Xs =∫ ·

0

HsdXs.

Proof. Since s 	→
∫ s

s−ε
Hudu is continuous with bounded variation,

∫ t

0

(
1
ε

∫ s

s−ε
Hudu

)
dXs =

∫ t

0

(
1
ε

∫ s

s−ε
Hudu

)
d−Xs

= Xt

(
1
ε

∫ t

t−ε
Hudu

)
−H0X0

− 1
ε

∫ t

0

(Hs −Hs−ε)Xsds.

The second integral in the right-hand side can be modified as follows:

−
∫ t

0

(Hs −Hs−ε)Xsds =
∫ t

0

Hs(Xs+ε −Xs)ds−
∫ t

t−ε
HsXs+εds

+H0

∫ ε

0

Xsds.

Consequently∫ t

0

(
1
ε

∫ s

s−ε
Hudu

)
dXs =

1
ε

∫ t

0

Hs(Xs+ε −Xs)ds+Rε(t), (18)

where

Rε(t) = Xt

(
1
ε

∫ t

t−ε
Hsds

)
− 1
ε

∫ t

t−ε
HsXs+εds+H0

(
1
ε

∫ ε

0

Xsds−X0

)
=

1
ε

∫ t

t−ε
Hs(Xt −Xs+ε)ds+H0

(
1
ε

∫ ε

0

Xsds−X0

)
(19)

converges to zero ucp.
Under assumption 1, Lebesgue’s dominated convergence theorem implies

that 1
ε

∫ ·
·−εHsds converges to H− according to L2(d〈M〉), so the left-hand

side of equality (18) converges to the Itô integral
∫ ·

0

Hs−dXs. This forces the

right-hand side to converge to
∫ ·

0

Hsd
−Xs.

The proof of 2 is similar, remarking that Hs = Hs−, for d〈M〉s a.e. ��
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When the integrator is a Brownian motion W , we will see in Theorem 2
below that the forward integral coincides with the Itô integral for any inte-
grand in L2(d〈W 〉). This is no longer true when the integrator is a general
semimartingale. The following example provides a martingale (Mt) and a

deterministic integrand h such that the Itô integral
∫ t

0

hdM and the forward

integral
∫ t

0

hd−M exist, but are different.

Example 1. Let ψ : [0,∞[	→ R verify ψ(0) = 0, ψ is continuous, increasing,
and ψ′(t) = 0 a.e. (with respect to the Lebesgue measure). Let (Mt) be the
process: Mt = Wψ(t), t � 0, and h be the indicator function of the support
of the positive measure dψ. Since W 2

t − t is a martingale, 〈W 〉t = t. Clearly
(Mt) is a martingale and 〈M〉t = ψ(t), t � 0. Observe that h = 0 a.e. with

respect to Lebesgue measure. Then
∫ ·

0

h(s)
M(s+ ε)−M(s)

ε
ds = 0 and so∫ ·

0

hd−M = 0.

On the other hand, h = 1, dψ a.e., implies
∫ t

0

hdM = Mt, t � 0.

Remark 10. A significant result of classical stochastic calculus is the Bichteler–
Dellacherie theorem, see [43] Th. 22, Section III.7. In the regularization
approach, an analogous property occurs: if the forward integral exists for a rich
class of adapted integrands, then the integrator is forced to be a semimartin-
gale. More precisely we recall the significant statement of [47], Proposition 1.2.

Let (Xt, t � 0) be an (Ft)-adapted and continuous process such that for

any càdlàg, bounded and adapted process (Ht), the forward integral
∫ ·

0

Hd−X

exists. Then (Xt) is an (Ft)-semimartingale.

From Proposition 6 we deduce the relation between skew and square
bracket.

Corollary 2. Let M be an (Ft)-local martingale. Then 〈M〉 = [M ] and

M2
t = M2

0 + 2
∫ t

0

Md−M + 〈M〉t. (20)

Proof. The proof of (20) is very simple and is based on the following identity:

(Ms+ε −Ms)2 = M2
s+ε −M2

s − 2Ms(Ms+ε −Ms).

Integrating on [0, t] leads to

1
ε

∫ t

0

(Ms+ε −Ms)2ds =
1
ε

∫ t

0

M2
s+εds−

1
ε

∫ t

0

M2
s ds−

2
ε

∫ t

0

Ms(Ms+ε −Ms)ds

=
1
ε

∫ t+ε

t

M2
s ds−

1
ε

∫ ε

0

M2
s ds−

2
ε

∫ t

0

Ms(Ms+ε −Ms)ds.
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Therefore, taking the limit when ε→ 0, one obtains

[M ]t = M2
t −M2

0 − 2
∫ t

0

Msd
−Ms.

Since t 	→Mt is continuous, the forward integral
∫ ·

0

Md−M coincides with the

corresponding Itô integral. Consequently M2
t −M2

0−[M ]t is a local martingale.
This proves both [M ] = 〈M〉 and (20). ��

Corollary 3. Let M,M ′ be two (Ft)-local martingales. Then (M,M ′) has all
its mutual covariations.

Proof. Since M,M ′ and M+M ′ are continuous local martingales, Corollary 2
directly implies that they have finite quadratic variation. The bilinearity prop-
erty of the covariation directly implies that [M,M ′] exists and equals

1
2

([M +M ′]− [M ]− [M ′]) . ��

Proposition 7. Let M and M ′ be two (Ft)-local martingales, H and H ′ be
two progressively measurable processes such that∫ ·

0

H2d〈M〉 <∞,

∫ ·

0

H2d〈M ′〉 <∞.

Then [∫ ·

0

HdM,

∫ ·

0

H ′dM ′
]
t

=
∫ t

0

HH ′d[M,M ′]t.

The next proposition provides a simple example of two processes (Mt) and
(Yt) such that [M,Y ] exists even though the vector (M,Y ) has no mutual
covariation.

Proposition 8. Let (Mt) be an continuous (Ft)-local martingale, (Yt) a
càdlàg and an (Ft)-adapted process. If M and Y are independent then
[M,Y ] = 0.

Proof. Let Y be the σ-field generated by (Yt), and denote by (M̃t) the small-
est filtration satisfying the usual conditions and containing (Ft) and Y, i.e.,
σ(Ms, s � t)∨Y ⊂ M̃t,∀t � 0. It is not difficult to show that (Mt) is also an
(M̃t)-martingale.

Thanks to Proposition 1 1., it is sufficient to prove that∫ t

0

Y d−M =
∫ t

0

Y d+M. (21)

Proposition 6 implies that the left-hand side coincides with the (Mt)-Itô
integral

∫ t
0
Y dM .



Stochastic Calculus via Regularization 165

Without restricting generality we suppose M0 = 0. We proceed as in the

proof of Proposition 6. Since a.s. s 	→
∫ s+ε

s

Yudu is continuous with bounded

variation,∫ t

0

(
1
ε

∫ s+ε

s

Yudu

)
d−Ms = Mt

(
1
ε

∫ s+ε

s

Yudu

)
− 1
ε

∫ t

0

(Ys+ε − Ys)Msds.

As the processes Y and M are independent, the forward integral in the left-
hand side above is actually an Itô integral. Therefore, taking the limit when
ε→ 0 and using Proposition 6, one gets∫ t

0

Y dM =
∫ t

0

Y d−M = YtMt −
∫ t

0

Md−Y.

According to point 4) of Proposition 1, the right-hand side is equal to∫ t

0

Y d+M ; this proves (21). ��

3.4 The semimartingale case

We begin this section with a technical lemma which implies that the decom-
position of a semimartingale is unique.

Lemma 5. Let (Mt, t � 0) be a (Ft)-local martingale with bounded variation.
Then (Mt) is constant.

Proof. Since M has bounded variation, then Proposition 1, 7) implies that
[M ] = 0. Consequently Corollaries 1 and 2 imply that Mt = M0, t � 0. ��

It is now easy to define stochastic integration with respect to continuous
semimartingales.

Definition 9. Let (Xt, t � 0) be an (Ft)-semimartingale with canonical
decomposition X = M + V , where M (respectively, V ) is a continuous (Ft)-
local martingale (respectively, bounded variation, continuous and (Ft)-adapted
process) vanishing at 0. Let (Ht, t � 0) be an (Ft)-progressively measurable
process, satisfying∫ T

0

H2
sd[M,M ]s <∞, and

∫ T

0

|Hs|d‖V ‖s <∞, (22)

where ‖V ‖t is the total variation of V over [0, t].
We set ∫ t

0

HsdXs =
∫ t

0

HsdMs +
∫ t

0

HsdVs, 0 � t � T.
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Remark 11.

1. In the previous definition, the integral with respect to M (respectively,
V ) is an Itô-type (respectively, Stieltjes-type) integral.

2. It is clear that
∫ ·

0

HsdXs is again a continuous (Ft)-semimartingale, with

martingale part
∫ ·

0

HsdMs and bounded variation component
∫ ·

0

HsdVs.

Once we have introduced stochastic integrals with respect to continuous
semimartingales, it is easy to define Stratonovich integrals.

Definition 10. Let (Xt, t � 0) be an (Ft)-semimartingale and (Yt, t � 0) an
(Ft)-progressively measurable process. The Stratonovich integral of Y with
respect to X is defined as follows:∫ t

0

Ys ◦ dXs =
∫ t

0

YsdXs +
1
2
[Y,X]t; t � 0, (23)

if [Y,X] and
∫ ·
0
YsdXs exist.

Remark 12.

1. Recall that conditions of type (22) ensure existence of the stochastic in-
tegral with respect to X.

2. If (Xt) and (Yt) are (Ft)-semimartingales, then
∫ ·
0
Ys ◦ dXs exists and is

called the Fisk–Stratonovich integral.
3. Suppose that (Xt) is an (Ft)-semimartingale and (Yt) is a left continu-

ous and (Ft)-adapted process such that [Y,X] exists. We already have

observed (see Proposition 6) that
∫ ·

0

YsdXs coincides with
∫ ·

0

Ysd
−Xs.

Proposition 1 1) and 2) imply that the Stratonovich integral
∫ ·

0

Ys ◦ dXs

is equal to the symmetric integral
∫ ·

0

Ysd
◦Xs.

At this point we can easily identify the covariation of two semimartingales.

Proposition 9. Let Si = M i + V i be two (Ft)-semimartingales, i = 1, 2,
where M i are local martingales and V i bounded variation processes. One has
[S1, S2] = [M1,M2].

Proof. The result follows directly from Corollary 3, Proposition 1 7), and the
bilinearity of the covariation. ��

Corollary 4. Let S1, S2 be two (Ft)-semimartingales such that their martin-
gale parts are independent. Then [S1, S2] = 0.

Proof. It follows from Proposition 8. ��
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The statement of Proposition 6 can be adapted to semimartingale integra-
tors as follows.

Proposition 10. Let X be an (Ft)-semimartingale and suppose that (Ht) is

adapted, with left limits at each point. Then
∫ ·

0

Hsd
−Xs =

∫ ·

0

Hs−dXs. If H

is càdlàg then
∫ ·

0

Hd−X =
∫ ·

0

HdX.

Remark 13.

1. Forward integrals generalize not only classical Itô integrals but also the
integral obtained from the theory of enlargements of filtrations, see e.g.,
[29]. Let (Ft) and (Gt) be two filtrations fulfilling the usual conditions
with Ft ⊂ Gt for all t. Let X be a (Gt)-semimartingale which is (Ft)-
adapted. By Stricker’s theorem, X is also an (Ft)-semimartingale. Let H
be a càdlàg bounded (Ft)-adapted process. According to Proposition 10,
the (Ft)-Itô integral

∫ ·
0
HdX equals the (Gt)-Itô integral and it coincides

with the forward integral
∫ ·
0
Hd−X.

2. The result stated above is false when H has no left limits at each point.
Using a tricky example in [42], it is possible to exhibit a filtration (Gt),
a (Gt)-semimartingale (Xt)t�0 with natural filtration FXt , a bounded and
(FXt )-progressively measurable process H, such that

∫ ·
0
Hd−X equals the

(FXt )-Itô integral but differs from the (Gt)-Itô integral. More precisely one
has:
a) X is a 3-dimensional Bessel process with decomposition

Xt = Wt +
∫ t

0

1
Xs

ds, (24)

where W is an (FXt )-Brownian motion,
b) X is a (Gt)-semimartingale with decomposition M +V where M is the

local martingale part,
c) Ht(ω) = 1 for dt⊗dP -almost all (t, ω) ∈ [0, T ]×Ω,
d) βt =

∫ t
0
HdX is a (Gt)-Brownian motion.

Property (d) implies that I−(ε,H, dX) = I−(ε, 1, dX) so that
∫ t
0
Hd−X =

Xt. The (FXt )-Itô integral
∫ t
0
HdX equals

∫ t
0
HdW +

∫ t
0
Hs

Xs
ds; Theo-

rem 2 below and Proposition 1 8) imply that this integral coincides with∫ t
0
Hd−X. Since a Bessel process cannot be equal to a Brownian motion,

the (Gt)-Itô integral
∫ t
0
HdX differs from the (FXt )-Itô integral

∫ t
0
HdX.

Indeed, the pathology comes from the integration with respect to the
bounded variation process. In fact, according to ii), [X]t = [W ]t = t;
therefore M is a (Gt)-Brownian motion. Theorem 2 below says that∫ ·
0
Hd−M =

∫ ·
0
HdM ; the additivity of forward integrals and Itô inte-

grals imply that
∫ ·
0
Hd−V �=

∫ ·
0
HdV. Consequently it can be deduced
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from Proposition 1 7) a) that the discontinuities of H are not a.s. count-
able. It can even be shown that the discontinuities of H are not negligible
with respect to dV .

3.5 The Brownian case

In this section we will investigate the link between forward and Itô integration
with respect to a Brownian motion. In this section (Wt) will denote a (Ft)-
Brownian motion.

The main result of this section is the following.

Theorem 2. Let (Ht, t � 0) be an (Ft)-progressively measurable process sat-

isfying
∫ T

0

H2
sds <∞ a.s. Then the Itô integral

∫ ·

0

HsdWs coincides with the

forward integral
∫ ·

0

Hsd
−Ws.

Remark 14.

1. We would like to illustrate the advantage of using regularization instead
of discretization ([20]) through the following example.
Let g be the indicator function of Q ∩ R+.
Let Π = {t0 = 0, t1, · · · , tN = T} be a subdivision of [0, T ] and

I(Π, g, dW )t :=
∑
i

g(ti)
(
W (ti+1 ∧ t)−W (ti ∧ t)

)
; 0 � t � T.

We remark that

I(Π, g, dW )t =
{

0 if Π ⊂ R \Q

Wt if Π ⊂ Q.

Therefore there is no canonical definition of
∫ t

0

gdW through discretiza-

tion. This is not surprising since g is not a.e. continuous and so is not
Riemann integrable. On the contrary, integration via regularization seems

drastically more adapted to define
∫ t

0

gd−W , for any g ∈ L2([0, T ]), since

this integral coincides with the classical Itô-Wiener integral.
2. In order to overcome this problem, McShane pointed out an alternative

approximation scheme, see [38] Chaps. 2 and 3. McShane’s stochastic inte-
gration makes use of the so-called belated partition; the integral is then
even more general than Itô’s one, and it includes in particular the function
g above.

Proof (of Theorem 2). 1) First, suppose in addition that H is a continuous
process. Replacing X by W in (18) one gets
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0

(
1
ε

∫ s

s−ε
Hudu

)
dWs =

1
ε

∫ t

0

Hs(Ws+ε −Ws)ds+Rε(t), (25)

where the remainder term Rε(t) is given by (19).
Recall the maximal inequality [52, Chap. I.1]: there exists a constant C

such that for any φ ∈ L2([0, T ]),

∫ T

0

(
sup

0<η<1

{
1
η

∫ v

(v−η)+
φvdv

})2

du � C

∫ T

0

φ2
vdv. (26)

2) We claim that (25) may be extended to any progressively measurable

process (Ht) satisfying
∫ ·

0

H2
sds <∞.

Set Hn
t = n

∫ t

t−1/n

Hudu for t � 0. It is clear that as n→∞

• For a.e. t, Hn
t converges to Ht

• (Hn
t ) converges to (Ht) in L2(d〈W 〉) (i.e.,

∫ ·

0

(Hn
s − Hs)2ds goes to 0 in

the ucp sense)

Since 〈∫ ·

0

(1
ε

∫ s

s−ε
Hudu

)
dWs

〉
t

=
∫ ·

0

(
1
ε

∫ s

s−ε
Hudu

)2

ds,

(26) and Lemma 2 imply that (25) and (19) are valid.
3) Letting ε → 0 in (25) and using once more (26), Lemma 2 allows to

conclude the proof of Theorem 2. ��

3.6 Substitution formulae

We conclude Section 3 by observing that discretization makes it possible to
integrate nonadapted integrands in a context which is covered neither by
Skorohod integration theory nor by enlargement of filtrations. A class of exam-
ples is the following.

Let (X(t, x), t � 0, x ∈ Rd) and (Y (t, x), t � 0, x ∈ Rd) be two families
of continuous (Ft) semimartingales depending on a parameter x and (H(t, x),
t � 0, x ∈ Rd) an (Ft) progressively measurable processes depending on x.
Let Z be a FT -measurable r.v., taking its values in Rd.

Under some minimal conditions of Garsia–Rodemich–Rumsey type, see for
instance [49, 50], one has∫ t

0

H(s, Z) d−X(s, Z) =
∫ t

0

H(s, x) dX(s, x)
∣∣∣
x=Z

,

[X(·, Z), Y (·, Z)] = [X(·, x), Y (·, x)]
∣∣∣
x=Z

.
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The first result is useful to prove existence results for SDEs driven by semi-
martingales, with anticipating initial conditions.

It is significant to remark that these substitution formula give rise to anti-
cipating calculus in a setting which is not covered by Malliavin noncausal
calculus since our integrators may be general semimartingales, while Skorohod
integrals apply essentially to Gaussian integrators or eventually to Poisson
type processes. Note that the usual causal Itô calculus does not apply here
since (X(s, Z))s is not a semimartingale (take for instance a r.v. Z which
generates FT .)

4 Calculus for finite quadratic variation processes

4.1 Stability of the covariation

A basic tool of calculus via regularization is the stability of finite quadratic
variation processes under C1 transformations.

Proposition 11. Let (X1, X2) be a vector of processes having all its mutual
covariations and f, g ∈ C1(R). Then [f(X1), g(X2)] exists and is given by

[f(X1), g(X2)]t =
∫ t

0

f ′(X1
s )g

′(X2
s )d[X

1, X2]s

Proof. By polarization and bilinearity, it suffices to consider the case when
X = X1 = X2 and f = g. Using Taylor’s formula, one can write

f(Xs+ε)− f(Xs) = f ′(Xs)(Xs+ε−Xs) +R(s, ε)(Xs+ε−Xs), s � 0, ε > 0,

where R(s, ε) denotes a process which converges in the ucp sense to 0 when
ε→ 0. Since f ′ is uniformly continuous on compacts,

(f(Xs+ε)− f(Xs))
2 = f ′(Xs)2(Xs+ε −Xs)2 +R(s, ε)(Xs+ε −Xs)2.

Integrating from 0 to t yields

1
ε

∫ t

0

(f(Xs+ε)− f(Xs))2ds = I1(t, ε) + I2(t, ε)

where

I1(t, ε) =
∫ t

0

f ′(Xs)2
(Xs+ε −Xs)2

ε
ds,

I2(t, ε) =
1
ε

∫ t

0

R(s, ε)(Xs+ε −Xs)2ds.
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Clearly one has

sup
t�T

|I2(t, ε)| � sup
s�T

|R(s, ε)|1
ε

∫ T

0

(Xs+ε −Xs)2ds.

Since [X] exists, I2(·, ε)
ucp−→ 0. The result will follow if we establish

1
ε

∫ ·

0

Ysdμε(s)
ucp−→

∫ ·

0

Ysd[X,X]s (27)

where με(t) =
∫ t
0
ds
ε (Xs+ε − Xs)2 and Y is a continuous process. It is not

difficult to verify that a.s., με(dt) converges to d[X,Y ], when ε → 0; this
finally implies (27). ��

4.2 Itô formulae for finite quadratic variation processes

Even though all Itô formulae that we will consider can be stated in the multi-
dimensional case, see for instance [49], we will only deal here with dimension 1.
Let X = (Xt)t�0 be a continuous process.

Proposition 12. Suppose that [X,X] exists and let f ∈ C2(R). Then∫ ·

0

f ′(X)d−X and
∫ ·

0

f ′(X)d+X exist. (28)

Moreover

a) f(Xt) = f(X0) +
∫ t
0
f ′(X)d∓X ± 1

2

∫ t
0
f ′′(Xs)d[X,X]s,

b) f(Xt) = f(X0) +
∫ t

0

f ′(X)d∓X ± 1
2
[f ′(X), X]t,

c) f(Xt) = f(X0) +
∫ t

0

f ′(X)d◦X.

Proof. c) Follows from b) summing up + and −.
b) follows from a), since Proposition 11 implies that

[f ′(X), X]t =
∫ t

0

f ′′(X)d[X,X].

The proof of a) and (28) is similar to that of Proposition 11, but with a
second-order Taylor expansion. ��

The next lemma emphasizes that the existence of a quadratic variation is
closely connected with the existence of some related forward and backward
integrals.

Lemma 6. Let X be a continuous process. Then [X,X] exists ⇐⇒
∫ ·

0

Xd−X

exists ⇐⇒
∫ ·

0

Xd+X exists.
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Proof. Start with the identity

(Xs+ε −Xs)2 = X2
s+ε −X2

s − 2Xs(Xs+ε −Xs) (29)

and observe that, when ε→ 0,

1
ε

∫ t

0

(X2
s+ε −X2

s )ds→ X2
t −X2

0 .

Integrating (29) from 0 to t and dividing by ε easily gives the equivalence
between the first two assertions.

The equivalence between the first and third ones is similar, replacing ε
with −ε in (29). ��

Lemma 6 admits the following generalization.

Corollary 5. Let X be a continuous process. The following properties are
equivalent

a) [X,X] exists;

b) ∀g ∈ C1,

∫ ·

0

g(X)d−X exists;

c) ∀g ∈ C1,

∫ ·

0

g(X)d+X exists.

Proof. The Itô formula stated in Proposition 12 1) implies a) ⇒ b). b) ⇒ a)
follows setting g(x) = x and using Lemma 6.

b) ⇔ c) because of Proposition 1 1) which states that∫ ·

0

g(X)d+X =
∫ ·

0

g(X)d−X + [g(X), X],

and Proposition 11 saying that [g(X), X] exists. ��
When X is a semimartingale, the Itô formula seen above becomes the

following.

Proposition 13. Let (St)t�0 be a continuous (Ft)-semimartingale and f a
function in C2(R). One has the following.

1.

f(St) = f(S0) +
∫ t

0

f ′(Su)dSu +
1
2

∫ t

0

f ′′(Su)d[S, S]u.

2. Let (S0
t ) be another continuous (Ft)-semimartingale. The following inte-

gration by parts holds:

StS
0
t = S0S

0
0 +

∫ t

0

SudS
0
u +

∫ t

0

S0
udSu + [S, S0]t.

Proof. We recall that Itô and forward integrals coincide, see Proposition 6;
therefore point 1 is a consequence of Proposition 12.

Point 2 stems from the integration by parts formula in Proposition 1 4).
��
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4.3 Lévy area

In Corollary 5, we have seen that
∫ t
0
g(X)d−X exists when X is a one-

dimensional finite quadratic variation process and g ∈ C1(R).
If X = (X1, X2) is two-dimensional and has all its mutual covariations,

consider g ∈ C1(R2; R2). We naturally define, if it exists,∫ t

0

g(X) · d−X = lim
ε→0+

I−(ε, g(X) · dX)(t),

where

I−(ε, g(X) · dX)(t) =
∫ t

0

g(X)(s) · X(s+ ε)−X(s)
ε

ds; 0 � t � T, (30)

and · denotes the scalar product in R2.
With a 2-dimensional Itô formula of the same type as in Proposition 12, it

is possible to show that
∫ t
0
g(X) ·d−X exists if g = ∇u, where u is a potential

of class C2. If g is a general C1(R2) function, one cannot expect in general
that

∫ t
0
g(X) · d−X exists.

Lyons’ rough paths approach, see for instance [36, 35, 31, 28, 8] has consid-
ered in detail the problem of the existence of integrals of the type

∫ t
0
g(X)·dX.

In this theory, the concept of Lévy area plays a significant role. Translating
this in the present context one would say that the essential assumption is that
X = (X1, X2) has a Lévy area type process. This section will only make some
basic observations on that topic from the perspective of stochastic calculus
via regularization.

Given two classical semimartingales S1, S2, the classical notion of Lévy
area is defined by

L(S1, S2)t =
∫ t

0

S1dS2 −
∫ t

0

S2dS1,

where both integrals are of Itô type.

Definition 11. Given two continuous processes X and Y , we put

L(X,Y )t = lim
ε→0+

∫ t

0

XsYs+ε −Xs+εYs
ε

ds.

where the limit is understood in the ucp sense. L(X,Y ) is called the Lévy
area of the processes X and Y .

Remark 15. The following properties are easy to establish.

1. L(X,X) ≡ 0.
2. The Lévy area is an antisymmetric operation, i.e.,

L(X,Y ) = −L(Y,X).
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Using the approximation of symmetric integral we can easily prove the
following.

Proposition 14.
∫ ·
0
Xd◦Y exists if and only if L(X,Y ) exists. Moreover

2
∫ t

0

Xd◦Y = XtYt −X0Y0 + L(X,Y )t.

Recalling the convention that an equality among three objects implies that
at least two among the three are defined, we have the following.

Proposition 15.

1. L(X,Y )t =
∫ t

0

Xd◦Y −
∫ t

0

Y d◦X.

2. L(X,Y )t =
∫ t

0

Xd−Y −
∫ t

0

Y d−X.

Proof.

1. From Proposition 14 applied to X,Y and Y,X, and by antisymmetry of
Lévy areas we have

2
∫ t

0

Xd◦Y = XtYt −X0Y0 + L(X,Y )t,

2
∫ t

0

Y d◦X = XtYt −X0Y0 − L(X,Y )t.

Taking the difference gives 1.
2. Follows from the definition of forward integrals. ��

Remark 16. If [X,Y ] exists, point 2 of Proposition 15 is a consequence of
point 1 and of Proposition 1 1, 2.

For a real-valued process (Xt)t�0, Lemma 6 says that

[X,X] exists ⇔
∫ ·

0

Xd−X exists.

Given a vector of processes X = (X1, X2) we may ask wether the following
statement is true:

(X1, X2) has all its mutual brackets if and only if∫ ·

0

Xid−Xj exists,

for i, j = 1, 2. In fact the answer is negative if the two-dimensional process X
does not have a Lévy area.

Remark 17. Suppose that (X1, X2) has all its mutual covariations. Let ∗ stand
for ◦, or −, or +. The following are equivalent.
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1. The Lévy area L(X1, X2) exists.
2.
∫ ·
0
Xid∗Xj exists for any i, j = 1, 2.

By Lemma 6, we first observe that
∫
Xid◦Xi exists since Xi is a finite

quadratic variation process. In point 2, equivalence between the three
cases ◦,− and + is obvious using Proposition 1 1 2. Equivalence between
the existence of

∫ ·
0
X1d◦X2 and L(X1, X2) was already established in

Proposition 14.

5 Weak Dirichlet processes

5.1 Generalities

Weak Dirichlet processes constitute a natural generalization of Dirichlet
processes, which in turn naturally extend semimartingales. Dirichlet processes
have been considered by many authors, see for instance [21, 2].

Let (Ft)t�0 be a fixed filtration fulfilling the usual conditions. In the
present section 5, (Wt) will denote a classical (Ft)-Brownian motion. For
simplicity, we shall stick to the framework of continuous processes.

Definition 12.

1. An (Ft)-Dirichlet process is the sum of an (Ft)-local martingale M and
a zero quadratic variation process A.

2. An (Ft)-weak Dirichlet process is the sum of an (Ft)-local martingale
M and a process A such that [A,N ] = 0 for every continuous (Ft)-local
martingale N .

In both cases, we will suppose A0 = 0 a.s.

Remark 18.

1. The process (At) in the latter decomposition is (Ft)-adapted.
2. Any (Ft)-semimartingale is an (Ft)-Dirichlet process.

The statement of the following proposition is essentially contained in [13].

Proposition 16.

1. Any (Ft)-Dirichlet process is an (Ft)-weak Dirichlet process.
2. The decomposition M +A is unique.

Proof. Point 1 follows from Proposition 1 6).
Concerning point 2, let X be a weak Dirichlet process with decompositions

X = M1+A1 = M2+A2. Then 0 = M+A where M = M1−M2, A = A1−A2.
We evaluate the covariation of both members against M to obtain

0 = [M ] + [M,A1]− [M,A2] = [M ].

Since M0 = A0 = 0 and M is a local martingale, Corollary 1 gives M = 0. ��
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The class of semimartingales with respect to a given filtration is known
to be stable with respect to C2 transformations, as Proposition 13 implies.
Proposition 11 says that finite quadratic variation processes are stable under
C1 transformations.

It is possible to show that the class of weak Dirichlet processes with finite
quadratic variation (as well as Dirichlet processes) is stable with respect to
the same type of transformations. We start with a result which is a slight
improvement (in the continuous case) of a result obtained by [7].

Proposition 17. Let X be a finite quadratic variation process which is (Ft)-
weak Dirichlet, and f ∈ C1(R). Then f(X) is also weak Dirichlet.

Proof. Let X = M + A be the corresponding decomposition. We express
f(Xt) = Mf +Af where

Mf
t = f(X0) +

∫ t

0

f ′(X)dM, Aft = f(Xt)−Mf
t .

Let N be a local martingale. We have to show that [f(X)−Mf , N ] = 0.
By additivity of the covariation, and the definition of weak Dirichlet

process, [X,N ] = [M,N ] so that Proposition 11 implies [f(X), N ]t =∫ t
0
f ′(Xs)d[M,N ]s.
On the other hand, Proposition 7 gives

[Mf , N ]t =
∫ t

0

f ′(Xs)d[M,N ]s,

and the result follows. ��

Remark 19.

1. If X is an (Ft)- Dirichlet process, it can be proved similarly that f(X) is
an (Ft)- Dirichlet process; see [2] and [51] for details.

2. The class of Lyons–Zheng processes introduced in [51] constitutes a nat-
ural generalization of reversible semimartingales, see Definition 13. The
authors proved that this class is also stable through C1 transformations.

3. Suppose that (Ft) is the canonical filtration associated with a Brownian
motion W . Then a continuous (Ft)-adapted process D is weak Dirichlet
if and only if D is the sum of an (Ft)-local martingale and a process A
such that [A,W ] = 0. See [9], Corollary 3.10.

We also report a Girsanov type theorem established by [7] at least in a
discretization framework.

Proposition 18. Let X = (Xt)t∈[0,T ] be an (Ft)-weak Dirichlet process, and
Q a probability equivalent to P on FT . Then X = (Xt)t∈[0,T ] is an (Ft)-weak
Dirichlet process with respect to Q.
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Proof. We set Dt = dQ
dP |Ft

; D is a positive local martingale.
Let L be the local martingale such thatDt = exp(Lt− 1

2 [L]t). LetX = M+
A be the corresponding decomposition. It is well-known that M̃ = M− [M,L]
is a local martingale under Q. So, X is a Q-weak Dirichlet process. ��

As mentioned earlier, Dirichlet processes are stable with respect to C1

transformations. In applications, in particular to control theory, one often
needs to know the nature of a process (u(t,Dt)) where u ∈ C0,1(R+×R) and
D is a Dirichlet process. The following result was established in [24].

Proposition 19. Let (St) be a continuous (Ft)-weak Dirichlet process with
finite quadratic variation; let u ∈ C0,1(R+ × R). Then (u(t, St)) is a (Ft)-
weak Dirichlet process.

Remark 20. There is no reason for (u(t, St)) to have a finite quadratic variation
since the dependence of u on the first argument t may be very rough. A fortiori
(u(t, St)) will not be Dirichlet. Consider for instance u only depending on time,
deterministic, with infinite quadratic variation.

Examples of Dirichlet processes (respectively, weak Dirichlet processes)
arise directly from classical Brownian motion W .

Example 2. Let f be of class C0(R), u ∈ C0,1(R+ × R).

1. If f is C1, then X = f(W ) is a (Ft)-Dirichlet process.
2. u(t,Wt) is an (Ft)-weak Dirichlet process, but not Dirichlet in general.
3. f(W ) is not always a Dirichlet process, not even of finite quadratic vari-

ation as shown by Proposition 20.

The Example and Remark above easily show that the class of (Ft)-
Dirichlet processes strictly includes the class of (Ft)-semimartingales.

More sophisticated examples of weak Dirichlet processes may be found in
the class of the so-called Volterra type processes, see e.g., [12, 13].

Example 3. Let (Nt)t�0 be an (Ft)-local martingale, G : R+ ×R+ ×Ω −→ R

a continuous random field such that G(t, ·) is (Fs)-adapted for each t. Set

Xt =
∫ t

0

G(t, s)dNs.

Then (Xt) is an (Ft)-weak Dirichlet process with decomposition M+A, where

Mt =
∫ t

0

G(s, s)dNs.

Suppose that [G(·, s1), G(·, s2)] exists for any s1, s2. With some additional
technical assumption, one can show that A is a finite quadratic variation
process with

[A]t = 2
∫ t

0

(∫ s2

0

[G(·, s1), G(·, s2)] ◦ dMs1

)
◦ dMs2 ;
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this iterated Stratonovich integral can be expressed as the sum C1(t) +C2(t)
where

C1(t) =
∫ t

0

[G(·, s), G(·, s)]d[M ]s,

C2(t) = 2
∫ t

0

(∫ s2

0

[G(·, s1), G(·, s2)]dMs1

)
dMs2 .

Example 4. Take for N a Brownian motion W and G(t, s) = B(t−s)∨0 where

B is a Brownian motion independent of W . Then [A] =
∫ t

0

(t− s)ds =
t2

2
.

One significant motivation for considering Dirichlet (respectively, weak
Dirichlet) processes comes from the study of generalized diffusion processes,
typically solutions of stochastic differential equations with distributional drift.

Such processes were investigated using stochastic calculus via regulariza-
tion by [18, 19]. We try to express here just a guiding idea. The following
particular case of such equations is motivated by random media modelization:

dXt = dWt + b′(Xt)dt, X0 = x0 (31)

where b is a continuous function. Typically, b could be the realization of a
continuous process, independent of W , stopped outside a finite interval.

We shall not recall the precise meaning of the solution of (31). In [18, 19]
a rigorous sense is given to a solution (in the distribution laws) and existence
and uniqueness are established for any initial conditions.

Here we shall just attempt to convince the reader that the solution is a
Dirichlet process. For this we define the real function h of class C1 by

h(x) =
∫ x

0

e−b(y)dy.

We set σ0 = h′◦h−1. We consider the unique solution in law of the equation

dYt = σ0(Yt)dWt, Y0 = h(x0)

which exists because of classical Stroock–Varadhan arguments ([53]); so Y is
clearly a semimartingale, thus a Dirichlet process. The process X = h−1(Y )
is a Dirichlet process since h−1 is of class C1. If b were of class C1, (31) would
be an ordinary stochastic differential equation, and it could be shown that X
is the unique solution of that equation. In the present case X will still be the
solution of (31), considered as a generalized stochastic differential equation.

We now consider the case when the drift is time inhomogeneous as follows:

dXt = dWt + ∂xb(t,Xt)dt,X0 = x0 (32)

where b : R+ ×R → R is a continuous function of class C1 in time. Then it is
possible to find a k : R+ ×R → R of class C0,1 such that the solution (Xt) of
(32) can be expressed as (k(t, Yt)) for some semimartingale Y ; so X will be
an (Ft)-weak Dirichlet process. For this and more general situations, see [44].
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5.2 Itô formula under weak smoothness assumptions

In this section, we formulate and prove an Itô formula of C1 type. As for
the C2 type Itô formula, the next Theorem is stated in the one-dimensional
framework only in spite of its validity in the multidimensional case.

Let (St)t�0 be a semimartingale and f ∈ C2. We recall the classical Itô
formula, as a particular case of Proposition 13:

f(St) = f(S0) +
∫ t

0

f ′(Ss)dSs +
1
2

∫ t

0

f ′′(Ss)d[S, S]s.

Using Proposition 6 and Definition 10 (Stratonovich integrals), we obtain

f(St) = f(S0) +
∫ t

0

f ′(Ss)dSs +
1
2
[f ′(S), S]t

(33)

= f(S0) +
∫ t

0

f ′(S) ◦ dS.

We observe that in formulae (33), only the first derivative of f appears. Be-
sides, we know that f(S) is a Dirichlet process if f ∈ C1(R).
At this point we may ask if formulae (33) remain valid when f is in C1(R)
only; a partial answer will be given in Theorem 3 below.

Definition 13. Let (St) be a continuous semimartingale; set Ŝt = ST−t for
t ∈ [0, T ]. S is called a reversible semimartingale if (Ŝt)t∈[0,T ] is again a
semimartingale.

Theorem 3. ([45]) Let S be a reversible semimartingale indexed by [0, T ] and
f ∈ C1(R). Then one has

f(St) = f(S0) +
∫ t

0

f ′(S)dS +Rt = f(S0) +
∫ t

0

f ′(S) ◦ dS

where R = 1
2 [f ′(S), S].

Remark 21. After the pioneering work of [5], which expressed the remainder
term (Rt) with the help of generalized integral with respect to local time, two
papers appeared: [22] in the case of Brownian motion and [22] and [45] for
multidimensional reversible semimartingales. Later, an incredible amount of
contributions on that topic have been published. We cannot give the precise
content of each paper; a non-exhaustive list is [1, 14, 15, 23, 24, 39, 40].
Among the C1-type Itô formulae in the framework of generalized Stratonovich
integral with respect to Lyons–Zheng processes, it is also important to quote
[33, 34, 51].
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Example 5.

i) Classical (Ft)-Brownian motion W is a reversible semimartingale, see for

instance [22, 41, 19]. More precisely Ŵt = WT + βt +
∫ t

0

Ŵs

T − s
ds, where

β is a (Gt)-Brownian motion and (Gt) is the natural filtration associated
with Ŵt.

ii) Let (Xt) be the solution of the stochastic differential equation

dXt = σ(t,Xt)dWt + b(t,Xt)dt,

with σ, b : R × R → R Lipschitz with at most linear growth, σ � c > 0.
Then (Xt) is a reversible semimartingale; see for instance [19]. Moreover
if f ∈W 1,2

loc , it is proved in [19] that (f(Xt)) is an (Ft)-Dirichlet process.

Proof (of Theorem 3). We use in an essential way the Banach–Steinhaus the-
orem for F -spaces; see for instance [10] Chap. 2.1.

Define two maps T±
ε from the F -space C0(R) to the F -space C([0, T ]),

which consists of all continuous processes indexed by [0, T ], by

T−
ε g =

∫ ·

0

g(Ss)
Ss+ε − Ss

ε
ds,

T+
ε g =

∫ ·

0

g(Ss)
Ss − Ss−ε

ε
ds.

These operators are linear and continuous. Moreover, for each g ∈ C0 we have

lim
ε→0

T−
ε g =

∫ ·

0

g(S)dS,

because of Proposition 6 which says that
∫ t
0
g(S)dS is also an Itô integral.

Since Ŝ is a semimartingale, for the same reasons as above,∫ T

T−t
g(Ŝ)d−Ŝ (34)

also exists and equals an Itô integral.

Using Proposition 1 3), it follows that
∫ ·

0

g(S)d+S also exists.

Therefore the Banach–Steinhaus theorem implies that

g 	→
∫ ·

0

g(S)d−S, g 	→
∫ ·

0

g(S)d+S,

are continuous maps from C0(R) to C([0, T ]); by additivity, so are also

g 	→ [g(S), S], g 	→
∫ ·

0

g(S)d◦S.
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Let f ∈ C1(R), (ρε)ε>0 be a family of mollifiers converging to the Dirac
measure at zero. We set fε = f � ρε where � denotes convolution. Since fε
is of class C2, by the “smooth” Itô formula stated at Proposition 13 and by
Proposition 1 1) and 2), we have

fε(St) = fε(S0) +
∫ t

0

f ′
ε(S)dS +

1
2
[f ′
ε(S), S],

fε(St) = fε(S0) +
∫ t

0

f ′
ε(S)d◦S.

Since f ′
ε goes to f ′ in C0(R), we can take the limit term by term and

f(St) = f(S0) +
∫ t

0

f ′(S)dS +
1
2
[f ′(S), S],

(35)

f(St) = f(S0) +
∫ t

0

f ′(S)d◦S.

Remark 12 says that the latter symmetric integral is in fact a Stratonovich
integral. ��

Corollary 6. If (St)t∈[0,T ] is a reversible semimartingale and g ∈ C0(R), then
[g(S), S] exists and has zero quadratic variation.

Proof. Let g ∈ C0(R) and let S = M +V be the decomposition of S as a sum
of a local martingale M and a finite variation process V , such that V0 = 0.
Let f ∈ C1(R) such that f ′ = g. We know that f(S) is a Dirichlet process
with local martingale part

Mf
t = f(S0) +

∫ t

0

g(S)dM.

Let Af be its zero quadratic variation component. Using Theorem 3, we have

Aft =
∫ t

0

g(S)dV +
1
2
[g(S), S].

∫ ·
0
g(S)dV has finite variation, therefore it has zero quadratic variation; since

so does also Af , the result follows immediately. ��

Proposition 20. Let g ∈ C0(R) such that g(W ) is a finite quadratic variation
process. Then g has bounded variation on compacts.

Proof. Suppose that g(W ) is of finite quadratic variation. We already know
that W is a reversible semimartingale. By Corollary 6, [W, g(W )] exists
and it is a zero quadratic variation process. Since [W ] exists, we deduce
that (g(W ),W ) has all its mutual covariations. In particular [g(W ),W ] has
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bounded variation because of Remark 2. Let f be such that f ′ = g; Theorem 3
implies that f(W ) is a semimartingale. A celebrated result of Çinlar, Jacod,
Protter and Sharpe [6] asserts that f(W ) is a (Ft)-semimartingale if and only
if f is a difference of two convex functions; this finally allows to conclude that
g has bounded variation on compacts. ��
Remark 22. Given two processes X and Y , the covariations [X] and [X,Y ]
may exist even if Y is not of finite quadratic variation. In particular (X,Y )
may not have all its mutual covariations. For instance, if X has bounded varia-
tion, and Y is any continuous process, then [X,Y ] = 0, see Proposition 1 7 b).
A less trivial example is provided by X = W , Y = g(W ) where g is continuous
but not of bounded variation, see Proposition 20.

Remark 23 ([22]). When S is a Brownian motion, Theorem 3 and Corollary
6 are in fact, respectively, valid for f ∈W 1,2

loc (R) and g ∈ L2
loc(R).

6 Final remarks

We conclude this paper with some considerations about calculus related to
processes having no quadratic variation. On this, the reader can consult
[13, 27, 26]. In [13] one defines a notion of n-covariation [X1, . . . , Xn] of n
processes X1, . . . , Xn and the n-variation of a process X.

We recall some basic significant results related to those papers.

1. For a process X having a 3-variation, it is possible to write an Itô formula
of the type

f(Xt) = f(X0) +
∫ t

0

f ′(Xs)d◦Xs −
1
12

∫ t

0

f (3)(Xs)d[X,X,X]s.

Moreover one-dimensional stochastic differential equations driven by a
strong 3-variation were considered in [13].

2. Let B = BH be a fractional Brownian motion with Hurst index H > 1
6

and f a function of class C6. It is shown in [27, 26] that

f(Bt) = f(B0) +
∫ t

0

f ′(B)d◦B.

3. Using more sophisticated integrals via regularization, other types of Itô
formulae can be written for any H in ]0, 1[; see [26].

4. In [25], it is shown that stochastic calculus via regularization is almost
pathwise. Suppose for instance that X is a semimartingale or a fractional
Brownian motion, with Hurst index H > 1

2 ; then its quadratic variation
[X] is a limit of C(ε,X,X) not only ucp as in (5), but also uniformly a.s.
Similarly, if X is semimartingale and Y is a suitable integrand, the Itô
integral

∫ ·
0
Y dX is approximated by I−(ε, Y, dX) not only ucp as in (2),

but also uniformly a.s.



Stochastic Calculus via Regularization 183

Acknowledgements. We wish to thank an anonymous referee and the Rédaction of
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UMR 7599, Université Paris 7
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Summary. This paper studies the problem of optimal switching for a one-dimensi-
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1 Introduction

In this paper, we consider the optimal switching problem for a one-dimensional
stochastic process X. The diffusion process X may take a finite number of
regimes that are switched at time decisions. The evolution of the controlled
system is governed by

dXt = b(Xt, It)dt+ σ(Xt, It)dWt,

with the indicator process of the regimes:

It =
∑
n

κn1τn�t<τn+1 .

Here W is a standard Brownian motion on a filtered probability space

(Ω,F ,F = (Ft)t�0, P ),

b, σ are given maps, (τn)n is a sequence of increasing stopping times repre-
senting the switching regimes time decisions, and κn is Fτn

-measurable and
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valued in a finite set, representing the new chosen value of the regime at time
τn and until τn+1.

Our problem consists in maximizing over the switching controls (τn, κn)
the gain functional

E

[∫ ∞

0

e−ρtf(Xt, It)dt−
∑
n

e−ρτngκn−1,κn

]

where f is some running profit function depending on the current state and the
regime, and gij is the cost for switching from regime i to j. We then denote by
vi(x) the value function for this control problem when starting initially from
state x and regime i.

Optimal switching problems for stochastic systems were studied by several
authors, see [1, 4, 7]. These control problems lead via the dynamic program-
ming principle to a system of second-order variational inequalities for the value
functions vi. Since the vi are not smooth C2 in general, a first mathematical
point is to give a rigorous meaning to these variational PDE, either in Sobolev
spaces as in [4], or by means of viscosity notion as in [7]. We also see that for
each fixed regime i, the state space is divided into a switching region where
it is optimal to change from regime i to some regime j, and the continuation
region where it is optimal to stay in the current regime i. Optimal switch-
ing problem may be viewed as sequential optimal stopping problems with
regimes shifts. It is well known that optimal stopping problem leads to a free-
boundary problem related to a variational inequality that divides the state
space into the stopping region and the continuation region. Moreover, there
is the so-called smooth-fit principle for optimal stopping problems that states
the smoothness C1 regularity of the value function through the boundary of
the stopping region, once the reward function is smooth C1 or is convex, see,
e.g. [6]. Smooth-fit principle for optimal stopping problems may be proved by
different arguments and we mention recent ones in [2] or [5] based on local
time and extended Itô’s formula. Our main concern is to study such smooth-
fit principle in the context of optimal switching problem, which has not yet
been considered in the literature to the best of our knowledge.

Here, we use viscosity solutions arguments to prove the smooth-fit C1 prop-
erty of the value functions through the boundaries of the switching regions.
The main difficulty with regard to optimal stopping problems, comes from
the fact that the switching region for the value function vi depend also on the
other value functions vj for which one does not know a priori C1 regularity
(this is what we want to prove!) or convexity property. For this reason, it is an
open question to see how extended Itô’s formula and local time may be used
to derive such smooth-fit property for optimal switching problems. Our proof
arguments are relatively simple and do not require any specific knowledge on
viscosity solutions theory.

The plan of this paper is organized as follows. In Section 2, we formu-
late our optimal switching problem and make some assumptions. Section 3
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is devoted to the dynamic programming PDE characterization of the value
functions by viscosity solutions, through a system of variational inequalities.
In Section 4, we prove the smooth-fit property of the value functions.

2 Problem formulation and assumptions

We start with the mathematical framework for our optimal switching problem.
The stochastic system X is valued in the state space X ⊂ R assumed to be an
interval with endpoints −∞ � � < r � ∞. We call Id = {1, . . . , d} the finite
set of regimes. The dynamics of the controlled stochastic system is modelled
as follows. We are given maps b, σ : X×Id→ R satisfying a Lipschitz condition
in x:

(H1) |b(x, i)− b(y, i)|+ |σ(x, i)− σ(y, i)| � C|x− y|, ∀x, y ∈ X , i ∈ Id,

for some positive constant C, and we require

(H2) σ(x, i) > 0, ∀x ∈ int(X ) = (�, r), i ∈ Id.

We set bi(.) = b(., i), σi(.) = σ(., i), i ∈ Id, and we assume that for any x ∈ X ,
i ∈ Id, there exists a unique strong solution valued in X to the s.d.e.

dXt = bi(Xt)dt+ σi(Xt)dWt, X0 = x. (2.1)

where W is a standard Brownian motion on a filtered probability space
(Ω,F ,F = (Ft)t�0, P ) satisfying the usual conditions.

A switching control α consists of a double sequence τ1, . . . , τn, . . . , κ1, . . . ,
κn, . . ., n ∈ N∗ = N \ {0}, where τn are stopping times, τn < τn+1 and
τn → ∞ a.s., and κn is Fτn

-measurable valued in Id. We denote by A the set
of all such switching controls. Now, for any initial condition (x, i) ∈ X × Id,
and any control α = (τn, κn)n�1 ∈ A, there exists a unique strong solution
valued in X × Id to the controlled stochastic system:

X0 = x, I0− = i, (2.2)
dXt = bκn

(Xt)dt+ σκn
(Xt)dWt, It = κn, τn � t < τn+1, n � 0. (2.3)

Here, we set τ0 = 0 and κ0 = i. We denote by (Xx,i, Ii) this solution (as
usual, we omit the dependence in α for notational simplicity). We notice that
Xx,i is a continuous process and Ii is a cadlag process, possibly with a jump
at time 0 if τ1 = 0 and so I0 = κ1.

We are given a running profit function f : X × Id → R, and we assume a
Lipschitz condition:

(H3) |f(x, i)− f(y, i)| � C|x− y|, ∀x, y ∈ X , i ∈ Id,

for some positive constant C. We also set fi(.) = f(., i), i ∈ Id. The cost for
switching from regime i to j is constant equal to gij . We assume that:
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(H4) 0 < gik � gij + gjk, ∀i �= j �= k �= i ∈ Id.

This last condition means that the switching cost is positive and it is no more
expensive to switch directly in one step from regime i to k than in two steps
via an intermediate regime j.

The expected total profit of running the system when initial state is (x, i)
and using the switching control α = (τn, κn)n�1 ∈ A is

J(x, i, α) = E

[∫ ∞

0

e−ρtf
(
Xx,i
t , Iit

)
dt−

∞∑
n=1

e−ρτngκn−1,κn

]
,

where κ0 = i. Here ρ > 0 is a positive discount factor, and we use the con-
vention that e−ρτn(ω) = 0 when τn(ω) = ∞. We shall see below in Lemma 3.1
that the expectation defining J(x, i, α) is well defined for ρ large enough
(independent of x, i, α). The objective is to maximize this expected total
profit over all strategies α. Accordingly, we define the function

v(x, i) = sup
α∈A

J(x, i, α), x ∈ X , i ∈ Id. (2.4)

and we denote vi(.) := v(., i) for i ∈ Id. The goal of this paper is to study the
smoothness property of the value functions vi. Our main result is the following:

Theorem 2.1 Assume that (H1), (H2), (H3) and (H4) hold. Then, for all
i ∈ Id, the value function vi is continuously differentiable on int(X ) = (�, r).

3 Dynamic programming, viscosity solutions and system
of variational inequalities

We first show the Lipschitz continuity of the value functions vi.

Lemma 3.1 Under (H1) and (H3), there exists some positive constant
C > 0 such that for all ρ � C, we have:

|vi(x)− vi(y)| � C|x− y|, ∀x, y ∈ X , i ∈ Id. (3.1)

Proof. In the sequel, for notational simplicity, the C denote a generic constant
in different places, depending on the constants appearing in the Lipschitz
conditions in (H1) and (H3). For any α ∈ A, the solution to (2.2)–(2.3) is
written as:

Xx,i
t = x+

∫ t

0

b
(
Xx,i
s , Iis

)
ds+

∫ t

0

σ
(
Xx,i
s , Iis

)
dWs

Iit =
∞∑
n=0

κn1τn�t<τn+1 , (τ0 = 0, κ0 = i).
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By standard estimate for s.d.e. applying Itô’s formula to
∣∣Xx,i

t

∣∣2 and using
Gronwall’s lemma, we then obtain from the linear growth condition on b and
σ in (H1) the following inequality for any α ∈ A:

E
∣∣Xx,i

t

∣∣2 � CeCt(1 + |x|2), t � 0.

Hence, by the linear growth condition on f in (H3), this proves that for any
α ∈ A:

E

[∫ ∞

0

e−ρt
∣∣∣f(Xx,i

t , Iit
)∣∣∣dt] � CE

[∫ ∞

0

e−ρt
(
1 +

∣∣Xx,i
t

∣∣) dt]
� C

∫ ∞

0

e−ρteCt(1 + |x|)dt

� C(1 + |x|),
for ρ larger than C. Recalling that the gij are non-negative, this last inequality
proves in particular that for all (x, i, α) ∈ X ×Id×A, J(x, i, α) is well defined,
valued in [−∞,∞).

Moreover, by standard estimate for s.d.e. applying Itô’s formula to∣∣Xx,i
t −Xy,i

t

∣∣2 and using Gronwall’s lemma, we then obtain from the Lipschitz
condition (H1) the following inequality uniformly in α ∈ A:

E
∣∣Xx,i

t −Xy,i
t

∣∣2 � eCt|x− y|2, ∀x, y ∈ X , t � 0.

From the Lipschitz condition (H3), we deduce

|vi(x)− vi(y)| � sup
α∈A

E

[∫ ∞

0

e−ρt
∣∣∣f(Xx,i

t , Iit
)
− f

(
Xy,i
t , Iit

)∣∣∣ dt]
� C sup

α∈A
E

[∫ ∞

0

e−ρt
∣∣Xx,i

t −Xy,i
t

∣∣ dt]
� C

∫ ∞

0

e−ρteCt|x− y|dt � C|x− y|,

for ρ larger than C. This proves (3.1). ��
In the rest of this paper, we shall now assume that ρ is large enough so

that from the previous Lemma, the expected gain functional J(x, i, α) is well
defined for all x, i, α, and also the value functions vi are continuous.

The dynamic programming principle is a well-known property in stochastic
optimal control. In our optimal switching control problem, it is formulated as
follows:
Dynamic programming principle: For any (x, i) ∈ X × Id, we have

v(x, i) = sup
(τn,κn)n∈A

E

[∫ θ

0

e−ρtf
(
Xx,i
t , Iit

)
dt+ e−ρθv(Xx,i

θ , Iiθ)

−
∑
τn�θ

e−ρτngκn−1,κn

]
, (3.2)
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where θ is any stopping time, possibly depending on α ∈ A in (3.2). This
principle was formally stated in [1] and proved rigorously for the finite horizon
case in [7]. The arguments for the infinite horizon case may be adapted in a
straightforward way.

The dynamic programming principle combined with the notion of viscosity
solutions are known to be a general and powerful tool for characterizing the
value function of a stochastic control problem via a PDE representation,
see [3]. We recall the definition of viscosity solutions for a PDE in the form

F (x, v,Dxv,D2
xxv) = 0, x ∈ O, (3.3)

where O is an open subset in Rn and F is a continuous function and nonin-
creasing in its last argument (with respect to the order of symmetric matrices).

Definition 3.1 Let v be a continuous function on O. We say that v is a
viscosity solution to (3.3) on O if it is
(i) a viscosity supersolution to (3.3) on O: for any x0 ∈ O and any C2 func-
tion ϕ in a neighborhood of x0 s.t. x0 is a local minimum of v − ϕ and
(v − ϕ)(x0) = 0, we have:

F (x0, ϕ(x0), Dxϕ(x0), D2
xxϕ(x0)) � 0,

and
(ii) a viscosity subsolution to (3.3) on O: for any x0 ∈ O and any C2 func-
tion ϕ in a neighborhood of x0 s.t. x0 is a local maximum of v − ϕ and
(v − ϕ)(x0) = 0, we have:

F (x0, ϕ(x0), Dxϕ(x0), D2
xxϕ(x0)) � 0.

We shall denote by Li the second-order operator on the interior (�, r) of
X associated to the diffusion X solution to (2.1):

Liϕ =
1
2
σ2
i ϕ

′′ + biϕ
′, i ∈ Id.

Theorem 3.1 Assume that (H1) and (H3) hold. Then, for each i ∈ Id, the
value function vi is a continuous viscosity solution on (�, r) to the variational
inequality:

min
{
ρvi − Livi − fi , vi −max

j 
=i
(vj − gij)

}
= 0, x ∈ (�, r). (3.4)

This means that for all i ∈ Id, we have both supersolution and subsolution
properties:
(1) Viscosity supersolution property: for any x̄ ∈ (�, r) and ϕ ∈ C2(�, r) s.t.
x̄ is a local minimum of vi − ϕ, vi(x̄) = ϕ(x̄), we have

min
{
ρϕ(x̄)− Liϕ(x̄)− fi(x̄) , vi(x̄)−max

j 
=i
(vj − gij)(x̄)

}
� 0, (3.5)
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(2) Viscosity subsolution property: for any x̄ ∈ (�, r) and ϕ ∈ C2(�, r) s.t. x̄
is a local maximum of vi − ϕ, vi(x̄) = ϕ(x̄), we have

min
{
ρϕ(x̄)− Liϕ(x̄)− fi(x̄) , vi(x̄)−max

j 
=i
(vj − gij)(x̄)

}
� 0. (3.6)

Proof. The arguments of this proof are standard, based on the dyna-
mic programming principle and Itô’s formula. We defer the proof to the
appendix. �

For any regime i ∈ Id, we introduce the switching region:

Si =
{
x ∈ (�, r) : vi(x) = max

j 
=i
(vj − gij)(x)

}
.

Si is a closed subset of (�, r) and corresponds to the region where it is optimal
to change of regime. The complement set Ci of Si in (�, r) is the so-called
continuation region:

Ci =
{
x ∈ (�, r) : vi(x) > max

j 
=i
(vj − gij)(x)

}
,

where one remains in regime i.

Remark 3.1 Let us consider the following optimal stopping problem:

v(x) = sup
τ stopping times

E

[∫ τ

0

e−ρτf (Xx
t ) dt+ e−ρτh (Xx

τ )
]
. (3.7)

It is well known that the dynamic programming principle for (3.7) leads to a
variational inequality for v in the form:

min {ρv − Lv − f , v − h} = 0,

where L is the infinitesimal generator of the diffusion X. Moreover, the state
space domain of X is divided into the stopping region

S = {x : v(x) = h(x)} ,

and its complement set, the continuation region:

C = {x : v(x) > h(x)} .

The smooth-fit principle for optimal stopping problems states that the value
function v is smooth C1 through the boundary of the stopping region, the
so-called free boundary, as soon as h is C1 or convex.

Our aim is to state similar results for optimal switching problems. The
main difficulty comes from the fact that we have a system of variational in-
equalities, so that the switching region for vi depend also on the other value
functions vj which are a priori not convex or known to be C1.
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4 The smooth-fit property

We first show, like for optimal stopping problems, that the value functions
are smooth C2 in their continuation regions. We provide here a quick proof
based on viscosity solutions arguments.

Lemma 4.1 Assume that (H1), (H2) and (H3) hold. Then, for all i ∈ Id,
the value function vi is smooth C2 on Ci and satisfies in a classical sense:

ρvi(x)− Livi(x)− fi(x) = 0, x ∈ Ci. (4.1)

Proof. We first check that vi is a viscosity solution to (4.1). Let x̄ ∈ Ci and
ϕ be a C2 function on Ci s.t. x̄ is a local maximum of vi − ϕ, vi(x̄) = ϕ(x̄).
Then, by definition of Ci, we have vi(x̄) > maxj 
=i(vj − gij)(x̄), and so from
the subsolution viscosity property (3.6) of vi, we have:

ρϕ(x̄)− Liϕ(x̄)− fi(x̄) � 0.

The supersolution inequality for (4.1) is immediate from (3.5).
Now, for an arbitrary bounded interval (x1, x2) ⊂ Ci, consider the Dirichlet

boundary linear problem:

ρw(x)− Liw(x)− fi(x) = 0, on (x1, x2) (4.2)
w(x1) = vi(x1), w(x2) = vi(x2). (4.3)

Under the nondegeneracy condition (H2), classical results provide the
existence and uniqueness of a smooth C2 function w solution on (x1, x2) to
(4.2)–(4.3). In particular, this smooth function w is a viscosity solution of
(4.1) on (x1, x2). From standard uniqueness results on viscosity solutions
(here for a linear PDE in a bounded domain), we deduce that vi = w on
(x1, x2). From the arbitrariness of (x1, x2) ⊂ Ci, this proves that vi is smooth
C2 on Ci, and so satisfies (4.1) in a classical sense. �

We now state an elementary partition property on the switching regions.

Lemma 4.2 Assume that (H1), (H3) and (H4) hold. Then, for all i ∈ Id,
we have Si = ∪j 
=iSij where

Sij = {x ∈ Cj : vi(x) = (vj − gij)(x)} .

Proof. Denote S̃i = ∪j 
=iSij . Since we always have vi � maxj 
=i(vj − gij), the
inclusion S̃i ⊂ Si is clear.

Conversely, let x ∈ Si. Then there exists j �= i s.t. vi(x) = vj(x)− gij . We
have two cases:

� if x lies in Cj , then x ∈ Sij and so x ∈ S̃i.
� if x does not lie in Cj , then x would lie in Sj , which means that one could

find some k �= j s.t. vj(x) = vk(x)−gjk, and so vi(x) = vk(x)−gij−gjk. From
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condition (H4) and since we always have vi � vk−gik, this would imply vi(x)
= vk(x) − gik. Since cost gik is positive, we also get that k �= i. Again, we
have two cases: if x lies in Ck, then x lies in Sik and so in S̃i. Otherwise, we
repeat the above argument and since the number of states is finite, we should
necessarily find some l �= i s.t. vi(x) = vl(x) − gil and x ∈ Cl. This shows
finally that x ∈ S̃i. ��

Remark 4.1 Sij represents the region where it is optimal to switch from
regime i to regime j and stay here for a moment, i.e. without changing ins-
tantaneously from regime j to another regime.

We can finally prove the smooth-fit property of the value functions vi
through the boundaries of the switching regions.

Theorem 4.1 Assume that (H1), (H2), (H3) and (H4) hold. Then, for all
i ∈ Id, the value function vi is continuously differentiable on (�, r). Moreover,
at x ∈ Sij, we have v′i(x) = v′j(x).

Proof. We already know from Lemma 4.1 that vi is smooth C2 on the open
set Ci for all i ∈ Id. We have to prove the C1 property of vi at any point of
the closed set Si. We denote for all j ∈ Id, j �= i, hj = vj − gij and we notice
that hj is smooth C1 (actually even C2) on Cj .
1. We first check that vi admits a left and a right derivative v′i,−(x0) and
v′i,+(x0) at any point x0 in Si = ∪j 
=iSij . We distinguish the two following
cases:
• Case (a) x0 lies in the interior Int(Si) of Si. Then, we have two subcases:

� x0 ∈ Int(Sij) for some j �= i, i.e. there exists some δ > 0 s.t. [x0−δ, x0+δ]
⊂ Sij . By definition of Sij , we then have vi = hj on [x0− δ, x0 + δ] ⊂ Cj , and
so vi is differentiable at x0 with v′i(x0) = h′j(x0).

� There exists j �= k �= i in Id and δ > 0 s.t. [x0−δ, x0] ⊂ Sij and [x0, x0+δ]
⊂ Sik. We then have vi = hj on [x0−δ, x0]⊂ Cj and vi = hk on [x0, x0+δ] ⊂ Ck.
Thus, vi admits a left and a right derivative at x0 with v′i,−(x0) = h′j(x0) and
v′i,+(x0) = h′k(x0).
• Case (b) x0 lies in the boundary ∂Si = Si \ Int(Si) of Si. We assume that
x0 lies in the left-boundary of Si, i.e. there exists δ > 0 s.t. [x0 − δ, x0) ⊂ Ci
(the other case where x0 lies in the right-boundary is dealt with similarly).
Recalling that on Ci, vi is solution to: ρvi − Lvi − fi = 0, we deduce that
on [x0 − δ, x0), vi is equal to wi the unique smooth C2 solution to the o.d.e.:
ρwi − Lwi − fi = 0 with the boundaries conditions: wi(x0 − δ) = vi(x0 − δ),
wi(x0) = vi(x0). Therefore, vi admits a left derivative at x0 with v′i,−(x0) =
w′
i(x0). In order to prove that vi admits a right derivative, we distinguish the

two subcases:
� There exists j �= i in Id and δ′ > 0 s.t. [x0, x0 + δ′] ⊂ Sij . Then, on

[x0, x0 + δ′], vi is equal to hj . Hence vi admits a right derivative at x0 with
v′i,+(x0) = h′j(x0).
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� Otherwise, for all j �= i, we can find a sequence (xjn) s.t. xjn � x0,
xjn /∈ Sij and xjn → x0. By a diagonalization procedure, we construct then a
sequence (xn) s.t. xn � x0, xn /∈ Sij for all j �= i, i.e. xn ∈ Ci, and xn → x0.
Since Ci is open, there exists then δ′′ > 0 s.t. [x0, x0 + δ′′] ⊂ Ci. We deduce
that on [x0, x0 + δ′′], vi is equal to ŵi the unique smooth C2 solution to the
o.d.e. ρŵi − Lŵi − fi = 0 with the boundaries conditions ŵi(x0) = vi(x0),
ŵi(x0 + δ′′) = vi(x0 + δ′′). In particular, vi admits a right derivative at x0

with v′i,+(x0) = ŵ′
i(x0).

2. Consider now some point in Si eventually on its boundary. We recall again
that from Lemma 4.2, there exists some j �= i s.t. x0 ∈ Sij : vi(x0) = hj(x0),
and hj is smooth C1 on x0 in Cj . Since vj � hj , we deduce that

vi(x)− vi(x0)
x− x0

� hj(x)− hj(x0)
x− x0

, ∀ x < x0

vi(x)− vi(x0)
x− x0

� hj(x)− hj(x0)
x− x0

, ∀ x > x0,

and so:

v′i,−(x0) � h′j(x0) � v′i,+(x0).

We argue by contradiction and suppose that vi is not differentiable
at x0. Then, in view of the above inequality, one can find some p ∈
(v′i,−(x0), v′i,+(x0)). Consider, for ε > 0, the smooth C2 function:

ϕε(x) = vi(x0) + p(x− x0) +
1
2ε

(x− x0)2.

Then, we see that vi dominates locally in a neighborhood of x0 the function
ϕε, i.e x0 is a local minimum of vi − ϕε. From the supersolution viscosity
property of vi to the PDE (3.4), this yields:

ρϕε(x0)− Liϕε(x0)− fi(x0) � 0,

which is written as:

ρvi(x0)− bi(x0)p− fi(x0)−
1
2ε
σ2
i (x0) � 0.

Sending ε to zero provides the required contradiction under (H2). We have
then proved that for x0 ∈ Sij , v′i(x0) = h′j(x0) = v′j(x0). �

Appendix: Proof of Theorem 3.1

A.1 Viscosity supersolution property

Fix i ∈ Id. Consider any x̄ ∈ (�, r) and ϕ ∈ C2(�, r) s.t. x̄ is a minimum of
vi−ϕ in a neighbourhood Bε(x̄) = (x̄−ε, x̄+ε) of x̄, ε > 0, and vi(x̄) = ϕ(x̄).
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By taking the immediate switching control τ1 = 0, κ1 = j �= i, τn =∞, n � 2,
and θ = 0 in the relation (3.2), we obtain

vi(x̄) � vj(x̄)− gij , ∀j �= i. (A.1)

On the other hand, by taking the no-switching control τn = ∞, n � 1, i.e.
Iit = i, t � 0, X x̄,i stays in regime i with diffusion coefficients bi and σi, and
θ = τε ∧ h, with h > 0 and τε = inf

{
t � 0 : X x̄,i

t /∈ Bε(x̄)
}
, we get from (3.2):

ϕ(x̄) = vi(x̄) � E

[∫ θ

0

e−ρtfi
(
X x̄,i
t

)
dt+ e−ρθvi

(
X x̄,i
θ

)]

� E

[∫ θ

0

e−ρtfi
(
X x̄,i
t

)
dt+ e−ρθϕ

(
X x̄,i
θ

)]

By applying Itô’s formula to e−ρtϕ
(
X x̄,i
t

)
between 0 and θ = τε ∧ h and

plugging into the last inequality, we obtain:

1
h
E

[∫ τε∧h

0

e−ρt (ρϕ− Liϕ− fi)
(
X x̄,i
t

)]
� 0.

From the dominated convergence theorem, this yields by sending h to zero:

(ρϕ− Liϕ− fi)(x̄) � 0.

By combining with (A.1), we obtain the required supersolution inequal-
ity (3.5).

A.2 Viscosity subsolution property

Fix i ∈ Id, and consider any x̄ ∈ (�, r) and ϕ ∈ C2(�, r) s.t. x̄ is a maxi-
mum of vi − ϕ in a neighbourhood Bε(x̄) = (x̄ − ε, x̄ + ε) of x̄, ε > 0, and
vi(x̄) = ϕ(x̄). We argue by contradiction by assuming on the contrary that
(3.6) does not hold so that by continuity of vi, vj , j �= i, ϕ and its derivatives,
there exists some 0 < δ � ε s.t.

(ρϕ− Liϕ− fi)(x) � δ, ∀x ∈ Bδ(x̄) = (x− δ, x+ δ) (A.2)
vi(x) − max

j 
=i
(vj − gij)(x) � δ, ∀x ∈ Bδ(x̄). (A.3)

For any α = (τn, κn)n�1 ∈ A, consider the exit time τδ = inf
{
t � 0 :

X x̄,i
t /∈ Bδ(x̄)

}
. By applying Itô’s formula to e−ρtϕ

(
X x̄,i
t

)
between 0 and

θ = τ1 ∧ τδ, we have by noting that before θ, Xx,i stays in regime i and in the
ball Bδ(x̄) ⊂ Bε(x̄):
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vi(x̄) = ϕ(x̄) = E

[∫ θ

0

e−ρt
(
ρϕ− Liϕ

)(
X x̄,i
t

)
dt+ e−ρθϕ

(
X x̄,i
θ

)]

� E

[∫ θ

0

e−ρt
(
ρϕ− Liϕ

)(
X x̄,i
t

)
dt+ e−ρθvi

(
X x̄,i
θ

)]
. (A.4)

Now, since θ = τδ ∧ τ1, we have

e−ρθv
(
X x̄,i
θ , Iiθ

)
−
∑
τn�θ

gκn−1,κn
= e−ρτ1

(
v
(
X x̄,i
τ1 , κ1

)
− giκ1

)
1τ1�τδ

+ e−ρτδvi
(
X x̄,i
τδ

)
1τδ<τ1

� e−ρτ1
(
vi
(
X x̄,i
τ1

)
− δ

)
1τ1�τδ

+ e−ρτδvi
(
X x̄,i
τδ

)
1τδ<τ1

= e−ρθvi
(
X x̄,i
θ

)
− δe−ρτ11τ1�τδ

,

where the inequality follows from (A.3). By plugging into (A.4) and using
(A.2), we get:

vi(x̄) � E

⎡⎣∫ θ

0

e−ρtfi
(
X x̄,i
t

)
dt+ e−ρθv

(
X x̄,i
θ , Iiθ

)
−
∑
τn�θ

gκn−1,κn

⎤⎦
+ δ E

[∫ θ

0

e−ρtdt+ e−ρτ11τ1�τδ

]
. (A.5)

We now claim that there exists some positive constant c0 > 0 s.t.:

E

[∫ θ

0

e−ρtdt+ e−ρτ11τ1�τδ

]
� c0, ∀α ∈ A.

For this, we construct a smooth function w s.t.

max {ρw(x)− Liw(x)− 1 , w(x)− 1} � 0, ∀x ∈ Bδ(x̄) (A.6)
w(x) = 0, ∀x ∈ ∂Bδ(x̄) = {x : |x− x̄| = δ} (A.7)
w(x̄) > 0. (A.8)

For instance, we can take the function w(x) = c0

(
1− |x−x̄|2

δ2

)
, with

0 < c0 � min

⎧⎨⎩
(
ρ+

2
δ

sup
x∈Bδ(x̄)

|bi(x)|+ 1
δ2

sup
x∈Bδ(x̄)

|σi(x)|2
)−1

, 1

⎫⎬⎭ .

Then, by applying Itô’s formula to e−ρtw
(
X x̄,i
t

)
between 0 and θ = τδ ∧ τ1,

we have:
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0 < c0 = w(x̄) = E

[∫ θ

0

e−ρt
(
ρw − Liw

)(
X x̄,i
t

)
dt+ e−ρθw

(
X x̄,i
θ

)]

� E

[∫ θ

0

e−ρtdt+ e−ρτ11τ1�τδ

]
,

from (A.6), (A.7) and (A.8). By plugging this last inequality (uniform in α)
into (A.5), we then obtain:

vi(x̄) � sup
α∈A

E

⎡⎣∫ θ

0

e−ρtfi
(
X x̄,i
t

)
dt+ e−ρθv

(
X x̄,i
θ , Iiθ

)
−
∑
τn�θ

gκn−1,κn

⎤⎦
+ δc0,

which is in contradiction with the dynamic programming principle (3.2).
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Summary. We introduce and study a strengthening of the notion of stable conver-
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1 Introduction

The notion of stable convergence for a family (Xt) of random variables was
introduced by Rényi [12] and, successively, studied by many other authors
(e.g. Aldous and Eagleson [1], Feigin [5], Hall and Heyde [6], Jacod and
Mémin [8], Letta [10]). It is a strengthening of the notion of convergence in
distribution and, in its most general formulation, it is defined with respect to
a given sub-σ-field H (see Definitions 1 and 2). In this paper, we shall start by
introducing a notion of convergence which extends that of stable convergence
in a “natural” way: more precisely, we shall replace the single sub-σ-field H
by a family G = (Gt)t of sub-σ-fields (see Definition 3). Then, we shall study
a strengthening of this “extended form” of stable convergence, for which we
propose the name G-stable convergence in the strong sense (see Definition 4).
We shall give different characterizations of this last type of convergence (see
Theorems 3 and 4), which will then be applied in order to obtain some con-
vergence results (see Theorem 5, Examples 4, 5 and 6).
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2 Preliminaries

In the sequel, we shall suppose given a probability space (Ω,A, P ) and we
shall denote by N the sub-σ-field of A generated by the P -negligible events.
Moreover, we shall suppose given a Polish space E (endowed with its Borel
σ-field B(E)), a directed set T and a family (Xt)t∈T of random variables on
(Ω,A, P ) with values in E. All the limits concerning a family with T as the
set of indexes are taken with respect to the “section filter” of T . We shall call
a distribution on E a probability measure on B(E) and we shall consider the
space of distributions on E endowed with the topology of weak convergence,
i.e. the topology generated by the functionals of the form μ 	→ 〈μ, f〉 =

∫
f dμ

with f in Cb(E). According to the terminology used in [2], we shall call a
determining class a set K of bounded Borel functions on E such that, for
each pair μ, ν of distributions on E, the equality 〈μ, f〉 = 〈ν, f〉 for all f in
K implies μ = ν. Moreover, we shall call a convergence determining class a
subset K of Cb(E) such that, in the space of distributions on E, the topology
of weak convergence coincides with the topology generated by the functionals
of the form μ 	→ 〈μ, f〉 with f in K. (Such a class is a particular determining
class.) We shall call a kernel a family

N =
(
N(ω, ·)

)
ω∈Ω

of distributions on E such that, for each bounded Borel function f on E, the
function Nf defined on Ω by

Nf(ω) =
∫
N(ω,dx)f(x)

is measurable with respect to A. Given a sub-σ-fieldH of A, a kernel N will be
said to be measurable with respect to H, or, more briefly, H-measurable if, for
each bounded Borel function f on E, the random variable Nf is measurable
with respect to H. We shall denote by σ(N) the smallest σ-field with respect
to which N is measurable. Given a kernel N and a probability measure Q on
(Ω,A), we shall denote by QN the distribution on E which is defined by

〈QN, f〉 = 〈Q,Nf〉,

for each bounded Borel function f on E. Given a kernel N , a sub-σ-field H of
A, and a class K of bounded Borel functions on E such that K∪{1} is total in
L1(PN), then, in order that N is measurable with respect to H∨N , it suffices
that such a measurability condition is satisfied by each random variable of the
form Nf with f in K. (This criterion applies, for instance, when K is Cb(E) or,
more generally, any determining class.) We shall consider the space of kernels
endowed with the weak topology, i.e. the topology generated by the functionals
of the form N 	→ 〈P, IHNf〉, with H in A and f in Cb(E) (e.g. [10], p. 196).
It is not a Hausdorff space in general. However, its quotient with respect
to P -equivalence is a Hausdorff space. (In the sequel a kernel will be used
interchangeably with its P -equivalence class.) If Y is a random variable with
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values in E andH is a sub-σ-field of A, a version of the conditional distribution
of Y given H is a kernel N such that, for each bounded Borel function f on E,
the random variable Nf is a version of the conditional expectation E[f(Y )|H].
(Such a kernel is obviously H-measurable.)

Finally, let us recall the following definition of H-stable convergence.

Definition 1. Let H be a sub-σ-field of A. We say that (Xt)t∈T converges
H-stably if the following Aldous-Rényi condition holds: for each event H in
H with P (H) > 0, the family (Xt)t∈T converges in distribution, under PH , to
a limit distribution (which generally depends on H).

The following two results are substantially known (e.g. [10]).

Theorem 1. Let H be a sub-σ-field of A. Further, for each t in T , denote by
Nt a version of the conditional distribution of Xt given H. Then the following
conditions are equivalent:

(a) The family (Xt)t∈T converges H-stably.
(b) For each probability measure Q of the form Q = Z · P , where Z is

H-measurable, the family (Xt)t∈T converges in distribution under Q.
(c) The family (Nt)t∈T converges with respect to the weak topology in the space

of kernels.

Proposition 1. Under the same assumptions as in the previous theorem, let
N be a kernel. Then the following conditions are equivalent:

(a) For each function f in Cb(E), the conditional expectation E[f(Xt)|H]
converges in σ(L1, L∞) to the random variable Nf .

(b) The kernel N is measurable with respect to H∨N and, for each event H
in H with P (H) > 0, the family (Xt)t∈T converges in distribution, under
PH , to the probability measure PHN .

(c) The kernel N is measurable with respect to H ∨ N and, for each proba-
bility measure Q of the form Q = Z · P , where Z is H-measurable, the
family (Xt)t∈T converges in distribution, under Q, to the probability mea-
sure QN .

(d) The kernel N is the limit of (Nt)t∈T with respect to the weak topology in
the space of kernels.

Definition 2. If the equivalent conditions (a), (b), (c), (d) of the above
proposition hold, we say that (Xt)t∈T converges H-stably to the kernel N .

Remark 1. By means of condition (b) of Proposition 1, it is easy to see that,
if (Xt)t∈T converges H-stably to N , then it also converges J -stably to N , for
each σ-field J such that σ(N) ⊂ J ∨N ⊂ H ∨N .
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3 Stable convergence with respect to a conditioning
system

The following definition extends the notion of stable convergence, from the
case in which a single sub-σ-field of A is fixed, to the case in which a family
of sub-σ-fields of A is given.

Definition 3. We shall call a conditioning system a family G = (Gt)t∈T of
σ-fields of A. (A constant conditioning system, i.e. a conditioning system
G such that all the σ-fields Gt are equal to a σ-field H, will be used inter-
changeably, in the notation and terminology, with the σ-field H itself.) Given
a conditioning system G and a kernel N , we shall say that (Xt)t∈T converges
stably with respect to the conditioning system G (or, more briefly, G-stably)
to N , if, for each function f in Cb(E), the conditional expectation E[f(Xt)|Gt]
converges to the random variable Nf in σ(L1, L∞). (Let us observe that, in
particular, this condition implies the convergence in distribution of (Xt)t∈T
to the distribution PN .)

In the sequel, we shall employ a fixed conditioning system G = (Gt)t∈T and
we shall set

G∗ = lim inft Gt =
∨
t

⋂
u�t Gu, G∗ = lim supt Gt =

⋂
t

∨
u�t Gu. (1)

We shall say that a family (Zt)t∈T of random variables on (Ω,A) is G-adapted
if, for each t, the random variable Zt is Gt-measurable. Further, we shall say
that a family (Ht)t∈T of events in A is G-adapted if the family (IHt

)t∈T of the
corresponding indicator functions is G-adapted. Hence, it is possible to extend
Theorem 1 and Proposition 1 in the following way:

Theorem 2. For each t in T , let us denote by Nt a version of the conditional
distribution of Xt given Gt. Then the following conditions are equivalent:

(a) The family (Xt)t∈T converges G-stably to a suitable kernel.
(b) For each probability measure Q of the form Q = Z · P , where Z is

G∗-measurable, if we set

Zt = E[Z|Gt], Qt = Zt · P, (2)

then the distribution of Xt under Qt converges weakly to a suitable limit
distribution.

(c) The family (Nt)t∈T converges with respect to the weak topology in the space
of kernels.

Proof. A family (Nt)t∈T of kernels converges weakly to the kernel N if, and
only if, for each f in Cb(E), the family (Ntf)t∈T of random variables converges
to Nf in σ(L1, L∞) (see [10], p. 197). Thus, the equivalence between (a) and
(c) is obvious.

Let us prove implication (a)⇒(b). Assume that (Xt)t∈T converges G-stably
to a kernel, say N . Given a probability measure of the form Q = Z · P ,
where Z is G∗-measurable, it suffices to prove that, with the notation (2), the
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distribution of Xt under Qt converges weakly to QN . To this end, fix f in
Cb(E). Then we have Ntf = E[f(Xt)|Gt]. Moreover, the family (Ntf)t∈T is
uniformly bounded and it converges to Nf in σ(L1, L∞). Therefore, we have

〈Qt, f(Xt)〉 = 〈P,Ztf(Xt)〉 = 〈P,ZtNtf〉 = 〈P,ZNtf〉→ 〈P,ZNf〉=〈QN, f〉.

Finally, let us prove implication (b)⇒(c). Assuming condition (b), it is
enough to verify that, if we fix a probability measure of the form Q = Y ·P ,
then the family of distributions (QNt)t∈T converges weakly to a suitable dis-
tribution (see [10], (3.2), p. 198). To this end, let us set

Yt = E[Y |∨u�t Gu], Z = E[Y |G∗], Zt = E[Z|Gt], Qt = Zt · P.

Then, by a well-known convergence result for inverse martingales, the family
(Yt)t∈T converges in L1 to Z. Moreover, by assumption (b), the distribution
of Xt under Qt converges weakly to a distribution, say μ. Thus, if we fix f in
Cb(E), we have

〈P,ZNtf〉 = 〈P,ZtNtf〉 = 〈P,Ztf(Xt)〉 → 〈μ, f〉. (3)

Therefore, we can write

〈QNt, f〉 = 〈P, Y Ntf〉 = 〈P, YtNtf〉 → 〈μ, f〉, (4)

where the convergence of the last term follows from (3) by the inequality

|〈P, YtNtf〉 − 〈P,ZNtf〉| � ‖f‖∞‖Yt − Z‖L1(P ).

Since, by (4), the family (QNt)t∈T converges weakly to μ, we are done. ��
Proposition 2. Under the same assumptions as in the previous theorem, let
N be a kernel. Then the following conditions are equivalent.

(a) The family (Xt)t∈T converges G-stably to N .
(b) The kernel N is measurable with respect to G∗∨N and, for each probability

measure Q of the form Q = Z · P , where Z is G∗-measurable, we have,
using the notation (2), that the distribution of Xt under Qt converges
weakly to the distribution QN .

(c) The kernel N is the limit of (Nt)t∈T with respect to the weak topology in
the space of kernels.

Proof. As we have already observed in the proof of Theorem 2, for the equiv-
alence between (a) and (c), we refer to [10] (p. 197). Moreover, it is easy to
verify that condition (a) (or, equivalently, condition (c)) implies the measur-
ability of N with respect to G∗ ∨ N . Thus, the proof of implication (a)⇒(b)
is exactly the same as the one we have just done for implication (a)⇒(b) of
Theorem 2. Finally, in order to prove implication (b)⇒(c), it is sufficient to
repeat the proof of implication (b)⇒(c) of Theorem 2, taking into account
the fact that, since N is (G∗ ∨ N )-measurable, for each probability measure
of the form Y · P , we have (Y · P )N = (Z · P )N , where Z denotes E[Y |G∗].��
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Remark 2. Under the assumptions of the previous proposition, let D be a class
of G∗-measurable P -probability densities such that the linear space spanned
by D is dense in L1(P|G∗) (where P|G∗ denotes the restriction of P to G∗).
Then condition (b) is equivalent to the condition which is obtained by replac-
ing in (b) the whole class of probability measures of the form Q = Z · P ,
with any G∗-measurable P -probability density Z, by the class of probability
measures of the form Q = Z · P with Z in D.

Corollary 1. Let us suppose that the conditioning system G = (Gt)t∈T is
monotone (increasing or decreasing). Then the two σ-fields G∗ and G∗ are
equal and, if we set H = G∗ = G∗, in order that (Xt)t∈T converges G-stably
to the kernel N , it is necessary and sufficient that it converges H-stably to N
(in the sense of Definition 2).

Proof. By Proposition 2, in order that (Xt)t converges G-stably to the kernel
N , it is necessary and sufficient that N is (H ∨N )-measurable and that, for
each f in Cb(E) and each H-measurable P -probability density Z, we have,
using the notation (2),

〈P,Ztf(Xt)〉 → 〈P,ZNf〉.

Since the monotonicity of G implies the convergence in L1 of Zt to Z, we
are allowed to replace Zt by Z in the above relation. Thus the relation is
reduced to condition (c) of Proposition 1; that is, to the H-stable convergence
of (Xt)t to N . ��

4 Stable convergence in the strong sense

The following definition introduces a strengthening of the notion of stable
convergence (with respect to a conditioning system) studied in Section 3.

Definition 4. Given a conditioning system G and a kernel N , we shall say
that (Xt)t∈T converges stably in the strong sense with respect to the condi-
tioning system G (or, more briefly, G-stably in the strong sense) to N if, for
each function f in Cb(E), the conditional expectation E[f(Xt)|Gt] converges
to the random variable Nf in L1 (i.e. in probability).

The condition imposed in the above definition entails, in particular, that,
for each f in Cb(E), the random variable Nf is the limit in L1 of a G-adapted
family of bounded random variables. This fact suggests introducing some
useful terminology.

Definition 5. A bounded random variable which is the limit in L1 of a
G-adapted family of bounded random variables will be called G-regular.
An event will be called G-regular if its indicator function is G-regular.

Proposition 3. Let Z be a bounded random variable and let us set Ut =
E[Z|Gt]. Then the following conditions are equivalent:
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(a) Z is G-regular.
(b) Z is the limit in L1 of (Ut)t∈T .
(c) We have E[Z2] � lim inft E[U2

t ].

Proof. Implication (b)⇒(a) is obvious. In order to prove the opposite implica-
tion, it is enough to observe that, if (Vt)t∈T is a G-adapted family of bounded
random variables which converges in L1 to Z, then the difference Ut − Z
converges in L1 to zero because it can be put in the form

Ut − Z = E[Z − Vt|Gt] + Vt − Z.

Condition (b) is equivalent to the convergence in L2 of Ut to Z. Therefore it
is equivalent to condition (c) because of the following equalities:

E
[
|Z − Ut|2

]
= E[Z2] + E[U2

t ]− 2E[ZUt] = E[Z2]− E[U2
t ]. ��

By Proposition 3, one immediately verifies that the class of bounded
G-regular random variables is a Dedekind σ-complete Riesz space. Therefore,
the G-regular events form a σ-field, which we shall briefly call the G-regular
σ-field, and the bounded random variables which are measurable with respect
to this σ-field are exactly the bounded G-regular random variables. Obviously,
the G-regular σ-field is contained in the σ-field G∗ ∨N .

Definition 6. A random variable (with values in any measurable space) will
be said to be G-regular if it is measurable with respect to the G-regular σ-field.
Similarly, a kernel N will be said to be G-regular if it is measurable with respect
to the G-regular σ-field.

Using this terminology, we can state the three following simple results (the
first two of which without proof).

Proposition 4. Let K be a determining class. Then, in order that a kernel
N is G-regular, it is necessary and sufficient that each random variable of the
form Nf , with f in K, is G-regular.

Proposition 5. In order that a family (Xt)t∈T converges G-stably in the
strong sense to a kernel N , it is necessary that N is G-regular.

Proposition 6. The σ-field G∗ ∨N is contained in the G-regular σ-field.

Proof. It is sufficient to observe that, by means of the classical convergence
theorem for closed martingales, a bounded (G∗∨N )-measurable random vari-
able Z is the limit in L1 of the G-adapted family (Wt)t∈T defined as:

Wt = E[Z|⋂u�t Gu]. ��

As we shall see in Section 6 (example 3), the above inclusion may be strict.
Using the notion of G-regularity, we can now prove the following charac-

terization of the G-stable convergence in the strong sense.
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Theorem 3. Let N be a kernel and K a convergence determining class. Then
the following conditions are equivalent:

(a) The family (Xt)t∈T converges G-stably in the strong sense to N .
(b) The family (Xt)t∈T converges G-stably to N and moreover, for each f in

K, setting

Vt = E[f(Xt)|Gt], (5)

we have E[V 2
t ] → E[(Nf)2].

(c) For each f in K, the conditional expectation E[f(Xt)|Gt] converges in L1

(i.e. in probability) to Nf .
(d) The kernel N is G-regular and moreover, for each f in K and each

G-adapted family (Zt)t∈T of real random variables in L∞(P ), with
lim supt ‖Zt‖L∞ < +∞, we have∫ [

f(Xt)−Nf
]
Zt dP → 0. (6)

(e) The kernel N is G-regular and, for each f in K and each G-adapted family
(Ht)t∈T of events, with inft P (Ht) > 0, we have∫ [

f(Xt)−Nf
]
dPHt

→ 0. (7)

Proof. Implication (a)⇒(b) is trivial. Implication (b)⇒(c) follows from the
equality

E
[
|Vt −Nf |2

]
= E[V 2

t ] + E[ (Nf)2 ]− 2E[Vt(Nf)]. (8)

In order to prove implication (c)⇒(d), let us assume condition (c). Then, by
Proposition 4, the kernel N is G-regular. Moreover, if (Zt)t∈T is a family of
real random variables as in condition (d), and f is an element in K, then we
have, using (5),∣∣ ∫ [f(Xt)−Nf

]
Zt dP

∣∣ =
∣∣ ∫ [Vt −Nf

]
Zt dP

∣∣ � ‖Zt‖L∞
∫
|Vt −Nf |dP → 0.

Condition (d) is so verified.
Implication (d)⇒(e) is trivial: it suffices to take Zt = P (Ht)−1IHt

.
Finally, let us prove implication (e)⇒(a). Given condition (e), we first

prove a preliminary result: for each G-adapted family (Ht)t∈T of events, with
inft P (Ht) > 0, the convergence (7) holds for each f in Cb(E). To this end,
having a fixed G-adapted family (Ht)t∈T of events, with inft P (Ht) > 0, let
us set

Zt = P (Ht)−1IHt
, Qt = Zt · P, νt = QtN

and denote by μt the distribution of Xt under Qt. Then, by assumption (e),
we have

〈μt − νt, f〉 → 0 for each f in K. (9)
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On the other hand, since we have inft P (Ht) > 0, the probability densities
Zt are uniformly bounded and so they form, in the space L1(P ), a relatively
compact set with respect to the topology σ(L1, L∞). Therefore, if U is an
ultrafilter on T , which is finer than the section filter, then, with respect to U ,
the family (Zt)t∈T converges in σ(L1, L∞) to a probability density Z. Thus,
setting Q = Z ·P , the family (νt)t∈T converges weakly (with respect to U) to
the probability measure QN . The same holds for (μt)t∈T (because of (9) and
the fact that K is a convergence determining class). It follows that, for each
f in Cb(E), the bounded family of real numbers (〈μt− νt, f〉)t∈T converges to
zero with respect to the ultrafilter U , and so (since U is arbitrary) also with
respect to the section filter. Thus, the convergence (7) holds for each f in
Cb(E). After proving this preliminary result, let us now prove that condition
(a) is satisfied. To this end, having a fixed function f in Cb(E), let us adopt
the notation (5) and, in addition, let us set Ut = E[Nf |Gt]. By Proposition 3,
we can affirm that Ut converges in L1 to Nf . Therefore, it is sufficient to
prove that the difference Dt = Vt − Ut converges in L1 to zero. Actually,
it is sufficient to prove that the above convergence holds for D+

t = Dt ∨ 0
(because, passing to the function −f , we may obtain the analogous relation
for D−

t = (−Dt)∨0). Thus, let us prove that we have E[D+
t ] → 0 with respect

to any ultrafilter U which is finer than the section filter of T . To this end,
let us denote by λ the limit of the family

(
P{Dt > 0}

)
t∈T with respect to

U . If λ is zero, then, by the obvious inequality E[D+
t ] � 2‖f‖P{Dt > 0}, the

assertion is immediate. Hence, we are allowed to assume λ > 0, and so we can
choose an element A in U such that P{Dt > 0} > λ/2 for each t in A. If we
set

Ht =
{
{Dt > 0} if t ∈ A,
Ω if t ∈ T \A,

then we have inft P (Ht) > 0 and, for each t in A,

E[D+
t ] =

∫
Ht

(Vt − Ut) dP =
∫
Ht

[
f(Xt)−Nf

]
dP

= P (Ht)
∫ [

f(Xt)−Nf
]
dPHt

.

In order to finish, it is enough to observe that, by the preliminary result proved
above, the last term of this relation converges to zero. ��

Corollary 2. Let N be a kernel and G, G′ two conditioning systems such that
Gt ⊂ G′

t for each t in T . Let us suppose that N is G-regular and that (Xt)t∈T
converges G′-stably in the strong sense to N . Then (Xt)t∈T also converges to
N G-stably in the strong sense.

Proof. It is an immediate consequence of Theorem 3. ��

Corollary 3. Let us suppose that (Xt)t∈T converges G-stably in the strong
sense to the kernel N . Let (Yt)t∈T be a family of random variables, with val-
ues in a Polish space F . Assume that (Yt)t∈T converges in probability to a
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G-regular random variable Y . Then the family ([Xt, Yt])t∈T converges G-stably
in the strong sense to the product kernel N ⊗ εY , where εY denotes the Dirac
kernel associated with Y , i.e. the family

(
εY (ω)

)
ω∈Ω of Dirac distributions

on F .

Proof. A convergence determining class for the distributions on E×F is given
by the functions of the form f⊗g, with f in Cb(E) and g in Cb(F ). By Theorem
3, it suffices to prove that, for each function f ⊗ g of this type, we have

E[f(Xt)g(Yt) | Gt] L1

−→ g(Y )Nf.

On the other hand, since g(Y ) is G-regular, there exists a G-adapted family
(Ut)t∈T of bounded random variables which converges in L1 to g(Y ). Then
we have that Ut − g(Yt) converges in L1 to zero and so we may replace g(Yt)
by Ut in the above relation. Thus, what we have to prove is the relation

Ut E[f(Xt) | Gt] L1

−→ g(Y )Nf.

This is true by the assumptions. ��

Corollary 4. Let N be a kernel. Then the following conditions are equivalent:

(a) The family (Xt)t∈T converges A-stably in the strong sense to N .
(b) There exists a random variable X on (Ω,A, P ), with values in E, such

that N is P -equivalent to the Dirac kernel εX and (Xt)t∈T converges in
probability to X.

Proof. Implication (b)⇒(a) is trivial. Let us assume condition (a). Then
(Xt)t converges in distribution to PN and, setting Gt = A for each t in
T , condition (b) of Theorem 3 holds. Therefore, we have E[Nf2] = E[(Nf)2]
for each f in Cb(E). It follows that N is P -equivalent to a Dirac kernel εX .
Applying Corollary 3, we obtain the A-stable convergence in the strong sense
of ([Xt, X])t to the kernel εX ⊗ εX , and so the convergence in distribution of
([Xt, X])t to [X,X]; that is, the convergence in probability of Xt to X. ��

5 Relationship with the classical notion of stable
convergence

Strong stable convergence can also be expressed as a strengthening of stable
convergence in the classical sense (i.e. stable convergence with respect to a
suitable fixed sub-σ-field of A). This is immediate when the conditioning
system G is monotone (increasing or decreasing). Indeed, if this is the case
and we set H = G∗ = G∗, then, by Corollary 1, we may change condition
(b) of Theorem 3 by replacing G-stable convergence by H-stable convergence.
In the general case, the following theorem holds.
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Theorem 4. Let N be a kernel and K a convergence determining class. Then
the following conditions are equivalent:

(a) The family (Xt)t∈T converges G-stably in the strong sense to N .
(b) The family (Xt)t∈T converges σ(N)-stably to N and N is G-regular.

Moreover, for each f in K, we have, using the notation (5), E[V 2
t ] →

E[(Nf)2].

Proof. (a)⇒(b): Given condition (a), it is sufficient to prove the σ(N)-stable
convergence of (Xt)t to N (the last part of condition (b) being trivially satis-
fied). To this end, let us fix f in Cb(E), use the notation (5) and set

Wt = E[f(Xt)|σ(N)]. (10)

Next, let us denote by P the set of finite products of functions of the form Ng
with g in Cb(E). Since σ(N) is generated by P and P is closed with respect
to products, in order to prove that Wt converges to Nf in σ(L1, L∞), by a
monotone class argument, it suffices to prove, for each K in P, the convergence
E[KWt] → E[KNf ]; that is,

E[Kf(Xt)] → E[KNf ]. (11)

On the other hand, the random variable K is bounded and G-regular. In fact
it is the product of a finite number of bounded G-regular random variables.
Thus, it is possible to find a uniformly bounded G-adapted family (Kt)t∈T of
random variables which converges in L1 to K. Therefore (11) is equivalent to
each of the two following limits:

E[Ktf(Xt)] → E[KNf ], E[KtVt] → E[KNf ].

The second of these two limits obviously holds: indeed, by assumption (a),
KtVt converges in probability (and so in L1) to KNf .

(b)⇒(a): Given condition (b), it is sufficient to prove that condition (c)
of Theorem 3 holds. To this end, let us fix f in K and adopt the notation
of (5) and (10). Because of the equality (8) and assumption (b), in order to
prove the convergence in probability of Vt to Nf , it is enough to prove the
convergence

E[VtNf ] → E[(Nf)2]. (12)

On the other hand, the random variable Nf is obviously σ(N)-measurable and
so, using the fact that, by assumption (b), Wt converges to Nf in σ(L1, L∞),
we may write

E[f(Xt)Nf ] = E[WtNf ] → E[(Nf)2]. (13)

Thus, we see that, in order to prove (12), it suffices to verify that we have

E
[
(Vt − f(Xt))Nf

]
→ 0. (14)
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Now, by the assumption of G-regularity of N , the random variable Nf is
the limit in L1 of a uniformly bounded G-adapted family (Ut)t∈T of random
variables. Since the difference Vt − f(Xt), by (5), is orthogonal to Ut, the
relation (14) is equivalent to

E
[
(Vt − f(Xt))(Nf − Ut)

]
→ 0.

This last convergence obviously holds: indeed the random variables Vt−f(Xt)
are uniformly bounded and the difference Nf −Ut converges in L1 to zero. ��

As we shall see in the next Section 6 (example 2), the G-regularity of N is
essential in condition (b) of the theorem we have just proved.

The following corollary concerns a very special case: the case in which
the kernel N is measurable with respect to G∗ ∨ N . Remember that, by
Proposition 6, this strong assumption of measurability implies automatically
the G-regularity of N .

Corollary 5. Under the same assumptions as in the previous theorem, let us
suppose that N is measurable with respect to G∗∨N . Then, for each sub-σ-field
J such that σ(N) ⊂ J ∨N ⊂ G∗∨N , the following conditions are equivalent:

(a) The family (Xt)t∈T converges G-stably in the strong sense to N .
(b) The family (Xt)t∈T converges J -stably to N and, for each f in K, we have,

using the notation (5), E[V 2
t ] → E[(Nf)2].

Proof. Implication (b)⇒(a) is trivial: indeed, if condition (b) holds, then, by
Remark 1, condition (b) of Theorem 4 holds as well.

Let us prove implication (a)⇒(b). Given condition (a), it is sufficient
(by Remark 1) to prove that (Xt)t converges G∗-stably to N . To this end,
let us fix f in Cb(E), use the notation (5), and set Wt = E[f(Xt)|G∗]. Further,
let us set

I =
⋃
s

⋂
t�s Gt.

SinceNf andWt are (G∗∨N )-measurable and since I is an algebra which gene-
rates the σ-field G∗, in order to prove that Wt converges to Nf in σ(L1, L∞),
by a monotone class argument, it is enough to check that, for each H in I,
we have ∫

H
Wt dP →

∫
H
Nf dP.

This fact obviously holds: indeed, for a fixed H in I, we have H ∈ Gt for t
sufficiently large and so, for t sufficiently large, we have∫

H
Wt dP =

∫
H
f(Xt) dP =

∫
H
Vt dP,

where the last term, by assumption (a), converges to
∫
H
Nf dP . ��



A Strong Form of Stable Convergence 215

6 Some counter-examples

We note that, for a G-adapted family (Xt)t∈T of random variables, G∗-stable
convergence implies A-stable convergence. (It is a consequence of a known
result regarding stable convergence in the classical sense.) The following
example shows that we do not have a similar result for stable convergence in
the strong sense: indeed, even if (Xt)t∈T is a G-adapted family, G∗-stable con-
vergence in the strong sense does not imply A-stable convergence in the strong
sense.

Example 1. Let us take T = N∗, E = R. Given a sequence (Yj)j�1 of
independent and identically distributed real random variables, with mean zero
and variance 1, let us set Xn = (Y1 + · · ·+ Yn)/

√
n and Gn = σ(Xk : k � n)

for each n � 1. Then the σ-field G∗ is contained in the symmetric σ-field
of (Yj)j�1, which is degenerate (because of the Hewitt-Savage theorem and
the Kolmogorov 0–1 law). Therefore, by the central limit theorem, we have
the strong G∗-stable convergence of (Xn)n to the constant kernel N with
N(ω, ·) = N (0, 1) for each ω. Hence, (Xn)n also converges A-stably to N ,
but, by Corollary 4, it cannot converge A-stably in the strong sense to any
kernel.

With the next example we show that we cannot replace condition (b) of
Theorem 4 by the weaker condition obtained by omitting the part concern-
ing the G-regularity of N . More precisely, this weaker condition is not even
sufficient in order to assure the simple G-stable convergence of (Xt)t∈T to N .

Example 2. Let us take T = N∗, E = R. Then, given two independent and
identically distributed real random variables R, S, which are not degenerate,
let us set

Xn = R+ S for each n, Gn = σ(R) if n is odd, Gn = σ(S) if n is even.

Further, let us denote by M a version of the conditional distribution of R+S
given σ(R) and by N a version of the conditional distribution of R+ S given
σ(S). Then, for each f in Cb(E) and each n � 1, a version of the condi-
tional expectation E[f(Xn)|σ(N)] is Nf . Thus (Xn)n�1 obviously converges
σ(N)-stably to N . Moreover, for each f in Cb(E) and each n, a version of the
conditional expectation E[f(Xn)|Gn] is the random variable Vn defined by:

Vn = Mf if n is odd, Vn = Nf if n is even. (15)

By the exchangeability of the pair (R,S), the two random variables Mf and
Nf are identically distributed and so we have E[V 2

n ] = E[(Nf)2], for each
n. Therefore, the relation E[V 2

n ] → E[(Nf)2] is obviously satisfied. Never-
theless, the sequence (Xn)n cannot converge G-stably to N . Indeed, if that
happened, then, for each f in Cb(E), the sequence (Vn)n�1 would converge to
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Nf in σ(L1, L∞) and so, since Mf and Nf are independent and identically
distributed, we would have

E[(Nf)2] = limk E[V2k+1Nf ] = E[(Mf)(Nf)] =
(
E[Nf ]

)2
.

This would imply that, for each f in Cb(E), the random variable Nf is degene-
rate and thus that the two random variables R + S, S are independent, in
contrast to the fact that S is not degenerate.

Finally, the following example shows that the inclusion stated in Proposi-
tion 6 may be strict.

Example 3. Let us take T = N∗, Ω = [0, 1], A = B([0, 1]), P = λ (where
λ denotes the Lebesgue measure on B([0, 1])). Moreover, let (Pn)n�1 be a
sequence of finite partitions of Ω such that, for each n, Pn is formed by inter-
vals whose maximum length is smaller than 1/n and let us take Gn = σ(Pn).
Then the G-regular σ-field coincides with A. Indeed, for each x in [0, 1], if we
denote by An the union of the elements of Pn which are contained in [0, x],
we have 0 � x− λ(An) � 1/n and so I[0,x] is the limit in L1 of the G-adapted
family (IAn

)n�1. However, it is always possible to choose the partitions Pn in
such a way that we have Gm ∩ Gn = {∅, Ω} for m �= n and so, if this is the
case, it follows that G∗ = {∅, Ω} and, consequently, G∗ ∨N = N .

7 Application to a triangular array of martingales

In this section we shall take T = N∗ and E = Rd with d ∈ N∗. Further,
for each real matrix a, we shall denote by |a| the sum of the absolute values
of its entries and by a′ the transpose of a. With this notation, if x is a real
vector (which we consider as a column-matrix), we have |xx′| = |x|2. If U is
a random variable, on a probability space (Ω,A, P ), with values in the space
of positive semidefinite d× d-matrices, the family of Gaussian distributions(

N
(
0, U(ω)

))
ω∈Ω

is a kernel which we shall call the Gaussian kernel associated with U and
denote it by N (0, U). We can now state the following theorem.

Theorem 5. Let (ln)n�1 be a sequence of strictly positive integers. On a prob-
ability space (Ω,A, P ), for each n � 1, let (Fn,j)0�j�ln be a filtration and
(Mn,j)n�1,0�j�ln be a triangular array of random variables on (Ω,A, P ) with
values in Rd such that, for each n, the family (Mn,j)0�j�ln is a d-dimensional
martingale with respect to (Fn,j)0�j�ln and Mn,0 = 0. For each pair (n, j),
with n � 1, 1 � j � ln, let us set Xn,j = Mn,j −Mn,j−1 and

Sn =
∑ln
j=1Xn,j = Mn,ln , Un =

∑ln
j=1Xn,jX

′
n,j , X∗

n = sup1�j�ln |Xn,j |.
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Let us suppose that the sequence (Un)n�1 converges in probability to a random
variable U with values in the space of positive semidefinite d×d-matrices. Fur-

ther, let (kn)n�1 be a sequence of strictly positive integers, with knX
∗
n

L1

−→ 0
and let us denote by G the conditioning system (Fn,kn∧ln)n�1.

Then, in order that the sequence (Sn)n�1 converges G-stably in the strong
sense to the gaussian kernel N (0, U), it is (necessary and) sufficient that U
is G-regular (in the sense of Definition 6).

For the proof of this theorem, we need the following lemma (which is inspired
by a well-known technique introduced by McLeish [11]).

Lemma 1. Given a finite family (Xj)j of real random variables on a proba-
bility space (Ω,A, P ), let us set

S =
∑
j Xj , U =

∑
j X

2
j , X∗ = supj |Xj |.

Further, given two real numbers b and t, with b > 0, and a random variable
V with values in [0, b], let us set

L =
∏
j(1 + itXj), D = exp(itS)− L exp(− 1

2 t
2V ), B = {|t|X∗ � 1, U � b}.

Then, on the set B, we have

|D| � κ(b, t)
(
|U − V |+ 2b|t|X∗), with κ(b, t) = 1

2 t
2 exp(7

2bt
2).

Proof. Since, for each real number x, we have |1 + ix|2 = 1 + x2 � exp(x2), it
follows that |L|2 � exp(t2U); that is,

|L| � exp(1
2 t

2U). (16)

Let us denote the principal value of the complex logarithm by Log and set

Log(1 + ix) = ix+ 1
2x

2 + r(x),

for each real number x. Thus, we have

|r(x)| � |x|3 for |x| � 1, 1 + ix = exp[ix+ 1
2x

2 + r(x)] for x ∈ R.

(17)

By the first of these two relations, we obtain that, on the set {|t|X∗ � 1},
we have ∑

j |r(tXj)| �
∑
j |tXj |3 � |t|X∗t2U � t2U. (18)

From the second of the relations (17), we get L = exp
[
itS+ 1

2 t
2U+

∑
j r(tXj)

]
;

that is,

exp(itS) = L exp
[
− 1

2 t
2U −∑j r(tXj)

]
,
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and so, by the definition of D, we have

D = LΔ where Δ = exp
[
− 1

2 t
2U −∑j r(tXj)

]
− exp(− 1

2 t
2V ).

Since we have | exp(y) − exp(z)| � |y − z| exp
[
3
2 (|y| + |z|)

]
for each pair y, z

of complex numbers, we find

|Δ| �
∣∣ 1
2 t

2(U − V ) +
∑
j r(tXj)

∣∣ exp
[

3
2

(
| 12 t2U +

∑
j r(tXj)|+ 1

2 t
2V
)]
. (19)

On the other hand, since V takes values in [0, b] and, on the set B, inequalities
(18) hold, on B we have

|Δ| � exp(3bt2)
∣∣ 1
2 t

2(U − V ) +
∑
j r(tXj)

∣∣
� 1

2 t
2 exp(3bt2)

(
|U − V |+ 2b|t|X∗),

and so, by (16),

|D| = |LΔ| � 1
2 t

2 exp(7
2bt

2)
(
|U − V |+ 2b|t|X∗).

The lemma is thus proved. ��

Proof (of Theorem 5). Without loss of generality, we may suppose kn � ln, for
each n, and so, we may write Gn = Fn,kn

. If we assume that U is G-regular, by
Theorem 3(c), in order to prove that (Sn)n converges G-stably in the strong
sense to the Gaussian kernel N (0, U), it suffices to verify that, for each x in
Rd, we have

E
[
exp(ix′Sn)|Gn

] L1

−→ exp(− 1
2x

′Ux).

This fact allows us to limit ourselves to proving the theorem in the particular
case in which d = 1. Therefore, let us assume this is the case and let us prove
that, for each t in R, we have

E
[
exp(itSn)|Gn

] L1

−→ exp(− 1
2 t

2U),

or, equivalently, E
[
exp(itSn)|Gn

]
− exp(− 1

2 t
2Un)

L1

−→ 0.

Let us set Sn,h =
∑h
j=1Xn,j = Mn,h and Un,h =

∑h
j=1X

2
n,j for 0 � h � ln.

Then, fixing ε > 0 and choosing a real positive number a such that
P{U � a} < ε, let us define the stopping time Jn (with respect to the
filtration (Fn,h)0�h�ln) in the following way:

Jn(ω) = ln ∧ inf{h ∈ N : h � ln, Un,h(ω) � a}.

Thus, it suffices to prove the relation

E
[
exp(itSn,Jn

)|Gn
]
− exp

[
− 1

2 t
2(Un ∧ a)

] L1

−→ 0. (20)
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Indeed, the random variables Sn,Jn
and Un ∧ a coincide with Sn and Un,

respectively, on the set {Un < a} and, for n sufficiently large, we have
P{Un � a} < ε.

In order to prove (20), let us define the complex-valued martingale
(Ln,h)0�h�ln (with respect to the filtration (Fn,h)0�h�ln) in the following
way:

Ln,h =
∏h
j=1(1 + itXn,jI{j�Jn}) for 0 � h � ln.

We observe that
knX

∗
n
L1

→ 0

implies

X∗
n
L1

→ 0

and that we have

1 � |Ln,kn
| � exp

[
1
2 t

2(knX∗
n)

2
] P−→ 1,

|Ln,Jn
| � exp(1

2 t
2a)(1 + |t|X∗

n). (21)

Moreover, since the martingale (Ln,h)0�h�ln is stopped at Jn (and so closed
by Ln,Jn

), we have

E[Ln,Jn
| Gn] = E[Ln,Jn

| Fn,kn
] = Ln,kn

L1

−→ 1, (22)

where the convergence in L1 of the last term to the constant 1 follows from
the relations (21), from the inequality |Ln,kn

| � |Ln,Jn
| and from the relation

|Arg(Ln,kn
)| � ∑kn∧Jn

j=1 |Arg(1 + itXn,j)| =
∑kn∧Jn

j=1 | arctan(tXn,j)|

� |t|knX∗
n

L1

−→ 0.

Now, let us fix a real number b with b > a and set Vn = E[U ∧ b|Gn]. Since
the random variable U ∧ b is G-regular, the sequence (Vn)n converges in L1 to
U ∧ b and so we have

Vn − (Un ∧ b) L1

−→ 0. (23)

Finally, let us set

Bn = { |t|X∗
n � 1, X∗

n �
√
b− a }, Dn = exp(itSn,Jn

)− Ln,Jn
exp(− 1

2 t
2Vn).

We have P (Bn) → 1, and so, by the second of the inequalities (21), we get

IBc
n
|Dn| � 2IBc

n
|Ln,Jn

| L1

−→ 0. (24)
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Further, since we have Bn ⊂ {|t|X∗
n � 1, Un,Jn

� b}, applying Lemma 1 to
the finite family (Xn,jI{j�Jn})1�j�ln , we find (with the same notation as in
Lemma 1)

IBn
|Dn| � κ(b, t)

(
|(Un,Jn

∧ b)− Vn|+ 2b|t|X∗
n

)
.

From this inequality, taking into account (23) and (24), we obtain

lim supn ‖Dn‖L1 = lim supn ‖IBn
Dn‖L1

� κ(b, t) lim supn ‖(Un,Jn
∧ b)− (Un ∧ b)‖L1

= κ(b, t) lim supn
∫
{Jn<ln} |(Un,Jn

∧ b)− (Un ∧ b)|dP
� κ(b, t)(b− a).

By (22) and (23), we finally get

lim supn ‖E [exp(itSn,Jn
)|Gn]− exp[− 1

2 t
2(Un ∧ b)] ‖L1

= lim supn ‖E [exp(itSn,Jn
)|Gn]− Ln,kn

exp(− 1
2 t

2Vn) ‖L1

= lim supn ‖E[Dn|Gn] ‖L1 � κ(b, t)(b− a).

In order to obtain the desired relation (20), it remains to let b go to a. The
theorem is thus proved. ��

Corollary 6. Under the same assumptions as in Theorem 5, let us suppose
that U is G-regular. Then ([Sn, Un])n�1 converges G-stably in the strong sense
to the product kernel N (0, U) ⊗ εU , where εU denotes the Dirac kernel asso-
ciated with U .

If we assume P{detU > 0} > 0 and if we denote by Vn the random matrix
which coincides with U−1/2

n on {detUn > 0} and which is null elsewhere, then,
under the probability measure P ( · |{detU > 0}), the sequence (VnSn)n�1 con-
verges G-stably in the strong sense to the constant gaussian kernel N (0, Id),
where Id denotes the d-dimensional identity matrix.

Proof. By Corollary 3, the first assertion is a consequence of the previous
theorem. The second assertion follows immediately. ��

Remark 3. In the proof of Theorem 5, we observed that, the condition

knX
∗
n

L1

−→ 0 implies the condition X∗
n

L1

−→ 0. Conversely, if we assume
this last condition, then it is always possible to find a sequence (kn)n�1 of
strictly positive integers such that the first condition holds and, in addition,
such that kn ↑ +∞: more precisely, if we exclude the trivial case in which
the random variables X∗

n are eventually negligible, then it suffices to take
kn = # 1/

√
an $, where an = supm�n E[X∗

m].

The previous remark allows us to obtain as a corollary of Theorem 5 the
following result (the first part of which is already known (see [3]).
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Corollary 7. Let us change the assumptions of Theorem 5 by replacing the
condition knX

∗
n

L1

−→ 0 by the condition X∗
n

L1

−→ 0. Moreover, let us set

Hj = lim infn Fn,j∧ln for j � 0, H =
∨
j�0Hj . (25)

(a) If U is measurable with respect to the σ-field H∨N , then, for each σ-field
J with σ(U) ⊂ J ∨N ⊂ H∨N , the sequence (Sn)n�1 converges J -stably
to the gaussian kernel N (0, U).

(b) If j � 0 is such that U is regular with respect to the conditioning sys-
tem (Fn,j∧ln)n�1, then, for each h � j, the sequence (Sn)n�1 converges
(Fn,h∧ln)n�1-stably in the strong sense to N (0, U).

Proof. (a) By Remark 3, there exists a sequence (kn)n�1 of strictly positive

integers with kn ↑ +∞ and knX
∗
n

L1

−→ 0. Hence, if we denote by G the
conditioning system (Fn,kn∧ln)n�1, we can easily see that the σ-field H is
contained in G∗ (indeed, each Hj is contained in G∗). By Proposition 6, it
follows that U is G-regular. Therefore, by Theorem 5, we have that (Sn)n
converges G-stably in the strong sense to N (0, U). Then, by Corollary 5,
we can conclude the proof of statement (a).

(b) We observe that U is regular with respect to each conditioning system
of the form (Fn,h∧ln)n�1, with h � j. Therefore, the conclusion easily
follows by applying Theorem 5 with kn = h ∨ 1 for each n, and then, if
h = j = 0, Corollary 2 with Gn = Fn,h∧ln , G′

n = Fn,kn∧ln . ��

Remark 4. Without changing the proof, it is possible to extend the statement
of Theorem 5 by replacing the sequence (kn)n�1 by a sequence (Kn)n�1 of
random variables with values in N∗ such that, for each n, the random variable
Kn ∧ ln is a stopping time with respect to the filtration (Fn,j)0�j�ln and

such that X∗
n +

∑Kn∧ln
j=1 |Xn,j | L1

−→ 0. Furthermore, we note that, with some
small changes, the statement of Theorem 5 (and so of Corollary 7) remains
true if we let (ln)n�1 be a sequence of elements of N∗ ∪ {∞} and assume
Fn,∞ =

∨
j∈N Fn,j .

8 Further applications

In this section we shall give further examples which will show how the previous
theory can be applied in order to obtain results of stable convergence in the
strong sense. In the first example we shall obtain a strengthening of the result
in [3] (Th. 2.2), which is already an improvement of some results by Heyde [7]
and Küchler and Sørensen [9] in the setting of likelihood theory for stochastic
processes.

Example 4. On a probability space (Ω,A, P ), let F = (Ft)t∈R+ be a filtration
which satisfies the usual conditions and let us set F∞ =

∨
t∈R+

Ft. Further,
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let M = (Mt)t∈R+ be a d-dimensional real martingale such that M0 = 0 and
such that its trajectories are right-continuous and with limits from the left.
Let us denote by Q the process [M,M ] (with values in the space of positive
semidefinite d × d-matrices). In addition, let (at)t∈T be a family of d × d-
matrices such that (using the same notation as in the previous section) the
following conditions hold:

|at| −→ 0, sup0�s�t |atΔsM |
L1

−→ 0, atQta
′
t

P−→ U

(where U is a F∞-measurable random variable with values in the space of posi-
tive semidefinite d× d-matrices). It is known that, under these assumptions,
the family (atMt)t∈R+ converges A-stably to the gaussian kernel N (0, U) (see
[3], Th. 2.2). Moreover, it is known (see [3], Lemma 3.2) that, under the
same assumptions, it is possible to construct, for each positive real number t,
a stopping time τt in such a way that the following conditions hold:

τt � t, τt → +∞, |atMτt
| L1

−→ 0, |atQτt
a′t|

P−→ 0. (26)

Applying the theory of the previous sections, we can verify that, if (τt)t∈R+ is a
family of stopping times with the above properties, then (atMt)t∈R+ converges
(Fτt

)t∈R+ -stably in the strong sense to the Gaussian kernel N (0, U).
In order to prove this assertion, it suffices to prove that, for any fixed in-

creasing sequence (tn)n�1 of real positive numbers with tn ↑ +∞, if we denote
the stopping time τtn by τn, the sequence (atnMtn)n�1 converges (Fτn

)n�1-
stably in the strong sense to the gaussian kernel N (0, U). We note that, by
the third relation of (26), it is enough to prove that (atn(Mtn −Mτn

))n�1

converges (Fτn
)n�1-stably in strong sense to the kernel N (0, U). To this end,

let us construct (in the same way as in Th. 2.2 of [3]) a triangular array
(Tn,j)n�1, j�0 of stopping times and a sequence (ln)n�1 of strictly positive in-
tegers such that, for each n, the sequence (Tn,j)j�0 is an increasing sequence
of stopping times with Tn,0 = τn, τn � Tn,j � tn and such that, setting

Xn,j = atn
(
MTn,j

−MTn, j−1

)
for 1 � j � ln,

the following properties hold:

P
{∣∣atn(Mtn −Mτn

)−∑ln
j=1Xn,j

∣∣ > n−1
}
< n−1, (27)

P
{∣∣atn(Qtn −Qτn

)a′tn −
∑ln
j=1Xn,jX

′
n,j

∣∣ > n−1
}
< n−1,

sup1�j�ln |Xn,j | � n−1 + sup0�s�tn |atnΔsM |.

Setting Fn,j = FTn,j
for each n � 1, j � 0, it follows that the triangular array(∑h

j=1Xn,j
)
n�1, 0�h�ln
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satisfies the assumptions of Corollary 7(b) with j = 0. Indeed, since τn → +∞,
using notation (25), we have that the σ-field H0 coincides with F∞ (see [3],
Lemma 3.4) and so U is (Fn,0)n�1-regular. Thus, we can affirm that the
sequence (∑ln

j=1Xn,j
)
n�1

(28)

converges stably in the strong sense with respect to (Fn,0)n�1 (i.e. with respect
to (Fτn

)n�1) to the kernel N (0, U). Finally, it suffices to observe that, by (27),
the sequence (

atn(Mtn −MSn
)
)
n�1

differs from the sequence (28) by a sequence which converges in probability
to zero. Let us note that we have used the condition τt → +∞ only in order
to prove the (Fτn

)n�1-regularity of U . Therefore, the convergence result for
(atMt)t∈R+ is still true if we assume this last condition instead of τt → +∞.

Example 5. Let us consider a triangular array (Xn,j)n�1, 1�j�ln of real random
variables, and let us set

Sn =
∑ln
j=1Xn,j , Un =

∑ln
j=1X

2
n,j , X∗

n = sup1�j�ln |Xn,j |.

Further, let (Cn)n be a sequence of sub-σ-fields of A such that, for each fixed
n, the random vector [Xn,j ]1�j�ln is Cn-conditionally jointly symmetric; that
is, for each fixed n and each H ∈ Cn with P (H) �= 0, all the random vectors of
the form [εjXn,j ]1�j�ln , with εj ∈ {−1, 1}, are identically distributed under
PH . For n � 1 and 0 � j � ln, let us denote by Sn,j the σ-field generated by
the random variables of the form g(Xn,1, . . . , Xn,ln), where g is a Borel real
function on Rln such that g(ε1x1, . . . , εlnxln) = g(x1, . . . , xln) for each family
(εi)1�i�ln of coefficients in {−1, 1} with εi=1 for 1 � i � j. Moreover, let us
set

Vn = I{Un>0}U
−1/2
n , Yn,j = VnXn,j , Y ∗

n = sup1�j�ln |Yn,j | = VnX
∗
n.

Since, for each n, the random variable Vn is Sn,0-measurable, it is easy to
see that, for each fixed n, the family

(∑h
j=1 Yn,j

)
0�h�ln is a martingale with

respect to the filtration (Cn∨Sn,j)0�j�ln . Further, we have
∑ln
j=1 Yn,j = VnSn,∑ln

j=1 Y
2
n,j = I{Un>0} and that (Y ∗

n )n�1 is uniformly bounded. Therefore, if
P{Un > 0} → 1 and (Y ∗

n )n converges in probability (and so in L1) to zero,
then, by Corollary 7(b), we obtain that (VnSn)n�1 converges (Cn ∨ Sn,h)n-
stably in the strong sense to the constant kernel N (0, 1), for each h � 0.
More generally, by Theorem 5, we have that, if P{Un > 0} → 1 and there
exists an increasing sequence (kn)n�1 of strictly positive integers such that

knY
∗
n = knVnX

∗
n

L1

−→ 0, then (VnSn)n�1 converges (Cn ∨ Sn,kn∧ln)n-stably in
the strong sense to N (0, 1). These results improve Th. 4.2 and Cor. 4.3 in [4].
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Example 6. On a probability space (Ω,A, P ), let (Yn)n�1 be an exchangeable
sequence of integrable real random variables and let us denote by T its tail
σ-field and by G = (Gn)n�0 its natural filtration. Moreover, let us set

W = E[Y1|T ], Wn = E[Yn+1|Gn] = E[W |Gn].

We assume that the following conditions hold:

(a) n
∑
k�n

(Wk −Wk+1)2
P−→ U,

where U is a positive random variable (which is obviously measurable with
respect to G∞ ∨N =

∨
n�0 Gn ∨N ).

(b)
√
n supk�n |Wk −Wk+1| L1

−→ 0.

If we set Sn =
√
n(Wn −W ), then the sequence (Sn)n�1 converges G-stably

in the strong sense to N (0, U). In order to prove this assertion, it suffices
to apply Corollary 7(b) (together with Remark 4), after observing that the
random variables Sn can be put in the form Sn =

√
n
∑
k�n(Wk−Wk+1) and

that we have G∗ = G∗ = G∞ (because G is increasing).
Let us now suppose, in particular, that, the sequence (Yn)n�1 is the one

associated with the “Pólya urn”. Then conditions (a), (b) are satisfied with
U = W − W 2. Furthermore, if we set Mn = (Y1 + · · · + Yn)/n, we have
√
n(Wn −Mn)

L1

−→ 0. Thus, if we set S′
n =

√
n(Mn −W ), then the sequence

(S′
n)n�1 also converges G-stably in the strong sense to N (0,W −W 2). Let us

note that this sequence also converges to the previous kernel A-stably (but
not in the strong sense because of Corollary 4).
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Notes in Math. 850, Springer, Berlin Heidelberg New York, 529–546



A Strong Form of Stable Convergence 225
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A Stochastic Approach
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Summary. Let φj : Mj → G, j = 1, 2, . . . , n, be harmonic mappings from
Riemannian manifolds Mj to a Lie group G. Then the product φ1φ2 · · ·φn is a
harmonic mapping between M1 × M2 × · · · × Mn and G. The proof is a combina-
tion of properties of Brownian motion in manifolds and Itô formulae for stochastic
exponential and logarithm of product of semimartingales in Lie groups.
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1 Introduction

Let (M, g) and (N,h) be two compact Riemannian manifolds and consider
φ :M → N a C∞-differentiable map. The energy functional (or action integral)
of φ is defined as the integral of the density energy function e(φ)(x)

E(φ) =
∫
M

e(φ)(x)dvg,

where e(φ)(x) = 1/2trg(φ∗h)(x) and vg is the Riemannian volume on M .
A physical interpretation of the energy functional E could be the accumulated
elastic energy on M , when this space is stretched on N .

We say that φ is a harmonic mapping if φ is a critical point of the func-
tional E. The Euler–Lagrange formula in this case can be written in terms of
the connections ∇M and ∇N on M and N , respectively: namely φ is harmonic

1 E-mail: pedrojc@ime.unicamp.br. Research partially supported by FAPESP grant
n◦ 01/13158-4 and 02/10246-2.

2 E-mail: ruffino@ime.unicamp.br. Research partially supported by CNPq grant n◦
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if and only if the tension field τ(φ)(x) = tr(∇̃φ∗−φ∗∇M ) vanishes everywhere
in M , where ∇̃ is the induced connection on the induced bundle φ−1TN (see,
e.g., Urakawa [11]). The definition of harmonic mappings extends naturally
to noncompact manifolds just considering the critical property of the energy
functional locally on M . In particular, we recall that geodesics are harmonic
mappings from the real line to a Riemannian manifold.

Variational problems have been, historically, a non trivial area of interest
both for mathematicians and physicists. In the last couple of decades many
important contributions on harmonic mappings were done, see, e.g., in one
of the seminal papers, Calabi construction of harmonic mappings from two
spheres into symmetric spaces [1]. For a classical text we refer to Eells and
Lemaire [3]. For an approach of harmonic mappings into Lie groups see, e.g.,
Uhlenbeck [10]. This article is a contribution in the topic which comes as an
application of stochastic tools in geometry.

Here we consider harmonic mappings with image in a Lie group G with a
bi-invariant Riemannian metric. In this case the associated (Levi-Civita) left
invariant connection on G, denoted by ∇L, satisfies ∇LXY = 1

2 [X,Y ] for all
X,Y left invariant vector fields in the Lie algebra G, see, e.g., Cheeger and
Ebin [2].

The aim of this paper is to present a direct stochastic proof that a product
of harmonic mappings is a harmonic mapping. More precisely: given φj :
Mj → G, j = 1, 2, . . . , n, harmonic mappings between Riemannian manifolds
Mj and a Lie group G with bi-invariant Riemannian metric, then the product
φ1φ2 · · ·φn is a harmonic mapping between M1 × M2 × · · · × Mn and G.
In the best of our knowledge, this is a new result in harmonic mappings
theory.

Our proof is a combination of properties of Brownian motion in mani-
folds and Itô formulae for stochastic exponential and logarithm of products
of semimartingales in Lie groups. Although we assume that the group has a
bi-invariant metric, one can easily verify that our argument also holds for any
Lie group considering the left connection ∇LXY = 1

2 [X,Y ] if X,Y ∈ G.
We recall that a product of harmonic mappings appears also in other

contexts: we mention here harmonic functions on Lie groups with respect to
a Radon probability measure μ on G, see, e.g., Furstenberg [5]. A function
f : G→ R is called μ-harmonic if

f(g) =
∫
G

f(gh) dμ(h),

for every g in G. If f1 : (G1, μ1) → R and f2 : (G2, μ2) → R are harmonic
functions, then Fubini theorem implies that f1f2 : G1×G2 → R is a μ1×μ2-
harmonic function.

In Section 2 we recall some basic facts and formulae on stochastic calculus
in Lie groups. We refer mainly to Hakim-Dowek and Lépingle [6], nevertheless,
it may happen that someone finds the proofs presented here simpler than in [6].
We shall use these formulae in Section 3, where we prove the main results.
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By convention, all martingales, semimartingales, and local martingales are
assumed to be continuous.

2 Preliminary results

Let M be a Riemannian manifold and consider θXt
∈ T ∗

Xt
M an adapted

stochastic one-form along Xt, an M -valued semimartingale. The integral of
the form θ along X was proposed by Ikeda and Manabe [7] (see also, among
others, Emery [4] or Meyer [9]). This integral is geometrically intrinsic, and it
has a natural description in local charts: let (U, x1, . . . , xn) be a local system
of coordinates in M , then θ can be written as θx = θ1(x) dx1+· · ·+θn(x) dxn,
where θi(x), i = 1, 2, . . . , n, are (C∞, say) functions in M . The Stratonovich
integral of θ along Xt is given by:∫

θ ◦ dXt =
n∑
i=1

∫
θi(Xt) ◦ dXi

t .

Let G be a Lie group with the corresponding Lie algebra G. We denote by
ω the (left) Maurer–Cartan form in G, i.e., if v ∈ TgG, then ωg(v) = Lg−1∗(v).
It corresponds to the unique G-valued left invariant one-form in G.

The logarithm of a semimartingale Xt on G (with X0 = e) is the integral of
the Maurer–Cartan form along Xt, namely, it is the following semimartingale
in the Lie algebra:

(logX)t =
∫ t

0

ω ◦ dXs.

Conversely, consider a semimartingale Mt in the Lie algebra G. We recall
that the (left) stochastic exponential ε(M) of Mt is the stochastic process Xt
which is solution of the Stratonovich left invariant equation on G:{

dXt = LXt∗ ◦ dMt,
X0 = e.

An interesting geometric characterization of the exponential ε(M) is the fact
that it corresponds to the stochastic development of Mt ∈ TeG to the group
G with respect to the left invariant connection ∇L. One easily checks that the
logarithm is the inverse of the stochastic exponential ε.

Martingales in G (with respect to ∇L-connection) and local martin-
gales in the Lie algebra G are related by the following characterization, see
Hakim-Dowek and Lépingle [6]:

Theorem 1. A process Xt on G is a ∇L-martingale if and only if
Xt = X0 · ε(M) for some local martingale M in G.

The pull-back of Maurer–Cartan forms by homomorphisms of Lie groups
is easily described by:
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Lemma 1. Let ϕ : G → H be a homomorphism of Lie groups. Then the
pull-back ϕ∗ωH satisfies, for v ∈ TgG:

(ϕ∗ωH)v = ϕ∗(ωG(v)).

In particular, if X is a semimartingale in G, then ϕ∗(logX) = log(ϕ(X)).

Proof. Once ϕ(Lg−1(h)) = Lϕ(g)−1(ϕ(h)), the chain rule implies that

Lϕ(g)−1∗(ϕ∗(v)) = ϕ∗(Lg−1∗(v)).

For the last formula, by definition: logϕ(X) =
∫
ϕ∗ωH ◦dX. The result follows

directly by the first part of the Lemma and the very definition of ϕ∗ logX. ��

Denote by Ig : G → G the adjoint in the group G given by h 	→ ghg−1.
The map Ig is an automorphism of G and its derivative corresponds to the
isomorphism of the Lie algebra called adjoint in G denoted by Ad(g) = Ig∗ :
G → G. We have that R∗

g ω = Ad(g−1)ω (see, e.g., Kobayashi and Nomizu [8]).
The pull-back of the canonical form by multiplication and inverse is given by:

Proposition 1. Let m : G × G → G be the multiplication and i : G → G be
the inverse in the group. Then the pull-backs satisfy:

a) m∗ω = Ad−1(π2)(π∗
1ω) + π∗

2ω.
b) i∗ω = −Ad ω.

Proof. Let w = (u, v) ∈ T(g,h)G×G % TgG× ThG. Then

m∗ω(w) = ω(m∗w) = ω(Rh∗u+ Lg∗v)
= L(gh)−1∗(Rh∗u+ Lg∗v)
= Lh−1∗Rh∗Lg−1∗u+ Lh−1∗Lg−1∗Lg∗v

= Ad(h−1)ω(u) + ω(v).

For the inverse function, consider the diagonal map Δ : G → G × G given
by Δ(g) = (g, g). We have that m ◦ (Id × i) ◦ Δ = e, then the pull-back
(m ◦ (Id× i) ◦Δ)∗ω = 0 which implies, using the formula of item (a), that

Adω + i∗ω = 0. ��

Lemma 2. Given semimartingales X and Y in G, we have the following Itô
formulas:

a) log(XY ) =
∫
Ad(Y −1) ◦ d(logX) + log Y .

b) log(X−1) = −
∫
Ad(X) ◦ d(logX).
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Proof. The first formula follows from the calculation:

log(XY ) =
∫
ω ◦ dm(X,Y ) =

∫
m∗ω ◦ d(X,Y )

=
∫ (

Ad−1(π2)π∗
1ω + π∗

2ω
)
◦ d(X,Y )

=
∫
Ad(Y −1) ◦ d

(∫
ω ◦ dX

)
+
∫
ω ◦ dY

=
∫
Ad(Y −1) ◦ d logX + log Y.

For the second formula, apply the identity (a) with Y = X−1. ��

We have now a direct way to prove the stochastic Campbell–Hausdorff
formula (cf. Hakim-Dowek and Lépingle [6]).

Theorem 2. We have that:

a) ε(M +N) = ε
(∫

Ad(ε(N)) ◦ dM
)
ε(N).

b) ε(M)−1 = ε
(
−
∫
Ad(ε(M)) ◦ dM

)
.

3 Harmonic mappings

Consider M and N two Riemannian manifolds and let f : M → N be a
C∞-differentiable map. The key point in stochastic geometry which matters
in the question addressed in this article is the following result, due originally
to Bismut:

Theorem 3. A mapping f : M → N is a harmonic mapping if and only if
for all Brownian motion Bt in M , f(Bt) is a ∇N -martingale in N .

See, e.g., Emery [4].

Theorem 4 (Main result). Let φj : Mj → G, j = 1, 2, . . . , n, be harmonic
mappings from Riemannian manifolds Mj to a Lie group G (with respect to the
connection ∇L). Then the product φ1φ2 · · ·φn is a harmonic mapping between
M1 ×M2 × · · · ×Mn and G.

Proof. It is enough to take n = 2. Consider f1 : M1 → G and f2 : M2 → G
two harmonic mappings. Let B1 and B2 be independent Brownian motions in
M1 and M2, respectively. Then (B1, B2) is a Brownian motion in the product
space M1×M2. We have to prove that the product f1(B1)f2(B2) is a martin-
gale in the group G. By Theorem 1 this product is a martingale if and only if
its logarithm is a local martingale.
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By the Itô formula (a) of Lemma 2 we have that:

log(f1(B1)f2(B2)) =
∫
Ad(f2(B2)−1) ◦ d(log f1(B1)) + log f2(B2). (1)

By hypothesis, the integrator log f1(B1) and the last term log f2(B2) are local
martingales. Moreover, the Stratonovich integral reduces to an Itô integral,
since the correction term vanishes by independence of the Brownian motions.
Hence log(f1(B1)f2(B2)) is a local martingale in the Lie algebra G, hence the
product f1 · f2 is harmonic. ��

If the group G is Abelian, the proof above is straightforward since the
adjoint is the identity.

Example 1 (Product of geodesics is harmonic). Let G be a Lie group with a
bi-invariant metric. Consider X1, . . . , Xn elements of the Lie algebra G. Then
the map f : (Rn, <,>) → G defined by

f(t1, . . . , tn) = exp(t1X1) · . . . · exp(tnXn)

is harmonic. Again, with n = 2, given (B1
t , B

2
t ) a Brownian motion on the

plane R2, then:

log
(
exp(B1

tX1) exp(B2
tX2)

)
=
∫ t

0

Ad
(
(exp(B1

sX1))−1
)
◦ d(B2

sX2) +B2
tX2,

where a direct calculation shows that the correction term of the Stratonovich
integral is [X2, X1] d[B1

t , B
2
t ] = 0. Note that this example also holds for general

geodesics (not only starting at the identity).

A corollary of the proof of the theorem shows a partial converse of the
theorem.

Corollary 1. Let f1 : M → G and f2 : N → G be two C∞-differentiable
map. If the product f1 · f2 is harmonic and one of the two mappings, f1 or
f2, is harmonic, then the other map is also harmonic.

Proof. The proof follows from (1), where the Stratonovich integral reduces
to an Itô integral. The left-hand side is a local martingale by hypothesis and
Theorem 1. If f1 is harmonic then the integrator is a local martingale, hence
log f2(B2) is also a local martingale and f2 is harmonic.

On the other hand, if f2 is harmonic, then the (Itô) integral is a local
martingale. By Doob-Meyer decomposition, and the fact that the adjoint Ad
is an isomorphism it follows that log(f1(B1)) is a local martingale, hence f1

is harmonic. ��

The factorization result of the corollary cannot be improved: a harmonic
product may not be product of harmonic components. Consider, for example,
the harmonic function in the Abelian group (R2,+) given by f(x, y) = x2−y2.
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Example 2 (Invariance by geodesic translations). Let f : M → G be a
C∞-differentiable map, and let X1, . . . , Xn be elements of the Lie algebra G.
The map f is harmonic if and only if exp(t1X1)·. . .·exp(tnXn)·f : Rn×M → G
is harmonic. Yet, f is harmonic if and only if f · exp(t1X1) · . . . · exp(tnXn) :
M × Rn → G is harmonic.

Finally, we remark that if the group G is endowed with a bi-invariant
metric then the inverse i : g 	→ g−1 is an isometry, hence a harmonic morph-
ism. Therefore, a map f : M → G is harmonic if and only if f−1 is also
harmonic.
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de Lie. Séminaire de Probabilités XX, Lecture Notes in Mathematics, 1059,
352–374. Springer, Berlin Heidelberg New York, 1986

7. Ikeda, N. and Manabe, S. Integral of differential forms along the path of diffusion
processes. Publ. R.I.M.S., 15, 827–852, 1979

8. Kobayashi, S. and Nomizu, K. Foundations of differential geometry. Vol. 1.
Interscience, New York, 1969
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Summary. We illustrate one further use of hypercontractivity to non-asymptotic
small deviation inequalities on the largest eigenvalue of non-null Wishart matrices
and deformed orthogonal polynomial ensembles.

The study of the asymptotic properties of the largest eigenvalues of ran-
dom matrices gave recently rise to a number of important developments. To
illustrate one typical example in the context of sample covariance matrices,
let GN = G be an N ×N random matrix whose entries are independent stan-
dard complex Gaussian random variables, and denote by XN = X = GG∗

the so-called Wishart matrix (with covariance the identity matrix). Both the
global and local asymptotic regimes of the (real non-negative) eigenvalues
λN1 , . . . , λ

N
N of (1/4N)XN as N → ∞ have been carefully examined. In par-

ticular, the empirical measure on the eigenvalues is known to converge to the
square of the semicircle law (the Marchenko-Pastur distribution) with sup-
port [0, 1], and the largest eigenvalue λNmax to converge almost surely to the
right-hand side of the support (cf. e.g. [1] and the references therein, cover-
ing non-Gaussian entries). Fluctuations of λNmax have been described recently
in [9, 10] where it is shown in particular that

lim
N→∞

P
(
4−1/3N2/3[λNmax − 1] � t

)
= F (t), t ∈ R,

where F is the Tracy-Widom distribution. The result holds more generally
for rectangular matrices G (provided the ratio between rows and columns is
suitably controlled). Such a remarkable result at the unusual N2/3 fluctuation
rate was proven first for the Gaussian Unitary Ensemble by Forrester [7] and
Tracy and Widom [15], and is part of the theory of orthogonal polynomial
ensembles (cf. [5, 9, 11]).

In [12], it was observed that hypercontractive methods may be used to
produce simple non-asymptotic bounds on the largest eigenvalue at the Tracy-
Widom rate in the form of the (upper) small deviation inequality
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P
{
λNmax � 1 + ε

}
�C ε−1/2 e−cNε

3/2
(1)

for numerical constants C, c > 0 and all 0 < ε � 1 and N � 1.
Motivated by questions by Johnstone on the statistical analysis of large

eigenvalues, Wishart matrices with arbitrary covariance matrices have been
recently investigated by Baik, Ben Arous and Péché [4] who detected a striking
phase transition in the asymptotic regime of the largest eigenvalues. As one
simple instance, let Σ = diag (α, 1, . . . , 1), α > 0, be a diagonal covariance
matrix, and let now XN = X = GΣG∗. Then, it was shown in [4] that
whenever α < 2, the behavior of the largest eigenvalue λNmax of (1/4N)XN

is similar to the null case Σ = Id, whereas when α > 2, λNmax jumps outside
the support of the limiting eigenvalue distribution (still the square of the
semicircle law) and fluctuates normally around its limiting value α2/4(α− 1).
At the critical value α = 2, the fluctuation regime N2/3 is still in force, but
with a different limiting distribution (of the Tracy-Widom type). More general
results for rectangular matrices G and a finite number of values different from
1 in Σ are actually described in [4].

The point of this note is to observe that hypercontractive tools may again
be used in this context to obtain simple non-asymptotic upper bounds on the
probability that the largest eigenvalue exceeds its limiting value. No delicate
asymptotics of contour integrals or orthogonal polynomials are required (as
it is the case in the proofs of the asymptotic results). The method moreover
gives a hint on the critical value of the phase transition. For simplicity, we
will restrict ourselves in this note to the preceding simple model X = GΣG∗

with Σ = diag (α, 1, . . . , 1).
The starting point of the investigation is the joint eigenvalue distribution

on RN of the Wishart matrix X = GΣG∗ given by the determinantal repre-
sentation [4, 8]

Z−1ΔN (x) det (φj(xi))
N∏
i=1

μ(dxi), (2)

where ΔN (x) is the Vandermonde determinant, φj(x) = xj−1, j � N − 1,
φN (x) = eβx, β = 1− (1/α) < 1, and μ is the exponential law with parameter
1. As in the classical case [13], the analysis of this model is made possible
by using the underlying orthogonal polynomials for μ, in this case the La-
guerre polynomials Pk, k ∈ N. In particular, the mean empirical measure
mN = E[(1/N)

∑N
i=1 δλN

i
] on the eigenvalues λN1 , . . . , λ

N
N of (1/4N)XN may

then be described as∫
f dmN =

∫
f

(
x

4N

)
pN (x)μ(dx)

where
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pN (x) =
(

1− 1
N

)
1

N − 1

N−2∑
k=0

P 2
k (x)

+
1
N
〈PN−1φN 〉−1PN−1(x)

(
φN (x)−

N−2∑
k=0

〈PkφN 〉Pk(x)
)
.

Here 〈 · 〉 denotes integration with respect to μ and the Pk’s are assumed to
be normalized in L2(μ). (In the null case Σ = Id, replace φN by PN−1.) Note
that by the generating series of the Laguerre polynomials, for every k,

〈PkφN 〉 =
1

1− β

(
β

β − 1

)k
. (3)

Now, for every t � 0,

P
{
λNmax � t

}
� NmN

(
[ t,∞)

)
= N

∫ ∞

4Nt

pN (x)μ(dx).

Using hypercontractivity of the Laguerre operator, it was shown in [12] that,
for every N � 1 and every 0 < ε � 1,∫ ∞

4N(1+ε)

N−1∑
k=0

P 2
k (x)μ(dx) � C ε−1/2 e−cNε

3/2
(4)

where C, c > 0 are numerical, leading thus to (1). The possible new informa-
tion on the deformed ensemble (2) has thus to be searched in the second piece
of the density pN . Two cases have to be considered.

If β < 1/2 (α < 2), then φN = eβx ∈ L2(μ) so that, by (3),

〈PN−1φN 〉−2

∥∥∥∥φN − N−2∑
k=0

〈PkφN 〉Pk
∥∥∥∥2

2

is uniformly bounded in N . Together with (4) and the Cauchy-Schwarz in-
equality, it is then an easy task to conclude that, as in the null case,

P
{
λNmax � 1 + ε

}
� C ε−1/2 e−cNε

3/2

for N � 1, 0 < ε � 1 and constants C, c > 0 depending on α only.
If β > 1/2 (α > 2), by (3) again

〈PN−1φN 〉−2

∥∥∥∥N−2∑
k=0

〈PkφN 〉Pk
∥∥∥∥2

2

is uniformly bounded in N , so that the corresponding contribution of the
density pN is handled as in the preceding case by (4). With slightly more
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efforts, this is also the case when β = 1/2 (α = 2). Therefore, the main
contribution of pN is concentrated in the term

〈PN−1φN 〉−1

∫ ∞

4Nt

PN−1φN μ(dx).

By (3) and Hölder’s inequality, for every p > 1 and (1/p) + (1/q) = 1 such
that βq < 1, the (absolute value of the) latter is bounded above by

(1− β)(1− βq)−1/q

(
1− β

β

)N−1

‖PN−1‖p e−4Nt(1−βq)/q.

Here is the place where hypercontractivity comes again into play. As in [12],
since PN−1 is an eigenfunction of the Laguerre operator with eigenvalue N−1,
hypercontractivity of the Laguerre operator shows that for every p > 2,

‖PN−1‖p � (p− 1)N−1.

Therefore,(
1− β

β

)N−1

‖PN−1‖p e−4Nt(1−βq)/q

� exp
(
(N − 1) log

[
(p− 1)(1− β)/β

]
− 4Nt(1− βq)/q

)
.

Set (p− 1)(1− β)/β = 1 + δ, δ > 0, and optimize in δ → 0. Since

1− βq

q
=
β(1− β)δ

1 + βδ
,

it first appears that the critical value t0 of t is given by

t0 =
1

4β(1− β)
=

α2

4(α− 1)
.

This value is the phase transition identified in [4]. It then appears that when
β > 1/2, i.e. α > 2, the asymptotics is of the order of δ2. However, when
β = 1/2, i.e. α = 2, the Taylor expansion has to be taken at the third order.
It follows more precisely that, for every N � 1, 0 < ε � 1, and some constants
C, c > 0 only depending on α,

〈PN−1φN 〉−1

∫ ∞

4N(t0+ε)

PN−1φN μ(dx) � C ε−β e−cNε
2

when α > 2, whereas

〈PN−1φN 〉−1

∫ ∞

4N(t0+ε)

PN−1φN μ(dx) � C ε−1/4 e−cNε
3/2
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when α = 2. We thus conclude to the following small deviation bound on the
largest eigenvalue λNmax for fixed N . (The polynomial factors are technical and
probably not necessary, see [12].)

Proposition. Let G be a standard complex Gaussian N ×N random matrix,
and let Σ = diag (α, 1, . . . , 1), α > 0. Denote by λNmax the largest eigenvalue
of (1/4N)GΣG∗. Set t0(α) = 1 if α � 2 and t0(α) = α2/4(α − 1) if α � 2.
Set also γ = 1/max(α, 2). Then, for every N � 1, 0 < ε � 1, and constants
C, c > 0 depending on α only,

P
{
λNmax � t0 + ε

}
� C εγ−1 e−cNε

κ

where κ = 2 if α > 2 and κ = 3/2 if α � 2.

This dichotomy is in accordance with the results of [4].

The preceding could be extended to more general non-null sample covari-
ance matrices with a bounded control on the ratio on rows and columns and
a finite number of non-units on the diagonal Σ as studied in [4]. As explained
also in [4], the preceding estimates may be interpreted as bounds on a last pas-
sage percolation model for exponential random variables. The hypercontrac-
tive method may be developed similarly for more general deformed orthogonal
polynomial ensembles of the type (2) as obtained by the introduction of an
(additive or multiplicative) external source in a unitary invariant ensemble
(see [2]). At the fluctuation level, the Hermite ensemble (corresponding to the
choice of a Gaussian distribution μ in (2)) is studied in [14] where similar
phase transitions are observed. Hypercontractivity of the Hermite operator
may be used as above to produce non-asymptotic bounds for these deformed
Gaussian Unitary Ensembles. Applications to the Jacobi ensembles are proba-
bly also possible. Discrete ensembles might require moment methods to reach
similar conclusions. Jumps of the largest eigenvalues outside the spectrum for
non-Gaussian sample covariance matrices is analyzed in the recent contribu-
tion [3] by means of the Stieltjes transform, and for deformed Wigner matrices
in [6]. It would be of interest to quantify these asymptotics results.
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Summary. Although Brownian particles with small mutual electrostatic repulsion
may collide, multiple collisions at positive time are always forbidden.

1 Introduction

A three-dimensional Brownian motion Bt = (B1
t , B

2
t , B

3
t ) does not hit the

axis {x1 = x2 = x3} except possibly at time 0. An easy proof is obtained
by applying Ito’s formula to Rt = [(B1

t − B2
t )

2 + (B1
t − B3

t )
2 + (B2

t − B3
t )

2]
and remarking that up to the multiplicative constant 3 the process R is the
square of a two-dimensional Bessel process for which {0} is a polar state. This
remark will be our guiding line in the sequel.

We consider a filtered probability space (Ω,F , (Ft)t�0,P) and for N � 3
the following system of stochastic differential equations

dXi
t = dBit + λ

∑
1�j 
=i�N

dt

Xi
t −Xj

t

, i = 1, 2, . . . , N

with boundary conditions

X1
t � X2

t � · · · � XN
t , 0 � t <∞ ,

and a random, F0-measurable, initial value satisfying

X1
0 � X2

0 � · · · � XN
0 .

HereBt = (B1
t , B

2
t , . . . , B

N
t ) denotes a standardN -dimensional (Ft)-Brownian

motion and λ is a positive constant. This system has been extensively studied
in [5], [7], [2], [1], [3], [6]. For comments on the relationship between this
system and the spectral analysis of Brownian matrices, and also conditioning of
Brownian particles, we refer to the introduction and the bibliography in [3].

When λ � 1
2 , establishing strong existence and uniqueness is not difficult,

because particles never collide, as proved in [7]. The general case with arbitrary
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coupling strength is investigated in [2] and it is proved in [3] that collisions
occur a.s. if and only if 0 < λ < 1

2 . As for multiple collisions (three or more
particles at the same location), it has been stated without proof in [9] and [4]
that they are impossible. The proof we give below, with a Bessel process
unexpectedly coming in, is just an exercise on Ito’s formula.

2 A remarkable identity in law

We consider for any t � 0

St =
N∑
j=1

N∑
k=1

(Xj
t −Xk

t )2 .

Theorem 1. For any λ > 0, the process S divided by the constant 2N is the
square of a Bessel process with dimension (N − 1)(λN + 1).

Proof. It is purely computational. Ito’s formula provides for any j �= k

(Xj
t −Xk

t )2 = (Xj
0 −Xk

0 )2 + 2
∫ t

0

(Xj
s −Xk

s ) d(Bjs −Bks )

+ 2λ
∑

1�l 
=j�N

∫ t

0

Xj
s −Xk

s

Xj
s −X l

s

ds

+ 2λ
∑

1�m 
=k�N

∫ t

0

Xk
s −Xj

s

Xk
s −Xm

s

ds+ 2 t .

Adding the N(N − 1) equalities we get

St = S0 + 2
N∑
j=1

N∑
k=1

∫ t

0

(Xj
s −Xk

s ) d(Bjs −Bks )

+ 4λ
N∑
j=1

N∑
k=1

∑
1�l 
=j�N

∫ t

0

Xj
s −Xk

s

Xj
s −X l

s

ds + 2N(N − 1)t .

But
N∑
j=1

N∑
k=1

∑
1�l 
=j�N

∫ t

0

Xj
s −Xk

s

Xj
s −X l

s

ds

=
N∑
j=1

N∑
k=1

∑
1�j 
=l�N

[ ∫ t

0

Xj
s −X l

s

Xj
s −X l

s

ds +
∫ t

0

X l
s −Xk

s

Xj
s −X l

s

ds

]

= N2(N − 1)t −
N∑
l=1

N∑
k=1

∑
1�l 
=j�N

∫ t

0

X l
s −Xk

s

X l
s −Xj

s

ds

=
1
2
N2(N − 1)t .
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For the martingale term, we compute

N∑
j=1

(
N∑
k=1

(Xj
s −Xk

s )

)2

=
N∑
j=1

N∑
k=1

N∑
l=1

(Xj
s −Xk

s )(Xj
s −X l

s)

=
N∑
j=1

N∑
k=1

N∑
l=1

(Xj
s −Xk

s )2 +
N∑
j=1

N∑
k=1

N∑
l=1

(Xj
s −Xk

s )(Xk
s −X l

s)

=
N

2
Ss .

Let B′ be a linear Brownian motion independent of B. The process C
defined by:

Ct =
∫ t

0

1I{Ss>0}

N∑
j=1

N∑
k=1

(Xj
s −Xk

s ) dBjs√
N
2 Ss

+
∫ t

0

1I{Ss=0}dB
′
s

is a linear Brownian motion and we have

St = S0 + 2
∫ t

0

√
2NSs dCs + 2N(N − 1)(λN + 1)t ,

which completes the proof. ��

3 Multiple collisions are not allowed

Since multiple collisions do not occur for Brownian particles without interac-
tion, we can guess they do not either in case of mutual repulsion. Here is the
proof.

Theorem 2. For any λ > 0, multiple collisions cannot occur after time 0.

Proof. i) For 3 � r � N and 1 � q � N − r + 1, let

I = {q, q + 1, . . . , q + r − 1}

SIt =
∑
j∈I

∑
k∈I

(Xj
t −Xk

t )2

τ I = inf{t > 0 : SIt = 0} .
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ii) We first consider the initial condition X0. From [2], Lemma 3.5, we
know that for any 1 � i < j � N and any t <∞, we have a.s.∫ t

0

du

Xj
u −Xi

u

< ∞ .

Therefore for any u > 0 there exists 0 < v < u such that X1
v < X2

v

< · · · < XN
v a.s. In order to prove P(τ I = ∞) = 1, we may thus assume

X1
0 < X2

0 < · · · < XN
0 a.s., which implies for any I that SI0 > 0 and so

τ I > 0 a.s.
iii) We know ([8], XI, section 1) that {0} is polar for the Bessel process√
St/
√

2N , which means that τ I = ∞ a.s. for I = {1, 2, . . . , N}. We will
prove the same result for any I by backward induction on r = card(I). As-
sume there are no s-multiple collisions for any s > r. Then

SIt = SI0 + 4
∑
j∈I

∑
k∈I

∫ t

0

(Xj
s −Xk

s ) dBjs

+ 4λ
∑
j∈I

∑
k∈I

∑
l/∈I

∫ t

0

Xj
s −Xk

s

Xj
s −X l

s

ds + 2r(r − 1)(λr + 1)t .

We set for n ∈ N∗, τ In = inf{t > 0 : SIt � 1/n}. For any t � 0,

logSIt∧τI
n

= logSI0 + 4
∑
j∈I

∑
k∈I

∫ t∧τI
n

0

Xj
s −Xk

s

SIs
dBjs

+ 2λ
∑
j∈I

∑
k∈I

∑
l/∈I

∫ t∧τI
n

0

(Xj
s −Xk

s )
SIs

[
1

Xj
s −X l

s

− 1
Xk
s −X l

s

]
ds

+ 2r[(r − 1)(λr + 1)− 2]
∫ t∧τI

n

0

ds

SIs
> −∞ .

From the induction hypothesis we deduce that for j, k ∈ I and l /∈ I, a.s.
on {τ I <∞}, (Xj

τI −X l
τI )(Xk

τI −X l
τI ) > 0 and so∫ t∧τI

0

(Xj
s −Xk

s )
SIs

[
1

Xj
s −X l

s

− 1
Xk
s −X l

s

]
ds

= −
∫ t∧τI

0

(Xj
s −Xk

s )2

SIs

ds

(Xj
s −X l

s)(Xk
s −X l

s)
> −∞ .

The martingale (Mn,Ft∧τI
n
)n�1 defined by

Mn = 4
∑
j∈I

∑
k∈I

∫ t∧τI
n

0

Xj
s −Xk

s

SIs
dBjs



No Multiple Collisions 245

has associated increasing process An = 8r
∫ t∧τI

n

0

ds

SIs
. It follows that

Mn +
1
4
[(r − 1)(λr + 1) − 2]An either tends to a finite limit or to +∞ as n

tends to +∞. Then for any t � 0, logSIt∧τI > −∞ and so P(τ I = ∞) = 1,
which completes the proof. ��

4 Brownian particles on the circle

We now turn to the popular model of interacting Brownian particles on the
circle ([9], [3]). Consider the system of stochastic differential equations

dXi
t = dBit +

λ

2

∑
1�j 
=i�N

cot

(
Xi
t −Xj

t

2

)
dt , i = 1, 2, . . . , N

with the boundary conditions

X1
t � X2

t � · · · � XN
t � X1

t + 2π , 0 � t <∞ .

As expected we can prove there are no multiple collisions for the particles
Zjt = eiX

j
t that live on the unit circle. The proof is more involved and will

be deduced by approximation from the previous one.

Theorem 3. Multiple collisions for the particles on the circle do not occur
after time 0 for any λ > 0.

Sketch of the proof. For the sake of simplicity, we only deal with the
N -collisions. Let

Rt =
N∑
j=1

N∑
k=1

sin2

(
Xj
t −Xk

t

2

)

σn = inf{t > 0 : Rt � 1
n
} .

We apply Ito’s formula to log Rt and get

log Rt∧σn
= log R0 +

N∑
j=1

∫ t∧σn

0

Hj
s dB

j
s +

∫ t∧σn

0

Ls ds

for some continuous processes Hj and L. We divide each integral into an
integral over {Rs � 1

2} and an integral over {Rs < 1
2}. The first type integrals

do not pose any problem. When Rs <
1
2 , we replace Xj

s with

Y js = Xj
s or Y js = Xj

s − 2π
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in such a way that for any j, k we have |Y js −Y ks | < π/3. The processes Hj and
L have the same expressions in terms of X or Y . With this change of variables
we may approximate sinx by x, cosx by 1 and replace the trigonometric
functions by approximations of the linear ones which we have met in the
previous sections. We obtain that

log Rt∧σn
= log R0 + Mn +

1
4
[(N − 1)(λN + 1)− 2]An +

∫ t∧σn

0

Ds ds

where Mn is a martingale with associated increasing process An and D is a.s.
a locally integrable process. Details are left to the reader as well as the case
of an arbitrary subset I like those in Section 3.
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Summary. We give an analytical expression for the joint Laplace transform of
the L1 and L2 norms of a 3-dimensional Bessel bridge. We derive the results by
using merely probabilistic arguments. More precisely we show that the law of this
functional is closely connected with the one of the first passage time of an Ornstein–
Uhlenbeck process. The motivation for studying this problem are multiple; as an
instance, they include the computation of the density of the first passage time of
Brownian motion over some moving boundaries such as the square root and the
quadratic ones.

Key words: Bessel bridges, Ornstein–Uhlenbeck process, Williams’ time-reversal
theorem, Feynman–Kac formula, Cylinder parabolic function, Boundary crossing

1 Introduction

Let (rs, s � t) be a 3-dimensional Bessel bridge over the interval [0, t] between
x and y, where x, y are some positive real numbers and t is a fixed time
horizon. Introduce the couple of random variables

(
N

(1)
t (r), N (2)

t (r)
)

=
(∫ t

0

rsds,

∫ t

0

r2s ds

)
. (1)

In this paper, we aim to compute explicitly its joint Laplace transform. Let
(Wt, t � 0) be a standard real-valued Brownian motion started at x ∈ R

and set H
(λ)
a = inf

{
s � 0; Ws = a

√
1 + 2λs

}
, where λ > 0 and a ∈ R.

Doob’s transform allows to relate H
(λ)
a to the hitting time of the same

∗ Research of the second author was supported by the Credit Suisse Group, the
Swiss Reinsurance Company and UBS AG through RiskLab, Switzerland.
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level a by an Ornstein–Uhlenbeck process with parameter λ. That is, with
σa = inf{s � 0; Us = a} and

Ut = e−λt
(
x+

∫ t

0

eλs dBs

)
, t � 0, (2)

where B is another real-valued Brownian motion defined on the same prob-
ability space, we have Ha = 1

2λ log (1 + 2λσa) almost surely. We shall see
that the determination of the distribution of σa, or equivalently that of Ha,
amounts to the study of the joint distribution of the L1 and L2 norms of
a 3-dimensional Bessel bridge. While we are interested in the joint law, we
mention that there is a substantial literature devoted to the study of the law
of the L1 norm of the Brownian excursion, that is, when x = y = 0, see
e.g. [18], [9], [21] and [12]. The L2 norm of the Bessel bridge, which is closely
related to the Lévy stochastic area formula, has also been intensively studied
by many authors including for instance [22], [6] and the references therein.

Then, we establish a relation between the first passage times of Brownian
motion over a large class of (smooth) curves and over the linear or quadratic
ones. As a by-product, we establish some connections between certain stochas-
tic objects and some special functions. We will show that this device applies
to continuous time stochastic processes.

The paper is organized as follows. The next section recalls known facts
concerning Bessel and Ornstein–Uhlenbeck processes. In particular, we give
a probabilistic construction of the cylinder parabolic function which charac-
terizes the Laplace transform of the first hitting time of fixed level by an
Ornstein–Uhlenbeck process. In Section 3, we derive the sought joint law in
terms of transforms via stochastic techniques for the case y = 0. For y > 0, we
resort to the Feynman–Kac formula. Then, we establish some relation between
stopping times for general stochastic processes which we apply to Brownian
motion. This link yields asymptotic results for the parabolic cylinder func-
tions. We end up this paper by making some connections between the studied
law and the one of some other functionals.

2 Preliminaries and reminders

Let (Bt, t � 0) be a 1-dimensional Brownian motion starting from 0. The
3-dimensional Bessel process, denoted by R, is defined as the unique strong
solution to

dRt = dBt +
1
Rt

dt, R0 = x � 0.

This is a linear diffusion with speed measure m(dy) = 2y2dy. Its semi-group
is absolutely continuous with respect to m with density

qt(x, y) =
1

2
√

2πt
1
yx

(
e−

1
2t (x−y)2 − e−

1
2t (x+y)2

)
, x, y, t > 0
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and taking the limit as x tends to zero we obtain

qt(0, x) =
1√
2πt3

e−
x2
2t , x, t > 0.

We shall denote by Qx the law of R when it is started at x and we simply
write Q for x = 0. Next, for y and t � 0, the conditional measure Qt

x,y =
Qx[ . | Rt = y], viewed as a probability measure on C ([0, t], [0,∞)), stands
for the law of the 3-dimensional Bessel bridge starting at x and ending at
y at time t. Since R is transient, we have Qt

x,y = Qx[ . | Ly = t] where
Ly = sup{s � 0; Rs = y}. Williams’ time reversal relation states that, for
R0 = 0, B0 = x > 0, the processes (RLx−s, s � Lx) and (Bs, s � T0) are
equivalent, where T0 = inf{s � 0; Bs = 0}.

We continue by recalling some facts on Ornstein–Uhlenbeck processes (OU
processes for short). For an OU process with parameter λ ∈ R, the realization
given by (2) is also the unique strong solution to

dUt = dBt − λUtdt, U0 = x ∈ R. (3)

Denote by P
(λ)
x the law of U when U0 = x ∈ R and write simply P(λ) for

P
(λ)
0 . By Girsanov’s theorem, P

(λ)
x is absolutely continuous with respect to the

Wiener measure Px via

dP
(λ)
x|Ft

= e
−λ

2 (B2
t −x2−t)−λ2

2

∫ t

0
B2

u du dPx|Ft
, t > 0, (4)

where (Ft)t�0 is the natural filtration of B. Obviously we can write∫ t

0

eλs dBs = Wτ(t) and Wt =
∫ A(t)

0

eλs dBs, t � 0,

where τ(t) = 1
2λ (e2λt − 1), A(t) = 1

2λ log (1 + 2λt), and W is a Brownian
motion thanks to the Lévy’s characterization theorem, see [23]. Hence, Doob’s
representation

Ut = e−λt
(
x+Wτ(t)

)
, t � 0, (5)

holds. The relation between the stopping times σa and H
(λ)
a , discovered

by Breiman [3] and recalled in the introduction, is a straightforward con-
sequence of this fact. The process U is a linear diffusion. Moreover, when
λ > 0, it is positively recurrent and its semi-group has a unique invari-
ant measure which is the law of a centered Gaussian random variable with
variance 1/2λ. Next, for a fixed a ∈ R, introduce the random variable
σa = inf{s � 0; Us = a}. It is a stopping time whose law is absolutely contin-
uous with respect to the Lebesgue measure with a probability density function
p
(λ)
x→a, i.e. P

(λ)
x (σa ∈ dt) = p

(λ)
x→a(t) dt. For Brownian motion, recovered when

λ tends to 0, we recall that

px→a(t) =
|a− x|√

2πt3
e−

(a−x)2

2t .
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We are now ready to derive the expression of the Laplace transform of σa.
This is a well-known result which can be found in Breiman [3]. However, we
give a proof which relies on probabilistic arguments.

Proposition 1. For any x, a ∈ R and β � 0, we have

Ex
[
e−βσa

]
=
eλx

2/2D−β/λ(εx
√

2λ)

eλa2/2D−β/λ(εa
√

2λ)
, (6)

where ε = sgn(x− a) and Dν stands for the parabolic cylinder function which
admits the following integral representation

Dν(z) =
2

ν+1
2 e−z

2/4

Γ
(

1−ν
2

) ∫ ∞

0

(
t2 + z2

)ν/2
t−νe−t

2/2 dt, (7)

where Re(ν) < 1, |arg(z)| < π
2 .

Proof. Doob’s transformation implies the identity Hx→a = τ(σa) almost
surely, where Hx→a = inf

{
s � 0; Ws + x = a

√
1 + 2λs

}
. Specializing on

a = 0 we deduce that p(λ)
x→0(t) = τ ′(t)px→0(τ(t)). Hence, one has

p
(λ)
x→0(t) =

|x|√
2π

exp
(
− λx2e−λt

2 sinh(λt)
+
λt

2

)(
λ

sinh(λt)

)3/2

. (8)

It follows that

Ex
[
e−βσ0

]
=
∫ ∞

0

e−βtτ ′(t)px→0(τ(t)) dt

=
|x|√
2π

∫ ∞

0

(1 + 2λt)−β/2λ t−3/2e−x
2/2t dt

=
2√
π

∫ ∞

0

(
t2 + λx2

)−β/2λ
tβ/λe−t

2
dt.

The strong Markov property yields the following identity

σx→0
(d)
= σx→a + σ̂a→0, x � a � 0,

where σ̂a→0 is an independent copy of σa→0. It follows that

Ex
[
e−βσa

]
=

∫∞
0

(
t2 + λx2

)−β/2λ
tβ/λe−t

2
dt∫∞

0
(t2 + λa2)−β/2λ tβ/λe−t2 dt

.

By using the integral representation of the cylinder parabolic function (7),
we get

Ex
[
e−βσa

]
=
eλx

2/2D−β/λ(−x
√

2λ)

eλa2/2D−β/λ(−a
√

2λ)
, x � a � 0.
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Next, we observe that the symmetry of B in (2) allows to recover the case
x � a � 0. The proof is then completed since we have computed the two
functions, the increasing and decreasing one, which characterized the Laplace
transform of σa, see Itô and McKean [11]. �

3 On the law of
(
N

(1)
t (r), N

(2)
t (r)

)
For any β > 0, we introduce the resolvent kernel, or the Green’s function, Gβ
given, for α � 0 and λ real, by

Gβ(x, y)dy =
∫ ∞

0

e−βtEx
[
e−

λ2
2 N

(2)
t (R)−αN(1)

t (R), Rt ∈ dy
]
dt, x, y � 0.

As we shall see below, we haveGβ(x, y) = w−1
β m(y)φβ(x∧y)ψβ(x∨y) where φβ

(respectively, ψβ) is the only solution (up to multiplicative positive constants)
which is decreasing, positive and bounded at +∞ (respectively, increasing,
positive and bounded at 0) of the Sturm–Liouville equation

2−1ϕ′′(x) + x−1ϕ′(x)−
(
2−1λ2x2 + αx+ β

)
ϕ(x) = 0, x > 0. (9)

Note that in the case when λ = 0 (respectively α = 0), the corresponding
Green function is already known, see e.g. [2, Formula 5.1.8.5], (respectively
Formula 5.1.9.5). For a fixed t � 0, let us introduce the notation

Πλ,α
x→y(t) = Ex

[
e−

λ2
2 N

(2)
t (R)−αN(1)

t (R)
∣∣Rt = y

]
, x, y, α � 0, λ ∈ R.

We denote simply Πλ,α
x (t) (respectively Πλ,α(t)) for Πλ,α

x→0(t) (respectively,
Πλ,α

0→0(t)).

Remark 1. We point out that, thanks to the scaling property of Bessel
processes, we have the identity Πλ, α

x→y(t) = Πλt2, αt3/2

x√
t
→ y√

t

(1).

3.1 Stochastic approach for the case y = 0

We shall now show how to exploit the results of the former section in order
to compute Πλ,α

x (t).

Proposition 2. For x, λ, β > 0 and α � 0, we have

∫ ∞

0

e−βtqt(x, 0)Πλ,α
x (t) dt =

1
x

D− β
λ− 1

2+ α2

2λ3

(√
2λ
(
x+ α

λ2

))
D− β

λ− 1
2+ α2

2λ3

(√
2αλ−3/2

) .

Consequently, we have
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0

(
e−βt − 1

)
Πλ,α(t)

dt√
2πt3

=
√

2λ

⎛⎜⎝D
(x)

− β
λ− 1

2+ α2

2λ3

(√
2αλ−3/2

)
D− β

λ− 1
2+ α2

2λ3

(√
2αλ−3/2

) − D
(x)
α2

2λ3 − 1
2

(√
2αλ−3/2

)
D α2

2λ3 − 1
2

(√
2αλ−3/2

)
⎞⎟⎠ ,

where D(x)
ν (y) = ∂Dν(x)

∂x |x=y.

Proof. Fix a = α/λ2, observe that

Πλ,aλ2

x (t) = ea
2λ2t/2 Ex

[
e
−λ2

2

∫ t

0
(Ru+a)2 du ∣∣Rt = 0

]
, (10)

and recall that Lx = sup{s � 0; Rs = x} and Ta = inf{s � 0; Bs = a}.
Following a line of reasoning similar to [7], we get

Ex

[
e
−λ2

2

∫ t

0
(Ru+a)2 du ∣∣Rt = 0

]
= Ex+a

[
e
−λ2

2

∫ t

0
B2

u du
∣∣Ta = t

]
, (11)

where we used the properties of Bessel bridges recalled in Section 2. Now,
thanks to the absolute-continuity relation (4), we can write

p
(λ)
x+a→a(t) = e

λ
2 (x2+2ax+t)Ex+a

[
e
−λ2

2

∫ t

0
B2

u du
∣∣Ta = t

]
px→0(t) . (12)

A combination of (10), (11) and (12) leads to

e(
1
2a

2λ2−λ
2 )tp(λ)

x+a→a(t) = e
λ
2 x

2+aλxpx→0(t)Πλ,α
x (t).

By taking the Laplace transform with respect to the variable t on both sides
and making use of (6) we get the first assertion. To prove the second one, it
is enough to let x tend to 0 in the following formula∫ ∞

0

(
e−βt − 1

)
e−x

2/2tΠλ,α
x (t)

dt√
2πt3

=
1
x

⎛⎜⎝D− β
λ− 1

2+ α2

2λ3

(√
2λ
(
x+ α

λ2

))
D− β

λ− 1
2+ α2

2λ3

(√
2αλ−3/2

) −
D− 1

2+ α2

2λ3

(√
2λ
(
x+ α

λ2

))
D− 1

2+ α2

2λ3

(√
2αλ−3/2

)
⎞⎟⎠ .

�

Below, we give a straightforward reformulation of the previous result,
which is based on the Laplace transform inversion formula. To this end, we
recall the expression of the density of σa as a series expansion which can be
found for instance in [1] and [17]. That is, for real x and a, we have
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p(λ)
x→a(t) = −λeλ(x2−a2)/2

∞∑
n=1

Dνn,ε
√

2λa

(
ε
√

2λx
)

D
(ν)
νn,ε

√
2λa

(
ε
√

2λa
) e−λνn,ε

√
2λa

t, (13)

where we set ε = sgn(x − a), D(ν)
νn,b(b) = ∂Dν(b)

∂ν |ν=νn,b
and the sequence

(νj,b)j�0 stands for the ordered positive zeros of the function ν → Dν(b).

Corollary 1. For λ, x, t > 0 and α � 0, we have

Πλ,α
x (t) = −λ

x

√
2πt3e

(
α2

λ2 −λ
)
t/2+x2/2t

∞∑
n=1

Dνn,c

(√
2λ
(
x+ α

λ2

))
D

(ν)
νn,c

(√
2αλ−3/2

) e−tλνn,c ,

(14)
where we set c =

√
2αλ−3/2.

The proof is omitted and left to the reader.

3.2 Extension to y > 0 using Feynman–Kac formula

Our aim here is to provide an extension of the previous result to all positive
real y by using the Feynman–Kac formula.

Proposition 3. For y, x, β, λ > 0 and α � 0, we have∫ ∞

0

e−βtqt(x, y)Πλ,α
x→y(t) dt

=
Γ
(
β
λ + 1

2 − α2

2λ3

)
y

√
λπD− β

λ− 1
2+ α2

2λ3

(
αλ−2/3

)
x
S− β

2λ− 1
2+ α2

2λ3

(√
2λ
(
x ∧ y +

α

λ2

)
,
√

2αλ2/3
)

×D− β
λ− 1

2+ α2

2λ3

(√
2λ
(
x ∨ y +

α

λ2

))
,

where Sα(x, y) = Dα(−x)Dα(y)−Dα(x)Dα(−y).

Proof. We shall prove our statement by a method similar to that used by
Shepp [26]. Set F yε (x) = 1

2ε I{|x−y|<ε} and a(x) =
(
λ2

2 x
2 +αx+β

)
. First, note

that

lim
ε→0

Ex

[∫ ∞

0

e−βte
−
∫ t

0
a(Rs) ds

F yε (Rt) dt
]

=
∫ ∞

0

e−βtqt(x, y)Πλ,α
x→y(t) dt.

Then, the Feynman–Kac formula states that

uε(x) = Ex

[∫ ∞

0

e−βte
−
∫ t

0
a(Rs) ds

F yε (Rt) dt
]
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is the bounded solution of
1
2
u′′ε (x) +

1
x
u′ε(x)− a(x)uε(x) = F yε (x), x > 0. (15)

In order to solve this equation, we first consider the following homogeneous
one

1
2
u′′(x) +

1
x
u′(x)− a(x)u(x) = 0, x > 0.

Setting u(x) = x−1v(x), we get that v satisfies the Weber equation

1
2
v′′(x) =

(
λ2

2
x̄2 − α2

2λ2
+ β

)
v(x), x > 0, (16)

where x̄ = x + α
λ2 . A fundamental solution of (16) is expressed in terms of

the parabolic cylinder function D− β
λ− 1

2+ α2

2λ3

(√
2λx̄

)
, see e.g. [8]. Thus, the

solution of (16) which is positive and decreasing is given by

ϕ(x) = x−1D− β
λ− 1

2+ α2

2λ3

(√
2λx̄

)
, x > 0.

The solution of (16) which is positive and increasing has the form

ψ(x) = x−1
(
c1D− β

λ− 1
2+ α2

2λ3

(
−
√

2λx̄
)

+ c2D− β
λ− 1

2+ α2

2λ3

(√
2λx̄

))
,

where c1 and c2 are constants. With the choice c1 = D− β
λ− 1

2+ α2

2λ3

(√
2αλ−

3
2
)

and c2 = −D− β
λ− 1

2+ α2

2λ3

(
−
√

2αλ−
3
2
)
, we check that ψ(x) is bounded at 0.

The two solutions are linearly independent and their Wronskian, normalized
by the derivative of the scale function s′(x) = x−2, is given by

wβ = D− β
λ− 1

2+ α2

2λ3

(√
2αλ−

3
2
)
wDβ

where wDα = 2
√
λπ

Γ
(

β
λ + 1

2− α2

2λ3

) is the Wronskian of the cylinder parabolic func-

tions. Next, we recall the Green formula for the solution of the nonhomoge-
neous ode (15), that is with second member given by F yε

uε(x) =
1
wβ

(
ϕ(x)

∫ x

0

ψ(r)F yε (r)m(dr) + ψ(x)
∫ ∞

x

ϕ(r)F yε (r)m(dr)
)
,

wherem(dr) = 2r2dr is the speed measure of the 3-dimensional Bessel process.
The proof is then completed by passing to the limit as ε tends to 0. �

Remark 2. Observing that limx→0 x
−1Sα(x, y) = wDα , we recover the result of

Proposition 2.

Remark 3. In the same vein as Corollary 1, it is possible to derive an expression
of the joint Laplace transform Πλ,α

x→y(t) as a series expansion.
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4 Connection between the law of first passage times

Set λ > 0 and introduce the function fδ(λt) = δg(λt)− μλt− y where g is a
twice continuously differentiable function on a neighbourhood of 0, and α, μ
and y are some real numbers. Let Z be a continuous time stochastic process.
Introduce the stopping times

T δy,μ = inf{s � 0; Zs = fδ(λs)}
Lα = inf{s � 0; Zs = αs}
Sα = inf

{
s � 0; Zs = −α

2
s2
}
.

We shall describe a device which allows to connect the law of the first passage
times T δy,μ, simply denoted by T δy for μ = 0, over the linear boundary and
over the quadratic one. As an application, we shall apply this technique to
the Brownian case and derive some limit results of the cylinder parabolic
functions. This limit result can also be used as a test for checking the validity
of the hitting time densities.

Proposition 4. Let δ(1)λ = α/λ. Assume g′(0) �= 0, then

lim
λ→0

T
δ
(1)
λ

δ
(1)
λ
g(0)

= Lαg
′(0) a.s.. (17)

Next, let δ(2)λ = α/λ2. Assume g′′(0) �= 0, then

lim
λ→0

T
δ
(2)
λ

δ
(2)
λ
g(0),δ

(2)
λ
g′(0)

= S−αg′′(0) a.s.. (18)

Proof. The assertions follows from the following expansion

fδλ
(λt) = δλg(0)− y + λ(δλg′(0)− μ)t+

λ2

2
δλg

′′(0)t2 + o(λ2). �

4.1 Brownian motion and the square root boundary

We apply the previous technique to the first passage time of Brownian motion
over the curve fδ(λt) = δ

√
1 + 2λt − μλt − y in order to evaluate some well-

known limits of the ratio of parabolic cylinder functions.

Linear case

In this case, we set μ = 0 and δ = y = α/λ and state the following result.

Corollary 2. Let β > 0, x, α ∈ R then we have

lim
λ→0

D− β
2λ

(√
2λ
(
x+ α

λ

))
D− β

2λ

(√
2αλ−1/2

) = e−|x|
√
α2+2β .
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As a consequence, we also have

lim
λ→0

λeλ(x
2−2 α

λ x)/2
∞∑
n=1

Dνn, α
λ

√
2λ

(
√

2λx)

D
(ν)
νn, α

λ

√
2λ

(
√

2αλ−1/2)
e−λνn,εa

√
2λt=

x√
2πt3

e−
1
2t (x−αt)2.

Proof. First, by combining Doob’s transformation with Proposition 1, we
recover the result of Breiman [3] about the Mellin transform of T δδ

Ex

[(
1 + 2λT δδ

)−β/2λ]
= eαx

D− β
2λ

(√
2λ
(
x+ α

λ

))
D− β

2λ

(√
2αλ−1/2

) .

Next, recall that the Laplace transform of Lα is specified by, see e.g. [13, p.197],

Ex

[
e−βL

α
]

= eαx−|x|
√
α2+2β .

The statement follows readily from Proposition 4. �

Quadratic case

In what follows, we investigate the second-order expansion. We start by com-
puting the law of Sα, the first passage time of Brownian motion over the
second-order boundary. In the case xα > 0, its law has been computed by
Groeneboom [9] and Salminen [24] in terms of the Airy function, see e.g. [15].
For the sake of completeness we recall their approach.

Lemma 1. For β and α, x > 0, hold the relations

Ex

[
e−βS

α

G(Sα)
]

=
Ai
(
21/3 β+αx

α2/3

)
Ai
(
21/3 β

α2/3

)
where G(t) = e

1
6α

2t3 and

Px(Sα ∈ dt) = (2α2)1/3e−
1
6α

2t3
∞∑
k=0

Ai
(
zk − (2α)1/3

)
Ai′(zk)

e2
−1/3α2/3zkt dt,

where (zk)k�0 is the decreasing sequence of negative zeros of the Airy function.

Proof. Let us denote by Pα the law of the process
(
Bt + α

2 t
2, t � 0

)
. We have

the following absolute continuity relation

dPαx|Ft
= e

α
∫ t

0
s dBs−α2

6 t
3

dPx|Ft

= e
αtBt−α

∫ t

0
Bs ds−α2

6 t
3

dPx|Ft
, t > 0,
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where the last line follows from Itô’s formula. An application of Doob’s
optional stopping theorem yields

Ex

[
e−βS

α

G(Sα)
]

= Ex

[
e
−βT0−α

∫ T0

0
Bsds

]
.

As in the previous section, the expectation on the right-hand side can be
computed via the Feynman–Kac formula. It is the solution to the boundary
value problem

1
2
u′′(x)− (αx+ β)u(x) = 0, x > 0,

u(0) = 1, lim
x→∞

u(x) = 0,

which is given in terms of the Airy function, see e.g. [12]. The expression of
the density is a consequence of the Laplace transform inversion formula and
the residue theorem, see [9] or [24] for more details. �
Remark 4. By analogy to the results of Section 3, we have

lim
λ→0

∫ ∞

0

e−βtqt(x, 0)Πλ,α
x (t) dt =

Ai
(
21/3 β+αx

α2/3

)
Ai
(
21/3 β

α2/3

) ,

Π0,α
x (t) =

√
2πt3e

x2
2t

(
2α2

)1/3 ∞∑
k=0

Ai
(
zk − (2α)1/3

)
Ai′(zk)

e

(
α2
2

)1/3
zkt dt

and finally∫ ∞

0

(
e−βt − 1

)
Π0,α(t)

dt√
2πt3

= (2α)1/3

⎛⎝Ai′
(
21/3 β

α2/3

)
Ai
(
21/3 β

α2/3

) − Ai′ (0)
Ai (0)

⎞⎠ .

Remark 5. We mention that the other case, i.e. αx < 0, has been studied by
Martin-Löf [19].

Next, we define the process (U (μ)
t , t � 0) as the solution to the stochastic

differential equation

dU
(μ)
t =

(
−λU (μ)

t + μeλt
)
dt+ dBt, U

(μ)
0 = x ∈ R.

Note that U (μ) can also be expressed as follows

U
(μ)
t = e−λt

(
x− μ

2λ
+

μ

2λ
e2λt +

∫ t

0

eλsdBs

)
, t � 0.

For real numbers x and a, we introduce the stopping time σ(μ)
a = inf

{
s � 0;

U
(μ)
s = a

}
and denote by p

(λ,μ)
x→a (t) its density. Let us also introduce the func-

tion Gλ(t) = e
μ2

2 τt−μeλta, t � 0. The law of σ(μ)
a is characterized in the

following.
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Proposition 5. For β > 0, we have

Ex

[
e−βσ

(μ)
a Gλ(σ(μ)

a )
]

=
eλx

2/2−μxD− β
λ

(
εx
√

2λ
)

eλa2/2D− β
λ

(
εa
√

2λ
) . (19)

where we set ε = sgn(x− a). In particular,

p
(λ,μ)
x→0 (t) =

| x |√
2π

e−μe
λt( μ

2 sinh(λt)−a)−μx− λx2e−λt

2 sinh(λt)+
λt
2

(
λ

sinh(λt)

)3/2

. (20)

Proof. The first assertion follows from the following absolutely continuity
relation

dP
(λ,μ)
x|Ft

= eμe
λtXt−μx−μ2

2 τt dP
(λ)
x|Ft

, t > 0 (21)

and the application of Doob’s optional stopping theorem. We point out that
the exponential martingale is the one associated with the Gaussian martingale(
Bτ(t), t � 0

)
. The expression of the density in the case a = 0 is obtained

from the Laplace inversion formula of the parabolic cylinder function, see
Formula (8). �

Remark 6. An expression of the density p
(λ,μ)
x→a (t) is given in Daniels [4] as a

contour integral. The author used a technique suggested by Shepp [25].

Let us now introduce the stopping times H(λ,μ)
x→a = inf

{
s � 0; x+Bs + μs =

a
√

1 + 2λs
}

and Sαx = inf
{
s � 0; Bs + x = −α

2 s
2
}
. We denote by p

(λ,μ)
x→a

(respectively, qαx ) the density of H(λ,μ)
x→a (respectively, Sαx ). We proceed by

giving some relationships between these different hitting times.

H(λ,μ)
x→a = τ

(
σ(λ,μ)
x→a

)
a.s., (22)

lim
λ→0

H
(λ,α

λ )
x+ α

λ2 → α
λ2

= Sαx a.s.. (23)

We are now ready to state the following limit result which can be found for
instance in [5].

Corollary 3. For β, α and x > 0, we have

lim
λ→0

D− β
λ− 1

2+ α2

2λ3

(√
2λ
(
x+ α

λ2

))
D− β

λ− 1
2+ α2

2λ3

(√
2αλ−3/2

) =
Ai
(
21/3 β+αx

α2/3

)
Ai
(
21/3 β

α2/3

)
Proof. Substituting β by β − α2

2λ2 , x by x+ α
λ2 and setting a = α

λ2 and μ = α
λ

in (19), we get
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D− β
λ + α2

2λ3

(√
2λ
(
x+ α

λ2

))
D− β

λ + α2

2λ3

(√
2αλ−3/2

)
= e−

λ
2 x

2+ α2

λ3

∫ ∞

0

e
−
(
β− α2

2λ2

)
t+ α2

2λ2 τt−α2

λ3 e
λt

p
(λ,α

λ )
x+ α

λ2 → α
λ2

(t) dt

Note that τ
(
H

(λ,α/λ)
x+ α

λ2 → α
λ2

)
→ Sαx a.s., as λ→ 0. Thus, we have

lim
λ→0

e−
λ
2 x

2+ α2

λ3

∫ ∞

0

e
−
(
β− α2

2λ2

)
t+ α2

2λ2 τt−α2

λ3 e
λt

p
(λ,α

λ )
x+ α

λ2 → α
λ2

(t) dt

=
∫ ∞

0

e−βt+
1
6α

2t3qαx (t) dt =
Ai
(
21/3 β+αx

α2/3

)
Ai
(
21/3 β

α2/3

) .
where the last expression follows from Lemma 1. �

Remark 7. We mention that Lachal [14] establishes the following identity

Ex

[
e
−βσ0−α

∫ σ0

0
Us ds

]
= e

λ
2 x

2
D− β

λ + α2

2λ3

(√
2λ
(
x+ α

λ2

))
D− β

λ + α2

2λ3

(√
2αλ−3/2

)
which gives the following relation∫ ∞

0

e−βt−x
2/2tt−3/2Πλ,α,(1)

x (t) dt = e−
λ
2 x

2
Ex

[
e
−(β+ λ

2 )σ0−α
∫ σ0

0
Us ds

]
.

We also indicate that the author computed the limit as λ→ 0 to recover the
result of Lefebvre [16] stating that

Ex

[
e
−βT0−α

∫ T0

0
Bs ds

]
=
Ai
(
21/3 β+αx

α2/3

)
Ai
(
21/3 β

α2/3

) .
In order to compute the expression of the limit of the Laplace transform, he
used an asymptotic result of the cylinder parabolic function which has been
derived by the steepest descent method in [5].

4.2 Another limit

From Proposition 2, we readily derive

lim
α→0

∫ ∞

0

e−βtxe−x
2/2tΠλ,α

x (t)
dt√
2πt3

=
D− β

λ− 1
2

(√
2λx

)
D− β

λ− 1
2

(0)
.
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We recall and show the following well-known results regarding the Laplace
transform of the L2 norm of Bessel bridges. In conjunction with (8), we extract
the relation

Πλ
x (t) =

(
λt

sinh(λt)

) 3
2

e−
x2
2t (λt coth(λt)−1). (24)

Since in this case the zeros of the function ν 	→ Dν(0) = 2ν Γ ( 1
2 )

Γ( 1−ν
2 ) correspond

to the odd poles of the Γ function, we also have

Πλ
x (t) = −λ

x

√
2πt3e

x2
2t

∞∑
n=1

D2n+1

(
x
√

2λ
)

D
(ν)
2n+1(0)

e−2(n+1)λt.

From the expression (24), it is easy to derive the generalized Lévy stochastic
area formula, see e.g. [22]. Indeed for any δ > 0, denoting by Π

λ,(δ)
x the

Laplace transform of the L2 norm of a δ-dimensional Bessel process, thanks
to the additivity property of the squared Bessel processes, we have

Πλ,(δ)
x (t) =

(
λt

sinh(λt)

) δ
2

e−
x2
2t (λt coth(λt)−1). (25)

In [6] the inverse of the Laplace transform Π
λ,(δ)
x (t) is given in terms of the

parabolic cylinder functions.

5 Comments and some applications

Our aim here is first to examine the law of the studied functional when the
fixed time T is replaced by some interesting stopping times. To a stopping
time S we associate the following notation

Σ(δ)
x (S) = E(δ)

x

[
e
−βS−λ2

2

∫ S

0
R2

u du−α
∫ S

0
Ru du

]
,

where β, λ > 0, α � 0 and E
(δ)
x denotes the expectation operator derived from

Qδ
x, the law of the δ-dimensional Bessel process starting from x�0.

Next, with Hy = inf{s � 0; Rs = y} and S = Hy, we state the following
result.

Proposition 6. Let x � y > 0.

Σ(3)
x (Hy) =

y

x

D− β
λ− 1

2+ α2

2λ3

(√
2λ(x+ αλ−2)

)
D− β

λ− 1
2+ α2

2λ3

(√
2λ(y + αλ−2)

) . (26)
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Proof. First, recall the following absolute continuity relation

dPx|Ft
= (Rt/x)−1

dQ
(3)
x|Ft

, on {H0 > t};

then observe that Hy < H0 a.s. since x � y. Next, denote by σ
(μ)
x the first

passage time to a fixed level x ∈ R of the OU process when the Brownian
motion in the SDE (3) is replaced by a Brownian motion with drift μ ∈ R.
The determination of its density, denoted by (μ)p

(λ)
x→a(t), can be reduced to

the case μ = 0 as follows

(μ)p(λ)
x→a(t) = p

(λ)

x−μ
λ→a−μ

λ
(t), t > 0.

Thus, we have

Σ(3)
x (Hy) = E(3)

x

[
e
−βHy−λ2

2

∫ Hy

0
R2

s ds−α
∫ Hy

0
Rs ds

]
=
y

x
Ex

[
e
−βTy−λ2

2

∫ Ty

0
B2

s ds−α
∫ Ty

0
Bs ds

]
=
y

x
e

λ
2 (y2−x2)Ex

[
e
−(β+ λ

2 )σy−α
∫ σy

0
Us ds

]
=
y

x
e

λ
2 (y2−x2)+ α

λ (y−x) Ex

[
e
−
(
β+ λ

2 − α2

2λ2

)
σ

( α
λ

)
y

]

=
y

x

D− β
λ− 1

2+ α2

2λ3

(√
2λ(x+ αλ−2)

)
D− β

λ− 1
2+ α2

2λ3

(√
2λ(y + αλ−2)

) . �

Corollary 4. For any x � y > 0, we have

Σ(1)
x (Hy) =

D− β
λ− 1

2+ α2

2λ3

(√
2λ(x+ αλ−2)

)
D− β

λ− 1
2+ α2

2λ3

(√
2λ(y + αλ−2)

) . (27)

Proof. The result follows from the absolute continuity relation

dQ
(1)
x|Ft

= (Rt/x)−1
dQ

(3)
x|Ft

, on {H0 > t},

where Q1 stands for the law of reflected Brownian motion and H0 is the first
time when the canonical process hits 0. �

Next, let (τt, t � 0) be defined as the right continuous inverse process of
the local time (lt, t � 0) at 0 of reflected Brownian motion. It is a stable
subordinator, its Laplace exponent is given by

Q(1)
[
e−βτt

]
= e−t

√
2β .
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Denote, respectively, by n and (eu, 0 � u � V ) the Itô measure associated
with R1 and the generic excursion process under n. Recall that with the choice
of the normalization of the local time via the occupation formula with respect
to the speed measure, we have n(V ∈ dt) = dt√

2πt3
, see e.g. [10].

Proposition 7. Let α, β � 0 and λ > 0.

− log
(
Σ(1)(τ1)

)
=
√

2λ
D

(x)

− β
λ− 1

2+ α2

2λ3

(√
2αλ−3/2

)
D− β

λ− 1
2+ α2

2λ3

(√
2αλ−3/2

) . (28)

Proof. The exponential formula of excursion theory, see e.g. [23], and the fact
that conditionally on V = t the process (eu, u � V ) is a 3-dimensional Bessel
bridge over [0, t] between 0 and 0, give

− log
(
Σ(1)(τ1)

)
=
∫
n(de)

(
1− e

−βV−λ2
2

∫ V

0
e2u du−α

∫ V

0
eu du

)
=
∫ ∞

0

(
1− e−βtΠλ,α(t)

) dt√
2πt3

.

Next, set K(β) =
∫∞
0

(
1− e−βtΠλ,α(t)

)
dt√
2πt3

. Thus, we have

K(β)−K(0) =
∫ ∞

0

(
1− e−βt

)
Πλ,α(t)

dt√
2πt3

.

The statement follows from Proposition 2. �

Finally, we shall extend the above computations to the radial part of a
δ-dimensional Ornstein–Uhlenbeck process, denoted by X, with parameter
θ ∈ R+. The law of this process, when started at x > 0, is denoted by P

(θ),δ
x .

Girsanov’s theorem gives

dP
(θ),δ
x|Ft

= e
− θ

2 (R2
t−x2−δt)− θ2

2

∫ t

0
R2

u du dQδ
x|Ft

, t > 0. (29)

We also shall need the densities of its semi-group which are given, see [2], by

p
(3)
t (0, x) =

θ3/2e
3
2 θt

√
2π(sinh(θt))3/2

e−
θx2e−θt

2 sinh(θt)

p
(1)
t (0, x) =

θ1/2e
1
2 θt

√
2π(sinh(θt))1/2

e−
θx2e−θt

2 sinh(θt) , x > 0.

With obvious notations, for a fixed t � 0, we set

Λλ,α,(δ)x→y (t) = Eδx

[
e
−λ2

2

∫ t

0
X2

u du−α
∫ t

0
Xu du

∣∣Xt = y

]
, λ, x and α � 0.
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Proposition 8. Set κ = λ2 + θ2, ω1 = β + θ
2 and ω3 = β + 3θ

2 . For x and
β > 0, we have

∫ ∞

0

e−βtp(1)
t (0, x)Λλ,α,(1)x (t) dt = e−

θ
2x

2
D−ω1

κ − 1
2+ α2

2κ3

(√
2κ(x+ α

κ2 )
)

D− β
κ− 1

2+ α2

2κ3

(√
2ακ−3/2

)
and∫ ∞

0

e−βtp(3)
t (0, x)Λλ,α,(3)x (t) dt = e−

θ
2x

2
x
D−ω3

κ − 1
2+ α2

2κ3

(√
2κ(x+ α

κ2 )
)

D− β
κ− 1

2+ α2

2κ3

(√
2ακ−3/2

) .

Proof. From the absolute continuity relation (29), we have

Eδx

[
e
−λ2

2

∫ t

0
X2

s ds−α
∫ t

0
Xs ds

]

= E(δ)
x

[
e−

θ
2 (R2

t−x2−δt)e
−
(

λ2+θ2

2

)∫ t

0
R2

s ds−α
∫ t

0
Rs ds

]
.

The results follow by the same reasoning as in the proof of Proposition 2. �
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Uhlenbeck. Application à l’étude des premiers instants d’atteinte. Stochastic and
Stochactic Report, 3–4:285–302, 1993

15. Lebedev, N.N. Special functions and their applications. Dover, New York, 1972
16. Lefebvre, M. First-passage densities of a two-dimensional process. SIAM Journal

on Applied Mathematics, 49(5):1514–1523, 1989
17. Linetsky, V. Computing hitting time densities for OU and CIR processes:

Applications to mean-reverting models. Journal of Computational Finance,
7:1–22, 2004

18. Louchard, G. The Brownian excursion area. Computational Mathematical
Application, 10:413–417, 1984. Erratum:A12 (1986) 375
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Summary. Starting from the potential theoretic definition of the local times of a
Markov process – when these exist – we obtain a Tanaka formula for the local times
of symmetric Lévy processes. The most interesting case is that of the symmetric
α-stable Lévy process (for α ∈ (1, 2]) which is studied in detail. In particular, we de-
termine which powers of such a process are semimartingales. These results complete,
in a sense, the works by K. Yamada [19] and Fitzsimmons and Getoor [8].
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1 Introduction and main results

It is well known that there are different constructions and definitions of local
times corresponding to different classes of stochastic processes. For a large
panorama of such definitions, see Geman and Horowitz [12].

The most common definition of the local times L = {Lxt : x ∈ R, t � 0}
of a given process {Xt : t � 0} is as the Radon–Nikodym derivative of the
occupation measure of X with respect to the Lebesgue measure in R; precisely
L satisfies ∫ t

0

f(Xs) ds =
∫ ∞

−∞
f(x)Lxt dx (1)

for every Borel function f : R 	→ R+.
There is also the well-known stochastic calculus approach developed by

Meyer [16] in which one works with a general semimartingale {Xt : t � 0},
and defines Λ = {λxt : x ∈ R, t � 0} with respect to the Lebesgue measure
from the formula ∫ t

0

f(Xs) d〈Xc〉s =
∫ ∞

−∞
f(x)λxt dx. (2)
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Of course, in the particular case when d〈Xc〉s = ds, i.e., Xc is a Brownian
motion, then the definitions of L and λ coincide. In other cases, e.g., if Xc ≡ 0,
they will differ.

In this paper we focus on the potential theoretic approach applicable in the
Markovian case in which the local times are defined as additive functionals
whose p-potentials are equal to p-resolvent kernels of X. Local times can
hereby be interpreted as the increasing processes in the Doob-Meyer decom-
positions of certain submartingales. Considering the p-resolvent kernels and
passing to the limit, in an adequate manner, as p → 0, we obtain a for-
mula (3), which clearly extends Tanaka’s original formula for the local times
of Brownian motion to those of the symmetric α-stable processes, α ∈ (1, 2],
already obtained by T. Yamada [20] and further developed in K. Yamada [19].
Our approach may be simpler and may help to make these results better
known to probabilists working with Lévy processes.

The formula (3) below and its counterparts about decompositions of pow-
ers of symmetric α-stable Lévy processes show at the same time similarities
and differences with the well-known formulae for Brownian motion (see, in
particular, Chapter 10 in [23] concerning the principal values of Brownian
local times). We hope that the Tanaka representation of the local times in (3)
may be useful to gain some better understanding for the Ray-Knight theo-
rems of the local times of X as presented in Eisenbaum et al. [6], since in
the Brownian case, Tanaka’s formula has been such a powerful tool for this
purpose, see, e.g., Jeulin [15].

We now state the main formulae and results for the symmetric α-stable
Lévy process X = {Xt}. To be precise, we take X to satisfy

E (exp(iλXt)) = exp(−t|λ|α), λ ∈ R,

in particular, for α = 2, X equals
√

2 times a standard BM. General criteria
can be applied to verify that X possesses a jointly continuous family of local
times {Lxt } satisfying (1). The constants ci appearing below and later in the
paper will be computed precisely in Section 5; clearly, they depend on the
index α and/or the exponent γ.

1) For all t � 0 and x ∈ R

|Xt − x|α−1 = |x|α−1 +Nx
t + c1 L

x
t , (3)

where Nx is a martingale such that for 0 � γ < α/(α − 1), especially for
γ = 2,

E
(

sup
s�t

|Nx
s |γ

)
<∞. (4)

Moreover, the continuous increasing process associated with Nx is

〈Nx〉t := c2

∫ t

0

ds

|Xs − x|2−α . (5)
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2) For α− 1 < γ < α the submartingale {|Xt − x|γ} has the decomposition

|Xt − x|γ = |x|γ +N
(γ)
t +A

(γ)
t , (6)

where N (γ) is a martingale and A(γ) is the increasing process given by

A
(γ)
t := c3

∫ t

0

ds

|Xs − x|α−γ . (7)

3) For 0 < γ < α− 1 the process {|Xt − x|γ} is not a semimartingale but for
(α−1)/2 < γ < α−1 it is a Dirichlet process with the canonical decomposition

|Xt − x|γ = |x|γ +N
(γ)
t +A

(γ)
t , (8)

where N (γ) is a martingale and A(γ), which has zero quadratic variation, is
given by the principal value integral

A
(γ)
t := c4 p.v.

∫ t

0

ds

|Xs − x|α−γ := c4

∫
dz

|z|α−γ
(
Lx+zt − Lx−zt

)
. (9)

The paper is organized so that in Section 2 some preliminaries about sym-
metric Lévy processes including their generators and some variants of the Itô
formula are presented. In Section 3 we derive the Tanaka formula for general
symmetric Lévy processes admitting local times. The above stated results for
symmetric stable Lévy processes are proved and extended in Section 4. In
Section 5 we compute explicitly the constants ci featured above and also fur-
ther ones appearing especially in Section 4. This is done by exhibiting some
close relations between these constants and the known expressions of the mo-
ments E(|X1|γ) where X1 denotes a standard symmetric α-stable variable. In
Section 6, we consider, instead of |Xt − x|γ , the process {(Xt − x)γ,∗}, where

aγ,∗ := sgn(a) |a|γ ,

is the symmetric power of order γ, and we determine the parameter values
for which these processes are semimartingales or Dirichlet processes, thus
completing results (1), (2), and (3) above.

2 Preliminaries on symmetric Lévy processes

Throughout this paper, we consider a real-valued symmetric Lévy process
X = {Xt} and, if nothing else is stated, we assumeX0 = 0. The Lévy exponent
Ψ of X is a nonnegative symmetric function such that
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E (exp(iξXt)) = E (cos(ξXt)) = exp (−tΨ(ξ)) . (10)

The Lévy measure ν of X satisfies, as is well known, the integrability condition∫ ∞

−∞
(1 ∧ z2) ν(dz) <∞.

By symmetry, ν(A) = ν(−A) for any A ∈ B, the Borel σ-field on R; hence,

Ψ(ξ) =
1
2
σ2 ξ2 −

∫ ∞

−∞

(
ei ξ z − 1− i ξ z 1{|z|�1}

)
ν(dz)

=
1
2
σ2 ξ2 + 2

∫ ∞

0

(1− cos(ξz)) ν(dz). (11)

Recall also (see, e.g., Ikeda and Watanabe [14, p. 65]) that X admits the
Brownian–Poisson representation

Xt = σ Bt +
∫

(0,t]

∫
{|z|�1}

z Π(ds, dz) +
∫

(0,t]

∫
{|z|<1}

z (Π − π)(ds, dz), (12)

where the Brownian motion B and the Poisson random measure Π with the
intensity

π(ds, dz) := E(Π(ds, dz)) = ds ν(dz)

are independent. The infinitesimal generator of X is given by

Gf(x) := GBf(x) + GΠf(x)

:=
1
2
σ2 f ′′(x) +

∫
R

(
f(x+ y)− f(x)− f ′(x) y 1{|y|<1}

)
ν(dy), (13)

where G acts on regular functions f in particular those in the Schwartz space
S(R) of rapidly decreasing functions.

Given a smooth function f, the predictable form of the Itô formula (see
Ikeda and Watanabe [14] and K. Yamada [19]) writes

f(Xt)− f(X0)−
∫ t

0

Gf(Xs) ds

= σ

∫ t

0

f ′(Xs) dBs +
∫ t

0

∫
R

(f(Xs− + z)− f(Xs−)) (Π − π)(ds, dz). (14)

The formula (14) connects with the Itô formula for semimartingales, as devel-
oped by Meyer [16], and displayed as

f(Xt) = f(X0) +
∫ t

0

f ′(Xs−) dXs +
σ2

2

∫ t

0

f ′′(Xs) ds

+
∑

0<s�t
(f(Xs)− f(Xs−)− f ′(Xs−)ΔXs) . (15)
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The sum of jumps
∑

0<s�t
(. . . ) may be compensated by

∫ t

0

GΠf(Xs) ds, and,

hence, we have recovered the integrated form of (13):∫ t

0

Gf(Xs) ds =
∫ t

0

GBf(Xs) ds+
∫ t

0

GΠf(Xs) ds.

We record also a more general compensator formula employed later in the
paper. For this, let Φ : R×R 	→ R+ be a Borel measurable function. Then

E

( ∑
0<s�t

Φ(Xs−, Xs)1{ΔXs �=0}

)
= E

(∫ t

0

∫
R\{0}

π(ds, dz)Φ(Xs, Xs + z)

)
. (16)

3 Local times for symmetric Lévy processes

From now on, we assume that∫ ∞

−∞

1
1 + Ψ(ξ)

dξ <∞. (17)

From standard Fourier arguments (see Bertoin [1] and, e.g., Borodin and
Ibragimov [2, p. 67]) one can show the existence of a jointly measurable fam-
ily of local times {Lxt : x ∈ R, t � 0} satisfying for every Borel-measurable
function f : R 	→ R+ the occupation time formula∫ t

0

ds f(Xs) =
∫ ∞

−∞
f(x)Lxt dx.

For the condition (expressed in terms of the function v in (22)) under which
(t, x) 	→ Lxt is continuous, see Bertoin [1, p. 148]. In particular, the condi-
tion holds for symmetric α-stable Lévy processes; in fact it was shown by
Boylan [3], see also Getoor and Kesten [13], that

|Lx+yt − Lxt | � Kt |y|θ (18)

for any θ < (α− 1)/2 and some random constant Kt.
Our approach toward a Tanaka formula for these local times is based on

the potential theoretic construction which we now develop. It is well known,
see Bertoin [1, p. 67], that for any p > 0

u(p)(x) =
1
π

∫ ∞

0

cos(ξx)
p+ Ψ(ξ)

dξ (19)
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is a continuous version of the density of the resolvent

U (p)(0, dx) = E0

(∫ ∞

0

e−p t1{Xt∈dx} dt

)
.

Moreover, for every x the local time {Lxt } can be chosen as a continuous
additive functional such that

u(p)(y − x) = Ey

(∫ ∞

0

e−p tdtL
x
t

)
. (20)

From (20) we deduce the Doob-Meyer decomposition given in the next:

Proposition 1. For every fixed x

u(p)(Xt − x) = u(p)(X0 − x) +M
(p,x)
t + p

∫ t

0

u(p)(Xs − x)ds− Lxt , (21)

where M (p,x) is a martingale with respect to the natural filtration {Ft} of X.
Moreover, for every fixed t, both the martingale {M (p,x)

s : s � t} and the ran-
dom variable Lxt belong to BMO; in particular, Lxt has some exponential
moments.

Proof. Straightforward computations using the Markov property show that
for y = X0

Ey

(∫ ∞

0

e−p tdtL
x
t | Fs

)
=
∫ s

0

e−p tdtL
x
t + e−p su(p)(Xs − x),

which together with an integration by parts yields (21). We leave the proofs
of the remaining assertions to the reader. ��

A variant of the Tanaka formula shall now be obtained by letting p → 0
in (21). The result is stated in Proposition 2 but first we need an important
ingredient.

Lemma 1. For every x ∈ R

lim
p→0

(
u(p)(0)− u(p)(x)

)
=

1
π

∫ ∞

0

1− cos(ξx)
Ψ(ξ)

dξ =: v(x). (22)

Proof. The statement follows from (19) by dominated convergence because
(cf. (11)) ∫ ∞

1

1
Ψ(ξ)

dξ <∞ and
∫ 1

0

ξ2

Ψ(ξ)
dξ <∞.

Notice also that v is continuous. ��

The formula (23) below generalizes in a sense the Tanaka formula for
Brownian motion to symmetric Lévy processes. In the next section we study
the particular case of symmetric stable processes.
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Proposition 2. Let v be the function introduced in (22) and M (p,x) the mar-
tingale defined in Proposition 1. Then

v(Xt − x) = v(x) + Ñx
t + Lxt , (23)

where Ñx
t := − limp→0M

(p,x)
t defines a martingale.

Remark 1. Standard results about martingale additive functionals of X yield
the following representations

Ñx
t = σ

∫ t

0

v′(Xs − x) dBs

+
∫

(0,t]

∫
R

(v(Xs− − x+ z)− v(Xs− − x)) (Π − π)(ds, dz),

and

〈Ñx〉t = σ2

∫ t

0

(v′(Xs − x))2 ds

+
∫ t

0

∫
R

(v(Xs − x+ z)− v(Xs − x))2 π(ds, dz),

where v′ is a weak derivative of v.

Proof. Consider the identity (21). Let therein p → 0 and use Lemma 1 to
obtain

v(Xt − x) = v(x)− lim
p→0

(
M

(p,x)
t + p

∫ t

0

u(p)(Xs − x)ds
)

+ Lxt . (24)

From (19) u(p)(y) � u(p)(0), and, consequently,

0 � p

∫ t

0

u(p)(Xs − x)ds � p u(p)(0) t. (25)

Next we show that
lim
p→0

p u(p)(0) = 0. (26)

Indeed, using (19) again,

p u(p)(0) =
1
π

∫ ∞

0

p dξ

p+ Ψ(ξ)

� 1
π

∫ 1

0

p dξ

p+ Ψ(ξ)
+
p

π

∫ ∞

1

dξ

Ψ(ξ)
, (27)

and (26) results by dominated convergence. Hence, (24) yields (23) with Ñx

as claimed. It remains to prove that Ñx is a martingale. For this it is enough
to show that

E
(
|Ñx
t −M

(p,x)
t |

)
→ 0 as p→ 0. (28)
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To prove (28) consider

|Ñx
t −M

(p,x)
t | � p

∫ t

0

u(p)(Xs − x)ds+ |v(x)− (u(p)(0)− u(p)(x))|

+ |v(Xt − x)− (u(p)(0)− u(p)(Xt − x))|.

From (25) and (26), the integral term goes to 0 as p → 0. Next, by Fubini’s
theorem and (10)

E
(∣∣∣v(Xt − x)− (u(p)(0)− u(p)(Xt − x))

∣∣∣)
=

1
π
p

∫ ∞

0

1−E(cos(ξ(Xt − x)))
Ψ(ξ)(p+ Ψ(ξ))

dξ

=
1
π
p

∫ ∞

0

1− cos(ξ x) exp(−tΨ(ξ))
Ψ(ξ)(p+ Ψ(ξ))

dξ

� 1
π
p

(∫ ∞

0

1− cos(ξ x)
Ψ(ξ)(p+ Ψ(ξ))

dξ +
∫ ∞

0

t Ψ(ξ)
Ψ(ξ)(p+ Ψ(ξ))

dξ

)
.

Applying the dominated convergence theorem for the first term above and
(27) for the second one give

lim
p→0

E
(∣∣∣v(Xt − x)− (u(p)(0)− u(p)(Xt − x))

∣∣∣) = 0,

completing the proof. ��

Example 1. For standard Brownian motion B we have

u(p)(x) =
1√
2p

e−√
2p|x|.

Consequently,
v(x) := lim

p→0

(
u(p)(0)− u(p)(x)

)
= |x|

and the formula (23) takes the familiar form

|Bt − x| = |x|+Nx
t + Lxt ,

where

Nx
t = lim

p→0

∫ t

0

e−√
2 p|Bs−x| sgn(Bs − x) dBs

=
∫ t

0

sgn(Bs − x) dBs.
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4 Symmetric α-stable Lévy processes

Let X = {Xt}, X0 = 0, denote the symmetric α-stable process with the Lévy
exponent

Ψ(ξ) = |ξ|α, α ∈ (1, 2).

We remark that the condition (17) is satisfied, and also that the local time
of X has a jointly continuous version, as is discussed in Section 3. For clarity,
we have excluded the Brownian motion from our study. However, the corre-
sponding results for Brownian motion may be recovered by letting α → 2.
Recall also that E(|Xt|γ) <∞ for γ < α, and that the Lévy measure is

ν(dz) = c5(α) |z|−α−1 dz, α ∈ (1, 2). (29)

Since
∫∞
1
z ν(dz) < ∞ and ν is symmetric the infinitesimal generator of X

(cf. (13)) is given by

Gf(x) =
1
2
σ2 f ′′(x) +

∫
R

(f(x+ y)− f(x)− f ′(x) y) ν(dy).

The function v introduced in Lemma 1 takes in this particular case the form

v(x) = c6(α) |x|α−1. (30)

The results announced in the Introduction are now presented again and
proven in a more complete form through the following three propositions. The
first one treats the claim (1) in the Introduction.

Proposition 3. a) For fixed x

c6(α)
(
|Xt − x|α−1 − |x|α−1

)
= Ñx

t + Lxt , (31)

where {Ñx
t } is a square integrable martingale. In fact, for all 0�γ<α/(α−1),

especially for γ = 2,

E
(

sup
s�t

|Ñx
s |γ

)
<∞. (32)

Moreover, the continuous increasing process associated with Ñx is

〈Ñx〉t := c7(α)
∫ t

0

ds

|Xs − x|2−α . (33)

b) For every t and x the variable Lxt belongs to BMO; in fact, for all s � t

E (Lxt − Lxs | Fs) � Kα,t (34)

for some constant Kα,t which does not depend on s.
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Proof. The fact that Ñx is a martingale is clear from Proposition 2. Because
Lxt has some exponential moments (cf. Proposition 1), it is seen easily from
(31) that for γ > 0

E(|Ñx
t |γ) <∞

if
E
(
|Xt − x|γ(α−1)

)
<∞,

which is true for γ(α − 1) < α. Consequently, an extension of the
Doob-Kolmogorov inequality, gives (32). The martingale Ñx has no con-
tinuous martingale part. Hence, letting

[Ñx]t :=
∑
s�t

(ΔÑx
s )2 := (c6(α))2

∑
s�t

(
|Xs − x|α−1 − |Xs− − x|α−1

)2
.

It holds that { (Ñx
t )2 − [Ñx]t } is a martingale. Consequently, 〈Ñx〉 can be

obtained as the dual predictable projection of [Ñx], and from the Lévy system
of X, e.g., (16), we get

〈Ñx〉t = (c6(α))2 c5(α)
∫ t

0

ds

∫
R

dy

|y|α+1

(
|Xs− − x+ y|α−1 − |Xs− − x|α−1

)2
.

Putting z = Xs− − x and introducing y = zu the latter integral takes the
form∫

R

dy

|y|α+1

(
|z + y|α−1 − |z|α−1

)2
=

1
|z|2−α

∫
R

du

|u|α+1

(
|1 + u|α−1 − 1

)2
.

Consequently, 〈Ñx〉 is as claimed. To prove the second part of the proposition,
notice that by the martingale property

E (Lxt − Lxs | Fs) = c6(α) E
(
|Xt − x|α−1 − |Xs − x|α−1 | Fs

)
� c6(α) E

(
|Xt −Xs|α−1 | Fs

)
� c6(α) E

(
|Xt−s|α−1

)
� K ′

α t
(α−1)/α,

where also the scaling property and the inequality

|xp − yp| � |x− y|p, 0 < p � 1,

are used. ��

The following corollary plays the same role for X as the classical Itô-
Tanaka formula plays for Brownian motion. In fact, a large part of this paper
discusses for which functions the identity (35), or some variant of it is valid.
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Corollary 1. Let f be a bounded Borel function with compact support and
define

F (y) :=
∫
dx f(x) |y − x|α−1.

Then

F (Xt) = F (0) +
∫
dx f(x)Nx

t + c1(α)
∫ t

0

ds f(Xs) (35)

expresses the canonical semimartingale decomposition of {F (Xt)} with
{
∫
dx f(x)Nx

t } a martingale.

Proof. It suffices to integrate both sides of (31) (or rather (3)) with respect
to the measure f(x) dx. ��

Remark 2. a) In K. Yamada [19] the representation (31) of the local time
(or Tanaka’s formula for symmetric α-stable processes) is derived using the
so-called “mollifier” approach as in Ikeda and Watanabe [14] in the Brownian
motion case. In this case the martingale is given by

Ñx
t = c6(α)

∫
(0,t]

∫
R

(
|Xs− − x+ z|α−1 − |Xs− − x|α−1

)
(Π − π)(ds, dz),

where Π and π are the Poisson random measure and the corresponding in-
tensity measure, respectively, associated with X.
b) The inequality (34) holds for all symmetric Lévy processes having local
times. Indeed, it is proved in Bertoin [1, p. 147, Corollary 14] that the func-
tion v defined in (22), Lemma 1, induces a metric on R, and, in particular,
the triangle inequality holds. Consequently,

E (Lxt − Lxs | Fs) � E(v(Xt −Xs)) = E(v(Xt−s)) � E(v(Xt)) <∞

because

E(v(Xt)) =
1
π

∫ ∞

0

1− exp(−tΨ(ξ))
Ψ(ξ)

dξ

� 1
π

(
t+

∫ ∞

1

dξ

Ψ(ξ)

)
<∞.

c) We leave it to the reader to establish a version of Corollary 1 for general
symmetric Lévy processes.

Proposition 4. For a given x and α − 1 < γ < α the submartingale
{|Xt − x|γ : t � 0} has the decomposition

|Xt − x|γ = |x|γ +N
(γ)
t +A

(γ)
t , (36)
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where N (γ) is a martingale and A(γ) is the increasing process given by

A
(γ)
t = c3(α, γ)

∫ t

0

ds

|Xs − x|α−γ . (37)

Moreover, when α− 1 � γ � α/2 the increasing process 〈N (γ)〉 is of the form

〈N (γ)〉t = c8(α, γ)
∫ t

0

ds

|Xs − x|α−2γ
. (38)

Proof. Formula (36) is obtained by integrating both sides of (31) (or (3) taken
at level z with respect to the measure dz/|z−x|α−γ . The form of the left-hand
side is obtained from the scaling argument. Because A(γ) is continuous the
computation for finding 〈N (γ)〉 is very similar to the computation of 〈Ñx〉 in
the proof of Proposition 3. We have

〈N (γ)〉t =
∫ t

0

ds

∫
R

ν(dy) (|Xs− − x+ y|γ − |Xs− − x|γ)2 , (39)

which easily yields (38). ��

For the next proposition, we recall the notion of Dirichlet process, i.e., a
process which can be decomposed uniquely as the sum of a local martingale
and a continuous process with zero quadratic variation (see, e.g., Föllmer [10]
and Fukushima [11]).

Proposition 5. a)] For 0 < γ < α − 1 the process |X − x|γ is not a
semimartingale.
b) For (α− 1)/2 < γ < α− 1 the process |X − x|γ is a Dirichlet process with
the canonical decomposition

|Xt − x|γ = |x|γ +N
(γ)
t +A

(γ)
t , (40)

where N (γ) is a martingale and A(γ) is given by the principal value integral

A
(γ)
t = c4(α, γ) p.v.

∫ t

0

ds

|Xs − x|α−γ

= c4(α, γ)
∫
R

dz

|z|α−γ
(
Lx+zt − Lx−zt

)
. (41)

Moreover, the increasing process 〈N (γ)〉 is as given in (38).

Proof. a) We take x = 0 and adapt the argument in Yor [21] applied therein
for continuous martingales. Assume that Yt := |Xt|γ , γ < α − 1, defines a
semimartingale. Then

|Xt|α−1 = Y θ
t
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with θ = γ/(α − 1) > 1, and Itô’s formula for semimartingales (notice that
Y c ≡ 0) gives

Y θt =
∫ t

0

θ Y θ−1
s− dYs +Σt, (42)

where
Σt :=

∑
0<s�t

(
Y θs − Y θs− − θ Y θ−1

s− ΔYs
)
.

The argument of the proof is that under the above assumption the local time

L0
t ≡

∫ t

0

1{Xs−=0} d|Xs|α−1 (43)

would be equal to zero. To derive this contradiction notice from (42) and (43)
that

L0
t =

∫ t

0

1{Ys−=0} dY
θ
s =

∫ t

0

1{Ys−=0} dΣs.

But because Σ is a purely discontinuous increasing process and L0 is contin-
uous this is possible only if L0 ≡ 0, which cannot be the case; thus proving
that Y is not a semimartingale.

b) To prove (40) we consider formula (3) at levels x+ z and x− z and write∫
R

dz

|z|α−γ
(
|Xt − (x+ z)|α−1 − |Xt − (x− z)|α−1

)

=
∫
R

dz

|z|α−γ
(
Nx+z
t −Nx−z

t

)
+ c1(α)

∫
R

dz

|z|α−γ
(
Lx+zt − Lx−zt

)
. (44)

The integral on the left-hand side is well defined since by scaling∫
R

dz

|z|α−γ
(
|Xt − (x+ z)|α−1 − |Xt − (x− z)|α−1

)
= |Xt − x|γ r(α, γ)

with
r(α, γ) :=

∫
R

dz

|z|α−γ
(
|1− z|α−1 − |1 + z|α−1

)
,

which is an absolutely convergent integral. Next notice that the principal value
integral on the right-hand side of (44) is well defined by the Hölder continuity
in x of the local times (cf. (18)). It also follows that the first integral on
the right-hand side of (44) is meaningful and, by Fubini’s theorem, it is a
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martingale. In Fitzsimmons and Getoor [8] it is proved that

H0
t :=

∫ ∞

0

dz

zα−γ
(
L−z
t − L0

t

)
.

has zero p-variation for p > po := (α − 1)/γ (notice 1 + γ in [8] corresponds
ours α − γ). Since po < 2 it is now easily seen that also {A(γ)

t } has zero
quadratic variation and the claimed Dirichlet process decomposition follows
with

c4(α, γ) = c1(α)/r(α, γ). (45)

��

5 Explicit values of the constants

An important ingredient in the computation of the explicit values of the con-
stants is the formula for absolute moments of symmetric α-stable, α ∈ (1, 2),
random variables due to Shanbhag and Sreehari [18] (see also Sato [17, p. 163]
and Chaumont and Yor [4, p. 110]). To discuss this briefly let

• Z be an exponentially distributed r.v. with mean 1.
• U a normally distributed r.v. with mean 0 and variance 1.
• X(α) a symmetric α-stable r.v. with characteristic function exp(−|ξ|α).
• Y (α/2) a positive α/2-stable r.v. with Laplace transform exp(−ξα/2).

Assume also that these variables are independent. Then it is easily checked
that (

Z/Y (α/2)
)α/2 d= Z (46)

and
X(α) d=

√
2U

(
Y (α/2)

)1/2
. (47)

From (46) we obtain for γ < α/2

E
((
Y (α/2)

)γ) =
Γ
(
1− 2γ

α

)
Γ (1− γ)

,

and, further, from (47) for −1 < γ < α

mγ := E
(
|X(α)|γ

)
= 2γ Γ

(
1 + γ

2

)
Γ

(
α− γ

α

)
/

(√
π Γ

(
2− γ

2

))
. (48)

The constants with the associated reference numbers of the formulae where
they appear in the paper are summarized in the following table:
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Constant Value Ref.

c1(α) ((α− 1)πmα−1) /Γ (1/α) (3), (56), (57)

c2(α) (2(α− 1)m2(α−1))/(αmα−2) (5)

c3(α, γ) (γ mγ)/(αmγ−α) (7), (37)

c4(α, γ) c1(α)/r(α, γ) (41), (45)

c5(α) α/(2Γ (1− α) cos(απ/2)) (29)

c6(α) (c1(α))−1 = (2πc5(α− 1))−1 (30)

c7(α) c2(α) (c6(α)) 2 (33)

c8(α, γ) c3(α, 2γ)− 2c3(α, γ) (38)

We consider first the constant c3(α, γ) and, for clarity, recall formula (36)

|Xt − x|γ = |x|γ +N
(γ)
t +A

(γ)
t , (49)

with α− 1 < γ < α and

A
(γ)
t = c3(α, γ)

∫ t

0

ds

|Xs − x|α−γ .

Notice that letting γ ↓ α− 1 yields, in a sense

A
(α−1)
t = c1(α)Lxt , (50)

although, using the value in the table, c3(α, γ) → 0. From (49) it is seen that
f(y) = |y − x|γ belongs to the domain of the extended generator G, and, by
scaling we obtain the following integral representation

c3(α, γ) =
∫
R

ν(dy) (|1 + y|γ − 1− γy) .

On the other hand, taking x = 0 in (49), and using scaling again together
with (48), we get

E (|Xt|γ) = c3(α, γ)
∫ t

0

dsE
(
|Xs|γ−α

)
,

which is equivalent with

tγ/αmγ = c3(α, γ)
α tγ/α

γ
mγ−α
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hence,
c3(α, γ) = γ mγ/αmγ−α.

A similar argument leads to an expression for c1(α). From (50) we get

E
(
|Xt|α−1

)
= c1(α)E

(
L0
t

)
. (51)

We derive from (51) the existence of a constant c0(α) such that

E
(
dtL

0
t

)
= c0(α)dt t−1/α,

and it follows from (50) that

mα−1 = α c1(α) c0(α)/(α− 1). (52)

We now compute c0(α) to obtain c1(α) from (52). For this consider the iden-
tity (20) for x = y = 0

u(p)(0) = E0

(∫ ∞

0

e−p sdsL
0
s

)
,

which in terms of c0(α) reads

1
π

∫ ∞

0

dξ

p+ ξα
= c0(α)

∫ ∞

0

e−p ss−1/α ds.

An elementary computation reveals that

c0(α) =
1
π
Γ ((α+ 1)/α),

hence,
c1(α) = ((α− 1)πmα−1) /Γ (1/α).

Next we find from formula (31) that

c6(α) = 1/c1(α). (53)

To compute c8(α, γ) for α − 1 � γ � α/2 and the limiting case c2(α) =
c8(α, α− 1) notice from (39) that

c8(α, γ) =
∫
R

ν(dy) (|1 + y|γ − 1)2 .

Comparing the integral representations of c3 and c8 it is seen that

2c3(α, γ) + c8(α, γ) = c3(α, 2γ) (54)

which can also be deduced from the following formulae
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(i) E
(
|Xt|2 γ

)
= 2E

(∫ t

0

|Xs|γ dsA(γ)
s

)
+ E

(
〈N (γ)〉t

)
= (2c3(α, γ) + c8(α, γ)) E

(∫ t

0

ds

|Xs|α−2γ

)
,

(ii) E
(
|Xt|2 γ

)
= c3(α, 2γ)E

(∫ t

0

ds

|Xs|α−2γ

)
.

The first one of these is an easy application of the Itô formula for semimartin-
gales and the second one follows (49) because γ � α/2. From (54) we get

c8(α, γ) = c3(α, 2γ)− 2c3(α, γ)

=
2γ
α

(
m2γ

m2γ−α
− mγ

mγ−α

)
.

The constant c2 is now obtained by letting here γ → α − 1 and using
m−1 = +∞. Consequently

c2(α) =
2(α− 1)

α

m2(α−1)

mα−2
.

To find the constant c5(α), we use the relationship (11) between Ψ and ν
which yields after substitution y = ξz

c5(α) =
(

2
∫ ∞

0

1− cos y
yα+1

dy

)−1

.

Integrating by parts and using the formulae 2.3.(1), p. 68 in Erdelyi et al. [7]
lead us to the explicit value of the integral∫ ∞

0

1− cos y
yα+1

dy =
Γ (1− α)

α
cos(απ/2).

The constant c6(α) can also clearly be expressed in terms of c5

c6(α) = (2πc5(α− 1))−1 =
1
π

∫ ∞

0

1− cos ξ
ξ α

dξ

=
1
π

Γ (2− α)
α− 1

cos((α− 1)π/2).

It can be verified by the duplication formula for the Gamma function that
this agrees with (53). It holds also that c6(α) → 1/2 as α ↑ 2.

The constant c7 is obtained by simply comparing the definitions of Nx in
(3) and Ñx in Proposition 3. We have

Nx
t =

1
c6(α)

Ñx
t

implying
c7(α) = c2(α) (c6(α)) 2.
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6 Symmetric principal values of local times

Our previous results may be summarized as follows

1. For α − 1 � γ < α the process {|Xt − x|γ} is a submartingale whose
Doob-Meyer decomposition is given by (36).

2. For (α − 1)/2 < γ < α − 1 the process {|Xt − x|γ} is a Dirichlet process
whose canonical decomposition is given by (40).

These results do not discuss whether {(Xt − x)γ,∗}, the symmetric power of
order γ, i.e.,

(Xt − x)γ,∗ := sgn(Xt − x) |Xt − x|γ , (55)

is or is not a semimartingale or a Dirichlet process. In the present section it
is seen that this question can be answered completely relying on some results
in Fitzsimmons and Getoor [8, 9], see also K. Yamada [19]. Let x = 0 in (55)
and introduce the principal value integral (cf. (9))

p.v.
∫ t

0

ds

Xθ,∗
s

:=
∫ ∞

0

dz

zθ
(
Lzt − L−z

t

)
,

where by the Hölder continuity (18) the integral is well defined for
θ < (α− 1)/2.

Proposition 6. a) For α−1 < γ < α the process {Xγ,∗
t } is a semimartingale.

b) For (α − 1)/2 < γ � α − 1 the process {Xγ,∗
t } is a Dirichlet process and

not a semimartingale.
c) In both cases the unique canonical decomposition of the process can be
written as

Xγ,∗
t r+(α, γ) = Nγ,∗

t + c1(α) p.v.
∫ t

0

ds

Xα−γ,∗
s

, (56)

where
r+(α, γ) =

∫ ∞

0

dx

xα−γ
(
|1− x|α−1 − (1 + x)α−1

)
and

Nγ,∗
t =

∫ ∞

0

dx

xα−γ
(
Nx
t −N−x

t

)
.

In particular, for γ = α− 1

Xα−1,∗
t r+(α, 1) = Nα−1,∗

t + c1(α) p.v.
∫ t

0

ds

Xs
. (57)

Proof. Because {Xt} is a martingale, it follows from the Itô formula for semi-
martingales (15) that for 1 � γ � α the process {Xγ,∗

t } is a semimartingale.
The other statements in (a) and (b) are derived from the decomposition (56)
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which we now verify similarly as (40) in Proposition 5. Hence, we start again
from the identity (3) considered at x and −x, and write, informally∫ ∞

0

dx

xα−γ
(
|Xt − x|α−1 − |Xt + x|α−1

)
=
∫ ∞

0

dx

xα−γ
(
Nx
t −N−x

t

)
+ c1(α)

∫ ∞

0

dx

xα−γ
(
Lxt − L−x

t

)
. (58)

To analyze the integral on the left-hand side notice that

R(a;α, γ) =
∫ ∞

0

dx

xα−γ
(
|a− x|α−1 − |a+ x|α−1

)
is absolutely convergent and

R(a;α, γ) = aγ,∗ r+(α, γ).

Now the rest of the proof is very similar to that of Proposition 5b, and is
therefore omitted. ��
Remark 3. a) The increasing process associated with Nγ,∗ is given by

〈Nγ,∗
t 〉t = (r+(α, γ))2

∫ t

0

ds

∫
R

ν(dz)
(
(Xs + z)α−γ,∗ −Xα−γ,∗

s

)2
= (r+(α, γ))2

∫ t

0

ds

|Xs|α−2γ

∫
R

ν(dz)
(
(1 + z)α−γ,∗ − 1

)2
.

We also have by scaling

E
(∫ t

0

ds

|Xs|α−2γ

)
=
∫ t

0

s(2γ−α)/α dsE
(
|X1|2γ−α

)
=

α

2γ
t2γ/αE

(
|X1|2γ−α

)
.

b) Since
|Xt|γ = (X+

t )γ + (X−
t )γ

and
|Xt|γ,∗ = (X+

t )γ − (X−
t )γ

it is straightforward to derive the decomposition formulae for {(X+
t )γ} and

{(X−
t )γ}, and we leave this to the reader.

c) Note how different (57) is in the Brownian case α = 2, for which on one
hand {Bt} is a martingale, and on the other hand

ϕ(Bt) =
∫ t

0

log |Bs| dBs +
1
2

p.v.
∫ t

0

ds

Bs

with ϕ(x) = x log |x| −x. For principal values of Brownian motion and exten-
sions of Itô’s formula, see Yor [22], [23] and Cherny [5].
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An Excursion-Theoretical Approach
to Some Boundary Crossing Problems
and the Skorokhod Embedding
for Reflected Lévy Processes

Martijn R. Pistorius

Department of Mathematics, King’s College London
Strand, London WC2R 2LS, United Kingdom
e-mail:pistoriu@mth.kcl.ac.uk

Summary. Let X be a spectrally negative Lévy process, reflect X at its supremum
X and call this process Y . Let τa denote the first time Y crosses the level a. Using
excursion theory we solve the problem of Lehoczky for a spectrally negative Lévy
process, that is, we express the joint law of (τa, Xτa , Yτa−, ΔXτa) in terms of so-
called scale functions that also turn up in the solution of the two-sided exit problem,
thereby extending results of Avram et al. [2], who solved for the joint law of (τa, Yτa).
Next we obtain an explicit and non-randomised solution to the Skorokhod embedding
problem of Y : we find a stopping time T such that YT ∼ ν for a measure ν on (0,∞)
without atoms.

Key words: Lévy process, Itô excursion theory, First passage, Skorokhod
embedding, Problem of Lehoczky

1 Introduction

A spectrally negative Lévy process is a real-valued random process with sta-
tionary independent increments which has no positive jumps. Such processes
are frequently encountered in the context of the theories of dams, queues, in-
surance risk and continuous branching processes; see for example [10, 8, 9, 21].
More recently (e.g. [2]), these processes have also been used to build models
in mathematical finance.

In the article [2], Avram et al. studied the first exit from a finite interval of
a spectrally negative Lévy process reflected at its supremum. More specifically,
using Itô excursion theory they expressed the joint Laplace transform of the
first exit time and position in terms of scale functions which also turn up in
the solution of the two-sided exit problem. The aforementioned stopping time
can be identified in the literature of fluid models as the time to buffer-overflow
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(see for example [1,11]). It is worth mentioning that, for the cases of skip-free
random walks and Brownian motion, Kennedy [12] used martingale methods
to compute the Laplace transform of this buffer overflow time. Kennedy’s
analysis was extended to the case of diffusions by Azéma and Yor [3] and
more recently a martingale proof was given by Nguyen and Yor [14] for the
form of the Laplace transform of this stopping time in the case of spectrally
negative Lévy processes.

In this note we show how excursion theory can be used to find the joint
law of the position of the reflected process just before exit, the overshoot, the
time of buffer-overflow and the value of the supremum of the Lévy process at
exit, thereby extending the results of Avram et al. [2]. In the literature the
same problem has been studied before in a Brownian motion or a diffusion
setting by Lehoczky [13] and Azéma and Yor [3], respectively (and was labelled
Lehoczky’s problem by the latter).

It turns out that the solution of Lehoczky’s problem is intimately con-
nected to a solution of the Skorokhod embedding problem for Y . This prob-
lem consists in finding, for a given measure ν, a stopping time T∗ such that
YT∗ ∼ ν where the stopping time T ∗ is ‘small’, e.g. integrable. The Skorokhod
embedding problem has received quite some attention in the literature, go-
ing back to Skorokhod [24] who posed and solved the embedding problem of
a standard Brownian motion. See Ob�lój [16] for an extensive review of the
literature on this topic. The explicit constructions in the literature mainly
concern processes with continuous paths such as diffusions and continuous
martingales. See, however, Bertoin and Le Jan [7] who construct a new class
of embeddings of Hunt processes at a regular point. In the literature at least
two different approaches have been followed to tackle the embedding problem.

The first approach, initiated by Azéma and Yor [3], amounts to using the
Kennedy martingale to construct a simple, explicit solution to the Skorokhod
embedding problems of a Brownian motion and of a continuous martingale.
Pedersen and Peškir [18] extended their results to the case of diffusions.

In the second approach Itô excursion theory is employed to show that the
process stopped at a candidate stopping time has the required distribution. In
Rogers [22,23] excursion arguments are given for the construction of Azéma–
Yor and for the related embedding problem of the terminal value and the
maximum of a continuous martingale. See also Ob�lój and Yor [17] for work on
the embedding of the age of an excursion of Brownian motion and Ob�lój [15]
for embeddings of continuous functionals of Markovian excursions. We will
pursue the second approach to find a Skorokhod embedding of Y , as it is in
spirit closer to the first part of the paper.

The rest of the paper is organised as follows. In Section 2 we introduce
notation and review existing results concerning two-sided exit problems of
spectrally negative Lévy processes and prove some preliminary results. In
Section 3 an expression is derived for the aforementioned joint law and and
for the law of the first passage time of Y over a boundary depending on the
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running supremum of X. Finally, in Section 4 the Skorokhod embedding of Y
is presented.

2 Preliminaries

In this section we set the notation and review standard results fluctuation
theory for spectrally negative Lévy processes. For more background, we refer
to Bingham [8] or Bertoin [5, Chapter VII].

2.1 Setting

Let X = (Xt, t � 0) be a spectrally negative Lévy process defined on
(Ω,F ,F = {Ft}t�0,P), a filtered probability space where the filtration F
satisfies the usual conditions. To avoid trivialities, we exclude the case that
X has monotone paths. Since the jumps of X are all non-positive, the
moment generating function E[eθXt ] exists for all θ � 0 and is given by
ψ(θ) = t−1 log E[eθXt ] for some function ψ(θ). The function ψ is well defined
at least on the positive half-axis where it is strictly convex with the prop-
erty that limθ→∞ ψ(θ) = +∞. Moreover, ψ is strictly increasing on [Φ(0),∞),
where Φ(0) is the largest root of ψ(θ) = 0. We shall denote the right-inverse
function of ψ by Φ : [0,∞) → [Φ(0),∞).

We conclude this subsection by introducing for any Lévy process the family
of martingales

(exp (cXt − ψ(c)t) , t � 0)

defined for any c for which ψ(c) = log E[exp cX1] is finite, and further the
corresponding family of measures {Pc} on (Ω,F ,F) with Radon-Nikodym
derivatives:

dPc

dP

∣∣∣∣
Ft

= exp (c(Xt −X0)− ψ(c)t) . (1)

For all such c (including c = 0) the measure Pcx will denote the translation of
Pc under which X0 = x. Under the measure Pc the process X is still a Lévy
process, but with different characteristics (that depend on c).

2.2 Scale functions and exit problems

Bertoin [6] studied two-sided exit problems of spectrally negative Lévy
processes and made the connection with a class of functions known as q-scale
functions. Here we review the concept of scale functions and the two-sided
exit results. For q � 0, there exists a function W (q) : [0,∞) → [0,∞), called
the q-scale function, that is continuous and increasing with Laplace transform∫ ∞

0

e−θxW (q)(x)dx = (ψ(θ)− q)−1, θ > Φ(q). (2)
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See e.g. [8] for a proof. Further, we shall use the notation W (q)
c (x) to mean the

q-scale function as defined above for (X,Pc) and write Φc(q) for the largest
root of ψc(θ) = q. For every x � 0, we can extend the mapping q 	→ W

(q)
v (x)

to the complex plane by the identity

W (q)
v (x) =

∑
k�0

qkW �(k+1)
v (x), (3)

where W �k
v denotes the kth convolution power ofWv = W

(0)
v . The convergence

of this series is plain from the inequality

W �k+1
v (x) � xkWv(x)k+1/k!, x � 0, k ∈ N,

which follows from the monotonicity of Wv. Closely related to W (q) is the
function Z(q) given by

Z(q)(x) = 1 + qW
(q)

(x),

where W
(q)

(x) =
∫ x
0
W (q)(z)dz. Keeping with our earlier convention, we shall

use Z
(q)
c (x) in the obvious way. Just like W (q), the function Z(q) may be

characterised by its Laplace transform and continuity on (0,∞). Indeed, one
can check that∫ ∞

0

e−θxZ(q)(x)dx = ψ(θ)/θ(ψ(θ)− q), θ > Φ(q). (4)

Remark 1 We have the following relationship between scale functions

W (u)(x) = evxW (u−ψ(v))
v (x)

for v such that ψ(v) <∞. To see this, simply take Laplace transforms of both
sides. By analytical extension, we see that the identity remains valid for all
u ∈ C.

Example. A stable Lévy process X with index α ∈ (1, 2] has cumulant ψ(θ) =
θα; its scale functions have been shown in [4] to be equal to

W (q)(x) = αxα−1E′
α(qxα), Z(q)(x) = Eα(qxα), (5)

where Eα is the Mittag-Leffler function with parameter α

Eα(y) =
∞∑
n=0

yn

Γ (1 + αn)
, y ∈ R. (6)

In the case α = 2, the process X/
√

2 is a Brownian motion and W (q), Z(q)

reduce to

W (q)(x) = q−1/2 sinh(x
√
q), Z(q)(x) = cosh(x

√
q). (7)
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Hence for a standard Brownian motion W (q), Z(q) are found by replacing (x, q)
by (2x, q/2) in (7).

The q-scale function turns up in the solution of the two-sided exit problem.
Defining T−(b) and T+(b) as

T−(b) = inf{t � 0 : Xt < −b} and T+(b) = inf{t � 0 : Xt > b}

the first times that X down-crosses the level −b and up-crosses the level b,
respectively, and setting T0,a = T−(0) ∧ T+(a), the first exit time of X from
[0, a], the two-sided result reads as

Ex

[
e−qT0,aI(XT0,a=a)

]
=
W (q)(x)
W (q)(a)

, x ∈ [0, a], (8)

Ex

[
e−qT0,aI(XT0,a�0)

]
= Z(q)(x)− Z(q)(a)

W (q)(x)
W (q)(a)

, x ∈ [0, a], (9)

where IA denotes the indicator of the set A. The q-scale function W (q) is also
closely connected to the the q-potential measure Uq of X,

Uq(dx) =
∫ ∞

0

e−qtP(Xt ∈ dx)dt.

Indeed, Uq is absolutely continuous with density uq, say, and the q-scale func-
tion W (q) and the potential density uq are related by the identity

W (q)(x) = Φ(q) exp(Φ(q)x)− uq(−x) for a.e. x > 0, q > 0, (10)

as shown in e.g. [20] for a proof. Furthermore, in e.g. [19, Lemma 1] it is shown
that the q-scale functions W (q) are left- and right-differentiable on (0,∞);
we denote the right- and left-derivative of W (q)(·) by W

(q)′
+ (·) and W

(q)′
− (·),

respectively. If a Gaussian component is present, that is, σ > 0, these results
can be extended as follows:

Lemma 1 The following hold true:

(i) If σ > 0 and q � 0, then W
(q)′
+ (0) = 2/σ2.

(ii) If σ > 0, P(Xt ∈ dx) is absolutely continuous for t > 0 and there exists
a C∞ version of its density.

(iii) For q > 0, W (q)(·) is C∞((0,∞)).

Proof. (i) In [19, Lemma 4(ii)] it is shown that W ′
+(0) is equal to 2/σ2, which

combined with the expansion (3), implies the statement.
(ii) Since we may write X = σB +R, where B is a Brownian motion and

R is a spectrally negative Lévy process, without Gaussian component and
independent of B, it follows that for t > 0

P(Xt ∈ dx) =
{∫ ∞

−∞

1
σ
√
t
ϕ

(
x− y

σ
√
t

)
P(Rt ∈ dy)

}
dx, (11)
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where ϕ is the standard normal density function. Since the integral on the
right-hand side of (11) is bounded for fixed t > 0, it follows that P(Xt ∈ dx)
is absolutely continuous for t > 0 with bounded Radon-Nikodym derivative

p(t, x) =
P(Xt ∈ dx)

dx
= E

[
ϕ

(
x−Rt

σ
√
t

)]
.

Moreover, ϕ is infinitely differentiable on the real line and all its derivatives
are bounded, so that (11), in conjunction with bounded convergence, implies
that p(t, ·) is C∞(R) for t > 0.

(iii) We claim that there exists a version of the potential density uq that
is C∞ on (−∞, 0). Note that, by (10), assertion (iii) follows once this claim
has been proved. Since Rt tends to 0 almost surely as t ↓ 0 by right-continuity
of its paths and since ϕ(·/

√
t) converges to the delta distribution in zero (in

distributional sense), it follows that p(t, x) and all its x derivatives tend to
zero for x �= 0 as t ↓ 0. An application of the bounded convergence theorem
yields then that

∫∞
0

e−qtp(t, ·)dt, which is a version of the potential density,
is C∞ on R\{0}. ��

2.3 Itô excursion theory

In this section we shall review some of the Itô excursion theory using standard
notation (see Bertoin [5, Chapter IV]). To this end, we write Y = X −X for
X reflected at its supremum and we recall the notion of the excursion process
e = (et, t � 0) of Y , which takes values in the space of excursions

E = {f ∈ D[0,∞) : f � 0, ∃ ζ = ζ(f) such thatf(ζ) = 0}

of càdlàg functions f with a generic lifetime ζ = ζ(f) and is given by

et = (Ys, L−1(t−) � s < L−1(t)) if L−1(t−) < L−1(t),

where L−1 is the right-inverse of a local time L of Y at zero; else et = ∂,
some isolated point. We take the running supremum X to be this local time L
(cf. [5, Chapter VII]). The space E is endowed with the Itô excursion mea-
sure n. A famous theorem of Itô states that e is a Poisson point process with
characteristic measure n, if Y is recurrent; otherwise (et, t � L(∞)) is a Pois-
son point process stopped at the first excursion of infinite lifetime. For an
excursion ε ∈ E its supremum is denoted by ε. By εg = (Yg+t, t � ζg) is meant
the excursion of Y with left-end point g, where ζg and εg denote its lifetime
and supremum, respectively.

Using excursion theory the following result, concerning the asymptotic
behaviour of the ratio of W (q) and its derivative, can be shown to hold true:
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Lemma 2 For q � 0, W (q)′
+ (a)/W (q)(a) tends to Φ(q) as a→∞.

Proof. Assume that either q > 0 or q = 0 and X does not oscillate.
Since W (q)(x) = eΦ(q)xWΦ(q)(x), the assertion is proved once we show that
W ′
Φ(q)+(x) → 0 if x → ∞. Itô excursion theory implies that the heights of

the excursions et form a Poisson point process on the positive half-axis with
characteristic measure n(ε > ·). From [19, Lemma 1], we read off that this
characteristic measure is given by n(ε > a) = W ′

+(a)/W (a). In particular,
it holds that

P(ε > a+ k|ε > a) =
n(ε > a+ k)
n(ε > a)

=
W ′

+(a+ k)
W (a+ k)

W (a)
W ′

+(a)
, k > 0. (12)

Since ψ′
Φ(q)(0) > 0, X drifts to infinity under the measure PΦ(q) and excursions

of infinite height do not occur and the probability in (12) (with the original
measure P replaced by PΦ(q)) converges to zero as k →∞. Since in this case
WΦ(q)(∞) = limx→∞WΦ(q)(x) is finite it follows that (WΦ(q))′+(x) converges
to zero if x tends to infinity.

If q = 0 and X oscillates, supt�0Xt is infinite and, as for an infinite
excursion supt�0Xt is finite, we deduce that infinite excursions do not occur
in this case, so that n(ε = ∞) = 0 and n(ε > a) = W ′

+(a)/W (a) converges to
zero as a→∞ and the proof of the Lemma is done. ��

2.4 The renewal measure and creeping

In this subsection we review a few results concerning the creeping of X. For a
comprehensive treatment we refer the reader to [5, Chapter VI]. We say that
a Lévy process ‘creeps downward’ (resp., ‘creeps upward’) over a level x < 0
(resp., x > 0) if the first time it down-crosses (resp., up-crosses) the level x
is not by a jump. A Lévy process can creep both upwards and downwards
if and only if its Gaussian component is not zero. This implies in particular
that a spectrally negative Lévy process creeps downward if and only if it is
either a deterministic negative drift or it has a positive Gaussian coefficient.
The creeping of a Lévy process is closely connected to its renewal function. The
q-renewal function V̂ q of −X (the renewal function of the process −X killed
at an independent exponential time with mean q−1) is characterised by the
fact that it is increasing, right-continuous and has Laplace transform given by

λ

∫ ∞

0

e−λxV̂ q(x)dx = c
λ− Φ(q)
ψ(λ)− q

where c > 0 is some normalising constant. Inverting this transform V̂ q can be
expressed in terms of the q-scale function by

V̂ q(x) = c
(
W (q)(x)− Φ(q)W

(q)
(x)

)
.
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By Lemma 1(ii) it follows V̂ (q)(·) is continuously differentiable on (0,∞) if
σ > 0. Denoting by v̂q(x) the derivative of V̂ q(x) in x > 0 if σ > 0, it follows
that for σ > 0

v̂q(x) = W (q)′(x)− Φ(q)W (q)(x), x > 0. (13)

The precise relationship of the probability of creeping and the renewal func-
tion follows then from a result of Miller (1973) (applied to −X killed at an
independent exponential time with parameter q)

E
[
e−qT

−(a)I(XT−(a)=−a)

]
= v̂q(a)/v̂q(0+)

=
σ2

2

(
W (q)′(a)− Φ(q)W (q)(a)

)
, (14)

where v̂q+(0) = limx↓0 v̂q(x) and the expression is understood to be equal to
zero if σ = 0. The probability that X leaves the interval [0, a] by hitting
0 can now be determined in terms of scale functions and their derivatives,
complementing the two-sided exit results (8) and (9):

Proposition 1 For x ∈ [0, a] we have

Ex

[
e−qT0,aI(XT0,a

=0)

]
=
σ2

2

(
W (q)′(x)− W (q)′(a)

W (q)(a)
W (q)(x)

)
, (15)

where the expression is understood to be equal to 0 if σ = 0.

Proof. By the strong Markov property of X it follows that the left-hand side
of (15) is equal to

Ex

[
e−qT

−(0)I(T−(0)<T+(a),XT−(0)=0)

]
= Ex

[
e−qT

−(0)I(XT−(0)=−0)

]
+ Ex

[
e−qT

+(a)I(T−(0)>T+(a))

]
E0

[
e−qT

−(0)I(XT−(0)=0)

]
.

Inserting the two-sided exit probability (8) and the expression (14) combined
with (13) and Lemma 1(i) yields then the expression on the right-hand side
of (15). ��

3 First passage of reflected Lévy processes

Let

Xt = max
{
s, sup

0�u�t
Xu

}
be the non-decreasing process representing the current maximum of X given
that at time zero the maximum is equal to s. Further, let Ps,x refer to the
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Lévy process X which at time zero is given to have a current maximum s and
position x. In this section the focus is on the process Y , X reflected at its
supremum X, first crossing a positive level a and the related stopping time

τa := inf{t � 0 : Yt > a}
defined for a > 0. Denoting by δs the delta measure in s, by Λ the Lévy
measure of X and writing for u � 0

Fq,a(u) = exp

(
−uW

(q)′
+ (a)

W (q)(a)

)
,

we find the following expression for the joint law of τa, Yτa−, Xτa
and ΔXτa

in the case that Y crosses the level a by a jump:

Theorem 1 For q, z � 0, h < 0, x, y ∈ [0, a) it holds that

Es,x

[
e−qτaI(Yτa−∈dy,Xτa∈dm,ΔXτa∈dh)

]
= I(y−h>a)Λ(dh)

[
δs(dm)

(
W (q)(a+x−s)
W (q)(a)

W (q)(y)−W (q)(y + x− s)
)

dy

+ W (q)(a+x−s)
W (q)(a)

(
W (q)′(y)− W

(q)′
+ (a)

W (q)(a)
W (q)(y)

)
Fq,a(m− s)dmdy

]
.

The next result is a complement to the previous one and considers the case
that Y creeps over the level a, Yτ(a) = a.

Theorem 2 For a > 0, m � s � x,

Es,x

[
e−qτ(a)I(Yτ(a)=a,Xτ(a)∈dm)

]
=
σ2

2
δs(dm)

[
W (q)′(a− s+ x)− W (q)′(a)

W (q)(a)
W (q)(a− s+ x)

]
+
σ2

2
W (q)(a−s+x)
W (q)(a)

Fq,a(m− s)
[
W (q)′(a)2

W (q)(a)
−W (q)′′(a)

]
dm,

where the expression is understood to be equal to 0 if σ = 0.

By integrating out the supremum Xτa
and jump size ΔXτa

at τa, we obtain
from above result the joint Laplace transform of (τa,Xτa

, Xτa
), which is an

extension of [2, Theorem 1]:

Corollary 1 For u, v, w � 0, one has that

Es,x

[
e−uτa−vXτa+wXτa

]
= e−vs

(
Z(p̃)
w (a+ x− s)

−W (p̃)
w (a+ x− s)

p̃W
(p̃)
w (a) + vZ

(p̃)
w (a)

(W (p̃)′
w )+(a) + vW

(p̃)
w (a)

)
,

(16)

where p̃ = u− ψ(w).
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In particular, by choosing w = v we find back the identity of [2, Theorem 1]
and by choosing u = w = 0 and s = x we see that the supremum Xτa

under P0,0 is exponentially distributed with parameter W ′
+(a)/W (a). If X is

a diffusion or local martingale, Xτa
is also exponentially distributed, as shown

in [3, 18].

Proof of Theorem 1. By the compensation formula (see e.g. [5, Section O.5])
applied to the Poisson point process (ΔXt, t � 0) we find that for h < 0

Es,x

[
e−qτaI(Yτa−∈dy, ΔXτa∈dh, Xτa∈dm)

]
= Es,x

⎡⎣∑
t�0

e−qtI(Xt∈dm, ΔXt∈dh, Yt−∈dy, sups<t Ys<a,Yt>a)

⎤⎦
=
∫
Λ(dh)I(y−h>a)

∫ ∞

0

e−qtPs,x

[
Xt ∈ dm, Yt− ∈ dy, sup

s<t
Ys < a

]
dt.

Applying the strong Markov property of Y at τ0 = inf{t � 0 : Xt = Xt} and
noting that Xτa

= s on {τ0 > τa} under the measure Ps,x, we can write the
inner integral in previous display as

Ps,x

[
Xη(q) ∈ dm,Yη(q) ∈ dy, sup

s<η(q)

Ys < a

]
= Ps,x(Xη(q) ∈ dm,Yη(q) ∈ dy, η(q) < τ0 ∧ τa)

+ Ps,x(Xη(q) ∈ dm,Yη(q) ∈ dy, η(q) < τa, η(q) � τ0)
= δs(dm)P0,x−s(Yη(q) ∈ dy, η(q) < τ0 ∧ τa)

+
W (q)(a+ x− s)

W (q)(a)
P0,0(Xη(q) ∈ d(m− s), Yη(q) ∈ dy, η(q) < τa), (17)

where η(q) is an independent exponential time with parameter q and we sub-
stituted the two-sided exit probability (8) in the last line. Since (Yt; t < τ0)
has the same law as (−Xt; t < T0), the first quantity in the second equal-
ity of (17) is seen to be equal to the resolvent of X killed upon leaving the
finite interval; Suprun [25] showed that it can be expressed in terms of scale
functions as

q−1P−x(−Xη(q) ∈ dy, η(q) < T0,a)

=
(
W (q)(a− x)
W (q)(a)

W (q)(y)− I(y>x)W
(q)(y − x)

)
dy. (18)

To evaluate the probability in the second quantity in the second equality of
(17), we shall make use of the Master formula of excursion theory (e.g.
[5, Corollary IV.11]). Using the notation of Section 2.3 and letting
Ta(ε) = inf{t � 0 : ε(t) > a}, we first express this probability in terms
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of the excursion process of Y and then apply the Master formula (see [2, 19]
for similar reasonings) to find that

P0,0(Xη(q) ∈ dm,Yη(q) ∈ dy, η(q) < τa)

= E

[∫ ∞

0

∑
g

q e−qtI(suph<g εh�a,g<t,Xg∈dm)I(t<Ta(ε),εg(t−g)∈dy, g<t<g+ζg)dt

]

= E

[∫ ∞

0

dXs

∫ ∞

0

dte−qsI(s<t,Xs∈dm,suph<s εh�a)

× q e−q(t−s)
∫
n(dε)I(ε(t−s)∈dy, t−s<ζ∧Ta(ε))

]
= E

[∫ ∞

0

e−qsI(Xs∈dm,suph<s εh�a)dXs

]
×
∫
n(dε)I(ε(η(q))∈dy,η(q)<ζ∧Ta(ε)).

The last line of the previous display consists of two factors, let us call them
C1 and C2. The first factor can be inferred from [2] to be equal to

C1 = E
[
e−qL

−1
v I(sup

h<L
−1
v

εh<a)

]
dm

= exp

(
−mW

(q)′
+ (a)

W (q)(a)

)
dm (19)

and the second factor was shown in [19, equation (22)] to be equal to

C2 =
∫
n(dε)I(ε(η(q))∈dy, η(q)<ζ∧Ta(ε))

= q

(
W

(q)′
+ (y)− W (q)′(a)

W (q)(a)
W (q)(y)

)
dy.

Putting the bits together results in the stated formula. ��

Proof of Theorem 2. As in (17) it follows by the strong Markov property of
Y applied at τ0 that

Es,x

[
e−qτ(a)I(Yτ(a)=a,Xτ(a)∈dm)

]
= δs(dm)E0,x−s

[
e−qT

−(a)I(XT−(a)=−a,T−(a)<T+(0))

]
+
W (q)(a− s+ x)

W (q)(a)
E0,0

[
e−qτ(a)I(Yτ(a)=a,Xτ(a)∈d(m−s))

]
,

where the first factor follows from (19). The first term on the right-hand side
follows from Proposition 1. We now turn to the computation of the second
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term. The Master formula applied to the Poisson point process of excursions
of Y away from zero leads to

E0,0

[
e−qτ(a)I(Yτ(a)=a,Xτ(a)∈dm)

]
= E0,0

[∑
g

e−qgI(suph<g εh<a,Xg∈dm)e
−q(Ta(ε)−g)I(εg(Ta(ε))=a,Ta<g+ζg)

]

= exp
(
−mW (q)′(a)

W (q)(a)

)
dm

∫
n(dε)e−qTa(ε)I(ε(Ta(ε))=a). (20)

Next step in the computation is the evaluation of the second factor of (20).
We claim that the following identity holds true:∫

n(dε)e−qTaI(ε(Ta)=a) = lim
x↓0

x−1E
[
e−qT

−(a)I(XT−(a)=−a,XT−(a)�x)
]
. (21)

This identity is reminiscent of the close relation between n and the Doob
h-transform of the measure P with h(x) = x (see e.g. [5, Chapter VII]).
Combining (21) with Proposition 1 yields∫

n(dε)e−qTaI(ε(Ta)=a) =
σ2

2

(
W (q)′(a)2

W (q)(a)
−W (q)′′(a)

)
.

Inserting in (20) leads to the statement in Theorem 2. To finish the proof, we
thus have to show the validity of (21). Keeping in mind the close connection
between the law P↑ of X conditioned to stay positive, the excursion measure
n and the Doob h-transform with h(x) = x, we proceed as follows, invoking
again the Master formula of excursion theory

E
[
e−qT

−(a)I(XT−(a)=−a,XT−(a)�x)
]

= E

[∑
g

e−qgI(Xg�x)e
−q(T−(a)−g)I(XT−(a)=−a,g<Ta<g+ζg)

]

= E

[∫ x

0

dse−qL
−1
s I(sup

h<L
−1
s

εh<a+s)

×
∫
n(dε)e−qT (a+s)I(T (a+s)<ζ,ε(T (a+s))=a+s)

]
=
∫ x

0

exp
(
−sW

(q)′(a+ s)
W (q)(a+ s)

)
×
∫
n(dε)e−qT (a+s)I(T (a+s)<ζ,ε(T (a+s))=a+s)ds, (22)

where the last line follows as in (19). By right-continuity of the paths of X
and the fact that, if σ > 0, excursions do not start with a jump a.s. and W (q)

is smooth on (0,∞), Ta+s(ε) decreases to Ta(ε) as s ↓ 0, so that the integrand
in (22) is right-continuous in s = 0 and the claim (21) follows. ��
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Proof of Corollary 1 (Sketch). We only show that Es,s[e−qτa ] is given by the
right-hand side of (16) with w = v = 0. The general formula can be reduced
to this one by changes of measure and applying the Markov property of Y at
the first time Y reaches 0 (in this connection see e.g. the proof of Theorem 1
in [2]).

If X has a non-zero Gaussian component (σ > 0), W (q) and Z(q) are C∞

and it is well known (see e.g. [2, 19]) that

ΓW (q)(x) = qW (q)(x) and ΓZ(q)(x) = qZ(q)(x) for x > 0, (23)

where Γ denotes the characteristic operator of X. By integrating the measures
given in Theorems 1 and 2, we obtain an expression for Es,s[e−qτa ]. Using the
identities (23) it is a matter of algebra to verify that this expression coincides
with the right-hand side of (16) and the result is proved for w = v = 0, x = s
and σ > 0.

In case σ = 0, the result follows by considering Xn = X + 1
nB and let-

ting n→∞ (where B denotes an independent Brownian motion). Indeed, as
the exponent ψn of Xn converges point-wise to the exponent ψ of X, the ex-
tended continuity theorem and the definition of the q-scale functions implies
that the scale functions Z(q)

n , W (q)
n corresponding to Xn and the derivative

of the latter, W (q)′
n , converge point-wise in every continuity point to the scale

functions Z(q), W (q) of X and the derivative W (q)′, respectively. Thus, by
the form of the Laplace transform (16), which has been shown to be valid for
σ > 0, Es,s[e−qτa(Xn)] converges to Es,s[e−qτa(X)] as n→∞ if a is a continu-
ity point of W (q)′

+ (recalling that W (q) and Z(q) are continuous on (0,∞)). If
a is not a continuity point, it follows by approximation that Es,s[e−qτa(X)]
is equal to (16). Thus the identity (16) also holds true for σ = 0 and
w = v = 0 = s− x. ��

3.1 First passage over non-constant boundaries

Let I ⊂ [0,∞) be some interval of the non-negative half-axis and let ϕ : I → R

be a function of bounded variation that is right-continuous with left-hand
limits. In this subsection we consider the first time the process Y hits or
crosses a boundary ϕ(X ·) that depends on the running supremum X, that is,
we examine the stopping times T = Tϕ and T ′ = T ′

ϕ given by

Tϕ = inf{t � 0 : Yt = φ(Xt)}, T ′
ϕ = inf{t � 0 : Yt > φ(Xt)}.

Note that if we take ϕ to be constant we are back in the setting of the previous
section. Below we shall solve the problem of Lehoczky for a spectrally negative
Lévy process X, that is, we shall employ excursion theory to solve for the law
of (σ, Yσ,Xσ) for σ equal to the stopping times T or T ′. In the next section
it is shown that these results provide the key to a solution of the Skorokhod
embedding problem of Y .
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Proposition 2 For 0 � x < M , u, v > 0 and p = u − ψ(v) the following
identities hold true:

E
[
e−uT

′−v(XT ′−XT ′ )I(x�XT ′�M)

]
=
∫

[x,M ]

ds exp

(
−
∫ s

0

W
(u)′
+ (ϕ(t))

W (u)(ϕ(t))
dt

)

×
(
Z(p)
v (ϕ(s))

W
(p)′
v+ (ϕ(s))

W
(p)
v (ϕ(s))

− pW (p)
v (ϕ(s))

)
;

E
[
e−uT−v(XT −XT )I(x�XT �M)

]
=
∫

[x,M ]

ds exp

(
−
∫ s

0

W
(u)′
+ (ϕ(t))

W (u)(ϕ(t))
dt

)

× e(Φ(u)−v)ϕ(s)

(
W

(u)′
+ (ϕ(s))

W (u)(ϕ(s))
− Φ(u)

)
.

In particular, note that, if X does not drift to −∞ and the function ϕ is such
that ∫ ∞

0

W ′
+(ϕ(t))

W (ϕ(t))
dt = +∞, (24)

the laws of XT ′ and XT coincide and are given by

P(XT ′ � x, T ′ <∞) = exp
(
−
∫ x

0

W ′
+(ϕ(t))

W (ϕ(t))
dt
)

(25)

at every continuity point x of ϕ. Indeed, since Φ(0) = 0 in this case, equation
(25) follows by letting u and v tend to 0 and M ↑ ∞ in Proposition 2.
Moreover, from (25) and condition (24) it follows that T and T ′ are finite a.s.
under the mentioned conditions. For future use, we note that Proposition 2
implies the following identities for the first moments of T = Tϕ and T ′ = T ′

ϕ:

Corollary 2 Write

C(s) =
∫

[0,s]

[
(W �W )′+(ϕ(u))

W (ϕ(u))
− W ′

+(ϕ(u))(W �W )(ϕ(u))
W (ϕ(u))2

]
du.

(i) Suppose that the limit as s tends to infinity of

P(XT ′ � s)[W (ϕ(s)) + C(s)] (26)

exists and denote it by D. If X does not drift to −∞, then E[T ′] is given by

E[T ′] =
∫ ∞

0

W (ϕ(s))P(XT ′ � s)d(s− ϕ(s)) +D −W (ϕ(0)). (27)
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(ii) Suppose that the limit as s tends to infinity of

P(XT � s)[Φ′(0+)(ϕ(s)) + C(s)], (28)

exists and denote it by E. If X drifts to ∞, then E[T ] is given by

E[T ] = Φ′(0+)
∫ ∞

0

P(XT � s)d(s− ϕ(s)) + E − Φ′(0+)ϕ(0). (29)

Proof of Proposition 2. To prove the first identity, we apply again the com-
pensation formula for Poisson point processes to the excursion process of Y
and find, by a computation similar to the ones in the previous subsection,
that

E
[
e−uT

′−v(XT ′−XT ′ )I(XT ′≥x)

]
= E

[∑
g

e−ugI(Xg�x,εh<ϕ(Xh)∀h<g) × e−uT
′◦θgI(ε�ϕ(Xg))

]

= E

[∫
L(ds)e−usI(Xs�x,er<ϕ(Xr) ∀r<s)

∫
n(dε)e−uTϕ(Xs)(ε)I(ε�ϕ(Xs))

]
=
∫ ∞

x

dv E
[
e−uL

−1(v−)I(εL−1(s−)<ϕ(s) ∀s<v)
]

×
∫
n(dε)e−uTϕ(v)(ε)I(ε≥ϕ(v)), (30)

where, as before, we used the notation Ta(ε) = inf{t � 0 : εt > a}. Since
the heights of the excursions of Y form a Poisson point process h taking
values in (0,∞), the first factor of (30) with u = 0 can be interpreted as the
probability of h not visiting the set At = {(s, ε) ∈ [0, t] × E : es � ϕ(s)}.
Denoting by R

(0)
t the mass of the set At under the characteristic measure of

h, n(h > a) = W ′
+(a)/W (a), it follows that the aforementioned probability is

equal to exp(−R(0)
t ), where, for u � 0,

R
(u)
t =

∫ t

0

W
(u)′
+ (ϕ(s))

W (u)(ϕ(s))
ds.

The case of u > 0 can be dealt with by a change of measure, see e.g. [2] for
details. The second factor of (30) is computed in [19] and the result found
there reads as∫

n(dε)
{

e−uTa−vε(Ta)I(ε�a)
}

= Z(p)
v (a)W (p)′

v (a)/W (p)
v (a)− pW (p)

v (a), (31)

where p = u− ψ(v). Substituting the formulas into (31) completes the proof
of the first identity.

For the second identity, it is straightforward to verify that replacing T ′ by
T and Ta(ε) by ρa(ε) = inf{t � 0 : ε(t) = a}, the previous reasoning remains
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valid up to (30), so that to complete the proof we have to compute the second
factor of (30). The strong Markov property of the excursion process implies
that ∫

n(dε)e−uρa(ε)I(ε�a) =
∫
n(dε)e−uTa(ε)I(ε�a)Eε(Ta)[e−uT

−
a ]

= eΦ(u)a

∫
n(dε)e−uTa(ε)−Φ(u)ε(Ta)I(Ta(ε)<ζ)

= eΦ(u)aZ
(0)
Φ(u)(a)

W
(0)′
Φ(u)(a)

W
(0)
Φ(u)(a)

= eΦ(u)a

(
W (u)′(a)
W (u)(a)

− Φ(u)
)
,

where in the second line we substituted (31) with p = u − ψ(Φ(u)) = 0 and
in the third line we used Remark 1. ��

Proof of Corollary 2. Note first that the series representation (3) implies that

∂

∂u

W (u)′(s)
W (u)(s)

∣∣∣∣
u=0

=
(W �W )′(s)

W (s)
− W ′(s)(W �W )(s)

W (s)2
. (32)

Set v and x equal to zero in the expressions in Proposition 2 and perform
then a partial integration. Differentiating the result with respect to u and
letting first u tend to zero and then M →∞, we find the expression as stated
where the constants D and E originate from the stock terms of the partial
integration. ��

4 Skorokhod embedding

In this section we consider the Skorokhod embedding of a probability measure
ν on (0,∞) without atoms in the process Y . Restricting ourselves to the case
that X does not drift to −∞, we address the following problem:
Problem. Construct a stopping time T ∗ with respect to the filtration gener-
ated by X such that YT∗ ∼ ν.

Below we shall give such a construction and also address the issue of mini-
mality of the constructed stopping time and of the finiteness of its expectation.

The key step in the construction of the embedding stopping time consists
in linking the law of XT , which was found in the previous section, to that of
YT . Let a � 0 be the infimum and b ∈ (0,∞] be the supremum of the support
of ν and write ν̄(y) = ν([y,∞)) for the tail of ν and define the function
ψν : [0,∞) → [0,∞] by

ψν(x) =
∫

[a,x]

W (y)
W ′

+(y)
ν(dy)
ν̄(y)

for x ∈ [a, b]
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and set ψν(x) = 0 for x � a, ψν(x) = +∞ for x > b. If X is a Brownian
motion, W (x) = 2x and the form of ψν coincides with the function introduced
in Ob�lój and Yor [17] to solve for the Skorokhod embedding of the length of a
Brownian excursion (which was first solved by Vallois [26]). As W/W ′

+ is non-
negative, the function ψν is non-decreasing, and, moreover, it is continuous
as we assumed that ν has no atoms. Denote by

ϕν(u) = inf{v � 0 : ψν(v) > u}
the right-inverse of ψν (with inf ∅ = +∞).

Proposition 3 If X does not drift to −∞, then

YT∗ ∼ ν where T ∗ = Tϕν

and T ∗ <∞ a.s. Moreover, (i) If X drifts to +∞ and cν + dν <∞, where

cν :=
∫ ∞

0

W (s)
W ′

+(s)
ν(ds), dν :=

∫ ∞

0

sν(ds), (33)

then E[T ∗] is finite and given by E[T ∗] = (cν − dν)Φ′(0+).
(ii) If X oscillates and has downward jumps, then E[T ∗] =∞.
(iii) If X is standard Brownian motion and ν has finite second moment, E[T ∗]
is finite and given by E[T ∗] =

∫∞
0
t2ν(dt).

Remark (Minimality). The embedding stopping time T ∗ is called minimal
if the only stopping time S satisfying S � T ∗ and YS = YT is S = T ∗. In
general the stopping time T ∗ will not be minimal for the embedding by the
fact that the first passage time is in general strictly smaller than the first
hitting time of a positive level by Y . Instead, a weaker form of minimality can
be seen to hold true: if a stopping time S satisfies S � T ∗ and YS = YT then
L(S) = L(T ), where L = X is a local time of Y at zero.

Remark (Measures with atoms). Since the distribution under n of the
height h of an excursion ε is given by n(h > a) = W ′

+(a)/W (a), Proposition 3
can be seen to be a special case of Theorem 1 in Ob�lój [15] on embeddings of
functionals of Markovian excursions. Moreover, from Theorem 1 in Ob�lój [15]
it also directly follows that the above result can be extended to include mea-
sures ν with atoms (cf. Proposition 10 in Ob�lój [15]). (Proposition 3 given
above and [15, Theorem 1] were obtained independently.)

Proof. If X does not drift to −∞, T ∗ is finite almost surely (Proposition 2)
and we find, by definition of T ∗ and by (25) since ν has no atoms, that

P(YT∗ � x) = P(ϕν(XT∗) � x)

= P(XT∗ � ψν(x)) = exp

(
−
∫

[0,x]

W ′
+(u)

W (u)
dψν(u)

)

= exp

(
−
∫

[0,x]

ν(du)
ν̄(u)

)
= ν(x).
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(i) For ϕ = ϕν and using the change of variables t = ψν(s), it is straight-
forward to verify that the limit as s→∞ of (28) is equal to

E = lim
t→∞

ν̄(t)
{
Φ′(0)t+

∫ t

0

[
(W �W )′+(s)

W ′
+(s)

− (W �W )(s)
W (s)

]
ν(ds)
ν̄(s)

}
.

Since W is increasing and bounded when X drifts to infinity, it follows that
(W�W )(s)/W (s) is bounded above by a constant times s and (W�W )′+(s) by
a constant. Thus by the dominated convergence theorem in conjunction with
(33), it follows that E = 0. The form of E[T ∗] then follows by performing the
same change of variables s = ψν(t) in (29), in conjunction with the definition
of ψν and a change of order of integration.

(ii) Write Oϕν
for the time needed for Y to hit the boundary after Y first

overshot ϕν (setting Oϕν
equal to 0 if Y crept over the boundary). Then we

see that E[T ∗] is equal to E[T ′
ϕν

] + E[Oϕν
]. Writing o(dx) for the overshoot

distribution of Y over ϕν , YT∗ − ϕν(XT∗), it follows by the Markov property
of Y , the spatial homogeneity of X and the identity E[e−qT

+
b ] = e−bΦ(q) for

b > 0, that

E[Oϕν
] =

∫ ∞

0

o(dx)E−x[T+
0 ] = Φ′(0+)

∫
xo(dx).

The assertion (ii) is proved.
(iii) Since a Brownian motion has no downward jumps, the expectations

E[Tϕ] and E[T ′
ϕ] are equal. Recalling that for a Brownian motion W (x) = 2x,

we note that W (x) = x2 and (W � W )(x) = 2x3/3, so that the right-hand
side of (32) is equal to 2x/3. Taking ϕ = ϕν and performing the change of
variables s = ψν(t), (26) reads as

D = lim
t→∞

ν̄(t)
[
t2 +

2
3

∫ t

0

s2
ν(ds)
ν̄(s)

]
.

Since ν has a finite second moment, dominated convergence implies that D is
equal to zero. Performing the same change of variables in (27) shows that

E[T ′
ϕν

] =
∫ ∞

0

W (x)ν̄(x)ψν(dx)−
∫ ∞

0

W (x)ν̄(x)dx

=
∫ ∞

0

2x · ν̄(x) · xν(dx)
ν̄(x)

−
∫ ∞

0

x2ν(dx)

=
∫ ∞

0

x2ν(dx)

and the proof is finished. ��
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Examples. Let X be a stable Lévy process with index α ∈ (1, 2] and recall
from (5) that W (x) = αxα−1 and thus W (x)/W ′(x) = x/(α − 1) for x � 0.
For example, if ν is a Weibull(β) distribution, i.e.

ν([0, x]) = 1− exp(−xβ), x � 0,

then, for x > 0, ψν(x) is given by

ψν(x) =
β

(α− 1)(β + 1)
xβ+1.

If ν is a uniform distribution on [0, θ],

ν(dx)/dx = 1/θ, x ∈ [0, θ],

then, for x ∈ (0, θ), ψν(x) is equal to

ψν(x) =
1

α− 1
[θ log θ − θ log(θ − x)− x] .

If ν has the distribution of the maximum of two independent uniforms on
(0, θ),

ν(dx)/dx = 2x/θ2, x ∈ [0, θ],

then, for x ∈ (0, θ), ψν(x) reads as

ψν(x) =
1

α− 1
[θ log(θ + x)− θ log(θ − x)− 2x] .

Remark (Skorokhod embedding in X). The Skorokhod embedding prob-
lem of X is closely related to the embedding of Y studied in this section and
consists in finding a stopping time T∗ such that XT∗ ∼ μ, where μ is a prob-
ability measure on the real line without atoms. We shall now give an outline
how to recover the Azéma–Yor embedding of Brownian motion in a compact
centered measure from our results in this and the previous section. Write a
and b, a, b ∈ R for the infimum and supremum of the support of the measure
μ, respectively, and consider the fixed point equation for a càdlàg function
g : R → R given by

g(x) =
∫

[a,x]

W (g(v)− v)
W ′

+(g(v)− v)
μ(dv)
μ̄(v)

, a � x < b, (34)

where g(x) = 0 for x < a and g(x) = x for x � b (where W/W ′
+(x) is

understood to be zero for x < 0). The solution, if it exists, is denoted by
gμ and is right-continuous and non-decreasing, as (W/W ′

+) is non-negative.
In the case of Brownian motion W (x)/W ′(x) = x for x > 0 as noted before.
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Supposing now the measure μ is centered,
∫
yμ(dy) = 0, with

∫
|y|μ(dy) <∞,

it can then be verified that the unique solution of (34) is given by g = gμ,
where

gμ(x) =
1

μ̄(x)

∫
[x,∞)

yμ(dy), a � x < b,

the barycentric function of μ. Note that gμ(x) > x for all x < b. Denoting by
hμ the right-continuous inverse of gμ and by ϕ̃μ(x) = x− hμ(x), reasoning as
in the proof of Proposition 3 and using the form of the stopping time T

ϕ̃μ
, it

can be verified that XT∗ ∼ μ, where T∗ = T
ϕ̃μ

. In particular, if μ has finite
second moment, one finds back from Corollary 2 that E[T∗] is finite and given
by E[T∗] =

∫
t2μ(dt).
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proof and applications. Séminaire de Probabilités XV, pp. 227–250

23. L.C.G. Rogers (1993) The joint law of the maximum and the terminal value of
a martingale. Probab. Theory Related Fields 95, pp. 451–466

24. A. Skorokhod (1965) Studies in the theory of random processes. Addison-Wesley,
Reading, MA

25. V.N. Suprun (1976) The ruin problem and the resolvent of a killed independent
increment process. Ukranian Math. J. 28, pp. 39–45

26. P. Vallois (1983) Le problème de Skorokhod sur R: une approche avec le temps
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for each fixed q ≥ 0. In Theorem 7 of [1], sufficient conditions are given for
W = W (0) ∈ C∞(0,∞) to hold.
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can be directly proved by combining a change of measure with Theorem 1 in
Avram et al. (2004).
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[
φ(Sτ )−

∫ τ

0
c(Bs)ds

]
over all stopping times with E

∫ τ

0
c(Bs)ds < ∞,

where S = (St)t�0 is the maximum process associated with real valued Brownian
motion B, φ ∈ C1 is non-decreasing and c � 0 is continuous. From work of Peskir [15]
we deduce that this problem has a unique solution if and only if the differential
equation

g′(s) =
φ′(s)

2c(g(s))(s − g(s))

admits a maximal solution g∗(s) such that g∗(s) < s for all s � 0. The stopping
time which yields the highest payoff can be written as τ∗ = inf{t � 0 : Bt � g∗(St)}.
The problem is actually solved in a general case of a real-valued, time homogeneous
diffusion X = (Xt : t � 0) instead of B. We then proceed to solve the problem for
more general functions φ and c. Explicit formulae for payoff are given.
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terminal value and maximum of a process.
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1 Introduction

In this paper we study certain optimal stopping problems. Our interest in
these problems originated from the Skorokhod embedding field and a certain
knowledge of the latter will be useful for reading (see our survey paper [11]).

We are directly stimulated by an article by Meilijson [10] and our obser-
vation that his results can be seen via the tools developed by Dubins, Shepp
and Shiryaev [5] and Peskir [15]. In this paper, we manage to establish a link
and generalize both the works of Meilijson [10] and Peskir [15]. We try to
investigate the nature of the optimal stopping problem (12) through a series
of remarks and rely on reasonings found in the above-cited articles together
with some approximation techniques and limit passages to develop certain
generalizations. Our work has therefore characteristics of an exposition of the
subject with aim at unifying and extending known results.

Let φ be a non-negative, increasing, continuous function and c a contin-
uous, positive function, and consider the following optimal stopping problem
of maximizing

Vτ = E

[
φ(Sτ )−

∫ τ

0

c(Bs)ds
]
, (1)

over all stopping times τ such that

E

[∫ τ

0

c(Bs)ds
]
<∞, (2)

where (Bt : t � 0) is a real-valued Brownian motion and St is its unilateral
maximum, St = supu�tBu.

Suppose, in the first moment, that φ(x) = x and c(x) = c > 0 is a constant.
In this formulation the problem was solved by Dubins and Schwarz [6] in
an article on Doob-like inequalities. The optimal stopping time is just the
Azéma–Yor embedding (see Azéma and Yor [2] or Section 5 in Ob�lój [11]) for
a shifted (to be centered) exponential distribution with parameter 2c. This
leads in particular to an optimal inequality (26).

Keeping φ(x) = x, let c(x) be a non-negative, continuous function. The
setup was treated by Dubins, Shepp and Shiryaev [5], and by Peskir in a series
of articles [15, 16, 18]. Peskir treated the case of real-valued diffusions, which
allows to recover the solution for general φ as a corollary.

Theorem 1 (Peskir [15]). The problem of maximizing (1) over all stopping
times τ satisfying (2), for φ(x) = x and c(x) a non-negative, continuous
function, has an optimal solution with finite payoff if and only if there exists
a maximal solution g∗ of

g′(s) =
1

2c(g(s))(s− g(s))
(3)

which stays strictly below the diagonal in R2, i.e. g∗(s) < s. The Azéma–Yor
stopping time τ∗ = inf{t � 0 : Bt � g∗(St)} is then optimal and satisfies (2)
whenever there exists a stopping time which satisfies (2).
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As pointed out above, this theorem was proved in a setup of any real, regular,
time-homogeneous diffusion to which we will come back later. The characteri-
zation of existence of a solution to (1) through existence of a solution to
the differential equation (3) is called the maximality principle. We point out
that Dubins, Shepp and Shiryaev, who worked with Bessel processes, had
a different way of characterizing the optimal solution to (3), namely they
required that g∗(s)

s −−−→
s→∞

1.
Let now φ be any non-negative, non-decreasing, right-continuous function

such that φ(Bt) − ct is a.s. negative on some (t0,∞) (with t0 random) and
keep c constant. This optimal stopping problem was solved by Meilijson [10].
Define

H(x) = sup
τ

E [φ(x+ Sτ )− cτ ] .

Theorem 2 (Meilijson [10]). Suppose that E supt{φ(Bt)−ct} <∞. Then H
is absolutely continuous and is the minimal solution to the differential equation

H(x)− 1
4c

(H ′(x))2 = φ(x) . (4)

If φ is constant on [x0,∞) then H is the unique solution to (4) that equals φ
on [x0,∞). The optimal stopping time τ∗ which yields H(0) is the Azéma–Yor
stopping time given by τ∗ = inf{t � 0 : Bt � St − H′(St)

2c }.
Let us examine in more detail the result of Meilijson in order to com-

pare it with the result of Peskir. The Azéma–Yor stopping time is defined as
τ∗ = inf{t � 0 : Bt � g(St)} with g(x) = x− H′(x)

2c . Let us determine the dif-
ferential equation satisfied by g. Note that H is by definition non-decreasing,
so we have H ′(x) =

√
4c
√

(H(x)− φ(x)). For suitable φ, this is a differen-
tiable function and differentiating it we obtain

H ′′(x) =
2c(H ′(x)− φ′(x))√

4c(H(x)− φ(x))
=

2c(H ′(x)− φ′(x))
H ′(x)

.

Therefore

g′(x) = 1− H ′′(x)
2c

=
φ′(x)
H ′(x)

=
φ′(x)

2c(x− g(x))
. (5)

We recognize immediately (3) only there φ′(s) = 1 and c was a function
and not a constant. This motivated our investigation of the generalization of
problem (1), given in (12), which is solved in Theorems 5–7 in Section 4.

Consider now the converse problem. That is, given a centered probability
measure μ describe all pairs of functions (φ, c) such that the optimal stopping
time τ∗, which solves (1) exists and embeds μ, that is Bτμ

∼ μ.
This was called the optimal Skorokhod embedding problem (term intro-

duced by Peskir in [16]), as we not only specify a method to obtain an
embedding for μ but also construct an optimal stopping problem, of which
this embedding is a solution.
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Again, let us consider two special cases. First, let φ(x) = x. From the
Theorem 1 we know that τ∗ is the Azéma–Yor stopping time and the function
g∗ is just the inverse of barycentre function of some measure μ. The problem
therefore consists in identifying the dependence between μ and c. Suppose
for simplicity that μ has a strictly positive density f and that it satisfies
L logL-integrability condition.

Theorem 3 (Peskir [16]). In the setup above there exists a unique function

c(x) =
1
2
f(x)
μ(x)

(6)

such that the optimal solution τ∗ of (1) embeds μ. This optimal solution is
then the Azéma–Yor stopping time given by

τ∗ = inf{t � 0 : St � Ψμ(Bt)}, where (7)

Ψμ(x) =
1

μ([x,∞))

∫
[x,∞)

ydμ(y). (8)

The function c in (6) is recognized as a half of the hazard function which plays
an important role in some studies. Now let c(x) = c be constant. Then we
have

Theorem 4 (Meilijson [10]). In the setup above, there exists a unique func-
tion φ defined through (4) with H ′(x) = 2c(x − Ψ−1

μ (x)), where Ψμ is the
barycentre function given in (8), such that the optimal solution τ∗ of (12)
embeds μ. This optimal solution is then the Azéma–Yor stopping time given
by (7).

We will provide a general solution that identifies all the pairs (φ, c) with basic
regularity properties, in Proposition 8 in Section 5.

2 Notation

In this section we fix the notation that, unless stated otherwise, is used in the
rest of the paper.

X = (Xt)t�0 denotes a real-valued, time-homogeneous, regular diffusion
associated with the infinitesimal generator

LX = δ(x)
∂

∂x
+
σ2(x)

2
∂2

∂x2
, (9)

where the drift coefficient x→ δ(x) and the diffusion coefficient x→ σ(x) > 0
are continuous. We assume moreover that there exists a real-valued, standard
Brownian motion B = (Bt)t�0, such that X solves the stochastic differential
equation

dXt = δ(Xt)dt+ σ(Xt)dBt, (10)

with X0 = x under Px := P for x ∈ R. The natural filtration of X is
denoted (Ft : t � 0) and is taken right-continuous and completed. The scale
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function and the speed measure of X are denoted, respectively, by L and
by m. The state space of X is (aX , bX), where aX < bX can be finite or
infinite. The interval (aX , bX) might be also closed from one, or both, sides
under some additional conditions, as will be discussed later. We recall, that
for Brownian motion L(x) = x and m(dx) = 2dx.

The one-sided maximum process associated with X is

St =
(

sup
0�r�t

Xr

)
∨ s (11)

started at s � x under Px,s := P. When several maximum processes will ap-
pear for different diffusions, we will add appropriate superscripts, thus writing
SXt . The first hitting times for S are noted Ta = inf{t � 0 : St � a}.

We make the following assumptions on the function φ:

• φ : (aX , bX) → R is non-decreasing, right-continuous and its points of
discontinuity are isolated;

• φ′, taken right-continuous, is well defined and its points of discontinuity
are isolated;

• there exists rφ, such that on [rφ − 1,+∞), φ ∈ C1 and φ′ > 0.

The last assumption has technical signification and is there to allow for a
convenient identification of a particular solution to a differential equation.
It will be clear from our proofs of main theorems, we hope, that one could
impose some other condition, which would yield a different description.

We denote Dφ, the set of points of discontinuity of φ. It is bounded from
above by rφ and can write Dφ = {d0, d1, . . . } where di � di+1. Similarly, the
set of points of discontinuity of φ′ is also bounded from above by rφ and we
can write Dφ′ = Dφ ∪ {f0, f1, . . . }, where fi � fi+1.

It will be convenient to work sometimes with a different function φ̃, which
is of class C1 with φ̃′ > 0, and satisfies: φ̃ � φ, φ̃|[rφ,∞)

= φ|[rφ,∞)
. No rea-

soning will depend on a particular choice of φ̃, so we do not present a specific
construction.

The function c : [0,+∞) → [0,+∞) has a countable number of disconti-
nuities. In his work Peskir [15] supposed c > 0, but we will see (cf. Remark 5)
that allowing c to be zero on some intervals can be of great use. In some parts
of the work we will make additional assumptions on the regularity of c, yet in
others we will allow it to take the value +∞.

We consider the following optimal stopping problem:

V∗(x, s) = sup
τ

Ex,s

(
φ(Sτ )−

∫ τ

0

c(Xt)dt
)
, (12)

where τ is a Ft-stopping time, which satisfies

Ex,s

(∫ τ

0

c(Xt)dt
)
<∞. (13)
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Through a solution to “the optimal stopping problem (12)” we understand a
stopping time which yields V∗ and satisfies the condition (13). Such solution
is denoted τ∗, i.e., V∗(x, s) = Ex,s

(
φ(Sτ∗)−

∫ τ∗
0
c(Xt)dt

)
. Note that of course

V∗ and τ∗ depend on φ and c but it will be obvious from the context if we
discuss the general setup of arbitrary (φ, c) or some special cases.

3 Some remarks on the problem

In the next section we will present a complete solution to the optimal stopping
problem (12). However, before we do it, we want to give some relatively simple
observations, which help to understand better the nature of the problem. Most
of them become nearly evident once a person is acquainted with the problem,
yet we think it is worthwhile to gather them here. As a matter of fact, they
will help us a great deal, both in formulating and in proving, the main results
of this paper.

The general construction of the optimal stopping problem under consid-
eration is such, that we get rewarded according to the record-high value so
far, and get punished all the time, proportionally to the time elapsed and
depending on the path of our process. This means basically that the situation
when the diffusion increases is favorable and what is potentially dangerous, as
it might be “too costly”, are excursions far away below the maximum, that is
the negative excursions of the process (Xt−St). The first observation is then
that the process should not be stopped in the support of dSt.

Remark 1 (Proposition 2.1 [15]). If φ′ > 0 and τ yields the solution to the
problem (12), then Xτ �= Sτ a.s., that is the process (Xt, St) cannot be opti-
mally stopped on the diagonal of R2.

Let us investigate in more detail the nature of the optimal stopping time.
If we follow the process Xt, as noted above, we gain when it increases. In
contrast, when it decreases we only get punished all the time. This means
that at some point it gets too costly to continue a given negative excursion
of (Xt − St). Exactly when it becomes too costly to continue the excursion
depends only on three factors: the diffusion characteristics, the functions φ,
and c, and on the value St of the maximum so far. Indeed, the choice of the
point in an obvious manner depends on what we expect to earn, if the process
climbs back to St, which in turn is a function of the diffusion characteristics
and the functions φ, and c. Note however, that through the Markov property,
it doesn’t depend on the way the process arrives at St. Similarly, thanks to the
Markov property, the way the excursion of (X−S) straddling time t develops,
doesn’t affect the choice of the stopping value. Clearly also this value is an
increasing function of the maximum.

Remark 2. The solution to the optimal stopping problem (12), if it exists, is
given by a stopping time of the following form τ = inf{t � 0 : Xt � g∗(St)},
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where the function g∗ is non-decreasing and depends on the characteristics of
X and the functions φ, and c.

Now that we have a feeling of how the stopping time looks like, we will try
to learn more about the function g∗. Consider the function V (x, s) given by
(12). Since V (x, s) corresponds to the optimal stopping of the process (Xt, St)
started at (x, s), the values of φ(u) for u < s never intervene. Furthermore,
if the process reaches some value s1 > s then, thanks to the strong Markov
property, we just face the problem V (s1, s1). We could then replace the func-
tion φ with some other function φ̃ which coincides with φ on [s1,∞) and this
would not affect the stopping rule, that is it would not affect values of the
function g∗ on the interval [s1,∞). Thus the finiteness of V is not affected
by any change of φ away from infinity. Likewise, if we add a constant δ to
φ it will only change V (·, ·) by δ and leave g∗ unchanged. Combining these
observations we arrive at the following remark.

Remark 3. Consider two functions φ1 and φ2 which, up to an additive con-
stant, coincide on some half-line: φ1(s) = φ2(s) + δ for all s � r and some
δ ∈ R. The optimal stopping problem (12) for φ1 has finite payoff if and
only if the optimal stopping problem (12) for φ2 has finite payoff. Suppose
this the case and denote respectively τ1 = inf{t � 0 : Xt � g1

∗(St)} and
τ2 = inf{t � 0 : Xt � g2

∗(St)} the stopping times, which yield these payoffs.
Then g1

∗(s) = g2
∗(s) for all s � r.

We turn now to examine in more depth the relation between g∗ and φ.
Consider an interval of constancy of φ. Suppose that φ(α) = φ(β) for some
α < β and φ increases on right of β (or has a jump). Then starting the process
at x ∈ [α, β) we always face the same problem: we get punished all the time,
but get rewarded only if we attain the level β. Due to the Markov character
of the diffusion, reasoning similarly to the derivation of Remark 2, we see that
the optimal stopping time is then just an exit time of some interval [γ, β] and
γ is then precisely the value of g∗ on (α, β).

Remark 4. The functions φ and g∗, which induces the optimal stopping time,
have the same intervals of constancy. In other words g′∗|(α,β)

≡ 0 ⇔ φ′
|(α,β)

≡ 0.

It is important to realize that if an interval of constancy of φ is long and
the function doesn’t grow fast enough afterwards, it may be optimal to stop
immediately when coming to such a level of constancy. Thus the function g∗
may stay in part under and in part on the diagonal in R2.

Analysis of jumps of φ and g∗ is more involved. When φ is continuous, since
the diffusion itself is continuous too, it’s not hard to believe that g∗ should be
continuous as well. It is maybe a little more tricky to convince yourself that if
φ jumps, then g∗ has a jump too. We will try to argue this here, and moreover
we will determine the height of the jump, following the reasoning of Meilijson
developed in the proof of Corollary 1 in [10]. Suppose that φ has a jump in
s0: φ(s0) − φ(s0−) = j > 0. For simplicity, suppose also that φ is constant
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on some interval before the jump: φ(s0 − ε) = φ(s0−). Then, as noted above,
starting the process at some x ∈ [s0 − ε, s0) we wait till the first exit time of
the interval [g∗(x), s0]. If we exit at the bottom we stop, and if we exit at the
top, we have a new, independent diffusion starting, for which the expected
payoff is just V (s0, s0). For the process X starting at y ∈ [a, b], denote ρya,b
and ρya, respectively, the first exit time of the interval [a, b] and the first hitting
time of the level a. We can then write the payoff V (x, x) as

V (x, x) = E

[
V (s0, s0)1{ρx

g∗(x),s0
=ρx

s0

} + φ(x)1{
ρx

g∗(x),s0
=ρx

g∗(x)

}
−
∫ ρx

g∗(x),s0

0

c(Xu)du

]
. (14)

We know, by Remark 3, that the value g∗(s0) is uniquely determined by the
diffusion characteristics, the cost function c, and values of the function φ
on [s0,∞). Replace in the above display g∗(x) by a and denote this quan-
tity V a(x, x). Then V (x, x) = supa<s0 V

a(x, x). This determines the value of
ax∗ = g∗(x) and therefore the height of the jump of g∗ at s0. We will now show
that the value of ax∗ does not depend on x (which is also clear by Remark 4)
and give an equation which describes it.

Actually the equation for ax∗ is obvious: ax∗ is the unique real, such that
∂V a(x,x)

∂a |a=ax∗
= 0. This can be rewritten in the following equivalent manner,

using the fact that P(ρxa,b = ρxb ) = (L(x)− L(a))/(L(b)− L(a)):

L′(ax∗)× L(s0)− L(x)
(L(s0)− L(ax∗))2

(φ(x)− V (s0, s0)) =
∂

∂a
E

[∫ ρx
ax∗ ,s0

0

c(Xu)du

]
.

(15)

We just have to show that actually ax∗ does not depend on x. To this end let
a < y < x < s0 and write

E

[∫ ρx
a,s0

0

c(Xu)du

]
= E

[∫ ρx
s0

0

c(Xu)du× 1ρx
y,s0

=ρx
s0

+
∫ ρx

y

0

c(Xu)du× 1ρx
y,s0

=ρx
y

]

+
L(s)− L(x)
L(s)− L(y)

E

[∫ ρy
a,s0

0

c(Xu)du

]
,

where we used the strong Markov property at time ρxy . The first two terms on
the right-hand side do not depend on a, and differentiating the above equation
with respect to a yields an identity which proves that ax∗ = ay∗ =: a∗ for
x, y ∈ [s0 − ε, s0), since φ was supposed constant on this interval. It is also
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clear that a∗ depends only on the characteristics of X, the cost function c
and the payoff value V (s0, s0). Since the diffusion is fixed, we write a∗ =
a∗(c, V (s0, s0)).

So far we only analyzed the dependence between g∗ and φ, and it is the
time to investigate the rôle of the cost function c. Suppose that the func-
tion c disappears on some interval, c|(α,β)

≡ 0. Thus wandering away from the
maximum in the interval (α, β) doesn’t cost us anything – there is no reason
therefore to stop while in this interval. This implies that (α, β) is not in the
range of g∗.

Remark 5. If c|(α,β)
≡ 0 end τ∗ yields the optimal payoff to the problem (12),

then (α, β) ∩ g∗(R) = ∅ and Xτ∗ /∈ (α, β) a.s.

Thus, the impacts of the intervals of disappearance of c, and of the jumps of
φ, on the function g∗, are similar, only the former is much easier to describe.
One could predict that the jumps of c would provoke a similar behavior of
g∗ as do the intervals of constancy of φ. This however proves to be untrue.
It stems from the fact that the values of c are averaged through integrating
them. Thus, jumps of c will only produce discontinuities of g′∗. We will come
back to this matter in Theorem 6.

4 Maximality principle revisited

In this section we describe the main result of our paper, namely the complete
solution to the optimal stopping problem (12). The solution is described in
a sequence of three theorems with increasing generality of the form of the
function φ. In the first theorem we suppose that φ is of class C1 and strictly
increasing. Our theorem is basically a re-writing of the Theorem 3.1 found in
Peskir [15]. Theorem 6 treats the case of a continuous function φ, and is obt-
ained form the previous one through an approximation procedure. Theorem 7
which deals with the general setup described in Section 2. It relays on Theorem
6 and on the work of Meilijson [10], and is less explicit then Theorems 5 and
6, as the treatment of jumps of φ is harder.

Theorem 5 (Peskir). Let φ ∈ C1 with φ′ > 0, and c > 0 be continuous.
The problem (12), has an optimal solution with finite payoff if and only if
there exists a maximal solution g∗ of

g′(s) =
φ′(s)σ2 (g(s))L′ (g(s))

2c (g(s)) (L(s)− L(g(s)))
, aX < s < bX , (16)

which stays strictly below the diagonal in (aX , bX)2 (i.e., g∗(s) < s for
aX < s < bX). More precisely, let s∗ be such that g∗(s∗) = aX . Then g∗
satisfies (16) on (s∗, bX) and it is maximal such function (where the func-
tions are compared on the interval, where both of them are superior to aX),
which stays below the diagonal.
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In this case the payoff is given by

V∗(x, s) = φ(s) +
∫ x

x∧g∗(s)

(
L(x)− L(u)

)
c(u)m(du), (17)

The stopping time τ∗ = inf{t � 0 : Xt � g∗(St)} is then optimal whenever it
satisfies (13), otherwise it is “approximately” optimal 2.
Furthermore if there exists a solution ρ of the optimal stopping problem (12)
then Px,s(τ∗ � ρ) = 1 and τ∗ satisfies (13).
If there is no maximal solution to (16), which stays strictly below the diagonal
in R2, then V∗(x, s) = ∞ for all x � s.

The last property for τ∗ says it’s pointwise the smallest solution, providing
a uniqueness result. This remains true in more general setups and we will
not repeat it below. This property follows from Peskir’s [15] arguments but
is also closely linked with properties of the Azéma–Yor stopping times, or
any solutions to the Skorokhod embedding in general, we refer to Ob�lój [11],
chapter 8, for details. Note that for a general φ, we defined in Section 2 the
function φ̃, which coincides with φ on the interval [rφ,∞) and is of class
C1. In particular, we can apply the above theorem to the optimal stopping
problem (12) with φ replaced by φ̃. We denote g̃∗ the function which gives
the optimal stopping time τ̃ = inf{t � 0 : Xt � g̃∗(St)}, which solves this
problem.

Theorem 6. Let φ be as described in Section 2, but continuous, and c > 0
be continuous. Then the optimal stopping problem (12) has a finite payoff if
and only if the optimal stopping problem with φ replaced by φ̃ has a finite
payoff. In this case there exists a continuous function g∗, which satisfies the
differential equation (16) on the interior of the set R \ Dφ′ , and coincides
with g̃∗ on the interval [rφ,∞). The payoff is given by the formula (17) and
is obtained for the stopping time τ = inf{t � 0 : Xt � g∗(St)}, if it satisfies
(13). Otherwise this stopping time is approximately optimal.

It is important to note, that the function g∗ may not satisfy anymore
g∗(s) < s, since if the constancy intervals of φ are too long it might be optimal
to stop immediately (see also discussion around Remark 4).

The formulation for the case of φ with discontinuities is somewhat more
technical, as we have to define g∗ through an iteration procedure.

Theorem 7. Let φ be as described in Section 2, and c > 0 be continuous.
The optimal stopping problem (12) has finite payoff if and only if the optimal

2 In the limit sense as in Peskir [15].
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stopping problem with φ replaced by φ̃ has a finite payoff. In this case there
exists a function g∗, continuous on the set R\Dφ, which satisfies the following:

• g∗(s) = g̃∗(s) for all s ∈ [rφ,∞);
• g∗ is continuous on the interior of the set R \Dφ and differentiable on the

interior of the set R \Dφ′ , where it satisfies the equation (16);
• for all s ∈ Dφ, a∗ = g∗(s−) satisfies (15) with s0 = s.

The payoff is described via (17).
It is important to note, that even though the optimal payoff V appears in (15)
the above construction of g∗ is feasible. Recall, that the jumps points were
denoted · · · < d1 < d0. When determining the value of g∗(di−) we already
know the values of g∗ on [di,∞) and through the formula (17) also the payoff
V (x, s) for di � x � s.

Proof. We now prove, in subsequent paragraphs, Theorems 5, 6 and 7.
Theorem 5. Step 1. We start with the case when the state space of the dif-
fusion X is the whole real line, (aX , bX) = R, and the function φ is strictly
increasing and of class C1, and its image is the real line φ : R

on→ R. Let
Yt = φ(Xt). It is a diffusion with the scale function LY (s) = L(φ−1(s)), the
drift coefficient δY (y) = φ′ (φ−1(y)

)
δ
(
φ−1(y)

)
+ 1

2φ
′′ (φ−1(y)

)
σ2
(
φ−1(y)

)
,

the diffusion coefficient σY (y) = φ′ (φ−1(y)
)
σ
(
φ−1(y)

)
and the speed mea-

sure mY (dy) = 2dy
L′(φ−1(y))φ′(φ−1(y))σ2(φ−1(y)) . The state space of Y is the whole

real line. We can rewrite the optimal stopping problem for X in terms of Y
(where we add superscripts X and Y to denote the quantities corresponding
to these two processes):

V X∗ (x, s) = sup
τ

Ex,s

(
φ(SXτ )−

∫ τ

0

c(Xt)dt
)

= sup
τ

Ex,s

(
SYτ −

∫ τ

0

c(φ−1(Yt))dt
)

(18)

= V Y∗ (φ(x), φ(s)) under φ̃ = Id and c̃ = c ◦ φ−1.

We see therefore that the optimal solution for X coincides with the optimal
solution for Y for a different problem. We can apply Theorem 3.1 in Peskir [15]
for this new problem for Y to obtain that the optimal solution, if it exists, is
given by

τ∗ = inf
{
t � 0 : Yt � gY∗ (SYt )

}
= inf

{
t � 0 : Xt � φ−1

(
gY∗ (φ(SXt ))

)}
, (19)

where gY∗ is the maximal solution which stays below the diagonal of the
equation

gY
′

∗ (s) =
φ′ (φ−1(gY∗ (s))

)2
φ−1′ (

gY∗ (s)
)
σ2
(
φ−1(gY∗ (s))

)
L′ (φ−1(gY∗ (s))

)
2c (φ−1(gY∗ (s)))

(
L(φ−1(s))− L

(
φ−1(gY∗ (s))

)) .

(20)
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We put gX∗ (s)=φ−1
(
gY∗ (φ(s))

)
, so that the existence of gX∗ is equivalent to the

existence of gY∗ . We will now show that gX∗ satisfies (16). We will use the fol-
lowing simple observations: φ−1′

(φ(s))φ′(s)=1 and 1
φ−1′ (gY∗ (φ(s)))

=φ′(gX(s)).
Then

gX
′

∗ (s) = φ−1′ (
gY∗ (φ(s))

)
× gY

′
∗ (φ(s))× φ′(s)

=
φ−1′ (

gY∗ (φ(s))
)2 (

φ′(gX∗ (s))
)2
σ2(gX∗ (s))L′(gX∗ (s))φ′(s)

2c
(
gX∗ (s)

)(
L(s)− L(gX∗ (s))

)
=

φ′(s)σ2(gX∗ (s))L′(gX∗ (s))
2c
(
gX∗ (s)

)(
L(s)− L(gX∗ (s))

) ,
in which we recognize (16). Note that

(
gX∗ (s) < s for s ∈ R

)
⇔

(
gY∗ (s) < s

for s ∈ R
)

as
(
gX∗ (s) < s

)
⇔

(
gY∗ (φ(s)) < φ(s)

)
and φ is a one to one map

from R to R. This yields the description of gX∗ as the maximal solution to
(16), which stays strictly below the diagonal in R2.

The expression for payoff follows also from Peskir [15] by a change of
variables.
Step 2. In this step we extend the previous results to the case, when the
diffusion X or the function φ are not unbounded. First, observe that the
results of Peskir work just as well for a diffusion with an arbitrary state space
(aX , bX), −∞ � aX < bX � ∞. Indeed, if we take φ = Id, the solution is
given by the maximal solution to (16) for s ∈ (aX , bX) and which stays strictly
below the diagonal in (aX , bX)2. Formally, we could repeat the proof in of
Theorem 3.1 in [15], in about the same manner that Peskir treats non-negative
diffusions in Section 3.11 in the same article. Moreover, in this section, Peskir
also discusses the boundary behavior, to which we will come below (notice that
so far we considered unattainable boundaries, see Karlin and Taylor [9, pp.
226–236]).

We conclude therefore that the assumption on the state space of the diffu-
sion, as well as on the range of φ, were superficial. We need to keep φ′ > 0, but
we can have φ(R) � R. Note that φ(R) is then an open interval φ(R) = (a, b).
The equation (20) is valid in (a, b), but the original one (16) is valid in (aX , bX)
as asserted, due to the fact that gX∗ = φ−1 ◦ gY∗ ◦ φ. The assumption, that φ
is strictly increasing is needed for the new process to be a diffusion. We now
turn to more general cases, which will be treated by approximation.
Theorem 6. We extend the previous results to functions φ, which are just
non-decreasing and continuous. This is done through an approximation pro-
cedure. Let φn be an increasing sequence of strictly increasing C1-functions,
converging to φ, such that φ′

n → φ′, and φn|[rφ,∞) ≡ φ|[rφ,∞). Note Vn and V
the payoffs given in (12), under the condition (13), for functions φn and φ re-
spectively. Obviously Vn � Vn+1 � V . Furthermore, from Remark 3 it follows
that the payoff V is finite if and only if all Vn are finite. Suppose this is the
case. We know, by Theorem 5 proved above, that Vn are given by a sequence
of stopping times τn∗ , τn∗ = inf{t � 0 : Xt � gn∗ (St)}, where gn∗ are defined as
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the maximal solutions of (16), with φ replaced by φn, which stay below the
diagonal. It is easy to see that τn∗ � τn+1

∗ and therefore gn∗ � gn+1
∗ . This is a

direct consequence of the fact that in the problem (12) the reward (φn(Sτ ))
increases and the punishment (

∫ τ
0
c(Xs)ds) stays the same. It can also be seen

from the differential equation (16) itself. We have therefore τn∗ ↗ τ∗ a.s., for
some stopping time τ∗, which is finite since the payoff associated with it is
finite, V < ∞. Moreover, τ∗ = inf{t � 0 : Xt � g∗(St)}, where gn∗ ↘ g∗.
Note that the limit is finite and satisfies g∗(s) < s. Furthermore, we can pass
to the limit in the differential equations describing gn∗ to see that g∗ satisfies
(16). Note that this agrees with Remark 4. Suppose that the stopping time
τ∗ satisfies (13). We then see in a straightforward manner, that τ∗ solves the
optimal stopping problem for φ. It suffices to write:

Ex,s

(
φ(Sτ∗)−

∫ τ∗

0

c(Xt)dt
)

� V∗(x, s)

= sup
τ

Ex,s

(
φ(Sτ )−

∫ τ

0

c(Xt)dt
)

� lim
n→∞

sup
τ

Ex,s

(
φn(Sτ )−

∫ τ

0

c(Xt)dt
)

= lim
n→∞

Ex,s

(
φn(Sτn∗ )−

∫ τn
∗

0

c(Xt)dt

)

= Ex,s

(
φ(Sτ∗)−

∫ τ∗

0

c(Xt)dt
)
, (21)

where passing to the limit in both cases is justified by the monotone conver-
gence of φn ↗ φ and τn∗ ↗ τ∗ a.s. The expression for payoff given in (17)
follows also upon taking the limit.

If the stopping time τ∗ fails to satisfy (13), we proceed as Peskir [15,
p. 1626], to see that the expression (17) for payoff remains true (and we
say τ∗ is approximately optimal as it is in fact a limit of stopping times
satisfying (13)).

Theorem 7. All that has to be verified is the expression for g∗(di−), i � 0,
where Dφ = {d0, d1, . . . }. Obviously, it is enough to discuss one jump, say
d0. The proposed value for g(d0−) is just the value we obtained at the end
of Section 3. We had however an assumption that φ was constant on some
interval [d0− ε, d0) and we need to argue that it can be omitted. This is done
by approximating φ. Define φn through φn(s) = φ(s) for all s ∈ R\[d0− 1

n , d0)
and φn constant and equal to φ(d0−) on [d0− 1

n , d0). The theorem then applies
to functions φn, as by Remark 3 the finiteness of the payoff for φ, φ̃ and φn
are equivalent. Passing to the limit, as in the proof of Theorem 6 above, yields
the result. Seemingly, taking a sequence of continuous functions φ̃n increasing
to φ and repeating the reasoning in (21) we see that the payoff equation (17)
is still valid. ��
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Note that g∗(bX) = bX . It is evident when the state space is (aX , bX ],
since we have to stop upon achieving the upper bound for the maximum S,
as continuation will only decrease the payoff. Generally, if g∗(bX) = β < bX
(understood as limit if necessary), then as St → bX , the possible increase of
payoff goes to zero but the cost till stopping doesn’t.

The value of g∗ at aX depends on the boundary behavior of X at aX .
Peskir [15] dealt with this subject in detail. He considered the case aX = 0,
as it was motivated by applications, but this has no impact on the result. We
state briefly the results and refer to his work for more details. When aX is a
natural or exit boundary point, then g∗(aX) = lims↓aX

g∗(s) = aX . In con-
trast, when aX is an entrance or regular instantaneously reflecting boundary
then g∗(aX) = lims↓aX

g∗(s) < aX .

5 General optimal Skorokhod embedding problem

In this section we consider the so-called optimal Skorokhod embedding prob-
lem. The general idea is to design, for a given measure μ, an optimal stop-
ping problem with finite payoff, such that the stopping time which solves it
embeds μ, i.e., Xτ ∼ μ. We choose here to restrain ourselves to the classical
setup of Brownian motion, X = B. Study for general diffusions is equally
possible, only the formulae would be more complicated and less-intuitive. In
principle however it is not harder, since we know very well how to rephrase
the classical Azéma–Yor embedding for the setup of any real diffusion (Azéma
and Yor [2], Cox and Hobson [3], see Ob�lój [11] for a complete description of
the subject).

This problem was first introduced in the context of classification of con-
tingent claims, where the measure μ had an interpretation in terms of risk
associated with an option (see Peskir [17]). Peskir in his article on the opti-
mal Skorokhod embedding [16] gave an explicit solution, but he assumed for
simplicity that the measure μ had positive density on R. One could think that
this will generalize easily to arbitrary measures. Unfortunately this proves not
to be true. In the setup when φ(x) = x, it is not possible to solve the opti-
mal embedding problem for a measure, which has an atom in the interior of
its support. To see this, note that the presence of an atom in the interior of
the support implies that the barycentre function Ψμ has a jump, which in
turn means that the function g∗ = Ψ−1

μ has to be constant on some interval.
However, the derivative of g is given by g′(s) = [2c(g(s))(s − g(s))]−1 which
is strictly positive. In this sense, it is the presence of the function φ which
proves fundamental to solve the problem. Meilijson [10], who had c(x) = c
but arbitrary φ, solved this problem for any centered measure μ with finite
variance, but his solution is not really explicit. We will see that actually to
obtain a general explicit solution, both function c and φ are needed, as the
former allows to treat the regular (absolutely continuous) part of a measure,
and the latter serves to obtain atoms.
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We set ourselves two goals. First, for a given measure μ, we want to iden-
tify all the pairs (φ, c) such that the optimal stopping time τ∗ which solves
(12) embeds μ in B, Bτ∗ ∼ μ. We are interested in stopping times τ∗ such
that (Bt∧τ∗ : t � 0) is a uniformly integrable martingale. This limits the
class of measures which are admissible to μ such that

∫
R
|x|dμ(x) < ∞ and∫

R
xdμ(x) = 0. Our second goal is to give a particular explicit description of

a particular pair (φ, c).
Let us start with the case of a measure μ with a positive density f > 0 on

R. Then, we know that for τ∗ = inf{t � 0 : Bt � g∗(St)} we have Bτ∗ ∼ μ
if and only if g∗(s) = Ψ−1

μ (s), where Ψ−1
μ denotes the inverse of Ψμ. This is

a direct consequence of the Azéma–Yor embedding [2] and the fact that g is
increasing with g(s) < s. Let us investigate the differential equation satisfied
by Ψ−1

μ . Using the explicit formula (8), we obtain(
Ψ−1
μ (s)

)′
=

μ
(
Ψ−1
μ (s)

)(
s− Ψ−1

μ (s)
)
f
(
Ψ−1
μ (s)

) . (22)

Comparing this with the differential equation for g∗ given by (16), we see that
we need to have

φ′(s)
2c
(
Ψ−1
μ (s)

) =
μ(Ψ−1

μ (s))

f(Ψ−1
μ (s))

. (23)

Equivalently, we have

φ′ (Ψμ(u))
2c(u)

=
μ(u)
f(u)

, for u ∈ R. (24)

Finally, we have to ensure that the payoff is finite. This is easy since we want
Eφ(Sτ∗) to be finite and we know that Sτ∗ = Ψμ(Bτ∗), which implies that we
need to have ∫

φ (Ψμ(x)) dμ(x) <∞. (25)

We have thus obtained the following proposition:

Proposition 8 Let μ be a probability measure on R with a strictly positive
density f . Then the optimal stopping problem (12) has finite payoff and the
stopping time τ∗, which yields it embeds μ in B, i.e., Bτ∗ ∼ μ if and only if
(φ, c) satisfy (24) and (25) for all s � 0. The stopping time τ∗ is then just the
Azéma–Yor stopping time given by (7).

Note that, if we take φ(s) = s so that φ′(s) = 1 we obtain a half of the
hazard function for c, which is the result of Peskir, stated in Theorem 3. The
integrability condition (25) then reads

∫
Ψμ(x)dμ(x) < ∞, which is known

(see Azéma and Yor [1]) to be equivalent to the L logL integrability condition
on μ:

∫∞
1
x log xdμ(x) <∞.

Proof. In light of the reasoning that led to (24) all we have to comment on is
the continuity of the function c. Theorems 5–7 were formulated for a contin-
uous function c > 0. Here, keeping the condition c > 0, we drop the assump-
tion on continuity. Still, this is not a problem. It suffices to take a sequence
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of functions cn ↘ c a.e. and proceed as in the proof of Theorem 6 around
(21), to see that the function g∗, which yields the solution τ∗ = inf{t � 0 :
Bt � g∗(St)} to the optimal stopping problem (12), satisfies locally the equa-
tion (16) and is continuous. This in turn implies that it is indeed the inverse
of the barycentre function associated with μ. ��

Identifying all pairs (φ, c), which solve the optimal Skorokhod embedding
problem for an arbitrary measure is harder. More precisely it’s just not explicit
any more. The reason is hidden in Theorem 7 – the description of jumps
of g∗, which correspond to intervals not charged by the target measure, is
done through an iteration procedure and is not explicit. This is exactly the
reason why Meilijson was only able to prove the existence of the solution to
the optimal Skorokhod embedding without giving explicit formulae. In our
approach we will use the duality between φ and c to encode explicitly both
the jumps and the regular part of the target measure. Still, we will not be
able to cover all probability measures.

Let μ be a centered probability measure
∫

R
|x|dμ(x) < ∞,

∫
R
xdμ(x) = 0

and note −∞ � aμ < bμ � +∞ respectively the lower, and the upper, bound
of its support. Suppose μ is a sum of its regular and atomic parts: μ = μr+μa,
dμr(x) = f(x)dx and μa =

∑
i∈Z piδji . In other words f is the density of the

absolutely continuous (with respect to the Lebesgue measure) part and · · · <
j−1 < j0 < j1 < · · · are the jump points of μ, which are also the jump points
of the barycentre function Ψμ, so that Ψμ(R) = R+

∖(⋃
i∈Z

[
Ψμ(ji), Ψμ(ji+)

])
.

We may note that Ψμ(ji+) = Ψμ(ji) + pi(Ψμ(ji)−ji)
μ((ji,+∞)) .

Theorem 9. In the above setup, in the case when f > 0 or f � 0 but μa = 0,
the optimal stopping problem (12) with

c(x) =

{
f(x)
2μ(x) , for x ∈ [aμ, bμ]
+∞ , for x ∈ R \ [aμ, bμ]

and
{
φ′(x) = 1Ψμ(R)(x),
φ continuous, φ(0) = 0

has finite payoff under (25). The payoff is realized by the Azéma–Yor stopping
time τ∗ = inf{t � 0 : St � Ψμ(Bt)} and Bτ∗ ∼ μ.

Note that the condition φ(0) = 0 is just a convention, as adding a constant to
φ doesn’t affect the solution τ∗ of (12) (cf. Remark 3). The restriction (25),
thanks to the definition of φ, is satisfied in particular when

∫
Ψμ(x)dμ(x) <∞,

that is if μ satisfies the L logL integrability condition.

Proof. The problem arising from discontinuity of c is treated exactly as in the
proof of Proposition 8 above. In the case of f > 0 on R the above theorem
follows immediately from Theorem 6. If μ has no atoms, then Ψμ(R) = R+

and so φ = Id. From the differential equation (16) we can derive a differential
equation for the inverse of g∗, from which it is clear that we can treat intervals
where c is zero by passing to the limit. Thus, our theorem is also valid in the
case of absolutely continuous measure but with a density which can be zero
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at some intervals. Finally, the case of atoms with lim supn→∞ jn = +∞ is
also handled upon approximating and taking the limit. Indeed this does not
bother us here as we do not need anymore to describe the limiting solution
through a differential equation, as was the case for Theorems 5–7. ��

Unfortunately, our method does not work for an arbitrary measure μ. If one
tries to apply it for a purely atomic measure, he would end up with φ ≡ c ≡ 0.
In fact, when there is no absolutely continuous part we need to take φ dis-
continuous, as Meilijson does. We are not able to solve the problem explicitly
then. We cannot treat measures with singular non-atomic component.

6 Important inequalities

In the above section we saw how the solution to the optimal stopping problem
yields a solution to the so-called optimal Skorokhod embedding problem. This
actually motivated our research but is by no means a canonical application of
the maximality principle. Probably the main and the most important appli-
cations are found among stopping inequalities. We will try to present some of
them here. A specialist in the optimal stopping theory will find nothing new
in this section and can probably skip it, yet we think it is useful to put it
in this note, as it completes our study and allows us to give some references
for further research. The main interest of the method presented here, is that
the constants obtained are always optimal. Some of the inequalities below, as
(30), are easy to obtain with “some” constant. It was however the question of
the optimal constant which stimulated researchers for a certain time.

Consider a continuous local martingale X = (Xt : t � 0) and a stopping
time T such that (Xt∧T : t � 0) is a uniformly integrable martingale. We have
then

ESXT �
√

EX2
T , where SXt = sup

s�t
Xs, (26)

and this is optimal. This simple inequality was first observed by Dubins and
Schwarz [6]. It can be easily seen in the following manner: EST = E[ST−XT ] �√

E[ST −XT ]2 =
√

E[X2
T ], where we used the fact that (St − Xt)2 − X2

t is
a local martingale (see Ob�lój and Yor [12] for various applications of these
martingales). This inequality is optimal as the equality is attained for T =
inf{t � 0 : SXt − Xt = a} for any a > 0 (XT has then shifted exponential
distribution with parameter 1

a ). If we want to establish an analogous inequality
for |X|, that is for a submartingale, some more care is needed. We propose to
follow Peskir [14,15] in order to obtain more general inequalities.

Consider the optimal stopping problem (12), with X = |B| the absolute
value of a Brownian motion, φ(s) = sp and c(x) = cxp−2, where p > 1.
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We solve the problem applying Theorem 5. The differential equation (16)
takes the form

g′(s) =
psp−1

2cg(s)p−2 (s− g(s))
, (27)

which is solved by g(s) = αs, where α is the larger root of the equation
αp−1 − αp = p

2c , which is seen to have solutions for c � pp+1/2(p − 1)(p−1).
Taking c↘ pp+1/2(p− 1)(p−1) yields

E

(
max

0�t�τ
|Bt|p

)
�
(

p

p− 1

)p
E|Bτ |p, (28)

where τ is any stopping time such that Eτp/2<∞. Note that to obtain the
right-hand side of the above inequality we used the fact that E

( ∫ τ
0
|Bt|p−2dt

)
=

2
p(p−1)E|Bτ |p. More generally we could consider the optimal stopping problem
(12) with φ(s) = sp and c(x) = cxq−1 for 0 < p < q + 1, q > 0. Optimizing
upon c, Peskir [14] obtains

E

(
max

0�t�τ
|Bt|p

)
� γ∗p,qE

(∫ τ

0

|Bt|q−1dt

)p/(q−1)

, (29)

for all stopping times τ of |B|. The optimal constant γ∗p,q is given implicitly
as a solution to an equation. In the case p = 1 it can be written explicitly,
γ∗1,q =

(
q(1+q)/2

)1/(1+q)(
Γ (2+1/q)

)q/(1+q). This was obtained independently
by Jacka [8] and Gilat [7]. In particular we find γ∗1,1 =

√
2 which is exactly the

value found by Dubins and Schwarz [6]. If we consider the well-known bounds

cpE

(∫ τ

0

|Bt|p−2dt

)
� E

(
max

0�t�τ
|Bt|p

)
� CpE

(∫ τ

0

|Bt|p−2dt

)
, (30)

where p > 1 and cp, Cp are some universal constants, we see that the inequality
(29) complements them for 0 < p � 1, where (30) doesn’t have much sense.
Also, as pointed out above, the method presented here allows to recover the
optimal constants.

The inequalities given above are just a sample of applications of the
method presented in this note. Peskir [15], for example, develops also a L log
L-type inequalities and some inequalities for Geometric Brownian motion.
Although the method presented is very general it has of course its limits.
For example it seems one could not recover optimal constants3 ap and Ap,
obtained by Davis [4], such that for any stopping time T

E|BT |p � ApET
p/2, for 0 < p <∞, and (31)

apET
p/2 � E|BT |p, for 1 < p <∞, ET p/2 <∞. (32)

3 These can be recovered using different methodology involving determinist time
changing (see Pedersen and Peskir [13]).
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The maximality principle deals with the maximum process and is an essential
tool in its study. However the passage from the maximum to the terminal
value is quite complicated and in general we should not hope that optimal
inequalities for the terminal value could be obtained from the ones for maxi-
mum.

Acknowledgements. Author wants to express his gratitude towards professors Goran
Peskir and Marc Yor for their help and support.
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1 Introduction

Discrete correlated processes can be viewed as processes with a finite memory.
In the simple case of a nearest neighbour random process on Z with memory
one, the law of a step is determined by the sign of the preceding step and we
are led to the study of a Markov process on Z × {1, 2}. Such random walks
have been extensively studied even in higher dimension (e.g., [3], [6], [12] and
the references therein).

An analogous continuous time process on R × {1, 2} has been considered
by Goldstein [4] and later by Kac [8]. The process has speed 1 on (R, 1)
and speed −1 on (R, 2), and at exponential times, it switches from one line
to the other. Goldstein and Kac remarked that the Chapman-Kolmogorov
equation of this process gives rise to a probabilistic representation of the
damped wave equation, also called the telegraph equation (the fact was noticed
first by Goldstein [4] using a passage from a discrete to a continuous time
process, but the first direct treatment of that equation was done by Kac [8]
and was later reformulated by Kabanov [7]). Later, several authors considered
one-dimensional generalizations of this fact (e.g., [10], [11] and the references
therein).
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In Section 2, we generalize Goldstein’s process by considering an open
domain D of Rd, and a process on D × {1, 2, . . . , N} that follows different
Markovian regimes on each (D, i) (1 � i � N) and jumps from (D, i)
to (D, i + 1) for i �= N , and from (D,N) to (D, 1), spending exponential
time on each domain (D, i). A Feynman–Kac formula for this process gives a
probabilistic representation of differential equations involving the composition
of the generators of the Markov processes together with a linear potential. In
this way, we generalize a result of Khasminskii [9] which appears to corre-
spond to the special case where the different regimes have the same generator
and the process does not jump from (D,N).

We give some applications of this fact in Section 3. When D is R+,
taking the Markovian regimes deterministic leads to a simple probabilistic
representation of the solution to the initial value problem of a rather general
class of linear differential equations. In this case, the necessary and sufficient
condition for the existence and uniqueness of a solution is equivalent to an
accessibility condition for the corresponding correlated process.

The case D = R × R+ with two suitable uniform motions as Markov
processes gives a probabilistic representation of the solution of some variations
of the one-dimensional wave equation including the telegraph equation,
treated in [4,8], and the linear one-dimensional Klein–Gordon equation which
can not be interpreted by Goldstein’s one-dimensional process.

Back to the case where D is an open domain of Rd, when N = 2 and both
Markov processes are Brownian motions, we get a probabilistic representation
for the solution of the biharmonic equation with linear potential and boundary
conditions on u and Δu. In the special case where the potential is null, we
recover a result of Khasminskii (special case of [9]) and Helms [5] expressing
the solution of the biharmonic equation as a functional of the hitting time and
hitting position on ∂D of the usual Brownian motion. Moreover, we notice that
their formula cannot be generalized in the presence of a potential and that
this case requires explicitly the use of correlated processes. Finally, using the
reflecting Brownian motion on (D, 1), one can treat the biharmonic equation
with boundary conditions involving ∂u

∂n .
In Section 4, we mention possible generalizations of this model and indicate

how correlated processes may also represent the solution of delay differential
equations.

2 Definition and main result

Let D be an open subset of Rd with a continuous boundary ∂D, and N a
strictly positive integer.

We consider, on D, a family of strong Markov processes (Xi
t)1�i�N defined

by their respective infinitesimal generator Li.
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Fix λi � 0 for i = 1, . . . , N . We introduce now the process Yt := (yt, εt)
on D × {1, 2, . . . , N} (that can be seen as the union of N “copies” of D) in
the following way:

– εt equals successively 1, 2, . . . , N, 1, 2 . . . during independent random
periods and εt stays at i during a time having the exponential distribution
with parameter λi.

– during the time Yt belongs to (D, i), yt follows the law of Xi.
– for all “switching” time T (i.e., εT ≡ limt→T− εt + 1 mod[N ]), yT =

limt→T− yt.

Proposition 1. The process Yt admits an infinitesimal generator L, defined
on the functions

f : D × {1, 2 . . . , N} −→ R

(x, i) 	−→ fi(x)

where fi belongs to the domain of Li. Moreover,

∀i ∈ {1, . . . , N−1}, Lf(x, i) = Lifi(x) + λi(fi+1(x)− fi(x))

Lf(x,N) = LNfN (x) + λN (f1(x)− fN (x)) .

Proof. Denote by T the first switching time.

∀t > 0, Ex,1[f(Yt)] = Ex[f(X1
t )1T>t] + Ex,1[f(Yt)1T�t]

= e−λ1tEx[f(X1
t )] + f2(x)(1− e−λ1t) + o(t) .

Taking limt→0
Ex,1[f(Yt)]− f(x, 1)

t
, we get the equality for i = 1. Idem for

the other equalities. ��

From this proposition, we deduce the following corollary:

Corollary 1. Let Yt be the process of Proposition 1.
Denote, for all i = 1, . . . , N ,

T it :=
∫ t

0

1{εs=i}ds .

For all f in the domain of L and for all sequence of real numbers c1, . . . , cN ,

exp

(
N∑
i=1

ciT
i
t

)
f(Yt)−

∫ t

0

(cεs
f(Ys) + Lf(Ys))ds

is a martingale.
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A direct consequence of this corollary is the probabilistic representation of
solutions of higher order linear differential equations, generalizing the result
of [9]:

Theorem 1. Given μ1, . . . , μN ∈ R, α � 0, let g0, . . . , gN−1 be continuous
real functions on ∂D, and F a continuous function on D. Consider the equa-
tion

(−1)N (LN + μN )(LN−1 + μN−1) . . . (L1 + μ1)u− αu = F (x)

with boundary conditions limx→x0 u(x) = g0(x0) and

lim
x→x0

(Lk + μk)(Lk−1 + μk−1) . . . (L1 + μ1)u(x) = (−1)kgk(x0)

for all x0 ∈ ∂D, and k = 1, . . . , N − 1.
Consider the process Yt with parameters (λ1, λ2, . . . , λN−1, λN)=(1, 1, . . . , 1, α),
and introduce the stopping time τ := inf{s > 0, ys ∈ ∂D}.

If the expectation

E(x,1)

[
exp

(
N−1∑
i=1

(1 + μi)T iτ + (α+ μN )TNτ

)]
is finite, the solution of the equation is unique and is given by

u(x) = E(x,1)

[
exp

(
N−1∑
i=1

(1 + μi)T iτ + (α+ μN )TNτ

)
× g(Yτ )

]

+ E(x,1)

[∫ τ

0

exp

(
N−1∑
i=1

(1 + μi)T iτ + (α+ μN )TNs

)

× F (ys)× 1{εs=N}ds

]
where g is the function defined on ∂D × {1, . . . , N}, by g|(∂D,i) = gi−1.

Remark 1. The result can be generalized to the case where μi are continu-
ous functions on D. The functional (1 + μi)T it has then to be replaced by∫ t
0
(1 + μi(ys))1{εs=i}ds and μNT

N
t is replaced by

∫ t
0
μN (ys)1{εs=i}ds.

Remark 2. The constant α may be replaced by a nonconstant positive
“potential” V : for this purpose, one has to generalize the notion of correlated
processes and to allow the switching operation on (D,N) to have some rate
depending on the position (in this case, the length of a stay on (D,N) does
not follow an exponential law). We give an example of such a situation in
Section 3.3.
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Remark 3. The possible existence of non-null potentials in the equations we
consider makes them nontrivial since a chain resolution is impossible in that
case. This improves seriously Theorem 2 below of Khasminskii. In Section 3,
the examples of linear differential equations, of the Klein–Gordon equation
and of the biharmonic equation with potential illustrate this situation.

Proof. For any function f in the domain of L, we denote by fi the restric-
tion of f to the domain (D, i), and apply Corollary 1 with ci = 1 + μi for
i = 1, . . . , N − 1 and cN = α+ μN .

We deduce that

exp

(
N−1∑
i=1

(1 + μi)T it + (α+ μN )TNt

)
f(Yt)

−
∫ t

0

exp

(
N−1∑
i=1

(1 + μi)T is + (α+ μN )TNs

)
× (L1f1 + (f2 − f1) + (1 + μ1)f1)(ys)× 1{εs=1}ds

. . .

−
∫ t

0

exp

(
N−1∑
i=1

(1 + μi)T is + (α+ μN )TNs

)
× (LNfN + α(f1 − fN ) + (α+ μN )fN )(ys)× 1{εs=N}ds

is a martingale.
Consider the function f defined on D × {1, . . . , N} by:

f(x, 1) = u(x)

f(x, 2) = −(L1 + μ1)u

f(x, 3) = −(L2 + μ2)f(x, 2)

. . .

f(x,N) = −(LN−1 + μN−1)f(x,N − 1).

We deduce that

exp

(
N−1∑
i=1

(1 + μi)T it + (α+ μN )TNt

)
f(Yt)

+
∫ t

0

exp

(
N−1∑
i=1

(1 + μi)T is + (α+ μN )TNs

)
× F (ys)× 1{εs=N}ds

is a martingale.
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Now, one notices that on the event {εs = N}, for all i ∈ {1, . . . , N − 1},
T is = T iτ almost surely. The optional sampling theorem applied at times τ ∧ n
(n→∞), allied to the bounded convergence theorem allows to conclude. ��

In the special case where the generators Li are equal to the same L
and α = 0, we find Khasminskii’s result [9] which gives a probabilistic
representation of the solution of an equation of the type P (L) = F where P
is a polynomial. We recall here the result:

Theorem 2. [9] Let μ1, . . . , μN ∈ R, g0, . . . , gN−1 be continuous real func-
tions on ∂D, and F a continuous function on D. Let P (X) := (X + μN )
(X + μN−1) . . . (X + μ1). Let (Xt) be a Markov process with generator L.

Consider the equation (L + μN )(L + μN−1) . . . (L + μ1)u = (−1)NF (x)
with boundary conditions limx→x0 L

ku(x) = gk(x0) for all x0 ∈ ∂D, and
k = 0, . . . , N − 1.

Let yk(t), k = 1, . . . , N − 1 be the solutions of P (−d/dt)yk = 0, y(k)
k (0) =

(−1)k, y(j)
k (0) = 0, j �= k. If the mathematical expectations Ex[expμkτ ], where

τ denotes the first passage time of Xt on the boundary, are finite, then the
solution u is unique and is given by

u(x) =
N−1∑
i=0

Ex[yi(τ)gi(Xτ )] + Ex

[∫ τ

0

yN−1(t)F (Xt)dt
]
.

We want to show here how Theorem 2 which does not make use of
correlated processes can be deduced from Theorem 1.

For simplicity, we restrict our proof to the case N = 2 and μ1 �= μ2.
Let us consider the process Yt on D × {1, 2} with parameters λ1 = 1 and

λ2 = 0, so that when Yt enters (D, 2), it never goes back to (D, 1).
By Theorem 1,

u(x) = E(x,1)[exp((1 + μ1)T 1
τ + μ2T

2
τ )g(Yτ )]

+ E(x,1)

[∫ τ

0

exp((1 + μ1)T 1
s + μ2T

2
s )× F (ys)× 1{εs=2}ds

]
where g|(D,1) = g0 and g|(D,2) = μ1g0 + g1.

But this last quantity can also be expressed in terms of the process Xt
and of an independent exponential variable T representing the time when the
correlated process jumps from (D, 1) to (D, 2):

u(x) = Ex
[
exp((1 + μ1)τ)g0(Xτ )1{τ<T}

+ exp((1 + μ1)T + μ2(τ − T ))(μ1g0 + g1)(Xτ )1{T<τ}
]

+ Ex

[
1{τ>T}

∫ τ

T

exp((1 + μ1)T + μ2(s− T ))F (Xs)ds
]

Then, we can disintegrate the expectation with respect to T and obtain
the desired expression.
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3 Some applications

3.1 Linear differential equations

Suppose v1, v2, . . . , vn are positive continuous functions and consider the
equation

vn × (vn−1 × (. . . v3 × (v2 × (v1 × u′)′)′ . . .)′)′(x)− u(x) = 0, x � 0 , (1)

with initial conditions expressed in the form u(0) = γ0, (v1 × u)′(0) = γ1,
v2 × (v1 × u′)′(0) = γ2, . . . , vn−1 × (. . . v3 × (v2 × (v1 × u′)′)′ . . .)′(0) = γn−1.

Let Yt be the correlated process on R+ × {1, . . . , N}, whose speed is −vi
on the line (R+, i), and whose parameters are (λ1, . . . , λN ) = (1, 1, . . . , 1).

Proposition 2. Set τ = inf{s > 0, ys = 0}.
(i) The variable exp(τ) is integrable if and only if all the functions 1

vi
are

integrable.
(ii) In this case, (1) has a unique solution given by

u(x) = E(x,1)

[
exp(τ)×

(
n−1∑
i=0

γi1Yτ =(0,i+1)

)]
.

Proof. (i) The fact that 1
vi

is not integrable makes (0, i) inaccessible. Indeed,
it takes forever for the i-th regime to reach 0. Moreover, the fact that one
of the endpoints (0, i) is inaccessible implies that, conditional on the fact that
the process reaches (D, i) before 0×{1, . . . , N}, τ is stochastically bigger than
the interval of time between two changes of regime which has, in that case,
exponential distribution with parameter 1, so its exponential is not integrable.

Conversely, if the functions 1
ui

are integrable,

τ �
∫ x

0

(
max

1�i�N
1
ui

)
(v)dv.

(ii) It is well known (see [14] for a well written proof) that integrability of
(i) is a necessary and sufficient condition for the existence and uniqueness of
the solution of (1). Then, we proceed like in the proof of Theorem 1. ��

3.2 Wave equations and Zig-Zag processes

We treat in this section some variations around the one-dimensional wave
equation. The domain D is R× R+. In the two cases treated below, the tra-
jectory of yt has alternatively two velocities v1 = (1,−1) and v2 = (−1,−1).
It draws some“zigzags,” falling on the line (R, 0).
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The telegraph equation

Let α > 0. Consider the following equation:(
∂2

∂x2
− ∂2

∂t2

)
u(x, t)− 2α

∂u

∂t
= 0 (2)

for (x, t) ∈ R× R+, with boundary conditions u(x, 0) = f(x) and ∂u
∂t (x, 0) =

g(x), where f, g ∈ C2(R). This equation is known as the telegraph equation
or the damped wave equation, the term ∂u

∂t corresponding to a damping.
Consider now the correlated process with velocities v1 and v2 and with

(λ1, λ2) = (α, α), so that the trajectory of ys “zigzags” at exponential times
with parameter α.

Proposition 3. The solution of (2) is given by

u(x, t) = E(x,t)

[
f(xt)1{εt=1} + (f(xt) +

1
α

(g(xt)− f ′(xt))1{εt=2}

]
where xs denotes the first coordinate of ys.

Proof. This is a consequence of Theorem 1 and of the fact that

τ := inf{s > 0, ys ∈ (R, 0)} = t . ��

This proposition is an equivalent formulation of the result of [4, 8] which
makes use of the Chapman-Kolmogorov equation applied to the correlated
process on R whose speed alternates between 1 and −1 at exponential times.

The linear Klein–Gordon equation

Given α � 0, consider the following equation:(
∂2

∂x2
− ∂2

∂t2

)
u(x, t) + αu(x, t) = 0 (3)

for (x, t) ∈ R× R+, with boundary conditions u(x, 0) = f(x) and ∂u
∂t (x, 0) =

g(x), where f, g ∈ C2(R). For α = 0, we deal with the classical wave equation.
We consider the correlated process with velocities v1 and v2 and with

(λ1, λ2) = (1, α).

Proposition 4. The solution of (3) is given by

u(x, t) = E(x,t)[exp(T 1
t + αT 2

t )(f(xt)1{εt=1} + (g(xt)− f ′(xt))1{εt=2})]

where xs denotes the first coordinate of ys and T 1
t (resp. T 2

t ) denote the time
spent by the process Ys in (D, 1) (resp. (D, 2)) before time t.
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We mention here that the one-dimensional correlated process of Goldstein
and Kac does not give any equivalent representation for solutions of this
equation.

Remark 1. In the case α = 0, we deal with the classical wave equation. One
can easily check that the expression of Proposition 4 coincides with the explicit
solution of (3), namely u(x, t) = 1

2 (f(x+ t) + f(x− t) +G(x+ t)−G(x− t)),
where G denotes an inverse derivative of g.

Remark 2. The above “zigzag” processes can be generalized by choosing
instead of the two velocities (1,−1) and (−1,−1), two arbitrary vector fields
falling on the line (R, 0). This leads to a probabilistic representation of
“generalized wave equations.”

Remark 3. There is no difficulty to adapt the result to the case where α
is replaced by a positive continuous function V , using a generalization of
correlated processes (see Section 3.3 below).

3.3 The biharmonic equation

The biharmonic equation appears in the theory of elasticity and describes the
shape of a plate subjected to some constraints at its boundary.

Conditions on u and Δu

Consider an open bounded domain D of Rk, and the equation

Δ2u = 0 on D (4)

with boundary conditions limx→x0 u(x) = f(x0) and limx→x0 Δu(x) = g(x0)
for all x0 ∈ ∂D. This equation exactly fits in the framework of Khasminskii’s
result [9] and was also treated with some further precisions by Helms [5].

Proposition 5. Let Bt be the Brownian motion on D. Let θ := inf{s > 0,
Bs ∈ ∂D}. Suppose θ has finite expectation, then the solution of (4) is given by

u(x) = Ex

[
f(Bθ)−

θ

2
g(Bθ)

]
.

The direct proof of this fact relies on the fact that u(Bt) − t
2Δu(Bt) is a

martingale [5].
But one can also consider the process Yt on D × {1, 2}, where both

Markovian regimes are Brownian motions and the parameters are (λ1, λ2) =
(1, 0).

Put τ := inf{s > 0, ys ∈ ∂D}, T 1
t :=

∫ t
0

1{εs=1}ds.
If the expectation E(x,1)[exp(T 1

τ )] is finite, the solution of (4) is given by

u(x) = E(x,1)

[
exp(T 1

τ )(f(Yτ )1{ετ =1} −
1
2
g(Yτ )1{ετ =2})

]
.
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If we denote by T the switching time of the process from (D, 1) to (D, 2), the
last expression of u can be rewritten in the form

u(x) = Ex

[
exp(θ)f(Bθ)1{T>θ} −

1
2

exp(T )g(Bθ)1{T<θ}

]
.

where (Bt) is a Brownian motion and T a variable independent of (Bt) having
exponential law with parameter 1. Disintegrating this expression with respect
to T gives the result. ��

The interest of this point of view comes out in the next section, when we
introduce a nonconstant potential in this equation.

The presence of a potential

Let V be a strictly positive continuous function on D. We are interested in
the equation

Δ2u− 4V u = 0 on D (5)

with boundary conditions limx→x0 u(x) = f(x0) and limx→x0 Δu(x) = g(x0)
for all x0 ∈ ∂D. It describes the shape of an elastic plate subjected to a linear
potential. This equation does not enter the frame of Khasminskii’s result.
Indeed, except in the case where V is a strictly positive constant, the operator
Δ2 − V is not the product of two operators (Δ− V1)(Δ− V2).

Let us introduce, as suggested in Remark 2 of Theorem 1, the process
Y Vt := (yVt , ε

V
t ) on D×{1, 2} defined as follows: yVt is a Brownian motion on

D and
P (εVt+δ = 2 | εVt = 1) = δ + o(δ) :

P (εVt+δ = 1 | εVt = 2) = V (yVt )δ + o(δ) .

Yt admits an infinitesimal generator LV , defined on the functions f on
D × {1, 2} whose restrictions f1 and f2 respectively to (D, 1) and (D, 2) are
C2-functions.

One can easily see, as in Proposition 1, that

LV f(x, 1) =
1
2
Δf1(x) + (f2(x)− f1(x)) ;

LV f(x, 2) =
1
2
Δf2(x) + V (x)(f1(x)− f2(x)) .

An analogous result to Theorem 1 yields, in this modified situation, a simple
probabilistic representation for the solution:

Proposition 6. We introduce the stopping time τ := inf{s > 0, yVs ∈ ∂D},
and the two processes T 1

t :=
∫ t
0

1{εV
s =1}ds, and T 2

t :=
∫ t
0
V (yVs )1{εV

s =2}ds.
If the expectation E(x,1)[exp(T 1

τ +T 2
τ )] is finite, the solution of (5) is unique

and is given by

u(x) = E(x,1)

[
exp

(
T 1
τ + T 2

τ

)
× (f(yVτ )1εV

τ =1 −
1
2
g(yVτ )1εV

τ =2)
]
.
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We want to stress here that a formula in terms of the hitting time and
hitting position of ∂D by the usual Brownian motion, like in Proposition 5,
is not available here and the use of correlated processes turns out to be quite
necessary to get a probabilistic representation of the solutions of this kind of
equation.

Toward conditions on ∂u
∂n

and Δu

Set α > 0. Denote by Δα := Δ − αId. Consider an open bounded smooth
(C3 is sufficient) domain D of Rk, and the equation

ΔΔαu = 0 on D (6)

with boundary conditions ∂u
∂n (x0) = f(x0) and limx→x0 Δ

αu(x) = g(x0) for
all x0 ∈ ∂D.

The “method” of correlated processes appears to be flexible enough to
give a representation of the solution of this equation, that we can express
after simplification without using any correlated process.

Introduce the correlated process Yt onD×{1, 2}, where the first Markovian
regime is the reflecting Brownian motion and the second one is the standard
Brownian motion. Finally, take (λ1, λ2) = (α/2, 0).

Let τ := inf{s > 0, ys ∈ ∂D}, and let L(∂D,1)
t be the local time of Yt

on (∂D, 1). By definition of τ , ετ = 2 almost surely, so that the process
Yt is a reflecting Brownian motion on (D, 1) up to an independent random
time having exponential law with parameter 1, and is afterwards a Brownian
motion on (D, 2) until it is killed at (∂D, 2).

We refer to [1] and the references therein for a well-written presentation of
all the objects and properties relative to the reflecting Brownian motion and
its local time at the boundary.

Proposition 7. The solution of (6) can be expressed in the following two
ways:

(i)

u(x) = E(x,1)

[
− 1
α
g(Yτ ) +

1
2

∫ τ

0

f(ys)dL(∂D,1)
s

]
.

(ii) Let (Bt) be the Brownian motion on D reflecting at ∂D. For all u > 0,
let θu := inf{s > u, Bs ∈ ∂D}. We denote by l∂Dt the local time of Bt on ∂D.

u(x) = Ex

[
−1

2

∫ +∞

0

e−
α
2 ug(Bθu

)du+
1
2

∫ +∞

0

e−
α
2 uf(Bu)dl∂Du

]
(�)

or equivalently,

u(x) = Ex

[
−
(

1− e−
α
2 τ

α
2

)
g(Bτ )

2
+

1
2

∫ +∞

0

e−
α
2 u(f −Gα)(Bu)dl∂Du

]
(��)
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where τ := inf{s > 0, Bs ∈ ∂D} and Gα is the function defined on ∂D by

Gα(x) = Êx

[(
1− e−

α
2 T

α
2

)
g(d)

]
where Êx denotes the excursion measure of the reflecting Brownian motion
starting at x, T is the duration of the excursion and “d” is the final point of
the excursion.

Remark. The second term in the expectation (�) is classical and corresponds
naturally to the solution of the equation Δu−αu = 0 with boundary condition
∂u
∂n (x0) = f(x0). The original part of the result lies in the first term.

Proof. For any function ϕ ∈ C2(D × {1, 2}) ∩ C1((∂D, 1)), we denote
ϕ1(x) := ϕ(x, 1) and ϕ2(x) = ϕ(x, 2),

ϕ(Yt)−
∫ t

0

1
2
Δϕ1(ys) +

α

2
(ϕ2 − ϕ1)(ys)1{εs=1}ds

+
1
2

∫ t

0

∂ϕ1

∂n
(ys)dL(∂D,1)

s − 1
2

∫ t

0

Δϕ2(ys)1{εs=2}ds

is a martingale.
We apply this property to the function ϕ defined by ϕ1 = u and

ϕ2 = −Δu− αu

α
.

We get that ϕ(Yt) + 1
2

∫ t
0
f(ys)dL

(∂D,1)
s is a martingale. We apply the

optional sampling theorem at time τ ∧ n, and the bounded convergence
theorem applies as the expectation of the local time of (∂D, 1) at an
independent exponential time is finite. We get (i).

The statement (ii) of the proposition is nothing but the translation of the
expression of (i) in terms of the reflecting Brownian motion Bt: let Tα/2 be
an independent random variable having an exponential law with parameter
α/2, and θ := inf{s > Tα/2, Bs ∈ ∂D}. We denote by l∂Dt the local time of
Bt on ∂D.

u(x) = Ex

[
− 1
α
g(Bθ) +

1
2

∫ Tα/2

0

f(Bs)dl∂Ds

]

We get (�) by disintegrating this formula with respect to Tα/2.
The expression (�) can now be expressed in terms of the excursions in D

of the reflecting Brownian motion. Let ei be these excursions, [Sei
, Tei

] the
time interval of the excursion ei, the integral

∫ +∞
0

e−
α
2 ug(Bθu

)du separates
according to the first “incomplete excursion” and the other standard ones ei
in the following sum
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Ex

[∫ +∞

0

e−
α
2 ug(Bθu

)du
]

= Ex

⎡⎣∫ τ

0

e−
α
2 ug(Bτ )du+

∑
S(ei)>0

∫ Tei

Sei

e−
α
2 ug(BTei

)du

⎤⎦
= Ex

⎡⎣(1− e−
α
2 τ

α
2

)
g(Bτ ) +

∑
S(ei)>0

e−
α
2 Sei

(
1− e−

α
2 (Tei

−Sei
)

α
2

)
g(BTei

)

⎤⎦
The expression (��) is then a direct consequence of the excursion formula. ��

The problem of making α converge to 0 remains here open, but having
in mind the well-known probabilistic solution of the Neumann problem
concerning harmonic functions (see Brosamler [2]), one would conjecture
that, up to an additive constant, the probabilistic solution of the biharmonic
equation with conditions ∂u

∂n = f and Δu = g is given by

u(x) = lim
t→+∞

Ex

[
−τ g(Bτ )

2
+

1
2

∫ t

0

(f(Bu)− ÊBu
[Tg(d)])dl∂Du

]

(or equivalently, u(x) = lim
t→+∞

Ex

[
1
2

∫ t

0

f(Bu)dl∂Du − 1
2

∫ t

0

g(Bθu
)du

]
)

assuming that the integral of f(x)− Êx[Tg(d)] along ∂D equals zero.
We hope we will devote a further work to this case and to a probabilistic

representation of the biharmonic equation subjected to the classical Dirichlet
conditions on u and ∂u

∂n , that would give a continuous analogue to Vanderbei’s
result [13], but our feeling is that correlated processes cannot treat these
problems directly.

4 Conclusion and generalizations

We wanted to show in this paper how correlated processes can help find a
probabilistic representation of solutions to linear differential equations dealing
with the composition of differential operators. Some special cases among our
examples could be treated using usual random processes. However, as soon
as one considers the presence of a potential or the composition of different
generators, correlated processes turn out to be quite necessary.

Here are two possible generalizations of the processes we considered:

– In the whole text, we dealt with processes that can only jump from one
domain to the domain next to it. Now, if we allow jumps from any domain
to any other domain according to some prescribed rates, we will get a
richer class of differential equations.
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– It is interesting to note that the notion of correlated processes can be
generalized if the condition that yT = limt→T− yt for all “switching”
time T is replaced by the condition that yT is a prescribed translation
of limt→T− yt. This can lead to a probabilistic representation of some
delayed differential equations.
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Summary. We prove the previsible representation property for the filtration of
the Brownian snake and give a representation of the martingales in the filtration
associated to the historical Brownian motion. We deduce a representation of the
martingale measure of the historical Brownian motion.

Key words: Super-Brownian motion, Brownian snake, Previsible represen-
tation property, Martingale measure

1 Introduction and statement of results

In this paper we deal with the Brownian snake introduced by Le Gall which
can be seen as a continuous-time parametrization of a tree of branching
trajectories. Abundant literature has shown the interest of this process to
prove results on super-processes, to express solutions of certain semilinear
pde or to describe the limit behavior of important interacting particle systems.
See [Lg] for a comprehensive treatment of the subject. The definitions of the
basic objects and the terminology used in the present introduction are however
recalled in the next section.

The Brownian snake (Ws) is a simple example of process taking its values
in the space W of stopped paths in Rd. In [DS] we have developed some tools
of stochastic calculus for this process, in particular an Itô formula; a simplified
form of this statement is as follows. Suppose F (2) : W → R is a continuous
function and F (1), F : W → R are defined by

F (1)(w) =
∫ ζ

0

F (2)(w�r) dr

F (w) =
∫ ζ

0

F (1)(w�r) dr =
∫ ζ

0

∫ r

0

F (2)(w�u) du

=
∫ ζ

0

(ζ − u) F (2)(w�u) du
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then, for 0 � r < t:

F (Wt) = F (Wr) +
∫ t

r

F (1)(Ws) dζs +
1
2

∫ t

r

F (2)(Ws) ds (1)

where (ζs) denotes the lifetime process of (Ws). The present paper is devoted
to some applications of this formula concerning the representation of the mar-
tingales associated to the Brownian snake. First, the filtration (FWt ) of the
Brownian snake has a surprising previsible representation property:

Theorem 1. For every random variable X ∈ L2(FW∞ ), there exists a (FWs )-
previsible process (Hs) vanishing a.s. on {s, ζs = 0} such that

E
(∫ ∞

0

H2
s ds

)
< +∞ and X = E(X) +

∫ ∞

0

Hs dζs . (2)

The proof is given in Section 3. By standard arguments (see [RY] V.3.4), we
quickly deduce the following corollary

Proposition 2. For every local martingale (Ms) with respect to the filtration
(FWs ), there exists a (FWs )-previsible process (Hs) locally in L2 such that

Ms = M0 +
∫ s

0

Hr dζr. (3)

Note that the above stochastic integral is effectively a local martingale because
the integrand Hr vanishes on {s, ζs = 0} and we could write the integral with
respect to the martingale part of the reflecting Brownian motion (ζs).

One of the interests of the Brownian snake lies in its connections with
super-Brownian motion. More precisely let us consider a Brownian snake
starting from x̃ and set

∀t � 0, Xt =
∫ τ1

0

d(s)L
t
s(ζ) δŴs

and Ht =
∫ τ1

0

d(s)L
t
s(ζ) δWs

where Lts(ζ) is the local time of the lifetime process (ζ.) at level t and time s,
and τ1 = inf

{
s � 0;L0

s(ζ) > 1
}

is the hitting time of 1 by the local time
of ζ at level 0. The process (Xt) [resp. (Ht)] takes its values in the space
MF (Rd) [resp. MF (W)] and is called super-Brownian motion starting from
δx (resp. historical Brownian motion starting from δx̃). To be honest, the
usual definitions include a factor 1/4 that we have dropped here to simplify
notations, as we did in [DS]. From this definition emerges a new filtration to
be considered. Let

τ ts = inf
{
u;

∫ u∧τ1

0

1{ζv�t} dv > s

}
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be the inverse of the time spent by the lifetime (ζs) under level t with the
convention inf{∅} = τ1. We see that at least the following σ-algebras naturally
arise:

Gt = σ(Wτt
s
, s � 0)

Gζt = σ(ζτt
s
, s � 0)

GXt = σ(Xr, r � t)
GHt = σ(Hr, r � t)
Fs = σ(Wr∧τ1 , r � s)
Fζs = σ(ζr∧τ1 , r � s).

We note the following obvious relations

Gζt = Gt ∩ Fζ∞, GXt ⊂ GHt ⊂ Gt, G∞ = F∞.

A question now arises concerning the representation of the martingales
in the “vertical” filtration (Gt). Since super-Brownian motion (and historical
Brownian motion) has often been studied via martingale problems we already
know a class of (Gt)-martingale: for every bounded φ in the domain of the
generator A,

Mt(φ) = Xt(φ)−X0(φ)−
∫ t

0

Xs(Aφ) ds

defines a martingale and moreover the quadratic variation of this martingale
is known to be

〈M(φ)〉t = 4
∫ t

0

Xs(φ2) ds . (4)

An interpretation with the Brownian snake can be given.

Proposition 3. ([DS] Lemma 10 and Theorem 7) We have

Mt(φ) = 2
∫ τ1

0

1(0,t](ζs) φ(Ŵs) dζs (5)

and this process is a (Gt)-martingale with quadratic variation given by (4).

A natural question is then to ask if any (Gt)-martingale can be expressed in
a way that generalizes the above expression.

Theorem 4. For every (Gt)-martingale (Mt) which is bounded in L2, there
exists a (Fs)-previsible process (Hs) such that

E
(∫ τ1

0

H2
s ds

)
< +∞ and ∀t � 0, Mt = M0 +

∫ τ1

0

Hs 1(0,t](ζs) dζs .

By [Je] this result is known when it is restricted to the filtration (Gζt ), i.e.,
considering only the lifetime. In that case it is essentially seen on Tanaka’s
formula interpreted as a reflection equation. Our proof is given in Section 4.
We deduce the corollary:
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Proposition 5. For every Y ∈ L2(Gt), there exists a (Fs)-previsible process
(Hs) such that

Y = E(Y ) +
∫ τ1

0

Hs 1(0,t](ζs) dζs and E
(∫ τ1

0

H2
s 1(0,t](ζs) ds

)
< +∞ .

The representation given in (5) can be pushed a little further into the
terminology of martingale measure as the notation already suggests. The
notion of martingale measure of super-processes is explained for instance
in [Da] Chapter 7; Example 7.1.3 covers the case of super-Brownian motion
as it is defined here. In our setting the martingale measure of super-Brownian
motion or even historical Brownian motion is easily described. It is stated
in the following proposition where L denotes the generator of the so-called
A-path process which is the process in W whose lifetime increases at constant
speed 1 and consists in a trajectory of the diffusion governed by A.

Proposition 6. Let us set, for t � 0 and Ω ∈ B(W),

Mt(Ω) = 2
∫ τ1

0

1(0,t](ζr) 1Ω(Wr) dζr . (6)

Then, (Mt(Ω), t � 0, Ω ∈ B(W)) defines an L2-martingale measure
M(ds dw). It is associated to the historical Brownian motion, that is, for
every φ : W → R in the domain of L and bounded,

Ht(φ) = H0(φ) +
∫ t

0

Hs(Lφ) ds+
∫ t

0

∫
W
φ(w) M(ds dw) . (7)

This martingale measure is orthogonal and its intensity is the random measure
ν on R+ ×W given by∫

R+×W
ψ(t, w) ν(dt dw) = 4

∫ τ1

0

ψ(ζs,Ws) ds . (8)

We recall that the intensity of a martingale measure is defined so that
ν([0, t]×Ω), for Ω Borel subset of W , is the quadratic variation of the mar-
tingale (Mt(Ω)).

2 Basic objects and notations

We will use the following common notations:
N = {1, 2, 3, . . .}, Z+ = {0, 1, 2, . . .}, R+ = [0,+∞).
C(X,Y ): set of continuous functions from metric space X to metric space Y .
σ(Xi, i ∈ I): σ-algebra generated by the random variables Xi, i ∈ I in a fixed
probability space, completed with all negligible sets.
B(X): Borel σ-algebra of the metric space X.
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MF (X): set of all finite measures on the metric space X equipped with
the (metrizable) topology of weak convergence and its Borel σ-algebra
B(MF (X)).

A stopped path is a couple (w, ζ), where ζ � 0 is called the lifetime of
the path, and w : R+ → Rd is a continuous mapping, which is constant
on [ζ,+∞). We denote by W the set of all stopped paths. We sometimes
abbreviate (w, ζ) into w and denote ζ(w) the lifetime. The distance on W is
d(w,w′) = supt�0 |w(t)−w′(t)|+ |ζ(w)−ζ(w′)|, makingW a Polish space. We
denote by ŵ = w(ζ) the endpoint of w, and x̃ the path of lifetime 0 started
at x ∈ Rd. Finally, we denote by w�r the path of lifetime ζ(w) ∧ r such that
for u � 0, w�r(u) = w(u ∧ r).

Let us fix a diffusion in Rd with generator A. The Brownian snake started
at x with spatial motion governed by A is the strong Markov continuous
process W = (Ws, s � 0) with values in W characterized by the following
properties:

1. Ws(0) = x for every s;
2. The lifetime process ζs = ζ(Ws) is a reflecting Brownian motion in R+;
3. Conditionally on (ζs, s � 0), the distribution of (Ws, s � 0) is that of an

inhomogeneous Markov process whose transition kernels are described as
follows: for every s < s′,
• W�m

s′ = W�m
s where m = infr∈[s,s′] ζr;

• (Ws′(m + t), 0 � t � ζs′ −m) is independent of Ws conditionally on
Ws(m) and has the law of a diffusion in Rd with generator A, starting
from Ws(m) and stopped at time ζs′ −m.

The filtration (FWt ) used in the introduction is the filtration associated
to (Ws), completed the usual way (see [RY] p. 45 and 93 for precisions on
completion) and

FW∞ = σ

(⋃
t�0

FWt

)
.

3 Proof of the previsible representation property
(Theorem 1.)

This proof is inspired by Exercise 3.15 of [RY], dealing with the classical
Brownian filtration. In that case a step of the proof is to solve a linear dif-
ferential equation. This is replaced in our path space setting by an integral
equation that we first discuss.

Lemma 7. Let α > 0 and

Eα =
{
ψ ∈ C(W,R); sup

w∈W
e−α ζ |ψ(w)| < +∞

}
.
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For all λ > 0, if α >
√

2λ and f ∈ Eα then there exists ϕ ∈ Eα such that

∀w ∈ W,
1
2
ϕ(w)− λ

∫ ζ

0

(ζ − u)ϕ(w�u) du = f(w) .

Proof. It is easy to see that the formula ||ψ||α = supw∈W e−α ζ |ψ(w)| defines
a norm on the vector space Eα which makes this space complete. The result
of the lemma consists in finding a fixed point for the map

θ : ϕ→
(
w → 2f(w) + 2λ

∫ ζ

0

(ζ − u)ϕ(w�u) du

)
.

It is easy to verify that θ maps Eα into itself. In order to apply the classical
Lipschitz fixed point theorem to θ in the Banach space Eα, it remains to check
that θ satisfies the Lipschitz condition. For ϕ1, ϕ2 ∈ Eα,

||θ(ϕ1)− θ(ϕ2)||α = sup
w∈W

e−α ζ

∣∣∣∣∣2λ
∫ ζ

0

(ζ − u) (ϕ1 − ϕ2)(w�u) du

∣∣∣∣∣
� sup
w∈W

e−α ζ

∣∣∣∣∣2λ
∫ ζ

0

(ζ − u) eαu||ϕ1 − ϕ2||α du
∣∣∣∣∣

� 2λ ||ϕ1 − ϕ2||α sup
ζ>0

{
e−α ζ

∫ ζ

0

(ζ − u) eαu du

}

� 2λ ||ϕ1 − ϕ2||α
∫ +∞

0

v eαvdv =
2λ
α2
||ϕ1 − ϕ2||α .

Since the last ratio is by assumption smaller than 1, the proof of the lemma
is complete. ��

We now denote E the increasing limit of the sets Eα, α> 0, that is
E =

⋃
α>0 Eα. We are now ready to give a previsible representation for certain

variables, namely, the type on the left-hand side of the following equality.

Lemma 8. For every f ∈ E and every λ > 0, there exist g0, g1 ∈ E such that,
for every r > 0,∫ ∞

r

e−λs f(Ws) ds = e−λr g0(Wr) +
∫ ∞

r

e−λs g1(Ws) dζs . (9)

Moreover g0 vanishes at 0 in the following sense: g0(w) = 0 if ζ(w) = 0 and
identically for g1.

Proof. Let us first remark that, since f belongs to a certain Eα, we have∫ ∞

r

e−λs |f(Ws)| ds � ||f ||α
∫ ∞

r

e−λs eαζs ds
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and the integral on the right-hand side is finite because the reflecting Brownian
motion (ζs) satisfies the law of the iterated logarithm. Hence the integral
appearing on the left-hand side of (9) is defined almost surely. So is the integral
on the right-hand side using a similar argument and [RY] IV.1.26.

By increasing α if necessary, we may suppose that α >
√

2λ. By Lemma 7,
we can associate to f ∈ Eα a continuous function ϕ ∈ Eα as specified. Let
F (2) = ϕ and F (1), F be defined as in the assumptions of formula (1). Note
that F (1) and F vanish at 0, in the sense defined in the statement of the
lemma. It is easy to check that F (1), F ∈ Eα and more precisely,

|F (w)| � ||ϕ||α
eα ζ

α2
. (10)

We obtain, by formula (1) and the classical Itô formula for a product, for
0 � r < t:

e−λt F (Wt)− e−λr F (Wr) =
∫ t

r

e−λs
(

1
2
ϕ− λ F

)
(Ws) ds

+
∫ t

r

e−λsF (1)(Ws) dζs.

We recall that (1/2)ϕ − λF = f . Using the bound (10), the law of the
iterated logarithm for (ζs) entails that limt→+∞ e−λ t F (Wt) = 0, almost
surely. Therefore we get∫ ∞

r

e−λs f(Ws) ds = −e−λr F (Wr)−
∫ ∞

0

e−λs F (1)(Ws) dζs

We obtain the sought after representation, up to a change of notations. ��

Lemma 9. For all n ∈ N, λ1, . . . , λn > 0, f1, . . . , fn ∈ E, there exist
μ0, μ1, μ

k
j > 0, (1 � k � n − 1, 0 � j � k), g0, g1, gkj ∈ E (1 � k � n − 1,

0 � j � k) with g0, g1, g
k
0 vanishing at 0, such that, for all r � 0,∫

{r<s1<···<sn}

(
n∏
i=1

e−λi si fi(Wsi
)

)
ds1 . . . dsn

= e−μ0 r g0(Wr) +
∫ +∞

r

⎧⎨⎩e−μ1 s g1(Ws) +
n−1∑
k=1

e−μ
k
0 s gk0 (Ws)

∫
{r<s1<···<sk<s}

⎛⎝ k∏
j=1

e−μ
k
j sj gkj (Wsj

)

⎞⎠ ds1 . . . dsk

⎫⎬⎭ dζs

with the convention that the sum over k disappears if n = 1.
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Proof. By (9), we know that the lemma is true for n = 1. Then we proceed by
induction. Admitting the result at rank n � 1, we examine the case of rank
n+ 1:∫
{r<s1<···<sn+1}

(
n+1∏
i=1

e−λi si fi (Wsi
)

)
ds1 . . . dsn+1

=
∫ +∞

r

ds1e
−λ1s1f1(Ws1)

∫
{s1<s2<···<sn+1}

(
n+1∏
i=2

e−λisifi(Wsi
)

)
ds2 . . . dsn+1

=
∫ +∞

r

ds1 e−λ1 s1 f1(Ws1)

⎡⎣e−μ0 s1 g0(Ws1) +
∫ +∞

s1

{
e−μ1 s g1(Ws)

+
n∑
k=2

e−μ
k
0sgk0 (Ws)

∫
{s1<s2<···<sk<s}

k∏
j=2

e−μ
k
j sjgkj (Wsj

) ds2 . . . dsk

}
dζs

⎤⎦
=
∫ +∞

r

e−(λ1+μ0) s1 (f1 g0)(Ws1) ds1

+
∫ +∞

r

e−μ1 s g1(Ws)
(∫ s

r

e−λ1 s1 f1(Ws1)ds1

)
dζs

+
n∑
k=2

∫ +∞

r

e−μ
k
0 s gk0 (Ws)

⎛⎝∫ s

r

ds1e
−λ1 s1 f1(Ws1)

∫
{s1<s2<···<sk<s}

⎛⎝ k∏
j=2

e−μ
k
j sj gkj (Wsj

)

⎞⎠ ds2 . . . dsk

⎞⎠ dζs.

The first equality is simply Fubini’s formula; then we use the induction
hypothesis for the integral with respect to s2, . . . , sn+1; and for the last
equality a stochastic version of Fubini’s theorem. To the first term obtained
at the last equality we can apply the result at rank 1, i.e., (9); the second and
third term are the desired quantities to obtain the sought-after formula, up
to a change of notations of course. ��
Lemma 10. For every ŝ > 0, there exist, for every i ∈ N, coefficients
mi ∈ N, αij ∈ R, λij > 0 for 1 � j � mi such that, for every continuous
function γ : R+ → R (absolutely) integrable over R+,∫ +∞

0

⎛⎝mi∑
j=1

αij e
−λi

j s

⎞⎠ γ(s) ds i→+∞−→ γ(ŝ) .

Proof. We first consider an approximation pi(s) ds of the Dirac measure δŝ
with continuous density whose support is contained in (0, 2ŝ) so that we have∫ +∞

0

pi(s) γ(s) ds i→+∞−→ γ(ŝ)
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for every continuous γ. The set of functions over R+

Λ =

⎧⎨⎩ψ : s→
m∑
j=1

αj e
−λj s; m ∈ N, αj ∈ R, λj > 0, ψ(0) = 0

⎫⎬⎭
is a linear subspace, closed under multiplication. Let arg z ∈ [−π, π) denote
the value of the argument of z ∈ U = {z ∈ C; |z| = 1}. On the compact
U, equipped with uniform topology, we can apply the the classical Stone–
Weierstrass approximation theorem to the set of continuous functions:{

z → a+ ψ

(
tan

1
4
(arg z + π)

)
; a ∈ R, ψ ∈ Λ

}
in order to approximate by functions of this set, the continuous function
z → pi(tan[(arg z+π)/4]). It is thus possible to find ai ∈ R,mi ∈ N, αij ∈ R,

λij > 0 such that

sup
s∈R+

|pi(s)− ψi(s)| i→+∞−→ 0 with ψi : s→ ai +
mi∑
j=1

αij e
−λi

j s ∈ Λ .

By considering the value at 0 we may suppose that ai = 0. We have found
the desired sequence of functions. ��
Proof of Theorem 1. We denote by R the linear subspace of L2(FW∞ ) consisting
of variablesX admitting the specified representation (2) with (Hs) a previsible
process such that Hs = 0 a.s. on {s; ζs = 0}. With such a representation we
obtain

E(X2) = (EX)2 + E
(∫ +∞

0

H2
s ds

)
.

By a classical argument (cf [RY] p. 199) we deduce that R is complete hence
closed in L2(FW∞ ).

Lemma 9 implies that for all n ∈ N, λ1, . . . , λn > 0, f1, . . . , fn bounded
and continuous on W (hence in E), the set R contains the variable∫

{0<s1<···<sn}

n∏
i=1

e−λi si fi(Wsi
) ds1 . . . dsn

hence also the variable
n∏
i=1

∫ ∞

0

e−λis fi(Ws) ds

and, by linear combination, R contains also the variable:

n∏
i=1

∫ ∞

0

⎛⎝mi∑
j=1

αij e
−λi

js

⎞⎠ e−s fi(Ws) ds

where the coefficients αij ∈ R, λij > 0,mi ∈ N are arbitrary.
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We deduce from Lemma 10 that, for every n ∈ N, for all f1, . . . , fn
bounded and continuous and all ŝ1, . . . , ŝn > 0, the set R contains the variable

n∏
i=1

fi(Wŝi
)

(dropping useless constant exponential factors) and this is clearly sufficient to
claim that R = L2(FW∞ ).

4 Representation in filtration (Gt)

4.1 Proof of Theorem 4.

We first establish that a process (Mt) given as in the statement of the theorem
is effectively a martingale, that is, for all t, h > 0, for every Gt-mesurable U ,

E [(Mt+h −Mt)U ] = E
[(∫ τ1

0

Hs 1{t<ζs�t+h} dζs

)
U

]
= 0 (11)

We fix ε > 0 and introduce the successive time intervals of descent from
t + ε down to t, that is we consider the (Fs)-stopping times (Sk, k � 0) and
(Tk, k � 0) defined by S0 = T0 = 0, and if k � 1,

Sk = inf {s ∈ (Tk−1, τ1); ζs = t+ ε} ,
Tk = inf {s ∈ (Sk, τ1); ζs = t} ,

with the convention inf ∅ = τ1. Equation (11) will be proved, by letting ε ↓ 0,
as soon as we can show that, for every k ∈ N,

E

[(∫ Tk

Sk

Hs 1{t<ζs�t+h} dζs

)
U

]
= 0 .

By the definition of Gt, it is sufficient to prove that

E

[(∫ Tk

Sk

Hs 1{t<ζs�t+h} dζs

)
X G(WTk+·)

]
= 0

where X is FSk
-measurable and bounded and G is a bounded measurable

function. By applying the Markov property at time Tk the left-hand side of
the above expression reduces to

E

[
X

(∫ Tk

Sk

Hs 1{t<ζs�t+h} dζs

)
EWTk

[G]

]
.

But WTk
= W�t

Sk
. The variable X E

W
�t
Sk

[G] is FSk
-measurable and bounded

and we can represent it under the following form:

X E
W

�t
Sk

[G] = c+
∫ Sk

0

Ks dζs
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with a (Fs)-previsible process (Ks). Therefore we have finally to prove that

E

[(∫ Tk

Sk

Hs 1{t<ζs�t+h} dζs

)(
c+

∫ Sk

0

Ks dζs

)]
= 0 .

The contribution coming from the multiplication by c is null, by applying the
stopping Theorem for martingale

∫ ·
0
Hs 1{t<ζs�t+h} dζs. The remaining term

is equal to

E
[∫ τ1

0

1[Sk,Tk](s) Hs 1{t<ζs�t+h}1[0,Sk](s) Ks ds

]
which is clearly zero.

Now we denote by (Mt) any (Gt)-martingale bounded in L2. LetM∞ be the
almost sure and L2 limit of Mt. This variable of G∞ = F∞ can be repesented
as

M∞ = E(M∞) +
∫ τ1

0

Hs dζs

with a (Fs)-previsible process (Hs). Then

Mt = E[M∞|Gt] = E(M∞) +
∫ τ1

0

Hs 1{0<ζs�t} dζs ,

the last equality resulting from the first part of the proof.

4.2 Comments on Proposition 6.

It is straightforward that Formula (6) defines for every t > 0, an L2-valued
finite measure. Firstly, it is finitely additive. Secondly we have, for every
Ω ∈ B(W),

||Mt(Ω)||22 = 4 E
[∫ τ1

0

1(0,t](ζr) 1Ω(Wr) dr
]

� 4 E
[∫ τ1

0

1(0,t](ζr) dr
]

= 4 E
[∫ t

0

Laτ1(ζ) da
]

= 4
∫ t

0

E
[
Laτ1(ζ)

]
da = 4t.

The last equality follows from the Ray-Knight Theorem (or can been seen
as the first moment of super-Brownian motion). Moreover it is clear by the
dominated convergence Theorem that ||Mt(Ω)||2 converges to 0 if Ω decreases
to ∅ and this proves the L2 countable additivity. Thus we are in the classical
setting of martingale measures as described in [Da] Chapter 7. We have∫ t

0

∫
W
φ(w) M(ds dw) = 2

∫ τ1

0

1(0,t](ζr) φ(Wr) dζr .
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Then Formulas (7) and (8) are essentially a reformulation of Proposition 3
for historical Brownian motion instead of super-Brownian motion, but this
extension was also covered by [DS]. In particular, the quadratic variation of∫ t
0

∫
W φ(w) M(ds dw) is:

4
∫ t

0

Hs(φ2) ds = 4
∫ t

0

ds

∫ τ1

0

φ2(Wr) d(r)L
s
r(ζ)

= 4
∫ τ1

0

1(0,t](ζr) φ2(Wr) dr

and this leads to (8).
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Summary. For a multidimensional Itô process (Xt)t�0 driven by a Brownian
motion, we are interested in approximating the law of ψ

(
(Xs)s∈[0,T ]

)
, T > 0

deterministic, for a given functional ψ using a discrete sample of the process X.
For various functionals (related to the maximum, to the integral of the process,
or to the killed/stopped path) we extend to the non-Markovian framework of Itô
processes, the results available in the diffusion case. We thus prove that the order
of convergence is more specifically linked to the Brownian driver and not to the
Markov property of SDEs.
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1 Introduction: statement of the problem

Let (Xt)t∈[0,T ] be a d-dimensional Itô process, whose dynamics is given by

Xt = x+
∫ t

0

bsds+
∫ t

0

σsdWs (1)

with a fixed initial data x and a fixed terminal time T . Here, W is a d′-
dimensional standard Brownian motion (BM) defined on a filtered prob-
ability space (Ω,F , (Ft)t∈[0,T ],P) where (Ft)t∈[0,T ] is the natural com-
pleted filtration of W . The progressively measurable coefficients (bs)s�0

and (σs)s�0 are bounded. In this work, we are mainly interested in ap-
proximating the law of ψ

(
(Xs)s∈[0,T ]

)
, where ψ is a real valued functional

∗ This work has been financially supported by Ecole Polytechnique and Université
Pierre et Marie Curie – Paris 6 (during the preparation of the PhD Thesis of the
second author).
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defined on the space of càdlàg functions, using a discrete sample of the
process X. For this latter, we use the stepwise constant counterpart of
X defined by (Xφ(s))s∈[0,T ]

where φ(s) = ti if ti := ih � s < ti+1

(h = T/N being the step size). The main problem consists in controlling
the difference

Err(T, h, ψ, x) := E[ψ
(
(Xs)s∈[0,T ]

)
]− E[ψ

(
(Xφ(s))s∈[0,T ]

)
] (2)

for a certain class of functionals ψ w.r.t. the time step h. This kind of problem
has been widely studied in the Markovian setting (i.e., when X is a solution of
a SDE) for a large class of functionals ψ, see the short list and references below.
What we want to emphasize in this paper is that the rates of convergence
obtained in the Markovian case, through proofs relying on an associated PDE,
are still valid in the non-Markovian framework of Itô processes. Hence, it is
not the Markov property that gives the order of convergence, but actually the
Brownian stochastic integral. Here are some controls of Err(T, h, ψ, x) in the
Markovian setting for some specific functionals ψ.

1. Integral of the process.

This case corresponds to ψ1(y) := ϕ

(∫ T

0

y(s)ds
)

, where ϕ is a Lipschitz

continuous function from Rd into R. We know from Temam [Tem01] that
Err(T, h, ψ1, x) = O(h).

2. Maximum of the drifted BM when d = 1.
This case corresponds to ψ2(y) := maxs∈[0,T ] y(s). For Xs = x+μs+σWs,
we derive from Lemma 6 in Asmussen et al. [AGP95] that there exists a
constant C > 0 s.t. 0 � Err(T, h, ψ2, x) � Ch1/2.

3. Killed/stopped processes.
For the killed case, the functional writes ψ3(y) := f(y(T ))I∀s∈[0,T ], y(s)∈D
where f is a measurable function and D a given open set of Rd. In the
Markovian setting of uniformly elliptic diffusion processes, the first author
showed in [Gob00], Theorem 2.4, that for a smooth domainD and bounded
f satisfying a support condition w.r.t. D,

∃C > 0, |E[f(XT )IτN>T ]− E[f(XT )Iτ>T ]| � C
√
h , (3)

where τ and τN are respectively the continuous and discrete exit times.
Let us mention that the above result remains valid if we additionally
replace the discretely killed diffusion by its discretely killed Euler scheme,
see [Gob00] and [GM04] for an extension to a hypoelliptic framework.
Anyhow, (3) emphasizes that, for killed processes, the order 1/2 is intrinsic
to the discrete time killing.

In this work, we show that under suitable assumptions, the previous
bounds still hold when X follows the dynamics (1).

In terms of financial applications, the above results concerning the
discretely sampled integral and maximum, can respectively be seen as
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preliminary controls to deal with the impact of a time discretization for
Asian and look-back options. The estimate associated to the killed path gives
an upper bound for the error associated to a discrete time observation for
barrier options.

We first detail how standard stochastic analysis arguments provide the
necessary tools to control (2) in the case of a discretely sampled integral or
maximum (cases 1. and 2. of the former list).

Proposition 1.1 Let X be an Itô process following the dynamics of (1).
Assume the coefficients b and σ are bounded and that ϕ is a Lipschitz contin-
uous function from Rd into R. For p � 1 one has

ϕ

(∫ T

0

Xs ds

)
− ϕ

(∫ T

0

Xφ(s) ds

)
=

Lp(P)
O(h) .

Note that a direct use of ‖Xs−Xφ(s)‖Lp
= O(

√
h) leads to a suboptimal rate

of convergence.

Proof. Because ϕ is Lipschitz continuous, it is enough to prove that ΔI :=∫ T

0

Xs ds−
∫ T

0

Xφ(s) ds =
Lp

O(h) . Using Fubini’s theorem for stochastic inte-

grals, see [RY99] Chapter IV.5, we get

ΔI =
∫ T

0

(∫ T

0

It∈[φ(s),s]dXt

)
ds =

∫ T

0

(φ(t) + h− t) dXt .

We complete the proof using standard BDG inequalities combined with
|φ(t) + h− t| � h. �

Concerning the discretely sampled maximum we state the following

Proposition 1.2 Assume (Xs)s∈[0,T ] follows the dynamics of (1), where
(bu)u�0 is a bounded progressively measurable coefficient and σs = σ(Xs)
where σ is bounded in C1(R) and s.t. ∃σ0 > 0, ∀y ∈ R, σ(y) � σ0. There
exists a constant C > 0 s.t.

0 � Err(T, h, ψ2, x) � C
√
h .

Proof. Define ΔM := ψ2

(
(Xs)s∈[0,T ]

)
−ψ2

(
(Xφ(s))s∈[0,T ]

)
= maxs∈[0,T ]Xs−

maxs∈[0,T ]Xφ(s) . If X is a BM, as a consequence of Lemma 6 in [AGP95], we
have E[ΔM2]1/2 = O(

√
h). This estimate is still valid ifX is solution of the one

dimensional SDE Xt = x+
∫ t

0

1
2
(σσ′)(Xs)ds+

∫ t

0

σ(Xs)dWs with the above

assumptions on σ. Indeed, introducing the Lamperti transform (Yt)t�0 =

(ϕ(Xt))t�0 , ∀y ∈ R, ϕ(y) =
∫ y

0

dz

σ(z)
, we derive that Y is a standard one
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dimensional BM with starting point ϕ(x). By construction, the inverse of ϕ is
uniformly Lipschitz continuous. This gives the result. To obtain the statement
of the proposition, we finally apply a Girsanov transformation, exploiting that
the associated Radon–Nikodym density belongs to any Lp because of the
drift’s boundedness, and the previous result. ��

The limiting factor in our approach is the use of Lamperti’s transformation
that imposes to have a Markovian diffusion term.

Propositions 1.1 and 1.2 extend the results stated for ψ1 and ψ2 in our
initial list to a wider non-Markovian framework without major difficulties.
Hence, in the sequel we consider the more difficult cases of discretely killed or
stopped processes for which the corresponding functionals are not Lipschitz
continuous anymore. We denote the discretization error associated to the killed
case by

Err(T, h, f, x) = E[ψ3

(
(Xφ(s))s∈[0,T ]

)
]− E[ψ3

(
(Xs)s∈[0,T ]

)
]

= E[f(XT )IτN>T ]− E[f(XT )Iτ>T ] (4)

where, from now on, τ := inf{t � 0 : Xt �∈ D}, τN := inf{ti � 0 : Xti �∈ D}.
For the stopped case, and a smooth domain D, for a given real valued bounded
function g defined on [0, T )× ∂D ∪ {T} × D̄, we introduce

Err(T, h, g, x) := E[g(T ∧ τN , πD̄(XT∧τN ))]− E[g(T ∧ τ,XT∧τ )] . (5)

The careful reader can object that without further assumptions on the domain
(like convexity for instance) the projection on D̄ is only locally uniquely
defined. By convention, for y ∈ Rd s.t. πD̄(y) is not unique, we arbitrarily
set πD̄(y) = x0 ∈ ∂D. This can seem awkward. Anyhow, we should always
keep in mind that, because of the boundedness of the coefficients in (1), for
h small enough, the events for which the process exits the domain where πD̄
is uniquely defined, before being discretely stopped are of exponentially small
probability. For such events, we derive from the boundedness of g that the de-
finition of the projection has no relevant impact on the convergence analysis.
We refer to Section 3.2 for details.

In this work, we extend the result of Theorem 2.4 in [Gob00] to a possibly
degenerate non-Markovian framework and to a more general class of func-
tions. For the reader familiar with error decomposition techniques, we guess
it is interesting to present below an analogy between standard PDE methods
employed in the Markovian setting [TL90] and ours.

Note first that the killed case can be seen as a special case of the stopped
one with ∀t ∈ [0, T ], g(t, .)|∂D = 0, g(T, .)|D = f(.)|D. Introducing ∀t ∈ [0, T ],
Vt := E[g(T ∧ τt, πD̄(XT∧τt

))|Ft] := E[g̃(T ∧ τt, XT∧τt
)|Ft] where τt :=

inf{s � t : Xs �∈ D}, the error writes

Err(T, h, g, x) = E[VT∧τN ]− V0 . (6)
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In a Markovian framework, for all t � T ∧ τ, Vt = v(t,Xt) where, under
suitable assumptions, v is a smooth function satisfying the mixed Cauchy–
Dirichlet problem{

(∂t + L)v(t, x) = 0, (t, x) ∈ [0, T )×D,

v(t, x) = g(t, x),∀(t, x) ∈ [0, T )× ∂D
⋃{T} × D̄ ,

(7)

L being the infinitesimal generator of the diffusionX. The process (Vt∧τ )t∈[0,T ]

is associated to the standard Feynman–Kac representation of the solution
of (7). In our case, we can not rely on a PDE, but on a martingale property
that is one of the main ingredients needed for the proof. Namely, one has the
following

Proposition 1.3 Let X be an Itô process that follows the dynamics of (1).
Assume the function g of (7) is bounded. Then, ∀t ∈ [0, T ), the process
(Vs∧τt

)s∈[t,T ] is a martingale.

Observe that in the Markovian case, one can derive this martingale
property from the PDE (7) using Itô’s formula.

Proof. Note that ∀s ∈ [t, T ], on {s < τt}, Vs∧τt
= Vs = E[g̃(T∧τs, XT∧τs

)|Fs],
and on {s � τt}, Vs∧τt

= Vτt
= g̃(τt, Xτt

). Turning to the former definition
of V it comes

E[Vs∧τt
− Vt|Ft] = E[g̃(T ∧ τs∧τt

, XT∧τs∧τt
)− g̃(T ∧ τt, XT∧τt

)|Ft]
= E[Is<τt

(g̃(T ∧ τs, XT∧τs
)− g̃(T ∧ τt, XT∧τt

))|Ft]
+E[Is�τt

(g̃(τt, Xτt
)− g̃(τt, Xτt

))|Ft] = 0

since on the event {s < τt} one has τt = τs. �

From (6), the strategy in the Markovian setting consists in writing Itô like
expansions in order to isolate the leading term of the error (see [Gob00]). The
above martingale property is crucial for our error decomposition. Namely, it
replaces the use of Itô’s formula on v in the Markovian case.

Outline of the paper

In Section 2 we state our working assumptions as well as our main
results. Section 3 is dedicated to the common decomposition of the errors
Err(T, h, f, x),Err(T, h, g, x). We give in Section 4 the auxiliary results needed
to obtain the bound of the error in the killed and stopped case. In Section 5,
we show how our previous techniques can be employed to extend the previous
control on Err(T, h, f, x) to the case of an intersection of smooth domains.
We conclude in Section 6 giving some possible extensions and evoking some
remaining open problems.
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2 Assumptions and main results

2.1 About the process

We assume the coefficients (bs)s∈[0,T ], (σs)s∈[0,T ] of (1) are bounded. Some
mild smoothness property on σ (some continuity in probability) will be also
needed: the condition stated below is not restrictive at all and is fulfilled
for instance as soon as (σs)0�s�T satisfies a Hölder-continuity property in
Lp-norm.

(S) For any δ > 0, there is some function ηδ with limh→0+ ηδ(h) = 0 such
that a.s, for s ∈]ti, ti+1[ with Xs ∈ ∂D, one has P(|

∫ ti+1

s
(σu − σs)dWu| �

δ
√
ti+1 − s | Fs) � ηδ(h) .

2.2 About the domain

In this section we assume the domain D satisfies assumption

(D) The domain D is of class C2 with bounded boundary ∂D, X0 = x ∈ D̄.

Additional notations and assumptions concerning the intersection of domains
satisfying (D) are specified in Section 5. For x ∈ ∂D, denote by n(x) the unit
inward normal vector at x. For r � 0, set V∂D(r) := {z ∈ Rd : d(z, ∂D) � r}
and D(r) := {z ∈ Rd : d(z,D) � r}. B(z, r) stands for the closed ball with
center z and radius r. We now recall standard facts on the distance to the
boundary and the orthogonal projection on ∂D (see Lemma 1 and its Proof
from [GT77] page 382).

Proposition 2.1 Assume (D). There is a constant R > 0 such that:

i) for any x ∈ V∂D(R), there are unique s = π∂D(x) ∈ ∂D and F (x) ∈ R

such that x = π∂D(x) + F (x)n(π∂D(x)).
ii) The function x 	−→ F (x) is the signed normal distance of x to ∂D: this is

a C2-function on V∂D(R), which can be extended to a C2 function on Rd

with bounded derivatives. This extension satisfies F (x) � d(x, ∂D) ∧ R
on D, F (x) � −[d(x, ∂D) ∧R] on Dc and F = 0 on ∂D.

iii) For x ∈ V∂D(R), one has ∇F (x) = n(π∂D(x)).

Assume D satisfies (D). Following the notations of Proposition 2.1, we now
introduce the non characteristic boundary condition

(C)∃a0 > 0 such that

a.s.
(
Xs ∈ V∂D(R), s ∈ [0, T ] =⇒ αs := ∇F (Xs).σsσ∗

s∇F (Xs) � a0

)
which enforces the process to exit the domain in a nontangential manner.
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2.3 Main results

We are now in a position to state our main results for killed and stopped
processes in the case of smooth domains.

Theorem 2.2 Upper bound in the smooth domain case for a killed
process.
Assume (C), (D), (S) and suppose f is a borelian and bounded function s.t.
∃ε > 0, d(supp(f), ∂D) � 2ε. For some constant C, one has

|Err(T, h, f, x)| = |E[f(XT )IτN>T ]− E[f(XT )Iτ>T ]| � C
‖f‖∞
1 ∧ ε

√
h .

Remark 2.1 Note that if f is non-negative one also has Err(T, h, f, x) � 0.
This readily derives from the inequality τN � τ a.s.

Theorem 2.3 Upper bound in the smooth domain case for a stopped
process.
Assume (C), (D), (S) and suppose g is bounded in C1,2([0, T ] × Rd). For
some constant C, one has

|Err(T, h, g, x)| = |E[g(T ∧ τN , πD̄(XT∧τN ))− g(T ∧ τ,XT∧τ )]| � C
√
h .

Remark 2.2 Let us first mention that we cannot improve the above rate in
our framework, since in the Brownian case, one has an expansion w.r.t.

√
h

(cf. Siegmund and Yuh [SY82] and [Men04]).

Remark 2.3 To study the impact of the time discretization, few assumptions
are needed to get, as indicated in the previous remark, the expected rate
of convergence. To obtain the same upper bound with the discretely killed
Euler scheme of a diffusion process, an additional hypoellepticity condition
is necessary (see [GM04]).

Note also that Assumptions (D) and (S) could possibly be weakened. On
the other hand, Assumption (C) is somehow a minimal condition to ensure
a convergent approximation. Indeed, it easy to imagine a deterministic path
which hits ∂D only at time τ = χT where χ is an irrational number in [0, 1]:
for this, τN > T for any N � 1 and Err(T, h, f, x) = f(XT ) is constant.

Remark 2.4 Recall also that the results of Theorems 2.2 and 2.3 concern
respectively the impact of a discretization time in the quantities E[f(XT )Iτ>T ]
and E[g(T ∧ τ,XT∧τ )]. They can therefore not be directly compared to the
results of Theorem 2.3 in [Gob00] or Section 6.4 Chapter I in [Men04] except
in the special case of Brownian motion. Note anyhow that in that case we
obtain the upper bound of the weak error with a much simpler proof. The next
natural question, in the killed case and when f � 0, concerns a possible lower
bound of the same order for Err(T, h, f, x) as stated in Theorem 5 in [GM04]
in a Markovian framework. We give a counter example that illustrates this
property can fail under the sole assumption (C). Define for all t � 0, the one
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dimensional diffusion process Xt = π/2+
∫ t

0

cos(Xs)ds+
∫ t

0

sin(Xs)dWs and

put D :=] − π/2, 3π/2[. (C) is readily satisfied and by construction one has
Xs ∈ [0, π] a.s. Hence, IτN>T = Iτ>T = 1 and Err(T, h, f, x) = 0. A minimal
necessary condition to have a lower bound of order 1/2 w.r.t h is to reach the
boundary on the interval [0, T ] with positive probability.

3 Common decomposition of the error

In this section we assume (D) is in force. The constant R is the one of
Proposition 2.1. In particular, on D(R) the projection on D̄ is uniquely
defined.

3.1 Miscellaneous

We will keep the same notation C (or C ′) for all finite, non-negative constants
which will appear in our computations: they may depend on D, T , b, σ, f
or g, but they will not depend on the number of time steps N and the initial
value x. We reserve the notation c and c′ for constants also independent of
x, T , f , or g.

3.2 Localization of X in D(R)

In this subsection we justify that for studying Err(T, h, g, x), we can assume
w.l.o.g. that ∀t ∈ [0, T ], Xt ∈ D(R) a.s. Indeed, if it is not the case, we
introduce τR := inf{s � 0 : Xs �∈ D(R)}, X̄t = Xt∧τR

, τ̄N := inf{ti � 0 :
X̄ti �∈ D}, τ̄ := inf{t � 0 : X̄t �∈ D} = τ . Note that

|Err(T, h, g, x)−
(
E[g(T ∧ τ̄N , πD̄(X̄T∧τ̄N ))]− E[g(T ∧ τ̄ , X̄T∧τ̄ )]

)
|

:= |Err(T, h, g, x)− Err2(T, h, g, x)| � 2|g|∞P[τR < τN ] .

The process X̄ satisfies (C), (S) and is D(R) valued. Hence, from Assump-
tion (D), the projection on D̄ is uniquely defined in the term Err2(T, h, g, x).
It therefore remains to control the probability P[τR < τN ]. To this end, a key
tool is the following

Lemma 3.1 (Bernstein’s type inequality) Consider two stopping times
S, S′ upper bounded by T with 0 � S′ − S � Δ � T . Then for any p � 1 and
c′ > 0, there are some constants c > 0 and C, such that for any η � 0, one
has a.s:

P[ sup
t∈[S,S′]

‖Xt −XS‖ � η
∣∣ FS ] � C exp

(
−cη

2

Δ

)
,

E[ sup
t∈[S,S′]

‖Xt −XS‖p
∣∣ FS ] � CΔp/2 .
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Proof. We omit the proof of the first inequality which is standard and refer
the reader to Lemma 4.1 in [Gob00] for instance. The other one easily follows
from the first one. �

Lemma 3.1 readily gives P[τR < τN ] � C exp
(
− cR

2

h

)
. Thus, taking (X̄, τ̄N )

instead of (X, τN ) has no significant impact. This has however the advantage
to keep the projection on D̄ well defined. Hence, in the following we assume

(Xt)t∈[0,T ] ∈ D(R) a.s.

3.3 Error decomposition and proof of the main results

The error decomposition is common to both the killed and stopped cases. Put
∀(t, z) ∈ [0, T ]×D(R),

g̃(t, z) :=

{
It=T f(z) in the killed case ,
g(t, πD̄(z)) in the stopped case .

We denote by Err(T, h, g̃, x) the error corresponding to Err(T, h, f, x) in the
killed case (resp. Err(T, h, g, x) in the stopped case). It comes

Err(T, h, g̃, x) = E[g̃(T ∧ τN , XT∧τN )− g̃(T ∧ τ,XT∧τ )]
= E[Iτ<TE[g̃(T ∧ τN , XT∧τN )− g̃(τ,Xτ )|Fτ ]] .

Hence, to show Theorems 2.2 and 2.3, it is enough to derive

|E| := |E[g̃(T ′ ∧ τN ′
, XT ′∧τN′ )− g̃(t, x)]| � C

√
h , (8)

for an initial point x ∈ ∂D, t ∈ [0, T ), for a shifted time mesh defined by
{ti : 0 � i � N ′} with t0 = 0, 0 < t1 � h, ti+1 = ti + h (i � 1), for a new
terminal time T ′ = tN ′ and a modified exit time τN

′
= inf{ti � t1 : Xti /∈ D}.

The constant C in (8) has to be uniform in T ′ in a compact set, in N ′, in x
and in t. For the sake of simplicity, we still write N for N ′, T for T ′ and take
t = 0. Introduce now for all s ∈ [0, T ], Vs := E[g̃(T ∧ τs, XT∧τs

)|Fs] where
τs := inf{u � s : Xu �∈ D} and recall from Proposition 1.3 that (Vu∧τs

)u∈[s,T ]

is a martingale. For x ∈ ∂D, τ0 = 0 so V0 = g̃(0, x). On the other hand
VT∧τN = g̃(T ∧ τN , XT∧τN ). Thus,

E = E[VT∧τN ]− V0 =
N−1∑
i=0

E[Vti+1∧τN − Vti∧τN ] =
N−1∑
i=0

E[IτN>ti

(
Vti+1 − Vti

)
]

=
N−1∑
i=0

E[IτN>ti

(
Vti+1 − Vti+1∧τti

)
] + E[IτN>ti

(
Vti+1∧τti

− Vti
)
] .

It readily follows from the martingale property of (Vu∧τti
)u∈[ti,T ] (see

Proposition 1.3) that E[IτN>ti(Vti+1∧τti
− Vti)] = 0. Therefore we have

E =
N−1∑
i=0

E[IτN>tiIτti
<ti+1(Vti+1 − Vτti

)] . (9)
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Remark 3.1 Note that to obtain (9) we did not use any smoothness proper-
ties of g̃.

To control E we state two auxiliary Lemmas whose proofs are postponed to
Section 4.

Lemma 3.2 Assume (C), (D), (S) and that in the killed case f satisfies the
assumptions of Theorem 2.2 (resp. in the stopped case g satisfies the assump-
tions of Theorem 2.3). For all i ∈ [[0, N − 1]], on the set {τN > ti, τti < ti+1}
one has

|E[Vti+1 − Vτti
|Fτti

]| � C
√
h .

Lemma 3.3 Assume (C), (D), and (S). There are some positive constants
C and N0 such that for N � N0, for any i ∈ [[0, N − 1]], one has for Xti ∈ D

P[∃t ∈ [ti, ti+1] : Xt /∈ D | Fti ] � C P[Xti+1 /∈ D | Fti ] .

Plugging the control of Lemma 3.2 into (9) we obtain

|E| � C
√
h

N−1∑
i=0

E[IτN>tiIτti
<ti+1 ] .

Using now Lemma 3.3 it comes

|E| � C
√
h
N−1∑
i=0

E[IτN>tiIXti+1 
∈D] = C
√
h
N−1∑
i=0

P[τN = ti+1] � C
√
h

which completes the proof of Theorems 2.2 and 2.3. �

4 Proof of the technical Lemmas

This section is devoted to the proof of Lemmas 3.2 and 3.3. For smooth
functions g(t, x), we denote by ∂tg(t, x) its time derivative, by ∇g(t, x) its
gradient w.r.t. x and by Hg(t, x) its Hessian matrix w.r.t. x. The notation
∂g
∂n (t, x) = ∇g(t, x).n(x) stands for the normal derivative on the boundary.

Using the results of Proposition 2.1 and Lemma 3.1, we prove the following
Lemma that will be repeatedly used.

Lemma 4.1 Assume (D). For all i ∈ [[0, N −1]], on the set {τti � ti+1}, one
has

E[
∣∣F (Xti+1)

∣∣ |Fτti
] = E[

∣∣F (Xti+1)− F (Xτti
)
∣∣ |Fτti

] � C
√
h .

4.1 Proof of Lemma 3.2

For this proof we distinguish the killed and stopped cases.
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Proof in the killed case

In that case Lemma 3.2 is a direct consequence of the following

Lemma 4.2 Assume (C), (D), (S) and let the function f be as in
Theorem 2.2. There is some constant C such that for any t ∈ [0, T ], one
has a.s

|Vt| � C
‖f‖∞
1 ∧ ε [F (Xt)]+ .

Indeed, we deduce from Lemma 4.1 that ∀i ∈ [[0, N − 1]], on {τN > ti,
τti � ti+1} one has

|E[Vti+1 |Fτti
]| � C

‖f‖∞
1 ∧ ε E[[F (Xti+1)]+|Fτti

] � C
√
h
‖f‖∞
1 ∧ ε .

Proof of Lemma 4.2 W.l.o.g. we assume f � 0. Since Vt = 0 for Xt /∈ D,
it is enough to prove the estimate for Xt ∈ D ∩ V∂D(R ∧ ε/2) for which
0 < F (Xt) � R ∧ ε/2. Denote τRt = inf{s � t : F (Xs) � R} and split
V into two parts Vt = V 1

t + V 2
t with V 1

t = E
[
IT<τt

IT<τR
t
f(XT ) | Ft

]
and

V 2
t = E

[
IT<τt

IT�τR
t
f(XT ) | Ft

]
.

Before estimating separately each contribution, we set some standard
notations related to time-changed Brownian martingales. Define the increasing
continuous process As =

∫ s
t
αudu (from [t,+∞[ into R+) and its increasing

right-continuous inverse Cs = inf{u � t : Au > s} (from R+ into [t,+∞[)
(see Section V.1 in Revuz-Yor [RY99]) and put Ms =

∫ Cs

t
∇F (Xu).σudWu,

Zs = F (XCs
). From the Dambis–Dubins–Schwarz theorem, M coincides with

a standard BM β (defined on a possibly enlarged probability space) for
s <

∫∞
t
αudu and it is easy to check that β is independent of Ft (see the

arguments in the proof of Theorem V.1.7 in [RY99]).
Owing to the assumption (C), A and C are strictly increasing on [t, τRt ]

and [0,
∫ τR

t

t
αudu]. Thus, for s ∈ [0,

∫ τR
t

t
αudu], one easily obtains

Zs = F (Xt) + βs +
∫ s

0

λvdv

where λv = {[∇F (Xu).bu+ 1
2 tr(HF (Xu)σuσ∗

u)]|u=Cv
} 1
αCv

is bounded by ‖λ‖∞.
Define

Z ′
s = F (Xt) + βs + ‖λ‖∞s � Zs. (10)

Finally, put τZ0 = inf{s � 0 : Zs � 0}, τZR = inf{s � 0 : Zs � R} and
analogously τZ

′
0 , τZ

′
R for Z ′.
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Estimation of V 1. Let us first prove that for any stopping time S ∈ [t, T ],
one has

E
[
f(XT ) | FS

]
�‖f‖∞P[F (XT ) � 2ε | FS ]

�C‖f‖∞ exp
(
−c (2ε− F (XS))2+

T − S

)
a.s. (11)

The first inequality simply results from the support of f included in
D\V∂D(2ε). To justify the second one, note that {F (XT ) � 2ε} ⊂
{|F (XT ) − F (XS)| � 2ε − F (XS)} ⊂ {|F (XT ) − F (XS)| � (2ε − F (XS))+}
and the proof of (11) is complete using Lemma 3.1 applied to the Itô process
(F (Xs))s�0 with bounded coefficients. We now turn to the evaluation of
V 1
t . On {T < τRt }, using the notation with the time change above, one has

T = CAT
� Ca0(T−t) and a0(T −Ca0(T−t)) �

∫ T

Ca0(T−t)

αudu = AT −ACa0(T−t) .

Hence, T −Ca0(T−t) � 1
a0

(AT − a0(T − t)) � ‖α‖∞
a0

(T − t) . Thus, one obtains

V 1
t

� E

[
ICa0(T−t)<τt

ICa0(T−t)<τ
R
t

I
T−Ca0(T−t)� ‖α‖∞

a0
(T−t)E

[
f(XT ) | FCa0(T−t)

]
| Ft

]
� C‖f‖∞E

[
ICa0(T−t)<τt

ICa0(T−t)<τ
R
t

exp

(
−c′

(2ε− F (XCa0(T−t)))
2
+

T − t

)
| Ft

]

� C‖f‖∞E

[
Ia0(T−t)<τZ′

0
ICa0(T−t)<τ

R
t

exp

(
−c′

(2ε− Z ′
a0(T−t))

2
+

T − t

)
| Ft

]

where one has applied at the second line the estimate (11) with S = Ca0(T−t)
(here c′ = c a0

‖α‖∞
), at the third one

{Ca0(T−t) < τt} = {∀s ∈ [t, Ca0(T−t)] : F (Xs) > 0}
= {∀u ∈ [0, a0(T − t)] : Zu > 0}
= {a0(T − t) < τZ0 } ⊂ {a0(T − t) < τZ

′
0 }

and (2ε−F (XCa0(T−t)))+ = (2ε−Za0(T−t))+ � (2ε−Z ′
a0(T−t))+ . Reminding

the law of β, one finally gets that V 1
t � C‖f‖∞Φ1(a0(T − t), F (Xt)) with

Φ1(r, z) = E
[
I∀u∈[0,r]:z+βu+‖λ‖∞u>0 exp

(
−a0c

′ (2ε−z−βr−‖λ‖∞r)2+
r

)]
. With

clear notations involving the smooth transition density of the killed drifted
BM and Gaussian type estimates of its gradient (see [LSU68] Chapter IV

Theorem 16.3), one has Φ1(r, z) =
∫∞
0
qr(z, y) exp

(
−a0c

′ (2ε−y)
2
+

r

)
dy and

|∂zΦ1(r, z)| � C

∫ ∞

0

1
r

exp
(
−c (z − y)2

r

)
exp

(
−a0c

′ (2ε− y)2+
r

)
dy.
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We now justify that |∂zΦ1(r, z)| � C
1∧ε for 0 � z � ε/2 and for this,

we may split the domain of integration into two parts. For y < ε,
(2ε − y)2+ � ε2 and the corresponding contribution for the integral is

bounded by
∫∞
0

1√
r

exp
(
−c (z−y)2

r

) [
1√
r

exp
(
−a0c

′ ε2
r

)]
dy � C

1∧ε . For

y � ε and 0 � z � ε/2, (z − y)2 � ε2/4 and the integral is bounded by∫∞
0

1√
r

exp
(
− c

2
(z−y)2
r

)
1√
r

exp
(
− c

2
ε2

4r

)
dy � C

1∧ε .

Since Φ1(r, 0) = 0, one gets Φ1(r, z) � C
1∧εz for z ∈ [0, ε/2] and this proves

that V 1
t � C ‖f‖∞

1∧ε F (Xt) .
Estimation of V 2. Clearly, one has V 2

t � ‖f‖∞P
[
τRt < τt | Ft

]
. Note that

{τRt < τt} = {τZR < τZ0 } ⊂ {τZ′
R < τZ

′
0 } because of (10). Hence, one has

V 2
t � ‖f‖∞Φ2(F (Xt)) where Φ2(z) = P[(z+βu+‖λ‖∞u)u�0 hits R before 0].

It is well-known that Φ2(z) = 1−exp(−2‖λ‖∞z)
1−exp(−2‖λ‖∞R) � Cz (see Section 5.5 in [KS91])

and this proves that V 2
t � C‖f‖∞F (Xt). Combining estimates for V 1 and

V 2 gives the result of Lemma 4.2. �

Proof in the stopped case

Assume the function g is as in Theorem 2.3. In this case, we use the smoothness
of g. Since we also assumed Xt is D(R) valued, the semi-martingale decom-
position stated in Proposition 3.1 in [Gob00] remains valid for (πD̄(Xt))t�0.
Hence, ∀i ∈ [[0, N − 1]], on the set {τti � ti+1} we write

g̃(T ∧ τti+1 , XT∧τti+1
)− g̃(τti , Xτti

)

=
∫ T∧τti+1

τti

∂ug(u, πD̄(Xu))du+∇g(u, πD̄(Xu)) · d(πD̄(Xu))

+
1
2
tr(Hg(u, πD̄(Xu))d〈πD̄(X)〉u)

:= (MT∧τti+1
−Mτti

) + (VT∧τti+1
−Vτti

)+
∫ T∧τti+1

τti

∂g

∂n
(u,Xu)dL0

u(F (X))

whereM is a local martingale and V an Itô process with finite variations. From
the boundedness of the derivatives of g and of the coefficients bs, σs, we derive
that M is a true martingale and that a.s |VT∧τti+1

−Vτti
| � C(T ∧τti+1−τti).

It comes

|E[g̃(T ∧ τti+1 , XT∧τti+1
)− g̃(τti , Xτti

)|Fτti
]|

� C
{

E[L0
T∧τti+1

(F (X))− L0
τti

(F (X))|Fτti
] + E[(T ∧ τti+1 − τti)|Fτti

]
}

:= C
(
A1
τti

+A2
τti

)
.
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Term A1
τti

: control of the local time.
Since the measure dL0

t (F (X)) is a.s carried by the set {t : F (Xt) = 0} we
write

A1
τti

= E[L0
ti+1

(F (X))− L0
τti

(F (X))|Fτti
]

= 2E[[F (Xti+1)]− − [F (Xτti
)]− +

∫ ti+1

τti

IF (Xs)<0dF (Xs)|Fτti
] � C

√
h .

(12)

The last equality follows from Tanaka’s formula. The last inequality is a
consequence of the boundedness of F and its derivatives, the boundedness of
the coefficients of X and Lemma 4.1.

Term A2
τti

: time-change techniques.
Write

A2
τti

= (T − τti)P[τti+1 > T |Fτti
] + E[(τti+1 − τti)Iτti+1�T |Fτti

]

:= A21
τti

+A22
τti

.

The key idea is now, as in the proof of Lemma 4.2, to use time-changes in
order to apply well known results for hitting times in a Brownian framework.
We rewrite

A21
τti

= (T − τti)E[IXti+1∈DE[Iτti+1>T
|Fti+1 ]|Fτti

] .

Put Cti+1 := P[τti+1 > T |Fti+1 ] and define τRt := inf{s � t : F (Xs) � R}.
We decompose Cti+1 = P[τti+1 > T, τRti+1

� T |Fti+1 ] + P[τti+1 > T, τRti+1
>

T |Fti+1 ] := C1
ti+1

+ C2
ti+1

. Since C1
ti+1

� P[τti+1 > τRti+1
|Fti+1 ], we can control

this term in the same way we did for V 2 in the proof of Lemma 4.2. Namely,
we get

E[IXti+1∈DC
1
ti+1
|Fτti

] � CE[[F (Xti+1)]+|Fτti
]. (13)

In the following we use the notation introduced in the proof of Lemma 4.2
for time-changed martingales with t = ti+1. For all i ∈ [[0, N − 2]], on the set
{Xti+1 ∈ D} we write

C2
ti+1

=P[ inf
s∈[ti+1,T ]

F (Xti+1) + βAs
+
∫ As

0

λv dv > 0, τRti+1
> T |Fti+1 ]

�P[ inf
s∈[0,AT ]

F (Xti+1) + βs + ‖λ‖∞s > 0, τRti+1
> T |Fti+1 ]

�P[ inf
s∈[0,a0(T−ti+1)]

F (Xti+1) + βs + ‖λ‖∞s > 0, τRti+1
> T |Fti+1 ]

�
∫ ∞

a0(T−ti+1)

dt
F (Xti+1)
(2πt3)1/2

exp
(
− (F (Xti+1) + ‖λ‖∞t)2

2t

)
� CF (Xti+1)

(T − ti+1)1/2

(14)
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exploiting the explicit density for the hitting times of the drifted BM, see
[KS91] Section 3.5.C, for the last but one inequality. From (13) and (14) we
derive that ∀i ∈ [[0, N − 2]]

A21
τti

� C(T − τti)E[[F (Xti+1)]+(1 +
1

(T − ti+1)1/2
)|Fτti

] .

Observing that ∀i ∈ [[0, N − 2]], T − ti+1 � T − ti
2

� T − τti
2

we derive from
Lemma 4.1

A21
τti

� CE[[F (Xti+1)]+|Fτti
] � C

√
h. (15)

Since for i = N − 1 we also have A21
τti

� (T − τti) � h, we finally obtain
that (15) is valid for all i ∈ [[0, N − 1]]. We now turn to the control of A22

τti

reintroducing the events {τRti+1
> τti+1}, {τRti+1

< τti+1}. It comes

A22
τti

= E[(τti+1 − τti)Iτti+1�T IXti+1∈D(IτR
ti+1

>τti+1
+ IτR

ti+1
<τti+1

)|Fτti
]

+O(h) := A221
τti

+A222
τti

+O(h).

Conditioning w.r.t. Fti+1 and using the same arguments as for C1
ti+1

we readily
get A222

τti
� CE[[F (Xti+1)]+|Fτti

] � C
√
h. For A221

τti
write

A221
τti

� h+ E[IXti+1∈DE[(τti+1 − ti+1)Iτti+1�T IτR
ti+1

>τti+1
|Fti+1 ]|Fτti

]

:= h+ E[IXti+1∈DQti+1 |Fτti
] .

Regarding Qti+1 , one has

Qti+1 �
∫ T−ti+1

0

dsP[τti+1 − ti+1 � s, τRti+1
> τti+1 |Fti+1 ]

�
∫ T−ti+1

0

dsP[ inf
u∈[0,As+ti+1 ]

F (Xti+1) + βu + ‖λ‖∞u > 0,

τRti+1
> τti+1 |Fti+1 ] �

∫ T−ti+1

0

dsPy[τ
β̃
0 � a0s]

where we denote y = F (Xti+1), β̃u = y + βu + ‖λ‖∞u, τ β̃0 := inf{s � 0 :
β̃s = 0}. Thus, recalling that y > 0 on the set {Xti+1 ∈ D}, it comes

Qti+1 � a−1
0

∫ (T−ti+1)a0

0

dsPy[τ
β̃
0 � s] = a−1

0 Ey

[
τ β̃0 ∧ a0(T − ti+1)

]
� a−1

0

∫ ∞

0

dt

(
t ∧ a0(T − ti+1)

)
y

(2πt3)1/2
exp

(
− (y + ‖λ‖∞t)2

2t

)
� Cy .
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From this last estimate and the previous controls we derive

A221
τti

� h+ CE[IXti+1∈DF (Xti+1)|Fτti
] � C

√
h .

Hence, for all i ∈ [[0, N − 1]],

A22
τti

� C
√
h . (16)

We conclude the proof of Lemma 3.2 in the stopped case putting together the
controls (12), (15), and (16). �

4.2 Proof of Lemma 3.3

We adapt some ideas from [Gob00]: in the cited paper, a uniform ellipticity
condition was assumed, and this enabled to use a Gaussian type lower bound
for the conditional density of Xti+1 w.r.t. the Lebesgue measure, together
with some computations related to a cone exterior to D. Here, under (C), the
conditional law of Xti+1 may be degenerate and our proof rather exploits the
scaling invariance of the cone and of the Brownian increments.
It is enough to prove that a.s on {ti < τti < ti+1}, one has

P[Xti+1 /∈ D | Fτti
] � 1

C
. (17)

Indeed, it follows that P[Xti+1 /∈D | Fti ]=E[Iτti
�ti+1P[Xti+1 /∈D | Fτti

] | Fti ]
� P[τti

�ti+1|Fti
]

C and Lemma 3.3 is proved.
To get (17), write Xti+1 = Xτti

+ στti
(Wti+1 − Wτti

) + Ri where Ri =∫ ti+1

τti
budu +

∫ ti+1

τti
(σu − στti

)dWu. The domain D is of class C2, and thus
satisfies a uniform exterior sphere condition with radius R/2 (R defined in
Proposition 2.1): for any z ∈ ∂D, B(z − R

2 n(z), R2 ) ⊂ Dc. In particular, if we
define for θ ∈]0, π/2[ the cone K(θ, z) := {y ∈ Rd : (y − z).[−n(z)] � ‖y − z‖
cos(θ)}, then one has K(θ, z) ∩B(z,R(θ)) ⊂ B(z − R

2 n(z), R2 ) ⊂ Dc for some
appropriate choice of the positive function R(.). Then, it follows that

P[Xti+1 /∈ D | Fτti
] � P[Xti+1 ∈ K(θ,Xτti

) ∩B(Xτti
, R(θ)) | Fτti

]

� P[Xti+1 ∈ K(θ,Xτti
) | Fτti

]− P[Xti+1 /∈ B(Xτti
, R(θ)) | Fτti

]

� P[(Xτti
−Xti+1).n(Xτti

) � (ατti
(ti+1 − τti))

1/2 � ‖Xti+1 −Xτti
‖ cos(θ)

| Fτti
]− P[Xti+1 /∈ B(Xτti

, R(θ)) | Fτti
] � A1 −A2(θ)−A3(θ), (18)

where

A1 = P[(Xti+1 −Xτti
).(−n(Xτti

)) �
√
ατti

(ti+1 − τti) | Fτti
],

A2(θ) = P[
√
ατti

(ti+1 − τti) < ‖Xti+1 −Xτti
‖ cos(θ) | Fτti

],

A3(θ) = P[Xti+1 /∈ B(Xτti
, R(θ)) | Fτti

] .
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Term A1. Clearly, one has A1 � P[(−n(Xτti
)).στti

(Wti+1 − Wτti
) �

2
√
ατti

(ti+1 − τti) | Fτti
] − P[|n(Xτti

).Ri| �
√
ατti

(ti+1 − τti) | Fτti
] :=

A11 − A12. The random variable (−n(Xτti
)).στti

(Wti+1 −Wτti
) is condition-

ally to Fτti
a centered Gaussian variable with variance ατti

(ti+1 − τti), and
thus A11 = Φ(−2) > 0, where Φ denotes the distribution function of the
standard normal law. Owing to the condition (S) and since ατti

� a0 a.s, it
is easy to see that the contribution A12 converges uniformly to 0 when h goes
to 0, and thus for h = T/N small enough, one has A1 � A11

2 > 0.

Term A2(θ). From Markov’s inequality,A2(θ) � E[‖Xti+1−Xτti
‖2 cos2(θ) | Fτti

]

ατti
(ti+1−τti

) �
C cos2(θ) using (C) and estimates of Lemma 3.1. In particular, taking θ close
to π/2 ensures that A2(θ) � A11

6 .

Term A3(θ). Using Lemma 3.1, one readily gets A3(θ) � C exp
(
− cR

2(θ)
h

)
� A11

6 for h small enough (R(θ) > 0). Putting together estimates for A1, A2(θ)
and A3(θ) into (18) gives P[Xti+1 /∈ D | Fτti

] � A11
6 . This proves (17). �

4.3 A simple extension in the stopped case

From the previous controls we easily derive the following

Theorem 4.3 Assume (C), (D), (S) and that g is bounded, uniformly
Hölder continuous with index α ∈ (0, 1/2] in time and Hölder continuous
with index 2α in space. For some constant C, one has

|Err(T, h, g, x)| � Chα/2 .

Proof. Starting from (9) we write

|E|�C
N−1∑
i=0

E[IτN>tiIτti
�ti+1E[(T ∧ τti+1 − τti)

α + ‖XT∧τti+1
−Xτti

‖2α|Fτti
]]

�C
N−1∑
i=0

E[IτN>tiIτti
�ti+1E[(T ∧ τti+1 − τti)

α|Fτti
]]

using the BDG inequalities for the last inequality. We controlled the term
E[(T ∧ τti+1 − τti)|Fτti

] := A2
τti

� C
√
h in the proof of Lemma 3.2 in the

stopped case. Hence, the result is a consequence of Hölder’s inequality and
Lemma 3.3. �
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5 Extension to an intersection of smooth domains

5.1 Additional notations and assumptions

In this section we allow the domain to be singular in the sense of the following
Assumption

(D’)The domain D =
⋂m
j=1Dj , m � 2. For all j ∈ [[1,m]], Dj satisfies (D).

We denote its boundary by Γj := ∂Dj .

For r � 0, we set ∀j ∈ [[1,m]], VΓj
(r) := {z ∈ Rd : d(z, Γj) � r}, V∂D(r) :=

{z ∈ Rd : d(z, ∂D) � r}, D(r) := D ∪ V∂D(r). Since the Γj are C2, we
recall from Proposition 2.1 that ∃Rj > 0 s.t. on VΓj

(Rj) the projection on Γj
is uniquely defined. For all x ∈ Γj , the notation nj(x) stands for the inner
normal unit of Dj . In the following, Fj denotes the signed distance to Γj which
is C2 on VΓj

(Rj) and can be extended into a C2 function on Rd with bounded
derivatives (see once again Proposition 2.1 for details). Set R := ∧mj=1Rj . Our
nondegeneracy assumption on the domain D is stated as follows:

(C’) ∃a0 > 0 such that a.s.
(
Xs ∈ VΓj

(R)∩V∂D(R), s ∈ [0, T ], j ∈ [[1,m]] =⇒
∇Fj(Xs).σsσ∗

s∇Fj(Xs) � a0

)
.

This corresponds to a non characteristic boundary condition w.r.t. every
hypersurface in a neighbourhood of the domain D.

5.2 Main result

We are now in a position to state the main result of the section.

Theorem 5.1 (Upper Bound for an intersection of smooth domains
in the killed case)
Assume (C’), (D’), (S) and let f be as in Theorem 2.2. For some constant
C := C(m), one has

|Err(T, h, f, x)| = |E[f(XT )IτN>T ]− E[f(XT )Iτ>T ]| � C
‖f‖∞
1 ∧ ε

√
h.

We restrict ourselves to the killed case for simplicity because we do not need
to project XτN on the boundary to define our approximation.

Remark 5.1 The result of Theorem 5.1 is very interesting even in the
Markovian setting of Brownian Motion. Indeed, for non smooth domains it
is a hard task to use the traditional error analysis techniques that require the
smoothness of the derivatives of the solution of the underlying PDE (7) up
to the boundary, see also [Men04]. We thus provide an alternative technique
that points out that the main difficulty to upper-bound the weak error in the
Brownian context does not lie in the lack of regularity of the domain.
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5.3 Proof of Theorem 5.1

Without modifying the rate of convergence, see Section 3.2 for details, we can
assume Xt ∈ D(R) a.s.

Using the above definition of (Vt)t∈[0,T ], i.e. ∀t∈ [0, T ], Vt= E[f(XT )Iτt>T |Ft],
and for an initial point x ∈ ∂D, we derive in a similar way than for the proof
of Theorem 2.2

E := E[f(XT )IτN>T ] =
N−1∑
i=0

E[IτN>tiIτti
<ti+1Vti+1 ].

Recall that, to prove Theorem 5.1, it is enough to show |E| � C
√
h controlling

that C is uniform w.r.t. x ∈ ∂D.
Put τ jt := inf{s > t : Xs �∈ Dj} and note that τt = ∧mj=1τ

j
t . From (C’),

we then derive that X satisfies our previous assumption (C) w.r.t. Dj ,∀j ∈
[[1,m]]. Hence, as a consequence of Lemma 4.2, we have

|Vti+1 | = |E[f(XT )Iτti+1>T
|Fti+1 ]| � E[|f(XT )|Iτj

ti+1
>T |Fti+1 ]

� C‖f‖∞
1 ∧ ε [Fj(Xti+1)]+, ∀j ∈ [[1,m]] .

Thus,

|E| �
N−1∑
i=0

E[IτN>ti,τti
<ti+1 |Vti+1 |] =

N−1∑
i=0

E[IτN>ti,∪m
j=1{τ

j
ti
<ti+1}|Vti+1 |]

� C‖f‖∞
1 ∧ ε

m∑
j=1

N−1∑
i=0

E[IτN,j>ti,τ
j
ti
<ti+1

[Fj(Xti+1)]+]

where τN,j := inf{si � 0 : Xsi
�∈ Dj}. Applying Lemma 4.1 we derive that

|E| �
√
h
C‖f‖∞
1 ∧ ε

m∑
j=1

N−1∑
i=0

P[τN,j > ti, τ
j
ti < ti+1] .

We conclude the proof using Lemma 3.3 for all j ∈ [[1,m]]. �

6 Conclusion

In this paper, we first emphasized that, under suitable assumptions, the error
Err(T, h, ψ, x) associated to the discrete sampling of X for a given set of
functionals ψ, is not given by the Markov property of SDEs but actually
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only depends on the Brownian stochastic integral in the dynamics (1). For
a discretely sampled maximum or integral we used standard arguments to
get this result. For killed/stopped processes, we introduced some martingale
techniques that allow to go beyond the Markovian framework and also to
control Err(T, h, f, x) at the expected rate for a certain class of non smooth
domains. In the killed/stopped case, as a matter of fact, few technical tools
are needed for the error analysis we present. This is promising since even
in a Brownian setting, for non-smooth domains the PDE approach for the
error analysis is rather tedious or fails. The next natural question concerns
the possible extension of our techniques when the stochastic integral in (1) is
driven by a stable process.
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1 Main results

Let (Ω,F ,Ft,P) be a filtered probability space. On Ω × R+ we denote by O
and P respectively – the optional and predictable sigma fields and by B (R)
the Borel sigma field. Consider (St)t�0 – an R+ valued local martingale with
respect to the filtration (Ft)t�0. For the definitions of local time for discon-
tinuous local martingales we follow ([TL78], pages 17–22; see also [Mey76]
and [Pro05]). For each a ∈ R there exists a continuous increasing process
(Lat , t � 0), such that Tanaka’s formula holds:

(St − a)+ = (S0 − a)+ +
∫ t

0+

1{Su−>a}dSu

+
∑

0<u�t

[
1{Su−>a} (Su − a)− + 1{Su−�a} (Su − a)+

]
+

1
2
Lat , (1)
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which we write equivalently:

(St − a)+ = (S0 − a)+ +
∫ t

0+

1{Su−>a}dSu +
1
2
Lat .

Furthermore, there exists a B (R) × O measurable version of L, a.s. càdlàg
in t, and a B (R) × P measurable version of L, which is a.s. continuous in t.
We will only consider such versions. Also note that for any f � 0, Borel,∫ t

0

f (Su) d 〈Sc, Sc〉u =
∫ +∞

−∞
f (a)Lat da.

We shall say that T is a (Ft) stopping time which reduces the local mar-
tingale S if (St∧T ) is a uniformly integrable martingale. We shall say that a
process X is in class (D) if the family {Xτ , τ - a.s. finite (Ft) stopping time}
is uniformly integrable.

The following Theorem is a straightforward generalization of Theorem 1
in [MY06].

Theorem 1. Let τ be an (Ft) stopping time such that τ < +∞ a.s. and
K � 0. Then there is the following identity

E (Sτ −K)+ = E (S0 −K)+ + EJKτ +
1
2

ELKτ − cS (τ) , (2)

where cS (τ) := E (S0 − Sτ ),

JKτ :=
∑

0<u�τ
1{Su−>K} (Su −K)− +

∑
0<u�τ

1{Su−�K} (Su −K)+ (3)

=
1
2
(
LKτ − LKτ

)
and

(
LKt

)
t�0

is the (continuous) local time at K of S.

Proof. Taking a = K in Tanaka’s formula (1) , one has

(St −K)+ − (S0 −K)+ =
∫ t

0+

1{Su−>K}dSu +
∑

0<u�t
1{Su−>K} (Su −K)−

+
∑

0<u�t
1{Su−�K} (Su −K)+ +

1
2
LKt ,

introducing JKt as in (3) one obtains

NK
t :=

[
(St −K)+ − St

]
−
[
(S0 −K)+ − S0 + JKt +

1
2
LKt

]
=
∫ t

0+

1{Su−>K}dSu + S0 − St
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and
(
NK
t

)
t�0

is a local martingale. Since (St −K)+ − St = − (St ∧K) , one
has

−NK
t = St ∧K − S0 ∧K + JKt +

1
2
LKt .

In order to get (2) it is enough to prove that NK
t is in class (D) , i.e., the family

NK
τ 1{τ<+∞}, where τ ranges all (Ft) stopping times, is uniformly integrable.

Indeed, again from Tanaka’s formula

(St −K)+ − (S0 −K)+ − JKt −
1
2
LKt =

∫ t

0+

1{Su−>K}dSu.

Let (τn)n�1 (τn → +∞ a.s.) be a sequence of (Ft) stopping times which
reduces both (St)t�0 and

( ∫ t
0+

1{Su−>K}dSu
)
t�0

. Then one gets

EJKt∧τn
+

1
2

ELKt∧τn
= E

[
(St∧τn

−K)+ − (S0 −K)+
]

� ESt∧τn
= ES0.

Finally, by Beppo-Levi:

EJKt +
1
2

ELKt � ES0

and

EJK∞ +
1
2

ELK∞ � ES0,

then for any (Ft) stopping time τ∣∣NK
τ 1{τ<+∞}

∣∣ � 2K + JK∞ +
1
2
LK∞ a.s. ,

which ensures that
(
NK
t

)
t�0

is in class (D). Therefore
(
NK
t

)
t�0

is a uniformly
integrable martingale and the result follows. ��

Let τ be an (Ft) stopping time which is a.s. finite. With notations from
[LN06] suppose that S ∈ M2

loc, and moreover that: 〈S〉∞ < ∞ a.s., S+ is in
class (D) , |ΔS| � C and

EeεSτ <∞
for some positive constants C and ε. Then from Theorem 1.1 in [LN06] the
term cS (τ) := E (S0 − Sτ ) in (2) can be characterized as

cS (τ) = lim
λ→∞

λ

√
π

2
P
(
〈S〉1/2τ > λ

)
= lim
λ→∞

λ

√
π

2
P
(
[S, S]1/2τ > λ

)
.

Besides as a consequence of (2) one obtains

cS (τ) = lim
K→∞

(
EJKτ +

1
2

ELKτ

)
.
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Let τ be an a.s. finite (Ft) stopping time. Define

Cstrict (K, τ) := lim
n→∞

E (Sτ∧Tn
−K)+ , (4)

where Tn →∞ a.s., Tn reduces (St)t�0. The following proposition shows that
this limit exists and does not depend on the reducing sequence Tn, n � 1.

Proposition 1. Let τ be an a.s. finite (Ft) stopping time. Then

Cstrict (K, τ) = E (S0 −K)+ + EJKτ +
1
2

ELKτ . (5)

Furthermore, if the process (ΔSt)t�0 is in class (D), then

Cstrict (K, τ) = E
[
(Sτ −K)+

]
+ lim
n→∞

nP (S∗
τ > n) ,

where S∗
t := sup0�u�t Su.

Proof. By Tanaka’s formula

(St −K)+ − (S0 −K)+ =
∫ t

0+

1{Su−>K}dSu + JKt +
1
2
LKt ,

where JKt is defined by (3). Since (St)t�0 is a local martingale,

SKt :=
∫ t

0+

1{Su−>K}dSu

is also a local martingale. We have seen in the proof of Theorem 1 that

NK
t =

∫ t

0+

1{Su−>K}dSu + S0 − St

is a uniformly integrable martingale, then

SKt := NK
t + St − S0

is the sum of a uniformly integrable martingale and a local martingale (St)t�0.
Therefore a stopping time which reduces (St)t�0 reduces

(
SKt

)
t�0

as well.
Let T be an (Ft) stopping time which reduces (St)t�0. Then St∧T and SKt∧T

are uniformly integrable martingales. For any τ – an a.s. finite (Ft) stopping
time one gets

E (Sτ∧T −K)+ = E (S0 −K)+ + EJKτ∧T +
1
2

ELKτ∧T , (6)

now taking for T a stopping time Tn, such that Tn →∞ a.s. and Tn reduces
(St)t�0 , one obtains that
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Cstrict (K, τ) := lim
n→∞

E (Sτ∧Tn
−K)+

exists and does not depend on the sequence of stopping times reducing (St)t�0.
Furthermore,

Cstrict (K, τ) = E (S0 −K)+ + EJKτ +
1
2

ELKτ .

In order to move further suppose that the process (ΔSt)t�0 is in class (D).
Take

Tn := inf {u > 0 |Su > n} .
Since (St)t�0 is an adapted càdlàg process, Tn is an (Ft) stopping time and
Tn →∞ a.s. Since

|St∧Tn
| � n+ΔSTn

,

(St∧Tn
)t�0 is in class (D) and subsequently is a uniformly integrable martin-

gale. In particular Tn is an (Ft) stopping time which reduces (St)t�0. Now
one can get for any τ - an a.s. finite (Ft) stopping time

E (Sτ∧Tn
−K)+ = E

[
(Sτ −K)+ 1{τ�Tn}

]
+ E

[
(STn

−K)+ 1{τ>Tn}
]
.

The left hand side converges and equals Cstrict (K, τ). The first expression
on the right hand side converges as well (by Beppo-Levi) to E

[
(Sτ −K)+

]
.

Hence E
[
(STn

−K)+ 1{τ>Tn}
]

converges as well. Besides one has for n > K

(n−K) P (τ > Tn) � E
[
(STn

−K)+ 1{τ>Tn}
]

� (n−K) P (τ > Tn) + E
[
ΔSTn

1{τ>Tn}
]

and

E
[
(STn

−K)+ 1{τ>Tn}
]
− E

[
ΔSTn

1{τ>Tn}
]

� (n−K) P (τ > Tn)

� E
[
(STn

−K)+ 1{τ>Tn}
]
.

Since
(
ΔSTn

1{τ>Tn}
)
n�1

is a uniformly integrable family E
[
ΔSTn

1{τ>Tn}
]
→0,

as n→∞, and

lim
n→∞

E
[
(STn

−K)+ 1{τ>Tn}
]
= lim
n→∞

(n−K) P (τ > Tn)= lim
n→∞

nP (S∗
τ > n).

Finally

lim
n→∞

E (Sτ∧Tn
−K)+ = E

[
(Sτ −K)+

]
+ lim
n→∞

nP (S∗
τ > n) ,

where S∗
t := sup0�u�t Su. ��
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Remark 1. Note that from Theorem 1 and Proposition 1 for any positive local
martingale S, such that (ΔSt)t�0 is in class (D), and for any a.s. finite (Ft)
stopping time τ

cS (τ) = lim
n→∞

nP (S∗
τ > n) .

Remark 2. Under the conditions of Proposition 1

Cstrict (K, τ) = sup
σ-(Ft) stopping time

E (Sσ∧τ −K)+ . (7)

Proof. From (6) one obtains that for any pair of (Ft) stopping times τ , σ and
a sequence of stopping times Rn, such that Rn → ∞ a.s. and Rn reduces
(St)t�0

E (Sτ∧σ∧Rn
−K)+ = E (S0 −K)+ + EJKτ∧σ∧Rn

+
1
2

ELKτ∧σ∧Rn
.

Then by Fatou’s Lemma

E (Sτ∧σ −K)+ � E (S0 −K)+ + lim inf
n→∞

[
EJKτ∧σ∧Rn

+
1
2

ELKτ∧σ∧Rn

]
= E (S0 −K)+ + EJKτ∧σ +

1
2

ELKτ∧σ

� E (S0 −K)+ + EJKτ +
1
2

ELKτ .

Now (7) follows from (5) and (4). ��
Remark 3. The original proof of Proposition 2 in [MY06] differs a little from
ours. In order to obtain (6), the fact that the stopping time which reduces
(St)t�0 reduces as well

(
SKt

)
t�0

, is not used. Let us go through this other
proof and see that there is no contradiction.

Proof. Let T be an (Ft) stopping time which reduces (St)t�0 and TKn , n � 1,
TKn →∞ be a sequence of stopping times that reduce

(
SKt

)
t�0

. Then for any
τ – an a.s. finite (Ft) stopping time – one gets

E
(
Sτ∧T∧TK

n
−K

)+ = E (S0 −K)+ + EJKτ∧T∧TK
n

+
1
2

ELKτ∧T∧TK
n
.

On the right hand side one can pass to the limit as TKn →∞ by Beppo-Levi
and get a finite limit as soon as we already know from the proof of Theorem 1
that

EJK∞ +
1
2

ELK∞ � ES0.

On the left hand side,
(
Sτ∧T∧TK

n

)
n�1

is a uniformly integrable martingale,
thus it converges in L1 to Sτ∧T . Finally one gets

E (Sτ∧T −K)+ = E (S0 −K)+ + EJKτ∧T +
1
2

ELKτ∧T , (8)

which is the same as (6) . ��
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For any μ – a finite measure on R+ define

Fμ (x) :=
∫ +∞

0

μ (dK) (x−K)+

and μ̄ :=
∫ +∞
0

μ (dK). As in [MY06] we have the following Proposition and
Corollary (the proofs are the same as in the continuous case).

Proposition 2. Under the notations and assumptions of Theorem 1

E [Fμ (Sτ )] = Fμ (S0) + E

[∫ +∞

0

μ (dK)
(
JKτ +

1
2
LKτ

)]
− μ̄cS (τ) .

Corollary 1. The process

Fμ (St)− Fμ (S0)−
∫ +∞

0

μ (dK)
(
JKt +

1
2
LKt

)
− μ̄ (St − S0) , t � 0

is a martingale.

2 Examples

One can trivially construct strict local martingales from continuous strict local
martingales: indeed, Mt := M

(c)
t +M (d)

t and
(
M

(c)
t

)
is a strict local martingale

and
(
M

(d)
t

)
is a uniformly integrable martingale, then (Mt) is a strict local

martingale.
We now obtain strict local martingales with jumps which are generaliza-

tions of the strict local martingale
(
1/R(3)

t

)
, where

(
R

(3)
t

)
is a Bessel process

of dimension 3. As in the case of
(
1/R(3)

t

)
, such strict local martingales can be

obtained from absolute continuity relationships between two Dunkl Markov
processes instead of Bessel processes. For simplicity, we consider here only one
dimensional Dunkl Markov processes (see [GY06]).

The Dunkl Markov process (Xt) with parameter k is a Feller process with
extended generator given for f ∈ C2 (R) by

Lkf (x) =
1
2
f ′′ (x) + k

(
1
x
f ′ (x)− f (x)− f (−x)

2x2

)
,

where k � 0. Note that |X| is a Bessel process with index ν := k− 1
2 . Denote

by P
(k)
x the law of (Xt) started at x ∈ R, and by

(
FXt

)
the natural filtration

of X.

Proposition 3. Let 0 � k < 1
2 � k′ and x > 0. Define

T0 := inf {s � 0 |Xs− = 0 or Xs = 0} .
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Then P
(k)
x (T0 < +∞) = 1 and there is the following absolute continuity rela-

tionship:

P
(k′)
x

∣∣∣∣
FX

t

=
( |Xt∧T0 |

|x|

)k′−k (
k′

k

)Nt∧T0

exp

(
− (k′)2 − k2

2

∫ t∧T0

0

ds

X2
s

)
P (k)
x

∣∣∣
FX

t

, (9)

where Nt denotes the number of jumps of X on [0, t]. Furthermore

Mt :=
( |x|
|Xt|

)k′−k (
k

k′

)Nt

exp

(
(k′)2 − k2

2

∫ t

0

ds

X2
s

)
(10)

is a strict local martingale under P (k′)
x , and

P (k)
x (T0 > t) = E

(k′)
x Mt, (11)

where E
(k′)
x is the expectation under P (k′)

x .

Remark 4. Note that the law of T0 under P (k)
x is that of x2/

(
2Z( 1

2−k)
)
, where

Z( 1
2−k) is a gamma variable of a parameter 1

2 − k (see page 98 in [Yor01]).

Proof. Let X be a Dunkl Markov process. Note that ΔXs = Xs − Xs− =
−2Xs−, when ΔXs �= 0. Hence if Xs = 0, then Xs− = 0 and

T0 = inf {s � 0 |Xs− = 0} = inf {s � 0 ||Xs| = 0} .

In order to prove (9) we proceed as in the proof of Proposition 4 in [GY06].
First we need to extend Theorem 3 in [GY06] for k < 1

2 . Since |X| is a Bessel
process with index

(
k − 1

2

)
, for k < 1

2 , T0 < +∞ a.s., and, for k � 1
2 , T0 = +∞

a.s. Denote

τt := inf
{
s � 0

∣∣∣∣∫ s

0

du

X2
u

= t

}
,

then τt is a continuous strictly increasing time change and τ∞ = T0. Denote
Yu := Xτu

. Since for any f ∈ C2 (R)

f (Xt)− f (X0)−
∫ t

0

Lkf (Xs) ds

is a local martingale,

f (Yu)− f (Y0)−
∫ t

0

Y 2
s Lkf (Ys) ds
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is a local martingale. Then, as in the proof of Theorem 4 in [GY06], one
obtains that Y is of the form

Yu = exp
(
β(ν)
u + iπN (k/2)

u

)
,

where ν := k − 1
2 ,
(
β

(ν)
u

)
is a Brownian motion with drift ν,

(
N

(k/2)
u

)
is a

Poisson process with parameter k/2 independent from
(
β

(ν)
u

)
. Denote

At :=
∫ t

0

du

X2
u

,

then τAt
= t, for t < T0. Hence

Xt = YAt
, t < T0. (12)

Note also that differentiating the equality Aτt
= t with respect to time one

gets
d

dt
τt = Y 2

t

and At = inf
{
s � 0

∣∣∫ s
0
Y 2
u du = t

}
, t < T0. Note that (9) is equivalent to

P (k)
x

∣∣∣
FX

t ∩{t<T0}
=
( |x|
|Xt|

)k′−k (
k

k′

)Nt

exp

(
(k′)2 − k2

2

∫ t

0

ds

X2
s

)
P

(k′)
x

∣∣∣∣
FX

t

.

(13)
Indeed (9) is equivalent to

E
(k′)
x (F (Xs, s � t)) = E(k)

x

(
F (Xs, s � t)

1
Mt∧T0

)

= E(k)
x

(
F (Xs, s � t)

1
Mt

1{t<T0}

)
,

for any bounded measurable F , (Mt) is given by (10). Then

E
(k′)
x

(
Mt1{t<T0}F̂ (Xs, s � t)

)
= E(k)

x

(
F̂ (Xs, s � t)1{t<T0}

)
,

which is equivalent to (13). By (12) X is associated to the pair
(
β(ν), N (k/2)

)
under P (k), and to the pair

(
β(ν′), N(k′/2)) under P (k′). Both pairs consist

of a Brownian motion with drift and a Poisson process which are mutually
independent, and ν := k − 1

2 , ν
′ := k′ − 1

2 . Now in the same way as in the
proof of Proposition 4 in [GY06], for any bounded measurable F ,

E(k)
x

(
F
(
β(ν)
s , N (k)

s , s � t
))

= E
(k′)
x

(
DtF

(
β
(ν′)
s , N

(k′)
s , s � t

))
,

where
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Dt := exp
(

(ν − ν′)β(ν′)
t − 1

2

(
ν2 − (ν′)2

)
t

)(
k

k′

)N(k′/2)
t

exp
(
−1

2
(k − k′) t

)

= exp
(

(k − k′)β(ν′)
t − 1

2

(
k2 − (k′)2

)
t

)(
k

k′

)N(k′/2)
t

and DAt
= Mt, t < T0. Denote Gt := σ

{
β
(ν′)
s , N

(k′/2)
s , s � t

}
, then

F

(
β
(ν′)
As

, N
(k′/2)
As

)
1{As�u}

is GAs∧u measurable and

E(k)
x

(
F
(
β

(ν)
As
, N

(k/2)
As

)
1{As�u}

)
= E

(k′)
x

(
E(k′) (Dt |GAs∧u )F

(
β
(ν′)
As

, N
(k′/2)
As

)
1{As�u}

)

= E
(k′)
x

(
DAs

F

(
β
(ν′)
As

, N
(k′/2)
As

)
1{As�u}

)
.

As u→ +∞ one gets

E(k)
x

(
F
(
β

(ν)
As
, N

(k/2)
As

)
1{As<+∞}

)
= E

(k′)
x

(
DAs

F

(
β
(ν′)
As

, N
(k′/2)
As

)
1{As<+∞}

)
. (14)

Noting that (As < +∞) = (s < T0), (14) leads to (13). From (13) one
easily obtains (11). Suppose that (Mt) is a martingale then from (11) for any
t � 0 P (k)

x (T0 > t) = 1 and P
(k)
x (T0 = +∞) = 1, which is impossible because

k < 1
2 . Hence (Mt) is a strict local martingale. ��

Other examples of strict local martingales with jumps can be obtained
from absolute continuity relationships between two non-negative semi-stable
Markov processes. We shortly recall the definition of a semi-stable Markov
process (see [Lam72]):

A semi-stable Markov process (with index of stability α = 1) on R+ :=
[0, +∞) is a Markov process (Xt) with the following scaling property: for any
c > 0 (

1
c
X

(x)
ct

)
t�0

(d)
=
(
X

(xc−1)
t

)
t�0

,

where
(
X

(x)
t

)
denotes a semi-stable Markov process started at x > 0. Denote
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T0 := inf {s � 0 |Xs− = 0 or Xs = 0} , (15)

then Lamperti in [Lam72] showed that: either T0 = +∞ a.s., or T0 < +∞ a.s.
and XT0− = 0 a.s., or T0 < +∞ a.s. and XT0− > 0 a.s. Furthermore this does
not depend on the starting point x > 0.

Note that for a semi-stable Markov process the following Lamperti relation
is true. We suppose that there is no killing inside (0, ∞).

Proposition 4. Let (ξt) be a one-dimensional Lévy process, starting at 0.
Define

A
(x)
t :=

∫ t

0

x exp (ξs) ds,

for any x > 0. Then the process (Xu), defined implicitly by

x exp ξt = X
A

(x)
t
, t < T0, (16)

is a semi-stable Markov process, starting at x, and

A(x)
∞ = T0, (17)

where T0 is defined by (15). The converse is also true.

Denote
τ

(x)
t := inf

{
s � 0

∣∣∣A(x)
s = t

}
.

Let
(
Fξt
)

be the natural filtration of (ξt) and
(
FXt

)
be the natural filtration of

(Xt). As in [CPY94], using Proposition 4, one obtains the following absolute
continuity relationship between two semi-stable Markov processes.

Proposition 5. Suppose that (Xt) is a semi-stable Markov process associated
with Lévy process (ξt) via Lamperti relation (16) and EP e

bξt = etρ(b) < ∞.
Define Q by

Q|FX
t ∩{t<T0} =

(
Xt
x

)b
exp

(
−ρ (b)

∫ t

0

ds

X2
s

)
P |FX

t ∩{t<T0},

where T0 is defined by (15). Then, under Q, (Xt) is still a semi-stable Markov
process associated with Lévy process (ξt) via Lamperti relation (16) and

Ψ̃ (u) = Ψ (u− ib)− Ψ (−ib) ,

where Ψ , Ψ̃ are the characteristic exponents of (ξt) under P and Q respectively.

Proof. Let us consider the change of measure given by the Esscher transform:

Q|Fξ
t

= exp (bξt − ρ (b) t) P |Fξ
t
.
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Since Eebξt = etρ(b) <∞

Mt := exp (bξt − ρ (b) t)

is a martingale. Furthermore (ξt) is still a Lévy process under Q. Note that{
τ

(x)
t < +∞

}
= {t < T0} and for any t < T0

A
(x)

τ
(x)
t

= t. (18)

Denote Gt := Fξ
τ
(x)
t

, then for any A ∈ Gt

Q
(
A ∩

{
τ

(x)
t � u

})
= EP

(
1
A∩
{
τ
(x)
t �u

} exp
(
bξ
τ
(x)
t
− ρ (b) τ (x)

t

))
. (19)

Note that (Xt/x)b = exp
(
bξ
τ
(x)
t

)
on {t < T0}. Differentiating (18) one gets

that
d

dt
τ

(x)
t =

1
X2
t

.

Letting u tend to infinity, from (19) one gets

Q
(
A ∩

{
τ

(x)
t < +∞

})
= EP

(
1
A∩
{
τ
(x)
t <+∞

} (Xt
x

)b
exp

(
−ρ (b)

∫ t

0

ds

X2
s

))
.

But from (17)
{
τ

(x)
t < +∞

}
= {t < T0}. Hence

Q (A ∩ {t < T0}) = EP

(
1A∩{t<T0}

(
Xt
x

)b
exp

(
−ρ (b)

∫ t

0

ds

X2
s

))
. ��

Let us find the range of the parameter b such that

Mt :=
(
Xt
x

)b
exp

(
−ρ (b)

∫ t

0

ds

X2
s

)
is a strict local martingale. Note that it is sufficient to find b such that
Q(T0 < +∞) = 1 and P (T0 = +∞) = 1. Indeed, given such a parameter

Q (t < T0) = EP (Mt)

and as in the proof of Proposition 3 (Mt) is a strict local P -martingale.
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Now let ξ be a Lévy process under P with the characteristic exponent Ψ ,
given by Lévy–Khintchine formula

Ψ (λ) = iaλ+
1
2
σ2λ2 +

∫
R

(
1− eiλx + iλx1{|x|<1}

)
π (dx) ,

where a ∈ R, σ2 � 0 and π is a positive measure on R\ {0} such that∫ (
1 ∧ |x|2

)
π (dx) <∞.

Let us suppose that π has compact support. Then EP e
bξt = etρ(b) <∞ for any

t and b. Let the semi-stable Markov process X be associated to ξ via Lamperti
relation. Conditions for P (T0 = +∞) = 1 or P (T0 < +∞) = 1 bearing on(
a, σ2, π

)
can be deduced from Theorem 1 in [BY05]. Note that T0 < +∞ if

and only if ξt → −∞. Since π has compact support, from the Central Limit
Theorem for a Lévy process, ξt → −∞ if and only if EP ξ1 < 0 i.e.,

−a+
∫
|x|>1

xπ (dx) < 0.

Let Q be given by Proposition 5. Denote by Ψ̃ the characteristic exponent
of ξ under Q, then

Ψ̃ (λ) = iλ

[
a− bσ2 +

∫
|x|<1

x
(
1− ebx

)
π (dx)

]

+
1
2
σ2λ2 +

∫
R

(
1− eiλx + iλx1{|x|<1}

)
π̃ (dx) ,

where π̃ (dx) = ebxπ (dx). Hence, in order to have Q (T0 < +∞) = 1 and
P (T0 = +∞) = 1 one can choose b such that

−a+
∫
|x|>1

xπ (dx) � 0 (20)

and
−a+ bσ2 −

∫
|x|<1

x
(
1− ebx

)
π (dx) +

∫
|x|>1

xebxπ (dx) < 0. (21)

It is easy to see that (20) and (21) imply that b < 0. For example, for any
given a and π, such that (20) is true, one can always choose b < 0 such that

bσ2 − e−b
∫
x<−1

|x|π (dx) < a−
∫
x>1

xπ (dx), (22)

which implies (21). Note that condition (22) is more restrictive than (21).



388 O. Chybiryakov

References

[BY05] J. Bertoin and M. Yor, Exponential functionals of Lévy processes, Probab.
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Introduction

On a probability space, let (Gt) be a filtration containing a smaller filtration
(Ft). The basic question of the well known theory of enlargement of filtrations
(see [JY85]) with some relevance in simple models of financial markets with
asymmetric information (see for instance [Imk03]) is this: under which condi-
tions does every (Ft)-semimartingale remain a semimartingale relative to (Gt)?
In the pioneering papers of [JY85] this inheritance property has been called
“Hypothèse (H′).” Jacod [Jac85] gives a sufficient criterion for it to hold and
studies Doob–Meyer decompositions of semimartingales relative to (Gt). With
respect to vector space topologies on the set of (Ft)- and (Gt)-semimartingales
Yor [Yor85] investigates continuity properties of the associated mapping of
(Ft)-semimartingales into the space of (Gt)-semimartingales.
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In this paper we reconsider the problem of the inheritance of the semi-
martingale property from a different and more general perspective. In fact,
in Section 1 we derive inheritance results generalizing Jacod’s [Jac85], which
were proved in the setting of initial enlargements by the information stored
in random elements with values in Lusin spaces. Our proofs are based on the
concept of the decoupling measure, which allows an independent view on the
additional information contained in the enlarged filtration, specified in σ-fields
Ht enlarging Ft to obtain Gt = Ft∨Ht. The key observation is that under the
decoupling measure every (Ft)-martingale is a (Gt)-martingale. Hence, enlarg-
ing the filtration can be seen as stepping from a view of processes through the
decoupling measure to a view by the original measure. In particular, the as-
sociated Girsanov transform can be used to obtain explicit representations of
the Doob–Meyer decomposition w.r.t. the larger filtration. This idea goes back
to [FI93], where this method was used to analyze initial enlargements of the
Wiener filtration by some random variable G. Later [AIS98] and [GP98] ex-
tended these techniques to more general stochastic bases and semimartingales.
In more recent approaches it was rediscovered in terms of a Bayesian interpre-
tation of simple models of insider trading by Gasbarra and Valkeila [GV03].
Of course, the cost of this approach consists in the very assumption of the
existence of the decoupling measure. It restricts generality to a nontrivial
extent, as is seen if compared for example to the setting of [ADI06]. For ins-
tance, if the information drift to be deducted from a martingale in the larger
filtration does not generate an equivalent martingale measure capturing the
change of views from the small to the large filtration, then there will be no
decoupling measure. In order to tackle the problem, as Yoeurp [Yoe85] for
the analysis of progressive enlargements, we choose a formulation a product
space: the first marginal contains the original information, while the second
describes the additional information. Under the product measure both mar-
ginals are independent. Therefore it will be the appropriate candidate for our
decoupling measure.

Here is an outline of the structure of the material presented. Our main
occupation in Section 1 consists in showing how objects are transferred from
the original space into the artificial product space and vice versa. Once this
is handled, an application of the Girsanov transform leads to explicit Doob–
Meyer decompositions. In Section 2 we provide estimates of the strength of
the information drift by appropriate generalized entropies. These are used
in Section 3 in order to prove continuity properties of the embedding of
the (Ft)-semimartingales into the set of (Gt)-semimartingales with respect to
well known vector space topologies. These results generalize continuity results
obtained by Yor [Yor85].

1 Enlargement of filtrations and Girsanov’s theorem

Let (Ω,F , P ) be a probability space with right-continuous filtrations (Ft)t�0

and (Ht)t�0. Moreover, let F∞ =
∨
t�0 Ft and H∞ =

∨
t�0Ht.
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Our objective is to study the enlarged filtration

Gt =
⋂
s>t

(Fs ∨Hs) , t � 0.

We relate this enlargement to a measure change on the product space

Ω̄ = Ω ×Ω

equipped with the σ-field
F̄ = F∞ ⊗H∞ .

We endow Ω̄ with the filtration

F̄t =
⋂
s>t

(Fs ⊗Hs), t � 0 .

Ω will be embedded into Ω̄ by the map

ψ : (Ω,F) → (Ω̄, F̄), ω 	→ (ω, ω) .

We denote by P̄ the image of the measure P under ψ, i.e.,

P̄ = Pψ .

Hence for all F̄-measurable functions f : Ω̄ → R we have∫
f(ω, ω′)dP̄ (ω, ω′) =

∫
f(ω, ω)dP (ω) . (1)

In the following measure the two components in Ω̄ are decoupled, and weighted
according to P :

Q̄ = P
∣∣
F∞

⊗ P
∣∣
H∞

.

We use notations and concepts of stochastic analysis as explained in the book
by Protter [Pro04]. Our results will be stated for completed filtrations. We
remark that due to our general Assumption 1 below, all possible probability
measures on the enlarged space we will consider possess systems of null sets
that are at least bigger than the one related to Q̄. So we could refer to the
same completion throughout, and working with completions will not reduce
generality. We shall use the following notation. Let (Kt) be a filtration and R
a probability measure. We denote by (KRt ) the filtration (Kt) completed by
the R-negligible sets.

The map ψ will be used to translate processes X̄ = (X̄t)t�0 defined on
(Ω̄, F̄ P̄ ) into processes X = X̄ ◦ ψ defined on (Ω,FP ). The following Propo-
sition shows that structural properties are preserved by this embedding.

Proposition 1. Let X̄ = (X̄t)t∈[0,∞) and Ȳ denote stochastic processes and T̄
a random time all defined on the measurable space (Ω̄, F̄ P̄ ). We set X = X̄◦ψ,
Y = Ȳ ◦ψ and T = T̄ ◦ψ. Then adaptedness, predictability, the local martingale
or semimartingale properties are transferred from X̄ with respect to (F̄ P̄t ) and
P̄ to Ȳ with respect to (GPt ) and P . If T̄ is a (F̄ P̄t )-stopping time, then T is
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a (GPt )-stopping time. Moreover, if X̄ is a (F̄ P̄t , P̄ )-semimartingale and Ȳ is
a càglàd (F̄ P̄t , P̄ )-adapted process, then(∫

Ȳ dX̄

)
◦ ψ =

∫
Y dX

up to indistinguishability. If X̄ and Ȳ are (F̄ P̄t , P̄ )-semimartingales, then

[X̄, Ȳ ] ◦ ψ = [X,Y ]

up to indistinguishability.

Proof. Just observe that

Gt =
⋂
s>t

σ (A ∩B : A ∈ Fs, B ∈ Hs) =
⋂
s>t

σ
(
ψ−1(A×B) : A ∈ Fs, B ∈ Hs

)
= ψ−1

(⋂
s>t

(Fs ⊗Hs)
)

= ψ−1(F̄t)

so that

ψ−1(F̄ P̄t ) ⊂ GPt . (2)

Now the properties follow by straightforward arguments. ��

In the reverse direction, structural properties are transferred quite as
easily.

Lemma 1. Let M be a right-continuous (FPt , P )-local martingale. Then the
process M̄(ω, ω′) = M(ω) is a (F̄ Q̄t , Q̄)-local martingale.

Proof. Modulo localization, the martingale property follows readily by em-
ploying a monotone class argument to pass from indicators of rectangles to
general bounded measurable functions in the smaller σ-field. ��

In the sequel we will always assume that P̄ is absolutely continuous with
respect to Q̄, i.e.,

Assumption 1
P̄ ) Q̄ on F̄ .

Note that this assumption is always satisfied if (Gt) is obtained by an
initial enlargement by some discrete random variable G, i.e., Ht = σ(G) for
all t � 0. In particular, this holds true for any progressive enlargement by
Ht =

∨
u�t{L � u} where L is a discrete random time with values in [0,∞]

(see also the end of the section).
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Now let M be a (FPt , P )-local martingale and M̄ its extension to Ω̄ as
in Lemma 1. Since P̄ ) Q̄, M̄ is a (F̄ P̄t , P̄ )-semimartingale and hence, by
Proposition 1, M is a (GPt , P )-semimartingale. Thus, clearly hypothesis (H’)
is satisfied. But what is its Doob–Meyer decomposition relative to (GPt , P )?

Essentially the change of filtrations corresponds to changing the measure
from Q̄ to P̄ on the product space Ω̄. Girsanov’s theorem applies on Ω̄,
since the measure P̄ is absolutely continuous with respect to Q̄. As a con-
sequence we obtain a Girsanov-type result for the corresponding change of
filtrations. For its explicit description we introduce the density process. Let
(Z̄t) denote a cadlag (F̄ Q̄t , Q̄)-martingale satisfying

Z̄t =
dP̄

dQ̄

∣∣∣∣
F̄Q̄

t

.

We are now in a position to state the main Girsanov-type result.

Theorem 1. If M is a continuous (FPt , P )-local martingale with M0 = 0,
then

M − 1
Z−

· [M,Z]

is a (GPt , P )-local martingale.

Proof. Let M be a continuous (FPt , P )-local martingale with M0 = 0.
Lemma 1 implies that the process defined by M̄(ω, ω′) = M(ω) is a (F̄ Q̄t )-local
martingale and the Girsanov Theorem (see for instance [Pro04], page 136)
yields that

M̄ − 1
Z̄−

· [M̄, Z̄]

is a (F̄ P̄t , P̄ )-local martingale. It remains to appeal to simple transfer proper-
ties stated in Proposition 1. ��

Remark 1. Similar results as in Theorem 1 may of course be derived for non-
continuous martingales M (see [Ank05] for details).

The preceding may also be formulated in terms of the stochastic logarithm of
the density process Z̄. To this end set S̄′ = inf{t > 0 : Z̄t = 0} and

S̄ =

{
S̄′ if S̄′ <∞ and ΔZ̄S̄′ = 0
∞ otherwise .

S̄ is a (F̄ Q̄t )-predictable stopping time and we define

L̄ =
∫ ·

0+

1
Z̄−

dZ̄ on [0, S̄[ (3)
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with the convention that L̄t = L̄S̄′ for t ∈ [S̄′, S̄[. So far, the process L̄ is
determined P̄ -, but not Q̄-almost everywhere. (In order to define it every-
where we may put L̄ = 0 on [S̄,∞[.) Then L̄ is an (F̄ P̄t , P̄ )-semimartingale
but not necessarily an (F̄ Q̄t , Q̄)-semimartingale. However, restricted to the
time interval [0, S̄[ it is an (F̄ Q̄t , Q̄)-local martingale. As usual we write
L = L̄ ◦ ψ. Alternatively, one can define L through the stochastic integral
L =

∫ ·
0+

1
Z−

dZ.

Since the process L̄ is a (F̄ Q̄t , Q̄)-local martingale on the interval [0, S̄[, it
can be decomposed into a unique continuous local-martingale part L̄c start-
ing in 0 and a sum of compensated jumps L̄d. As before, we consider the
processes Lc = L̄c ◦ ψ and Ld = L̄d ◦ ψ. Theorem 1 can now be reformulated
as follows.

Theorem 2. If M is a continuous (FPt , P )-local martingale with M0 = 0,
then M − [M,L] is a (GPt , P )-local martingale.

Proof. The definition of L implies that 1
Z−
· [M,Z] = [M,L], P -a.s. Now apply

Theorem 1. ��

Finally, we will need the following formula, in which the subtracted drift is
represented in terms of the quadration variation of the given local martingale.

Theorem 3. If M is a continuous (FPt , P )-local martingale with M0 = 0,
then there is a (GPt )-predictable process α, called information drift, such that
M − α · [M,M ] is a (GPt )-local martingale satisfying P -a.e.∫ ∞

0

α2
t d[M,M ]t � [L,L]c∞ <∞.

Proof. Let M be a continuous (FPt , P )-local martingale with M0 = 0. As a
consequence of the Kunita-Watanabe inequality (see for instance Lemme 1.36
in [Jac79] or page 136 of [Pro04]), there exists a (GPt )-predictable process (αt)
such that

α · [M,M ] = [M,L] = [M,Lc] .

The processes M and O = Lc − α ·M are orthogonal w.r.t. [·, ·] so that

α2 · [M,M ] = [α ·M,α ·M ] � [Lc, Lc] = [L,L]c .

Recall that [L,L] =
(

1
Z̄2

−
· [Z̄, Z̄]

)
◦ ψ and that Z̄ is a uniformly inte-

grable non-negative (F̄ Q̄t , Q̄)-martingale. Since P̄ -a.s. Z̄∞ > 0, one has also
inft�0 Z̄t > 0, P̄ -a.s. Moreover, [Z̄, Z̄]∞ < ∞, Q̄-a.s. Therefore, [L̄, L̄] is P̄ -
a.s. bounded and consequently [L,L]ct converges as t→∞ P -a.s. to some real
value which we denote by [L,L]c∞. ��
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Remark 2. Due to the previous theorem the information drift obtained via the
Girsanov approach under Assumption 1 is always locally square integrable.
It was shown in [ADI06] that in case Ω is standard Borel and each (Ft)-
martingale has a continuous modification, square integrability on the product
space Ω × [0, T ] with respect to the measure d[M,M ] ⊗ P implies the ab-
solute continuity of the kernels kt(·, dω′) with respect to the conditional laws
Pt(·, dω′) of Gt− with respect to Ft, where

Pt(·, A) = P (A) +
∫ t

0

ks(·, A)dMs + LAt , A ∈ Gt−, t ∈ [0, T ] ,

LA being orthogonal to M . In this case the R–N density process

γt(ω, ω′) =
kt(·, dω′)
Pt(·, dω′)

is identical to α if restricted to the diagonal ω = ω′. Hence this absolute
continuity condition (ACL) is implied by Assumption 1. Enlargements with
locally integrable but not square integrable information drifts are beyond the
scope of this article. But they provide examples for which (ACL) does not
imply Assumption 1. One example is obtained for instance by enlarging the
Wiener filtration by the maximum of the Wiener process over some finite
time interval. In this case Malliavin’s calculus can be applied and an explicit
representation of the information drift is obtained via the Clark-Ocone for-
mula (see [IPW01] and [Imk03]). In case Ω is not standard Borel we do not
know at the moment whether Assumption 1 is more restrictive than (ACL).
The methods of [ADI06] allow in a more general setting the description of
information drifts which are not necessarily locally square integrable.

Comparison with Jacod’s condition

In Jacod’s paper (see [Jac85]) the filtration (Ft) is supposed to be enlarged
by some random variable G taking values in a Lusin space (E, E). As a conse-
quence, for t ∈ [0, T ] regular conditional distributions Qt of G relative to Ft
exist. The following condition is assumed to be satisfied:

(A′) For every t � 0 and P -a.a. ω the measure Qt(ω, ·) is absolutely
continuous with respect to the law η of G.

We will show that in this setting condition (A’) is equivalent to our
Assumption 1. More precisely, with Ht = σ(G), we have the following.

Lemma 2. (A′) is satisfied if and only if P̄ ) Q̄ on F̄t for all t � 0 .

Proof. First assume property (A′). Let t � 0 and C ∈ F̄t with Q̄(C) = 0. We
choose C̃ ∈ Ft ⊗ E such that

1C(ω, ω′) = 1C̃(ω,G(ω′)) ,
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and observe that

Q̄(C) =
∫
Ω̄

1C(ω, ω′) dQ̄(ω, ω′) =
∫
Ω

(∫
E

1C̃(ω, g) dη(g)
)
dP (ω) .

Hence for P -a.a. ω the set Cω = {g ∈ E : (ω, g) ∈ C̃} is a η-nullset. Conse-
quently,

P̄ (C) =
∫
Ω

1C(ω, ω) dP (ω) =
∫
Qt(ω,Cω) dP (ω)

is equal to 0 due to (A′).
Now fix t � 0 and assume that P̄ ) Q̄ on F̄s. Then there exists a F̄t-

measurable density ϕ which can be represented in the form

ϕ(ω, ω̃) = ϕ̃(ω,G(ω̃))

where ϕ̃ is an appropriate Ft ⊗ E-measurable function. Now integrating in
ω̃ will, by using Fubini’s theorem in a similar manner as above, yield the
conditional law of G relative to Ft which is absolutely continuous with respect
to η. This entails property (A′). ��

Jacod does not use Girsanov’s theorem in his paper [Jac85]. However, he points
out that his results could also be deduced by applying it to the conditional
measures P x = P (·|G = x), x ∈ E. Condition (A′) implies that the conditional
measures P x are absolutely continuous with respect to P . Hence, by Girsanov,
for a given (Ft, P )-local martingale there is a drift Ax such that M −Ax is a
(Ft, P x)-local martingale. By combining the processes Ax we obtain that

M −AG

is a (Gt, P )-local martingale. The main work consists in proving that the
processes Ax can be combined in a meaningful way. As far as we know, Jacod’s
sketch has never been worked out rigorously.

In our approach we embed every local martingale into the product space
Ω̄. We apply Girsanov’s theorem on the product space and then translate our
results back into the original space. One of the advantages of our approach
is that we do not have to assume regular conditional distributions to exist.
And we do not need to show how processes can be combined. Instead we have
to show how one can transfer objects from Ω to Ω̄ and vice versa. Moreover
we are not restricted to initial enlargements, but only to enlargements of the
form

Gt =
⋂
s>t

(Fs ∨Hs), t ∈ [0, T ] .

Starting with Jacod’s results one can obtain decompositions for filtrations of
this kind by using predictable projections. For this suppose A to be a bounded
variation process such that M − A is a local martingale with respect to the
initially enlarged filtration (Ft ∨H∞). If B is the predictable projection of A
onto (Gt), then M −B is a (Gt)-local martingale.
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2 Estimates for the drift

Suppose M is a continuous (FPt , P )-local martingale with M0 = 0. Under the
assumptions of the previous section we know that there is a (GPt )-predictable
process α such that M −α · [M,M ] is (GPt , P )-local martingale. Moreover, the
information drift α satisfies

(α2 · [M,M ])∞ � [L,L]c∞. (4)

In this section we provide bounds for

E
[
(α2 · [M,M ])p∞

]
for various moments p � 1 based on inequality (4).

Throughout this section we suppose the assumptions of the previous sec-
tion and maintain the notation. More precisely, we assume that P̄ ) Q̄, denote
by Z̄t = dP̄

dQ̄

∣∣∣
F̄Q̄

t

the density process, and by L̄ the stochastic logarithm of Z̄.

We use again the decomposition of L̄ into a continuous part L̄c and a part
L̄d consisting of compensated jumps. As earlier we denote by Z, L, and Lc

the corresponding (Gt)-adapted processes obtained by a right side application
of ψ.

2.1 Moment p = 1

Recall that the relative entropy of two probability measures P and Q on some
σ-algebra M is defined by

HM(P‖Q) =

⎧⎨⎩EP
(

log dP
dQ

∣∣∣∣
M

)
, if P ) Q on M

∞, if not P ) Q on M .

In our situation, the relative entropy HF̄ (P̄‖Q̄) provides an upper bound for
the first moment of [L,L]c:

Lemma 3.

1
2
EP [L,L]c∞ � HF̄ (P̄‖Q̄) .

If (Z̄t)t�0 is continuous and Z̄0 = 1, then one even has

1
2
EP [L,L]∞ = HF̄ (P̄‖Q̄) .

Remark 3. If the σ-field F0 is trivial, then the measures P̄ and Q̄ coincide on
F0 ⊗H0, and hence in this case Z̄0 = 1.
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Proof. Let (T̄n) denote an increasing sequence of stopping times with
limn→∞ T̄n � S̄′. Since (Z̄t) is a uniformly integrable (F̄ Q̄t )-martingale
Jensen’s inequality implies that

EQ̄Z̄T̄n
log Z̄T̄n

� EQ̄Z̄∞ log Z̄∞

so that Fatou’s lemma leads to

lim
n→∞

EQ̄Z̄T̄n
log Z̄T̄n

= EQ̄Z̄∞ log Z̄∞ = HF̄ (P̄‖Q̄) . (5)

On [0, S̄[ we decompose L̄ into its continuous and discontinuous part L̄ =
L̄c + L̄d and let Z̄ct = E(L̄c)t and Z̄dt = Z̄0 E(L̄d)t. Then Z̄t = Z̄ct Z̄

d
t and

Z̄t log Z̄t = Z̄t log Z̄ct + Z̄t log Z̄dt .

Now Itô’s formula implies that Āt = Z̄t log Z̄dt is a (F̄ Q̄t , Q̄)-local submartin-
gale on [0, S̄[. In fact, with ξ(x) = x log x for x > 0 and ξ(0) = 0 one obtains
on [0, S̄[

Āt = ξ(Z̄0) +
∫ t

0+

ξ(Z̄ds−) dZ̄cs +
∫ t

0+

Z̄cs−ξ
′(Z̄ds−) dZ̄ds

+
∑

0<s�t
Z̄cs−

(
ξ(Z̄ds )− ξ(Z̄ds−)− ξ′(Z̄ds−)ΔZ̄ds

)
,

where all summands in the previous line are non-negative due to the convexity
of ξ.

Next, note that due to the Girsanov transform

L̄c − [L̄, L̄]c

is a (F̄ Q̄t , P̄ )-local martingale. Now choose an increasing sequence of bounded
stopping times (T̄n)n∈N such that (L̄c − [L̄, L̄]c)T̄n is a (F̄ Q̄t , P̄ )-martingale,
ĀT̄n is a Q̄-submartingale and limn→∞ T̄n � S̄′. Such a sequence exists, and
combining the above results gives

EQ̄Z̄T̄n
log Z̄T̄n

� EQ̄Z̄T̄n
log Z̄cT̄n

+ EQ̄Z̄0 log Z̄0

� EP̄ log Z̄cT̄n
=

1
2
EP̄ [L̄, L̄]cT̄n

.

The first assertion follows by (5).
If Z̄ is continuous and Z̄0 = 1, then Z̄t = Z̄ct which implies that

EQ̄Z̄T̄n
log Z̄T̄n

=
1
2
EP̄ [L̄, L̄]cT̄n

.

The second assertion is an immediate consequence of (5). ��
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2.2 Moments p > 1

Now we consider moments of order p > 1. In this case the pth moment of
[L,L]∞ can be compared to some generalized relative entropy. See [Imk96] for
elementary versions of the inequalities to be derived.

Our analysis requires some additional assumption. We suppose that (Gt)
is an initial enlargement of (Ft), i.e.

Gt =
⋂
s>t

(Fs ∨ A) , t � 0,

where A is some fixed sub-σ-algebra of F . Moreover, we assume that F0 is
trivial. As in [Yor85], we need to impose the following additional assumption.

Assumption 2 (C) Every (FPt , P )-martingale has a continuous modifica-
tion.

We shall see that under this condition L̄ is a continuous (F̄ Q̄t , Q̄)-local mar-
tingale. We begin with the definition of the generalized relative entropy.

Definition 1. For p > 1, and probability measures P ) Q on a σ-algebra M,
let

Hp
M(P‖Q) := EP

(
log+

dP

dQ

∣∣∣∣∣
M

)p
.

We provide now an upper bound of E[L,L]p∞ with the help of the generalized
entropy of P̄ with respect to Q̄ on the set F̄∞. To simplify notations, we omit
the σ-algebra F̄∞, and write only Hp(P̄‖Q̄) and H(P̄‖Q̄). The aim of this
section is to prove

Theorem 4. For any p � 1 there exists a universal constant C = C(p) <∞
such that under the above assumptions one has

E[L,L]p∞ � C
[
H(P̄‖Q̄) +Hp(P̄‖Q̄)

]
.

For the proof we need some auxiliary results. We start by showing that
there exists a continuous modification for Z̄.

Lemma 4. Let M̄ be a uniformly integrable (F̄ Q̄t , Q̄)-martingale. If Assump-
tion (C) is satisfied, then for P -a.a. ω′ the process M̄ω′

= M̄(·, ω′) is a (FPt )-
local martingale.

Proof. Choose a modification such that every path of M̄ is cadlag. Now let
M̂ be an A⊗O(F)-measurable process such that for all ω′ and s � 0

M̂ω′
s = EP [M̄ω′

∞ |Fs] .

For the existence of such a process we refer to [SY78], Proposition 3. Put
Ct = {M̂t > M̄t}. Clearly Ct ∈ F̄ Q̄t and Ct(·, ω′) ∈ FPt for all P -a.a. ω′ (recall
that (Ft) is right-continuous). Moreover for t � 0
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1Ct

(ω, ω′)(M̂ω′
t − M̄ω′

t ) dP (ω) dP (ω′)

= EQ̄[1Ct
(M̂t − M̄t)]

= EQ̄[1Ct
(M̂t − M̄∞)]

=
∫ ∫

1Ct
(ω, ω′)(M̂ω′

t − M̄ω′
∞ ) dP (ω) dP (ω′)

=
∫

0 dP (ω′) = 0,

A similar result holds true on the set {M̂t < M̄t}, and as a consequence we
have for P -a.a. ω′

M̂t(·, ω′) = M̄t(·, ω′), P -a.s.

Hence for P -a.a. ω′ the process (M̄ω′
q )q∈Q+ is a (FPt )-martingale. Since M̄t is

cadlag and uniformly integrable we obtain that also

(M̄ω′
t )t�0

is a (FPt )-martingale for P -a.a. ω′. ��

Lemma 5. If (C) is satisfied, then every uniformly integrable (F̄ Q̄t , Q̄)-
martingale has a continuous modification.

Proof. Let M̄ be a (F̄ Q̄t , Q̄)-martingale. We may suppose that M̄ is cadlag
everywhere, and hence, the set

N = {(ω, ω′) : t 	→ M̄t(ω, ω′) is not continuous}

is measurable. Fix ω′ and suppose that M̄ω′
is a (FPt )-martingale. Then As-

sumption (C) implies that for P -a.a. ω the paths t 	→ M̄ω′
t (ω) are continuous,

i.e., P (Nω′
) = 0. Now Fubini’s theorem yields with Lemma 4

EQ̄(N) =
∫ ∫

1Nω′ (ω) dP (ω) dP (ω′)

=
∫

0 dP (ω′) = 0,

and hence the result. ��

For the rest of the section we will suppose that Z̄ is a continuous modification

of our density process dP̄
dQ̄

∣∣∣∣
F̄Q̄

t

. Similarly, L̄ will be assumed to be continuous.

Proof (of Theorem 4). We assume that H(P̄‖Q̄) and Hp(P̄‖Q̄) are finite.
Then Xt := L̄t−[L̄, L̄]t is a continuous L2-bounded P̄ -martingale by Lemma 3
and we write log Z̄t = Xt + 1

2At with At := [L̄, L̄]t = [X,X]t. Next, observe
that
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Hp(P̄‖Q̄)1/p = EP̄
[
(X∞ +

1
2
A∞)p+

]1/p
� EP̄

[(1
2
A∞ − (|X∞| ∧

1
2
A∞)

)p]1/p
� 1

2
EP̄

[
Ap∞

]1/p − EP̄
[
|X∞|p

]1/p
� 1

2
EP̄ [Ap∞]1/p − C EP̄

[
Ap/2∞

]1/p
, (6)

where the last inequality holds for some constant C > 0 due to the
Burkholder–Davis–Gundy inequality. Now choose ξ > 0 such that for all
x � 0

Cpxp/2 � ξpx+
1
4p
xp .

This leads to
CpEP̄Ap/2∞ � ξpEP̄A∞ +

1
4p
EP̄Ap∞

and hence to

C EP̄
[
Ap/2∞

]1/p�ξEP̄ [A∞
]1/p +

1
4
EP̄

[
Ap∞

]1/p
.

With (6) we conclude that

Hp(P̄‖Q̄)1/p�1
4
EP̄

[
Ap∞

]1/p − ξEP̄
[
A∞

]1/p=
1
4
EP̄

[
Ap∞

]1/p − ξH(P̄‖Q̄)1/p.

Consequently,

EP̄
[
Ap∞

]1/p � 4ξH(P̄‖Q̄)1/p + 4Hp(P̄‖Q̄)1/p

� 8(ξpH(P̄‖Q̄) +Hp(P̄‖Q̄))1/p ,

where the last step follows from the elementary inequality a+b � 2(ap+bp)1/p,
a, b � 0. ��

Remark 4. The above proof is based on the fact that there exists a constant
Cp such that for any continuous L2-bounded P̄ -martingale (Xt) with X0 = 0
and quadratic variation process (At) one has

EP̄Ap∞ � CpE
P̄
[
X∞ +

1
2
A∞ +

(
X∞ +

1
2
A∞

)p
+

]
.

Improving the estimate to

EP̄Ap∞ � CpE
P̄
(
X∞ +

1
2
A∞)p+ (7)

would lead to the better estimate EP [L,L]p � CpH
p(P̄‖Q̄). However, an

estimate stating (7) is not valid, as the following example shows.
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Example 1. Let W be a Wiener process and for fixed ε > 0, let T denote
the first hitting time of the slope t 	→ ε − t/2. We consider Xt := WT

t and
At := [X,X]t. Then by the Lévy-Bachelier formula the law of T = A∞ has
density

1(0,∞)(t)
ε

t3/2
φ

(
ε− t/2√

t

)
,

where φ is the density of the standard normal law. Hence,

E[Ap∞] = ε

∫ ∞

0

tp−3/2 φ

(
ε− t/2√

t

)
dt .

In particular, for ε ↓ 0, one has E[Ap∞] ≈ ε. On the other hand,

E
[(
X∞ +

1
2
A∞

)p
+

]
= E[(WT + T/2)p] = εp

such that one can always find a sufficiently small ε > 0 for which the inequality
(7) is not valid.

We next show a result which in a sense contains the inverse statement to
Theorem 4.

Lemma 6. For p � 1 there exists a universal constant C = C(p) < ∞ such
that

Hp(P̄‖Q̄) � C
[
EP̄ [L̄, L̄]p∞ + 1

]
.

In particular finiteness of EP̄
(
[L̄, L̄]p∞

)
implies finiteness of the entropy

Hp(P̄‖Q̄).

Proof. We have, by Burkholder–Davis–Gundy, with a universal constant C1

Hp(P̄‖Q̄)1/p � E

(
|L̄∞ − 1

2
[L̄, L̄]∞|p

)1/p

� E
(
|L̄∞|p

)1/p + E

(
1
2
[L̄, L̄]p∞

)1/p

� C1E
(
[L̄, L̄]p/2∞

)1/p

+ E

(
1
2
[L̄, L̄]p∞

)1/p

� C1

(
1 + E[L̄, L̄]p∞

)1/p + E

(
1
2
[L̄, L̄]p∞

)1/p

� C2

(
1 + E

(
[L̄, L̄]p∞

))1/p
,

and thus the result. ��

Suppose now that the enlargement A is induced by some discrete random
variable G, i.e., A = σ(G). In that case one can estimate the moments of
[L,L]∞ against some generalized absolute entropy of G.
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Definition 2. Let (qg) denote the probability weights of G. We denote by

Hp(G) =
∑
g

qg(log 1/qg)p

the generalized absolute entropy of order p.

Lemma 7. One has
Hp(P̄‖Q̄) � Hp(G) ,

and if G is F∞-measurable, then

Hp(P̄‖Q̄) = Hp(G) .

Proof. For the proof we need a monotonicity property of f -divergences. Due
to Corollary 1.29 in [LV87] one has

Hp(P̄‖Q̄) = Hp(PidF∞ ,idA‖PidF∞ ⊗ PidA)

� Hp(PidF∞ ,G,idA‖PidF∞ ,G ⊗ PidA) .

Moreover, if G is F∞-measurable, then one even has equality in the previous
line. We denote by (qg) the probability weights of G. One easily verifies that

dPidF∞ ,G,idA

dPidF∞ ,G ⊗ PidA
(ω, g, ω′) = 1{g=G(ω′)}

1
qg
.

Set f(g, g′) = 1{g=g′} 1
qg

. Then

Hp(PidF∞ ,G,idA‖PidF∞ ,G ⊗ PidA)

=
∫
f(g,G(ω′)) (log+ f(g,G(ω′)))p d(PidF∞ ,G ⊗ PidA)(ω, g, ω′)

=
∫
{(g,ω′):g=G(ω′)}

1
qg

(
log+

1
qg

)p
d(PG ⊗ PidA)(g, ω′) ,

since f(g,G(ω′)) = 0 if g �= G(ω′) and the integrand does not depend on ω.
Altogether, we arrive at

Hp(P̄‖Q̄) �
∑
g

qg

(
log

1
qg

)p
= Hp(G)

and equality holds if G is F∞-measurable. ��

Example 2. Let Mt = Wt denote a Wiener process and consider the completed
filtration (Ft) = (FWt ) generated by the Wiener process. We now consider
an initial enlargement of the filtration (Ft) by some arbitrary σ-field A,
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i.e., Gt =
⋂
s>t (Fs ∧ A). Supposing that P̄ ) Q̄, the Doob–Meyer decomposi-

tion for W with respect to (Gt) is of the form

Wt = W̃t +
∫ t

0

αs ds ,

where W̃ is a (Gt)-Wiener process and α is a (Gt)-adapted process. In fact,
W̃ is continuous with quadratic variation process [W̃ , W̃ ]t = t. Moreover,
since F0 is trivial and all (Ft)-martingales have continuous modifications, the
results of this section lead to the estimate

E

(∫ t

0

α2
s ds

)p
� Cp

[
H(P̄‖Q̄) +Hp(P̄‖Q̄)

]
.

If in addition A = σ(G) is generated by some discrete random variable G,
then

E

(∫ t

0

α2
s ds

)p
� Cp [H(G) +Hp(G)] .

3 Continuity of initial enlargements

In Section 1 we have seen that every (FPt )-semimartingale is also a semi-
martingale relative to a bigger filtration (GPt ) if the measure P̄ is absolutely
continuous with respect to Q̄. In this section we analyze to which extent this
embedding of (FPt )-semimartingales into some space of (GPt )-semimartingales
is continuous. For simplicity we restrict to initial enlargements. It turns out
that the embedding is continuous if and only if some generalized entropy of
the measures P̄ and Q̄ is finite.

Let (Ω,F , (Ft), P ) be a filtered probability space as in the previous section.
Throughout this section we assume that F0 is trivial and we let

Gt =
⋂
s>t

(Fs ∨ A) , t � 0 ,

where A is some fixed sub-σ-algebra of F . The measures P̄ and Q̄ are defined
as in the previous section and we assume again that P̄ is absolutely continuous
with respect to Q̄. As before we will abbreviate Z̄t = dP̄

dQ̄

∣∣
F̄t
, t � 0. For a

treatment of basic questions and ideas of this section in the setting of initial
enlargements by random variables see [Imk96].

3.1 Preliminaries

We now recall the definition of some basic norms on the set of semimartingales.
For this let X be a (FPt )-semimartingale. Given a decomposition X = M +A
we define for all 1 � p <∞,
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jp(M,A) =
∥∥∥∥[M,M ]

1
2∞ +

∫
[0,∞[

|dAs|
∥∥∥∥
Lp

and
‖X‖Sp = inf

X=M+A
jp(M,A) .

We denote by Sp the set of all (FPt )-semimartingales X such that ‖X‖Sp <∞.
If we want to emphasize the filtration we are referring to we write Sp(Ft). The
space Sp is a Banach space with the following properties (see e.g., [DM82]):

• Any X ∈ Sp is a special semimartingale.
• Let X ∈ Sp and X = M̄ + Ā be the unique decomposition such that Ā is

predictable and Ā0 = 0. There is a constant c > 0, depending only on p,
such that jp(M̄, Ā) � c‖X‖Sp .

• The space of all martingales in Sp, denoted by Hp, is a closed subspace.
• The set of all continuous semimartingales in Sp, denoted by Spc , and the set

of all continuous martingales in Sp, denoted by Hpc , are closed subspaces.
• The set of all predictable processes with integrable variation, vanishing

in 0 and with norm A 	→ ‖
∫
|dAs|‖Lp is a closed subspace of Sp.

We will see that under suitable conditions every semimartingale in S2(Ft)
belongs to S1(Gt).

3.2 Continuity and relative entropy

We are now in a position to prove the first main result.

Theorem 5. Suppose H(P̄‖Q̄) = C <∞. Then the embedding

H2
c(Ft) → S1(Gt), X 	→ X,

is a continuous linear mapping with norm � 1 +
√

2C.

Proof. Let M ∈ H2(Ft). By Theorem 2, (M − [M,L]) + [M,L] is a decompo-
sition relative to (Gt). The Kunita–Watanabe inequality implies∥∥∥∥∫ ∞

0

|d[M,L]t|
∥∥∥∥

1

� ‖[L,L]
1
2∞‖2‖[M,M ]

1
2∞‖2.

Hence by Lemma 3

‖M‖S1(Gt) �
∥∥∥∥[M,M ]

1
2∞ +

∫ ∞

0

|d[M,L]t|
∥∥∥∥

1

�
(
1 + ‖[L,L]

1
2∞‖2

)
‖[M,M ]

1
2∞‖2

�
(
1 + (E[L,L]∞)

1
2

)
‖M‖H2(Ft)

� (1 +
√

2C)‖M‖H2(Ft),

and the proof is complete. ��
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As an immediate consequence we get the following

Corollary 1. Suppose H(P̄‖Q̄) <∞. Then the embedding

S2
c (Ft) → S1(Gt), X 	→ X,

is a continuous linear mapping.

3.3 Continuity and generalized entropy

We aim at generalizing Theorem 5 and Corollary 1. Starting from the Banach
space Sr(Ft) with r > 1, what are sufficient criteria for the embedding into
the space of (Gt)-semimartingales to be continuous?

Throughout this section we assume Assumption (C). In other words, we
will assume that Hpc(Ft) = Hp(Ft) for p > 1.

We begin by stating a result obtained by Yor.

Lemma 8. (see Lemme 2 in [Yor85]) Let r � 1 and p, q > 0 such that 1
r =

1
2p + 1

q . Then the following conditions are equivalent:

1) There is a constant C > 0 such that every continuous (Gt)-local martingale
satisfies ∥∥∥∥∫ ∞

0

|d[M,L]t|
∥∥∥∥
r

� C‖[M,M ]
1
2∞‖q .

2) E[[L,L]p∞] <∞ .

We are now ready to state the main theorem.

Theorem 6. Suppose Assumption (C) is satisfied and let p � 1 and q, r � 0
such that 1

r = 1
2p + 1

q . The generalized entropy Hp(P̄‖Q̄) is finite if and only
if the embedding

Sq(Ft) → Sr(Gt), X 	→ X,

is a continuous linear mapping.

Proof. Suppose Hp(P̄‖Q̄) < ∞. Theorem 4 implies that [L,L]∞ is Lp-
integrable. Thus, by Lemma 8, there is a constant C > 0 such that for all
continuous (Gt)-local martingales we have∥∥∥∥∫ ∞

0

|d[M,L]s|
∥∥∥∥
Lr

� C‖[M,M ]
1
2∞‖Lq .

Hence, for a martingale M in Sq(Ft) with decomposition M = (M− [M,L])+
[M,L] relative to (Gt), we have
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‖M‖Sr(Gt) =
∥∥∥∥[M,M ]

1
2∞ +

∫ ∞

0

|d[M,L]s|
∥∥∥∥
Lr

� ‖[M,M ]
1
2∞‖Lr +

∥∥∥∥∫ ∞

0

|d[M,L]s|
∥∥∥∥
Lr

� ‖[M,M ]
1
2∞‖Lr + C‖[M,M ]

1
2∞‖Lq

� (1 + C)‖[M,M ]
1
2∞‖Lq

� (1 + C)‖M‖Sq(Ft) .

Therefore the map Sq(Ft) → Sr(Gt), X 	→ X, is continuous.
Now suppose the embedding to be continuous. Then Lemma 8 implies

E[[L̄, L̄]p∞] <∞ .

So by Lemma 6 the proof is complete. ��

Example 3. Suppose A is generated by a countable partition P = {A1, A2, . . .}
of Ω into F∞-measurable sets. Then the corresponding initial enlargement
can be viewed as enlargement by the discrete random variable G(ω) :=∑
n n 1An

(ω). Hence, for p � 1, we have by Lemma 7

Hp
F̄∞

(P̄‖Q̄) =
∑
i�1

P (Ai)
(

log
1

P (Ai)

)p
.

Now let q, r � 0 such that 1
r = 1

2p + 1
q . Theorem 6 implies that the embedding

Sq(Ft) → Sr(Gt), X 	→ X, is continuous if and only if

∑
i�1

P (Ai)
(

log
1

P (Ai)

)p
<∞ .

This result was already shown by Marc Yor, using different arguments (see
Théorème 2 in [Yor85]).

3.4 Continuity and Shannon information

If the filtration (Ft) is generated by a fixed martingale M with cadlag paths,
then the relative entropy of P̄ with respect to Q̄ is equal to the so-called
mutual information between M and the enlarging σ-algebra A. We recall this
notion.

Definition 3. Let X and Y be two random variables with values in the mea-
sure spaces (M,M) and (K,K), respectively. The mutual information between
X and Y is defined by

I(X,Y ) = HM⊗K(P(X,Y )‖PX ⊗ PY ) .
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Similarly, one can define the generalized mutual information to be

Ip(X,Y ) = Hp
M⊗K(P(X,Y )‖PX ⊗ PY ), p > 1 .

For a given σ-algebra J ⊂ F let idJ denote the map (Ω,F) → (Ω,J ), ω 	→ ω.
The mutual information between X and J is defined by

I(X,J ) = I(X, idJ ) .

We start with the following observation.

Lemma 9. If (Ft) equals the filtration generated by M , then

I(M,A) = H(P̄‖Q̄) ,

and for p > 1,
Ip(M,A) = Hp(P̄‖Q̄) .

Proof. First observe that F̄ = F∞ ⊗A, because

F̄ =
∨
t

F̄t ⊂
∨
t

(Ft ⊗A) ⊂ F∞ ⊗A ⊂ F̄ .

Now let D denote the Skorokhod space. We define a map φ by

Ω ×Ω → D×Ω, (ω, ω′) 	→ (M·(ω), ω′) .

Since F∞ is generated by M , we have

φ−1(B(D)⊗A) = M−1(B(D))⊗A = F∞ ⊗A ,

and hence
HF̄ (P̄‖Q̄) = HB(D)⊗A(P̄φ‖Q̄φ) .

Now observe
P̄φ = Pφ◦ψ = P(M,idA)

and
Q̄φ = PM ⊗ PidA ,

which yields the first claim. The second follows by similar arguments. ��

As a consequence we obtain the following.

Theorem 7. Suppose Assumption (C) is satisfied and let p � 1 and q, r � 0
such that 1

r = 1
2p + 1

q . If (Ft) equals the filtration generated by M , then the
generalized mutual information Ip(M,A) is finite if and only if the embedding

Sq(Ft) → Sr(Gt), X 	→ X ,

is a continuous linear mapping.
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Proof. This follows by combining Theorem 6 with Lemma 9. ��

Example 4. Let W be the standard Wiener process and (Ft) the filtration
generated by W and completed by the negligible sets relative to the Wiener
measure. Moreover, let V be a Gaussian element independent of F∞, with zero
mean and variance w > 0. Suppose the enlarging σ-algebra A is generated by
the random variable

W1 + V .

One can easily verify that three random variables X,Y and Z satisfy

Ip(X, (Y,Z)) � Ip(X,Z) + Ip(X,Y |Z) (p � 1) .

Consequently, we obtain for the mutual information between idA and W

Ip(W, idA) = Ip(W1 + V, (W1, (Wt)0�t<1))
� Ip(W1 + V,W1) + Ip(W1 + V, (Wt)0�t<1|W1)
= Ip(W1,W1 + V ) <∞ .

Thus, for all p � 1 and q, r � 0 such that 1
r = 1

2p + 1
q , the mapping Sq(Ft) →

Sr(Gt), X 	→ X, is continuous.
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Let S be a local martingale with values in IRd, and let H be a d-dimensional
predictable process, such that the stochastic integral H · S does exist: if the
process (H · S)t is uniformly bounded from below by a constant (or, more in
general, by an integrable random variable), then H · S is a local martingale,
hence a supermartingale.

This result, which is inspired from a proposition by Emery in [8] for the
case d = 1, is due to Ansel and Stricker ([1], Corollary 3.5). Though obtained
as a corollary to a more general proposition, it has become a fundamental
result in mathematical finance. For instance, it was stated (as Theorem 2.9)
and widely used by Delbaen and Schachermayer in their seminal paper on the
fundamental theorem of asset pricing [5].

The purpose of this short note is to provide a different proof of the Ansel
and Stricker’s lemma, which also allows us to give a formulation of this result
for the stochastic integral of measure-valued processes with respect to a family
of semimartingales, indexed by a continuous parameter.

Let (Ω,F , (Ft)0�t�T ,P) be a filtered probability space, which satisfies the
usual conditions.

Theorem 1 Let X be an adapted càdlàg process and (Mn) a sequence of
martingales such that

(i) sup
t�T

|Mn
t −Xt| tends to 0 in probability as n→∞;

(ii) there exist an increasing sequence (ηk) of stopping times which converges
stationarily to T and a sequence θk of integrable random variables, such
that Xt∧ηk

� θk.
(iii) for every stopping time τ , we have that (ΔMn

τ )− � (ΔXτ )− and
(ΔMn

τ )+ � (ΔXτ )+ (where ΔXt = Xt −Xt−).

Then, X is a local martingale.
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Proof. We can assume, for simplicity, that Mn
0 = X0 = 0. Define a sequence

(τn) of stopping times as follows:

τn = inf {t > 0 : Xt > n or Mn
t > Xt + 1 or Mn

t < Xt − 1} ∧ T .

Because of (i), we have that limn τn = T , P-a.s. Possibly up to a subsequence
we can assume that

∑
n P(τn < T ) < ∞. We then define the stopping times

σn = (infm�n τm) ∧ ηn: the sequence σn is increasing and converges to T .
We will show that for all m, the stopped process Xσm

t = Xt∧σm
is a martin-

gale. For every t, the sequence Mn
t∧σm

goes to Xt∧σm
in probability. Thanks to

(ii) and the definition of σm, the jump ΔXσm
is such that (ΔXσm

)− � m−θm;
condition (iii) implies that (ΔMn

σm
)− � m− θm as well. Since Mn

t � Xt − 1
for n � m and t < σm, we have that

Mn
t∧σm

� θm − 1− (m− θm) = 2θm −m− 1 .

We can then apply Fatou’s lemma to find that

IE [Xt∧σm
] � lim inf

n→∞
IE
[
Mn
t∧σm

]
= 0 .

This shows that Xt∧σm
is integrable: in particular, taking t = T , we obtain

that Xσm
is integrable and, as a consequence, ΔXσm

is integrable.
In an analogous way, we find that, for n � m,

Mn
t∧σm

� m+ 1 + (ΔMn
σm

)+ � m+ 1 + (ΔXσm
)+ .

So, we can apply Lebesgue theorem and obtain that for every fixed m and t,
the sequence of random variables Mn

t∧σm
converges to Xt∧σm

in L1(P): this
implies that Xσm

t is a martingale. ��

As a corollary, we deduce the lemma of Ansel and Stricker:

Corollary 2 Let S be a d-dimensional local martingale and let H be a
S-integrable predictable process. If there exists some constant C > 0 such
that (H · S) � −C for all t, then H · S is a local martingale.

Proof. We set X = H · S, Hn = H1{‖H‖�n} and Mn = Hn · S. Every Mn is
a local martingale, hence we can find an increasing sequence (τm) of stopping
times such that limm τm = ∞ and Mn

τm
is a martingale ([6], Theorem 3). So,

up to a standard localization, we can assume that every Mn is a martingale.
The claim follows from Proposition 1 as soon as we check that conditions

(i) and (iii) are fulfilled (condition (ii) is contained in the assumptions of the
corollary). It is well-known that if H is integrable with respect to S, then
supt�T |Mn

t −Xt|, tends to 0 in probability, whence condition (i). Condition
(iii) follows trivially once we have observed that ΔMn

τ = Δ(H ·S)τ1{‖H‖τ �n}.
Hence the claim is proved. ��
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Now we briefly show how the previous arguments can be applied to the
case of measure-valued integrands.

Let M = (Mx)x∈I be a family of locally square integrable martingales,
where I is a compact subset of IR. We denote by P the predictable σ-field and
suppose that M satisfies the following:

Assumption 1. There exist an increasing predictable process At and a func-
tion Q defined on Ω×[0, T ]×I×I, measurable with respect to P⊗B(I)⊗B(I),
such that, for almost all (ω, s) ∈ Ω × [0, T ]:

(i) the function (x, y) 	→ Qω,s(x, y) is symmetric, non-negative definite and
continuous;

(ii) the function (x, y) 	→
∫ t
0
Qω,s(x, y)dAs(ω), is symmetric, non-negative

definite and continuous;
(iii) for fixed x, y ∈ I and for all t ∈ [0, T ] , we have that:

〈Mx,My〉t(ω) =
∫ t

0

Qω,s(x, y)dAs(ω) for P-a.e. ω.

With this assumption, a stochastic integral with respect to M can be
defined on an appropriate class of measure-valued processes, by making use of
a theory on cylindrical integration developed by Mikulevicius and Rozovskii [9]
(see also [3], Section 3). More in details, consider a stochastic process φ with
values in the set of the Radon measures on I (the dual set of the space of
continuous functions C = C(I, IR)), such that, for every f ∈ C, the process
〈φs, f〉M,C is predictable. We indicate by 〈φs, Qsψs〉 = 〈φs, Qsψs〉M,C the
bilinear form

∫
I
φs(dx)

∫
I
Qs(x, y)ψs(dy).

Suppose that

IE

[∫ T

0

〈φs, Qsφs〉dAs
]
<∞ :

then it is possible to define the stochastic integral φ ·M which is a square-
integrable martingale (see [9] for details). Moreover, if

∫ t
0
〈φs, Qsφs〉dAs is

locally integrable, the stochastic integral φ · M is defined and is a locally
square-integrable martingale.

More general stochastic integrals can be defined, in a similar way to what
happens for the finite dimensional case (see [2] page 130).

Let, for every n, φn = φ1{〈φ,Qφ〉�n}: we say that φ is M-integrable if
the sequence of square-integrable martingales φn · M is convergent for the
semimartingale topology (see [7] for the definition of this topology) and by
definition φ ·M = limn→∞ φn ·M. Note that, if X = φ ·M, then φn ·M =
1{〈φ,Qφ〉�n} ·X.

Exactly as for the finite-dimensional case, the process φ ·M might not be
a local-martingale (see for instance, [8]), but the analogue of Corollary 2 holds
(whit a proof similar to that of Corollary 2).



414 M. De Donno and M. Pratelli

Proposition 3 Let φ be a measure-valued integrable process. If there exists
some constant C such that (φ · M)t � −C for all t, then φ · M is a local
martingale.

Remark: We point out that a stochastic integral H.M has been defined in [4]
for a wider class of integrands H, and that in this more general framework
the analogue of the Ansel–Stricker’s lemma is false (see [4], Example 2.1).
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Summary. The purpose of this paper is to present a unified approach to pricing
contingent claims through a new concept of generalized arbitrage.

First, we prove the fundamental theorem of asset pricing and establish the form
of the fair price intervals within the framework of a general arbitrage pricing model.

Furthermore, these results are “projected” on several models, including:

• a dynamic model with an infinite number of assets;
• a model with European call options as basic assets;
• a mixed model.

This leads us, in particular, to revise the fundamental theorem of asset pricing
for continuous-time models. Our variant of this theorem states that the absence of
generalized arbitrage is equivalent to the existence of an equivalent measure, with
respect to which the discounted price process is a true martingale. In a model with
infinite time horizon, uniformly integrable martingales come into play.

The general approach mentioned above allows us to narrow the fair price intervals
by taking into consideration the current prices of traded derivatives.

Key words: Change of numéraire, General arbitrage pricing model, Gener-
alized arbitrage, Fair price, Fundamental theorem of asset pricing, Martingale
measure, Martingale measure with given marginals, Risk-neutral measure, Set
of attainable incomes

1 Introduction

1.1 Purpose of the paper

In the fundamental work [22], Harrison and Kreps introduced a general model
of pricing by arbitrage. Their paper formed the basis of the martingale ap-
proach to arbitrage pricing. However, there are some technical problems inher-
ent in their model. The main one stems from the assumption that the so-called
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marketed contingent claims should belong to L2 (the model proposed later by
Kreps [32] enables one to relax this assumption to the Lp-integrability with
p � 1). This restriction is not very natural as shown by the example below.

Consider the following simple model for the (discounted) price evolution
of an asset: S0 = 1, S1 = ξ, S2 = ξη, where ξ and η are independent ran-
dom variables, each taking on values 1/2 and 3/2 with probability 1/2 (Sn
represents the discounted price of some asset at time n). Let (Fn)n=0,1,2 be
a filtration such that F0 is trivial, S is an (Fn)-martingale, and F1 is rich
enough, so that there exists an F1-measurable random variable H that is not
integrable. Then H(S2−S1) is a natural candidate for a marketed contingent
claim. However, it does not belong to L1.

Further development of arbitrage pricing theory was mainly concentrated
on dynamic models with a finite number of assets, which may be viewed
as particular cases of the model proposed by Harrison and Kreps. Harrison
and Pliska [23] introduced the admissibility condition on the trading strate-
gies as a substitute for the integrability restriction described above. The
fundamental theorem of asset pricing (FTAP) for a discrete-time model
was established in the papers [11, 23] (alternative proofs were given in
[26, 29, 30, 35, 37, 41]). The FTAP for a continuous-time model was estab-
lished in the papers [12, 15] (another proof was given in [28]). In a series
of papers [15, 18, 19, 31], the form of upper and lower prices of a contin-
gent claim in a continuous-time model was established. However, there are
some serious problems inherent in the mentioned approach to continuous-time
models (these problems are described in Examples 4.3–4.5, and especially in
Example 4.6).

In this paper, we propose a general arbitrage pricing model that has
the same spirit as the model of Harrison and Kreps, but avoids the prob-
lems described above. This approach allows us to consider in a simple and
unified manner various models of arbitrage pricing theory, some of which
have so far been investigated separately and by different techniques. These
include

• static as well as dynamic models; (see Sections 4, 5);
• Models with an infinite number of assets (in particular, this allows

us to consider models with traded derivatives as basic assets, which
makes it possible to narrow considerably fair price intervals – see
Section 6);

• models with transaction costs (these will be considered in the paper [5],
which is a continuation of this paper);

• combinations of various models (see Section 7).

In the paper [5], we extend our results to models with transaction costs.
Our approach to these models turns out to be different from the existing
ones. Furthermore, in the paper [6], we introduce the possibility approach to
arbitrage pricing, which enables one to get rid of such a vague object as the
original probability measure.
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1.2 General arbitrage pricing model

A general arbitrage pricing model is a quadruple (Ω,F ,P, A), where (Ω,F ,P)
is a probability space and A (it is called the set of attainable incomes) is a
collection of random variables on (Ω,F ,P) representing the set of discounted
incomes one can obtain by trading certain assets. For a model (Ω,F ,P, A), we
introduce a notion of No Generalized Arbitrage (NGA). The NGA condition
might be viewed as a strengthening of the No Free Lunch condition known
in financial mathematics (the necessity to strengthen the latter is illustrated
by Example 6.4). Furthermore, we define an equivalent risk-neutral measure
as a measure Q ∼ P such that EQX

− � EQX
+ for any X ∈ A (X− and X+

denote the negative part and the positive part of X, respectively; the expec-
tations EQX

−, EQX
+ here are allowed to take on the value +∞). Although

risk-neutral measures are a classical concept in financial mathematics, this
particular definition seems to be new. It turns out to be very convenient as
illustrated by considerations in Sections 4–7.

The first basic result of the paper is Theorem 3.6, which may be called
the FTAP for the general arbitrage pricing model. It states (under some as-
sumption that is automatically satisfied in the particular models considered
below) that a model satisfies the NGA condition if and only if there exists an
equivalent risk-neutral measure.

Next, we consider the problem of pricing contingent claims. We define
a fair price of a contingent claim F (F is a random variable on (Ω,F ,P))
as a real number x such that the extended model (Ω,F ,P, A + {h(F − x) :
h ∈ R}) satisfies the NGA condition. The second basic result of the paper is
Theorem 3.10. It states (under some natural assumptions) that the set of fair
prices of F coincides with the interval {EQF : Q ∈ R}, where R denotes the
set of equivalent risk-neutral measures.

1.3 Particular models

Various models of arbitrage pricing can be viewed as particular cases of the
general model described above. In order to embed a particular model into this
general framework, one should

1. specify the set A of attainable incomes;
2. find out the structure of the set of equivalent risk-neutral measures (typ-

ically, the risk-neutral measures in a particular model admit a simpler
description than the general definition of a risk-neutral measure).

Once this is done, Theorem 3.6 gives the necessary and sufficient conditions
for the absence of generalized arbitrage, while Theorem 3.10 yields the form
of the set of fair prices of a contingent claim.

When “projected” to a discrete-time model with a finite number of assets,
our results agree with the classical ones. Namely, the class of risk-neutral
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measures coincides with the class of martingale measures, while our intervals
of fair prices coincide with the classical No Arbitrage intervals.

However, for continuous-time models (considered in Sections 4, 5), our
results differ from the traditional ones. First of all, it should be mentioned
that, unlike discrete-time models, continuous-time models do not possess a
unique universally accepted approach to pricing by arbitrage. The two most
well-known approaches are: the “L2-approach” proposed by Harrison and
Kreps [22] and the approach developed in a series of papers [12,15,18,19,28,31],
and others. Our approach is different from the “L2-approach” because we
never impose any integrability restrictions on price processes or trading strate-
gies.

Let us now describe the differences between our approach and the second
one mentioned above. First, we consider the model with an arbitrary number
of assets, while the traditional approach deals with a finite number of assets.
Second, we consider only simple (i.e., piecewise constant) trading strategies
with no admissibility condition imposed. Third, our FTAP states that a model
with a finite time horizon satisfies the NGA condition if and only if there exists
an equivalent measure, with respect to which the discounted price process is a
true martingale; a model with infinite time horizon satisfies the NGA condition
if and only if there exists an equivalent measure, with respect to which the
discounted price process is a uniformly integrable martingale. This is different
from the traditional FTAP provided by Delbaen and Schachermayer [12, 15]
(another proof was given by Kabanov [28]), which states that a model satisfies
the No Free Lunch with Vanishing Risk (NFLVR) condition (defined through
the general predictable admissible strategies) if and only if there exists an
equivalent measure, with respect to which the discounted price process is a
sigma-martingale (this class of processes has been introduced by Chou [8]). Let
us also point out in this connection that for the continuous-time model with a
finite number of assets, Sin [40] and Yan [43] introduced some strengthening of
the NFLVR condition and proved that these strengthening are equivalent to
the existence of an equivalent measure, with respect to which the discounted
price process is a true martingale. Thus, our FTAP agrees with these results
although our NGA condition is different from the variants of No Arbitrage in
these papers. Fourth, our definition of the interval of fair prices differs from the
traditional one. We discuss in Section 4 the problems of the traditional theory
of arbitrage pricing that arise when one considers admissible strategies, sigma-
martingale measures, and traditional intervals of fair prices. These problems
do not arise in our framework. Furthermore, it turns out that, unlike the
NFLVR property, the NGA property is preserved under a change of numéraire
(see Theorem 4.8).

The intervals of fair prices provided by arbitrage considerations are known
to be unacceptably large in incomplete models. Several ways to overcome this
problem have been proposed in financial mathematics. One of them is to con-
sider traded derivatives as basic assets. Typically, this leads to models with
an infinite number of assets, and this often creates serious theoretical prob-
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lems. Our approach can easily be applied to models with an infinite number
of assets, and the traded derivatives can be taken into consideration as fol-
lows. The set A depends on the amount of traded securities that we take into
account; the set R depends on A; the interval of fair prices depends on R.
Diagrammatically,

Assets −→ A −→ R −→ Interval of fair prices.

When the amount of assets taken into consideration is enlarged (i.e., more
prices of traded contracts are taken into account), the set A is enlarged, the
set R is reduced, and the sets of fair prices are reduced.

In Section 6, we consider a model, which takes into account traded Euro-
pean call options on a fixed asset with a fixed maturity T . It is shown that if
options with all positive strike prices are traded (of course, this is an idealized
assumption, but it is typical for the theory), then the risk-neutral measure
is unique. As a corollary, the fair price of a contingent claim depending only
on the price of the asset at time T (for example, a binary option) is uniquely
determined.

It should be mentioned that this model was first proposed by Breeden
and Litzenberger [2] and is very popular in mathematical finance (a literature
review on this model is given in [25]). Our approach to this model is different
from the existing ones. In particular, we establish the form of fair price inter-
vals based on the NGA considerations, while traditionally the fair price of a
contingent claim in this model is derived by representing the payoff as a com-
bination of (a continuum of) European call options. This trick requires the
payoff function to be smooth (for instance, binary options do not satisfy this
condition), while in our approach no smoothness or continuity requirements
are imposed.

The general approach introduced in Section 3 admits an easy procedure
of combination of models. The aim of this procedure is to narrow the sets of
fair prices by taking into consideration the current prices of a larger amount
of traded contracts. Thus, the models of Sections 4–6 may be viewed as
“building blocks” for constructing mixed models. An example is provided
in Section 7, where we consider a mixed static-dynamic model. The “building
blocks” are provided by the models of Sections 4 and 6. We show that, for the
mixed model, the set R consists of the equivalent martingale measures with
given marginals, i.e., the measures, with respect to which the discounted price
process is a martingale with preassigned marginal distributions. Such mea-
sures have recently attracted attention in the literature (see [3], [4; Sect. 4.1],
and [33]).
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2 Ordinary arbitrage

In this section, we briefly describe the classical arbitrage pricing theory in
a static model with a finite number of assets. This material is well-known
(for more details, one may consult, for instance, [20; Ch. 1]). The general
arbitrage pricing model introduced in Section 3 may be regarded as the
infinite-dimensional version of the model of this section (with the definitions
of arbitrage and the definitions of fair prices appropriately reformulated).

Let (Ω,F ,P) be a probability space. Let S0 ∈ Rd and S1 be an Rd-
valued random vector on (Ω,F ,P). From the financial point of view, Sin is
the discounted price of the ith asset at time n. Consider the set

A =

{
d∑
i=1

hi(Si1 − Si0) : hi ∈ R

}
. (1)

From the financial point of view, A is the set of discounted incomes that can
be obtained by trading assets 1, . . . , d at times 0, 1.

Definition 2.1. A model (Ω,F ,P, S0, S1) satisfies the No Arbitrage (NA)
condition if A∩L0

+ = {0} (L0
+ denotes the set of R+-valued random variables

on (Ω,F ,P)).

Definition 2.2. An equivalent martingale measure is a probability measure
Q ∼ P such that EQ|S1| <∞ and EQS1 = S0. The set of equivalent martingale
measures will be denoted by M.

Notation. Set C = conv supp LawP S1, where “conv” denotes the closed convex
hull, “supp” denotes the support, and LawP S1 is the distribution of S1

under P. Let C◦ denote the relative interior of C, i.e., the interior of C in
the relative topology of the smallest affine subspace of Rd containing C.

Theorem 2.3 (FTAP). For the model (Ω,F ,P, S0, S1), the following con-
ditions are equivalent:

(a) NA;
(b) S0 ∈ C◦;
(c) M �= ∅.
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Proof. Step 1. Let us prove the implication (a)⇒(b). If S0 /∈ C◦, then, by the
separation theorem, there exists a vector h ∈ Rd such that 〈h, (x− S0)〉 � 0
for all x ∈ C and 〈h, (x − S0)〉 > 0 for some x ∈ C. This means that
〈h, (S1 − S0)〉 � 0 P-a.s. and P(〈h, (S1 − S0)〉 > 0) > 0. But this contradicts
the NA condition.

Step 2. Let us prove the implication (b)⇒(c). The set

E = {EQS1 : Q ∼ P, EQ|S1| <∞}

is convex, and the closure of E contains supp LawP S1. Consequently, E ⊇ C◦.
Step 3. Let us prove the implication (c)⇒(a). Take Q ∈M. Then EQX = 0

for any X ∈ A. This implies the NA condition. ��
Now, let F be a random variable on (Ω,F ,P). From the financial point of

view, F is the discounted payoff of some contingent claim.

Definition 2.4. A real number x is a fair price of F if the model with d+ 1
assets (Ω,F ,P, x, S1

0 , . . . , S
d
0 , F, S

1
1 , . . . , S

d
1 ) satisfies the NA condition. The

set of fair prices of F will be denoted by I(F ).

Notation. Set D = conv supp LawP(F, S1) and let D◦ denote the relative
interior of D.

Theorem 2.5 (Pricing contingent claims). Suppose that the model
(Ω,F ,P, S0, S1) satisfies the NA condition. Then

I(F ) = {x : (x, S0) ∈ D◦} = {EQF : Q ∈M}.

The expectation EQF here is taken in the sense of finite expectations, i.e., we
consider only those Q, for which EQ|F | <∞.

This is a direct consequence of Theorem 2.3. ��

�

�

R

Rd

D◦

S0

I(F )

V∗(F ) V ∗(F )

�

Fig. 1. The joint arrangement of I(F ), V∗(F ), V ∗(F ), and D◦
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Remark. Another way to define the fair price interval (which is commonly
used in financial mathematics) is as follows. We introduce the lower and upper
prices by

V∗(F ) = sup{x : there exists X ∈ A such that x−X � F P-a.s.},
V ∗(F ) = inf{x : there exists X ∈ A such that x+X � F P-a.s.} ,

and the fair price interval is defined as the interval with endpoints V∗(F )
and V ∗(F ) (to be more precise, if V∗(F ) < V ∗(F ), we consider the inter-
val (V∗(F ), V ∗(F )); if V∗(F ) = V ∗(F ), we consider the one-point interval
{V∗(F )}). One can easily check that if the model (Ω,F ,P, S0, S1) satisfies the
NA condition, then the interval of fair prices defined this way coincides with
the interval I(F ) introduced above (a proof can be found in [20; Th. 1.23]).

3 Generalized arbitrage

Definition 3.1. A general arbitrage pricing model is a quadruple
(Ω,F ,P, A), where (Ω,F ,P) is a probability space and A is a convex cone in
L0 (L0 is the space of real-valued random variables on (Ω,F ,P) considered up
to indistinguishability). The set A will be called the set of attainable incomes.

From the financial point of view, A is the set of discounted incomes that
can be obtained by trading a certain amount of assets. An example is provided
by (1). In frictionless models, A is a linear space. In models with transaction
costs, A is a cone.

Notation. (i) Set

B =
{
Z ∈ L0 : there exist (Xn)n∈N ∈ A and a ∈ R

such that Xn � a P-a.s. and Z = lim
n→∞

Xn P-a.s.
}
. (2)

The elements of B might be regarded as generalized attainable incomes
bounded below.
(ii) For Z ∈ B, put γ(Z) = 1− ess infω∈Ω Z(ω) and set

A1 = {X − Y : X ∈ A, Y ∈ L0
+},

A2(Z) =
{

X

Z + γ(Z)
: X ∈ A1

}
,

A3(Z) = A2(Z) ∩ L∞,

A4(Z) = closure of A3(Z) in σ(L∞, L1(P)). (3)

Here L0
+ is the set of R+-valued elements of L0; L∞ is the space of bounded

elements of L0; σ(L∞, L1(P)) denotes the weak topology on L∞ induced by
the space L1(P) of all P-integrable random variables on (Ω,F ,P).
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Definition 3.2. A model (Ω,F ,P, A) satisfies the No Generalized Arbitrage
(NGA) condition if for any Z ∈ B, we have A4(Z) ∩ L0

+ = {0}.

Remarks. (i) Note that A4(Z) ∩ L0
+ = {0} if and only if A5(Z) ∩ L0

+ = {0},
where

A5(Z) = {(Z + γ(Z))X : X ∈ A4(Z)} . (4)

The elements of A5(Z) may be regarded as generalized attainable incomes
(i.e., one can approximate the elements of A5(Z) by the elements of A1).
(ii) The existence of a generalized arbitrage opportunity means that there exist
Z ∈ B, W ∈ L0

+ \ {0} and generalized sequences (Xλ)λ∈Λ ∈ A, (Yλ)λ∈Λ ∈ L0
+

and (αλ)λ∈Λ ∈ R+ such that |Xλ−Yλ| � αλ(Z+γ(Z)), λ ∈ Λ and (Xλ−Yλ)
converges to W in the sense that EQ(Xλ − Yλ) −→ EQW for any probability
measure Q ) P such that EQZ <∞.
(iii) The NGA condition is similar to the No Free Lunch (NFL) condition
introduced by Kreps [32] in a different framework. The NFL condition can
be defined in our framework as: A4(0) ∩ L0

+ = {0}. One can also define the
No Arbitrage (NA) condition in our framework as: A ∩ L0

+ = {0}. The NGA
condition is the strongest one: NGA⇒NFL, NGA⇒NA.

Definition 3.3. An equivalent risk-neutral measure is a probability measure
Q ∼ P such that EQX

− � EQX
+ for any X ∈ A (we use the notation X− =

(−X) ∨ 0, X+ = X ∨ 0). The expectations EQX
− and EQX

+ here may take
on the value +∞. The set of equivalent risk-neutral measures will be denoted
by R.

Notation. For Z ∈ B, we will denote by R(Z) the set of all probability mea-
sures Q ∼ P with the property: for any X ∈ A such that X � −αZ − β P-a.s.
with some α, β ∈ R+, we have EQ|X| <∞ and EQX � 0.

Lemma 3.4. For any Z ∈ B, we have R ⊆ R(Z).

Proof. Take Z ∈ B, Q ∈ R. It follows from the Fatou lemma that Z is
Q-integrable. Thus, if X ∈ A satisfies the inequality X � −αZ−β P-a.s with
some α, β ∈ R+, then EQX

− < ∞. By the definition of R, EQX
+ � EQX

−.
As a result, EQ|X| <∞ and EQX � 0. ��

The following basic assumption is satisfied in all particular models consid-
ered below.

Assumption 3.5. There exists Z0 ∈ B such that R = R(Z0) (in particular,
both sets might be empty).

Theorem 3.6 (FTAP). Suppose that Assumption 3.5 is satisfied. Then the
model (Ω,F ,P, A) satisfies the NGA condition if and only if there exists an
equivalent risk-neutral measure.
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The proof is based on a well-known result of Kreps [32] and Yan [42] (its
proof can also be found in [37,41], and other papers):

Lemma 3.7 (Kreps, Yan). Let C be a σ(L∞, L1(P))-closed convex cone in
L∞ such that C ⊇ L∞

− (L∞
− is the set of negative elements of L∞) and C ∩

L0
+ = {0}. Then there exists a probability measure Q ∼ P such that EQX � 0

for all X ∈ C.

Proof of Theorem 3.6. Step 1. Let us prove the “only if” implication. Take
Z0 ∈ B such that R = R(Z0). Lemma 3.7 applied to the σ(L∞, L1(P))-closed
convex cone A4(Z0) yields a probability measure Q0 ∼ P such that EQ0X � 0
for all X ∈ A4(Z0). By the Fatou lemma, for any X ∈ A such that X

Z0+γ(Z0)
is

bounded below, we have EQ0
X

Z0+γ(Z0)
� 0 (note that EQ0

X
Z0+γ(Z0)

∧ c � 0 for
any c > 0). Consider the probability measure Q = c

Z0+γ(Z0)
Q0, where c is a

normalizing constant (it exists since Z0 + γ(Z0) � 1). Then Q ∈ R(Z0) = R.
Step 2. Let us prove the “if” implication. Take Q ∈ R and Z ∈ B. It

follows from the Fatou lemma that Z is Q-integrable. Consider the measure
Q̃ = c(Z + γ(Z))Q, where c is a normalizing constant. For any X ∈ A such
that X

Z+γ(Z) is bounded below by a constant −α (α ∈ R+), we have

EQX
− � EQ(αZ + αγ(Z)) <∞,

and consequently,

E
Q̃

X

Z + γ(Z)
= cEQX � 0.

Hence, E
Q̃
X � 0 for any X ∈ A4(Z). As a result, A4(Z) ∩ L0

+ = {0}. ��
It is seen from the above proof that the implication R �= ∅ ⇒ NGA is true

without Assumption 3.5. The following example shows that this assumption
is essential for the reverse implication.

Example 3.8. Let (Xt)t∈[0,1] be a collection of independent Gaussian ran-
dom variables with mean 1 and variance 1 defined on some probability space
(Ω,F ,P). Let F = σ(Xt; t ∈ [0, 1]) and

A =

{
N∑
n=1

hnXtn : N ∈ N, tn ∈ [0, 1], hn ∈ R

}
.

Clearly, the only element of A that is bounded below is 0. Hence, the model
(Ω,F ,P, A) satisfies the NGA condition.

Suppose now that there exists an equivalent risk-neutral measure Q. Set
ρ = dQ

dP . Note that F = ∪Cσ(Xt; t ∈ C), where the union is taken over all
countable sets C ⊂ [0, 1]. Hence, there exists a countable set C0 ⊂ [0, 1] such
that ρ is σ(Xt; t ∈ C0)-measurable. For any t /∈ C0, we have

EQXt = EPρXt = EPρ · EPXt = EPXt = 1 .

As a result, there exists no equivalent risk-neutral measure. ��
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Now, let F be a random variable on (Ω,F ,P) representing the discounted
payoff of a contingent claim.

Definition 3.9. A real number x is a fair price of F if the extended model
(Ω,F ,P, A + {h(F − x) : h ∈ R}) satisfies the NGA condition. (From the
financial point of view, A + {h(F − x) : h ∈ R} is the set of discounted
incomes that can be obtained by trading the “original” assets as well as trading
the contract F at the price x.) The set of fair prices of F will be denoted by
I(F ).

Theorem 3.10 (Pricing contingent claims). Suppose that the model
(Ω,F ,P, A) satisfies Assumption 3.5 and the NGA condition, while F is
bounded below. Then

I(F ) = {EQF : Q ∈ R}.
The expectation EQF here is taken in the sense of finite expectations, i.e., we
consider only those Q, for which EQF <∞.

Proof. Step 1. Let x ∈ I(F ). Take Z0 ∈ B such that R = R(Z0). Set Z1 =
Z0 + (F − x). Then Z1 ∈ B′, where B′ is defined by (2) with A replaced by
A′ := A+ {h(F −x) : h ∈ R}. Lemma 3.7 applied to the σ(L∞, L1(P))-closed
convex cone A′

4(Z1) (A′
4(Z1) is defined by (3)) yields a probability measure

Q0 ∼ P such that EQ0X � 0 for all X ∈ A′
4(Z1). By the Fatou lemma, for

any X ∈ A′ such that X
Z1+γ(Z1)

is bounded below, we have EQ0
X

Z1+γ(Z1)
� 0.

Consider the probability measure Q = c
Z1+γ(Z1)

Q0, where c is a normalizing
constant (it exists since Z1 + γ(Z1) � 1). Then Q ∈ R(Z1) ⊆ R(Z0) = R.
Moreover, EQ(x − F ) � 0 and EQ(F − x) � 0 since the random variables
x−F

Z1+γ(Z1)
and F−x

Z1+γ(Z1)
are bounded below. Thus, x = EQF .

Step 2. Now, let x = EQF , where Q ∈ R. Take Z ∈ B′. Choose an arbitrary
element Y = X +h(F −x) ∈ A′ (here X ∈ A) such that Y is bounded below.
It follows from the condition x = EQF that EQX

− < ∞. As Q ∈ R, we have
EQX � 0. This implies that EQY � 0. By the Fatou lemma, Z is Q-integrable.
Consider the measure Q̃ = c(Z + γ(Z))Q, where c is a normalizing constant.
For any Y = X + h(F − x) ∈ A′ such that Y

Z+γ(Z) is bounded below by some
constant −α (α ∈ R+), we have

EQY
− � EQ(αZ + αγ(Z)) <∞ .

Consequently, EQX
− < ∞, EQX � 0, and EQY � 0. This means that

E
Q̃

Y
Z+γ(Z) � 0. Hence, for any Y ∈ A′

4(Z), we have E
Q̃
Y � 0. This implies

that A′
4(Z) ∩ L0

+ = {0}. As a result, x ∈ I(F ). ��
Remarks. (i) Theorem 3.10 remains valid if the condition “F is bounded be-
low” is replaced by the condition “F is bounded above” (the proof remains
the same).
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(ii) Another way to define fair price intervals could be as follows. We introduce
the lower and the upper prices by

V∗(F ) = sup{x : there exists X ∈ A such that x−X � F P-a.s.} , (5)
V ∗(F ) = inf{x : there exists X ∈ A such that x+X � F P-a.s.} , (6)

and the fair price interval is defined as the interval with the endpoints V∗(F )
and V ∗(F ). However, unlike the model of Section 2, in a general model the
interval defined this way might be larger than I(F ) (see Example 6.5).

To conclude the section, we “project” our results on the model of Section 2.

Example 3.11. Consider the model of Section 2 and assume additionally
that the components of S1 are bounded below. Then, clearly, the class of
risk-neutral measures coincides with the class of martingale measures. Con-
sequently, the NGA turns out to be equivalent to the NA and the fair price
interval based on the NGA coincides with the fair price interval based on
the NA.

4 Dynamic model with finite time horizon

Let (Ω,F , (Ft)t∈[0,T ],P) be a filtered probability space. We assume that F0 is
P-trivial. Let (Sit)t∈[0,T ], i ∈ I be a family of real-valued (Ft)-adapted càdlàg
processes. Here, I is an arbitrary set (it might be finite or infinite). From the
financial point of view, Sit is the discounted price of the ith asset at time t.
Define the set of attainable incomes by

A =

{
N∑
n=1

∑
i∈I

Hi
n(S

i
un
− Siun−1

) : N ∈ N, u0 � . . . � uN are

(Ft)-stopping times, Hi
n is Fun−1-measurable,

and Hi
n = 0 for all i, except for a finite set

}
. (7)

From the financial point of view, A is the set of discounted incomes that can
be obtained by trading assets from I on the interval [0, T ].

We will assume that each process Si is bounded below (most financial
assets automatically satisfy this condition). Moreover, we assume that there
exists Z0 ∈ B (B is defined by (2)) with the property: for any i ∈ I, there
exist α, β > 0 such that SiT � αZ0 + β a.s. This assumption is automatically
satisfied in natural models.

Indeed, if I is finite, then the above assumption is satisfied with

Z0 =
∑
i∈I

(SiT − Si0) .
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If I is countable, then the above assumption is satisfied with

Z0 =
∑
i∈I

λi(SiT − Si0) ,

where constants λi > 0 are chosen in such a way that
∑
i∈I λ

iSiT < ∞ a.s.
and

∑
i∈I λ

iSi0 <∞.
If S is the discounted price process of some asset and Si is the discounted

price process of a European call option on this asset with maturity T and strike
price i, then SiT = (ST − i)+, and hence, the above assumption is satisfied
with Z0 = ST −S0 (we assume that the process S is included in the collection
(Si)i∈I).

If Si is the discounted price process of a zero-coupon bond with maturity
i, then Si takes on values in [0, 1], and the above assumption is satisfied with
Z0 = 0.

In order to get the FTAP and to obtain the form of the fair price intervals,
it is sufficient to prove that Assumption 3.5 is satisfied and to find the structure
of risk-neutral measures. We call the corresponding statement the Key Lemma
of the section.

Notation. Set M = {Q ∼ P : for any i ∈ I, Si is an (Ft,Q)-martingale}.

Key Lemma 4.1. For the model (Ω,F ,P, A), we have

R = R(Z0) =M .

The proof employs the following statement (see [26] or [38; Ch. II, Sec-
tion 1c]):

Lemma 4.2. Let (Xn)n=0,...,N be an (Fn)-local martingale such that
E|X0| <∞ and EX−

N <∞. Then X is an (Fn)-martingale.

Proof of Key Lemma 4.1. Step 1. The inclusion R ⊆ R(Z0) follows from
Lemma 3.4.

Step 2. Let us prove the inclusion R(Z0) ⊆ M. Take Q ∈ R(Z0). Fix
i ∈ I. For any u ∈ [0, T ], the random variable Siu − Si0 is bounded below,
and therefore, EQ(Siu − Si0) � 0. In particular, Siu is Q-integrable. For any
u � v ∈ [0, T ] and any D ∈ Fu such that Siu is bounded on D, the random
variable ID(Siv − Siu) is bounded below, and hence, EQID(Siv − Siu) � 0. This
proves that Si is an (Ft,Q)-supermartingale. It follows from the assumption
SiT � αZ0 +β and the definition of R(Z0) that EQ(SiT −Si0) = 0. This implies
that Q ∈M.

Step 3. Let us prove the inclusion M⊆ R. Take Q ∈M. Fix

X =
N∑
n=1

∑
i∈I

Hi
n(S

i
un
− Siun−1

) .
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The process

Mn =
n∑
k=1

∑
i∈I

Hi
k(S

i
uk
− Siuk−1

), n = 0, . . . , N

is a Q-local martingale with respect to the filtration (Fuk
). Now, it follows

from Lemma 4.2 that EQX
− � EQX

+. As a result, Q ∈ R. ��
Remark. If the NGA condition is satisfied, then each Si is an (Ft,P)-
semimartingale. This follows from the fact that the semimartingale property is
preserved under an equivalent change of measure (see [27; Ch. III, Th. 3.13]).

For discrete-time models with a finite number of assets the approach pro-
posed here agrees with the classical one: the NGA condition is equivalent to
the existence of an equivalent martingale measure, which, in turn, is equivalent
to the NA condition; the interval of fair prices of a contingent claim that is
bounded below coincides with the classical one. However, for continuous-time
models with a finite number of assets our approach turns out to be completely
different from the traditional approach developed in [12,15,18,19,28,31]. Let
us briefly describe the latter one.

In the traditional approach, the discounted price process S is assumed
to be an Rd-valued (Ft,P)-semimartingale. The “set of attainable incomes”
(although this term is not used in the traditional approach) has the form

A =

{∫ T

0

HudSu : H is an Rd-valued (Ft)-predictable S-integrable

process satisfying the admissibility condition, i.e., there exists

a ∈ R such that
∫ t

0

HudSu � a for any t ∈ [0, T ]
}
. (8)

(Here
∫ t
0
HudSu is the vector stochastic integral; its definition can be found

in [27; Ch. III, Section 6c] or [39]). Consider the sets

A1 = {X − Y : X ∈ A, Y ∈ L0
+},

A2 = A1 ∩ L∞,

A3 = closure of A2 in the norm topology of L∞.

The No Free Lunch with Vanishing Risk (NFLVR) condition is defined as:

A3 ∩ L0
+ = {0} .

The traditional FTAP (see [15, 28]) states that a model satisfies the NFLVR
condition if and only if there exists an equivalent sigma-martingale measure,
i.e., a measure Q ∼ P such that S is an (Ft,Q)-sigma-martingale. Recall that
a process (Xt)t∈[0,T ] is called a sigma-martingale if there exists a sequence of
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predictable sets (Dn)n∈N such that Dn ⊆ Dn+1,
⋃
nDn = Ω× [0, T ], and, for

any n, the stochastic integral
∫ ·
0
IDn

(s)dXs is a uniformly integrable martin-
gale (this definition was proposed by Goll and Kallsen [21]; it is equivalent to
the original definition of Chou [8]). The class of sigma-martingales contains
the class of local martingales and is wider as shown by the Émery exam-
ple (see [17]). However, an Rd+-valued sigma-martingale is necessarily a local
martingale as shown by Ansel and Stricker [1].

The set of fair prices of a contingent claim F is defined as the interval with
the endpoints V∗(F ) and V ∗(F ), where

V∗(F ) = sup{x : there exists X ∈ A such that x−X � F P-a.s.},
V ∗(F ) = inf{x : there exists X ∈ A such that x+X � F P-a.s.}

(here A is given by (8)). It follows from [15,18,19] that if the NFLVR condition
is satisfied and F is bounded below, then

V ∗(F ) = sup
Q∈Mσ

EQF, (9)

where
Mσ = {Q ∼ P : S is an (Ft,Q)-sigma-martingale}. (10)

Let us now give four examples and two remarks, which illustrate the prob-
lems that arise when one applies the traditional approach.

Table 1. The differences between the traditional approach to asset pricing in the
continuous-time setting and the proposed approach

Traditional approach Proposed approach

The price process Rd-valued semimartingale Infinite-dimensional
process with adapted,
càdlàg components
bounded below

Trading strategies Predictable strategies
satisfying the integrability
and the admissibility
conditions

Simple strategies with no
integrability and no
admissibility conditions
imposed

The variant of the
NA condition

NFLVR NGA

FTAP NFLVR ⇐⇒ existence of
an equivalent
sigma-martingale measure

NGA ⇐⇒ existence of an
equivalent martingale
measure

Set of fair prices of a
contingent claim

(V∗(F ), V ∗(F )) I(F )
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The first two examples and the remark following them show that the
admissibility condition leads to an inadmissible restriction of the class of
strategies (by a strategy we mean a process H that appears in (8)).

Example 4.3. Consider the Black–Scholes model, i.e., St = eμt+σBt , where
B is a Brownian motion. Let Ft = FSt , F = FT . Then the strategy H = −1
is not admissible. In other words, the admissibility condition prohibits in this
model the strategy that consists in the short selling of the asset at time 0 and
buying it back at time T . ��
Example 4.4. Consider the exponential Lévy model, i.e., St = eXt , where X
is a Lévy process. Let Ft = FSt , F=FT . Suppose that the jumps of X are not
bounded from above (most exponential Lévy models used in modern financial
mathematics satisfy this condition). One can check that if H is an admissible
strategy, then H(ω, t) � 0 P × μL-a.e, where μL is the Lebesgue measure on
[0, T ]. In other words, the admissibility condition prohibits in this model all
strategies employing short selling. Clearly, this is an unacceptable restriction:
for example, when hedging a put option in practice, one employs strategies H
with H < 0 (for more details, see [24; Ch. 14]). ��
Remark. Another drawback of the admissibility condition is as follows. Such a
condition is not imposed in the discrete-time models, but it is imposed in the
continuous-time models. This leads to an unpleasant unbalance. In particular,
when one embeds a discrete-time model into a continuous-time model, then
the set of attainable incomes defined for this continuous-time model by (8)
does not coincide with the set of attainable incomes defined for the original
discrete-time model.

The next example shows that in some models the traditional interval of
fair prices is too wide.

Example 4.5. Let St = I(t < T ) + ξI(t = T ), where ξ is an R+-valued ran-
dom variable with the property: for any a > 0, P(ξ < a) > 0 and P(ξ > a) > 0.
Let Ft = FSt , F = FT . Consider F = ST .

Let us find V∗(F ). Let H be a predictable admissible strategy and x ∈ R be
such that

x−
∫ T

0

HudSu � F . (11)

Note that ∫ T

0

HudSu = HTΔST = HT (ξ − 1) .

Since H is (Ft)-predictable and Ft = {∅, Ω} for t < T , HT is a real number.
The admissibility condition, together with the property P(ξ > a) > 0 for any
a > 0, shows that HT � 0. This, combined with (11) and with the property
P(ξ < a) > 0 for any a > 0, yields x � 0. Consequently, V∗(F ) = 0.

In a similar way one checks that V ∗(F ) = 1. Thus, the interval of fair
prices provided by the traditional approach is [0, 1]. On the other hand, the
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interval of fair prices provided by common sense consists only of point 1
since F can be replicated by buying the asset (whose discounted price is S) at
time 0. ��
Remark. In the model of the previous example, we have, due to the result of
Ansel and Stricker [1],

Mσ = {Q ∼ P : S is an (Ft,Q)-local martingale}

(Mσ is given by (10)). Furthermore, for any (Ft)-stopping time τ , we have
either τ = T P-a.s. or τ < T P-a.s. Consequently,

Mσ = {Q ∼ P : S is an (Ft,Q)-martingale} = {Q ∼ P : EQξ = 1}.

Therefore, infQ∈Mσ
EQF = 1. This shows that the equality V∗(F ) =

infQ∈Mσ
EQF , which is dual to (9), is not true for F bounded below.

One way to overcome this problem was proposed in [15]. Namely, the
authors of that paper altered the definition of V∗(F ) and V ∗(F ) by introducing
the so-called w-admissibility condition as a substitute for the admissibility
condition. However, a weak point of this definition is that it depends on the
choice of a so-called weight function.

The fourth example is the most striking one. It shows that the use of the
traditional approach may lead to mispricing contingent claims.

Example 4.6. Let St = |Bt|−1, where B is a 3-dimensional Brownian
motion started at a point B0 �= 0. Let Ft = FSt , F = FT . Without loss
of generality, B2

0 = B3
0 = 0. Note that

EST = E((B1
T )2 + (B2

T )2 + (B3
T )2)−1/2 � E((B2

T )2 + (B3
T )2)−1/2 =

const√
T

.

We take T large enough, so that EST < S0 (actually, EST < S0 for any
T > 0). Consider F = ST .

Let us find V ∗(F ). Applying Itô’s formula and P. Lévy’s characterization
theorem (see [36; Ch. IV, Th. 3.6]), we conclude that

St = S0 +
∫ t

0

S2
udWu, t ∈ [0, T ], (12)

where W is an (Ft,P)-Brownian motion. Furthermore, Itô’s theorem (see [34;
Th. 5.2.1]) guarantees that (S,W ) is a strong solution of stochastic differential
equation (12), i.e., FSt ⊆ FWt . It is clear from (12) that FWt ⊆ FSt , and
hence, FWt = FSt = Ft. Set Ft = E(F | Ft). By the representation theorem for
Brownian motion (see [36; Ch. V, Th. 3.5]), there exists an (Ft)-predictable
W -integrable process K such that

Ft = EF +
∫ t

0

KudWu, t ∈ [0, T ].
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In view of (12),

Ft = EF +
∫ t

0

Ku
S2
u

dSu = EF +
∫ t

0

HudSu, t ∈ [0, T ] . (13)

Since Ft � 0, the strategy H is admissible. Consequently, V ∗(F ) � EF .
Similarly, by considering Fnt = E(FI(F � n) | Ft), we prove that

V∗(F ) � EF . As a result, the fair price provided by the traditional ap-
proach is EF = EST . On the other hand, the fair price provided by common
sense is S0, which is not equal to EST ! ��

The problems described above do not arise in the approach proposed in
this paper.

Indeed, no admissibility restriction is imposed in this approach, which
solves the problems described in Examples 4.3, 4.4, and the remark following
Example 4.4.

In Example 4.5, we have, due to Theorem 3.10,

I(F ) = {EQF : Q ∈M} = {EQF : Q ∼ P, EQξ = 1} = {1} ,

which agrees with common sense.
By Theorem 3.10, the left endpoint of I(F ) coincides with infQ∈M EQF

for all F bounded below, which solves the problem mentioned in the remark
following Example 4.5.

Finally, in Example 4.6, P is the only local martingale measure for S.
Indeed, if Q ∼ P is a local martingale measure for S, then S satisfies equa-
tion (12) with respect to Q. By Itô’s theorem (see [34; Th. 5.2.1]), there are
strong existence and pathwise uniqueness for this equation, and the Yamada–
Watanabe theorem (see [36; Ch. IX, Th. 1.7]) implies uniqueness in law. Hence,
Q = P. Since P is not a martingale measure, there exists no equivalent mar-
tingale measure. This means that the model considered in Example 4.6 does
not satisfy the NGA condition, and the paradox is solved.

Remark. An “arbitrage opportunity” in the model of Example 4.6 can be
constructed as follows. Consider the strategy G = H− 1, where H is given by
(13). Then∫ T

0

GudSu =
∫ T

0

HudSu − ST + S0 = −EPST + S0 > 0 .

The strategy G is not admissible, so it does not yield a free lunch with van-
ishing risk opportunity. It does not yield a generalized arbitrage opportunity
either, but it can be used to construct a generalized arbitrage opportunity as
follows. There exist simple strategies (H̃n)n∈N such that

sup
t∈[0,T ]

∣∣∣∣∫ t

0

H̃nudSu −
∫ t

0

HudSu

∣∣∣∣ P−−−−−−→
n→inf

t
y

0 .
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Set

τn = inf
{
t ∈ [0, T ] :

∫ t

0

H̃nudSu � −EPST − 1
}
,

Hnt = H̃ntI(t � τn), t ∈ [0, T ] .

Since ∫ t

0

HudSu � −EPST , t ∈ [0, T ] ,

we get ∫ T

0

HnudSu
P−−−−→

n→∞

∫ T

0

HudSu = ST − EPST .

Set Gn = Hn − 1. Then, for Xn =
∫ T
0
GnudSu, we have Xn ∈ A, where A

is given by (7). Furthermore, Xn � −ST +S0−EPST −1 P-a.s. for any n ∈ N

and
Xn

P−−−−→
n→∞

S0 − EPST > 0 .

Note that Z := ST −S0 belongs to B, where B is given by (2). Take Yn ∈ L0
+,

n ∈ N such that

Xn − Yn
Z + γ(Z)

=
Xn

Z + γ(Z)
∧ (S0 − EPST ) ,

and then
Xn − Yn
Z + γ(Z)

σ(L∞,L1(P))−−−−−−−−→
n→∞

S0 − EPST
Z + γ(Z)

.

This yields a generalized arbitrage opportunity in the model of Example 4.6.

One of the problems associated with the model under consideration is re-
lated to the change of numéraire. It is as follows. Let S = (S1

t , . . . , S
d
t )t∈[0,T ]

be the price process of d assets. We assume that each of its components is
strictly positive. Fix α1, . . . , αd � 0 with

∑d
i=1 α

i > 0 and define a numéraire
as the combination

∑d
i=1 α

iSi. Now, define the discounted price process as
S = S/

∑d
i=1 α

iSi and define the set of attainable A incomes by (7) or
(8), depending on the choice of the approach. Now, choose another combi-
nation

∑d
i=1 β

iSi as a numéraire, define the new discounted process S̃ as
S̃ = S/

∑d
i=1 β

iSi and define the set of attainable incomes Ã through S̃. The
problem is whether the NFLVR/NGA property holds or not for both models
(Ω,F ,P, A) and (Ω,F ,P, Ã) simultaneously.

In the traditional approach, the answer is negative as shown by the ex-
ample below (it is borrowed from [13]). Let us mention in this connection the
papers [14, 16] devoted to the study of conditions under which the NFLVR
property is preserved under the change of numéraire.

Example 4.7. Let S0 = 1 and S1 = |B|−1, where B is a 3-dimensional
Brownian motion started at a point B0 �= 0. Let Ft = FSt , F = FT . If
we take S = S/S0, then the model (Ω,F ,P, A) (A is defined by (8)) satisfies
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the NFLVR condition since the process S1 is a local martingale with respect to
the original probability measure (see representation (12)). On the other hand,
if we take S̃ = S/S1, then S̃0 = |B| (this is a 3-dimensional Bessel process).
If Q is an equivalent sigma-martingale measure for S̃, then, by the result of
Ansel and Stricker [1], S̃0 is an (Ft,Q)-local martingale. Using Itô’s formula,
one easily checks that the quadratic variation of S̃0 is given by [S̃0]t = t.
P. Lévy’s characterization theorem (see [36; Ch. IV, Th. 3.8]) now implies
that S̃0 is a Q-Brownian motion. But this contradicts the positivity of S̃0.
Hence, the model (Ω,F ,P, Ã) does not satisfy the NFLVR condition. ��

In contrast, the change of numéraire preserves the NGA property as shown
by the statement below.

Theorem 4.8 (Change of numéraire). Let A (resp., Ã) be defined
through S (resp., S̃) by (7). Then the models (Ω,F ,P, A) and (Ω,F ,P, Ã)
satisfy or do not satisfy the NGA condition simultaneously.

The proof employs the following statement (see [27; Ch. III, Prop. 3.8]).

Lemma 4.9. Let (Ω,F , (Ft)t∈[0,T ],P) be a filtered probability space and
Q ) P. Let Zt = dQ|Ft

dP|Ft
be the density process of Q with respect to P. Then a

process M is an (Ft,Q)-martingale if and only if MZ is an (Ft,P)-martingale.

Proof of Theorem 4.8. Suppose that the model (Ω,F ,P, A) satisfies the NGA
condition. Then there exists a probability measure Q ∼ P such that S is an
(Ft,Q)-martingale. Let Z denote the density process of Q with respect to P.
Consider the process

Z̃ = cZ

∑d
i=1 β

iSi∑d
i=1 α

iSi
,

where the constant c is chosen in such a way that Z̃0 = 1. As S is an (Ft,Q)-
martingale, then, by Lemma 4.9, Z̃ is an (Ft,P)-martingale. Hence, Z̃ is the
density process of the probability measure Q̃ = Z̃TP with respect to P (note
that Q̃ ∼ P since Z̃ is strictly positive). As S is an (Ft,Q)-martingale, then,
by Lemma 4.9, the process S̃Z̃ = cS Z is an (Ft,P)-martingale, which (again
by Lemma 4.9) implies that S̃ is an (Ft, Q̃)-martingale. Hence, the model
(Ω,F ,P, Ã) satisfies the NGA condition. ��

5 Dynamic model with infinite time horizon

Let (Ω,F , (Ft)t∈R+ ,P) be a filtered probability space. We assume that F0 is
P-trivial. Let (Sit)t∈R+ , i ∈ I be a family of real-valued (Ft)-adapted càdlàg
processes with components bounded below. From the financial point of view,
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Sit is the discounted price of the ith asset at time t. Define the set of attainable
incomes by

A =

{
N∑

n=1

∑
i∈I

Hi
n(Si

un
− Si

un−1) : N ∈ N, u0 � · · · � uN are

(Ft)-stopping times such that {uN = ∞} ⊆
{
for any i, ∃ lim

t→∞
Si

t

}
,

Hi
n is Fun−1 -measurable, and Hi

n =0 for all i, except for a finite set

}
.

(14)

Notation. Set

M = {Q ∼ P : for any i ∈ I, Si is an (Ft, Q)-uniformly integrable martingale} .

Key Lemma 5.1. Suppose that I is countable and, for all i, the limit Si∞ =
limt→∞ Sit exists P-a.s. Then, for the model (Ω,F ,P, A), we have

R = R
(∑
i∈I

λi(Si∞ − Si0)
)

=M,

where the constants λi > 0 are chosen in such a way that
∑
i∈I λ

iSiT < ∞
a.s. and

∑
i∈I λ

iSi0 <∞.

Proof. Note that (Sit)t∈R+ is an (Ft,Q)-uniformly integrable martingale if and
only if (Sit)t∈[0,∞] is a (Gt,Q)-martingale, where

Gt =

{
Ft if t ∈ R+,

F if t =∞

(this statement follows from [36; Ch. II, Th. 3.1]). The desired statement can
now be proved in the same way as Key Lemma 4.1. ��

Since Key Lemma 5.1 contains an additional assumption, Theorem 3.6
cannot be applied immediately, and the proof of the FTAP in this model
requires a bit of additional work.

Corollary 5.2. Suppose that I is countable. Then the model (Ω,F ,P, A) sat-
isfies the NGA condition if and only if there exists an equivalent uniformly
integrable martingale measure (i.e., M �= ∅).

Proof. Step 1. Let us prove the “only if” implication. Lemma 3.7 applied to the
σ(L∞, L1(P))-closed convex cone A4(0) yields a probability measure Q ∼ P
such that EQX � 0 for all X ∈ A that is bounded below. For any i ∈ I, any
u � v ∈ R+, and any D ∈ Fu such that Siu is bounded on D, the random
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variable ID(Siv − Siu) is bounded below, and hence, EQID(Siv − Siu) � 0. This
shows that Si is an (Ft,Q)-supermartingale. By Doob’s supermartingale con-
vergence theorem (see [36; Ch. II, Th. 2.10]), the limit limt→∞ Sit exists Q-a.s.,
and hence, P-a.s. Now, Theorem 3.6, combined with Key Lemma 5.1, yields
the desired statement.

Step 2. Let us prove the “if” implication. Take Q ∈ M. Then, by Doob’s
theorem, for any i ∈ I, limt→∞ Sit exists Q-a.s., and hence, P-a.s. Now, The-
orem 3.6, combined with Key Lemma 5.1, yields the desired statement. ��

It has been shown in the proof of Corollary 5.2 that the NGA condition
implies the existence of limt→∞ St P-a.s. Hence, Theorem 3.10 can be applied
with no additional assumptions.

It would be more natural to define the set of attainable incomes in this
model as

A =

{
N∑
n=1

∑
i∈I

Hi
n(S

i
un
− Siun−1

) : N ∈ N, u0 � · · · � uN <∞ are

(Ft)-stopping times, Hi
n is Fun−1-measurable,

and Hi
n = 0 for all i, except for a finite set

}
.

However, for this choice of A we can only establish the equality R = M (in
the lemma below, I is arbitrary), but we cannot prove that Assumption 3.5
is satisfied.

Lemma 5.3. For the model (Ω,F ,P, A), we have R = M.

Proof. Step 1. The inclusion M⊆ R follows from the similar inclusion in Key
Lemma 5.1.

Step 2. Let us prove the inclusion R ⊆M. Choose Q ∈ R. Fix i ∈ I. For
any u � v ∈ R+ and D ∈ Fu, we have EQID(Siv − Siu) = 0 since Si is bounded
below. Hence, Si is an (Ft,Q)-martingale.

By Doob’s supermartingale convergence theorem, there exists a limit
Si∞ = (a.s.) limt→∞ Sit . By the Fatou lemma for conditional expectations,

EQ(Si∞ | Ft) � Sit , t � 0 . (15)

In particular, EQS
i
∞ � Si0.

Suppose that EQS
i
∞ < Si0. The process Xt = EQ(Si∞ | Ft), t � 0 has a

càdlàg modification. Furthermore, Xt
Q-a.s.−−−→
t→∞

Si∞. Consequently, the stopping
time

τ = inf
{
t � 0 : |Sit −Xt| �

Si0 − EQS
i
∞

2

}
is finite Q-a.s. From Q ∈ R and the positivity of Si it follows that EQS

i
τ = Si0.
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Thus,

EQXτ � Si0 −
Si0 − EQS

i
∞

2
> EQS

i
∞ .

But this contradicts the equality EQXτ = EQS
i
∞, which is a consequence of

the optional stopping theorem for uniformly integrable martingales (see [36;
Ch. II, Th. 3.2]). As a result, EQS

i
∞ = Si0. This, combined with (15), yields

EQ(Si∞ | Ft) = Sit , t � 0. The proof is completed. ��
The traditional approach to arbitrage pricing in dynamic models with

infinite time horizon is the same as the one for continuous-time models with
a finite time horizon. The only difference is that the set of attainable incomes
given by (8) should be replaced by

A =
{∫ ∞

0

HudSu : H is (Ft)-predictable, S-integrable,

admissible, and such that lim
t→∞

∫ t

0

HudSu exists P-a.s.
}
.

Here
∫∞
0
HudSu := limt→∞

∫ t
0
HudSu. (This might be called an improper

stochastic integral. Alternatively, one can use the stochastic integral up to
infinity; see [7]. The FTAP remains the same for these two types of integrals).

Many models with infinite time horizon that are arbitrage-free in the tradi-
tional approach (i.e., satisfy the NFLVR condition for predictable admissible
strategies) are not arbitrage-free in the proposed approach (i.e., do not satisfy
the NGA condition for simple strategies). This is illustrated by the following
example.

Example 5.4. Let St = eBt−t/2, where B is a Brownian motion. Let Ft =
FSt , F =

∨
t�0 Ft. This model satisfies the NFLVR condition since the process

S is a martingale (and hence, a sigma-martingale) with respect to the original
probability measure. On the other hand, this model does not satisfy the NGA
condition. Indeed, consider the stopping time v = inf{t � 0 : St = 1/2}. The
random variable −Sv + S0 = 1/2 belongs to the set A given by (14). Hence,
the NGA condition is violated.

From the financial point of view, the strategy providing generalized arbi-
trage in this model consists in short selling the asset at time 0 and buying it
back at time v. Note that this strategy is prohibited in the traditional approach
by the admissibility condition. ��

Remark. A “buy and hold” strategy consists in buying an asset, waiting un-
til its discounted price reaches some higher level, and selling it back at that
time. The opposite (it may be called “sell and wait”) strategy consists in the
short selling of an asset, waiting until its discounted price reaches some lower
level and buying it back at that time. In many models (like the one described
above) such “sell and wait” strategies lead to arbitrage opportunities. In the
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traditional approach, these strategies are prohibited by the admissibility con-
dition. In the approach proposed here, such strategies are allowed, but the
models where they yield arbitrage opportunities are “prohibited,” in the sense
that they do not satisfy the NGA condition. Indeed, if the NGA condition is
satisfied, then there exists an equivalent uniformly integrable martingale mea-
sure. But a uniformly integrable martingale with a strictly positive probability
never reaches a preassigned level, so in models satisfying the NGA condition
the “sell and wait” strategy does not yield an arbitrage opportunity.

To conclude the section, we show that no “stationary” model with infinite
time horizon satisfies the NGA condition. We say that a real-valued process
Z has stationary increments if Zt+h − Zs+h

Law= Zt − Zs for all s � t ∈ R+,
h ∈ R+.

Proposition 5.5. Let St = S0eZt where Z has stationary increments and
P(Zt �= Z0) > 0 for some t ∈ R+. Then the NGA condition is not satisfied.

Proof. Suppose that the NGA condition is satisfied. Without loss of gener-
ality, we can assume that P(Zt �= Z0) > 0 for some t ∈ R+. The reasoning
used in the proof of Corollary 5.2 shows that limt→∞ St exists P-a.s. Hence,
limt→∞ Zt =: Z∞ exists P-a.s. (this limit takes on values in [−∞,∞)). Denote
P(Z∞ > −∞) by p. Fix ε > 0 and find N ∈ N such that N > 1/ε and

P(Z∞ > −∞ and |Zn − Z∞| < ε for any n � N) > p− ε .

Then
P(Z∞ > −∞ and |Z2N − ZN | < 2ε) > p− ε .

Since Z2N − ZN
Law= ZN , we get P(|ZN | < 2ε) > p − ε. As ε can be chosen

arbitrarily small, we conclude that P(Z∞ = 0) = p. Hence, Z∞ = 0 P-a.e. on
the set {Z∞ > −∞}. This means that Z∞ takes on only values −∞ and 0.

Take t ∈ R+ such that P(Zt �= Z0) > 0. Choose α > 0 such that
P(|Zt − Z0| > α) > 0. For any T ∈ R+,

P(|ZT+t − ZT | > α) = P(|Zt − Z0| > α) > 0 .

Consequently, P(Z∞ = 0) < 1. Thus, S∞ takes on only values 0 and S0, and
P(S∞ = 0) > 0. Then M = ∅, and, by Corollary 5.2, the NGA condition is
not satisfied. ��
Corollary 5.6. Let St = S0eZt where Z is a Lévy process that is not identi-
cally equal to zero. Then the NGA condition is not satisfied.

6 Model with european call options as basic assets

Let (Ω,F ,P) be a probability space and T ∈ [0,∞]. Let ST be an R+-valued
random variable. From the financial point of view, ST is the price of some
asset at time T . Let K ⊆ R+ be the set of strike prices of European call
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options on this asset with maturity T (in practice K is finite, but in theory it
is often assumed that K = R+) and let ϕ(K), K ∈ K be the price at time 0 of
a European call option with the payoff (ST −K)+. Define the set of attainable
incomes by

A =

{
N∑
n=1

hn((ST −Kn)+ − ϕ(Kn)) : N ∈ N, Kn ∈ K, hn ∈ R

}
.

From the financial point of view, A is the set of discounted incomes that can
be obtained by trading at times 0 and T European call options on “our” asset
with maturity T . We assume that 0 ∈ K, which means the possibility to trade
the underlying asset.

Notation. Set

M = {Q ∼ P : LawQ ST ∈ D} ,

where

D = {ψ′′ : ψ is convex on R+, ψ
′
+(0) � −1, lim

x→∞
ψ(x) = 0 ,

and ψ(K) = ϕ(K), K ∈ K} .

Here ψ′
+ denotes the right-hand derivative and ψ′′ denotes the second deriv-

ative taken in the sense of distributions (i.e., ψ′′((a, b]) = ψ′
+(b) − ψ′

+(a))
with the convention: ψ′′({0}) = ψ′

+(0) + 1 (thus, ψ′′ is a probability measure
provided that ψ′

+(0) � −1).

Key Lemma 6.1. For the model (Ω,F ,P, A), we have

R = R(ST − ϕ(0)) = M .

Proof. Step 1. The inclusion R ⊆ R(ST − ϕ(0)) follows from Lemma 3.4.
Step 2. Let us prove the inclusion R(ST − ϕ(0)) ⊆ M. Fix Q ∈ R(ST −

ϕ(0)). By considering the function ψ(x) = EQ(ST − x)+, we conclude that
Q ∈M.

Step 3. Let us prove the inclusion M⊆ R. Fix Q ∈M. Then

EQ(ST −K)+ =
∫

R+

(x−K)+ψ′′(dx) = ψ(K) = ϕ(K), K ∈ K .

Consequently, EQX = 0 for all X ∈ A, which implies that Q ∈ R. ��
Recalling Theorems 3.6 and 3.10, we get

Corollary 6.2. Let K = R+.

(i) The NGA is satisfied if and only if

(a) ϕ is convex;
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(b) ϕ′
+(0) � −1;

(c) limx→∞ ϕ(x) = 0;
(d) ϕ′′ ∼ LawP ST .

(ii) Suppose that the NGA is satisfied. Let F = f(ST ), where f is bounded
below. Then

I(F ) =

⎧⎪⎨⎪⎩
{∫

R+

f(x)ϕ′′(dx)
}

if
∫

R+

f(x)ϕ′′(dx) <∞,

∅ otherwise.

We conclude this section by three interesting examples. The first example
shows that the ordinary NA condition (which means that A ∩ L0

+ = {0}) is
too weak for the model under consideration.

Example 6.3. Let K = R+,

P(ST ∈ A) =
1
2

(
I(1 ∈ A) +

∫
A

e−xdx
)
, A ∈ B(R+) ,

and ϕ(K) = e−K . This model satisfies the NA condition. Indeed, suppose that
there exists

X =
N∑
n=1

hn((ST −Kn)+ − ϕ(Kn)) ∈ A

such that X � 0 P-a.s. and P(X > 0) > 0. Note that X can be represented as
X = f(ST ) with a continuous function f : R+ → R satisfying

∫
R+

f(x)e−xdx =
N∑
n=1

hn

∫
R+

((x−Kn)+ − e−Kn)e−xdx = 0 . (16)

The above assumptions on X imply that f � 0 everywhere and f is not iden-
tically equal to zero. But this contradicts (16). Thus, the NA condition is
satisfied.

Consider now F = I(ST = 1). For every ε > 0, consider the function
fε(x) = (1− ε−1|x− 1|)+. It is seen from the representation

fε(ST ) =
1
ε
(ST − 1 + ε)+ − 2

ε
(ST − 1)+ +

1
ε
(ST − 1− ε)+

that the random variables

Xε = fε(ST )−
∫

R+

fε(x)e−xdx
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belong to A and

Xε +
∫

R+

fε(x)e−xdx � F.

As
∫

R+
fε(x)e−xdx −−→

ε↓0
0, it is reasonable to conclude that the fair price of

F should not exceed 0 (thus, the fair price should equal 0 since F is positive).
But on the other hand, P(F = 1) = 1/2, so that we obtain a contradiction
with common sense. The reason is that this model is not “fair” because one
can construct “asymptotic arbitrage” taking Xε with ε ↓ 0. ��

The second example shows that the NFL condition (see Remark (iii) fol-
lowing Definition 3.2) is also too weak for the model under consideration.

Example 6.4. Let K = R+, P(ST � x) = 1 − e−x, and ϕ(K) = e−K + 1.
This model satisfies the NFL condition. Indeed, let

X =
N∑
n=1

hn((ST −Kn)+ − ϕ(Kn)) ∈ A

be bounded below. Note that X can be represented as X = f(ST ) with a con-
tinuous function f : R+ → R satisfying

lim
x→∞

f(x)
x

=
N∑
n=1

hn .

The assumption on X implies that
∑N
n=1 hn � 0. Then we can write

X �
N∑
n=1

hn
(
(ST−Kn)+− e−Kn

)
= g(ST )−

∫
R+

g(x)e−xdx = g(ST )−EPg(ST )

with g(x) =
∑N
n=1 hn(x−Kn)+. This implies that, for any X ∈ A4(0) (A4(0)

is defined by (3)), we have EPX � 0, so that the NFL condition is satisfied.
On the other hand, in this model the price of a European call option tend

to 1 as the strike price tend to +∞, which contradicts common sense. Thus,
this model is not “fair” since one can construct “asymptotic arbitrage” by
selling European call options with strike price K → +∞. ��

The third example shows that I(F ) might not coincide with the interval
whose endpoints are V∗(F ) and V ∗(F ) defined by (5) and (6). Thus, in general
the proposed approach to arbitrage pricing yields a finer interval of fair prices
than the traditional approach based on sub- and super-replication.

Example 6.5. Let K = R+, P(ST � x) = 1 − e−x, and ϕ(K) = e−K . This
model satisfies the NGA condition since P ∈ M. Choose D ∈ B(R+) such
that, for any a < b ∈ R+, the sets D ∩ [a, b] and [a, b] \ D have a strictly
positive Lebesgue measure. Consider F = I(ST ∈ D).
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Let us find V ∗(F ) defined by (6). Let x ∈ R and

X =
N∑
n=1

hn((ST −Kn)+ − ϕ(Kn)) ∈ A

be such that x+X � F P-a.s. We can write

X = g(ST )−
N∑
n=1

hne−Kn = g(ST )−
∫

R+

g(y)e−ydy

with g(y) =
∑N
n=1 hn(y −Kn)+. Thus,

x+ g(ST )−
∫

R+

g(y)e−ydy � I(ST ∈ D) P-a.s.

Using the continuity of g and the properties of D, we get

x+ g(z)−
∫

R+

g(y)e−ydy � 1 for any z ∈ R+ .

This implies that x � 1. Consequently, V ∗(F ) = 1.
In a similar way one checks that V∗(F ) = 0. On the other hand, by Corol-

lary 6.2 (ii), I(F ) =
{∫
D

e−ydy
}
.

7 Mixed model

Let (Ω,F , (Ft)t∈[0,T ],P) be a filtered probability space. We assume that F0 is
P-trivial. Let (St)t∈[0,T ] be an R+-valued (Ft)-adapted càdlàg process. From
the financial point of view, St is the (discounted) price of some asset at time t.
Let ϕt(K) be the price of a European call option on this asset with ma-
turity t and strike price K (we assume that such an option exists for any
t ∈ [0, T ], K ∈ R+). Define the set of attainable incomes by

A =

{
M∑
m=1

Hm(Sum
− Sum−1) +

N∑
n=1

hn((Svn
−Kn)+ − ϕvn

(Kn)) :

M,N ∈ N, u0 � · · · � uM are (Ft)-stopping times,

Hn is Fun
-measurable, hn ∈ R, vn ∈ [0, T ], Kn ∈ R+

}
.

From the financial point of view, A is the set of discounted incomes that can
be obtained by trading “our” asset on the interval [0, T ] and trading European
call options on this asset.
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Notation. Set

M = {Q ∼ P : S is an (Ft,Q)-martingale and LawQ St = ϕ′′
t , t ∈ [0, T ]}

provided that, for all t ∈ [0, T ], the function ϕt is convex, (ϕt)′+(0) � −1, and
limx→∞ ϕt(x) = 0. Otherwise, we set M = ∅.

Key Lemma 7.1. For the model (Ω,F ,P, A), we have

R = R(ST − S0) =M .

Proof. Step 1. The inclusion R ⊆ R(ST − S0) follows from Lemma 3.4.
Step 2. Let us prove the inclusion R(ST −S0) ⊆M. Take Q ∈ R(ST −S0).

The proof of Key Lemma 4.1 (Step 2) shows that S is an (Ft,Q)-martingale.
For any t ∈ [0, T ], K ∈ R+, we have

EQ(St − S0 − (St −K)+ + ϕt(K)) = 0

since the random variable under the expectation belongs to A and is bounded.
By the martingale property of S, EQ(St−S0) = 0, which implies that EQ(St−
K)+ = ϕt(K). As a result, Q ∈M.

Step 3. Let us prove the inclusion M⊆ R. Take Q ∈M. Fix

X =
M∑
m=1

Hm(Sum
−Sum−1)+

N∑
n=1

hn((Svn
−Kn)+−ϕvn

(Kn)) = X1 +X2 ∈ A .

Clearly, X2 is Q-integrable and EQX2 = 0. The proof of Key Lemma 4.1
(Step 3) shows that EQX

−
1 � EQX

+
1 . This leads to the inequality EQX

−�
EQX

+. As a result, Q ∈ R. ��
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Summary. In this paper we apply the general framework introduced in [2] to two
models with transaction costs:

• a dynamic model with an infinite number of assets;
• a model with European call options as basic assets.

In particular, it is proved that a dynamic model with an infinite number of assets
satisfies the No Generalized Arbitrage condition (this notion was introduced in [2])
if and only if there exist an equivalent measure and a martingale with respect to
this measure that lies (componentwise) between the discounted ask and bid price
processes. Furthermore, the set of fair prices of a contingent claim coincides with
the set of expectations of the payoff with respect to these measures.

Our approach to arbitrage pricing in models with transaction costs differs from
the existing ones.

Key words: Delta-martingale, Fair price, Fundamental theorem of asset
pricing, General arbitrage pricing model, Generalized arbitrage, Risk-neutral
measure, Set of attainable incomes, Transaction costs

1 Introduction

1.1 Purpose of the paper

Models with transaction costs have recently attracted much attention in the
financial mathematics literature. Let us mention, in particular, the papers [4],
[6], [12], [13], [14], [15], [16], [17], [19], [22] dealing with arbitrage pricing in
such models. These papers differ in the level of generality, conditions imposed
on price processes, definition of a strategy, definition of a price, and the form
of representation of results.

In the paper [2], we introduced a unified approach to pricing contingent
claims through a new concept of generalized arbitrage. (The necessary defini-



448 A. Cherny

tions and statements from [2] are collected in Section 2). In the framework of a
general arbitrage pricing model, we proved in [2] the fundamental theorem of
asset pricing and established the form of the fair price intervals. The general
approach of [2] allows one to consider in a simple and unified manner various
models of arbitrage pricing theory, some of which have so far been investigated
separately and by different techniques. These include

• static as well as dynamic models;
• models with an infinite number of assets;
• models with transaction costs.

The purpose of this paper is to “project” the general results of [2] on two
models with transaction costs.

1.2 Dynamic model with an infinite number of assets

This model is considered in Section 3. In order to apply the general results
of [2], one only needs to establish the structure of the set of equivalent risk-
neutral measures (see Definition 2.3). We prove that an equivalent measure
Q is a risk-neutral measure if and only if there exists a Q-martingale that
lies componentwise between the discounted ask and bid price processes. Then
the general results of [2] show that the absence of generalized arbitrage (see
Definition 2.2) is equivalent to the existence of such a measure, while the set
of fair prices of a contingent claim coincides with the set of expectations of
its payoff with respect to the class of these measures.

Our approach to arbitrage pricing in dynamic models with transaction
costs is different from the approaches of all papers mentioned above. First of
all, our model is completely general in the sense that we consider an arbi-
trary Ω, the continuous-time case (so that the discrete-time case is covered as
well), and arbitrary (not only proportional) transaction costs. There are no
assumptions on the probabilistic structure of price evolution (like the assump-
tion that the price is a geometric Brownian motion). We consider a model with
arbitrarily many assets, while all papers mentioned above consider only finitely
many assets. An important conceptual difference between our model and the
majority of models mentioned above is as follows. In most of them a contin-
gent claim is modeled as a multidimensional vector (its ith component means
the amount of assets of type i obtained by a holder of the claim). In contrast,
here we use the monetary representation, i.e., we consider a contingent claim
as a one dimensional random variable. Another important distinctive feature
of our approach is that the price of a contingent claim is defined not through
sub- and super-replication, but directly through the No Generalized Arbitrage
condition (see Definition 2.7).

In most aspects mentioned above, our model is similar to the model of
Jouini and Kallal [12], but there is a number of essential differences between
the two models. The approach of Jouini and Kallal might be considered a
“transaction cost extension” of the approach of Harrison and Kreps [8], while
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our model is the “transaction cost projection” of the general arbitrage pricing
model introduced in [2]. The most important difference between our approach
and the approaches of [8, 12] is that these papers employ the L2-setting (in
particular, the price processes and the capital processes are assumed to be
square-integrable and the densities dQ/dP or risk-neutral measures should
also be square-integrable), while we employ the L0-setting.

We also study in our framework the convergence of the fair price inter-
vals of a European call option (ST − K)+ in the Black–Scholes model with
proportional transaction costs when the coefficient of transaction costs tend to
zero. It is shown that the fair price interval tend to the trivial one, i.e., to
((S0 −K)+, S0). Although our framework differs from the existing ones, this
result agrees with the results of [5], [20], and [24], where the same problem
was considered. The financial interpretation is as follows: in the model under
consideration, the fair price interval obtained by dynamic hedging coincides
with the fair price interval obtained by static hedging.

1.3 Model with european call options as basic assets

This model is considered in Section 4 (it is again a particular case of the general
arbitrage pricing model). We provide a simple geometric representation of the
class of risk-neutral measures. The frictionless variant of this model is very
popular in financial mathematics (see, in particular, [1], [10]) and was analyzed
in [2; Sect. 6] within our general framework. The main idea of considering such
models is that taking into account the market prices of traded derivatives
enables one to narrow considerably fair price intervals.

Acknowledgements. I am thankful to an anonymous referee for the careful reading
of the manuscript and important suggestions.

2 Generalized arbitrage

Here we recall some basic definitions and facts from [2].

Definition 2.1. Ageneral arbitrage pricing model is a quadruple (Ω,F,P, A),
where (Ω,F,P) is a probability space and A is a convex cone in the space of
all random variables.

From the financial point of view, A is the set of all discounted incomes
that can be obtained by trading a certain amount of assets. In the frictionless
models, A is a linear space. In the models with transaction costs, A is a
cone.
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Notation. (i) Set

B =
{
Z ∈ L0 : there exist (Xn)n∈N ∈ A and a ∈ R

such that Xn � a P-a.s. and Z = lim
n→∞

Xn P-a.s.
}
. (1)

(ii) For Z ∈ B, denote γ(Z) = 1− ess infω∈Ω Z(ω) and set

A1 = {X − Y : X ∈ A, Y ∈ L0
+},

A2(Z) =
{

X

Z + γ(Z)
: X ∈ A1

}
,

A3(Z) = A2(Z) ∩ L∞,

A4(Z) = closure of A3(Z) in σ(L∞, L1(P)). (2)

Here L0
+ is the set of R+-valued elements of L0; L∞ is the space of bounded

elements of L0; σ(L∞, L1(P)) denotes the weak topology on L∞ induced by
the space L1(P) of the P-integrable random variables on (Ω,F,P).

Definition 2.2. A model (Ω,F,P, A) satisfies the No Generalized Arbitrage
(NGA) condition if for all Z ∈ B, we have A4(Z) ∩ L0

+ = {0}.

Definition 2.3. An equivalent risk-neutral measure is a probability measure
Q ∼ P such that EQX

− � EQX
+ for all X ∈ A (we use the notation

X− = (−X) ∨ 0, X+ = X ∨ 0). The expectations EQX
− and EQX

+ here
may take on the value +∞. The set of equivalent risk-neutral measures will
be denoted by R.

Notation. For Z ∈ B, we will denote by R(Z) the set of all probability mea-
sures Q ∼ P with the property: for any X ∈ A such that X � −αZ − β P-a.s.
for some α, β ∈ R+, we have EQ|X| <∞ and EQX�0.

Lemma 2.4. For any Z ∈ B, we have R ⊆ R(Z).

Assumption 2.5. There exists Z0 ∈ B such that R = R(Z0) (both these
sets may be empty).

Theorem 2.6 (Fundamental theorem of asset pricing). Suppose that
Assumption 2.5 is satisfied. Then the model (Ω,F,P, A) satisfies the NGA
condition if and only if there exists an equivalent risk-neutral measure.

Now, let F be a random variable on (Ω,F,P) meaning the discounted
payoff of a contingent claim.

Definition 2.7. A real number x is a fair price of F if the extended model
(Ω,F,P, A+ {h(F − x) : h ∈ R}) satisfies the NGA condition. The set of fair
prices of F will be denoted by I(F ).
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Theorem 2.8 (Pricing contingent claims). Suppose that the model
(Ω,F ,P, A) satisfies Assumption 2.5 and the NGA condition, while F is
bounded below. Then

I(F ) = {EQF : Q ∈ R}.
The expectation EQF here is taken in the sense of finite expectations, i.e., we
consider only those Q, for which EQF <∞.

Let us illustrate the setup introduced above by a static model with a finite
number of assets.

Example 2.9. Let (Ω,F ,P) be a probability space. Let Sa0 , S
b
0 ∈ Rd and Sa1 ,

Sb1 be Rd-valued random vectors. From the financial point of view, Sain (resp.,
Sbin ) is the discounted ask (resp., bid) price of the ith asset at time n (so that
San � Sbn componentwise). Define the set of attainable incomes by

A =

{
d∑
i=1

[
gi(Sbi1 − Sai0 ) + hi(−Sai1 + Sbi0 )

]
: gi, hi ∈ R+

}
.

Then the NGA condition is equivalent to the traditional No Arbitrage (NA)
condition defined as: A ∩ L0

+ = {0}. (Consequently, the set of fair prices
would remain unchanged if we replaced the NGA condition in the definition
of a fair price by the NA condition.) Indeed, the implication NGA⇒NA is
obvious, while the implication NA⇒NGA is proved as follows. Assume the
NA condition and consider the measure P′ = c(‖Sa1‖ ∨ ‖Sb1‖ ∨ 1)−1P, where
c is the normalizing constant. By the Kreps–Yan theorem (see [18] or [25]),
there exists a probability measure Q ∼ P′ such that the density dQ/dP′ is
bounded and EQX � 0 for all X ∈ A. Then Q ∈ R and, by Theorem 2.6, the
NGA is satisfied (note that the proof of the implication R �= ∅ ⇒ NGA in
this theorem does not employ Assumption 2.5). ��

3 Dynamic model with infinite number of assets

Let (Ω,F , (Ft)t∈[0,T ],P) be a filtered probability space. We assume that F0

is P-trivial and (Ft) is right-continuous. Let (Sait )t∈[0,T ] and (Sbit )t∈[0,T ], i ∈ I
be a family of real-valued (Ft)-adapted càdlàg processes. From the financial
point of view, Sait (resp., Sbit ) is the discounted ask (resp., bid) price of the ith
asset at time t (so that Sat � Sbt componentwise). Define the set of attainable
incomes by

A=

{
N∑
n=0

∑
i∈I

[
−Hi

nI(H
i
n > 0)Saiun

−Hi
nI(H

i
n < 0)Sbiun

]
:

N ∈ N, u0 � · · ·� uN are (Ft)-stopping times, Hi
n is Fun

-measurable,

Hi
n = 0 for all but finitely many i, and

N∑
n=0

Hi
n = 0 for all i

}
.
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Here Hi
n represents the amount of ith asset bought at time un (so

∑n
k=0H

i
k

is the total amount of ith asset held at time un).

Remark. Consider a model with no transaction costs (i.e., Sa = Sb = S).
Then for any i and any Hi

n such that
∑N
n=0H

i
n = 0, we can write

N∑
n=0

[
−Hi

nS
i
un

]
=

N∑
n=1

(
n−1∑
k=0

Hi
k

)(
Siun

− Siun−1

)
.

Thus, in this model the set A admits a simpler description:

A =

{
N∑
n=1

∑
i∈I

Hi
n(S

i
un
− Siun−1

) : N ∈ N, u0 � · · · � uN

are (Ft)-stopping times, Hi
n is Fun−1-measurable,

and Hi
n = 0 for all but finitely many i

}
.

We will assume that each process Sbi is positive. We will also suppose that,
for all i ∈ I, there exists a constant γi > 0 such that Sai � γiSbi. Finally, we
assume that, for each t ∈ [0, T ], there exists Yt ∈ B (B is defined by (1)) with
the property: for all i ∈ I, there exist α, β > 0 such that Sbit � αYt + β a.s.
This assumption is automatically satisfied in natural models.

Indeed, if I is finite, then the above assumption is satisfied with

Yt =
∑
i∈I

(
Sbit − Sai0

)
.

If I is countable, then the above assumption is satisfied with

Yt =
∑
i∈I

λi(Sbit − Sai0 ),

with constants λi > 0 chosen in such a way that
∑
i∈I λ

iSbit < ∞ a.s. and∑
i∈I λ

iSai0 <∞.
If Sbi is the discounted bid price process of a zero-coupon bond with matu-

rity i, then Sbi takes on values in [0, 1], and the above assumption is satisfied
with Yt = 0.

In order to get the fundamental theorem of asset pricing and to obtain the
form of the fair price intervals, it is sufficient to prove that Assumption 2.5
is satisfied and to find the structure of risk-neutral measures. We call the
corresponding statement the Key Lemma of the section.

Notation. Set

M = {Q ∼ P : for each i ∈ I, there exists an (Ft,Q)-martingale M i

such that, for all t ∈ [0, T ], Sbit � M i
t � Sait Q-a.s.}.

Here M i need not be càdlàg.
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Key Lemma 3.1. For the model (Ω,F ,P, A), we have

R = R
( ∑
t∈Q∩[0,T ]

λtYt

)
= M,

with constants λt > 0 chosen in such a way that
∑
t∈Q∩[0,T ] λt|Yt| < ∞ a.s.

and
∑
t∈Q∩[0,T ] λt ess infω∈Ω Yt(ω) <∞.

The proof employs two auxiliary statements. The first of them was proved
by Jouini and Kallal [12; Lem. 3] (see Choulli and Stricker [3] for a related
result). Actually, Jouini and Kallal use the additional assumption that X and
Y are càdlàg, but a slight modification of their proof allows one to get rid of
this assumption.

Lemma 3.2. Let X be a supermartingale and Y be a submartingale on a
filtered probability space (Ω,F , (Ft)t∈[0,T ],P) with a right-continuous filtration
(X and Y are not necessarily càdlàg). Suppose that, for all t ∈ [0, T ], Xt � Yt
a.s. Then there exists an (Ft)-martingale M such that, for all t ∈ [0, T ],
Xt � Mt � Yt a.s.

We will also need the following statement (see [11] or [23; Ch. II, Sect. 1c]):

Lemma 3.3. Let (Xn)n=0,...,N be an (Fn)-localmartingale such thatE|X0|<∞
and EX−

N <∞. Then X is an (Fn)-martingale.

Proof of Key Lemma 3.1. Denote
∑
t∈Q∩[0,T ] λtYt by Z0.

Step 1. The inclusion R ⊆ R(Z0) follows from Lemma 2.4.
Step 2. Let us prove the inclusion R(Z0) ⊆M. Take Q ∈ R(Z0). Fix i ∈ I

and two (Ft)-stopping times u � v. We shall prove that

EQ(Sbiv | Fu) � Saiu . (1)

For n ∈ N, set

un =
n∑
k=1

kT

n
I

(
(k − 1)T

n
< u � kT

n

)
,

vn =
n∑
k=1

kT

n
I

(
(k − 1)T

n
< v � kT

n

)
.

Then, for all n � m and all D ∈ Fum
such that Saium

is bounded on D, we
have um � vn and

EQID(Sbivn
− Saium

) � 0,

which implies that
EQ

(
Sbivn

| Fum

)
� Saium

. (2)
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As um decreases to u pointwise, we have Fum
⊆ Fum−1 and

⋂∞
m=1 Fum

= Fu
(see [21; Ch. I, Ex. 4.17]). Therefore,

EQ

(
Sbivn

| Fum

) Q-a.s.−−−−→
m→∞

EQ

(
Sbivn

| Fu
)

(see [21; Ch. II, Cor. 2.4]) and (2) yields

EQ

(
Sbivn

| Fu
)

� Saiu .

Applying the Fatou lemma for conditional expectations, we get (1).
We shall now prove that

EQ(Saiv | Fu) � Sbiu . (3)

For um, vn defined above and all D ∈ Fum
, we have

EQID(−Saivn
+ Sbium

) � 0

(recall that Sai � γiSbi). Thus,

EQ(Saivn
| Fum

) � Sbium
.

The same argument as above gives

EQ(Saivn
| Fu) � Sbiu . (4)

It follows that, for all (Ft)-stopping time v,

Saiv � γiSbiv � γiEQ(SaiT | Fv) � (γi)2EQ(SbiT | Fv).

Using the fact that Q ∈ R(Z0), it is easy to check that SbiT is Q-integrable,
and hence, the collection (Saivn

)∞n=1 is Q-uniformly integrable. Now, (3) follows
from (4).

Consider the Snell envelopes

Xt = ess sup
τ∈Tt

EQ(Sbiτ | Ft), t ∈ [0, T ],

Yt = ess inf
τ∈Tt

EQ(Saiτ | Ft), t ∈ [0, T ],

where Tt denotes the set of all (Ft)-stopping times such that τ � t. (Recall
that ess supα ξα is the random variable ξ such that, for all α, ξ � ξα a.s. and
for any other random variable ξ′ with this property, we have ξ � ξ′ a.s.) Then
X is an (Ft,Q)-supermartingale, while Y is an (Ft,Q)-submartingale (see
[7; Th. 2.12.1]).

Let us prove that, for all t ∈ [0, T ], Xt � Yt Q-a.s. Assume that there
exists t such that P(Xt > Yt) > 0. Then there exist τ, σ ∈ Tt such that

Q
(
EQ(Sbiτ | Ft) > EQ(Saiσ | Ft)

)
> 0.
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This implies that Q(ξ > η) > 0, where ξ = EQ(Sbiτ | Fτ∧σ) and η = EQ(Saiσ |
Fτ∧σ). Assume first that Q({ξ > η} ∩ {τ � σ}) > 0. On the set {τ � σ},
we have

ξ = Sbiτ = Sbiτ∧σ,

η = EQ(Saiσ | Fτ∧σ) = EQ(Saiτ∨σ | Fτ∧σ),

and we obtain a contradiction with (3). Similarly, if we assume that
Q({ξ > η} ∩ {τ � σ}) > 0, then we arrive at a contradiction with (1).
As a result, Xt � Yt Q-a.s. Now, an application of Lemma 3.2 shows that
Q ∈M.

Step 3. Let us prove the inclusion M ⊆ R. Take Q ∈ M. Then, for
each i, there exists an (Ft,Q)-martingale M i such that, for all t ∈ [0, T ],
Sbit � M i

t � Sait Q-a.s. Fix

X =
N∑
n=0

∑
i∈I

[
−Hi

nI(H
i
n > 0)Saiun

−Hi
nI(H

i
n < 0)Sbiun

]
∈ A.

Let (F̃t) denote the Q-completion of (Ft). The process M i admits a càdlàg
(F̃t)-modification M̃ i (see [21; Ch. II, Th. 2.9]). We have

X �
N∑
n=0

∑
i∈I

[
−Hi

nI(H
i
n > 0)M̃ i

un
−Hi

nI(H
i
n < 0)M̃ i

un

]

=
N∑
n=1

∑
i∈I

[(
n−1∑
k=0

Hi
k

)(
M̃ i
un
− M̃ i

un−1

)]
.

The process

Ml =
l∑

n=1

∑
i∈I

[(
n−1∑
k=0

Hi
k

)(
M̃ i
un
− M̃ i

un−1

)]
, l = 0, . . . , N

is a Q-local martingale with respect to the filtration (Ful
). Now, it follows

from Lemma 3.3 that EQM
−
N � EQM

+
N . Consequently, EQX

− � EQX
+. As a

result, Q ∈ R. ��
Let us now consider a model with proportional transaction costs, i.e., a

model with Sbi = (1−λi)Sai, where λi ∈ [0, 1] is the coefficient of proportional
transaction costs for the ith asset. We introduce the following definition.

Definition 3.4. An R+-valued process X is called an (Ft,P)-delta-
martingale of order a, where a ∈ [0, 1] if

(a) X is (Ft)-adapted and càdlàg;
(b) EXt <∞, t ∈ [0, T ];
(c) for all (Ft)-stopping times u � v, we have aXu � E(Xv | Fu) � a−1Xu.
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It is seen from the proof of Key Lemma 3.1 that X is a delta-martingale of
order a if and only if there exists a martingale M such that, for all t ∈ [0, T ],
aXt � Mt � Xt a.s. Consequently, in models with proportional transaction
costs

R = {Q ∼ P : for all i ∈ I, Sai is an (Ft,Q)-

delta-martingale of order 1− λi}. (5)

Let us now study the following problem. Consider a one dimensional model
having proportional transaction costs with coefficient λ and denote by Iλ(F )
the fair price interval in this model. Is it true that Iλ(F ) −−→

λ↓0
I(F ), where

I(F ) is the fair price interval in the model with no transaction costs (i.e.,
with λ = 0)? This problem was considered for the Black–Scholes model in the
papers [5], [20], [24], and it was proved that the upper price of a European
call option (ST −K)+ tend to S0 as λ ↓ 0. Our approach to arbitrage pricing
in models with transaction costs is different from the one in the papers men-
tioned, but the same result turns out to be true in our approach as well. Thus,
the answer to the question posed above is negative for natural continuous-time
models.

Proposition 3.1. Let St = S0eμt+σBt , where μ ∈ R, σ > 0, and B is a
Brownian motion. Let Ft = FBt , Sa = S, Sb = (1 − λ)S, F = (ST − K)+.
Then

Iλ(F ) −−→
λ↓0

((S0 −K)+, S0)

in the sense that the left (resp., right) endpoints of Iλ(F ) tend to (S0 −K)+

(resp., S0) as λ ↓ 0.

Proof. It is clear that Iλ(F ) decreases as λ ↓ 0. Furthermore, using static
considerations (i.e., considering trades at dates 0 and T only), one can easily
see that, for any ε > 0, there exists λ > 0 such that Iλ(F ) ⊆ ((S0 −K)+ −
ε, S0 + ε). Thus, it will suffice to prove that, for any λ > 0,

Iλ(F ) ⊇ ((S0 −K)+, S0). (6)

Clearly, we can assume from the outset that Ω = C([0, T ]), S = X, where X
denotes the coordinate process (i.e., Xt(ω) = ω(t)), and Ft = FXt .

Step 1. Let a > 0 and Z be a solution of the stochastic differential equation

dZt = −a sgn(Zt − S0)I(t � τ)dt+ σZtdWt, Z0 = S0,

where τ = inf{t � 0 : |Zt − S0| � Δ}, Δ = λS0/10, and W is a Brownian
motion. The process Z is defined on a filtered probability space (Ω̃, F̃ , (F̃t), P̃).
Fix (F̃t)-stopping times u � v. On the set {τ � u}, we have E

P̃
(Zv | F̃u) = Zu.

On the set {τ > u}, we have E
P̃
(Zv | F̃u) = E

P̃
(Zv∧τ | F̃u), |Zu − S0| � Δ,

and |Zv∧τ − S0| � Δ. Thus,

E
P̃
(Zv | F̃u) � (1− λ)Zu, E

P̃
((1− λ)Zv | F̃u) � Zu.
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Now, set Q(a) = Law(Zt; t � T ). Then, for all (Ft)-stopping times u � v, we
have

EQ(a)(Xv | Fu) � (1− λ)Xu, EQ(a)((1− λ)Xv | Fu) � Xu.

Furthermore, Girsanov’s theorem guarantees that Q(a) ∼ P. In view of (5),
Q(a) is a risk-neutral measure.

Let us prove that

lim
a→∞

EQ(a)F = (S0 −K)+. (7)

For any b > 2S0, we have, by the Itô-Tanaka-Meyer formula,

(Zt − b)+ =
∫ t

0

I(Zs > b)σZsdWs +
1
2
Lbt(Z), t � 0,

where Lbt(Z) denotes the local time spent by the process Z at point b up to
time t. It follows from this representation that E(ZT − b)+ � E(Zσ − b)+,
where σ = TI(τ � T ) + (T + τ)I(τ < T ). Using this inequality and the prop-
erty that (ZT − b)+ = 0 on {τ � T}, we can write

E(ZT − b)+ � E(ZT+τ − b)+I(τ < T,Zτ = S0 −Δ)

+ E(ZT+τ − b)+I(τ < T,Zτ = S0 +Δ)

= E
(
Y S0−Δ
T − b

)+
P(τ < T,Zτ = S0 −Δ)

+ E
(
Y S0+Δ
T − b

)+
P(τ < T,Zτ = S0 +Δ),

where Y x is a solution of the stochastic differential equation

dY xt = σY xt dWt, Y x0 = x.

It is seen from the inequality proved above that E(ZT − b)+ converges to 0
uniformly in a > 0 as b→∞. Furthermore, it is clear that ZT converge weakly
to S0 as a→∞. This yields (7).

Step 2. Let a, b, c > 0 and (Z, Z̃) be a solution of the system

dZt = −a sgn(Zt − Z̃t)I(t � τ)dt+ σZtdWt, Z0 = S0,

dZ̃t = bZ̃tdW̃t, Z̃0 = S0,

where τ = inf{t � 0 : |Zt − Z̃t| � Δ or Zt � c}, Δ = λS0/10, and W , W̃
are independent Brownian motions. The process (Z, Z̃) is defined on a filtered
probability space (Ω̃, F̃ , (F̃t), P̃). Arguing in the same way as above, we check
that, for all (F̃t)-stopping times u � v,

E
P̃
(Zv | F̃u) � (1− λ)Zu, E

P̃
((1− λ)Zv | F̃u) � Zu
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provided that c < S0. Hence, the measure Q(a, b, c) = Law(Zt; t � T ) is a
risk-neutral measure. Clearly,

lim
c↓0

lim
a→∞

Law(Zt; t � T ) = Law(Z̃t; t � T ),

and therefore,

lim inf
b→∞

lim inf
c↓0

lim inf
a→∞

EQ(a,b,c)F � lim inf
b→∞

E(Z̃T−K)+ = lim
b→∞

E(Z̃T−K)+ = S0.

(8)
Relations (7) and (8) taken together yield (6). ��

4 Model with european call options as basic assets

Let (Ω,F ,P) be a probability space and T ∈ [0,∞). Let ST be an R+-valued
random variable. From the financial point of view, ST is the ask price of some
asset at time T . For simplicity, we consider only proportional transaction
costs on the underlying assets, i.e., the bid price of the ith asset at time T is
(1−λ)ST , where λ ∈ [0, 1]. Let K ⊆ R+ be the set of strike prices K of traded
European call options on this asset with maturity T . Let ϕa(K) and ϕb(K),
K ∈ K be the ask and bid prices at time 0 of such an option. Define the set
of attainable incomes by

A =

{
N∑
n=1

[gn(((1− λ)ST −Kn)+− ϕa(Kn)) + hn(−(ST −Kn)+ + ϕb(Kn))] :

N ∈ N, Kn ∈ K, gn, hn ∈ R+

}
.

We assume that 0 ∈ K, which means the possibility to trade the underlying
asset.

Notation. Set
M = {Q ∼ P : LawQ ST ∈ D},

where

D = {ϕ′′ : ϕ is convex on R+, ϕ
′
+(0) � −1, lim

x→∞
ϕ(x) = 0,

ϕ((1− λ)−1K) � (1− λ)−1ϕa(K) and ϕ(K) � ϕb(K), K ∈ K}.

Here ϕ′
+ denotes the right-hand derivative and ϕ′′ denotes the second deriv-

ative taken in the sense of distributions (i.e., ϕ′′([a, b]) = ϕ′
+(b) − ϕ′

+(a))
with the convention: ϕ′′({0}) = ϕ′

+(0) + 1 (thus, ϕ′′ is a probability measure
provided that ϕ′

+(0) � −1).

Key Lemma 4.1. For the model (Ω,F ,P, A), we have

R = R((1− λ)ST − ϕa(0)) =M.



General Arbitrage Pricing Model II 459

Proof. Denote (1− λ)ST − ϕa(0) by Z0.
Step 1. The inclusion R ⊆ R(Z0) follows from Lemma 2.4.
Step 2. Let us prove the inclusion R(Z0) ⊆ M. Fix Q ∈ R(Z0). By con-

sidering the function ϕ(x) = EQ(ST − x)+, we conclude that Q ∈M.
Step 3. Let us prove the inclusionM⊆ R. Fix Q ∈M with LawQ ST = ϕ′′.

Then

EQ(ST −K)+ =
∫

R+

(x−K)+ϕ′′(dx) = ϕ(K), K ∈ R+.

Consequently, EQX � 0 for all X ∈ A, which means that Q ∈ R. ��

�

�

K

�

�

�1
1−λ

ϕa((1 − λ)K), K ∈ R+

ϕ(K), K ∈ R+

ϕb(K), K ∈ R+

Fig. 1a. The structure of D when K = R+. The set D consists of the second deriv-
atives ϕ′′, where ϕ is convex on R+, ϕ′

+(0) � −1, lim
x→∞

ϕ(x) = 0, and ϕ lies in the

shaded region

�

�

︸ ︷︷ ︸
K

K

�

�

�1
1−λ

ϕa((1 − λ)K), K ∈ K

1−λ

ϕ(K), K ∈ R+

ϕb(K), K ∈ K

Fig. 1b. The structure of D when K is finite. The set D consists of the second
derivatives ϕ′′, where ϕ is convex on R+, ϕ′

+(0) � −1, lim
x→∞

ϕ(x) = 0, and ϕ lies in

the shaded region
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4. Cvitanić, J., Karatzas, I. (1996): Hedging and portfolio optimization under
transaction costs: A martingale approach. Mathematical Finance, 6, No. 2,
133–165
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Summary. We introduce the possibility approach to pricing by arbitrage. The
characteristic feature of this approach is that it does not employ the historic
probability measure.

The study is performed on two levels of generality:

• for a static model with a finite number of assets;
• for a general arbitrage pricing model introduced in [3].

The main results obtained for each of these models are: the fundamental theorem
of asset pricing and the representation of the fair price intervals.

Key words: Fair price, Fundamental theorem of asset pricing, General
arbitrage pricing model, Generalized arbitrage, Possibility space, Risk-neutral
measure, Set of attainable incomes, Set of possible elementary events,
Transaction costs

1 Introduction

1.1 Purpose of the paper

When a coin is tossed, everyone agrees that there exists a probability measure
on the set of elementary outcomes, and this measure assigns the mass 1/2 to
each of the two outcomes. When shooting at a target is performed, everyone
agrees that there exists a probability measure on the set of elementary
outcomes. The exact form of this measure cannot be found by pure thought,
but can be estimated by repeated trials. In both examples, the legitimacy of a
probability measure is based on the existence of a fixed set of conditions that
admits an unlimited number of repetitions. The importance of such a set of
conditions was stressed by Kolmogorov [7; Ch. I, Sect. 2].

In the problems that finance deals with, such a fixed set of conditions does
not seem to exist at all. Therefore, it is questionable whether there exists
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a historic measure P, which serves as an input to the overwhelming majority
of arbitrage pricing models. It is unquestionable that even if such a measure
exists, then no one knows exactly what it is.

But let us now recall that the origin of arbitrage pricing lies in decomposing
a complicated contract into simpler contracts, and this does not require any
probability considerations. Another example: when calculating the exchange
rate through the triangular arbitrage, the probability measure is not needed.
Yet another example: the trivial interval ((S0 − K)+, S0) of fair prices of a
European call option is obtained with no probability at all. However, in more
complicated models the structure of P is essential. The basic example in this
line is the Black–Scholes model, in which it is the particular structure of P
that yields the completeness. Of course, if P is eliminated in such a model,
then we get unacceptably wide intervals of fair prices. But nevertheless, in
some cases the following effect takes place: if the market prices of a sufficient
number of traded derivatives are taken into account, then one can obtain
a reasonably small fair price interval of a new contract without relying on
the original probability measure. This method was successfully employed (for
various models) in the papers [1], [2], [6].

The above observation justifies the general possibility approach to
arbitrage pricing. It requires as first input the set of all possible outcomes and
does not require that probabilities be assigned to these outcomes. To be more
precise, the possibility approach is based on a possibility space (Ω,F) instead
of a probability space (Ω,F ,P). We call Ω the set of possible elementary
events. Usually it can be defined by pure thought (i.e., without using the real
data) in an unambiguous way. For example, a natural set of possible prices
of an equity is R++(= (0,∞)); a natural set of possible prices of d equities
is Rd++. Typically, the set of possible elementary events admits a natural
topology, and F is taken as its Borel σ-field.

The possibility approach is introduced on two levels of generality: first, we
consider a static model with a finite number of assets, and then we consider
the general arbitrage pricing model introduced in [3].

1.2 Static model with a finite number of assets

This is a classical model of financial mathematics (a review of arbitrage pricing
in this model can be found, for example, in [5; Ch. 1] or [3; Sect. 2]). In
Section 2, we consider the possibility version of this model.

We introduce the possibility variant of the No Arbitrage (NA) condition
and prove that this condition is satisfied if and only if for any nonempty set
D ∈ F , there exists a martingale measure Q such that Q(D) > 0. A geometric
criterion is presented as well.

Furthermore, using the possibility version of the NA condition, we define
the set of fair prices of a contingent claim F and prove that it coincides up
to endpoints with the interval {EQF : Q ∈ M}, where M denotes the set of
martingale measures. A geometric representation of this set is given as well.
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1.3 General arbitrage pricing model

In [3], we presented a unified approach to pricing contingent claims through
a new concept of generalized arbitrage. The No Generalized Arbitrage (NGA)
condition is a strengthening of the classical NA condition. This was done
within the framework of a general arbitrage pricing model. Various models of
arbitrage pricing theory, including

• static as well as dynamic models;
• models with an infinite number of assets;
• models with transaction costs (see [4]),

can be viewed as particular cases of this general model.
In Section 3, we consider the possibility version of a general arbitrage

pricing model. It is defined as a triple (Ω,F , A), where (Ω,F) is a possibility
space and A is a convex cone in the space of all F-measurable real-valued
functions. From the financial point of view, A is the set of discounted incomes
that can be obtained in the model under consideration.

For a model (Ω,F , A), we introduce the possibility variant of the NGA
condition. Similarly to [3], we define a risk-neutral measure as a measure Q on
F such that EQX

− � EQX
+ for any X ∈ A (X− and X+ denote the negative

part and the positive part of X, respectively; the expectations EQX
−, EQX

+

here are allowed to take on the value +∞).
Theorem 3.6 states (under a natural assumption) that the NGA condi-

tion is satisfied if and only if for any nonempty set D ∈ F , there exists a
risk-neutral measure Q such that Q(D) > 0. Thus, a risk-neutral measure
appears to be a more fundamental object than a historic probability measure.
A nice illustration is provided by bookmaking, where the “true” distribution
on the set of outcomes is completely unclear, while the “market-estimated”
distribution is easily recovered from the bets.

Next we consider the problem of pricing contingent claims. We define a fair
price of a contingent claim F (F is a measurable function on (Ω,F)) as a real
number x such that the extended model (Ω,F , A+{h(F−x) : h ∈ R}) satisfies
the NGA condition. Theorem 3.9 states (under some natural assumptions)
that the set of fair prices of F coincides up to endpoints with the interval
{EQF : Q ∈ R}, where R denotes the set of risk-neutral measures.

1.4 Particular models

In order to apply the general results of Section 3 to a particular model, one
should

1. specify the set A of attainable incomes (this is typically done in a straight-
forward way);

2. find out the structure of the set of risk-neutral measures (typically, the
risk-neutral measures in a particular model admit a simpler description
than the general definition of a risk-neutral measure).
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Once this is done, Theorem 3.6 gives the necessary and sufficient conditions
for the absence of generalized arbitrage, while Theorem 3.9 yields the form
of the set of fair prices of a contingent claim. Both procedures 1 and 2 were
implemented in [3], [4] for a number of particular models.

However, the possibility framework gives rise to an interesting question:
Is the NGA condition (in its possibility version) satisfied in a particular model?
The answer depends on the “geometry” of the price structure. In Sections 4–5,
we study this problem for a number of particular models, namely

• a discrete-time model with a finite number of assets (Section 4);
• a continuous-time model with a finite number of assets (Section 5);
• a model with European call options as basic assets (Section 6).

Acknowledgements. I am thankful to an anonymous referee for a very careful reading
of the manuscript and important suggestions.

2 Static model with finite number of assets

The reader is invited to compare this section with [3; Sect. 2].

Definition 2.1. A possibility space is a pair (Ω,F), where Ω is a set and
F is a σ-field on Ω. We call Ω the set of possible elementary events.

Let (Ω,F) be a possibility space. Let S0 ∈ Rd and S1 be an Rd-valued
F-measurable function. From the financial point of view, Sin is the discounted
price of the ith asset at time n. Define the set of attainable incomes by

A =
{ d∑
i=1

hi(Si1 − Si0) : hi ∈ R

}
.

Definition 2.2. A model (Ω,F , S0, S1) satisfies the No Arbitrage (NA)
condition if A ∩ L0

+ = {0} (L0
+ denotes the set of R+-valued F-measurable

functions).

Definition 2.3. A martingale measure is a probability measure Q on F such
that EQ|S1| < ∞ and EQS1 = S0. The set of martingale measures will be
denoted by M.

Notation. Set C = conv{S1(ω) : ω ∈ Ω} and let C◦ denote the relative interior
of C.

Theorem 2.4 (Fundamental theorem of asset pricing). For the model
(Ω,F , S0, S1), the following conditions are equivalent:
(a) NA;
(b) S0 ∈ C◦;
(c) for any D ∈ F \ {∅}, there exists Q ∈M such that Q(D) > 0.
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Proof. Step 1. Let us prove the implication (a)⇒(b). If S0 /∈ C◦, then, by
the separation theorem, there exists h ∈ Rd such that 〈h, (S1 − S0)〉 � 0
pointwise and 〈h, (S1(ω) − S0(ω))〉 > 0 for some ω ∈ Ω. This contradicts
the NA condition.

Step 2. Let us prove the implication (b)⇒(c). Fix D ∈ F \ {∅}. Take
ω0 ∈ D. The set

E=
{ m∑
k=0

αkS1(ωk) : m ∈ N, ω1, . . . , ωm ∈ Ω, α0, . . . , αm ∈ R++,
m∑
k=0

αk = 1
}

is convex, and the closure of E contains {S1(ω) : ω ∈ Ω}. Consequently,
E ⊇ C◦. Thus, there exist ω1, . . . , ωm ∈ Ω and α0, . . . , αm ∈ R++ such that∑m
k=0 αk = 1 and

∑m
k=0 αkS1(ωk) = S0. Then the measure Q =

∑m
k=0 αkδωk

belongs to M and Q(D) > 0 (δω denotes the point mass concentrated on {ω},
i.e., δω(A) = I(ω ∈ A)).

Step 3. Let us prove the implication (c)⇒(a). Suppose that the NA
condition is not satisfied, i.e., there exists X ∈ A ∩ (L0

+ \ {0}). Consider
Q ∈ M such that Q(X > 0) > 0. Then EQX > 0. On the other hand, as
Q ∈M, we should have EQX = 0. The obtained contradiction shows that the
NA condition is satisfied. ��

Now, let F be a real-valued F-measurable function. From the financial
point of view, F is the discounted payoff of some contingent claim.

Definition 2.5. A real number x is a fair price of F if the model with d+ 1
assets (Ω,F , x, S1

0 , . . . , S
d
0 , F, S

1
1 , . . . , S

d
1 ) satisfies the NA condition. The set

of fair prices of F will be denoted by I(F ).

Notation. Set D = conv{(F (ω), S1(ω)) : ω ∈ Ω} and let D◦ denote the relative
interior of D.

For two subsets I, J of the real line, by the notation I ≈ J we will mean
that the interiors of I and J coincide and the closures of I and J coincide. In
particular, if I ≈ J and J is an interval (that may be closed, open, or semi-
open), then I is also an interval, and I coincides with J up to the endpoints.

Theorem 2.6. Suppose that the model (Ω,F , S0, S1) satisfies the NA condi-
tion. Then

I(F ) = {x : (x, S0) ∈ D◦} ≈ {EQF : Q ∈M}. (1)

The expectation EQF here is taken in the sense of finite expectations, i.e. we
consider only those Q, for which EQ|F | <∞.

Proof. Theorem 2.4 implies that

I(F ) = {x : (x, S0) ∈ D◦} ⊆ {EQF : Q ∈M}. (2)

Let x ∈ {EQF : Q ∈ M}. Take Q0 ∈ M such that x = EQ0F . One can
find Q1 ∈ M such that EQ1 |F | < ∞ and conv supp LawQ1(F, S1) = D
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(Q1 can be found in the form
∑∞
n=1 αnδωn

). For any ε ∈ (0, 1), the measure
Q(ε) = (1− ε)Q0 + εQ1 belongs to M and conv supp LawQ(ε)(F, S1) = D.
Therefore, EQ(ε)(F, S1) ∈ D◦, which means that

EQ(ε)F ∈ {x : (x, S0) ∈ D◦}.

Furthermore, EQ(ε)F −−→
ε↓0

x. This, together with (2), proves the approximate

equality in (1). ��
Remarks. (i) Let V∗(F ) (resp., V ∗(F )) denote the left (resp., right) endpoint
of I(F ). Let F be such that V∗(F ) < V ∗(F ). It follows from the equality
I(F ) = {x : (x, S0) ∈ D◦} that I(F ) = (V∗(F ), V ∗(F )). As for the interval
{EQF : Q ∈M}, it has the endpoints V∗(F ) and V ∗(F ), but may contain
them. For instance, this interval contains V ∗(F ) if and only if

(V ∗(F ), S0) ∈→ {(F (ω), S1(ω)) : ω ∈ Ω}.

(ii) Another way to define the fair price interval could be as follows. We
introduce the lower and the upper prices as

V∗(F ) = sup{x : there exists X ∈ A such that x−X � F pointwise},
V ∗(F ) = inf{x : there exists X ∈ A such that x+X � F pointwise},

and the fair price interval is defined as the interval with the endpoints V∗(F )
and V ∗(F ). Using the equality I(F ) = {x : (x, S0) ∈ D◦} and elementary
geometric considerations, one can check that if the model (Ω,F , S0, S1)
satisfies the NA condition, then the values V∗(F ) and V ∗(F ) defined this
way coincide with the values defined in the previous remark.

�

�

R

Rd

D◦

S0

I(F )

V∗(F ) V ∗(F )

{(F (ω), S1(ω)) : ω ∈ Ω}�

�

Fig. 1. The joint arrangement of I(F ), V∗(F ), V ∗(F ), {EQF : Q ∈ M}, and D◦.
In the example shown here, I(F ) = (V∗(F ), V ∗(F )), while {EQF : Q ∈ M} =
(V∗(F ), V ∗(F )].



General Arbitrage Pricing Model III 469

3 General arbitrage pricing model

The reader is invited to compare this section with [3; Sect. 3].

Definition 3.1. A general arbitrage pricing model is a triple (Ω,F , A), where
(Ω,F) is a possibility space and A is a convex cone in L0 (L0 is the space
of real-valued F-measurable functions). The set A will be called the set of
attainable incomes.

Notation. (i) Set

B =
{
Z ∈ L0 : there exist (Xn)n∈N ∈ A and a ∈ R such

that Xn � a pointwise and Z = lim
n→∞

Xn pointwise
}
. (1)

(ii) For Z ∈ B, denote γ(Z) = 1− infω∈Ω Z(ω) and set

A1 = {X − Y : X ∈ A, Y ∈ L0
+},

A2(Z) =
{

X

Z + γ(Z)
: X ∈ A1

}
,

A3(Z) = A2(Z) ∩ L∞,

A4(Z) = closure of A3(Z) in σ(L∞,MF ). (2)

Here L0
+ is the set of R+-valued elements of L0; L∞ is the space of bounded

elements of L0; σ(L∞,MF ) denotes the weak topology on L∞ induced by the
space MF of finite σ-additive measures on F (i.e. signed measures with finite
variation).

Definition 3.2. The model (Ω,F , A) satisfies the No Generalized Arbitrage
(NGA) condition if for all Z ∈ B, we have A4(Z) ∩ L0

+ = {0}.
Definition 3.3. A risk-neutral measure is a probability measure Q on F such
that EQX

− � EQX
+ for any X ∈ A. The expectations EQX

− and EQX
+ here

may take on the value +∞. The set of risk-neutral measures will be denoted
by R.

Notation. For Z ∈ B, we will denote byR(Z) the set of probability measures Q
on F with the property: for all X ∈ A such that X � −αZ − β pointwise for
some α, β ∈ R+, we have EQ|X| <∞ and EQX � 0.

The following lemma is almost the same as [3; Lem. 3.4].

Lemma 3.4. For all Z ∈ B, we have R ⊆ R(Z).

The following basic assumption is satisfied in all particular models consid-
ered below.

Assumption 3.5. There exists Z0 ∈ B such that R = R(Z0) (both these
sets may be empty).
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Theorem 3.6 (Fundamental theorem of asset pricing). Suppose that
Assumption 3.5 is satisfied. Then the model (Ω,F , A) satisfies the NGA con-
dition if and only if for any D ∈ F \{∅}, there exists a risk-neutral measure Q
such that Q(D) > 0.

The proof of Theorem 3.6 follows the same lines as the proof of its
probability analogue in [3; Th. 3.6]. It is based on the following possibility
analogue of the Kreps–Yan theorem:

Lemma 3.7. Let C be a σ(L∞,MF )-closed convex cone in L∞ such that
C ⊇ L∞

− (L∞
− is the set of negative elements of L∞). Let W ∈ L∞ \C. Then

there exists a probability measure Q on F such that EQX � 0 for all X ∈ C
and EQW > 0.

Proof. By the Hahn-Banach separation theorem (see [9; Ch. II, Th. 9.2]), there
exists a measure Q0 ∈MF such that EQ0W /∈ {EQ0X : X ∈ C}. Without loss
of generality, EQ0W > 0. As C is a cone, EQ0X � 0 for any X ∈ C. Since
C ⊇ L∞

− , Q0 is positive. Then the measure Q = cQ0, where c is a normalizing
constant, satisfies the desired properties. ��
Proof of Theorem 3.6. Step 1. Let us prove the “only if” implication. Fix D ∈
F \{∅}. Set W = ID. Take Z0 ∈ B such that R = R(Z0). Lemma 3.6 applied
to the σ(L∞,MF )-closed convex cone A4(Z0) and to the point W yields a
probability measure Q0 on F such that EQ0X � 0 for any X ∈ A4(Z0) and
EQ0W > 0. By the Fatou lemma, for any X ∈ A such that X

Z0+γ(Z0)
is bounded

below, we have EQ0
X

Z0+γ(Z0)
� 0. Consider the measure Q = c

Z0+γ(Z0)
Q0,

where c is a normalizing constant. Then Q ∈ R(Z0) = R and

Q(D) = EQ0

cW

Z0 + γ(Z0)
> 0.

Step 2. Let us prove the “if” implication. Suppose that the NGA condition
is not satisfied. Then there exist Z ∈ B and W ∈ A4(Z) ∩ (L0

+ \ {0}). Take
Q ∈ R such that Q(W > 0) > 0. It follows from the Fatou lemma that Z is Q-
integrable. Consider the measure Q̃ = c(Z+γ(Z))Q, where c is a normalizing
constant. For any X ∈ A such that X

Z+γ(Z) is bounded below by a constant −
α (α ∈ R+), we have

EQX
− � EQ(αZ + αγ(Z)) <∞,

and consequently,

E
Q̃

X

Z + γ(Z)
= cEQX � 0.

Hence, E
Q̃
X � 0 for any X ∈ A4(Z). On the other hand,

E
Q̃
W = cEQ(Z + γ(Z))W > 0.

The obtained contradiction shows that the NGA condition is satisfied. ��
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Remark. It is seen from the above proof that the necessity part in Theorem 3.6
is true without Assumption 3.5. It can be shown that this assumption is
essential for the sufficiency part.

Now, let F be an F-measurable function meaning the discounted payoff
of some contingent claim.

Definition 3.8. A real number x is a fair price of F if the extended model
(Ω,F , A + {h(F − x) : h ∈ R}) satisfies the NGA condition. The set of fair
prices of F will be denoted by I(F ).

Theorem 3.9 (Pricing contingent claims). Suppose that the model (Ω,
F , A) satisfies Assumption 3.5 and the NGA condition, while F is bounded
below and EQF <∞ for any Q ∈ R. Then

I(F ) ≈ {EQF : Q ∈ R}.

Proof. Step 1. Let us prove the inclusion

I(F ) ⊆
[

inf
Q∈R

EQF, sup
Q∈R

EQF
]
.

Let x ∈ I(F ). Take Z0 ∈ B such that R = R(Z0). Set Z1 = Z0 + (F − x).
Then Z1 ∈ B′, where B′ is defined by (1) with A replaced by

A′ = {X + h(F − x) : X ∈ A, h ∈ R}. (3)

Set W ≡ 1. Lemma 3.7 applied to the σ(L∞,MF )-closed convex cone A′
4(Z1)

(A′
4(Z1) is defined by (2) with A replaced by A′) and to the point W yields

a probability measure Q0 on F such that EQ0X � 0 for any X ∈ A′
4(Z1).

By the Fatou lemma, for any X ∈ A′ such that X
Z1+γ(Z1)

is bounded below,
we have EQ0

X
Z1+γ(Z1)

� 0. Consider the measure Q = c
Z1+γ(Z1)

Q0, where
c is a normalizing constant. Then Q ∈ R(Z1) ⊆ R(Z0) = R. Moreover,
EQ(x− F ) � 0 and EQ(F − x) � 0 since the functions x−F

Z1+γ(Z1)
and F−x

Z1+γ(Z1)

are bounded below. Thus, EQF = x.
Step 2. Suppose that EQF = EQ′F for any Q,Q′ ∈ R. Let us prove the

inclusion EQF ∈ I(F ). Denote EQF by x. Suppose that x /∈ I(F ), i.e. the
model (Ω,F , A′), where A′ is given by (3), does not satisfy the NGA condition.
Then there exist Z ∈ B′ and W ∈ A′

4(Z)∩ (L0
+ \ {0}). Take Z0 ∈ B such that

R = R(Z0). Lemma 3.7 applied to the σ(L∞,MF )-closed convex cone A4(Z0)
and to the point W yields a probability measure Q0 on F such that EQ0X � 0
for any X ∈ A4(Z0) and EQ0W > 0. Consider the measure Q = c

Z0+γ(Z0)
Q0,

where c is a normalizing constant. Then Q ∈ R(Z0) = R and EQW > 0.
Moreover, EQF = x.

Choose an arbitrary Y = X + h(F − x) ∈ A′ (here X ∈ A) such that Y
is bounded below. It follows from the condition EQF = x that EQX

− < ∞.
As Q ∈ R, we have EQX � 0. This, combined with the condition EQF = x,
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implies that EQY � 0. By the Fatou lemma, Z is Q-integrable. Consider
the measure Q̃ = c(Z + γ(Z))Q, where c is a normalizing constant. For any
Y = X + h(F − x) ∈ A′ (here X ∈ A) such that Y

Z+γ(Z) is bounded below by
some constant −α (α ∈ R+), we have

EQY
− � EQ(αZ + αγ(Z)) <∞.

Consequently, EQX
− < ∞, EQX � 0, and EQY � 0. This means that

E
Q̃

Y
Z+γ(Z) � 0. Hence, E

Q̃
W � 0. But this is a contradiction since Q̃ ∼ Q

and EQW > 0. As a result, x ∈ I(F ).
Step 3. Let us prove the inclusion(

inf
Q∈R

EQF, sup
Q∈R

EQF
)
⊆ I(F ).

Let x belong to the left-hand side of this inclusion, i.e.

inf
Q∈R

EQF < x < sup
Q∈R

EQF.

Suppose that x /∈ I(F ), i.e. the model (Ω,F , A′), where A′ is defined by (3),
does not satisfy the NGA condition. Then there exist Z ∈ B′ and W ∈
A′

4(Z) ∩ (L0
+ \ {0}). Applying the same reasoning as in the previous step,

we find a measure Q1 ∈ R such that EQ1W > 0. By the conditions of the
theorem, EQ1 |F | < ∞. Find measures Q2,Q3 ∈ R such that EQ2F < x,
EQ3F > x. Clearly, there exist α1, α2, α3 ∈ R++ such that α1 + α2 + α3 = 1
and EQF = x, where Q = α1Q1 + α2Q2 + α3Q3. Note that Q ∈ R due to the
convexity of R and EQW > 0. The proof is now completed in the same way
as in the previous step. ��

The following example shows that the equality I(F ) = {EQF : Q ∈ R}
(which is true in the probability setting; see [3; Th. 3.10]) can be violated.

Example 3.10. Let Ω = [0, 1], F = B([0, 1]), and A = {0}. Consider
F (ω) = ω. Then I(F ) = (0, 1), while {EQF : Q ∈ R} = [0, 1]. ��

The next example shows that the assumption “EQF <∞ for any Q ∈ R”
in Theorem 3.9 is essential.

Example 3.11. Let Ω = R+, F = B(R+), and

A =
{ N∑
n=1

hnXanbn
: N ∈ N, an < bn ∈ R+, hn ∈ R

}
,

where

Xab(ω) = I(a < ω � b)− I(ω > 0)
∫ b

a

e−xdx, ω ∈ Ω.

Consider F (ω) = eω.
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If Q ∈ R, then, for any a > 0, we have EQX0a = 0 (note that X0a is
bounded), which means that

Q((0, a]) = Q(R++)
∫ a

0

e−xdx, a ∈ R++.

Hence, Q has the form α1Q1+α2Q2, where α1, α2 ∈ R+, α1+α2 = 1, Q1 = δ0,
and Q2 is the exponential distribution on R+ with parameter 1. Clearly, any
measure of this form belongs to R. We have EQF = 1 if Q = Q1 and EQF =∞
otherwise. Consequently, {EQF : Q ∈ R} = {1}.

Take now x ∈ I(F ). For n ∈ N, set

Fn(ω) =

⎧⎪⎨⎪⎩
0 if ω = 0,
em if ω ∈ (m,m+ 1], m = 0, . . . , n− 1,
0 if ω > n,

xn =
∫ ∞

0

Fn(x)e−xdx.

Then Fn − xn ∈ A. Since xn →∞, there exists n0 such that xn0 > x. Then

(F (ω)− x)− (Fn0(ω)− xn0) � xn0 − x > 0, ω ∈ Ω.

But

(F − x)− (Fn − xn) ∈ A′ = {X + h(F − x) : X ∈ A, h ∈ R}.

This contradicts the choice of x. As a result, I(F ) = ∅. ��

4 Discrete-time model with finite number of assets

We will consider a model with no transaction costs. Thus, we are given a pos-
sibility space (Ω,F) endowed with a filtration (Fn)n=0,...,N and an Rd-valued
(Fn)-adapted sequence (Sn)n=0,...,N . From the financial point of view, Sin is
the discounted price of the ith asset at time n. The set of attainable incomes
is defined as

A =
{ N∑
n=1

d∑
i=1

Hi
n(S

i
n − Sin−1) : Hn is Fn−1-measurable

}
.

We will assume that, for any n = 0, . . . , N − 1, ω ∈ Ω, there exists an atom
an(ω) of Fn that contains ω. (Recall that an atom of a σ-field F is a set a ∈ F
such that a �= ∅ and, for any D ∈ F , we have either D ⊇ a or D ∩ a = ∅.)
Notation. Set Cn(ω) = conv{Sn+1(ω′) : ω′ ∈ an(ω)} and let C◦

n(ω) denote the
relative interior of Cn(ω).
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Let M denote the set of probability measures on F , with respect to which
S is an (Fn)-martingale.

Theorem 4.1 (Fundamental theorem of asset pricing). For the model
(Ω,F , A), the following conditions are equivalent:

(a) NGA;
(b) NA (i.e. A ∩ L0

+ = {0});
(c) Sn(ω) ∈ C◦

n(ω), n = 0, . . . , N − 1, ω ∈ Ω;
(d) for every D ∈ F \ {∅}, there exists Q ∈M such that Q(D) > 0.

Lemma 4.2. Suppose that condition (c) of Theorem 4.1 is satisfied. Let
ω0 ∈ Ω. Then there exist ω1, . . . , ωm ∈ Ω and α0, . . . , αm ∈ R++ such that∑m
k=0 αk = 1 and

∑m
k=0 αkX(ωk) = 0 for any X ∈ A.

Proof. We will prove this statement by induction on N .
Base of induction. For N = 1, the statement is verified by the same

arguments as those used in the proof of Theorem 2.4 (Step 2).
Step of induction. Assume that the statement is true for N − 1. Let us

prove it for N . By the induction hypothesis, there exist ω̃1, . . . , ω̃l ∈ Ω and
α̃0, . . . , α̃l ∈ R++ such that ω̃0 = ω0,

∑l
i=0 α̃i = 1, and

∑l
i=0 α̃iX(ω̃i) = 0 for

any X ∈ A′, where

A′ =
{N−1∑
n=1

d∑
i=1

Hi
n(S

i
n − Sin−1) : Hi

n is Fn−1-measurable
}
.

For all i = 0, . . . , l, there exist ω̃i0, . . . , ω̃il(i) ∈ aN−1(ω̃i) and α̃i0, . . . , α̃il(i) ∈
R++ such that ω̃i0 = ω̃i,

∑l(i)
j=0 α̃ij = 1, and

l(i)∑
j=0

α̃ij(SN (ω̃ij)− SN−1(ω̃ij)) = 0.

Let (i(0), j(0)), . . . , (i(m), j(m)) be a numbering of the set {(i, j) : i =
0, . . . , l, j = 0, . . . , l(i)}. We arrange this numbering in such a way that
i(0) = j(0) = 0. Set ωk = ω̃i(k)j(k), αk = α̃i(k)α̃i(k)j(k), k = 0, . . . ,m. Then,
for any

X =
N∑
n=1

〈Hn, (Sn − Sn−1)〉 ∈ A ,

we have
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m∑
k=0

αkX(ωk) =
N−1∑
n=1

l∑
i=0

l(i)∑
j=0

α̃iα̃ij〈Hn(ω̃ij), (Sn(ω̃ij)− Sn−1(ω̃ij))〉

+
l∑
i=0

l(i)∑
j=0

α̃iα̃ij〈HN (ω̃ij), (SN (ω̃ij)− SN−1(ω̃ij))〉

=
N−1∑
n=1

l∑
i=0

α̃i〈Hn(ω̃i), (Sn(ω̃i)− Sn−1(ω̃i))〉

+
l∑
i=0

α̃i

〈
HN (ω̃i),

l(j)∑
j=0

α̃ij(SN (ω̃ij)− SN−1(ω̃ij))
〉

= 0 .

In the second equality, we used the fact that Hn, n = 0, . . . , N and Sn,
n = 0, . . . , N − 1 are constant on the atoms of FN−1. Thus, ω1, . . . , ωm and
α0, . . . , αm satisfy the desired conditions. ��
Proof of Theorem 4.1. Step 1. The implication (a)⇒(b) is obvious.

Step 2. Let us prove the implication (b)⇒(c). Suppose that there exist
m ∈ {0, . . . , N − 1} and ω0 ∈ Ω such that Sm(ω0) /∈ C◦

m(ω0). By the
separation theorem, there exists h ∈ Rd such that 〈h, (Sm+1(ω)−Sm(ω))〉 � 0
for every ω ∈ am(ω0) and 〈h, (Sm+1(ω)− Sm(ω))〉 > 0 for some ω ∈ am(ω0).
Set

Hn(ω) =

{
hI(ω ∈ am(ω0)) if n = m+ 1,
0 otherwise.

Then
N∑
n=1

d∑
i=1

Hi
n(S

i
n − Sin−1) ∈ A ∩ (L0

+ \ {0}) ,

which contradicts the NA condition.
Step 3. Let us prove the implication (c)⇒(d). Fix D ∈ F \ {∅}. Choose

ω0 ∈ D. Take ω1, . . . , ωm ∈ Ω and α0, . . . , αm ∈ R++ provided by Lemma 4.2.
Then the measure Q =

∑m
k=0 αkδωk

belongs to M and Q(D) > 0.
Step 4. Let us prove the implication (d)⇒(a). It has been shown in [3;

Lem. 4.1] that M ⊆ R. Now it follows from Theorem 3.6 that the NGA is
satisfied (note that the proof of the “if” part of that theorem does not employ
Assumption 3.5). ��
Corollary 4.3. Suppose that S0 ∈ Rd++,

{(S1(ω), . . . , SN (ω)) : ω ∈ Ω} = (Rd++)N ,

Fn = FSn , and F = FN . Then the model (Ω,F , A) satisfies the NGA
condition.

Proof. It is sufficient to note that, for every ω ∈ Ω and n = 0, . . . , N − 1, we
have C◦

n(ω) = Rd++, so that condition (c) of Theorem 4.1 is satisfied. ��
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5 Continuous-time model with finite number of assets

We will first consider the frictionless model (its probability version was
discussed in [3; Sect. 4]). Thus, we are given a possibility space (Ω,F) en-
dowed with a right-continuous filtration (Ft)t∈[0,T ] and a family (St)t∈[0,T ] of
Rd-valued Ft-measurable functions such that, for each ω, the map t 	→ St(ω)
is càdlàg. We will assume that each component of S is strictly positive (this
condition is naturally satisfied if, for example, each Si is the price process of
an equity or an option). The set of attainable incomes is defined by

A =
{ N∑
n=1

d∑
i=1

Hi
n(S

i
un
− Siun−1

) : N ∈ N, u0 � · · · � uN

are (Ft)-stopping times, Hi
n is Fun−1-measurable

}
.

It follows from the results of [3; Sect. 4] that if each component of S is bounded
below, then

R = R
( d∑
i=1

(SiT − Si0)
)

= {Q : S is an (Ft,Q)-martingale} .

We present two sufficient conditions for the absence of generalized arbi-
trage.

Proposition 5.1. Suppose that S0 ∈ Rd++,

{S.(ω) : ω∈Ω} = {f : f is a càdlàg piecewise constant function [0, T ] → Rd++

with a finite number of jumps, f(0) = S0},

Ft = FSt , and F = FT . Then the model (Ω,F , A) satisfies the NGA condition.

Proof. Fix D ∈ F\{∅}. Take ω0 ∈ D. Let 0 < t1 < · · · < tN � T be
the jump times of S.(ω0). We set t0 = 0, tN+1 = T . Consider the sequence
S̃n = Stn . For this sequence, the set C◦

n(ω) defined in the previous section
equals Rd++ for all ω ∈ Ω and n = 0, . . . , N−1. Thus, we can apply Lemma 4.2,
which yields the existence of ω1, . . . , ωm ∈ Ω and α0, . . . , αm ∈ R++ such
that S.(ωk) is constant on (tl, tl+1), k = 0, . . . ,m, l = 0, . . . , N ,

∑m
k=0 αk =

1, and the sequence (St0 , . . . , StN+1) is an (Ft0 , . . . ,FtN+1)-martingale with
respect to the measure Q =

∑m
k=0 αkδωk

. As S is Q-a.s. constant on (tl, tl+1),
l = 0, . . . , N , the process (St)t∈[0,T ] is an (Ft,Q)-martingale. This means that
Q ∈ R. Moreover, Q(D) > 0. An application of Theorem 3.6 completes the
proof. ��
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Proposition 5.2. Suppose that S0 ∈ Rd++,

{S.(ω) : ω ∈ Ω} =
{
f : f is a càdlàg function [0, T ] → Rd++

with finite variation such that, for each i,

inft∈[0,T ] f
i(t) > 0, and f(0) = S0

}
, (1)

Ft = FSt , and F = FT . Then the model (Ω,F , A) satisfies the NGA condition.

Proof. Fix D ∈ F\{∅}. Take ω0 ∈ D. Set ϕ(t) = St(ω0), ψi(t) = lnϕi(t),
i = 1, . . . , d, t ∈ [0, T ]. For each i, the function ψi can be represented as
ψi = ψi+ − ψi−, where ψi+ and ψi− are càdlàg and increasing. Set

λi+(t) =
ψi−(t)
e− 1

, λi−(t) =
ψi+(t)

1− e−1
, i = 1, . . . , d, t ∈ [0, T ].

Let N i
+, N i

−, i = 1, . . . , d be independent Poisson processes with intensity 1.
For each i = 1, . . . , d, the process

Zit = exp
{
(N i

+)λi
+(t)− (N i

−)λi
−(t)− (e−1)λi+(t)+ (1− e−1)λi−(t)

}
, t ∈ [0, T ]

is a martingale with respect to its natural filtration. Let us denote the space
of functions standing in (1) by V. It is equipped with the σ-field G = σ(Xt;
t ∈ [0, T ]), where Xt(f) = f(t). Set Q0 = Law(Zt; t ∈ [0, T ]). Then X is an
(FXt ,Q0)-martingale. In view of the representation

Zit = ϕi(t) exp
{
(N i

+)λi
+(t) − (N i

−)λi
−(t)

}
, i = 1, . . . , d, t ∈ [0, T ],

we have Q0({ϕ}) > 0. Define the measure Q on
{
S.−1(C) : C ∈ G

}
by

Q(S.−1(C)) := Q0(C). Note that {S.−1(C) : C ∈ G} = F and Q is correctly
defined. Then S is an (Ft,Q)-martingale. This means that Q ∈ R. Moreover,
the set S.−1({ϕ}) contains ω0 and is an atom of F . Hence, S.−1({ϕ}) ⊆ D, and
therefore, Q(D) > 0. An application of Theorem 3.6 completes the proof. ��

The following statement is rather surprising.

Proposition 5.3. Suppose that S0 ∈ Rd++,

{S.(ω) : ω ∈ Ω} = {f : f is a continuous function [0, T ] → Rd++, f(0) = S0},

Ft = FSt , and F = FT . Then the model (Ω,F , A) does not satisfy the NGA
condition.

Proof. Suppose that the NGA condition is satisfied. By Theorem 3.6, there
exists a measure Q ∈ M such that Q(D) > 0, where D = {S1

t = 1 + t,
t ∈ [0, T ]}. Then S should be an (Ft,Q)-martingale (see [3; Sect. 4]). Moreover,
S is continuous. On the set D, the quadratic variation of S1 is 0. This
implies that S1

T = S1
0 Q-a.e. on D (see [8; Ch. IV, Prop. 1.13]). The obtained

contradiction shows that the NGA condition is not satisfied. ��
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Let us now consider the model with proportional transaction costs (its
probability version was discussed in [4; Sect. 3]). For this model, the set of
discounted incomes is defined as

A =
{ N∑
n=0

d∑
i=1

[
−Hi

nI(H
i
n > 0)Siun

−Hi
nI(H

i
n < 0)(1− λi)Siun

]
:

N ∈ N, u0 � · · · � uN are (Ft)-stopping times,

Hi
n is Fun

-measurable, and
N∑
n=0

Hn = 0
}
.

Here λi ∈ [0, 1] means the coefficient of proportional transaction costs for
the ith asset. For this model, we are able to prove the absence of generalized
arbitrage under more natural assumptions than those used for the frictionless
model.

Proposition 5.4. Suppose that S0 ∈ Rd++,

{S.(ω) : ω ∈ Ω} = {f : f is a continuous function [0, T ] → Rd++, f(0) = S0},

Ft = FSt , and F = FT . Suppose moreover that λi > 0 for all i. Then the
model (Ω,F , A) satisfies the NGA condition.

Proof. Fix D ∈ F \ {∅}. Take ω0 ∈ D. Consider the function ϕ(t) = St(ω0).
Fix i ∈ {1, . . . , d} and set Δi = inft∈[0,T ] S

i
t(ω0). We can find points 0 =

t0 < · · · < tM = T such that

|Sit(ω0)− Sitm(ω0)| < λiΔi/3 for m = 0, . . . ,M − 1, t ∈ [tm, tm+1) .

Then the function ψi defined as (1−λi/2)ϕi(tm) for t ∈ [tm, tm+1) is piecewise
constant, ψi(0) = S0(ω0), and

(1− λi)ϕi(t) � ψi(t) � ϕi(t), i = 1, . . . , d, t ∈ [0, T ] . (2)

Set ψ(t) = (ψ1(t), . . . , ψd(t)) and take ω′
0 ∈ Ω such that St(ω′

0) = ψ(t).
The reasoning used in the proof of Proposition 5.1 shows that there exist
ω′

1, . . . , ω
′
m ∈ Ω and α0, . . . , αm ∈ R++ such that

∑m
k=0 αk = 1 and S is

a martingale with respect to the measure Q0 =
∑m
k=0 λkδω′

k
. Set ωk = ω′

k,
k = 1, . . . ,m. Consider an arbitrary element

X =
N∑
n=0

d∑
i=1

[
−Hi

nI(H
i
n > 0)Siun

−Hi
nI(H

i
n < 0)(1− λi)Siun

]
∈ A.

Set

Y =
N∑
n=0

d∑
i=1

[
−Hi

nI(H
i
n > 0)Siun

−Hi
nI(H

i
n < 0)Siun

]
.
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In view of (2), X(ω0) � Y (ω′
0), and hence,

m∑
k=0

αkX(ωk) � α0Y (ω′
0) +

m∑
k=1

αkX(ωk) �
m∑
k=0

αkY (ω′
k) = EQ0Y.

Using the fact that S is an (Ft,Q0)-martingale and employing the represen-
tation

Y =
N∑
n=1

d∑
i=1

(n−1∑
k=1

Hi
k

)
(Siun

− Siun−1
),

we conclude that EQ0Y = 0 (note that Q0 is concentrated on a finite set
of points). Thus, the measure Q =

∑m
k=0 αkδωk

belongs to R. Moreover,
Q(D) > 0. An application of Theorem 3.6 completes the proof (Assump-
tion 3.5 is satisfied in this model; see [3; Lem. 3.1]). ��

6 Model with european call options as basic assets

We will consider a model with no transaction costs (its probability version
was discussed in [3; Sect. 6]). Thus, we are given a possibility space (Ω,F)
and T ∈ [0,∞]. Let ST be an R+-valued F-measurable function. From the
financial point of view, ST is the price of some asset at time T . Let K ⊆ R+

be the set of strike prices of European call options on this asset with maturity
T and let ϕ(K), K ∈ K be the price at time 0 of a European call option with
the payoff (ST −K)+. The set of attainable incomes is defined as

A =
{ N∑
n=1

hn((ST −Kn)+ − ϕ(Kn)) : N ∈ N, Kn ∈ K, hn ∈ R

}
.

We assume that 0 ∈ K, which means the possibility to trade the underlying
asset. Consider Z0 = ST − ϕ(0). Then, for all Q ∈ R(Z0) and all X ∈ A, we
have EQ|X| <∞ and EQX = 0. Thus, Assumption 3.5 is satisfied.

This model will be studied in two (most important) cases:

1. the case, where K = R+;
2. the case, where K is finite.

Propositions 6.1 and 6.2 show that in case 1 the NGA condition is not satisfied
in most natural situations, while in case 2 the NGA condition is satisfied in
most natural situations.

Below ϕ′
+ denotes the right-hand derivative and ϕ′′ denotes the second

derivative of a convex function ϕ : R+ → R+ taken in the sense of distributions
(i.e., ϕ′′([a, b]) = ϕ′

+(b) − ϕ′
+(a)) with the convention: ϕ′′({0}) = ϕ′

+(0) + 1
(thus, ϕ′′ is a probability measure provided that ϕ′

+(0) � −1).
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Proposition 6.1. Let K = R+. Then the model (Ω,F , A) satisfies the NGA
condition if and only if

(a) ϕ is convex;
(b) ϕ′

+(0) � −1;
(c) limx→∞ ϕ(x) = 0;
(d) the set C := {ST (ω) : ω ∈ Ω} is countable;
(e) ϕ′′ is concentrated on C;
(f) ϕ′′({x}) > 0 for any x ∈ C.

Proof. Step 1. Let us prove the “only if” implication. If the NGA is satisfied,
then (by Theorem 3.6), for any a ∈ C, there exists a risk-neutral measure Q
such that Q(ST = a) > 0. We have

EQ(ST −K)+ = ϕ(K), K ∈ R+ ,

which immediately implies (a)–(c). Furthermore, it follows that LawQ ST =
ϕ′′. In particular, ϕ′′({a}) = Q(ST = a) > 0, which yields (f), and (f) leads
to (d). Employing once more the property LawQ ST = ϕ′′, we get (e).

Step 2. Let us prove the “if” part. Let a1, a2, . . . be a numbering of C.
Find ω1, ω2, . . . such that ST (ωi) = ai and consider the measure Q =∑
i ϕ

′′({ai})δωi
. Then

LawQ ST =
∑
i

ϕ′′({ai})δai
= ϕ′′ .

Hence,

EQ(ST −K)+ =
∫

R+

(x−K)+ϕ′′(dx) = ϕ(K), K ∈ R+ ,

which means that Q is a risk-neutral measure. Furthermore, Q(ST = a) =
ϕ′′({a}) > 0 for any a ∈ C. By Theorem 3.6, the NGA is satisfied. ��

Proposition 6.2. Suppose that K is finite, 0 ∈ K, and {ST (ω) : ω ∈ Ω} =
R++. Then the model (Ω,F , A) satisfies the NGA condition if and only if

(a) ϕ is strictly positive on K;
(b) ϕ is strictly convex on K;
(c) ϕ is strictly decreasing on K;
(d) ϕ(x) > ϕ(0)− x, x ∈ K \ {0}.

Proof. Step 1. Let us prove the “only if” implication. If the NGA is satis-
fied, then, for any a ∈ R++, there exists a risk-neutral measure Q such that
Q(ST = a) > 0. The function ψ(x) := EQ(ST − x)+, x ∈ R+ is positive, con-
vex, decreasing, ψ(x) � ψ(0)− x for any x ∈ R+, ψ′ has a jump at the point
a, and ψ coincides with ϕ on K. This yields (a)–(d).

Step 2. Let us prove the “if” part. Fix a ∈ R++. We can find a piece-
wise linear function ψ : R+ → R+ such that ψ is convex, ψ′

+(0) = −1,
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limx→∞ ψ(x) = 0, ψ′′({a}) > 0, and ψ coincides with ϕ on K. The measure ψ′′

is concentrated on a countable set {a1, a2, . . . , }. Find ωi such that ST (ωi) = ai
and consider the measure Q =

∑
i ϕ

′′({ai})δωi
. Then

EQ(ST −K)+ = ψ(K) = ϕ(K), K ∈ K ,

which means that Q is a risk-neutral measure. Furthermore, Q(ST = a) =
ψ′′({a}) > 0. By Theorem 3.6, the NGA condition is satisfied. ��
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