
3.1
Introduction

The genus Pseudomonas sensu stricto belongs to the γ subclass of the Proteo-
bacteria (Kersters et al. 1996); it is limited to species of the previous Pseudo-
monas rRNA group I (Palleroni 1984). The revised genus contains about 100 
species (http://www.dsmz.de/bactnom/nam2400.htm) found in all the major 
natural environments and using a wide range of substrates. The fluorescent spe-
cies produce pyoverdins, a siderophore fluorescent under UV light. Among the 
fluorescent pseudomonads, pathogenic strains are harmful to human, plants 
or mushroom; saprophytic ones can be useful in bioremediation, biocontrol 
or plant growth promotion. Bacterial siderophores can be important determi-
nants of these processes and they can be a characteristic of a species. There-
fore, it is useful to determine the siderophores produced or used by a strain in 
a characterization, classification or identification process, a practice sometimes 
called siderotyping (Meyer et al. 1997).

In this chapter we will discuss the specificity of siderophores in bacteria. 
Methods to detect a specific siderophore will then be described. Finally, the 
presently published siderophores produced by the fluorescent pseudomonads, 
their biological importance and techniques of detection will be presented. The 
siderophores corrugatin, cepabactin and norcadamine produced by non-fluo-
rescent pseudomonads (Budzikiewicz 2004) will not be described.
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3.2
Siderophore Specificity

3.2.1
Specificity of Production

Siderophore production is generally specific at the genus level; for example, py-
overdins are produced only by Pseudomonas spp., ornibactin by Burkholderia
spp. and mycobactin by Mycobacterium spp. However, there are exceptions: 
pyochelin and cepabactin are produced by Pseudomonas and Burkholderia spe-
cies; enterobactin by Klebsiella, Enterobacter and Erwinia species; and other 
examples include corynebactin, ferrioxamines and salmochelin (Budzikiewicz 
2004; Winkelmann 2004). In the case of yersiniabactin found in the genera 
Yersinia, Escherichia, Citrobacter, Klebsiella, Salmonella, Enterobacter, Pseudo-
monas and, perhaps, Photorhabdus, horizontal gene transfer is responsible for 
siderophore propagation (Bach et al. 2000; Schubert et al. 2000; Oeschlaeger et 
al. 2003; Mokracka et al. 2004; Bultreys et al. 2006). Siderophore production can 
also be specific at the species level. In pseudomonads, corrugatin, pseudomo-
nine and quinolobactin have been found in one species (Budzikiewicz 2004). 
Also, pyoverdins can be specific at the species level because the peptide part of 
the molecule varies (Meyer et al. 2002a).

3.2.2
Specificity of Utilization and Heterologous Uptake

The rule is that for each siderophore produced there is a specific receptor to 
translocate the iron-bound siderophore back to the cell. However, a siderophore 
can be incorporated by a strain that is unable to produce it. Cross interactions 
have been observed with pyoverdins of similar structures (Poole and McKay 
2003), and the genomes of P. aeruginosa PAO1, P. putida KT2440, P. fluorescens
Pf0 and P. syringae DC3000 contain 35, 29, 26 and 23 genes, respectively, that 
encode outer-membrane receptors (Cornelis and Matthijs 2002; Martins dos 
Santos et al. 2004). P. aeruginosa PAO1 produces only pyoverdin and pyochelin, 
but its pyoverdin receptor binds a structurally different pyoverdin; other recep-
tors are specific for aerobactin, enterobactin, another pyoverdin, cepabactin, 
deferrioxamines, deferrichrysin, deferrirubin, coprogen, citrate and myo-ino-
sitol hexakisphosphate (Poole 2004). In these systems, the heterologous sider-
ophore generally activates the production of its receptor. Siderophore uptake 
experiments using purified siderophore enable the detection of these sidero-
phore-inducible or constitutive iron transport systems (Poole et al. 1990; Cham-
pomier-Verges et al. 1996; Ongena et al. 2002). The ability to use heterologous 
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siderophores is important for competitiveness (Champonier-Verges et al. 1996; 
Martins dos Santos et al. 2004).

3.3
Siderotyping Methods

In fluorescent pseudomonads, the culture media often used to produce sidero-
phores are succinate (SMM) (Meyer and Abdhalla 1978), CAA (Meyer et al. 1998) 
and Na-gluconate (Budzikiewicz 1993). The glucose asparagine GASN medium 
(Bultreys and Gheysen 2000) has also already been used to produce pyoverdin, 
dihydropyoverdin, yersiniabactin and pyridine-2,6-bis(monothiocarboxylic 
acid).

The bacteria are generally grown in shaken liquid medium, but they have also 
been grown in a still Petri dish containing liquid medium and one block of agar 
medium. This technique enabled a considerable improving in pyoverdin and 
yersiniabactin productions by P. syringae, and in yersiniabactin production by 
Escherichia coli, compared to the technique in shaken Erlenmeyer flasks (Bul-
treys and Gheysen 2000; Bultreys et al. 2006).

3.3.1
Siderophore Uptake Experiments

A positive response in these tests is not always indicative of the ability to pro-
duce the siderophore because heterologous uptake can occur (Fuchs et al. 2001). 
Growth stimulation tests: a solid culture medium containing the strong iron 
chelator ethylenediaminedihydroxyphenyl-acetic acid (Meyer et al. 1997) or di-
pyridyl (Bultreys et al. 2001) is used. Plates are inoculated and a paper disc im-
pregnated with a siderophore is placed on the agar. Growth stimulation around 
the paper disc is indicative of the uptake of the tested siderophore.

Siderophore-mediated 59Fe uptake: a 59Fe-siderophore complex is incubated in 
the presence of iron-depleted bacteria and the suspension is filtered. After wash-
ing, the radioactivity of the cells on the filter is determined (Munsch et al. 2000).

3.3.2
Electrophoretic Methods

Pyoverdin and yersiniabactin receptors and peptide synthetases can be de-
tected after SDS-PAGE, either by immunoblotting or by radiography after 
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growth with 35S-labeled amino acids (Meyer et al. 1997; Schubert et al. 1998). 
Isoelectric Focusing Electrophoresis (IEF) followed by an overlay with an iron-
containing blue chrome azurol S (CAS) agarose gel (Schwyn and Neilands 
1987) is a method used to detect siderophores (Koedam et al. 1994). The sid-
erophores are separated according to their isoelectric point (pI). Pyoverdins 
are detected after IEF under UV light. Other siderophores are detected after 
overlay; in the presence of a siderophore, the iron is locally removed from the 
blue CAS gel, which becomes orange. Fe(III)-chelates of the pyoverdin and di-
hydropyoverdin of P. syringae can be detected after IEF by their natural color 
(Bultreys et al. 2001).

3.3.3
Chromatographic Methods

Pyochelin can be detected by thin layer chromatography (TLC) (Sokol 1984). 
Siderophores are detected by high performance liquid chromatography (HPLC), 
either after extraction, as for pyochelin and pseudomonine (Serino et al. 1997; 
Kilz et al. 1999; Mercado-Blanco et al. 2001), or in the culture medium, as for 
pyoverdins and yersiniabactin (Bultreys et al. 2003, 2006). They are identified 
by their retention times and UV spectra analyzed with a photodiode array 
detector.

3.3.4
Mass Spectrometry (MS)

One method couples HPLC with electrospray ionisation (ESI)-MS; it enables 
the determination of the molecular ion of pyoverdins (Kilz et al. 1999). Also, 
free pyoverdin extracts analyzed by ESI-MS and collision activation can provide 
information on pyoverdin structures (Fuchs and Budzikiewics 2001).

3.3.5
Use of Modified Indicator Strains

In uptake tests, a strain unable to produce a siderophore but able to use it detects 
this siderophore in the culture supernatant of tested strains (Mokracka et al. 
2004). In another test, the up-regulation of fyuA in the presence of yersiniabac-
tin, monitored by a fyuA-gfp (green fluorescent protein) reporter fusion, indi-
cates the presence of yersiniabactin in the culture supernatant of tested strains 
(Schubert et al. 2000).
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3.3.6
Genetic Tests

DNA hybridization and/or PCR were used for aerobactin, a novel catecholate sid-
erophore, yersiniabactin, pyridine-2,6-bis(monothiocarboxylic acid) and pseu-
domonine (Johnson et al. 2001; Mercado-Blanco et al. 2001; Sepúlveda-Torres et 
al. 2002; Bultreys et al. 2006). Repressed siderophores can be detected. However, 
the possession of a gene does not always correlate with the ability to produce the 
siderophore. Also, sequence variations can induce false PCR negatives.

3.4
Siderophores of Fluorescent Pseudomonads

3.4.1
Pyochelin and its By-Product Salicylic Acid

3.4.1.1

Description and Biological Importance

Pyochelin is a salicylic acid-derived siderophore with the formula C14H16N2O3S2

(molecular mass 324) produced by strains of P. aeruginosa, P. fluorescens, Burk-
holderia cepacia and Burkholderia multivorans (Cox and Graham 1979; Cox et 
al. 1981; Sokol 1984). Pyochelin exists in nature as two interconvertible stereo-
isomers: pyochelin I and II (Rinehart et al. 1995). Fe(III)-dipyochelin has a low 
stability constant of 5×105 (Visca et al. 1992). Pyochelin complexes with Zn(II), 
Cu(II), Co(II), Mo(VI), and Ni(II) might deliver these metal ions to the cell 
(Visca et al. 1992). Complexes of pyochelin with vanadium have antibacterial 
effects (Baysse et al. 2000).

Pyochelin is synthesized from chorismate and two moles of cysteine. Sali-
cylic acid and the iron-chelator and antibiotic dihydroaeruginoic acid (Carmi 
et al. 1994) are by-products (Crosa and Walsh 2002). PchA and PchB transform 
chorismate into salicylate (Gaille et al. 2002, 2003). Salicylic acid plays a role 
in plant defense by inducing systemic acquired resistance (SAR) (Durrant and 
Dong 2004), and bacteria secreting salicylic acid can induce SAR in plants (De 
Meyer and Höfte 1997; Maurhofer et al. 1998; De Meyer et al. 1999).

Pyochelin contributes to the virulence of P. aeruginosa in mice and humans 
(Cox 1982; Britigan et al. 1997; Takase et al. 2000), possibly because of sidero-
phore activity (Ankenbauer et al. 1985), but ferripyochelin also enhances hy-
droxyl radical formation and pulmonary epithelial and artery endothelial cell 
injury in presence of pyocianin (Britigan et al. 1992, 1997).
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Pyochelin and especially ferripyochelin have the capacity of degrading toxic 
organotins found in the environment, like triphenyltin chloride, by a mechanism 
involving hydroxyl radical formation (Sun et al. 2006; Sun and Zhong 2006).

Pseudomonads producing pyochelin can play a role in biocontrol. Pyochelin 
and pyocianin induce resistance against Botrytis cinerea in tomato, probably re-
sulting from the formation of reactive oxygen species which play a role in plant 
defense (Audenaert et al. 2002). Also, pyochelin- and pyoverdin-mediated iron 
competition protects tomato against Pythium (Buysens et al. 1996).

3.4.1.2

Detection Methods

The media used to produce pyochelin are CAA, SMMCA and GGP (Cox and 
Graham 1979; Visca et al. 1992; Serino et al. 1997; Darling et al. 1998; Reimmann 
et al. 1998; Takase et al. 2000). The use of 1/10-strength nutrient broth-yeast ex-
tract amended with glucose or glycerol increases pyochelin and salicylic acid 
production (Duffy and Défago 1999).

Pyochelin is a light yellow siderophore with a yellowish-green fluorescence, 
which can be masked by the pyoverdin. In methanol, it forms a wine-red (pH 2.5)
to orange (pH 7.0) non-fluorescent complex with iron. Iron free pyochelin dis-
plays absorption maxima at 218, 248 and 310 nm and iron-saturated pyochelin 
at 237, 255, 325, 425 and 520 (pH 2.5) or 488 (pH 7.0) nm (Cox and Graham 
1979). The most widely used methods of detection are TLC and HPLC (Sokol 
1984; Ankenbauer et al. 1988; Serino et al. 1997; Darling et al. 1998; Reimmann 
et al. 1998; Duffy and Défago 1999; Takase et al. 2000; Visser et al. 2004). In 
TLC, salicylic acid and pyochelin are detected in concentrated chloroform or 
dichloromethane extracts of acidified culture supernatants. In HPLC, pyoche-
lin isomerizes spontaneously to pyochelin I and II (3:1 ratio); ethyl acetate ex-
tracts of acidified culture supernatants are concentrated before injection. Sali-
cylic acid, dihydroaeruginoic acid and pyochelin I and II are identified by their 
retention times and UV spectra. Pyochelin can be detected by IEF and CAS 
overlay (Meyer and Geoffroy 2004). The PCR primers 5'-AGATGGACAAAGC-
GCCCTGC-3' and 5'-GATGGGCGGAGACGAACAGG-3' amplify (Tm 60 °C)
2139 bp of pchD of P. aeruginosa PAO1 encoding the salicyl-AMP ligase used in 
pyochelin synthesis (Serino et al. 1997; Takase et al. 2000).

3.4.2
Pseudomonine

Pseudomonine is a salicylic acid-based siderophore with the formula C16H18N4O4

(molecular mass 330). It is produced with salicylic acid by P. fluorescens AH2 
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isolated from spoiled Nile perch from Lake Victoria (Anthoni et al. 1995). It is 
also produced with pyoverdin and salicylic acid by the plant growth-promoting 
P. fluorescens WCS374 (Mercado-Blanco et al. 2001). Iron-regulated metabolites 
produced by WCS374 induce systemic resistance and the suppression of Fu-
sarium wilt in radish, but the role of pseudomonine is not clarified.

The genes pmsCEAB are involved in pseudomonine synthesis (Mercado-
Blanco et al. 2001). PmsB and PmsC show similarities with PchB and PchA of 
P. aeruginosa, involved in salicylate synthesis.

Pseudomonine was produced in asparagine sucrose broth (Anthoni et al. 
1995) or in SMM using a pyoverdin-defective mutant (Mercado-Blanco et al. 
2001). Pseudomonine emits a blue fluorescence under UV light, detectable when 
the pyoverdin is repressed. It shows absorbance maxima at 298, 237 and 203 nm
in water (Anthoni et al. 1995), and it is detectable by HPLC (Mercado-Blanco et 
al. 2001). The PCR primers SAL01 5'-GAACCTCAATGACATTCGAG-3' and 
SAL02 5'-GTAGAGCTTCTCGACGAAAG-3' amplify (Tm 56 °C) 214 bp of 
pmsB of P. fluorescens WCS374. Pseudomonine production was detected by RT-
PCR (Mercado-Blanco et al. 2001).

3.4.3
Yersiniabactin

3.4.3.1

Description and Biological Importance

Yersiniabactin is salicylic acid based siderophore of formula C21H27N3O4S3 (mo-
lecular mass 481) produced by P. syringae (Bultreys et al. 2006). It was initially 
characterized in Yersinia pestis, the causal agent of bubonic plague (Haag et al. 
1993; Drechsel et al. 1995; Chambers et al. 1996). Yersiniabactin is widespread 
among human and animal pathogenic enterobacteria, such as Yersinia spp., 
Escherichia coli, Citrobacter spp., Klebsiella spp., Salmonella enterica and Entero-
bacter spp. (Bach et al. 2000; Schubert et al. 2000; Carniel 2001; Oelschlaeger et 
al. 2003; Mokracka et al. 2004). The complete yersiniabactin iron uptake sys-
tem, called the yersiniabactin locus, is located in a genomic high-pathogenic-
ity island transmissible by horizontal gene transfer (Carniel 2001; Perry 2004; 
Schmidt and Hensel 2004; Antonenka et al. 2005). Genes that are similar to 
yersiniabactin genes have been detected in the insect pathogen Photorhabdus 
luminescens (Duchaud et al. 2003) and in the plant pathogen P. syringae (Buell et 
al. 2003), which is divided into many pathovars and nine genospecies (Gardan 
et al. 1999). A yersiniabactin locus was recently detected in three genospecies of 
P. syringae, but most generally not in the other genospecies and in representa-
tives of other pseudomonads (Bultreys et al. 2006). However, the locus organi-
zation and gene sequences are different compared to the enterobacteria, and 
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the locus is not located in a high-pathogenicity island as usual; also, the gene 
organizations of P. luminescens and P. syringae are closer to each other than to 
the Y. pestis group. Interestingly, a Pseudomonas strain produces the Zn-, Cu- or 
Fe-containing antimycoplasma agent micacocidin A, B and C, which strongly 
resembles yersiniabactin (Kobayashi et al. 1998).

Yersiniabactin is synthesized from chorismate by the salicylate synthase 
Irp9/YbtS, the salicyl-AMP ligase Irp5/YbtE, the peptide synthetase high-mo-
lecular-weight protein (HMWP) 2, the polyketide synthase/peptide synthetase 
HMWP1 and the thiazoline reductase Irp3/YbtU (Crosa and Walsh 2002). Only 
one protein usually converts chorismate in salicylate in yersiniabactin synthesis 
(Kerbarh et al. 2005), but two genes homologous to pchA and pchB of P. aerugi-
nosa seem involved in this conversion in P. syringae (Bultreys et al. 2006).

In Yersinia spp., yersiniabactin is a virulence factor: it is indispensable in the 
early stage of infection of Y. pestis, and defective mutants of Y. pseudotubercu-
losis and Y. enterocolitica show a loss of virulence (Perry 2004). In E. coli, the 
involvement of the HPI in virulence is not as clear, and two in vivo studies drew 
different conclusions (Schubert et al. 2002; Lefranc Nègre et al. 2004).

In P. syringae, the existence of the genospecies 1, 2, 4 and 6 within which the 
strains do not produce yersiniabactin indicates that pathogenicity is possible 
without producing yersiniabactin. Strains defective in pyoverdin production be-
longing to the pathovars tomato and persicae produce yersiniabactin, but the ad-
vantage of producing both yersiniabactin and pyoverdin is unclear; the very high 
stability constant (4 ×1036; Perry et al. 1999) of ferriyersiniabactin (compared with 
1025 for the pyoverdin) could carry an adaptive advantage (Bultreys et al. 2006).

3.4.3.2

Yersiniabactin and Taxonomy

Yersiniabactin is informative on the evolution within P. syringae and in 
classification. The different GC contents in the yersiniabactin locus and in 
the chromosome indicate a yersiniabactin locus acquisition by horizontal 
gene transfer, either by an ancestor of the producing pathovars followed by 
stabilization in the chromosome, or by an ancestor of P. syringae followed by 
a locus deletion in an ancestor of the non producing pathovars (Bultreys et al. 
2006). This is confirmed by a DNA hybridization study (Gardan et al. 1999): only 
the pathovars of the genospecies 3, 7 and 8 have a yersiniabactin locus, except 
for two pathovars belonging to the genospecies 2. Only two exceptions in the 
genospecies 3 (Bultreys et al. 2006) are an error and a possible misidentification: 
the negative strain P. syringae pv. ribicola LMG 2276 (CFBP 2348) actually 
belongs to the genospecies 6 (Gardan et al. 1999); P. syringae pv. maculicola
CFBP 1657 used in the DNA hybridization study has a yersiniabactin locus 
(Bultreys and Gheysen, unpublished), whereas the genospecies of the negative 
strain LMG 5295 is unknown. This correlation renders yersiniabactin detection 
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a strong information in early classification of a strain, and in the study of the 
P. syringae evolution.

3.4.3.3

Methods and Yersiniabactin Use in Identification

As evoked in ‘Siderotyping methods’, yersiniabactin is detected among entero-
bacteria using growth stimulation tests, SDS-PAGE, HPLC of the culture me-
dium, modified indicator strains and genetic tests.

Among pseudomonads (Bultreys et al. 2006), yersiniabactin was produced in 
solid-liquid GASN or King B media in still Petri dishes. Yersiniabactin is nearly 
colorless and orange when chelated to iron. Ferriyersiniabactin was detected 
in the culture medium by HPLC and identified by its spectral characteristics: 
absorbance maxima near 227, 255, 305, and 386 nm at pH 5.3 and pH 7.0. The 
PCR primers PSYE2 5'-GGCACCTGGAACAGG-3' and PSYE2R 5'-GCCA-
GATCGTCCATCAT-3' amplify (Tm 64 °C) a fragment of the irp1 gene (encod-
ing HMWP1) of 943 bp in P. syringae and 925 bp in Escherichia coli, but they are 
ineffective for the P. syringae pathovars glycinea and phaseolicola of genospecies 
2, which also have a yersiniabactin locus. Dot blot using several washing condi-
tions enabled a general detection of irp1 in both P. syringae and enterobacteria. 
A PCR test using the primers PT3 and PT3R is specific for P. syringae and is pro-
posed to identify all the yersiniabactin producing pathovars on their respective 
hosts (Bultreys and Gheysen 2006).

3.4.4
Pyridine-2,6-bis(monothiocarboxylic acid) (PDTC)

PDTC (molecular mass 198) was purified from strains of P. putida (Ockels et al. 
1978) and P. stutzeri KC (Lee et al. 1999). It converts the pollutant CCl4 to CO2 in 
iron-limiting conditions (Lee et al. 1999; Lewis et al. 2001). In P. putida, PDTC 
is a siderophore repressed by the pyoverdin (Lewis et al. 2004). It forms 2:1 com-
plexes of comparable stability (~1033) with iron, nickel and cobalt (Stolworthy et 
al. 2001). PDTC forms complexes with 14 metals and can protect bacteria from 
mercury, cadmium, as well as selenium and tellurium oxyanions; it is involved 
in an initial line of defense of bacteria against toxicity from various metals and 
metalloids (Cortese et al. 2002a; Zawadzka et al. 2006). Cu(II) and PDTC render 
strains able to reduce amorphous Fe(III) oxyhydroxide (Cortese et al. 2002a).

At least five genes are involved in the PDTC system in P. stutzeri KC (Lewis 
et al. 2000; Sepúlveda-Torres et al. 2002). Two of them, orfF and orfI, were not 
detected in seven P. stutzeri, one P. balearica, or a P. putida producing PDTC. 
This suggests that P. stutzeri KC may possess a distinct biosynthetic pathway 
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(Sepúlveda-Torres et al. 2002), which may have been acquired from mycobacte-
ria and cyanobacteria (Cortese et al. 2002b).

PDTC is produced in DRM (Lee et al. 1999) or GASN (Bultreys and Gheysen 
2000) shaken liquid media (Zawadzka et al. 2006). It forms a blue Fe(II)-com-
plex and a brown Fe(III)-complex; the absorbance maxima of Fe(III)-(PDTC)2

are 345, 468, 604 and 740 nm and of Fe(II)-(PDTC)2 are 314 and 687 nm (Cor-
tese et al. 2002a). PDTC concentration is usually determined by measuring the 
absorbance of Fe(II)-(PDTC)2 at 687 nm (Budzikiewicz et al. 1983). CCl4 deg-
radation can indicate PDTC production: cultures in medium D supplemented 
with CCl4 are incubated under denitrifying conditions and CCl4 is measured by 
gas chromatography (Tatara et al. 1993). The PCR primers CC109f 5'-GTTA-
CAGCCGCCACCTACTGAT-3' and CC110r 5'-GCTAGGCAGAGAAGAGTC-
CACG-3' amplify 1112 bp of orfF and the primers CC111f 5'-GGCTGCTCAG-
TATCGGCAGTAT-3' and CC112r 5'-GGGGCGTTGACAGAGAAGTAAG-3' 
1385 bp of orfI of P. stutzeri KC, and a Southern hybridization method is de-
scribed (Sepúlveda-Torres et al. 2002).

3.4.5
Quinolobactin

Quinolobactin (8-hydroxy-4-methoxy-2-quinoline carboxylic acid) is a second-
ary siderophore with a low affinity constant for Fe(III) produced by P. fluore-
scens (Neuenhaus et al. 1980; Mossialos et al. 2000). Quinolobactin is produced 
in the first 16 h of iron stress before it is suppressed by the pyoverdin; this could 
be the first way of producing strains dealing with iron limitation (Mossialos et 
al. 2000; Cornelis and Matthijs 2002). A pathway for quinolobactin synthesis 
from xanthurenic acid has been proposed (Matthijs et al. 2004).

A quinolobactin spot was detected by IEF and CAS overlay of CAA culture 
supernatants for a pyoverdin-defective mutant; the spot was detected in the 
wild-type preparation only after concentration (Mossialos et al. 2000).

3.4.6
Pyoverdin (Pseudobactin)

3.4.6.1

Description and Biological Importance

A pyoverdin is made up of (i) a quinoline chromophore, (ii) a peptide chain 
of 6 to 12 amino acids containing about half d-amino acids and (iii) an acid 
(amide) side chain consisting of a dicarboxylic acid (amide) (Budzikiewicz 
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1993, 1997, 2004). The peptide chain is strain specific, except in one case 
(Barelmann et al. 2003), and is variable among strains and species. About 50 
peptide chains are known, but 106 are predicted (Meyer and Geoffroy 2004). 
The catechol of the chromophore and two amino acids are involved in iron 
chelation; the amino acids are either β-hydroxy aspartic acid (in one case, 
β-hydroxy histidine) or hydroxamic acids derived from ornithine. Several 
pyoverdins varying according to the presence of a cycle in the peptide chain 
and by the side chain can be found in the culture medium; some are degrada-
tion products of the secreted forms (Schäfer et al. 1991; Bultreys et al. 2004). 
Pyoverdin precursors such as ferribactin and dihydropyoverdin, as well as 
isopyoverdins, vary in the nature of the chromophore; with rare exceptions 
(Jacques et al. 1995; Bultreys et al. 2001) they are produced at a much lower 
concentration than the pyoverdin. Azotobactin produced by pseudomonads 
and by Azotobacter vinelandii differs in the structure of the chromophore and 
the absence of the acid side chain (Demange et al. 1988).

The uptake of the Fe(III)-chelated pyoverdin is carried out by a specific re-
ceptor located in the outer membrane, which recognizes the peptide chain of 
its cognate pyoverdin. Pyoverdins with small differences (Ruangviriyachai et al. 
2001; Barelmann et al. 2002, 2003; Fernández et al. 2003; Bultreys et al. 2004) 
or a common motif (Meyer et al. 1999, 2002b; Weber et al. 2000; Schlegel et al. 
2001) in their peptide chain are incorporated at a reduced or high rate by a same 
receptor. Heterologous pyoverdins can stimulate the production of specific ad-
ditional receptors and be incorporated (Morris et al. 1992; Koster et al. 1993, 
1995; Leoni et al. 2000).

Pyoverdins are the principal siderophore of the fluorescent pseudomonads. 
The pyoverdin of P. aeruginosa is involved in virulence in animal models (Meyer 
et al. 1996; Handfield et al. 2000; Takase et al. 2000). It is able to acquire iron 
from transferrin and lactoferrin (Xiao and Kisaalita 1997) and it regulates 
the production of three virulence factors: exotoxine A, an endoprotease and 
pyoverdin itself (Lamont et al. 2002; Beare et al. 2003). On the other hand, the 
pyoverdin of P. syringae is not involved in virulence in cherry fruits (Cody and 
Gross 1987), but its production is stimulated in conditions found on plant sur-
face when P. syringae has to use amino acids as carbon sources (Bultreys and 
Gheysen 2000).

Because of their high affinity constants for iron, between 1024 and 1027

(Budzikiewicz 2004), pyoverdins can be involved in competitiveness, growth 
promotion and biocontrol (Kloepper et al. 1980; Loper and Buyer 1991; Le-
manceau et al. 1992; O’Sullivan and O’Gara 1992; Raaijmakers et al. 1995a; Buy-
sens et al. 1996; Ambrosi et al. 2000; Mirleau et al. 2001). Strains producing a 
specific pyoverdin and using heterologous siderophores are favored (Buyer and 
Leong 1986; Jurkevitch et al. 1992; Raaijmakers et al. 1995b; Mirleau et al. 2000; 
Martins dos Santos et al. 2004). Pyoverdins can also play a role in bioremedia-
tion by degrading triphenyltin, an aquatic pollutant armful to plankton, gastro-
pods and fish (Inoue et al. 2000, 2003). Pyoverdins bind and oxidize Fe(II) (Xiao 
and Kisaalita 1998).



Alain Bultreys78

3.4.6.2

The Peptide Chain of Pyoverdins and its Evolution

In P. aeruginosa, the pyoverdin genes are located in the pvd locus, or in a dis-
tant place for several chromophore-related genes (Poole 2004). The peptide syn-
thetases PvdD, PvdI and PvdJ are responsible for the non-ribosomal synthesis 
of the peptide chain (Merriman et al. 1995; Lehoux et al. 2000). They contain 
as many enzymatic modules as there are amino acids in the pyoverdin; each 
module is specific for one amino acid (Kleinkauf and von Döhren 1996; von 
Döhren et al. 1999). The synthesis occurs by transfer of the intermediate from 
one module to the next without releasing it into the cytoplasm. One domain 
in each module is selective for one amino acid. A modification in this domain 
can induce the replacement of one amino acid by another. This is probably one 
way that pyoverdins evolve, as noted between the pyoverdins of P. syringae and 
P. cichorii differing by the replacement of one serine by glycine (Bultreys et al. 
2004). Also, a deletion in a peptide synthetase can give a shorter peptide, as 
noted for the rare fourth type pyoverdin of P. aeruginosa which differs from the 
third type in that there is a missing glutamine (Smith et al. 2005).

The central part of the pvd locus is the most divergent locus between strains 
of the three principal pyoverdin types in the P. aeruginosa genome; a high varia-
tion is localized in the genes encoding the membrane receptor FpvA, the ABC 
transporter PvdE and the peptide synthetases PvdD, PvdJ and PvdI (Spencer 
et al. 2003; Smith et al. 2005). Horizontal gene transfers probably explain these 
differences because there are unusual codon and tetranucleotide usages. The py-
overdin and its receptor co-evolve and the changes in the receptor, resulting 
from horizontal gene transfers probably from other pseudomonads, Agrobacte-
rium tumefaciens and Azotobacter vinelandii, appear to lead to further changes 
in the pyoverdin (Smith et al. 2005).

3.4.6.3

Pyoverdins and Phylogeny

In phytopathogenic fluorescent pseudomonads, an evolution is apparent 
in the peptide chains of pyoverdins (Bultreys et al. 2003, 2004): P. syringae,
P. viridiflava and P. ficuserectae produce the same pyoverdin; the related spe-
cies P. cichorii produces a pyoverdin differing in the replacement of one ser-
ine by glycine; and the distant species P. fuscovaginae and P. asplenii produce 
a clearly different, but related, pyoverdin. All these pyoverdins contain two 
Asp-based iron ligands and, interestingly, the producing species, apart from 
P. fuscovaginae and P. asplenii, are arginine dihydrolase-negative. In the argi-
nine dihydrolase-positive species, the 4 pyoverdins of P. aeruginosa contain 
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2 Orn-based ligands, 19 pyoverdins of P. fluorescens contain either 2 Orn- or 
1 Orn- and 1 Asp-based ligands, and 13 pyoverdins of P. putida always con-
tain 1 Orn- and 1 Asp-based ligands; the rest of the peptide chains of these 
pyoverdins, however, are highly variable. Then, it appears that the amino acids 
involved in iron chelation evolve slowly because of their necessity for the py-
overdin activity and they could therefore be useful markers in phylogeny (Bul-
treys et al. 2003). This is confirmed because pvdA and pvdF necessary for the 
synthesis of the iron ligand formyl-hydroxyornithine from Orn (Visca et al. 
1994; Wilson et al. 2001), and the Orn-based ligands, are conserved in the 4 
P. aeruginosa pyoverdin types (Smith et al. 2005), although the conserved pvdF
is positioned just beside the highly variable region of the pvd locus.

It is difficult to find filiations between pyoverdins of the arginine dihydro-
lase-positive species, except when a pyoverdin is produced by different species 
(Fuchs and Budzikiewicz 2001; Meyer and Geoffroy 2004). The diversifying se-
lection observed in the pvd locus in P. aeruginosa (Smith et al. 2005) indicates 
that the heterogeneity apparent in pyoverdins can be higher than the general 
heterogeneity in a species. Horizontal gene transfers could explain the numer-
ous pyoverdin structures found in P. fluorescens and P. putida and restrict the 
phylogenic information available from pyoverdins. It is also a sign of a high 
selection pressure for new specific iron-chelating systems in the rhizosphere 
(Smith et al. 2005).

3.4.6.4

Pyoverdins and Taxonomy

Siderotyping of pyoverdins by IEF and siderophore uptake is used to revise the 
genus Pseudomonas, alongside polyphasic taxonomic approach, and the general 
rules are defined: (i) all strains belonging to a given species produce an identi-
cal pyoverdin; and (ii) each species is characterized by an original pyoverdin. 
Indeed, complex taxonomic studies were elegantly and rapidly confirmed by the 
description of one corresponding siderotype for at least 11 species: P. mandelii,
P. monteilii, P. rhodesiae, P. tolaasii, P. costantinii, P. brassicacearum, P. thiverva-
lensis, P. salomonii, P. mosselii, P. libanensis and P. kilonensis (Meyer et al. 2002a; 
Meyer and Geoffroy 2004). However, the same pyoverdin can be produced 
by related species: P. syringae, P. viridiflava and P. ficuserectae; P. asplenii and 
P. fuscovaginae; P. fluorescens, P. cedrella, P. orientalis, P. palleroniana and P. vero-
nii; P. brenneri and P. gessardii; and P. jessenii and P. migulae (Bultreys et al. 2003; 
Meyer and Geoffroy 2004). Also, several pyoverdins can be produced in one 
species: P. aeruginosa, P. fluorescens, P. putida, P. grimontii and P. lini (Fuchs and 
Budzikiewicz 2001; Meyer and Geoffroy 2004). The recent observation that the 
heterogeneity in pyoverdins can be higher than in the species (Smith et al. 2005) 
should be noted in future work.
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3.4.6.5

Pyoverdins and Identification

The strains producing the same pyoverdin are grouped into siderovars. Once 
the siderovars are defined in a species, pyoverdins are accurate tools of identifi-
cation; this can be achieved by comparison with a reference (Bultreys et al 2001, 
2003), or a general database regrouping the characteristics of all the pyoverdins 
can be consulted (Meyer et al. 2002a; Meyer and Geoffroy 2004).

Identification is often required for phytopathogenic species. The presence of 
two Asp-based iron ligands in the peptide chain of the pyoverdins of P. syringae,
P. cichorii and P. fuscovaginae influences the color and spectral characteristics of 
the Fe(III)-chelates between pH 3 and 7. This is easily detected using visual and 
spectrophotometric tests differentiating phytopathogenic and saprophytic spe-
cies; the pathogens are identified by HPLC (Bultreys et al. 2001, 2003).

3.4.6.6

Methods

Yellowish-green pyoverdins are detected in King B medium (King et al. 1954) 
under UV light (365 nm) by their bluish-green fluorescence. Absorbance max-
ima of free pyoverdins in the visible are 365 and 380 nm (pH<5), 402 nm (pH 7)
and 410 nm (pH 10) (Meyer and Abdallah 1978). The absorbance maximum of 
Fe(III)-chelated typical pyoverdins is near 400 nm (pH 3–8), with broad charge 
transfer bands at 470 and 550 nm (Budzikiewicz 1993). The Fe(III)-chelated 
atypical pyoverdins containing two Asp-based iron ligands of P. syringae and P. 
cichorii behave as a typical pyoverdin at pH<3.5 (brown), but the maximum shifts 
at 408 nm at pH>5.5, without charge transfer bands (orange); the pyoverdin of 
P. fuscovaginae behaves identically at neutral pH but the maximum shifts to only 
402.5 nm at pH 3, without marked charge transfer bands (dark orange). This can 
be observed visually and by spectrophotometry in GASN medium, which en-
ables the detection of phytopathogenic species (Bultreys et al. 2001, 2003).

Three principal methods are used to analyse pyoverdin diversity. MS-related 
methods are the most powerful but they are expensive (Kilz et al. 1999; Fuchs 
et al. 2001). IEF of iron-free pyoverdins coupled with 59Fe uptake experiments 
have become the methods of choice (Meyer et al. 2002a). The pI of pyoverdins 
detected under UV light from concentrated CAA pyoverdin extracts (gener-
ally 2 or 3 isoforms differing in the side chain) are determined. Each strain is 
defined by its IEF pattern. This method enables a database to be constituted. 
The problems encountered are the migration of the pyoverdins at the cathode or 
the anode because the limits of analysis are between pH 4 and 9 (Achouak et al. 
2000; Fuchs et al. 2001), the observation of the same pI for pyoverdins varying 
by a neutral amino acid (Bultreys et al. 2003; Fernández et al. 2003) and the ob-
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servation of different patterns for strains producing the same pyoverdin (Fuchs 
et al. 2001; Meyer and Geoffroy 2004). Free or Fe(III)-chelated pyoverdins of 
P. syringae and P. cichorii are visually detected but not differentiated by IEF (Bul-
treys et al. 2003). HPLC analysis of GASN culture medium is used to identify 
phytopathogenic fluorescent pseudomonads (Bultreys et al. 2003). Atypical py-
overdins of P. syringae, P. cichorii and P. fuscovaginae containing two Asp-based 
iron ligands are differentiated and identified by their retention time and their 
absorbance maximum being near 408 nm at pH 5.3. The technique is easy to use 
and more accurate than IEF, but less suited to developing a general database.

3.5
Conclusions

The diversifying evolution detected in pyoverdin genes in P. aeruginosa and the 
abundance of outer membrane receptors in pseudomonads indicate that iron 
competition is an important selection pressure in the rhizosphere. The existence 
of secondary siderophores and the production of outer membrane receptors 
in the presence of heterologous siderophores imply sophisticated regulatory 
mechanisms in iron-deficient environments. Therefore, the importance of sid-
erophores in fitness and competitiveness seems clear and it can explain the ob-
served involvement of siderophores in virulence, plant growth promotion and 
biocontrol. Also, siderophores can have useful or toxic secondary effects, and 
the information from siderophores produced by a pseudomonad is important 
in understanding, controlling and using pseudomonad behavior. Recent find-
ings on the horizontal gene transfers of complete or partial siderophore sys-
tems indicate that gene exchange has been a creative force during evolution, 
alongside clonal divergence and periodic selection. This probably restricts the 
phylogenic information available from siderophores, although this informa-
tion is sometimes clear, and can occasionally be linked to the transfer event it-
self. Some siderophores currently appear to be specific to certain species or to 
a group of closely related species and they are therefore of interest in taxonomy 
and identification. Existing methods enable researchers to determine rapidly 
the siderophores produced by a pseudomonad, and they are of interest for med-
icine, agronomy, environmental science and systematic bacteriology.
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