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1 Introduction

It is a widely shared opinion that the most outstanding and characteristic fea-
ture of general relativity is its manifest background independence. Accordingly,
those pursuing the canonical quantization programme for general relativity
see the fundamental virtue of their approach in precisely this preservation of
‘background independence’ (cf. Kiefer’s and Thiemann’s contributions). In-
deed, there is no disagreement as to the background dependence of competing
approaches, like the perturbative spacetime approach1 (see the contribution
by Lauscher and Reuter) or string theory (see the contribution by Louis,
Mohaupt, and Theisen, in particular their Sect. 10). Accordingly, many string
theorists would subscribe to the following research strategy:

Seek to make progress by identifying the background structure in our
theories and removing it, replacing it with relations which evolve sub-
ject to dynamical laws. ([18], p. 10).

But how can we reliably identify background structures?
There is another widely shared opinion according to which the principle

of general covariance is devoid of any physical content. This was first force-
fully argued for in 1917 by Erich Kretschmann [11] and almost immediately
accepted by Einstein [20] (Vol. 7, Doc. 38, p. 39), who from then on seemed
to have granted the principle of general covariance no more physical meaning
than that of a formal heuristic concept.

From this it appears that it would not be a good idea to define ‘back-
ground independence’ via ‘general covariance’, for this would not result in a

1 Usually referred to as the ‘covariant approach’, since perturbative expansions
are made around a maximally symmetric spacetime, like Minkowski or DeSitter
spacetime, and the theory is intended to manifestly keep covariance under this
symmetry group (i.e. the Poincaré or the DeSitter group), not the diffeomorphism
group!
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physically meaningful selection principle that could effectively guide future re-
search. What would be a better definition? ‘Diffeomorphism invariance’ is the
most often quoted candidate. What precisely is the difference between general
covariance and diffeomorphism invariance, and does the latter really improve
on the situation? These are the questions to be discussed here. For related and
partially complementary discussions, which also give more historical details,
we refer to [14, 15] and [4] respectively.

As a historical remark we recall that Einstein quite clearly distinguished
between the principle of general relativity (PGR) on one hand, and the prin-
ciple of general covariance (PGC) on the other. He proposed that the formal
PGC would imply (but not be equivalent to) the physical PGR. He therefore
adopted the PGC as a heuristic principle, guiding our search for physically
relevant equations. But how can this ever work if Kretschmann is right and
hence PGC devoid of any physical content? Well, what Kretschmann pre-
cisely said was that any physical law can be rewritten in an equivalent but
generally covariant form. Hence general covariance alone cannot rule out any
physical law. Einstein maintained that it did if one considers the aspect of
‘formal simplicity’. Only those expressions which are formally ‘simple’ after
having been written in a generally covariant form should be considered as can-
didates for physical laws. Einstein clearly felt the lack for any good definition
of formal ‘simplicity’, hence he recommended to experience it by comparing
general relativity to a generally covariant formulation of Newtonian gravity
(then not explicitly known to him), which was later given by Cartan [5, 6]
and Friedrichs [9] and which did not turn out to be outrageously complicated,
though perhaps somewhat unnatural. In any case, one undeniably feels that
this state of affairs is not optimal.

2 Attempts to Define General Covariance
and/or Background Independence

A serious attempt to clarify the situation was made by James Anderson [2, 3],
who introduced the notion of absolute structure which here we propose to take
synonymously with background independence. This attempt will be discussed
in some detail below. Before doing this we need to clarify some other notions.

2.1 Laws of Motion: Covariance versus Invariance

We represent spacetime by a tuple (M, g), where M is a four-dimensional
infinitely differentiable manifold and g a Lorentzian metric of signature
(+,−,−,−). The global topology of M is not restricted a priori, but for
definiteness we shall assume a product-topology R× S and think of the first
factor as time and the second as space (meaning that g restricted to the tan-
gent spaces of the submanifolds St := {t}×S is negative definite and positive
definite along Rp := R × {p}). Also, unless stated otherwise, the Lorentzian
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metric g is assumed to be at least twice continuously differentiable. We will
generally not need to assume (M, g) to be geodesically complete.

Being a C∞-manifold, M is endowed with a maximal atlas of coordi-
nate functions on open domains in M with C∞-transition functions on their
mutual overlaps. Transition functions relabel the points that constitute M ,
which for the time being we think of as recognizable entities, as mathemati-
cians do. (For physicists these points are mere ‘potential events’ and do not
have an obvious individuality beyond an actual, yet unknown, event that re-
alizes this potentiality.) Different from maps between coordinate charts are
global diffeomorphisms on M , which are C∞ maps f : M → M with C∞

inverses f−1 : M → M . Diffeomorphisms form a group (multiplication be-
ing composition) which we denote by Diff(M). Diffeomorphisms act (mostly,
but not always, naturally) on geometric objects representing physical entities,
like particles and fields.2 The transformed geometric object has then to be
considered a priori as a different object on the same manifold (which is not
meant to imply that they are necessarily physically distinguishable in a spe-
cific theoretical context). This is sometimes called the ‘active’ interpretation
of diffeomorphisms to which we will stick throughout.

Structures that obey equations of motion are, e.g., particles and fields.
Classically, a structureless particle (no spin etc.) is mathematically repre-
sented by a map into spacetime:

γ : R →M , (1)

such that the tangent vector-field γ̇ is everywhere timelike, i.e. g(γ̇, γ̇) > 0.
Other structures that are also represented by maps into spacetime are strings,
membranes, etc.

A field is defined by a map from spacetime, i.e.

Φ : M → V (2)

where V is some vector space (or, slightly more general, affine space, to include
connections). To keep the main argument simple we neglect more general
situations where fields are sections in non-trivial vector bundles or non-linear
target spaces.

Let γ collectively represent all structures given by maps into spacetime and
Φ collectively all structures represented by maps from spacetime. Equations
of motions usually take the general symbolic form

F [γ, Φ,Σ] = 0 (3)

which should be read as equation for γ, Φ given Σ.
2 For example, diffeomorphisms of M lift naturally to any bundle associated to

the bundle of linear frames and hence act naturally on spaces of sections in
those bundles. In particular, these include bundles of tensors of arbitrary ranks
and density weights. On the other hand, there is no natural lift to, e.g., spinor
bundles, which are associated to the bundle of orthonormal frames (which are
only naturally acted upon by isometries, but not by arbitrary diffeomorphisms).
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Σ represents some non-dynamical structures on M . Only if the value of
Σ is prescribed do we have definite equations of motions for (γ, Φ). This
is usually how equations of motions are presented in physics: solve (3) for
(γ, Φ), given Σ. Here only (γ, Φ) represent physical ‘degrees of freedom’ of the
theory to which alone observables refer (or out of which observables are to be
constructed). By ‘theory’ we shall always understand, amongst other things,
a definite specification of degrees of freedom and observables.

The group Diff(M) acts on the objects (γ, Φ) (here we restrict the fields to
tensor fields for simplicity) as follows:

(f, γ) → f · γ := f ◦ γ for particles etc. , (4a)

(f, Φ) → f · Φ := D(f∗) ◦ Φ ◦ f−1 for fields etc. , (4b)

where D is the representation of GL(4,R) carried by the fields. In addition,
we require that the non-dynamical quantities Σ to be geometric objects, i.e.
to support an action of the diffeomorphism group.

Definition 1. Equation (3) is said to be covariant under the subgroup G ⊆
Diff(M) iff3 for all f ∈ G

F [γ, Φ,Σ] = 0 ⇔ F [f · γ , f · Φ , f ·Σ] = 0 . (5)

Definition 2. Equation (3) is said to be invariant under the subgroup G ⊆
Diff(M) iff for all f ∈ G

F [γ, Φ,Σ] = 0 ⇔ F [f · γ , f · Φ , Σ] = 0 . (6)

Note the difference: in Definition 2 the non-dynamical structures Σ are the
same on both sides of the equation, whereas in Definition 1 they are allowed to
be also transformed by f ∈ Diff(M). Covariance merely requires the equation
to ‘live on the manifold’, i.e. to be well defined in a differential-geometric
sense, whereas an invariance is required to transform solutions to the equations
of motions to solutions of the very same equation,4 which is a much more
restrictive condition.

As a simple example, consider the vacuum Maxwell equations on a fixed
spacetime (Lorentzian manifold (M, g)):

dF = 0 , (7a)
d � F = 0 , (7b)

3 I use ‘iff’ as an abbreviation for ‘if and only if’.
4 In the mathematical literature this is called a symmetry (of the equation). We

wish to avoid the term ‘symmetry’ here altogether because that – in our termi-
nology – is reserved for a further distinction of invariances into symmetries, which
change the physical state, and redundancies (gauge transformations) which do not
change the physical state. Here we will not need this otherwise very important
distinction.
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where F denotes the 2-form of the electromagnetic field and d the exterior
differential. The � denotes the (linear) ‘Hodge duality’ map, which in compo-
nents reads

� Fμν = 1
2εμναβF

αβ , (8)

and which depends on the background metric g through ε and the operation
of raising indices: Fαβ := gαμgβν Fμν .5 The system (7) is clearly Diff(M)-
covariant since it is written purely in terms of geometric structures on M
and makes perfect sense as equation on M . In particular, given any diffeo-
morphisms f of M , we have that f · F satisfies (7a) iff F does. But it is not
likewise true that d � F = 0 implies d � f · F = 0. In fact, it may be shown6

that this is true iff f is a conformal isometry of the background metric g, i.e.
f · g = λ g for some positive real-valued function λ on M . Hence the system
(7) is not Diff(M)-invariant but only G-invariant, where G is the conformal
group of (M, g).

2.2 Triviality Pursuit

Covariance Trivialized (Kretschmann’s Point)

Consider the ordinary ‘non-relativistic’ diffusion equation for the R-valued
field φ (giving the concentration density):

∂tφ = κΔφ . (9)

This does not look Lorentz covariant, let alone covariant under diffeomor-
phisms. This changes if it is rewritten in the following form

{nμ∇μ − κ(nμnν − gμν)∇μ∇ν}φ = 0 . (10)

Here gμν are the contravariant components of the spacetime metric (recall that
we use the ‘mostly minus’ convention for its signature), ∇μ is the associated
Levi-Civita covariant derivative, and nμ is a normalized covariant-constant
timelike vector field which gives the preferred flow of time encoded in (9) (i.e.
on scalar fields ∂t = nμ∇μ). Equation (10) has the form (3) with no γ, Φ = φ,
and Σ = (gμν , nμ) and is certainly diffeomorphism covariant in the sense of
Definition 1. The largest invariance group – in the sense of Definition 2 – is
given by that subgroup of Diff(M) whose elements stabilize the non-dynamical
structures Σ. We write

StabDiff(M)(Σ) = {f ∈ Diff(M) | f ·Σ = Σ} (11)

5 Note that in 3+1 dimensions this means that the � operation only depends on
the conformal equivalence class of g, since gαβgγδ

√| det{gμν}| is invariant under
gμν �→ Ω2 gμν . Accordingly, in this case, it is only the conformal equivalence class
of g and not g itself that should be identified with Σ.

6 This is true in 1+3 dimensions. In other dimensions higher than two, f must even
be an isometry of g.
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In our case, StabDiff(M)(g) is the 10-parameter Poincaré group. In addition, f
stabilizes nμ if it is in the 7-parameter subgroup R×E(3) of time translations
and spatial Euclidean motions.

This example already shows (there will be more below) how to proceed in
order to make any theory covariant under Diff(M). As already noted, Diff(M)-
covariance merely requires the equation to be well defined in the sense of
differential geometry, i.e. it should live on the manifold. It seems clear that
any equation that has been written down in a special coordinate system on
M (like (9)) can also be written in a Diff(M)-covariant way by introducing
the coordinate system – or parts of it – as background geometric structure.
This is, in more modern terms, the formal core of the critique put forward by
Erich Kretschmann in 1917 [11].

Invariance Trivialized

Given that an equation of the form (3) is already G-covariant, we can equiv-
alently express the condition of being G-invariant by

F [γ, Φ,Σ] = 0 ⇔ F [γ, Φ , f ·Σ] = 0 , ∀f ∈ G , (12)

i.e. any solution of the equation parameterized by Σ is also a solution of the
different equation parameterized by f ·Σ. Evidently, the more non-dynamical
structures there are, the more difficult it is to satisfy (12). In generic situations
it will only be satisfied if G = StabDiff(M)(Σ). Hence, in distinction to the
covariance group, increasing the amount of structures of the type Σ cannot
enlarge the invariance group. The case of the largest possible invariance group
deserves a special name:

Definition 3. Equation (3) is called diffeomorphism invariant iff it allows
Diff(M) as invariance group.

In view of (12), the requirement of Diff(M)-invariance can be understood as a
strong limit on the amount of non-dynamical structure Σ. Generically it seems
to eliminate any Σ, i.e. the theory should contain no non-dynamical back-
ground fields whatsoever. Intuitively this is what background independence
stands for. Conversely, any Diff(M)-covariant theory without non-dynamical
fields is trivially Diff(M)-invariant. Hence it seems sensible to simply identify
‘Diff(M)-invariance’ and ‘background independence’, and this is what most
working physicists seem to do.

But this turns out to be too simple. The origin of the difficulty lies in our
distinction between dynamical and non-dynamical structures, which turns out
not to be sufficiently sharp. Basically we just said that a structure (γ or Φ)
was dynamical if it had no a priori prescribed values, but rather obeyed some
equations of motion. We did not say what qualifies an equation as an ‘equation
of motion’. Can it just be any equation? If yes then we immediately object
that there exists an obvious strategy to trivialize the requirement of Diff(M)-
invariance: just let the values of Σ be determined by equations rather than
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by hand; in this way they formally become ‘dynamical’ variables and no non-
dynamical quantities are left. Formally this corresponds to the replacement
scheme

Φ �→ Φ′ = (Φ,Σ) , (13a)
Σ �→ Σ′ = ∅ , (13b)

so that invariance now becomes as trivial as the requirement of covariance.
More concretely, reconsider the examples (7) and (10) above. In the first

case we now regard the spacetime metric g as ‘dynamical’ field for which we
add the condition of flatness as ‘equation of motion’:

Riem[g] = 0 , (14)

where Riem denotes the Riemann tensor of (M, g). In the second case we
regard g as well as the timelike vector field n as ‘dynamical’ and add (14) and
the two equations

g(n, n) = c2 , (15a)
∇n = 0 . (15b)

In this fashion we arrive at diffeomorphism invariant equations. But do they
really represent the same theory as the one we originally started from? For
example, are their solution spaces ‘the same’? Naively the answer is clearly
‘no’, simply because the reformulated theory has – by construction – a much
larger space of solutions. For any solution Φ of the original equations F [Φ,Σ] =
0, where Σ is fixed, we now have the whole Diff(M)-orbit of solutions, {(f ·Φ, f ·
Σ) | f ∈ Diff(M)} of the new equations, which treat Σ as dynamical variable.
A bijective correspondence can only be established if the transformations f
that act non-trivially on Σ (i.e. f �∈ StabDiff(M)(Σ)) are declared to be gauge
transformations, so that any two field configurations related by such an f are
considered to be physically identical.

If this is done, the simple strategy outlined here suffices to (formally)
trivialize the requirement of diffeomorphism invariance. Hence defining back-
ground independence as being simple diffeomorphism invariance would also
render it a trivial requirement. How could we improve its definition so as to
make it a useful notion? This is precisely what Anderson attempted in [3]. He
noted the following peculiarities of the reformulation just given:

1. The new fields g or (g, n) obey an autonomous set of equations which does
not involve the proper dynamical fields F or φ respectively. In contrast,
the equations for the latter do involve g or (g, n). Physically speaking, the
system whose states are parameterized by the new variables acts upon the
system whose states are parameterized by F or φ, but not vice versa. An
agent which dynamically acts but is not acted upon may well be called
‘absolute’ – in generalization of Newton’s absolute space. Such an absolute
agent should be eliminated.
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2. The sector of solution space parameterized by g or (g, n) consists of a single
diffeomorphism orbit. For example, this means that for any two solutions
(φ, g, n) and (φ′, g′, n′) of (10), (14), and (15) there exists a diffeomorphism
f such that (g′, n′) = (f · g , f ·n). So ‘up to diffeomorphisms’ there exists
only one solution in the (g, n) sector. This is far from true for φ: the
two solutions φ and φ′ are generally not related by a diffeomorphism.
This difference just highlights the fact that the added variables really did
not correspond to new degrees of freedom (they were never supposed to)
because the added equations were chosen strong enough to maximally fix
their values (up to diffeomorphisms).

A closer analysis shows that the first criterion is really too much dependent
on the presentation to be generally useful as a necessary condition. Abso-
lute structures will not always reveal their nature by obeying autonomous
equations. The second criterion is more promising and actually entered the
literature with some refinements as criterion for absolute structures. Before
going into this, we will discuss some attempts to disable the trivialization
strategies just outlined.

2.3 Strategies Against Triviality

Involving the Principle of Equivalence

As diffeomorphism covariance is a rather trivial requirement to satisfy, we
will from now on only be concerned with diffeomorphism invariance. As we
explained, it could be achieved by letting the Σ’s ‘change sides’, i.e. become
dynamical structures (γ’s and Φ’s), as schematically written down in (13). We
seek sensible criteria that will limit the number of such renegades. A physical
criterion that suggests itself is to allow only those Σ to change sides which are
known to correspond to dynamical variables in a wider context. For example,
we may allow the spacetime metric g to become formally dynamical, since we
know that it describes the gravitational field, even if in the context at hand
the self-dynamics of the gravitational field is not relevant and therefore, as
a matter of approximation, fixed to some value (e.g. the Minkowski metric).
Doing this would render the Maxwell equations (7) (plus the equations for
g) diffeomorphism invariant. But this alone would not work for the diffusion
equation, where n would still act as a non-dynamical structure.

Hence we see that the requirement to achieve diffeomorphism invariance
by at most adjoining g to the dynamical variables is rather non-trivial and
connects to Einstein’s principle of equivalence. Let us quote Wolfgang Pauli
in this context:

Einen physikalischen Inhalt bekommt die allgemeine kovariante For-
mulierung der Naturgesetze erst durch das Äquivalenzprinzip, welches
zur Folge hat, daß die Gravitation durch die gik allein beschrieben
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wird, und daß diese nicht unabhängig von der Materie gegeben, son-
dern selbst durch die Feldgleichungen bestimmt sind. Erst deshalb
können die gik als physikalische Zustandsgrößen bezeichnet werden.7

([17], p. 181; the emphases are Pauli’s)

Absolute Structures

As already remarked, another strategy to render the requirement of diffeomor-
phism invariance non-trivial was suggested by Anderson [3] by means of his
notion of ‘absolute structures’. However, most commentators share the opin-
ion that Anderson did not succeed to give a proper definition of this term.
Even worse, some feel that so far nobody has, in fact, succeeded in giving a
fully satisfying definition.

To see what is behind this somewhat unhappy state of affairs, let us start
with a tentative definition that suggests itself from the discussion given above:

Definition 4 (tentative). Any field which is either not dynamical, or whose
solution space consists of a single Diff(M)-orbit, is called an absolute
structure.

In general terms, let S denote the space of solutions to a given theory. If
the theory is Diff(M)-invariant S carries an action of Diff(M). The fields can
be thought of as parameterising on S. An absolute structure is a parameter
which takes the same range of values in each Diff(M) orbit and therefore
cannot separate any two of them. If we regard Diff(M) as a gauge group,
i.e. that Diff(M)-related configurations are physically indistinguishable, then
absolute structures carry no observable content.

Following our general strategy we could now attempt to give a definition
of ‘background independence’:

Definition 5 (tentative). A theory is called background independent iff
its equations are Diff(M)-invariant in the sense of Definition 3 and its fields
do not include absolute structures in the sense of Definition 4.

Before discussing these proposal, let us look at some more examples.

2.4 More Examples

Scalar Gravity a la Einstein–Fokker

In 1913, just before the advent of general relativity, Gunnar Nordsröm in-
vented a formally consistent Poincaré-invariant scalar theory of gravity; see,
7 ‘The generally covariant formulation of the physical laws acquires a physical con-

tent only through the principle of equivalence, in consequence of which gravitation
is described solely by the gik and these latter are not given independently from
matter, but are themselves determined by field equations. Only for this reason
can the gik be described as physical quantities’ ([16], p. 150).
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e.g., the survey by von Laue [22]. Shortly after its publication it was pointed
out by Einstein and Fokker that Nordström’s (second) theory can be presented
in a ‘covariant’ way. Explicitly they said,

Im folgenden soll dargetan werden, daß man zu einer in formaler
Hinsicht vollkommen geschlossenen und befriedigenden Darstellung
der Theorie [Nordströms] gelangen kann, wenn man, wie dies bei
der Einstein-Grossmannschen Theorie bereits geschehen ist, das
invarianten-theoretische Hilfsmittel benutzt, welches uns in dem ab-
soluten Differentialkalkül gegeben ist.8 ([20], Vol. 4, Doc. 28, p. 321)

The essential observation is this: consider conformally flat metrics:

gμν = φ2 ημν , (16)

then the field equation is equivalent to

R[g] = 24πGgμνTμν , (17a)

where R[g] is the Ricci scalar for the metric g, whereas the equation of motion
for the particle becomes the geodesic equation with respect to g:

ẍμ + Γμαβ ẋ
αẋβ = 0 . (17b)

Now, the system (17), considered as equations for the metric g and the tra-
jectory x, is clearly Diff(M)-invariant. But Nordström’s theory is equivalent
to (17) plus (16). Here η is a non-dynamical field so that (16, 17) is only
Diff(M)-covariant. According to the general scheme outlined above this could
be remedied by letting the metric η be a new dynamical variable whose equa-
tion of motion just asserts its flatness:

Riem[η] = 0 . (18)

But then η qualifies as an absolute structure according to Definition 4 and the
theory (16, 17, 18) is not background independent. The subgroup G ⊂ Diff(M)
that stabilizes η is – by definition – the inhomogeneous Lorentz group, which
had already been the invariance group of Nordström’s theory. So no additional
invariance has, in fact, been gained in the transition from Nordström’s to the
Einstein–Fokker formulation.

Sometimes the absolute structures are not so easy to find because the
theory is formulated in such a way that they are not yet isolated as separate
field. For example, in the case at hand, (16) and (18) together are clearly
equivalent to the single condition that g be conformally flat, which in turn

8 ‘In the following we wish to show that one can arrive at a formally complete
and satisfying presentation of the theory [Nordström’s] if one uses the methods
from the theory of invariants given by the absolute differential calculus, as it was
already done in the Einstein–Grossman theory.’
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is equivalent to the vanishing of the conformal curvature tensor for g (Weyl
tensor):

Weyl[g] = 0 . (19)

The field ημν has now disappeared from the description and the theory does
not explicitly display any absolute structure anymore. But, of course, it is
still there; it is now part of the field g. To bring it back to light, make a field
redefinition gμν �→ (φ, hμν) which isolates the part determined by (19); for
example,

φ := [− det{gμν}]
1
8 , (20)

hμν := gμν [− det{gμν}]−
1
4 . (21)

Then any two solutions for the full set of equations are such that their com-
ponent fields hμν and h′

μν are related by a diffeomorphism. Hence hμν is an
absolute structure.

Clearly there is a rather non-trivial mathematical theory behind the last
statement of diffeomorphism equivalence of hμν . We could not have made that
statement had we not already been in possession of the full solution theory
for (19) which, after all, is a complicated set of non-linear partial differential
equations of second order.

A Massless Scalar Field from an Action Principle

Usually we require the equations of motion to be the Euler–Lagrange equa-
tions for some associated action principle. Would the somewhat bold strategy
to render non-dynamical structures dynamical by adding by hand ‘equations
of motion’ which fix them to their previous values also work if these added
equations were required to be the Euler–Lagrange equations for some common
action principle? The answer is by no means obvious, as the following simple
example taken from [19] illustrates:

Consider a real massless9 scalar field in Minkowski space:

�φ := ημν∇μ∇νφ = 0 . (22)

According to standard strategy the non-dynamical Minkowski metric η is
eliminated by introducing the dynamical variable g, replacing η in (22) by g,
and adding the flatness condition

Riem[g] = 0 (23)

as new equation of motion. Is there an action principle whose Euler–Lagrange
equations are (equivalent to) these equations? This seems impossible without

9 This is just assumed for simplicity. The arguments work the same way if a mass
term were included.
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introducing yet another field λ (a Lagrange multiplier) whose variation just
yields (23). The action would then be

S = 1
2

∫

dV gμν∇μφ∇νφ + 1
4

∫

dV λαβμνRαβμν , (24)

where the symmetries of the tensor field λ are that of the Riemann tensor:

λαβμν = λ[αβ][μν] = λμναβ . (25)

Variation with respect to φ and λ yield (22) and (23) respectively, and varia-
tion with respect to g gives

∇μ∇νλαμβν = Tαβ , (26)

where Tαβ is the energy–momentum tensor for φ. These equations do not
give a background independent theory for the fields (φ, g, λ) since g is an
absolute structure. The solution manifold of the φ field is, in fact, the same as
before. For this it is important to note that there is an integrability condition
resulting from (23,26), namely ∇αTαβ = 0, which is however already implied
by (22). Hence no extra constraints on φ result from (26).

However, the λ field seems to actually add more dimensions to the solution
manifold and hence to the observable content of the theory. Indeed, using the
Poincaré Lemma in flat space one shows that any divergenceless symmetric
2-tensor T μν can always be written as in (26), where λ has the symmetries
(25). But this does not fix λμανβ , so that the set of Diff(M)-equivalence classes
of stationary points of (24) is strictly ‘larger’ than the set of solutions of (22).
In other words, the (Diff(M) reduced) phase space for the theory described by
(24) is ‘larger’ then that for (22).10 A a result we conclude that the reformula-
tion given here does not achieve an equivalent Diff(M)-invariant reformulation
of (22) in terms of an action principle.

2.5 Problems with Absolute Structures

A first thing to realize from the examples above is that the notion of absolute
structure should be slightly refined. More precisely, it should be made local
in order to capture the idea that an absolute element in the theory does not
represent local degrees of freedom. Rather than saying that a field corresponds
to an absolute structure if its solution space consists of a single Diff(M)-orbit,
we would like to make the latter condition local:

Definition 6. Two fields T1 and T2 are said to be locally diffeomorphism
equivalent iff for any point p ∈M there exits a neighbourhood U of p and a
diffeomorphism φU : U → U such that φU · (T1

∣

∣

U
) = T2

∣

∣

U
.

10 I am not aware of a reference where a Hamiltonian reduction of (24) is carried
out.
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Note that local diffeomorphism equivalence defines an equivalence relation on
the set of fields. Accordingly, following a suggestion of Friedman [7], we should
replace the tentative Definition 4 by the following:

Definition 7. Any field which is either not dynamical or whose solutions are
all locally diffeomorphism equivalent is called an absolute structure.

In fact, this is what we implicitly used in the discussions above where we
slightly oversimplified matters. For example, any two flat metrics g1, g2 (i.e.
which satisfy Riem[g1,2] = 0) are generally only locally diffeomorphism equiv-
alent. Likewise, a conformally flat metric g (i.e. which satisfy Weyl[g]=0) is
locally diffeomorphism equivalent to f2η, where f is non-vanishing function
and η is a fixed flat metric.

Having corrected this we should also adapt the tentative Definition 5:

Definition 8. A theory is called background independent iff its equations
are Diff(M)-invariant in the sense of Definition 3 and its fields do not include
absolute structures in the sense of Definition 7.

So far so good. Is this, then, the final answer? Unfortunately not! The stan-
dard argument against this notion of absolute structure is that it may render
structures absolute that one would normally call dynamical. The canonical ex-
ample, usually attributed to Robert Geroch [10], makes use of the well-known
fact in differential geometry that nowhere vanishing vector fields are always
locally diffeomorphism equivalent (see, e.g., Theorem 2.1.9 in [1]). Hence any
diffeomorphism-invariant theory containing vector fields among their funda-
mental field variables cannot be background independent. For example, con-
sider the coupled Einstein–Euler equations for a perfect fluid of density ρ
and four-velocity u in spacetime with metric g. This system of equations is
Diff(M)-invariant. By definition of a velocity field we have g(u, u) = c2. This
means that u cannot have zeros, even if for physical reasons we would usually
assume the fluid to be present not everywhere in spacetime, i.e. the support
of ρ is a proper subset of spacetime.11 Then the four velocity of the fluid is
an absolute structure, contrary to our physical intention.

I know of two suggestions how to avoid this conclusion in the present
example. One is to use the 1-form uμ dxμ rather than the vector field uμ∂μ
as fundamental dynamical variable for the fluid. The point being that one-
form fields are not locally diffeomorphism equivalent. For example, a closed
(exact) one-form field will always be mapped into a closed (exact) one-form
field, and hence cannot be locally diffeomorphism equivalent to a non-closed
field. Another suggestion, in fact the only one that I have seen in the liter-
ature ([8] p. 59 footnote 9 and [21], p. 99, footnote 8) is to take the energy–
momentum density Π rather than u as fundamental variable. To be sure, on
11 It seems a little strange to be forced to consider velocity fields u in regions where
ρ = 0, i.e. where there is no fluid matter. Velocity of what? one might ask. In a
concrete application this means that we have to extend u beyond the support of
ρ and that the physical prediction is independent of that extension.
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the support of Π we can think of it as equal to ρu, but on the complement of
its support there is no need to define a u. This avoids the unwanted conclusion
whenever Π indeed has zeros; otherwise the argument given above for u just
applies to Π .

An even simpler argument, which I have not seen in the physics literature,
even applies to pure gravity. It rests on the following theorem from differ-
ential geometry, an elegant proof of which was given by Moser [12]: given
two compact-oriented n-dimensional manifolds V1 and V2 with n-forms μ1

and μ2 respectively. There exists an orientation-preserving diffeomorphism
φ : V1 → V2 such that φ∗μ2 = μ1 iff the μ1-volume of V1 equals the μ2-volume
of V2, i.e. iff

∫

V1

μ1 =
∫

V2

μ2 . (27)

If we take V1 = V2 to be the closure of an open neighbourhood U in the
spacetime manifold M , this theorem implies that the metric volume forms,
written in coordinates as

μ =
√

∣

∣det[g(∂μ, ∂ν)]
∣

∣ dx1 ∧ · · · ∧ dxn , (28)

are locally diffeomorphism equivalent iff they assign the same volume to U .
Hence it follows that the metric volume elements modulo constant factors are
absolute elements in pure gravity. Note that this implies that for any metric
g any point p ∈M there is always a local coordinate system {xμ} in an open
neighbourhood U of p such that

√| det[g(∂μ, ∂ν)]| = 1.

3 Conclusion

Background independence is one of the central strategic issues in discussions
on competing approaches to quantum gravity. This clearly emerges from the
contributions of Kiefer, Thiemann, Nicolai and Peeters, Lauscher and Reuter,
and Louis, Mohaupt, and Theisen to this book. Given the impressive amount
of effort that is devoted to analyse the consequences of these different ap-
proaches, it seems a little strange to me that the very notion of background
independence is tolerated to be in the state of relative elusiveness in which
it appears to be. Clearly, in specific situations it is usually not difficult to
associate a mathematically well-defined meaning to an ‘intuitively obvious’
interpretation of such a requirement of background independence. But when
used as general strategic criterion one should, I think, come up with a gener-
ally valid and mathematically well-defined definition. I am not aware of such
a definition. Attempts were made in the past, but they run into the problems
outlined here. Hence the problem must be regarded as an outstanding one.
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1924. 106

7. Michael Friedman. Relativity principles, absolute objects and symmetry
groups. In Patrick Suppes, editor, Space, Time and Geometry, pp. 296–320,
Dordrecht, Holland, 1973. D. Reidel Publishing Company. 117

8. Michael Friedman. Foundations of Space-Time Theories. Princeton University
Press, Princeton, New Jersey, 1983. 117

9. Kurt Friedrichs. Eine invariante Formulierung des Newtonschen Gravita-
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