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Abstract. We present a novel proof of Toyama’s famous modularity of
confluence result for term rewriting systems. Apart from being short and
intuitive, the proof is modular itself in that it factors through the decreas-
ing diagrams technique for abstract rewriting systems, is constructive in
that it gives a construction for the converging rewrite sequences given
a pair of diverging rewrite sequences, and general in that it extends to
opaque constructor-sharing term rewriting systems. We show that for
term rewrite systems with extra variables, confluence is not preserved
under decomposition, and discuss whether for these systems confluence
is preserved under composition.

1 Introduction

We present a novel proof of the classical result due to Toyama, that confluence is
a modular property of term rewriting systems, that is, the disjoint union of two
term rewriting systems is confluent if and only if both systems are confluent.

To illustrate both our proof method and its difference with existing proofs in
the literature [1,2,3], we make use of the following example.

Example 1. Let S be the disjoint union CL � E of the term rewriting systems
CL = ({@, I, K, S}, {Ix → x, Kxy → x, Sxyz → xz(yz)}) for combinatory logic
(where @ is left implicit and associates to the left) and E = ({∗, a, b}, {x ∗ x →
x, a → b}) (with ∗ written infix).

Both these term rewriting systems are confluent, CL is since it is left-linear
and non-overlapping (Rosen, see [4, Sect. 4.1]) and E is since it is terminating
and all its critical pairs (none) are convergent (Huet, see [4, Lemma 2.7.15]).

Now consider the following peak in S for arbitrary CL-terms t, s, u with t →CL u:

(u ∗ s)a ←CL (t ∗ s)a →E (t ∗ s)b

Intuitively, it is easy to find a common reduct:

(u ∗ s)a →E (u ∗ s)b ←CL (t ∗ s)b

and indeed this valley is constructed by our proof. We will now informally explain
our proof using classical modularity terminology from the papers mentioned
above, which also can be found in the textbooks [5,4].
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Our proof is based on a novel decomposition of a term into its base vector
and its base. These notions will be defined formally in Section 3, but can be
understood as the vector of aliens (also known as principal subterms) of maximal
rank of the term, and its context, respectively. This decomposition of terms in
turn induces a decomposition of reductions on base vectors and bases such that,
roughly speaking, both are confluent and they commute.

Example 2. The source (t∗ s)a of the initial peak has two aliens t∗ s and a, only
the first of which is of maximal rank 2. Accordingly, its base vector consists only
of the former so is (t ∗ s), and its base is (x1)a. Indeed the base vector and base
compose, by substituting the former for x1 in the latter, to the original term.

For the peak, the step on the left decomposes as a step on the base vector:
(u ∗ s) ← (t ∗ s) within base (x1)a, whereas the step on the right decomposes as
a step on the base: (x1)a → (x1)b with base vector (t ∗ s).

These steps commute, giving rise to the valley on the previous page, consisting
of two steps. The step on the left is composed of the step on the base: (x1)a →
(x1)b and base vector (u ∗ s), and the step on the right is composed of the step
on the base vector: (u ∗ s) ← (t ∗ s) and base (x1)b.

Focussing attention on aliens of maximal rank is in a sense dual to the idea of
the proofs in the literature [1,2,3], which are based on representing aliens by
terms of minimal rank. To that end each of the latter three proofs relies on a
test whether a layer may collapse or not (root preservedness, inner preservedness,
and cap-stability, respectively). As the test whether a layer may collapse or not
is an undecidable property, the proofs in the literature are non-constructive.

Example 3. To construct the common reduct for the peak above, each of these
proofs depends on testing whether the term t ∗ s may collapse, i.e. rewrite to
a CL-term, or not. Since the rule for ∗ is non-left-linear, this requires testing
whether t and s have a common reduct in CL, which is an undecidable property.

In contrast, our proof yields modularity of constructive confluence: a pair of con-
verging rewrite sequences can be constructed for every pair of diverging rewrite
sequences, in the disjoint union of two term rewriting systems if and only if the
same holds for each of the systems separately.

Example 4. CL is constructively confluent since a valley can be constructed for
a given peak via the so-called orthogonal projections ([4, Chapter 8]), and E
is constructively confluent since a valley can be constructed for a given peak
by termination ([4, Chapter 6]). By our main result (Corollary 1) their disjoint
union S is constructively confluent.

After recapitulating the relevant notions from rewriting in Section 2, our proof of
modularity of confluence is presented in Section 3, and argued to be constructive
in Section 4. In Section 5, we discuss (im)possible extensions of our technique.

2 Preliminaries

We recapitulate from the literature standard rewriting notions pertaining to this
paper. The reader is referred to the original papers [1,2,3] for more background on
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modularity of confluence (Theorem 2) and to [6] for the confluence by decreasing
diagrams technique (Theorem 1). As the textbooks [5,4] give comprehensive
overviews of both topics, we have based our set-up on them, and we refer to
them for the standard notions employed. The novel part of these preliminaries
starts with Definition 1.

Rewriting preliminaries We employ arrow-like notations such as →, �, �, � to
range over rewrite relations which are binary relations on a set of objects. The
converse →−1 of a rewrite relation → is also denoted by mirroring the symbol
←, its reflexive closure is denoted by →= and its transitive closure by →+.
Replicating a symbol is used to denote an idea of repetition; the replication �
of → will be used simply as another notation for its reflexive–transitive closure
→∗; the meanings of �� and �� will be given below. A peak (valley) is a witnesses
to �;� (�;�), i.e. a pair of diverging (converging) rewrite sequences. A rewrite
relation → is confluent Con(→) if every peak can be completed by a valley, i.e.
� ; � ⊆ � ; �, where ; and ⊆ denote relation composition and set inclusion
respectively, viewing relations as sets of ordered pairs.

Theorem 1 (Decreasing Diagrams [6]). Let → =
⋃

�∈L →� where L is a set
of labels with a terminating transitive relation �. If it holds that ←� ; →k ⊆
��� ; →=

k ; ��{�,k} ; ��{k,�} ; ←=
� ; ��k for all �,k, then → is confluent. Here

�K = {j | ∃i ∈ K, i � j} and �j = �{j}.

Term rewriting preliminaries A term rewriting system (TRS) is a system (Σ, R)
with Σ its signature and R its set of rules. A signature is a set of (function)
symbols with each of which a natural number, its arity, is associated. A rule is
a pair (l, r), denoted by l → r, of terms over the signature extended with an
implicit set of nullary (term) variables. For a term of shape a(t), a is its head-
symbol, which can be a variable or function symbol, and terms among t are its
direct subterms. A subterm of a term is either the term itself, or a subterm of a
direct subterm. Witnessing this inductive notion of subterm yields the notion of
occurrence of a subterm in a term. As usual, we require that the head-symbol
of the left-hand side l of a rule l → r not be a variable, and that the variables
occurring in the right-hand side r occur in l. A rule is left-linear if variables
occur at most once in its left-hand side, and collapsing if the head-symbol of its
right-hand side is a variable. For a given TRS T = (Σ, R), its associated rewrite
relation →T is the binary relation on terms over Σ defined by t →T s if t = C[lτ ]
and C[rτ ] = s for some single-hole context C, rule l → r ∈ R, and substitution
τ . A substitution is a homomorphism on terms induced by the variables, and
a context is a term over Σ extended with the hole � (which will technically
be treated as a fresh nameless variable). The application of a substitution τ to
the term t is denoted by tτ . The main operation on contexts is hole filling, i.e.
replacing occurrences of the hole by terms. If C is a context and t a term vector
with length |t| equal to the number of holes in C, then C[t] denotes filling the
holes in C from left to right with t. Properties of rewrite relations apply to
TRSs T via →T . Below, we fix TRSs Ti = (Σi, Ri) and their associated rewrite
relations →i, for i ∈ {1, 2}.
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Modularity preliminaries With T1 � T2 = (Σ, R) we denote the disjoint union of
T1 and T2, where Σ = Σ1 � Σ2 and R = R1 � R2. Its associated rewrite relation
is denoted by →. A property P is modular if P (T1 � T2) ⇐⇒ P (T1) & P (T2).

Theorem 2 (Modularity of Confluence [1]). Con(→) ⇐⇒ Con(→1) &
Con(→2).

A term t over Σ can be uniquely written as C[t] such that C is a non-empty
context over one of the signatures Σ1,Σ2, and the head-symbols of the term
vector t all not belong to that signature, where we let variables belong to both
signatures; this situation is denoted by C[[t]] and C and t are said to be the
top and alien vector of t, respectively. The rank of t is 1 plus the maximum
of the ranks of t and 0. A step t → s is top-collapsing if it is generated by a
collapsing rule in the empty context and the head-symbol of s does not belong
to the signature the head-symbol of t belongs to. Observe that the rank of t is
then greater than the rank of s. For vectors of terms t, s of the same length
|t| = n = |s|, we write t ∝ s if ti = tj entails si = sj , for all 1 ≤ i, j ≤ n. For
referring to notions pertaining to the components of T1�T2, colors c, b, w∈{1, 2}
are employed. We refer to b and w as black and white, respectively, implicitly
assuming they are distinct, i.e. b = 3 − w.

To illustrate our concepts and proof, we use the following running example.

Example 5. Let T be the disjoint union T1 � T2 of the term rewriting systems
T1 = ({a, f}, {f(x, x)→x}) and T2 = ({I, J, K, G, H}, {G(x)→I, I →K, G(x)→
H(x), H(x) → J, J → K}). The goal will be to transform the peak

f(I, H(a)) ← f(I, G(a)) ← f(G(a), G(a)) → G(a)

into a valley. For b = 1, the term f(I, G(a)) in this peak is top-black, has top

f

I G

a

3

21

1

f

I G

a

Fig. 1. Ranking a term

f(�, �), alien vector (I,G(a)) and rank 3, since G(a) is top-white, has top G(�),
alien vector (a) and rank 2, and I, a have no aliens so have rank 1 (see Figure 1).

Definition 1. For a given rank r and color c, c-rank-r terms are terms either of
rank r and top-c and then called tall, or of rank lower than r then called short.

Every term of rank r is a c-rank-q term for every c and q > r, and a c-rank-r
term for some color c. The aliens of a c-rank-(r+1) term are (3−c)-rank-r-terms,
and if tall its top has color c (the top of short terms can be of either color).
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Example 6. The term f(I, G(a)) in the peak in Example 5, is short c-rank-r for
every c and r > 3. Although the term is tall black-rank-3, it is not white-rank-3.

Rewriting a term does not increase its rank [5, p. 264][4, Proposition 5.7.6] by the
constraints on the left- and right-hand sides of TRS rules, and it easily follows:

Proposition 1. c-rank-r terms are closed under rewriting.

3 Modularity of Confluence, by Decreasing Diagrams

We show modularity of confluence (Theorem 3) based on the decomposition of
terms into bases and vectors of tall aliens, and of steps into tall and short ones, as
outlined in the introduction. We show tall and short steps combine into decreas-
ing diagrams, giving confluence by Theorem 1. To facilitate our presentation

we assume a rank r and a color b are given.

Under the assumption, we define native terms as black-rank-(r+1) terms and use
(non-indexed) t, s, u, v to range over them, and define nonnative terms as white-
rank-r terms and use t, s, u, v to range over vectors of nonnative terms, naming
their individual elements by indexing and dropping the vector notation, e.g.
t1,sn, etc.. Our choice of terminology should suggest that a term being nonnative
generalises the traditional notion of the term being alien [5, p. 263], and indeed
one easily checks that the aliens of a native term are nonnative, but unlike aliens,
nonnative terms (and native terms as well) are closed under rewriting as follows
from Proposition 1. This vindicates using → to denote rewriting them. By the
assumption, tall native terms are top-black and tall nonnative terms top-white.
Note an individual term can be native and nonnative at the same time, but the
above conventions make a name unambiguously denote a term of either type:
ordinary (non-indexed) names (t) denote natives, vector (boldface) names (t)
vectors of nonnatives, and indexed names (ti) denote individual nonnatives.

Example 7. Assuming rank r = 2 and color b = 1, all terms f(I, H(a)), f(I, G(a)),
f(G(a), G(a)), G(a) in the peak in Example 5 are native and all but G(a) are tall.
The alien vector of f(I, G(a)) is (I,G(a)), consisting of the short nonnative I and
the tall nonnative G(a).

Base contexts, ranged over by C, D, E, are contexts obtained by replacing all
tall aliens of some native term by the empty context �. Clearly, their rank does
not exceed r.

Proposition 2. If t is a native term, then there are a unique base context C and
vector t of tall aliens, the base context and base vector of t, such that t = C[t].

Proof. The base context is obtained by replacing all tall aliens of t by �. Unique-
ness follows from uniqueness of the vector of tall aliens. ��
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Fig. 2. From rank to base context–base vector decompositon

Example 8. For r,b as in Example 7, the base context of f(I, G(a)) is f(I, �),
and its base vector is (G(a)) (see Figure 2, base vector vertically striped, base
context horizontally). The base context of G(a) is the term itself, and its base
vector is empty.

In order to mediate between reductions in the base context and in the vector of
aliens, it will turn out convenient to have a class of terms with ‘named holes in
which nonnative terms can be plugged in’. For that purpose we assume to have
a set of nonnative variables, disjoint from the term variables, and we let x range
over vectors of nonnative variables. Nonnative substitutions are substitutions of
nonnative terms for nonnative variables, ranged over by τ , σ, υ, φ, η. In partic-
ular, we let η denote an arbitrary but fixed bijection from nonnative variables
to tall nonnative terms. A base term, ranged over by c, d, e, f , is a term which
is either obtained by applying η−1 to all tall aliens of some native term, or is a
nonnative variable called an empty base.1 Again, their rank does not exceed r.

Proposition 3. If t is a native term, then there is a unique non-empty base
term c, the base of t, such that t = cη.

Proof. As for Proposition 2, also using bijectivity of η for uniqueness. ��

The intuition that (non-empty) base terms are base contexts with ‘named holes
for nonnative terms’ is easily seen to be correct: If C, t, and c are the base context,
base vector, and base of t, respectively, then C = cxi �→� and c = C[η−1(t)].

Example 9. For r,b as above, let η map x1 to the tall nonnative G(a). The base
of the tall native f(I, G(a)) is obtained by applying η−1 to its tall alien G(a),
yielding f(I, x1). The base of G(a), now seen as short native, is the term itself.

Definition 2. A step on the nonnative vector t is tall if the element ti rewritten
is. The imbalance #t of a vector t of nonnative terms is the cardinality of its
subset of tall ones, and the imbalance #t of a native term t = C[[t]] is #t. We
write t ��ι s to denote that the vector t of nonnative terms rewrites in a positive
number of tall steps to s having imbalance ι = #s, and we write t ��ι s for a
native term t = C[[t]], if t ��ι s and C[s] = s.

The final line is justified by the fact that then #s = ι = #s.

1 Directly defining base terms inductively is not difficult but a bit cumbersome.
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Example 10. – f(G(a), G(a)) ��1 f(I, H(a)) because the vector of tall aliens
(G(a),G(a)) of the former rewrites by tall steps first to (I,G(a)) and then to
(I,H(a)), which has imbalance 1 since it has only 1 tall element.

– f(G(a), G(a)) ��2 f(H(a), G(a)) by rewriting the first tall alien G(a) to
H(a). Imbalance was increased from 1 to 2 along this tall step.

Definition 3. On nonnative vectors and native terms, a short step is defined to
be a →-step which is not of the shape of a single-step ��ι rewrite sequence, and
�� denotes a positive number of short steps, with on native terms the condition
that only the last step may be tall-collapsing, i.e. top-collapsing a tall term.

Example 11. – f(G(a), G(a)) �� G(a) because the former rewrites in one step
to the latter, but not by a step in a tall alien. Although also G(a) �� I (there
are no tall aliens), we do not have f(G(a), G(a)) �� I, since the condition
that only the last step may be tall-collapsing would then be violated.2

– f(I, G(a)) → f(I, I) → f(I, K) induces f(I, G(a)) ��0 f(I, I) �� f(I, K)
(see Figure 3). Note that the second, short, step does not change imbalance.

K

f

I G

a

f

I I
0

f

I

Fig. 3. Tall and short step

– Tall and short steps need not be disjoint: setting for this example rank
r = 1 and color b = 1, the step f(I, J) → f(J, J) in the disjoint union of
{f(x, y)→ f(y, y)} and {I →J} can be both of the shape of a single-step ��ι

reduction and not, depending on whether I or the whole term is contracted.
Hence, both f(I, J) ��1 f(J, J) and f(I, J) �� f(J, J)!

Proposition 4. Confluence of → and �� ∪
⋃

ι ��ι are equivalent, both on non-
native vectors and on native terms.

Proof. In either case, it suffices to show that the reflexive–transitive closures of
→ and �� ∪

⋃
ι ��ι coincide, which follows by monotonicity of taking reflexive–

transitive closures from → ⊆ �� ∪
⋃

ι ��ι ⊆ →+, which holds by definition. ��

Lemma 1. If t = cη �� s, then s = dη for some c � d, where c is the base of t.

2 Transitivity of �� on native terms could be regained by dropping the condition that
only the last step may be tall-collapsing. However, this would necessitate reformu-
lating Lemma 1 below, and would make the proof of Theorem 3 a bit more complex.
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Proof. We claim that if t = cη �� s by a single short step with c the base of
t, then s = dη for some c � d such that d is either the base of s, or it is an
empty base and the step was tall-collapsing. To see this, note the redex-pattern
contracted does not occur in a tall alien as the step was assumed short, and
neither does it overlap a tall alien as left-hand sides of rules are monochromatic,
i.e. either black or white. Thus, the redex-pattern is entirely contained in c, and
the claim easily follows. We conclude by induction on the length of the reduction
using that only its last step may be tall-collapsing. ��

Example 12. For f(G(a), G(a)) �� G(a) as in the first item of Example 10,
c = f(x1, x1) and d = x1. The final part of the same item shows that without
the condition that only the last step may be tall-collapsing, the result would fail:
I cannot be written as dη with f(x1, x1) � d; as I is not tall, taking x1 fails.

The following lemma is key for dealing with non-left-linear rules. Assuming con-
fluence, it allows to construct for diverging reductions on a vector of nonnative
terms, a common reduct as balanced as the initial vector. Intuitively, if the initial
vector ‘instantiates’ a non-linear left-hand side, the common reduct will do so
too because it is as balanced. Moreover, the imbalance of each of the converging
reductions does not exceed that of the corresponding diverging one, which will
be (our) key for applying the decreasing diagrams technique (Theorem 1).

Lemma 2. If → is confluent on nonnative vectors and t ��ιk
sk for 1 ≤ k ≤ n,

then there exist v such that t ∝ v and, for 1 ≤ k ≤ n, there exists uk such that
sk ��=

#v uk ��= v and ιk ≥ #v; if moreover n = 1 and s1 �= u1, then ι1 > #v.

Proof. We proceed in stages, which are defined to be vectors of length n|t|,
written using underlining in order to distinguish them from the boldfaced vectors
of length |t|. Starting at s = s1 . . . sn, each stage v will be such that s � v and
s ∝ v, until finally tn ∝ v holds, where tn denotes the n-fold repetition of t.

By the latter condition, if the procedure stops, then v is the n-fold repetition
of some vector, say v. By the invariant both sk � v and sk ∝ v. By the latter,
we may assume that reductions of the former taking place on identical elements
of sk, are in fact identical. Using that the rank of terms does not increase along
rewriting, sk � v has a tall–short factorisation3 of shape sk ��=

#v uk ��= v
with ιk = #sk ≥ #uk (since identical elements are reduced identically), and
#uk = #v (since base reductions do not affect imbalance). This gives partial
correctness of the construction. To get total correctness it must also terminate.

If stage v is not yet final, there are ti = tj such that vi �= vj . Per construction
t � s � v hence vi � ti = tj � vj giving some vi � w � vj by the confluence
assumption. The next stage is obtained by applying the reductions vi � w and
vj � w at all indices of v to which either is applicable, i.e. to all elements
identical to either vi or vj . As the cardinality (as set) of the resulting stage is
smaller than that of v (elements which were identical still are and the elements
at indices i, j have become so), the procedure terminates in less than n|t| steps.

3 W.l.o.g. we assume the factorisation to depend functionally on the given reduction.
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If moreover n = 1, note that tall nonnative terms are only reduced when they
are joined with some other term. Then note that joining, both with another tall
term and with another short term (to a short term!), decreases imbalance. ��

Example 13. For the nonnative vector t = (G(a),G(a)) with imbalance 1, con-
sider both t ��2 (H(a),G(a)) = s1 and t ��1 (G(a),I) = s2. Then in the proof of
the lemma the following vectors of nonnatives may be constructed:

t2 = t = ( G(a),G(a),G(a),G(a) )
s1s2 = s = ( H(a),G(a),G(a), I )

u = ( H(a),H(a),H(a), I )
v2 = v = ( K , K , K , K )

In stage s, s1 = H(a) �= G(a) = s2, but t1 = t2. By confluence, the latter are
joinable, e.g., by H(a) ← G(a), and applying this to all terms in s yields u.

In stage u, s1 = H(a) �= I = s4, but t1 = t4. By confluence, the latter are
joinable, e.g., by H(a) � K ← I, and applying these to all terms in u yields v.

Therefore, for 1 ≤ k ≤ 2, sk � (K,K) = v, with tall–short factorisations
s1 ��0 (J,J) �� v and s2 ��0 (J,I) �� v, both with imbalance (0) not exceeding
that of t (1).

Lemma 3. 1. If t ��ι s �� u, then C[t] ��ι C[s] �� C[u], for base contexts C.
2. If c � d, then for any nonnative substitution τ , cτ ��= dτ and #cτ ≥ #dτ .

Proof. The items follow from closure of rewriting under contexts and substitu-
tions; #cτ ≥ #dτ since reducing c can only replicate the tall nonnatives in τ . ��

Example 14. 1. Filling the base context f(�, �) with the tall–short factorisa-
tions of sk � v in Example 13, yields f(H(a), G(a)) ��0 f(J, J) �� f(K, K)
and f(G(a), I) ��0 f(J, I) �� f(K, K).

2. Since f(x1, x1) → x1, we have f(G(a), G(a)) �� G(a) by mapping x1 to
G(a), but also f(a, a) �� a by mapping x1 to a.

The proof of our main theorem is by induction on the rank of a peak. The idea
is to decompose a peak into tall and short peaks, which being of lower rank
can both be completed into valleys by the induction hypothesis, which then can
be combined to yield decreasing diagrams by measuring tall reductions by their
imbalance, giving confluence by the decreasing diagrams theorem.

Theorem 3. → is confluent if and only if both →1 and →2 are.

Proof. The direction from left to right is simple: For any color c, a →c-peak ‘is’
a →-peak of c-rank-1 terms. By Con(→) and Proposition 1, the latter peak can
be completed by a →-valley of c-rank-1 terms, which ‘is’ a →c-valley.

The direction from right to left is complex. Assuming Con(→1) and Con(→2),
we prove by induction on the rank, that any →-peak of terms of at most that
rank can be completed by a →-valley of such terms again.
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The base case, a peak of terms of rank 1, is simple and symmetrical to the
above: such a peak ‘is’ a →c-peak for some color c. By Con(→c) it can be
completed by a →c-valley, which ‘is’ a →-valley of c-rank-1 terms.

Using the terminology introduced above, the step case corresponds to proving
confluence of reduction on native (black-rank-(r+1)) terms, having confluence of
reduction on nonnative (white-rank-r) terms as induction hypothesis. By Propo-
sition 4 it suffices to show confluence of �� ∪

⋃
ι ��ι. To that end, we show the

preconditions of Theorem 1 are satisfied taking the ��ι and �� as steps, ordering
��ι above ��κ if ι > κ, and ordering all these above ��.

ι

≤ι

ι
<ι≤ι∧κ

tall short tall–short

∗== =

==

=

≤ι∧κ

κ

Fig. 4. Decreasing diagrams case analysis

We distinguish cases (see Figure 4) on the types, short or tall, of the steps in
a peak having the native term t as source, and we let C, t, and c be the base
context, base vector, and base of t as given by Propositions 2 and 3, respectively.

(tall–tall) Suppose s ��ι t ��κ u. By definition s = C[s] ��ι C[t] ��κ C[u] = u
for some s ��ι t ��κ u. By the induction hypothesis we may apply Lemma 2
giving s ��=

#v s′ ��= v �� u′ ��#v u for some s′, v, u′ with ι ≥ #v ≤ κ. We
conclude to s = C[s] ��=

#v C[s′] ��= C[v] ��= C[u′] ��=
#v C[u] = u from

Lemma 3(1), giving a decreasing diagram (Figure 4 left).
(short–short) Suppose s �� t �� u. Lemma 1 entails s = dη �� cη �� eη = u
for some nonnative peak d � c � e. By the induction hypothesis for this
peak, d � f � e for some f . We conclude to s = dη ��= fη ��= eη = u by
Lemma 3(2), giving a decreasing diagram (Figure 4 middle).

(tall–short) Suppose s ��ι t �� u. By definition and Lemma 1 we have s =
C[s] ��ι C[t] = t = cη �� eη = u for some s ��ι t and c � e.
By the induction hypothesis and Lemma 2, s ��ι t entails s ��=

#v s′ ��= v
for some s′, v with t ∝ v and ι ≥ #v, and if s �= s′ then ι > #v. Lemma 3(1)
yields C[s] ��=

#v C[s′] ��= C[v] and t ∝ v gives C[v] = cσ for some σ � η.
By Lemma 3(2), c � e entails cσ ��= eσ with #cσ ≥ #eσ. To conclude (as
in Figure 4 right) we distinguish cases on whether e is empty or not.
(empty) If e is empty, say e = xi then σ � η entails eσ = σ(xi) ��=

η(xi) = eη, thus s = C[s] ��=
#v C[s′] ��= C[v] = cσ ��= eσ ��= eη = u,

giving a decreasing diagram since ι > #v if the ��=
#v-step is non-empty.

(non-empty) If e is not empty, let E and x be the (unique) base context
and vector of nonnative variables such that E[x] = e. Then σ � η
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entails xσ � xη, any tall–short factorisation (see Lemma 2) of which
yields eσ = E[xσ] ��= E[xφ] ��=

κ E[xη] = eη for some φ by Lemma 3(1),
thus s = C[s] ��=

#v C[s′] ��= C[v] = cσ ��= eσ ��= E[xφ] ��=
κ eη = u,

giving a decreasing diagram since ι > #v if the ��=
#v-step is non-empty

as before, and ι ≥ #v = #C[v] = #cσ ≥ #eσ = #E[xφ] = κ. ��

short

f(I, H(a)) f(K, K) K
0

1

tall–short

tall
0

f(G(a), G(a)) G(a)

1
f(I, I)f(I, G(a)) I

f(I, K)f(I, J)

Fig. 5. The three cases in Theorem 3

Example 15. Successively completing the peaks of Example 5, written as:

f(I, H(a)) ��1 f(I, G(a)) ��1 f(G(a), G(a)) �� G(a)

into valleys, gives rise to Figure 5, illustrating the three cases in Theorem 3.

The main difference between our proof of modularity of confluence and those
in the literature [1,2,3] is the way in which they deal with the identity-check of
the terms occurring at the non-linear argument places of the left-hand side of a
rule. Reducing these terms may cause that the identity-check ceases to succeed,
upon which so-called balancing reductions must be performed on these terms,
in order to make the identity-check succeed again.

Our proof relies on the local reduction history, i.e. on the reductions performed
since the moment the identity-check did succeed, to construct the balancing
reductions using Lemma 2. In the above example, in order to apply the rule
f(x, x) → x to the term f(I, G(a)), the reduction from f(G(a), G(a)) for which
the identity-check did succeed, is used to construct the balancing reduction to
f(I, I) for which the identity-check succeeds again.

In contrast, the proofs in the literature rely on the global reduction history
by mapping convertible terms (so certainly those terms for which the identity-
check once did succeed) to some witness. In order to guarantee that all the
convertible terms in fact reduce to the witness, i.e. in order to obtain balancing
reductions, the witness is chosen to be of minimal rank, cf. Example 3, which
has the side-effect of making the proofs non-constructive.

4 Modularity of Confluence, Constructed

A proof is constructive if it demonstrates the existence of a mathematical object
by providing a procedure for creating it. A rewriting system with a constructive
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proof of confluence is constructively confluent. More precisely, we require to
have a procedure which for any given peak, say given as proof terms in rewriting
logic [4, Chapter 8], constructs the corresponding valley. In other words, we
require the existence of effective confluence functions f , g as in Figure 6.

g(R, S)

R S

f(S, R)

Fig. 6. Effective confluence functions

Example 16. The term rewriting system CL in the introduction is constructively
confluent, which can be seen by setting both f and g to the residual/projection
function, which is effective [4, Definition 8.7.54] (giving rise to least upper
bounds [4, Figure 8.7.52]), because CL is an orthogonal TRS.

The term rewriting system E is constructively confluent, which can be seen by
setting both f and g to the binary function computing the normal form of (the
target of) its second argument. This procedure is effective for any constructively
terminating TRS, such as E , the critical pairs of which are convergent (the upper
bounds computed are greatest with respect to the induced partial order �).

Corollary 1. Constructive confluence is modular.

Proof. All constructions in Section 3 are effective. In fact, the proof by induction
of Theorem 3 gives rise to a program which in order to compute a common reduct
for a peak of a given rank, relies on the ability to decompose the peak into peaks
of lower rank, on making recursive calls to itself giving valleys for those lower
ranks, and the ability to compose these valleys again.

That the program eventually terminates, i.e. that it does not produce an
infinitely regressing sequence of peaks for which common reducts need to be
found, relies on Theorem 1 the proof of which is seen to be constructive.4 ��

Example 17. The disjoint union of CL�E is constructively confluent, computing
least (greatest) upper bounds on CL (E) components.

Note that since the confluence proofs in the literature are not constructive,
they yield no method better than a blind search to find a common reduct, the
4 Although, as far as we know, Theorem 1 itself has not been formalized in some proof

checker, its ‘point version’ (where objects instead of steps are labelled) has [7].
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termination of which will not be constructive. Even if one is not concerned with
that, such a blind search is of course extremely inefficient.

Remark 1. The complexity of our construction should be studied. It should be
interesting to formalize our proof in, say Coq, and extract an effective confluence
function which computes for any pair of diverging reductions in a disjoint union,
the corresponding converging reductions, by making calls to the confluence func-
tions for the component term rewriting systems.

5 (Im)possible Extensions

5.1 Constructor-Sharing TRSs

Two (possibly non-disjoint) TRSs T1 and T2 are said to be constructor-sharing
if the symbols shared by their alphabets (possibly none) are constructors, i.e.
do not appear as head-symbols of left-hand sides of rules. The following well-
known example [5, Examples 8.2.1,8.5.24] shows that the union of confluent
constructor-sharing TRSs need not be confluent, in general.

Example 18. Let T1 be {∞ → S(∞)} and T2 be {E(x, x) → true, E(x, S(x)) →
false}. Then T1 and T2 are confluent, and share the constructor S, but their
union T1 ∪ T2

5 is not confluent: true ← E(∞, ∞) → E(∞, S(∞)) → false. A
similar counterexample arises when setting T1 to {∞ → I(S(∞)), I(x) → x}.

The counterexamples can be barred by forbidding the TRSs to have rules with a
shared constructor or variable as head-symbol of the right-hand side, forbidding
∞→S(∞) and I(x)→x in the example. Modularity of (constructive) confluence
of such opaque TRSs [5, Corollary 8.5.23] reduces to ordinary modularity:

Definition 4. For T = (Σ, R) an opaque TRS, T is (Σ, R) with:

– Σ a new signature having opaque Σ-contexts as function symbols, where a
Σ-context is opaque if only its head-symbol is not a constructor; its arity as
function symbol is the number of holes in it as context.

– For a Σ-term t not headed by a shared constructor, let t denote the (unique)
corresponding Σ-term. Then R is a new set of rules consisting of lγ →rγ for
all l → r ∈ R and all substitutions γ of shared constructor terms.

Example 19. For the opaque TRS T2 of Example 18, T 2 consists of false, true,
E(�, �), E(S(�), �), E(�, S(�)), E(S(�), S(�)), E(S(S(�)), �),. . .

Lemma 4. For any opaque TRS T , Con(T ) ⇐⇒ Con(T ).

Proof (Sketch). Since shared constructor symbols are inert, confluence of T re-
duces to confluence of non-shared-constructor-headed terms. We conclude as by
opaqueness · is a bisimulation [4, Section 8.4.1] between →T and →T on such
terms.
5 Huet’s counterexample to confluence of non-overlapping TRS [4, Example 4.1.4(i)].
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Theorem 4. (Constructive) confluence is modular for opaque TRSs.

Proof. Suppose T1 and T2 are confluent opaque TRSs. By the lemma and The-
orem 3: Con(T1 ∪ T2) ⇐⇒ Con(T1 ∪ T2) ⇐⇒ Con(T 1 ∪ T 2) ⇐⇒ Con(T 1 �
T 2) ⇐⇒ Con(T 1) & Con(T 2) ⇐⇒ Con(T1) & Con(T2). ��

5.2 Extra-Variable TRSs

Definition 5. An extra-variable TRS is a term rewriting system where the con-
dition that variables of the right-hand side must be contained in those of the
left-hand side, is dropped.

Modularity of confluence for extra-variable TRSs was studied in [8] in an ab-
stract categorical setting. However, the following surprising example shows that
confluence for extra-variable TRSs is not preserved under decomposition, hence
that the conditions on the categorical setting in [8] must exclude a rather large
class of extra-variable TRSs, in order not to contradict the statement in [9,
Section 4.3] that in that setting confluence is preserved under decomposition.

Example 20. Consider the following extra-variable TRSs, where the variable z
in the right-hand side of the first rule of T1 is not contained in the variables of
its left-hand side:

T1 = {f(x, y) → f(z, z), f(b, c) → a, b → d, c → d}

T2 = {M(y, x, x) → y, M(x, x, y) → y}

Clearly T1 is not confluent since a ← f(b, c) → f(t, t) �� a as no term t reduces
to both b and c. However the disjoint union of T1 and T2 is confluent, as then

f(x, y) → f(M(b, d, c), M(b, d, c)) →2 f(M(b, d, d), M(d, d, c)) →2 f(b, c) → a

Formally: this justifies adjoining the rule � : f(x, y) → a, after which the first two
rules of T1 are derivable: f(x, y) →
 a ←
 f(z, z) and f(b, c) →
 a. Removing
these two rules we obtain an ordinary TRS T confluence of which entails conflu-
ence of the disjoint union as per construction ↔∗

T1�T2
= ↔∗

T and �T ⊆ �T1�T2 .
Confluence of T holds by Huet’s Critical Pair Lemma [4, Thm. 2.7.15], as T is
terminating and its critical pair, arising from x ← M(x, x, x) → x, is trivial.

Remark 2. Note that in the above counterexample, the disjoint union T1 � T2 is
neither orthogonal nor left- or right-linear. We conjecture that requiring either of
these three properties suffices for establishing that the components of a confluent
extra-variable TRS are confluent again.

At present, we do not know whether our method does extend to show the other
direction, preservation of confluence under disjoint unions, for extra-variable
TRSs. We conjecture it does, but the following two examples exhibit some proof-
invariant-breaking phenomena.
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Example 21. It is not always possible to avoid creating aliens to find a common
reduct. For instance, the peak H(a) ← f(H(a)) → g(H(a), a) in the union of

T1 = {f(x) → x, f(x) → g(x, a), g(x, y) → g(x, z), g(x, x) → x}

with the empty TRS T2 over {H}, can only be completed into a valley of shape
H(a) ← g(H(a), H(a)) � g(H(a), a), i.e. by creating an alien H(a).

Example 22. It is not always possible to erase an alien once created. For instance,
consider extending the rules expressing that ∗ is an associative–commutative
symbol with the creation ex nihilo rule x ∗ y → x ∗ y ∗ z. This gives a confluent
TRS, where finding a common reduct can be thought of as constructing a multi-
set union. Obviously, reduction in the disjoint union with an arbitrary other
(non-erasing) TRS may create terms of arbitrary rank which can never be erased.

Remark 3. According to [10], the proof of [3] that confluence is preserved does
extend to extra-variable TRSs.

5.3 Pseudo-TRSs

For pseudo-TRSs [4, p. 36], i.e. extra-variable TRSs where also the condition that
the head-symbol of the left-hand side must be a function symbol, is dropped, i.e.
TRSs where both the left- and right-hand side are arbitrary terms, modularity
trivially fails in both directions:

– The disjoint union of the confluent pseudo-TRSs T1 = {x → f(x)} and
T2 = {G(A) → A} is not confluent. To wit A ← G(A) → G(f(A)), and A,
G(f(A)) do not have a common reduct as one easily verifies.

– Vice versa, the disjoint union of the pseudo-TRSs T1 = {a → b, a → c} and
T2 = {x → D} is confluent since any term reduces in one step to D, but
clearly T1 is not confluent.

6 Conclusion

We have presented a novel proof of modularity of (constructive) confluence for
term rewriting systems.

– Our proof is relatively short, in any case when omitting the illustrative ex-
amples from Section 3. Still a better measure for that would be obtained by
formalising it, which we intend to pursue.

– Our proof is itself modular in that it is based on the decreasing diagrams
technique. Following [11], it would be interesting to pursue this further and
try to factorize other existing proof methods in this way as well. For in-
stance, the commutation of outer and inner reductions for preserved terms
([4, Lemma 5.8.7(ii)],[5, Lemma 8.5.15]) can be proven by labelling inner
steps by the imbalance of their target, since that gives rise to the same de-
creasing diagrams as in Figure 4, after replacing short (tall) by inner (outer).6

6 Still, that wouldn’t make these proofs constructive, as the projection to preserved
terms they rely on is not constructive.



Modularity of Confluence 363

– It would be interesting to see whether our novel way of decomposing terms
and steps into short and tall parts, could be meaningfully employed to estab-
lish other results (constructively), e.g. persistence of confluence [12], mod-
ularity of uniqueness of normal forms [13], or modularity of confluence for
conditional TRSs [14].
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