

Lecture Notes in Artificial Intelligence 5195
Edited by R. Goebel, J. Siekmann, and W. Wahlster

Subseries of Lecture Notes in Computer Science

Alessandro Armando Peter Baumgartner
Gilles Dowek (Eds.)

Automated Reasoning

4th International Joint Conference, IJCAR 2008
Sydney, Australia, August 12-15, 2008
Proceedings

13

Series Editors

Randy Goebel, University of Alberta, Edmonton, Canada
Jörg Siekmann, University of Saarland, Saarbrücken, Germany
Wolfgang Wahlster, DFKI and University of Saarland, Saarbrücken, Germany

Volume Editors

Alessandro Armando
Università di Genova
DIST Via le Causa 13
16145 Genova, Italy
E-mail: armando@dist.unige.it

Peter Baumgartner
NICTA Canberra
Tower A 7 London Circuit
Canberra ACT 2601, Australia
E-mail: Peter.Baumgartner@nicta.com.au

Gilles Dowek
École polytechnique
Laboratoire d’Infomatique LIX
91128 Palaiseau Cedex, France
E-mail: Gilles.Dowek@polytechnique.edu

Library of Congress Control Number: 2008931576

CR Subject Classification (1998): I.2.3, I.2, F.4.1, F.3, F.4, D.2.4

LNCS Sublibrary: SL 7 – Artificial Intelligence

ISSN 0302-9743
ISBN-10 3-540-71069-8 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-71069-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12446285 06/3180 5 4 3 2 1 0

Preface

This volume contains the papers presented at IJCAR 2008, the 4th International
Joint Conference on Automated Reasoning, held August 12–15, 2008, in Syd-
ney (Australia). The IJCAR conference series is aimed at unifying the different
research principles within automated reasoning. IJCAR 2008 was the fusion of
several major international events:

– CADE: The International Conference on Automated Deduction
– FroCoS: The Symposium on Frontiers of Combining Systems
– FTP: The Workshop on First-Order Theorem Proving
– TABLEAUX: The Conference on Analytic Tableaux and Related Methods

Previous versions of IJCAR were held in Seattle (USA) in 2006, Cork
(Ireland) in 2004, and Siena (Italy) in 2001.

These proceedings comprise 4 contributions by invited speakers, 26 research
papers, and 13 system descriptions. The volume also includes a short overview
of the CASC-J4 competition for automated theorem proving systems that was
conducted during IJCAR 2008. The invited speakers were Hubert Comon-Lundh,
Nachum Dershowitz, Aarti Gupta, and Carsten Lutz. Their talks covered a broad
spectrum of automated reasoning themes, viz., verification of security protocols,
proof theoretical frameworks for first-order logic, automated decision procedures
and software verification, and description logics.

The contributed papers were selected from 80 research paper submissions
and 17 system description submissions. Each submission was reviewed by at
least three reviewers, and decisions were reached after two weeks of discussion
through an electronic Program Committee meeting. The submissions, reviews,
and discussion were coordinated using the EasyChair conference management
system. The accepted papers spanned a wide spectrum of research in automated
reasoning, including saturation, equational reasoning and unification, automata-
based methods, description logics and related logics, satifiability modulo theory,
decidable logics, reasoning about programs, and higher-order logics.

The Herbrand Award for distinguished contributions to automated reason-
ing was presented to Edmund M. Clarke in recognition of his role in the inven-
tion of model checking and his sustained leadership in the area for more than
two decades. The selection committee for the Herbrand Award consisted of the
previous award winners of the last ten years, the trustees of CADE Inc., and
the IJCAR 2008 Program Committee. The Herbrand award ceremony and the
acceptance speech by Professor Clarke were part of the conference program.

In addition to the Program Committee and the reviewers, many people con-
tributed to the success of IJCAR 2008. Geoff Sutcliffe served as the Publicity Chair
and organized the systems competition, CASC-J4. The IJCAR Steering Commit-
tee consisted of Alessandro Armando, Franz Baader (Chair), Peter Baumgartner,
Alan Bundy, Gilles Dowek, Rajeev Goré, Bernhard Gramlich, John Harrison, and

VI Preface

Ullrich Hustadt. Special thanks go to Andrei Voronkov for his EasyChair system,
which makes many tasks of a Program Chair much easier.

We would like to thanks all people involved in organizing IJCAR 2008, as well
as the sponsors the Australian National University, Intel, Microsoft Research,
and NICTA.

May 2008 Alessandro Armando
Peter Baumgartner

Gilles Dowek

Conference Organization

Program Chairs

Alessandro Armando
Peter Baumgartner
Gilles Dowek

Program Committee

Christoph Benzmueller
Nikolaj Bjorner
Patrick Blackburn
Maria Paola Bonacina
Alessandro Cimatti
Roy Dyckhoff
Silvio Ghilardi
Jürgen Giesl
Rajeev Gore
Bernhard Gramlich
Reiner Hähnle
John Harrison
Deepak Kapur
Viktor Kuncak
Christopher Lynch
Tobias Nipkow
Hans de Nivelle

Nicola Olivetti
Lawrence Paulson
Silvio Ranise
Christophe Ringeissen
Albert Rubio
Michael Rusinowitch
Ulrike Sattler
Carsten Schürmann
Natarajan Shankar
Viorica Sofronie-Stokkermans
Geoff Sutcliffe
Cesare Tinelli
Ashish Tiwari
Luca Viganò
Andrei Voronkov
Toby Walsh
Frank Wolter

Conference Chair

Peter Baumgartner

Workshop and Tutorial Chair

Michael Norrish

Publicity Chair

Geoff Sutcliffe

VIII Organization

Local Organization

Jinbo Huang, Michael Norrish, Andrew Slater, Toby Walsh

External Reviewers

Andreas Abel
Anbulagan
Takahito Aoto
Clark Barrett
Joachim Baumeister
Malgorzata Biernacka
Lars Birkedal
Thomas Bolander
Bianca Boretti
Olivier Bournez
Marco Bozzano
Paul Brauner
James Bridge
Björn Bringert
Chad Brown
Kai Bruennler
Roberto Bruttomesso
Richard Bubel
Serge Burckel
Guillaume Burel
Serenella Cerrito
Amine Chaieb
Ernie Cohen
Sylvain Conchon
Dominik Dietrich
Yu Ding
Lucas Dixon
Bruno Dutertre
Mnacho Echenim
Stephan Falke
Christian Fermüller
Camillo Fiorentini
Melvin Fitting
Pascal Fontaine
Alexander Fuchs
Martin Giese

Isabelle Gnaedig
Guillem Godoy
Alberto Griggio
James Harland
Emmanuel Hebrard
Thomas Hillenbrand
Dieter Hutter
Swen Jacobs
Barbara Jobstmann
Vladimir Komendantsky
Boris Konev
Konstantin Korovin
Shuvendu Lahiri
Stephane Lengrand
Giacomo Lenzi
Alexei Lisitsa
Thomas Lukasiewicz
Carsten Lutz
Michael Maher
Mark Marron
William McCune
George Metcalfe
Aart Middeldorp
Pierluigi Minari
Boris Motik
Leonardo de Moura
Jean-Yves Moyen
Peter Mueller
Cesar Munoz
Peter Müller
Enrica Nicolini
Robert Nieuwenhuis
Greg O’Keefe
Albert Oliveras
Nicola Olivetti
Jan Otop

Sam Owre
Ruzica Piskac
David Plaisted
Gian Luca Pozzato
Florian Rabe
Vincent Risch
Xavier Rival
Enric Rodriguez-

Carbonell
Robert Rothenberg
Philipp Ruemmer
Gernot Salzer
Felix Schernhammer
Renate Schmidt
Thomas Schneider
Camilla Schwind
Roberto Sebastiani
Rob Shearer
John Slaney
Aaron Stump
Christino Tamon
Alwen Tiu
Stefano Tonetta
Duc-Khanh Tran
Kumar Neeraj Verma
Laurent Vigneron
Marco Volpe
Dirk Walther
Florian Widmann
Claus-Peter Wirth
Burkhart Wolff
Eric Wurbel
Jian Zhang
Daniele Zucchelli

Table of Contents

Session 1: Invited Talk

Software Verification: Roles and Challenges for Automatic Decision
Procedures . 1

Aarti Gupta

Session 2: Specific Theories

Proving Bounds on Real-Valued Functions with Computations 2
Guillaume Melquiond

Linear Quantifier Elimination . 18
Tobias Nipkow

Quantitative Separation Logic and Programs with Lists 34
Marius Bozga, Radu Iosif, and Swann Perarnau

On Automating the Calculus of Relations . 50
Peter Höfner and Georg Struth

Session 3: Automated Verification

Towards SMT Model Checking of Array-Based Systems 67
Silvio Ghilardi, Enrica Nicolini, Silvio Ranise, and Daniele Zucchelli

Preservation of Proof Obligations from Java to the Java Virtual
Machine . 83

Gilles Barthe, Benjamin Grégoire, and Mariela Pavlova

Efficient Well-Definedness Checking . 100
Ádám Darvas, Farhad Mehta, and Arsenii Rudich

Session 4: Protocol Verification

Proving Group Protocols Secure Against Eavesdroppers 116
Steve Kremer, Antoine Mercier, and Ralf Treinen

Session 5: System Descriptions 1

Automated Implicit Computational Complexity Analysis 132
Martin Avanzini, Georg Moser, and Andreas Schnabl

X Table of Contents

LogAnswer – A Deduction-Based Question Answering System 139
Ulrich Furbach, Ingo Glöckner, Hermann Helbig, and Björn Pelzer

A High-Level Implementation of a System for Automated Reasoning
with Default Rules . 147

Christoph Beierle, Gabriele Kern-Isberner, and Nicole Koch

The Abella Interactive Theorem Prover . 154
Andrew Gacek

LEO-II – A Cooperative Automatic Theorem Prover for Classical
Higher-Order Logic . 162

Christoph Benzmüller, Lawrence C. Paulson, Frank Theiss, and
Arnaud Fietzke

KeYmaera: A Hybrid Theorem Prover for Hybrid Systems 171
André Platzer and Jan-David Quesel

Session 6: Invited Talk

The Complexity of Conjunctive Query Answering in Expressive
Description Logics . 179

Carsten Lutz

Session 7: Modal Logics

A General Tableau Method for Deciding Description Logics, Modal
Logics and Related First-Order Fragments . 194

Renate A. Schmidt and Dmitry Tishkovsky

Terminating Tableaux for Hybrid Logic with the Difference Modality
and Converse . 210

Mark Kaminski and Gert Smolka

Session 8: Herbrand Award Ceremony

Session 9: Description Logics

Automata-Based Axiom Pinpointing . 226
Franz Baader and Rafael Peñaloza

Individual Reuse in Description Logic Reasoning . 242
Boris Motik and Ian Horrocks

The Logical Difference Problem for Description Logic Terminologies 259
Boris Konev, Dirk Walther, and Frank Wolter

Table of Contents XI

Session 10: System Descriptions 2

Aligator: A Mathematica Package for Invariant Generation 275
Laura Kovács

leanCoP 2.0 and ileanCoP 1.2 : High Performance Lean Theorem
Proving in Classical and Intuitionistic Logic . 283

Jens Otten

iProver – An Instantiation-Based Theorem Prover for First-Order
Logic . 292

Konstantin Korovin

An Experimental Evaluation of Global Caching for ALC 299
Rajeev Goré and Linda Postniece

Multi-completion with Termination Tools . 306
Haruhiko Sato, Sarah Winkler, Masahito Kurihara, and
Aart Middeldorp

MTT: The Maude Termination Tool . 313
Francisco Durán, Salvador Lucas, and José Meseguer

Celf – A Logical Framework for Deductive and Concurrent Systems 320
Anders Schack-Nielsen and Carsten Schürmann

Session 11: Invited Talk

Canonicity! . 327
Nachum Dershowitz

Session 12: Equational Theories

Unification and Matching Modulo Leaf-Permutative Equational
Presentations . 332

Thierry Boy de la Tour, Mnacho Echenim, and Paliath Narendran

Modularity of Confluence: Constructed . 348
Vincent van Oostrom

Automated Complexity Analysis Based on the Dependency Pair
Method . 364

Nao Hirokawa and Georg Moser

Canonical Inference for Implicational Systems . 380
Maria Paola Bonacina and Nachum Dershowitz

XII Table of Contents

Session 13: Invited Talk

Challenges in the Automated Verification of Security Protocols 396
Hubert Comon-Lundh

Session 14: Theorem Proving 1

Deciding Effectively Propositional Logic Using DPLL and Substitution
Sets . 410

Leonardo de Moura and Nikolaj Bjørner

Proof Systems for Effectively Propositional Logic . 426
Juan Antonio Navarro and Andrei Voronkov

MaLARea SG1 - Machine Learner for Automated Reasoning with
Semantic Guidance . 441

Josef Urban, Geoff Sutcliffe, Petr Pudlák, and Jǐŕı Vyskočil

Session 15: CASC

CASC-J4 – The 4th IJCAR ATP System Competition 457
Geoff Sutcliffe

Session 16: Theorem Proving 2

Labelled Splitting . 459
Arnaud Fietzke and Christoph Weidenbach

Engineering DPLL(T) + Saturation . 475
Leonardo de Moura and Nikolaj Bjørner

THF0 – The Core of the TPTP Language for Higher-Order Logic 491
Christoph Benzmüller, Florian Rabe, and Geoff Sutcliffe

Session 17: Logical Frameworks

Focusing in Linear Meta-logic . 507
Vivek Nigam and Dale Miller

Session 18: Tree Automata

Certifying a Tree Automata Completion Checker . 523
Benôıt Boyer, Thomas Genet, and Thomas Jensen

Automated Induction with Constrained Tree Automata 539
Adel Bouhoula and Florent Jacquemard

Author Index . 555

Software Verification: Roles and Challenges for

Automatic Decision Procedures

Aarti Gupta

NEC Laboratories America, Inc.
4 Independence Way, Suite 200

Princeton, NJ 08520, USA

Software model checking has become popular with the successful use of predicate
abstraction and refinement techniques to find real bugs in low-level C programs.
At the same time, verification approaches based on abstract interpretation and
symbolic execution are also making headway in real practice. Much of the recent
progress is fueled by advancements in automatic decision procedures and con-
straint solvers, which lie at the computational heart of these approaches. In this
talk, I will describe our experience with several of these verification approaches,
highlighting the roles played by automatic decision procedures and their inter-
play with the applications. Specifically, I will focus on SAT- and SMT-based
model checking, combined with abstract domain analysis based on polyhedra
representations. I will also describe some challenges from software verification
that can motivate interesting research problems in this area.

A. Armando, P. Baumgartner, and G. Dowek (Eds.): IJCAR 2008, LNCS 5195, p. 1, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Proving Bounds on Real-Valued Functions

with Computations

Guillaume Melquiond

INRIA–Microsoft Research joint center,
Parc Orsay Université, F-91893 Orsay Cedex, France

guillaume.melquiond@inria.fr

Abstract. Interval-based methods are commonly used for computing
numerical bounds on expressions and proving inequalities on real num-
bers. Yet they are hardly used in proof assistants, as the large amount
of numerical computations they require keeps them out of reach from
deductive proof processes. However, evaluating programs inside proofs
is an efficient way for reducing the size of proof terms while perform-
ing numerous computations. This work shows how programs combining
automatic differentiation with floating-point and interval arithmetic can
be used as efficient yet certified solvers. They have been implemented
in a library for the Coq proof system. This library provides tactics for
proving inequalities on real-valued expressions.

1 Introduction

In traditional formalisms, proofs are usually composed of deductive steps. Each
of these steps is the instantiation of a logical rule or a theorem. While this
may be well-adapted for manipulating logic expressions, it can quickly lead to
inefficiencies when explicit computations are needed. Let us consider the example
of natural numbers constructed from 0 and a successor function S. For example,
the number 3 is represented by S(S(S(0))). If one needs to prove that 3 × 3
is equal to 9, one can apply Peano’s axioms, e.g. a × S(b) = a × b + a and
a+S(b) = S(a+b), until 3×3 has been completely transformed into 9. The first
steps of the proof are: 3×3 = 3×2+3 = (3×1+3)+3 = . . . This proof contains
about 15 instantiations of various Peano’s axioms. Due to the high number of
deductive steps, this approach hardly scales to more complicated expressions,
even if more efficient representations of integers were to be used, e.g. radix-2
numbers.

While numerical computations are made cumbersome by a deductive ap-
proach, they can nonetheless be used in formal proofs. Indeed, type-theoretic
checkers usually come with a concept of programs which can be expressed in the
same language than the proof terms. Moreover, the formalism of these checkers
assumes that replacing an expression f(x) of a functional application by the
result of the corresponding evaluation does not modify the truth of a statement.
As a consequence, one can write computable recursive functions for addition add

A. Armando, P. Baumgartner, and G. Dowek (Eds.): IJCAR 2008, LNCS 5195, pp. 2–17, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Proving Bounds on Real-Valued Functions with Computations 3

and multiplication mul of natural numbers. For instance, in a ML-like language,
mul can be defined as:

let rec mul x = function
| 0 -> 0
| S y -> add (mul x y) x

This function is extensionally equal to Peano’s multiplication. More precisely,
the following theorem can be proved by recursive reasoning on y:

mul spec : ∀x ∀y x× y = mul x y.

Therefore, in order to prove the statement 3×3 = 9, the first step of the proof
is an application of mul spec in order to rewrite 3 × 3 as mul 3 3. So one has
now to prove that mul 3 3 is equal to 9. This is achieved by simply evaluating
the function. So the proof contains only one deductive step: the use of mul spec.
With this computational approach, the number of deductive steps depends on
the number of arithmetic operators only; It does not depend on the size of the
integers. As a matter of fact, one can go even further so that the number of
deductive steps is constant, irrespectively of the complexity of the expressions.
This is the approach presented in this article.

In the Coq proof assistant1, the ability to use programs inside proofs is pro-
vided by the convertibility rule: Two convertible well-formed types have the same
inhabitants. In other words, if p is a proof of a proposition A, then p is also a
proof of any proposition B such that the type B is convertible to the type A.
Terms – types are terms – are convertible if they have the same normal form with
respect to β-reduction (and a few other Coq-related reductions). In particular,
since mul 3 3 evaluates to 9 by β-reduction, the types/propositions mul 3 3 = 9
and 9 = 9 are convertible, so they have exactly the same inhabitants/proofs.

More generally, an unproven proposition P (x, y, . . .) is transformed into a
sufficient proposition fP (x, y, . . .) = true — the difficulty is in designing an
efficient fP function and proving it evaluates to true only when P holds. The
proof system then checks if this boolean equality is convertible to true = true.
If it is, then it has a trivial proof from which a proof of P can be deduced.
Going from P to fP is a single deductive step, so most of the verification time
will be spent in evaluating fP . Fortunately, the convertibility rule happens to be
implemented quite efficiently in Coq [1,2], so it becomes possible to automatically
prove some propositions on real numbers by simply evaluating programs. An
example of such a proposition is the following one, where x and y are universally-
quantified real numbers:

3
2
≤ x ≤ 2⇒ 1 ≤ y ≤ 33

32
⇒
∣
∣
∣
∣

√

1 +
x√
x+ y

− 144
1000

× x− 118
100

∣
∣
∣
∣
≤ 71

32768

In order to prove this logical proposition with existing formal methods, one can
first turn it into an equivalent system of several polynomial inequalities. Then a
resolution procedure, e.g. based on cylindrical algebraic decomposition [3] or on

1 http://coq.inria.fr/

http://coq.inria.fr/

4 G. Melquiond

the Nullstellensatz theorem [4], will help a proof checker to conclude automati-
cally. When the proposition involves elementary functions (e.g. cos, arctan, exp)
in addition to algebraic expressions, the problem becomes undecidable. Some
inequalities can still be proved by first replacing elementary functions by poly-
nomial approximations [5,6]. A resolution procedure for polynomial systems can
then complete the formal proof.

A different approach is based on interval arithmetic and numerical computa-
tions. The process inductively encloses sub-expressions with numbers and prop-
agates these bounds until the range of all the expressions is known [7]. Naive
interval arithmetic, however, suffer from a loss of correlation between the mul-
tiple occurrences of a variable. In order to avoid this issue, the problems can
be split into several smaller problems or higher-order enclosures can be used
instead [8,9].

This paper presents an implementation of this approach for Coq. It will focus
on the aspects of automatic proof and efficiency. Section 2 describes the few
concepts needed for turning numerical computations and approximations into a
formal tool. Section 3 describes the particularities of the datatypes and programs
used for these computations. Section 4 finally brings those components together
in order to provide fully-automatized “tactics” (the tools available to the user
of Coq).

2 Mathematical Foundations

While both terms “computations” and “real numbers” have been used in the
introduction, this work does not involve computational real numbers, e.g. se-
quences of converging rational numbers. As a matter of fact, it is based on the
standard Coq theory of real numbers, which is a pure axiomatization with no
computational content.

Section 2.1 presents the extension of real numbers defined for this work.
This extension is needed in order to get a simpler definition of differentiation.
Section 2.2 describes the interval arithmetic formalized in order to bound ex-
pressions. Section 2.3 then shows how differentiation and intervals are combined
in order to tighten the computed bounds.

2.1 Extended Real Numbers

The standard theory of Coq describes real numbers as a complete Archimedean
field. Since functions of type R → R are total, this formalism makes it a bit
troublesome to deal with mathematical partial functions. For instance, x �→ x

x
is 1 for any real x �= 0. For x = 0, the function is defined and its value is 0 in
Coq. Indeed, 0 · 0−1 = 0, since 0−1 is the result of a total function, hence real.
Similarly, one can prove, that the derivative of this function is always zero. So
we have a function that seems both constant and discontinuous at x = 0.

Fortunately, this does not induce a contradiction, since it is impossible to prove
that the derivative (the variation limit) of x �→ x

x was really 0 at point 0. The

Proving Bounds on Real-Valued Functions with Computations 5

downside is that, every time one wants to use the value of the derivative function,
one has to prove that the original function is actually derivable. This requires
to carry lots of proof terms around, which will prevent a purely computational
approach.

So an element ⊥ is added to the formalism in order to represent the “result” of
a function outside its definition domain. In the Coq development, this additional
element is called NaN (Not-a-Number) as it shares the same properties as the
NaN value from the IEEE-754 standard on floating-point arithmetic [10]. In
particular, NaN is an absorbing element for all the arithmetic operators on
the extended set R = R ∪ {⊥}. That way, whenever an intermediate result is
undefined, a ⊥ value is propagated till the final result of the computation.

Functions of R → R can then be created by composing these new arithmetic
operators. In order to benefit from the common theorems of real analysis, the
functions are brought back into R → R by applying a projection operator:

proja : f ∈ (R → R) �→
(

x ∈ R �→
{

a if f(x) = ⊥
f(x) otherwise

)

∈ (R → R)

Then, an extended function f is defined as continuous at a point x �= ⊥ if
f(x) �= ⊥ and if all the projections proja(f) are continuous at point x. Similarly,
f is defined as derivable at x �= ⊥ if f(x) �= ⊥ and if all the projections of f
have the same derivative df (x) at point x. A function f ′ is then a derivative of
f if f ′(x) = df (x) whenever f ′(x) �= ⊥.

From these definitions and standard analysis, it is easy to formally prove some
rules for building derivatives. For example, if f ′ and g′ are some derivatives of
f and g, then the extended function (f ′ × g − g′ × f)/g2 is a derivative of f/g.
This is true even if g evaluates to 0 at a point x, since the derivative would then
evaluate to ⊥ at this point.

As a consequence, if the derivative f ′ of an expression f does not evaluate
to ⊥ on the points of a connected set of R, then f is defined, continuous, and
derivable on all the points of this set, when evaluated on real numbers. The
important point is that the extended derivative f ′ can be automatically built
from an induction on the structure of the function f , without having to prove
that f is derivable on the whole domain.

2.2 Interval Arithmetic

All the intervals (closed connected subsets) of R can be represented as pairs of
extended numbers2:

〈 ⊥ , ⊥ 〉 �→ R
〈 ⊥ , u 〉 �→ {x ∈ R | x ≤ u}
〈 l , ⊥ 〉 �→ {x ∈ R | l ≤ x}
〈 l , u 〉 �→ {x ∈ R | l ≤ x ≤ u}

2 The pair 〈⊥,⊥〉 traditionally represents the empty set. This is the opposite here, as
〈⊥,⊥〉 means R. This is a consequence of having no infinities in the formalization: ⊥
on the left means −∞ while ⊥ on the right means +∞. The empty set is represented
by any pair 〈l, u〉 with l > u.

6 G. Melquiond

This set I of intervals is extended with a NaI (Not-an-Interval): I = I∪{⊥I}.
This new interval ⊥I represents the set R. In particular, this is the only interval
that contains ⊥. As a consequence, if the value of an expression on R is contained
in an interval 〈l, u〉, then this value is actually a real number. This implies that
the expression is well-formed on the real numbers and that it is bounded by l
and u.

Interval Extensions and Operators. A function F ∈ I → I is defined as an
interval extension of a function f ∈ R → R, if

∀X ∈ I, ∀x ∈ R, x ∈ X ⇒ f(x) ∈ F (X).

This definition can be adapted to non-unary functions too. An immediate
property is: The result of F (X) is ⊥I if there exists some x ∈ X such that f(x) =
⊥. Another property is the compatibility of interval extension with function
composition: If F and G are extensions of f and g respectively, then F ◦G is an
extension of f ◦ g.

Again, an interval extension will be computed by an induction on the structure
of an expression. This requires interval extensions of the arithmetic operators
and elementary functions. For instance, addition and subtraction are defined as
propagating ⊥I and verifying the following rules:

〈l1, u1〉+ 〈l2, u2〉 = 〈l1 + l2, u1 + u2〉
〈l1, u1〉 − 〈l2, u2〉 = 〈l1 − u2, u1 − l2〉

Except for the particular case of ⊥ meaning an infinite bound, this is tradi-
tional interval arithmetic [11,12]. So extending the other arithmetic operators
does not cause much difficulty. For instance, if l1 is negative and if both u1 and
l2 are positive, the result of the division 〈l1, u1〉/〈l2, u2〉 is 〈l1/l2, u1/l2〉.

Notice that this division algorithm depends on the ability to decide the signs
of the bounds. More generally, one has to compare bounds when doing interval
arithmetic. Section 3.1 solves it by restricting the bounds to a subset of R.

2.3 Bounds on Real-Valued Functions

Properties described in previous sections can now be mixed together for the
purpose of bounding real-valued functions. Let us consider a function f of R →
R, for which we want to compute an interval enclosure Y such that f(x) ∈ Y
for any x in the interval X �= ⊥I . Assuming we have an interval extension F of
f , then the interval F (X) is an acceptable answer.

Unfortunately, if X appears several times in the unfolded expression of F (X),
loss of correlation occurs: The wider the interval X is, the poorer the bounds
obtained from F (X) are. The usual example is f(x) = x−x. It always evaluates
to 0, but its trivial extension F (X) = X −X evaluates to 〈0, 0〉 only when X is
a singleton.

Proving Bounds on Real-Valued Functions with Computations 7

Monotone Functions. Let us suppose now that we also have an interval exten-
sion F ′ of a derivative f ′ of f . By definitions of interval extension and derivability,
if F ′(X) is not ⊥I , then f is continuous and derivable at each point of X .

Moreover, if F ′(X) does not contain any negative value, then f is an increasing
function on X . If X has real bounds l and u, then an enclosure of f on X is
the convex hull F (〈l, l〉) ∨ F (〈u, u〉). As the interval 〈l, l〉 contains one single
value when l �= ⊥, the interval F (〈l, l〉) should not be much bigger than the set
{f(l)} for any F that is a reasonable interval extension of f . As a consequence,
F (〈l, l〉)∨F (〈u, u〉) should be a tight enclosure of f on X . The result is identical
if F ′(X) does not contain any positive values.

First-Order Interval Evaluation. When F ′(X) contains both positive and
negative values, there are no methods giving sharp enclosure of f . Yet F ′(X)
can still be used in order to find a better enclosure than F (x). Indeed, variations
of f on X are bounded:

∀a, b ∈ X ∃c ∈ X f(b) = f(a) + (b − a) · f ′(c).

Once translated to intervals, this gives the following theorem:

∀a, b ∈ X f(b) ∈ F (〈a, a〉) + (X − 〈a, a〉) · F ′(X).

As F ′(X) may contain even more occurrences of X than F (X) did, the loss of
correlation may be worse when computing an enclosure of f ′ than an enclosure
of f . From a numerical point of view, however, we have more leeway. Indeed,
the multiplication by X − 〈a, a〉, which is an interval containing only “small”
values around zero, will mitigate the loss of correlation. This approach to proving
bounds on expressions can be generalized to higher-order derivatives by using
Taylor models [9].

3 Computational Datatypes

Proving propositions by computations requires adapted data types. This work re-
lies on floating-point arithmetic (Section 3.1) for numerical computations and on
straight-line programs (Section 3.2) for representing and evaluating expressions.

3.1 Floating-Point Arithmetic

Since interval arithmetic suffers from loss of correlation, the bounds are usually
not sharp, so they do not need to be represented with exact real numbers. As a
consequence, an interval extension does not need to return the “best” bounds.
Simpler ones can be used instead. An interesting subset of R is the set F = F∪{⊥}
of radix-2 floating-point numbers. Such a number is a rational number that can
be written as m · 2e with m and e integers.

8 G. Melquiond

Rounding. Let us consider the non-⊥ quotient u
v of two floating-point numbers.

This quotient is often impossible to represent as a floating-point number. If this
value is meant to be the lower bound of an interval quotient, we can chose any
floating-point number m ·2e less than the ideal quotient. Among these numbers,
we can restrict ourselves to numbers with a mantissa m represented with less
than p bits (in other words, |m| < 2p). There is an infinity of such numbers. But
one of them is bigger than all the others. This is what the IEEE-754 standard
calls the result of u/v rounded toward −∞ at precision p.

Computing at fixed precision ensures that the computing time is linear in
the number of arithmetic operations. Let us consider the computation of

(
5
7

)
2

with n consecutive squaring. With rational arithmetic, the time complexity is
then O(n3), as the size of the numbers double at each step. With floating-point
arithmetic at fixed precision, the time complexity is just O(n). The result is no
longer exact, but interval arithmetic still works properly.

There have been at least two prior formalizations of floating-point arithmetic
in Coq. The first one [13,14] defines rounded results with relations, so the value
w would be expressed as satisfying the proposition:

w ≤ u

v
∧ ∀m, e ∈ Z, |m| < βp ⇒ m · βe ≤ u

v
⇒ m · βe ≤ w

While useful and sufficient for proving theorems on floating-point algorithms,
such a relation does not provide any computational content, so it cannot be used
for performing numerical computations. The second formalization [15] has intro-
duced effective floating-point operators, but only for addition and multiplication.
The other basic operators are evaluated by an external oracle. The results can
then be checked by the system with multiplications only. Elementary functions,
however, cannot be reached with such an approach.

Implementation. In order to have effective floating-point operators that can be
evaluated entirely inside Coq, this work needed a new formalization of floating-
point arithmetic. The resulting library implements multi-radix3 multi-precision
operators for the four IEEE-754 rounding directions4.

This library supports the basic arithmetic operators (+,−,×, ÷,
√
·) and some

elementary functions (arctan, cos, sin, tan, for now). Floating-point precision is
a user-settable parameter of the automatic tactics. Its setting is a trade-off: A
high precision can help in proving some propositions, but it also slows down
computations.

In order to speed up floating-point computations by a ×10 factor5, the tactics
do not use the standard integers of Coq, which are represented by lists of bits.
They specialize the floating-point library so that it uses integers represented as

3 Numbers are m · βe for any integer β ≥ 2. For interval arithmetic, the radix hardly
matters. So the automatic tactics chose an efficient radix: β = 2.

4 Only rounding toward −∞ and +∞ are needed when performing interval arithmetic.
5 This speed-up is lower than one could expect. This is explained by the proofs not

needing high-precision computations, so the mantissa integers are relatively small.

n

Proving Bounds on Real-Valued Functions with Computations 9

binary trees with leaves being radix-231 digits [1]. The arithmetic on these leaves
is then delegated by Coq to the computer processor [16].

3.2 Straight-Line Programs

Until now, we have only performed interval computations. We have yet to prove
properties on expressions. A prerequisite is the ability to actually represent these
expressions. Indeed, as we want Coq functions to be able to evaluate expressions in
various ways, e.g. for bounds or for derivatives, they need a data structure contain-
ing an abstract syntax tree of the expressions. More precisely, an expression will
be represented as a straight-line program. This is a directed acyclic graph with an
explicit topological ordering on the nodes which contain arithmetic operators.

For example, the expression
√
x − y ·

√
x is encoded as a sequence of three

tuples representing the following straight-line program. Each tuple represents
an arithmetic operation whose operands are the results of some of previous
operations represented by a relative index – index 0 was computed at the previous
step, index 1 two steps ago, and so on. The input values x and y are assumed to
have already been computed by pseudo-operations with results in v1 and v0.

v2 : (sqrt, 0) so v2 = √
v1−0 =

√
x

v3 : (mul, 2, 0) so v3 = v2−2 · v2−0 = y ·
√
x

v4 : (sub, 1, 0) so v4 = v3−1 − v3−0 =
√
x− y ·

√
x

Notice that the square root occurs only once in the program. Representing
expressions as straight-line programs makes it possible to factor common sub-
expressions. In particular, the computation of a given value (e.g.

√
x here) will

not be repeated several times during an evaluation.
The evaluation function is generic. It takes a list encoding the straight-line

program, the type A of the inputs and outputs (e.g. R or I), a record of functions
implementing the operators (functions of type A→ A and A→ A→ A), and a
stack of inputs of type A. It then pushes on this stack the result of evaluating
each operation stored in the list. It finally returns the stack containing the results
of all the statements. Whenever an operation tries to access past the bottom of
the evaluation stack, a default value of type A is used, e.g. 0 or ⊥ or ⊥I .

When given various sets A and operators on A, the Coq function eval will
produce, either an expression on real numbers corresponding to the straight-line
program, or an interval enclosing the values of the expression, or an expression of
the derivative of the expression, or bounds on this derivatives, etc. For instance,
the derivative is bounded by evaluating the straight-line program on the set A
of interval pairs – the first interval encloses the value of an expression, while the
second one encloses the value of its derivative. The operators on A create these
intervals with formulas related to automatic differentiation:

plus ≡ (X,X ′) ∈ A �→ (Y, Y ′) ∈ A �→ (X + Y,X ′ + Y ′)
mul ≡ (X,X ′) ∈ A �→ (Y, Y ′) ∈ A �→ (X × Y,X ′ × Y +X × Y ′)
tan ≡ (X,X ′) ∈ A �→ (tanX,X ′ × (1 + tan2X))

. . .

10 G. Melquiond

4 Automatic Proofs

Now that we have the basic blocks, we can use the convertibility rule to build
automatic tactics. First, convertibility helps transforming logical propositions
into data structures on which programs can actually compute. Second, it gives
a meaning to the subsequent numerical computations. The user does not have
to worry about it though, since the tactics will take care of all the details.

4.1 Converting Terms

Let us assume that the user wants to prove
√
x − y · √x ≤ 9 knowing some

bounds on x and y. As explained in Section 2.2, interval arithmetic will be used
to bound the expression

√
x − y ·

√
x. The upper bound can then be compared

to 9 in order to check that the expression was indeed smaller than this value. In
order to perform this evaluation, the functions need the straight-line program
representing the expression.

Unfortunately, this straight-line program cannot be built within Coq’s term
language, as the syntax of the expressions on real numbers is not available at
this level. So the list representing the program has to be provided by an oracle.

Three approaches are available. First, the user could perform the transforma-
tion by hand. This may be fine for small terms, but it quickly becomes cumber-
some. Second, one could implement the transformation directly into the Ocaml
code of Coq, hence creating a new version of the proof assistant. Several existing
reflexive tactics actually depend on Ocaml helpers embedded inside Coq, so this
is not an unusual approach. Third, one could use the tactic language embedded
in Coq [17], so that the transformation runs on an unmodified Coq interpreter.
This third way is the one chosen for this work.

A Coq tactic will therefore parse the expression and create the program de-
scribed in Section 3.2. While the expression has type R, this program is a list.
But when evaluated with the axiomatized operations on real numbers, the result
should be the original expression, if the tactic did not make any mistake. The
tactic also transforms the real number 9 into the floating-point number +9·20. So
the tactic tells Coq that proving the following equality is equivalent to proving
the original inequality.

(eval R [Sqrt 0, Mul 2 0, Sub 1 0] [y, x]) ≤ +9 · 20

Coq does not trust the tactic, so it will check that this transformation is valid.
Here, both inequalities are convertible, so they have the same proofs. Therefore,
the proof system just has to evaluate the members of the new inequality, in
order to verify that the transformation is valid. This transformation process is
called reflexion [18]: An oracle produces a higher-level representation of the user
proposition, and the proof system has only to check that the evaluation of this
better representation is convertible to the old one. This transformation does
not involve any deductive steps; There is no rewriting steps with this approach,
contrarily to the 3× 3 example of the introduction.

Proving Bounds on Real-Valued Functions with Computations 11

4.2 Proving Propositions

At this point, the proposition still speaks about real numbers, since convertibility
cannot modify what the proposition is about. So we need the following theorem
in order to get a proposition about extended real numbers, hence suitable for
interval arithmetic with automatic differentiation.

∀prog ∀inputs ∀l, u
(eval R prog inputs) ∈ 〈l, u〉 ⇒
(eval R prog inputs) ∈ 〈l, u〉

Since the interval operators are interval extensions of the arithmetic operators
on R, and since interval extension is compatible with function composition, we
also have the following theorem.

∀prog ∀inputs ∀ranges
(∀j inputsj ∈ rangesj) ⇒
(eval R prog inputs) ∈ (eval I prog ranges)

Let us assume there are hypotheses in the context that state x ∈ X and y ∈ Y.
By applying the two theorems above and the transitivity of interval inclusion,
the tactic is left with the following proposition to prove:

(eval I [Sqrt 0, Mul...] [Y, X]) ⊆ 〈⊥,+9 · 20〉

While the interval evaluation could be performed in this proposition, the
interval inclusion cannot be verified automatically yet. In order to force the
proof system to compare the bounds, a last theorem is applied, so that the
inclusion is transformed into a boolean equality:

subset (eval I [Sqrt 0, Mul...] [Y, X]) 〈⊥,+9 · 20〉 = true

The tactic then tells to Coq that this proposition is convertible to true = true.
As comparisons between interval bounds are decidable, the subset function
performs an effective computation, and so does eval on floating-point intervals.
As a consequence, Coq is able to check the convertibility of these propositions
by evaluating the left hand side of the equality. If the result of this evaluation is
true, then the propositions have the same proofs. This conversion is numerically
intensive and can take a long time, since it performs all the interval and floating-
point computations. At this point, the tactic just has to remind Coq that equality
is reflexive, so true = true holds.

To summarize, this proof relies almost entirely on convertibility, except for a
few deductive steps6, which are instantiations of the following theorems:

1. If the result of a formula on extended reals is contained in a non-⊥I interval,
then the formula on real numbers is well-formed and has the same bounds.

6 In addition, some optional steps may be performed to simplify the problem. For
instance, |expr | ≤ u is first transformed into −u ≤ expr ≤ u.

12 G. Melquiond

2. The interval evaluation of a given straight-line program is an interval exten-
sion of the evaluation of the same program on extended reals.

3. If subset A B = true, then any value contained in A is also contained in B.
4. Boolean equality is reflexive.

4.3 Bisection and Refined Evaluation

Actually, because of a loss of correlation, the left hand side evaluates to false on
the example given in the introduction, so Coq complains that the proposition
are not convertible. This is expected [8], and two methods experimented with
the PVS proof assistant7 can be reused here. The first method is the bisection:
If the interval evaluation fails to return an interval small enough, split the input
interval in two parts and perform the interval evaluation again on each of these
parts. As the parts are smaller than the whole interval, the loss of correlation
should be reduced, so the interval evaluation produces a sharper result [11].

In the PVS work, interval splitting is performed by applying a theorem for
each sub-interval. Here we keep relying on programs in order to benefit from
convertibility and reduce the number of deductive steps. The method relies on
a bisect function recursively defined as:

bisect n F 〈l, u〉 target =
if n = 0 then false
else if (subset F (〈l, u〉) target) then true
else let m be the midpoint of 〈l, u〉 in

(bisect (n− 1) F 〈l,m〉 target) &&
(bisect (n− 1) F 〈m,u〉 target)

This function is meant to replace the subset call in the previous proof. Its
associated theorem is a bit more complicated though, but its hypotheses are
as easy to satisfy: If F is an interval extension of a function f and if bisect
evaluates to true, then f(x) ∈ target holds for any x ∈ 〈l, u〉. Once again, the
complete proof contains only four deductive steps. Everything else is obtained
through convertibility, with the evaluation of bisect being the numerically-
intensive part of the proof.

As long as n is big enough and the floating-point computations are accurate
enough, this method can solve most of the provable propositions of the form
∀x ∈ 〈l, u〉, f(x) ∈ Y with f a straight-line program. The method is guaranteed8

to succeed when l and u are finite and the sharpest enclosure of f on 〈l, u〉 is a
subset of the interior of Y . The method can also be extended to multi-variate
problems, by splitting interval boxes along each dimension iteratively.

The bigger the number of sub-intervals, the longer the proof will take. In order
to keep this number small, the tactic calls bisect with an interval function F
that performs first-order derivation, as described in Section 2.3.
7 http://pvs.csl.sri.com/
8 If there is x ∈ 〈l, u〉 such that f(x) evaluates to ⊥, Y has to be ⊥I . Otherwise, f

is continuous on the compact set 〈l, u〉, hence it is also uniform continuous. This
uniformity ensures that some suitable precision and some bisection depth exist.

http://pvs.csl.sri.com/

Proving Bounds on Real-Valued Functions with Computations 13

5 Examples

The user-visible tactic is called interval. It can be used for proving inequalities
involving real numbers. For instance, the following script is the Coq version of
a PVS example proved by interval arithmetic [7]:

Goal
let v := 250 * (514 / 1000) in
3 * pi / 180 <= g / v * tan (35 * pi / 180).

Proof.
apply Rminus_le. (* transform into a - b <= 0 *)
interval . (* prove by interval computations *)

Qed.

The strength of this work lies, however, in its ability to prove theorems
on function approximations. Most mathematical functions are not available to
developers, so they are usually replaced with approximations, e.g. truncated
series. In order to certify that the programs are still valid after these transfor-
mations, one has to give and prove a bound on the error between the actual
implementation and the ideal function. The absolute error is the difference be-
tween two close values (if the implementation is any good), which makes it hard
to prove a tight bound on it — this is the X −X issue of Section 2.3. The two
examples below exercise the tactic on such ill-conditioned problems.

5.1 Remez’ Polynomial of the Square Root

Taylor models have been experimented in Coq [9] in order to formally prove
some inequalities of Hales’ proof9 of Kepler’s conjecture. Part of the difficulty
with Taylor models lies in handling elementary functions. Indeed, one has to
use polynomial approximations for this purpose. Usually, as the name implies,
these polynomials are Taylor expansions, since their expansion remainder can be
bounded by symbolic methods. Yet Taylor expansions are poor approximations,
so high-degree polynomials are needed, which needlessly slow down the proof.

There are much better polynomial approximations, e.g. the ones obtained
from Remez’ algorithm. Unfortunately, the approximation error is no longer
available to symbolic methods. One has to bound it numerically. The following
proposition states the error bound between the square root function and its
Remez approximation of degree 5 with rational coefficients of width 20+20 bits,
on the interval 0.5 ≤ x ≤ 2:

∣
∣
∣
∣

((
122
7397

× x− 1733
13547

)

× x+ · · ·+ 227
925

)

−
√
x

∣
∣
∣
∣
≤ 5

65536

Since Remez’ algorithm returns the best polynomial approximation with real
coefficients, checking the error bound is a numerically difficult problem. Yet it
only takes a few seconds for the interval tactic to automatically prove it in Coq
on a desktop computer. In comparison, the CAD algorithm (with fast integers
too) needs more than ten minutes in Coq. For Hales’ proof, one also needs the
arctan function, which is in the scope of this tactic.
9 http://code.google.com/p/flyspeck/

http://code.google.com/p/flyspeck/

14 G. Melquiond

5.2 Relative Error for an Elementary Function

The following example is taken from another PVS proof [8]. In order to certify a
numerical code, the objective was to prove a bound on the relative error between
the following function rp and the degree-10 polynomial r̂p that approximated it.

rp(φ) =
a

√

1 + (1− f)2 · tan2 φ

The relative error is defined as the quotient ε(φ) = (rp(φ) − r̂p(φ))/rp(φ) on
the interval 0 ≤ φ ≤ 715

512 . Due to the loss of correlation, PVS interval strategies
are unable to automatically prove the bound 23 ·2−24 on this error. The problem
could be split into smaller intervals, so that interval computations are able to
prove the bound on each sub-interval. But the loss of correlation is extreme, so
more than 106 sub-intervals are needed, which make it impossible to complete
the whole proof in a reasonable amount of time. So first-order interval evaluation
was performed (see Section 2.3) in order to bring the number of sub-intervals
down to 105.

Unfortunately, several user actions are required with the PVS approach. First,
the user has to prove beforehand that the relative error is well-formed (no division
by zero, no square root of negative number, and so on). Second, the user has to
prove the formulas involving the derivative. Third, an external oracle analyzes
the proposition in order to choose good sub-intervals. It also searches the order
at which the power series of tan have to be evaluated in order to provide results
that are accurate enough. With these data, the oracle then generates 105 PVS
scripts corresponding to all the sub-intervals, and one master script that states
the theorem on the error bound. Fourth, the user dispatches all the generated
scripts on the 48 cores of a parallel computer. A few hours later, proof verification
is complete. Finally, PVS checks the master script: The bound |ε(φ)| ≤ 24 · 2−23

is formally proved.
Thanks to the work described in this article, the situation is now a lot more

satisfying in Coq. The following script proves the same theorem (arp is the
approximation polynomial) in a few minutes on the single core of a desktop
computer.

Goal
forall phi, 0 <= phi <= max −>
Rabs ((rp phi - arp phi) / rp phi) <= 23/16777216.

Proof.
unfold rp, arp, umf2 , a, f, max. intros.
interval with (i_bisect_diff phi, i_nocheck). (* Time: 4s *)

Qed. (* Time: 96s *)

The user has to tell the tactic on which variable to perform a bisection fol-
lowed by a first-order evaluation: i bisect diff phi. The user could also tell at
which precision the floating-point computations are performed and how deep the
bisection should explore. But the default parameters, i prec 30 and i depth
15, are sufficient for this proof.

All the details of the proof are then handled by the tactic. It first parses
the proposition and creates the corresponding straight-line program. It then

Proving Bounds on Real-Valued Functions with Computations 15

performs the four deductive steps and Coq is left with a boolean equality. The
evaluation of this Coq term by the system will first cause an interval function
that encloses the derivative of the straight-line program to be built. It will then
launch the execution of an interval bisection until the expression is bounded on
all the sub-intervals.

When the proof is achieved (at Qed time), Coq checks that the lambda-term
corresponding to the whole proof is correctly typed. In particular, it means that
the numerically-intensive convertibility is checked a second time. The i nocheck
parameter avoids this redundant computation: The convertibility check is no
longer done at interval time, but only at Qed time. So the tactic needs 4
seconds for parsing the expressions and preparing the computations, and then
Qed needs 96 seconds to actually perform them.

Because there are no oracles, the Coq proof performs at least twice as many
numerical computations10 and with a higher precision than needed. Yet, the
proof verification is tremendously faster in Coq than in PVS, although the ap-
proach is similar. This improvement is explained by the underlying arithmetic.
In PVS, the interval bounds are rational numbers, so the intermediate com-
putations quickly involve integers with thousands of digits. In Coq, thanks to
the floating-point rounded arithmetic, the integers are at most 62-bit long. So
the computation time does not explode with the size of the expressions.

6 Conclusion

Interval-based methods have been used for the last thirty years whenever a
numerical problem (bounding an expression, finding all the zeros of a function,
solving a system of differential equations, and so on) needed to be solved in an
efficient and reliable way. But due to their numerically-intensive nature, they
have been seldom used within formal proofs. With the advent of fast program
evaluation in proof checkers, the situation is evolving [15,9].

This work improves on the existing formal approaches by relying on an effi-
cient underlying arithmetic. Indeed, the computations are performed thanks to
an effective formalization of floating-point arithmetic, instead of relying on an
arithmetic on rational numbers. This brings the formal proofs closer to the non-
formal approaches that are based on numerical computations with floating-point
numbers, e.g. Hales’ original proof. Another improvement lies in a careful exten-
sion of the real analysis: All the internal notions are designed so that theorems
can be entirely handled with computations. The user does not have to deal with
fastidious details anymore, e.g. proofs of derivability.

As this work deals with automatic proofs of numeric bounds on real-valued
expressions suffering from correlations, it seems closely related to the Gappa
system [15]. There are two important differences though. First, Gappa is an
external oracle that produces a deductive proof that has been optimized, while
10 The bisection process can be seen as a binary tree. An inner node is an evaluation

failure, which leads to an evaluation on two sub-intervals, its children. Leaves are
successful interval evaluations, and they are the only nodes needed for the proof.

16 G. Melquiond

this work is embedded and produces a straightforward and computational proof.
Second, Gappa is specially designed for non-continuous expressions with basic
arithmetic operators and a strong underlying structure, while this work focuses
on (infinitely-) derivable expressions with elementary functions.

While designed for different kinds of expressions, these two approaches are
complementary when performing formal certification of numerical applications.
For instance, Section 5.2 was replacing an elementary function rp with a poly-
nomial r̂p. This polynomial is meant to be evaluated by a processor, but this
evaluation r̃p will suffer from rounding errors. The implementation will be useful,
only if the computed value r̃p(φ) is close enough to the mathematical value rp(φ).
This certification is usually performed by separately bounding the distances be-
tween r̃p and r̂p, and between r̂p and rp. The first bound can be proved by Gappa
but not by this work, since the expression is non-continuous. The second bound,
however, can be proved by this work but not by Gappa, since the expression
contains trigonometric terms and it has to be automatically differentiated for
efficiency.

This work computes first-order derivatives of the expressions. This is usually
sufficient for handling the correlations that appear when certifying numerical
applications in most embedded systems, e.g. with a relative error of magnitude
2−25. It will, however, fail to prove longer approximations which have a much
higher accuracy. Therefore, tools that access higher-order derivatives through
Taylor series [6,9] should perform much better in these latter cases. In case of
high-dimension input domains, the approach presented in this article will also
perform worse than multi-variate Bernstein polynomials [9].

Therefore, this work should not be seen as a panacea for proving inequalities
on real-valued expressions without any user interaction. It is more of a proof-
of-concept that shows how some numerical methods (floating-point arithmetic
and interval arithmetic) can be combined with the convertibility rule in order to
formally prove theorems. The generated proof terms contain almost no deductive
steps and the tactic is nothing more than a parser, yet this approach is able to
automatically prove arbitrarily-complicated inequalities.

The Coq development presented in this paper is available at
http://www.msr-inria.inria.fr/∼gmelquio/soft/coq-interval/

References

1. Grégoire, B., Théry, L.: A purely functional library for modular arithmetic and its
application to certifying large prime numbers. In: Furbach, U., Shankar, N. (eds.)
IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 423–437. Springer, Heidelberg (2006)

2. Grégoire, B., Théry, L., Werner, B.: A computational approach to Pocklington
certificates in type theory. In: Hagiya, M., Wadler, P. (eds.) FLOPS 2006. LNCS,
vol. 3945, pp. 97–113. Springer, Heidelberg (2006)

3. Mahboubi, A.: Implementing the cylindrical algebraic decomposition within the
Coq system. Mathematical Structure in Computer Sciences 17(1) (2007)

4. Harrison, J.: Verifying nonlinear real formulas via sums of squares. In: Schnei-
der, K., Brandt, J. (eds.) TPHOLs 2007. LNCS, vol. 4732, pp. 102–118. Springer,
Heidelberg (2007)

http://www.msr-inria.inria.fr/~gmelquio/soft/coq-interval/

Proving Bounds on Real-Valued Functions with Computations 17

5. Harrison, J.: Floating point verification in HOL light: The exponential function.
In: Algebraic Methodology and Software Technology, 246–260 (1997)

6. Akbarpour, B., Paulson, L.C.: Towards automatic proofs of inequalities involving
elementary functions. In: Cook, B., Sebastiani, R. (eds.) PDPAR: Pragmatics of
Decision Procedures in Automated Reasoning, pp. 27–37 (2006)

7. Muñoz, C., Lester, D.: Real number calculations and theorem proving. In: Hurd,
J., Melham, T. (eds.) TPHOLs 2005. LNCS, vol. 3603, pp. 195–210. Springer,
Heidelberg (2005)

8. Daumas, M., Melquiond, G., Muñoz, C.: Guaranteed proofs using interval arith-
metic. In: Montuschi, P., Schwarz, E. (eds.) Proceedings of the 17th IEEE Sympo-
sium on Computer Arithmetic, Cape Cod, MA, USA, pp. 188–195 (2005)

9. Zumkeller, R.: Formal global optimisation with Taylor models. In: Furbach, U.,
Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 408–422. Springer,
Heidelberg (2006)

10. Stevenson, D., et al.: An American national standard: IEEE standard for binary
floating point arithmetic. ACM SIGPLAN Notices 22(2), 9–25 (1987)

11. Moore, R.E.: Methods and Applications of Interval Analysis. SIAM, Philadelphia
(1979)

12. Jaulin, L., Kieffer, M., Didrit, O., Walter, E.: Applied Interval Analysis, with Ex-
amples in Parameter and State Estimation, Robust Control and Robotics. Springer,
Heidelberg (2001)

13. Daumas, M., Rideau, L., Théry, L.: A generic library of floating-point numbers
and its application to exact computing. In: Proceedings of the 14th International
Conference on Theorem Proving in Higher Order Logics, Edinburgh, Scotland, pp.
169–184 (2001)

14. Boldo, S.: Preuves formelles en arithmétiques à virgule flottante. PhD thesis, École
Normale Supérieure de Lyon (2004)

15. Melquiond, G.: De l’arithmétique d’intervalles à la certification de programmes.
PhD thesis, École Normale Supérieure de Lyon, Lyon, France (2006)

16. Spiwack, A.: Ajouter des entiers machine à Coq. Technical report (2006)
17. Delahaye, D.: A tactic language for the system Coq. In: Parigot, M., Voronkov,

A. (eds.) LPAR 2000. LNCS (LNAI), vol. 1955, pp. 85–95. Springer, Heidelberg
(2000)

18. Boutin, S.: Using reflection to build efficient and certified decision procedures. In:
Theoretical Aspects of Computer Software, pp. 515–529 (1997)

Linear Quantifier Elimination

Tobias Nipkow

Institut für Informatik, Technische Universität München

Abstract. This paper presents verified quantifier elimination proce-
dures for dense linear orders (DLO), for real and for integer linear arith-
metic. The DLO procedures are new. All procedures are defined and
verified in the theorem prover Isabelle/HOL, are executable and can be
applied to HOL formulae themselves (by reflection).

1 Introduction

This paper is about the concise implementation of quantifier elimination (QE)
procedures (QEPs) for linear arithmetics. QE is a venerable logical technique
which yields decision procedures if ground atoms are decidable. The focus of our
work is the compact implementation of QEPs (for linear arithmetics) inside a the-
orem prover. All our QEPs have been defined and verified in Isabelle/HOL [16].
We do not discuss these formal proofs here. They are detailed, mostly struc-
tured and available online at afp.sf.net, together with the QEPs themselves.
Because the informal proofs of these QEPs can be found in the literature, they
need not be discussed either. The exception are our two new QEPs for which
informal correctness proofs are given.

The main contributions of this paper are:

– Two new QEPs for dense linear orders (DLO) inspired by QEPs for linear
real arithmetic.

– Presentation of 5 verified implementations of QEPs: two for DLO, two for
linear real arithmetic and one for Presburger arithmetic (Cooper). We show
everything but the most trivial details, providing reference implementations
and convincing the reader that nothing has been swept under the carpet.

– Extremely compact formalizations due to the almost excessive use of lists
and list comprehensions.

– A common reusable QE framework using Isabelle’s structuring facility of
locales, thus factoring out the common parts of the different QEPs.

Why this obsession with executable and verified QEPs? The context of this
research is the question of how to implement trustworthy and efficient decision
procedures in foundational theorem provers, i.e. without having to trust an ex-
ternal oracle. Reflection, originally proposed by Boyer and Moore [2] and used
to great effect in systems like Coq (e.g. [7]) and Isabelle (e.g. [4]) has become a
standard approach. Suffice it to say that we follow this approach, too, and that
all the algorithms in this paper can be used directly on formulae in Isabelle —
details can be found elsewhere (e.g. [15]).

A. Armando, P. Baumgartner, and G. Dowek (Eds.): IJCAR 2008, LNCS 5195, pp. 18–33, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

afp.sf.net

Linear Quantifier Elimination 19

This paper is a contribution to the growing body of verified theorem proving
algorithms. In spirit it is close to Harrison’s forthcoming book [9] which presents
all algorithms in OCaml. Only that our code is verified.

It should be emphasized that the presentation is streamlined for succinctness.
In particular, we always restrict attention to two of the four relations =, <,
≤, �=. For example, in DLOs it suffices to consider = and < because x ≤ y is
equivalent with x < y ∨ x = y and x �= y is equivalent with x < y ∨ y < x. For
QEPs based on DNF this is a disaster because it leads to further case splits. The
algorithms in this paper avoid DNF. Nevertheless, an efficient implementation
would always work with all four relations. The corresponding generalization of
our code is straightforward.

The paper is structured as follows. In §3 we describe a HOL model of logical
formulae parameterized by a language of atoms and present a generic QEP
parameterized by a QEP for a single quantifier. The remaining sections present
a succession of 5 single-quantifier QEPs for different linear theories.

2 Basic Notation

HOL conforms largely to everyday mathematical notation. This section intro-
duces further non-standard notation and in particular a few basic data types
with their primitive operations.

The types of truth values, natural numbers, integers and reals are called bool,
nat, int and real. The space of total functions is denoted by ⇒. Type variables
are denoted by α, β, etc. The notation t::τ means that term t has type τ .

Sets over type α, type α set, follow the usual mathematical convention.
Lists over type α, type α list, come with the empty list [], the infix constructor

· , the infix @ that appends two lists, and the conversion function set from lists
to sets. Variable names ending in s usually stand for lists. In addition to the
standard functions map and filter, Isabelle/HOL also supports Haskell-style list
comprehension notation, with minor differences: instead of [e | x <- xs, ...]
we write [e. x ← xs , . . .], and [x←xs] is short for [x . x←xs , . . .].

Finally note that = on type bool means “iff”.
During informal explanations we often switch to everyday mathematical no-

tation where (a, b) can be a pair or an open interval.

3 Logic

Formulae are defined as a recursive datatype with a parameter type α of atoms:

datatype α fm = � | ⊥ | A α
| (α fm) ∧ (α fm) | (α fm) ∨ (α fm) | ¬ (α fm) | ∃ (α fm)

The boldface symbols ∧, ∨, ¬ and ∃ are ordinary constructors chosen to resem-
ble the logical operators they represent. Constructor A encloses atoms. The type
of atoms is left open by making it a parameter α. Variables are represented by de

20 T. Nipkow

Bruijn indices: quantifiers do not explicitly mention the name of the variable be-
ing bound because that is implicit. For example, ∃ (∃ . . . 0 . . . 1 . . .) represents
a formula ∃x1.∃x0. . . . x0 . . . x1 Note that the only place where variables can
appear is inside atoms. The only distinction between free and bound variables is
that the index of a free variable is larger than the number of enclosing binders.

3.1 Auxiliary Functions

The constructors ∨, ∧ and ¬ have optimized (“short-circuit”) versions or, and
and neg: or � ϕ = �, or ϕ � = �, or ⊥ ϕ = ϕ, or ϕ ⊥ = ϕ and or ϕ1 ϕ2 = (ϕ1 ∨
ϕ2) otherwise; and � ϕ = ϕ, and ϕ � = ϕ, and ⊥ ϕ = ⊥, and ϕ ⊥ = ⊥ and and
ϕ1 ϕ2 = (ϕ1 ∧ ϕ2) otherwise; neg � = ⊥, neg ⊥ = � and neg ϕ = ¬ ϕ otherwise.

Disjunction of a lists of formulae is easily defined:

list-disj [ϕ1,. . .,ϕn] = or ϕ1 (or . . . ϕn)

Most of our work will be concerned with quantifier-free formulae where all
negations have not just been pushed right in front of atoms but actually into
them. This is easy for linear orders because ¬(x < y) is equivalent with y ≤ x.
This conversion will be described later on because it depends on the type of
atoms. The (trivial to define) predicates

qfree, nqfree :: α fm ⇒ bool

check whether their argument is free of quantifiers (qfree), and free of negations
and quantifiers (nqfree).

There are also two mapping functionals

mapfm :: (α ⇒ β) ⇒ α fm ⇒ β fm
amapfm :: (α ⇒ β fm) ⇒ α fm ⇒ β fm

where mapfm f is the canonical one that simply replaces A a by A (f a), whereas
amapfm may also simplify the formula via and, or and neg:

amapfm h � = � amapfm h ⊥ = ⊥ amapfm h (A a) = h a
amapfm h (ϕ1 ∧ ϕ2) = and (amapfm h ϕ1) (amapfm h ϕ2)
amapfm h (ϕ1 ∨ ϕ2) = or (amapfm h ϕ1) (amapfm h ϕ2)
amapfm h (¬ ϕ) = neg (amapfm h ϕ)

Both mapping functionals are only defined and needed for qfree formulae.
The set of atoms in a formula is computed by the (trivial to define) function

atoms :: α fm ⇒ α set.

3.2 Interpretation

The interpretation or semantics of a fm is defined via the obvious homomorphic
mapping to an HOL formula: ∧ becomes ∧, ∨ becomes ∨, etc. The interpretation

Linear Quantifier Elimination 21

of atoms is a parameter of this mapping. Atoms may refer to variables and are
thus interpreted w.r.t. a valuation. Since variables are represented as natural
numbers, the valuation is naturally represented as a list: variable i refers to the
ith entry in the list (starting with 0). This leads to the following interpretation
function interpret :: (α ⇒ β list ⇒ bool) ⇒ α fm ⇒ β list ⇒ bool :

interpret h � xs = True interpret h ⊥ xs = False
interpret h (A a) xs = h a xs
interpret h (ϕ1 ∧ ϕ2) xs = (interpret h ϕ1 xs ∧ interpret h ϕ2 xs)
interpret h (ϕ1 ∨ ϕ2) xs = (interpret h ϕ1 xs ∨ interpret h ϕ2 xs)
interpret h (¬ ϕ) xs = (¬ interpret h ϕ xs)
interpret h (∃ ϕ) xs = (∃ x . interpret h ϕ (x · xs))
In the equation for ∃ the value of the bound variable x is added at the front
of the valuation. De Bruijn indexing ensures that in the body 0 refers to x and
i+ 1 refers to bound variable i further up.

3.3 Atoms

Atoms are more than a type parameter α. They come with an interpretation
(their semantics), and a few other specific functions. These functions are also
parameters of the generic part of quantifier elimination. Thus the further devel-
opment will be like a module parameterized with the type of atoms and some
functions on atoms. These parameters will be instantiated later on when apply-
ing the framework to various linear arithmetics.

In Isabelle this parameterization is achieved by means of a locale [1], a named
context of types, functions and assumptions about them. We call this context
ATOM. It provides the following functions

I a :: α ⇒ β list ⇒ bool
aneg :: α ⇒ α fm
depends0 :: α ⇒ bool
decr :: α ⇒ α

with the following intended meaning:

I a a xs is the interpretation of atom a w.r.t. valuation xs, where variable i (note
i :: nat because of de Bruijn) is assigned the ith element of xs.

aneg negates an atom. It returns a formula which should be free of negations.
This is strictly for convenience: it means we can eliminate all negations from
a formula. In the worst case we would have to introduce negated versions of
all atoms, but in the case of linear orders this is not necessary because we
can turn, for example, ¬(x < y) into (y < x) ∨ (y = x).

depends0 a checks if atom a contains (depends on) variable 0 and decr a decre-
ments every variable in a by 1.

Within context ATOM we introduce the abbreviation I ≡ interpret I a. The
assumptions on the parameters of ATOM can now be stated quite succinctly:

22 T. Nipkow

I (aneg a) xs = (¬ I a a xs) nqfree (aneg a)
¬ depends0 a =⇒ I a a (x · xs) = I a (decr a) xs

Function aneg must return a quantifier and negation-free formula whose in-
terpretation is the negation of the input. And when interpreting an atom not
containing variable 0 we can drop the head of the valuation and decrement the
variables without changing the interpretation.

These assumptions must be discharged when the locale is instantiated. We do
not show this in the text because the proofs are straightforward in all cases.

In the context of ATOM we define two auxiliary functions: atoms0 ϕ com-
putes the list of all atoms in ϕ that depend on variable 0. The negation normal
form (NNF) of a qfree formula is defined in the customary manner by pushing
negations inwards. We show only a few representative equations:

nnf (¬ (A a)) = aneg a
nnf (ϕ1 ∨ ϕ2) = (nnf ϕ1 ∨ nnf ϕ2)
nnf (¬ (ϕ1 ∨ ϕ2)) = (nnf (¬ ϕ1) ∧ nnf (¬ ϕ2))
nnf (¬ (ϕ1 ∧ ϕ2)) = (nnf (¬ ϕ1) ∨ nnf (¬ ϕ2))

The first equation differs from the usual definition and gets rid of negations
altogether — see the explanation of aneg above.

3.4 Quantifier Elimination

The elimination of all quantifiers from a formula is achieved by eliminating them
one by one in a bottom-up fashion. Thus each step needs to deal merely with the
elimination of a single quantifier in front of a quantifier-free formula. This step is
theory-dependent and hard. The lifting to arbitrary formulae is simple and can
be done once and for all. We assume we are given a function qe :: α fm ⇒ α fm
for the elimination of a single ∃, i.e. I (qe ϕ) = I (∃ ϕ) if qfree ϕ. Note that qe is
not applied to ∃ ϕ but just to ϕ, ∃ remains implicit. Lifting qe is straightforward:

lift-nnf-qe :: (α fm ⇒ α fm) ⇒ α fm ⇒ α fm

lift-nnf-qe qe (ϕ1 ∧ ϕ2) = and (lift-nnf-qe qe ϕ1) (lift-nnf-qe qe ϕ2)
lift-nnf-qe qe (ϕ1 ∨ ϕ2) = or (lift-nnf-qe qe ϕ1) (lift-nnf-qe qe ϕ2)
lift-nnf-qe qe (¬ ϕ) = neg (lift-nnf-qe qe ϕ)
lift-nnf-qe qe (∃ ϕ) = qe (nnf (lift-nnf-qe qe ϕ))
lift-nnf-qe qe ϕ = ϕ

Note that qe is called with an argument already in NNF. We can go even further
and put the argument of qe into DNF. This is detailed elsewhere [15] but avoided
here because it can lead to non-elementary complexity.

3.5 Correctness

Correctness lift-nnf-qe is roughly expressed as follows: if qe eliminates one ex-
istential while preserving the interpretation, then lift-nnf-qe qe eliminates all
quantifiers while preserving the interpretation.

Linear Quantifier Elimination 23

For compactness we employ a set theoretic language for expressing properties
of functions: A → B is the set of functions from A to B and |P | ≡ {x | P x}.

Elimination of all quantifiers is easy:

Lemma 1. If qe ∈ |nqfree| → |qfree| then qfree (lift-nnf-qe qe ϕ).

Preservation of the interpretation is slightly more involved:

Lemma 2. If qe ∈ |nqfree| → |qfree| and for all ϕ and xs: (nqfree ϕ =⇒
I (qe ϕ) xs = (∃ x . I ϕ (x · xs))), then I (lift-nnf-qe qe ϕ) xs = I ϕ xs.

In the following sections we define a number of quantifier elimination functions
called f 1 (for different names f) that eliminate a single ∃. In each case we have
proved that f 1 satisfies the assumptions of the above two lemmas (with f 1 for
qe), define f = lift-nnf-qe f 1 and thus obtain qfree (f ϕ) and I (f ϕ) xs = I ϕ xs
as corollaries. Because of this uniformity and because the correctness proofs are
either discussed informally beforehand or are well-known from the literature, we
suppress all of this in the presentation. Thus it may look as if we merely present
code, but the proofs are all there!

4 Dense Linear Orders

The theory of dense linear orders (without endpoints) is an extension of the
theory of linear orders with the axioms

x < z =⇒ ∃ y. x < y ∧ y < z ∃ u. x < u ∃ l . l < x

It is the canonical example of quantifier elimination [11]. The equivalence (∃ y.
x < y ∧ y < z) = (x < z) is an easy consequence of the axioms and the essence
of Fourier’s elimination method, which requires conversion to DNF and is thus
non-elementary.

In contrast we develop two new NNF-based algorithms based on the test point
method (originally due to Cooper [5] and Ferrante and Rackoff [6] and later gen-
eralized by Weispfenning [19]). The idea is to find a finite set of test points T
(depending on ϕ) such that (∃x. ϕ(x)) = (

∨

t∈T ϕ(t)). The complication is that
(conceptually) T may contain values like infinity, infinitesimals or intermedi-
ate points, values that are not representable in the given term language. The
challenge is to define special versions of substitution for these values.

4.1 Atoms

There are just the two relations < and = and no function symbols. Thus atomic
formulae can be represented by the following datatype:

datatype atom = nat < nat | nat = nat

Note the bold infix constructors < and =. Because there are no function sym-
bols, the arguments of the relations must be variables. For example, i < j rep-
resents the atom xi < xj in de Bruijn notation.

24 T. Nipkow

Now we can instantiate locale ATOM. Type parameter α becomes type atom.
The interpretation function I a becomes I dlo where

I dlo (i = j) xs = (xs[i] = xs[j]) I dlo (i < j) xs = (xs[i] < xs[j])

The notation xs[i] means selection of the ith element of xs. The type of I dlo is
explicitly restricted such that xs must be a list of elements over a dense linear
order, where the latter is formalized as a type class [8] with the axioms shown at
the start of this section. Thus all valuations in this section are over dense linear
orders. Parameter aneg becomes negdlo:

negdlo (i < j) = (A (j < i) ∨ A (i = j))
negdlo (i = j) = (A (i < j) ∨ A (j < i))

The parameters adepends and adecr are instantiated with dependsdlo and decrdlo:

dependsdlo (i = j) = (i = 0 ∨ j = 0)
dependsdlo (i < j) = (i = 0 ∨ j = 0)

decrdlo (i < j) = (i − 1 < j − 1) decrdlo (i = j) = (i − 1 = j − 1)

This instantiation satisfies all the axioms of ATOM.

4.2 The Interior Point Method

Ferrante and Rackoff [6] realized (for linear real arithmetic) that when eliminat-
ing x from φ it (essentially) suffices to collect all lower bounds l of x (i.e. l < x
occurs in φ) and all upper bounds u of x (i.e. x < u occurs in φ) and try all such
(l + u)/2 as test points. This method is implemented in §5.2.

Now we present a novel quantifier elimination method for DLO based on
Ferrante and Rackoff’s idea. The problem with DLO is that one cannot name
any point between two variables x and y. Hence a special form of substitution
must be defined that behaves as if some intermediate point was substituted
without requiring such a point. We use the symbolic notation x↓y to denote
some arbitrary but fixed point in the interval (x, y). The key cases in defining
substitution with x↓y are: (x↓y < z) = (y ≤ z), (z < x↓y) = (z ≤ x), (x↓y <
x↓y) = False, (x↓y = x↓y) = True and (x↓y = z) = False. The last equation
is motivated because we can always choose x↓y to be different from z. Note also
that these definitions only work as expected if x < y.

We also need the fictitious values −∞ and ∞ first used by Cooper. Then we
can formulate the interior point method as a logical equivalence in test point
form, where φ must be quantifier-free and in NNF:

(∃x. φ(x)) = (φ(−∞) ∨ φ(∞) ∨
∨

y∈E

φ(y) ∨
∨

y∈L,z∈U

(y < z ∧ φ(y↓z))) (1)

E is the set of y such that x = y or y = x occur in φ(x), L is the set of y such
that y < x occurs in φ(x), U is the set of y such that x < y occurs in φ(x),
where x is the bound variable and y is different from x.

Linear Quantifier Elimination 25

We sketch a proof of (1), details can be found in the Isabelle proof. The if-
direction is easy as in each case a witness is given. Except that −∞, ∞ and
y↓z are not proper values. But by induction on φ one can show that φ(−∞) etc
imply φ(x) for suitable x:

∃x.∀y ≤ x. φ(−∞) = φ(y) ∃x.∀y ≥ x. φ(∞) = φ(y)
y < z ∧ φ(y↓z) =⇒ ∀x ∈ (y, z). φ(x)

For the only-if-direction assume φ(x) and not φ(−∞) ∨ φ(∞) ∨
∨

y∈E φ(y). We
have to show that φ(y↓z) for some y ∈ L and z ∈ U . From the assumptions it
follows by induction on φ that there must be y0 ∈ L and z0 ∈ U such that x ∈
(y0, z0). Now we show (by induction on φ) the lemma that innermost intervals
(y, z) completely satisfy φ:

Lemma 3. If x ∈ (y, z), x /∈ E, (y, x) ∩ L = ∅ and (x, z) ∩ U = ∅, then φ(x)
implies ∀u ∈ (y, z). φ(u).

Given x ∈ (y0, z0) we define y = max{y ∈ L | y < x} and z = min{z ∈ U |
x < z}. It is easy to see that this satisfies the premises of the lemma and hence
∀u ∈ (y, z). φ(u). Again by induction on φ one can show that this actually
implies φ(y↓z):

Lemma 4. If x ∈ (y, z), x /∈ E, (y, x) ∩ L = ∅ and (x, z) ∩ U = ∅, then
(∀x ∈ (y, z). φ(x)) implies φ(y↓z).

4.3 A Verified Implementation of the Interior Point Method

The executable version of (1) is short but requires some auxiliary functions.

interior1 ϕ =
(let as = atoms0 ϕ; lbs = lbounds as ; ubs = ubounds as ; ebs = ebounds as ;

intrs = [A(l < u) ∧ (subst2 l u ϕ). l←lbs , u←ubs]
in list-disj (inf − ϕ · inf + ϕ · intrs @ map (subst ϕ) ebs))

We will now explain the ingredients.
The implementation of substituting l↓u in atoms is given below. Please note

that substitution must not just substitute for variable 0 but must also decrement
the other variables.

asubst2 l u (0 < 0) = ⊥ asubst2 l u (Suc i < Suc j) = A (i < j)
asubst2 l u (0 < Suc j) = (A (u < j) ∨ A (u = j))
asubst2 l u (Suc i < 0) = (A (i < l) ∨ A (i = l))
asubst2 l u (0 = 0) = � asubst2 l u (Suc i = Suc j) = A (i = j)
asubst2 l u (0 = Suc v) = ⊥ asubst2 l u (Suc v = 0) = ⊥

From atoms to formulae is a short step: subst2 l u ϕ ≡ amapfm (asubst2 l u) ϕ
Plain old substitution of one variable for 0 is defined first on variables, then

on atoms and finally on formulae:

26 T. Nipkow

isubst k 0 = k isubst k (Suc i) = i

asubst k (i < j) = (isubst k i < isubst k j)
asubst k (i = j) = (isubst k i = isubst k j)

subst ϕ k ≡ mapfm (asubst k) ϕ

Substituting −∞ for 0 is implemented as follows:

amin-inf (i < 0) = ⊥ amin-inf (0 < Suc j) = �
amin-inf (Suc i < Suc j) = A (i < j)
amin-inf (0 = 0) = � amin-inf (Suc i = Suc j) = A (i = j)
amin-inf (0 = Suc v) = ⊥ amin-inf (Suc v = 0) = ⊥
inf − ϕ ≡ amapfm amin-inf ϕ

Dually there is inf + for substituting∞. Lower bounds, upper bounds and equal-
ities are conveniently collected from a list of atoms by list comprehension:

lbounds as = [i . (Suc i < 0) ← as] ubounds as = [i . (0 < Suc i) ← as]
ebounds as = [i . (Suc i = 0) ← as] @ [i . (0 = Suc i) ← as]

4.4 The Method of Infinitesimals

Loos and Weispfenning [12] proposed a quantifier elimination procedure for linear
real arithmetic (see §5.3) where test points are x + ε (for x a lower bound) or
y− ε (for y an upper bound) where ε is an infinitesimal. That is, the test points
are arbitrarily close to the lower or upper bounds of the eliminated variable.
In particular, it is not necessary to pair all lower and upper bounds but one
can choose either set, typically the smaller one. For succinctness we ignore this
duality and concentrate on the lower bounds only.

In this section we adapt the idea of infinitesimals to derive a new quantifier
elimination procedure for DLO. We merely need to explain what substitution of
x+εmeans: (x+ε < y) = (x < y), (y < x+ε) = (y ≤ x), (x+ε < x+ε) = False,
(x+ε = x+ε) = True, (x+ε = y) = False, where x and y are different variables.

The test point method with infinitesimals is justified by the following equiv-
alence, where, as usual, φ is quantifier free and in NNF:

(∃x. φ(x)) = (φ(−∞) ∨
∨

y∈E

φ(y) ∨
∨

y∈L

φ(y + ε)) (2)

where E and L are defined as in (1). The proof is also similar. The main differ-
ences are: For the if-direction we need to show (by induction on φ) that y + ε
represents a proper witness:

φ(y + ε) =⇒ ∃y′ > y.∀x ∈ (y, y′). φ(x)

The two lemmas for the only-if-direction become

Lemma 5. If y < x, x /∈ E, (y, x) ∩ L = ∅ and φ(x), then ∀u ∈ (y, x]. φ(u).

Linear Quantifier Elimination 27

Lemma 6. If y < x, x /∈ E, (y, x)∩L = ∅ and ∀u ∈ (y, x]. φ(u), then φ(y+ ε).

Our verified implementation of (2)

eps1 ϕ = (let as = atoms0 ϕ; lbs = lbounds as ; ebs = ebounds as
in list-disj (inf − ϕ · map (subst+ ϕ) lbs @ map (subst ϕ) ebs))

requires only one new concept, subst+ ϕ y, the substitution φ(y + ε):

asubst+ k (0 < 0) = ⊥ asubst+ k (Suc i < Suc j) = A (i < j)
asubst+ k (0 < Suc j) = A (k < j)
asubst+ k (Suc i < 0) = (if i = k then � else A (i < k) ∨ A (i = k))
asubst+ k (0 = 0) = � asubst+ k (Suc i = Suc j) = A (i = j)
asubst+ k (0 = Suc v) = ⊥ asubst+ k (Suc v = 0) = ⊥
subst+ ϕ k ≡ amapfm (asubst+ k) ϕ

4.5 Complexity

A formula of size n can contain at most n variables. The set of variables decreases
by one in each step. In the worst case all of them are bound and need to be
eliminated. In each step of the quantifier elimination processes (1) and (2) the
sets E, L and U are at most as large as k, the current number of variables.

The interior point method makes at most (k−1)2 copies of the formula in each
step. Hence the size of the output formula and also the amount of working space
required is O(n · (n− 1)2 · · · 12) = O(n · (n− 1)!2). The method of infinitesimals,
however, only makes at most k−1 copies, thus requiring only O(n·(n−1) · · · 1) =
O(n!) space. The time complexity of both algorithms is linear in their space
complexity, i.e. time and space coincide.

5 Linear Real Arithmetic

Linear real arithmetic is concerned with terms built up from variables, constants,
addition, and multiplication with constants. Relations between such terms can
be put into a normal form r 	
 c0 ∗ x0 + · · · cn ∗ xn with 	
 ∈ {=, <} and
r, c0, . . . , cn ∈ R. It is this normal form we work with in this section.

Note that although we phrase everything in terms of the real numbers, the
rational numbers work just as well. In fact, any ordered, divisible, torsion free,
Abelian group will do.

We present verified implementations of two quantifier elimination procedures:
one due to Ferrante and Rackoff [6] and one due to Loos and Weispfenning [12].

5.1 Atoms

Type atom formalizes the normal forms explained above:

datatype atom = real < (real list) | real = (real list)

28 T. Nipkow

The second constructor argument is the list of coefficients [c0,. . .,cn] of the
variables 0 to n — remember de Bruijn! Coefficient lists should be viewed as
vectors and we define the usual vector operations on them:

x ∗s xs is the componentwise multiplication of a scalar x with a vector xs.
xs + ys and xs − ys are componentwise addition and subtraction of vectors.
〈xs ,ys〉 = (

∑
(x ,y) ← zip xs ys . x∗y) is the inner product of two vectors, i.e.

the sum over the componentwise products.

If the two vectors involved in an operation are of different length, the shorter
one is padded with 0s (as in Obua’s treatment of matrices [18]). We can prove
all the algebraic properties we need, like 〈xs + ys ,zs〉 = 〈xs ,zs〉 + 〈ys ,zs〉.

Now we instantiate locale ATOM just like for DLO in §4.1. The main function
is the interpretation I R of atoms, which is straightforward:

I R (r < cs) xs = (r < 〈cs ,xs〉) I R (r = cs) xs = (r = 〈cs ,xs〉)

5.2 Ferrante and Rackoff

Ferrante and Rackoff [6], inspired by Cooper [5], avoided DNF conversions by
the test point method explained in §4. We have already explained the key idea
of Ferrante and Rackoff in §4.2. If you replace y↓z in (1) by (y+z)/2 you almost
obtain their algorithm. In principle any point between y and z works but (y+z)/2
also takes care of equalities: they lump E, L and U together (to be avoided in an
implementation) but because (y + y)/2 = y this recovers E. As their algorithm
is well-known, we present its optimized and verified implementation right away:

FR1 ϕ =
(let as = atoms0 ϕ; lbs = lbounds as ; ubs = ubounds as ; ebs = ebounds ϕ;

intrs = [subst ϕ (between l u) . l ← lbs , u ← ubs];
in list-disj (inf − ϕ · inf + ϕ · intrs @ map (subst ϕ) ebs))

Except for the definition of intrs this looks identical to the definition of interior1

in §4.3. However, all auxiliary functions are different: they operate on pairs (r ,
cs) which, under a valuation xs, represent the value r + 〈cs ,xs〉. First the various
bounds are extracted:
lbounds as = [(r/c, (−1/c) ∗s cs). (r < (c · cs)) ← as , c>0]
ubounds as = [(r/c, (−1/c) ∗s cs). (r < (c · cs)) ← as , c<0]
ebounds as = [(r/c, (−1/c) ∗s cs). (r = (c · cs)) ← as , c �=0]

The intermediate point between two such points is easy:

between (r , cs) (s , ds) = ((r + s) / 2 , (1 / 2) ∗s (cs + ds))

We need both ordinary substitution of (r , cs) pairs

asubst (r , cs) (s < d · ds) = (s − d ∗ r < d ∗s cs + ds)
asubst (r , cs) (s = d · ds) = (s − d ∗ r = d ∗s cs + ds)
asubst rcs a = a
subst ϕ rcs ≡ mapfm (asubst rcs) ϕ

Linear Quantifier Elimination 29

and substitution inf − of −∞ (and the analogous version inf + for ∞):

inf − (ϕ1 ∧ ϕ2) = and (inf − ϕ1) (inf − ϕ2)
inf − (ϕ1 ∨ ϕ2) = or (inf − ϕ1) (inf − ϕ2)
inf − (A (r < c · cs)) = (if c < 0 then � else if 0 < c then ⊥ else A (r < cs))
inf − (A (r = c · cs)) = (if c = 0 then A (r = cs) else ⊥)

The remaining cases are the identity. This concludes the auxiliary functions.

5.3 Loos and Weispfenning

The method of infinitesimals described in §4.4 was inspired by the analogous
method for linear real arithmetic proposed by Loos and Weispfenning [12] who
also showed practical examples where it outperforms Ferrante and Rackoff. Yet
this method seems relatively unknown in the literature. Its implementation eps1

is textually identical to the one for DLO in §4.4. But the auxiliary functions
differ. Luckily we have seen all of them already, except subst+:

asubst+ (r , cs) (s < d · ds) =
(if d = 0 then A (s < ds)
else let u = s − d ∗ r ; v = d ∗s cs + ds ; lessa = A (u < v)

in if d < 0 then lessa else lessa ∨ A (u = v))
asubst+ rcs (r = d · ds) = (if d = 0 then A (r = ds) else ⊥)
asubst+ rcs a = A a

subst+ ϕ rcs ≡ amapfm (asubst+ rcs) ϕ

6 Presburger Arithmetic

Presburger arithmetic needs a divisibility (or congruence) predicate “|” to allow
quantifier elimination. On the other hand we restrict our attention to ≤ because
i < j is equivalent with i+ 1 ≤ j. Thus all atoms are of the form i ≤ k0 ∗ x0 +
· · ·+kn∗xn or d ‖ i+k0∗x0+ · · ·kn ∗xn, where ‖ is | or �, and d, i, k0, . . . , kn ∈ Z
and d > 0. This becomes the datatype

atom = Le int (int list) | Dvd int int (int list) | NDvd int int (int list)

We have avoided infix constructors because they work less well for ternary op-
erations. Atoms are interpreted w.r.t. a list of variables as usual:

I Z (Le i ks) xs = (i ≤ 〈ks ,xs〉)
I Z (Dvd d i ks) xs = d | (i + 〈ks ,xs〉)
I Z (NDvd d i ks) xs = (¬ d | (i + 〈ks ,xs〉))

Note that we reuse the polymorphic vector, i.e. list operations like 〈.,.〉 introduced
for linear real arithmetic: they are defined for arbitrary types with 0, + and ∗.

30 T. Nipkow

The parameters of locale ATOM are instantiated as follows. The interpreta-
tion of atoms is given by function I Z above, their negation by

negZ (Le i ks) = A (Le (1 − i) (− ks))
negZ (Dvd d i ks) = A (NDvd d i ks) negZ (NDvd d i ks) = A (Dvd d i ks)

and their decrementation by

decrZ (Le i ks) = Le i (tl ks)
decrZ (Dvd d i ks) = Dvd d i (tl ks) decrZ (NDvd d i ks) = NDvd d i (tl ks)

Parameter depends0 becomes λa. hd-coeff a �= 0 where

hd-coeff (Le i ks) = (case ks of [] ⇒ 0 | k · x ⇒ k)
hd-coeff (Dvd d i ks) = (case ks of [] ⇒ 0 | k · x ⇒ k)
hd-coeff (NDvd d i ks) = (case ks of [] ⇒ 0 | k · x ⇒ k)

6.1 Cooper’s Algorithm

Cooper’s algorithm relies on Cooper’s theorem [5] which holds provided all co-
efficients of x in φ(x) are 1 or -1 (or 0):

(∃x. φ(x)) = (
∨

j∈(0,δ−1)

φ−∞(j) ∨
∨

y∈L

∨

j∈(0,δ−1)

φ(y + j))

where δ is the lcm of all d such that d | t or d � t occurs in φ(x) and t contains
x, L is the set of lower bounds for x in φ(x), and φ−∞(j) is φ(x) where x has
been replaced by −∞ in all inequations and by j in all other atoms.

We start by setting all (non-zero) head coefficients to 1 or -1. This is achieved
by multiplying each atom a (with non-zero head coefficient) with m/k, where m
is the lcm of all (non-zero) head coefficients and k is a’s head coefficient (assume
k > 0 for simplicity). Now all (non-zero) head coefficients are m, we replace
them by 1 and conjoin the atom m | x0. This is what hd-coeff1 does for an atom
and hd-coeff1 for a formula:

hd-coeff1 m (Le i (k · ks)) =
(if k = 0 then Le i (k · ks)
else let m ′ = m div |k | in Le (m ′ ∗ i) (sgn k ·m ′ ∗s ks))

hd-coeff1 m (Dvd d i (k · ks)) =
(if k = 0 then Dvd d i (k · ks)
else let m ′ = m div k in Dvd (m ′ ∗ d) (m ′ ∗ i) (1 ·m ′ ∗s ks))

hd-coeff1 m (NDvd d i (k · ks)) =
(if k = 0 then NDvd d i (k · ks)
else let m ′ = m div k in NDvd (m ′ ∗ d) (m ′ ∗ i) (1 ·m ′ ∗s ks))

hd-coeff1 m a = a

hd-coeffs1 ϕ =
(let m = zlcms (map hd-coeff (atoms0 ϕ))
in A (Dvd m 0 [1]) ∧ mapfm (hd-coeff1 m) ϕ)

Linear Quantifier Elimination 31

The sign function sgn returns -1, 0, and 1 for negative, zero and positive argu-
ments. Functions zlcms computes the positive lcm of a list of integers.

Now we start to implement Cooper’s theorem. The substitution φ−∞(j) is
implemented by the composition of

inf − (ϕ1 ∧ ϕ2) = and (inf − ϕ1) (inf − ϕ2)
inf − (ϕ1 ∨ ϕ2) = or (inf − ϕ1) (inf − ϕ2)
inf − (A (Le i (k · ks))) =
(if k < 0 then � else if 0 < k then ⊥ else A (Le i (0 · ks)))
inf − ϕ = ϕ

and ordinary substitution:

asubst i ′ ks ′ (Le i (k · ks)) = Le (i − k ∗ i ′) (k ∗s ks ′ + ks)
asubst i ′ ks ′ (Dvd d i (k · ks)) = Dvd d (i + k ∗ i ′) (k ∗s ks ′ + ks)
asubst i ′ ks ′ (NDvd d i (k · ks)) = NDvd d (i + k ∗ i ′) (k ∗s ks ′ + ks)
asubst i ′ ks ′ a = a

subst i ks ϕ ≡ mapfm (asubst i ks) ϕ

The right-hand side of Cooper’s theorem now becomes executable:

cooper1 ϕ =
(let as = atoms0 ϕ; d = zlcms(map divisor as);

lbs = [(i ,ks). Le i (k · ks) ← as , k>0]
in or (Disj [0 ..d − 1] (λn. subst n [] (inf − ϕ)))

(Disj lbs (λ(i ,ks). Disj [0 ..d − 1] (λn. subst (i + n) (−ks) ϕ))))

where divisor (Dvd d) = divisor(NDvd d) = d, divisor (Le) = 1 and
Disj us f ≡ list-disj (map f us). The lower bounds lbs are computed directly
rather than by an auxiliary function.

The two phases of Cooper’s algorithm are simply composed and lifted:

cooper = lift-nnf-qe (cooper1 ◦ hd-coeffs1)

6.2 Correctness

There is a slight complication we have glossed over so far. We want to exclude
the atoms Dvd 0 i ks and NDvd 0 i ks because they behave anomalously and the
algorithm does not generate them either. Catering for them would complicate
the algorithm with case distinctions. In order to restrict attention to a subset of
normal atoms, locale ATOM in fact has another parameter not mentioned so
far: anormal :: α ⇒ bool with the axioms

anormal a =⇒ ∀ b∈atoms (aneg a). anormal b
¬ depends0 a =⇒ anormal a =⇒ anormal (decr a)

In words: negation and decrementation do not lead outside the normal atoms.
These axioms allow to show the following refined version of Lemma 2 (inside
ATOM), where normal ϕ = (∀ a∈atoms ϕ. anormal a):

32 T. Nipkow

Lemma 7. If qe ∈ |nqfree| → |qfree| and qe ∈ |nqfree| ∩ |normal | → |normal |
and for all ϕ and xs: normal ϕ ∧ nqfree ϕ =⇒ I (qe ϕ) xs = (∃ x . I ϕ (x · xs)),
then normal ϕ implies I (lift-nnf-qe qe ϕ) xs = I ϕ xs.

In the instantiation of ATOM for Presburger arithmetic parameter anormal
becomes λa. divisor a �= 0. The above lemma is instantiated with cooper1 ◦
hd-coeffs1 for qe and its premises are discharged by the detailed but familiar
correctness arguments for Cooper’s algorithm. We obtain the corollary normal ϕ
=⇒ I (cooper ϕ) xs = I ϕ xs. Of course qfree (cooper ϕ) is also proved.

7 Related Work

The literature on decision procedures for linear arithmetic is vast. We concentrate
on formally verified algorithms.

Nipkow [15] presents the generic framework of §3 in detail but concentrates on
non-elementary DNF-based procedures. Chaieb and Nipkow [4] present a reflec-
tive implementations of Cooper’s algorithm. But they lack the generic framework
and they use special purpose data structures for terms instead of relying on lists
as we do. As a result some of their functions are considerably more compli-
cated than ours and theorems and proofs are littered with linearity assumptions
that are implicit in our list representation. Hence they can only present part
of their implementation. Chaieb [3] presents a verified combination of Ferrante-
Rackoff and Cooper. Norrish [17] was the first to implement a proof-producing
version of Cooper’s algorithm in a theorem prover. Similar implementation of
QE for complex numbers and for real closed fields are reported by Harrison [10]
and McLaughlin [14]. The CAD QE procedure for real closed fields has been
reflected but only partly verified by Mahboubi [13] in Coq.

Acknowledgment. Amine Chaieb alerted me to the infinitesimal approach [12].
Discussions with him and Jeremy Avigad were very helpful.

References

1. Ballarin, C.: Interpretation of locales in Isabelle: Theories and proof contexts. In:
Borwein, J.M., Farmer, W.M. (eds.) MKM 2006. LNCS (LNAI), vol. 4108, pp.
31–43. Springer, Heidelberg (2006)

2. Boyer, R.S., Moore, J.S.: Metafunctions: proving them correct and using them
efficiently as new proof procedures. In: Boyer, R., Moore, J. (eds.) The Correctness
Problem in Computer Science, pp. 103–184. Academic Press, London (1981)

3. Chaieb, A.: Verifying mixed real-integer quantifier elimination. In: Furbach, U.,
Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 528–540. Springer,
Heidelberg (2006)

4. Chaieb, A., Nipkow, T.: Verifying and reflecting quantifier elimination for Pres-
burger arithmetic. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI),
vol. 3835, pp. 367–380. Springer, Heidelberg (2005)

Linear Quantifier Elimination 33

5. Cooper, D.C.: Theorem proving in arithmetic without multiplication. In: Meltzer,
B., Michie, D. (eds.) Machine Intelligence, vol. 7, pp. 91–100. Edinburgh University
Press (1972)

6. Ferrante, J., Rackoff, C.: A decision procedure for the first order theory of real
addition with order. SIAM J. Computing 4, 69–76 (1975)

7. Gonthier, G.: A computer-checked proof of the four-colour theorem,
http://research.microsoft.com/∼gonthier/4colproof.pdf

8. Haftmann, F., Wenzel, M.: Constructive type classes in Isabelle. In: Altenkirch,
T., McBride, C. (eds.) TYPES 2006. LNCS, vol. 4502, pp. 160–174. Springer,
Heidelberg (2007)

9. Harrison, J.: Introduction to Logic and Automated Theorem Proving. Cambridge
University Press, Cambridge (forthcoming)

10. Harrison, J.: Complex quantifier elimination in HOL. In: Boulton, R.J., Jackson,
P.B. (eds.) TPHOLs 2001. LNCS, vol. 2152, pp. 159–174. Springer, Heidelberg
(2001)

11. Langford, C.: Some theorems on deducibility. Annals of Mathematics (2nd Se-
ries) 28, 16–40 (1927)

12. Loos, R., Weispfenning, V.: Applying linear quantifier elimination. The Computer
Journal 36, 450–462 (1993)

13. Mahboubi, A.: Contributions à la certification des calculs sur R: théorie, preuves,
programmation. PhD thesis, Université de Nice (2006)

14. McLaughlin, S., Harrison, J.: A proof-producing decision procedure for real arith-
metic. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 295–314.
Springer, Heidelberg (2005)

15. Nipkow, T.: Reflecting quantifier elimination for linear arithmetic. In: Grumberg,
O., Nipkow, T., Pfaller, C. (eds.) Formal Logical Methods for System Security and
Correctness, pp. 245–266. IOS Press, Amsterdam (2008)

16. Nipkow, T., Paulson, L., Wenzel, M.: Isabelle/HOL. LNCS, vol. 2283. Springer,
Heidelberg (2002)

17. Norrish, M.: Complete integer decision procedures as derived rules in HOL. In:
Basin, D., Wolff, B. (eds.) TPHOLs 2003. LNCS, vol. 2758, pp. 71–86. Springer,
Heidelberg (2003)

18. Obua, S.: Proving bounds for real linear programs in Isabelle/HOL. In: Hurd,
J., Melham, T. (eds.) TPHOLs 2005. LNCS, vol. 3603, pp. 227–244. Springer,
Heidelberg (2005)

19. Weispfenning, V.: The complexity of linear problems in fields. J. Symbolic Com-
putation 5, 3–27 (1988)

http://research.microsoft.com/~gonthier/4colproof.pdf

Quantitative Separation Logic and Programs with Lists

Marius Bozga, Radu Iosif, and Swann Perarnau

VERIMAG, 2 Avenue de Vignate, F-38610 Gières
{iosif,bozga,perarnau}@imag.fr

Abstract. This paper presents an extension of a decidable fragment of Separa-
tion Logic for singly-linked lists, defined by Berdine, Calcagno and O’Hearn [8].
Our main extension consists in introducing atomic formulae of the form lsk(x,y)
describing a list segment of length k, stretching from x to y, where k is a logical
variable interpreted over positive natural numbers, that may occur further inside
Presburger constraints.

We study the decidability of the full first-order logic combining unrestricted
quantification of arithmetic and location variables. Although the full logic is
found to be undecidable, validity of entailments between formulae with the quan-
tifier prefix in the language ∃∗{∃N,∀N}∗ is decidable. We provide here a model
theoretic method, based on a parametric notion of shape graphs.

We have implemented our decision technique, providing a fully automated
framework for the verification of quantitative properties expressed as pre- and
post-conditions on programs working on lists and integer counters.

1 Introduction

Separation Logic [15,21] has recently become a widespread formalism for the specifi-
cation of programs with dynamic data structures. Due to the intrinsic complexity of the
heap structures allocated and manipulated by such programs, any attempt to formalize
their correctness has to be aware of the inherent bounds of undecidability. Indeed, even
programs working on simple acyclic lists have the power of Turing machines, and it
is expected that a general logic describing sets of configurations reached in such pro-
grams has an undecidable satisfiability (or validity) problem. An interesting problem is
to define decidable logics that are either specialized for a certain kind of recursive data
structures (e.g. lists, trees), or that are restricted by the quantifier prefix.

This paper presents an extension of a decidable fragment of Separation Logic for
singly-linked lists, defined by Berdine, Calcagno and O’Hearn [8] and used as an in-
ternal representation for sets of states in the Smallfoot tool [4]. Our main extension
consists in introducing atomic formulae of the form lsk(x,y) describing a list segment
of length k, stretching from x to y, where k is a logical variable interpreted over positive
natural numbers, that may occur further inside Presburger constraints. This is motivated
by the need to reason about programs that work on both singly-linked list structures and
integer variables (counters). We denote the extended logic as Quantitative Separation
Logic (QSL).

In reality, many programs would traverse a list structure, while performing some
iterative computation on the integer variables. The result of this computation usually

A. Armando, P. Baumgartner, and G. Dowek (Eds.): IJCAR 2008, LNCS 5195, pp. 34–49, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Quantitative Separation Logic and Programs with Lists 35

depends on the number of steps, which, in turn, depends of the length of the list. A
specification of the correct behavior for such a program needs to take into account both
the lengths of the lists and the values of the counters.

We study the decidability properties of the full first-order logic combining unre-
stricted quantification of arithmetic and location variables. Although the full logic is
found to be undecidable, validity of entailments between formulae with the quantifier
prefix in the language ∃∗{∃N,∀N}∗ is decidable. We provide here a model theoretic
method for decidability, based on a parametric notion of shape graphs. As a byproduct,
we obtain a decision procedure for the fragment of Separation Logic considered in [8].

The decision procedure for a fragment of QSL is currently implemented in the L2CA
tool [3], a tool for translating programs with singly-linked lists into bisimilar counter
automata, according to the method of [9], which opens the possibility of using well-
known counter automata techniques and tools, e.g. [6,22,5], in order to verify pre- and
post- conditions expressed in QSL, on programs working on both singly-linked lists
and integer variables.

1.1 Related Work

The saga of logics for describing heap structures has its roots in the early work of
Burstall [11]. Later on, work by Benedikt, Reps and Sagiv [7], Reynolds [21] and Ish-
tiaq and O’Hearn [15], has brought the subject into focus, whereas recent advances
have been made in tackling the decidability problem [14,8,23]. The idea of combin-
ing shape and arithmetic specifications arises in the work of Zhang, Sipma and Manna
[24], where a combination of free term algebras with Presburger constraints is studied
for decidability. The work that is closest to ours is the one of Berdine, Calcagno and
O’Hearn [8], which defines a decidable subset of Separation Logic [21] interpreted over
singly-linked heap models. The work in this paper is in fact an extension of the logic
in [8] with integer variables representing list lengths. One of the main challenges in
the present paper was to adapt the model of parametric shape graphs in order to cope
with the notion of disjunctive heaps, which is the essence of the semantic model for
Separation Logic.

Regarding program analysis, the use of abstract domains (including integers and mem-
ory addresses) with quantifiers of the form ∃∗∀∗ has been considered in the work of Gul-
wani et al. [13,12]. Unlike our approach, their work is based on using abstractions that
prove to be sufficient, in general, for checking correctness of a large body of programs.
Some of our examples, such as InsertSort, are also verified using the method of [12].
Recently, Magill et al. [17] report on a program analysis technique that uses Separation
Logic [21] extended with first-order arithmetic. However, the main emphasis of [17] is a
program analysis based on counterexample-driven abstraction refinement, whereas our
work focuses on distinguishing decidable from undecidable when combining Separation
Logic with first-order arithmetic. As a matter of fact, [17] claims that validity of entail-
ments in the purely existential fragment of Separation Logic with the lsk(x,y) predicate
and linear constraints is decidable, without giving the proof, by analogy to the proof-
theoretic method from [8]. We extend their result by showing decidability of the validity
of entailments in the ∃∗{∃N,∀N}∗ fragment, versus undecidability of satisfiability in the
∃∗∃∗

N
(∀ | ∀N)∃∗∃∗

N
fragment (or equivalently, validity in the∀∗∀∗

N
(∃ | ∃N)∀∗∀∗

N
fragment).

36 M. Bozga, R. Iosif, and S. Perarnau

Roadmap The paper is organized as follows. Section 2 defines the syntax and semantics
of the logic QSL. Section 3 proves the undecidability of the logic, while Section 4
proves the decidability of entailments in the ∃∗{∃N,∀N}∗ fragment. Section 5 gives
some examples of programs verified using QSL, and Section 6 concludes. For space
reasons, all proofs are given in [10].

2 Definitions

In the rest of the paper, for a set A we denote by A⊥ the set A∪{⊥}. For a function
f : A → B, we denote by dom(f) = {x ∈ A | f (x) �= ⊥} its domain and by img(f) =
{y ∈ B | ∃x ∈ A . f (x) = y} we denote its image. The element⊥ is used to denote that a
(partial) function is undefined at a given point, e.g. f (x) = ⊥. Sometimes we shall use
the graph notation for functions, i.e. f = {〈a,b〉, . . .} if f (a) = b, . . ., etc. The notation
λx : A.y stands for the function {〈x,y〉 | x ∈ A}, and λx : A.⊥ is the empty function /0, by
convention. Let Part(S) denote the set of all partitions of the set S.

By T (X) we denote the set of all terms build using variables x ∈ X . For a term
(formula) τ(X) and a mapping µ : X → T (X), we denote by τ[µ] the term (formula) in
which each occurrence of x is replaced with µ(x). For a formula ϕ, we denote as FV (ϕ)
the set of its free variables. If ϕ is a formula of the first-order arithmetic of integers, and
ν : FV (ϕ)→Z is an interpretation of its free variables, we denote by ν |= ϕ the fact that
ϕ[ν] is a valid formula.

Presburger arithmetic 〈N,+,0,1〉 is the theory of first-order logic of addition and suc-
cessor function (S(n) = n + 1) [20]. The interpretation of logical variables is the set of
natural numbers N, and the meaning of the function symbols 0,1,+ is the natural one. It
is well-known that the satisfiability problem for Presburger arithmetic is decidable [20].

u,v, . . . ∈ PVar program variables
x,y, . . . ∈ LVar location variables
k, l, . . . ∈ IVar integer variables

L := nil | u | x location expressions
I := n ∈N | k | I + I integer expressions
A := I = I | L = L | emp | L �→ L | lsI(L,L) atomic propositions
F := T | A | ¬F | F ∧ F | F ∗F | ∃x . F | ∃Nk . F formulae

Fig. 1. Separation Logic with Presburger Arithmetic

The syntax of QSL is given in Figure 1. Notice the difference between program
variables PVar and location variables LVar, the former being logical constants, whereas
the latter may occur within the scope of a quantifier. Let FVL(ϕ) = FV (ϕ)∩LVar and
FVI(ϕ) = FV (ϕ)∩ IVar denote the sets of location and integer free variables of ϕ,
respectively.

As usual, we define ϕ∨ψ Δ= ¬(¬ϕ∧¬ψ), ϕ ⇒ ψ Δ= ¬ϕ∨ψ, ∀x . ϕ Δ= ¬∃x . ¬ϕ
and ∀Nk . ϕ Δ= ¬∃Nk . ¬ϕ. Moreover, we write k ≤ l and ls(x,y) as shorthands for
∃Nk′ . k + k′ = l and ∃Nk . lsk(x,y), respectively. F is a shorthand for ¬T. The bounded

Quantitative Separation Logic and Programs with Lists 37

quantifiers ∃Nm≤ n . ϕ(m) and ∀Nm≤ n . ϕ(m) are used instead of ∃Nm .m≤ n∧ϕ(m)
and ∀Nm . m ≤ n ⇒ ϕ(m), respectively. We shall also deploy some of the classical

shorthands in Separation Logic: x �→ Δ= ∃y . x �→ y, and x ↪→ y
Δ= x �→ y ∗T, where

y is either a location variable or nil. For list segment formulae we define l̃s
k
(x,y) Δ=

lsk(x,y)∗T and l̃s(x,y) Δ= ls(x,y)∗T.
The semantics of QSL formulae is given in terms of heaps. A heap is a rooted graph

in which each node has at most one successor. Let Loc denote the set of locations.
We assume henceforth that Loc is an infinite, countable set, with a designated element
nil ∈ Loc. In what follows, we identify heaps that differ only by a renaming of their
locations.

Definition 1. A heap is a pair H = 〈s,h〉, where s : PVar∪ LVar → Loc⊥ associates
variables with locations, and h : Loc→ Loc⊥ is the partial successor mapping. In par-
ticular, we have h(nil) = ⊥. We denote by H the set of all heaps with variables from
PVar∪LVar and locations from Loc.

The interpretation of a formula is defined by a forcing relation |= between tuples
〈H,ν, ι〉 ∈ H × (LVar �→ Loc⊥)× (IVar �→ N⊥) and formulae. Here ν : LVar → Loc⊥
is a partial valuation of location variables, and ι : IVar → N⊥ is a partial valuation
of integer variables. The semantics of QSL formulae is given below, for a given heap
H = 〈s,h〉:

[[u]]〈H,ν〉 = s(u), [[x]]〈H,ν〉 = ν(x), [[nil]]〈H,ν〉 = nil

〈H,ν, ι〉 |= T always

〈H,ν, ι〉 |= L1 = L2 iff [[L1]]〈H,ν〉 = [[L2]]〈H,ν〉
〈H,ν, ι〉 |= emp iff h = /0

〈H,ν, ι〉 |= L1 �→ L2 iff h = {〈[[L1]]〈H,ν〉, [[L2]]〈H,ν〉〉}
〈H,ν, ι〉 |= ¬ϕ iff 〈H,ν, ι〉 �|= ϕ

〈H,ν, ι〉 |= ϕ∧ψ iff 〈H,ν, ι〉 |= ϕ and 〈H,ν, ι〉 |= ψ
〈H,ν, ι〉 |= ϕ∗ψ iff there exist H1,H2 such that H = H1 •H2

and 〈H1,ν, ι〉 |= ϕ,〈H2,ν, ι〉 |= ψ
〈H,ν, ι〉 |= ∃x . ϕ iff 〈H,ν[x← l], ι〉 |= ϕ for some l ∈ Loc\ {nil}

Here H1 •H2 denotes the disjoint union of H1 = 〈s,h1〉 and H2 = 〈s,h2〉, i.e, dom(h1)∩
dom(h2) = /0, h = h1∪h2. The above definitions are standard in Separation Logic [21].
The rules below are specific to our extension:

[[I]]ι = I[ι]

〈H,ν, ι〉 |= I1 = I2 iff [[I1]]ι = [[I2]]ι
〈H,ν, ι〉 |= ls0(L1,L2) iff 〈H,ν, ι〉 |= L1 = L2 ∧ emp

〈H,ν, ι〉 |= lsn+1(L1,L2) iff 〈H,ν, ι〉 |= ∃x . lsn(L1,x)∗ x �→ L2

〈H,ν, ι〉 |= lsI(x,y) iff 〈H,ν, ι〉 |= ls[[I]]ι(x,y)
〈H,ν, ι〉 |= ∃Nk . ϕ iff 〈H,ν, ι[k← n]〉 |= ϕ, for some n ∈ N

38 M. Bozga, R. Iosif, and S. Perarnau

There are two types of quantifiers, ∃ ranges over locations Loc, and ∃N over natural
numbers N. A tuple 〈H,ν, ι〉 is said to be a model of ϕ iff 〈H,ν, ι〉 |= ϕ. If FV (ϕ) = /0,
we denote the fact that H is a model of ϕ directly as H |= ϕ. An entailment is a formula
of type ϕ⇒ ψ. Given such an entailment, the validity problem asks if it holds for any
tuple 〈H,ν, ι〉, i.e. if any model of ϕ is also a model of ψ.

Note that we use the “classical” (non-intuitionistic) semantics of Separation Logic
[15], in which a points-to relation L1 �→ L2 is true iff the heap is defined on only one
cell whose address is the value of L1. As a result, lsk(L1,L2) is true iff the heap is
defined only on the set of addresses that form the list from L1 up to (but not including)
L2. Another consequence of using this semantics is that ls0(L1,L2) is true only on the
empty heap. One can however recover the intuitionistic semantics of [21] by using the

shorthands L1 ↪→ L2 and l̃s
k
(L1,L2) instead.

The following notion of dangling location is essential for the semantics of Separation
Logic on heaps [15,21]. To understand this point, consider the formula ϕ : (u �→ v) ∗
(v �→ nil), describing a heap H = 〈s,h〉, in which u and v are allocated to two different
cells, i.e. s(u) = l1, s(v) = l2, and nothing else is in the domain of the heap, i.e. h =
{〈l1, l2〉,〈l2,nil〉}. The reason for which H |= ϕ, is that there exists two disjoint heaps,
namely H1 = 〈s,{〈l1, l2〉}〉 and H2 = 〈s,{〈l2,nil〉}〉, such that H1 |= u �→ v and H2 |= v �→
nil. Notice the role of the location l2, pointed to by the variable v, which is referenced
by the first heap, but allocated in the second one. This location ensures that the disjoint
union of H1 and H2 is defined, and that H1 •H2 |= u �→ v∗ v �→ nil.

Definition 2. A location l ∈ Loc \ {nil} is said to be dangling in a heap H = 〈s,h〉 iff
l ∈ (img(s)∪ img(h))\ dom(h).

In the following, we denote by dng(H) the set of all dangling nodes of H, and by
loc(H) = img(s)∪ dom(h)∪ img(h) the set of all locations, either defined or dangling
in H.

2.1 Motivating Example

Let us consider the program in Figure 2. The loop on the left hand side inserts elements
into the list pointed to by u, while incrementing the c counter, and the loop on the
right removes the elements in reversed order, while decrementing c. The pre- and post-
condition of the program are inserted as Hoare-style annotations. Both initially and
finally, the value of c is zero and the heap is empty.

{c = 0∧ emp∧u = nil}
1: while ... do
{c≥ 0∧ c = k∧ lsk(u,nil)}
2: t := new;
3: t.next := u;
4: u := t;
5: c := c + 1;
6: od

7: while c �= 0 do
{c> 0∧ c = k∧ lsk(u,nil)}
8: u := u.next;
9: c := c - 1;
10: od
{c = 0∧ emp}

Fig. 2. Program verification using QSL

Quantitative Separation Logic and Programs with Lists 39

In order to prove that the program terminates without a null pointer dereferencing,
and moreover ensuring that the post-condition holds, one needs to relate the value of c
to the length of the list pointed to by u, as it is done in the invariants of the left and right
hand side : c = k∧ lsk(u,nil). This example could not be handled using standard Sep-
aration Logic, since we explicitly need the ability of reasoning about both list lengths
and integer variables.

3 Undecidability of QSL

In this section we prove the undecidability of the QSL logic. Namely the class of for-
mulae with quantifier prefix in the language ∃∗∃∗

N
(∀ | ∀N)∃∗∃∗

N
are shown to have an

undecidable satisfiability problem. It is to be noticed that undecidability of QSL is not
a direct consequence of the undecidability of Separation Logic [19], since the proof in
[19] uses multiple selector heaps, while in this case we consider only heaps composed
of singly-linked lists. Our result is non-trivial since it is well-known also that, even sim-
ple logics, e.g. FOL, MSOL are decidable when interpreted over singly-linked lists, and
become quickly undecidable when interpreted over grid-like, and more general graph
structures.

Theorem 1. The set of QSL formulae which, written in prenex normal form, have the
quantifier prefix in the language ∃∗∃∗

N
(∀ | ∀N)∃∗∃∗

N
, is undecidable.

The idea of the proof is that one can encode all terminating runs of an arbitrary 2-counter
machine [18] by a formula of QSL in the ∃∗∃∗

N
(∀ | ∀N)∃∗∃∗

N
quantifier fragment. Since

the halting problem is undecidable for 2-counter machines, the satisfiability of formulae
in the above mentioned fragment is also undecidable.

In the following developments, we shall prove that logical entailment in the
∃∗{∃N,∀N}∗ fragment of QSL is decidable. We have found no argument for
(un)decidability concerning the quantifier prefix fragment {∃,∀}∗{∃N,∀N}∗. In partic-
ular, all attempts to reduce (from) to known fragments of MSO with cardinality con-
straints [16] have failed.

4 Model Theoretic Method

The validity of an entailment ϕ⇒ψ is equivalent to the non-satisfiability of the formula
ϕ∧¬ψ, i.e. there should be no tuples 〈H,ν, ι〉 such that 〈H,ν, ι〉 |= ϕ and 〈H,ν, ι〉 �|=
ψ. Our main result, leading immediately to decidability of entailments, is that, if ϕ is
of the form ∃x1 . . .∃xnQ1l1 . . .Qmlm . θ(x, l), with Qi ∈ {∃N,∀N} and θ is a boolean
combination of predicates with ¬, ∧ and ∗, all models 〈H,ν, ι〉 of ϕ can be represented
using a finite number of (finite) structures called symbolic graph representations (SGR).

The decision procedure for the validity of a QSL entailment ϕ⇒ ψ is based on the
following idea. We first define operators on sets of SGRs that are the counterparts of
the logical connectives ∨, ∧, ∗ and the existential quantifiers ∃x, ∃Nx. Second, for each
existential QSL formula ϕ, we compute a set [[ϕ]] of SGRs that represent all models of
ϕ. The construction of this set is recursive, on the structure of ϕ. The entailment ϕ⇒ ψ

40 M. Bozga, R. Iosif, and S. Perarnau

is valid iff the set [[ϕ]]� [[ψ]] is empty, where � is an operator defined on SGRs, that
computes the representation of the difference between the set of concrete models of
the ϕ and the one of ψ. Least, the emptiness problem for sets of SGRs is shown to be
decidable, by reduction to the satisfiability problem for the Presburger arithmetic.

4.1 Symbolic Shape Graphs

In this section we define a finite representation of (possibly infinite) sets of heaps, called
symbolic shape graphs (SSG), which is the essence of our decision method. The next
section defines the SGR representation for sets of heaps, which is based on SSGs and
arithmetic constraints.

Definition 3. Given a heap H = 〈s,h〉 ∈H , a location l ∈ Loc is said to be a cut point in
H if either l ∈ img(s)∪dng(H)∪{nil}, or there exists two distinct locations l1, l2 ∈ Loc
such that h(l1) = h(l2) = l.

A location l is a cut point in a heap if either (1) l is pointed to directly by a program
variable, i.e. l ∈ img(s), (2) l is dangling or nil, or (3) l has more than one predecessor
in the heap. We denote by l1 �H l2 the fact that h(l1) = l2 and l2 �= ⊥ is not a cut point
in H. Let ∼H denote the reflexive, symmetric and transitive closure of the �H relation,
i.e. the smallest equivalence relation that includes �H , and [l]∼ be the equivalence class
of l ∈ Loc w.r.t. ∼H . We also refer to these equivalence classes as to list segments. By
convention, we have [⊥]∼ =⊥. Let H/∼ = 〈s/∼,h/∼〉 be the quotient heap, where:

– s/∼ : PVar∪LVar→ Loc/∼⊥ and s/∼(u) = [s(u)]∼, for all u ∈ PVar,
– h/∼ : Loc/∼ → Loc/∼⊥ and for all l ∈ dom(h), if h(l) = l′ and l′ is either⊥ or a cut

point in 〈s,h〉, then h/∼([l]) = [l′]∼. In particular, h/∼([l]) =⊥, for all l �∈ dom(h).

Note that s/∼ and h/∼ are well-defined functions. We extend the rest of notations to quo-
tient heaps, i.e. dng(H/∼) = {[l]∼ | l ∈ dng(H)} and loc(H/∼) = {[l]∼ | l ∈ loc(H)}.

For example, in the heap from Figure 3 (a), the cut points are marked by hollow
nodes and the ∼-equivalence classes are enclosed in solid boxes. The quotient heap is
the heap in which these boxes are taken as nodes, instead of the individual locations.

Definition 4. Given a set PVar of program variables, a set LVar of location variables,
and a set of counters Z = {z1, . . . ,zn}, a symbolic shape graph (SSG) is a tuple G =
〈N,D,R,Z,S,V 〉, where:

– N is a finite set of symbolic nodes, with a designated node Nil ∈ N,
– D⊆ N is a set of symbolic dangling nodes,
– R⊆ N is a set of symbolic root nodes,
– Z : N \D → Z is an injective function assigning each non-dangling node to a

counter,
– S : N → N⊥ is the successor function, where:

• S(Nil) =⊥ and S(d) =⊥, for all d ∈D,
• S(n) �∈ R, for all n ∈ N,
• S(n) ∈ N, for all n ∈ N \ (D∪{Nil}).

– V : PVar∪LVar→ N assigns program and location variables with nodes.

Quantitative Separation Logic and Programs with Lists 41

Intuitively, each node of a SSG represents a list segment of a concrete heap. The node
Nil stands for the concrete nil location, and each symbolic dangling node represents
one dangling location.

Definition 5. An SSG G = 〈N,D,R,Z,S,V 〉 is said to be in normal form if:

– each node in n∈N \{Nil} is reachable either from V (u), for some u∈PVar∪LVar,
or from some symbolic root r ∈ R, and

– either n∈ img(V)∪D∪{Nil}, or there exist two distinct nodes n1,n2 ∈N such that
S(n1) = S(n2) = n.

Sk denotes the set of SSGs in normal form, with |R| ≤ k and img(V)⊆ PVar∪LVar.

Sometimes we denote by S the union
⋃

k∈N Sk. We identify SSGs which are equivalent
under renaming of nodes and counters. The following was proved in [9]:

Lemma 1. Let G = 〈N,D,R,Z,S,V 〉 ∈ Sk be a normal form SSG. Then, |N| ≤
2(|dom(V)|+ |R|). As a consequence, the number of such SSGs is bounded asymp-
totically by 2(|PVar|+ |LVar|+ k)2(|PVar|+|LVar|+k), and the bound is tight.

The following definition relates the notions of heap and SSG.

Definition 6. Let G = 〈N,D,R,Z,S,V 〉 ∈ S be a SSG, ν : dom(V)∩LVar → dom(h)
a valuation of the location variables of G, and ι : img(Z) → N+ a valuation of the
counters in G. Let H = 〈s,h〉 ∈ H be a heap such that dom(s) = dom(V)∩PVar, and
H/∼ = 〈s/∼,h/∼〉 be the quotient of H with respect to ∼H. We say that H is the 〈ν, ι〉-
concretization of G iff there exists a bijective mapping η : N⊥ → (loc(h/∼)∪{nil,⊥})
such that:

– η(Nil) = {nil} and η(⊥) =⊥,
– η(V (u)) = s/∼(u), for all u ∈ PVar,
– η(S(n)) = h/∼(η(n)), for all n ∈ N \D,
– η(n) ∈ dng(H/∼), for all n ∈ D,
– ι(Z(n)) = |η(n)|, for all n ∈ N \D.

We recall upon the fact that heaps are identical, up to isomorphism, which implies that
a 〈ν, ι〉 is uniquely defined. We say that H is a concretization of G if there exist ν, ι such
that H is the 〈ν, ι〉-concretization of G. Roughly speaking, the 〈ν, ι〉-concretization of a
SSG G is the heap obtained by replacing each node n of G with a list segment whose
length equals the value of the counter Z(n). Moreover, if G has a 〈ν, ι〉-concretization,
we must have ι(Z(n))> 0, for all non-dangling symbolic nodes n ∈ N. Notice also that
dangling locations are represented by symbolic dangling nodes. We denote by γν,ι(G)
the 〈ν, ι〉-concretization of G and by Γ(G) the set of all concretizations of G.

For example, the SSG in Figure 3 (b) has as 〈ν, ι〉-concretization the heap in
Figure 3 (a), for the valuations:

– ν(x) = l3, ν(y) = l10, and
– ι(z1) = 2, ι(z2) = 1, ι(z3) = 3, ι(z4) = 2, ι(z5) = 1, ι(z6) = 3.

42 M. Bozga, R. Iosif, and S. Perarnau

2 1 2 1 3

3

(a) (b)

yv

u

w

X

x

z1 z2 z5 z6

z3
w

z4

u

v

x

y

D

l1 l2 l3 l7 l8 l9 l10 l11 l12

l4 l5 l6

Fig. 3. SSG and Concretization

Notice that the symbolic dangling node pointed to by w corresponds to a dangling lo-
cation pointed to by w in Figure 3 (a).

The following result expresses the fact that one heap may not be the concretization
of two different (non-isomorphic) SSGs:

Lemma 2. For two non-isomorphic SSGs G1,G2 ∈ S , we have Γ(G1)∩Γ(G2) = /0.

4.2 Symbolic Graph Representations

In this section we introduce the notion of symbolic graph representation (SGR) together
with a number of operators on these structures. In the next section, we shall provide a
stepwise translation of a QSL formula with quantifier prefix ∃∗{∃N,∀N}∗ into a set of
symbolic graph representations.

A symbolic graph representation is a pair 〈G,ϕ〉, where G = 〈N,D,R,Z,S,V 〉 is
a SSG in normal form and ϕ an open formula over the counters of G, i.e. FV (ϕ) ⊆
img(Z). By G we denote the set of all SGRs R = 〈G,ϕ〉, where G ∈ S and the set of
counters in each G is a subset of Z.

A heap H = 〈s,h〉 is the 〈ν, ι〉-concretization of 〈G,ϕ〉 iff ν : dom(V) ∩ LVar →
dom(h) is a valuation of the location variables of G, and ι : img(Z)→N+ is a valuation
of the counters in G that satisfies ϕ, i.e. ι |= ϕ. This is denoted in the following as H =
γν,ι(〈G,ϕ〉). Γ(〈G,ϕ〉) denotes the set of all 〈ν, ι〉-concretizations of 〈G,ϕ〉. The nota-
tion is lifted to finite sets of SGRs in the obvious way: Γ({R1, . . . ,Rn}) =

⋃n
i=1 Γ(Ri).

We introduce now three operators on finite sets of SGRs, that correspond to the
boolean operators of union, intersection and set difference. Let S1,S2 ⊆ G be two finite
sets of SGRs.

S1!S2 = {〈G,ϕ1∨ ϕ2〉 | 〈G,ϕ1〉 ∈ S1 and 〈G,ϕ2〉 ∈ S2} ∪
{〈G,ϕ〉 ∈ S1 | 〈G, 〉 �∈ S2} ∪ {〈G,ϕ〉 ∈ S2 | 〈G, 〉 �∈ S1}

S1"S2 = {〈G,ϕ1∧ ϕ2〉 | 〈G,ϕ1〉 ∈ S1 and 〈G,ϕ2〉 ∈ S2}

S1�S2 = {〈G,ϕ1∧ ¬ϕ2〉 | 〈G,ϕ1〉 ∈ S1 and 〈G,ϕ2〉 ∈ S2}
∪ {〈G,ϕ〉 ∈ S1 | 〈G, 〉 �∈ S2}

Here the notation 〈G, 〉 stands for any SGR pair having G as its first component. Let
G = 〈N,D,R,Z,S,V 〉 and notice that, since FV (ϕ1) ⊆ img(Z) and FV (ϕ2) ⊆ img(Z),
then FV (ϕ1∨ϕ2), FV (ϕ1∧ϕ2) and FV (ϕ1∧¬ϕ2) are also subsets of img(Z).

Quantitative Separation Logic and Programs with Lists 43

Lemma 3. SGRs are effectively closed under union, intersection and difference. In
particular, we have Γ(S1 ! S2) = Γ(S1) ∪ Γ(S2), Γ(S1 " S2) = Γ(S1) ∩ Γ(S2) and
Γ(S1�S2) = Γ(S1)\Γ(S2).

The � operator is defined on SGRs with the following meaning : for two SGRs R1 and
R2, we have Γ(R1 �R2) = {H1•H2 |H1 ∈ Γ(R1) and H2 ∈ Γ(R2)}. In other words, � is
the SGR counterpart of the disjoint union operator on heaps. However, � is not a total
operator, i.e. it is not defined for any pair of SGRs, but only for the ones complying
with the following definition :

Definition 7. Two SSGs Gi = 〈Ni,Di,Zi,Si,Vi〉, i = 1,2 are said to match iff there exists
a mapping µ : D1∪D2 → (N1∪N2)⊥ such that, for all u∈ dom(V1)∩dom(V2), either:

– V1(u) ∈D1 and µ(V1(u)) = V2(u), or
– V2(u) ∈D2 and µ(V2(u)) = V1(u).

and µ(d) =⊥, for all d ∈ (D1∪D2)\ (dom(V1)∩dom(V2)).

Intuitively, two SSGs match if it is possible to relate any dangling node pointed to by
program variable in one SSG to a node pointed to by the same variable in the other SSG.
Note that two SSGs do not match if the same variable points to some non-dangling node
in both. Figure 4 gives an example of two matching SSGs (a) and (b) together with the
mapping µ between their nodes (in dotted lines). According to Definition (7), the choice
of µ is not unique.

(b)(a)

(c)

u

DD

v w v

DD

u w

u

D

v w

µ

µ

µ

Fig. 4. Matching SSGs

Given two SGRs R1 = 〈G1,ϕ1〉 and R2 = 〈G2,ϕ2〉, with matching underlying SSGs
Gi = 〈Ni,Di,Zi,Si,Vi〉, (for the purposes of this definition, we can assume w.l.o.g. that
N1 ∩N2 = {Nil} and img(Z1)∩ img(Z2) = /0), we define R1 � R2 = 〈G,ϕ1 ∧ϕ2〉, G =
〈N,D,Z,S,V 〉, where:

– N = (N1∪N2)\ dom(µ),
– D = (D1∪D2)\ dom(µ),
– R = (R1∪R2)\ dom(µ),
– Z = Z1∪Z2,

44 M. Bozga, R. Iosif, and S. Perarnau

– for all n ∈ N:

S(n) =
{

Si(n) if n ∈ Ni and Si(n) �∈ dom(µ)
µ(Si(n)) if n ∈ Ni and Si(n) ∈ dom(µ) i = 1,2

– for all u ∈ dom(V1)∪dom(V2):

V (u) =
{

Vi(u) if Vi(u) �∈ dom(µ)
µ(Vi(u)) if Vi(u) ∈ dom(µ) i = 1,2

For example, the SSG in Figure 4 (c) is the result of the �-composition of the SSGs in
Figure 4 (a) and (b).

The � operator is undefined, if G1 and G2 do not match. Notice that if G1 ∈ Sk1 ,
G2 ∈ Sk2 and 〈G,ϕ〉 = 〈G1,ϕ1〉� 〈G2,ϕ2〉, then G ∈ Sk1+k2 . The correctness of the
definition is captured by the following Lemma:

Lemma 4. Given two SGRs R1 = 〈G1,ϕ1〉 and R2 = 〈G2,ϕ2〉, such that G1 and G2

match, we have Γ(R1 � R2) = {H1 •H2 | H1 ∈ Γ(R1), H2 ∈ Γ(R2)}.

The following projection operator captures the effect of dropping one location vari-
able out of the heap. Let R = 〈G,ϕ〉 be an SGR, where G = 〈N,D,R,Z,S,V 〉 is the
underlying SSG, and x ∈ img(V)∩LVar be a location variable occurring in G. For an
arbitrary symbolic node n∈ N, let precG(n) = {m∈ N | m �= n, S(m) = n} be the set of
predecessors of n, different from itself, in G.

We define R↓x to be the SGR, having a normal-form underlying SSG (cf. Definition
4), from which x is missing. Formally, let R↓x= 〈G′,ϕ′〉, where:

1. if x �∈ dom(V) then G′ = G and ϕ′ = ϕ.
2. else, if x ∈ dom(V) and either:

(a) there exists u ∈ dom(V)\ {x} such that V (u) = V (x), or
(b) there exist m1,m2 ∈ dom(S) s.t. m1 �= m2 and S(m1) = S(m2) = V (x)
then G′ = 〈N,D,R,Z,S,V [x←⊥]〉 and ϕ′ = ϕ.

3. else, if x ∈ dom(V), V (x) = n, and for all u∈ dom(V)\{x}, we have V (u) �= n, and
either:
(a) precG(n) = /0, then G′ = 〈N,D,R∪{n},Z,S,V [x←⊥]〉 and ϕ′ = ϕ, or
(b) n ∈ D and precG(n) �= /0, then G′ = 〈N,D,R,Z,S,V [x←⊥]〉 and ϕ′ = ϕ,
(c) n �∈ D and m ∈ precG(n), where Z(m) = k1 and Z(n) = k2, then

G′ = 〈N \ {n},D,R,Z[m← k3][n ←⊥],S[m← S(n)][n ←⊥],V [x ←⊥]〉 and
ϕ′ = ∃k1∃k2 . ϕ∧ k3 = k1 + k2, where k3 �∈ img(Z) is a fresh counter name.

The correctness of this definition is captured in the following Lemma:

Lemma 5. Let R = 〈G,ϕ〉 be a SGR, G = 〈N,D,Z,S,V 〉 be its underlying SSG, and
x ∈ LVar be a location variable. Then Γ(R↓x) = {〈s[x←⊥],h〉 | 〈s,h〉 ∈ Γ(R)}.

Given a set S of SGRs, the emptiness problem Γ(S) = /0 is effectively decidable if all
constraints ϕ occurring within elements 〈G,ϕ〉 ∈ G are written in a logic decidable for
satisfiability. In our case, this logic is the Presburger arithmetic, for which the satisfia-
bility problem is known to be decidable [20].

Quantitative Separation Logic and Programs with Lists 45

4.3 From Formulae to Sets of SGR

We are now ready to describe the construction of a set of SGRs for a given formula :

ϕ : ∃x1 . . .∃xnQ1l1 . . .Qmlm . θ(x, l)

where Qi ∈ {∃N,∀N} and θ is a quantifier-free QSL formula. The construction is per-
formed incrementally, following the structure of the abstract syntax tree of θ. The set
x = {x1, . . . ,xn} is called from now on the support set of θ. Without losing generality, we
consider that the leaves of this tree are atomic propositions of one of the forms : T, emp,
x = y, x �→ y and lsl(x,y), where x ∈ x∪PVar, y ∈ x∪PVar∪{nil} and l ∈ {l1, . . . , lm}.

From now on, let Sk(x) be the set of all SSGs with at most k root nodes, support
variables from PVar∪x, and counters from a fixed given set Z. Given a formula ϕ, we
denote by [[ϕ]]x(k) the set of SGRs with at most k root nodes, over the support set x,
defining the models of ϕ, in the following sense. The set of concrete heaps correspond-
ing to [[ϕ]]x(k) is exactly the set of models of ϕ.

For atomic spatial propositions, [[ϕ]]x(k) is computed according to the definitions
from Table 1. In the definition of [[emp]]x(k) we consider as parameter the parti-
tion 〈Y1, . . . ,Yp〉 ∈ Part(x). That is [[emp]]x(k) =

⋃

〈Y1,...,Yp〉∈Part(x) [[emp]]Y1,...,Yp , where

[[emp]]Y1,...,Yp is defined in Table 1. Intuitively, Yi, 1 ≤ i ≤ p is the set of variables that
are aliased, pointing to the same dangling node di, in the empty heap. In Table 1, let
D = {d1, . . . ,dp−1}, R = /0 and Δ =

⋃p−1
i=1 λx : Yi.di∪λx : Yp.Nil.

Since emp denotes all heaps with empty domain, in the SGR representation there are
no symbolic nodes, which are not dangling or nil. Moreover, there are no counters, and
therefore, no arithmetic constraints.

In the definition of [[ϕ]]x(k) for x �→ nil and x �→ y, we consider two parameters:
(1) a set Z ⊆ x∪ {x}, such that x ∈ Z, and (2) a partition 〈Y1, . . . ,Yp〉 ∈ Part(x \ Z).
In other words, we have [[ϕ]]x(k) =

⋃{[[ϕ]]Y1,...,Yp
Z | Z ⊆ x∪{x}, x ∈ Z, 〈Y1, . . . ,Yp〉 ∈

Part(x\Z)}, where [[ϕ]]Y1,...,Yp
Z is defined in Table 1. Intuitively, Z corresponds to the set

of support variables that are aliased with x in some concrete model, and 〈Y1, . . . ,Yp〉 is
used with the same meaning as in the previous definition of [[emp]]x(k).

We recall upon the fact that the models of the atomic propositions x �→ nil and x �→ y
are all heaps whose domains consists of only one address, which is the value of x.
Therefore the SGR representation uses one non-dangling node n to which one counter
z1 is mapped. The associated constraint sets z1 = 1, according to the semantics.

Table 1. SGR for atomic spatial propositions

[[emp]]Y1,...,Yp [[x �→ nil]]Y1,...,Yp

Z [[x �→ y]]Y1,...,Yp

Z [[lsl(x,nil)]]Y1,...,Yp

Z1,...,Zk
[[lsl(x,y)]]Y1,...,Yp

Z1,...,Zk

N D∪{Nil} D∪{n,Nil} D∪{n,Nil} D∪{n1, . . . ,nk,Nil} D∪{n1, . . . ,nk,Nil}

Z /0 {〈n,z1〉} {〈n,z1〉} {〈ni,zi〉}
k
i=1 {〈ni,zi〉}

k
i=1

S /0 {〈n,Nil〉} {〈n,dk〉}, if y ∈ Yk {〈ni,ni+1〉}
k−1
i=1 ∪{〈nk,Nil〉} {〈ni,ni+1〉}

k−1
i=1

V Δ λx : Z.n∪Δ λx : Z.n∪Δ
Sk

i=1 λx : Zi.ni ∪Δ
Sk

i=1 λx : Zi.ni ∪Δ

ϕ � z1 = 1 z1 = 1 ∑k
i=1 zk = l ∧ ∑k

i=1 zk = l ∧
(x ∈ Zk → l = 0) (x,y ∈ Zk → l = 0)

46 M. Bozga, R. Iosif, and S. Perarnau

In the definition of [[lsl(x,nil)]]x(k) we consider an ordered sequence of disjoint sub-
sets of x, namely Z1, . . . ,Zk, where Zi ⊆ x∪ {x}, 1 ≤ k ≤ n, such that x ∈ Z1, and
Zi ∩ Zj = /0, for all 1 ≤ i < j ≤ k. Similarly, in the definition of [[lsl(x,y)]]x(k) we
consider sets Z1, . . . ,Zk, where Zi ⊆ x∪ {x,y}, 1 ≤ k ≤ n, such that x ∈ Z1, y ∈ Zk,
and Zi ∩ Zj = /0, for all 1 ≤ i < j ≤ k. In both cases, we consider also a partition
〈Y1, . . . ,Yp〉 ∈Part(x\(⋃k

i=1 Zi)). Intuitively, Z1, . . . ,Zk correspond to the sets of support
variables that are aliased while pointing to the same node in the list, in some concrete
model, and 〈Y1, . . . ,Yp〉 is used with the same meaning as in the previous definition of
[[emp]]x(k).

Since the models of lsk(x,nil) and lsl(x,y) are all heaps defined only on the addresses
of the nodes in the list pointed to by x, we represent them by a list of symbolic non-
dangling nodes n1, . . . ,nk, where all variables from Zi point to ni, 1 ≤ i≤ k. Each node
ni has an associated counter zi, and the sum of the values of zi must equal l. Moreover,
if x points to the end (nil or y) of the list, the length l must be zero.

The pure formulae x = nil (x = y) correspond to sets of SGRs are the ones in which x
points to nil (y), and the counters occur unconstrained. Their SGR semantics is defined
as follows:

[[x = nil]]x(k) = {〈G,�〉 | G = 〈N,D,R,Z,S,V 〉 ∈ Sk(x), V (x) = Nil}
[[x = y]]x(k) = {〈G,�〉 | G = 〈N,D,R,Z,S,V 〉 ∈ Sk(x), V (x) = V (y)}

The SGR semantics for the QSL connectives is defined as follows:

[[T]]x(k) = {〈G,�〉 | G ∈ Sk(x)}
[[ψ1∧ψ2]]x(k) = [[ψ1]]x(k)" [[ψ2]]x(k)

[[¬ψ]]x(k) = {〈G,�〉 | G ∈ Sk(x)}� [[ψ]]x(k)
[[ψ1 ∗ψ2]]x(k) = [[ψ1]]x(k)� [[ψ2]]x(k)

If π is a purely arithmetic formula, then we have:

[[ψ∧π]]x(k) = {〈G,θ∧π〉 | 〈G,θ〉 ∈ [[ψ]]x(k)}

The semantics for the existential quantifiers is as follows:

[[∃x . ψ]]x(k) = {R↓x | R ∈ [[ψ]]x∪{x}(k−1)}, k≥ 1
[[∃Nl . ψ]]x(k) = {〈G,∃l . θ〉 | 〈G,θ〉 ∈ [[ψ]]x(k)}

The following lemma formalizes the correctness of our construction.

Lemma 6. Given ϕ a QSL formula containing only numeric quantifiers (∃N, ∀N), and
{x1, . . . ,xn} ⊆ FVL(ϕ), we have, for all valuations ν : FVL(ϕ) \ {x1, . . . ,xn} → Loc,
and ι : FVI(ϕ) → N+: Γν,ι

(

[[∃x1 . . .∃xn . ϕ]]FVL(ϕ)\{x1,...,xn}(n)
)

= {H | 〈H,ν, ι〉 |=
∃x1 . . .∃xn . ϕ}

Theorem 2. The validity of entailments between formulae in the ∃∗{∃N,∀N}∗ quanti-
fier fragment of QSL is a decidable problem.

The proof of Theorem 2 uses the fact that the set of models for each formula in the
∃∗{∃N,∀N}∗ quantifier fragment of QSL can be finitely represented using a set of SGRs

Quantitative Separation Logic and Programs with Lists 47

(cf. Lemma 6). An entailment ϕ⇒ ψ is valid if and only if the set of models of the for-
mula ϕ∧¬ψ is empty. The latter is given by the set of SGRs encoding the set-theoretic
difference between the models of ϕ and the models of ψ. Since the emptiness of this set
is decidable, by reduction to Presburger arithmetic, the validity of the entailment is also
decidable.

According to Lemma 1, the number of SSGs that can be generated using N variables
is of the order of O(NN). However, the number of SSGs encountered in practice is
relatively small, since in principle, the explosion occurs only due to the unrestricted use
of negation and the T proposition, which can be easily avoided.

5 Application of the Model Theoretic Method for QSL

The translation between QSL formulae with quantifier prefix of the form ∃∗{∃N,∀N}∗
and sets of SGRs gives a method for deciding the validity of entailments in this logic.
Moreover, there is another, more practical advantage to this approach, that gives us a
effective method for the verification of both shape and numeric properties of programs
with lists.

The L2CA tool [3] is a tool for verifying safety and termination properties of pro-
grams with singly-linked lists, based on the translation of programs into counter au-
tomata [9]. A counter automaton generated by L2CA has control states of the form
〈l,G〉, where l is a control label of the original program, and G is a SSG over the set
PVar of pointer variables of the input program. By Lemma 1, the set of control states of
a counter automaton generated by L2CA is finite, which guarantees that each program
with lists will be translated into a finite-control counter automaton. The semantics (set
of runs) of the counter automaton generated by L2CA is in a bisimulation relation with
the semantics of the original program, therefore all results of the analysis of the counter
automaton (e.g. safety properties, termination) carry over to the original program.

The fact that any ∃∗{∃N,∀N}∗ QSL formula ϕ corresponds to a set [[ϕ]] of pairs
〈G,ψ〉, where G is an SSG and ψ is a Presburger constraint, allows us to extend the
L2CA tool to check total correctness of Hoare triples in which the pre- and post-
conditions are expressed as ∃∗{∃N,∀N}∗ QSL formulae. Suppose that {ϕ} P {ψ} is
such a triple. Then for each SGR 〈Gk,φk〉 ∈ [[ϕ]] the L2CA tool will generate a counter
automaton Ak with initial state 〈l0,Gk〉, where l0 is the initial control label of the pro-
gram P. This automaton corresponds to the semantics of P when started in an initial
control state 〈l0,H0〉, where H0 ∈ Γ(〈Gk,φk〉). Let A be the union of all such Ak.

By using a combination of existing tools for the analysis of counter automata, e.g.
[6,2,1] we can verify whether A, started in each control state 〈l0,Gk〉 with values of
counters satisfying the Presburger constraint φk, reaches a final control state 〈l f ,G f 〉
with the counters satisfying some Presburger constraint φ1 such that |= φ → φ′, for
some 〈G f ,φ′〉 ∈ [[ψ]]. This suffices for checking partial correctness. On what concerns
total correctness, we use a termination analysis tool for counter automata, e.g. [1], to
check whether P, started with any heap H0 such that H0 |= ϕ, terminates.

1 In general this is an over-approximation of the set of reachable configurations, obtained using
a combination of precise (acceleration) and abstract (widening) methods.

48 M. Bozga, R. Iosif, and S. Perarnau

5.1 Experimental Results

Table 2 presents some experimental results of verifying Hoare triples of the form
{ϕ} P {ψ}, where ϕ and ψ are QSL formulae, and P is a program handling lists.
The ListReversal example receives in input a non-circular list pointed to by u of length
l and returns a non-circular list pointed to by v containing the cells of the first list in
reversed order. The BubbleSort and InsertSort programs are classical sorting algorithms
for which we verified that the length of the input list stays the same. The ListCounter
example is a simple loop traversing a list pointed to by u, while incrementing an integer
counter c. InsertDelete is the example from Figure 2.

Table 2. Experimental Results using the L2CA and ASPIC tools

{ϕ} P {ψ} Size Gen (s) Verif (s) Tool

{lsl(u,nil)} ListReversal {lsl(v,nil)} 4 0.4 0.3 Fast
{lsl(u,nil)} BubbleSort {lsl(u,nil)} 25 0.4 0.4 Aspic
{lsl(u,nil)} InsertSort {lsl(u,nil)} 58 0.6 0.6 Aspic

{lsl(u,nil)∧ c = 0} ListCounter {lsl(u,nil)∧ c = l} 16 0.2 0.1 Aspic
{c = 0∧ emp∧u = nil} InsertDelete {c = 0∧ emp} 6 1.5 0.5 Fast

For all examples, the size (number of control locations) of the automata generated by
L2CA is given in the second (Size) column, the time needed for generation in the third
(Gen) column, and the time needed to verify partial correctness of the model is given
in the fourth (Verif) column. The tool used (either Aspic [2] or Fast [6]) is given in the
fifth column. All programs were found to be correct.

6 Conclusions

We have developed an extension of Separation Logic interpreted over singly-linked
heaps, that allows to specify properties related to the sizes of the lists. This logic is
especially useful for reasoning about programs that combine dynamically allocated data
with variables ranging over integer domains.

The decidability of the extended logic is studied, the full quantifier fragment being
shown to be undecidable, by a reduction from the halting problem for 2 counter ma-
chines. However the validity of entailments in the ∃∗{∃N,∀N}∗ fragment of the logic
is decidable, which allows the use this fragment to specify Hoare triples for programs
with lists. The verification of total correctness properties specified in this way was made
possible by an extension of the L2CA tool.

References

1. ARMC, http://www.mpi-sb.mpg.de/∼rybal/armc/
2. ASPIC, http://www-verimag.imag.fr/∼gonnord/aspic/aspic.html
3. L2CA, http://www-verimag.imag.fr/∼async/L2CA/l2ca.html

http://www.mpi-sb.mpg.de/~rybal/armc/
http://www-verimag.imag.fr/~gonnord/aspic/aspic.html
http://www-verimag.imag.fr/~async/L2CA/l2ca.html

Quantitative Separation Logic and Programs with Lists 49

4. Smallfoot, http://www.dcs.qmul.ac.uk/research/logic/theory/projects/smallfoot/
index.html

5. Annichini, A., Bouajjani, A., Sighireanu, M.: Trex: A tool for reachability analysis of com-
plex systems. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp.
368–372. Springer, Heidelberg (2001)

6. Bardin, S., Finkel, A., Leroux, J., Petrucci, L.: Fast: Fast accelereation of symbolic transi-
tion systems. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988. Springer,
Heidelberg (2004)

7. Benedikt, M., Reps, T., Sagiv, M.: A decidable logic for describing linked data structures. In:
Swierstra, S.D. (ed.) ESOP 1999. LNCS, vol. 1576. Springer, Heidelberg (1999)

8. Berdine, J., Calcagno, C., O’Hearn, P.: A Decidable Fragment of Separation Logic. In: Lo-
daya, K., Mahajan, M. (eds.) FSTTCS 2004. LNCS, vol. 3328. Springer, Heidelberg (2004)

9. Bouajjani, A., Bozga, M., Habermehl, P., Iosif, R., Moro, P., Vojnar, T.: Programs with lists
are counter automata. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144. Springer,
Heidelberg (2006)

10. Bozga, M., Iosif, R., Perarnau, S.: Quantitative separation logic and programs with lists.
Technical Report TR 2007-9, VERIMAG (2007)

11. Burstall, R.M.: Some techniques for proving correctness of programs which alter data struc-
tures. Machine Intelligence 7, 23–50 (1972)

12. Gulwani, S., McCloskey, B., Tiwari, A.: Lifting abstract interpreters to quantified logical
domains. In: Proc. 35th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages. ACM Press, New York (2008)

13. Gulwani, S., Tiwari, A.: An abstract domain for analyzing heap-manipulating low-level soft-
ware. In: Proc. Intl. Conference on Computer Aided Verification (2007)

14. Immerman, N., Rabinovich, A., Reps, T., Sagiv, M., Yorsh, G.: Verification via Structure
Simulation. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114. Springer, Heidel-
berg (2004)

15. Ishtiaq, S., O’Hearn, P.: BI as an assertion language for mutable data structures. In: POPL
(2001)

16. Klaedtke, F., Ruess, H.: Monadic second-order logics with cardinalities. In: Proc. 30th Inter-
national Colloquium on Automata, Languages and Programming. LNCS. Springer, Heidel-
berg (2003)

17. Magill, S., Berdine, J., Clarke, E., Cook, B.: Arithmetic Strengthening for Shape Analysis.
In: Riis Nielson, H., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634. Springer, Heidelberg (2007)

18. Minsky, M.: Computation: Finite and Infinite Machines. Prentice-Hall, Englewood Cliffs
(1967)

19. O’Hearn, P., Calcagno, C., Yang, H.: Computability and Complexity Results for a Spatial
Assertion Language for Data Structures. In: Hariharan, R., Mukund, M., Vinay, V. (eds.)
FSTTCS 2001. LNCS, vol. 2245. Springer, Heidelberg (2001)

20. Presburger, M.: Über die Vollstandigkeit eines gewissen Systems der Arithmetik. Comptes
rendus du I Congrés des Pays Slaves, Warsaw (1929)

21. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In: Proc. 17th
IEEE Symposium on Logic in Computer Science. LNCS. Springer, Heidelberg (2002)

22. Wolper, P., Boigelot, B.: Verifying systems with infinite but regular state spaces. In: Y. Vardi,
M. (ed.) CAV 1998. LNCS, vol. 1427, pp. 88–97. Springer, Heidelberg (1998)

23. Yorsh, G., Rabinovich, A., Sagiv, M., Meyer, A., Bouajjani, A.: A logic of reachable pat-
terns in linked data-structures. In: Proc. Foundations of Software Science and Computation
Structures. LNCS. Springer, Heidelberg (2006)

24. Zhang, T., Sipma, H., Manna, Z.: Decision procedures for recursive data structures with
integer constraints. In: Proc. Intl. Joint Conference of Automated Reasoning (2004)

http://www.dcs.qmul.ac.uk/research/logic/theory/projects/smallfoot/index.html
http://www.dcs.qmul.ac.uk/research/logic/theory/projects/smallfoot/index.html

On Automating the Calculus of Relations

Peter Höfner1 and Georg Struth2

1 Institut für Informatik, Universität Augsburg, Germany
hoefner@informatik.uni-augsburg.de

2 Department of Computer Science, University of Sheffield, United Kingdom
g.struth@dcs.shef.ac.uk

Abstract. Relation algebras provide abstract equational axioms for the
calculus of binary relations. They name an established area of mathe-
matics and have found numerous applications in computing. We prove
more than hundred theorems of relation algebras with off-the-shelf au-
tomated theorem provers. They form a basic calculus from which more
advanced applications can be explored. We also present two automa-
tion experiments from the formal methods literature. Our results fur-
ther demonstrate the feasibility of automated deduction with complex
algebraic structures. They also open a new perspective for automated
deduction in relational formal methods.

1 Introduction

Relations are among the most ubiquitous concepts in mathematics and com-
puting. Relational calculi have their origin in the late nineteenth century and
their initial development was strongly influenced, but then overshadowed, by
the advancement of mathematical logic. Around 1940, Alfred Tarski revived the
subject by formalising the calculus of binary relations alternatively within the
three-variable fragment of first-order logic and as an abstract relation algebra
within first-order equational logic [28]. Today, relation algebras form an estab-
lished field of mathematics with numerous textbooks and research publications.

The relevance of relational calculi in computing has been realised since the
early beginnings. Relational approaches had considerable impact on program se-
mantics, refinement and verification through the work of Dijkstra, Hoare, Scott,
de Bakker, Back and others. Formal methods like Alloy [14], B [2] and Z [25], or
Bird and de Moor’s algebraic approach to functional program development [6]
are strongly relational. Further applications of relations in computing include
data bases, graphs, preference modelling, modal reasoning, linguistics, hardware
verification and the design of algorithms. Here, our main motivation is program
development and verification.

To support relational formal methods, various tools have been developed.
Interactive proof-checkers for relation algebras have been implemented [30,16]
and relational techniques have been integrated into various proof checkers for B
or Z. Special purpose first-order proof systems for relation algebras, including
tableaux and Rasiowa-Sikorski calculi, have been proposed [18,17]. Translations

A. Armando, P. Baumgartner, and G. Dowek (Eds.): IJCAR 2008, LNCS 5195, pp. 50–66, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

On Automating the Calculus of Relations 51

of relational expressions into (undecidable) fragments of predicate logics have
been implemented [24] and integrated into the SPASS theorem prover [31]. Fi-
nite relational properties can efficiently be analysed with tools similar to model
checkers [4]. Modal logics can automatically be translated into relational calculi
to be further analysed by the relational tools available [10]. But is it really nec-
essary to base automated reasoning with relation algebras either on interactive
theorem provers, on special-purpose calculi or on finitary methods? Would off-
the-shelf automated theorem provers (APT systems) necessarily fail to derive
anything interesting when provided with Tarski’s equational axioms?

This paper provides the proof of concept that a direct axiomatic integration
of relation algebras into modern off-the-shelf ATP systems is indeed feasible.
Our main contributions are as follows: First, we identify axiomatisations of re-
lation algebras that are particularly suitable for proof search. Second, we prove
more than hundred theorems of relation algebra with the ATP system Prover9
and the counterexample generator Mace4 [21]. These experiments mechanise the
calculus from a standard mathematical textbook [20] and yield a verified basis
on which further applications can be built. Experiments show that Prover9 and
Waldmeister are currently best suited for this task [8]. Third, we present two
extended examples that further demonstrate the applicability of the approach.
The first one automates an example from Abrial’s B-Book [2] that analyses
kinship relations in a fictitious society. The second one automatically analyses
simulation laws in data refinement. In addition, we consider relation algebras as
Boolean algebras with operators, thus take the initial steps towards reasoning
automatically about modalities in this approach. Detailed information, includ-
ing all input and output files (in TPTP format) can be found at a website [1].
Selected theorems will become part of the TPTP library in summer 2008 [26].

Our overall experience is positive: Many textbook-level theorems and cal-
culational proofs that eminent mathematicians found worth publishing some
decades ago can nowadays be automatically verified within a few minutes from
the axioms of relation algebras by off-the-shelf ATP systems. More complex
statements require either inequational reasoning, for which we also provide an
axiomatisation, or “learning” of the hypotheses, for which we use heuristics. In
conclusion, the axiomatic integration of computational algebras into off-the-shelf
ATP systems offers a simple yet powerful alternative to interactive approaches,
special-purpose procedures and finitary methods. A new kind of application of
automated deduction in formal methods seem therefore possible.

2 Binary Relations and Relation Algebras

Binary relations and their basic operations feature in most introductory courses
on discrete mathematics. More information can be found, e.g., in the textbooks
by Maddux [19], and Schmidt and Ströhlein [23].

A binary relationR on a set A is just a subset of A×A— a set of ordered pairs.
Since relations are sets, unions R∪S, intersections R∩S and complements R of
relations can be taken such that the set of all binary relations forms a Boolean

52 P. Höfner and G. Struth

algebra. The relative product R;S of two relations R and S is the set of all pairs
(a, b) such that (a, c) ∈ R and (c, b) ∈ S for some c ∈ A. The converse R̆ of a
relation R is the set of all pairs (a, b) with (b, a) ∈ R. The identity relation 1A

on A is the set of all pairs (a, a) with a ∈ A. The structure (2A2
,∪, ; , , ˘, 1A) is

called proper relation algebra of all binary relations over A. To define relation
algebras more abstractly, binary relations are replaced by arbitrary elements of
some carrier set A and a set of equational axioms is given.

A relation algebra is a structure (A,+, ; , , ˘, 1) satisfying the axioms

(x + y) + z = x+ (y + z) , x+ y = y + x , x = x+ y + x+ y ,
(x; y); z = x; (y; z) , (x+ y); z = x; z + y; z , x; 1 = x ,

˘̆x = x , (x+ y)̆ = x̆+ y̆ , x̆;x; y + y = y .

We assume that relative products bind more strongly than joins and meets and
that complementation and converse bind more strongly than relative products.
The first line contains Huntington’s axioms for Boolean algebras [13,12]. The join
operation is denoted by +, and the meet of Boolean algebra can be defined as
x ·y = x+ y. Since relation algebras are Boolean algebras, they form posets with
respect to x ≤ y ⇔ x + y = y that have greatest elements � = x + x and least
elements 0 = x ·x. The axioms in the second line define the relative product. The
axioms in the third line define the operation of conversion. A TPTP-encoding is
given in Appendix A.

On the one hand, this axiomatisation is very compact and initial experiments
suggest that it is particularly suitable for automation. Further hypotheses can
easily be added by need while keeping the initial set small. On the other hand,
humans may find it difficult to prove even simple facts from these axioms alone.

A relation algebra is representable iff it is isomorphic to a proper relation al-
gebra, but not all relation algebras have that property. This means that they are
too weak to prove some truths about binary relations. But this weakness is bal-
anced by a strength: While the expressiveness of the calculus of binary relations
is precisely that of the three-variable fragment of first-order logic, a translation
into logic can introduce quite complex expressions with nested quantifiers and
destroy the inherent algebraic structure of a statement. This can obfuscate the
decomposition of complex theorems into lemmas and the control of hypothe-
ses needed in proofs. Relation algebras can yield simpler, more modular and
more concise specifications and proofs. This situation is similar to pointwise ver-
sus pointfree functional programming. Relation algebras are also interesting for
ATP systems because already the equational theory is undecidable.

3 Boolean Algebras: A Warm-Up

The automated analysis of Boolean algebras is one of the great success stories
of automated deduction [22]; proofs with these and similar lattices are well-
documented through the TPTP library and various publications. Here and in the
next sections we follow Maddux’s book [19] in proving a series of theorems that

On Automating the Calculus of Relations 53

constitute the core calculus of relation algebras. The series starts with proving
Boolean properties from Huntington’s axioms that are later useful in relational
proofs. All experiments used a Pentium 4 processor with 3 GHz and Hyper-
Threading and 2 GB memory. All input files in TPTP-format and all Prover9
outputs can be found at a website [1]. Here, we only briefly summarise our
results. As a default, we proved our goals from the full axiom set. All deviations
are explicitly mentioned.

Proposition 3.1. Huntington’s axioms imply the standard equational axioms
for Boolean algebras.

By “standard” we mean the usual equational lattice axioms, the distributivity
law(s) and the axioms for Boolean complementation that can be found in any
book on lattices. In particular, Prover9 showed in less than one second that
x+ x = y+ y and x · x = y · y. This expresses the existence of a unique greatest
element � and a unique least element 0 such that x+ x = � and x · x = 0.

Lattices, Boolean algebras, and therefore relation algebras can also be defined
as posets, and order-based proofs by hand are usually easier. A proof of x = y
can be achieved by proving x ≤ y and y ≤ x separately. We therefore provide
an order-based encoding as an alternative to the equational one by adding the
definition x ≤ y ⇔ x + y = y. Join, meet, relative product and conversion are
isotone with respect to ≤; complementation is antitone. For example,

x ≤ y ⇒ z;x ≤ z; y and x ≤ y ⇒ y ≤ x .

Reflexivity and transitivity of ≤ and the monotonicity properties can be very
useful additional hypotheses in more complex examples. Our general experience
is that order-based automated proofs are better when there is a simple order-
based proof by hand. But there are exceptions to the rule and in advanced
applications, both variants should be explored.

Proposition 3.2. Huntington’s axioms and the order-based axioms for Boolean
algebras are equivalent.

Prover9 needed less than one second for the left-to-right direction and less than
two minutes for its converse.

In sum, we proved more than 40 theorems about Boolean algebras (the TPTP-
library currently contains around 100). Prover9 succeeded with every single task
we tried. This basic library of automatically verified statements can be used as
hypotheses for more advanced applications with relation algebras.

4 Boolean Algebras with Operators

Boolean algebras provide the foundations for more complex structures such as
relation algebras, cylindric algebras [11] or modal algebras [7]. All these struc-
tures can be understood as Boolean algebras with operators, which makes them
interesting candidates for ATP. But to our knowledge, an axiom-based approach

54 P. Höfner and G. Struth

with off-the-shelf ATP systems has not yet been attempted. This section fur-
ther follows Maddux’s book, but also Jónsson and Tarski’s seminal article on
Boolean algebras with operators [15] by automatically proving some of their
calculational statements. Since the proofs in these sources are essentially order-
based, we strongly rely on that axiomatisation for Prover9.

According to a classical definition by Jónsson and Tarski, two functions f and
g on a Boolean algebra are conjugate if they satisfy

f(x) · y = 0 ⇔ x · g(y) = 0 .

With the order-based encoding of Boolean algebras and the conjugation property,
Prover9 could verify a series of laws that is documented in Table 1. Again, the
most important laws can be organised into a lemma.

Table 1. Laws for Conjugates

Theorem t[s] # Theorem t[s]

(1) f(x + y) ≤ z ⇔ f(x) + f(y) ≤ z 182.51 (2) f(x + y) = f(x) + f(y) 0.16

(3) f(0) = 0 0.10 (4) x ≤ y ⇒ f(x) ≤ f(y) 14.98

(5) f(g(x)) ≤ x 138.93 (6) f(x · y) ≤ f(x) · f(y) 147.64

(7) f(x) + f(y) ≤ f(x + y) 141.11 (8) f(x) ≤ y ⇒ x ≤ g(y) 34.81

(9) f(x) ≤ y ⇐ x ≤ g(y) 8.10 (10) f(x) · y ≤ f(x · g(y)) · y 241.92

(11) ∀x, y.(f(x) · y = 0⇔ x · h(y) = 0)⇒ ∀z.(g(z) = h(z)) 86.75

(12) f(x · g(y)) ≤ f(x) · y 144.81

Lemma 4.1. Conjugate functions on a Boolean algebra

(i) are strict and additive;
(ii) induce a Galois connection;
(iii) satisfy modular laws;
(iv) are in one-to-one correspondence.

Proof. (i) holds by Equation (1), (2) and (3); (ii) holds by Equation (8) and
(9); (iii) holds by Equation (10); (iv) holds by Equation (11). "!

Often, a law of the form f(x) · y ≤ f(x · g(y)) is called modular law. Other
properties displayed in Table 1 are isotonicity of conjugates (Equation (4)), a
cancellation law (Equation (5)) and a subdistributivity law (Equation (6)).

Most of the theorems could be proved entirely from Huntington’s axioms and
the conjugation axiom, but some more complex ones such as (10) required the
addition of additional hypotheses, like the standard distributivity laws.

We used a manual form of “hypothesis learning” which can easily be imple-
mented as an automated procedure. To this end, we started with very small axiom
sets from which “explosive” axioms such as commutativity had been discarded.

On Automating the Calculus of Relations 55

We then added further hypotheses until a counterexample generator failed and
there was hope that the hypotheses are strong enough to entail the goal.The se-
lection of these hypotheses was usually based on a mixture of semantic knowledge
and blind guessing. We then tried the ATP system and repeated the procedure
with different hypotheses if the proof search failed within reasonable time. Usu-
ally, we set a time limit of 300 s. It has been experimentally confirmed that the
probability that an ATP system will prove a theorem beyond that threshold is
very low [27]. Interestingly, we frequently encountered situations where hypothe-
ses that were crucial for success were not needed in the proof itself, but acted as
catalysers for redundancy elimination. Detailed information about all deviations
from the standard axiomatisation is provided at our website [1].

The results of this section make some proofs in relation algebras (e.g., the
modular laws) simpler and more convenient. But they are also of wider interest.
Boolean algebras with operators are algebraic variants of (multi)modal logics.
Our experiments therefore suggest that the automation of modal logics through
the combination of off-the-shelf ATP systems with algebras might be a feasi-
ble alternative to existing special-purpose calculi and decision procedures that
extends to undecidable first-order modal logics.

5 Relation Algebras

Relation algebras can be perceived as Boolean algebras with operators corre-
sponding to functions like λx.a;x. As already mentioned, we follow Maddux’s
first-order axiomatisation. There are second-order variants of relation algebras in
which the underlying Boolean algebra is assumed to be complete and atomic [23].
Relation algebras are quite rich and complex structures; they are expressive
enough for modelling set theory [29]. Again we can group some of our experi-
ments into lemmas.

Lemma 5.1. Relation algebras are idempotent semirings with respect to join
and composition.

Proof. An idempotent semiring is a structure (S,+, ; , 0, 1) such that (S,+, 0) is a
commutative idempotent monoid, (S, ; , 1) is a monoid, multiplication distributes
over addition from left and right, and 0 is a left and right annihilator, i.e.,
0; a = 0 = a; 0. The facts needed for proving this are shown in Table 2. "!

Table 2. Relational Semiring Laws

Theorem t[s]

(13) x; (y + z) = x; y + x; z 3.9

(14) 1; x = x
0.06(15) 0; x = 0

(16) x; 0 = 0

56 P. Höfner and G. Struth

Table 3. Isotonicity Laws

Theorem t[s]

(17) x ≤ y ⇔ x̆ ≤ y̆ 0.13

(18) x ≤ y ⇒ x; z ≤ y; z
100.31

(19) x ≤ y ⇒ z; x ≤ z; y

Table 4. Schröder Laws

Theorem t[s]

(20) x; y · z = 0⇒ y · x̆; z = 0 287.82

(21) x; y · z = 0⇐ y · x̆; z = 0 264.49

Lemma 5.2. In relation algebras,

(i) relative products and conversion are isotone;
(ii) the maps λy.x; y and λy.x̆; y are conjugates.

Proof. See Table 3 for (i) and Table 4 for (ii). "!

The equivalence expressed by Equations (20) and (21) is called Schröder law.
This law is one of the working horses of relation algebras; often in the equivalent
and the dual form x; y ≤ z ⇔ x̆; z ≤ y ⇔ z; y̆ ≤ x. The Schröder laws are of
course also very helpful additional hypotheses for ATP systems.

The fact that the Schröder laws express conjugation shows a significant lim-
itation of the first-order approach. In a higher-order setting it would now be
possible to transfer all generic properties of conjugate functions or adjoints of
a Galois connection to the relational level. It would also be possible to exploit
the semiring duality that links the two equivalences of the Schröder laws. In the
pure first-order setting, all this work remains explicit.

Having identified the above conjugation it is evident that modular laws hold
in relation algebras, too. But while an automation in Boolean algebra with op-
erators was possible, we did not succeed in relation algebra without an axiom
restriction. The reason is that the operation of function application, which is
present in Boolean algebras with operators but not in relation algebras, reduces
the applicability of associativity of composition and prunes the search space.
To learn the appropriate restriction, we reused the axioms listed in the Prover9
output for Boolean algebras with operators. This was the key to success.

Lemma 5.3. The modular laws and the Dedekind law hold in relation algebras.

Proof. See Table 5. "!

Table 5. Modular and Dedekind Laws

Theorem t[s]

(22) x; (y · z) ≤ x; y · x; z 25.34

(23) z; x · y ≤ z; (x · z̆; y) · y 5444.61

(24) z; x · y ≤ (z · y; x̆); (x · z̆; y) 3.28

On Automating the Calculus of Relations 57

The Dedekind law (24) is another fundamental law of relation algebras. It is
also the most complex law automated in this section. We had to restrict the
relation algebra axioms and to add the modular laws as further hypotheses.

A rich calculus can be developed from these basic laws. Most of the laws we
tried could again be proved without any restriction from the relation algebra
axioms and with reasonable running times. Examples are displayed in Table 6.

Table 6. Further Relational Laws

Theorem t[s]

(25) 0̆ = 0

0.35(26) ̆ =
(27) x̆ = x̆

(28) (x · y)̆ = x̆ · y̆
(29) 0 = x̆ · y ⇔ 0 = x · y̆ 0.45

(30) 1̆ = 1 0.03

(31) x ≤ x;
0.26(32) x ≤ ;x

(33) ; =
(34) x; y · x; z = x; (y · z) · x; z 184.71

(35) y; x; x̆ ≤ y 3.81

Our experiments show that the calculus of relation algebras, as presented in
textbooks, can be automated without major obstacles. This does not mean that
this calculus is trivial. Novices might find it difficult to prove the laws in this
section by hand from the axioms given.

6 Functions, Vectors and Other Concepts

Relation algebras allow the abstract definition of various concepts, including
functions, vectors, points, residuals, symmetric quotients or subidentities, and
the proof of their essential properties [19,23]. These and more advanced concepts
are important, for instance, for program development with Alloy, B or Z, or for
the construction and verification of functional programs. Abrial’s B-Book [2],
in particular, contains long lists of algebraic properties involving these concepts
that have been abstracted from concrete binary relations.

A vector (or subset) is an element x of a relation algebra that satisfies x;� = x.
An intuition can perhaps best be provided through finite relations. These can be
represented as Boolean matrices with ones denoting that elements correspond-
ing to rows and columns are ordered pairs. In this setting, vectors correspond
to row-constant matrices, which are the only matrices that are preserved under

58 P. Höfner and G. Struth

multiplication with the matrix that contains only ones. Prover9 could easily
verify a series of basic properties of vectors. They are displayed in Table 7. To
speed up proofs we sometimes added some natural hypotheses like monotonici-
ties. Again, all details can be found at our website [1].

For proving (41) and (42) we also used the Dedekind law; the other statements
did not require further hypotheses.

A test (or subidentity) is an element below 1. Prover9 could prove a series of
laws for tests that are displayed in Table 8. They immediately imply that the
subalgebra of subidentities of a relation algebra is a Boolean algebra.

Table 7. Vector Laws for Relation Algebras

Theorem t[s]

(36) x; = x⇒ x; = x 0.14

(37) x; = x & y; = y ⇒ (x · y); = x · y 0.02

(38) x; = x⇒ (x · 1); y = x · y 0.13

(39) x; = x⇒ (y · x̆); (x · z) ≤ y; (x · z) 0.22

(40) x; = x⇒ (y · x̆); (x · z) ≤ (y · x̆); z 0.27

(41) x; = x⇒ (y · x̆); (x · z) ≥ y; (x · z) 1.46

(42) x; = x⇒ (y · x̆); (x · z) ≥ (y · x̆); z 1.61

Table 8. Test Laws for Relation Algebras

Theorem t[s]

(43) x ≤ 1⇒ x̆ = x 15.26

(44) x ≤ 1⇒ x; · y = x; y 63.38

(45) x ≤ 1⇒ x; · 1 = x · 1 15.22

(46) x ≤ 1 & y ≤ 1⇒ x; y = x · y 8.84

(47) x ≤ 1 & y ≤ 1⇒ x; z · y; z = (x · y); z 129.94

(48) x ≤ 1⇒ x; y · z = x; y · x; z 63.71

A (partial) function is an element x of a relation algebra satisfying x̆;x ≤ 1.
This condition concisely expresses that no domain element of a function can be
mapped to more than one range element. Facts about functions are displayed
in Table 9. Equation (49) says that functions are closed under composition.
In Equation (51) we used the distributivity law (50) to reduce waiting time.
Additional experiments with functions are again presented at our website.

An element of a relation algebra is total if 1 ≤ x; x̆. It is injective if its converse
is a function and it is surjective if its converse is total. Simple properties like the

On Automating the Calculus of Relations 59

Table 9. Laws for Functions

Theorem t[s]

(49) x̆; x ≤ 1 & y̆; y ≤ 1⇒ (x; y)̆; x; y ≤ 1 11.18

(50) x̆; x ≤ 1⇒ x; (y · z) = x; y · x; z 740.08

(51) x̆; x ≤ 1⇒ x; y · x; y = 0 0.15

(52) x ≤ 1⇒ x̆; x ≤ 1 0.01

ones in Table 9 can again easily be automated. Basic results for other entities
and derived operations are also feasible.

Finally, it can be verified that the Tarski rule x �= 0 ⇔ �;x;� = � is
not implied by Maddux’s axiomatisation of relation algebra. Mace4 produces a
counterexample with 4 elements within a few seconds.

The experiments of this section show that properties of many standard math-
ematical concepts can easily be proved automatically from our relational basis.
Including the proofs in Boolean algebras, our website documents more than 100
theorems about relation algebras.

7 Abrial’s Relatives

This section contains a first example that further demonstrates the power of re-
lation algebra combined with state-of-the-art ATP. Abrial’s B-Book [2] contains
a nice non-programming application of relational reasoning by analysing kinship
relations. To make the example more interesting (and less realistic), he imposes
some severe restrictions on marriages and families. Abrial’s example is appealing
because its specification is compact, all relational operations occur, and proofs
are short, but non-trivial for humans. The following list shows Abrial’s initial

Table 10. Kinship Relations

Theorem t[s]

(53) Mother = Father; Wife

1.54

(54) Spouse = Spouse˘

(55) Sibling = Sibling˘

(56) SiblingInLaw = SiblingInLaw˘

(57) Cousin = Cousin˘

(58) Father;Father˘ = Mother; Mother˘
(59) Father;Mother˘ = 0

(60) Mother;Father˘ = 0

(61) Father;Children = Mother;Children 1.48

60 P. Höfner and G. Struth

assumptions on kinship relations, but we formalise them in a slightly different,
more pointfree way.

1. PERSON is a set (cf. Section 6): PERSON;� = PERSON.
2. No person can be a man and a woman at the same time: Men ·Women = 0.
3. Every person is either a man or a woman: Men + Women = PERSON.
4. Only women have husbands, who must be men:

Women; Husband = 0 ∧ Husband; Men = 0.
5. Women have at most one husband: injective(Husband).
6. Men have at most one wife: Wife = Husband˘ ∧ injective(Wife).
7. Mothers are married women: Mother ≤ Women ∧ Mother; Husband = 0.

Abrial then defines further concepts from the ones just introduced.

Spouse = Husband + Wife ,

Father = Mother; Husband ,

Children = (Mother + Father)˘ ,
Daughter = Children; Women ,

Sibling = (Children ;̆ Children) · 1 ,
Brother = Sibling; Women ,

SiblingInLaw = Sibling; Spouse + Spouse; Sibling + Spouse; Sibling; Spouse ,

NephewOrNiece = (Sibling + SiblingInLaw); Children ,

UncleOrAunt = NephewOrNiece˘ ,
Cousin = UncleOrAunt; Children .

The specification of Sibling, in particular, may deserve some explanation. The
relation Children ;̆ Children links each child not only with its siblings, but also
with itself. Intersecting with 1 eliminates the reflexive part of this relation and
thus yields the real siblings.

Based on this specification, Abrial presents ten proof tasks which are shown in
Table 10, except for a pointwise law the proof of which would require additional
axioms. Proofs of the last four facts from Table 10 are displayed in the B-Book
and they alone cover more than two pages.

8 Simulation Laws for Data Refinement

Program refinement investigates the stepwise transformation of abstract spec-
ifications to executable code. Data refinement is a variant that considers the
transformation of abstract data types (ADTs) such as sets into concrete ADTs
such as lists, stacks or queues. Abstract ADTs are observed through the effects
of their operations on states, and operations are usually modelled as binary rela-
tions. Two further operations model the initialisation and finalisation of ADTs
with respect to a global state space. By definition, an abstract ADT is refined

On Automating the Calculus of Relations 61

by a concrete ADT if the relation induced by all execution sequences of ab-
stract operations between an abstract initialisation and an abstract finalisation
is contained in the relation induced by the corresponding concrete sequences.
To replace this by a local criterion, abstraction relations are introduced that
relate inputs and outputs of operations at the abstract and the concrete level.
de Roever and Engelhardt’s book contains further information [9]. Program re-
finement often requires inequational reasoning. Therefore we used isotonicity
of multiplication and transitivity as additional hypothesis in our experiments.
Named by de Roever and Engelhardt according to the shape of the corresponding
diagrams, U-simulations, L-simulations and their converses can be considered.
Formally, let x, y and z be elements of some relation algebra. Then

– x U-simulates y with respect to z (x ⊆z
U y) if z̆;x; z ≤ y,

– x L-simulates y with respect to z (x ⊆z
L y) if z̆;x ≤ y; z̆,

– x Ŭ -simulates y with respect to z (x ⊆z
Ŭ
y) if x ≤ z; y; z̆,

– x L̆-simulates y with respect to z (x ⊆z
L̆
y) if x; z ≤ z; y.

In all these definitions, z is the abstraction relation and⊆ the simulation relation.
We now consider compositionality properties of simulations.

Theorem 8.1 ([9]). Let z be a simulation relation.

(i) x1 ⊆z
U y1 and x2 ⊆z

U y2 imply x1;x2 ⊆z
U y1; y2 if z is total.

(ii) x1 ⊆z
Ŭ
y1 and x2 ⊆z

Ŭ
y2 imply x1;x2 ⊆z

Ŭ
y1; y2 if z is a function.

(iii) x1 ⊆z
L y1 and x2 ⊆z

L y2 imply x1;x2 ⊆z
L y1; y2, and similarly for L̆.

Proof. Prover9 needed less than 3 s for each individual claim. "!

Theorem 8.2 ([9]). x ⊆z1
L y and x ⊆z2

L y imply x ⊆z1;z2
L y, and similarly for

the other simulations.

Proof. Prover9 needed less than 1 s for the each implication. "!

Also the implications between different simulations could be automated.

Theorem 8.3 ([9]).

(i) If the simulation relation is a function then Ŭ-simulation implies L-, L̆- and
U-simulation, and U-simulation is implied by L- and L̆-simulation.

(ii) If the simulation relation is total then U-simulation implies L-, L̆ and Ŭ -
simulation, and Ŭ -simulation is implied by L- and L̆-simulation.

Proof. Prover9 presented proofs for both claims after less than 1 s. "!

We now prove simulation laws for iterations of relations. In relation algebras
over complete Boolean algebras, the finite iteration of an element x is defined
through the reflexive transitive closure

x∗ = x0 + x1 + x2 + . . . = sup(xi : i ≥ 0) ,

62 P. Höfner and G. Struth

where x0 = 1 and xi+1 = x;xi. This definition is rather useless for ATP systems.
We therefore use the well known unfold and induction laws

1 + x;x∗ ≤ x∗ , 1 + x∗;x ≤ x∗ ,
z + x; y ≤ y ⇒ x∗; z ≤ y , z + y;x ≤ y ⇒ z;x∗ ≤ y .

The proof that these laws hold in relation algebras over complete Boolean alge-
bras requires a simple induction. Based on this first-order encoding, a series of
laws could easily be verified automatically. Some example experiments are listed
in Table 11; more can be found at our website.

Table 11. Relational Iteration Laws

Theorem t[s]

(62) x∗; x∗ = x∗
2.55

(63) (x∗)∗ = x∗

(64) x; y ≤ y ⇒ x∗; y ≤ y 0.02

(65) z; x ≤ y; z ⇒ z; x∗ ≤ y∗; z 2.20

(66) (x; y)∗; x = x; (y;x)∗ 2.05

To speed up proofs we used the join splitting law x+ y ≤ z ⇔ x ≤ z ∧ y ≤ z
as an additional hypothesis in the proofs of (65) and (66).

The properties from Table 11 yield useful hypotheses for automating de Roever
and Engelhardt’s soundness proofs of simulations for data refinement. Soundness
of simulations means that the existence of a simulation between the particular op-
erations of ADTs implies that there is a data refinement. In the sequel, we restrict
our attention to L-simulations.

Theorem 8.4 ([9]). L-simulations are sound for data refinement.

Proof. Let ia, xa
i and fa denote the initialisation, the operations and the fi-

nalisation at the abstract level; let ic, xc
i and f c denote the corresponding re-

lations at the concrete level. We can assume that ic ≤ ia; z̆, xc ⊆z
L xa and

z̆; f c ≤ fa holds for arbitrary atomic operations xa and xc. We must show that
ic; sc; f c ≤ ia; sa; fa holds for arbitrary sequences sa and sc of operations.

The proof uses structural induction over sa. We first prove that sc ⊆z
L sa

holds for some sc. The entire induction can, of course, not be treated by ATPs,
but the particular base cases and induction steps can.

We consider the empty operation 0 and the skip operation 1 as base cases.
Prover9 showed in 9.95 s that 0 ⊆z

L 0 and 1 ⊆z
L 1. The case of atomic operations

holds by assumption. For the induction step we consider abstract operations of
the form sa1 ; s

a
2 , sa1 + sa2 and (sa)∗.

(i) Let sc1 ⊆z
L s

a
1 and sc2 ⊆z

L s
a
2 . But sc1; sc2 ⊆z

L s
a
1 ; sa2 has already been shown in

Theorem 8.1.

On Automating the Calculus of Relations 63

(ii) Let sc1 ⊆z
L s

a
1 and sc2 ⊆z

L s
a
2 . Using a distributivity law as additional hypoth-

esis, Prover9 needed 1.78 s to show that sc1 + sc2 ⊆z
L s

a
1 + sa2 .

(iii) Let sc ⊆z
L s

a. For the automated proof we used the unfold and induction
laws of reflexive transitive closure and added Equation (65) as an additional
hypothesis. Then Prover9 could show that (sc)∗ ⊆z

L (sa)∗ in less than 1 s.
For the final step, assume that ic ≤ ia; z̆, z̆; f c ≤ fa and sc ⊆z

L s
a, which has

just been shown. Prover9 then showed in 0.53 s that ic; sc; f c ≤ ia; sa; fa. "!

Automated proofs for the remaining simulations are also straightforward. Inter-
estingly, de Rover and Engelhardt do not mention that U must be total and
Ŭ must be a function in these proofs; Mace4 immediately found counterexam-
ples to Part (iii) of these proofs without these assumptions. Here, we also used
Equation (66) instead of (65) as additional hypothesis.
L- and L̆-simulations are also complete for data refinement, but proofs in

the literature are pointwise (cf. [9]) and additional effort would be required to
extract a purely relation-algebraic proof. We leave this for future work.

9 Outlook

Relations can not only model abstract data types. They also provide standard
semantics for imperative and functional programs. In the imperative case, it
is very natural to model the input/output behaviour of a program as a binary
relation between states encoded as vectors. The standard weakest liberal precon-
dition semantics for partial correctness and the weakest precondition semantics
for total correctness can be defined in the setting of relation algebra [5,20]. The
wlp-operator for a program x and a state p can be defined as wlp(x, p) = x; p. The
wp-operators with respect to a program x, a state p and a vector τ(x) denoting
the guaranteed termination of x can be defined as wp(x, p) = wlp(x, p) · τ(x).
Standard laws of the w(l)p-calculi such as wlp(x + y, p) = wlp(x, p) · wlp(y, p),
wp(x+y, p) = wp(x, p)·wp(y, p), wlp(x, p·q) = wlp(x, p)·wlp(x, q) or wp(x, p·q) =
wp(x, p) · wp(x, q) could then be automatically derived without any difficulties.

Our examples suggest that a combination of relation algebras with ATP sys-
tems could contribute to make formal methods more automatic and user-friendly.
All current verification tools for formal methods like B or Z are highly interac-
tive. Although the translation of system specifications into relational semantics
is rather simple and can yield very concise expressions, the manipulation of re-
lational expressions in verification tasks is usually cumbersome for non-experts.
Encapsulating the calculus as far as possible by using ATP behind the scenes
could improve this situation. Practical verification tasks often require the integra-
tion of algebraic techniques into a wider context: Most induction proofs require
higher-order reasoning, but the base case and the induction step can often be
discharged algebraically. Other applications might require pointwise reasoning
with concrete functions and relations and with assignments. But pointwise prop-
erties can often be abstracted into bridge-lemmas and proofs then confined to
the abstract algebraic layer. In this sense we envisage the integration of relation

64 P. Höfner and G. Struth

algebras into ATP systems as a novel light-weight formal method that should
be extended by higher-order techniques and combined with decision procedures.

10 Conclusion

We automatically verified more than hundred theorems of relation algebras with
Prover9 and Mace4. Many of these proofs were considered worth publishing by
eminent mathematicians some decades ago and most students would probably
still find them difficult. Our experiments suggest that the automation of re-
lation algebras with off-the-shelf theorem provers is feasible. This presents an
interesting alternative to higher-order, special-purpose, translational and finitist
approaches. The statements proved form a basic library that can safely be used
and extended. Our results pave the way for interesting applications in relational
software development methods and automated deduction with modal logics. A
larger case study, in which the experiments of this paper have been replayed
with other ATP systems [8], confirms our results.

We envisage three main directions for further work. First, to be more useful in
formal methods, ways of combining the abstract pointfree level with the concrete
level of data need to be developed. Second, an integration of ordered chaining
techniques [3] into modern ATP systems would certainly make relational reason-
ing, which is predominantly inequational, more efficiently. Third, a combination
with more powerful hypothesis learning techniques seems indispensable for tack-
ling more complex applications and larger specifications. The obvious impact on
formal verification technology makes these tasks certainly worth pursuing.

References

1. http://www.dcs.shef.ac.uk/∼georg/ka

2. Abrial, J.-R.: The B-Book. Cambridge University Press, Cambridge (1996)

3. Bachmair, L., Ganzinger, H.: Ordered chaining calculi for first-order theories of
transitive relations. J. ACM 45(6), 1007–1049 (1998)

4. Berghammer, R., Neumann, F.: An OBDD-based computer algebra system for
relations. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2005.
LNCS, vol. 3718, pp. 40–51. Springer, Heidelberg (2005)

5. Berghammer, R., Zierer, H.: Relational algebraic semantics of deterministic and
nondeterministic programs. Theoretical Computer Science 43, 123–147 (1986)

6. Bird, R., de Moor, O.: Algebra of Programming. Prentice-Hall, Englewood Cliffs
(1996)

7. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press,
Cambridge (2001)

8. Dang, H.-H., Höfner, P.: First-order theorem prover evaluation w.r.t. relation-
and Kleene algebra. In: R. Berghammer, B. Möller, and G. Struth, editors,
RelMiCS10/AKA5 - PhD Programme, Technical Report 2008-04, University of
Augsburg, pp. 48–52 (2008)

http://www.dcs.shef.ac.uk/~georg/ka

On Automating the Calculus of Relations 65

9. de Roever, W.-P., Engelhardt, K.: Data Refinement: Model-Oriented Proof Meth-
ods and their Comparison. Cambridge University Press, Cambridge (2001)

10. Formisano, A., Omodeo, E.G., Or�lowska, E.: A Prolog tool for relational transla-
tions of modal logics: A front-end for relational proof systems. In: Beckert, B. (ed.)
TABLEAUX 2005. LNCS (LNAI), vol. 3702, pp. 1–11. Springer, Heidelberg (2005)

11. Henkin, L., Monk, D.J., Tarski, A.: Cylindric Algebras, Part I. North-Holland,
Amsterdam (1971)

12. Huntington, E.V.: Boolean algebra. A correction. Trans. AMS 35, 557–558 (1933)

13. Huntington, E.V.: New sets of independent postulates for the algebra of logic.
Trans. AMS 35, 274–304 (1933)

14. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. MIT Press,
Cambridge (2006)

15. Jónsson, B., Tarski, A.: Boolean algebras with operators I. American J. Mathe-
matics 74, 891–939 (1951)

16. Kahl, W.: Calculational relation-algebraic proofs in Isabelle/Isar. In: Berghammer,
R., Möller, B., Struth, G. (eds.) RelMiCS 2003. LNCS, vol. 3051, pp. 179–190.
Springer, Heidelberg (2004)

17. MacCaull, W., Orlowska, E.: Correspondence results for relational proof systems
with application to the Lambek calculus. Studia Logica 71(3), 389–414 (2002)

18. Maddux, R.: A sequent calculus for relation algebras. Annals of Pure and Applied
Logic 25, 73–101 (1983)

19. Maddux, R.: Relation Algebras. Elsevier, Amsterdam (2006)

20. Maddux, R.D.: Relation-algebraic semantics. Theoretical Computer Sci-
ence 160(1&2), 1–85 (1996)

21. McCune, W.: Prover9 and Mace4, http://www.cs.unm.edu/∼mccune/prover9

22. McCune, W.: Solution of the Robbins problem. J. Automated Reasoning 19(3),
263–276 (1997)

23. Schmidt, G., Ströhlein, T.: Relations and Graphs: Discrete Mathematics for Com-
puter Scientists. Springer, Heidelberg (1993)

24. Sinz, C.: System description: ARA — An automated theorem prover for relation
algebras. In: McAllester, D. (ed.) CADE 2000. LNCS, vol. 1831, pp. 177–182.
Springer, Heidelberg (2000)

25. Spivey, J.M.: Understanding Z. Cambridge University Press, Cambridge (1988)

26. Sutcliffe, G., Suttner, C.: The TPTP problem library: CNF release v1.2.1. J. Au-
tomated Reasoning 21(2), 177–203 (1998)

27. Sutcliffe, G., Suttner, C.: Evaluating general purpose automated theorem proving
systems. Artificial Intelligence 131(1–2), 39–54 (2001)

28. Tarski, A.: On the calculus of relations. Journal of Symbolic Logic 6(3), 73–89
(1941)

29. Tarski, A., Givant, S.R.: A Formalization of Set Theory Without Variables. Amer-
ican Mathematical Society (1987)

30. von Oheimb, D., Gritzner, T.F.: Rall: Machine-supported proofs for relation alge-
bra. In: McCune, W. (ed.) CADE 1997. LNCS, vol. 1249, pp. 380–394. Springer,
Heidelberg (1997)

31. Weidenbach, C., Schmidt, R.A., Hillenbrand, T., Rusev, R., Topic, D.: System
description: SPASS version 3.0. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI),
vol. 4603, pp. 514–520. Springer, Heidelberg (2007)

http://www.cs.unm.edu/~mccune/prover9

66 P. Höfner and G. Struth

A Relation Algebra in TPTP-style

%---- Boolean algebra (Huntington)
fof(join_commutativity,axiom,(

! [X0,X1] : join(X0,X1) = join(X1,X0))).

fof(associativity,axiom,(
! [X0,X1,X2] : join(X0,join(X1,X2)) = join(join(X0,X1),X2))).

fof(Huntington,axiom,(
! [X0,X1] : X0 = join(complement(join(complement(X0),complement(X1))),

complement(join(complement(X0),X1))))).

fof(meet_definiton,axiom,(
! [X0,X1] : meet(X0,X1) = complement(join(complement(X0),complement(X1))))).

%---- Sequential Composition
fof(composition_associativity,axiom,(

! [X0,X1,X2] : composition(X0,composition(X1,X2)) =
composition(composition(X0,X1),X2))).

fof(composition_identity,axiom,(
! [X0] : composition(X0,one) = X0)).

fof(composition_distributivity,axiom,(
! [X0,X1,X2] : composition(join(X0,X1),X2) =

join(composition(X0,X2),composition(X1,X2)))).

%---- Converse
fof(converse_idempotence,axiom,(

! [X0] : converse(converse(X0)) = X0)).

fof(converse_additivity,axiom,(
! [X0,X1] : converse(join(X0,X1)) = join(converse(X0),converse(X1)))).

fof(converse_multiplicativity,axiom,(
! [X0,X1] : converse(composition(X0,X1)) =

composition(converse(X1),converse(X0)))).

fof(converse_cancellativity,axiom,(
! [X0,X1] : join(composition(converse(X0),complement(composition(X0,X1))),

complement(X1)) = complement(X1))).

Towards SMT Model Checking of

Array-Based Systems

Silvio Ghilardi1, Enrica Nicolini2, Silvio Ranise1,2, and Daniele Zucchelli1

1 Dipartimento di Informatica, Università degli Studi di Milano, Italia
2 LORIA & INRIA-Lorraine, Nancy, France

Abstract. We introduce the notion of array-based system as a suit-
able abstraction of infinite state systems such as broadcast protocols
or sorting programs. By using a class of quantified-first order formulae
to symbolically represent array-based systems, we propose methods to
check safety (invariance) and liveness (recurrence) properties on top of
Satisfiability Modulo Theories solvers. We find hypotheses under which
the verification procedures for such properties can be fully mechanized.

1 Introduction

Model checking of infinite-state systems manipulating arrays – e.g., broadcast
protocols, lossy channel systems, or sorting programs – is a hot topic in verifi-
cation. The key problem is to verify the correctness of such systems regardless
of the number of elements (processes, data, or integers) stored in the array,
called uniform verification problem. In this paper, we propose array-based sys-
tems as a suitable abstraction of broadcast protocols, lossy channel systems,
or, more in general, programs manipulating arrays (Section 3). The notion of
array-based system is parametric with respect to a theory of indexes (which,
for parametrized systems, specifies the topology of processes) and a theory of
elements (which, again for parametrized systems, specifies the data manipulated
by the system). Then (Section 3.1), we show how states and transitions of a
large class of array-based systems can be symbolically represented by a class
of quantified first-order formulae whose satisfiability problem is decidable under
reasonable hypotheses on the theories of indexes and elements (Section 4). We
also sketch how to extend the lazy Satisfiability Modulo Theories (SMT) tech-
niques [16] by a suitable instantiation strategy to handle universally quantified
variables (over indexes) so as to implement the satisfiability procedure for the
class of quantified formulae under consideration (Figure 2). The capability to
handle a (limited form) of universal quantification is crucial to reduce entail-
ment between formulae representing states to satisfiability of a formula in the
class of quantified formulae previously defined. This observation together with
closure under pre-image computation of the kind of formulae representing un-
safe states allows us to implement a backward reachability procedure (see, e.g.,
[12], or also [15] for a declarative approach) for checking safety properties of
array-based systems (Section 5). In general, the procedure may not terminate;

A. Armando, P. Baumgartner, and G. Dowek (Eds.): IJCAR 2008, LNCS 5195, pp. 67–82, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

68 S. Ghilardi et al.

but, under some additional assumptions on the theory of elements, we are able
to prove termination by revisiting the notion of configuration (see, e.g., [1]) in
first-order model-theory (Section 5.2). Finally (Section 6), we show the flexibil-
ity of our approach by studying the problem of checking the class of liveness
properties called recurrences [13]. We devise deductive methods to check such
properties based on the synthesis of so-called progress conditions at quantifier
free level and we show how to fully mechanize our technique under the same
hypotheses for the termination of the backward reachability procedure.

For space reasons, we did not include proofs; for the same reason, although our
framework covers all examples discussed in [2,3] (and more), only one running
example is discussed. For both proofs and examples, the reader is referred to the
Technical Report [10].

2 Formal Preliminaries

We assume the usual first-order syntactic notions of signature, term, formula,
quantifier free formula, and so on; equality is always included in our signatures. If
x is a finite set of variables andΣ is a signature, by aΣ(x)-term, -formula, etc. we
mean a term, formula, etc. in which at most the x occur free (notations like t(x),
ϕ(x) emphasize the fact that the term t or the formula ϕ in in fact a Σ(x)-term
or a Σ(x)-formula, respectively). The notions of interpretation, satisfiability,
validity, and logical consequence are also the standard ones; when we speak
about satisfiability (resp. validity) of a formula containing free variables, we
mean satisfiability of its existential (resp. universal) closure. If M = (M, I)
is a Σ-structure, a Σ-substructure of M is a Σ-structure having as domain a
subset of M which is closed under the operations of Σ (in a Σ-substructure,
moreover, the interpretation of the symbols of Σ is given by restriction). The Σ-
structure generated by a subset X of M (which is not assumed now to be closed
under the Σ-operations) is the smallest Σ-substructure of M whose domain
contains X and, if this Σ-substructure coincides with the whole M, we say
that X generates M. A Σ-embedding (or, simply, an embedding) between two
Σ-structures M = (M, I) and N = (N,J) is any mapping μ : M −→ N
among the corresponding support sets which is an isomorphism between M and
the Σ-substructure of N whose underlying domain is the image of μ (thus, in
particular, for μ to be an embedding, the image of μ must be closed under the
Σ-operations). A class C of structures is closed under substructures iff whenever
M ∈ C and N is (isomorphic to) a substructure of M, then N ∈ C.

Contrary to previous papers of ours, we prefer to have here a more liberal
notion of a theory, so we identify a theory T with a pair (Σ, C), where Σ is a
signature and C is a class of Σ-structures (the structures in C are called the
models of T). The notion of T -satisfiability of ϕ means the satisfiability of ϕ in
a Σ-structure from C; similarly, T -validity of a sentence ϕ (noted T |= ϕ) means
the truth of ϕ in all M ∈ C. The Satisfiability Modulo Theory T , SMT(T),
problem amounts to establish the T -satisfiability of an arbitrary first-order for-
mula (hence possibly containing quantifiers), w.r.t. some background theory T .

Towards SMT Model Checking of Array-Based Systems 69

A theory solver for the theory T (T -solver) is any procedure capable of establish-
ing whether any given finite conjunction of literals is T -satisfiable or not. The
so-called lazy approach to solve SMT(T) problems for quantifier-free formulae
consists of integrating a Boolean enumerator (usually based on a refinement of
the DPLL algorithm) with a T -solver (see [14,16] for an overview). Hence, by
assuming the existence of a T -solver, it is always possible to build a (lazy SMT)
solver capable of checking the T -satisfiability of arbitrary Boolean combinations
of atoms in T (or, equivalently, quantifier-free formulae). For efficiency, a T -solver
is required to provide a more refined interface, such as returning a subset of a
T -unsatisfiable input set of literals which is still T -unsatisfiable, called conflict
set (again see [16] for details).

We say that T admits quantifier elimination iff for every formula ϕ(x) one
can compute a quantifier-free formula ϕ′(x) which is T -equivalent to it (i.e. such
that T |= ∀x(ϕ(x)↔ ϕ′(x))). Linear Arithmetics, Real Arithmetics, acyclic lists,
and enumerated datatype theories (see below) admit elimination of quantifiers.

A theory T = (Σ, C) is said to be locally finite iff Σ is finite and, for every finite
set of variables x, there are finitely many Σ(x)-terms t1, . . . , tk such that for
every further Σ(x)-term u, we have that T |= u = ti (for some i ∈ {1, . . . , kx}).
The terms t1, . . . , tk are called Σ(x)-representative terms; if they are effectively
computable from x (and ti is computable from u), then T is said to be effectively
locally finite (in the following, when we say ‘locally finite’, we in fact always mean
‘effectively locally finite’). If Σ is finite and does not contain any function symbol
(i.e. Σ is a purely relational signature), then any Σ-theory is effectively locally
finite; other effectively locally finite theories are Boolean algebras and Linear
Arithmetic modulo a fixed integer.

Let Σ be a finite signature; an enumerated datatype theory in Σ is a theory
whose class of models contains only a single finite Σ-structure M = (M, I);
we require M to have the additional property that for every m ∈ M there
is a constant c ∈ Σ such that cI = m. It is easy to see that an enumerated
datatype theory admits quantifier elimination (since ∃xϕ(x) is T -equivalent to
ϕ(c1)∨ · · · ∨ϕ(cn), where c1, ..., cn are interpreted as the finitely many elements
of the enumerated datatype) and is effectively locally finite.

In the following, it is more natural to adopt a many-sorted language. All
notions introduced above (such as term, formula, structure, and satisfiability)
can be easily adapted to many-sorted logic, see e.g. Chapter XX of [8].

3 Array-Based Systems and Their Symbolic
Representation

We develop a framework to state and solve model checking problems for safety
and liveness of a particular class of infinite state systems by using deductive
(more precisely, SMT) techniques. We focus on the class of systems whose state
can be described by a finite collections of arrays, which we call array-based
systems. As an example, consider parameterized systems, i.e. systems consisting
of an arbitrary number of identical finite-state processes organized in a linear

x

x

70 S. Ghilardi et al.

array: a state a of such a parameterized system can be seen as a state of an
array-based system (in the formal sense of Definitions 3.2 and 3.3 below), where
the indexes of the domain of the function assigned to the state variable a are
the identifiers of the processes and the elements of a are the data describing one
of the finitely many states of each process.

Array-based Systems. To develop our formal model, we introduce three theories.
We use two mono-sorted theories TI = (ΣI , CI) (of indexes) and TE = (ΣE , CE)
(of elements), whose only sort symbol are called INDEX and ELEM, respectively.
TI specifies the ‘topology’ of the processes, e.g., in the case of parameterized
systems informally discussed above, ΣI contains only the equality symbol ‘=’
and CI is the class of all finite sets. Other interesting examples of TI can be
obtained by taking ΣI to contain a binary predicate symbol R (besides =) and
CI to be the class of structures where R is interpreted as a total order, a graph,
a forest, etc. For parameterized systems with finite-state processes, TE can be
the theory of an enumerated datatype. For the larger class of parameterized
systems (e.g., the one considered in [2,3]) admitting integer (or real) variables
local to each process, TE can be the theory whose class of models consists of a
single structure (like real numbers under addition and/or ordering). Notice that
in concrete applications, TE has a single model (e.g. an enumerate datatype, or
the structure of real/natural numbers under suitable operations and relations),
whereas TI has many models (e.g. it has as models all sets, all finite sets, all
graphs, all finite graphs, etc.). The technical hypotheses we shall need in Sections
4 and 5 on TI and TE are fixed in the following:

Definition 3.1. An index theory TI = (ΣI , CI) is a mono-sorted theory (let
us call INDEX its sort) which is locally finite, closed under substructures and
whose quantifier free fragment is decidable for TI-satisfiability. An element the-
ory TE = (ΣE , CE) is a mono-sorted theory (let us call ELEM its sort) which
admits quantifier elimination and whose quantifier free fragment is decidable for
TE-satisfiability.

One may wonder how restrictive are the assumptions of the above definition:
it turns out that they are very light (for instance, they do not rule out any
of the examples considered in [2,3]). In fact, quantifier elimination holds for
common datatype theories (integers, reals, enumerated datatypes, etc.) and the
hypotheses on index theory are satisfied by most process ‘topologies’.1

The third theory AE
I = (Σ, C) we need is obtained by combining an in-

dex theory TI and an element theory TE as follows. First, AE
I has three sort

symbols: INDEX, ELEM, and ARRAY; the signature Σ contains all the symbols in
the disjoint union ΣI ∪ ΣE and a further binary function symbol apply of sort
ARRAY× INDEX −→ ELEM. (In the following, we abbreviate apply(a, i) with a[i],
for a term of sort ARRAY and i term of sort INDEX.) Second, a three-sorted struc-
ture M = (INDEXM, ELEMM, ARRAYM, I) is in the class C iff ARRAYM is the set
1 They typically fail when processes are arranged in a ring (e.g. in the ‘dining philoso-

phers’ example): rings require a unary function symbol to be formalized and the
bijectivity constraint to be imposed is insufficient to make the theory locally finite.

Towards SMT Model Checking of Array-Based Systems 71

of (total) functions from INDEXM to ELEMM, the function symbol apply is inter-
preted as function application (i.e. as the standard reading operation for arrays),
and (INDEXM, I|ΣI

), (ELEMM, I|ΣE
) are models of TI and TE , respectively – here

I|ΣI
, I|ΣE

are the restriction of I to the symbols of ΣI , ΣE . (In the following,
we use the notations MI and ME for (INDEXM, I|ΣI

) and (ELEMM, I|ΣE
), re-

spectively.) If the model M of AE
I is such that INDEXM is a finite set, then M

is called a finite index model.
For the remaining part of the paper, we fix an index theory TI = (ΣI , CI)

and an element theory, TE = (ΣE , CE) (we also let AE
I = (Σ, C) be the

corresponding combined theory).
Once the theories constraining indexes and elements are fixed, we need the

notions of state, initial state and state transition to complete our picture. In a
symbolic setting, these are provided by the following definitions:

Definition 3.2. An array-based (transition) system (for (TI , TE)) is a triple
S = (a, I, τ) where:

– a is a tuple of variables of sort ARRAY (these are the state variables);
– I(a) is a Σ(a)-formula (this is the initial state formula);
– τ(a, a′) is a Σ(a, a′)-formula – here a′ is a renamed copy of the tuple a (this

is the transition formula).

Definition 3.3. Let S = (a, I, τ) be an array-based transition system. Given a
model M of the combined theory AE

I , an M-state (or, simply, a state) of S is an
assignment mapping the state variables a to total functions s from the domain
of MI to the domain of ME. A run of the array-based system is a (possibly
infinite) sequence s0, s1, ... of states such that2 M |= I(s0) and M |= τ(sk, sk+1)
for k ≥ 0.

For simplicity, below, we assume that the tuple of array state variables a is a
single variable a: all definitions and results of the paper can be easily generalized
to the case of finitely many array variables and to the case of multi-sorted TI , TE

(see [10] for a discussion on these topics).

3.1 Symbolic Representation of States and Transitions

The next step is to identify suitable syntactic restrictions for the formulae I, τ
appearing in the definition of an array-based system. Preliminarily, we introduce
some notational conventions that alleviate the burden of writing and understand-
ing the various formulae for states and transitions: d, e, . . . range over variables
of sort ELEM, a, b . . . over variables of sort ARRAY, i, j, k, . . . over variables of sort
INDEX, and α, β, . . . over variables of either sort ELEM or sort INDEX. An under-
lined variable name abbreviates a tuple of variables of unspecified (but finite)
length; by subscripting with an integer an underlined variable name, we indi-
cate the corresponding component of the tuple (e.g., i may abbreviate i1, . . . , in

2 Notations like M |= I(s0) means that the formula I(a) is true in M under the
assignment mapping the a’s to the s0’s.

72 S. Ghilardi et al.

and ik indicates ik, for 1 ≤ k ≤ n). We also use a[i] to abbreviate the tu-
ple of terms a[i1], . . . , a[in]. If j and i are tuples with the same length n, then
i = j abbreviates

∧n
k=1(ik = j

k
). Possibly sub/super-scripted expressions of the

forms φ(α), ψ(α), . . . (with sub-/super-scripts) always denote quantifier-free
(ΣI ∪ ΣE)-formulae in which at most the variables α occur (notice in
particular that no array variable and no apply constructor a[i] can occur here).
Also, φ(α, t/β) (or simply φ(α, t)) abbreviates the substitution of the terms t for
the variables β (now apply constructors may appear in t). Thus, for instance,
when we write φ(i, a[i]), we mean the formula obtained by the replacements
e �→ a[i] in the quantifier free formula φ(i, e) (the latter contains at most the
element variables e and at most the index variables i).

We are now ready to introduce suitably restricted classes of formulae for
representing states and transitions of array-based systems.

States. An ∃I-formula is a formula of the form ∃i φ(i, a[i]): such a formula
may be used to model sets of unsafe states of parameterized systems, such as
violations of mutual exclusion:

∃i ∃j (i �= j ∧ a[i] = use ∧ a[j] = use), (1)

where use is a constant symbol of sort ELEM in an enumerated datatype theory.
A ∀I-formula is a formula of the form ∀i φ(i, a[i]): this is logically equivalent to
the negation of an ∃I -formula and may be used to model initial sets of states of
parameterized systems, such as “all processes are in a given state”:

∀i (a[i] = idle),

where idle is a constant symbol of sort ELEM in an enumerated datatype theory.

Transitions. The intuition underlying the class of formulae representing transi-
tions of array-based systems can be found by analyzing the structure of transi-
tions of parameterized systems. In such systems, a transition has typically two
components. The local component (see the formula φL in the Definition 3.4 be-
low) specifies the transitions of a given fixed number of processes; the global
component (see the formula φG in the Definition 3.4 below) specifies the tran-
sitions done by all the other processes in the array as a reaction to those taken
by the processes involved in the local component. We are lead to the following:

Definition 3.4. Consider formulae φL(i, d, d′) and φG(i, d, d′, j, e, e′), where φG

satisfies the following seriality requirement:

AE
I |= ∀i∀d ∀d′ ∀j ∀e ∃e′ φG(i, d, d′, j, e, e′). (2)

The T-formula with local component φL and global component φG is the formula

∃i (φL(i, a[i], a′[i]) ∧ UpdateG(i, a, a′)), (3)

Towards SMT Model Checking of Array-Based Systems 73

where we used the explicit definition (i.e. the abbreviation)

UpdateG(i, a, a′) :⇔ ∀j φG(i, a[i], a′[i], j, a[j], a′[j]). (4)

Recall that, according to our conventions, the local component φL and the global
component φG are quantifier-free (ΣI ∪ΣE)-formulae. In φG(i, d, d′, j, e, e′) the
variables i, d, d′ are called side parameters (these variables are instantiated in
(3)-(4) by i, a[i], a′[i], respectively) and the variables j, e, e′ are called proper pa-
rameters (these variables are instantiated in (3)-(4) by j, a[j], a′[j], respectively).
The intuition underlying the formula UpdateG(i, a, a′) defined by (4) is that the
array a′ is obtained as a global update of the array a according to φG. In fact,
in (4), the proper parameters of φG are instantiated as j, a[j], a′[j], i.e. as the
index to be updated, the old, and the new content of that index. Notice also that
this updating is largely non-deterministic, because a T -formula like (3) does not
univocally characterize the system evolution: this is revealed by the fact that
φG is not a definable function, and by the fact that the side parameters d′ that
may occur in φG are instantiated as the updated values a′[i] (this circularity
makes sense only if we view the T -formula (3) as expressing a constraint – not
necessarily an assignment – for the updated array a′).

In the remaining part of the paper, we fix an array-based system S =
(a, I, τ), in which the initial formula I is a ∀I-formula and the transition
formula τ is a disjunction of T-formulae.

Example 3.5. We present here the formalization into our framework of the Sim-
plified Bakery Algorithm that can be found for instance in [3]. We take as TI the
pure equality theory in the signature ΣI = {=}; to introduce TE , we analyze
which kind of local data we need. The data e appearing in an array of processes
are records consisting of the following two fields: (i) the field e.s represents the sta-
tus (e.s ∈ {idle, wait, use, crash}); (ii) the field e.t represents the ticket (tickets
range in the real interval [0,∞), seen as a linear order with first element 0). Thus
we need a two-sorted TE and two array variables in the language (or, a single ar-
ray variable and a three-sorted TE, comprising a sort for the cartesian product):
as pointed out above, such multi-sorted extensions of our framework are indeed
straightforward. Models for TE are the obvious ones: one sort is interpreted as an
enumerated datatype and the other sort is interpreted as the positive real domain.
The initial formula I is ∀i (a[i].s = idle). The transition τ(a, a′) is the disjunction
τ1(a, a′)∨ τ2(a, a′)∨ τ3(a, a′), where the T -formulae τn (n ≤ 3) have the standard
format from Definition 3.4 – namely ∃i (φn

L(i, a[i], a′[i])∧Updaten
G(i, a, a′)) – and

the local and the global components φn
L, φ

n
G are specified in Figure 1 below. When

formalizing the component transitions τ1, τ2, we use the approximation trick (see
[2,3]): transitions τ1, τ2, in order to fire, would require a universally quantified
guard which cannot be expressed in our format. We circumvent the problem by
imposing that all the processes that are counterexamples to the guard go into a
‘crash’ state: this trick augments the possible runs of the system by introducing
‘spurious runs’, however if a safety property holds for the augmented ‘approxi-
mate’ system, then it also holds for the original system (the same is true for the
recurrence properties of Section 6). %

74 S. Ghilardi et al.

Local components. The local components φn
L, for n ≤ 3, are

– φ1
L :≡ a[i].s = idle ∧ a′[i].s = wait ∧ a′[i].t > 0 (the selected process goes

from the state idle to wait and takes a nonzero ticket);
– φ2

L :≡ a[i].s = wait ∧ a′[i] = 〈use, a[i].t〉 (the selected process goes from the
state wait to use and keeps the same ticket);

– φ3
L :≡ a[i].s = use ∧ a′[i] = 〈idle, 0〉 (the selected process goes from the

state use to idle and the ticket is reset to zero).

Global components. The global components φn
G(i, a[i], a′[i], j, a[j], a′[j]), for n ≤ 3,

make case distinction as follows (the first case delegates the update to the local
component):

– φ1
G :≡ (j = i ∧ a′[j] = a′[i]) ∨ (j �= i ∧ a[j].t < a[i].t ∧ a′[j] = a[j]) ∨ (j �=

i∧a[j].t ≥ a[i].t∧a′[j] = 〈crash, a[j].t〉) (if the selected process i goes from idle
to wait, then any other process j keeps the same state/ticket, unless it has a
ticket bigger or equal to the ticket of i – in which case j crashes);

– φ2
G :≡ (j = i ∧ a′[j] = a′[i]) ∨ (j �= i ∧ (a[j].t > a[i].t ∨ a[j].t = 0) ∧ a′[j] =

a[j]) ∨ (j �= i ∧ ¬(a[j].t > a[i].t ∨ a[j].t = 0) ∧ a′[j] = 〈crash, a[j].t〉) (if the
selected process i goes from wait to use, then any other process j keeps the
same state/ticket, unless it has a nonzero ticket smaller than the ticket of i – in
which case j crashes);

– φ3
G :≡ (j = i ∧ a′[j] = a′[i]) ∨ (j �= i ∧ a′[j] = a[j]) (if the selected process i

goes from use to idle, then any other process keeps the same state/ticket).

Fig. 1. The Simplified Bakery Transition

4 Symbolic Representation and SMT Solving

To make effective use of our framework, we need to be able to check whether
certain requirements are met by a given array-based system. In other words, we
need a powerful reasoning engine: it turns out that AE

I -satisfiability of ∃A,I∀I -
sentences introduced below is just what we need.3

Theorem 4.1. The AE
I -satisfiability of ∃A,I∀I -sentences, i.e. of sentences of

the kind

∃a1 · · · ∃an ∃i ∀j ψ(i, j, a1[i], . . . , an[i], a1[j], . . . , an[j]), (5)

is decidable.

We leave to [10] the detailed proof of the above theorem, here we focus on a
discussion oriented to the employment of SMT-solvers in the decision procedure:
Figure 2 depicts an SMT-based decision procedure for ∃A,I∀I -sentences (in the
simplified case in which only one variable of sort ARRAY occurs).

3 Decidability of AE
I -satisfiability of ∃A,I∀I -sentences plays in this paper a role similar

to the Σ0
1 -decidability result employed in [4].

Towards SMT Model Checking of Array-Based Systems 75

function AE
I -check(∃a ∃i ∀j ψ(i, j, a[i], a[j]))

t ←− compute-repsTI
(i); φ ←− t = l; Atoms ←− IE(l)

for each substitution σ mapping the j into the t’s do
φ′ ←− purify(ψ(i, jσ, a[i], a[jσ])); φ ←− φ ∧ φ′; Atoms ←− Atoms ∪ atoms(φ′);

end for each
while Bool(φ) = sat do

βI ∧ βE ∧ ηI ←− pick-assignment(Atoms , φ)
(ρI , πI) ←− TI -solver(βI ∧ ηI)
(ρE, πE) ←− TE-solver(βE ∧

V
l
s1

=l
s2

∈ηI
(es1

= es2
))

if ρI = sat and ρE = sat then return sat
if ρI = unsat then φ ←− φ ∧ ¬πI

if ρE = unsat then φ ←− φ ∧ ¬πE

end while
return unsat

end

Fig. 2. The SMT-based decision procedure for ∃A,I∀I -sentences

The set t of representative terms over i is computed by compute-repsT (to
simplify the matter, we can freely assume t ⊇ i). This function is guaranteed
to exist since TI is effectively locally finite (for example, when ΣI contains no
function symbol, compute-repsT is the identity function). In order to purify
formulae, we shall need below fresh index variables l abstracting the t and fresh
element variables e abstracting the terms a[l]: the conjunction of the ‘defining
equations’ t = l is stored as the formula φ, whereas the further defining equations
a[l] = e (not to be sent to the Boolean solver) will be taken into account inside
the second loop body.

Then, the first loop is entered where we instantiate in all possible ways the
universally quantified index variables j with the representative terms in the set
t. For every such substitution σ, the formula ψ(i, jσ, a[i], a[jσ]) is purified by
replacing the terms a[t] with the element variables e; after such purification,
the resulting formula is added as a new conjunct to φ. Notice that this φ is a
quantifier-free formula whose atoms are pure, i.e. they are either ΣI- or ΣE-
atoms. The function IE(l) returns the set of all possible equalities among the
index variables l. Such equalities are added to the set of atoms occurring in φ
as the TI - and TE-solvers need to take into account an equivalence relation over
the index variables l so as to synchronize.

We can now enter the second (and main) loop: the Boolean solver, by invoking
the interface function pick-assignment inside the loop, generates an assignment
over the set of atoms occurring in φ and IE(l). The loop is exited when φ is
checked unsatisfiable (test of the while). The TI -solver checks for unsatisfiability
the set βI of ΣI -literals in the Boolean assignment and the literals of the possible
partition ηI on l. Then, only the equalities

∧
{es1

= es2
| (ls1

= ls2
) ∈ ηI} (and

not also inequalities) among the purification variables e induced by the partition

I

I

76 S. Ghilardi et al.

ηI on l are passed to the TE-solver together with the set βE of ΣE-literals in
the Boolean assignment (this is to take into account the congruence of a[l] = e).
If both solvers detect satisfiability, then the loop is exited and AE

I -check also
returns satisfiability. Otherwise (i.e. if at least one of the solvers returns unsat),
the negation of the computed conflict set (namely, πI or πE) is conjoined to φ
so as to refine the Boolean abstraction and the loop is resumed. If in the second
loop, satisfiability is never detected for all considered Boolean assignments, then
AE

I -check returns unsatisfiability. The second loop can be seen as a refinement
of the Delayed Theory Combination technique [5].

The critical point of the above procedure is the fact that the first loop may
produce a very large φ: in fact, even in the most favourable case in which
compute-repsT is the identity function, the purified problem passed to the solvers
of the second loop has exponential size (this is consequently the dominating cost
of the whole procedure, see [10] for complexity details). To improve performances,
an incremental approach is desirable: in the incremental approach, the second
loop may be entered before all the possible substitutions have been examined.
If the second loop returns unsat, one can exit the whole algorithm and only
in case it returns sat further substitutions (producing new conjuncts for φ) are
taken into consideration. Since when AE

I -check is called in conclusive steps of our
model checking algorithms (for fixpoint, safety, or progress checks), the expected
answer is unsat, this incremental strategy may be considerably convenient. Other
promising suggestions for reducing the number of instantiations (in the case of
particular index and elements theories) come from recent decision procedures
for fragments of theories of arrays, see [6,11].

5 Safety Model Checking

Checking safety properties means checking that a set of ‘bad states’ (e.g., of
states violating the mutual exclusion property) cannot be reached by a system.
This can be formalized in our settings as follows:

Definition 5.1. Let K(a) be an ∃I-formula (whose role is that of symbolically
representing the set of bad states). The safety model checking problem for K is
the problem of deciding whether there is an n ≥ 0 such that the formula

I(a0) ∧ τ(a0, a1) ∧ · · · ∧ τ(an−1, an) ∧K(an) (6)

is AE
I -satisfiable. If such an n does not exist, K is safe; otherwise, it is unsafe.

Notice that the AE
I -satisfiability of (6) means precisely the existence of a finite

run leading from a state in I to a state in K.

5.1 Backward Reachability

If a bound for n in the safety model checking is known a priori, then safety can
be decided by checking the AE

I -satisfiability of suitable instances of (6) (this is

I

Towards SMT Model Checking of Array-Based Systems 77

possible because each formula (6) is equivalent to a ∃A,I∀I -formula). Unfortu-
nately, this is rarely the case and we must design a more refined method. In the
following, we adapt algorithms that incrementally maintain a representation of
the set of reachable states in an array-based system.

Definition 5.2. Let K(a) be an ∃I-formula. An M-state s0 is backward reach-
able from K in n steps iff there exists a sequence of M-states s1, . . . , sn such
that

M |= τ(s0, s1) ∧ · · · ∧ τ(sn−1, sn) ∧K(sn).

We say that s0 is backward reachable from K iff it is backward reachable from
K in n steps for some n ≥ 0.

Before designing our backward reachability algorithm, we must give a symbolic
representation of the set of backward reachable states. Preliminarily, notice that
if K(a) is an ∃I -formula, the set of states which are backward reachable in one
step from K can be represented as follows:

Pre(τ,K) := ∃a′ (τ(a, a′) ∧K(a′)). (7)

Although Pre(τ,K) is not an ∃I -formula anymore, we are capable of finding an
equivalent one in the class:

Proposition 5.3. Let K(a) be an ∃I-formula; then Pre(τ,K) is AE
I -equivalent

to an (effectively computable) ∃I-formula K ′(a).

The proof of this Proposition can be obtained by a tedious syntactic computation
while using (2) together with the fact that TE admits quantifier elimination.

Abstractly, the set of states that can be backward reachable fromK can be re-
cursively characterized as follows: (a) Pre0(τ,K) := K and (b) Pren+1(τ,K) :=
Pre(τ, Pren(τ,K)). The formula BRn(τ,K) :=

∨n
s=0 Pre

s(τ,K) (having just
one free variable of type ARRAY) symbolically represents the states that can be
backward reached from K in n steps. The sequence of BRn(τ,K) allows us to
rephrase the safety model checking problem (Definition 5.1) using symbolic rep-
resentations by saying that K is safe iff the formulae I ∧ BRn(τ,K) are all
not AE

I -satisfiable. This still requires infinitely many tests, unless there is an
n such that the formula ¬(BRn+1(τ,K) → BRn(τ,K)) is AE

I -unsatisfiable.4

The key observation now is that both I ∧ BRn(τ,K) and ¬(BRn+1(τ,K) →
BRn+1(τ,K)) can be easily transformed into ∃A,I∀I -formulae so that their AE

I -
satisfiability is decidable and checked by the procedure AE

I -check of Figure 2.
This discussion suggests the adaptation of a standard backward reachability

algorithm (see, e.g., [12]) depicted in Figure 3, where Pre takes a formula, it
computes Pre as defined in (7), and then applies the required syntactic manip-
ulations to transform the resulting formula into an equivalent one according to
Proposition 5.3.
4 Notice that the AE

I -unsatisfiability of ¬(BRn(τ, K) → BRn+1(τ, K)) is obvious by
definition. Hence, the AE

I -unsatisfiability of ¬(BRn+1(τ, K) → BRn(τ, K)) implies
that AE

I |= BRn+1(τ, K)↔ BRn(τ, K).

78 S. Ghilardi et al.

function BReach(K)
i←− 0; BR0(τ, K)←− K; K0 ←− K

if AE
I -check(BR0(τ, K) ∧ I) = sat then return unsafe

repeat
Ki+1 ←− Pre(τ, Ki)
BRi+1(τ, K)←− BRi(τ, K) ∨Ki+1

if AE
I -check(BRi+1(τ, K) ∧ I) = sat then return unsafe

else i←− i + 1
until AE

I -check(¬(BRi+1(τ, K)→ BRi(τ, K)) = unsat
return safe

end

Fig. 3. Backward Reachability for Array-based Systems

Theorem 5.4. Let K(a) be an ∃I-formula; then the function BReach in Figure
3 semi-decides the safety model checking problem for K.

Example 5.5. In the Simplified Bakery example of Figure 1 (with the formula
K to be tested for safety given like in (1)), the algorithm of Figure 3 stops after
four loops and certifies safety of K. %

5.2 Termination of Backward Reachability

Indeed, the main problem with the semi-algorithm of Figure 3 is termination; in
fact, it may not terminate when the system is safe. In the literature, termination
of infinite state model checking is often obtained by defining a well-quasi-ordering
(wqo – see, e.g., [1]) on the configurations of the system. Here, we adapt this
approach to our setting, by defining model-theoretically a notion of configuration
and then introducing a suitable ordering on configurations : once this is done,
it will be immediate to prove that termination follows whenever the ordering
among configurations is a wqo.

An AE
I -configuration (or, briefly, a configuration) is an M-state in a finite

index model M of AE
I : a configuration is denoted as (s,M), or simply as s,

leavingM implicit. Moreover, we associate a ΣI-structure sI and a ΣE-structure
sE with an AE

I -configuration (s,M) as follows: the ΣI -structure sI is simply the
finite structure MI , whereas sE is the ΣE-substructure ofME generated by the
image of s (in other words, if INDEXM = {c1, . . . , ck}, then sE is generated by
{s(c1), . . . , s(ck)}).

We remind few definitions about preorders. A preorder (P,≤) is a set endowed
with a reflexive and transitive relation; an upset of such a preorder is a subset
U ⊆ P such that (p ∈ U and p ≤ q imply q ∈ U). An upset U is finitely
generated iff it is a finite union of cones, where a cone is an upset of the form
↑p = {q ∈ P | p ≤ q} for some p ∈ P . A preorder (P,≤) is a well-quasi-ordering
(wqo) iff every upset of P is finitely generated (this is equivalent to the standard
definition, see [10]). We define now a preorder among our configurations:

Towards SMT Model Checking of Array-Based Systems 79

Definition 5.6. Let s, s′ be configurations; s′ ≤ s holds iff there are a ΣI-
embedding μ : s′I −→ sI and a ΣE-embedding ν : s′E −→ sE such that the
set-theoretical compositions of μ with s and of s′ with ν are equal.

Let K(a) be an ∃I -formula: we denote by [[K]] the set of AE
I -configurations

satisfying K; in symbols, [[K]] := {(M, s) | M |= K(s)}.

Proposition 5.7. For every ∃I-formula K(a), the set [[K]] is upward closed;
also, for every ∃I-formulae K1,K2, we have [[K1]] ⊆ [[K2]] iff AE

I |= K1 → K2.

The set of configurations B(τ,K) which are backward reachable from a given ∃I -
formula K is thus an upset, being the union of infinitely many upsets; however,
even in case the latter are finitely generated, B(τ,K) needs not be so. Under the
hypothesis of local finiteness of TE, this is precisely what characterizes termina-
tion of backward reachability search:

Theorem 5.8. Assume that TE is locally finite; let K be an ∃I-formula. If K
is safe, then BReach in Figure 3 terminates iff B(τ,K) is a finitely generated
upset.5 As a consequence, BReach always terminates when the preorder on AE

I -
configurations is a wqo.

The termination result of Theorem 5.8 covers many well-known special cases, like
broadcast protocols, some versions of the bakery algorithm, lossy channel sys-
tems (notice that for the latter, there doesn’t exist a primitive recursive complex-
ity lower bound); to apply Theorem 5.8, one needs classical facts like Dikson’s
Lemma, Higman’s Lemma, Kruskal’s Theorem, etc. (see again [10] for details).

6 Progress Formulae for Recurrence Properties

Liveness problems are difficult and even more so for infinite state systems. In
the following, we consider a special kind of liveness properties, which falls into
the class of recurrence properties in the classification introduced in [13]. Our
method for dealing with such properties consists in synthesizing progress func-
tions definable at quantifier free level.

A recurrence property is a property which is infinitely often true in every
infinite run of a system; in other words, to check that R is a recurrence prop-
erty it is sufficient to show that it cannot happen that there is an infinite run
s0, s1, . . . , si, . . . such that R is true at most in the states from a finite prefix
s0, . . . , sm. This can be formalized in our framework as follows.

Definition 6.1. Suppose that R(a) is a ∀I-formula; let us use the abbreviations
K(a) for ¬R(a) and τK(a, a′) for τ(a, a′) ∧K(a) ∧K(a′).6 We say that R is a
recurrence property iff for every m the infinite set of formulae
5 If K is unsafe, we already know that BReach terminates because it detects unsafety

(cf. Theorem 5.4).
6 Notice that τK is easily seen to be equivalent to a disjunction of T -formulae, like the

original τ .

80 S. Ghilardi et al.

I(b1), τ(b1, b2), . . . , τ(bm, a0), τK(a0, a1), τK(a1, a2), . . . (8)

is not satisfiable in a finite index model of AE
I .

The finite prefix I(b1), τ(b1, b2), . . . , τ(bm, a0) in (8) above ensures that the states
assigned to a0, a1, . . . are (forward) reachable from an initial state, whereas the
infinite suffix τK(a0, a1), τK(a1, a2), . . . expresses the fact that property R is
never attained. Observe that, whereas it can be shown that the AE

I -satisfiability
of (6) for safety problems (cf. Definition 5.1) is equivalent to its satisfiability
in a finite index model of AE

I , this is not the case for (8). This imposes the
above explicit restriction to finite index models since, otherwise, recurrence might
unnaturally fail in many concrete situations.

Example 6.2. In the Simplified Bakery example of Figure 1, we take K to be

∃i (i = d ∧ a[i] = wait)

(here d is a fresh constant of type ΣI). Then the AE
I -satisfiability of (8) implies

that the protocol cannot guarantee absence of starvation. %

Let R be a recurrence property; we say that R has polynomial complexity iff there
exists a polynomial f(n) such that for every m and for k > f(n) the formulae

I(b1) ∧ τ(b1, b2) ∧ · · · ∧ τ(bm, a0) ∧ τK(a0, a1) ∧ · · · ∧ τK(ak−1, ak) (9)

are all unsatisfiable in the models M of AE
I such that the cardinality of the

support of MI is at most n (in other words, f(n) gives an upper bound for the
waiting time needed to reach R by a system consisting of less than n processes).

Definition 6.3. Let R(a) be a ∀I-formula and let K and τK be as in Definition
6.1. A formula ψ(t(j), a[t(j)]) is an index invariant iff there exists a safe ∃I-
formula H such that

AE
I |= ∀a0 ∀a1 ∀j (¬H(a0) ∧ τK(a0, a1)→ (ψ(t, a0[t]) → ψ(t, a1[t]))). (10)

A progress condition for R is a finite set of index invariant formulae

ψ1(t(j), a[t(j)]), . . . , ψc(t(j), a[t(j)])

for which there exists a safe ∃I-formula H such that

AE
I |= ∀a0 ∀a1

(

¬H(a0)∧τK (a0, a1)→ ∃j
c∨

k=1

(¬ψk(t, a0[t]) ∧ ψk(t, a1[t]))
)

. (11)

Suppose there is a progress condition as above for R; if M is a model of AE
I

such that the support of MI has cardinality at most n, then the formula (9)
cannot be satisfiable in M for k > c · n� (here � is the length of the tuple j).
This argument shows the following:

Proposition 6.4. If there is a progress condition for R, then R is a recurrence
property with polynomial complexity.

Towards SMT Model Checking of Array-Based Systems 81

Example 6.5. In the Simplified Bakery example of Example 6.2, the following
four index invariant formulae:

a[j].s = crash a[j].t = 0 ∨ a[j].t > a[d].t
a[j].t > a[d].t ¬(a[j].t < a[d].t ∧ a[j].s = wait)

constitute a progress condition, thus guaranteeing that each non faulty process d
can get (in polynomial time) the resource every time it asks for it. The algorithm
of Figure 3 is needed for certifying safety of some formulae (like ∃i (a[i].s =
use ∧ a[i].t = 0)) to be used as the H of Definition 6.3. %
Let us now discuss how to mechanize the application of Proposition 6.4. The
validity tests (10) and (11) can be reduced to unsatisfiability tests covered by
Theorem 4.1; however, the search space for progress conditions looks to be un-
bounded for various reasons (the number of the ψ’s of Definition 6.3, the length
of the string j, the ‘oracle’ safe H ’s, etc.). Nevertheless, the proof of the following
unexpected result shows (in the appropriate hypotheses) how to find progress
conditions whenever they exist:

Theorem 6.6. Suppose that TE is locally finite and that safety of ∃I-formulae
can be effectively checked. Then the existence of a progress condition for a given
∀I-formula R is decidable.

7 Related Work and Conclusions

A popular approach to uniform verification (e.g., [2,3,4]) consists of defining
a finitary representation of the (infinite) set of states and then to explore the
state space by using such a suitable data structure. Although such a data struc-
ture may contain declarative information (e.g., constraints over some algebraic
structure or first-order formulae), a substantial part is non-declarative. Typi-
cally, the part of the state handled non-declaratively is that of indexes (which,
for parametrized systems, specify the topology), thereby forcing to re-design the
verification procedures whenever their specification is changed (for the case of
parametrized systems, whenever the topology of the systems changes). Since our
framework is fully declarative, we avoid this problem altogether.

There has been some attempts to use a purely logical techniques to check both
safety and liveness properties of infinite state systems (e.g., [7,9]). The hard part
of these approaches is to guess auxiliary assertions (either invariants, for safety,
or ranking functions, for liveness). Indeed, finding such auxiliary assertions is not
easy and automation requires techniques adapted to specific domains (e.g., inte-
gers). In this paper, we have shown how our approach does not require auxiliary
invariants for safety and proved that the search for certain progress conditions
can be fully mechanized (Theorem 6.6).

In order to test the viability of our approach, we have built a prototype im-
plementation of the backward reachability algorithm of Figure 3. The function
AE

I -check has been implemented by using a naive instantiation algorithm and
a state-of-the-art SMT solver. We have also implemented the generation of the

82 S. Ghilardi et al.

proof obligations (10) and (11) for recognizing progress conditions. This allowed
us to automatically verify the examples discussed in this paper and in [10]. We
are currently planning to build a robust implementation of our techniques.

References

1. Abdulla, P.A., Cerans, K., Jonsson, B., Tsay, Y.-K.: General decidability theorems
for infinite state systems. In: Proc. of LICS 1996, pp. 313–321 (1996)

2. Abdulla, P.A., Delzanno, G., Ben Henda, N., Rezine, A.: Regular model check-
ing without transducers. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS,
vol. 4424, pp. 721–736. Springer, Heidelberg (2007)

3. Abdulla, P.A., Delzanno, G., Rezine, A.: Parameterized verification of infinite-state
processes with global conditions. In: Damm, W., Hermanns, H. (eds.) CAV 2007.
LNCS, vol. 4590, pp. 145–157. Springer, Heidelberg (2007)

4. Bouajjani, A., Habermehl, P., Jurski, Y., Sighireanu, M.: Rewriting systems with
data. In: Csuhaj-Varjú, E., Ésik, Z. (eds.) FCT 2007. LNCS, vol. 4639, pp. 1–22.
Springer, Heidelberg (2007)

5. Bozzano, M., Bruttomesso, R., Cimatti, A., Junttila, T.A., Ranise, S., van Rossum,
P., Sebastiani, R.: Efficient theory combination via boolean search. Information and
Computation 204(10), 1493–1525 (2006)

6. Bradley, A.R., Manna, Z., Sipma, H.B.: What’s decidable about arrays? In: Emer-
son, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 427–442.
Springer, Heidelberg (2005)

7. de Moura, L.M., Rueß, H., Sorea, M.: Lazy theorem proving for bounded model
checking over infinite domains. In: Voronkov, A. (ed.) CADE 2002. LNCS (LNAI),
vol. 2392, pp. 438–455. Springer, Heidelberg (2002)

8. Enderton, H.B.: A Mathematical Introduction to Logic. Academic Press, London
(1972)

9. Fang, Y., Piterman, N., Pnueli, A., Zuck, L.D.: Liveness with invisible ranking.
Software Tools for Technology 8(3), 261–279 (2006)

10. Ghilardi, S., Nicolini, E., Ranise, S., Zucchelli, D.: Towards SMT model checking of
array-based systems. Technical Report RI318-08, Università degli Studi di Milano
(2008), http://homes.dsi.unimi.it/~zucchell/publications/techreport/
GhiNiRaZu-RI318-08.pdf

11. Ihlemann, C., Jacobs, S., Sofronie-Stokkermans, V.: On local reasoning in verifica-
tion. In: Proc. of TACAS 2008. LNCS, vol. 4963, pp. 265–281. Springer, Heidelberg
(2008)

12. Kesten, Y., Maler, O., Marcus, M., Pnueli, A., Shahar, E.: Symbolic model checking
with rich assertional languages. Theoretical Computer Science 256(1-2), 93–112
(2001)

13. Manna, Z., Pnueli, A.: A hierarchy of temporal properties. In: Proc. of PODC
1990, pp. 377–410. ACM Press, New York (1990)

14. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT Modulo Theo-
ries: From an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL.
Journal of the ACM 53(6), 937–977 (2006)

15. Rybina, T., Voronkov, A.: A logical reconstruction of reachability. In: Broy, M.,
Zamulin, A.V. (eds.) PSI 2003. LNCS, vol. 2890, pp. 222–237. Springer, Heidelberg
(2004)

16. Sebastiani, R.: Lazy satisfiability modulo theories. Journal on Satisfiability,
Boolean Modeling and Computation 3, 141–224 (2007)

http://homes.dsi.unimi.it/~zucchell/publications/techreport/GhiNiRaZu-RI318-08.pdf
http://homes.dsi.unimi.it/~zucchell/publications/techreport/GhiNiRaZu-RI318-08.pdf

Preservation of Proof Obligations
from Java to the Java Virtual Machine�

Gilles Barthe1, Benjamin Grégoire2, and Mariela Pavlova3

1 IMDEA Software, Madrid, Spain
2 INRIA Sophia-Antipolis Méditerranée, France

3 Trusted Labs, France

Abstract. While program verification environments typically target source pro-
grams, there is an increasing need to provide strong guarantees for executable
programs.

We establish that it is possible to reuse the proof that a source Java program
meets its specification to show that the corresponding JVM program, obtained by
non-optimizing compilation, meets the same specification. More concretely, we
show that verification condition generators for Java and JVM programs generate
the same set of proof obligations, when applied to a program p and its compilation
[[p]] respectively.

Preservation of proof obligations extends the applicability of Proof Carrying
Code, by allowing certificate generation to rely on existing verification technology.

1 Introduction

As program verification environments (PVEs) are reaching maturity, they are being
increasingly used for validating large programs that are typically written in high-level
programming languages such as Java and C. While reasoning about source programs
provides developers with a direct feedback on the code they write, there are compelling
reasons to seek achieving similar guarantees for compiled code. As emphasized by Reps
and co-workers, see e.g. [1], a first reason is that source code is not what you execute; in
particular, code that has been verified at source level may be invalidated by a compiler
(even if the compiler preserves the input/output behavior of programs). A second reason
is that program verification finds many of its applications in the field of mobile code,
where the code consumer may not have access to the source code, and may not trust
the code developer nor the network through which the code is transferred to him: as a
result, code consumers need evidence about the compiled code which they receive and
execute.

One possible approach to solve the mismatch is to develop verification environments
for compiled programs, but the approach has major drawbacks, especially in the context
of interactive verification: one looses the benefit of reasoning on a structured language,
and the verification effort is needlessly duplicated, as each program must be verified
once per target language and compiler. A better solution is to transfer evidence from

� Most of the work was performed while the first and third authors were working at INRIA.The
work was partially supported by the MOBIUS project.

A. Armando, P. Baumgartner, and G. Dowek (Eds.): IJCAR 2008, LNCS 5195, pp. 83–99, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

84 G. Barthe, B. Grégoire, and M. Pavlova

source code to compiled programs, so that verification can be performed as usual with
existing tools, and that code is only proved once.

In this paper, we consider the problem of transferring evidence from Java programs
to JVM programs (JVM stands for Java Virtual Machine, which provides part of the
runtime environment for executing Java programs). We focus on verification methods
based on verification condition generations, as such methods prevail in PVEs. In this
setting, we show that it is equivalent to verify a source program or its compilation, in
the sense that they generate the same proof obligations, and thus one can reuse exactly
the same proofs for Java programs and for their compilation as JVM programs (in the
idealized setting considered in this paper, same is to be understood as syntactic equal-
ity; Section 6 discusses how the proof obligations are only almost the same in practice).
This strong equivalence between verification conditions at source and bytecode levels,
which we call preservation of proof obligations (PPO), has significant implications in
the context of Proof Carrying Code (PCC) [12]: in effect, PPO supports the following
extension of the Java slogan: write and prove once, verify and run everywhere. By let-
ting the code consumer prove interactively the correctness of its application at source
level, and sending the resulting certificate to the code consumer, PPO extends the ap-
plicability of PCC to complex properties.

2 Related Work

Barthe, Rezk and Saabas [5] showed preservation of proof obligations in the setting of
a simple imperative language. As in the present paper, they consider verification con-
dition generators that operate directly on the syntax of the program, and focus on a
non-optimizing compiler. Burdy and Pavlova [6] subsequently considered preservation
of proof obligations in the context of Java, and showed on an example that proof obli-
gations were almost preserved; in particular, they identified similar issues to the ones
reported in Section 6. Pavlova [16] later formalized the relationship between verifica-
tion at Java and JVM levels for a language that extends the fragment considered here
with arrays and constructors, and for a logic that uses frame conditions. Our work is
directly inspired from [16], but abstracts from some specificities of Java in order to
increase readability.

Verification condition generation can be seen as a specific strategy for construct-
ing proofs in Hoare logics, and some authors have studied the problem of preserving
provability of Hoare triples by compilation, providing effective algorithms to transform
derivations (one can also show that provability is preserved by compilation by invoking
the soundness and relative completeness of the logic and the preservation of semantics
by compilation, see the discussion on certified compilation below, but it is of limited
usefulness for PCC). Saabas and Uustalu [18] develop a compositional proof systems
for assembly programs with “phrase structure”, and transforms proofs of source pro-
grams into proofs of compiled programs, for an extended compiler that generates au-
tomatically the “phrase structure” of programs. Bannwart and Müller [2] also define a
Hoare logic for sequential fragments of Java source code and bytecode, and illustrate
how derivations of correctness can be mapped from source programs to bytecode pro-
grams obtained by non-optimizing compilation. Müller and Nordio [11] subsequently

Preservation of Proof Obligations from Java to the Java Virtual Machine 85

showed the correctness of a proof transforming procedure for a fragment with abrupt
termination. More recently, Nordio, Müller and Meyer [15] define a proof transforming
procedure from Eiffel to Microsoft’s Common Intermediate Language; the procedure
has been formalized using Isabelle [14]. Although preservation of provability of Hoare
triples by compilation is closely related to preservation of proof obligations, we believe
that our results provide a stronger correspondence for verification architectures based
on verification condition generation.

Hoare logics can be seen as instances of abstract interpretations [7], and preservation
of proof obligations has a natural generalization in the setting of abstract interpretation.
Rival [17] showed how the results of abstract interpretation could be transferred from
source to compiled programs. However, Logozzo and Fähndrich [10] pointed out that
provability by automated means such as abstract interpretation is not always preserved
in a straightforward way because some static analyses are less precise on compiled code
than on source code.

To the exception of [17], the above works consider non-optimizing compilers. While
preservation of proof obligations fails in presence of program optimizations, one can
still generate a proof of correctness of the compiled program from a proof of correct-
ness of the source program, provided one strengthens the invariants with the results of
the analyses that justify the transformation. Barthe et al [3] show how to define cer-
tificate translations for many common program optimizations; this work was further
systematized in [4], using a mild extension of the framework of abstract interpretation
to provide sufficient conditions for preserving provability by compilation. In a series of
papers, see e.g. [19], Saabas and Uustalu show similar results, in the context of Hoare
logics.

Besides the above mentioned works that share similar motivations to ours, there are
many works that explore the interaction between compilation and verification. Certi-
fying compilation [13] focuses on the automatic generation of certificates for simple
safety properties; obviously, certifying shares many commonalities with our work, but
favors automation at the price of limiting the scope of the policies that can be consid-
ered. Yet another alternative is provided by certified compilers [9], which are imple-
mented and verified in a proof assistant; since compiler verification consists in proving
semantics-preservation, one can use certified compilers to transform evidence of source
programs into evidence of compiled programs. However, this approach currently suf-
fers from two major limitations: the resulting certificates are huge, and can only refer
to input/output properties of programs.

3 Setting

This section introduces the fragment of Java and of the Java Virtual Machine consid-
ered, and define the non-optimizing compiler for which preservation of proof obliga-
tions shall be established. In addition to omitting some features (such as local variables,
constructors, interfaces, or arrays), we abstract away from specificities that are irrel-
evant from the point of view of preservation of proof obligations (e.g. that the class
Object is at the root of the hierarchy of classes). Furthermore, we depart from the class
file format of the JVM in our treatment of names, by using named variables instead of

86 G. Barthe, B. Grégoire, and M. Pavlova

operations op ::= + | − | × | /
comparisons cmp ::= < |≤|= |�= |≥|>
expressions e ::= x | n | null | e op e | this | e.m(e) | e.f | new C
tests t ::= e cmp e
statements s ::= x := e assignment

| skip skip
| if(t){s}{s} conditional
| while(t){s} loop
| e.f := e field assignment
| s;s sequence
| return e return value
| try{s} catch (E) {s} try/catch
| throw e throw

Fig. 1. Java language

relying on a constant pool and an index for local variables; see Section 6. Due to space
constraints, we do not present the intended semantics of Java and JVM programs.

Java and JVM programs. The structure of programs is common to Java and the JVM.
A (Java or JVM) program is specified by a set M of method names, a set C of class
names, partially ordered by a subclass relation (, by a set F of field identifiers, and by
its method declarations and class declarations. The set T of types is defined as C ∪{int},
where int is the type of integers (see Section 6 for a discussion on basic types); we use
T⊥ to denote the union of T with void, and use it to define the signature of methods. We
also assume given a subset E of C that represent the exception classes.

Definition 1. A program p is defined by a pair (M,C) where C = (C ×F)⇀ T is a
class declaration map, and M = (Mtype,Mcode) is a method declaration table, i.e.:

– Mtype assigns to every method a method signature of the form σ→ τ, where σ ∈ T
and τ ∈ T⊥;

– Mcode is a partial map that assigns to method names and class names a method
body of the form (x,c) where x is a list of parameters such that x and σ have the
same length, and c is either a Java statement, or a list of JVM bytecode.

The set of programs is defined formally as

Prog = MethDecl×ClassDecl
MethDecl = (M →MethSig)× ((M ×C)⇀MethBody)

MethSig = T �×T⊥
MethBody = Var�×Code
ClassDecl = (C ×F)⇀ T

Figures 1 and 2 define the fragment of Java and of the JVM considered. We use X to
denote the set of variables and let x range over X . We use n to range over integers, C to
range over classes, and E to range over exception classes.

Preservation of Proof Obligations from Java to the Java Virtual Machine 87

At the source level, we let E denote the set of expressions and s denote the set of
statements. We assume that a code is a statement followed by a return expression, i.e. of
the form P = s; return e (note that returns may occur elsewhere in the statement). Note
that expressions may have side-effects.

At the bytecode level, a code consists of a list of bytecode instructions, and a list of
exception handlers, where an exception handler is a quadruple (b,e,C, i) where (b,e) is
a pair of program points that define the range of the handler, i is the entry point of the
handler, and E is the class of exceptions handled. We let j range over program points
and assume that the code is well-formed, i.e. there is no jump outside the code.

instructions i ::= push n push value on top of stack
| binop op binary operation on stack
| load x load value of x on stack
| store x store top of stack in variable x
| goto j unconditional jump
| if cmp j conditional jump
| return return the top value of the stack
| new C instance creation
| getfield f field access
| putfield f field assignment
| invoke m virtual method call
| throw throw exception

Fig. 2. Java bytecode

Compilation. The compiler is defined in Figure 3 and constructs the exception handler
function Handler simultaneously with the compilation of Java code to JVM code. To
simplify the presentation the exception handler function is built incrementally (using
imperative style). The only construct which affects the exception handler function is
the try catch statement.

Provided the source and target languages are given appropriate semantics, it is possi-
ble to show that the compiler preserves the input/output semantics of programs. One in-
teresting consequence of preservation of semantics, together with preservation of proof
obligations, is that the soundness of the verification condition generators for Java and
the JVM are inter-derivable, i.e. follow from each other.

4 Verification Condition Generation

We define verification condition generators for annotated Java and JVM programs. Both
VC generators are direct style, i.e. they operate on the program itself, rather than on an
intermediate representation.

Assertion language. The assertion language is shared between Java and JVM programs,
and defined in Figure 4. As is common, only pure expressions can appear in assertions.
Besides, the assertion language provides constructions to specify the heap, and in the

88 G. Barthe, B. Grégoire, and M. Pavlova

Compilation of expressions

k : [[x]] = k : load x

k : [[c]] = k : push c

k : [[e1 op e2]] = k : [[e1]]; k1 : [[e2]]; k2 : binop op
where k1 = k + |[[e1]]|

k2 = k1 + |[[e2]]|
k : [[e.f]] = k : [[e]];k1 : getfield f

where k1 = k + |[[e]]|
k : [[new C]] = k : new C

k : [[e1.m(e2)]] = k : [[e1]];k1 : [[e2]]; k2 : invoke m
where k1 = k + |[[e1]]|

k2 = k1 + |[[e2]]|
Compilation of statements

k : [[x := e]] = k : [[e]]; k1 : store x
where k1 = k + |[[e]]|

k : [[s1;s2]] = k : [[s1]];k2 : [[s2]]
where k2 = k + |[[s1]]|

k : [[return e]] = k : [[e]];k1 : return
where k1 = k + |[[e]]|

k : [[if(e1 cmp e2){s1}{s2}]] = k : [[e1]];k1 [[e2]];k2 : if cmp k3 +1;
k2 +1: [[s2]]; k3 : goto l; k3 +1: [[s1]]

where k1 = k + |[[e1]]|
k2 = k1 + |[[e2]]|
k3 = k2 + |[[s2]]|+1

l = k3 + |[[s1]]|+1

k : [[while(e1 cmp e2){s}]] = k : goto k1;k +1: [[s]];
k1 : [[e1]]; k2 : [[e2]]; k3 : if cmp k +1;

where k1 = k +1+ |[[s]]|
k2 = k1 + |[[e1]]|
k3 = k2 + |[[e2]]|

k : [[e1.f := e2]] = k : [[e1]]; k1 : [[e2]]; k2 : putfield f
where k1 = k + |[[e1]]|

k2 = k1 + |[[e2]]|
k : [[throw e]] = k : [[e]]; k1 : throw

where k1 = k + |[[e]]|
k : [[try{s1} catch (E) {s2}]] = k : [[s1]];goto k2;k1 : [[s2]]

where k1 = k + |[[s1]]|+1
k2 = k1 + |[[s2]]|

Handler(j,E) :=
{

k1 k ≤ j < k1 ∧ E (E
Handler(j,E) otherwise

Fig. 3. Definition of compiler

Preservation of Proof Obligations from Java to the Java Virtual Machine 89

case of the JVM, the operand stack. More precisely, the assertion language features
stack expressions, and heap expressions, as well as more traditional logical expressions.

We briefly comment on heap expressions: h is used to refer to the current heap,
whereas h̄ refers to the initial heap—indeed it is useful that some assertions, such as in-
variants and post-conditions may refer to the initial state of the method. We use H(ĕ.f)
to represent the value of the field f of the expression ĕ in the heap H. Finally, we let h
be a heap variable, that will be introduced and universally bound in the weakest precon-
dition for dynamic object creation.

Next, we briefly comment on stack expressions: os denotes the current operand stack,
ŏs[k] is used to refer to the k-th element of the operand stack, and ↑k ŏs denotes the
stack obtained from ŏs by popping its top k-elements. Note that stack expressions are
not allowed in specifications, neither at the Java nor at the JVM level. However, the
verification condition generator for the JVM will generate intermediate assertions that
use these constructs.

Finally, observe that logical expressions also contain the special variable res, that
is used to denote the result of executing the method, and the special variable exc, that
is used to specify the termination mode of the method, as well as a construction x̄ for
every variable x, that is used to denote the original value stored in x at the onset of the
method execution.

The definition of propositions is standard, except for the constructs New(H,C) =
(h,v), and typeof(ĕ)(C. These constructs are used respectively to mimick at a logical
level the creation of a new object in the heap, and in the exceptional postcondition of a
try-catch.

stack expressions ŏs ::= os | ĕ :: ŏs |↑k ŏs
logical expressions ĕ ::= res | x̄ | x | v | c | ĕ op ĕ | H(ĕ. f) | ŏs[k]
heap expressions H ::= H{ĕ. f �→ ĕ} | h̄ | h | h
logical tests t̆ ::= ĕ cmp ĕ
propositions P ::= t̆ | ¬P | P∧P | P∨P | P⇒ P

| ∀v. P | ∀h. P |New(H,C) = (h,v) | typeof(ĕ)(C

Fig. 4. Assertion language

Definition 2. The set Assn of assertions is given in Figure 4. Assertions that do not
refer to the operand stack are referred to as user assertions.

– The set Assnlocal of local assertions is defined as the subset of user assertions that
do not use res, and exc.

– The set Assnpre of preconditions is defined as the subset of user assertions that do
not use res, and exc, nor barred variables x̄ and h̄.

– The set Assnnpost of normal postconditions is defined as the subset of user assertions
that do not use exc.

– The set Assnepost of exceptional postconditions are defined respectively as the set of
user assertions that do not use res.

90 G. Barthe, B. Grégoire, and M. Pavlova

Annotated programs Program annotations either specify the interface behavior of meth-
ods, or some internal behavior. More precisely, the interface behavior of each method is
specified by a precondition and by (normal and exceptional) postconditions; these anno-
tations, which are used for modular verification, are made accessible by other methods
in a global specification table. In contrast, internal annotations are either required for
effective generation of proof obligations, as is the case of loop invariants, or for enforc-
ing non-functional properties of code, as is the case e.g. for ghost assignments to track
usage policies.

Definition 3. An annotated program is a triple (p,Γ,Λ), where p is a program, and Γ
is a method specification table, and Λ is a local specification table for p, i.e.:

– Γ is a mapping from methods to method specifications, where a method specifica-
tion consists of a precondition, of a normal postcondition, and of an exceptional
postcondition.

– in the case of Java programs, Λ associates an invariant (a local assertion) to
each while statement. We write whileI(t){e} for stressing that I is an invariant
for while(t){e};

– in the case of JVM programs, Λ is a partial mapping from methods and program
points to local assertions that should be understood as the precondition of the pro-
gram point.

The sets GST of method specification tables, LST of local specification table, and
AnnotProg of annotated JVM programs are defined formally as:

AnnotProg = Prog×GST×LST
GST = M → Assnpre×Assnnpost×Assnepost

LMS = M ×PC⇀ Assnlocal

(The formal definition of annotated Java programs is similar and omitted.)

Verification condition generation for Java programs. The verification condition gen-
erator operates on annotated programs and returns a set of proof obligations. It relies
on weakest precondition calculi for expressions and statements. The calculi are defined
in Figure 5 and take as arguments two postconditions: a normal postcondition ψ which
should be valid if the evaluation terminates normally and an exceptional postcondition
which should be valid if the evaluation terminates exceptionally.

The first algorithm wpm
E (e,ψ,ψe)v computes the weakest precondition of the expres-

sion e. In a simple setting (without side-effects), wpm
E (e,ψ,ψe)v is simply ψ{v �→ e}, as

shown by the first three rules for variables, constants and binary operators. The other
rules reflect the imperative semantics of the expressions: e.g. for the new C expression
two fresh variables h and v1 are created, corresponding to the result of creating a new
object v1 of class C in the current heap h (New(h,C) = (h,v1)), and the current heap of
ψ is upgraded with the new heap h and the variable v by the new object v1. The last two
rules are more complicated due to the possibility of raising exceptions.

For field access e1.f, if the evaluation of e1 terminates normally, two cases are pos-
sible: either the value is not null and the heap is updated (condition ξ1) or the value is
null and a runtime exception (of class NullPointerException) is thrown. In the latter

Preservation of Proof Obligations from Java to the Java Virtual Machine 91

Weakest precondition of expressions and comparisons

wpm
E (x,ψ,ψe)v = ψ{v �→ x} wpm

E (c,ψ,ψe)v = ψ{v �→ c}

wpm
E (e1 op e2,ψ,ψe)v = wpm

E (e1,wpm
E (e2,ψ{v �→ v1 op v2},ψe)v2 ,ψe)v1

wpm
E (e1 cmp e2,ψ,ψe)v = wpm

E (e1,wpm
E (e2,ψ{v �→ v1 cmp v2},ψe)v2 ,ψe)v1

wpm
E (new C,ψ,ψe)v = ∀ h v1. New(h,C) = (h,v1)⇒ ψ{h,v �→ h,v1}

ξ1 := v1 �= null⇒ ψ{v �→ h(v1.f)}
ξ2 := ∀h r, v1 = null⇒ NPE(h,h,r)⇒ ψe(h,r)

wpm
E (e1.f,ψ,ψe)v = wpm

E (e1,ξ1∧ξ2,ψe)v1

φn := ∀h r, Ψ(v1,v2,h,h,r)⇒ ψ{h,v �→ h,r} Γ(m′,Φ,Ψ,Ψe)
φe := ∀h r, Ψe(v1,v2,h,h,r)⇒ ψe(h,r)
ξ1 := v1 �= null⇒Φ(v1,v2,h)∧φn∧φe

ξ2 := v1 = null⇒∀h r, NPE(h,h,r)⇒ ψe(h,r)
wpm

E (e1.m′(e2),ψ,ψe)v = wpm
E (e1,wpm

E (e2,ξ1∧ξ2,ψe)v2 ,ψe)v1

Weakest precondition of statements

Γ(m,Φ,Ψ,Ψe)
wpm

E (return e,ψ,ψe) = wpm
E (e,Ψ{res �→ v},ψe)

wpm
E (x := e,ψ,ψe) = wpm

E (e,ψ,ψe)x, /0

(φ2,θ2) := wpm
E (s2,ψ,ψe) (φ1,θ1) := wpm

E (s1,φ2,ψe)
wpm

E (s1; s2,ψ,ψe) = φ1,θ1∪θ2

(φ1,θ1) := wpm
E (s1,ψ,ψe) (φ2,θ2) := wpm

E (s2,ψ,ψe)
wpm

E (if(t){s1}{s2},ψ,ψe) = wpm
E (t,v⇒ φ1∧¬v⇒ φ2,ψe)v,θ1∪θ2

(ξ1,θ) := wpm
E (s, I,ψe) ξ2 := wpm

E (t,v⇒ ξ1∧¬v⇒ ψ,ψe)v

wpm
E (whileI(t){s},ψ,ψe) = I, I ⇒ ξ2∪θ

ξ1 := v1 �= null⇒ ψ{h �→ h{v1.f �→ v2}}
ξ2 := ∀h r, v1 = null⇒ NPE(h,h,r)⇒ ψe(h,r)

wpm
E (e1.f := e2,ψ,ψe) = wpm

E (e1,wpm
E (e2,ξ1∧ξ2,ψe)v2 ,ψe)v1 , /0

ξ1 := v �= null⇒ ψe(h,v)
ξ2 := ∀h r, v = null⇒NPE(h,h,r)⇒ ψe(h,r)
wpm

E (throw e,ψ,ψe) = wpm
E (e,ξ1∧ξ2,ψe)v, /0

(ψ′,θ2) := wpm
E (s2,ψ,ψe) (φ,θ1) := wpm

E (s1,ψ,(E,ψ′)⊗ψe)
wpm

E (try{s1} catch (E) {s2},ψ,ψe) = φ,θ1∪θ2

Fig. 5. VCGEN for Java

92 G. Barthe, B. Grégoire, and M. Pavlova

case the postcondition is the exceptional postcondition (condition ξ2 where NPE(h,h,r)
is a shortcut for New(h,NullPointerException) = (h,r) and ψe(h,r) a shortcut for
ψe{h,exc �→ h,r}).

For method invocation e1.m
′(e2), if the evaluation of the two expressions e1 and e2

terminate normally, two possibilities arise: either e1 evaluates to null and a null pointer
exception is thrown (condition ξ2) or e1 evaluates to a non-null reference and the call
is performed, and we must ensure that the precondition is valid. Again there are two
possibilities: either the method m′ throws an exception r, in which case we should
guarantee that the exceptional postcondition is valid, under the assumption that the
exceptional postcondition of the method m′ holds

Ψe(v1,v2,h,h,r) = Ψe{ ¯this, ¯arg, h̄,h,exc �→ v1,v2,h,h,r}

or the method m′ terminates normally, in which case we should guarantee the normal
postcondition is valid, under the assumption that the normal postcondition of m′ holds

Ψ(v1,v2,h,h,r) = Ψ{ ¯this, ¯arg, h̄,h, res �→ v1,v2,h,h,r}

The second algorithm wpm
E (s,ψ,ψe) returns the weakest precondition of s and a set

of proof obligations. We focus on the cases of the while and try-catch statements, that
are the most interesting.

The while statement is the only statement generating a proof obligation. Its precon-
dition is simply its loop invariant I which should be valid before the loop. The proof
obligation I⇒ ξ2 conjointly with the proof obligations of θ ensures that under the valid-
ity of the invariant I. If the test evaluates normally to true then the precondition of the
loop body is satisfied and if the test evaluates normally to false then the postcondition
of the loop is satisfied. Furthermore, if the evaluation of the test terminates abruptly then
the exceptional postcondition is satisfied. Note that the precondition of while statement
is defined in a slightly different way than usual, in the style of if statement, generating
only one proof obligation, in order to ensure preservation of proof obligations. This is
due to the fact that at bytecode level there are no loops but only conditional jumps.

The try-catch statement is the only instruction modifying the exceptional postcon-
dition. The weakest precondition of s1 is not evaluated with exceptional postcondition
ψe, since if s1 throws an exception which is a subclass of E the exception is caught by
the catch and s2 is executed. To reflect this, the weakest precondition algorithm first
computes the precondition ψ′ of s2 and uses it in the exceptional postcondition of s1:

(E,ψ′)⊗ψe = (typeof(exc)(E ⇒ ψ′)∧ (typeof(exc) �(E ⇒ ψe)

The precondition of the try-catch statement is the precondition of s1.
The set of proof obligations of a method m is defined by

Γ(m,Φ,Ψ,Ψe) p[m] = s; return e
wpm

E (s,wpm
E (e,Ψ{res �→ v},Ψe)v,Ψe) = φ,θ

POjava(p,Γ,m) = {Φ⇒ φ{h̄, ¯this, ¯arg �→ h,this,arg}}∪θ

In other words, the proof obligations of the method body should be valid and the pre-
condition of the method should imply the precondition of its body. Then, the proof

Preservation of Proof Obligations from Java to the Java Virtual Machine 93

obligations of a class C in a program p is defined by the union of the proof obligations
of the method defined in C, and finally the proof obligations of a Java program p is the
union of the proof obligation of each class of the program:

POjava(p,Γ,C) = ∪m∈CPOjava(p,Γ,m)
POjava(p,Γ) = ∪C∈pPOjava(p,Γ,C)

Verification condition generation for JVM programs The verification of JVM programs
operates on JVM programs that carry sufficient annotations, and produces a fully anno-
tated program in which all labels of the program have an explicit precondition attached
to them. Formally, the property of being sufficiently annotated is characterized by an
inductive and decidable definition and does not impose any specific structure on pro-
grams. The definition uses the successor relation between program points, which is
defined in the usual way. Given k, we let succṗ,m(k) denotes its set of successors.

Definition 4 (Sufficiently annotated program).

– A program point k′ is reachable from a label k in m and ṗ if k = k′ or if k′ is the
successor of a program point reachable from k:

k ∈ reachable ṗ,m,k

k′ ∈ reachable ṗ,m,k k′′ ∈ succ ṗ,m(k′)
k′′ ∈ reachable ṗ,m,k

– Given a bytecode program ṗ and a local annotation table Λ, a program point k in
m reaches annotated program points if the instruction at position k is annotated in
Λm or if the instruction is a return (in that case the annotation is the postcondition),
or if all its immediate successors reach annotated program points. More precisely,
reachAṗ,Λ,m is defined as the smallest set that satisfies the following conditions:

Λm(k) = Ṗ
k ∈ reachA ṗ,Λ,m

ṗm[k] = return
k ∈ reachA ṗ,Λ,m

∀k′ ∈ succṗ,m(k),k′ ∈ reachAṗ,Λ,m
k ∈ reachA ṗ,Λ,m

– A method m in a program ṗ and a local annotation table Λ is sufficiently annotated
if every reachable point from the starting point (i.e., label 0) reaches annotated
labels.

– An annotated program (ṗ,Γ,Λ) is sufficiently annotated if all methods m in ṗ is
sufficiently annotated.

Given a sufficiently annotated program (ṗ,Γ,Λ), the verification condition generator is
defined with three mutually recursive functions wpm

i (k), wpm
l (k) and wpm

e (k) defined
in Figure 6. The function wpm

l (k) computes the weakest precondition of the program
point k in a method m using the local annotation table Λ. If k is annotated (Λm(k) = Ṗ),
the weakest precondition is the annotation Ṗ; otherwise the weakest precondition is
wpm

i (k). The function wpm
i (k) is really the predicate transformer: it first computes the

weakest precondition of all the successors of the instruction at label k and then trans-
forms the resulting conditions depending on the instruction. The last function (wpm

e (k))
computes the weakest precondition of an instruction in the case where its evaluation
leads to an exception.

94 G. Barthe, B. Grégoire, and M. Pavlova

We explain how the computations are performed for selected instructions.
If the instruction at position k is load x, the instruction pushes the value of x on

the top of the operand stack and its precondition wpm
i (k) is the precondition of the

instruction at k + 1 where the current operand stack os is replaced by operand stack
after the evaluation of load x (x :: os).

If the instruction is store x the top value of the stack is stored in x and removed from
the stack, so its precondition is the precondition of its successor wpm

l (k + 1) where os
is popped by one (↑ os) and x is replaced by the top of the stack (os[0]).

A more interesting instruction is the getfield f which can raise a runtime exception.
As for Java programs, the precondition is the conjunction of the two possible execu-
tions: if the first element of the stack os[0] is not null then the execution access to the
field value and pushes it on the top of the stack where the first element has been re-
moved; otherwise the first element is null and an runtime exception is caught, so the
weakest precondition uses the function wpm

e .
Note that the definition of wpm

e strongly depends on the exception handler of m
and thus preliminary explanations are in order. Given a list L of pairs (exception class,
program point), let H(E,L) be the following partial function:

H(E, /0) = ⊥
H(E,(E1, j1) :: L) = j1 if E (E1

H(E,(E1, j1) :: L) = H(E,L) if E �(E1

Intuitively, the H(E,L) compute the next program point j (if exists) if a exception of
class E is thrown. Given a program point k in m the exception handler can be see as
a list of pairs Lk = (E1, j1) :: . . . :: (En, jn) :: /0 satisfying Handler(k,E) = H(Lk). The
function wpm

e (k) is defined as Hm
wp(Lk) where Hm

wp is the following function

Hm
wp(/0) = Ψe if Γ(m,Φ,Ψ,Ψe)

Hm
wp((E1, j1) :: L) = (E1,wpm

l (j1))⊗Hm
wp(L)

Furthermore when an exception is thrown the operand stack is cleared. So the nota-
tion wpm

e (k,h,r) is a shortcut for wpm
e (k){h,os,exc �→ h, /0,r}.

The proof obligations of a method m is defined by

Γ(m,Φ,Ψ,Ψe) θ = ∪{k|Λm(k)=Ṗ}wpm
l (k)⇒ wpm

i (k)}
PObc(ṗ,Γ,Λ,m) = {Φ⇒ wpm

i (0){h̄, ¯this, ¯arg �→ h,this,arg}}∪θ

Then the proof obligations for a class and a program are defined in the same way that
for Java.

Soundness issues. The verification condition generators are sound, in the sense that pro-
grams whose verification conditions are provable meet their specifications, provided we
impose some additional restrictions on annotated programs. For example, we must as-
sume some form of coherence between the specification of methods at different classes
in a hierarchy. This can be achieved e.g. using ideas of behavioral subtyping. In ad-
dition, we informally rely on some properties of typing, by proving soundness w.r.t. a
defensive semantics.

Preservation of Proof Obligations from Java to the Java Virtual Machine 95

Weakest precondition of instructions

ṗm[k] = binop op
wpm

i (k) = wpm
l (k +1){os �→ (os[1] op os[0]) ::↑2 os}

ṗm[k] = load x
wpm

i (k) = wpm
l (k +1){os �→ x :: os}

ṗm[k] = store x
wpm

i (k) = wpm
l (k +1){os,x �→ ↑ os,os[0]}

ṗm[k] = push c
wpm

i (k) = wpm
l (k +1){os �→ c :: os}

ṗm[k] = goto l
wpm

i (k) = wpm
l (l)

ṗm[k] = return Γ(m,Φ,Ψ,Ψe)
wpm

i (k) = Ψ{res �→ os[0]}

ṗm[k] = if cmp l ξ1 = wpm
l (k +1){os �→ ↑2 os} ξ2 = wpm

l (l){os �→ ↑2 os}
wpm

i (k) = (os[1] cmp os[0]⇒ ξ2)∧ (¬(os[1] cmp os[0])⇒ ξ1)

ṗm[k] = throw ξ1 := os[0] �= null⇒ wpm
e (k,h,os[0])

ξ2 := ∀h r, os[0] = null⇒NPE(h,h,r)⇒ wpm
e (k,h,r)

wpm
i (k) = ξ1∧ξ2

ṗm[k] = putfield f
ξ1 := os[1] �= null⇒ wpm

l (k +1){h,os �→ h{os[1].f �→ os[0]},↑2 os}
ξ2 := ∀h r, os[1] = null⇒NPE(h,h,r)⇒ wpm

e (k,h,r)
wpm

i (k) = ξ1∧ξ2

ṗm[k] = getfield f ξ1 := os[0] �= null⇒ wpm
l (k +1)φ{os �→ h(os[0].f) ::↑ os}

ξ2 := ∀h r, os[0] = null⇒NPE(h,h,r)⇒ wpm
e (k,h,r)

wpm
i (k) = ξ1∧ξ2

ṗm[k] = new C
wpm

i (k) = ∀h r. New(h,C) = (h,r)⇒ wpm
l (k +1){h,os �→ h,r :: os}

ṗm[k] = invoke m′ Γ(m′,Φ,Ψ,Ψe)
φn := ∀h r, Ψ(os[1],os[0],r,h,h)⇒ wpm

l (k +1){os,h �→ r ::↑ os,h}
φe := ∀h r, Ψe(os[1],os[0],h,h,r)⇒ wpm

e (k,h,r)
ξ1 := os[1] �= null⇒ Φ(os[1],os[0],h)∧φn∧φe

ξ2 := os[1] = null⇒∀h r, NPE(h,h,r)⇒ wpm
e (k,h,r)

wpm
i (i) = ξ1∧ξ2

Weakest precondition of instructions using the local annotation table

Λm(k) = Ṗ
wpm

l (k) = Ṗ
Λm(k) =⊥

wpm
l (k) = wpm

i (k)

Fig. 6. VCGEN for Java Bytecode

96 G. Barthe, B. Grégoire, and M. Pavlova

5 Preservation of Proof Obligations

The main result of this paper is that proof obligations are preserved by compilation; in
other words, the proof obligations attached to an annotated program are syntactically
equal to the proof obligations attached to its compilation. In order to state this result
formally, we must first extend the compiler to annotated programs. Since method spec-
ification tables remain unchanged, it is only necessary to generate local method tables
from annotated source statements.

During the compilation of a method m, only the compilation of while instructions
has to be extended:

k : [[whileI(e1 cmp e2){s}]] = k : goto k1;k + 1: [[s]];
k1 : [[e2]]; k2 : [[e1]]; k3 : if cmp k + 1;

and Λm(k1) = I

So the loop invariant is set just before starting the evaluation of the test. Note that, under
such a definition, compiled programs are sufficiently annotated and thus the verification
condition generator for JVM programs can be applied to them.

The proof of preservation of proof obligations proceeds in a standard way (for ex-
ample, proof of preservation of semantics of a compiler is following the same pattern):
we prove the result for expressions, then for statements, and finally for programs.

Lemma 1 (PPO for expressions). For all expressions e and stack expressions st and
program counters k and variables v such that ṗm[k.. j− 1] = k : [[e]] and v does not
appear in st, the following equality holds:

wpm
E (e,wpm

l (j){os �→ v :: st},wpm
e (k))v = wpm

i (k){os �→ st}

Proof by induction on e. It is important to notice that the exception handler is the same
for all k≤ i< j. Let ψe = wpm

e (k). We only consider the case where e = e1 op e2. Then,
we have k : [[e]] = k : [[e1]];k1 : [[e2]];k2 : binop op and j = k2 + 1.

wpm
E (e1 op e2,wpm

l (k2 + 1){os �→ v :: st},ψe)v =
wpm

E (e1,wpm
E (e2,wpm

l (k2 + 1){os �→ v1 op v2 :: st},ψe)v2 ,ψe)v1

Since wpm
l (k2) = wpm

l (k2 + 1){os �→ os[1] op os[0] ::↑2 os} we have

wpm
l (k2){os �→ v2 :: v1 :: st}= wpm

l (k2 + 1){os �→ v1 op v2 :: st}

By induction hypothesis on e2 we get

wpm
E (e2,wpm

l (k2){os �→ v2 :: v1 :: st},ψe)v2 = wpm
i (k1){os �→ v1 :: stack}

Since Λm(k1) = ⊥ we have wpm
l (k1) = wpm

i (k1), and we conclude using the induction
hypothesis on e1.

Lemma 2 (PPO for statements). For all statement s in the method body of m such that
ṗm[k.. j−1] = k :[[s]]. Let (φ,θ) = wpm

E (s,wpm
l (j),wpm

e (k)) then wpm
l (k) = φ and for all

P, P ∈ θ iff there exists l and I such that k ≤ l < j and Λm(i) = I and P = I ⇒ wpm
i (l)

Preservation of Proof Obligations from Java to the Java Virtual Machine 97

Proof by induction on s. We only consider the case when s = whileI(e1 cmp e2){s1}.
Let ψ = wpm

l (k3 + 1) and ψe = wpm
e (k) and t = e1 cmp e2. Then we have

k : [[whileI(e1 cmp e2){s}]] = k : goto k1;k + 1: [[s]];
k1 : [[e1]]; k2 : [[e2]]; k3 : if cmp k + 1

and Λm(k1) = I, and (ξ1,θ1) = wpm
E (s1, I,ψe), and ξ2 = wpm

E (t,v⇒ ξ1∧¬v⇒ψ,ψe)v,
and φ = I, and θ = {I ⇒ ξ2}∪ θ1. Since only k1 is annotated wpm

l (k) = wpm
i (k) =

wpm
l (k1) = I = φ.
We must prove the iff part of the lemma. By induction hypothesis we know that the

property holds for all P is in θ1, so we should prove it for P = I ⇒ ξ2. Using the
induction hypothesis we have ξ1 = wpm

l k + 1, by definition

wpm
l (k3) = (os[1] cmp os[0]⇒ wpm

l (k + 1){os �→ ↑2 os})∧
(os[1] cmp os[0]⇒ ψ{os �→ ↑2 os})

Using Lemma 1 with st = v2 :: v1 :: /0 we prove wpm
l (k1) = ξ2 which conclude the proof.

This lemma ensures that the side conditions generated for a method at source and byte-
code level are the same.

Theorem 1. Let p be an annotated program, and Γ be a specification table for p.

POjava(p,Γ) = PObc([[p]],Γ)

6 Practical Issues

Theorem 1 proves preservation of proof obligations for an idealization of the Java Vir-
tual Machine and of the Java compiler. In reality, preservation of proof obligations “al-
most holds”. The purpose of this section is to briefly comment on the main issues that
arise in a more realistic setting.

First, our verification condition generators are based on an idealized operational se-
mantics of Java and the JVM; e.g. both semantics omit features such as constructors.
It is possible to modify the verification condition generators to account for these fea-
tures, while maintaining preservation of proof obligations. On the other hand, the Java
Virtual Machine does not manipulate variable names, but indexes. Therefore, preserva-
tion of proof obligations only holds in practice up to renaming. In an implementation,
the renaming of variables into certificates for source programs can be achieved without
much effort by using compiler information to track the relation between variables and
indexes; by this means, one can obtain certificates for bytecode programs.

Second, the JVM supports a subset of the Java basic types: for example, booleans
only exist at the level of the Java language, and are compiled into integers. To pre-
serve provability of specifications, we resort to standard techniques of interpreting typed
predicate logic into predicate logic. Essentially, it is achieved by introducing a predicate
isboolean that is used to declare that a variable is boolean, and by transforming predicates
on booleans into predicates over integers such that P(n)⇔ P(n′) for every n,n′ �= 0.

98 G. Barthe, B. Grégoire, and M. Pavlova

Third, most, if not all, Java compilers do perform program optimizations. Dealing
with advanced program optimizations is out of scope of this paper, but there are some
very simple optimizations that are performed by many compilers. Some of this simple
optimizations are transforming if(true){st}{s f } into st , and while(false){s} into skip.
These optimizations break preservation of proof obligations. Nevertheless, one can pre-
serve provability of specifications, and transform certificates of source programs into
certificates of bytecode programs without much effort. However, for these examples
of optimizations, it makes more sense to perform a source-to-source transformation of
programs before proving properties about them. For more advanced optimizations, the
reader is referred to the related work in Section 2.

7 Conclusion

Preservation of proof obligations establishes a strong relationship between verification
of source programs and verification of the corresponding compiled programs, and from
the perspective of PCC, warrants the use of source code verification to generate certifi-
cates of complex properties. In this article, we show that preservation of proof obliga-
tions holds for an idealization of the Java framework. In parallel, Burdy and Pavlova
(see [16]) have developed a prototype implementation of a proof-transforming com-
piler for Java, using slightly different verification condition generation mechanisms.
Within the context of the Mobius project1, Charles, Grégoire and Lehner are develop-
ing a proof-transforming compiler that targets a verification condition generator that
has been fully formalized and verified in Coq. The compiler relies on the tactic lan-
guage of Coq to overcome the aforementioned difficulties with naming, booleans, and
optimizations.

However, the verification condition generators considered in this paper do not scale
well, in particular because of the explosion of the control flow graph that arises in
object-oriented programs. In order to curb this explosion, we are developing hybrid
certificates, which provide typing information that can be verified automatically and
that is used by the verification condition generator to generate more compact proof
obligations [8]. Our next objective is to extend preservation of proof obligations to such
hybrid certificates.

References

1. Balakrishnan, G.: WYSISWYX: What you see is not what you execute. PhD thesis, Depart-
ment of Computer Science, University of Wisconsin (2007)

2. Bannwart, F.Y., Müller, P.: A program logic for bytecode. In: Spoto, F. (ed.) Bytecode Se-
mantics, Verification, Analysis and Transformation. Electronic Notes in Theoretical Com-
puter Science, vol. 141, pp. 255–273. Elsevier, Amsterdam (2005)

3. Barthe, G., Grégoire, B., Kunz, C., Rezk, T.: Certificate translation for optimizing compilers.
In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 301–317. Springer, Heidelberg (2006)

4. Barthe, G., Kunz, C.: Certificate translation in abstract interpretation. In: Drossopoulou, S.
(ed.) European Symposium on Programming, Budapest, Hungary. LNCS, vol. 4960, pp. 368–
382. Springer, Heidelberg (2008)

1 See http://mobius.inria.fr.

Preservation of Proof Obligations from Java to the Java Virtual Machine 99

5. Barthe, G., Rezk, T., Saabas, A.: Proof obligations preserving compilation. In: Dimitrakos,
T., Martinelli, F., Ryan, P.Y.A., Schneider, S. (eds.) FAST 2005. LNCS, vol. 3866, pp. 112–
126. Springer, Heidelberg (2006)

6. Burdy, L., Pavlova, M.: Java bytecode specification and verification. In: Symposium on Ap-
plied Computing, pp. 1835–1839. ACM Press, New York (2006)

7. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis
of programs by construction or approximation of fixpoints. In: Principles of Programming
Languages, pp. 238–252 (1977)

8. Grégoire, B., Sacchini, J.: Combining a verification condition generator for a bytecode lan-
guage with static analyses. In: Barthe, G., Fournet, C. (eds.) Trustworthy Global Computing.
LNCS, vol. 4912, pp. 23–40. Springer, Heidelberg (2007)

9. Leroy, X.: Formal certification of a compiler back-end or: programming a compiler with
a proof assistant. In: Morrisett, J.G., Peyton Jones, S.L. (eds.) Principles of Programming
Languages, pp. 42–54. ACM Press, New York (2006)

10. Logozzo, F., Fähndrich, M.: On the relative completeness of bytecode analysis versus source
code analysis. In: Hendren, L. (ed.) CC. LNCS, vol. 4959, pp. 197–212. Springer, Heidelberg
(2008)

11. Müller, P., Nordio, M.: Proof-transforming compilation of programs with abrupt termination.
In: SAVCBS 2007: Proceedings of the 2007 conference on Specification and verification of
component-based systems, pp. 39–46. ACM Press, New York (2007)

12. Necula, G.C.: Proof-carrying code. In: Principles of Programming Languages, pp. 106–119.
ACM Press, New York (1997)

13. Necula, G.C., Lee, P.: The design and implementation of a certifying compiler. In: Program-
ming Languages Design and Implementation, vol. 33, pp. 333–344. ACM Press, New York
(1998)

14. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL. A Proof Assistant for Higher-Order
Logic. Springer, Heidelberg (2002)

15. Nordio, M., Müller, P., Meyer, B.: Formalizing proof-transforming compilation of eiffel pro-
grams. Technical Report 587, ETH Zurich (2008)

16. Pavlova, M.: Specification and verification of Java bytecode. PhD thesis, Université de Nice
Sophia-Antipolis (2007)

17. Rival, X.: Symbolic Transfer Functions-based Approaches to Certified Compilation. In: Prin-
ciples of Programming Languages, pp. 1–13. ACM Press, New York (2004)

18. Saabas, A., Uustalu, T.: A compositional natural semantics and Hoare logic for low-level
languages. Theoretical Computer Science 373(3), 273–302 (2007)

19. Saabas, A., Uustalu, T.: Proof optimization for partial redundancy elimination. In: ACM
Workshop on Partial Evaluation and Semantics-based Program Manipulation, pp. 91–101.
ACM Press, New York (2008)

Efficient Well-Definedness Checking

Ádám Darvas, Farhad Mehta, and Arsenii Rudich

ETH Zurich, Switzerland
{adam.darvas,farhad.mehta,arsenii.rudich}@inf.ethz.ch

Abstract. Formal specifications often contain partial functions that may
lead to ill-defined terms. A common technique to eliminate ill-defined
terms is to require well-definedness conditions to be proven. The main ad-
vantage of this technique is that it allows us to reason in a two-valued logic
even if the underlying specification language has a three-valued semantics.
Current approaches generate well-definedness conditions that grow expo-
nentially with respect to the input formula. As a result, many tools prove
shorter, but stronger approximations of these well-definedness conditions
instead.

We present a procedure which generates well-definedness conditions
that grow linearly with respect to the input formula. The procedure
has been implemented in the Spec# verification tool. We also present
empirical results that demonstrate the improvements made.

1 Introduction

Formal specifications often allow terms to contain applications of partial func-
tions, such as division x / y or factorial fact(z). However, it is not clear what
value x / y yields if y is 0, or what value fact(z) yields if z is negative. Specifi-
cation languages need to handle ill-defined terms, that is, either have to define
the semantics of partial-function applications whose arguments fall outside their
domains or have to eliminate such applications.

One of the standard approaches to handle ill-defined terms is to define a
three-valued semantics [22] by considering ill-defined terms to have a special
value, undefined, denoted by ⊥. That is, both x / 0 and fact(−5) are considered
to evaluate to ⊥. In order to reason about specifications with a three-valued
semantics, undefinedness is lifted to formulas by extending their denoted truth
values to {true, false,⊥}.

A common technique to reason about specifications with a three-valued se-
mantics is to eliminate ill-defined terms before starting the actual proof. Well-
definedness conditions are generated, whose validity ensures that all formulas at
hand can be evaluated to either true or false. That is, once the well-definedness
conditions have been discharged, ⊥ is guaranteed to never be encountered.

The advantage of the technique is that both the well-definedness conditions
and the actual proof obligations are to be proven in classical two-valued logic,
which is simpler, better understood, more widely used, and has better automated
tool support [30] than three-valued logics.

A. Armando, P. Baumgartner, and G. Dowek (Eds.): IJCAR 2008, LNCS 5195, pp. 100–115, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Efficient Well-Definedness Checking 101

The technique of eliminating ill-defined terms in specifications by generating
well-definedness conditions is used in several approaches, for instance, B [2],
PVS [13], CVC Lite [6], and ESC/Java2 [21].

Motivation. A drawback of this approach is that well-definedness conditions
can be very large, causing significant time overhead in the proof process. As an
example, consider the following formula:

x / y = c1 ∧ fact(y) = c2 ∧ y > 5 (1)

where x and y are variables, and c1 and c2 are constants. The formula is well-
defined, that is, it always evaluates to either true or false. This can be justified
by a case split on the third conjunct, which is always well-defined:

1. if the third conjunct evaluates to true, then the division and factorial func-
tions are known to be applied within their domains, and thus, the first and
second conjuncts can be evaluated to true or false. This means that the
whole formula can be evaluated to either true or false.

2. if the third conjunct evaluates to false, then the whole formula evaluates to
false (according to the semantics we use in the paper).

The literature [8,27,3,9] proposes the procedureD to generate well-definedness
conditions. The procedure is complete [8,9], that is, the well-definedness condi-
tion generated from a formula is provable if and only if the formula is well-
defined. Procedure D would generate the following condition for (1):

(y �= 0 ∧ (y ≥ 0 ∨ (y ≥ 0 ∧ fact(y) �= c2) ∨ y ≤ 5)) ∨
(y �= 0 ∧ x/y �= c1) ∨
((y ≥ 0 ∨ (y ≥ 0 ∧ fact(y) �= c2) ∨ y ≤ 5) ∧ ¬(fact(y) �= c2 ∧ y > 5))

As expected, the condition is provable. However, the size of the condition is
striking, given that the original formula contained only three sub-formulas and
two partial-function applications. In fact, procedure D yields well-formedness
conditions that grow exponentially with respect to the input formula. This is a
major problem for tools that have to prove well-definedness of considerably larger
formulas than (1), for instance, the well-definedness conditions for B models, as
presented in [8].

Due to the exponential blow-up of well-definedness conditions, the D proce-
dure is not used in practice [8,27,3]. Instead, another procedure L is used, which
generates much smaller conditions with linear growth, but which is incomplete.
That is, the procedure may generate unprovable well-definedness conditions for
well-defined formulas. This is the case with formula (1), for which the procedure
would yield the following unprovable condition:

y �= 0 ∧ (x/y = c1 ⇒ y ≥ 0)

Incompleteness of the procedure originates from its “sensitivity” to the order
of sub-formulas. For instance, after proper re-ordering of the sub-formulas of

102 Á. Darvas, F. Mehta, and A. Rudich

(1), the procedure would yield a provable condition. This may be tedious for
large formulas and may appear unnatural to users who are familiar with logics
in which the order of sub-formulas is irrelevant for proof. Furthermore, there
are situations (for instance, our example in Section 4) where such a manual
re-ordering cannot be done.

Contributions. Our main contribution is a new procedure Y, which unifies the
advantages of D and L, while eliminating their weaknesses. That is, (1) Y yields
well-definedness conditions that grow linearly with respect to the size of the input
formula, and (2) Y is equivalent to D, and therefore complete and insensitive to
the order of sub-formulas. To our knowledge, this is the first procedure that has
both of these two properties.

The definition of the new procedure is very intuitive and straightforward. We
prove that it is equivalent with D in two ways: (1) in a syntactical manner, as
D was derived in [3], and (2) in a semantical way, as D was introduced in [8].

We have implemented the new procedure in the Spec# verification tool [5]
in the context of the well-formedness checking of method specifications [26].
We have compared our procedure with D and L using two automated theorem
provers. The empirical results clearly show that not only the size of generated
well-definedness conditions are significantly smaller than what D produces, but
the time to prove validity of the conditions is also decreased by the use of Y.
Furthermore, our results show that the performance of Y is also better than that
of L in terms of the size of generated conditions.

Outline. The rest of the paper is structured as follows. Section 2 formally defines
procedures D and L, and highlights their main differences. Section 3 presents
our main contribution: the Y procedure and the proof of its equivalence with
D. Section 4 demonstrates the improvements of our approach through empirical
results. We discuss related work in Section 5 and conclude in Section 6.

2 Eliminating Ill-definedness

The main idea behind the technique of eliminating ill-definedness in specifica-
tions is to reduce the three-valued domain to a two-valued domain by ensuring
that ⊥ is never encountered. D is used for this purpose. Hoogewijs introduced
D in the form of the logical connective Δ in [19], and proposed a first-order
calculus, which includes this connective. Later, D was reformulated as a formula
transformer, for instance, in [8,3,9] for the above syntax. D takes a formula φ
and produces another formula D(φ). The interpretation of the formula D(φ) in
two-valued logic is true if and only if the interpretation of φ in three-valued
logic is different from ⊥.

In order to have a basis for formal definitions, we define the syntax of terms
and formulas that we consider in this paper. We follow the standard syntax-
definition given in Figure 1. Throughout the paper we use true, false, and ⊥
to denote the semantic truth values, and true and false to refer to the syntactic
entities.

Efficient Well-Definedness Checking 103

Term ::= V ar
| f(t1, . . . , fn)

Formula ::= P (t1, . . . , tn)
| true | false
| ¬φ
| φ1 ∧ φ2 | φ1 ∨ φ2

| ∀x. φ | ∃x. φ

Fig. 1. Syntax of terms and formulas we consider in this paper

δ(V ar) � true

δ(f(e1, . . . , en)) � df (e1, . . . , en) ∧
n∧

i=1

δ(ei)

D(P (e1, . . . , en)) �
n∧

i=1

δ(ei)

D(true) � true
D(false) � true
D(¬φ) � D(φ)

D(φ1 ∧ φ2) � (D(φ1) ∧ D(φ2)) ∨ (D(φ1) ∧ ¬φ1) ∨ (D(φ2) ∧ ¬φ2)

D(φ1 ∨ φ2) � (D(φ1) ∧ D(φ2)) ∨ (D(φ1) ∧ φ1) ∨ (D(φ2) ∧ φ2)

D(∀ x. φ) � ∀ x.D(φ) ∨ ∃x. (D(φ) ∧ ¬φ)

D(∃ x. φ) � ∀ x.D(φ) ∨ ∃x. (D(φ) ∧ φ)

Fig. 2. Definition of the δ and D operators as given by Behm et al. [8]

2.1 Defining the D Operator

The definition of D is given in Figure 2. Operator δ handles terms and D handles
formulas. A variable is always well-defined. Application of function f is well-
defined if and only if f ’s domain restriction df holds and all parameters ei are
well-defined. Each function is associated with a domain restriction, which is a
predicate that represents the domain of the function. Such predicates should
only contain total-function applications. For instance, the domain restriction of
the factorial function is that the parameter is non-negative.

A predicate is well-defined if and only if all parameters are well-defined. Note
that this definition assumes predicates to be total. Although an extension to
partial predicates is straightforward, we use this definition for simplicity and to

∧ true false ⊥
true true false ⊥
false false false false
⊥ ⊥ false ⊥

∧ true false ⊥
true true false ⊥
false false false false
⊥ ⊥ ⊥ ⊥

(a) Strong Kleene (b) McCarthy

Fig. 3. Kleene’s and McCarthy’s interpretation of conjunction

104 Á. Darvas, F. Mehta, and A. Rudich

have a direct comparison of our approach to [8]. Constants true and false are
always well-defined. Well-definedness of logical connectives is defined according
to Strong Kleene connectives [22]. For instance, as the truth table in Figure 3(a)
shows, a conjunction is well-defined if and only if either (1) both conjuncts are
well-defined, or (2) if one of the conjuncts is well-defined and evaluates to false.
Intuitively, in case (1) the classical two-valued evaluation can be applied, while
in case (2) the truth value of the conjunction is false independently of the well-
definedness and value of the other conjunct.

Well-definedness of universal quantification can be thought of as the general-
ization of the well-definedness of conjunction. Disjunction and existential quan-
tification are the duals of conjunction and universal quantification, respectively.
Soundness and completeness of D was proven in [19,8,9].

2.2 An Approximation of the D Operator

As mentioned before in Section 1, the problem with the D operator is that it
yields well-definedness conditions that grow exponentially with respect to the size
of the input formula. This problem has been recognized in several approaches,
for instance, in B [3] and PVS [27]. As a consequence, these approaches use a
simpler, but stricter operator L [8,3] for computing well-definedness conditions.
The definition of L differs from that of D only for the following connectives:1

L(φ1 ∧ φ2) � L(φ1) ∧ (φ1 ⇒ L(φ2))
L(φ1 ∨ φ2) � L(φ1) ∧ (¬φ1 ⇒ L(φ2))

L(∀x. φ) � ∀x.L(φ)
L(∃x. φ) � ∀x.L(φ)

Looking at the definition, we can see that L yields well-definedness conditions
that grow linearly with respect to the input formula. This is a great advantage
over D. However, the L operator is stronger than D, that is, L(φ) ⇒ D(φ) holds,
but D(φ) ⇒ L(φ) does not necessarily hold, as shown for formula (1) in Section
1. This means that we lose completeness with the use of L.

For quantifiers, L requires that the quantified formula is well-defined for all in-
stantiations of the quantified variable. As a result, a universal quantification may
be considered ill-defined although an instance is known to evaluate to false. Sim-
ilarly, an existential quantification may also be considered ill-defined although
an instance is known to evaluate to true. The D operator takes these “short-
circuits” into account.

The other source of incompleteness originates from defining conjunction and
disjunction according to McCarthy’s interpretation [24], which evaluates formu-
las sequentially. That is, if the first operand of a connective is ⊥, then the result
is defined to be ⊥, independently of the second operand. The truth table in Fig-
ure 3(b) presents McCarthy’s interpretation of conjunction. The only difference
from Kleene’s interpretation is in the interpretation of ⊥ ∧ false, which yields
⊥. This reveals the most important difference between the two interpretations:
in McCarthy’s interpretation conjunction and disjunction are not commutative.
1 Although our formula-syntax does not contain implication, we use it below to keep

the intuition behind the definition.

Efficient Well-Definedness Checking 105

As a consequence, for instance, φ1 ∧ φ2 may be considered ill-defined, al-
though φ2 ∧ φ1 is considered well-defined. Such cases might come unexpected
to users who are used to classical logic where conjunction and disjunction are
commutative.

In most cases this incompleteness issue can be resolved by manually re-
ordering sub-formulas. However, as pointed out by Rushby et al. [27], the manual
re-ordering of sub-formulas is not an option when specifications are automati-
cally generated from some other representation. Furthermore, Cheng and Jones
[12], and Rushby et al. [27] give examples for which even manual re-ordering
does not help, and well-defined formulas are inevitably rejected by L.

3 An Efficient Equivalent of the D Operator

In this section we present our main contribution: a new procedure Y that yields
considerably smaller well-definedness conditions than D, and that retains com-
pleteness. We prove equivalence of Y and D in two ways: (1) we syntactically
derive the definition of Y, (2) using three-valued interpretation we prove by
induction that the definition of Y is equivalent to that of D. Both proofs demon-
strate the intuitive and simple nature of Y’s definition.

3.1 Syntactical Derivation of Y

We introduce two new formula transformers T and F , and define them as follows:

T (φ) � D(φ) ∧ φ and F(φ) � D(φ) ∧ ¬φ

That is, T (φ) yields true if and only if φ is well-defined and evaluates to true.
Analogously, F(φ) yields true if and only if φ is well-defined and evaluates to
false. From the definitions the following theorem follows.

Theorem 1. D(φ) ⇔ T (φ) ∨ F(φ)
Proof. D(φ) ⇔ D(φ) ∧ (φ ∨ ¬φ) ⇔ (D(φ) ∧ φ) ∨ (D(φ) ∧ ¬φ) ⇔

T (φ) ∨ F(φ) "!

Intuitively, the theorem expresses that formula φ is well-defined if and only if φ
evaluates either to true or to false. This directly corresponds to the interpreta-
tion of D given by Hoogewijs [19].

From the definitions of T and F , the equivalences presented in Figure 4 can be
derived. To demonstrate the simplicity of these derivations, we give the deriva-
tion of T (φ1 ∧ φ2) and F(∀x. φ):

T (φ1 ∧ φ2) ⇔ D(φ1 ∧ φ2) ∧ φ1 ∧ φ2 ⇔
((D(φ1) ∧D(φ2)) ∨ (D(φ1) ∧ ¬φ1) ∨ (D(φ2) ∧ ¬φ2)) ∧ φ1 ∧ φ2 ⇔
D(φ1) ∧ D(φ2) ∧ φ1 ∧ φ2 ⇔ T (φ1) ∧ T (φ2)

106 Á. Darvas, F. Mehta, and A. Rudich

T (P (e1, .., en)) ⇔ P (e1, .., en) ∧
n∧

i=1

δ(ei)

T (true) ⇔ true
T (false) ⇔ false
T (¬φ) ⇔ F(φ)
T (φ1 ∧ φ2) ⇔ T (φ1) ∧ T (φ2)
T (φ1 ∨ φ2) ⇔ T (φ1) ∨ T (φ2)
T (∀ x. φ) ⇔ ∀ x. T (φ)
T (∃ x. φ) ⇔ ∃ x. T (φ)

F(P (e1, .., en)) ⇔ ¬P (e1, .., en) ∧
n∧

i=1

δ(ei)

F(true) ⇔ false
F(false) ⇔ true
F(¬φ) ⇔ T (φ)
F(φ1 ∧ φ2) ⇔ F(φ1) ∨ F(φ2)
F(φ1 ∨ φ2) ⇔ F(φ1) ∧ F(φ2)
F(∀ x. φ) ⇔ ∃x. F(φ)
F(∃ x. φ) ⇔ ∀x. F(φ)

Fig. 4. Derived equivalences for T and F

F(∀x. φ) ⇔ D(∀x. φ) ∧ ¬∀x. φ ⇔
(∀x. D(φ) ∨ (∃x. (D(φ) ∧ ¬φ))) ∧ ∃x. ¬φ ⇔
∃x. (D(φ) ∧ ¬φ) ⇔ ∃x. F(φ)

The derived equivalences are very intuitive. Both T and F reflect the standard
two-valued interpretation of formulas. For instance, F essentially realizes de
Morgan’s laws. The handling of terms is the same as before using the δ operator.
Note that T and F are mutually recursive in the equivalences. Termination of the
mutual application of the operators is trivially guaranteed: the size of formulas
yields the measure for termination.

The more involved semantic proof of equivalence is presented in the appendix.
The proof, in particular Lemma 4, highlights the intuition behind Y’s definition.

The definition of our new procedure Y, based on Theorem 1, is the following:

Y(φ) � T (φ) ∨ F(φ)

It is easy to see that (1) our procedure begins by duplicating the size of
the input formula φ, and (2) afterwards applies operators T and F that yield
formulas that are linear in size with respect to their input formulas.

That is, overall our procedure yields well-definedness conditions that grow
linearly with respect to the size of the input formula. This is a significant im-
provement over D which yields formulas that are exponential in size with respect
to the input formula. Intuitively, this improvement can be explained as follows:
D makes case distinctions on the well-definedness of sub-formulas at each step
of its application, whereas Y only performs a single initial case distinction on
the validity of the entire formula. In spite of this difference, our procedure is
equivalent to D, thus it is symmetric, as opposed to L.

4 Implementation and Empirical Results

We have implemented a well-formedness checker in the context of the verification
of object-oriented programs. Our implementation extends the Spec# verification

Efficient Well-Definedness Checking 107

tool [5] by a new module that performs well-definedness and well-foundedness
checks on specifications using the Y procedure. Details of the technique applied
in the well-formedness checker are described in [26].

Additionally, in order to be able to compare the different procedures, we
have built a prototype that implements the D, L, and Y procedures for the
syntax given in Figure 1. We used the two automated theorem provers that are
integrated with Spec#: Simplify [15] and Z3 [14], both of which are used by
several other tools as prover back-ends too. The experiment was performed on
a machine with Intel Pentium M (1.86 GHz) and 2 GB RAM.

The benchmark. We have used the following inductively defined formula, which
allowed us to experiment with formula sizes that grow linearly with respect to
n, and which is well-defined for every natural number n:

φ0 � f(x) = x ∨ f(−x) = −x
φn � φn−1 ∧ (f(x+ n) = x+ n ∨ f(−x− n) = −x− n)

where the definition and domain restriction of f is as follows:

∀x. x ≥ 0 ⇒ f(x) = x and df : x ≥ 0

Note that formula φn is well-defined for any n. However, its well-definedness
cannot be proven using L for any n, and no re-ordering would help this situation.

Empirical results. Figure 5(a) shows that well-definedness conditions generated
by D grow exponentially, whereas conditions generated by L and Y grow linearly.
This was expected from their definitions. Note that the y axis uses a logarithmic
scale. The figure also shows, that the sizes of conditions generated using Y are
smaller than those generated by L for n > 4.

Figure 5(b) compares the time that Simplify (version 1.5.4) required to prove
the well-definedness conditions generated from our input formula. As required
by its interface, these conditions were given to Simplify as plain text. We see
that the time required to prove formulas generated by D grows exponentially,
whereas with Y the required time grows linearly. Note that the y axis uses a
logarithmic scale. Additionally, for D our prototype was not able to generate the
well-definedness condition for input formulas with n > 16 because it ran out of
memory.

Figure 5(c) shows the results of the same experiment using Z3 (version 1.2).
Note that the y axis is linear. From this graph we see that although the times
required to prove well-definedness conditions show the same growth pattern for
both procedure D and Y, the times recorded for Y are approximately 1/3 to
1/2 below that of for D. For instance, with n = 200, Z3 proves the condition
generated byD in 9 seconds, while it takes 3.5 seconds for the condition generated
by Y. For n = 300, these figures are 23.5 and 10.5 seconds, respectively. Note that
we could successfully prove much larger well-definedness conditions generated by
D in Z3 as compared to Simplify. This is because (1) we used the native API
of Z3 in order to construct formulas with maximal sharing, and (2) due to the

108 Á. Darvas, F. Mehta, and A. Rudich

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 0 50 100 150 200 250 300

N
um

be
r

of
 A

ST
 n

od
es

Value of n in input formula

D

L

Y

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 50 100 150 200 250 300T
im

e
to

 p
ro

ve
 u

si
ng

 S
im

pl
if

y
(m

se
c)

Value of n in input formula

D

Y

(a) (b)

 0

 5000

 10000

 15000

 20000

 25000

 0 50 100 150 200 250 300

T
im

e
to

 p
ro

ve
 u

si
ng

 Z
3

(m
se

c)

Value of n in input formula

D

Y

(c)

Fig. 5. (a) Size of well-definedness conditions generated by procedures D, L, and Y;
(b) Time to prove well-definedness conditions using Simplify; (c) Time to prove well-
definedness conditions using Z3

use of its API, Z3 may have benefited from sub-formula sharing, which could
have made the size of the resulting formula representation linear. In spite of this,
procedure Y performs better than D.

Note that Figure 5(b) and 5(c) do not plot the results of L. This is because
the L procedure cannot prove well-definedness of the input formulas.

Finally, we note that the whole sequence of formulas were passed to a single
session of Simplify or Z3, respectively.

5 Related Work

The handling of partial functions in formal specifications has been studied ex-
tensively and several different approaches have been proposed. Here we only
mention three mainstream approaches and refer the reader for detailed accounts
to Arthan’s paper [4], which classifies different approaches to undefinedness, to
Abrial and Mussat’s paper [3, Section 1.7], and to Hähnle’s survey [18].

Eliminating Undefinedness. As mentioned already in the paper, eliminat-
ing undefinedness by the generation of well-definedness conditions is a common

Efficient Well-Definedness Checking 109

technique to handle partial functions, and is applied in several approaches, such
as B [8,3], PVS [27], CVC Lite [9], and ESC/Java2 [11]. The two procedures
proposed in these papers are D and L.

PVS combines proving well-definedness conditions with type checking. In
PVS, partial functions are modeled as total functions whose domain is a predi-
cate subtype [27]. This makes the type system undecidable requiring Type Cor-
rectness Conditions to be proven. PVS uses the L operator because D was found
to be inefficient [27].

CVC Lite uses the D procedure for the well-definedness checking of formulas.
Berezin et al. [9] mention that if formulas are represented as DAGs, then the
worst-case size of D(φ) is linear with respect to the size of φ. However, there
are no empirical results presented to confirm any advantages of using the DAG
representation in terms of proving times.

Recent work on ESC/Java2 by Chalin [11] requires proving the well-definedness
of specifications written in the Java Modeling Language (JML) [23]. Chalin uses
the L procedure, however, as opposed to other approaches, not because of inef-
ficiency issues. The L procedure directly captures the semantics of conditional
boolean operators (e.g. && and || in Java) that many programming languages con-
tain, and which are often used, for instance, in JML specifications. Chalin’s survey
[10] indicates that the use of L is better suited for program verification than D,
since it yields well-definedness conditions that are closer to the expectations of
programmers.

Schieder and Broy [28] propose a different approach to the checking of well-
definedness of formulas. They define a formula under a three-valued interpre-
tation to be well-defined if and only if its interpretation yields true both if
⊥ is interpreted as true, and if ⊥ is interpreted as false. Although checking
well-definedness of formulas becomes relatively simple, the interpretation may
be unintuitive for users. For example, formula ⊥∨ ¬⊥ is considered to be well-
defined. We prefer to eliminate such formulas by using classical Kleene logic.

Three-Valued Logics. Another standard way to handle partial functions is to
fully integrate ill-defined terms into the formal logic by developing a three-valued
logic. This approach is attributed to Kleene [22]. A well-known three-valued logic
is LPF [7,12] developed by C.B. Jones et al. in the context of VDM [20]. Other
languages that follow this approach include Z [29] and OCL [1].

A well-known drawback of three-valued logics is that they may seem unnatural
to proof engineers. For instance, in LPF, the law of the excluded middle and
the deduction rule (a.k.a. ImpI) do not hold. Furthermore, a second notion of
equality (called “weak equality”) is required to avoid proving, for instance, that
x / 0 = fact(−5) holds. Another major drawback is that there is significantly less
tool support for three-valued logics than there is for two-valued logics.

Underspecification. The approach of underspecification assigns an ill-defined
term a definite, but unknown value from the type of the term [16]. Thus, the
resulting interpretation is two-valued, however, in certain cases the truth value
of formulas cannot be determined due to the unknown values. For instance,

110 Á. Darvas, F. Mehta, and A. Rudich

the truth value of x / 0 = fact(−5) is known to be either true or false, but
there is no way to deduce which of the two. However, for instance, x / 0 = x / 0
is trivially provable. This might not be a desired behavior. For instance, the
survey by Chalin [10] argues that this is against the intuition of programmers,
who would rather expect an error to occur in the above case. Underspecification is
applied, for instance, in the Isabelle theorem prover [25], the Larch specification
language [17], and JML [23].

6 Conclusion

A commonly applied technique to handle partial-function applications in formal
specifications is to pose well-definedness conditions, which guarantee that un-
defined terms and formulas are never encountered. This technique allows one
to use two-valued logic to reason about specifications that have a three-valued
semantics. Previous work proposed two procedures, each having some drawback.
The D procedure yields formulas that are too large to be used in practice. The
L procedure is incomplete, resulting in the rejection of well-defined formulas.

In this paper we proposed a new procedure Y, which eliminates these draw-
backs: Y is complete and yields formulas that grow linearly with respect to the
size of the input formula. Approaches that apply the D or L procedures (for in-
stance, B, PVS, and CVC Lite) could benefit from our procedure. The required
implementation overhead would be minimal.

Our procedure has been implemented in the Spec# verification tool to en-
force well-formedness of invariants and method specifications. Additionally, we
implemented a prototype to allow us to compare the new procedure with D and
L. Beyond the expected benefits of shorter well-definedness conditions, our ex-
periments also show that theorem provers need less time to prove the conditions
generated using Y.

Acknowledgments. We would like to thank Peter Müller and the anonymous
reviewers for their helpful comments. This work was funded in part by the In-
formation Society Technologies program of the European Commission, Future
and Emerging Technologies under the IST-2005-015905 MOBIUS project.

References

1. UML 2.0 OCL Specification (May 2006),
http://www.omg.org/docs/formal/06-05-01.pdf

2. Abrial, J.-R.: The B Book: Assigning Programs to Meanings. Cambridge University
Press, Cambridge (1996)

3. Abrial, J.-R., Mussat, L.: On using conditional definitions in formal theories. In:
Bert, D., Bowen, J.P., Henson, M.C., Robinson, K. (eds.) B 2002 and ZB 2002.
LNCS, vol. 2272, pp. 242–269. Springer, Heidelberg (2002)

4. Arthan, R.: Undefinedness in Z: Issues for specification and proof. In: CADE Work-
shop on Mechanization of Partial Functions (1996)

http://www.omg.org/docs/formal/06-05-01.pdf

Efficient Well-Definedness Checking 111

5. Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# programming system: An
overview. In: Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.)
CASSIS 2004. LNCS, vol. 3362, pp. 49–69. Springer, Heidelberg (2005)

6. Barrett, C.W., Berezin, S.: CVC Lite: A new implementation of the cooperating
validity checker category B. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS,
vol. 3114, pp. 515–518. Springer, Heidelberg (2004)

7. Barringer, H., Cheng, J.H., Jones, C.B.: A logic covering undefinedness in program
proofs. Acta Informatica 21, 251–269 (1984)

8. Behm, P., Burdy, L., Meynadier, J.-M.: Well Defined B. In: Bert, D. (ed.) B 1998.
LNCS, vol. 1393, pp. 29–45. Springer, Heidelberg (1998)

9. Berezin, S., Barrett, C., Shikanian, I., Chechik, M., Gurfinkel, A., Dill, D.L.: A
practical approach to partial functions in CVC Lite. In: Workshop on Pragmatics
of Decision Procedures in Automated Reasoning (2004)

10. Chalin, P.: Are the logical foundations of verifying compiler prototypes matching
user expectations? Formal Aspects of Computing 19(2), 139–158 (2007)

11. Chalin, P.: A sound assertion semantics for the dependable systems evolution ver-
ifying compiler. In: ICSE, pp. 23–33. IEEE Computer Society Press, Los Alamitos
(2007)

12. Cheng, J.H., Jones, C.B.: On the usability of logics which handle partial functions.
In: Refinement Workshop, pp. 51–69 (1991)

13. Crow, J., Owre, S., Rushby, J., Shankar, N., Srivas, M.: A tutorial introduction to
PVS. In: Workshop on Industrial-Strength Formal Specification Techniques (1995)

14. de Moura, L.M., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)

15. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: A theorem prover for program check-
ing. Technical Report HPL-2003-148, HP Labs (2003)

16. Gries, D., Schneider, F.B.: Avoiding the undefined by underspecification. In: van
Leeuwen, J. (ed.) Computer Science Today. LNCS, vol. 1000, pp. 366–373. Springer,
Heidelberg (1995)

17. Guttag, J.V., Horning, J.J.: Larch: Languages and Tools for Formal Specification.
Texts and Monographs in Computer Science. Springer, Heidelberg (1993)

18. Hähnle, R.: Many-valued logic, partiality, and abstraction in formal specification
languages. Logic Journal of the IGPL 13(4), 415–433 (2005)

19. Hoogewijs, A.: On a formalization of the non-definedness notion. Zeitschrift für
Mathematische Logik und Grundlagen der Mathematik 25, 213–217 (1979)

20. Jones, C.B.: Systematic software development using VDM. Prentice-Hall, Engle-
wood Cliffs (1986)

21. Kiniry, J.R., Cok, D.R.: ESC/Java2: Uniting ESC/Java and JML. In: Barthe, G.,
Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.) CASSIS 2004. LNCS,
vol. 3362, pp. 108–128. Springer, Heidelberg (2005)

22. Kleene, S.C.: On a notation for ordinal numbers. Journal of Symbolic Logic 3,
150–155 (1938)

23. Leavens, G.T., Baker, A.L., Ruby, C.: Preliminary design of JML: a behavioral
interface specification language for Java. ACM SIGSOFT Software Engineering
Notes 31(3), 1–38 (2006)

24. McCarthy, J.: A basis for a mathematical theory of computation. In: Braffort,
P., Hirschberg, D. (eds.) Computer Programming and Formal Systems, pp. 33–70.
North-Holland, Amsterdam (1963)

25. Nipkow, T., Paulson, L.C., Wenzel, M.T.: Isabelle/HOL. LNCS, vol. 2283. Springer,
Heidelberg (2002)

112 Á. Darvas, F. Mehta, and A. Rudich

26. Rudich, A., Darvas, Á., Müller, P.: Checking well-formedness of pure-method
specifications. In: Cuellar, J., Maibaum, T. (eds.) Formal Methods (FM). LNCS,
vol. 5014, pp. 68–83. Springer, Heidelberg (2008)

27. Rushby, J., Owre, S., Shankar, N.: Subtypes for Specifications: Predicate Subtyping
in PVS. IEEE Transactions on Software Engineering 24(9), 709–720 (1998)

28. Schieder, B., Broy, M.: Adapting calculational logic to the undefined. The Com-
puter Journal 42(2), 73–81 (1999)

29. Spivey, J.M.: Understanding Z: a specification language and its formal semantics.
Cambridge University Press, Cambridge (1988)

30. Sutcliffe, G., Suttner, C.B., Yemenis, T.: The TPTP Problem Library. In: Bundy,
A. (ed.) CADE 1994. LNCS, vol. 814, pp. 252–266. Springer, Heidelberg (1994)

A Semantic Proof of Equivalence

Structures. We define structures and interpretations in a way similar to as
Behm et al. [8]. Let A be a set that does not contain ⊥. We define A⊥ as
A ∪ {⊥}. Let F be a set of function symbols, and P a set of predicate symbols.
Let I be a mapping from F to the set of functions from An to A⊥, and from P to
the set of predicates from An to {true, false} (for simplicity, we assume that the
interpretation of predicates is total), where n is the arity of the corresponding
function or predicate symbol. We say that M = 〈A, I〉 is a structure for our
language with carrier set A and interpretation I. We call a structure total if
the interpretation of every function f ∈ F is total, which means f(. . .) �= ⊥. We
call the structure partial otherwise. A partial structure M can be extended to
a total structure M̂ by having functions evaluated outside their domains return
arbitrary values.

Interpretation. For a term t, structure M, and variable assignment e, we
denote the interpretation of t as [t]eM. Variable assignment e maps the free
variables of t to values. We define the interpretation of terms as given in Figure
6. Interpretation of formula ϕ denoted as [ϕ]eM is given in Figure 7. Dom yields
the domain of the interpretation of function symbols.
To check whether or not a value l is defined, we use function wd:

wd(l) =

{

true, if l ∈ {true, false}
false, if l = ⊥

[v]eM � e(v) where v is a variable

[f(t1, . . . , tn)]eM �

⎧

⎪⎨

⎪⎩

I(f)([t1]
e
M, . . . , [tn]eM), if 〈[t1]

e
M, . . . , [tn]eM〉 ∈ Dom(I(f))

and [t1]
e
M �= ⊥, . . . , [tn]eM �= ⊥

⊥, otherwise

Fig. 6. Interpretation of terms

Efficient Well-Definedness Checking 113

[true]eM � true
[false]eM � false

[P (t1, . . . , tn)]eM �

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

true, if I(P)([t1]
e
M, . . . , [tn]eM) = true and

[t1]
e
M �= ⊥, . . . , [tn]eM �= ⊥

false, if I(P)([t1]
e
M, . . . , [tn]eM) = false and

[t1]
e
M �= ⊥, . . . , [tn]eM �= ⊥

⊥, otherwise

[¬ϕ]eM �

⎧

⎪⎨

⎪⎩

true, if [ϕ]eM = false
false, if [ϕ]eM = true
⊥, otherwise

[ϕ ∧ φ]eM �

⎧

⎪⎨

⎪⎩

true, if [ϕ]eM = true and [φ]eM = true
false, if [ϕ]eM = false or [φ]eM = false
⊥, otherwise

[ϕ ∨ φ]eM �

⎧

⎪⎨

⎪⎩

true, if [ϕ]eM = true or [φ]eM = true
false, if [ϕ]eM = false and [φ]eM = false
⊥, otherwise

[∀ x. ϕ]eM �

⎧

⎪⎨

⎪⎩

true, if for all l ∈ A, [ϕ]
e[x←l]
M = true

false, if there exists l ∈ A such that[ϕ]
e[x←l]
M = false

⊥, otherwise

[∃ x. ϕ]eM �

⎧

⎪⎨

⎪⎩

true, if there exists l ∈ A such that[ϕ]
e[x←l]
M = true

false, if for all l ∈ A, [ϕ]
e[x←l]
M = false

⊥, otherwise

Fig. 7. Interpretation of formulas

Lemma 1. For every total structure M, formula ϕ, and variable assignment e,
we have wd([ϕ]eM) = true.

Proof. By induction over the structure of ϕ. "!

Lemma 2. For every structure M, if M is extended to total structure M̂, then
wd([ϕ]e

M̂
) = true.

Proof. Trivial consequence of the way M is extended and of Lemma 1. "!

Domain Restrictions. Each function f is associated with a domain restriction
df , which is a predicate that represents the domain of function f . A structure
M is a model for domain restrictions of functions in F (denoted by dF(M)) if
and only if:

– The domain formulas are defined. That is, for each f ∈ F and for all e:
wd([df]eM) = true

– Domain restrictions characterize the domains of function interpretations for
M. That is, for each f ∈ F and l1, . . . , ln ∈ A:

114 Á. Darvas, F. Mehta, and A. Rudich

[df]eM = true if and only if 〈l1, . . . , ln〉 ∈ Dom(I(f))
where e = [v1 → l1, . . . , vn → ln] and {v1, . . . , vk} are f ’s parameter names.

In the following we prove two lemmas and finally our two main theorems.

Lemma 3. For each structure M, term t, and variable assignment e:
if dF(M) then [t]eM �= ⊥ if and only if [δ(t)]e

M̂
= true.

Proof. By induction on the structure of t under the assumption that dF(M).
Induction base: t is variable v.
Since [v]eM = e(v) �= ⊥ and [δ(v)]e

M̂
= true, we have the desired property.

Induction step: t is function application f(t1, . . . , tn).
From definition of interpretation we get that [f(t1, . . . , tn)]eM �= ⊥ if and only if:

〈[t1]eM, . . . , [tn]eM〉 ∈ Dom(I(f)) ∧ [t1]eM �= ⊥ ∧ . . . ∧ [tn]eM �= ⊥
By the definition of dF(M) and the induction hypothesis, it is equivalent to:

[df (t1, . . . , tn)]e
M̂

= true ∧ [δ(t1)]eM̂ = true ∧ . . . ∧ [δ(tn)]e
M̂

= true

which is, by the definition of δ, equivalent to [δ(f(t1, . . . , tn))]e
M̂

= true. "!

Lemma 4. For each structure M, formula ϕ, and variable assignment e:
if dF(M) then [ϕ]eM = true if and only if [T (ϕ)]e

M̂
= true and

[ϕ]eM = false if and only if [F(ϕ)]e
M̂

= true.
Proof. By induction on the structure of ϕ under the assumption that dF(M).
Induction base: ϕ is predicate P (t1, . . . , tn).
From definition of interpretation we get [P (t1, . . . , tn)]eM = true if and only if:

I(P)([t1]eM, . . . , [tn]eM) = true ∧ [t1]eM �= ⊥ ∧ . . . ∧ [tn]eM �= ⊥
which is, by the assumption that the interpretation of predicates is total and by
Lemma 3, equivalent to:

[P (t1, . . . , tn)]e
M̂

= true ∧ [δ(t1)]eM̂ = true ∧ . . . ∧ [δ(tn)]e
M̂

= true

which is, by the definition of T , equivalent to [T (P (t1, . . . , tn))]e
M̂

= true.
The proof is analogous for F .
Induction step: For brevity, we only present the proof of those two cases for
which the syntactic derivation was shown on page 105. The proofs are analogous
for all other cases.

1. We prove that if dF(M) then [γ∧φ]eM = true if and only if [T (γ∧φ)]e
M̂

= true.
From definition of interpretation we get that [γ ∧ φ]eM = true if and only if
[γ]eM = true and [φ]eM = true, which is, by the induction hypothesis, equiva-
lent to [T (γ)]e

M̂
= true and [T (φ)]e

M̂
= true, which is, by the definition of T ,

equivalent to [T (γ ∧ φ)]e
M̂

= true.

Efficient Well-Definedness Checking 115

2. We prove that if dF(M) then [∀x. φ]eM = false iff [F(∀x. φ)]e
M̂

= true.
From the definition of the interpretation function we get that [∀x. φ]eM = false
if and only if there exists l ∈ A such that [φ]e[x←l]

M = false. By the induction
hypothesis, this is equivalent to the existence of l ∈ A such that [F(φ)]e[x←l]

M̂
=

true, which is, by the definition of F , equivalent to [F(∀x. φ)]e
M̂

= true. "!

Theorem 2. For each structure M, formula ϕ, and variable assignment e:
if dF(M) then wd([ϕ]eM) = [Y(ϕ)]e

M̂
Proof. From the definition of wd we know that wd([ϕ]eM) is defined. Further-
more, from Lemma 2 (with ϕ substituted by Y(ϕ)) we know that [Y(ϕ)]e

M̂
is defined. Thus, it is enough to prove that wd([ϕ]eM) = true if and only if
[Y(ϕ)]e

M̂
= true. Under the assumption that dF(M), we have:

wd([ϕ]eM) = true if and only if [by definition of wd]
[ϕ]eM ∈ {true, false} if and only if [by Lemma 4]
[T (ϕ)]e

M̂
= true or [F(ϕ)]e

M̂
= true if and only if [by definition of Y]

[Y(ϕ)]e
M̂

= true "!

Berezin et al. [6] proved the following characteristic property of D:

if dF(M) then wd([ϕ]eM) = [D(ϕ)]e
M̂

(2)

Theorem 3. For each total structure M, formula ϕ, and variable assignment e:
[D(ϕ) ⇔ Y(ϕ)]eM = true

Proof. For each total structure M there exists a partial structure M′ such that
M = M̂′ and dF(M′). We can build M′ from M by restricting the domain of
partial functions according to the domain restrictions.
By Theorem 2 and (2) we get [D(ϕ)]e

M̂′ = wd([ϕ]eM′) = [Y(ϕ)]e
M̂′ . Which is

equivalent to [D(ϕ) ⇔ Y(ϕ)]e
M̂′ = true. Since M = M̂′ we get the desired

property. "!

Proving Group Protocols

Secure Against Eavesdroppers

Steve Kremer1, Antoine Mercier1, and Ralf Treinen2

1 LSV, ENS Cachan, CNRS, INRIA, France
2 PPS, Université Paris Diderot, CNRS, France

Abstract. Security protocols are small programs designed to ensure
properties such as secrecy of messages or authentication of parties in a
hostile environment. In this paper we investigate automated verification
of a particular type of security protocols, called group protocols, in the
presence of an eavesdropper, i.e., a passive attacker. The specificity of
group protocols is that the number of participants is not bounded.

Our approach consists in representing an infinite set of messages ex-
changed during an unbounded number of sessions, one session for each
possible number of participants, as well as the infinite set of associated
secrets. We use so-called visibly tree automata with memory and struc-
tural constraints (introduced recently by Comon-Lundh et al.) to repre-
sent over-approximations of these two sets. We identify restrictions on
the specification of protocols which allow us to reduce the attacker ca-
pabilities guaranteeing that the above mentioned class of automata is
closed under the application of the remaining attacker rules. The class
of protocols respecting these restrictions is large enough to cover several
existing protocols, such as the GDH family, GKE, and others.

1 Introduction

Many modern computing environments, on wired or wireless networks, involve
groups of users of variable size, and hence raise the need for secure communi-
cation protocols designed for an unbounded number of participants. This sit-
uation can be encountered in multi-user games, conferencing applications, or
when securing an ad-hoc wireless network. In this paper we investigate the for-
mal analysis of such protocols whose specification is parameterized by the num-
ber of participants. Proving protocols by hand is cumbersome and error-prone.
Therefore we aim at automated proof methods. The variable number of protocol
participants makes this task particularly difficult.

Related works. Several works already attempted to analyze these protocols. Steel
developed the CORAL tool [15] which aims at searching for attacks. Pereira and
Quisquater [14,13] analyzed specific types of protocols and proved the impossibil-
ity of building secure protocols using only some kinds of cryptographic primitives
such as modular exponentiation in the presence of an active adversary. Küsters
and Truderung [12,17] studied the automatic analysis of group protocols in case

A. Armando, P. Baumgartner, and G. Dowek (Eds.): IJCAR 2008, LNCS 5195, pp. 116–131, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Proving Group Protocols Secure Against Eavesdroppers 117

of a bounded number of sessions for an active intruder. They showed that the
secrecy property is decidable for a given number of participants (without bound
on this number) and for a group protocol that may be encoded in their model.
As far as we know there is no complete and generic method to automatically
prove the security of protocols for an unbounded number of participants. We
aim to establish such a method.

Contribution of this paper. We consider a passive intruder, that is an intruder
who only eavesdrops all the messages emitted during any sessions. This setting
is of course restrictive in comparison to an active adversary. However, Katz and
Yung [10] have shown that any group key agreement protocol which is secure
against a passive adversary can be transformed into a protocol which resists
against an active adversary. The security property that we are interested in here
is the secrecy of some set of messages. In a group key exchange protocol, for
example, the set of messages we hope remain secret is the set of session keys
established during several sessions of the protocol.

Vulnerability of protocols designed for a fixed number of participants to eaves-
dropping attacks is quite straightforward to analyze in the symbolic model of
Dolev and Yao. This is due to the fact that the set of messages exchanged during
one session is a finite set, and that one can construct easily [9] a tree automaton
describing precisely the set of messages an attacker can deduce from these using
the deduction capabilities of the Dolev/Yao model. This is much more difficult in
case of group protocols: not only does the number of messages exchanged during
a protocol session grow with the number of participants, one also has to take
into consideration parameters like the total number of participants of a session,
and the position of a participant among the other protocol participants.

We specify a protocol as a function that assigns to any number of participants
two sets of terms. The first set represents the set of messages emitted by the
participants of the protocol, and the second set represents the set of terms that
we want to remain secret. We suppose that the attacker has access to the set of
messages exchanged by the legitimate protocol participants of the sessions for all
possible numbers of participants combined, and that he attempts to deduce from
this a supposed secret of one of the sessions. In other words, we are interested
in the situation where an attacker could listen to several protocol sessions, say
for 3, 4, and 5 participants, and then use this combined knowledge in order to
deduce a supposed secret for one of these sessions.

As a first step we give sufficient restrictions on protocol specifications which
allow us to reduce the intruder capabilities: we show that operations typically
used in group protocols such as modular exponentiation and exclusive or are
not necessary for the intruder to discover a secret term. As a consequence, the
deduction capabilities of an intruder can be reduced to the classical so-called
passive Dolev-Yao intruder. These restrictions are met by the protocols we have
studied ([16,2,1], . . .). In contrast to classical protocols between a fixed number
of participants, however, we now have to deal with infinite sets of terms that are
in general inductively defined.

118 S. Kremer, A. Mercier, and R. Treinen

The second step is to represent an over-approximation of the set of emitted
messages and the set of supposed secrets in a formalism that has the following
features:

– The set of messages that the intruder can deduce from the set of emitted
messages can again be described by the same formalism.

– Disjointness of sets described in this formalism is decidable.

The formalism of classical tree automata enjoys these two properties; unfor-
tunately it is not expressive enough to specify the inductively defined sets of
messages that occur in group protocols. For this reason we employ here the
recently [3] proposed class of so-called visibly tree automata with memory, visi-
bility and structural constraints. Additionally, this constitutes a new unexpected
application of this class of automata.

A further difficulty is that the messages may still use associative and com-
mutative (AC) operators. The class of automata used here does not take into
account AC operators. We will explain how to cope with this difficulty by work-
ing with certain representatives of equivalence classes modulo AC.

Structure of the paper. Section 2 presents the running example used throughout
the paper. In Section 3 we introduce our attacker model. In Section 4 we explain
the result on the reduction of intruder capabilities and its proof. In Section 5
we exhibit how to represent our sets of terms using the formalism of [3]. We
illustrate our technique with the representation of the running example in this
formalism in Section 6. We conclude in Section 7.

The details of the proofs are in the full version of this paper [11].

2 Running Example

Our running example is the group Diffie-Hellman key agreement protocol (GDH-
2) [16]. Every participant in a session between n participants generates a nonce
Ni (a secret fresh value). The first participant sends out [α, αN1] where α is a pub-
licly known constant. The i-th participant (for 1 < i < n) expects from its prede-
cessor a list of messages [αx1 , . . . , αx], and he sends out [αx , αx1·N , . . . , αx ·N].
The last participant, on reception of [αx1 , . . . , αx], sends to all other partici-
pants [αx1·N , . . . , αx −1·N]. For instance in case of 4 participants the following
sequence of messages is sent (we use here a list notation that will later be for-
malised by a binary pairing operator) :

Sender Message
1 [α, αN1]
2 [αN1 , αN2 , αN1·N2]
3 [αN1·N2 , αN1·N3 , αN2·N3 , αN1·N2·N3]
4 [αN1·N2·N4 , αN1·N3·N4, αN2·N3·N4]

The common key is αN1·N2·N3·N4 . Note that each of the participants i for i < n
can calculate that key from the message sent out by the last participant since
he knows the missing part Ni, and that the participant n can calculate that key
using the last element of the sequence he received form the participant n− 1.

i i i

n

nn n

i i

Proving Group Protocols Secure Against Eavesdroppers 119

x⊕ 0 → x

x⊕ x → 0

((x)y)z → xy·z

〈x, y〉z → 〈xz, yz〉

Fig. 1. Rewrite System R

3 Model

We present here an extension of the model of a passive Dolev-Yao intruder [8].
This intruder is represented by a deduction system which defines his capabilities
to obtain new terms from terms he already knows.

Messages. Messages exchanged during executions of the protocol are represented
by terms over the following signature Σ:

Σ = {pair/2, enc/2, exp/2,mult/2, xor/2, H/1} *Σ0

A pair pair(u, v) is usually written 〈u, v〉, the encryption of a message u by the
key v, enc(u, v), is written {u}v, and the exponentiation of u by v, exp(u, v),
is written uv. Multiplication mult and exclusive or xor are denoted by the infix
operators · and ⊕. The symbolH denotes a unary hash function. Σ0 is an infinite
set of constant symbols, including nonces and encryption keys, and possibly
elements of an algebraic structure such as the generator of some group. T (Σ)
denotes the set of all terms build over Σ. We write St(t) for the set of subterms of
the term t, defined as usual, and extend this notation to sets of terms. We say that
a function symbol f , where f/n ∈ Σ, occurs in a term t if f(t1, . . . , tn) ∈ St(t)
for some t1, . . . , tn.

Equational theory. We extend this model by an equational theory represented
by the rewrite system R, which is given in Figure 1, modulo AC. The associative
and commutative operators are exclusive or ⊕ and multiplication ·. Normaliza-
tion by R modulo AC is denoted ↓R/AC . The first two rules express the neutral
element and the nilpotency law of exclusive or. The third rewrite rule allows
for a normalization of nested exponentiations. Note that we do not consider a
neutral element for multiplication, and that we do not have laws for multiplica-
tive inverse, or for distribution of multiplication over other operations such as
addition. The last rule allows one to normalize a list of terms exponentiated
with the same term. It will be useful in order to model some protocols such as
GKE [2]. Confluence and termination of this rewrite system have been proven
using the tool CiME [6]. In the rest of this paper we will only consider terms
in normal form modulo R/AC. Any operation on terms, such as the intruder
deduction system presented below, has to yield normal forms modulo R/AC.

The Intruder. The deduction capabilities of the intruder are described as the
union of the deduction system DY of Figure 2 and the system of Figure 3. The

120 S. Kremer, A. Mercier, and R. Treinen

axiom if t ∈ S
S � t S � t1 S � t2 pair

S � 〈t1, t2〉

S � 〈t1, t2〉
proj1

S � t1

S � 〈t1, t2〉
proj2

S � t2

S � t1 S � t2 enc
S � {t1}t2

S � {t1}t2 S � t2
dec

S � t1

S � t
hash

S � H(t)

Fig. 2. The Dolev-Yao Deduction System DY

S � t1 S � t2 and t2 ∈ Σ0 exp
S � tt2

1 ↓R/AC

S � t1 · · · S � tn
Gxor

S � t1 ⊕ · · · ⊕ tn ↓R/AC

Fig. 3. Extension of the Dolev-Yao Deduction System

complete system is called I. A sequent S , t, where S is a finite set of terms
and t a term, expresses the fact that the intruder can deduce t from S.

The system DY represents the classical Dolev-Yao intruder capacities to en-
crypt (enc) or decrypt (dec) a message with keys he knows, to build pairs (pair)
of two messages, to extract one of the messages from a pair (proj1, proj2), and
finally to apply the hash function (hash). Note that the term in the conclusion
is in normal form w.r.t. R/AC when its hypotheses are, we hence do not have
to normalize the term in the conclusion.

The system I extends the capabilities of DY by additional rules that allow
the intruder to apply functions that are subject to the equational theory. We
have to normalize the terms in the conclusions in these rules since applications
of exponentiation or ⊕ may create new redexes.

As usually pair, enc, hash, exp and Gxor will be called construction rules,
and proj1, proj2, and dec, will be called deconstruction rules. Note that the Gxor
rule may also be used to deduce a subterm of a term thanks to the nilpotency
of ⊕. For instance, let a and b be two constants of Σ0. Applying a Gxor rule
to sequents S , a ⊕ b and S , b allows to deduce a, a subterm of a ⊕ b. We
implicitly assume that the constants 0 and α are always included in S.

For a set of ground terms S and a ground term t we write S ,D t if there
exists a deduction of the term t from the set S in the deduction system D.

Definition 1 (Deduction). A deduction of t from S in a system D is a tree
where every node is labelled with a sequent. A node labelled with S ,D u has n
sons S ,D v1, . . . , S ,D vn such that S
 v1,...,S
 v

S
 u is an instance of one of
the rules of D. The root is labelled by S ,D t. The size of the deduction is the
number of nodes of the tree.

D D

D

n

Proving Group Protocols Secure Against Eavesdroppers 121

When the deduction system D is clear from the context we may sometimes omit
the subscript D and just write S , t. In the following we consider deductions in
the systems DY and I. The deductive closure by a system D of a set of terms E
is the set of all the terms the intruder can deduce from E using D.

Definition 2 (Deductive closure). Let D be a deduction system and T a set
of ground terms. The deductive closure by D of T is

D(T) = {t | T ,D t}

Protocol Specification and Secrecy Property. We suppose that a protocol is de-
scribed by two functions e : N → 2T (Σ) and k : N → 2T (Σ). Given a number of
participants n, e(n) yields the set of terms that are emitted during a protocol
execution with n participants and k(n) is the set of secrets of this execution,
typically the singleton set consisting of the constructed key.

Example 1. Consider our running example introduced Section 2. We have that

eGDH(n) =
{
∅ if n < 2
{tn1 , . . . , tnn} else and kGDH(n) =

{
∅ if n < 2
{αN1 ·...·N } else

where

In the following we call a protocol specification the pair of (infinite) sets of
terms (E,K) where E =

⋃

n∈N
e(n) and K =

⋃

n∈N
k(n). Given a protocol

specification (E,K) we are interested in the question whether a supposed secret
in K is deducible from the set of messages emitted in any of the sessions, i.e.,
I(E) ∩ K ?= ∅. It is understood that e(n) and k(n), and hence E and K, are
closed under associativity and commutativity of exclusive or and multiplication.

4 Reducing I to DY

In this section we show that, under carefully chosen restrictions on the sets E
and K, we can consider an intruder who is weaker than expected. We will define
well-formed protocols that will allow us to reduce a strong intruder (using the
system I) to a weaker intruder (using only the system DY). This class is general
enough to cover existing group protocols.

We first define a slightly stronger deduction system which will be more con-
venient for the proofs. Let R′ be the rewrite system R \ {〈x, y〉z → 〈xz , yz〉},
and I ′ the deduction system I where the rewrite system used in the rules exp
and Gxor is R′. We show that any term which can be deduced in I can also be
deduced in I ′. This allows us to use the system I ′ which is more convenient for
our proofs.

n
n

tn1 = 〈α, αNn
1 〉

tni = 〈αNn
1 ·...·Nn

i−1 , t
Nn

i

i−1〉 (1 < i < n)
tnn = 〈αNn

2 ·...·Nn
n , 〈. . . , 〈αNn

1 ·...·Nn
j−1·Nn

j+1·...·Nn
n , 〈. . . , αNn

1 ·...·Nn
n−2·Nn

n 〉〉〉〉

n

122 S. Kremer, A. Mercier, and R. Treinen

Lemma 1. Let E be a set of terms. If E �I t then E �I′ t, and if E �I\Gxor t
then E �I′\Gxor t.

To prove this result it is sufficient to note that each time an exponent is applied
to a pair, one can obtain both elements of the pair by projection and apply the
exponent to each of the elements before recomposing the pair.

We may however note that in general it is not the case that E �I′ t implies
E �I t as it is possible in I ′ to deduce a term of the form 〈u, v〉c (which would
not be in normal form with respect to R).

Well formation. To state our well-formation condition, we define a closure func-
tion C on terms that computes an over-approximation of the constants that are
deducible in a given term.

Definition 3 (closure). Let C : T (Σ) → 2Σ0 be the function defined induc-
tively as follows

C(c) = {c} if c ∈ Σ0

C(〈u, v〉) = C(u) ∪ C(v)
C({u}v) = C(u)

C(u1 ⊕ · · · ⊕ un) =
⋃

i=1 C(ui)
C(f(u1, . . . , un)) = ∅ if f = 〈., .〉, {.}.

We extend this definition to sets of terms in the natural way, i.e., c ∈ C(S) if
there exists u ∈ S such that c ∈ C(u).

The following lemma states that if a constant c is in the closure of a term t
which can be deduced from a set E, then c is also in the closure of E. A direct
consequence is that if a constant c can be deduced from E then c is in the closure
of E.

Lemma 2. Let c ∈ Σ0 and t be a term such that c ∈ C(t). If E �I′ t then
c ∈ C(E).

Corollary 1. If c ∈ Σ0 and E �I′ c then c ∈ C(E).

We impose restrictions on the protocols. These restrictions concern the usage of
modular exponentiation and the usage of ⊕ during the execution of the protocol.
We will also restrict the set of supposed secrets.

Definition 4 (Well formation). A protocol specification (E, K) is said to be
well-formed if it satisfies the following constraints.

1. If t ∈ E and if ⊕ occurs in t, then t = u ⊕ v for some u and v and
– ⊕ does not occur neither in u nor in v
– u, v ∈ DY (E).

2. Let t = uc1·····cn and ci ∈ Σ0 for all 1 ≤ i ≤ n. If t ∈ St(E ∪ K) then
c1, . . . , cn ∈ C(E)

3. For any t ∈ K, we have that ⊕ does not occur in t.

Proving Group Protocols Secure Against Eavesdroppers 123

Constraint 1 implies that ⊕ only occurs at the root position in terms of E and
moreover ⊕ is of arity 2. Note that this constraint does not prevent the intruder
from constructing terms where ⊕ has an arity greater than 2. Constraint 1 ad-
ditionally requires that u and v cannot be deduced by a Dolev-Yao adversary.
Constraint 2 requires that any constant occuring as an exponent in some term
of E ∪ S cannot be accessed “easily”, i.e. is not in the closure C, representing
an over-approximation of accessible terms. Adding this constraint seems quite
natural, since modular exponentiation is generally used to hide the exponent.
This is for instance the case in the Diffie-Hellman protocol which serves as our
running example: each participant of the protocol generates a nonce N , expo-
nentiates some of the received values with N which are then send out. If the
access to such a nonce would be “easy” then the computation of the established
key would also be possible. Finally, constraint 3 requires that the secrets do not
contain any xored terms.

These constraints allow us to derive the main theorem of this section and will
be useful for automating the analysis of group protocols. While these constraints
are obviously restrictive, they are nevertheless verified for several protocols, in-
cluding GDH and GKE. In particular, the last constraint imposes that the spec-
ification of sets of keys must not involve any ⊕. This may seem rather arbitrary
but the protocols we looked at fulfill this requirement.

The main theorem of this section states that, for well-formed protocols, if
there is an attack for the attacker I then there is an attack for the attacker DY .

Theorem 1. For all well-formed (E, K) we have I(E) ∩ K = DY (E) ∩ K.

The proof of this result relies on several additional lemmas and is postponed
to the end of this section. We only present some of the key lemmas. Remaining
details and full proofs are given in [11] .

The following lemma is similar to Lemma 1 of [5], but adapted to our setting.

Lemma 3. Let E be a set of terms. If π is a minimal deduction in I ′ of one of
the following forms :

...
E � 〈u, v〉

proj1
E � u

...
E � 〈u, v〉

proj2
E � v

...
E � {u}v

...
E � v

dec
E � u

Then 〈u, v〉 ∈ St(E) (resp. 〈u, v〉 ∈ St(E), resp. {u}v ∈ St(E)).

We now show that in the case of well-formed protocol specifications, if a deduc-
tion does not apply the Gxor rule, then it does not need to apply the exp rule
neither.

Lemma 4. Let E be a set of terms and t a term. If for every uc1·····cn ∈ St(E, t)
such that ci ∈ Σ0 one has ci /∈ C(E) and if E �I′\Gxor t then E �DY t.

The proof is done by induction on the length of the deduction tree showing that

124 S. Kremer, A. Mercier, and R. Treinen

E ,I′\Gxor t. The delicate case occurs when the last rule application is either
projection or decryption. In these cases we rely on Lemma 3.

The next lemma states that whenever a Gxor rule is applied then a ⊕ occurs
in the conclusion of the deduction. A direct corollary allows us to get rid of any
application of the Gxor rule in well-formed protocol specifications.

Lemma 5. Let E be a set of terms satisfying constraints 1 and 2 of Definition 4.
Let π be a minimal deduction of E ,I′ t. If π involves an application of the Gxor
rule, then ⊕ occurs in t.

Corollary 2. Let (E,K) be a well-formed protocol. Every minimal deduction of
E ,I′ t such that t ∈ K does not involve an application of the Gxor rule.

Proof. By contradiction. Let π be a minimal deduction of E ,I′ t that involves
a Gxor rule. As (E,K) is a well-formed protocol, by Lemma 5 ⊕ occurs in t.
However, as t ∈ K (E,K) is a well-formed protocol, by constraint 3, ⊕ does not
occur in t.

We are now ready to prove the main theorem of this section.

Proof (of Theorem 1). We obviously have that DY (E) ∩ K ⊆ I(E) ∩ K since
DY is a subsystem of I. To prove the other direction, let t be a term of K and
suppose that E ,I t. By Lemma 1, there is a deduction of E ,I′ t. As (E,K) is
well-formed and t ∈ K, by Corollary 2, there exists a deduction of E ,I′\Gxor t.
Hence by Lemma 4, we have a deduction of E ,DY t.

5 Representing Group Protocols by Automata

5.1 The Automaton Model

We first recall the definition of Visibly Tree Automata with Memory and Struc-
tural Constraints introduced first in [3] and later refined in [4]. Let X be an
infinite set of variables. The set of terms built over Σ and X is denoted T (Σ,X).

Definition 5 ([3]). A bottom-up tree automaton with memory on a finite input
signature Σ is a tuple (Γ,Q,Qf , Δ) where Γ is a memory signature, Q is a finite
set of unary state symbols, disjoint from Σ ∪ Γ , Qf ⊆ Q is the subset of final
states and Δ is a set of rewrite rules of the form f(q1(m1), . . . , qn(mn))→ q(m)
where f ∈ Σ of arity n, q1, . . . , qn, q ∈ Q and m1, . . .mn,m ∈ T (Σ,X).

For the next definition we will have to consider a partition of the signature, and
we will also (as in [3]) require that all symbols of Σ and Γ have either arity 0
or 2. We also assume that Γ contains the constant ⊥.

Σ = ΣPush *ΣPop11 *ΣPop12 *ΣPop21 *ΣPop22

*ΣInt0 *ΣInt1 *ΣInt2 *Σ≡
Int1

*Σ≡
Int2

Two terms t1 and t2 are equivalent, written t1 ≡ t2, if they are equal when
identifying all symbols of the same arity, that is ≡ is the smallest equivalence
on ground terms satisfying

Proving Group Protocols Secure Against Eavesdroppers 125

– a ≡ b for all a, b of arity 0,
– f(s1, s2) ≡ g(t1, t2) if s1 ≡ t1 and s2 ≡ t2, for all f and g of arity 2.

Definition 6 ([4]). A visibly tree automaton with memory and constraints
(short Vtam

≡
�≡) on a finite input signature Σ is a tuple (Γ,≡, Q, Qf , Δ) where

Γ ,Q,Qf are as in Definition 5, ≡ is the relation on T (Γ) defined above and Δ
is the set of rewrite rules of one of the following forms:

Push a → q(c) a ∈ ΣPush

Push f(q1(y1), q2(y2)) → q(h(y1, y2)) f ∈ ΣPush

Pop1i f(q1(h(y11, y12), q2(y2))) → q(y1i) f ∈ ΣPop1i
, 1 ≤ i ≤ 2

Pop1i f(q1(⊥), q2(y2)) → q(⊥) f ∈ ΣPop1i
, 1 ≤ i ≤ 2

Pop2i f(q1(y1), q2(h(y21, y22))) → q(y2i) f ∈ ΣPop2i , 1 ≤ i ≤ 2
Pop2i f(q1(y1), q2(⊥)) → q(⊥) f ∈ ΣPop2i

, 1 ≤ i ≤ 2
Int0 a → q(⊥) a ∈ ΣInt0

Inti f(q1(y1), q2(y2)) → q(yi) f ∈ ΣInti
, 1 ≤ i ≤ 2

Int
≡
i f(q1(y1), q2(y2))

y1≡y2→ q(yi) f ∈ ΣInt
≡
i
, 1 ≤ i ≤ 2

Int
�≡
i f(q1(y1), q2(y2))

y1 �≡y2→ q(yi) f ∈ ΣInt
≡
i
, 1 ≤ i ≤ 2

where q1, q2, q ∈ Q, y1, y2 are distinct variables of X , c, h ∈ Γ .

A Vtam
≡
�≡ can apply a transition of type Int

≡
i (resp. Int

�≡
i) to a term

f(q1(m1), q2(m2)) only when m1 ≡ m2 (resp. m1 ≡ m2). A term t is accepted
by a Vtam

≡
�≡ A in state q ∈ Q and with memory m ∈ T (Γ) iff t →∗ q(m). The

language L(A, q) and memory language M(A, q) of A in state q are respectively
defined by:

L(A, q) = {t|∃m ∈ T (Γ), t →∗ q(m)} M(A, q) = {m|∃t ∈ T (Σ), t →∗ q(m)}

Theorem 2 ([3],[4]). The class of languages recognizable by Vtam
≡
�≡ is closed

under Boolean operations, and emptiness of Vtam
≡
�≡ is decidable.

Note that the closure under ∪, ∩ supposes the same partition of the input sig-
nature Σ into ΣPush, ΣPop11 etc.

5.2 Encoding Infinite Signatures

The signature Σ used in the specification of the protocol may be infinite, in
particular due to constants that are indexed by the number of a participants of
a session. In order to be able to define Vtam

≡
�≡ that recognize E and K we have to

find an appropriate finite signature Σ′ that contains only constants and binary
symbols, and an appropriate function ρ : T (Σ) → T (Σ′). The function ρ extends
in a natural way to sets of terms. We will then use Vtam

≡
�≡ constructions in order

to show that ρ(DY (E)) ∩ ρ(K) = ∅. Note that this implies DY (E) ∩ K = ∅
independent of the choice of ρ, though in practice we will define ρ as an injective
homomorphism. If ρ is injective then we have that disjointness of DY (E) and
K is equivalent to disjointness of ρ(DY (E)) and ρ(K).

126 S. Kremer, A. Mercier, and R. Treinen

Example 2. The signature of our running example contains constants N j
i , denot-

ing the nonce of participant i in session j (where i ≤ j). To make this example
more interesting we could also consider constants Kj

i for symmetric keys be-
tween participants i and j (where i < j), and K−

i (resp. K+
i) for asymmetric

decryption (resp. encryption) keys of the participant i.
We choose the finite signature Σ′ consisting of the set of constants Σ′

0 =
{0, α}, and the set of binary function symbols

Σ′
2 = {pair, enc, exp,mult, xor, t,H,N,K,K+,K−, s, s′}

The function ρ : T (Σ) → T (Σ′) for the running example is defined as follows
(using auxiliary functions ρ1 : N → T (Σ′) and ρ2 : {(i, j) | i ≤ j} → T (Σ′)):

α→ α pair(u, v) → pair(ρ(u), ρ(v))
0 → 0 enc(u, v) → enc(ρ(u), ρ(v))

K+
i → K+(0, ρ1(i)) exp(u, v) → exp(ρ(u), ρ(v))

K−
i → K−(0, ρ1(i)) mult(u, v) → mult(ρ(u), t(0, ρ(v)))
Kj

i → K(0, ρ2(i, j)) xor(u, v) → xor(ρ(u), ρ(v))
N j

i → N(0, ρ2(i, j)) H(u)→ H(0, ρ(u))

where we define

ρ1(i) = s′(0, ρ1(i− 1)) if i > 0 ρ2(i, j) = s′(0, ρ2(i− 1, j − 1)) if i > 0
ρ1(0) = 0 ρ2(0, j) = s(0, ρ2(0, j − 1)) if j > 0

ρ2(0, 0) = 0

For instance, ρ1(2) = s′(0, s′(0, 0)), and ρ2(1, 3) = s′(0, s(0, s(0, 0))). This encod-
ing of pairs has been choosen in order to facilitate the automaton construction
in Section 6.

Finally, we have to adapt the deduction system DY to the translation of the
signature, yielding a modified deduction system DY ′ such that ρ(DY (S)) =
DY ′(ρ(S)) for any S ⊆ T (Σ).

Example 3. (continued) In our running example we just have to adapt the rule
hash and replace it by the following variant:

S , t
hash′

S , H(0, t)

The other rules remain unchanged.

Lemma 6. ρ(DY (S)) = DY ′(ρ(S)) for ρ defined as in Example 2.

The proof of this lemma can be found in [11] .

5.3 Coping with Associativity and Commutativity of xor and mult.

As for classical tree automata, the languages recognized by Vtam
≡
�≡ are in general

not closed under associativity and commutativity. In order to cope with this

Proving Group Protocols Secure Against Eavesdroppers 127

difficulty we define a witness function W on T (Σ′) which associates to any term
t the minimal element of the equivalence class [t]AC w.r.t. the order ≺Σ′ , the
lexicographic path order [7] for the following precedence <Σ′ on Σ′:

0 <Σ′ α <Σ′ s <Σ′ s′ <Σ′ N <Σ′ K <Σ′ K+ <Σ′

K− <Σ′ H <Σ′ t <Σ′ xor <Σ′ mult <Σ′ exp <Σ′ enc <Σ′ pair

One verifies easily that ρ(N j
i) ≺Σ′ ρ(N j′

i′) if and only if either i <N i
′, or i = i′

and j <N j
′. We can now easily define the witness function:

Definition 7. The function W : T (Σ′) �→ T (Σ′) assigns to any t′ ∈ T (Σ′) such
that t′ = ρ(t) the minimal element of ρ([t]AC).

This function extends in a natural way to sets of terms. Now, the disjointness
of two sets of terms S1 and S2 that are closed under congruence modulo AC is
equivalent to the disjointness of W (S1) and W (S2).

Theorem 3. If S is closed under AC then W (DY ′(S)) = DY ′(W (S)).

5.4 Closure under DY and Compatibility with the Closure under
AC

Theorem 4. For every Vtam
≡
�≡ A, such that pair, enc �∈ {Σ′

Int
≡
1
∪Σ′

Int
≡
2
} and the

only constant symbol of Γ is ⊥, there exists a Vtam
≡
�≡ ADY such that L(ADY) =

DY ′(L(A)).

The proof is based on the classical technique of completion of the automaton
(see [9]), with special care taken to the extension to memory and constraints.
The complete construction is given in [11] and depends on the partition of the
input signature, we illustrate it here for the case where pair, enc, H ∈ ΣPush. The
automaton extends A by new final states qpair, qenc, and qH . We also add some
new transitions and promote some states to final states:

q1, q2 ∈ Qf
Pair

pair(q1(x), q2(y))→ qpair(h(x, y))

pair(q1(x), q2(y))→ q(h(x, y)) q ∈ Qf L(A, q3−i) �= ∅
Proji, 1 ≤ i ≤ 2

qi ∈ Qf

q1, q2 ∈ Qf
Enc

enc(q1(x), q2(y))→ qenc(h(x, y))

enc(q1(x), q2(y))→ q(h(x, y)) q ∈ Qf L(A, q2) ∩ L(A) �= ∅
Dec

q1 ∈ Qf

q1 ∈ Qf
Hash

H(q0(x), q1(y))→ qH(h(x, y))

128 S. Kremer, A. Mercier, and R. Treinen

6 Example

Here we propose an over-approximation of the set of computed keys during an
unbounded number of sessions of the protocol (one session for each number
of participants). An over-approximation of the set of emitted messages and its
representation by automata is given in [11] .

The approximation we propose to represent is the following:

K = {αN
j1
j1

·Nj2
(j1−1)...·N

jj1
1 }

Here we only give the construction of the automaton AK recognizing the set K.
K is the set of symbols of the form αp where p is a product of nonces N j

i :

– i = j for the maximal nonce N j
i in p,

– the number of nonces is j, where N j
i is the maximal nonce,

– for every i such that 1 ≤ i ≤ j, Nk
i belongs to p for some k.

We use the following partition of the signature Σ′ in the automata:

ΣPUSH = {s′, exp, 0, α} ΣPOP22 = {t}
ΣINT ≡

2
= {mult} ΣINT2 = {s, N}

The other symbols can be put into any part of the signature. We define Γ =
{S, S′, h,⊥}. The automaton AK is defined as follows (qacc is the final state):

0 → qd(⊥) α → qα(⊥)

The following transitions check that if a term t →∗ qnent(m) then t is of the
form N(0, s′(0, . . . s′(0, 0) . . .)) and m = S′(0, . . . S′(0, 0) . . .) and the number of
S′ equals the number of s′. Hence t represents a nonce such that i = j.

s′(qd(m), qd(m′)) → qs′ent(S′(m, m′))
s′(qd(m), qs′ent(m′)) → qs′ent(S′(m, m′))
N(qd(m), qs′ent(m′)) → qnent(m′)

The following transitions are similar but also allow several S between the S′ and
the constant 0. We count in the memory only the number of S′. We also check
that terms leading to qnonly1s′ involve at most one occurrence of the symbol s′.

s(qd(m), qd(m′)) → qd(m′)
s′(qd(m), qd(m′)) → qonly1s′(S′(m, m′))

s′(qd(m), qonly1s′ (m′)) → qs′(S′(m, m′))
s′(qd(m), qs′ (m′)) → qs′(S′(m, m′))
N(qd(m), qs′ (m′)) → qn(m′)

N(qd(m), qonly1s′ (m′)) → qnonly1s′(m′)

The following transitions remove an S′ symbol from the memory.

t(qd(m), qnent(S′(m′, m′′)) → qnt(m′′)
t(qd(m), qnarg(S′(m′, m′′)) → qnt(m′′)

Proving Group Protocols Secure Against Eavesdroppers 129

The following transition can be applied between a term that represents a nonce
and a term that represents either a product or a nonce njj on which we have
applied one af the above transitions.

mult(qn(m), qnt(m′)) m≡m′
→ qnarg(m)

The following transition applies (by the memory language of qnonly1s′) only if
m′ is S′(⊥,⊥). In this case the term is considered a possible product of K.

mult(qnonly1s′ (m), qnt(m′)) m≡m′
→ qexp(m)

In this case it is possible to apply this last transition.

exp(qα(m), qexp(m′)) → qacc(h(m,m′))

The following lemma states that our automaton recognizes in fact a slight over-
appoximation ofW (ρ(K)) as it recognizes also some terms that are not witnesses
(but that are still in ρ(K)).

Lemma 7. W (ρ(K)) ⊆ L(AK) ⊆ ρ(K).

Lemma 8. (L(AE1) ∪ L(AE2), L(AK)) is well-formed.

Proof. As no transitions has a left hand side headed by an xor, constraints (1)
and (3) of Definition 4 are satisfied. We can check on the construction of the
automata AE1 and AE2 (given in [11]) that every term t accepted by these
automata is of the form exp(u, v) for some u and v. By Definition 3, this implies
that C(L(AE1) ∪ L(AE2)) = ∅.

7 Conclusion

We have shown that for a class of well-formed protocols, a general model of
intruder capabilities including applications of modular exponentiation and ex-
clusive or is equivalent to a weaker model which can be seen as the classical
Dolev-Yao model modulo associativity and commutativity of some operators.
We have then shown, by a series of reductions and over-approximations, that
the secrecy problem for group protocols in presence of a passive attacker can
be shown by using advanced tree automata techniques. We have shown how to
check (over-approximations of) conditions on the indexes of constants appearing
in a term by a Vtam

≡
�≡ automaton, how to cope with congruence classes modulo

associativity and commutativity in this automata model, and finally that recog-
nizability by this class of automata is preserved by construction of the Dolev-Yao
closure.

While our approach applies to several examples of group protocols there is
still room for improvements. The first possible generalization concerns our defi-
nition of well-formation of a group protocol. Some of the clauses of our definition
seem to be rather natural, whereas some others are more arbitrary. A possible

130 S. Kremer, A. Mercier, and R. Treinen

continuation of this work is to relax or to modify some of these restrictions,
keeping in mind that it must still be possible to prove a reduction result to the
classical Dolev-Yao intruder model.

Another restriction of our approach consists in the hypothesis that the only
possible exponents are products of constants. This is not the case in general.
Group protocols involving exponents different from a simple product exist. An
exponent could be represented by a sum, or by an exponentiation itself. The
theory of modular exponentiation seems to remain hard to manage in its full
generality.

An important avenue of future research is the automatisation of the construc-
tion of the automaton recognizing the set of emitted messages, resp. of supposed
secrets. This includes the definition of a specification language proper to group
protocols.

References

1. Boyd, C., González Nieto, J.-M.: Round-optimal ciontributory conference key
agreement. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 161–174.
Springer, Heidelberg (2002)

2. Bresson, E., Chevassut, O., Essiari, A., Pointcheval, D.: Mutual authentication
and group key agreement for low-power mobile devices. Computer Communica-
tions 27(17), 1730–1737 (2004)

3. Comon-Lundh, H., Jacquemard, F., Perrin, N.: Tree automata with memory,
visibility and structural constraints. In: Seidl, H. (ed.) FOSSACS 2007. LNCS,
vol. 4423, pp. 168–182. Springer, Heidelberg (2007)

4. Comon-Lundh, H., Jacquemard, F., Perrin, N.: Visibly tree automata with mem-
ory and constraints. Research Report LSV-07-30, Laboratoire Spécification et
Vérification, ENS Cachan, France, Logical Methods in Computer Science (Septem-
ber 2007) (to appear)

5. Comon-Lundh, H., Shmatikov, V.: Intruder deductions, constraint solving and in-
security decision in presence of exclusive or. In: Proceedings of the 18th IEEE
Symposium on Logic in Computer Science (LICS 2003), vol. 171, pp. 271–280.
IEEE Computer Society Press, Los Alamitos (2003)

6. Contejean, E., Marché, C., Monate, B., Urbain, X.: The CiME Rewrite Tool (2000),
http://cime.lri.fr

7. Dershowitz, N.: Termination of rewriting. J. Symb. Comput. 3(1-2), 69–116 (1987)
8. Dolev, D., Yao, A.C.: On the security of public key protocols. IEEE Transactions

on Information Theory 29(2), 198–208 (1983)
9. Goubault-Larrecq, J.: A method for automatic cryptographic protocol verification

(extended abstract). In: IPDPS-WS 2000. LNCS, vol. 1800, pp. 977–984. Springer,
Heidelberg (2000)

10. Katz, J., Yung, M.: Scalable protocols for authenticated group key exchange. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 110–125. Springer, Heidelberg
(2003)

11. Kremer, S., Mercier, A., Treinen, R.: Proving group protocols secure against
eavesdroppers. Research Report LSV, Laboratoire Spécification et Vérification,
ENS Cachan, France (May 2008),
http://www.lsv.ens-cachan.fr/Publis/RAPPORTS LSV/
rapports.php?filename=lsv-2008

http://cime.lri.fr
http://www.lsv.ens-cachan.fr/Publis/RAPPORTS_LSV/rapports.php?filename=lsv-2008
http://www.lsv.ens-cachan.fr/Publis/RAPPORTS_LSV/rapports.php?filename=lsv-2008

Proving Group Protocols Secure Against Eavesdroppers 131

12. Küsters, R., Truderung, T.: On the Automatic Analysis of Recursive Security Pro-
tocols with XOR. In: Thomas, W., Weil, P. (eds.) STACS 2007. LNCS, vol. 4393.
Springer, Heidelberg (2007)

13. Pereira, O., Quisquater, J.-J.: Some attacks upon authenticated group key agree-
ment protocols. Journal of Computer Security 11(4), 555–580 (2003)

14. Pereira, O., Quisquater, J.-J.: On the impossibility of building secure cliques-type
authenticated group key agreement protocols. Journal of Computer Security 14(2),
197–246 (2006)

15. Steel, G., Bundy, A.: Attacking group protocols by refuting incorrect inductive
conjectures. Journal of Automated Reasoning 36(1-2), 149–176 (2006)

16. Steiner, M., Tsudik, G., Waidner, M.: Diffie-Hellman key distribution extended to
group communication. In: ACM Conference on Computer and Communications
Security, pp. 31–37 (1996)

17. Truderung, T.: Selecting theories and recursive protocols. In: Abadi, M., de Al-
faro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 217–232. Springer, Heidelberg
(2005)

Automated Implicit Computational Complexity

Analysis (System Description)�

Martin Avanzini1, Georg Moser2, and Andreas Schnabl2

1 Master Program in Computer Science, University of Innsbruck, Austria
martin.avanzini@student.uibk.ac.at

2 Institute of Computer Science, University of Innsbruck, Austria
{georg.moser,andreas.schnabl}@uibk.ac.at

Abstract. Recent studies have provided many characterisations of the
class of polynomial time computable functions through term rewriting
techniques. In this paper we describe a (fully automatic and command-
line based) system that implements the majority of these techniques and
present experimental findings to simplify comparisons.

1 Introduction

Recent studies have provided many characterisations of the class of polynomial
time computable functions. Our main interest lies in studies that employ term
rewriting as abstract model of computation and consequently use existing tech-
niques from rewriting to characterise several computational complexity classes,
cf. [1,2,3,4,5,6]. The use of rewriting techniques opens the way for automatisa-
tion. In this paper, we present a fully automatic complexity tool that implements
a majority of the techniques introduced in the cited literature. We describe the
system and its implementation in some detail, and report on experimental results
comparing the relative strength of the implemented techniques.

For brevity and greater applicability we consider techniques that directly clas-
sify runtime complexity, i.e., those techniques use the number of rewrite steps (per-
haps allowing for a specific rewrite strategy) as complexity measure, namely addi-
tive polynomial interpretations [2] and polynomial path orders [6]. In Section 2, we
recall the main theorems for these proof methods, and describe their implementa-
tion in some detail. Apart from that, we have also implemented the light multiset
path order [3] (LMPO for short) and quasi-interpretations in conjunction with the
product path order [1,7,8] (RPOQI

Pro for short) in our tool. Opposed to the former
methods, the latter two rely on non-trivial evaluation techniques, namely caching
of intermediate results.

In order to compare the different methods proposed in the literature, we tested
their applicability on (subsets of) the Termination Problem Data Base (TPDB
for short), which is used in the annual termination competition. Arguably this
is an imperfect choice as the TPDB has been designed to test the strength
of termination provers in rewriting, not as a testbed to analyse the implicit
computational complexity of TRSs. On the other hand, it is the only (relatively

� This research is supported by FWF (Austrian Science Fund) project P20133.

A. Armando, P. Baumgartner, and G. Dowek (Eds.): IJCAR 2008, LNCS 5195, pp. 132–138, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Automated Implicit Computational Complexity Analysis 133

large) collection of TRSs that is publicly available and we have taken some effort
in selecting interesting and meaningful subsets of this collection.

It seems natural that additive polynomial interpretations and polynomial path
orders, which only use rewriting as an underlying model of computation, perform
worse in comparison to quasi-interpretations and the light multiset path order.
Interestingly, our practical findings cannot confirm this: on our studied testbeds,
the former techniques outperform the latter two if we count the total number of
TRSs that can be handled. Furthermore, a closer look on the testbeds reveals
that every single one of the implemented techniques can handle at least one
example that cannot be handled by any other method (see Section 4 for more
details). This implies that a notable part of our testbeds is covered with the
union of the implemented methods.

2 Methods That Directly Classify Polytime

In this section, we describe additive polynomial interpretations and polynomial
path orders in more detail. To keep this system description short, we assume
familiarity with rewriting (see for example [9]). Our first task is to fix what
is meant by the function computed by a TRS. We write s →!

R t for s →∗
R t,

whenever t is a normal form with respect to a TRSR. Suppose �·� is an encoding
function and let R denote a completely defined and orthogonal constructor TRS.
Let Σ be an alphabet. An n-ary function f : (Σ∗)n → Σ∗ is computable by R
if there exists a defined function symbol f such that for all w1, . . . , wn, v ∈ Σ∗:
f(�w1�, . . . , �wn�) →! �v� if and only if f(w1, . . . , wn) = v. On the other hand
we say that R computes f if the function f : (Σ∗)n → Σ∗ is defined by the
above equation. We say that a TRS R has a simple signature (cf. [3]) if we
can type all constructors of R and define a mapping S from the set of sorts
to N such that for every constructor of sort s1, . . . , sn → s, there exists an i
with S(si) � S(s), and S(sj) < S(s) for all j �= i. The (innermost) runtime
complexity function with respect to a TRS R relates the length of the longest
(innermost) derivation sequence in R to the size of the arguments of the initial
term of the form f(t1, . . . , tn), where f is a defined function symbol, and ti are
ground terms consisting only of constructor symbols.

A suitable starting point for the classification of polytime computable func-
tions is to look at polynomial interpretations. However, as shown in [10], polyno-
mial interpretations without further restrictions still admit a double exponential
upper bound on the runtime complexity of a given TRS. Hence restricted poly-
nomial interpretations are studied in the literature. A polynomial P (x1, . . . , xn)
(over N) is called additive (cf. [2]) if P (x1, . . . , xn) = x1 + · · ·+xn +a where a ∈
N. A polynomial interpretation A is called simple-mixed, constructor-restricted
(SMC for short) if all interpretation functions fA are additive polynomials when-
ever f is a constructor symbol, and simple-mixed polynomials (cf. [11]) otherwise.
The following theorem is shown in [2, Lemma 3, Theorem 4].

Theorem 1. Let R be a finite constructor TRS that is compatible with an SMC-
interpretation. Then the runtime complexity with respect to R is polynomial.

134 M. Avanzini, G. Moser, and A. Schnabl

Furthermore, the functions computable by a finite and orthogonal constructor
TRS that is compatible with an SMC-interpretation are polytime computable.

Recently in [6] a restriction of the multiset path order, called polynomial path
order (POP∗ for short) has been introduced. In [6] POP∗ is defined for a strict
precedence. Below we extend this definition to quasi-precedences �, whose equiv-
alence part is denoted as ∼. We require that the arity of f equals the arity of
g whenever f ∼ g. POP∗ relies on the separation of safe and normal inputs. A
safe mapping safe associates with every n-ary function symbol f the set of safe
argument positions. If f is a defined function symbol then safe(f) ⊆ {1, . . . , n},
otherwise we fix safe(f) = {1, . . . , n}. The argument positions not included in
safe(f) are called normal and denoted by nrm(f). Let � be a quasi-precedence
and safe a safe mapping. The polynomial path order �pop∗ is an extension
of the auxiliary order �pop. In order to define �pop∗ we give the definition
of its strict part �pop∗ and its equivalence part ∼pop∗ separately. We define
f(s1, . . . , sn) ∼pop∗ g(t1, . . . , tn) (respectively f(s1, . . . , sn) ∼pop g(t1, . . . , tn)) if
and only if f ∼ g, and the safe and normal part of the multisets [s1, . . . , sn] and
[t1, . . . , tn] are equivalent over ∼pop∗ (respectively ∼pop). We define the order
�pop inductively as follows: s = f(s1, . . . , sn) �pop t if either

1. f ∈ C and si �pop t for some i ∈ {1, . . . , n}, or
2. si �pop t for some i ∈ nrm(f), or
3. t = g(t1, . . . , tm) with f ∈ D, f � g, and s �pop ti for all 1 � i � m.

Here D (C) denotes the defined (constructor) symbols, respectively. Based on
�pop we define �pop∗ inductively as follows: s = f(s1, . . . , sn) �pop∗ t if either

1. s �pop t, or
2. si �pop∗ t for some i ∈ {1, . . . , n}, or
3. t = g(t1, . . . , tm), with f ∈ D, f � g, and the following properties hold:

(i) s �pop∗ ti0 for some i0 ∈ safe(g) and (ii) either s �pop ti or s � ti and
i ∈ safe(g) for all i �= i0, or

4. t = g(t1, . . . , tn), f ∼ g and for nrm(f) = {i1, . . . , ip}, safe(f) = {j1, . . . , jq}),
nrm(g) = {i′1, . . . , i′p′}, safe(g) = {j′1, . . . , j′q′}, both [si1 , . . . , sip] (�pop∗
)mul [ti′1 , . . . , ti′

p′] and [sj1 , . . . , sjq] (�pop∗)mul [tj′
1
, . . . , tj′

q′] hold.

Here (�)mul denotes the multiset extension of an order �. We arrive at the
following theorem, which is an easy consequence of the main results from [6].

Theorem 2. Let R be a finite constructor TRS compatible with �pop∗, i.e.,
R ⊆ �pop∗. Then the induced innermost runtime complexity is polynomial. Fur-
thermore, the functions computable by a finite and orthogonal constructor TRS
with a simple signature that is compatible with an instance of POP∗ are exactly
the polytime computable functions.

In order to increase the applicability of POP∗, we employ semantic labeling [12]
with Boolean models. It is straightforward to check that the maximal lengths of
derivations in the original and the labeled system are equal. In order to apply
Theorem 2 it is mandatory to restrict to finite models. We discuss the imple-
mentation of POP∗ with semantic labeling below in Section 3.

Automated Implicit Computational Complexity Analysis 135

3 Implementation

The here presented fully automatic system icct1 implements the techniques
introduced in [1,2,3,6,7]. In addition to the techniques described in Section 2,
our system icct can handle the methods LMPO [3] and RPOQI

Pro [1]. We have
not (yet) considered (quasi-friendly) sup-interpretations, cf. [4,5], but plan to
do so in the future. Furthermore our system icct only searches for additive
polynomial quasi-interpretations, without the max-function. This contrasts with
the system crocus2 implementing quasi-interpretations as defined in [8]. We also
plan to add this in the future, possibly using the methods described in [13].

Our implementation is (partly) based on the termination prover TTT2
3 and

therefore our (command-line) interface is compatible with TTT2. The modular
design of our implementation allows for an immediate integration of the pre-
sented system as a plug-in to TTT2. Like TTT2, our methods are written fully in
OCaml, and the system icct extends TTT2 by around 3500 lines of code. In the
remainder of this section, we describe the implementation of SMC and POP∗.

In order to search for SMC interpretations, we follow well-established meth-
ods stemming from termination analysis. Our starting point is the use of ab-
stract polynomial interpretations, cf. [14]. For SMC, that is: fA(x1, . . . , xn) =
∑

ij∈{0,1} ai1,...,inxi1
1 · . . . · xin

n +
∑n

i=1 bix
2
i if f ∈ D, and fA(x1, . . . , xn) =

∑n
i=1 xi + c otherwise. The variables ai1,...,in , bi, and c are called coefficient

variables. Given such abstract interpretations we transform the compatibility
and monotonicity tests into Diophantine (in)equalities in the coefficient vari-
ables. Putting an upper bound on the coefficient variables makes the problem
finite, allowing it to be transformed into SAT. The encoding into SAT essentially
follows [15]. To actually solve the satisfiability problem, MiniSAT4 is invoked. A
satisfying assignment is used to instantiate the coefficient variables suitably.

To prove compatibility of a given TRS R with polynomial path orders we have
to find a quasi-precedence � and a safe mapping such that the induced order is
compatible with R. Due to the huge search space, this is difficult to implement
efficiently. Thus, we translate this problem into SAT. Here, we focus on the en-
coding of POP∗ for strict precedence with semantic labeling for models over the
carrier B = {0, 1}. To encode a Boolean function b : Bn → B, we make use of
propositional atoms bw for every sequence of arguments w = w1, . . . , wn ∈ Bn. Let
the formula �b�(a1, . . . , an) be such that for a satisfying assignment ν, the equality
ν(�b�(a1, . . . , an)) = bν(a1),...,ν(an) is asserted. For every assignment α and term
t appearing in R we introduce the atoms intα,t and labα,t for t �∈ V . The formula
intα,t encodes [α]B(t), where [α]B denotes the evaluation function of the Boolean
model B, while labα,t expresses the label of the root symbol of t with respect
to the assignment α. We define INTα(t) = intα,t ↔ �fB�(intα,t1 , . . . , intα,tn)

1 Available online at http://cl-informatik.uibk.ac.at/software/icct, where full
evidence of the experiments presented below can be found.

2 http://libresource.inria.fr/projects/crocus
3 http://colo6-c703.uibk.ac.at/ttt2/
4 http://minisat.se

http://cl-informatik.uibk.ac.at/software/icct
http://libresource.inria.fr/projects/crocus
http://colo6-c703.uibk.ac.at/ttt2/
http://minisat.se

136 M. Avanzini, G. Moser, and A. Schnabl

and LABα(t) = labα,t ↔ ��f�(intα,t1 , . . . , intα,tn). Further for t ∈ V we define
INTα(t) = intα,t ↔ α(t). These constraints have to be enforced for every term ap-
pearing in R. We write R � t to denote that t is a subterm of a left- or right-hand
side of a rule in R. The model condition is formalised by

LAB(R) =
∧

α

(∧

R�t

(INTα(t) ∧ LABα(t)) ∧
∧

l→r∈R
(intα,l ↔ intα,r)

)

.

Assume ν is a satisfying assignment for LAB(R) and Rlab denotes the system
obtained by labeling R. In order to show compatibility of Rlab with POP∗, we
need to find a precedence > and a safe mapping such that Rlab ⊆ >pop∗ holds.
To compare the labelled versions of two terms s, t under assignment α, we define

�s �pop∗ t�α = �s >
(1)
pop∗ t�α ∨ �s >

(2)
pop∗ t�α ∨ �s >

(3)
pop∗ t�α ∨ �s >

(4)
pop∗ t�α .

Here �s >
(i)
pop∗ t� refers to the encoding of the case 〈i〉 from the definition of

�pop∗. We discuss the cases 〈2〉 – 〈4〉 as case 〈1〉 is obtained similarly.
Set �f(s1, . . . , sn) >

(2)
pop∗ t�α = if si = t holds for some si. Otherwise,

�f(s1, . . . , sn) >
(2)
pop∗ t�α =

∨n
i=1�si �pop∗ t�α. For any f ∈ Flab and an argu-

ment position i of f we encode i ∈ safe(f) by an atom safef,i. For f ∈ F
and a formula a denoting the label of f , the formula SF(fa, i) (NRM(fa, i)) as-
sesses that the i-th position of fa is safe (normal), respectively. Furthermore, for
f, g ∈ F and formulae a and b, the formula �fa > gb� represents the comparison
fν(a) > gν(b). Assume f ∈ D. We translate case 〈3〉 as follows:

�f(s1, . . . , sn) >
(3)
pop∗ g(t1, . . . , tm)�α = �flabα,s > glabα,t�∧

∨

i0

(

�s �pop∗ ti0�α∧SF(glabα,t
, i0)∧

∧

i�=i0

(�s >
(1)
pop∗ ti�α∨(SF(glabα,t

, i)∧�s � ti�))
)

In order to guarantee that fa is defined we add a rule fa(x1, . . . , xn) → c to the
labelled TRS, where c is a fresh constant. In practical tests this has shown to
be more effective than allowing that fa becomes undefined. A careful analysis
revealed that in order to encode the restricted multiset comparison, the notion
of multiset covers [16] is adaptable, cf. [6]. A multiset cover is a pair of total
mappings γ : {1, . . . , n} → {1, . . . , n} and ε : {1, . . . , n} → B, encoded using fresh
atoms γi,j and εi. To assert a correct encoding of (γ, ε), we introduce the formula
�(γ, ε)�. We define �f(s1, . . . , sn) >

(4)
pop∗ f(t1, . . . , tn)�α by

(labα,s ↔ labα,t)∧
n∨

i=1

(NRM(flabα,s
, i)∧¬εi)∧

n∧

i=1

n∧

j=1

(

γi,j → (εi → �si = tj�)

∧ (¬εi → �si �pop∗ tj�α) ∧ (SF(flabα,s
, i) ↔ SF(flabα,t

, j))
)

∧ �(γ, ε)� .

Finally POP∗
SL(R) =

∧

α

∧

l→r∈R�l �pop∗ r�α∧SM(R)∧STRICT(R)∧LAB(R)
asserts the existence of a model B and labeling � such that the labelled TRS is

Automated Implicit Computational Complexity Analysis 137

compatible with .pop∗. Here STRICT(R) formalises the strictness of >, while
SM(R) enforces a valid encoding of the safe mapping safe.

4 Experiments and Conclusions

We have tested our complexity tool icct on two testbeds: first, we filtered the
TPDB for constructor TRS, this testbed is denoted as C below. Secondly we
considered TRS from the example collections [17,18,19] and filtered for orthog-
onal constructor (hence confluent) TRS, we call this testbed FP.5 The first test
suite (containing 592 systems) aims to compare the relative power of the meth-
ods on a decently sized testbed. The second one (containing 71 systems) tries to
focus on natural examples of confluent TRS. Success on the testbed FP implies
that the function encoded by the given TRS is polytime computable — however,
for LMPO and POP∗ one has to verify in addition that the signature is simple.
The tests were run on a standard PC with 512 MB of memory and a 2.4 GHz
Intel® Pentium™ IV processor. We summarise the results of the test in Table 1.

Counting the total number of yes-instances reveals that the most powerful
methods for showing computability of functions in polynomial time are SMC
and POP∗

SL. As POP∗
SLis a mostly syntactic method, it is much faster than the

fully semantic SMC. Note that SMC is slightly more powerful than POP∗
SL on

testbed FP, while the order is reversed for test suite C. This indicates that the
techniques can handle different TRS, which can be verified by a close look at the
full experimental evidence1. More precisely, any of the methods implemented in
our system icct can handle (at least) one example that cannot be handled by
any other method. In particular SMC is the only technique that can handle the
example AG01/#3.7, an encoding of the logarithm function also studied in [8]. In
addition we compared icct with the results for crocus published at the crocus
site2, but found that crocus in conjunction with PPO [7] cannot handle more
TRS than listed in the respective column.

Table 1. Experimental results

POP∗ POP∗
∼ POP∗

SL LMPO RPOQI
Pro SMC

FP C FP C FP C FP C FP C FP C

Yes 7 41 8 43 14 74 13 54 13 51 15 69
Maybe 64 551 63 549 57 511 58 538 58 540 49 394
Timeout 0 0 0 0 0 7 0 0 0 1 7 129

Avg. Time (ms) 53 47 192 44 279 507

As already mentioned, possible future work would be to extend icct by im-
plementing sup-interpretations [4,5] and adding the max-function [13] to quasi-
interpretations and SMC. In addition we want to investigate whether recent work
on context-dependent interpretations [20] can be extended to implicit computa-
tional complexity analysis.
5 We used TPDB version 4.0, available online at http://www.lri.fr/∼marche/tpdb/

http://www.lri.fr/~marche/tpdb/

138 M. Avanzini, G. Moser, and A. Schnabl

References

1. Marion, J.Y., Moyen, J.Y.: Efficient first order functional program interpreter with
time bound certifications. In: Parigot, M., Voronkov, A. (eds.) LPAR 2000. LNCS
(LNAI), vol. 1955, pp. 25–42. Springer, Heidelberg (2000)

2. Bonfante, G., Cichon, A., Marion, J.Y., Touzet, H.: Algorithms with polynomial
interpretation termination proof. JFP 11(1), 33–53 (2001)

3. Marion, J.Y.: Analysing the implicit complexity of programs. IC 183, 2–18 (2003)
4. Marion, J.Y., Péchoux, R.: Resource analysis by sup-interpretation. In: Hagiya, M.,

Wadler, P. (eds.) FLOPS 2006. LNCS, vol. 3945, pp. 163–176. Springer, Heidelberg
(2006)

5. Marion, J.Y., Péchoux, R.: Quasi-friendly sup-interpretations. CoRR abs/cs/
0608020 (2006)

6. Avanzini, M., Moser, G.: Complexity analysis by rewriting. In: Proc. 9th FLOPS.
LNCS, vol. 4989, pp. 130–146. Springer, Heidelberg (2008)

7. Bonfante, G., Marion, J.Y., Moyen, J.Y.: Quasi-intepretations and small space
bounds. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 150–164. Springer,
Heidelberg (2005)

8. Bonfante, G., Marion, J.Y., Péchoux, R.: Quasi-interpretation synthesis by de-
composition. In: Jones, C.B., Liu, Z., Woodcock, J. (eds.) ICTAC 2007. LNCS,
vol. 4711, pp. 410–424. Springer, Heidelberg (2007)

9. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press,
Cambridge (1998)

10. Hofbauer, D., Lautemann, C.: Termination proofs and the length of derivations. In:
Dershowitz, N. (ed.) RTA 1989. LNCS, vol. 355, pp. 167–177. Springer, Heidelberg
(1989)

11. Steinbach, J.: Generating polynomial orderings. IPL 49, 85–93 (1994)
12. Zantema, H.: Termination of term rewriting by semantic labelling. FI 24, 89–105

(1995)
13. Fuhs, C., Giesl, J., Middeldorp, A., Schneider-Kamp, P., Thiemann, R., Zankl, H.:

Maximal termination. In: Proc. 19th RTA 2008. LNCS, vol. 5117 (to appear, 2008)
14. Contejean, E., Marché, C., Tomás, A.P., Urbain, X.: Mechanically proving termi-

nation using polynomial interpretations. JAR 34(4), 325–363 (2005)
15. Fuhs, C., Giesl, J., Middeldorp, A., Schneider-Kamp, P., Thiemann, R., Zankl, H.:

SAT solving for termination analysis with polynomial interpretations. In: Marques-
Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 340–354. Springer,
Heidelberg (2007)

16. Schneider-Kamp, P., Thiemann, R., Annov, E., Codish, M., Giesl, J.: Proving ter-
mination using recursive path orders and SAT solving. In: Konev, B., Wolter, F.
(eds.) FroCos 2007. LNCS (LNAI), vol. 4720, pp. 267–282. Springer, Heidelberg
(2007)

17. Steinbach, J., Kühler, U.: Check your ordering - termination proofs and open prob-
lems. Technical Report SR-90-25, University of Kaiserslautern (1990)

18. Dershowitz, N.: 33 examples of termination. In: Term Rewriting, French Spring
School of Theoretical Computer Science, Advanced Course, pp. 16–26. Springer,
Heidelberg (1995)

19. Arts, T., Giesl, J.: A collection of examples for termination of term rewriting using
dependency pairs. Technical Report AIB-09-2001, RWTH Aachen (2001)

20. Moser, G., Schnabl, A.: Proving quadratic derivational complexities using context
dependent interpretations. In: Proc. 19th RTA 2008. LNCS, vol. 5117 (to appear,
2008)

LogAnswer - A Deduction-Based Question

Answering System (System Description)

Ulrich Furbach1, Ingo Glöckner2, Hermann Helbig2, and Björn Pelzer1

1 Department of Computer Science, Artificial Intelligence Research Group
University of Koblenz-Landau, Universitätsstr. 1, 56070 Koblenz

{uli,bpelzer}@uni-koblenz.de
2 Intelligent Information and Communication Systems Group (IICS),

University of Hagen, 59084 Hagen, Germany
{ingo.gloeckner,hermann.helbig}@fernuni-hagen.de

Abstract. LogAnswer is an open domain question answering system
which employs an automated theorem prover to infer correct replies to
natural language questions. For this purpose LogAnswer operates on a
large axiom set in first-order logic, representing a formalized semantic
network acquired from extensive textual knowledge bases. The logic-
based approach allows the formalization of semantics and background
knowledge, which play a vital role in deriving answers. We present the
functional LogAnswer prototype, which consists of automated theorem
provers for logical answer derivation as well as an environment for deep
linguistic processing.1

1 Introduction

Question answering (QA) systems generate natural language (NL) answers in
response to NL questions, using a large collection of textual documents. Simple
factual questions can be answered using only information retrieval and shal-
low linguistic methods like named entity recognition. More advanced cases, like
questions involving a temporal description, call for deduction based question
answering which can provide support for temporal reasoning and other natural
language related inferences. Logic has been used for such semantic NL analysis
in the DORIS [1] system, although this is aimed at discourse regarding a limited
domain instead of open-domain QA. There are also several examples of logic-
based QA systems (like PowerAnswer [2] and Senso [3]), as well as dedicated
components for logical answer validation like COGEX [4] or MAVE [5]. How-
ever, most of these solutions are research prototypes developed for the TREC
or CLEF evaluation campaigns, which ignore the issue of processing time.2 For
actual users, getting the answer in a few seconds is critical to the usefulness of
a QA system, though. A QA system must achieve these response times with

1 Funding of this work by the DFG (Deutsche Forschungsgemeinschaft) under con-
tracts FU 263/12-1 and HE 2847/10-1 (LogAnswer) is gratefully acknowledged.

2 See http://trec.nist.gov/ (TREC), http://www.clef-campaign.org/ (CLEF).

A. Armando, P. Baumgartner, and G. Dowek (Eds.): IJCAR 2008, LNCS 5195, pp. 139–146, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://trec.nist.gov/
http://www.clef-campaign.org/

140 U. Furbach et al.

Fig. 1. System architecture of the LogAnswer prototype

a knowledge base generated from tens of millions of sentences. A second chal-
lenge for logic-based QA is robustness. The processing chain of a logic-based QA
system involves many stages (from NL via syntactic-semantic parsing to logical
forms and knowledge processing and back to NL answers). Therefore fallback
solutions like the usage of shallow features are needed to ensure baseline per-
formance when one of the deep NLP modules fails, and gaps in the background
knowledge must be bridged by robustness-enhancing techniques like relaxation.

2 Description of the LogAnswer System

The system architecture of the LogAnswer QA system is shown in Fig. 1. In the
following we describe the processing stages of the system.

User interface. The natural language question is entered into the LogAnswer web
search box.3 Depending on user preferences, the system answers the question by
presenting supporting text passages only or alternatively, by presenting exact
answers together with the supporting passage.

Deep Question Parsing. The question is analyzed by the WOCADI parser [6],
which generates a semantic representation of the question in the MultiNet for-
malism [7]. A question classification is also done in this phase, which currently
discerns only definition questions (What is a neutrino?) and factual questions

3 The system is available online at www.loganswer.de.

LogAnswer - A Deduction-Based Question Answering System 141

(Who discovered the neutrino?). While factual questions can be answered by log-
ical means alone, definition questions need additional filtering in order to identify
descriptions that are not only true but also represent defining knowledge.

Passage Retrieval. The document collection of LogAnswer comprises the CLEF
news collection and a snapshot of the German Wikipedia (17 million sentences
total). In order to avoid parsing of documents at query time, all documents are
pre-analyzed by the WOCADI parser. The resulting MultiNet representations
are segmented into passages and stored in the IRSAW retrieval module [8], which
uses the terms in the passage for indexing.4 Given the query terms, IRSAW
typically retrieves 200 (or more) passages as the basis for logical answer finding.

Shallow Feature Extraction and Reranking. In order to avoid logical processing
of all retrieved passages, LogAnswer tries to identify the most promising cases
by reranking passages using shallow features (like overlap of lexical concepts,
proper names and numerals of the question with those found in the passage). It
is important that these features can be computed very quickly without the help
of the prover. The machine learning approach and the set of shallow features are
detailed in [9,10].

Logical Query Construction. The semantic network for the question is turned
into a conjunctive list of query literals. Synonyms are normalized by replacing all
lexical concepts with canonical synset representatives.5 For example, Wie viele
Menschen starben beim Untergang der Estonia?6 translates into the following
logical query (with the FOCUS variable representing the queried information):

sub(X1, estonia.1.1), attch(X1, X2), subs(X2, untergang.1.1), subs(X3, sterben.1.1),

circ(X3, X2), aff(X3, FOCUS), pred(FOCUS, mensch.1.1) .

Robust Logic-Based Processing. As the basis for answer extraction and for im-
proving the passage ranking, LogAnswer tries to prove the logical representation
of the question from the representation of the passage and the background knowl-
edge.7 Robustness is gained by using relaxation: if a proof is not found within a
time limit, then query literals are skipped until a proof of the remaining query
succeeds, and the skip count indicates (non-)entailment [5,10]. For efficiency
reasons, relaxation is stopped before all literals are proved or skipped. One can
then state upper/lower bounds on the provable literal count, assuming that all
(or none) of the remaining literals are provable.

4 The current version of LogAnswer uses a segmentation into single sentences, but we
will also experiment with different passage sizes (paragraphs and full documents).

5 The system uses 48,991 synsets (synonym sets) for 111,436 lexical constants.
6 How many people died when the MS Estonia sank?
7 The background knowledge of LogAnswer comprises 10,000 lexical-semantic facts

(e.g. for nominalizations) and 109 logical rules, which define main characteristics of
MultiNet relations and also handle meta verbs like ‘stattfinden’ (take place) [5].

142 U. Furbach et al.

Answer Extraction. If a proof of the question from a passage succeeds, then
LogAnswer obtains an answer binding which represents the queried information.
For finding more answers, the provers of LogAnswer can also return a substitu-
tion for a proven query fragment when a full proof fails. Given a binding for the
queried variable, LogAnswer uses word alignment hints of WOCADI for finding
the matching answer string, which is directly cut from the original text passage.

Logic-Based Feature Extraction. For a logic-based refinement of relevance scores,
LogAnswer extracts the following features, which depend on the limit on relax-
ation cycles and on the results of answer extraction:

– skippedLitsLb Number of literals skipped in the relaxation proof.
– skippedLitsUb Number of skipped literals, plus literals with unknown status.
– litRatioLb Relative proportion of actually proved literals compared to the

total number of query literals, i.e. 1− skippedLitsUb/allLits.
– litRatioUb Relative proportion of potentially provable literals (not yet

skipped) vs. all query literals, i.e. 1− skippedLitsLb/allLits.
– boundFocus Indicates that a binding for the queried variable was found.
– npFocus Indicates that the queried variable was bound to a constant which

corresponds to a nominal phrase (NP) in the text.
– phraseFocus Signals that an answer string has been extracted.

Logic-Based Reranking. The logic-based reranking of the passages uses the same
ML approach as the shallow reranking, but the shallow and logic-based features
are now combined for better precision. Rather than computing a full reranking,
passages are considered in the order determined by the shallow feature-based
ranking, and logical processing is stopped after a pre-defined time limit.

Support Passage Selection. When using LogAnswer for retrieving text snippets
which contain an answer, all passages are re-ranked using either the logic-based
score (if available for the passage) or the shallow-feature score (if there is no
logic-based result for the passage due to parsing failure or time restrictions).
The top k passages are chosen for presentation (k = 5 for the web interface).

Sanity Checks. When the user requests exact answers rather than snippets which
contain the answer, additional processing is needed: a triviality check eliminates
answers which only repeat contents of the question. For the question Who is
Virginia Kelley?, this test rejects trivial answers like Virginia or Virginia Kelley.
A special sanity check for definition questions also rejects the non-informative
answer the mother (instead of the expected the mother of Bill Clinton), see [5].

Aggregation and Answer Selection. The answer integration module computes a
global score for each answer, based on the local score for each passage from which
the answer was extracted. The aggregation method already proved effective in [5].
The k = 5 distinct answers with the highest aggregated scores are then selected
for presentation. For each answer, the supporting passage with the highest score
is also shown in order to provide a justification for the presented answer.

LogAnswer - A Deduction-Based Question Answering System 143

3 Theorem Provers of LogAnswer

The robust logic-based processing (see Section 2) has to merge contrasting goals:
it has to derive answers from a logical knowledge representation using precise
inference methods, but it must also provide these answers within acceptable
response times and account for imperfections of the textual knowledge sources
and their formalization. Thus a theorem prover must meet several requirements
if it is to serve as the deduction component in LogAnswer.

Handling of Large Knowledge Bases. Of high importance is the ability to work
on the large set of axioms and facts forming the knowledge base, which will keep
growing in the future. This includes the way these clauses are supplied to the
prover. Theorem provers usually operate on a single-problem basis: the prover
is started with the required clauses and then terminates after a successful proof
derivation. For LogAnswer this approach is impractical. In order to achieve a
usability comparable to conventional search engines, the system should spend
all of the available processing time for actual reasoning and not for loading the
background knowledge into the prover. Since any two query tasks use the same
background knowledge and only differ in a few clauses representing the query
and a text passage, a LogAnswer prover should be able to stay in operation to
perform multiple query tasks, loading and retracting the query-specific clauses
while keeping the general knowledge base in the system.

Relaxation Loop Support. The prover must also support the robustness enhanc-
ing techniques, in particular by providing guidance to the relaxation loop. The
large knowledge base with its imperfections often causes the prover to reach the
time limit, where LogAnswer will interrupt the reasoning and relax the query.
The prover must then report details about its failed proof attempt so that the
relaxation loop can select the query literal most suited for skipping.

Answer Extraction Support. Finally, if a proof succeeds, then the prover must
state any answer substitutions found for the FOCUS variable.

The current LogAnswer prototype includes two theorem provers for compar-
ison purposes in the development phase.

The MultiNet Prover. The prover of the MultiNet toolset8 is based on SLD
resolution and operates on range-restricted Horn formulas. While very limited
in expressive power, it can prove a question from a passage in less than 20ms
on average [9]. The prover was optimized by using term indexing, caching, lazy
indexing, optimizing literal ordering, and by using profiling tools.

The E-KRHyper Prover. The other system is E-KRHyper [11], a theo-
rem prover for full first order logic with equality, including input which is not
Horn and not range restricted. Currently existing alongside the MultiNet prover,

8 See http://pi7.fernuni-hagen.de/research/mwrplus

http://pi7.fernuni-hagen.de/research/mwrplus

144 U. Furbach et al.

E-KRHyper will eventually become the sole reasoning component of LogAnswer
once a new translation of MultiNet representations into full first-order logic has
been completed. E-KRHyper implements the E-hyper tableau calculus [12]. De-
signed for use as an embedded knowledge processing engine, the system has
been employed in a number of knowledge representation applications. It is capa-
ble of handling large sets of uniformly structured input facts, and it can provide
proof output for models and refutations. Input is accepted in TPTP syntax [13].
E-KRHyper features several extensions to first-order logic, like arithmetic evalu-
ation, negation as failure and builtin predicates adapted from Prolog. These will
be helpful in the ongoing translation of the knowledge base into logic, allowing
us to capture the full expressivity of the MultiNet formalism. Compared to other
full first-order theorem provers, E-KRHyper also has the pragmatic advantage
of being an in-house system, easily tailored to any upcoming difficulties, instead
of a black box which we must adapt to.

In the LogAnswer system E-KRHyper is embedded as a reasoning server, and
thus it remains in constant operation. On its startup E-KRHyper is supplied
with MultiNet background knowledge translated into first-order TPTP syntax.
The prover further transforms this into clause normal form, a requirement for
the tableaux-based reasoning algorithm of E-KRHyper. Currently this CNF-
representation consists of approximately 10,000 clauses. Discrimination-tree in-
dexing serves to maintain this clause set efficiently. Loading the knowledge base
into E-KRHyper requires circa four seconds on our test bed system.9

Given that an answer to the query may be found in any of the supporting
passages (see Section 2), E-KRHyper runs an independent proof attempt for each
passage. For such an attempt the query clause (consisting of the negated query
literals) and the logical passage representation are added to E-KRHyper’s set
of clauses. The average query clause for a question from the CLEF-07 contains
eight literals, and the average translated passage is a set of 230 facts.

E-KRHyper then tries to find a refutation for the given input. The main Log-
Answer system is notified if the prover succeeds. Also, if specific information
using a FOCUS variable is requested (as described before), then the binding of
this variable is retrieved from the refutation and returned to the answer extrac-
tor. Finally, E-KRHyper drops all clauses apart from the background knowledge
axioms and is ready for the next query or passage.

If on the other hand E-KRHyper fails to find a refutation within the time
limit, then it halts the derivation and provides relaxation loop support by deliv-
ering partial results. These represent the partly successful refutation attempts
made so far: during the derivation E-KRHyper evaluates the query clause from
left to right, trying to unify all literals with complementary unit clauses from
the current tableau branch and thereby yielding a refutation. If a literal can-
not be unified, the remaining unevaluated query literals are not considered and
this attempt stops. Each partial result represents such a failed evaluation; it
consists of the subset of refuted query literals, the unifying substitutions and
the failed query literal. LogAnswer selects one of the ‘best’ partial results (i.e.

9 Intel Q6600 2.4 GHz

LogAnswer - A Deduction-Based Question Answering System 145

where most query literals could be refuted) and removes the failed literal from
the query. E-KRHyper resets its clause set to the background knowledge axioms,
and the relaxation loop restarts the derivation with the shortened query. This
process is repeated, with another query literal being skipped in each round, until
E-KRHyper derives a refutation for the current query fragment or the bound for
the number of skipped query literals is reached, see Section 2.10

Addressing the handling of large knowledge bases, the methods described
above reset the clause input before every new task. This is facilitated by the
prover’s ability to save and restore states of its knowledge base. That way the
prover can rapidly drop obsolete subsets of the clauses and their discrimination-
trees, with no need to rebuild the extensive index for the background axioms.

To estimate the performance of the prover for our intended use we tested
E-KRHyper without relaxation on 1806 query/passage-combinations from
CLEF-07 which are known to contain answers. 77 (4.3%) of these could not
be proven within a 360 seconds time limit set for each test case, in part due to
the yet incomplete logical translation of the MultiNet background knowledge. In
the remaining cases E-KRHyper required on average 1.97 seconds for each proof.
895 proofs (49.6%) could be found in less than one second, and the maximum
time needed was 37 seconds. This illustrates that relaxation, and the extraction
of answer bindings from incomplete proofs, are imperative when processing time
is critical (as in ad-hoc question answering on the web), and multiple passages
must be processed for a single query in a very short time frame. However, it also
shows that more precise answers can be found within a time frame which may
still be acceptable for specific applications where time is less important than
quality, so our approach is easily scaled to different uses.

4 Conclusions and Future Work

We have presented a logic-based question answering system which combines
an optimized deductive subsystem with shallow techniques by machine learn-
ing. The prototype of the LogAnswer system, which can be tested on the web,
demonstrates that the response times achieved in this way are suitable for ad-
hoc querying. The quality of passage reranking has been measured for factual
questions from CLEF-07: On the retrieved passages, the ML classifier, which
combines deep and shallow features, obtains a filtering precision of 54.8% and
recall of 44.8% [10]. In the future, the potential of E-KRHyper will be exploited
by formalizing more expressive axioms that utilize equality and non-Horn for-
mulas. The capability of LogAnswer to find exact answers (rather than support
passages) will be assessed in the CLEF-08 evaluation.

10 Continuing our example from Section 2, this is one of the candidate passages that
will be found and analysed: (. . .) the sinking of the ferry ’Estonia’ (. . .) cost the
most human lives: over 900 people died (. . .) . After three relaxation steps a proof
is found with the value 900 bound to the FOCUS variable, and LogAnswer returns
the answer over 900 people to the user.

146 U. Furbach et al.

References

1. Bos, J.: Doris 2001: Underspecification, resolution and inference for discourse repre-
sentation structures. In: ICoS-3 - Inference in Compuational Semantics, Workshop
Proceedings (2001)

2. Moldovan, D., Bowden, M., Tatu, M.: A temporally-enhanced PowerAnswer in
TREC 2006. In: Proc. of TREC 2006, Gaithersburg, MD (2006)

3. Saias, J., Quaresma, P.: The Senso question answering approach to Portuguese
QA@CLEF-2007. In: Working Notes for the CLEF 2007 Workshop, Budapest,
Hungary (2007)

4. Tatu, M., Iles, B., Moldovan, D.: Automatic answer validation using COGEX. In:
Peters, C., Clough, P., Gey, F.C., Karlgren, J., Magnini, B., Oard, D.W., de Rijke,
M., Stempfhuber, M. (eds.) CLEF 2006. LNCS, vol. 4730. Springer, Heidelberg
(2007)

5. Glöckner, I.: University of Hagen at QA@CLEF 2007: Answer validation exercise.
In: Working Notes for the CLEF 2007 Workshop, Budapest (2007)

6. Hartrumpf, S.: Hybrid Disambiguation in Natural Language Analysis. Der Andere
Verlag, Osnabrück, Germany (2003)

7. Helbig, H.: Knowledge Representation and the Semantics of Natural Language.
Springer, Heidelberg (2006)

8. Leveling, J.: IRSAW – towards semantic annotation of documents for question
answering. In: CNI Spring 2007 Task Force Meeting, Phoenix, Arizona (2007)

9. Glöckner, I.: Towards logic-based question answering under time constraints. In:
Proc.of ICAIA 2008, Hong Kong, pp. 13–18 (2008)

10. Glöckner, I., Pelzer, B.: Exploring robustness enhancements for logic-based passage
filtering. In: Proceedings of KES 2008. LNCS. Springer, Heidelberg (to appear,
2008)

11. Pelzer, B., Wernhard, C.: System Description: E-KRHyper. In: Automated Deduc-
tion - CADE-21, Proceedings, pp. 508–513 (2007)

12. Baumgartner, P., Furbach, U., Pelzer, B.: Hyper Tableaux with Equality. In: Au-
tomated Deduction - CADE-21, Proceedings, pp. 492–507 (2007)

13. Sutcliffe, G., Suttner, C.: The TPTP Problem Library: CNF Release v1.2.1. Journal
of Automated Reasoning 21(2), 177–203 (1998)

A High-Level Implementation of a System for

Automated Reasoning with Default Rules
(System Description)

Christoph Beierle1, Gabriele Kern-Isberner2, and Nicole Koch1

1 Dept. of Computer Science, FernUniversität in Hagen, 58084 Hagen, Germany
2 Dept. of Computer Science, TU Dortmund, 44221 Dortmund, Germany

Abstract. An overview of a system modelling an intelligent agent being
able to reason by using default rules is given. The semantics of the qual-
itative default rules is defined via ordinal conditional functions which
model the epistemic state of the agent, providing her with the basic
equipment to perform different knowledge management and belief re-
vision tasks. Using the concept of Abstract State Machines, the fully
operational system was developed in AsmL, allowing for a high-level
implementation that minimizes the gap between the mathematical spec-
ification of the underlying concepts and the executable code in the im-
plemented system.

1 Introduction

When studying concepts and methods for nonmonotonic reasoning, actually im-
plemented and operational systems realizing the developed approaches can be
very helpful. In this paper, we give a brief description of the Condor@AsmL sys-
tem that implements automated reasoning with qualitative default rules [1,6].
It provides functionalities for advanced knowledge management tasks like be-
lief revision and update or diagnosis and hypothetical what-if-analysis. Con-

dor@AsmL implements the abstract Condor specification given in [3] and was
developed in AsmL [2,7], allowing for a high-level implementation that minimizes
the gap between the mathematical specification of the underlying concepts and
the executable code in the implemented system.

2 Background

We start with a propositional language L, generated by a finite set Σ of atoms
a, b, c, The formulas of L are denoted by uppercase Roman letters A,B,C,
For conciseness of notation, we will omit the logical and -connective, writing AB
instead of A ∧ B, and overlining formulas will indicate negation, i.e. A means
¬A. Let Ω denote the set of possible worlds over L; Ω will be taken here simply

The research reported here was partially supported by the Deutsche Forschungsge-
meinschaft (grants BE 1700/7-1 and KE 1413/2-1).

A. Armando, P. Baumgartner, and G. Dowek (Eds.): IJCAR 2008, LNCS 5195, pp. 147–153, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

148 C. Beierle, G. Kern-Isberner, and N. Koch

as the set of all propositional interpretations over L and can be identified with
the set of all complete conjunctions over Σ. For ω ∈ Ω, ω |= A means that the
propositional formula A ∈ L holds in the possible world ω.

By introducing a new binary operator |, we obtain the set (L | L) = {(B|A) |
A,B ∈ L} of conditionals over L. (B|A) formalizes “if A then B” and establishes
a plausible, probable, possible etc connection between the antecedent A and
the consequent B. Here, conditionals are supposed not to be nested, that is,
antecedent and consequent of a conditional will be propositional formulas.

A conditional (B|A) is an object of a three-valued nature, partitioning the
set of worlds Ω in three parts: those worlds satisfying AB, thus verifying the
conditional, those worlds satisfying AB, thus falsifying the conditional, and those
worlds not fulfilling the premise A and so which the conditional may not be
applied to at all. This allows us to represent (B|A) as a generalized indicator
function going back to [5] (where u stands for unknown or indeterminate):

(B|A)(ω) =

⎧

⎨

⎩

1 if ω |= AB
0 if ω |= AB
u if ω |= A

To give appropriate semantics to conditionals, they are usually considered within
richer structures such as epistemic states. Besides certain (logical) knowledge,
epistemic states also allow the representation of, e.g., preferences, beliefs, as-
sumptions of an intelligent agent. Basically, an epistemic state allows one to
compare formulas or worlds with respect to plausibility, possibility, necessity,
probability, etc.

Well-known qualitative, ordinal approaches to represent epistemic states are
Spohn’s ordinal conditional functions, OCFs, (also called ranking functions) [9],
and possibility distributions [4], assigning degrees of plausibility, or of possibility,
respectively, to formulas and possible worlds. In such qualitative frameworks, a
conditional (B|A) is valid (or accepted), if its confirmation,AB, is more plausible,
possible, etc. than its refutation,AB; a suitable degree of acceptance is calculated
from the degrees associated with AB and AB.

The concept underlying Condor@AsmL is based on Spohn’s OCFs [9]. An
OCF κ : Ω → N expresses degrees of implausibility of worlds: The higher κ(ω),
the less plausible is ω. At least one world must be regarded as being completely
normal; therefore, κ(ω) = 0 for at least one ω ∈ Ω. Such a ranking function can
be taken as the representation of a full epistemic state of an agent. Each such κ
uniquely extends to a function (also denoted by κ) mapping sentences and rules
to N ∪ {∞} defined by

κ(A) =

{

min{κ(ω) | ω |= A} if A is satisfiable
∞ otherwise

κ((B|A)) =

{

κ(AB) − κ(A) if κ(A) �= ∞
∞ otherwise

for sentences A and conditionals (B|A), respectively.

A High-Level Implementation of a System for Automated Reasoning 149

The beliefs of an agent being in epistemic state κ with respect to a set of
default rules S is determined by

beliefO(κ,S) = {S[m] | S ∈ S and κ |=O S[m] and κ �|=O S[m+ 1]}

where the satisfaction relation |=O for quantified sentences (B|A)[m] is defined
by

κ |=O (B|A)[m] iff κ(AB) +m < κ(AB) (1)

Thus, (B|A) is believed in κ with degree of belief m if the degree of disbelief
of AB (verifying the unquantified conditional) is more than m smaller than the
degree of disbelief of AB (falsifying the unquantified conditional).

3 Examples and System Walk-Through

After starting the Condor@AsmL system, the user can choose among its top-
level functionalities as depicted in Fig. 1. Since our focus was on a lean imple-
mentation, currently there is only a command line and file I/O interface. This
enables both an easy integration of Condor@AsmL with other systems and also
adding a graphical user interface.

** Experience Condor@AsmL **
** Vers. 2.2 (2008-02-17) **

Choose an action:
[0] Initialization
[1] Load
[2] Query
[3] Belief and Disbelief
[4] Revision and Update
[5] Iterated Revision
[6] Iterated Update
[7] Diagnosis
[8] What-if-Analysis
[9] Exit Program

Fig. 1. Start menu

If the user chooses “0” for initializing the
system, Condor@AsmL asks for a file name
from which the set of rules representing the
initial knowledge base should be read. For in-
stance, after reading the file containing the four
rules representing the conditionals sea animals
have gills (g|s), sea animals are not mammals
(m|s), flippers are sea animals (s|f), flippers are
mammals) (m|f), Condor@AsmL determines
the epistemic state obtained from revising the
a priori state of complete ignorance by the given
rules and makes this the current epistemic state
(Fig. 2(a)).

Asking queries is done by choosing “2” in the
main menu and providing a set Q of (unquan-
tified) rules. Condor@AsmL then infers and
prints out the degrees of belief for those rules
the agent believes in with respect to its current

epistemic state. In the example given in Fig. 2(b), for all three queries the de-
gree 0 is returned. Note that for instance (s|f)[0] indeed expresses the agent’s
basic belief in flippers being sea animals since κ |=O (s|f)[0] says that the agent
considers fs to be strictly more plausible than fs (cf. (1)).

Diagnosis requires a set F of given facts and a set D of possible diagnoses
(also in the form of simple atoms). For these, Condor@AsmL infers and prints
out the degrees of belief for the elements of D with respect to the epistemic

150 C. Beierle, G. Kern-Isberner, and N. Koch

state obtained by updating the current epistemic state by the facts F (i.e., by
focussing on F). Note that the agent’s current epistemic state is not changed.

What-if-Analysis realizes hypothetical reasoning and can be viewed upon as
a generalization of diagnostic reasoning: Instead of the set F of simple facts we
consider a set A of general rules as assumptions, and instead of the simple atoms
as in the set D we consider a set H of general rules as hypotheses whose degrees
of belief we are interested in. Thus, given rule sets A and H , Condor@AsmL
answers the query: What would be the degrees of belief for the hypotheses H if the
world was such that the assumptions A would hold? This is achieved by inferring
the degrees of belief for the hypotheses H by focussing on A (i.e. with respect to
the epistemic state obtained from updating the current epistemic state by the
assumptions A). Note that in the example shown in Fig. 2(c), under the given
assumption (−g|f) the agent would give up the belief in (s|f). Since neither
the goal (−s|f) would be believed, the assumption that flippers do not have
gills would cause the agent to have reasonable doubts about flippers being a
sea animals and to consider the opposite (flippers not being a sea animal) to be
equally plausible.

As with diagnosis, also for What-if-Analysis the agent’s current epistemic state
is not changed. This is the case for the belief revision operators (“4”, “5”, “6”
in Fig. 1). For instance, the update operation transforms the current epistemic
state and a set of default rules R to a new current epistemic state accepting
R. Condor@AsmL respects and implements subtle differences between update
and (genuine) revision (cf. [1,8]).

4 Implementation

In order to demonstrate the flavor of the implementation in AsmL [2,7] and
the close correspondence between the mathematical specifications on the one
hand and the operational code on the other hand, we will consider the notion
of c-revision [8] which is at the heart of Condor@AsmL’s belief revision and
reasoning facilties.

A c-revision transforms an epistemic state and a set of quantified sentences
into a new epistemic state accepting these sentences. A characterization theorem
of [8] shows that every c-revision κ∗R of an epistemic state κ and a set of rulesR
can be obtained by adding to each κ(ω) values for each rule Ri ∈ R, depending
on whether ω verifies or falsifies Ri. We will now briefly sketch the approach
of [8] how to calculate such a c-revision for any finite OCF κ and any finite
consistent set R of conditionals.

The consistency of a set R = {(B1|A1), . . . , (Bn|An)} of conditionals in a
qualitative framework can be characterized by the notion of tolerance. A condi-
tional (B|A) is said to be tolerated by a set of conditionals R iff there is a world
ω such that ω verifies (B|A) (i.e. (B|A)(ω) = 1) and ω does not falsify any of
the conditionals in R (i.e. r(ω) �= 0 for all r ∈ R). R is consistent iff there is
an ordered partition R0,R1, . . . ,Rk of R such that each conditional in Rm is
tolerated by

⋃k
j=mRj , 0 � m � k (cf. [6]).

A High-Level Implementation of a System for Automated Reasoning 151

a) RULE_BASE loaded:
(g|s)
(-m|s)
(s|f)
(m|f)

Current epistemic state:
[0]: (s, g, m, f) : 1
[1]: (s, g, m,-f) : 1
[2]: (s, g,-m, f) : 2
[3]: (s, g,-m,-f) : 0
[4]: (s,-g, m, f) : 2
[5]: (s,-g, m,-f) : 2
[6]: (s,-g,-m, f) : 3
[7]: (s,-g,-m,-f) : 1
[8]: (-s, g, m, f) : 2
[9]: (-s, g, m,-f) : 0
[10]: (-s, g,-m, f) : 4
[11]: (-s, g,-m,-f) : 0
[12]: (-s,-g, m, f) : 2
[13]: (-s,-g, m,-f) : 0
[14]: (-s,-g,-m, f) : 4
[15]: (-s,-g,-m,-f) : 0

b) QUERIES loaded:
(m|f)
(g|f)
(s|f)

Believed sentences:
[2]: (m|f)[0]
[1]: (g|f)[0]
[0]: (s|f)[0]

c) ASSUMPTIONS loaded:
(-g|f)

GOALS loaded:
(m|f)
(-g|f)
(s|f)
(-s|f)

Focussed epistemic state:
[0]: (s, g, m, f) : 4
[1]: (s, g, m,-f) : 1
[2]: (s, g,-m, f) : 5
[3]: (s, g,-m,-f) : 0
[4]: (s,-g, m, f) : 2
[5]: (s,-g, m,-f) : 2
[6]: (s,-g,-m, f) : 3
[7]: (s,-g,-m,-f) : 1
[8]: (-s, g, m, f) : 5
[9]: (-s, g, m,-f) : 0
[10]: (-s, g,-m, f) : 7
[11]: (-s, g,-m,-f) : 0
[12]: (-s,-g, m, f) : 2
[13]: (-s,-g, m,-f) : 0
[14]: (-s,-g,-m, f) : 4
[15]: (-s,-g,-m,-f) : 0

Believed sentences:
[0]: (m|f)[0]
[1]: (-g|f)[1]

Fig. 2. Initialization (a), Query (b) and What-If-Analysis (c)

The corresponding AsmL code for inferring the consistency of a set of rules
is given by

isConsistent(in_R as RuleSet) as Boolean
step Partition := buildPartition(in_R, {->})
step return Partition <> {->} // consistent iff Partition is non-empty

where buildPartition(in R,p) is a binary recursive function returning an ordered
partition (i.e. a function mapping natural numbers to sets of rules) of in R if it
exists, and the empty map otherwise. buildPartition(in R,p) takes a set of rules
in R (still to be partitioned) and a partition p (of those rules that have already
been assigned to a paricular partition set Rm). Initially, in R contains all given
rules and p is the empty function {->}. The definiton of buildPartition is given
in Fig. 3.

152 C. Beierle, G. Kern-Isberner, and N. Koch

buildPartition(in_R as RuleSet, in_partition as Map of Integer to RuleSet)
as Map of Integer to RuleSet

// recursively build proper partition
var rules as RuleSet = in_R
var partition as Map of Integer to RuleSet = in_partition

let tolerating_worlds = {w | w in Omega where falsify(w,rules) = {} }
let tolerated_rules = {r | w in tolerating_worlds, r in verify(w,rules)}
step
if tolerated_rules = {}
then partition := {->} // proper partition does not exist
else // extend current partition
let next_index = Size(partition) // next index, starts with 0
step partition := partition + {next_index -> tolerated_rules}

rules := rules - tolerated_rules
step if rules <> {} // partition remaining rules recursively

then partition := buildPartition(rules, partition)
step return partition

Fig. 3. AsmL code for determining an ordered partition of a set of rules

cRevision(in_kappa as State, in_R as RuleSet) as State
// in_R must be consistent, Partition must contain its ordered partition
var kappa as State = {->}
step

if accept(in_kappa, in_R) = in_R // all rules accepted
then kappa := in_kappa // no change of in_kappa needed
else

let kappaMinus = getKappaMinus(in_kappa)
kappa := {w -> k + sumPenalty(w, in_R, kappaMinus) | w -> k in

in_kappa}
let kappaNull = min i | world -> i in kappa
if kappaNull > 0 // normalization required?
then kappa := {w -> k - kappaNull | w -> k in kappa}

step return kappa

Fig. 4. Computation of a cRevision of an epistemic state with respect to a set of rules

Now suppose that R is consistent and that a corresponding partition R0,R1,
. . . , Rk of R is given. Then the following yields a c-revision: Set successively, for
each partitioning set Rm, 0 � m � k, starting with R0, and for each conditional
ri = (Bi|Ai) ∈ Rm

κ−
i := 1 + min

ω |= AiBi

r(ω) �= 0, ∀r ∈ Rm ∪ . . . ∪ Rk

(κ(ω) +
∑

rj ∈ R0 ∪ . . . ∪ Rm−1
rj(ω) = 0

κ−
j) (2)

Finally, choose κ0 appropriately to make

κ∗(ω) = κ0 + κ(ω) +
∑

1 � i � n

ω |= AiBi

κ−
i (3)

an ordinal conditional function.

A High-Level Implementation of a System for Automated Reasoning 153

The binary function cRevision(in kappa,in R) as depicted in Fig. 4 takes an
epistemic state in kappa and a consistent set of rules in R (where the global
nullary function Partition already denotes an ordered partition of in R) and re-
turns a correspondingly updated state. If all rules in in R are already accepted
by in kappa, then no change is needed and the given in kappa is returned. Oth-
erwise, according to equation 2, getKappaMinus(in kappa) determines the κ−i
value for each rule ri in in R, yielding a function kappaMinus mapping rules to
natural numbers. For each world w, sumPenalty(w, in R, kappaMinus) computes
the sum of the κ−i values according to equation 3, and, if necessary, kappaNull is
determined as a negative normalization constant so that at least one world gets
rank 0 in the resulting state kappa.

5 Conclusions and Further Work

Condor@AsmL is a fully operational system modelling an intelligent agent be-
ing capable to reason about default rules and to adapt its own state of belief when
new information arrives. AsmL provided a very helpful tool for the implemen-
tation of Condor@AsmL by minimizing the gap between abstract specification
and executable code, which was the main objective of its design. Efficiency con-
siderations and the use of e.g. knowledge base compilation techniques are topics
of further work.

References

1. Alchourrón, C.E., Gärdenfors, P., Makinson, P.: On the logic of theory change:
Partial meet contraction and revision functions. Journal of Symbolic Logic 50(2),
510–530 (1985)

2. AsmL webpage (2007), http://research.microsoft.com/foundations/asml/
3. Beierle, C., Kern-Isberner, G.: An ASM refinement and implementation of the

Condor system using ordinal conditional functions. In: Prinz, A. (ed.) Proceed-
ings 14th International Workshop on Abstract State Machines (ASM 2007), Agder
University College, Grimstad, Norway (2007)

4. Benferhat, S., Dubois, D., Prade, H.: Representing default rules in possibilistic
logic. In: Proceedings 3th International Conference on Principles of Knowledge
Representation and Reasoning KR 1992, pp. 673–684 (1992)

5. DeFinetti, B.: Theory of Probability, vol. 1, 2. John Wiley & Sons, Chichester
(1974)

6. Goldszmidt, M., Pearl, J.: Qualitative probabilities for default reasoning, belief
revision, and causal modeling. Artificial Intelligence 84, 57–112 (1996)

7. Gurevich, Y., Rossman, B., Schulte, W.: Semantic essence of AsmL. Theoretical
Computer Science 343(3), 370–412 (2005)

8. Kern-Isberner, G.: A thorough axiomatization of a principle of conditional preser-
vation in belief revision. Annals of Mathematics and Artificial Intelligence 40(1-2),
127–164 (2004)

9. Spohn, W.: Ordinal conditional functions: a dynamic theory of epistemic states.
In: Harper, W.L., Skyrms, B. (eds.) Causation in Decision, Belief Change, and
Statistics, II, pp. 105–134. Kluwer Academic Publishers, Dordrecht (1988)

http://research.microsoft.com/foundations/asml/

The Abella Interactive Theorem Prover

(System Description)

Andrew Gacek

Department of Computer Science and Engineering, University of Minnesota
200 Union Street SE, Minneapolis, MN 55455, USA

1 Introduction

Abella [3] is an interactive system for reasoning about aspects of object lan-
guages that have been formally presented through recursive rules based on syn-
tactic structure. Abella utilizes a two-level logic approach to specification and
reasoning. One level is defined by a specification logic which supports a trans-
parent encoding of structural semantics rules and also enables their execution.
The second level, called the reasoning logic, embeds the specification logic and
allows the development of proofs of properties about specifications. An impor-
tant characteristic of both logics is that they exploit the λ-tree syntax approach
to treating binding in object languages. Amongst other things, Abella has been
used to prove normalizability properties of the λ-calculus, cut admissibility for
a sequent calculus and type uniqueness and subject reduction properties. This
paper discusses the logical foundations of Abella, outlines the style of theorem
proving that it supports and finally describes some of its recent applications.

2 The Logic Underlying Abella

Abella is based on G, an intuitionistic, predicative, higher-order logic with fixed-
point definitions for atomic predicates and with natural number induction [4].

Representing binding. G uses the λ-tree syntax approach to representing syntactic
structures [7], which allows object level binding to be represented using meta-
level abstraction. Thus common notions related to binding such as α-equivalence
and capture-avoiding substitution are built into the logic, and the encodings of
object languages do not need to implement such features.

To reason over λ-tree syntax, G uses the∇ quantifier which represents a notion
of generic judgment [9]. A formula∇x.F is true if F is true for each x in a generic
way, i.e., when nothing is assumed about any x. This is a stronger statement
than ∀x.F which says that F is true for all values for x but allows this to be
shown in different ways for different values.

For the logic G, we assume the following two properties of ∇:

∇x.∇y.F x y ≡ ∇y.∇x.F x y ∇x.F ≡ F if x not free in F

A. Armando, P. Baumgartner, and G. Dowek (Eds.): IJCAR 2008, LNCS 5195, pp. 154–161, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

The Abella Interactive Theorem Prover (System Description) 155

A natural proof-theoretic treatment for this quantifier is to use nominal constants
to instantiate ∇-bound variables [16]. Specifically, the proof rules for ∇ are

Γ,B[a/x] , C
Γ,∇x.B , C ∇L

Γ , C[a/x]
Γ , ∇x.C ∇R

where a is a nominal constant which does not appear in the formula underneath
the ∇ quantifier. Due to the equivalence of permuting ∇ quantifiers, nominal
constants must be treated as permutable, which is captured by the initial rule.

π.B = B′

Γ,B , B′ idπ

Here π is a permutation of nominal constants.

Definitions. The logic G supports fixed-point definitions of atomic predicates.
These definitions are specified as clauses of the form ∀x.(∇z.H) � B where the
head H is an atomic predicate. This notion of definition is extended from pre-
vious notions (e.g., see [9]) by admitting the ∇-quantifier in the head. Roughly,
when such a definition is used, in ways to be explained soon, these ∇-quantified
variables become instantiated with nominal constants from the term on which
the definition is used. The instantiations for the universal variables xmay contain
any nominal constants not assigned to the variables z. Thus ∇ quantification in
the head of a definition allows us to restrict certain pieces of syntax to be nominal
constants and to state dependency information for those nominal constants.

Two examples hint at the expressiveness of our extended form of definitions.
First, we can define a predicate name E which holds only when E is a nominal
constant. Second, we can define a predicate fresh X E which holds only when
X is a nominal constant which does not occur in E.

(∇x.name x) � � ∀E.(∇x.fresh x E) � �

Note that the order of quantification in fresh enforces the freshness condition.
Definitions can be used in both a positive and negative fashion. Positively,

definitions are used to derive an atomic judgment, i.e., to show a predicate
holds on particular values. This use corresponds to unfolding a definition and is
similar to back-chaining. Negatively, an atomic judgment can be decomposed in
a case analysis-like way based on a closed-world reading of definitions. In this
case, the atomic judgment is unified with the head of each definitional clause,
where eigenvariables are treated as instantiatable. Also, both the positive and
negative uses of definitions consider permutations of nominal constants in order
to allow the ∇-bound variables z to range over any nominal constants. A precise
presentation of these rules, which is provided in Gacek et al. [4], essentially
amounts to introduction rules for atomic judgments on the right and left sides
of sequents in a sequent calculus based presentation of the logic.

Induction. G supports induction over natural numbers. By augmenting the pred-
icates being defined with a natural number argument, this induction can serve as
a method of proof based on the length of a bottom-up evaluation of a definition.

156 A. Gacek

∀m, n, a, b[of m (arr a b) ∧ of n a ⊃ of (app m n) b]

∀r, a, b[∀x[of x a ⊃ of (r x) b] ⊃ of (abs a r) (arr a b)]

Fig. 1. Second-order hereditary Harrop formulas for typing

3 The Structure of Abella

The architecture of Abella has two distinguishing characteristics. First, Abella
is oriented towards the use of a specific (executable) specification logic whose
proof-theoretic structure is encoded via definitions in G. Second, Abella provides
tactics for proof construction that embody special knowledge of the specification
logic. We discuss these aspects and their impact in more detail below.

3.1 Specification Logic

It is possible to encode object language descriptions directly in definitions in G,
but there are two disadvantages to doing so: the resulting definitions may not be
executable and there are common patterns in specifications with λ-tree syntax
which we would like to take advantage of. We address these issues by selecting
a specification logic which has the features that the G lacks, and embedding the
evaluation rules of this specification logic instead into G. Object languages are
then encoded through descriptions in the specification logic [6].

The specification logic of Abella is second-order hereditary Harrop formulas [8]
with support for λ-tree syntax. This allows a transparent encoding of structural
operational semantics rules which operate on objects with binding. For example,
consider the simply-typed λ-calculus where types are either a base type i or
arrow types constructed with arr. Terms are encoded with the constructors app
and abs. The constructor abs takes two arguments: the type of the variable being
abstracted and the body of the function. Rather than having a constructor for
variables, the body argument to abs is an abstraction in our specification logic,
thus object level binding is represented by the specification logic binding. For
example, the term (λf : i→ i.(λx : i.(f x))) is encoded as

abs (arr i i) (λf.abs i (λx.app f x)).

In the latter term, λ denotes an abstraction in the specification logic. Given this
representation, the typing judgment of m t is defined in Figure 1. Note that these
rules do not maintain an explicit context for typing assumptions, instead using a
hypothetical judgment to represent assumptions. Also, there is no side-condition
in the rule for typing abstractions to ensure the variable x does not yet occur in
the typing context, since instead of using a particular x for recording a typing
assumption, we quantify over all x.

Our specification of typing assignment is executable. More generally, the
Abella specification logic is a subset of the language λProlog [11] which can
be compiled and executed efficiently [12]. This enables the animation of spec-
ifications, which is convenient for assessing specifications before attempting to

The Abella Interactive Theorem Prover (System Description) 157

prove properties over them. This also allows specifications to be used as testing
oracles when developing full implementations.

The evaluation rules of our specification logic can be encoded as a definition
in G. A particular specification is then encoded in a separate definition which
is used by the definition of evaluation in order to realize back-chaining over
specification clauses. Reasoning over a specification is realized by reasoning over
its evaluation via the definition of the specification logic. Abella takes this further
and is customized towards the specification logic. For example, the context of
hypothetical judgments in our specification logic admits weakening, contraction,
and permutation, all of which are provable in G. Abella automatically uses this
meta-level property of the specification logic during reasoning. Details on the
benefits of this approach to reasoning are available in Gacek et al. [5].

3.2 Tactics

The user constructs proofs in Abella by applying tactics which correspond to
high-level reasoning steps. The collection of tactics can be grouped into those
that generically orchestrate the rules of G and those that correspond to meta-
properties of the specification logic. We discuss these classes in more detail below.

Generic tactics. The majority of tactics in Abella correspond directly to infer-
ence rules in G. The most common tactics from this group are the ones which
perform induction, introduce variables and hypotheses, conduct case analysis,
apply lemmas, and build results from hypotheses. In the examples suite dis-
tributed with Abella, these five tactics make up more than 90% of all tactic
usages. The remaining generic tactics are for tasks such as splitting a goal of
the form G1 ∧G2 into two separate goals for G1 and G2, or for instantiating the
quantifier in a goal of the form ∃x.G.

Specification logic tactics. Since our specification logic is encoded in G, we can
formally prove meta-level properties for it. Once such properties are proved, their
use in proofs can be built into tactics. Two important properties that Abella uses
in this way are instantiation and cut admissibility. In detail, negative uses of the
specification logic ∀ quantifier are represented in G as nominal constants (i.e.,
the ∇ quantifier), and the instantiation tactic allows such nominal constants to
be instantiated with specific terms. The cut tactic allows hypothetical judgments
to be relieved by showing that they are themselves provable.

4 Implementation

Abella is implemented in OCaml. The most sophisticated component of this
implementation is higher-order unification which is a fundamental part of the
logic G. It underlies how case analysis is performed, and in the implementation,
unification is used to decide when tactics apply and to determine their result.
Thus an efficient implementation of higher-order unification is central to an
efficient prover. For this, Abella uses the the higher-order pattern unification

158 A. Gacek

package of Nadathur and Linnell [10]. We have also extended this package to
deal with the particular features and consequences of reasoning in G.

Treatment of nominal constants. As their name suggests, nominal constants can
be treated very similarly to constants for most of the unification algorithm, but
there are two key differences. First, while traditional constants can appear in the
instantiation of variables, nominal constants cannot appear in the instantiation
of variables. Thus dependency information on nominal constants is tracked via
explicit raising of variables. Second, nominal constants can be permuted when
determining unifiability. However, even in our most sophisticated examples the
number of nominal constants appearing at the same time has been at most two.
Thus, naive approaches to handling permutability of nominal constants have
sufficed and there has been little need to develop sophisticated algorithms.

Simple extensions. The treatment of case analysis via unification for eigenvari-
ables creates unification problems which fall outside of the higher-order pattern
unification fragment, yet still have most general unifiers. For example, consider
the clause for β-contraction in the λ-calculus:

step (app (abs R) M) (R M).

Case analysis on a hypotheses of the form step A B will result in the attempt to
solve the unification problemB = R M where B, R, andM are all instantiatable.
This is outside of the higher-order pattern unification fragment since R is applied
to an instantiatable variable, but there is a clear most general unifier. When
nominal constants are present, this situation is slightly more complicated with
unification problems such as B x = R M x or B x = R (M x), where x is a
nominal constant. The result is the same, however, that a most general unifier
exists and is easy to find.

5 Examples

This section briefly describes sample reasoning tasks we have conducted in
Abella. The detailed proofs are available in the distribution of Abella [3].

Results from the λ-calculus. Over untyped λ-terms, we have shown the equiva-
lence of big-step and small-step evaluation, preservation of typing for both forms
of evaluation, and determinacy for both forms of evaluation. We have shown that
the λ-terms can be disjointly partitioned into normal and non-normal forms.
Over simply-typed λ-terms, we have shown that typing assignments are unique.

Cut admissibility. We have shown that the cut rule is admissible for a sequent
calculus with implication and conjunction. The representation of sequents in our
specification logic used hypothetical judgments to represent hypotheses in the
sequent. This allowed the cut admissibility proof to take advantage of Abella’s
built-in treatment of meta-properties of the specification logic.

The Abella Interactive Theorem Prover (System Description) 159

The POPLmark challenge. The POPLmark challenge [1] is a selection of prob-
lems which highlight the traditional difficulties in reasoning over systems which
manipulate objects with binding. The particular tasks of the challenge involve
reasoning about evaluation, typing, and subtyping for F<:, a λ-calculus with
bounded subtype polymorphism. We have solved parts 1a and 2a of this chal-
lenge using Abella, which represent the fundamental reasoning tasks involving
objects with binding.

Proving normalizability à la Tait. We have shown that all closed terms in the
call-by-value, simply-typed λ-calculus are normalizable using the logical rela-
tions argument in the style of Tait [14]. Fundamental in this proof was the
encoding of arbitrary cascading substitutions which allows one to consider all
closed instantiations for an open λ-term. Encoding and reasoning over this form
of substitution makes essential use of the extended form of definitions in G.

6 Future and Related Work

Induction and coinduction The logic G currently supports induction on natural
numbers. Similar logics have been extended to support structural induction and
coinduction on definitions [15]. Already, the implementation of Abella has sup-
port for these features. A paper which describes the extended logic supporting
these features is in preparation.

User programmability. Tactics-based theorem provers often support tacticals
which allow users to compose tactics in useful ways. Some systems even go
beyond this and offer a full programming language for creating custom tactics.
We would like to extend Abella with such features.

Proof search. Many proofs in Abella follow a straightforward pattern of essen-
tially induction, case analysis, and building from hypotheses. We would like to
extend Abella to perform these types of proofs automatically. Recent results on
focusing in similar logics may offer some insight into a disciplined approach to
automated proof search [2].

Related work. A closely related system is Twelf [13] which is based on a depen-
dently typed λ-calculus for specification. Controlling for dependent types, the
most significant difference is that our meta-logic is significantly richer than the
one in Twelf. Also related is the Nominal package [17] for Isabelle/HOL which
allows for reasoning over α-equivalence classes. This approach leverages on ex-
isting theorem proving work, but does not address the full problem of reasoning
with binding. In particular, all work related to substitution is left to the user. A
more detailed comparison with these works is available in Gacek et al. [5].

Acknowledgements

I am grateful to David Baelde, Dale Miller, Gopalan Nadathur, Randy Pollack,
and Alwen Tiu for their input and feedback on the development of Abella.

160 A. Gacek

Anonymous reviewers provided helpful comments on an earlier version of this
paper. This work has been supported by the NSF Grant CCR-0429572 and by a
grant from Boston Scientific. Opinions, findings, and conclusions or recommen-
dations expressed in this work are those of the authors and do not necessarily
reflect the views of the National Science Foundation.

References

1. Aydemir, B.E., Bohannon, A., Fairbairn, M., Foster, J.N., Pierce, B.C., Sewell, P.,
Vytiniotis, D., Washburn, G., Weirich, S., Zdancewic, S.: Mechanized metatheory
for the masses: The PoplMark challenge. In: Hurd, J., Melham, T. (eds.) TPHOLs
2005. LNCS, vol. 3603, pp. 50–65. Springer, Heidelberg (2005)

2. Baelde, D., Miller, D.: Least and greatest fixed points in linear logic. In: Dershowitz,
N., Voronkov, A. (eds.) LPAR 2007. LNCS (LNAI), vol. 4790, pp. 92–106. Springer,
Heidelberg (2007)

3. Gacek, A.: The Abella system. Available in source code (2008),
http://abella.cs.umn.edu/

4. Gacek, A., Miller, D., Nadathur, G.: Combining generic judgments with recursive
definitions. In: Pfenning, F. (ed.) 23th Symp. on Logic in Computer Science. IEEE
Computer Society Press, Los Alamitos (to appear, 2008)

5. Gacek, A., Miller, D., Nadathur, G.: Reasoning in Abella about structural opera-
tional semantics specifications. In: LFMTP 2008 (to appear, 2008),
http://arxiv.org/abs/0804.3914

6. McDowell, R., Miller, D.: Reasoning with higher-order abstract syntax in a logical
framework. ACM Trans. on Computational Logic 3(1), 80–136 (2002)

7. Miller, D.: Abstract syntax for variable binders: An overview. In: Palamidessi, C.,
Moniz Pereira, L., Lloyd, J.W., Dahl, V., Furbach, U., Kerber, M., Lau, K.-K.,
Sagiv, Y., Stuckey, P.J. (eds.) CL 2000. LNCS (LNAI), vol. 1861, pp. 239–253.
Springer, Heidelberg (2000)

8. Miller, D., Nadathur, G., Pfenning, F., Scedrov, A.: Uniform proofs as a foundation
for logic programming. Annals of Pure and Applied Logic 51, 125–157 (1991)

9. Miller, D., Tiu, A.: A proof theory for generic judgments. ACM Trans. on Compu-
tational Logic 6(4), 749–783 (2005)

10. Nadathur, G., Linnell, N.: Practical higher-order pattern unification with on-the-
fly raising. In: Gabbrielli, M., Gupta, G. (eds.) ICLP 2005. LNCS, vol. 3668, pp.
371–386. Springer, Heidelberg (2005)

11. Nadathur, G., Miller, D.: An Overview of λProlog. In: Fifth International Logic
Programming Conference, Seattle, August 1988, pp. 810–827. MIT Press, Cam-
bridge (1988)

12. Nadathur, G., Mitchell, D.J.: System description: Teyjus—A compiler and abstract
machine based implementation of Lambda Prolog. In: Ganzinger, H. (ed.) Proceed-
ings of the 16th International Conference on Automated Deduction, Trento, Italy,
July 1999, pp. 287–291. Springer, Heidelberg (1999)

13. Pfenning, F., Schürmann, C.: System description: Twelf — A meta-logical frame-
work for deductive systems. In: Ganzinger, H. (ed.) 16th Conference on Automated
Deduction. LNCS (LNAI), pp. 202–206. Springer, Heidelberg (1999)

14. Tait, W.W.: Intensional interpretations of functionals of finite type I. J. of Symbolic
Logic 32(2), 198–212 (1967)

http://abella.cs.umn.edu/
http://arxiv.org/abs/0804.3914

The Abella Interactive Theorem Prover (System Description) 161

15. Tiu, A.: A Logical Framework for Reasoning about Logical Specifications. PhD
thesis, Pennsylvania State University (May 2004)

16. Tiu, A.: A logic for reasoning about generic judgments. In: Momigliano, A.,
Pientka, B. (eds.) International Workshop on Logical Frameworks and Meta-
Languages:Theory and Practice (LFMTP 2006) (2006)

17. Urban, C., Tasson, C.: Nominal techniques in Isabelle/HOL. In: Nieuwenhuis, R.
(ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 38–53. Springer, Heidelberg (2005)

LEO-II - A Cooperative Automatic Theorem

Prover for Classical Higher-Order Logic
(System Description)

Christoph Benzmüller1, Lawrence C. Paulson2, Frank Theiss1,
and Arnaud Fietzke3

1Dep. of Computer Science, Saarland University, Saarbrücken, Germany
2Computer Laboratory, The University of Cambridge, UK

3Max Planck Institute for Informatics, Saarbrücken, Germany

Abstract. LEO-II is a standalone, resolution-based higher-order theo-
rem prover designed for effective cooperation with specialist provers for
natural fragments of higher-order logic. At present LEO-II can cooperate
with the first-order automated theorem provers E, SPASS, and Vampire.
The improved performance of LEO-II, especially in comparison to its
predecessor LEO, is due to several novel features including the exploita-
tion of term sharing and term indexing techniques, support for primitive
equality reasoning, and improved heuristics at the calculus level. LEO-II
is implemented in Objective Caml and its problem representation lan-
guage is the new TPTP THF language.

1 Introduction and Motivation

Automatic theorem provers (ATPs) based on the resolution principle, such as
Vampire [20], E [21], and SPASS [25], have reached a high degree of sophisti-
cation. They can often find long proofs even for problems having thousands of
axioms. However, they are limited to first-order (FO) logic. Higher-order (HO)
logic extends FO logic with lambda notation for functions and with function and
predicate variables. It supports reasoning in set theory, using the obvious rep-
resentation of sets by predicates. HO logic is a natural language for expressing
mathematics, and it is also ideal for formal verification. Moving from FO to HO
logic requires a more complicated proof calculus, but it often allows much sim-
pler problem statements. HO logic’s built-in support for functions and sets often
leads to shorter proofs. Conversely, elementary identities (such as the distribu-
tive law for union and intersection) turn into difficult problems when expressed
in FO form.

LEO-II is a standalone, resolution-based HO ATP that is designed for fruit-
ful cooperation with specialist provers for fragments of HO logic. The idea is
to combine the strengths of the different systems. On the other hand, LEO-II
itself, as an external reasoner, is designed to support HO proof assistants such
as Isabelle/HOL [18], HOL [13], and Ωmega [22] by efficiently automating sub-
problems and thereby reducing user effort.

A. Armando, P. Baumgartner, and G. Dowek (Eds.): IJCAR 2008, LNCS 5195, pp. 162–170, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

LEO-II - A Cooperative Automatic Theorem Prover for Classical HO Logic 163

1.1 Motivation for LEO-II

LEO-II is the successor of LEO [4], which was implemented in Allegro Common
Lisp as a part of the Ωmega system and which unfortunately was not available
as a standalone reasoner. LEO shared the basic data structures such as terms and
clauses with Ωmega; these shared basic data structures were not designed for
efficiency and their term indexing support was limited [15]. LEO’s performance
strongly improved after coupling it with the FO ATP Otter in the agent based
ΩAnts framework [8]. This integration has subsequently been improved and
Otter has been replaced by Bliksem and Vampire [9]. This cooperative theorem
proving approach outperforms – modulo different problem representations – FO
ATPs such as Vampire on problems about sets, relations, and functions as given
in the TPTP SET domain (see Figure 1). The cooperative approach not only
solves more problems in this domain; it also solves them more efficiently. This
provides evidence for the following working hypothesis:

It is well known in AI that representation matters. Problem representation
particularly matters in automated theorem proving: many proof problems can
be effectively solved when they are initially represented in a natural way in HO
logic and then tackled with a cooperative theorem proving approach in which a
HO reasoner subsequently reduces them to a suitable fragment of HO logic in
which they can be tackled by an effective specialist reasoner.

So far, we consider only FO logic as a target fragment. The general idea,
however, is not limited to this; other fragments will be studied in future work.
Examples include decidable fragments like monadic second-order logic and the
guarded fragment. Decidability can probably produce useful feedback for im-
proved heuristic control in the HO ATP.

2 Overview of LEO-II

The one year project “LEO-II: An Effective Higher-Order Theorem Prover” was
funded by EPSRC at Cambridge University, UK under grant EP/D070511/1. In
this project LEO-II has been (re-)implemented in Objective Caml 3.09 (approx.
12500 lines of code) as a standalone HO ATP. LEO-II can be easily installed,
deployed and integrated with other reasoners and its sources are available from
the LEO-II web-site at: http://www.ags.uni-sb.de/∼leo/.

Proof search in LEO-II, which is based on the extensional HO resolution
calculus [3] has been further improved, e.g., it now supports efficient (recursive)
expansion of definitions and primitive equality reasoning (see Section 3). For
cooperation with FO ATPs, LEO-II offers two different HO to FO mappings;
further mappings can easily be added.

LEO-II provides efficient term data structures. It employs perfect term sharing
and supports for HO term indexing. LEO-II also provides analysis tools for
exploring its proof object, term graph and term index. This includes statistical
analysis of the term graph (see Section 4).

In addition to a fully automatic mode, LEO-II also provides an interactive
mode [6]. This mode supports debugging and inspection of the search space,

http://www.ags.uni-sb.de/~leo/

164 C. Benzmüller et al.

 0.01

 0.1

 1

 10

 100

SET752+4

SET096+1

SET017+1

SET611+3

SET066+1

SET741+4

SET684+3

SET624+3

SET014+4

SET680+3

SET623+3

SET724+4

SET753+4

SET601+3

SET747+4

SET076+1

SET609+3

SET615+3

SET671+3

SET673+3

SET612+3

SET614+3

SET716+4

SET171+3

SET143+3

SET606+3

SET683+3

SET607+3

SET649+3

SET580+3

SET672+3

SET669+3

SET670+3

SET648+3

SET647+3

SET067+1

SET651+3

SET630+3

SET640+3

SET764+4

SET086+1

SET646+3

SET657+3

T
ot

al
 p

ro
vi

ng
 ti

m
e

in
 s

ec
on

ds

Vampire 9.0
LEO + Vampire
LEO-II + E

Fig. 1. The new LEO-II+E cooperation strongly outperforms the old LEO+Vampire
cooperation on HO encodings of proof problems as given in the TPTP SET domain
(these HO encodings are distributed with LEO-II). The worst approach is to tackle
these problems in their original, less elegant FO encoding with Vampire.

but also the tutoring of resolution based HO theorem proving to students. The
interactive mode and the automatic mode can be interleaved.

LEO-II supports prefix-polymorphism; full polymorphism adds many non-
trivial choice points to the already challenging search space of LEO-II [6] and
is therefore future work. Moreover, LEO-II employs the new TPTP THF repre-
sentation language [7].

At present, LEO-II cooperates with FO ATPs only in a sequential mode and
not via the agent based architecture ΩAnts. Figure 1 shows that LEO-II’s per-
formance has nevertheless strongly improved (in our experiment version 0.95 of
LEO-II was cooperating with E 0.99 ”Singtom”).

In the remainder we sketch LEO-II’s cooperative proof search (Section 3) and
its term sharing and term indexing (Section 4).

3 Cooperative Proof Search

... tries to

’first−order like’
clauses in its

and ...
search space

refute these clauses
efficiently

LEO−II detects
... passes them (after syntax

transformation) to a
first−order prover

which ...

LEO-II’s clause set generally consists of
HO clauses (dark-colored area), which are
processed with LEO-II’s calculus rules.
Some of the clauses in LEO-II’s search space
additionally attain a special status (the ones
in the light-colored area): they are in the
domain of a transformation function to a

LEO-II - A Cooperative Automatic Theorem Prover for Classical HO Logic 165

particular fragment of HO logic, here FO logic. Light-colored clauses are available
to both LEO-II’s proof search and to a specialist prover for the target fragment
via the transformation function. Roughly speaking, currently all clauses that do
not contain any λ-term and embedded predicate or proposition are light-colored,
and our default FO transformation function employs Kerber’s ideas [14]: it recur-
sively translates every application (pα→β qα) into a term @(α→β) α(p, q), where
@(α→β) α is a new function or predicate constant that encodes the types of its
two arguments. LEO-II’s extensional HO resolution approach, which enhances
standard resolution proof search with specific extensionality rules, is explained
in detail in [3] and [6]. It is well suited to subsequently generate more and more
light-colored clauses from dark colored ones. In some proof problems (such as
Examples 1 and 2 below) the light-colored area quickly collects enough informa-
tion for constructing a refutation; however, LEO-II is often too weak to find this
refutation on its own. In other proof problems (see Example 3 below) the refu-
tation can be found only in the dark-colored area. This observation motivates a
distributed architecture in which LEO-II dynamically cooperates with incremen-
tal specialist reasoners. At present, LEO-II sequentially launches a fresh call of
the cooperating specialist prover every n iterations of its (standard) resolution
proof search loop (currently n = 10).

Next, we discuss three proof problems from the domain of normal multimodal
logics. For this domain, our cooperative approach yields elegant problem encod-
ings and efficient solutions [5].

The encoding of multimodal logic in simple type theory is intuitive. Choose
a base type — we choose ι — to denote the set of all possible worlds. Certain
formulas of type ι → o then correspond to multimodal logic expressions. The
modal operators ¬ , ∨ , and �R become λ-terms of types (ι→ o)→ (ι→ o),
(ι→ o)→ (ι→ o) → (ι→ o), and (ι→ ι→ o)→ (ι→ o) → (ι→ o) respec-
tively. Note that ¬ forms the complement of a set of worlds, while ∨ forms the
union of two such sets. �R explicitly abstracts over the accessibility relation R:

¬ (ι→o)→(ι→o) = λAι→o λXι ¬AX
∨ (ι→o)→(ι→o)→(ι→o) = λAι→o λBι→o λXι AX ∨BX

�R (ι→ι→o)→(ι→o)→(ι→o) = λRι→ι→o λAι→o λXι ∀Xι RX Y ⇒ AX

A multimodal logic formula Aι→o is valid iff for all possible worlds Wι we
have W ∈ A, that is, iff AW holds: valid = λAι→o ∀Wι AW . Reflexivity
and transitivity are defined as (we omit types) refl = λR ∀X RXX and
trans = λR ∀X ∀Y ∀Z RX Y ∧ RY Z ⇒ RX Z. More details on this en-
coding, which models multimodal logic K, can be found in [5].

Example 1 (A simple equation between modal logic formulas).
∀R ∀A ∀B (�R (A∨B)) = (�R (B∨A))

Example 2. [Thewellknownmultimodalaxioms�RA⇒Aand�RA⇒ �R �RA
are equivalent to reflexivity and transitivity of the accessibility relation R]
∀R (∀A valid(�R A⇒A)∧valid(�RA⇒ �R �RA)) ⇔ (refl(R)∧ trans(R))

166 C. Benzmüller et al.

Example 3 (Axiom T is not valid).
¬∀R ∀A (valid(�RA⇒A))

After negating the statement in Example 1, recursive expansion of the def-
initions, and exhaustive clause normalization (with integrated functional and
Boolean extensionality treatment), LEO-II generates ten light-colored clauses.
Amongst them are (b V) ∨ (a V) ∨ ¬((r w)V) ∨ ¬((r w)U) ∨ (b U) ∨ (aU) and
¬(a z) ∨ ¬(b v) and ((r w) z) ∨ ((r w) v) where upper case and lower case sym-
bols denote variables and Skolem constants, respectively.1 This light-colored
clause set is immediately refutable by E, so that LEO-II does not even start
its main proof loop. (The total proving time is 0.071s on a Linux notebook
with 1.60GHz, 1GB memory.) Definition expansion and normalization does not
always produce refutable light-colored clauses: When replacing the primitive
equality = in Example 1 by Leibniz equality λX, Y.∀P (P X) ⇒ (P Y), we
obtain the dark-colored clauses (p (λXι.∀Yι ¬((r X)Y) ∨ (a Y) ∨ (b Y))) and
¬(p (λXι.∀Yι ¬((r X)Y) ∨ (b Y) ∨ (a Y))). LEO-II starts its proof search and
applies resolution and extensional unification [3] to them which subsequently
returns a refutable set of light-colored clauses as above. (The total proving time
is 0.166s.)

Example 2 is more challenging than Example 1. Proof search in LEO-II, how-
ever, is analogous with one crucial difference: definition expansion and normal-
ization generates 70 clauses and E generates more than 20 000 clauses from them
before finding the refutation. (The total proving time is 2.48s.) This example
illustrates the benefit of the cooperation, since LEO-II alone is not able to find
this refutation in its search space: LEO-II generates too many clauses and gets
stuck; moreover, LEO-II is still incomplete even for the FO fragment.

In Example 3, the refutation is found only in the dark-colored area. (The
total proving time is 9.02s.) Definition expansion and normalization generates
the clauses ((RW) sA,W,R) ∨ (AW) and ¬(AsA,W,R) ∨ (AW), where sA,W,R =
(((sA)W)R) is a new Skolem term. The refutation employs only the former
clause. LEO-II applies its primitive substitution rule [3,6] to guess the instanti-
ations R ← λX, Y.((M X)Y) �= ((N X)Y) and A ← λX.(OX) �= (PX) where
M,N,O, P are new free variables. (Hence, LEO-II proposes to consider inequal-
ity for the the accessibility relation, which is not reflexive and does not satisfy
axiom T .) Applying this instantiation leads to two unification constraints, i.e.,
negated equation literals in LEO-II, which both have flexible term heads. Proof
search terminates since such flex-flex unification constraints are always solvable.

It is not obvious how the examples in this section can be represented in first-
order logic. Therefore, these examples (and many others we are currently study-
ing) are not included in the comparison in Figure 1.

LEO-II shows some promising first results on examples as presented in this
paper, though it is not yet complete for simple type theory. Two known sources
1 To illustrate the use of FO TPTP we show how the latter clause is represented

modulo our transformation function in FO TPTP syntax (with T encoding brackets):
fof(leo II clause 177, axiom,

(at io i(at iT ioT i(sk1, sk4), sk13)|at io i(at iT ioT i(sk1, sk4), sk11))).

LEO-II - A Cooperative Automatic Theorem Prover for Classical HO Logic 167

of incompleteness are LEO-II’s pruning of unification problems at a preset uni-
fication depth (nested projections and imitations) and its limited support for
factorization modulo unification. In simple examples with Church numerals the
former restriction, for example, prevents LEO-II from synthesizing Church nu-
merals beyond this depth and because of the latter restriction LEO-II still cannot
solve the famous Cantor theorem. Future work will address these aspects.

4 Term Sharing and Term Indexing

Term indexing techniques are widely used in major FO ATPs [20,21,25]. The
indexing data structures store large numbers of terms and, for a given query term
t, support the fast retrieval of terms from the index that satisfy a certain relation
with t, such as matching, unifiability or syntactic equality [17]. Performance can
be further enhanced by representation of terms in efficient data structures, such
as shared terms, used for instance in E [21].

HO term indexing techniques are rarely addressed in the literature, which
hampers the progress of systems in this field. An exception is Pientka [19].

LEO-II’s implementation at term level is based on a perfectly shared term
graph, i.e., syntactically equal terms are represented by a single instance. Ideas
from FO term sharing are adapted to HO logic by (i) keeping indexed terms in
βη normal form (i.e., η short and β normal) and (ii) using de Bruijn indices [12]
to allow λ-abstracted terms to be shared.

The resulting data structure represents terms in a directed acyclic graph
(DAG). LEO-II supports the visualization of such term graphs.

16: @

0: ¬ 15: @1: Π

14: λι→(ι→o)

13: @

12: λι→o

11: @

10: @

2: valid 9: @ 8: @

7: 0

3: ⇒ 6: @4: � 5: 1

1 2

1

2

1

1

21

1

2

1

2

1

2

1

2

1 2

deBruijn

deBruijn

The graph to the right shows the
(not heavily shared) term graph af-
ter initialization of Example 3.2

LEO-II also supports statistical
analysis of its term graphs (Fig-
ure 2). Future work will investigate
whether such information can be
exploited for improving heuristic
control.

Representation of terms in a
shared graph naturally advances
the performance of a number of op-
erations, e.g., it allows fast lookup
of all occurrences of syntactically
equal terms or subterms, and it im-
proves the performance of rewrite operations, such as global unfolding of defi-
nitions. Additionally, LEO-II employs a term indexing data structure, which is
2 To further visualize the evolution of the term graph during proof search, we modified

LEO-II to output a snapshot of its state after each processing step. This data was
used to create animations of dynamically changing term graphs during proof search.
The video clips can be obtained at http://www.ags.uni-sb.de/∼leo/art.html

http://www.ags.uni-sb.de/~leo/art.html

168 C. Benzmüller et al.

------------- The Termset Analysis -------------
[...]

Sharing rate: 17 nodes with 18 bindings
Average sharing rate (bindings per node): 1.05
Average term size: 6.58
Average number of supernodes: 5.47
Average number of supernodes (symbols): 5.80
Average number of supernodes (nonprimitive terms): 4.50
Rate of term occurrences PST size / term size: 0.36
Rate of symbol occurrences PST size / term size: 0.39
Rate of bound occurrences PST size / term size: 0.57
------------- End Termset Analysis -------------

------------- The Termset Analysis -------------
[...]

Sharing rate: 2094 nodes with 3415 bindings
Average sharing rate (bindings per node): 1.63
Average term size: 13.95
Average number of supernodes: 9.47
Average number of supernodes (symbols): 28.83
Average number of supernodes (nonprimitive terms): 5.73
Rate of term occurrences PST size / term size: 0.24
Rate of symbol occurrences PST size / term size: 0.30
Rate of bound occurrences PST size / term size: 0.52
------------- End Termset Analysis -------------

Fig. 2. Statistical analysis of term sharing aspects in LEO-II after initialisation of
Example 3 (left) and after the proof has been found (right)

based on structural indexing methods from the FO domain [16,23], as well as
road sign techniques. Road signs are features of the data structure which guide
operations based on graph traversal. They help to cut branches of the subgraph
to be processed early and they are employed, e.g., in the construction of partial
syntax trees [24] in which all branches with no occurrences of a given symbol or
subterm are cut. This enables LEO-II to avoid potentially costly operations, such
as occurs checks, and to speed up basic operations on terms, such as substitution.

Future work includes the development, comparison and evaluation of other
termindexing techniques within LEO-II.

5 Conclusion

LEO-II, which replaces the previous LEO system, realizes a cooperative HO-
FO theorem proving approach that shows some promising results in selected
problem domains. It thus provides an interesting alternative to reasoning solely
in FO logic and it also differs from other HO ATPs such as TPS [1] and OTTER-
λ [2]. TPS is based on the mating method and does not cooperate with specialist
FO ATPs. It is particularly strong in proving theorems which require selective
expansion of definitions and goal directed instantiation of set variables. Examples
of such theorems are presented in Bishop and Andrews [10] and Brown [11]. Many
of these examples will require corresponding mechanisms in LEO-II to be proven
automatically. The formalism of OTTER-λ is not simple type theory but λ-logic,
which is a novel combination of λ-calculus and first-order logic.

Future work includes the experimentation with the LEO-II on case studies in
verification and ontology reasoning.

References

1. Andrews, P.B., Brown, C.E.: TPS: A hybrid automatic-interactive system for de-
veloping proofs. J. Applied Logic 4(4), 367–395 (2006)

2. Beeson, M.: Mathematical induction in Otter-Lambda. J. Autom. Reasoning 36(4),
311–344 (2006)

LEO-II - A Cooperative Automatic Theorem Prover for Classical HO Logic 169

3. Benzmüller, C.: Equality and Extensionality in Automated Higher-Order Theorem
Proving. PhD thesis, Saarlandes University (1999)

4. Benzmüller, C., Kohlhase, M.: LEO – a higher-order theorem prover. In: Kirch-
ner, C., Kirchner, H. (eds.) CADE 1998. LNCS (LNAI), vol. 1421, pp. 139–143.
Springer, Heidelberg (1998)

5. Benzmüller, C., Paulson, L.: Festschrift in Honour of Peter B. Andrews on his 70th
Birthday. In: Exploring Properties of Normal Multimodal Logics in Simple Type
Theory with LEO-II. IFCoLog (to appear, 2007)

6. Benzmüller, C., Paulson, L., Theiss, F., Fietzke, A.: Progress report on LEO-II –
an automatic theorem prover for higher-order logic. In: TPHOLs 2007 Emerging
Trends Proc., Internal Report 364/07, Department of Computer Science, University
Kaiserslautern, Germany, pp. 33–48 (2007)

7. Benzmüller, C., Rabe, F., Sutcliffe, G.: THF0 — the core TPTP language for
classical higher-order logic. In: Proc (IJCAR 2008). LNCS, vol. 5195. Springer,
Heidelberg (2008)

8. Benzmüller, C., Sorge, V., Jamnik, M., Kerber, M.: Experiments with an Agent-
Oriented Reasoning System. In: Baader, F., Brewka, G., Eiter, T. (eds.) KI 2001.
LNCS (LNAI), vol. 2174, pp. 409–424. Springer, Heidelberg (2001)

9. Benzmüller, C., Sorge, V., Jamnik, M., Kerber, M.: Combined reasoning by auto-
mated cooperation. J. Applied Logic (in print) (2008)

10. Bishop, M., Andrews, P.B.: Selectively instantiating definitions. In: Kirchner, C.,
Kirchner, H. (eds.) CADE 1998. LNCS (LNAI), vol. 1421, pp. 365–380. Springer,
Heidelberg (1998)

11. Brown, C.E.: Solving for Set Variables in Higher-Order Theorem Proving. In:
Voronkov, A. (ed.) CADE 2002. LNCS (LNAI), vol. 2392, pp. 408–422. Springer,
Heidelberg (2002)

12. de Bruijn, N.G.: Lambda-calculus notation with nameless dummies: a tool for
automatic formula manipulation with application to the Church-Rosser theorem.
Indag. Math. 34(5), 381–392 (1972)

13. Gordon, M.J., Melham, T.F.: Introduction to HOL: A Theorem-Proving Environ-
ment for Higher-Order Logic. Cambridge University Press, Cambridge (1993)

14. Kerber, M.: On the Representation of Mathematical Concepts and their Transla-
tion into First-Order Logic. PhD thesis, Univ. Kaiserslautern, Germany (1992)

15. Klein, L.: Indexing für Terme höherer Stufe. Master’s thesis, Saarland Univ. (1997)
16. McCune, W.: Experiments with discrimination-tree indexing and path indexing for

term retrieval. J. Automated Reasoning 9(2), 147–167 (1992)
17. Nieuwenhuis, R., Hillenbrand, T., Riazanov, A., Voronkov, A.: On the evaluation

of indexing techniques for theorem proving. In: Goré, R.P., Leitsch, A., Nipkow,
T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 257–271. Springer, Heidelberg
(2001)

18. Nipkow, T., Paulson, L.C., Wenzel, M.T.: Isabelle/HOL. LNCS, vol. 2283. Springer,
Heidelberg (2002)

19. Pientka, B.: Higher-order substitution tree indexing. In: Palamidessi, C. (ed.) ICLP
2003. LNCS, vol. 2916, pp. 377–391. Springer, Heidelberg (2003)

20. Riazanov, A., Voronkov, A.: The design and implementation of Vampire.
AICOM 15(2-3), 91–110 (2002)

21. Schulz, S.: E – A Brainiac Theorem Prover. J. AI Communications 15(2/3), 111–
126 (2002)

22. Siekmann, J., Benzmüller, C., Autexier, S.: Computer supported mathematics with
OMEGA. J. Applied Logic 4(4), 533–559 (2006)

170 C. Benzmüller et al.

23. Stickel, M.: The path-indexing method for indexing terms. Technical Report 473,
Artificial Intelligence Center, SRI International, USA (1989)

24. Theiss, F., Benzmüller, C.: Term indexing for the LEO-II prover. In: Proc. of the
6th International Workshop on the Implementation of Logics. CEUR Workshop
Proc., vol. 212 (2006)

25. Weidenbach, C., et al.: Spass version 2.0. In: Voronkov, A. (ed.) CADE 2002. LNCS
(LNAI), vol. 2392, pp. 275–279. Springer, Heidelberg (2002)

KeYmaera: A Hybrid Theorem Prover for

Hybrid Systems (System Description)�

André Platzer and Jan-David Quesel

University of Oldenburg, Department of Computing Science, Germany
{platzer,quesel}@informatik.uni-oldenburg.de

Abstract. KeYmaera is a hybrid verification tool for hybrid systems
that combines deductive, real algebraic, and computer algebraic prover
technologies. It is an automated and interactive theorem prover for a nat-
ural specification and verification logic for hybrid systems. KeYmaera
supports differential dynamic logic, which is a real-valued first-order
dynamic logic for hybrid programs, a program notation for hybrid au-
tomata. For automating the verification process, KeYmaera implements
a generalized free-variable sequent calculus and automatic proof strate-
gies that decompose the hybrid system specification symbolically. To
overcome the complexity of real arithmetic, we integrate real quantifier
elimination following an iterative background closure strategy. Our tool
is particularly suitable for verifying parametric hybrid systems and has
been used successfully for verifying collision avoidance in case studies
from train control and air traffic management.

Keywords: dynamic logic, automated theorem proving, decision proce-
dures, computer algebra, verification of hybrid systems.

1 Introduction

Formal verification becomes more and more important as computerized control
systems in safety-critical systems grow significantly in complexity. In many appli-
cations, system states, like positions of vehicles, change continuously according
to differential equations and are affected by discrete controller decisions. Hybrid
systems [7] are a mathematical model for such systems with interacting discrete
and continuous dynamics. Model checkers [7,5] verify correctness properties by
exploring the state space exhaustively, which provides a good mechanism to find
bugs or concrete counterexamples for specifications. Unfortunately, the state
space of hybrid systems is uncountably infinite and cannot be partitioned into
finitely many relevant regions for deciding reachability [7].

As deductive methods [4,2,8,1] are known for being capable of dealing with
infinite domains, we choose a proof-based approach. We present the verifica-
tion tool KeYmaera that uses a combination of automated theorem proving (for

� This research was partially supported by the German Research Council (DFG) in
the Transregional Collaborative Research Center SFB/TR 14 AVACS.

A. Armando, P. Baumgartner, and G. Dowek (Eds.): IJCAR 2008, LNCS 5195, pp. 171–178, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

172 A. Platzer and J.-D. Quesel

symbolically decomposing and executing system models), real quantifier elimi-
nation [3] (for handling the arithmetic of hybrid systems), and symbolic com-
putations in computer algebra systems (for handling differential equations of
continuous evolutions). As the central concept, our tool implements an axioma-
tization of the transition behavior of hybrid systems in the form of the sequent
calculus for the differential dynamic logic dL [12,13]. KeYmaera provides proof
strategies that automate the verification process to a large extent. In several
realistic applications, the proof construction is even completely automatic, e.g.,
for proving collision avoidance of trains or aircraft.

In addition, theorem proving in combination with the equivalence-transforma-
tions of quantifier elimination enables us to verify highly parametrized hybrid
systems and even to discover safety-critical parameter constraints. The trace-
ability gained by the deductive symbolic system decomposition enables the user
to use his system knowledge for projecting the obtained constraints on the free
parameters of the system to the relevant cases. Since the underlying logic dL and
its compositional proof calculus are natural and intuitive, even computationally
intractable problems can be verified with selective user guidance in KeYmaera.

In this paper, we describe the theorem prover KeYmaera and the various
techniques that it combines for verifying hybrid systems. KeYmaera consists of
ca. 186, 000 lines of Java code and 141 optimized proof rules, including rules for
symbolic decomposition, propositional logic, first-order logic, and simplification.

2 KeYmaera Verification Tool for Hybrid Systems

KeYmaera is a deductive verification tool for hybrid systems. We have imple-
mented KeYmaera as a combination of the deductive theorem prover KeY [2]
with the computer algebra system Mathematica, see Fig. 1. KeY is an interac-
tive theorem prover with a user-friendly graphical interface for proving correct-
ness properties of Java programs. We generalize KeY from discrete systems to
hybrid systems by adding support for the differential dynamic logic dL [12,13],
which is a dynamic logic [6] that provides a natural way to formalize properties
of the states reachable by following the dynamics of hybrid systems. With this,
KeYmaera can prove correctness, safety, controllability, reactivity, and liveness
properties of hybrid systems.

In discrete KeY, rule applications are comparably fast, but in KeYmaera, proof
rules that use decision procedures for real arithmetic can require a substantial
amount of time to produce a result. To overcome this, we have implemented

Strategy

Rule Engine Proof

Input File

Rule
base

Mathematica

Orbital

KeYmaera Prover Solvers

Fig. 1. Architecture and plug-in structure of the KeYmaera Prover

KeYmaera: A Hybrid Theorem Prover for Hybrid Systems 173

Fig. 2. Screenshot of the KeYmaera user interface

new automatic proof strategies for the hybrid case that navigate among compu-
tationally expensive rule applications.

We have implemented a plug-in architecture for integrating multiple imple-
mentations of decision procedures for the different fields of arithmetic handling,
cf. Fig. 1. We integrate arithmetical simplification and real quantifier elimination
support by interfacing Mathematica. Symbolic solutions of differential equations,
which can be used for handling continuous dynamics, are obtained either from
Mathematica or Orbital, a math library for Java developed by the first author.

3 Hybrid Systems, Hybrid Automata, and Hybrid
Programs

Hybrid systems [7] are mathematical models for systems with interacting contin-
uous and discrete state transitions. The standard description language for spec-
ifying the operational behavior of hybrid systems is that of hybrid automata [7].
A hybrid automaton is a finite automaton with real variables that evolve continu-
ously in the automaton locations as specified by differential equations. Addition-
ally, state variables can occur in transition guards and transitions can change the
values of the variables. The graph notation of hybrid automata is not composi-
tional, e.g., it is not sufficient to prove properties separately for each location to in-
fer a global system property, as the transition effects have to be taken into account.

Instead, we use a program notation for hybrid automata which is designed
to have a compositional semantics that we exploit for verifying systems by
symbolic decomposition. Hybrid programs [12,13] are an extension of discrete
regular programs [6] by continuous evolutions. An overview of the syntax and

174 A. Platzer and J.-D. Quesel

h′= v

v′= −g

t′= 1
h≥ 0v:= −cv

t := 0

h = 0 ∧ t > 0 Ball ≡
`

(h′ = v, v′ = −g, t′ = 1, h ≥ 0);
if (h = 0 ∧ t > 0) then

c := ∗; ?0 ≤ c < 1; // add-on

v := −cv; t := 0
fi

´
∗

Fig. 3. Hybrid automaton of a bouncing ball and corresponding hybrid program

informal semantics of hybrid programs is given in Tab. 1 (where F is a formula
of first-order real arithmetic). Hybrid automata can be embedded into hybrid
programs [13].

Example 1. Consider the well-known bouncing ball example. A ball falls from
height h and bounces back from the ground (h = 0) after an elastic deformation.
The current speed of the ball is denoted by v, and t is a clock measuring the
falling time. We assume an arbitrary positive gravity force g and that the ball
loses energy according to a damping factor 0 ≤ c < 1. Fig. 3 depicts the hybrid
automaton, an illustration of the system dynamics, and the representation of
the system as a hybrid program. However, the automaton still enforces infinite
bouncing. In reality, the ball can come to a standstill when its remaining kinetic
energy is insufficient. To model this phenomenon without the need to have a
precise physical model for all involved forces, we allow for the damping factor
to change at each bounce. Line 4 of the hybrid program in Fig. 3 represents a
corresponding uncountably infinite nondeterministic choice for c, which is beyond
the modelling capabilities of hybrid automata.

4 Syntax and Semantics of Differential Dynamic Logic

For characterizing states of hybrid systems, the foundation of the specification
and verification logic of KeYmaera is first-order logic over real arithmetic. For

Table 1. Statements of hybrid programs

Statement Effect

α; β sequential composition, first performs α and then β afterwards
α ∪ β nondeterministic choice, following either α or β

α∗ nondeterministic repetition, repeating α n ≥ 0 times
x := θ discrete assignment of the value of term θ to variable x (jump)
x := ∗ nondeterministic assignment of an arbitrary real number to x`
x′

1 = θ1, . . . , continuous evolution of xi along differential equation system
x′

n = θn, F
´

x′
i = θi, restricted to maximum domain or invariant region F

?F check if formula F holds at current state, abort otherwise
if(F) then α perform α if F holds, do nothing otherwise
if(F) then α else β perform α if F holds, perform β otherwise

KeYmaera: A Hybrid Theorem Prover for Hybrid Systems 175

expressing correctness statements about hybrid systems, this foundation is ex-
tended with parametrized modal operators [α] and 〈α〉, for each hybrid pro-
gram α. The resulting specification and verification logic is called differential
dynamic logic dL [12,13].

As is typical in dynamic logic, dL integrates operational system models and
formulas within a single language. The dL formulas are generated by the fol-
lowing EBNF grammar (where ∼ ∈ {<,≤, =,≥, >} and θ1, θ2 are arithmetic
expressions in +,−, ·, / over the reals):

φ ::= θ1 ∼ θ2 | ¬φ | φ ∧ ψ | ∀xφ | ∃xφ | [α]φ | 〈α〉φ

The modal operators refer to states reachable by the hybrid program α and can
be placed in front of any formula. Formula [α]φ expresses that all states reachable
by the hybrid program α satisfy formula φ (safety). Formula 〈α〉φ expresses that
there is a state reachable by the hybrid program α that satisfies formula φ.

Example 2. The ball looses energy at every bounce, thus the ball never bounces
higher than the initial height. This can be expressed by the safety property
0 ≤ h ≤ H, where H denotes the initial energy level, i.e., the initial height
if v = 0. As a simple specification, which we generalize to the general parametric
case later on, we can verify the following property using KeYmaera:

(h = H ∧ v = 0 ∧ 0 ≤ H ≤ 4 ∧ 0 < g ≤ 2) → [Ball] (0 ≤ h ≤ H) (1)

This specification follows the pattern of Hoare-triples. It expresses that the bounc-
ing ball, when started in initial state h = H etc. always respects 0 ≤ h ≤ H .

The semantics of dL is a Kripke semantics [12,13] where states correspond to
states of the hybrid system, i.e., assignments of real values to all system variables.

5 Verification by Symbolic Decomposition

Exploiting the compositional semantics of dL, KeYmaera verifies properties of
hybrid programs by proving corresponding properties of their parts in a sequent
calculus [12,13]. For instance, the proof for specification (1) splits into a case
where the if-statement takes effect and one where its condition gives false so
that its body is skipped:

h = 0 , [v := −cv]h ≤ H h �= 0 , h ≤ H

, [if h = 0 then v := −cv fi]h ≤ H
by dL rule

F , [α]φ ¬F , φ

, [if F then α fi]φ

6 Real Arithmetic and Computer Algebra

One challenge when verifying hybrid systems is the handling of intricate arith-
metic resulting from continuous evolution along differential equations. If the

176 A. Platzer and J.-D. Quesel

computer algebra system does not find a polynomial solution, we handle differ-
ential equations by their local dynamics using differential induction [11]. Other-
wise, we substitute all occurrences of the evolution variables by their solutions
at position τ . There, the fresh variable τ represents the evolution duration and
is universally quantified for proving [α]φ and existentially quantified for 〈α〉φ.
Additionally, for all times in between 0 and τ the invariant must hold. Using
the solution of the differential equation, the property h ≤ H in the proof of
Example 1 yields:

. . . , ∀τ≥0
(

(∀τ̃ (0≤τ̃≤τ → −g

2
τ̃2 + τ̃ v + h ≥ 0)) → −g

2
τ2 + τv + h ≤ H

)

(2)

The inner quantifier checks if the invariant region h ≥ 0 is respected at all times
during the evolution. The symbolic decomposition rules of dL result in quanti-
fied arithmetical formulas like (2). KeYmaera handles them using real quantifier
elimination [3] as a decision procedure for real arithmetic, which is provided,
e.g., using a seamless integration of KeYmaera with Mathematica.

7 Automation and Iterative Background Closure

KeYmaera implements a verification algorithm [10] that decomposes dL formu-
las recursively in the dL calculus. For the resulting arithmetical formulas, real
quantifier elimination can be intractable in theory and practice. Experiments
show that neither eager nor lazy calls of background solvers are feasible [10].
Due to the doubly exponential complexity of real quantifier elimination, eager
calls seldom terminate in practice. For lazy calls, instead, the proof splits into
multiple sub-problems, which can be equally computationally expensive.

1

2 2

4 4

8 8

16
16

16

∗

∗

16
8

4
2

1

Fig. 4. Incremental
timeouts in proof
search space

To overcome the complexity pitfalls of quantifier elim-
ination and to scale to real-world application scenarios,
we implement an iterative background closure strategy [10]
that interleaves background solver calls with deductive dL
rules. The basic idea is to interrupt background solvers af-
ter a timeout and only restart them after a dL rule has split
the proof. In addition, we increase timeouts for sub-goals
according to a simple exponential scheme, see Fig. 4. The
effect is that KeYmaera avoids splitting goals in the aver-
age case but is still able to split cases with prohibitive com-
putational cost along their first-order and propositional
structure.

8 Parameter Discovery

Required parameter constraints can be discovered in KeYmaera by selecting
the appropriate parts obtained by symbolic decomposition and transformation
by quantifier elimination. Essentially, equivalence-transformations of quantifier
elimination yield equivalent parameter constraints when a proof does not suc-
ceed, which can be exploited for parameter discovery. See [12,13] for details.

KeYmaera: A Hybrid Theorem Prover for Hybrid Systems 177

Example 3. To obtain a fully parametric invariant for Example 2, properties for
isolated modes like [h′′ = −g]h ≤ H can be analyzed in KeYmaera. By selecting
the relevant constraints from the resulting formula we obtain the invariant

v2 ≤ 2g(H − h) ∧ h ≥ 0

which will be used for verifying the nondeterministic repetition of the system in
Fig. 3. Assuming the invariant to hold in the initial state, we obtain a general
parametric specification for the bouncing ball which is provable using KeYmaera:

(v2 ≤ 2g(H − h) ∧ h ≥ 0 ∧ g > 0 ∧H ≥ 0) → [Ball] (0 ≤ h ≤ H)

9 Applications

KeYmaera can be used for verifying hybrid systems even in the presence of
parameters in the system dynamics. Its flexible specification logic dL can be
used for discovering the required parameter constraints. We have verified sev-
eral properties of the European Train Control System (ETCS) successfully in
KeYmaera, including safety, liveness, controllability, and reactivity, thereby en-
tailing collision freedom [14]. In addition, collision avoidance has been verified for
roundabout maneuvers in air traffic management [16], which involve challenging
continuous dynamics with trigonometric functions.

10 Related Work

Davoren and Nerode [4] outline other uses of logic in hybrid systems. Theorem
provers have been used for verifying hybrid systems in STeP [8] or PVS [1]. How-
ever, they do not use a genuine logic for hybrid systems but compile prespecified
invariants of hybrid automata into an overall verification condition. Further, by
using background solvers and iterative background closure strategies, we obtain
a larger degree of automation than interactive proving in STeP [8] or higher-
order logic [1]. VSE-II [9] uses discrete approximations of hybrid automata for
verification. In contrast, KeYmaera respects the full continuous-time semantics
of hybrid systems. PHAVer [5] is a model checker primarily for linear hybrid au-
tomata. CheckMate [15] supports more complex continuous dynamics, but still
requires initial states and switching surfaces to be linear. KeYmaera supports
nonlinear constraints on the system parameters as required for train applications
or even the parametric bouncing ball.

References

1. Ábrahám-Mumm, E., Steffen, M., Hannemann, U.: Verification of hybrid systems:
Formalization and proof rules in PVS. In: ICECCS, pp. 48–57. IEEE Computer,
Los Alamitos (2001)

2. Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Soft-
ware. LNCS (LNAI), vol. 4334. Springer, Heidelberg (2007)

178 A. Platzer and J.-D. Quesel

3. Collins, G.E., Hong, H.: Partial cylindrical algebraic decomposition for quantifier
elimination. J. Symb. Comput. 12(3), 299–328 (1991)

4. Davoren, J.M., Nerode, A.: Logics for hybrid systems. IEEE 88(7) (July 2000)
5. Frehse, G.: PHAVer: Algorithmic verification of hybrid systems past HyTech. In:

Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 258–273. Springer,
Heidelberg (2005)

6. Harel, D., Kozen, D., Tiuryn, J.: Dynamic logic. MIT Press, Cambridge (2000)
7. Henzinger, T.A.: The theory of hybrid automata. In: LICS, pp. 278–292. IEEE

Computer Society, Los Alamitos (1996)
8. Manna, Z., Sipma, H.: Deductive verification of hybrid systems using STeP. In:

Henzinger, T.A., Sastry, S.S. (eds.) HSCC 1998. LNCS, vol. 1386. Springer, Hei-
delberg (1998)

9. Nonnengart, A., Rock, G., Stephan, W.: Using hybrid automata to express realtime
properties in VSE-II. In: Russell, I., Kolen, J.F. (eds.) FLAIRS. AAAI Press, Menlo
Park (2001)

10. Platzer, A.: Combining deduction and algebraic constraints for hybrid system anal-
ysis. In: Beckert, B. (ed.) VERIFY 2007 at CADE 2007, CEUR-WS.org (2007)

11. Platzer, A.: Differential algebraic dynamic logic for differential algebraic programs.
(submitted, 2007)

12. Platzer, A.: Differential dynamic logic for verifying parametric hybrid systems.
In: Olivetti, N. (ed.) TABLEAUX 2007. LNCS (LNAI), vol. 4548, pp. 216–232.
Springer, Heidelberg (2007)

13. Platzer, A.: Differential dynamic logic for hybrid systems. J. Autom. Reasoning
(to appear, 2008)

14. Platzer, A., Quesel, J.D.: Logical verification and systematic parametric analy-
sis in train control. In: Egerstedt, M., Mishra, B. (eds.) HSCC. LNCS, Springer,
Heidelberg (2008)

15. Silva, B.I., Richeson, K., Krogh, B.H., Chutinan, A.: Modeling and verification
of hybrid dynamical system using CheckMate. In: ADPM 2000: 4th International
Conference on Automation of Mixed Processes: Hybrid Dynamic Systems (2000)

16. Tomlin, C., Pappas, G.J., Sastry, S.: Conflict resolution for air traffic management:
a study in multi-agent hybrid systems. IEEE T. Automat. Contr. 43(4) (1998)

The Complexity of Conjunctive Query

Answering in Expressive Description Logics

Carsten Lutz

Institut für Theoretische Informatik
TU Dresden, Germany

lutz@tcs.inf.tu-dresden.de

Abstract. Conjunctive query answering plays a prominent role in ap-
plications of description logics (DLs) that involve instance data, but its
exact complexity was a long-standing open problem. We determine the
complexity of conjunctive query answering in expressive DLs between
ALC and SHIQ, and thus settle the problem. In a nutshell, we show
that conjunctive query answering is 2ExpTime-complete in the presence
of inverse roles, and only ExpTime-complete without them.

1 Introduction

Description logics (DLs) originated in the late 1970ies as knowledge represen-
tation (KR) formalisms, and nowadays play an important role as ontology lan-
guages [1]. Traditionally, DLs are used for the representation of and reasoning
about the conceptual modeling of an application domain. Most KR applica-
tions of DLs are of this kind, and also the majority of ontologies focusses on
conceptual modeling. In contrast, more recent applications of DLs additionally
involve (potentially large amounts of) instance data. In particular, instance data
plays an important role when using DL ontologies for data-integration and in
ontology-mediated data access.

In DLs, a TBox is used to represent conceptual information, and instance data
is stored in the ABox. Consequently, traditional DL research has mainly concen-
trated on TBox reasoning, where the main reasoning services are subsumption
and satisfiability. In the presence of ABoxes, additional reasoning services are
required to query the instance data. The most basic such service is instance
retrieval, i.e., to return all certain answers to a query that has the form of a
DL concept. Instance retrieval can be viewed as a well-behaved generalization
of subsumption and satisfiability: it is usually possible to adapt algorithms in a
straightforward way, and the computational complexity coincides in almost all
cases (but see [20] for an exception). A more powerful way to query ABoxes is
conjunctive query answering, as first studied in the context of DLs by Calvanese
et al. in 1998 [2]. Roughy speaking, conjunctive query answering generalizes in-
stance retrieval by admitting also queries whose relational structure is not tree-
shaped. This generalization is both natural and useful because the relational
structure of ABoxes is usually not tree-shaped either.

A. Armando, P. Baumgartner, and G. Dowek (Eds.): IJCAR 2008, LNCS 5195, pp. 179–193, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

180 C. Lutz

Conjunctive queries have been studied extensively in the DL literature, see
for example [2,3,4,6,7,9,10,11,17,21]. In contrast to the case of instance retrieval,
developing algorithms for conjunctive query answering requires novel techniques.
In particular, all hitherto known algorithms for conjunctive query answering in
the basic propositionally closed DL ALC and its extensions require double expo-
nential time. In contrast, subsumption, satisfiability, and instance checking (the
decision problem corresponding to instance retrieval) are ExpTime-complete
even in the expressive DL SHIQ, which is a popular extension of ALC [8]. It
follows that, in DLs between ALC and SHIQ, the complexity of conjunctive
query entailment (the decision problem corresponding to conjunctive query an-
swering) is between ExpTime and 2ExpTime. However, the exact complexity
of this important problem has been open for a long time. In particular, it was
unclear whether the generalization of instance retrieval to conjunctive query
answering comes with an increase in computational complexity.

In this paper, we settle the problem and determine the exact complexity of
conjunctive query entailment in DLs between ALC and SHIQ. More precisely,
we show that
(1) Conjunctive query entailment in ALCI, the extension of ALC with inverse
roles, is 2ExpTime-hard. With the upper bound from [7], conjunctive query
answering is thus 2ExpTime-complete for any DL between ALCI and SHIQ.
(2) Conjunctive query entailment in SHQ is in ExpTime. With the ExpTime

lower bound for instance checking in ALC, conjunctive query entailment is thus
ExpTime-complete for any DL between ALC and SHQ.
In short, conjunctive query entailment is one exponential harder than instance
checking in the presence of inverse roles, but not without them. Result (2) was
proved independently and in parallel for the DL ALCH in [18], and generalized
to also include transitive roles (under some restrictions) in [19].

We also consider the special case of conjunctive query entailment where the
query is rooted, i.e., it is connected and contains at least one answer variable.
We prove matching lower and upper bounds to show that
(3) Rooted conjunctive query entailment is NExpTime-complete for any DL
between ALCI and SHIQ.
Thus, rootedness reduces the complexity of query entailment in the presence of
inverse roles (but not without them). In the upper bounds of (2) and (3), we
disallow transitive and other so-called non-simple roles in the query. We also
show that rooted conjunctive query entailment in ALCI with transitive roles
becomes 2ExpTime-complete if transitive roles are admitted in the query.

This paper is organized as follows. In Section 2, we briefly review some prelim-
inaries. We then establish the lower bounds, starting with the NExpTime one of
(3) in Section 3. The 2ExpTime lower bound of (1) builds on that, but we have
to confine ourselves to a brief sketch in Section 4. This section also establishes
2ExpTime-hardness of ALCI with transitive roles in the query. In Section 5,
we prove the ExpTime upper bound of (2). In Section 6, we give some further
discussion of transitive roles in the query. This paper is based on the workshop
papers [15] and [16].

The Complexity of Conjunctive Query Answering in Expressive DLs 181

2 Preliminaries

We assume standard notation for the syntax and semantics of SHIQ knowledge
bases [8]. In particular, NC, NR, and NI are countably infinite and disjoint sets
of concept names, role names, and individual names. A TBox is a set of concept
inclusions C 0 D, role inclusions r 0 s, and transitivity statements Trans(r),
and a knowledge base (KB) is a pair (T ,A) consisting of a TBox T and an ABox
A. We write K |= s 0 r if the role inclusion s 0 r is true in all models of K, and
similarly for K |= Trans(r). It is easy to see and well-known that “K |= s 0 r”
and “K |= Trans(r)” are decidable in polytime [8]. As usual, a role is called simple
if there is no role s such that K |= s 0 r, and K |= Trans(s). We write Ind(A) to
denote the set of all individual names in an ABox A. Throughout the paper, the
number n inside number restrictions (≥n r C) and (≤n r C) is assumed to be
coded in binary. ALC is the fragment of SHIQ that disallows role hierarchies,
transitive roles, inverse roles, and number restrictions.

Let NV be a countably infinite set of variables. An atom is an expression C(v)
or r(v, v′), where C is a SHIQ concept, r is a simple (but possibly inverse)
role, and v, v′ ∈ NV. A conjunctive query q is a finite set of atoms. We use
Var(q) to denote the set of variables occurring in the query q. For each query q,
the set Var(q) is partitioned into answer variables and (existentially) quantified
variables. Let A be an ABox, I a model of A, q a conjunctive query, and π :
Var(q) → ΔI a total function. such that for every answer variable v ∈ Var(q),
there is an a ∈ NI such that π(v) = aI . We write I |=π C(v) if π(v) ∈ CI and
I |=π r(v, v′) if (π(v), π(v′)) ∈ rI . If I |=π at for all at ∈ q, we write I |=π q and
call π a match for I and q. We say that I satisfies q and write I |= q if there
is a match π for I and q. If I |= q for all models I of a KB K, we write K |= q
and say that K entails q.

The query entailment problem is, given a knowledge base K and a query q, to
decide whether K |= q. This is the decision problem corresponding to query an-
swering, see e.g. [7] for details. Observe that we do not admit the use of individual
constants in conjunctive queries. This assumption is only for simplicity, as such
constants can easily be simulated by introducing additional concept names [7].
We speak of rooted query entailment when the query q is rooted, i.e., when q is
connected and contains at least one answer variable.

3 Rooted Query Entailment in ALCI and SHIQ

ALCI is the extension of ALC with inverse roles, and thus a fragment of SHIQ.
The aim of this section is to show that rooted query entailment in ALCI is
NExpTime-complete in all DLs between ALCI and SHIQ. To comply with
space limitations, we concentrate on the lower bound. It applies even to the case
where TBoxes are empty.

LetALCrs be the variation ofALC in which all roles are interpreted as reflexive
and symmetric relations. Our proof of the NExpTime lower bound proceeds by
first polynomially reducing rooted query entailment in ALCrs w.r.t. the empty

182 C. Lutz

TBox to rooted query entailment in ALCI w.r.t. the empty TBox. Then, we
prove co-NExpTime-hardness of rooted query entailment in ALCrs. Regarding
the first step, the idea is to replace each symmetric role s with the composition
of r− and r, with r a role of ALCI. Although r is not interpreted in a sym-
metric relation, the composition of r− and r is clearly symmetric. To achieve
reflexivity, we ensure that ∃r−.� is satisfied by all relevant individuals and for all
relevant roles r. Then, every domain element can reach itself by first travelling
r− and then r, which corresponds to a reflexive s-loop. Since we are working
without TBoxes and thus cannot use statements such as � � ∃r−.�, a careful
manipulation of the ABox and query is needed. Details are given in [15].

Before we prove co-NExpTime-hardness of rooted query entailment in ALCrs

with empty TBoxes, we discuss a preliminary. An interpretation I of ALCrs is
tree-shaped if there is a bijection f from ΔI into the set of nodes of a finite
undirected tree (V, E) such that (d, e) ∈ sI , for some role name s, implies that
d = e or {f(d), f(e)} ∈ E. The proof of the following result is standard, using
unravelling.

Lemma 1. If A is an ALCrs-ABox and q a conjunctive query, then A 	|= q
implies that there is a tree-shaped model I of A such that I 	|= q.

Thus, we can concentrate on tree-shaped interpretations throughout the proof.
We now give a reduction from a NExpTime-complete variant of the tiling prob-
lem to rooted query non-entailment in ALCrs.

Definition 1 (Domino System). A domino system D is a triple (T, H, V),
where T = {0, 1, . . . , k−1}, k ≥ 0, is a finite set of tile types and H, V ⊆ T ×T
represent the horizontal and vertical matching conditions. Let D be a domino
system and c = c0, . . . , cn−1 an initial condition, i.e. an n-tuple of tile types. A
mapping τ : {0, . . . , 2n+1 − 1}× {0, . . . , 2n+1 − 1} → T is a solution for D and c
iff for all x, y < 2n+1, the following holds (where ⊕i denotes addition modulo i):
(i) if τ(x, y) = t and τ(x ⊕2n+1 1, y) = t′, then (t, t′) ∈ H; (ii) if τ(x, y) = t and
τ(x, y ⊕2n+1 1) = t′, then (t, t′) ∈ V ; (iii) τ(i, 0) = ci for i < n.

For NExpTime-hardness of this problem see, e.g., Corollary 4.15 in [13]. We
show how to translate a given domino system D and initial condition c =
c0 · · · cn−1 into an ABox AD,c and query qD,c such that each tree-shaped model
I of AD,c that satisfies I 	|= qD,c encodes a solution to D and c, and con-
versely, each solution to D and c gives rise to a (tree-shaped) model of AD,c

with I 	|= qD,c. The ABox AD,c contains only the assertion CD,c(a), with CD,c

a conjunction C1
D,c � · · · � C7

D,c whose conjuncts we define in the following. For
convenience, let m = 2n+2. The purpose of the first conjunct C1

D,1 is to enforce
a binary tree of depth m whose leaves are labelled with the numbers 0, . . . , 2m−1
of a binary counter implemented by the concept names A0, . . . , Am−1. We use
concept names L0, . . . , Lm to distinguish the different levels of the tree. This is
necessary because we work with reflexive and symmetric roles. In the following
∀si.C denotes the i-fold nesting ∀s. · · · ∀s.C. In particular, ∀s0.C is C.

The Complexity of Conjunctive Query Answering in Expressive DLs 183

C1
D,c := L0 " "

i<m
∀si.
(

Li →
(

∃s.(Li+1 "Ai) " ∃s.(Li+1 " ¬Ai)
))

"

"
i<m

∀si. "
j<i

(

(Li "Aj)→ ∀s.(Li+1 → Aj) "
(Li " ¬Aj) → ∀s.(Li+1 → ¬Aj)

)

From now on, leafs in this tree are called Lm-nodes. Each Lm-node corresponds
to a position in the 2n+1×2n+1-grid that we have to tile: the counter Ax realized
by the concept names A0, . . . , An binarily encodes the horizontal position, and
the counter Ay realized by An+1, . . . , Am encodes the vertical position. We now
extend the tree with some additional nodes. Every Lm-node gets three successor
nodes labelled with F , and each of these F -nodes has a successor node labelledG.
To distinguish the three different G-nodes below each Lm-node, we additionally
label them with the concept names G1, G2, G3.

C2
D,c := ∀sm.

(

Lm →
("

1≤i≤3
∃s.(F " ∃s.(G "Gi))

))

We want that each G1-node represents the grid position identified by its ancestor
Lm-node, the sibling G2 node represents the horizontal neighbor position in the
grid, and the sibling G3-node represents the vertical neighbor.

C3
D,c := ∀sm.

(

Lm →
("

i≤n

(

(Ai → ∀s2.(G1 !G3 → Ai)) "
(¬Ai → ∀s2.(G1 !G3 → ¬Ai))

)

"
"

n<i<m

(

(Ai → ∀s2.(G1 !G2 → Ai)) "
(¬Ai → ∀s2.(G1 !G2 → ¬Ai))

)

"
E2 " E3

))

where E2 is an ALC-concept ensuring that the Ax value at each G2-node is
obtained from the Ax-value of its G-node ancestor by incrementing modulo 2n+1;
similarly, E3 expresses that the Ay value at each G3-node is obtained from the
Ay-value of its G-node ancestor by incrementing modulo 2n+1. It is not hard to
work out the details of these concepts, see e.g. [14] for more details. The grid
representation that we have enforced is shown in Figure 1. To represent tiles, we
introduce a concept name Di for each i ∈ T . It is now easy to define concepts
C4

D,c and C5
D,c which enforce that every G-node is labeled with exactly one tile

type, and that the initial condition is satisfied—details are left to the reader. To
enforce the matching conditions, we proceed in two steps. First we ensure that
they are satisfied locally, i.e., among the three G-nodes below each Lm-node:

C6
D,c := ∀sm+2.

(

Lm →
("

i∈T

(

∃s2.(G1 "Di) → ∀s2.(G2 → !
(i,j)∈H

Dj)
)

"

"
i∈T

(

∃s2.(G1 "Di)→ ∀s2.(G3 → !
(i,j)∈V

Dj)
)))

Second, we enforce the following condition, which together with local satisfaction
of the matching conditions ensures their global satisfaction:

184 C. Lutz

· · ·
Lm

L0

L2

L1

.

.

.

Lm

G1 G2 G3
G G G

represents (i, j)
represents (i + 1, j)
represents (i, j + 1)

F FF

Fig. 1. The structure encoding the 2n+1 × 2n+1-grid

(∗) if the Ax and Ay-values of two G-nodes coincide, then their tile types coin-
cide.

In (∗), a G-node can by any of a G1-, G2-, or G3-node. To enforce (∗), we use
the query. Before we give details, let us finish the definition of the concept CD,c.
The last conjunct C7

D,c enforces two technical conditions that will be explained
later: if d is an F -node and e its G-node successor, then
T1 d satisfies Ai iff e satisfies ¬Ai, for all i < m;
T2 if d satisfies Dj , then e satisfies D0, . . . , Dj−1,¬Dj , Dj+1, . . . , Dk−1, for all

j < k.

Details of C7
D,c are left to the reader.

We now construct the query qD,c that does not match the grid representation
iff (∗) is satisfied. In other words, qD,c matches the grid representation iff there
are two G-nodes that agree on the value of the counters Ax and Ay, but are
labelled with different tile types.

The construction of qD,c is in several steps, starting with the query qi
D,c on

the left-hand side of Figure 2, where i ∈ {0, . . . , m − 1}. In the queries qi
D,c, all

the edges represent the role s and vans is the only answer variable. The edges are
undirected because we are working with symmetric roles. Formally,

qi
D,c := { s(vi,0, vi,1), . . . , s(vi,2m+2, vi,2m+3),

s(v′i,0, v
′
i,1), . . . , s(v

′
i,2m+2, v

′
i,2m+3),

s(vi,0, v
′
i,0), s(vi,2m+3, v

′
i,2m+3),

s(v, vi,0), s(v, v′i,0),
s(v′, vi,2m+3), s(v′, v′i,2m+3),
s(vans, vi,m+1), s(vans, vi,m+2), s(vans, v

′
i,m+1), s(vans, v

′
i,m+2),

G(v), G(v′), Ai(vi,0),¬Ai(v′i,0),¬Ai(vi,2m+3), Ai(v′i,2m+3) }

The Complexity of Conjunctive Query Answering in Expressive DLs 185

.

.

.
.
.
.

v′
m+1

v′
m+2

v′
2m+2

vm+1

vm+2

v2m+2

v2m+3

v′

¬Ai

G

Ai

.

.

.

vm+1 = v′
m

G

¬Ai

Ai

.

.

.

G

v2m+2 = v′
2m+3Ai

¬Ai

v′ = v′
2m+3

v2m+2 = v′
2m+1

v2m+3 = v′

.

.

.

G
v0 = vAi

¬Ai .
.
.
v1 = v′

2

v = v′
0

G

v0 = v′
1Ai

v1 = v′
0.

.

.
.
.
.

v0

v1

v

Ai

v′
1

v′
0
¬Ai

G

vans

vans = vm+2 = v′
m+1

vans = vm+1 = v′
m+2

vm+2 = v′
m+3

v2m+3 = v′
2m+2v′

2m+3

¬Ai

Fig. 2. The query qi
D,a (left) and two of its collapsings (middle and right)

Observe that we dropped the index “i” to variables in Figure 2. Also observe
that all the queries qi

D,c, i < m, share the variables v, v′, and vans.
The purpose of the query qi

D,a is to relate any two G-nodes that agree on the
value of the concept name Ai. To explain how this works, we need a few prelimi-
naries. First, a cycle in a query is a sequence of distinct nodes v0, . . . , vn such that
n ≥ 2, and s(vi, vi+1) ∈ q or s(vi+1, vi) ∈ q for all i ≤ n, where vn+1 := v0. A
query q′ is a collapsing of a query q if q′ is obtained from q by identifying variables.
Each match of qi

D,c in our tree-structured grid representation gives rise to a col-
lapsing of qi

D,c that does not comprise any cycles. To explain how qi
D,c works, it is

helpful to analyze its cycle-free collapsings. We start with the two cycles v, v0, v
′
0

and v′, v2m+3, v
′
2m+3. For eliminating each of these, we have two options:

– to remove the upper cycle, we can identify v with v0 or v′0;
– to remove the lower cycle, we can identify v′ with v2m+3 or v′2m+3.

Observe that if we identify v0 and v′0 (or v2m+3 and v′2m+3) to collapse the cycle,
there will be no matches of the query in any model.

Together, this gives four options for removing the two mentioned length-three
cycles. However, two of these options are ruled out because the resulting collaps-
ings have no match in the grid representation. The first such case is when we
identify v with v0 and v′ with v2m+3. To see that there is no match, first observe
that v0 and v2m+3 have to satisfy G. Then make a case distinction on the two
options that we have for eliminating the cycle {vans, vm+1, vm+2}.
Case (1). If we identify vans and vm+1, the path from the G-variable v0 to vans is
only of length m + 1. In our grid representation, all paths from a G-node to an
ABox individual (i.e., the root) are of length m + 2, so there can be no match
of this collapsing.

186 C. Lutz

Case (2). If we identify vans and vm+2, the path from vans to the G-variable v2m+3

is only of length m+ 1 and again there is no match.
We can argue analogously for the case where we identify v with v′0 and and v′

with v′2m+3. Therefore, the two remaining collapsings for eliminating the cycles
{v, v0, v′0} and {v′, v2m+3, v

′
2m+3} are the following:

(a) identify v with v0 and v′ with v′2m+3;
(b) identify v with v′0 and v′ with v2m+3.

In the first case, we further have to identify vans with vm+2 and v′m+1, for oth-
erwise we can argue as above that there is no match. In the second case, we
have to identify vans with vm+1 and v′m+2. After this has been done, there is
only one way to eliminate the cycle v = v0, . . . , v2m+3, v

′ = v′2m+3, . . . , v
′
0 such

that the result is a chain of length 2m + 4 with the G-variables at both ends
and the answer variable exactly in the middle (any other way to collapse means
that there are no matches). The reflexive loops at the endpoints of the resulting
chain and at vans can simply be dropped since we work with reflexive roles. The
resulting cycle-free queries are shown in the middle and right part of Figure 2.

Note that the middle query has Ai at both ends of the chain, and the right
one has ¬Ai at the ends. According to our above argumentation, the original
query qi

D,c has a match in the grid representation iff one of these two collapsings
has a match. Thus, every match π of qi

D,c in the grid representation is such that
π(v) and π(v′) are (not necessarily distinct) instances of G that agree on the
value of Ai.

At this point, a technical remark is in order. Observe that, in the two relevant
collapsings of qi

D,c, the end nodes of the chain and their immediate neighbors
are labeled dually w.r.t. Ai and ¬Ai. This is an artifact of query construction
and cannot be avoided. To deal with it, we have introduced F -nodes into our
grid representation and ensured that they satisfy Property T1.

Now set qcnt :=
⋃

i<m q
i
D,c. It is not hard to see that every match π of qcnt in

the grid representation is such that π(v) and π(v′) are (not necessarily distinct)
instances of G that have the same Ai-value, for all i < m. The query qcnt is
almost the desired query qD,c. Recall that we want to enforce Condition (∗)
from above, and thus also need to talk about tile types in the query. The query
qtile is given in the left-hand side of Figure 3 for the case of three tiles, i.e.,
T = {0, 1, 2}. In general, for T = {0, . . . , k − 1}, we define

qtile :=
⋃

i<k

{s(wi,0, wi,1), . . . , s(wi,2m+2, wi,2m+3),
s(vans, wi,m+1), s(vans, wi,m+2),
s(v, wi,0), s(v′, wi,2m+3),
Di(wi,0), Di(wi,2m+3)}

∪
⋃

i<j<k

{s(wi,0, wj,0), s(wi,2m+3, wj,2m+3)}

∪ {G(v), G(v′)}

Observe that qcnt and qtile share the variables v, v′, and vans. Also observe that
qtile is very similar to the queries qi

D,c, the main difference being the number of

The Complexity of Conjunctive Query Answering in Expressive DLs 187

.

.

.
w2,m+1

.

.

.
w2,m+2

w2,2m+2

w2,2m+3

w2,1

v = w0,0

G

w0,1 = w1,0 = w2,0

.

.

.

w0,m+1 = w1,m = w2,m

w0,2m+2 = w1,2m+1 = w2,2m+1

w0,2m+3 = w1,2m+2

.

.

.

vans = w0,m+2 = w1,m+1 = w2,m+1

w1,2m+3 = v′

G

D0

D1

D2

= w2,2m+2 = w2,2m+3

D1, D2

D0, D2

w0,1 w1,1.
.
.

.

.

.
w0,m+1 w1,m+1

vans

w0,m+2 w1,m+2.
.
.

.

.

.
w0,2m+2

D0 w0,2m+3

D2
w1,2m+3

w1,2m+2

v
G

v′

G

D1

D1

w1,0 w2,0w0,0
D0

Fig. 3. The query qtile (left) and one of its collapsings (right)

vertical chains. Whereas the queries qi
D,c have two collapsings that are cycle-

free and can have matches in the grid representation, qtile has k · (k − 1) such
collapsings: for all i, j ∈ T with i 	= j, there is a collapsing into a linear chain
of length 2m + 4 whose two end nodes are labelled Di and Dj, respectively. An
example of such a collapsing is presented on the right-hand side of Figure 3. The
arguments for how to obtain these collapsing from qtile and why other collapsings
have no match in the grid representation are similar to the line of argumentation
used for qi

D,c and involves Property T2. We refer to [15] for details.
Now, the desired query qD,c is simply the union of qcnt and qtile. From what was

already said about qcnt and qtile, it is easily derived that qD,c does not match the
grid representation iff Property (∗) is satisfied. It is possible to show that there
is a solution for D and c iff (∅,AD,c) 	|= qD,c. We have thus proved that rooted
query entailment in ALCI is co-NExpTime-hard. A matching upper bound can
be obtained by adapting the techniques in [7]. More details are given in [16].

Theorem 1. Rooted query entailment in ALCI is co-NExpTime-complete. The
lower bound holds even if the TBox is empty and the ABox is of the form {C(a)}.

4 2ExpTime-Hardness Results

Theorem 1 shows that, already in the case of rooted queries, conjunctive query
entailment in DLs between ALCI and SHIQ is more difficult than instance
checking. In the general case, conjunctive query entailment in these DLs is even
2ExpTime-complete. The proof is by a reduction of the word problem of ex-
ponentially space bounded alternating Turing machines (ATMs) [5], and reuses
many ideas from the reduction given in Section 3. Because of space limitations,
we can only give a very rough sketch of the proof.

188 C. Lutz

T1

T2

T3 T4

· · · · · ·

s

s s

Fig. 4. Representing ATM computations

The main idea is to represent each configuration of an ATM by the leafs of a
tree of depth n, similar to the grid representation in Section 3. Trees represent-
ing configurations are then interconnected to form a larger tree that represents
a computation. This is illustrated in Figure 4. Each of the Ti is a tree of depth
n whose leafs represent a configuration. The tree T1 represents an existential
configuration, and thus has only one successor configuration T2. In contrast, the
tree T2 represents a universal configuration with two successor configurations T3

and T4. The difficult part of the reduction is to relate the content of a tape cell in
one configuration to the content of the corresponding cell in the successor con-
figurations. The solution is to use queries that are very similar to the query qD,c

employed in the previous section. A few additional technical tricks are needed
to achieve directedness (i.e., talking only about successor configurations, but
not about predecessor configurations) since we work with symmetric roles. More
details of the reduction can be found in [15]. A 2ExpTime upper bound was
established in [7] (where also non-simple roles are allowed in the query).

Theorem 2. Query entailment in ALCI is 2ExpTime-complete. The lower
bound holds even for queries without answer variables and for ABoxes of the
form {C(a)}.

Using Theorem 2, it is also easy to show that admitting transitive roles in the
query destroys the better computational properties of rooted query entailment.
ALCIR+ is the extension of ALCI with transitive roles.

Theorem 3. Rooted query entailment in ALCIR+ is 2ExpTime-complete if
transitive roles are admitted in the query. The lower bound holds even if the
TBox contains only transitivity statements and role inclusions, and the ABox is
of the form {C(a), r(a, a)}.

Proof. (sketch) By Theorem 2, it suffices to establish the lower bound. We
reduce non-rooted query entailment in ALCI, which is 2ExpTime-hard by The-
orem 2. LetK = (T ,A) and q be given, withA = {C(a)}. Our aim is to construct
a knowledge base K′ = (T ′,A′) and rooted query q′ such that K |= q iff K′ |= q′.
Let CT ="D�E∈T ¬D ! E. Fix a role name t not occurring in K and q, and a
variable v0 not occurring in q. Then set

The Complexity of Conjunctive Query Answering in Expressive DLs 189

T ′ := {Trans(t)} ∪ {r 0 t, r− 0 t | r ∈ NR occurs in K}
A′ := {C " ∀t.CT (a), t(a, a)}
q′ := q ∪ {t(v0, v) | v ∈ NV occurs in q}.

We make v0 an answer variable in q′. It is not hard to prove that T ′, A′, and q′

are as required. ❏

The results proved in this section and the preceeding one show that conjunctive
query entailment is computationally hard in fragments of SHIQ that contain
ALCI. In the next section, we prove that inverse roles are indeed the culprit
for the high complexity: in SHQ (SHIQ without inverse roles), conjunctive
query entailment is only ExpTime-complete and thus of the same complexity
as instance checking.

5 Query Entailment in SHQ is ExpTime-Complete

We give an algorithm for query entailment in SHQ that runs in ExpTime and is
inspired by the 2ExpTime algorithm for conjunctive query entailment in SHIQ
given in [7]. The general idea is to (Turing-)reduce query entailment in SHQ
to ABox consistency in SHQ∩, i.e., SHQ extended with role conjunction: given
a SHQ-knowledge base K and a query q, we produce SHQ∩-knowledge bases
K1, . . . ,Kn such that K �|= q iff any of the Ki is consisent. The construction
ensures that n is exponential in the size of K and q, and the size of each Ki is
polynomial in the size of K and q. Since knowledge base consistency in SHQ∩

can be decided in ExpTime, we obtain the desired ExpTime upper bound for
query entailment in SHQ. Proof details for the lemmas presented in this section
can be found in [16].

We start with proving an SHQ counterpart of Lemma 1. Let J be an inter-
pretation. A forest base J is an interpretation that interprets transitive roles
in an arbitrary way (i.e., not necessarily transitively) and where (i) ΔJ is a
prefix-closed subset of �+ and (ii) if (d, e) ∈ rJ , then e, d ∈ � or e = d · c for
some c ∈ �. Elements of ΔJ ∩� are called the roots of J . An interpretation I
is the K-closure of J if I is identical to J except that, for all roles r, we have

rI = rJ ∪
⋃

K|=s�r∧K|=Trans(s)

(sJ)+.

A model I of a knowledge base K = (T ,A) is a forest model of K if (iii) I is
the K-closure of a forest base J , and (iv) for every root d of J , there is an
a ∈ Ind(A) such that aI = d. The roots of I are defined as the roots of J . The
following proposition shows that, when deciding conjunctive query entailment
in SHQ, it suffices to concentrate on forest models.

Proposition 1. Let K be an SHQ-knowledge base and q a conjunctive query.
If K �|= q, then there is a forest model I of K such that I �|= q.

190 C. Lutz

Throughout this section, we will sometimes view a conjunctive query as a di-
rected graph Gq = (Vq, Eq) with Vq = Var(q) and Eq = {(v, v′) | r(v, v′) ∈ q for
some r ∈ NR}. We call q tree-shaped if Gq is a tree. If q is tree-shaped and v is
the root of Gq, we call v the root of q.

In the following, we introduce three notions that are central to the construc-
tion of the knowledge bases K1, . . . ,Kn: fork rewritings, splittings, and spoilers.
We start with fork rewritings, and say that

– q′ is obtained from q by fork elimination if q′ is obtained from q by selecting
two atoms r(v′, v) and s(v′′, v) with v′ 	= v′′ and identifying v′ and v′′;

– q′ is a fork rewriting of q if q′ is obtained from q by repeated (but not
necessarily exhaustive) fork elimination;

– q′ is a maximal fork rewriting of q if q′ is a fork rewriting and no further
fork elimination is possible in q′.

The following lemma allows us to speak of the maximal fork rewriting of a
conjunctive query.

Lemma 2. Modulo variable renaming, every conjunctive query has a unique
maximal fork rewriting.

Now for splittings, which are partitions of the variables in (a fork rewriting of)
the input query. Intuitively, a splitting is induced by each match π for some
forest model I of the input KB K and the input query q. More precisely, each
variable v ∈ Var(q) is either

(a) mapped to a root π(v) of I;
(b) mapped to a non-root π(v) of I such that there is a variable v′ mapped to

a root π(v′) of I and with v reachable from v′ in Gq;
(c) mapped to a non-root π(v) of I, but does not satisfy Condition (b).

The purpose of splittings is to describe such a partition without reference to
a concrete model I and a concrete match π. Let K be an SHQ-knowledge
base. A splitting of q w.r.t. K is a tuple Π = 〈R, T, S1, . . . , Sn, μ, ν〉, where
R, T, S1, . . . , Sn is a partitioning of Var(q), μ : {1, . . . , n} → R assigns to each
set Si a variable μ(i) in R, and ν : R → Ind(A) assigns to each variable in R
an individual in A. A splitting has to satisfy the following conditions, where q|V
denotes the restriction of q to V ⊆ Var(q):

1. the query q|T is a variable-disjoint union of tree-shaped queries;
2. the queries q|Si , 1 ≤ i ≤ n, are tree-shaped;
3. if r(v, v′) ∈ q, then one of the following holds: (i) v, v′ belong to the same

set R, T, S1, . . . , Sn or (ii) v ∈ R, μ(i) = v, and v′ ∈ Si is the root of q|Si ;
4. for 1 ≤ i ≤ n, there is an atom r(μ(i), v0) ∈ q, with v0 the root of q|Si .

Intuitively, the R component of a splitting corresponds to Case (a) above, the
S1, . . . , Sn correspond to Case (b), and T corresponds to Case (c). Before we
introduce spoilers, we establish a central lemma about splittings. We start with
a preliminary. Let q be a tree-shaped conjunctive query. We define a SHQ∩-
concept Cq,v for each variable v ∈ Var(q):

The Complexity of Conjunctive Query Answering in Expressive DLs 191

– if v is a leaf in Gq, then Cq,v = �
C(v)∈q

C;

– otherwise, Cq,v = �
C(v)∈q

C � �
(v,v′)∈Eq

∃(
⋂

s(v,v′)∈q

s).Cq,v′).

If v is the root of q, we use Cq to abbreviate Cq,v. Observe that, since we allow
only simple roles in a query q, all concepts Cq involve only simple roles inside
role conjunction. The following lemma establishes a connection between forest
models and splittings of fork rewritings.

Lemma 3. Let K = (T ,A) be a knowledge base, I a forest model of K, and q
a conjunctive query. Then I |= q iff there exists a fork rewriting q′ of q and a
splitting 〈R, T, S1, . . . , Sn, μ, ν〉 of q′ w.r.t. K such that

1. for each disconnected component q̂ of T , there is a d ∈ ΔI with d ∈ (C
�q)I ;

2. if C(v) ∈ q′ with v ∈ R, then ν(v)I ∈ CI;
3. if r(v, v′) ∈ q′ with v, v′ ∈ R, then (ν(v)I , ν(v′)I) ∈ rI ;
4. for 1 ≤ i ≤ n, we have ν(μ(i))I ∈

(

∃(
⋂

s(μ(i),v0)∈q′ s).Cq′|Si

)I with v0 root
of the tree-shaped query q′|Si .

Now for the definition of spoilers, which exploit Lemma 3 to prevent matches of
the input query q in forest-models of the input KB K = (T ,A). We first define
spoilers of specific splittings, and then spoilers of the query (i.e., of all splittings).
Let Π = 〈R, T, S1, . . . , Sn, μ, ν〉 be a splitting of q w.r.t. K such that q1, . . . , qk

are the (tree-shaped) disconnected components of q|T . A SHQ∩-knowledge base
(T ′,A′) is a spoiler for q, K, and Π if one of the following conditions hold:

1. � � ¬Cqi ∈ T ′, for some i with 1 ≤ i ≤ k;
2. there is an atom C(v) ∈ q with v ∈ R and ¬C(ν(v)) ∈ A′;
3. there is an atom r(v, v′) ∈ q with v, v′ ∈ R and ¬r(ν(v), ν(v′)) ∈ A′;
4. ¬D(ν(μ(i))) ∈ A′ for some i ∈ {1, . . . , n}, and where D = ∃(

⋂

s(μ(i),v0)∈q

s).Cq|Si

with v0 root of q|Si .

A SHQ∩-knowledge base K′ = (T ′,A′) is a spoiler for q and K if (i) for every
fork rewriting q′ of q and every splitting Π of q′ w.r.t. K, K′ is a spoiler for q′,
K, and Π ; and (ii) K′ is minimal with Property (i). The proof of the following
lemma is based on the correspondence between Conditions 1-4 of spoilers and
Conditions 1-4 of Lemma 3.

Lemma 4. Let K = (T ,A) be a SHQ-knowledge base and q a conjunctive query.
Then K 	|= q iff there is a spoiler (T ′,A′) for q and K such that (T ∪T ′,A∪A′)
is consistent.

Lemma 4 suggests the following algorithm for deciding conjunctive query entail-
ment in SHQ: given K = (T ,A) and q, enumerate all spoilers (T ′,A′) for q and
K, return “yes” if for all such spoilers, (T ∪T ′,A∪A′) is inconsistent, and “no”
otherwise. To prove that this algorithm runs in ExpTime, we first note that
consistency of SHQ∩-KBs is ExpTime-complete. Since only simple roles occur
inside role conjunctions, this can be proved by an easy variation of Lemma 6.19
in [22]. It thus suffices to establish the following.

192 C. Lutz

Lemma 5. Let K = (T ,A) be a SHQ-knowledge base and q a conjunctive query.
Then the number of spoilers for q and K is exponential in the size of q and K
and the set of all spoilers can be computed in time exponential in the size of q
and K.

The proof of this lemma is a key ingredient to our ExpTime upper bound. The
upper bound on the number of spoilers is established by showing that (i) all
individual names and role names occurring in spoilers also occur in the input
KB and input query, and (ii) there are only polynomially many different concepts
that can occur in spoilers. While (i) is trivial, (ii) is not. Define

Trees(q) := {q|Reachq(v) | v ∈ Var(q) and q|Reachq(v) is tree-shaped}.

The proof of (ii) proceeds by showing that if C occurs in a spoiler of K and q and
q∗ is the maximal fork rewriting of q, then there is a q̂ ∈ Trees(q) with C = Cq.
Details are given in [16].

Summing up, we have established the following result, where the lower bound
is trivial by a reduction of instance checking in SHQ.

Theorem 4. Conjunctive query entailment in SHQ is ExpTime-complete.

6 Conclusion

We have carried out a detailed investigation of the complexity of conjunctive
query entailment in DLs between ALC and SHIQ. In particular, we have proved
that conjunctive query entailment is more complex than instance checking when
inverse roles are present (2ExpTime vs ExpTime), and that the complexity
coincides without inverse roles (ExpTime). Our two upper bound proofs (The-
orem 1 and 4) do not apply to the case where transitive roles are admitted in
the query. As shown by Theorem 3, the NExpTime upper bound from Theo-
rem 1 cannot be generalized to this case. It remains an open problem whether
or not the ExpTime upper bound in Theorem 4 can be adapted to SHQ with
transitive roles in the query. An ExpTime upper bound for a fragment of this
problem is established in [19].

References

1. Baader, F., McGuiness, D.L., Nardi, D., Patel-Schneider, P.: The Description Logic
Handbook. Cambridge University Press, Cambridge (2003)

2. Calvanese, D., De Giacomo, G., Lenzerini, M.: On the decidability of query con-
tainment under constraints. In: Proc. of PODS 1998, pp. 149–158 (1998)

3. Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M., Rosati, R.: Data com-
plexity of query answering in description logics. In: Proc. of KR 2006, pp. 260–270.
AAAI Press, Menlo Park (2006)

4. Calvanese, D., Eiter, T., Ortiz, M.: Answering regular path queries in expressive
description logics: an automata-theoretic approach. In: Proc. of AAAI 2007. AAAI
Press, Menlo Park (2007)

The Complexity of Conjunctive Query Answering in Expressive DLs 193

5. Chandra, A.K., Kozen, D.C., Stockmeyer, L.J.: Alternation. Journal of the
ACM 28(1), 114–133 (1981)

6. Glimm, B., Horrocks, I., Sattler, U.: Conjunctive query entailment for SHOQ. In:
Proc. of DL 2007. CEUR-WS, vol. 250 (2007)

7. Glimm, B., Lutz, C., Horrocks, I., Sattler, U.: Answering conjunctive queries in
the SHIQ description logic. JAIR 31, 150–197 (2008)

8. Horrocks, I., Sattler, U., Tobies, S.: Practical reasoning for expressive description
logics. In: Ganzinger, H., McAllester, D., Voronkov, A. (eds.) LPAR 1999. LNCS,
vol. 1705, pp. 161–180. Springer, Heidelberg (1999)

9. Horrocks, I., Sattler, U., Tobies, S.: Reasoning with individuals for the description
logic SHIQ. In: McAllester, D. (ed.) CADE 2000. LNCS, vol. 1831, pp. 482–496.
Springer, Heidelberg (2000)

10. Horrocks, I., Tessaris, S.: A conjunctive query language for description logic
ABoxes. In: Proc. of AAAI 2000. AAAI Press, Menlo Park (2000)

11. Hustadt, U., Motik, B., Sattler, U.: Data complexity of reasoning in very expressive
description logics. In: Proc. of IJCAI 2005, pp. 466–471. Professional Book Center
(2005)

12. Krötzsch, M., Rudolph, S., Hitzler, P.: Conjunctive queries for a tractable frag-
ment of OWL 1.1. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I.,
Nixon, L., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-
Mauroux, P. (eds.) ISWC 2007. LNCS, vol. 4825, pp. 310–323. Springer, Heidelberg
(2007)

13. Lutz, C.: The Complexity of Reasoning with Concrete Domains. PhD thesis, LuFG
Theoretical Computer Science, RWTH Aachen, Germany (2002)

14. Lutz, C., Areces, C., Horrocks, I., Sattler, U.: Keys, nominals, and concrete do-
mains. Journal of Artificial Intelligence Research (JAIR) 23, 667–726 (2005)

15. Lutz, C.: Inverse roles make conjunctive queries hard. In: Proc. of DL 2007, CEUR-
WS vol. 250 (2007), http://lat.inf.tu-dresden.de/∼clu/papers/

16. Lutz, C.: Two upper bounds for conjunctive query answering in SHIQ. In: Proc.
of DL 2008, CEUR-WS (2008), http://lat.inf.tu-dresden.de/∼clu/papers/

17. Ortiz, M., Calvanese, D., Eiter, T.: Characterizing data complexity for conjunctive
query answering in expressive description logics. In: Proc. of AAAI 2006. AAAI
Press, Menlo Park (2006)

18. Ortiz, M., Šimkus, M., Eiter, T.: Worst-case optimal conjunctive query answering
for an expressive description logic without inverses. In: Proc. of AAAI 2008. AAAI
Press, Menlo Park (2008)

19. Ortiz, M., Šimkus, M., Eiter, T.: Conjunctive query answering in SH using knots.
In: Proc. of DL 2008. CEUR WS (2008)

20. Schaerf, A.: On the complexity of the instance checking problem in concept lan-
guages with existential quantification. JIIS 2, 265–278 (1993)

21. Rosati, R.: On conjunctive query answering in EL. In: Proc. of DL 2007. CEUR-
WS, vol. 250 (2007)

22. Tobies, S.: Complexity Results and Practical Algorithms for Logics in Knowledge
Representation. PhD thesis, RWTH Aachen (2001)

http://lat.inf.tu-dresden.de/~clu/papers/
 http://lat.inf.tu-dresden.de/~clu/papers/

A General Tableau Method for Deciding

Description Logics, Modal Logics and Related
First-Order Fragments

Renate A. Schmidt and Dmitry Tishkovsky

School of Computer Science, The University of Manchester
{renate.schmidt,dmitry.tishkovsky}@manchester.ac.uk

Abstract. This paper presents a general method for proving termina-
tion of tableaux-based procedures for modal-type logics and related first-
order fragments. The method is based on connections between filtration
arguments and tableau blocking techniques. The method provides a gen-
eral framework for developing tableau-based decision procedures for a
large class of logics. In particular, the method can be applied to many
well-known description and modal logics. The class includes traditional
modal logics such as S4 and modal logics with the universal modality, as
well as description logics such as ALC with nominals and general TBoxes.
Also contained in the class are harder and less well-studied modal logics
with complex modalities and description logics with complex role oper-
ators such as Boolean modal logic, and the description logic ALBO. In
addition, the techniques allow us to specify tableau-based decision pro-
cedures for related solvable fragments of first-order logic, including the
two-variable fragment of first-order logic.

1 Introduction

This research is motivated by the current absence of general decision procedures
in automated reasoning for tableaux and instantiation-based methods. Although
tableau and instantiation-based methods are popular and various general theo-
rem provers exist, so far not much research has been undertaken in using these
approaches as decision procedures for solvable first-order classes. This contrasts
with the situation of resolution, where a good understanding exists of turning
resolution procedures into decision procedures and most of the standard solv-
able classes of first-order logic have been shown to be decidable by resolution.
Tableau methods are however successfully been used for developing decision pro-
cedures in the areas of description logic and modal logic. A crucial ingredient
of tableau decision procedures for description and modal logics are blocking
techniques, which are needed to detect repetitions in the generated models. For
different logics various different blocking techniques have been developed and
implemented (e.g. [2,12]).

The second motivation for this research is to provide theoretical founda-
tions for generic platforms in which tableau decision procedures can be built

A. Armando, P. Baumgartner, and G. Dowek (Eds.): IJCAR 2008, LNCS 5195, pp. 194–209, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A General Tableau Method for Deciding Description Logics 195

in a uniform way for different logics and different applications. Examples of
existing tableau prover engineering platforms are the Logics Workbench [11],
LoTREC [9], and the Tableaux Work Bench [1]. These provide flexible and
general frameworks for defining and experimenting with implementations of dif-
ferent sets of tableau inference rules for different logics, different rule application
strategies and different optimisations. These systems provide generic provers for
standard modal logics, temporal logics and propositional dynamic logic. As yet
the infrastructure is not general enough to support the building of tableau de-
cision procedures for description logics and dynamic modal logics with complex
relational constructs, which do not necessarily have the tree model property. For
these kinds of logics the standard blocking techniques are not sufficient [14].

In [14] we introduced a general blocking mechanism, called unrestricted block-
ing, which is suitable to decide the logics of interest. The blocking mechanism also
has the appropriate flexibility and uniformity required for generic prover engi-
neering platforms, because it can be used to simulate existing standard blocking
mechanisms such a subset blocking, equality blocking, dynamic blocking, etc.

In this paper we present a general method for proving termination of tableau-
based procedures for modal-type logics and related first-order fragments. The
central observation underlying the method is that most termination proofs for
tableau decision procedures (regardless of which form of blocking techniques they
employ), can be seen to exploit techniques which look similar to filtration argu-
ments, standard in logic and algebra for proving finite model property results.
Our method provides a framework to turn given sound and complete tableau cal-
culi into decision procedures by enhancing them with the unrestricted blocking
mechanism.

The method can be applied to many description and modal logics, as well
as first-order fragments. For illustration purposes we discuss in detail how the
method can be applied to two description logics. In particular, we apply it to the
description logic ALCO with transitive roles, referred to as SO. SO corresponds
to the (multi-modal version) of the modal logic S4 with nominals (S4 is the
modal logic of pre-orders). We also apply the method to the description logic
ALBO, which is an extension of ALCO with the Boolean operators on roles and
role inverse. We show how the method can be used to obtain two tableau decision
procedures for ALBO. One is equivalent to the tableau decision procedure first
developed in [14] and constructs standard models. The second tableau decision
procedure has fewer rules and constructs quasi-models.

The paper is structured as follows. Section 2 describes the general framework
of the method and identifies general properties sufficient to turn existing tableau
calculi into decision procedures. This also gives an abstract formalisation of
a class of logics decidable by tableau methods. The subsequent sections are
devoted to showing in detail how the method can be used. Section 3 gives some
preliminary definitions. In Section 4 we then show how the method can be applied
to the description logic SO. Section 5 discusses the case of the description logic
ALBO in some detail. Other applications, consequences and possibilities are
discussed in Section 6.

196 R.A. Schmidt and D. Tishkovsky

Due to lack of space many proofs are omitted, but can be found in the long
version [13] of the paper. We assume the reader has basic familiarity with de-
scription logic and modal logic.

2 General Framework

This section describes the general method of our framework. Let L denote an
abstract description logic. The aim is to formulate general conditions under
which terminating tableau procedures exist for L.

Syntax. In this paper it is assumed that L is an extension of the description
logic ALCO with role operators ρ0, ρ1, Formally, L is defined over a signature
which is a triple (O,C,R) of three disjoint alphabets: the alphabet of symbols
for individuals (or objects) O = {�0, �1, . . .}, the alphabet of concept symbols
C = {p0, p1, . . .}, and the alphabet of role symbols R = {r0, r1, . . .}. The logical
operators are: ¬ (negation), ! (union), ∃ (existential concept restriction), and
the role operators ρ0, ρ1, The role operators are assumed to have finite arities
μ0, μ1, . . ., respectively. Concept expressions (or concepts) and role expressions
(or roles) are defined as follows:

C,D
def= p | {�} | ¬C | C !D | ∃R.C,

R,Ri
def= r | ρ0(R1, . . . , Rμ0) | ρ1(R1, . . . , Rμ1) | . . . ,

where p denotes an atomic concept in C, � denotes an individual in O, and r
denotes an atomic role in R.

Concepts of the form {�} are called singleton concepts, or nominals. Concept
expressions, role expressions and individuals are collectively referred to as L-
expressions.

Semantics. Let C0, C1, . . . be an enumeration of all concepts and R0, R1, . . .
an enumeration of all roles in the signature of L. An L-model I (or an L-
interpretation) of an L-signatureΣ is a tuple (ΔI , CI

0 , . . . , �
I
0 , . . . , R

I
0 , . . .), where

ΔI is a non-empty set, each CI
i is a subset of ΔI , �Ii ∈ ΔI , and each RI

0

is a binary relation over ΔI . Further, for any expressions of Σ the following
conditions must be satisfied:

{�}I = {�I}, (¬C)I = ΔI \ CI , (C !D)I = CI ∪DI ,

(∃R.C)I = {x | ∃y ∈ CI (x, y) ∈ RI}, and

additional semantic conditions for each of the role operators ρ0, ρ1, . . . of L.

We say I is a (full) L-model if it is an L-model of the signature consisting of all
L-expressions.

A General Tableau Method for Deciding Description Logics 197

Closure operator. Let sub be an (expression) closure operator over sets of L-
expressions, i.e. for every set S of L-expressions, sub(S) is a set of L-expressions
containing the set S. We define sub(E1, . . . , En) def= sub({E1, . . . , En}) for any
finite sequence of expressions E1, . . . , En. We say sub is finite if sub(E1, . . . , En)
is finite for any expressions E1, . . . , En. An L-signature is a set Σ of L-expressions
closed under sub. The closure operator sub is adequate to the semantics of L if
every L-model of an arbitrary signature Σ can be transformed to a full L-model
preserving interpretations of any expressions from the signature. In the sequel,
we always assume that sub is adequate to the semantics of the considered logic.

Finite filtration. Let ∼ be an equivalence relation on an L-model I and let [x] def=
{y ∈ ΔI | x ∼ y}. Let I = (ΔI , CI

0 , . . . , �I0 , . . . , RI
0 , . . .) be a structure which

satisfies the following conditions: ΔI = {[x] | x ∈ ΔI}, CI = {[x] | x ∈ CI}
for every concept C, �I = [�I] for every � ∈ O, and ([x], [y]) ∈ RI whenever
∃x′ ∼ x∃y′ ∼ y (x′, y′) ∈ RI for every role R. A structure I for which these
conditions hold is called a ∼-filtration of I.

We say that L admits finite filtration iff for every finite L-signature Σ and
every L-model I of the signature Σ there exists an equivalence relation ∼ on I
such that there is a ∼-filtration I of I which is a finite L-model of the signa-
ture Σ.

Theorem 1. Let L be a logic and sub be a finite expression closure operator. If
L admits finite filtration then L has the finite model property.

Tableau calculus. It is convenient to let the tableau calculus operate on labelled
concept expressions, which are statements of the form � : C, where � denotes an
individual and C denotes a concept expression. Our language of tableau calculi
is therefore a suitable extension of the language of L. So is the semantics. In
particular, the semantics of labelled concept expressions is specified by:

(� : C)I =

{

ΔI , if �I ∈ CI ,
∅, otherwise,

where I denotes any L-model.
In general, a tableau inference rule1 is a relation

�1 : C1, . . . , �n : Cn

�1
1 : D1

1, . . . , �1
k1

: D1
k1

| · · · | �m
1 : Dm

1 , . . . , �m
km

: Dm
km

,

where n ≥ 1, m ≥ 0, each ki ≥ 1, and all atomic concepts and atomic roles oc-
curring below the (horizontal) line in the concepts, also occur in some concept(s)
above the line. If an individual � occurs in the statements below the line but not
in statements above it then � is assumed to be a newly chosen individual. In
this case the rule is said to be individual generating and we usually specify the
new individuals to be generated in the side conditions on the right of a rule. A
1 As implemented in MetTeL system [15]

198 R.A. Schmidt and D. Tishkovsky

(⊥):
	 : C, 	 : ¬C

⊥ (¬¬):
	 : ¬¬C

	 : C

(¬�):
	 : ¬(C �D)

	 : ¬C, 	 : ¬D
(�):

	 : (C �D)

	 : C | 	 : D

(sym):
	 : {	′}
	′ : {	} (¬sym):

	 : ¬{	′}
	′ : ¬{	} (mon):

	 : {	′}, 	′ : C

	 : C
(id):

	 : C

	 : {	}

(∃):
	 : ∃R.C

	 : ∃R.{	′}, 	′ : C
(′ is new) (¬∃):

	 : ¬∃R.C, 	 : ∃R.{	′}
	′ : ¬C

Fig. 1. Tableau calculus TALCO for ALCO

tableau closure rule is a tableau inference rule with no conclusions, i.e. m = 0.
In this case we use the standard notation

�1 : C1, . . . , �n : Cn

⊥

to distinguish it from other tableau rules.
A tableau calculus is a set of tableau inference rules. Inference steps in a

tableau calculus are performed in the usual way. A rule is applied to a set
of statements in a branch of a tableau, if the statements are instances of the
premises of the rule. Then, in the case of a non-branching rule, the corresponding
instances of the conclusions of the rule are added to the branch. A branching
rule splits the branch into several branches and adds the corresponding instances
of the conclusions to each branch.

Let T denote a tableau calculus and C a concept. We take an arbitrary indi-
vidual � which does not occur in C. We denote by T (C) a finished tableau built
using the rules of T , starting with the concept � : C as input. That is, we assume
that all branches in the tableau are expanded and all applicable rules of T have
been applied in T (C). As usual we assume that all the rules of the calculus are
applied non-deterministically to a tableau. A branch of a tableau is closed if a
contradiction has been derived in this branch via tableau closure rules, otherwise
the branch is called open. The tableau T (C) is closed if all its branches are closed
and T (C) is open otherwise. We say that T is terminating iff for every concept
C either T (C) is finite whenever T (C) is closed or T (C) has a finite open branch
if T (C) is open. T is sound iff C is unsatisfiable whenever T (C) is closed for all
concepts C. T is complete iff for any concept C, C is satisfiable (has a model)
whenever T (C) is open.

Let TL be a tableau calculus for L. We assume that the calculus includes
at least the rules for ALCO given in Figure 1. TL includes in addition tableau
rules to handle the role operators ρ0, ρ1, . . . of L. For simplicity, in this paper
we assume that (∃) is the only individual generating rule in TL. We also require
that, in TL, if an individual � occurs in some expression in a branch then � : {�}
also appears in the branch. (The (id) rule ensures this in TALCO. It can be proved
that TALCO is sound, complete, and terminating.)

A General Tableau Method for Deciding Description Logics 199

For every open branch B in a TL-tableau we define the following equiva-
lence relation ∼B: �∼B �

′ def⇐⇒ � : {�′} ∈ B for any individuals � and �′ in the
branch B. That ∼B is indeed an equivalence relation follows from the presence
of the rules (id), (sym), and (mon). Let ‖�‖ def= {�′ | �∼B �

′}.
A tableau TL is called constructively complete for L iff (i) it is complete and

(ii) for any satisfiable concept C and any open branch B in TL(C) there is an
L-model I(B) satisfying C such that ΔI(B) = {‖�‖ | � : {�} ∈ B},

– � : D ∈ B implies ‖�‖ ∈ DI(B), and
– � : ∃R.{�′} ∈ B implies (‖�‖, ‖�′‖) ∈ RI(B).

We say TL is compatible with sub iff for any concept C if a statement � : D
appears in the tableau TL(C) then either D ∈ sub(C), D = {�′}, D = ¬{�′},
D = ∃R.{�′}, orD = ¬∃R.{�′}, for some role R from sub(C) and an individual �′.

Blocking. We add the unrestricted blocking rule (ub) from [14] to the calculus:

(ub):
� : {�}, �′ : {�′}
� : {�′} | � : ¬{�′} .

The same conditions as in [14] are required to hold. The conditions use an
ordering on individuals which reflects the order in which the individuals are
introduced during the derivation by the individual generating rules. Specifically,
let < be an ordering on individuals in the branch which is a linear extension of
the order of introduction of the individuals during the derivation in TL, i.e. let
� < �′, whenever the first appearance of individual �′ in the branch is strictly
later than the first appearance of individual �.

The conditions that blocking must satisfy are:

(c1) As usual any inference rule is applied at most once to the same set of
premises.

(c2) The (∃) rule is applied only to expressions of the form � : ∃R.C, when C
is not a singleton, i.e. C �= {�′′} for some individual �′′.

(c3) If � : {�′} appears in a branch and � < �′ then all further applications of
the (∃) rule to expressions of the form �′ : ∃R.C are not performed within
the branch.

(c4) In every open branch there is some node from which point onwards before
any application of the (∃) rule all possible applications of the (ub) rule
have been performed.

General termination. By TL + (ub) we denote the calculus comprising of the
rules of TL (including those of TALCO) and the unrestricted blocking rule (ub).
It is further required that the calculus satisfies the conditions (c1)–(c4), above.

The main result of the paper is following.

Theorem 2. Let L be an extension of the description logic ALCO. TL + (ub)
is sound, complete, and terminating tableau calculus for L, if the following con-
ditions all hold:

200 R.A. Schmidt and D. Tishkovsky

1. sub is a finite closure operator for L-expressions.
2. L is a logic which admits finite filtration.
3. TL is a sound and constructively complete tableau calculus for L and is com-

patible with sub.

The theorem says that adding blocking as described above to any sound and
complete tableau calculus for L turns it into a terminating calculus, when the
properties stated in the theorem are true. This calculus then provides the basis
for a tableau-based decision procedure for L.

The rest of this section is devoted to proving the theorem. In Sections 4 and 5
we show how the theorem can be applied to obtain tableau decision procedures
for two description logics.

Proof. The blocking requirements (c1)–(c4) are sound in the sense that they can-
not cause an open branch to become closed. The (ub) rule is sound in the usual
sense. This implies that adding the blocking rule together with the requirements
preserves soundness and (constructive) completeness. Hence TL + (ub) is sound
and constructively complete.

Since TL + (ub) is compatible with sub the reason for non-termination is the
possible infinite introduction of individuals in a branch. Because the (∃) rule
is the only rule that introduces new individuals (by assumption), limiting the
application of this rule limits the length of derivations. This is what the next
lemma says.

Lemma 1. Let #∃(B) denote the number of applications of the (∃) rule in a
branch B. If #∃(B) is finite then B is finite.

Let C now be a fixed concept and suppose B is the leftmost open branch with
respect to (ub) branching in the tableau TL(C). Let I(B) be an L-model of this
branch; I(B) exists by constructive completeness of TL + (ub).

Lemma 2. ΔI(B) is finite.

Proof. Because L admits finite filtration there is an equivalence relation ∼
on ΔI(B) and a ∼-filtration I(B) of I(B) which is a finite L-model. Let ‖�‖
and ‖�′‖ be any elements of I(B) such that ‖�‖ ∼ ‖�′‖. Let �0 and �′0 be the first
individuals from the equivalence classes ‖�‖ and ‖�′‖, respectively, to which the
(ub) rule has been applied. Let S be a segment of the branch B consisting of all
concepts of the branch B strictly before the tableau node where the (ub) rule has
been applied to these individuals. It can be shown that S∪{�0 : {�′0}} is satisfiable
in I(B). Indeed, �I(B)

0 = [‖�‖] = [‖�′‖] = �′0
I(B). Because TL + (ub) is construc-

tively complete, if � : D ∈ S then �I(B) ∈ DI(B) and, hence, �I(B) ∈ DI(B). We
can see that compatibility of TL + (ub) with sub implies that I(B) is a model of
the signature sub(S). By soundness of TL +(ub) every satisfiable set has an open
branch. Hence, there is an open left branch B′ through the tableau node where
the (ub) rule has been applied to �0 and �′0. Since B is already the leftmost open
branch w.r.t. (ub), B′ coincides with B. That is, �0 : {�′0} ∈ B and ‖�‖ = ‖�′‖.
Therefore, ΔI(B) = ΔI(B) is finite.

A General Tableau Method for Deciding Description Logics 201

Lemma 3. Let ‖�‖ ∈ ΔI(B) be arbitrary, and let #∃(‖�‖) denote the number
of applications of the (∃) rule to concepts of the form �′ : ∃R.D with �′ ∈ ‖�‖.
Then, #∃(‖�‖) is finite for every ‖�‖ ∈ ΔI(B).

Proof. Suppose not, i.e. suppose #∃(‖�‖) is infinite. Since TL+(ub) is compatible
with sub the number of concepts of the form ∃R.D such that � : ∃R.D for
some � ∈ O is in the branch is finitely bounded by the size of sub(C). By
requirements (c1) and (c2) there is a sequence of individuals �0, �1, . . . such that
every �i ∈ ‖�‖ and the (∃) rule has been applied to concepts �0 : ∃R.D, �1 :
∃R.D, . . . for some ∃R.D ∈ sub(C). However, such a situation is impossible
because of requirements (c4) and (c3). For, without loss of generality we can
assume that � < �0 < �1 < · · · . Then, by requirement (c4), starting from some
node of B, as soon as �i appears in B, it is detected that �i ∈ ‖�‖ before any
next application of the (∃) rule and, hence, �i is immediately blocked for any
application of the (∃) rule, by requirement (c3).

We have that #∃(B) ≤ max{#∃(‖�‖) | ‖�‖ ∈ ΔI(B)} × Card(ΔI(B)). Hence,
because ΔI(B) is finite and by Lemma 3 we obtain that #∃(B) is finite whenever
B is the leftmost open branch with respect to the (ub) rule of a TL+(ub)-tableau.

Termination is a consequence, because every closed branch of a TL + (ub)-
tableau is trivially finite and the length of the leftmost open branch with respect
to the (ub) rule is finite, too.

This completes the proof of Theorem 2.

3 Preliminaries for Applications

For the purpose of defining equivalence relations for filtrations in the next two
sections we define the notions of unary and binary types. A (unary) type of an
element x of an L-model I of a given signature of Σ, denoted by τΣ(x), is a set
of all concept of the signature whose interpretations in I contain x, i.e., τΣ(x) def=
{C ∈ Σ | x ∈ CI}. A (binary) type of a pair (x, y) of elements of a L-model I
of a signature of Σ, denoted by τΣ(x, y), is a set of all roles of the signature Σ
which interpretations in I contain (x, y), i.e. τΣ(x, y) def= {R ∈ Σ | (x, y) ∈ RI}.

4 A Mainstream Description Logic with Transitive Roles

In this section we show how the method can be applied to the description
logic SO, i.e. ALCO in which roles can be transitive.

The syntax and semantics of SO is a suitable extension of the syntax and
semantics of ALCO in which a subset Trans of the atomic roles are transitive.
The semantics of transitive roles is defined as expected: For every s ∈ Trans,
in every SO-model I, sI is a transitive relation, i.e. for every x, y, z ∈ ΔI ,
(x, y) ∈ sI and (y, z) ∈ sI implies (x, z) ∈ sI .

202 R.A. Schmidt and D. Tishkovsky

Let, for any set of concepts S, sub(S) consists of all concepts D such that D
is a subconcept of some concept in S. The operator sub is trivially finite.

It is not difficult to see (or one can refer to standard filtration arguments for
the multi-modal logic S4(m),2 cf. e.g. [3]) that SO admits finite filtration with
respect to the equivalence ∼ defined by x ∼ y

def⇐⇒ τΣ(x) = τΣ(y) for every
x, y ∈ ΔI , for a fixed finite signature Σ and a SO-model I of the signature. An
interpretation of every role r in the required finite ∼-filtration I of I is defined
by ([x], [y]) ∈ rI iff y ∈ CI implies x ∈ (∃r.C)I for every ∃r.C ∈ Σ.

A tableau calculus which is sound and complete for SO, is the calculus com-
prising the ALCO rules of Figure 1 and the following rule, for each transitive
role s ∈ Trans:

(Transs):
� : ∃s.{�′}, �′ : ∃s.{�′′}

� : ∃s.{�′′} .

We use the notation TSO to refer to this calculus. TSO is not yet terminating;
the concept ∃s.p � ¬∃s.¬∃s.p with s ∈ Trans gives a counter-example.

Now, it is not difficult to prove soundness in the usual way. The standard way
of proving completeness also establishes constructive completeness of TSO. It can
be seen that TSO is compatible with sub. Each of the conditions of Theorem 2
hold therefore. As a consequence we get:

Theorem 3. The calculus TSO + (ub) is sound, complete, and terminating.

This states that TSO plus the unrestricted blocking rule is a terminating tableau
and provides a decision procedure for SO.

In TSO the (Transs) rules capture transitivity directly. Alternatively, propaga-
tion rules may be used, which are common in tableau approaches for description
logics and modal logics [4,5]. All the necessary results for calculi with propaga-
tion rules can also be proved in the presented framework. (It should be noted
however that propagation rules approach is in general not sufficient for obtaining
complete tableau calculi for description logics with role negation.)

5 A Description Logic with Boolean Role Operators

In this section we consider the description logic ALBO. Finding the necessary
constructions and giving the necessary proofs in order to establish the conditions
of Theorem 2 is more involved than for SO in the previous section.

Syntax and semantics. ALBO extends ALCO with role operators, namely the
Boolean operators (union and negation) and also role inverse. That is, roles are
no longer just atomic roles (as in SO), but are defined by this production rule:

R, S
def= r | R−1 | ¬R | R � S.

As before r ranges over the set of atomic roles R.

2 Adding nominals does not pose a problem.

A General Tableau Method for Deciding Description Logics 203

The semantics of ALBO is given by a model (interpretation), as before, which
is a tuple I = (ΔI , CI

0 , . . . , �
I
0 , . . . , R

I
0 , . . .), except that the following additional

conditions must hold:

(R−1)I = (RI)−1, (¬R)I = (ΔI ×ΔI) \RI , (R ! S)I = RI ∪ SI .

If I satisfies all the these conditions but possibly not (¬R)I ⊆ (ΔI ×ΔI) \RI ,
then we say I is a quasi-model. In other words, in any quasi-model, the inclusion
(¬R)I ⊇ (ΔI ×ΔI) \RI still holds but the reverse inclusion may fail.

In what follows, we prove that ALBO is complete with respect to the seman-
tics of models, as well as the semantics of quasi-models, and define two sound,
complete, and terminating tableau calculi for ALBO. One calculus generates
models, the other one generates quasi-models.

Closure operator. Let ≺ be the smallest transitive ordering on the set of all
ALBO expressions (concepts and roles) satisfying:

(s1) C ≺ ¬C,
(s2) C ≺ C !D,
(s3) D ≺ C !D,
(s4) ¬C ≺ ¬(C !D),
(s5) ¬D ≺ ¬(C !D),

(s6) C ≺ ∃R.C,
(s7) R ≺ ∃R.C,
(s8) ¬C ≺ ¬∃R.C,
(s9) R ≺ ¬∃R.C,

(s10) R ≺ R ! S,

(s11) S ≺ R ! S,
(s12) R ≺ R−1,
(s13) R ≺ ¬R.

One can prove that ≺ is a well-founded ordering. Let (be the reflexive closure
of≺. For every set of concepts S we define sub(S) def= {E | E (C for some C ∈ S}.
Because≺ is well-founded, sub is a finite closure operator.

Nice filtration. Let Σ be a finite signature with respect to sub. Let ∼ be an
equivalence relation on ΔI satisfying the following: for any x, y, x′, y′ ∈ ΔI

(f1) if x ∼ y then τΣ(x) = τΣ(y), and
(f2) if x ∼ y and x′ ∼ y′ then τΣ(x, x′) = τΣ(y, y′).

Let I be the∼-filtration of I satisfyingRI = {([x], [y]) | ∃x′ ∼ x∃y′ ∼ y (x′, y′) ∈
RI} for every role R. It follows from (f2), that RI = {([x], [y]) | (x, y) ∈ RI}
for every R ∈ Σ. By induction on the ordering ≺ it can be proved that all the
conditions to be an ALBO-model of the signature Σ are satisfied for I.

Thus, in order to prove thatALBO admits finite filtration we only need to give
a definition of an equivalence which satisfies conditions (f1) and (f2) and results
in a finite filtration I. However, because of condition (f2), it is not immediate
how one could define the equivalence ∼ with a finite number of equivalence
classes in the original model I.

Standard filtration. Suppose now that the equivalence 2 is an equivalence rela-
tion which satisfies only the condition (f1), i.e. x 2 y implies τΣ(x) = τΣ(y).
The equivalence class 3x4 for the element x from ΔI is defined as usual: 3x4 def=
{y ∈ ΔI | x 2 y}. We define a 2-filtration I of I which is a quasi-model by

RI def= {(3x4, 3y4) | ∃x′ 2 x∃y′ 2 y (x′, y′) ∈ RI}.

204 R.A. Schmidt and D. Tishkovsky

It can be checked that I is a quasi-model. In general, it is not a standard model
however.

Conflict elimination process. Assume now that Σ is finite and does not contain
expressions with individual symbols. That is, we focus first on ALB. By a modi-
fication of the conflict elimination method for Boolean Modal Logic introduced
by Gargov, Passy, and Tinchev [8] it is possible to transform a finite ALB-quasi-
model I into a finite ALB-model I ′ and construct a p-morphism [3] f of the
signature Σ from I ′ onto I. In particular, we obtain that any concept D from Σ
is satisfiable in I iff it is satisfiable in I ′.Summing up, we obtain the following
theorem.

Theorem 4. If C is a concept in the language of ALB and C is satisfiable in a
quasi-model then it is satisfiable in a model. Furthermore, if C is satisfiable in
a finite quasi-model then C is satisfiable in a finite model.

Corollary 1.

1. ALB is complete with respect to the class of all ALB-quasi-models.
2. ALB admits finite filtration over the class of all ALB-quasi-models.

Finite nice filtration. Again, let Σ be a finite signature which does not contain
any individuals. Having a finite model I ′ for concept C and a p-morphism f , we
can define an equivalence ∼ on I which satisfies conditions (f1) and (f2) so that
the ∼-filtrated model I is finite. Indeed, for all x, y ∈ ΔI we define

x ∼ y def⇐⇒ x 2 y and for all u, z ∈ ΔI′
such that f(u) = 3x4 = 3y4,

τΣ(u, z) = τΣ(u, z) and τΣ(z, u) = τΣ(z, u).

Because ΔI′
is finite and the number of unary types of a finite signature is finite,

the number of equivalence classes with respect to ∼ in ΔI is finite. It can be
straightforwardly checked that ∼ satisfies conditions (f1) and (f2).

Adding individuals. Because singleton interpretations of the concepts are pre-
served under filtration, we can replace, in the concept C, all singleton concepts
with atomic concepts and, after construction of the required filtration, restore
them. This extends the results above to ALBO. Thus, the following theorem
holds.

Theorem 5.

1. ALBO is complete with respect to the class of all ALBO-quasi-models.
2. ALBO admits finite (standard) filtration over the class of all ALBO-quasi-

models.
3. ALBO admits finite (nice) filtration (over the class of all ALBO-models).

Finally, from Lemma 1 we obtain the finite model property for ALBO.

A General Tableau Method for Deciding Description Logics 205

(∃�):
	 : ∃(R � S).{	′}

	 : ∃R.{	′} | 	 : ∃S.{	′} (¬∃�):
	 : ¬∃(R � S).C

	 : ¬∃R.C, 	 : ¬∃S.C

(∃−1):
	 : ∃R−1.{	′}
	′ : ∃R.{	} (¬∃−1):

	 : ¬∃R−1.C, 	′ : ∃R.{	}
	′ : ¬C

(∃¬):
	 : ∃¬R.{	′}
	 : ¬∃R.{	′} (¬∃¬):

	 : ¬∃¬R.C, 	′ : {	′}
	 : ∃R.{	′} | 	′ : ¬C

Fig. 2. Role decomposition rules in the tableau calculus TALBO for ALBO

Theorem 6 (Finite Model Property of ALBO). ALBO has the finite model
property, i.e., if a concept C is satisfiable, then it has a finite model.

Tableau calculi. Because ALBO admits finite filtrations over both the class
of ALBO-models and the class of ALBO-quasi-models, there are two ways of
formulating a tableau calculus for ALBO. Let TALBO be the calculus which
extends the calculus TALCO (see Figure 1) with the rules listed in Figure 2.
Let T q

ALBO be the calculus consisting of all the rules of TALBO but without the
(∃¬) rule. (The ‘q’ in the name of T q

ALBO refers to quasi-models.)
The rules in Figure 2 are the rules for decomposing complex role expres-

sions. They can be divided into two groups: rules for positive existential role
occurrences (on the left) and rules for negated existential role occurrences (on
the right). The rules can be seen to be reflections of the semantics of the main
premise, which is the left premise in each case. Observe that the rules for pos-
itive existential role occurrences are limited to role assertions. This is justified
because of the presence of the (∃) rule.

Tableau derivations are constructed as usual. Suppose C is a given concept
and we are interested in the satisfiability of C. First, preprocessing is performed
on C in order to move the role inverse operator inwards so that they occur
immediately in front of atomic roles, by rewriting based on these equivalences
from left to right: (¬R)−1 = ¬(R−1), (R ! S)−1 = R−1 ! S−1, (R−1)−1 = R.
The tableau rules are then applied to � : C′, where � is a new individual and C′

is the transformed concept.

Soundness and completeness. We turn to proving soundness and completeness of
the calculi. Because every rule preserves the satisfiability of concept assertions,
it is easy to see that TALBO and T q

ALBO are both sound for ALBO.
For proving completeness of the calculi, suppose that a tableau TALBO(C),

resp. T q
ALBO(C), has been constructed for the given concept C. Suppose it is

an open tableau, and B is an open branch in it. A quasi-model I(B) for the
satisfiability of C can be constructed as follows. Recall that �∼B �

′ iff � : {�′} ∈ B
and ‖�‖ = {�′ | �∼B �

′}. For every concept D, define DB def= {‖�‖ | � : D ∈ B}.
For every role R, define RB def= {(‖�‖, ‖�′‖) | ∃�0∼B � ∃�′0∼B �

′ �0 : ∃R.{�′0} ∈ B}.
The rules (sym), (mon), and (id) ensure that the definition of I(B) does not
depend on representatives of the equivalence classes. For any � ∈ O, p ∈ C, and

206 R.A. Schmidt and D. Tishkovsky

r ∈ R we set

ΔI(B) def= {‖�‖ | � : {�} ∈ B},
pI(B) def= pB,

rI(B) def= rB,

�I(B) def=

⎧

⎪⎨

⎪⎩

‖�‖, if � : {�} ∈ B,
‖�′‖, for some ‖�′‖ ∈ ΔI(B),

otherwise.

The interpretations of any concept D and role R are defined inductively on the
ordering ≺ by:

(D0 !D1)I(B) def= (D0 !D1)B ∪DI(B)
0 ∪DI(B)

1 ,

(¬D)I(B) def= (¬D)B ∪ (ΔI(B) \DI(B)),

(R0 !R1)I(B) def= (R0 !R1)B ∪RI(B)
0 ∪RI(B)

1 ,

(¬R)I(B) def= (¬R)B ∪ (ΔI(B) \RI(B)),

(R−1)I(B) def= (R−1)B ∪ (RI(B))−1.

The following lemma can be proved by induction on the ordering ≺.

Lemma 4. I(B) is an ALBO-quasi-model. Moreover, if B is an open branch in
TALBO then I(B) is an ALBO-model.

The constructive completeness of the calculi is an immediate consequence of this
lemma.

Theorem 7.

1. TALBO is sound and constructively complete with respect to ALBO-models.
2. T q

ALBO is sound and constructively complete with respect to ALBO-quasi-
models.

Applying Theorem 2 together with Theorems 5 and 7 we obtain two sound,
complete, and terminating calculi for ALBO.

Theorem 8. Both TALBO + (ub) and T q
ALBO + (ub) are sound, complete, and

terminating tableau calculi for ALBO.

The difference between the two calculi is that the calculus with the (∃¬) rule
returns standard models while the other calculus returns only quasi-models.

6 Discussion

In this paper we have introduced a general method for turning ground semantic
tableau calculi into decision procedures, and illustrated it with two examples.

The case of SO (i.e. ALCO with transitive roles) required a standard filtration
argument which can be found in many modal logic textbooks, and the formu-
lation of a sound and constructively complete tableau calculus which also does
not pose any problems. The case of ALBO was more complicated. As should be
expected, the most problematic part was to construct a finite filtration. In order

A General Tableau Method for Deciding Description Logics 207

to do this, we applied a ‘simple’ filtration argument to an ALBO-model I which
gave us a quasi-model which we then repaired using a modification of the method
of Gargov, Passy, and Tinchev [8]. This produces a finite ALB-model I ′. Using
the obtained ALB-model I′, we defined a filtration of the original ALBO-model
which is finite because I ′ is finite. As a side effect we obtained completeness
of ALBO with respect to quasi-models. The formulation of tableau rules which
simply follow the semantics of the operators in ALBO was not difficult. Nei-
ther was obtaining the soundness and completeness results of the two tableau
calculi, TALBO and T q

ALBO. The hard part would have been to turn the calculi
into decision procedures and prove that the procedures are indeed terminating.
Fortunately, Theorem 2 covers both cases, thus limiting the difficult part of the
proof to the filtration argument.

The work builds on our previous work in [14], where we described a tableau-
based decision procedure for ALBO. In the current paper we have refined the
techniques and presented a general method for proving the finite model property
and developing tableau decision procedures. At the same time we have improved
the results in a number of ways. The tableau calculi for ALCO and ALBO
relative to standard models are almost identical to the tableau calculi of [14];
the only essential3 difference is that the calculi in [14] include this additional
congruence rule:

(bridge):
� : ∃R.{�′}, �′ : {�′′}

� : ∃R.{�′′} .

The results is this paper show that this rule is superfluous for completeness
of TALCO and T q

ALBO. By the results in [14] the (bridge) rule is admissible in
both and decidability is not harmed by the inclusion of it. New in the current
paper is the tableau calculus T q

ALBO. It shows that the (∃¬) rule is not needed
for completeness or decidability. The T q

ALBO calculus constructs quasi-models.
Sometimes it is not possible to find filtration arguments that yield standard
models but filtration arguments can nevertheless be found for quasi-models [6].
Thus, being able to follow the approach using quasi-models means that it may
still possible to devise decision procedures, even when the approach fails, or is
difficult, for standard models.

The main result (Theorem 2) of the paper exploits similarities between filtra-
tion proofs and proofs of termination of tableau procedures. As said, it shifts
the most difficult part of proving termination to finding a finite filtration. Fil-
tration is a standard technique which is very powerful and well studied (cf. e.g.
filtration proofs in [3,6,7,10]). Furthermore, every filtration depends only on the
logic under consideration and its model theory, but does not depend on any par-
ticular tableau calculus. Hence, there is a separation between the computational
machinery of the given logic and its logical properties, resulting in enhanced
generality and flexibility of the framework. In particular, this makes it easier to
develop refinements of tableau decision procedures devised within the framework

3 In [14] the definition of ALBO is slightly different but definitionally equivalent and
accordingly there is a small variation in the calculus.

208 R.A. Schmidt and D. Tishkovsky

through, for example, the incorporation of refinements of the rules, strategies,
intelligent backtracking techniques and other optimisations.

The unrestricted blocking rule provides a simple way of doing blocking with
backtracking. Backtracking is generally expensive but the rule can be flexibly
refined so that backtracking is reduced or completely avoided. Imposing ap-
propriate constraints on the unrestricted blocking rule, and using suitable rule
application strategies, other blocking techniques [2,12] such as subset block-
ing, equality blocking, dynamic blocking (including pairwise blocking), static
blocking, successor blocking, anywhere blocking and their combinations can be
simulated. For instance, subset blocking can be implemented by allowing the
application of the (ub) rule only when a subset check of the sets of concepts
associated with the two individuals � and �′ succeeds. For a logic with the tree-
model property, one can add the constraint that � is a successor of �′; this
simulates successor blocking.

The framework therefore provides a basis for enhancing prover engineering
platforms such as those of [11,9,1] with a flexible blocking mechanism with which
more general tableau decision procedures can then be constructed. The approach
also provides the theoretical background for the way blocking is implemented
in the MetTeL system [15]. MetTeL is a flexible engineering solution imple-
mented in Java. It is intended to give easy and quick implementations of tableau
procedures for a large class of logics (originally for logics of metrics and topol-
ogy). In MetTeL, blocking could already be done universally and automatically
for many logics, but the unrestricted blocking mechanism extends it further to
decide logics with Boolean role operators which are currently outside scope of
other similar systems and tableau provers.

Our approach is not tied to a specific description logic language. It can han-
dle most familiar role constructors including union, intersection, composition,
inverse, etc. Since the method is formulated for logics with individuals it can
be applied to description logics with ABoxes. The main result also covers logics
with general TBoxes and RBoxes. Implicit in our definitions is the assumption
that operators additional to those of ALCO must include only role constructors
with role arguments, but this is not essential. The assumption was only made for
reasons of simplicity. In particular, the method can be easily extended to logics
with arbitrary additional role and concept constructors including operators in
which concepts and roles interact. Examples that come to mind are: test op-
erator, image operator, sufficiency operators, universal modality, cross product,
domain and range restriction; in fact most of these are already expressible in
ALBO [14].

The conditions of the main Theorem 2 cover almost all known decidable de-
scription logics, and also modal logics, hybrid logics and even certain first-order
fragments. For instance, because ALBO subsumes the two-variable fragment of
the first-order logic the tableau calculi for ALBO presented in this paper can
be transformed into ground tableau calculi for this fragment. This solves a long-
standing open problem because so far it has not been known how to use tableau
methods to solve the two-variable fragment.

A General Tableau Method for Deciding Description Logics 209

The tableau rules are formalised in a generic way to cover most of the labelled
and hybrid tableau formalisms. The restriction that (∃) is the only individual gen-
erating rule can be omitted and would then require an appropriate reformulation
of conditions (c2), (c3), and (c4) of the blocking mechanism. In fact, the tableau
calculus for the given logic can contain arbitrary individual generating rules. The
specific kind of tableau rules used in the paper is not essential. It is possible to
use other kinds of rules and tableau approaches, provided these satisfy the condi-
tions of Theorem 2. For instance, the results transfer also to labelled KE tableau,
ground hyperresolution with splitting, ground hypertableaux, and other bottom-
up model generation procedures. We expect the techniques to be applicable more
widely, for developing decision procedures based on other kinds of deduction meth-
ods and for much larger classes of logics and first-order fragments.

References

1. Abate, P.,Goré, R.: The Tableaux WorkBench. In: Cialdea Mayer, M., Pirri, F. (eds.)
TABLEAUX 2003. LNCS, vol. 2796, pp. 230–236. Springer, Heidelberg (2003)

2. Baader, F., Sattler, U.: An overview of tableau algorithms for description logics.
Stud. Log. 69, 5–40 (2001)

3. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Camb. Tracts Theor. Com-
put. Sci, vol. 53. Cambridge University Press, Cambridge (2001)

4. Castilho, M.A., Fariñas del Cerro, L., Gasquet, O., Herzig, A.: Modal tableaux with
propagation rules and structural rules. Fundam. Inform. 3-4(32), 281–297 (1997)

5. Fariñas del Cerro, L., Gasquet, O., Herzig, A., Sahade, M.: Modal tableaux: Com-
pleteness vs. termination. In: We Will Show Them!, vol. 1, pp. 587–614. College
Publ. (2005)

6. Gabbay, D.M., Kurucz, A., Wolter, F., Zakharyaschev, M.: Many-Dimensional
Modal Logics: Theory and Applications. North-Holland, Amsterdam (2003)

7. Gabbay, D.M., Shehtman, V.: Products of modal logics, part 1. Log. J. IGPL 6(1),
73–146 (1998)

8. Gargov, G., Passy, S., Tinchev, T.: Modal environment for Boolean speculations.
In: Proc. Gödel 1986, Plenum, pp. 253–263 (1987)

9. Gasquet, O., Herzig, A., Sahade, M.: Terminating modal tableaux with simple
completeness proof. In: Proc. AiML 2006, pp. 167–186. College Publ. (2006)

10. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Cambridge (2000)
11. Heuerding, A., Jäger, G., Schwendimann, S., Seyfried, M.: The Logics Workbench

LWB: A snapshot. Euromath. Bull. 2(1), 177–186 (1996)
12. Horrocks, I., Sattler, U.: A description logic with transitive and inverse roles and

role hierarchies. J. Log. Comput. 9(3), 385–410 (1999)
13. Schmidt, R.A., Tishkovsky, D.: A general tableau method for deciding description

logics, modal logics and related first-order fragments,
http://www.cs.man.ac.uk/∼dmitry/papers/gtm2008.pdf

14. Schmidt, R.A., Tishkovsky, D.: Using tableau to decide expressive description logics
with role negation. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-
I., Nixon, L., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G.,
Cudré-Mauroux, P. (eds.) ISWC 2007. LNCS, vol. 4825, pp. 438–451. Springer,
Heidelberg (2007)

15. Tishkovsky, D.: MetTeL system,
http://www.cs.man.ac.uk/dmitry/implementations/MetTeL/

http://www.cs.man.ac.uk/~dmitry/papers/gtm2008.pdf
http://www.cs.man.ac.uk/dmitry/implementations/MetTeL/

Terminating Tableaux for Hybrid Logic with the

Difference Modality and Converse

Mark Kaminski and Gert Smolka

Programming Systems Lab, Saarland University,
Campus E1 3, 66123 Saarbrücken, Germany

{kaminski,smolka}@ps.uni-sb.de

Abstract. We present the first terminating tableau calculus for ba-
sic hybrid logic with the difference modality and converse modalities.
The language under consideration is basic multi-modal logic extended
with nominals, the satisfaction operator, converse, global and difference
modalities. All of the constructs are handled natively.

To obtain termination, we extend chain-based blocking for logics with
converse by a complete treatment of difference.

Completeness of our calculus is shown via a model existence theorem
that refines previous constructions by distinguishing between modal and
equational state equivalence.

Keywords: modal and hybrid logics, difference modality, converse,
tableau systems, decision procedures.

1 Introduction

Modal logic with the difference modality Dp = λx. ∃y. x� .=y ∧ py is an expressive
language [1, 2]. It can express the global modality Ep = p ∨̇Dp and nominals
!p = E(p ∧̇ ¬̇(Dp)). Gargov and Goranko [3] show that basic modal logic with D
is equivalent with respect to modal definability to basic hybrid logic [2,4] with
E (see also [5, 6,7,8]).

Tableaux for modal logic with D are not well-understood. In a recent hand-
book chapter on modal proof theory [9], an unsound tableau calculus for basic
modal logic with D is given.1 A sound and complete tableau calculus for basic
modal logic with D is given by Balbiani and Demri [1]. Unfortunately, Balbiani
and Demri’s calculus does not yield a decision procedure as it does not terminate
on all inputs.

This paper presents a terminating prefixed tableau calculus for basic hybrid
logic with D and converse. While it is possible to express the satisfaction oper-
ator @ and E in terms of D, it is more efficient to let the decision procedure
handle satisfaction and global modalities natively. Hence, we allow @ and E as
additional constructs in our language and extend the calculus to deal with them
directly. So, the input language for our calculus is precisely characterized as basic
1 The formula �P ∨D¬P is invalid but provable by the rules in [9].

A. Armando, P. Baumgartner, and G. Dowek (Eds.): IJCAR 2008, LNCS 5195, pp. 210–225, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Terminating Tableaux for Hybrid Logic with the Difference Modality 211

multi-modal logic extended with nominals, the satisfaction operator, converse,
global and difference modalities.

The first tableau-based decision procedure for a modal language extended
with D as an additional operator was given in [10]. The blocking technique used
there to ensure termination, called pattern-based blocking, is different from the
traditional chain-based techniques [11, 12, 13, 14] in that it does not exploit any
information about the order in which prefixes are introduced to a tableau branch.
In the presence of converse, however, pattern-based blocking as proposed in [10]
is inherently incomplete.

Termination of the present calculus is obtained by chain-based blocking.
Chain-based blocking was initially developed to deal with transitive modali-
ties [11, 12, 13] and subsequently extended to logics with converse [15, 16] and
nominals [14, 17]. As we show, the interaction between converse and D is sim-
ilar to the interaction between converse and transitive modalities, and can be
handled by adapting the techniques in [15, 16] to account for the additional
generative power of D.

Bolander and Blackburn [14] propose a different extension of chain-based block-
ing to global modalities and converse, blocking E by the same mechanism as
diamond modalities. We propose an alternative treatment of global modalities.
Besides, our approachdiffers from that of [14] in the model construction techniques
employed to prove completeness of our calculus. As Bolander and Blackburn’s ap-
proachdoesnot coverD, they employ traditionalfiltrationarguments,constructing
a model that identifies prefixes modulo modal equivalence. To capture the seman-
ticsofD,we construct amodel thatdoesnotnecessarily identifymodally equivalent
prefixes, while still respecting the stronger equational equivalence.

Unlike our approach, which is cumulative and relies solely on tree-like struc-
tures, Horrocks and Sattler [17] propose a tableau calculus for a nominal logic
with global modalities and converse based on possibly cyclic graph structures and
treat equational equivalence by destructive graph transformation during tableau
construction. Their calculus does not cover D but handles qualified number re-
strictions [18].

To treatD in a sound and complete way, the calculus by Balbiani and Demri [1]
employs a computationally expensive cut rule. To avoid the general inefficiency
coming with this rule, we follow [10] and integrate it into the rule for the dual ofD.
Thus the costs of the cut rule need only be paid if the dual ofD is used.

It is possible to obtain decision procedures for the language under consid-
eration by means of satisfiability-preserving translations into simpler languages
[3,19,20,8] for which effective decision procedures are already available [21,14,10].
Our calculus yields the first effective decision procedure for modal logic with both
D and converse modalities that does not rely on transformations of the input
into other languages.

The paper is organized as follows. We start by formulating hybrid logic in simple
type theory. Next, we present the rules of our calculus. Then, we impose control
on the rules and show that the restricted calculus is terminating. The terminating
calculus is then shown complete by means of a model existence theorem.

212 M. Kaminski and G. Smolka

2 Hybrid Logic with D and Converse

We represent modal logic in simple type theory, which gives us an expressive
syntax and a solid foundation. The basic idea of the representation goes back
to Gallin [22] and can also be found in Gamut [23] (Sect. 5.8, two-sorted type
theory). The representation of boxes and diamonds as higher-order constants ap-
pears in [24,25]. Since the type-theoretic representation formalizes the semantics
of modal logic at the object level, one can prove meta- and object-level theorems
of modal logic with a higher-order theorem prover [26].

We start with two base types B and S. The interpretation of B is fixed and
consists of two truth values. The interpretation of S is a nonempty set whose
elements are called worlds or states. Given two types σ and τ , the functional
type στ is interpreted as the set of all total functions from the interpretation of
σ to the interpretation of τ . We write σ1σ2σ3 for σ1(σ2σ3).

We employ three kinds of variables: Nominal variables x, y, z of type S,
propositional variables p, q of type SB, and relational variables r of type SSB.
Nominal variables are called nominals for short. We use the logical constants

⊥,� : B .= : SSB
¬ : BB ∃, ∀ : (SB)B

∨,∧,→ : BBB

Terms are defined as usual. We write st for applications, λx.s for abstractions,
and s1s2s3 for (s1s2)s3. We also use infix notation, e.g., s ∧ t for (∧)st.

Terms of type B are called formulas. We employ some common notational
conventions: ∃x.s for ∃(λx.s), ∀x.s for ∀(λx.s), and x� .=y for ¬(x .=y).

The formulas of modal logic can be either translated to type-theoretic formulas
(as in [22,23,25,27]) or directly represented as terms of type SB (as in [24,26,10]).
Here we use the latter approach, which is more elegant since it models modal
syntax directly as higher-order syntax. To do so, we need lifted versions of the
Boolean connectives, which are defined as follows:

¬̇px = ¬(px) ¬̇ : (SB)SB

(p ∧̇ q)x = px ∧ qx ∧̇ : (SB)(SB)SB

(p ∨̇ q)x = px ∨ qx ∨̇ : (SB)(SB)SB

We can now write terms like p ∧̇ ¬̇q, which represent modal formulas. Here are
the definitions of the remaining modal constants we will use:

r−xy = ryx − : (SSB)SSB
〈r〉px = ∃y. rxy ∧ py 〈 〉 : (SSB)(SB)SB
[r]px = ∀y. rxy → py [] : (SSB)(SB)SB
Epx = ∃p E : (SB)SB
Apx = ∀p A : (SB)SB

Terminating Tableaux for Hybrid Logic with the Difference Modality 213

Dpx = ∃y. x� .=y ∧ py D : (SB)SB
D̄px = ∀y. x .=y ∨ py D̄ : (SB)SB
ẋy = x

.=y ˙ : SSB
@xpy = px @ : S(SB)SB

Applied to a relation r, the operator − yields the converse of r. This allows us
to add converse to our language without introducing converse versions of the
operators 〈 〉 and []. We call a term t : SB modal if it has the form

ρ ::= r | r−

t ::= p | ¬̇t | t ◦ t | μρt | νt | ẋ | @xt

where ◦ ∈ {∧̇, ∨̇}, μ ∈ {〈 〉, []} and ν ∈ {E,A,D, D̄}.
A modal interpretation M is an interpretation of simple type theory that

interprets B as the set {0, 1}, ⊥ as 0 (i.e., false), � as 1 (i.e., true), maps S
to a non-empty set, gives the logical constants ¬, ∧, ∨, →, ∃, ∀, .= their usual
meaning, and satisfies the equations defining the modal constants ¬̇, ∧̇, ∨̇, −,
〈 〉, [], E, A, D, D̄, ˙ , and @. Whenever Mt = 1, we say that M satisfies t, or
that M is a model of t. A formula is called satisfiable if it has a satisfying modal
interpretation.

We now give some additional syntactic definitions that are needed for the rest
of the paper. A modal term s : SB is called normal if it is in negation-normal
form, that is, has the form

s ::= p | ¬̇p | s ◦ s | μρs | νs | ẋ | ¬̇ẋ | @xs

where ◦ ∈ {∧̇, ∨̇}, μ ∈ {〈 〉, []} and ν ∈ {E,A,D, D̄}. A formula s is called
normal if it has the form tx where t is a normal modal term. Formulas of the
form rxy or r−xy are called accessibility formulas or edges.

Given a term t, we write N t for the set of nominals that occur in t. The
notation is extended to sets of terms in the natural way: NX :=

⋃
{N t | t ∈ X}.

3 Tableau Rules

Our tableaux are constructed in the usual way from a finite non-empty set of
initial normal formulas by the rules in Fig. 1. The rules may extend tableau
branches by formulas s of the form

s ::= x
.=y | x� .=y | ρxy | tx

where t is a normal modal term. Single tableau branches are referred to by the
meta-variables Γ and Δ. We allow no multiple occurrences of identical formulas
on a single branch. Nominals x occurring in normal formulas sx are used to
reference individual states, analogously to prefixes as used by related calculi [28,
14] and, similarly, prefixed calculi for nominal-free logics [9], with the important
difference that in our case prefixes are part of the object language. We use

214 M. Kaminski and G. Smolka

edges to represent assertions about accessibility relations and equations for state
equality or inequality constraints.

Given a branch Γ , we use ∼Γ to denote the equivalence closure of the relation
{(x, y) |x .=y ∈ Γ}. If x ∼Γ y, we call x and y equationally equivalent on Γ .

It is easy to verify that the rules in Fig. 1 are sound in the following sense.

Proposition 1 (Soundness). Let Γ be a tableau branch and Δ1, . . . , Δn be
the extensions of Γ obtained by a rule R from Fig. 1 (n ∈ {1, 2}). Then Γ is
satisfiable if and only if there is some i ∈ {1, . . . , n} such that Δi is satisfiable.

Unlike [28, 14] but similarly to [15, 17], we use signed edges of the form rxy

and r−xy. We define r̃ := r− and r̃− := r. Semantically, rxy is considered
identical to r−yx. But the former formula additionally records that y was added
to the branch after x, while the latter formula implies the converse. This way,
we have an explicit representation of all the chronological information that will
be necessary in Sect. 4 to impose a terminating control on the rules.

As all the relevant chronological information is contained in the edges, we
can ignore the vertical structure of tableau branches and see them as sets of
formulas, which may be subject to the usual set predicates and operators. For
instance, we may write s ∈ Γ to denote that s occurs on Γ , and Γ −Δ for the
set of formulas that occur on Γ but not on Δ. The notation NΓ is defined in
the obvious way.

R∧̇
(s ∧̇ t)x

sx, tx
R∨̇

(s ∨̇ t)x

sx | tx
R♦

〈ρ〉tx
ρxy, ty

y /∈ NΓ R�
[ρ]tx ρxy

ty

R�̃
[ρ]tx ρ̃yx

ty
RE

Etx

ty
y /∈ NΓ RA

Atx

ty
y ∈ NΓ

R .=
sx

sy
x ∼Γ y, s modal RN

ẋy

x
.
=y

RN̄

¬̇ẋy

x � .=y
R@

@ytx

ty

RD

Dtx

x � .=y, ty
y /∈ NΓ RD̄

D̄tx

x
.
=y | ty

y ∈ NΓ

Γ is the tableau branch to which a rule is applied.

Fig. 1. Tableau Rules

We call a branch Γ closed if there is some p, x and y such that Γ con-
tains either both px and ¬̇px or a disequation x� .=y where x ∼Γ y. Other-
wise, Γ is called open. A tableau is called closed if all of its branches are
closed, and open otherwise. To prove a modal term s valid, one computes
the negation-normal form t of ¬̇s, selects a nominal x /∈ N t, and constructs
a closed tableau for tx.

Terminating Tableaux for Hybrid Logic with the Difference Modality 215

4 Control

It is easy to see that our tableau rules do not terminate without additional
restrictions on their applicability. Figure 2 shows a possible non-terminating
derivation. So, to achieve termination, we need to impose on our rules a termi-
nating control.

A(〈r〉p)x

〈r〉px RA

rxy, py R♦

〈r〉py RA

. . .

Fig. 2. A Non-terminating Tableau Derivation

Every tableau branch Γ can be seen as a graph with the vertices NΓ and the
edges given by the relation <Γ := {(x, y) | ∃ρ : ρxy ∈ Γ}. The relations <+

Γ and
<∗

Γ are defined from <Γ as usual (transitive and reflexive transitive closure). We
define GΓ := (NΓ,<Γ).

A modal term s is said to occur at a nominal x on a tableau branch Γ if
sx occurs on Γ . We define the labeling LΓx of a nominal x on a branch Γ to
be set of all modal terms that occur at x on Γ . Two nominals x, y are called
modally equivalent on a branch Γ if LΓx = LΓ y. The function LΓ defines a
vertex labeling of GΓ with sets of modal terms. We say a nominal x is a root
of GΓ if x has no predecessor in <Γ , and write RootΓ for the set of all roots
of GΓ .

The graph GΓ should not be understood as a partial model of Γ . So, the
connection between <Γ and the transition relations in possible models of Γ is
relatively loose. In particular, our tableau algorithm will always keep <Γ acyclic
while actual models of Γ may contain cycles.

Achieving termination is easy once we can give an upper bound on the number
of vertices in GΓ . In particular, we would like to be able to bound the maximal
length of chains x1 <Γ . . . <Γ xn. To do so, we want to avoid extending such
chains if they are repeating, i.e., contain two distinct nominals with the same
labeling. This motivates the following definition: A nominal x is called active on
a branch Γ if there are no two distinct nominals y, z <∗

Γ x such that LΓ y = LΓ z.
Otherwise, x is called inactive.

We say a formula s is expanded on a branch Γ if one of the following expand-
edness conditions holds:

(E∧) s = (t1 ∧̇ t2)x and t1x, t2x ∈ Γ
(E∨) s = (t1 ∨̇ t2)x and t1x ∈ Γ or t2x ∈ Γ
(E♦) s = 〈ρ〉tx and there is some y such that ty ∈ Γ and either ρxy ∈ Γ or

ρ̃yx ∈ Γ
(E�) s = [ρ]tx and, for every y such that ρxy ∈ Γ or ρ̃yx ∈ Γ , it holds ty ∈ Γ

216 M. Kaminski and G. Smolka

(EE) s = Etx and there is some y ∈ RootΓ such that ty ∈ Γ
(EA) s = Atx and, for every y ∈ NΓ , it holds ty ∈ Γ
(E .=) s = x

.=y and LΓx = LΓ y
(EN) s = ẏx and y .=x ∈ Γ
(EN̄) s = ¬̇ẏx and y � .=x ∈ Γ
(E@) s = @ytx and ty ∈ Γ
(ED) s = Dtx and there is some y ∈ RootΓ such that y �∼Γ x and ty ∈ Γ
(ED̄) s = D̄tx and, for every y ∈ NΓ , either x ∼Γ y or ty ∈ Γ
Note that there are no expandedness conditions for formulas of the form px, ¬̇px
and x� .=y.

We restrict the applicability of our tableau rules by two conditions.

(C1) A rule is applicable to a formula s ∈ Γ only if Γ is open, s is not expanded
on Γ , and if the rule application results in a proper extension of Γ , i.e.,
extends Γ by at least one formula that does not already occur on Γ .

(C2) A rule is applicable to a formula of the form 〈ρ〉tx on Γ only if x is active
on Γ .

Note that C1 applies to all formulas, including diamonds, while C2 applies to
diamond formulas only.

Except possibly for the cases EE and ED, the condition C1 is intuitive. In-
deed, similar conditions are often assumed implicitly when formulating tableau
systems. The restriction C2 is a chain-based blocking condition as in [15, 16].

Incidentally, E♦ has a well-known analog in tableaux for classical first-order
logic. There, the applicability of the existential rule δ can be restricted to once
per formula. In a somewhat less obvious way, EE and ED also relate to this
restriction. More details are provided later.

We are going to show that our calculus with the two applicability restrictions
is complete and terminating, thus yielding a decision procedure for hybrid logic
with D and converse. If a branch cannot be extended by any tableau rules,
we call it maximal. Assuming that our calculus terminates, its completeness is
proven by showing that an open and maximal tableau branch always exhibits a
model of its initial formulas.

In the cases EE and ED, it may seem unclear why we want the witness of s
(i.e., the nominal y such that ty ∈ Γ) to be a root of GΓ . One may consider
taking the following weaker versions of EE and ED:

(E ′E) Etx is expanded if there is some y such that ty ∈ Γ .
(E ′D) Dtx is expanded if there is some y such that x �∼Γ y and ty ∈ Γ .

It turns out, however, that if we do so, the interaction of C1 with C2 will render
our calculus incomplete. Figure 3 shows an open branch for the unsatisfiable set
{A(〈r〉p)x,A(〈r〉⊥̇ ∨̇E(〈r〉⊥̇))x}, where ⊥̇ := q ∧̇ ¬̇q, which becomes maximal if
we weaken EE to E ′E . An example for E ′D looks analogously.

Another variant of ED that we might consider corresponds more closely to the
tableau rule for D:

(E ′′D) Dtx is expanded if there is some y such that x� .=y, ty ∈ Γ .

Here, it is termination that is no longer guaranteed, as shown in Fig. 4.

Terminating Tableaux for Hybrid Logic with the Difference Modality 217

A(〈r〉p)x, A(〈r〉⊥̇ ∨̇E(〈r〉⊥̇))x

〈r〉px RA

(〈r〉⊥̇ ∨̇E(〈r〉⊥̇))x RA

E(〈r〉⊥̇)x R∨̇

rxy, py R♦

〈r〉py RA

(〈r〉⊥̇ ∨̇E(〈r〉⊥̇))y RA

E(〈r〉⊥̇)y R∨̇

ryz, pz R♦

〈r〉pz RA

rzu, pu R♦

〈r〉pu RA

(〈r〉⊥̇ ∨̇E(〈r〉⊥̇))u RA

〈r〉⊥̇u R∨̇

(〈r〉⊥̇ ∨̇E(〈r〉⊥̇))z RA

E(〈r〉⊥̇)z R∨̇

Fig. 3. A Maximal Tableau Branch with the Expandedness Condition E ′
E

A(D(D(Dp)))x

D(D(Dp))x RA

x � .=y, D(Dp)y RD

y � .=z, Dpz RD

z � .=u, pu RD

D(D(Dp))u RA

. . .

Fig. 4. A Non-terminating Tableau Derivation with the Expandedness Condition E ′′
D

5 Termination

We will now show that every tableau derivation is finite. Since the two branching
rules R∨̇ and RD̄ are at most binary, by König’s lemma it suffices to show that
the length of the individual branches is bounded.

Since every rule application extends a branch only by formulas that do not
yet occur on the branch, the length of a branch Γ coincides with the number
of formulas on Γ . First, let us show that this number is bounded by a function
in the number of nominals on Γ . Then, we will show that this number is itself
bounded from above, completing the termination proof.

We write Γ → Δ to denote that the branch Δ is an extension of a branch
Γ obtained by a single rule application. The notations Γ →+ Δ and Γ →∗ Δ

218 M. Kaminski and G. Smolka

are then defined in the obvious way. We write Mod Γ for the set of all modal
terms occurring on Γ , possibly as subterms, and Rel Γ for the set of all relational
variables that occur on Γ .

Crucial for our termination argument is the fact that our rules cannot intro-
duce to the tableau any modal terms that do not already occur as subterms of
the initial formulas.

Proposition 2 (Subterm Property). If Γ →∗ Δ, then ModΓ = ModΓ .

For every pair of nominals x, y and every relation r, a branch Γ may contain edges
rxy and r−xy, equations x

.=y, disequations x� .=y and, for every term s ∈ Mod Γ ,
a formula sx. Hence, the size of Γ is bounded by 2|Rel Γ | · |NΓ |2 + 2|NΓ |2 +
|Mod Γ | · |NΓ |. By Proposition 2, we know that |Mod Γ | and |Rel Γ | depend
only on the initial formulas of the tableau.

So, it suffices to show that |NΓ | is bounded. We do so by showing that GΓ

is a finite forest of a size bounded by some function in the initial branch Γ0.
Looking at how Γ is constructed, it is easy to see that GΓ is a well-founded
forest, so it remains to show that:

1. Every tree in GΓ has bounded outdegree.
2. Every tree in GΓ has bounded depth.
3. GΓ has a bounded number of roots.

The first bound is obtained by observing that edges are only added by the
rule R♦. It is easy to see that once R♦ is applied to some formula s, s will
be expanded on all extensions of the resulting branch. Hence, the outdegree of
a nominal x is bounded by the number of distinct terms 〈ρ〉t that occur at x,
which, in its turn, is bounded by |Mod Γ0|.

The bound on the depth of the trees in GΓ is 2|ModΓ0|+1, which easily follows
from the fact that, by the Subterm Property and the pigeonhole principle, every
sequence x1 <Γ . . . <Γ x2|Mod Γ0|+1 contains at least two distinct but modally
equivalent nominals.

Now to the the number of roots in GΓ . The applicability condition C1 enforces
that the number of distinct formulas on a branch is strictly increased by every
rule application.

Proposition 3. If Γ →+ Δ, then Γ � Δ.

Note that since our tableaux are constructed starting from normal formulas,
<Γ0 is always empty. Hence, since Γ0 is non-empty, RootΓ contains at least
one nominal. Moreover, whenever a branch Γ is extended by a formula ρxy, we
require that y /∈ NΓ . Therefore, once a nominal is a root of Γ , it will remain a
root for every extension of Γ .

Proposition 4. If Γ →∗ Δ, then RootΓ ⊆ RootΔ.

Since there are only two rules that can introduce new roots to GΓ , namely
RE and RD, it suffices to show that the number of their applications in any
derivation is bounded from above by a function in the initial branch Γ0. The

Terminating Tableaux for Hybrid Logic with the Difference Modality 219

bound for RE is given by BEΓ0, and the bound for RD by BDΓ0, where BE and
BD are defined as follows.

BEΓ := |ModΓ − { s | ∃x ∈ RootΓ : sx ∈ Γ }|

The intuition behind BEΓ is that RE can only be applied once per modal term,
independently of the nominal at which the term occurs. By Propositions 2, 3
and 4, BEΓ is decreased by every application of RE and not increased by any
of the other rules. The definition

BDΓ := |ModΓ − {s |∃ y∈RootΓ : sy∈Γ }|
+ |ModΓ − {s |∃x∈NΓ ∃ y, z∈RootΓ : x∼Γ y and {sy, x� .=z, sz}⊆Γ }|

follows the same idea, with the intuition here being that RD is applicable at
most twice per modal term. One can verify that BDΓ is decreased by RD and
not increased by any of the other rules. That the second argument of the sum is
needed can be seen with the branch {Dsx, x� .=y, sy,Dsy}, where y is a root and
Dsy is not expanded. To see that RD is not applicable to a formula Dsu ∈ Γ
once, for some x ∈ NΓ and y, z ∈ RootΓ , it holds x ∼Γ y and {sy, x� .=z, sz} ⊆
Γ , observe that Dsx is expanded unless x ∼Γ y ∼Γ z ∼Γ u, in which case Γ is
closed and hence maximal.

6 Model Existence

To prove our calculus complete, it remains to show that every open maximal
extension Γ of an initial branch Γ0 exhibits a model M of Γ0. Without converse
modalities, we can construct M such that it satisfies not only Γ0 but all formulas
on Γ [28, 14, 10]. With converse, however, it seems easier to construct a model
only for a distinguished subset X of Γ that still contains Γ0. It is known [15,14]
that the set of formulas occurring at nominals active on Γ is a suitable candidate
for X .

The model construction by Bolander and Blackburn [14] deals with equational
equivalence of nominals by identifying nominals up to modal equivalence (this
approach is commonly known as filtration). Two nominals x and y are mapped
to the same state if LΓx = LΓ y. This suffices because on saturated branches
equational equivalence implies modal equivalence. However, the approach is no
longer appropriate once we extend our language by D. Look at the branch Γ :=
{Dpx, px,Dpy, py}. A model of Γ needs at least two different states, both of
which may satisfy the same set of formulas. To avoid this problem, we base
our model construction not on modal equivalence but directly on equational
equivalence as defined by the relation ∼Γ .

We proceed in several steps. Starting with a branch Γ , we apply to it a
substitution ϕ eliminating syntactically distinct nominals that are equivalent
modulo ∼Γ . Then, we construct a model M of a distinguished subset ϕX of ϕΓ
such that X contains Γ0. Finally, we show how to extend M to a model of X .

220 M. Kaminski and G. Smolka

A nominal substitution ϕ is a function Nom → Nom, where Nom is the set
of all nominals. Since nominal substitutions are the only kind of substitutions
we will look at, in the following we will refer to them simply as “substitutions”.
We write ϕs for the term obtained by replacing every nominal x in s by ϕx.
So, for instance, ϕ((@xẏ)z) = (@x′ẏ′)z′ if ϕx = x′, ϕy = y′ and ϕz = z′.
Substitutions are extended to sets of terms in the intuitive way. Given a branch
Γ , we call a substitution ϕ a normalizer for Γ if ϕx ∼Γ x for all x ∈ NΓ and
∀x, y ∈ NΓ : ϕx = ϕy ⇐⇒ x ∼Γ y. Note that, given an at most countable
branch Γ , a normalizer ϕ for Γ can always be constructed by taking an arbitrary
well-ordering ≺ of Γ and setting ϕ := { (x, y) ∈ (NΓ)2 | y = min≺{ z ∈ NΓ |
x ∼Γ z } }. Hence, normalizers exist for every branch Γ of our calculus. They
are not unique since neither are well-orderings of Γ .

Lemma 1. Let Γ be open and maximal. If x ∼Γ y, then LΓ x = LΓ y.

Lemma 2. Let Γ be open and maximal and ϕ a normalizer for Γ . If LΓ x =
LΓ y, then LϕΓ (ϕx) = LϕΓ (ϕy).

Proof. Clearly, LϕΓ (ϕz) =
⋃

u∼Γ z ϕ(LΓ u). By Lemma 1, the latter is the same
as ϕ(LΓ z). So, LϕΓ (ϕx) = ϕ(LΓ x) = ϕ(LΓ y) = LϕΓ (ϕy). ��

A nominal x is called relevant on Γ if every y such that y <+
Γ x is active.

Proposition 5. Every nominal that is active on a branch Γ is relevant on Γ .

Proposition 6. If x is active on Γ and either ρxy ∈ Γ or ρyx ∈ Γ , then y is
relevant on Γ .

Proposition 7. If x is relevant on Γ , then there is some y <∗
Γ x such that y is

active on Γ and LΓ y = LΓ x.

For the model construction, we want to eliminate all distinct nominals that are
equationally equivalent. This will allow us to construct a term model of the
initial branch in which syntactically distinct nominals denote distinct states.
This is achieved by considering the image of a branch Γ under a normalizer ϕ.
Of course, applying ϕ to Γ will destroy the forest structure of GΓ . The desired
properties of ϕΓ can be formulated as follows.

A set Γ of formulas is saturated for a formula sx ∈ Γ on a set X ⊆ NΓ if
N (ModΓ) ⊆ X and one of the following saturatedness conditions holds:

(S∧) s = t1 ∧̇ t2 and t1x, t2x ∈ Γ
(S∨) s = t1 ∨̇ t2 and t1x ∈ Γ or t2x ∈ Γ
(S♦) s = [ρ]t and either x /∈ X or there is some y ∈ NΓ such that ty ∈ Γ , either

ρxy ∈ Γ or ρ̃yx ∈ Γ , and LΓ y = LΓ z for some z ∈ X
(S�) s = [ρ]t and, for every y such that ρxy ∈ Γ or ρ̃yx ∈ Γ , it holds ty ∈ Γ
(SE) s = Et and there is some y ∈ X such that ty ∈ Γ
(SA) s = At and, for every y ∈ NΓ , it holds ty ∈ Γ
(SN) s = ẏ and y = x
(SN̄) s = ¬̇ẏ and y � .=x ∈ Γ

Terminating Tableaux for Hybrid Logic with the Difference Modality 221

(S@) s = @yt and ty ∈ Γ
(SD) s = Dt and there is some y ∈ X such that y �= x and ty ∈ Γ
(SD̄) s = D̄t and, for every y ∈ NΓ , either y = x or ty ∈ Γ

Note that all of the saturatedness conditions but S♦, SE , SN , SD and SD̄ are
identical to the corresponding expandedness conditions. Γ is called saturated on
a set X ⊆ NΓ if it is saturated on X for all normal formulas sx ∈ Γ . Saturated
sets are often also called Hintikka sets after the inventor of the concept.

We define XΓ,ϕ := {x ∈ N (ϕΓ) | ∃ y ∈ NΓ : y ∼Γ x and y active on Γ}. The
following proposition captures an essential intuition about XΓ,ϕ.

Proposition 8. Let ϕ be a normalizer for a branch Γ . If x is active on Γ , then
ϕx ∈ XΓ,ϕ.

Proposition 9. Let ϕ be a normalizer for a branch Γ . If Γ is open and maximal,
then ϕΓ is open and saturated on XΓ,ϕ.

Proof. First, we show by contradiction that ϕΓ is open. Assume ϕΓ closed.
Then there are some x, y such that ϕx = ϕy (which is equivalent to x ∼Γ y
since ϕ is a normalizer) and either x� .=y ∈ Γ or px, ¬̇py ∈ Γ . In the former case,
it immediately follows that Γ is closed, in contradiction to the assumption. In
the latter case, the contradiction follows by Lemma 1.

Now to saturatedness on XΓ,ϕ. Let us first show that N (Mod (ϕΓ)) =
ϕ(N (ModΓ)) ⊆ XΓ,ϕ. Let x ∈ N (ModΓ). It suffices to show that ϕx ∈ XΓ,ϕ.
By the Subterm Property, x ∈ N (ModΓ0), where Γ0 is the initial branch. Since
Γ0 contains no edges, x is a root of GΓ0 . Then, by Proposition 4, x is a root of
GΓ and hence active on Γ . Since x ∼Γ ϕx, we have ϕx ∈ XΓ,ϕ.

It remains to show that ϕΓ satisfies the respective saturatedness conditions
for all normal formulas sx ∈ Γ , which we do by case analysis on s. The claim is
almost immediate for all cases but s = 〈ρ〉t, s = Et, s = ẏ, s = Dt and s = D̄t,
so let us focus on these cases.

Case s = ẏ (SN). It suffices to show that ϕy = ϕx. By EN , y .=x ∈ Γ . So,
y ∼Γ x and hence ϕy = ϕx.

Case s = D̄t (SD̄). Similarly to the preceding case.
Case s = 〈ρ〉t (S♦). Let ϕx ∈ XΓ,ϕ. It suffices to show that there is some y

such that (ϕt)y ∈ ϕΓ , ρ(ϕx)y ∈ Γ or ρ̃y(ϕx) ∈ Γ , and LϕΓ y = LϕΓ z for
some z ∈ XΓ,ϕ.
We know that there is some active u such that x ∼Γ ϕx ∼Γ u. By Lemma 1,
〈ρ〉tu ∈ Γ . Hence, by E♦, there is some v such that tv ∈ Γ and either ρuv ∈ Γ
or ρ̃vu ∈ Γ . Since ϕu = ϕx, (ϕt)(ϕv) ∈ ϕΓ and either ρ(ϕx)(ϕv) ∈ ϕΓ or
ρ̃(ϕv)(ϕx) ∈ ϕΓ . So, let y = ϕv. It remains to show that LϕΓ y = LϕΓ z
for some z ∈ XΓ,ϕ. Since u is active, by Proposition 6, v is relevant. Hence,
by Proposition 7, there is some active w such that LΓ v = LΓw. Then, by
Lemma 2, LϕΓ y = LϕΓ (ϕw). Moreover, by Proposition 8, ϕw ∈ XΓ,ϕ. So,
ϕw is the required z.

Case s = Dt (SD). It suffices to show that there is some y ∈ XΓ,ϕ such that
y �= ϕx and (ϕt)y ∈ ϕΓ .

222 M. Kaminski and G. Smolka

By ED, there is some z ∈ RootΓ such that z �∼Γ x and tz ∈ Γ . Then
(ϕt)(ϕz) ∈ ϕΓ . As z clearly is active on Γ , by Proposition 8, ϕz ∈ XΓ,ϕ.
Moreover, ϕz ∼Γ z �∼Γ x ∼Γ ϕx, i.e. ϕz �= ϕx. So, ϕz is the required y.

Case s = Et (SE). Analogously to the preceding case, but simpler. "!

Given a set Γ saturated on X ⊆ NΓ , we call ρxy safe (for Γ and X) if x, y ∈ X
and there is some z ∈ NΓ such that ρxz ∈ Γ or ρ̃zx ∈ Γ , and LΓ z = LΓ y.
Clearly, if x, y ∈ X and either ρxy ∈ Γ or ρ̃yx ∈ Γ , then ρxy is safe. Moreover,
ρxy is safe if and only if ρ̃yx is safe.

Let Γ be saturated on X ⊆ NΓ , and let x0 ∈ X . We define the modal
interpretation MΓ as follows:

MΓ S = X

MΓx = if x ∈ X then x else x0

MΓ p = λx ∈ X. if px ∈ Γ then 1 else 0
MΓ r = {(x, y) | rxy safe for Γ and X}

Proposition 10 (Model Existence). Let Γ be open and saturated on some
X ⊆ NΓ . If x ∈ X, s modal and sx ∈ Γ , then MΓ satisfies sx.

Proof. By induction on the size of s. The cases s = p, s = ¬̇p, s = ẏ, s = ¬̇ẏ,
s = t1 ∧̇ t2, s = t1 ∨̇ t2, s = Et, s = At, s = Dt and s = D̄t are easy, so let us
focus on the remaining ones.

Case s = 〈ρ〉t. By S♦, there is some y ∈ NΓ such that ty ∈ Γ and either
ρxy ∈ Γ or ρ̃yx ∈ Γ , and some z ∈ X such that LΓ y = LΓ z. So, ρxz is safe,
i.e. (x, z) ∈ MΓρ. Moreover, tz ∈ Γ . Hence, by the inductive hypothesis,
MΓ satisfies tz.

Case s = [ρ]tx. Let (x, y) ∈MΓ ρ. We have to show that MΓ satisfies ty.
Clearly, ρxy is safe, so x, y ∈ X and there is some z ∈ NΓ such that ρxz ∈ Γ
or ρ̃zx ∈ Γ , and LΓ z = LΓ y. By S�, it holds tz ∈ Γ . Hence ty ∈ Γ . The
claim follows by the inductive hypothesis. "!

Let ϕ be a substitution and M a modal interpretation. We define Mϕ to be the
modal interpretation obtained from M such that, for all terms s, Mϕs = M(ϕs).

Proposition 11. M satisfies ϕs if and only if Mϕ satisfies s.

Theorem 1 (Model Existence). Let Γ be open and maximal. Let ϕ be a
normalizer for Γ . If x is active on Γ and sx ∈ Γ , then (MϕΓ)ϕ satisfies sx.

Proof. Let Γ be open and maximal. Let ϕ be a normalizer for Γ . Let x be
active on Γ and sx ∈ Γ . By Proposition 9, ϕΓ is open and saturated on XΓ,ϕ.
By Proposition 8, ϕx ∈ XΓ,ϕ. Then, by Proposition 10, MϕΓ satisfies ϕ(sx) =
(ϕs)(ϕx) ∈ ϕΓ . Hence, by Proposition 11, (MϕΓ)ϕ satisfies sx. "!

Since all nominals on the initial branch Γ0 are roots of GΓ0 and hence active, the
interpretation constructed in Theorem 1 from any open and maximal extension
of Γ0 satisfies Γ0.

Terminating Tableaux for Hybrid Logic with the Difference Modality 223

7 Explicit Computation of Equational Equivalence

The ruleR .=, the expandedness conditions ED and ED̄, and the closedness criteria
for tableau branches take for granted that the equational equivalence relation∼Γ

can be effectively computed. We leave open how this computation is performed.
Alternatively, one could make the computation of ∼Γ explicit by replacing R .=
by the following two rules.

Rsub.=
sx x

.=y
sy

s modal Rsym.=

x
.=y

y
.=x

Additionally, one could change the closedness criteria and the expandedness
conditions for the difference modality to work with an explicit syntactic repre-
sentation of ∼Γ . Note, however, that for the so modified calculus to terminate,
one needs to ensure that the computation of ∼Γ is performed before the rule
RD is applied. One way of doing so is as follows. One takes, in addition to Rsub.

=
and Rsym

.
=

, the following rule.

R� .=.=

x� .=y y
.=z

x� .=z

One then prioritizes Rsub.
=

, Rsym.
=

and R� .=.
=

over RD while replacing the conditions
“y �∼Γ x” in ED and “y ∼Γ x” in ED̄ by “y .=x /∈ Γ” and “y .=x ∈ Γ”, respectively,
and changing the closedness criterion for disequations from “x� .=y(∈ Γ) where
x ∼Γ y” to “x� .=x ∈ Γ”.

We chose R .= over syntactic rules like Rsub.
=

, Rsym
.
=

and R� .=
.
=

to simplify the
presentation and because we didn’t want to commit to any particular algorith-
mic treatment of equational equivalence. Moreover, a practical implementation
is likely to use a different, more efficient way of computing ∼Γ than the one
suggested by the above rules.

8 Conclusion

We have seen a terminating tableau calculus for basic hybrid logic with converse
and difference. Termination of the calculus was obtained by combining chain-
based blocking for logics with converse as introduced by Horrocks and Sattler [15]
with a complete and terminating treatment of D in [10]. To prove completeness
of the calculus, it was necessary to refine conventional filtration arguments as
found in [15,14] by distinguishing between modal and equational equivalence of
states.

Following [29,15], one can further extend our calculus to cover reflexive, sym-
metric and transitive modalities while retaining termination. Since the depth of
GΓ is bounded by an exponential in the size of the input, the size of our tableau
branches is at most doubly exponential. Hence, a naive implementation would
have triply exponential worst-case complexity. Donini and Massacci [30] and

224 M. Kaminski and G. Smolka

later Goré and Nguyen [31] show that caching of satisfiability results for explored
tableau branches can reduce the complexity of tableau algorithms for expressive
nominal-free description logics to ExpTime, resulting in decision procedures
that are worst-case optimal [32,8]. It is an open problem to find corresponding
techniques that would scale to logics with nominals and difference.

Acknowledgment. We would like to thank the anonymous referees for their
valuable comments and suggestions to this paper.

References

1. Balbiani, P., Demri, S.: Prefixed tableaux systems for modal logics with enriched
languages. In: Ralescu, A.L., Shanahan, J.G. (eds.) Proc. 15th Intl. Joint Conf. on
Artificial Intelligence (IJCAI 1997), pp. 190–195. Morgan Kaufmann, San Francisco
(1997)

2. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press,
Cambridge (2001)

3. Gargov, G., Goranko, V.: Modal logic with names. Journal of Philosophical
Logic 22, 607–636 (1993)

4. Areces, C., ten Cate, B.: Hybrid logics. In: [33]

5. Goranko, V.: Modal definability in enriched languages. Notre Dame Journal of
Formal Logic 31(1), 81–105 (1990)

6. de Rijke, M.: The modal logic of inequality. J. Symb. Log. 57(2), 566–584 (1992)

7. Venema, Y.: Derivation rules as anti-axioms in modal logic. J. Symb. Log. 58(3),
1003–1034 (1993)

8. Areces, C., Blackburn, P., Marx, M.: The computational complexity of hybrid
temporal logics. L. J. of the IGPL 8(5), 653–679 (2000)

9. Fitting, M.: Modal proof theory. In: [33]

10. Kaminski, M., Smolka, G.: Hybrid tableaux for the difference modality. In: 5th
Workshop on Methods for Modalities (M4M-5) (2007)

11. Hughes, G.E., Cresswell, M.J.: An Introduction to Modal Logic. Methuen (1968)

12. Halpern, J.Y., Moses, Y.: A guide to completeness and complexity for modal logics
of knowledge and belief. Artif. Intell. 54, 319–379 (1992)

13. Horrocks, I., Hustadt, U., Sattler, U., Schmidt, R.: Computational modal logic. In:
[33]

14. Bolander, T., Blackburn, P.: Termination for hybrid tableaus. J. Log. Com-
put. 17(3), 517–554 (2007)

15. Horrocks, I., Sattler, U.: A description logic with transitive and inverse roles and
role hierarchies. J. Log. Comput. 9(3), 385–410 (1999)

16. Horrocks, I., Sattler, U., Tobies, S.: Practical reasoning for very expressive descrip-
tion logics. L. J. of the IGPL 8(3), 239–263 (2000)

17. Horrocks, I., Sattler, U.: A tableau decision procedure for SHOIQ. J. Autom.
Reasoning 39(3), 249–276 (2007)

18. Hollunder, B., Baader, F.: Qualifying number restrictions in concept languages.
In: Allen, J., Fikes, R., Sandewall, E. (eds.) Proc. 2nd Intl. Conf. on Principles
of Knowledge Representation and Reasoning (KR 1991), pp. 335–346. Morgan
Kaufmann, San Francisco (1991)

Terminating Tableaux for Hybrid Logic with the Difference Modality 225

19. Calvanese, D., De Giacomo, G., Rosati, R.: A note on encoding inverse roles and
functional restrictions in ALC knowledge bases. In: Franconi, E., De Giacomo,
G., MacGregor, R.M., Nutt, W., Welty, C.A. (eds.) Proc. 1998 Intl. Workshop on
Description Logics (DL 1998). CEUR Workshop Proceedings, vol. 11, pp. 69–71
(1998)

20. Grädel, E.: On the restraining power of guards. J. Symb. Log. 64(4), 1719–1742
(1999)

21. Ganzinger, H., de Nivelle, H.: A superposition decision procedure for the guarded
fragment with equality. In: Proc. 14th Annual IEEE Symposium on Logic in Com-
puter Science (LICS 1999), pp. 295–304. IEEE Computer Society Press, Los Alami-
tos (1999)

22. Gallin, D.: Intensional and Higher-Order Modal Logic. With Applications to Mon-
tague Semantics. Mathematics Studies, vol. 19. North-Holland, Amsterdam (1975)

23. Gamut, L.T.F.: Logic, Language and Meaning. In: Intensional Logic and Logical
Grammar, vol. 2. The University of Chicago Press (1991)

24. Carpenter, B.: Type-Logical Semantics. Language, Speech, and Communication.
The MIT Press, Cambridge (1997)

25. Hardt, M., Smolka, G.: Higher-order syntax and saturation algorithms for hybrid
logic. Electr. Notes Theor. Comput. Sci. 174(6), 15–27 (2007)

26. Benzmüller, C.E., Paulson, L.C.: Exploring properties of normal multimodal logics
in simple type theory with LEO-II. In: Benzmüller, C.E., Brown, C.E., Siekmann,
J., Statman, R. (eds.) Festschrift in Honor of Peter B. Andrews on His 70th Birth-
day. Studies in Logic and the Foundations of Mathematics. IFCoLog (to appear)

27. Kaminski, M., Smolka, G.: A straightforward saturation-based decision procedure
for hybrid logic. In: Intl. Workshop on Hybrid Logic 2007 (HyLo 2007) (2007)

28. Bolander, T., Braüner, T.: Tableau-based decision procedures for hybrid logic. J.
Log. Comput. 16(6), 737–763 (2006)

29. Massacci, F.: Strongly analytic tableaux for normal modal logics. In: Bundy, A.
(ed.) CADE 1994. LNCS(LNAI), vol. 814, pp. 723–737. Springer, Heidelberg (1994)

30. Donini, F.M., Massacci, F.: Exptime tableaux for ALC. Artif. Intell. 124(1), 87–138
(2000)

31. Goré, R., Nguyen, L.A.: EXPTIME tableaux with global caching for description
logics with transitive roles, inverse roles and role hierarchies. In: Olivetti, N. (ed.)
TABLEAUX 2007. LNCS (LNAI), vol. 4548, pp. 133–148. Springer, Heidelberg
(2007)

32. Spaan, E.: Complexity of Modal Logics. PhD thesis, ILLC, University of Amster-
dam (1993)

33. Blackburn, P., van Benthem, J., Wolter, F. (eds.): Handbook of Modal Logic.
Studies in Logic and Practical Reasoning, vol. 3. Elsevier, Amsterdam (2006)

Automata-Based Axiom Pinpointing

Franz Baader1, and Rafael Peñaloza2,

1 Theoretical Computer Science, TU Dresden, Germany
baader@tcs.inf.tu-dresden.de

2 Intelligent Systems, Uni. Leipzig, Germany
penaloza@informatik.uni-leipzig.de

Abstract. Axiom pinpointing has been introduced in description logics
(DL) to help the user understand the reasons why consequences hold by
computing minimal subsets of the knowledge base that have the conse-
quence in question (MinA). Most of the pinpointing algorithms described
in the DL literature are obtained as extensions of tableau-based reason-
ing algorithms for computing consequences from DL knowledge bases. In
this paper, we show that automata-based algorithms for reasoning in DLs
can also be extended to pinpointing algorithms. The idea is that the tree
automaton constructed by the automata-based approach can be trans-
formed into a weighted tree automaton whose so-called behaviour yields
a pinpointing formula, i.e., a monotone Boolean formula whose minimal
valuations correspond to the MinAs. We also develop an approach for
computing the behaviour of a given weighted tree automaton.

1 Introduction

Description logics (DLs) [2] are a family of logic-based knowledge representation
formalisms, which are employed in various application domains, such as nat-
ural language processing, configuration, databases, and bio-medical ontologies,
but their most notable success so far is the adoption of the DL-based language
OWL [15] as standard ontology language for the semantic web. As the size of
DL-based ontologies grows, tools that support improving the quality of such on-
tologies become more important. DL reasoners [14, 13, 22] can be used to detect
inconsistencies and to infer other implicit consequences, such as subsumption re-
lationships between concepts or instance relationships between individuals and
concepts. However, for a developer or user of a DL-based ontology, it is often
quite hard to understand why a certain consequence computed by the reasoner
actually follows from the knowledge base. For example, in the current DL ver-
sion of the medical ontology SNOMED CT1 the concept Amputation-of-Finger
is classified as a subconcept of Amputation-of-Arm. Finding the six axioms that
are responsible for this error (see [9]) among the more than 350,000 terminologi-
cal axioms of SNOMED without support by an automated reasoning tool is not
easy.
� Partially supported by NICTA, Canberra Research Lab.

�� Funded by the German Research Foundation (DFG) under grant GRK 446.
1 see http://www.ihtsdo.org/our-standards/

A. Armando, P. Baumgartner, and G. Dowek (Eds.): IJCAR 2008, LNCS 5195, pp. 226–241, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Automata-Based Axiom Pinpointing 227

Axiom pinpointing [19] has been introduced to help developers or users of
DL-based ontologies understand the reasons why a certain consequence holds
by computing minimal subsets of the knowledge base that have the consequence
in question (MinA). Most of the pinpointing algorithms described in the DL
literature (e.g., [4, 19, 18, 17, 16]) are obtained as extensions of tableau-based
reasoning algorithms [8] for computing consequences from DL knowledge bases.
The pinpointing algorithms and proofs of their correctness in these papers are
given for a specific DL and a specific type of knowledge base only, and it is not
clear to which of the known tableau-based algorithms for DLs the approaches
really generalize. For example, the pinpointing extension described in [16], which
can deal with general concept inclusions (GCIs) in the DL ALC, follows the
approach introduced in [4], but since GCIs require the introduction of so-called
blocking conditions into the tableau-based algorithm to ensure termination [8],
there are some new non-trivial problems to be solved.

To overcome the problem of having to design a new pinpointing extension for
every tableau-based algorithm, we have introduced in [5] a general approach for
extending tableau-based algorithms to pinpointing algorithms. This approach
has, however, some annoying limitations. First, it only applies to tableau-based
algorithms that terminate without requiring any cycle-checking mechanism such
as blocking. Second, termination of the tableau-based algorithm one starts with
does not necessarily transfer to its pinpointing extension. Though these problems
can, in principle, be solved by restricting the general framework to so-called forest
tableaux [7, 6], this solution makes the definitions and proofs quite complicated
and less intuitive. Also, the approach can still only handle the most simple
version of blocking, usually called subset blocking in the DL literature.

In the present paper, we propose a different general approach for obtaining
pinpointing algorithms, which also applies to DLs for which the termination of
tableau-based algorithms requires the use of appropriate blocking conditions. It is
well-known that automata working on infinite trees can often be used to construct
worst-case optimal decision procedures for such DLs [10]. In this automata-based
approach, the input inference problem Γ is translated into a tree automaton AΓ ,
which is then tested for emptiness. Basically, our approach transforms the tree
automaton AΓ into a weighted tree automaton working on infinite trees,2 whose
so-called behaviour yields a pinpointing formula, i.e., a monotone Boolean for-
mula that encodes all the MinAs of Γ . To obtain an actual pinpointing algorithm,
we must develop an algorithm for computing the behaviour of weighted tree au-
tomata working on infinite trees. We will use the DL SI, which extends the basic
DL ALC [20] with transitive and inverse roles, to illustrate our approach. The use
of SI is, on the one hand, motivated by the fact that the presence of inverses in
SI requires tableau-based algorithms to use a blocking condition that is more so-
phisticated than subset blocking [8]. On the other hand, the extension of their
approach to SI is mentioned as an open problem in [16].

2 Although weighted automata working on finite trees [21] and weighted automata
working on infinite words [11] have been considered before, this appears to be the
first use of weighted automata working on infinite trees.

228 F. Baader and R. Peñaloza

2 Preliminaries

In this section, we first introduce the DL SI, and then recall the relevant defi-
nitions regarding pinpointing from [5].

2.1 The Description Logic SI

As mentioned above, SI extends ALC with transitive and inverse roles. An
example of a role that should be interpreted as transitive is has-descendant, while
has-ancestor should be interpreted as the inverse of has-descendant. Instead of
employing the usual approach of “hardcoding” inverse and transitive roles into
the syntax and semantics of concept descriptions, we allow the use of inverse
and transitivity axioms in the knowledge base. This enables us to pinpoint also
these kinds of axioms as reasons for certain consequences. Thus, the concept
descriptions that we consider are simply ALC concept descriptions.

Definition 1 (ALC concept descriptions). Let NC be a set of concept names
and NR a set of role names. The set of ALC concept descriptions is the smallest
set such that

– all concept names are ALC concept descriptions;
– if C and D are ALC concept descriptions, then so are ¬C, C!D, and C"D;
– if C is a ALC concept description and r ∈ NR, then ∃r.C and ∀r.C are ALC

concept descriptions.

An interpretation is a pair I = (ΔI , ·I) where the domain ΔI is a non-empty
set and ·I is a function that assigns to every concept name A a set AI ⊆ ΔI and
to every role name r a binary relation rI ⊆ ΔI ×ΔI . This function is extended
to ALC concept descriptions as follows:

– (C "D)I = CI ∩DI , (C !D)I = CI ∪DI , (¬C)I = ΔI \ CI ;
– (∃r.C)I = {x ∈ ΔI | there is a y ∈ ΔI with (x, y) ∈ rI and y ∈ CI};
– (∀r.C)I = {x ∈ ΔI | for all y ∈ ΔI , (x, y) ∈ rI implies y ∈ CI}.

In this paper we restrict the attention to terminological knowledge, which is
given by a so-called TBox.

Definition 2 (SI TBoxes). An SI TBox is a finite set of axioms of the fol-
lowing form: (i) C 0 D where C and D are ALC concept descriptions (GCI);
(ii) trans(r) where r ∈ NR (transitivity axiom); (iii) inv(r, s), where r �= s ∈ NR

(inverse axiom), such that every r ∈ NR appears in at most one inverse axiom.
An interpretation I is called a model of the SI TBox T if it satisfies all

axioms in T , i.e., if (i) C 0 D ∈ T implies CI ⊆ DI; (ii) trans(r) ∈ T implies
that rI is transitive; (iii) inv(r, s) ∈ T implies that (x, y) ∈ rI iff (y, x) ∈ sI.

The main inference problems for terminological knowledge are satisfiability and
subsumption

Automata-Based Axiom Pinpointing 229

Definition 3 (satisfiability, subsumption). Let C and D be ALC concept
descriptions and T an SI TBox. We say that C is satisfiable w.r.t. T if there
is a model I of T such that CI �= ∅. In this case, I is also called a model of C
w.r.t. T . We call C unsatisfiable w.r.t. T if it does not have a model w.r.t. T .
Finally, we say that C is subsumed by D w.r.t. T if CI ⊆ DI holds in every
model I of T .

We want to pinpoint reasons for unsatisfiability and for subsumption. Since C
is subsumed by D w.r.t. T iff C " ¬D is unsatisfiable w.r.t. T , it is obviously
sufficient to design a pinpointing algorithm for unsatisfiability.

The automata-based approach for deciding (un)satisfiability uses the fact that
an ALC concept description C is satisfiable w.r.t. an SI TBox T iff it has a
certain tree-shaped model, called Hintikka tree for C and T . It constructs a
tree automaton whose runs are exactly the Hintikka trees for C and T (see
Section 4.2), and then tests this automaton for emptiness.

2.2 Basic Definitions for Pinpointing

Following [5], we define pinpointing not for a specific DL and inference problem,
but rather in a more general setting. The type of inference problem that we will
consider is deciding a so-called c-property for a given set of axiomatized inputs.

Definition 4 (axiomatized input, c-property). Let I and T be sets of in-
puts and axioms, respectively, and let Padmis(T) ⊆ Pfin(T) be a set of finite
subsets of T such that T ∈ Padmis(T) implies T ′ ∈ Padmis(T) for all T ′ ⊆ T .
An axiomatized input for I and Padmis(T) is of the form (I, T) where I ∈ I
and T ∈ Padmis(T).

A consequence property (or c-property for short) is a set P ⊆ I×Padmis(T)
such that (I, T) ∈ P implies (I, T ′) ∈ P for every T ′ ∈Padmis(T) with T ′ ⊇ T .

For example, let I consists of all ALC concept descriptions, T of all GCIs, tran-
sitivity axioms, and inverse axioms, and Padmis(T) of all SI TBoxes. The fol-
lowing is a c-property: P = {(C, T) | C is unsatisfiable w.r.t. T }.

Definition 5. Given an axiomatized input Γ = (I, T) and a c-property P, a
set of axioms S ⊆ T is called a minimal axiom set (MinA) for Γ w.r.t. P if
(I,S) ∈ P and (I,S′) /∈ P for every S′ ⊂ S. The set of all MinAs for Γ w.r.t.
P is denoted by MINP(Γ).

Note that the notion of a MinA is only interesting if Γ ∈ P ; otherwise, the
monotonicity requirement for P entails that MINP(Γ) = ∅. In our example,
consider the axiomatized input Γ = (A " ∀r.C, T) where T consists of

ax1: A 0 ∃r.B, ax2: B 0 ∀s.¬A, ax3: C 0 ¬B, ax4: inv(r, s) (1)

It is easy to see that Γ ∈ P , and that the set of all MinAs for Γ is MINP(Γ) =
{{ax1, ax2, ax4}, {ax1, ax3}}.

230 F. Baader and R. Peñaloza

Instead of computing all MinAs, one can also compute a pinpointing formula.
To define this formula, we assume that every axiom t ∈ T is labeled with a
unique propositional variable, lab(t). Let lab(T) be the set of all propositional
variables labeling an axiom in T . A monotone Boolean formula over lab(T) is a
Boolean formula using variables in lab(T) and only the connectives conjunction
and disjunction. In addition, the constants � and ⊥, which always evaluate
to true and false, respectively, are monotone Boolean formulae. We identify a
propositional valuation with the set of propositional variables that it makes true.
For a valuation V ⊆ lab(T), let TV = {t ∈ T | lab(t) ∈ V}.

Definition 6 (pinpointing formula). Given a c-property P and an axioma-
tized input Γ = (I, T), the monotone Boolean formula φ over lab(T) is called
a pinpointing formula for Γ w.r.t. P if the following holds for every valuation
V ⊆ lab(T): (I, TV) ∈ P iff V satisfies φ.

In our example, we can take lab(T) = {ax1, . . . , ax4} as set of propositional
variables. It is easy to see that ax1 ∧ ((ax2 ∧ ax4)∨ ax3) is a pinpointing formula
for Γ w.r.t. P .

Valuations can be ordered by set inclusion. The following is an immediate
consequence of the definition of a pinpointing formula [4]: if φ a pinpointing
formula for Γ w.r.t. P , then

MINP(Γ) = {TV | V is a minimal valuation satisfying φ},

This shows that it is enough to design an algorithm for computing a pinpointing
formula to obtain all MinAs. However, the reduction suggested by the above
identity is not polynomial. One possible way to obtain MINP(Γ) from φ is to
first transform φ into disjunctive normal form, and then remove superfluous
disjuncts. It is well-known that this can cause an exponential blowup. This
should, however, not be viewed as a disadvantage of approaches computing the
pinpointing formula rather than directly MINP(Γ). If such a blowup happens,
then the pinpointing formula actually yields a compact representation of all
MinAs.

3 Looping Tree Automata

In this section, we introduce both unweighted and weighted looping tree au-
tomata. These automata receive infinite trees of a fixed arity k as inputs. For
a positive integer k, we denote the set {1, . . . , k} by K. The nodes of our trees
can be identified by words in K∗ in the usual way: the root node is identified
by the empty word ε, and the i-th successor of the node u is identified by ui
for 1 ≤ i ≤ k. In the case of labeled trees, we will refer to the labeling of the
node u ∈ K∗ in the tree r by r(u). We will also use

−−→
r(u) to denote the tuple

−−→
r(u) = (r(u), r(u1), . . . , r(uk)). An infinite tree r with labels from a set Q can
be represented as a mapping r : K∗ → Q.

Automata-Based Axiom Pinpointing 231

For our purpose, it is sufficient to use unlabeled infinite trees as inputs for
our tree automata. For a fixed arity k, there is exactly one such tree, which we
can identify with the set of its nodes, i.e., with K∗.

Definition 7 (looping tree automaton). A looping tree automaton for arity
k is a tuple (Q,Δ, I), where Q is a finite set of states, Δ ⊆ Qk+1 is the transition
relation, and I ⊆ Q is the set of initial states. A run of this automaton on the
unlabeled tree K∗ is a labeled k-ary tree r : K∗ → Q such that

−−→
r(u) ∈ Δ for

all u ∈ K∗. This run is successful if r(ε) ∈ I. The emptiness problem for
looping tree automata for arity k is the problem of deciding whether a given such
automaton has a successful run or not.

The emptiness problem for looping tree automata can be decided using time
polynomial in the size of the automaton. The decision procedure computes all the
bad states, i.e., states that do not occur in any run, in a bottom-up fashion [24, 10]:
starting with the empty set as initial set of known bad states, the algorithm
iteratively adds states to this set as follows: if all the transitions starting from
a state q contain a known bad state, then q is also known to be bad. Note
that the condition for adding a bad state q also applies to states that have no
transition. Obviously, the set of known bad states becomes stable after at most
|Q| iterations, and it is easy to show that the set of states obtained this way is
indeed the set of all bad states. The automaton has a successful run iff there is
an initial state that is not bad.

We will later extend automata-based decision procedures into algorithms
that compute pinpointing formulae by transforming looping tree automata into
weighted looping automata. The weights of such automata come from a complete
distributive lattice [12].

Definition 8 (complete distributive lattice). A complete distributive lat-
tice is a partially ordered set (S,≤S) such that infima and suprema of arbitrary
subsets of S always exist and distribute over each other.

In the following, we will often simple use the carrier set S to denote the complete
distributive lattice (S,≤S). The infimum (supremum) of a subset T ⊆ S will be
denoted by

⊗

t∈T t (
⊕

t∈T t). For the infimum (supremum) of two elements, we
will also use infix notation, i.e., write t1 ⊗ t2 (t1 ⊕ t2) to denote the infimum
(supremum) of the set {t1, t2}. The least element of S (i.e., the infimum of the
whole set S) will be denoted by 0, and the greatest element (i.e., the supremum
of the whole set S) by 1.

It should be noted that our assumption that the weights come from a complete
distributive lattice is stronger than the one usually encountered in the literature
on weighted automata. In fact, for automata working on finite trees, it is sufficient
to assume that the weights come from a so-called semiring [21]. In order to have a
well-defined behaviour also for weighted automata working on infinite objects, the
existence of infinite products and sums is required [11]. The additional properties
imposed by our requirement to have a complete distributive lattice (in particu-
lar, the idempotency of product and sum) are used to show that we can actually
compute the behaviour of our weighted looping automata (see Section 5).

232 F. Baader and R. Peñaloza

Definition 9 (weighted looping automaton). Let S be a complete distrib-
utive lattice. A weighted looping automaton (WLA) on S for arity k is a tuple
A = (Q, in, wt) where Q is a finite set of states, in : Q → S is the initial distrib-
ution, and wt : Qk+1 → S assigns weights to transitions. A run of A is a labeled
tree r : K∗ → Q. The weight of this run is wt(r) = in(r(ε)) ⊗

⊗

u∈K∗ wt(
−−→
r(u)).

The behaviour of the automaton A is ‖A‖ :=
⊕

r:K∗→Q wt(r).

For example, the Boolean semiring B = ({0, 1},∧,∨, 1, 0) is a complete distrib-
utive lattice, where the partial order is defined as 1 ≤B 0. Note that we have
defined 1 to be smaller than 0, and thus conjunction yields the supremum (i.e.,
is the “addition” ⊕) and disjunction yields the infimum (i.e., is the “multiplica-
tion” ⊗). Likewise, 1 is the the least element 0, and 0 is the greatest element
1. We can easily transform a given looping tree automaton A = (Q, Δ, I) into a
WLA Aw on B such that the behaviour of Aw is 0 iff A has a successful run. In
Aw, the initial distribution maps initial states to 0 and all other states to 1; a
tuple in Qk+1 receives weight 0 if it belongs to Δ, and weight 1 otherwise.

The bottom-up emptiness test for looping tree automata sketched above can
be adapted such that it computes the behaviour of Aw as follows. We construct
a function bad : Q → {0, 1} such that bad(q) = 1 iff q is a bad state. In the
beginning, no state is known to be bad, and thus we start the iteration with
bad0(q) = 0 for all q ∈ Q. Now assume that the function badi : Q → {0, 1} for
i ≥ 0 has already been computed. In the next step of our iteration, q becomes
known to be bad, i.e., badi+1(q) is set to 1, if every transition starting from q
leads to at least one state already know to be bad. Thus, we have

badi+1(q) =
∧

(q,q1,...,qk)∈Qk+1

⎛

⎝wt(q, q1, . . . , qk) ∨
k∨

j=1

badi(qj)

⎞

⎠ . (2)

The function bad is the limit of this iteration, which is reached after at most |Q|
iterations. It is easy to see that the behaviour of Aw is then

∧

q∈Q in(q)∨bad(q).
In Section 5, we will see that the behaviour of a WLA can always be computed
by such an iteration.

4 Automata-Based Pinpointing

In this section, we first introduce our general approach for automata-based pin-
pointing, and then show how it can be applied to finding a pinpointing formula
for unsatisfiability in SI.

4.1 The General Approach

Basically, the automata-based approach for deciding a c-property P takes ax-
iomatized inputs Γ = (I, T) and translates them into looping tree automata
AΓ such that Γ ∈ P iff AΓ does not have a successful run. For example, the
automaton constructed from a concept description C and a TBox T has a suc-
cessful run iff C is satisfiable w.r.t. T , where the c-property is unsatisfiability.

Automata-Based Axiom Pinpointing 233

If the translation from Γ to AΓ is an arbitrary function, then we have no way
of knowing how the axioms in T influence the behaviour of the automaton, and
thus it is not clear how to construct a corresponding pinpointing automaton. For
this reason, we will assume that the automaton AΓ for Γ = (I, T) in a certain
sense also contains automata for all axiomatized inputs (I, T ′) with T ′ ⊆ T ,
which can be obtained by appropriately restricting the transitions of AΓ . To
be more precise, let A = (Q, Δ, I) be a looping tree automaton for arity k and
Γ = (I, T) an axiomatized input. A function res : T → P(Qk+1) is called a
restricting function. The restricting function res can be extended to sets of ax-
ioms T ′ ⊆ T as follows: res(T ′) :=

⋂

t∈T ′ res(t). For T ′ ⊆ T , the T ′-restricted
subautomaton of A w.r.t. res is defined as A|T ′ := (Q, Δ ∩ res(T ′), I).

Definition 10 (axiomatic automaton). Let A = (Q, Δ, I) be a looping tree
automaton for arity k, Γ = (I, T) an axiomatized input, and res : T → P(Qk+1)
a restricting function. Then we call (A, res) an axiomatic automaton for Γ .
Given a c-property P, we say that (A, res) is correct for Γ w.r.t. P if the following
holds for every T ′ ⊆ T : (I, T ′) ∈ P iff A|T ′ does not have a successful run.

Given a correct axiomatic automaton, we show how to transform it into a
weighted looping automaton whose behaviour is a pinpointing formula. This
weighted automaton uses the T -Boolean semiring, which is defined as BT :=
(B̂(T),∧,∨,�,⊥), where B̂(T) is the quotient set of all monotone Boolean for-
mulae over lab(T) by the propositional equivalence relation, i.e., two proposi-
tionally equivalent formulae correspond to the same element of B̂(T). It is easy
to see that this semiring is indeed a complete distributive lattice, where the
partial order is defined as φ ≤ ψ iff ψ → φ is valid. Note that, similar to the
case of the Boolean semiring B, conjunction is the semiring addition (i.e., yields
the supremum ⊕) and disjunction is the semiring multiplication (i.e., yields the
infimum ⊗). Likewise, � is the least element 0 and ⊥ is the greatest element 1.

Definition 11 (pinpointing automaton). Let (A, res), with A = (Q, Δ, I), be
an axiomatic automaton for Γ = (I, T). The violating function vio : Qk+1 → BT

is given by
vio(q0, q1, . . . , qk) =

∨

{t∈T |(q0,q1,...,qk)/∈res(t)}
lab(t).

The pinpointing automaton induced by (A, res) w.r.t. T is the WLA (A, res)pin =
(Q, in, wt) on BT , where

in(q) =

{

⊥ if q ∈ I,
� otherwise;

wt(q0, q1, . . . , qk) =

{

vio(q0, q1, . . . , qk) if (q0, q1, . . . , qk) ∈ Δ,
� otherwise.

It is easy to see that, if r : K∗ → Q is a successful run of A, then its weight
is given by wt(r) =

∨

u∈K∗ vio(
−−→
r(u)); otherwise, wt(r) = �. Intuitively, the vio-

lating function expresses which axioms are not “satisfied” by a given transition,

234 F. Baader and R. Peñaloza

and thus the weight of a run accumulates all the axioms violated by any of the
transitions appearing as labels in it. Removing all the axioms appearing in that
formula would yield a subset of axioms which actually allows for this run; and
hence, due to correctness, the property does not hold anymore. Conjoining this
information for all possible runs leads us to a pinpointing formula.

Theorem 1. Let P be a c-property, Γ = (I, T) an axiomatized input, and
(A, res) a correct axiomatic automaton for Γ w.r.t. P. Then ‖(A, res)pin‖ is a
pinpointing formula for Γ w.r.t. P.

Proof. We need to show that, for every valuation V ⊆ lab(T), it holds that
V satisfies ‖(A, res)pin‖ iff (I, TV) ∈ P . Let V ⊆ lab(T). Suppose first that
(I, TV) /∈ P . Since (A, res) is correct for Γ w.r.t. P , there must be a successful
run r of A|TV . Consequently,

−−→
r(u) ∈ res(TV) holds for every u ∈ K∗, and thus V

cannot satisfy vio(
−−→
r(u)), for any u ∈ K∗. Since r is a successful run of A|TV , it is

also a successful run of A, which implies wt(r) =
∨

u∈K∗ vio(
−−→
r(u)). Thus, V does

not satisfy wt(r). But then V also cannot satisfy
∧

r:K∗→Qwt(r) = ‖(A, res)pin‖.
Conversely, if V does not satisfy ‖(A, res)pin‖ =

∧

r:K∗→Q wt(r), then there

must exist a run r such that V does not satisfy wt(r). This implies that
−−→
r(u) ∈

res(TV) for all u ∈ K∗. Consequently, r is a successful run of A|TV , which shows
(I, TV) /∈ P . "!

4.2 Constructing Axiomatic Automata for SI

If we want to apply Theorem 1 to obtain an automata-based approach for pin-
pointing unsatisfiability in SI, we must show how, given an ALC concept de-
scription C and an SI TBox T , we can construct an axiomatic automaton
(AC,T , resC,T) that is correct for (C, T) w.r.t. unsatisfiability. For this purpose,
we must adapt the known construction of a looping tree automaton for SI [3]
such that it yields an axiomatic automaton.3

As mentioned before, the automata-based approach for deciding (un)satisfia-
bility uses the fact that a concept is satisfiable iff it has a so-called Hintikka
tree. The automaton to be constructed will have exactly these Hintikka trees
as its runs. Intuitively, Hintikka trees are obtained from tree-shaped models by
labeling every node with the “relevant” concept descriptions to which it belongs.

As usual, we assume in the following that all concept descriptions are in
negation normal form (NNF); that is, negation appears only directly in front of
concept names. Any ALC concept description can be transformed into NNF in
linear time using de Morgan, duality of quantifiers, and elimination of double
negations. We denote the NNF of C by nnf(C) and nnf(¬C) by �C. Given an
3 On the one hand, the construction in [3] is more complex than the one given here since

the states of the automata in [3] contain additional information needed for detecting
cycles in a run as early as possible, which is not relevant for the present paper.
On the other hand, the states of the automata constructed here contain additional
information about transitivity needed for defining the restricting function.

Automata-Based Axiom Pinpointing 235

ALC concept description C and an SI TBox T , the set of relevant concept
descriptions is the set of all subdescriptions of C and of the concept descriptions
�D ! E for D 0 E ∈ T . We denote this set by sub(C, T). The set of role
names occurring in C or T is denoted by rol(C, T). The states of our automaton
are so-called Hintikka sets, which in addition to subdescriptions also contain
information about which roles are supposed to be transitive.

Definition 12 (Hintikka set). A set H ⊆ sub(C, T) ∪ rol(C, T) is called a
Hintikka set for (C, T) if the following three conditions are satisfied: (i) if D"E ∈
H, then {D,E} ⊆ H; (ii) if D ! E ∈ H, then {D,E} ∩H �= ∅; and (iii) there
is no concept name A such that {A,¬A} ⊆ H.

The Hintikka set H is compatible with the GCI D 0 E ∈ T if it is the empty
set or contains �D!E. It is compatible with the transitivity axiom trans(r) ∈ T
if it is the empty set or contains r. Finally, it is compatible with the inverse
axiom inv(r, s) ∈ T , if r ∈ H implies s ∈ H and vice versa.

The arity k of our automaton is determined by the number of existential restric-
tions, i.e., concept descriptions of the form ∃r.D, contained in sub(C, T). Since
we need to know which successor in the tree corresponds to which existential
restriction, we fix an arbitrary bijection ϕ : {∃r.D | ∃r.D ∈ sub(C, T)} → K. To
obtain full k-ary trees, we will use nodes labeled with the empty set (which is a
Hintikka set) as dummy nodes. The following Hintikka conditions will be used
to define the transitions of our automaton.

Definition 13 (Hintikka condition). The tuple of Hintikka sets (H0, H1, . . . ,
Hk) for (C, T) satisfies the Hintikka condition if the following holds for every
existential restriction ∃r.D ∈ sub(C, T): (i) If ∃r.D ∈ H0, then Hϕ(∃r.D) contains
D as well as every E for which there is a value restriction ∀r.E ∈ H0; if,
in addition, r ∈ H0, then ∀r.E belongs to Hϕ(∃r.D) for every value restriction
∀r.E ∈ H0. (ii) If ∃r.D /∈ H0, then Hϕ(∃r.D) = ∅.

This tuple is compatible with the GCI D 0 E ∈ T (compatible with the
transitivity axiom trans(r) ∈ T) if all its components are compatible with D 0
E (trans(r)). It is compatible with the inverse axiom inv(r, s) ∈ T if all its
components are compatible with inv(r, s), and the following holds for all t ∈ {r, s}
and t− ∈ {r, s} \ {t}: for every ∀t.F ∈ Hϕ(∃t−.D), the set H0 contains F , and
additionally ∀t−.F if t ∈ H0.

We are now ready to define the axiomatic automaton for unsatisfiability in SI.

Definition 14 (axiomatic automaton for SI). Let C be an ALC concept
description, T an SI TBox, and k the number of existential restrictions in
sub(C, T). The axiomatic automaton (AC,T , resC,T) has as its first component
the looping tree automaton AC,T := (Q,Δ, I), where

– Q consists of all Hintikka sets for (C, T);

236 F. Baader and R. Peñaloza

– Δ consists of all (H0, H1, . . . , Hk) ∈ Qk+1 that satisfy the Hintikka condition;
– I := {H ∈ Q | C ∈ H}.

The restricting function resC,T maps each axiom t ∈ T to the set of all tuples in
Δ that are compatible with t.

Correctness of this automaton construction can be shown by an adaptation of
the arguments used in [3].

Theorem 2. Let C be an ALC concept description and T an SI TBox. The
axiomatic automaton (AC,T , resC,T) is correct for (C, T) w.r.t. unsatisfiability.

Theorem 1 shows that it is enough to compute the behaviour of the pinpointing
automaton (AC,T , resC,T)pin induced by (AC,T , resC,T) in order to obtain a pin-
pointing formula for (C, T) w.r.t. unsatisfiability. In the next section, we show
how the behaviour of a weighted looping automaton on a complete distributive
lattice can be computed.

5 Computing the Behaviour of a WLA

Clearly, the naive approach that directly uses the definition of the behaviour by
first computing and then adding up the weights of all runs would not produce
a result in finite time since there are infinitely many runs, which are themselves
infinite. Instead, we will use a bottom-up method for computing the behaviour,
which generalizes the approach sketched in Section 3 for the special case of
weighted automata simulating unweighted ones. In the following, we assume
that A = (Q, in, wt) is an arbitrary, but fixed, WLA on the complete distributive
lattice S.

We will show that the WLA A induces a monotone operator O : SQ → SQ,
where SQ is the set of all mappings from Q to S, and that the behaviour of A can
easily be obtained from the greatest fixpoint of this operator. The partial order
≤S on S can be transferred to SQ in the usual way, by applying it componentwise:
if σ, σ′ ∈ SQ, then σ ≤SQ σ′ iff σ(q) ≤S σ′(q) for all q ∈ Q. It is easy to see that
(SQ,≤SQ) is again a complete distributive lattice S. We will use ⊗ and ⊕ also
to denote the infimum and supremum in SQ. The least (greatest) element of SQ

is the function 0̃ (1̃) that maps every q ∈ Q to 0 (1).
Following the idea of Equation (2), the operator O is defined as follows for

every σ ∈ SQ:

O(σ)(q) =
⊕

(q,q1,...,qk)∈Qk+1

wt(q, q1, . . . , qk) ⊗
k⊗

j=1

σ(qj). (3)

Lemma 1. The operator O is continuous, i.e., for any increasing sequence
σ0 ≤SQ σ1 ≤SQ σ2 ≤SQ . . . we have

⊕

i≥0 O(σi) = O(
⊕

i≥0 σi).

Automata-Based Axiom Pinpointing 237

Proof. For any sequence σ0, σ1, σ2, . . . of elements of SQ we have

⊕

i≥0

O(σi)(q) =
⊕

i≥0

⊕

(q,q1,...,qk)∈Qk+1

wt(q, q1, . . . , qk) ⊗
k⊗

j=1

σi(qj)

=
⊕

(q,q1,...,qk)∈Qk+1

⊕

i≥0

wt(q, q1, . . . , qk) ⊗
k⊗

j=1

σi(qj)

=
⊕

(q,q1,...,qk)∈Qk+1

wt(q, q1, . . . , qk) ⊗
⊕

i≥0

k⊗

j=1

σi(qj) (4)

=
⊕

(q,q1,...,qk)∈Qk+1

wt(q, q1, . . . , qk) ⊗
k⊗

j=1

⊕

i≥0

σi(qj) (5)

= O(
⊕

i≥0

σi),

where Identities (4) and (5) are a consequence of distributivity. ��

By Tarski’s fixpoint theorem [23], this implies that O has
⊗

n≥0 On(1̃) as its
greatest fixpoint (gfp). If S happens to be finite, and hence also SQ is finite,
this gfp is obviously reached after finitely many iterations, i.e., there exists a
smallest m, 0 ≤ m ≤ |S||Q| such that Om(1̃) = Om+1(1̃), and for this m we have
⊗

n≥0 On(1̃) = Om(1̃). Note that the complete distributive lattice BT that we
have used in our pinpointing automaton is actually finite. Nevertheless, we will
not make a finiteness assumption on the complete distributive lattice S when
showing that the behaviour of any WLA on S can effectively be computed.

Next, we showhow the gfp ofO relates to the behaviour of the givenWLAA. Let
K∗

q := {r : K∗ → Q | r(ε) = q} denote the set of all runs whose root is labeled with

q. Consider the function σ‖ ∈ SQ where σ‖(q) :=
⊕

r∈K∗
q

⊗

u∈K∗ wt(
−−→
r(u)). Given

this function, we can obtain the behaviour of the WLA A as follows:

Lemma 2. ‖A‖ =
⊕

q∈Q in(q) ⊗ σ‖(q).

It turns out that σ‖ is in fact the greatest fixpoint of O. We will prove this
with the help of so-called partial runs. For n ≥ 0 define K≤n :=

⋃n
i=0 Ki, and

K≤−1 := ∅. A partial run of depth m is simply a mapping r : K≤m → Q. The
set of partial runs with root label q ∈ Q is denoted by K≤m

q .

Lemma 3. For all n ≥ 0 and q ∈ Q it holds that

On(1̃)(q) =
⊕

r∈K≤n
q

⊗

u∈K≤n−1

wt(
−−→
r(u)).

Proof. The proof is by induction on n. For n = 0, we have that, on the one
hand, O0(1̃)(q) = 1̃(q) = 1. On the other hand, since K≤−1 = ∅, we have

238 F. Baader and R. Peñaloza

⊗

u∈K≤−1 wt(
−−→
r(u)) = 1. Now, assume that the above identity holds for n.

On+1(1̃)(q) =
⊕

(q1,...,qk)∈Qk

wt(q, q1, . . . , qk) ⊗
k⊗

j=1

On(1̃)(qj) (6)

=
⊕

(q1,...,qk)∈Qk

wt(q, q1, . . . , qk) ⊗
k⊗

j=1

⊕

rj∈K≤n
qj

⊗

u∈K≤n−1

wt(
−−−→
rj(u)) (7)

=
⊕

(q1,...,qk)∈Qk

wt(q, q1, . . . , qk) ⊗
⊕

r1∈K≤n
q1 ,...,rk∈K≤n

qk

k⊗

j=1

⊗

u∈K≤n−1

wt(
−−−→
rj(u)) (8)

=
⊕

(q1,...,qk)∈Qk

⊕

r1∈K≤n
q1 ,...,rk∈K≤n

qk

wt(q, q1, . . . , qk) ⊗
k⊗

j=1

⊗

u∈K≤n−1

wt(
−−−→
rj(u)) (9)

=
⊕

r∈K
≤n+1
q

wt(
−−→
r(ε)) ⊗

k⊗

j=1

⊗

u∈K≤n−1

wt(
−−−→
r(ju)) (10)

=
⊕

r∈K
≤n+1
q

wt(
−−→
r(ε)) ⊗

⊗

v∈K≤n\{ε}

wt(
−−→
r(v))

=
⊕

r∈K≤n+1
q

⊗

u∈K≤n

wt(
−−→
r(u))

Identity (6) employs the definition of O, and (7) the induction hypothesis. Iden-
tity (8) uses the fact that SQ is a distributive lattice, which allows us to multiply
out, and Identity (9) multiplies wt(q, q1, . . . , qk) in. Identity (10) simplifies the
two sums by constructing a run of larger depth. Instead of considering the tran-
sition (q, q1, . . . , qk) and then runs of depth n starting with q1, . . . , qk, we simply
take the corresponding run of depth n+1 starting at q. This run labels the root
with q and the successor node j of the root with qj . Below j we have the former
run starting with qj . The remaining identities are trivial. This completes the
proof of the lemma. ��

Theorem 3. The mapping σ‖ is the greatest fixpoint of O.

Proof. By Tarski’s fixpoint theorem, we know that the greatest fixpoint of O is
⊗

n≥0 On(1̃). From Lemma 3, we then obtain
⊗

n≥0

On(1̃)(q) =
⊗

n≥0

⊕

r∈K≤n
q

⊗

u∈K≤n−1

wt(
−−→
r(u)) =

⊗

n≥0

⊕

r∈K∗
q

⊗

u∈K≤n−1

wt(
−−→
r(u)) =

=
⊕

r∈K∗
q

⊗

n≥0

⊗

u∈K≤n−1

wt(
−−→
r(u)) =

⊕

r∈K∗
q

⊗

u∈K∗

wt(
−−→
r(u)) = σ‖(q) ��

This theorem, along with Lemma 2, allows us to compute the behaviour of
weighted looping automata in a bottom-up fashion. If S is finite, then it is

Automata-Based Axiom Pinpointing 239

obvious how to compute the fixpoint σ‖: we know that there exists a least m ≤
|S||Q| such that Om(1̃) = Om+1(1̃), and for this m we have Om(1̃) = σ‖. If
S is infinite, then it is not a priori clear that the fixpoint can be reached after
finitely many iterations. We will now show that it is actually sufficient to apply
the operator only |Q|+ 1 times. Note that this result is also useful for the finite
case since the bound |Q| + 1 greatly improves on the generic bound |S||Q|.

Definition 15 (m-complete). A WLA A is m-complete if, for every partial
run r : K≤m → Q of depth m, there is a run sr : K∗ → Q such that

⊗

u∈K≤m−1

wt(
−−→
r(u)) ≤SQ

⊗

u∈K∗

wt(
−−−→
sr(u)).

Using the fact that ⊗ is idempotent, it is easy to see that every WLA is m-
complete for any m greater than the number of states |Q|. The proof is basically
the same as the one given in [3] for the fact that a looping tree automaton has
a run iff it has a partial run of depth > |Q|.

Theorem 4. If A is an m-complete WLA, then ‖A‖ =
⊕

q∈Q in(q)⊗Om(1̃)(q).

Proof. Since Lemma 2 yields ‖A‖ =
⊕

q∈Q in(q) ⊗ σ‖(q), it suffices to prove
that Om(1̃) = σ‖. Furthermore, Theorem 3 implies that σ‖ is the infimum of
{On(1̃) | n ≥ 0}. Thus, it is enough to show that Om(1̃) ≤SQ σ‖.

By Lemma 3, Om(1̃)(q) =
⊕

r∈K≤m
q

⊗

u∈K≤m−1 wt(
−−→
r(u)). Since A is m-

complete, we can replace every partial run r appearing in the previous iden-
tity by the corresponding run sr, obtaining a greater element in the semiring:

Om(1̃)(q) ≤SQ

⊕

r∈K≤m
q

⊗

u∈K∗

wt(
−−−→
sr(u))

≤SQ

⊕

s∈K∗
q

⊗

u∈K∗

wt(
−−→
s(u)) = σ‖(q).

This completes the proof of the theorem. ��

Let us apply this result to the pinpointing automaton for SI constructed in
the previous section. This automaton has exponentially many states in the size
n of the input (C, T). Thus, we need exponentially many applications of the
operator O. It is also easy to see that the time required by each application of
O is exponential in n.

Corollary 1. Let C be an ALC concept description and T an SI TBox. The
pinpointing formula for (C, T) w.r.t. unsatisfiability can be computed in time
exponential in the size of (C, T).

Since even deciding satisfiability of ALC concept descriptions w.r.t. SI TBoxes
is known to be ExpTime-hard, this bound is optimal.

240 F. Baader and R. Peñaloza

6 Conclusions

We have introduced a general framework for extending decision procedures based
on the construction of looping tree automata to pinpointing algorithms. This
framework can also elegantly deal with DLs for which tableau-based decision
procedures require sophisticated blocking conditions, and to which consequently
the general approach for extending tableau-based decision procedures to pin-
pointing algorithms introduced in [5] does not apply.

Our framework is based on the use of weighted automata working on infinite
trees, which have until now not been studied. One of the main contributions of
this paper is an approach for computing the behaviour of such automata. An
interesting topic for future work is to check whether this approach can be adapted
such that it also works in cases where the weighted automaton is not explicitly
given, but rather computed on-the-fly. Finally, it would also be interesting to
know how to compute the behaviour of weighted automata working on infinite
trees that use a non-trivial acceptance condition for runs, such as the Büchi
condition. This would allow us to extend our framework such that it can deal
with DLs that require such acceptance conditions, such as the DL ALCtrans,
which allows for transitive closure of roles [1].

References

[1] Baader, F.: Augmenting concept languages by transitive closure of roles: An alter-
native to terminological cycles. In: Proc. of the 12th Int. Joint Conf. on Artificial
Intelligence (IJCAI 1991) (1991)

[2] Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook: Theory, Implementation, and Appli-
cations. Cambridge University Press, Cambridge (2003)

[3] Baader, F., Hladik, J., Peñaloza, R.: Automata can show PSPACE results for
description logics. Information and Computation (to appear, 2008)

[4] Baader, F., Hollunder, B.: Embedding defaults into terminological knowledge rep-
resentation formalisms. J. of Automated Reasoning 14, 149–180 (1995)

[5] Baader, F., Peñaloza, R.: Axiom pinpointing in general tableaux. In: Olivetti, N.
(ed.) TABLEAUX 2007. LNCS (LNAI), vol. 4548, pp. 11–27. Springer, Heidelberg
(2007)

[6] Baader, F., Peñaloza, R.: Blocking and pinpointing in forest tableaux. LTCS-
Report LTCS-08-02, Chair for Automata Theory, Institute for Theoreti-
cal Computer Science, Dresden University of Technology, Germany (2008),
http://lat.inf.tu-dresden.de/research/reports.html

[7] Baader, F., Peñaloza, R.: Pinpointing in terminating forest tableaux. LTCS-
Report LTCS-08-03, Chair for Automata Theory, Institute for Theoreti-
cal Computer Science, Dresden University of Technology, Germany (2008),
http://lat.inf.tu-dresden.de/research/reports.html

[8] Baader, F., Sattler, U.: An overview of tableau algorithms for description logics.
Studia Logica 69, 5–40 (2001)

[9] Baader, F., Suntisrivaraporn, B.: Debugging SNOMED CT using axiom pinpoint-
ing in the description logic EL+. In: Proceedings of the International Confer-
ence on Representing and Sharing Knowledge Using SNOMED (KR-MED 2008),
Phoenix, Arizona (2008)

http://lat.inf.tu-dresden.de/research/reports.html
http://lat.inf.tu-dresden.de/research/reports.html

Automata-Based Axiom Pinpointing 241

[10] Baader, F., Tobies, S.: The inverse method implements the automata approach
for modal satisfiability. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001.
LNCS (LNAI), vol. 2083, pp. 92–106. Springer, Heidelberg (2001)

[11] Droste, M., Rahonis, G.: Weighted automata and weighted logics on infinite words.
In: Ibarra, O.H., Dang, Z. (eds.) DLT 2006. LNCS, vol. 4036, pp. 49–58. Springer,
Heidelberg (2006)

[12] Grätzer, G.: General Lattice Theory, 2nd edn. Birkhäuser, Basel (1998)
[13] Haarslev, V., Möller, R.: RACER system description. In: Proc. of the Int. Joint

Conf. on Automated Reasoning (IJCAR 2001) (2001)
[14] Horrocks, I.: Using an expressive description logic: FaCT or fiction. In: Proc. of

the 6th Int. Conf. on Principles of Knowledge Representation and Reasoning (KR
1998), pp. 636–647 (1998)

[15] Horrocks, I., Patel-Schneider, P.F., van Harmelen, F.: From SHIQ and RDF to
OWL: The making of a web ontology language. Journal of Web Semantics 1(1),
7–26 (2003)

[16] Lee, K., Meyer, T., Pan, J.Z.: Computing maximally satisfiable terminologies for
the description logic ALC with GCIs. In: Proc. of the 2006 Description Logic
Workshop (DL 2006), CEUR Electronic Workshop Proceedings (2006)

[17] Parsia, B., Sirin, E., Kalyanpur, A.: Debugging OWL ontologies. In: Ellis, A.,
Hagino, T. (eds.) Proc. of the 14th International Conference on World Wide Web
(WWW 2005), pp. 633–640. ACM Press, New York (2005)

[18] Schlobach, S.: Diagnosing terminologies. In: Veloso, M.M., Kambhampati, S.
(eds.) Proc. of the 20th Nat. Conf. on Artificial Intelligence (AAAI 2005), pp.
670–675. AAAI Press/The MIT Press (2005)

[19] Schlobach, S., Cornet, R.: Non-standard reasoning services for the debugging of
description logic terminologies. In: Gottlob, G., Walsh, T. (eds.) Proc. of the 18th
Int. Joint Conf. on Artificial Intelligence (IJCAI 2003), Acapulco, Mexico, pp.
355–362. Morgan Kaufmann, Los Altos (2003)

[20] Schmidt-Schauß, M., Smolka, G.: Attributive concept descriptions with comple-
ments. Artificial Intelligence 48(1), 1–26 (1991)

[21] Seidl, H.: Finite tree automata with cost functions. Theor. Comput. Sci. 126(1),
113–142 (1994)

[22] Sirin, E., Parsia, B.: Pellet: An OWL DL reasoner. In: Proc. of the 2004 Descrip-
tion Logic Workshop (DL 2004), pp. 212–213 (2004)

[23] Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pacific Jour-
nal of Mathematics 5, 285–309 (1955)

[24] Vardi, M.Y., Wolper, P.: Automata-theoretic techniques for modal logics of pro-
grams. J. of Computer and System Sciences 32, 183–221 (1986); A preliminary
version appeared in Proc. of the 16th ACM SIGACT Symp. on Theory of Com-
puting (STOC 1984)

Individual Reuse in Description Logic Reasoning

Boris Motik and Ian Horrocks

University of Oxford, UK

Abstract. Tableau calculi are the state-of-the-art for reasoning in de-
scription logics (DL). Despite recent improvements, tableau-based reason-
ers still cannot process certain knowledge bases (KBs), mainly because
they end up building very large models. To address this, we propose a
tableau calculus with individual reuse: to satisfy an existential assertion,
our calculus nondeterministically tries to reuse individuals from the model
generated thus far. We present two expansion strategies: one is applicable
to the DL ELOH and gives us a worst-case optimal algorithm, and the
other is applicable to the DL SHOIQ. Using this technique, our reasoner
can process several KBs that no other reasoner can.

1 Introduction

Description Logics (DLs) [2] are used for conceptual modeling in diverse areas
of computer science. This is largely due to the practical support for automated
reasoning, which can help users during modeling. Practical DL reasoners are
mostly based on tableau calculi [2], which are essentially model building algo-
rithms. Tableau calculi, as well as the underlying computational problems, are
of high computational complexity, so various optimizations of the basic algo-
rithm have been developed [2, Chapter 9] and incorporated into reasoners such
as FaCT++ [16], Pellet [12], and RACER [8].

DLs are often used in life sciences, and this continuously poses new challenges
for DL research. For example, GALEN [13] and FMA [14]—detailed and com-
prehensive models of human anatomy—have both been translated into DLs, but
the resulting knowledge bases cannot be processed using existing DL reasoners.
To address this problem we recently proposed a novel DL reasoning algorithm
[10, 11] based on hypertableau [4]. Unlike the standard tableau calculi, the hy-
pertableau calculus is deterministic if a knowledge base can be translated into a
Horn theory; furthermore, it uses anywhere blocking, which can significantly re-
duce the sizes of the generated models. Our HermiT reasoner, which implements
the new calculus, was the first one to successfully process the original version of
GALEN—that is, the version from ten years ago.

Despite these improvements, many DL knowledge bases are still out of Her-
miT’s reach. The hypertableau calculus minimizes nondeterminism, so the re-
maining performance problems are due to the construction of very large models.
We therefore propose an extension to the hypertableau calculus based on individ-
ual reuse: to satisfy an existential assertion (∃R.C)(s), our calculus first tries to
reuse an individual from the model constructed thus far; if this fails, the calculus
then introduces a fresh individual. We focus here on the hypertableau calculus;

A. Armando, P. Baumgartner, and G. Dowek (Eds.): IJCAR 2008, LNCS 5195, pp. 242–258, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Individual Reuse in Description Logic Reasoning 243

however, individual reuse could be applied in standard tableau calculi as well. In
Section 3, we discuss the practical rationale behind our approach. In particular,
we observe that, due to certain restrictions of DL languages, DL knowledge bases
are often underconstrained, thus naturally allowing for individual reuse.

If applied näıvely, individual reuse would yield a highly nondeterministic cal-
culus. We address this problem in two steps. First, we encapsulate the part of
the calculus that determines which individuals to reuse in an expansion strategy,
and we identify general conditions that a strategy must satisfy in order for the
algorithm to be sound, complete, and terminating.1 Second, we present two par-
ticular strategies. For knowledge bases expressed in ELOH—a fragment of the
tractable DL EL++ [1]—we show that individual reuse can be done determinis-
tically, yielding a polynomial algorithm, and we identify a close correspondence
between our calculus and the EL++ algorithm from [1]. For knowledge bases
expressed in SHOIQ—the DL underlying the Semantic Web ontology language
OWL—we present an expansion strategy that generalizes the ELOH one.

We have extended HermiT with individual reuse and have conducted a pre-
liminary evaluation on practical ontologies, of which several are used in life sci-
ences. Unlike FaCT++ and Pellet, HermiT can classify the BAMS ontology2 and
a particular fragment of FMA. Furthermore, HermiT can solve individual clas-
sification tests on a “hard” fragment of the current version of GALEN; however,
each test takes about 40 seconds, which makes classifying the knowledge base
infeasible given the large number of concepts. The new algorithm also improves
HermiT’s performance on complex ontologies such as DOLCE. Thus, individual
reuse seems to promise significant improvements in practical DL reasoning.

Please refer to [11] for nonessential technical details. All proofs are given in
http://web.comlab.ox.ac.uk/people/boris.motik/pubs/mh08reuse.pdf.

2 Preliminaries

The description logic SHOIQ is defined as follows. A SHOIQ signature is a
triple Σ = (NR, NC , NI) consisting of disjoint sets of atomic roles NR, atomic
concepts NC , and individuals NI . The set of roles is NR ∪ {R− | R ∈ NR}. For
R ∈ NR, let Inv(R) = R− and Inv(R−) = R. An RBox R is a finite set of role
inclusions R 0 S and transitivity axioms Trans(R) for R and S roles. Let 0∗

R be
the reflexive-transitive closure of {R 0 S, Inv(R) 0 Inv(S) | R 0 S ∈ R}. A role
R is transitive in R if a role S exists such that S 0∗

R R, R 0∗
R S, and either

Trans(S) ∈ R or Trans(Inv(S)) ∈ R; furthermore, R is simple if no transitive role
S exists such that S 0∗

R R. The set of concepts is the smallest set containing
concepts shown in the left-hand side of Table 1, for A ∈ NC , a ∈ NI , C and
D concepts, R a role, S a simple role, and n a nonnegative integer; concepts of
the form {a}, ≥ nS.C, and ≤ nS.C are called nominals, at-least, and at-most
concepts, respectively. A TBox T is a finite set of general concept inclusions
1 We use “soundness” and “completeness” as in resolution theorem proving: a sound

calculus preserves satisfiability; a complete calculus correctly detects satisfiability.
2 http://brancusi.usc.edu/bkms/

244 B. Motik and I. Horrocks

Table 1. Model-Theoretic Semantics of SHOIQ

Semantics of Roles and Concepts Semantics of Axioms

I = I ⊥I = ∅
{s}I = {sI} (¬C)I = I \ CI

(C !D)I = CI ∩DI (C �D)I = CI ∪DI

(R−)I = {〈b, a〉 | 〈a, b〉 ∈ RI}
(∀R.C)I = {x | ∀y : 〈x, y〉 ∈ RI → y ∈ CI}
(∃R.C)I = {x | ∃y : 〈x, y〉 ∈ RI ∧ y ∈ CI}

(≤ n S.C)I = {x | �{y | 〈x, y〉 ∈ SI ∧ y ∈ CI} ≤ n}
(≥ n S.C)I = {x | �{y | 〈x, y〉 ∈ SI ∧ y ∈ CI} ≥ n}

C " D ⇒ CI ⊆ DI

R " S ⇒ RI ⊆ SI

Trans(R)⇒ (RI)+ ⊆ RI

C(a) ⇒ aI ∈ CI

R(a, b) ⇒ 〈aI , bI〉 ∈ RI

a ≈ b ⇒ aI = bI

a �≈ b ⇒ aI �= bI

Note: �N is the number of elements in N , and R+ is the transitive closure of R.

(GCIs) C 0 D for C and D concepts. An ABox A is a finite set of assertions of
the form C(a), R(a, b), and (in)equalities a ≈ b and a �≈ b, for C a concept, R a
role, and a and b individuals. A SHOIQ knowledge base K is a triple (R, T ,A).

An interpretation for K is a tuple I = (7I , ·I), where 7I is a nonempty set,
and ·I assigns an element aI ∈ 7I to each individual a, a set AI ⊆ 7I to each
atomic concept A, and a relation RI ⊆ 7I × 7I to each atomic role R. The
function ·I is extended to concepts and roles as shown in the left-hand side of
Table 1. I is a model of K, written I |= K, if it satisfies all axioms of K as shown
in the right-hand side of Table 1. The basic inference problem for SHOIQ is
checking satisfiability of K—that is, checking whether a model of K exists.

The DL ELOH [3] is obtained from SHOIQ by disallowing transitive and
inverse roles, and by allowing only concepts of the form �, ⊥, A, {a}, ∃R.C, and
C1 " C2. The DL SHIQ is obtained from SHOIQ by disallowing nominals.

3 Motivation

For a TBox T and an ABox A, a tableau calculus evolves A towards a represen-
tation of a model by applying derivation rules. The ∃-rule is found in virtually
all tableau calculi: given (∃R.C)(s) ∈ Ai, it introduces a fresh individual t and
derives the ABox Ai+1 := Ai ∪ {R(s, t), C(t)}. The rule is applied only if s is
not blocked in Ai; roughly speaking, this is the case if no individual u exists
such that D(s) ∈ Ai if and only if D(u) ∈ Ai for each concept D. Apart from
ensuring termination, blocking significantly reduces model sizes in practice [10].

DLs usually enjoy a tree model property: each satisfiable knowledge base has
a tree-shaped model. While this is useful for ensuring decidability [17], it also
prevents us from fully axiomatizing nontree structures. For example, a structure
such as the one shown in Figure 1a can only be approximated using the axioms
shown in Figure 1b. The axioms in Figure 1b have a model I corresponding to
Figure 1a; however, they also have an exponentially larger model I ′ obtained by
“unfolding” Figure 1a into a tree.

Consider now a run of our hypertableau algorithm on a knowledge base K
containing the axioms in Figure 1b and the axioms An+1 0 E, ∃T.E 0 E, and

Individual Reuse in Description Logic Reasoning 245

(a) The Intended Structure

A1

B1

C1

A2
R

S

T

T

An

Bn

Cn

An+1

R

S

T

T

(b) The Axiomatization in DLs

A1 � ∃R.B1 � ∃S.C1 An � ∃R.Bn � ∃S.Cn

B1 � ∃T.A2 . . . Bn � ∃T.An+1

C1 � ∃T.A2 Cn � ∃T.An+1

Fig. 1. Problems with Model Construction

∃R.E " ∃S.E 0 E. The algorithm exploits the tree model property by construct-
ing only (representations of) tree-shaped models. It will thus initially construct
a fragment of the exponential tree: the fragment will, for example, contain two
individuals labeled with A2 such that one blocks the other. But then E will
be added to all existing individuals, which will invalidate blocking. Thus, our
algorithm eventually constructs the entire exponential tree. Different blocking
and rule application strategies are known that might prevent the generation of
the exponential tree in this example; however, the example can be modified such
that the exponential tree is generated in spite of these optimizations.

Complex structures abound in life science ontologies; for example, GALEN
states that “the left ventricle is a solid division of the left side of the heart,”
“the left ventricle is a beta connection of the mitral valve,” “the mitral valve is
a structural component of the left side of the heart,” and so on. The intended
structure is much more complex than the one shown Figure 1a, and the axioms
are cyclic, so tableau reasoners generate very large tree models. It is reasonable,
however, to expect that GALEN is satisfied in a relatively small non-tree-shaped
model that contains only one left side, one left ventricle, and one mitral valve.

We use these observations in our new calculus: given (∃R.C)(s), instead of
always creating a fresh individual, our calculus first tries to reuse an individual
from the model generated thus far. Our calculus is similar to the tableau calculus
for first-order logic from [5]; however, the latter calculus is not a decision proce-
dure for DLs that lack the finite-model property and is unlikely to be suitable
for practice due to its very large degree of nondeterminism.

4 The Hypertableau Algorithm with Individual Reuse

Our calculus with individual reuse is based on the hypertableau calculi for SHIQ
[10] and SHOIQ [11]. Therefore, we first present an informal overview of these
calculi in Section 4.1, and then formally introduce the calculus with individual
reuse in Section 4.2.

4.1 The Standard Hypertableau Calculus for SHOIQ
Our hypertableau calculus is related to hyperresolution with splitting, which has
been used to obtain a decision procedure for several description and modal logics
[9, 6]. The algorithm consists of the preprocessing and the hypertableau phases.

246 B. Motik and I. Horrocks

The preprocessing phase translates a SHOIQ knowledge base K into a nor-
malized ABox ΞA(A) and a set ΞT R(K) of DL-clauses—universally quantified
first-order implications of the form

∧
Ui →

∨
Vj where Ui and Vj are atoms of the

form R(x, y), C(x), and x ≈ y, for x and y variables, R an atomic role, C a con-
cept, and ≈ the equality predicate. This transformation is an optimized version
of the well-known structural transformation followed by a translation of certain
concepts into first-order logic; please refer to [11, Section 4.1] for details. The
translation produces HT-clauses—syntactically restricted DL-clauses on which
our hypertableau calculus is guaranteed to terminate. A precise definition of HT-
clauses is given in [11, Definition 7]. Roughly speaking, HT-clauses can have the
form (1), where Ri and Si are (not necessarily atomic) roles, Ai and Bi are atomic
concepts, and Ci and Di are either atomic or concepts of the form ≥ n R.A
or ≥ n R.¬A. Furthermore, ar is a function defined as ar(R, s, t) = R(s, t) and
ar(R−, s, t) = R(t, s) for R an atomic role and s and t individuals or variables.

∧
Ai(x) ∧

∧
ar(Ri, x, yi) ∧

∧
Bi(yi) ∧

∧
Oai

(yai
) →

∨
Ci(x) ∨

∨
Di(yi) ∨

∨
ar(Si, x, yi) ∨

∨
x ≈ yai

∨
∨

yi ≈ yj @x
≤n R.C

(1)

The atoms of the form x ≈ yai
stem from nominals; for example, C � {a} is

translated into an HT-clause C(x) ∧ Oa(ya) → x ≈ ya and an assertion Oa(a).
A concept Oa is uniquely associated with each nominal {a} and it is called a
nominal guard concept ; such concepts are used to “push” all individuals from
DL-clauses into the ABox. Finally, the at-most equalities yi ≈ yj @x

≤n R.C stem
from the translation of at-most concepts; for example, � � ≤ 1 R.� is translated
into R(x, y1) ∧ R(x, y2) → y1 ≈ y2 @x

≤1 R.�. The annotation @x
≤1R.� does not

affect the meaning of the equality; it merely records its provenance, and we shall
discuss the usage of this provenance information shortly. The concept ∃R.C is
used in the rest of this paper as an abbreviation for ≥ 1 R.C.

The hypertableau phase decides satisfiability of a set of HT-clauses C and an
ABox A. The main derivation rule is similar to the one of the hypertableau
calculus for first order logic [4]: given an HT-clause

∧m
i=1 Ui →

∨n
j=1 Vj and an

ABox A, the Hyp-rule tries to unify the atoms U1, . . . , Um with a subset of
the assertions in A; if a unifier σ is found, the rule nondeterministically derives
σ(Vj) for some 1 ≤ j ≤ n. For example, given R(x, y) → ∃R.C(x) ∨ D(y) and
an assertion R(a, b), the Hyp-rule derives either ∃R.C(a) or D(b). The ≥-rule
deals with existential quantifiers: given ∃R.C(a), the rule introduces a fresh
individual t and derives R(a, t) and C(t). The ≈-rule deals with equality: given
a ≈ b, the rule replaces the individual a in all assertions with the individual
b, and it introduces a renaming a �→ b in order to keep track of the merging.
We take ≈ to have built-in symmetry; thus, a ≈ b should also be read as b ≈ a.
Finally, the ⊥-rule detects contradictions such as A(a) and ¬A(a), or a 	≈ a.

Termination of the calculus is ensured through blocking, which is based on the
key concept of forest-shaped ABoxes. We discuss here just the intuition behind
the concept; please refer to [11, Definition 11] for details. A forest-shaped ABox
is shown in Figure 2, where nodes and edges correspond to individuals and role
assertions, respectively. Individuals in such an ABox can be separated into two

Individual Reuse in Description Logic Reasoning 247

a

s t

bc

u v d
R R

Fig. 2. Forest-Shaped ABoxes

Aε

A1

reuse a

A2

use ∗

Fig. 3. Example Derivation

sets. Named individuals (shown as black nodes) originate from the input ABox,
and they can be connected in arbitrary ways. Blockable individuals (shown as
white nodes) are introduced by the ≥-rule, and they can be connected either to
arbitrary named individuals, or to other blockable individuals in a tree-like way.
Blockable individuals are represented as strings; for example, s = a.1 denotes
that s is the first successor of a. These notions can be used to identify certain
individuals as blocked. The ≥-rule is applied only to nonblocked individuals, and
this ensures termination without affecting completeness.

As shown in [11, Lemma 12], applications of most derivation rules preserve the
forest shape of an ABox; however, inverse roles, nominals, and number restric-
tions cause subtle problems. Consider again Figure 2 and assume that d must
satisfy an at-most restriction ≤ 1R−.�. This implies v ≈ s, so one individual
should be merged into the other; however, this can compromise the tree shape of
the ABox. The NI -rule deals with this problem by promoting one of v or s into a
root individual : such individuals can be connected in arbitrary ways even if they
do not occur in the input ABox. Thus, an application of the Hyp-rule to the
ABox in Figure 2 and the HT-clause R(y1, x) ∧R(y2, x) → y1 ≈ y2 @x

≤1 R−.� de-
rives the at-most equality v ≈ s@d

≤1 R−.�. By examining the annotation on the
equality, the NI -rule can see that the equality stems from an at-most concept,
so it turns either v or s into a root individual. It is possible to establish a bound
on the number of the introduced root individuals and thus ensure termination.

4.2 Introducing Individual Reuse

In this section, we extend the hypertableau calculus with individual reuse.

Definition 1 (Hypertableau with Individual Reuse)
Individuals. Given a set of named individuals NI , the set of root individuals

NO is the smallest set such that NI ⊆ NO and, if x ∈ NO, then x.〈R,B, i〉 ∈ NO

for each role R, each integer i, and each B of the form A or ¬A with A an atomic
concept. The set of all individuals NA is the smallest set such that NO ⊆ NA

and, if x ∈ NA, then x.i ∈ NA for each integer i. The individuals in NA \NO

are blockable individuals. A blockable individual x.i is a successor of x, and x
is a predecessor of x.i. Descendant and ancestor are the transitive closures of
successor and predecessor, respectively.

248 B. Motik and I. Horrocks

ABoxes. An ABox that contains only named individuals and no at-most
equalities is called an input ABox. The hypertableau algorithm works with gen-
eralized ABoxes, which can contain assertions using the individuals from NA, a
special assertion ⊥ that is false in all interpretations, and an acyclic and con-
fluent relation �→ on root individuals called renaming. The canonical name of a
root individual a ∈ NO w.r.t. A, written ‖a‖A, is the normal form of a w.r.t. �→
in A. If a occurs in A, then the relation �→ must be such that ‖a‖A = a.

Pairwise Anywhere Blocking. The label of an individual is defined as
LA(s) = {C | C(s) ∈ A and C is of the form A,≥ nR.A or ≥ nR.¬A}, and of
an individual pair as LA(s, t) = {R | R(s, t) ∈ A}. Let ≺ be a transitive and
irreflexive relation on NA such that, if s′ is an ancestor of s, then s′ ≺ s. By
induction on ≺, we assign to each individual in A a status as follows: a blockable
individual s with a predecessor s′ is directly blocked by a blockable individual t
with a predecessor t′ iff t is not blocked, t ≺ s, LA(s) = LA(t), LA(s′) = LA(t′),
LA(s, s′) = LA(t, t′), and LA(s′, s) = LA(t′, t); s is indirectly blocked iff it has a
predecessor that is blocked; and s is blocked iff it is directly or indirectly blocked.

Pruning. The ABox pruneA(s) is obtained from A by removing all assertions
containing a descendent of s.

Merging. The ABox mergeA(s→ t) is obtained from pruneA(s) by replacing
the individual s with the individual t in all assertions (but not in the renaming
relation �→) and, if both s and t are root individuals, adding the renaming s �→ t.

Expansion Strategy. An expansion strategy is a function that, for each
concept ≥ nR.C, individual s, and ABox A, returns a k-tuple of n-tuples of
the form iexp(≥ nR.C, s,A) = [(γ1,1, . . . , γ1,n), . . . , (γk,1, . . . , γk,n)], where k ≥ 1
and, for each 1 ≤ i ≤ k and 1 ≤ j ≤ n, γi,j is a special symbol ∗, a predecessor
or a successor of s, or a root individual (which may or may not occur in A).

Derivation Rules. Table 2 specifies rules that, for A an ABox, C a set of
HT-clauses, and iexp an expansion strategy, derive the ABoxes A1, . . . ,A�.

Rule Precedence. The ≈-rule can be applied to a (possibly annotated) equal-
ity s ≈ t in an ABox A only if A does not contain an equality of the form
s ≈ t@u

≤n R.B to which the NI-rule is applicable.
Clash. An ABox A contains a clash iff ⊥ ∈ A; otherwise, A is clash-free.
Derivation. A derivation D = (T, λ) for a set of HT-clauses C, an ABox

A, and an expansion strategy iexp consists of a finitely branching tree T and
a function λ labeling the nodes of T with ABoxes such that (i) λ(ε) = A for
ε the root of T , (ii) t ∈ T is a leaf of T if ⊥ ∈ λ(t) or no derivation rule is
applicable to λ(t) and C, and (iii) otherwise, t ∈ T has children t1, . . . , t� such
that λ(t1), . . . , λ(t�) are exactly the results of applying one (arbitrarily chosen, but
respecting the precedence) applicable derivation rule to λ(t) and C. The derivation
D is successful if it contains a leaf node labeled with a clash-free ABox.

The main difference to the hypertableau calculus from [11, Definition 10]
is in the ≥-rule and the notion of an expansion strategy. Intuitively, given an
assertion≥ nR.C(s) ∈ A, the new ≥-rule consults the expansion strategy iexp to
determine the possible ways of satisfying the assertion. The strategy can identify
k different ways to do this; if k > 1, the ≥-rule becomes nondeterministic. The

Individual Reuse in Description Logic Reasoning 249

Table 2. Derivation Rules of the Tableau Calculus

Hyp-
rule

If 1. U1 ∧ . . . ∧ Um → V1 ∨ . . . ∨ Vn ∈ C, and
2. a mapping σ of variables to the individuals of A exists such that
2.1 σ(x) is not indirectly blocked for each variable x ∈ NV ,
2.2 σ(Ui) ∈ A for each 1 ≤ i ≤ m, and
2.3 σ(Vj) �∈ A for each 1 ≤ j ≤ n,

then A1 := A∪ {⊥} if n = 0;
Aj := A∪ {σ(Vj)} for 1 ≤ j ≤ n otherwise.

≥-
rule

If 1. ≥ n R.C(s) ∈ A,
2. s is not blocked in A,
3. A does not contain individuals u1, . . . , un such that
3.1 {ar(R, s, ui), C(ui) | 1 ≤ i ≤ n} ∪ {ui �≈ uj | 1 ≤ i < j ≤ n} ⊆ A, and
3.2 either s is blockable or no ui, 1 ≤ i ≤ n, is indirectly blocked in A, and
4. iexp(≥ n R.C, s,A) = [(γ1,1, . . . , γ1,n), . . . , (γk,1, . . . , γk,n)]

then for each 1 ≤ i ≤ k,
Ai := A∪ {ar(R, s, ti,j), C(ti,j) | 1 ≤ j ≤ n} ∪ {ti,j �≈ ti,k | 1 ≤ j < k ≤ n}
where ti,j is a fresh successor of s if γi,j = ∗, and ti,j = γi,j if γi,j �= ∗.

≈-
rule

If 1. s ≈ t ∈ A (the equality can possibly be annotated), and
2. s �= t

then A1 := mergeA(s→ t) if t is a named individual, or t is a root
individual and s is not a named individual, or s is a descendant of t;
A1 := mergeA(t→ s) otherwise.

⊥-
rule

If s �≈ s ∈ A or {A(s),¬A(s)} ⊆ A
then A1 := A∪ {⊥}.

NI -
rule

If 1. s ≈ t @u
≤n R.B ∈ A or t ≈ s @u

≤n R.B ∈ A,
2. u is a root individual,
3. s is a blockable individual and it is not a successor of u, and
4. t is a blockable individual

then Ai := mergeA(s→ ‖u.〈R, B, i〉‖A) for each 1 ≤ i ≤ n.

i-th variant is described as an n-tuple (γi,1, . . . , γi,n), in which γi,j specifies how
to obtain the j-th of the n required individuals. For each γi,j , the strategy can
cause the ≥-rule to either (i) reuse an existing individual from A, (ii) introduce
a fresh root individual, or (iii) resort to the standard tableau behavior and
introduce a fresh distinct blockable successor of s (when γi,j = ∗).

To preserve the forest shape of ABoxes, iexp cannot reuse an arbitrary indi-
vidual from A. For example, if the strategy reused u when expanding ∃R.C(s)
in the ABox shown in Figure 2, the resulting ABox would not be tree-shaped.
Therefore, if γi,j �= ∗, then γi,j must be either a root individual, a predecessor
of s, or a successor of s, thus ensuring that the resulting ABox is tree-shaped. A
typical expansion strategy will use this definition as follows: the strategy will first
introduce fresh root individuals and designate them as possible “reuse targets”;
in subsequent inferences, the strategy will try to reuse these targets; finally, if
such reuse fails, the strategy will resort to the standard behavior.

A strategy can thus introduce an unbounded number of root individuals; since
these do not participate in blocking, the calculus is not guaranteed to terminate.

250 B. Motik and I. Horrocks

Therefore, we require a strategy to be bounded—that is, to introduce a finite
number of fresh individuals in each possible derivation.

Definition 2 (Bounded Strategy). A strategy iexp is bounded if the number
of individuals γi,j such that γi,j occurs in iexp(≥ nR.C, s,A) but not in A for
some concept ≥ nR.C, individual s ∈ NO, and ABox A is finite.

Since individual reuse preserves the forest shape of ABoxes, given a clash-free
ABox A to which no derivation rule is applicable, we can construct a model for
A just like in [11, Lemma 14]. In contrast, individual reuse is unsound : an ap-
plication of the ≥-rule to a satisfiable ABox can result in an unsatisfiable ABox.
The following definition introduces derivations in which reusing individuals does
not lead to unsoundness.

Definition 3 (Safe Derivation). Let D = (T, λ) be a derivation for C, A, and
iexp. The set of safe nodes of T is inductively defined such that ε ∈ T is safe, and
t.i ∈ T is safe if t is safe and (i) λ(t.i) has not been obtained from λ(t) by the ≥-
rule, or (ii) λ(t.i) has been obtained by applying the ≥-rule to ≥ nR.C(s) ∈ λ(t),
and (γi,1, . . . , γi,n) is the i-th n-tuple of iexp(≥ nR.C, s,A) such that, for each
1 ≤ j ≤ n, either γi,j = ∗ or γi,j is a named individual not occurring in λ(t).
The derivation D is safe if every nonleaf safe node has at least one safe child.

Definition 3 might seem unnecessarily complex: soundness is ensured if we require
each iexp(≥ nR.C, s,A) to contain a tuple (∗, . . . , ∗), thus always allowing for
the standard existential expansion. This is, however, unnecessarily restrictive.
Consider the derivation shown in Figure 3, in which the ≥-rule is applied to Aε,
deriving A1 via individual reuse and A2 using the standard expansion. The first
derivation is possibly unsound, so the second derivation is necessary in order
to guarantee soundness; but then, there is no need to enforce soundness in the
inferences below A1: applications of the ≥-rule below A1 can be performed in
a way that can, but does not need to include (∗, . . . , ∗) in iexp(≥ nR.C, s,A).
Definition 3 formalizes this intuition: starting from the root ε, each derivation
node that is obtained via a sound sequence of inferences must have at least one
child obtained by a sound inference. The strategy that we present in Section 5.2
uses this definition: the first time a “reuse target” t is introduced, this is done
nondeterministically; however, all subsequent reuses of t are deterministic. In
other words, once our strategy nondeterministically decides to reuse t, it stays
committed to this choice. We now present the main result of this section.

Theorem 1. For C a set of HT-clauses, A an input ABox, and iexp a bounded
expansion strategy, (1) each derivation for C, A, and iexp is finite; (2) if a
successful derivation for C, A, and iexp exists, then (C,A) is satisfiable; and (3) if
(C,A) is satisfiable, then each safe derivation for C, A, and iexp is successful.

As discussed in [11], the NI -rule is not needed on HT-clauses obtained from
SHIQ knowledge bases. With individual reuse, however, this is not the case:
reusing a root individual c when expanding ∃R.C(s) in Figure 2 can clearly
trigger the NI -rule if c must satisfy an at-most restriction on R−.

Individual Reuse in Description Logic Reasoning 251

The NI -rule can introduce a performance penalty in practice, so we identify
the class of NI -free strategies on which the rule is not needed even with indi-
vidual reuse. Intuitively, an NI -free strategy can satisfy existential restrictions
on root individuals either by introducing fresh root individuals or by reusing
existing ones; however, it always applies the standard expansion for blockable
individuals. For example, such a strategy might at first introduce and reuse only
root individuals; if this proves ineffective and the models get large, it might then
decide not to reuse individuals in further applications of the ≥-rule.

Definition 4 (NI -free Strategies). An expansion strategy iexp is NI-free if
iexp(≥ nR.C, s,A) = [(∗, . . . , ∗)] whenever s is a blockable individual.

Proposition 1. In a derivation where C is a set of HT-clauses not containing
equalities of the form x ≈ yi and yi ≈ x, A is an ABox, and iexp is an NI-free
expansion strategy, the precondition of the NI-rule is never satisfied.

5 Two Expansion Strategies

5.1 The ELOH Case

In this section we present an expansion strategy for the DL ELOH—a logic
obtained from EL++ [1] by disallowing role composition axioms R ◦ S 0 T and
concrete domains. We leave these constructors out because they are not avail-
able in SHOIQ; however, our results can be straightforwardly extended to full
EL++. The expansion strategy for ELOH will provide us with an intuition on
how to approach the general case. Furthermore, these results establish a relation-
ship between model construction algorithms and the implication sets reasoning
algorithm from [1]. Thus, tableau DL reasoners can be easily modified to obtain
a worst-case optimal decision procedure for ELOH knowledge bases simply by
choosing a suitable individual reuse strategy.

We start by defining ELOH-clauses—the fragment of HT-clauses on which the
ELOH-strategy guarantees soundness. By inspecting the translation operator Ξ
from [11, Section 4.1], it is easy to see that, if K is an ELOH knowledge base,
then ΞT R(K) is a set of ELOH-clauses.

Definition 5 (ELOH-Clause). An ELOH-clause is an HT-clause r of the
form (2), (3), (4), or (5) such that yi �= yj for i �= j; Rj and S are atomic
roles; C is of the form ⊥, A, or ∃S.A; A, Ai, and Bj are either � or atomic but
not nominal guard concepts; and Oa is a nominal guard concept.

∧

Ai(x) ∧
∧

[Rj(x, yj) ∧Bj(yj)]→ C(x)(2)

Oa(ya) ∧
∧

Ai(x) ∧
∧

[Rj(x, yj) ∧Bj(yj)]→ x ≈ ya(3)
∧

Ai(x) ∧
∧

[Rj(x, yj) ∧Bj(yj)]→ S(x, yj)(4)

Oa(ya) ∧
∧

Ai(x) ∧
∧

[Rj(x, yj) ∧Bj(yj)]→ S(x, ya)(5)

We now define the expansion strategy for ELOH.

252 B. Motik and I. Horrocks

Definition 6 (ELOH-Strategy). We assume that, for A an atomic concept,
�, or ⊥, the set of named individuals NI contains a distinct representative in-
dividual αA. The ELOH-strategy is defined as iexpEL(∃R.A, s,A) = [(‖αA‖A)],
for each concept ∃R.A, individual s, and ABox A.

Since iexpEL deterministically reuses ‖αA‖A, derivations created using this strat-
egy are typically not safe, so Theorem 1 does not apply. Nonetheless, the strategy
always produces sound derivations on ELOH-clauses.

Theorem 2. For C a set of ELOH-clauses and A an initial ABox not contain-
ing representative individuals, if (C,A) is satisfiable, then each derivation for C,
A, and iexpEL is successful.

This theorem can be intuitively understood as follows. Let C be a set of DL-
clauses of the form (2) (we do not consider other types for simplicity) and A an
ABox such that (C,A) is satisfiable. Assume now that we apply the standard
hypertableau calculus without individual reuse and without blocking to C and A.
Since blocking is not used, and because all DL-clauses from C are Horn clauses,
this will produce a possibly infinite canonical ABox A∞ which naturally defines
a model of (C,A). Consider now how individuals are introduced into A∞. In
particular, assume that an assertion ∃R.A(s) is expanded into assertions R(s, t)
and A(t) for t a fresh successor of s. The key observation is that, if the Hyp-
rule were to additionally derive C(t), then this assertion depends only on the
successors of t: a DL-clause of the form (2) can only check properties of successors
of the individual mapped to x and not of its predecessors. In other words, the
ELOH-clauses do not allow for DL-clauses such as R(y, x) → C(x), which might
derive C for an individual x based on the properties of its predecessor y. Thus,
if in some other part of the model construction we expand ∃S.A(u) into S(u, v)
and A(v), the assertions derived for v will depend only on the successors of
v. The application of the derivation rules to t and v and their descendants is
thus fully determined by the initial “seed” concept A, so t and v will occur
in A∞ in exactly the same concept assertions (i.e., C(t) ∈ A∞ iff C(v) ∈ A∞).
There is, therefore, no need to create distinct individuals t and v at all: we
can fold A∞ into a model that contains exactly one individual αA for each
“seed” concept A. Effectively, if (C,A) is satisfiable, then it has such a folded
model. It is easy to see that iexpEL essentially constructs exactly this folded
model.

The number of representative individuals is linear in the number of the atomic
concepts, so the ABoxes constructed in a derivation are polynomial in size. To
obtain a polynomial decision procedure, we must be careful in how we apply the
Hyp-rule to ELOH-clauses: with i individuals and v variables in a DL-clause, a
näıve application of the Hyp-rule (for each x, for each y1, for each y2, and so on)
examines iv combinations. Note, however, that yi occur in the antecedent only
in a tree-like way and that they do not occur in the consequent; hence, we can
match each yi independently, thus giving rise to v · i combinations.

Individual Reuse in Description Logic Reasoning 253

Theorem 3. A derivation for a set of ELOH-clauses C, an initial ABox A
not containing representative individuals, and iexpEL can be constructed in time
polynomial in |C,A|.

5.2 The General Case

In this section we define an expansion strategy that is applicable to SHOIQ. The
strategy tries to mimic the ELOH case: it expands ∃R.A(s) into R(s, αA) and
A(αA) for αA the representative individual, but it also allows for the default
expansion (∗) as well. Our idea is that, whenever u and v are introduced by
expanding concepts ∃R.A and ∃S.A, respectively, the individuals u and v should
not differ greatly—that is, the derivation rules applied to u and v should be
largely the same. For example, it is reasonable to expect that all individuals
representing a heart in a model of GALEN should have the same properties.
This basic idea has been refined in several ways.

Our experiments have shown that assertions of the form ∃R.A(s), where A
is a concept introduced by the structural transformation in the preprocessing
phase, are best expanded without individual reuse. Such concepts correspond to
complex formulae identifying sets of objects with certain properties, so they are
unlikely to have singleton extensions.

Our experiments have also shown that, given C 0 ∃R.D and D 0 ∃S.C, the
instance of C implied by the second axiom is usually the instance of C from
the first axiom. For example, in GALEN “each artery has a tunica intima as its
part,” and “each tunica intima is a layer of an artery”; clearly, the second artery
is the same as the first one. Therefore, when expanding ∃S.C(s), our strategy
tries to reuse the parent t of s if C(t) has already been derived.

DL knowledge bases often contain concepts that should be expanded without
reuse—that is, whose expansion using representative individuals usually fails.
This can introduce unnecessary nondeterminism, so our strategy learns from
failed choices: if an expansion of ∃R.A by reusing αA fails, our strategy does not
reuse αA in future expansions. The main problem is, once a clash is detected,
to determine whether individual reuse caused the inconsistency and, if so, which
individual αA is the culprit. To solve this problem, we construct derivations
by depth-first search with dependency-directed backtracking [2, Chapter 9]—a
search technique used in most tableau-based reasoners. Roughly speaking, each
nondeterministic choice in the derivation is numbered, and each assertion is
annotated with a set of choices it depends on. When ⊥ is derived, the set of
choices S⊥ associated with ⊥ tells us which choices are conflicting. Let m⊥ be
the maximal choice from S⊥. Backtracking any choice below m⊥ will invariably
lead to a clash; thus, m⊥ identifies the failed choice at which we can safely
continue the search. If m⊥ corresponds to a nondeterministic expansion of ∃R.A
by reusing αA, then we consider the reuse of αA as failed; therefore, we add A to
a special no-good set of concepts, which ensures that αA is not reused in future
expansions of concepts of the form ∃S.A.

254 B. Motik and I. Horrocks

Definition 7. We assume that derivations are constructed by depth-first search
and dependency-directed backtracking [2, Chapter 9], and that a set NG of no-
good concepts is maintained in the process as discussed next. For R a role, B
a possibly negated atomic concept, s an individual, and A an ABox, the gen-
eral strategy iexpDL returns the first result from the following list for which the
condition is satisfied.

– iexpDL(∃R.B, s,A) = [(t), (∗)] if t is the parent of s and B(t) ∈ A.
– iexpDL(∃R.B, s,A) = [(∗)] if B has been introduced by the structural trans-

formation during preprocessing.
– iexpDL(∃R.B, s,A) = [(αB), (∗)] if αB does not occur in A and B is not

contained in the current set NG. Whenever an expansion using αB is back-
tracked as per dependency-directed backtracking, the concept B is added to
the no-good set NG.

– iexpDL(∃R.B, s,A) = [(αB)] if αB occurs in A.
– iexpDL(≥ nR.B, s,A) = [(∗, . . . , ∗)] in all other cases.

Clearly, iexpDL is bounded. Furthermore, the first time ∃R.B is expanded, iexpDL
nondeterministically introduces αB as a target for future reuse; in all subsequent
expansions of ∃S.B, iexpDL stays committed to this choice and reuses αB deter-
ministically. These observations allow us to prove the following proposition.

Proposition 2. For C a set of HT-clauses and A an initial ABox not containing
representative individuals, each derivation for C, A, and iexpDL is safe.

6 Evaluation

We have implemented individual reuse in HermiT, and have compared its per-
formance with FaCT++ v1.1.10 [16] and Pellet 1.5.1 [12]. When parameterized
with iexpEL, the hypertableau calculus becomes quite similar to the implication
sets algorithm [1], so any difference in the performance between HermiT and the
EL++-specific reasoner CEL is likely to be caused by engineering, rather than
algorithmic issues. Therefore, we focus here on evaluating iexpDL.

We have selected several test ontologies commonly used in practice, and have
tried to classify them (i.e., to compute K |= C 0 D for all atomic concepts C and
D) using HermiT with and without individual reuse, FaCT++, and Pellet. The
results are summarized in Table 3. Most unsuccessful tests failed because the
reasoners ran out of memory. Several tests were interrupted after 30 minutes; in
all such cases, the reasoner got stuck in the first nontrivial subsumption test, so it
is unlikely that more time would allow the reasoner to complete the classification.
Tests were conducted on a standard laptop PC with 1 GB of RAM running
Windows XP. We used Java 1.6.0 04 for Java-based reasoners allowing 600 MB
of heap space in each test. All ontologies are available from HermiT’s Web page.

Wine. The Wine ontology has often been used to demonstrate the features of
description logics. Classifying it was initially a challenge for tableau reasoners,
but current reasoners can routinely process it.

Individual Reuse in Description Logic Reasoning 255

Table 3. Summary of Test Results

Ontology HermiT HermiT FaCT++ Pellet
(with reuse) (no reuse)

Wine classified in 37 s classified in 36 s classified in 316 s classified in 25 s
FMA-fragment classified in 680 s — — —

BAMS classified in 19 s — — —
DOLCE classified in 103 s — classified in 12 s —

GALEN-original classified in 275 s classified in 26 s — —
GALEN-module — — — —

GALEN-module-no-inv solves individual tests — — —

FMA-fragment and BAMS. FMA [14] is a large ontology that was not
originally developed using a DL, and various translations of different fragments
of FMA into DLs have been produced. We used a translation from the Bio-
Health Informatics Group at the University of Manchester; it contains 6,487
atomic concepts, 165 atomic roles, 98 individuals, and 18,678 axioms in total.
The Brain Architecture Management System (BAMS) is a brain anatomy on-
tology produced at the University of Southern California. We used the trans-
lation of the 1998 version of BAMS into OWL, which contains 1,110 atomic
concepts, 13 atomic roles, 999 individuals, and 20,176 axioms in total. Both on-
tologies are nontrivial, as they use inverse and functional roles, disjunctions, and
nominals.

Without individual reuse, no tool can classify either ontology: reasoners end up
constructing large models and quickly exhaust the available memory. In contrast,
individual reuse makes these ontologies easy: the models constructed by HermiT
consist of a couple of thousands of individuals at most.

DOLCE. DOLCE3 is a foundational ontology developed in the WonderWeb
project, and it is quite complex: it uses disjunctions, nominals, and number
restrictions. It is, however, relatively small, containing 211 atomic concepts,
317 atomic roles, 39 individuals, and 1,797 axioms in total. As Table 3 shows,
FaCT++ can process DOLCE even without individual reuse, whereas Pellet and
HermiT cannot. We conjecture that this is due to ordering optimizations [15],
which can have a significant impact on the performance of reasoning. HermiT
can process DOLCE provided that individual reuse is turned on. This suggests
that individual reuse might compensate for the lack of an optimal ordering,
which can be difficult to find in practice.

GALEN. GALEN-original is a version of GALEN dating from about 10 years
ago. HermiT is currently the only reasoner that can classify this ontology, and it
can do so even without individual reuse [10]. The good performance of HermiT
in this case is mainly due to the fact that, after computing a model, HermiT
caches the labels of all unblocked individuals and uses them subsequently as po-
tential blockers [11]. Thus, only the first test is hard (it takes about 90% of the

3 http://www.loa-cnr.it/DOLCE.html

256 B. Motik and I. Horrocks

total time), and all subsequent tests are easy due to caching. With individual
reuse, however, this optimization is ineffective, as most individuals in the model
are root individuals that cannot be used as blockers. Each subsumption test
takes typically an order of magnitude less time with individual reuse than the
“hard” test without reuse; however, the cumulative slowdown due to the lack
of caching is detrimental. Caching should be possible, however, with individual
reuse as well: we can cache the model constructed in different runs and reuse
individuals from it as needed. We shall investigate such a technique in our future
work.

GALEN was significantly extended in the past 10 years, and the current
version of it consists of more than 38,000 concepts, so we have extracted a
module from it using the algorithm from [7]. The module is still quite large:
it contains 6,362 atomic concepts, 162 atomic roles, and 14,783 axioms in to-
tal. None of the reasoners were able to deal with the GALEN-module. We
therefore tried removing all axioms of the form R 0 S−, effectively eliminat-
ing the link between a role and its inverse. After this transformation, Her-
miT was able to solve individual subsumption tests; however, each test took
about 40 s, which made classification of the entire ontology infeasible. We be-
lieve that this can be significantly improved using the above mentioned caching
technique.

Individual reuse is ineffective on GALEN mainly because the ontology con-
tains numerous functional and inverse-functional roles, which makes identifying
concepts suitable for individual reuse difficult. For example, the axiom “each
nerve has exactly one axon and vice versa” clearly prevents the reuse of the
axon concept. We tried to address this problem by selecting manually the con-
cepts that should be reused, but even this was to no avail. In fact, it seems
to us that inverse properties in GALEN are sometimes overconstrained (e.g.,
w.r.t. functionality). The tools used to develop GALEN largely ignore the se-
mantics of inverse roles, so modeling errors of this kind might easily have gone
unnoticed.

7 Conclusion

We have presented a novel calculus for DL reasoning based on individual reuse:
instead of always introducing a fresh individual in order to satisfy an existen-
tial restriction, our calculus tries to reuse an individual from a model created
thus far. Furthermore, we have shown that individual reuse can be done deter-
ministically for ELOH—an expressive but yet tractable DL. Finally, we have
implemented our calculus in the reasoner HermiT and have evaluated its per-
formances. The empirical results suggest that individual reuse can mean the
difference between success and failure on practical ontologies. The main chal-
lenge for our future research is to devise an expansion strategy that will allow
us to classify GALEN—the nemesis of DL reasoners.

Individual Reuse in Description Logic Reasoning 257

References

1. Baader, F., Brandt, S., Lutz, C.: Pushing the EL Envelope. In: Pack Kaelbling,
L., Saffiotti, A. (eds.) Proc. of the 19th Int. Joint Conference on Artificial Intelli-
gence (IJCAI 2005), Edinburgh, UK, July 30–August 5 2005, pp. 364–369. Morgan
Kaufmann, San Francisco (2005)

2. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.):
The Description Logic Handbook: Theory, Implementation and Applications, 2nd
edn. Cambridge University Press, Cambridge (2007)

3. Baader, F., Lutz, C., Suntisrivaraporn, B.: CEL—A Polynomial-Time Reasoner for
Life Science Ontologies. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS
(LNAI), vol. 4130, pp. 287–291. Springer, Heidelberg (2006)

4. Baumgartner, P., Furbach, U., Niemelä, I.: Hyper Tableaux. In: Or�lowska, E.,
Alferes, J.J., Moniz Pereira, L. (eds.) JELIA 1996. LNCS, vol. 1126, pp. 1–17.
Springer, Heidelberg (1996)

5. Bry, F., Torge, S.: A Deduction Method Complete for Refutation and Finite Satis-
fiability. In: Dix, J., del Cerro, L.F., Furbach, U. (eds.) JELIA 1998. LNCS (LNAI),
vol. 1489, pp. 122–138. Springer, Heidelberg (1998)

6. Georgieva, L., Hustadt, U., Schmidt, R.A.: Hyperresolution for Guarded Formulae.
Journal of Symbolic Computation 36(1-2), 163–192 (2003)

7. Cuenca Grau, B., Horrocks, I., Kazakov, Y., Sattler, U.: Just the Right Amount:
Extracting Modules from Ontologies. In: Proc. of the 16th Int. Conf. on World
Wide Web (WWW 2007), Banff, AB, Canada, May 8–12, 2007, pp. 717–726. ACM
Press, New York (2007)

8. Haarslev, V., Möller, R.: RACER System Description. In: Goré, R.P., Leitsch, A.,
Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 701–706. Springer,
Heidelberg (2001)

9. Hustadt, U., Schmidt, R.A.: Issues of Decidability for Description Logics in the
Framework of Resolution. In: Caferra, R., Salzer, G. (eds.) FTP 1998. LNCS
(LNAI), vol. 1761, pp. 191–205. Springer, Heidelberg (2000)

10. Motik, B., Shearer, R., Horrocks, I.: Optimized Reasoning in Description Logics
using Hypertableaux. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603,
pp. 67–83. Springer, Heidelberg (2007)

11. Motik, B., Shearer, R., Horrocks, I.: Hypertableau Reasoning for Description Log-
ics. Technical report, University of Oxford, Submitted to an international journal
(2008)

12. Parsia, B., Sirin, E.: Pellet: An OWL-DL Reasoner. In: McIlraith, S.A., Plex-
ousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298. Springer, Hei-
delberg (2004)

13. Rector, A.L., Nowlan, W.A., Glowinski, A.: Goals for concept representation in
the galen project. In: Safran, C. (ed.) Proc. of the 17th Annual Symposium on
Computer Applications in Medical Care (SCAMC 1993), Washington DC, USA,
November 1–3 1993, pp. 414–418. McGraw-Hill, New York (1993)

14. Rosse, C., Mejino, J.V.L.: A reference ontology for biomedical informatics: the
Foundational Model of Anatomy. Journal of Biomedical Informatics 36, 478–500
(2003)

15. Tsarkov, D., Horrocks, I.: Ordering Heuristics for Description Logic Reasoning.
In: Pack Kaelbling, L., Saffiotti, A. (eds.) Proc. of the 19th Int. Joint Conf. on
Artificial Intelligence (IJCAI 2005), Edinburgh, UK, July 30–August 5 2005, pp.
609–614. Morgan Kaufmann Publishers, San Francisco (2005)

258 B. Motik and I. Horrocks

16. Tsarkov, D., Horrocks, I.: FaCT++ Description Logic Reasoner: System Descrip-
tion. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130,
pp. 292–297. Springer, Heidelberg (2006)

17. Vardi, M.Y.: Why Is Modal Logic So Robustly Decidable. In: Immerman, N., Ko-
laitis, P. (eds.) Proc. of a DIMACS Workshop on Descriptive Complexity and
Finite Models, January 14–17, 1996. DIMACS Series in Discrete Mathematics and
Theoretical Computer Science, vol. 31, pp. 149–184. Princeton University Press,
American Mathematical Society (1996)

The Logical Difference Problem for Description

Logic Terminologies

Boris Konev, Dirk Walther, and Frank Wolter

University of Liverpool, Liverpool, UK
{konev,dwalther,wolter}@liverpool.ac.uk

Abstract. We consider the problem of computing the logical differ-
ence between distinct versions of description logic terminologies. For the
lightweight description logic EL, we present a tractable algorithm which,
given two terminologies and a signature, outputs a set of concepts, which
can be regarded as the logical difference between the two terminologies.
As a consequence, the algorithm can also decide whether they imply the
same concept implications in the signature. A prototype implementa-
tion CEX of this algorithm is presented and experimental results based
on distinct versions of Snomed ct, the Systematized Nomenclature of
Medicine, Clinical Terms, are discussed. Finally, results regarding the re-
lation to uniform interpolants and possible extensions to more expressive
description logics are presented.

1 Introduction

The standard diff operation for text files is an indispensable tool for comparing
different versions of texts, and similar operations are available to software en-
gineers comparing distinct versions of code produced in collaborative software
projects. As observed, e.g., in [14], such a purely syntactic diff operation is hardly
useful if the text consists of a set of axioms of an ontology. In this case, one is
usually not interested in a comparison of the syntactic form of axioms, but in
the consequences that the ontologies have. The authors of [14] present a number
of heuristic rules to address this problem and develop a diff operator for ontolo-
gies. Except theoretical results in [12, 13,9], we are not aware of any logic-based
approach to computing the logical diff of ontologies.

Our formalisation of the logical difference problem is based on the observation
that when comparing distinct versions of ontologies one should take into account
their signatures. In fact, the interesting differences between ontologies are those
formulated in their shared signature (or even subsets thereof), and not those
involving symbols used only in one of the two ontologies. Thus, the proposed
notion of logical difference is based on the notion of Σ-entailment : an ontology
T Σ-entails an ontology T ′ for a signature Σ, if for all concept implications
C 0 D in Σ, T ′ |= C 0 D implies T |= C 0 D. If T and T ′ mutually Σ-
entail each other, then they are called Σ-inseparable. By taking Σ as the set
of shared symbols of T and T ′, Σ-inseparability means that T and T ′ are not

A. Armando, P. Baumgartner, and G. Dowek (Eds.): IJCAR 2008, LNCS 5195, pp. 259–274, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

260 B. Konev, D. Walther, and F. Wolter

distinguishable by means of concept implications in their shared signature. In
this case, their logical difference will be regarded as empty.

We show that decidingΣ-entailment is tractable for EL-terminologies, i.e., sets
of possibly cyclic concept definitions in the lightweight description logic EL;
see [1,10]. Observe that for ontologies formulated as general TBoxes in description
logics, the computational complexity of deciding Σ-entailment is by at least one
exponential harder than the deduction problem, e.g., it is 2ExpTime-complete for
expressive description logics such as ALC, ALCQ, and ALCQI [6, 12] and Ex-

pTime-complete for EL itself [13]. Moreover, even in such simple formalisms as
acyclic propositional Horn Logic Σ-entailment is co-NP-complete [5].

In applications, it is not enough to decide whether two ontologies are logically
different, but an informative list of differences is required. We show that for any
concept implicationC 0 D in the logicaldifference between two EL-terminologies,
there exist subconcepts C′ and D′ of C and D, respectively, such that C′ 0 D′

is in the logical difference and C′ or D′ is a concept name. Thus, listing the set
of all concept names involved in such implications appears to be an informative
approximation of the logical difference between two EL-terminologies. This list is
empty if, and only if, there is no logical difference between the two terminologies.

The system CEX implements, by employing a dynamic programming ap-
proach, the algorithm deciding Σ-entailment and lists the set of logical dif-
ferences described above for acyclic EL-terminologies. We present a variety of
experiments in which CEX is applied to different versions of Snomed ct, the
Systematized Nomenclature of Medicine, Clinical Terms. This terminology com-
prises ∼0.4 million terms and underlies the systematised medical terminology
used in the health systems of the US, the UK, and other countries [17].

Finally, we discuss an alternative approach to deciding Σ-entailment using
uniform interpolants and explore the complexity of corresponding reasoning
problems for acyclic ALC-terminologies.

Detailed proofs are provided in the technical report [11].

2 Preliminaries

Let NC and NR be countably infinite and disjoint sets of concept names and role
names, respectively. In the description logic EL, concepts C are built according
to the syntax rule

C ::= � | A | C "D | ∃r.C,
where A ranges over NC, r ranges over NR, and C,D range over concepts. The
semantics of concepts is defined by means of interpretations I = (ΔI , ·I), where
the interpretation domain ΔI is a non-empty set, and ·I is a function mapping
each concept name A to a subset AI of ΔI and each role name rI to a binary
relation rI ⊆ ΔI × ΔI . The function ·I is inductively extended to arbitrary
concepts by setting �I := ΔI , (C "D)I := CI ∩DI , and (∃r.C)I := {d ∈ ΔI |
∃e ∈ CI : (d, e) ∈ rI}.

A general TBox is a finite set of axioms, where an axiom can be either a
concept inclusion (CI) C 0 D or a concept equality (CE) C ≡ D, where C, D

The Logical Difference Problem for Description Logic Terminologies 261

are concepts. An interpretation I satisfies a CI C 0 D (written I |= C 0 D)
if CI ⊆ DI ; it satisfies a CE C ≡ D (written I |= C ≡ D) if CI = DI . I is a
model of a general TBox T if it satisfies all axioms in T . We write T |= C 0 D
(T |= C ≡ D) if every model of T satisfies C 0 D (C ≡ D, respectively).

Our main concern in this paper are terminologies, i.e., general TBoxes T
satisfying the following two conditions:

– T consists of CEs of the form A ≡ C (concept definitions) and CIs of the
form A 0 C (primitive concept definitions) only, where A is a concept name;

– no concept name occurs more than once on the left hand side of an axiom
in T .

Define the relation ≺T between concept names by setting A ≺T B if there exists
an axiom of the form A ≡ C or A 0 C in T such that B occurs in C. A
terminology T is called acyclic if the transitive closure ≺∗

T of ≺T is irreflexive.
A signature Σ is a finite subset of NC ∪ NR. The signature sig(C) (sig(α),

sig(T)) of a concept C (axiom α, terminology T) is the set of concept and role
names which occur in C (α, T , respectively). If sig(C) ⊆ Σ, we also call C a
Σ-concept and similarly for axioms and terminologies.

Definition 1 (Σ-difference, Σ-entailment). Let T and T ′ be terminologies
and Σ a signature. The Σ-difference, DiffΣ(T , T ′), between T and T ′ is defined as

DiffΣ(T , T ′) = {C 0 D | T �|= C 0 D and T ′ |= C 0 D and sig(C 0 D) ⊆ Σ}.

T Σ-entails T ′ if, and only if, DiffΣ(T , T ′) = ∅. T and T ′ are called Σ-
inseparable if T and T ′ Σ-entail each other.

Example 1. Observe that, in some cases, DiffΣ(T , T ′) only contains concept im-
plications of at least exponential size, even for acyclic terminologies. To start
with, let T = ∅,

T ′ = {A0 0 B0, A1 ≡ Bn} ∪ {Bi+1 ≡ ∃r.Bi " ∃s.Bi | 0 ≤ i < n},

and Σ = {A0, A1, r, s}. Then T ′ is not Σ-entailed by T , and a minimal implica-
tion of the form C 0 A1 in DiffΣ(T , T ′) is given by Cn 0 A1, where C0 = A0 and
Ci+1 = ∃r.Ci"∃s.Ci, for i ≥ 0. Clearly, Cn is of exponential size. Observe, how-
ever, that there exist much smaller implications than Cn 0 A1 in DiffΣ(T , T ′).
Namely, A1 0 ∃r.�, A1 0 ∃s.�, A1 0 ∃r.� " ∃s.�, etc. To avoid this type of
implications in DiffΣ(T , T ′) replace T by

T0 = {A1 0 F0} ∪ {Fi 0 ∃r.Fi+1 " ∃s.Fi+1 | 0 ≤ i < n}.

Then one can easily see that Cn 0 A1 is the smallest implication in DiffΣ(T0, T ′).
Observe, however, that if we use structure sharing and define the size of Cn as
the number of its subconcepts, then Cn is only of polynomial size.

Observe that if T Σ-entails T ′, then T Σ′-entails T ′ for any Σ′ with Σ′ ∩
sig(T ′) ⊆ Σ. This follows immediately from the following interpolation re-
sult [16].

262 B. Konev, D. Walther, and F. Wolter

C " C
(Ax)

C " (AxTop)
C " E

C !D " E
(AndL1)

D " E

C !D " E
(AndL2)

C " E C " D

C " D !E
(AndR)

C " D

∃r.C " ∃r.D (Ex)

CA " D

A " D
(DefL)

D " CA

D " A
(DefR)

where A ≡ CA ∈ T

CA " D

A " D
(PDefL)

where A " CA ∈ T

Fig. 1. Gentzen-style proof system for EL terminologies

Theorem 1. EL has the interpolation property, i.e., if T |= C 0 D, then there
exists a finite set T0 of CIs with sig(T0) ⊆ sig(T)∩ sig(C 0 D) such that T |= T0

and T0 |= C 0 D.

3 Basic Properties of EL

We derive basic properties of EL from the Gentzen-style sequent calculus of
Hofmann [10], see Figure 1.1 The basic calculus of [10] considers EL without
the constant � and for terminologies without primitive concept definitions. To
take care of �, we have added the rule (AxTop), and (PDefL) is the rule
representing axioms of the form A 0 C. Cut-elimination, completeness, and
correctness can now be proved by a straightforward extension of the proof in [10].
For a terminology T and concepts C,D, we write T , C 0 D iff there exists a
proof of C 0 D in the calculus of Figure 1.

Theorem 2 (Hofmann). For all terminologies T and concepts C,D, it holds
that T |= C 0 D if, and only if, T , C 0 D.

We apply this calculus to derive a description of the syntactic form of concepts
C such that T |= C 0 D, where D is not equivalent to a conjunction. Call a
concept name A primitive in T if A does not occur on the left hand side of an
axiom in T . Call A pseudo-primitive in T if it is primitive in T or occurs on
the left hand side of primitive concept definitions in T . In what follows, we say
that a concept F is a conjunction of concepts if F =

�
D∈X D, for a set X of

concepts. Any D ∈ X is then called a conjunct of F and, if D is a concept name,
then it is called an atomic conjunct of F . We sometimes write D ∈ F instead of
D ∈ X and if X is empty, then F denotes the concept �.

Lemma 1. Let T be a terminology and C = F "
�

(r,D)∈Q ∃r.D, where F is a
conjunction of concept names and Q is a set of pairs (r,D) in which r is a role
and D a concept.
1 Alternatively, one could start from the model-theoretic analysis of EL terminologies

in [1].

The Logical Difference Problem for Description Logic Terminologies 263

1. If T |= C 0 A for an A which is pseudo-primitive in T , then T |= B 0 A,
for some atomic conjunct B of F .

2. If T |= C 0 ∃s.C0, then
– T |= B 0 ∃s.C0, for some atomic conjunct B of F , or
– there exists (r,D) ∈ Q such that r = s and T |= D 0 C0.

Proof. We use Theorem 2 and prove Point 1. Point 2 is proved similarly. Let
T , C 0 A, where A is pseudo-primitive in T . Let D be a proof of C 0 A. Note
that, since A is pseudo-primitive in T , D can only end with one of Ax, AndL1,
AndL2, DefL, or PDefL. We show that then T , B 0 A, for some conjunct
B of F , by induction on the number n of conjuncts in C.

The base case of n = 1 is trivial: D can only end with one of Ax, PDefL, or
DefL; so, C is a concept name itself.

Assume n > 1. Then D can only end with one of AndL1 or AndL2. In any
case, there exists a conjunct C′ of C such that T , C′ 0 A and C′ contains
less conjuncts than C. By induction, there exists a concept name B which is a
conjunct in C′ such that T , B 0 A. Note now that B is also a conjunct of C.

We apply Lemma 1 to show that if T does not Σ-entail T ′, then there exists
C 0 D ∈ DiffΣ(T , T ′) such that C or D is a concept name.

Lemma 2. Let T and T ′ be terminologies and Σ a signature. If C 0 D ∈
DiffΣ(T , T ′), then there exist subconcepts C′ and D′ of C and D, respectively,
such that C′ 0 D′ ∈ DiffΣ(T , T ′) and C′ 0 D′ is of the form A 0 ∃r.D0 or
C0 0 A, where A is a concept name.

Proof. Let C 0 D ∈ DiffΣ(T , T ′). Then D �= � because otherwise T |= C 0 D.
If D = D1"D2, then one of C 0 Di, i = 1, 2, is in the Σ-difference. If D = ∃r.D1

then, by Lemma 1, either there exists a subconcept A of C, A a concept name,
such that A 0 D is in the Σ-difference, or there exists a subconcept ∃r.C1 of C,
such that C1 0 D1 is in the Σ-difference. Simplify C 0 D until none of these
simplification rules is applicable. The resulting CI is as required.

4 Deciding Σ-Entailment: Theory

By Lemma 2, to decide Σ-entailment, it is sufficient to decide whether the set
DiffΣ(T , T ′) contains Σ-implications of the form C 0 A or A 0 D, where A is
a concept name. The latter problem is decidable in polynomial time already for
general EL-TBoxes [13]. So, in what follows we concentrate on Σ-implications of
the form C 0 A. We first transform T into a normalised terminology. A concept
name A is called non-conjunctive in T if it is pseudo-primitive in T or has a
definition of the form A ≡ ∃r.C ∈ T . Otherwise A is called conjunctive in T . A
terminology T is normalised if it consists of axioms of the following form:

– A ≡ ∃r.B or A 0 ∃r.B, where B is a concept name;
– A ≡ F or A 0 F , where F is a (possibly empty) conjunction of concept

names such that every conjunct B of F is non-conjunctive in T .

264 B. Konev, D. Walther, and F. Wolter

For A ∈ NC,

– if A is pseudo-primitive in T , then

noimplyT ,Σ(A) = {ξA}, NoimplyT ,Σ(A) = {ξA �
�

A′∈(Σ\preΣ
T (A))

A′ � AllΣ};

– if A is conjunctive in T and A ≡ F ∈ T , then

noimplyT ,Σ(A) = {ξB | B ∈ F}, NoimplyT ,Σ(A) = ∅

– if A ≡ ∃r.B ∈ T , then noimplyT ,Σ(A) = {ξA} and NoimplyT ,Σ(A) = {αA}, where

αA = ξA � (
�

A′∈(Σ\preΣ
T (A))

A′) � (
�

r �=s∈Σ

∃s.(
�

A′∈Σ

A′ � AllΣ)) �
�

ξ∈noimplyT ,Σ(B)

∃r.ξ.

Fig. 2. Computing NoimplyT ,Σ(A) and noimplyT ,Σ(A)

Normalised terminologies in the sense defined above are a minor modification of
normalised terminologies as defined in [1]. Say that two interpretations I and J
coincide on a signature Σ, in symbols I|Σ = J |Σ , if ΔI = ΔJ and XI = XJ

for all X ∈ Σ.

Lemma 3. For every terminology T , one can construct in polynomial time a
normalised terminology T ′ of polynomial size in |T | such that sig(T) ⊆ sig(T ′),
T ′ |= T , and for every model I of T there exists a model J of T ′ which coincides
with I on Σ. Moreover, T ′ is acyclic if T is acyclic.

The proof is a straightforward modification of the proof in [1]. From now on we
will work with normalised terminologies only.

Intuitively, to decide whether there exists C � A ∈ DiffΣ(T , T ′), we want
to construct the most specific2 Σ-concept CA such that T |= CA � A. Then
there exists some Σ-concept C such that C � A ∈ DiffΣ(T , T ′) if, and only if,
T ′ |= CA � A. Unfortunately, most specific Σ-concepts with this property do
not always exist and, therefore (and also to enable structure sharing), we use an
additional terminology. We use the following sets and axiom:

– Σfresh = {AllΣ} ∪ {ξA | A ∈ NC non-conjunctive in T }, where AllΣ and each
ξA are fresh concept names not occurring in Σ ∪ sig(T);

– α denotes the concept inclusion AllΣ �
�

r∈Σ ∃r.(
�

A′∈Σ A′ � AllΣ);
– preΣ

T (A) = {B ∈ Σ | T |= B � A}, for A ∈ NC. These sets can be computed
in polynomial time [1].

Theorem 3. Let T be a normalised terminology and Σ a signature. The ter-
minologies NoimplyT ,Σ(A) and sets of concepts names noimplyT ,Σ(A) are con-
structed, in polynomial time, in Figure 2. Set

2 Recall that a concept C is more specific than a concept D if |= C � D.

The Logical Difference Problem for Description Logic Terminologies 265

NoimplyT ,Σ = {α} ∪
⋃

A∈Σ∪sig(T)

NoimplyT ,Σ(A).

The following conditions are equivalent, for every concept name A ∈ Σ ∪ sig(T)
and terminology T ′ with sig(T ′) ∩Σfresh = ∅:

– there exists a Σ-concept C with T ′ |= C 0 A and T �|= C 0 A;
– T ′ ∪ NoimplyT ,Σ |= ξ 0 A, for some ξ ∈ noimplyT ,Σ(A).

Observe that, in Theorem 3, NoimplyT ,Σ and noimplyT ,Σ(A) do not depend on
T ′. Thus, once they have been constructed, they can be used to check the exis-
tence of concept implications C 0 A ∈ DiffΣ(T , T ′) for arbitrary terminologies
T ′. It is worth noting as well that the proof of Theorem 3 will show that the
result holds for arbitrary general TBoxes T ′ formulated in description logics
which are fragments of first-order logic, and, indeed, for T ′ any first-order the-
ory. In this case, Theorem 3 provides a reduction of checking whether there exists
C 0 A ∈ DiffΣ(T , T ′) to deduction in the language of T ′.

Example 2. Let T = {A ≡ ∃r.B,B ≡ ∃r.A} and Σ = {r, A,B}. Then we have
noimplyT ,Σ(A) = {ξA} and NoimplyT ,Σ = {ξA 0 B " ∃r.ξB, ξB 0 A " ∃r.ξA}.
Intuitively, {ξA}∪NoimplyT ,Σ stands for the “infinitary” most specific Σ-concept
not subsumed by A relative to T .

In the remainder of this section we prove Theorem 3. To this end, we first prove
an “infinitary” version of Theorem 3 by associating with every concept name A
a sequence noimplyn

T ,Σ(A), n ≥ 0, of sets of Σ-concepts such that the following
holds:

C1. T �|= C 0 A, for all n ≥ 0 and for all C ∈ noimplyn
T ,Σ(A).

C2. For all Σ-concepts D, if T �|= D 0 A, then |= C 0 D for some C ∈
noimplyn

T ,Σ(A), where n is the role-depth depth(D) of D (i.e., the number of
nestings of existential restrictions in D).3

The sets noimplyn
T ,Σ(A) are defined in Figure 3. Observe that noimplyn

T ,Σ(A)
is well-defined because in the definition A ≡ F ∈ T of a conjunctive concept
name A no conjunctive concept name occurs. This observation will also be used
in the inductive proofs below.

Example 3. For the terminology T and signature Σ from Example 2, we have
noimply0

T ,Σ(A) = {B}, noimply1
T ,Σ(A) = {B " ∃r.A}, noimply2

T ,Σ(A) = {B "
∃r.(A"∃r.B)}, etc. Thus, intuitively, noimplyn

T ,Σ(A) is the unfolding up to depth
n of ξA relative to NoimplyT ,Σ .

Lemma 4. Let T be a normalised terminology, signature Σ, and A ∈ NC. The
sets noimplyn

T ,Σ(A) satisfy conditions C1 and C2 above.

3 More precisely depth(A) = 0, depth(C1 ! C2) = max{depth(C1), depth(C2)}, and
depth(∃r.D) = depth(D) + 1.

266 B. Konev, D. Walther, and F. Wolter

Set, inductively, all0Σ = � and alln+1
Σ =

�
r∈Σ ∃r.(

�
A′∈Σ A′ � allnΣ). Define

noimply0
T ,Σ(A) as follows:

– if A is non-conjunctive in T , then noimply0
T ,Σ(A) = {

�
A′∈Σ\preΣ

T (A) A′};
– if A is conjunctive and A ≡ F ∈ T , then noimply0

T ,Σ(A) =
�

B∈F noimply0
T ,Σ(B);

and define, inductively, noimplyn+1
T ,Σ(A) by

– if A is pseudo-primitive in T , then noimplyn+1
T ,Σ(A) = {

�
A′∈(Σ\preΣ

T (A)) A′�alln+1
Σ }.

– If A is conjunctive and A ≡ F ∈ T , then noimplyn+1
T ,Σ(A) =

�
B∈F noimplyn+1

T ,Σ(B).

– If A ≡ ∃r.B ∈ T , then noimplyn+1
T ,Σ(A) = {Cn+1

Σ,T }, where

Cn+1
Σ,T = (

�

A′∈(Σ\preΣ
T (A))

A′ � (
�

r �=s∈Σ

∃s.(
�

A′∈Σ

A′ � allnΣ)) �
�

E∈noimplyn
T ,Σ

(B)

∃r.E.

Fig. 3. Computing noimplyn
T ,Σ(A)

Proof. We start with the proof of C1. Assume first that A is pseudo-primitive in
T . Then noimplyn

T ,Σ(A) consists of C =
�

A′∈(Σ\preΣ
T (A)) A′ � allnΣ . By Lemma 1,

T |= C � A because the only atomic conjuncts of C are in Σ \ preΣ
T (A).

We now prove C1 for concept names A which are not pseudo-primitive in
T . The proof is by induction on n. For n = 0 and A ≡ ∃r.B ∈ T the claim
follows again from Lemma 1 and the observation that B′ ∈ preΣ

T (A) if, and only
if, T |= B′ � ∃r.B. For n = 0 and A conjunctive with A ≡ F ∈ T , C1 follows
since it has been proved for all conjuncts of F and T |= C � A if, and only if,
there exists an atomic conjunct B of F such that T |= C � B.

For the induction step, assume C1 has been proved for n ≥ 0.
Let A ≡ ∃r.B ∈ T and let Cn+1

T ,Σ be the only element of noimplyn+1
T ,Σ(A).

Assume T |= Cn+1
T ,Σ � A. By Lemma 1 there are two cases:

– T |=
�

A′∈(Σ\preΣ
T (A)) A′ � ∃r.B. This is excluded, by Lemma 1.

– There exists E ∈ noimplyn
T ,Σ(B) such that T |= E � B. This is excluded by

the IH.

We have derived a contradiction. The case A ≡ F ∈ T , A conjunctive in T , is
considered similarly to the case n = 0 and left to the reader.

We come to the proof of C2. The proof is by induction on n. Let n = 0 and
assume first that A is non-conjunctive. Let D be a Σ-concept with depth(D) = 0
and T |= D � A. Then all conjuncts of D are in Σ \ preΣ

T (A) and we obtain
|=

�
A′∈Σ\preΣ

T (A) A′ � D. Now assume A is conjunctive in T and A ≡ F ∈ T .
Let D be a Σ-concept with depth(D) = 0 and T |= D � A. Then T |= D � B,
for some conjunct B of F . By IH, |= C � D for the (unique) C ∈ noimply0

T ,Σ(B),
and therefore |= C � D for some C ∈ noimply0

T ,Σ(A).
For the induction step, assume that C2 has been shown for n. Let D be a

Σ-concept with T |= D � A and depth(D) = n + 1. Assume first that A is

The Logical Difference Problem for Description Logic Terminologies 267

pseudo-primitive in T . Then the atomic conjuncts of D are included in Σ \
preΣ

T (A). So, from C =
�

A′∈Σ\preΣ
T (A) A′ � alln+1

Σ we obtain |= C � D.

Now assume A ≡ ∃r.B ∈ T . Let Cn+1
T ,Σ be the only element of noimplyn+1

T ,Σ(A)
and assume

D =
�

B∈Q0

B �
�

(s,D′)∈Q1

∃s.D′.

Then Q0 ⊆ Σ \ preΣ
T (A). Hence, |= Cn+1

T ,Σ �
�

B∈Q0
B. Now consider a conjunct

∃s.D′ of D. There are two cases:

– s = r. Then, by construction, |= Cn+1
T ,Σ � ∃s.D′.

– s = r. It is enough to show that there exists E ∈ noimplyn
T ,Σ(B) such

that |= E � D′. Suppose there does not exist such an E. Then, by IH,
T |= D′ � B. Hence, T |= ∃r.D′ � ∃r.B and we obtain T |= D � A, which
is a contradiction.

The case in which A is conjunctive in T is straightforward and is left to the
reader.

Corollary 1. For all terminologies T ′ and A ∈ NC the following are equivalent:

1. there exists a Σ-concept C such that T |= C � A and T ′ |= C � A;
2. there exists n ≥ 0 and C ∈ noimplyn

T ,Σ(A) such that T ′ |= C � A.

Proof. The direction from Point 2 to Point 1 follows immediately from C1.
Conversely, assume that there exists a Σ-concept C such that T ′ |= C � A
and T |= C � A. By C1 and C2, there exist n and C′ ∈ noimplyn

T ,Σ(A) with
|= C′ � C and T |= C′ � A. Then T ′ |= C′ � A.

In contrast to the formulation of Theorem 3, Corollary 1 does not provide us
with a polynomial time algorithm. First, no upper bound on n is given and,
second, the concepts in noimplyn

T ,Σ(A) are of exponential size in n. Example 1
is easily extended so as to show that this is unavoidable: one can construct a
terminology T and a sequence of terminologies T ′

n such that in minimal impli-
cations in DiffΣ(T , T ′) of the form Cn � A the concept Cn has at least depth n
and is of size 2n. However, Theorem 3 is now an immediate consequence of the
following lemma and Corollary 1.

Lemma 5. Let T ′ be a terminology such that sig(T ′) ∩ Σfresh = ∅ and A ∈
sig(T) ∪ Σ. Then the following conditions are equivalent:

1. T ′ ∪ NoimplyT ,Σ |= ξ � A, for some ξ ∈ noimplyT ,Σ(A);
2. T ′ |= C � A, for some n ≥ 0 and C ∈ noimplyn

T ,Σ(A).

Proof. Point 2 implies Point 1. For concept names A which are non-conjunctive
in T this follows because NoimplyT ,Σ |= ξA � C for the only element C of
noimplyn

T ,Σ(A). The conjunctive case follows by induction.
Point 1 implies Point 2 is proved by a compactness argument. Intuitively, if

T ′ ∪
⋃

n≥0 noimplyn
T ,Σ(A) |= A, then T ′ ∪ NoimplyT ,Σ |= ξ � A, for all ξ ∈

noimplyT ,Σ(A). However, to prove this, one has to re-construct the concepts
noimplyn

T ,Σ(A); details of the proof are given in the technical report.

268 B. Konev, D. Walther, and F. Wolter

5 Practical Algorithm and System

We have seen above that the sets

– DiffRΣ(T , T ′) consisting of all A ∈ Σ such that there is a Σ-concept C with
T �|= C 0 A and T ′ |= C 0 A, and

– DiffLΣ(T , T ′) consisting of all A ∈ Σ such that there is a Σ-concept C with
T �|= A 0 C and T ′ |= A 0 C

can be computed in polynomial time and can be regarded, by Lemma 2, as an
informative approximation of the logical difference between T and T ′ w.r.t. Σ.

Computing both sets for large terminologies and signatures Σ using a direct
implementation of the algorithm described above will fail: considering that state
of the art description logic reasoners [2] take about 15 minutes to classify the
SNOMED CT terminology [17], the reduction to reasoning given in Section 4
is impractical for large terminologies and signatures of reasonable size (the ter-
minology NoimplyT ,Σ contains huge conjunctions of Σ-concept names). We now
discuss the implementation of the algorithms above in the system CEX for acyclic
terminologies using a dynamic programming approach.

Let T and T ′ be acyclic terminologies and Σ a signature. For expositional
reasons, we assume that Σ ⊆ sig(T ′) ⊆ sig(T). This is justified because we
can add A 0 � to T ′, for all A ∈ Σ \ sig(T ′), and A 0 � to T , for all
A ∈ (Σ ∪ sig(T ′)) \ sig(T). We describe the algorithm computing DiffRΣ , the
rather straightforward algorithm computing DiffLΣ is discussed in the techni-
cal report. We assume that T and T ′ are fully classified and the result of the
classification is kept in a table, so, given two concept names A and B, it takes
constant time to find out whether T |= A 0 B (likewise, if T ′ |= A 0 B). Now
the algorithm computing DiffRΣ works by induction on concept definitions and
marks, recursively, every E ∈ sig(T ′), starting with pseudo-primitive ones, with
members of Ξ = {ξA | A ∈ sig(T) non-conjunctive in T } in such a way that

(†) E ∈ sig(T ′) is marked with ξ if, and only if, T ′ ∪NoimplyT ,Σ �|= ξ 0 E.

Then A ∈ Σ is not marked with ξ ∈ noimplyT ,Σ(A) if, and only if, T ′ ∪
NoimplyT ,Σ |= ξ 0 A. If this happens to be the case for some ξ ∈ noimplyT ,Σ(A),
then A is included in DiffRΣ(T , T ′) (Theorem 3).

In order to define the marking, set preΣ
T (ξA) = preΣ

T (A), for A ∈ sig(T) non-
conjunctive in T . Now mark E ∈ sig(T ′) as follows:

1. If E is pseudo-primitive in T ′, then it is marked with all ξ ∈ Ξ such that
preΣ

T ′(E) ⊆ preΣ
T (ξ);

2. If E ≡ E1 " . . . " Ek ∈ T ′, then it is marked with all ξ ∈ Ξ such that at
least one of E1,. . . , Ek is marked with ξ;

3. If E ≡ ∃r.E′ ∈ T ′ and
(a) if r /∈ Σ or T ′ ∪ {α} �|= (

�
A′∈Σ A

′ " AllΣ) 0 E′, then E is marked with
all ξ ∈ Ξ such that preΣ

T ′(E) ⊆ preΣ
T (ξ);

(b) if r ∈ Σ and T ′ ∪{α} |= (
�

A′∈Σ A
′ "AllΣ) 0 E′, then E is marked with

all ξA ∈ Ξ such that

The Logical Difference Problem for Description Logic Terminologies 269

– A ≡ ∃r.A′ in T and, for all ξ′ ∈ noimplyT ,Σ(A′), E′ is marked with
ξ′ and

– preΣ
T ′(E) ⊆ preΣ

T (ξA).

Using Theorem 3 and Lemma 5, one can prove that the defined marking
has property (†). While the condition T ′ ∪ {α} |= (

�
A′∈Σ A

′ " AllΣ) 0 E can
be checked directly, this requires operating concepts of large size for large Σ’s.
So, instead we use the following criterion: we may assume that T contains a
definition A 0 � such that A �∈ sig(T ′) and A does not occur elsewhere in T .
Then it follows from the definitions that T ′ ∪ {α} |= (

�
A′∈Σ A

′ " AllΣ) 0 E if,
and only if, E is not marked with ξA.

Let T and T ′ be the time taken to fully classify T and T ′, respectively.
Then all T ′ concept names can be marked in O(|T | × |T ′| × |Σ| + T ′) time.
Overall, checking Σ-entailment takes O(|T | × |T ′| × |Σ| + T + T ′) time and
O(|T | × |T ′| × |Σ|) space. It should be noted that in our implementation this
theoretical upper bound is often not reached due to the use of hash tables and
structure sharing.

6 Experimental Evaluation

CEX (see http://www.csc.liv.ac.uk/∼konev/software/) is an OCaml program [4].
For the experiments, we use two versions of Snomed ct: one dated 09 February
2005 (SM-05) and the other 30 December 2006 (SM-06) and having 379 691 and
389 472 axioms, respectively. As CEX currently accepts acyclic EL-terminologies
only, the role inclusions of Snomed ct are not taken into account. The tests
have been carried out on a standard PC: Intel R© CoreTM 2 CPU at 2.13 GHz
and 3 GB of RAM.

Logical difference between SM-05 and SM-06. Table 1 shows the average sizes
of the lists DiffLΣ(SM-05,SM-06) and DiffRΣ(SM-05,SM-06) for 20 randomly
generated signatures Σ ⊆ sig(SM-05) ∩ sig(SM-06) for each of the 12 possible
signature sizes containing 100, 1 000, etc. concept names and 0, 20, or 40 role
names.4 The execution time and memory consumption of CEX when computing
these lists vary from 477 to 596 seconds and from 1 393 to 1 496 MByte, respec-
tively. The numbers show that there is a huge difference between SM-05 and
SM-06. Also, adding a role name to the signature has a larger impact on the
number of differences than adding a concept name.

Comparison with the classification approach. We compare the size of DiffLΣ ∪
DiffRΣ as computed by CEX with the number of concept names in Σ for which
there is a difference in the class hierarchy restricted to Σ; i.e., the set of A ∈ Σ
such that there exists B ∈ Σ such that A 0 B ∈ DiffΣ or B 0 A ∈ DiffΣ .
The experiments show how many of the differences between two terminologies
detected by CEX can be extracted from a straightforward comparison of class
hierarchies.
4 There are 50 role names in sig(SM-05) ∩ sig(SM-06).

270 B. Konev, D. Walther, and F. Wolter

Table 1. Computing logical difference with CEX: DiffΣ(SM-05, SM-06)

|Σ ∩ NC| |Σ ∩ NR| = 0 |Σ ∩ NR| = 20 |Σ ∩ NR| = 40

|diffLΣ | |diffRΣ | |diffLΣ | |diffRΣ | |diffLΣ | |diffRΣ |
100 0.10 0.10 0.90 0.15 2.95 0.20

1 000 2.35 2.15 15.55 2.95 28.85 3.75

10 000 155.35 125.35 257.35 136.20 514.10 209.90

100 000 11 795.90 4 108.60 12 954.45 4 358.30 14 942.55 6 823.60

(a) Number of differences (b) Proportion of detected differences

Fig. 4. Comparison of CEX and classification-based approach

To facilitate the experiments, we use an empty terminology and an SM-05

fragment containing about 140 000 axioms. For every number between 10 and
270 with the step of 10, we generated 500 samples of a random signature con-
taining this number of concepts and 20 roles. The results of the experiments are
given in Figure 4. 4(a) shows that, for these signatures, the number of concept
names CEX outputs is about five times larger than the number of concept names
occurring in differences between the class hierarchies. In 4(b), we do not count
the number of differences but analyse how often the two approaches detect dif-
ferences at all. More precisely, we give the percentage of cases when CEX detects
a difference between the two terminologies and when a difference is visible in
the class hierarchies. For signatures larger than 200, both approaches almost
always detect differences. But for smaller signatures there is again a significant
gap between the two approaches.

Scalability. We demonstrated in the previous section that CEX is capable of find-
ing the logical difference in two unmodified versions of Snomed ct. In order to
see how CEX’s performance scales, we now test it on randomly generated acyclic
terminologies of various sizes. Each randomly generated terminology contains a
certain number of defined- and primitive concept names and role names. The
ratio between concept equations and concept inclusions is fixed, as is the ra-
tio between existential restrictions and conjunctions. The random terminologies

The Logical Difference Problem for Description Logic Terminologies 271

(a) Short conjunctions (b) Long conjunctions

Fig. 5. Memory consumption of CEX on randomly generated terminologies

were generated for a varying number of defined concept names using the pa-
rameters of SM-05: 62 role names; the average number of conjuncts is 2.59; the
equality-inclusion ratio is 0.102; and the exists-conjunction ratio is 0.652. For
every chosen size, we generate a number of samples consisting of two random
terminologies as described above. We apply CEX to find the logical difference
of the two terminologies over their joint signature. Figure 5 shows the time and
memory consumption of CEX on randomly generated terminologies of various
sizes. In 5(a) the maximum length of conjunctions was fixed as two (M=2), and
in 5(b) the number of conjuncts in each conjunction is randomly selected between
two and M. It can be seen that the performance of CEX crucially depends on the
length of conjunctions. In 5(b), the curves break off at the point where CEX runs
out of memory. For instance, in the case M=22, this happens for terminologies
with more than 9 500 defined concept names.

7 Uniform Interpolation

Let T be a terminology and Σ a signature. A general TBox TΣ is called a uniform
interpolant for T w.r.t. Σ if sig(TΣ) ⊆ Σ and TΣ and T are Σ-inseparable. The
question whether uniform interpolants exist for every terminology T 5 and sig-
nature Σ in a logic (i.e., whether the logic has uniform interpolation), has been
investigated extensively in the literature, in particular in modal and intuition-
istic logic [15, 18,8]. For instance, modal logic K has uniform interpolation [18],
but S4 does not [8]. Observe that, if a uniform interpolant T ′

Σ of T ′ w.r.t. Σ
exists, then T Σ-entails T ′ if, and only if, T |= T ′

Σ . Thus, the problem of decid-
ing Σ-entailment is reduced to computing a uniform interpolant and standard
deduction. Unfortunately, even for EL-terminologies uniform interpolants do not
always exist.

Lemma 6. There exists an EL-terminology T and a signature Σ such that there
does not exist an uniform interpolant of T w.r.t. Σ.
5 In modal or intuitionistic logic T is, of course, a formula.

272 B. Konev, D. Walther, and F. Wolter

Proof. Let T = {A0 � B, B � A1 �∃r.B} and Σ = {A0, A1, r}. Then a uniform
interpolant TΣ would have to axiomatise (using symbols from Σ only) the class
of interpretations I satisfying the following condition: if d0 ∈ AI

0 , then there
exists a sequence d0r

Id1r
Id2r

I . . . with di ∈ AI
1 for all i ≥ 0. It is not difficult

to show that no such TΣ exists (even in first-order logic).

On the other hand, uniform interpolants always exist for acyclic EL-terminologies,
but minimal uniform interpolants might contain exponentially many axioms.

Theorem 4. Let T be an acyclic terminology and Σ a signature. Then there
exists a uniform interpolant of T w.r.t. Σ. In the worst case, minimal uniform
interpolants have exponentially many axioms.

Proof. First, one can show that TΣ = T l
Σ ∪ T r

Σ is a uniform interpolant for T
w.r.t. Σ if sig(TΣ) ⊆ Σ and

(a) T |= C � A if, and only if, T l
Σ |= C � A, for all Σ-concepts C and A ∈ Σ;

(b) T |= A � D if, and only if, T r
Σ |= A � D, for all Σ-concepts D and A ∈ Σ.

Due to space constraints we cannot describe the construction of T l
Σ and T r

Σ

here, and refer the reader to the technical report. The following example shows
that, in the worst case, minimal uniform interpolants require exponentially many
axioms. Let

T = {A ≡ B1 � · · · � Bn} ∪ {Aij � Bi | 1 ≤ i, j ≤ n}.

and Σ = {A} ∪ {Aij | 1 ≤ i, j ≤ n}. Then

TΣ = {A1j1 � · · · � An,jn � A | 1 ≤ j1, . . . , jn ≤ n}

is a uniform interpolant. It is easy to see that no uniform interpolant with fewer
axioms exists. This example shows as well that one has to allow for general
TBoxes when constructing uniform interpolants.

The results above show that, at least from a theoretical viewpoint, deciding Σ-
entailment via uniform interpolants is less efficient than the approach discussed
before. Still, uniform interpolants are useful for a number of applications, and
it would be of interest to see whether this approach is viable for real-world
terminologies.

8 Discussion

We have shown that computing the logical difference is tractable for EL-termino-
logies and that this approach exhibits differences which are not visible in the
class hierarchy. Our experiments with Snomed ct show that the algorithm can
be implemented in such a way that very large terminologies can be compared
efficiently.

The following result shows that there is no straightforward way of extending
these results to (even acyclic) terminologies in the basic Boolean description
logic ALC (in which concepts can be constructed using, in addition, negation).

The Logical Difference Problem for Description Logic Terminologies 273

Theorem 5. (1) Σ-entailment is NExpTime-hard for acyclic ALC-termino-
logies. (2) Uniform interpolants do not always exist for acyclicALC-terminologies.

Proof. Point (1) can be proved by a reduction of the NExpTime-hard problem
of deciding conservative extensions in modal logic K [7], details are given in the
technical report.

Point (2). We rewrite the terminology from Lemma 6. Let T = {A 0 (¬A0 !
B) " (¬B ! (A1 " ∃r.B))} and Σ = {A,A0, A1, r}. It follows from the proof
of Lemma 6 that there does not exist a general ALC-TBox T A

Σ axiomatising
(using only the symbols from Σ) the class S of interpretations I satisfying the
following conditions: AI = ΔI and if d0 ∈ AI

0 , then there exists a sequence
d0r

Id1r
Id2r

I . . . with di ∈ AI
1 for all i ≥ 0. Now assume that there exists

a uniform interpolant TΣ of T w.r.t. Σ. Then TΣ ∪ {A ≡ �} would be an
axiomatisation of S and we have derived a contradiction.

Point (2) of Theorem 5 is slightly unexpected, because it shows that it is not
possible to lift results from modal logic K (which has uniform interpolation)
to acyclic ALC-terminologies. Besides of considering extensions of our approach
to languages with additional concept constructors, such as ALC, directions for
future research include terminologies with additional role boxes. Snomed ct

has an additional role box consisting of implications r 0 r′, r ◦ s 0 r (right-
identities), and s ◦ r 0 r (left-identities), where r, s, r′ are role names. It is not
difficult to extend the algorithm (and implementation) presented in this paper
to terminologies containing implications of the first type, but it remains open
whether Σ-entailment is still tractable for additional role boxes containing left-
and right-identities.

Finally, for the system CEX to be useful in practice, the outputs DiffLΣ and
DiffRΣ have to be expanded by suggesting, for A ∈ DiffRΣ , Σ-concepts C such
that C 0 A ∈ DiffΣ , and similarly for DiffLΣ. Computing such C’s is straight-
forward by unfolding the concept ξA relative to NoimplyT ,Σ. However, even this
might not provide enough information, because for the user it could be difficult to
find out which difference between the axioms of the two terminologies has caused
a certain Σ-difference. Thus, as a second step one might consider pinpointing
algorithms explaining from which axioms of a terminology a counterexample
C 0 A is derivable [3].

Acknowledgements. Theauthorswere supportedbyEPSRCgrantEP/E065279/1.

References

1. Baader, F.: Terminological cycles in a description logic with existential restrictions.
In: Proceedings of IJCAI 2003, pp. 325–330. Morgan Kaufmann, San Francisco
(2003); Long version available as LTCS Report 02-02

2. Baader, F., Lutz, C., Suntisrivaraporn, B.: CEL—a polynomial-time reasoner for
life science ontologies. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS
(LNAI), vol. 4130, pp. 287–291. Springer, Heidelberg (2006)

274 B. Konev, D. Walther, and F. Wolter

3. Baader, F., Peñaloza, R., Suntisrivaraporn, B.: Pinpointing in the description logic
EL+. In: Hertzberg, J., Beetz, M., Englert, R. (eds.) KI 2007. LNCS (LNAI),
vol. 4667, pp. 52–67. Springer, Heidelberg (2007)

4. The Caml team, http://caml.inria.fr/contact.en.html
5. Flögel, A., Büning, H.K., Lettmann, T.: On the restricted equivalence of subclasses

of propositional logic. ITA 27(4), 327–340 (1993)
6. Ghilardi, S., Lutz, C., Wolter, F.: Did I damage my ontology? a case for conservative

extensions in description logics. In: Proceedings of KR 2006, pp. 187–197. AAAI
Press, Menlo Park (2006)

7. Ghilardi, S., Lutz, C., Wolter, F., Zakharyaschev, M.: Conservative extensions in
modal logics. In: Proceedings of AiML-6, pp. 187–207. College Publications (2006)

8. Ghilardi, S., Zawadowski, M.: Undefinability of propositional quantifiers in the
modal system S4. Studia Logica 55(2), 259–271 (1995)

9. Grau, B.C., Horrocks, I., Kazakov, Y., Sattler, U.: Just the right amount: extracting
modules from ontologies. In: Proceedings of WWW 2007, pp. 717–726. ACM Press,
New York (2007)

10. Hofmann, M.: Proof-theoretic approach to description logic. In: Proceedings of
LICS 2005, pp. 229–237. IEEE Computer Society Press, Los Alamitos (2005)

11. Konev, B., Walther, D., Wolter, F.: The logical difference problem for description
logic terminologies (manuscript 2008),
http://www.csc.liv.ac.uk/∼frank/publ/publ.html

12. Lutz, C., Walther, D., Wolter, F.: Conservative extensions in expressive description
logics. In: Proceedings of IJCAI 2007, pp. 453–458. AAAI Press, Menlo Park (2007)

13. Lutz, C., Wolter, F.: Conservative extensions in the lightweight description logic
EL. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 84–99.
Springer, Heidelberg (2007)

14. Noy, N.F., Musen, M.: Promptdiff: A fixed-point algorithm for comparing ontology
versions. In: Proceedings of AAAI 2002, pp. 744–750. AAAI Press, Menlo Park
(2002)

15. Pitts, A.: On an interpretation of second-order quantification in first-order intu-
itionistic propositional logic. Journal of Symbolic Logic 57(1), 33–52 (1992)

16. Sofronie-Stokkermans, V.: Interpolation in local theory extensions. In: Furbach, U.,
Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 235–250. Springer,
Heidelberg (2006)

17. Spackman, K.: Managing clinical terminology hierarchies using algorithmic calcula-
tion of subsumption: Experience with SNOMED-RT. In: JAMIA, Fall Symposium
Special Issue (2000)

18. Visser, A.: Uniform interpolation and layered bisimulation. In: Gödel 1996 (Brno,
1996). Lecture Notes Logic, vol. 6, pp. 139–164. Springer, Heidelberg (1996)

http://caml.inria.fr/contact.en.html
http://www.csc.liv.ac.uk/~frank/publ/publ.html

Aligator: A Mathematica Package for Invariant
Generation (System Description)

Laura Kovács

EPFL, Switzerland
laura.kovacs@epfl.ch

Abstract. We describe the new software package Aligator for automatically
inferring polynomial loop invariants. The package combines algorithms from
symbolic summation and polynomial algebra with computational logic, and is
applicable to the rich class of P-solvable loops. Aligator contains routines for
checking the P-solvability of loops, transforming them into a system of recur-
rence equations, solving recurrences and deriving closed forms of loop variables,
computing the ideal of polynomial invariants by variable elimination, invariant
filtering and completeness check of the resulting set of invariants.

1 Introduction

In [6,7] we defined a family of loops, called P-solvable, with assignments, sequencing
and conditionals, and ignored test conditions. For these loops the value of each pro-
gram variable in a loop iteration can be expressed as a polynomial of the initial values
of variables, the loop counter, and some new variables where there are algebraic depen-
dencies among the new variables. For such loops, a systematic method is developed for
generating a set of polynomial equations as invariants. We call a polynomial equation
or polynomial identity any equation p = 0 where p is a polynomial and a polynomial
invariant any loop invariant that is a conjunction of polynomial equations.

The approach described in [6,7] can be summarized as follows. (i) P-solvable loops
with nested conditionals are first transformed into a nested loop system with assign-
ments only. (ii) Each P-solvable loop with assignments only is written as a system of
recurrence equations in the loop counter. (iii) Recurrences are then solved exactly by
symbolic summation algorithms [3,12], and algebraic dependencies among possible
exponential sequences occurring in the closed forms are derived using polynomial al-
gebra and algorithmic combinatorics [4]. (iv) Next, the loop counter and the variables
standing for the exponential sequences are eliminated by a Gröbner basis computation
[1]. A finite set of polynomial identities among the program variables as invariants is
thus obtained, from which, under additional conditions for loops with conditionals, all
polynomial invariants of P-solvable loops can be inferred.

� Research was partly done while the author was at the Research Institute for Symbolic Compu-
tation (RISC), Linz, Austria.

A. Armando, P. Baumgartner, and G. Dowek (Eds.): IJCAR 2008, LNCS 5195, pp. 275–282, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

276 L. Kovács

Many non-trivial algorithms working on numbers can be naturally implemented us-
ing P-solvable loops.

The purpose of this paper is to give an overview of a new software package, called
Aligator, for generating automatically polynomial invariants of P-solvable loops.
General principles of the implementation will be discussed and illustrated on motivating
examples. For the soundness of our approach we refer to [6,7].
Aligator was implemented in Mathematica 5.2 [11], and is available from:

http://mtc.epfl.ch/software-tools/Aligator/

Aligator includes algorithms solving special classes of recurrence relations (those
that are either Gosper-summable [3] or C-finite [12]), generating polynomial dependen-
cies among algebraic exponential sequences [4], and performing variable elimination
using Gröbner basis computation [1]. The current version slightly differs from the one
given in [6] due to the integration of our implementation of C-finite recurrence solving
in Aligator.

We begin with loading the package into Mathematica, as given below.

In[1]:= << Aligator.m
Automated Loop Invariant Generation by Algebraic Techniques Over the Rationals.

Package written by Laura Kovacs - c©RISC Linz and EPFL Lausanne - V 0.3 (2008-02-01)

The examples presented in the paper can be directly fed into Mathematica, after load-
ing Aligator; only minor changes in output lines were made to improve readabil-
ity. We have successfully tried our implementation on many examples, see [6] or the
mentioned URL; for each of the examples results were obtained in less than 3.5 seconds
on a machine with 2.0GHz CPU and 2GB of memory.

2 Aligator - Underlying Principles

Aligator commands have syntax and semantics similar to those of Mathematica.
However, in order to avoid any conflict with Mathematica’s While and If commands
we use the symbols WHILE and IF for denoting loops and conditionals. The syntax of
considered P-solvable loops is as follows.

WHILE[b0, s0;IF[b1, s1,IF[b2, ,IF[bk−1, sk−1, sk] . . .]]; sk+1], (1)

where s0, . . . , sk+1 are sequences of assignments and b0, . . . , bk−1 are boolean
expressions.

In our approach to invariant generation tests are ignored, and we thus deal with (ba-
sic) non-deterministic programs [6]. We omit the condition b from IF[b, S1, S2], where
S1 (then-branch) and S2 (else-branch) are sequences of assignments, and write it as
IF[. . . , S1, S2] to mean the non-deterministic program S1|S2. Similarly, we omit the
condition b from WHILE[b, S], where S is a sequence of assignments, and write it in
the form WHILE[. . . , S] to mean the non-deterministic program S∗. (1) is thus treated
internally as

(S1| . . . |Sk)∗, where Si = s0; si; sk+1. (2)

Aligator: A Mathematica Package for Invariant Generation 277

In the sequel, let X denote the set of loop variables, and X0 the corresponding ini-
tial values (before entering the loop). To invoke Aligator one uses the following
command.

Command 2.1 : Aligator[PLoop, IniVal→list of assignments]

Input: a P-solvable loop PLoop as in (1), and optionally a list of assignments
specifying the initial valuesX0 ofX

Output: a completeness message and
Output: a polynomial loop invariant p1(X) = 0 ∧ · · · ∧ pr(X) = 0

where the completeness message is either “Method is complete!” or “Cannot determine
completeness of the method!”, and refers to the fact whether the computed set of polyno-
mials is a basis of the polynomial invariant ideal (see page 281 for more details).

EXAMPLE 2.1 (An algorithm computing the closest integer r to the cubic root of inte-
ger a [5,9].)

In[2]:= Aligator[WHILE[x− s > 0, x := x− s; s := s+ 6 ∗ r + 3; r := r + 1],

Aligator[IniVal→{x := a; r := 1; s := 13/4}]
Method is complete!

Out[2]:=
1
4 + 3r2 = s ∧ 1 + 4a + 6r2 = 3r + 4r3 + 4x

EXAMPLE 2.2 (Wensley’s algorithm for real division [10,9].)

In[3]:= Aligator[WHILE[d ≥ Tol,IF[P < a+ b,

Aligator[WHILE[d ≥ Tol,IF[b := b/2; d := d/2,

Aligator[WHILE[d ≥ Tol,IF[a := a+ b; y := y + d/2; b := b/2; d := d/2]],

Aligator[IniVal→ {a := 0; b := Q/2; d := 1; y := 0}]
Method is complete!

Out[3]:= 2b = dQ ∧ ad = 2by ∧ a = Qy

Internally, Aligator first checks whether a given input is as (1). If it is not, an er-
ror is reported, and the execution stops. Otherwise, polynomial invariants are gener-
ated by calling (i) the routine InvLoopAssg if the loop has only assignments, or (ii)
InvLoopCond in case the loop has conditionals. We briefly discuss the main steps of
these routines in Section 3, and illustrate how they are connected in Figure 1.

3 Inside Aligator - Main Steps of the Tool

Loop Transformation. Transforming loops as on page 276 is achieved by the com-
mand IfWhileTransform presented below. In this command we use a construct
Body and write Body[S] in order to maintain the loop body S in an unevaluated form.

278 L. Kovács

syntactically incorrect input

not P-solvable S

P
ol

yn
om

ia
l

id
ea

l

permutations of
k-inner loop
sequences

from Si to recurrences

Input Check Error
syntactically correct input

IfWhileTransform
loop with only assignments S

InvLoopAssg

loop with nested conditionals S1,…,Sk

InvLoopCond

Invariants

Aligator

variable elimination

closed form of P-solvable S

recurrence system

RecSystem

RecSolve

from S to recurrences

Error

recurrence system

RecSystem

RecSolve

for each Si

not P
-solvable S

i

clo
se

d form
of P-so

lva
ble Si

for each k-inner
loop sequence

InvIdealLoopSeq
M

er
gi

ng
,

va
ria

bl
e

el
im

in
at

io
n

InvariantFilter

CompletenessCheck

candidate
invariants

invariants

Fig. 1. The Aligator tool

Command 3.1 : IfWhileTransform [PLoop, Body[], Body[]]

Input: P-solvable loop PLoop as in (1)

Output: List of inner loops {Body[S1],. . . ,Body[Sk]} cf. notations from (2)

EXAMPLE 3.1 For Example 2.1 we proceed as below.

In[4]:= IfWhileTransform[WHILE[x− s > 0, x := x− s; s := s+ 6 ∗ r + 3;

IfWhileTransform[WHILE[x− s > 0, r := r + 1], Body[], Body[]]

Out[4]:= Body[x := x− s; s := s + 6r + 3; r := r + 1]

EXAMPLE 3.2 For Example 2.2 we obtain:

In[5]:= IfWhileTransform[WHILE[d ≥ Tol,IF[P < a+ b, b := b/2; d := d/2,

IfWhileTransform[WHILE[a := a+ b; y := y + d/2; b := b/2; d := d/2]],

IfWhileTransform[Body[], Body[]]

Out[5]:= {Body[b := b/2; d := d/2], Body[a := a + b; y := y + d/2; b := b/2; d := d/2]}

Loops and Recurrences. The recurrence equations are constructed by RecSystem:

Aligator: A Mathematica Package for Invariant Generation 279

Command 3.2 : RecSystem[Si]

Input: an assignment sequence Si corresponding to the body of the ith inner loop

Output: {recEqs, varList, {recVar}}, where:

- recEqs is the system of recurrence equations corresponding to (flattened) Si;
- varList is the list of correspondences between sequences and variables;
- and recVar is a fresh variable denoting the iteration counter of the ith inner loop.

EXAMPLE 3.3 The recurrence equations of the loop from Example 2.1 are as follows.

In[6]:= RecSystem[x := x− s; s := s+ 6 ∗ r + 3; r := r + 1]

Out[6]:= {{x[1 + n] = −s[n] + x[n], s[1 + n] = 3 + 6r[n] + s[n], r[1 + n] = 1 + r[n]},
{{x[n], x}, {s[n], s}, {r[n], r}}, {n}},

where n is the loop counter.
EXAMPLE 3.4 The recurrence equations of the second inner loop of Example 2.2 are:

In[7]:= RecSystem[a := a+ b; y := y + d/2; b := b/2; d := d/2]

Out[7]:=

{{

a[1 + m] = a[m] + b[m], y[1 + m] = d[m]/2 + y[m], b[1 + m] = b[m]/2,

d[1 + m] = d[m]/2
}

, {{a[m], a}, {y[m], y}, {b[m], b}, {d[m], d}}, {m}
}

,

wherem is the loop counter.

Solving recurrences and checking P-solvability of a loop is embedded in the RecSolve
routine. RecSolve includes packages for solving Gosper-summable recurrences [8],
and for deriving algebraic dependencies among exponential sequences [4]. Contrarily
to [6], for solving C-finite recurrences we now rely on our own implementation.

Command 3.3 : RecSolve[recEqs, varList, {recVar}]

Input: {recEqs, varList, {recVar}} is the output of RecSystem

Output: {CFSystem, {recVar}, expVars, finVars, iniVars, algDep},
where

- CFSystem is the polynomial closed form system of recSystem, and finVars is
the list of variables whose closed forms are computed with initial values iniVars;
- expVars is the list of fresh variables denoting the exponential sequences from
CFSystem, and algDep is a basis of the algebraic dependencies among expVars.

If the loop with recurrence system recEqs is not P-solvable, RecSolve reports an
error, and execution is aborted.

EXAMPLE 3.5 Using Example 3.3, we derive the closed form system of Example 2.1.

In[8]:=RecSolve[{x[1 + n]=x[n]− s[n], s[1 + n]=s[n] + 6r[n] + 3, r[1 + n] = r[n] + 1},

RecSolve[{{x[n], x}, {s[n], s}, {r[n], r}}, {n}]

Out[8]:=

{
{

x = x[0]− 1
2n(1 + 2n2 − 6r[0] + n(−3 + 6r[0]) + 2s[0]), s=s[0] + 3n(n + 2r[0]),

r=r[0] + n
}

, {n}, {}, {x, s, r}, {x[0], s[0], r[0]}, {}
}

280 L. Kovács

EXAMPLE 3.6 The closed form system of the 2nd inner loop of Example 2.1 is:

In[9]:=RecSolve[
{

a[1 + m]=a[m] + b[m], y[1 + m]=d[m]/2 + y[m], b[1 + m] = b[m]/2,

RecSolve[d[1 + m] = d[m]/2
}

, {{a[m], a}, {y[m], y}, {b[m], b}, {d[m], d}}, {m}]

Out[9]:=

{{

a = a[0] + 2b[0]− 2x3b[0], y = d[0]− x5d[0] + y[0], b = x1b[0], d = x2d[0]
}

,

{m}, {x1, x2, x3, x4, x5}, {a, y, b, d}, {a[0], y[0], b[0], d[0]},

{x1 − x5 = 0, x2 − x5 = 0, x3 − x5 = 0, −1 + x4x5 = 0}
}

where x1 = x2 = x3 = x5 = 2−m and x4 = 2m.

Invariant Generation for P-solvable Loops with Assignments Only. We have now all
ingredients to synthesize our invariant generation algorithm for P-solvable loops with
assignments only, implemented in the InvLoopAssg routine. The main steps are as
follows. (a) The loop body is modeled by recurrence equations; (b) Polynomial closed
forms of recurrences are derived; (c) The loop counter and new variables denoting ex-
ponential sequences are eliminated by Gröbner basis computation from the closed form
system, using the algebraic dependencies among the new variables. The derived set of
polynomials forms a basis of the polynomial invariant ideal [6].

Command 3.4 : InvLoopAssg[Body[S]]

Input: a P-solvable loop body S, where S is a sequence of assignments

Output: the “Method is complete!” message and a polynomial invariant ideal basis
{p1, . . . , pr}

The output of Aligator is thus obtained by taking the conjunction of the polyno-
mial equalities p1 = 0∧ · · · ∧ pr = 0. If a P-solvable loop has no polynomial invariant,
Aligator returns True corresponding to the polynomial basis {}.
EXAMPLE 3.7 For Example 2.1, the internal execution flow of InvLoopAssg is the
chain Example 3.3→ Example 3.5. From Example 3.1, we thus have:

In[10]:= InvLoopAssg[Body[x := x− s; s := s+ 6r + 3; r := r + 1]]

Method is complete!

Out[10]:= {3r2 − s− 3r[0]2 + s[0],

r − 3r2 + 2r3 + 2x− r[0] + 3r[0]2 − 6rr[0]2 + 4r[0]3 + 2rs[0]− 2r[0]s[0] − 2x[0]}

where r[0], s[0], x[0] are respectively the initial values of r, s, x.

Invariant Generation for P-solvable Loops with (Nested) Conditionals. Loop (2) is P-
solvable if its inner loops S1, . . . , Sk are P-solvable. InvLoopAssg is thus a special
case (k = 1) of InvLoopCond. The main steps of InvLoopCond for generating
invariants of P-solvable loops with assignments and conditionals are given below.

(a) Closed forms of Si are first derived as discussed above, see e.g. Examples 3.4
and 3.6. Next, (b) closed forms of inner loops are taken in all k! possible permuta-
tions of the k inner loop sequences. Hence, (c) the ideal of polynomial relations of a

Aligator: A Mathematica Package for Invariant Generation 281

k-sequence of inner loops is derived by eliminating inner loop counters and new vari-
ables denoting exponential sequences from the polynomial merged closed form system
of the inner loops, using the algebraic dependencies among the new variables. This is
performed by the command InvIdealLoopSeq - for details, we refer to the URL of
Aligator. Further, (d) by taking the intersection of all k! computed ideals, we derive
the ideal I of valid polynomial relations for any k-sequence with initial values X0. That
is the ideal of polynomial relations after an iteration of (2), with initial values X0. (e)
From I , we only keep those polynomials that are preserved by each Si, in the sense of
weakest precondition wp computation [2]. Namely, we compute the set of polynomials
GI = {p ∈ I | wp(Si, p(X) = 0) ∈ 〈GI〉, i = 1, . . . , k} from I that yield polynomial
invariants [6,7]. This is performed by the InvariantFilter command.

Command 3.5 : InvariantFilter[I, rules, X]

Input: {I,rules,X}, where rules is the list of rewrite rules corresponding to the
inner loop bodies

Output: GI⊂ I

EXAMPLE 3.8 For Example 2.2, we have

I = {bd[0] − db[0], ad[0]− a[0]d[0] + 2b[0]y[0]− 2yb[0], ad− 2by − da[0] + 2by[0]}
and rules={{b → b/2, d → d/2}, {a → a+b, y → y + d/2, b → b/2, d → d/2}}.

The result of filtering is:

In[11]:= InvariantFilter[I, rules, {a, y, b, d}]

Out[11]:= {−db[0] + bd[0], −2yb[0] + ad[0] − a[0]d[0] + 2b[0]y[0], ad − 2by − da[0] + 2by[0]}

Finally, (f) GI is checked for completeness, based on ideal theoretic operations. Com-
pleteness is established if (i) 〈GI〉 = I; or (ii)〈GI〉 = I ∩ I ′, with I ′ being the ideal of
polynomial relations after all k + 1 inner loop sequences with X0 initial values. Such
an inner loop sequence of length k + 1 is obtained by taking a permutation of k inner
loops, i.e. S∗

j1 ; . . . ; S
∗
jk

, followed by an inner loop Si with i �= jk. For details we refer
to [6,7].

For all examples we found, Aligator returns a basis of the polynomial invariant
ideal. We thus conjecture that our approach is complete for a rich class of P-solvable
loops.

Command 3.6 : InvLoopCond[{Body[S1],..., Body[Sk]}]

Input: P-solvable inner loop bodies S1, . . . , Sk, where Si are sequences of
assignments

Output: “completeness message” and {p1, . . . , pr} s. t. p1 = 0 ∧ · · · ∧ pr = 0 is
invariant

282 L. Kovács

EXAMPLE 3.9 For Example 2.2, we derive:

In[12]:= InvLoopCond[{Body[b := b/2; d := d/2],

InvLoopCond[{Body[a := a+ b; y := y + d/2; b := b/2; d := d/2]}]
Method is complete!

Out[12]:= {−db[0] + bd[0],−2yb[0] + ad[0]− a[0]d[0] + 2b[0]y[0], ad− 2by − da[0] + 2by[0]}

where a[0], b[0], d[0], y[0] are respectively the initial values of a, b, d, y.

4 Conclusions

Aligator offers software support for automated invariant generation by algebraic
techniques over the rationals. The successful application of the package on a number of
examples demonstrates the value of using symbolic summation and polynomial algebra
together with computational logic for program verification.

References

1. Buchberger, B.: An Algorithm for Finding the Basis Elements of the Residue Class Ring of
a Zero Dimensional Polynomial Ideal. J. of Symbolic Computation 41(3-4), 475–511 (2006)

2. Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall, Englewood Cliffs (1976)
3. Gosper, R.W.: Decision Procedures for Indefinite Hypergeometric Summation. J. of Sym-

bolic Computation 75, 40–42 (1978)
4. Kauers, M., Zimmermann, B.: Computing the Algebraic Relations of C-finite Sequences and

Multisequences. J. of Symbolic Computation (to appear, 2007)
5. Knuth, D.E.: The Art of Computer Programming. In: Seminumerical Algorithms, 3rd edn.,

vol. 2. Addison-Wesley, Reading (1998)
6. Kovács, L.: Automated Invariant Generation by Algebraic Techniques for Imperative Pro-

gram Verification in Theorema. PhD thesis, RISC, Johannes Kepler University Linz (2007)
7. Kovács, L.: Reasoning Algebraically About P-Solvable Loops. In: Proc. of TACAS, Bu-

dapest, Hungary. LNCS, vol. 4963, pp. 249–264. Springer, Heidelberg (to appear, 2008)
8. Paule, P., Schorn, M.: A Mathematica Version of Zeilberger’s Algorithm for Proving Bino-

mial Coefficient Identities. J. of Symbolic Computation 20(5-6), 673–698 (1995)
9. Rodriguez-Carbonell, E., Kapur, D.: Generating All Polynomial Invariants in Simple Loops.

J. of Symbolic Computation 42(4), 443–476 (2007)
10. Wegbreit, B.: The Synthesis of Loop Predicates. Comm. of the ACM 2(17), 102–112 (1974)
11. Wolfram, S.: The Mathematica Book. Version 5.0. Wolfram Media (2003)
12. Zeilberger, D.: A Holonomic System Approach to Special Functions. J. of Computational

and Applied Mathematics 32, 321–368 (1990)

leanCoP 2.0 and ileanCoP 1.2 :

High Performance Lean Theorem Proving
in Classical and Intuitionistic Logic

(System Descriptions)

Jens Otten

Institut für Informatik, University of Potsdam
August-Bebel-Str. 89, 14482 Potsdam-Babelsberg, Germany

jeotten@cs.uni-potsdam.de

Abstract. leanCoP is a very compact theorem prover for classical first-
order logic, based on the connection (tableau) calculus and implemented
in Prolog. leanCoP 2.0 enhances leanCoP 1.0 by adding regularity, lem-
mata, and a technique for restricting backtracking. It also provides a
definitional translation into clausal form and integrates “Prolog technol-
ogy” into a lean theorem prover. ileanCoP is a compact theorem prover
for intuitionistic first-order logic and based on the clausal connection
calculus for intuitionistic logic. ileanCoP 1.2 extends the classical prover
leanCoP 2.0 by adding prefixes and a prefix unification algorithm. We
present details of both implementations and evaluate their performance.

1 Introduction

Connection calculi, such as the connection calculus [3,4], the connection tableau
calculus [8,9], and the model elimination calculus [10], are well known for their
goal-oriented proof search. Several implementations that are based on these cal-
culi have been developed, for example KoMeT [5], METEOR [1], PTTP [22],
SETHEO [7], and leanCoP [16].

leanCoP is an automated theorem prover for classical first-order logic. It is
a very compact Prolog implementation of the connection calculus. leanCoP 2.0
enhances leanCoP 1.0 [16] by adding regularity, lemmata, and a technique to re-
strict backtracking [15]. In contrast to leanCoP 1.0, the input clauses are stored
in Prolog’s, database, which makes it possible to use Prolog’s built-in index-
ing mechanism. Furthermore leanCoP 2.0 provides a definitional translation into
clausal form and uses a fixed strategy scheduling.

ileanCoP is an automated theorem prover for intuitionistic first-order logic and
is based on the clausal connection calculus for intuitionistic logic [14]. It extends
leanCoP by adding a prefix to each literal and a prefix unification algorithm [17].
ileanCoP 1.2 enhances ileanCoP 1.0 by integrating the new inference rules and
techniques of leanCoP 2.0.

Details of the architecture and the implementation of both leanCoP 2.0 and
ileanCoP 1.2 are presented in Section 2 and Section 3, respectively. We also
present performance results on the TPTP library and the MPTP challenge.

A. Armando, P. Baumgartner, and G. Dowek (Eds.): IJCAR 2008, LNCS 5195, pp. 283–291, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

284 J. Otten

2 leanCoP 2.0 for Classical Logic

We first describe the new search techniques of leanCoP 2.0 and provide details
of the source code, before presenting some performance results.

2.1 Architecture

leanCoP [16] is based on the clausal connection (tableau) calculus [4,9]. A deriva-
tion for a formula in clausal form is generated by first applying the start rule and
then repeatedly applying the reduction or the extension rule. In each inference
step a connection is identified along an active path. Iterative deepening on the
length of the active path is performed. The following techniques are the main
improvements of leanCoP 2.0 compared to leanCoP 1.0 [16]:

1. Lean Prolog technology: For all input clauses C and L∈C of the given formula
the fact lit(L,C1,Grnd) is stored in Prolog’s database, where C1=C\{L}
is a list and Grnd is g iff C is ground and n otherwise. Atoms are repre-
sented by Prolog atoms, negation is represented by “-”. This new technique
integrates the main advantage of the ”Prolog technology” approach [22] by
using Prolog’s fast indexing mechanism to quickly find connections [15].

2. Controlled iterative deepening: Iterative deepening is aborted if the current
limit for the length of the active path is not exceeded during the proof search.

3. Definitional clausal form translation: Formulae that are not in clausal form
are translated into clausal form by introducing definitions for certain subfor-
mulae. In contrast to approaches for saturation-based calculi, our definitional
translation is designed to work well with connection calculi [15].

4. Regularity: The proof search is restricted to proofs where no literal occurs
more than once in the (currently investigated) active path [9].

5. Lemmata: A branch with a literal L that has already been closed can be
reused to close other branches (below/to the right of L) that contain L [9].

6. Restricted backtracking: Once the application of the reduction or extension
rule has successfully closed a branch by an appropriate connection, all alter-
native connections are cut off (on backtracking). Furthermore, alternative
start clauses of the start rule are cut off (on backtracking). This new tech-
nique improves performance significantly, in particular for formulae contain-
ing many axioms, e.g. equality axioms [15].

7. Strategy scheduling: A list of settings is used to control the proof search (see
below). The core Prolog prover is consecutively invoked by a shell script with
different settings.

The minimal source code of the core prover is shown in Figure 1. It is invoked
with prove(1,S) where S is a list of settings. The predicate succeeds iff there is
a connection proof for the clauses stored in Prolog’s database.1 The full source
code of the core prover and of the definitional clausal form translation is available
on the leanCoP website. A detailed explanation of the source code, the underlying
calculus and the new proof search techniques can be found in [15].
1 Sound unification has to be switched on. In ECLiPSe Prolog this is done with
set flag(occur check,on).

leanCoP 2.0 and ileanCoP 1.2 285

prove(I,S) :- \+member(scut,S) -> prove([-(#)],[],I,[],S) ;
lit(#,C,_) -> prove(C,[-(#)],I,[],S).

prove(I,S) :- member(comp(L),S), I=L -> prove(1,[]) ;
(member(comp(_),S);retract(p)) -> J is I+1, prove(J,S).

prove([],_,_,_,_).
prove([L|C],P,I,Q,S) :- \+ (member(A,[L|C]), member(B,P),

A==B), (-N=L;-L=N) -> (member(D,Q), L==D ;
member(E,P), unify_with_occurs_check(E,N) ; lit(N,F,H),
(H=g -> true ; length(P,K), K<I -> true ;
\+p -> assert(p), fail), prove(F,[L|P],I,Q,S)),
(member(cut,S) -> ! ; true), prove(C,P,I,[L|Q],S).

Fig. 1. The source code of the leanCoP 2.0 core prover

The list S of settings can contain one or more of the following options:

1. nodef/def: The standard/definitional translation into clausal form is done.
If none of these options is given the standard translation is used for the
axioms whereas the definitional translation is used for the conjecture.

2. conj: The special literal # is added to the conjecture clauses in order to
mark them as possible start clauses. If this option is not given the literal #
is added to all positive clauses to mark them as possible start clauses.

3. reo(I): After the clausal form translation the clauses are reordered I times
using a simple perfect shuffle algorithm.

4. scut: Backtracking is restricted for alternative start clauses.
5. cut: Backtracking is restricted for alternative reduction/extension steps.
6. comp(I): Restricted backtracking is switched off when iterative deepening

exceeds the active path length I.

Note that the option conj is complete only for formulae with a provable con-
jecture, and scut as well as cut are complete only if used in combination with
comp(I). leanCoP 2.0 uses a fixed strategy scheduling that preserves complete-
ness. The controlled iterative deepening yields a decision procedure for ground
(e.g. propositional) formulae, and refutes some (invalid) first-order formulae.

2.2 Performance

leanCoP 2.0 was tested on all 3644 problems in non-clausal form (FOF division)
of version 3.3.0 of the TPTP library [24]. Problems that do not have a conjec-
ture are negated. These are exactly those problems that are either satisfiable
or unsatisfiable. Equality is dealt with by adding the equality axioms. All tests
were performed on a 3 GHz Xeon system running Linux 2.6 and ECLiPSe Prolog
version 5.8. The time limit was set to 600 seconds.

In Table 1 the performance of leanCoP 2.0 is compared with the performance
of leanTAP 2.3 (the first popular lean prover) [2], leanCoP 1.0 [16], SETHEO 3.3

286 J. Otten

(likely the fastest connection tableau prover so far)2 [7], Otter 3.3 (which com-
monly serves as the standard benchmark) [11] and version ”Dec-2007” of Prover9
(the successor of Otter)3 [12]. The rating and the percentage of proved problems
for some rating intervals are given. FNE, FEQ and PEQ are problems with-
out, with and containing only equality, respectively. Furthermore, the number of
proved problems for each domain (see [24]) that contains at least ten problems
is shown. The number of problems that are refuted, result in a time out or error,
e.g. stack overflow or empty set-of-support, are listed in the last three lines.

Table 1. Performance of leanCoP 2.0 on the TPTP library

leanTAP leanCoP 1.0 SETHEO Otter leanCoP 2.0 Prover9

proved 375 1004 1192 1310 1638 1677
[%] 10% 28% 33% 36% 45% 46%

0s to 1s 351 787 864 987 1124 1281
1s to 10s 12 84 205 183 123 197

10s to 100s 11 74 62 106 193 141
100s to 600s 1 59 61 34 198 58

rating 0.0 194 397 435 455 450 464
rating >0.0 181 607 757 855 1188 1213
rating 1.0 0 0 2 7 13 8

0.00...0.24 22.8 % 56.2 % 63.9 % 72.2 % 71.7 % 72.8 %
0.25...0.49 5.9 % 26.0 % 34.2 % 39.7 % 48.2 % 69.9 %
0.50...0.74 2.2 % 7.1 % 8.5 % 3.0 % 35.9 % 28.2 %
0.75...1.00 0.4 % 0.0 % 1.5 % 0.7% 11.2 % 2.5 %

FNE 290 448 467 475 491 525
FEQ 85 556 725 835 1147 1152
PEQ 12 13 13 47 30 71

AGT 0 17 17 16 29 17
ALG 11 13 17 60 32 83
CSR 0 1 3 3 2 27
GEO 23 143 159 160 171 171
GRA 0 4 6 5 6 1
KRS 16 70 89 106 105 103
LCL 3 26 32 18 24 48
MED 0 0 1 5 7 1
MGT 11 31 41 54 45 62
NLP 4 3 7 6 13 13
NUM 1 35 59 31 70 49
PUZ 2 5 6 6 6 6
SET 25 170 197 229 339 276
SEU 5 125 124 149 296 259
SWC 14 14 65 84 87 101
SWV 55 142 154 157 177 183
SYN 201 199 205 210 217 267

refuted 0 1 27 0 33 0
time out 2979 2538 2134 700 1949 668

error 290 101 291 1634 24 1299

2 For SETHEO the options -dr -reg -st were used, which showed the best performance.
3 The most recent version ”2008-04A” of Prover9 has a significant lower performance.

leanCoP 2.0 and ileanCoP 1.2 287

leanCoP 2.0 proves significantly more problems of the TPTP library than,
e.g., Otter or SETHEO. The biggest improvement is made for problems with
equality and problems that are rated as difficult, i.e. that have a high rating.

The MPTP challenge is a set of problems from the Mizar library translated
into first-order logic [25]. The results of leanCoP 2.0 on the 252 “chainy” prob-
lems, in which irrelevant axioms and lemmata are not excluded, are shown in
Table 2. leanCoP 2.0 deals with equality by adding the equality axioms. The
resulting formulae contain up to 1700 axioms. Again the results are compared
with leanTAP 2.3, Otter 3.3, SETHEO 3.3, leanCoP 1.0 and version ”Dec-2007”
of Prover9. All tests were performed on a 3 GHz Xeon system running Linux.
leanCoP 2.0 solves significant more problem than all other listed systems.

Table 2. Performance of leanCoP 2.0 on the MPTP challenge (chainy)

leanTAP SETHEO Otter leanCoP 1.0 Prover9 leanCoP 2.0
proved 0 27 29 33 52 88

[%] 0% 11% 12% 13% 21% 35%
0s to 1s 0 15 17 14 33 38
1s to 10s 0 5 7 3 8 21

10s to 100s 0 6 5 11 6 23
100s to 300s 0 1 0 5 5 6
time out 252 225 150 219 101 164

error 0 0 73 0 99 0

leanCoP 2.0 participated in the FOF division of CASC-21, the CADE system
competition. It solved more problems than four other (classical) provers, includ-
ing Otter, and won the “Best Newcomer” award [23]. It solved four problems
that the winning prover did not solve within the time limit of 360 seconds.

3 ileanCoP 1.2 for Intuitionistic Logic

We first provide details of the architecture and the source code of ileanCoP 1.2,
before presenting performance results.

3.1 Architecture

ileanCoP is based on the clausal connection calculus for intuitionistic first-order
logic [14]. It uses the classical search engine of leanCoP and an additional prefix
unification algorithm [17] to unify the prefixes of the literals in every connection.
This ensures that the characteristics of intuitionistic logic are respected and the
given formula is intuitionistically valid (see also [6,27,28]).

ileanCoP 1.2 integrates all additional inference rules and search techniques of
leanCoP 2.0 mentioned in Section 2.1. Like for the classical prover the input
clauses are stored in Prolog’s database: the fact lit(L:Pre,C1,Grnd) is stored

288 J. Otten

for all input clauses C and literals L∈C, where Pre is the prefix of L, C1=C\{L}
is a list of literals, Grnd is g iff C is ground and n otherwise.

The main part of the minimal source code is shown in Figure 2. The underlined
text was added to the source code of leanCoP 2.0 in Figure 1; no other changes
were done. The prefix unification algorithm (check_addco and prefix_unify)
requires another 26 lines of Prolog code (see [17,13] for details). The full source
code is available on the leanCoP website.

prove(I,S) :- (\+member(scut,S) ->
prove([(-(#)):(-[])],[],I,[],[Z,T],S) ;
lit((#):_,G:C,_) -> prove(C,[(-(#)):(-[])],I,[],[Z,R],S),
append(R,G,T)), check_addco(T), prefix_unify(Z).

prove(I,S) :- member(comp(L),S), I=L -> prove(1,[]) ;
(member(comp(_),S);retract(p)) -> J is I+1, prove(J,S).

prove([],_,_,_,[[],[]],_).
prove([L:U|C],P,I,Q,[Z,T],S) :- \+ (member(A,[L:U|C]), member(B,P),

A==B), (-N=L;-L=N) -> (member(D,Q), L:U==D, X=[], O=[] ;
member(E:V,P), unify_with_occurs_check(E,N),
\+ \+ prefix_unify([U=V]), X=[U=V], O=[] ;
lit(N:V,M:F,H), \+ \+ prefix_unify([U=V]),
(H=g -> true ; length(P,K), K<I -> true ;
\+p -> assert(p), fail), prove(F,[L:U|P],I,Q,[W,R],S),
X=[U=V|W], append(R,M,O)), (member(cut,S) -> ! ; true),
prove(C,P,I,[L:U|Q],[Y,J],S), append(X,Y,Z), append(J,O,T).

Fig. 2. The source code of the ileanCoP 1.2 core prover

Like the classical prover it is invoked with prove(1,S) where S is a list of
settings (see Section 2.1). The predicate succeeds iff there is an intuitionistic
connection proof for the clauses stored in Prolog’s database.

3.2 Performance

ileanCoP 1.2 was tested on all 3644 problems in non-clausal form (FOF division)
of version 3.3.0 of the TPTP library [24]. Formulae F that do not have a con-
jecture are translated to F⇒⊥. Equality is dealt with by adding the equality
axioms. All tests were performed on a 3 GHz Xeon system running Linux 2.6
and ECLiPSe Prolog version 5.8. The time limit was set to 600 seconds.

In Table 3 the performance of ileanCoP 1.2 on the TPTP library is compared
with all currently existing systems for intuitionistic first-order logic: JProver [21],
the Prolog and C versions of ft [20], ileanTAP [13], ileanSeP4 and ileanCoP 1.0
[14].5 The figures for domains that contain at least 10 proved problems are shown.
4 See http://www.leancop.de/ileansep/.
5 The intuitionistic version of the Gandalf prover [26] is not included since it is neither

complete nor sound (see the website of the ILTP library [19]).

leanCoP 2.0 and ileanCoP 1.2 289

Table 3. Performance of ileanCoP 1.2 on the TPTP library

JProver ileanTAP ft 1.23 ft 1.23 ileanSeP ileanCoP ileanCoP
11-2005 1.17 (C) (Prolog) 1.0 1.0 1.2

proved 186 255 262 278 303 733 1127
[%] 5% 7% 7% 8% 8% 20% 31%

0s to 1s 171 248 258 246 208 543 750
1s to 10s 6 3 2 27 52 72 80

10s to 100s 6 1 2 0 29 73 96
100s to 600s 3 3 0 5 14 45 201
rating 0.0 147 142 156 174 160 331 397

rating >0.0 39 113 106 104 143 402 730
0.00...0.24 13.1 % 15.3 % 16.1 % 17.0 % 17.1 % 40.5 % 54.5 %
0.25...0.49 0.4 % 4.5 % 5.0 % 5.8 % 9.1 % 20.9 % 34.1 %
0.50...0.74 0.0 % 1.2 % 0.2 % 0.0 % 0.0 % 4.0 % 20.2 %
0.75...1.00 0.0 % 0.3 % 0.2 % 0.0 % 0.0 % 0.0 % 2.3 %

FNE 180 175 194 209 178 312 371
FEQ 6 80 68 69 125 421 756
PEQ 5 6 4 2 1 8 19
AGT 0 0 2 2 5 13 18
ALG 4 6 2 0 0 7 15
GEO 1 8 7 29 36 132 154
KRS 33 19 26 26 18 42 94
LCL 0 1 1 0 0 22 22
MGT 7 6 7 9 0 24 30
NLP 7 11 7 7 3 3 11
NUM 0 2 1 0 1 30 58
SET 18 32 29 24 32 120 222
SEU 2 7 10 10 10 83 200
SWV 1 51 46 54 89 135 162
SYN 108 106 115 110 105 107 121

refuted 4 4 15 0 4 73 71
time out 2931 3344 852 2993 3161 2732 2355

error 523 41 2515 373 176 106 91

Table 4. Performance of ileanCoP 1.2 on the MPTP challenge (chainy)

JProver ileanTAP ft 1.23 ft 1.23 ileanSeP ileanCoP ileanCoP
11-2005 1.17 (Prolog) (C) 1.0 1.0 1.2

proved 0 0 0 1 2 19 61
[%] 0% 0% 0% <1% <1% 8% 24%

0s to 1s 0 0 0 1 0 4 24
1s to 10s 0 0 0 0 0 6 20

10s to 100s 0 0 0 0 2 4 14
100s to 300s 0 0 0 0 0 5 3
time out 235 252 58 9 250 233 191

error 17 0 194 242 0 0 0

290 J. Otten

The results of ileanCoP 1.2 on the 252 “chainy” problems of the MPTP chal-
lenge (see Section 2.2) are shown in Table 4.

ileanCoP 1.2 proves significantly more problems of the TPTP library and the
MPTP challenge than any of the other systems. It even proves more problems of
the AGT and NUM domain and of the MPTP challenge than Prover9, though
intuitionistic logic is considered more difficult than classical logic and not all of
those problems that are classical theorems are valid in intuitionistic logic.

4 Conclusion

We have presented leanCoP 2.0 and ileanCoP 1.2, theorem provers for classical
and intuitionistic first-order logic. leanCoP 2.0 uses a few selected (well-known
and new) empirical successful techniques for pruning the search space in con-
nection calculi. By adding a prefix unification algorithm it is turned into the
intuitionistic prover ileanCoP 1.2. Performance of both provers is in particular
good for problems that contain equality or a large number of axioms. ileanCoP 1.2
achieves a performance that can even compete with some classical provers.

randoCoP [18] is an extension of leanCoP 2.0 and randomly reorders the axioms
and literals of the given formula. It compensates for the drawback of restricted
backtracking, which might narrow the search space too much. Repeatedly ap-
plying this reordering technique improves performance significantly.

Future work includes the integration of further proof search techniques and
the adaption to other non-classical logics, like some first-order modal logics [6].

The complete source code of leanCoP 2.0 and ileanCoP 1.2 together with more
information is available at http://www.leancop.de.

Acknowledgements. Thomas Raths contributed to the development of both
leanCoP 2.0 and ileanCoP 1.2 by running comprehensive benchmark tests on sev-
eral problem libraries. Geoff Sutcliffe kindly provided the SETHEO system.

References

1. Astrachan, O., Loveland, D.: METEORs: High Performance Theorem Provers Us-
ing Model Elimination. In: Bledsoe, W.W., Boyer, S. (eds.) Automated Reasoning:
Essays in Honor of Woody Bledsoe, pp. 31–60. Kluwer, Amsterdam (1991)

2. Beckert, B., Posegga, J.: leanTAP : Lean Tableau-Based Theorem Proving. In:
Bundy, A. (ed.) CADE 1994. LNCS, vol. 814, pp. 793–797. Springer, Heidelberg
(1994)

3. Bibel, W.: Matings in Matrices. Commun. ACM 26, 844–852 (1983)
4. Bibel, W.: Automated Theorem Proving. Vieweg, Wiesbaden (1987)
5. Bibel, W., Brüning, S., Egly, U., Rath, T.: KoMeT. In: Bundy, A. (ed.) CADE

1994. LNCS, vol. 814, pp. 783–787. Springer, Heidelberg (1994)
6. Kreitz, C., Otten, J.: Connection-based Theorem Proving in Classical and Non-

classical Logics. Journal of Universal Computer Science 5, 88–112 (1999)
7. Letz, R., Schumann, J., Bayerl, S., Bibel, W.: SETHEO: A High-Performance The-

orem Prover. Journal of Automated Reasoning 8, 183–212 (1992)

leanCoP 2.0 and ileanCoP 1.2 291

8. Letz, R., Mayr, K., Goller, C.: Controlled Integration of the Cut Rule into Con-
nection Tableaux Calculi. Journal of Automated Reasoning 13, 297–337 (1994)

9. Letz, R., Stenz, G.: Model Elimination and Connection Tableau Procedures. In:
Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 2015–
2114. Elsevier, Amsterdam (2001)

10. Loveland, D.: Mechanical Theorem-Proving by Model Elimination. Journal of the
ACM 15, 236–251 (1968)

11. McCune, W.: Otter 3.0 Reference Manual and Guide. Technical report ANL-94/6,
Argonne National Laboratory (1994)

12. McCune, W.: Release of Prover9. In: Mile High Conference on Quasigroups, Loops
and Nonassociative Systems, Technical report, Denver (2005)

13. Otten, J.: ileanTAP: An Intuitionistic Theorem Prover. In: Galmiche, D. (ed.)
TABLEAUX 1997. LNCS, vol. 1227, pp. 307–312. Springer, Heidelberg (1997)

14. Otten, J.: Clausal Connection-Based Theorem Proving in Intuitionistic First-Order
Logic. In: Beckert, B. (ed.) TABLEAUX 2005. LNCS (LNAI), vol. 3702, pp. 245–
261. Springer, Heidelberg (2005)

15. Otten, J.: Restricting Backtracking in Connection Calculi. Technical report, Insti-
tut für Informatik, University of Potsdam (2008)

16. Otten, J., Bibel, W.: leanCoP: Lean Connection-based Theorem Proving. Journal
of Symbolic Computation 36, 139–161 (2003)

17. Otten, J., Kreitz, C.: T-String-Unification: Unifying Prefixes in Non-classical
Proof Methods. In: Miglioli, P., Moscato, U., Ornaghi, M., Mundici, D. (eds.)
TABLEAUX 1996. LNCS, vol. 1071, pp. 244–260. Springer, Heidelberg (1996)

18. Raths, T., Otten, J.: randoCoP: Randomizing the Proof Search Order in the Con-
nection Calculus. Technical report, Institut für Informatik, University of Potsdam
(2008)

19. Raths, T., Otten, J., Kreitz, C.: The ILTP Problem Library for Intuitionistic Logic.
Journal of Automated Reasoning 38, 261–271 (2007)

20. Sahlin, D., Franzen, T., Haridi, S.: An Intuitionistic Predicate Logic Theorem
Prover. Journal of Logic and Computation 2, 619–656 (1992)

21. Schmitt, S., Lorigo, L., Kreitz, C., Nogin, A.: JProver: Integrating Connection-
based Theorem Proving into Interactive Proof Assistants. In: Goré, R.P., Leitsch,
A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 421–426. Springer,
Heidelberg (2001)

22. Stickel, M.: A Prolog Technology Theorem Prover: Implementation by an Extended
Prolog Compiler. Journal of Automated Reasoning 4, 353–380 (1988)

23. Sutcliffe, G.: The CADE-21 Automated Theorem Proving System Competition. AI
Communications 21, 71–81 (2008)

24. Sutcliffe, G., Suttner, C.: The TPTP Problem Library. Journal of Automated Rea-
soning 21, 177–203 (1998)

25. Urban, J.: MPTP 0.2: Design, Implementation, and Initial Experiments. Journal
of Automated Reasoning 37, 21–43 (2006)

26. Tammet, T.: A Resolution Theorem Prover for Intuitionistic Logic. In: McRob-
bie, M.A., Slaney, J.K. (eds.) CADE 1996. LNCS, vol. 1104, pp. 2–16. Springer,
Heidelberg (1996)

27. Waaler, A.: Connections in Nonclassical Logics. In: Robinson, A., Voronkov, A.
(eds.) Handbook of Automated Reasoning, pp. 1487–1578. Elsevier, Amsterdam
(2001)

28. Wallen, L.: Automated Deduction in Nonclassical Logics. MIT Press, Cambridge
(1990)

iProver – An Instantiation-Based Theorem Prover for
First-Order Logic (System Description)

Konstantin Korovin

The University of Manchester
School of Computer Science
korovin@cs.man.ac.uk

Abstract. iProver is an instantiation-based theorem prover which is based on
Inst-Gen calculus, complete for first-order logic. One of the distinctive features of
iProver is a modular combination of instantiation and propositional reasoning. In
particular, any state-of-the art SAT solver can be integrated into our framework.
iProver incorporates state-of-the-art implementation techniques such as index-
ing, redundancy elimination, semantic selection and saturation algorithms. Re-
dundancy elimination implemented in iProver include: dismatching constraints,
blocking non-proper instantiations and propositional-based simplifications. In ad-
dition to instantiation, iProver implements ordered resolution calculus and a com-
bination of instantiation and ordered resolution. In this paper we discuss the de-
sign of iProver and related implementation issues.

1 Introduction

iProver is based on an instantiation framework for first-order logic Inst-Gen, developed
in [3–5, 7]. We are working with clause logic and the main problem we are investi-
gating is proving (un)satisfiability of sets of first-order clauses. The basic idea behind
Inst-Gen is as follows. Given a set of first-order clauses S, we first produce a ground
abstraction of S by mapping all variables into a distinguished constant, say ⊥, obtain-
ing a set of ground clauses S⊥. If S⊥ is unsatisfiable then S is also unsatisfiable and
we are done. Otherwise, we need to refine the abstraction by adding new instances of
clauses, witnessing unsatisfiability at the ground level. Instances are generated by an
inference system called DSInst-Gen, which incorporates dismatching constraints (D)
and semantic selection (S). We repeat this process until we obtain either (i) an unsat-
isfiable ground abstraction (this can be checked by any off-the-shelf SAT solver), or
(ii) a saturated set of clauses, that is no non-redundant inference is applicable, and in
this case completeness of the calculus [3, 7] implies that S is satisfiable. Moreover, if
S is unsatisfiable and the inference process is fair, i.e., all persistent eligible inferences
eventually become redundant, then completeness of the calculus guarantees that after
a finite number of steps we obtain an unsatisfiable ground abstraction of S. The main
ingredients which make this general scheme a basis for a useful implementation are the
following.

� Supported by The Royal Society.

A. Armando, P. Baumgartner, and G. Dowek (Eds.): IJCAR 2008, LNCS 5195, pp. 292–298, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

iProver – An Instantiation-Based Theorem Prover 293

1. The Instantiation calculus DSInst-Gen.
2. Redundancy elimination techniques.
3. Flexible saturation strategies.
4. Combination with other calculi, such as resolution.
5. State-of-the-art implementation techniques.

In the following sections we describe these components in more detail.

2 Instantiation Calculus

In order to define our main calculus DSInst-Gen we first need to define selection func-
tions and dismatching constraints.

Semantic Selection. Selection functions allow us to restrict applicability of inferences
to selected literals in clauses. Our selection functions are based on models of the propo-
sitional abstraction of the current set of clauses. In practice, such models are generated
by the SAT solver, used for the ground reasoning. A selection function sel for a set of
clauses S is a mapping from clauses in S to literals such that sel(C) ∈ C for each clause
C ∈ S. We say that sel is based on a model I⊥ of S⊥, if I⊥ |= sel(C)⊥ for all C ∈ S.
Thus, DSInst-Gen inferences are restricted to literals, whose propositional abstraction
is true in a model for the propositional abstraction of the current set of clauses.

Dismatching constraints. In order to restrict instance generation further, we consider
dismatching constraints. Among different types of constraints used in automated rea-
soning, dismatching constraints are particularly attractive. On the one hand they provide
powerful restrictions for the instantiation calculus, and on the other, checking dismatch-
ing constraints can be efficiently implemented. A simple dismatching constraint is a
formula ds(s̄, t̄), also denoted as s̄
ds t̄, where s̄, t̄ are two variable disjoint tuples of
terms, with the following semantics. A solution to a constraint ds(s̄, t̄) is a substitu-
tion σ such that for every substitution γ, s̄σ �≡ t̄γ, where ≡ is the syntactic equiva-
lence. We will use conjunctions of simple dismatching constraints, called dismatching
constraints, ∧n

i=1ds(s̄i, t̄i), where every t̄i is variable disjoint from all s̄j , and t̄k, for
i �= k. A substitution σ is a solution of a dismatching constraint ∧n

i=1ds(s̄i, t̄i) if σ
is a solution of each ds(s̄i, t̄i), for 1 ≤ i ≤ n. We will assume that for a constrained
clause C | [∧n

i=1 ds(s̄i, t̄i)], the clause C is variable disjoint from all ti, 1 ≤ i ≤ n. A
constrained clause C | [ϕ] is a clause C together with a dismatching constraint ϕ. An
unconstrained clause C can be seen as a constrained clause with an empty constraint
C | []. Let S be a set of constrained clauses, then S̃ denotes the set of all unconstrained
clauses obtained from S by dropping all constraints.

Proper instantiators. Another restriction on the instantiation calculus is that only
proper instantiations need to be considered. A substitution θ is called a proper instan-
tiator for an expression (literal, clause, etc.) if it maps a variable in this expression into
a non-variable term.

DSInst-Gen Calculus. Now we are ready to formulate the DSInst-Gen calculus. Let
S be a set of constrained clauses such that S̃⊥ is consistent and let sel be a selection
function based on a model I⊥ of S̃⊥. Then, the DSInst-Gen inference system is defined
as follows.

294 K. Korovin

DSInst-Gen

L ∨ C | [ϕ] L′ ∨D | [ψ]
L ∨ C | [ϕ ∧ x̄ �ds x̄θ] (L ∨ C)θ

where (i) x̄ is a tuple of all variables in L, and
(ii) θ is the most general unifier of L and L′, wlog. we assume that

the domain of θ consist of all variables in L and L′, and
the range of θ is variable disjoint from the premises, and

(iii) sel(L ∨ C) = L and sel(L′ ∨D) = L′, and
(iv) θ is a proper instantiator for L, and
(v) ϕθ and ψθ are both satisfiable dismatching constraints.

DSInst-Gen is a replacement rule, which is replacing the clause in the left premise by
clauses in the conclusion. The clause in the right premise can be seen as a side condition.
In [7] we have shown that DSInst-Gen calculus is sound and complete. DSInst-Gen is
the main inference system implemented in iProver.

3 Redundancy Elimination

In [3] an abstract redundancy criterion is given which can be used to justify concrete
redundancy elimination methods [7], implemented in iProver. In order to introduce re-
dundancy notions we need some definitions. A ground closure, denoted as C · σ, is a
pair consisting of a clause C and a substitution σ grounding for C. Ground closures
play a similar role in our instantiation framework as ground clauses in resolution. Let S
be a set of clauses and C be a clause in S, then a ground closure C ·σ is called a ground
instance of S and we also say that the closure C ·σ is a representation of the clause Cσ
in S. A closure ordering is any ordering . on closures that is total, well-founded and
satisfies the following condition. If C ·σ andD ·τ are such that Cσ = Dτ andCθ = D
for some proper instantiator θ, then C · σ . D · τ .

Let S be a set of clauses. A ground closure C · σ is called redundant in S if there
exist ground closures C1 · σ1, . . . , Ck · σk that are ground instances of S such that,
(1) C1 · σ1, . . . , Ck · σk |= C · σ, and (2) C · σ . Ci · σi, for each 1 ≤ i ≤ k. A
clause C (possibly non-ground) is called redundant in S if each ground closure C · σ is
redundant in S. This abstract redundancy criterion can be used to justify many standard
redundancy eliminations such as tautology elimination and strict subsumption, where
the subsuming clause has strictly less literals than the subsumed.

Global Subsumption. One of the novel simplifications implemented in iProver is
based on utilising propositional reasoning [7]. First, let us consider simplifications of
ground clauses and then later we show how to extend this to the general case. Consider
a set of clauses S. Let C be a ground clause we would like to simplify wrt. S. If we
can show that a strict subclause D � C is entailed by S, then we can simplify C by
D. Since our ground abstraction S⊥ is implied by S we can use S⊥ to approximate
the entailment above. In particular, if we can show that S⊥ |= D, this can be checked
by the SAT solver, then C can be simplified by D. We call this simplification global
propositional subsumption wrt. S⊥.

iProver – An Instantiation-Based Theorem Prover 295

Global propositional subsumption

D ∨D′

D

where S⊥ |= D andD′ is not empty.

Global propositional subsumption is a simplification rule, which allows us to remove
the clause in the premise after adding the conclusion. Let us note that although the
number of possible subclauses is exponential wrt. the number of literals, in a linear
number of implication checks we can find a minimal wrt. inclusion subclause D � C
such that S⊥ |= D, or show that such a subclause does not exist. In [7] we have shown
that global propositional subsumption generalises many known simplifications, such as
strict subsumption and subsumption resolution.

Now we describe an extension of this idea to the general non-ground case (see [7]
for details). First, we note that in the place of S⊥ we can use any ground set Sgr ,
implied by S. Let ΣC be a signature consisting of an infinite number of constants not
occurring in the signature of the initial set of clauses Σ. Let Ω be a set of injective
substitutions mapping variables to constants in ΣC . We call C′ an Ω-instance of a
clause C if C′ = Cγ where γ ∈ Ω. Let us assume that for any clause C ∈ S there are
someΩ-instances of C in Sgr . In [7] we have shown that if someΩ-instance of a given
clause D is implied by Sgr , then S implies D. Now we can formulate an extension of
global subsumption to the non-ground case:

Global subsumption (non-ground)

(D ∨D′)θ
D

where Sgr |= Dγ for some γ ∈ Ω, andD′ is not empty.
Global subsumption is one of the main simplifications implemented in iProver.

4 Saturation Algorithm: The Inst-Gen Loop

Now we are ready to put inferences and simplifications together into a saturation algo-
rithm, called the Inst-Gen Loop, which is implemented in iProver.1 As shown in Fig 1,
the Inst-Gen Loop is a modification of the standard given clause algorithm, which ac-
commodates propositional reasoning. Let us overview key components of the Inst-Gen
Loop and how they are implemented in iProver. One of the main ideas of the given
clause algorithm is to separate clauses into two sets, called Active and Passive, with
the following properties. The set of Active clauses is such that all non-redundant in-
ferences between clauses in Active are performed (upon selected literals). The set of
Passive clauses are the clauses waiting to participate in inferences. Initially, the input
clauses are preprocessed and groundings of the preprocessed clauses are added to the

1 iProver is available at http://www.cs.man.ac.uk/˜korovink/iprover/

296 K. Korovin

Passive (Queues) Given Clause
Simpl. II

Active (Unif. Index)

Model Changed

Instantiation Inferences

Preprocessed
Simpl. I

SAT Solver Call
Input

SAT Solver

Grounding

Fig. 1. The Inst-Gen Loop

SAT solver. Preprocessing currently consists of optional splitting without backtracking
on variable disjoint subclauses [8]. The given clause algorithm consists of a loop and at
each loop iteration the following actions are executed. First, a clause is taken from the
Passive set, called the Given Clause. Then, all inferences between the Given Clause and
the clauses in Active are performed and the Given Clause is moved to Active. Finally,
all newly derived clauses are preprocessed and groundings of the obtained clauses are
added to the SAT solver. The SAT solver is called in regular, user-defined intervals until
either (i) unsatisfiability is found, in this case the input set of clauses is unsatisfiable,
or (ii) all clauses are in Active, in this case the input set of clauses is satisfiable. Let us
describe the components of the Inst-Gen Loop.

Passive. The Passive set are the clauses waiting to participate in inferences. Experi-
ence with resolution-based systems shows that the order in which clauses are selected
for inferences from Passive is an important parameter. Usually, preference is given to
the clauses which are heuristically more promising to derive the contradiction, or to
the clauses on which basic operations are easier to perform. In iProver, Passive clauses
are represented by two priority queues. In order to define priorities we consider numer-
ical/boolean parameters of clauses such as: number of symbols, number of variables,
age of the clause, number of literals, whether the clause is ground, conjecture distance
and whether the clause contains a symbol from the conjecture (other than equality).
Then, each queue is ordered by a lexicographic combination of orders defined on pa-
rameters. For example, if a user specifies an iProver option: ‘- -inst pass queue1 [+age;
-num symb;+ground]’, then priority in the first queue is given to the clauses generated
at the earlier iterations of the Inst-Gen Loop (older clauses), then to the clauses with
fewer number of symbols and finally to ground clauses. The clauses are taken from the
queues according to a user-specified ratio.

Selection functions. Selection functions are based on the current model I⊥ of the
propositional abstraction of the current set of clauses. A clause can have several lit-
erals true in I⊥, and the selection function can be restricted to choose one of them.
Selection functions are defined by priorities based on a lexicographic combination of
the literal parameters. The following parameters currently can be selected by the user:
sign, ground, num var, num symb, and split. For example if a user specifies an iProver

iProver – An Instantiation-Based Theorem Prover 297

option: ‘- -inst lit sel [+sign;+ground;-num symb]’. Then, priority (among the literals
in the clause true in I⊥) is given to the positive literals, then to the ground literals and
then to literals with a fewer number of symbols.

Active. After the Given Clause is selected from Passive all eligible inferences be-
tween the Given Clause and clauses in Active should be performed. A unification index
is used for efficient selection of clauses eligible for inferences. In particular, Active
clauses are indexed by selected literals. The unification index implemented in iProver is
based on non-perfect discrimination trees [6]. Let us note that since the literal selection
is based on a propositional model (of a ground abstraction of the current set of clauses),
selection can change during the Inst-Gen Loop iterations. This can result in moves of
clauses from Active to Passive, as shown in Fig 1. Such moves can be a source of in-
efficiency and we minimise them by considering the selection change only in clauses
participating in the current inference.

Instantiation Inferences. iProver implements DSInst-Gen calculus. In particular, con-
strained clauses, dismatching constraint checking and semantic-based literal selections
are implemented.

Redundancy elimination. In addition to dismatching constraints, global subsumption
for clauses with variables and tautology elimination are implemented.

Grounding and SAT Solver. Newly derived clauses are grounded and added to the
propositional solver. Although, in our exposition we used the designated constant ⊥
for grounding, all our arguments remain valid if we use any ground term in place of
⊥. In particular, for grounding, iProver selects a constant with the greatest number
of occurrences in the input set of clauses. After grounding, clauses are added to the
propositional solver. Currently, iProver integrates MiniSat [2] solver for propositional
reasoning. Incrementality of MiniSat is essential for global subsumption.

Learning Restarts. Initially, the propositional solver contains only few instances of
the input clauses, and therefore selection based on the corresponding propositional
model may be inadequate. Although the model and selection can be changed at the
later iterations, by that time, the prover may have consumed most of the available re-
sources. In order to overcome this, iProver implements restarts of the saturation process,
keeping the generated groundings of clauses in the SAT solver. After each restart, the
propositional solver will contain more instances of clauses, this can help to find a bet-
ter literal selection. In addition, after each restart, global subsumption becomes more
powerful.

Combination with Resolution. Instantiation, by itself, is not very well suited for gener-
ating small clauses which can be later used in simplifications such as (global) subsump-
tion. For this, iProver implements a complete saturation algorithm for ordered resolution.
The saturation algorithm for resolution is based on the same data structures as Inst-Gen
Loop and implements a number of simplifications such as forward and backward sub-
sumption (based on a vector index [11]), subsumption resolution, tautology deletion and
global subsumption. Resolution is combined with instantiation by sharing the proposi-
tional solver. In particular, groundings of clauses generated by resolution are added to
the propositional solver and propositional solver is used for global subsumption in both
resolution and instantiation saturation loops. The user can select between combination
of instantiation with resolution, pure instantiation and pure ordered resolution.

298 K. Korovin

5 Implementation Details and Evaluation

iProver is implemented in a function language OCaml and integrates MiniSat solver [2]
for propositional reasoning, which is implemented in C/C++. iProver v0.3.1 was evalu-
ated on the standard benchmark for first-order theorem provers – TPTP library v3.2.02.
Currently, iProver does not have a built-in clausifier and we used E prover3 for clausifi-
cation. Experiments were run on a cluster of PCs with CPU 1.8GHz, Memory 512 Mb,
Time Limit 300s, OS Linux v2.6.22. Out of 8984 problems in the TPTP library, iProver
(single strategy) solved 4843 problems: 4000 unsatisfiable and 843 satisfiable. Prob-
lems in TPTP are rated from 0 to 1, problems with the rating 0 are easy and problems
with the rating 1 cannot be solved by any state-of-the-art automated reasoning system.
iProver solved 7 problems with the rating 1, and 27 with rating greater than 0.9. We
compare iProver v0.2 with other systems, based on the results of the CASC-21 compe-
tition, held in 2007 [12]. In the major FOF devision, iProver is in the top three provers
along with established leaders Vampire [9] and E [10]. In the effectively propositional
division (EPR), iProver is on a par with the leading system Darwin [1]. We are currently
working on integrating equational and theory reasoning into iProver.

References

1. Baumgartner, P., Fuchs, A., Tinelli, C.: Implementing the model evolution calculus. Interna-
tional Journal on Artificial Intelligence Tools 15(1), 21–52 (2006)

2. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.)
SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

3. Ganzinger, H., Korovin, K.: New directions in instantiation-based theorem proving. In: Proc.
18thIEEESymposiumonLICS,pp.55–64. IEEEComputerSocietyPress,LosAlamitos(2003)

4. Ganzinger, H., Korovin, K.: Integrating equational reasoning into instantiation-based the-
orem proving. In: Marcinkowski, J., Tarlecki, A. (eds.) CSL 2004. LNCS, vol. 3210, pp.
71–84. Springer, Heidelberg (2004)

5. Ganzinger, H., Korovin, K.: Theory Instantiation. In: Hermann, M., Voronkov, A. (eds.)
LPAR 2006. LNCS (LNAI), vol. 4246, pp. 497–511. Springer, Heidelberg (2006)

6. Graf, P.: Term Indexing. LNCS, vol. 1053. Springer, Heidelberg (1996)
7. Korovin, K.: An invitation to instantiation-based reasoning: From theory to practice. In:

Podelski, A., Voronkov, A., Wilhelm, R. (eds.) Volume in memoriam of Harald Ganzinger
(to appear) (invited paper)

8. Riazanov, A., Voronkov, A.: Splitting without backtracking. In: Proc. of the 17 International
Joint Conference on Artificial Intelligence (IJCAI 2001), pp. 611–617. Morgan Kaufmann,
San Francisco (2001)

9. Riazanov, A., Voronkov, A.: The design and implementation of VAMPIRE. AI Communica-
tions 15(2-3), 91–110 (2002)

10. Schulz, S.: E - a brainiac theorem prover. AI Commun. 15(2-3), 111–126 (2002)
11. Schulz, S.: Simple and Efficient Clause Subsumption with Feature Vector Indexing. In: Sut-

cliffe, G., Schulz, S., Tammet, T. (eds.) Proc. of the IJCAR-2004 Workshop on Empirically
Successful First-Order Theorem Proving, Cork, Ireland. ENTCS. Elsevier Science, Amster-
dam (2004)

12. Sutcliffe, G.: CASC-21 proceedings of the CADE-21 ATP system competition (2007)

2 http://www.cs.miami.edu/˜tptp/
3 http://www.eprover.org/

An Experimental Evaluation of Global Caching

for ALC (System Description)

Rajeev Goré and Linda Postniece

Computer Sciences Laboratory
The Australian National University

Canberra ACT 0200, Australia
{Rajeev.Gore,Linda.Postniece}@anu.edu.au

Abstract. Goré and Nguyen have recently given the first optimal and
sound method for global caching for the description (modal) logic ALC,
and various extensions. We report on an experimental evaluation for
ALC plus its reflexive and reflexive-transitive extensions which compares
global caching, mixed caching, unsat caching and no caching, all in a sin-
gle common framework implementing a depth-first search strategy. We
also evaluated a version of global caching using an unrestricted search
strategy which necessarily sits outside the common framework. We con-
clude that global caching is an improvement over the other methods in
most but not all cases.

1 Introduction

Description logics are useful in knowledge representation and reasoning in arti-
ficial intelligence and in the semantic web. The description logic ALC is a multi-
modal version of the normal modal logic K and forms the basis of many useful
extensions. Many applications of automated reasoning in ALC can be reduced to
the following exptime-complete ALC-satisfiability problem: given a finite TBox
Γ of “global assumptions” and a single formula ϕ, decide whether there is an
ALC-model which makes ϕ true at one world, and which makes each member
of Γ true at all worlds. We assume the reader is familiar with the terminology
used in practical reasoning in (modal) description logics.

Although numerous optimisations are essential for practical (automated) rea-
soning in description logics, caching has remained an “external” optimisation
which is often “bolted on” in an ad-hoc way. Recently, Goré and Nguyen [2]
have given the first optimal (exptime) and sound method for global caching
for ALC, and various extensions. We report on an experimental evaluation of
various caching methods for ALC, including two versions of global caching.

Some existing caching methods are sound only when using depth-first search
(DFS), so we built a generic implementation with a fixed DFS search strategy
and incorporated all methods into this framework. The global caching method
of Goré and Nguyen does not rely on DFS, so we built another implementation
which uses only global caching, but with an unrestricted search strategy.

A. Armando, P. Baumgartner, and G. Dowek (Eds.): IJCAR 2008, LNCS 5195, pp. 299–305, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

300 R. Goré and L. Postniece

While our prover is only a prototype, to retain practicality, we included the
following optimisations into both basic (DFS and unrestricted) frameworks:

Negation normal form: at the start, all input formulae are put into an implication-
free form such that negations appear only in front of atomic formulae;

Semantic branching for atoms: an (!)-rule application with principal formula
p!ψ creates a left denominator for p as usual, but creates a right denominator
containing {ψ,¬p} instead of one containing just ψ;

Normalisation: there are three aspects to this optimisation:
Modus ponens: an extra step is included at each node so that a node con-

taining ϕ and ψ ! ¬ϕ has ψ added to it immediately;
Subsumption: if a node contains {ψ, ψ ! ϕ}, then ψ ! ϕ is deleted;
Implicit “and”: conjunctions are flattened recursively into their conjuncts;

Backjumping: or “use-check” whereby a clash on the left branch for X ;ϕ of
an (!)-rule application on X ;ϕ ! ψ can allow us to close the right branch
X ;ψ without further expansion because extra stored information allows us
to trace the source of the “clash” in the left branch to X , meaning that the
right branch is guaranteed to close in the same way. It is well-known [4] that
caching can interact with certain optimisations like backjumping.

Lazy unfolding: include certain TBox axioms in a demand driven way [5].

The source code of our prototype is available at http://users.rsise.anu.
edu.au/∼linda/CWB.html via the world wide web.

2 Programming Language and Basic Data Structures

Our prototype is written in C++ using the STL data structures.
Given a finite TBox Γ and an initial formula ϕ, the satisfiability problem has

exponential complexity w.r.t. the length n of X0 = Γ ∪ {ϕ}. The set Sf(X0)
of subformulae has cardinality at most n, the number of subformulae and their
negations is 2n and the search space contains at most 22n different nodes.

Our nodes (formula sets) consist of plain formulae and each node has a unique
identifier, which is just an integer. Thus there are no world/individual “names”
or “labels”, meaning that we cannot handle ABoxes.

We let ≤ be the order in which the formulae are encountered during parsing,
so “the ith formula” is unique. Each tableau node carries a bit-string of length
2n with the ith bit set to 1/0 if the ith formula is present/absent from this node.
The nodes are stored in a red-black tree using std::map, so finding a particular
node requires log2(22n) = 2n (i.e. polynomial) time.

A rule is applied to a node only if applying that rule produces at least one
formula new to the node. Before adding a new node to the tableau, the contents
of the node are normalised using the normalisation steps outlined above.

3 Various Caching Methods

By “caching” we mean the storing of nodes and their status (sat/unsat) so that
future computations of the nodes are avoided. By “global caching”, we mean the

http://users.rsise.anu.
edu.au/~linda/CWB.html

An Experimental Evaluation of Global Caching for ALC 301

method outlined in [2] in which no node is explored more than once, even if its
status is “unknown”. We assume familiarity with these notions but explain the
various caching methods briefly:

No caching DFS (NC): there is no additional caching method, thus we need an
explicit ancestor equality-blocking (loop-check) facility for termination;

Unsat caching DFS (UC): we maintain an explicit separate data-structure
which stores every unsat node ever found. The procedure searches this cache
before it creates a child node. If the required child is in the cache, then it
must be unsat so the procedure backtracks, else the procedure creates the
child and continues with the usual DFS procedure. A node is added to the
unsat-cache once its status becomes unsat, thus this cache grows monotoni-
cally. There is a separate ancestor equality-blocking (loop check) to guarantee
termination;

Mixed caching DFS (MC): we maintain an unsat-cache as described above but
we also keep a local sat-cache. The sat cache grows monotonically as long
as the DFS procedure remains in the same “and-structure” but it is emptied
every time we move from the left branch of an (!)-rule to the right branch
since unsoundness can result if we do not do so [1]. There is a separate
ancestor equality-blocking (loop check) to guarantee termination. We have
implemented the algorithm given by Donini and Massacci [1] in a naive
way in that we explicitly copy the sat-cache when required. Thus there are
possibilities for optimisation here such as lazy saving [5].

Global caching DFS with propagation (GC-DFS): we use DFS to explore the
search-space but do not reclaim space upon backtracking as in all previously
described methods. Instead, we keep a graph 〈V,E〉 of vertices whose status
can be either unexpanded, expanded, unsat or sat, and propagate the status
of unsat/sat nodes through the graph as described in detail in [2]. There is
no extra ancestor equality-blocking loop check as global caching guarantees
termination. Propagation is essential as it is easy to construct examples
where omitting propagation can lead to unsoundness.

Unrestricted global caching and propagation (GC-NonDFS): instead of DFS,
we explore the graph using a DFS-like strategy, see [2, Algorithm 2]. Our
strategy differs from DFS in that at every node x where the applied rule
gives k denominators y1, · · · , yk, we create (or lookup) each successor yi im-
mediately, and place it in the queue for expansion, rather than creating only
the first successor y1 and exploring it as in DFS. Moreover, if at any time
we encounter a cache hit to an unexpanded node z (which must already be
in the queue), we bring z to the front of the queue, since we know that there
are now at least two nodes that rely on the status of z, indicating that z
should be processed sooner rather than later.

4 Problem Sets, Experiments and Results

We ran our experiments on a PC with 2.40GHz Intel(R) Core(TM)2 CPU 6600
and 2GB RAM. We tested our implementation on the K, KT and S4 problem sets

302 R. Goré and L. Postniece

Table 1. Results for K Tests

K Tests: highest problem complexity solved in 1 2 4 8 16 seconds

Problem No Caching Unsat Caching Mixed Caching Global Caching NonDFSGC

k branch n 7 9 9 10 11 7 9 9 10 11 8 8 9 10 11 8 8 9 10 11 8 8 9 10 11
k branch p 16 19 21 16 19 21 16 19 21 17 20 21 17 20 21

k d4 n 5 6 6 7 8 6 6 7 7 8 12 16 21 8 10 14 19 21 16 21
k d4 p 7 7 7 8 9 6 6 7 7 8 21 21 21

k dum n 21 21 21 21 21
k dum p 21 21 21 21 21

k grz n 21 21 21 21 21
k grz p 21 21 21 21 21

k lin n 10 13 19 21 12 13 18 21 10 14 18 21 11 14 19 21 11 15 19 21
k lin p 21 21 21 21 21

k path n 3 3 3 3 3 4 4 5 5 6 6 8 10 13 17 8 11 13 18 21 8 11 13 17 21
k path p 3 3 4 4 4 5 6 6 7 8 6 8 10 13 16 9 10 13 18 21 8 11 14 18 21

k ph n 6 6 7 8 8 6 6 7 8 8 6 6 7 8 8 6 6 7 8 8 6 6 7 7 8
k ph p 5 5 5 6 6 5 5 5 6 6 5 5 5 6 6 5 5 5 6 6 5 5 5 6 6

k poly n 7 8 10 12 15 7 8 10 12 15 10 14 17 21 12 14 17 21 12 14 17 21
k poly p 12 16 19 21 13 16 19 21 13 16 19 21 11 16 18 21 11 16 18 21

k t4p n 4 7 9 12 16 5 7 9 13 18 10 14 20 21 12 17 21 14 18 21
k t4p p 6 8 12 16 20 9 16 21 9 19 21 13 20 21 13 19 21

blank count 24 26 34 33 36

from the Logics Work Bench (LWB) benchmarks [3] and the K TBox problem set
from the DL98 benchmarks http://dl.kr.org/dl98/comparison/data.html.
The LWB is a sequent-based prover so a formula ϕ is “provable” if {¬ϕ} is
unsatisfiable, and ϕ is “not provable” otherwise: hence the appellation “p” or
“n” on the problem sets. The LWB problems are actually for monomodal K,
KT and S4 but are adequate for testing the multimodal logic ALC because the
caching methods never inspect the value of the role name (accessibility relation).
However, the LWB problems do not contain TBox axioms, therefore we also
used the DL98 TBox problem set. We also tested our implementation on the
galen1.tkb from the DL98 data set, which is a significantly scaled down version
of the Galen ontology, containing TBox axioms and multiple roles (modalities).

Each table to follow contains a column for each of the five different caching
methods, with these five methods classified into two classes. The “Unsophisti-
cated” ones comprising of the NC and UC methods and the “Sophisticated” ones
comprising of the MC and GC-DFS and GC-NonDFS methods.

For each caching method, there are five entries corresponding to time-outs
of 1 second, 2 seconds, 4 seconds, 8 seconds and 16 seconds. Thus a shift of
one place to the right in any single sequence of five entries corresponds to a
doubling of the time-out allowed. Each such entry is an integer between 1 and 21
indicating the most complex problem that could be solved in the given time-out.
Since the time-outs increase monotonically from left to right, we have replaced
consecutive occurrences of “21” by blanks. Thus, within a particular caching
method, the more blanks the better since this indicates that that method could

http://dl.kr.org/dl98/comparison/data.html

An Experimental Evaluation of Global Caching for ALC 303

Table 2. Results for KT Tests

KT Tests: highest problem complexity solved in 1 2 4 8 16 seconds

Problem No Caching Unsat Caching Mixed Caching Global Caching NonDFSGC

kt 45 n 6 6 7 8 9 6 6 7 8 9 21 19 21 21
kt 45 p 4 5 5 6 6 4 5 5 6 6 21 21 21

kt branch n 7 8 9 10 11 7 8 9 10 11 8 8 9 10 11 7 8 9 10 11 8 8 9 10 11
kt branch p 21 21 21 21 21

kt dum n 9 11 11 13 15 9 11 11 13 14 21 21 21
kt dum p 21 21 21 21 21 14 15 15 17 17 21 21 21

kt grz n 21 21 21 21 21
kt grz p 21 21 21 21 21

kt md n 4 4 4 4 4 4 4 4 4 4 6 6 6 6 6 6 6 6 6 7 6 6 6 6 7
kt md p 3 3 4 4 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

kt path n 2 2 2 2 2 2 2 2 3 3 2 2 3 3 3 2 2 3 3 3 2 3 3 3 4
kt path p 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 3 3 4 4 4

kt ph n 5 5 6 7 7 5 5 6 7 7 5 5 6 7 7 5 5 6 7 7 5 5 6 7 7
kt ph p 5 5 5 6 6 5 5 5 6 6 5 5 5 6 6 5 5 5 6 6 5 5 5 6 6

kt poly n 1 2 2 2 2 1 2 2 2 2 3 3 4 4 5 4 4 4 6 6 3 4 5 6 7
kt poly p 7 8 10 12 15 7 8 11 13 15 7 8 11 13 15 7 8 10 13 15 7 8 10 13 15

kt t4p n 1 1 2 2 2 1 1 2 2 2 2 3 4 5 8 3 4 6 8 12 4 5 7 10 14
kt t4p p 2 2 3 4 4 3 3 4 5 5 7 9 13 19 21 9 12 18 21 7 9 14 19 21

blank count 12 12 28 28 28

solve the most complex problem using the smallest time-out. The bottom-most
row of each table shows the number of “blanks” for that caching method over
all problem instances: a rather crude measure of overall performance.

Finally, we note that differences of 1 integer value are not significant as we
noticed such differences over two identical runs at different times, particularly
for the 1 second, 2 second and 4 second time-outs.

Results for K. Given the ±1 fluctuations, Table 1 shows the following trends.
Sophisticated caching is better than Unsophisticated caching. Within the So-
phisticated caching methods, the best of GC-DFS and GC-NonDFS is usually
better than MC. We also see that the GC-NonDFS method significantly outper-
forms MC for problems k d4 n and k t4p n. There appears to be no clear winner
between the two “global caching” methods GC-DFS and GC-NonDFS, although
GC-NonDFS has the highest blank-count (due to k d4 n).

Results for KT. The general trend continues in that the Sophisticated meth-
ods outperform the Unsophisticated methods for most problems, but for many
problems, the differences are not great. The best of the two global caching meth-
ods (GC-DFS and GC-NonDFS) continues to outperform MC. Specifically, for
kt t4p n, GC-NonDFS significantly outperforms MC, and for kt t4p p, GC-DFS
outperforms MC.

Results for S4. As for K and KT, most of the results get better as we move from
the Unsophisticated to the Sophisticated methods. However, something strange

304 R. Goré and L. Postniece

Table 3. Results for S4 Tests

S4 Tests: highest problem complexity solved in 1 2 4 8 16 seconds

Problem No Caching Unsat Caching Mixed Caching Global Caching NonDFSGC

s4 45 n 12 14 18 21 11 14 18 21 13 17 21 11 14 19 21 12 15 19 21
s4 45 p 11 12 15 20 21 11 12 15 19 21 14 18 21 15 19 21 14 19 21

s4 branch n 7 8 9 10 10 7 8 9 10 10 7 8 9 10 10 7 8 9 10 10 8 8 9 10 10
s4 branch p 21 21 21 21 21

s4 grz n 21 21 21 8 9 11 13 14 7 8 10 11 13
s4 grz p 21 21 21 21 21

s4 ipc n 4 5 5 5 5 4 5 5 5 5 7 7 7 8 8 6 6 7 8 8 6 6 7 8 8
s4 ipc p 18 21 18 21 18 21 19 21 17 21

s4 md n 6 6 6 6 6 6 6 6 6 7 7 8 8 9 9 7 8 8 9 9 7 8 8 9 9
s4 md p 5 6 6 7 8 5 6 6 7 8 5 6 6 7 8 5 6 6 7 8 5 6 6 7 8

s4 path n 1 1 1 1 1 1 1 1 1 1 2 2 2 3 3 1 2 2 2 2 1 2 2 2 2
s4 path p 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 2 2 3 3 3 2 3 3 3 3

s4 ph n 4 4 4 4 4 4 4 4 4 4 5 5 5 5 6 3 3 3 3 3 3 3 3 3 3
s4 ph p 5 5 5 5 6 5 5 5 5 6 5 5 5 5 6 5 5 5 5 6 5 5 5 5 6

s4 s5 n 3 3 3 4 5 3 3 3 4 5 4 4 5 6 6 3 4 5 5 6 4 4 5 6 7
s4 s5 p 21 21 21 21 21

s4 t4p n 1 2 2 3 4 2 3 5 6 8 4 6 9 12 15 2 4 5 7 10 2 4 5 7 9
s4 t4p p 3 4 5 6 7 7 9 12 15 20 9 13 17 21 10 13 18 21 9 13 17 21

blank count 20 20 24 19 19

happens for s4 grz n, where we see that global caching performs significantly
worse in both of its incarnations. Another strange result is s4 t4p n, where mixed
caching significantly outperforms all others. This time, the MC method has the
highest blank-count, but this is mostly due to its better performance on s4 grz n.

Results for K TBox. The LWB benchmarks for K, KT and S4 do not con-
tain TBox axioms, so they do not display the exptime behaviour of ALC. We
therefore used the TBox problem set from the DL98 benchmarks as shown in
Table 4. For many problems, there is no significant difference between the Un-
sophisticated and Sophisticated methods. For k d4 p, both methods of global
caching significantly outperform mixed caching, and for k lin n, GC-DFS beats
MC. For the other problems, the best of the two global caching methods is on
par with mixed caching.

Galen Test. We evaluated mixed caching and global caching on the
“galen1.tkb” problem from the DL’98 benchmarks which contains multiple
modalities. We found that MC and both types of global caching took around 20
seconds. Moreover, MC accessed about 3 times as many nodes as GC-NonDFS.

5 Conclusions and Further Work

It is clear that global caching is a promising optimisation which deserves further
investigation since it is on par or better than the other caching methods on all

An Experimental Evaluation of Global Caching for ALC 305

Table 4. Results for K TBox Tests

K TBox Tests: highest complexity problem solved in 1 2 4 8 16 seconds

Problem No Caching Unsat Caching Mixed Caching Global Caching NonDFSGC

k branch n 3 3 4 5 5 3 4 4 5 5 3 4 4 5 5 3 4 4 5 5 3 4 4 5 5
k branch p 5 5 6 6 7 5 5 6 6 7 5 5 6 6 7 5 5 6 6 7 5 5 6 6 7

k d4 n 2 3 3 3 4 2 3 3 3 4 3 3 3 4 4 3 3 3 4 5 2 3 3 3 4
k d4 p 6 6 6 7 7 4 5 6 8 10 4 5 6 8 10 16 18 21 14 19 21

k dum n 7 8 9 9 10 7 8 9 10 10 17 21 18 21 16 21
k dum p 21 21 21 21 21

k grz n 9 12 15 20 21 11 12 15 20 21 11 14 17 21 11 13 17 21 10 13 17 21
k grz p 3 6 6 9 11 4 9 11 13 15 4 9 11 13 15 7 9 11 14 15 6 7 10 10 14

k lin n 5 7 9 12 16 5 5 6 8 10 5 5 6 8 10 5 6 8 12 16 4 4 5 5 6
k lin p 3 5 5 6 6 3 4 5 6 6 3 4 5 6 6 5 5 5 8 8 5 5 5 6 8

k path n 2 3 3 3 4 3 3 4 4 5 5 6 6 8 12 6 7 8 11 13 5 6 8 10 13
k path p 4 4 4 4 6 4 4 6 6 7 4 6 6 7 9 5 7 8 10 13 5 7 8 10 13

k ph n 5 5 6 6 7 5 5 6 6 7 5 5 6 6 7 5 5 6 6 7 5 5 6 6 7
k ph p 3 3 3 3 3 3 3 4 4 4 3 3 4 4 4 3 3 4 4 4 3 3 4 4 4

k poly n 6 8 8 11 13 6 8 9 10 13 11 15 19 21 11 14 18 21 12 14 18 21
k poly p 16 19 21 13 19 21 16 19 21 16 19 21 16 19 21

k t4p n 2 2 3 5 7 2 3 4 5 7 5 7 10 13 19 4 7 9 13 18 5 6 9 13 19
k t4p p 5 7 10 13 21 2 4 7 8 12 5 6 10 15 21 7 8 9 11 17 5 5 7 12 17

blank count 6 6 11 13 13

our tests except s4 grz n and s4 t4p n. In particular, it is vital to investigate
good heuristics for GC-NonDFS, since it is not tied to the DFS framework.

We observed that the best global caching method beats MC in most cases.
This may be because MC spends more time per node since it must look up
both the unsat- and sat-caches for every node. As noted earlier, further work
is required to make the sat-cache of MC more efficient when descending into
(!)-branches, by implementing lazy saving for example.

Acknowledgements. We thank Florian Widmann for many useful suggestions
on numerous aspects of this work, and Linh Anh Nguyen for many clarifications.

References

1. Donini, F., Massacci, F.: EXPTIME tableaux for ALC. AIJ 124, 87–138 (2000)
2. Goré, R., Nguyen, L.A.: Exptime tableaux for ALC using sound global caching. In:

Proc. DL 2007 (June 2007), http://dl.kr.org/dl2007/
3. Heuerding, A., Schwendimann, S.: A benchmark method for the propositional logics

K, KT, S4. Technical report, Universitaet Bern, Switzerland (1996)
4. Horrocks, I., Patel-Schneider, P.F.: Optimizing description logic subsumption. Jour-

nal of Logic and Computation 9(3), 267–293 (1999)
5. Tsarkov, D., Horrocks, I., Patel-Schneider, P.F.: Optimizing terminological reason-

ing for expressive description logics. JAR 39(3), 277–316 (2007)

http://dl.kr.org/dl2007/

Multi-completion with Termination Tools

(System Description)�

Haruhiko Sato1, Sarah Winkler2, Masahito Kurihara1,
and Aart Middeldorp2

1 Graduate School of Information Science and Technology
Hokkaido University, Japan

2 Institute of Computer Science
University of Innsbruck, Austria

Abstract. In this paper we describe a new tool for performing Knuth-
Bendix completion with automatic termination tools. It is based on two
ingredients: (1) the inference system for completion with multiple reduc-
tion orderings introduced by Kurihara and Kondo (1999) and (2) the
inference system for completion with external termination provers pro-
posed by Wehrman, Stump and Westbrook (2006) and implemented in
the Slothrop system. Our tool can be used with any termination tool
that satisfies certain minimal requirements. Preliminary experimental
results show the potential of our tool.

1 Introduction

Knuth and Bendix [2] introduced in a landmark paper the completion procedure
which aims to transform a given set of equations into a confluent and terminating
rewrite system, which can then be used to decide validity problems. The procedure
takes as input a reduction order which is used to orient rules. The success of the
procedure depends very much on the choice of the reduction order.

Kurihara and Kondo [3] introduced a variant that works for multiple reduc-
tion orders. It simulates the parallel execution of completion processes with the
individual orders. The common features of the different processes are captured
in a special data structure and corresponding inference rules. The resulting pro-
cedure is more efficient than a parallel execution of completion procedures.

Wehrman, Stump and Westbrook [7] take a different approach. Instead of
relying on a reduction order supplied by the user, they call an external termina-
tion prover to orient rules. Since modern termination provers typically combine
a number of different powerful techniques, this opens the way to complete sys-
tems that cannot be handled by traditional implementations of the completion
procedure. One such system is CGE2, the theory of two commuting group en-
domorphisms, that is completed by the Slothrop tool described in [7] without
user interaction.
� This research is partially supported by FWF (Austrian Science Fund) project P18763

and JSPS Grant-in-Aid for Scientific Research (C), No. 19500020.

A. Armando, P. Baumgartner, and G. Dowek (Eds.): IJCAR 2008, LNCS 5195, pp. 306–312, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Multi-completion with Termination Tools 307

orient
(E ∪ {s ≈ t}, R,C)

(E ,R ∪ {s → t}, C ∪ {s → t}) if C ∪ {s → t} terminates

Fig. 1. Inference rule orient of KBtt

We combine the two approaches sketched above in a single procedure. The
underlying inference system is described in the next section. In Section 3 we
present implementation details and in Section 4 we present the interface of our
tool. Preliminary experimental results given in Section 5 show the advantage of
our approach.

2 Inference System

Figure 1 shows the orient inference rule of KBtt (A in [7]), the inference system
underlying Slothrop. KBtt operates on triples (E ,R,C) consisting of unori-
ented equations in E and rewrite rules in R and C .

In the orient rule, termination is checked of the combination of the new rewrite
rule s → t and all previously added rewrite rules, which are stored in the third
component C . (The other inference rules do not modify C .) Checking termina-
tion of the combination of s → t and the present rules in R would be unsound [4].
When both C ∪ {s → t} and C ∪ {t → s} can be proved terminating, in an
implementation one faces the question which branch to explore. Slothrop uses
a best-first search strategy in connection with a cost function that determines
which branch to advance [7, Section 4].

The advantage of our approach is that both branches are explored simulta-
neously by incorporating the ideas of Kurihara and Kondo [3]. The completion
procedure described in their paper simulates the execution of multiple comple-
tion processes in parallel. Whenever a process encounters an equation that can
be oriented in either direction, the process is split into two child processes. As
a process corresponds to a sequence of decisions on how to orient equations,
processes will in the following be considered as bit strings. The set of all pro-
cesses will be denoted by P and the initial process is naturally represented by
the empty string ε.

Definition 1. The inference system MKBtt operates on sets of nodes. A node
〈s : t ,R1,R2,E ,C1,C2〉 consists of an ordered pair of terms s : t and sets of
processes R1,R2,E ,C1,C2 ⊆ P such that R1, R2, and E are mutually disjoint. A
node 〈s : t ,R1,R2,E ,C1,C2〉 is identified with 〈t : s ,R2,R1,E ,C2,C1〉. Given a
set of equations F , the initial node set consists of all nodes 〈s : t ,∅,∅, {ε},∅,∅〉
such that s ≈ t occurs in F . The inference rules of MKBtt are displayed in
Figure 2.

The term pair s : t is also referred to as the node’s datum, the remaining com-
ponents as its labels. Intuitively, the sets R1 and C1 consist of processes where

308 H. Sato et al.

orient
N ∪ {〈s : t , R1,R2, E ,C1,C2〉}

splitP (N) ∪ {〈s : t ,R1 ∪ Rlr ,R2 ∪ Rrl ,E ′, C1 ∪ Rlr ,C2 ∪ Rrl〉}

with Elr ,Erl ⊆ E such that Elr ∪Erl �= ∅, P = Elr ∩Erl , E ′ = E \(Elr ∪
Erl), C [N , p] ∪ {s → t} terminates for all p ∈ Elr , C [N , p] ∪ {t → s}
terminates for all p ∈ Erl , Rlr = (Elr \ Erl) ∪ {p0 | p ∈ P}, Rrl =
(Erl \ Elr) ∪ {p1 | p ∈ P} and where splitP (N) replaces every p ∈ P in
any label of any node in N by p0 and p1

delete
N ∪ {〈s : s, ∅, ∅,E , ∅, ∅〉}

N

deduce
N

N ∪ {〈s : t , ∅, ∅,R ∩ R′, ∅,∅〉}

if there exist nodes 〈l : r ,R, . . . 〉, 〈l ′ : r ′,R′, . . . 〉 ∈ N and a term u
such that s ←l→r u →l′→r′ t and R ∩ R′ �= ∅

rewrite1
N ∪ {〈s : t , R1,R2, E ,C1,C2〉}

N ∪ {〈s : t , R1 \ R,R2,E \R,C1,C2〉}
∪ {〈s : u,R1 ∩ R, ∅,E ∩ R,C1,C2〉}

if 〈l : r ,R, . . . 〉 ∈ N , t →l→r u, t .
= l , and R ∩ (R1 ∪ E) �= ∅ a

rewrite2
N ∪ {〈s : t , R1,R2, E ,C1,C2〉}

N ∪ {〈s : t , R1 \R,R2 \R,E \R,C1, C2〉}
∪ {〈s : u, R1 ∩ R, ∅, (R2 ∪ E) ∩ R, ∅, ∅〉}

if 〈l : r ,R, . . . 〉 ∈ N , t →l→r u, t ·	 l , and R ∩ (R1 ∪ R2 ∪ E) �= ∅ b

gc
N ∪ {〈s : t , ∅, ∅, ∅, ∅, ∅〉}

N

subsume
N ∪ {〈s : t , R1, R2,E ,C1,C2〉} ∪ {〈s ′ : t ′,R′

1,R′
2,E ′,C ′

1,C ′
2〉}

N ∪ {〈s : t ,R1 ∪ R′
1,R2 ∪ R′

2,E ′′,C1 ∪ C ′
1,C2 ∪ C ′

2〉}

if s : t and s ′ : t ′ are variants and E ′′ = (E \ (R′
1 ∪ R′

2 ∪ C ′
1 ∪ C ′

2)) ∪
(E ′ \ (R1 ∪ R2 ∪ C1 ∪ C2))

a t .
= l specifies that t and l are variants

b ·	 denotes the encompassment relation

Fig. 2. Inference rules of MKBtt

s → t is contained in the current set of rules and the current set of constraints
for this process, respectively. The sets R2 and C2 play the analogous role with
respect to the rule t → s . The set E contains processes where s ≈ t is in the
current set of equations. In the following we make some clarifying remarks on
some of the inference rules.

Multi-completion with Termination Tools 309

– Unlike its KB counterpart, the orient rule does not orient an equation in
just one direction. Instead, for the chosen node n = 〈s : t ,R1,R2,E ,C1,C2〉
one checks for every process p occurring in the node’s equation label E if
the constraint system for p remains terminating if either s → t or t → s is
added. Formally

C [N , p] =
⋃

n∈N C [n, p] with C [n, p] =

⎧

⎪⎨

⎪⎩

{s ′ → t ′} if p ∈ C ′
1

{t ′ → s ′} if p ∈ C ′
2

∅ otherwise

denotes the set of constraints for process p, where for every p ∈ E it is
determined whether C [N , p] terminates in combination with s → t or t → s .
If only one orientation is possible, p is moved to the respective rule label in
the node. If both orientations are possible, we have to keep track of both
alternatives. Thus the process splits into two child processes p0 and p1.
Each of them is put into the corresponding rule label. Moreover, splitP (N)
replaces p by its derivatives p0 and p1 in all non-selected nodes.

– If l → r and l ′ → r ′ allow for a peak s ←l→r u →l′→r ′ t , deduce adds the
equation s ≈ t to those processes that have both rules present in their rule
set. In our implementation, only critical pairs are considered.

– Given a term pair s : t and a rewrite step t →R u, the inference rules
compose, simplify, and collapse of KBtt create an equation or rule with terms
s and u. The effect of these rules is simulated by rewrite1 and rewrite2, as
explained in [3].

It is not difficult to state and prove (partial) correctness and completeness
criteria for MKBtt by relating MKBtt to KBtt, akin to [3, Section 2.2].

3 Implementation

In our implementation of MKBtt the inference rules of Figure 2 are employed
according to the strategy described in Figure 3, closely resembling the algorithm
proposed in [3]. The mkbTT procedure maintains two node sets, No contain-
ing open and Nc containing closed nodes. The union No ∪ Nc represents all
nodes present in the completion process. Intuitively, every node in Nc has been
completely exploited with respect to the inference rules orient, delete, and gc.
Moreover, every pair of nodes in Nc has been fully exploited with respect to
the inference rules that involve two nodes: deduce, rewrite1,2 and subsume. Ini-
tially, No contains all nodes and Nc is empty. Below we shortly comment on the
functions involved in mkbTT and their implementation.

– At the start of every recursive call of mkbTT, it is checked whether some
process p was successful. This is the case if every equation was oriented and
every rule was fully considered with respect to the inferences involving two
nodes, i.e., if all of E [Nc, p], R[No, p], and E [No, p] are empty.

– If no successful process was found, choose selects an open node. The measure
applied in this selection has considerable impact on the overall performance.

310 H. Sato et al.

procedure mkbTT (No, Nc)
if success then return successful p
else if No = ∅ then fail
else n := choose(No);

No = add(delete(rewrite({n}, Nc)),No \ {n});
if n �= 〈. . . , ∅,∅, ∅, ∅, ∅〉 then

(n,No,Nc) := orient(n, No,Nc);
if n �= 〈. . . , ∅, ∅, . . . , . . . , . . .〉 then

No := add(delete(rewrite(Nc, {n})), No); Nc := gc(Nc);
No := add(delete(deduce(n,Nc)),No);
No := gc(add(rewrite(No,Nc),No)); Nc := add({n},Nc);

mkbTT(No, Nc);

Fig. 3. Procedure implementing MKBtt

In our implementation we first choose a process p for which | E [Nc∪No, p] |
+ | R[Nc∪No, p] | is minimal and then a node for this process by considering
the term size and timestamp, the latter to ensure fairness of the derivation.

– rewrite(N ,N ′) applies rewrite1,2 to nodes in N by using rules in N ′. Nodes
are considered as mutable structures. Thus the node objects in N are mod-
ified and only newly created nodes are returned.

– Immediately after rewriting, delete is called, applying the corresponding in-
ference rule to avoid creating nodes with equal terms.

– orient(n,No,Nc) applies the inference rule orient to n and, if required, splits
processes occurring in labels of No and Nc. The modified node n and the
node sets No and Nc are returned.

– gc(N) removes nodes from N where all labels are empty.
– deduce(n,N) returns nodes derived from the respective inference such that

at least one rule comes from n.
– add(N ,N ′) merges the nodes in N into N ′ such that subsume is fully ex-

ploited. Only inferences where at least one node comes from N have to be
considered.

4 Interface

The mkbTT procedure is implemented in OCaml. A binary compiled for Linux is
available from http://cl-informatik.uibk.ac.at/mkbtt. The tool is equipped
with a simple command-line interface. The termination prover is given as argu-
ment to the -tp option. Any termination prover that adheres to the format of
the International Competitions of Termination Tools1 can be used: an executable
that takes as argument the name of a file describing the termination problem in the
TPDB2 format and prints YES on the first line of the output if termination could
1 http://www.lri.fr/∼marche/termination-competition/
2 Termination Problem Data Base, http://www.lri.fr/∼marche/tpdb/

http://cl-informatik.uibk.ac.at/mkbtt
http://www.lri.fr/~marche/termination-competition/
http://www.lri.fr/~marche/tpdb/

Multi-completion with Termination Tools 311

SUCCESS
246.64 (total time)

STATISTICS
number of inference steps: 77
orient: 218.09 rewrite: 19.25
deduce: 2.89 termination: 209.64

external termination prover: ttt2fast
calls to termination prover: 1072 (yes: 933, timeouts: 0)
time limit per call: 1.0

Fig. 4. Sample output (slightly reformatted)

be established. Our tool accepts two time limits: for the overall procedure (spec-
ified with -t) and for each call to the termination prover (-T). Further options
are -ct to print the completed system and -st to obtain some useful statistics.
Figure 4 shows the output for the call

mkbtt -t 3600 -T 1 -st -tp ttt2fast WSW06_CGE2.trs

5 Experimental Results

In Table 1 we present some experimental data.3 All tests were performed on
a workstation equipped with an Intel R© PentiumTM M processor running at a
CPU rate of 2 GHz on 1 GB of system memory and with a time limit of 1 hour.
Column (1) shows the total time in seconds, column (2) the percentage spent on
termination, column (3) the number of calls to the external termination prover,
and column (4) the number of inference steps. A timeout is indicated by ∞.

In the first Slothrop and MKBtt blocks, AProVE [1] is used as termination
prover with a time limit of 5 seconds per call. (We modified the function for
termination checks in the Slothrop source4 such that the same back-end can
be used with both approaches.) In the second Slothrop and MKBtt blocks we
use a special version of TTT2

5 with a time limit of 1 second per call. This version
of TTT2, which uses dependency pairs and the recursive SCC algorithm together
with the subterm criterion and some simple strategies like counting function
symbols and linear polynomials, is considerably weaker than AProVE when it
comes to termination proving power, but also considerably faster. We anticipate
that further savings can be achieved by more tightly coupling the termination
prover and the MKBtt code.

As can be seen from line SL-cge2 in Table 1, completing the theory of two com-
municating group endomorphism (CGE2), which is termed Slothrop’s defining
achievement in [6], takes about 246 seconds using MKBtt with the fast variant

3 Further details can be obtained from http://cl-informatik.uibk.ac.at/mkbtt.
4 http://www.cs.utexas.edu/∼iwehrman/slothrop-1.1.0-src.tar.gz
5 http://colo6-c703.uibk.ac.at/ttt2

http://cl-informatik.uibk.ac.at/mkbtt
http://www.cs.utexas.edu/~iwehrman/slothrop-1.1.0-src.tar.gz
http://colo6-c703.uibk.ac.at/ttt2

312 H. Sato et al.

Table 1. Experimental Results

Slothrop MKBtt Slothrop MKBtt

TRS (1) (2) (3) (1) (2) (3) (4) (1) (2) (3) (1) (2) (3) (4)

SK90 3.01 800.37 97 326 85.30 99 51 29 71.52 67 304 4.45 79 51 29

SK90 3.03 163.51 98 86 90.97 98 53 29 9.97 65 86 6.19 63 53 29

SK90 3.04 ∞ ∞ ∞ 508.24 55 658 140

SK90 3.05 ∞ 913.77 98 225 94 78.48 32 258 46.45 43 220 92

SK90 3.06 ∞ ∞ ∞ 44.22 74 290 75

SK90 3.07 ∞ 513.27 99 242 67 ∞ 46.03 68 282 77

SK90 3.19 84.25 99 43 112.65 99 65 11 3.39 90 43 5.01 96 65 11

SK90 3.22 ∞ ∞ ∞ 617.33 33 1406 141

SK90 3.27 ∞ ∞ 73.61 95 70 118.56 65 143 37

SL-ack 12.08 99 8 13.26 99 10 5 0.24 96 8 0.33 91 10 5

SL-cge2 ∞ 2793.21 99 1220 77 665.29 36 1384 246.64 85 1072 77

SL-cge3 ∞ ∞ ∞ ∞
SL-endo 246.56 95 101 218.96 99 135 45 12.64 39 105 7.87 74 135 45

SL-ep ∞ ∞ 54.47 82 266 230.06 92 1101 26

SL-groups 46.71 97 30 96.94 99 49 35 2.10 46 30 2.28 71 49 35

of TTT2. We also managed to complete CGE3, which has not been achieved with
Slothrop, although it takes nearly 2 hours. (The completed system is slightly
different from the one described in [5], which was obtained by hand.)

References

1. Giesl, J., Schneider-Kamp, P., Thiemann, R.: AProVE 1.2: Automatic termina-
tion proofs in the dependency pair framework. In: Furbach, U., Shankar, N. (eds.)
IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 281–286. Springer, Heidelberg (2006)

2. Knuth, D.E., Bendix, P.: Simple word problems in universal algebras. In: Leech, J.
(ed.) Computational Problems in Abstract Algebra, pp. 263–297. Pergamon Press,
Oxford (1970)

3. Kurihara, M., Kondo, H.: Completion for multiple reduction orderings. Journal of
Automated Reasoning 23(1), 25–42 (1999)

4. Sattler-Klein, A.: About changing the ordering during Knuth-Bendix completion.
In: Enjalbert, P., Mayr, E.W., Wagner, K.W. (eds.) STACS 1994. LNCS, vol. 775,
pp. 175–186. Springer, Heidelberg (1994)

5. Stump, A., Löchner, B.: Knuth-Bendix completion of theories of commuting group
endomorphisms. Information Processing Letters 98(5), 195–198 (2006)

6. Wehrman, I.: Knuth-Bendix completion with modern termination checking. Mas-
ter’s thesis, Washington University in St. Louis, Technical report WUCSE-2006-45
(2006)

7. Wehrman, I., Stump, A., Westbrook, E.M.: Slothrop: Knuth-Bendix completion
with a modern termination checker. In: Pfenning, F. (ed.) RTA 2006. LNCS,
vol. 4098, pp. 287–296. Springer, Heidelberg (2006)

MTT: The Maude Termination Tool

(System Description)�

Francisco Durán1, Salvador Lucas2, and José Meseguer3

1 LCC, Universidad de Málaga, Spain
2 DSIC, Universidad Politécnica de Valencia, Spain

3 CS Dept., University of Illinois at Urbana-Champaign, USA

1 Introduction

Despite the remarkable development of the theory of termination of rewriting,
its application to high-level programming languages is far from being optimal.
This is due to the need for features such as conditional equations and rules, types
and subtypes, (possibly programmable) strategies for controlling the execution,
matching modulo axioms, and so on, that are used in many programs and tend
to place such programs outside the scope of current termination tools. The oper-
ational meaning of such features is often formalized in a proof-theoretic manner
by means of an inference system (see, e.g., [2, 3, 17]) rather than just by a rewrit-
ing relation. In particular, Generalized Rewrite Theories (GRT) [3] are a recent
generalization of rewrite theories at the heart of the most recent formulation
of Maude [4]. The corresponding termination notions can also differ from the
standard ones, see [14]. For these reasons, although there is a good number of
tools which can be used to automatically prove termination of rewriting (e.g., [9],
[13], . . .) they cannot directly prove termination of, e.g., Elan [1], Maude [4] or
CafeOBJ [8] programs. As an illustrative example, consider the Maude module
MARKS-LISTS in the MTT snapshot in Figure 1. Given a list representation of a
multiset of natural numbers it (nondeterministically) computes its submultisets
of size 2. A mark ‘#’ is introduced into a given List of numbers (of sort Nat) to
yield a marked list of sort MList (supersort of List). The matching condition
< N1 ; N2 ; N3 ; L’ > := < L > in the conditional rule ensures that ‘#’ is
introduced into lists of at least three elements. Symbol # is intended to mark a
number to be removed by using the third rule (thus producing a sublist of the
original one). The mark is propagated inside the structure of the list until it is
finally removed (together with its companion number) to produce a list of sort
List on which we can restart the process. Objects from both List and MList
can be built by using a single overloaded constructor _;_.

Modeling MARKS-LISTS as a Conditional Term Rewriting System (CTRS,
see [18]) by translating the matching condition into a rewriting condition as:

< L >→ < # ; L > if < L >→ < N1 ; N2 ; N3 ; L’ >

� Work partially supported by the EU (FEDER) and Spanish MEC under grants
TIN 2005-09405-C02-01 and TIN 2007-68093-C02-02; José Meseguer was partially
supported by ONR grant N00014-02-1-0715 and NSF Grant CCR-0234524.

A. Armando, P. Baumgartner, and G. Dowek (Eds.): IJCAR 2008, LNCS 5195, pp. 313–319, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

314 F. Durán, S. Lucas, and J. Meseguer

Fig. 1. MTT snapshot with module MARKS-LISTS

yields a nonterminating system. The application of this rule requires the reduc-
tion of (an instance of) < L > into (an instance of) < N1 ; N2 ; N3 ; L’ > to
satisfy the condition. Since the left-hand side < L > of the conditional rule itself
can also be considered in any attempt to satisfy the conditional part of the rule,
we run into a nonterminating computation, see [14] for a deeper discussion of
this issue.

However, viewed as a rewrite theory R = (Σ,E,R) and executed as a Maude
program, MARKS-LISTS is terminating! The key points here are the sort informa-
tion and that solving the matching condition involves no rewriting step. Matching
conditions are evaluated in Maude with respect to the set E of equations which
is different from the rules R in R. A matching-modulo-E semantics is given for
solving matching conditions. In our MARKS-LISTS example, E is empty and the
matching condition becomes syntactic pattern matching. No reduction is allowed!
Indeed, only when the two kinds of E- and R-computations which are implicit in
the specification are (separately!) taken into account, are we able to prove this
program terminating. Other features like sort information (including both the
existence of a sort hierarchy and also the association of sorts to function sym-
bols in module MARKS-LISTS), memberships [2, 17], context-sensitivitiy [11, 12],
rewriting modulo A-/AC-axioms, etc., can play a crucial role in the termination
behavior and hence in any attempt to provide an automatic proof of it, see, e.g.,
[5, 6, 15].

MTT: The Maude Termination Tool 315

This paper emphasizes the techniques needed to go from standard termination
methods and tools to termination tools for programs in rule-based languages with
expressive features. Specifically, we focus on the implementation of MTT, a new
tool for proving termination of Maude programs like MARKS-LISTS; see:

http://www.lcc.uma.es/∼duran/MTT

Due to lack of space, we can only give a high-level overview of the techniques
involved. Detailed accounts of all the transformations used can be found in [5,
6, 7, 14, 15].

2 Proving Termination by Transformation

In [5, 6, 15], different theory transformations associating a CS-TRS, i.e., a TRS
(Term Rewriting System) together with a replacement map μ [11, 12], to a
membership rewrite theory [2, 17] were presented. In [7] we have generalized
this methodology to rewriting logic theories R = (Σ,E,R), as the MARKS-LISTS
one[3]. As discussed above, from the point of view of termination, the main prob-
lem with such theories is that there are two different rewrite relations (with E
and with R), which cannot always be just joined, because equational conditions
(for instance, matching conditions) are solved using just E.

In MTT we take advantage of all previous theoretical developments and use
sequences of transformations which are applied in a kind of pipeline to finally
obtain a CS-TRS whose termination can be proved by using existing tools such

http://www.lcc.uma.es/~duran/MTT

316 F. Durán, S. Lucas, and J. Meseguer

as AProVE [9] or mu-term [13]. In this section, we briefly discuss such theory
transformations whose hierarchy is depicted in the above diagram. All the time
non-termination is preserved under the transformations in such a way that a
proof of termination of a system which is downwards the diagram implies termi-
nation of the system which originated it upwards. Each arc is labelled with the
reference where the corresponding transformation is described. Before describing
these transformations, we recall the notion of rewrite theory.

2.1 Rewrite Theories

A rewriting logic specification is called a rewrite theory (RWT) [3]. It is a tuple
R = (Σ,E ∪Ax, μ,R, φ), where:

– (Σ,E ∪Ax) is a membership equational (MEL) theory: Σ is an order-sorted
signature [10], Ax is a set of (equational) axioms, and E is a set of sentences

t = t′ if A1, . . . , An or t : s if A1, . . . , An

where the Ai are atomic equations or memberships t : s establishing that
term t has sort s [2, 17].

– μ is a mapping specifying for each f ∈ Σ the argument positions under
which subterms can be simplified with the equations in E [11, 12].

– R is a set of labeled conditional rewrite rules of the general form

r : (∀X) q −→ q′ if (
∧

i

ui = u′i) ∧ (
∧

j

vj : sj) ∧ (
∧

l

wl −→ w′
l).

– φ : Σ −→ N is a mapping assigning to each function symbol f ∈ Σ (with,
say, n arguments) a set φ(f) ⊆ {1, . . . , n} of frozen positions under which it
is forbidden to perform any rewrites with rules in R.

Intuitively, R specifies a concurrent system, whose states are elements of the
initial algebra TΣ/E∪Ax and whose concurrent transitions are specified by the
rules R, subject to the frozenness constraints imposed by φ. Therefore, mathe-
matically each state is modeled as an E∪Ax-equivalence class [t]E∪Ax of ground
terms, and rewriting happens modulo E ∪Ax, that is, R rewrites not just terms
t but rather E ∪Ax-equivalence classes [t]E∪Ax representing states.

2.2 Proving Termination of Rewrite Theories with MTT

According to the diagram above, the most general kind of systems we can deal
with are (sugared) rewrite theories (SRWTs). This means that (following the
usual practice), we consider rewrite theories as presented by keeping the intu-
itive order-sorted subtyping features intact as helpful syntactic sugar, and adding
membership axioms only when they are strictly needed (see [15, 7] for a more
detailed discussion). This order-sorted way allows us to take advantage of ex-
isting techniques for proving termination of order-sorted context-sensitive term

MTT: The Maude Termination Tool 317

rewriting systems (OS-CS-TRSs) [15]. On the order hand, we can still make use
of the (older) MEL-way where we start from a (context-sensitive) membership
equational specification and then apply the methods developed in [5, 6] to obtain
a proof of termination. Thus, given an SRWT, we can either [7]:

1. translate it into an order-sorted rewrite theory (OS-RWT) where member-
ships have been handled by using membership predicates which express dif-
ferent membership conditions defined by (possibly conditional) rules, or

2. translate it into a sugared CS-CTRS with conditional rewrite and member-
ship rules, i.e., an SCS-MCTRS.

Then, we can further transform a SCS-MCTRS into either a conditional context-
sensitive TRS (CS-CTRS) or a conditional order-sorted CS-TRS (OS-CS-CTRS).
In the first case, the transformation is accomplished by introducing membership
predicate symbols (and rules) [6]. In the second case, the transformation tries to
keep the sort structure of the SCS-MCTRS untouched and membership predicate
symbols are introduced only if necessary [15]. After treating membership informa-
tion, the next step is dealing with conditional rules. The classical transformation
from CTRSs into TRSs (see, e.g., [18]) has been generalized to deal with context-
sensitivity (so that a CS-CTRS is transformed into a CS-TRS) [6] and with sorts
(then, an OS-CS-CTRS is transformed into an OS-CS-TRS) [15]. Finally, we can
transform an OS-CS-TRS into a CS-TRS by using the transformation discussed in
[15], which is an straightforward adaptation of Ölveczky and Lysne’s transforma-
tion [19]. Nowadays, proofs of termination of CS-TRSs can be achieved by using
AProVE [9] or mu-term [13]. However, since termination of a TRSR implies that
of the CS-TRS (R, μ) for any replacement map μ, other tools for proving termi-
nation of rewriting could be used as well.

3 Implementation of the Tool

Our current tool MTT 1.51 takes Maude programs as inputs and tries to prove
them terminating by using existing termination tools as back-ends.

MTT 1.5 can use as back-end tool any termination tool supporting the TPDB
syntax and following the rules for the Termination Competition [16].2 This allows
us to interact with the different tools in a uniform way, and not restricting
ourselves to a specific set of tools. Thus, tools that have participated in the
competition, like AProVE, mu-term, TTT, etc., or that accommodate to the
syntax and form of interaction, can be used as back-ends of MTT. In the MTT
environment, Maude specifications can be proved terminating by using (any of
these) distinct formal tools, allowing the user to choose the most appropriate one
1 Previous versions of MTT were able to handle only membership equational programs

in the Maude syntax. Only two of the currently supported transformations were
available, and it was able to interact, in an ad hoc way, only with AProVE, mu-term,
and CiME.

2 The Termination Competition rules and the TPDB syntax can be found at
http://www.lri.fr/∼marche/termination-competition/

http://www.lri.fr/~marche/termination-competition/

318 F. Durán, S. Lucas, and J. Meseguer

for each particular case, a combination of them, when a particular tool cannot
find a proof.

Two main components can be distinguished: (1) a Maude specification that
implements the theory transformations described in the diagram above, and
(2) a Java application that connects Maude, and the back-end tools, and pro-
vides a graphical user interface. The Java application is in charge of sending
the Maude specification introduced by the user to Maude to perform trans-
formations; depending on the selections, one transformation or another will be
accomplished. The resulting TRS may be proved terminating by using any of the
available back-end tools. Notice that such resulting TRS may have associative
or associative-commutative operators, context sensitive information, etc., which
are expected to be appropriately handled by the selected back-end tool.

Alternatively, the MTT expert can be used to try an appropriate sequence of
them automatically. The current expert just tries different paths in the trans-
formations graphs sequentially.

The interaction between MTT and the back-end tools can be done in two
ways:

– If the external tool is installed in the same machine, they can interact via
pipes. This is the more efficient form of interaction available.

– Interaction based on web services is also possible. This is the most flexible
of the possibilities offered by MTT (no local configuration is required).

MTT has a graphical user interface where one can introduce the specifications
to be checked. MTT gives the output of the back-end tool used in the check. All
intermediate transformed specifications can also be obtained. Some benchmarks
are here: http://www.lcc.uma.es/∼duran/MTT/mtt15/Samples.

Acknowledgements. Special thanks are due to Claude Marché and Xavier Urbain
for their collaboration in the development of the first versions of MTT.

References

[1] Borovanský, P., Kirchner, C., Kirchner, H., Moreau, P.-E.: ELAN from a rewriting
logic point of view. Theoretical Computer Science 285, 155–185 (2002)

[2] Bouhoula, A., Jouannaud, J.-P., Meseguer, J.: Specification and proof in mem-
bership equational logic. Theoretical Computer Science 236, 35–132 (2000)

[3] Bruni, R., Meseguer, J.: Semantic foundations for generalized rewrite theories.
Theoretical Computer Science 351(1), 386–414 (2006)

[4] Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350.
Springer, Heidelberg (2007)

[5] Durán, F., Lucas, S., Marché, C., Meseguer, J., Urbain, X.: Proving Termination of
Membership Equational Programs. In: Sestoft, P., Heintze, N. (eds.) Proc. of ACM
SIGPLAN 2004 Symposium on Partial Evaluation and Program Manipulation,
PEPM 2004, pp. 147–158. ACM Press, New York (2004)

http://www.lcc.uma.es/~duran/MTT/mtt15/Samples

MTT: The Maude Termination Tool 319

[6] Durán, F., Lucas, S., Marché, C., Meseguer, J., Urbain, X.: Proving Operational
Termination of Membership Equational Programs. Higher-Order and Symbolic
Computation (published online) (to appear, April 2008)

[7] Durán, F., Lucas, S., Meseguer, J.: Operational Termination in Rewriting Logic.
Technical Report 2008 (2008), http://www.dsic.upv.es/∼slucas/tr08.pdf

[8] Futatsugi, K., Diaconescu, R.: CafeOBJ Report. AMAST Series. World Scientific
(1998)

[9] Giesl, J., Schneider-Kamp, P., Thiemann, R.: AProVE1.2. In: Furbach, U.,
Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 281–286. Springer,
Heidelberg (2006), http://www-i2.informatik.rwth-aachen.de/AProVE

[10] Goguen, J., Meseguer, J.: Order-sorted algebra I: Equational deduction for multi-
ple inheritance, overloading, exceptions and partial operations. Theoretical Com-
puter Science 105, 217–273 (1992)

[11] Lucas, S.: Context-sensitive computations in functional and functional logic pro-
grams. Journal of Functional and Logic Programming 1998(1), 1–61 (1998)

[12] Lucas, S.: Context-sensitive rewriting strategies. Information and Computa-
tion 178(1), 294–343 (2002)

[13] Lucas, S.: MU-TERM: A Tool for Proving Termination of Context-Sensitive
Rewriting. In: van Oostrom, V. (ed.) RTA 2004. LNCS, vol. 3091, pp. 200–209.
Springer, Heidelberg (2004),
http://www.dsic.upv.es/∼slucas/csr/termination/muterm

[14] Lucas, S., Marché, C., Meseguer, J.: Operational termination of conditional term
rewriting systems. Information Processing Letters 95(4), 446–453 (2005)

[15] Lucas, S., Meseguer, J.: Operational Termination of Membership Equational Pro-
grams: the Order-Sorted Way. In: Rosu, G. (ed.) Proc. of the 7th International
Workshop on Rewriting Logic and its Applications, WRLA 2008. Electronic Notes
in Theoretical Computer Science (to appear, 2008)

[16] Marché, C., Zantema, H.: The termination competition. In: Baader, F. (ed.) RTA
2007. LNCS, vol. 4533, pp. 303–313. Springer, Heidelberg (2007)

[17] Meseguer, J.: Membership algebra as a logical framework for equational speci-
fication. In: Parisi-Presicce, F. (ed.) WADT 1997. LNCS, vol. 1376, pp. 18–61.
Springer, Heidelberg (1998)

[18] Ohlebusch, E.: Advanced Topics in Term Rewriting. Springer, Heidelberg (2002)
[19] Ölveczky, P.C., Lysne, O.: Order-Sorted Termination: The Unsorted Way. In:

Hanus, M., Rodŕıguez-Artalejo, M. (eds.) ALP 1996. LNCS, vol. 1139, pp. 92–
106. Springer, Heidelberg (1996)

http://www.dsic.upv.es/~slucas/tr08.pdf
http://www-i2.informatik.rwth-aachen.de/AProVE
http://www.dsic.upv.es/~slucas/csr/termination/muterm

Celf – A Logical Framework for Deductive and

Concurrent Systems (System Description)

Anders Schack-Nielsen and Carsten Schürmann

IT University of Copenhagen, Denmark

Abstract. CLF (Concurrent LF) [CPWW02a] is a logical framework
for specifying and implementing deductive and concurrent systems from
areas, such as programming language theory, security protocol analysis,
process algebras, and logics. Celf is an implementation of the CLF type
theory that extends the LF type theory by linear types to support repre-
sentation of state and a monad to support representation of concurrency.
It relies on the judgments-as-types methodology for specification and the
interpretation of CLF signatures as concurrent logic programs [LPPW05]
for experimentation. Celf is written in Standard ML and compiles with
MLton, MLKit, and SML/NJ. The source code and a collection of ex-
amples are available from http://www.twelf.org/∼celf.

1 Introduction

The Celf system is a tool for experimenting with deductive and concurrent sys-
tems prevalent in programming language theory, security protocol analysis, pro-
cess algebras, and logics. It supports the specification of object language syntax
and semantics through a combination of deductive methods and resource-aware
concurrent multiset transition systems. Furthermore it supports the experimen-
tation with those specifications through concurrent logic programming based on
multiset rewriting with constraints.

Many case studies have been conducted in Celf including all of the motivating
examples that were described in the original CLF technical report [CPWW02b].
In particular, Celf has been successfully employed as a tool for experimenting
with concurrent ML, in particular its type system and a destination passing
style operational semantics. Our Celf encoding provides Haskell-style suspen-
sions with memoizations, futures, mutable references, and concurrency omitting
negative acknowledgments. Furthermore, we used Celf to experiment with the
design of security protocols, especially the widely studied and well-understood
Needham-Schroeder authentication protocol, which will be our running example
(see Sec. 2). The ease with which we applied Celf to this example sheds some
light on the range of other protocols that could be studied using Celf. Other
examples include various encodings of the π-calculus, petri-nets, etc.

CLF is a conservative extension over LF [HHP93], which implies that Celf’s
functionality is compatible with that of Twelf [PS99]. With a few syntactic mod-
ifications Twelf signatures can be read and type checked, and queries can be
� This research has been funded in part by NSF grant CCR-0325808.

A. Armando, P. Baumgartner, and G. Dowek (Eds.): IJCAR 2008, LNCS 5195, pp. 320–326, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://www.twelf.org/~celf

Celf – A Logical Framework for Deductive and Concurrent Systems 321

executed. Celf does not yet provide any of the meta-theoretic capabilities that
sets Twelf apart from its predecessor Elf, such as mode checking, termination
checking, coverage checking, and the like, which we leave to future work. In this
presentation we concentrate on the two main features of Celf.

Specification. CLF was designed with the objective in mind to simplify the spe-
cification of object languages by internalizing common concepts used for speci-
fication and make them available to the user. Celf supports dependent types for
the encoding of judgments as types, e.g. operational relations between terms and
values, open and closed terms, derivability, and logical truth. It also supports
the method of higher-order abstract syntax, which relieves the user of having to
specify substitutions and substitution application. In CLF, every term is equiv-
alent to a unique inductively defined β-normal η-long form modulo α-renaming
and let-floating providing an induction principle to reason about the adequacy
of the encoding. In addition, CLF provides linear types and concurrency en-
capsulating monadic types in support of the specification of resource aware and
concurrent systems. Examples include operational semantics for languages with
effects, transition systems, and protocol stacks.

Experimentation. Celf provides a logic programming interpreter that implements
a proof search algorithm for derivations in the CLF type theory in analogy to how
Elf implements a logical programming interpreter based on uniform proof search.
Celf’s interpreter is inspired (with few modifications) by Lollimon [LPPW05], an
extension of Lolli, the linear sibling of λ-Prolog. The interpreter implements
backward-chaining searchwithin the intuitionistic and linear fragment of CLF and
switches to forward-chaining multiset rewriting search upon entering the monad.
Celf programs may jump in and out of the concurrency monad and can therefore
take advantage of both modes of operation. In addition, the operational semantics
of Celf is conservative over the operational semantics of Elf, which means that any
Twelf query can also be executed in Celf leading to the same result.

In the remainder of the paper, we illustrate the features of Celf. In Section 2,
we describe the Needham-Schroeder protocol followed by a brief overview in Sec-
tion 3 of the CLF type theory and the protocol specification in Celf [CPWW02b].
Finally, we comment on the implementation and conclude in Section 4.

2 Example

As a small running example, we consider the Needham-Schroeder protocol [NS78].
The protocol serves the authentication of two principals, A and B, and is charac-
terized by the following simplified message exchange

A → B : {Na, A}Kb
(1)

B → A : {Na, Nb}Ka (2)
A → B : {Nb}Kb

(3)

where Ka and Kb are the public keys of A and B, respectively. We write {·}K for
the encryption of a message by key K. Two messages may be concatenated using

322 A. Schack-Nielsen and C. Schürmann

Kinds

K ::= type | Pi x : A. K Kinds

Types

A, B ::= A -o B | Pi x : A. B | A & B | 〈�〉 | {S} | P Asynchronous types

P ::= a | P N Atomic type constructors

S ::= S1 * S2 | 1 | Exists x : A. S | A Synchronous types

Objects

N ::= \� x. N | \x. N | 〈N1, N2〉 | 〈〉 | {E} |
c | x | N �N | N N | N #1 | N #2 Objects

E ::= let {p} = N in E | M Expressions

M ::= M1 * M2 | 1 | [N, M] | N Monadic objects

p ::= p1 * p2 | 1 | [x, p] | x Patterns

Signatures

Σ ::= · | a : K. Σ | c : A. Σ Signatures

Fig. 1. Celf syntax

“,”. Na and Nb are nonces, randomly generated messages, which are created in
line (1) and (2) and compared for identity in line (2) and (3), respectively. We
think of A as the initiator of the message exchange and B as the responder.
From the point of view of the initiator, two actions are necessary to participate
in the protocol.

1. Create a new nonce Na. Send message {Na, A}Kb
(1). Remember B, kb, and

Na.
2. Recall B, kb, and Na. Receive message {N ′

a, Nb}Ka (2). Check that Na is
identical to N ′

a. Send message {Nb}Kb
(3).

Correspondingly, the responder needs to execute two actions.

1. Receive message {Na, A}Kb
(1). Create a new nonce Nb. Send message

{Na, Nb}Ka (2). Remember A and Nb.
2. Recall A and Nb. Receive {N ′

b}Kb
(3). Check that Nb is identical to N ′

b.

A successful run of the protocol initializes initiator and responder and causes
then the initiator to send the first message, the responder to reply, and so forth.

3 Celf

The basis of the Celf system is the CLF type theory [CPWW02a]. The CLF type
theory is a dependently typed λ-calculus extended by linear functions, additive

Celf – A Logical Framework for Deductive and Concurrent Systems 323

and multiplicative pairs, additive and multiplicative units, dependent pairs, and
concurrent objects. The syntax of Celf is shown in Fig. 1 and explained below:

Lolli, A -o B, is linear implication with linear lambda, \̂, as introduction
form and linear application, ̂, as elimination form.

Pi, Pi x : A. B, is dependent intuitionistic implication, which can also be
written A -> B in the non-dependent case. It has lambda, \, and application
(juxtaposition) as introduction and elimination forms.

And, A & B, is additive conjunction with 〈·, ·〉 as introduction form and the
projections #i as elimination forms.

Tensor or multiplicative conjunction, A * B, and Existential, Exists x :
A. S, are only available inside the monad and can only be deconstructed by the
pattern in a let-construct. Their introduction forms are tensor, *, and dependent
pair, [·, ·].

Monad, {S}, is the concurrency monad and represents concurrent computa-
tion traces (sequences of let-bindings) with a result described by S.

One, 1, is unit for the multiplicative conjunction, and Top, 〈�〉, is unit for the
additive conjunction. Their introduction forms are 1 and 〈〉 respectively. Com-
bining one with existential quantification allows us to encode the intuitionistic
embedding known from linear logic as: !A = Exists x : A. 1. Another common
use of one is in the type {1} which is the type of concurrent traces in which
all linear resources have been consumed. In contrast, {〈�〉} is the type of any
concurrent trace.

CLF has important meta-theoretical properties including decidability of type-
checking and the existence of canonical forms. The notion of definitional equality
on CLF terms, types, and kinds is induced by the usual β- and η-rules modulo
α-renaming along with one additional rule: Inside the concurrency monad, a
sequence of let-bindings is allowed to permute as long as the permutation re-
spects the dependencies among bound variables (i.e. permutation is disallowed
if it causes a bound variable to escape its scope). This equivalence is the founda-
tion for specifying concurrency in object languages: If a sequence of let-bindings
represents a concurrent trace of an operational semantics or a protocol commu-
nication exchange then CLF will only distinguish between those traces that can
lead to observably different results. In other words if two independent events
occur within one trace then CLF is completely unaware about the order of their
occurrence.

We return to our running example the Needham-Schroeder protocol described
in the previous section and illustrate how to specify it in Celf. We follow hereby
closely Section 6 of Cervesato et al. [CPWW02b] and refer the interested reader
to this technical report for an in depth discussion on how one can derive this
encoding and how to reason about its adequacy.

Figure 2 depicts the Celf code specifying the syntactic categories of principals,
nonces, public, and private keys in the left column. The right column gives the
Celf encoding of messages, where the first two constructors embed principals
and nonces into messages, + concatenates two messages, and pEnc encrypts a
message with the public key of principal A. Celf’s type reconstruction algorithm

324 A. Schack-Nielsen and C. Schürmann

principal : type.
nonce : type.
pubK : principal -> type.
privK : pubK A -> type.

msg : type.
p2m : principal -> msg.
n2m : nonce -> msg.
+ : msg -> msg -> msg.
pEnc : pubK A -> msg -> msg.

Fig. 2. Specification of syntactic categories in Celf

net : msg -> type.
rspArg : type.
rsp : rspArg -> type.

init : principal -> type.
resp : principal -> type.

Fig. 3. Specification of the network, memory, identity in Celf

infers the types of all undeclared uppercase arguments (here A), and builds an
implicit Pi-closure.

The left column of Fig. 3 defines net which represents messages being sent
on the network. Recall from Section 2 that a principal may need to remember
the name of the principal it is trying to authenticate with or specific nonces.
In the encoding, the type rspArg is used for expressing what the principals can
remember, and the type rsp for what the principals currently are remembering.
In a slight deviation from [CPWW02b] we use two type families init and resp
to assign roles to principals. The corresponding Celf declarations are depicted
in the right column of Fig. 3.

What follows below are the two Celf declarations that define initiator and
responder of a Needham-Schroeder protocol interaction. The initiator is guarded
by init A and the responder by resp B.

nspkInit : init A -o { Exists L : Pi B : principal.
pubK B -> nonce -> rspArg.

Pi B : principal. Pi kB : pubK B.
{ Exists nA : nonce. net (pEnc kB (+ (n2m nA) (p2m A)))

* rsp (L B kB nA) }
* Pi B : principal. Pi kB : pubK B. Pi kA : pubK A.
Pi kA’ : privK kA. Pi nA : nonce. Pi nB : nonce.

net (pEnc kA (+ (n2m nA) (n2m nB)))
-o rsp (L B kB nA)
-o { net (pEnc kB (n2m nB)) }}.

nspkResp : resp B -o { Exists L : principal -> nonce -> rspArg.
Pi kB : pubK B. Pi kB’ : privK kB.
Pi A : principal. Pi kA : pubK A. Pi nA : nonce.

net (pEnc kB (+ (n2m nA) (p2m A)))
-o { Exists nB : nonce. net (pEnc kA (+ (n2m nA) (n2m nB)))

* rsp (L A nB) }
* Pi A : principal. Pi kB : pubK B. Pi kB’ : privK kB.
Pi nB : nonce.

net (pEnc kB (n2m nB)) -o rsp (L A nB) -o { 1 }}.

Celf – A Logical Framework for Deductive and Concurrent Systems 325

Note that both principals introduce a new parameter L to remember the
other’s identity and their nonce. In addition, the initiator stores the responder’s
public key to be able to encrypt the second message. The respective nonces are
modeled via higher-order abstract syntax, and dynamically created as new and
fresh parameters using the Exists. Both, messages and memory, are modeled
using linear assumptions. Each principal introduces two rules, separated by the
top level tensors *, which correspond literally to the ones outlined in Section 2.
Protocol traces are represented as monadic objects as evidenced by the fact that
the declarations end in monadic type { · }.

To experiment with the design in Celf, we use its logic programming engine.
For example, in order to find a valid trace of a communication between principal
a, with public key ka and private key ka’, and principal b with public key kb
and private key kb’ we query if it is possible to derive the empty linear context
{1} from assumptions init a and resp b. We obtain as answer to the query
#query init a -o resp b -o {1} the term below, which includes six lets. The
first two initiate initiator and responder, and the remaining four correspond to
the message exchange of the authentication protocol.
Solution: \^ X1. \^ X2. {

let {[L: Pi B: principal. pubK B -> nonce -> rspArg,
X3: Pi B: principal. Pi kB: pubK B.

{Exists nA: nonce. net (pEnc kB (+ (n2m nA) (p2m a))) * rsp (L B kB nA)}
* X4: Pi B: principal. Pi kB: pubK B. Pi kA: pubK a. privK kA -> Pi nA: nonce.

Pi nB: nonce. net (pEnc kA (+ (n2m nA) (n2m nB)))
-o rsp (L B kB nA) -o {net (pEnc kB (n2m nB))}]} = nspkInit ^ X1 in

let {[L’: principal -> nonce -> rspArg,
X5: Pi kB: pubK b. privK kB -> Pi A: principal. Pi kA: pubK A. Pi nA: nonce.

net (pEnc kB (+ (n2m nA) (p2m A)))
-o {Exists nB: nonce. net (pEnc kA (+ (n2m nA) (n2m nB))) * rsp (L’ A nB)}

* X6: Pi A: principal. Pi kB: pubK b. privK kB -> Pi nB: nonce.
net (pEnc kB (n2m nB)) -o rsp (L’ A nB) -o {1}]} = nspkResp ^ X2 in

let {[nA: nonce, X7: net (pEnc kb (+ (n2m nA) (p2m a))) * X8: rsp (L b kb nA)]}
= X3 b kb in

let {[nB: nonce,
X9: net (pEnc ka (+ (n2m nA) (n2m nB)))

* X10: rsp (L’ a nB)]} = X5 kb kb’ a ka nA ^ X7 in
let {X11: net (pEnc kb (n2m nB))} = X4 b kb ka ka’ nA nB ^ X9 ^ X8 in
let {1} = X6 a kb kb’ nB ^ X11 ^ X10 in 1}

4 Conclusion

Celf is a system that implements the concurrent logical framework CLF. The
implementation includes a type checking, type reconstruction, and proof search
algorithm. The implementation employs explicit substitutions, logic variables,
and spines and maintains canonical forms through hereditary substitutions.

Celf’s type reconstruction algorithm permits programmers to omit inferable
top-level Pi-quantifiers in declarations of constants. The implicitly bound vari-
ables are identified by uppercase names that occur free in declarations. Any use
of constants with implicit Pis are then implicitly applied to the correct number
of arguments, which are subsequently inferred by Celf via unification.

Free variables in queries play a slightly different role. Uppercase variables
occurring free in a query will not be Pi-quantified but will instead be considered
logic variables and their instantiations are printed for each solution.

326 A. Schack-Nielsen and C. Schürmann

The operational semantics of Celf (i.e. the proof search algorithm) works in
two modes: when searching for an object of an asynchronous type the algorithm
proceeds by a backwards, goal-directed search (resembling pure Prolog), but
when searching for an object of a synchronous type the algorithm shifts to an
undirected, non-deterministic, and forward-chaining execution, using committed
choice instead of backtracking. The latter essentially corresponds to a concurrent
multiset rewriting engine.

Both the type reconstruction algorithm and the proof search algorithm rely on
logic variables and unification. The implemented unification algorithm works on
general CLF terms and handles all relevant aspects: general higher-order terms,
linearity, and automatic reordering of bindings inside the monad. For unification
problems inside the pattern fragment, which do not have multiple logic variables
of monadic type bound by the same sequence of lets, the algorithm will always
be able to find a most general unifier in case a unifier exists. Any unification
problem that falls outside this fragment will be postponed as a constraint, and
if it is not resolved by later unifications, it is reported as a leftover constraint.
Our empirical experience has shown that this condition characterizes a suffi-
ciently large decidable fragment of higher-order concurrent unification for the
application of Celf as a specification and experimentation environment.

References

[CPWW02a] Cervesato, I., Pfenning, F., Walker, D., Watkins, K.: A concurrent log-
ical framework I: Judgments and properties. Technical Report CMU-
CS-02-101, Carnegie Mellon University. Department of Computer Sci-
ence (2002)

[CPWW02b] Cervesato, I., Pfenning, F., Walker, D., Watkins, K.: A concurrent log-
ical framework II: Examples and applications. Technical Report CMU-
CS-02-102, Carnegie Mellon University. Department of Computer Sci-
ence (2002)

[HHP93] Harper, R., Honsell, F., Plotkin, G.: A framework for defining logics.
Journal of the Association for Computing Machinery 40(1), 143–184
(1993)

[LPPW05] López, P., Pfenning, F., Polakow, J., Watkins, K.: Monadic concurrent
linear logic programming. In: Barahona, P., Felty, A.P. (eds.) Proceed-
ings of the 7th International ACM SIGPLAN Conference on Principles
and Practice of Declarative Programming, Lisbon, Portugal, pp. 35–
46. ACM Press, New York (2005)

[NS78] Needham, R.M., Schroeder, M.D.: Using encryption for authentication
in large networks of computers. Communications of the ACM 21(12),
993–999 (1978)

[PS99] Pfenning, F., Schürmann, C.: System description: Twelf — a meta-
logical framework for deductive systems. In: Ganzinger, H. (ed.) CADE
1999. LNCS (LNAI), vol. 1632, pp. 202–206. Springer, Heidelberg
(1999)

Canonicity!

Nachum Dershowitz1,2,

1 School of Computer Science, Tel Aviv University, Ramat Aviv, Israel 69978
2 Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA

nachum.dershowitz@cs.tau.ac.il

Abstract. We describe an abstract proof-theoretic framework based on
normal-form proofs, definedusing well-founded orderings on proof objects.
This leads to robust notions of canonical presentation and redundancy.
Fairness of deductive mechanisms – in this general framework – leads to
completeness or saturation. The method has so far been applied to the
equational, Horn-clause, and deduction-modulo cases.

1 Background

In [18], Knuth invented a completion procedure that infers new equations by
superposing existing equations with one another (using unification) and also uses
equations to simplify one another (by rewriting). When completion terminates
successfully, the result is a decision procedure for validity in the theory (variety)
of the original equations. In [19], Lankford inaugurated a very fruitful research
direction in which superposition is incorporated in a general-purpose theorem-
prover for first-order logic.

Eventually, it was noticed [12] that the result of completion is unique – mod-
ulo the ordering used for simplification (and for orienting derived equations). In
this sense, we can think of the rewrite system produced by completion as being
a canonical presentation of the given theory, one that provides “cheap” rewrite
proofs for all identities of the theory. Similarly, Buchberger’s algorithm [7] pro-
duces a unique Gröbner basis, regardless of nondeterministic choices made along
the way.

Huet [17] introduced the notion of fairness of completion and showed how fair
completion may be viewed as an equational theorem prover. Later, in [1], it was
shown how to generalize and formalize equational inference using orderings on
proofs, and under what conditions the (finite or infinite) outcome is complete,
in the sense of providing rewrite proofs of all theorems.

Recently, in a series of papers [13,14,15,3], we proposed quite abstract notions
of canonicity and of completion, which can be applied to all manners of inference
procedures. Promoting the further study of canonical axiomatizations and their
derivation by inference is our goal.

� Research supported in part by the Israel Science Foundation (grant no. 250/05).

A. Armando, P. Baumgartner, and G. Dowek (Eds.): IJCAR 2008, LNCS 5195, pp. 327–331, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

mailto:nachum.dershowitz@cs.tau.ac.il?subject=Canonicity

328 N. Dershowitz

2 Theory of Canonicity

In our abstract view of inference, proofs have little structure, but are endowed
with two well-founded orderings: a proof ordering (under which only proofs with
the same conclusion are comparable); and a subproof ordering, which is com-
patible with the proof ordering, in the sense that whenever there is a better
subproof, there is also a better proof (using the better subproof). By better,
we mean smaller in the proof ordering; by good, we will mean minimal in the
ordering.

As usual, every proof has a formula as its conclusion and a set of formulæ
as its premises. Theories, in the sense of deductively-closed sets of formulæ,
are presumed to obey the standard properties of Tarskian consequence relations
(monotonicity, reflexivity, and transitivity).

An inference procedure uses some strategy in applying a system of (sound)
inference rules, usually given in the form

A
c
,

where c may be any theorem of A (that is, the conclusion of any proof with
premises from A). We call such rules expansions. Expansion rules add lemmata
to the growing set of allowable premises.

Many inference procedures also apply deletion rules of the form

A, c

A

– provided that every theorem provable from premises A ∪ {c} is also provable
from A alone (or else completeness would be sacrificed). We are using a double
inference line here to indicate that formula c is deleted, replacing the set of
formulæ above the lines by those below.

In canonical inference, deletion is restricted to only allow c to be removed if
for every proof with c as a premise, there is a better proof without c. We call
such restricted deletion steps contractions. The point is that such formulæ are
truly redundant (in the sense of [6]). Once redundant, they will stay redundant;
thus, they can be safely removed without endangering completeness of any fairly
implemented inference engine.

The following are the basic notions of canonical inference:

1. The theory of a presentation (set of formulæ) is the set of all conclusions of
proofs using premises from the presentation.

2. A proof is trivial if its conclusion is its lone premise.
3. A proof is in normal form if it is a good proof when considering the whole

theory as potential premises.
4. A presentation is complete if it affords at least one normal-form proof for

each theorem.
5. A presentation is saturated if it supports all normal-form proofs for all

theorems.

Canonicity! 329

6. A formula is redundant in a presentation, if adding it (or removing it) does
not affect normal-form proofs.

7. A presentation is contracted (or reduced) if it contains no redundant formulæ.
8. A presentation is perfect if it is both complete and contracted.
9. A presentation is canonical if it is both saturated and contracted.

10. A critical proof is a good non-normal-form proof, all of whose (proper) sub-
proofs are in normal form.

11. A formula persists in a run of an inference procedure if from some point on
it is never deleted.

12. The result (in the limit) of a run of an inference procedure is its persistent
formulæ.

13. An inference procedure is fair if all critical proofs with persistent premises
have better proofs at some point.

14. An inference procedure is uniformly fair if every trivial normal-form proof
is eventually generated.

The following consequences follow from these definitions (see [15,3]):

1. A presentation is contracted if it consists only of premises of normal-form
proofs.

2. The smallest saturated presentation is canonical.
3. A presentation is canonical if it consists of all non-redundant formulæ of its

theory.
4. A presentation is canonical if it consists of the conclusions (or premises, if

you will) of all trivial normal-form proofs.
5. The result of a fair inference procedure is complete.
6. The result of a uniformly fair inference procedure is saturated.
7. The result of an inference procedure is contracted if no redundant formula

is allowed to persist.

3 Applications of Canonicity

The abstract approach to inference outlined above has to date been applied to
the following situations:

– Ground equations (à la [19,16]) in [13].
– Ground resolution in [15].
– Equational theories (à la [18,17,1]) in [8,9].
– Horn theories (à la [2]) in [5,4].
– Natural deduction in [8].
– Deduction modulo rewriting in [10,11].

Acknowledgements

In this endeavor, I have had the pleasure and privilege of collaborating with
Claude Kirchner, Maria Paola Bonacina, and Guillaume Burel.

330 N. Dershowitz

References

1. Bachmair, L., Dershowitz, N.: Equational inference, canonical proofs, and proof
orderings. Journal of the ACM 41, 236–276 (1994),
http://www.cs.tau.ac.il/∼nachum/papers/jacm-report.pdf [viewed May 22,
2008]

2. Bertet, K., Nebut, M.: Efficient algorithms on the Moore family associated to an
implicational system. Discrete Mathematics and Theoretical Computer Science 6,
315–338 (2004)

3. Bonacina, M.P., Dershowitz, N.: Abstract canonical inference. ACM Transactions
on Computational Logic 8, 180–208 (2007),
http://tocl.acm.org/accepted/240bonacina.pdf [viewed May 22, 2008]

4. Bonacina, M.P., Dershowitz, N.: Canonical ground Horn theories. Research Report
49/2007, Dipartimento di Informatica, Università degli Studi di Verona (2007),
http://profs.sci.univr.it/∼bonacina/papers/TR2007HornCanonicity.pdf
[viewed May 22, 2008]

5. Bonacina, M.P., Dershowitz, N.: Canonical inference for implicational systems.
In: Proc. of the Fourth International Joint Conference on Automated Reason-
ing (IJCAR). LNCS (LNAI), vol. 5195, pp. 380–397. Springer, Heidelberg (2008),
http://www.cs.tau.ac.il/∼nachum/papers/CanonicalImplicational.pdf

6. Bonacina, M.P., Hsiang, J.: Towards a foundation of completion procedures as
semidecision procedures. Theoretical Computer Science 146, 199–242 (1995)

7. Buchberger, B.: Ein Algorithmus zum auffinden der Basiselemente des Restklassen-
ringes nach einem nulldimensionalen Polynomideal. PhD thesis, Univ. Innsbruck,
Austria (1965)

8. Burel, G.: Systèmes canoniques abstraits: Application à la déduction na-
turelle et à la complétion. Master’s thesis, Université Denis Diderot – Paris 7
(2005), http://www.loria.fr/∼burel/download/Burel Master.pdf [viewed May
22, 2008]

9. Burel, G., Kirchner, C.: Completion is an instance of abstract canonical system
inference. In: Futatsugi, K., Jouannaud, J.-P., Meseguer, J. (eds.) Algebra, Mean-
ing, and Computation. LNCS, vol. 4060, pp. 497–520. Springer, Heidelberg (2006),
http://www.loria.fr/∼burel/download/bk4jag.pdf [viewed May 22, 2008]

10. Burel, G., Kirchner, C.: Cut elimination in deduction modulo by abstract com-
pletion. In: Artemov, S., Nerode, A. (eds.) Proc. of the Symposium on Logical
Foundations of Computer Science (LFCS). LNCS, pp. 115–131. Springer, Heidel-
berg (2007)

11. Burel, G., Kirchner, C.: Regaining cut admissibility in deduction modulo using
abstract completion (submitted) [viewed May 22, 2008],
http://www.loria.fr/∼burel/download/gencomp ic.pdf

12. Butler, G., Lankford, D.S.: Experiments with computer implementations of pro-
cedures which often derive decision algorithms for the word problem in abstract
algebras. Memo MTP-7, Department of Mathematics, Louisiana Tech. University,
Ruston, LA (1980)

13. Dershowitz, N.: Canonicity. In: Proc. of the Fourth International Workshop on
First-Order Theorem Proving (FTP 2003). Electronic Notes in Theoretical Com-
puter Science, vol. 86, pp. 120–132 (2003),
http://www.cs.tau.ac.il/∼nachum/papers/canonicity.pdf [viewed May 22,
2008]

http://www.cs.tau.ac.il/~nachum/papers/jacm-report.pdf
http://tocl.acm.org/accepted/240bonacina.pdf
http://profs.sci.univr.it/~bonacina/papers/TR2007HornCanonicity.pdf
http://www.cs.tau.ac.il/~nachum/papers/CanonicalImplicational.pdf
http://www.loria.fr/~burel/download/Burel_Master.pdf
http://www.loria.fr/~burel/download/bk4jag.pdf
http://www.loria.fr/~burel/download/gencomp_ic.pdf
http://www.cs.tau.ac.il/~nachum/papers/canonicity.pdf

Canonicity! 331

14. Dershowitz, N., Kirchner, C.: Abstract saturation-based inference. In: Proc. of the
Eighteenth IEEE Symposium on Logic in Computer Science, June 2003, pp. 65–74.
IEEE Press, Los Alamitos (2003),
http://www.cs.tau.ac.il/∼nachum/papers/lics2003-final.pdf [viewed May
22, 2008]

15. Dershowitz, N., Kirchner, C.: Abstract canonical presentations. Theoretical Com-
puter Science 357, 53–69 (2006), http://www.cs.tau.ac.il/nachum/papers/
AbstractCanonicalPresentations.pdf [viewed May 22, 2008]

16. Gallier, J., Narendran, P., Plaisted, D., Raatz, S., Snyder, W.: An algorithm for
finding canonical sets of ground rewrite rules in polynomial time. J. of the Associ-
ation of Computing Machinery 40, 1–16 (1993)

17. Huet, G.: A complete proof of correctness of the Knuth–Bendix completion algo-
rithm. Journal of Computer and System Sciences 23, 11–21 (1981)

18. Knuth, D.E., Bendix, P.B.: Simple word problems in universal algebras. In: Leech,
J. (ed.) Computational Problems in Abstract Algebra, pp. 263–297. Pergamon
Press, Oxford (1970)

19. Lankford, D.S.: Canonical inference. Memo ATP-32, Automatic Theorem Proving
Project, University of Texas, Austin, TX (1975)

http://www.cs.tau.ac.il/~nachum/papers/lics2003-final.pdf
http://www.cs.tau.ac.il/nachum/papers/AbstractCanonicalPresentations.pdf
http://www.cs.tau.ac.il/nachum/papers/AbstractCanonicalPresentations.pdf

Unification and Matching Modulo

Leaf-Permutative Equational Presentations

Thierry Boy de la Tour1, Mnacho Echenim1, and Paliath Narendran2

1 CNRS/INPG - Laboratoire d’Informatique de Grenoble, France
thierry.boy-de-la-tour@imag.fr,

mnacho.echenim@imag.fr
2 Department of Computer Science,

University at Albany — SUNY, Albany, NY 12222, U. S. A.
dran@cs.albany.edu

Abstract. Unification modulo variable-permuting equational presen-
tations is known to be undecidable. We address here the problem of
the existence of a unification algorithm for the class of linear variable-
permuting presentations, also known as leaf-permutative presentations.
We show that there is none, by exhibiting a leaf-permutative presenta-
tion whose unification problem is undecidable. We also exhibit one such
presentation whose word and pattern matching problems are PSPACE-
complete. The proof proceeds in three stages, by transforming length-
preserving string-rewriting systems into atomic, then into bit-swapping
string-rewriting systems, and finally into leaf-permutative presentations.

1 Introduction

Unification, or the problem of solving equations, has nice computational prop-
erties when only syntactic equality is considered. As soon as more complex
equalities are introduced, starting from congruence modulo associative and com-
mutative functions (or AC theory, see [14,7]), the problem becomes increasingly
difficult, leading to a unification hierarchy, see [9]. The mere problem of deciding
whether an equation admits a solution, rather than computing one, known as
the unification (decision) problem, spans the complexity scale from linear time to
undecidable.

In particular, the AC-unification problem, and the commutative unification
problem are NP-complete (see [10,8]). Attempts have been made to define a
class of equational theories that would generalize the theories C and AC, and
inherit their properties w.r.t. unification. One obvious candidate is the class of
permutative theories, where identities may only join terms with exactly the same
symbols, occurrence for occurrence. But a permutative theory was found in [13]
whose unification problem is undecidable.

Since the theory AC can be presented using the axiom

(A′) f(f(x, y), z) = f(f(z, y), x),

A. Armando, P. Baumgartner, and G. Dowek (Eds.): IJCAR 2008, LNCS 5195, pp. 332–347, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Unification Modulo Leaf-Permutative Equations 333

together with the axiom of commutativity, in which the left and right-hand sides
differ only in their variable positions, the more restricted class of theories axiom-
atized by variable-permuting presentations became of interest. But once again a
variable-permuting presentation was found in [11] whose unification problem is
undecidable. This presentation however has only non-linear identities.

A further restriction to linear variable-permuting presentations, or leaf-
permutative as they were called in [1], is therefore natural. A link with permuta-
tion groups was exploited in [1] by restricting the congruence to stratified terms,
thus artificially avoiding overlaps. By restricting overlaps among the axioms, the
class of unify-stable presentations defined in [6] allows the use of group-theoretic
tools with the full congruence, and thus provides a class of leaf-permutative
presentations (containing C but not A′C) whose unification problem is in NP.
Although the definition of the class is complex, it is still decidable, and even poly-
nomial to decide whether a given presentation admits an equivalent unify-stable
presentation, and if so to compute one (see [5]).

We show in this paper that the unification problem on the class of leaf-
permutative presentations does not inherit the properties of unify-stable presen-
tations. Indeed, by techniques similar to those of [11] (or to the journal version
[12]), we prove that the problem is undecidable (and that the corresponding
matching problem is PSPACE-complete), and is therefore as difficult as it is on
the entire class of permutative theories.

The paper is organized as follows: Section 2 sets notations and standard def-
initions. On string-rewriting systems our notations mostly follow [4], and [2] is
our reference on equational theories and unification.

In Section 3 we give a brief account of the ideas behind the proofs in [13] and
[12]. This allows us to explain the intuition behind the three steps of our own
proof. We then proceed with these three steps in Sections 4, 5 and 6. All these
results are put together in Section 7.

2 Preliminaries

Any finite alphabet Λ generates a free monoid Λ, whose elements are Λ-strings
and whose unit is the empty string ε. Any non-empty Λ-string x can be uniquely
written as a finite product x = a1 · · ·an of letters ai ∈ Λ, where n = |x| is the
length of x. For all 1 ≤ i ≤ j ≤ n we write x[i] for ai, and x[i, j] for ai · · · aj ,
which is a substring of x. The indices i, j will be referred to as positions in x.

A string-rewriting (or Semi-Thue) system on a finite alphabet ΛR is a finite
set R of pairs of ΛR-strings, denoted by l → r and called rules (l is its left-
hand side, or lhs and r its right-hand side, or rhs). The corresponding one-step
reduction relation →R is the binary relation on ΛR-strings defined by: x→R y
iff there is a rule l → r in R and ΛR-strings x1, x2 such that x = x1lx2 and
y = x1rx2. The reduction relation induced by R is the reflexive and transitive
closure →

R of the relation →R, and the Thue-congruence is the equivalence
closure ↔

R of →R.

334 T. Boy de la Tour, M. Echenim, and P. Narendran

R is nœtherian if there is no infinite sequence (xi)i∈IN of ΛR-strings such that
xi →R xi+1 for all i ∈ IN. R is confluent if, whenever x →

R y and x →
R y′,

there exists a ΛR-string z such that y →
R z and y′ →

R z. R is convergent if it
is both nœtherian and confluent.

A ΛR-string y is an R-normal-form if there is no string z �= y such that
y →

R z; if moreover x→
R y then y is an R-normal form of x. It is well-known

that, if R is convergent then any ΛR-string has a unique R-normal form.
There is an overlap between rules l → r and l′ → r′ either if l is a substring

of l′, or a non-empty prefix of l is a suffix of l′. When there is no overlap among
the rules in a nœtherian system R, it is well-known that R is confluent (because
the problem of deciding which rule to apply vanishes), hence convergent.

A rule l → r is length-preserving if |l| = |r| (which is then called the length
of the rule). If all the rules in R are length-preserving then so is R, and it is
obvious that |x| = |y| whenever x↔

R y.
The word problem WP(R) for the string-rewriting system R on ΛR is the

following:

Instance: a pair of ΛR-strings u, v.
Question: does u↔

R v hold?

For any three ΛR-strings u, v and w, w is called a common right-multiplier
of u and v for R if uw ↔

R vw holds. The corresponding computation problem
CRMP(R) is:

Instance: a pair of ΛR-strings u, v.
Question: does there exist a common right-multiplier of u and v for R?

In the sequel by Σ-terms we mean terms built on a first-order signature Σ
and an infinite set of variables V . We will also use the well-known notions of
substitutions, of a position p in a Σ-term t, and of replacing the subterm of t at
position p (denoted t|p) by a term s, yielding t[s]p.

An equational presentation is a finite set E of pairs of Σ-terms, denoted by
s ≈ s′, and called identities. The corresponding one-step reduction relation →E
is the binary relation on Σ-terms defined by: t →E t

′ iff there is an identity
s ≈ s′ in E , a position p in t and a Σ-substitution μ such that t|p = sμ and
t′ = t[s′μ]p. The associated congruence ≈E is the equivalence closure of →E .

An identity of the form s ≈ sσ, where s is linear (variables occur at most
once in s) and σ is a permutation of the variables of s, is called leaf-permutative.
A presentation is leaf-permutative if it only contains leaf-permutative identities.
For instance, the presentation A′C in the introduction is leaf-permutative.

We use the same notation WP(E) as above for the word problem for an equa-
tional presentation E :

Instance: a pair of Σ-terms s, t.
Question: does s ≈E t hold?

Unification Modulo Leaf-Permutative Equations 335

The equational matching problem modulo E , or EMP(E), is:

Instance: a pair of Σ-terms s, t.
Question: does there exist a substitution μ such that sμ ≈E t?

The equational unification problem modulo E , or EUP(E), is:

Instance: a pair of Σ-terms s, t.
Question: does there exist a substitution μ such that sμ ≈E tμ?

Computational problems will be compared with respect to the standard Karp-
reducibility, i.e. P ∝ Q means that there exists a function f from P ’s instances
to Q’s instances, such that f can be computed in polynomial time and, for all
instance I of P , I is a positive instance of P iff f(I) is a positive instance of Q.
We say that f is a polynomial transformation from P to Q.

3 Background

In [13] Manfred Schmidt-Schauß observed that all known proofs of the decid-
able and finitary nature of AC-unification require the use of linear Diophantine
equations, and addressed the following problem:

Does there exist a direct proof of all these properties of AC, and if this
is the case, how general is the class of theories where this proof is valid?

He then proceeds by showing that, if this is the case, than this class cannot
be as general as the class of permutative theories. This is proved by building
a permutative presentation whose unification problem is undecidable. The con-
struction proceeds by transforming the rules of a universal Turing machine U
into permutative term rewriting rules.

One key point in this transformation is a clever encoding of tape symbols into
terms: the ith tape symbol is represented by the term ti = g(0, . . . , 0, 1, 0, . . . , 0),
where the constant 1 appears as the ith argument of g. Thus all symbols are
represented using the same number of occurrences of the symbols g, 0 and 1, and
therefore replacing a tape symbol by another one is permutative. The same trick
is applied for modifying the state of U . Schmidt-Schauß then builds a unification
problem modulo the resulting equational theory, from an input string to U , that
has a solution if and only if U accepts this input string, which is of course
undecidable.

It is then natural to investigate the unification properties of the more re-
stricted class of theories defined by variable-permuting presentations, which still
contains AC. This was done by Paliath Narendran and Friedrich Otto in [12],
again starting from a universal Turing machine U . The construction requires a
number of steps resulting in a length-preserving string-rewriting system R that
simulates U in the following sense: for any input to U we can build a pair of
strings u, v which have a common right multiplier w modulo R if and only if

336 T. Boy de la Tour, M. Echenim, and P. Narendran

U accepts this input. The string w represents the finite computation from the
input to an accepting state. This proves that CRMP(R) is undecidable.

The proof then proceeds by transforming the rules of R into variable-
permuting identities between terms, and the common right multiplier problem
into a unification problem (with one variable for w). This uses a trick similar to
the one above: the ith letter in the string alphabet is represented by ti, which
is matched uniquely by the term g(x, . . . , x, y, x, . . . , x), where the variable y
appears as the ith argument of g. These terms are used in the identities, which
are therefore variable-permutative. However, the unicity of matching only holds
if there are at least three letters. Indeed, if the alphabet is binary then the terms
g(y, x) and g(x, y) are unable to discriminate between the two letters represented
by t1 = g(1, 0) and t2 = g(0, 1).

This is why the construction in [12] is inherently non-linear. But as mentioned
in Section 1 AC admits a leaf-permutative presentation, which opens the way
to a further restriction of the class of theories. In order to obtain only leaf-
permutative rules, the idea in the present paper is to build from R a length-
preserving string-rewriting system on a binary alphabet {0, 1}. Thus we may
drop g and represent the letters 0 and 1 directly by constants 0 and 1. But
since any variable can match any letter, we need a further restriction on the
string-rewriting rules.

We will see in section 6 that rules that only swap an occurrence of 0 with an
occurrence of 1 can be fairly represented by identities between linear terms that
only swap two variables x and y. This is basically due to the fact that, if x and
y do not match a 0 and a 1, then they match the same digit, so that swapping
x with y leaves the corresponding string unaffected. But how can we guarantee
such a restricted property on string-rewriting rules?

The answer can be found above: if we replace ti by tj , where i �= j, then we
essentially swap a 0 with a 1. Reproducing this trick by a suitable representation
of letters as binary strings is easy, and is the subject of Section 5. Hence we now
only need a string-rewriting system similar to R, except that each rule must
change only one letter, so that its binary equivalent swaps only one occurrence
of 0 and 1.

We call such a system atomic, and we show in the next section how it can be
obtained fromR. Of course, for each transformation we need to show that the un-
decidability of the corresponding common right multiplier problem is preserved.
In particular this requires to prove that these transformations do not introduce
common right multipliers that are not matched by corresponding common right
multipliers for R (i.e. by accepting computations of U).

We will thus establish reductions between common right multiplier problems,
and notice that they result from polynomial transformations. This fact is impor-
tant because we apply the same techniques to the corresponding word problems,
at little extra cost. This is used to prove the PSPACE-hardness of the word
and matching problems modulo a leaf-permutative theory obtained by applying
our transformations not to R but to a length-preserving string-rewriting system
from [3], whose word problem is PSPACE-complete.

Unification Modulo Leaf-Permutative Equations 337

4 Atomic String-Rewriting Systems

Definition 1. A rule x → y is atomic if |x| = |y| and there is a unique index
k such that x[k] �= y[k] i.e. x and y differ by a unique letter. A string-rewriting
system is atomic when all its rules are atomic.

Let R be a length-preserving string-rewriting system. For every rule r in R,
of the form a1 · · · an → b1 · · · bn, we consider n new letters cri for 1 ≤ i ≤ n, and
we let Λr = {cri | 1 ≤ i ≤ n}. For all 1 ≤ i ≤ n let hocusr

i denote the rule

cr1 · · · cri−1aiai+1 · · · an → cr1 · · · cri−1c
r
iai+1 · · · an

and pocusr
i denote the rule

b1 · · · bi−1c
r
i c

r
i+1 · · · crn → b1 · · · bi−1bic

r
i+1 · · · crn.

Let a(r) =
n⋃

i=1

{hocusr
i , pocusr

i }, a(R) =
⋃

r∈R
a(r) and Λa(R) = ΛR ∪

⋃

r∈R
Λr.

Example: if r is the rule abc → def , then we add 3 new letters cr1, cr2 and cr3,
and a(r) contains the following rules:

hocusr
1 hocusr

2 hocusr
3

abc −→ cr1bc −→ cr1c
r
2c −→ cr1c

r
2c

r
3,

pocusr
1 pocusr

2 pocusr
3

cr1c
r
2c

r
3 −→ dcr2c

r
3 −→ decr3 −→ def.

The rules hocusr
i and pocusr

i are atomic: hocusr
i replaces ai by cri , and pocusr

i

replaces cri by bi. Hence a(R) is an atomic string rewriting system on Λa(R), and
it is obvious that for any two ΛR-strings x and y, if x↔

R y then x↔
a(R) y. In

order to prove the converse we need to detect which parts of a Λa(R)-string may
not be rewritten from or into a ΛR-string.

Definition 2. Suppose that x is a Λa(R)-string containing a substring cri · · · crj
starting at position k, where r ∈ R has length n, and 1 < i ≤ j < n. Suppose
further that this substring is maximal in the sense that the letter at position k−1
in x is not cri−1, and the letter at position k+ j − i+ 1 is not crj+1. Then we say
that cri · · · crj is a lock at k in x.

A string is lock-free if it has no lock anywhere.

Following our Example, let x = abcr2bac
r
1c

r
2, then cr2 is a lock at 3 in x, and there

are no other locks in x.
When a substring is a lock it is clear that it cannot be rewritten by any rule.

Yet applying rules in the neighborhood may change this situation, so we still
need to prove that locks are stable under a(R).

Lemma 1. For any two Λa(R)-strings x and y such that x→a(R) y, if one has
a lock at k then so does the other, and x[1, k − 1]↔

a(R) y[1, k − 1].

338 T. Boy de la Tour, M. Echenim, and P. Narendran

Proof. Let cri · · · crj be a lock at k in either x or y, and n be the length of r, so
that 1 < i ≤ j < n. First suppose that the lhs of the rule that rewrites x into y
overlaps x[k, j−i+k], and therefore that its rhs overlaps y[k, j−i+k]. Then there
must be an i ≤ l ≤ j such that crl occurs in the rule. The rule therefore belongs
to a(r), and is either a hocusr

i′ or a pocusr
i′ , where 1 ≤ i′ ≤ n; furthermore, by

Definition 1, crl must be the lth letter in the lhs or rhs of the rule. Since crl is
at position l − i+ k in x or y (see Figure 1 below), the lhs of the rule must be
the substring of x starting at position l− i+ k− (l− 1) = 1− i+ k, and ending
at position n − i + k, i.e. x[1 − i + k, n − i + k], and its rhs must therefore be
y[1− i+ k, n− i+ k]. And therefore the lock cri · · · crj must be a substring either
of the lhs or of the rhs of the rule.

1 i l j n

· · · ? · · · cr
i · · · cr

l · · · cr
j · · · ? · · ·

1− i + k k l − i + k j − i + k n− i + k

Fig. 1.

If this rule is hocusr
i′ then the lhs is cr1 · · · cri′−1ai′ · · ·an and the rhs is

cr1 · · · cri′ai′+1 · · · an. Since cri · · · crj is a substring of one of these, it must be a
substring of cr1 · · · cri′ . This means that j ≤ i′, hence that 1 ≤ i− 1 ≤ i′ − 1. The
letter cri−1 therefore occurs on both sides, hence at position k−1 in both x and y,
which contradicts the hypothesis that cri · · · crj is a lock at k in either x or y. If the
rule is pocusr

i′ then similarly i′ ≤ j < n and x[j+1−i+k] = y[j+1−i+k] = crj+1,
which is again impossible.

This proves that the lhs of the rule that rewrites x into y does not overlap
x[k, k + j − i], and therefore occurs either entirely to the left of k, so that
x[1, k−1]→a(R) y[1, k−1], or entirely to the right of j−i+k, so that x[1, k−1] =
y[1, k − 1]; in any case x[1, k − 1]↔

a(R) y[1, k − 1].
Since the rule does not overlap the lock, this one is unmodified, so that x[k, j−

i+ k] = y[k, j− i+ k] = cri · · · crj . Assume that this is not a lock at k at the same
time in x and y. Then by Definition 2 this implies either that exactly one of
x[k− 1], y[k− 1] is equal to cri−1, or exactly one of x[j+1− i+ k], y[j+1− i+ k]
is equal to crj+1. In both cases, this implies that the lhs of the rule must be
x[1 − i + k, n − i + k], hence that the rule does overlap the lock, and we have
seen that this is impossible. Therefore both x and y have a lock at k (and it is
exactly the same). "!

A simple induction then shows that:

Corollary 1. If x↔
a(R) y and x has a lock at k then x[1, k−1]↔

a(R) y[1, k−1].

Corollary 2. If x↔
a(R) y then x is lock-free if and only if y is lock-free.

If a string is lock-free, then by definition its letters from Λa(R) \ΛR occur either
in sequences cr1 · · · cri or in sequences crj · · · crn, where r ∈ R has length n and
1 ≤ i ≤ n, 1 < j ≤ n.

Unification Modulo Leaf-Permutative Equations 339

Definition 3. To any lock-free Λa(R)-string x we associate the ΛR-string p(x)
obtained from x by replacing every substring cr1 · · · cri (with i ≤ n maximal) by
a1 · · · ai, and every substring crj · · · crn (with j > 1 minimal) by bj · · · bn, where
r ∈ R is a1 · · · an → b1 · · · bn.

In particular, applying this function on the rhs of the rules hocusr
i and pocusi

r,
for all 1 ≤ i ≤ n, yield:

p(cr1 · · · cri ai+1 · · · an) = a1 · · ·an,
p(b1 · · · bicri+1 · · · crn) = b1 · · · bn.

The function p will allow us to transform a(R)-reduction steps between lock-
free strings into R-reduction steps, and lock-free common right multipliers for
a(R) into common right multipliers for R. Note that not all lock-free strings
rewrite into ΛR-strings. Following our Example, the string cr1bcr3 is lock-free,
yet cannot be rewritten into or from another string. Here p(cr1bc

r
3) = abf is a

ΛR-string that may or may not be rewritten into another string. However, all
a(R)-reduction steps on lock-free strings can be reflected into R.

Lemma 2. For any two lock-free Λa(R)-strings x and y, if x→a(R) y then either
p(x) = p(y) or p(x) →R p(y).

Proof. If a rule hocusr
i is applied, for some r ∈ R, then x contains its lhs and

y its rhs, and these both translate to the lhs of r by p, hence p(x) = p(y).
Similarly, if a rule pocusr

i is applied, with i > 1, then both sides translate to
the rhs of r, hence p(x) = p(y). If the rule pocusr

1 is applied, the lhs translates
to the lhs of r, and the rhs to the rhs of r, hence by applying the rule r we get
p(x) →R p(y). "!

Corollary 3. If x and y are lock-free and x↔
a(R) y then p(x) ↔

R p(y).

Since ΛR-strings are lock-free and invariant under p, this result obviously entails
the converse previously mentioned: for any two ΛR-strings x and y, if x↔

a(R) y
then x↔

R y.

Theorem 1. For any length-preserving string-rewriting system R,

WP(R) ∝ WP(a(R)) and CRMP(R) ∝ CRMP(a(R)).

Proof. Since for any ΛR-strings x and y, x↔
R y iff x↔

a(R) y, then the identity
function is an obviously polynomial transformation from WP(R) to WP(a(R)),
hence WP(R) ∝ WP(a(R)).

Suppose that x, y is a positive instance of the problem CRMP(R), i.e. there
exists a ΛR-string z such that xz ↔

R yz, then xz ↔
a(R) yz, hence x, y is a

positive instance of CRMP(a(R)).
Conversely, assume that the pair of ΛR-strings x, y is a positive instance

of CRMP(a(R)), hence there is a Λa(R)-string z such that xz ↔
a(R) yz. Let

n = |x| = |y|, and k be the rightmost position in z such that z′ = z[1, k] is lock-
free. If k < |z| then there is a lock at k+1 in z, hence at n+k+1 in both xz and

340 T. Boy de la Tour, M. Echenim, and P. Narendran

yz, and by Corollary 1 we get xz′ = (xz)[1, n + k] ↔
a(R) (yz)[1, n + k] = yz′.

Otherwise z = z′, and xz′ ↔
a(R) yz

′ is obvious. In both cases xz′ and yz′ are
lock-free, hence by Corollary 3, we get xp(z′) = p(xz′) ↔

R p(yz′) = yp(z′),
thus p(z′) is a common right multiplier of x and y for R, i.e. x, y is a positive
instance of CRMP(R). Therefore CRMP(R) ∝ CRMP(a(R)). "!

5 Bit-Swapping Systems

Definition 4. A string, a rule or a string-rewriting system on the alphabet
{0, 1} is called binary. A binary rule of the form w1aw2bw3 → w1bw2aw3,
where the wi’s are binary strings and a, b are two distinct binary digits (i.e.
{a, b} = {0, 1}) is called bit-swapping. A string-rewriting system is bit-swapping
when it is binary and only contains bit-swapping rules.

It is obvious that bit-swapping rules are length-preserving, and that the inverse of
a bit-swapping rule is also bit-swapping. For instance, the rule 000111→ 010101
is bit-swapping.

We now translate an atomic string-rewriting system A into a bit-swapping
string-rewriting system b(A), by translating each letter in ΛA into a unique bi-
nary string, based on an arbitrary enumeration of ΛA. Without loss of generality
we assume that ΛA ∩ {0, 1} = ∅.

Definition 5. Let ΛA = {a1, . . . , an}, and for all 1 ≤ i ≤ n let

b(ai) = 0i 1 0n+1−i 1 1.

We implicitly extend b to a morphism from the monoid Λ
A to {0, 1}. Let

b(A) = {b(x) → b(y) | x→ y ∈ A}.

We also consider the string-rewriting system I = {b(ai) → ai | 1 ≤ i ≤ n}
on the alphabet ΛA * {0, 1}.

Note that the b(ai)’s all have the same length n+ 4, and if i < j we can write

b(ai) = 0i 1 0j−i−1 0 0n+1−j 1 1,
b(aj) = 0i 0 0j−i−1 1 0n+1−j 1 1.

Since A is atomic, it is thus obvious that b(A) is bit-swapping. It is also clear
that, for any two ΛA-strings x and y, if x↔

A y then b(x) ↔
b(A) b(y).

It is obvious that I is nœtherian, since it is length-reducing. Moreover, there is
no overlap among the strings b(ai), hence I is convergent. This string-rewriting
system thus provides a convenient way of defining an inverse to the binary en-
coding function b, which is required as above for transforming b(A)-reduction
steps into A-reduction steps.

Definition 6. For any binary string u, we let q(u) denote the ΛA-string ob-
tained by removing the 0’s and 1’s from the I-normal form of u.

Unification Modulo Leaf-Permutative Equations 341

For example, q(0010n1110n10n−111) = q(0a110n−2a2) = a1a2.
It is obvious that, for any ΛA-string x, there is a reduction b(x) →

I x, and
that x, which does not contain any binary digit, is an I-normal form, hence
q(b(x)) = x. Thus q is indeed the inverse of b, but we will need a slightly more
general property:

Lemma 3. If u and v are binary strings and x is a ΛA-string, then

q(ub(x)v) = q(u)xq(v).

Proof. Since ub(x)v →
I uxv, the strings ub(x)v and uxv have the same I-

normal form, hence q(ub(x)v) = q(uxv). Since the lhs of the rules in I share
no letter with x, the I-normal form of uxv is u′xv′, where u′ and v′ are the
I-normal forms of u and v respectively. Hence q(uxv) = q(u′)q(x)q(v′). Since
q(u) = q(u′), q(v) = q(v′), and since x does not contain 0 or 1, we have the
result. "!

From this it is easy to see that our backward translation is compatible with the
A-reduction relation:

Lemma 4. For any binary strings u and v, if u→b(A) v then q(u)→A q(v).

Proof. There exists a rule x → y in A, and binary strings u1 and u2 such that
u = u1b(x)u2 and v = u1b(y)u2. By Lemma 3 we get q(u) = q(u1)xq(u2) and
q(v) = q(u1)yq(u2). Thus obviously q(u)→A q(v). "!

Corollary 4. If u↔
b(A) v then q(u)↔

A q(v).

In particular, for any two ΛA-strings x and y, b(x) ↔
b(A) b(y) is equivalent

to x ↔
A y (since q is the inverse of b). The binary encoding function b thus

provides a suitable polynomial transformation:

Theorem 2. For any atomic string-rewriting system A,

WP(A) ∝ WP(b(A)) and CRMP(A) ∝ CRMP(b(A)).

Proof. Suppose that the pair of ΛA-strings x, y is a positive instance of
CRMP(A). There exists a ΛA-string z such that xz ↔

A yz, thus

b(x)b(z) = b(xz) ↔
b(A) b(yz) = b(y)b(z),

hence b(z) is a common right-multiplier of b(x) and b(y) for b(A).
Conversely, assume b(x), b(y) is a positive instance of CRMP(b(A)), and let

w be a binary string such that b(x)w ↔
b(A) b(y)w. By Lemma 3 and Corollary 4

we get
xq(w) = q(b(x)w) ↔

A q(b(y)w) = yq(w),

hence x, y is a positive instance of CRMP(A).
The function b is thus an obviously polynomial transformation from

CRMP(A) to CRMP(b(A)), hence CRMP(A) ∝ CRMP(b(A)). By taking
z = w = ε, the same proof yields WP(A) ∝ WP(b(A)). "!

342 T. Boy de la Tour, M. Echenim, and P. Narendran

6 Leaf-Permutative Presentations

We now translate rules from any bit-swapping string-rewriting system B into
leaf-permutative identities on terms, by replacing the swapped occurrences 0
and 1 by variables x and y.

Definition 7. Let f be a binary function symbol, Σ = {0, 1, f} and V be an
infinite set of variables, containing x, y and z. We inductively define a function
trm from binary strings to the set of Σ-terms on V by:

trm(ε) = z and trm(au) = f(a, trm(u)),

for any a ∈ {0, 1} and binary string u.
For any rule r in B, of the form w1aw2bw3 → w1bw2aw3 where the wi’s are

binary strings and a, b are distinct binary digits, we let

Tr = trm(w1)[z ← f(x, trm(w2)[z ← f(y, trm(w3))])].

Finally, we consider the presentation

EB = {Tr ≈ Trσ | r ∈ B},

where σ = {x← y, y ← x} is the substitution that swaps x and y.

Note that, for any binary strings u and v, the only variable occurring in the
terms trm(u) and trm(v) is z, and trm(uv) = trm(u)[z ← trm(v)].

In order to avoid lots of nested (and messy!) parentheses, we may describe a
Σ-term as a binary tree, by drawing left branches vertically and right branches
horizontally, as in:

trm(a1 · · · an) = f
|
a1

− · · ·− f
|
an

− z.

Hence the definition of Tr could be rewritten as

Tr = f
|
.

− · · ·− f
|
.

︸ ︷︷ ︸

w1

− f
|
x

− f
|
.

− · · ·− f
|
.

︸ ︷︷ ︸

w2

− f
|
y

− f
|
.

− · · ·− f
|
.

︸ ︷︷ ︸

w3

− z,

which can be compacted to

Tr = f

|
w1

− f
|
x

− f

|
w2

− f
|
y

− f

|
w3

− z.

Since σ is a permutation of variables and the terms Tr are linear, the presen-
tation EB is leaf-permutative. Note that each term Tr is invariant by reversing
the rule r, hence here we consider B as a Thue system rather than as a semi-Thue
system. This of course has no influence on the Thue congruence ↔

B.
It is easy to prove that bit-swapping B-reduction steps can be reflected as

leaf-permutative EB-reduction steps on the corresponding terms:

Unification Modulo Leaf-Permutative Equations 343

Lemma 5. 1. For any rule r in B, of the form w1aw2bw3 → w1bw2aw3, there
is a substitution μ such that

trm(w1aw2bw3) = Trμ and trm(w1bw2aw3) = Trσμ.

2. For any two binary strings u and v, if u→B v then trm(u)→EB trm(v).

Proof. 1. Let μ = {x← a, y ← b}, then

trm(w1aw2bw3) = f

|
w1

− f
|
a

− f

|
w2

− f
|
b

− f

|
w3

− z = Trμ,

and similarly trm(w1bw2aw3) = Tr{x← b, y ← a} = Trσμ.
2. There exist a rule r in B of the form w1aw2bw3 → w1bw2aw3, and binary

strings u′, v′ such that u = u′w1aw2bw3v
′ and v = u′w1bw2aw3v

′. Let μ =
{x← a, y ← b} as above, and μ′ = μ{z ← trm(v′)}, so that

trm(u) = f

|
u′

− f

|
w1

− f
|
a

− f

|
w2

− f
|
b

− f

|
w3

− trm(v′) = f

|
u′

− Trμ
′

If p is the position of z in trm(u′) (i.e. p = 2|u
′|), then trm(u)|p = Trμ

′.
Moreover, it is obvious that trm(u) and trm(v) differ only below position p,
and that trm(v)|p = Trσμ

′, so that trm(v) = trm(u)[Trσμ
′]p. This shows

that trm(u) rewrites into trm(v) by applying the rule Tr → Trσ at position
p, hence that trm(u)→EB trm(v). "!

Corollary 5. If u↔
B v then trm(u) ≈EB trm(v).

As in previous sections we need to establish a converse, and hence a backward
translation from Σ-terms to binary strings. Since not all terms correspond to
strings through trm, we will erase most of the subterms that occur left of the
rightmost branch.

Definition 8. Let δ be the function from Σ-terms on V to {0, 1}, defined by
δ(t) = 1 if t = 1, and δ(t) = 0 otherwise. Let str be the function from Σ-terms
on V to binary strings, inductively defined by:

{

str(0) = str(1) = str(v) = ε for all v ∈ V,
str(f(t, t′)) = δ(t)str(t′) for all Σ-terms t, t′.

Note that δ(t) can be considered both as a binary string (of length one) and as
a Σ-term, so that we can write δ(δ(t)) = δ(t). The reader can easily check that
str is the inverse of trm, i.e. for any binary string u, the string str(trm(u)) is
exactly u. For instance,

str(trm(010)) = str(f
|
0

− f
|
1

− f
|
0

− z) = δ(0)δ(1)δ(0)str(z) = 010.

344 T. Boy de la Tour, M. Echenim, and P. Narendran

But str can be applied to other terms, such as

str(f
|

f(1, 1)

− f
|
1

− f
|
x

− z) = δ(f(1, 1))δ(1)δ(x)str(z) = 010.

This means that any subterm that does not appear on the first row in the
graphical representation, i.e. whose position is not a sequence of 2’s, can be
replaced by 0 if it is different from 1, without affecting the result of the translation
into strings. This is proved in the following lemma, along with another simple
property that generalizes the equation

str(trm(u)[z ← trm(v)]) = str(trm(uv)) = uv = str(trm(u))str(trm(v)).

Lemma 6. For any position p in any term t, if p is a (possibly empty) sequence
of 2’s then str(t) = str(t[z]p)str(t|p), otherwise str(t) = str(t[δ(t|p)]p).

Proof. We prove these identities by induction on p, but separately. The first is
obvious when p = ε, since str(t[z]ε) = str(z) = ε and str(t|ε) = str(t). If p = 2.q
is a non-empty sequence of 2’s, then t must have the form f(t1, t2), hence

str(t) = δ(t1)str(t2)
= δ(t1)str(t2[z]q)str(t2|q) by the induction hypothesis
= str(f(t1, t2[z]q))str(t2|q)
= str(t[z]p)str(t|p) since t|p = t2|q.

We now prove the second identity. We let a = δ(t|p) and proceed to prove that
str(t[a]p) = str(t). Since p is not empty (it must contain a 1), t is of the form
f(t1, t2), hence str(t) = δ(t1)str(t2).

Suppose p begins with a 1, i.e. there is a position q in t1 such that p = 1.q. If
p = 1 (the base case) then δ(a) = δ(δ(t1)) = δ(t1), hence

str(t[a]1) = str(f(a, t2)) = δ(a)str(t2) = δ(t1)str(t2) = str(t).

Otherwise q �= ε, hence both t1 and t1[a]q have head symbol f , so that both
δ(t1) and δ(t1[a]q) are equal to 0, and similarly

str(t[a]p) = str(f(t1[a]q, t2)) = δ(t1[a]q)str(t2) = δ(t1)str(t2) = str(t).

Suppose now that there is a position q in t2 such that p = 2.q. Then q is not a
sequence of 2’s, hence we can apply the induction hypothesis on t2 and q, which
yields str(t2) = str(t2[δ(t2|q)]q). But δ(t2|q) = δ(t|p) = a, hence

str(t[a]p) = str(f(t1, t2[a]q)) = δ(t1)str(t2[a]q) = δ(t1)str(t2) = str(t).

"!

Corollary 6. For any Σ-term t and binary string u,

str(trm(u)[z ← t]) = u str(t).

Unification Modulo Leaf-Permutative Equations 345

Proof. Let t′ = trm(u)[z ← t] and p be the position of z in trm(u), so that
t′[z]p = trm(u) and t′|p = t. Since p is a sequence of 2’s, we conclude that
str(t′) = str(trm(u))str(t) = u str(t). "!

We can now prove a converse to Corollary 5. It is obvious that removing subterms
requires to remove all reduction steps applied to them. The more subtle point
here is how replacing some subterms by 0 does not invalidate those reduction
steps that are not removed. This is because these subterms can only be matched
by the variables in the identities of EB.

Lemma 7. For any two Σ-terms t, t′ on V , if t→EB t
′ then str(t) ↔

B str(t′).

Proof. If t→EB t
′ then by definition there exists a rule r in B, a position p in t

and a substitution μ such that

t|p = Trμ and t′ = t[Trσμ]p.

If p is not a sequence of 2’s, then by Lemma 6 str(t) = str(t[δ(Trμ)]p) and
str(t′) = str(t[δ(Trσμ)]p). But the head symbol of Tr is f , hence δ(Trμ) =
δ(Trσμ) = 0, and therefore str(t) = str(t[0]p) = str(t′), so that str(t) ↔

B str(t′)
is trivially true.

Otherwise p is a sequence of 2’s, and by Lemma 6 str(t) = str(t[z]p)str(Trμ)
and str(t′) = str(t′[z]p)str(Trσμ). But t[z]p = t′[z]p, hence str(t) and str(t′)
share the same prefix. The term Tr contains the three variables x, y, z, and r
has the form w1aw2bw3 → w1bw2aw3, where {a, b} = {0, 1}, thus

Trμ = f

|
w1

− f
|
xμ

− f

|
w2

− f
|
yμ

− f

|
w3

− zμ.

A simple induction shows that

str(Trμ) = w1 δ(xμ)w2 δ(yμ)w3 str(zμ),
str(Trσμ) = w1 δ(yμ)w2 δ(xμ)w3 str(zμ).

If δ(xμ) = δ(yμ) then these two terms are identical, hence so are str(t) and
str(t′), so that str(t) ↔

B str(t′) is trivial. If δ(xμ) �= δ(yμ) then these are two
distinct binary digits, hence {δ(xμ), δ(yμ)} = {0, 1} = {a, b}. Therefore δ(xμ)
is either equal to a, whence str(Trμ) →B str(Trσμ), or it is equal to b, and
str(Trσμ) →B str(Trμ). In both cases str(t) ↔

B str(t′). "!

Corollary 7. If t ≈EB t
′ then str(t) ↔

B str(t′).

The following reduction from the common right-multiplier to the unification
problem is similar to the one established in [12].

Theorem 3. For any bit-swapping string-rewriting system B,

WP(B) ∝ WP(EB), CRMP(B) ∝ EUP(EB) and WP(B) ∝ EMP(EB).

346 T. Boy de la Tour, M. Echenim, and P. Narendran

Proof. Let u and v be two binary strings, and suppose that the pair u, v is a
positive instance of WP(B), then by Corollary 5 the pair trm(u), trm(v) is a
positive instance of WP(EB). Conversely, if trm(u) ≈EB trm(v) then by Corol-
lary 7 u = str(trm(u)) ↔

B str(trm(v)) = v. The transformation from u, v to
trm(u), trm(v) is polynomial, hence WP(B) ∝ WP(EB).

Suppose now that u, v is a positive instance of CRMP(B). Then there is a bi-
nary string w such that uw↔

B vw, hence trm(uw) ≈EB trm(vw) by Corollary 5,
which can be written

trm(u)[z ← trm(w)] ≈EB trm(v)[z ← trm(w)],

and therefore the substitution {z ← trm(w)} is an EB-unifier of trm(u) and
trm(v). Conversely, suppose that trm(u) and trm(v) are EB-unifiable, then there
is a term t such that trm(u)[z ← t] ≈EB trm(v)[z ← t]. Hence by Corollary 7
str(trm(u)[z ← t]) ↔

B str(trm(v)[z ← t]), so that u str(t) ↔
B v str(t) holds by

Corollary 6, i.e. str(t) is a common right multiplier of u and v for B. The function
trm is therefore a polynomial transformation from CRMP(B) to EUP(EB).

We now transform an instance u, v of the binary word problem for B in a
slightly more elaborate way: we let u′ denote the longest string among u and v,
and v′ the other one. If u, v is a positive instance of WP(B) then u′ ↔

B v
′ (and

of course they have the same length), hence by Corollary 5 trm(u′) ≈EB trm(v′).
Thus obviously μ = {z ← 0} satisfies the relation trm(u′)μ ≈EB trm(v′)[z ← 0],
i.e. trm(u′), trm(v′)[z ← 0] is a positive instance of EMP(EB).

Conversely, suppose that trm(u′), trm(v′)[z ← 0] is a positive instance of
EMP(EB), then there is a Σ-term t such that trm(u′)[z ← t] ≈EB trm(v′)[z ← 0].
Corollaries 6 and 7 yield

u′str(t) = str(trm(u′)[z ← t]) ↔
B str(trm(v′)[z ← 0]) = v′str(0) = v′.

But B is length-preserving, and |v′| ≤ |u′|, hence str(t) must be the empty
string, so that u′ ↔

B v
′, and u, v is therefore a positive instance of WP(B). The

transformation from u, v to trm(u′), trm(v′)[z ← 0] is obviously polynomial,
hence WP(B) ∝ EMP(EB). "!

7 Conclusion

We can now reach the conclusion by applying our transformations to length-
preserving string-rewriting systems that are known to possess specific computa-
tional properties.

Theorem 4. There is a leaf-permutative presentation whose word and equa-
tional matching problems are PSPACE-complete, and there is one whose equa-
tional unification problem is undecidable.

Proof. It is obvious from Theorems 1, 2 and 3 that, for any length-preserving
string-rewriting systemR there exists a leaf-permutative equational presentation
E = Eb(a(R)) such that

WP(R) ∝ WP(E), WP(R) ∝ EMP(E) and CRMP(R) ∝ EUP(E).

Unification Modulo Leaf-Permutative Equations 347

It was proved in [3] (Theorem 2.3 p. 528) that there is a length-preserving
string-rewriting system whose word problem is PSPACE-complete, hence the
word and equational matching problems of the corresponding leaf-permutative
presentation E are PSPACE-hard. Moreover, the matching problem can be solved
in PSPACE for all leaf-permutative presentation (as for all variable-permuting
presentations, see [12]), and the same obviously holds for the word problem,
hence EMP(E) and WP(E) are both PSPACE-complete.

It was proved in [12] (Theorem 3.4 p. 96) that there is a length-preserving
string-rewriting system whose common right multiplier problem is undecidable,
hence the equational unification problem of the corresponding leaf-permutative
presentation is obviously undecidable. "!

References

1. Avenhaus, J., Plaisted, D.: General algorithms for permutations in equational in-
ference. Journal of Automated Reasoning 26, 223–268 (2001)

2. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press,
Cambridge (1998)

3. Bauer, G., Otto, F.: Finite complete rewriting systems and the complexity of the
word problem. Acta Informatica 21 (1984)

4. Book, R.V., Otto, F.: String-rewriting systems. Springer, Heidelberg (1993)
5. Boy de la Tour, T., Echenim, M.: Determining unify-stable presentations. In:

Baader, F. (ed.) RTA 2007. LNCS, vol. 4533, Springer, Heidelberg (2007)
6. Boy de la Tour, T., Echenim, M.: Permutative rewriting and unification. Informa-

tion and Computation 25(4), 624–650 (2007)
7. Fages, F.: Associative-commutative unification. JSC 3(3), 257–275 (1987)
8. Garey, M., Johnson, D.S.: Computers and intractability: a guide to the theory of

NP-completeness. W.H. Freeman, San Francisco (1979)
9. Siekmann, J.: Unification theory. Journal of Symbolic Computation 7, 207–274

(1989)
10. Kapur, D., Narendran, P.: Complexity of unification problems with associative-

commutative operators. Journal of Automated Reasoning 9(2), 261–288 (1992)
11. Narendran, P., Otto, F.: Some results on equational unification. In: Stickel, M.E.

(ed.) CADE 1990. LNCS, vol. 449, pp. 276–291. Springer, Heidelberg (1990)
12. Narendran, P., Otto, F.: Single versus simultaneous equational unification and

equational unification for variable-permuting theories. Journal of Automated Rea-
soning 19(1), 87–115 (1997)

13. Schmidt-Schauß, M.: Unification in permutative equational theories is undecidable.
Journal of Symbolic Computation 8(4), 415–421 (1989)

14. Stickel, M.E.: A unification algorithm for associative-commutative functions. Jour-
nal of the ACM 28(2), 423–434 (1981)

Modularity of Confluence

Constructed

Vincent van Oostrom

Utrecht University, Department of Philosophy
Heidelberglaan 8, 3584 CS Utrecht, The Netherlands

Vincent.vanOostrom@phil.uu.nl

Abstract. We present a novel proof of Toyama’s famous modularity of
confluence result for term rewriting systems. Apart from being short and
intuitive, the proof is modular itself in that it factors through the decreas-
ing diagrams technique for abstract rewriting systems, is constructive in
that it gives a construction for the converging rewrite sequences given
a pair of diverging rewrite sequences, and general in that it extends to
opaque constructor-sharing term rewriting systems. We show that for
term rewrite systems with extra variables, confluence is not preserved
under decomposition, and discuss whether for these systems confluence
is preserved under composition.

1 Introduction

We present a novel proof of the classical result due to Toyama, that confluence is
a modular property of term rewriting systems, that is, the disjoint union of two
term rewriting systems is confluent if and only if both systems are confluent.

To illustrate both our proof method and its difference with existing proofs in
the literature [1,2,3], we make use of the following example.

Example 1. Let S be the disjoint union CL * E of the term rewriting systems
CL = ({@, I,K, S}, {Ix→ x,Kxy→ x, Sxyz→ xz(yz)}) for combinatory logic
(where @ is left implicit and associates to the left) and E = ({∗, a, b}, {x ∗ x→
x, a→ b}) (with ∗ written infix).

Both these term rewriting systems are confluent, CL is since it is left-linear
and non-overlapping (Rosen, see [4, Sect. 4.1]) and E is since it is terminating
and all its critical pairs (none) are convergent (Huet, see [4, Lemma 2.7.15]).

Now consider the following peak in S for arbitrary CL-terms t, s, u with t→CL u:

(u ∗ s)a←CL (t ∗ s)a→E (t ∗ s)b

Intuitively, it is easy to find a common reduct:

(u ∗ s)a→E (u ∗ s)b←CL (t ∗ s)b

and indeed this valley is constructed by our proof. We will now informally explain
our proof using classical modularity terminology from the papers mentioned
above, which also can be found in the textbooks [5,4].

A. Armando, P. Baumgartner, and G. Dowek (Eds.): IJCAR 2008, LNCS 5195, pp. 348–363, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Modularity of Confluence 349

Our proof is based on a novel decomposition of a term into its base vector
and its base. These notions will be defined formally in Section 3, but can be
understood as the vector of aliens (also known as principal subterms) of maximal
rank of the term, and its context, respectively. This decomposition of terms in
turn induces a decomposition of reductions on base vectors and bases such that,
roughly speaking, both are confluent and they commute.

Example 2. The source (t∗ s)a of the initial peak has two aliens t∗ s and a, only
the first of which is of maximal rank 2. Accordingly, its base vector consists only
of the former so is (t ∗ s), and its base is (x1)a. Indeed the base vector and base
compose, by substituting the former for x1 in the latter, to the original term.

For the peak, the step on the left decomposes as a step on the base vector:
(u ∗ s)← (t ∗ s) within base (x1)a, whereas the step on the right decomposes as
a step on the base: (x1)a→ (x1)b with base vector (t ∗ s).

These steps commute, giving rise to the valley on the previous page, consisting
of two steps. The step on the left is composed of the step on the base: (x1)a→
(x1)b and base vector (u ∗ s), and the step on the right is composed of the step
on the base vector: (u ∗ s)← (t ∗ s) and base (x1)b.

Focussing attention on aliens of maximal rank is in a sense dual to the idea of
the proofs in the literature [1,2,3], which are based on representing aliens by
terms of minimal rank. To that end each of the latter three proofs relies on a
test whether a layer may collapse or not (root preservedness, inner preservedness,
and cap-stability, respectively). As the test whether a layer may collapse or not
is an undecidable property, the proofs in the literature are non-constructive.

Example 3. To construct the common reduct for the peak above, each of these
proofs depends on testing whether the term t ∗ s may collapse, i.e. rewrite to
a CL-term, or not. Since the rule for ∗ is non-left-linear, this requires testing
whether t and s have a common reduct in CL, which is an undecidable property.

In contrast, our proof yields modularity of constructive confluence: a pair of con-
verging rewrite sequences can be constructed for every pair of diverging rewrite
sequences, in the disjoint union of two term rewriting systems if and only if the
same holds for each of the systems separately.

Example 4. CL is constructively confluent since a valley can be constructed for
a given peak via the so-called orthogonal projections ([4, Chapter 8]), and E
is constructively confluent since a valley can be constructed for a given peak
by termination ([4, Chapter 6]). By our main result (Corollary 1) their disjoint
union S is constructively confluent.

After recapitulating the relevant notions from rewriting in Section 2, our proof of
modularity of confluence is presented in Section 3, and argued to be constructive
in Section 4. In Section 5, we discuss (im)possible extensions of our technique.

2 Preliminaries

We recapitulate from the literature standard rewriting notions pertaining to this
paper. The reader is referred to the original papers [1,2,3] for more background on

350 V. van Oostrom

modularity of confluence (Theorem 2) and to [6] for the confluence by decreasing
diagrams technique (Theorem 1). As the textbooks [5,4] give comprehensive
overviews of both topics, we have based our set-up on them, and we refer to
them for the standard notions employed. The novel part of these preliminaries
starts with Definition 1.

Rewriting preliminaries We employ arrow-like notations such as →, �, 	, � to
range over rewrite relations which are binary relations on a set of objects. The
converse →−1 of a rewrite relation → is also denoted by mirroring the symbol
←, its reflexive closure is denoted by →= and its transitive closure by →+.
Replicating a symbol is used to denote an idea of repetition; the replication �
of → will be used simply as another notation for its reflexive–transitive closure
→∗; the meanings of 		 and �� will be given below. A peak (valley) is a witnesses
to ;� (�;), i.e. a pair of diverging (converging) rewrite sequences. A rewrite
relation → is confluent Con(→) if every peak can be completed by a valley, i.e.
 ; � ⊆ � ; , where ; and ⊆ denote relation composition and set inclusion
respectively, viewing relations as sets of ordered pairs.

Theorem 1 (Decreasing Diagrams [6]). Let → =
⋃

�∈L→� where L is a set
of labels with a terminating transitive relation .. If it holds that ←� ;→k ⊆
��� ;→=

k ; ��{�,k} ; �{k,�} ;←=
� ; �k for all �,k, then → is confluent. Here

�K = {j | ∃i ∈K, i . j} and �j = �{j}.

Term rewriting preliminaries A term rewriting system (TRS) is a system (Σ,R)
with Σ its signature and R its set of rules. A signature is a set of (function)
symbols with each of which a natural number, its arity, is associated. A rule is
a pair (l, r), denoted by l → r, of terms over the signature extended with an
implicit set of nullary (term) variables. For a term of shape a(t), a is its head-
symbol, which can be a variable or function symbol, and terms among t are its
direct subterms. A subterm of a term is either the term itself, or a subterm of a
direct subterm. Witnessing this inductive notion of subterm yields the notion of
occurrence of a subterm in a term. As usual, we require that the head-symbol
of the left-hand side l of a rule l→ r not be a variable, and that the variables
occurring in the right-hand side r occur in l. A rule is left-linear if variables
occur at most once in its left-hand side, and collapsing if the head-symbol of its
right-hand side is a variable. For a given TRS T = (Σ,R), its associated rewrite
relation→T is the binary relation on terms over Σ defined by t→T s if t = C[lτ]
and C[rτ] = s for some single-hole context C, rule l→ r ∈ R, and substitution
τ . A substitution is a homomorphism on terms induced by the variables, and
a context is a term over Σ extended with the hole � (which will technically
be treated as a fresh nameless variable). The application of a substitution τ to
the term t is denoted by tτ . The main operation on contexts is hole filling, i.e.
replacing occurrences of the hole by terms. If C is a context and t a term vector
with length |t| equal to the number of holes in C, then C[t] denotes filling the
holes in C from left to right with t. Properties of rewrite relations apply to
TRSs T via →T . Below, we fix TRSs Ti = (Σi, Ri) and their associated rewrite
relations →i, for i ∈ {1, 2}.

Modularity of Confluence 351

Modularity preliminaries With T1 *T2 = (Σ,R) we denote the disjoint union of
T1 and T2, where Σ = Σ1 *Σ2 and R = R1 *R2. Its associated rewrite relation
is denoted by →. A property P is modular if P (T1 * T2) ⇐⇒ P (T1) & P (T2).

Theorem 2 (Modularity of Confluence [1]). Con(→) ⇐⇒ Con(→1) &
Con(→2).

A term t over Σ can be uniquely written as C[t] such that C is a non-empty
context over one of the signatures Σ1,Σ2, and the head-symbols of the term
vector t all not belong to that signature, where we let variables belong to both
signatures; this situation is denoted by C[[t]] and C and t are said to be the
top and alien vector of t, respectively. The rank of t is 1 plus the maximum
of the ranks of t and 0. A step t → s is top-collapsing if it is generated by a
collapsing rule in the empty context and the head-symbol of s does not belong
to the signature the head-symbol of t belongs to. Observe that the rank of t is
then greater than the rank of s. For vectors of terms t, s of the same length
|t| = n = |s|, we write t ∝ s if ti = tj entails si = sj , for all 1 ≤ i, j ≤ n. For
referring to notions pertaining to the components of T1*T2, colors c, b, w∈{1, 2}
are employed. We refer to b and w as black and white, respectively, implicitly
assuming they are distinct, i.e. b = 3− w.

To illustrate our concepts and proof, we use the following running example.

Example 5. Let T be the disjoint union T1 * T2 of the term rewriting systems
T1 = ({a, f}, {f(x, x)→x}) and T2 = ({I, J,K,G,H}, {G(x)→I, I→K,G(x)→
H(x), H(x)→ J, J →K}). The goal will be to transform the peak

f(I,H(a))← f(I,G(a)) ← f(G(a), G(a)) → G(a)

into a valley. For b = 1, the term f(I,G(a)) in this peak is top-black, has top

f

I G

a

3

21

1

f

I G

a

Fig. 1. Ranking a term

f(�,�), alien vector (I,G(a)) and rank 3, since G(a) is top-white, has top G(�),
alien vector (a) and rank 2, and I, a have no aliens so have rank 1 (see Figure 1).

Definition 1. For a given rank r and color c, c-rank-r terms are terms either of
rank r and top-c and then called tall, or of rank lower than r then called short.

Every term of rank r is a c-rank-q term for every c and q > r, and a c-rank-r
term for some color c. The aliens of a c-rank-(r+1) term are (3−c)-rank-r-terms,
and if tall its top has color c (the top of short terms can be of either color).

352 V. van Oostrom

Example 6. The term f(I,G(a)) in the peak in Example 5, is short c-rank-r for
every c and r > 3. Although the term is tall black-rank-3, it is not white-rank-3.

Rewriting a term does not increase its rank [5, p. 264][4, Proposition 5.7.6] by the
constraints on the left- and right-hand sides of TRS rules, and it easily follows:

Proposition 1. c-rank-r terms are closed under rewriting.

3 Modularity of Confluence, by Decreasing Diagrams

We show modularity of confluence (Theorem 3) based on the decomposition of
terms into bases and vectors of tall aliens, and of steps into tall and short ones, as
outlined in the introduction. We show tall and short steps combine into decreas-
ing diagrams, giving confluence by Theorem 1. To facilitate our presentation

we assume a rank r and a color b are given.

Under the assumption, we define native terms as black-rank-(r+1) terms and use
(non-indexed) t, s, u, v to range over them, and define nonnative terms as white-
rank-r terms and use t, s, u, v to range over vectors of nonnative terms, naming
their individual elements by indexing and dropping the vector notation, e.g.
t1,sn, etc.. Our choice of terminology should suggest that a term being nonnative
generalises the traditional notion of the term being alien [5, p. 263], and indeed
one easily checks that the aliens of a native term are nonnative, but unlike aliens,
nonnative terms (and native terms as well) are closed under rewriting as follows
from Proposition 1. This vindicates using → to denote rewriting them. By the
assumption, tall native terms are top-black and tall nonnative terms top-white.
Note an individual term can be native and nonnative at the same time, but the
above conventions make a name unambiguously denote a term of either type:
ordinary (non-indexed) names (t) denote natives, vector (boldface) names (t)
vectors of nonnatives, and indexed names (ti) denote individual nonnatives.

Example 7. Assuming rank r = 2 and color b = 1, all terms f(I,H(a)), f(I,G(a)),
f(G(a), G(a)), G(a) in the peak in Example 5 are native and all but G(a) are tall.
The alien vector of f(I,G(a)) is (I,G(a)), consisting of the short nonnative I and
the tall nonnative G(a).

Base contexts, ranged over by C, D, E, are contexts obtained by replacing all
tall aliens of some native term by the empty context �. Clearly, their rank does
not exceed r.

Proposition 2. If t is a native term, then there are a unique base context C and
vector t of tall aliens, the base context and base vector of t, such that t = C[t].

Proof. The base context is obtained by replacing all tall aliens of t by �. Unique-
ness follows from uniqueness of the vector of tall aliens. "!

Modularity of Confluence 353

I G

a

3

1 2

1

f

I G

a

f

Fig. 2. From rank to base context–base vector decompositon

Example 8. For r,b as in Example 7, the base context of f(I, G(a)) is f(I, �),
and its base vector is (G(a)) (see Figure 2, base vector vertically striped, base
context horizontally). The base context of G(a) is the term itself, and its base
vector is empty.

In order to mediate between reductions in the base context and in the vector of
aliens, it will turn out convenient to have a class of terms with ‘named holes in
which nonnative terms can be plugged in’. For that purpose we assume to have
a set of nonnative variables, disjoint from the term variables, and we let x range
over vectors of nonnative variables. Nonnative substitutions are substitutions of
nonnative terms for nonnative variables, ranged over by τ , σ, υ, φ, η. In partic-
ular, we let η denote an arbitrary but fixed bijection from nonnative variables
to tall nonnative terms. A base term, ranged over by c, d, e, f , is a term which
is either obtained by applying η−1 to all tall aliens of some native term, or is a
nonnative variable called an empty base.1 Again, their rank does not exceed r.

Proposition 3. If t is a native term, then there is a unique non-empty base
term c, the base of t, such that t = cη.

Proof. As for Proposition 2, also using bijectivity of η for uniqueness. ��

The intuition that (non-empty) base terms are base contexts with ‘named holes
for nonnative terms’ is easily seen to be correct: If C, t, and c are the base context,
base vector, and base of t, respectively, then C = cxi �→� and c = C[η−1(t)].

Example 9. For r,b as above, let η map x1 to the tall nonnative G(a). The base
of the tall native f(I, G(a)) is obtained by applying η−1 to its tall alien G(a),
yielding f(I, x1). The base of G(a), now seen as short native, is the term itself.

Definition 2. A step on the nonnative vector t is tall if the element ti rewritten
is. The imbalance #t of a vector t of nonnative terms is the cardinality of its
subset of tall ones, and the imbalance #t of a native term t = C[[t]] is #t. We
write t ��ι s to denote that the vector t of nonnative terms rewrites in a positive
number of tall steps to s having imbalance ι = #s, and we write t ��ι s for a
native term t = C[[t]], if t ��ι s and C[s] = s.

The final line is justified by the fact that then #s = ι = #s.

1 Directly defining base terms inductively is not difficult but a bit cumbersome.

354 V. van Oostrom

Example 10. – f(G(a), G(a)) 		1 f(I,H(a)) because the vector of tall aliens
(G(a),G(a)) of the former rewrites by tall steps first to (I,G(a)) and then to
(I,H(a)), which has imbalance 1 since it has only 1 tall element.

– f(G(a), G(a)) 		2 f(H(a), G(a)) by rewriting the first tall alien G(a) to
H(a). Imbalance was increased from 1 to 2 along this tall step.

Definition 3. On nonnative vectors and native terms, a short step is defined to
be a →-step which is not of the shape of a single-step 		ι rewrite sequence, and
�� denotes a positive number of short steps, with on native terms the condition
that only the last step may be tall-collapsing, i.e. top-collapsing a tall term.

Example 11. – f(G(a), G(a)) �� G(a) because the former rewrites in one step
to the latter, but not by a step in a tall alien. Although also G(a) �� I (there
are no tall aliens), we do not have f(G(a), G(a)) �� I, since the condition
that only the last step may be tall-collapsing would then be violated.2

– f(I,G(a)) → f(I, I)→ f(I,K) induces f(I,G(a)) 		0 f(I, I) �� f(I,K)
(see Figure 3). Note that the second, short, step does not change imbalance.

K

f

I G

a

f

I I
0

f

I

Fig. 3. Tall and short step

– Tall and short steps need not be disjoint: setting for this example rank
r = 1 and color b = 1, the step f(I, J) → f(J, J) in the disjoint union of
{f(x, y)→ f(y, y)} and {I→J} can be both of the shape of a single-step 		ι

reduction and not, depending on whether I or the whole term is contracted.
Hence, both f(I, J) 		1 f(J, J) and f(I, J) �� f(J, J)!

Proposition 4. Confluence of → and �� ∪
⋃

ι 		ι are equivalent, both on non-
native vectors and on native terms.

Proof. In either case, it suffices to show that the reflexive–transitive closures of
→ and �� ∪

⋃

ι 		ι coincide, which follows by monotonicity of taking reflexive–
transitive closures from → ⊆ �� ∪

⋃

ι 		ι ⊆ →+, which holds by definition. "!

Lemma 1. If t = cη �� s, then s = dη for some c � d, where c is the base of t.

2 Transitivity of �� on native terms could be regained by dropping the condition that
only the last step may be tall-collapsing. However, this would necessitate reformu-
lating Lemma 1 below, and would make the proof of Theorem 3 a bit more complex.

Modularity of Confluence 355

Proof. We claim that if t = cη �� s by a single short step with c the base of
t, then s = dη for some c � d such that d is either the base of s, or it is an
empty base and the step was tall-collapsing. To see this, note the redex-pattern
contracted does not occur in a tall alien as the step was assumed short, and
neither does it overlap a tall alien as left-hand sides of rules are monochromatic,
i.e. either black or white. Thus, the redex-pattern is entirely contained in c, and
the claim easily follows. We conclude by induction on the length of the reduction
using that only its last step may be tall-collapsing. ��

Example 12. For f(G(a), G(a)) �� G(a) as in the first item of Example 10,
c = f(x1, x1) and d = x1. The final part of the same item shows that without
the condition that only the last step may be tall-collapsing, the result would fail:
I cannot be written as dη with f(x1, x1) � d; as I is not tall, taking x1 fails.

The following lemma is key for dealing with non-left-linear rules. Assuming con-
fluence, it allows to construct for diverging reductions on a vector of nonnative
terms, a common reduct as balanced as the initial vector. Intuitively, if the initial
vector ‘instantiates’ a non-linear left-hand side, the common reduct will do so
too because it is as balanced. Moreover, the imbalance of each of the converging
reductions does not exceed that of the corresponding diverging one, which will
be (our) key for applying the decreasing diagrams technique (Theorem 1).

Lemma 2. If → is confluent on nonnative vectors and t ��ιk
sk for 1 ≤ k ≤ n,

then there exist v such that t ∝ v and, for 1 ≤ k ≤ n, there exists uk such that
sk ��=

#v uk ��= v and ιk ≥ #v; if moreover n = 1 and s1 �= u1, then ι1 > #v.

Proof. We proceed in stages, which are defined to be vectors of length n|t|,
written using underlining in order to distinguish them from the boldfaced vectors
of length |t|. Starting at s = s1 . . . sn, each stage v will be such that s � v and
s ∝ v, until finally tn ∝ v holds, where tn denotes the n-fold repetition of t.

By the latter condition, if the procedure stops, then v is the n-fold repetition
of some vector, say v. By the invariant both sk � v and sk ∝ v. By the latter,
we may assume that reductions of the former taking place on identical elements
of sk, are in fact identical. Using that the rank of terms does not increase along
rewriting, sk � v has a tall–short factorisation3 of shape sk ��=

#v uk ��= v
with ιk = #sk ≥ #uk (since identical elements are reduced identically), and
#uk = #v (since base reductions do not affect imbalance). This gives partial
correctness of the construction. To get total correctness it must also terminate.

If stage v is not yet final, there are ti = tj such that vi �= vj . Per construction
t � s � v hence vi � ti = tj � vj giving some vi � w � vj by the confluence
assumption. The next stage is obtained by applying the reductions vi � w and
vj � w at all indices of v to which either is applicable, i.e. to all elements
identical to either vi or vj . As the cardinality (as set) of the resulting stage is
smaller than that of v (elements which were identical still are and the elements
at indices i, j have become so), the procedure terminates in less than n|t| steps.

3 W.l.o.g. we assume the factorisation to depend functionally on the given reduction.

356 V. van Oostrom

If moreover n = 1, note that tall nonnative terms are only reduced when they
are joined with some other term. Then note that joining, both with another tall
term and with another short term (to a short term!), decreases imbalance. "!

Example 13. For the nonnative vector t = (G(a),G(a)) with imbalance 1, con-
sider both t 		2 (H(a),G(a)) = s1 and t 		1 (G(a),I) = s2. Then in the proof of
the lemma the following vectors of nonnatives may be constructed:

t2 = t = (G(a),G(a),G(a),G(a))
s1s2 = s = (H(a),G(a),G(a), I)

u = (H(a),H(a),H(a), I)
v2 = v = (K , K , K , K)

In stage s, s1 = H(a) �= G(a) = s2, but t1 = t2. By confluence, the latter are
joinable, e.g., by H(a)← G(a), and applying this to all terms in s yields u.

In stage u, s1 = H(a) �= I = s4, but t1 = t4. By confluence, the latter are
joinable, e.g., by H(a) � K ← I, and applying these to all terms in u yields v.

Therefore, for 1 ≤ k ≤ 2, sk � (K,K) = v, with tall–short factorisations
s1 		0 (J,J) �� v and s2 		0 (J,I) �� v, both with imbalance (0) not exceeding
that of t (1).

Lemma 3. 1. If t 		ι s �� u, then C[t] 		ι C[s] �� C[u], for base contexts C.
2. If c � d, then for any nonnative substitution τ , cτ ��= dτ and #cτ ≥ #dτ .

Proof. The items follow from closure of rewriting under contexts and substitu-
tions; #cτ ≥ #dτ since reducing c can only replicate the tall nonnatives in τ . "!

Example 14. 1. Filling the base context f(�,�) with the tall–short factorisa-
tions of sk � v in Example 13, yields f(H(a), G(a)) 		0 f(J, J) �� f(K,K)
and f(G(a), I) 		0 f(J, I) �� f(K,K).

2. Since f(x1, x1) → x1, we have f(G(a), G(a)) �� G(a) by mapping x1 to
G(a), but also f(a, a) �� a by mapping x1 to a.

The proof of our main theorem is by induction on the rank of a peak. The idea
is to decompose a peak into tall and short peaks, which being of lower rank
can both be completed into valleys by the induction hypothesis, which then can
be combined to yield decreasing diagrams by measuring tall reductions by their
imbalance, giving confluence by the decreasing diagrams theorem.

Theorem 3. → is confluent if and only if both →1 and →2 are.

Proof. The direction from left to right is simple: For any color c, a →c-peak ‘is’
a →-peak of c-rank-1 terms. By Con(→) and Proposition 1, the latter peak can
be completed by a →-valley of c-rank-1 terms, which ‘is’ a →c-valley.

The direction from right to left is complex. Assuming Con(→1) and Con(→2),
we prove by induction on the rank, that any →-peak of terms of at most that
rank can be completed by a →-valley of such terms again.

Modularity of Confluence 357

The base case, a peak of terms of rank 1, is simple and symmetrical to the
above: such a peak ‘is’ a →c-peak for some color c. By Con(→c) it can be
completed by a →c-valley, which ‘is’ a →-valley of c-rank-1 terms.

Using the terminology introduced above, the step case corresponds to proving
confluence of reduction on native (black-rank-(r+1)) terms, having confluence of
reduction on nonnative (white-rank-r) terms as induction hypothesis. By Propo-
sition 4 it suffices to show confluence of �� ∪

⋃

ι 		ι. To that end, we show the
preconditions of Theorem 1 are satisfied taking the 		ι and �� as steps, ordering
		ι above 		κ if ι > κ, and ordering all these above ��.

ι

≤ι

ι
<ι≤ι∧κ

tall short tall–short

∗== =

==

=

≤ι∧κ

κ

Fig. 4. Decreasing diagrams case analysis

We distinguish cases (see Figure 4) on the types, short or tall, of the steps in
a peak having the native term t as source, and we let C, t, and c be the base
context, base vector, and base of t as given by Propositions 2 and 3, respectively.

(tall–tall) Suppose s

ι t 		κ u. By definition s = C[s]

ι C[t] 		κ C[u] = u
for some s

ι t 		κ u. By the induction hypothesis we may apply Lemma 2
giving s 		=#v s′ ��= v �� u′

#v u for some s′,v,u′ with ι ≥ #v ≤ κ. We
conclude to s = C[s] 		=#v C[s′] ��= C[v] ��= C[u′]

=#v C[u] = u from
Lemma 3(1), giving a decreasing diagram (Figure 4 left).

(short–short) Suppose s �� t �� u. Lemma 1 entails s = dη �� cη �� eη = u
for some nonnative peak d c � e. By the induction hypothesis for this
peak, d � f e for some f . We conclude to s = dη ��= fη ��= eη = u by
Lemma 3(2), giving a decreasing diagram (Figure 4 middle).

(tall–short) Suppose s

ι t �� u. By definition and Lemma 1 we have s =
C[s]

ι C[t] = t = cη �� eη = u for some s

ι t and c � e.
By the induction hypothesis and Lemma 2, s

ι t entails s 		=#v s′ ��= v
for some s′,v with t ∝ v and ι ≥ #v, and if s �= s′ then ι > #v. Lemma 3(1)
yields C[s] 		=#v C[s′] ��= C[v] and t ∝ v gives C[v] = cσ for some σ η.
By Lemma 3(2), c � e entails cσ ��= eσ with #cσ ≥ #eσ. To conclude (as
in Figure 4 right) we distinguish cases on whether e is empty or not.
(empty) If e is empty, say e = xi then σ η entails eσ = σ(xi) ��=

η(xi) = eη, thus s = C[s] 		=#v C[s′] ��= C[v] = cσ ��= eσ ��= eη = u,
giving a decreasing diagram since ι > #v if the 		=#v-step is non-empty.

(non-empty) If e is not empty, let E and x be the (unique) base context
and vector of nonnative variables such that E[x] = e. Then σ η

358 V. van Oostrom

entails xσ xη, any tall–short factorisation (see Lemma 2) of which
yields eσ = E[xσ] ��= E[xφ]

=κ E[xη] = eη for some φ by Lemma 3(1),
thus s = C[s] 		=#v C[s′] ��= C[v] = cσ ��= eσ ��= E[xφ]

=κ eη = u,
giving a decreasing diagram since ι > #v if the 		=#v-step is non-empty
as before, and ι ≥ #v = #C[v] = #cσ ≥ #eσ = #E[xφ] = κ. "!

short

f(I,H(a)) f(K,K) K
0

1

tall–short

tall
0

f(G(a), G(a)) G(a)

1
f(I, I)f(I,G(a)) I

f(I,K)f(I, J)

Fig. 5. The three cases in Theorem 3

Example 15. Successively completing the peaks of Example 5, written as:

f(I,H(a))

1 f(I,G(a))

1 f(G(a), G(a)) �� G(a)

into valleys, gives rise to Figure 5, illustrating the three cases in Theorem 3.

The main difference between our proof of modularity of confluence and those
in the literature [1,2,3] is the way in which they deal with the identity-check of
the terms occurring at the non-linear argument places of the left-hand side of a
rule. Reducing these terms may cause that the identity-check ceases to succeed,
upon which so-called balancing reductions must be performed on these terms,
in order to make the identity-check succeed again.

Our proof relies on the local reduction history, i.e. on the reductions performed
since the moment the identity-check did succeed, to construct the balancing
reductions using Lemma 2. In the above example, in order to apply the rule
f(x, x)→ x to the term f(I,G(a)), the reduction from f(G(a), G(a)) for which
the identity-check did succeed, is used to construct the balancing reduction to
f(I, I) for which the identity-check succeeds again.

In contrast, the proofs in the literature rely on the global reduction history
by mapping convertible terms (so certainly those terms for which the identity-
check once did succeed) to some witness. In order to guarantee that all the
convertible terms in fact reduce to the witness, i.e. in order to obtain balancing
reductions, the witness is chosen to be of minimal rank, cf. Example 3, which
has the side-effect of making the proofs non-constructive.

4 Modularity of Confluence, Constructed

A proof is constructive if it demonstrates the existence of a mathematical object
by providing a procedure for creating it. A rewriting system with a constructive

Modularity of Confluence 359

proof of confluence is constructively confluent. More precisely, we require to
have a procedure which for any given peak, say given as proof terms in rewriting
logic [4, Chapter 8], constructs the corresponding valley. In other words, we
require the existence of effective confluence functions f , g as in Figure 6.

g(R,S)

R S

f(S,R)

Fig. 6. Effective confluence functions

Example 16. The term rewriting system CL in the introduction is constructively
confluent, which can be seen by setting both f and g to the residual/projection
function, which is effective [4, Definition 8.7.54] (giving rise to least upper
bounds [4, Figure 8.7.52]), because CL is an orthogonal TRS.

The term rewriting system E is constructively confluent, which can be seen by
setting both f and g to the binary function computing the normal form of (the
target of) its second argument. This procedure is effective for any constructively
terminating TRS, such as E , the critical pairs of which are convergent (the upper
bounds computed are greatest with respect to the induced partial order �).

Corollary 1. Constructive confluence is modular.

Proof. All constructions in Section 3 are effective. In fact, the proof by induction
of Theorem 3 gives rise to a program which in order to compute a common reduct
for a peak of a given rank, relies on the ability to decompose the peak into peaks
of lower rank, on making recursive calls to itself giving valleys for those lower
ranks, and the ability to compose these valleys again.

That the program eventually terminates, i.e. that it does not produce an
infinitely regressing sequence of peaks for which common reducts need to be
found, relies on Theorem 1 the proof of which is seen to be constructive.4 "!

Example 17. The disjoint union of CL*E is constructively confluent, computing
least (greatest) upper bounds on CL (E) components.

Note that since the confluence proofs in the literature are not constructive,
they yield no method better than a blind search to find a common reduct, the
4 Although, as far as we know, Theorem 1 itself has not been formalized in some proof

checker, its ‘point version’ (where objects instead of steps are labelled) has [7].

360 V. van Oostrom

termination of which will not be constructive. Even if one is not concerned with
that, such a blind search is of course extremely inefficient.

Remark 1. The complexity of our construction should be studied. It should be
interesting to formalize our proof in, say Coq, and extract an effective confluence
function which computes for any pair of diverging reductions in a disjoint union,
the corresponding converging reductions, by making calls to the confluence func-
tions for the component term rewriting systems.

5 (Im)possible Extensions

5.1 Constructor-Sharing TRSs

Two (possibly non-disjoint) TRSs T1 and T2 are said to be constructor-sharing
if the symbols shared by their alphabets (possibly none) are constructors, i.e.
do not appear as head-symbols of left-hand sides of rules. The following well-
known example [5, Examples 8.2.1,8.5.24] shows that the union of confluent
constructor-sharing TRSs need not be confluent, in general.

Example 18. Let T1 be {∞→ S(∞)} and T2 be {E(x, x)→ true, E(x, S(x))→
false}. Then T1 and T2 are confluent, and share the constructor S, but their
union T1 ∪ T2

5 is not confluent: true ← E(∞,∞) → E(∞, S(∞)) → false. A
similar counterexample arises when setting T1 to {∞→ I(S(∞)), I(x)→ x}.

The counterexamples can be barred by forbidding the TRSs to have rules with a
shared constructor or variable as head-symbol of the right-hand side, forbidding
∞→S(∞) and I(x)→x in the example. Modularity of (constructive) confluence
of such opaque TRSs [5, Corollary 8.5.23] reduces to ordinary modularity:

Definition 4. For T = (Σ,R) an opaque TRS, T is (Σ,R) with:

– Σ a new signature having opaque Σ-contexts as function symbols, where a
Σ-context is opaque if only its head-symbol is not a constructor; its arity as
function symbol is the number of holes in it as context.

– For a Σ-term t not headed by a shared constructor, let t denote the (unique)
corresponding Σ-term. Then R is a new set of rules consisting of lγ→rγ for
all l→ r ∈R and all substitutions γ of shared constructor terms.

Example 19. For the opaque TRS T2 of Example 18, T 2 consists of false, true,
E(�,�), E(S(�),�), E(�, S(�)), E(S(�), S(�)), E(S(S(�)),�),. . .

Lemma 4. For any opaque TRS T , Con(T) ⇐⇒ Con(T).

Proof (Sketch). Since shared constructor symbols are inert, confluence of T re-
duces to confluence of non-shared-constructor-headed terms. We conclude as by
opaqueness · is a bisimulation [4, Section 8.4.1] between →T and →T on such
terms.
5 Huet’s counterexample to confluence of non-overlapping TRS [4, Example 4.1.4(i)].

Modularity of Confluence 361

Theorem 4. (Constructive) confluence is modular for opaque TRSs.

Proof. Suppose T1 and T2 are confluent opaque TRSs. By the lemma and The-
orem 3: Con(T1 ∪ T2) ⇐⇒ Con(T1 ∪ T2) ⇐⇒ Con(T 1 ∪ T 2) ⇐⇒ Con(T 1 *
T 2) ⇐⇒ Con(T 1) & Con(T 2) ⇐⇒ Con(T1) & Con(T2). "!

5.2 Extra-Variable TRSs

Definition 5. An extra-variable TRS is a term rewriting system where the con-
dition that variables of the right-hand side must be contained in those of the
left-hand side, is dropped.

Modularity of confluence for extra-variable TRSs was studied in [8] in an ab-
stract categorical setting. However, the following surprising example shows that
confluence for extra-variable TRSs is not preserved under decomposition, hence
that the conditions on the categorical setting in [8] must exclude a rather large
class of extra-variable TRSs, in order not to contradict the statement in [9,
Section 4.3] that in that setting confluence is preserved under decomposition.

Example 20. Consider the following extra-variable TRSs, where the variable z
in the right-hand side of the first rule of T1 is not contained in the variables of
its left-hand side:

T1 = {f(x, y)→ f(z, z), f(b, c)→ a, b→ d, c→ d}

T2 = {M(y, x, x)→ y,M(x, x, y)→ y}

Clearly T1 is not confluent since a← f(b, c) → f(t, t) �� a as no term t reduces
to both b and c. However the disjoint union of T1 and T2 is confluent, as then

f(x, y)→ f(M(b, d, c),M(b, d, c))→2 f(M(b, d, d),M(d, d, c)) →2 f(b, c)→ a

Formally: this justifies adjoining the rule % : f(x, y)→ a, after which the first two
rules of T1 are derivable: f(x, y) →� a ←� f(z, z) and f(b, c) →� a. Removing
these two rules we obtain an ordinary TRS T confluence of which entails conflu-
ence of the disjoint union as per construction↔∗

T1�T2
=↔∗

T and �T ⊆ �T1�T2 .
Confluence of T holds by Huet’s Critical Pair Lemma [4, Thm. 2.7.15], as T is
terminating and its critical pair, arising from x←M(x, x, x) → x, is trivial.

Remark 2. Note that in the above counterexample, the disjoint union T1 * T2 is
neither orthogonal nor left- or right-linear. We conjecture that requiring either of
these three properties suffices for establishing that the components of a confluent
extra-variable TRS are confluent again.

At present, we do not know whether our method does extend to show the other
direction, preservation of confluence under disjoint unions, for extra-variable
TRSs. We conjecture it does, but the following two examples exhibit some proof-
invariant-breaking phenomena.

362 V. van Oostrom

Example 21. It is not always possible to avoid creating aliens to find a common
reduct. For instance, the peak H(a)← f(H(a)) → g(H(a), a) in the union of

T1 = {f(x)→ x, f(x)→ g(x, a), g(x, y)→ g(x, z), g(x, x)→ x}

with the empty TRS T2 over {H}, can only be completed into a valley of shape
H(a)← g(H(a), H(a)) g(H(a), a), i.e. by creating an alien H(a).

Example 22. It is not always possible to erase an alien once created. For instance,
consider extending the rules expressing that ∗ is an associative–commutative
symbol with the creation ex nihilo rule x ∗ y→ x ∗ y ∗ z. This gives a confluent
TRS, where finding a common reduct can be thought of as constructing a multi-
set union. Obviously, reduction in the disjoint union with an arbitrary other
(non-erasing) TRS may create terms of arbitrary rank which can never be erased.

Remark 3. According to [10], the proof of [3] that confluence is preserved does
extend to extra-variable TRSs.

5.3 Pseudo-TRSs

For pseudo-TRSs [4, p. 36], i.e. extra-variable TRSs where also the condition that
the head-symbol of the left-hand side must be a function symbol, is dropped, i.e.
TRSs where both the left- and right-hand side are arbitrary terms, modularity
trivially fails in both directions:

– The disjoint union of the confluent pseudo-TRSs T1 = {x → f(x)} and
T2 = {G(A) → A} is not confluent. To wit A ← G(A) → G(f(A)), and A,
G(f(A)) do not have a common reduct as one easily verifies.

– Vice versa, the disjoint union of the pseudo-TRSs T1 = {a→ b, a→ c} and
T2 = {x → D} is confluent since any term reduces in one step to D, but
clearly T1 is not confluent.

6 Conclusion

We have presented a novel proof of modularity of (constructive) confluence for
term rewriting systems.

– Our proof is relatively short, in any case when omitting the illustrative ex-
amples from Section 3. Still a better measure for that would be obtained by
formalising it, which we intend to pursue.

– Our proof is itself modular in that it is based on the decreasing diagrams
technique. Following [11], it would be interesting to pursue this further and
try to factorize other existing proof methods in this way as well. For in-
stance, the commutation of outer and inner reductions for preserved terms
([4, Lemma 5.8.7(ii)],[5, Lemma 8.5.15]) can be proven by labelling inner
steps by the imbalance of their target, since that gives rise to the same de-
creasing diagrams as in Figure 4, after replacing short (tall) by inner (outer).6

6 Still, that wouldn’t make these proofs constructive, as the projection to preserved
terms they rely on is not constructive.

Modularity of Confluence 363

– It would be interesting to see whether our novel way of decomposing terms
and steps into short and tall parts, could be meaningfully employed to estab-
lish other results (constructively), e.g. persistence of confluence [12], mod-
ularity of uniqueness of normal forms [13], or modularity of confluence for
conditional TRSs [14].

Acknowledgments. We thank the anonymous referees, Bernhard Gramlich, Jean-
Pierre Jouannaud, Jeroen Ketema, Paul-André Melliès, Aart Middeldorp, and
attendants of the TeReSe seminar (Utrecht, 2006) and the Austria–Japan Sum-
mer Workshop (Obergurgl, 2007) for feedback.

References

1. Toyama, Y.: On the Church–Rosser property for the direct sum of term rewrit-
ing systems. Journal of the Association for Computing Machinery 34(1), 128–143
(1987)

2. Klop, J., Middeldorp, A., Toyama, Y., de Vrijer, R.: Modularity of confluence: A
simplified proof. Information Processing Letters 49(2), 101–109 (1994)

3. Jouannaud, J.: Modular Church–Rosser modulo. In: Pfenning, F. (ed.) RTA 2006.
LNCS, vol. 4098, pp. 96–107. Springer, Heidelberg (2006)

4. Terese: Term Rewriting Systems. Cambridge Tracts in Theoretical Computer Sci-
ence, vol. 55. Cambridge University Press, Cambridge (2003)

5. Ohlebusch, E.: Advanced Topics in Term Rewriting. Springer, Heidelberg (2002)
6. van Oostrom, V.: Confluence by decreasing diagrams. Theoretical Computer Sci-

ence 126(2), 259–280 (1994)
7. Bognar, M.: A point version of decreasing diagrams. In: Engelfriet, J., Spaan, T.

(eds.) Proceedings Accolade 1996, pp. 1–14. Amsterdam (1997); Dutch Graduate
School in Logic

8. Lüth, C.: Compositional term rewriting: An algebraic proof of Toyama’s theorem.
In: Ganzinger, H. (ed.) RTA 1996. LNCS, vol. 1103, pp. 261–275. Springer, Hei-
delberg (1996)

9. Lüth, C.: Categorical Term Rewriting: Monads and Modularity. PhD thesis, Uni-
versity of Edinburgh (1997)

10. Jouannaud, J.: Personal communication (2006)
11. van Oostrom, V.: Confluence by decreasing diagrams, converted. In: Voronkov,

A. (ed.) Proceedings of the 19th RTA. LNCS, vol. 5117, pp. 306–320. Springer,
Heidelberg (2008)

12. Aoto, T., Toyama, Y.: Persistency of confluence. Journal of Universal Computer
Science 3, 1134–1147 (1997)

13. Middeldorp, A.: Modular aspects of properties of term rewriting systems related
to normal forms. In: Dershowitz, N. (ed.) RTA 1989. LNCS, vol. 355, pp. 263–277.
Springer, Heidelberg (1989)

14. Middeldorp, A.: Confluence of the disjoint union of conditional term rewriting
systems. In: Okada, M., Kaplan, S. (eds.) CTRS 1990. LNCS, vol. 516, pp. 295–
306. Springer, Heidelberg (1991)

Automated Complexity Analysis Based on the
Dependency Pair Method�

Nao Hirokawa1 and Georg Moser2

1 School of Information Science, Japan Advanced Institute of Science and Technology,
Japan

hirokawa@jaist.ac.jp
2 Institute of Computer Science, University of Innsbruck, Austria

georg.moser@uibk.ac.at

Abstract. In this paper, we present a variant of the dependency pair
method for analysing runtime complexities of term rewrite systems au-
tomatically. This method is easy to implement, but significantly extends
the analytic power of existing direct methods. Our findings extend the
class of TRSs whose linear or quadratic runtime complexity can be de-
tected automatically. We provide ample numerical data for assessing the
viability of the method.

1 Introduction

Term rewriting is a conceptually simple but powerful abstract model of compu-
tation that underlies much of declarative programming. In order to assess the
complexity of a (terminating) term rewrite system (TRS for short) it is natural
to look at the maximal length of derivation sequences, as suggested by Hofbauer
and Lautemann in [1]. More precisely, the derivational complexity function with
respect to a (terminating and finitely-branching) TRSR relates the length of the
longest derivation sequence to the size of the initial term. For direct termination
techniques it is often possible to establish upper-bounds on the growth rate of
the derivational complexity function from the termination proof of R, see for
example [1,2,3,4,5,6].

However, if one is interested in methods that induce feasible (i.e., polynomial)
complexity, the existing body of research is not directly applicable. On one hand
this is due to the fact that for standard techniques the derivational complexity
cannot be contained by polynomial growth rates. (See [6] for the exception to the
rule.) Already termination proofs by polynomial interpretations induce a double-
exponential upper-bound on the derivational complexity, cf. [1]. On the other
hand this is—to some extent—the consequence of the definition of derivational
complexity as this measure does not discriminate between different types of
initial terms, while in modelling declarative programs the type of the initial
term is usually quite restrictive. The following example clarifies the situation.
� This research is partly supported by FWF (Austrian Science Fund) project P20133,

Leading Project e-Society (MEXT of Japan), and STARC.

A. Armando, P. Baumgartner, and G. Dowek (Eds.): IJCAR 2008, LNCS 5195, pp. 364–379, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Automated Complexity Analysis Based on the Dependency Pair Method 365

Example 1. Consider the TRS R

1: x− 0 → x 3: 0÷ s(y) → 0

2 : s(x) − s(y)→ x− y 4 : s(x)÷ s(y) → s((x− y)÷ s(y))

Although the functions computed by R are obviously feasible this is not reflected
in the derivational complexity of R. Consider rule 4, which we abbreviate as
C[y] → D[y, y]. Since the maximal derivation length starting with Cn[y] equals
2n−1 for all n > 0, R admits (at least) exponential derivational complexity.

After a moment one sees that this behaviour is forced upon us, as the TRS R
may duplicate variables, i.e., R is duplicating. Furthermore, in general the ap-
plicability of the above results is typically limited to simple termination. (But
see [4,5,6] for exceptions to this rule.) To overcome the first mentioned restric-
tion we propose to study runtime complexities of rewrite systems. The runtime
complexity function with respect to a TRS R relates the length of the longest
derivation sequence to the size of the arguments of the initial term, where the
arguments are supposed to be in normal form. In order to overcome the sec-
ond restriction, we base our study on a fresh analysis of the dependency pair
method. The dependency pair method [7] is a powerful (and easily automatable)
method for proving termination of term rewrite systems. In contrast to the above
cited direct termination methods, this technique is a transformation technique,
allowing for applicability beyond simple termination.

Studying (runtime) complexities induced by the dependency pair method is
challenging. Below we give an (easy) example showing that the direct transla-
tions of original theorems formulated in the context of termination analysis is
destined to failure in the context of runtime complexity analysis. If one recalls
that the dependency pair method is based on the observation that from an arbi-
trary non-terminating term one can extract a minimal non-terminating subterm,
this is not surprising. Through a very careful investigation of the original for-
mulation of the dependency pair method (see [7,8], but also [9]), we establish
a runtime complexity analysis based on the dependency pair method. In doing
so, we introduce weak dependency pairs and weak innermost dependency pairs
as a general adaption of dependency pairs to (innermost) runtime complexity
analysis. Here the innermost runtime complexity function with respect to a TRS
R relates the length of the longest innermost derivation sequence to the size of
the arguments of the initial term, where again the arguments are supposed to
be in normal form.

Our main result shows how natural improvements of the dependency pair
method, like usable rules, reduction pairs, and argument filterings become ap-
plicable in this context. Moreover, for innermost rewriting, we establish an
easy criteria to decide when weak innermost dependency pairs can be replaced
by “standard” dependency pairs without introducing fallacies. Thus we estab-
lish (for the first time) a method to analyse the derivation length induced
by the (standard) dependency pair method for innermost rewriting. We have

366 N. Hirokawa and G. Moser

implemented the technique and experimental evidence shows that the use of
weak dependency pairs significantly increases the applicability of the body of
existing results on the estimation of derivation length via termination techniques.
In particular, our findings extend the class of TRSs whose linear or quadratic
runtime complexity can be detected automatically.

The remainder of this paper is organised as follows. In the next section we re-
call basic notions and starting points of this paper. Section 3 and 4 introduce weak
dependency pairs and discuss the employability of the usable rule criteria. In Sec-
tion 5 we show how to estimate runtime complexities through relative rewriting
and in Section 6 we state our Main Theorem. The presented technique has been
implemented and we provide ample numerical data for assessing the viability of
the method. This evidence can be found in Section 7. Finally in Section 8 we con-
clude and mention possible future work.

2 Preliminaries

We assume familiarity with term rewriting [10,11] but briefly review basic con-
cepts and notations. Let V denote a countably infinite set of variables and F a
signature. The set of terms over F and V is denoted by T (F ,V). The root symbol
of a term t is either t itself, if t ∈ V , or the symbol f , if t = f(t1, . . . , tn). The set
of position Pos(t) of a term t is defined as usual. We write PosG(t) ⊆ Pos(t) for
the set of positions of subterms, whose root symbol is contained in G ⊆ F . The
subterm relation is denoted as �. Var(t) denotes the set of variables occurring
in a term t and the size |t| of a term is defined as the number of symbols in t.

A term rewrite system (TRS for short)R over T (F ,V) is a finite set of rewrite
rules l → r, such that l /∈ V and Var(l) ⊇ Var(r). The smallest rewrite relation
that contains R is denoted by →R. The transitive closure of →R is denoted by
→+

R, and its transitive and reflexive closure by →∗
R. We simply write → for →R

if R is clear from context. A term s ∈ T (F ,V) is called a normal form if there
is no t ∈ T (F ,V) such that s→ t. With NF(R) we denote the set of all normal
forms of a term rewrite system R. The innermost rewrite relation i−→R of a TRS
R is defined on terms as follows: s i−→R t if there exist a rewrite rule l→ r ∈ R,
a context C, and a substitution σ such that s = C[lσ], t = C[rσ], and all proper
subterms of lσ are normal forms of R. The set of defined function symbols is
denoted as D, while the constructor symbols are collected in C. We call a term
t = f(t1, . . . , tn) basic if f ∈ D and ti ∈ T (C,V) for all 1 � i � n. A TRS R is
called duplicating if there exists a rule l→ r ∈ R such that a variable occurs more
often in r than in l. We call a TRS terminating if no infinite rewrite sequence
exists. Let s and t be terms. If exactly n steps are performed to rewrite s to t
we write s→n t. The derivation length of a terminating term t with respect to a
TRS R and rewrite relation →R is defined as: dl(s,→R) = max{n | ∃t s→n t}.
Let R be a TRS and T be a set of terms. The runtime complexity function with
respect to a relation → on T is defined as follows:

rc(n, T,→) = max{dl(t,→) | t ∈ T and |t| � n} .

Automated Complexity Analysis Based on the Dependency Pair Method 367

In particular we are interested in the (innermost) runtime complexity with re-
spect to →R (i−→R) on the set Tb of all basic terms.1 More precisely, the runtime
complexity function (with respect toR) is defined as rcR(n) := rc(n, Tb,→R) and
we define the innermost runtime complexity function as rci

R(n) := rc(n, Tb,
i−→R).

Finally, the derivational complexity function (with respect to R) becomes de-
finable as follows: dcR(n) = rc(n, T ,→R), where T denotes the set of all terms
T (F ,V). We sometimes say the (innermost) runtime complexity of R is linear,
quadratic, or polynomial if rc

(i)
R (n) is bounded linearly, quadratically, or polyno-

mially in n, respectively. Note that the derivational complexity and the runtime
complexity of a TRS R may be quite different: In general it is not possible to
bound dcR polynomially in rcR, as witnessed by Example 1 and the observation
that the runtime complexity of R is linear (see Example 34, below).

A proper order is a transitive and irreflexive relation and a preorder is a
transitive and reflexive relation. A proper order . is well-founded if there is no
infinite decreasing sequence t1 . t2 . t3 · · · . A well-founded proper order that is
also a rewrite relation is called a reduction order. We say a reduction order . and
a TRS R are compatible if R ⊆ .. It is well-known that a TRS is terminating if
and only if there exists a compatible reduction order. An F -algebra A consists
of a carrier set A and a collection of interpretations fA for each function symbol
in F . A well-founded and monotone algebra (WMA for short) is a pair (A, >),
where A is an algebra and > is a well-founded partial order on A such that
every fA is monotone in all arguments. An assignment α : V → A is a function
mapping variables to elements in the carrier. A WMA naturally induces a proper
order >A on terms: s >A t if [α]A(s) > [α]A(t) for all assignments α : V → A.

3 The Dependency Pair Method

The purpose of this section is to take a fresh look at the dependency pair method
from the point of complexity analysis. Familiarity with [7,9] will be helpful. The
dependency pair method for termination analysis is based on the observation
that from an arbitrary non-terminating term one can extract a minimal non-
terminating subterm. For complexity analysis we employ a similar observation:
From a given term t one can extract a list of subterms whose sum of the derivation
lengths is equal to the derivational length of t.

Let X be a set of symbols. We write C〈t1, . . . , tn〉X to denote C[t1, . . . , tn],
whenever root(ti) ∈ X for all 1 � i � n and C is an n-hole context containing
no X-symbols. (Note that the context C may be degenerate and doesn’t contain
a hole � or it may be that C is a hole.) Then, every term t can be uniquely
written in the form C〈t1, . . . , tn〉X .

Lemma 2. Let t be a terminating term, and let σ be a substitution. Then
dl(tσ,→R) =

∑

1�i�n dl(tiσ,→R), whenever t = C〈t1, . . . , tn〉D∪V .

1 We can replace Tb by the set of terms f(t1, . . . , tn) with f ∈ D, whose arguments ti

are in normal form, while keeping all results in this paper.

368 N. Hirokawa and G. Moser

We define the function com as a mapping from tuples of terms to terms as
follows: com(t1, . . . , tn) is t1 if n = 1, and c(t1, . . . , tn) otherwise. Here c is a
fresh n-ary function symbol called compound symbol. The above lemma motivates
the next definition of weak dependency pairs.

Definition 3. Let t be a term. We set t� := t if t ∈ V, and t� := f �(t1, . . . , tn) if
t = f(t1, . . . , tn). Here f � is a new n-ary function symbol called dependency pair
symbol. For a signature F , we define F � = F ∪{f � | f ∈ F}. Let R be a TRS. If
l→ r ∈ R and r = C〈u1, . . . , un〉D∪V then the rewrite rule l� → com(u�

1, . . . , u
�
n)

is called a weak dependency pair of R. The set of all weak dependency pairs is
denoted by WDP(R).

Example 4 (continued from Example 1). The set WDP(R) consists of the next
four weak dependency pairs:

5: x−� 0 → x 7 : 0÷� s(y)→ c1

6: s(x)−� s(y)→ x−� y 8 : s(x) ÷� s(y)→ (x− y)÷� s(y)

Lemma 5. Let t ∈ T (F ,V) be a terminating term with root(t) ∈ D. We have dl
(t,→R) = dl(t�,→WDP(R)∪R).

Proof. We show dl(t,→R) � dl(t�,→WDP(R)∪R) by induction on � = dl(t,→R).
If � = 0, the inequality is trivial. Suppose � > 0. Then there exists a term u such
that t→R u and dl(u,→R) = �− 1. We distinguish two cases depending on the
rewrite position p.

– If p is a position below the root, then clearly root(u) = root(t) ∈ D and
t� →R u�. The induction hypothesis yields dl(u,→R) � dl(u�,→WDP(R)∪R),
and we obtain � � dl(t�,→WDP(R)∪R).

– If p is a root position, then there exist a rewrite rule l → r ∈ R and a
substitution σ such that t = lσ and u = rσ. We have r = C〈u1, . . . , un〉D∪V
and thus by definition l� → com(u�

1, . . . , u
�
n) ∈ WDP(R) such that t� = l�σ.

Now, either ui ∈ V or root(ui) ∈ D for every 1 � i � n. Suppose ui ∈ V .
Then u�

iσ = uiσ and clearly no dependency pair symbol can occur and thus,

dl(uiσ,→R) = dl(u�
iσ,→R) = dl(u�

iσ,→WDP(R)∪R) .

Otherwise, root(ui) ∈ D and thus u�
iσ = (uiσ)�. We have dl(uiσ,→R) � dl

(u,→R)< l, and conclude dl(uiσ,→R) � dl(u�
iσ,→WDP(R)∪R) by the induc-

tion hypothesis. Therefore,

� = dl(u,→R) + 1 =
∑

1�i�n

dl(uiσ,R) + 1 �
∑

1�i�n

dl(u�
iσ,WDP(R) ∪R) + 1

� dl(com(u�
1, . . . , u

�
n)σ,→WDP(R)∪R) + 1 = dl(t�,→WDP(R)∪R) .

Here we used Lemma 2 for the second equality.

Automated Complexity Analysis Based on the Dependency Pair Method 369

Note that t is R-reducible if and only if t� is WDP(R) ∪ R-reducible. Hence as
t is terminating, t� is terminating on →WDP(R)∪R. Thus, similarly, dl(t,→R) �
dl(t�,→WDP(R)∪R) is shown by induction on dl(t�,→WDP(R)∪R). "!

Lemma 6. Let t be a terminating term and σ a substitution such that xσ is a
normal form of R for all x ∈ Var(t). Then dl(tσ,→R) =

∑

1�i�n dl(tiσ,→R),
whenever t = C〈t1, . . . , tn〉D.

Definition 7. Let R be a TRS. If l → r ∈ R and r = C〈u1, . . . , un〉D then the
rewrite rule l� → com(u�

1, . . . , u
�
n) is called a weak innermost dependency pair

of R. The set of all weak innermost dependency pairs is denoted by WIDP(R).

Example 8 (continued from Example 1). The set WIDP(R) consists of the next
four weak dependency pairs (with respect to i−→):

x−� 0 → c1 0÷� y → c2

s(x) −� s(y)→ x−� y s(x)÷� s(y)→ (x− y)÷� s(y)

The next lemma adapts Lemma 5 to innermost rewriting.

Lemma 9. Let t be an innermost terminating term in T (F ,V) with root(t) ∈ D.
We have dl(t, i−→R) = dl(t�, i−→WIDP(R)∪R).

We conclude this section by discussing the applicability of standard dependency
pairs ([7]) in complexity analysis. For that we recall the standard definition of
dependency pairs.

Definition 10 ([7]). The set DP(R) of (standard) dependency pairs of a TRS
R is defined as {l� → u� | l→ r ∈ R, u � r, root(u) ∈ D}.

The next example shows that Lemma 5 (Lemma 9) does not hold if we replace
weak (innermost) dependency pairs with standard dependency pairs.

Example 11. Consider the one-rule TRS R: f(s(x)) → g(f(x), f(x)). DP(R) is
the singleton of f�(s(x)) → f�(x). Let tn = f(sn(x)) for each n � 0. Since
tn+1 →R g(tn, tn) holds for all n � 0, it is easy to see dl(tn+1,→R) � 2n,
while dl(t�n+1,→DP(R)∪R) = n.

Hence, in general we cannot replace weak dependency pairs with (standard)
dependency pairs. However, if we restrict our attention to innermost rewriting,
we can employ dependency pairs in complexity analysis without introducing
fallacies, when specific conditions are met.

Lemma 12. Let t be an innermost terminating term with root(t) ∈ D. If all
compound symbols in WIDP(R) are nullary, dl(t, i−→R) � dl(t�, i−→DP(R)∪R) + 1
holds.

Example 13 (continued from Example 8). The occurring compound symbols are
nullary. DP(R) consists of the next three dependency pairs:

s(x) −� s(y)→ x−� y s(x)÷� s(y)→ x−� y

s(x)÷� s(y)→ (x− y)÷� s(y)

370 N. Hirokawa and G. Moser

4 Usable Rules

In the previous section, we studied the dependency pair method in the light of
complexity analysis. LetR be a TRS and P a set of weak dependency pairs, weak
innermost dependency pairs, or standard dependency pairs of R. Lemmata 5, 9,
and 12 describe a strong connection between the length of derivations in the orig-
inal TRSs R and the transformed (and extended) system P ∪ R. In this section
we show how we can simplify the new TRS P ∪R by employing usable rules.

Definition 14. We write f �d g if there exists a rewrite rule l → r ∈ R such
that f = root(l) and g is a defined function symbol in Fun(r). For a set G of
defined function symbols we denote by R�G the set of rewrite rules l → r ∈ R
with root(l) ∈ G. The set U(t) of usable rules of a term t is defined as R�{g |
f �∗

d g for some f ∈ Fun(t)}. Finally, if P is a set of (weak) dependency pairs
then U(P) =

⋃

l→r∈P U(r).

Example 15 (continued from Examples 4 and 8). The sets of usable rules are
equal for the weak dependency pairs and for the weak innermost dependency
pairs, i.e., we have U(WDP(R)) = U(WIDP(R)) = {1, 2}.

The usable rule criterion in termination analysis (cf. [12,9]) asserts that a non-
terminating rewrite sequence of R ∪ DP(R) can be transformed into a non-
terminating rewrite sequence of U(DP(R))∪DP(R)∪{g(x, y) → x, g(x, y)→ y},
where g is a fresh function symbol. Because U(DP(R)) is a (small) subset of R
and most termination methods can handle g(x, y) → x and g(x, y) → y easily,
the termination analysis often becomes easy by switching the target of analysis
from the former TRS to the latter TRS. Unfortunately the transformation used
in [12,9] increases the size of starting terms, therefore we cannot adopt this trans-
formation approach. Note, however that the usable rule criteria for innermost
termination [8] can be directly applied in the context of complexity analysis.
Nevertheless, one may show a new type of usable rule criterion by exploiting the
basic property of a starting term. Recall that Tb denotes the set of basic terms;
we set T �

b = {t� | t ∈ Tb}.

Lemma 16. Let P be a set of (weak) dependency pairs and let (ti)i=0,1,... be a
(finite or infinite) derivation of R∪P. If t0 ∈ T �

b then (ti)i=0,1,... is a derivation
of U(P) ∪ P.

Proof. Let G be the set of all non-usable symbols with respect to P . We write
P (t) if t|q∈ NF(R) for all q ∈ PosG(t). Since ti →U(P)∪P ti+1 holds whenever
P (ti) and ti →R∪P ti+1, it is sufficient to show P (ti) for all i. We perform
induction on i.

1. Assume i = 0. Since t0 ∈ T �
b , we have t0 ∈ NF(R) and thus t|p∈ NF(R)

for all positions p. The assertion P follows trivially.
2. Suppose i > 0. By induction hypothesis, there exist l → r ∈ U(P) ∪ P ,
p ∈ Pos(ti−1), and a substitution σ such that ti−1 |p= lσ and ti|p= rσ. In
order to show property P for ti, we fix a position q ∈ G. We have to show
ti|q∈ NF(R). We distinguish three cases:

Automated Complexity Analysis Based on the Dependency Pair Method 371

– Suppose that q is above p. Then ti−1|q is reducible, but this contradicts
the induction hypothesis P (ti−1).

– Suppose p and q are parallel but distinct. Since ti−1 |q= ti |q∈ NF(R)
holds, we obtain P (ti).

– Otherwise, q is below p. Then, ti|q is a subterm of rσ. Because r contains
no G-symbols by the definition of usable symbols, ti|q is a subterm of xσ
for some x ∈ Var(r) ⊆ Var(l). Therefore, ti|q is also a subterm of ti−1,
from which ti|q∈ NF(R) follows. We obtain P (ti). "!

The following theorem follows from Lemmata 5, 9, and 12 in conjunction with
the above Lemma 16. It adapts the usable rule criteria to complexity analysis.2

Theorem 17. Let R be a TRS and let t ∈ Tb. If t is terminating with respect
to → then dl(t,→) � dl(t�,→U(P)∪P), where → denotes →R or i−→R depending
on whether P = WDP(R) or P = WIDP(R). Moreover, suppose all compound
symbols in WIDP(R) are nullary then dl(t, i−→R) � dl(t�,→U(DP(R))∪DP(R)) + 1.

It is worth stressing that it is (often) easier to analyse the complexity of U(P)∪P
than the complexity of R. To clarify the applicability of the theorem in com-
plexity analysis, we consider two restrictive classes of polynomial interpretations,
whose definitions are motivated by [13].

A polynomial P (x1, . . . , xn) (over the natural numbers) is called strongly lin-
ear if P (x1, . . . , xn) = x1 + · · ·+xn +c where c ∈ N. A polynomial interpretation
is called linear restricted if all constructor symbols are interpreted by strongly
linear polynomials and all other function symbols by a linear polynomial. If
on the other hand the non-constructor symbols are interpreted by quadratic
polynomials, the polynomial interpretation is called quadratic restricted. Here a
polynomial is quadratic if it is a sum of monomials of degree at most 2. It is
easy to see that if a TRS R is compatible with a linear or quadratic restricted
interpretation, the runtime complexity of R is linear or quadratic, respectively
(see also [13]).

Corollary 18. Let R be a TRS and let P = WDP(R) or P = WIDP(R). If
U(P) ∪ P is compatible with a linear or quadratic restricted interpretation,
the (innermost) runtime complexity function rc

(i)
R with respect to R is linear

or quadratic, respectively. Moreover, suppose all compound symbols in WIDP(R)
are nullary and U(DP(R)) ∪ DP(R) is compatible with a linear (quadratic) re-
stricted interpretation, then R admits at most linear (quadratic) innermost run-
time complexity.

Proof. Let R be a TRS. For simplicity we suppose P = WDP(R) and assume
the existence of a linear restricted interpretation A, compatible with U(P) ∪
P . Clearly this implies the well-foundedness of the relation →U(P)∪P , which in
turn implies the well-foundedness of →R, cf. Lemma 16. Hence Theorem 17 is
applicable and we conclude dl(t,→R) � dl(t�,→WDP(R)∪R). On the other hand,

2 Note that Theorem 17 only holds for basic terms t ∈ T �
b . In order to show this, we

need some additional technical lemmas, which are the subject of the next section.

372 N. Hirokawa and G. Moser

compatibility with A implies that dl(t�,→WDP(R)∪R) = O(|t�|). As |t�| = |t|, we
can combine these equalities to conclude linear runtime complexity of R. "!

5 The Weight Gap Principle

We recall the notion of relative rewriting ([14,11]).

Definition 19. Let R and S be TRSs. We write →R/S for →∗
S · →R · →∗

S and
we call →R/S the relative rewrite relation of R over S.3

Since dl(t,→R/S) corresponds to the number of →R-steps in a maximal deriva-
tion of →R∪S from t, we easily see the bound dl(t,→R/S) � dl(t,→R∪S). In this
section we study this opposite, i.e., we figure out a way to give an upper-bound
of dl(t,→R∪S) by a function of dl(t,→R/S).

First we introduce the key ingredient, strongly linear interpretations, a very re-
strictive form of polynomial interpretations. Let F denote a signature. A strongly
linear interpretation (SLI for short) is a WMA (A,.) that satisfies the following
properties: (i) the carrier of A is the set of natural numbers N, (ii) all interpre-
tation functions fA are strongly linear, (iii) the proper order . is the standard
order > on N. Note that an SLI A is conceivable as a weight function. We define
the maximum weight MA of A as max{fA(0, . . . , 0) | f ∈ F}. Let A denote an
SLI, let α0 denote the assignment mapping any variable to 0, i.e., α0(x) = 0 for
all x ∈ V , and let t be a term. We write [t] as an abbreviation for [α0]A(t).

Lemma 20. Let A be an SLI and let t be a term. Then [t] � MA · |t| holds.

Proof. By induction on t. If t ∈ V then [t] = 0 � MA · |t|. Otherwise, suppose
t = f(t1, . . . , tn), where fA(x1, . . . , xn) = x1 + . . . + xn + c. By the induction
hypothesis and c � MA we obtain the following inequalities:

[t] = fA([t1], . . . , [tn]) � [t1] + · · ·+ [tn] + c
� MA · |t1|+ · · ·+ MA · |tn|+ MA = MA · |t| . "!

The conception of strongly linear interpretations as weight functions allows us
to study (possible) weight increase throughout a rewrite derivation. This obser-
vation is reflected in the next definition.

Definition 21. Let A be an algebra and let R be a TRS. The weight gap
Δ(A,R) of A with respect to R is defined on N as follows: Δ(A,R) = max{[r] ·−
[l] | l→ r ∈ R}, where ·− is defined as usual: m ·− n := max{m− n, 0}
The following weight gap principle is a direct consequence of the definitions.

Lemma 22. Let R be a TRS and A an SLI. If s→R t then [s]+Δ(A,R) � [t].

We stress that the lemma does not require any condition. Indeed, the implication
in the lemma holds even if TRS R is not compatible with a strongly linear
interpretation. This principle brings us to the next theorem.
3 Note that →R/S =→R, if S = ∅.

����
���� ��
������ ������� 4���� �� ��� 5��������� +�	 1����� /;/

������� �� %�� R �	� S �� ����& �	� A �	 �%) �������
� ���� S� ���	
�� ���� dl(t,→R∪S) � (1 + Δ(A,R)) · dl(t,→R/S) + MA · |t|& ���	���� t ��
�����	���	� �	 R∪ S�

-����� &�� m = dl(t,→R/S)% ��� n = |t|% �	
 ��� Δ = Δ(A,R)� 3	�
��������	
�� →R∪S �� �������	����� �� �������

s0 →k0
S t0 →R s1 →k1

S t1 →R · · · →km

S tm %

�	
 ������� ���� �� �	������� �� ��� ������ ���� ���
��������	 �� ��������
>� ������� ��� 	��� ��� ������

(a) ki � [si]− [ti] ���
� ��� ��� 0 � i � m� ���� �� ������� [s] � [t] + 1 ���	����
s →S t �� ��� ���������	 S ⊆ >A% �	
 �� ���� si →S

ki ti�
(b) [si+1] − [ti] � Δ ���
� ��� ��� 0 � i < m ��
�� �� &���� -- �� ����

[ti] + Δ � [si+1]�

>� �����	 ��� �������	 �	�$��������@

dl(s0,→R∪S) = m + k0 + · · · + km

� m + ([s0] − [t0]) + · · · + ([sm] − [tm])
= m + [s0] + ([s1] − [t0]) + · · · + ([sm] − [tm−1]) − [tm]
� m + [s0] + mΔ − [tm]
� m + [s0] + mΔ

� m + MA · n + mΔ = (1 + Δ)m + MA · n �

���� �� ���
 (a) m������ �	 ��� ����	
 ��	�% (b) m− 1������ �	 ��� ������ ��	�%
�	
 &���� -? �	 ��� ���� ��	�� ��

��� 	��� ������� �����*�� ���� ��� ��	
����	� ��������
 �	 ������� -. ���
�������@ >� ��		�� ������� ��� ���������	 ���� ��� ������ A �� ����	�
� ��	���
���� � ������ ���������	@ 3����
� �� A �� � ��	��� ����	����� �	�����������	%
���
��������	 ����� �� R ∪ S ��		�� �� ���	
�
 �
�	����

� �	 dl(t,→R/S)
�	
 |t| ���	��

����
� 2*� 6�	��
�� ��� �"#� R

exp(0) → s(0) d(0) → 0

exp(r(x)) → d(exp(x)) d(s(x)) → s(s(d(x)))

���� �"# ���������� ��� ����	�	������	 ��	����	� #����	 tn = exp(rn(0)) ��
�����	 dl(tn,→R) � 2n ��� ���� n � 0� ���� ��� ��	���� ���������� �� R ��
 �� �����! ����	�	����� �	 ��
�� �� ���� ��� �����% �� ����� R �	�� ��� �"#�
R1 = {exp(0) → s(0), exp(r(x)) → d(exp(x))} �	
 R2 = {d(0) → 0, d(s(x)) →
s(s(d(x)))}� ���	 �� �� ���� �� ������ ���� ��� 	��� ��	��� ����	����� �	���������
���	 A �� ���������� ���� R2@ 0A = 0% dA(x) = 3x% �	
 sA(x) = x + 1� �����
���� �	 ���������	
 �� dl(tn,→R1/R2) ��	 �� ��������
 �� ���	 ��� �������	

374 N. Hirokawa and G. Moser

polynomial interpretation B: 0B = 0, dB(x) = sB(x) = x, and expB(x) = rB(x) =
x + 1. Since →R1 ⊆ >B and →∗

R2
⊆ �B hold, we have →R1/R2 ⊆ >B. Hence

dl(tn,→R1/R2) � [α0]B(tn) = n + 2. But clearly from this we cannot conclude
a polynomial bound on the derivation length of R1 ∪ R2 = R, as the runtime
complexity of R is exponential, at least.

To conclude this section, we show that Theorem 17 can only hold for basic terms
t ∈ T �

b .

Example 25. Consider the one-rule TRS R = {a(b(x)) → b(b(a(x)))} from [15,
Example 2.50]. It is not difficult to see that dl(an(b(x)),→R) = 2n − 1, see [4].
The set WDP(R) consists of just one dependency pair a�(b(x)) → a�(x)). In
particular the set of usable rules is empty. The following SLI A is compatible
with WDP(R): a�

A(x) = aA(x) = x and bA(x) = 1. Hence, due to Lemma 20 we
can conclude the existence of a constant K such that dl(t�,→WDP(R)) � K · |t|.
Due to Theorem 17 we conclude linear runtime complexity of R.

6 Reduction Pairs and Argument Filterings

In this section we study the consequences of combining Theorem 17 and The-
orem 23. In doing so, we adapt reduction pairs and argument filterings ([7]) to
runtime complexity analysis. Let R be a TRS, and let A be a strongly linear
interpretation and suppose we consider weak, weak innermost, or (standard) de-
pendency pairs P . If U(P) ⊆ >A then there exist constants K,L � 0 (depending
on P and A only) such that

dl(t,→R) � K · dl(t�,→P/U(P)) + L · |t�| ,

for all terminating basic terms t ∈ Tb. This follows from the combination of
Theorems 17 and 23. Thus, in order to estimate the derivation length of t with
respect to R it suffices to estimate the maximal P steps, i.e., we have to estimate
dl(t�,→P/U(P)) suitably. Consider a maximal derivation (ti)i=0,...,n of →P/U(P)

with t0 = t�. For every 0 � i < n there exist terms ui and vi such that

ti →∗
U(P) ui →P vi →∗

U(P) ti+1 . (1)

Let � and . be a pair of orders with � · . ·� ⊆ .. If ti � ui . vi � ti+1 holds
for all 0 � i < n, we obtain t� = t0 . t1 . · · · . tn. Therefore, dl(t�,→P/U(P))
can be bounded in the maximal length of .-descending steps. We formalise these
observations through the use of reduction pairs and collapsible orders.

Definition 26. Let R be a TRS, let P a set of weak dependency pairs of R and
let G denote a mapping associating a term (over F � and V) and a proper order
. with a natural number. An order . on terms is G-collapsible for a TRS R if
s→P∪U(P) t and s . t implies G(s,.) > G(t,.). An order . is collapsible for
a TRS R, if there is a mapping G such that . is G-collapsible for R.

Automated Complexity Analysis Based on the Dependency Pair Method 375

Note that most reduction orders are collapsible. For instance, if A is a poly-
nomial interpretation then >A is collapsible, as witnessed by the evaluation
function [α0]A. Furthermore, simplification orders like MPO, LPO and KBO are
collapsible (cf. [2,3,5]).4

Definition 27. A rewrite preorder is a preorder on terms which is closed under
contexts and substitutions. A reduction pair (�,.) consists of a rewrite preorder
� and a compatible well-founded order . which is closed under substitutions.
Here compatibility means the inclusion � · . · � ⊆ .. A reduction pair (�,.)
is called collapsible for a TRS R if . is collapsible for R.

Recall the derivation in (1): Due to compound symbols the rewrite step ui →P vi

may take place below the root. Hence P ⊆ . does not ensure ui . vi. To address
this problem we introduce a notion of safety that is based on the next definitions.

Definition 28. The set T �
c is inductively defined as follows (i) T �

b ⊆ T �
c and

(ii) c(t1, . . . , tn) ∈ T �
c , whenever t1, . . . , tn ∈ T �

c and c a compound symbol.

Definition 29. A proper order . on T �
c is called safe if c(s1, . . . , si,

. . . , sn) . c(s1, . . . , t, . . . , sn) for all n-ary compound symbols c and all terms
s1, . . . , sn, t with si . t. A reduction pair (�,.) is called safe if . is safe.

Lemma 30. Let P be a set of weak, weak innermost, or standard dependency
pairs, and (�,.) be a safe reduction pair such that U(P) ⊆ � and P ⊆ .. If
s ∈ T �

c and s→P/U(P) t then s . t and t ∈ T �
c .

Employing Theorem 17, Theorem 23, and Lemma 30 we arrive at our Main
Theorem.

Theorem 31. Let R be a TRS, let A an SLI, let P be the set of weak, weak
innermost, or (standard) dependency pairs, and let (�,.) be a safe and G-
collapsible reduction pair such that U(P) ⊆ � and P ⊆ .. If in addition U(P) ⊆
>A then for any t ∈ Tb, we have dl(t,→) � p(G(t�, >A), |t|), where p(m,n) :=
(1 + Δ(A,P)) ·m + MA · n and → denotes →R or i−→R depending on whether
P = WDP(R) or P = WIDP(R). Moreover if all compound symbols in WIDP(R)
are nullary we have dl(t, i−→R) � p(G(t�, >A), |t|) + 1.

Proof. First, observe that the assumptions imply that any basic term t ∈ Tb is
terminating with respect to R. This is a direct consequence of Lemma 16 and
Lemma 30 in conjunction with the assumptions of the theorem. Without loss of
generality, we assume P = WDP(P). By Theorem 17 and 23 we obtain:

dl(t,→) � dl(t�,→U(P)∪P) � p(dl(t�,→P/U(P)), |t�|)
� p(G(t�, >A), |t�|) = p(G(t�, >A), |t|) .

In the last line we exploit that |t�| = |t|. "!
4 On the other hand it is easy to construct non-collapsible orders: Suppose we extend

the natural numbers N by a non-standard element ∞ such that for any n ∈ N we
set ∞ > n. Clearly we cannot collapse ∞ to a natural number.

/;6 8! 9	����� ��� :! 1���	

���� ���� ����� ������ � ������
���
��	��� �� ������� .(�	 ���������	 ��
������� (9� #�	�� ��� ���	 ������� ��$����� ������������� �� ������ ����� ����
���� ����	�� ��	��� �	�����������	% ��� ������ ����� ���� �� 	�	�
��������	�
���� �� 	�� 	�������� �� ���� ��� ��$������	�� �� ������� (9�

�	 ��
�� �� ��	������ ���� ��
�����	 ����� �	� ��� ��� ���� �
������% ����%
������ ��	���	� ��������	
�
 ������� (A,�) ���� ���� ��� �	�����������	� ��
������	
 ������� ��� �������� ��	���	� ���� ������� �� �� 3	����� ��� �� ��
����� �	 �����	� *�����	 �� � ��
�����	 �����

���	
�
�	 �� $	 �����	� *�����	 ��� � ���	����� F �� � ���	� π ����
�����	� �� ����� n!��� ��	����	 �����
 f ∈ F �	 ������	� ������	 i ∈ {1, . . . , n}
�� � +�����
� ����,
��� [i1, . . . , im] �� ������	� ������	� ���� 1 � i1 < · · · <
im � n� ��� ���	����� Fπ ��	����� �� �

 ��	����	 �����
� f ���� ���� π(f) ��
����
��� [i1, . . . , im]& ����� �	 Fπ ��� ����� �� f �� m� ����� ������	� �
����	�
π �	����� � ���	� ���� T (F ,V) �� T (Fπ,V)& �
�� ��	���� �� π1

π(t) =

⎧

⎪⎨

⎪⎩

t �� t �� � ������
�

π(ti) �� t = f(t1, . . . , tn) �	� π(f) = i

f(π(ti1), . . . , π(tim)) �� t = f(t1, . . . , tn) �	� π(f) = [i1, . . . , im]

$	 ������	� �
����	� π �� ��

�� ���� �� π(c) = [1, . . . , n] ��� �

 n!��� �����	�
�����
� (�� � ��
����	 R �	 T (F ,V) �� ���	� Rπ �	 T (Fπ,V) �� ��

���1 s Rπ t
�� �	� �	
� �� π(s) R π(t)�

����� �)� (A,�) �� � ���� �
����� ���	 (�A, >A) �� � ���� ��������	 ����
(����������& (�π,�π) �� � ���� ��������	 ��� �� (�,�) �� � ��������	 ��� �	�
π �� � ���� ������	� �
����	��

��� ����� ���	 ������� ������� ��� ���	 ������� �� ��� ��������	 A������ (
�	���
���
 �	 #�����	 (�

����
� /* +��	��	��� ���� ����
� *�,� 8� ����	 ��� #&� A ���� �	���������
���	 0A = 0% sA(x) = x+1% �	
 x−Ay = x+y+1% �� �����	 U(WDP(R)) ⊆ >A�
��������% �� ���� ��� ���� ������ B ���� 0B = 0% sB(x) = x + 2% x −B y =
x−�

B y = x÷�
B y = x +1% �	
 (c1)B = 0� B �	�������� WDP(R) �	
 U(WDP(R))

�� �������@

1: x + 1 � x 5: x + 1 > x 7: 1 > 0
2: x + 3 � x + 1 6: x + 3 > x + 1 8: x + 3 > x + 2 �

���������% WDP(R) ⊆ >B �	
 U(WDP(R)) ⊆ �B ���
� ��	��% ��� ��	����
���������� �� R ��� ���� �������	 �� ��	����

,������	 ��� ������	 �� ��� ����� �� 6�������� (: �� �� �	 ���� �������� �� ����	

������� .(�� � �����
 ��� ���������� �	������� �	 ��� ����� �������% ��
���� �����
� ���
 ��� ���� ���� ���� ������� ����	���	� ��! ��	��� ���������

�	�����������	 ��� �� ���
 �� ���� ��
�����	 ������

Automated Complexity Analysis Based on the Dependency Pair Method 377

Corollary 35. Let R be a TRS, let A be an SLI, let P be the set of weak,
weak innermost, or standard dependency pairs, where the compound symbols in
WIDP(R) are nullary, if P = DP(R). Moreover let B be a linear or quadratic
restricted interpretation such that (�B, >B) forms a safe reduction pair with
U(P) ⊆ �B and P ⊆ >B. If U(P) ⊆ >A then the (innermost) runtime complex-
ity function rc

(i)
R with respect to R is linear or quadratic, respectively.

Note that if U(P) = ∅, the compatibility of U(P) with an SLI is trivially satisfi-
able. In this special case by taking the SLI A that interprets all symbols with the
zero function, we obtain dl(t,→) � G(t�, >A) because Δ(A,∅) = MA = 0. As a
consequence of Theorem 31 and Lemma 12 we obtain the following corollary.

Corollary 36. Let R be a TRS, let A be an SLI, let all compound symbols in
WIDP(R) be nullary and let B be a linear or quadratic restricted interpretation
such that (�B, >B) forms a reduction pair with U(DP(R)) ⊆ �B and DP(R) ⊆
>B. If in addition U(DP(R)) ⊆ >A then the innermost runtime complexity
function rci

R with respect to R is linear or quadratic, respectively.

Corollary 36 establishes (for the first time) a method to analyse the derivation
length induced by the standard dependency pair method for innermost rewrit-
ing. More general, if all compound symbols in WIDP(R) are nullary and there
exists a collapsible reduction pair (�,.) such that U(P) ⊆ � and P ⊆ ., then
the innermost runtime complexity of R is linear in the maximal length of .-
descending steps. Clearly for string rewriting (cf. [11]) the compound symbols
in WIDP(R) are always nullary and the conditions works quite well for TRSs,
too (see Section 7).

7 Experiments

We implemented a complexity analyser based on syntactical transformations for
dependency pairs and usable rules together with polynomial orders (based on
[16]). To deal efficiently with polynomial interpretations, the issuing constraints
are encoded in propositional logic in a similar spirit as in [17]. Assignments
are found by employing a state-of-the-art SAT solver, in our case MiniSat5.
Furthermore, strongly linear interpretations are handled by a decision procedure
for Presburger arithmetic. As suitable test bed we used the rewrite systems in
the Termination Problem Data Base version 4.0.6 This test bed comprises 1679
TRSs, including 358 TRSs for innermost rewriting. The presented tests were
performed single-threaded on a 1.50 GHz Intel® Core™ Duo Processor L2300
and 1.5 GB of memory. For each system we used a timeout of 30 seconds, the
times in the tables are given in seconds. Table 1 summarises the results of the
conducted experiments.7 Text written in italics below the number of successes
or failures indicates total time of success cases or failure cases, respectively.8

5 http://minisat.se/.
6 http://www.lri.fr/~marche/tpdb/
7 For full experimental evidence see http://www.jaist.ac.jp/~hirokawa/08a/
8 Sum of numbers in each column may be less than 1679 because of stack overflow.

http://minisat.se/
http://www.lri.fr/~marche/tpdb/
http://www.jaist.ac.jp/~hirokawa/08a/

378 N. Hirokawa and G. Moser

Table 1. Experimental Results for TRSs

Linear Runtime Complexities
full rewriting innermost rewriting

LC Cor. 18 Cor. 35 both Cor. 18 (DP) Cor. 35 (DP) both

success 139 138 119 161 143 (135) 128 (113) 170
15 21 18 33 21 (20) 21 (15) 34

failure 1529 1501 1560 1478 1495 (1502) 1550 (1565) 1467
1564 2517 152 2612 2489 (2593) 180 (149) 2580

timeout 11 40 0 40 41 (42) 1 (1) 42

Quadratic Runtime Complexities
full rewriting innermost rewriting

QC Cor. 18 Cor. 35 both Cor. 18 (DP) Cor. 35 (DP) both

success 176 169 124 188 168 (152) 125 (109) 189
473 598 254 781 564 (457) 237 (128) 755

failure 702 657 1486 601 654 (707) 1486 (1502) 593
2569 2591 527 2700 2522 (2461) 602 (546) 2570

timeout 799 852 69 890 856 (816) 68 (68) 896

We use the following abbreviations: The method LC (QC) refers to compatibil-
ity with linear (quadratic) restricted interpretation, cf. Section 3. In interpreting
defined and dependency pair functions, we restrict the search to polynomials in
the range {0, 1, . . . , 5}. The upper half of Table 1 shows the experimental results
for linear runtime complexities based on LC. The columns marked “Cor. 18”
and “Cor. 35” refer to the applicability of the respective corollaries. In the col-
umn marked “both” we indicate the results, we obtain when we first try to apply
Corollary 35 and if this fails Corollary 18. The lower half summarises experimen-
tal results for quadratic runtime complexities based on QC. On the studied test
bed there are 1567 TRSs such that one may switch from WIDP(R) to DP(R).
For the individual tests, we indicated the results in parentheses for this versions
of Corollary 18 and Corollary 35.

8 Conclusion

In this paper we studied the runtime complexity of rewrite systems. We have
established a variant of the dependency pair method that is applicable in this
context and is easily mechanisable. In particular our findings extend the class of
TRSs whose linear or quadratic runtime complexity can be detected automati-
cally. We provided ample numerical data for assessing the viability of the method.
To conclude, we mention possible future work. In the experiments presented, we
have restricted our attention to interpretation based methods inducing linear or
quadratic (innermost) runtime complexity. Recently in [18] a restriction of the
multiset path order, called polynomial path order has been introduced that in-
duces polynomial runtime complexity. In future work we will test to what extent

Automated Complexity Analysis Based on the Dependency Pair Method 379

this is effectively combinable with our Main Theorem. Furthermore, we strive to
extend the approach presented here to handle dependency graphs [7].

References

1. Hofbauer, D., Lautemann, C.: Termination proofs and the length of derivations. In:
Dershowitz, N. (ed.) RTA 1989. LNCS, vol. 355, pp. 167–177. Springer, Heidelberg
(1989)

2. Hofbauer, D.: Termination proofs by multiset path orderings imply primitive re-
cursive derivation lengths. TCS 105(1), 129–140 (1992)

3. Weiermann, A.: Termination proofs for term rewriting systems with lexicographic
path orderings imply multiply recursive derivation lengths. TCS 139, 355–362
(1995)

4. Hofbauer, D.: Termination proofs by context-dependent interpretations. In: Mid-
deldorp, A. (ed.) RTA 2001. LNCS, vol. 2051, pp. 108–121. Springer, Heidelberg
(2001)

5. Moser, G.: Derivational complexity of Knuth Bendix orders revisited. In: Hermann,
M., Voronkov, A. (eds.) LPAR 2006. LNCS (LNAI), vol. 4246, pp. 75–89. Springer,
Heidelberg (2006)

6. Geser, A., Hofbauer, D., Waldmann, J., Zantema, H.: On tree automata that certify
termination of left-linear term rewriting systems. IC 205(4), 512–534 (2007)

7. Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. TCS 236,
133–178 (2000)

8. Giesl, J., Arts, T., Ohlebusch, E.: Modular termination proofs for rewriting using
dependency pairs. JSC 34(1), 21–58 (2002)

9. Hirokawa, N., Middeldorp, A.: Tyrolean termination tool: Techniques and features.
IC 205, 474–511 (2007)

10. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press,
Cambridge (1998)

11. Terese: Term Rewriting Systems. Cambridge Tracts in Theoretical Computer Sci-
ence, vol. 55. Cambridge University Press, Cambridge (2003)

12. Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Mechanizing and improving
dependency pairs. JAR 37(3), 155–203 (2006)

13. Bonfante, G., Cichon, A., Marion, J.Y., Touzet, H.: Algorithms with polynomial
interpretation termination proof. JFP 11(1), 33–53 (2001)

14. Geser, A.: Relative Termination. PhD thesis, Universität Passau (1990)
15. Steinbach, J., Kühler, U.: Check your ordering – termination proofs and open

problems. Technical Report SR-90-25, Universität Kaiserslautern (1990)
16. Contejean, E., Marché, C., Tomás, A.P., Urbain, X.: Mechanically proving termi-

nation using polynomial interpretations. JAR 34(4), 325–363 (2005)
17. Fuhs, C., Giesl, J., Middeldorp, A., Schneider-Kamp, P., Thiemann, R., Zankl, H.:

SAT solving for termination analysis with polynomial interpretations. In: Marques-
Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 340–354. Springer,
Heidelberg (2007)

18. Avanzini, M., Moser, G.: Complexity analysis by rewriting. In: Garrigue, J.,
Hermenegildo, M.V. (eds.) FLOPS 2008. LNCS, vol. 4989, pp. 130–146. Springer,
Heidelberg (2008)

Canonical Inference for Implicational Systems�

Maria Paola Bonacina1, and Nachum Dershowitz2,

1 Dipartimento di Informatica, Università degli Studi di Verona, Italy
mariapaola.bonacina@univr.it

2 School of Computer Science, Tel Aviv University, Ramat Aviv 69978, Israel
Nachum.Dershowitz@cs.tau.ac.il

Abstract. Completion is a general paradigm for applying inferences to
generate a canonical presentation of a logical theory, or to semi-decide the
validity of theorems, or to answer queries. We investigate what canonicity
means for implicational systems that are axiomatizations of Moore fam-
ilies – or, equivalently, of propositional Horn theories. We build a corre-
spondence between implicational systems and associative-commutative
rewrite systems, give deduction mechanisms for both, and show how
their respective inferences correspond. Thus, we exhibit completion pro-
cedures designed to generate canonical systems that are “optimal” for
forward chaining, to compute minimal models, and to generate canoni-
cal systems that are rewrite-optimal. Rewrite-optimality is a new notion
of “optimality” for implicational systems, one that takes contraction by
simplification into account.

1 Introduction

Knowledge compilation is the transformation of a knowledge base into a form
that makes efficient reasoning possible (e.g., [17,8,14]). In automated reason-
ing the knowledge base is often the “presentation” of a theory, where we use
“presentation” to mean a set of formulæ, reserving “theory” for a presentation
with all its theorems. From the perspective taken here, canonicity of a presen-
tation depends on the availability of the best proofs, or normal-form proofs.
Proofs are measured by proof orderings, and the most desirable are the minimal
proofs. Since a minimal proof in a certain presentation may not be minimal in
a larger presentation, normal-form proofs are the minimal proofs in the largest
presentation, that is, in a deductively-closed presentation. However, what is a
deductively-closed presentation depends on the choice of deduction mechanism.
Thus, the choices of normal form and deduction mechanism are intertwined.

An archetypal instance of knowledge compilation is completion of equational
theories, where normal-form proofs are valley proofs, that is, proofs where equa-
tions only decrease terms: a given presentation E is transformed into an equiva-
lent, ground-convergent presentation E�, such that for all theorems ∀x̄ u 2 v, E�

� A longer version, “Canonical Ground Horn Theories”, is available as RR49/2007,
DI, UniVR at http://profs.sci.univr.it/∼bonacina/canonicity.html

�� Research supported in part by MIUR grant no. 2003-097383.
� � � Research supported in part by the Israel Science Foundation (grant no. 250/05).

A. Armando, P. Baumgartner, and G. Dowek (Eds.): IJCAR 2008, LNCS 5195, pp. 380–395, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Canonical Inference for Implicational Systems 381

offers a valley proof of ũ 2 ṽ, where ũ and ṽ are u and v with their variables x̄
replaced by Skolem constants. Since ground-convergent means terminating and
ground-confluent, if E� is finite, it serves as decision procedure, because validity
can be decided by “blind” rewriting. If E� is also reduced, it is called canoni-
cal, and it is unique for the assumed ordering, a property first noticed by Mike
Ballantyne (see [12]). Otherwise, completion semi-decides validity by working
refutationally on E and ũ �2 ṽ (see, e.g., [11,1,6] for basic definitions and more
references).

More generally, the notion of canonicity can be articulated into three prop-
erties of increasing strength (e.g., [4]): a presentation is complete if it affords a
normal-form proof for each theorem, it is saturated, if it supports all normal-form
proofs for all theorems, and canonical, if it is both saturated and contracted, that
is, it contains no redundancies. If minimal proofs are unique, complete and satu-
rated coincide. The general properties “saturated” and “contracted” correspond
to convergent and reduced in the equational case.

This paper studies canonicity for implicational systems. An implicational sys-
tem is a set of implications, whose family of models is a Moore family, meaning
that it is closed under intersection (see [3,2]). A Moore family defines a clo-
sure operator that associates with any set the least element of the Moore family
that includes it. Moore families, closure operators and implicational systems
have played a rôle in a variety of fields in computer science, including relational
databases, data mining, artificial intelligence, logic programming, lattice the-
ory and abstract interpretations. We refer to [7] and [2] for surveys, including
applications, related formalisms and historical notes.

An implicational systems can be regarded as a Horn presentation of its Moore
family. Since a Moore family may be presented by different implicational systems,
it makes sense to define and generate implicational systems that are “optimal”,
or “minimal”, or “canonical” in a suitable sense, and allow one to compute their
associated closure operator efficiently. Bertet and Nebut [3] proposed the notions
of directness of implicational systems, optimizing computation by forward chain-
ing, and direct-optimality of implicational systems, which adds an optimization
step based on a symbol count. Bertet and Monjardet [2] considered other can-
didates and proved them all equal to direct-optimality, which, therefore, earned
the appellation canonical-directness.

We investigate correspondences between “optimal” implicational systems (di-
rect, direct-optimal) and canonical rewrite systems. This requires us to estab-
lish an equivalence between implicational systems and associative-commutative
rewrite systems, and to define and compare their respective deduction mech-
anisms. The rewriting framework allows one to compute the image of a given
set according to the closure operator associated with the implicational system,
already during saturation of the system. Computing the closure amounts to gen-
erating minimal models, which may have practical applications. Comparisons
of presentations and inferences are complemented at a deeper level by compar-
isons of the underlying proof orderings. We observe that direct-optimality can
be simulated by normalization with respect to a different proof ordering than

382 M.P. Bonacina and N. Dershowitz

the one assumed by rewriting, and this discrepancy leads us to introduce a new
notion of rewrite-optimality. Thus, while directness corresponds to saturation in
an expansion-oriented deduction mechanism, rewrite-optimality corresponds to
canonicity.

2 Background

Let V be a vocabulary of propositional variables. For a ∈ V , a and ¬a are
positive and negative literals, respectively; a clause is a disjunction of literals,
that is positive (negative), if all its literals are, and unit, if it is made of a single
literal. A Horn clause has at most one positive literal, so positive unit clauses
and purely negative clauses are special cases. A Horn presentation is a set of non-
negative Horn clauses. It is customary to write a Horn clause ¬a1∨· · ·∨¬an∨c,
n ≥ 0, as the implication or rule a1 · · · an ⇒ c. A Horn clause is trivial if the
conclusion c is the same as one of the premises ai.

An implicational system S is a binary relation S ⊆ P(V)×P(V), read as a set
of implications a1 · · · an ⇒ c1 · · · cm, for ai, cj ∈ V , with both sides understood
as conjunctions of distinct propositions (see, e.g., [3,2]). Using upper case Latin
letters for sets, such an implication is written A ⇒S B to specify that A ⇒
B ∈ S. If all right-hand sides are singletons, S is a unary implicational system.
Clearly, any non-negative Horn clause is such a unary implication and vice-versa,
and any non-unary implication can be decomposed into m unary implications,
one for each ci.

Since an implication a1 · · ·an ⇒ c1 · · · cm is equivalent to the bi-implication
a1 · · · anc1 · · · cm ⇔ a1 · · · an, again with both sides understood as conjunctions,
it can also be translated into a rewrite rule a1 · · · anc1 · · · cm → a1 · · ·an, where
juxtaposition stands for associative-commutative-idempotent conjunction, and
the arrow → signifies logical equivalence (see, e.g., [9,5]). A positive literal c
is translated into a rule c → true, where true is a special constant. We will
be making use of a well-founded ordering . on V ∪ {true}, wherein true is
minimal. Conjunctions of propositions are compared by the multiset extension
of ., also denoted ., so that a1 . . . anc1 . . . cm . a1 . . . an. A rewrite rule P → Q
is measured by the multiset {{P,Q}}, and these measures are ordered by a second
multiset extension of ., written .L to avoid confusion. Sets of rewrite rules are
measured by multisets of multisets (e.g., containing {{P,Q}} for each P → Q in
the set) compared by the multiset extension of .L, denoted .C .

A subset X ⊆ V represents the propositional interpretation that assigns the
value true to all elements in X and false to all others. Accordingly, X is said to
satisfy an implication A ⇒ B if either B ⊆ X or else A �⊆ X . Similarly, we say
that X satisfies an implicational system S, or is a model of S, denoted X |= S,
if X satisfies all implications in S.

A Moore family on V is a family F of subsets of V that contains V and is
closed under intersection. Moore families are in one-to-one correspondence with
closure operators, where a closure operator on V is an operator ϕ : P(V) → P(V)
that is: (i) monotone: X ⊆ X ′ implies ϕ(X) ⊆ ϕ(X ′); (ii) extensive: X ⊆ ϕ(X);

Canonical Inference for Implicational Systems 383

and (iii) idempotent: ϕ(ϕ(X)) = ϕ(X). The Moore family Fϕ associated with a
given closure operator ϕ is the set of all fixed points of ϕ:

Fϕ
!= {X ⊆ V : X = ϕ(X)} ,

using != to signify definitions. The closure operator ϕF associated with a given
Moore family F maps any X ⊆ V to the least element of F that contains X :

ϕF (X) != ∩{Y ∈ F : X ⊆ Y } .

The Moore family FS associated with a given implicational system S is the
family of the propositional models of S, in the sense given above:

FS
!= {X ⊆ V : X |= S} .

Two implicational systems S and S′ that have the same Moore family, FS = FS′ ,
are said to be equivalent. Every Moore family F can be presented at least by
one implicational system, for instance {X ⇒ ϕF (X) : X ⊆ V }.

Combining the notions of closure operator for a Moore family, and Moore family
associated with an implicational system, the closure operator ϕS for implicational
system S maps any X ⊆ V to the least model of S that satisfies X [3]:

ϕS(X) != ∩{Y ⊆ V : Y ⊇ X ∧ Y |= S} .

Example 1. Let S be {a ⇒ b, ac ⇒ d, e ⇒ a}. The Moore family FS is
{∅, b, c, d, ab, bc, bd, cd, abd, abe, bcd, abcd, abde, abcde}, and ϕS(ae) = abe. "!

The obvious syntactic correspondence between Horn presentations and implica-
tional systems is matched by a semantic correspondence between Horn theories
and Moore families, since Horn theories are those theories whose models are
closed under intersection, a fact observed first by McKinsey [16] (see also [15]).

A (one-step) deduction mechanism � is a binary relation over presentations.
A deduction step Q � Q∪Q′ is an expansion provided Q′ ⊆ Th Q, where Th Q is
the set of theorems of Q. A deduction step Q∪Q′ � Q is a contraction provided
Q ∪Q′ � Q, which means Th (Q ∪Q′) = Th Q, and for all theorems, Q offers a
proof that is smaller or equal than that in Q∪Q′ in a well-founded proof ordering.
A sequence Q0 � Q1 � · · · is a derivation, whose result, or limit, is the set of
persistent formulæ: Q∞

!= ∪j ∩i≥jQi. A fundamental requirement of derivations
is fairness, doing all expansion inferences that are needed to achieve the desired
degree of proof normalization: a fair derivation generates a complete limit and a
uniformly fair derivation generates a saturated limit. For canonicity, systematic
application of contraction is also required: a contracting derivation generates a
contracted limit. In this paper we assume that minimal proofs are unique, which
is reasonable for propositional Horn theories, so that complete and saturated
coincide, as do fair and uniformly fair. If minimal proofs are not unique, all our
results still hold, provided the hypothesis of fairness of derivations is replaced
by uniform fairness. We refer to [4] for formal definitions of these notions.

384 M.P. Bonacina and N. Dershowitz

3 Direct Systems

A direct implicational system allows one to compute ϕS(X) in one single round
of forward chaining:

Definition 1 (Directness [3, Def. 1]). An implicational system S is direct if
ϕS(X) = S(X), where S(X) != X ∪∪{B : A⇒S B ∧A ⊆ X}.

In general, ϕS(X) = S∗(X), where

S0(X) = X, Si+1(X) = S(Si(X)), S∗(X) =
⋃

i
Si(X).

Since S, X and V are all finite, S∗(X) = Sk(X) for the smallest k such that
Sk+1(X) = Sk(X).

Example 2. The implicational system S = {ac⇒ d, e⇒ a} is not direct. Indeed,
for X = ce, the computation of ϕS(X) = {acde} requires two rounds of forward
chaining, because only after a has been added by e ⇒ a, can d be added by
ac⇒ d. That is, S(X) = {ace} and ϕS(X) = S2(X) = S∗(X) = {acde}. "!

Generalizing this example, it is sufficient to have two implications A⇒S B and
C ⇒S D such that A ⊆ X , C �⊆ X and C ⊆ X ∪ B, for ϕS(X) to require
more than one iteration of forward chaining. Since A ⊆ X , but C �⊆ X , the first
round adds B, but not D; since C ⊆ X ∪ B, D is added in a second round. In
the above example, A ⇒ B is e ⇒ a and C ⇒ D is ac ⇒ d. The conditions
A ⊆ X and C ⊆ X ∪B are equivalent to A ∪ (C \B) ⊆ X , because C ⊆ X ∪B
means that whatever is in C and not in B must be in X . Thus, to collapse the
two iterations of forward chaining into one, it is sufficient to add the implication
A∪ (C \B)⇒S D. In the example A∪ (C \B)⇒S D is ce⇒ d. This mechanism
can be defined in more abstract terms as the following inference rule:

Implicational overlap

A⇒ BO CO ⇒ D
AC ⇒ D

B ∩ C = ∅ �= O

One inference step of this rule will be denoted ,I . The condition O �= ∅ is
included, because otherwise AC ⇒ D is subsumed by C ⇒ D. Also, if B ∩ C is
not empty, then an alternate inference is more general. Thus, directness can be
characterized as follows:

Definition 2 (Generated direct system [3, Def. 4]). Given an implica-
tional system S, the direct implicational system I(S) generated from S is the
smallest implicational system containing S and closed with respect to implica-
tional overlap.

A main theorem of [3] shows that indeed ϕS(X) = I(S)(X). Let �I be the de-
duction mechanism that generates and adds implications by implicational over-
lap: clearly, �I steps are expansion steps. Thus, we have:

Canonical Inference for Implicational Systems 385

Proposition 1. Given an implicational system S, for all fair derivations S =
S0 �I S1 �I · · · , S∞ = I(S).

Proof. By fairness, S∞ is saturated, and therefore closed with respect to im-
plicational overlap. Since �I deletes nothing, S∞ contains S. Since �I adds
nothing beside implicational overlaps, S∞ is equal to the smallest system with
these properties, that is, S∞ = I(S).

By applying the translation of implications into rewrite rules (cf. Section 2), we
define:

Definition 3 (Associated rewrite system). Given X ⊆ V , its associated
rewrite system is RX

!= {x→ true : x ∈ X}. For an implicational system S, its
associated rewrite system is RS

!= {AB → A : A ⇒S B}. Given S and X we
can also form the rewrite system RS

X
!= RX ∪RS.

Example 3. If S = {a⇒ b, ac⇒ d, e⇒ a}, then RS = {ab→ a, acd→ ac, ae→
e}. If X = ae, then RX = {a → true, e → true}. Thus, RS

X = {a → true, e →
true, ab→ a, acd→ ac, ae→ e}. "!

We show that there is a correspondence between implicational overlap and the
classical notion of overlap between monomials in Boolean rewriting (e.g., [5]):

Equational overlap

AO → B CO → D
M → N

A ∩ C = ∅ �= O, M . N

where M and N are the normal-forms of BC and AD with respect to {AO →
B,CO → D}. One inference step of this rule will be denoted ,E .

Equational overlap combines expansion, the generation of BC ↔ AD, with con-
traction – its normalization to M → N . This sort of contraction applied to
normalize a newly generated formula, is called forward contraction. The con-
traction applied to reduce an already established equation is called backward
contraction. Let �E be the deduction mechanism of equational overlap: then,
�E features expansion and forward contraction.

Example 4. For S = {ac ⇒ d, e ⇒ a} as in Example 2, we have RS = {acd →
ac, ae → e}, and the overlap of the two rewrite rules gives ace ← acde → cde.
Since ace → ce, equational overlap yields the rewrite rule cde → ce, which
corresponds to the implication ce⇒ d generated by implicational overlap. "!

Without loss of generality, from now on we consider only systems made of unary
implications or Horn clauses (cf. Section 2). Since it is designed to produce a
direct system, implicational overlap “unfolds” the forward chaining in the impli-
cational system. Since forward chaining is complete for Horn logic, it is coherent
to expect that the only non-trivial equational overlaps are those corresponding
to implicational overlaps:

386 M.P. Bonacina and N. Dershowitz

Lemma 1. If A⇒ B and C ⇒ D are two non-trivial Horn clauses (|B| = |D| =
1, B �⊆ A, D �⊆ C), then if A⇒ B,C ⇒ D ,I E ⇒ D by implicational overlap,
then AB → A,CD → C ,E DE → E by equational overlap, and vice-versa.
Furthermore, all other equational overlaps are trivial.

Proof. (If direction.) Assume A⇒ B,C ⇒ D ,I E ⇒ D. Since B is a singleton
by hypothesis, it must be that the consequent of the first implication and the
antecedent of the second one overlap on B. Thus, C ⇒ D is BF ⇒ D and
the implicational overlap of A ⇒ B and BF ⇒ D generates AF ⇒ D. The
corresponding rewrite rules are AB → A and BFD → BF , which also overlap
on B yielding the equational overlap

AFD ← ABFD → ABF → AF ,

which generates the corresponding rule AFD → AF .
(Only if direction.) If AB → A,CD → C ,E DE → E, the rewrite rules
AB → A and CD → C can overlap in four ways: B ∩ C �= ∅, A ∩ D �= ∅,
A ∩C �= ∅ and B ∩D �= ∅, which we consider in order.

1. B ∩C �= ∅: Since B is a singleton, it must be B ∩C = B, hence C = BF for
some F . Thus, CD → C is BFD → BF , and the overlap of AB → A and
BFD → BF is the same as above, yielding AFD → AF . The corresponding
implications A ⇒ B and BF ⇒ D generate AF ⇒ D by implicational
overlap.

2. A ∩D �= ∅: This case is symmetric to the previous one.
3. A∩C �= ∅: Let A = FO and C = OG, so that the rules are FOB → FO and
OGD → OG, with O �= ∅ and F ∩ G = ∅. The resulting equational overlap
is trivial: FOG← FOGD ← FBOGD → FBOG→ FOG.

4. B ∩D �= ∅: Since B and D are singletons, it must be B ∩D = B = D, and
rules AB → A and CB → C produce the trivial overlap AC ← ABC → AC.

"!

Lemma 1 yields the following correspondence between deduction mechanisms:

Lemma 2. For all implicational systems S, S �I S
′ if and only if RS �E RS′ .

Proof. If S �I S
′ then RS �E RS′ follows from the if direction of Lemma 1.

If RS �E R′ then S �I S
′ and R′ = RS′ follows from the only-if direction of

Lemma 1. "!

The next theorem shows that for fair derivations the process of completing S with
respect to implicational overlap, and turning the result into a rewrite system,
commutes with the process of translating S into the rewrite system RS , and
then completing it with respect to equational overlap.

Theorem 1. For every implicational system S, and for all fair derivations S =
S0 �I S1 �I · · · and RS = R0 �E R1 �E · · · , we have

R(S∞) = (RS)∞ .

Canonical Inference for Implicational Systems 387

Proof.

(a) R(S∞) ⊆ (RS)∞: for any AB → A ∈ R(S∞), A ⇒ B ∈ S∞ by Definition 3;
then A⇒ B ∈ Sj for some j ≥ 0. Let j be the smallest such index. If j = 0, or
Sj = S, AB → A ∈ RS by Definition 3, and AB → A ∈ (RS)∞, because �E

features no backward contraction. If j > 0, A⇒ B is generated at stage j by
implicational overlap. By Lemma 2 and by fairness of R0 �E R1 �E · · · ,
AB → A ∈ Rk for some k > 0. Then AB → A ∈ (RS)∞, since �E features
no backward contraction.

(b) (RS)∞ ⊆ R(S∞): for any AB → A ∈ (RS)∞, AB → A ∈ Rj for some
j ≥ 0. Let j be the smallest such index. If j = 0, or Rj = RS , A ⇒
B ∈ S by Definition 3, and A⇒ B ∈ S∞, because �I features no backward
contraction. Hence AB → A ∈ R(S∞). If j > 0, AB → A is generated at stage
j by equational overlap. By Lemma 2 and by fairness of S0 �I S1 �I · · · ,
A ⇒ B ∈ Sk for some k > 0. Then A ⇒ B ∈ S∞, since �I features no
backward contraction, and AB → A ∈ R(S∞) by Definition 3. "!

Since the limit of a fair �I -derivation is I(S), it follows that:

Corollary 1. For every implicational system S, and for all fair derivations S =
S0 �I S1 �I · · · and RS = R0 �E R1 �E · · · , we have

R(I(S)) = (RS)∞ .

4 Computing Minimal Models

The motivation for generating I(S) from S is to be able to compute, for any
subset X ⊆ V , its minimal S-model ϕS(X) in one round of forward chaining.
In other words, one envisions a two-stage process: in the first stage, S is sat-
urated with respect to implicational overlap to generate I(S); in the second
stage, forward chaining is applied to I(S) ∪ X to generate ϕI(S)(X) = ϕS(X).
These two stages can be replaced by one: for any X ⊆ V we can compute
ϕS(X) = ϕI(S)(X), by giving the rewrite system RS

X as input to completion and
extracting rules of the form x → true. For this purpose, the deduction mecha-
nism is enriched with contraction rules, for which we employ a double inference
line:

Simplification

AC → B C → D

AD → B C → D
AD . B

AC → B C → D

B → AD C → D
B . AD

B → AC C → D

B → AD C → D
,

where A can be empty, and

388 M.P. Bonacina and N. Dershowitz

Deletion
A↔ A

,

which eliminates trivial equivalences.

Let �R denote the deduction mechanism that extends �E with simplification
and deletion. Thus, in addition to the simplification applied as forward contraction
within equational overlap, there is simplification applied as backward contraction
to any rule. The following theorem shows that the completion of RS

X with respect
to �R generates a limit that includes the least S-model of X :

Theorem 2. For all X ⊆ V , implicational systems S, and fair derivations
RS

X = R0 �R R1 �R · · · , if Y = ϕS(X) = ϕI(S)(X), then

RY ⊆ (RS
X)∞ .

Proof. By Definition 3, RY = {x→ true : x ∈ Y }. The proof is by induction on
the construction of Y = ϕS(X).
Base case: If x ∈ Y because x ∈ X , then x → true ∈ RX , x → true ∈ RS

X and
x→ true ∈ (RS

X)∞, since a rule in the form x→ true is persistent.
Inductive case: If x ∈ Y because for some A ⇒S B, B = x and A ⊆ Y , then
AB → A ∈ RS and AB → A ∈ RS

X . By the induction hypothesis, A ⊆ Y implies
that, for all z ∈ A, z ∈ Y and z → true ∈ (RS

X)∞. Let j > 0 be the smallest index
in the derivation R0 �E R1 �E · · · such that for all z ∈ A, z → true ∈ Rj .
Then there is an i > j such that x → true ∈ Ri, because the rules z → true
simplify AB → A to x → true. It follows that x → true ∈ (RS

X)∞, since a rule
in the form x→ true is persistent. "!

Then, the least S-model of X can be extracted from the saturated set:

Corollary 2. For all X ⊆ V , implicational systems S, and fair derivations
RS

X = R0 �R R1 �R · · · , if Y = ϕS(X) = ϕI(S)(X), then

RY = {x→ true : x→ true ∈ (RS
X)∞} .

Proof. If x → true ∈ (RS
X)∞, then x ∈ RY by the soundness of equational

overlap and simplification. The other direction was established in Theorem 2.
"!

Example 5. Let S = {ac⇒ d, e⇒ a, bd⇒ f} and X = ce. Then Y = ϕS(X) =
acde, and RY = {a → true, c → true, d → true, e → true}. On the other hand,
for RS = {acd → ac, ae → e, bdf → bd} and RX = {c → true, e → true},
completion gives

(

RS
X

)

∞ = {c → true, e → true, a → true, d → true, bf → b},
where a→ true is generated by simplification of ae→ e with respect to e→ true,
d→ true is generated by simplification of acd→ ac with respect to c→ true and
a→ true, and bf → b is generated by simplification of bdf → bd with respect to
d→ true. So,

(

RS
X

)

∞ includes RY , which is made exactly of the rules in the form

Canonical Inference for Implicational Systems 389

x → true of
(

RS
X

)

∞. The direct system I(S) contains the implication ce ⇒ d,
generated by implicational overlap from ac ⇒ d and e ⇒ a. The corresponding
equational overlap of acd → ac and ae → e gives ce ← ace ← acde → cde
and hence generates the rule cde → ce. However, this rule is redundant in the
presence of {c → true, e → true, d → true} and simplification. ��

5 Direct-Optimal Systems

Direct-optimality is defined by adding to directness a requirement of optimality,
with respect to a measure |S | that counts the sum of the number of occurrences
of symbols on each of the two sides of each implication in a system S:

Definition 4 (Optimality [3, Sect. 2]). An implicational system S is optimal
if, for all equivalent implicational system S′, |S | ≤ |S′ | where

|S | !=
∑

A⇒SB

|A| + |B| ,

where |A| is the cardinality of set A.

From an implicational system S, one can generate an equivalent implicational
system that is both direct and optimal, denoted D(S), with the following nec-
essary and sufficient properties (cf. [3, Thm. 2]):

– extensiveness: for all A ⇒D(S) B, A ∩ B = ∅;
– isotony: for all A ⇒D(S) B and C ⇒D(S) D, if C ⊂ A, then B ∩ D = ∅;
– premise: for all A ⇒D(S) B and A ⇒D(S) B′, B = B′;
– non-empty conclusion: for all A ⇒D(S) B, B �= ∅.

This leads to the following characterization:

Definition 5 (Direct-optimal system [3, Def. 5]). Given a direct system
S, the direct-optimal system D(S) generated from S contains precisely the im-
plications

A ⇒∪{B : A ⇒S B} \ {C : D ⇒S C ∧ D ⊂ A} \ A ,

for each set A of propositions – provided the conclusion is non-empty.

From the above four properties, we can define an optimization procedure, apply-
ing – in order – the following rules:

Premise
A ⇒ B, A ⇒ C

A ⇒ BC
,

Isotony
A ⇒ B, AD ⇒ BE

A ⇒ B, AD ⇒ E
,

390 M.P. Bonacina and N. Dershowitz

Extensiveness
AC ⇒ BC

AC ⇒ B
,

Definiteness
A⇒ ∅

.

The first rule merges all rules with the same antecedent A into one and imple-
ments the premise property. The second rule removes from the consequent thus
generated those subsetsB that are already implied by subsetsA ofAD, to enforce
isotony. The third rule makes sure that antecedentsC do not themselves appear in
the consequent to enforce extensiveness. Finally, implications with empty conse-
quent are eliminated. This latter rule is called definiteness, because it eliminates
negative clauses, which, for Horn theories, represent queries and are not “defi-
nite” (i.e., non-negative) clauses. Clearly, the changes wrought by the optimiza-
tion rules do not affect the theory. Application of this optimization to the direct
implicational system I(S) yields the direct-optimal system D(S) of S.

The following example shows that this notion of optimization does not corre-
spond to elimination of redundancies by contraction in completion:

Example 6. Let S = {a ⇒ b, ac ⇒ d, e ⇒ a}. Then, I(S) = {a ⇒ b, ac ⇒
d, e ⇒ a, e ⇒ b, ce ⇒ d}, where e ⇒ b is generated by implicational overlap of
e ⇒ a and a ⇒ b, and ce ⇒ d is generated by implicational overlap of e ⇒ a
and ac ⇒ d. Next, optimization replaces e ⇒ a and e ⇒ b by e ⇒ ab, so that
D(S) = {a ⇒ b, ac ⇒ d, e ⇒ ab, ce ⇒ d}. If we consider the rewriting side,
we have RS = {ab → a, acd → ac, ae → e}. Equational overlap of ae → e
and ab → a generates be → e, and equational overlap of ae → e and acd →
ac generates cde → ce, corresponding to the two implicational overlaps. Thus,
(RS)∞ = {ab→ a, acd→ ac, ae→ e, be→ e, cde→ ce}. The rule corresponding
to e ⇒ ab, namely abe → e, would be redundant if added to (RS)∞, because
it would be reduced to a trivial equivalence by ae → e and be → e. Thus, the
optimization consisting of replacing e ⇒ a and e ⇒ b by e ⇒ ab does not
correspond to a rewriting inference. "!

The reason for this discrepancy is the different choice of ordering. Seeking direct-
optimality means optimizing the overall size of the system. For Example 6, we
have |{e⇒ ab} | = 3 < 4 = |{e⇒ a, e⇒ b} |. The corresponding proof ordering
measures a proof of a from a set X and an implicational system S by a multiset
of pairs 〈|B|,#BS〉, for each B ⇒S aC such that B ⊆ X , where #BS is the
number of implications in S with antecedent B. A proof of a from X = {e}
and {e ⇒ ab} will have measure {{〈1, 1〉}}, which is smaller than the measure
{{〈1, 2〉, 〈1, 2〉}} of a proof of a from X = {e} and {e⇒ a, e⇒ b}.

Completion, on the other hand, optimizes with respect to the ordering ..
For {abe → e} and {ae → e, be → e}, we have ae ≺ abe and be ≺ abe, so
{{ae, e}} ≺L {{abe, e}} and {{be, e}} ≺L {{abe, e}} in the multiset extension .L of
., and {{{{ae, e}}, {{be, e}}}} ≺C {{{{abe, e}}}} in the multiset extension .C of .L.

Canonical Inference for Implicational Systems 391

Indeed, from a rewriting point of view, it is better to have {ae → e, be → e}
than {abe→ e}, since rules with smaller left hand side are more applicable.

6 Rewrite-Optimality

It is apparent that the differences between direct-optimality and completion
arise because of the application of the premise rule. Accordingly, we propose
an alternative definition of optimality, one that does not require the premise
property, because symbols in repeated antecedents are counted only once:

Definition 6 (Rewrite-optimality). An implicational system S is rewrite-
optimal if ‖S ‖ ≤ ‖S′ ‖ for all equivalent implicational system S′, where the
measure ‖S ‖ is defined by:

‖S ‖ != |Ante(S)|+ |Cons(S)| ,

for Ante(S) != {c : c ∈ A, A⇒S B}, the set of symbols occurring in antecedents,
and Cons(S) != {{c : c ∈ B, A ⇒S B}}, the multiset of symbols occurring in
consequents.

Unlike Definition 4, where antecedents and consequents contribute equally, here
symbols in antecedents are counted only once, because Ante(S) is a set, while
symbols in consequents are counted as many times as they appear, since Cons(S)
is a multiset. Rewrite-optimality appears to be appropriate for Horn clauses,
because the premise property conflicts with the decomposition of non-unary im-
plications into Horn clauses. Indeed, if S is a non-unary implicational system,
and SH is the equivalent Horn system obtained by decomposing non-unary im-
plications, the application of the premise rule to SH undoes the decomposition.

Example 7. Applying rewrite optimality to S = {a ⇒ b, ac ⇒ d, e ⇒ a} of
Example 6, we have ‖{e ⇒ ab} ‖ = 3 = ‖{e ⇒ a, e ⇒ b} ‖, so that replacing
{e ⇒ a, e ⇒ b} by {e ⇒ ab} is no longer justified. Thus, D(S) = I(S) = {a ⇒
b, ac ⇒ d, e ⇒ a, e ⇒ b, ce ⇒ d}, and the rewrite system associated with D(S)
is {ab → a, acd → ac, ae → e, be → e, cde → ce} = (RS)∞. A proof ordering
corresponding to rewrite optimality would measure a proof of a from a set X and
an implicational system S by the set of the cardinalities |B|, for each B ⇒S aC
such that B ⊆ X . Accordingly, a proof of a fromX = {e} and {e⇒ ab} will have
measure {{1}}, which is the same as the measure of a proof of a from X = {e}
and {e⇒ a, e⇒ b}. "!

Thus, we deem canonical the result of optimization without premise rule:

Definition 7 (Canonical system). Given an implicational system S, the
canonical implicational system O(S) generated from S is the closure of S with
respect to implicational overlap, isotony, extensiveness and definiteness.

392 M.P. Bonacina and N. Dershowitz

Let �O denote the deduction mechanism that features implicational overlap
as expansion rule and the optimization rules except premise, namely isotony,
extensiveness and definiteness, as contraction rules. Then, we have:

Proposition 2. Given an implicational system S, for all fair and contracting
derivations S = S0 �O S1 �O · · · , S∞ = O(S).

Proof. If the derivation is fair and contracting, both expansion and contraction
rules are applied systematically, hence the result.

The following lemma shows that every inference by �O is covered by an inference
in �R:

Lemma 3. For all implicational systems S, if S �O S
′, then RS �R RS′ .

Proof. We consider four cases, corresponding to the four inference rules in �O:

1. Implicational overlap: If S �O S′ by an implicational overlap step, then
RS �R RS′ by equational overlap, by Lemma 2.

2. Isotony: For an application of this rule, S = S′′ ∪ {A⇒ B,AD ⇒ BE} and
S′ = S′′ ∪ {A ⇒ B,AD ⇒ E}. Then, RS = RS′′ ∪ {AB → A,ADBE →
AD}. Simplification applies to RS using AB → A to rewrite ADBE → AD
to ADE → AD, yielding RS′′ ∪ {AB → A,ADE → AD} = RS′ .

3. Extensiveness: When this rule applies, S = S′′ ∪ {AC ⇒ BC} and S′ =
S′′∪{AC ⇒ B}. Then, RS = RS′′ ∪{ACBC → AC}. By mere idempotence
of juxtaposition, RS = RS′′ ∪ {ABC → AC} = RS′ .

4. Definiteness: If S = S′ ∪ {A ⇒ ∅}, then RS = RS′ ∪ {A ↔ A} and an
application of deletion eliminates the trivial equation, yielding RS′ . "!

However, the other direction of this lemma does not hold, because �R features
simplifications that do not correspond to inferences in �O:

Example 8. Assume that the implicational system S includes {de ⇒ b, b ⇒ d}.
Accordingly, RS contains {deb→ de, bd→ b}. A simplification inference applies
bd→ b to reduce deb→ de to be↔ de, which is oriented into be→ de, if b . d,
and into de → be, if d . b. (Were �R equipped with a cancellation inference
rule, be ↔ de could be rewritten to b ↔ d, whence b → d or d → b.) The
deduction mechanism �O can apply implicational overlap to de⇒ b and b⇒ d
to generate de⇒ d. However, de⇒ d is reduced to de⇒ ∅ by the extensiveness
rule, and de⇒ ∅ is deleted by the definiteness rule. Thus, �O does not generate
anything that corresponds to be↔ de. "!

This example can be generalized to provide a simple analysis of simplification
steps, one that shows which steps correspond to �O-inferences and which do
not. Assume we have two rewrite rules AB → A and CD → C, corresponding
to non-trivial Horn clauses (|B| = 1, B �⊆ A, |D| = 1, D �⊆ C), and such that
CD → C simplifies AB → A. We distinguish three cases:

Canonical Inference for Implicational Systems 393

1. In the first one, CD appears in AB because CD appears in A. In other
words, A = CDE for some E. Then, the simplification step is

CDEB → CDE, CD → C

CEB → CE, CD → C

(where simplification is actually applied to both sides). The corresponding
implications are A ⇒ B and C ⇒ D. Since A ⇒ B is CDE ⇒ B, implica-
tional overlap applies to generate the implication CE ⇒ B that corresponds
to CEB → CE:

C ⇒ D, CDE ⇒ B
CE ⇒ B

.

The isotony rule applied to CE ⇒ B and CDE ⇒ B reduces the latter to
CDE ⇒ ∅, which is deleted by definiteness: a combination of implicational
overlap, isotony and definiteness simulates the effects of simplification.

2. In the second case, CD appears in AB because C appears in A, that is,
A = CE for some E, and D = B. Then, the simplification step is

CEB → CE, CB → C

CE ↔ CE, CB → C
,

and CE ↔ CE is removed by deletion. The isotony inference

C ⇒ B, CE ⇒ B

C ⇒ B, CE ⇒ ∅ ,

generates CE ⇒ ∅ which gets deleted by definiteness.
3. The third case is the generalization of Example 8: CD appears in AB because
D appears in A, and C is made of B and some F that also appears in A,
that is, A = DEF for some E and F , and C = BF . The simplification step
is

DEFB → DEF, BFD → BF

BFE ↔ DEF, BFD → BF
.

Implicational overlap applies

DEF ⇒ B, BF ⇒ D
DEF ⇒ D

to generate an implication that is first reduced by extensiveness toDEF ⇒ ∅
and then eliminated by definiteness. Thus, nothing corresponding to BFE ↔
DEF gets generated.

It follows that whatever is generated by �O is generated by �R, but may
become redundant eventually:

394 M.P. Bonacina and N. Dershowitz

Theorem 3. For every implicational system S, for all fair and contracting
derivations S = S0 �O S1 �O · · · and RS = R0 �R R1 �R · · · , for all
FG → F ∈ R(S∞), either FG → F ∈ (RS)∞ or FG → F is redundant in
(RS)∞.

Proof. For all FG→ F ∈ R(S∞), F ⇒ G ∈ S∞ by Definition 3, and F ⇒ G ∈ Sj

for some j ≥ 0. Let j be the smallest such index. If j = 0, or Sj = S, FG →
F ∈ RS = R0 by Definition 3. If j > 0, F ⇒ G was generated by an application
of implicational overlap, the isotony rule or extensiveness. By Lemma 3 and the
assumption that the �R-derivation is fair and contracting, FG → F ∈ Rk for
some k > 0. In both cases, FG→ F ∈ Rk for some k ≥ 0. If FG→ F persists,
then FG → F ∈ (RS)∞. Otherwise, FG → F gets rewritten by simplification
and is, therefore, redundant in (RS)∞. "!

Since the limit of a fair and contracting �O-derivation is O(S), it follows that:

Corollary 3. For every implicational system S, for all fair and contracting
derivations S = S0 �O S1 �O · · · and RS = R0 �R R1 �R · · · , and for
all FG → F ∈ RO(S), either FG → F is in (RS)∞ or else FG → F is redun-
dant in (RS)∞.

7 Discussion

Although simple from the point of view of computational complexity,1 proposi-
tional Horn theories, or, equivalently, Moore families presented by implicational
systems, appear in many fields of computer science. In this article, we analyzed
the notions of direct and direct-optimal implicational system in terms of com-
pletion and canonicity. We found that a direct implicational system corresponds
to the canonical limit of a derivation by completion that features expansion by
equational overlap and contraction by forward simplification. When completion
also features backward simplification, it computes the image of a given set with
respect to the closure operator associated with the given implicational system. In
other words, it computes the minimal model that satisfies both the implicational
system and the set. On the other hand, a direct-optimal implicational system
does not correspond to the limit of a derivation by completion, because the un-
derlying proof orderings are different and, therefore, normalization induces two
different notions of optimization. Accordingly, we introduced a new notion of op-
timality for implicational systems, termed rewrite optimality, that corresponds
to canonicity defined by completion up to redundancy.

Directions for future work include generalizing this analysis beyond proposi-
tional Horn theories, studying enumerations of Moore families and related struc-
tures (see [10] and Sequences A102894–7 and A108798–801 in [18]), and exploring
connections between canonical systems and decision procedures, or the rôle of
canonicity of presentations in specific contexts where Moore families occur, such
as in the abstract interpretations of programs.

1 Satisfiability, and hence entailment, can be decided in linear time [13].

Canonical Inference for Implicational Systems 395

References

1. Bachmair, L., Dershowitz, N.: Equational inference, canonical proofs, and proof
orderings. Journal of the ACM 41(2), 236–276 (1994)

2. Bertet, K., Monjardet, B.: The multiple facets of the canonical direct implicational
basis. Cahiers de la Maison des Sciences Economiques b05052, Université Paris
Panthéon-Sorbonne (June 2005),
http://ideas.repec.org/p/mse/wpsorb/b05052.html

3. Bertet, K., Nebut, M.: Efficient algorithms on the Moore family associated to an
implicational system. Discrete Mathematics and Theoretical Computer Science 6,
315–338 (2004)

4. Bonacina, M.P., Dershowitz, N.: Abstract canonical inference. ACM Transactions
on Computational Logic 8(1), 180–208 (2007)

5. Bonacina, M.P., Hsiang, J.: On rewrite programs: Semantics and relationship with
Prolog. Journal of Logic Programming 14(1 & 2), 155–180 (1992)

6. Bonacina, M.P., Hsiang, J.: Towards a foundation of completion procedures as
semidecision procedures. Theoretical Computer Science 146, 199–242 (1995)

7. Caspard, N., Monjardet, B.: The lattice of Moore families and closure operators
on a finite set: A survey. Electronic Notes in Discrete Mathematics 2 (1999)

8. Darwiche, A.: Searching while keeping a trace: the evolution from satisfiability to
knowledge compilation. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS
(LNAI), vol. 4130. Springer, Heidelberg (2006)

9. Dershowitz, N.: Computing with rewrite systems. Information and Control 64(2/3),
122–157 (1985)

10. Dershowitz, N., Huang, G.-S., Harris, M.A.: Enumeration problems related to
ground Horn theories, http://arxiv.org/pdf/cs.LO/0610054

11. Dershowitz, N., Jouannaud, J.-P.: Rewrite systems. In: van Leeuwen, J. (ed.) Hand-
book of Theoretical Computer Science, vol. B, pp. 243–320. Elsevier, Amsterdam
(1990)

12. Dershowitz, N., Marcus, L., Tarlecki, A.: Existence, uniqueness, and construction
of rewrite systems. SIAM Journal of Computing 17(4), 629–639 (1988)

13. Dowling, W.F., Gallier, J.H.: Linear-time algorithms for testing the satisfiability of
propositional Horn formulæ. Journal of Logic Programming 1(3), 267–284 (1984)

14. Furbach, U., Obermaier, C.: Knowledge compilation for description logics. In: Der-
showitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS (LNAI), vol. 4790, Springer,
Heidelberg (2007)

15. Horn, A.: On sentences which are true of direct unions of algebras. Journal of
Symbolic Logic 16, 14–21 (1951)

16. McKinsey, J.C.C.: The decision problem for some classes of sentences without
quantifiers. Journal of Symbolic Logic 8, 61–76 (1943)

17. Roussel, O., Mathieu, P.: Exact knowledge compilation in predicate calculus: the
partial achievement case. In: McCune, W. (ed.) CADE 1997. LNCS, vol. 1249, pp.
161–175. Springer, Heidelberg (1997)

18. Sloane, N.J.A.: The On-Line Encyclopedia of Integer Sequences (1996-2006),
http://www.research.att.com/∼njas/sequences

http://ideas.repec.org/p/mse/wpsorb/b05052.html
http://arxiv.org/pdf/cs.LO/0610054
http://www.research.att.com/~njas/sequences

Challenges in the Automated Verification of

Security Protocols

Hubert Comon-Lundh

Ecole Normale Supérieure de Cachan and
Research Center for Information Security,

National Institute of Advanced
Industrial Science and Technology (AIST)

Tokyo, Japan
h.comon-lundh@aist.go.jp

Abstract. The application area of security protocols raises several prob-
lems that are relevant to automated deduction. We describe in this note
some of these challenges.

1 Introduction

Security protocols are small distributed programs, aiming at securely achieving
some transaction, while relying on a public or a non-reliable network. Getting
formal guarantees that such protocols satisfy their specifications is an important
issue, because of the numerous applications and the economical and societal
impact of potential failures.

Program testing is irrelevant in this context, because of the malicious nature
of attacks. On the opposite, security protocols constitute an ideal field of appli-
cations for research in automated deduction: the protocols are small, as well as
their specification, yet their verification is non-trivial. The purpose of this note
is to show several interesting issues in automated deduction, which are raised by
this verification problem.

We will focus on problems that can (or could) be formulated in first-order logic
or equational logic. Already in early works, first-order clausal formalisms have
been used for security protocols [45] and intruder capabilities formalized using
term rewriting systems [47]. Since then, there has been a large amount of work
in the area, which we do not survey here (in particular many relevant references
are certainly missing). Despite this research, there are still open questions, some
of which are described in this note.

We will organize the note stepwise, starting with the most elementary no-
tions (intruder deduction) in section 2 and enrich the model in further sections,
each time reporting some unsolved problem. In section 3, we consider the secu-
rity problem for a fixed number of protocol sessions. In section 4, we consider
resolution-based theorem proving applied to security protocols. In section 5, we
consider security properties that are usually defined as indistinguishability be-
tween two processes. Finally, we consider modularity issues in section 6.

A. Armando, P. Baumgartner, and G. Dowek (Eds.): IJCAR 2008, LNCS 5195, pp. 396–409, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Challenges in the Automated Verification of Security Protocols 397

2 Intruder Deductions

The security of a protocol depends on several inputs: the protocol, the security
property, but also the intruder capabilities and the (assumed) algebraic proper-
ties of the security primitives. We assume that F is a set of function symbols
representing all security primitives and data. A is a set of equations, typically
associativity and commutativity of some symbols in F and R is a rewrite sys-
tem, convergent modulo A capturing the expected computations on messages.
A typical rule in R would be dec(enc(x, y), y−1) → x.

In the simplest setting, we only consider offline attacks: we forget how an at-
tacker got messages and simply assume (s)he holds a set of messages. In addition,
we only consider security properties that can be modeled as the confidentiality
of some piece of a message.

We also assume here that the security primitives, such as encryption algo-
rithms, do not leak any information besides what is modeled through the alge-
braic properties: we consider a formal model, that is sound with respect to the
computational one.

In such a (restricted) case, security is an Entscheidungsproblem for a particular
deduction system, representing the attacker computing capabilities. We let Fpub

be the subset of F consisting of public symbols. Messages are represented as
terms in the algebra T (F) (or possibly a quotient T (F)/=A) and the inference
rules are of the form

s1 . . . sn
Rf

f(s1, . . . , sn)↓

The attacker may apply the function f ∈ Fpub to messages s1, . . . , sn, getting
f(s1, . . . , sn)↓, the normal form of f(s1, . . . , sn) with respect to R.

Example 1. The most typical example is the perfect cryptography, for symmetric
encryption. Fpub contains pairing: < s1, s2 > is the pair of the two terms s1, s2,
encryption: {s}k is the encryption of s with k, decryption dec, projections π1, π2

and some public constants. F = Fpub ∪S where S is a set of (secret) constants,
disjoint from Fpub. A is empty and the rewrite system consists of three rules:

dec({s}k, k)→ s π1(< x, y >)→ x π2(< x, y >)→ y

Many examples of (other) relevant equational theories and rewrite systems are
given in [33].

The set of inference rules needs not be finite, as, for variadic symbols (or
associative-commutative symbols), we may want one version of the rule for each
value of n. It is also convenient sometimes to consider combinations of function
symbols instead of a single function application.

Also note the resulting term f(s1, . . . , sn) ↓ is assumed to be a message: the
set of messages M is a subset of T (F) (or T (F)/=A) and a valid instance of the
rule assumes that both the premisses and the conclusion are inM . For instance, in
example 1, terms inM do not contain the symbols dec, π1, π2 and, if the decryption
does not succeed, the attacker does not learn anything about the plaintext.

398 H. Comon-Lundh

The set of inference rules yields a deducibility relation ,⊆ 2M ×M , using
repeatedly the inference rules from an initial knowledge H ⊆ 2M .

In most relevant cases, as shown in [29], an equivalent inference system can
be obtained by “inlining” the rewriting rules applications, getting rid of the
normalization symbol; the rewriting steps in the conclusion are replaced with
finitely many patterns in the premisse. In example 1, we would get the following
inference rules:

x1 x2

{x1}x2

x1 x2

< x1, x2 >

{x1}x2 x2

x1

< x1, x2 >

x1

< x1, x2 >

x2

Definition 1. Given an intruder deduction system, the deducibility problem is,
given a finite subset H of M and a term s ∈M , to decide whether H , s.

This may also be formulated using rewriting systems: if we let H = {t1, . . . , tn}
and σ be the substitution {x1 �→ t1, . . . , xn �→ tn}, the problem is equivalent to:

Given σ, is there a term ζ ∈ T (Fpub, {x1, . . . , xn}) such that ζσ ↓=A s.

Now, what is a bit surprising at first sight is that many of such intruder deduc-
tion systems have very nice properties: the deducibility problem is in PTIME.
This relies on a subformula property of the deduction system: if the function
symbols applications are gathered together in an appropriate way, then for any
deducible s, there is a proof in which intermediate steps belong to St(s,H), the
subterms of the hypotheses and the conclusion. In such a case, we say that the
deduction system is local, following [44]. Then, if one step deduction is itself
decidable in PTIME, the deducibility problem can be reduced to a simple fixed
point computation of the deducible subterms.

Such a locality theorem has been established for many examples of intruder de-
duction systems, for instance perfect cryptography, for symmetric and asymmet-
ric encryption and signatures, commutative encryption, ECB and CBC
encryption modes, blind signatures, exclusive or [22], Abelian groups [21], mod-
ular exponentiation, and others [35,19]. Actually, each time a new protocol
is designed, which relies on a new equational theory, a new locality result is
established.

Instead of repeating the work for each new theory, we wish to get a more
general result. This raises the following challenge:

Challenge 1. For which classes of (AC)-rewrite systems, do we get a locality
property? A decidable deducibility problem?

Related Works

There are actually some works [30,5], answering, at least partly, this question,
when A is empty. Many examples however involve associative and commutative
symbols. So, the above challenge can be seen as extending these results to the
AC case.

Challenges in the Automated Verification of Security Protocols 399

[8] also provides with a general criterion, amenable to automated locality
proofs. First, locality is generalized, replacing the subterm relation with any
well-founded ordering: St(s,H) above is replaced with the set of terms that are
smaller than s,H . Of course, if we want to derive a decision procedure, this
set must be finite. Next, they show that non-local inference systems can be
completed into local ones, using ordered resolution (saturated sets are local).
However, this process may not terminate. That is what happens when, in our
applications, A is not empty. Typically, we need to deal with infinitely many
clauses of the form I(x1), . . . , I(xn) → I(x1 + . . . + xn) when + is associative
and commutative. Answering the challenge along this line of research would
require to extend the results of [8] to some class of infinite sets of clauses.

Other Interesting Issues

Another related problem is the combination of intruder theories: If the deducibil-
ity problem is decidable for two intruder theories, under which condition is it
decidable in the union of the two theories ? Similar questions may be asked for
local theories.

This is an important issue when the deduction system is large. For instance
in [19], the authors consider an intruder deduction system, which includes several
associative-commutative symbols and a lot of rules. This system formalizes some
arithmetic properties, which must be considered in the model, since they are
used by the participants of an actual electronic purse protocol. The locality
proof of [19] is a direct (tedious) proof and would benefit from combination
results.

There is a combination result in the disjoint case [7], however not applicable
to the above example.

3 Bounded Number of Sessions

Now, we enrich the model, considering some active attacks: the attacker may not
only perform offline deductions, but also send fake messages and take advantage
of the reply. We assume however that he can send only a fixed number of such
messages (this number is given as a parameter).

One of the main problems, which yields “man-in-the-middle attacks” such as
the famous attack of [42], is that pieces of messages cannot be analysed by some
honest parties, hence could be replaced by arbitrary messages.

Example 2. An honest agent a generates a random number n and sends it, to-
gether with his identity, encrypted with the public key of another honest agent
b. Such a message can be represented as {< a, n >}pub(b), a (ground) term in
our algebra T (F). However, b’s view is different. Upon receiving this message,
(s)he decrypts and finds a pair, whose second component is an arbitrary mes-
sage. Suppose that b has to send back {< b, n >}pub(a), the corresponding rule
for b will be:

400 H. Comon-Lundh

Upon receiving any {< x, y >}pub(b) reply by sending {< b, y >}pub(x), maybe
after checking that x is the identity of somebody with whom b is willing to
communicate.

The important issue here is that y can be replaced by any message and the
attacker may take advantage of this.

Hence, a simple class of protocols can be defined by finitely many roles, which
are again finite sequences of rules s ⇒ t, meaning that, upon reception of a
message sσ, the agent replies tσ. In general, each role also generates new names
(keys or nonces) and may have a more complex control structure, for instance
specifying what to do when the message does not match the expected s. In
this section, we will not consider replication of the roles, hence new names can
simply be distinguished using distinct constants and we only consider a simple
linear structure of the control. Even more, by guessing an ordering between the
different actions of each role, we get a sequence si ⇒ ti of query ⇒ response
(such as {< x, y >}pub(b) ⇒ {< b, y >}pub(x) in example 2),

In this setting, there is an attack on the secrecy of s, if there is a substitution
σ such that

S0 , s1σ
S0, t1σ , s2σ

...
S0, t1σ, . . . , tn−1σ , snσ
S0, t1σ, . . . , tnσ , s

where S0 is the set of initial intruder knowledge and s is the data supposed to
remain secret. s1σ, . . . , snσ are the successive (fake) messages constructed by
the attacker and t1σ, . . . , tnσ are the successive messages sent by the agents.
The left members of the deducibility constraints increase as the attacker’s gets
new messages from the network. Without the last constraint, there is a trivial
substitution σ0, corresponding to the normal execution of the protocol, in which
the attacker simply forwards the messages without modifying them : si+1σ0 =
tiσ0 for every i < n.

Equivalently, we can define an attack using term rewriting systems: there
is an attack if there are terms ζ0, . . . , ζn ∈ T (Fpub ∪ S0, {x1, . . . , xn}) and a
substitution σ such that

– For every 0 ≤ i ≤ n− 1, (ζi{x1 �→ t1, . . . , xi �→ ti})σ↓=A si+1σ↓
– (ζn{x1 �→ t1, . . . , xn �→ tn})σ↓=A s

ζ0, . . . , ζn are the recipes, which constitute the attacker’s strategy: they specify
how to combine the known messages to produce the next fake message.

Deciding if there is an attack consists then in deciding whether such a sub-
stitution σ exists. This problem has been shown to be in NP for a number of
intruder theories [49,23,22,21,46].

There are also a number of results for classes of theories, for instance: sub-
term theories [11] and monoidal theories [37]. This does not cover however some
relevant examples such as the one described in [19].

Challenges in the Automated Verification of Security Protocols 401

In most (if not all) these results, the key is a small attack property (also called
conservativity in e.g. [37]): if there is an attack then there is an attack, which
is built, stacking pieces of protocol rules. Then, the search space for σ becomes
finite, yielding decision algorithms.

This property is not well-understood; the existence of small attacks can be
recasted as the existence of particular (small) proofs: there should be proof
simplification rules, which justify such a property. This yields the following
challenge:

Challenge 2. Give a proof-theoretic explanation of the small attack property.

Related Work

A partial answer is given in [14]: the authors give proof simplification rules, which
are strongly normalizing. The normal proofs only correspond to small attacks.
However, this work only covers a restricted class of intruder deduction rules,
assuming A is empty, as well as additional syntactic restrictions.

An approach along the lines of [8] does not work here: the clausal formalisation
of the protocol rules introduces some over-approximations, as explained in the
next section.

Other Interesting Issues

Again, combination of decision procedures for a bounded number of sessions
is an important issue, as, in general, many protocols are running at the same
time on the same device. This problem is addressed in [24,25], but there are still
examples of relevant complex equational theories that cannot (and should) be
broken into pieces using these results (see e.g. [19]). Hence, there is still some
work to be done in this area. (See also section 6 for the general modularity
problem, when the number of sessions is unbounded.)

4 Clausal Theorem Proving and Security Protocols

In the automated deduction community, it has become a habit to recast all de-
cision results as terminating resolution strategies [39]. This allows in principle
to use a single clausal theorem prover for any of the particular decision prob-
lems. What about the decision results of the last section? This will be our next
challenge, but let us first introduce and clarify the problems.

There are several formalizations of security protocols within first-order logic.
After C. Meadows [45], C. Weidenbach in [50] was one of the first who observed
that resolution methods are quite successful in this area. Then the security an-
alyzer ProVerif [15,16] is also a resolution-based prover, and one of the most
successful protocol verifiers.

Such formalizations rely on approximations. Otherwise, an accurate model such
as [28] is hopeless, as far as termination is concerned. Among the approximations:

402 H. Comon-Lundh

– Nonces, i.e., new names that are generated at each session of the proto-
col, are represented as terms, depending on the environment in which they
are generated. This over-approximation is always correct as long as secrecy
properties are considered. As already mentioned, for a bounded number of
sessions, we can simply represent these nonces using different names.

– The ordering in which messages of a given role are played is lost in the clausal
translation. This can be recovered in case of a bounded number of sessions,
recording and verifying the ordering of events.

– Clauses are universally quantified formulas. This is fine for clauses represent-
ing the attacker’s capabilities, such as

I(x), I(y) → I(< x, y >)

as the attacker may re-use such a construction any number of times. This
might be more problematic for protocol rules as, when we use variables in
place of messages (for un-analysable parts), the attacker may choose any
value, but has to commit to this value: the rule should not be replayed.

This last problem is well-known in automated deduction (typically in tableau
methods): we need rigid variables. While rigid variables are still universally quan-
tified, they can get only one instance: each rigid clause can be instanciated only
once and then used as many times as we wish. Using a mixture of rigid clauses
and flexible clauses is therefore more accurate for the security protocols verifi-
cation. This has been investigated in [38].

We may however simply translate the rigid clauses into first-order clauses, at
the price of adding new arguments, while preserving satisfiability [4]. We get in
this case a faithful translation into first-order clauses of the security problem for
a bounded number of sessions.

Challenge 3. Design a resolution strategy, which yields a NP-decision method
for the formulas corresponding to bounded sessions protocol security.

Related Work

Coming back to the over-approximated problem for an unbounded number of
sessions, resolution methods are unusually successful: in many cases, the deduc-
tion process terminates. There are several works explaining this phenomenon.
For instance, restrictions on the variables occurring in each protocol clause, the
protocol model falls into a decidable fragment of first-order logic [34,27,26]. Also,
assuming some tagging of (sub)messages yiedls termination [18,48].

Other Interesting Issues

They include speeding-up the deduction, relying on constraints [9] or strategies
[16] or including general (user-defined) equational theories [10,29,17].

Challenges in the Automated Verification of Security Protocols 403

5 Proofs of Equivalences

Many security properties cannot be directly modeled in first-order logic, since
they are not properties of a single execution trace. They are better stated as
indistinguishability properties between two processes. Typical such examples
are anonymity and (strong) secrecy; while secrecy (or confidentiality) requires
a given message s to remain unknown to the attacker, strong secrecy requires
that an attacker cannot learn anything about s. The latter is expressed by an
indistinguishability property between the real protocol and the protocol in which
s is replaced by a new name. Properties of electronic voting protocols are also
typically expressed in this way [36].

In case of equivalence properties, the deduction problem (definition 1) is re-
placed by deciding static equivalence:

Definition 2. Two sequences of ground terms s1, . . . , sn and t1, . . . , tn are stat-
ically equivalent, which we write s1, . . . , sn ∼ t1, . . . , tn, if, for any terms u, v ∈
T (F , {x1, . . . , xn}),

u{x1 �→ s1, . . . , xn �→ sn}↓=A v{x1 �→ s1, . . . , xn �→ sn}↓
9

u{x1 �→ t1, . . . , xn �→ tn}↓=A v{x1 �→ t1, . . . , xn �→ tn}↓

The decision of static equivalence has been shown for several term rewriting
systems [1,32] and has been implemented for a wide class of equational theories
[13,17].

Consider now protocols. Each role can be described by a simple sequential
process, for instance in the applied π-calculus [2] and each protocol is expressed
as a parallel composition of a fixed number of roles P1, . . . , Pn (resp. Q1, . . . , Qn).
The security properties that we wish to consider are expressed as the observa-
tional equivalence

!(P1‖ · · · ‖Pn) ≈ !(Q1‖ · · · ‖Qn)

In words: an attacker cannot distinguish between the two versions of the protocol.
The exclamation mark is a replication: we may consider any number of copies
of each protocol roles.

In the bounded sessions version of the problem, we simply remove the ex-
clamation marks, and we can replace all fresh names by distinct constants.
We call bounded protocols the resulting processes. As before, any interleav-
ing τP of actions of the process P = P1‖ · · · ‖Pn corresponds to a sequence
of query ⇒ response: si ⇒ ti, for i = 1, ...,m. For any such sequence, a
valid attacker on τP consists in a substitution σ and terms ζ0, . . . , ζm−1 ∈
T (Fpub ∪ S0, {x1, . . . , xm−1}) such that, for every i, ζiθiσ↓=A si+1σ↓, where θi
is the substitution {x1 �→ t1, . . . , xi �→ ti} (the empty substitution when i = 0).
This matches our definitions in section 3: ζ0, . . . , ζm−1 are the recipes specifying
the attacker’s strategy.

Now, the bounded protocols P and Q are equivalent if, for any interleaving
τP of actions of P , for any valid attacker on τP (ζ0, . . . , ζm−1, σ), there is an

404 H. Comon-Lundh

interleaving τQ of actions of Q and a substitution σ′ such that (ζ0, . . . , ζm−1, σ
′)

is a valid attacker on τQ and t1σ, . . . , tmσ ∼ t′1σ
′, . . . , t′mσ

′ where t1, . . . , tm is
the sequence of responses in τP and t′1, . . . , t′m is the sequence of responses in
τQ (and conversely, exchanging P and Q). In words: P and Q are equivalent if,
whatever the attacker does, the sequence of replies from P is statically equivalent
to the corresponding sequence of replies of Q.

All decision results reported in section 3 only concern the secrecy property.
We would like to extend them to more security properties:

Challenge 4. In case of a bounded number of sessions, give decision and com-
plexity results for the equivalence of protocols.

The problem is more complex than in the secrecy case, as we cannot guess first
a trace and then solve a finite deducibility constraint system.

Related Work

As far as we know, the only related works are

– a decision result for the spi-calculus (and no equational theory) [40] and
– a decision result for an approximate equivalence (implying observational

equivalence) and subterm-convergent theories [12].

Other Interesting Issues

If we consider an arbitrary number of sessions, in [17], the authors design a
coding of pairs of processes into bi-processes. In ProVerif, this coding itself is
translated into first order-clauses, yielding automatic proofs of equivalences, for
an unbounded number of sessions. To the best of our knowledge, this is the only
tool, which allows for automatic equivalence proofs for an unbounded number
of sessions. The encoding into bi-processes requires however an approximation
of bisimulation relations: two processes might be equivalent and yet there is no
equivalence proof in ProVerif. An interesting open question is to find a class of
protocols/properties for which the bi-process technique is complete.

6 Modularity

The problem of combining protocols is an important issue. Usually, several pro-
tocols may run on the same device and it is important that, once each single
protocol is proved secure, they remain secure when they run concurrently.

There are more reasons for studying this problem of security proofs modu-
larity, which are coming from another area of computer science. In the area of
computational security, usually related to cryptology, a huge amount of work
has been devoted to universal composability [20,41]. The idea is to get modu-
larity theorems (called composition theorems in this context), which show that
the security for one session implies the security for an unbounded number of

Challenges in the Automated Verification of Security Protocols 405

sessions and that two secure protocols can run concurrently, without generating
new attacks. However, both the composition theorems and the proofs that secu-
rity primitives satisfy the hypotheses of these theorems are quite delicate in the
computational world [41]. Even more, to the best of our knowledge, there is no
composition result in the computational setting, which would allow some secrets
(such as a pair <public key, private key>) to be shared by protocols. Using a
single public key in several protocols is however a common practice (and actually
desirable).

In order to get computational security guarantees, there is an alternative
method: using soundness theorems in the style of [3], the computational mod-
els are faithfully abstracted into symbolic ones. Then, proving the security at
the computational level is reduced to proving a corresponding appropriate prop-
erty at the symbolic level, which might be automated. There is a large body of
literature on soundness theorems, which we do not review here.

Assuming appropriate soundness results, the modularity of symbolic security
proofs would have therefore an important impact in the computational security
community.

To be more precise, a modularity result in the symbolic setting would state
that for a family of shared names n (typically the public and private keys), a
class of protocols, a class of intruder deduction systems and a class of security
properties, the security of two individual protocols P1 and P2 implies the security
of the combined protocol P1‖P2.

Challenge 5. For which intruder deduction systems and security properties can
we get modularity theorems?

Additionally, for applications to universal composability, but also in order to get
decision results, we wish to get some kind of modularity of a protocol with itself:
assuming that secrets such as pairs of public and private keys are shared over
sessions, the security of P should imply the security of !P .

Challenge 6. For which classes of protocols, intruder theories and security
properties does the security for a single session imply the security for an ar-
bitrary number of sessions?

Related Work

A recent result [31] proves a modularity theorem for a wide class of protocols.
However, it only considers the secrecy property and the intruder deduction sys-
tem is fixed to the simple rules of example 1 for symmetric and asymmetric
encryption. Generalizing the result to equivalence properties and other intruder
systems is an open question.

The proof of this result relies on several techniques from automated deduction:

– The small attack property (see section 3),
– Properties of unification and deducibility constraints,
– An analog of Craig’s interpolation theorem for intruder deduction systems.

406 H. Comon-Lundh

Concerning the challenge 6, a first result was proved by G. Lowe [43], however
for a restricted class of protocols. For instance [43] assumes that any two distinct
terms headed with encryption, that occur in the protocol, are not unifiable. A
similar result is shown in [6] for another class of protocols. However, in both
cases, only secrecy is considered and the simple intruder deduction system is the
one of example 1 (for symmetric and asymmetric encryption).

Acknowledgments

Many thanks to Reynald Affeldt, David Basin, Bruno Blanchet, Véronique
Cortier, Stéphanie Delaune, Michael Rusinowitch for their comments on an early
version of this note.

References

1. Abadi, M., Cortier, V.: Deciding knowledge in security protocols under equational
theories. Theoretical Computer Science 367(1–2), 2–32 (2006)

2. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication. In:
Proceedings of the 28th ACM Symposium on Principles of Programming Languages
(POPL 2001), January 2001, pp. 104–115 (2001)

3. Abadi, M., Rogaway, P.: Reconciling two views of cryptography: the computa-
tional soundness of formal encryption. In: Watanabe, O., Hagiya, M., Ito, T., van
Leeuwen, J., Mosses, P.D. (eds.) TCS 2000. LNCS, vol. 1872. Springer, Heidelberg
(2000)

4. Affeldt, R., Comon-Lundh, H.: First-order logic and security protocols (unpub-
lished manuscript) (April 2008)

5. Anantharaman, S., Narendran, P., Rusinowitch, M.: Intruders with caps. In:
Baader, F. (ed.) RTA 2007. LNCS, vol. 4533. Springer, Heidelberg (2007)

6. Arapinis, M., Delaune, S., Kremer, S.: From one session to many: Dynamic tags
for security protocols. Research Report LSV-08-16, Laboratoire Spécification et
Vérification, ENS Cachan, France (May 2008)

7. Arnaud, M., Cortier, V., Delaune, S.: Combining algorithms for deciding knowledge
in security protocols. In: Konev, B., Wolter, F. (eds.) FroCos 2007. LNCS (LNAI),
vol. 4720. Springer, Heidelberg (2007)

8. Basin, D., Ganzinger, H.: Automated complexity analysis based on ordered reso-
lution. Journal of the Association of Computing Machinery 48(1), 70–109 (2001)

9. Basin, D., Mödersheim, S., Viganò, L.: Constraint Differentiation: A New Reduc-
tion Technique for Constraint-Based Analysis of Security Protocols. In: Proceed-
ings of CCS 2003, pp. 335–344. ACM Press, New York (2003)

10. Basin, D., Mödersheim, S., Viganò, L.: Algebraic intruder deductions. In: Sutcliffe,
G., Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3835. Springer, Heidelberg
(2005)

11. Baudet, M.: Deciding security of protocols against off-line guessing attacks. In:
Proceedings of the 12th ACM Conference on Computer and Communications Se-
curity (CCS 2005), Alexandria, Virginia, USA, November 2005, pp. 16–25. ACM
Press, New York (2005)

Challenges in the Automated Verification of Security Protocols 407

12. Baudet, M.: Sécurité des protocoles cryptographiques : aspects logiques et calcula-
toires. Thèse de doctorat, Laboratoire Spécification et Vérification, ENS Cachan,
France (January 2007)

13. Baudet, M.: Yapa: Yet another protocol analyser (2008),
http://www.lsv.ens-cachan.fr/∼baudet/yapa/index.html

14. Bernat, V., Comon-Lundh, H.: Normal proofs in intruder theories. In: Revised
Selected Papers of the 11th Asian Computing Science Conference (ASIAN 2006).
LNCS, vol. 4435. Springer, Heidelberg (2008)

15. Blanchet, B.: An Efficient Cryptographic Protocol Verifier Based on Prolog Rules.
In: 14th IEEE Computer Security Foundations Workshop (CSFW-14), Cape Bre-
ton, Nova Scotia, Canada, June 2001, pp. 82–96. IEEE Computer Society, Los
Alamitos (2001)

16. Blanchet, B.: An automatic security protocol verifier based on resolution theorem
proving (invited tutorial). In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI),
vol. 3632. Springer, Heidelberg (2005)

17. Blanchet, B., Abadi, M., Fournet, C.: Automated verification of selected equiva-
lences for security protocols. Journal of Logic and Algebraic Programming 75(1),
3–51 (2008)

18. Blanchet, B., Podelski, A.: Verification of cryptographic protocols: Tagging enforces
termination. Theoretical Computer Science 333(1–2), 67–90 (2005)

19. Bursuc, S., Comon-Lundh, H., Delaune, S.: Deducibility constraints, equational
theory and electronic money. In: Comon-Lundh, H., Kirchner, C., Kirchner, H.
(eds.) Jouannaud Festschrift. LNCS, vol. 4600. Springer, Heidelberg (2007)

20. Canetti, R., Rabin, T.: Universal composition with joint state. Cryptology ePrint
Archive, report 2002/47 (November 2003)

21. Chevalier, Y., Küsters, R., Rusinowitch, M., Turuani, M.: Deciding the security
of protocols with Diffie-Hellman exponentiation and products in exponents. In:
Pandya, P.K., Radhakrishnan, J. (eds.) FSTTCS 2003. LNCS, vol. 2914. Springer,
Heidelberg (2003)

22. Chevalier, Y., Küsters, R., Rusinowitch, M., Turuani, M.: An NP decision proce-
dure for protocol insecurity with XOR. In: Eighteenth Annual IEEE Symposium
on Logic in Computer Science (LICS) (2003)

23. Chevalier, Y., Küsters, R., Rusinowitch, M., Turuani, M.: Deciding the security
of protocols with commuting public key encryption. In: Proc. Workshop on Au-
tomated Reasoning for Security Protocol Analysis (ARSPA). Electronic Notes in
Theoretical Computer Science, vol. 125 (2004)

24. Chevalier, Y., Rusinowitch, M.: Combining Intruder Theories. In: Caires, L., Ital-
iano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS,
vol. 3580. Springer, Heidelberg (2005)

25. Chevalier, Y., Rusinowitch, M.: Hierarchical Combination of Intruder Theories. In:
Pfenning, F. (ed.) RTA 2006. LNCS, vol. 4098, pp. 108–122. Springer, Heidelberg
(2006)

26. H. Comon and V. Cortier. Tree automata with one memory, set constraints and
cryptographic protocols. Theoretical Computer Science, 331(1):143–214, Feb. 2005.

27. Comon-Lundh, H., Cortier, V.: New decidability results for fragments of first-order
logic and application to cryptographic protocols. In: Nieuwenhuis, R. (ed.) RTA
2003. LNCS, vol. 2706. Springer, Heidelberg (2003)

28. Comon-Lundh, H., Cortier, V.: Security properties: Two agents are sufficient. Sci-
ence of Computer Programming 50(1-3), 51–71 (2004)

http://www.lsv.ens-cachan.fr/~baudet/yapa/index.html

408 H. Comon-Lundh

29. Comon-Lundh, H., Delaune, S.: The finite variant property: How to get rid of
some algebraic properties. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467. Springer,
Heidelberg (2005)

30. Comon-Lundh, H., Treinen, R.: Easy intruder deductions. In: Dershowitz, N. (ed.)
Verification: Theory and Practice. LNCS, vol. 2772. Springer, Heidelberg (2004)

31. Cortier, V., Delaitre, J., Delaune, S.: Safely composing security protocols. In:
Arvind, V., Prasad, S. (eds.) FSTTCS 2007. LNCS, vol. 4855. Springer, Heidelberg
(2007)

32. Cortier, V., Delaune, S.: Deciding knowledge in security protocols for monoidal
equational theories. In: Dershowitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS
(LNAI), vol. 4790. Springer, Heidelberg (2007)

33. Cortier, V., Delaune, S., Lafourcade, P.: A survey of algebraic properties used in
cryptographic protocols. Journal of Computer Security 14(1), 1–43 (2006)

34. Cortier, V., Rusinowitch, M., Zalinescu, E.: A resolution strategy for verifying
cryptographic protocols with CBC encryption and blind signatures. In: 7th ACM-
SIGPLAN International Conference on Principles and Practice of Declarative Pro-
gramming (PPDP) (2005)

35. Delaune, S.: Easy intruder deduction problems with homomorphisms. Information
Processing Letters 97(6), 213–218 (2006)

36. Delaune, S., Kremer, S., Ryan, M.D.: Coercion-resistance and receipt-freeness in
electronic voting. In: Proceedings of the 19th Computer Security Foundations
Workshop (CSFW). IEEE Computer Society Press, Los Alamitos (2006)

37. Delaune, S., Lafourcade, P., Lugiez, D., Treinen, R.: Symbolic protocol analysis for
monoidal equational theories. Information and Computation 206, 312–351 (2008)

38. Delaune, S., Lin, H.: Protocol verification via rigid/flexible resolution. In: Der-
showitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS (LNAI), vol. 4790. Springer,
Heidelberg (2007)

39. Fermüller, C., Leitsch, A., Hustadt, U., Tamet, T.: Resolution decision procedure.
In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, ch. 25,
vol. 2, pp. 1793–1849. North-Holland, Amsterdam (2001)

40. Huttel, H.: Deciding framed bisimulation. In: 4th International Workshop on Ver-
ification of Infinite State Systems INFINITY 2002, pp. 1–20 (2002)

41. Küsters, R., Tuengerthal, M.: Joint state theorems for public-key encryption and
digital signature functionalities with local computations. In: Computer Security
Foundations (CSF 2008) (2008)

42. Lowe, G.: An attack on the Needham-Schroeder public-key authentication protocol.
Information Processing Letters 56(3), 131–133 (1996)

43. Lowe, G.: Towards a completeness result for model checking of security protocols.
Journal of Computer Security 7(1) (1999)

44. McAllester, D.: Automatic recognition of tractability in inference relations.
J. ACM 40(2) (1993)

45. Meadows, C.: The NRL protocol analyzer: An overview. Journal of Logic Program-
ming 26(2), 113–131 (1996)

46. Millen, J., Shmatikov, V.: Symbolic protocol analysis with an Abelian group oper-
ator or Diffie-Hellman exponentiation. J. Computer Security (2005)

47. Millen, J.K., Ko, H.-P.: Narrowing terminates for encryption. In: Proc. Ninth IEEE
Computer Security Foundations Workshop (CSFW) (1996)

Challenges in the Automated Verification of Security Protocols 409

48. Ramanujam, R., Suresh, S.P.: Tagging makes secrecy decidable with unbounded
nonces as well. In: Pandya, P.K., Radhakrishnan, J. (eds.) FSTTCS 2003. LNCS,
vol. 2914, pp. 363–374. Springer, Heidelberg (2003)

49. Rusinowitch, M., Turuani, M.: Protocol insecurity with finite number of sessions
is np-complete. In: Proc. 14th IEEE Computer Security Foundations Workshop,
Cape Breton, Nova Scotia (June 2001)

50. Weidenbach, C.: Towards an automatic analysis of security protocols in first-order
logic. In: Ganzinger, H. (ed.) CADE 1999. LNCS (LNAI), vol. 1632, pp. 314–328.
Springer, Heidelberg (1999)

Deciding Effectively Propositional Logic Using

DPLL and Substitution Sets

Leonardo de Moura and Nikolaj Bjørner

Microsoft Research, One Microsoft Way, Redmond, WA, 98074, USA
{leonardo, nbjorner}@microsoft.com

Abstract. We introduce a DPLL calculus that is a decision procedure
for the Bernays-Schönfinkel class, also known as EPR. Our calculus al-
lows combining techniques for efficient propositional search with data-
structures, such as Binary Decision Diagrams, that can efficiently and
succinctly encode finite sets of substitutions and operations on these. In
the calculus, clauses comprise of a sequence of literals together with a
finite set of substitutions; truth assignments are also represented using
substitution sets. The calculus works directly at the level of sets, and
admits performing simultaneous constraint propagation and decisions,
resulting in potentially exponential speedups over existing approaches.

1 Introduction

Effectively propositional logic, also known as the Bernays-Schönfinkel class, or
EPR, of first-order formulas provides for an attractive generalization of pure
propositional satisfiability and quantified Boolean formulas. The EPR class com-
prise of formulas of the form ∃∗∀∗ϕ, where ϕ is a quantifier-free formula with
relations, equality, but without function symbols. The satisfiability problem for
EPR formulas can be reduced to SAT by first replacing all existential variables
by skolem constants, and then grounding the universally quantified variables
by all combinations of constants. This process produces a propositional formula
that is exponentially larger than the original. In a matching bound, the satis-
fiability problem for EPR is NEXPTIME complete [1]. An advantage is that
decision problems may be encoded exponentially more succinctly in EPR than
with purely propositional encodings [2].

Our calculus aims at providing a bridge from efficient techniques used in pure
SAT problems to take advantage of the succinctness provided for by the EPR
fragment. One inspiration was [3], which uses an ad-hoc extension of a SAT
solver for problems that can otherwise be encoded in QBF or EPR; and we hope
the presented framework allows formulating such applications as strategies. A
main ingredient is the use of sets of instantiations for both clauses and literal
assignments. By restricting sets of instantiations to the EPR fragment, it is
feasible to represent these using succinct data-structures, such as Binary Deci-
sion Diagrams [4]. Such representations allow delaying, and in several instances,
avoiding, space overhead that a direct propositional encoding would entail.

A. Armando, P. Baumgartner, and G. Dowek (Eds.): IJCAR 2008, LNCS 5195, pp. 410–425, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Deciding Effectively Propositional Logic Using DPLL and Substitution Sets 411

The main contributions of this paper comprise of a calculus DPLL(SX) with
substitution sets which is complete for EPR (Section 2). The standard calculus
for propositional satisfiability lifts directly to DPLL(SX), allowing techniques
from SAT solving to apply on purely propositional clauses. However, here, we
will be mainly interested in investigating features specific to non-propositional
cases. We make explicit and essential use of factoring, well-known from first-
order resolution, but to our knowledge so far only used for clause simplifications
in other liftings of DPLL. We show how the calculus lends itself to an efficient
search strategy based on a simultaneous version of Boolean constraint prop-
agation (Section 3). We exhibit cases where the simultaneous technique may
produce an exponential speedup during propagation. By focusing on sets of
substitutions, rather than substitutions, we open up the calculus to efficient im-
plementations based on data-structures that can encode finite sets succinctly.
Our current prototype uses a BDD package for encoding finite domains, and
we report on a promising, albeit preliminary, empirical evaluation (Section 4).
Section 5 concludes with related work and future extensions.

2 The DPLL(SX) Calculus

2.1 Preliminaries

We use a, b, c,7, �, 0, . . . to range over a finite alphabet Σ of constants, while
a, b, c are tuples of constants, x, y, z, x0, x1, x2, . . . for variables from a set V ,
x,y, z are tuples of variables, and p1, p2, p, q, r, s, t, . . . for atomic predicates of
varying arities. Signed predicate symbols are identified by the set L. As usual,
literals (identified by the letter �) are either atomic predicates or their negations
applied to arguments. For example, p(x1, x2) is the literal where the binary
atomic predicate p is negated. Clauses consist of a finite set of literals, where
each atomic predicate is applied to distinct variables. For example p(x1, x2) ∨
q(x3)∨q(x4) is a (well formed) clause. We use C,C′, C1, C2 to range over clauses.
The empty clause is identified by a �. Substitutions, written θ, θ′, are idempotent
partial functions from V to V∪Σ. In other words, θ ∈ V ∼→ V∪Σ is a substitution
if for every x ∈ Dom(θ) we have θ(x) ∈ V ⇒ θ(x) ∈ Dom(θ) ∧ θ(θ(x)) = θ(x).
Substitutions are lifted to homomorphisms in the usual way, so that substitutions
can be applied to arbitrary terms, e.g., θ(f(c, x)) = f(c, θ(x)). Substitutions
that map to constants only (Σ) are called instantiations. We associate with each
substitution θ a set of instances, namely, instancesOf (θ) = {θ′ ∈ (Dom(θ) →
Σ) | ∀x ∈ Dom(θ) . θ′(x) = θ′(θ(x))}. Suppose θ is a substitution with domain
{x1, . . . , xn}; then the corresponding set instancesOf (θ) can be viewed as a set
of n-entry records, or equivalently as an n-ary relation over x1, . . . , xn. In the
following, we can denote a set of substitutions as a set of instances, but will use
the terminology substitution set to reflect that we use representations of such sets
using a mixture of instantitions and proper substitutions. We discuss in more
detail how substitution sets are represented in Section 3.3. As shorthand for sets
of substitutions we use Θ, Θ′, Θ1, Θ2. A substitution-set constrained clause is a
pair C · Θ where C is a clause and Θ is a substitution set. The denotation of

412 L. de Moura and N. Bjørner

a constrained clause is the set of ground clauses θ(C), for every instantiation
θ ∈ Θ. Notice that there are no ground clauses associated with C · ∅, so our
rules will avoid adding such tautologies. We will assume clauses are in “normal”
form where the literals in C are applied to different variables, so it is up to the
substitutions to create equalities between variables.

Literals can also be constrained, and we use the notation �Θ for the literal
� whose instances are determined by the non-empty Θ. If Θ is a singleton set,
we may just write the instance of the literal directly. So for example p(a) is
shorthand for p(x){a}.

Example 1 (Constrained clauses). The set of (unit) clauses: p(a, b), p(b, c), p(c, d)
can be represented as the set-constrained clause

p(x1, x2) · {[x1 �→ a, x2 �→ b], [x1 �→ b, x2 �→ c], [x1 �→ c, x2 �→ d]},

or simply: p(x1, x2) · {(a, b), (b, c), (c, d)}

A context Γ is a sequence of constrained literals and decision markers (:). For
instance, the sequence �1Θ1, :, �2Θ2, �3Θ3, . . . , �kΘk is a context. We allow con-
catenating contexts, so Γ, Γ ′, �Θ, :, �′Θ′, Γ ′′ is a context that starts with a se-
quence of constrained literals in Γ , continues with another sequence Γ ′, contains
�Θ, a decision marker, then �′Θ′, and ends with Γ ′′.

Operations from relational algebra will be useful in manipulating substitution
sets. See also [5], [6] and [7]. We summarize the operations we will be using below:

Selection σϕ(x)Θ is shorthand for {θ ∈ Θ | ϕ(θ(x))}.
Projection πxΘ is shorthand for the set of substitutions obtained from Θ by

removing domain elements other than x. For example, πx{[x �→ a, y �→
b], [x �→ a, y �→ c]} = {[x �→ a]}.

Co Projection π̂xΘ is shorthand for the set of substitutions obtained from Θ by
removing x. So π̂x{[x �→ a, y �→ b], [x �→ a, y �→ c]} = {[y �→ b], [y �→ c]}.

Join Θ � Θ′ is the natural join of two relations. If Θ uses the variables x and
y, and Θ′ uses variables x and z, where y and z are disjoint, then Θ � Θ′

uses x,y and z and is equal to {θ | π̂z(θ) ∈ Θ, π̂y(θ) ∈ Θ′}. For example,
{[x �→ a, y �→ b], [x �→ a, y �→ c]} � {[y �→ b, z �→ b], [y �→ b, z �→ a]} = {[x �→
a, y �→ b, z �→ b], [x �→ a, y �→ b, z �→ a]}.

Renaming δx→yΘ is the relation obtained from Θ by renaming the variables x
to y. We here assume that y is not used in Θ already.

Substitution θ(Θ) applies the substitution θ to the set Θ. It is shorthand for a se-
quence of selection and co-projections. For example [x �→ a](Θ) = π̂xσx=aΘ.

Set operations Θ ∪Θ′ creates the union of Θ and Θ′, both sets of n-ary tuples
(sets of instances with n variables in the domain). Subtraction Θ \Θ′ is the
set {θ ∈ Θ | θ �∈ Θ′}. The complement Θ is Σn \Θ.

Notice, that we can compute the most general unifier of two substitutions θ and
θ′, by taking the natural join of their substitution set equivalents (the join is the

Deciding Effectively Propositional Logic Using DPLL and Substitution Sets 413

empty set if the most general unifier does not exist). If two clauses C ∨ �(x) and
C′ ∨ ¬�(x), have substitution sets Θ and Θ′ respectively, we can compute the
resolvent (C∨C′)·π̂x(Θ � Θ′). We quietly assumed that the variables in C and C′

were disjoint and renamed apart from x, and we will in the following assume that
variables are by default assumed disjoint, or use appropriate renaming silently
instead of cluttering the notation.

2.2 Inference Rules

We will adapt the proof calculus for DPLL(SX) from an exposition of DPLL(T)
as an abstract transition system [8,9]. States of the transition system are of the
form Γ ||F, where Γ is a context, and the set F is a collection of constrained
clauses. Constrained literals are furthermore annotated with optional explana-
tions. In this presentation we will use one kind of explanation of the form:

�C·ΘΘ′ All Θ′ instances of � are implied by propagation from C · Θ

We maintain the following invariant, which is crucial for conflict resolution:

Invariant 1. For every derived context of the form Γ, �C·ΘΘ′, Γ ′ it is the case
that C = (�1 ∨ . . . ∨ �k ∨ �(x)) and there are assignments �iΘi ∈ Γ , such that
Θ′ ⊆ π̂x(Θ � δx→x1Θ1 � . . . � δx→xk

Θk) (written Θ′ ⊆ π̂x(Θ � Θ1 � . . . � Θk)
without the explicit renamings). Furthermore, Θ′ is non-empty.

We take advantage of this invariant to associate a function premises(�C·ΘΘ′)
that extracts Θ � Θ1 � . . . � Θk (or, to spell it out for the last time: Θ �

δx→x1Θ1 � . . . � δx→xk
Θk).

During conflict resolution, we also use states of the form

Γ ||F ||C · Θ, Θr

where C · Θ is a conflict clause, and Θr is the set of instantiations that falsify
C; it is used to guide conflict resolution.

We split the presentation of DPLL(SX) into two parts, consisting of the search
inference rules, given in Fig. 1, and the conflict resolution rules, given in Fig. 2.
Search proceeds similarly to propositional DPLL: It starts with the initial state
||F where the context is empty. The result is either unsat indicating that F is
unsatisfiable, or a state Γ ||F such that every clause in F is satisfied by Γ . A
sequence of Decide steps are used to guess an assignment of truth values to the
literals in the clauses F . The side-conditions for UnitPropagate and Conflict are
similar: they check that there is a non-empty join of the clause’s substitutions
with substitutions associated with the complemented literals. There is a conflict
when all of the literals in a clause has complementary assignments, otherwise, if
all but one literal has a complementary assignment, we may apply unit propaga-
tion to the remaining literal. The last side condition on UnitPropagate prevents
it from being applied if there is a conflict. Semantically, a non-empty join implies
that there are instances of the literal assignments that contradict (all but one
of) the clause’s literals.

414 L. de Moura and N. Bjørner

	 ∈ F If 	Θ′ ∈ Γ or 	Θ′ ∈ Γ , then Θ � Θ′ = ∅
Decide

Γ ||F =⇒ Γ, ', 	Θ ||F

C = (1 ∨ . . . ∨ 	k), 	iΘi ∈ Γ, Θr = Θ � Θ1 � . . . � Θk �= ∅
Conflict

Γ ||F, C ·Θ =⇒ Γ ||F, C ·Θ ||C · Θ, Θr

C = (1 ∨ . . . ∨ 	k ∨ 	(x)), 	iΘi ∈ Γ, i = 1, .., k
Θ′ = πx(Θ � Θ1 � . . . � Θk) \

⋃
{Θ� | 	Θ� ∈ Γ} �= ∅

Θ′ �
⋃
{Θ� | 	Θ� ∈ Γ} = ∅

UnitPropagate
Γ ||F, C ·Θ =⇒ Γ, 	C·Θ ·Θ′ ||F, C · Θ

Fig. 1. Search inference rules

πyΘr � Θ� = ∅ for every �(y) ∈ C′, C� = (C(y) ∨ �(x))

Θ′

r = π̂x(Θr � Θ� � premises(�Θ�)) �= ∅, Θ′′ = π̂x(Θ � Θ′)
Resolve

Γ, �
C�·Θ

′

Θ� ||F || (C′(z) ∨ �(x)) · Θ, Θr =⇒ Γ ||F || (C(y) ∨ C′(z)) · Θ′′, Θ′

r

πyΘr � Θ� = ∅ for every �(y) ∈ C
Skip

Γ, �
C�·Θ

′

Θ� ||F ||C · Θ, Θr =⇒ Γ ||F ||C · Θ, Θr

Θ′

r = π̂zσy=zΘr �= ∅, Θ′ = π̂zσy=zΘ
Factoring

Γ ||F || (C(x) ∨ �(y) ∨ �(z)) · Θ, Θr =⇒ Γ ||F || (C(x) ∨ �(y)) · Θ′, Θ′

r

C · Θ �∈ F
Learn

Γ ||F ||C · Θ, Θr =⇒ Γ ||F, C · Θ ||C · Θ, Θr

Θ �= ∅
Unsat

Γ ||F ||� · Θ, Θr =⇒ unsat

C = (�1 ∨ . . . ∨ �k ∨ �(x)), �iΘi ∈ Γ1

Θ′ = πx(Θ � Θ1 � . . . � Θk) \
⋃
{Θ� | �Θ� ∈ Γ1} �= ∅

Backjump
Γ1, �, Γ2 ||F ||C · Θ, Θr =⇒ Γ1, �

C·ΘΘ′ ||F

∅ �= Θ′

1 ⊂ Θ1
Refine

Γ, �, �Θ1, Γ
′ ||F ||C · Θ, Θr =⇒ Γ, �, �Θ′

1 ||F

Fig. 2. Conflict resolution rules

Conflict resolution rules, shown in Fig. 2, produce resolution proof steps based
on a clause identified in a conflict. The Resolve rule unfolds literals from conflict
clauses that were produced by unit propagation, and Skip bypasses propagations
that were not used in the conflict. The precondition of Resolve only applies if there
is a single literal that is implied by the top of the context, if that is not the case,
we can use factoring. Unlike propositional DPLL, it is not always possible to ap-
ply factoring on repeated literals in a conflict clause. We therefore include a Fac-
toring rule to explicitly handle factoring when it applies. Any clause derived by
resolution or factoring can be learned using Learn, and added to the clauses in F .

Deciding Effectively Propositional Logic Using DPLL and Substitution Sets 415

The inference system produces the result unsat if conflict resolution results in the
empty clause. There are two ways to transition from conflict resolution to search
mode. Back-jumping applies when all but one literal in the conflict clause is as-
signed below the current decision level. In this case the rule Backjump adds the
uniquely implied literal to the logical context Γ and resumes search mode. As fac-
toring does not necessarily always apply, we need another rule, called Refine, for
resuming search. The Refine rule allows refining the set of substitutions applied
to a decision literal. The side condition to Refine only requires that Θ1 be a non-
empty, non-singleton set. In some cases we can use the conflict clause to guide
refinement: If C contains two occurrences �(x1) and �(x2), where πx1(Θr) and
πx2(Θr) are disjoint but are subsets of Θ1, then use one of the projections as Θ′

1.
To illustrate the inference rules, and in particular the use of factoring and

splitting consider the following example. Assume we have the clauses:

F :

⎧

⎨

⎩

C1 : p(x) ∨ q(y) ∨ r(z) · {(a, a, a)},
C2 : p(x) ∨ s(y) ∨ t(z) · {(b, b, b)},
C3 : q(x) ∨ s(y) · {(a, b)}

A possible derivation may start with the empty assignment and take the shape
shown in Fig 3. We end up with a conflict clause with two occurrences of p.

||F
=⇒ Decide

', r(x){a, b, c} ||F
=⇒ Decide

', r(x){a, b, c}, ', t(x){b, c} ||F
=⇒ Decide

', r(x){a, b, c}, ', t(x){b, c}, ', p(x){a, b} ||F
=⇒ UnitPropagate using C1

', r(x){a, b, c}, ', t(x){b, c}, ', p(x){a, b}, q(x){a} ||F
=⇒ UnitPropagate using C2

', r(x){a, b, c}, ', t(x){b, c}, ', p(x){a, b}, q(x){a}, s(x){b}
︸ ︷︷ ︸

Γ

||F

=⇒ Conflict using C3

Γ ||F || q(x) ∨ s(y) · {(a, b)}
=⇒ Resolve using C2

Γ ||F || p(x) ∨ q(y) ∨ t(z) · {(b, a, b)}
=⇒ Resolve using C1

Γ ||F || p(x) ∨ p(x′) ∨ r(y) ∨ t(z) · {(b, a, a, b)}

Fig. 3. Example derivation steps

Factoring does not apply, because the bindings for x and x′ are different. Instead,
we can choose one of the bindings as the new assignment for p. For example, we
could take the subset {b}, in which case the new stack is:

=⇒ Refine
:, r(x){a, b, c}, :, t(x){b, c}, :, p(x){b} ||F

416 L. de Moura and N. Bjørner

2.3 Soundness, Completeness and Complexity

It can be verified by inspecting each rule that all clauses added by conflict
resolution are resolvents of the original set of clauses F . Thus,

Theorem 1 (Soundness). DPLL(SX) is sound.

The use of premises and the auxiliary substitution Θr have been delicately for-
mulated to ensure that conflict resolution is finite and stuck-free, that is, Resolve
and Factoring always produce a conflict clause that admits either Backjump or
Refine.

Theorem 2 (Stuck-freeness). For every derivation starting with rule Conflict
there is a state Γ ||F ||C ·Θ,Θr, such that Backjump or Refine is enabled.

Note that Refine is always enabled when there is a non-singleton set attached to
a decision literal, but the key property that is relevant for this theorem is that
adding premises to a resolvent does not change the projection of old literals in
the resolved clause. In other words, for every y disjoint from premises(�Θ�) it is
the case that: πy(Θr) = πy(Θr � premises(�Θ�)).
Similarly, we can directly simulate propositional grounding in the calculus, so:

Theorem 3 (Completeness). DPLL(SX) is complete for EPR.

The calculus admits the expected asymptotic complexity of EPR. Suppose the
maximal arity of any relation is a, the number of constants is n = |Σ|, and the
number of relations is m, set K ← m× (na), then:

Theorem 4 (Complexity). The rules of DPLL(SX) terminate with at most
O(K · 2K) applications, and with maximal space usage O(K2).

Proof. First note that a context can enumerate each literal assignment explicitly
using at most O(K) space, since each of the m literals should be evaluated at up
to na instances. Literals that are tagged by explanations require up to additional
O(K) space, each.

For the number of rule applications, consider the ordering ≺ on contexts
defined as the transitive closure of:

Γ, �′Θ′, Γ ′ ≺ Γ, :, �Θ, Γ ′′ (1)
Γ, :, �Θ′, Γ ′ ≺ Γ, :, �Θ, Γ ′′ when Θ′ ⊂ Θ (2)

The two rules for ≺ correspond to the inference rules Backjump and Refine
that generate contexts of decreased measure with respect to ≺. Furthermore,
we may restrict our attention to contexts Γ where for every literal �, such that
Γ = Γ ′, �Θ, Γ ′′ if ∃Θ′ . �Θ′ ∈ Γ ′, Γ ′′, then Θ′ � Θ = ∅. There are at most
K! such contexts, but we claim the longest ≺ chain is at most K · 2K . First,
if all sets are singletons, then the derivation is isomorphic to a system with K
atoms, which requires at most 2K applications of the rule (1). Derivations that
use non-singleton sets embed directly into a derivation with singletons using more

Deciding Effectively Propositional Logic Using DPLL and Substitution Sets 417

C = (1 ∨ . . . ∨ 	k ∨ 	(x)),

Θ′
i = ∪{Θi | 	iΘi ∈ Γ}, Θ′

� =
⋃
{Θ� | 	Θ� ∈ Γ},

Θ′ = πx(Θ � Θ′
1 � . . . � Θ′

k) \Θ′
� �= ∅

S-UnitPropagate
Γ ||F, C ·Θ =⇒ Γ, 	C·Θ ·Θ′ ||F, C · Θ

C = (1 ∨ . . . ∨ 	k), Θ′
i = ∪{Θi | 	iΘi ∈ Γ},

Θ′ = Θ � Θ′
1 � . . . � Θ′

k �= ∅
S-Conflict

Γ ||F, C ·Θ =⇒ Γ ||F, C ·Θ ||C · Θ, Θ′

Fig. 4. S-UnitPropagate and S-Conflict

steps. Finally, rule (2) may be applied at most K times between each step that
corresponds to a step of the first kind.

Note that the number of rule applications does not include the cost of manip-
ulating substitution sets. This cost depends on the set representations. While
the asymptotic time complexity is (of course) no better than what a brute force
grounding provides, DPLL(SX) only really requires space for representing the
logical context Γ . While the size of Γ may be in the order K, there is no require-
ment for increasing F from its original size. As we will see, the use of substitution
sets may furthermore compress the size of Γ well below the bound of K. One
may worry that in an implementation, the overhead of using substitution sets
may be prohibitive compared to an approach based on substitutions alone. Sec-
tion 3.3 describes a data-structure that compresses substitution sets when they
can be represented as substitutions directly.

3 Refinements of DPLL(SX)

The calculus presented in Section 2 is a general framework for using substitu-
tion sets in the context of DPLL. We first discuss a refinement of the calculus
that allows to apply unit propagation for several assignments simultaneously.
Second, we examine data-structures and algorithms for representing, indexing
and manipulating substitution sets efficiently during search.

3.1 Simultaneous Propagation and FUIP-Based Conflict Resolution

In general, literals are assigned substitutions at different levels in the search. Unit
propagation and conflict detection can therefore potentially be identified based
on several different instances of the same literals. For example, given the clause
(p(x)∨q(x)) and the context p(a), p(b), unit propagation may be applied on p(a)
to imply q(a), but also on p(b) to imply q(b). We can factor such operations into
simultaneous versions of the UnitPropagate and Conflict rules. The simultaneous
version of the propagation and conflict rules take the form shown in Fig 4.

418 L. de Moura and N. Bjørner

Correctness of these simultaneous versions rely on the basic the property that
� distributes over unions:

(R ∪R′) � Q = (R � Q) ∪ (R′ � Q) for every R,R′, Q (3)

Thus, every instance of S-UnitPropagate corresponds to a set of instances of
UnitPropagate, and for every S-Conflict there is a selection of literals in Γ that
produces a Conflict. The rules suggest to maintain accumulated sets of substi-
tutions per literal, and apply propagation and conflict detection rules once per
literal, as opposed to once per literal occurrence in Γ . A trade-off is that we
break invariant 1 when using these rules. Instead we have:

Invariant 2. For every derived context of the form Γ, �C·ΘΘ′, Γ ′ where C =
(�1 ∨ . . . ∨ �k ∨ �), it is the case that Θ′ ⊆ π̂x(Θ � Θ′

1 � . . . � Θ′
k) where

Θ′
i =
⋃
{Θi | �iΘi ∈ Γ}.

The weaker invariant still suffices to establish the theorems from Section 2.3.
The function premises is still admissible, thanks to (3).

Succinctness. Note the asymmetry between the use of simultaneous unit prop-
agation and the conflict resolution strategy: while the simultaneous rules allow to
use literal assignments from several levels at once, conflict resolution traces back
the origins of the propagations that closed the branches. The net effect may be
a conflict clause that is exponentially larger than the depth of the branch. As an
illustration of this situation consider the clauses where p is an n-ary predicate:

¬p(0, . . . , 0) ∧ shape(�) ∧ shape(7) (4)
∧i [p(x, �, 0, .., 0) ∧ p(x,7, 0, .., 0) → p(x, 0, 0.., 0)]where x = x0, . . . , xi−1

∧0≤j<nshape(xj) → p(x0, . . . , xn−1)

Claim. The clauses are contradictory, and any resolution proof requires 2n steps.

Justification. Backchaining from p(0, . . . , 0), we observe that all possible deriva-
tions are of the form:

p(0, . . . , 0)← p(�, 0, . . . , 0), p(7, 0, . . . , 0)
← p(�,7, 0, .., 0), p(�, �, 0, .., 0), p(7,7, 0, .., 0), p(7, �, 0, .., 0)
← . . .
← p(�, �, . . .), . . . , p(7,7, . . .) all 2n combinations
← shape(�) . . . shape(7)

Claim. DPLL(SX) with simultaneous unit propagation requires O(n) steps to
complete the derivation.

Justification. The two assertions shape(�) and shape(7) may be combined into
shape(x){�,7} and then used to infer p(x){�,7} × . . . × {�,7} in one propa-
gation. Each consecutive propagation may be used to produce p(x)Θ, where Θ
contains a suffix with k consecutive 0’s and the rest being all combinations of �
and 7.

Deciding Effectively Propositional Logic Using DPLL and Substitution Sets 419

In this example, we did in fact not need to perform conflict resolution at all be-
cause the problem was purely Horn, and no decisions were required to derive the
empty clause. But it is simple to modify such instances to non-Horn problems,
and the general question remains how and whether to avoid an exponential cost
of conflict resolution as measured by the number of propagation steps used to
derive the conflict.

One crude approach for handling this situation is to abandon conflict reso-
lution if the size of the conflict clause exceeds a threshold. When abandoning
conflict resolution apply Refine, which is enabled as long as there is at least
one decision literal on the stack whose substitution set is a non-singleton. If
all decision literals use singletons, then Refine does not apply. In this case we
have to use a different way of backtracking. We can flip the last decision literal
under the context of the negation of all decision literals on the stack. The rule
corresponding to this approach is U(nit)-Refine:

c ∈ Σk �∈ Γ ′, �1Θ1, . . . , �mΘm are the decision literals in Γ

C′ = � ∨ �1 ∨ . . . ∨ �m, Θ′ = {c} � Θ1 � . . . � Θm is a singleton
U-Refine

Γ, , �{c}, Γ ′ ||F ||C · Θ, Θr =⇒ Γ, �{c}C′·Θ′

||F

But with succinct substitution sets it is sometimes possible to match the suc-
cinctness of unit propagation during conflict resolution. The approach we are
going to present will use ground clauses during resolution. The ground clauses
can have multiple occurrences of the same predicate symbol, but applied to dif-
ferent (ground) arguments. We then summarize the different arguments using a
substitution set, so that the representation of the ground clause only requires
each predicate symbol at most twice (positive and/or negated), but with a po-
tentially succinct representation of the arguments.

Suppose S-Conflict infers the conflict clause C · Θ and set Θr. Let θ0 be an
arbitrary instantiation in Θr. Initialize the map Ψ from the set of signed predicate
symbols to substitution sets as follows:

Ψ(�) ←
⋃

{πxi
θ0 | �(xi) ∈ C}, for � ∈ L. (5)

Note that a clause C may have multiple occurrences of a predicate symbol with
the same sign, but applied to different arguments. The definition ensures that if
� ∈ L is a signed predicate symbol that does not occur in C, then Ψ(�) = ∅.

Example 2. Assume C = p(x1) ∨ p(x2) ∨ q(x3) and θ = (a, b, c), then Ψ(p) =
{a, b}, Ψ(p) = ∅, Ψ(q) = {c}, Ψ(q) = ∅.

We can directly reconstruct a clause from Ψ by creating a disjunction of
Σ�∈L|Ψ(�)| literals and a substitution that is the product of all elements in the
range of Ψ . This inverse mapping is called clause of(Ψ). Sets in the range of
Ψ may get large, but we can here rely on the same representation as used for
substitution sets. We can now define a (first-unique implication point) resolu-
tion strategy that works using Ψ . We formulate the strategy separately from

420 L. de Moura and N. Bjørner

the already introduced rules, as we need to ensure that we can maintain the
representation of the conflict clause using Ψ .

resolve(Γ1, :, Γ2, Ψ) = Backjump with Γ1�
C·Θ{c} if

� ∈ Dom(Ψ), c ∈ Ψ(�), Ψ(�) \ {c} ⊆
⋃
{Θ′ | �Θ′ ∈ Γ1}

Ψ(�′) ⊆
⋃
{Θ′ | �′Θ′ ∈ Γ1} for � �= �′

C ·Θ = clause of(Ψ)
resolve(Γ, �Θ, Ψ) = resolve(Γ, Ψ) if Θ ∩ Ψ(�) = ∅
resolve(Γ, �C∨�·ΘΘ′, Ψ) = resolve(Γ, Ψ), if Θ′ ∩ Ψ(�) = {c}, and where
Ψ(�)← Ψ(�) \Θ′

for �′(x) ∈ C: Ψ(�′)← Ψ(�′) ∪ πx(premises(�C∨�·ΘΘ′))
resolve(Γ, :, �Θ, Ψ) = Refine if other rules don’t apply.

Besides the cost of performing the set operations, the strategy still suffers
from the potential of generating an exponentially large implied learned clause
C ·Θ′ during backjumping. An implementation can choose to resort to applying
Refine or U-Refine in these cases. We do not have experimental experience with
the representation in terms of Ψ . Instead our prototype implementation uses
Refine together with U-Refine, when the conflict resolution steps start generating
conflict clauses with more than 20 (an arbitrary default) literals.

3.2 Selecting Decision Literals and Substitution Sets

Selecting literals and substitution sets blindly for Decide is possible, but not a
practical heuristic. As in the Model-evolution calculus [10], we take advantage of
the current assignment Γ to guide selection. Closure of substitution sets under
complementation streamlines the task a bit for the case of DPLL(SX). First
observe that Γ induces a default interpretation of the instances of every atom p
by taking:

[[p]] =
⋃

{Θ′ | pΘ′ ∈ Γ} and [[p]] = [[p]] (6)

Note that we can assume that Γ is consistent, so
⋃
{Θ′ | pΘ′ ∈ Γ} ⊆ [[p]]. Using

the current assignment for the positive literals and the complement thereof for
negative ones is an arbitrary choice in the context of DPLL(SX). One may fix
a default interpretation differently for each atom. But note that this particular
choice coincides with negation as failure for the case of Horn clauses.

We now say that �i is a candidate decision literal with instantiation Θ′
i if there

is a clause C ·Θ, such that C = (�1 ∨ . . . ∨ �k), 1 ≤ i ≤ k, and:

Θ′
i = (Θ � [[�1]] � . . . � [[�k]]) \

⋃

{Θ′ | �iΘ′ ∈ Γ} �= ∅ (7)

Our prototype uses a greedy approach for selecting decision literals and substi-
tution sets: predicates with lower arity are preferred over predicates with higher
arities. In particular, propositional atoms are used first and they are assigned

Deciding Effectively Propositional Logic Using DPLL and Substitution Sets 421

using standard SAT heuristics. Predicates with non-zero arity that are not com-
pletely assigned are checked for condition (7) and we pick the first applicable
candidate. The process either produces a decision literal, or determines that the
current set of clauses are satisfiable in the default interpretation, as the following
easy lemma summarizes:

Lemma 1. If for a state Γ ||F, (�1 ∨ . . . ∨ �k) ·Θ it is the case that neither Unit-
Propagate or Conflict are enabled and

Θ � [[�1]] � . . . � [[�k]] �= ∅ (8)

then there is some i, such that 1 ≤ i ≤ k, that satisfies (7). Furthermore, the
identified substitution Θ′

i is disjoint from any Θ′, where �iΘ′ ∈ Γ or �iΘ′ ∈ Γ .
Conversely, if the current state is closed under propagation and conflict and there
is no clause that satisfies (8), then the default interpretation is a model for the
set of clauses F .

Proof. If the current state is closed under Conflict and UnitPropagate, then for
every clause (�1 ∨ . . . ∨ �k) · Θ: Θ � Θ′

1 � . . . � Θ′
k = ∅ for Θ′

i =
⋃
{Θ′ | �iΘ′ ∈

Γ}. Suppose that (8) holds, then by
⋃
{Θ′ | pΘ′ ∈ Γ} ⊆ [[p]] and distributivity of

� over ∪ there is some i where (7) holds. The converse direction is immediate.

3.3 Hybrid Substitution Sets

Representing all substitution sets directly as BDDs is not practical. In particular,
computing Θ � Θ′

1 � . . . � Θ′
k by directly applying the definitions of � as

conjunction and δ→ as BDD renaming does not work in practice for clauses with
several literals: simply building a BDD for Θ (where Θ is the substitution set
associated with a clause) can be prohibitively expensive. We here investigate
a representation of substitution sets called hybrid substitution sets that admit
pre-compiling and factoring several of the operations used during constraint
propagation. The format is furthermore amenable to a two-literal watch strategy
for the propositional case.

Definition 1 (Hybrid substitution sets). A hybrid substitution set is a pair
(θ,Θ), where θ is a substitution, and Θ is a relation (substitution set). Further-
more, the domain of Θ consists of the variables where θ is idempotent. That is,
Dom(Θ) = {x ∈ Dom(θ) | θ(x) = x}. The substitution set associated with a
hybrid substitution is the set of instances: Θ � {θ}.

In one extreme, a proper substitution θ is equivalent to the hybrid substitution
set (θ,�). Our prototype compiles clauses into such substitution sets. In the
other extreme, every substitution set Θ can be represented as (id, Θ), where
id is the identity substitution over the domain of Θ. Our prototype uses such
substitution sets to constrain literals. We will henceforth take the liberty to
abuse notation and treat substitutions θ and substitution sets Θ also as hybrid
substitution sets.

422 L. de Moura and N. Bjørner

Hybrid substitution sets are attractive because common operations are cheap
(linear time) when the substitutions are proper. They also enjoy closure prop-
erties under the main relational algebraic operations that are used in conflict
resolution.

Lemma 2. Proper substitutions are closed under the operations: �, πx, π̂x,
σx=y, and δx→y, but not under union nor complementation.

Even if the hybrid substitution sets are not proper, the complexity of the common
operations is reduced by using the substitution component when it is not the
identity. For example, representing each variable in a BDD requires log(|Σ|) bits,
and if the bits of two variables are spaced apart by k other bits, the operation
that restricts a BDD equating the two variables may cause a size increase of up
to 2k. The problem can be partially addressed using static or dynamic variable
reordering techniques, but variable orderings have to be managed carefully when
variables are shared among several substitution sets.

Constraint Propagation. Consider a clause C·(θ, Θ) ∈ F and a substitution Θ′
i

(associated with literal �i(x) in Γ , where �i occurs C). The main operation during
constraint propagation is computing (θ, Θ) � δx→xiΘ

′
i, which is equivalent to

(θ, Θ � ri(Θ′
i)) where ri = [x �→ θ(δx→xix) | x ∈ x]. (9)

The equivalence suggests to pre-compute and store the substitution ri, for every
clause C and literal in C. Each renaming may be associated with several clauses;
and we can generalize the two-literal watch heuristic for a clause C by using
watch literals �i and �j from C as guards if the current assignments Θ′

i and Θ′
j

satisfy ri(Θ′
i) = rj(Θ′

j) = ∅.

Resolution. In general, when taking the join of two hybrid substitution sets
we have the equivalence: (θ, Θ) � (θ′, Θ′) = (m, m(Θ) � m(Θ′)), where m =
mgu(θ, θ′), if the most general unifier exists, otherwise the join is (id,⊥). Res-
olution requires computing π̂x((θ, Θ) � (θ′, Θ′)) or in general π̂x(δy→z(θ, Θ) �

δu→v(θ′, Θ′)) where x, y, z, u, v are suitable vectors of variables. Again, we can
compose the re-namings first with the substitutions, compute the most gen-
eral unifier m = mgu(δy→zθ, δu→vθ′), in such a way that if m(y) = m(x), for
x ∈ x, y �∈ x, then m(y) is a constant or maps to some variable also not in x;
and returning (m \ x, ∃x(m(Θ) ∧ m(Θ′))). It is common for BDD packages to
supply a single operation for ∃x(ϕ ∧ ψ).

4 Implementation and Evaluation

We implemented DPLL(SX) as a modification of the propositional SAT solver
used in the SMT solver Z3. The implementation associates with each clause a hy-
brid substitution set and pre-compiles the set of substitutions ri used in (9). This
allows the BDD package, we use BuDDy1, to cache results from repeated substi-
tutions of the same BDDs (the corresponding operation is called vec compose

1 http://buddy.wiki.sourceforge.net

http://buddy.wiki.sourceforge.net

Deciding Effectively Propositional Logic Using DPLL and Substitution Sets 423

in BuDDy). BDD caching was more generally useful in obliterating special pur-
pose memoization in the SAT solver. For instance, we attempted to memoize
the default interpretations of clauses as they could potentially be re-used after
back-tracking, but we found so far no benefits of this added memoization over
relying on the BDD cache. BuDDy supports finite domains directly making it
easier to map a problem with a set of constants Σ = c1, . . . , ck into a finite
domain of size 2�log(k)�. Rounding the domain size up to the nearest power of
2 does not change satisfiability of the problem, but has a significant impact on
the performance of BDD operations. Unfortunately, we have not been able to
get dynamic variable re-ordering to work with finite domains in BuDDy, so all
our results are based on a fixed default variable order.

As expected, our prototype scales reasonably well on formula (4). It requires
n propagations to solve an instance where p has arity n. With n = 10 takes
0.01s., n = 20 takes 0.2s., and n = 200 takes 18s. (and caches 1.5M BDD nodes,
on a 32bit, 2GHz, 2GB, TS2500). Darwin [11] handles n = 10 in 0.4 seconds and
2049 propagations, while increasing n to 20 is already too overwhelming.

Example 3. Suppose p is an n-ary predicate, and that we have n unary predicates
a0, . . . , an−1, then consider the (non-Horn) formula:

∧0≤i<n∀x . [p(x)→ p(.., xi−1, 1, xi+1, ..)] (10)
∧ p(0, . . . , 0) ∧ ∧0≤i<n(ai(0) ∨ ai(1)) ∧ ∀x . [(∧iai(xi)) → ¬p(x)]

DPLL(SX) uses n simultaneous propagations to learn the assignment p(x)�.
In contrast, standard unit propagation requires 2n steps. Since no splitting was
required to learn this assignment, it can be used to eliminate p from conflict
clauses during lemma learning. The resulting conflict clauses during backjumping
are then ∀x .

∨

0≤i<m ¬ai(xi) for m = n − 1, . . . 1. Accordingly, the prototype
uses 0.06 seconds for n = 30, 0.9s for n = 80, and 26s. for n = 200, while even a
very good instantiation based prover Darwin requires O(2n−1) branches, which
is reflected in the timings: for n = 11, 12, 13, 14, 15, 16, take 1, 4, 16, 60, 180, 477
seconds respectively.

We also ran our prototype on the CASC-21 benchmarks from the EPS and EPT
divisions. In the EPT division fails to prove PUZ037-3.p, with a timeout of 120
seconds, as the BDDs built during propagation blow upIt solves the other 49
problems, using less than 1 second for all but SYN439-1.p, which requires 894
conflicts and 9.8 seconds. In the EPS division our prototype solves 46 out of 50
problems within the given 120s. timeout.

5 Conclusions

Related Work DPLL(SX) is a so called instance-based method [12] and it
shares several features with instance-based implementations derived from DPLL,

424 L. de Moura and N. Bjørner

such as the Model Evolution Calculus (ME) calculus [10], the iProver [13], and
the earlier work on a primal-dual approach for satisfiability of EPR [14]. These
methods are also decision procedures for EPR that go well beyond direct propo-
sitional grounding (as do resolution methods [15]). Lemma learning in ME [11]
comprises of two rules GRegress and a non-ground lifting Regress. In a somewhat
rough analogy to Regress, the resolution rules used in DPLL(SX) uses the set Θr

to guide a more general lifting for the produced conflict clause. Connections be-
tween relational technology and theorem proving were made in [5], as well as [6].
The use of BDDs for compactly representing relations is wide-spread. Of high
relevance to DPLL(SX) is the system BDDBDDB, which is a Datalog engine
based on BDDs [7]. Semantics of negation in Datalog aside, DPLL(SX) essen-
tially reduces to BDDBDDB for Horn problems. Simultaneous unit propagation
is for instance implicit in the way clauses get compiled to predicate transformers,
but on the other hand, apparatus for handling non-Horn problems is obviously
absent from BDDBDDB.

Extensions. A number of compelling extensions to DPLL(SX) remain to be
investigated. For example, we may merge two clausesC·Θ and C·Θ′ by taking the
union of the substitution sets. The clause C ·Θ′ could for instance be obtained by
resolving binary clauses, so this feature could simulate iterative squaring known
from symbolic model checking. Examples where iterative squaring pays of are
provided in [16]. We currently handle equality in our prototype by supplying
explicit equality axioms (reflexivity, symmetry, transitivity, and congruence) for
the binary equality relation 2, but supporting equality as an intrinsic theory is
possible and the benefits would be interesting to study. We have also to work
out efficient ways of building in subsumption. Supporting other theories is also
possible by propagating all instances from substitution sets, but it would be
appealing to identify cases where an explicit enumeration of substitution sets can
be avoided. We used reduced ordered BDDs in our evaluation of the calculus,
but this is by no means the only possible representation. We may for instance
delay forming canonical decision diagrams until it is required for evaluating (non-
emptiness) queries (a technique used for Boolean Expression Diagrams). It would
also be illustrative to investigate how DPLL(SX) applies to finite model finding
and general first-order problems. Darwin(FM) already addressed using EPR for
finite model finding, and as GEO [17] exemplifies, one can extend finite model
finders to the general first-order setting.

Another avenue to pursue is relating our procedure with methods used for
QBF. While there is a more or less direct embedding of QBF into EPR (obtained
by Skolemization) the decision problem for QBF is only PSPACE complete, while
the procedure we outlined requires up to exponential space.

Thanks to the referees for their very detailed and constructive feedback on the
submitted version of this paper.

Deciding Effectively Propositional Logic Using DPLL and Substitution Sets 425

References

1. Lewis, H.R.: Complexity results for classes of quantificational formulas. J. Comput.
Syst. Sci. 21, 317–353 (1980)

2. Pérez, J.A.N., Voronkov, A.: Encodings of Bounded LTL Model Checking in Ef-
fectively Propositional Logic. In: [18], pp. 346–361.

3. Dershowitz, N., Hanna, Z., Katz, J.: Bounded Model Checking with QBF. In:
Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 408–414. Springer,
Heidelberg (2005)

4. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE
Transactions on Computers C-35, 677–691 (1986)

5. Voronkov, A.: Merging relational database technology with constraint technology.
In: Bjorner, D., Broy, M., Pottosin, I.V. (eds.) PSI 1996. LNCS, vol. 1181, pp.
409–419. Springer, Heidelberg (1996)

6. Tammet, T., Kadarpik, V.: Combining an inference engine with database: A rule
server. In: Schröder, M., Wagner, G. (eds.) RuleML 2003. LNCS, vol. 2876, pp.
136–149. Springer, Heidelberg (2003)

7. Whaley, J., Avots, D., Carbin, M., Lam, M.S.: Using datalog with binary decision
diagrams for program analysis. In: Yi, K. (ed.) APLAS 2005. LNCS, vol. 3780, pp.
97–118. Springer, Heidelberg (2005)

8. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT Modulo Theories:
From an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL(T). J.
ACM 53, 937–977 (2006)

9. Krstic, S., Goel, A.: Architecting Solvers for SAT Modulo Theories: Nelson-Oppen
with DPLL. In: Konev, B., Wolter, F. (eds.) FroCos 2007. LNCS (LNAI), vol. 4720,
pp. 1–27. Springer, Heidelberg (2007)

10. Baumgartner, P., Tinelli, C.: The model evolution calculus as a first-order DPLL
method. Artif. Intell. 172, 591–632 (2008)

11. Baumgartner, P., Fuchs, A., Tinelli, C.: Lemma learning in the model evolution cal-
culus. In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS (LNAI), vol. 4246,
pp. 572–586. Springer, Heidelberg (2006)

12. Baumgartner, P.: Logical engineering with instance-based methods. In: [18], pp.
404–409.

13. Ganzinger, H., Korovin, K.: New directions in instantiation-based theorem proving.
In: LICS, pp. 55–64. IEEE Computer Society Press, Los Alamitos (2003)

14. Gallo, G., Rago, G.: The satisfiability problem for the Schönfinkel-Bernays frag-
ment: partial instantiation and hypergraph algorithms. Technical Report 4/94, Dip.
Informatica, Universit‘a di Pisa (1994)

15. Fermüller, C.G., Leitsch, A., Hustadt, U., Tammet, T.: Resolution decision proce-
dures. In: Robinson, J.A., Voronkov, A. (eds.) Handbook of Automated Reasoning,
pp. 1791–1849. Elsevier and MIT Press (2001)

16. Pérez, J.A.N., Voronkov, A.: Proof systems for effectively propositional logic. In:
Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008 (2008)

17. de Nivelle, H., Meng, J.: Geometric resolution: A proof procedure based on finite
model search. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI),
vol. 4130, pp. 303–317. Springer, Heidelberg (2006)

18. Pfenning, F. (ed.): CADE 2007. LNCS (LNAI), vol. 4603. Springer, Heidelberg
(2007)

Proof Systems for Effectively Propositional Logic

Juan Antonio Navarro1 and Andrei Voronkov2

1 Max Planck Institute for Software Systems
2 The University of Manchester

Abstract. We consider proof systems for effectively propositional logic.
First, we show that propositional resolution for effectively propositional
logic may have exponentially longer refutations than resolution for this
logic. This shows that methods based on ground instantiation may be
weaker than non-ground methods. Second, we introduce a generalisation
rule for effectively propositional logic and show that resolution for this
logic may have exponentially longer proofs than resolution with general-
isation. We also discuss some related questions, such as sort assignments
for generalisation.

1 Introduction

Effectively propositional logic (in the sequel we call it simply EPR) is a fragment
of first-order logic which can be effectively translated into propositional logic.
Formulae in EPR are, essentially, those formulae in the Bernays-Schönfinkel
class. It has recently been shown that several real life applications such as
bounded model checking [11] and planning [12] can be naturally and succinctly
encoded as EPR formulae. Effectively propositional benchmarks in the TPTP
library [19] also include problems from diverse areas such as algebra, natural
language processing, verification and puzzles.

When skolemised, EPR formulae contain no function symbols and thus have
a finite Herbrand Universe, which allows one to translate them to propositional
logic using grounding: substitutions of constants for variables of the formula.

Grounding and the subsequent use of SAT solvers remains one of the most
succesful approaches to checking the satisfiability of EPR formulae. The purpose
of this paper is to compare several proof systems for EPR formulae, including
those based on grounding and SAT. Although our results are formulated in terms
of proof lengths, which is not always the most interesting criterion in practice,
they give some insight on why proof systems for EPR can be more powerful than
propositional proof systems. We believe that the insight gained from our results
and their proofs may find their ways in practical proof systems for EPR formulae.
In particular, we propose a new inference rule, called generalisation, which allows
one to lift ground (propositional) reasoning to the non-propositional level.

Our first result is that on EPR formulae resolution can be exponentially more
efficient than any propositional proof system working on a set of ground instances
of EPR formulae. Although this is not surprising, Plaisted and Zhu [15] have
indeed came across a similar result comparing the power of variants of resolution,

A. Armando, P. Baumgartner, and G. Dowek (Eds.): IJCAR 2008, LNCS 5195, pp. 426–440, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Proof Systems for Effectively Propositional Logic 427

we include here a simple proof in our context of interest. The proof is done
by giving a family of formulae which have first-order resolution refutations of
quadratic size, but whose propositional refutations are all exponential in size.

Our second result is that resolution with generalisation can have exponentially
shorter proofs than resolution. Moreover, we define variants of the generalisation
rule based on sort inference methods which allow one to generalise from a smaller
set of clauses. We then show that generalisation using sorts is sound. We also
show that some standard sort inference algorithms, such as the one implemented
in the Paradox model finder [3], are compatible with generalisation.

2 Preliminaries

A clause is called an EPR clause if it has no function symbols of arity greater
than 0. That is, EPR clauses may contain variables and constants but no function
symbols. In this paper we will consider only EPR clauses. An expression (for
example, a term, a literal or a clause) is called ground if it contains no variables.
An instance of a clause C is any clause Cσ obtained from C by applying a
substitution σ.

Given a set of clauses S, we denote by S∗ the set of all ground instances of
clauses in S:

S∗ def= {Sσ | Sσ is ground and Sσ contains only constants from S} .

As usual, if S contains no constant symbols, then an arbitrary constant is added
in order to compute S∗. We consider logic without equality, which is not a
real restriction for EPR formulae since equality can be axiomatised using EPR
formulae. Note that a collection S of ground EPR clauses can also be considered
as a collection of propositional clauses by taking every ground atom A ocurriong
in S as a distinct propositional variable.

To improve readability, we will sometimes write clauses as implications, for
example p ∧ q→ r instead of ¬p ∨ ¬q ∨ r.

2.1 Propositional vs First-Order Resolution

We prove in this section that resolution on EPR formulae can be exponentially
more efficient than propositional proof systems using grounding. First, we should
explain what we mean by the latter. By a propositional proof system for EPR
clauses we mean any proof system that, given a set S of clauses, builds a subset
of S∗ and applies a propositional proof system to it. Note that if a propositional
proof system finds an unsatisfiable subset of S∗, then S is unsatisfiable too.

We will now proceed to show that there is a family of sets of clauses Si with re-
spective resolution refutations Γi, such that the shortest propositional refutation
of Si is exponentially larger than Γi. The following construction, and a similar
theorem, can be found in the work of Plaisted and Zhu [15] (Theorem 2.4.11 in
pp. 89-90) where the power of variants of first-order resolution are compared.

428 J.A. Navarro and A. Voronkov

Although our result follows from some remarks made in the proof of that the-
orem, for completeness and clarity we include here again both the construction
and the full proof in the context of comparing the power of propositional versus
effectively propositional resolution.

Let i be a positive integer. Consider the language having two constant symbols
0 and 1, and a single predicate symbol s of arity i. Denote by 0̄, 1̄, x̄, etc.
sequences of constants 0, 1 and variables, respectively, whose length will be clear
from the context. The set Si consists of the following: the clause

s(0̄) , (1)

the clause
¬s(1̄) , (2)

and i clauses of the form:

s(x̄, 0, 1̄)→ s(x̄, 1, 0̄) , (3)

where the length of 1̄ ranges from 0, . . . , i− 1. Note that the size of Si is O(i2).

Lemma 1. The shortest propositional refutation of Si has a size of O(2i).

Proof. Note that every ground atom in the language of Si is of the form s(b̄),
where b̄ is a sequence of bits of length i. We can consider this sequence of
bits as a non-negative integer between 0 and 2i − 1 written in binary notation.
For a number n such that 0 ≤ n < 2i let us denote by n the sequence of i
bits corresponding to that number. Using this notation we can observe that S∗

i

consists of the following clauses: s(0), ¬s(2i − 1), and all clauses of the form
s(n)→ s(n+ 1) for n = 0, . . . , 2i − 1.

Moreover, it is not hard to argue that every proper subset of S∗
i is satisfiable,

so every propositional refutation of Si should be at least as large as S∗
i . It remains

to note that the number of literals in S∗
i is O(2i). "!

Lemma 2. Si has a resolution refutation of the size O(i2).

Proof. Let us build, for every k = 1, . . . , i− 1 a resolution derivation Πk from
Si of the clause

s(x̄, 0̄)→ s(x̄, 1̄), (4)

where k is the length of 0̄. This derivation will be built by induction on k. When
k = 1, (4) is of the form (3). For k > 1, we will take the derivation Πk−1 and
add several clauses to it to obtain Πk. We know that Πk−1 derives a clause

s(x̄, y, 0̄)→ s(x̄, y, 1̄) . (5)

where the length of 0̄ is k. From this and (3) we derive by a resolution inference
the clause

s(x̄, 0, 0̄)→ s(x̄, 1, 0̄) .

Proof Systems for Effectively Propositional Logic 429

From this and (5) we derive by a resolution inference the clause

s(x̄, 0, 0̄)→ s(x̄, 1, 1̄) .

and we are done. It is easy to see that the number of clauses in Πk not ocurring
in S is 3(k − 1), so the size of Πk is O(i · k).

Note that Πi derives
s(0̄)→ s(1̄)

and has the size O(i2). From this clause, (1) and (2) we can derive the empty
clause in 2 steps, so there exists a resolution refutation of Si having the size
O(i2). "!

Lemmas 1 and 2 yield the following theorem

Theorem 1. There is a sequence of sets of clauses S1, S2, . . . of increasing size
such that each Si has a refutation of a size quadratic in i, while the shortest
propositional refutation of Si has a size exponential in i.

Interestingly, as the results of the recent CASC competition show [18], resolution
has so far been found not very competitive on EPR formulae. In the following
section we introduce another inference rule, especially designed for effectively
propositional formulae and intended to complement the resolution approach.

3 The Generalisation Inference Rule

Suppose that S is a set of EPR clauses whose constants are in the set {c1, . . . , cn}.
Let A[x] be a quantifier-free formula with a free variable x written in the same
language as S. Let us note that the formula

∀x(A[c1] ∧ · · · ∧A[cn]→ A[x]) (6)

is valid in all Herbrand models of S. This, and the fact that A[x] is quantifier-
free, implies that adding (6) to S does not change the set of Herbrand models.
This gives us an idea of a generalization rule: an inference rule that allows one to
derive A[x] from A[c1], . . . , A[cn]. We will introduce a more general form of this
rule inspired by grounding systems based on sort inference [see e.g. 17]. These
systems may derive that the set of instantiations for some variable in s may be
restricted to a subset of all constants. Likewise, we can make generalisation from
a subset of constants.

Let us give some definitions. We call a predicate position a pair (p, i) where p
is a predicate symbol and i is a positive integer less than or equal to the arity
of p. When we denote positions we will write p.i instead of (p, i). We call a sort
a set of constant symbols, and a sort assignment a function that maps each
predicate position to a sort. A ground formula F is said to be compatible with
a sort assignment A if for every atomic subformula p(t1, . . . , tn) of F , we have
ti ∈ A(p.i). For a quantifier-free formula F , denote by F |A the set of all ground
instances of F compatible with A.

430 J.A. Navarro and A. Voronkov

Definition 1. Given a sort assignment A, the inference rule of generalisation
with respect to A is

C1 ∨ p(t̄1, c1, ū1) · · · Cn ∨ p(t̄n, cn, ūn)
C1σ ∨ · · · ∨ Cnσ ∨ p(t̄1, y, ū1)σ

GenA

where y is a fresh variable, the length of t̄i is k, A(p.k+1) = {c1, . . . , cn} and σ is
the most general simultaneous unifier of the set of tuples {(t̄1, ū1), . . . , (t̄n, ūn)}.

If both inference rules, resolution and generalization, are allowed then the system
is (trivially) complete; this follows since resolution alone is already complete. The
discussion in the beginning of this section also suggests that it is also sound when
the sort function always returns the set of all constants.

One of the first results that we want to show, is that when resolution is com-
bined with generalisation, then the obtained inference system is still, as resolu-
tion alone, refutationally sound and complete. For this we begin by introducing
the following set of clauses which will be useful to simulate generalisation using
only resolution.

Definition 2. Given a sort assignment A, we define the set of generalisation
clauses, denoted by �A�, as the set containing all the clauses of the form

p(x̄, c1, z̄) ∧ · · · ∧ p(x̄, cn, z̄) → p(x̄, y, z̄) , (7)

where k is the length of x̄ and A(p.k + 1) = {c1, . . . , cn}.

Notice that all clauses in �A�|A are tautologies, since the variable y would have
to be mapped to a constant ci of its appropriate sort.

Lemma 3. If there is a refutation of a set of clauses S using resolution and
generalisation with respect to a sort assignment A, then there is a refutation of
S ∪ �A� using only resolution.

Proof. The result easily follows by noticing that generalisation inference steps
can be simulated by resolving the n clauses of the form Ci ∨ s(x̄, ci, z̄)σi with
the corresponding clause in the set �A� from Definition 2. ��

Let us now discuss sort inference functions that result in sort assignments pre-
serving satisfiability.

Definition 3. A sort inference function Ξ is a function that yields a sort as-
signment given a set of clauses as input. Moreover, we say that Ξ is

– valid if, for any set of clauses S, the sets S and S|A are equisatisfiable; and
– stable if, for any set of clauses S, Ξ(S ∪ �A�) = A.

where A = Ξ(S).

Proof Systems for Effectively Propositional Logic 431

The first condition, validity, states that when checking the satisfiability of S
by using instantiation-based methods, the generation of ground instances can be
restricted to those which are compatible with A. The condition of stability asserts
that the sort inference procedure is not affected when the set of generalisation
clauses �A� is added to a formula.

The following theorem proves that resolution can be extended with generali-
sation preserving soundness.

Theorem 2. Let S be a set of clauses, Ξ be a valid and stable sort inference
function, and A = Ξ(S). If there is a refutation of S using resolution and gen-
eralisation with respect to A, then there is a refutation of S using resolution
only.

Proof. We will first show that the set of clauses S is equisatisfiable with S∪�A�.
Since the sort inference function is stable, we know that Ξ(S) = Ξ(S∪�A�) = A.
Moreover, since the sort inference is valid, the sets S ∪ �A� and (S ∪ �A�)|A =
S|A ∪ �A�|A are equisatisfiable. But recall that �A�|A contains only tautologies
and, therefore, S|A ∪ �A�|A and S|A are equisatisfiable. Finally, again by the
validity of the sort inference function, we get that S|A and S are equisatisfiable.

Now, to prove the theorem statement, suppose that there is a refutation of S
using resolution and generalisation with respect to A. Then, by Lemma 3 and
since resolution is sound, S ∪ �A� is unsatisfiable. But then, from the previous
paragraph, it follows that S is unsatisfiable and, since resolution is refutation
complete, there is a refutation of S using resolution only. "!

From this, our main result now follows as a simple corollary.

Corollary 1. An inference rule system based on resolution and generalisation,
with respect to a valid and stable sort inference function, is both refutationally
sound and complete.

Proof. Soundness follows by Theorem 1, while completeness is directly inherited
from the completeness of resolution. "!

From this result it follows that, any valid and stable sort inference function is
suitable to be combined with generalisation in order to produce a sound and
complete inference system. The question on how to obtain such kind of sort
inference functions, however, remains open. This is the matter of the following
section.

3.1 Sort Inference for Generalisation

In this section we will explore some possibilities in order to generate sort in-
formation that can be combined with the generalisation inference rule. A first
option, though not very interesting, is to assign the trivial sort assignment to all
sets of clauses.

432 J.A. Navarro and A. Voronkov

Definition 4. Given an effectively propositional language with a domain D of
constant symbols, the trivial sort assignment is the function that maps every
predicate position to D.

That is, it uses the domain of the logic itself as the sort for all variables and
positions in predicates. This procedure is clearly stable since, irrelevant to the
particular set of input clauses, the trivial sort assignment is always used. More-
over, by Herbrand’s theorem this procedure is also valid and therefore a suitable
candidate to be used together with generalisation.

In the following Section 3.2, we will see how even this simple approach can
already represent a significant advantage over using the resolution inference rule
alone. However, particularly on problems from applications, it is very likely that
more specialised sort inference functions are able to give even better results in
practise.

An example of a sort inference function is the method proposed by Claessen
and Sörensson [3] and implemented in Paradox in the context of grounding-
based model finding.

Algorithm 1 (Basic sort inference). Start with a sort assignment giving unre-
lated empty sorts to each predicate position.

Processing one clause at a time, and as a union-find algorithm: for each vari-
able in the clause, merge the sorts assigned to all predicate positions where that
variable occurs; and, for each constant symbol, add the constant symbol to the
sort assigned to the predicate position where it appears.

Finally, add a dummy constant symbol to any sort that still remained empty
at the end of this procedure.

It is not hard to argue, as it is done by Claessen and Sörensson [3], that this
sort inference function is valid —in the sense of our Definition 3— and that,
moreover, is not affected when adding the set of clauses �A� to S. So, from The-
orem 2, it follows that we already have a sort inference method that, without any
further modifications, can be directly used to empower generalisation inferences.

It is to be expected, that if one obtains a sort inference method by extend-
ing some available technique to restrict the number of generated instances in a
grounding approach, then the obtained method will most likely be valid. This
follows since such methods actually work by replacing the satisfiability testing
for an effectively propositional formula, to checking instead an equisatisfiable set
of propositional instances. This equisatisfiability is, precisely, what the property
of validity asks for.

Unfortunately, however, not any ground restriction method can be so easily
integrated with generalisation. Using the idea of positional linking, also called
structural constraints by Schulz [17] and implemented in eground, one can
easily define the following sort inference function.

Algorithm 2 (Positional sort inference). Given a set of clauses S compute, for
every signed predicate s.i, the set Ts.i as the set of all terms that appear in a
literal with a signed predicate s at position i, i.e. if s(t1, . . . , tn) appears in S

Proof Systems for Effectively Propositional Logic 433

then ti ∈ Ts.i. Then let Cs.i = Ts.i if all terms in Ts.i are constants, and Cs.i = D
otherwise.

Now, for each predicate position p.i, the positional sort inference is defined as
the function that maps each such set S, to the sort assignmentAp.i = Cp.i∩C¬p.i.

This sort inference function is clearly also valid. It works by the observation
that literals which are not compatible with the generated sort assignment would
be pure, i.e. they only appear in one of the two possible phases, and so they can
be discarded. However, this sort inference function is not stable, as the following
example shows.

Example 1. Consider the following satisfiable set of clauses S:

p(a)
¬p(x) ∨ q(x)
¬q(b)

The positional sort would have Ap.1 = {a}, Aq.1 = {b}, and the restricted set
S|A is simply {p(a),¬q(b)}. Note that, however, adding the clause

¬p(a) ∨ p(x)

which is part of �A�, would cause Ap.1 = D = {a, b} —because now a variable
appears in p(x) on both positive and negative phases— making the sort inference
function unstable and rendering the set of clauses S ∪ �A� unsatisfiable.

In this section we have shown how a sort inference method, as proposed by
Claessen and Sörensson [3], can be used together with the generalisation inference
rule in order to make it more easily applicable in practice. In the following
we give, in the form of a theoretical result, some evidence on why combining
generalisation with resolution is likely to produce a powerful reasoning system.

3.2 Generalisation vs Resolution

In this section, and in order to further motivate the use of the generalisation in-
ference rule in combination with resolution, we show a family of formulae which,
similar to the one given in Section 2.1, shows that refutations can become ex-
ponentially shorter when combining resolution with the generalisation inference
rule. For doing so we will show an example of a series of unsatisfiable sets of
clauses S1, . . . , Sn such that the length of shortest resolution refutation of Sn is
exponential in n, while using both generalisation and resolution it is possible to
find a refutation of size quadratic in n. In the following we will use xi to repre-
sent variables, bi and ci for constant symbols, as well as si and ti for arbitrary
terms.

Definition 5. Take a logic whose language has a set of constant symbols B =
{0, 1} and let n be a non-negative number. For every i, with 0 ≤ i ≤ n, there is
a pair of predicate symbols pi and qi both of arity i.

434 J.A. Navarro and A. Voronkov

Now let Sn be the set of clauses that contains: the clause

p0 , (8)

2n clauses, two for every 0 ≤ i < n, of the form

pi(x1, . . . , xi)→ pi+1(x1, . . . , xi, 0) , (9)
pi(x1, . . . , xi)→ pi+1(x1, . . . , xi, 1) ,

the clause
pn(x1, . . . , xn)→ qn(x1, . . . , xn) , (10)

n clauses, one for every 0 ≤ i < n, of the form

qi+1(0, xi, . . . , xn) ∧ qi+1(1, xi, . . . , xn)→ qi(xi, . . . , xn) , (11)

where i = n− i+ 1, and the clause

¬q0 . (12)

Moreover, we will assume that generalisation inferences are applied with respect
to the trivial sort assignment that simply maps every predicate position to the
domain set B = {0, 1}.

Intuitively, clauses of the form (9) encode the fact that if pi(b1, . . . , bi) is true,
then pn should be true for all n-bit strings with a prefix of b1, . . . , bi. A dual
of this is encoded by clauses of the form (11): if qi(bi, . . . , bn) is false, then qn
should be false for some n-bit string with a suffix of bi, . . . , bn.

From clauses (8) and (9) we get that pn(b1, . . . , bn) is true for all n-bit strings.
Then from (10) that qn(b1, . . . , bn) is also true for all n-bit strings and, therefore
from (11), the atom q0 should be true. But this causes a contradiction with (12),
so the set Sn is unsatisfiable.

Indices in variables and terms have been chosen to enforce the prefix and
suffix intuition of these predicate symbols. Formally, in the atoms pi(t1, . . . , ti)
and qi(ti, . . . , tn), we say that the position of the term ti is the i-th bit position.
Note that in all clauses of Sn, the variable xi only appears at the i-th bit position
of an atom.

Theorem 3. There is a refutation of Sn, using both generalisation and resolu-
tion inference rules, which is of size quadratic in n.

Proof. We start our refutation with the clause (8) which is the fact p0. Observe
now that it is possible to extend a proof of

pi(x1, . . . , xi) (13)

to a proof of
pi+1(x1, . . . , xi, xi+1) (14)

by adding a constant number of steps.

Proof Systems for Effectively Propositional Logic 435

To do this, first apply a generalisation inference on the pair of clauses (9) to
obtain

pi(x1, . . . , xi)→ pi+1(x1, . . . , xi, xi+1) ,

and then resolve this with (13) to obtain (14).
After n iterations of this procedure we get a proof of pn(x1, . . . , xn) whose

length is linear in n. Now, resolve this with (10) to obtain qn(x1, . . . , xn). Observe
now that we can extend a proof of

qi+1(xi−1, xi, . . . , xn) (15)

to a proof of
qi(xi, . . . , xn) (16)

by adding a constant number of steps.
To do this, simply resolve (15) with (11) to obtain

qi+1(1, xi, . . . , xn)→ qi(xi, . . . , xn) ,

and again with (15) to finally obtain (16).
After n of such iterations we end with a proof of q0 which is also of length

linear in n. Finally resolving q0 with (12) we obtain a refutation of Sn. Since the
size of each clause in the refutation is also linear in n, the size of the refutation
is quadratic in n. "!

Our main theorem of this section states that, using resolution alone, even the
shortest refutation is of length at least exponential in n. The idea of the proof is
not very difficult, but proving some of the necessary lemmas gets rather involved.
We will therefore give first a sketch of the proof, followed by a couple of lemmas
without proofs, followed by a formal proof of the main theorem relying on those
lemmas. The missing proofs, as well as some other aditional details, can be found
in an appendix of the full version of this paper.1

Theorem 4. A resolution refutation of Sn has a length of, at least, 2n.

Proof (Sketch of proof). To prove that any refutation of Sn has at least an
exponential length, we introduce a function on sets of clauses that, in a way,
measures the accumulated progress achieved step by step on a refutation.

This work function, denoted by w, will map the set of clauses occurring in a
partial proof Γ to the set of n-bit strings which, intuitively, have already been
consumed while trying to build a refutation. This function should moreover
satisfy w(Sn) = ∅, while the work of any refutation Γ is w(Γ) = Bn. In order
to prove the theorem statement it would then be enough to show that from one
step to the next in the refutation, the work done increases in, at most, a single
element. In other words all elements in Bn would have to be consumed one by
one, yielding a proof of exponential length. "!
1 Available at: http://www.mpi-sws.mpg.de/∼jnavarro/papers.html

http://www.mpi-sws.mpg.de/~jnavarro/papers.html

436 J.A. Navarro and A. Voronkov

In order to define such work function, first we identify the kind of clauses that
might appear in a refutation of Sn. We observe that, indeed, only two kinds of
clauses are possible (more details in the paper’s full version):

– type I are clauses, such as (8-10), of the form

[l1]→ h (17)

where the head h has a predicate symbol pj , with 0 ≤ j ≤ n, or qn.
– type II are clauses, such as (11-12), of the form

l1 ∧ · · · ∧ lm → h (18)

where the head h is either ⊥ or has a predicate symbol qi with i < n.
Moreover, we say that a literal li is active if its bit positions overlap with
those of h, and inactive otherwise.

It is easy to check that resolving together two clauses of type I will yield another
clause of type I, while resolving a clause of type II with one of either type will
also produce a clause of type II.

Definition 6 (Work function). For a clause of type II with head qi(ti, . . . , tn)
we first define the work of a literal l as follows:

w(l) =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

Bn l = ⊥,
Bn−j × t̂j × · · · × t̂n l = qj(tj , . . . , tn),
t̂1 × · · · × t̂n l = pj(t1, . . . , tj) for an active l,
∅ if l is inactive.

where t̂ is the set of all ground instances of the term t. We also let wc(l) =
Bn \ w(l). The work of the clause C is then defined as

w(C) = wc(l1) ∩ · · · ∩ wc(lm) ∩ w(h) (19)

For clauses of type I we let w(C) = ∅. Finally, the work of a set of clauses is
the union of the work of each clause in the set.

From this definition it is not difficult to check that, indeed, w(Sn) = ∅; while the
work of the empty clause (which is of type II), and therefore of any refutation
of Sn, is Bn. A significant ammount of the proof details are actually spent in
showing that (1) non-ground clauses have an empty work, and (2) the work
function is invariant with respect to the application of substitutions. In the
paper’s full version we prove the following two lemmas.

Lemma 4. Let C be any clause in a refutation of Sn. If C is non-ground, then
the work w(C) = ∅.

Lemma 5. Let C be any clause in a refutation of Sn and let σ be a substitution.
It then follows that w(C) = w(Cσ).

Proof Systems for Effectively Propositional Logic 437

The former lemma will allow us to quickly discard many resolution steps as
points where the work could increase in a refutation. The later allows us to more
easily analize the effect of the remaining inferences, since the substitution that
may be required in order to unify and resolve a pair of clauses will not affect
the work measure of each individual clause. Having these, we can now prove the
following lemma which is the core of the main result.

Lemma 6. Let C, C1, and C2 be clauses in a refutation of Sn such that C is
obtained by resolving another pair of clauses C1 and C2 with a unifier σ. It then
follows that δ = w(C) \ w({C1, C2}) has at most one element.

Proof. If C is either non-ground or of type I, then we know, respectively by
Lemma 4 and by definition, that w(C) = ∅ and the result is trivial. We threfore
assume that C is a ground clause of type II.

Suppose that C is the result of resolving two clauses of types I and II.

C1σ : [l′1]→ l1

C2σ : l1 ∧ l2 ∧ · · · ∧ lm → h

C : [l′1] ∧ l2 ∧ · · · ∧ lm → h

Take b̄ ∈ δ ⊆ w(C), in particular, b̄ ∈ wc(l2) ∩ · · · ∩ wc(lm) ∩ w(h). However,
since b̄ /∈ w(C2) and, by Lemma 5, b̄ /∈ w(C2σ), it must therefore be the case
that b̄ /∈ wc(l1) or, equivalently, b̄ ∈ w(l1). This actually shows that δ ⊆ w(l1).
Observe, however, that since l1 appears as the head of clause a clause of type I, its
predicate symbol is either pj or qn and, since moreover the predicate is ground,
w(l1) will contain at most a single element (c.f. Definition 6).

Suppose that otherwise C is the result of resolving two clauses of type II.

C1σ : l′1 ∧ · · · ∧ l′m′ → l1

C2σ : l1 ∧ l2 ∧ · · · ∧ lm → h

C : l′1 ∧ · · · ∧ l′m′ ∧ l2 ∧ · · · ∧ lm → h

Exactly as in the previous case we can prove for any b̄ ∈ δ that also b̄ ∈ w(l1).
Now, however, from b̄ ∈ w(C) we also get b̄ ∈ wc(l′1) ∩ · · · ∩ wc(l′m′) and, from
this, that b̄ ∈ w(C1σ) = w(C1), contradicting the hypothesis that b̄ /∈ w(C1).
The conclusion is that, in this case, δ = ∅. "!
Our main theorem now follows as a simple corollary of the previous result.

Corollary 2. A resolution refutation of Sn has a length of, at least, 2n.

Proof. Let Γ = C1, . . . , Cm be a refutation of Sn, i.e. Cm = ⊥. Now, for every
1 < i ≤ m let δi = w(C1, . . . , Ci) \ w(C1, . . . , Ci−1) be the work increment in
the proof that is provided by the clause Ci. If Ci is an hypothesis in Sn, then
by definition its work is empty and, therefore, δi = ∅. Suppose that, otherwise,
the clause Ci is the result of applying resolution among another pair of clauses
Cj and Ck with i > j and i > k; as a consequence of Lemma 6 we know that δi
contains, at most, one element.

Since all elements in w(Γ) = Bn had to be incorporated one element at a
time, it therefore follows that the length of the proof, m, is at least 2n. "!

438 J.A. Navarro and A. Voronkov

4 Related Work

Although quite recent, there has been a significant interest of the automated
reasoning community on effectively propositional logic. The CADE ATP System
Competition, since its JC instalment in 2001, holds a division for EPR problems
[13]. Moreover, a number of theorem provers particularly geared towards this
class of formulae have also been developed. These include, for example, eground

by Schulz [17], Paradox by Claessen and Sörensson [3], Darwin by Fuchs [5],
and iProver by Korovin [8].

Systems such as eground and Paradox implement an instantiation ap-
proach where ground instances of the given input formula are generated and
then tests for satisfiability are run by a SAT solver. Several ideas have been then
proposed in order to limit the number of instances that have to be generated.
The work of Schulz [17] discusses and compares some of the early approaches,
while Claessen and Sörensson [3] introduce the notion of sort inference in the
context of MACE-style model finding..

In a closely related line of research, the notion of hyper-linking [9, 14] was
also proposed in order to restrict the kind of inferences that need to be per-
formed in instantiation based methods. Other related ideas can be found in the
work of Hooker et al. [7]. Alternatively, Ganzinger and Korovin [6] propose the
use of first-order reasoning (e.g. resolution) to drive the instantiation process;
while Baumgartner and Tinelli [1] try to avoid direct instantiation by lifting the
propositional DLL algorithm [4] to the first-order level.

Voronkov [21] proposed to use relational databade technology and equality
constraints for implementing resolution on EPR formulae and shows that set-at-
a-time resolution related operations, such as resolution and subsumption, can be
implemented using database operations, for example, joins. A similar observation
was later made by Tammet and Kadarpik [20].

Combinations of tableaux related techniques with propositional satisfiability
checking have also been proposed by researchers such as Billon [2], Letz and
Stenz [10].

5 Conclusion and Future Work

We proved several results showing potential of non-ground methods for proving
EPR formulae. First, we proved that resolution can have exponentially shorter
proofs than propositional procedures for EPR. Second, we proposed a generalisa-
tion rule and showed that resolution with generalisation can have exponentially
shorter proofs than resolution.

We find the generalisation rule especially appealing for practical theorem prov-
ing. Implementation techniques and heuristics for applying this rule should be
developed. Further, it is interesting to investigate soundness of stronger versions
of generalisation, both theoretically and practically. In practice, one can try to

Proof Systems for Effectively Propositional Logic 439

use potentially unsound versions of this rule and then see if a refutation obtained
by a potentially unsound version can be made into a valid refutation.

A crucial step in the efficiency of the generalisation rule is to find new sort
inference techniques that restrict sorts as much as possible yet are still sound.
We show how some existing sort inference techniques, such as those developed
for grounding-based approaches, can be directly applied in this context; while
some others, particularly based on linking restrictions, cannot be used in a sound
way as easily.

Incidentally, the proofs of these two exponential gaps provide us with bench-
mark families that might be interesting to test with existing systems. We have
shown that, when reasoning with a particular inference system, some unsatisfi-
able problems have rather short refutations, but are existing implementations of
theorem provers able to find such short proofs? Or, which heuristics can we use
in order to find these shorter proofs with higher probability?

Further directions for future work include the research on techniques for effi-
ciently implementing and integrating the proposed generalisation inference rule
with other systems which already make use of resolution, such as iProver [8]
or Vampire [16]. Alternatively, it might also prove fruitful to investigate pos-
sible extensions of this inference rule in order to make use of complete linking
information which can perhaps better describe the underlying structure of the
problem being solved.

References

[1] Baumgartner, P., Tinelli, C.: The model evolution calculus. In: Baader, F. (ed.)
CADE 2003. LNCS (LNAI), vol. 2741, pp. 350–364. Springer, Heidelberg (2003)

[2] Billon, J.-P.: The disconnection method. A confluent integration of unification in
the analytic framework. In: TABLEAUX 2006: Proceedings of the International
Conference on Automated Reasoning with Analytic Tableaux and Related Meth-
ods, Terrasini, Italy. LNCS (LNAI), vol. 1071, pp. 110–126. Springer, Heidelberg
(1996)

[3] Claessen, K., Sörensson, N.: New techniques that improve MACE-style model
finding. In: MODEL 2003: Proceedings of the Workshop on Model Computation
(2003)

[4] Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving.
Communications of the ACM 5, 394–397 (1962)

[5] Fuchs, A.: Darwin: A theorem prover for the model evolution calculus. Master’s
thesis, University of Koblenz-Landau (2004)

[6] Ganzinger, H., Korovin, K.: New directions in instantiation-based theorem prov-
ing. In: LICS 2003: Proceedings of the 18th Annual IEEE Symposium on Logic
in Computer Science, Ottawa, Canada, June 2003, vol. 2, p. 55. IEEE Computer
Society, Los Alamitos (1884)

[7] Hooker, J.N., Rago, G., Chandru, V., Shrivastava, A.: Partial instantiation meth-
ods for inference in first order logic. Journal of Automated Reasoning 28(3), 371–
396 (2002)

440 J.A. Navarro and A. Voronkov

[8] Korovin, K.: Implementing an instantiation-based theorem prover for first-order
logic. In: Benzmueller, C., Fischer, B., Sutcliffe, G. (eds.) IWIL 2006: Proceed-
ings of the 6th International Workshop on the Implementation of Logics, held at
the 13th International Conference on Logic for Programming, Artificial Intelli-
gence and Reasoning (LPAR 2006). CEUR Workshop Proceedings, Phnom Penh,
Cambodia, vol. 212 (2006), http://www.cs.man.ac.uk/∼korovink/iprover/

[9] Lee, S.-J., Plaisted, D.A.: Eliminating duplication with the hyper-linking strategy.
Journal of Automated Reasoning 9(1), 25–42 (1992)

[10] Letz, R., Stenz, G.: DCTP: A disconnection calculus theorem prover. In: Goré,
R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp.
381–385. Springer, Heidelberg (2001)

[11] Navarro Pérez, J.A., Voronkov, A.: Encodings of bounded LTL model checking in
effectively propositional logic. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI),
vol. 4603, pp. 346–361. Springer, Heidelberg (2007)

[12] Pérez, J.A.N., Voronkov, A.: Planning with effectively propositional logic. In: Col-
lection of Papers Dedicated to Harald Ganzinger’s Memory (to appear, 2007)

[13] Pelletier, F.J., Sutcliffe, G., Suttner, C.B.: The development of CASC. AI Com-
munications 15(2), 79–90 (2002)

[14] Plaisted, D.A., Zhu, Y.: Ordered semantic hyper-linking. Journal of Automated
Reasoning 25(3), 167–217 (2000)

[15] Plaisted, D.A., Zhu, Y.: The Efficiency of Theorem Proving Strategies. Computa-
tional Intelligence. Vieweg, Wiesbaden, Germany (1997)

[16] Riazanov, A., Voronkov, A.: The design and implementation of Vampire. AI Com-
munications 15(2), 91–110 (2002)

[17] Schulz, S.: A comparison of different techniques for grounding near-propositional
CNF formulae. In: Haller, S., Simmons, G. (eds.) FLAIRS 2002: Proceedings of the
Fifteenth International Florida Artificial Intelligence Research Society Conference,
pp. 72–76. AAAI Press, Menlo Park (2002)

[18] Sutcliffe, G.: The CADE-21 ATP system competition website (2007),
http://www.cs.miami.edu/∼tptp/CASC/21/

[19] Sutcliffe, G., Suttner, C.B.: The TPTP problem library: CNF release v1.2.1. Jour-
nal of Automated Reasoning 21(2), 177–203 (1998)

[20] Tammet, T., Kadarpik, V.: Combining an inference engine with database: A rule
server. In: Schröder, M., Wagner, G. (eds.) RuleML 2003. LNCS, vol. 2876, pp.
136–149. Springer, Heidelberg (2003)

[21] Voronkov, A.: Merging relational database technology with the constraint technol-
ogy. In: Perspectives of System Informatics. Andrei Ershov Second International
Memorial Conference (Preliminary Proceedings), Novosibirsk, Akademgorodok,
Russia, June 1996, pp. 189–195 (1996)

http://www.cs.man.ac.uk/~korovink/iprover/
http://www.cs.miami.edu/~tptp/CASC/21/

MaLARea SG1 - Machine Learner for

Automated Reasoning with Semantic Guidance

Josef Urban1,, Geoff Sutcliffe2, Petr Pudlák1, and Jǐŕı Vyskočil1

1 Charles University, Czech Republic
2 University of Miami, USA

Abstract. This paper describes a system combining model-based and
learning-based methods for automated reasoning in large theories, i.e. on
a large number of problems that use many axioms, lemmas, theorems,
definitions, and symbols, in a consistent fashion. The implementation is
based on the existing MaLARea system, which cycles between theorem
proving attempts and learning axiom relevance from successes. This sys-
tem is extended by taking into account semantic relevance of axioms, in a
way similar to that of the SRASS system. The resulting combined system
significantly outperforms both MaLARea and SRASS on the MPTP Chal-
lenge large theory benchmark, in terms of both the number of problems
solved and the time taken to find solutions. The design, implementation,
and experimental testing of the system are described here.

1 Introduction

In recent years the ability of systems to reason over large theories – theories in
which there are many functors and predicates, many axioms of which typically
only a few are required for the proof of a theorem, and many theorems to be
proved from the same set of axioms – has become more important. Large theory
problems are becoming more prevalent as large knowledge bases, e.g., ontologies
and large mathematical knowledge bases, are translated into forms suitable for
automated reasoning [12,13,22], and mechanical generation of automated rea-
soning problems becomes more common, e.g., [4,8]. Over the years there have
been regular investigations into techniques for the a priori selection of the neces-
sary axioms, e.g., [9,17,7,21,11], and the use of externally provided lemmas, e.g.,
[24,5,26,21,10]. Performances on large theory problems in the TPTP library [19]
and the associated CADE ATP System Competition [16] show that automated
reasoning systems have improved their ability to select and use the necessary
axioms.

The work described in this paper addresses the issue of selecting necessary
axioms, from a large set also containing superfluous axioms, to obtain a proof of
a conjecture. It combines ordering of axioms by machine learning their relevance
to features of conjectures, as found in the MaLARea system [23], with use of

� Supported by a Marie Curie International Fellowship within the 6th European Com-
munity Framework Programme.

A. Armando, P. Baumgartner, and G. Dowek (Eds.): IJCAR 2008, LNCS 5195, pp. 441–456, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

442 J. Urban et al.

semantic guidance to advise on the selection of axioms, as found in the SRASS
system [18]. The resulting system significantly improves the performance of the
two above mentioned systems on the MPTP Challenge1 large theory benchmark,
both in terms of the number of problems solved, and in the speed of processing.

This paper is organized as follows: Section 2 describes the machine learning
approach. Section 3 describes the semantic selection technique. Section 4 explains
how these two have been combined. Section 5 provides a detailed example of how
the combined system works. Section 6 mentions some other improvements that
are relevant to the performance of the system. Section 7 gives test results, with
commentary. Section 8 concludes and discusses possible future research.

2 Machine Learning Axiom Relevance

The basic idea of the machine learning approach is to interleave ATP system
runs on many related problems with learning from successful proofs, and to use
the learned knowledge for limiting the set of axioms given to the ATP systems
in the following runs. In general, the goal is to learn a mapping from features
(in machine learning terminology) of the conjectures (or even of the whole prob-
lems when speaking generally) to proving methods that are successful when the
features are present. This general setting was instantiated in the first MaLARea
version in the following way: The features characterizing conjectures are the sym-
bols appearing in them, and the proving method is ordering of axioms according
to their expected relevance to proving the conjecture.

The SNoW machine learning system [2] is used by MaLARea in naive Bayes
mode, producing an updated Bayes net after each run, linking symbols with
the axioms that were useful for proving conjectures containing those symbols.
For learning and evaluation in SNoW, all symbols and axiom names are dis-
jointly translated to integers. The integers corresponding to symbols are the
input features, and those corresponding to axioms are the output features. As
ATP backends the E prover [15] and SPASS [25] are used by default.

MaLARea is highly configurable, but the default algorithm is as follows: Mini-
mal and maximal number of axioms and time limits are given (4 and 256 axioms,
and 1 and 64 seconds by default) – these ranges have been established through
experience with the MPTP Challenge problems. First, all ATP backends (E and
SPASS by default) are run on all problems (an ATP problem is the conjecture
and a selection of axioms), using all the axioms and the maximal time limit,
to produce as much base knowledge as possible. Second, SNoW is trained on
examples saying that each axiom is useful for proving itself, i.e., an example
created from an axiom A contains the symbols appearing in A as input features,
and A itself as the output feature. This Bayes net is evaluated on each conjec-
ture’s symbols, producing an ordering of axioms for each conjecture, according
to their symbol overlap with the conjecture. For each conjecture its axiom order-
ing is used to select the maximal number of axioms, and the resultant problem
is given to the ATP systems one-at-a-time, with the minimal time limit. If any
1 http://www.tptp.org/MPTPChallenge/

http://www.tptp.org/MPTPChallenge/

MaLARea SG1 443

ATP system returns a countersatisfiable result2, then no further proof attempts
are made on the problem. Successful proofs are turned into training examples
containing the conjectures’ symbols as input features, and the axioms used in
the corresponding proofs as output features. These training examples are added
to the previous examples, and a new Bayes net is trained from them all. The
evaluation of the Bayes net on unproved conjectures, selection of axioms, ATP
proof attempts, and retraining, iterates. The number of axioms selected and time
limit used is adapted according to whether or not any proofs are found in each
iteration. When a proof is found in a pass, the axiom and time limits drop to
their minimal values for the next pass (hoping that the relevance update caused
by the new solution will make some more problems easy to solve). If no proofs
are found in a pass, first the axiom limit is doubled (hoping that considering
more axioms will help) until the maximal axiom limit is reached. After that the
the time limit is quadrupled, hoping that “harder thinking” will help, until the
maximal time limit is reached. The algorithm stops when the maximal axiom
and time limits are reached.

One (default) change to this basic algorithm is a countersatisfiability precheck,
to avoid axiom set selections that do not make sense in the light of previous re-
sults. If a new selection of axioms for a countersatisfiable problem’s conjecture is
a subset of the countersatisfiable problem’s axioms, it makes no sense to form a
new problem with the new selection of axioms. In this situation, if the time limit
is sufficiently low (1s by default), axioms are added in order of their relevance
until the new set is no longer a subset of any set which produced a countersatis-
fiable result for the conjecture. In such cases the axiom limit is “soft”, and may
be violated.

3 Semantic Relevance Axiom Selection

The semantic relevance selection algorithm implemented in SRASS selects ax-
ioms for each conjecture independently, with no benefit accrued from previous
successful selections. For each problem it starts with an empty set of selected
axioms. At each pass the process looks for a model of the selected axioms and
the negation of the conjecture. If no such model exists then the conjecture is a
logical consequence of the selected axioms. If such a model exists then an uns-
elected axiom that is false in the model is moved to the set of selected axioms.
The newly selected axiom excludes the model (and possibly other models) from
the set of models of the selected axioms and negated conjecture, eventually lead-
ing to the situation where there are no models of the selected axioms and the
negated conjecture. The Figure 1 shows the idea. The plane represents the space
of interpretations, the rectangle encompasses the models of the conjecture C,
and an oval encompasses the models of the corresponding axiom Ai. In the first
2 Status values, such as countersatisfiable, are taken from the SZS ontology [20].

The ontology provides result and output forms that specify what has been estab-
lished about an ATP problem. For example, countersatisfiable problems have a non-
provable conjecture.

444 J. Urban et al.

pass, when the set of selected axioms is empty, the model M0 of the negation of
the conjecture, ¬C, is found. That leads to the selection of the axiom A1, which
is false in the model. Iteratively, the model M1 of {A1,¬C} is found, leading
to the selection of A2, the model M2 of {A1, A2,¬C} is found, leading to the
selection of A3, at which point there is no model of {A1, A2, A3,¬C}, proving
that C is a logical consequence of {A1, A2, A3}. In the last part of the figure
this is seen by the intersection of the axiom ovals lying within the conjecture
rectangle.

M0 A1
M1

M0

A1
M1

M2

M0

A2

CC

C

A1
M1

M2

M0

A2
A3

C

Fig. 1. The Basic Process

Example: Consider the simple propositional problem, to prove the conjecture
C = b from the axioms E1 = a | b, E2 = b ⇒ a, E3 = (¬a & (b | c)) |
(a & ¬b & ¬c). and E4 = b | (a⇔ c). The conjecture C can be proved from E3

and E4, i.e., E1 and E2 are superfluous. The following table shows a possible
sequence of models and selected axioms. Note how E1, E2, and E3 are true in
the first model, so only E4 can be selected. E1 and E3 are false in the second
model, but E1 is found first. E2 is true in every model of ¬C, and thus can never
be selected. If the model {a,¬b, c} had been used in the second pass, then E3

would have been selected, leading to immediate success.

Selected set Model Axiom
1 { } {a,¬b,¬c} E4 = b | (a⇔ c)
2 {E4} {¬a,¬b,¬c} E1 = a | b
3 {E1, E4} {a,¬b, c} E3 = (¬a & (b | c)) | (a & ¬b & ¬c)
4 {E1, E3, E4} - -

The order in which the axioms are considered at each pass of this process is
computed in at the start, according to the contextual indirect relevance of each
axiom to the conjecture. for the axiom to contribute to a proof of a conjecture
Fc, in the context of a set S of axioms and the conjecture. First, the contextual

MaLARea SG1 445

direct relevance between all formulae pairs F1, F2 ∈ Axioms ∪ {Conjecture} is
measured by

∑

s∈(sym(F1)∩sym(F2))

(

1− |{f :f∈S,s∈sym(f)}|
|S|

)

|sym(F1) ∪ sym(F2)|
where sym(F) is the set of function and predicate symbols occuring in F . Next,
the contextual path relevance of every path Fa = F1 · F2 · . . . · Fn = Fc from
an axiom Fa to the conjecture Fc is calculated as the smallest contextual direct
relevance in the path, divided by the length of the path. Finally, the contextual
indirect relevance between Fa and Fc is taken as the maximal contextual path
relevance over all paths connecting Fa to Fc.

In the SRASS implementation a range of further extensions are used to im-
prove performance, but these are not relevant here.

4 Combining Machine Learning with Semantic Selection

The addition of semantic selection to MaLARea consists of three extensions to
the selection of axioms based on relevance. To implement the extensions a good
model finder, Paradox [3], is added to the set of ATP backends.

The first extension is very simple: it checks for countersatisfiability in runs
where this is probable – currently when the time limit is 1s and at most 64 axioms
are selected. Paradox can detect countersatisfiability much more effectively than
E and SPASS, especially if there are very few axioms, and thus eliminates more
hopeless proof attempts. This in turn allows the countersatisfiability precheck
to detect more cases when more axioms need to be added.

The second extension uses the models found when a problem is found to
be countersatisfiable, as an additional criterion for computing axiom relevance.
For this extension it is necessary to efficiently evaluate formulae in the models.
This (a bit surprisingly) turns out to be a problem both with the Paradox and
Darwin [1] systems. The only existing tool for this task that we know of is Bill
McCune’s clausefilter program, which comes with the Mace4 [6] model finder.
Unfortunately, the model formats used by Paradox and Mace4 are incompatible.
Paradox is more successful than Mace4 (one of the reasons is that Mace4 avoids
models of cardinality 1), and so more useful for the first extension. Therefore,
Mace4 is run after Paradox, and only when Paradox finds a model. If Mace4 finds
a model, the model is stored, and the truth values of all axioms and conjectures
are computed wrt the model by clausefilter. This is very fast, and poses
no efficiency problems. Often some of the axioms and conjectures cannot be
evaluated in the model, because they contain symbols not interpreted by the
model. The values of such formulae are therefore undefined wrt the model. For
each model, the set of symbols it interprets, the set of true formulae, and the set
of false formulae, are recorded. The models are serially numbered, and a hash
value (just a SHA1 (160-bit) checksum) is recorded to quickly detect duplicate
models. For each formula a vector of its models and a vector of its countermodels
(models in which it is false) are recorded.

446 J. Urban et al.

The stored models are used following the axiom selection approach described
in Section 3, i.e., excluding models of the axioms and negated conjecture by
adding axioms that are false in the models. Given a conjecture C, if an axiom
is false in a model of ¬C then the axiom excludes that model. The more such
models an axiom excludes, the more it is likely to be useful. Also, if only a few
axioms exclude a model, those axioms are more likely to be useful. This kind
of model-based relevance is implemented in the same way as the symbol-based
relevance. For each axiom and conjecture a training example is produced. The
example has the countermodels (again encoded as integers) of the formula as
input features, and the formula itself as the output feature. These examples are
added to those described in Section 2. The resulting Bayes net is then evaluated
on the features of unproved conjectures, i.e., the symbols and countermodels
of the conjecture. This leads to increased relevance of axioms that are false in
many (and more rare) countermodels of the conjecture. The relevance boost
caused by the model information can be quite big, see, e.g., the promotion of
axiom t143 relat 1 in Section 5.

The third extension goes one step closer to the model-based algorithm de-
scribed in Section 3. It complements the second extension in way that is anal-
ogous to the way that the subset precheck complements the machine learned
selection of axioms – by extending the axiom specification using a “logical” cri-
terion. This criterion is as follows: the set of axioms should exclude as many
known models of the negated conjecture as possible. While the second extension
only promoted the relevance of axioms that contribute to this goal, this exten-
sion attempts to meet this goal as much as possible. Given a conjecture C and an
axiom selection A, the set NM of the models of ¬C is retrieved. Models already
excluded by axioms in A (countermodels of axioms in A) are deleted from NM .
If some models of ¬C remain after this, the remaining axioms are inspected in
their relevance order, and included into the specification if they exclude addi-
tional models of ¬C. This continues until either all models of ¬C are excluded
by the axioms, or there are no more axioms available. The complete algorithm,
combining the axiom relevance and semantic selection, is shown in Figure 2. See
Section 5 for a detailed example of how this algorithm proceeds, and particularly
Section 5.1 for discussion of some choices in its implementation.

The semantic selection in MaLARea has several significant differences to that
of SRASS. While syntactic relevance ordering of axioms is used there in the be-
ginning, it remains static. Here the relevance ordering is continuously updated,
taking into account successful proofs and model-based relevance. The models
created in all proof attempts here are immediately used for evaluation of all
axioms and conjectures, and this information is re-used many times in many
problems. Multiple axioms can be selected to extend the specifications by the
model reasoner in one pass, because the whole database of models is taken into
account. An important byproduct of the algorithm is the evolving database of
interesting and relevant models. Its final size for the experiments conducted
in Section 7 is ca. 1000 models. The models are interesting and relevant be-
cause they are products of proof attempts based on the “world knowledge”

MaLARea SG1 447

accumulated in previous passes. To a large extent the model reasoner prevents
creation of the same model twice in two different passes: new models typically
have to have a new characteristic vector of truth values on all formulae. One
possible future use of the model database is for semantic detection of interesting
lemmas and conjectures: a lemma or conjecture is interesting when its charac-
teristic vector on the database of models differs from others.

5 Detailed Example

The methods described in Section 4 are illustrated on the proof of the theorem
t144 relat 1, during the system’s processing of the MPTP Challenge problems.
The theorem says that an image of a set under a relation is a subset of the
relation’s range. In TPTP and Mizar notations it is as follows:

! [A,B] : (relation(B) => subset(relation_image(B,A), relation_rng(B)))
for X being set for R being Relation holds R .: X c= rng R

The axioms named below are available in TPTP form from the MPTP Chal-
lenge distribution, and in Mizar form from Mizar proofs of the MPTP Challenge
problems.3 This theorem was proved in the fifth 1 second pass of the system. In
the first pass all 198 axioms were considered, while in the remaining four passes
the limit of four axioms was used. In the end the theorem was proved from the
axioms d3 tarski, t143 relat 1, t20 relat 1.

The axioms used in the second to fifth passes were:

2: t25_relat_1,t99_relat_1,t118_relat_1,t45_relat_1
3: t99_relat_1,t88_relat_1,t20_relat_1,t45_relat_1,t116_relat_1,t44_relat_1
4: t20_relat_1,t99_relat_1,t88_relat_1,t45_relat_1,d3_tarski,t116_relat_1,

t44_relat_1
5: t20_relat_1,d3_tarski,t99_relat_1,t143_relat_1,t45_relat_1,

reflexivity_r1_tarski

In pass 2 the soft limit of four axioms was observed, while in the other three the
limit was violated – two or three extra axioms were added by the subset precheck
and by model reasoning to the four axioms selected by relevance. In pass 3
the four axioms t99 relat 1, t88 relat 1, t20 relat 1, t45 relat 1 were
selected initially, by their relevance from previous successful proofs and by their
symbolic and structural similarity with the conjecture. The resultant problem
was not known to be countersatisfiable, so there was no need to add axioms
for that reason. However in pass 2 the following four models of the negated
conjecture t144 relat 1 had been found (we only give the model numbers,
conjecture that lead to their discovery, and formulae that were evaluated as
false in them by clausefilter):

3 http://lipa.ms.mff.cuni.cz/∼urban/xmlmml/html abstr.930/00mptp chall topdown.html

http://lipa.ms.mff.cuni.cz/~urban/xmlmml/html_abstr.930/00mptp_chall_topdown.html

448 J. Urban et al.

Input: MinAxioms, MaxAxioms, MinCPU , MaxCPU , CSACPULimit,
Conjectures, AllAxioms, for each C ∈ Conjectures Axioms(C) ⊆ AllAxioms
TrainingSet = ∅, NumAxioms = MaxAxioms, CPULimit = MinCPU ;1

forall F ∈ (AllAxioms∪ Conjectures) do2

CMOSet(F) = ∅ ; // The CounterModels of F3

TrainingSet = TrainingSet ∪ {〈Symbols(F), F 〉};4

end5

forall C ∈ Conjectures do6

CSASet(C) = ∅ ; // The CounterSatisfiable axiom sets for C7

Result = Run systems on Axioms(C) |= C with MaxCPU ;8

ProcessResult(C,Result, Axioms(C));9

end10

Bayes net B = naive Bayes learning on TrainingSet;11

while NumAxioms ≤MaxAxioms or CPULimit ≤MaxCPU do12

forall unproved C ∈ Conjectures do13

Evaluate B on Symbols(C) ∪ CMOSet(C) to order Axioms(C);14

UseAxioms = NumAxioms most relevant axioms from Axioms(C);15

if CPULimit < CSACPULimit then16

while ∃S ∈ CSASet(C): UseAxioms ⊆ S do17

Add next most relevant axiom to UseAxioms;18

end19

end20

while ∃M ∈ CMOSet(C): ¬(∃A ∈ UseAxioms: M |= ¬A) do21

Add next most relevant A: M |= ¬A, to UseAxioms;22

end23

Result = Run systems on UseAxioms |= C with CPULimit;24

ProcessResult(C,Result,UseAxioms);25

end26

Bayes net B = naive Bayes learning on TrainingSet;27

if Any result is Theorem then28

NumAxioms = MinAxioms, CPULimit = MinCPU ;29

else if NumAxioms < MaxAxioms then30

NumAxioms = 2 ∗NumAxioms;31

else CPULimit = 4 ∗ CPULimit;32

end33

Procedure ProcessResult(C,Result,AxiomsTried):34

if Status(Result) = Theorem then35

TrainingSet = TrainingSet ∪ {〈Symbols(C), AxiomsInProof(Result)〉};36

else if Status(Result) = CounterSatisfiable then37

CSASet(C) = CSASet(C) ∪ {AxiomsTried};38

forall M ∈ModelsFound(Result) do39

forall F ∈ (AllAxioms ∪ Conjectures): M |= ¬F do40

CMOSet(F) = CMOSet(F) ∪ {M};41

TrainingSet = TrainingSet ∪ {〈M, F 〉};42

end43

end44

end45

Fig. 2. MaLARea Algorithm

MaLARea SG1 449

- 22; t144_relat_1; reflexivity_r1_tarski,t116_relat_1,t144_relat_1
- 23; t145_funct_1; d10_xboole_0,d1_relat_1,d3_relat_1,d3_tarski,
reflexivity_r1_tarski,t144_relat_1,t145_funct_1,t167_relat_1,t2_xboole_1,
t33_zfmisc_1,t88_relat_1,t99_relat_1

- 26; t146_relat_1; d10_xboole_0,reflexivity_r1_tarski,t144_relat_1,
t146_relat_1,t160_relat_1,t2_xboole_1,t44_relat_1,t45_relat_1

- 32; t160_relat_1; d10_xboole_0,dt_k5_relat_1,reflexivity_r1_tarski,
t144_relat_1,t160_relat_1,t2_xboole_1,t3_xboole_1,t44_relat_1

The model reasoner looked at the four suggested axioms, and saw that models 22
and 32 were not excluded by them, i.e., none of the four axioms were false in those
two models of the negated conjecture, while model 23 was already excluded by
axiom t88 relat 1, and model 26 by axiom t45 relat 1. The model reasoner
therefore started to go through additional axioms in their order of relevance,
and found that axiom t116 relat 1 excluded model 22, and axiom t44 relat 1
excluded model 32. At this point all known models of the negated conjecture were
excluded, so this axiom selection was used for pass 3. The resultant problem was
found to be countersatisfiable, yielding the following model (and this was the
only new model of the negated conjecture t144 relat 1 found in pass 3):

- 181; t144_relat_1; d3_tarski,reflexivity_r1_tarski,t144_relat_1

The relevance based selection suggested these four axioms for pass 4:

t20_relat_1,t99_relat_1,t88_relat_1,t45_relat_1

which is just a permutation (caused by relevance update) of the four initial ax-
ioms suggested in pass 3. Since the previous problem (containing two additional
axioms) was known (now) to be countersatisfiable, the subset precheck caused
the addition of axiom d3 tarski, at which point the problem was not known
to be countersatisfiable. There were two reasons for this axiom becoming very
relevant at this point, and being the next in the relevance queue: The first rea-
son was the “standard learning” argument. In pass 3, this axiom (definition of
set-theoretical inclusion) was successfully used to prove several theorems, rais-
ing its overall relevance. The second reason was that this axiom became known
to be false in a new model (181) of the negated conjecture, and this fact was
taken into account by the relevance learner. After this addition by the the sub-
set precheck, the model reasoner inspected the axiom selection. Since only one
new model (181) was added in pass 3, and that model was already excluded by
d3 tarski (which did not exclude any of the old models), it just proceeded to
exclude the same two remaining models (22 and 32) by adding the same two
axioms t116 relat 1 and t44 relat 1 axioms as before. In pass 4 this prob-
lem was found to be countersatisfiable, and three more models of the negated
conjecture were produced:

- 315; t144_relat_1; t143_relat_1,t144_relat_1
- 316; t145_funct_1; d12_funct_1,d13_relat_1,d1_relat_1,t143_relat_1,
t144_relat_1,t145_funct_1,t146_relat_1,t147_funct_1,t33_zfmisc_1

- 324; t160_relat_1; d10_xboole_0,d13_relat_1,d1_relat_1,d3_relat_1,
d3_tarski,d4_relat_1,d5_relat_1,d8_relat_1,dt_k5_relat_1,
reflexivity_r1_tarski,t144_relat_1,t160_relat_1,t2_tarski,t33_zfmisc_1

450 J. Urban et al.

The relevance based selection suggested these four axioms for pass 5:

t20_relat_1,d3_tarski,t99_relat_1,t143_relat_1

Note that d3 tarski and t143 relat 1 replaced t88 relat 1 and t45 relat 1
in the top four positions of the relevance order. In case of d3 tarski this is again
both because it was successfully used to prove some more other theorems in pass
4, and because it now excludes one more model (324) of the negated conjecture.
In case of t143 relat 1 it is solely because it excludes two fresh models (315,
316) of the negated conjecture (and especially the exclusion of the model 315
is a relatively strong relevance boost, because there are only two formulae with
that feature, and this rarity is taken into account by the Bayes learner). This
basic specification was not known to be countersatisfiable, so the model reasoner
started to inspect it. The four initial axioms already excluded models 23, 181,
315, 316 and 324. Models 22, 26, and 32 were not excluded by any of these
four axioms, so first the axiom t45 relat 1 was added, excluding model 26, and
then the axiom reflexivity r1 tarski was (finally) sufficiently relevant and
excluded the remaining models 22 and 32. This problem produced the proof,
using axioms d3 tarski, t143 relat 1, and t20 relat 1.

It is interesting to note in the pass 3 that the axiom reflexivity r1 tarski
excluded all of the four models, but it was not sufficiently relevant to be selected.
Similarly, in pass 4, reflexivity r1 tarski excludes all of the models. This
suggests that an alternative model covering algorithm could be useful for mak-
ing the specifications smaller. Preliminary experiments suggest that using, e.g.,
MiniSat+, for finding the optimal model coverings would be feasible. It might
also be worth experimenting with exchanging relevance-greed for covering-greed,
i.e., taking the axioms that exclude most candidate models first.

5.1 Partial vs. Total Models

The reader might wonder why the model reasoner added the axioms t45 relat 1
and reflexivity r1 tarski (this one alone would be sufficient, as it also ex-
cludes model 26) in the last pass. These axioms were not needed for the final
proof, i.e., in every model of the negated conjecture at least one of the necessary
axioms (d3 tarski, t143 relat 1, and t20 relat 1) should be false. Why then
don’t they exclude models 22, 26, and 32? The answer is in the implementation of
models. The models produced by Mace4 are limited to the interpretation of sym-
bols that appear in the problem formulae. The axiom d3 tarski defines subset
in terms of in (membership), but in did not appear in the problems that led to
the construction of models 22, 26, and 32. Similarly for t143 relat 1. Therefore
the truth values of these two axioms are undefined in the three models.

This points to another interesting choice: For efficient proving and model find-
ing we want to constrain the relevant set of symbols as much as possible. Often
this leads to success – the number of theorems that can be proved by explor-
ing Boolean properties of set-theoretical union, inclusion, difference, and subset,
without any word about membership, is a good example. On the other hand,
the notion of “relevance” evolves as theorems are proved, and it may be neces-
sary expand some of the definitions, as happened in the proof of t144 relat 1.

MaLARea SG1 451

Such expansion, however, makes some of the earlier model-based information
inaccurate in some sense.

There are several ways to cope with these problems. The current solution is
just to ignore it: the worst that can happen is that extra axioms are added by the
model reasoning. One (quite feasible) alternative is to try to extend all models
to the set of “relevant symbols”, defined as the union of symbols appearing in
the axioms that are above some relevance threshold, or the union of symbols
appearing in all relevant models, etc. The model extension could be done by
adding tautologies containing the new symbols, or by manually adding some
default interpretation of the new symbols to the existing models, providing a
default way for extending partial models to total models. The danger of this
approach is that such total models are mostly interesting on only their partial
symbol domain, and evaluation of many formulae outside that domain will flood
the system with a lot of boring values. Another interesting approach could be
to watch the relevance of models in a way similar to watching the relevance
of axioms, and preferring evaluation in more relevant models. This option is
likely to be used anyway, if the number of generated models gets too high, and
evaluation of all formulae in them too expensive.

6 Other Performance Related Additions to MaLARea

6.1 Term Structure

It is not difficult to come up with examples when just symbol-based similarity
can be too crude. One way to picture this is to realize that all the symbols used
in the MPTP Challenge problems are introduced by their set-theoretical defini-
tions that can recursively be expanded to just the basic set theory level, i.e., to
formulae containing only the ∈ and = symbols. If that were done, symbol-based
similarity would become completely useless, but the expanded formulae would
still be more or less close to one another when considering the structure of terms
and subformulae. This suggests that structural similarity is likely to be a useful
complement to symbol-based similarity. This is confirmed by the experimental
results shown in Section 7. The practical implementation in MaLARea takes an
advantage of the shared term mechanisms used in the E prover. E prover keeps
only one copy of each term in its shared term bank, and it also treats all for-
mulae for clausification purposes internally as shared terms. The shared terms
have internal serial numbering, used, e.g., for compact printing. Given these
nice functionalities, it was straightforward to write a small E-based program
that reads all formulae appearing in all problems into a shared term bank, and
then for each formula it prints the internal numbers of all the shared terms (i.e.,
also subformulae) appearing in it. The information is printed in the following
form:

terms(t144_relat_1,[492,491,8325,8324,1803,2153]).

There are about 10000 shared terms in the MPTP Challenge formulae (com-
pared to 418 symbols), giving a much finer similarity measure that can be used
for learning in the same way as the symbol features. One additional modifica-
tion was implemented to accommodate the problem of different (normalized)

452 J. Urban et al.

variables appearing in the shared terms, making terms that differ only by vari-
able renaming have different numbers. This was solved by renaming all variables
in each formula to just one variable before handing the formulae to the shared
term extractor. MaLARea has options for specifying all these similarity mea-
sures (symbols, variable-renamed shared terms, standard shared terms), and
their combinations.

6.2 ATP Systems

The Vampire [14] system was previously not usable in MaLARea, because its
proof output was hard to parse. Therefore TPTP format output was added to
Vampire, allowing its use as an ATP backend along with E and SPASS. First
experiments on the MPTP Challenge show that using Vampire does not help the
combination of E and SPASS. One reason can be traced back to Vampire’s tuning
on the TPTP library: the Fampire experiment (using Vampire with a different
clausifier) significantly improves Vampire’s performance on the MPTP Challenge
problems. This is caused by a different (much better for MPTP) set of strategies
being used by Vampire for CNF problems than the strategies used by Vampire
for FOF problems. This again suggests that addition of ATP strategy learning to
MaLARea could be quite useful. Such effort would be greatly facilitated by having
a common TPTP format for ATP parameters, and systems like E, SPASS, and
Vampire actually using that format.

Other work that had positive impact was the correction of a bug in the proof
mode of the E prover. This error had caused the strategies used in the fast
“assurance” mode to be replaced by dummy strategies in proof mode, often
causing failure in the proof mode. This in turn prevented learning the axiom
relevance from some of the theorems proved by E. This correction improved
MaLARea’s performance on the MPTP Challenge benchmark by 4 problems.

7 Results

The set of problems from the chainy division of the MPTP Challenge was used
for evaluation. This set of problems was created with the intention of providing
a benchmark for large theory reasoning. It consists of 252 related mathematical
problems, translated by the MPTP system [22] from the Mizar library. The
conjectures of the problems are the Mizar theorems that are recursively needed
for the Mizar proof of one half (one of two implications) of the general topological
Bolzano-Weierstrass theorem. The whole problem set contains 1234 formulae
and 418 symbols. The problems in the chainy division intentionally contain all
the “previous knowledge” as axioms. This results in an average problem size of
ca. 400 formulae. The challenge has an overall time limit policy, i.e., instead of
solving problems one-at-a-time with a fixed time limit, the overall time limit of
21 hours can be used in any way for solving the problems. The experiments on
this set of problems were done on 2.33GHz Intel Xeons (4MB cache) with 1GB
RAM. These machines seem to be about 4% faster than the machines used for
evaluating many other system for the MPTP Challenge in 2007.

MaLARea SG1 453

The first experiment corresponds to the standard MPTP Challenge, i.e., solv-
ing as many problems as possible within the overall time limit. Table 1 shows
the results of three different runs: MaLARea in the standard setting presented in
Section 24, MaLARea with the term structure learning presented in Section 6.1,
and finally MaLARea with term structure learning and the semantic guidance
presented in Section 4. All three runs used the default minimal and maximal
time and axiom limits (1-64s, 4-256 axioms, 1s threshold for the countersatis-
fiability precheck). All of them were left to run beyond the MPTP Challenge
overall time limit of 21 hours, until they stopped themselves by reaching the
maximal axiom and time limits.

Table 1. Full run of three versions of MaLARea on the MPTP Challenge

description total solved in passes in total last pass time to time to
solved 21 hours 21 hours passes with success stop (hours) solve last

standard 149 144 114 234 208 83 66

with TS 154 149 148 263 237 55 47

with TS & SG 165 161 121 195 170 52 37

The table shows that the addition of term structure improves the original
version by 5 problems (both within the 21 hour time limit and overall), and
that the semantic guidance then contributes an additional 12 (within the 21
hour time limit), resp. 11 (without time limit) solved problems. Although the
numbers of solved problems differ quite significantly, it is also interesting to note
that the version with semantic guidance peaked sooner (37 hours to solve all of
the 165 problems) than the other versions. This faster convergence becomes even
more apparent when we consider just the number of problems solved in the fast
1s passes following the all-axioms 64s first pass. This first pass obviously gave
the same values for all three versions (because it uses all the axioms), solving
100 problems, all within 1s. However the numbers of problems solved in the
following 1s passes differ quite considerably – see Table 2. This table shows that
the version with semantic guidance solved more problems (56) in the following
1s passes than the version without semantic guidance solved in all following
passes (154 problems solved - 100 solved in the first pass = 54). It should also
be noted that the addition of Paradox typically makes these low-time limit runs
faster than in the version without semantic guidance, because problems with
few axioms are often countersatisfiable, and Paradox is much better at detecting
that than E and SPASS.

Given this good performance with low time limits, it is natural to ask what
happens when the time limit is reduced to 1s in the all-axioms first pass. This
has a quite pragmatic motivation: both E and SPASS take the full 64s on the 152
problems not solved in the first pass (252 problems, 100 solved in the first pass),
4 But with visible improvement caused by correction of the E bug. Even without

this correction, standard MaLARea was the best performing system on the MPTP
challenge at the time of the July 2007 evaluation.

454 J. Urban et al.

Table 2. Statistics of the Initial 1s Passes

description total solved in solved in number of
solved 1st pass 1s passes 1s passes

standard 149 100 36 36
with TS 154 100 41 56
with SG,TS 165 100 56 54

Table 3. Statistics of the 1s-only passes of the version using TS and SG

pass ax limit solved cumul pass ax limit solved cumul pass ax limit solved cumul
1 0 60 60 12 4 3 120 23 4 0 134
2 256 7 67 13 4 1 121 24 8 1 135
3 256 1 68 14 4 2 123 25 4 0 135
4 4 12 80 15 4 3 126 26 8 0 135
5 4 10 90 16 4 0 126 27 16 0 135
6 4 14 104 17 8 2 128 28 32 4 139
7 4 5 109 18 4 2 130 29 4 0 139
8 4 2 111 19 4 0 130 30 8 0 139
9 4 3 114 20 8 0 130 31 16 0 139
10 4 2 116 21 16 3 133 32 32 0 139
11 4 1 117 22 4 1 134 33 64 2 141

so the pass takes more than 5 hours. The second experiment thus imposed a time
limit of 1s in the all-axioms first pass. The results are shown in Table 3. Every
pass takes 5-10 minutes (depending on how much Paradox is successful, and if
(and how quickly) Mace produces a model). The value of 128 solved problems
(more than 50%), which is beyond what any other ATP system solves in 21
hours, is reached in about 2-3 hours. The value of 104 solved problems, which is
above the combined forces of the two underlying ATPs run both with 64s time
limit, can be reached in six passes, i.e., in ca. 30-60 minutes.

8 Future Work and Conclusion

Human mathematics is very often a large theory. Humans are both good at
developing large theories, and at reasoning within them. These two capabilities
are certainly connected: it takes a lot of theory development to prove major
mathematical results like Fermat’s last theorem and the Poincare conjecture.
The system presented here tries to reason only in a fixed theory. It would be
interesting to add theory development to the system. The first try could be
just addition of useful lemmas created during the proof attempts. Another line
of research is work on the semantic part. Human mathematicians have a well
developed store of interesting examples and counterexamples that they use for
testing their theories, suggesting conjectures, and getting their proofs right. The
models created so far are simple – finite, often of small cardinality. It would be
interesting to try to accommodate infinite domains, by generalizing the current
simple model reasoning to perhaps less precise, but more sophisticated evaluation
algorithms that are probably used by humans.

A lot of work on the system can be done by improving the existing compo-
nents. Different learning algorithms (for different parts of the system) can be

MaLARea SG1 455

experimented with, different backends can be used in different settings (see, e.g.,
the note about strategy learning in Section 6.2), and the usage of various compo-
nents in the overall loop can certainly be experimented with much more. Another
challenge is to accommodate large theories that are not so strictly consistent in
symbol and axiom naming as the MPTP problems, e.g., by using even more
abstract structural information. While many of these extensions are interesting
AI research, it is also good to keep in mind that the current performance of the
system already makes it useful, e.g., for proof assistance, and to further work on
its practical usability by e.g., the Mizar and Isabelle formalizers.

Acknowledgements. Thanks to Bill McCune for his help with various Mace4
and clausefilter issues, and to Stephan Schulz and Christoph Weidenbach for
correcting the E and SPASS bugs that influenced the performance of the system.

References

1. Baumgartner, P., Fuchs, A., Tinelli, C.: Darwin - A Theorem Prover for the Model
Evolution Calculus. In: Sutcliffe, G., Schulz, S., Tammet, T. (eds.) Proceedings of
the Workshop on Empirically Successful First Order Reasoning, 2nd International
Joint Conference on Automated Reasoning (2004)

2. Carlson, A., Cumby, C., Rosen, J., Roth, D.: SNoW User’s Guide. Technical Report
UIUC-DCS-R-99-210, University of Illinois, Urbana-Champaign (1999)

3. Claessen, K., Sorensson, N.: New Techniques that Improve MACE-style Finite
Model Finding. In: Baumgartner, P., Fermueller, C. (eds.) Proceedings of the
CADE-19 Workshop: Model Computation - Principles, Algorithms, Applications
(2003)

4. Denney, E., Fischer, B., Schumann, J.: Using Automated Theorem Provers to Cer-
tify Auto-generated Aerospace Software. In: Basin, D., Rusinowitch, M. (eds.) IJ-
CAR 2004. LNCS (LNAI), vol. 3097, pp. 198–212. Springer, Heidelberg (2004)

5. Fuchs, M.: Controlled Use of Clausal Lemmas in Connection Tableau Calculi. Jour-
nal of Symbolic Computation 29(2), 299–341 (2000)

6. McCune, W.W.: Mace4 Reference Manual and Guide. Technical Report
ANL/MCS-TM-264, Argonne National Laboratory, Argonne, USA (2003)

7. Meng, J., Paulson, L.: Lightweight Relevance Filtering for Machine-Generated Res-
olution Problems. In: Sutcliffe, G., Schmidt, R., Schulz, S. (eds.) Proceedings of
the FLoC 2006 Workshop on Empirically Successful Computerized Reasoning, 3rd
International Joint Conference on Automated Reasoning. CEUR Workshop Pro-
ceedings, vol. 192, pp. 53–69 (2006)

8. Meng, J., Paulson, L.: Translating Higher-order Problems to First-order Clauses.
Journal of Automated Reasoning 40(1), 35–60 (2008)

9. Plaisted, D.A., Yahya, A.: A Relevance Restriction Strategy for Automated De-
duction. Artificial Intelligence 144(1-2), 59–93 (2003)

10. Pudlak, P.: Search for Faster and Shorter Proofs using Machine Generated lemmas.
In: Sutcliffe, G., Schmidt, R., Schulz, S. (eds.) Proceedings of the FLoC 2006 Work-
shop on Empirically Successful Computerized Reasoning, 3rd International Joint
Conference on Automated Reasoning. CEUR Workshop Proceedings, vol. 192, pp.
34–52 (2006)

11. Pudlak, P.: Draft Thesis: Verification of Mathematical Proofs (2007)

456 J. Urban et al.

12. Quaife, A.: Automated Development of Fundamental Mathematical Theories.
Kluwer Academic Publishers, Dordrecht (1992)

13. Ramachandran, D., Reagan, P., Goolsbey, K.: First-orderized ResearchCyc: Ex-
pressiveness and Efficiency in a Common Sense Knowledge Base. In: Shvaiko, P.
(ed.) Proceedings of the Workshop on Contexts and Ontologies: Theory, Practice
and Applications (2005)

14. Riazanov, A., Voronkov, A.: The Design and Implementation of Vampire. AI Com-
munications 15(2-3), 91–110 (2002)

15. Schulz, S.: E: A Brainiac Theorem Prover. AI Communications 15(2-3), 111–126
(2002)

16. Sutcliffe, G.: The 3rd IJCAR Automated Theorem Proving Competition. AI Com-
munications 20(2), 117–126 (2007)

17. Sutcliffe, G., Dvorsky, A.: Proving Harder Theorems by Axiom Reduction. In: Rus-
sell, I., Haller, S. (eds.) Proceedings of the 16th International FLAIRS Conference,
pp. 108–112. AAAI Press, Menlo Park (2003)

18. Sutcliffe, G., Puzis, Y.: SRASS - a Semantic Relevance Axiom Selection System.
In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 295–310. Springer,
Heidelberg (2007)

19. Sutcliffe, G., Suttner, C.B.: The TPTP Problem Library: CNF Release v1.2.1.
Journal of Automated Reasoning 21(2), 177–203 (1998)

20. Sutcliffe, G., Zimmer, J., Schulz, S.: TSTP Data-Exchange Formats for Automated
Theorem Proving Tools. In: Zhang, W., Sorge, V. (eds.) Distributed Constraint
Problem Solving and Reasoning in Multi-Agent Systems. Frontiers in Artificial
Intelligence and Applications, vol. 112, pp. 201–215. IOS Press, Amsterdam (2004)

21. Urban, J.: MizarMode - An Integrated Proof Assistance Tool for the Mizar Way
of Formalizing Mathematics. Journal of Applied Logic 4(4), 414–427 (2006)

22. Urban, J.: MPTP 0.2: Design, Implementation, and Initial Experiments. Journal
of Automated Reasoning 37(1-2), 21–43 (2006)

23. Urban, J.: MaLARea: a Metasystem for Automated Reasoning in Large Theories.
In: Urban, J., Sutcliffe, G., Schulz, S. (eds.) Proceedings of the CADE-21 Work-
shop on Empirically Successful Automated Reasoning in Large Theories, pp. 45–58
(2007)

24. Veroff, R.: Using Hints to Increase the Effectiveness of an Automated Reasoning
Program: Case Studies. Journal of Automated Reasoning 16(3), 223–239 (1996)

25. Weidenbach, C.: Combining Superposition, Sorts and Splitting. In: Robinson, A.,
Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 1965–2011. Elsevier
Science, Amsterdam (2001)

26. Zhang, Y., Sutcliffe, G.: Lemma Management Techniques for Automated Theo-
rem Proving. In: Konev, B., Schulz, S. (eds.) Proceedings of the 5th International
Workshop on the Implementation of Logics, pp. 87–94 (2005)

CASC-J4

The 4th IJCAR ATP System Competition

Geoff Sutcliffe

Department of Computer Science, University of Miami

The CADE ATP System Competition (CASC) is an annual evaluation of fully
automatic, first-order Automated Theorem Proving (ATP) systems - the world
championship for such systems. In addition to the primary aim of evaluating
the relative capabilities of ATP systems, CASC aims to stimulate ATP research
in general, to stimulate ATP research towards autonomous systems, to moti-
vate implementation and fixing of systems, to provide an inspiring environment
for personal interaction between ATP researchers, and to expose ATP systems
within and beyond the ATP community. Fulfillment of these objectives provides
stimulus and insight for the development of more powerful ATP systems, lead-
ing to increased and more effective usage. CASC-J4 was held on 13th August
2008, as part of the 4th International Joint Conference on Automated Rea-
soning1, in Sydney, Australia. It was the thirteenth competition in the CASC
series (lucky for some). The CASC-J4 web site provides access to details of the
competition design, competition resources, and the systems that were entered:
http://www.tptp.org/CASC/J4/

CASC-J4 was (like all CASCs) divided into divisions according to problem
and system characteristics. There were competition divisions in which systems
were explicitly ranked, and a demonstration division in which systems could
demonstrate their abilities without being formally ranked. For analysis purposes,
the divisions were additionally split into categories according to the syntactic
characteristics of the problems. The competition divisions were (see the web site
for details):
– FOF - First-order form theorems (axioms with a provable conjecture)
– FNT - FOF non-theorems (axioms with a counter-satisfiable conjecture, and

satisfiable axiom sets)
– CNF - Clause normal form theorems (unsatisfiable clause sets)
– SAT - CNF non-theorems (satisfiable clause sets)
– EPR - CNF effectively propositional theorems and non-theorems
– UEQ - Unit equality CNF theorems
– LTB - FOF problems from large theories, presented in batches.

All the divisions had an assurance ranking class, in which the systems were
ranked in each division according to the number of problems solved (just a “yes”
output). The FOF, FNT, and LTB divisions additionally had a proof/model
ranking class in which the systems were ranked according to the number of
problems solved with an acceptable proof/model output. The problems were

1 CADE was a constituent conference of IJCAR, hence CASC-“J4”.

A. Armando, P. Baumgartner, and G. Dowek (Eds.): IJCAR 2008, LNCS 5195, pp. 457–458, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

458 G. Sutcliffe

selected from the TPTP problem library v3.5.0, which was not released until
the day of the competition. The selection of problems was biased towards up to
50% new problems not previously seen by the entrants. A CPU time limit was
imposed on each system’s run on each problem, and a wall clock time limit was
imposed to limit very high memory usage that causes swapping.

The main change in CASC-J4 since CASC-21 (the previous CASC) was the
addition of the LTB division. Each category of this division uses a theory in which
there are many functors and predicates, many axioms of which typically only a
few are required for the proof of a theorem, and many theorems to be proved
using a common core set of axioms. The problems of each category are provided
to the ATP systems as a batch, allowing the ATP systems to load and preprocess
the common core set of axioms just once, and to share logical and control re-
sults between proof searches. Articulate Software provided $3000 of prize money
for the SMO category of the LTB division. Minor changes since CASC-21 were:
the discontinuation of the CNF proof class and SAT model class; a requirement
that systems’ output differentiate between theorems, non-theorems, unsatisfiable
formula sets, and satisfiable formula sets; a requirement that systems’ output dif-
ferentiate between proofs and models; and explicitly encouragement that entered
systems have an open source license.

CASC has been a catalyst for improved engineering and performance of many
ATP systems. Over the years the CASC design has been incrementally adapted
to the needs of the growing number of “real world” users of ATP systems. Con-
tributions to the TPTP problem library provide insights into the types of prob-
lems that users need to solve, which in turn feedback into changes to CASC.
The increased emphasis on FOF (rather than CNF) problems, and the addition
of the LTB division, are consequences of this process. Users and developers of
ATP systems are strongly encouraged to continue contributing new problems to
the TPTP, to help ensure that CASC and general ATP development efforts are
focussed in the right direction.

Labelled Splitting

Arnaud Fietzke and Christoph Weidenbach

Max-Planck-Institut für Informatik, Campus E1 4
D-66123 Saarbrücken

{fietzke,weidenbach}@mpi-inf.mpg.de

Abstract. We define a superposition calculus with explicit splitting and
an explicit, new backtracking rule on the basis of labelled clauses. For the
first time we show a superposition calculus with explicit backtracking rule
sound and complete. The new backtracking rule advances backtracking
with branch condensing known from Spass. An experimental evaluation
of an implementation of the new rule shows that it improves considerably
the previous Spass splitting implementation. Finally, we discuss the re-
lationship between labelled first-order splitting and DPLL style splitting
with intelligent backtracking and clause learning.

1 Introduction

Splitting is an inference rule for case analysis. It is well-known from the Davis-
Putnam-Logemann-Loveland (DPLL) [1] decision procedure for propositional
logic, where a propositional clause set N is split into the clause sets N ∪ {A}
and N ∪{¬A} for some propositional variable A occurring in N . Obviously, N is
satisfiable iff one of the two split clause sets is satisfiable. Furthermore, both split
clause sets are simpler than N in the sense that any clause from N containing
A can be removed, and in all other clauses from N any occurrence of ¬A can be
removed for the split clause set N ∪ {A}1. The DPLL decision procedure does
not consider the two split clause sets in parallel by duplicating N , but traverses
the eventual tree generated by splitting and backtracking in a depth-first way.
By appropriate implementation mechanisms, backtracking then becomes quite
cheap. As any split set is a subset of subclauses after reduction with the split
variable, updates can be made my marking and there is no need to generate new
clause objects2. Nieuwenhuis et al. [2] presented the DPLL procedure performing
depth-first search by an abstract calculus. One contribution in this paper is to
perform the same exercise for the first-order case and splitting.

In first-order logic the DPLL splitting style does typically not make sense, be-
cause for a given first-order atom A there exist infinitely many ground instances
Aσ of A and it is not known which instances eventually contribute to a proof or
model. Furthermore, in case of models having infinite domains, such a style of
splitting won’t terminate. Therefore, for many superposition based decidability

1 Accordingly for N ∪ {¬A}.
2 Learning clauses is a separate issue.

A. Armando, P. Baumgartner, and G. Dowek (Eds.): IJCAR 2008, LNCS 5195, pp. 459–474, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

460 A. Fietzke and C. Weidenbach

results of first-order logic fragments, e.g., [3], a different style of splitting is used.
Given a clause C ∈ N that can be decomposed into two non-trivial variable dis-
joint subclauses C1, C2, we split into the clause sets N ∪ {C1} and N ∪ {C2}.
Very often the rule is further restricted to require that both C1 and C2 con-
tain at least one positive literal, i.e., we split into clause sets that are closer to
Horn. The rationale behind this restriction is that for Horn clause sets decid-
ability results are typically “easier” to establish and more efficient algorithms
exist. For example, satisfiability of propositional Horn clause sets can be decided
in linear time, whereas satisfiability of arbitrary propositional clause sets is an
NP-complete problem.

A further major difference between first-order splitting and propositional split-
ting is that in the first-order case effective theorem proving typically relies on
the generation of new clauses, either via inferences or reductions. Therefore, the
bookkeeping for backtracking of a depth-first approach to splitting gets more
involved, because marking algorithms on existing clauses are no longer sufficient
to track changes. We need to extend the labels used in the abstract DPLL cal-
culus that are sequences of decision and propagation literals, to a sequence of
split elements, called the split stack, holding in particular the potential second
part of the split clause and all clauses that became redundant in the course of
splitting and may have to be reactivated.

Our starting point is the splitting approachas it was implemented inSpass [4,5].
On the basis of this calculus we develop the labelled splitting calculus that in par-
ticular refines the previous one with an improved backtracking rule (Section 2).
We show the labelled splitting calculus to be sound and complete where we in-
troduce a new notion of fairness, taking into account an infinite path in the split
tree. Labelled splitting is implemented in Spass (http://spass-prover.org/)
and improves significantly on the previous implementation (Section 3). We com-
pare the calculus to other approaches to splitting, in particular, to the DPLL
approach with intelligent backtracking and clause learning (Section 3). The pa-
per ends with a summary of the achieved results and directions for future work
(Section 4). Missing proofs and further technical details can be found in a tech-
nical report [6].

2 Labelled Splitting

We employ the usual notions and notations of first-order logic and superposition
in a way consistent with [5]. When traversing the split tree, the conclusions of
splits that were used in deriving a clause determine the clause’s scope in the tree,
i.e., those parts of the tree in which the clause may participate in proof search. In
order to capture this information, we identify each case of a splitting application
on a given path through the tree with a unique integer, its split level, and label
each clause with a set of integers, representing all splits that contributed to the
derivation of the clause.

Formally, a labelled clause L : C consists of a finite set L ⊆ N and a clause
C = Γ → Δ where Γ and Δ contain the negatively and positively occurring

http://spass-prover.org/

Labelled Splitting 461

atoms, respectively. The empty clause with label L is denoted by L: �. We call
the greatest element in L the split level of the clause. We say that L : C depends
on l if l ∈ L. We extend the usual notions about clause sets to sets of labelled
clauses in the natural way: for example, we will say that a set N of labelled
clauses entails some formula φ (written N |= φ) if and only if the corresponding
set of unlabelled clauses entails φ. Similarly we extend clause orderings [5] to
labelled clauses by abstracting from labels.

A labelled clause set is of the form Ψ :N whereN is a set of labelled clauses and
Ψ is the split stack. Split stacks are sequences Ψ = 〈ψn, . . . , ψ1〉 of length n ≥ 0
(Ψ = 〈〉 if n = 0) and correspond to paths in the split tree. The ψi are tuples
ψi = (li, Bi, Di, ϕi) called splits, where li ∈ N is the split level, Bi is the set of
blocked clauses, Di is the set of deleted clauses and ϕi ∈ {∅, {L}} with L ⊆ N,
is the leaf marker which records which splits were involved in refuting a branch.
This information is exploited during backtracking to get rid of unnecessary splits.
Splitting a clause results in a new split being put onto the stack, which can be
thought of as entering the corresponding left branch of the split tree. Once
the branch has been refuted, the split is removed and possibly replaced by a
split representing the right branch of the splitting step. Splits corresponding
to left branches will be assigned odd levels, while splits corresponding to right
branches will have even levels. Therefore we define two predicates, left and right,
as follows: left(l) = true iff lmod 2 = 1 and right(l) = true iff lmod 2 = 0. We
call ψ = (l, B,D, ϕ) a left split if left(l), and a right split otherwise. In a left
split, the set B will contain clauses to be reinserted when entering the right
branch. In the present framework, B will always consist of just the second split
clause. However using a set allows for additional clauses to be added to the right
branch, for example the negation of the first split clause in case it is ground.
Furthermore, the reason why split levels are made explicit (instead of taking the
split level of ψk to be k, for example) is that because of branch condensation, split
removal during backtracking is not limited to toplevel splits and hence ”holes”
may appear in the sequence of split levels. This will become clear when we discuss
backtracking. For better readability, we will use the notation ψ[x := v] where x
is one of l, B,D, ϕ to denote a split identical to ψ up to component x, which has
value v. We write ψ[x1 := v1, x2 := v2] instead of ψ[x1 := v1][x2 := v2].

For the definition of the labelled calculus we distinguish inference rules

I Ψ :N
Ψ ′ :N ′

L1: Γ1 → Δ1 . . . Ln: Γn → Δn

K: Π → Λ

and reduction rules

R Ψ :N
Ψ ′ :N ′

L1: Γ1 → Δ1 . . . Ln: Γn → Δn

K1: Π1 → Λ1

...
Kk: Πk → Λk

The clauses Li: Γi → Δi are called the premises and the clausesK(i): Π(i) → Λ(i)

the conclusions of the respective rule. A rule is applicable to a labelled clause set

462 A. Fietzke and C. Weidenbach

Ψ :N if the premises of the rule are contained in N . In the case of an inference,
the resulting labelled clause set is Ψ ′ : (N ′ ∪ {K : Π → Λ}). In the case of a
reduction, the resulting labelled clause set is Ψ ′ : (N ′ \ {Li : Γi → Δi | 1 ≤
i ≤ n} ∪ {Kj : Πj → Λj | 1 ≤ j ≤ k}). Furthermore, we say that a clause C
is redundant in N if it follows from smaller clauses in N , and an inference is
redundant in N , if its conclusion follows logically from clauses in N that are
smaller than its maximal premise.

We present a basic set of inference and reduction rules which together yield a
sound and refutationally complete calculus for first-order logic without equality.
The emphasis of this paper lies on the modelling of the splitting process, hence
more advanced rules like those discussed in [5] have been omitted, since their
presentation here would not add to the understanding of splitting-specific issues.
Such rules can be integrated to the present setting in a straightforward way and
are contained in our implementation. For the same reason we omit the usual
ordering restrictions and selection strategies.

Definition 1 (Splitting). The inference

I Ψ :N
Ψ ′ :N

L: Γ1, Γ2 → Δ1, Δ2

L′: Γ1 → Δ1

where Ψ = 〈ψn, . . . , ψ1〉 (ln = 0 if n = 0), ln+1 = 2
⌈

ln
2

⌉

+ 1, L′ = L ∪ {ln+1},
L′′ = L ∪ {ln+1 + 1}, Ψ ′ = 〈ψn+1, ψn, . . . , ψ1〉 with ψn+1 = (ln+1, {L′′ : Γ2 →
Δ2}, ∅, ∅), vars(Γ1 → Δ1) ∩ vars(Γ2 → Δ2) = ∅, and Δ1 �= ∅ and Δ2 �= ∅ is
called splitting.

Splitting creates a new split representing the left branch Γ1 → Δ1 on the stack.
The remainder is kept in the new split’s blocked clause set to be restored upon
backtracking. The split level ln+1 is the smallest odd number larger than ln
(hence left(ln+1) holds) and the blocked clause has ln+1 + 1 added to its label
(right(ln+1 + 1) holds). Furthermore, note that splitting is an inference and the
parent clause Γ1, Δ1 → Γ2, Δ2 is not removed from the clause set. A concrete
proof strategy may require to apply subsumption deletion to the parent clause
immediately after each splitting step (and after each backtracking step, when the
corresponding right branch was entered), thus turning splitting into a reduction.
In the current Spass implementation, splitting is a reduction rule in this sense.

In case the first split part L′: Γ1 → Δ1 is ground, the clauses resulting from its
negation can be added to the set of blocked clauses, i.e., the right branch. With
this modification, the above splitting rule is as powerful as the DPLL splitting
rule concerning proof complexity.

Definition 2 (Resolution). The inference

I Ψ :N
Ψ :N

L1: Γ1 → Δ1, A L2: Γ2, B → Δ2

L1 ∪ L2: (Γ1, Γ2 → Δ1, Δ2)σ

where σ is the most general unifier of A and B is called resolution.

Labelled Splitting 463

Definition 3 (Factoring). The inference

I Ψ :N
Ψ :N

L: Γ → Δ,A,B

L: (Γ → Δ,A)σ

where σ is the most general unifier of A and B is called factoring.

Definition 4 (Subsumption Deletion). The reduction

R Ψ :N
Ψ ′ :N

L1: Γ1 → Δ1 L2: Γ2 → Δ2

L1: Γ1 → Δ1

where Γ2 → Δ2 is subsumed by Γ1 → Δ1, lm1 = max(L1), lm2 = max(L2),
Ψ = 〈ψn, . . . , ψm1 , . . . ψ1〉, and

Ψ ′ =

{

Ψ if m1 = m2

〈ψn, . . . , ψm1 [D := Dm1 ∪ {L2: Γ2 → Δ2}], . . . , ψ1〉 otherwise
is called subsumption deletion.

The subsumption deletion rule is presented here as one prominent example of
a reduction rule, of which many more exist [5]. They all have in common that
a clause is simplified (or removed), either because of some property inherent to
the clause itself (e.g., tautology deletion), or because of the presence of another
clause (as with subsumption deletion). In the first case, no particular precautions
are needed with respect to splitting. In the second case however, we must account
for the possibility that the reducing (here: subsuming) clause will eventually be
removed from the clause set, e.g., because a split that the clause depends on is
removed during backtracking. This is why we store the subsumed clause at the
subsuming clause’s level on the split stack. As an example, consider the clauses
{1, 6} : P (x) and {1, 3} : P (a). Applying subsumption deletion would cause
{1, 3} : P (a) to be removed from the clause set and added to the deleted set at
the split with level 6. On the other hand, if both the subsumer and the subsumee
have the same split level, then there always remains a subsuming clause in the
current clause set as long as the corresponding split is not deleted, hence we can
remove and forget the subsumed clause.

We will now define rules that formalize backtracking. In particular, we focus
our attention on the deletion of splits from the split stack to ensure that all
the bookkeeping is done correctly. We denote by maxr(Ψ) := max ({1 ≤ i ≤ n |
right(li)} ∪ {0}) the last right split in Ψ . For any given split stack Ψ , we define
the set levels(Ψ) to be the set of split levels occurring in Ψ , i.e., levels(Ψ) :=
{l1, . . . , ln} for Ψ = 〈ψn, . . . , ψ1〉. Finally, for any labelled clause set N and set
of split levels K ⊆ N we define N |K := {L: Γ → Δ ∈ N | L ⊆ K}.

When removing a split ψk from the stack, we have to take care to undo all
reductions that involved a clause depending on (the level of) ψk. In particular,
if a clause C1 depending on ψk was used to reduce some other clause C2, then
C2 must be reinserted into the current clause set. The reason is that C1 will be
removed from the current clause set, and C2 may then no longer be redundant.
If C2 was reduced by C1, then C2 will be in the set of deleted clauses at the

464 A. Fietzke and C. Weidenbach

level of C1. Note that although we know that C1 depends on ψk, C1 may also
depend on other splits and thus have a split level higher than lk. Our goal is to
reinsert the deleted clauses at C1’s split level. But C1 itself, after having reduced
C2, may have been reduced by some clause C3, hence C1 will not necessarily be
in the current clause set, but in the deleted set at the level of C3. This means
that we need to reinsert all deleted clauses from split levels of clauses depending
on ψk. So let Ψ : N be an arbitrary labelled clause set with Ψ of length n, and
1 ≤ k ≤ n. Now define

D(k) :=
n⋃

i=1
i�=k

Di and R(k) := {j | L : C ∈ N ∪ D(k), lj = max(L), lk ∈ L}.

The set R(k) describes the splits corresponding to all levels of clauses that depend
on ψk, both in N and any deleted set Di. It follows that the set

⋃

j∈R(k) Dj

contains all clauses that may have been reduced by a clause in N depending on
ψk. The reason for excluding Dk from D(k) is that Dk will always be reinserted
when deleting ψk, as the following definition shows:

Definition 5 (Delete Split). We define delete(Ψ : N, k) := Ψ ′ : N ′ where
Ψ ′ = 〈ψ′

n, . . . , ψ′
k+1, ψ

′
k−1, . . . , ψ

′
1〉, and N ′ = (N ∪ Dk ∪

⋃

j∈R(k) Dj)|levels(Ψ ′)

with

ψ′
j =

{

ψj [D := ∅] if j ∈ R(k)
ψj [D := {L: Γ → Δ ∈ Dj | lk �∈ L}] otherwise

which removes split ψk, all clauses depending on ψk, and reinserts all clauses
reduced by a clause depending on split ψk.

Note that reinserting all clauses in Dj with lj ∈ R(k) is an over-approximation,
since not every clause in Dj was necessarily reduced by a clause depending on ψk.
In fact, it may well be that no clause in Dj was reduced by a clause depending
on ψk. If we wanted to reinsert only clauses reduced by clauses depending on ψk,
we would have to record which clause was used in each reduction step, not only
the reducing clause’s split level. It is not clear whether that additional effort
would pay off in practice.

We now define a reduction3 relation Ψ : N → Ψ ′ : N ′ on labelled clause
sets to capture the structural transformations of the stack taking place during
backtracking. The reduction relation is defined by the following four rules, where
we assume that Ψ :N is a labelled clause set and Ψ is of length n.

Definition 6 (Backjump). If n > 0, L: � ∈ N and max(L) < ln, then
Ψ :N → delete(Ψ :N, n).

Definition 7 (Branch-condense). If n > 0, L: � ∈ N , max(L) = ln, left(ln)
and kmax := max {k | maxr(Ψ) < k ≤ n and lk �∈ L} exists, then

Ψ :N → delete(Ψ :N, kmax) .
3 Not to be confused with reduction rules for clause sets. See [7] for a discussion of

abstract reduction systems.

Labelled Splitting 465

Definition 8 (Right-collapse). If n > 0, L2 : � ∈ N , max(L2) = ln and
right(ln), and ϕn = {L1}, then

Ψ :N → Ψ ′ : (N ′ ∪ {L: �}),
where Ψ ′ :N ′ = delete(Ψ :N,n) and L = L1 ∪ L2 \ {ln − 1, ln}.

Definition 9 (Enter-right). If n > 0, L: � ∈ N , max(L) = ln, left(ln) and
lk ∈ L for all k with maxr(Ψ) < k ≤ n, then Ψ ′′ :N ′′ := delete(Ψ :N,n) and

Ψ :N → Ψ ′ :N ′,
where Ψ ′ = 〈(ln + 1,∅,∅, {L}), ψ′′

n−1, . . . , ψ
′′
1 〉 and N ′ = N ′′ ∪Bn.

Note that at most one rule is applicable to any given labelled clause set con-
taining one empty clause, since the preconditions are mutually exclusive. Fur-
thermore, the length of the split stack together with the number of empty
clauses in a labelled clause set induce a well-founded partial ordering on labelled
clause sets, with respect to which each rule is decreasing. Hence any sequence
Ψ :N → Ψ ′ :N ′ → . . . terminates and each labelled clause set Ψ :N has a unique
normal form with respect to →, which we write Ψ :N↓ . We are now ready to
give the definition of the backtracking rule:

Definition 10 (Backtracking). The reduction

R Ψ :N
(Ψ :N ′)↓

L: �

where N ′ = {L′ : C ∈ N | C �= �} ∪ {L: �} is called backtracking.

Since we have not placed any restrictions on when to apply backtracking, there
may be more than one empty clause in Ψ :N . Choosing one and removing all
others before applying stack reductions ensures that the result of backtracking
is uniquely defined. In a practical system, one would typically choose the most
general empty clause for backtracking, i.e., the one whose label represents a
maximal scope in the split tree.

The stack reduction rule that improves upon previous backracking mecha-
nisms is Right-collapse, which analyzes the dependencies involved in refuting
left and right branches and computes a newly labelled empty clause by remov-
ing complementary split levels. This allows consecutive sequences of Backjump
steps (interleaved by applications of Right-collapse) to take place within a sin-
gle Backtracking step, thus possibly pruning larger parts of the split tree. The
following example shows the stack reduction rules in action.

Example 1. Consider the clause set

{→P (a), Q(b); P (x)→P (f(x)), R(c); P (f(f(a))) →;
→Q(x), S(y); Q(x), P (x)→;
→R(a), R(b); S(x), P (x)→}

where we omit empty labels. Figure 1 shows the development of the split tree
over three backtracking steps. Bold line segments indicate the current path in

466 A. Fietzke and C. Weidenbach

the split tree, and numbers next to branches correspond to split levels. The split
stack representing the first tree is

〈 (7, {{8} : R(c)}, ∅, ∅), (5, {{6} : R(b)}, ∅, ∅),
(3, {{4} : R(c)}, ∅, ∅), (1, {{2} : Q(b)}, ∅, ∅) 〉

which is obtained in seven steps from the initial clause set: (1) clause→ P (a), Q(b)
is split, (2) resolution is applied to P (a) and P (x) → P (f(x)), R(c), (3) the
resulting clause {1}:→ P (f(a)), R(c) is split, (4) clause → R(a), R(b) is split,
(5) resolution is applied to {1, 3} : P (f(a)) and P (x) → P (f(x)), R(c), resulting
in {1, 3}:→ P (f(f(a))), R(c), which is again split (6), finally the empty clause
{1, 3, 7} : � is derived by resolving {1, 3, 7} : P (f(f(a))) and P (f(f(a))) →
(7). The third split did not contribute to the contradiction, so it is removed by
Branch-condense in step 1, followed by Enter-right, which produces (8, ∅, ∅,
{{1, 3, 7}}) as toplevel split. The clause → Q(x), S(y) is then split, resolution is
applied to {1} : P (a) and Q(x), P (x) → to derive {1}: Q(x) →, which is resolved
with {9} : Q(x) to yield {1, 9} : �. Enter-right is applied (step 3), producing
toplevel split (10, ∅, ∅, {{1, 9}}), and the empty clause {1, 10} : � is derived
using clauses {1, 10} : S(y) and S(x), P (x) → and {1} : P (a). In step 4, the
clause labels {1, 9} and {1, 10} are collapsed into {1}. Finally, two Backjump
steps followed by Enter-right yield the last tree, which corresponds to the split
stack 〈(2, ∅, ∅, {{1}})〉. Observe how the empty clause generated in step 4 allows
us to skip branch 4 and jump directly to branch 2, which would not be possible
without the Right-collapse rule.

We now state soundness and completeness results for the labelled calculus.
Proving these is a technically involved exercise, hence in this paper we limit
ourselves to the main definitions and theorems, referring to [6] for the details. A
derivation in the labelled calculus is a sequence of labelled clause sets

D = Ψ0 :N0 � Ψ1 :N1 � Ψ2 :N2 � . . .

such that Ψ0 = 〈〉, N0 is the initial labelled clause set and for each i ≥ 1, the
labelled clause set Ψi : Ni is the result of applying a rule of the calculus to
Ψi−1 : Ni−1. We call the step Ψi−1 : Ni−1 � Ψi : Ni the ith step of D. We write
Ψ : N �∗ Ψ ′ : N ′ to indicate that Ψ ′ : N ′ is obtained from Ψ : N by zero or
more applications of calculus rules. We use superscripts to make explicit that
a split belongs to a particular split stack in a derivation: for example, we write
ψi

j for the jth split of Ψi, and Di
j for the deleted set of ψi

j . In order to prove
soundness, we extend the notion of satisfiability to labelled clause sets. Since
we are exploring a tree whose branches represent alternatives of successive case
distinctions, we associate a clause set with each unexplored branch on the stack.
That is, we associate with each left split a set of labelled clauses corresponding
to the right branch of the splitting step. Formally, let Ψi :Ni be a labelled clause
set in a derivation. We define the following set of clause sets:

Ni := {(Ni ∪
n⋃

j=1

Dj)|Lk
∪ Bk | k ∈ {1, . . . , n}, Lk = {l1, . . . , lk−1} and left(lk)}.

Labelled Splitting 467

P (a) 1 2 Q(b)

P (f(a)) 3 4 R(c)

R(a) 5 6 R(b)

P (f(f(a))) 7 8 R(c)

{1, 3, 7}: �

1

Branch-
condense

1 2

3 4

7 8

{1, 3, 7}: �

2

Enter-
right

1 2

3 4

7 8

1 2

3 4

7 8

Q(x) 9 10 S(y)

{1, 9}: �

3

Enter-
right

1 2

3 4

7 8

9 10

{1, 10}: �

4

Right-
collapse

1 2

3 4

7 8

{1}: �

5

Backjump

1 2

3 4

{1}: �

6

Backjump

1 2

{1}: �

7

Enter-
right

1 2

Fig. 1. Split Tree Development over 3 Backtracking Steps

We use the notation Nk
i to denote the set (Ni ∪

⋃n
j=1 Dj)|Lk

∪ Bk ∈ Ni. We
call Ni the active clause set of Ψi :Ni, and Ni the set of inactive clause sets of
Ψi :Ni.

Definition 11 (Satisfiability of Labelled Clause Sets). We say that Ψi :Ni

is satisfiable, if and only if

– Ni is satisfiable, or
– some Nk

i ∈ Ni is satisfiable.

It can now be shown that every rule of the labelled calculus preserves satisfia-
bility of labelled clause sets, where the proof of the backtracking case is handled
by induction over the stack reduction relation. Among the derivation invari-
ants needed for the proof are label validity (clause labels only refer to exist-
ing splits in the stack) and path validity (all clauses in the active and deleted
sets follow logically from initial clauses and split clauses on the current path,
and initial clauses together with split clauses described by leaf markers are
unsatisfiable).

Theorem 1 (Soundness). Let N be an arbitrary clause set. Let N0 := {∅ :
C | C ∈ N} be the associated set of labelled clauses, let Ψ0 := 〈〉, and let
Ψ0 :N0 �∗ Ψm :Nm be an arbitrary derivation starting with Ψ0 :N0. Then Ψm :Nm

is satisfiable if and only if Ψ0 :N0 is satisfiable.

468 A. Fietzke and C. Weidenbach

When backtracking is modelled explicitly, as we have done here, classical model
construction techniques (as in [8,9]) cannot directly be used to show completeness
of the calculus. In particular, defining a fair derivation to be a derivation in which
any non-redundant inference from persistent clauses is eventually computed,
no longer guarantees that any fair derivation from an unsatisfiable clause set
eventually yields a contradiction. The reason is that in our calculus, the changes
to the clause set are not monotonic (in the sense that in each step, only derived
clauses are added or redundant clauses are removed).

For example, consider the unsatisfiable clause set

N0 = { S(a); ¬S(a); P (a);
P (x) → Q(y), P (f(x));
Q(y)→ S(x) }

where all clauses have the empty label. We construct an infinite derivation D =
Ψ0 : N0 � Ψ1 : N1 � . . . as follows: we apply resolution to derive a clause
→ Q(y), P (fn+1(a)) (initially, n = 0) which we then split. In the left branch, we
use Q(y) to infer S(x). We then apply subsumption deletion to S(x) and S(a),
removing S(a) from the clause set and storing it in the deleted set of the current
split. We apply resolution to infer the empty clause from S(x) and ¬S(a) and
backtrack, entering the right branch, reinserting clause S(a). We then repeat
the procedure with n increased by one (see Figure 2). The classical definition
of persistent clauses as N∞ =

⋃

i

⋂

j≥iNj yields a set that does not contain
S(a) (thus N∞ is satisfiable), because for each subsumption deletion step k, we
have S(a) �∈ Nk, hence S(a) is not ”persistent” when viewed over the whole
derivation.

P (fn(a)) P (x)→ Q(y) ∨ P (f(x))

Q(y)∨ P (fn+1(a))

Q(y) Q(y)→ S(x)

S(x)
...
�

. . .

Fig. 2. Split Tree Development

In the above example, the non-persistent clause S(a) is redundant in all left
branches. However, every left branch is refuted at some point, causing S(a) to
be reinserted upon backtracking. Thus, the fact that the clause is redundant
only in branches that are eventually closed is irrelevant in an infinite derivation.
In the example, the split tree has an infinite path consisting of right branches,
and along this path, the clause S(a) is not redundant and should therefore
eventually be considered for inferences. Our goal is therefore to define a notion
of fairness that ignores closed branches and only talks about clauses on the

Labelled Splitting 469

infinite path of the split tree. In the following, we use sufD(i) to denote the suffix
Ψi :Ni � Ψi+1 :Ni+1 � . . . of an infinite derivation D = Ψ0 :N0 � Ψ1 :N1 �

Definition 12 (Persistent Split, Weakly Persistent Clause). Given an
infinite derivation

D = Ψ0 :N0 � Ψ1 :N1 � . . . ,
and i ≥ 1, where Ψi = 〈ψni , . . . , ψ1〉, we call ψk (1 ≤ k ≤ ni) persistent in
sufD(i), if lk ∈ levels(Ψj) for all j ≥ i. Furthermore, we call a clause L : C ∈
(

Ni ∪
⋃ni

j=1 Di
j

)

weakly persistent in sufD(i), if for all lj ∈ L, ψj is persistent
in sufD(i).

Weakly persistent clauses are not necessarily contained in every clause set of the
derivation from some point on. However, if a clause is weakly persistent, then
from some point on, every clause set contains either the clause itself, or some
clause that subsumes it. Also note that any clause that is weakly persistent in
D is contained in N0, since no split is persistent in D.

Definition 13 (Persistent Step). Given an infinite derivation
D = Ψ0 :N0 � Ψ1 :N1 � . . . ,

we say that step i ≥ 1 of D is persistent, if

1. step i is a splitting or backtracking step, Ψi = 〈ψni , . . . , ψ1〉, and ψni is
persistent in sufD(i), or

2. step i is an inference or reduction step and all premises of the applied infer-
ence or reduction rule are weakly persistent in sufD(i − 1).

We will define the limit of an infinite derivation D to be the derivation obtained
by starting from the original labelled clause set and applying exactly the per-
sistent steps of D. Note that all left splits are created by splitting, whereas all
right splits are created by backtracking. The limit will contain no more applica-
tions of backtracking. Instead, whenever a persistent right branch is created in
the original derivation, the limit will enter that branch directly, using the rule
splitting right :

Definition 14 (Splitting Right). The inference

I Ψ :N
Ψ ′ :N

L: Γ1, Γ2 → Δ1, Δ2

L′: Γ2 → Δ2

where Ψ = 〈ψn, . . . , ψ1〉, L′ = L∪{ln +1}, Ψ ′ = 〈ψn+1, ψn, . . . , ψ1〉 with ψn+1 =
(ln + 1, ∅, ∅, ∅), vars(Γ1 → Δ1) ∩ vars(Γ2 → Δ2) = ∅, and Δ1 �= ∅ and
Δ2 �= ∅ is called splitting right.

Definition 15 (Limit of a Derivation). Given an infinite derivation
D = Ψ0 :N0 � Ψ1 :N1 � . . . ,

let i ≥ 0 be a backtracking step, let l be the split level of the toplevel split of Ψi,
and let k < i be maximal such that step k of D is a splitting step producing a
split of level l − 1. Then we define sptD(i) := k, the associated splitting step of

470 A. Fietzke and C. Weidenbach

backtracking step i. Furthermore, we define the monotonic function fD : N → N
as follows:

fD(0) := 0
fD(i+ 1) := min{j > fD(i) | step j of D is persistent}.

The limit of D is defined as

lim(D) := Ψ ′
0 :N ′

0 � Ψ ′
1 :N ′

1 � Ψ ′
2 :N ′

2 � . . .

where Ψ ′
0 :N ′

0 = Ψ0 :N0 and Ψ ′
i+1 :N ′

i+1 is obtained from Ψ
′

i :N
′

i as follows:

1. if step fD(i + 1) of D is a backtracking step: let (l,∅,∅,M) be the toplevel
split of Ψi+1, and consider the associated splitting step k = sptD(i+ 1)

I Ψk−1 :Nk−1

Ψk :Nk

L: Γ1, Γ2 → Δ1, Δ2

L′: Γ1 → Δ1

Then step i+ 1 of lim(D) is the splitting right step

I Ψ ′
i :N ′

i

Ψ ′
i+1 :N ′

i+1

L: Γ1, Γ2 → Δ1, Δ2

M: Γ2 → Δ2

2. otherwise: Ψ ′
i+1 :N ′

i+1 is obtained by applying the same rule as in step fD(i+
1) of D to Ψ

′

i :N
′

i .

Note that in general, neither N ′
i ⊆ NfD(i) nor N ′

i ⊇ NfD(i) hold for arbitrary
i, because NfD(i) may contain clauses that are not (weakly) persistent, and
persistent clauses may have been subsumed by non-persistent ones. Therefore
we can not simply take the limit to be a subsequence of the initial derivation.

Lemma 1. For every infinite derivation D = Ψ0 :N0 � Ψ1 :N1 � . . . , and every
i ≥ 1, if step i of lim(D) is an inference step, then its conclusion is contained in
NfD(i).

Proof. Follows directly from Definition 15.

For lim(D) = Ψ ′
0 :N ′

0 � Ψ ′
1 :N ′

1 � . . . we define N lim(D)
∞ :=

⋃

i

⋂

j≥iN
′
j.

Definition 16 (Fairness). A derivation
D = Ψ0 :N0 � Ψ1 :N1 � . . .

is called fair if

1. either D is finite and in the final clause set Nk all resolution and factoring
inferences are redundant in Nk, or D is infinite and every resolution or
factoring inference from N

lim(D)
∞ is redundant in some N ′

i ∈ lim(D); and
2. for every i ≥ 0 with L: � ∈ Ni with L �= ∅, there exists j > i such that step
j of D is a backtracking step with premise L: �.

Labelled Splitting 471

Lemma 2. For any fair infinite derivation D and any i ≥ 0, no L : � with
L �= ∅ is weakly persistent in sufD(i).

Proof. Assume L �= ∅ and consider the backtracking step with L: � as premise
(which must exist by condition 2 of Definition 16). It follows from the definitions
of the stack reduction rules that the final rule applied is Enter-right, which
deletes the split with the greatest split level in L.

Theorem 2 (Completeness). Let D = Ψ0 : N0 � Ψ1 : N1 � . . . be a fair
derivation. If ∅: � �∈ N lim(D)

∞ , then N0 is satisfiable.

The proof of Theorem 2 closely follows the one given in [8] (Theorem 4.9), with
the exception that we limit ourselves to showing that unsatisfiability of N0 im-
plies ∅: � ∈ N lim(D)

∞ . The main observation that allows us to use the framework
from [8] is that splitting (and splitting right) is unsatisfiability-preserving with
respect to the sequence N ′

0, N
′
1, N

′
2, . . . of clause sets (more precisely, their un-

labelled equivalents) in lim(D). Fairness then ensures that the set N lim(D)
∞ is

saturated up to redundancy with respect to resolution and factoring.

3 Experiments and Related Work

3.1 Experiments

Our enhanced backtracking process has been integrated into the Spass [10] the-
orem prover. The basis for the implementation was Spass version 3.0. As we
mentioned before, the calculus presented here represents a minimal set of infer-
ence and reduction rules, whereas the overall splitting calculus is implemented
in Spass [5], and our extension covers that entire calculus. The data structures
used to represent the split stack were modified to allow storage of the depen-
dencies of closed left branches. Minor modifications to the implementation of
reduction rules were made to ensure that reduced clauses are always recorded
for later reinsertion. These modifications were necessary since the original branch
condensation in Spass is performed only up to the last backtracking level, hence
a redundant clause is recorded only if it has been subsumed by a clause with
greater split level. Finally, a new backtracking procedure was written, imple-
menting the stack reduction rules.

The implementation was tested on the TPTP problem library, version 3.2.0 [11],
which consists of 8984 first-order problems. On 2513 of those problems, Spass (in
automatic mode) uses the splitting rule during proof search. For the experiments,
an Opteron Linux cluster was used, and Spass was given a time limit of 5 minutes
per problem.

Overall, the number of splits performed per problem decreased by about 10%
on average when using improved backtracking. In addition, Spass with improved
backtracking terminated with a solution for 24 problems (22 proofs, 2 comple-
tions) that could not be solved by the version without improved backtracking
within the given time limit. The new version looses 4 problems because of the
potentially different search space exploration caused by the new backtracking
rule. These problems are recovered by an increased time limit.

472 A. Fietzke and C. Weidenbach

3.2 Related Work

The paper is an extension of the abstract DPLL calculus of Nieuwenhuis et
al. [2] for first-order logic. Due to the need to create new clauses via inferences
and reductions, the calculus is more involved.

An alternative approach to case analysis in saturation-based theorem proving,
relying on the introduction of special propositional symbols instead of a split
stack, was presented in [12]. The main difference to our framework is that when
simulating splitting with new propositional symbols, the generated clauses can
not be directly used for reductions: for example, splitting the clause P (x) ∨
Q(y) in this way produces the clauses P (x) ∨ p and p → Q(x), where p is a
new propositional symbol. Therefore, this type of splitting does not provide the
necessary support for the superposition based decidability results on non Horn
first-order fragments. On the other hand, in particular if applied to unsatisfiable
problems, this alternative approach to splitting can be very useful.

For the generalmethodology of labelled clauses there is a huge literature, see [13]
for an overview. In particular, the use of clause labels to model explicit case analysis
was first suggested in [14], which provided a starting point for the work presented
here. We refined the abstract labelled splitting rule presented there with explicit
backtracking and redundancy handling.

The DPLL procedure [1], which lies at the core of most of today’s state-
of-the-art boolean satisfiability solvers, has received a great deal of attention
in the past years. In particular, a lot of research has gone into improving the
backtracking process. Thus it is natural to ask how, in the propositional domain,
our backtracking scheme compares to that of modern SAT solvers. Let us first
clarify some key differences between our framework and DPLL.

In basic DPLL, when exhaustive unit propagation has neither led to a conflict
nor yielded a complete truth assignment, a choice is made by assuming some yet
undefined literal to be true (typically a literal occurring in some clause). If this
choice leads to a conflict, the truth value of that literal is flipped, hence the two
branches of the case analysis are A and ¬A for some propositional variable A.
This can be simulated by the refined version of the splitting rule, discussed after
Definition 1. The reason why this refinement is restricted to ground split parts
is that the negation of universally quantified clauses leads to the introduction of
new Skolem constants, and in practice this tends to extend the search space for
the second branch. This could in principle be avoided by remembering all ground
terms that a variable has been instantiated with. For example, if the left split
part was P (x) and a refutation of the branch involved substituting x by both a
and f(b) in different subtrees, then ¬P (a)∨¬P (f(b)) could be used instead of
¬P (c) for some new constant c. Although this approach avoids the introduction
of new symbols, tracking all instantiations adds overhead and the fact that the
resulting lemmata are again in general non-units diminishes their usefulness
for reductions. When dealing with purely propositional problems however, this
lemma-generation can be used to simulate DPLL-style case analysis: for any
clause Γ → Δ,A chose A as the first split part – the lemma ¬A is then available
in the second branch.

Labelled Splitting 473

Backtracking in modern SAT solvers is based on a conflict analysis during
which a conflict clause is learned, i.e., added to the clause set. We compared
SPASS implementing our new backtracking rule (Definition 10) without learn-
ing with MiniSat v1.14 [15] on SAT problems, by manipulating both systems
such that they essentially use the same propositional variable order for branch-
ing. Out of the current SATLIB (http://www.satlib.org) library we selected
about 200 problems that SPASS could solve in a 5 min time limit. On more than
95% of all problems Minisat needs less splits than Spass. Out of these problems,
Spass performs three times more splits than MiniSat, on the average. This result
suggests that conflict-driven clause learning is in favor of the Spass split back-
tracking mechanism. So there is potential for exploring this mechanism also for
the first-order case. However, again, this requires at least a detailed analysis of
the closed branches as split clauses may have been used in several instantiations.

Although our backtracking rule does not include learning of conflict clauses,
there are cases where it is superior to the conflict driven clause learning of modern
SAT solvers, i.e., a proof requires less splits. This is documented by the 5% of
examples where SPASS needed less splits than MiniSat and such examples can
also be explicitely constructed [6].

4 Conclusion

We have extended the abstract DPLL calculus by Nieuwenhuis et al. [2] to the
full first-order case, called labelled splitting. The calculus is sound and complete.
For the completeness result we introduced a new notion of an infinite path to
establish fairness.

The calculus is implemented for the full superposition calculus [5] in Spass. It
shows a 10% average gain in the number of splits on all TPTP problems where
splitting is involved and Spass could decide 24 more problems compared to the
previous version.

The fairness notion of Definition 16 does not directly provide an effective strat-
egy for a fair inference selection. In Spass we mainly use two different strategies.
For the propositional case we employ exhaustive splitting, because splitting com-
bined with the reduction matching replacement resolution [5] constitutes already
a complete calculus. For the first-order case, clauses are selected for inferences
with respect to their “weight” composed out of the number of contained symbols
and their depth in the derivation. If such a clause can be split and the first split
part has a “sufficient” reduction potential for other clauses, splitting is preferred
over other inferences.

A comparison of the labelled splitting backtracking mechanism with DPLL
style backtracking based on conflict-driven clause learning reveals room for fur-
ther improvement. However, this is not a straightforward effort, because the
negation of a first-order clause is an existentially quantified conjunction of liter-
als that via Skolemization introduces new constants to the proof search. It is well
known that the addition of new constants causes an increased complexity of the
unsatisfiability problem and if potentially done infinitely often, can even cause

http://www.satlib.org

474 A. Fietzke and C. Weidenbach

completeness issues. So it seems to us that in the case of a conflict, an analysis
of the proof and the used first-order terms in the proof is the most promising
approach to enhance the presented labelled splitting backtracking mechanism
with conflict-driven clause learning. This will be subject of future research.

Acknowledgements. We would like to thank the reviewers for their pertinent
comments and suggestions that were of great help in writing this article.

References

1. Davis, M., Putnam, H.: A computing procedure for quantification theory. J.
ACM 7, 201–215 (1960)

2. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theo-
ries: From an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL.
Journal of the ACM 53, 937–977 (2006)

3. Bachmair, L., Ganzinger, H., Waldmann, U.: Superposition with simplification as
a decision procedure for the monadic class with equality. In: Gottlob, G., Leitsch,
A., Mundici, D. (eds.) KGC 1993. LNCS, vol. 713, pp. 83–96. Springer, Heidelberg
(1993)

4. Weidenbach, C., Gaede, B., Rock, G.: Spass & flotter, version 0.42. In: McRobbie,
M.A., Slaney, J.K. (eds.) CADE 1996. LNCS, vol. 1104, pp. 141–145. Springer,
Heidelberg (1996)

5. Weidenbach, C.: Combining superposition, sorts and splitting. In: Robinson, A.,
Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. 2, pp. 1965–2012.
Elsevier, Amsterdam (2001)

6. Fietzke, A., Weidenbach, C.: Labelled splitting. Research Report MPI-I-2008-RG1-
001, Max-Planck Institute for Informatics, Saarbruecken, Germany (2008)

7. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press,
Cambridge (1998)

8. Bachmair, L., Ganzinger, H.: Resolution theorem proving. In: Handbook of Auto-
mated Reasoning, pp. 19–99 (2001)

9. Nieuwenhuis, R., Rubio, A.: Paramodulation-based theorem proving. In: Robinson,
A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. I, pp. 371–443.
Elsevier, Amsterdam (2001)

10. Weidenbach, C., Schmidt, R., Hillenbrand, T., Rusev, R., Topic, D.: System de-
scription: SPASS version 3.0. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI),
vol. 4603, pp. 514–520. Springer, Heidelberg (2007)

11. Sutcliffe, G., Suttner, C.B.: The TPTP Problem Library: CNF Release v1.2.1.
Journal of Automated Reasoning 21(2), 177–203 (1998)

12. Riazanov, A., Voronkov, A.: Splitting without backtracking. In: IJCAI, pp. 611–617
(2001)

13. Basin, D., D’Agostino, M., Gabbay, D.M., Matthews, S., Viganó, L. (eds.): Labelled
deduction. Kluwer Academic Publishers, Dordrecht (2000)

14. Lev-Ami, T., Weidenbach, C., Reps, T., Sagiv, M.: Labelled clauses. In: Pfenning,
F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 311–327. Springer, Heidelberg
(2007)

15. Eén, N., Sörensson, N.: An extensible SAT solver. Theory and Applications of
Satisfiability Testing, 502–518 (2004)

Engineering DPLL(T) + Saturation

Leonardo de Moura and Nikolaj Bjørner

Microsoft Research, One Microsoft Way, Redmond, WA, 98074, USA
{leonardo,nbjorner}@microsoft.com

Abstract. Satisfiability Modulo Theories (SMT) solvers have proven
highly scalable, efficient and suitable for integrated theory reasoning. The
most efficient SMT solvers rely on refutationally incomplete methods for
incorporating quantifier reasoning. We describe a calculus and a system
that tightly integrates Superposition and DPLL(T). In the calculus, all
non-unit ground clauses are delegated to the DPLL(T) core. The inte-
gration is tight, dependencies on case splits are tracked as hypotheses in
the saturation engine. The hypotheses are discharged during backtrack-
ing. The combination is refutationally complete for first-order logic, and
its implementation is competitive in performance with E-matching based
SMT solvers on problems they are good at.

1 Introduction

SMT solvers based on a DPLL(T) [1] framework have proven highly scalable,
efficient and suitable for integrating theory reasoning. However, for numerous
applications from program analysis and verification, an integration of decision
procedures for the ground fragment is insufficient, as proof obligations often
include quantifiers for capturing frame conditions over loops, summarizing aux-
iliary invariants over heaps, and for supplying axioms of theories that are not
already equipped with ground decision procedures. A well known approach for in-
corporating quantifier reasoning with ground decision procedures is E-matching
algorithm used in the Simplify theorem prover [2]. The E-matching algorithm
works against an E-graph to instantiate quantified variables. Other state-of-the-
art SMT solvers also use E-matching: CVC3 [3], Fx7 [4], Yices [5], and Z3 [6].
Although E-matching is quite effective for some software verification problems,
it suffers from several problems: it is not refutationally complete for first-order
logic, hints (triggers) are usually required, it is sensitive to the syntactic struc-
ture of the formula, and fails to prove formulas that can be easily discharged by
saturation based provers.

Equational theorem provers based on Superposition Calculus are strong at
reasoning with equalities, universally quantified variables, and Horn clauses.
However, these provers do not perform well in the context of software verifi-
cation [7,3], as they explore a huge search space generated by a large number of
axioms, most of which are irrelevant. The typical software verification problem
consists of a set of axioms and a big (mostly) ground formula encoding the data
and control flow of the program. This formula is usually a deeply nested and-or

A. Armando, P. Baumgartner, and G. Dowek (Eds.): IJCAR 2008, LNCS 5195, pp. 475–490, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

476 L. de Moura and N. Bjørner

tree. Quantified formulas nested in this tree can be extracted by naming them
with fresh propositional variables. These problems typically yield large sets with
huge non-Horn clauses, which are far from the sweet spot for saturation based
provers, but handled well by DPLL(T)-based solvers.

This paper describes a new calculus DPLL(Γ), and an accompanying system,
Z3(SP), that tightly integrates the strength of saturation based provers in equa-
tional reasoning and quantified formulas, with DPLL-based implementations of
SMT solvers that are strong in case-analysis and combining theory solvers. The
new calculus is very flexible and it can simulate different strategies used in other
theorem provers that aim for integrating DPLL and/or theory reasoners as well.

On the technical side, we introduce a key ingredient for this integration; hy-
potheses that track dependencies on case splits when the saturation component
performs its deductions. We first lift standard saturation deduction rules to the
DPLL(Γ) setting by simply propagating hypotheses (Section 3). It is a some-
what simple, but important, observation that the resulting system is refutation-
ally complete even when ground non-unit clauses are only visible to the DPLL
component (but invisible to the inference rules in the saturation component).
The lifting becomes less trivial when it comes to using case split literals or any
consequence of case splits in deletion and simplification rules. Section 4 presents
a lifting that properly tracks case splits into such rules.

On the system side, we discuss the implementation of an instance of DPLL(Γ)
in the theorem prover Z3. We believe this is the first report of a really tight inte-
gration of DPLL and saturation procedures. Existing systems, to our knowledge,
integrate either a black box SMT solver with a saturation prover, [8], or a black
box saturation solver with an DPLL core, [9], or don’t offer exchanging hypothe-
ses as tightly.

2 Background

We employ basic notions from logic usually assumed in theorem proving. For
notation, the symbol 2 denotes equality; s, u, t are terms; x, y, z are variables;
f, g, h, a, b, c are constant or function symbols based on arity; p, q, r are predicate
symbols; l is a literal; C and D denote clauses, that is, multi-sets of literals
interpreted as disjunctions; � is the empty clause; N is a set of clauses; and σ
is used for substitutions. A term, literal, or clause is said to be ground if it does
not contain variables.

We assume that terms are ordered by a simplification ordering ≺. It is ex-
tended to literals and clauses by a multiset extension. A simplification ordering
is well founded and total on ground terms. The most commonly used simpli-
fication orderings are instances of the recursive path ordering (RPO) and the
Knuth-Bendix ordering (KBO).

An inference rule γ is n+ 1-ary relation on clauses, it is written as:

C1 . . . Cn

C

Engineering DPLL(T) + Saturation 477

The clauses C1, . . . , Cn are called premises, and C the conclusion of the inference.
If γ is an inference rule, we denote by C(γ) its conclusion, and P(γ) its premises.
An inference system Γ is a set of inference rules. We assume that each inference
rule has a main premise that is “reduced” to the conclusion in the context of
the other (side) premises.

A proof of a clause C from the set of clauses N with respect to an inference
system Γ is sequence of clauses C1, . . . , Cn, where Cn = C and each clause Ci is
either an element of N or the conclusion of an inference rule γ of Γ , where the
set of premises is a subset of {C1, . . . , Ci−1}. A proof of the empty clause � is
said to be a refutation. An inference system Γ is refutationally complete if there
is a refutation by Γ from any unsatisfiable set of clauses. A set of clauses N is
saturated with respect to Γ if the conclusion of any inference by Γ from N is an
element of N . Let I be a mapping, called a model functor, that assigns to each
set of ground clauses N not containing the empty clause an interpretation IN ,
called the candidate model. If IN is a model for N , then N is clearly satisfiable.
Otherwise, some clause C in N is false in IN (i.e., C is a counterexample for IN),
then N must contain a minimal counterexample with respect to ≺. An inference
system has the reduction property for counterexamples, if for all sets N of clauses
and minimal counterexamples C for IN in N , there is an inference in Γ from
N with main premise C, side premises that are true in IN , and conclusion D
that is a smaller counterexample for IN than C. A clause C is called redundant
with respect to a set of clauses N if there exists C1, . . . , Cn in N such that
C1, . . . , Cn |= C and Ci ≺ C for all i ∈ [1, n]. A set of clauses N is saturated
up to redundancy with respect to Γ if the conclusion of any inference by Γ
with non redundant premises from N is redundant. If Γ is an inference system
that satisfies the reduction property for counterexamples, and N a set of clauses
saturated up to redundancy, then N is unsatisfiable if, and only if, it contains
the empty clause [10].

2.1 Superposition Calculus

The superposition calculus (SP) [11] is a rewriting-based inference system which
is refutationally complete for first-order logic with equality. It is based on a sim-
plification order on terms. Figure 1 contains the SP inference rules. The inference
rules restrict generating inferences to positions in maximal terms of maximal lit-
erals. More constraints can be imposed, if a clause C contains negative literals,
then it is possible to restrict generating inferences to arbitrarily selected negative
literals [11].

3 DPLL(Γ)

We will adapt the proof calculus for DPLL(Γ) from an exposition of DPLL(T)
as an abstract transition system [1]. DPLL(Γ) is parameterized by a set of
inference rules Γ . States of the transition system are of the form M ||F , where
M is a sequence of decided and implied literals, and F a set of hypothetical
clauses. Intuitively, M represents a partial assignment to ground literals and

478 L. de Moura and N. Bjørner

Equality Resolution
s �(t ∨ C

σ(C)
if σ = mgu(s, t), for all l ∈ C, σ(s �(t) �≺ l

Equality Factoring
s (t ∨ u (v ∨ C

σ(t �(v ∨ u (v ∨ C)
if
{

σ = mgu(s, u), σ(s) �* σ(t),
for all l ∈ (u (v ∨ C), σ(s (t) �≺ l

Superposition Right

s (t ∨ C u[s′] (v ∨D

σ(u[t] (v ∨ C ∨D)
if

⎧

⎪⎪⎨

⎪⎪⎩

σ = mgu(s, s′), s′ is not a variable,
σ(s) �* σ(t), σ(u[s′]) �* σ(v),
for all l ∈ C, σ(s (t) �* l
for all l ∈ D, σ(u[s′] (v) �* l

Superposition Left

s (t ∨ C u[s′] �(v ∨D

σ(u[t] �(v ∨ C ∨D)
if

⎧

⎪⎪⎨

⎪⎪⎩

σ = mgu(s, s′), s′ is not a variable,
σ(s) �* σ(t), σ(u[s′]) �* σ(v),
for all l ∈ C, σ(s (t) �* l
for all l ∈ D, σ(u[s′] �(v) �* l

Fig. 1. Superposition Calculus: Inference Rules

their justifications. During conflict resolution, we also use states of the form
M ||F ||C, where C is a ground clause. A decided literal represents a guess, and
an implied literal lC a literal l that was implied by a clause C. A decided or
implied literal in M is said to be an assigned literal. No assigned literal occurs
twice in M nor does it occur negated in M . If neither l or l̄ occurs in M , then
l is said to be undefined in M . We use lits(M) to denote the set of assigned
literals. We write M |=P C to indicate that M propositionally satisfies the
clause C. If C is the clause l1 ∨ . . . ∨ ln, then ¬C is the formula ¬l1 ∧ . . . ∧ ¬ln.
A hypothetical clause is denoted by H 	C, where H is a set of assigned ground
literals (hypotheses) and C is a general clause. The set of hypotheses should be
interpreted as a conjunction, and a hypothetical clause (l1∧ . . .∧ ln)	(l′1∨ . . . l′m)
should be interpreted as ¬l1 ∨ . . . ∨ ¬ln ∨ l′1 ∨ . . . ∨ l′m. The basic idea is to
allow the inference rules in Γ to use the assigned literals in M as premises, and
hypothetical clauses is an artifact to track the dependencies on these assigned
literals. We say the conclusions produced by Γ are hypothetical because they
may depend on guessed (decided) literals. We use clauses(F) to denote the set
{C | H 	 C ∈ F}, and clauses(M ||F) to denote clauses(F) ∪ lits(M). We also
write C instead of ∅ 	 C.

The interface with the inference system Γ is realized in the following way:
assume γ is an inference rule with n premises, {H1 	 C1, . . . , Hm 	 Cm} is a set
of hypothetical clauses in F , {lm+1, . . . , ln} is a set of assigned literals in M ,
and H(γ) denotes the set H1 ∪ . . .∪Hm ∪ {lm+1, . . . , ln}, then the inference rule
γ is applied to the set of premises P(γ) = {C1, . . . , Cm, lm+1, . . . , ln}, and the
conclusion C(γ) is added to F as the hypothetical clause H(γ) 	C(γ). Note that
the hypotheses of the clauses Hi 	 Ci are hidden from the inference rules in Γ .

Engineering DPLL(T) + Saturation 479

Definition 1. The basic DPLL(Γ) system consists of the following rules:

Decide

M ||F =⇒M l ||F if

⎧

⎨

⎩

l is ground,
l or l̄ occurs in F,
l is undefined in M.

UnitPropagate

M ||F,H 	 (C ∨ l) =⇒M lH�(C∨l) ||F,H 	 (C ∨ l) if

⎧

⎨

⎩

l is ground,
M |=P ¬C,
l is undefined in M.

Deduce

M ||F =⇒M ||F,H(γ) 	 C(γ) if

⎧

⎨

⎩

γ ∈ Γ,
P(γ) ⊆ clauses(M ||F),
C(γ) �∈ clauses(F)

HypothesisElim
M ||F, (H ∧ l) 	 C =⇒M ||F,H 	 (C ∨ ¬l)

Conflict
M ||F,H 	 C =⇒M ||F,H 	 C || ¬H ∨C if M |=P ¬C

Explain
M ||F ||C ∨ l̄ =⇒M ||F || ¬H ∨D ∨ C if lH�(D∨l) ∈M,

Learn
M ||F ||C =⇒M ||F,C ||C if C �∈ clauses(F)

Backjump

M l′ M ′ ||F ||C ∨ l =⇒M lC∨l ||F ′ if

⎧

⎪⎪⎨

⎪⎪⎩

M |=P ¬C,
l is undefined in M,

F ′ =
{
H 	 C ∈ F |

H ∩ lits(l′ M ′) = ∅

}

Unsat
M ||F ||� =⇒ unsat

We say a hypothetical clause H 	 C is in conflict if all literals in C have a
complementary assignment. The rule Conflict converts a hypothetical conflict
clause H 	 C into a regular clause by negating its hypotheses, and puts the
DPLL(Γ) system in conflict resolution mode. The Explain rule unfolds literals
from conflict clauses that were produced by unit propagation. Any clause derived
by Explain can be learned, and added to F , because they are logical consequences
of the original set of clauses. The rule Backjump can be used to transition the
DPLL(Γ) system back from conflict resolution to search mode, it unassigns at
least one decided literal (l′ in the rule definition). All hypothetical clauses H 	C
which contain hypotheses that will be unassigned by the Backjump rule are
deleted.

Figure 2 contains an example that illustrates DPLL(Γ) instantiated with a Γ
that contains only the binary resolution and factoring rules. In this example, we
annotate each application of the Deduce rule with the premises for the binary
resolution inference rule. In this example, the rule HypothesisElim is used to
replace the clause q(a) 	 ¬q(y) ∨ r(a, y) with ¬q(a) ∨ ¬q(y) ∨ r(a, y) to prevent
it from being deleted during backjumping.

480 L. de Moura and N. Bjørner

Consider the following initial set of clauses:

F = {p(a) ∨ p(b), ¬p(b) ∨ p(c), ¬p(a) ∨ q(a), ¬p(a) ∨ q(b),

¬r(x, b), ¬q(x) ∨ ¬q(y) ∨ r(x, y), p(x) ∨ q(x), ¬q(a) ∨ ¬p(b)}

||F
=⇒ Decide

p(c) ||F
=⇒ Decide

p(c) p(a) ||F
=⇒ UnitPropagate

p(c) p(a) q(a)¬p(a)∨q(a) ||F
=⇒ Deduce resolution q(a) with ¬q(x) ∨ ¬q(y) ∨ r(x, y)

p(c) p(a) q(a)¬p(a)∨q(a) ||F, q(a)
 ¬q(y) ∨ r(a, y)
=⇒ UnitPropagate

p(c) p(a) q(a)¬p(a)∨q(a) q(b)¬p(a)∨q(b) ||F, q(a)
 ¬q(y) ∨ r(a, y)
=⇒ Deduce resolution q(b) with ¬q(y) ∨ r(a, y)

p(c) p(a) q(a)¬p(a)∨q(a) q(b)¬p(a)∨q(b) ||F, q(a)
 ¬q(y) ∨ r(a, y), q(a) ∧ q(b)
 r(a, b)
=⇒ HypothesisElim

p(c) p(a) q(a)¬p(a)∨q(a) q(b)¬p(a)∨q(b) || F, ¬q(a) ∨ ¬q(y) ∨ r(a, y), q(a) ∧ q(b)
 r(a, b)
| {z }

F ′

=⇒ Deduce resolution ¬r(x, b) with r(a, b)
p(c) p(a) q(a)¬p(a)∨q(a) q(b)¬p(a)∨q(b) ||F

′, q(a) ∧ q(b)
 �

=⇒ Conflict
p(c) p(a) q(a)¬p(a)∨q(a) q(b)¬p(a)∨q(b) ||F

′, q(a) ∧ q(b)
 � || ¬q(a) ∨ ¬q(b)
=⇒ Explain

p(c) p(a) q(a)¬p(a)∨q(a) q(b)¬p(a)∨q(b) ||F
′, q(a) ∧ q(b)
 � || ¬p(a) ∨ ¬q(b)

=⇒ Explain
p(c) p(a) q(a)¬p(a)∨q(a) q(b)¬p(a)∨q(b) ||F

′, q(a) ∧ q(b)
 � || ¬p(a)
=⇒ Backjump

¬p(a)¬p(a) ||F, ¬q(a) ∨ ¬q(y) ∨ r(a, y)
=⇒ UnitPropagate

¬p(a)¬p(a) p(b)p(a)∨p(b) ||F, ¬q(a) ∨ ¬q(y) ∨ r(a, y)
=⇒ Deduce resolution ¬p(a) with p(x)∨ q(x)

¬p(a)¬p(a) p(b)p(a)∨p(b) || F, ¬q(a) ∨ ¬q(y) ∨ r(a, y), ¬p(a)
 q(a)
| {z }

F ′′

=⇒ UnitPropagate
¬p(a)¬p(a) p(b)p(a)∨p(b) q(a)¬p(a)�q(a) ||F

′′

=⇒ Conflict
¬p(a)¬p(a) p(b)p(a)∨p(b) q(a)¬p(a)�q(a) ||F

′′ || ¬q(a) ∨ ¬p(b)
=⇒ Explain

¬p(a)¬p(a) p(b)p(a)∨p(b) q(a)¬p(a)�q(a) ||F
′′ || p(a) ∨ ¬p(b)

=⇒ Explain
¬p(a)¬p(a) p(b)p(a)∨p(b) q(a)¬p(a)�q(a) ||F

′′ || p(a)
=⇒ Explain

¬p(a)¬p(a) p(b)p(a)∨p(b) q(a)¬p(a)�q(a) ||F
′′ ||�

=⇒ Unsat
unsat

Fig. 2. DPLL(Γ): example

Engineering DPLL(T) + Saturation 481

3.1 Soundness and Completeness

We assume that the set of inference rules Γ is sound and refutationally complete.
Then, it is an easy observation that all transition rules in DPLL(Γ) preserve sat-
isfiability. In particular, all clauses added by conflict resolution are consequences
of the original set of clauses F .

Theorem 1 (Soundness). DPLL(Γ) is sound.

From any unsatisfiable set of clauses, a fair application of the transition rules in
DPLL(Γ) will eventually generate the unsat state. This is a direct consequence
of the refutational completeness of Γ . That is, Deduce alone can be used to derive
the empty clause without using any hypothesis.

Theorem 2 (Completeness). DPLL(Γ) is refutationally complete.

Unrestricted use of the Deduce rule described in Defintion 1 is not very effec-
tive, because it allows the inference rules in Γ to use arbitrary ground clauses
as premises. We here introduce a refinement of Deduce, called Deduce�, which
applies on fewer cases than Deduce, but still maintains refutational complete-
ness. In Deduce�, the set of premises for inference rules in Γ are restricted to
non-ground clauses and ground unit clauses. That is, P(γ) ⊆ premises(M ||F),
where we define nug(N) to be the subset of non unit ground clauses of a set of
clauses N , and premises(M ||F) = (clauses(F) \nug(clauses(F)))∪ lits(M). The
refined rule is then:

Deduce�

M ||F =⇒ M ||F,H(γ) 	 C(γ) if
{
γ ∈ Γ, P(γ) ⊆ premises(M ||F),
C(γ) �∈ clauses(F)

The idea is to use DPLL to handle all case-analysis due to ground clauses. The
refined system is called DPLL(Γ)�. A state M ||F of DPLL(Γ)� is said to be
saturated if any ground literal in F is assigned in M , there is no ground clause
C in clauses(F) such that M |=P ¬C, and if the conclusion of any inference by
Γ from premises(M ||F) is an element of clauses(F).

Theorem 3. If M ||F is a saturated state of DPLL(Γ)� for an initial set of
clauses N and Γ has the reduction property for counterexamples, then N is
satisfiable.

Proof. Since all transitions preserve satisfiability, we just need to show that
clauses(F) ∪ lits(M) is satisfiable. The set of clauses clauses(F) ∪ lits(M) is not
saturated with respect to Γ because clauses in nug(clauses(F)) were not used as
premises for its inference rules, but the set is saturated up to redundancy. Any
clause C in nug(clauses(F)) is redundant because there is a literal l of C that is
in lits(M), and clearly l |= C and l ≺ C. Since Γ has the reduction property for
counterexamples, the set clauses(F) ∪ lits(M) is satisfiable.

482 L. de Moura and N. Bjørner

We assign a proof depth to any clause in clauses(F) and literal in lits(M). Intu-
itively, the proof depth of a clause C indicates the depth of the derivation needed
to produce C. More precisely, all clauses in the original set of clauses have proof
depth 0. If a clause C is produced using the Deduce rule, and n is the maximum
proof depth of the premises, then the proof depth of C is n+1. The proof depth
of a literal lC in M is equal to the proof depth of C. If l is a decided literal,
and n is the minimum proof depth of the clauses in F that contain l, then the
proof depth of l is n. We say DPLL(Γ)� is k-bounded if Deduce� is restricted to
premises with proof depth < k. Note that, the number of ground literals that
can be produced in a k-bounded run of DPLL(Γ)� is finite.

Theorem 4. A k-bounded DPLL(Γ)� always terminates.

The theorem above is also true for DPLL(Γ). In another variation of DPLL(Γ),
the restriction on Deduce� used in DPLL(Γ)� is disabled after k steps. This
variation is also refutationally complete, since all transition rules preserve satis-
fiability and Γ is refutationally complete.

3.2 Additional Rules

SMT solvers implement efficient theory reasoning for conjunctions of ground lit-
erals. One of the main motivations of DPLL(Γ) is to use these efficient theory
solvers in conjunction with arbitrary inference systems. Theory reasoning is in-
corporated in DPLL(Γ) using transition rules similar to the one described in [1].
Unfortunately, the theorems presented in the previous section do not hold in
general when theory reasoning is incorporated. We use F |=T G to denote the
fact that F entails G in theory T .

T-Propagate

M ||F =⇒M l(¬l1∨...∨¬ln∨l) ||F if

⎧

⎪⎪⎨

⎪⎪⎩

l is ground and occurs in F,
l is undefined in M,
l1, . . . , ln ∈ lits(M)
l1, . . . , ln |=T l,

T-Conflict

M ||F =⇒M ||F || ¬l1 ∨ . . . ∨ ¬ln if
{

l1, . . . , ln ∈ lits(M),
l1, . . . , ln |=T false

4 Contraction Inferences

Most modern saturation theorem provers spend a considerable amount of time
simplifying and eliminating redundant clauses. Most of them contain simplifying
and deleting inferences. We say these are contraction inferences. Although these
inferences are not necessary for completeness, they are very important in prac-
tice. This section discusses how contraction inferences can be incorporated into
DPLL(Γ). We distinguish between contraction inferences taking 1 premise, such
as deletion of duplicate and resolved literals, tautology deletion, and destructive

Engineering DPLL(T) + Saturation 483

equality resolution, and rules that take additional clauses besides the one being
simplified or eliminated (e.g., subsumption). Assume the contraction rules in a
saturation system are described as γd1 , γs1 , γd, and γs. Common to these rules
is they take a set of clauses F,C and either delete C, producing F or simplify
C to C′, producing F,C′. We call C the main premise, and other premises are
called side premises. Thus, we will here be lifting to DPLL(Γ) rules of the form:

F,C
γd1(C)

F

F,C,C2, . . . , Cn
γd(C,C2, . . . , Cn), n ≥ 2

F,C2, . . . , Cn

F,C
γs1(C,C′)

F,C′

F,C,C2, . . . , Cn
γs(C,C2, . . . , Cn, C

′), n ≥ 2
F,C′, C2, . . . , Cn

Contraction rules. Any contraction inference γd1 or γs1 that contains only
one premise can be easily incorporated into DPLL(Γ). Given a hypothetical
clause H 	 C, the contraction rules are just applied to C. For contraction rules
with more than one premise (e.g., subsumption), special treatment is needed.
For example, consider the following state:

p(a) || p(a) 	 p(b), p(b) ∨ p(c), p(a) ∨ p(b)

In this state, the clause p(b) subsumes the clause p(b) ∨ p(c), but it is not
safe to delete p(b) ∨ p(c) because the subsumer has a hypothesis. That is, after
backjumping decision literal p(a), p(a) 	 p(b) will be deleted and p(b) ∨ p(c) will
not be subsumed anymore. A näıve solution consists in using the HypothesisElim
to transform hypothetical clausesH	C into regular clauses ¬H∨C. This solution
is not satisfactory because important contraction rules, such as demodulation,
have premises that must be unit clauses. Moreover, HypothesisElim also has the
unfortunate side-effect of eliminating relationships between different hypotheses.
For example, in the following state:

p(a) p(b)¬p(a)∨p(b) || p(a) 	 p(c), p(b) 	 p(c) ∨ p(d)

it is safe to use the clause p(c) to subsume p(c)∨p(d) because p(a)	p(c) and p(b)	
p(c) ∨ p(d) will be deleted at the same time during backjumping. To formalize
this approach, we assign a scope level to any assigned literal in M . The scope
level of a literal l (level(l)) in M l M ′ equals to the number of decision literals
in M l. For example, in the following state:

p(a)p(a) p(b) p(c)¬p(b)∨p(c) p(d) || . . .

The scope levels of p(a), p(b), p(c) and p(d) are 0, 1, 1 and 2, respectively. The
level of a set of literals is the supremum level, thus for a set H , level(H) =
max{level(l) | l ∈ H}. Clearly, if literal l occurs after literal l′ in M , then
level(l) ≥ level(l′). In the Backjump rule we go from a state M l′ M ′ ||F ||C ∨ l
to a state M lC∨l ||F ′, and we say the scope level level(l′) was backjumped.

We now have the sufficient background to formulate how deletion rules with
multiple premises can be lifted in DPLL(Γ). Thus, we seek to lift γd to a main

484 L. de Moura and N. Bjørner

clause of the formH	C, and side clausesH2	C2, . . . , Hm	Cm, lm+1, . . . , ln taken
from F and lits(M). The hypothesis of the main clause is H and the hypotheses
used in the side clauses areH2∪. . .∪Hm∪{lm+1, . . . , ln} (called H ′ for short). So
assume the premise for deletion holds, that is γd(C,C2, . . . , Cm, lm+1, . . . , ln). If
level(H) ≥ level(H ′), we claim it is safe to delete the main clauseH	C. This is so
as backjumping will never delete side premises before removing the main premise.
Thus, it is not possible to backjump to a state where one of the side premises was
deleted from F or M , but a main premise from H is still alive: a deleted clause
would not be redundant in the new state. In contrast, if level(H) < level(H ′),
then it is only safe to disable the clause H 	 C until level(H ′) is backjumped.

A disabled clause is not deleted, but is not used as a premise for any inference
rule until it is re-enabled. To realize this new refinement, we maintain one array
of disabled clauses for every scope level. Clauses that are disabled are not deleted,
but moved to the array at the scope level of H ′. Clauses are moved from the
array of disabled clauses back to the set of main clauses F when backjumping
pops scope levels. We annotate disabled clauses as [H 	C]k, where k is the level
at which the clause can be re-enabled.

Contraction rules summary. We can now summarize how the contraction
rules lift to DPLL(Γ). In the contraction rules below, assume H2 	C2, . . . , Hm 	
Cm ∈ F, lm+1, . . . , ln ∈ lits(M), and H ′ = H2 ∪ . . . ∪Hm ∪ {lm+1, . . . , ln}.

Delete

M ||F,H 	 C =⇒M ||F if
{
γd(C,C2, . . . , ln), n ≥ 2
level(H) ≥ level(H ′)

Disable

M ||F,H 	 C =⇒M ||F, [H 	 C]level(H′) if
{
γd(C,C2, . . . , ln), n ≥ 2
level(H) < level(H ′)

Simplify

M ||F,H 	 C =⇒M ||F, (H ∪H ′) 	 C′ if
{
γs(C,C2, . . . , ln, C

′), n ≥ 2
level(H) ≥ level(H ′)

Simplify-disable
M ||F,H 	 C =⇒M ||F, [H 	 C]level(H′), (H ∪H ′) 	 C′

if
{
γs(C,C2, . . . , ln, C

′), n ≥ 2
level(H) < level(H ′)

We also use Delete1 and Simplify1 as special cases (without side conditions) of
the general rules for γd1 and γs1 .

5 System Architecture

We implemented DPLL(Γ) (and DPLL(Γ)�) in the Z3 theorem prover [6] by
instantiating the calculus with the SP inference rules. Z3 is a state of the art
SMT solver which previously used E-matching exclusively for handling quantified
formulas. It integrates a modern DPLL-based SAT solver, a core theory solver
that handles ground equalities over uninterpreted functions, and satellite solvers

Engineering DPLL(T) + Saturation 485

(for arithmetic, bit-vectors, arrays, etc). The new system is called Z3(SP). It
uses perfectly shared expressions as its main data structure. This data structure
is implemented in the standard way using hash-consing. These expressions are
used by the DPLL(T) and SP engines.

DPLL(T) engine. The rules Decide, UnitPropagate, Conflict, Explain, Learn,
Backjump, and Unsat are realized by the DPLL-based SAT solver in Z3(SP)’s
core. During exploration of a particular branch of the search tree, several of the
assigned literals are not relevant. Relevancy propagation [12] keeps track of which
truth assignments in M are essential for determining satisfiability of a formula.
In our implementation, we use a small refinement where only literals that are
marked as relevant have their truth assignment propagated to theory solvers and
are made available as premises to the Deduce rule. The rules T-Propagate and T-
Conflict are implemented by the congruence closure core and satellite solvers. The
congruence closure core processes the assigned literals in M . Atoms range over
equalities and theory specific atomic formulas, such as arithmetical inequalities.
Equalities asserted in M are propagated by the congruence closure core using
a data structure that we will call an E-graph following [2]. Each expression is
associated with an E-node that contains the extra fields used to implement the
Union-find algorithm, congruence closure, and track references to theory specific
data structures. When two expressions are merged, the merge is propagated as
an equality to the relevant theory solvers. The core also propagates the effects
of the theory solvers, such as inferred equalities that are produced and atoms
assigned to true or false. The theory solvers may also produce new ground clauses
in the case of non-convex theories. These ground clauses are propagated to F .

SP engine. The rules Deduce, Deduce�, Delete, Disable and Simplify are imple-
mented by the new SP engine. It contains a superset of the SP rules described in
Figure 1, that includes contraction rules such as: forward/backward rewriting,
forward/backward subsumption, tautology deletion, destructive equality reso-
lution and equality subsumption. Z3(SP) implements Knuth-Bendix ordering
(KBO) and lexicographical path ordering (LPO). Substitution trees [13] is the
main indexing data structure used in the SP engine. It is used to implement most
of the inference rules: forward/backward rewriting, superposition right/left, bi-
nary resolution, and unit-forward subsumption. Feature vector indexing [14] is
used to implement non-unit forward and backward subsumption. Several infer-
ence rules assume that premises have no variables in common. For performance
reasons, we do not explicitly rename variables, but use expression offsets like the
Darwin theorem prover [15]. Like most saturation theorem provers, we store in
each clause the set of parent clauses (premises) used to infer it. Thus, the set of
hypotheses of an inferred clause is only computed during conflict resolution by
following the pointers to parent clauses. This is an effective optimization because
most of the inferred clauses are never used during conflict resolution.

Rewriting with ground equations. Due to the nature of our benchmarks
and DPLL(Γ), most of the equations used for forward rewriting are ground. It
is wasteful to use substitution trees as an indexing data structure in this case.

486 L. de Moura and N. Bjørner

When rewriting a term t, for every subterm s of t we need to check if there is
an equation s′ 2 u such that s is an instance of s′. With substitution trees, this
operation may consume O(n) time where n is the size of s. If the equations are
ground, we can store the equations as a mapping G, where s �→ u ∈ G if s 2 u
is ground and u ≺ s. We can check in constant time if an expression s is a key
in the mapping G, because we use perfectly shared terms.

Ground equations. Ground equations are processed by the congruence closure
core and SP engine. To avoid duplication of work, we convert the E-graph into a
canonical set of ground rewrite rules using the algorithm described in [16]. This
algorithm is attractive in our context because its first step consists of executing
a congruence closure algorithm.

E-matching for theories. Although the new system is refutationally complete
for first-order logic with equality, it fails to prove formulas containing theory
reasoning that could be proved using E-matching. For example, consider the
following simple unsatisfiable set of formulas:

¬(f(a) > 2), f(x) > 5

DPLL(Γ) fails to prove the unsatisfiability of this set because 2 does not unify
with 5. On the other hand, the E-matching engine selects f(x) as a pattern
(trigger), instantiates the quantified formula f(x) > 5 with the substitution
[x �→ a], and the arithmetic solver detects the inconsistency. Thus, we still use
the E-matching engine in Z3(SP). E-matching can be described as:

E-matching

M ||F,H 	 C[t] =⇒ M ||F,H 	 C[t], σ(H 	 C[t]) if

⎧

⎨

⎩

E |= σ(t) 2 s, where
s is a ground term in M,
E = {s1 2 r1, ..} ⊆M

Definitions. In software verification, more precisely in Spec) [17] and VCC
(Verified C Complier), the verification problems contain a substantial number
of definitions of the form: p(x̄) ⇔ C[x̄]. Moreover, most of these definitions are
irrelevant for a given problem. Assuming C[x̄] is a clause l1[x̄] ∨ . . . ∨ ln[x̄], the
definition is translated into the following set of clauses Ds = {¬p(x̄) ∨ l1[x̄] ∨
. . .∨ ln[x̄], p(x̄)∨¬l1[x̄], . . . , p(x̄)∨¬ln[x̄]}. We avoid the overhead of processing
irrelevant definitions by using a term ordering that makes the literal containing
p(x̄) maximal in the clauses Ds.

Search heuristic. A good search heuristic is crucial for a theorem prover. Our
default heuristic consists in eagerly applying UnitPropagate, T-Propagate, Conflict
and T-Conflict. Before each Decide, we apply k times E-matching and Deduce.
The value k is small if there are unassigned ground clauses in F . The E-matching
rule is mainly applied to quantified clauses that contains theory symbols. The
rule Deduce is implemented using a variant of the given-clause algorithm, where
the SP engine state has two sets of clauses: P processed and U unprocessed.
Similarly to E [18], the clause selection strategy can use an arbitrary number of
priority queues.

Engineering DPLL(T) + Saturation 487

Candidate models. Software verification tools such as Spec) and VCC expect
the theorem prover to provide a model for satisfiable formulas. Realistically, the
theorem prover produces only candidate (potential) models. In Z3(SP), M is
used to produce the candidate model, and a notion of k-saturation is used. We
say a formula is k-maybe-sat, if all ground literals in M are assigned, and Deduce
cannot produce any new non redundant clause with proof depth < k.

5.1 Evaluation

Benchmarks. We considered three sets of benchmarks: NASA [7], ESC/Java,
and Spec) [17]. The NASA benchmarks are easy even for SMT solvers based
on E-matching. In the 2007 SMT competition1 the selected NASA benchmarks
were all solved in less than one sec by all competitors. The Simplify theorem
prover fails on some of these benchmarks because they do not contain hints
(triggers), and Simplify uses a very conservative trigger selection heuristic. The
ESC/Java and Spec) benchmarks are similar in nature, and are substantially
more challenging than the NASA benchmarks2. These benchmarks contain hints
for provers based on E-matching. These hints can be used also by the SP engine
to guide the literal selection strategy. If the trigger (hint) is contained in a
negative literal l, we simply select l for generating inferences. Surprisingly, a
substantial subset of the axioms can be handled using this approach. When the
trigger is contained in a positive literal, Z3(SP) tries to make it maximal. This
heuristic is particularly effective with the frame axioms automatically generated
by Spec):

C[a, a′, x, y] ∨ read(a, x, y) = read(a′, x, y)

where C[a, a′, x, y] contains 10 literals, and specifies which locations of the heap
were not modified. In Spec), the heap is represented as a bidimensional array.
The Spec) benchmarks contain the transitivity and monotonicity axioms:

¬p(x, y) ∨ ¬p(y, z) ∨ p(x, z), ¬p(x, y) ∨ p(f(x), f(y))

These axioms are used to model Spec)’s type system. Each benchmark con-
tains several ground literals of the form p(s, t). The transitivity axiom can be
easily “tamed” by selecting one of its negative literals. Unfortunately, this sim-
ple approach does not work with the monotonicity axiom. An infinite sequence
of irrelevant clauses is produced by the SP engine. In contrast, unsatisfiable
instances containing these axioms can be easily handled by solvers based on E-
matching. At this point, we do not have a satisfactory solution for this problem
besides giving preference to clauses with small proof depth.

1 http://www.smtcomp.org
2 All benchmarks are available at: http://www.smtlib.org.

Z3 runtime logs for NASA’s and Spec�’s benchmarks can be found at:
http://research.microsoft.com/users/leonardo/IJCAR2008.

488 L. de Moura and N. Bjørner

Inconsistent axioms. A recurrent problem that was faced by Z3 users was sets
of axioms that were unintentionally inconsistent. An E-matching based solver
usually fails to detect the inconsistency. Even worse, in some cases, small modi-
fications in the formula allowed the prover to transition from failure to success
and vice-versa. The following unsatisfiable set of formulas were extracted from
one of these problematic benchmarks:

a �= b, ¬p(x, c) ∨ p(x, b), ¬p(x, y) ∨ x = y, p(x, c)

The inconsistency is not detected by E-matching because there is no ground
literal using the predicate p. Now, assume the formula also contains the clause
q(a) ∨ p(a, b). If the prover decides to satisfy this clause by assigning q(a), then
p(a, b) is ignored by the E-matching engine and the prover fails. On the other
hand, if p(a, b) is selected by the prover, then it is used for instantiation and the
proof succeeds. In contrast, Z3(SP) can easily detect the inconsistency.

6 Related Work

HaRVey-FOL [9] combines Boolean solving with the equational theorem prover
E. Its main application is software verification. The Boolean solver is used to
handle the control flow of software systems, E allows haRVey to provide support
for a wide range of theories formalizing data-structures. The integration is loose
in this case, for example, a non-unit ground clause produced by E is not pro-
cessed by the Boolean solver. SPASS+T [8] integrates an arbitrary SMT solver
with the SPASS [19] saturation theorem prover. The SMT solver is used to han-
dle arithmetic and free functions. The integration is also loose, SPASS uses its
deduction rules to produce new formulas as usual, and the ground formulas are
propagated to the SMT solver. The ground formulas are processed by both sys-
tems. Moreover, the clause splitting available in SPASS cannot be used because
SPASS+T has no control over the (black box) SMT solver backtracking search.
SMELS [20], to our best understanding, is a method for incorporating theory
reasoning in efficient DPLL + congruence closure solvers. The ground clauses
are sent to the DPLL solver. The congruence closure algorithm calculates all
reduced (dis)equalities. A Superposition procedure then performs an inference
rule, which is called Justified Superposition, between these (dis)equalities and
the nonground clauses. The resulting ground clauses are provided to the DPLL
engine.

LASCA [21] is a method for integrating linear rational arithmetic into super-
position calculus for first-order logic. One of the main results is completeness of
the calculus under some finiteness assumptions. Like regular equational theorem
provers, the calculus does not have support for performing efficient case-analysis
like a DPLL-based calculus.

SPASS [19] theorem prover supports splitting. The idea is to combine the β-
rule found in tableau calculi with a saturation based prover. Their formalization
relies on the use of labels [22], the main idea is to label clauses with the split
levels they depend on. In contrast, the main advantage of the approach used

Engineering DPLL(T) + Saturation 489

in DPLL(Γ) is better integration with the conflict resolution techniques (i.e.,
backjumping and lemma learning) used in DPLL-based SAT solvers. In [23], an
alternative approach to case analysis for saturation theorem provers is described.
The main idea is to introduce new special propositional symbols. This approach
has two main disadvantages with respect to DPLL(Γ): the generated clauses can
not be directly used for reductions, and efficient conflict resolution techniques
used in DPLL-based solvers cannot be directly applied.

7 Conclusion

We have introduced a calculus that tightly integrates inference rules used in
saturation based provers with the DPLL(T) calculus. The combination is refu-
tationally complete for first-order logic. The calculus is particulary attractive
for software verification because all non-unit ground clauses can be delegated
to DPLL(T). We believe this work also provides a better and more flexible
infrastructure for implementing the rewrite-based approach for decision proce-
dures [24]. The DPLL(Γ) calculus was implemented in the Z3(SP) theorem
prover, and the main design decisions were discussed.

References

1. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT Modulo Theories:
From an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL(T). J.
ACM 53, 937–977 (2006)

2. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for program checking.
J. ACM 52, 365–473 (2005)

3. Ge, Y., Barrett, C., Tinelli, C.: Solving quantified verification conditions using
satisfiability modulo theories. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI),
vol. 4603. Springer, Heidelberg (2007)

4. Moskal, M., Lopuszanski, J., Kiniry, J.R.: E-matching for fun and profit. In: Sat-
isfiability Modulo Theories Workshop (2007)

5. Dutertre, B., de Moura, L.: A Fast Linear-Arithmetic Solver for DPLL(T). In: Ball,
T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg
(2006)

6. de Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: TACAS 2008 (2008)

7. Denney, E., Fischer, B., Schumann, J.: Using automated theorem provers to certify
auto-generated aerospace software. In: Basin, D., Rusinowitch, M. (eds.) IJCAR
2004. LNCS (LNAI), vol. 3097. Springer, Heidelberg (2004)

8. Prevosto, V., Waldmann, U.: SPASS+T. In: ESCoR Workshop (2006)

9. Deharbe, D., Ranise, S.: Satisfiability solving for software verification. International
Journal on Software Tools Technology Transfer (to appear, 2008)

10. Bachmair, L., Ganzinger, H.: Resolution theorem proving. In: Handbook of Auto-
mated Reasoning, pp. 19–99. MIT Press, Cambridge (2001)

11. Nieuwenhuis, R., Rubio, A.: Paramodulation-based theorem proving. In: Robinson,
A., Voronkov, A. (eds.) Handbook of Automated Reasoning. MIT Press, Cambridge
(2001)

490 L. de Moura and N. Bjørner

12. de Moura, L., Bjørner, N.: Relevancy Propagation. Technical Report MSR-TR-
2007-140, Microsoft Research (2007)

13. Graf, P.: Substitution tree indexing. In: Hsiang, J. (ed.) RTA 1995. LNCS, vol. 914.
Springer, Heidelberg (1995)

14. Schulz, S.: Simple and Efficient Clause Subsumption with Feature Vector Indexing.
In: ESFOR Workshop (2004)

15. Baumgartner, P., Fuchs, A., Tinelli, C.: Darwin: A theorem prover for the model
evolution calculus. In: ESFOR Workshop (2004)

16. Gallier, J., Narendran, P., Plaisted, D., Raatz, S., Snyder, W.: An algorithm for
finding canonical sets of ground rewrite rules in polynomial time. J. ACM 40 (1993)

17. Barnett, M., Leino, K.R.M., Schulte, W.: The Spec� programming system: An
overview. In: Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.)
CASSIS 2004. LNCS, vol. 3362, pp. 49–69. Springer, Heidelberg (2005)

18. Schulz, S.: E - a brainiac theorem prover. AI Commun 15, 111–126 (2002)
19. Weidenbach, C., Brahm, U., Hillenbrand, T., Keen, E., Theobalt, C., Topic, D.:

SPASS version 2.0. In: Voronkov, A. (ed.) CADE 2002. LNCS (LNAI), vol. 2392,
Springer, Heidelberg (2002)

20. Lynch, C.: SMELS: Satisfiability Modulo Equality with Lazy Superposition. The
Dagsthul Seminar on Deduction and Decision Procedures (2007)

21. Korovin, K., Voronkov, A.: Integrating linear arithmetic into superposition calcu-
lus. In: Duparc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 223–237.
Springer, Heidelberg (2007)

22. Fietzke, A.: Labelled splitting. Master’s thesis, Saarland University (2007)
23. Riazanov, A., Voronkov, A.: Splitting without backtracking. In: IJCAI (2001)
24. Armando, A., Bonacina, M.P., Ranise, S., Schulz, S.: New results on rewrite-based

satisfiability procedures. ACM Transactions on Computational Logic (to appear)

THF0 – The Core of the

TPTP Language for Higher-Order Logic

Christoph Benzmüller1,, Florian Rabe2, and Geoff Sutcliffe3

1 Saarland University, Germany
2 Jacobs University Bremen, Germany

3 University of Miami, USA

Abstract. One of the keys to the success of the Thousands of Problems
for Theorem Provers (TPTP) problem library and related infrastruc-
ture is the consistent use of the TPTP language. This paper introduces
the core of the TPTP language for higher-order logic – THF0, based
on Church’s simple type theory. THF0 is a syntactically conservative
extension of the untyped first-order TPTP language.

1 Introduction

There is a well established infrastructure that supports research, development,
and deployment of first-order Automated Theorem Proving (ATP) systems,
stemming from the Thousands of Problems for Theorem Provers (TPTP) prob-
lem library [29]. This infrastructure includes the problem library itself, the TPTP
language [27], the SZS ontologies [30], the Thousands of Solutions from Theorem
Provers (TSTP) solution library, various tools associated with the libraries [26],
and the CADE ATP System Competition (CASC) [28]. This infrastructure has
been central to the progress that has been made in the development of high
performance first-order ATP systems.

One of the keys to the success of the TPTP and related infrastructure is the
consistent use of the TPTP language. Until now the TPTP language has been
defined for only untyped first-order logic (first-order form (FOF) and clause
normal form (CNF)). This paper introduces the core of the TPTP language for
classical higher-order logic – THF0, based on Church’s simple type theory. THF0
is the core language in that it provides only the commonly used and accepted
aspects of a higher-order logic language. The full THF language includes the
THFF extension that allows the use of first-order style prefix syntax, and the
THF1 and THF2 extensions that provide successively richer constructs in higher-
order logic.1

� This work was supported by EPSRC grant EP/D070511/1 (LEO-II).
1 The THFF, THF1, and THF2 extensions have already been completed. The inital

release of only THF0 allows users to adopt the language without being swamped by
the richness of the full THF language. The full THF language definition is available
from the TPTP web site, www.tptp.org

A. Armando, P. Baumgartner, and G. Dowek (Eds.): IJCAR 2008, LNCS 5195, pp. 491–506, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

www.tptp.org

492 C. Benzmüller, F. Rabe, and G. Sutcliffe

As with the first-order TPTP language, a common adoption of the THF lan-
guage will enable convenient communication of higher-order data between differ-
ent systems and researchers. THF0 is the starting point for building higher-order
analogs of the existing first-order infrastructure components, including a higher-
order extension to the TPTP problem library, evaluation of higher-order ATP
systems in CASC, TPTP tools to process THF0 problems, and a higher-order
TSTP proof representation format. An interesting capability that has become
possible with the THF language is easy comparison of higher-order and first-
order versions of problems, and evaluation of the relative benefits of the different
encodings with respect to ATP systems for the logics.

2 Preliminaries

2.1 The TPTP Language

The TPTP language is a human-readable, easily machine-parsable, flexible and
extensible language suitable for writing both ATP problems and solutions. The
BNF of the THF0 language, which defines common TPTP language constructs
and the THF0 specific constructs, is given in Appendix A.

The top level building blocks of the TPTP language are annotated formulae,
include directives, and comments. An annotated formula has the form:

language(name, role, formula, [source, [useful info]]).
An example annotated first-order formula, supplied from a file, is:

fof(formula_27,axiom,
! [X,Y] :
(subclass(X,Y)

<=> ! [U] :
(member(U,X)
=> member(U,Y))),

file(’SET005+0.ax’,subclass_defn),
[description(’Definition of subclass’), relevance(0.9)]).

The languages supported are first-order form (fof), clause normal form (cnf),
and now typed higher-order form (thf). The role, e.g., axiom, lemma, conjec-
ture, defines the use of the formula in an ATP system - see the BNF for the
list of recognized roles. The details of the formula notation for connectives and
quantifiers can be seen in the BNF. The forms of identifiers for uninterpreted
functions, predicates, and variables follow Prolog conventions, i.e., functions and
predicates start with a lowercase letter, variables start with an uppercase let-
ter, and all contain only alphanumeric characters and underscore. The TPTP
language also supports interpreted symbols, which either start with a $, or are
composed of non-alphanumeric characters. The basic logical connectives are !,
?,~, |, &, =>, <=, <=>, and <~>, for ∀, ∃,¬, ∨, ∧, ⇒, ⇐, ⇔, and ⊕ respectively.
Quantified variables follow the quantifier in square brackets, with a colon to sep-
arate the quantification from the logical formula. The source is an optional term
describing where the formula came from, e.g., an input file or an inference. The
useful info is an optional list of terms from user applications.

THF0 – The Core of the TPTP Language for Higher-Order Logic 493

An include directive may include an entire file, or may specify the names
of the annotated formulae that are to be included from the file. Comments in
the TPTP language extend from a % character to the end of the line, or may be
block comments within /* ...*/ bracketing.

2.2 Higher-Order Logic

There are many quite different frameworks that fall under the general label
“higher-order”.The notion reaches back to Frege’s original predicate calculus [11].
Inconsistencies in Frege’s system, caused by the circularity of constructions such
as “the set of all sets that do not contain themselves”,made it clear that the expres-
sivity of the language had to be restricted in some way. One line of development,
which became the traditional route for mathematical logic, and which is not ad-
dressed further here, is the development of axiomatic first-order set theories, e.g.
Zermelo-Fraenkel set theory [32].

Russell suggested using type hierarchies, and worked out ramified type theory.
Church (inspired by work of Carnap) later introduced simple type theory [9], a
higher-order framework built on his simply typed λ calculus, employing types
to reduce expressivity and to remedy paradoxes and inconsistencies. Church’s
simple type theory was later extended and refined in various ways, e.g., by Mar-
tin Löf who added type universes, and by Girard and Reynolds who introduced
type systems with polymorphism. This stimulated much further research in in-
tuitionistic and constructive type theory.

Variants and extensions of Church’s simple type theory have been the logic
of choice for interactive proof assistants such as HOL4 [13], HOL Light [15],
PVS [22], Isabelle/HOL [21], and OMEGA [25]. Church’s simple type theory is
also a common basis for higher-order ATP systems. The TPS system [1], which is
based on a higher-order mating calculus, is a pioneering ATP system for Church’s
simple type theory. More recently developed higher-order ATP systems, based
on extensional higher-order resolution, are LEO [5] and LEO-II [8]. Otter-λ [2]
is an extension of the first-order system Otter to an untyped variant of Church’s
type theory. This common use of Church’s simple type theory motivates using it
as the starting point for THF0. For the remainder of this paper “higher-order”
is therefore synonymous with Church’s simple type theory [4].

A major application area of higher-order logic is hardware and software ver-
ification. Several interactive higher-order proof assistants put an emphasis on
this. For example, the Isabelle/HOL system has been applied in the Verisoft
project [12]. The formal proofs to be delivered in such a project require a large
number of user interactions – a resource intensive task to be carried out by highly
trained specialists. Often only a few of the interaction steps really require hu-
man ingenuity, and many of them could be avoided through better automation
support. There are several barriers that hamper the application of automated
higher-order ATP systems in this sense: (i) the available higher-order ATP sys-
tems are not yet optimized for this task; (ii) typically there are large syntax
gaps between the higher-order representation languages of the proof assistants,
and the input languages of the higher-order ATP systems; (iii) the results of

494 C. Benzmüller, F. Rabe, and G. Sutcliffe

the higher-order ATP systems have to be correctly interpreted and (iv) their
proof objects might need to be translated back. The development of a com-
monly accepted infrastructure, and increased automation in higher-order ATP,
will benefit these applications and reduce user interaction costs. Another promis-
ing application area is knowledge based reasoning. Knowledge based projects
such as Cyc [19] and SUMO [20] contain a significant fraction of higher-order
constructs. Reasoning in and about these knowledge sources will benefit from
improved higher-order ATP systems. A strong argument for adding higher-order
ATP to this application area is its demand for natural and human consumable
problem and solution representations, which are harder to achieve after trans-
lating higher-order content into less expressible frameworks such as first-order
logic. Further application areas of higher-order logic include computer-supported
mathematics [24], and reasoning within and about multimodal logics [6].

2.3 Church’s Simple Type Theory

Church’s simple type theory is based on the simply typed λ calculus.
The set of simple types is freely generated from basic types ι (written $i in

THF0) and o ($o in THF0), and possibly further base types using the function
type constructor → (> in THF0).

Higher-order terms are built up from simply typed variables (Xα), simply
typed constants (cα), λ-abstraction, and application. It is assumed that suf-
ficiently many special logical constants are available, so that all other logical
connectives can be defined. For example, it is assumed that ¬o→o, ∨o→o→o,
and Π(α→o)→o (for all simple types α) are given. The semantics of these logical
symbols is fixed according to their intuitive meaning.

Well-formed (simply typed) higher-order terms are defined simultaneously for
all simple types α. Variables and constants of type α are well-formed terms of
type α. Given a variable X of type α and a term T of type β, the abstraction
term λX.T is well-formed and of type α → β. Given terms S and T of types
α → β and α respectively, the application term (S T) is well-formed and of
type β.

The initial target semantics for THF0 is Henkin semantics [4,16]. However,
there is no intention to fix the semantics within THF0. THF0 is designed to
express problems syntactically, with the semantics being specified separately [3].

3 The THF0 Language

THF0 is a syntactically conservative extension of the untyped first-order TPTP
language, adding the syntax for higher-order logic. Maintaining a consistent style
between the first-order and higher-order languages facilitates easy adoption of
the new language, through reuse or adaptation of existing infrastructure for
processing TPTP format data, e.g., parsing tools, pretty-printing tools, system
testing, and result analysis, (see Section 5). A particular feature of the TPTP
language, which has been maintained in THF0, is Prolog compatibility. This
allows an annotated formula to be read with a single Prolog read/1 call, in the

THF0 – The Core of the TPTP Language for Higher-Order Logic 495

context of appropriate operator definitions. There are good reasons for main-
taining Prolog compatibility [27].

Figure 1 presents an example problem encoded in THF0. The example is from
the domain of basic set theory, stating the distributivity of union and intersec-
tion. It is a higher-order version of the first-order TPTP problem SET171+3,
which employs first-order set theory to achieve a first-order encoding suitable
for first-order theorem provers. The encoding in THF0 exploits the fact that
higher-order logic provides a naturally built-in set theory, based on the idea of
identifying sets with their characteristic functions. The higher-order encoding
can be solved more efficiently than the first-order encoding [7,8].

The first three annotated formulae of the example are type declarations that
declare the type signatures of ∈, ∩, and ∪. The type role is new, added to
the TPTP language for THF0.2 A simple type declaration has the form con-
stant symbol:signature. For example, the type declaration

thf(const_in,type,(
in: ($i > ($i > $o) > $o))).

declares the symbol in (for ∈), to be of type ι→ (ι→ o)→ o. Thus in expects
an element of type ι and a set of type ι→ o as its arguments. The mapping arrow
is right associative. Type declarations use rules starting at <thf typed const>
in the BNF. Note the use of the TPTP interpreted symbols $i and $o for the
standard types ι and o, which are built in to THF0. In addition to $i and $o,
THF0 has the defined type $tType that denotes the collection of all types, and
$iType/$oType as synonyms for $i/$o. Further base types can be introduced (as
<system type>s) on the fly. For example, the following introduces the base type
u together with a corresponding constant symbol in u of type u→ (u→ o)→ o.

thf(type_u,type,(
u: $tType)).

thf(const_in_u,type,(
in_u: (u > (u > $o) > $o))).

THF0 does not support polymorphism, product types or dependent types –
such language constructs are addressed in THF1.

The next three annotated formulae of the example are axioms that specify the
meanings of ∈, ∩, and ∪. A THF0 logical formula can use the basic TPTP con-
nectives, λ-abstraction using the ^ quantifier followed by a list of typed λ-bound
variables in square brackets, and function application using the @ connective.
Additionally, universally and existentially quantified variables must be typed.
For example, the axiom

thf(ax_in,axiom,(
(in
= (^ [X: $i,S: ($i > $o)] :

(S @ X))))).

2 It will also be used in the forthcoming typed first-order form (TFF) TPTP language.

496 C. Benzmüller, F. Rabe, and G. Sutcliffe

%---
%----Signatures for basic set theory predicates and functions.
thf(const_in,type,(

in: $i > ($i > $o) > $o)).

thf(const_intersection,type,(
intersection: ($i > $o) > ($i > $o) > ($i > $o)))).

thf(const_union,type,(
union: ($i > $o) > ($i > $o) > ($i > $o))).

%----Some axioms for basic set theory. These axioms define the set
%----operators as lambda-terms. The general idea is that sets are
%----represented by their characteristic functions.
thf(ax_in,axiom,(

(in
= (^ [X: $i,S: ($i > $o)] :

(S @ X))))).

thf(ax_intersection,axiom,(
(intersection
= (^ [S1: ($i > $o),S2: ($i > $o),U: $i] :

((in @ U @ S1)
& (in @ U @ S2)))))).

thf(ax_union,axiom,(
(union
= (^ [S1: ($i > $o),S2: ($i > $o),U: $i] :

((in @ U @ S1)
| (in @ U @ S2)))))).

%----The distributivity of union over intersection.
thf(thm_distr,conjecture,(

! [A: ($i > $o),B: ($i > $o),C: ($i > $o)] :
((union @ A @ (intersection @ B @ C))
= (intersection @ (union @ A @ B) @ (union @ A @ C))))).

%--

Fig. 1. Distribution of Union over Intersection, encoded in THF0

specifies the meaning of the constant ∈ by equating it to λXι.λSι→o.(S X).
Thus elementhood of an element X in a set S is reduced to applying the set
S (seen as its characteristic function S) to X . Using in, intersection is then
equated to λS1

ι→o.λS
2
ι→o.λUι.(∈ U S1) ∧ (∈ U S2), and union is equated to

λS1
ι→o.λS

2
ι→o.λUι.(∈ U S1) ∨ (∈ U S2). Logical formulae use rules starting at

<thf logic formula> in the BNF. The explicit function application operator
@ is necessary for parsing function application expressions in Prolog. Function
application is left associative.

THF0 – The Core of the TPTP Language for Higher-Order Logic 497

The last annotated formula of the example is the conjecture to be proved.

thf(thm_distr,conjecture,(
! [A: ($i > $o),B: ($i > $o),C: ($i > $o)] :
((union @ A @ (intersection @ B @ C))
= (intersection @ (union @ A @ B)

@ (union @ A @ C))))).

This encodes ∀Aι→o.∀Bι→o.∀Cι→o.(A ∪ (B ∩C)) = ((A ∪B) ∩ (A ∪C)). It uses
rules starting at <thf quantified formula> in the BNF.

An advantage of higher-order logic over first-order logic is that the ∀ and ∃
quantifiers can be encoded using higher-order abstract syntax: Quantification
is expressed using the logical constant symbols Π and Σ in connection with
λ-abstraction. Higher-order systems typically make use of this feature in order
to avoid introducing and supporting binders in addition to λ. THF0 provides
the logical constants !! and ?? for Π and Σ respectively, and leaves use of the
universal and existential quantifiers open to the user. Here is an encoding of the
conjecture from the example, using !! instead of !.

thf(thm_distr,conjecture,(
!! (^ [A: $i > $o,B: $i > $o,C: $i > $o] :

((union @ A @ (intersection @ B @ C))
= (intersection @ (union @ A @ B)

@ (union @ A @ C)))))).

Figure 2 presents the axioms from another example problem encoded in THF0.
The example is from the domain of puzzles, and it encodes the following ‘Knights
and Knaves Puzzle’:3 A very special island is inhabited only by knights and
knaves. Knights always tell the truth. Knaves always lie. You meet two inhab-
itants: Zoey and Mel. Zoey tells you that Mel is a knave. Mel says, ‘Neither
Zoey nor I are knaves.’ Can you determine who is a knight and who is a knave?
Puzzles of this kind have been discussed extensively in the AI literature. Here,
we illustrate that an intuitive and straightforward encoding can be achieved in
THF0. This encoding embeds formulas (terms of Boolean type) in terms and
quantifies over variables of Boolean type; see for instance the kk 6 2 axiom.

4 Type Checking THF0

The THF0 syntax provides a lot of flexibility. As a result, many syntactically
correct expressions are meaningless because they are not well typed. For exam-
ple, it does not make sense to say & = ~ because the equated expressions have
different types. It is therefore necessary to type check expressions using an infer-
ence system. Representative typing rules are given in Fig. 3 (the missing rules
are obviously analogous to those provided). Here $tType denotes the collection
of all types, and S :: A denotes the judgement that S has type A.

The typing rules serve only to provide an intuition. The normative definition is
given by representing THF0 in the logical framework LF [14]. LF is a dependent
3 This puzzle was auto-generated by a computer program, written by Zac Ernst.

498 C. Benzmüller, F. Rabe, and G. Sutcliffe

%--
%----A very special island is inhabited only by knights and knaves.
thf(kk_6_1,axiom,(

! [X: $i] :
((is_a @ X @ islander)
=> ((is_a @ X @ knight)

| (is_a @ X @ knave))))).

%----Knights always tell the truth.
thf(kk_6_2,axiom,(

! [X: $i] :
((is_a @ X @ knight)
=> (! [A: $o] :

(says @ X @ A)
=> A)))).

%-----Knaves always lie.
thf(kk_6_3,axiom,(

! [X: $i] :
((is_a @ X @ knave)
=> (! [A: $o] : (says @ X @ A)
=> ~ A)))).

%----You meet two inhabitants: Zoey and Mel.
thf(kk_6_4,axiom,

((is_a @ zoey @ islander)
& (is_a @ mel @ islander))).

%----Zoey tells you that Mel is a knave.
thf(kk_6_5,axiom,

(says @ zoey @ (is_a @ mel @ knave))).

%----Mel says, ‘Neither Zoey nor I are knaves.’
thf(kk_6_6,axiom,

(says @ mel
@ ~ ((is_a @ zoey @ knave)

| (is_a @ mel @ knave)))).

%----Can you determine who is a knight and who is a knave?
thf(query,theorem,(

? [Y: $i,Z: $i] :
((Y = knight <~> Y = knave)
& (Z = knight <~> Z = knave)
& (is_a @ mel @ Y)
& (is_a @ zoey @ Z)))).

%--

Fig. 2. A ‘Knights and Knaves Puzzle’ encoded in THF0

THF0 – The Core of the TPTP Language for Higher-Order Logic 499

$i :: $tType $o :: $tType Γ � $true :: $o

thf(_,type,c : A)

Γ � c :: A

A :: $tType B :: $tType

A > B :: $tType

X :: A in Γ

Γ � X :: A

Γ, X :: A � S :: B

Γ � ^ [X : A] : S :: A > B

Γ � F :: A > B Γ � S :: A

Γ � F @ S :: B

Γ � F :: A > $o

Γ � !! F :: $o

Γ, X :: A � F :: $o

Γ � ! [X : A]: F :: $o

Γ � F :: $o

Γ � ~ F :: $o

Γ � F :: $o Γ � G :: $o

Γ � F & G :: $o

Γ � S :: A Γ � S’ :: A

Γ � S = S’ :: $o

Fig. 3. Typing rules of THF0

type theory related to Martin-Löf type theory [18], particularly suited to logic
representations. In particular, the maintenance of the context, substitution, and
α-conversion are handled by LF and do not have to be specified separately. A
THF0 expression is well typed if its translation to LF is, and THF0 expressions
can be type checked using existing tools such as Twelf [23]. In the following,
Twelf syntax is used to describe the representation.

To represent THF0, a base signature Σ0 is defined, as given in Figure 4. It is
similar to the Harper et al. encoding of higher-order logic [14]. Every list L of
TPTP formulas can be translated to a list of declarations ΣL extending Σ0. A
list L is well-formed iff Σ0, ΣL is a well-formed Twelf signature. The signature
of the translation is given in Figure 5.

In Figure 4, $tType : type means that the name $tType is introduced as
an LF type. Its LF terms are the translations of THF0 types. The declaration
$tm : $tType -> type introduces a symbol $tm, which has no analog in THF0:
for every THF0 type A it declares an LF type $tm A, which holds the terms
of type A. $i and $o are declared as base types, and > is the function type
constructor. Here -> is the LF symbol for function spaces, i.e., the declaration
of > means that it takes two types as arguments and returns a type. Thus, on
the ASCII level, the translation from THF0 types to LF is the identity. The
symbols ^ through ?? declare term and formula constructors with their types.
The binary connectives other than & have been omitted - they are declared just
like &. In Twelf, equality and inequality are actually ternary symbols, because
they take the type A of the equated terms as an additional argument. By using
implicit arguments, Twelf is able to reconstruct A from the context, so that
equality behaves essentially like a binary symbol. Except for equality, the same
ASCII notation can be used in Twelf as in THF0 so that on the ASCII level most
cases of the translation are trivial. The translation of the binders ^, !, and ? is
interesting: they are all expressed by the λ binder of Twelf. For example, if F
is translated to F ′, then ∀x$i.F is translated to !(λx$ tm $i.F

′). Since the Twelf
ASCII syntax for λx$ tm $i.F

′ is simply [x:$tm $i] F’, on the ASCII level the
translation of binders consists of simply inserting $tm and dropping a colon. For

500 C. Benzmüller, F. Rabe, and G. Sutcliffe

$tType : type.
$tm : $tType -> type.
$i : $tType.
$o : $tType.
> : $tType -> $tType -> $tType.

^ : ($tm A -> $tm B) -> $tm (A > B).
@ : $tm(A > B) -> $tm A -> $tm B.
$true : $tm $o.
$false : $tm $o.
~ : $tm $o -> $tm $o.
& : $tm $o -> $tm $o -> $tm $o.
== : $tm A -> $tm A -> $tm $o.
!= : $tm A -> $tm A -> $tm $o.

! : ($tm A -> $tm $o) -> $tm $o.
? : ($tm A -> $tm $o) -> $tm $o.
!! : ($tm(A > $o)) -> $tm $o.
?? : ($tm(A > $o)) -> $tm $o.

$istrue : $tm $o -> type.

Fig. 4. The base signature for Twelf

THF0 LF

types terms of type $tType
terms of type A terms of type $tm A
formulas terms of type $tm $o

Fig. 5. Correspondences between THF0 and the LF representation

all binders, the type A of the bound variable is an implicit argument and thus
reconstructed by Twelf. Of course, most of the term constructors can be defined
in terms of only a few primitive ones. In particular, the Twelf symbol ! can be
defined as the composition of !! and ^, and similarly ?. However, since they are
irrelevant for type checking, definitions are not used here.

Figure 6 shows the translation of the formulae from Figure 1. A THF0 type
declaration for a constant c with type A is translated to the Twelf declaration
c : $tm A. An axiom or conjecture F is translated to a Twelf declaration for the
type $istrue F’, where F’ is the translation of F. In the latter case the Twelf
name of the declaration is irrelevant for type-checking. By using the role, i.e.,
axiom or conjecture, as the Twelf name, the role of the original TPTP formula
can be recovered from its Twelf translation.

Via the Curry-Howard correspondence [10,17], the representation of THF0 in
Twelf can be extended to represent proofs – it is necessary only to add dec-
larations for the proof rules to Σ0, i.e., β-η-conversion, and the rules for the
connectives and quantifiers. If future versions of THF0 provide a standard for-
mat for explicit proof terms, Twelf can serve as a neutral trusted proof checker.

THF0 – The Core of the TPTP Language for Higher-Order Logic 501

in : $tm($i > ($i > $o) > $o).
intersection : $tm(($i > $o) > ($i > $o) > ($i > $o)).
union : $tm(($i > $o) > ($i > $o) > ($i > $o)).
axiom : $istrue in == ^[X : $tm $i] ^[S : $tm($i > $o)](S @ X).
axiom : $istrue intersection ==

^[S1: $tm($i > o)] ^[S2: $tm($i > $o)] ^[U: $tm $i]
((in @ U @ S1) & (in @ U @ S2)).

axiom : $istrue union ==
^[S1: $tm($i > $o)] ^[S2: $tm($i > $o)] ^[U: $tm $i]
(in @ U @ S1) | (in @ U @ S2).

conjecture : $istrue
!![A: $tm($i > $o)] !![B: $tm($i > $o)] !![C: $tm($i > $o)]

((union @ A @ (intersection @ B @ C))
== (intersection @ (union @ A @ B) @ (union @ A @ C))).

Fig. 6. Twelf translation of Figure 1

5 TPTP Resources

The first-order TPTP provides a range of resources to support use of the prob-
lem library and related infrastructure. Many of these resources are immediately
applicable to the higher-order setting, while some require changes to reflect the
new features in the THF0 language.

The main resource for users is the TPTP problem library itself. At the time
of writing around 100 THF problems have been collected, and are being pre-
pared for addition to a THF extension of the library. THF file names have an
@ separator between the abstract problem name and the version number (corre-
sponding to the - in CNF problem names and the + in FOF problem names),
e.g., the example problem in Figure 1 will be put in SET171@4.p. The existing
header fields of TPTP problems have been slightly extended to deal with higher-
order features. First, the Status field, which records the semantic status of the
problem in terms of the SZS ontology, provide status values for each semantics
of interest [3,4]. Second, the Syntax field, which records statistics of syntactic
characteristics of the problem, has been extended to include counts of the new
connectives that are part of THF0.

Tools that support the TPTP include the tptp2X and tptp4X utilities, which
read, analyse, transform, and output TPTP problems. tptp2X is written in Pro-
log, and it has been extended to read, analyse, and output problems written
in THF0. The translation to Twelf syntax has been implemented as a tptp2X
format module, producing files that can be type-checked directly. The Twelf
translation has been used to type-check (and in some cases correct) the THF
problems collected thus far. The extended tptp2X is part of TPTP v3.4.0. tptp4X
is based on the JJParser library of code written in C. This will be extended to
cope with higher-order formulae.

The flipside of the TPTP problem library is the TSTP solution library. Once
the higher-order part of the TPTP problem library is in place it is planned to
extend the TSTP to include results from higher-order ATP systems on the THF

502 C. Benzmüller, F. Rabe, and G. Sutcliffe

problems. The harnesses used for building the first-order TSTP will be used as-is
for the higher-order extension.

A first competition “happening” for higher-order ATP systems that can read
THF0 will be held at IJCAR 2008. This event will be similar to the CASC
competition for first-order ATP systems, but with a less formal evaluation phase.
It will exploit and test the THF0 language.

6 Conclusion

This paper has described, with examples, the core of the TPTP language for
higher-order logic (Church’s simple type theory) – THF0. The TPTP infras-
tructure is being extended to support problems, solutions, tools, and evalua-
tion of ATP systems using the THF0 language. Development and adoption of
the THF0 language and associated TPTP infrastructure will support research
and development in automated higher-order reasoning, providing leverage for
progress leading to effective and successful application. To date only the LEO
II system [8] is known to use the THF0 language. It is hoped that more high-
order reasoning systems and tools will adopt the THF language, making easy
and direct communication between the systems and tools possible.

Acknowledgements. Chad Brown contributed to the design of the THF lan-
guage. Allen Van Gelder contributed to the development of the THF syntax
and BNF. Frank Theiss and Arnaud Fietzke implemented the LEO-II parser for
THF0 language and provided useful feedback.

References

1. Andrews, P.B., Bishop, M., Issar, S., Nesmith, D., Pfenning, F., Xi, H.: TPS:
A Theorem-Proving System for Classical Type Theory. Journal of Automated
Reasoning 16(3), 321–353 (1996)

2. Beeson, M.: Otter-lambda, a Theorem-prover with Untyped Lambda-unification.
In: Sutcliffe, G., Schulz, S., Tammet, T. (eds.) Proceedings of the Workshop on
Empirically Successful First Order Reasoning (2004)

3. Benzmüller, C., Brown, C.: A Structured Set of Higher-Order Problems. In: Hurd,
J., Melham, T. (eds.) TPHOLs 2005. LNCS, vol. 3603, pp. 66–81. Springer, Hei-
delberg (2005)

4. Benzmüller, C., Brown, C., Kohlhase, M.: Higher-order Semantics and Extension-
ality. Journal of Symbolic Logic 69(4), 1027–1088 (2004)

5. Benzmüller, C., Kohlhase, M.: LEO - A Higher-Order Theorem Prover. In: Kirch-
ner, C., Kirchner, H. (eds.) CADE 1998. LNCS (LNAI), vol. 1421, pp. 139–143.
Springer, Heidelberg (1998)

6. Benzmüller, C., Paulson, L.: Exploring Properties of Normal Multimodal Logics
in Simple Type Theory with LEO-II. In: Benzmüller, C., Brown, C., Siekmann,
J., Statman, R. (eds.) Festschrift in Honour of Peter B. Andrews on his 70th
Birthday. IfCoLog (to appear 2007)

7. Benzmüller, C., Sorge, V., Jamnik, M., Kerber, M.: Combined Reasoning by Au-
tomated Cooperation. Journal of Applied Logic (in print) (2008)

THF0 – The Core of the TPTP Language for Higher-Order Logic 503

8. Benzmüller, C., Theiss, F., Paulson, L., Fietzke, A.: LEO-II - A Cooperative Au-
tomatic Theorem Prover for Higher-Order Logic. In: Armando, A., Baumgartner,
P., Dowek, G. (eds.) Proceedings of the 4th International Joint Conference on Au-
tomated Reasoning (IJCAR 2008). LNCS (LNAI), vol. 5195. Springer, Heidelberg
(2008)

9. Church, A.: A Formulation of the Simple Theory of Types. Journal of Symbolic
Logic 5, 56–68 (1940)

10. Curry, H.B., Feys, R.: Combinatory Logic I. North Holland, Amsterdam (1958)
11. Frege, F.: Grundgesetze der Arithmetik. Jena (1893) (1903)
12. Godefroid, P.: Software Model Checking: the VeriSoft Approach. Technical Report

Technical Memorandum ITD-03-44189G, Bell Labs, Lisle, USA (2003)
13. Gordon, M., Melham, T.: Introduction to HOL, a Theorem Proving Environment

for Higher Order Logic. Cambridge University Press, Cambridge (1993)
14. Harper, R., Honsell, F., Plotkin, G.: A Framework for Defining Logics. Journal of

the ACM 40(1), 143–184 (1993)
15. Harrison, J.: HOL Light: A Tutorial Introduction. In: Srivas, M., Camilleri, A.

(eds.) FMCAD 1996. LNCS, vol. 1166, pp. 265–269. Springer, Heidelberg (1996)
16. Henkin, L.: Completeness in the Theory of Types. Journal of Symbolic Logic 15,

81–91 (1950)
17. Howard, W.: The Formulas-as-types Notion of Construction. In: Seldin, J., Hind-

ley, J. (eds.) H B Curry, Essays on Combinatory Logic, Lambda Calculus and
Formalism, pp. 479–490. Academic Press, London (1980)

18. Martin-Löf, P.: An Intuitionistic Theory of Types. In: Sambin, G., Smith, J. (eds.)
Twenty-Five Years of Constructive Type Theory, pp. 127–172. Oxford University
Press, Oxford (1973)

19. Matuszek, C., Cabral, J., Witbrock, M., DeOliveira, J.: An Introduction to the
Syntax and Content of Cyc. In: Baral, C. (ed.) Proceedings of the 2006 AAAI
Spring Symposium on Formalizing and Compiling Background Knowledge and
Its Applications to Knowledge Representation and Question Answering, pp. 44–
49 (2006)

20. Niles, I., Pease, A.: Towards A Standard Upper Ontology. In: Welty, C., Smith,
B. (eds.) Proceedings of the 2nd International Conference on Formal Ontology in
Information Systems, pp. 2–9 (2001)

21. Nipkow, T., Paulson, L.C., Wenzel, M.T.: Isabelle/HOL. LNCS, vol. 2283.
Springer, Heidelberg (2002)

22. Owre, S., Rajan, S., Rushby, J.M., Shankar, N., Srivas, M.: PVS: Combining
Specification, Proof Checking, and Model Checking. In: Alur, R., Henzinger, T.A.
(eds.) CAV 1996. LNCS, vol. 1102, pp. 411–414. Springer, Heidelberg (1996)

23. Pfenning, F., Schürmann, C.: System Description: Twelf - A Meta-Logical Frame-
work for Deductive Systems. In: Ganzinger, H. (ed.) CADE 1999. LNCS (LNAI),
vol. 1632, pp. 202–206. Springer, Heidelberg (1999)

24. Rudnicki, P.: An Overview of the Mizar Project. In: Proceedings of the 1992
Workshop on Types for Proofs and Programs, pp. 311–332 (1992)

25. Siekmann, J., Benzmüller, C., Autexier, S.: Computer supported mathematics
with omega. Journal of Applied Logic 4(4), 533–559 (2006)

26. Sutcliffe, G.: TPTP, TSTP, CASC, etc. In: Diekert, V., Volkov, M.V., Voronkov,
A. (eds.) CSR 2007. LNCS, vol. 4649, pp. 7–23. Springer, Heidelberg (2007)

27. Sutcliffe, G., Schulz, S., Claessen, K., Gelder, A.V.: Using the TPTP Language
for Writing Derivations and Finite Interpretations. In: Furbach, U., Shankar, N.
(eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 67–81. Springer, Heidelberg
(2006)

504 C. Benzmüller, F. Rabe, and G. Sutcliffe

28. Sutcliffe, G., Suttner, C.: The State of CASC. AI Communications 19(1), 35–48
(2006)

29. Sutcliffe, G., Suttner, C.B.: The TPTP Problem Library: CNF Release v1.2.1.
Journal of Automated Reasoning 21(2), 177–203 (1998)

30. Sutcliffe, G., Zimmer, J., Schulz, S.: TSTP Data-Exchange Formats for Auto-
mated Theorem Proving Tools. In: Zhang, W., Sorge, V. (eds.) Distributed Con-
straint Problem Solving and Reasoning in Multi-Agent Systems. Frontiers in Arti-
ficial Intelligence and Applications, vol. 112, pp. 201–215. IOS Press, Amsterdam
(2004)

31. Gelder, A.V., Sutcliffe, G.: Extending the TPTP Language to Higher-Order Logic
with Automated Parser Generation. In: Furbach, U., Shankar, N. (eds.) IJCAR
2006. LNCS (LNAI), vol. 4130, pp. 156–161. Springer, Heidelberg (2006)

32. Zermelo, E.: Über Grenzzahlen und Mengenbereiche. Fundamenta Mathemati-
cae 16, 29–47 (1930)

A BNF for THF0

The BNF uses a modified BNF meta-language that separates syntactic, semantic,
lexical, and character-macro rules [27]. Syntactic rules use the standard ::=
separator, semantic constraints on the syntactic rules use a :== separator, rules
that produce tokens from the lexical level use a ::- separator, and the bottom
level character-macros are defined by regular expressions in rules using a :::
separator. The BNF is easy to translate into parser-generator (lex/yacc, antlr,
etc.) input [31].

The syntactic and semantic grammar rules for THF0 are presented here. The
rules defining tokens and character macros are available from the TPTP web
site, www.tptp.org.

%--
%----Files. Empty file is OK.
<TPTP_file> ::= <TPTP_input>*
<TPTP_input> ::= <annotated_formula> | <include>

%----Formula records
<annotated_formula> ::= <thf_annotated>
<thf_annotated> ::= thf(<name>,<formula_role>,<thf_formula><annotations>).
<annotations> ::= <null> | ,<source><optional_info>
%----In derivations the annotated formulae names must be unique, so that
%----parent references (see <inference_record>) are unambiguous.

%----Types for problems.
<formula_role> ::= <lower_word>
<formula_role> :== axiom | hypothesis | definition | assumption |

lemma | theorem | conjecture | negated_conjecture |
plain | fi_domain | fi_functors | fi_predicates |
type | unknown

%--
%----THF0 formulae. All formulae must be closed.
<thf_formula> ::= <thf_logic_formula> | <thf_typed_const>
<thf_logic_formula> ::= <thf_binary_formula> | <thf_unitary_formula>
<thf_binary_formula> ::= <thf_pair_binary> | <thf_tuple_binary>
%----Only some binary connectives can be written without ()s.
%----There’s no precedence among binary connectives
<thf_pair_binary> ::= <thf_unitary_formula> <thf_pair_connective>

<thf_unitary_formula>
%----Associative connectives & and | are in <assoc_formula>.

www.tptp.org

THF0 – The Core of the TPTP Language for Higher-Order Logic 505

<thf_tuple_binary> ::= <thf_or_formula> | <thf_and_formula> |
<thf_apply_formula>

<thf_or_formula> ::= <thf_unitary_formula> <vline> <thf_unitary_formula> |
<thf_or_formula> <vline> <thf_unitary_formula>

<thf_and_formula> ::= <thf_unitary_formula> & <thf_unitary_formula> |
<thf_and_formula> & <thf_unitary_formula>

<thf_apply_formula> ::= <thf_unitary_formula> @ <thf_unitary_formula> |
<thf_apply_formula> @ <thf_unitary_formula>

%----<thf_unitary_formula> are in ()s or do not have a <binary_connective>
%----at the top level. Essentially, a <thf_unitary_formula> is any lambda
%----expression that "has enough parentheses" to be used inside a larger
%----lambda expression. However, lambda notation might not be used.
<thf_unitary_formula> ::= <thf_quantified_formula> | <thf_abstraction> |

<thf_unary_formula> | <thf_atom> |
(<thf_logic_formula>)

<thf_quantified_formula> ::= <thf_quantified_var> | <thf_quantified_novar>
<thf_quantified_var> ::= <quantifier> [<thf_variable_list>] :

<thf_unitary_formula>
<thf_quantified_novar> ::= <thf_quantifier> (<thf_unitary_formula>)
%----@ (denoting apply) is left-associative and lambda is right-associative.
<thf_abstraction> ::= <thf_lambda> [<thf_variable_list>] :

<thf_unitary_formula>
<thf_variable_list> ::= <thf_variable> | <thf_variable>,<thf_variable_list>
<thf_variable> ::= <variable> | <thf_typed_variable>
<thf_typed_variable> ::= <variable> : <thf_top_level_type>
%----Unary connectives bind more tightly than binary. The negated formula
%----must be ()ed because a ~ is also a term.
<thf_unary_formula> ::= <thf_unary_connective> (<thf_logic_formula>)

%----An <thf_typed_const> is a global assertion that the atom is in this type.
<thf_typed_const> ::= <constant> : <thf_top_level_type> | (<thf_typed_const>)

%----THF atoms
<thf_atom> ::= <constant> | <defined_constant> | <system_constant> |

<variable> | <thf_conn_term>
%----<defined_constant> is really a <defined_prop>, but that’s the syntax rule
%----used. <thf_atom> can also be <defined_type>, but they are syntactically
%----captured by <defined_constant>. Ditto for <system_*>.

%----<thf_top_level_type> appears after ":", where a type is being specified
%----for a term or variable.
<thf_unitary_type> ::= <constant> | <variable> | <defined_type> |

<system_type> | (<thf_binary_type>)
<thf_top_level_type> ::= <constant> | <variable> | <defined_type> |

<system_type> | <thf_binary_type>
<thf_binary_type> ::= <thf_mapping_type> | (<thf_binary_type>)
<thf_mapping_type> ::= <thf_unitary_type> <arrow> <thf_unitary_type> |

<thf_unitary_type> <arrow> <thf_mapping_type>
%--
%----Special higher order terms
<thf_conn_term> ::= <thf_quantifier> | <thf_pair_connective> |

<assoc_connective> | <thf_unary_connective>

%----Connectives - THF
<thf_lambda> ::= ^
<thf_quantifier> ::= !! | ??
<thf_pair_connective> ::= <defined_infix_pred> | <binary_connective>
<thf_unary_connective> ::= <unary_connective>
%----Connectives - FOF
<quantifier> ::= ! | ?
<binary_connective> ::= <=> | => | <= | <~> | ~<vline> | ~&
<assoc_connective> ::= <vline> | &
<unary_connective> ::= ~

%----Types for THF and TFF
<defined_type> ::= <atomic_defined_word>
<defined_type> :== $oType | $o | $iType | $i | $tType
%----$oType/$o is the Boolean type, i.e., the type of $true and $false.

506 C. Benzmüller, F. Rabe, and G. Sutcliffe

%----$iType/$i is type of individuals. $tType is the type of all types.
<system_type> ::= <atomic_system_word>

%----First order atoms
<defined_prop> :== <atomic_defined_word>
<defined_prop> :== $true | $false
<defined_infix_pred> ::= = | !=

%----First order terms
<constant> ::= <functor>
<functor> ::= <atomic_word>
<defined_constant> ::= <atomic_defined_word>
<system_constant> ::= <atomic_system_word>
<variable> ::= <upper_word>
%--
%----General purpose
<name> ::= <atomic_word> | <unsigned_integer>
<atomic_word> ::= <lower_word> | <single_quoted>
<atomic_defined_word> ::= <dollar_word>
<atomic_system_word> ::= <dollar_dollar_word>
<null> ::=
%--

Focusing in Linear Meta-logic

Vivek Nigam and Dale Miller

INRIA & LIX/École Polytechnique, Palaiseau, France
nigam@lix.polytechnique.fr, dale.miller@inria.fr

Abstract. It is well known how to use an intuitionistic meta-logic to
specify natural deduction systems. It is also possible to use linear logic
as a meta-logic for the specification of a variety of sequent calculus proof
systems. Here, we show that if we adopt different focusing annotations
for such linear logic specifications, a range of other proof systems can
also be specified. In particular, we show that natural deduction (normal
and non-normal), sequent proofs (with and without cut), tableaux, and
proof systems using general elimination and general introduction rules
can all be derived from essentially the same linear logic specification by
altering focusing annotations. By using elementary linear logic equiva-
lences and the completeness of focused proofs, we are able to derive new
and modular proofs of the soundness and completeness of these various
proofs systems for intuitionistic and classical logics.

1 Introduction

Logics and type systems have been exploited in recent years as frameworks for the
specification of deduction in a number of logics. The most common such meta-
logics and logical frameworks have been based on intuitionistic logic (see, for
example, [FM88]) or dependent types (see [HHP93, Pfe89]). Such intuitionistic
logics can be used to directly encode natural deduction style proof systems.

In a series of papers [Mil96, Pim01, MP02, MP04, PM05], Miller & Pimentel
used classical linear logic as a meta-logic to specify and reason about a variety
of sequent calculus proof systems. Since the encodings of such logical systems
are natural and direct, the meta-theory of linear logic can be used to draw
conclusions about the object-level proof systems. More specifically, in [MP02], a
decision procedure was presented for determining if one encoded proof system is
derivable from another. In the same paper, necessary conditions were presented
(together with a decision procedure) for assuring that an encoded proof system
satisfies cut-elimination. This last result used linear logic’s dualities to formalize
the fact that if the left and right introduction rules are suitable duals of each
other then non-atomic cuts can be eliminated.

In this paper, we again use linear logic as a meta-logic but make critical
use of the completeness of focused proofs for linear logic. Roughly speaking,
focused proofs in linear logic divide sequent calculus proofs into two different
phases: the negative phase involves rules that are invertible while the positive
phase involves the focused non-invertible rules. In linear logic, it is clear to

A. Armando, P. Baumgartner, and G. Dowek (Eds.): IJCAR 2008, LNCS 5195, pp. 507–522, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

508 V. Nigam and D. Miller

which phase each linear logic connective appears but it is completely arbitrary
how atomic formulas can be assigned to these different phases. For example, all
atomic formulas can be assigned a negative polarity or a positive polarity or, in
fact, any mixture of these. The completeness of focused proofs then states that if
a formula B is provable in linear logic and we fix on any polarity assignment to
atomic formulas, then B will have a focused proof. (Soundness also holds.) Thus,
while polarity assignment does not affect provability, it can result in strikingly
different proofs. The earlier works of Miller & Pimentel assumed that all atoms
were given negative polarity: this resulted in an encoding of object-level sequent
calculus. As we shall show here, if we vary that polarity assignment, we can
get other object-level proof systems represented. Thus, while provability is not
affected, different, meta-level, focused proofs are built and these encode different
object-level proof systems.

Our main contribution in this paper is illustrating how a range of proof sys-
tems can be seen as different focusing disciplines on the same or (meta-logically)
equivalent sets of linear logic specifications. Soundness and relative complete-
ness are generally trivial consequences of linear logic identities. In particular, we
present examples based on sequent calculus and natural deduction [Gen69], Gen-
eralized Elimination Rules [vP01], Free Deduction [Par92], the tableaux system
KE [DM94], and Smullyan’s Analytic Cut [Smu68]. The adequacy of a given spec-
ification of inference rules requires first assigning polarity to meta-level atoms
using in the specification: then adequacy is generally an immediate consequence
of the focusing theorem of linear logic.

Finally, we attempt to point out how deep the equivalence of encoded proof
systems goes by describing three levels of encoding adequacy: relative complete-
ness where the provable set of formulas is the same, full completeness of proofs
where the completed proofs are in one-to-one correspondence, and full complete-
ness of derivations where (open) derivations (such as inference rules themselves)
are also in one-to-one correspondence.

2 Preliminaries

2.1 Linear Logic

We shall assume that the reader is familiar with linear logic. We review a few
basic points here. Literals are either atomic formulas or their negations. We
write ¬F to denote the negation normal form of the formula F : that is, formulas
computed by using de Morgan dualities and where negation has only atomic
scope. The connectives ⊗ and � and their units 1 and ⊥ are multiplicative; the
connectives ⊕ and & and their units 0 and � are additive connectives; ∀ and ∃
are (first-order) quantifiers; and ! and ? are the exponentials.

In general, we shall present theories in the linear meta-logic as appearing on
the right-hand side of sequents. Thus, if X is a set of closed formulas then we
say that the formula B is derived using theory X if , B,X is provable in linear
logic. We shall also write B ≡ C to denote the formula (¬B � C) & (¬C � B).

Focusing in Linear Meta-logic 509

(⇒L) +A⇒ B,⊥ ⊗ (.A/ ⊗ +B,) (⇒R) .A⇒ B/⊥ ⊗ (+A, � .B/)
(∧L) +A ∧B,⊥ ⊗ (+A, ⊕ +B,) (∧R) .A ∧B/⊥ ⊗ (.A/& .B/)
(∨L) +A ∨B,⊥ ⊗ (+A,& +B,) (∨R) .A ∨B/⊥ ⊗ (.A/ ⊕ .B/)
(∀L) +∀B,⊥ ⊗ +Bx, (∀R) .∀B/⊥ ⊗ ∀x.Bx/
(∃L) +∃B,⊥ ⊗ ∀x+Bx, (∃R) .∃B/⊥ ⊗ .Bx/
(⊥L) +⊥,⊥ (tR) .t/⊥ ⊗

Fig. 1. The theory L used to encode various proof systems for minimal, intuitionistic,
and classical logics

(Id1) +B,⊥ ⊗ .B/⊥ (Id2) +B, ⊗ .B/ (WR) .C/⊥ ⊗⊥
(StrL) +B,⊥ ⊗ ?+B, (StrR) .B/⊥ ⊗ ?.B/

Fig. 2. Specification of the identity rules (cut and initial) and of the structural rules
(weakening and contraction)

2.2 Encoding Object-Logic Formulas, Sequents, and Inference Rules

We use linear logic as a meta-logic to encode object logics, in a similar fashion
as done in [Mil96, Pim01]. We shall assume that our meta-logic is a multi-sorted
version of linear logic: in particular, the type o denotes meta-level formulas,
the type form denotes object-level formulas, and the type i denotes object-level
terms. Object-level formulas are encoded in the usual way: in particular, the
object-level quantifiers ∀, ∃ are given the type (i → form) → form and the
expressions ∀(λx.B) and ∃(λx.B) are written, respectively, as ∀x.B and ∃x.B.
To deal with quantified object-level formulas, our meta-logic will quantify over
variables of types i→ · · · → i→ form (for 0 or more occurrences of i).

Encoding object-level sequents as meta-logic sequents is done by introducing
two meta-level predicates of type form → o, written as 3·4 and ;·<, and then
writing the two-sided, object-level sequent B1, . . . , Bn , C1, . . . , Cm as the one-
sided, meta-level sequent , 3B14, . . . , 3Bn4, ;C1<, . . . , ;Cm<. Thus formulas on
the left of the object-level sequent are marked using 3·4 and formulas on the right
of the object-level sequent are marked using ;·<. We shall assume that object-
level sequents are pairs of either sets or multisets and that meta-level sequents
are multisets of formulas. For convenience, if Γ is a (multi)set of formulas, 3Γ 4
(resp. ;Γ <) denotes the multiset of atoms {3F 4 | F ∈ Γ} (resp. {;F < | F ∈ Γ}).

Inference rules generally attribute to a logical connective two dual “senses”: in
sequent calculus, these correspond to the left-introduction and right-introduction
rules while in natural deduction, these correspond to the introduction and elim-
ination rules. Consider the linear logic formulas in Figure 1. When we display
formulas in this manner, we intend that the named formula is actually the result
of applying ? to existential closure of the formula. Thus, the formula named ∧L

is actually ?∃A∃B[3A ∧ B4⊥ ⊗ (3A4 ⊕ 3B4)]. The formulas in Figure 1 help to
provide the meaning of connectives in a rather abstract and succinct fashion. For
example, the conjunction connective appears in two formulas: once in the scope
of 3·4 and once in the scope of ;·<. Notice that there is no explicit reference to

510 V. Nigam and D. Miller

side formulas or any side conditions for any of these rules. We shall provide a
much more in-depth analysis of the formulas in Figure 1 in the following sections.

The formulas in Figure 2 play a central role in this paper. The Id1 and Id2

formulas can prove the duality of the 3·4 and ;·< predicates: in particular, one
can prove in linear logic that

, ∀B(;B< ≡ 3B4⊥) & ∀B(3B4 ≡ ;B<⊥), Id1, Id2

Similarly, the formulas StrL and StrR allow us to prove the equivalences 3B4 ≡
?3B4 and ;B< ≡ ?;B<. The last two equivalences allows the weakening and
contraction of formulas at both the meta-level and object-level. For instance, in
the encoding of minimal logics, where structural rules are only allowed in the
left-hand-side, one should include only the StrL formula; while in the encoding
of classical logics, where structural rules are allowed in both sides of a sequent,
one should include both StrL and StrR formulas. Moreover, since the presence of
these two formulas allows contracting and weakening of 3·4 and ;·< atoms, one
can show that the specification L∪{StrL, StrR} is equivalent to the specification
obtained from it but where the “additive rules” ∧L,∧R,∨L,∨R are replaced by
the existential closure of their multiplicative versions, namely

;A ∧B<⊥ ⊗ (;A< ⊗ ;B<) 3A ∧B4⊥ ⊗ (3A4 � 3B4)
3A ∨B4⊥ ⊗ (;A< ⊗ ;B<) ;A ∨B<⊥ ⊗ (;A< � 3B4).

The formula WR encodes the weakening right rule and is used to encode intu-
itionistic logics, where weakening, but not contraction, is allowed on formulas on
the right-hand-side of a sequent.

2.3 Adequacy Levels for Encodings

When comparing deductive systems, one can easily identify several “levels of ad-
equacy”. For example, Girard in [Gir06, Chapter 7] proposes three levels of ade-
quacy based on semantical notions: the level of truth, the level of functions, and the
level of actions. Here, we also identify three levels of adequacy but from a proof-
theoretical point-of-view. The weakest level of adequacy is relative completeness
which considers only provability: a formula has a proof in one system if it has a
proof in another system. A stronger level of adequacy is of full completeness of
proofs : the proofs of a given formula are in one-to-one correspondence with proofs
in another system. If one uses the term “derivation” for possibly incomplete proofs
(proofs that may have open premises), we can consider a even stronger level of ad-
equacy. We use the term full completeness of derivations, if the derivations (such
as inference rules themselves) in one system are in one-to-one correspondence with
those in another system. When we state equivalences between proof systems (usu-
ally between object-level proof systems and their meta-level encoding), we will
often comment on which level the theorem should be placed.

2.4 A Focusing Proof System for Linear Logic

In [And92], Andreoli proved the completeness of the focused proof system for
linear logic given in Figure 3. Focusing proof systems involve applying inference

Focusing in Linear Meta-logic 511

rules in alternating polarities or phases. In particular, formulas are negative if
their top-level connective is either �,⊥,&,�, ?, or ∀; formulas are positive if their
top-level connective is⊕, 0,⊗, 1, !, or ∃. This polarity assignment is rather natural
in the sense that all right introduction rules for negative formulas are invertible
while such introduction rules for positive formulas are not necessarily invertible.
The only formulas that are not given polarities by the above assignment are the
literals. In the negative phase, represented by the judgment, , Θ : Γ ⇑ L, rules
are applied only to negative formulas appearing in L, while positive formulas are
moved to one of the multisets, Θ or Γ , to the left of the ⇑, by using the [R ⇑] or
[?] rules. When L is empty the positive phase begins by using one of the decide
rules, [D1] or [D2], and selecting one formula to focus on, represented by the
judgment , Θ : Γ ⇓ F . Rules are then applied hereditarily to subformulas of F ,
but if a negative subformula is encountered, focus is lost by using the reaction
rule [R ⇓] and another negative phase begins. Andreoli’s completeness theorem
can be interpreted as follows: If F is a provable linear logic formula, then for
any assignment of polarities to the atomic formulas of linear logic, the sequent
, · : · ⇑ F is provable.

We point out two important aspects of this completeness theorem. First, the
focus proof system only works on “annotated formulas” and not regular formu-
las. Here, the annotation is a mapping of atoms to polarities. (In intuitionistic
and classical logics, one may also need to annotate conjunctions and disjunc-
tions [LM07].) Notice that the rules [I1] and [I2] explicitly refer to the polarity
assigned to literals. Second, an annotation does not affect provability but it may
affect greatly the structure of (focused) proofs that are possible. In papers such
as [LM07, MN07], differences in annotations allowed one to build only top-down
(goal-directed) proofs or only bottom-up (program-directed) proofs or combina-
tions of both. In this paper, we shall illustrate how it is possible to use different
polarity assignments (in the linear meta-logic) to derive different proof systems
(of an object-logic). In particular, sequent calculus and natural deduction can be
seen as two different annotations of the same linear logic specification of proof
rules for (object-level) connectives.

Our linear meta-logic will yield specifications of object-logic proof systems
only after we assign polarities to atoms of the form 3·4 and ;·<: then our adequacy
results will involve establishing relationships between focused meta-level proofs
and object-level proof systems.

3 Sequent Calculus

We first consider how to encode sequent calculus systems for minimal, intuition-
istic, and classical logics. The following three sets of formulas

Llm = (L \ {⊥L,⇒L}) ∪ {Id1, Id2, StrL,⇒′
L} Llj = Llm ∪ {⊥L,WR}

Llk = L ∪ {Id1, Id2, StrL, StrR}

where ⇒′
L is the formula ?∃A∃B[3A⇒ B4⊥⊗ (!;A<⊗ 3B4)], are used to encode

the LM, LJ and LK sequent calculus proof systems for minimal, intuitionistic,

512 V. Nigam and D. Miller

� Θ : Γ ⇑ L

� Θ : Γ ⇑ L,⊥ [⊥]
� Θ : Γ ⇑ L, F, G

� Θ : Γ ⇑ L, F � G
[�]

� Θ, F : Γ ⇑ L

� Θ : Γ ⇑ L, ?F
[?]

� Θ : Γ ⇑ L, []
� Θ : Γ ⇑ L, F � Θ : Γ ⇑ L, G

� Θ : Γ ⇑ L, F & G
[&]

� Θ : Γ ⇑ L, F [c/x]

� Θ : Γ ⇑ L,∀x F
[∀]

� Θ :⇓ 1
[1]

� Θ : Γ ⇓ F � Θ : Γ ′ ⇓ G

� Θ : Γ, Γ ′ ⇓ F ⊗G
[⊗]

� Θ :⇑ F

� Θ :⇓ ! F
[!]

� Θ : Γ ⇓ F

� Θ : Γ ⇓ F ⊕G
[⊕l]

� Θ : Γ ⇓ G

� Θ : Γ ⇓ F ⊕G
[⊕r]

� Θ, F : Γ ⇓ F [t/x]

� Θ : Γ ⇓ ∃x F
[∃]

� Θ : A⊥
p ⇓ Ap

[I1]
� Θ, A⊥

p :⇓ Ap

[I2]
� Θ : Γ, S ⇑ L

� Θ : Γ ⇑ L, S
[R ⇑]

� Θ : Γ ⇓ P

� Θ : Γ, P ⇑ [D1]
� Θ, P : Γ ⇓ P

� Θ, P : Γ ⇑ [D2]
� Θ : Γ ⇑ N

� Θ : Γ ⇓ N
[R ⇓]

Fig. 3. The focused proof system for linear logic [And92]. Here, L is a list of formulas,
Θ is a multiset of formulas, Γ is a multiset of literals and positive formulas, Ap is a
positive literal, N is a negative formula, P is not a negative literal, and S is a positive
formula or a negated atom.

� K :⇓ +A⇒ B,⊥
[I2]

� K : .A/ ⇑
� K :⇓ !.A/

[!, R ⇑]
� K : +B,, .C/ ⇑
� K : .C/ ⇓ +B,

[R ⇓, R ⇑]

� K : .C/ ⇓ !.A/ ⊗ +B,
[⊗]

� K : .C/ ⇓ F
[2× ∃,⊗]

� K : .C/ ⇑ ·
[D2]

Fig. 4. Here, the formula A⇒ B ∈ Γ and K denotes the set Llm, +Γ ,

and classical logic (not displayed here to save space). These sets differ in the
structural rules for ;·<, in the presence or absence of the formula ⊥L and in
the formula encoding the left introduction for implication: in the LM encoding,
no structural rule is allowed in the right-hand-side formula; in the LJ encoding,
the right-hand formula can be weakened; and in the LK encoding, contraction
is also allowed (using the exponential ?). The ⊥L formula only appears in the
encodings of LJ and LK. In the theories for LM and LJ, the formula encoding
the left introduction rule for implication contains a !. We will comment more
about this difference later in this section.

If we fix the polarity of all meta-level atoms to be negative, then focused
proofs using Llm, Llj , and Llk yield encodings of the object-level proofs in LM,
LJ, and LK. To illustrate why focusing is relevant, consider the encoding of the
left introduction rule for ⇒: selecting this rule at the object-level corresponds
to focusing on the formula F = ∃A∃B[3A ⇒ B4⊥ ⊗ (!;A< ⊗ 3B4)] (which is
a member of Llm). The focused derivation in Figure 4 is then forced once F
is selected for the focus: for example, the left-hand-side subproof must be an
application of initial – nothing else will work with the focusing discipline. Notice

Focusing in Linear Meta-logic 513

that this meta-level derivation directly encodes the usual left introduction rule
for ⇒: the object-level sequents Γ,B , C and Γ , A yields Γ,A⇒ B , C.

Proposition 1. Let Γ ∪Δ∪ {C} be a set of object-level formulas. Assume that
all meta-level atomic formulas are given a negative polarity. Then

1) Γ ,lm C iff , Llm, 3Γ 4 : ;C< ⇑ 2) Γ ,lj C iff , Llj , 3Γ 4 : ;C< ⇑
3) Γ ,lk Δ iff , Llk, 3Γ 4, ;Δ< :⇑

This proposition is proved in [MP02, Pim01]. As stated, this proposition is a
relative completeness result. It is easy to see that, for LM, LJ, and LK, we can
obtain full completeness of proofs result: that is, focusing proofs using Llm, Llj ,
or Llk correspond directly to object-level sequent calculus proofs in LM, LJ, or
LK, respectively. As is apparent from the example above concerning the left-
introduction rule for ⇒, we can actually get a full completeness of derivations
result: inference rules in the object-level sequents are in one-to-one correspon-
dence with focused derivations in the meta-logic. To achieve this level of ade-
quacy, the ! in the encoding of the implication left-introduction rule is important
for minimal and intuitionistic logics.

If one removes the formula Id2 from the sets Llm, Llj , and Llk, obtaining the
sets Lf

lm, Lf
lj , and Lf

lk, respectively, one can restrict the proofs encoded to cut
free (object-level) proofs, represented by the judgments ,f

lm for minimal logic,
,f

lj for intuitionistic logic, and ,f
lk for classical logic.

Proposition 2. Let Γ ∪Δ∪ {C} be a set of object-level formulas. Assume that
all meta-level atomic formulas are given a negative polarity. Then

1) Γ ,f
lm C iff , Lf

lm, 3Γ 4 : ;C< ⇑ 2) Γ ,f
lj C iff , Lf

lj , 3Γ 4 : ;C< ⇑
3) Γ ,f

lk Δ iff , Lf
lk, 3Γ 4, ;Δ< :⇑

As above, similar results of full completeness of both proofs and derivations can
be proved.

4 Natural Deduction

The system depicted in Figure 5 is a intuitionistic variant of the classical system
in [SB98], presenting natural deduction using a sequent-style notation: sequents
of the form Γ ,nd C ↑, encoded as a meta-level sequent , Σ, 3Γ 4 : ;C< (for some
multiset of formulas Σ), are obtained from the conclusion by a derivation (from
bottom-up) where C is not the major premise of an elimination rule; and sequents
of the form Γ ,nd C ↓, encoded as a sequent , Σ, 3Γ 4 : 3C4⊥, are obtained from
the set of hypotheses by a derivation (from top-down) where C is extracted from
the major premise of an elimination rule. These two types of derivations meet
either with a match rule M or with a switch rule S. These two types of sequents
are used to distinguish general natural deduction proofs from the normal form
proofs, where the switch rule is not allowed. More precisely, normal proofs here

514 V. Nigam and D. Miller

Γ, A �nd A ↓ [Ax]
Γ �nd F ↑ Γ �nd G ↑

Γ �nd F ∧G ↑ [∧I]
Γ �nd F ∧G ↓

Γ �nd F ↓ [∧E]

Γ �nd Ai ↑
Γ �nd A1 ∨A2 ↑

[∨I]
Γ �nd A ∨B ↓ Γ, A �nd C ↑ (↓) Γ, B �nd C ↑ (↓)

Γ �nd C ↑ (↓)
[∨E]

Γ, A �nd B ↑
Γ �nd A⇒ B ↑ [⇒ I]

Γ �nd A⇒ B ↓ Γ �nd A ↑
Γ �nd B ↓ [⇒ E]

Γ �nd t ↑ [tI]

Γ �nd A{c/x} ↑
Γ �nd ∀x A ↑ [∀I]

Γ �nd ∀x A ↓
Γ �nd A{t/x} ↓

[∀E]
Γ �nd A ↓
Γ �nd A ↑ [M]

Γ �nd A ↑
Γ �nd A ↓ [S]

Γ �nd ∃x A ↓ Γ, A{a/x} �nd C ↑ (↓)
Γ �nd C ↑ (↓)

[∃E]
Γ �nd A{t/x} ↑
Γ �nd ∃x A ↑ [∃I]

Fig. 5. Rules for minimal natural deduction - NM. In [∨L], i ∈ {1, 2}.

coincide with the normal proofs as in [Pra65] only in the ∀,∧ and ⇒ fragment.
We use the judgment ,nd to denote the existence of a natural deduction proof
and the judgment ,n

nd to denote the existence of a normal natural deduction
proof.

We can account for natural deduction in minimal logic by simply changing
polarity assignment: in particular, atoms of the form 3·4 are now positive and all
atoms of the form ;·< have negative polarity. This change in polarity causes the
formula Id2, which behaved like the cut rule in sequent calculus, to now behave
like the switch rule, as illustrated by the following derivation.

, Σ, 3Γ 4 : 3C4⊥ ⇓ 3C4
[I1]

, Σ, 3Γ 4 : ;C< ⇑
, Σ, 3Γ 4 :⇓ ;C< [R ⇓, R ⇑]

, Σ, 3Γ 4 : 3C4⊥ ⇓ 3C4 ⊗ ;C<
[⊗]

, Σ, 3Γ 4 : 3C4⊥ ⇑
[D2, ∃]

As the following proposition states, to obtain an encoding of normal form proofs,
we do not include the formula Id2.

Proposition 3. Let Γ∪{C} be a set of object-level formulas and assume that all
;·< atomic formulas are given a negative polarity and that all 3·4 atomic formulas
are given a positive polarity. Then

1) Γ ,nm C↑ iff , Llm, 3Γ 4 : ;C< ⇑ 2) Γ ,n
nm C↑ iff , Lf

lm, 3Γ 4 : ;C< ⇑
3) Γ ,n

nm C↓ iff , Lf
lm, 3Γ 4 : 3C4⊥ ⇑

An equivalent full completeness of proofs statement can also be proved.
Since the polarity assignment in a focused system does not affect provability,

we obtain for free the following relative completeness result between LM and
NM.

Corollary 1. If Γ ∪ {C} be a set of object-level formulas, then

Γ ,lm C iff Γ ,nm C and Γ ,f
lm C iff Γ ,n

nm C.

Focusing in Linear Meta-logic 515

Treating negation (in particular, falsity) in natural deduction presentations of
intuitionistic and classical logics is not straightforward. We show in [NM08]
that extra meta-logic formulas are needed to encode these systems. Since the
treatment of negation in natural deduction is not one about focusing in the
meta-level, we do not discuss this issue further here.

5 Natural Deduction with General Elimination Rules

Schroeder-Heister proposed an extension of natural deduction in [SH84], which
we call “general natural deduction”, by using the general elimination rules, de-
picted in Figure 6, that treats all elimination rules in the same indirect style that
is usually used for disjunction elimination rule. To encode proofs in the general
natural deduction, we assign negative polarity to 3·4 and ;·< atoms, and use the
set of formulas Lge, obtained from Llm by removing the formulas ∨L,∧L,⇒′

L, ∀L

and adding the existential closure of the following four formulas:

;A⇒ B< ⊗ (!;A< ⊗ 3B4) ;∀B< ⊗ 3Bx4
;A ∨B< ⊗ (3A4& 3B4) ;A ∧B< ⊗ (3A4 � 3B4)

Proposition 4. Let Γ ∪ {C} be a set of object-level formulas. Assume that
all meta-level atomic formulas are given a negative polarity. Then Γ ,ge C iff
, Lge, 3Γ 4 : ;C< ⇑.

An equivalent full completeness of proofs statement can also be proved.
Notice that there are two differences between the formulas displayed above

and the original formulas in Llm that they replace. 1) The presence of the mul-
tiplicative version of ∧L, and 2) the replacement of literals of the form 3B4⊥ by
;B<. Moreover, notice that without the Id2 formula the equivalence 3B4⊥ ≡ ;B<
is not satisfied and, therefore, the set of formulas in Lge is not equivalent to Lf

lm.
Therefore, we relate general natural deduction to the formulation of LM that
contains the cut rule.

Corollary 2. Let Γ ∪ {C} be a set of object-level formulas. Then Γ ,ge C iff
Γ ,lm C.

Negri and Plato in [NP01] propose a different notion of normal proofs in general
natural deduction: Derivations in general normal form have all major premises
of elimination rules as assumption. In other words, the major premises, rep-
resented by the bracketed formula in the general elimination rules shown in

Γ �ge [A ∨ B] Γ, A �ge C Γ, B �ge C

Γ �ge C

Γ �ge [A ∧B] Γ, A, B �ge C

Γ �ge C

Γ �ge [A⇒ B] Γ �ge A Γ, B �ge C

Γ �ge C

Γ �ge [∀x A] Γ, A{t/x} �ge C

Γ �ge C

Fig. 6. Four general elimination rules. The major premise is marked with brackets.

516 V. Nigam and D. Miller

Figure 6, are discharged assumptions. In our framework, this amounts to en-
forcing, by the use of polarity assignment to meta-level atoms, that the major
premises are present in the set of assumptions. We use the set Lf

lm and assign
negative polarity to all atoms of the form 3·4 and ;·<, to encode general normal
form proofs, represented by the judgment ,n

ge.

Proposition 5. Let Γ ∪ {C} be a set of object-level formulas. Assume that
all meta-level atomic formulas are given a negative polarity. Then Γ ,n

ge C iff
, Lf

lm, 3Γ 4 : ;C< ⇑.

An equivalent full completeness of proofs statement can also be proved.
It is easy to see in our framework that cut-free sequent calculus proofs can

easily be obtained from general normal forms proofs, and vice-versa, since, to
encode both systems, we use exactly the same formulas, Lf

lm, and assign the
same polarity to 3·4 and ;·< atoms.

Corollary 3. Let Γ be a set of formulas and let C be a formula. Then Γ ,n
ge C

iff Γ ,f
lm C.

6 Free Deduction

In [Par92], Parigot introduced the free deduction proof system for classical logic
that employed both the general elimination rules of the previous section and gen-
eral introduction rules1. The general introduction rules are depicted in Figure 7.

Γ, A ∨B �fd Δ Γ �fd Δ, A

Γ �fd Δ
[∨GI]

Γ, A⇒ B �fd Δ Γ, A �fd Δ, B

Γ �fd Δ
[⇒ GI]

Γ, A ∧B �fd Δ Γ �fd Δ, A Γ �fd Δ, B

Γ �fd Δ
[∧GI]

Γ,¬A �fd Δ Γ, A �fd Δ

Γ �fd Δ
[¬GI1]

Γ �fd Δ,¬A Γ �fd Δ, A

Γ �fd Δ
[¬GI2]

Fig. 7. The general introduction rules

To encode free deduction proofs, we proceed similarly to the treatment of nat-
ural deduction with general eliminations rules. In particular, we replace in all for-
mulas of L, except the formula ⊥L, literals of the form 3B4⊥ by ;B< and literals
of the form ;B<⊥ by 3B4, and call the resulting set union {Id1, Id2, StrL, StrR}
as Lfd. For example, the formula ∧R in L is replaced by ?∃A∃B[3A ∧ B4 ⊗
(;A<& ;B<)] in Lfd.

We assign negative polarity to the atoms 3·4 and ;·< except the atom 3⊥4, for
which we assign positive polarity because of the different treatment of negation
in free deduction.
1 It is interesting to note that later and independently, Negri and Plato also introduced

general introduction rules in [NP01, p. 214].

Focusing in Linear Meta-logic 517

Proposition 6. Let Γ ∪ Δ be a set of object-level formulas. Assume that all
meta-level atomic formulas are given a negative polarity except the atom 3⊥4,
which is given positive polarity. Then Γ ,fd Δ iff , Lfd, 3Γ 4, ;Δ< :⇑.
Full completeness for both proofs and derivations can also be proved.

Since the encoding Lfd is logically equivalent to Llk, we can show that free
deduction and LK are relative complete.

Corollary 4. Let Γ and Δ be sets of formulas. Then Γ ,fd Δ iff Γ ,lk Δ.

Parigot notes that if one of the premises of the general rules is “killed”, i.e., it
is always the conclusion of an initial rule, then one can obtain either sequent
calculus or natural deduction proofs. The “killing” of a premise is accounted for
in our framework by the use of polarities to enforce the presence of a formula
in the context of the sequent. As done with the normal forms in general natural
deduction, we can use the equivalences 3B4 ≡ ;B<⊥ and 3B4⊥ ≡ ;B< and use
either additive or multiplicative versions of the formulas in L to obtain from Lfd

the equivalent sets Llk, which encodes LK, and the set Lnk
fd obtained from Llk

by removing the formulas ⇒L,∨L,∧L and adding the existential closure of the
following three clauses:

;A⇒ B< ⊗
(

;A< ⊗ ;B<⊥
)

;A ∧B< ⊗
(

;A<⊥ ⊕ ;B<⊥
)

;A ∨B< ⊗
(

;A<⊥ ⊗ ;B<⊥
)

.

The resulting set of formulas can be seen as an encoding of a multiple conclusion
natural deduction proof system.

7 System KE

In the previous sections, we dealt with systems that contained rules with more
premises than the corresponding rules in sequent calculus or natural deduction.
Now, we move to the other direction and deal with systems that contain rules
with fewer premises.

In [DM94], D’Agostino and Mondadori proposed the propositional tableaux
system KE displayed in Figure 8. Here, the only rule that has more than one
premise is the cut rule. In the original system, the cut inference rule appears
with a side condition limiting cuts to be analytical cuts. Though it is possible
to encode analytic cuts in our framework, as we show in [NM08], we consider
here the more general form of cuts because it relates more directly to the other
systems already presented.

To encode KE, we assign negative polarity to all atoms 3·4 and ;·< and use the
set of linear logic formulas, Lke, obtained from Lp

lk (the propositional fragment
of Llk), by removing the formulas ∧R,⇒L,∨L,∨R,⊥L and adding the existential
closure of the following eight formulas:

3A⇒ B4⊥ ⊗ (3A4⊥ ⊗ 3B4) ;A ∧B<⊥ ⊗ (3A4⊥ ⊗ ;B<)
3A⇒ B4⊥ ⊗ (;A< ⊗ ;B<⊥) ;A ∧B<⊥ ⊗ (;A< ⊗ 3B4⊥)
3A ∨B4⊥ ⊗ (;A<⊥ ⊗ 3B4) ;A ∨B<⊥ ⊗ (;A< � ;B<)
3A ∨B4⊥ ⊗ (3A4 ⊗ ;B<⊥) ;⊥<

518 V. Nigam and D. Miller

Γ, A ∨B, B �ke A, Δ

Γ, A ∨B �ke A, Δ
[∨L1]

Γ, A ∨B, A �ke B, Δ

Γ, A ∨B �ke B, Δ
[∨L2]

Γ �ke A,B, A ∨B, Δ

Γ �ke A ∨B, Δ
[∨R]

Γ, A ∧B, A, B �ke Δ

Γ, A ∧B �ke Δ
[∧L]

Γ, A �ke A ∧B, B, Δ

Γ, A �ke A ∧B, Δ
[∧R1]

Γ, B �ke A ∧ B, A,Δ

Γ, B �ke A ∧ B, Δ
[∧R1]

Γ, A, A⇒ B, B �ke Δ

Γ, A, A⇒ B �ke Δ
[⇒L1]

Γ, A⇒ B �ke A, B, Δ

Γ, A⇒ B �ke B, Δ
[⇒L2]

Γ,¬A �ke A, Δ

Γ,¬A �ke Δ
[¬L]

Γ, A �ke ¬A, Δ

Γ �ke ¬A, Δ
[¬R]

Γ, A �ke A⇒ B, B, Δ

Γ �ke A⇒ B, Δ
[⇒R]

Γ, A �ke A, Δ
[Ax]

Γ, A �ke Δ Γ �ke A, Δ

Γ �ke Δ
[Cut]

Fig. 8. The rules for the classical propositional logic KE

Proposition 7. Let Γ ∪ Δ be a set of object-level formulas. Assume that all
meta-level atomic formulas are given a negative polarity. Then Γ ,ke Δ iff ,
Lke, 3Γ 4, ;Δ< :⇑.

Full completeness of both proofs and derivations can also be proved.
The only differences between Lp

lk and Lke are the use of multiplicative con-
nectives instead of additive connectives, and that some atoms of the form 3·4
(;·<) appear in the form ;·<⊥ (3·4⊥). As before, we can show that the sets Lp

lk

and Lke are equivalent: the first difference is addressed by the presence of StrL

and StrR and the second difference is addressed by the presence of Id1 and
Id2.

Corollary 5. Let Γ and Δ be a set of formulas. Then Γ ,ke Δ iff Γ ,p
lk Δ,

where ,p
lk is the judgment representing provability in the propositional fragment

of LK.

8 Smullyan’s Analytic Cut System

To illustrate how one can capture another extreme in proof systems, we consider
Smullyan’s proof system for analytic cut (AC) [Smu68], which is depicted in
Figure 9. Here, all rules except the cut rule are axioms. As the name of the
system suggests, Smullyan also assigned a side condition to the cut rule, allowing
only analytical cuts. As in the previous section, we shall drop this restriction in
order to make connections to previous systems easier (but we can account for it:
see [NM08]).

We again assign negative polarity to 3·4 and ;·< atoms and use the theory
Lac that results from collecting the formulas in {Id1, Id2, StrL, StrL} with the
formula ;⊥< and the existential closure of the following formulas:

Focusing in Linear Meta-logic 519

Γ, A ∨B �ac A, B, Δ
[∨L]

Γ, A �ac A ∨B, Δ
[∨R1]

Γ, B �ac A ∨B, Δ
[∨R2]

Γ, A ∧B �ac A, Δ
[∧L1]

Γ, A ∧ B �ac B, Δ
[∧L2]

Γ, A, B �ac A ∧B, Δ
[∧R]

Γ, A, A⇒ B �ac B, Δ
[⇒L]

Γ �ac A,A⇒ B, Δ
[⇒R1]

Γ, B �ac A⇒ B, Δ
[⇒R2]

Γ,¬A, A �ac Δ
[¬L]

Γ �ac A,¬A,Δ
[¬R]

Γ, A �ac A, Δ
[Ax]

Γ, A �ac Δ Γ �ac A,Δ

Γ �ac Δ
[Cut]

Fig. 9. Smullyan’s Analytic Cut System AC for classical propositional logic, except
that the cut rule is not restricted

3A ∧B4⊥ ⊗
(

;A<⊥ ⊕ ;B<⊥
)

;A ∧B<⊥ ⊗
(

3A4⊥ ⊗ 3B4⊥
)

3A ∨B4⊥ ⊗
(

;A<⊥ ⊗ ;B<⊥
)

;A ∨B<⊥ ⊗
(

3A4⊥ ⊕ 3B4⊥
)

3A⇒ B4⊥ ⊗
(

3A4⊥ ⊗ ;B<⊥
)

;A⇒ B<⊥ ⊗
(

;A<⊥ ⊕ 3B4⊥
)

Proposition 8. Let Γ ∪ Δ be a set of object-level formulas. Assume that all
meta-level atomic formulas are given a negative polarity. Then Γ ,ac Δ iff ,
Lac, 3Γ 4, ;Δ< :⇑.

Equivalent results of full completeness of both proofs and derivations can be
proved.

The encoding above differs from Lp
lk as in ways similar to the differences

between Lp
lk and Lke. By using the same reasoning as with the encoding Lke, we

can show that AC is (Level 0) equivalent to the propositional fragment of LK.

Corollary 6. Let Γ and Δ be a set of formulas. Then Γ ,ac Δ iff Γ ,p
lk Δ,

where ,p
lk is the judgment representing provability in the propositional fragment

of LK.

9 Related Work

A number of logical frameworks have been proposed to represent object-level
proof systems. Many of these frameworks, as used in [FM88, HHP93, Pfe89], are
based on intuitionistic (minimal) logic principles. In such settings, the dualities
that we employ here, for example, 3B4 ≡ ;B<⊥, are not available within the
logic and this makes reasoning about the relative completeness between object-
level proof systems harder. Also, since minimal logic sequents must have a single
conclusion, the storage of object-level formulas is generally done on the left-hand
side of meta-level sequents (see [HM94, Pfe00]) with some kind of “marker” for
the right-hand side (such as the non-logical “refutation” marker # in [Pfe00]).
The flexibility of having the four meta-level literals 3B4, ;B<, 3B4⊥, and ;B<⊥
is not generally available in such intuitionistic systems. While it is natural in
classical linear logic to consider having some atoms assigned negative and some
positive polarities, most intuitionistic systems consider only uniform assignments

520 V. Nigam and D. Miller

of polarities to meta-level atoms (usually negative in order to support goal-
directed proof search): the ability to mix polarity assignments for different meta-
level atoms can only be achieved in more indirect fashions in such settings.

The abstract logic programming presentation of linear logic called Forum
[Mil96] has been used to specify sequent calculus proof systems in a style similar
to that used here. That presentation of linear logic was, however, also limited
in that negation was not a primitive connective and that all atomic formulas
were assumed to have negative polarity. The range of encodings contained in
this paper are not directly available using Forum.

10 Conclusions and Further Remarks

We have shown that by employing different focusing annotations or using differ-
ent sets of formulas that are (meta-logically) equivalent to L, a range of sound
and (relatively) complete object-level proof systems could be encoded. We have
illustrated this principle by showing how linear logic focusing and logical equiv-
alences can account for object-level proof systems based on sequent calculus,
natural deduction, generalized introduction and elimination rules, free deduc-
tion, the tableaux system KE, and Smullyan’s system employing only axioms
and the cut rule.

Logical frameworks aim at allowing proof systems to be specified using com-
pact and declarative specifications of inference rules. It now seems that a much
broader range of possible proof systems can be further specified by allowing
flexible assignment of polarity to meta-logical atoms (instead of making the
usual assignment of some fixed, global polarity assignment). A natural next
step would be to see what insights might be carried from this setting of linear-
intuitionistic-classical logic to other, say, intermediate or sub-structural
logics.

While focusing at the meta-level clearly provides a powerful normal form
of proof, we have not described how to use the techniques presented in this
paper to derive object-level focusing proof systems. Finding a means to derive
such object-level normal form proofs is an interesting challenge that we plan to
develop next.

Another interesting line of future research would be to consider differences
in the sizes of proofs in these different paradigms since these differences can be
related to the topic of comparing bottom-up and top-down deduction. Thus, it
might be possible to flexibly change polarity assignments that would result in
different and, hopefully, more compact presentations of proofs.

Acknowledgments. This work has been supported in part by INRIA through
the “Equipes Associées” Slimmer and by the Information Society Technologies
program of the European Commission, Future and Emerging Technologies under
the IST-2005-015905 MOBIUS project.

Focusing in Linear Meta-logic 521

References

[And92] Andreoli, J.-M.: Logic programming with focusing proofs in linear logic. J.
of Logic and Computation 2(3), 297–347 (1992)

[DM94] D’Agostino, M., Mondadori, M.: The taming of the cut. Classical refutations
with analytic cut 4(3), 285–319 (1994)

[FM88] Felty, A., Miller, D.: Specifying theorem provers in a higher-order logic
programming language. In: Ninth International Conference on Automated
Deduction, Argonne, IL, May 1988, pp. 61–80. Springer, Heidelberg (1988)

[Gen69] Gentzen, G.: Investigations into logical deductions. In: Szabo, M.E. (ed.)
The Collected Papers of Gerhard Gentzen, pp. 68–131. North-Holland, Am-
sterdam (1969)

[Gir06] Girard, J.-Y.: Le Point Aveugle: Cours de logique: Tome 1, Vers la perfec-
tion. Hermann (2006)

[HHP93] Harper, R., Honsell, F., Plotkin, G.: A framework for defining logics. Journal
of the ACM 40(1), 143–184 (1993)

[HM94] Hodas, J., Miller, D.: Logic programming in a fragment of intuitionistic
linear logic. Information and Computation 110(2), 327–365 (1994)

[LM07] Liang, C., Miller, D.: Focusing and polarization in intuitionistic logic. In:
Duparc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 451–465.
Springer, Heidelberg (2007)

[Mil96] Miller, D.: Forum: A multiple-conclusion specification logic. Theoretical
Computer Science 165(1), 201–232 (1996)

[MN07] Miller, D., Nigam, V.: Incorporating tables into proofs. In: Duparc, J., Hen-
zinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 466–480. Springer, Hei-
delberg (2007)

[MP02] Miller, D., Pimentel, E.: Using linear logic to reason about sequent sys-
tems. In: Egly, U., Fermüller, C. (eds.) TABLEAUX 2002. LNCS (LNAI),
vol. 2381, pp. 2–23. Springer, Heidelberg (2002)

[MP04] Miller, D., Pimentel, E.: Linear logic as a framework for specifying sequent
calculus. In: van Eijck, J., van Oostrom, V., Visser, A. (eds.) Logic Collo-
quium 1999: Proceedings of the Annual European Summer Meeting of the
Association for Symbolic Logic, pp. 111–135. A. K. Peters Ltd (2004)

[NM08] Nigam, V., Miller, D.: Focusing in linear meta-logic: Extended report,
http://hal.inria.fr/inria-00281631

[NP01] Negri, S., Von Plato, J.: Structural Proof Theory. Cambridge University
Press, Cambridge (2001)

[Par92] Parigot, M.: Free deduction: An analysis of “computations” in classical
logic. In: Proceedings of the First Russian Conference on Logic Program-
ming, London, UK, pp. 361–380. Springer, Heidelberg (1992)

[Pfe89] Pfenning, F.: Elf: A language for logic definition and verified metaprogram-
ming. In: Fourth Annual Symposium on Logic in Computer Science, Mon-
terey, CA, June 1989, pp. 313–321 (1989)

[Pfe00] Pfenning, F.: Structural cut elimination I. intuitionistic and classical
logic 157(1/2), 84–141 (2000)

[Pim01] Pimentel, E.G.: Lógica linear e a especificação de sistemas computacionais.
PhD thesis, Universidade Federal de Minas Gerais, Belo Horizonte, M.G.,
Brasil, Written in English (December 2001)

[PM05] Pimentel, E., Miller, D.: On the specification of sequent systems. In: Sut-
cliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3835, pp.
352–366. Springer, Heidelberg (2005)

http://hal.inria.fr/inria-00281631

522 V. Nigam and D. Miller

[Pra65] Prawitz, D.: Natural Deduction. Almqvist & Wiksell, Uppsala (1965)
[SB98] Sieg, W., Byrnes, J.: Normal natural deduction proofs (in classical logic).

Studia Logica 60(1), 67–106 (1998)
[SH84] Schroeder-Heister, P.: A natural extension of natural deduction. Journal of

Symbolic Logic 49(4), 1284–1300 (1984)
[Smu68] Smullyan, R.M.: Analytic cut. J. of Symbolic Logic 33(4), 560–564 (1968)
[vP01] von Plato, J.: Natural deduction with general elimination rules. Archive for

Mathematical Logic 40(7), 541–567 (2001)

Certifying a Tree Automata Completion Checker

Benôıt Boyer, Thomas Genet, and Thomas Jensen

IRISA / Université de Rennes 1 / CNRS
Campus de Beaulieu

F-35042 Rennes Cedex
{bboyer,genet,jensen}@irisa.fr

Abstract. Tree automata completion is a technique for the verification
of infinite state systems. It has already been used for the verification
of cryptographic protocols and the prototyping of Java static analyzers.
However, as for many other verification techniques, the correctness of
the associated tool becomes more and more difficult to guarantee. It is
due to the size of the implementation that constantly grows and due to
optimizations which are necessary to scale up the efficiency of the tool to
verify real-size systems. In this paper, we define and develop a checker for
tree automata produced by completion. The checker is defined using Coq
and its implementation is automatically extracted from its formal speci-
fication. Using extraction gives a checker that can be run independently
of the Coq environment. A specific algorithm for tree automata inclusion
checking has been defined so as to avoid the exponential blow up. The
obtained checker is certified in Coq, independent of the implementation
of completion, usable with any approximation performed during comple-
tion, small and fast. Some benchmarks are given to show how efficient
the tool is.

1 Introduction

Static program analysis is one of the cornerstones of software verification and is
increasingly used to protect computing devices from malicious or mal-functioning
code. However, program verifiers are themselves complex programs and a single
error may jeopardize the entire trust chain of which they form part. Efforts have
been made to certify static analyzers [KN03, BD04, CJPR05] or to certify the
results obtained by static analyzers [LT00, BJP06] in Coq in order to increase
confidence in the analyzers. In this paper, we instantiate the general framework
used in [BJP06] to the particular case of analyzing term rewriting systems by tree
automata completion [Gen98, FGVTT04]. Given a term rewriting system, the
tree automata completion is a technique for over-approximating the set of terms
reachable by rewriting in order to prove the unreachability of certain “bad” states
that violate a given security property. This technique has already been used
to prove security properties on cryptographic protocols [GK00], [GTTVTT03,
BHK04, ABB+05, ZD06] and, more recently, to prototype static analyzers on
Java byte code [BGJL07].

A. Armando, P. Baumgartner, and G. Dowek (Eds.): IJCAR 2008, LNCS 5195, pp. 523–538, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

524 B. Boyer, T. Genet, and T. Jensen

In this paper, we show how to mechanize the proof, within the Coq proof
assistant, that the tree automaton produced by completion recognizes an over-
approximation of all reachable terms. Coq is based on constructive logic (Calcu-
lus of Inductive Constructions) and it is possible to extract an Ocaml or Haskell
function implementing exactly the algorithm whose specification has been ex-
pressed in Coq. The extracted code is thus a certified implementation of the
specification given in the Coq formalism. Extracted programs are standalone
and do not require the Coq environment to be executed. For details about the
extraction mechanisms, readers can refer to [BC04].

A specific challenge in the work reported here has been how to marry con-
structive logic and efficiency. Previous case studies with tree automata comple-
tion, on cryptographic protocols [GTTVTT03] and on Java bytecode [BGJL07]
show that we need an efficient completion algorithm to verify properties of real
models. For instance, the current implementation of completion (called Tim-
buk [GVTT00]) is based on imperative data structures like hash tables whereas
Coq allows only pure functional structures. A second problem is the termination
of completion. Since Coq can only deal with total functions, functions must be
proved terminating for any computation. In general, such a property cannot be
guaranteed on completion because it mainly depends on term rewriting system
and approximation equations given initially.

For these two reasons, there is little hope to specify and certify an efficient
and purely functional version of the completion algorithm. Instead, we have
adopted a solution based on a result-checking approach. It consists of building
a smaller program (called the checker) - certified in Coq - that checks if the tree
automaton computed by Timbuk is sound. In this paper, we restrict to the case
of left-linear term rewriting systems which revealed to be sufficient for verifying
Java programs [BGJL07]. However, a checker dealing with general term rewriting
systems like completion does in [FGVTT04] is under development.

The closest work to ours is the one done by X. Rival and J. Goubault-
Larrecq [RGL01]. They have designed a library to manipulate tree automata
in Coq and proposed some optimized formal data structures that we reuse. How-
ever, we aim at dealing with larger tree automata than those used in their
benchmarks. Moreover, we need some other tools which are not provided by the
library as for example a specific algorithm to check inclusion.

This paper is organized as follows. Rewriting and tree automata are reviewed
in Section 2 and tree automata completion in Section 3. Section 4 states the main
functions to define, inclusion and closure test, and the corresponding theorems
to prove. Section 5 and Section 6 give the Coq formalization of rewriting and of
tree automata, respectively. The core of the checker consists of two algorithms:
an optimized automata inclusion test, defined in Section 7, and a procedure
for checking that an automaton is closed under rewriting w.r.t. a given term
rewriting system, defined in Section 8. Section 9 gives some details about the
performances of the checker in practice. Finally, we conclude and list some on-
going research on this subject.

Certifying a Tree Automata Completion Checker 525

2 Preliminaries

Comprehensive surveys can be found in [BN98] for rewriting, in [CDG+02] for
tree automata and in [GT95] for closure of tree automata by rewriting.

Let F be a finite set of symbols, each associated with an arity function, and let
X be a countable set of variables. T (F ,X) denotes the set of terms, and T (F)
denotes the set of ground terms (terms without variables). The set of variables
of a term t is denoted by Var(t). A substitution is a function σ from X into
T (F ,X), which can be extended uniquely to an endomorphism of T (F ,X). A
position p for a term t is a word over N. The empty sequence ε denotes the
top-most position. The set Pos(t) of positions of a term t is inductively defined
by:

– Pos(t) = {ε} if t ∈ X
– Pos(f(t1, . . . , tn)) = {ε} ∪ {i.p | 1 ≤ i ≤ n and p ∈ Pos(ti)}

If p ∈ Pos(t), then t|p denotes the subterm of t at position p and t[s]p denotes
the term obtained by replacement of the subterm t|p at position p by the term
s. A term rewriting system (TRS) R is a set of rewrite rules l → r, where
l, r ∈ T (F ,X), l �∈ X , and Var(l) ⊇ Var(r). A rewrite rule l → r is left-linear
if each variable of l (resp. r) occurs only once in l. A TRS R is left-linear if
every rewrite rule l → r of R is left-linear). The TRS R induces a rewriting
relation →R on terms whose reflexive transitive closure is denoted by →

R. The
set of R-descendants of a set of ground terms E is R∗(E) = {t ∈ T (F) | ∃s ∈
E s.t. s→

R t}.
The verification technique defined in [Gen98, FGVTT04] is based on R∗(E).

Note that R∗(E) is possibly infinite: R may not terminate and/or E may be
infinite. The set R∗(E) is generally not computable [GT95]. However, it is possi-
ble to over-approximate it [Gen98, FGVTT04, Tak04] using tree automata, i.e. a
finite representation of infinite (regular) sets of terms. In this verification setting,
the TRS R represents the system to verify, sets of terms E and Bad represent
respectively the set of initial configurations and the set of “bad” configurations
that should not be reached. Then, using tree automata completion, we construct
a tree automaton B whose language L(B) is such that L(B) ⊇ R∗(E). Then if
L(B) ∩Bad = ∅ then this proves that R∗(E) ∩ Bad = ∅, and thus that none of
the “bad” configurations is reachable. We now define tree automata.

Let Q be a finite set of symbols, with arity 0, called states such that Q∩F = ∅.
T (F ∪Q) is called the set of configurations.

Definition 1 (Transition and normalized transition). A transition is a
rewrite rule c → q, where c is a configuration i.e. c ∈ T (F ∪Q) and q ∈ Q.
A normalized transition is a transition c → q where c = f(q1, . . . , qn), f ∈ F
whose arity is n, and q1, . . . , qn ∈ Q.

Definition 2 (Bottom-up nondeterministic finite tree automaton). A
bottom-up nondeterministic finite tree automaton (tree automaton for short) is
a quadruple A = 〈F ,Q,QF , Δ〉, where QF ⊆ Q and Δ is a set of normalized
transitions.

526 B. Boyer, T. Genet, and T. Jensen

The rewriting relation on T (F ∪Q) induced by the transitions of A (the set Δ)
is denoted by →Δ. When Δ is clear from the context, →Δ will also be denoted by
→A. Here is the definition of the recognized language, see [BGJ08] for examples.

Definition 3 (Recognized language). The tree language recognized by A in
a state q is L(A, q) = {t ∈ T (F) | t →�

A q}. The language recognized by A
is L(A) =

⋃

q∈QF
L(A, q). A tree language is regular if and only if it can be

recognized by a tree automaton.

3 Tree Automata Completion

Given a tree automaton A and a TRS R, the tree automata completion algo-
rithm, proposed in [Gen98, FGVTT04], computes a tree automaton A∗

R such
that L(A∗

R) = R∗(L(A)) when it is possible (for some of the classes of TRSs
where an exact computation is possible, see [FGVTT04]) and such that L(A∗

R) ⊇
R∗(L(A)) otherwise.

The tree automata completion works as follows. From A = A0
R completion

builds a sequence A0
R.A1

R . . .Ak
R of automata such that if s ∈ L(Ai

R) and s →R t
then t ∈ L(Ai+1

R). If we find a fixpoint automaton Ak
R such that R∗(L(Ak

R)) =
L(Ak

R), then we note A∗
R = Ak

R and we have L(A∗
R) = R∗(L(A0

R)), or L(A∗
R) ⊇

R∗(L(A)) if R is not in one class of [FGVTT04]. To build Ai+1
R from Ai

R, we
achieve a completion step which consists of finding critical pairs between →R
and →Ai

R
. To define the notion of critical pair, we extend the definition of

substitutions to terms of T (F ∪Q). For a substitution σ : X �→ Q and a rule
l → r ∈ R, a critical pair is an instance lσ of l such that there exists q ∈ Q
satisfying lσ →∗

Ai
R

q and lσ →R rσ. Note that since R, Ai
R and the set Q

of states of Ai
R are finite, there is only a finite number of critical pairs. For

every critical pair detected between R and Ai
R such that rσ �→∗

Ai
R

q, the tree

automaton Ai+1
R is constructed by adding a new transition rσ → q to Ai

R such
that Ai+1

R recognizes rσ in q, i.e. rσ →∗
Ai+1

R
q, see Figure 1.

lσ R
��

∗Ai
R

��

rσ

∗

Ai+1
R

��q

Fig. 1. Critical pair

uσ
E

Ai+1
R ∗

��

vσ

∗ Ai+1
R

��
q q′

Fig. 2. Detection of merging

However, the transition rσ → q is not necessarily a normalized transition of
the form f(q1, . . . , qn) → q and so it has to be normalized first. Thus, instead of
adding rσ → q we add Norm(rσ → q) to transitions of Ai

R. Here is the Norm
function used to normalize transitions. Note that, in this function, transitions
are normalized using either new states of Qnew or states of Q, states of the
automaton being completed. As we will see in Lemma 1, this has no effect on
the safety of the normalization but only on its precision.

Certifying a Tree Automata Completion Checker 527

Definition 4 (Norm). Let A = 〈F ,Q,Qf , Δ〉 be a tree automaton, Qnew a set
of new states such that Q ∩ Qnew = ∅, t ∈ T (F ∪Q) and q ∈ Q. The function
Norm is inductively defined by:

– Norm(t → q) = ∅ if t = q,
– Norm(t → q) = {c → q | c → t ∈ Δ} if t ∈ Q,
– Norm(f(t1, . . . , tn) → q) =

⋃

i=1...n Norm(ti → qi) ∪ {f(q1, . . . , qn) → q}
where ∀i = 1 . . . n : (ti ∈ Q ⇒ qi = ti)∧(ti ∈ T (F ∪Q)\Q ⇒ qi ∈ Q∪Qnew).

When using only new states to normalize all the new transitions occurring in
all the completion steps, completion is as precise as possible. However, doing
so, completion is likely not to terminate (because of general undecidability re-
sults [GT95]). Enforcing termination of completion can be easily done by bound-
ing the set of new states to be used with Norm during the whole completion.
We then obtain a finite tree automaton over-approximating the set of reachable
states. The fact that normalizing with any set of states (new or not) is safe is
guaranteed by the following simple lemma. For the general safety theorem of
completion see [FGVTT04].

Lemma 1. For all tree automaton A = 〈F ,Q,Qf , Δ〉, t ∈ T (F ∪Q) \ Q and
q ∈ Q, if Π = Norm(t → q) whatever the states chosen in Norm(t → q) we
have t →∗

Π q.

Proof. This can be done by a simple induction on transitions [FGVTT04].

To let the user of completion guide the approximation, we use two different
tools: a set N of normalization rules (see [FGVTT04]) and a set E of approx-
imation equations. Rules and equations can be either defined by hand so as
to prove a complex property [GTTVTT03], or generated automatically when
the property is more standard [BHK04]. Normalization rules can be seen as a
specific strategy for normalizing new transitions using the Norm function. We
have seen that Lemma 1 is enough to guarantee that the chosen normalization
strategy has no impact on the safety of completion. Similarly, for our checker,
we will see in Section 8 that the related Coq safety proof can be carried out
independently of the normalization strategy (i.e. set N of normalization rules).
On the opposite, the effect of approximation equations is more complex and has
to be studied more carefully. An approximation equation is of the form u = v
where u, v ∈ T (F ,X). Let σ : X �→ Q be a substitution such that uσ →Ai+1

R
q,

vσ →Ai+1
R

q′ and q �= q′, see Figure 2. Then, we know that there exists some
terms recognized by q and some recognized by q′ which are equivalent modulo
E . A correct over-approximation of Ai+1

R consists in applying the Merge func-
tion to it, i.e. replace Ai+1

R by Merge(Ai+1
R , q, q′), as long as an approximation

equation of E applies. The Merge function, defined below, merges states in a
tree automaton. See [BGJ08] for examples of completion and approximation.

Definition 5 (Merge). Let A = 〈F ,Q,QF , Δ〉 be a tree automaton and q1, q2

be two states of A. We denote by Merge(A, q1, q2) the tree automaton where
every occurrence of q2 is replaced by q1 in Q, QF and in every left-hand side
and right-hand side of every transition of Δ.

528 B. Boyer, T. Genet, and T. Jensen

4 A Result Checker for Tree Automata Completion

By moving the certification problem from the completion algorithm to the
checker, the certification problem consists in proving the following Coq theorem.
In Coq specifications, recall that ’→’ is used to denote both the logical implica-
tion and functional types. Similarly, ’:’ is used to give the type of a function, the
type of a data or the statement for a theorem.

Theorem sound_checker :
∀ A A’ R, checker A R A’ = true → ApproxReachable A R A’.

where ApproxReachable is a Coq predicate that describes the Soundness Prop-
erty: L(A′) contains all terms reachable by rewriting terms of L(A) with R, i.e.
L(A′) ⊇ R∗(L(A)). To state formally this predicate in Coq, we need to give
a Coq axiomatization of Term Rewriting Systems and of Tree Automata. It is
given in Section 5. Given two automata A, A′ and a TRS R the checker veri-
fies that L(A′) ⊇ R∗(L(A)) or (ApproxReachable A R A’) in Coq. To perform
this, we need to check the two following properties:

– Included: inclusion of initial set in the fixpoint: L(A) ⊆ L(A′).
– IsClosed: A′ is closed by rewriting with R: For all l → r ∈ R and all
t ∈ L(A′), if t is rewritten in t′ by the rule l → r then t′ ∈ L(A′).

For each item, we provide a Coq function and its correctness theorem: function
inclusion is dedicated to inclusion checking and function closure checks if
a tree automaton is closed by rewriting. We also give the theorem used to deduce
ApproxReachable A R A’ from Included A A’ and IsClosed R A’:

Theorem inclusion_sound:
∀ A A’, inclusion A A’ = true → Included A A’.

Theorem closure_sound:
∀ R A’, closure R A’ = true → IsClosed R A’.

Theorem Included_IsClosed_ApproxReachable:
∀ A A’ R, Included A A’ → IsClosed R A’ →

ApproxReachable A R A’.

Note that, in this paper we focus on the proof of L(A′) ⊇ R∗(L(A)). However,
to prove the unreachability property, the emptiness of the intersection between
L(A′) and the bad term set has also to be verified. Since the formalization
in Coq of the intersection and emptiness decision are close to their standard
definition [CDG+02], and since they have already been covered by [RGL01],
they are not be detailed in this paper.

5 Formalization of Term Rewriting Systems

The aim of this part is to formalize in Coq: terms, term rewriting systems, reach-
able terms and the reachability problem itself. First, we use the positive integers

Certifying a Tree Automata Completion Checker 529

provided by the Coq’s standard library to define symbol sets like variables (X)
or function symbols (F). We rename positive into ident to be more explicit.
Then, we define term set T (F ,X) using inductive types:

Inductive term : Set :=
| Fun : ident → list term → term
| Var : ident → term.

A rewrite rule l→ r is represented by a pair of terms with a well-definition proof,
i.e. a Coq proof that the set of variables of r is a subset of the set of variables of
l. The function Fv : term →list ident builds the set of variables for a term.

Inductive rule : Set :=
| Rule (l r : term)(H : subseteq (Fv r) (Fv l)) : rule.

In the following, list rule type represents a TRS. In Coq we use (t @ sigma)

to denote the term resulting of the application of a substitution sigma to each
variable that occurs in a term t. In Coq, the rewriting relation ”u is rewritten
in v by l → r”, commonly defined by ∃σ s.t. u|p = lσ ∧ v = u[rσ]p, is split into
two predicates:

– The first one defines the rewriting of a term at the topmost position. In fact,
the set of term pairs (t, t′) which are rewritten at the top most by the rule
can be seen as the set of term pairs (lσ, rσ) for any substitution σ.

– The second one just defines inductively the rewriting relation at any position
of a term t by a rule l → r, by the topmost rewriting of any subterm of t by
l→ r.

(∗ Topmost rewr i t i ng : ∗)
Inductive TRew (x : rule) : term → term → Prop :=
| R_Rew : ∀ s l r (H : subseteq (Fv r) (Fv l)),

x = Rule l r H → TRew x (l @ s) (r @ s).

Similarly, using an inductive definition it is possible to define the Rew predicate
for rewriting at any position. Then we have to define →∗

R. In Coq, we prefer
to see it as the predicate Reachable R u that characterizes the set of reachable
terms from u by →∗

R.

Inductive Reachable(R : list rule)(t : term) : term → Prop:=
| R_refl : Reachable R t t
| R_trans : ∀ u v r, Reachable R t u → In r R → Rew r u v →

Reachable R t v.

6 Formalization of Tree Automata

The fact that the checker, to be executed, is directly extracted from the Coq
formalization has an important consequence on the tree automata formalization.
Since the data structures used in the formalization are those that are really
used for the execution, they need to be formal and efficient. For tree automata,
instead of a naive representation, it is thus necessary to use optimized formal data

530 B. Boyer, T. Genet, and T. Jensen

structures borrowed from [RGL01]. In Section 5, we have represented variables
X and function symbols F by the type ident. We do the same for Q. We define
a tree automaton as a pair (QF , Δ), where QF is the finite set of final states,
and Δ the finite set of normalized transitions like f(q1, . . . , qn) → q. In Coq, the
t_automaton record stands for this pair where the final state field qf is a simple
list ident and the transition set field delta has Delta.t type. The Delta

module contains the implementation, the theorems and proofs for normalized
transition sets. This representation is based on the FMapPositive Coq library
of functional mappings, where data are indexed by positive numbers. A set
of transitions of type Delta.t is a map where each state q indexes a set of
configuration like f(q1, . . . , qn). In the same way, each set of configuration is
a map where function symbols are used to index a stack of state lists. For all
transitions f(q1, . . . , qn) → q, the state list (q1, . . . , qn) is stored in the stack
indexed by symbol f and state q. Now we can define a predicate to characterize
the recognized language of a tree automaton. In fact, we are defining the set of
ground terms that are reduced to a state q by a transition set Δ. This set, which
corresponds to L(A, q) if Δ is the set of transitions of A, can be constructed
inductively in Coq using the single deduction rule:

t1 ∈ L(Δ, q1) tn ∈ L(Δ, qn)
If f(q1, . . . , qn)→ q ∈ Δ

f(t1, . . . , tn) ∈ L(Δ, q)

In Coq, we express this statement using a mutually inductive predicate IsRec.
A term t is recognized by a tree automaton (QF , Δ), if the predicate IsRecΔ q t
is valid for q ∈ QF .

7 An Optimized Inclusion Checker

In this part, we give the formal definition of the Included property and of
the inclusion Coq function used to effectively check the tree automata inclu-
sion. From the previous formal definitions on tree automata, we can state the
Included predicate in the following way:

Definition Included (a b : t_automaton) : Prop :=
∀ t q, In q a.(qf) → IsRec a.(delta) q t →
∃ q’, In q’ b.(qf) ∧ IsRec b.(delta) q’ t.

Now let us focus on the function inclusion itself. The usual algorithm for
proving inclusion of regular languages recognized by nondeterministic bottom-
up tree automata, for instance for proving L(A) ⊆ L(B), consists in proving
that L(A) ∩ L(B) = ∅, where B is the complement automaton for B. However,
the algorithm for building B from B is EXPTIME-complete [CDG+02]. This is
the reason why we here define a criterion with a better practical complexity.
It is is based on a simple syntactic comparison of transition sets, i.e. we check
the inclusion of transition sets modulo the renamings performed by the Merge
function. This increases a lot the efficiency of our checker, especially by saving
memory. This is crucial to check inclusion of big tree automata (see Section 9).

Certifying a Tree Automata Completion Checker 531

This algorithm is correct but, of course, it is not complete in general, i.e. not
always able to prove that L(A) �⊆ L(B). However, we show in the following that,
under certain conditions on A and B which are satisfied if B is obtained by
completion of A, this algorithm is also complete and thus becomes a decision
procedure. First, we introduce the following notation:

Γ : induction hypothesis set
Δi : transition set of the tree automaton Ai

{c|c → q ∈ Δ} : configurations of Δ that are rewritten in q
{ci}m

n : configuration set from cn to cm

We formulate our inclusion problem by formulas of the form: Γ �A,B q � q′.
Such a statement stands for: under the assumption Γ , it is possible to prove
that L(A, q) ⊆ L(B, q′). The algorithm consists in building proof trees for those
statements using the following set of deduction rules.

(Induction)
Γ ∪ {q � q′} 	A,B {c|c →ΔA q} � {c|c →ΔB q′}

Γ 	A,B q � q′ if (q � q′) /∈ Γ

(Axiom)
Γ ∪ {q � q′} 	A,B q � q′ (Empty)

Γ 	A,B ∅ � {c′
j}m

1

(Split-l)
Γ 	A,B c1 � {c′

j}m
1 Γ 	A,B cn � {c′

j}m
1

Γ 	A,B {ci}n
1 � {c′

j}m
1

(Weak-r)
Γ 	A,B c � c′

k

Γ 	A,B c � {c′
i}n

1
if (1 ≤ k ≤ n) (Const.)

Γ 	A,B a() � a()

(Config)
Γ 	A,B q1 � q′

1 Γ 	A,B qn � q′
n

Γ 	A,B f(q1, . . . , qn) � f(q′
1, . . . , q

′
n)

Given QFA and QFB the sets of final states of A and B, #() a symbol of arity
1 not occurring in F , to prove L(A) ⊆ L(B), we start our deduction by the
statement: ∅ �A,B {#(q) | q ∈ QFA} � {#(q) | q ∈ QFB}

Example 1. Let A and B be two automata s.t.:

A=

��
�

a → q1

b → q2

f(q1, q2) → q

��
� with QFA ={q} and B=

��
�

a → q′

b → q′

f(q′, q′) → q′

��
� with QFB ={q′}

Here we have L(A) ⊆ L(B) and we can derive ∅ �A,B #(q) � #(q′) with the
deduction rules:

(Const.)
{q � q′, q1 � q′} �A,B a() � a()

(W-r)
{q � q′, q1 � q′} �A,B a() � {a(), b(), f(q′, q′)}

(Ind.)
{q � q′} �A,B q1 � q′

(Const.)
{q � q′, q2 � q′} �A,B b() � b()

{q � q′, q2 � q′} �A,B b() � {a(), b(), f(q′, q′)}

{q � q′} �A,B q2 � q′
(Config)

{q � q′} �A,B f(q1 , q2) � f(q′, q′)
(Weark-r)

{q � q′} �A,B f(q1, q2) � {a(), b(), f(q′, q′)}
(Induction)

∅ �A,B q � q′
(Config)

∅ �A,B #(q) � #(q′)

532 B. Boyer, T. Genet, and T. Jensen

The main property we want to demonstrate in Coq is that this syntactic
criterion implies the semantic inclusion for the considered languages in 6.

Theorem inclusion_sound :
∀ A B, inclusion A B = true → Included A B.

Before proving this in Coq, we need to define more formally the function
inclusion. This function cannot be defined as a simple structural recursion.
Thus Coq needs a termination proof for this algorithm. Thanks to the Coq feature
Function, it is possible to define the algorithm using a measure function and
provide a proof that its value decreases at each recursive call to ensure the
termination.

Termination of deduction rules can be proved by defining a measure function
μ on statements of the form Γ �A,B α � β. The Γ relation can be seen as
a subset of QA × QB which is a finite set. All tree automata have a finite
number of states. Then the statement measure μ(Γ �A,B α � β) is defined as
tuple (μ1(Γ), μ2(α) + μ2(β)) where:

�
��	

μ1(Γ) = |QA × QB| − |Γ |

μ2(x) =

��
�

(m + 1 − n) if x = {ci}m
n

1 if x = f(q1, . . . , qn),
0 otherwise

Then we define the ordering � by the lexicographic combination of the usual
order < on natural numbers for μ1 and μ2. Since < is well founded, the lexico-
graphic combination � is also well founded.

Theorem 1. (Termination) At each step, the measure decreases strictly:

Γ1 	A,B α1 � β1 . . . Γn 	A,B αn � βn

Γ 	A,B α � β
=⇒

n

i=1

μ(Γi 	A,B αi � βi) μ(Γ 	A,B α � β)

Proof. See [BGJ08], for details.

Theorem 2. (Soundness) For all tree automata A and B, if there exists
∏

a
proof tree of ∅ �A,B q � q′ then we have L(ΔA, q) ⊆ L(ΔB, q′)

Proof. This can be done by an induction on the size of the term of L(ΔA, q).
See [BGJ08] for details.

As said above, the described algorithm is not complete in general. However, we
show that it is complete for tree automata produced by completion. In partic-
ular if Ak

R is obtained after k completion step from A0 then we can build a
proof

∏
for the statement ∅ �A0,Ak

R
{#(q) | q ∈ QF0} � {#(q′) | q′ ∈ QFk

}.
Recall that the tree automaton produced by the kth step of completion is noted
Ak = 〈F ,Qk,QFk

, Δk〉. The tree automata completion performs two main op-
erations at each step of calculus: normalization and state merging. In the case of
normalization, the language inclusion can simply be proved using transition set
inclusion. With the state merging operation, set inclusion is not enough because
it implies transition merging too. This is the reason why we have to define a new
order relation preserved by each operation.

Certifying a Tree Automata Completion Checker 533

Definition 6. Given A, B two tree automata, � is the reflexive and transitive
relation defined as follows: A � B if there exists a function 	 that renames states
of A into states of B and such that all renamed rules ΔA are contained in ΔB:

A � B ⇐⇒ ∃	 : QA → QB, 	(ΔA) ⊆ ΔB ∧ 	(QFA) ⊆ QFB (1)

Lemma 2. Given a tree automaton A,

1. if A′ = A ∪ Norm(rσ → q) then A � A′

2. if A′ = Merge(A, q1, q2) then A � A′

Proof. For details, see [BGJ08].

Theorem 3. Given a tree automaton A0, a TRS R and an equation set E, after
k completion steps we obtain Ak

R such that A0 � Ak
R.

Proof. Since we have proved that � is preserved by Norm and Merge functions,
it is also the case for every completion step between Ak

R and Ak+1
R , i.e Ak

R �
Ak+1

R . Then, the theorem can be deduced using the reflexivity and transitivity
of �. See [BGJ08].

Now, we define the completeness property as the following:

Theorem 4. (Completeness) Given two tree automata A and B if A � B then
there exists

∏
a proof of statement ∅ �A,B {#(qf) | qf ∈ QFA} � {#(q′f) | q′f ∈

QFB}.

Proof. For details, see [BGJ08].

Thus, we can ensure that for an automaton Ak
R obtained by k completion steps

from A0, there exists a proof
∏

of the statement ∅ �A0,Ak
R

{#(q) | q ∈ QF0 �
{#(q′) | q′ ∈ QFk

}. This can be obtained by a simple combination of the two
previous theorems.

Finally, as shown in [BGJ08], this algorithm has a polynomial complexity
w.r.t. space. Using tabling, it can also be implemented so as to be polynomial in
time. However, since proofs are more difficult to carry out in Coq on a tabled ver-
sion, we chose to stick to a simpler implementation that appears to be sufficient
for our test cases (see Section 9).

8 Formalization of Closure by Rewriting

In this part we aim at defining formally the IsClosed predicate, the function
closure and prove the soundness of this function w.r.t. IsClosed. Recall that
to check if a tree automaton A = 〈QF , Δ〉 is closed w.r.t. a TRS R, it is enough
to prove that for all t ∈ L(A), if t′ is reachable from t by →∗

R then t′ ∈ L(A).
Now that we have defined in Coq rewriting and tree automata, we can define
more formally the IsClosed predicate and recall the closure_sound theorem
to prove:

534 B. Boyer, T. Genet, and T. Jensen

Definition IsClosed (R : list rule) (A : t_aut) : Prop :=
∀ q t t’, IsRec A.(delta) q t → Reachable R t t’ →

IsRec A.(delta) q t’.

Theorem closure_sound: ∀ R A’, LeftLinear R →
closure R A’ = true → IsClosed R A’.

The algorithm to check closure of A by R computes for each left-linear rule
l → r ∈ R the full set of the substitutions σ s.t. lσ →∗

Δ q and then, checks
that rσ →∗

Δ q. Then, the correctness proof consists in showing that if closure
answers true, then L(A) is closed by →R. We now give some hints to define the
closure function. First, for all left-linear rule l → r of R, this function has to
find all the substitutions σ : X �→ Q and all the states q ∈ Q such that lσ →∗

Δ q.
This is what we call the matching-problem. Second, this function has to check
that for all the q and σ found, we have rσ →∗

Δ q. Third, in the correctness
theorem, we have to show that all the substitutions σ : X �→ Q cover the set
of substitutions on terms, i.e. of the form σ′ : X �→ T (F), and hence cover all
reachable terms.

We note l� q the matching problem consisting in finding all the substitutions
σ : X �→ Q and all the states q ∈ Q such that lσ →∗

Δ q. An algorithm solving
this kind of problems was defined in [Gen97]. Note that it is complete only if l is
linear. The algorithm consists in normalizing the formula l�q with the following
deduction rules:

(Unfold)
f(s1, . . . , sn) � f(q1, . . . , qn)
s1 � q1 ∧ · · · ∧ sn � qn

(Clash)
f(s1, . . . , sn) � g(q′1, . . . q′m)

⊥

(Config)
s� q

s� c1 ∨ · · · ∨ s� ck∨ ⊥
if s /∈ X , and ∀ci, s.t. ci → q ∈ Δ.

Moreover, after each application of one of these rules, the result is also rewrit-
ten into disjunctive normal form. When normalization of the initial problem is
terminated, we obtain a formula like

∨n
i=1 φi where φi =

∧m
j=1 x

i
j � qi

j such that
xi

j ∈ X and qi
j ∈ Q. Each φi can be seen as a substitution σi = {xi

j �→ qi
j}. The

implementation of the matching function in Coq is very close to this algorithm.
Moreover, the soundness and completeness properties of this algorithm can be
defined in Coq as follows:

Theorem matching_sound : ∀ D q l s, In s (matching D q l) →
IsRed D q (l @ s).

Theorem matching_complete : ∀ D q l s, linear l →
IsRed D q (l @ s) → In s (matching D q l).

As mentioned before, the matching algorithm is only complete for linear
terms. Thus, this assumption occurs in the matching_complete theorem as
well as in all theorems using the left-side of a rule. The second part of the
closure function consists in verifying that for each substitution σ s.t. lσ →∗

Δ q,
we also have rσ →∗

Δ q. This job is performed using the all_red function, we

Certifying a Tree Automata Completion Checker 535

define, whose purpose is to check that this property is true for all the found
substitutions. Then, we only need to prove the soundness of this function using
the following Coq theorem:

Theorem all_red_sound : ∀ D q r sigmas,
all_red D q r sigmas = true →

∀ s, In s sigmas → IsRed D q (r@s).

By combining the matching and the all_red functions, we obtain the function
closure_at_state for checking up all critical pairs found at state q and for the
rule l → r. We define the combination as:

Definition closure_at_state D q l r :=
all_red D q r (matching D q l).

Theorem closure_at_state_sound : ∀ D q l r,
linear l → closure_at_state D q l r = true →

(∀ s, IsRed D q (l @ s) → IsRed D q (r @ s)).

Given a left-linear rule l → r and a state q, this algorithm answers true

if for all substitution σ : X �→ Q s.t. lσ →∗
Δ q then rσ →∗

Δ q. Now that we
have proved this result for substitutions σ : X �→ Q, we have to prove that it
implies the same property for substitutions σ′ : X �→ T (F), this is Lemma 3.
On the opposite, to prove that every reachable term of T (F) will be covered
by a configuration of T (F ∪Q) in Δ, we have to prove that if there exists a
substitution σ′ : X �→ T (F), then we can construct a corresponding substitution
σ : X �→ Q, this is Lemma 4.

Lemma 3. Given a term u ∈ T (F ,X), σ : X �→ Q a substitution s.t. uσ →∗
Δ q,

if we have a substitution σ′ : X �→ T (F) s.t. ∀x ∈ Dom(σ) : σ′x ∈ L(Δ,σx),
then we have uσ′ →∗

Δ q and thus uσ′ ∈ L(Δ, q).

Roughly, if the left or right-hand side u of a rewriting rule matches a configura-
tion uσ ∈ T (F ∪Q) and uσ →∗

Δ q then, all terms uσ′ ∈ T (F), matched by u,
are also reducible into q, i.e. uσ′ →∗

Δ q and uσ′ ∈ L(Δ, q).

Lemma 4. Given a term u ∈ T (F ,X), if there exists a substitution σ′ : X �→
T (F) such that uσ′ →∗

Δ q, then there exists a substitution σ : X �→ Q s.t.
σ′x ∈ L(Δ,σx) and uσ →∗

Δ q.

Using those two lemmas, we can conclude that for all term t ∈ L(Δ, q) rewritten
in t′ at the topmost position by l → r, then t′ ∈ L(Δ, q). This property is
easily lifted as a property of the closure function for all states of Q and using
all rules of R at topmost position. Then, it is enough to lift this property to
general rewriting at any position. Finally, the closure_sound general theorem
is shown by using a reflexive and transitive application of the last property.

9 Benchmarks

From the Coq formal specification (about 2000 lines for definitions and 5500
lines for proofs), we have extracted an Ocaml checker implementation which is

536 B. Boyer, T. Genet, and T. Jensen

connected to the Timbuk parser. Since Coq extraction ignore all Ocaml data
types (integers, lists, maps...) and redefine all them (including primitive types).
Thus, we defined a set of functions to convert Coq types into Ocaml types and
conversely.

In the following table, we have collected several benchmarks. For each test, we
give the size of the two tree automata (initial A0 and completed A∗

R) as number
of transitions/number of states. For each TRS R we give the number of rules.
The ’CS’ column gives the number of completion steps necessary to complete
A0 into A∗

R and ’CT’ gives the completion time. The ’CKT’ column gives the
time for the checker to certify the A∗

R and the ’CKM’ gives the memory usage.
The important thing to observe here is that, the completion time is very long
(sometimes more than 24 hours), the checking of the corresponding automaton
is always fast (a matter of seconds).

The four tests are Java programs translated into term rewriting systems us-
ing the technique detailed in [BGJL07]. All of them are completed using Timbuk
except the example List2.java which has been completed using a new opti-
mized completion tool detailed in [BBGM08]. In this last paper, the completion
times are 10 to 100 times better than using Timbuk. Even if the input and
output of this tool are tree automata, the internal computation mechanism is
exclusively based on term rewriting and uses no tree automata algorithms. This
shows that the completed automaton produced by a totally different algorithm
and fully optimized tool is also accepted by our checker. The List1.java and
List2.java corresponds to the same Java program but with slightly differ-
ent encoding into TRS and approximations. The Ex poly.java is the example
given in [BGJL07] and the Bad Fixp is the same problem as Ex poly.java ex-
cept that the completed automaton A∗

R has been intentionally corrupted. Thus,
this is thus not a valid fixpoint and rejected by the checker.

Name A0 A∗
R R CS CT CKT CKM

List1.java 118/82 422/219 228 180 ≈ 3 days 0,9s 2,3 Mo
List2.java 1/1 954/364 308 473 1h30 2,2s 3,1 Mo
Ex poly.java 88/45 951/352 264 161 ≈ 1 day 2,5s 3,3 Mo
Bad Fixp 88/45 949/352 264 161 ≈ 1 day 1,6s 3,2 Mo

10 Conclusion and Further Research

In this paper we have defined a Coq checker for tree automata completion. The
first characteristic of the work presented here is that the checker does not vali-
date a specific implementation of completion but, instead, the result. As a conse-
quence, the checker remains valid even if the implementation of the completion
algorithm changes or is optimized. For example, this checker could be used to
certify tree automata produced by [Jac96, Ret99] and [Tak04] for left-linear
TRS, provided that ε-transitions are normalized first. This is quite natural since
the behavior of those algorithms is close to tree automata completion. We gave
an even more significant example of the independence of the checker w.r.t. the

Certifying a Tree Automata Completion Checker 537

used completion algorithm by certifying results produced by [BBGM08] whose
algorithm is not based on tree automata.

A second salient feature of the checker is that its code is directly generated
from the correctness proof of its Coq specification through the extraction mech-
anism. Third, we have payed particular attention to the formalization of the
checker in order not to lose efficiency to obtain the certification. We have defined
a specific inclusion algorithm in order to avoid the usual exponential blow-up
obtained with the standard inclusion algorithm. We have defined the Coq formal
specification so that it was possible to extract an independent OCaml checker.
Finally, we made an extensive use of efficient formal data structures leading to
more complex proof but also to faster extracted checker. An extension for non
left-linear TRS, which are necessary for specifying cryptographic protocols, is
under development. Since many different kinds of analyzes can be expressed as
reachability problems over tree automata, and since verification of completed
automata revealed to be very efficient, we aim at using this technique in a PCC
architecture where tree automata are viewed as program certificates. At last, note
that even if this checker is external to Coq, we can use the correction proof of the
checker and the Coq reflexivity mechanism to lift-up the external verification into
a proof in the Coq system. This can be necessary to perform efficient unreacha-
bility proofs on rewriting systems in Coq using an external completion tool.

References

[ABB+05] Armando, A., Basin, D., Boichut, Y., Chevalier, Y., Compagna, L.,
Cuellar, J., Hankes Drielsma, P., Héam, P.-C., Kouchnarenko, O.,
Mantovani, J., Mödersheim, S., von Oheimb, D., Rusinowitch, M.,
Santos Santiago, J., Turuani, M., Viganò, L., Vigneron, L.: Natural
deduction with general elimination rules. In: Etessami, K., Rajamani,
S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 541–567. Springer, Hei-
delberg (2005)

[BBGM08] Ballad, E., Boichut, Y., Genet, T., Moreau, P.-E.: Towards an Ef-
ficient Implementation of Tree Automata Completion. In: AMAST
2008 (to be published, 2008)

[BC04] Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program
Development. Coq’Art: The Calculus of Inductive Constructions.
Texts in Theoretical Computer Science. Springer, Heidelberg (2004)

[BD04] Barthe, G., Dufay, G.: A tool-assisted framework for certified byte-
code verification. In: Wermelinger, M., Margaria-Steffen, T. (eds.)
FASE 2004. LNCS, vol. 2984, pp. 99–113. Springer, Heidelberg (2004)

[BGJ08] Boyer, B., Genet, T., Jensen, T.: Certifying a Tree Automata
Completion Checker. Technical Report RR 6462, INRIA (2008),
http://hal.inria.fr/inria-00258275/fr/

[BGJL07] Boichut, Y., Genet, T., Jensen, T., Leroux, L.: Rewriting Approxi-
mations for Fast Prototyping of Static Analyzers. In: Baader, F. (ed.)
RTA 2007. LNCS, vol. 4533, pp. 48–62. Springer, Heidelberg (2007)

[BHK04] Boichut, Y., Héam, P.-C., Kouchnarenko, O.: Automatic Approxima-
tion for the Verification of Cryptographic Protocols. In: Proc. AVIS
2004, joint to ETAPS 2004, Barcelona (Spain) (2004)

http://hal.inria.fr/inria-00258275/fr/

538 B. Boyer, T. Genet, and T. Jensen

[BJP06] Besson, F., Jensen, T., Pichardie, D.: Proof-carrying code from cer-
tified abstract interpretation and fixpoint compression. Theor. Com-
put. Sci. 364(3), 273–291 (2006)

[BN98] Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge
University Press, Cambridge (1998)

[CDG+02] Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D.,
Tison, S., Tommasi, M.: Tree automata techniques and applications
(2002), http://www.grappa.univ-lille3.fr/tata/

[CJPR05] Cachera, D., Jensen, T., Pichardie, P., Rusu, V.: Extracting a data
flow analyser in constructive logic. Theor. Comput. Sci. 342(1), 56–78
(2005)

[FGVTT04] Feuillade, G., Genet, T., Viet Triem Tong, V.: Reachability Analysis
over Term Rewriting Systems. JAR 33(3-4), 341–383 (2004)

[Gen97] Genet, T.: Decidable approximations of sets of descendants and sets of
normal forms (extended version). Technical Report RR-3325, INRIA
(1997)

[Gen98] Genet, T.: Decidable approximations of sets of descendants and sets
of normal forms. In: Nipkow, T. (ed.) RTA 1998. LNCS, vol. 1379,
pp. 151–165. Springer, Heidelberg (1998)

[GK00] Genet, T., Klay, F.: Rewriting for Cryptographic Protocol Verifica-
tion. In: McAllester, D. (ed.) CADE 2000. LNCS, vol. 1831. Springer,
Heidelberg (2000)

[GT95] Gilleron, R., Tison, S.: Regular tree languages and rewrite systems.
Fundamenta Informaticae 24, 157–175 (1995)

[GTTVTT03] Genet, T., Tang-Talpin, Y.-M., Viet Triem Tong, V.: Verification of
Copy Protection Cryptographic Protocol using Approximations of
Term Rewriting Systems. In: WITS 2003 (2003)

[GVTT00] Genet, T., Viet Triem Tong, V.: Timbuk 2.0 – a Tree Au-
tomata Library. IRISA / Université de Rennes 1 (2000),
http://www.irisa.fr/lande/genet/timbuk/

[Jac96] Jacquemard, F.: Decidable approximations of term rewriting systems.
In: Ganzinger, H. (ed.) Proc. 7th RTA Conf., New Brunswick (New
Jersey, USA), pp. 362–376. Springer, Heidelberg (1996)

[KN03] Klein, G., Nipkow, T.: Verified bytecode verifiers. TCS 298 (2003)
[LT00] Letouzey, P., Théry, L.: Formalizing stalmarck’s algorithm in coq. In:

Aagaard, M.D., Harrison, J. (eds.) TPHOLs 2000. LNCS, vol. 1869.
Springer, Heidelberg (2000)

[Ret99] Rety, P.: Regular Sets of Descendants for Constructor-based Rewrite
Systems. In: Ganzinger, H., McAllester, D., Voronkov, A. (eds.)
LPAR 1999. LNCS, vol. 1705. Springer. Heidelberg (1999)

[RGL01] Rival, X., Goubault-Larrecq, J.: Experiments with finite tree au-
tomata in coq. In: Proc. of TPHOL 2001. LNCS. Springer, Heidelberg
(2001)

[Tak04] Takai, T.: A Verification Technique Using Term Rewriting Systems
and Abstract Interpretation. In: van Oostrom, V. (ed.) RTA 2004.
LNCS, vol. 3091, pp. 119–133. Springer, Heidelberg (2004)

[ZD06] Zunino, R., Degano, P.: Handling exp,× (and timestamps) in protocol
analysis. In: Aceto, L., Ingólfsdóttir, A. (eds.) FOSSACS 2006 and
ETAPS 2006. LNCS, vol. 3921, pp. 413–427. Springer, Heidelberg
(2006)

http://www.grappa.univ-lille3.fr/tata/
http://www.irisa.fr/lande/genet/timbuk/

Automated Induction

with Constrained Tree Automata�,��

Adel Bouhoula1 and Florent Jacquemard2

1 Higher School of Communications of Tunis (Sup’Com),
University of November 7th at Carthage, Tunisia

adel.bouhoula@supcom.rnu.tn
2 INRIA and LSV, CNRS/ENS Cachan, France

florent.jacquemard@inria.fr

Abstract. We propose a procedure for automated implicit inductive
theorem proving for equational specifications made of rewrite rules with
conditions and constraints. The constraints are interpreted over construc-
tor terms (representing data values), and may express syntactic equality,
disequality, ordering and also membership in a fixed tree language. Con-
strained equational axioms between constructor terms are supported and
can be used in order to specify complex data structures like sets, sorted
lists, trees, powerlists...

Our procedure is based on tree grammars with constraints, a formal-
ism which can describe exactly the initial model of the given specification
(when it is sufficiently complete and terminating). They are used in the
inductive proofs first as an induction scheme for the generation of sub-
goals at induction steps, second for checking validity and redundancy
criteria by reduction to an emptiness problem, and third for defining
and solving membership constraints.

We show that the procedure is sound and refutationally complete. It
generalizes former test set induction techniques and yields natural proofs
for several non-trivial examples presented in the paper, these examples
are difficult (if not impossible) to specify and carry on automatically
with other induction procedures.

1 Introduction

Given a specificationR of a program or system S made of equational Horn clauses,
proving a property P for S generally amounts to show the validity of P in the
minimal Herbrand model ofR, also called initial model ofR (inductive validity).
In this perspective, it is important to have automated induction theorem proving
procedures supporting a specification language expressive enough to axiomatize
complex data structures like sets, sorted lists, powerlists, complete binary trees,
etc. Moreover, it is also important to be able to automatically generate induction
schemas used for inductive proofs in order to minimize user interaction. However,
� A long version of this extended abstract is available as a research report [3].

�� This work has been partially supported by INRIA/DGRSRT grants 06/I09 and 0804.

A. Armando, P. Baumgartner, and G. Dowek (Eds.): IJCAR 2008, LNCS 5195, pp. 539–554, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

540 A. Bouhoula and F. Jacquemard

theories of complex data structures generate complex induction schemes, and the
automation of inductive proofs is therefore difficult for such theories.

It is common to assume that R is built with constructor function symbols
(to construct terms representing data) and defined symbols (representing the
operations defined on constructor terms). Assuming in addition the sufficient
completeness of R (every ground (variable-free) term is reducible, using the
axioms of R, to a constructor term) and the strong termination of the axioms of
R, a set of representants for the initial model of R (the model in which we want
to proof the validity of conjectures) is the set of ground constructor terms not
reducible byRC (the subset of equations ofR between terms made of constructor
symbols), called constructor normal forms.

In the case where the constructors are free (RC = ∅), the set of constructor
normal forms is simply the set of ground terms built with constructors and it is
very easy to define an induction schema. This situation is therefore convenient
for inductive reasoning, and many inductive theorem provers require free con-
structors, termination and sufficient completeness. However, it is not expressive
enough to define complex data structures. With rewrite rules between construc-
tors, the definition of induction schema is more complex, and requires a finite
description of the set of constructor normal-forms. Some progress has been done
e.g. in [4] and [5] in the direction of handling specification with non-free con-
structors, with severe restrictions (see related work below).

Tree automata (TA), or equivalently regular tree grammars, permit a finite
representation of the set of constructor normal-forms when RC is a left-linear
rewrite system (set of rewrite rules without multiple occurrences of variables in
their left-hand-sides). Indeed, on one hand TA can do linear pattern-matching,
hence they can recognize terms which are reducible by RC , and on the other
hand, the class of TA languages is closed under complementation. When the
axioms of RC are not linear, or are constrained, some extensions of TA (or
grammars) are necessary, with transitions able to check constraints on the term
in input, see e.g. [8].

In this paper, we propose a framework for inductive theorem proving for the-
ories containing constrained rewrite rules between constructor terms and con-
ditional and constrained rewrite rules for defined functions. The key idea is a
strong and natural integration of tree grammars with constraints in an implicit
induction procedure, where they are used as induction schema. Very roughly,
our procedure starts with the automatic computation of an induction schema,
in the form of a constrained tree grammar generating constructor normal form.
This grammar is used later for the generation of subgoals from a conjecture C,
by instantiation of variables using the grammar’s production rules, triggering
induction steps during the proof. All generated subgoals are either deleted, fol-
lowing some criteria, or they are reduced, using axioms or induction hypotheses,
or conjectures not yet proved, providing that they are smaller than the goal to be
proved. Reduced subgoals become then new conjectures and C becomes an in-
duction hypothesis. Moreover, constrained tree grammars are used as a decision
procedure for checking the deletion criteria during induction steps.

Automated Induction with Constrained Tree Automata 541

Our method subsumes former test set induction procedures like [6,1,4], by
reusing former theoretical works on tree automata with constraints. It is sound
and refutationally complete (any conjecture that is not valid in the initial model
will be disproved) when R is sufficiently complete and the constructor subsys-
tem RC is terminating. Without the above hypotheses, it still remains sound
and refutationally complete for a restricted kind of conjectures, where all the
variables are constrained to belong to the language of constructor normal forms.
This restriction is expressible in the specification language (see below). When
the procedure fails, it implies that the conjecture is not an inductive theorem,
provided that R is strongly complete (a stronger condition for sufficient com-
pleteness) and ground confluent. There is no requirement for termination of the
whole set of rules R, unlike [6,1], but instead only for separate termination of
the respective sets of rules for defined function and for the constructors.

Moreover, if a conjecture C restricted as above is proved in a sufficiently
complete specification R and R is further consistently extended into R′ with
additional axioms for specifying partial (non-constructor) functions, then the
former proof of C remains valid in R′, see Section 5.

The support of constraints permits in some cases to use the constrained com-
pletion technique of [16] in order to transform a non-terminating theory into
a terminating one, by the addition of ordering constraints in constructor rules,
see Section 4.5. It permits in particular to make proofs modulo non orientable
axioms, without having to modify the core of our procedure.

We shall consider a specification of ordered lists as a running example through-
out the paper. Consider first non-stuttering lists (lists which do not contain two
equal successive elements) built with the constructor symbols ∅ (empty list) and
ins (list insertion) and following this rewrite rule:

ins(x, ins(x, y)) → ins(x, y) (c0)

Rewrite rules can be enriched with constraints built on predicates with a
fixed interpretation on ground constructor terms. For example, using ordering
constraints built with . we can specify ordered lists by the following axiom:

ins(x1, ins(x2, y))→ ins(x2, ins(x1, y)) �x1 . x2� (c1)

Another interesting example is the case of membership constraints of the form
x : L where L is a fixed regular tree language (containing only terms made of
constructor symbols). We consider also stronger constraints which restrict con-
structor terms to be in normal form (i.e. not reducible by the axioms). Let us
come back to the example of non-stuttering sorted lists (sorted lists without
duplication), and add to the above rules the axioms below which define a mem-
bership predicate �, using the information that lists are sorted:

x � ∅ → false (m′
0)

x1 � ins(x2, y2)→ true �x1 ≈ x2� (m′
1)

x1 � y1 → false �y1 ≈ ins(x2, y2), x1 ≺ x2, y1:NF� (m′
2)

x1 � ins(x2, y2)→ x1 � y2 �x2 ≺ x1� (m′
3)

542 A. Bouhoula and F. Jacquemard

The constraint y1:NF expresses the fact that this subterm is a constructor
term in normal form, i.e. that it is a sorted list. Without this constraint, the
specification would be inconsistent. Indeed, let us consider the ground term t =
0 � ins(s(0), ins(0, ∅)). This term t can be reduced into both true and false, since
ins(s(0), ins(0, ∅)) is not in normal form. Using constraints of the form . : NF
as above also permits the user to specify, directly in the rewrite rules, some ad-
hoc reduction strategies for the application of rewriting. Such strategies include
for instance several refinements of the innermost strategy which corresponds
to the call by value computation in functional programming languages, where
arguments are fully evaluated before the function application.

Related work. The principle of our procedure is close to test-set induction ap-
proaches [6,1]. The real novelty here is that test-sets are replaced by constrained
tree grammars, the latter being more precise induction schemes. Indeed, they
provide an exact finite description of the initial model of the given specifica-
tion, (under some assumptions like sufficient completeness and termination for
axioms), whereas cover-sets and test-sets are over-approximative in similar cases.

The first author and Jouannaud [4] have used tree automata techniques to gen-
eralize test set induction to specifications with non-free constructors. This work
has been generalized in [5] for membership equational logic. These approaches,
unlike the procedure presented in this paper, work by transforming the initial
specification in order to get rid of rewrite rules for constructors. Moreover, the
axioms for constructors are assumed to be unconstrained and unconditional left-
linear rewrite rules, which is still too restrictive for the specification of structures
like sets or sorted lists...

Kapur [15] has proposed a method (implemented in the system RRL) for
mechanizing cover set induction if the constructors are not free. This handles in
particular the specification of powerlists or sorted lists. We show in Section 5
how our method can address similar problems.

We describe in [3] two proofs, done resp. by Jared Davis and Sorin Stratulat,
of a conjecture on sorted lists, done resp. by Jared Davis and Sorin Stratulat,
with ACL2 using a library for ordered sets [12] and with SPIKE [6,1,17]. Both
proofs require the addition of non-trivial lemmas whereas our procedure can
prove the conjecture without additional lemma.

2 Preliminaries

The reader is assumed familiar with the basic notions of term rewriting [13] and
first-order logic. Notions and notations not defined here are standard.

Terms and substitutions. We assume given a many sorted signature (S,F)
(or simply F , for short) where S is a set of sorts and F is a finite set of function
symbols with arities. We assume moreover that the signature F comes in two
parts, F = C *D where C a set of constructor symbols, and D is a set of defined
symbols. Let X be a family of sorted variables. We sometimes denote variables
with sort exponent like xS in order to indicate that x has sort S ∈ S. The set

Automated Induction with Constrained Tree Automata 543

of well-sorted terms over F (resp. constructor well-sorted terms) with variables
in X will be denoted by T (F ,X) (resp. T (C,X)). The subset of T (F ,X) (resp.
T (C,X)) of variable-free terms, or ground terms, is denoted T (F) (resp. T (C)).
We assume that each sort contains a ground term. The sort of a term t ∈ T (F ,X)
is denoted sort(t).

A term t is identified as usual with a function from its set of positions (strings
of positive integers) Pos(t) to symbols of F and X , where positions are strings of
positive integers. We denote the empty string (root position) by Λ. The length of
a position p is denoted |p|. The depth of a term t, denoted d(t), is the maximum
of {|p| | p ∈ Pos(t)}. The subterm of t at position p is denoted by t|p. The result
of replacing t|p with s at position p in t is denoted by t[s]p. This notation is also
used to indicate that s is a subterm of t, in which case p may be omitted. We
denote the set of variables occurring in t by var (t). A term t is linear if every
variable of var (t) occurs exactly once in t.

A substitution is a finite mapping {x1 �→ t1, . . . , xn �→ tn} where x1, . . . , xn ∈
X and t1, . . . tn ∈ T (F ,X). As usual, we identify substitutions with their mor-
phism extension to terms. A variable renaming is a substitution mapping vari-
ables to variables. We use postfix notation for substitutions application and
composition. A substitution σ is grounding for a term t if tσ is ground.

Constraints and constrained terms. We assume given a constraint language
L, which is a finite set of predicate symbols with a recursive Boolean interpre-
tation in the domain of ground constructor terms of T (C). Typically, L may
contain the syntactic equality . ≈ . (syntactic disequality . �≈ .), some (recur-
sive) simplification ordering . ≺ . on ground constructor terms (for instance a
lexicographic path ordering [13]), and membership . :L to a fixed tree language
L ⊆ T (C) (like for instance the languages of well sorted terms or constructor
terms in normal-form). Constraints on the language L are Boolean combinations
of atoms of the form P (t1, . . . , tn) where P ∈ L and t1, . . . , tn ∈ T (C,X). By
convention, an empty combination is interpreted to true.

The application of substitutions is extended from terms to constraints in a
straightforward way, and we may therefore define a solution for a constraint c
as a (constructor) substitution σ grounding for all terms in c and such that cσ
is interpreted to true. The set of solutions of the constraint c is denoted sol(c).
A constraint c is satisfiable if sol (c) �= ∅ (and unsatisfiable otherwise).

A constrained term t �c� is a linear term t ∈ T (F ,X) together with a con-
straint c, which may share some variables with t. Note that the assumption that
t is linear is not restrictive, since any non linearity may be expressed in the con-
straint, for instance f(x, x) �c� is semantically equivalent to f(x, x′) �c ∧ x ≈ x′�,
where the variable x′ does not occur in c.

Constrained clauses. A literal is an equation s = t or a disequation s �= t or
an oriented equation s → t between two terms. A constrained clause C �c� is a
disjunction C of literals together with a constraint c. A constrained clause C �c�
is said to subsume a constrained clause C′ �c′� if there is a substitution σ such
that Cσ is a sub-clause of C′ and c′ ∧ ¬cσ is unsatisfiable.

544 A. Bouhoula and F. Jacquemard

A tautology is a constrained clause s1 = t1 ∨ . . . ∨ sn = tn �d� such that d is
a conjunction of equational constraints, d = u1 ≈ v1 ∧ . . . ∧ uk ≈ vk and there
exists i ∈ [1..n] such that siσ = tiσ where σ is the mgu of d.

Constrained rewriting. A conditional constrained rewrite rule is a constrained
clause of the form Γ ⇒ l → r �c� such that Γ is a conjunction of equations, called
the condition of the rule, the terms l and r (called resp. left- and right-hand side)
are linear and have the same sort, and c is a constraint. When the condition Γ
is empty, it is called a constrained rewrite rule. A set of conditional constrained,
resp. constrained, rules is called a conditional constrained (resp. constrained)
rewrite system. Let R be a conditional constrained rewrite system. The relation
s �d� rewrites to t �d� by R, denoted s �d� −−→R t �d�, is defined recursively by
the existence of a rule ρ ≡ Γ ⇒ � → r �c� ∈ R, a position p ∈ Pos(s), and
a substitution σ such that s|p = �σ, t|p = rσ, dσ ∧ ¬cσ is unsatisfiable, and
uσ ↓R vσ for all u = v ∈ Γ . The transitive and reflexive transitive closures, of
−−→R are denoted −−→+R and −−→∗R , and u ↓R v stands for ∃w, u −−→∗R w ←−−∗R v.

Note the semantical difference between conditions and constraints in rewrite
rules. The validity of the condition is defined wrt the system R whereas the
interpretation of constraint is fixed and independent from R.

A constrained term s �c� is reducible by R if there is some t �c� such that
s �c� −−→R t �c�. Otherwise s �c� is called irreducible, or an R-normal form. A
substitution σ is irreducible by R if its image contains only R-normal forms.
A constrained term t �c� is ground reducible (resp. ground irreducible) if tσ is
reducible (resp. irreducible) for every irreducible solution σ of c grounding for t.

The system R is terminating if there is no infinite sequence t1 −−→R t2 −−→R . . .,
R is ground confluent if for any ground terms u, v, w ∈ T (F), v ←−−∗R u −−→∗R w,
implies that v ↓R w, and R is ground convergent if R is both ground confluent
and terminating. The depth of a non-empty set R of rules, denoted d(R), is the
maximum of the depths of the left-hand sides of rules in R.

Constructor specifications. We assume from now on given a conditional con-
strained rewrite system R. The subset of R containing only function symbols
from C is denoted RC and R \RC is denoted RD.

Inductive theorems. A clause C is a deductive theorem of R (denoted R |= C)
if it is valid in any model of R. A clause C is an inductive theorem of R (denoted
R |=Ind C) iff for all for all substitution σ grounding for C, R |= Cσ.

We shall need below to generalize the definition of inductive theorems to
constrained clauses as follows: a constrained clause C �c� is an inductive theorem
of R (denoted R |=Ind C �c�) if for all substitutions σ ∈ sol (c) grounding for C
we have R |= Cσ.

Completeness. A function symbol f ∈ D is sufficiently complete wrt R iff for
all t1, . . . , tn ∈ T (C), there exists t in T (C) such that f(t1, . . . , tn) −−→+R t. We say
that the system R is sufficiently complete iff every defined operator f ∈ D is
sufficiently complete wrt R. Let f ∈ D be a function symbol and let:

{

Γ1 ⇒ f(t11, . . . , t
1
k) → r1 �c1�, . . . , Γn ⇒ f(tn1 , . . . , t

n
k)→ rn �cn�

}

Automated Induction with Constrained Tree Automata 545

be a maximal subset of rules of RD whose left-hand sides are identical up
to variable renamings μ1, . . . , μn, i.e. f(t11, . . . , t

1
k)μ1 = f(t21, . . . , t

2
k)μ2 =

. . . f(tn1 , . . . , tnk)μn. We say that f is strongly complete wrt R (see [1]) if f is
sufficiently complete wrt R and R |=Ind Γ1μ1 �c1μ1� ∨ . . . ∨ Γnμn �cnμn� for
every subset of R as above. The system R is said strongly complete if every
function symbol f ∈ D is strongly complete wrt R.

3 Constrained Grammars

Constrained tree grammars have been introduced in [7], in the context of auto-
mated induction. The idea of using such formalism for induction theorem proving
is also in e.g. [4,10], because it is known that they can generate the languages
of normal-forms for arbitrary term rewriting systems.

We present in this section the definitions and results suited to our purpose.

Definition 1. A constrained grammar G = (Q,Δ) is given by: 1. a finite set Q
of non-terminals of the form �u�, where u is a linear term of T (F ,X), 2. a finite
set Δ of production rules of the form �v� := f(�u1�, . . . , �un�) �c� where f ∈ F ,
�v�, �u1�,. . . , �un� ∈ Q (modulo variable renaming) and c is a constraint.

The non-terminals are always considered modulo variable renaming. In particu-
lar, we assume wlog (for technical convenience) that the above term f(u1, . . . , un)
is linear and that var(v) ∩ var (f(u1, . . . , un)) = ∅.

3.1 Term Generation

We associate to a given constrained grammar G = (Q,Δ) a finite set of new unary
predicates of constraint of the form . : �u�, where �u� ∈ Q (modulo variable
renaming). Constraints of the form t: �u� called membership constraints and
their interpretation is given below. The production relation between constrained
terms ,y

G is defined by:

t[y] �y: �v� ∧d� ,y
G t[f(y1, . . . , yn)] �y1: �u1� ∧ . . . ∧ yn: �un� ∧c ∧ dτ�

if there exists �v� := f(�u1�, . . . , �un�) �c� ∈ Δ such that f(u1, . . . , un) =
vτ , and y1,. . . ,yn are fresh variables. The variable y, constrained to be in the
language defined by the non-terminal �v� is replaced by f(y1, . . . , yn) where the
variables y1, . . . , yn are constrained to the respective languages of non-terminals
�u1�, . . . , �un�. The union of the relations ,y

G for all y is denoted ,G and the
reflexive transitive and transitive closures of the relation ,G are respectively
denoted by ,∗G and ,+

G (G may be omitted).

Definition 2. The language L(G, �u�) is the set of ground terms t generated by
G from a non-terminal �u�, i.e. such that y �y: �u�� ,∗ t �c� where c is satisfiable.

Given Q′ ⊆ Q, we write L(G, Q′) =
⋃

�u�∈Q′ L(G, �u�) and L(G) = L(G, Q).
Given a constrained grammar G = (Q,Δ), we can now define sol (t: �u�), where
�u� ∈ Q, as {σ | tσ ∈ L(G, �u�)}.

546 A. Bouhoula and F. Jacquemard

Example 1. Let us consider the sort Nat of natural integers built with the con-
structor symbols 0 and s. These terms are generated by the grammar with pro-
duction rules �xNat� := 0 and �xNat� := s(�x2

Nat�). �

3.2 Normal Forms

In [3], we present the automatic construction of a constrained grammar
GNF(RC) = (QNF(RC), ΔNF(RC)) which generates the language of ground RC-
normal forms. Its construction is a generalization of the one of [9]. Intuitively,
it corresponds to the complementation and completion of a grammar for RC-
reducible terms (such a grammar does mainly pattern matching of left members
of rewrite rules), where every subset of states (for the complementation) is rep-
resented by the most general common instance of its elements (if they are unifi-
able). Due to space limitations, we cannot describe the general construction of
GNF(RC) here but we rather present the case where RC contains the constructor
axioms given in introduction.

Example 2. Let RC contain the axioms (c0) and (c1) given in introduction. Let
GNF(RC) contain the two productions rules given Example 1 and �xSet� :=
∅, �ins(x, y)� := ins(�xNat� , �xSet�) (for singleton lists) and �ins(x, y)� :=
ins(�xNat� , �ins(x2, y2)�) �xNat ≺ x2�. Note that the variables in the non termi-
nal �ins(x2, y2)� in the right member of the latter production rule have been
renamed in order to be distinguished from the variables in the non terminal in
the left member. This grammar GNF(RC) generates the set of ground construc-
tor terms in normal-form for RC . They represent the ordered lists of natural
numbers (of sort List). �

4 Inference System

In this section, we present an inference system for our inductive theorem proving
procedure. The principle is the following: given a goal (conjecture) C, we use the
grammar GNF(RC) of Section 3.2 in order to expand C into some subgoals. All
the generated subgoals must then either be deleted, following some criteria, or
be reduced, using axioms or induction hypotheses, or conjectures not yet proved,
providing that they are smaller than the goal to be proved. Reduced subgoals
become then new conjectures and C becomes an induction hypothesis.

The deletion criteria include tautologies, forward subsumption, clauses with
an unsatisfiable constraint, and constructor clause that can be detected as in-
ductively valid, under some conditions defined precisely below. The decision of
these criteria, using GNF(RC), is discussed in Section 4.6.

The reduction of subgoals is performed with the rules defined in Sections 4.1
and 4.2. If a subgoal generated cannot be deleted or reduced, then the procedure
stop with a refutation (the initial goal is not an inductive theorem of R). If every
subgoal is deleted, then the initial goal is an inductive theorem of R.

The procedure may not terminate (the conditions in inference rules other than
the deletion criteria are recursive calls of the procedure of the form R |=Ind

Automated Induction with Constrained Tree Automata 547

subgoal). In this case appropriate lemmas should be added by the user in order
to achieve termination.

4.1 Simplification Rules for Defined Functions

Our procedure uses the simplification rules for defined symbols presented in
Figure 1. They simplify constrained clauses according to RD and to a set H of
induction hypotheses (constrained clauses), which is given as the second com-
ponent of the left-hand sides of rules. Inductive Rewriting simplifies goals using
the axioms as well as instances of the induction hypotheses of H, provided that
they are smaller than the goal. The underlying induction principle is based on a
well-founded ordering @ on constrained clauses (see [3]). This approach is more
general than structural induction which is more restrictive concerning simpli-
fication with induction hypotheses (see e.g. [6]). Inductive Contextual Rewriting
can be viewed as a generalization of a rule in [18] to handle constraints by re-
cursively discharging them as inductive conjectures. Rewrite Splitting simplifies
a clause which contains a subterm matching some left member of rule of RD.
This inference checks moreover that all cases are covered for the application of
RD, i.e. that for each ground substitution τ , the conditions and the constraints
of at least one rule is true wrt τ . Note that this condition is always true when
R is sufficiently complete, and hence that this check is superfluous in this case.
Inductive Deletion deletes tautologies and clauses with unsatisfiable constraints.

Inductive Rewriting:
`˘

C �c�
¯
,H

´
→D

˘
C′ �c�

¯

if C �c� −−−→
ρ,σ

C′ �c�, lσ > rσ and lσ > Γσ

where ρ = Γ ⇒ l → r �c� ∈ RD ∪ {ψ | ψ ∈ H and C �c� � ψ}

Inductive Contextual Rewriting:
`˘

Υ ⇒ C[lσ] �c�
¯
,H

´
→D

˘
Υ ⇒ C[rσ] �c�

¯

if R |=Ind Υ ⇒ Γσ �c ∧ c′σ�, lσ > rσ and {lσ} >mul Γσ, where Γ ⇒ l → r �c′� ∈ RD

Rewrite Splitting:
`˘

C[t]p �c�
¯
,H

´
→D

˘
Γiσi ⇒ C[riσi]p �c ∧ ciσi�

¯
i∈[1..n]

if R |=Ind Γ1σ1 �c1σ1� ∨ . . . ∨ Γnσn �cnσn�, t > riσi and {t} >mul Γiσi, where the
Γiσi ⇒ liσi → riσi �ciσi�, i ≤ n, are all the instances of rules in RD such that liσi = t

Inductive Deletion:
`˘

C �c�
¯
,H

´
→D ∅ if C �c� is a tautology or c is unsatisfiable

Fig. 1. Simplification Rules for Defined Functions

4.2 Simplification Rules for Constructors

The simplification rules for constructors are presented in Figure 2. Rewriting sim-
plifies goals with axioms from RC . Partial Splitting eliminates ground reducible
terms in a constrained clause C �c� by adding to C �c� the negation of constraint
of some rules of RC . Therefore, the saturated application of Partial splitting and
Rewriting will always lead to Deletion or to ground irreducible constructor clauses.
Finally, Deletion and Validity remove respectively tautologies and clauses with
unsatisfiable constraints, and ground irreducible constructor theorems of R.

548 A. Bouhoula and F. Jacquemard

Rewriting:
{

C �c�
}

→C
{

C′ �c�
}

if C �c� −−−→+RC
C′ �c� and C �c�4 C′ �c�

Partial Splitting:
{

C[lσ]p �c�
}

→C
{

C[rσ]p �c ∧ c′σ�, C[lσ]p �c ∧ ¬c′σ�
}

if l → r �c′� ∈ RC, lσ > rσ, and neither c′σ nor ¬c′σ is a subformula of c

Deletion:
{

C �c�
}

→C ∅ if C �c� is a tautology or c is unsatisfiable

Validity:
{

C �c�
}

→C ∅ if C �c� is a ground irreducible constructor clause and R |=Ind C �c�

Fig. 2. Simplification Rules for Constructors

Simplification:

(

E ∪
{

C �c�
}

,H
)

(

E ∪ E ′,H
) if

{

C �c�
}

→C E ′

Inductive Simplification:

(

E ∪
{

C �c�
}

,H
)

(

E ∪ E ′,H
) if

(

{C �c�}, E ∪ H
)

→D E ′

Narrowing:

(

E ∪
{

C �c�
}

,H
)

(

E ∪ E1 ∪ . . . ∪ En,H∪ {C �c�}
)

if
{

Ci �ci�
}

→C Ei, where {C1 �c1�, . . . , Cn �cn�} is the set of all clauses such that
C �c� �∗ Ci �ci� and d(Ci)− d(C) ≤ d(R)− 1

Inductive Narrowing:

(

E ∪
{

C �c�
}

,H
)

(

E ∪ E1 ∪ . . . ∪ En,H ∪ {C �c�}
)

if
(

Ci �ci�, E ∪ H ∪ {C �c�}
)

→D Ei, where {C1 �c1�, . . . , Cn �cn�} is the set of all
clauses such that C �c� �+ Ci �ci� and d(Ci)− d(C) ≤ d(R)− 1

Subsumption:

(

E ∪
{

C �c�
}

,H
)

(E ,H)
if C �c� is subsumed by another clause of R∪ E ∪H

Disproof:

(

E ∪
{

C �c�
}

,H
)

(⊥,H)
if no other rule applies to the clause C �c�

Fig. 3. Induction Inference Rules

4.3 Induction Inference Rules

The main inference system is displayed in Figure 3. Its rules apply to pairs (E ,H)
whose components are respectively the sets of current conjectures and of induc-
tive hypotheses. Two inference rules below, Narrowing and Inductive Narrowing,
use the grammar GNF(RC) for instantiating variables. In order to be able to
apply these inferences, we shall initiate the process by adding to the conjectures
one membership constraint for each variable.

Automated Induction with Constrained Tree Automata 549

Definition 3. Let C �c� be a constrained clause such that c contains no mem-
bership constraint. The decoration of C �c�, denoted decorate(C �c�) is the set
of clauses C �c ∧ x1: �u1� ∧ . . . ∧ xn: �un�� where {x1, . . . , xn} = var (C), and for
all i ∈ [1..n], �ui� ∈ QNF(RC) and sort(ui) = sort(xi).

The definition of decorate is extended to set of constrained clauses as expected.
A constrained clause C �c� is said decorated if c = d ∧ x1: �u1� ∧ . . . ∧ xn: �un�
where {x1, . . . , xn} = var(C), and for all i ∈ [1..n], �ui� ∈ QNF(RC), sort(ui) =
sort(xi), and d does not contain membership constraints.

Simplification, resp. Inductive Simplification, reduces conjectures according to
the rules of Section 4.2, resp. 4.1. Inductive Narrowing generates new subgoals by
application of the production rules of the constrained grammar GNF(RC) until
the obtained clause is deep enough to cover left-hand side of rules of RD. Each
obtained clause must be simplified by one the rules of Figure 1 (otherwise, if
one instance cannot be simplified, then the rule Inductive Narrowing cannot be
applied). For sake of efficiency, the application can be restricted to so called
induction variables, as defined in [1] while preserving all the results of the next
section. Narrowing is similar and uses the rules of Figure 2 for simplification. This
rule permits to eliminate the ground reducible constructor terms in a clause by
simplifying their instances, while deriving conjectures considered as new sub-
goals. The criteria on depth is the same for Inductive Narrowing and Narrowing
and is a bit rough, for sake of clarity of the inference rules. However, in practice,
it can be replaced by a tighter condition (with, e.g., a distinction betweenRC and
RD) while preserving the results of the next section. Subsumption deletes clauses
redundant with axioms of R, induction hypotheses of H and other conjectures
not yet proved (in E).

Example 3. Let us come back to the running example of sorted lists, with the
constructor system RC containing (c0) and (c1) and the defined system RD
containing the axioms (m′

0-m
′
3) given in introduction1 together with the following

axioms defining a variant ∈ for the membership:

x ∈ ∅ → false (m0)
x1 ∈ ins(x2, y)→ true �x1 ≈ x2� (m1)
x1 ∈ ins(x2, y)→ x1 ∈ y �x1 �≈ x2� (m2)

We show, using our procedure, that the conjecture x � y = x ∈ y is an inductive
theorem of R, i.e. that the two variants � and ∈ of membership are equivalent.
The normal-form grammar GNF(RC) is described in example 2. The decoration
of the conjecture with its non-terminal gives the two clauses: x � y = x ∈
y �x: �xNat� , y: �xSet� � and x � y = x ∈ y �x: �xNat� , y: �ins(x1, y1)��.

The application of the production rules of GNF(RC) to the first of these clauses
(in Narrowing) gives: x � ∅ = x ∈ ∅ which is reduced, using (m′

0) and (m0), to
the tautology false = false. For the second clause, applying GNF(RC) returns:

x � ins(x1, ∅) = x ∈ ins(x1, ∅) �x, x1: �xNat� � (1)

1 In (m′
2), the constraints y1 ≈ ins(x2, y2), y1:NF can be replaced by y1: �ins(x2, y2)� .

550 A. Bouhoula and F. Jacquemard

x � ins(x1, ins(x2, ∅)) = x ∈ ins(x1, ins(x2, ∅)) �x, x1, x2: �xNat� , x1 ≺ x2� (2)
x � ins(x1, ins(x2, y2)) = x ∈ ins(x1, ins(x2, y2))

�x, x1, x2: �xNat� , y2: �ins(x3, y3)�, x1 ≺ x2, x2 ≺ x3� (3)

The subgoals (1) and (2) can be simplified by Rewrite Splitting with (m′
1), (m′

2)
and (m′

3) into clauses reduced into tautologies (see [3] for details).
The subgoal (3) is implified by Rewrite Splitting with (m′

1-m
′
3) into 3 clauses.

Let us consider the third one, obtained with (m′
3): x � ins(x2, y2) = x ∈

ins(x1, ins(x2, y2)) �x, x1, x2, x3: �xNat� , y2: �ins(x3, y3)�, x1 ≺ x2, x2≺ x3, x1≺x�.
It is simplified by Inductive Rewriting with (m2) into:
x � ins(x2, y2) = x ∈ ins(x2, y2) �x, x2, x3: �xNat� , y2: �ins(x3, y3)�, x2 ≺ x3�.
At this point, we are allowed to use the conjecture x � y = x ∈ y as an induction
hypothesis with Inductive Rewriting, it returns the tautology:

x � ins(x2, y2) = x � ins(x2, y2) �x, x2, x3: �xNat� , y2: �ins(x3, y3)�, x2 ≺ x3�
The ommited details in the proof of the conjecture can be found in [3]. Note
that this proof does not require the manual addition of lemma. �

4.4 Soundness and Completeness

We show now that our inference system is sound and refutationally complete.
The proof of soundness is not straightforward. The main difficulty is to make sure
that the exhaustve application of the rules preserve a counterexample when one
exists. We will show more precisely that a minimal counterexample is preserved
along a fair derivation.

A derivation is a sequence of inference steps generated by a pair of the form
(E0, ∅), using the inference rules in I, written (E0, ∅) ,I (E1,H1) ,I . . . It is
called fair if the set of persistent constrained clauses (∪i ∩j≥i Ej) is empty or
equal to {⊥}. The derivation is said to be a disproof in the latter case, and a
success in the former.

Finite success is obtained when the set of conjectures to be proved is ex-
hausted. Infinite success is obtained when the procedure diverges, assuming fair-
ness. When it happens, the clue is to guess some lemmas which are used to
subsume or simplify the generated infinite family of subgoals, therefore stopping
the divergence. This is possible in principle with our approach, since lemmas can
be specified in the same way as axioms are.

Theorem 1 (Soundness of successful derivations). Assume that RC is
terminating and that R is sufficiently complete. Let D0 be a set of uncon-
strained clauses and let E0 = decorate(D0). If there exists a successful derivation
(E0, ∅) ,I (E1,H1) ,I · · · then R |=Ind D0.

Proof. (sketch, see [3] for a complete proof). The proof uses the fact that, under
the hypotheses of Theorem 1, R |=Ind E0 implies R |=Ind D0.

Intuitively, the reason is that in order to show that R |=Ind D0, it is sufficient
to show that R |= D0σ for all substitutions σ whose images contain only ground

Automated Induction with Constrained Tree Automata 551

constructor terms in normal form. Every ground σ can indeed be normalized
into a substitution of this form because RC is terminating and R sufficiently
complete. By definition of the decoration, the membership constraints and by
construction of GNF(RC), this sufficient condition is a consequence ofR |=Ind E0.

We then show that R |=Ind E0 by minimal counter-example. Assume that
R �|=Ind E0 and let D0 be a clause, minimal wrt @, in the set:
{

Dσ
∣
∣ D �d� ∈ ∪iEi, σ ∈ sol(d) is constructor and irreducible and R �|= Dσ

}

.

Let C �c� be a clause of ∪iEi minimal by subsumption ordering and θ ∈ sol(c),
irreducible and constructor ground substitution, be such that Cθ = D0. We
show in [3] that whatever inference, other than Disproof, is applied to C �c�, a
contradiction is obtained, hence that the above derivation is not successful. "!

Since there are only two kinds of fair derivations, we obtain as a corollary:

Corollary 1 (Refutational completeness). Assume that RC is terminating
and that R is sufficiently complete. Let D0 be a set of unconstrained clauses
and let E0 = decorate(D0). If R �|=Ind E0, then all fair derivations starting from
(E0, ∅) end up with (⊥,H).

When we assume that all the variables in goals are decorated (restricting
the domain for this variables to ground constructor irreducible terms), the
above hypotheses that RC is terminating and R is sufficiently complete can be
dropped.

Theorem 2 (Soundness of successful derivations). Let E0 be a set of
decorated constrained clauses. If there exists a successful derivation (E0, ∅) ,I
(E1,H1) ,I · · · then R |=Ind E0.

Proof. (sketch). We use the second part of the proof of Theorem 1 (which does
not use the sufficient completeness of R and termination of RC). With the hy-
pothesis that the clauses of E0 are decorated, the fact given at the beginning of
this proof is indeed no more needed (D0 = E0). The restriction to substitutions
into ground constructor normal forms in order to show that R �|=Ind E0 is made
explicit by the membership constraints in the decoration. "!

Corollary 2 (Refutational completeness). Let E0 be a set of decorated con-
strained clauses. If R �|=Ind E0, then all fair derivations starting from (E0, ∅) end
up with (⊥,H).

We shall see in Section 5 some example of applications of Theorem 2 and Corol-
lary 2 to specifications which are not sufficiently complete.

Theorem 3 (Soundness of disproof). Assume that R is strongly com-
plete and ground confluent. If a derivation starting from (E0, ∅) returns the pair
(⊥,H), then R �|=Ind E0.

552 A. Bouhoula and F. Jacquemard

4.5 Handling Non-terminating Constructor Systems

Our procedure applies rules of RC and RD only when they reduce the terms wrt
the given simplification ordering >. This is ensured when the rewrite relation
induced by RC and RD is compatible with >, and hence that RC and RD are
terminating (separately). Note that this is in contrast with other procedures
like [16] where the termination of the whole system R is required.

If RC is non-terminating then one can apply a constrained completion tech-
nique [16] in order to generate an equivalent orientable theory (with ordering
constraints). The theory obtained (if the completion succeeds) can then be han-
dled by our approach.

Example 4. Consider this non-terminating system for sets: {ins(x, ins(x, y)) =
ins(x, y), ins(x, ins(x′, y)) = ins(x′, ins(x, y))}. Applying the completion proce-
dure we obtain the constrained rules (c0) and (c1). �

4.6 Decision Procedures for Conditions in Inferences

Constrained tree grammars are involved in the inferences Narrowing and Inductive
Narrowing in order to generate subgoals from goals, by instantiation using the
productions rules. They are also the key for the decision procedures applied in
order to check the conditions of constraint unsatisfiability (in rules for rewriting
and Inductive Deletion, Deletion, Subsumption), ground irreducibility and validity
of ground irreducible constructor clauses (in the rules Validity, hence Simplifica-
tion, and Disproof). These conditions are decided by reduction into the decision
problem of emptiness (of L(G, �u�)) for constrained tree grammars build from
GNF(RC). The decision rely on similar decision results for constrained tree au-
tomata, some cases are summarized in [8]. The reductions are detailed in [3].

5 Handling Partial Specifications

The example of sorted lists (Example 3) can be treated with our procedure
because it is based on a sufficiently complete and ground confluent conditional
constrained TRS R whose constructor part RC is terminating. Indeed, under
these hypotheses, Theorem 1 ensures the soundness of our procedure for proving
inductive conjectures on this specification, and Corollary 1 and Theorem 3 ensure
respectively refutational completeness and soundness of disproof.

For sound proofs of inductive theorems wrt specifications which are not suf-
ficiently complete, we can rely on Theorem 2 and Corollary 2 which do not
require sufficient completeness of the specification but instead suppose that the
conjecture is decorated, i.e. that each of its variables is constrained to belong to
a language associated to a non-terminal of the normal-form (constrained) gram-
mar. In this section, we propose two applications of this principle of decoration
of conjectures to the treatment of partial specifications.

Partially Defined Functions. An inductive proof of a decorated conjecture C
in R remains valid in an extension of R (possibly not complete).

Automated Induction with Constrained Tree Automata 553

Theorem 4. Assume that R is sufficiently complete and let R′ be an consistent
extension of R where RC

′ = RC and RD
′ = RD ∪RD

′′ (RD
′′ defines additional

partial defined functions). Let E0 be a set of decorated constrained clauses. Every
derivation (E0, ∅) ,I · · · successful wrt R is also a successful derivation wrt R′.

In [3], we use Theorem 4 for the proof of conjectures on an extension of the
specification of Example 3 with the incomplete definition of a function min .

Partial Constructors. The restriction to decorated conjectures also permits to
deal with partial constructor functions. In this case, we are generally interested
in proving conjectures only for constructor terms in the definition domain of the
defined function (well-formed terms).

In [3], we present an example of automatic proof where RC is such that the
set of well-formed terms is the set of constructor RC-normal forms. Hence, deco-
rating the conjecture with grammar’s non-terminals, as in Theorem 2, amounts
in this case at restricting the variables to be instantiated by well-formed terms.

The example is a specification of powerlists (lists of 2n integers stored in the
leaves of a complete binary tree) also treated in [15]. A particularity of this
example is that RC contains constraints of the form t ∼ t′ meaning that t and t′

are well-formed lists of the same length (i.e. balanced trees of the same depth).
Such constraints are added to GNF(RC) and we show that emptiness is decidable
for these grammars by reduction to the same problem for visibly tree automata
with one memory [11].

6 Conclusion

We have proposed a procedure for automated inductive theorem proving in spec-
ification made of conditional and constrained rewrite rules. Constraints in rules
can serve to transform non terminating specifications into terminating ones
(ordering constraints), define ad-hoc evaluation strategies (normal form con-
straints), or for the analysis of trace properties of infinite state systems like
security protocols (constraints of membership in a regular tree language repre-
senting faulty traces [2]). The expressiveness and efficiency of the procedure are
obtained by the use of constrained tree grammars as a finite representation of
the initial model of specifications. They are used both as induction schema and
for decision procedures.

The procedure presented in this paper is currently under implementation, on
the top of the theorem prover SPASS, whose main loop is used for TA decision
procedure by saturation, following the approach of e.g. [14].

Acknowledgments

We wish to thank Michael Rusinowitch, Hubert Comon-Lundh, Laurent Fribourg
and Deepak Kapur for the fruitful discussions that we had together regarding
this work. We are also grateful to Jared Davis and Sorin Stratulat for having
processed the example on sorted lists with respectively ACL2 and SPIKE.

554 A. Bouhoula and F. Jacquemard

References

1. Bouhoula, A.: Automated theorem proving by test set induction. Journal of Sym-
bolic Computation 23(1), 47–77 (1997)

2. Bouhoula, A., Jacquemard, F.: Verifying regular trace properties of security pro-
tocols with explicit destructors and implicit induction. In: Proc. of the workshop
FCS-ARSPA, pp. 27–44 (2007)

3. Bouhoula, A., Jacquemard, F.: Automated induction with constrained tree au-
tomata. Research Report LSV-08-07, http://www.lsv.ens-cachan.fr/Publis

4. Bouhoula, A., Jouannaud, J.-P.: Automata-driven automated induction. Informa-
tion and Computation 169(1), 1–22 (2001)

5. Bouhoula, A., Jouannaud, J.-P., Meseguer, J.: Specification and proof in member-
ship equational logic. Theoretical Computer Science 236(1-2), 35–132 (2000)

6. Bouhoula, A., Rusinowitch, M.: Implicit induction in conditional theories. Journal
of Automated Reasoning 14(2), 189–235 (1995)

7. Comon, H.: Unification et disunification. Théories et applications. PhD thesis,
Institut Polytechnique de Grenoble (France) (1988)

8. H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, C. Löding, D. Lugiez,
S. Tison, and M. Tommasi. Tree automata techniques and applications (2007),
http://www.grappa.univ-lille3.fr/tata

9. Comon, H., Jacquemard, F.: Ground reducibility is exptime-complete. Information
and Computation 187(1), 123–153 (2003)

10. Comon-Lundh, H.: Handbook of Automated Reasoning, ch. 14. Elsevier, Amster-
dam (2001)

11. Comon-Lundh, H., Jacquemard, F., Perrin, N.: Tree automata with memory,
visibility and structural constraints. In: Seidl, H. (ed.) FOSSACS 2007. LNCS,
vol. 4423, pp. 168–182. Springer, Heidelberg (2007)

12. Davis, J.: Finite set theory based on fully ordered lists. In: In 5th International
Workshop on the ACL2 Theorem Prover and Its Applications (ACL2, 2004) Sets
Library Website (2004), http://www.cs.utexas.edu/users/jared/osets/Web

13. Dershowitz, N., Jouannaud, J.-P.: Rewrite systems. In: Handbook of Theoretical
Computer Science, Volume B: Formal Models and Sematics, pp. 243–320. MIT
Press, Cambridge (1990)

14. Jacquemard, F., Rusinowitch, M., Vigneron, L.: Tree automata with equality con-
straints modulo equational theories. Journal of Logic and Algebraic Programming
(to appear, 2008)

15. Kapur, D.: Constructors can be partial too. In: Essays in Honor of Larry Wos,
MIT Press, Cambridge (1997)

16. Kirchner, C., Kirchner, H., Rusinowitch, M.: Deduction with symbolic constraints.
Revue d’Intelligence Artificielle 4(3), 9–52 (1990); Special issue on Automatic De-
duction

17. Stratulat, S.: A general framework to build contextual cover set induction provers.
Journal of Symbolic Computation 32(4), 403–445 (2001)

18. Zhang, H.: Implementing contextual rewriting. In: Proc. 3rd Int. Workshop on
Conditional Term Rewriting Systems (1992)

http://www.lsv.ens-cachan.fr/Publis
http://www.grappa.univ-lille3.fr/tata
http://www.cs.utexas.edu/users/jared/osets/Web

Author Index

Avanzini, Martin 132

Baader, Franz 226
Barthe, Gilles 83
Beierle, Christoph 147
Benzmüller, Christoph 162, 491
Bjørner, Nikolaj 410, 475
Bonacina, Maria Paola 380
Bouhoula, Adel 539
Boy de la Tour, Thierry 332
Boyer, Benôıt 523
Bozga, Marius 34

Comon-Lundh, Hubert 396

Darvas, Ádám 100
de Moura, Leonardo 410, 475
Dershowitz, Nachum 327, 380
Durán, Francisco 313

Echenim, Mnacho 332

Fietzke, Arnaud 162, 459
Furbach, Ulrich 139

Gacek, Andrew 154
Genet, Thomas 523
Ghilardi, Silvio 67
Glöckner, Ingo 139
Goré, Rajeev 299
Grégoire, Benjamin 83
Gupta, Aarti 1

Helbig, Hermann 139
Hirokawa, Nao 364
Höfner, Peter 50
Horrocks, Ian 242

Iosif, Radu 34

Jacquemard, Florent 539
Jensen, Thomas 523

Kaminski, Mark 210
Kern-Isberner, Gabriele 147

Koch, Nicole 147
Konev, Boris 259
Korovin, Konstantin 292
Kovács, Laura 275
Kremer, Steve 116
Kurihara, Masahito 306

Lucas, Salvador 313
Lutz, Carsten 179

Mehta, Farhad 100
Melquiond, Guillaume 2
Mercier, Antoine 116
Meseguer, José 313
Middeldorp, Aart 306
Miller, Dale 507
Moser, Georg 132, 364
Motik, Boris 242

Narendran, Paliath 332
Navarro, Juan Antonio 426
Nicolini, Enrica 67
Nigam, Vivek 507
Nipkow, Tobias 18

Otten, Jens 283

Paulson, Lawrence C. 162
Pavlova, Mariela 83
Pelzer, Björn 139
Peñaloza, Rafael 226
Perarnau, Swann 34
Platzer, André 171
Postniece, Linda 299
Pudlák, Petr 441

Quesel, Jan-David 171

Rabe, Florian 491
Ranise, Silvio 67
Rudich, Arsenii 100

Sato, Haruhiko 306
Schack-Nielsen, Anders 320
Schmidt, Renate A. 194
Schnabl, Andreas 132

556 Author Index

Schürmann, Carsten 320
Smolka, Gert 210
Struth, Georg 50
Sutcliffe, Geoff 441, 457, 491

Theiss, Frank 162
Tishkovsky, Dmitry 194
Treinen, Ralf 116

Urban, Josef 441

van Oostrom, Vincent 348
Voronkov, Andrei 426
Vyskočil, Jǐŕı 441

Walther, Dirk 259
Weidenbach, Christoph 459
Winkler, Sarah 306
Wolter, Frank 259

Zucchelli, Daniele 67

	Title Page
	Preface
	Conference Organization
	Table of Contents
	Software Verification: Roles and Challenges for Automatic Decision Procedures
	Proving Bounds on Real-Valued Functions with Computations
	Introduction
	Mathematical Foundations
	Extended Real Numbers
	Interval Arithmetic
	Bounds on Real-Valued Functions

	Computational Datatypes
	Floating-Point Arithmetic
	Straight-Line Programs

	Automatic Proofs
	Converting Terms
	Proving Propositions
	Bisection and Refined Evaluation

	Examples
	Remez’ Polynomial of the Square Root
	Relative Error for an Elementary Function

	Conclusion
	References

	Linear Quantifier Elimination
	Introduction
	Basic Notation
	Logic
	Auxiliary Functions
	Interpretation
	Atoms
	Quantifier Elimination
	Correctness

	Dense Linear Orders
	Atoms
	The Interior Point Method
	A Verified Implementation of the Interior Point Method
	The Method of Infinitesimals
	Complexity

	Linear Real Arithmetic
	Atoms
	Ferrante and Rackoff
	Loos and Weispfenning

	Presburger Arithmetic
	Cooper’s Algorithm
	Correctness

	Related Work
	References

	Quantitative Separation Logic and Programs with Lists
	Introduction
	RelatedWork

	Definitions
	Motivating Example

	Undecidability of QSL
	Model Theoretic Method
	Symbolic Shape Graphs
	Symbolic Graph Representations
	From Formulae to Sets of SGR

	Application of the Model Theoretic Method for QSL
	Experimental Results

	Conclusions
	References

	On Automating the Calculus of Relations
	Introduction
	Binary Relations and Relation Algebras
	Boolean Algebras: A Warm-Up
	Boolean Algebras with Operators
	Relation Algebras
	Functions, Vectors and Other Concepts
	Abrial’s Relatives
	Simulation Laws for Data Refinement
	Outlook
	Conclusion
	References

	Towards SMT Model Checking of Array-Based Systems
	Introduction
	Formal Preliminaries
	Array-Based Systems and Their Symbolic Representation
	Symbolic Representation of States and Transitions

	Symbolic Representation and SMT Solving
	Safety Model Checking
	 Backward Reachability
	Termination of Backward Reachability

	Progress Formulae for Recurrence Properties
	Related Work and Conclusions
	References

	Preservation of Proof Obligations from Java to the Java Virtual Machine
	Introduction
	Related Work
	Setting
	Verification Condition Generation
	Preservation of Proof Obligations
	Practical Issues
	Conclusion
	References

	Efficient Well-Definedness Checking
	Introduction
	Eliminating Ill-definedness
	Defining the D Operator
	An Approximation of the D Operator

	An Efficient Equivalent of the D Operator
	Syntactical Derivation of Y

	Implementation and Empirical Results
	Related Work
	Conclusion
	References

	Proving Group Protocols Secure Against Eavesdroppers
	Introduction
	Running Example
	Model
	Reducing I to DY
	Representing Group Protocols by Automata
	The Automaton Model
	Encoding Infinite Signatures
	Coping with Associativity and Commutativity of xor and $mult$.
	Closure under DY and Compatibility with the Closure under AC

	Example
	Conclusion
	References

	Automated Implicit Computational Complexity Analysis (System Description)
	Introduction
	Methods That Directly Classify Polytime
	Implementation
	Experiments and Conclusions
	References

	LogAnswer - A Deduction-Based Question Answering System (System Description)
	Introduction
	Description of the LogAnswer System
	Theorem Provers of LogAnswer
	Conclusions and Future Work
	References

	A High-Level Implementation of a System for Automated Reasoning with Default Rules (System Description)
	Introduction
	Background
	Examples and System Walk-Through
	Implementation
	Conclusions and Further Work
	References

	The Abella Interactive Theorem Prover (System Description)
	Introduction
	The Logic Underlying Abella
	The Structure of Abella
	Specification Logic
	Tactics

	Implementation
	Examples
	Future and Related Work
	References

	LEO-II - A Cooperative Automatic Theorem Prover for Classical Higher-Order Logic (System Description)
	Introduction and Motivation
	Motivation for LEO-II

	Overview of LEO-II
	Cooperative Proof Search
	Term Sharing and Term Indexing
	Conclusion
	References

	KeYmaera: A Hybrid Theorem Prover for Hybrid Systems (System Description)
	Introduction
	KeYmaera Verification Tool for Hybrid Systems
	Hybrid Systems, Hybrid Automata, and Hybrid Programs
	Syntax and Semantics of Differential Dynamic Logic
	Verification by Symbolic Decomposition
	Real Arithmetic and Computer Algebra
	Automation and Iterative Background Closure
	Parameter Discovery
	Applications
	Related Work
	References

	The Complexity of Conjunctive Query Answering in Expressive Description Logics
	Introduction
	Preliminaries
	Rooted Query Entailment in $ALCI$ and $SHIQ$
	2ExpTime-Hardness Results
	Query Entailment in SHQ is ExpTime-Complete
	Conclusion
	References

	A General Tableau Method for Deciding Description Logics, Modal Logics and Related First-Order Fragments
	Introduction
	General Framework
	Preliminaries for Applications
	A Mainstream Description Logic with Transitive Roles
	A Description Logic with Boolean Role Operators
	Discussion
	References

	Terminating Tableaux for Hybrid Logic with the Difference Modality and Converse
	Introduction
	Hybrid Logic with D and Converse
	Tableau Rules
	Control
	Termination
	ModelExistence
	Explicit Computation of Equational Equivalence
	Conclusion
	References

	Automata-Based Axiom Pinpointing
	Introduction
	Preliminaries
	The Description Logic SI
	Basic Definitions for Pinpointing

	Looping Tree Automata
	Automata-Based Pinpointing
	The General Approach
	Constructing Axiomatic Automata for SI

	Computing the Behaviour of a WLA
	Conclusions
	References

	Individual Reuse in Description Logic Reasoning
	Introduction
	Preliminaries
	Motivation
	The Hypertableau Algorithm with Individual Reuse
	The Standard Hypertableau Calculus for $SHOIQ$
	Introducing Individual Reuse

	Two Expansion Strategies
	The ε{LOH} Case
	The General Case

	Evaluation
	Conclusion
	References

	The Logical Difference Problem for Description Logic Terminologies
	Introduction
	Preliminaries
	Basic Properties of ε{L}
	Deciding σ-Entailment: Theory
	Practical Algorithm and System
	Experimental Evaluation
	Uniform Interpolation
	Discussion
	References

	Aligator: A Mathematica Package for Invariant Generation (System Description)
	Introduction
	$Aligator$ - Underlying Principles
	Inside$Aligator$ - Main Steps of the Tool
	Conclusions
	References

	leanCoP 2.0 and ileanCoP 1.2 : High Performance Lean Theorem Proving in Classical and Intuitionistic Logic (System Descriptions)
	Introduction
	leanCoP 2.0 for Classical Logic
	Architecture
	Performance

	ileanCoP 1.2 for Intuitionistic Logic
	Architecture
	Performance

	Conclusion
	References

	iProver – An Instantiation-Based Theorem Prover for First-Order Logic (System Description)
	Introduction
	Instantiation Calculus
	Redundancy Elimination
	Saturation Algorithm: The Inst-Gen Loop
	Implementation Details and Evaluation
	References

	An Experimental Evaluation of Global Caching for ALC (System Description)
	Introduction
	Programming Language and Basic Data Structures
	Various Caching Methods
	Problem Sets, Experiments and Results
	Conclusions and Further Work
	References

	Multi-completion with Termination Tools (System Description)
	Introduction
	Inference System
	Implementation
	Interface
	Experimental Results
	References

	MTT: The Maude Termination Tool (System Description)
	Introduction
	Proving Termination by Transformation
	Rewrite Theories
	Proving Termination of Rewrite Theories with MTT

	Implementation of the Tool
	References

	Celf – A Logical Framework for Deductive and Concurrent Systems (System Description)
	Introduction
	Example
	Celf
	Conclusion
	References

	Canonicity!
	Background
	Theory of Canonicity
	Applications of Canonicity
	References

	Unification and Matching Modulo Leaf-Permutative Equational Presentations
	Introduction
	Preliminaries
	Background
	Atomic String-Rewriting Systems
	Bit-Swapping Systems
	Leaf-Permutative Presentations
	Conclusion
	References

	Modularity of ConfluenceConstructed
	Introduction
	Preliminaries
	Modularity of Confluence, by Decreasing Diagrams
	Modularity of Confluence, Constructed
	(Im)possible Extensions
	Constructor-Sharing TRSs
	Extra-Variable TRSs
	Pseudo-TRSs

	Conclusion
	References

	Automated Complexity Analysis Based on the Dependency Pair Method
	Introduction
	Preliminaries
	The Dependency Pair Method
	Usable Rules
	The Weight Gap Principle
	Reduction Pairs and Argument Filterings
	Experiments
	Conclusion
	References

	Canonical Inference for Implicational Systems
	Introduction
	Background
	DirectSystems
	Computing Minimal Models
	Direct-Optimal Systems
	Rewrite-Optimality
	Discussion
	References

	Challenges in the Automated Verification of Security Protocols
	Introduction
	Intruder Deductions
	Bounded Number of Sessions
	Clausal Theorem Proving and Security Protocols
	ProofsofEquivalences
	Modularity
	References

	Deciding Effectively Propositional Logic Using DPLL and Substitution Sets
	Introduction
	The DPLL(SX) Calculus
	Preliminaries
	Inference Rules
	Soundness, Completeness and Complexity

	Refinements of DPLL(SX)
	Simultaneous Propagation and FUIP-Based Conflict Resolution
	Selecting Decision Literals and Substitution Sets
	Hybrid Substitution Sets

	Implementation and Evaluation
	Conclusions
	References

	Proof Systems for Effectively Propositional Logic
	Introduction
	Preliminaries
	Propositional vs First-Order Resolution

	The Generalisation Inference Rule
	Sort Inference for Generalisation
	Generalisation vs Resolution

	Related Work
	Conclusion and Future Work
	References

	MaLARea SG1 - Machine Learner for Automated Reasoning with Semantic Guidance
	Introduction
	Machine Learning Axiom Relevance
	Semantic Relevance Axiom Selection
	Combining Machine Learning with Semantic Selection
	Detailed Example
	Partial vs. Total Models

	Other Performance Related Additions to $MaLARea$
	Term Structure
	ATP Systems

	Results
	Future Work and Conclusion
	References

	CASC-J4 The 4th IJCAR ATP System Competition
	Labelled Splitting
	Introduction
	Labelled Splitting
	Experiments and Related Work
	Experiments
	Related Work

	Conclusion
	References

	Engineering DPLL(T) + Saturation
	Introduction
	Background
	Superposition Calculus

	DPLLΓ
	Soundness and Completeness
	Additional Rules

	Contraction Inferences
	System Architecture
	Evaluation

	Related Work
	Conclusion
	References

	THF0 – The Core of the TPTP Language for Higher-Order Logic
	Introduction
	Preliminaries
	The TPTP Language
	Higher-Order Logic
	Church’s Simple Type Theory

	The THF0 Language
	TypeCheckingTHF0
	TPTP Resources
	Conclusion
	BNF for THF0

	Focusing in Linear Meta-logic
	Introduction
	Preliminaries
	Linear Logic
	Encoding Object-Logic Formulas, Sequents, and Inference Rules
	Adequacy Levels for Encodings
	A Focusing Proof System for Linear Logic

	Sequent Calculus
	Natural Deduction
	Natural Deduction with General Elimination Rules
	Free Deduction
	SystemKE
	Smullyan’s Analytic Cut System
	Related Work
	Conclusions and Further Remarks

	Certifying a Tree Automata Completion Checker
	Introduction
	Preliminaries
	Tree Automata Completion
	A Result Checker for Tree Automata Completion
	Formalization of Term Rewriting Systems
	Formalization of Tree Automata
	An Optimized Inclusion Checker
	Formalization of Closure by Rewriting
	Benchmarks
	Conclusion and Further Research

	Automated Induction with Constrained Tree Automata
	Introduction
	Preliminaries
	Constrained Grammars
	Term Generation
	Normal Forms

	Inference System
	Simplification Rules for Defined Functions
	Simplification Rules for Constructors
	Induction Inference Rules
	Soundness and Completeness
	Handling Non-terminating Constructor Systems
	Decision Procedures for Conditions in Inferences

	Handling Partial Specifications
	Conclusion

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

