Alessandro Armando
Peter Baumgartner
Gilles Dowek (Eds.)

LNAI 5195

Automated Reasoning

4th International Joint Conference, IJCAR 2008
Sydney, Australia, August 2008
Proceedings

@ Springer

Lecture Notes in Artificial Intelligence 5195
Edited by R. Goebel, J. Siekmann, and W. Wahlster

Subseries of Lecture Notes in Computer Science

Alessandro Armando Peter Baumgartner
Gilles Dowek (Eds.)

Automated Reasoning

4th International Joint Conference, IJCAR 2008
Sydney, Australia, August 12-15, 2008
Proceedings

@ Springer

Series Editors

Randy Goebel, University of Alberta, Edmonton, Canada
Jorg Siekmann, University of Saarland, Saarbriicken, Germany
Wolfgang Wahlster, DFKI and University of Saarland, Saarbriicken, Germany

Volume Editors

Alessandro Armando
Universita di Genova

DIST Via le Causa 13

16145 Genova, Italy

E-mail: armando@dist.unige.it

Peter Baumgartner

NICTA Canberra

Tower A 7 London Circuit

Canberra ACT 2601, Australia

E-mail: Peter.Baumgartner @nicta.com.au

Gilles Dowek

Ecole polytechnique

Laboratoire d’Infomatique LIX

91128 Palaiseau Cedex, France

E-mail: Gilles.Dowek @polytechnique.edu

Library of Congress Control Number: 2008931576

CR Subject Classification (1998): 1.2.3, 1.2, F4.1, F3, F4,D.2.4

LNCS Sublibrary: SL 7 — Artificial Intelligence

ISSN 0302-9743
ISBN-10 3-540-71069-8 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-71069-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12446285 06/3180 543210

Preface

This volume contains the papers presented at IJCAR 2008, the 4th International
Joint Conference on Automated Reasoning, held August 12-15, 2008, in Syd-
ney (Australia). The IJCAR conference series is aimed at unifying the different
research principles within automated reasoning. IJCAR 2008 was the fusion of
several major international events:

CADE: The International Conference on Automated Deduction

FroCoS: The Symposium on Frontiers of Combining Systems

FTP: The Workshop on First-Order Theorem Proving

TABLEAUX: The Conference on Analytic Tableaux and Related Methods

Previous versions of IJCAR were held in Seattle (USA) in 2006, Cork
(Ireland) in 2004, and Siena (Italy) in 2001.

These proceedings comprise 4 contributions by invited speakers, 26 research
papers, and 13 system descriptions. The volume also includes a short overview
of the CASC-J4 competition for automated theorem proving systems that was
conducted during IJCAR 2008. The invited speakers were Hubert Comon-Lundh,
Nachum Dershowitz, Aarti Gupta, and Carsten Lutz. Their talks covered a broad
spectrum of automated reasoning themes, viz., verification of security protocols,
proof theoretical frameworks for first-order logic, automated decision procedures
and software verification, and description logics.

The contributed papers were selected from 80 research paper submissions
and 17 system description submissions. Each submission was reviewed by at
least three reviewers, and decisions were reached after two weeks of discussion
through an electronic Program Committee meeting. The submissions, reviews,
and discussion were coordinated using the EasyChair conference management
system. The accepted papers spanned a wide spectrum of research in automated
reasoning, including saturation, equational reasoning and unification, automata-
based methods, description logics and related logics, satifiability modulo theory,
decidable logics, reasoning about programs, and higher-order logics.

The Herbrand Award for distinguished contributions to automated reason-
ing was presented to Edmund M. Clarke in recognition of his role in the inven-
tion of model checking and his sustained leadership in the area for more than
two decades. The selection committee for the Herbrand Award consisted of the
previous award winners of the last ten years, the trustees of CADE Inc., and
the IJCAR 2008 Program Committee. The Herbrand award ceremony and the
acceptance speech by Professor Clarke were part of the conference program.

In addition to the Program Committee and the reviewers, many people con-
tributed to the success of [IJCAR 2008. Geoff Sutcliffe served as the Publicity Chair
and organized the systems competition, CASC-J4. The IJCAR Steering Commit-
tee consisted of Alessandro Armando, Franz Baader (Chair), Peter Baumgartner,
Alan Bundy, Gilles Dowek, Rajeev Goré, Bernhard Gramlich, John Harrison, and

VI Preface

Ullrich Hustadt. Special thanks go to Andrei Voronkov for his EasyChair system,
which makes many tasks of a Program Chair much easier.

We would like to thanks all people involved in organizing IJCAR 2008, as well
as the sponsors the Australian National University, Intel, Microsoft Research,
and NICTA.

May 2008 Alessandro Armando
Peter Baumgartner
Gilles Dowek

Conference Organization

Program Chairs

Alessandro Armando
Peter Baumgartner
Gilles Dowek

Program Committee

Christoph Benzmueller
Nikolaj Bjorner
Patrick Blackburn
Maria Paola Bonacina
Alessandro Cimatti
Roy Dyckhoff

Silvio Ghilardi

Jiirgen Giesl

Rajeev Gore
Bernhard Gramlich
Reiner Hahnle

John Harrison
Deepak Kapur

Viktor Kuncak
Christopher Lynch
Tobias Nipkow

Hans de Nivelle

Conference Chair

Peter Baumgartner

Workshop and Tutorial Chair

Michael Norrish

Publicity Chair

Geoff Sutcliffe

Nicola Olivetti
Lawrence Paulson
Silvio Ranise
Christophe Ringeissen
Albert Rubio

Michael Rusinowitch
Ulrike Sattler

Carsten Schiirmann
Natarajan Shankar
Viorica Sofronie-Stokkermans
Geoff Sutcliffe

Cesare Tinelli

Ashish Tiwari

Luca Vigano

Andrei Voronkov
Toby Walsh

Frank Wolter

VIII Organization

Local Organization

Jinbo Huang, Michael Norrish, Andrew Slater, Toby Walsh

External Reviewers

Andreas Abel
Anbulagan
Takahito Aoto
Clark Barrett
Joachim Baumeister
Malgorzata Biernacka
Lars Birkedal
Thomas Bolander
Bianca Boretti
Olivier Bournez
Marco Bozzano
Paul Brauner
James Bridge
Bjorn Bringert
Chad Brown

Kai Bruennler
Roberto Bruttomesso
Richard Bubel
Serge Burckel
Guillaume Burel
Serenella Cerrito
Amine Chaieb
Ernie Cohen
Sylvain Conchon
Dominik Dietrich
Yu Ding

Lucas Dixon

Bruno Dutertre
Mnacho Echenim
Stephan Falke
Christian Fermiiller
Camillo Fiorentini
Melvin Fitting
Pascal Fontaine
Alexander Fuchs
Martin Giese

Isabelle Gnaedig
Guillem Godoy
Alberto Griggio
James Harland
Emmanuel Hebrard
Thomas Hillenbrand
Dieter Hutter

Swen Jacobs
Barbara Jobstmann
Vladimir Komendantsky
Boris Konev
Konstantin Korovin
Shuvendu Lahiri
Stephane Lengrand
Giacomo Lenzi
Alexei Lisitsa
Thomas Lukasiewicz
Carsten Lutz
Michael Maher
Mark Marron
William McCune
George Metcalfe
Aart Middeldorp
Pierluigi Minari
Boris Motik
Leonardo de Moura
Jean-Yves Moyen
Peter Mueller

Cesar Munoz

Peter Miiller

Enrica Nicolini
Robert Nieuwenhuis
Greg O’Keefe
Albert Oliveras
Nicola Olivetti

Jan Otop

Sam Owre
Ruzica Piskac
David Plaisted
Gian Luca Pozzato
Florian Rabe
Vincent Risch
Xavier Rival
Enric Rodriguez-
Carbonell
Robert Rothenberg
Philipp Ruemmer
Gernot Salzer
Felix Schernhammer
Renate Schmidt
Thomas Schneider
Camilla Schwind
Roberto Sebastiani
Rob Shearer
John Slaney
Aaron Stump
Christino Tamon
Alwen Tiu
Stefano Tonetta
Duc-Khanh Tran
Kumar Neeraj Verma
Laurent Vigneron
Marco Volpe
Dirk Walther
Florian Widmann
Claus-Peter Wirth
Burkhart Wolff
Eric Wurbel
Jian Zhang
Daniele Zucchelli

Table of Contents

Session 1: Invited Talk

Software Verification: Roles and Challenges for Automatic Decision
Procedureso
Aarti Gupta

Session 2: Specific Theories

Proving Bounds on Real-Valued Functions with Computations.........
Guillaume Melquiond

Linear Quantifier Elimination
Tobias Nipkow

Quantitative Separation Logic and Programs with Lists...............
Marius Bozga, Radu losif, and Swann Perarnau

On Automating the Calculus of Relations
Peter Hofner and Georg Struth
Session 3: Automated Verification

Towards SMT Model Checking of Array-Based Systems...............
Silvio Ghilardi, Enrica Nicolini, Silvio Ranise, and Daniele Zucchelli

Preservation of Proof Obligations from Java to the Java Virtual
Machine
Gilles Barthe, Benjamin Grégoire, and Mariela Pavlova

Efficient Well-Definedness Checking
Adam Darvas, Farhad Mehta, and Arsenii Rudich

Session 4: Protocol Verification

Proving Group Protocols Secure Against Eavesdroppers...............
Steve Kremer, Antoine Mercier, and Ralf Treinen

Session 5: System Descriptions 1

Automated Implicit Computational Complexity Analysis..............
Martin Avanzini, Georg Moser, and Andreas Schnabl

18

34

50

67

83

X Table of Contents

LogAnswer — A Deduction-Based Question Answering System
Ulrich Furbach, Ingo Glockner, Hermann Helbig, and Bjorn Pelzer

A High-Level Implementation of a System for Automated Reasoning
with Default Rules
Christoph Beierle, Gabriele Kern-Isberner, and Nicole Koch

The Abella Interactive Theorem Prover
Andrew Gacek

LEO-II — A Cooperative Automatic Theorem Prover for Classical
Higher-Order Logic. i
Christoph Benzmiiller, Lawrence C. Paulson, Frank Theiss, and

Arnaud Fietzke

KeYmaera: A Hybrid Theorem Prover for Hybrid Systems
André Platzer and Jan-David Quesel

Session 6: Invited Talk

The Complexity of Conjunctive Query Answering in Expressive
Description Logics
Carsten Lutz

Session 7: Modal Logics

A General Tableau Method for Deciding Description Logics, Modal
Logics and Related First-Order Fragments
Renate A. Schmidt and Dmitry Tishkovsky

Terminating Tableaux for Hybrid Logic with the Difference Modality
and CONVEISE . . . vttt e e
Mark Kaminski and Gert Smolka

Session 8: Herbrand Award Ceremony

Session 9: Description Logics

Automata-Based Axiom Pinpointing
Franz Baader and Rafael Penaloza

Individual Reuse in Description Logic Reasoning
Boris Motik and Ian Horrocks

The Logical Difference Problem for Description Logic Terminologies
Boris Konev, Dirk Walther, and Frank Wolter

Table of Contents XI

Session 10: System Descriptions 2

Aligator: A Mathematica Package for Invariant Generation 275
Laura Kovdcs

leanCoP 2.0 and ileanCoP 1.2: High Performance Lean Theorem
Proving in Classical and Intuitionistic Logic 283
Jens Otten

iProver — An Instantiation-Based Theorem Prover for First-Order
Logic . oo 292
Konstantin Korovin

An Experimental Evaluation of Global Caching for ALC 299
Rajeev Goré and Linda Postniece

Multi-completion with Termination Tools 306
Haruhiko Sato, Sarah Winkler, Masahito Kurihara, and
Aart Middeldorp

MTT: The Maude Termination Tool............. 313
Francisco Durdn, Salvador Lucas, and José Meseguer

Celf — A Logical Framework for Deductive and Concurrent Systems 320
Anders Schack-Nielsen and Carsten Schiirmann

Session 11: Invited Talk

CanoniCity! oo 327
Nachum Dershowitz

Session 12: Equational Theories

Unification and Matching Modulo Leaf-Permutative Equational
Presentations 332
Thierry Boy de la Tour, Mnacho Echenim, and Paliath Narendran

Modularity of Confluence: Constructed 348
Vincent van Qostrom

Automated Complexity Analysis Based on the Dependency Pair
Method 364
Nao Hirokawa and Georg Moser

Canonical Inference for Implicational Systems 380
Maria Paola Bonacina and Nachum Dershowitz

XII Table of Contents

Session 13: Invited Talk

Challenges in the Automated Verification of Security Protocols
Hubert Comon-Lundh

Session 14: Theorem Proving 1

Deciding Effectively Propositional Logic Using DPLL and Substitution
1Y
Leonardo de Moura and Nikolaj Bjorner

Proof Systems for Effectively Propositional Logic
Juan Antonio Navarro and Andrei Voronkov

MaLARea SG1 - Machine Learner for Automated Reasoning with
Semantic Guidance.
Josef Urban, Geoff Sutcliffe, Petr Pudldk, and Jiri Vyskocil

Session 15: CASC

CASC-J4 — The 4th IJCAR ATP System Competition................
Geoff Sutcliffe

Session 16: Theorem Proving 2

Labelled Splitting o
Arnaud Fietzke and Christoph Weidenbach

Engineering DPLL(T) + Saturation
Leonardo de Moura and Nikolaj Bjorner

THFO — The Core of the TPTP Language for Higher-Order Logic
Christoph Benzmiiller, Florian Rabe, and Geoff Sutcliffe

Session 17: Logical Frameworks
Focusing in Linear Meta-logic
Vivek Nigam and Dale Miller

Session 18: Tree Automata

Certifying a Tree Automata Completion Checker.....................
Benoit Boyer, Thomas Genet, and Thomas Jensen

Automated Induction with Constrained Tree Automata
Adel Bouhoula and Florent Jacquemard

Author Index

Software Verification: Roles and Challenges for
Automatic Decision Procedures

Aarti Gupta

NEC Laboratories America, Inc.
4 Independence Way, Suite 200
Princeton, NJ 08520, USA

Software model checking has become popular with the successful use of predicate
abstraction and refinement techniques to find real bugs in low-level C programs.
At the same time, verification approaches based on abstract interpretation and
symbolic execution are also making headway in real practice. Much of the recent
progress is fueled by advancements in automatic decision procedures and con-
straint solvers, which lie at the computational heart of these approaches. In this
talk, I will describe our experience with several of these verification approaches,
highlighting the roles played by automatic decision procedures and their inter-
play with the applications. Specifically, I will focus on SAT- and SMT-based
model checking, combined with abstract domain analysis based on polyhedra
representations. I will also describe some challenges from software verification
that can motivate interesting research problems in this area.

A. Armando, P. Baumgartner, and G. Dowek (Eds.): IJCAR 2008, LNCS 5195, p. 1, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Proving Bounds on Real-Valued Functions
with Computations

Guillaume Melquiond

INRIA-Microsoft Research joint center,
Parc Orsay Université, F-91893 Orsay Cedex, France
guillaume.melquiond@inria.fr

Abstract. Interval-based methods are commonly used for computing
numerical bounds on expressions and proving inequalities on real num-
bers. Yet they are hardly used in proof assistants, as the large amount
of numerical computations they require keeps them out of reach from
deductive proof processes. However, evaluating programs inside proofs
is an efficient way for reducing the size of proof terms while perform-
ing numerous computations. This work shows how programs combining
automatic differentiation with floating-point and interval arithmetic can
be used as efficient yet certified solvers. They have been implemented
in a library for the Coq proof system. This library provides tactics for
proving inequalities on real-valued expressions.

1 Introduction

In traditional formalisms, proofs are usually composed of deductive steps. Each
of these steps is the instantiation of a logical rule or a theorem. While this
may be well-adapted for manipulating logic expressions, it can quickly lead to
inefficiencies when explicit computations are needed. Let us consider the example
of natural numbers constructed from 0 and a successor function S. For example,
the number 3 is represented by S(S5(S(0))). If one needs to prove that 3 x 3
is equal to 9, one can apply Peano’s axioms, e.g. a X S(b) = a x b+ a and
a+S(b) = S(a+0), until 3 x 3 has been completely transformed into 9. The first
steps of the proof are: 3x3 =3x2+3 = (3x1+4+3)+3 = ... This proof contains
about 15 instantiations of various Peano’s axioms. Due to the high number of
deductive steps, this approach hardly scales to more complicated expressions,
even if more efficient representations of integers were to be used, e.g. radix-2
numbers.

While numerical computations are made cumbersome by a deductive ap-
proach, they can nonetheless be used in formal proofs. Indeed, type-theoretic
checkers usually come with a concept of programs which can be expressed in the
same language than the proof terms. Moreover, the formalism of these checkers
assumes that replacing an expression f(z) of a functional application by the
result of the corresponding evaluation does not modify the truth of a statement.
As a consequence, one can write computable recursive functions for addition add

A. Armando, P. Baumgartner, and G. Dowek (Eds.): IJCAR 2008, LNCS 5195, pp. 2 2008.
© Springer-Verlag Berlin Heidelberg 2008

Proving Bounds on Real-Valued Functions with Computations 3

and multiplication mul of natural numbers. For instance, in a ML-like language,
mul can be defined as:

let rec mul x = function
| 0 ->0
| Sy -> add (mul x y) x
This function is extensionally equal to Peano’s multiplication. More precisely,
the following theorem can be proved by recursive reasoning on y:

mul spec:Vax Vy Xy =mul zy.

Therefore, in order to prove the statement 3 x 3 = 9, the first step of the proof
is an application of mul spec in order to rewrite 3 X 3 as mul 3 3. So one has
now to prove that mul 3 3 is equal to 9. This is achieved by simply evaluating
the function. So the proof contains only one deductive step: the use of mul spec.
With this computational approach, the number of deductive steps depends on
the number of arithmetic operators only; It does not depend on the size of the
integers. As a matter of fact, one can go even further so that the number of
deductive steps is constant, irrespectively of the complexity of the expressions.
This is the approach presented in this article.

In the Coq proof assistantﬂ, the ability to use programs inside proofs is pro-
vided by the convertibility rule: Two convertible well-formed types have the same
inhabitants. In other words, if p is a proof of a proposition A, then p is also a
proof of any proposition B such that the type B is convertible to the type A.
Terms — types are terms — are convertible if they have the same normal form with
respect to B-reduction (and a few other Coq-related reductions). In particular,
since mul 3 3 evaluates to 9 by J-reduction, the types/propositions mul 3 3 =9
and 9 = 9 are convertible, so they have exactly the same inhabitants/proofs.

More generally, an unproven proposition P(x,y,...) is transformed into a
sufficient proposition fp(z,y,...) = true — the difficulty is in designing an
efficient fp function and proving it evaluates to true only when P holds. The
proof system then checks if this boolean equality is convertible to true = true.
If it is, then it has a trivial proof from which a proof of P can be deduced.
Going from P to fp is a single deductive step, so most of the verification time
will be spent in evaluating fp. Fortunately, the convertibility rule happens to be
implemented quite efficiently in Coq [II2], so it becomes possible to automatically
prove some propositions on real numbers by simply evaluating programs. An
example of such a proposition is the following one, where x and y are universally-
quantified real numbers:

144 118 - 71

3 33 v
<r<2=1<y< = 1 — —
g =TS =YS 3 ’\/ Tz +y 1000 © 7 T 100| = 32768

In order to prove this logical proposition with existing formal methods, one can
first turn it into an equivalent system of several polynomial inequalities. Then a
resolution procedure, e.g. based on cylindrical algebraic decomposition [3] or on

!"http://coq.inria.fr/

http://coq.inria.fr/

4 G. Melquiond

the Nullstellensatz theorem [4], will help a proof checker to conclude automati-
cally. When the proposition involves elementary functions (e.g. cos, arctan, exp)
in addition to algebraic expressions, the problem becomes undecidable. Some
inequalities can still be proved by first replacing elementary functions by poly-
nomial approximations [Blf]. A resolution procedure for polynomial systems can
then complete the formal proof.

A different approach is based on interval arithmetic and numerical computa-
tions. The process inductively encloses sub-expressions with numbers and prop-
agates these bounds until the range of all the expressions is known [7]. Naive
interval arithmetic, however, suffer from a loss of correlation between the mul-
tiple occurrences of a variable. In order to avoid this issue, the problems can
be split into several smaller problems or higher-order enclosures can be used
instead [89].

This paper presents an implementation of this approach for Coq. It will focus
on the aspects of automatic proof and efficiency. Section [2] describes the few
concepts needed for turning numerical computations and approximations into a
formal tool. SectionBldescribes the particularities of the datatypes and programs
used for these computations. Section Ml finally brings those components together
in order to provide fully-automatized “tactics” (the tools available to the user
of Coq).

2 Mathematical Foundations

While both terms “computations” and “real numbers” have been used in the
introduction, this work does not involve computational real numbers, e.g. se-
quences of converging rational numbers. As a matter of fact, it is based on the
standard Coq theory of real numbers, which is a pure axiomatization with no
computational content.

Section 2] presents the extension of real numbers defined for this work.
This extension is needed in order to get a simpler definition of differentiation.
Section describes the interval arithmetic formalized in order to bound ex-
pressions. Section [2.3] then shows how differentiation and intervals are combined
in order to tighten the computed bounds.

2.1 Extended Real Numbers

The standard theory of Coq describes real numbers as a complete Archimedean
field. Since functions of type R — R are total, this formalism makes it a bit
troublesome to deal with mathematical partial functions. For instance, x — 7
is 1 for any real = # 0. For x = 0, the function is defined and its value is 0 in
Coq. Indeed, 0 -0~ = 0, since 0~ is the result of a total function, hence real.
Similarly, one can prove, that the derivative of this function is always zero. So
we have a function that seems both constant and discontinuous at x = 0.
Fortunately, this does not induce a contradiction, since it is impossible to prove

that the derivative (the variation limit) of 2 +— 7 was really 0 at point 0. The

Proving Bounds on Real-Valued Functions with Computations 5

downside is that, every time one wants to use the value of the derivative function,
one has to prove that the original function is actually derivable. This requires
to carry lots of proof terms around, which will prevent a purely computational
approach.

So an element L is added to the formalism in order to represent the “result” of
a function outside its definition domain. In the Coq development, this additional
element is called NaN (Not-a-Number) as it shares the same properties as the
NaN value from the IEEE-754 standard on floating-point arithmetic [10]. In
particular, NaN is an absorbing element for all the arithmetic operators on
the extended set R = R U {L}. That way, whenever an intermediate result is
undefined, a | value is propagated till the final result of the computation.

Functions of R — R can then be created by composing these new arithmetic
operators. In order to benefit from the common theorems of real analysis, the
functions are brought back into R — R by applying a projection operator:

proj, 1 f € (R —R) — (x ER— {j‘c(x) gt}{éfv)vijj> € (R—R)

Then, an extended function f is defined as continuous at a point = # L if
f(z) # L and if all the projections proj,(f) are continuous at point z. Similarly,
f is defined as derivable at = # L if f(z) # L and if all the projections of f
have the same derivative dy(z) at point x. A function f’ is then a derivative of
[if f'(z) = dy(x) whenever f'(z) # L.

From these definitions and standard analysis, it is easy to formally prove some
rules for building derivatives. For example, if f/ and ¢’ are some derivatives of
f and g, then the extended function (f’ x g — ¢’ x f)/g? is a derivative of f/g.
This is true even if g evaluates to 0 at a point x, since the derivative would then
evaluate to L at this point.

As a consequence, if the derivative f’ of an expression f does not evaluate
to L on the points of a connected set of R, then f is defined, continuous, and
derivable on all the points of this set, when evaluated on real numbers. The
important point is that the extended derivative f’ can be automatically built
from an induction on the structure of the function f, without having to prove
that f is derivable on the whole domain.

2.2 Interval Arithmetic

All the intervals ﬁlosed connected subsets) of R can be represented as pairs of
extended number

(L,
(L,
(1,

(1
2 The pair (L, L) traditionally represents the empty set. This is the opposite here, as
(L, L) means R. This is a consequence of having no infinities in the formalization: L

on the left means —oo while 1 on the right means +o0o. The empty set is represented
by any pair ([, u) with [> w.

L)
u>»—>{x6R|ax<u}
1Yy—{zeR|I<z}
u)y—~{zeR|I<z<u}

b

6 G. Melquiond

This set I of intervals is extended with a Nal (Not-an-Interval): T=TU{L}.
This new interval 1 ; represents the set R. In particular, this is the only interval
that contains L. As a consequence, if the value of an expression on R is contained
in an interval (I, u), then this value is actually a real number. This implies that
the expression is well-formed on the real numbers and that it is bounded by [
and u.

Interval Extensions and Operators. A function F' € [— 1 is defined as an
interval extension of a function f € R — R, if

VX elVzeR, zeX= f(z)eF(X).

This definition can be adapted to non-unary functions too. An immediate
property is: The result of F'(X) is L if there exists some x € X such that f(z) =
L. Another property is the compatibility of interval extension with function
composition: If F' and G are extensions of f and g respectively, then F o G is an
extension of f o g.

Again, an interval extension will be computed by an induction on the structure
of an expression. This requires interval extensions of the arithmetic operators
and elementary functions. For instance, addition and subtraction are defined as
propagating 1 ; and verifying the following rules:

(L, ur) + (lo,u2) = (I + lo, ur + ua)

(L, ur) — (la,u2) = (I — ug,up — o)

Except for the particular case of | meaning an infinite bound, this is tradi-
tional interval arithmetic [IIII2]. So extending the other arithmetic operators
does not cause much difficulty. For instance, if [; is negative and if both u; and
I are positive, the result of the division (ly,u1)/({la, ua) is (I1/l2, u1/l2).

Notice that this division algorithm depends on the ability to decide the signs
of the bounds. More generally, one has to compare bounds when doing interval
arithmetic. Section 3] solves it by restricting the bounds to a subset of R.

2.3 Bounds on Real-Valued Functions

Properties described in previous sections can now be mixed together for the
purpose of bounding real-valued functions. Let us consider a function f of R —
R, for which we want to compute an interval enclosure Y such that f(z) € Y
for any = in the interval X # 1 ;. Assuming we have an interval extension F' of
f, then the interval F'(X) is an acceptable answer.

Unfortunately, if X appears several times in the unfolded expression of F'(X),
loss of correlation occurs: The wider the interval X is, the poorer the bounds
obtained from F'(X) are. The usual example is f(z) = x — 2. It always evaluates
to 0, but its trivial extension F(X) = X — X evaluates to (0,0) only when X is
a singleton.

Proving Bounds on Real-Valued Functions with Computations 7

Monotone Functions. Let us suppose now that we also have an interval exten-
sion F” of a derivative [’ of f. By definitions of interval extension and derivability,
if F'(X) is not Ly, then f is continuous and derivable at each point of X.

Moreover, if F'(X) does not contain any negative value, then f is an increasing
function on X. If X has real bounds [and u, then an enclosure of f on X is
the convex hull F((l,1)) V F({u,u)). As the interval (I,l) contains one single
value when [# L, the interval F'({l,1)) should not be much bigger than the set
{f(1)} for any F that is a reasonable interval extension of f. As a consequence,
F(({1,1))V F({u,u)) should be a tight enclosure of f on X. The result is identical
if F/(X) does not contain any positive values.

First-Order Interval Evaluation. When F’(X) contains both positive and
negative values, there are no methods giving sharp enclosure of f. Yet F’(X)
can still be used in order to find a better enclosure than F'(z). Indeed, variations
of f on X are bounded:

Va,be X dee X f(b) = f(a) + (b—a)- f(c).
Once translated to intervals, this gives the following theorem:
Va,be X f(b) € F({a,a)) + (X — (a,a)) - F'(X).

As F’(X) may contain even more occurrences of X than F'(X) did, the loss of
correlation may be worse when computing an enclosure of f’ than an enclosure
of f. From a numerical point of view, however, we have more leeway. Indeed,
the multiplication by X — (a,a), which is an interval containing only “small”
values around zero, will mitigate the loss of correlation. This approach to proving
bounds on expressions can be generalized to higher-order derivatives by using
Taylor models [9].

3 Computational Datatypes

Proving propositions by computations requires adapted data types. This work re-
lies on floating-point arithmetic (Section[B]) for numerical computations and on
straight-line programs (Section[B.2) for representing and evaluating expressions.

3.1 Floating-Point Arithmetic

Since interval arithmetic suffers from loss of correlation, the bounds are usually
not sharp, so they do not need to be represented with exact real numbers. As a
consequence, an interval extension does not need to return the “best” bounds.
Simpler ones can be used instead. An interesting subset of R is the set F = FU{ L}
of radix-2 floating-point numbers. Such a number is a rational number that can
be written as m - 2° with m and e integers.

8 G. Melquiond

Rounding. Let us consider the non-1 quotient | of two floating-point numbers.
This quotient is often impossible to represent as a floating-point number. If this
value is meant to be the lower bound of an interval quotient, we can chose any
floating-point number m - 2¢ less than the ideal quotient. Among these numbers,
we can restrict ourselves to numbers with a mantissa m represented with less
than p bits (in other words, |m| < 2P). There is an infinity of such numbers. But
one of them is bigger than all the others. This is what the IEEE-754 standard
calls the result of u/v rounded toward —oo at precision p.

Computing at fixed precision ensures that the computing time is linear in
the number of arithmetic operations. Let us consider the computation of (‘;’) 2"
with n consecutive squaring. With rational arithmetic, the time complexity is
then O(n?), as the size of the numbers double at each step. With floating-point
arithmetic at fixed precision, the time complexity is just O(n). The result is no
longer exact, but interval arithmetic still works properly.

There have been at least two prior formalizations of floating-point arithmetic
in Coq. The first one [I3I14] defines rounded results with relations, so the value
w would be expressed as satisfying the proposition:

u u
w < AN Vmye€Z, |m|<fP=m-< =m-3°<w
v v

While useful and sufficient for proving theorems on floating-point algorithms,
such a relation does not provide any computational content, so it cannot be used
for performing numerical computations. The second formalization [I5] has intro-
duced effective floating-point operators, but only for addition and multiplication.
The other basic operators are evaluated by an external oracle. The results can
then be checked by the system with multiplications only. Elementary functions,
however, cannot be reached with such an approach.

Implementation. In order to have effective floating-point operators that can be
evaluated entirely inside Coq, this work needed a new formalization of floating-
point arithmetic. The resulting library implements multi-radi:fl multi-precision
operators for the four IEEE-754 rounding directiondd.

This library supports the basic arithmetic operators (+,—,%, +, v/-) and some
elementary functions (arctan, cos, sin, tan, for now). Floating-point precision is
a user-settable parameter of the automatic tactics. Its setting is a trade-off: A
high precision can help in proving some propositions, but it also slows down
computations.

In order to speed up floating-point computations by a x10 factorﬁ, the tactics
do not use the standard integers of Coq, which are represented by lists of bits.
They specialize the floating-point library so that it uses integers represented as

3 Numbers are m - 8¢ for any integer 3 > 2. For interval arithmetic, the radix hardly
matters. So the automatic tactics chose an efficient radix: g = 2.

4 Only rounding toward —oo and +oco are needed when performing interval arithmetic.

5 This speed-up is lower than one could expect. This is explained by the proofs not
needing high-precision computations, so the mantissa integers are relatively small.

Proving Bounds on Real-Valued Functions with Computations 9

binary trees with leaves being radix-23! digits [1]. The arithmetic on these leaves
is then delegated by Coq to the computer processor [16].

3.2 Straight-Line Programs

Until now, we have only performed interval computations. We have yet to prove
properties on expressions. A prerequisite is the ability to actually represent these
expressions. Indeed, as we want Coq functions to be able to evaluate expressions in
various ways, e.g. for bounds or for derivatives, they need a data structure contain-
ing an abstract syntax tree of the expressions. More precisely, an expression will
be represented as a straight-line program. This is a directed acyclic graph with an
explicit topological ordering on the nodes which contain arithmetic operators.
For example, the expression \/x — y - y/z is encoded as a sequence of three
tuples representing the following straight-line program. Each tuple represents
an arithmetic operation whose operands are the results of some of previous
operations represented by a relative index — index 0 was computed at the previous
step, index 1 two steps ago, and so on. The input values and y are assumed to
have already been computed by pseudo-operations with results in v; and vg.

vy @ (sqrt, 0) SO U = \/U1_0 = /T
v : (mul,2,0) S0 v3=v3_9 V29 =Yy- /T
vg:(sub,1,0) SO vy =w3_1 —V3_0 =T —Y- T

Notice that the square root occurs only once in the program. Representing
expressions as straight-line programs makes it possible to factor common sub-
expressions. In particular, the computation of a given value (e.g. \/z here) will
not be repeated several times during an evaluation.

The evaluation function is generic. It takes a list encoding the straight-line
program, the type A of the inputs and outputs (e.g. R or I), a record of functions
implementing the operators (functions of type A — A and A — A — A), and a
stack of inputs of type A. It then pushes on this stack the result of evaluating
each operation stored in the list. It finally returns the stack containing the results
of all the statements. Whenever an operation tries to access past the bottom of
the evaluation stack, a default value of type A is used, e.g. 0 or L or L.

When given various sets A and operators on A, the Coq function eval will
produce, either an expression on real numbers corresponding to the straight-line
program, or an interval enclosing the values of the expression, or an expression of
the derivative of the expression, or bounds on this derivatives, etc. For instance,
the derivative is bounded by evaluating the straight-line program on the set A
of interval pairs — the first interval encloses the value of an expression, while the
second one encloses the value of its derivative. The operators on A create these
intervals with formulas related to automatic differentiation:

plus = (X, X)eA- Y, Y)eA— (X+Y,X'+Y")
(X, X)eA= Y Y)EA— (X xY, X' XY +X xY')
tan = (X,X')€ A (tan X, X’ x (1 +tan® X))

mul

10 G. Melquiond
4 Automatic Proofs

Now that we have the basic blocks, we can use the convertibility rule to build
automatic tactics. First, convertibility helps transforming logical propositions
into data structures on which programs can actually compute. Second, it gives
a meaning to the subsequent numerical computations. The user does not have
to worry about it though, since the tactics will take care of all the details.

4.1 Converting Terms

Let us assume that the user wants to prove v/ — y - v/z < 9 knowing some
bounds on z and y. As explained in Section 2] interval arithmetic will be used
to bound the expression v/z — y - v/z. The upper bound can then be compared
to 9 in order to check that the expression was indeed smaller than this value. In
order to perform this evaluation, the functions need the straight-line program
representing the expression.

Unfortunately, this straight-line program cannot be built within Coq’s term
language, as the syntax of the expressions on real numbers is not available at
this level. So the list representing the program has to be provided by an oracle.

Three approaches are available. First, the user could perform the transforma-
tion by hand. This may be fine for small terms, but it quickly becomes cumber-
some. Second, one could implement the transformation directly into the Ocaml
code of Coq, hence creating a new version of the proof assistant. Several existing
reflexive tactics actually depend on Ocaml helpers embedded inside Coq, so this
is not an unusual approach. Third, one could use the tactic language embedded
in Coq [I7], so that the transformation runs on an unmodified Coq interpreter.
This third way is the one chosen for this work.

A Coq tactic will therefore parse the expression and create the program de-
scribed in Section While the expression has type R, this program is a list.
But when evaluated with the axiomatized operations on real numbers, the result
should be the original expression, if the tactic did not make any mistake. The
tactic also transforms the real number 9 into the floating-point number +9-2°. So
the tactic tells Coq that proving the following equality is equivalent to proving
the original inequality.

(eval R [Sqrt O, Mul 2 0, Sub 1 0] [y, x]) <+9.920

Coq does not trust the tactic, so it will check that this transformation is valid.
Here, both inequalities are convertible, so they have the same proofs. Therefore,
the proof system just has to evaluate the members of the new inequality, in
order to verify that the transformation is valid. This transformation process is
called reflexion [I8]: An oracle produces a higher-level representation of the user
proposition, and the proof system has only to check that the evaluation of this
better representation is convertible to the old one. This transformation does
not involve any deductive steps; There is no rewriting steps with this approach,
contrarily to the 3 x 3 example of the introduction.

Proving Bounds on Real-Valued Functions with Computations 11

4.2 Proving Propositions

At this point, the proposition still speaks about real numbers, since convertibility
cannot modify what the proposition is about. So we need the following theorem
in order to get a proposition about extended real numbers, hence suitable for
interval arithmetic with automatic differentiation.

Vprog Yinputs Vi, u
(eval R prog inputs) € (I, u) =
(eval R prog inputs) € (I, u)

Since the interval operators are interval extensions of the arithmetic operators
on R, and since interval extension is compatible with function composition, we
also have the following theorem.

Vprog Vinputs Yranges
(Vj inputs; € ranges;) =

)
(eval R prog inputs) € (eval I prog ranges)

Let us assume there are hypotheses in the context that state x € X and y € Y.
By applying the two theorems above and the transitivity of interval inclusion,
the tactic is left with the following proposition to prove:

(eval T [Sqrt 0, Mul...] [Y, X])C (L,+9-2%

While the interval evaluation could be performed in this proposition, the
interval inclusion cannot be verified automatically yet. In order to force the
proof system to compare the bounds, a last theorem is applied, so that the
inclusion is transformed into a boolean equality:

subset (eval I [Sqrt 0, Mul...] [Y, X]) (L, +9-2° = true

The tactic then tells to Coq that this proposition is convertible to true = true.
As comparisons between interval bounds are decidable, the subset function
performs an effective computation, and so does eval on floating-point intervals.
As a consequence, Coq is able to check the convertibility of these propositions
by evaluating the left hand side of the equality. If the result of this evaluation is
true, then the propositions have the same proofs. This conversion is numerically
intensive and can take a long time, since it performs all the interval and floating-
point computations. At this point, the tactic just has to remind Coq that equality
is reflexive, so true = true holds.

To summarize, this proof relies almost entirely on convertibility, except for a
few deductive stepsﬁ, which are instantiations of the following theorems:

1. If the result of a formula on extended reals is contained in a non-_1 ; interval,
then the formula on real numbers is well-formed and has the same bounds.

5 In addition, some optional steps may be performed to simplify the problem. For
instance, |ezpr| < w is first transformed into —u < expr < w.

12 G. Melquiond

2. The interval evaluation of a given straight-line program is an interval exten-
sion of the evaluation of the same program on extended reals.

If subset A B = true, then any value contained in A is also contained in B.
Boolean equality is reflexive.

P o

4.3 Bisection and Refined Evaluation

Actually, because of a loss of correlation, the left hand side evaluates to false on
the example given in the introduction, so Coq complains that the proposition
are not convertible. This is expected [8], and two methods experimented with
the PVS proof assistantl] can be reused here. The first method is the bisection:
If the interval evaluation fails to return an interval small enough, split the input
interval in two parts and perform the interval evaluation again on each of these
parts. As the parts are smaller than the whole interval, the loss of correlation
should be reduced, so the interval evaluation produces a sharper result [I1].

In the PVS work, interval splitting is performed by applying a theorem for
each sub-interval. Here we keep relying on programs in order to benefit from
convertibility and reduce the number of deductive steps. The method relies on
a bisect function recursively defined as:

bisect n F (I, u) target =
if n = 0 then false
else if (subset F((I,u)) target) then true
else let m be the midpoint of (I, u) in
(bisect (n—1) F (I, m) target) &&
(bisect (n—1) F (m,u) target)

This function is meant to replace the subset call in the previous proof. Its
associated theorem is a bit more complicated though, but its hypotheses are
as easy to satisfy: If F' is an interval extension of a function f and if bisect
evaluates to true, then f(x) € target holds for any x € (I,u). Once again, the
complete proof contains only four deductive steps. Everything else is obtained
through convertibility, with the evaluation of bisect being the numerically-
intensive part of the proof.

As long as n is big enough and the floating-point computations are accurate
enough, this method can solve most of the provable propositions of the form
Vo € (l,u), f(x) €Y with f a straight-line program. The method is guaranteecﬁ
to succeed when [and u are finite and the sharpest enclosure of f on (I, u) is a
subset of the interior of Y. The method can also be extended to multi-variate
problems, by splitting interval boxes along each dimension iteratively.

The bigger the number of sub-intervals, the longer the proof will take. In order
to keep this number small, the tactic calls bisect with an interval function F'
that performs first-order derivation, as described in Section 23]

" http://pvs.csl.sri.com/

8 If there is = € (I, u) such that f(zx) evaluates to L, Y has to be L;. Otherwise, f
is continuous on the compact set (I,u), hence it is also uniform continuous. This
uniformity ensures that some suitable precision and some bisection depth exist.

http://pvs.csl.sri.com/

Proving Bounds on Real-Valued Functions with Computations 13

5 Examples

The user-visible tactic is called interval. It can be used for proving inequalities
involving real numbers. For instance, the following script is the Coq version of
a PVS example proved by interval arithmetic [7]:

Goal
let v := 250 * (514 / 1000) in
3 % pi / 180 <= g / v * tan (35 % pi / 180).
Proof.
apply Rminus_le. (* transform into a - b <= 0 *)
interval . (* prove by interval computations *)
Qed.

The strength of this work lies, however, in its ability to prove theorems
on function approximations. Most mathematical functions are not available to
developers, so they are usually replaced with approximations, e.g. truncated
series. In order to certify that the programs are still valid after these transfor-
mations, one has to give and prove a bound on the error between the actual
implementation and the ideal function. The absolute error is the difference be-
tween two close values (if the implementation is any good), which makes it hard
to prove a tight bound on it — this is the X — X issue of Section The two
examples below exercise the tactic on such ill-conditioned problems.

5.1 Remez’ Polynomial of the Square Root

Taylor models have been experimented in Coq [9] in order to formally prove
some inequalities of Hales’ prooﬁ of Kepler’s conjecture. Part of the difficulty
with Taylor models lies in handling elementary functions. Indeed, one has to
use polynomial approximations for this purpose. Usually, as the name implies,
these polynomials are Taylor expansions, since their expansion remainder can be
bounded by symbolic methods. Yet Taylor expansions are poor approximations,
so high-degree polynomials are needed, which needlessly slow down the proof.

There are much better polynomial approximations, e.g. the ones obtained
from Remez’ algorithm. Unfortunately, the approximation error is no longer
available to symbolic methods. One has to bound it numerically. The following
proposition states the error bound between the square root function and its
Remez approximation of degree 5 with rational coefficients of width 20 + 20 bits,
on the interval 0.5 < z < 2:

122 1733 227 Vo
‘((7397 o 13547) Xt 925) ‘ = 65536
Since Remez’ algorithm returns the best polynomial approximation with real
coeflicients, checking the error bound is a numerically difficult problem. Yet it
only takes a few seconds for the interval tactic to automatically prove it in Coq
on a desktop computer. In comparison, the CAD algorithm (with fast integers

t00) needs more than ten minutes in Coq. For Hales’ proof, one also needs the
arctan function, which is in the scope of this tactic.

9 http://code.google.com/p/flyspeck/

http://code.google.com/p/flyspeck/

14 G. Melquiond

5.2 Relative Error for an Elementary Function

The following example is taken from another PVS proof [§]. In order to certify a
numerical code, the objective was to prove a bound on the relative error between
the following function r, and the degree-10 polynomial 7, that approximated it.

a
V1+)2 - tan? ¢

The relative error is defined as the quotient e(¢) = (rp(¢) — 7,(¢))/7p(¢) on
the interval 0 < ¢ < Q; Due to the loss of correlation, PVS interval strategies
are unable to automatically prove the bound 23-272* on this error. The problem
could be split into smaller intervals, so that interval computations are able to
prove the bound on each sub-interval. But the loss of correlation is extreme, so
more than 10% sub-intervals are needed, which make it impossible to complete
the whole proof in a reasonable amount of time. So first-order interval evaluation
was performed (see Section P3)) in order to bring the number of sub-intervals
down to 10°.

Unfortunately, several user actions are required with the PVS approach. First,
the user has to prove beforehand that the relative error is well-formed (no division
by zero, no square root of negative number, and so on). Second, the user has to
prove the formulas involving the derivative. Third, an external oracle analyzes
the proposition in order to choose good sub-intervals. It also searches the order
at which the power series of tan have to be evaluated in order to provide results
that are accurate enough. With these data, the oracle then generates 10° PVS
scripts corresponding to all the sub-intervals, and one master script that states
the theorem on the error bound. Fourth, the user dispatches all the generated
scripts on the 48 cores of a parallel computer. A few hours later, proof verification
is complete. Finally, PVS checks the master script: The bound |e(¢)| < 24-2723
is formally proved.

Thanks to the work described in this article, the situation is now a lot more
satisfying in Coq. The following script proves the same theorem (arp is the
approximation polynomial) in a few minutes on the single core of a desktop
computer.

Tp(¢)

Goal
forall phi, 0 <= phi <= max —>
Rabs ((rp phi - arp phi) / rp phi) <= 23/16777216.

Proof.

unfold rp, arp, umf2, a, f, max. intros.

interval with (i_bisect_diff phi, i_nocheck). (* Time: 4s *)
Qed. (x Time: 96s *)

The user has to tell the tactic on which variable to perform a bisection fol-
lowed by a first-order evaluation: i bisect diff phi. The user could also tell at
which precision the floating-point computations are performed and how deep the
bisection should explore. But the default parameters, i prec 30 and i depth
15, are sufficient for this proof.

All the details of the proof are then handled by the tactic. It first parses
the proposition and creates the corresponding straight-line program. It then

Proving Bounds on Real-Valued Functions with Computations 15

performs the four deductive steps and Coq is left with a boolean equality. The
evaluation of this Coq term by the system will first cause an interval function
that encloses the derivative of the straight-line program to be built. It will then
launch the execution of an interval bisection until the expression is bounded on
all the sub-intervals.

When the proof is achieved (at Qed time), Coq checks that the lambda-term
corresponding to the whole proof is correctly typed. In particular, it means that
the numerically-intensive convertibility is checked a second time. The i nocheck
parameter avoids this redundant computation: The convertibility check is no
longer done at interval time, but only at Qed time. So the tactic needs 4
seconds for parsing the expressions and preparing the computations, and then
Qed needs 96 seconds to actually perform them.

Because there are no oracles, the Coq proof performs at least twice as many
numerical computationﬂ and with a higher precision than needed. Yet, the
proof verification is tremendously faster in Coq than in PVS, although the ap-
proach is similar. This improvement is explained by the underlying arithmetic.
In PVS, the interval bounds are rational numbers, so the intermediate com-
putations quickly involve integers with thousands of digits. In Coq, thanks to
the floating-point rounded arithmetic, the integers are at most 62-bit long. So
the computation time does not explode with the size of the expressions.

6 Conclusion

Interval-based methods have been used for the last thirty years whenever a
numerical problem (bounding an expression, finding all the zeros of a function,
solving a system of differential equations, and so on) needed to be solved in an
efficient and reliable way. But due to their numerically-intensive nature, they
have been seldom used within formal proofs. With the advent of fast program
evaluation in proof checkers, the situation is evolving [I5[9].

This work improves on the existing formal approaches by relying on an effi-
cient underlying arithmetic. Indeed, the computations are performed thanks to
an effective formalization of floating-point arithmetic, instead of relying on an
arithmetic on rational numbers. This brings the formal proofs closer to the non-
formal approaches that are based on numerical computations with floating-point
numbers, e.g. Hales’ original proof. Another improvement lies in a careful exten-
sion of the real analysis: All the internal notions are designed so that theorems
can be entirely handled with computations. The user does not have to deal with
fastidious details anymore, e.g. proofs of derivability.

As this work deals with automatic proofs of numeric bounds on real-valued
expressions suffering from correlations, it seems closely related to the Gappa
system [I5]. There are two important differences though. First, Gappa is an
external oracle that produces a deductive proof that has been optimized, while

10 The bisection process can be seen as a binary tree. An inner node is an evaluation
failure, which leads to an evaluation on two sub-intervals, its children. Leaves are
successful interval evaluations, and they are the only nodes needed for the proof.

16 G. Melquiond

this work is embedded and produces a straightforward and computational proof.
Second, Gappa is specially designed for non-continuous expressions with basic
arithmetic operators and a strong underlying structure, while this work focuses
on (infinitely-) derivable expressions with elementary functions.

While designed for different kinds of expressions, these two approaches are
complementary when performing formal certification of numerical applications.
For instance, Section was replacing an elementary function r, with a poly-
nomial 7,. This polynomial is meant to be evaluated by a processor, but this
evaluation 7, will suffer from rounding errors. The implementation will be useful,
only if the computed value 7, (¢) is close enough to the mathematical value r, ().
This certification is usually performed by separately bounding the distances be-
tween 7, and 7, and between 7, and r,,. The first bound can be proved by Gappa
but not by this work, since the expression is non-continuous. The second bound,
however, can be proved by this work but not by Gappa, since the expression
contains trigonometric terms and it has to be automatically differentiated for
efficiency.

This work computes first-order derivatives of the expressions. This is usually
sufficient for handling the correlations that appear when certifying numerical
applications in most embedded systems, e.g. with a relative error of magnitude
2725, Tt will, however, fail to prove longer approximations which have a much
higher accuracy. Therefore, tools that access higher-order derivatives through
Taylor series [6l9] should perform much better in these latter cases. In case of
high-dimension input domains, the approach presented in this article will also
perform worse than multi-variate Bernstein polynomials [9].

Therefore, this work should not be seen as a panacea for proving inequalities
on real-valued expressions without any user interaction. It is more of a proof-
of-concept that shows how some numerical methods (floating-point arithmetic
and interval arithmetic) can be combined with the convertibility rule in order to
formally prove theorems. The generated proof terms contain almost no deductive
steps and the tactic is nothing more than a parser, yet this approach is able to
automatically prove arbitrarily-complicated inequalities.

The Coq development presented in this paper is available at

http://www.msr-inria.inria.fr/~gmelquio/soft/cog-interval/

References

1. Grégoire, B., Théry, L.: A purely functional library for modular arithmetic and its
application to certifying large prime numbers. In: Furbach, U., Shankar, N. (eds.)
LJCAR 2006. LNCS (LNAI), vol. 4130, pp. 423-437. Springer, Heidelberg (2006)

2. Grégoire, B., Théry, L., Werner, B.: A computational approach to Pocklington
certificates in type theory. In: Hagiya, M., Wadler, P. (eds.) FLOPS 2006. LNCS,
vol. 3945, pp. 97-113. Springer, Heidelberg (2006)

3. Mahboubi, A.: Implementing the cylindrical algebraic decomposition within the
Coq system. Mathematical Structure in Computer Sciences 17(1) (2007)

4. Harrison, J.: Verifying nonlinear real formulas via sums of squares. In: Schnei-
der, K., Brandt, J. (eds.) TPHOLs 2007. LNCS, vol. 4732, pp. 102-118. Springer,
Heidelberg (2007)

http://www.msr-inria.inria.fr/~gmelquio/soft/coq-interval/

10.

11.

12.

13.

14.

15.

16.

17.

18.

Proving Bounds on Real-Valued Functions with Computations 17

Harrison, J.: Floating point verification in HOL light: The exponential function.
In: Algebraic Methodology and Software Technology, 246-260 (1997)

Akbarpour, B., Paulson, L.C.: Towards automatic proofs of inequalities involving
elementary functions. In: Cook, B., Sebastiani, R. (eds.) PDPAR: Pragmatics of
Decision Procedures in Automated Reasoning, pp. 27-37 (2006)

Munoz, C., Lester, D.: Real number calculations and theorem proving. In: Hurd,
J., Melham, T. (eds.) TPHOLs 2005. LNCS, vol. 3603, pp. 195-210. Springer,
Heidelberg (2005)

Daumas, M., Melquiond, G., Munoz, C.: Guaranteed proofs using interval arith-
metic. In: Montuschi, P., Schwarz, E. (eds.) Proceedings of the 17th IEEE Sympo-
sium on Computer Arithmetic, Cape Cod, MA, USA, pp. 188-195 (2005)
Zumkeller, R.: Formal global optimisation with Taylor models. In: Furbach, U.,
Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 408-422. Springer,
Heidelberg (2006)

Stevenson, D., et al.: An American national standard: IEEE standard for binary
floating point arithmetic. ACM SIGPLAN Notices 22(2), 9-25 (1987)

Moore, R.E.: Methods and Applications of Interval Analysis. STAM, Philadelphia
(1979)

Jaulin, L., Kieffer, M., Didrit, O., Walter, E.: Applied Interval Analysis, with Ex-
amples in Parameter and State Estimation, Robust Control and Robotics. Springer,
Heidelberg (2001)

Daumas, M., Rideau, L., Théry, L.: A generic library of floating-point numbers
and its application to exact computing. In: Proceedings of the 14th International
Conference on Theorem Proving in Higher Order Logics, Edinburgh, Scotland, pp.
169-184 (2001)

Boldo, S.: Preuves formelles en arithmétiques a virgule flottante. PhD thesis, Ecole
Normale Supérieure de Lyon (2004)

Melquiond, G.: De l'arithmétique d’intervalles a la certification de programmes.
PhD thesis, Ecole Normale Supérieure de Lyon, Lyon, France (2006)

Spiwack, A.: Ajouter des entiers machine & Coq. Technical report (2006)
Delahaye, D.: A tactic language for the system Coq. In: Parigot, M., Voronkov,
A. (eds.) LPAR 2000. LNCS (LNAI), vol. 1955, pp. 85-95. Springer, Heidelberg
(2000)

Boutin, S.: Using reflection to build efficient and certified decision procedures. In:
Theoretical Aspects of Computer Software, pp. 515-529 (1997)

Linear Quantifier Elimination

Tobias Nipkow

Institut fiir Informatik, Technische Universitat Miinchen

Abstract. This paper presents verified quantifier elimination proce-
dures for dense linear orders (DLO), for real and for integer linear arith-
metic. The DLO procedures are new. All procedures are defined and
verified in the theorem prover Isabelle/HOL, are executable and can be
applied to HOL formulae themselves (by reflection).

1 Introduction

This paper is about the concise implementation of quantifier elimination (QE)
procedures (QEPs) for linear arithmetics. QE is a venerable logical technique
which yields decision procedures if ground atoms are decidable. The focus of our
work is the compact implementation of QEPs (for linear arithmetics) inside a the-
orem prover. All our QEPs have been defined and verified in Isabelle/HOL [10].
We do not discuss these formal proofs here. They are detailed, mostly struc-
tured and available online at [afp.sf.net, together with the QEPs themselves.
Because the informal proofs of these QEPs can be found in the literature, they
need not be discussed either. The exception are our two new QEPs for which
informal correctness proofs are given.
The main contributions of this paper are:

— Two new QEPs for dense linear orders (DLO) inspired by QEPs for linear
real arithmetic.

— Presentation of 5 verified implementations of QEPs: two for DLO, two for
linear real arithmetic and one for Presburger arithmetic (Cooper). We show
everything but the most trivial details, providing reference implementations
and convincing the reader that nothing has been swept under the carpet.

— Extremely compact formalizations due to the almost excessive use of lists
and list comprehensions.

— A common reusable QE framework using Isabelle’s structuring facility of
locales, thus factoring out the common parts of the different QEPs.

Why this obsession with executable and verified QEPs? The context of this
research is the question of how to implement trustworthy and efficient decision
procedures in foundational theorem provers, i.e. without having to trust an ex-
ternal oracle. Reflection, originally proposed by Boyer and Moore [2] and used
to great effect in systems like Coq (e.g. [7]) and Isabelle (e.g. [4]) has become a
standard approach. Suffice it to say that we follow this approach, too, and that
all the algorithms in this paper can be used directly on formulae in Isabelle —
details can be found elsewhere (e.g. [15]).

A. Armando, P. Baumgartner, and G. Dowek (Eds.): IJCAR 2008, LNCS 5195, pp. 18 2008.
© Springer-Verlag Berlin Heidelberg 2008

afp.sf.net

Linear Quantifier Elimination 19

This paper is a contribution to the growing body of verified theorem proving
algorithms. In spirit it is close to Harrison’s forthcoming book [9] which presents
all algorithms in OCaml. Only that our code is verified.

It should be emphasized that the presentation is streamlined for succinctness.
In particular, we always restrict attention to two of the four relations =, <,
<, #. For example, in DLOs it suffices to consider = and < because z < y is
equivalent with x < y Vo = y and = # y is equivalent with * < y V y < z. For
QEPs based on DNF this is a disaster because it leads to further case splits. The
algorithms in this paper avoid DNF. Nevertheless, an efficient implementation
would always work with all four relations. The corresponding generalization of
our code is straightforward.

The paper is structured as follows. In §3] we describe a HOL model of logical
formulae parameterized by a language of atoms and present a generic QEP
parameterized by a QEP for a single quantifier. The remaining sections present
a succession of 5 single-quantifier QEPs for different linear theories.

2 Basic Notation

HOL conforms largely to everyday mathematical notation. This section intro-
duces further non-standard notation and in particular a few basic data types
with their primitive operations.

The types of truth values, natural numbers, integers and reals are called bool,
nat, int and real. The space of total functions is denoted by =. Type variables
are denoted by «, 3, etc. The notation ¢::7 means that term ¢ has type 7.

Sets over type «, type a set, follow the usual mathematical convention.

Lists over type «, type «a list, come with the empty list [], the infix constructor
-, the infix @ that appends two lists, and the conversion function set from lists
to sets. Variable names ending in s usually stand for lists. In addition to the
standard functions map and filter, Isabelle/HOL also supports Haskell-style list
comprehension notation, with minor differences: instead of [e | x <- xs, ...]
we write [e. © « s, ...], and [z«wxs. ...] is short for [z. zus, ...].

Finally note that = on type bool means “iff”.

During informal explanations we often switch to everyday mathematical no-
tation where (a,b) can be a pair or an open interval.

3 Logic

Formulae are defined as a recursive datatype with a parameter type a of atoms:

datatypea fm=T | L | A «
| (o fm) A (a fm) | (o fm) V (a fm) | = (a fm) | 3 (a fm)
The boldface symbols A, V, = and 3 are ordinary constructors chosen to resem-

ble the logical operators they represent. Constructor A encloses atoms. The type
of atoms is left open by making it a parameter .. Variables are represented by de

20 T. Nipkow

Bruijn indices: quantifiers do not explicitly mention the name of the variable be-
ing bound because that is implicit. For example, 3 (3 ... 0 ... I ...) represents
a formula dx1.3x¢. ...2zg...x1 Note that the only place where variables can
appear is inside atoms. The only distinction between free and bound variables is
that the index of a free variable is larger than the number of enclosing binders.

3.1 Auxiliary Functions

The constructors V, A and — have optimized (“short-circuit”) versions or, and

and neg: or To=T,oreT=T,or Lo=p,or p L=pand or p1 g3 = (p1 V

p2) otherwise; and T p =, and ¢ T = ¢, and L ¢ = 1, and p L = 1 and and

©1 2 = (1 A p2) otherwise; neg T = L, neg L =T and neg ¢ = = ¢ otherwise.
Disjunction of a lists of formulae is easily defined:

list-disj [p1,. . pn] = or 1 (o1 ... pn)

Most of our work will be concerned with quantifier-free formulae where all
negations have not just been pushed right in front of atoms but actually into
them. This is easy for linear orders because —(z < y) is equivalent with y < z.
This conversion will be described later on because it depends on the type of
atoms. The (trivial to define) predicates

qfree, ngfree :: a fm = bool

check whether their argument is free of quantifiers (gfree), and free of negations
and quantifiers (ngfree).
There are also two mapping functionals

map fr, t(a=p0)=afm=0fm
amap g, (o= 0B fm) = afm=p0fn

where map s, f is the canonical one that simply replaces A a by A (f a), whereas
amap g, may also simplify the formula via and, or and neg:

amapfm h T =T amapfm h L =1 amap f, h (Aa)="ha
amap f, h (g1 A @2) = and (amapfm h ©1) (amapfm h)

amap fm, h (1 'V 2) = or (amapfy, h 1) (amappy, b ¢2)

amapfy, h (= @) = neg (amap gy, h @)

Both mapping functionals are only defined and needed for gfree formulae.

The set of atoms in a formula is computed by the (trivial to define) function
atoms 1 a fm = « set.

3.2 Interpretation

The interpretation or semantics of a fm is defined via the obvious homomorphic
mapping to an HOL formula: A becomes A, V becomes V, etc. The interpretation

Linear Quantifier Elimination 21

of atoms is a parameter of this mapping. Atoms may refer to variables and are
thus interpreted w.r.t. a valuation. Since variables are represented as natural
numbers, the valuation is naturally represented as a list: variable i refers to the
ith entry in the list (starting with 0). This leads to the following interpretation
function interpret :: (o = B list = bool) = o fm = 3 list = bool:

interpret h T xs = True interpret h L xs = Fulse

interpret h (A a) zs = h a xs

interpret b (p1 A p2) xs = (interpret h @1 xs A interpret h @o x8)
interpret h (p1 V p2) xs = (interpret h @1 xs V interpret h @o x8)
interpret h (— @) s = (- interpret h ¢ xs)

interpret h (3) zs = (Fz. interpret h ¢ (z - xs))

In the equation for 3 the value of the bound variable z is added at the front
of the valuation. De Bruijn indexing ensures that in the body 0 refers to = and
1 + 1 refers to bound variable ¢ further up.

3.3 Atoms

Atoms are more than a type parameter o. They come with an interpretation
(their semantics), and a few other specific functions. These functions are also
parameters of the generic part of quantifier elimination. Thus the further devel-
opment will be like a module parameterized with the type of atoms and some
functions on atoms. These parameters will be instantiated later on when apply-
ing the framework to various linear arithmetics.

In Isabelle this parameterization is achieved by means of a locale [I]], a named
context of types, functions and assumptions about them. We call this context
ATOM. Tt provides the following functions

1, o= 0 list = bool
aneg ta = afm
dependsg :: o = bool

decr o= o

with the following intended meaning:

I, a zs is the interpretation of atom a w.r.t. valuation zs, where variable ¢ (note
i :: nat because of de Bruijn) is assigned the ith element of xs.

aneg negates an atom. It returns a formula which should be free of negations.
This is strictly for convenience: it means we can eliminate all negations from
a formula. In the worst case we would have to introduce negated versions of
all atoms, but in the case of linear orders this is not necessary because we
can turn, for example, =(z < y) into (y < z) V (y = x).

dependsy a checks if atom a contains (depends on) variable 0 and decr a decre-
ments every variable in a by 1.

Within context ATOM we introduce the abbreviation I = interpret I,. The
assumptions on the parameters of ATOM can now be stated quite succinctly:

22 T. Nipkow

I (aneg a) xs = (= I, a xs) ngfree (aneg a)
- dependsg a => I, a (z-xs) = I, (decr a) zs

Function aneg must return a quantifier and negation-free formula whose in-
terpretation is the negation of the input. And when interpreting an atom not
containing variable 0 we can drop the head of the valuation and decrement the
variables without changing the interpretation.

These assumptions must be discharged when the locale is instantiated. We do
not show this in the text because the proofs are straightforward in all cases.

In the context of ATOM we define two auxiliary functions: atomsg ¢ com-
putes the list of all atoms in ¢ that depend on variable 0. The negation normal
form (NNF) of a gfree formula is defined in the customary manner by pushing
negations inwards. We show only a few representative equations:

nnf (= (A a)) = aneg a

nnf (1 V @2) = (nnf o1 V nnf p2)

nnf (= (o1 V p2)) = (nnf (= 1) A nnf (= @2))
nnf (= (o1 A p2)) = (nnf (= @1) V nnf (= @2))

The first equation differs from the usual definition and gets rid of negations
altogether — see the explanation of aneg above.

3.4 Quantifier Elimination

The elimination of all quantifiers from a formula is achieved by eliminating them
one by one in a bottom-up fashion. Thus each step needs to deal merely with the
elimination of a single quantifier in front of a quantifier-free formula. This step is
theory-dependent and hard. The lifting to arbitrary formulae is simple and can
be done once and for all. We assume we are given a function qe :: @ fm = a fm
for the elimination of a single 3, i.e. I (ge p) = I (T @) if gfree . Note that ge is
not applied to 3 ¢ but just to ¢, 3 remains implicit. Lifting ge is straightforward:

lift-nnf-ge :: (o fm = « fm) = a fm = « fm

lift-nnf-ge ge (p1 A @2) = and (lift-nnf-ge ge p1) (lift-nnf-qe qe v2)
lift-nnf-ge ge (p1 V @2) = or (lift-nnf-qe qe 1) (lift-nnf-ge ge p2)
lift-nnf-ge ge (= ¢) = neg (lift-nnf-qe qe)

lift-nnf-ge qe (3 @) = qe (nnf (lift-nnf-ge ge ¢))

lift-nnf-qe ge ¢ = ¢

Note that ge is called with an argument already in NNF. We can go even further
and put the argument of ge into DNF. This is detailed elsewhere [I5] but avoided
here because it can lead to non-elementary complexity.

3.5 Correctness

Correctness lift-nnf-qe is roughly expressed as follows: if ge eliminates one ex-
istential while preserving the interpretation, then lift-nnf-ge ge eliminates all
quantifiers while preserving the interpretation.

Linear Quantifier Elimination 23

For compactness we employ a set theoretic language for expressing properties
of functions: A — B is the set of functions from A to B and |P| = {z | P z}.
Elimination of all quantifiers is easy:

Lemma 1. If ge € |ngfree| — |qfree| then gfree (lift-nnf-qe ge).
Preservation of the interpretation is slightly more involved:

Lemma 2. If ge € |ngfree| — |qfree| and for all ¢ and zs: (ngfree p =
I (ge o) xs = (Fx. I ¢ (z-xs))), then I (lift-nnf-qe ge @) xs = I ¢ xs.

In the following sections we define a number of quantifier elimination functions
called f; (for different names f) that eliminate a single 3. In each case we have
proved that f; satisfies the assumptions of the above two lemmas (with f; for
ge), define f = lift-nnf-qe f1 and thus obtain gfree (f @) and I (f ¢) zs = I ¢ xs
as corollaries. Because of this uniformity and because the correctness proofs are
either discussed informally beforehand or are well-known from the literature, we
suppress all of this in the presentation. Thus it may look as if we merely present
code, but the proofs are all there!

4 Dense Linear Orders

The theory of dense linear orders (without endpoints) is an extension of the
theory of linear orders with the axioms

r<z=dy.z<yAy<z Ju.z < u Ji.l<z

It is the canonical example of quantifier elimination [I1]. The equivalence (3 y.
z<yAy<z)=(x < z)isan easy consequence of the axioms and the essence
of Fourier’s elimination method, which requires conversion to DNF and is thus
non-elementary.

In contrast we develop two new NNF-based algorithms based on the test point
method (originally due to Cooper [B] and Ferrante and Rackoff [6] and later gen-
eralized by Weispfenning [19]). The idea is to find a finite set of test points T
(depending on) such that (Jz. ¢(z)) = (\/,cp ©(t)). The complication is that
(conceptually) T may contain values like infinity, infinitesimals or intermedi-
ate points, values that are not representable in the given term language. The
challenge is to define special versions of substitution for these values.

4.1 Atoms

There are just the two relations < and = and no function symbols. Thus atomic
formulae can be represented by the following datatype:

datatype atom = nat < nat | nat = nat

Note the bold infix constructors < and =. Because there are no function sym-
bols, the arguments of the relations must be variables. For example, i < j rep-
resents the atom z; < x; in de Bruijn notation.

24 T. Nipkow

Now we can instantiate locale ATOM. Type parameter o becomes type atom.
The interpretation function I, becomes I4;, where

Tyo (i =7j) xs = ($S[i] = IS[]-]) Tao (1< j) xs = (IS[Z-] < xsm)

The notation zs;; means selection of the ith element of zs. The type of 14, is
explicitly restricted such that xs must be a list of elements over a dense linear
order, where the latter is formalized as a type class [8] with the axioms shown at
the start of this section. Thus all valuations in this section are over dense linear
orders. Parameter aneg becomes negq;,:

negao (i < j) = (A (G <i) VvV A(i=j))
negaio (i =j) = (A (1 <j) VvV A (j < i)

The parameters adepends and adecr are instantiated with dependsg;, and decrg;,:

dependsqi, (i=7)= (i =0V j=10)
dependsqio, (1 < j)=(i=0Vj=0)

decrgio (1< j)=0—1<yj—1) decrgio (i=7)=(—1=j5—1)

This instantiation satisfies all the axioms of ATOM.

4.2 The Interior Point Method

Ferrante and Rackoff [6] realized (for linear real arithmetic) that when eliminat-
ing = from ¢ it (essentially) suffices to collect all lower bounds [of x (i.e. | <z
occurs in ¢) and all upper bounds u of z (i.e. z < u occurs in ¢) and try all such
(I +u)/2 as test points. This method is implemented in §5.21

Now we present a novel quantifier elimination method for DLO based on
Ferrante and Rackoff’s idea. The problem with DLO is that one cannot name
any point between two variables x and y. Hence a special form of substitution
must be defined that behaves as if some intermediate point was substituted
without requiring such a point. We use the symbolic notation x|y to denote
some arbitrary but fixed point in the interval (z,y). The key ca