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Abstract. We improve, in both a logical and a practical sense, the sim-
plification of the propositional structure of terms in interactive theorem
provers. The method uses Binary Decision Diagrams (BDDs) and SAT
solvers. We present experimental results to show that the time cost is
acceptable.

1 Introduction

We consider the problem of simplifying the propositional structure of terms, in
interactive theorem provers (ITPs) based on higher-order logic (HOL) or stronger
type systems.

Most such ITPs use rewriting or equational reasoning (semi-automatic or man-
ual) to do such simplification. Such tools include Coq [12], HOL4 [8], HOL Light
[10], Isabelle/HOL [18], and PVS [17]. The PVS theorem prover is unique in this
family, in additionally optionally allowing the use of Binary Decision Diagrams
(BDDs) [1] for propositional simplification [2]. The propositional structure of the
input term is encoded as a BDD, from which PVS can automatically extract a
term in conjunctive normal form (CNF) that is logically equivalent to the input
term. As BDDs usually achieve very compact encodings, the expectation is that
the extracted term will be simpler than the input term.

BDDs are powerful tools for propositional reasoning, and have seen widespread
adoption in the automated reasoning community. And yet BDDs are rarely if
ever used by ITPs. In the current context, there are four broad objections to the
use of BDDs for propositional simplification in ITPs:

1. Not needed. Current rewriting based implementations of simplifiers are suf-
ficient for the terms that typically occur in interactive proof.

2. Unsuitable. The process of BDD-based simplification converts the term to
CNF. This destroys the structure of the term and thus may often destroy
any intuition that the human ITP user may have had about the term.

3. Inefficient for LCF-style. All the ITPs mentioned above, except PVS, are
“LCF-style”, or follow the “de Bruijn criterion”. Roughly speaking, this
means that they employ some high assurance facility for verifying their
proofs. Typically, this is by translation of the proof to a very simple proof
system – the implementation of which is easily understood and well tested
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– which accepts all correct proofs (and no incorrect ones) produced by the
ITP. Verifying BDD operations in this fashion has been tried and found to
be very costly [9,21].

4. Classical. BDDs are based on classical propositional logic, which limits their
usefulness in non-classical contexts.

The last objection cannot be overcome using BDDs as they are currently
implemented. Thus, we restrict ourselves to the classical setting. We address the
remaining objections in this paper:

1. Need. We augment BDD-based simplification with new and known clause-
form simplifications and prove that our simplification method can provide
logical guarantees about the simplified term that are not provided by current
rewrite-based simplifiers. We present experimental results that suggest that
in practice our method always does better than rewrite-based simplifiers on
a quantifiable measure of simplification quality.

2. Suitability. Our method improves on the BDD-based simplification of PVS
by not completely flattening the input term. Instead, it selectively applies
simplification to suitable sub-terms, thus largely retaining term structure.

3. Efficiency. We show that LCF-style BDD-based simplification is possible at
not too great a cost, by verifying the BDD operations using a recent LCF-
style integration [22] of SAT solvers [16,4] and ITPs. We present experimental
results to support this claim.

The next section describes related work. We then give a brief account of the
relevant aspects of normal forms, BDDs and SAT solvers, to keep the paper self-
contained. Finally, we describe our work (§4) and present experimental results
(§5). Henceforth, all discussion is restricted to classical purely propositional HOL
terms, unless explicitly stated otherwise.

2 Related Work

There is a reasonable body of work on integrating BDDs in interactive provers.
One of the earliest results combined higher-order logic with BDDs for symbolic
trajectory evaluation [13]. A little later, temporal symbolic model checking was
done in PVS [19]. These integrations trusted the underlying BDD engines. At
about the same time, a serious attempt at using BDDs in an LCF-style manner
[9] reported an approximate 100x slowdown. Later, a larger project added BDDs
to the Coq theorem prover [21] and reported similar slowdowns, except that the
faster programs were themselves extracted by reflection from the Coq represen-
tation, and could thus said to have higher assurance. The penalty for checking
BDD proofs has thus more or less ensured that BDDs are not used internally by
LCF-style theorem provers, in a non-trusted manner. There have of course been
trusted integrations of BDDs with LCF-style provers [7].

This does not rule out the use of BDDs in interactive provers in general.
BDDs are used in the ACL2 prover [14] to help with conditional rewriting and
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for deciding equality on bit vectors (see ACL2 System Documentation). The PVS
theorem prover can use BDDs for propositional simplification, via its bddsimp
function [2]. This was the inspiration for our work. Roughly speaking, when
invoked on a goal with propositional structure, it uses BDDs to obtain the CNF
of the goal, and each conjunct of the CNF becomes a separate subgoal.

LCF-style integrations of SAT solvers with interactive provers have a shorter
history. The integration is trivial for the case where the solver returns a satisfying
assignment: we simply substitute the assignments into the input term and check
that the resulting ground term evaluates to true. This can be done efficiently. For
the unsatisfiable case, the earliest work we know of is the LCF-style programming
of St̊almarck’s Algorithm in an ancestor of HOL4 [11]. This achieved good results
but was never distributed due to licensing issues. Further work had to wait for the
arrival of DPLL-based proof producing SAT solvers [25] and mature integrations
were reported relatively recently [22].

3 Technical Background

We use Γ � t to denote that t is a theorem (under hypotheses Γ ) in the mechanized
object logic, i.e, the logic of the interactive prover. Quantification binds weaker
than ⇔ which binds weaker than all other propositional connectives. Proposi-
tional truth is denoted by � and falsity by ⊥. All other notation is standard.

In pure propositional logic, there is no concept of variables. In HOL, variables
of Boolean type do double duty as propositional letters. We will refer to propo-
sitional letters as variables, keeping in mind that quantification over these is not
allowed in our setting.

3.1 Normal Forms

A literal is either a variable or its negation. Any term has a finite number of
variables, so all involved literals can be encoded as numbers when working on
a given term. We shall switch between the term and number representation of
literals as convenient.

A clause is a disjunction of literals. Since both conjunction and disjunction are
associative, commutative and idempotent (ACI), clauses can also be interpreted
as sets of literals. If a literal occurs in a set, then we abuse notation and assume
its underlying proposition also occurs in the set. We assume that any trivial
clauses, i.e., containing both a literal and its negation, have been filtered out.

A term is in conjunctive normal form (CNF) if it is a conjunction of clauses.
Any propositional term t can be transformed into a logically equivalent term in
CNF. Again, by ACI, a CNF term can be interpreted as a set (of sets of literals),
and we overload the notation accordingly. We will switch back and forth between
the term and set interpretations, as convenience dictates.

Any term can be transformed to CNF, but the result can be exponentially
larger than the original term. To avoid this, definitional CNF [20] introduces
extra fresh1 Boolean variable names as place-holders for subterms of the original
1 Guaranteed not to already occur in the term.
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problem. Conversion to definitional CNF is linear time in the worst case. We use
dCNF (t) to denote the definitional CNF of t.

The term dCNF (t) is not logically equivalent to t, since there are valuations
for the introduced definitional variables that can disrupt an otherwise satisfying
assignment to the variables of t. However, it is equisatisfiable. This is expressed
by the theorem

t ⇔ ∃V.dCNF (t) (1)

where V is the set of all the definitional variables and the existential quantifica-
tion is lifted to all v ∈ V in the usual way.

3.2 BDDs

Reduced Ordered Binary Decision Diagrams (ROBDDs, shortened to BDDs) [1]
are data structures for efficiently representing Boolean terms and Boolean op-
erations on them. In theory, the problem is NP-complete. In practice, BDDs
can often achieve very compact representatations. They are built by starting
with the BDDs representing propositional variables and performing a bottom-
up construction using the BDD operations corresponding to each propositional
connective in the term.

01 1 1
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q q

Fig. 1. Binary decision tree for p ⇒ q

01

p

q

Fig. 2. Corresponding ROBDD

For example, the decision tree of the term p ⇒ q is given in Figure 1, and its
BDD in 2. Dotted arcs indicate a valuation of ⊥ and solid arcs a valuation of �
to the parent node. A path from the root to the 1 node indicates an assignment
that makes the formula true, and a path to the 0 node, a falsifying assignment.

To read off the CNF equivalent to a term t represented by a BDD, we treat every
path from the root to the 0 node, with the signs of variables inverted, as a clause.
So, for example, the CNF for Figure 2 is ¬p∨q. This can be done by a single depth-
first search of the BDD structure. We denote by BDDCNF (t) the CNF term read
off the BDD of a pure propositional term t. We state a standard result:

Proposition 1. t ⇔ BDDCNF (t)

A term is tautology free if no strict sub-term of it is true. A term is contradiction
free if no strict sub-term of it is false. BDDs are canonical and built bottom-up.
Hence sub-terms that are tautologies or contradictions are detected during con-
struction, and are absorbed into the BDD. So the following result also holds:



LCF-Style Propositional Simplification with BDDs and SAT Solvers 59

Proposition 2. BDDCNF (t) is tautology free and contradiction free.

Representing BDDs efficiently in an LCF style prover causes too high a perfor-
mance penalty (see §2 for details). Therefore, we assume that the results of BDD
operations by themselves cannot produce LCF-style theorems in the object logic.

3.3 SAT Solvers

SAT solvers are algorithms for testing Boolean satisfiability. A SAT solver will
accept a Boolean term in CNF and return a satisfying assignment to its variables.
If the term is unsatisfiable, the solver will simply say so, though some SAT solvers
will also return a resolution refutation proof from the clauses of the input CNF
term [25]. Such proof-producing SAT solvers have been integrated with LCF-
style ITPs [22]. We assume we have access to such an LCF-style integration.

Suppose we have a propositional term t, and we wish to check whether or not
it is a tautology. This can be done by computing dCNF (¬t) (which can be done
efficiently) and asking a SAT solver if that term is unsatisfiable. If so, we can
derive � t.

Thus, we can assume access to a black box procedure SATprove(t) that re-
turns � t iff t is a valid pure propositional term. This short description is sufficient
for our purposes. A tutorial introduction to SAT solvers is available [15].

3.4 CNF Simplification

In general, SAT solvers require input in CNF. This has lead to much work on
CNF simplification in the SAT community.

Equivalence-preserving CNF simplifications. Of special interest to us are
equivalence-preserving simplifications, since these can be directly useful in term
simplification where we must derive a logically equivalent but simpler term.
Two methods, subsumption reduction (S-reduction for short) and decremental
resolution reduction (DR-reduction), have been very effective in practice [3,24].

A clause C subsumes another clause D iff C ⊆ D, i.e., C ⇒ D. D is then
called subsumed and C is called an S-clause. Given a clause set, any clauses
subsumed by other clauses in the set are redundant and can be removed. This
removal, an S-reduction, preserves equivalence, so we have that,

∀CD.(C ⇒ D) ⇒ (C ∧ D ⇔ C) (2)

A CNF term is considered subsumption free (S-free for short) if it has no S-
clauses.

The propositional resolution rule is

C ∨ p D ∨ ¬p

C ∪ D

where the resultant clause is called the resolvent, and written as C ∨ p ⊗ D ∨
¬p. p is the pivot literal, written as pivot(C ∨ p ⊗ D ∨ ¬p). The pivot occurs
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complementarily in the two input clauses; if needed, the sign will be clear from
the context.

A resolution is decremental if the resolvent implies either of the two input
clauses. If so, the implied input clause can be strengthened by removing its
pivot literal (equivalent to replacement by the resolvent). This strengthening, a
DR-reduction, also preserves equivalence, so we have,

∀CD.(C ⊗ D ⇒ D) ⇒ (C ∧ D ⇔ C ∧ C ⊗ D) (3)

A DR-reduction is possible iff one of the two input clauses of the corresponding
resolution subsumes the other, modulo the pivot. The almost-subsuming clause
is called a DR-clause. A CNF term is considered decremental resolution free
(DR-free for short) if it has no DR-clauses.

We shall adapt the method of Een et al. [3] to our specific circumstances
(§4.1). Their method turns a clause set S S-free, by checking whether any C ∈ S
is an S-clause. Let L(p) = {C|p ∈ C ∧ C ∈ S}, i.e, it gives all clauses in which
the literal p occurs. Let #(C) =

⊕
p∈C 2p mod 64 where ⊕ is bitwise OR, i.e.,

#(C) computes a 64-bit hash of clause C. An overview of the algorithm is given
in Figure 3, where & is bitwise AND, and ! is bitwise NOT. The test in line 5
is a fast semi-complete subset test: if true it guarantees that C � D, and avoids
doing the full (and expensive) subset check. They then achieve DR-freedom as
shown in Figure 4, where the test in line 3 uses the S-reduction routine.

1. foreach C ∈ S

2. p ← the p such that p ∈ C ∧ ∀q ∈ C.|L(p)| ≤ |L(q)|
3. foreach D ∈ L(p) − {C}
4. if |C| > |D| then continue

5. if #(C)& !#(D) �= 0 then continue

6. if C ⊆ D then S ← S − {D}

Fig. 3. S-reduction detection

1. foreach C ∈ S

2. foreach p ∈ C

3. foreach D ∈ S − {C} such that C[p ← ¬p] ⊆ D

4. D ← D − {¬p}

Fig. 4. DR-reduction detection

SAT-based CNF simplifications. A considerably more powerful class of CNF
simplifications [6,23] removes redundant clauses by using information gleaned
from invoking the SAT solver on the CNF term. They are all based on the
fact that if a SAT solver produces a refutation from some CNF term t, then
clauses of t not participating in the proof can be removed without affecting the
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unsatisfiability of t. The same cannot be said if t is satisfiable, since any clauses
not used in finding a given satisfying assignment are not necessarily irrelevant
to the truth value of t. We shall use the black box call SATsimp(t) to denote the
use of such off-the-shelf SAT-based simplifications, under the assumption that
the CNF term t is unsatisfiable, and that the call returns some subset c of the
clauses of t, such that c is unsatisfiable iff t is unsatisfiable.

4 Simplification

Roughly speaking, the core of our method works as follows:

1. Convert input term t to a BDD and read off the CNF equivalent c0.
2. Further simplify c0 using new and known CNF simplifications to obtain c1.
3. Find redundant clauses in c1 using SAT-based simplifications to obtain s.
4. If needed, use LCF-style SAT solver interface to prove � t ⇔ s

Note that LCF-style proof is applied only in the final step, so the other phases
can be optimised without regard for proof. The main challenges are: avoiding too
large a c0 in BDD construction; fast CNF simplification; using powerful SAT-
based simplifications that work only on unsatisfiable terms, for arbitrary terms;
achieving a useful term simplification. The last goal is intentionally vague, for
now. We discuss this further in §4.3.

4.1 Faster CNF Simplification

The DR-reduction check in Figure 4 requires computing the hash of each C[p ←
¬p] for each p ∈ C. We cannot compute them incrementally, because we can-
not tell whether removing a literal from a clause turned the corresponding bit
position in the hash to 0, without considering all the other literals of the clause.

We can improve on this since our goal is simplification of terms encountered
in interactive proof: in ITPs, automatic or semi-automatic proof procedures very
rarely use full-blown simplification internally, for efficiency reasons. This means
that the terms we encounter will have considerably fewer variables than the
typical SATLIB problem.

Suppose that instead of using a single 64-bit word for the hash, we use enough
words so that #(−) maps each literal to a unique bit position in the hash, i.e.,
we turn #(−) into a perfect hashing function. Then the hash-based subset test
(Figure 3, line 5) becomes complete. Further, if C is a subset of D modulo some
p ∈ C such that ¬p ∈ D, then #(C)& !#(D) will have exactly one bit switched
on. This can also be detected in constant time (assuming fixed hash size). Figure
5 outlines a method that uses multiword hashes, and combines checking whether
some C ∈ S is an S-clause or a DR-clause. The recursion terminates because the
number of literal occurrences in the underlying set S is always strictly smaller
with each call. So either eventually there are no more reductions to be found, or
we discover the empty clause ⊥, which subsumes all clauses so S is reduced to
{⊥}. This method is very fast, because it dispenses with the expensive subset
checks altogether.
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1.EQsimp clause(C)

2. p ← any p such that p ∈ C ∧ ∀q ∈ C.|L(p)| ≤ |L(q)|
3. foreach D ∈ L(p) − {C}
4. if |C| > |D| then continue

5. h ← #(C) & !#(D)

6. if h = 0 then S ← S − {D}
7. else if h&(h − 1) = 0 then

8. D ← D − {pivot(C ⊗ D)}
9. EQsimp clause(D)

Fig. 5. Combined S-reduction and DR-reduction detection

Our actual implementation is slightly more complex: we also need to check at
various points that a clause under consideration has not already been removed
from S due to the result of a previous call.

Our overall equivalence-preserving simplification procedure, EQsimp, takes
as argument a CNF term S (actually a set of set of numbers) and then calls
EQsimp clause for each C ∈ S. The number of 64-bit words for the hash is
determined once per EQsimp call, and is given by dividing the number of vari-
ables by 32 and rounding up. This approach is not feasible for SATLIB problems
with millions of variables, but in our experiments with interactive goals we rarely
needed a hash size of more than four 64-bit words.

Proposition 3. EQsimp(t) is S-free and DR-free

Proof #(−) is now a perfect hash, so bitwise operations on clause hashes coincide
with logical operations on clauses. Hence, the test for S-reduction on line 6 of
Figure 5 is sound and complete. For DR-reduction, if C subsumes D modulo
pivot(C⊗D), the bit position for the occurrence of the pivot in C will be switched
on in both #(C) and !#(D), and hence in their conjunction. The remaining bits
in the conjunction will be off, as in the S-reduction test. Hence h will be “1-
hot”, i.e., will have exactly one bit switched on. The test in line 7 turns the most
significant switched-on bit of h to off, thereby allowing 1-hot detection. So, the
DR-reduction test is sound and complete.

EQsimp(t) checks each clause for being an S-clause or DR-clause. Once
checked, a clause cannot again become an S-clause or DR-clause unless it is
strengthened in line 8, in which case we recheck it in line 9. Thus, when the
algorithm terminates, no clause is an S-clause or a DR-clause. �
Proposition 4. t ⇔ EQsimp(t)

Proof Immediate from (2) and (3). �

4.2 Simplification Using SAT Solvers

Figure 6 gives an overview of our core algorithm, simplify, which takes a pure
propositional term t and attempts to simplify it by BDD-based conversion to
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1. simplify(t)

2. c0 ← BDDCNF (t)

3. c1 ← EQsimp(c0)

4. s ← SATsimp(c1 ∧ dCNF (¬t)) ∩ c1

5. return SATprove(t ⇔ s)

Fig. 6. Core simplification method

CNF, application of CNF simplifications, and SAT-based simplifications, fol-
lowed by a call to SATprove if an LCF-style theorem is required. We have
already seen all the simplifications except for SAT-based simplification, which
will be the focus here.

We have t ⇔ c1 by Propositions 1 and 4. However, the powerful SATsimp
works only for unsatisfiable terms, and in general we cannot expect to be so
fortunate. To use it for simplifying arbitrary terms, we devise a specially crafted
argument for SATsimp and intersect the result with c1. The correctness of this
construction is central to the main theoretical result of the paper.

Theorem 5. t ⇔ s

Proof We have t ⇔ c1. Now

(t ⇔ c1) ⇔ (¬t ∨ c1) ∧ (¬c1 ∨ t) (4)

and hence
c1 ∧ ¬t ⇔⊥ (5)

Then,

c1 ∧ ¬t ⇔⊥
iff c1 ∧ (∃V.dCNF (¬t)) ⇔⊥ by (1)
iff (∃V.c1 ∧ dCNF (¬t)) ⇔⊥ no v ∈ V occurs in c1

iff ∀V.¬(c1 ∧ dCNF (¬t))

So c1 ∧dCNF (¬t) is unsatisfiable by (5), and of course it is in CNF, meeting the
pre-conditions for the call to SATsimp, which returns some subset of its input
clauses. Clearly s ⊆ c1, hence c1 ⇒ s. Then

¬c1 ∧ t ⇒⊥ by (4) and t ⇔ c1

iff ¬s ∧ t ⇔⊥ since ¬s ⇒ ¬c1 (6)

Finally, s is that subset of c1 that suffices for the proof of c1 ∧ dCNF (¬t) ⇔⊥.
So we have a proof of s ∧ dCNF (¬t) ⇔⊥. But s ∧ dCNF (¬t) ⇔⊥ iff s ⇒ t by
(1) together with some simple reasoning that uses the fact that no v ∈ V occurs
in s. Combining s ⇒ t with (6) gives us t ⇔ s as required. �

Thus, the call to SATprove in line 5 succeeds, and we obtain � t ⇔ s as
desired. Here s obeys the guarantees given by Propositions 2 and 3. Additionally,
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we know that s also does not contain any clauses of c1 not needed by the SAT
solver to prove c1 ⇒ t. It may nevertheless contain redundant clauses: the solver
does not guarantee to use the minimum number of clauses. So we do not phrase
this as a guarantee.

4.3 Practicalities

Our hope is that s is “simpler” than t, though we have left this notion vague until
now. ITP simplifiers perform many tasks, but in our setting we shall concentrate
on the simplest one: given a pure propositional term, what does it mean to
simplify it? We believe it means, first, to reduce the size without introducing
new operators or variables, and second, to reduce the bracketing depth (modulo
associativity) provided this does not conflict too much with the first goal.

These goals are quantifiable and approximate our intuition about proposi-
tional simplification to a reasonable degree. The restriction on the second goal
implicitly acknowledges that flattening a term too much may lose structure that
helps guide intuition. We shall measure term size and bracketing depth in the
standard way. We denote the size of term t by size(t).

By these criteria, the simplify procedure is too crude. It converts the term
to possibly exponentially larger CNF, violating both goals. Instead, we parame-
terise simplify and use it as a subroutine in a control wrapper.

We introduce three parameters B1, B2 and F , of which the last two are real
numbers, that enforce the following invariants on simplify:

1. No BDD has a node count exceeding B1
2. size(c0) < size(t) × B2
3. size(s) < size(t) × F

If any invariant fails, simplify signals failure.
The first invariant imposes an upper bound on BDD size, and the second

invariant ensures that the CNF generated from the BDD is not too big. The
BDDCNF function is easily modified to enforce these invariants on-the-fly, rather
than checking them after the full BDD or CNF term has been generated. How-
ever, our invariant checking for B1 is not as low-level as it could be: it checks
BDD size after each operation, so cannot avoid an exponential size explosion
from a single BDD operation. This has not happened yet, but if it becomes a
problem, we can simply impose a time limit on the BDD building procedure,
rather than a size limit. The third invariant imposes an upper bound on size(s).

All this is not enough, since invoking simplify on a term will now invariably
report failure. Instead, our control wrapper invokes simplify once on every sub-
term of t in a bottom-up manner. If the invocation succeeds, that sub-term is
replaced by its simplified equivalent. Hence, the final simplified term is equiv-
alent to t. Since simplify works semantically rather than by non-deterministic
rewriting, there is no need to apply it to a given sub-term more than once.

This does mean that the relatively expensive SATprove call is made several
times. We remedy the situation by modifying simplify to return the trivial theo-
rem t ⇔ s � t ⇔ s on the last line, which takes negligible cost to generate. Recall
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that the control wrapper applies each sub-term simplification to t. So when the
bottom up traversal has finished, we have a theorem of the form

t0 ⇔ s0, t1 ⇔ s1, . . . � t ⇔ s

where the ti are those sub-terms of t which simplify succeeded in simplifying
to si. We now make a single call to SATprove(

∧
i ti ⇔ si), split the resulting

theorem into its conjuncts, and use them to discharge every hypothesis in ti ⇔
si � t ⇔ s. Even though this SATprove call deals with a larger term, in practice
these terms are quite small by SAT solver standards, and do not really exercise
the SAT interface. Thus, the only LCF-style proof is a single SATprove call,
followed by very low cost hypothesis discharges that number at most linear in
size(t) and considerably fewer in practice.

The guarantees of Proposition 2 and Proposition 3 now only hold locally, at
sub-terms where simplify succeeded.

As observed earlier, a pleasant side effect of the invariants is that the term
structure of t is not flattened beyond the reach of intuition. The degree of flat-
tening can be controlled by the F parameter.

We claimed in the introduction (§1) to simplify the propositional structure
of arbitrary terms, rather than pure propositional terms. This is easily done by
replacing each atomic proposition with a fresh Boolean variable (but maintain-
ing a bijection between the propositions and the variables), resulting in a pure
propositional term that is logically equivalent (modulo the atomic propositions)
to the original term. This is not new: PVS already does this, as does the HOL4
decision procedure for propositional tautologies.

As a quick example, consider the term

(((p ⇒ q) ⇒ p) ⇒ p) ∧ (p ∧ (p ⇔ q))

The HOL4, HOL Light, and Isabelle/HOL simplifiers (all in default setup) all
fail to simplify this term, whereas our method returns p ∧ q as expected. The
top-level left conjunct is a tautology (Peirce’s Law) that is famously hard for
rewriting. The top-level right conjunct is interesting because all three simplifiers
fail on it despite its simplicity.2 Even the BDDCNF function by itself returns
p ∧ (¬p ∨ q) (assuming p is before q in the BDD ordering) and it requires a
DR-reduction to obtain p ∧ q. PVS does return p ∧ q but only because after
extracting the CNF from the BDD, PVS performs a variant of unit propagation
that, as a simplification strategy, is in general both weaker and slower than our
reductions.

5 Experimental Results

In §1, we made three claims about the work: that it is not too slow, that it
reduces term size better than existing rewrite-based simplifiers, and that it does
2 They succeed if we make the simplifier aware of certain congruences for conjunction,

which are not part of the default set of rewrites because they tend to slow down the
rewriter and are not commonly useful.
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so without annihilating term structure. Although we have shown that our sim-
plified terms provide certain guarantees of semantic simplicity, these need not
always translate into simpler syntax. Hence we present empirical evidence in
support of the first two claims.

We compare our method against the HOL4 simplifier. The choice of HOL4
(rather than HOL Light, Isabelle/HOL or PVS) was made because:

1. We wish to evaluate the method in an LCF-style setting, ruling out PVS.
2. The HOL4 SAT interface’s definitional CNF subroutine is faster than that

of Isabelle/HOL. It avoids all proof by inlining definitions, as opposed to
Isabelle/HOL where the definitional CNF produces an expensive LCF-style
equivalance proof.

3. We understand the HOL4 simplifier better than the HOL Light simplifier,
at the implementation level.

Our method was implemented to produce a valid LCF-style HOL4 theorem, in
an interactive HOL4 proof environment. We used a trusted integration of HOL4
with the BuDDy BDD engine [7]. EQsimp was implemented by us in C++. For
SATsimp we used the fixpoint technique of Zhang et al. [23]. For SATprove, we
used an LCF-style integration of the MiniSat SAT solver [4] with HOL4 [22]. For
the comparison, the HOL4 simplifier was invoked using SIMP CONV bool ss [].
The test machine was an AMD Athlon X2 6400+, with 2GB of RAM. Memory
consumption was not an issue for these experiments.

We used values of 10000 for B1, 10.0 for B2, and 1.1 for F throughout. The
B2 value reflects our intention that the CNF from the BDD should not be too
large, but should be big enough to give the CNF simplifications something to
work with. The F value reflects our intuition that a “simplified” term that is
more than 10% bigger than its original size (without expanding any definitions,
which never happens here) is best discarded. We have not experimented with
any other values of the parameters.

Since existing propositional benchmark libraries like SATLIB and TPTP (BOO
category) have problems already in CNF, we generated random propositional
terms for testing, parameterised on a target term size. Randomness meant that for
each term size parameter, actual term sizes varied slightly. Nine increasing target
sizes were used. For each, the benchmarks were run 100 times. Table 1 presents
the minimum, average and maximum term sizes and term bracketing depths for
the input and simplified terms, and Table 2 gives the same statistics for execution
times, for each size parameter.

As Table 1 shows, our method is always able to achieve a better reduction in
term size. In the minimum simplified term sizes for our method, a 1 signifies a
random term that was either a tautology or a contradiction, and this was caught
by our method as per the guarantee of Proposition 2, and reduced to either �
or ⊥. HOL4 invariably slightly increases the size of the term. In our method we
can control this using the F parameter.
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Table 1. Experimental results: term size and bracketing depth

Term Size Term Depth
Input HOL4 BDD+SAT Input HOL4 BDD+SAT

min avg max min avg max min avg max min avg max min avg max min avg max
1 7 12.9 16 1 8.4 17 1 2.7 9 1 2.0 3 0 1.3 3 0 0.3 2
2 22 29.5 33 1 26.9 40 1 15.6 33 2 3.5 5 0 3.0 4 0 1.6 4
3 50 59.8 66 1 58.0 74 1 44.2 69 2 4.9 7 0 4.2 6 0 3.8 7
4 70 99.6 122 61 100.2 137 1 75.4 118 4 5.7 7 3 4.8 7 0 4.6 7
5 110 121.3 132 89 124.9 158 1 101.4 127 4 6.2 8 4 5.4 7 0 5.6 8
6 113 125.6 135 62 129.0 149 1 107.1 130 5 6.8 9 4 5.5 8 0 6.3 9
7 161 204.4 233 1 207.0 251 1 171.4 224 5 7.0 9 0 6.1 8 0 6.2 9
8 215 241.7 256 163 249.5 279 1 212.1 246 6 7.7 11 4 6.5 9 0 7.1 9
9 240 251.6 262 205 262.2 289 1 230.5 256 5 8.2 11 5 6.6 8 0 7.7 11

For bracketing depth, HOL4 achieves a marginally better score on larger terms.
This may due to inwards movement of negations by HOL4, which reduces depth
without badly affecting term size. More detailed analysis of this is needed.

Table 2. Experimental results: execution times (ms)

HOL4 BDD+SAT
min avg max min avg max

1 0 0.2 2 10 21.6 58
2 1 1.7 10 12 76.1 266
3 2 4.0 13 16 224.9 944
4 4 6.8 20 20 294.3 589
5 7 11.0 31 25 372.0 637
6 6 9.3 35 27 379.8 553
7 10 14.8 47 33 503.9 847
8 14 17.9 50 42 747.6 1620
9 14 18.7 53 40 876.2 3263

For execution time, (Table 2) HOL4 is about two orders of magnitude faster.
However, we are not disappointed. First, in absolute terms our simplifier typically
takes less than a second, which is acceptable in interactive proof. Second, our
implementation is a mix of SML, C++, Perl and shell scripts, all communicating
via disk files, brought on by the need to try out various third-party off-the-
shelf implementations. Since the method invokes simplify for each subterm, the
overhead of file creation, reading, writing, and spawning command shells adds
up. This diagnosis is supported by profiling of individual modules: with the
exception of SATsimp, they contribute very little to the time cost. Our current
SATsimp works by invoking a SAT solver on the clause set file, extracting only
the clauses used by the solver, and repeating the invocation on the new clause
set file, until a fixpoint is reached. So it is also disk intensive. We fully expect
the execution times to approach those of HOL4 with a little more engineering
effort towards direct in-memory interfaces.
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6 Conclusion

We have shown how BDDs and SAT solvers can be used for propositional term
simplification. The method appears to improve on the simplification of pure
propositional terms by rewrite-based simplifiers, at least on random terms with
propositional structure sizes the same as those of terms typically encountered
in interactive proof. Further we have proved that our simplified terms respect
formal guarantees about semantic simplicity that cannot be furnished by rewrite-
based simplifiers. Our treatment is tool independent, except that we require that
the SAT solver is proof producing. We have also shown that the method can be
used in an LCF-style framework with acceptable cost.

We are currently considering a more aggressive structure retention strat-
egy that uses the definitions of definitional CNF to encode structural infor-
mation, that can later be recovered from the CNF. However, given that the
current method does a decent enough job, this is not very high on our list of
priorities.

Even though we have restricted ourselves to propositional logic, in theory the
results should be applicable to the use of SMT solvers rather than SAT solvers,
and should allow us to do simplification in combinations of decidable theories.
This awaits the development of a fast and mature LCF-style SMT interface,
work on which is underway [5]. If so, our results could then be applied to the
propositional structure of more expressive logics via Skolemization, as is done in
PVS, since SMT solvers can reason about uninterpreted functions.

Possible direct applications of this work include isolating the cause of a failure
to prove a putative tautology, and identification of dead code.3

We also plan to use simplify in a more fine grained manner, perhaps in con-
junction with the rewriting engine of the theorem prover, as is done in ACL2:
the HOL4 and Isabelle/HOL simplifiers do provide hooks for integrating other
procedures with the rewrite engine. We plan to customize SAT-based simplifiers,
for instance to try harder to exclude clauses containing no definitional variables.
These plans will form the initial steps for future research.
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