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sozeau@lri.fr
2 University of Nottingham

npo@cs.nott.ac.uk

Abstract. Type Classes have met a large success in Haskell and Is-

abelle, as a solution for sharing notations by overloading and for spec-
ifying with abstract structures by quantification on contexts. However,
both systems are limited by second-class implementations of these con-
structs, and these limitations are only overcomed by ad-hoc extensions
to the respective systems. We propose an embedding of type classes into
a dependent type theory that is first-class and supports some of the
most popular extensions right away. The implementation is correspond-
ingly cheap, general and integrates well inside the system, as we have
experimented in Coq. We show how it can be used to help structured
programming and proving by way of examples.

1 Introduction

Since its introduction in programming languages [1], overloading has met an
important success and is one of the core features of object–oriented languages.
Overloading allows to use a common name for different objects which are in-
stances of the same type schema and to automatically select an instance given
a particular type. In the functional programming community, overloading has
mainly been introduced by way of type classes, making ad-hoc polymorphism
less ad hoc [17].

A type class is a set of functions specified for a parametric type but defined
only for some types. For example, in the Haskell language, it is possible to
define the class Eq of types that have an equality operator as:

class Eq a where (==) :: a → a → Bool

It is then possible to define the behavior of == for types whose equality is
decidable, using an instance declaration:

instance Eq Bool where x == y = if x then y else not y

This feature has been widely used as it fulfills two important goals. First, it
allows the programmer to have a uniform way of naming the same function over
different types of data. In our example, the method == can be used to compare
any type of data, as long as this type has been declared an instance of the Eq
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class. It also adds to the usual Damas–Milner [4] parametric polymorphism a
form of ad-hoc polymorphism. E.g, one can constrain a polymorphic parameter
to have an instance of a type class.

=/= :: Eq a ⇒ a → a → Bool
x =/= y = not (x == y)

Morally, we can use == on x and y because we have supposed that a has an
implementation of == using the type class constraint ’Eq a ⇒’. This construct
is the equivalent of a functor argument specification in module systems, where
we can require arbitrary structure on abstract types.

Strangely enough, overloading has not met such a big success in the domain
of computer assisted theorem proving as it has in the programming language
community. Yet, overloading is very present in non formal—pen and paper—
mathematical developments, as it helps to solve two problems:

– It allows the use of the same operator or function name on different types. For
example, + can be used for addition of both natural and rational numbers.
This is close to the usage made of type classes in functional programming.
This can be extended to proofs as well, overloading the reflexive name for
every reflexivity proof for example (see §3.4).

– It shortens some notations when it is easy to recover the whole meaning
from the context. For example, after proving (M, ε, ·) is a monoid, a proof
will often mention the monoid M , leaving the reader implicitly inferring the
neutral element and the law of the monoid. If the context does not make clear
which structure is used, it is always possible to be more precise (an extension
known as named instances [9] in Haskell). Here the name M is overloaded
to represent both the carrier and the (possibly numerous) structures built
on it.

These conventions are widely used, because they allow to write proofs, speci-
fications and programs that are easier to read and to understand.

The Coq proof assistant can be considered as both a programming language
and a system for computer assisted theorem proving. Hence, it can doubly benefit
from a powerful form of overloading.

In this paper, we introduce type classes for Coq and we show how it fulfills
all the goals we have sketched. We also explain a very simple and cheap imple-
mentation, that combines existing building blocks: dependent records, implicit
arguments, and proof automation. This simple setup, combined with the expres-
sive power of dependent types subsumes some of the most popular extensions to
Haskell type classes [2,8].

More precisely, in this paper,

– we first recall some basic notions of type theory and some more specific
notions we are relying on (§2) ;

– then, we define type classes and instances before explaining the basic design
and implementation decisions we made (§3) ;

– we show how we handle superclasses and substructures in section 4 ;
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– we present two detailed examples (§5): a library on monads and a develop-
ment of category theory ;

– we discuss the implementation and possible extensions to the system (§6) ;
– finally, we present related and future work (§7).

Though this paper focuses mainly on the Coq proof assistant, the ideas de-
veloped here could easily be used in a similar way in any language based on
Type Theory and providing both dependent records and implicit arguments.

2 Preliminaries

A complete introduction to Type Theory and the Coq proof assistant is out of
the scope of this article. The interested reader may refer to the reference manual
[16] for an introduction to both. Anyway, we recall here a few notations and
concepts used in the following sections.

2.1 Dependent Types

Coq’s type system is a member of the family of Type Theories. In a few words,
it is a lambda-calculus equipped with dependent types. It means that types can
depend upon values of the language. This allows to refine the type of a piece
of data depending on its content and the type of a function depending on its
behavior. For example, it is possible, using Coq, to define the type of the lists
of a given size n and to define a function head that can only be applied to lists
of a strictly positive size.

Indeed, the type can specify the behavior of a function so precisely, that a
type can be used to express a mathematical property. The corresponding program
is then the proof of this property. Hence, the Coq system serves both as a
programming language and a proof assistant, being based on a single unifying
formalism.

2.2 Dependent Records

Among the different types that can be defined in Coq, we need to explain more
precisely dependent records, as they serve as the basis of our implementation
of type classes. A dependent record is similar to a record in a programming
language, aggregating different fields, each possessing a label, a type and a value.
Dependent records are a slight generalization of this as the type of a field may
refer to the value of a preceding field in the record.

For example, for a type A and a property P on A, one can express the property
”there exist an element a in a type A such that (P a) holds” using a dependent
record whose:

– First field is named witness and has type A.
– Second field is named proof and is of type P witness. The type of this second

field depends on the value of the first field witness.
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Another common use of dependent records, that we are going to revisit in the
following, is to encode mathematical structures gluing some types, operators and
properties. For example, the type of monoids can be defined using a dependent
record. In Coq syntax:

Record Monoid := {
carrier : Type ;
neutral : carrier ; op : carrier → carrier → carrier ;
neutral left : ∀ x, op neutral x = x ; · · · }

We can observe that the neutral element and the operation’s types refer to
carrier, the first field of our record, which is a type. Along with the type and
operations we can also put the monoid laws. When we build a record object
of type Monoid we will have to provide proof objects correspondingly. Another
possibility for declaring the Monoid data type would be to have the carrier type
as a parameter instead of a field, making the definition more polymorphic:

Record Monoid (carrier : Type) := {
neutral : carrier ; op : carrier → carrier → carrier ; · · · }

One can always abstract fields into parameters this way. We will see in sec-
tion §4 that the two presentations, while looking roughly equivalent, are quite
different when we want to specify sharing between structures.

2.3 Implicit Arguments

Sometimes, because of type dependency, it is easy to infer the value of a function
argument by the context where it is used. For example, to apply the function id
of type ∀ A : Type, A → A one has to first give a type X and then an element x
of this type because of the explicit polymorphism inherent to the Coq system.
However, we can easily deduce X from the type of x and hence find the value
of the first argument automatically if the second argument is given. This is
exactly what the implicit argument system does. It permits to write shortened
applications and use unification to find the values of the implicit arguments. In
the case of id, we can declare the first argument as implicit and then apply id
as if it was a unary function, making the following type-check:

Definition foo : bool := id true.

One can always explicitly specify an implicit argument at application time,
to disambiguate or simply help the type-checker using the syntax:

Definition foo : bool := id (A:=bool) true.

This is very useful when the user himself specifies which are the implicit
arguments, knowing that they will be resolved in some contexts (due to typ-
ing constraints giving enough information for example) but not in others. Both
mechanisms of resolution and disambiguation will be used by the implementa-
tion of type classes. Implicit arguments permit to recover reasonable (close to
ML) syntax in a polymorphic setting even if the system with non-annotated
terms does not have a complete inference algorithm.
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3 First Steps

We now present the embedding of type classes in our type theory beginning with
a raw translation and then incrementally refine it. We use the syntax −−−−→

xn : tn to
denote the ordered typing context x1 : t1, · · · , xn : tn. Following the Haskell

convention, we use capitalized names for type classes.

3.1 Declaring Classes and Instances

We extend the syntax of Coq commands to declare classes and instances. We
can declare a class Id on the types τ1 to τn having members f1 · · · fm and an
instance of Id using the following syntax:

Class Id (α1 : τ1) · · · (αn : τn) :=
f1 : φ1 ;

...
fm : φm.

Instance Id t1 · · · tn :=
f1 := b1 ;

...
fm := bm.

Translation. We immediately benefit from using a powerful dependently-typed
language like Coq. To handle these new declarations, we do not need to extend
the underlying formalism as in Haskell or Isabelle but can directly use ex-
isting constructs of the language.

A newly declared class is automatically translated into a record type having
the index types as parameters and the same members. When the user declares a
new instance of such a type class, the system creates a record object of the type
of the corresponding class.

In the following explanations, we denote by ΓId � −−−−→αn : τn the context of
parameters of the class Id and by ΔId � −−−−−→

fm : φm its context of definitions. Quite
intuitively, when declaring an instance −→

tn should be an instance of ΓId and −→
bm

an instance of ΔId[−→tn ].
Up to now, we just did wrapping around the Record commands, but the

declarations are not treated exactly the same. In particular, the projections
from a type class are declared with particular implicit parameters.

3.2 Method Calls

When the programmer calls a type class method fi, she does not have to specify
which instance she is referring to: that’s the whole point of overloading. However,
the particular instance that is being used is bound to appear inside the final term.
Indeed, class methods are encoded, in the final proof term, as applications of some
projection of a record object representing the instance fi : ∀ΓId, Id −→αi → φi. To be
able to hide this from the user we declare the instance of the class Id as an implicit
argument of the projection, as well as all the arguments corresponding to ΓId.

For example, the method call x == y where x, y : bool expands to the appli-
cation (eq) (?B :Type) (?e:Eq ?B) x y, where ?A : τ denotes unification variables
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corresponding to implicit arguments, whose value we hope to discover during type
checking. In this case ?B will be instantiated bybool leaving anEqbool constraint.

Indeed, when we write a class method we expect to find the instance auto-
matically by resolution of implicit arguments. However, it will not be possible
to infer the instance argument using only unification as is done for regular ar-
guments: we have to do a kind of proof search (e.g., here we are left with a Eq
?B constraint). So, after type-checking a term, we do constraint solving on the
unification variables corresponding to implicit arguments and are left with the
ones corresponding to type class constraints.

3.3 Instance Search

These remaining constraints are solved using a special purpose tactic that tries
to build an instance from a set of declared instances and a type class constraint.
Indeed, each time an instance is declared, we add a lemma to a database corre-
sponding to its type. For example, when an instance of the class Eq for booleans
is declared, a lemma of type Eq bool is created. In fact, any definition whose
type has a conclusion of the form Eq τ can be used as an instance of Eq.

When searching for an instance of a type class, a simple proof search algorithm
is performed, using the lemmas of the database as the only possible hints to
solve the goal. Following our example, the remaining constraint Eq bool will be
resolved if we have (at least) one corresponding lemma in our database. We will
discuss the resolution tactic in section 6. Note that we can see the result of the
proof search interactively in Coq by looking at the code, and specify explicitely
which instance we want if needed using the (A:=t) syntax.

3.4 Quantification

Finally, we need a way to parameterize a definition by an arbitrary instance of a
type class. This is done using a regular dependent product which quantifies on
implementations of the record type.

For convenience, we introduce a new binding notation [ Id −→
tn ] to add a type

class constraint in the environment. This boils down to specifying a binding
(instance : Id −→

tn) in this case, but we will refine this construct soon to attain
the ease of use of the Haskell class binder. Now, all the ingredients are there
to write our first example:

Definition neq (A : Type) [ Eq A ] (x y : A) : bool := not (x == y).

The process goes like this: when we interpret the term, we transform the [ Eq
A ] binding into an (eqa : Eq A) binding, and we add unification variables for
the first two arguments of (==) : ∀A : Type,Eq A → A → A → bool. After
type-checking, we are left with a constraint Eq A in the environment [ A : Type,
eqa : Eq A, x y : A ], which is easily resolved using the eqa assumption. At this
point, we can substitute the result of unification into the term and give it to the
kernel for validation.
Implicit generalization. When writing quantifications on type classes, we will
often find ourselves having to bind some parameters just before the type class
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constraint, as for the A argument above. This suggests that it would be conve-
nient to see type class binders as constructs binding their arguments. Indeed,
when we give variables as part of the arguments of a class binder for C, we are ef-
fectively constraining the type of the variable as it is known from the Γc context.
Hence we can consider omitting the external quantification on this variable and
implicitly quantify on it as part of the class binder. No names need be generated
and type inference is not more complicated. For example we can rewrite neq:

Definition neq [ Eq A ] (x y : A) : bool := negb (x == y).

This corresponds to the way type classes are introduced in Haskell in prenex
positions, effectively constraining the implicitly quantified type variables. If one
wants to specify the type of A it is also possible using the notation (A : Type)
in the class binder. The arguments of class binders are regular contexts.

Hence the syntax also supports instantiated constraints like [ Eq (list A) ].
More formally, to interpret a list of binders we proceed recursively on the list to
build products or lambda abstractions. For a type class binder [ C −−−−→

tn : τn ] we
collect the set of free variables in the global environment extended by the terms−→
tn , we extend the environment with them and the class binder and recursively
interpret the rest of the binders in this environment.

General contexts. As hinted in the previous section, all the contexts we are
manipulating are arbitrary. In particular this means that the parameters of a
type class are not restricted to be types of kind Type (a strong limitation of
Isabelle’s implementation). Any type constructor is allowed as a parameter,
hence the standard Monad (m : Type → Type) class causes no problem in our
setting (see §5.1). In fact, as we are in a dependently-typed setting, one can even
imagine having classes parameterized by terms like:

Class Reflexive (A : Type) (R : relation A) := reflexive : ∀ x : A, R x x.

We can instantiate this class for any A using Leibniz equality:

Instance Reflexive A (eq A) := reflexive x := refl equal x.

Note that we are using implicit generalization again to quantify on A here.
Now, if we happen to have a goal of the form R t t where t : T we can just apply
the reflexive method and the type class mechanism will automatically do a proof
search for a Reflexive T R instance in the environment.

4 Superclasses as Parameters, Substructures as Instances

We have presented a way to introduce and to use type classes and instances.
The design relies on the strength of the underlying logical system. This strength
makes it straightforward to extend this simple implementation with two key
structuring concepts: inheritance and composition of structures.
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4.1 Superclasses as Parameters

Inheritance permits to specify hierarchies of structures. The idea is to allow a
class declaration to include type class constraints, known as superclasses in the
Haskell terminology.

This kind of superclasses happens a lot in the formalization of mathematics,
when the definition of a structure on an object makes sense only if the object
already supports another structure. For example, talking about the class of func-
tors from C to D only makes sense if C and D are categories or defining a group
G may suppose that G is already a monoid. This can be expressed by superclass
constraints:

Class [ C : Category, D : Category ] ⇒ Functor := . . .
Class [ G : Monoid ] ⇒ Group := . . .

As often when dealing with parameterization, there are two ways to translate
inheritance in our system: either by making the superstructures parameters of
the type class or regular members. However, in the latter case it becomes harder
to specify relations between structures because we have to introduce equalities
between record fields. For example, we may wish to talk about two Functors F
and G between two categories C and D to define the concept of an adjunction.
If we have the categories on which a Functor is defined as members src and dst
of the Functor class, then we must ensure that F and G’s fields are coherent
using equality hypotheses:

Definition adjunction (F : Functor) (G : Functor),
src F = dst G → dst F = src G . . .

This gets very awkward because the equalities will be needed to go from one
type to another in the definitions, obfuscating the term with coercions, and the
user will also have to pass these equalities explicitly.

The other possibility, known as Pebble-style structuring [13], encourages the
use of parameters instead. In this case, superstructures are explicitly specified
as part of the structure type. Consider the following:

Class [ C : Category obj hom, D : Category obj’ hom’ ] ⇒ Functor := . . .

This declaration is translated into the record type:

Functor (obj : Type) (hom : obj → obj → Type) (C : Category obj hom)
(obj’ : Type) (hom’ : obj’ → obj’ → Type) (D : Category obj’ hom’) := . . .

We depart from Haskell’s syntax where the parameters of a superclass have
to be repeated as part of the type class parameters: they are automatically
considered as parameters of the subclass in our case, in the order they appear
in the superclass binders.

Note that we directly gave names to the type class binders instead of letting
the system guess them. We will use these names C and D to specify sharing of
structures using the regular dependent product, e.g.:
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Definition adjunction [ C : Category obj hom, D : Category obj’ hom’,
F : Functor obj hom C obj’ hom’ D,
G : Functor obj’ hom’ D obj hom C ] := . . .

The verbosity problem of using Pebble-style definitions is quite obvious in this
example. However we can easily solve it using the existing implicit arguments
technology and bind F and G using (F : Functor C D) (G : Functor D C )
outside the brackets. One can also use the binding modifier ’ !’ inside brackets to
turn back to the implicit arguments parsing of Coq, plus implicit generalization.

This is great if we want to talk about superclasses explicitly, but what about
the use of type classes for programming, where we do not necessarily want to
specify hierarchies? In this case, we want to specify the parameters of the class
only, and not the implementations of superclasses. We just need to extend the
type-checking process of our regular binder to implicitly generalize superclasses.
For example, when one writes [ Functor obj hom obj’ hom’ ], we implicitly
generalize not only by the free variables appearing in the arguments but also
by implementations C and D of the two category superclasses (the example
is developed in section §5.2). This way we recover the ability to quantify on a
subclass without talking about its superclasses but we still have them handy if
needed. They can be bound using the (A:=t) syntax as usual.

4.2 Substructures as Instances

Superclasses are used to formalize is-a relations between structures: it allows,
for example, to express easily that a group is a monoid with some additional
operators and laws.

However, it is often convenient to describe a structure by its components. For
example, one can define a ring by a carrier set S that has two components: a
group structure and a monoid structure on S. In this situation, it is convenient
that an instance declaration of a ring automatically declares instances for its
components: an instance for the group and an instance for the monoid.

We introduce the syntax :> for methods which are themselves type classes.
This adds instance declarations for the corresponding record projections, allow-
ing to automatically use overloaded methods on the substructures when working
with the composite structure.

Remark. This is very similar to the coercion mechanism available in Coq [14],
with which one can say that a structure is a subtype of another substructure. The
source-level type-checking algorithm is extended to use this subtyping relation
in addition to the usual conversion rule. It puts the corresponding projections
into the term to witness the subtyping, much in the same way we fill unification
variables with instances to build a completed term.

5 Examples

We now present two examples of type classes for programming and proving:
an excerpt from a monad library and a development of some basic concepts of
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category theory. Both complete developments 1 can be processed by the latest
version of Coq which implements all the features we have described.

5.1 Monads

We define the Monad type class over a type constructor η having operations unit
and bind respecting the usual monad laws (we only write one for conciseness).
We use the syntax {a} for specifying implicit arguments in our definitions.

Class Monad (η : Type → Type) :=
unit : ∀ {α}, α → η α ;
bind : ∀ {α β}, η α → (α → η β) → η β ;
bind unit right : ∀ α (x : η α), bind x unit = x.

We recover standard notations for monads using Coq’s notation system, e.g.:

Infix ”>>=” := bind (at level 55).

We are now ready to begin a section to develop common combinators on a given
Monad on η. Every definition in the section will become an overloaded method
on this monad mon.

Section Monad Defs.
Context [ mon : Monad η ].

The following functions are directly translated from Haskell’s prelude. Defini-
tions are completely straightforward and concise.

Definition join {α} (x : η (η α)) : η α := x >>= id.

Definition liftM {α β} (f : α → β) (x : η α) : η β := a ← x ;; return (f a).

We can use the overloading support to write more concise proof scripts too.

Lemma do return eta : ∀ α (u : η α), x ← u ;; return x = u.
Proof. intros α u.
rewrite ← (bind unit right u) at 2.
rewrite (eta expansion (unit (α:=α))).
reflexivity.

Qed.

Type classes are transparently supported in all constructions, notably fixpoints.

Fixpoint sequence {α} (l : list (η α)) : η (list α) :=
match l with

| nil ⇒ return nil
| hd :: tl ⇒ x ← hd ;; r ← sequence tl ;; return (x :: r)

end.

They work just as well when using higher-order combinators.

Definition mapM {α β} (f : α → η β) : list α → η (list β) :=
sequence · map f.

1 http://www.lri.fr/∼sozeau/research/coq/classes.en.html

http://www.lri.fr/~sozeau/research/coq/classes.en.html
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5.2 Category Theory

Our second example has a bit more mathematical flavor: we make a few con-
structions of category theory, culminating in a definition of the map functor on
lists.

A Category is a set of objects and morphisms with a distinguished id mor-
phism and a compose law satisfiying the monoid laws. We use a setoid (a set
with an equivalence relation) for the morphisms because we may want to redefine
equality on them, e.g. to use extensional equality for functions. The ≡ notation
refers to the overloaded equivalence method of Setoid.

Class Category (obj : Type) (hom : obj → obj → Type) :=
morphisms :> ∀ a b, Setoid (hom a b) ;
id : ∀ a, hom a a;
compose : ∀ a b c, hom a b → hom b c → hom a c;
id unit left : ∀ a b (f : hom a b), compose f (id b) ≡ f ;
id unit right : ∀ a b (f : hom a b), compose (id a) f ≡ f ;
assoc : ∀ a b c d (f : hom a b) (g : hom b c) (h : hom c d),

compose f (compose g h) ≡ compose (compose f g) h.

We define a notation for the overloaded composition operator.

Notation ” x · y ” := (compose y x ) (at level 40, left associativity).

A Terminal object is an object to which every object has a unique morphism
(modulo the equivalence on morphisms).

Class [ C : Category obj hom ] ⇒ Terminal (one : obj ) :=
bang : ∀ x, hom x one ;
unique : ∀ x (f g : hom x one), f ≡ g.

Two objects are isomorphic if the morphisms between them are unique and
inverses.

Definition isomorphic [ Category obj hom ] a b : :=
{ f : hom a b & { g : hom b a | f · g ≡ id b ∧ g · f ≡ id a } }.

Using these definition, we can do a proof on abstract instances of the type classes.

Lemma terminal isomorphic
[ C : Category obj hom, ! Terminal C x, ! Terminal C y ] : isomorphic x y.

Proof.
intros ; red.
exists (bang x ). exists (bang (one:=x ) y).
split.
apply unique.
apply (unique (one:=x )).

Qed.

We can define a Functor between two categories with its two components, on ob-
jects and morphisms. We keep them as parameters because they are an essential
part of the definition and we want to be able to specify them later.
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Class [ C : Category obj hom, D : Category obj’ hom’ ] ⇒
Functor (Fobj : obj → obj’)

(Fmor : ∀ a b, hom a b → hom’ (Fobj a) (Fobj b)) :=
preserve ident : ∀ a, Fmor a a (id a) ≡ id (Fobj a);
preserve assoc : ∀ a b c (f : hom a b) (g : hom b c),

Fmor a c (compose f g) ≡ Fmor b c g · Fmor a b f.

Let’s build the Functor instance for the map combinator on lists. We will be
working in the category of Coq types and functions. The arrow homset takes
Types A and B to the A → B function space.

Definition arrow A B := A → B.

Here we build a setoid instance for functions which relates the ones which are
pointwise equal, i.e: functional extensionality. We do not show the straightfor-
ward proofs accompanying each Instance declaration in the following. For ex-
ample, we have to show that pointwise equality is an equivalence here.

Instance arrow setoid : Setoid (arrow a b) :=
equiv f g := ∀ x, f x = g x.

We define the category TYPE of Coq types and functions.

Instance TYPE : Category Type arrow :=
morphisms a b := arrow setoid ;
id a x := x ;
compose a b c f g := g · f.

It is then possible to create a Functor instance for map on lists.

Instance list map functor : Functor TYPE TYPE list map.

6 Discussion

The previous sections contain a description of the overall design and imple-
mentation of type classes and a few examples demonstrating their effective use
in the current version of Coq. Our overall technical contribution is a realistic
implementation of type classes in a dependently-typed setting. We have also in-
troduced convenient syntactic constructions to build, use and reason about type
classes. We now summarize our implementation choices and explore some further
alleys in the design space of type classes for dependently–typed languages.

6.1 Overview

All the mechanisms we have described are implemented in the current version
of Coq, as a rather thin layer on top of the implicit arguments system, the
record implementation, and the type-checking algorithm. Each of these compo-
nents had to be slightly enhanced to handle the features needed by type classes.
We added the possibility of specifying (maximally inserted) implicit arguments
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in toplevel definitions. We adapted the record declaration front-end to handle
implicit arguments in Class and Instance definitions properly and permit giv-
ing only a subset of an instance’s fields explicitly, leaving the rest to be proved
interactively. We also have a binding of type classes with Russell [15] that uses
its enriched type system and allows to handle missing fields as obligations.

6.2 Naming

We allow for a lot of names to be omitted by the user that we really need to
have programmatically. To create fresh names is difficult and error-prone, and
we tried to use as much information that the user gives as possible during name
generation. We need more experiments with the system to know where we should
require names to be given to get reasonably robust code and specifications.

One thing that we learned doing bigger examples is that naming instances is
very useful, even if we don’t know beforehand if we will need to refer to them
explicitly to disambiguate terms. Disambiguation is rarely needed in practice but
it is very helpful. We always allow it, so that one can specify a particular super-
class instance when specifying a class binder or a specific type class parameter
for any method if needed.

6.3 Computing

A common concern when using heavily parameterized definitions is how effi-
ciently the code can be run. Indeed, when we define type classes having multiple
superclasses or parameters and call a method it gets applied to a large number
of arguments. The good thing is that both the interpreted evaluation functions
and the virtual machine [5] of Coq are optimized to handle large applications.
Also, we avoid trouble with proofs preventing reductions in terms that happen
when using other styles of formalizations.

6.4 Searching

The current tactic that searches for instances is a port of the eauto tactic that
does bounded breadth- or depth-first search using a set of applicable lemmas.
The tactic is applied to all the constraints at once to find a solution satisfying all
of them, which requires a backtracking algorithm. Our first experiments suggest
that this is sufficient for handling type classes in the simply-typed version, à
la Isabelle. However, with multiple parameters and arbitrary instances the
problem becomes undecidable and we can only do our best efforts to solve as
much problems as possible. We envisage a system to give more control over this
part of the system, allowing to experiment with new ways of using type classes
in a controlled environment.

An especially important related issue is the current non-deterministic choice
of instances. The problem is not as acute as in Haskell because we have an
interactive system and disambiguation is always possible. Also, in some cases
(e.g., when using reflexive to search for a reflexivity proof) we simply do not care
what instance is found, applying the principle of proof-irrelevance. However, in
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a programming environment, one may want to know if ambiguity arises due to
multiple instances for the same constraint appearing in the environment. This is
undecidable with arbitrary instances, so one would also want to restrict the shape
of allowed instances of some classes to ensure decidability of this test. We have
not yet explored how to do this in Coq, but we think this could be internalized
in the system using a reflection technique. We hope we could transport existing
results on type inference for Haskell type classes in this setting.

Finally, we did not study the relation between type-inference and instance
search formally as this has been done in the other systems. In our current setting,
the two systems could be given separate treatment, as we do instance search only
after the whole term is type-checked and unification of type variables is finished.

7 Related Work

The first family of related work concerns type classes in functional programming.
Type classes were introduced and extended as part of the Haskell language.
Some extensions has been proposed to make the type classes system more pow-
erful, while still retaining good properties of type inference. Most of them solve
problems that do not arise when introducing type classes in a dependently-typed
language like Coq.

– The use of dependent records gives a straightforward support of multi-
parameter, dependent type classes.

– The possibility to mix more liberally types and values could give us associated
types with classes [2] (and with them functional dependencies [8]) for free,
although we have not worked out the necessary changes on the system yet.

– Named instances [9] are a direct consequence of having a first-class encoding.

Some work has recently been done to extend Haskell with some partial
support for types depending on types or values like Generalized Algebraic Data
Types. These extensions often make use of type classes to write programs at the
level of types. Our approach, using the full power of dependent types, allows to
program types and values in the same functional language and is therefore much
less contrived.

Another embedding of type classes using an implicit argument mechanism
was done in the Scala object-oriented programming language [12] recently.

Isabelle. Haskell-style type classes are also an integral part of the Isabelle

proof assistant [19]. Wenzel [18] has studied type classes in the Isabelle proof
assistant, and recently F. Haftmann and him have given [6] a constructive ex-
planation of the original axiomatic type classes in terms of locales [10]. This
explanation is not needed in our case because the evidence passing is done di-
rectly in the core language. We always have the kernel’s type-checker to tell us
if the elaboration mechanism did something wrong at any point. However, the
inference is clearly formalized in Isabelle whereas we have no similar result.

The relative (compared to Coq) lack of power of the higher-order logic in
Isabelle/HOL makes it impossible to quantify on type constructors directly,



292 M. Sozeau and N. Oury

using ordinary constructs of the language. This prevents using the system to
implement our library on monads for example. To overcome this problem, one
has to work in an extension of HOL with Scott’s Logic of Computable Functions.
It is then possible to construct axiomatic type classes for type constructors using
a domain-theoretic construction [7].

Dependent Records. Ample litterature exists on how to extend dependent type
theories with records, e.g [3] gives a good starting point. We stress that our
implementation did absolutely not change Coq’s kernel and the associated type
theory, and we would only benefit from more fully-featured records. We leave
a thorough comparison with the Canonical Structure mechanism of Coq for
future work.

7.1 Future Work

Classes and Modules. We could customize the existing extraction mechanism [11]
from Coq to Haskell to handle type classes specially. However, this translation
is partial as our type system is more powerful. It would be interesting to study
this correspondence and also the connection between type classes and modules
in the Coq system itself.

Examples. Some examples have already been developed and we have seen some
improvements in the elegance and clarity of the formalization of mathematics
and the ease of programming. Some further work needs to be done there.

On top of classes. The type class system gives a basis for communication between
users and the system, by adhering to a common structuring principle. We are
exploring ways to use this mechanism, for example by developing a new setoid
rewriting tactic based on an internalization of signatures in the class system.

8 Conclusion

We have presented a type class system for the Coq proof assistant. This system
is useful both for developing elegant programs and concise mathematical formal-
izations on abstract structures. Yet, the implementation is relatively simple and
benefits from dependent types and pre–existing technologies. It could easily be
ported on other systems based on dependent types.
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