
Certified Exact Transcendental Real Number
Computation in Coq�

Russell O’Connor

Institute for Computing and Information Science
Faculty of Science

Radboud University Nijmegen
r.oconnor@cs.ru.nl

Abstract. Reasoning about real number expressions in a proof assistant
is challenging. Several problems in theorem proving can be solved by us-
ing exact real number computation. I have implemented a library for
reasoning and computing with complete metric spaces in the Coq proof
assistant and used this library to build a constructive real number im-
plementation including elementary real number functions and proofs of
correctness. Using this library, I have created a tactic that automatically
proves strict inequalities over closed elementary real number expressions
by computation.

1 Introduction

Mathematics increasingly relies on computation for proofs. Because software is
often error prone, proofs depending on computation are sometimes considered
suspect. Recently, people have used proof assistants to verify these kinds of
mathematical theorems [7]. Real number computation plays an essential role in
some of these problems. These proofs typically require finding a rational approx-
imation of some real number expression to within a specified error or proving a
(strict) inequality between two real number expressions. Two examples of such
proofs are the disproof of Merten’s conjecture [15] and the proof of Kepler’s
conjecture [8]. Certified real number computation also has other applications
including verifying properties of hybrid automata.

Proof assistants based on dependent type theory, such as Coq [17], allow one
to develop a constructive theory of real numbers in which approximations of real
numbers can be evaluated by the system. Functions on real numbers compute
what accuracy is needed from their input to satisfy the requested accuracy for
their output. Rather than accumulating rounding errors, the resulting approxi-
mations are guaranteed to be within the accuracy requested. One can develop a
constructive theory of real numbers that yields efficient functions by taking care
to ensure the computational aspects of the proofs are efficient. This paper illus-
trates how to develop such an efficient constructive theory. We begin reviewing
some results that are detailed in a previous publication [14]:

� This document has been produced using TEXmacs(see http://www.texmacs.org)

O. Ait Mohamed, C. Muñoz, and S. Tahar (Eds.): TPHOLs 2008, LNCS 5170, pp. 246–261, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Certified Exact Transcendental Real Number Computation in Coq 247

– A theory of metric spaces is developed (Section 3) that is independent of
the real numbers. An operation for completing metric spaces is defined
(Section 3.2), and this operation is seen to be a monad.

– This theory of complete metric spaces is used to define the real numbers
(Section 4). A key idea is to first define elementary functions over the rational
numbers, and then, once the functions are shown to be uniformly continuous,
lift these functions to the real numbers by using the monad operations.

A large library of mathematical results called CoRN has previously been devel-
oped at Radboud University Nijmegen [3]. Its collection of proofs includes both
the fundamental theorem of algebra and the fundamental theorem of calculus.
I extended this library by formalizing this theory of complete metric spaces.
The new results detailing how this theory was formalized in Coq are covered
(Section 5):

– The formalization was designed with efficient execution in mind (Section 5.1).
– Care was needed to efficiently approximate infinite series (Section 5.2).
– The technique of proof by reflection is used to verify a definition of π (Sec-

tion 5.3).
– Elementary functions are proved correct by showing that they are equivalent

to their corresponding functions defined in the CoRN library (Section 5.4).
– This theory is put to use by developing a tactic that uses computation to

automatically verify strict inequalities over closed real number expressions
(Section 5.5).

This formalization will be part of the next version of the CoRN library, which
will be released at the same time Coq 8.2 is released.

1.1 Notation

The propositions true and false are denoted by � and ⊥ respectively. The type
of propositions is written as �. In Coq this type is Prop.

The type �+ denotes the strictly positive rational numbers, and I will use
similar notation for other number types. The type �+

∞ denotes �+ + {∞}.
Functions taking multiple arguments will be curried as in f : A ⇒ B ⇒ C;

however, for readability, I will often use mathematical notation when applying
parameters, f(x, y), even though it should technically be written as f(x)(y).

I denote the function f iterated n times as f (n).
Because constructive mathematics has a classical interpretation, all the the-

orems in this paper can also be understood as theorems of classical analysis.
Although some of the definitions I use are somewhat different from the usual
classical definitions, they are still equivalent (under classical logic) to their clas-
sical counterparts.

2 Background

The real numbers are typically defined as a Cauchy sequence of rational numbers.
A sequence x : �⇒ � is Cauchy when

248 R. O’Connor

∀ε : �.0 < ε ⇒ ∃N : �.∀m : �.N ≤ m ⇒ |xm − xN | ≤ ε.

The function mapping ε to N is the modulus of convergence. It tells you how far
into the sequence you must reach in order to get good rational approximations
to the real number that x represents.

By using the constructive existential, one ensures that the value of N is com-
putable from ε. This results in the constructive real numbers. One can compute
approximations of constructive real numbers to within any given precision.

Real numbers are usually created from Cauchy sequences (which often arise
from Taylor series). Perhaps this is why the Cauchy sequence definition is com-
mon. On the other hand, approximation is the fundamental operation for con-
suming real numbers. This suggests an alternative definition of real numbers
based on how they are consumed. One can define a real number as a regular
function of rational numbers. A regular function of rational numbers is a func-
tion x : �+ ⇒ � such that

∀ε1ε2.|x(ε1) − x(ε2)| ≤ ε1 + ε2.

Regular functions are a generalization of regular sequences, which Bishop and
Bridges use to define the real numbers [1]. With regular functions, x directly rep-
resents the function that approximates a real number to within ε. The regularity
condition ensures that the approximations are coherent.

Regular functions and Cauchy sequences can be used to construct more than
just the real numbers. They can be used to construct the completion of any
metric space.

3 Metric Spaces

Usually a metric space X is defined by a metric function d : X × X ⇒ �;
however, this assumes that the real numbers have already been defined. Instead,
one can define a metric space based on a ball relation βε(a, b), that characterizes
when d(a, b) ≤ ε. Partial application, βε(a), yields a predicate that represents
the set of points inside the closed ball of radius ε around a. The following axioms
characterize a ball relationship β : �+ ⇒ X ⇒ X ⇒ �.

1. βε(a, a)
2. βε(a, b) ⇒ βε(b, a)
3. βε1(a, b) ⇒ βε2(b, c) ⇒ βε1+ε2(a, c)
4. (∀δ : �+.βε+δ(a, b)) ⇒ βε(a, b)

Axioms 1 and 2 state that the ball relationship is reflexive and symmetric. Ax-
iom 3 is a form of the triangle inequality. Axiom 4 states that the balls are closed.
Closed balls are used because their proof objects usually have no computational
content and can be ignored during evaluation. For some metric spaces, such as
the real numbers, open balls are defined with existential quantifiers and their
use would lead to unnecessary computation [4].

Certified Exact Transcendental Real Number Computation in Coq 249

Two points are considered identical if they are arbitrarily close to each other.

(∀ε.βε(a, b)) ⇔ a
 b

This can be considered either the definition of equivalence in X , or if X comes
with an equivalence relationship, then it can be considered a fifth axiom.

In Coq, a metric space X is a dependent record containing

1. a type (called the carrier)
2. a ball relation on that type
3. a proof that this ball relation satisfies the the above axioms.

The second projection function B returns the ball relation component of the
metric space. I will write the metric space parameter in a superscript, as in BX .
I will not distinguish between a metric space and its carrier, so X will denote
either a metric space or its carrier depending on the context.

Sometimes an extended ball relation B̌X : �+
∞ ⇒ X ⇒ X ⇒ � will be used

where B̌X∞(a, b) always holds and reduces to BX
ε (a, b) when ε < ∞.

3.1 Uniformly Continuous Functions

A uniformly continuous function allows one to approximate the output from an
approximation of the input. The usual definition for a function f : X ⇒ Y to be
uniformly continuous is

∀ε.∃δ.∀ab.BX
δ (a, b) ⇒ BY

ε (f(a), f(b)).

The function mapping ε to δ is what Bishop and Bridges [1] call the modulus of
continuity and is denoted by μf . (This is the inverse of what mathematicians
usually call the modulus of continuity.)

It is advantageous to use a more general notion of modulus of continuity that
can return ∞. This is used for bounded functions when the requested accuracy
is wider than the bound on the function. For example, μsin(ε) = ∞ for 1 ≤ ε
because sin(x)(ε) = 0 for all x. We also pull out the modulus of continuity in
order to reason about it directly. Thus, we define a function f : X ⇒ Y to be
uniformly continuous with modulus μf : �+ ⇒ �+

∞ when

∀abε.B̌X
μf (ε)(a, b) ⇒ BY

ε (f(a), f(b)).

In Coq, a uniformly continuous functions is a dependent record containing

1. a function f between two metric spaces
2. a modulus of continuity for f
3. a proof that f is uniformly continuous with the given modulus.

This means that μ is really the second projection function. Again, I will not
distinguish between the uniformly continuous function f and its actual function.

I will denote the type of uniformly continuous functions with the single bar
arrow, as in X → Y .

250 R. O’Connor

3.2 Complete Metric Spaces

We are now in a position to define regular functions over an arbitrary metric
space X . A function x : �+

∞ ⇒ X is a regular function when

∀ε1ε2 : �+.BX
ε1+ε2

(x(ε1), x(ε2)).

The function x is allowed to return anything when given ∞.
Two regular functions are equivalent (x
 y) when their approximations are

arbitrarily close to each other.

∀ε1ε2 : �+.BX
ε1+ε2

(x(ε1), y(ε2))

Thus, a regular function is a function that is equivalent to itself under this
relation.

Regular functions form a metric space [14], C(X), where the ball relation
B

C(X)
ε (x, y) is

∀δ1δ2 : �+.BX
δ1+ε+δ2

(x(δ1), y(δ2)).

This states that x and y are within ε of each other when their approximations
are almost within ε of each other.

Completion is a Monad. The completion operator C forms a monad in the
category of metric spaces and uniformly continuous functions between them [14].
The injection of X into C(X) is unit : X → C(X). The proof that a complete
metric space is complete yields join : C(C(X)) → C(X). The function map :
(X → Y) ⇒ C(X) → C(Y) lifts uniformly continuous functions to the complete
space. Finally, bind : (X → C(Y)) ⇒ C(X) → C(Y) is defined in terms of map
and join in the usual way.

unit(a)(ε) := a

join(x)(ε) := x
(ε

2

)(ε

2

)

map(f)(x)(ε) := f

(
x

(
μ̌f (ε)

2

))
(1)

bind(f) := join ◦ map(f)

Here the function μ̌f : �+
∞ ⇒ �+

∞ maps ∞ to ∞, and applies μf otherwise.
In my previous work, I used a simpler definition of map

map′(f)(x)(ε) := f(x(μ̌f (ε))). (2)

Unfortunately, this definition requires the additional assumption that X be a
prelength space [14]. Recently, I inferred from Richman’s work [16] that map
can be defined using equation 1 and works for all metric spaces if the modulus
of continuity of map(f) is smaller than μf .

Despite the above, in the common case that X is a prelength space, the
definition of map′ in equation 2 is more efficient, and map′(f) has the same
modulus of continuity as f . Because of this, I use map′ (and similarly bind′)
throughout my work. I use map mostly for theoretical results.

Certified Exact Transcendental Real Number Computation in Coq 251

Completion is a Strong Monad. Functions between two metric spaces form
a metric space under the sup-norm. The ball relation between two functions
BX→Y

ε (f, g) is
∀a.BY

ε (f(a), g(a))

Now the function map : (X → Y) → C(X) → C(Y) can be shown to be uniformly
continuous [14]. By defining ap : C(X → Y) → C(X) → C(Y), higher arity maps
such as map2 : (X → Y → Z) → C(X) → C(Y) → C(Z) can be constructed.

ap(f)(x)(ε) := map
(
f

(ε

2

))
(x)

(ε

2

)

map2(f) := ap ◦ map(f)

4 Real Numbers

Because the rational numbers � are a metric space, the real numbers can be
simply defined as the completion of �.

� := C(�)

Uniformly continuous operations on the real numbers are defined by lifting their
rational counterparts with map or map2. This is how +� and −� are defined [14].

I find using monadic operators to define functions on � is easier than trying
to define functions directly. It splits the problem into two parts. The first part is
to define the the function over �, which is easier to work with because equality
is decidable for �. The second part is to prove that the function is uniformly
continuous.

4.1 Order

A real number x is non-negative when

∀ε : �+. − ε ≤� x(ε).

The not-greater-than relation on real numbers, x ≤� y, means that y − x is
non-negative.

A real number x is positive when

∃ε : �+. unit(ε) ≤� x

(recall that unit : �→ �). One real number is less than another, x <� y, when
y − x is positive. Two real numbers are apart, x ≶ y, when x < y ∨ y < x.

This definition of positivity differs from what would be analogous to Bishop
and Bridges’s definition, ∃ε : �+.ε <� x(ε). Although the two definitions are
equivalent, my definition above contains a rational number in]0, x]. This is ex-
actly the information that will be needed to compute x−1 or ln(x) (Section 4.2).
With Bishop and Bridges’s definition, one must compute x(ε) − ε, which is a
potentially expensive calculation.

252 R. O’Connor

4.2 Non-uniformly Continuous and Partial Functions

Unfortunately not all functions that we want to consider are uniformly continu-
ous. One can deal with continuous functions by noting that they are uniformly
continuous on some collection of closed sub-domains that cover the whole space.
For example, λa : �.a2 is uniformly continuous on [−c, c]. Thus, a real num-
ber x can be squared by finding some domain [−c, c] containing it and lifting
(λa.(max(min(a, c), −c))2, which is uniformly continuous. In this case c can be
chosen to be |x(1)|+1. One can prove that the result is independent of the choice
of c, so long as x ∈ [−c, c].

Evaluating a non-uniformly continuous function is potentially a costly oper-
ation. The input x must be approximated twice. The first approximation finds
a domain to operate in, and the second approximation is used to evaluate the
function. In practice, I have found that one often has a suitable domain lying
around for the particular problem at hand. If that is the case, then x only needs
to be approximated once.

Partial functions with open domains are handled in the same way as non-
uniformly continuous functions. For example, λx.x−1 is uniformly continuous
on the domains [c, ∞[and] − ∞, −c] (where 0 < c). One difference is that one
cannot automatically find a domain containing x. One requires a proof that x is
apart from 0. From such a proof, one can find a suitable domain containing x.

Partial functions with closed domains, such as λx.
√

x, can be extended to
continuous total functions. I extend the square root function to return 0 for
negative values. If one wishes, one can then restrict the lifted function to only
accept non-negative inputs.

4.3 Transcendental Functions

Transcendental functions are first defined from � to �. Once these functions
are shown to be uniformly continuous (or otherwise using the techniques from
the previous section), they are then lifted using bind to create functions from �
to �.

Most elementary functions can be defined on some sub-domain by an alter-
nating decreasing series. Inputs outside this domain can often be dealt with
by using range reduction. Range reduction uses elementary identities to reduce
inputs from a wider to a narrower domain [14].

For example, the alternating series
∑∞

i=0(−1)i a2i+1

(2i+1)! computes sin(a), and
is decreasing when a ∈ [−1, 1]. For a outside this interval, range reduction is
preformed by repeated application of the identity

sin(a)
 3 sin
(a

3

)
− 4 sin3

(a

3

)
.

The value of an infinite alternating series, is represented by a regular function
that finds a partial sum having an error no more than ε. When an alternating
series is decreasing, finding such a partial sum is easy because the last term also
represents the error. One only needs to accumulate terms until a term becomes
less than ε.

Certified Exact Transcendental Real Number Computation in Coq 253

Coq will not accept a general recursive function that computes the above
partial sum. It requires a proof of termination. This is done by computing an
upper bound on the number of terms that will be needed. Strategies for doing
this efficiently in Coq are discussed Section 5.2.

The elementary functions, sin, cos, and tan−1 are defined as described in
my previous publication [14]. The implementation of ln has been improved by
defining it in terms of tanh−1,

ln
(n

d

)
:= 2 tanh−1

(
n − d

n + d

)
.

However, the input is still range reduced into [12 , 2] before using the above
formula.

I have also implemented a function to sum sub-geometric series (a series where
|an+1| ≤ r|an|). The error of the partial sums of these series is easy to compute
from the last term and r. I now use this function to compute the exp(a) function
for a ∈]0, 1[.

4.4 Compression

Without intervention, the numerators and denominators of rational numbers oc-
curring in real number computations become too large for practical computation.
To help prevent this, I defined a compression operation for real numbers.

compress(x)(ε) := approx�
(
x

(ε

2

)
,
ε

2

)

where approx�(a, δ) returns some rational number within δ of a. The idea is
that approx�(a, δ) quickly computes a rational number close to a but having a
smaller numerator and denominator. In my implementation, I return b

2n , where
2n is the smallest power of 2 greater than the denominator of δ, and b is chosen
appropriately so that the result is within δ of a.

The compress function is equivalent to the identity function on �.

compress(x)
 x

By liberally inserting compress into one’s expressions, one can often dramati-
cally improve the efficiency of real number calculations. I am considering adding
a call to compress with every use of map or bind so that the user does not need
to add these calls themselves. Too many calls to compress can harm performance
but perhaps not enough to cause worry.

5 Formalization in Coq

The theory of metric spaces and real numbers described in Sections 3 and 4 has
been formalized in the Coq proof assistant. I developed functions and proofs
simultaneously. I did not extract functions from constructive proofs, nor did I
write functions entirely separately from their proofs of correctness. Proofs and
functions are often mixed together, such as in the dependent records of metric
spaces, uniformly continuous functions, and regular functions.

254 R. O’Connor

5.1 Efficient Proofs

A mixture of proofs and functions can still be efficient to evaluate by taking care
to write the functional aspects efficiently and ensuring that the non-functional
aspects are declared opaque. Declaring lemmas as opaque prevents call-by-value
evaluation from normalizing irrelevant proofs.

I used Coq’s Prop/Set distinction (two different universes of types) to assist
in the separation of these concerns [4]. Types that have at most one member
(extensionally) are proof-irrelevant and go into Prop. Lemmas having these types
are declared opaque. Types that may have more than one member go into Set,
and objects of such types are kept transparent. This criterion means that I use
the Set based sum and dependent pair types for the constructive disjunction
and constructive existential quantifier.

When proving a constructive existential goal, one has to deal with both Prop
and Set during a proof. The existential lives in Set, but after supplying the wit-
ness, a Prop based proof obligation remains. The witness needs to be transparent,
but the proof obligation should be opaque. It is best to try and separate these
two parts into two different definitions, one transparent and one opaque. How-
ever, in some instances I make the entire development transparent, but I mark
the proof obligation part with Coq’s abstract tactic. The abstract tactic auto-
matically defines an opaque lemma containing marked part of the proof and places
this lemma into the proof object. Thus, the marked part is never evaluated.

5.2 Summing Series

One of the more challenging aspects of the formalization was computing the
infinite series defined in Section 4.3 in an efficient manner. In order to convince
Coq that the procedure of accumulating terms until the error becomes sufficiently
small terminates, I provided Coq with an upper bound on the number of terms
that would be required. I tried two different methods to accomplish this.

The first method computes an upper bound on the number of terms needed as
a Peano natural number. The problem is that the call-by-value evaluation scheme
used by Coq’s virtual machine would first compute this value before computing
the series. This upper bound is potentially extremely large, it is encoded in
unary, and only a few terms may actually be needed in the computation. The
solution to this problem was to create a lazy natural number using the standard
trick of placing a function from the unit type inside the constructor.

The lambda expressions inside the lazy natural numbers delay the evaluation
of the call-by-value scheme. With some care, only the number of constructors
needed for the recursion are evaluated.

Inductive LazyNat : Set :=
| LazyO : LazyNat
| LazyS : (unit -> LazyNat) -> LazyNat.

Fig. 1. Inductive definition of lazy natural numbers

Certified Exact Transcendental Real Number Computation in Coq 255

A second method, suggested by Benjamin Grégoire, is to compute the number
of terms needed as a binary number. This prevents the term from becoming too
big. It is possible to do recursion over the binary natural numbers such that two
recursive calls are made with the output of one recursive call being threaded
through the other. In this way, up to n recursive calls can be made even though
only lg n constructors are provided by the witness of termination.

In the simplified example below, the function F is iterated up to n times.
Continuation passing style is used to thread the recursive calls.

Variable A R : Type
Variable F : (A -> R) -> A -> R

Fixpoint iterate pos (n:positive) (cont: A -> R) : A -> R :=
match n with
| xH => F cont
| xO n’ => iterate pos n’ (fun a => iterate pos n’ cont a)
| xI n’ => F (fun a => (iterate pos n’
(fun a => iterate pos n’ cont a)) a)
end.

Fig. 2. The Coq function iterate pos recurses F at up to n times, using continuation
passing style

The η-expansion of the continuations in the above definition are important,
otherwise the virtual machine would compute the value of the iterate pos n’
cont calls before reducing F. This is important because F may not utilize its
recursive call depending on the value of a. In such a case, we do not want the
recursive call to be evaluated.

5.3 π

A common definition of π is 4 tan−1(1). This is an inefficient way of computing
π because the series for tan−1(1) converges slowly. One can more efficiently
compute π by calling tan−1 with smaller values [18]. I chose an optimized formula
for π from a list [19]:

π := 176 tan−1
(

1
57

)
+28 tan−1

(
1

239

)
− 48 tan−1

(
1

682

)
+96 tan−1

(
1

12943

)

This formula can easily be shown to be equivalent to 4 tan−1(1) by repeated
application of the arctangent sum law:

if a, b ∈] − 1, 1[then tan−1(a) + tan−1(b)
 tan−1
(

a + b

1 − ab

)

To apply the arctangent sum law, one needs to verify that a and b lie in]− 1, 1[.
To solve this, I wrote a Coq function to iterate the function f(b) := a+b

1−ab , and

256 R. O’Connor

at each step verify that the result is in the interval]−1, 1[. This function, called
ArcTan multiple, has type

∀a : �. − 1 < a < 1 ⇒ ∀n.� ∨
(
n tan−1(x)
 tan−1(f (n)(0))

)

It is easy to build a function of the above type that just proves � in all cases,
but ArcTan multiple tries to prove the non-trivial result if it can.

To apply this lemma I use a technique called reflection. The idea is to eval-
uate the ArcTan multiple(a, r, n) into head normal form. This will yield either
left(q) or right(p). If right(p) is returned then p is the proof we want.

My first attempt at building a tactic to implement this did not work well. I
used Coq’s eval hnf command to reduce my expression to head normal form.
However, this command repeatedly calls simpl to expose a constructor instead
of using the evaluation mechanism directly. The problem was that simpl does
extra reductions that are not necessary to get head normal form, so using eval
hnf was too time consuming.

Instead, I built a reflection lemma, called reflect right, to assist in applying
the ArcTan multiple function:

∀z : A ∨ B.(if z then ⊥ else �) ⇒ B

This simple lemma does case analysis on z. If z contains a proof of A, it returns
a proof of ⊥ ⇒ B. If z contains a proof of B, it returns a proof of � ⇒ B. To
prove n tan−1(a)
 tan−1(f (n)(0)), for the example a := 1

57 and n := 176, one
applies reflect right composed with ArcTan multiple to reduce the goal to

if (ArcTan multiple
1
57

∗ 176) then ⊥ else �,

where ∗ is the trivial proof of −1 < 1
57 < 1. Then one normalizes this expression

using lazy evaluation to either �, if ArcTan multiple succeeds, or ⊥, if it fails.

5.4 Correctness

There are two ways to prove that functions are correct. One way is to prove that
they satisfy some uniquely defining properties. The other way is to prove that the
functions are equivalent to a given reference implementation. I have verified that
my elementary functions are equivalent to the corresponding functions defined
in the CoRN library [3]. The functions in the CoRN library can be seen to be
correct from the large library of theorems available about them. The CoRN
library contains many different characterizations of these functions and new
characterizations can easily be developed.

The CoRN library defines a real number structure as a complete, ordered,
Archimedean field. My first step was to prove that my operations form a real
number structure. I first attempted to directly show that my real numbers satisfy
all the axioms of a real number structure, but this approach was difficult. Instead,
I created an isomorphism between my real numbers and the existing model of the

Certified Exact Transcendental Real Number Computation in Coq 257

real numbers developed by Niqui [6]. This was a much easier approach because
Niqui’s Cauchy sequence definition and my regular function definition are closely
related. With this isomorphism in place, I proved my operations satisfied the
axioms of a real number structure by passing through the isomorphism and using
Niqui’s existing lemmas. Niqui has also proved that all real number structures
are isomorphic, so I can create an isomorphism between my real numbers and
any other real number structure.

The next step was to define my elementary functions and prove that they are
equivalent to the corresponding CoRN functions. These theorems are of the form
Φ(fCoRN(x))
 f(Φ(x)) where Φ is the isomorphism from CoRN’s real numbers
to my real numbers.

To aid in converting statements between different representations of real num-
bers, I have created a rewrite database that contains the correctness lemmas.
By rewriting with this database, expressions can be automatically converted
from CoRN’s real numbers into my real numbers. This database can easily be
extended with more functions in the future.

The CoRN library was more than just a specification; this library was useful
throughout my development. For example, I was often able to prove that a
differentiable function f is uniformly continuous with modulus λε. ε

M when M
is a bound on the derivative of f . I could prove this because the theory of
derivatives had already been developed in CoRN. The CoRN library also helped
me reduce the problem of proving the correctness of continuous functions on �
to proving correctness only on �.

5.5 Solving Strict Inequalities Automatically

Whether a strict inequality holds between real numbers is semi-decidable. This
question can be reduced to proving that some expression e0 : � is positive. To
prove e0 is positive one must find an ε : �+, such that unit(ε) ≤ e0. I wrote a
tactic to automate the search for such a witness. It starts with an initial δ : �+,
and computes to see if e0(δ)− δ is positive. If it is positive, then e0(δ)− δ is such
a witness; otherwise δ is halved and the process is repeated. If e0
 0, then this
process will never terminate. If e0 < 0, then the tactic will notice that e0(δ) + δ
is negative and terminate with an error indicating that e0 is negative.

This tactic has been combined with the rewrite database of correctness lem-
mas to produce a tactic that solves strict inequalities of closed expressions over
CoRN’s real numbers. This allows users to work entirely with CoRN’s real num-
bers. They need never be aware that my effective real numbers are running
behind the scenes.

Recently Cezary Kaliszyk has proved that Coq’s classical real numbers (from
the standard library) form a CoRN real number structure, and he has shown
that Coq’s elementary functions are equivalent to CoRN’s. Now strict inequali-
ties composed from elementary functions over Coq’s classical real numbers can
automatically be solved.

The tactic currently only works for expressions composed from total func-
tions. Partial functions with open domains pose a problem because proof objects

258 R. O’Connor

witnessing, for example, that x is positive for ln(x) must be transparent for
computation. However, proof objects for CoRN functions are opaque, and Coq’s
classical functions have no proof objects. The required proof objects are proofs of
strict inequalities, so I am developing a tactic that recursively solves these strict
inequalities and creates transparent proof objects. This will allow one prove
strict inequalities over expressions that include partial functions such as ln and
λx.x−1.

5.6 Setoids

Coq does not have quotient types. Setoids are used in place of quotient types. A
setoid is a type associated with an equivalence relation on that type. A frame-
work for working with setoids is built into Coq. Coq allows one to associate an
equivalence relation with a type and register functions as morphisms by prov-
ing they are well-defined with respect to the given equivalence relations. Coq
allows you substitute terms with other equivalent terms in expressions com-
posed from morphisms. Coq automatically creates proof objects validating these
substitutions.

Setoids have some advantages over quotient types. Some functions, most no-
tably the function that approximates real numbers, are not well-defined with
respect to the equivalence relation—two equivalent real numbers may compute
different approximations. It is unclear how one would support these functions if
a system with quotient types was used.

Support for setoids was invaluable for development; however, I encountered
some difficulties when dealing with convertible types. The types CR, Complete
Q as MetricSpace, and cs crr CRasCRing, where cs crr retrieves the carrier
type, are all convertible. They are equivalent as far as the underlying type theory
is concerned, but Coq’s tactics work on the meta-level where these terms are
distinguishable. The setoid system does not associate the equivalence relation
on the real numbers with all of these various forms of the same type. Adding
type annotations was not sufficient; they were simplified away by Coq. Instead,
I used an identity function to force the types into a suitable form:

Definition ms_id (m:MetricSpace) (x:m) : m := x.

The setoid system is being reimplemented in the upcoming Coq 8.2 release.
Therefore, some of these issues may no longer apply.

5.7 Timings

Table 1 shows examples of real number expressions that can be approximated.
Approximations of these expressions were evaluated to within 10−20 on a 1.4 GHz
ThinkPad X40 laptop using Coq’s vm compute command for computing with its
virtual machine. These examples are taking from the “Many Digits” friendly
competition problem set [13].

Certified Exact Transcendental Real Number Computation in Coq 259

Table 1. Timings of approximations of various real number expressions

Coq Expression
Mathematical Expression Time Result Error
(CRsqrt (compress (rational exp (1))*compress (CRinv pos (3#1) CRpi)))%CR�

e
π

1 sec 0.93019136710263285866 10−20

(sin (compress (CRpower positive 3
(translate (1#1) (compress (rational exp (1)))))))%CR
sin((e + 1)3) 25 sec 0.90949524105726624718 10−20

(exp (compress (exp (compress (rational exp (1#2))))))%CR

eee
1
2

146 sec 181.33130360854569351505 10−20

6 Related Work

Julien is developing an implementation of real numbers in Coq using co-inductive
streams of digits [11]. This representation allows common subexpressions to be
easily shared because streams naturally memoize. Sharing does not work as well
with my representation because real numbers are represented by functions. One
would require additional structure to reuse approximations between subexpres-
sions. Julien also uses the new machine integers implementation in Coq’s virtual
machine to make his computations even faster. It remains to be seen if using
machine integers would provide a similar boost in my implementation.

Cruz-Filipe implemented CoRN’s library of theorems and functions over the
real numbers in Coq [2]. His implementation forms the reference specification
of my work. Although his implementation is constructive, it was never designed
for evaluation [5]. Many important definitions are opaque and efficiency of com-
putation was not a concern during development. Cruz-Filipe showed that it is
practical to develop a constructive theory of real analysis inside Coq. My work
extends this result to show that it is also possible to develop a theory of real
analysis that is practical to evaluate.

Muñoz and Lester implemented a system for approximating real number ex-
pressions in PVS [12]. Their system uses rational interval analysis for doing
computation on monotone segments of transcendental functions. Unfortunately,
this leads to some difficulties when reasoning at a local minimum or maximum,
so their system cannot automatically prove 0 < sin

(
π
2) , for instance.

Harrison implemented a system to approximate real number expressions in
HOL Light [9]. His system runs a tactic that externally computes an approxima-
tion to an expression and generates a proof that the approximation is correct.
If such a technique were implemented for Coq, it would generate large proof
objects. This is not an issue in HOL Light where proof objects are not kept.

Jones created a preliminary implementation of real numbers and complete
metric spaces in LEGO [10]. She represented real numbers as a collection con-
taining arbitrarily small intervals of rational numbers that all intersect. Complete
metric spaces were similarly represented by using balls in place of intervals. Be-
cause the only way of getting an interval from the collection is by using the

260 R. O’Connor

arbitrarily small interval property, her representation could have been simpli-
fied by removing the collection and let it implicitly be the image of a function
that produces arbitrarily small intervals. This is similar to my work because one
can interpret a regular function f as producing the interval [f(ε) − ε, f(ε) + ε].
Perhaps using functions that return intervals could improve computation by
allowing one to see that an approximation maybe more accurate than requested.

My work is largely based on Bishop and Bridges’s work [1]. Some definitions
have been modified to make the resulting functions more efficient. My definition
of a metric space is more general; it does not require that the distance function
be computable. The original motivation for the ball relation was only to develop
a theory of metric spaces that did not presuppose the existence of the real
numbers; however, it allows me to form a metric space of functions. This metric
space does not have a computable distance function in general and would not
be a metric space according to Bishop and Bridge’s definition.

7 Conclusion

We have seen a novel definition of a metric space using a ball relation. We
have seen how to create an effective representation for complete metric spaces
and seen that the completion operation forms a monad. Using this monad, we
defined the real numbers and used the monad operations to define effective
functions on the real numbers. This theory has been formalized in Coq and the
elementary functions have been proved correct. Real number expressions can
be approximated to any precision by evaluation inside Coq. Finally, a tactic
was developed to automatically proof strict inequalities over closed real number
expressions.

After completing the Haskell prototype and after writing up detailed paper
proofs [14], it took about five months of work to complete the Coq formalization.
This preparation allowed for a smooth formalization experience. Only a few
minor errors were found in the paper proofs. These errors mostly consisted of
failing to consider cases when ε may be too large, and they were easy to resolve.

My results show that one can implement constructive mathematics such that
the resulting functionally can be efficiently executed. This may be seen as the
beginning of the realization of Bishop’s program to see constructive mathematics
as programming language.

References

1. Bishop, E., Bridges, D.: Constructive Analysis. Grundlehren der mathematischen
Wissenschaften, vol. 279. Springer, Heidelberg (1985)

2. Cruz-Filipe, L.: Constructive Real Analysis: a Type-Theoretical Formalization and
Applications. PhD thesis, University of Nijmegen (April 2004)

3. Cruz-Filipe, L., Geuvers, H., Wiedijk, F.: C-CoRN: the constructive Coq repository
at Nijmegen. In: Asperti, A., Bancerek, G., Trybulec, A. (eds.) MKM 2004. LNCS,
vol. 3119, pp. 88–103. Springer, Heidelberg (2004)

Certified Exact Transcendental Real Number Computation in Coq 261

4. Cruz-Filipe, L., Spitters, B.: Program extraction from large proof developments. In:
Basin, D., Wolff, B. (eds.) TPHOLs 2003. LNCS, vol. 2758, pp. 205–220. Springer,
Heidelberg (2003)

5. Cruz-Filipe, L., Letouzey, P.: A large-scale experiment in executing extracted pro-
grams. Electr. Notes Theor. Comput. Sci. 151(1), 75–91 (2006)

6. Geuvers, H., Niqui, M.: Constructive reals in Coq: Axioms and categoricity. In:
Callaghan, P., Luo, Z., McKinna, J., Pollack, R. (eds.) TYPES 2000. LNCS,
vol. 2277, pp. 79–95. Springer, Heidelberg (2002)

7. Gonthier, G.: A computer-checked proof of the four colour theorem. Technical
report, Microsoft Research Cambridge (2005)

8. Hales, T.C.: A computer verification of the Kepler conjecture. In: Proceedings of
the International Congress of Mathematicians, Beijing, vol. III, pp. 795–804. Higher
Ed. Press (2002)

9. Harrison, J.: Theorem Proving with the Real Numbers. Springer, Heidelberg (1998)
10. Jones, C.: Completing the rationals and metric spaces in LEGO. In: The second

annual Workshop on Logical environments, New York, NY, USA, pp. 297–316.
Cambridge University Press, Cambridge (1993)

11. Julien, N.: Certified exact real arithmetic using co-induction in arbitrary inte-
ger base. In: Functional and Logic Programming Symposium (FLOPS). LNCS,
Springer, Heidelberg (2008)

12. Muñoz, C., Lester, D.: Real number calculations and theorem proving. In: Hurd,
J., Melham, T. (eds.) TPHOLs 2005. LNCS, vol. 3603, pp. 195–210. Springer,
Heidelberg (2005)

13. Niqui, M., Wiedijk, F.: The “Many Digits” friendly competition (2005),
http://www.cs.ru.nl/∼milad/manydigits

14. O’Connor, R.: A monadic, functional implementation of real numbers. Mathemat-
ical. Structures in Comp. Sci. 17(1), 129–159 (2007)

15. Odlyzko, A.M., te Riele, H.J.J.: Disproof of the Mertens conjecture. J. Reine
Angew. Math. 357, 138–160 (1985)

16. Richman, F.: Real numbers and other completions. Math. Log. Q. 54(1), 98–108
(2008)

17. The Coq Development Team. The Coq Proof Assistant Reference Manual – Version
V8.0 (April 2004), http://coq.inria.fr

18. Weisstein, E.W.: Machin-like formulas. From MathWorld–A Wolfram Web Re-
source (January 2004),
http://mathworld.wolfram.com/Machin-LikeFormulas.html

19. Williams, R.: Arctangent formulas for PI (December 2002),
http://www.cacr.caltech.edu/∼roy/upi/pi.formulas.html

http://www.cs.ru.nl/~milad/manydigits
http://coq.inria.fr
http://mathworld.wolfram.com/Machin-LikeFormulas.html
http://www.cacr.caltech.edu/~roy/upi/pi.formulas.html

	Certified Exact Transcendental Real Number Computation in Coq
	Introduction
	Notation

	Background
	Metric Spaces
	Uniformly Continuous Functions
	Complete Metric Spaces

	Real Numbers
	Order
	Non-uniformly Continuous and Partial Functions
	Transcendental Functions
	Compression

	Formalization in Coq
	Efficient Proofs
	Summing Series
	ϕ
	Correctness
	Solving Strict Inequalities Automatically
	Setoids
	Timings

	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

