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Abstract. While adding formal methods to traditional software development 
processes can provide very high levels of assurance and reduce costs by finding 
errors earlier in the development cycle, there are at least four criteria that should 
be considered before introducing formal methods into a project. This paper de-
scribes five successful examples of the use of formal methods in the develop-
ment of high integrity systems and discusses how each project satisfied these 
criteria.  
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1   Introduction  

Adding formal methods to traditional software development processes can provide 
very high levels of assurance and reduce costs by finding errors earlier in the devel-
opment cycle. However, to be successful there are at least four criteria that should be 
considered before introducing formal methods into a project. This paper describes 
five successful examples of the use of formal methods in industry and discusses how 
each of the five projects satisfied these criteria.   

2   Examples of the Successful Use of Formal Methods 

This section describes five successful examples of the use of formal methods in the 
development of high integrity systems. In three projects model checking was used to 
verify the functional correctness of Simulink® models. In two projects theorem prov-
ing was used to verify security properties of microcode and source code.  

2.1   FCS 5000 Flight Control System 

One of the first applications of model checking at Rockwell Collins was to the mode 
logic of the FCS 5000 Flight Control System [1]. The FCS 5000 is a family of Flight 
Control Systems for use in business and regional jet aircraft. The mode logic determines 
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which lateral and vertical flight modes are armed and active at any time. While inher-
ently complex, the mode logic consists almost entirely of Boolean and enumerated types 
and is written in Simulink. The mode logic analyzed consisted of five inter-related mode 
transition diagrams with a total of 36 modes, 172 events, and 488 transitions.  

Desired properties of the mode logic were formally verified using the NuSMV 
model checker. To accomplish this, the Simulink models were automatically trans-
lated into NuSMV using a translation framework developed by Rockwell Collins and 
the University of Minnesota. This same translation framework also optimized the 
models for efficient analysis by the NuSMV BDD-based model checker.  

Analysis of an early specification of the mode logic found 26 errors, seventeen of 
which were found by the model checker. Of these 17 errors, 13 were classified by the 
FCS 5000 engineers as being possible to miss by traditional verification techniques 
such as testing and inspections. One was classified as being unlikely to be found by 
traditional verification techniques.   

2.2   ADGS-2100 Adaptive Display and Guidance System 

One of the most complete examples of model checking at Rockwell Collins was the 
analysis of the Window Manager logic in the ADGS-2100 Adaptive Display and 
Guidance System [2]. The ADGS-2100 is a Rockwell Collins product that provides 
the display management software for next-generation commercial aircraft. The Win-
dow Manager (WM) is a component of the ADGS-2100 that ensures that data from 
different applications is routed to the correct display panel, even in the event of physi-
cal failure of one or more components.  

Like the FCS 5000 mode logic, the WM is specified in Simulink and was verified 
by translating it into NuSMV and applying the NuSMV model checker. While the 
WM contains only Booleans and enumerated types, it is still quite complex. It is di-
vided into five main components that contain a total of 16,117 primitive Simulink 
blocks that are grouped into 4,295 instances of Simulink subsystems. The reachable 
state space of the five components ranges from 9.8 ×109 to 1.5× 1037 states.  

Ultimately, 593 properties about the WM were developed and checked, and 98 er-
rors were found and corrected in early versions of the model. As with the FCS 5000 
mode logic, this verification was done early in the design process while the design 
was still changing.  While the verification was initially performed by formal methods 
experts, by the end of the project, the WM developers themselves were doing virtually 
all the model checking. 

2.3   Lockheed Martin Operational Flight Program 

The Air Force Research Labs (AFRL) sponsored Rockwell Collins to apply model 
checking to the Operational Flight Program (OFP) of an Unmanned Aerial Vehicle 
developed by Lockheed Martin Aerospace as part of the CerTA FCS project [3]. The 
OFP is an adaptive flight control system that modifies its behavior in response to 
flight conditions. Phase I of the project concentrated on applying model checking to 
portions of the OFP, specifically the Redundancy Management (RM) logic, which 
were well suited to analysis with the NuSMV model checker. While relatively small 
(the RM logic consisted of three components containing a total of 169 primitive 
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Simulink blocks organized into 23 subsystems, with reachable state spaces ranging 
from 2.1 × 104 to 6.0 × 1013 states), they were replicated once for each of the ten con-
trol surfaces on the aircraft, making them a significant portion of the total OFP logic. 

The verification of the RM logic took approximately 130 hours, with about half of 
that time spent preparing the models to be verified, correcting the errors found, and 
running the verification on the corrected models. A total of 62 properties were 
checked and 12 errors were found and corrected. 

In Phase II of this project, the translator framework was extended so that an SMT-
solver model checker could be used to verify portions of the numerically intensive 
inner loop control components in the OFP model. This phase is just being completed 
and will be reported on at a later date.  

2.4   AAMP7G Intrinsic Partitioning 

The AAMP7G is microprocessor developed by Rockwell Collins for use in its prod-
ucts. The AAMP7G provides high code density, low power consumption, long life 
cycle, and is screened for the full military temperature range. In addition, the 
AAMP7G includes a micro-coded separation kernel that provides MILS capability by 
ensuring the separation of data at different security classification levels. 

To formally verify the AAMP7G intrinsic partitioning mechanism, it was first nec-
essary to develop a formal description of what “data separation” means. This defini-
tion, now referred to as the GWV theorem, was specified as a formal property in the 
language of the ACL2 theorem prover [4]. To prove that the GWV theorem was satis-
fied by the AAMP7G, the microcode implementing the security kernel was modeled 
in ACL2 and the GWV theorem proven using the ACL2 theorem prover. To ensure 
that the ACL2 model of the microcode truly specified the behavior of the microcode 
on the AAMP7G, it was subjected to a painstaking code-to-spec review overseen by 
the National Security Agency (NSA) [5].  

In May of 2005, the AAMP7G was certified as meeting the EAL-7 requirements of 
the Common Criteria as “… capable of simultaneously processing unclassified 
through Top Secret Codeword information”.  

2.5   Greenhills Integrity-178B Real Time Operating System 

The Greenhills Integrity-178B Real Time Operating System implements an ARINC-
653 compliant APEX interface that has been certified to DO-178B Level A. It also 
includes a security kernel written in C that ensures the separation of data at different 
security classification levels.  

To formally verify the Integrity-178B security kernel, the GWV specification of 
data separation developed for the AAMP7G was generalized to the GWVr2 theorem 
in order to describe the more dynamic scheduling managed by the OS [6]. As with the 
AAMP7G, the separation kernel was modeled in ACL2 language and the GWVr2 
theorem was proven using the ACL2 theorem prover. To ensure that the ACL2 model 
of the C code truly specified the behavior of the Integrity-178B security kernel, it was 
also subjected to a painstaking code-to-spec review overseen by the NIAP/NSA.  

Formal verification of the Integrity-178B security kernel satisfied the U.S. Gov-
ernment Protection Profile for Separation Kernels in Environments Requiring High 
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Robustness and the Common Criteria v2.3 EAL7 ADV requirements. Final certifica-
tion of the Integrity-178B is now pending completion of NSA penetration testing.  

3   Requirements for the Successful Use of Formal Methods 

This section identifies four criteria for the successful use of formal verification on a 
problem and discusses how the examples described earlier satisfy these criteria.  

3.1   Is the Problem Important? 

While the cost of formal verification has been decreasing with the introduction of 
more powerful computers and analysis tools, it is still unusual for it to be accepted as 
an alternative to traditional verification techniques such as reviews and testing. To 
provide value, formal methods have to either satisfy a need for assurance greater than 
that provided by traditional means or have to reduce overall development costs by 
finding errors earlier in the life cycle. In either case, the problem being addressed 
should be inherently important.  

This is the case for each of the examples cited earlier. The ADGS 2100 Window 
Manager is part of a DO-178B Level A system that provides critical functionality on 
Air Transport class aircraft. While the FCS 5000 Mode Logic is part of a DO-178B 
Level C system, errors in its implementation are highly visible to pilots of the aircraft, 
making the elimination of such errors very desirable. The Lockheed Martin Redun-
dancy Management Logic implements important fault tolerance mechanisms essential 
for the correct operation of the UAV. Both the intrinsic partitioning mechanism of the 
AAMP7 and the Green Hills Integrity-178B Real-Time OS needed to provide separa-
tion of security domains and to satisfy the Common Criteria.  

3.2   Are High Fidelity Models Available for Analysis? 

Unlike testing, which verifies the actual implementation of a system, formal verifica-
tion can only be applied to models of a system such as its design or code. While for-
mal verification will typically find many errors that testing will miss, the availability 
of high fidelity models is critical for formal verification to be successful. 

In each of the examples described earlier, high fidelity models were readily avail-
able or could be created at an acceptable cost. For the FCS 5000 Mode Logic, the 
ADGS 2100 Window Manager, and the Lockheed Martin OFP, unambiguous, ma-
chine-readable Simulink models had been created by the designers and used to gener-
ate source code. These models were automatically translated into high fidelity models 
for verification using the NuSMV and PROVER model-checkers. 

In contrast, formal models of the AAMP7G microcode and the Greenhills Integrity-
178B security kernel were created by hand and verified through painstaking code-to-
spec reviews that were directly overseen by the NSA. While creation of these models 
was expensive, the cost was acceptable in order to achieve the extremely high levels of 
assurance required for certification.  
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3.3   Can the Properties of Interest be Stated Formally? 

Even if a problem is inherently important, distilling the critical requirements into 
mathematical relationships that can be formally verified is not always possible. For 
the FCS 5000 Mode Logic, the ADGS 2100 Window Manager, and the Lockheed 
Martin OFP, the main challenge was identifying all the properties to be verified. Usu-
ally, this was done by formalizing the existing requirements and through discussions 
with the developers. Frequently, this process uncovered undocumented assumptions 
and missing requirements that had to be resolved through discussion.  

In contrast, the challenge in formalizing the separation requirements for the 
AAMP7G intrinsic partitioning and the Greenhills Integrity-178B security kernel was 
developing a precise statement of the abstract concept of separation. While this was 
ultimately stated as a single ACL2 theorem (the GWV theorem for the AAMP7G and 
the GWVr2 theorem for the Integrity-178B security kernel), the process took several 
months of discussion and refinement.  

3.4   Are the Right Analysis Tools Available? 

The final consideration is whether the right analysis tools are available for the prob-
lem. To be effective, the formal verification tools must be able to verify the properties 
of interest, produce results sufficiently quickly, produce results at acceptable cost, and 
only require expertise that their users can be expected to know or acquire. Typically, 
the capability of the analysis tools will play as large a role in selecting which prob-
lems will be formally verified as will the inherent need for high assurance.  

For the FCS 5000 Mode Logic, the ADGS 2100 Window Manager, and the first 
phase of the Lockheed Martin OFP, the models all had state spaces of less than 1050 
reachable states, making them well suited for verification with BDD-based model 
checkers. Even so, the success of all these projects depended on the ability to auto-
matically generate high fidelity models that were optimized for analysis. This was 
especially true for the ADG-2100 Window Manager where the design models were 
being revised daily. If the analysis had taken more than a few hours, the project would 
not have been a success. In the second phase of the Lockheed Martin OFP analysis, 
the numerically intensive nature of the problem required the use of the Prover model 
checker. While successful, the greater expertise required to use an SMT-solver instead 
of a BDD-based model checker poses real challenges to the transfer of this technology 
to production developments.  

Verification of the security separation provided by the AAMP7G and the Green-
hills Integrity-178B security kernel was performed using the ACL2 theorem prover. 
These efforts took several months and significant expertise to complete. Even so, the 
project was highly successful due to the inherent importance of the problem, the sta-
bility of the AAMP7G microcode and Integrity-178B source code, and the availability 
of experts to formulate the formal properties and complete the proofs.   

4   Future Directions 

This paper has briefly described five industrial applications of formal methods and identi-
fied some of the main reasons those projects were successful. While the availability of 
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the right tools played a key role in each example, there are still many directions for re-
search that could make formal methods even more useful. An obvious need is to extend 
the domain of models for which model checking is feasible to include numerically inten-
sive models with transcendental functions. While SMT-solvers hold great promise, there 
may be difficulty in getting practicing engineers to use them on a routine basis. Industrial 
users could also use help in determining when they have an optimal set of properties. 
Also valuable would be a sound basis for determining what testing can be replaced by 
analysis. Finding ways to compose the verification of subsystems to verify entire systems 
will be essential to cope with the increasing size of digital systems. Techniques for mod-
eling and verifying asynchronous systems using message passing is another area of need. 
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