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Abstract. Systems that can immediately react to their inputs may suffer from
cyclic dependencies between their actions and the corresponding trigger condi-
tions. For this reason, causality analysis has to be employed to check the construc-
tiveness of the programs which implies the existence of unique and consistent
behaviours. In this paper, we describe the embedding of various views of causal-
ity analysis into the HOL4 theorem prover to check their equivalence. In partic-
ular, we show the equivalence between the classical analysis procedure, which is
based on a fixpoint computation, and a formulation as a (bounded) model check-
ing problem.

1 Introduction

For the modelling of embedded systems, or more generally, the modelling of systems
with concurrent actions whose execution may consume time, many models of computa-
tion [8,10,12] have been considered. Among these models of computation are asynchro-
nous models like dataflow process networks and Hoare’s CSP, discrete-event models as
used by most hardware description languages including VHDL, Verilog and SystemC,
and synchronous models as used by synchronous hardware circuits, synchronous pro-
gramming languages [3] and classical automata theory.

Most of these models of computation define a causality relation between actions and
their trigger conditions. Roughly speaking, causality determines a logical sequentiality
between trigger conditions and subsequent reactions according to the stimuli of the
environment. Causality can be achieved in various ways: for example, the notion of
δ-time has been introduced in hardware description languages to circumvent causality
problems, and tagged tokens have been introduced in dataflow computers to solve this
problem.

In synchronous models of computation, however, causality is not given by construc-
tion. There is neither a finer notion of time as given by δ-time nor are there tagged
values to establish a causality relation. Instead, the execution of a synchronous system
is partitioned into macro steps that consist of finitely many micro steps. The values of
the variables remain constant during all micro steps within a macro step and change
synchronously when proceeding to the next macro step. Time is given as a logical time
in the number of macro steps. Hence, causality analysis is much more difficult than in
other models of computation.
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For this reason, special procedures for causality analysis have been developed for syn-
chronous languages [4,22]. It is well-known that a synchronous program is causally cor-
rect (constructive) if and only if for all inputs, there is a dynamic schedule of the micro
step actions in all macro steps (hence, the program can be executed on a sequential ma-
chine). Moreover, it is known that causality analysis is equivalent to the stability analysis
of combinational feedback loops in hardware circuits [11,9,17,13,22,4,15,16,14] under
Brzozowski and Seger’s unbounded delay model [5,22].

Since the causality of a program depends on its syntax (or equivalently on the partic-
ular structure of a hardware circuit) and not only on its semantics, the causality analysis
furthermore depends on the translation to semantically equivalent hardware circuits or
sequential programs. We have studied such variants in depth in our previous research
[19,20,21]. As it turned out that the problem is very subtle and depends on details of
the used definitions, we believe that the research in this area would greatly benefit from
a solid formal treatment using an interactive theorem prover like HOL4. Hence, this
paper is the first step towards such a formal treatment, and it already presents an equiv-
alence proof between two kinds of causality analyses, namely one that could be used at
run-time with concrete inputs and a static one, which is used at compile-time with sym-
bolic inputs (so that a symbolic analysis is obtained). The symbolic causality analysis is
the second added value of this paper, since symbolic methods only exist for the special
case of Boolean event variables so far.

In this paper, we do not consider a particular language like our synchronous program-
ming language Quartz [18]. Instead, we consider a language-independent formalisation
of synchronous systems that is based on so-called guarded actions to obtain a theory
that is as general as possible. A guarded action is thereby a pair (γ, C) where the guard
γ is a Boolean condition, and where the action C is an atomic action of the system
under consideration. Throughout this paper, we only consider immediate assignments
of the form y = τ , where y is an output variable, and τ is an expression that is type-
consistent with y. Further kinds of actions like assumptions, assertions, and delayed
assignments [18] do not further complicate the causality analysis [19]. Moreover, we
do not take into account the reachability of states, which is necessary in a full causality
analysis by a compiler. Again, this would not further complicate the algorithms. Finally,
we only consider variables of type Boolean, while a real programming language offers
typically further types. However, types do not complicate our symbolic analysis either.

Guarded actions as the ones considered here have been widely used in computer
science so far, and entire programming languages like Unity [6,1,2] have been built
on top of them. However, the semantics of the guarded actions often differs, depend-
ing on the preferred model of computation. As we consider the synchronous model of
computation, the system’s computation consists of micro and macro steps: Thus, we
must analyse the causal order of the micro steps within one macro step, and variables
have constant values during the analysis. Indeed, the major goal of causality analysis
is to find a constructive schedule (dependent on the values of the input variables) to
determine the successive values of the output variables.

The symbolic causality analysis of this synchronous system starts with known inputs
xi and unknown outputs yi. For this reason, the initial environment E0 maps all input
variables to known Boolean constants, while it maps the output variables to a third
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value ⊥ that means ‘still unknown’ in the multi-valued causality analysis. Starting with
the initial environment E0, the following iteration is performed in causality analysis to
compute an environment Ei+1 from a given environment Ei. We first evaluate all guards
of the actions and partition the actions into (1) must-actions that have a guard Ei(γ) =
true and (2) can-actions that have a guard Ei(γ) ∈ {true, ⊥}, respectively. Then, we
‘execute’ the must-actions, so that the assigned variables’ values are updated in the new
environmentEi+1. Moreover, if all actions of an output variable y are cannot-actions, we
can assign a default value to y (which may be a fixed constant in case of event variables
(transient) or the previous value in case of memorised variables (persistent)). In all other
cases, we have to maintain the current value of y, which may still be unknown ⊥. If a
variable y should already have a known value, but a must-action assigns a different
value, we update the value of y to � to indicate a write conflict.

{ (x0 ∧ y5, y0 = true),
(x1 ∨ y0, y1 = true),
(x2 ∧ y1, y2 = true),
(x0 ∨ y2, y3 = true),
(x1 ∧ y3, y4 = true),
(x2 ∨ y4, y5 = true) }

��������
�������

y0 = x0 ∧ y5

y1 = x1 ∨ y0

y2 = x2 ∧ y1

y3 = x0 ∨ y2

y4 = x1 ∧ y3

y5 = x2 ∨ y4

��������
�������

y0 = x0 ∧ (x2 ∨ x1)
y1 = x1 ∨ (x0 ∧ x2)
y2 = x2 ∧ (x1 ∨ x0)
y3 = x0 ∨ (x2 ∧ x1)
y4 = x1 ∧ (x0 ∨ x2)
y5 = x2 ∨ (x1 ∧ x0)

Fig. 1. An Example of a Cyclic Equation System due to [17]

In case of Boolean event variables, a set of guarded actions is equivalent to a (po-
tentially cyclic) equation system, i.e., a combinational hardware circuit with potential
feedback loops. As an example (due to Rivest [17]), consider the guarded actions given
on the left hand side of Figure 1 for inputs x0, x1 and x2 and outputs y0, y1, y2, y3, y4
and y5. This set of guarded actions is equivalent to the cyclic Boolean equation system
shown in the middle of Figure 1. Using ternary simulation [13,22,4,19], it is possible to
convert every causally correct set of guarded actions into an acyclic equation system.
In case of our example of Figure 1, this equivalent acyclic equation system is given on
the right of Figure 1.

While there are paper-and-pencil proofs for the equivalence of the causality analysis
based on can-must analysis and the symbolic ternary simulation, there is no publication
on a symbolic analysis for non-Boolean or non-event variables. In this paper, we present
such a symbolic analysis as a generalisation of ternary simulation. To this end, we have
to take into account the problem of write conflicts which does not appear for Boolean
events (since disjunction is used as an implicit conflict resolution function). In addition,
we prove the equivalence between the can-must causality analysis and our symbolic
formulation based on extending each data type by the constants ⊥ and �.

To summarise, we present in this paper the formalisation of the traditional causality
analysis for synchronous systems as well as the definition of a fully symbolic version
of a general causality analysis. We use the HOL4 theorem prover to prove the equiv-
alence of these two variants of the causality analysis, so that we can guarantee that
what is checked by means of model checking in a compiler with the symbolic analysis
exactly matches the definition of causality analysis as given by the can-must analysis.
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Moreover, we extend the classical analysis by considering run-time errors like write
conflicts, division by zero, or access to array elements outside the declared range. This
is accomplished by generalising the traditional three-valued analysis to a four-valued
setting using a constant � for ‘run-time error’ in addition to ⊥ ‘yet unknown’.

This paper is organised as follows: In Section 2 we present a formalisation of the
traditional can-must analysis. Section 3 describes our symbolic approach to causality
analysis, which is subsequently formalised and shown to be equivalent in Section 4.
Finally, Section 5 draws some conclusions.

2 Formalisation of Traditional Can-Must Analysis

Before we formalise the traditional can-must analysis in the last part of this section,
we first have to model the system description, which is based on guarded actions (Sec-
tion 2.1) and the environment to allow the evaluation of terms (Section 2.2).

2.1 System Description

The main objective of our work is the reasoning about different procedures for causality
analysis; we are less interested in causality analysis of a particular system. Therefore,
we need a deep embedding of the system description to quantify over systems in the
logic. Hence, our first step is the formalisation of the guarded actions.

A guarded action is a pair (γ, x = τ), where grd(γ, x = τ) = γ is called the guard,
lhs(γ, x = τ) = x the left-hand side, and rhs(γ, x = τ) = τ the right-hand side of the
action. The guard and the right-hand side are Boolean expressions, which are defined
in HOL as follows:

BlExpr �def false ∈ BlExpr | true ∈ BlExpr | x, x ∈ V
| not(e), e ∈ BlExpr
| and(e1, e2), e1, e2 ∈ BlExpr | or(e1, e2)e1, e2 ∈ BlExpr

2.2 Four-Valued Environment

The previous subsection only describes the syntax of synchronous systems in our HOL
theory. To define their semantics, we have to formalise the environment of the system.
In the traditional can-must analysis, the environment maps each variable to a three-
valued truth value. We extend this definition here to integrate write conflicts and other
run-time errors into the causality analysis. Thus, the environment maps each variable to
one of the four truth values F = {⊥, 0, 1, �}.

¬̈
⊥ ⊥
0 1
1 0
� �

∧̈ ⊥ 0 1 �
⊥ ⊥ 0 ⊥ �
0 0 0 0 �
1 ⊥ 0 1 �
� � � � �

∨̈ ⊥ 0 1 �
⊥ ⊥ ⊥ 1 �
0 ⊥ 0 1 �
1 1 1 1 �
� � � � �

sup
F

⊥ 0 1 �
⊥ ⊥ 0 1 �
0 0 0 � �
1 1 � 1 �
� � � � �

Fig. 2. Definitions of Four-Valued Negation, Conjunction and Disjunction
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In the rest of this section we implement a theory based on four-valued logic. To
reason about monotonic functions, and the existence of fixpoints, we define a strict
partial order <̈ on the type F as follows: x<̈y :⇔ x �= y ∧ (x = ⊥ ∨ y = �). It is
easily seen that (F, <̈) is a complete lattice, since two elements have a supremum and
an infimum (see Figure 2).

Clearly, our theory contains four-valued generalisations for all Boolean operators
that are defined according to the truth tables shown in Figure 2. As can be seen, all
four-valued operations are maximal monotonic generalisations of the corresponding
Boolean operations (with respect to our partial order). The reason for this choice will
be discussed later in this paper, when we show the equivalence of this method to our
model-checking approach.

The environment itself is defined as a finite map [7] from natural numbers, which
represent variables in our case, to four-valued truth values. The actual implementation
is hidden behind the functions E(x) and Eτ

x , which read and update the value of a given
variable x in the environment E , respectively. The evaluation [[τ ]]FE of an expression τ to
a value in F with respect to the given environment E is defined recursively as follows:

blEval4_def �def
([[false]]FE = 0) ∧ ([[true]]FE = 1)∧
([[x]]FE = E(x)) ∧ ([[not(τ)]]FE = ¬̈[[τ ]]FE )∧
([[and(τ1, τ2)]]FE = [[τ1]]FE ∧̈[[τ2]]FE) ∧ ([[or(τ1, τ2)]]FE = [[τ1]]FE ∨̈[[τ2]]FE)

2.3 Fixpoint Iteration

As already explained in the introduction, the can-must analysis iteratively computes
values for all output variables of the environment E until a fixpoint is reached. To this
end, we have to maintain two sets of guarded actions A: The guard of the must-actions
is true, while the guard of the can-actions is not false.1 To this end, we provide the
following definitions:

can4_def �def
(can(⊥) = true) ∧ (can(0) = false)∧
(can(1) = true) ∧ (can(�) = false)

canActs_def �def
canActsE(A) = filter λ(γ, x = τ). can([[γ]]FE ) from A

must4_def �def
(must(⊥) = false) ∧ (must(0) = false)∧
(must(1) = true) ∧ (must(�) = true)

mustActs_def �def
mustActsE(A) = filter λ(γ, x = τ). must([[γ]]FE ) from A

After the set of guarded actions is partitioned into must-, cannot-, and the remaining
actions, their update of the environment is defined as follows: for must-actions, the
variable on the left-hand side should be assigned the supremum of its old value and the
right-hand side. This construction ensures two important properties. First, the order of

1 For a more intuitive formalisation, we use can-actions and not the complement cannot-actions,
which can be usually found in traditional causality.
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assignments to the same variable is irrelevant, which is a result of the associativity and
commutativity of the sup

F
operation. Thus, multiple actions can be executed sequen-

tially without caring about the sequential order. Second, instead of changing a variable
from one Boolean value to another one, � is assigned, which signals a write conflict.
Hence, this definition exactly models the intended behaviour.

executeActionF_def �def

execActF(E , a) = E sup
F
([[lhs(a)]]FE ,[[rhs(a)]]FE)

lhs(a)
executeActionsF_def �def

(execActsF(E , 〈〉) = E)∧
(execActsF(E , a ::A) = execActF(execActsF(E , A), a))

If no action is activated, the new value of a variable x is set to a default value, which is
commonly referred to as reaction to absence. The function reactToAbsenseF(E , x, A)
checks for a given output variable x, whether there is a possibly enabled action in A for
x. If this is not the case, x is assigned its default value in environment E .

reactToAbsenseF_def �def

(reactToAbsenseF(E , x, 〈〉) = Edefault(x)
x )∧

(reactToAbsenseF(E , x, a ::A) =
if x = lhs(a) then E else reactToAbsenseF(E , x, A))

reactToAbsensesF_def �def
(reactToAbsensesF(E , 〈〉, A) = E)∧
(reactToAbsensesF(E , m ::V , A) =

reactToAbsenseF(reactToAbsensesF(E , V , A), x, A)

Each step of the causality analysis consists in executing all must-actions and reacting to
absence for all variables that have no can-actions. Note that must-actions of the previous
iteration step are executed again in the next iteration. This must be done, since the
expression on the right-hand side might not have been known. So, its value can change
during the iterations.

cmAnalysisStep_def �def cmAnalysisStep(A, V , E) =
reactToAbsensesF(execActsF(E , mustActsE(A)), V , canActsE(A))

cmAnalysis_dfn �def cmAnalysis(A, V , E) =
let E ′ = cmAnalysisStep(A, V , E) in

if E = E ′ then E else cmAnalysis(A, V , E ′)

To prove the termination of the fixpoint iteration performed by the can-must analysis
cmAnalysis(A, V , E), we define a weight envWeight(E , V) for an environment E with
output variables V . The weight of a variable intuitively reflects the amount of knowledge
it stores, and the weight of an environment is just the sum of the weights of all output
variables. Since the set of output variables V is finite, it has the upper bound 2|V|.

weight4_def �def
(wt(⊥) = 0) ∧ (wt(0) = 1) ∧ (wt(1) = 1) ∧ (wt(�) = 2)

envWeight_def �def
(envWeight(E , 〈〉) = 0)∧
(envWeight(E , v ::V) = envWeight(E , V) + wt(E(v)))
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Since the termination is apparent for the case that no action is executed and the environ-
ment remains the same, it remains to prove that each call to cmAnalysisStep(A, V , E)
is monotonic in that it increases the weight of the environment. The proof basically
follows the argument that the executions of all actions and the reactions to absence are
monotonic. A variable with a Boolean value is never reset to ⊥, and a � is never re-
placed by any other value. The proof is done by induction on the variables, followed by
an induction on the actions. However, some more subtle preconditions are required for
a successful proof, which are due to the general assumptions of the theory:

– Since the list of variables V models rather a set than an actual list, all of its elements
must be distinct, so that the weight can be computed correctly.

– varsDefined(E , V) assures that values for all output variables V can be found in
the environment E . Otherwise, their weights would be undefined. Alternatively, the
weight of undefined variables could be defined, which would not reflect the real
situation.

– The actions A must only modify the variables given by output variables V . Other-
wise, some updates would not affect the weight computation. Note that the set of
output variables cannot be determined from the set of actions, since there may be
some variables whose behaviour is only given by the reaction to absence.

– Finally, as already noted, the default value default(x) should be independent of
the current environment. Otherwise, the reaction to absence would be able to cause
additional dependencies.

varDefined_def �def varDefined(E , v) = v ∈ domain(E)
varsDefined_def �def

(varsDefined(E , 〈〉) = true)∧
(varsDefined(E , v :: V) = varDefined(E , v) ∧ varsDefined(E , V))

actionValid_def �def actionValid(V , a) = lhs(a) ∈ V
actionsValid_def �def

(actionsValid(V , 〈〉) = true)∧
(actionsValid(V , a ::A) = actionValid(V , a) ∧ actionsValid(V , A))

STEP_MONOTONE �
distinct(V) → varsDefined(E , V) → actionsValid(V , A) →
(∀E1 E2 x. ([[default(x)]]FE1

) = ([[default(x)]]FE2
)) →

(envWeight(V , E) ≤ envWeight(V , cmAnalysisStep(A, V , E)))

This concludes the formalisation of the can-must analysis, which serves as a specifica-
tion for other algorithms for causality analysis.

3 Causality Analysis by Model Checking

In this section, we describe our symbolic approach to causality analysis, which is based
on a symbolic description of a transition system, so that the causality analysis can be
formulated as a model checking problem. In the following, we describe the transition
system, before we explain the actual verification task in Subsection 3.2.
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3.1 Modelling the Progress of Information

To encode the causality analysis as a model checking problem, we must create a tran-
sition system that explicitly models the progress of information and the occurrence of
write conflicts. Therefore, in addition to the variables in the program, we introduce for
every output variable x a Boolean-typed variable xkn that holds iff the value of x is
known. If this is the case, then the value of x is stored in the variable x, otherwise
the value of x is not yet known and we have to ignore its content. Similarly, a second
Boolean-typed variable xwc is added that holds iff a write conflict occurred for variable
x. If this bit is set, we can also ignore the content of the corresponding variable.

Using the variables xkn and xwc, we can explicitly model the progress of the infor-
mation flow, which is obtained by evaluating the program expression step by step until
either assignments can be executed that determine the current value of a variable or
until it becomes clear that no assignment will modify the current value of a variable so
that the reaction to absence will determine it.

As a first step, we define a function that maps a program expression σ to a Boolean
formula wc(σ) such that wc(σ) holds iff the expression σ cannot be evaluated due to a
write conflict. Basically, this is always the case if a subformula cannot be evaluated:

– For variables and constants, we define:

• wc(x) :=
{

false : if x is an input variable
xwc : otherwise

• wc(c) := false

– For the Boolean operators, we define:

• wc(not(ϕ)) := wc(ϕ)
• wc(and(ϕ, ψ)) := wc(ϕ) ∨ wc(ψ)
• wc(or(ϕ, ψ)) := wc(ϕ) ∨ wc(ψ)

Analogously, we formally define a function that maps a program expression σ to a
Boolean formula kn(σ) such that kn(σ) holds if and only if the expression σ can be
evaluated to a known value. The formula kn(σ) encodes the lazy evaluation rules of the
Boolean operators, which are shown in Figure 3.

– For variables and constants, we define:

• kn(x) :=
{

true : if x is an input variable
xkn : otherwise

• kn(c) := true

– For the Boolean operators, we define:

• kn(not(τ1)) := wc(τ1) ∨ kn(τ1)

x ∧ false = false false ∧ x = false
x ∨ true = true true ∨ x = true
false → x = true x → true = true

Fig. 3. Lazy Evaluation Rules
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• kn(and(τ1, τ2)) := wc(τ1) ∨ wc(τ2) ∨ kn(τ1) ∧ kn(τ2) ∨
kn(τ1) ∧ (τ1 = true) ∨ kn(τ2) ∧ (τ2 = true)

• kn(or(τ1, τ2)) := wc(τ1) ∨ wc(τ2) ∨ kn(τ1) ∧ kn(τ2) ∨
kn(τ1) ∧ (τ1 = false) ∨ kn(τ2) ∧ (τ2 = false)

Clearly, in the actual behaviour of the program, we can only make use of an expression
if we know its value. For this reason, the entire execution of the actions is controlled
by the data flow: we start with unknown values for all output variables and try to deter-
mine their values with the micro steps that can occur in a macro step. The procedure is
repeated for each reaction.

For this reason, we introduce a clock signal tick, which is true whenever all variables
have become known values, and a new reaction may be started. If this happens, the sys-
tem state may change according to the control flow, and the input variables are allowed
to change their values in a non-deterministic way (which reflects the uncontrollable
input of the environment).

Propagation of Knowledge:

KnownTransx :≡

0
BB@next(xkn) :⇔

0
BB@

¬tick ∧ kn(x)∨
¬tick ∧

“Wp
j=1 kn(γj) ∧ γj ∧ kn(τj)

”
∨

¬tick ∧
“Vp

j=1 kn(γj) ∧ ¬γj

”
1
CCA
1
CCA

Propagation of Write Conflicts:

WCTransx :≡

0
BBBBBBB@

next(xwc) :⇔

0
BBBBBBB@

¬tick ∧ wc(x)∨
¬tick ∧ kn(x)∧“Wp

j=1 kn(γj) ∧ γj ∧ kn(τj) ∧ (x �= τj)
”

∨
¬tick ∧„Wp−1

j=1

Wp
k=j+1 kn(γj) ∧ γj ∧ kn(τj)∧

kn(γk) ∧ γk ∧ kn(τk) ∧ (τj �= τk)

«

1
CCCCCCCA

1
CCCCCCCA

Computation of Values:

ValTransx :≡

0
BBBBBB@

 
¬tick →

 
p^

j=1

¬kn(x) ∧ kn(γj) ∧ γj ∧ kn(τj) → next(x) = τj

!!
∧ 

¬tick →
 

kn(x) ∨ ¬
 

p_
j=1

kn(γj) ∧ γj ∧ kn(τj)

!
→ next(x) = x

!!
∧

( tick → (next(x) = default(x)))

1
CCCCCCA

Fig. 4. Causality Transition Relation of Variable x

Macro steps are therefore separated by occurrences of the tick signal, and between
two clock ticks, the micro steps of a macro step are executed: as long as tick is false,
the immediate assignments to the variables are executed if the values of the guards and
right hand side expressions are known, and the guard is true. We therefore distinguish
between the information flow and the data flow. The information flow of a variable x is
determined by the corresponding variables kn(x) = xkn and wc(x) = xwc.

The transition relation of the information flow can be formulated as an equation
system as shown in Figure 4 that contains the following cases for xkn:



Formal Reasoning About Causality Analysis 127

– If there is no clock tick, the value of x remains known if it was already known.
– If there is no clock tick, the value of x becomes known if a guarded action (γj ,x=τj)

with an assignment x=τj can be fired. This is the case if and only if the value of the
guard γj is known to be true and if the value of the right hand side expression τj is
known.

– If there is no clock tick, and all guards γj are known to be false, the reaction to
absence determines the value of x: the formula of Figure 4 simply demands that
next(x)=x has to hold in this case, since x has been given the now desired value at
the first step of the reaction as a preliminary value.

– Otherwise, the value of x is not known.

Write conflicts are propagated according to the following rules:

– If there is no clock tick, a write conflict for x persists.
– If there is no clock tick, a write conflict occurs, if a guarded action (γj ,x=τj) is

activated that assigns a different value to an already known variable.
– If there is no clock tick, a write conflict occurs, if there are two guarded actions that

are activated and assign different values to the same variable.

The data flow of x is determined by the same cases as formalised in formula ValTransx
given in Figure 4:

– If there is no clock tick and a guarded action (γj ,x=τj) with an assignment x=τj

can be fired, then x will receive the value of τj at the next point of time.
– If there is no clock tick and no guarded action can be fired, then x will keep its value.

This covers two cases: first, if the reaction-to-absence should take place, since all
guards γj are known to be false, then keeping the value of x is correct, since we
already provided the desired value for x at the previous clock tick. Second, if a
write conflict occurs, the value of x is irrelevant.

– If there is a clock tick, then the values of all variables are known, and therefore, we
can execute all enabled delayed actions. If one of the delayed actions can be fired,
then the value of x is known for the following macro step. Note again that there is
no transition if several delayed guarded actions with different values πi and πj are
fired.

– Finally, if there is a clock tick, x is initialised to its default value default(x).

The formulas given in Figure 4 describe the transition relation of a particular variable
x. The complete transition relation is therefore the conjunction of the partial transition
relations of all output variables. In addition to this, we also have to determine, when the
causality analysis terminates. This is accomplished by the clock signal, which is defined
as follows:

ClockTrans :≡
(

tick :⇔
∧
x

kn(x) ∧ ¬wc(x)

)

The new clock tick can arrive as soon as all values of the local and output variables
become known. New input variables can then be read for the next reaction.



128 J. Brandt and K. Schneider

3.2 Model Checking Tasks

It is easily seen that the micro step behaviour as formalised in the previous subsection
describes the semantics of an asynchronous circuit. Obviously, a program is causally
correct, if the values of all variables can be determined for all possible inputs. Due to the
definition of ClockTrans, the states in which all variables are known can be identified
by the tick variable, which also marks the beginning of a new reaction. Hence, a single
reaction is modelled by a finite chain of transitions in this model leading from one state
where tick holds to another state where tick holds. Causally incorrect transitions (which
do not exist in the macro step model), are chains that do no lead to a valid new state, i.e.
tick does not appear after the initial step. Such execution sequences end in a self-loop
of a state without a tick. Thus, any system that is guaranteed to hit a clock state after
the initialisation, is causally correct. This property can be simply denoted by XF tick
in linear time temporal logic and can be checked by any state-of-the-art model checker
that supports linear time logic (LTL).

4 Formalisation of Alternative Analysis

Traditional causality analysis differs from our symbolic procedure in two aspects: first,
the data is represented in a different way. Instead of four-valued truth values, the sym-
bolic formulation is based on the original data types plus two additional status bits (to
allow the use of state-of-the-art model checkers). Second, the transition relation has a
denotational style, while traditional causality analysis describes the fixpoint computa-
tion operationally. Our formalisation and the equivalence proof of the equivalence are
therefore divided into two parts. The next two sections first link both data representa-
tions, while Section4.3 bridges the second gap.

4.1 Two-Valued Environment

Similar to the definitions of the four-valued environment, we hide the functions to read
and store values in the environment behind the notations E(x) and Ev

x , respectively.
Analogously, the additional status bits for knowledge and write conflicts can be ac-
cessed by E(xkn), Ev

xkn , E(xwc) and Ev
xwc , respectively.

The fundamental definition to link both variants of causality analysis, which is the
basis for the equivalence proof, is given by envEqual(E1, E2). This relation takes two
environments, a four-valued one and a two-valued one and defines whether they are
equivalent or not. For this task, it makes a case distinction on the four possible truth
values of the can-must analysis:

– If a four-valued variable is ⊥, the two-valued counterpart should be marked as not
known and without write conflicts.

– If the value of variable is 0 (or 1), it should be marked as known with no write
conflict and its value is set to 0 (or 1, respectively).

– If the value of the variable is �, it should be marked as known with a write conflict.
– The remaining case for the two-valued environment, i. e. a variable is not known

and has a write conflict, is forbidden.
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The following definition respects these considerations:

envEqual_def �def envEqual(E1, E2) =
(∀x.(E1(x) = ⊥) = ¬E2(xkn) ∧ ¬E2(xwc))∧
(∀x.(E1(x) = 0) = E2(xkn) ∧ ¬E2(xwc) ∧ (E2(x) = 0))∧
(∀x.(E1(x) = 1) = E2(xkn) ∧ ¬E2(xwc) ∧ (E2(x) = 1))∧
(∀x.(E1(x) = �) = E2(xkn) ∧ E2(xwc))∧

(∀x. false = ¬E2(xkn) ∧ E2(xwc)

On this basis, the evaluation [[e]]E of the Boolean expressions is defined:

blEval_def �def
([[false]]E = false) ∧ ([[true]]E = true)∧
([[x]]E = E(x))∧
([[not(τ)]]E = ¬[[τ ]]E )∧
([[and(τ1, τ2)]]E = [[τ1]]E ∧ [[τ2]]E)∧
([[or(τ1, τ2)]]E = [[τ1]]E ∨ [[τ2]]E )

The definition for the write conflict status needs some considerations. Following the
approach of the previous section, its determination should be strict. If a write conflict
occurs in any subterm, it is propagated. This models the fact that a model that contains
inconsistent variables is completely inconsistent.

blWriteConflict_def �def
(wcE(false) = false) ∧ (wcE(true) = false)∧
(wcE(x) = E(xwc))∧
(wcE(not(τ)) = wcE(τ))∧
(wcE(and(τ1, τ2)) = wcE(τ1) ∨ wcE(τ2))∧
(wcE(or(τ1, τ2)) = wcE(τ1) ∨ wcE(τ2))

In contrast to this, the known status makes use of lazy evaluation.

blKnown_def �def
(knE(false) = true) ∧ (knE(true) = true)∧
(knE(x) = E(xkn))∧
(knE(not(τ)) = wcE(τ) ∨ knE(τ))∧
(knE(and(τ1, τ2)) =

wcE(τ1) ∨ wcE(τ2) ∨ (knE(τ1) ∧ knE(τ2))∨
(knE(τ1) ∧ ([[τ1]]E = false)) ∨ (knE(τ2) ∧ ([[τ1]]E = false)))∧

(knE(or(τ1, τ2)) =
wcE(τ1) ∨ wcE(τ2) ∨ (knE(τ1) ∧ knE(τ2))∨
(knE(τ1) ∧ ([[τ1]]E = true)) ∨ (knE(τ2) ∧ ([[τ1]]E = true)))

The first proof obligation is that the previous definitions comply with the four-valued
ones. This corresponds to a lifting of the environments for the variables to the expres-
sions, i. e. : provided that variables in the current environments are considered equal,
all expressions can be considered to be equal, too. This goal can be proved with the
calculation rules for the four-valued operations, the given definitions and a first-order
tactic automatically, after initiating an induction on the structure of the expressions.



130 J. Brandt and K. Schneider

EXPR_EQUAL � envEqual(E1, E2) →
(([[τ ]]FE1

= ⊥) = ¬knE2(τ) ∧ ¬wcE2(τ))∧
(([[τ ]]FE1

= 0) = knE2(τ) ∧ ¬wcE2(τ) ∧ ([[τ1]]E2 = false))∧
(([[τ ]]FE1

= 1) = knE2(τ) ∧ ¬wcE2(τ) ∧ ([[τ1]]E2 = true))∧
(([[τ ]]FE1

= �) = knE2(τ) ∧ wcE2(τ))∧
(¬(¬knE2(τ) ∧ wcE2(τ)))

This proof is done by structural induction on expressions. Surprisingly, it revealed some
glitches in the definitions in former versions of knE(τ), which did not respect some
write conflicts.

4.2 Execution of Actions

The next step to define the execution of actions and to prove is that both variants perform
exactly the same steps, each one in its representation. Provided that the environments
have been equivalent before the execution of an action, they must be equivalent after
the execution. This is assured by the following definitions and theorems:

executeGuardedAction4_def �def executeGuardedActionF(a, E) =
if must([[grd(a)]]EF

) then execActF(EF, a) else EF

actionExecutable_def �def actionExecutable(E , a) =
knE(grd(a)) ∧ ([[grd(a)]]E = true) ∧ knE(rhs(a))

actionConflictFree_def �def actionConflictFree(E , a) =
¬knE(lhs(a)) ∨ ([[lhs(a)]]E = [[rhs(a)]]E )

executeGuardedAction_def �def executeGuardedAction(a, E) =
if actionExecutable(E , a) then

(if actionConflictFree(E , a) then execActF(E , a) else E1
awc)1akn

else E
ACTION_EQUAL � envEqual(E1, E2) →

envEqual(executeGuardedActionF(a, E1), executeGuardedAction(a, E2))

The proof of the last theorem basically makes a case distinction on the following situations
given by the value and status of the expressions occurring in a guarded action a:

– The guard grd(a) is not known or it is false. In both cases, the value of the left-hand
side is not changed by the execution of the guarded action, since the else branches
in both representations are taken.

– The guard grd(a) is known and not false, and the right-hand side expression rhs(a)
is unknown. The value of the left-hand side is not changed in both environment, due
to the following reasons. In the environment E , the whole action a is not executed.
In the environment EF, the action is executed, in principle. However, it does not
have any effect, since the maximum of the old value and the value of the unknown
right-hand side (which is ⊥ by assumption) is always the old value.

– The guard of the guarded action is known and not false. The right-hand side expres-
sion is known. The environment is updated, where the update depends whether a
write conflict is caused or not. If this is not the case, the value of the left-hand side
is updated and set to be known. Otherwise, its write conflict status is set in both
representations.
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actionActive_def �def

activeE(a) = knE(grd(a)) ∧ [[grd(a)]]E ∧ knE(rhs(a))
someActionActive_def �def

(someActiveE(〈〉) = false) ∧
(someActiveE(a ::A) = activeE(a) ∨ someActiveE(A))

allActionsInactive_def �def

(allInactiveE(〈〉) = true) ∧
(allInactiveE(a ::A) = ¬activeE(a) ∧ allInactiveE(A))

conflictingActionActive_def �def

conflActiveE(a) = activeE(a) ∧ knE(lhs(a)) ∧ ([[lhs(a)]]E �= [[rhs(a)]]E)
conflictingActionsActive_def �def

(conflsActiveE(〈〉) = false) ∧
(conflsActiveE(a ::A) = conflActiveE(a) ∨ conflsActiveE(A))

inconsistentActionActive_def �def

(inconActiveE(a0, 〈〉) = false)
(inconActiveE(a0, a1 ::A) = inconActiveE(a0, A)∨

activeE(a0) ∧ activeE(a1) ∧ ([[rhs(a0)]]E �= [[rhs(a1)]]E))
inconsistentActionsActive_def �def

(inconsActiveE(〈〉) = false)
(inconsActiveE(a ::A) = inconActiveE(a,A) ∨ inconsActiveE(A))

trWCVar_def �def trWCVar(A, v, E ,E ′) =
(wcE′(v) = wcE(v) ∨ conflActiveE(Av) ∨ inconsActiveE(Av)

trWC_def �def trWC(A, V, E ,E ′) =
�

v∈V trWCVar(A, v, E ,E ′)

trKnVar_def �def trKnVar(A, v, E , E ′) =
(knE′(v) = knE(v) ∨ someActiveE(Av) ∨ allInactiveE(Av))

trKn_def �def trKn(A, V, E ,E ′) =
�

v∈V trKnVar(A, v, E ,E ′))

trValAct_def �def trValAct(a, v, E ,E ′) =
¬knE(v) ∧ activeE(a) → ([[v]]E′ = [[rhs(a)]]E)

trValActs_def �def

(trValActs(〈〉, v, E , E ′) = true) ∧
(trValActs(a ::A, v, E , E ′) = trValActs(a, v, E ,E ′) ∧ trValAct(A, v, E ,E ′))

trValVar_def �def trValVar(A, v, E ,E ′) =
trValActs(Av, v, E ,E ′) ∧ (knE(v) ∨ allInactiveE(Av) → ([[v]]E = [[v]]E′ ))

trVal_def �def trVal(A, V, E ,E ′) =
�

v∈V trValVar(A, v, E ,E ′)

trAnalysisStep_def �def

trAnalysisStep(A, V, E ,E ′) =
trKn(A, V, E ,E ′) ∧ trWC(A, V, E , E ′) ∧ trVal(A, V, E ,E ′)

Fig. 5. Formalisation of the Transition Relation

4.3 Transition Relation

A last step to link both variants of causality analysis remains, the description style: the
previous paragraph still formalises the analysis operationally, it describes how to move
from one state to another. In contrast, the transition relation of the model-checking
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analysis has a different, rather denotational view. It describes the possible transitions
and makes it possible that no behaviours or multiple behaviours exist (instead of a
single one defined by the operational description). Hence, we have to prove that the
transition relation exactly describes the steps that would be executed by an iteration in
the operational description of the previous sections.

The complete formalisation of the transition relation is given in Figure 5. We closely
follow the definitions for a single variable given in Section 3, but use some auxiliary
definitions to keep the formalisation traceable and readable. Furthermore, we do not
integrate the tick signal in our formalisation, but replace it by an initialisation of the
output variables.

The following two theorems are the final step of our equivalence proof, which shows
that a step in the transition relation corresponds to a step in the can-must analysis.

TRANSREL_CORRECTNESS �
envEqual(E1, E2) → envEqual(E ′

1, E ′
2) →

(E ′
1 = cmAnalysisStep(A, V , E1)) → trAnalysisStep(A, V , E2, E ′

2)
TRANSREL_COMPLETENESS �

envEqual(E1, E2) → envEqual(E ′
1, E ′

2) →
trAnalysisStep(A, V , E2, E ′

2) → (E ′
1 = cmAnalysisStep(A, V , E1))

Critical points are the variables that are updated multiple times in the course of a step,
e. g. write conflicts are typical examples for this. There, we must abstract from the in-
termediate environments, which come from the sequential execution of actions within a
single iteration in the traditional can-must analysis. The equivalence proof uses the fact
that they can be reordered, i. e. the execution of actions has the Church-Rosser property.
Hence, a cumulated action with the same effect can be defined, which is subsequently
shown to be equivalent with the transition relation.

5 Conclusions

In this paper, we have presented a new symbolic causality analysis based on model
checking, which supports arbitrary data types and run-time error checking. With the
help of the HOL4 theorem prover, we formalised our new approach as well as the tra-
ditional can-must analysis and showed their equivalence. Thus, we gained a formally
verified symbolic causality analysis, which can be used in particular by compilers of
synchronous languages.
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